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�
To my family





Preface

Nanoelectronics devices have become ubiquitous in recent years, penetrating almost
every sector of modern life. This has been made possible by the research work of thou-
sands of scientists and engineers. I still remember when I first came across nanoelec-
tronics devices: as an intern in a large research center, my task was to characterize
two-dimensional electron gases in III–V heterostructures by fabricating simple van der
Pauw structures and measure them at cryogenic temperatures. What intrigued me and
still does is the fact that research on nanoelectronics is truly interdisciplinary, including
physics, electrical engineering and chemistry. Indeed, working with and understanding
the phenomena observed in nanoelectronics devices requires a solid theoretical basis
as well as knowledge of the fabrication techniques, since often the technology used is
decisive for the functionality of a device. Part of the fun is also the fact that research on
nanoelectronics involves groundbreaking, fundamentalwork aswell as dealingwith ap-
plied, real-life problems. The bottom line is that research on nanoelectronics provides
a broad playground for curiosity-driven, explorative, innovative, disruptive, highly rel-
evant work, which is great!

While the breadth and depth of nanoelectronics are very appealing to me, it turned
out to be a curse whenwriting the present introductory textbook. I realized that one can
easily get lost in so many details that it appeared sometimes difficult to decide between
more and less important topics. During the writing, I often thought that things were get-
ting too broad and at the same time that other parts were getting too detailed and that I
should remove or add content. But then again, I have been working long enough in the
field of research to witness the transition from 3D to 2D systems, the excitement about
1D semiconductors followed by the hype regarding 2D materials and the advent of 3D
integration. Interestingly, while there have beenmany newspaper articles about yet an-
other 2D wonder-material, recently you also find papers claiming that “silicon comes
back” and reports about how a big manufacturer bets it can turn silicon into a wonder
material for quantum computing. So, in the end instead of focusing too much on a cer-
tain topic or material, I tried to find a balance because I am convinced that one needs to
be able to handle the various aspects related to the materials, the fabrication, the the-
oretical understanding and simulation of nanoelectronics devices when one wants to
contribute to the field. Ultimately, restrictions regarding time and book pages as well
as a personal selection of topics determined the content of the book. Furthermore, the
book emerged out of the courses that I teach at RWTH Aachen University in Germany,
and hence the selection of topics is also strongly impacted by the interaction with many
students. For instance, a larger section of the second chapter is devoted to tight-binding
calculations, which I consider to be essential for understanding a substantial part of the
literature on device simulations. And such calculations, while more common to physics
students, are sometimes covered only scarcely in electrical engineering curricula. An-
other example is Chapter 3 that is devoted to the fabrication technology. Since there is a
vast literature available on the subject and because a thorough treatment of the subject
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justifies a book on its own, I touched on many of the techniques only slightly and rather
provided more details on aspects that are relevant to a student’s lab work. In addition, I
found it important to include a chapter on fabrication to make the book self-contained
and provide details on the technology used to realize the experimental devices pre-
sented in the book. Chapter 3 also covers a personal selection of process technologies
that I find particularly appealing, useful and worth mentioning. As such, the content of
the book is broad, yet I hope that it enables students to start their own, more in-depth
work in a certain direction of this multidisciplinary field of research.

Research and teaching have always been a great pleasure for me and I consider
myself privileged to be able to do so. I certainly owe a great deal of this privilege to in-
spiring and supporting teachers, advisors, colleagues and friends. The most influential
persons in this respect are Professor Joerg Appenzeller, with whom I have been collabo-
rating for more than 20 years. Furthermore, my PhD advisor, Professor Bruno Lengeler
impressedmewith his dedication to teaching and research. Duringmy career, I was for-
tunate to work under the guidance of PIs like Professor Siegfried Mantl, who supported
and fostered me with a perfect mix of direction and great freedom while I was post-doc
at Forschungszentrum Jülich; or Dr. Walter Riess who enabled me to work in a great
team of researchers during my time at IBM Research in Zurich. Furthermore, I am also
indebted to Professor Jesus del Alamo for the opportunity to work at the Microsystems
Techonology Laboratories at MIT and to Professor Hans Lüthwho always supportedme.

A substantial fraction of the material that I am presenting here is the result of the
dedicated and diligent work of a number of PhD students as well as post-docs and it
emerged from collaborations with quite a few colleagues. Particularly, I would like to
thank Dr. Marcel Müller, Dr. Thomas Grap, Dr. Felix Riederer, Dr. Birger Berghoff, Noel
Wilck, Bin Sun, Lena Hellmich, Benjamin Richstein, Jan Klos, Liu Minshang, Alexan-
der Gumprich, Thorben Frahm, Dr. Stefan Scholz and Dr. Karl Wolter. Moreover, many
thanks go to the following colleagues and collaborators: Dr. Mikael Björk, Heinz Schmid,
Dr. Heike Riel, Dr. Dirk König, Professor Qing-Tai Zhao, Dr. Dan Buca, Professor Yordan
Georgiev, Dr. Lars Schreiber, Professor Jörg Schulze, Professor Zhihong Chen, Professor
Walter Weber and the late Dr. Klaus Kallis. Most of all, I am indebted to my family for
their patience and understanding when I was mentally absent during the last weeks of
intensive writing to finish the book.

Aachen, May 2020.



Preface to the Second Edition

When I was contacted by DeGruyter and asked for a second edition of the book, I was
very grateful to get the opportunity to remove quite a few mistakes in the text, in
equations and figures that crept into the first edition no matter how careful I read the
manuscript. My favorite is dropping a factor of e, i. e., the elementary charge. For in-
stance, when coding a simulation I regularly equate V and eV and then insert negative
signs and factors at the end as needed to fix units, etc. While this pragmatic way works
very well for me, it not necessarily leads to the optimumway of presenting thematerial.
Therefore, I tried to remove as many ambiguities as possible.

Apart from removing mistakes, the second edition of the book comes with multiple
updates in the various chapters and additional material. Furthermore, I have added a
novel chapter on cryogenic electronics to the current edition.

Finally, the new material that I presented in this second edition is again the result
of the diligent work of quite a few collaborators, PhD and Master students. In addition
to the ones mentioned in the preface of the first edition, I would like to thank Michail
Michailow,Michael Frentzen, Patrick Liebisch, Yujie Li, Nazmus Sakib, Yichao Yang, Eike
Ecking and Professor Christoph Stampfer. Moreover, special thanks go to the technical
staff of the Central Laboratory for Micro and Nanotechnology at RWTH Aachen Univer-
sity, in particular to Jochen Heiss.

Aachen, January 2024
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How to Use the Book

In our increasingly digital world, writing a book instead of producing a YouTube video
may appear somewhat strange. However, I am convinced that digital formats such as
videos alone, do not yield a long-lasting, in-depth understanding of complicated mate-
rial. Personally, I learned themost when sitting at home trying to solve a problemwhich
sometimes required several hours of thinking, i. e. it required effort. Everyonewhoplays
a musical instrument knows exactly that the ability to play the instrument does not im-
prove by watching videos or listening to the music played by somebody else; this can
at best provide instructions, give guidelines or be stimulating. Making improvements
ultimately requires practice. Reading a book requires effort, because it is an active pro-
cess and stimulates thinking about the content. In contrast, watching amovie is a rather
passive process. In fact, I frequently see my kids writing messages on their cell phones
while watching a movie on TV but I never see this when they read a book because they
are completely absorbed in the latter case. Being actively involved in the learning pro-
cess strongly helps understanding andmemorizing the content. From this point of view,
a textbook is ideal since the content requires effort and one must be actively involved.
On the other hand, every student knows that textbooks can also be highly frustrating
in that sometimes the solutions to the problem sets are either missing or is provided
in such a reduced way that it is difficult or near impossible to follow. Here, watching a
video with step by step instructions is extremely helpful. Furthermore, an appropriate
animation is often more elucidating than many pages of written explanations.

The contents of the present book is therefore digitally enhanced in that video expla-
nations and supporting material as well as animations are provided through QR codes.
Moreover, there are tasks integrated into the text that are providedwith video solutions.
As mentioned above, learning is most effective if you try to solve these problems your-
self before watching the solution. To support doing so, the videos start with providing
hints regarding the solution before going into the details.

Furthermore, I have also added exercises at the end of each chapters. To save space,
both exercises and solutions are accessible via QR codes. The difference between the
tasks and the exercises is that ideally you should try solving the tasks while reading
the particular section they are embedded into. The exercises, on the other hand, can be
made anytime after you have gone through thematerial as they also require knowledge
of the material of the preceding chapters.

The last bit of digital enhancement are simulation tools that allow to study the ma-
terial in more depth. Be aware of the fact that the tools only qualitatively reproduce
experimental results since a number of approximations have been made in order to al-
low a quick simulation on a regular PC. The simulation tools are accessible via QR codes.
Finally, a list of the QR codes is added to ease finding specific content.
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1 Introduction

Within the last few decades, micro/nanoelectronics has undergone an enormous evo-
lution and has become an ubiquitous technology that has an amazing impact on our
lives.

From my point of view, the evolution can be subdivided into three major phases.
The first phase mainly dealt with the miniaturization of the same device structure (the
planar metal-oxide-semiconductor field-effect transistor based on bulk silicon) realized
with (almost) the same set of materials. In retrospective, this phase is sometimes called
the “era of happy scaling”: from an industrial engineering point of view, the “happy”
certainly refers to the fact that it was basically clear what to do and often also how to
do it. Today this era may better be characterized by the notion of “more Moore.” Cur-
rently, we are in the middle of the second phase that is sometimes called “more than
Moore” alluding to an extension and diversification of the mere scaling approach of in-
tegrated circuits. The diversification of micro/nanoelectronics is characterized by the
integration of novel materials, new device structures and novel functionalities. In par-
ticular, the advent of one- and two-dimensional materials has spurred investigations for
new ways of realizing materials with tailored properties and the realization of smart
materials that consist of ultracompact devices buried into three-dimensional material
stacks. Furthermore, the connection between micro/nanoelectronics and biological sys-
temswill become one of the next big things. Finally, convergence is one of the buzzwords
in particular of electronics and photonics systems. The third phase is currently about to
lift-off. This phase will bemarked by novel computing paradigms such as neuromorphic
and quantum computing and their combination with traditional von Neumann archi-
tectures.

From a scientists point of view, being somewhere in between all these phasesmakes
nanoelectronics a tremendously fascinating field of research. Mastering the nanotech-
nology required in order to manipulate materials on the few-nanometer scale, investi-
gating and exploiting the quantum mechanical principles behind materials and device
innovations is truly exciting. Particularly interesting is the fact that the development of
micro and nanoelectronics led to increasingly powerful computers that have been used
to obtain a deeper understanding and enable a further exploration of materials and de-
vice properties and concepts through simulations. With neuromorphic and quantum
computers being available in the foreseeable future, this self-reinforcing development
will be strongly accelerated.

However, nanoelectronics is also an enormously challenging field of research. In re-
cent years, it has evolved into a trulymultidisciplinary field of research. Apart frommas-
tering the engineering challenges in terms of the fabrication of appropriate nanoscale
structures scientist are faced with quantum physics, material science and chemistry.
This can only be handled with a firm basis regarding the materials and device physics
aspects as well as a thorough understanding of the technological aspects of manufactur-
ing processes. In addition, a fundamental understanding of device simulations is neces-
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sary to successfully contribute to the field of research. The present textbook provides
an introduction to nanoelectronics covering solid-state physics aspects, semiconductor
fabrication, device physics and device simulations as well as novel materials and device
concepts. Obviously, each of these topics easily fills entire bookshelves and the present
book can therefore only cover selected topics in limited breadth and depth. However,
the present book is intended to give graduate students and newcomers alike an integral
access to the topic covering the various aspects of the topic on an equal footing.

The book starts with the relevant solid-state and quantum physics fundamentals.
A particular focus will be on tight-binding calculations in order to enable students to
carry out their own, independent materials exploration. The following chapter covers
semiconductor fabrication aspects followed by a chapter on the central ingredient of
micro/nanoelectronic devices. Chapters 5 and 6 provide an introduction into the device
physics aspects of nanoscale field-effect transistors as well as their simulation using the
nonequilibrium Green’s function formalism. Equipped with these fundamentals, nano-
electronics devices based on alternative concepts, employing novel materials and oper-
ated at cryogenic temperatures will be discussed in the remainder of the book.
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The extremely small dimensions of today’s nanoelectronics devices, reaching the scale
of a few nanometers only, make a quantummechanical treatment of the phenomena ob-
served in such devicesmandatory. Tunneling of charge carriers, themanipulation of the
electronic properties of semiconductors by exerting strain, by combining different ma-
terials into heterostructures, etc. requires a firm basis in solid-state physics. Therefore,
this book starts with a summary of the most important concepts needed when working
with nanoelectronics devices. Emphasis is put on quantum confinement and on how
this leads to low-dimensional systems. Moreover, a major focus is on tight-binding cal-
culations, since this enables the computation of material parameters of semiconduc-
tors providing a good starting point for elaborate device simulations. Finally, electronic
transport through nanostructures is discussed.

2.1 Schrödinger Equation
Within a single-particle, quantum mechanical treatment of charge carriers, electrons
are described by the wave function Ψ( ⃗r, t), which is obtained as a solution of the time-
dependent Schrödinger equation given by

iℏ 𝜕
𝜕t

Ψ( ⃗r, t) = (ℋkin +ℋpot)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
ℋ

Ψ( ⃗r, t), (2.1)

where the kinetic termℋkin and the potential termℋpot of theHamiltonian are explicitly
given in Equation (2.2). In a static potential, the time dependence of the wave function
Ψ( ⃗r, t) reduces to a time-dependent phase factor, and consequently, the wave function
can be written in the form Ψ( ⃗r, t) = ψ( ⃗r)e−iEt/ℏ. Inserting this into Equation (2.1) yields
the time-independent Schrödinger equation,

−
ℏ2

2m
(
𝜕2

𝜕x2
+
𝜕2

𝜕y2
+
𝜕2

𝜕z2
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
ℋkin

ψ( ⃗r) + V ( ⃗r)⏟⏟⏟⏟⏟⏟⏟
ℋpot

ψ( ⃗r) = Eψ( ⃗r). (2.2)

In the present book, we will mostly consider (quasi)static potentials, and hence, we only
have to deal with the time-independent Schrödinger equation. Next, we are going to find
solutions to Equation (2.2) for various scenarios.

2.1.1 Schrödinger Equation in 1D

Let us start by solving the time-independent Schrödinger equation for a free particle in
one dimension (1D). For simplicity, the potential is considered to be at the constant value
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V0. For the solution, we can then make the following plane wave ansatz:

ψ(x) = Aeikx + Be−ikx . (2.3)

Inserting this into the Schrödinger equation (2.2), it is easy to show that the second
derivative of the kinetic term simply yields −k2ψ(x). As a result, one obtains

ℏ2k2

2m
ψ(x) + V0ψ(x) = E(k)ψ(x), (2.4)

from which the dispersion relation, i. e., the relation between energy E and the wave
number k is obtained as E(k) = ℏ

2k2
2m + V0, shown in Figure 2.1 for positive k-values

(green parabola). Taking the derivative of the dispersion relation with respect to k and
dividing by ℏ, one obtains

1
ℏ
𝜕E(k)
𝜕k
=

1
ℏ
ℏ2k
m
=
ℏk
m
=
p
m
= v(k) (2.5)

where the de Broglie relation ℏk = p has been used. The resulting velocity v(k) is the
group velocity of a charge carrier.

Figure 2.1: Quantization of a particle-in-the-box yields discrete, equidistant kn, and hence discrete energy
eigenvalues En.

2.1.2 The Particle-in-the-Box

When the free, one-dimensional motion of a particle is restricted to a region in-between
x = 0 and x = L with infinitely high potential barriers at the boundaries, the famous
particle-in-the-box (PIB) system is obtained, which is illustrated in Figure 2.1 (left). The
infinite potential barriers impose fixed boundary conditions, meaning that the wave
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function is identically zero for x ≤ 0 and x ≥ L. Using the ansatz wave function Equa-
tion (2.3), the boundary condition at x = 0 yieldsA+B = 0 resulting inψ(x) = 2iA sin(kx);
the boundary conditionψ(x = L) = 0 requires that k ⋅L = nπ with n being a positive inte-
ger. As a result, fixed boundary conditions lead to quantized values for k with kn = n

π
L ,

and hence discrete energy eigenvalues En =
ℏ2π2

2mL2 n
2 + V0.

Since the probability of finding the particle between x and x+dx is given by |ψ(x)|2dx
and because the probability of finding the particle anywhere in-between 0–L must be
unity, we get the following normalization condition that allows one to determine the
prefactor A:

L

∫
0

dxψn(x)

2
= 4A2

L

∫
0

dx sin2(
nπ
L
x) != 1→ ψn(x) = √

2
L
sin(nπ

L
x). (2.6)

1
Solving the integral in Equation (2.6), one finally arrives at A = 1

√2L
. The wave func-

tions of the particle-in-the-box problem are shown in Figure 2.1 (orange lines), which
are multiples of a half-wave similar to the string of a guitar or violin. Since the wave
is completely reflected at the infinite potentials (with a shift of the phase by π) in the
stationary case it bounces back and forth infinitely many times resulting in a complete
destructive interference at all energies except at the exact eigenenergies En of the PIB
where constructive interference occurs (see QR code #1).

2.2 Free Electrons in Various Dimensions

In the preceding section, the 1D Schrödinger equation and the particle-in-the-box were
discussed as a “warm-up” for quantummechanics. Semiconductor devices, on the other
hand, are made of three-dimensional solids, and thus we have to extend our consid-
erations of quantum mechanics to the three-dimensional case. On the other hand, na-
noelectronics devices have become so small that confinement of carriers within these
devices leads to a reduction of the dimension due to quantization. In the following, it will
therefore be discussed how quantization leads to low-dimensional carrier transport in
semiconductor nanostructures.

Consider a particle in three-dimensional (3D) space and again set the potential en-
ergy to a constant, i. e., V (x, y, z) = V0. Solving the 3D Schrödinger equation in this case
is straightforward using the separation ansatz ψ(x, y, z) = ϕ(x) ⋅ φ(y) ⋅ η(z) for the wave
function, which results in three 1D Schrödinger equations (see Task 1 for details) giving
rise to the following dispersion relation:

E(kx , ky, kz) =
ℏ2k2x
2mx
+
ℏ2k2y
2my
+
ℏ2k2z
2mz
+ V0 (2.7)

https://vimeo.com/462341003
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where the fact has been included that the (effective) masses in x-, y- and z-directions
may all be different. In the casemx = my = mz, the constant energy surfaces are spheres
as becomes obvious when setting the energy in Equation (2.7) constant. If two effective
masses are equal, a rotationally symmetric ellipsoid is obtained (see Task 1).

Task 1.
3D dispersion relation: Show that the dispersion relation of a free particle in 3D in a constant potential
V(x, y, z) = V0 is given

2
by Equation (2.7). Use a separation ansatz for the wave function ψ(x, y, z) = ϕ(x) ⋅

φ(y) ⋅ η(z).

2.2.1 From 3D to 2D Systems

When considering the PIB, it became clear that confinement of carriers in one direction
leads to quantized eigenenergy values. In real solid-state systems, carrier confinement
can in principle be obtained by, e. g., etching a thin slab out of a 3D, bulk semiconduc-
tor. From the solutions of the PIB, it can be inferred that this involves extremely thin
slabs with a thickness of a few nanometers only. Such thin slabs can be fabricated for
instance with ultrathin silicon-on-insulator (see Figure 3.5 as an example). A very el-
egant way of realizing quantization is the use of a heterostructure consisting of III–V
compound semiconductors: Epitaxial growth allows the insertion of a semiconductor
with a small band gap such as InGaAs, into two barrier layers with larger band gap (for
instance InAlAs). If an appropriate alignment of the conduction and valence bands can
be realized (more on this topic will be discussed in Section 4.7) a quantum well can be
formed as schematically shown in the left panel of Figure 2.2. In this case, confinement
leads to the quantization of kz. Neglecting the detailed potential distribution within the
quantum well (the curvature of the band) and assuming that the confinement potential
is high enough, the quantum well can be interpreted as a particle-in-the-box with in-
finite potential barriers and a constant potential of V0 within the box yielding for the
kz-component the energy eigenvalues En stated above. As a result,

E(kx , ky, kz)→ E(kx , ky, n) =
ℏ2k2x
2mx
+
ℏ2k2y
2my
+
ℏ2π2

2mzL2z
n2 + V0. (2.8)

Confinement leads to a reduction in dimension giving rise to the formation of two-
dimensional (2D) subbands, as shown in Figure 2.2, right panel. In this case, the dis-
persion relations E(kx , ky, n) can be plotted with the quantized knz = n

π
Lz

as a parameter
yielding rotationally symmetric paraboloids ifmx = my. Here, each paraboloid indexed
with n “starts” at the energy V0 +

ℏ2π2

2mL2z
n2. If only kx,y-states of the first 2D subband are

occupiedwith electrons, the system is two-dimensional and a so-called two-dimensional
electron gas (2DEG) is formed.

https://vimeo.com/466075523
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Figure 2.2: Quantization in one spatial direction (here, z-direction) leads to the formation of two-
dimensional subbands with free motion within the x–y plane. The dispersion of each 2D subband is
a paraboloid, as shown on the right-hand side. If all carriers reside only in the first subband, a two-
dimensional electron gas (2DEG) is obtained. A 2DEG can be realized, e. g., with a heterostructure based
on III–V compound semiconductors as illustrated in the left panel; here, Ec and Ev refer to the conduction
and valence bands, respectively.

With a similar derivation, the impact of quantization on the valence band can be
carried out leading to a corresponding set of paraboloids (upside down in this case and
with possibly different masses mv

x,y,z). One important implication of carrier confine-
ment is that the band gap Eg of the quantized semiconducting material is increased to
Eeff
g = Eg +

ℏ2π2

2mzL2z
+ ℏ

2π2

2mv
zL2z

as illustrated in Figure 2.2. Hence, a quadratic increase of Eeff
g is

expected when Lz is decreased. However, in Section 4.4, ultrathin silicon quantumwells
are studied as an example showing that simple carrier confinement may be inadequate
to reproduce Eeff

g (see Figure 4.10(b)).

2.2.2 From 2D to 1D Systems

If confinement is imposed onto a bulk semiconductor in two spatial directions, e. g., in x-
and z-directions, a quasi-1D system such as ananowire is obtained. Nanowires can either
be etched out of a volume material using appropriate lithography and etch steps (top-
down fabrication) or can be grown bottom-up with chemical vapor deposition (bottom-
up fabrication); Chapter 3 provides details on processing technology discussing different
possibilities how to fabricate appropriate nanowires.

Consider a nanowire object where carriers are confined to x = 0, . . . , Lx and
z = 0, . . . , Lz as depicted in Figure 2.3. Using the quantized eigenenergies of the PIB
in x- and z-directions, it is obvious that for sufficiently small Lx and Lz and/or small car-
rier mass, quantization yields one-dimensional, energetically well-separated subbands.
In Figure 2.3, two paraboloids are exemplarily shown that are the result of quantiza-
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Figure 2.3: Quantization in two spatial directions (x- and z-directions in the given example) leads to a set of
one-dimensional subbands that are a result of cuts between the paraboloids (due to kz quantization) and
the plane krx = r

π
Lx

as illustrated on the right-hand side. In the case, Lx = Lz some of the 1D subbands can
be degenerate (purple straight and dashed red lines).

tion along the z-direction (the same as shown in Figure 2.2). Now, if we assume that
the nanowire can be considered as a 2D particle-in-the-box then krx = r

π
Lx

as well as
knz = n

π
Lz

and the dispersion relation becomes

E(r, ky, n) =
ℏ2k2y
2my
+
ℏ2π2

2mxL2x
r2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Erx

+
ℏ2π2

2mzL2z
n2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Enz

+V0, (2.9)

where r and n are integer numbers. This means that additional quantization along the
x-direction yields k-states on cuts of the planes given by krx = r

π
Lx
= const. with the

paraboloids. In turn, these cuts result in parabolas that are projected onto the E–ky
plane; both paraboloids (and also higher ones) provide 1D subbands plotted as straight
and dashed lines in Figure 2.3, right panel. The first three energy levels at E1

x + E
1
z = E

11,
E1
x + E

2
z = E

12 and E2
x + E

2
z = E

22 and their respective wave functions are displayed in
Figure 2.3, left panel. Note that Lx = Lz andmx = mz was assumed here, and as a result
the energy values for n = 1, r = 2 and n = 2, r = 1 are degenerate since E12 = E21.

Task 2.
Carrier confinement and degeneracy: Consider a nanowire with rectangular cross-section with Lx =
2Lz . The carrier mass is considered to be equal tom in all three spatial directions. Suppose that for V0 = 0
the first subband lies at E11 = 0.1 eV. Compute the

3
energy of the next three one-dimensional subbands.

Are they degenerate?

https://vimeo.com/461427835
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2.2.3 From 1D to 0D Systems

If a system is made sufficiently small in all three spatial directions, quantization leads
to the formation of fully discrete energy levels. Figure 2.4 shows the one-dimensional
parabolas obtained from the quantization of x- and z-directions as detailed in the pre-
ceding section (note that the second parabola is twofold degenerate). If in addition, ky
is quantized we obtain a quantum dot. If Lx,y,z = L and mx,y,z = m, the eigenenergies of
the quantum dot are obtained as

Erln = ℏ
2π2

2mL2
(r2 + l2 + n2) + V0 (2.10)

where we assumed again a particle-in-the-box quantization with infinite potential. In
Equation (2.10), n, r and l are integer numbers representing the indices in the three
directions of quantization. The eigenenergies for the lowest indices are displayed in the
left panel of Figure 2.4 with some of them being threefold degenerate. Looking at the
constant contour plots of the respective eigenfunctions displayed in the right panel of
Figure 2.4 it becomes clear that the quantum dot can be interpreted as artificial atom:
the lowest eigenenergy E111 represents an s-like wave function similar to a hydrogen
atom. The next higher energy value with threefold degeneracy (E211 = E121 = E112) is
equivalent to the px,y,z orbitals of a hydrogen atom, etc. The degeneracy follows directly
from Equation (2.10) and can also be extracted from the left panel of Figure 2.4.

Task 3.
Quantization in a quantum dot: Consider a quantum dot as displayed in Figure 2.4 that is etched out of
a bulk material. The dot is quantized in all three spatial directions with Lx = Ly = Lz but different masses
mx = 2my = 4mz . What are

4
the eigenenergies (assume V0 = 0 eV) of the first five levels of the quantum

dot? Are they degenerate?

Figure 2.4: Discrete energy eigenvalues of a quantum dot due to quantization in x-, y- and z-directions.
Note that because of the particle-in-the-box quantization, only positive k-values are allowed. Right panel:
constant contour plots of the appropriate wave functions belonging to the displayed eigenenergies.

https://vimeo.com/462342664
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2.3 Electrons in Solids—Bravais Lattice, Wigner–Seitz Cell,
Brillouin Zone and Related Concepts

Up to now, we considered the electrons as being free particles. However, nanoelectron-
ics devices are made of semiconductors, i. e., crystalline solids and we therefore need to
incorporate the solid into our considerations. This implies that the simple quadratic dis-
persion relation E(kx , ky, kz) of a free particle will change into a more complicated band
structure. But since the solid is a crystal the electrons experience a periodic potential
that determines how the band structure eventually will look like. In order to under-
stand this, we need a number of concepts from crystallography related to the periodic
nature of the crystal and its symmetries. These concepts will only be mentioned briefly
but they are necessary for the band structure calculations.

Crystalline semiconductors (or in general solids) are made of a small portion of the
crystal called basis that is repeated periodically on a lattice. The lattice represents the
underlying periodic structure spanned by linearly independent lattice vectors a⃗1,2,3 such
that each point on the lattice can be reached by the translational vector R⃗ = na⃗1 +ma⃗2 +
ka⃗3 with n,m, k being integer numbers. The lattice structures that can be constructed
this way are classified according to their symmetry properties and are called Bravais
lattices.

In 1D, only one Bravais lattice exists (the linear chain), but in two dimensions, five
Bravais lattices exist that are displayed in Figure 2.5 and in the 3D case, the 14 Bravais lat-
tices displayed in Figure 2.6 are obtained. The area in the 2D case(volume in 3D) spanned
by the basis vectors a⃗1,2,3 is called the unit cell of the lattice. However, as can be inferred
from Figure 2.5 the choice of the unit cell is not unique: all (dark and light) blue-shaded
areas in the figure represent unit cells of the respective Bravais lattice. The unit cell
with the smallest area(volume) is called primitive unit cell. Even this does not have to

Figure 2.5: Left panels: Possible Bravais lattices in two dimensions. The choice of a unit cell is not unique:
the dark and light blue-shaded unit cells show possible examples each containing a single atom. The dark
blue unit cell is the Wigner–Seitz cell of the respective lattice. The right panel shows the construction of a
Wigner–Seitz cell (dark blue-shaded area) of an oblique 2D lattice.
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Figure 2.6: The 14 Bravais lattices in three-dimensional space.

beunique as the examples of the square and rectangular lattices in Figure 2.5 show. In or-
der to find a unique unit cell, we can use the approach put forward byWigner and Seitz
[270], illustrated in Figure 2.5, right panel: From a central atom, tie lines (dashed green
lines in Figure 2.5, right panel) are drawn to the nearest and next nearest neighboring
atoms. At the midpoints of these tie lines, perpendicular lines (in a 2D lattice) or perpen-
dicular mini-planes (in a 3D lattice) are drawn. The minimal area(volume) enclosed by
the perpendicular lines(planes) and their intercepts is the so-called Wigner–Seitz cell
(dark blue-shaded area in Figure 2.5, right panel). Wigner–Seitz cells for the five two-
dimensional Bravais lattices are displayed in Figure 2.5. In the case of a Wigner–Seitz
cell, a single lattice point always sits in the center of the cell.

In three dimensions, the cubic lattices and especially the so-called face-centered cu-
bic (fcc) lattices are of particular interest since the diamond lattice structure of silicon,
germanium and many III–V compound semiconductors consists of two interwoven fcc
lattices (see Figure 2.24). It might not be immediately obvious that, e. g., for the body-
centered or the face-centered cubic lattice a primitive unit cell containing only a single
lattice point can be found. Based on the unit cells displayed in Figure 2.6 (left column)
the bcc lattice contains two and the fcc contains four lattice points. However, Figure 2.7
shows in the case of a fcc lattice that an appropriate unit cell indeed only contains a
single lattice point: either the blue-shaded parallelepiped with basis vectors given by
a⃗1 = (a/2, a/2, 0), a⃗2 = (a/2, 0, a/2) and a⃗3 = (0, a/2, a/2) can be chosen which is illus-
trated in Figure 2.7 in the bottom right panel. Alternatively, the Wigner–Seitz cell can
be constructed around the blue marked atom leading to the unit cell shown in the right
panel of Figure 2.7; it will be used in the next section to compute the band structure of
silicon with the tight-binding formalism.



12 � 2 Solid-State Physics Foundation

Figure 2.7: Face-centered cubic (fcc) lattice (left). Shifting the cube along the z-direction by a/2 allows con-
structing the Wigner–Seitz cell (right panel) with the blue atom in the center. The bottom right panel shows
an alternative unit cell containing a single atom. The primitive lattice vectors a⃗1, a⃗2 and a⃗3 can be con-
structed exploiting the symmetry of the cubic lattice.

Eventually, a crystal is formed by placing the basis of the crystal at each point of the
Bravais lattice. This implies that the primitive unit cell contains as many atoms as the
basis. In Section 2.6.2, this will be made clear when discussing the silicon crystal struc-
ture. The basis can be rather complicated and may contain a large number of atoms,
as will be discussed when computing the band structure of carbon nanotubes in Sec-
tion 2.9. The importance of the considerations concerning the crystal structure of solids
becomes apparent when the tight-binding calculations of the band structure of solids
are discussed in Section 2.4.

Task 4.
Wigner–Seitz cell: Consider the two-dimensional crystals displayed in the figures provided through the
QR code #5 at the pagemargin. Find

5
the primitive unit cells of the underlying lattices. What does the basis

look like? Construct the Wigner–Seitz cell of the lattices.

2.3.1 Reciprocal Space

The concept of a crystal consisting of basis and lattice is important for the solution of
the Schrödinger equation since the resulting wave function can be split into a factor due
to the basis atoms1 within the unit cell, multiplied with a phase factor eik⃗ ⃗r that yields a
planewavewith the periodicity of the underlying Bravais lattice (so-called Blochwaves).
For each real lattice, there exists a so-called reciprocal lattice spanned by reciprocal ba-
sis lattice vectors b⃗1,2,3. The points of the reciprocal lattice K⃗ are defined by the condition

1 This will be a linear combination of the atomic orbitals of the atoms of the basis.

https://vimeo.com/462349518
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that eiK⃗( ⃗r+R⃗) != eiK⃗ ⃗r , which requires that eiK⃗R⃗ = 1. In turn, this means that K⃗ ⋅ R⃗ must be
an integer multiple of 2π. It can be shown that the basis vectors of the reciprocal lattice
are given by

b⃗1 = 2π
a⃗2 × a⃗3

a⃗1 ⋅ (a⃗2 × a⃗3)
, b⃗2 = 2π

a⃗3 × a⃗1
a⃗1 ⋅ (a⃗2 × a⃗3)

, b⃗3 = 2π
a⃗1 × a⃗2

a⃗1 ⋅ (a⃗2 × a⃗3)
. (2.11)

If we expand k⃗ into the basis vectors of the reciprocal lattice, i. e., K⃗ = ñb⃗1 + m̃b⃗2 + ̃rb⃗3
and R⃗ = na⃗1 +ma⃗2 + ra⃗3 into the basis vectors of the real lattice a⃗1,2,3 one indeed obtains

K⃗ ⋅ R⃗ = nñ a⃗1 ⋅ b⃗1⏟⏟⏟⏟⏟⏟⏟⏟⏟
=2π
+mm̃ a⃗2 ⋅ b⃗2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=2π
+r ̃r a⃗3 ⋅ b⃗3⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=2π
= 2π ⋅ l, (2.12)

since a⃗i ⋅ b⃗j = 2πδij , as follows immediately from Equation (2.11). Note that Equation (2.12)
implies that the reciprocal vectors b⃗1,2,3 of a cubic real lattice with orthogonal basis vec-
tors a⃗1,2,3 point in the same direction as the basis vectors of the real lattice. This fact will
be important to understand how the silicon band structure is modified due to quantiza-
tion in a silicon inversion layer (see Chapter 4). Examples of how the reciprocal lattice
and its basis vectors look like will be discussed in the next section in different dimen-
sions.

2.3.2 The Brillouin Zone

In the reciprocal lattice, a Wigner–Seitz cell can be determined in the same way as de-
scribed above. The resulting unit cell is called the first Brillouin zone, which plays a
prominent role when displaying the band structure of a solid. In fact, the first Brillouin
zone contains all k-values of waves that can be represented with the particular lattice
structure under consideration, and hence the entire band structure. Due to its impor-
tance, the concept of the first Brillouin zone will be elaborated in more detail below
covering 1D, 2D and finally the three-dimensional case.

In the one-dimensional case, the only possible Bravais lattice is a regular arrange-
ment of lattice points with lattice constant a. As a result, the reciprocal lattice “vector” is
simply b = 2π

a . Constructing the Wigner–Seitz cell by intersecting the tie-lines between
adjacent reciprocal lattice points exactly in the middle yields the first Brillouin zone to
range from − πa to π

a .
As displayed in Figure 2.5, there are fiveBravais lattices in the two-dimensional case.

Using the fact that a⃗i ⋅ b⃗j = 2πδij it is straightforward to compute the reciprocal basis
lattice vectors b⃗1,2 from the basis vectors of the real lattice a⃗1,2. As two representative
examples, Figure 2.8 shows the real (left) and reciprocal (right) lattices of the rectangular
and the body-centered rectangular Bravais lattices together with the appropriate basis
vectors. The first Brillouin zones are shown on the right. A similar construction can be
carried out for the remaining 2D Bravais lattices.
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Figure 2.8: Real and reciprocal lattices for a 2D rectangular and a 2D body-centered rectangular lattice. The
gray-shaded areas in the right panels are the first Brillouin zones of the two lattices.

In the 3D case, only the reciprocal lattice and the first Brillouin zone of the fcc lattice
are provided here, because of their importance for elemental semiconductors such as
silicon and germanium. When the reciprocal basis vectors b⃗1,2,3 are constructed based
on Equation (2.11), a body-centered cubic (bcc) lattice is obtained (as reciprocal lattice of
a fcc lattice), which is illustrated in Figure 2.9. Constructing theWigner–Seitz cell within
the bcc reciprocal lattice finally yields the first Brillouin zone of the fcc lattice (i. e., of
diamond, Si and Ge) as depicted in the right panel of Figure 2.9.

Figure 2.9: The reciprocal lattice of a fcc Bravais lattice spanned by the basis vectors a⃗1,2,3 is a body-
centered cubic lattice with reciprocal basis vectors b⃗1,2,3.

2.4 Tight-Binding Calculation of Band Structures

In order to understand and compute the electronic properties of semiconductor devices,
we need to know the band structure of the materials involved. To this end, the tight-
binding method will be introduced in detail in the present section. The discussion starts
with simplified and low-dimensional systems before a generalization will be discussed.
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A recipe for tight-binding calculations will then be given that is employed to compute
exemplarily the band structure of carbon nanotubes, 2D materials and silicon.

2.4.1 Discrete Schrödinger Equation

Before using the tight-binding formalism to compute the band structure of a solid, let us
solve the Schrödinger equation on a discrete lattice with lattice constant a (illustrated in
Figure 2.10(a)), i. e., we solve Schrödinger’s equation using a finite difference scheme (cf.
Section 6.1.1, in particular Equation (6.1)). To keep things as simple as possible, the cal-
culation will be done in one-dimension but can easily be extended to higher dimensions
(see Task 5). Using the difference quotient, it is straightforward to show that

d2

dx2
ψ(x)→

ψj+1−ψj
a −

ψj−ψj−1
a

a
=
ψj+1 − 2ψj + ψj−1

a2
. (2.13)

As a result, the Schrödinger equation can be rewritten in the following form:

− t(ψj+1 − 2ψj + ψj−1) + Vjψj = Eψj (2.14)

with t = ℏ
2

2ma2 . As will become clear below, Equation (2.14) represents a tight-binding
calculation of a 1D solid with nearest neighbor interaction if (i) the lattice points of the
finite difference grid are interpreted as atomic positions of the solid, (ii) the wave func-
tions ψj at each lattice point j are interpreted as atomic s-orbitals and (iii) t is replaced
with the overlap integral (see below) of adjacent atomic orbitals.

Figure 2.10: (a) Finite difference discretization of a 1D wave function ψ(x) on a regular lattice x = j ⋅ a with
lattice constant a. (b) Resulting dispersion relation (green) and group velocity (gray line in the top panel).
The right panel shows the wave function for four different k-values. Due to the discreteness, the wave
functions for k > π

a are already accounted for in the first Brillouin zone. For instance, k = 3π
2a (light blue line)

is represented by k = − π2a (solid dark blue line).
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In the case ofVj = V0, Equation (2.14) can be solvedwith a planewave ansatz, i. e., by
assuming that ψ(xj) = ψj = Φ0 exp(ikxj) = Φ0 exp(ikja). As a result, ψj±1 = Φ0 exp(ik(j ±
1)a) = ψj ⋅ exp(±ika). Inserting this into Equation (2.14) yields

− t(eika − 2 + e−ika) + V0 = E. (2.15)

Finally, with eika + e−ika = 2 cos(ka) the following dispersion relation E(k) of a discrete
finite difference lattice is obtained:

E(k) = 2t(1 − cos(ka)) + V0, (2.16)

which is plotted in Figure 2.10(b) (solid green line) togetherwith the quadratic dispersion
relation of a free particle (dotted dark green line). When a → 0, i. e., in the continuum
limit cos(ka) can be approximatedwith a Taylor expansion and the quadratic dispersion
relation of a free particle is recovered.

If we interpret the discretization on a finite difference grid as a one-dimensional
crystal with lattice constant a, then the relevant k-states lie within the first Brillouin
zone (cf. Section 2.3.2), i. e., within the k-interval − πa < k ≤

π
a . This fact becomes clear

when looking more closely at Equation (2.16): for k > π
a corresponding wave functions

exhibit decreasing wavelengths λ as expected for increasing k = 2π
λ (see light blue line

in Figure 2.10(b)). However, when the value of the respective wave function is projected
onto the discrete lattice, these values are the same as the ones belonging to a wave func-
tion with a smaller k within the first Brillouin zone. This is illustrated in Figure 2.10(b)
with the light and dark blue waves: While the light blue wave with k > π

a shows a signif-
icantly smaller wavelength it has the same value at the lattice points (right panel), and
hence the light and dark blue waves are not different states. The minimum wavelength
is actually at the Brillouin zone boundarywhere k = π

a → λ = 2a, meaning that thewave
function becomesmaximal/minimal at adjacent lattice points (red line in Figure 2.10(b));
more explanations are provided through the QR code #6.

6 The dispersion relation of a discrete lattice has a further interesting consequence
for the group velocity v(k) = 1

ℏ
𝜕E(k)
𝜕k of a particle: since the group velocity is proportional

to sin(ka) as illustrated in the top panel of Figure 2.10(b) (gray line), the velocity does not
increase linearly with k as in the continuum case (black dotted line in the top panel of
Figure 2.10(b)) but first increaseswith k, slows down and eventually becomes zerowhen
approaching the Brillouin-zone boundary (see QR code #6). The situation is similar to a
spinning wheel observed under a stroboscope light source. When the frequency of rota-
tion increases one first observes faster spinning. However, when the angular frequency
of rotation approaches the frequency of the stroboscope, the wheel appears to be slow-
ing down and eventually seems to be standing still.

In the following section, we will further consider discrete solids. However, while in
the case discussed so far (finite difference lattice), the lattice was amere consequence of

https://vimeo.com/462906403
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the discretization of the Scrödinger equation (e. g., in order to be able to solve it numer-
ically), the next sections will deal with discrete systems representing a periodic lattice
of a (more or less) real solid.

Task 5.
2D discrete Schrödinger equation: Set up the 2D version of the Schrödinger equation with constant
potential V(x, y) = V0 using the finite difference scheme on a regular lattice with lattice constant a in
x- and y-directions and solve it employing an appropriate discrete

7
plane wave ansatz. Plot the resulting

dispersion relation.

2.4.2 Linear Combination of Atomic Orbitals

Anywave functionψl( ⃗r) can bewritten as a linear combination of a complete set of basis
wave functions ϕn with unknown coefficients cln, i. e.,ψl( ⃗r) = ∑n c

l
nϕn( ⃗r). Let us consider

four (one-dimensional) atoms in a row each a distance a apart from its adjacent neigh-
bors as depicted in Figure 2.11, left panels. If the coupling between nearest neighbors is
not too strong, it appears reasonable to chose the atomic orbitals ϕn(x) (blue lines) of
the individual atoms (black potential lines) as basis wave functions. For the time being,
it is assumed that each atom has only a single orbital. The Hamiltonian of the four-atom
system is then given by

ℋ = −
ℏ2

2m
d2

dx2
+ V1(x) + V2(x) + V3(x) + V4(x). (2.17)

Figure 2.11: LCAO in a system consisting of four atomic Coulomb potentials (black lines). The overall wave
function is made up of the four ground-state wave functions (blue lines) of the isolated atoms. The enve-
lope (orange lines) is one of the four solutions shown in the right panel belonging to a PIB of length L = 5a
with four discrete energy eigenvalues due to quantization.

https://vimeo.com/462351512
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Using the linear combination of atomic orbitals (LCAO) as ansatz wave function, the
Schrödinger equation becomes ℋ(∑n=1,...,4 c

l
nϕn) = E(∑n=1,...,4 c

l
nϕn). To determine the

unknown coefficients cl1, . . . , c
l
4, the Schrödinger equation ismultiplied from the leftwith

the conjugate complex of the atomic orbital of site 1, i. e., ϕ⋆1 (x) and integrated over x.
Next, we do the same with the other atomic orbitals 2, . . . , 4 and as a result obtain a
set of four equations for the unknown coefficients cl1, . . . , c

l
4. In these equations, several

integrals of the form ∫ dxϕ⋆m(x)ℋϕn(x) as well as ∫ dxϕ⋆m(x)ϕn(x) will appear. To write
this in a much more compact way, Dirac’s “bra-ket”-notation is used in the following, in
which we set ∫ dxϕ⋆m(x)ℋϕn(x) = ⟨m|ℋ|n⟩ and ∫ dxϕ

⋆
m(x)ϕn(x) = ⟨m|n⟩. The resulting

four equations for the unknown coefficients can hence be written as

(

(

cl1⟨1|ℋ|1⟩ + c
l
2⟨1|ℋ|2⟩ + c

l
3⟨1|ℋ|3⟩ + c

l
4⟨1|ℋ|4⟩

cl1⟨2|ℋ|1⟩ + c
l
2⟨2|ℋ|2⟩ + c

l
3⟨2|ℋ|3⟩ + c

l
4⟨2|ℋ|4⟩

cl1⟨3|ℋ|1⟩ + c
l
2⟨3|ℋ|2⟩ + c

l
3⟨3|ℋ|3⟩ + c

l
4⟨3|ℋ|4⟩

cl1⟨4|ℋ|1⟩ + c
l
2⟨4|ℋ|2⟩ + c

l
3⟨4|ℋ|3⟩ + c

l
4⟨4|ℋ|4⟩

)

)

= El(

(

cl1⟨1|1⟩ + c
l
2⟨1|2⟩ + c

l
3⟨1|3⟩ + c

l
4⟨1|4⟩

cl1⟨2|1⟩ + c
l
2⟨2|2⟩ + c

l
3⟨2|3⟩ + c

l
4⟨2|4⟩

cl1⟨3|1⟩ + c
l
2⟨3|2⟩ + c

l
3⟨3|3⟩ + c

l
4⟨3|4⟩

cl1⟨4|1⟩ + c
l
2⟨4|2⟩ + c

l
3⟨4|3⟩ + c

l
4⟨4|4⟩

)

)

. (2.18)

Since the wave functions ϕ1, . . . ,ϕ4 are the (normalized) eigenfunctions of each atom,
the term ⟨n|ℋ|n⟩ ≈ ϵ0⟨n|n⟩ = ϵ0 yields the eigenenergy ϵ0, which is the same for site
1, . . . , 4 since all atoms are considered to be equal (cf. Figure 2.11).2 Furthermore, the
wave function of each atom ϕn is regarded as being localized at its atomic sites and
rapidly decays further away from the site n so that a nonnegligible overlap of wave
functions (atomic orbitals) is only obtained between nearest neighbors. Since all atoms
are considered to be the same and on a regular lattice the integrals ⟨n|ℋ|m⟩ all yield the
same value when n and m are interchanged. We set ⟨m|ℋ|n⟩ = −Vss if m = n ± 1 and
⟨m|ℋ|n⟩ = 0 if |n −m| ≥ 2.3

Finally, with the same argument of wave functions being tightly bond to their host
atom, the overlap integrals ∫ dxϕ⋆m(x)ϕn(x) = ⟨m|n⟩ are: ⟨n|n⟩ = 1, ⟨m|n⟩ = Δ ifm = n± 1
and ⟨m|n⟩ = 0 otherwise. Hence, Equation (2.18) can be written in matrix form as

2 Note that this is certainly an approximation since ϕn are not really eigenfunctions of the full Hamilto-
nianℋ.
3 The change of nomenclature from t → Vss (cf. Equation (2.16)) for the overlap integral acknowledges
the fact that the considered overlap integral stems from two s-orbital-like wave functions (ground-state
wave functions). Further below, the overlap between s- and p-like orbitals will also be taken into consid-
eration and denoted accordingly.
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(

ϵ0 −Vss 0 0
−Vss ϵ0 −Vss 0
0 −Vss ϵ0 −Vss
0 0 −Vss ϵ0

)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
H

(

cl1
cl2
cl3
cl4

) = El(

1 Δ 0 0
Δ 1 Δ 0
0 Δ 1 Δ
0 0 Δ 1

)(

cl1
cl2
cl3
cl4

) .

(2.19)

This is a generalized eigenvalue problem since the matrix on the right side of the equa-
tion is not the unit matrix. However, since the overlap of the wave functions ⟨m|n⟩ even
between nearest neighbors is small, Δ is a small number, which is frequently neglected
such that Equation (2.19) becomes a simple eigenvalue problem and the energy eigen-
values El (i. e., the discrete dispersion relation) are obtained by solving det |H − El1| =
0. In the present case, one obtains four eigenvalues El=1, . . . , El=4 and four eigenvec-
tors ⃗c l=1, . . . , ⃗c l=4. Note that l = 1, . . . , 4 is an integer number indexing the eigenval-
ues and eigenvectors (and is of course related to the wave number k used above via
kla = l

π
5 , see below). H is a symmetric Toeplitz-matrix, and thus, its eigenvalues can

be computed analytically in the present case. These eigenvalues are explicitly given by
El = ϵ0−2Vss cos(

lπ
4+1 ), which is similar to the dispersion relation Equation (2.16) obtained

as a solution of the discretized Schrödinger equation if we set lπ
4+1 = ka. Two eigenvalues

above and two below ϵ0 are obtained, as shown in the right part of Figure 2.11. Moreover,
the eigenvectors are given in the form ⃗c l = (sin( 1⋅π4+1 l), . . . , sin(

4⋅π
4+1 l)).

Figure 2.11 shows the scenario discussed so far. The eigenvectors ⃗c l=1, . . . , ⃗c l=4 deter-
mine the amplitudes with which each ϕn(x) contributes and the resulting envelopes (or-
ange lines in Figure 2.11) are equal to the eigenfunctions of a particle-in-the-box system
depicted in the right panel of Figure 2.11. For instance, the eigenvalue in the case l = 1
is E1 = ϵ0 − 2Vss cos(

π
5 ) and the eigenvector is ⃗c 1 = (sin( π5 ), sin(

2π
5 ), sin(

3π
5 ), sin(

4π
5 )) ≈

(0.59, 0.95, 0.95, 0.59). Hence, the wave function ψl of a system of n coupled atoms (each
providing a single orbital) is given by ψl = ∑n c

l
nϕn where the ϕn are the individual

eigenfunctions of the atoms and the coefficients cln are phase factors that determine the
amplitudewithwhich eachϕn contributes at its atomic site. This way of constructing the
wave function from atomic orbitals and computing the energy eigenvalues can easily be
generalized to facilitate the calculation of the dispersion relation of entire crystals with
periodic lattice.

2.4.3 Periodic Potentials—Tight-Binding in 1D

The formalism of the preceding section will now be extended to describe large periodic
crystals. First, a one-dimensional chain of N atoms (N → ∞) with lattice constant a is
considered where each atom n provides the same, single eigenstate ϕn(x). The Hamilto-
nian in this case is simply an extension of Equation (2.17) going from four to N atoms:
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ℋ = − ℏ
2

2m
d2
dx2 + ∑n V (x − na) where V (x) represents the Coulomb potential of one atom

located at x = 0. The overall Coulomb potential at x is therefore given by summing the
contributions from the different sites at positions na leading to ∑n V (x − na).

Based on the results of the preceding section, we can immediately write down the
overall wave function ψk of the system: basically, it will be a sum of phase factors mul-
tiplied with the eigenstates of the individual atoms of the underlying crystal lattice. The
phase factor (i. e., the eigenvectors ⃗c l in the preceding section) is the envelope of the
overall wave function. In Section 2.4.2, the envelope was proportional to sine-functions
as appropriate for a (finite) PIB system; in the present case of a 1D infinite system, the
appropriate phase factors will be plane waves, i. e., proportional to eikx . Here, x = n ⋅a is
used since the plane wave will only be evaluated at the positions of the discrete atoms.
Hence,

ψk(x) = C
N
∑
n=1

eiknaϕn(x) = C
N
∑
n=1

eiknaϕ(x − na)→ C
N
∑
n=1

eikna|n⟩ = |ψk⟩ (2.20)

where C is a normalization constant that needs to be determined.4 Next, the Schrödin-
ger equationℋ|ψk⟩ = Ek |ψk⟩must be solved. This is done in the same fashion as before
by multiplying it from the left with ⟨m|, which yields

C∑
n
eikna⟨m|ℋ|n⟩ = EkC∑

n
eikna⟨m|n⟩. (2.21)

Note that in the present case of an infinitely large crystal we get N →∞ times the same
Equation (2.21) for all m = 1, . . . ,N . In the next step, only nearest neighbor interaction
will be considered; an extension to include next nearest neighbors will be discussed
exemplarily in Task 6. As in the preceding section, the overlap integrals between adja-
cent atoms are neglected, i. e., ⟨m|n⟩ = δm,n. As a result, Equation (2.21) reduces to three
summands on the left and a single one on the right-hand side:

⟨m|ℋ|m − 1⟩eik(m−1)a + ⟨m|ℋ|m⟩eik(ma) + ⟨m|ℋ|m + 1⟩eik(m+1)a = E⟨m|m⟩eikma. (2.22)

Noting that ⟨m|m⟩ = 1, ⟨m|ℋ|m⟩ = ϵ0 (approximatedwith the eigenenergy of the isolated
atom), denoting ⟨m|ℋ|m± 1⟩ = −Vss and dividing the equation above by eikma we finally
obtain

E(k) = −Vsse
−ika + ϵ0 − Vsse

ika = ϵ0 − 2Vss cos(ka). (2.23)

This result has the exact same form as Equation (2.16) obtained in the case of the
discretized Schrödinger equation. Thus, the same cosine-like dispersion relation is ob-

4 Normalization of the overallwave functionhas beendropped in the four-atomexample in Section 2.4.2
to keep the discussion as simple as possible.
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Figure 2.12: Dispersion relation (left) of a one-dimensional, infinite crystal with lattice constant a. The
wave function ψ(x) is the envelope of the summation of the atomic orbitals ϕn at lattice sites n with an
appropriate phase factor.

tained that is depicted in Figure 2.12 together with the envelopewave functions (orange)
consisting of a sum of orbitals of the individual sites.

Before discussing Equation (2.23) in more detail, let us determine the normalization
constant. C can be computed by requiring ⟨ψk |ψk⟩ to be unity:

⟨ψk |ψk⟩ = |C|
2∑
n,m

e−ikma+ikna⟨m|n⟩ != 1. (2.24)

With the approximation ⟨m|n⟩ = δm,n, the double sum in Equation (2.24) reduces to
∑n e

0 = N . As a result, we obtain C = 1
√N

and the wave function is given by

|ψk⟩ =
1
√N

N
∑
n=1

eikna|n⟩. (2.25)

Looking at the cosine band and its dependence on the lattice constant a, one can
already extract a number of trends concerning the properties of a solid: in the case of a
small a, the atoms are very close to each other leading to a strong overlap of the wave
functions of adjacent atoms. As a result, a rather large band is obtained. On the contrary,
if the atoms are moved away from each other the overlap is decreased and a shallow
band is observed; in fact, in the extreme case of atoms being completely isolated from
each other only the eigenenergy of the eigenfunction of the individual atom ϵ0 is ob-
tained giving rise to a completely flat band. This dependence of the band on the lattice
constant is depicted in Figure 2.13. In Section 2.11.1, the concept of the density of states
(DOS) will be discussed in detail. A small overlap integral leads to a shallow band, be-
cause the eigenenergies of the crystal do not differ much from ϵ0. This results in a large
density of states (i. e., many available states that can be occupiedwith electrons in a nar-
row energetic range) which is, for instance, important for magnetism. Therefore, one
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Figure 2.13: Dispersion relations of a one-dimensional lattice of atoms with a single basis function ϕn for
three different lattice constants. The further away the atoms are from each other, the smaller will the over-
lap of adjacent wave functions be (right panels) leading to a decreasing energetic width of the resulting
band; for simplicity, Vss ∝ 1/a2 is assumed.

expects that tightly bond electrons (usually in energetically low lying atomic orbitals)
lead to narrow bands with a high density of states.

Task 6.
1D tight-binding with next nearest neighbor interaction: Consider a one-dimensional solid consist-
ing of a lattice with lattice constant a and with a hydrogen-like atom providing a single s-orbital. Based
on Equation (2.25), compute the band structure of the solid taking nearest neighbor and next nearest
neighbor interaction into account. Assume

8
the corresponding overlap integrals to be −Vn.n.ss and −Vnn.n.ss

with |Vnn.n.ss | < |V
n.n.
ss |.

Up to now, only a singe s-like orbital per lattice site has been considered. The extension
to two (or more) orbitals per lattice site is, however, rather straightforward. Using the
orbitals as an orthonormal basis, the wave function of each atom is given by a linear
combination of the orbitals that one wants to incorporate into the calculation. This is
actually similar to the case discussed in Section 2.4.2. For instance, if one s- and a px -
orbital are used the wave function becomes

ψk(x) =
1
√N
∑
n
eikna(c1ϕs(x − na) + c2ϕpx (x − na))

→
1
√N
∑
n
eikna(c1|s, n⟩ + c2|px , n⟩) (2.26)

where the constants c1,2 need to be determined. Note that a nomenclature was chosen
for the ket vector that includes the index n for the lattice site and the type of orbital.
Next, the Schrödinger equation is set up andmultiplied from the left with ⟨s,m| andwith
⟨px ,m| to provide two equations that allow the computation of the constants c1,2. To be
specific, the following two equations are obtained where we use the fact that the basis

https://vimeo.com/462323661
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functions |s, n⟩ and |p, n⟩ represent an orthonormal basis. Furthermore, only nearest
neighbor interaction is considered:

(c1 ⟨s,m|ℋ|s,m + 1⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
−Vss

+c2 ⟨s,m|ℋ|px ,m + 1⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
−Vsp

)eika + c1 ⟨s,m|ℋ|s,m⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
ϵ0

+ c2 ⟨s,m|ℋ|px ,m⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=0

+(c1 ⟨s,m|ℋ|s,m − 1⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
−Vss

+c2 ⟨s,m|ℋ|px ,m − 1⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Vsp

)e−ika = c1E

(c1 ⟨px ,m|ℋ|s,m + 1⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Vsp

+c2 ⟨px ,m|ℋ|px ,m + 1⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Vpp

)eika + c1 ⟨px ,m|ℋ|s,m⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=0

+ c2 ⟨px ,m|ℋ|px ,m⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
ϵ1

+(c1 ⟨px ,m|ℋ|s,m − 1⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
−Vsp

+c2 ⟨px ,m|ℋ|px ,m − 1⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Vpp

)e−ika = c2E

(2.27)

where again all ⟨s,m|s,m ± 1⟩ and ⟨px ,m|px ,m ± 1⟩ are neglected. The overlap inte-
grals ⟨px ,m|ℋ|px ,m± 1⟩ and ⟨px ,m|ℋ|s,m± 1⟩ depend on the relative orientation of the
px -orbitals as illustrated in Figure 2.14(a) and (b). While the overlap integral between
s-orbitals has a negative value (since the higher probability of finding electrons in be-
tween lattice sites reduces the energy), Vpp is positive since two px -like orbitals overlap
with a phase of π (Figure 2.14(b), red and blue lines). The same is true for the overlap
between an s-orbital at sitem and a px -orbital at sitem + 1 (or a px -orbital atm − 1 and
an s-orbital atm). Equation (2.27) can be rewritten in matrix form and one obtains

[(
−Vss −Vsp
Vsp Vpp

) eika + ( ϵ0 0
0 ϵ1
) + (
−Vss Vsp
−Vsp Vpp

) e−ika]( c1
c2
)

= E ( 1 0
0 1
)(

c1
c2
) . (2.28)

Figure 2.14: (a) Illustration of the s- and px -orbitals giving rise to the overlap integral used in Equa-
tion (2.28). (b) s- (blue lines) and px -like orbitals (red lines) with negative/positive overlap yielding an up-
ward (s-like) and downward (p-like) opened cosine band (c). The two cosine bands (light green without
s-p-coupling, dark green with V2sp = VssVpp) are centered around the energies ϵ0 and ϵ1.
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This is a simple eigenvalue equation and the solution can be obtained by solving the
characteristic polynomial:

det


−Vsse
ika − Vsse

−ika + ϵ0 − E −2iVsp sin(ka)
2iVsp sin(ka) Vppe

ika + Vppe
−ika + ϵ1 − E



!
= 0. (2.29)

The resulting quadratic equation for E yields the two bands (dark green lines in Fig-
ure 2.14(c))

E(k) = Δϵ
+ − 2(ΔV−) cos(ka)

2
±√(

Δϵ− − 2(ΔV+) cos(ka)
2

)
2

+ 4V 2
sp sin

2(ka). (2.30)

Here, Δϵ± = ϵ0 ± ϵ1 and ΔV± = Vss ± Vpp. If s- and px -orbitals are uncoupled, i. e., if
Vsp = 0, two independent cosine bands are obtained that are plotted in Figure 2.14 (c)
(light green line).

Task 7.
1D tight-binding with basis: Consider a one-dimensional solid consisting of a lattice with lattice con-
stant a. There are two atoms A and B in the unit cell. Assume ⟨ϕA, n|ℋ|ϕA, n⟩ = ⟨ϕB , n|ℋ|ϕB , n⟩ = 0 and
nearest neighbor interaction with overlap integrals ⟨ϕA, n|ℋ|ϕB , n⟩ = −Vss , ⟨ϕA, n|ℋ|ϕB , n − 1⟩ = − ̃Vss .
Compute the band structure. Plot it in the first Brillouin

9
zone for Vss = 3 eV and ̃Vss = 2 eV. What happens

if Vss = ̃Vss?

2.4.4 Tight-Binding in 2D(3D)

In the last section, the tight-binding formalism was extended to the case of two orbitals
per atom. As a next step toward a general tight-binding formalism, a 2D(3D) solid will
be studied in this section.

Consider a regular 2D square lattice with N × N atoms (again N →∞) placed a
distance a apart from each other such that two primitive lattice vectors a⃗1 = (a, 0) and
a⃗2 = (0, a) can be defined as illustrated in Figure 2.15. To simplify the calculation, wewill
start againwith a single s-orbital per atom. Based on the results of the preceding section,
Equation (2.25) can be extended to a 2D system in a straightforward manner. The simple
square lattice considered here is a Bravais lattice and the lattice vector R⃗n,m is given by
R⃗n,m = na⃗1 +ma⃗2 = (n ⋅ a,m ⋅ a); n andm are the indices of the atom positions along the
x- and y-directions, respectively. As a result,

ψ( ⃗r) = 1
√N2
∑
n,m

eik⃗R⃗n,mϕs( ⃗r − R⃗n,m) (2.31)

https://vimeo.com/900703053
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Figure 2.15: Schematic of a 2D(a) and a 3D(b) square lattice with lattice constant a. A central atom is con-
nected to four or six nearest neighbors, respectively.

with k⃗ = (kx , ky). Note that the normalization constant is 1
√N2 as appropriate for a 2D sys-

tem. Using Dirac’s notation with ϕ( ⃗r− R⃗n,m) = ϕ(x−na, y−ma)→ |n,m⟩ the Schrödinger
equation becomes

ℋ
1
√N2
∑
n,m

ei(kxna+kyma)|n,m⟩ = E(k⃗) 1
√N2
∑
n,m

ei(kxna+kyma)|n,m⟩. (2.32)

Next, Equation (2.32) will be multiplied with ⟨j, l| from the left (keep in mind that this
implies an integration over ⃗r). The resulting N2 equations are all alike so that it is suffi-
cient to compute only a single one. Again,we consider only nearest neighbor interaction,
meaning that the double sum over n and m in Equation (2.32) yields nonzero contribu-
tions only if j = n and j = n ± 1 and l = m and l = m ± 1. Hence, the following equation is
obtained:

⟨j, l|ℋ|j + 1, l⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=−Vss

ei(kx(j+1)a+kyla) + ⟨j, l|ℋ|j, l + 1⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=−Vss

ei(kx ja+ky(l+1)a)

+ ⟨j, l|ℋ|j − 1, l⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=−Vss

ei(kx(j−1)a+kyla) + ⟨j, l|ℋ|j, l − 1⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=−Vss

ei(kx ja+ky(l−1)a)

+ ⟨j, l|ℋ|j, l⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=ϵ0

ei(kx ja+kyla) = E(k⃗)ei(kx ja+kyla) (2.33)

where it was assumed that the overlap between adjacent atoms is always −Vss as ap-
propriate for a crystal with square lattice of the same atoms. Dividing Equation (2.33) by
ei(kx ja+kyla) yields the dispersion relation given by

E(kx , ky) = −Vsse
ikxa − Vsse

ikya − Vsse
−ikxa − Vsse

−ikya + ϵ0

= ϵ0 − 2Vss cos(kxa) − 2Vss cos(kya). (2.34)

Figure 2.16 shows the dispersion relation (left panel) as a function of energy within
the first Brillouin zone (see also the QR code #10). Since a 2D crystal with square lattice is
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Figure 2.16: Left panel: Two-dimensional dispersion relation within the first Brillouin zone of a crystal with
regular square lattice (depicted in Figure 2.15 (a)) and single s-orbital. The right panel shows the dispersion
along directions of high symmetry.

considered the Brillouin zone is a square with − πa < kx ≤
π
a and − πa < ky ≤

π
a . Often, the

dispersion relation is plotted along high symmetry directions as depicted in the bottom
right panel of Figure 2.16. Since the primitive unit cell of the 2D crystal consists only of
a single atom with a single s-orbital, a single band is obtained.

10
The extension to 3D is straightforward based on Figure 2.15(b) resulting in E(k⃗) =

ϵ0 − 2Vss(cos(kxa)+ cos(kya)+ cos(kza)); for further details on the 2D/3D band structure,
see QR code #10.

Task 8.
Tight-binding: 2D and two orbitals: Consider a 2D crystal on a square lattice with lattice constant a.
The primitive unit cell contains a single atom. Each atom provides an s-like and a px -like orbital. Compute
the band structure of the crystal assuming nearest neighbor interaction with overlap integrals −Vss for
s-orbitals, Vpp for the overlap

11
of px -orbitals along the x-direction and −Vppπ for the overlap of the px -

orbitals along the y-direction.

2.4.5 Overlap Integrals and Direction Cosines

In the preceding sections (see also Task 8), it became clear that we need to know the var-
ious overlap integrals between the orbitals (s- and px -orbitals so far) in order to carry
out a tight-binding calculation.Moreover, in the two- or three-dimensional case, the crys-
talline orientation of the orbitals (p-, d-orbitals)will play a decisive role for the electronic
properties of a solid.

https://vimeo.com/900705134
https://vimeo.com/462320905
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Computing the overlap integrals can in principle be done numerically but is a non-
trivial task and we are not going to do this in the present book. Instead, the overlap
integrals can be considered as adjustable parameters to reproduce the band structure
of the material under consideration, which is known as empirical tight-binding calcula-
tion. However, taking the relative orientation of the orbitals into account, the number
of adjustable (fit-)parameters that are needed can be reduced to a minimum exploit-
ing the symmetry of the crystal structure of the solid. In the following, the effect of dif-
ferently oriented p-orbitals will be discussed in detail, since this will be used for the
tight-binding calculation of graphene, carbon nanotubes and silicon; d-orbitals will be
considered when dealing with transition metal dichalcogenides (Section 2.8.3).

Figure 2.17 shows the different overlap integrals when two atoms (blue and green)
are bonded to each other via s- and p-orbitals; the respective wave functions are
also plotted to illustrate the overlap. One can distinguish between an overlap of two
s-orbitals, a s- and a p-orbital and two p-orbitals. For two s-orbitals, the orientation
is irrelevant (due to spherical symmetry) and the value is denoted −Vss. When s- and
p-orbitals overlap, the orientation of the p-orbital with respect to the s-orbital needs
to be taken into consideration: in Figure 2.17(b), a nonvanishing overlap with value
denoted −Vspσ is obtained. On the other hand, if the p-orbital is oriented as shown in
(e), zero overlap is obtained due to symmetry reasons (an equal positive and negative
overlap that cancels out). The overlap of two p-orbitals yields two different configura-
tions: a σ-overlap depicted in Figure 2.17(c) and a π-overlap shown in (d). Again, due to
symmetry reasons, the overlap vanishes in the cases displayed in Figure 2.17(f) and (g).

With the overlap integrals shown in Figure 2.17, the general case of two arbitrar-
ily oriented s-p- or p-p-orbitals can be constructed. The idea is now, to expand the
p-orbital(s) as a linear combination of two p-orbitals p‖ and p⊥ that are colinear and

Figure 2.17: Nonvanishing and vanishing overlap integrals between s- and p-orbitals.
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Figure 2.18: Relative orientation of an s- and a p-orbital (a) and two p-orbitals (b) with respect to each
other yielding the so-called direction cosines. The superscripts b and g refer to the blue and green atom.

perpendicular to the bond vector d⃗ that connects the two atoms under consideration.
Figure 2.18 shows this scenario in the case of an overlap between s- and p-orbitals (a) as
well as two p-orbitals (b).

Let us start by considering the case illustrated in Figure 2.18(a). The vector d⃗ points
from the blue to the green atom and the p-orbital is aligned along p⃗. d⃗ and p⃗ span a plane
and we obtain two contributions of the p-orbital within this plane. The coefficients to
expand the p-orbital as a linear combination of p‖ and p⊥ (with respect to d⃗) are simply
given by cos(Θ) (which is equal to the scalar product of the unit vectors along p⃗ and d⃗,
i. e., p⃗⋅d⃗
|p⃗|d⃗|
= cos(Θ)) along the direction of d⃗ and sin(Θ) along the direction perpendicular

to d⃗ within the plane spanned by d⃗ and p⃗. As a result, one obtains

|p⟩ = cos(Θ) ⋅ |p‖⟩ + sin(Θ) ⋅ |p⊥⟩. (2.35)

Since the overlap between s and p⊥ is zero for symmetry reasons (cf. Figure 2.17(e)) and
the overlap between s and p‖ yields−Vspσ the overlap integral in the general case leads to

⟨s|ℋ|p⟩ = cos(Θ) ⟨s|ℋ|p‖⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=−Vspσ

+ sin(Θ) ⟨s|ℋ|p⊥⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=0
. (2.36)

In the case of two p-orbitals (see Figure 2.18(b)), one needs to compute the overlap
integral ⟨pb|ℋ|pg⟩, and hence, both pb and pg need to be expanded in a linear com-
bination of the p-orbitals in p‖ and p⊥. To do so, a coordinate system can be chosen
that is aligned with respect to the plane spanned by the vectors p⃗b and d⃗ such that
|pb⟩ = cos(Θ1) ⋅ |p

b
‖⟩ + sin(Θ1) ⋅ |p

b
⊥⟩ with cos(Θ1) =

p⃗1d⃗
|p⃗1||d⃗|

for the blue atom (similar to
Equation (2.35)). In this coordinate system, the vector p⃗2 of the green atom is projected
onto d⃗ yielding the component for |p‖⟩ and onto n⃗ (see Figure 2.18(b)) providing the com-

ponent |p⊥⟩. As a result, |pg⟩ = cos(Θ2) ⋅ |p
g
‖ ⟩ + cos(θ2) ⋅ |p

g
⊥⟩ with cos(Θ2) =

−p⃗2d⃗
|p⃗2||d⃗|

and

cos(θ2) =
p⃗2n⃗
|p⃗2||n⃗|

. Inserting this into the overlap integral yields
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⟨pb|ℋ|pg⟩ = cos(Θ1) cos(Θ2) ⟨p
b
‖ |ℋ|p

g
‖ ⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=−Vppσ

+ sin(Θ1) cos(Θ2) ⟨p
b
⊥|ℋ|p

g
‖ ⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=0

+ cos(Θ1) cos(θ2) ⟨p
b
‖ |ℋ|p

g
⊥⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=0

+ sin(Θ1) cos(θ2) ⟨p
b
⊥|ℋ|p

g
⊥⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=−Vppπ

. (2.37)

As a result, we can reduce the tight-binding computation to a few overlap integrals and
take the orientation of the various orbitals with appropriate angular factors—called di-
rection cosines—into account. The latter basically reflect the particular crystal structure
of the solid at hand.

2.4.6 Recipe for General Tight-Binding Method

Wearenow in the position to generalize the tight-bindingmethod and transfer this into a
recipe. This recipewill be used in later sections to compute the band structure of various
semiconductors (details are provided in the video accessible through the QR code #12).
To be specific, the recipe will be written down explicitly for a two-dimensional crystal
with body-centered cubic lattice shown in Figure 2.19, left panel.

12
Here are the steps you

need to go through in order to compute the band structure:
1. Find the unit cell of the underlying crystal lattice and determine the associated prim-

itive vectors.
Figure 2.19 shows a square lattice with primitive vectors a⃗1 = (a, 0) and a⃗2 = (0, a).
The lattice has been shifted (gray tiles) to elucidate the fact that each unit cell con-
tains two atoms A (blue) and B (green) (if A = B the lattice could be reduced to a
simple cubic with smaller lattice constant (a/√2)).

Figure 2.19: Two-dimensional “body-centered” cubic lattice with two different atoms A and B. The primitive
lattice vectors are a⃗1,2 and the vector d⃗ is at an angle of Θ = 45° with respect to the coordinate axes. The
possible overlap integrals between the s- and p-orbitals are shown on the right.

https://vimeo.com/462354468
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2. Choose an appropriate set of orbitals as basis wave functions.
For the 2D crystal, it is assumed that each atom A and B provides one s-, a px - and
a py-orbital. Which orbitals to choose is not a priori known and it may be neces-
sary to include more orbitals to describe the band structure (known, e. g., from ex-
periments) appropriately. In the present case, this means that the basis contains
na = 2 atoms with no = 3 orbitals and as such, solving the Schrödinger equation
yields a matrix equation, which has dimension Nb × Nb with Nb = na × no = 6. The
(LCAO)-wave-function is given by |ψ⟩ = 1

√N2 ∑n,m e
ik⃗R⃗n,m (c1|s

b, n,m⟩ + c2|p
b
x , n,m⟩ +

c3|p
b
y , n,m⟩ + c4|s

g , n,m⟩ + c5|p
g
x , n,m⟩ + c6|p

g
y , n,m⟩) with R⃗n,m = na⃗1 + ma⃗2. The

coefficients c1..6 need to be determined by solving the (matrix) Schrödinger equa-
tion. Note that an additional phase factor to account for the relative position of the
atoms within each unit cell with respect to the lattice (i. e., the basis atoms, giving
rise to a factor of unity in the case of the blue atom and a factor of eik⃗d⃗ in the case
of the green atom) is the same in each unit cell and is therefore integrated into the
coefficients c1..6.

3. Determine the nearest neighbor unit cells.
Choose an arbitrary on-site unit cell (n,m)with lattice vector R⃗n,m = na⃗1 +ma⃗2 lead-
ing to this unit cell (dark gray in Figure 2.19(a)). Determine the number of neigh-
boring unit cells nn. n. with nearest neighbor interaction to atoms within the on-site
unit cell. In the case of the 2D cubic crystal displayed in Figure 2.19, there are 8 unit
cells around the on-site cell, of which the light gray shaded six contain atoms that
are nearest neighbors of the atoms A or B in the on-site unit cell; only these unit
cells need to be considered in the following.

4. Set up the Schrödinger equation for the on-site unit cell.
Write down one empty on-site matrix Hn,m having dimensions Nb × Nb (6 × 6 in the
present case). Write the bra-vectors of the basis orbitals of the on-site unit cell in
a column left to the on-site matrix. Next, the ket vectors of same orbitals will be
written in a row on top of the on-site matrix. As a result, one obtains

|sb⟩ |pbx⟩ |pby⟩ |sg⟩ |pgx⟩ |pgy⟩
⟨sb| ϵsb 0 0 −Vss

Vspσ
√2

Vspσ
√2

⟨pbx | 0 ϵpb 0 −Vspσ
√2

−Vppπ+Vppσ
2

Vppπ+Vppσ
2

⟨pby| 0 0 ϵpb −
Vspσ
√2

Vppπ+Vppσ
2

−Vppπ+Vppσ
2

⟨sg | −Vss −
Vspσ
√2 −

Vspσ
√2 ϵsg 0 0

⟨pgx |
Vspσ
√2

−Vppπ+Vppσ
2

Vppπ+Vppσ
2 0 ϵpg 0

⟨pgy |
Vspσ
√2

Vppπ+Vppσ
2

−Vppπ+Vppσ
2 0 0 ϵpg

Since the three s- and px,y-orbitals of each atom represent an orthonormal set of ba-
sis functions (for the isolated atom), two diagonal 3 × 3 matrix blocks are obtained
with the eigenenergies ϵsb,g ,pb,g of the respective orbitals on the main diagonal; note
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that the eigenenergies of the px - and py-orbitals are degenerate. The overlap inte-
grals are then given by ⟨sb|ℋ|sg⟩ = −Vss (top left panel in Figure 2.19(b)), ⟨sb|ℋ|pgx⟩ =
⟨sb|ℋ|pgy⟩ = −1/√2 ⋅ (−Vspσ) because cos(Θ) = cos(135°) = − cos(45°) = −1/√2
(top right panel in Figure 2.19(b)). Moreover, ⟨pbx |ℋ|s

g⟩ = ⟨pby|ℋ|s
g⟩ = −Vspσ/√2

(top middle panel in Figure 2.19(b)) and ⟨pbx |ℋ|p
g
x⟩ = ⟨pby|ℋ|p

g
y⟩ = −Vppπ sin

2(45°) +
Vppσ cos

2(45°) = −Vppπ+Vppσ2 (bottom left panel in Figure 2.19(b)). Note that in the lat-
ter case the overlap integral due to π-bonding −Vppπ needs to be multiplied with
sin(Θ1) sin(Θ2) = sin

2(45°) = 1/2 leaving the negative sign in front of −Vppπ . In con-
trast, −Vppσ is multiplied with cos(Θ1) cos(Θ2) = cos(45° cos(135°)) = −1/2. Finally,
⟨pbx |ℋ|p

g
y⟩ = ⟨pby|ℋ|p

g
x⟩ =

Vppπ+Vppσ
2 (bottom middle panel in Figure 2.19(b)). The last

overlap to be considered (will be used under 5.) is illustrated in Figure 2.19(b), bot-
tom right. Here, the pbx -orbital of the on-site unit cell overlaps with a pgy -orbital of
the unit cell −a⃗1 away from the on-site cell. In this case, the prefactor in front of the
−Vppσ is cos(135°) cos(135°) = 1/2, and hence ⟨pbx |ℋ|p

g
y⟩−a⃗1 =

−Vppσ−Vppπ
2 .

5. Set up matrices for nearest neighbor coupling.
For each of the nn. n. nearest neighbor unit cells, write an empty coupling matrix,
again with dimensions Nb × Nb. Write the ket-vectors of the orbitals of the nearest
neighbor unit cell under consideration on top of the matrix and a column of bra-
vectors containing the orbitals of the on-site unit cell to the left of the matrix. Fill
the matrix elements taking only nearest neighboring atoms and the orientation of
the different orbitals with appropriate direction cosines into account. Next, multi-
ply each nearest neighbor matrix with its appropriate phase factor. In the example
considered here, the phase factors are given by e±ik⃗a⃗1 , e±ik⃗a⃗2 and e±ik⃗(a⃗1+a⃗2).
Exemplarily, for the red framed unit cell shown in Figure 2.19(a) (with R⃗1,1 = a⃗1 + a⃗2)
the phase factor is eik⃗R⃗1,1 = eik⃗(a⃗1+a⃗2) = ei(kxa+kya). Thus, the coupling matrix multi-
plied with the phase factor is given by

|sb⟩R⃗1,1
|pbx⟩R⃗1,1

|pby⟩R⃗1,1
|sg⟩R⃗1,1

|pgx⟩R⃗1,1
|pgy⟩R⃗1,1

⟨sb| 0 0 0 0 0 0

⟨pbx | 0 0 0 0 0 0

⟨pby| 0 0 0 0 0 0

⟨sg | −Vss
Vspσ
√2

Vspσ
√2 0 0 0

⟨pgx | −
Vspσ
√2

−Vppπ+Vppσ
2

Vppπ+Vppσ
2 0 0 0

⟨pgy | −
Vspσ
√2

Vppπ+Vppσ
2

−Vppπ+Vppσ
2 0 0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Hn+1,m+1

ei(kxa+kya)

where the matrix elements are filled in the same fashion as stated in 4.
6. Set up and solve the secular equation

Sumallmatrices, i. e., the on-site and all nearest neighbor couplingmatrices (includ-
ing the phase factors) yielding a single Nb × Nb-matrix Htot. Assume ⟨. . . , n,m| . . . ,
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l, r⟩ = δn,lδm,r as has been done above. We finally arrive at

Htot = Hn+1,me
ikxa + Hn+1,m+1e

i(kxa+kya) + Hn,m+1e
ikya + Hn−1,me

−ikxa

+ Hn−1,m−1e
−i(kxa+kya) + Hn,m−1e

−ikya + Hn,m.

Note that the Schrödinger equation that needs to be solved can be written as Htot ⃗c =
E1 ⃗cwhere the vector ⃗c contains the coefficients c1..6, and 1 and E are the unit matrix
and the energy, respectively. Since we are only interested in the dispersion relation
it is sufficient to solve det |Htot − E1| = 0. The result is the desired dispersion rela-
tion E(k⃗).

2.4.7 Complex Band Structure

In the calculations of the band structure so far, a purely real k⃗ was assumed since
we were looking for solutions that yield waves∝ eik⃗ ⃗r propagating through the periodic
crystal. However, we can also find complex solutions with k̃ = k+ iκ. The imaginary part
of k̃ leads to an exponential decay of the wave function according to eik̃x ∝ ei(iκ)x = e−κx .
Therefore, the inverse of κ can be interpreted as a decay length of the wave function.
At surfaces and interfaces, these complex solutions play a crucial role, because the
connection of the complex solutions to, e. g., the wave function of a metal contact leads
to an interface density of states within the band gap with a spatial extend ∼1/κ(E) (an
example is shown in Figure 4.19(b) and Figure 4.20). Hence, the complex band structure
facilitates the investigation of interfaces (for instance metal-semiconductor contacts,
see Section 4.6), and tunneling (Section 9.1), etc. based on the computation of the bulk
properties of a material, which is far less demanding than calculating a (realistic) sur-
face/interface.

As an example for the complex band structure, let us discuss Equation (2.30).
Without any coupling, i. e., Vsp = 0, the dispersion relation yields two independent
cosine-bands due to the s- and the px -orbitals. Inserting k̃ yields cos(ka + iκa) =
cos(ka) cosh(κa) − i sin(ka) sinh(κa). It is important to note that Equation (2.30) yields
only real energy values, if cos(ka+ iκa) is real, i. e., when sin(ka) sinh(κa) = 0. This is the
case at the Brillouin zone center and at the zone boundary where cos(iκa) = cosh(κa)
and cos(π + iκa) = − cosh(κa), respectively. Only at these points complex k̃ can be
found that yield real energies. At the Brillouin zone boundary (where the band gap is
found in the present case), two independent bands with imaginary wavenumber are
obtained as depicted with the thin black lines in the left panel of Figure 2.20. On the
other hand, a coupling of s- and px -orbitals between two adjacent atoms yields s- and
px -bands that are connected via the complex band structure. Figure 2.20, left, shows the
band structure, which was computed for two different coupling strengths |Vsp| based
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Figure 2.20: Left: Complex band structure of a 1D model with s- and px -orbitals (see Equation (2.30)). For
nonzero |Vsp|, s- and px -bands are connected through a complex ̃k = k + iκ. The right panel shows part of
the same band structure for positive k and κ for different |Vsp|.

on Equation (2.30).5 A stronger coupling leads to a smaller maximum value of κ within
the band gap. This is important since it implies a larger decay length ∼1/κ of the wave
function for energies within the band gap.

Close to the band edges the complex band structure can clearly be assigned to the
conduction or to the valence band. Thismeans, that the “character” of the bands changes
from valence- to conduction-band like within the band gap. The energy of this transition
is called the branching point Ebr (see Figure 2.20, right panel), which is at the energy
where dE/dκ →∞. Ebr plays an important role for, e. g., metal-semiconductor contacts
since it determines whether surface states carry a positive or negative charge.

In the simple case of Equation (2.30), it is straightforward to find the complex band
structure by inserting k̃ and looking for real energies. In the general case, the complex
band structure is usually found the other way around namely by fixing a certain real
energy and then looking for the complex k̃ that yield this energy. Such an approach
will be employed in Section 4.6 to discuss metal-semiconductor contacts based on a 1D
model. The higher-dimensional case is more involved and the reader is referred to the
available literature.

2.4.8 Band Structure at Surfaces

The tight-binding calculation discussed so far are based on a fully periodic crystal struc-
ture. However, in nanoelectronics devices, surfaces and interfaces play a very important

5 Note that the parts of the solution with larger κ are not plotted due to their much faster exponential
decay.
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Figure 2.21: (a) Schematic of a 2D solid with s- and px -orbital with a surface that leads to a 1D system with
semiinfinite unit cell (dark gray, red-framed). (b) Computed surface projected band structure; for simplicity
|Vsp = 0| is assumed. The intensity of the green color reflects the density of projected cosine bands. The 3D
plot in the back shows the band structure of the full 2D system with surface at y = 0, and thus positive ky .

role (e. g., in metal-semiconductor contacts, the MOS-interface, etc.). Therefore, it is nec-
essary to understand, how the calculations so far change when a surface is involved.
Let us start with a two-dimensional example and consider a square lattice with a single
atom per site with an s- and a px -orbital (cf. Figure 2.21 and QR code #11). In order to
compute the band structure, we can consider the system to be a one-dimensional solid
consisting of semiinfinite unit cells (dark gray, red-framed in Figure 2.21) and use the
recipe presented in Section 2.4.6. One on-site (left in Equation (2.38)) and two coupling
matrices (right) multiplied with appropriate phase factors need to be set up. With the
overlap integrals −Vss, −Vppπ , Vppσ and Vsp, the following matrices are obtained:

((((((((

(

ϵs 0 −Vss 0 0 ...
0 ϵp 0 −Vppπ 0 ...

−Vss 0 ϵs 0 −Vss
. . .

0 −Vppπ 0 ϵp 0 −Vppπ
0 0 −Vss 0 ϵs 0
0 0 0 −Vppπ 0 ϵp
...

...
...

...
. . . . . .

))))))))

)

,

(((((((

(

−Vss∓Vsp 0 0 0 ...
±VspVppσ 0 0 0 ...
0 0 −Vss∓Vsp 0 ...
0 0 ±VspVppσ 0 . . .
0 0 0 0 −Vss . . .
0 0 0 0 ±Vsp . . .
...

...
...

...
. . . . . .

)))))))

)

e±ikxa

(2.38)
Due to the undisturbed periodicity along the x-direction the resulting Hamiltonian con-
sists of 2 × 2 block matrices on the main diagonal that have the same form as Equa-
tion (2.28). These 2 × 2 block matrices are repeated infinitely many times and are cou-
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pled by the off-diagonal 2× 2 block matrices that contain Vss and Vppπ (see left matrix in
Equation (2.38)).

If the eigenvalue equation is set up for finite but rather large unit cells (known as
the slabmethod), the quasicontinuous dispersion displayed in Figure 2.21(b) is obtained.
This is called the surface projected band structure which can be constructed by pro-
jecting all states from the band structure plotted as a function of kx and positive ky in
the background of (b) onto a plane (similar to the projection of the 1D subbands in Fig-
ure 2.3).

2.5 Effective Mass Approximation

With a tight-binding calculation, the band structure of a crystalline solid can be com-
puted. However, knowledge of the electronic states in the vicinity of the bottom of the
conduction and the top of the valence band is often sufficient to assess the electronic
behavior of devices. This facilitates an incredible simplification: instead of dealing with
the entire band structure, the vicinity around the bottom of the conduction and top of
the valence bands can be Taylor-expanded up to second order. As a result, conduction
and valence bands can be replaced with a quadratic dispersion relation that resembles
the dispersion of a free particle. The only difference is that the curvature of the approx-
imate dispersion relation may be different from that of a free particle. The different
curvature can be described by the so-called effective mass. Hence, electrons in a solid
can be regarded as free particles that exhibit an effective mass m⋆ different from the
electron mass m0. This “effective-mass approximation” allows disregarding the impact
of the crystal (lattice structure, constituents, etc.) on the electronic states and thus on
the electronic behavior of devices. One cannot overestimate the benefits and impact of
this tremendous simplification.

According to classical mechanics, a force F (due to, e. g., an electric field) changes
the momentum of a charge carrier as F = dp

dt =
d
dt (ℏk)where the de Broglie relationship

has been used. Noting that F = m dv
dt it is clear that

mdv
dt
= ℏ

dk
dt
= ℏ

dk
dv

dv
dt
, (2.39)

and thus, m = ℏ dkdv . Since the group velocity is v(k) = 1
ℏ
dE(k)
dk (see Section 2.1.1) the well-

known expression for the effective mass is obtained:

m⋆ = ( 1
ℏ
dv
dk
)
−1

= (
1
ℏ2

d2

dk2
E(k))

−1

(2.40)

This means that the curvature of the band determines the effective mass: a strong in-
crease of E(k) with increasing k results in a strong curvature, and hence in a small ef-
fective mass. On the other hand, a rather flat band yields a small curvature and, there-
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fore, a large effective massm⋆. Thus, the effective mass strongly depends on the crystal
structure, on the direction within a crystal and also on what orbital the band we are
calculating an effective mass from belonged to. Energetically low lying orbitals that are
tightly bond to their nucleus have a small overlap with adjacent atoms and result in a
large effective mass and vice versa (see also Figure 2.13).6 This is the reason why the va-
lence band usually has a larger effective mass compared to the conduction band. Using
Equation (2.23), the effectivemass around the bottom of the conduction band (i. e., k ≈ 0)
is m⋆ = ℏ

2

2Vssa2
, which seems to suggest that m⋆ increases for smaller a. However, keep

in mind that the value of the overlap integral |Vss| increases stronger than a
2 decreases

due to the strong spatial dependence of the overlap of the wave functions of two adja-
cent atoms. As a result, the effective mass decreases if a decreases due to a significantly
larger overlap. Hence, exerting compressive strain on a solid may lead to larger overlap
integrals that yield a band structure with small effective mass.

If the entire k-interval of the cosine-band equation (2.16) is considered, i. e., k =
− πa , . . . ,

π
a a rather peculiar behavior ofm⋆ as a function of energy is observed: Around

the band minimum the effective mass is constant but strongly increases and in fact di-
verges to +∞when k → π

2a . For larger k-valuesm
⋆ takes on negative values, approach-

ing a constant as k → π
a . This behavior can be understood when looking at the velocity

v(k) = 1
ℏ
dE(k)
dk : increasing k implies an increase of energy. But although E increases,

the velocity approaches a constant value at k = π
2a , which can only occur if the effec-

tive mass increases. Furthermore, for even higher energies the velocity drops, meaning
that carriers are decelerated, which requires a negative effective mass. This situation is
schematically shown in Figure 2.22.

Figure 2.22: Cosine band (green) of a 1D lattice within the first Brillouin zone. The dark blue line shows
v = 1
ℏ
𝜕E
𝜕k and the light blue line displays the effective mass.m⋆ diverges in the middle of the Brillouin zone

and approaches a constant where E(k) becomes flat.

6 Moreover, electrons in inner orbitals screen the Coulomb potential of the nucleus further contributing
to the difference between tightly bond inner orbitals and orbitals with higher energies.
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The fact that the effective mass increases and eventually diverges (when the dis-
persion becomes linear) is due to the deviation of the band structure from the parabolic
behavior.When using Newton’s 2nd law in Equation (2.39) the implicit assumption of the
mass being independent of time (and hence energy) has beenmade; the time derivative
is applied only to the group velocity. As a result, the effective mass extracted above is
strictly valid only in the energy range where the dispersion is parabolic, i. e., where the
effective mass is constant. If, however, the band structure is nonparabolic (for instance,
in the case of graphene (see Section 2.8.1) that exhibits a linear dispersion relation), the
definition of effective mass given in Equation (2.40) is not valid anymore [237]. Indeed it
has been shown [237, 15] that the momentum effective mass is appropriate in this case:
with p = m⋆pv = ℏk where v is the group velocity (see Equation (2.5)) we have

m⋆p = ℏ
k
v
= ℏ2k(𝜕E
𝜕k
)
−1

=
ℏ2

2
𝜕
𝜕E
(k2). (2.41)

Note that this expression yields the same effective mass as Equation (2.40) in the case
of a quadratic dispersion relation. However, in the case of a nonparabolic band struc-
ture, the expression above is appropriate and will be used to extend the effective mass
approximation also to such instances.

Task 9.
Effectivemass from tight-binding band structure: Consider the 1D solid displayed in Figure 2.14(a), (b)
with the band structure shown in Figure 2.14(c). Here, the s-like and the p-like bands can be interpreted
as valence and conduction bands, respectively. Compute the effective masses that are obtained for the
valence and conduction band using ⟨m, s|ℋ|m ± 1, s⟩ = −Vss , ⟨m, p|ℋ|m ± 1, p⟩ = Vpp, ⟨m, p|ℋ|m, s⟩ = 0
and Vsp = 0 with

13
2|Vss| = |Vpp|. Why is the valence band effective mass larger than the effective mass in

the conduction band?

2.5.1 Effective Mass Tensor

Expression (2.40) that relates the effective mass to the curvature of the band structure
is in the present form valid only in one dimension. In a general three-dimensional solid,
the expression can be extended and yields an effective mass tensor. In order to derive
this effectivemass tensor, the acceleration a⃗ = d

dt v⃗ is rewritten as a⃗ = d
dt (

1
ℏ∇kE(k⃗)). Next,

the derivatives d
dt and ∇k are interchanged yielding a⃗ = 1

ℏ∇k
dE(k⃗)
dt . Since the derivative

with respect to t is a total derivative, one obtains dE
dt =

𝜕E
𝜕kx

dkx
dt +
𝜕E
𝜕ky

dky
dt +
𝜕E
𝜕kz

dkz
dt , which

is equal to the scalar product ∇kE(k⃗) ⋅
dk⃗
dt . Noting that the force is F⃗ = ℏ dk⃗dt the acceler-

ation becomes a⃗ = 1
ℏ2
∇k(∇kE(k⃗) ⋅ F⃗). The latter expression is equal to a⃗ = 1

ℏ2
∇k(
𝜕E
𝜕kx

Fx +
𝜕E
𝜕ky

Fy +
𝜕E
𝜕kz

Fz). Moreover, from classical mechanics a⃗ = 1
m⋆ F⃗ , and thus one can identify

the effective mass tensor from

https://vimeo.com/462355537
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a⃗ = 1
ℏ2
(

𝜕2E
𝜕k2x

Fx +
𝜕2E
𝜕kx𝜕ky

Fy +
𝜕2E
𝜕kx𝜕kz

Fz
𝜕2E
𝜕ky𝜕kx

Fx +
𝜕2E
𝜕k2y

Fy +
𝜕2E
𝜕ky𝜕kz

Fz
𝜕2E
𝜕kz𝜕kx

Fx +
𝜕2E
𝜕kz𝜕ky

Fy +
𝜕2E
𝜕k2z

Fz

) =
1
ℏ2
(

𝜕2E
𝜕k2x

𝜕2E
𝜕kx𝜕ky

𝜕2E
𝜕kx𝜕kz

𝜕2E
𝜕ky𝜕kx

𝜕2E
𝜕k2y

𝜕2E
𝜕ky𝜕kz

𝜕2E
𝜕kz𝜕kx

𝜕2E
𝜕kz𝜕ky

𝜕2E
𝜕k2z

)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(m⋆)−1

F⃗ .

(2.42)

If the band structure is such that it can be approximated by an ellipsoid whose principal
axes are aligned with respect to kx,y,z the off-diagonal elements, e. g., 𝜕

2E
𝜕kx𝜕ky

, vanish and
the main diagonal elements of Equation (2.42) carry the inverse of the effective masses
along the kx -, ky- and kz-directions. The most prominent example of an ellipsoidal band
structure leading to direction-dependent effective masses is silicon, which will be dis-
cussed in detail in Section 2.6.3.

2.5.2 Energy-Dependent Effective Mass

The effective mass given by Equation (2.40) is only valid in the case of a quadratic dis-
persion relation. However, the band structure is often nonparabolic and as a result an
energy-dependent effective mass has to be introduced in order to preserve the simplic-
ity of the effectivemass approximation. Nonparabolicity can be taken into consideration
with a dispersion relation of the form

ℏ2k2

2m⋆c
≈ E(1 + αE) (2.43)

where the subscript “c” has been added tom⋆c for clarity since this is the effectivemass at
the (conduction) bandminimum (i. e., it is the effectivemass according to Equation (2.40)
without nonparabolicity). α is the nonparabolicity factor where α ≈ 1/Eg . Solving Equa-
tion (2.43) for k2 and using Equation (2.41) for the momentum effective mass, the follow-
ing energy-dependent effective mass is obtained:

m⋆(E) = m⋆c (1 + 2αE). (2.44)

In Section 2.4.7, the complex band structure has been calculated with tight-binding
showing how an overlap between s-and px -orbital connects the conduction to the va-
lence bands through a complex wave number. Figure 2.23 (thin black lines) shows that
the complex band structure within the band gap cannot be described solely with two
constant effectivemasses for the conduction and valence bands since this leads to a sub-
stantially stronger decay of thewave functionwithin the band gap, and thus,may lead to
an underestimated band-to-band tunneling rate (cf. Chapter 9). In order to preserve the
simplicity of the effective mass approximation yet properly describe the complex band
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Figure 2.23: Left: Flietner’s dispersion relation in the case ofm⋆c = 0.2m0 andm
⋆
v = 0.8m0 with complex

band structure within the band gap (green dotted line, Eg = 1 eV). The right panel shows a comparison of
the complex band structure form⋆c /m

⋆
v = 1 (dashed dark green) andm⋆c /m

⋆
v = 0.2 (green dotted) [74, 101]

and the momentum effective mass computed with Equation (2.41).

structure within the band gap, Flietner’s dispersion relation7 may be used [74, 101]:

ℏ2k2

2m⋆c
= E(1 + E

Eg
)(1 + (1 −√

m⋆c
m⋆v
)
E
Eg
)
−2

(2.45)

which is shown in Figure 2.23 (see the figure caption for details). The complex band
structure (green dotted line) shows the same appearance as has already been discussed
in Section 2.4.7 with a significantly different behavior compared to simply continuing
the band structure within the band gap based on the constant effective masses m⋆c,v
(thin black lines). The right panel shows the complex band structure for different ra-
tios m⋆c /m

⋆
v . In the case m⋆c /m

⋆
v = 1, the resulting complex band structure is circular

(compare with the complex band structure of carbon nanotubes in Section 2.9) with the
branching point Ebr at Eg/2. Ifm

⋆
v > m

⋆
c , Ebr is moved to lower energies again reflecting

the discussion in Section 2.4.7.
Ifwe againuse the definition for themomentumeffectivemass Equation (2.41), Fliet-

ner’s dispersion Equation (2.45) can be solved for k2 → −κ2. Computing the derivative
results in the energy-dependent effective mass within the band gap given by m⋆p (E) =

m⋆c (1+ (1+√
m⋆c
m⋆v
) EEg )/(1+ (1−√

m⋆c
m⋆v
) EEg )

3, which incorporates the impact of different (con-

stant) effective masses in the conduction and valence bands m⋆c and m⋆v , respectively.
m⋆p (E) approaches m

⋆
c at the conduction band (i. e., E → 0), is equal to zero at Ebr and

approaches −m⋆v at the valence band edge (see right panel, Figure 2.23). Since it is more

7 Note that in Equation (2.45), E = 0 and E = Eg are the conduction and valence band edges, respectively.
To compute the complex band structure (depicted in Figure 2.23), k2 = (iκ)2 needs to be inserted in
Equation (2.45) yielding an extra negative sign.
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convenient to work with positive effective masses, the absolute value of m⋆p (E) is used
keeping in mind that at Ebr, m

⋆
p (E) changes from electron- to hole-character; for more

details see QR code #14.
14 Finally, one can also define an (energy-dependent) energy effective mass m⋆E [127,

51], which follows directly from the dispersion. For instance, solving Equation (2.43) for
k = √ 2m⋆c E(1+αE)

ℏ2
the energy effective mass can be read off this expression by setting it

equal to √ 2m⋆EE
ℏ2

resulting inm⋆E = m
⋆
c (1 + αE). The energy effective mass will be used in

Chapter 6 in order to obtain a proper description of the density of states within the band
gap based on Flietner’s dispersion relation in a single-band description.

While an energy-dependent effective mass can be used to take nonparabolic ef-
fects and the complex band structure into account it is important to note that it renders
the Hamiltonian to be non-Hermitian. Nevertheless, in the following chapters many of
the simulation examples and results presented are based upon the use of an energy-
dependent effective mass, which turned out to provide excellent results.

2.6 Bulk Materials

Bulk materials for nanoelectronics include group IV elemental semiconductors and
their heterostructures, III–V as well as II–VI compound semiconductors. Group IV el-
emental semiconductors, i. e., diamond, silicon germanium and gray tin (α-Sn) and
III-arsenides (GaAs, InAs, etc.) and III-antimonides crystallize in the diamond structure.
Due to its importance and ubiquitous use, silicon will be discussed exemplarily in detail
regarding crystal structure, band structure, etc.

2.6.1 Silicon—Crystal Structure and Material Properties

Silicon is arguably the most important and the most studied semiconductor and crystal-
lizes in the diamond lattice due to the four sp3 hybrid orbitals. These orbitals are formed
since it is energetically favorable to put silicon’s four valence electrons into orbitals that
providemaximum spatial distance between the electrons to lower the electron-electron
interaction. Thus, the sp3 orbitals are tetrahedral, leading to a diamond lattice structure.

The diamond structure consists of two face-centered cubic lattices, shifted by
( a4 ,

a
4 ,

a
4 ) as depicted in Figure 2.24. Here, a is the lattice constant of the underlying

cubic fcc lattice. The diamond lattice is therefore no Bravais lattice but can be described
by a fcc Bravais lattice with basis containing two atoms where, the vector d⃗ = ( a4 ,

a
4 ,

a
4 )

(see Figure 2.24) leads from the first to the second atom within the unit cell.
Figure 2.25(a) shows theWigner–Seitz cell of a fcc lattice within the (non-primitive)

cubic unit cell of the fcc lattice as was already shown in Figure 2.7. The additional atoms
required for the diamond lattice are represented as green spheres. Note that in the case

https://vimeo.com/900713022
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Figure 2.24: Two interwoven fcc lattices constitute the diamond lattice. sp3-hybridization yields each Si
atom to be tetrahedrally surrounded by four adjacent atoms as illustrated in the red framed box.

Figure 2.25:Wigner–Seitz cell of a fcc lattice (a). If the cell is turned and tilted appropriately, it becomes
clear that the Wigner–Seitz cell of Si contains two atoms (b)–(d). Shifting the Wigner–Seitz cell slightly
yields an unambiguous definition of the unit cell (e).

of, e. g., GaAs, the blue and green spheres would embody gallium and arsenic atoms,
respectively; for elemental semiconductors such as silicon all atoms are the same. Ob-
viously, there is a central atom (large blue) within the Wigner–Seitz cell and four green
atoms are at the respective corners shown in Figure 2.25(a). Each green atom is shared
by four Wigner–Seitz cells such that overall two (1 + 4 ⋅ 14 ) atoms are in each cell. If the
cubic cell in (a) is rotated around the z-axis as illustrated in (b), and subsequently ro-
tated around the x-axis (c) and if in addition, the Wigner–Seitz cell is shifted by a

4 along
the x-direction, the two atoms denoted “1” and “2” in Figure 2.25(d) are fully within the
Wigner–Seitz cell. Using the shiftedWigner–Seitz cell, it is clear that only two atoms are
within each unit cell of the silicon crystal structure. This shifted cell will be used to con-
struct a tight-binding calculation of the band structure in the succeeding section since
it allows to immediately see where nearest neighbor interaction needs to be taken into
account. Before we turn our attention to the band structure calculation, a few words
about crystallographic planes/surfaces of the silicon crystal are appropriate.

For the work-horse of integrated circuits—metal-oxide-semiconductor field-effect
transistors (MOSFETs)—surfaces and interfaces of silicon play a decisive role: in MOS-
FETs, inversion charge is induced at the interfaces between the silicon substrate and
the gate dielectric (see Chapters 4 and 5). Moreover, even the behavior of some wet-
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chemical etchants (see Section 3.6.4 for details) is determined by crystallographic sur-
faces. Themost important surfaces/interfaces of silicon are the (100), (110) and (111) crys-
tallographic planes displayed in Figure 2.26. Silicon atoms at a surface are not bonded to
four next neighboring atoms anymore, and thus provide so-called dangling bonds that
are localized states with energies within the band gap of silicon. As will be discussed in
detail in Section 4.5, these gap states are important for the switching of MOSFETs.

Figure 2.26: Cubic lattice of silicon in real space. The (100), (110) and (111) crystallographic planes (gray-
shaded area) together with the surface atom density nS are given.

The surface density of dangling bonds is determined by the surface density of atoms
nS and the number of bonds per atom. In the three examples displayed in Figure 2.26,
the surface atoms are shown in blue and their surface density can easily be computed
by counting the number of surface atoms in one cubic cell and dividing this number by
the gray area. The (100) surface contains 2 atoms (4 ⋅ 14 due to the corner atoms and the
central fcc-atom) per area a2 resulting in nS = 6.78 ⋅ 10

14 cm−2. Because each of the two
atoms has two unsatisfied bonds out of plane, the total bond density is 1.356 ⋅ 1015 cm−2.
The (110) surface has 4 atoms per √2 ⋅ a2, and hence nS = 9.59 ⋅ 10

14 cm−2; in contrast
to the (100) surface, here only a single bond per atom is unsaturated giving rise to a
corresponding bond density of 9.59 ⋅ 1014 cm−2. Finally, 2 atoms (3 ⋅ 16 due to the corner
atoms plus 3 ⋅ 12 from the side edges of the triangular area) are on the (111) surface within
the gray triangle with an area of √32 a

2 that have a single free bond. Thus, the surface
atom and bond density of the (111) plane are equal and given by nS = 7.83 ⋅ 10

14 cm−2.

2.6.2 Tight-Binding Calculation of Silicon

According to the recipe for band structure calculation given in Section 2.4.6, we need
to first determine the unit cell, the number of atoms within the unit cell and which or-
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bitals we have to choose to describe the band structure. The number of atoms within
the unit cell has already been determined in the previous section to be two (na = 2).
In the following, the Wigner–Seitz cell displayed in Figure 2.25(e) is used as unit cell.
Furthermore, in order to describe the band structure properly it has been shown that
in the case of silicon at least the 3s, 3px,y,z and the 4s⋆ orbitals (i. e., no = 5) need to be
included [261]. Consequently, Nb = na ⋅ no, and thus 10 × 10 matrices have to be set up.
Moreover, each unit cell has 12 neighboring cells that are displayed in Figure 2.27. How-
ever, from Figure 2.27 it is obvious that not all 12 cells need to be incorporated since we
only consider interaction between nearest neighboring atoms (i. e., between blue and
green atoms with a distance of |d⃗|) and some of the neighboring unit cells do not con-
tain nearest neighboring atoms. To be specific, Figure 2.27 shows the 12 neighboring cells
that are located at a⃗1 = (a/2, 0,−a/2) and a⃗2 = (−a/2, 0, a/2) (a), a⃗3 = (a/2,−a/2, 0) and
a⃗4 = (−a/2, a/2, 0) (b), a⃗5 = (0,−a/2, a/2) and a⃗6 = (0, a/2,−a/2) (c), a⃗7 = (a/2, 0, a/2) and
a⃗8 = (−a/2, 0,−a/2) (d), a⃗9 = (−a/2,−a/2, 0) and a⃗10 = (a/2, a/2, 0) (e), a⃗11 = (0, a/2, a/2)
and a⃗12 = (0,−a/2,−a/2) (f) provided that the origin of the coordinate axes is at the cen-
tral blue atom and again, a is the lattice constant of the underlying fcc Bravais lattice.

Figure 2.27: 12 nearest neighboring cells of the silicon Wigner–Seitz cell. The six nearest neighbor cells dis-
played in panels (a)–(c) do not contain any nearest neighbor atoms with respect to the central cell. Panels
(d)–(f) show the six relevant nearest neighbor unit cells.

Vectors a⃗1,...,6 lead to neighboring cells that do not contain a nearest neighbor atom,
and hence do not contribute (as obvious fromFigure 2.27(a)–(c)). As a result, seven 10×10
matrices need to be set-up, namely the on-site matrix and six nearest neighbor coupling
matrices that are multiplied with appropriate phase factors. These matrices are explic-
itly given through the QR code #15 where details of the tight-binding calculation are
provided. For improved readability, only the final result Htot is stated here:
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(((((((((((((

(

ϵsb 0 0 0 0 −Vssg0 Vspg1 Vspg2 Vspg3 0
0 ϵpbx 0 0 0 −Vspg1 −Vxxg0 Vxyg3 Vxyg2 −Vs⋆pg1
0 0 ϵpby 0 0 −Vspg2 Vxyg3 −Vxxg0 Vxyg1 −Vs⋆pg2
0 0 0 ϵpbz 0 −Vspg3 Vxyg2 Vxyg1 −Vxxg0 −Vs⋆pg3
0 0 0 0 ϵsb⋆ 0 Vs⋆pg1 Vs⋆pg2 Vs⋆pg3 −Vs⋆s⋆g0
−Vssg

⋆
0 −Vspg

⋆
1 −Vspg

⋆
2 −Vspg

⋆
3 0 ϵsg 0 0 0 0

Vspg
⋆
1 −Vxxg

⋆
0 Vxyg

⋆
3 Vxyg

⋆
2 Vs⋆pg

⋆
1 0 ϵpgx 0 0 0

Vspg
⋆
2 Vxyg

⋆
3 −Vxxg

⋆
0 Vxyg

⋆
1 Vs⋆pg

⋆
2 0 0 ϵpgy 0 0

Vspg
⋆
3 Vxyg

⋆
2 Vxyg

⋆
1 −Vxxg

⋆
0 Vs⋆pg

⋆
3 0 0 0 ϵpgz 0

0 −Vs⋆pg
⋆
1 −Vs⋆pg

⋆
2 −Vs⋆pg

⋆
3 −Vs⋆s⋆g

⋆
0 0 0 0 0 ϵsg⋆

)))))))))))))

)

.

(2.46)

The factors g0,...,3 are given by g0 = 1 + e
ik⃗a⃗7 + eik⃗a⃗9 + eik⃗a⃗11 , g1 = 1 − e

ik⃗a⃗7 − eik⃗a⃗9 + eik⃗a⃗11 ,
g2 = 1 + e

ik⃗a⃗7 − eik⃗a⃗9 − eik⃗a⃗11 , g3 = 1 − e
ik⃗a⃗7 + eik⃗a⃗9 − eik⃗a⃗11 . The different signs in front of

the phase factors are due to the orientation of the orbitals with respect to each other,
as has been discussed in Section 2.4.5. The vectors a⃗7,9,11 are given by a⃗7 =

a
2 (1, 0, 1),

a⃗9 =
a
2 (1, 1, 0) and a⃗11 =

a
2 (0, 1, 1) (cf. Figure 2.27); vectors a⃗8,10,12 are taken into account

via the conjugate complex of the factors g0,...,3.
8

The matrix Equation (2.46) is not only valid for silicon. Provided appropriate val-
ues for the matrix elements are inserted it can be used for all semiconductors with di-
amond crystal structure. Empirical parameters for the different semiconductors can,
for instance, be found in [261]. For convenience, the parameters for C, Si and Ge are
reprinted in Table 2.1. In this respect, it is important to note that the tight-binding pa-
rameters stated allow reproducing only parts of the band structure correctly. The rea-
son is that the sp3s⋆-model is insufficient to describe all details simultaneously (see
[134, 35] for more information). In order to obtain a proper description of the conduc-
tion band the tight-binding parameters provided by Klimeck et al. for the sp3s⋆-model
can be adopted [134] that are reprinted in the third line of Table 2.1. The final step of the
calculation is to solve the

15
secular equation det |Htot−E1|, which results in the dispersion

relation E(k⃗).

2.6.3 Band Structure of Silicon

Using the tight-binding Hamiltonian Htot stated in Equation (2.46) within the sp3s⋆-
model, the band structure is calculated with the parameters given in Table 2.1. Since
silicon is basically a fcc lattice with basis, in reciprocal space one obtains a body-
centered cubic lattice (cf. Figure 2.9). The Wigner–Seitz cell in reciprocal space, i. e.,
the first Brillouin zone is thus constructed as has been discussed in Section 2.3.2 and is

8 Note that in contrast to the literature, the matrix elements here have an additional minus sign so that
the overlap of, e. g., two s-orbitals yields −Vss as has been used in earlier sections.

https://vimeo.com/466177624
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Table 2.1: Tight-binding parameters of the sp3s⋆-model for diamond, silicon and germanium reprinted
from [261]. The third line states alternative parameters for silicon that reproduce the conduction band
correctly (taken from [134]).

ϵsb,g ϵpb,gx,y,z
ϵs⋆ Vss Vsp Vxx Vxy Vs⋆p

C −4.545 3.84 11.37 22.725 15.22 −3.84 11.67 8.211
Si −4.2 1.715 6.685 8.3 5.7292 −1.715 4.575 5.3749
Si(N.N, Ec ) −3.659 1.679 3.876 7.971 8.875 −1.696 23.32 5.412
Ge −5.88 1.61 6.39 6.78 5.4649 −1.61 4.9 5.2191

Figure 2.28: (a) Brillouin zone of silicon with high symmetry directions. (b) Constant energy surface for an
energy slightly above the conduction band bottom. The right panel shows a close-up of a constant energy
ellipsoid. A light effective massm⋆l and a heavy effective massm⋆h determine the conduction band.

displayed in Figure 2.28(a) with the high symmetry directions highlighted. Due to the
three-dimensionality, the full band structure cannot be displayed anymore. Therefore,
the band structure is plotted either only along the high symmetry directions (as in Fig-
ure 2.16, bottom right panel), or only a constant energy surface is shown. The latter is
depicted exemplarily in Figure 2.28(b) in the case of the silicon conduction band reveal-
ing the well-known sixfold degeneracy. One observes rotationally symmetric ellipsoids
along the kx,y,z axes; the video accessible through QR code #16 illustrates the connection
between the typical representations of the silicon band structure further.

16A plot of E(k⃗) along the Γ–L- and Γ–X-directions is shown in Figure 2.29, left panel.
The band gap Eg is clearly visible; the close-up shows the conduction band inmore detail
so that the ellipsoidal form of the constant energy surfaces becomes apparent. A surface
plot of the conduction bandwithin the first Brillouin zone is displayed in the right panel,
where again the ellipsoidal conduction band is visible. A light effective mass withm⋆l =
0.19m0 and a heavy massm⋆h = 0.92m0 can be extracted from the band structure.

The consequences of this rather peculiar conduction band on the carrier density
in bulk silicon and in particular in the case of an inversion layer in a metal-oxide-
semiconductor field-effect transistor will be discussed in more detail in Section 2.11.2
and in Section 4.5, respectively.

https://vimeo.com/461434930
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Figure 2.29: Left panel: Part of the Si band structure computed with the sp3s⋆-model based on the tight-
binding parameters given in Table 2.1 [261]. The inset and the right panel show details of the conduction
band as computed with the alternative parameters stated in the third line of Table 2.1 (taken from [134]).

2.7 The Surface of Bulk Crystals

As an example for the band structure of a bulk crystal, we consider the (100) surface
of silicon shown in Figure 2.30(a). The topmost layer of atoms is arranged in a simple,
body-centered square lattice with a surface unit cell tilted by 45° with respect to the fcc
cubic cell and an area a

√2
× a
√2

where a is the lattice constant of the fcc cubic cell of sil-
icon. Using this square lattice, semiinfinite unit cells can be defined that are arranged
on the square lattice along x- and y-directions. This also means that we can in princi-
ple plot the band structure E( ⃗k‖) as a function of the component k⃗‖ parallel to the (100)
surface. By stretching the fcc cubic cell as shown in Figure 2.30(b), the unit cell for the

Figure 2.30: (a) Si (100) surface with fcc cubic cell of the diamond lattice. (b) The topmost layer of atoms at
the (100) surface is arranged in a simple, body-centered square lattice of the bulk fcc lattice, which leads to
a new simple cubic unit cell titled by 45°. (c) Projected surface band structure along the (110) direction.
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computation of the surface band structure can be identified containing a repetitive ar-
rangment of the four atoms highlighted in the figure (red circle). Eventually, from the
right panel in (b), the coupling to nearest neighboring atoms can be deduced. The tight
binding calculation then implies setting up one on-site and four coupling matrices. The
coupling matrices have to be multiplied with appropriate phase factors. The detailed
calculation and the result are provided through the QR code #17 leading to the surface
projected band structure (see Section 2.4.8) displayed as an example in Figure 2.30(c).
Note, that in the present case, the same sp3s⋆-model with the overlap integrals stated

17
in

Table 2.1 has been used. Furthermore, it is important to mention that for simplicity an
unreconstructed Si-(100) surface has been assumed.

2.8 Two-Dimensional Materials

The first demonstration of a monolayer of graphene based on simple exfoliation by
Novoselov and Geim [203, 82] initiated the new field of 2Dmaterials research and culmi-
nated in the 2010 Nobel price in physics. Recently, 2Dmaterials have attracted a strongly
increasing attention fueled by the synthesis and exploration of many new 2D material
classes based, e. g., on transition metal dichalcogenides (TMDCs) and onmonoatomic al-
lotropes of silicon (silicene), germanium (germanene) and tin (stanene) as well as black
phosphorous and borophene.

In the present section, the electronic properties of selected 2D materials will be dis-
cussed. First, graphenewill be considered since it allows a straightforward calculation of
the band structure using the tight-binding formalism explained in the preceding chap-
ters. Moreover, TMDCs will be studied as an example of novel 2Dmaterials with promis-
ing electronic properties with respect to nanoelectronics devices.

2.8.1 Monolayer Graphene

Graphene is a specialmaterial with some very unusual properties that have inspired sci-
entists to use the material in various directions including opto-electronic devices, sen-
sors, etc. To understand why the material is unusual, let us compute the band structure
employing the tight-binding recipe detailed in Section 2.4.6.
1. Graphene has a honeycomb lattice structure, as shown in Figure 2.31, and a suit-

able unit cell is shown as the dark gray diamond containing two carbon atoms
(colored blue and green). Next, we can determine the lattice vectors a⃗1,2 from the
right panel of Figure 2.31. Using elementary geometrical considerations, one obtains
a⃗1 = (a√3/2, a/2) and a⃗2 = (a√3/2,−a/2).

2. The honeycomb lattice is a result of the sp2-hybridization of the s- and the three
px,y,z-orbitals of carbon yielding three sp2-hybrid orbitals in-plane that form 120°
angles with respect to each other. These three orbitals form σ-bonds with adjacent

https://vimeo.com/900716063
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Figure 2.31: Graphene lattice with diamond-shaped central unit cell (dark gray) and nearest neighboring
cells (light gray). Right panel: construction of the two unit vectors a⃗1 and a⃗2.

carbon atoms that are responsible for the unique mechanical strength of graphene.
The remaining pz-orbital is oriented perpendicular to the plane of the sp2-orbitals
forming π-bonds with the adjacent neighbors (illustrated in Figure 2.17(d)). It is this
pz-orbital that is responsible for the electronic behavior of graphene around the
Fermi level, and thus, we can restrict our calculation of the band structure to the
pz orbitals. As a result, with two atoms (blue and green in Figure 2.31) per unit cell
each providing a single pz-orbital we have to solve simple 2 × 2 matrix equations.

3. If only nearest neighbor interaction is considered, one needs to take into account
the contributions from the four gray diamonds displayed in Figure 2.31; note that
the remaining diamonds do not have any nearest neighbor atoms and are thus ne-
glected here. This means that five 2 × 2 matrices need to be set up.

4. Since we are dealing only with pz-orbitals of carbon atoms, ⟨pgz |ℋ|p
g
z ⟩ =

⟨pbz |ℋ|p
b
z⟩ = ϵp and because the pz-orbitals are rotationally symmetric with re-

spect to the graphene plane, only a single overlap integral ⟨pbz |ℋ|p
g
z ⟩ = −Vppπ for

nearest neighbor atoms needs to be considered. As a result, the on-site matrix is
given by

(
ϵp −Vppπ
−Vppπ ϵp

) .

5. Next, write down four empty 2 × 2-matrices with the ket vectors of the pz-orbitals
of the two carbon atoms of a nearest neighbor unit cell on top and the bra vectors
of the on-site cell in a column in front of the matrix. Multiply the matrices with the
appropriate phase factors. For the upper left neighboring unit cell, which is located
at −a⃗2 with respect to the on-site unit cell, this yields

(
⟨pbz |ℋ|p

b
z⟩−a⃗2 = 0 ⟨p

b
z |ℋ|p

g
z ⟩−a⃗2 = −Vppπ

⟨pgz |ℋ|pbz⟩−a⃗2 = 0 ⟨pgz |ℋ|p
g
z ⟩−a⃗2 = 0

) e−i(kx
a√3
2 −ky

a
2 )
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where |pb,gz ⟩−a⃗2 are meant to be the ket vectors of the pz-orbitals of the blue and
green atoms of the nearest neighbor unit cell that is −a⃗2 away from the on-site cell.
Note that only the blue atom in the on-site cell has a nonzero overlap with the green
atom in this particular nearest neighbor cell. The phase factor is simply e−ik⃗a⃗2 =
e−i(kx

a√3
2 −ky

a
2 ). Similarly, the remaining three 2 × 2 coupling matrices are derived,

which are given by

(
0 0
−Vppπ 0

) eik⃗a⃗1 , ( 0 0
−Vppπ 0

) eik⃗a⃗2 , ( 0 −Vppπ
0 0

) e−ik⃗a⃗1 .

Finally, the overall matrix Htot is obtained by adding all five matrices leading to

Htot = (
ϵp −Vppπ(1 + e

−ik⃗a⃗1 + e−ik⃗a⃗2 )

−Vppπ(1 + e
ik⃗a⃗1 + eik⃗a⃗2 ) ϵp

) (2.47)

6. Solving det |Htot − E1| = 0 yields the final band structure

E(k⃗) = ϵp ±√Vppπ(1 + 2eikx√3/2 cos(kya/2))Vppπ(1 + 2e−ikx√3/2 cos(kya/2))

= ϵp ± Vppπ√1 + 4 cos(kxa√3/2) cos(kya/2) + 4 cos2(kya/2) (2.48)

where eik⃗a⃗1 + eik⃗a⃗2 = 2eikxa√3/2 ⋅ cos(kya/2) and e
−ik⃗a⃗1 + e−ik⃗a⃗2 = 2e−ikxa√3/2 ⋅ cos(kya/2)

has been used. Equation (2.48) represents a conduction and a valence band which
are completely symmetric. At T = 0K, all states of the valence band would be filled
completely while the conduction band would be empty. Hence, the Fermi energy
Ef = ϵp. For simplicity, we set Ef = 0 in the following.

The band structure of a monolayer graphene is depicted in Figure 2.32(a). The first Bril-
louin zone is a hexagon with six K -points. Each K -point belongs to three adjacent Bril-

Figure 2.32: (a) Dispersion relation of a graphene monolayer calculated with one pz-orbital per carbon
atom. (b) Close-up of the band structure around the Fermi energy. A linear dispersion relation is obtained.
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louin zones and, therefore, only two are independent (denoted K and K ′ in the figure).
A close-up of the band structure around the Fermi energy (i. e.,E = 0) is shown in (b). The
most prominent features of the band structure are (i) the lack of a band gap and (ii) the
linear dispersion relation around the Fermi energy. In fact, at Ef the conduction band
cone and the valence band cone touch each other such that graphene has no band gap.
Moreover, the linear behavior of the dispersion relation is obtainedwhen E(k⃗) is Taylor-
expanded around K (or K ′). To this end, the reduced vector κ⃗ (here, this is not meant to
be the imaginary part of k⃗) is definedwith κ⃗ = k⃗− K⃗ as illustrated in Figure 2.32(c). Since
the band structure at each K -point is the same and E(K⃗) = 0, it is sufficient to expand
the band structure around a single K point. Looking at Equation (2.47) it is obvious that
the off-diagonal elements of the matrix are the conjugate complex of each other. Let us
call the upper right element h and expand it around K⃗ , which yields

h(k⃗) ≈ h|k⃗=K⃗⏟⏟⏟⏟⏟⏟⏟⏟⏟
=0

+
𝜕h
𝜕kx
(kx − Kx) +

𝜕h
𝜕ky
(ky − Ky)

= −Vppπ ia
√3
2
(kx − Kx)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=κx
+Vppπa
√3
2
(ky − Ky)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=κy

. (2.49)

With this expansion, the band structure is simply given by E(k⃗) = ±√|h|2 and as a result,
the dispersion around K⃗ as a function of the reduced vector κ⃗ is

E(κ⃗) ≈ ±Vppπa
√3
2
√κ2x + κ2y = ±Vppπa

√3
2
|κ⃗|. (2.50)

Indeed, Equation (2.50) shows the expected linear dispersion relation that can be seen
in Figure 2.32(a) and (b).

2.8.2 Bilayer Graphene

A central result of the preceding sectionwas that amonolayer graphene does not exhibit
a band gap. As will be discussed in Section 10.1, this yields field-effect transistor devices
with veryhigh off-state leakage currents. As an alternative, bilayer graphene canbeused
to create a band-gap. In order to understand how and why a band gap can be opened in
bilayer graphene, a tight-binding calculation will be carried out.

Consider a bilayer graphene in A-B-stacking (also known as Bernal stacking) as il-
lustrated in Figure 2.33, left panel. Here, the blue carbon atom (b1) of layer 1 sits exactly
on top of the green atom of layer 2 (g2). These two atoms are coupled to each other via
van der Waals interaction. The unit cell has indeed not changed and is still the same
diamond as in the case of monolayer graphene (illustrated with the gray diamond in
Figure 2.33). In contrast to the monolayer, the unit cell now stretches over both layers
and as a result, the unit cell contains four atoms with pz-orbitals (note the four corner
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Figure 2.33: Bilayer graphene (left) with A-B-stacking. A projection of the unit cell of layer 1 is illustrated
with the gray diamond in layer 2. The interlayer van der Waals coupling is described by the coupling pa-
rameter V⊥ ≈ 0.3 eV. The right panel shows the bilayer in a double-gate configuration with opposite volt-
ages ±Vg applied at the gate electrodes resulting in a potential of ±Δ/2 in the two layers.

atoms in the layer 2 diamond). Hence, a total of four pz orbitals need to be taken into
consideration. However, the bilayer graphene exhibits the same four nearest neighbor
unit cells as in the case of the monolayer.

The coupling between layer 1 and 2 can be restricted to the on-site unit cell (between
atoms b1 and g2) since this coupling stems from van der Waals interaction and as such
drops offeven faster than the interactiondue towave function overlapwithin each layer.
As a result, when setting up the matrix Htot, which is a 4 × 4 matrix, there will be two
2 × 2-blocks on the main diagonal, which are simply given by Equation (2.47). Since van
der Waals coupling needs to be accounted for only within the on-site cell, one arrives at

|pb1z ⟩ |p
g1
z ⟩ |pb2z ⟩ |p

g2
z ⟩

⟨pb1z |
⟨pg1z |
⟨pb2z |
⟨pg2z |

(

0 h 0 −V⊥
h⋆ 0 0 0
0 0 0 h
−V⊥ 0 h⋆ 0

)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=Htot

(2.51)

where the Dirac point has been set to zero and the overlap integral due to van der
Waals interaction is ⟨pb1z |ℋ|p

g2
z ⟩ = −V⊥. Note that the linear approximation around the

K -points has been used with h = −Vppπ ia
√3
2 κx + Vppπa

√3
2 κy.

Next, the bilayer graphene is considered to be embedded into a dual-gate structure
with a top-gate (gate 1) and a bottom gate (gate 2) as illustrated in Figure 2.33, right panel.
For simplicity, the gates are taken to be symmetric with equal gate dielectrics exhibiting
the same thickness. In addition, equal but opposite gate voltages Vg1 = −Vg and Vg2 =
Vg are applied. Consequently, the Dirac points of the two layers are shifted in energy.
In the symmetric case considered here, the Dirac points are shifted to ± Δ2 due to the
perpendicular electric field (cf. Figure 2.33, right panel). Therefore, the Hamiltonian is
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Htot =(

Δ
2 h 0 −V⊥
h⋆ Δ

2 0 0
0 0 − Δ2 h
−V⊥ 0 h⋆ − Δ2

) . (2.52)

Solving det |Htot − E1|
!
= 0 eventually yields the band structure. In the present case, the

secular equation can be solved analytically and E(κx , κy) is explicitly given by

E(κx , κy) = ±√V 2
ppπa2

3
4
|κ⃗|2 +

V 2
⊥

2
+
Δ2
4
±√

V 4
⊥

4
+ V 2

ppπa2
3
4
(Δ2 + V 2

⊥)|κ⃗|2. (2.53)

While the approximation used to arrive at Equation (2.53) (van der Waals interaction
only between g1 and b2) neglects some details of bilayer graphene a closed expression
for the band structure is obtained that captures the effects relevant for the opening of a
band gap. Figure 2.34(a) shows the resulting band structure E(|κ⃗|) for Δ = 0 (black lines)
and Δ = 0.26 eV (red lines) realized by applying appropriate gate voltages (cf. Figure 2.33,
left panel). Note that the straight lines (denoted E2,3) belong to the solution with the neg-
ative sign under the square root and the dotted (E1 and E4) to the positive sign as can
easily be deduced by looking at the band structure in the case of κ = 0.

Figure 2.34: (a) Band structure E(| ⃗κ|) of the bilayer graphene in the case Δ = 0 (black) and Δ = 0.26 eV
(red). (b) Due to the Mexican hat-shaped band structure Eg ≤ Δ and the induced band gap approaches a

limit determined by Eg
Δ→∞
→ V⊥.

Since the band structure exhibits the shape of a Mexican hat, the minimum band
gap is not at κ = 0. Computing the minimum Emin with 𝜕E(κ)𝜕κ = 0 yields Eg/2 and one
eventually obtains

Eg =
ΔV⊥
√V 2
⊥ + Δ2

(2.54)
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which clearly shows that a gate-tunable band gap can be generated in the case of bilayer
graphene. For small Δ, i. e., Δ < V⊥, the band gap depends linearly on Δ with Eg ≈ Δ.
However, for large Δ the achievable band gap saturates at the value of V⊥. Figure 2.34(b)
shows the behavior of Eg(Δ); here, the straight gray lines show E3,4 for increasing Δ and
the red line illustrates the behavior of Eg as a function of Δ showing a saturation. Since
V⊥ is the overlap integral due to the van der Waals interaction its value V⊥ = 0.3 eV is
rather small compared to the overlap integral between the covalently bonded carbon
atoms within each graphene layer. Thus, the achievable band gaps are rather small, too.
This is consistent with experimentally found values of the band gap in bilayer graphene
discussed in Section 10.1.3. For logic transistor operation, the band gap would be too
small in order to provide the desired low off-state leakage currents. Nevertheless, the
possibility of a gate-tunable band gapwhosemagnitude depends on the interaction, and
hence on the distance between the two graphene layers opens a number of interesting
applications (see section 11.3.2, for instance).

Task 10.
Tight-binding of bilayer graphene: Consider bilayer graphene with Bernal stacking and carry out the
full tight-binding calculation with

18
nearest neighbor interaction and van der Waals coupling between the

atoms b1 and g2 as illustrated in Figure 2.33. Compute the band structure explicitly.

2.8.3 Transition Metal Dichalcogenides

Amajor drawback ofmonolayer graphene for the realization of nanoelectronics devices
is the lack of a band gap. Even in the case of bilayer graphene, themaximumband gap is
rather small. Fortunately, there are various alternative 2Dmaterials with different prop-
erties ranging frommetallic to semiconducting, to insulating and even superconducting.
One of themostwidely studied class of 2Dmaterials are transitionmetal dichalcogenides
(TMDCs) consisting of a transition metalM (blue) and a chalcogen X (green) in anMX2-
configuration with upper and lower layer of chalcogen atoms centered around a layer
of transition metal atoms as depicted in Figure 2.35.

Monolayer TMDCs can be existent in the 2H- or 1T-configurations shown in Fig-
ure 2.35. The difference between the two configurations is the way the chalogen atoms
are arranged: in the 2H-configuration, the chalcogen in the upper layer sits exactly
on top of the one in the lower layer (see the close-up in Figure 2.35(a)) whereas in
the 1T-configuration the two chalcogen atoms lie on top of a straight line that crosses
the central transition metal atom (cf. the close-up in Figure 2.35(b)). In the case of the
2H-configuration,9 TMDCs exhibit a graphene-like honeycomb lattice as depicted in (a)
when observed from the top; in the 1T configuration the lattice resembles a hexagonal

9 In the case of a single layer, the 2H is also called 1H phase.

https://vimeo.com/464116319
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Figure 2.35: Top view of the 2H(1H) (a) and 1T (b) configurations of a transition metal dichalcogenide. The
close-ups depict the arrangement of the two chalcogen layers around the central transition metal atom.
The gray diamonds show the primitive unit cell that contains two chalcogen and one transition metal atom.

lattice (note, however, the difference from a hexagonal lattice). In both cases, the prim-
itive unit cell is as illustrated with the gray diamond that contains two chalcogen and
one transition metal.

The following discussion will concentrate on the 2H-configuration. As already men-
tioned, the honeycomb lattice of the 2H-configuration has the same diamond-shaped
unit cell as in the case of graphene with the difference that the unit cell now contains
three instead of two atoms. Primitive vectors a⃗1 = (a, 0) and a⃗2 = (a/2,√3a/2) can be
defined (Figure 2.37, bottom left) and a tight-binding calculation can be carried out using
the recipe detailed in Section 2.4.6.

The transition metal makes the incorporation of d-orbitals into the basis for the
tight-binding calculation necessary. Since in the transitionmetals the five d-orbitals (dz2 ,
dx2−y2 , dxy, dyz and dxz) are most relevant for the bonding and since the p-orbitals are the
important orbitals in the case of the chalcogenwe expect in total a number of 11 orbitals
(five d- and 2× 3 p-orbitals of the two chalcogen atoms) to be incorporated into the com-
putation. However, it has been shown in [174] that the complexity of the tight-binding
calculation can be strongly reduced by noting that the three orbitals dz2 , dx2−y2 and dxy
play the major role and mainly determine the conduction and valence bands. In this
so-called three-band approximation, the chalcogen atoms are neglected which implies
that the lattice changes from a honeycomb lattice to a hexagonal one as illustrated in
the left panel of Figure 2.37. As a result, in the three-band approximation there is only
a single transition metal in the unit cell whose bonding is described by three d-orbitals.
Each transition metal has six nearest neighbor atoms so that we need to set up seven
3 × 3 matrices in order to solve for the band structure.

The presence of the d-orbitals adds in complexity and requires somewhatmore con-
sideration in order to understand how the matrix elements in the tight-binding calcula-
tion need to be computed. As an example, Figure 2.36 shows a top view of the hexagonal
transition metal lattice. In the central on-site unit cell, a dz2 is assumed surrounded by
dxy (a) and dx2−y2 -orbitals (b). Taking the bond vector d⃗ (equal to a⃗2 in Figure 2.36) con-
necting two adjacent atoms as reference, the d-orbitals are rotated around the z-axis to
yield the right panels of (a) and (b). Using the direction cosines for d-orbitals (cf. Sec-
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Figure 2.36: Hexagonal lattice within the three-band model for tight-binding calculations of TMDCs. (a)
shows the overlap between a dz2 -orbital on the on-site unit cell with dxy -orbitals on the nearest neighbor
atoms. (b) shows the same in the case of a dx2−y2 -orbital.

tion 2.4.5) allows reducing the overlap between nearest neighbors to the minimal set of
overlap integrals [235] and one finally arrives at (see QR code #19 for details)

19

H =(

h0 h1 h2
h⋆1 h11 h12
h⋆2 h⋆12 h22

) (2.55)

where the different entries are given by h0 = ϵ1 − 2V0(cos 2α + 2 cos α cos β), h11 =
ϵ2 + 2V11 cos 2α + (V11 + 3V22) cos α cos β, h22 = ϵ2 + 2V22 cos 2α + (3V11 + V22) cos α cos β,
h1 = −2√3V2 sin α sin β + 2iV1(sin 2α + sin α cos β), h2 = 2V2(cos 2α − cos α cos β) +
2√3iV1 cos α sin β and h12 = √3(V22 − V11) sin α sin β + 4iV12 sin α(cos α − cos β). Here, the
parameters α and β are α = 1

2kxa and β = √32 kya. Appropriate parameters for three
typical TMDCs are given in Table 2.3 [174]. Figure 2.37, right panel, shows the result of
a tight-binding calculation using the three band model of a monolayer of MoS2 (green
curves) andWSe2 (red curves). Obviously, both TMDCs exhibit a band gap at theK -points
consistent with the values given in Table 2.2.

Table 2.2: Typical material properties of common TMDCs.

MoS2 WSe2 MoSe2 WS2 WTe2

Eg (eV) 1.79 (ML) 1.61 (ML) 1.49 (ML) 2.0 (ML) 0.71 (ML)
1.2 (bulk) 1.2 (bulk) 1.0 (bulk) 1.3 (bulk)

m⋆c 0.46 0.34 0.55 0.3 0.31
m⋆v 0.56 0.44 0.64 0.44 0.41

Table 2.3: Tight-binding parameters for the three-band model for different TMDCs [174].

a (Å) ϵ1 (eV) ϵ2 (eV) V0 (eV) V1 (eV) V2 (eV) V11 (eV) V12 (eV) V22 (eV)

MoS2 3.19 1.046 2.104 0.184 0.401 0.507 0.218 0.338 0.057
WS2 3.191 1.13 2.275 0.206 0.567 0.536 0.286 0.384 −0.061
WSe2 3.325 0.943 2.179 0.207 0.457 0.486 0.263 0.329 0.034

https://vimeo.com/900717186


56 � 2 Solid-State Physics Foundation

Figure 2.37: Left: Schematic of the 2H-configuration of MX2. The bottom panel shows the primitive lattice
vectors together with the change of the honeycomb to a hexagonal lattice in the three-band approximation
[174]. Right: Band structure (Γ → K → M) of MoS2 (green curves) and WSe2 (red curves) computed using
the three-band model based on the parameters given in Table 2.3.

2.8.4 Other Two-Dimensional Materials

Apart from the 2Dmaterials mentioned so far, there aremanymore 2Dmaterials. Worth
mentioning is certainly hexagonal boron-nitride (h-BN). h-BN has the same, single-atom
thin honeycomb lattice structure as graphene; the only difference is that alternating
boron and nitrogen atoms sit on the lattice sites [266]. Hexagonal boron nitride is an
insulator with a band gap of Eg = 5.9 eV and can thus serve as a gate dielectric in an
all-2D field-effect transistor (see Section 10.3). Moreover, h-BN is a perfect substrate pro-
viding very smooth surfaces and, therefore, reduced disorder due to potential fluctu-
ations in graphene [81]. In fact, very high carrier mobilities in graphene encapsulated
in h-BN were observed and recently employed for ultrasensitive Hall sensors [61]. In
Section 11.3.2, the use of h-BN for cryogenic 2D material MOSFETs will be explored.

A very interesting 2Dmaterial is also black phosphorous (BP). What makes this ma-
terial so interesting is the fact that it exhibits a band gap that can be tuned over a wide
range with the number of layers that are stacked on top of each other. The reason for
this dependence is the relatively strong interaction between adjacent layers. Apart from
this, silicene, germanene, stanene and borophene have recently attracted a great deal
of attention. A vast amount of literature is available on each of the materials and the
reader is encouraged to explore these materials further.

2.8.5 Graphene Nanoribbons

It was explained in Section 2.2 how quantum confinement allows reducing the dimen-
sions of a system and how quantization effectively increases the band gap of a semi-
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conducting nanostructure. The same reasoning can be applied to graphene in order to
realize a band gap that may be suitable for field-effect transistor devices.

Cutting a graphene sheet into a so-called nanoribbon allows exploiting vertical
quantization. Let us compute the band gap that can in principle be realized with this
method and determine what size of nanoribbons would be needed in order to achieve
an appropriate Eg . To this end, consider the nanoribbon displayed in Figure 2.38. Due
to the particular form of the nanoribbon along its edges reminiscent of an armchair,
the displayed type of nanoribbon is called armchair graphene nanoribbon (AGNR).
A graphene nanoribbon can be specified by a vector C⃗ = na⃗1 + ma⃗2 along the width of
the nanoribbon that is a linear combination of the primitive lattice vectors a⃗1 and a⃗2
multiplied with integer numbers n and m; the nanoribbon is, however, only specified
up to ± one dimer, which becomes evident from Figure 2.38(a): when adding the dimer
“7”–“8” to the smallest nanoribbon, the vector C⃗ does not change although a somewhat
larger unit cell is obtained (gray instead of the dark gray area). Since the vector C⃗ is
aligned along the width of the nanoribbon, the axis of the nanoribbon lies perpendic-
ular to C⃗. An AGNR always has the indices (n, 0), i. e., C⃗ is simply a multiple of a⃗1 (cf.
Figure 2.38(a)).

Figure 2.38: (a) Armchair graphene nanoribbon with different unit cells and numbering of the atoms in-
volved. The σ-bonds of the broken sp2 hybrid orbitals at the armchair edges are saturated with hydrogen
atoms in order to avoid additional, localized states within the band gap (b). (c) Band gap Eg of AGNRs as a
function of the width wGNR (lower x-axis and index n used to set up ⃗C = (n, 0) on the upper x-axis). The red
line is a 1/wGNR-fit.

At the edges of a nanoribbon, there is an unsaturated σ-bond of one of the sp2-
orbitals, which can be terminated with a hydrogen atom as illustrated in Figure 2.38(b).
As such, a nanoribbon represents a one-dimensional crystal with a unit cell that may
contain a relatively large amount of carbon atoms (at least compared to the unit cells
of the materials we considered so far). The periodicity of this one-dimensional crystal
is given by the vector P⃗ (see Figure 2.38(a)) whose length |P⃗| represents the new lattice
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constant of the one-dimensional crystal. Consequently, the first Brilluoin zone of the
nanoribbon extends from − π

|P⃗|
, . . . , π
|P⃗|
. In the particular case of an AGNR, P⃗ is always

given by P⃗ = a⃗1 − 2a⃗2 and has a length |P⃗| = a√3 (with a being the lattice constant of the
underlying graphene lattice).

AGNRs allow setting up a simple relation between the width of a nanoribbon and
the respective band gap. Using the nearest neighbor tight-binding calculation (for de-
tails, see the QR code #20), the band structure can be computed that allows extracting
Eg . Figure 2.38(a) and (b) showAGNRswith different widths. The smallest AGNR consists
of six carbon atoms (denoted “1”, . . . , “6”) yielding the dark gray unit cell.10 Depending
on the number of dimers added to the nanoribbon (e. g., atoms “7”–“8” and “9”–“10”),
the AGNR is either metallic or semiconducting. In fact, if the number of dimers is 2 + 3n
with n being an integer, the band gap

20
vanishes (see QR code #20 for details). For all

other AGNR, a semiconductor is obtained with a direct band gap at the Brillouin-zone
center. As displayed in Figure 2.38(c), very small widths wGNR are required to obtain
reasonably high band gaps suitable for room-temperature electronics.11 However, man-
ufacturing nanoribbons in the range of wGNR ≈ 1–2 nm is a very difficult task to do.
Moreover, one has to deal with edge states, i. e., unsaturated dangling carbon bonds that
lead to additional localized states. Furthermore, line-edge roughness due to a lithogra-
phy and etch process is transferred into a fluctuating potential along the nanoribbon,
and hence yields substantial variability of the electronic properties (see Section 10.1.2
for experimental data). As a result, graphene nanoribbons are not necessarily the ma-
terial of choice when thinking of a high yield, highly reproducible fabrication of highly
integrated digital circuits.

2.9 Carbon Nanotubes

Exploiting quantum confinement to generate a band gap is certainly a viable approach
but turned out to be very difficult to handle in graphene because widths of the nanorib-
bons in the 1–2 nm regime are required. This extremely small width renders the edges
to be very important. In fact, a missing dimer would lead to a locally strongly varying
size of the band gap. Moreover, missing carbon atoms and the unsaturated σ-bond of
the sp2 orbitals lead to electronic states that strongly deteriorate the usefulness of the
nanoribbon (cf. Figure 10.8).

10 Note that the unit cell has been shifted slightly in order to facilitate an easy identification of the atoms
that belong to the unit cell.
11 The reason for the band gap in a AGNR discussed here is quantum confinement. There are also other
mechanisms that may lead to the formation of a band gap in a graphene nanoribbon. Further discussion
of this is, however, beyond the scope of the present book and the reader is referred to [236] for aspects
related to this topic.

https://vimeo.com/466181565
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A very elegant way to avoid all these issues is to roll-up the graphene nanoribbon to
a carbon nanotube (CNT), a hollow, cylindrical object displayed in Figure 2.40(b). To en-
able rolling up the graphene sheet to a nanotube, it is necessary that the atoms on both
sides of the graphene edge are equivalent, i. e., they “merge” to a single atom when the
nanotube is rolled up (this is of course not an engineered top-down approach but oc-
curs during the growth of the nanotubes). Similar to graphene nanoribbons, a carbon
nanotube can be denoted by the vector C⃗ = na⃗1 + ma⃗2, which in a CNT is the circum-
ference vector. Contrary to graphene nanoribbons where C⃗ specifies the ribbon only up
to one dimer, in the case of a carbon nanotube the circumference vector C⃗ uniquely
specifies the CNT because a nanotube can only be obtained if carbon atoms of the same
sublattice (blue or green atoms in Figure 2.31) are connected to each other. The vector
C⃗ = na⃗1 +ma⃗2 only leads to atoms of the same sublattice and as a result, nanotubes can
be defined unambiguously with the indices (n,m). C⃗ is explicitly given by

C⃗ = n ⋅ a⃗1 +m ⋅ a⃗2 =
a
2
(
√3(n +m)
n −m

) . (2.56)

With the circumference vector C⃗, the diameter dCNT of the nanotube is given by dCNT =
|C⃗|
π =

a
π
√n2 +m2 + nm.

There are basically three different types of nanotubes that are depicted in Fig-
ure 2.39: armchair, zig-zag and chiral nanotubes. Since there is no “edge” in a nanotube
anymore, the nomenclature refers to the appearance along the circumference (in con-
trast to a GNR): Armchair CNTs are (n, n)-tubes since the circumference resembles an
armchair (see green line in Figure 2.39). Zig-zag nanotubes are (n, 0)-tubes and their
circumference shows the zig-zag pattern they are named after. Finally, chiral nanotubes
are general (n,m)nanotubes (Figure 2.39, right panel). Exemplarily, Figure 2.40(a) shows
a graphene lattice with circumference vector C⃗ that would result in a (2, 1) nanotube.12

Figure 2.39: Three different types of carbon nanotubes: armchair ((n, n)-tubes), zig-zag ((n, 0)-tubes) and
chiral ((n,m)-tubes).

12 Note that such a nanotube does not exist, the indices were chosen for convenience.
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Figure 2.40: (a) The circumference vector ⃗C = na⃗1 + ma⃗2 determines the (n,m)-CNT under consideration.
(b) ⃗C is perpendicular to the axis of the CNT. P⃗ and ⃗C span a new unit cell.

Figure 2.41: (a) Hexagonal Brillouin zone of the graphene lattice. The ⃗k-vector can be written as a sum
of ⃗K and the reduced vector ⃗κ with origin at the respective K -point. (b) Rolling up a graphene sheet to a
nanotube enforces periodic boundary conditions. As a result, allowed states lie on the red dashed lines.
Cuts between the graphene cones and E − ⃗κ-planes oriented along the red dashed lines give rise to one-
dimensional subbands (green lines). If the boundary condition is such that there are no states at K , a semi-
conducting tube with band gap Eg is obtained.

The circumference vector C⃗ is aligned perpendicular to the axis of the resulting
nanotube and perfect periodic boundary conditions apply to the electronic wave func-
tion along C⃗. To compute the resulting band structure, the linearized dispersion relation
of the underlying graphene lattice, Equation (2.50), can be used. Here, it is sufficient to
concentrate on a single K -point as illustrated in Figure 2.41. For the wave function of the
electrons that move along the nanotube, we can make a plane wave ansatz ψ( ⃗r) ∝ eik⃗ ⃗r .
The periodic boundary conditions impose the following quantization condition on the
wave function: ψ( ⃗r + C⃗) != ψ( ⃗r) and since ψ( ⃗r + C⃗) ∝ eik⃗( ⃗r+C⃗) = eik⃗ ⃗reik⃗C⃗ it is required that
eik⃗C⃗ = 1, which is fulfilled when k⃗C⃗ = ñ ⋅ 2π (with ñ being an integer number).
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Next, a coordinate system is used, which is more appropriate for the nanotube un-
der consideration with orthonormal unit vectors along the nanotube axis e⃗‖ and along
the circumference with e⃗⊥ =

C⃗
|C⃗|
. Within the new coordinate system, the reduced vec-

tor κ⃗ = k⃗ − K⃗ = κ‖e⃗‖ + κ⊥e⃗⊥, and thus, the dispersion relation Equation (2.50) becomes
E(κ‖, κ⊥) = ±Vppπa

√3
2 √κ

2
‖ + κ

2
⊥. The periodic boundary conditions will now result in a

quantized κ⊥ whose value can be computed with

k⃗C⃗ = K⃗C⃗ + κ⃗C⃗ = K⃗C⃗ + κ⊥|C⃗|
!
= ñ ⋅ 2π. (2.57)

Here, the fact is used that e⃗‖C⃗ = 0. Finally, since C⃗ = na⃗1 + ma⃗2 and using exemplarily
the K -point shown in Figure 2.41(a) with K⃗ = 2π/a(1/√3, 1/3), this results in

K⃗C⃗ = ( 2π/√3a
2π/3a

)(
√3a/2(n +m)
a/2(n −m)

) = π(n +m) + π
3
(n −m) = 2π 2n +m

3
. (2.58)

Thus, Equation (2.57) can be written as

ñ ⋅ 2π = 2π 2n +m
3
+ κ⊥|C⃗|. (2.59)

Solving this equation for κ⊥ and insertion into E(κ‖, κ⊥) leads to the one-dimensional
dispersion relation of a carbon nanotube given by

E(κ‖, ñ) = ±Vppπa
√3
2
√κ2‖ + (2

ñ − 2n+m
3

dCNT
)
2

(2.60)

where dCNT = |C⃗|/π is the diameter of the nanotube. Obviously, there are only states at
the Fermi level, i. e., at E = 0 for κ‖ = 0, if ñ − 2n+m

3 = 0. This means that, whenever
2n+m

3 is an integer, the CNT is metallic because the quantization condition due to the
periodic boundary conditions crosses theK -points. Note that this condition is equivalent
to the requirement that n −m is an integer multiple of 3, usually found in the literature.
In all other cases, a semiconducting nanotube is obtained that can be used for device
applications. In this case, the band gap Eg can be determined by setting κ‖ = 0 resulting
in

Eg = 2 × Vppπa
√3
2

2
dCNT


ñ − 2n +m

3


(2.61)

where ñ needs to be chosen in order to make |ñ − 2n+m
3 | as small as possible. Hence, the

band gap depends inversely proportional on the diameter of the nanotube similar to the
1/wGNR dependence of the band gap of AGNRs.

Equation (2.60) can be used to compute an effective mass of the CNT. To this end,
we can first use a Taylor expansion up to second order around the conduction band
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(valence band) minimum (maximum) and then employ the definition Equation (2.40),
which yields

E(κ‖, ñ) ≈ Vppπa
√3
dCNT
(ñ − 2n +m

3
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=Eg/2

+Vppπa
√3
8

dCNT
ñ − 2n+m

3⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
= ℏ

2
2m⋆

κ2‖ . (2.62)

The equation can immediately be compared with a quadratic dispersion relation, i. e.,
E(k) = ℏ

2κ2‖
2m⋆ + V0 (where V0 = Eg/2) to identify the effective mass as

m⋆CNT =
4ℏ2(ñ − 2n+m

3 )

VppπadCNT√3
. (2.63)

Figure 2.42 shows the (first) conduction and valence bands of a semiconducting car-
bon nanotube (green lines) together with the effective mass approximation (thin black
lines). As a result, for not too large energies, a CNT can be considered as a “normal”
one-dimensional semiconductor with a symmetric band structure described by a cer-
tain energy gap Eg and equal effectivemassesm⋆c = m

⋆
v . However, as has been discussed

in Section 2.5, we should use the momentum effective mass Equation (2.41) in the case
of a nonparabolic dispersion leading to

m⋆p (E) = ℏ
2κ‖(
𝜕E(κ‖, ñ)
𝜕κ‖
)
−1

=
2ℏ2

Vppπa√3
√κ2‖ + (2

ñ − 2n+m
3

dCNT
)
2

=
4ℏ2

V 2
ppπa23

E(κ‖, ñ), (2.64)

which results in the same m⋆CNT given in Equation (2.63) if κ‖ → 0. Noting that E(κ‖ =
0) = Eg/2 we can replace E(κ‖)with E + Eg/2 resulting in an energy-dependent effective

Figure 2.42: Conduction/valence bands of a semiconducting CNT. The thin black lines show the effective
mass approximation. Within the band gap, allowed κ-values are purely imaginary and lie on the green
dashed circle.



2.9 Carbon Nanotubes � 63

mass given by

m⋆p (E) =
4ℏ2(ñ − 2n+m

3 )

VppπadCNT√3
(1 + 2E

Eg
) = m⋆CNT(1 +

2E
Eg
). (2.65)

This has the same form as Equation (2.44) with α = 1/Eg as already mentioned above.
Equation (2.60) does also have purely imaginary solutions within the band gap with

κ‖ → iκ. These solutions yield a complex band structure of the CNT connecting the con-
duction with the valence band. Indeed, inserting iκ yields the equation of a circle as
illustrated in Figure 2.42 (green dashed line). Note that this is consistent with an energy-
dependent effective mass given bym⋆p (E) = m

⋆
CNT(1 +

2E
Eg
) to describe the complex band

structure within the band gap as discussed in Section 2.5. Indeed, inserting m⋆p (E) into
a quadratic dispersion relation yields the same solution as obtained based on Equa-
tion (2.60) with purely complex iκ.

As an alternative approach to computing the band structure by imposing periodic
boundary conditions on the graphene dispersion, a carbon nanotube can also be con-
sidered as a one-dimensional crystal (as was done in the case of a graphene nanorib-
bon) and one can use the recipe for tight-binding calculations given above in order to
determine the band structure. To this end, consider the (2, 1) nanotube depicted in Fig-
ure 2.40(a) that serves as a simple model system here to demonstrate the approach.

Task 11.
Periodicity of CNTs: In general, a carbon nanotube is uniquely specified by the circumference vector
⃗C = na⃗1 +ma⃗2, which wraps around the nanotube circumference and is aligned perpendicular to the axis

of the nanotube. Find a general
21

expression for the vector P⃗ as a function of n and m and determine the
size of the one-dimensional Brillouin zone in k-space of the (n,m) nanotubes.

As in the case of the graphenenanoribbon, a periodicity vector P⃗ canbe found that is per-
pendicular to C⃗ (see Task 11 for details), i. e., along the axis of the new one-dimensional
nanotube crystal. In the case of the (2, 1) nanotube displayed in Figure 2.40(a), P⃗ =
̃ja⃗1 + m̃a⃗2 with ̃j = 4 and m̃ = −5. As a result, the unit cell spanned by C⃗ and P⃗ con-
tains 28 atoms (dark gray area in Figure 2.40(a)). The unit cell must consist of an even
number of atoms giving rise to an even number of bands. Filling those bands with elec-
trons yields half of the bands filled (at T = 0K), which are the valence bands. The other,
empty half represents the conduction bands.

As already mentioned above, the unit cell of the (2, 1)-CNT consists of 28 atoms each
providing one pz-orbital. Hence, we obtain 14 valence and 14 conduction bands and just
as in the case of a graphene nanoribbon, the Brillouin zone extends from − π

|P⃗|
, . . . , π
|P⃗|
,

i. e., |P⃗| is the new lattice constant of the (2, 1)-carbon nanotube. Figure 2.43(a) shows
exemplarily the conduction and valence bands of a few different (n,m) nanotubes. As

https://vimeo.com/462356047
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Figure 2.43: Conduction and valence bands of selected carbon nanotubes. Metallic tubes with states at
Ef = 0 eV are obtained if 2n+m

3 is an integer. (b) Graphene lattice with the on-site and nearest neighboring
unit cells (gray shaded) of a (2, 2) carbon nanotube. The dashed red circles show where the nearest, sec-
ond and third nearest neighbor atoms around the atom 4 are located. (c) Band structure of a (2, 2) carbon
nanotube computed with tight-binding using nearest neighbor interaction only (green dashed lines) and
including second and third nearest neighbor interaction (blue lines).

expected, (n, n) nanotubes and CNTs where 2n+m
3 is an integer yield metallic behavior

with electronic states at the Fermi level (E = 0).
Up to now, tight-binding was only considered with nearest neighbor interaction.

This frequently yields unsatisfying results or can only reproduce the band structure
within certain energy ranges (cf. Section 2.6.2). To improve the calculation, either more
orbitals need to be taken into consideration (as, for instance, in the case of silicon by
including 4s⋆-orbitals) or the interaction with second and third nearest neighbors has
to be incorporated. As an example, how such a calculation would have to be carried out,
a (2, 2) carbon nanotube is considered. Again, a CNTwith rather low indices is chosen, so
that the nanotube and the tight-binding matrices can be stated explicitly; an extension
to nanotubeswith higher indices is straightforward. The appropriate parameters for the
tight-binding overlap integrals are taken from [219].

Figure 2.43(b) shows a part of the graphene lattice in the case of the (2,2) nanotube.
The on-site unit cell with 8 atoms is dark gray shaded; atoms in the upper unit cell are
denoted with a prime and atoms in the lower unit cell with a minus sign on top of the
number (and additional prime). As an example, the red atom number 4 has been se-
lected and the nearest, second nearest and third nearest neighbors around this atom
have been indicated with the red dashed circles. Each carbon atom has three nearest,
six second nearest and three third nearest neighbor atoms. In order to set-up the over-
all matrix Htot, the recipe introduced above can be applied. The only difference is that
there will

22
be more matrix elements in H due to the various overlap integrals that take

the coupling with the nearest, second and third nearest neighbors into account. Details
of the calculation are accessible through the QR code #22. Figure 2.43(c) shows the band

https://vimeo.com/462359062
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structure of the (2, 2) nanotube with nearest neighbor interaction only (green dashed
lines) and with second and third nearest neighbor interaction. Differences in the band
structure can be observed around the Fermi level as well as at k = 0 and k = π/a.

2.10 The Fermi Distribution Function

In this section, a brief derivation of the Fermi distribution function is given. The reason
for this is the importance of this distribution function for the calculation of the car-
rier density and the current (for a deeper discussion, see Chapters 2 and 13 in [133]).
Moreover, the derivation is necessary to understand the slightly different Fermi distri-
bution function for localized (such as impurity, donor and acceptor states) and delocal-
ized states.

The Fermi distribution function is derived from statistical physics and represents
the most probable distribution function that obeys the laws of thermodynamics as well
as quantumphysics. To startwith, let us first consider a set ofN distinguishable particles.
Particles with this property can be labeled, which means that one can keep track of
them either because they all have different physical properties or one is able to localize
them unambiguously at any time. Suppose the particles are randomly arranged on a
linear chain and each particle configuration represents a thermodynamic microstate
of the linear chain. Combinatorics tells us that one obtains N ! different permutations,
representing N ! different microstates. As an example, consider three particles (A,B, C)
that one can arrange in 3! = 6 different permutations, i. e., (A,B, C), (B,A, C), (A, C,B),
(B, C,A), (C,B,A) and (C,A,B). If some fraction n1 of the particles is identical, say A =
B, then we would overcount the number of microstates and, therefore, the number of
microstates has to be reduced to N !

n1!
. In the example above, we get 3!

2! = 3 different states,
namely (A,A,B), (A,B,A) and (B,A,A). Suppose there is another subset n2 of identical
particles, then the number of microstates would be N !

n1!n2!
and so on for further subsets

of identical particles.
Next, consider a system that contains many electronic states that are closely spaced

in terms of the energetic difference between the states. We can group them in equidis-
tant energy intervals indexed with i where the energetic difference between adjacent
groups Ei+1 − Ei → dE is considered to be very small. The number of states in each
group is denoted gi; note that gi/dE will become the density of states introduced in the
coming sections. This means that in each group gi plays the role of N according to our
consideration above. Hence, one obtains gi!microstates that can be filledwith electrons.
However, since electrons are identical particles and cannot be distinguished the num-
ber of microstates has to be reduced. In addition to being indistinguishable, electrons
are Fermions meaning that one state can only be occupied by a single electron. This
means that, if there are less electrons than available states, the remaining states are
empty. As a result, we can think of the gi as states being filled with ni electrons (leading
to an occupied state) and (gi − ni) holes (i. e., a state that is not occupied). Since both
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electrons and holes are indistinguishable, the number of microstates becomes gi!
ni!(gi−ni)!

(i. e., N ! → gi!, n1! → ni! and n2! → (gi − ni)!). Including all different energy intervals i,
the overall number of microstates Ω is

Ω =∏
i

gi!
ni!(gi − ni)!

. (2.66)

With the knowledge of Ω, we are now in a position to compute the entropy S based on
its statistical definition, i. e., S = kB ln Ω [111]. Exploiting that ln(a ⋅ b) = ln a + ln b and
using Sterling’s approximation ln n! ≈ n ln n − n, we obtain

S
kB
≈∑

i
gi ln(gi) − gi − (ni ln(ni) − ni + (gi − ni) ln(gi − ni) − (gi − ni)). (2.67)

In order to get the most probable distribution, we need dS = 0 under the additional
constraints that the total number of particles Ntot = ∑i ni is constant and that the inner
energyU is conserved; the latter means thatU = ∑i niEi is constant. The two constraints
are best taken into consideration with Lagrange multipliers, so that one needs to find
the ni that makes the function F stationary:

F = ∑
i
(gi ln(gi) − ni ln(ni) − (gi − ni) ln(gi − ni))
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=S/kB

− α(∑
i
ni − Ntot) − β(∑

i
Eini − U). (2.68)

Now, dF != 0 is fulfilled if 𝜕F𝜕ni = 0 for all i. With Equation (2.68), it is then easy to show
that

𝜕F
𝜕ni
= −(ln(ni) + ni

1
ni
) − (− ln(gi − ni) − (gi − ni)

1
gi − ni
) − α − βEi

!
= 0. (2.69)

Since the second terms in the two parentheses cancel each other, Equation (2.69) be-
comes 0 = ln( gi−nini

)−α−βEi. The probability that a state Ei is occupied is given by ni
gi
. So,

rewriting the equation above as ln( gini − 1) = α + βEi yields
ni
gi
= 1

eα+βEi+1 , which is the de-
sired Fermi distribution function f (Ei). What remains to be done is the determination of
the Lagrange multipliers α and β. They can be obtained by acknowledging the fact that
at large energy Ei, the computed distribution function needs to behave like a Boltzmann
distribution, i. e., f (Ei) → exp(− E−EfkBT

). As a result, one obtains β = 1
kBT

and α = −βEf
where Ef is the Fermi energy.13 Eventually (from now on the index i is dropped and we
consider the energy as being continuous),

13 This is not fully correct since the chemical potential μc should have appeared here. However, setting
μc = Ef yields appropriate results in the cases considered in this book.
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f (E) = 1

1 + e
E−Ef
kBT

, (2.70)

which is the well-known expression for the Fermi distribution function.
The top panel of Figure 2.44 shows f (E) for different temperatures T .When T → 0K,

f (E) becomes a step function meaning that all states up to the Fermi energy are filled
and all states with energies larger than Ef are empty. At finite temperatures, the Fermi
distribution deviates from the step function behavior only in a narrow energy range of
approximately 4× kBT around Ef . This makes perfect sense, since electrons in low lying
(energy) states will not obtain enough energy to be excited into an energy range where
empty states are available.

Figure 2.44: The top panel shows f (E) for different temperatures. The orange dashed line is the Boltzmann
approximation, which is appropriate if E − Ef ≫ kBT . The lower panel shows the derivative of f (E) with
respect to E.

For sufficiently high energies where E − Ef ≫ kBT , the exponential term dominates

in the denominator, i. e., e
E−Ef
kBT ≫ 1 and the Fermi distribution function evolves into the

Maxwell–Boltzmann distribution as illustrated in the top panel of Figure 2.44. The lower
panel of Figure 2.44 shows the (negative) derivative of the Fermi distribution function.
It is clear that at T = 0K, i. e., when f (E) = Θ(Ef − E), the derivative becomes the delta
function δ(E − Ef ). Even at finite temperatures, the derivative strongly peaks at E = Ef
such that in many cases the approximation − 𝜕f (E)𝜕E ≈ δ(E − Ef ) is applicable.

2.10.1 The Fermi Distribution for Holes

The Fermi distribution for holes—called fh(E) in the following—can be derived easily
from the result obtained for f (E) by noting that the probability of finding an empty state
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at a certain energy is just 1 − fe(E) where the Fermi distribution was now denoted fe(E)
to distinguish it from fh(E). Hence, the Fermi distribution for holes is

fh(E) = 1 −
1

1 + e
E−Ef
kBT

=
1 + e

E−Ef
kBT

1 + e
E−Ef
kBT

−
1

1 + e
E−Ef
kBT

=
e
E−Ef
kBT

1 + e
E−Ef
kBT

=
1

1 + e
Ef −E
kBT

. (2.71)

This means that one obtains either of the two distribution functions by simply revers-
ing the sign of the exponent as shown in Figure 2.45. Choosing one of the distributions
over the other is thus simply a matter of convenience and depends on the situation and
device under consideration. Indeed, states that are not occupied with electrons can be
interpreted as being occupied with a hole. Both the electron and the hole picture can
be used if the appropriate distribution functions are employed. In Chapter 9, so-called
band-to-band tunnel transistors will be discussed. Since in these devices carriers are
transferred from the conduction to the valence band (and vice versa), it is important to
use either the electron- or the hole-picture in both the conduction and valence bands.

Figure 2.45: Fermi distribution of electrons (green) and holes (black). An occupied electronic state is an
empty hole state and, therefore, fh = 1 − fe.

2.10.2 Fermi Distribution Function for Dopants

If the semiconductor under consideration is doped (see Section 4.1 for details on dop-
ing), a frequently made approximation is to consider all dopants as being fully ion-
ized. This yields a constant background of immobile charge that is responsible, e. g., for
the band bending within p-n-junctions or within the depletion zone in a metal-oxide-
semiconductor capacitor (more on this in Chapter 4). However, when incorporated into
a host semiconductor lattice, the dopant atom can be considered as a hydrogen atom
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within a dielectric matrix with a ground-state energy Ed below the conduction band
(i. e., Ed is the ionization energy of the dopant); Section 4.3.1 provides further details on
this hydrogen model of dopants. The state Ed can be occupied or empty depending on
the temperature and the position of the Fermi level Ef with respect to Ed . Naively, one
might use the Fermi distribution function (2.70) setting E = Ed to account for the occu-
pation of the dopant state. However, looking into a textbook on the subject one finds in
the case of donor levels that the Fermi distribution is

fdonor(Ed) =
1

1 + 1
2e

Ed−Ef
kBT

. (2.72)

The factor 1/2 in front of the exponential term is said to be due to the fact that the donor
state Ed can be occupied in two ways, namely with an electron with spin up or one with
spin down. At first sight, this argument appears to be the same as is used to account
for spin degeneracy in the conduction or valence band: within the conduction/valence
bands, each state can also be occupied with a spin-up or -down electron. This basically
doubles the amount of available states and can be accounted for by doubling gi in Equa-
tion (2.66) and all following equations of the derivation. Obviously, this will not change
the derivation and results in a probability that a state Ei is occupied of ni

2gi
. Effectively,

this means that spin degeneracy is taken into account by simply multiplying the Fermi
distribution with a factor of two. The same is true if there is more than a single band
available as is the case in the valence band. Ultimately, any degeneracy in the bands can
be taken care of bymultiplying the Fermi distribution function with the appropriate de-
generacy factor. So, the question is, why does the spin degeneracy in the case of donors
not yield a simple factor of two but instead a factor of 1

2 in front of the exponential term?
Where is the difference compared to conduction/valence band electrons?

The difference has to do with the counting of available (micro)states leading to a
different way how spin degeneracy needs to be incorporated. As was mentioned above,
particles can be distinguishedwhen they can be labeled. This is either the case when the
particles have different physical properties or if you can track them down (i. e., follow
their trajectories) at any time. Electrons are certainly identical particles with identical
physical properties and within the conduction or valence band the electrons/holes are
described by plane waves with a well-defined momentum ℏk (up to a crystal momen-
tum). Heisenberg’s uncertainty relation tells us that in this case they are delocalized
making it impossible to track them down. Electrons/holes in the conduction/valence
bands are indistinguishable and as a result, if we take spin degeneracy into consider-
ation, the number of available microstates in Equation (2.66) simply doubles yielding
a factor of two in front of the Fermi distribution function (alternatively, the density of
states can be considered to be twice as large to account for spin degeneracy) as already
mentioned.
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Figure 2.46: Illustration of localized versus delocalized states. The N = 3 localized states due to donors
at Ed are occupied with n = 1 (left), n = 2 (center) and n = 3 (right) electrons giving rise to Ω = 6, 12, 8
microstates because of the possibility to occupy with either spin up or down.

In the case of dopants, this is fundamentally different. The reason is that dopants
are localized meaning that their occupation leads to distinguishable particles. As a re-
sult, the number of available microstates will be substantially larger compared to the
case discussed above. If each dopant state Ed can be occupied by either a spin-up or a
spin-down electron, the number of microstates increases by a factor of 2n where n is
the number of electrons. Thus, if there are N dopant atoms each providing a state at Ed
then the number of microstates is given by N !2n

n!(N−n)! . To give an example, in Figure 2.46
N = 3 dopants are displayed and the left panel shows the number ofmicrostates due to a
varying occupation of the three states at Ed with a single electron (arrows indicate spin
up and spin down, respectively). Obviously, six microstates are obtained and indeed the
same number results from the calculation: 3!2

1!(3−1)! = 6. With two electrons accommodat-

ing the three dopants atoms (energy levels Ed),
3!22

2!(3−2)! = 12, and thus the 12 microstates
are obtained that are explicitly shown in the center panel of Figure 2.46. Finally, with
n = 3 electrons, 3!23

3!(3−3)! = 8 microstates are obtained as depicted in the right panel of
Figure 2.46. Overall, the number of microstates therefore is

Ω =∏
i

N ! ⋅ 2ni
ni!(N − ni)!

. (2.73)

Using again the Stirling approximation as above, the entropy S looks basically the same
as given in Equation (2.67) if (i) gi is replaced withN and (ii) an additional term ln(2ni ) =
ni ln(2) is addeddue to the extra factor 2

ni (cf. Equation (2.73)) because of the localized en-
ergy levels that can be occupied with spin-up or spin-down electrons. Computing again
dF = 0 with the same constraints as above taken into consideration yields

ln(N − ni
ni
) + ln(2) − α − βEd

!
= 0. (2.74)



2.11 Density of States and Carrier Density � 71

Solving for ni
N , one finally arrives at the Fermi distribution function of donors stated in

Equation (2.72).
Looking at the derivation of the Fermi distribution function of an electronic state at

Ed that can be occupied with spin up or down electrons, it is obvious that the difference
from the derivation of the Fermi distribution function of electrons in the conduction
band is the factor 2ni in Equation (2.73), which in general can be written as gnid with gd
being the degeneracy factor. As a result, the generalized Fermi distribution for a donor
or—more generally speaking—for donor-like localized states (such as defects) with en-
ergy Ed and a degeneracy factor gd reads

fdonor(Ed) =
1

1 + 1
gd

exp( Ed−EfkBT
)

Ed≫Ef
→ gde

−
Ed−Ef
kBT . (2.75)

To complete this section, let us briefly also look at the Fermi distribution for a local-
ized acceptor(-like) state Ea occupied with holes. Since the valence band is twice degen-
erate with the two spin directions, gd = 4 and hence the Fermi distribution function of
holes in the valence band is again modified with the factor 1/gd resulting in

facceptor(Ea) =
1

1 + 1
gd

exp( Ef −EakBT
)

Ef≫Ea
→ gde

−
Ef −Ea
kBT . (2.76)

In both Equations, (2.75) and (2.76), the Boltzmann tail is as expected∝ gd .

2.11 Density of States and Carrier Density

Equippedwith the knowledge about band structure calculations, effectivemass approxi-
mation and Fermi distribution functionswe are now in a position to compute the carrier
density in a material. At first, a material with an isotropic effective massm⋆ is assumed.
Exemplarily, the electron density in the conduction band of a semiconductor will be
calculated.

To compute the carrier density, we consider a volume Lx ⋅ Ly ⋅ Lz with Lx,y,z → ∞
and constant potential. In this case, the exact lengths are irrelevant and we can set
Lx = Ly = Lz ≡ L. The wave function within the volume L3 is ψk⃗( ⃗r). For a certain
k⃗-state, the carrier density n( ⃗r) is given by the probability density of finding a particle
at a position ⃗rmultiplied with the probability that this particular k⃗-state is occupied; the
former is given by the absolute square of the wave function ψk⃗( ⃗r) and the latter by the
Fermi distribution function f (k⃗). Finally, a summation over all k⃗-states yields the carrier
density according to

n( ⃗r) =∑
k⃗

ψk⃗( ⃗r)

2
⋅ f (k⃗) (2.77)
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2.11.1 Density of States

In Equation (2.77), the Fermi distribution was written as f (k⃗) in order to make it clear
that f represents the probability that a certain state k⃗ is occupied. However, as we know
from Equation (2.70), f depends explicitly on energy E and since the relation between
E and k⃗ is given by the dispersion relation we have f (k⃗) = f (E(k⃗)). Accordingly, Equa-
tion (2.77) can be rewritten in the following form:

n( ⃗r) =∑
k⃗

ψk⃗( ⃗r)

2
∫ dEδ(E − E(k⃗))f (E) (2.78)

where δ(E − E(k⃗)) is a delta function. Next, the energy integral can be moved in front of
the summation and one obtains

n( ⃗r) = ∫ dE∑
k⃗

ψk⃗( ⃗r)

2δ(E − E(k⃗))

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
D(E, ⃗r)

f (E). (2.79)

This means that the calculation of the carrier density can be cast into an energy inte-
gration over the so-called local density of states (lDOS) D(E, ⃗r)multiplied with the Fermi
distribution function f (E). The delta function in the lDOS picks the eigenenergies of the
system under consideration (given by the dispersion relation) and the absolute square
of the eigenfunction ψk⃗( ⃗r) provides the probability density of finding a particle at ⃗r in
state k⃗. Therefore, a full solution of the Schrödinger equation is required to compute
the lDOS. However, in many cases, we deal with quasiinfinite systems with a constant
potential V0 such that the wave functions ψk⃗( ⃗r) can be approximated with plane waves
yielding |ψk⃗( ⃗r)|

2 = 1
LxLyLz

eik⃗ ⃗re−ik⃗ ⃗r = 1
LxLyLz

and the dependence on space drops out of the
equation. In this case, the lDOS reduces to the density of states (DOS) given by

D(E) = 1
LxLyLz
∑
k⃗

δ(E − E(k⃗)). (2.80)

Hence, knowledge of the dispersion relation E(k⃗) is sufficient to compute the density
of states in large systems with (quasi)constant potential. It is clear that the density of
states is proportional to a sum over delta functions (cf. Equation (2.80)) since the delta
functions peak whenever the energy E is equal to an eigenenergy E(k⃗). Integrating a
single delta peak δ(E−E(k⃗)) over energy yields the correct carrier density, namely 1

LxLyLz
since there is only one state at E(k⃗) that is filled with one electron (provided the Fermi
level is well above the energy level) in a volume of LxLyLz; if there are more states, the
carrier density increases accordingly.

To carry out the summation in Equation (2.77), we need to know the discrete
k⃗-values. From our calculation of the particle-in-the-box system with fixed boundary
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conditions, we know that confinement results in quantized values for the respective
k-states and we found kn = n

π
L . However, in this case only k-values with k > 0 are al-

lowed. For our calculation, things would be substantially easier if all k-values (positive,
negative and k = 0) were allowed. Therefore, we will use so-called Born–von Karman
or periodic boundary conditions in the following. When dealing with carbon nanotubes
in Section 2.9, periodic boundary conditions have already been used. But while in CNTs,
periodic boundary conditions must be used due to the physical situation, here the con-
sidered system is very large such that the specific boundary conditions used will not
have any impact on physical quantities inside the system; periodic boundary conditions
are merely used to simplify our calculations. In the next step, the sum over k⃗-states
needs to be transferred into an integral as detailed in the info-box below.

How to compute the sumover k-states? In calculations of the charge carrier density and/or the current
in nanoscale devices, one frequently needs to compute a sum over all k-states. Summations are always
troublesome because they require in most cases a numerical computation. However, if the system we
consider is large, the k-values are quasicontinuous and it is then possible to transfer the summation
over discrete k-values into an integral. To do so, let us consider a one-dimensional conductor of length L
that stretches out from −L/2 to L/2; for simplicity, the potential is set to zero throughout. With Born–von
Karmann or periodic boundary conditions, the wave function (plane wave) is required to be the same
(apart from a phase factor) if x → x + L. This means that ψ(x + L) != ψ(x)→ eik(x+L) != eikx , which is true if
eikL = 1. As a result, kn = n⋅

2π
L and the difference between adjacent k-values is kn+1−kn = Δk =

2π
L . In turn,

thismeans Δk
2π/L = 1.We obtain as a general recipe of how to transfer the typical sums over k-states into an

integral the following: insert a factor of 1 = Δk
2π/L into the sum, then we can write Δk → dk since Δk = 2π

L
becomes very small with increasing system size L, and replace the sum with an integral. In summary, this
means

1
L
∑
k
f (k) = 1

L
∑
k

Δk
2π/L

f (k) Δk→dk→ 1
2π
∫ dkf (k). (2.81)

This relation will be used frequently throughout the book. An extension to higher dimensions is obvious.
For instance, Δk

2π/L →
Δkx
2π/Lx

Δky
2π/Ly

Δkz
2π/Lz

.

Using Equation (2.81), the DOS can be written as

D(E) = 1
(2π)d
∫ dk⃗δ(E − E(k⃗)) (2.82)

where d = 1, 2, 3 is the dimension. In the case of a quadratic dispersion relation with
isotropic effective massm⋆, the dispersion relation E(k⃗) = ℏ

2k⃗2
2m⋆ (here, V0 = 0 for simplic-

ity) depends only on the magnitude |k⃗|, and thus, a one-dimensional integral over dk is
obtained for all d = 1, 2, 3. For instance, for d = 3 the triple integration in Equation (2.82)
dk⃗ → 4πk2dk. Now, changing variables to ϵ = ℏ

2k2
2m⋆ yields dk = m⋆

ℏ2k dϵ and k = √
2m⋆ϵ
ℏ2

.
Eventually, in three dimensions

D3D(E) =
1
(2π)3

4π ∫ dϵm
⋆

ℏ2
√2m
⋆ϵ
ℏ2

δ(E − ϵ) = m⋆

2π2ℏ3
√2m⋆E (2.83)
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Similarly, the DOS can be computed in 2D. Here, dk⃗ → 2πkdk and with dk = m⋆
ℏ2k dϵ and

using Equation (2.82) it is clear that the density of states is given by

D2D(E) =
1

4π2 ∫ dϵ 2πk
m⋆

ℏ2k
δ(E − ϵ) = m⋆

2πℏ2
, (2.84)

which is constant. Finally, in the 1D case the computation of the DOS is straight-forward
since in the integral over k (cf. Equation (2.81)) one simply replaces dk = m⋆

ℏ2k dϵ =
m⋆
ℏ2
√ ℏ2

2m⋆ϵdϵ, and hence (there is an additional factor of 2 since k can assume positive
and negative values for the same ϵ)

D1D(E) =
1
2π
∫ dϵ 2m

⋆

ℏ2
√ ℏ

2

2m⋆ϵ
δ(E − ϵ) = 2

h
√m
⋆

2E
. (2.85)

Note that all three expressions for the DOS in 1D, 2D and 3D are stated without spin
degeneracy. As has been discussed in Section 2.10.2, spin degeneracy can be easily incor-
porated by multiplying the DOS with a factor of two.

In most textbooks, the DOS is derived in an alternative way that is reproduced here
for completeness. Assume again an isotropic effective mass and a quadratic dispersion
relation E(k⃗) = ℏ

2k⃗2
2m⋆ (again, V0 = 0 for simplicity). We now ask the question how many

additional states dZ one obtains if k is increased to k + dk. Looking at Figure 2.47(a),
in 3D, additional states lie within the volume between the two spheres 4π

3 (k + dk)
3 −

4π
3 k

3 ≈ 4π
3 3k

2dk where all factors∝ dk2 and∝ dk3 have been neglected. A single k-state
occupies the volume 2π

Lx
2π
Ly

2π
Lz
= 8π3

V such that the number of additional states becomes

dZ = 4πk
2dk

8π3/V
. (2.86)

TheDOS is now the number of additional states per change of energy and volume. There-
fore, we replace k = √2m⋆E/ℏ2 and dk = m⋆

ℏ2k dE =
1
ℏ
√m
⋆

2E in the equation above and
obtain the same expression as in Equation (2.83):

D3D(E) =
1
V
dZ
dE
=

m⋆

2π2ℏ3
√2m⋆E. (2.87)

With spin degeneracy, the expression is multiplied with a factor of two.
The DOS in a two-dimensional system can be obtained in a similar fashion: Again,

we ask how many additional states dZ one obtains in the area in-between k and k + dk
(cf. Figure 2.47(b)). In the 2D case, this area is given by π(k + dk)2 − πk2 ≈ 2πkdk where
again contributions ∝ dk2 have been neglected. Since the area one k-state occupies is
2π
Lx

2π
Ly
= 4π2

A , dZ = A2πkdk/(4π2). The DOS is then given as the number of additional

states per energy interval and area. Since kdk = m⋆
ℏ2
dE, the result is of course the same

as Equation (2.84).
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Figure 2.47: Constant energy surface in the case of an isotropic effective mass in a 3D (a) and a 2D system
(b). Increasing k by dk yields a shell in-between the two constant energy surfaces with additional k-states
(marked red) that can be occupied with carriers. Each state needs a volume/area within the k-space given
by ( 2πL )

d with d being the dimension.

Table 2.4 summarizes the density of states expressions in all three dimensions. Note
that in contrast to the expressions above a factor of two due to spin degeneracy has been
included.

Table 2.4: Density of states in various dimensions. Spin degeneracy has been taken into account.

1D 2D 3D

DOS D(E) = 2
h
√ 2m⋆

E D(E) = m⋆

πℏ2
D(E) = m⋆

π2ℏ3
√2m⋆E

D(E) ∝ E−1/2 D(E) ∝ E0 D(E) ∝ E1/2

2.11.2 Density of States in the Case of Anisotropic Effective Masses

So far, we only considered the case of an isotropic effective mass giving rise to circu-
lar/spherical constant energy surfaces. However, as was shown in Section 2.6.3, the con-
duction band of silicon is determined by six rotational ellipsoids with one heavy and
two light effective masses along the kx -, ky- and kz-directions. In more general terms,
the dispersion relation (the potential energy is neglected for simplicity) is given by

E(kx , ky, kz) =
ℏ2k2x
2m⋆x
+
ℏ2k2y
2m⋆y
+
ℏ2k2z
2m⋆z
, (2.88)

which can be rewritten as
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E(kx , ky, kz) =
ℏ2

2m⋆DOS
[k2x

m⋆DOS
m⋆x⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(k′x)2

+ k2y
m⋆DOS
m⋆y⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(k′y)2

+ k2z
m⋆DOS
m⋆z
]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(k′z)2

. (2.89)

With the shift of variables,

dkx,y,z = dk
′
x,y,z√

m⋆x,y,z
m⋆DOS

(2.90)

the ellipsoidal dispersion relation appears as if it exhibited an isotropic effective mass.
In turn, this allowsusing one of the approaches outlined above to determine theDOS (see
Task 12 for details). The so-called “density of states effectivemass”m⋆DOS = (m

⋆
x ⋅m
⋆
y ⋅m
⋆
y )

1/3

is an “average” of the three effectivemasses in the three spatial directions. In the case of
silicon, two of the effective masses (m⋆x,y,z) are equal to the light effective mass m⋆l and
the remaining one ism⋆h . As a result, withm⋆DOS the density of states reads

D(E)3D =
(m⋆DOS)

3/2

2π2ℏ3
√2E Si
→
√(m⋆l )

2m⋆h
2π2ℏ3

√2E. (2.91)

Multiplying this with a factor of six due to the six ellipsoids one finally arrives at the
DOS of the conduction band in bulk silicon.

Task 12.
Density-of-states effective mass: Consider a two-dimensional system that exhibits two different effec-
tive masses with m⋆x ̸= m

⋆
z . Compute the density of states of the

23
two-dimensional system. What is the

density-of-state effective massm⋆DOS?

2.11.3 Fermi Integrals

In the case of large systems with constant potential, a constant carrier density is ob-
tained according to

n = ∫ dE D1D/2D/3D(E) ⋅ f (E) (2.92)

in one, two or three dimensions. Even this simplified expression can only be solved ana-
lytically in very few cases; all other instances need either an appropriate approximation
or a numerical solution.

In a three-dimensional semiconductor that is not degenerately doped, the Fermi
level lies within the band gap. In addition, if Ef is energetically sufficiently separated
from the bottom of the conduction(valence) band Ec(Ev) the Fermi distribution can be
approximated with the Boltzmann distribution. In the following, the results for the car-
rier concentration will be discussed exemplarily for electrons in the conduction band;

https://vimeo.com/462364762
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similar expressions can be derived for holes in the valence band in the same fashion.
Using the Boltzmann approximation, the carrier density is

n ≈
∞

∫
Ec

dE m⋆

2π2ℏ3
√2m⋆(E − Ec)e

−
E−Ef
kBT (2.93)

where the lower boundary of the integration is the conduction band bottom since
energies below Ec lie within the band gap where no states (band tails are neglected
here) are available. The integral can be rewritten in the form of the definite integral
∫
∞
0 dx√x exp(−x) = √π/2. As a result, one obtains

n ≈ 2(2πm
⋆kBT
h2
)

3
2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=DOSeff=Nc

⋅ exp(−
Ec − Ef
kBT
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Boltzmann−distribution

. (2.94)

This result can be interpreted as a product of an effective density of states DOSeff for the
single level at Ec and the Boltzmann distribution provides the probability that the level
Ec is occupied.

In a two-dimensional system with constant density of states, Equation (2.92) basi-
cally yields an integration of the Fermi distribution function, which can be computed
analytically resulting in

n = m
⋆

πℏ2

∞

∫
Ec

dE 1
1 + exp( E−EfkBT

)
= −

m⋆

πℏ2
kBT ln(1 + e

Ef −E
kBT )


∞

Ec

=
m⋆

πℏ2
kBT ln(1 + e

Ef −Ec
kBT ) (2.95)

The integral of the Fermi distribution function is called “supply” function. Again, the
carrier density can be interpreted as a product of a density of states and a distribution
(i. e., supply) function as in Equation (2.94).

Fully quantized systems (in all three spatial dimensions) as displayed, e. g., in Fig-
ure 2.4 exhibit a density of stateswhere separate, discrete energy levelsErln are obtained
(cf. Section 2.2.3). As a result, the density of states is a sum of delta functions where the
multiplicity (i. e., the degeneracy) of each level needs to be taken into considerationwith
an appropriate factor grln. For the carrier density (which is equal to the number of car-
riers in the present case), one gets

n = ∫ dE ∑
r,l,n

grlnδ(E − E
rln)f (E − Ef ) = ∑

r,l,n

grln
1 + exp( E

rln−Ef
kBT
)

(2.96)
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2.12 Density of States Beyond the Parabolic Dispersion

In the preceding sections, the density of states has been derived analytically based on
a quadratic approximation of the dispersion relation where the underlying solid is
described by (direction-dependent) effective masses. However, sometimes an effective
mass approximation is not appropriate. In the present section, the density of states is
computed and discussed in several of such cases.

2.12.1 Density of States of an Arbitrary Band Structure

In order to compute the density of states directly based on a band structure E(k⃗) – for
instance calculated with the tight-binding method—Equation (2.82) can be used where
the summation needs to be carried out over the first Brillouin zone only. The question is
how to do the integration over the δ-functionwith (numerically) computed dispersions?
Two suitable methods to do so are the smearing and the tetrahedron method [251, 250].
While the latter, in particular with the so-called Blöchl corrections [29], is more accurate
(see, for instance, [251, 250]), the smearing method is straightforward to implement and
yields decent results.

At the end of Section 2.10 (see also the lower panel of Figure 2.44), it was shown that
the negative of the derivative of the Fermi distribution yields the δ-function for T → 0.
As a result, we can write Equation (2.82) as

D(E) = 1
V
∑
k⃗

δ(E − E(k⃗)) ≈ 1
(2π)d
∑
n
∫

1stBZ

dk⃗ e
E−En( ⃗k)

σ

σ(1 + e
E−En( ⃗k)

σ )2
(2.97)

where σ → 0 is the smearing factor (similar to temperature), which should be as small
as possible. A band index n has been introduced to account for multiple bands present
in the Brilluoin zone. Examples of the DOS computed with the smearing method for
a number of dispersion relations

24
calculated in the preceding sections are accessible

through QR code #24.

2.12.2 Disorder and Band-Tailing

In the preceding sections, the band structure and density of states were computed based
on a strictly periodic, perfect crystal. However, in reality, disorder of the crystal (due
to defects, charged Coulomb centers, electron-phonon interaction, etc.) leads to a phe-
nomenon called band-tailing. As a result, the band edges are blurred with a strongly
decreasing but substantial, nonzero density of states within the band gap. While band-
tailing is often less important for the functionality of regular field-effect transistors at

https://vimeo.com/900719506
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room temperature (and consequently neglected), it plays an important role in band-to-
band tunneling transistors (cf. Chapter 9.1.1) and is decisive for cryogenic field-effect
transistors (see Chapter 11).

In order to illustrate the effect of disorder on the density of states, the 1Dmodel dis-
cussed in Section 2.4.3 with one s-and a px -orbital (see Figure 2.14) is used; disorder can
simply be taken into consideration by randomly varying the overlap integrals Vss and
Vpp (note that Vsp is neglected in the following) and the on-site energies ϵ0 and ϵ1 at each
lattice site (see Figure 2.48(a)). To compute the band structure, a 1D linear chain with
more than 3000 sites and periodic boundary conditions is assumed and the eigenval-
ues of the correspondingly large matrix are calculated numerically. In order to include
disorder, 500 different, random configurations of varying overlap integrals and vary-
ing on-site energies are computed and added to obtain an appropriate average of the
resulting band structure. Finally, the smearing method (see preceding section) is used
to compute the DOS. Figure 2.48(b) shows the resulting band structure (left panel) and
the DOS (right panel) in the case of weak (green and red lines) and strong (light green
and orange lines) disorder. The right inset depicts a close-up of the lower edge of the
p-band. Obviously, strong disorder yields pronounced band-tails (orange line) that are
also known as Urbach tails [254]. In Chapter 11, it will be discussed how band-tailing af-
fects the performance of cryogenic field-effect transistors and how it can be mitigated
or even circumvented.

Figure 2.48: (a) Schematic of a 1D crystal with disorder leading to varying overlap integrals (e. g., −Vss ± δ)
and on-site energies ϵ0,1 ± δϵ. (b) Band structure (left panel) of a 1D solid with weak (green) and strong
disorder (light green). The corresponding DOS (red for low disorder and orange for strong disorder) is
displayed in the right panel. The insets show close-ups of the band structure (left) and the resulting DOS
(right).
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2.12.3 Density of States at Surfaces

Up to now, the density of states was computed in 1D, 2D and 3D solids. However, in prac-
tical implementations of nanoelectronics devices, the surface of a bulk material plays a
very prominent role (see, for instance, Section 4.6 on metal-semiconductor contacts). In
order to complement our considerations so far, the surfaceDOS (sDOS)will be computed.
To this end, let us assume that a bulkmaterial is cut into twohalves along the z = 0 plane.
Since the surface basically breaks the symmetry in the direction perpendicular to it, the
sDOS will become a function of z (at least close to the surface) and, as a result, we need
to compute a local DOS. This can in principle be done using Equation (2.79) if the wave-
function ψ( ⃗r) is known. For instance, if an effective mass approximation is adopted, the
semiinfinite bulk material can be considered as a slab of length L with L → ∞. As a
result, a separation ansatz with plane waves along x- and y-directions and the PIB so-
lutions (∝ sin(nπ/L ⋅ z), Equation (2.6)) can be used to construct ψ. However, in order
to provide a more generally valid framework, the sDOS is computed based on a Green’s
function ansatz. Details and derivations of the approach are given in Section 6.2.1 (see
Task 24, p. 289); here, only the necessary basics are provided.

The defining equation for the retarded Green’s function is

(E −ℋ + iη)Gr(x, x′, E) = δ(x − x′) (2.98)

where iη is an infinitesimally small imaginary part. The relevance for our considerations
here is that the imaginary part of the Gr(x, x′ = x, E) is the local DOS, and thus we can
calculate the surfaceDOS. If a discrete lattice is considered, this equation turns into ama-
trix equation showing that Gr can be computed by inverting the matrix (E −ℋ+ iη). The
determiningmatrix equation has infinite dimensions and we therefore need a way how
to compute it. As an example of how to do this, let us consider the 2D semiinfinite crystal
displayed in Figure 2.49(a) (same as in Section 2.4.8). In addition, let us assume that the
potential energy is V0 = 0 throughout the semiinfinite system and Vsp = 0 for simplicity.
One can then subdivide the semiinfinite crystal into a surface layer and a semiinfinite
rest. Following the formalism detailed in Section 6.2.3 and using Equation (2.38), the sur-
face Green’s function describing the semiinfinite crystal can be computed by solving the
following (Dyson) equation:

(
Gr11 Gr12
Gr21 G

r
22
) = [(

Ẽ 0
0 Ẽ
) − (

ϵs − 2Vss cos(kxa) 0
0 ϵp + 2Vppσ cos(kxa)

) − (
V 2
ssG

r
11 VssVppπG

r
12

VssVppπG
r
21 V 2

ppπG
r
22
)]
−1

(2.99)
where Ẽ = E+ iη. In order to determine the local DOS of the first few layers of the crystal
shown in Figure 2.49(a), the equation of the Green’s function for the desired number of
layers is

25
set up and the semiinfinite crystal is accounted for with a self-energy based on

the solution of Equation (2.99). As an example, Figure 2.49(b) shows the DOS for the first
four layers of the crystal shown in (a); for details on the calculation, see QR code #25.

https://vimeo.com/900719872
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Figure 2.49: Surface DOS (b) of the first four layers of a 2D semiinfinite crystal with cubic lattice and (cf.
Figure 2.21) one s- and px -orbital per unit cell (a). The red curve denoted with “bulk” in (b) is the DOS of an
infinite 2D crystal.

2.12.4 Density of States of Graphene

In Section 2.11.1, the density of states in various dimensions has been derived based on
a quadratic dispersion relation. This means that the band structure of the underlying
semiconductor has been considered as being described with an appropriate effective
mass, which is certainly a good approximation for rather conventional semiconductors
such as silicon, III–V semiconductors and alike. In the case of graphene, it was shown
in Section 2.8.1 that the band structure around the Fermi energy can be approximated
with two cones whose tips touch at the Dirac point (i. e., at Ef ). Therefore, we need to
recalculate the DOS in the case of graphene.

In the conduction band, the dispersion is given by E(κ⃗) = Vppπa
√3
2 |κ⃗|. Due to the ro-

tational symmetry (E only depends on themagnitude |κ⃗|), the density of states can easily
be computed using one of the approaches discussed in Section 2.11.1. Introducing cylin-
drical coordinates, one obtains dκ⃗ = 2πκdκ, and thus the density of states in graphene
DGr(E) is (the factor 2 ⋅ 2 is due spin degeneracy spin and the two K -points)

DGr(E) = 2 ⋅ 2
1
(2π)2
∫ dκ⃗δ(E − E(|κ⃗|)) = 4 2π

(2π)2
∫ dκκδ(E − E(|κ⃗|)). (2.100)

Next, changing variables to ϵ = E(|κ⃗|) yields dκ = dϵ
Vppπa√3/2

and with κ = ϵ 1
Vppπa√3/2

one
obtains

DGr(E) =
4
2π
∫ dϵ ϵ

V 2
ppπa23/4

δ(E − ϵ) = 8
3πV 2

ppπa2
|E|. (2.101)

This result is completely different from the DOS in a conventional 2D semiconductor
with quadratic dispersion relation, which is constant. In the case of graphene, however,
the particular crystalline structure leads to a linear dispersion, and hence to a density
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Figure 2.50: Dispersion relation and density of states of a 2D semiconductor with quadratic dispersion
relation (a), monolayer graphene (b) and bilayer graphene (c).

of states that increases linearly with energy for E > 0 and E < 0. In particular, the DOS
vanishes at the Fermi energy, which is why graphene can be called a zero-gap semicon-
ductor. Figure 2.50 shows a comparison between the band structure and the DOS (red
lines) in a conventional 2D semiconductor with quadratic dispersion relation (a), mono-
layer (b) and bilayer graphene (c) exhibiting a distinctly different energy-dependence
with van Hove singularities in the case of bilayer graphene [122]. While the DOS in (a)
and (b) can be computed analytically (in (a) with a larger valence band effective mass
compared to the conduction band, typically found in semiconductors) as has been done
above, theDOS of bilayer graphene has been calculatedwith the smearingmethod based
on Equation (2.53).

2.12.5 Density of States of Carbon Nanotubes

The density of states of a carbon nanotube also shows an unusual behavior that needs
to be discussed. We have to distinguish between two cases: first, when looking at the
band structure of a carbon nanotube (see Equation (2.60)) it is obvious that if 2n+m

3 is an
integer value the band structure of the lowest (i. e., closest to the Fermi energy) subband
will be given by

E(κ‖) = ±Vppπa
√3
2
|κ‖|, (2.102)

so it basically represents one “slice” of the graphene band structure that contains the
Dirac point. However, in contrast to graphene, the density of states DCNT(E) of such a
carbon nanotube does not depend on energy (in a certain energy range, see below).
Computing the DOS as above and changing variables to ϵ = Vppπa√3/2κ‖ yields
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DCNT(E) =
2
2π
∫ dκ‖δ(E − E(κ‖)) =

4
2πVppπa√3

∫ dϵδ(E − ϵ) = 2
πVppπa√3

, (2.103)

which has to be multiplied by a factor of four to account for spin degeneracy and the
two independent K -points of the underlying graphene band structure. Surprisingly, the
DOS is constant although the band structure is linear as in the case of graphene. The
difference stems from the dimensionality of the considered system. As a result of a finite
DOS at the Fermi energy, carbon nanotubes where 2n+m

3 is an integer value are metallic.
Semiconducting CNTs are obtained if 2n+m

3 is not an integer value. In this case,
E(κ‖) ̸= 0 when κ‖ = 0. Close to the conduction band bottom (valence band top) the
band structure can be approximated with a quadratic dispersion relation (cf. Equa-
tion (2.63)) and as a result, a 1D density of states would be obtained. However, for not
too large energies the dispersion of a CNT differs from a quadratic band structure and
becomes linear. Therefore, the DOS in a carbon nanotube is expected to behave as 1/√E
close to the bottom of a 1D subband eventually becoming constant for higher energies.
Indeed, using the full dispersion relation, given in Equation (2.60), allows computing
the full density of states of CNTs. For a single one-dimensional subband, the following
expression is obtained (multiplication with four is again required):

DCNT(E) =
4E

πVppπa√3√4E2 − 4V 2
ppπa23(

ñ− 2n+m3
dCNT
)2

(2.104)

Figure 2.51 (left panel) shows the band structure of a (10, 8) nanotube exhibiting sev-
eral conduction and valence bands. Since (2 ⋅ 10 + 8)/3 is not an integer, the nanotube
is semiconducting and a band gap of Eg = 0.697 eV is obtained from Equation (2.61); re-
member that in order to determine the band gap the smallest value of ñ − 2n+m

3 (here
ñ = 9) needs to be found and inserted into Equation (2.61). The panel on the right shows

Figure 2.51: Band structure of a semiconducting (10, 8) carbon nanotube exhibiting multiple 1D subbands
(left panel). Density of states in a (10, 8) nanotube. The DOS diverges proportional to 1/√E at the bottom of
each subband as expected in a 1D system. No states are available within the band gap Eg.
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the density of states of the (10, 8) nanotube. As discussed above, the DOS diverges when-
ever a new 1D subband sets in and subsequently drops ∝ 1/√E with increasing E (de-
creasing in the valence band). Because the dispersion becomes linear at higher energies
the DOS in a CNT approaches a constant for each subband (illustrated by the thin dotted
lines) such that the overall DOS increases as displayed in Figure 2.51.

2.13 Current Flow

Up to now, the discussion has been restricted to equilibrium situations. However, elec-
tronic devices are usually operated in nonequilibriumdue to the current flow.We there-
fore consider current transport in the final section of this chapter.

2.13.1 Quasiclassical Approach

Let us begin by considering an electron as a classical particlewith effectivemassm⋆ that
is accelerated due to an electric field (the effect of a magnetic field will not be discussed
here). Moreover, the particle will be scattered with a total mean time between two scat-
tering events denoted by τ. If an electric field ⃗ℰ is applied, the following equation of
motion is obtained:

m⋆ dv⃗
dt
−
m⋆v⃗
τ
= −e ⃗ℰ . (2.105)

In the stationary case, there is no acceleration, i. e., dv⃗
dt = 0 and the resulting velocity

is called drift velocity vd , which is proportional to the electric field, i. e., v⃗d =
eτ
m⋆
⃗ℰ . The

factor in front of ℰ is called the carrier mobility μ = eτ
m⋆ . The current density ⃗j is propor-

tional to the carrier density n as well as to the carrier velocity according to

⃗j = e ⋅ n ⋅ v⃗. (2.106)

Inserting the expression for the drift velocity into the Equation (2.106) yields

⃗j = e
2nτ
m⋆⏟⏟⏟⏟⏟⏟⏟⏟⏟
=σ

⃗ℰ . (2.107)

Because Ohm’s law relates the current density to the electric field via the conductivity, σ
is given as shown in the equation above. Equation (2.107) is valid in an isotropic semicon-
ductor, where the acceleration of carriers due to an electric field points in the direction
of the electric field. As a result, the scalar conductivity σ = e2nτ

m⋆ = enμ is obtained. The ex-
pression for the conductivity can be extended in a straightforward manner to account
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for multiple scattering mechanism as well as multiple channels that contribute to the
conductivity.

Different scattering mechanisms impacting electronic transport in semiconductors
such as impurity scattering, electron-phonon scattering, surface roughness or alloy scat-
tering can each be described by amean-time τ between two successive scattering events.
If the scattering mechanisms are uncorrelated, their impact can be combined into a sin-
gle, total scattering time τtot, which is given by Matthiessen’s rule as

1
τtot
=

1
τimp
+

1
τe−ph
+

1
τs−rough

+ ⋅ ⋅ ⋅ (2.108)

This is obvious since the resistivity ρ ∝ 1/σ , and thus ρ is inversely proportional to the
scattering time τ. In the case of uncorrelated scattering mechanism, their impact to the
total resistivity is added as stated in Equation (2.108). Furthermore, if several parallel
“channels” for conduction are present, the conductivities associated with these chan-
nels have to be added. For instance, in the case of silicon, there are six equivalent val-
leys in the conduction band that contribute. When computing the carrier density, the
different effective masses in the silicon conduction band and the sixfold degeneracy
have been “merged” into the density of states effective mass m⋆DOS (cf. Section 2.11.2).
In a similar fashion, current flow can be described by an effective mass for transport
m⋆trans, which however is completely different compared to m⋆DOS. If we consider trans-
port in the x-direction, for instance, then there will be two valleys contributing with
the heavy(longitudinal) mass and four with the light(transversal) mass. Divided by the
number of valleys, we obtainm⋆trans as

1
m⋆trans
=

1
6
(

2
m⋆l
+

4
m⋆t
) =

1
3
(

1
m⋆l
+

1
m⋆t
+

1
m⋆t
). (2.109)

Finally, the simultaneous conductivity of electrons and holes through a semiconductor
leads to

σ = e(nμe + pμh) (2.110)

where μe/h =
eτ

m⋆trans,e/h
denotes the electron/hole mobility with m⋆trans,e/h being the trans-

port effective mass of electrons and holes, and n/p are the carrier densities of electrons
and holes, respectively. It is important to note that Equation (2.110) can only be used
if electron and hole transport are completely separated from each other. In Chapter 9,
band-to-band tunneling in transistors will be discussedwhere carriers from the conduc-
tion band are injected into the valence band (and vice versa). In this case, electron and
hole transport are interlinked and it is thus important to describe the current transport
exclusively either with electrons or holes.

The discussion so far led to an expression for the conductivity with a scattering time
τ that is independent of energy, and thus has the same value for all carriers. In order
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to generalize this result, we need to know how the charge carriers behave when exter-
nal forces act on them. The charge carriers are described by the distribution function
f (x⃗, k⃗, t), which depends on the location x⃗, on the wave-vector k⃗ and time t; in the ab-
sence of any external forces, f (x⃗, k⃗, t) is simply the Fermi distribution function f (Ef ).
The idea is now that the total change of f (x⃗, k⃗, t) (e. g., due to external forces) with time
is equal to the change of f due to scattering. Explicitly, this means

df (x⃗, k⃗, t)
dt
= (
𝜕f (x⃗, k⃗, t)
𝜕t
)
scat

→
𝜕f
𝜕t
+ ∇ ⃗rf (x⃗, k⃗, t)

𝜕 ⃗r
𝜕t⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

∇f v⃗ ⃗k

+
𝜕f
𝜕E⏟⏟⏟⏟⏟⏟⏟
≈
𝜕f (Ef )
𝜕E

1
ℏ
𝜕E
𝜕k⃗⏟⏟⏟⏟⏟⏟⏟⏟⏟
=v⃗ ⃗k

ℏ
𝜕k⃗
𝜕t⏟⏟⏟⏟⏟⏟⏟
= 𝜕p⃗𝜕t =F⃗

= (
𝜕f
𝜕t
)
scat

(2.111)

Equation (2.111) is called the Boltzmann transport equation (see, e. g., [285]). The first
term in the equation relates to the explicit time dependence of f , the second term is the
diffusion term due to a gradient in the distribution function and the third term is due to
an external force F⃗ . In the following, an electric field is considered with F⃗ = −e ⃗ℰ . A sta-
tionary scenario is considered where 𝜕f /𝜕t = 0 and it is assumed that the diffusion term
can be neglected. Moreover, the third term due to the external force is supposed to be
small enough so that the distribution function can be linearized around the equilibrium
Fermi distribution function, i. e., f ( ⃗r, k⃗, t) ≈ f (Ef )+ f1( ⃗r, k⃗, t). As a next step, the so-called
relaxation time approximation is applied in order to obtain an approximate expression
for the scattering term in Equation (2.111). If we assume that the distribution function
f ( ⃗r, k⃗, t) will relax exponentially toward the equilibrium distribution f (Ef ) with a time
constant τ, then f ( ⃗r, k⃗, t) − f (Ef ) = f1( ⃗r, k⃗, t) ∝ exp(−t/τ). As a result,

(
𝜕f
𝜕t
)
scat
=
𝜕f1
𝜕t
= −

1
τk⃗
f1( ⃗r, k⃗, t). (2.112)

Combining Equations (2.111) and (2.112) yields

f1( ⃗r, k⃗, t) ≈ (−
𝜕f (Ef )
𝜕E
)τv⃗k⃗e ⃗ℰ . (2.113)

Next, Equation (2.106) can be readily extended to account for situations where the car-
rier velocity is not constant but depends on the wave-vector k⃗. Together with Equa-
tion (2.113), one obtains

⃗j = e∫ dk⃗f ( ⃗r, k⃗, t)v⃗k⃗ = e∫ dk⃗f (Ef )v⃗k⃗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=0

+e∫ dk⃗f1( ⃗r, k⃗, t)v⃗k⃗

= e∫ dk⃗(−
𝜕f (Ef )
𝜕E
)eτk⃗ v⃗k⃗e ⃗ℰ v⃗k⃗ . (2.114)
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Explicitly writing down the equation and bringing it into the form ⃗j = σij ⃗ℰ allows ex-
tracting the conductivity tensor σij from

⃗j = e∫ dk⃗eτk⃗(−
𝜕f (Ef )
𝜕E
)(

vxk⃗v
x
k⃗ vxk⃗v

y
k⃗

vxk⃗v
z
k⃗

vy
k⃗
vxk⃗ vy

k⃗
vy
k⃗

vy
k⃗
vzk⃗

vzk⃗v
x
k⃗ vzk⃗v

y
k⃗

vzk⃗v
z
k⃗

)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
σij

⃗ℰ . (2.115)

In an isotropic semiconductor, the conductivity tensor is diagonal with the same term
on all three diagonal entries. Although silicon has a cigar-shaped dispersion relation, it
is isotropic because this dispersion relation is on all three kx,y,z-axes and as a result, on
average, an isotropic behavior is obtained. If a single, isolated conduction band valley
of silicon would be considered, the directions of the electric field and current transport
would be different.

2.13.2 Landauer Formalism

Today’s nanoscale devices have become so small that the assumption of ballistic trans-
port, i. e., scattering-free transport is in many cases justified. In the present section, we
will therefore investigate how current transport can be described in the limit of ballis-
tic transport. For simplicity, a one-dimensional system such as a nanowire of length L
(where L is considered to be very large) is considered. Quantization is such that only the
first 1D subband is occupied with carriers (cf. Section 2.2.2 and in particular Figure 2.3).

In the following, we will assume the nanowire to be on a constant potential Φ0
where the quantization energy of the first subband (cf. Section 2.2.2) has been incor-
porated into Φ0. Note that the nomenclature has been changed for the potential from
V0 → Φ0. The reason for this is to avoid confusion with the applied voltage V at the
drain contact that separates the Fermi levels in source and drain. With constant poten-
tial, the wave function ϕk(x)will be a simple plane wave, i. e., ϕk(x) =

1
√L
eikx where the

prefactor ensures that thewave function is normalized. At the two ends of the nanowire,
a source and a drain contact are attached that are considered to be in equilibrium and
whose carrier distribution is given by two Fermi distribution functionswith Fermi levels
Esf and E

d
f as illustrated in Figure 2.52.

From the dispersion relation, the group velocity of the carriers can be computed to
be vk =

1
ℏ
𝜕E(k)
𝜕k . This implies a negative group velocity for carriers on the left branch of

the dispersion relation (blue carriers in Figure 2.52) and a positive on the right branch
(red carriers in Figure 2.52). In equilibrium, carriers occupy states equally on both
branches of the dispersion relation up to the Fermi energy Esf = E

d
f , and thus the two

current components, i. e., left-to-right and right-to-left, cancel out each other exactly
yielding zero net current.
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Figure 2.52: Occupation of the dispersion relation in a 1D nanowire at T = 0 K due to carrier injection from
equilibrium Fermi distributions in a left source and right drain contact. (a) shows the near equilibrium and
(b) the nonequilibrium case where the two Fermi levels have been separated by applying a bias voltage V .
The lower panels show the respective current flows. Current saturation is obtained in (b) once V is large
enough to avoid carrier injection from drain (i. e. when Edf ≤ Φ0).

In the limit of ballistic transport, i. e., in the absence of back-scattering, one can
associate the carriers on the right branch of the dispersion relation with the Fermi dis-
tribution function in the source contact and the carriers on the left branch with the
Fermi distribution in the drain contact of the considered 1D nanowire structure. If the
Fermi levels of both contacts Es,df are separated by the applied drain-source voltage V , a
net current will flow through the 1D nanowire due to carriers in the dispersion whose
velocity component is not compensated by a component with equal magnitude but op-
posite direction; this situation is illustrated in Figure 2.52(a) for small V and in (b) for a
large V . The current (density) is given by

j = e∑
k≥0

ϕk(x)

2fs(k)vk − e∑

k<0

ϕk(x)

2fd(k)|vk | (2.116)

where fs,d are the Fermi distribution functions in the left and right contacts, respec-
tively. Equation (2.116) can be understood as a generalization of j = env: |ϕk(x)| is the
probability density of finding a carrier in state k at x and f (k) is the probability that
the state k is occupied. Since the carriers keep the distribution function of the contact
they were injected from, fs(k) applies for k > 0 on the right branch of the dispersion
relation and fd(k) needs to be used for negative k on the left branch. Because on the left
branch 1

ℏ
𝜕E(k)
𝜕k = −|v(k)|, the sumof the two current contributions in Equation (2.116) can

bewritten as the difference between left-to-right and right-to-left current contributions,
which is illustrated in Figure 2.52. Next, since L is considered to be very large yielding
plane waves as appropriate wave functions, the absolute square of the wave function is
simply |ϕk(x)|

2 = 1
L . The sum over k is transferred into an integration as has been done

above (see the info-box in Section 2.11.1). Finally, let us use the dispersion relation to com-
pute v(k) = 1

ℏ
𝜕E(k)
𝜕k =

ℏk
m⋆ → v(E) = √ 2(E−Φ0)

m⋆ and to change from integrating over k to an
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integration over energy, i. e., dk = dE m⋆
ℏ2k = dE

1
ℏ√

m⋆
2(E−Φ0)

. Note that 1
ℏ√

m⋆
2(E−Φ0)
= 2π D1D

2
with D1D/2 being half of the 1D DOS (cf. Equation (2.85)). This is reasonable because the
net current is the difference between left-to-right and right-to-left flowing carriers each
occupying either the right or left part of the dispersion leading to half of the full DOS.
Since the current density in 1D equals the current I , we obtain

I = 2e L
2π
(∫ dk 1
ℏ
𝜕E
𝜕k

1
L
fs(E(k)) − ∫ dk

1
ℏ
𝜕E
𝜕k

1
L
fd(E(k)))

= 2e
∞

∫
Φ0

dE
D1D(E)

2
v(E)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
1/h

(fs − fd) =
2e
h

∞

∫
Φ0

dE(fs − fd) (2.117)

where appropriate boundaries for the integration over the energy have been intro-
duced; the additional factor of 2 accounts for spin degeneracy. The same result can also
be obtained by noting that in the first part of Equation (2.117) dk 1

ℏ
𝜕E
𝜕k =

1
ℏdE. However,

this way the understanding is obscured that 1
2D1D(E) ⋅ v(E) =

1
h , which makes a lot of

sense because it means that when carriers are accelerated (for instance, at the drain
end of a MOSFET), the current does not increase because the increase of carrier velocity
is compensated by a reduced carrier density (density of states). Ultimately, this ensures
current continuity, which is required in a MOSFET if gate leakage and impact ionization
can be neglected (see Section 5.2.3 for more discussion).

Task 13.
Current in 1D: Based on Equation (2.117) compute a closed expression for the current through a one-
dimensional nanowire device at

26
finite temperature T and at a fixed Φ0 that depends explicitly on the

drain-source voltage V (see Figure 2.52).

In the limit of T = 0K, the Fermi distribution functions become step-functions, and
hence the integration over energy yields simply ∫ dE(fs − fd) → ∫

Esf
Edf
dE. The difference

between the left and right Fermi energies is maintained by applying the voltage |eV | =
Esf − E

d
f , and thus I = 2e2

h V , which results in a finite conductance of I
V =

2e2
h (including

spin degeneracy). This is an interesting result: Althoughwe consider completely ballistic
transport, a finite conductance is obtained. The reason for the rather high resistance
of h

2e2 ≈ 12.9 kΩ is the way the current is determined: In the present case, there are
two contacts attached to the nanowire under consideration and the voltage is applied
in-between the two contacts. The contacts are large in order to ensure that they are
in equilibrium, and thus the applied voltage ensures that carriers are injected into the
nanowire according to the left/right Fermi distributions leading to a net current flow I .
If we were able to drive the same current through the nanowire but hook up voltage
probes at the edges of the nanowire without disturbing the distribution of carriers, one
would obtain a zero voltage drop between the voltage probes as expected in the case of
ballistic transport. However, such a measurement can usually not be carried out: Even

https://vimeo.com/462365669
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if ideal voltage probes were attached to the nanowire that carry zero net current, there
would be a finite coupling between the nanowire and the probes. As a result, the probes
would mix left and right moving particle populations, and thus yield a finite resistance
showing up in a voltage drop. Such a scenario will be used in Section 6.3.1 to mimic
scattering with so-called Buettiker probes.

Let us go back to Equation (2.117) to clarify where the finite resistance comes from.
Assume, that instead of having only a single 1D subband that can carry current, there
would be M 1D subbands available for current flow. In the ballistic case, they can all
be considered as being independent, and thus their current contribution can simply be
added up. Therefore, the total current becomes

I = 2e
2

h
M ⋅ V . (2.118)

If we increase the size of the nanowire that we consider here, then the energetic differ-
ence between 1D subbands will decrease leading to an increase of M as an increasing
number of 1D subbands will be occupied with carriers contributing to the current. As
a result, the conductance increases and the resistance decreases according to ∝ 1/M .
This means that in a large ballistic system where a very large number M of 1D sub-
bands contributes to the current, the resistance indeed approaches zero as expected for
scattering-free electronic transport. In turn, this means that the finite resistance associ-
ated with ballistic current transport through a single 1D subband can be interpreted as
a contact resistance: a part of the applied voltage drops at the left contact interface and
the other part across the right contact interface.

2.13.3 Multimode Transport

It was shown above that one subband or mode can carry a current (at T = 0K) of 2e2
h V .

If the subband is degenerate, this value has to be multiplied by the associated degen-
eracy factor dg . For instance, in a nanowire with quadratic cross-section and isotropic
effective mass it was shown in Section 2.2.2 that the second subband is twice degenerate
and would carry a current of 2 2e

2

h V accordingly. In the case of M subbands, their con-
tributions have to be summed. The question, however, is how many modes in a device
contribute to the current and how this appears in the electrical device characteristics?

Figure 2.53 shows the occupation of multiple subbands (again T = 0K) for four
different energies of the potential Φ0 within the nanowire. From (a)–(b), the current in-
creases linearly and only the first subband contributes.WhenΦ0 is moved below Edf , the
current stays constant (c). Although the carriers occupy states at higher energies their
density drops leading to the constant current shown in the lower panel of Figure 2.53(c).
In (d), the contribution of a second subband is displayed also showing a linear increase
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Figure 2.53: Occupation of the 1D dispersion relations in a nanowire at T = 0 K due to carrier injection from
equilibrium Fermi distributions in a left source and a right drain contact. (a) shows the carrier injection into
the first 1D subband. If the potential Φ0 of the nanowire is moved towards lower energies, two and more
subbands will be occupied as displayed in (b)-(d).

and current saturation once the subband bottom is moved below Edf . Therefore, the cur-
rent increases stepwise and if the current of theMth subband saturates it is simply given
by 2e2

h V ⋅M . The stepwise current increase canonly be observed if the separationbetween
subbands ΔEsb is larger than the applied voltage V .

Task 14.
Multimode transport: Consider a one-dimensional nanowire device at a temperature T = 0 K and T =
300 K. The nanowire has a quadratic cross-section d × d and was etched out of a bulk semiconductor
that exhibits an isotropic effective mass. Suppose that carrier confinement yields a quantization energy
of 0.1 eV for the first subband. In addition, a small bias voltage V = 0.01 V has been applied at drain and
source is connected to ground; Esf is at an energy of 0.05 eV. Furthermore, assume that a gate electrode
has been connected to the nanowire that has perfect gate control. This means that changing the gate
voltage from V 1g to V2g with V2g > V

1
g leads to moving the potential in the nanowire, Φ0, energetically to

Φ0 − e(V
2
g − V

1
g); it is assumed that

27
Φ0 = 0 eV at Vg = 0 V. Compute the current I through the nanowire

for gate voltages ranging from 0 V, . . . , 1.1 V and plot I in the case of both temperatures.

So far, the discussion of multimode transport has been carried out assuming a temper-
ature of T = 0K. In this case, a linear current increase as displayed in Figure 2.53 is ob-

https://vimeo.com/464655049
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Figure 2.54: Current normalized to 2e2/h with a bias voltage of 0.1 V for different temperatures. If the ther-
mal broadening is sufficiently increased such that ∼4 × kBT is of the same order as the energetic subband
spacing ΔEsb the contribution of the different modes overlap and cannot be distinguished anymore. The
same is true if |eV | ≈ ΔEsb.

tained. At finite temperature, however, the current stepswill be broadened. In fact, if the
thermal broadening 4×kBT is of the sameorder as the energetic separationΔEsb between
the subbands, the (n+1)th subbandwill already contribute to the current before the cur-
rent in the nth subbands saturates. Figure 2.54 shows this scenario for three different
temperatures. In the present case, ΔEsb = 0.2 eVwas assumed. Indeed, for high tempera-
tures the step-like increase of current cannot be observed anymore (in Figure 2.54, right
panel, 4 × kBT ≈ 0.2 eV) although up to three subbands contribute. The same is true if
|eV | ≈ ΔEsb: in this case, the current increases in the nth mode up to the point when the
(n + 1)th mode sets in.

Exercises

Exercises togetherwith solutions are accessible via theQR code. 28

https://www.iht.rwth-aachen.de/global/show_document.asp?id=aaaaaaaachfzrad


3 Semiconductor Fabrication
Apart from the fundamental properties of the materials that nanoscale devices are
made of, their behavior is intimately connected to the technology used to fabricate
them. Therefore, an introduction to the most important semiconductor fabrication
techniques is necessary to complement the physics background provided in the preced-
ing chapter. A thorough treatment of the topic certainly goes well beyond the scope of
this book. There are quite a few textbooks available that cover semiconductor device
fabrication with the required depth and breadth (the reader is referred to [215, 248]).
Thus, the focus here is on fabrication techniques that have been used to realize the
experimental devices discussed in later chapters. These are mostly techniques that stu-
dents come across during their work in the clean room. For selected topics that I felt
would be useful and worth mentioning, more details are provided.

The sequence of presenting the material is oriented along an actual fabrication of a
device starting from wafer cleaning, lithography processes, wet and dry etching, chem-
ical and physical vapor deposition, etc. A large part of the material deals with the pro-
cessing of silicon. Seemingly old-fashioned, silicon is still the basis formost experimental
research devices. Moreover, silicon has recently regained substantial attention as mate-
rial for spin qubits (as isotopically purified 28Si) and for conventional devices operating
at cryogenic temperatures (see Chapter 11) to control qubits.

3.1 Wafer Cleaning
The cleaning of samples plays a crucial role during the fabrication of semiconductor de-
vices. Appropriate cleaning can remove organic residuals, particles andmetal ions from
the wafer surface and is necessary to obtain proper device functionality, yield and re-
producibility of the processes. Cleaning is mandatory prior to high temperature process
steps such as the growth of a gate dielectric in order to prevent dielectric breakdown,
drift in device characteristics and to prevent a reduction of carrier lifetime within the
substrate as a consequence of diffusing contaminants. On the other hand, cleaning of-
ten involves the removal of contamination by oxidizing the top surface layer of a sub-
strate resulting in a loss of material. In addition, it may also add to increasing the sur-
face roughness of substrates, which deteriorates the carrier mobility in metal-oxide-
semiconductor devices. As a result, samples should be processed in a way that reduces
the number of cleaning steps to a minimum. In the present section, different cleaning
methods and solutions will be discussed briefly; formore details on the topic, the reader
is referred to the available literature (cf. [220], for instance).

3.1.1 Solvents

Solvents such as acetone, n-methyl-2-pyrrolidone (NMP) or dimethylsulfoxide (DMSO)
are being used to remove photoresist remainders or other organic contaminants from

https://doi.org/10.1515/9783111054421-003

https://doi.org/10.1515/9783111054421-003
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the sample surface prior to, e. g., photoresist coating. If persistent organic layers such as
baked photoresist must be removed, cooking the samples in acetone may be effective.
However, acetone has a very low flashpoint (−18 °C) and a very low boiling tempera-
ture of 56 °C, so great care has to be taken when doing so. An alternative may be NMP;
due to its significantly higher boiling temperature of 203 °C, samples can be left in hot
NMP for hours. However, in comparison to acetone, NMP has a substantially lower self-
ignition temperature (265 °C compared to 465 °C in the case of acetone) and in addition,
NMP is toxic to reproduction and a substance of very high concern1 and has therefore
been banned from usage in many labs. A nontoxic alternative is DMSO that has flash
and ignition points (88 °C and 270 °C) comparable to NMP and also a rather high boiling
temperature (189 °C).

Since acetone leaves residues on the sample surface,2 samples are usually rinsed
in isopropyl alcohol (IPA) after acetone; in some labs, a rinse in methanol is inserted
known as AMI clean (acetone, methanol, IPA clean). IPA can be removed from the wafer
surface without residues either by blowing dry the sample with a nitrogen gun or by
retracting the sample fromboiling IPA. The latter is also used for ultracleanwafer drying
processes that will be briefly discussed below (see, e. g., [87, 167, 190]). Because IPA is
hygroscopic, the wafer surface will be dehydrated after blow-dry with nitrogen similar
to a dehydration on a hot plate. Due to its lower surface tension than water, hot IPA is
an option for drying nano-electromechanical structures.

3.1.2 Piranha Cleaning Solution

Piranha or “sulfuric acid hydrogen peroxide mixture” (SPM) is a mixture of H2SO4 and
H2O2 (i. e., a strong acid and oxidant) with ratios ranging from 2:1 to 8:1 (typical is a ratio
of 3:1–4:1) and temperatures in the range of 90 °C–130 °C. The corrosiveness of Piranha
can be adjusted by changing the mixing ratio: the higher the H2O2-fraction, the stronger
the oxidizing characteristic and the more violently the reaction. Since after the mixing
of the two chemicals the temperature rises to approximately 140 °C due to the strong
exothermal reaction, the solution needs to cool down to the desired process tempera-
ture. A too high process temperature and mixing ratios smaller than ∼3:1 will lead to
increased surface roughness.

Piranha is intended to remove organic and metallic contaminants and is usually
used, if substantial amounts of (organic) contaminations have to be removed from a
wafer. In fact, even entire photoresist layers can be removed from substrates and such
wet chemical stripping processes are investigated as an alternative to oxygen plasma in
order to avoid plasma-induced damages of the substrate. However, if a large amount of

1 https://echa.europa.eu/de/substance-information/-/substanceinfo/100.011.662
2 When working with hot acetone, drying of the sample surface must be prevented.

https://echa.europa.eu/de/substance-information/-/substanceinfo/100.011.662


3.1 Wafer Cleaning � 95

organic material such as a photoresist layer is to be removed, the common immersion
into a Piranha bath leads to the formation of a residue layer that often cannot be re-
moved anymore. To circumvent this, Piranha spray processes have been developedwith
temperatures up to 200 °C. The high temperature is necessary in order to increase the
concentration ofHO⋆ andHSO⋆4 radicals in the SPM that are necessary to remove heavily
carbonized photoresist as present on samples after high-dose ion implantation [46].

Wafers treated with Piranha are known to exhibit an increased area density of par-
ticles and sulfur contaminations on thewafer surface such that a dip in diluted hydroflu-
oric acid (HF) should always be carried out after the cleaning.

3.1.3 RCA Clean

The best-known cleaning solutions are the so-called RCA-clean method and its modifi-
cations [129]. RCA-clean consists of two cleaning solutions called standard clean 1 (SC1),
RCA1 or due to its constituents ammoniumhydroxide (NH3(aq)) hydrogen peroxidemix-
ture (APM), and standard clean 2 (SC2), RCA2 or hydrochloric acid (HCl) hydrogen per-
oxide mixture (HPM). Prior to a RCA-clean, a Piranha clean is frequently carried out if
severe contaminations are present on the sample surface (see the preceding section)
[128]. Furthermore, HF etch steps were added to the original RCA-clean in order to re-
move the SiO2 chemically grown during the cleaning.

Various cleaning sequences have been tested in the literature, yielding different ef-
ficiencies. For instance, it was found that the sequence SPM/SC1/HF/SC2 provides the
best cleaning efficiency for removing metals. However, the hydrophobic surface after
the HF-dip is prone to be recontaminated with organics and particles from the environ-
ment, which will not be removed by the following SC2. Therefore, an HF-dip is usually
only done prior to SC1. The sequence SPM/HF/SC1/SC2 was found to be most effective in
particle removal (see review [128] and the references therein). Several modifications of
the original recipe resulting in the use of strongly diluted cleaning solutions have been
suggested and studied (see, e. g., [192]) that showed an equal cleaning effectiveness. Ta-
ble 3.1 gives an overview over the cleaning solutions with different mixing ratios. After
the cleaning, wafers need to be rinsed and dried, which is a critical process step requir-
ing extra care to avoid recontamination.

Table 3.1:Wet chemical cleaning solutions. Ratios are stated by % vol. based on aqueous NH3(29%),
H2O2(30%), HCl(37%) and H2SO4(≥96%).

Cleaning solution Content Mixing ratio Temperature

piranha H2SO4:H2O2 2:1–4:1 ∼80 °C
SC1 NH3(aq):H2O2:H2O 1:1:5–1:5:20 60–80 °C
SC2 HCl:H2O2:H2O 1:1:5–1:1:20 60–80 °C
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3.1.3.1 Standard Clean 1
Standard Clean 1 or APM consists of NH3(aq):H2O2:H2O in a wide range of different mix-
ing ratios (1:1:5 to 1:1:200) used at temperatures from 80 °C down to room temperature.
While the original solution had a ratio of 1:1:5 and a temperature of 80 °C, today ratios
of 1:1:20 and temperatures of 50–60 °C are commonly used. Reasons for the dilution in-
clude saving resources, a reduction of waste and the fact that APM etches silicon. While
the etch rate is indeed very small, it nevertheless increases the surface roughness, dete-
riorating the carrier mobility at MOS interfaces.

SC1 removes organic contaminants and some metals as well as particles from the
wafer surface. The removal of organics occurs via oxidation and dissolution while met-
als are removed due to complex formation of the ammonia with metals. The removal
of particles relies on the fact that SC1 etches silicon and that most surfaces immersed
in a solution with a pH > 10 build up a negative surface charge. Thus, once a parti-
cle is detached from the surface due to the etching a positively charged electrostatic
double layer builds up around the particle that prevents redeposition of the particles
due to electrostatic repulsion (see Figure 3.1(a)). Figure 3.1(b) shows the ζ -potential3 of
different material surfaces as a function of the pH value of the solution the respective
particles are immersed in (values are extracted from [262]). Obviously, in solutions with
pH > 9 the surfaces of the different materials (including the wafer surface and common
particle contaminants) exhibit the same polarity leading to the electrostatic repulsion
mentioned above. Therefore, alkaline solutions such as SC1 are effective in terms of par-
ticle removal [117]. However, keeping the pH-value below approximately 3, and hence

Figure 3.1: (a) Particle removal due to underetching and electrostatic repulsion. (b) ζ -potential at the sur-
face of different materials as a function of pH-value (extracted from [262]).

3 At the interface between the solid and the cleaning solution, the negatively charged surface attracts
positively charged ions that form the so-called Stern layer. A second layer of ions is attracted forming the
double layer. The ζ -potential is the potential between the surfaces of the solid and the double layer (see,
e. g., [152]).
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ensuring that particles and surfaces exhibit the same polarity of the ζ -potential (cf. Fig-
ure 3.1(b)) acidic solutions are also suited for removing particles; the latter is used in
the so-called IMEC clean [192]. Finally, particle removal can be made more effective by
applying megasonic.

In order to achieve an appropriately efficient particle removal, it was shown that
approximately 2–3 nm of silicon need to be etched during the cleaning step [105]. The
etching of silicon occurs with a very small rate due to the following reaction: Silicon
(hydrogen passivated Si-H) is predominantly oxidized due to H2O2, which yields a chem-
ical oxide on top of the surface. This oxide is etched due to the presence of OH−-groups
according to the reaction: OH− + Si2O → SiO3H

−. The latter reaction is very slow and
basically determines the rate of the etching process. The etch rate also depends on tem-
perature. Reported values of the etch rate are 0.1 nm/min at 60 °C and 0.37 nm/min at
85 °C [239]. Due its dependence on the OH−-concentration, the etch rate can be reduced
controllably by diluting the APM (up to ratios of 1:1:200). Consequently, dilution of SC1 is
meaningful, since a too high pH-value does not necessarily increase the particle removal
due to the electrostatic repulsion. But if the concentration is rather high, increased loss
of material due to etching and a higher surface roughness are expected.

3.1.3.2 Standard Clean 2
Standard clean 2 (SC2) is a mixture consisting of HCl, H2O2 and H2O and is used to re-
move metal contaminations. In particular, alkali metal ions, Al+3, Fe+3 and Mg+2 are
removed that form insoluble hydroxides in alkaline ammonia solutions (such as SC1).
Similar to SC1, diluted solutions at temperatures ∼60 °C are in use (see Table 3.1) for
the same reasons mentioned above. However, rather concentrated solutions are also
employed. For instance, a modified SC2 can be used after anisotropic etching of sili-
con with KOH (see Section 3.6.4). Potassium is known to diffuse through gate oxides
and it also deteriorates the carrier lifetime. Thus, it is detrimental for most devices.
Therefore, removing the K-ions is of utmost importance prior to continuing fabrica-
tion in clean process tools. While silicon can be etched anisotropically with tetramethyl-
ammonium-hydroxide (TMAH), which is CMOS-compatible, TMAHhas somewhat differ-
ent etch characteristics from KOH and has recently been found to be a very hazardous
chemical (see info-box in Section 3.6.4 for further details). Using SC2 with a mixture of
1:1:1 allows removing the K-ions effectively. The high concentration of HCl yields a self-
heating etch solution that does not need external heating (in contrast to the usual SC2).

3.1.3.3 Drying Procedures and Surface Conditioning
Drying of the substrates is an integral and very important part of each cleaning pro-
cedure. In particular, if the last step of the cleaning procedure is an HF-dip in order to
remove the chemically grown oxide, the wafers become hydrophobic and the Si dan-
gling bonds at the surface are saturated with hydrogen atoms. However, a hydrophobic
surface is prone to becoming recontaminated. Furthermore, if the HF-dip is followed
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by a DI-water rinse and blow-dry, an incomplete hydrogen passivation is obtained with
OH-groups being attached to the surface leading to a reoxidation of the surface after ap-
proximately 20min. With an appropriate drying, on the other hand, some studies claim
that reoxidation can be avoided up to several days. An extensive review onwet chemical
surface passivation with cleaning solutions can be found in [91].

3.2 Oxidation of Silicon

When exposed to oxygen silicon readily oxidizes and if done properly forms stoichio-
metric silicon dioxide SiO2. Si/SiO2 is an extraordinary material combination in that
it is the native oxide of silicon that exhibits excellent chemical, mechanical and ther-
mal stability and provides superb electrical insulation properties. Evenmore important,
SiO2 yields an orders ofmagnitude reduction of electronic states at the Si/SiO2 interface.
The latter is key to the realization of metal-oxide-semiconductor field-effect transistors,
which will be discussed in detail in Sections 4.5 and 5.2.2. In addition, for the fabrica-
tion of the silicon/SiO2 material system, etch processes with very high selectivities of the
two materials with respect to each other are available. Hence, SiO2 plays a prominent
role for the fabrication of sophisticated semiconductor structures serving not only as
insulator but also as etch mask, sacrificial layer, etc.

Figure 3.2(a) displays a high-resolution transmission electron microscopy image4

of the silicon/SiO2 interface, clearly showing the border between the crystalline silicon
structure and the amorphous SiO2. In Figure 3.2(b), a schematic close-up of the inter-
face is shown. Most of the bonds of the silicon surface atoms are involved in the oxide
formation. However, some bonds (marked with a red line) can be unsaturated provid-
ing electrically active defects. At a silicon (100) surface, one distinguishes between Pb0

Figure 3.2: (a) TEM image of the Si/SiO2 interface. (b) Illustration of the interface layer showing Pb0 and Pb1
defects. (c) Strong reduction of Dit due to FGA in the presence of aluminum.

4 A. Meledin, Central Facility for Electron Microscopy (GFE), RWTH Aachen University.



3.2 Oxidation of Silicon � 99

and Pb1 defects;
5 in the former case, a Si atom is back-bonded to three other Si atoms

whereas in the latter case, the Si atom is bonded to two Si and one oxygen atom (see
Figure 3.2(b)). These so-called dangling bonds are amphoteric in nature, i. e., they pro-
vide energy levels located in the lower half of the band gap that are donor-like as well
as acceptor-like states within the upper half of Eg .

Fortunately, the dangling bonds can be passivated with hydrogen (depicted in Fig-
ure 3.2(b)) that allows reducing the density of interface states Dit within the band gap
substantially. Hydrogen is usually provided by a forming gas anneal (FGA), a mixture of
nitrogen and hydrogen (∼9:1), at 400–450 °C for approximately 20–30min. Since forming
gas consists of molecular hydrogen, it needs to be split into atomic hydrogen in order to
be effective. In this respect, the presence of aluminum (for instance, as part of the gate
electrode) is important because it acts catalytically yielding the required atomic hydro-
gen to saturate the dangling bonds as shown in Figure 3.2(c) [234]; without the presence
of aluminum, hydrogen should be provided in atomic form, for instancewith a hydrogen
plasma [234]. With proper oxidation in combination with forming gas anneal, the den-
sity of interface states can be reduced ∼105-fold compared to the density of unsaturated
bonds at a bare Si surface. In the following section, the process of thermal oxidation of
silicon is briefly discussed.

3.2.1 Thermal Oxidation

The oxidation of silicon is a straightforward process and requires only a quartz furnace
that can be heated to elevated temperatures (up to approximately 1200 °C). If a sample
(after carrying out a standard cleaning) is mounted into the furnace and heated up, the
provided oxygen diffuses through the (possibly already) existing SiO2 layer and further
oxide grows at the Si/SiO2 interface. One distinguishes between wet thermal and dry
thermal oxidation. In the case of wet thermal oxidation, water is introduced into the
furnace by driving oxygen as carrier gas through a so-called bubbler filled with deion-
izedwater. Alternatively, H2/O2 is burned in a controlled way at a torch connected to the
quartz furnace. Dry oxidation, on the other hand, only requires the injection of oxygen
gas into the furnace.

It is important to note that the oxidation of silicon is a growth and not a deposi-
tion process meaning that silicon from the oxidized sample is consumed to form the
SiO2. This has two important implications. First, oxide growth always occurs at the
silicon/SiO2-interface and as such it is expected that the growth rate drops with in-
creasing SiO2 thickness. This fact is often mentioned as the reason why a wet thermal

5 On a Si (111) surface, only the Pb defect exists, which is similar to Pb0.
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oxidation leads to a larger oxide growth rate:6 the water molecule is simply smaller
than O2 and can thus diffuse faster through the existing oxide. Second, the consumption
of silicon during oxidation needs to be taken into account, particularly when working
with Si nanostructures. Considering the fact that the ratio of the molecular density of
SiO2 and the atomic density of Si7 is inversely proportional to the ratio of the consumed
Si and grown SiO2 thicknesses, one obtains

Nox
Nsi
=

2.3 ⋅ 1022 molecules/cm3

5 ⋅ 1022 atoms/cm3 =
dsi
dox
→ dsi = 0.46 ⋅ dox. (3.1)

As a rule of thumb, oxidation consumes roughly half the thickness of the grown SiO2.
The oxidation of silicon can be described with the Deal–Grovemodel [62]. To derive

an expression for the SiO2 growth based on it, a silicon sample in an oxygen atmosphere
is considered as depicted in Figure 3.3(a). The interface between the gas phase with con-
centration cg and the boundary layer with an oxygen concentration at the surface of
csf is illustrated with the red dashed line. The difference in concentration drives a flux
jg = hg(cg − csf) toward the sample surface where hg is the gas transport coefficient.
Furthermore, the oxygen concentration at the Si/SiO2 interface is denoted with cox, and
hence there will be a flux of oxygen jdiff = D

ox
diff
𝜕c
𝜕x ≈ D

ox
diff

csf−cox
dox

diffusing through the ox-
ide withDox

diff being the diffusion coefficient. Finally, a flux for the oxidation reaction can
be defined as jox = kox ⋅ cox where kox is the rate of surface reaction. The latter flux can
also be written as jox = N

𝜕dox
𝜕t where N is the concentration of oxidant molecules (H2O

or O2) per unit volume of grown oxide (N = 2.2 ⋅ 1022 cm−3 in the case of dry oxidation).

Figure 3.3: (a) Deal–Grove model of silicon oxidation. (b) SiO2 thickness versus oxidation time grown at
1050 °C in a RTO furnace. The straight line is a Deal–Grove model fit.

6 It has been shown recently that oxygen indeed diffuses in its molecular form through defect-free SiO2
without oxygen exchange with the network [180].
7 Nox = NA ⋅

ρox
mox

and Nsi = NA ⋅
ρsi
msi

where NA is Avogadro’s constant, ρox,si are the densities of SiO2 and
Si andmox,si are their molecular weights.
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Since the continuity equation holds, all fluxes must be equal, i. e., jg = jdiff = jox =
N 𝜕dox𝜕t ≡ j. Solving j = hg(cg − csf) for csf and inserting this into j = Dox

diff
csf−cox
dox

allows
solving for cox. Finally, this is inserted into j = kox ⋅cox and the resulting equation is solved
for j, which in turn is equal to N 𝜕dox𝜕t . This leads to the following first-order differential
equation:

N 𝜕dox
𝜕t
=

cg
1
kox
+ 1

hg
+ dox

Dox
diff

, (3.2)

which—rewritten as 𝜕dox𝜕t =
B

A+2dox
—can immediately be integrated leading to

dox(t) =
A
2
(√1 + 4B

A2 (t + τ) − 1). (3.3)

The factor τ takes an existing oxide thickness (e. g., the native oxide) into consideration.
For rather short oxidation times, Equation (3.3) can be approximated with dox ≈

B
A (t+τ)

and for long times dox ≈ √B(t + τ). B and B/A have been found to be of Arrhenius type
with B = C1 exp(−E1/kBT) and B/A = C2 exp(−E2/kBT). Table 3.2 specifies values for the
parameters C1,2 and the activation energies E1,2 in the case of wet and dry oxidation for
(100) and (111) silicon surfaces. Note that Edry

1 > E
wet
1 is consistent with the fact that the

different diffusion behavior of O2 andH2O through SiO2 is responsible for the difference
in the oxidation rate. Moreover, the oxidation of the {111} silicon crystallographic planes
is higher compared to the {100} plane due to the larger density of Si atoms on {111} planes
(cf. Figure 2.26).

For oxide thicknesses below approximately 35 nm, it is known that the Deal–Grove
model underestimates the oxidation; in the case of thin oxides, there is a rapid initial ox-
idation phase, which is not well understood. However, phenomenological extensions of
the Deal–Grove model allow for the description of thin SiO2 (see, e. g., [187]). Indeed,
Figure 3.3(b) shows dox of a thin SiO2 grown with rapid thermal oxidation (RTO) at
T = 1050 °C as a function of oxidation time. With the appropriate parameters B and B/A
(significantly larger than the values provided in Table 3.2), excellent qualitative agree-
ment with the Deal–Grove model is obtained.

Table 3.2: Parameters for dry and wet thermal oxidation according to the Deal–Grove model.

B((100) Si) B/A((100) Si) B((111) Si) B/A((111) Si)

dry C1 = 7.72 ⋅ 10
2 µm2

h C2 = 3.71 ⋅ 10
6 µm

h C1 = 7.72 ⋅ 10
2 µm2

h C2 = 6.23 ⋅ 10
6 µm

h

E1 = 1.23 eV E2 = 2.00 eV E1 = 1.23 eV E2 = 2.00 eV

wet C1 = 3.86 ⋅ 10
2 µm2

h C2 = 0.97 ⋅ 10
8 µm

h C1 = 3.86 ⋅ 10
2 µm2

h C2 = 1.63 ⋅ 10
8 µm

h

E1 = 0.78 eV E2 = 2.05 eV E1 = 0.78 eV E2 = 2.05 eV
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3.2.2 Local and Geometry-Dependent Oxidation of Silicon

As already mentioned above, the rate of oxidation depends on temperature, oxidation
method (wet/dry), crystallographic orientation and on the doping level (not discussed
here). In addition, the oxidation rate also depends on the geometry of the structure that
is oxidized. Due to compressive strain, the oxidation is substantially lower in corners.
The effect is more pronounced in concave than in convex corners and stronger at low
oxidation temperatures.

The oxidation can also be done locally by covering parts of the silicon that shouldnot
be oxidize with an appropriate diffusion barrier layer for which silicon nitride (Si3N4)
has proven most suitable. In the so-called local-oxidation-of-silicon (LOCOS) process, a
nitride layer is patterned, and subsequently the sample is oxidized. Combining a geom-
etry dependence with local oxidation of silicon allows realizing Si nanostructures that
can be used for nanoelectronics devices and are difficult to realize with other processes.

The main panels of Figure 3.4 show two cross-sections of thermally oxidized
V-grooves realized in bulk-Si with anisotropic silicon etching (see Section 3.6.4). In (a),
a rather thick nitride (∼100 nm), and in (b), an ultrathin silicon nitride (∼3 nm)was used.
In both cases, it is apparent that oxygen diffusion through the layer has been suppressed.
In (a), the diffusion at the interface between the silicon and the nitride is suppressed,
too. This is expected since the nitride was deposited onto an HF-dipped silicon wafer
such that the nitride is in intimate contact with the silicon (i. e., without a so-called pad
oxide). In contrast, in the case of (b), oxygen can diffuse from the (111)-flanks because
the nitride is ultrathin, and hence mechanically flexible leading to the formation of the

Figure 3.4: Local oxidation of a TMAH-etched V-groove with a thick SiN (a) and an ultrathin SiN (b). The
inset of (b) shows the so-called bird’s beak in the case of thin SiN. The lower panels show cross-sections
after oxidation; the dashed lines indicate the original silicon structure.
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so-called bird’s beak (see inset of Figure 3.4(b)). The lower panels of Figure 3.4 show how
compressive strain in convex corners leads to a reduction of the oxidation thickness.
Finally, the combination of an anisotropically etched Si structure with LOCOS shows the
formation of a nanowire with ∼20 nm diameter (lower right panel).

3.2.3 Chemical Oxidation of Silicon

Extremely thin silicon dioxide layers can also be produced by oxidizing silicon wet
chemically. As was discussed in Section 3.1, piranha, SC1 or SC2 can in principle be used
to oxidize silicon resulting in a chemical oxidewith a thickness of approximately 1–2 nm.
However, the preferred way to oxidize silicon chemically is the use of nitric acid (called
NAOS=nitric acid oxidation of silicon). The reason for the strong oxidizing capability
of nitric acid even at temperatures as low as room temperature is the decomposition
reaction

2HNO3 → 2NO + H2O + 3O, (3.4)

which provides atomic oxygen for the oxidation of silicon. NAOS can be carried out with
different concentrations of HNO3, at different temperatures, and in addition, oxidation
is possible either by immersing the sample into the nitric acid [151] or using acid vapor
[132]. Interestingly, NAOS can be described very well (apart from the thinnest oxides
below ∼0.8 nm) with a Deal–Grove-like model, that was originally used to describe the
thermal growth of silicon nitride [274]. In this model, the grown oxide thickness dNAOSox is
assumed to be much larger than the diffusion length ldiff of oxidant through the grown
oxide. Thus, dNAOSox depends logarithmically on the oxidation time according to [274]

dNAOSox = ldiff ln(
B ⋅ t

l2diff + A/2ldiff
) (3.5)

and not∝ √B ⋅ t as in Section 3.2.1.
Figure 3.5(a) shows data for oxidation with HNO3-vapor (blue) and by immersion

into HNO3 (green) extracted from [151, 132]. The grown oxide thickness can be well
described with the logarithmic time-dependence mentioned above as shown with the
dashed lines. The different behavior of the curves can be mostly explained with the
exponential temperature dependence of the factor B according to B = C exp(−EA/kBT).
To fit the experimental data, C

l2diff+A/2ldiff
and ldiff have been used as fitting parameters.

In order to reproduced the oxide growth at different temperatures, it is sufficient to
use the temperature dependence due to the exponential factor and assume only a weak
temperature dependence of ldiff. EA is again the activation energy related to the diffu-
sion of the oxidant through the already grown oxide. In the present case, EA = 0.14 eV,
i. e., much lower compared to dry or wet thermal oxidation, which can be understood
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Figure 3.5: (a) SiO2-thickness as a function of oxidation time using nitric-acid oxidation of silicon. The data
was extracted from [151, 132]. (b) Ultrathin-body silicon-on-insulator thinned down with NAOS and HF-
stripping [153].

because the oxidant is atomic oxygen compared to molecular oxygen in the dry thermal
oxidation and water in the wet thermal oxidation case.

The important point here is that the logarithmic behavior of the oxidation yields ba-
sically a self-limiting oxide growth, and hence ultrathin dox become feasible that can be
much better controlled compared to thermal oxidation. Therefore, NAOS is an excellent
method for very controlled thinning of silicon structures. An example is displayed in
Figure 3.5(b), showing silicon-on-insulator that has been thinned down to ∼1.7 nm using
multiple NAOS and HF-stripping steps. Moreover, the silicon dioxides grown with NAOS
were shown to exhibit excellent insulating properties with even less leakage than their
thermally grown counterparts with equal dox [132, 131].

3.3 Rapid Thermal Nitridation

Ultrathin silicon nitride layers can be grown using rapid thermal nitridation (RTN) in a
NH3/Ar-atmosphere. As mentioned above, the thickness dSiN of the grown nitride can be
described by Equation (3.5) with exponential dependence on process temperature (cf.
Figure 3.6(a)) and logarithmical dependence on growth time (Figure 3.6(b)). The thick-
ness of experimentally grown SiN layers is shown in Figure 3.6 where spectroscopic el-
lipsometry has been used tomeasure dSiN [72, 223]. The exponential temperature depen-
dence (a) together with the logarithmic time-dependence (b) provide excellent process
control over dSiN. As a result, even sub-1 nm SiN layers can be grown reproducibly.

It was already mentioned above that silicon nitride is a very effective diffusion bar-
rier and is therefore used for the LOCOS process and also to encapsulate chips to prevent
them from being exposed to atmosphere. Interestingly, even sub-1 nm thin SiN allows
suppressing the oxidation of silicon during the deposition of a high-k gate dielectric.
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Figure 3.6: (a) Growth of SiN as a function of temperature (for constant time) using rapid thermal nitrida-
tion in Ar/NH3 atmosphere. The thickness of the various SiN layers is measured by spectroscopic ellipsom-
etry. (b) Measured SiN thickness (symbols) as a function of time for three different RTN growth tempera-
tures. The lines are fits using Equation (3.5).

This property can, for instance, be used to engineer the silicon gate dielectric interface
to improve the performance of cryogenic MOSFETs as will be discussed in Chapter 11.

3.4 Wafer Bonding

The fabricating of a device basically consists of a suitable sequence of deposition, lithog-
raphy and etching process steps in order to achieve a certain functionality. A major dif-
ficulty in this respect is the combination of crystalline and amorphous materials. While
it is usually not a problem to deposit an amorphous material on top of a crystalline one,
the otherway around is not possible or only in a polycrystalline form (such as the poly-Si
gate electrodes). However, quite often it is desirable to have a crystalline layer of mate-
rial on an amorphous layer. The most prominent example of this is arguably silicon-on-
insulator (SOI) substrates. While different methods to realize SOI are reported in litera-
ture, the highest quality of such substrates is achieved using direct (also called fusion)
wafer bonding.

During wafer bonding, two materials with very smooth surfaces are brought into
contactwith each other. The surface needs to be preprocessed; for instance, in the case of
Si one distinguishes between hydrophilic (HL) and hydrophobic (HB) bonding depicted
in Figure 3.7(a). When carrying out HL bonding, there is a SiO2 layer on bothwafers, and
consequently, water is chemisorbed on the surface. In HB bonding, the oxide layers are
removed with HF and both surfaces are hydrogen passivated.

Bonding is usually done in a tool that allows to separate the two wafers and keep
them at a rather small distance from each other. Then, under vacuum, the center of one
wafer is pressed against the second wafer. Subsequently, van der Waals forces (HL and
HB bonding) and polymerization of silonal due to chemisorbed water at the wafer sur-
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Figure 3.7: (a) Hydrophilic (left) and hydrophobic (right) wafer bonding. (b) Results of hydrophilic bonding
of two Si 4′′ wafers imaged with an infrared camera. The top image shows proper bonding, the lower a
failed bonding process. (c) Cross-section electron micrograph of homemade SOI (top) and transmission
electron microscopy image of commercially available SOI (bottom).

face (HL bonding) lead to a spontaneous bonding that starts from the center of thewafer
and extends toward the edges. Retracting the separators results in a bonding wave that
yields a void-free (if properly done) bonding. The two wafers are pressed against each
other and while exerting a substantial pressure the bonded pair of wafers is annealed
at temperatures up to ∼200–300 °C. Finally, in order to strengthen the bond, the wafers
are annealed at elevated temperatures.

Figure 3.7(b) shows infrared images of results after HL bonding of two 4′′ Si wafers.
The top image shows proper, void-free bonding (the three dark blue spots at the wafer
edges are thewafer supports of themeasurement apparatus) apart from an area around
themain flat whereas the lower image displays a failed bonding with voids and reduced
contact area. A cross-sectional electron micrograph of a homemade SOI wafer is shown
in the top panel of Figure 3.7(c); the lower panel displays a transmission electron mi-
croscopy image of a commercial SOI wafer showing the excellent quality of the SiO2/Si
(i. e., amorphous to crystalline) interface.

Apart from a void-free bonding, the bonding strength is the decisive parameter to
quantify the bond process. The bond strength is strongly increased with an anneal at
elevated temperatures in HL and HB bonding. Hydrophilic bonding has the advantage
that it provides a larger bonding strength below annealing temperatures of ∼500 °C. In
addition, the hydrophilic surface is less prone to be contaminated by particles (see Sec-
tion 3.1.3). The drawback, however, is that in order to reach the full bonding strength
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annealing temperatures >800 °C are required; HB bonding on the other hand already
reaches the full bonding strength at approximately 700 °C [216]. A very interesting way
to facilitate low temperature bonding is a preprocessing with an oxygen plasma activa-
tion, which was shown to yield the full bonding strength already at a temperature as
low as 105 °C [44].

3.5 Lithography

Lithography is one of the most important and most sophisticated process steps, needed
to print patterns into a resist that will subsequently be transferred into the substrate
or into a layer deposited on the substrate. Interestingly, for more than two decades in-
dustry had been printing features substantially smaller than the wavelength of the used
light source (only recently the change to extreme UV lithography succeeded). This has
been made possible by the so-called projection lithography equipped with a number
of resolution-enhancing techniques including off-axis illumination, phase-shift masks,
optical proximity correction, immersion lithography, and double-patterning. Since the
present book is intended as a text-book for (under)graduate students, projection lithog-
raphy is not dealt with here but the book concentrates on techniques that are relevant
for students’ dailywork, i. e., contact lithographywithmask aligners, optical lithography
with laser scanners and electron-beam lithography. However, recently industrial reso-
lution enhancement techniques, in particular phase-shift masks and optical proximity
correction [269, 260], have also been adopted for contact lithographywithmask aligners
and will therefore be briefly mentioned. Finally, the so-called spacer patterning, which
is independent of the actual lithography process, will be discussed.

3.5.1 Resist Coating

Photoresist coating is done by spinning the resist onto the sample. Prior to this, the sam-
ple needs to be dehydrated by baking it on a hot plate for several minutes. In the case
of SiO2 surfaces, an adhesion promoter such hexamethyldisilacane (HMDS) should be
used in order to turn the hydrophilic SiO2 surface hydrophobic. Afterwards, the sample
is mounted onto a vacuum chuck. After prespinning at low spinning speed, the sam-
ple is accelerated to the final spinning speed ω in order to evenly distribute the resist
across the sample. In the central part of the sample, a uniform resist thickness dpr is
obtained whose thickness is proportional to 1/√ω. Finally, a soft-bake of the samples is
carried out in order to dry the resist, drive out solvents and enhance the contrast (cf.
Section 3.5.2.2). Temperature and time depend on the specific resist in use; either a hot
plate or a convection oven can be used.

At the edges of the sample, in particular at sharp edges and even more in corners,
the resist thickness can be significantly larger. This so-called edge bead should be re-
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Figure 3.8: Schematic of a mask aligner. A resist coated sample (with edge bead) is brought into contact
with the mask. A turning mirror or an array of light emitting diodes “switches” the light on and off resulting
in very precise exposure times.

moved when doing contact lithography. If not removed, the resolution of the lithogra-
phy process will be significantly deteriorated because the edge bead results in a several
µm large separation betweenmask and the central region of the sample (see Figure 3.8),
and hence in a blurrymask imagewithin the resist due to diffraction. Removing the edge
bead can either be donewith an additional lithography process with high exposure dose
and short development time or simply with a q-tip soaked in acetone. A successful re-
moval can be easily observed with Newton interference rings across the entire sample
when contact between sample and mask is made.

3.5.2 Optical Lithography

In a university clean room environment, optical lithography is usually carried out ei-
ther as contact lithography with a mask aligner or contactless with a laser scanner.
A mask aligner allows adjusting a resist-coated sample to be aligned with respect to
a static mask that consists of a quartz glass plate with chromium patterns on it as il-
lustrated in Figure 3.8. After alignment, sample and mask are brought into firm contact
facilitating the printing of a one-to-one image of the chromium mask pattern into the
resist by exposing the mask/sample sandwich to UV light with a certain dose. The reso-
lution limit of the lithography pattern is determined by the diffraction of the UV light,
as illustrated in Figure 3.9(a); here, Huygen’s principle was used to compute the cross-
section of the dose pattern shown in the lower panel. One clearly observes an exposure
of the resist underneath the mask pattern due to diffraction. Minimum feature sizes of
a typical contact lithography with mercury vapor lamps (wavelength λg-line = 436 nm
or λi-line = 365 nm) are therefore 0.5–1 µm. To minimize diffraction, it is very important
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Figure 3.9: Resolution limit of optical lithography due to diffraction at the mask patterns (a); Huygen’s
principle was used to compute the cross-sectional dose pattern (interference has been neglected in the
present case) shown in the lower panel. In the case of laser lithography illustrated in (b), the minimum
beam waist of the Gaussian beam and the optical proximity effect associated to it limit the resolution.
The cross-section of the dose profile depicted in the lower panel was computed as the overlap of six line
exposures.

that the sample surface is in intimate contact with the mask. Hence, edge bead removal
after the photoresist coating is essential for optimal pattern transfer. The direct contact
betweenmask and sample requires frequent cleaning of themask to remove debris and
contamination.

While contact lithography is a parallel, and hence quick process, there is no flexi-
bility since the required mask cannot be modified anymore. Laser lithography, on the
other hand, is a maskless, and thus contactless, flexible yet slow lithography method
since it is a serial process. The result of a laser lithography process is directly related
to the shape of the laser beam. Here, a Gaussian beam with a beam waist (i. e., the di-
ameter of the focal spot) w0 and beam edge w(x) = w0√1 + (

x
xR
)2 (cf. Figure 3.9(b)) with

Rayleigh length xR =
πw2

0n
λ is assumed. The resolution of laser lithography is then limited

by w0 and the optical proximity effect (see below). To determine the resolution, let us
first compute the sine of the angle α of the beam divergence, which is the numerical
aperture N .A. = sin(α), given by N .A. = w(x)

√x2+w(x)2
(with refractive index n = 1). Next,

the beam edge for large x becomes w(x) ≈ w0x
xR

. Inserting this into the expression for

N .A., one obtains N .A. ≈ w0

√x2R+w
2
0

→ λ
πw0

since x2R
w2

0
≫ 1. The last expression means that

w0 ≈
λ

πN .A. . Therefore, the resolution of laser lithography can be improved by choosing
a laser source with small wavelength λ and focusing the beamwith a lens with large nu-
merical aperture. However, care has to be taken when the numerical aperture is large:
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the Rayleigh length multiplied with a factor of 2 can be interpreted as the depth of focus
DOF, and thus, DOF = 2xR ∝

λ
(N .A.)2 ; this is illustrated in Figure 3.9(b) where the lines

around the center of the beam represent locations of constant intensity. As a result, in-
creasing N .A. requires a strong reduction of the resist thickness to maintain dpr ≤ xR
(note that in Figure 3.9(b) the resist thickness would be too large).

The resolution of laser lithography is also determined by the so-called optical prox-
imity effect. Due to the Gaussian beam shape, a substantial undeliberate exposure of
the photoresist with UV light outside the constant dose contours is obtained as depicted
in Figure 3.9(b). Exposing at several spots in close proximity (six in the case illustrated
in (b)), this undeliberate dose adds up resulting in the dose profile shown in the lower
panel of Figure 3.9(b). Eventually, the added dosemay exceed the threshold dose needed
for the developer to attack the photoresist. The undeliberate exposure needs to be taken
into consideration when small feature sizes with high pattern fidelity are printed. This
can either be done iteratively by adjusting the dose after inspection of the lithography
result in a scanning electron microscope or by adjusting the dose distribution within
the computer generated file of the mask employing, e. g., a (non-negative) least-square
optimization as is done in Section 3.5.3.1.

3.5.2.1 Positive- and Negative-Tone Lithography Processes
A lithography step is used in order to prepare a resist structure that in turn is used to
pattern the substrate (or parts of it). As an example, let us assume we want to prepare
a metallic contact pad onto a substrate. In principle, this can be accomplished in two
different ways: first, a so-called positive process can be carried out as illustrated in Fig-
ure 3.10. In this case, the metal thin film is deposited first onto the substrate followed by

Figure 3.10: Pattern transfer after thin film deposition (a) and resist coating (b) with a positive (top panel of
(c)) and negative (bottom panel of (c)) lithography process. The exposed (positive) or unexposed (negative)
areas are dissolved during the development. The resist pattern can be used as mask to etch the thin film.
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coating with a positive-tone resist; subsequently, a lithography is carried out where the
specific dose depends on the chosen resist. In the case of a positive-tone resist, the areas
where the mask is transparent and UV light hits the photoresist are washed away in an
alkaline developer solution. The remaining resist structure can then be used as an etch
mask to pattern the metallic film either with wet chemical or dry etching. Afterwards,
the resist mask is removed, which completes the pattern transfer. As a second alterna-
tive, a very similar process but with so-called negative-tone resist can be done. In this
case, the areas that are exposed initially remain on the substrate whereas the area that
was not exposed to UV light is dissolved in the developer. In order to obtain the same
metal pattern as in Figure 3.10, a mask with inverted mask pattern is needed.

3.5.2.2 Resist Development and Resist Contrast
A very important figure of merit for a resist is its contrast. While in the case of an excel-
lent lithographic pattern transfer even a resist with rather low contrast yields good re-
sults, a resist with high contrast can compensate for a blurry lithography image thereby
extending the resolution to smaller pattern dimensions. To elaborate further on this, let
us consider a positive-tone resist with thickness dpr in the following. During exposure,
the long-chain polymers of the photo-active component of the resistwill be disintegrated
such that they can be dissolved in an alkaline solution (developer). Let us define an ex-
posure dose D0, below which the resist basically stays fully intact. The remaining resist
thickness dremain

pr after development can be expressed as [279]

dremain
pr =

dpr
1 + η
[e−(D−D0)/A + ηe−(D−D0)/B] (3.6)

where D is the deposited dose and η,A,B are fitting parameters.8 Moreover, one can
define an exposure dose Dc (dose to clean) where dremain

pr → 0. Let us assume that for a
resist of ∼1 µm thickness the dose to clean is reached when dremain

pr < 1 nm. In this case,
a contrast γ of the photoresist can be extracted to be

γ = 0.999
log(Dc) − log(D0)

≈ [
log(Dc)
log(D0)
]
−1

. (3.7)

The closer the levels D0 and Dc are the larger γ, i. e., the better the contrast of the resist.
In the limit of Dc = D0, the contrast becomes infinite. Typically, γ ≈ 2 is considered a
good contrast; for PMMA (cf. Section 3.5.3.2) γ ≈ 5–10.

Figure 3.11 shows two blurred exposure dose curves D(x). Unintended exposure oc-
curs due to diffraction and optical proximity effect as discussed in Section 3.5.2. If a pho-
toresist is used with a low contrast of γ = 1.17, the blurred dose profile such as the

8 Note that in [279] Equation (3.6) is stated for a negative resist.
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Figure 3.11: Resist profile calculated using Equation (3.6) with the dose profiles D(x) shown with the yellow
straight and dotted lines. Resists with two different contrasts γ = 1.17 and γ = 15.9 are assumed. A low con-
trast leads to a resist foot whereas a high contrast yields excellent pattern fidelity even if the dose profile is
strongly broadened (dotted yellow line).

straight yellow line yields a resist profile as shown in the bottom left with a pronounced
resist foot (dark brown line) and a resist side wall inclining an angle smaller than 90°.
However, if the contrast could be increased to, e. g., γ = 15.9 the resist flank becomes very
steep and the foot has almost vanished (black line). The excellent result remains even if
the broadening of the exposure dose profile is increased (dotted lines). Therefore, care
has to be taken when doing an optical lithography process to obtain the highest possible
contrast. Factors that diminish contrast are, for instance, a too low humidity of the clean
room air and the use of concentrated developer.

3.5.2.3 Image Reversal Process
A third alternative for pattern transfer with lithography is the so-called image reversal
process. While positive/negative processes yield reliable and reproducible results, they
require the availability of a highly selective etch mechanism to transfer the photoresist
pattern into the thin (metal/dielectric) film without attacking the substrate underneath.
Often, however, an etch processwith suitable selectivity does not exist, or is not available
in the lab. In this case, a so-called image reversal and lift-off process can be used to
pattern a thin film. An image reversal process requires the use of a suitable photoresist
(for instance, AZ5214E).

The process is illustrated in Figure 3.12 and starts with a short initial exposure step.
This step should be substantially shorter than in the case of a positive process: the aim
here is to obtain a gradient of the UV dose in the direction perpendicular to the substrate
surface. After the exposure, a so-called reverse bake on a hot plate is carried out that
activates a cross-linking agent within the exposed volume of the photoresist making it
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Figure 3.12: Schematic process flow ((a)–(e)) of an image reversal process that leads to inverted resist
flanks ideally suited for a lift-off process. (f) Electron micrograph of a sample with resist exhibiting inverted
flanks. A metal film is deposited on top with electron beam evaporation.

almost insoluble in the developer. Finally, a flood exposure is done so that the areas
shadowed by the mask pattern during the first lithography step will be exposed, and
thus dissolved in the subsequent development.

An image reversal process yields a resist pattern with inverse resist flanks (illus-
trated in Figure 3.12(d), see also (f)) in contrast to a positive process where the resist
flanks are usually at best vertical and exhibit a more or less pronounced resist foot (cf.
Figure 3.11); see QR code #29 for the progress toward inverse resist flanks during the
resist development. If a nonconformal deposition process such as electron-beam evap-
oration (Section 3.8.1) is used, where the evaporated metal hits the sample at ∼90 ° with
respect to the surface and if the thickness of the deposited material (usually a metal) is
substantially below the thickness of the resist, the deposited metal film will be discon-
tinuous across the resist step (cf. Figure 3.12(e) and (f)). As a result, when immersed in
a solvent such as acetone, the photoresist and with it

29
the superficial metal on top of

the photoresist will be washed away leaving the (approximately) same metal pattern
as with a positive process with the same mask but without the necessity of etching the
metal.

In order to obtain a resist pattern suitable for a lift-off, the dose of the initial ex-
posure and the time/temperature of the reverse bake are decisive for the final resist
cross-section. Figure 3.13 shows resist cross-sections obtained after varying the time of

https://vimeo.com/462645165
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Figure 3.13: Inverted resist flanks realized with an image reversal process with different process parame-
ters. (a) Dependence of the mask undercut on the time of the initial exposure with a reverse bake of 120 s.
(b) Mask undercut as a function of reverse bake time for an initial exposure time of 3 s. The electron micro-
graphs show exemplary resist cross-sections (on a silicon substrate) for the conditions stated in the figures.

the initial exposure (a) and the time for the reverse bake (b) (all other parameters are
given in the figure). Note that the colored resist cross-sections are one-to-one copies of
cross-sectional electron micrographs (as shown in the lower panels); the schematic pre-
sentation has been chosen for clarity. From the resist cross-sections, the mask undercut
can be extracted. Obviously, reducing the initial exposure dose and the time of the re-
verse bake yield resist flanks better suited for lift-off. But one has to keep in mind that
both measures also lead to a reduction of the resist thickness and, more importantly,
to a lateral reduction of the resist mask (leading to larger metal patterns). However, if
the exact size of the metal pattern is not important—as is often the case when the metal
merely serves as a contact lead—the resist pattern can be tuned in an image reversal
process to enable a proper lift-off process.

3.5.2.4 Interference Phenomena During Optical Lithography
In Section 3.5.2, the exposure dose profile within the photoresist due to diffraction and
the proximity effect were discussed (see the lower panels of Figure 3.9). However, an im-
portant issue, namely interference phenomena, has been neglected so far. When highly
reflecting substrates are being used, the formation of a standing wave pattern is very
likely. In particular, the monochromatic light in laser lithography leads to rather pro-
nounced standing wave patterns. When a photoresist with high contrast is used, the
standing wave patterns can be seen as ripples in the resist side walls after the devel-
opment. Figure 3.14, left panel, shows such a resist flank after laser lithography and
development (the standing wave pattern is illustrated with the dark yellow lines) with
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Figure 3.14: Electron micrographs of resist patterns after exposure and development. Standing wave pat-
terns can lead to wavy resist patterns at the side walls and even along a pattern that was covered by the
mask.

strongly pronounced ripples. Moreover, the limited depth of focus and a rather thick
resist lead to the nonvertical resist flank.

Standing wave patterns in the photoresist also appear during lithography with a
mask aligner that are usually equipped with less monochromatic mercury vapor lamps.
The center panel of Figure 3.14 shows that at the substrate-resist interface the typical
standing wave pattern appears. Moreover, if rather thin resists are used it may also oc-
cur that a horizontal mode, guided in-between substrate and mask is generated as illus-
trated with the dark yellow zig-zag pattern in the right panel of Figure 3.14. A horizon-
tally guided mode can lead to an exposure of the photoresist underneath the chromium
pattern. Again, interference leads to awavy resist pattern shown in the figure (thewhite
dashed line is a guide to the eye).

To diminish standingwave patternswithin the resist either an antireflection coating
(for instance, as a backside antireflective coating on the wafer surface) and/or a post-
exposure bake prior to the development can be employed. The latter leads to a diffusion
of the photoactive component of the photoresist that got exposed into regions with low
exposure such that the ripple pattern is substantially reduced.

3.5.2.5 Resolution Enhancement
In order to increase the resolution of (optical) projection lithography, the industry imple-
mented a number of measures already mentioned above. Some of them, namely phase-
shift masks and optical proximity correction (OPC), have been adopted in contact lithog-
raphy [269, 260]. Both resolution enhancement techniques exploit the coherence prop-
erties of the light source used for lithography.

Constructive interference of light waves diffracted from patterns on the mask (see
Figure 3.15, left) yields an intensity, i. e., a lithography pattern, where the structures can-
not be resolved anymore if the patterns on the mask are too close to each other (red
line). In a phase-shift mask, indents are etched into the mask such that the light waves
diffracted at adjacentmask patterns acquire a 180° phase shift. The resulting destructive
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Figure 3.15: Left: Diffracted light from adjacent patterns leads to constructive interference (red line) and
as a result, the two patterns cannot be resolved. Center: Indents in a phase-shift mask lead to a 180° phase
shift between light diffracted from adjacent mask patterns resulting in an intensity minimum due to de-
structive interference. Right: Added/removed features on a mask with OPC result in diffraction patterns
that better reproduce the desired structures.

interference leads to a minimum intensity in between the structures such that patterns,
not resolved with a conventional mask, are clearly separated within the resist.

In the case of OPC, features are added at convex patterns (such as the corner of
the square structure shown in Figure 3.15, right) and removed in concave corners as
illustrated in the OPC mask in the figure. Diffraction of light at the mask including the
additional/removed features will then lead to an improved image printed into the pho-
toresist that better reproduces the initially intended pattern.

Both resolution enhancement techniques can certainly be combined. Phase-shift
masks are more expensive than a mask with OPC. On the other hand, while the addi-
tional/removed features on an OPC mask can in principle be added easily, OPC usually
requires solving a high-dimensional optimization problem to provide the optimum ad-
ditional/removed features. However, in the case of contact lithography the limited co-
herence of the light is beneficial in that it limits the lateral size of patterns on the mask
that contribute to the diffraction pattern at a particular spot on the sample. Therefore,
with some experience, appropriate OPC can be implemented at least in a rudimentary
way without sophisticated computations.

3.5.2.6 Resist Residues
Resist residues after the development of photoresist is an important issue. Figure 3.16
(a) shows an electronmicrograph cross-section of a developed photoresistmask and one
can clearly observe significant resist residues at the edge of the photoresist. During an
etch process, these residues would be partially transferred into the substrate resulting
in substantial line-edge roughness. Usually, resist residues are removed with a so-called
DESCUMprocess. To this end, the sample is exposed to a short oxygen plasma preferably
in a barrel reactor (cf. Section 3.7.5), but it can also be carried out in, e. g., an ICP-RIE tool
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Figure 3.16: Electron micrograph cross-sections of a photoresist pattern on a silicon substrate before (a)
and after (b) a DESCUM process. An oxygen plasma in a barrel reactor was used to remove the residues at
the resist edge that remained after the development.

with lowest possible RF power. After a DESCUM process, the line-edge roughness will be
strongly improved as is shown in Figure 3.16(b).

Resist residues are not only an issue at the edge of the resist but may also play a
role for the contact resistance between metal and semiconductor in particular when
dealing with semiconductors such as graphene where the use of an oxygen plasma is
impossible. For instance, in [38] it was shown that a 3–4 nm thick photoresist residue
leads to increased contact resistances that are higher compared to contacts fabricated
based on electron-beam lithography and PMMA as resist.

3.5.2.7 Resist Hard Bake
After the development a hard bake is often carried out in order to drive out any remains
of solvents in the resist, making it more resistant against an attack during an etch pro-
cess. In addition, a hard bake improves the adhesion of the resist to the substrate, which
is particularly important during wet chemical etching. However, a hard bake may lead
to a reflow of the photoresist depending on the temperature and the time of the hard
bake, which is usually an unwanted effect. Figure 3.17 shows cross-section electron mi-
crographs of photoresist patterns after a hard bake for 1min at 100 °C, 105 °C, 110 °C and
120 °C. Apparently, a small difference in temperature can have a rather strong impact
on the resulting resist profile.

A rather rounded resist profile as obtainedwith a hard bake at 120 °C could be prob-
lematic during reactive ion etching (RIE): Ionbombardment or a lowchemical selectivity
of the RIE process may result in severe mask erosion and as such the pattern would be
widened during the etch leading to nonvertical etch flanks in the substrate underneath.
Extreme examples of mask erosion and its impact on the etch result are shown in Fig-
ure 3.36 where very shallow etch flanks are deliberately generated by mixing a certain
amount of oxygen to the etch gas to promote mask erosion due to resist ashing.
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Figure 3.17: Reflow of resist patterns during a resist hard bake for 60 s at different temperatures. The white
dashed lines are guides to the eye.

3.5.3 Electron-Beam Lithography

While optical lithography is the method of choice for industrial semiconductor fabrica-
tion because of its capability for parallel processing, nanoscale structures are usually
realized with electron-beam lithography in research labs. An electron-beam lithogra-
phy tool is basically a scanning electron microscope (SEM) equipped with an additional
beam blank to switch the beam on and off as illustrated in Figure 3.18, left panel. The
beam deflection coils, the beam blank and the sample stage are controlled with a single
piece of software that allows moving the beam across the sample exposing each part of
the sample with a predefined area dose of electrons accelerated into the keV-range.

In the nonrelativistic case (for acceleration voltages ≲100 kV), eVacc =
1
2m0v

2 where
Vacc is the acceleration voltage,m0 the electronmass and v its velocity. With de Broglie’s
relation λ = h

p , one obtains

λ = √ h2
2m0eVacc

. (3.8)

Typical acceleration voltages are 10–30 kV meaning that extremely small wavelengths
of λ < 10 pm are obtained. With state-of-the-art SEM-columns, a beam spot with a diam-
eter of a few nanometers can be realized enabling in principle the printing of very small
structures. However, the real resolution limit of electron-beam lithography is to a large
extent determined by the interaction of the electrons with the substrate. Back-scattering
of electrons from the substrate and the generation of secondary electrons lead to an ef-
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Figure 3.18: Left: Schematic of a typical electron-beam lithography tool. The most important addition com-
pared to a scanning electron microscope is the beam blank that allows switching on and off the beam while
maneuvering across the sample. Right panel: Scattering of the primary beam (blue) and the generation
of secondary electrons (green) can be described with a double Gaussian beam that leads to an effective
exposure of the resist.

fective deposition of electron dose within the resist in an area with a rather large radius
around the spot of initial exposure. This proximity effect (cf. Section 3.5.2) will be further
elaborated on in the next section.

The pattern transfer obtainedwith electron-beam lithography depends on the resist
type, the electron dose injected into the resist as well as on the resist coating and solvent
drive-out and finally the development. Therefore, details along an entire electron-beam
lithography process chain will be discussed in the following sections.

3.5.3.1 Proximity Effect and How to Avoid It
As already mentioned above, the resolution of electron-beam lithography is to a large
extent determined by the interaction of the electrons with the sample (substrate and
resist). When injected into the sample, electrons are scattered depending on their en-
ergy and this gives rise to a broadening of the beam. Moreover, electrons may get back-
scattered within the substrate and leave the sample (and thus lead to an exposure of the
resist) at distances rather far away from the location of the incident beam. Panels (b) and
(c) of Figure 3.18 illustrate this scenario for a low and high electron energy. This leads
to a certain charge background that adds to the overall exposure dose. As a result, each
spot on the sample may be exposed directly by incident electrons plus electrons that
stem from neighboring exposure spots as well as from the local environment leading to
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a substantially different printed image within the resist compared to the intendedmask
pattern. This phenomenon is again called proximity effect and is similar to the optical
proximity effect discussed above.

To describe the impact of the proximity effect and find out how to avoid it, proper
knowledge of the interaction of the beam with the sample is essential. Most accurate
results are obtained with a Monte Carlo simulation. From such simulations, a function
fMC(r) can be extracted that provides the distribution of electrons in the resist as a func-
tion of the radius r around the initial electron-beam exposure spot. The function fMC(r)
can then be used to compute the overall electron dose in certain areas on a sample ob-
tained during a lithography process. A less accuratemethod that still captures the essen-
tials of the proximity effect is to describe the electron distribution function fDG(r) with
a double Gaussian [233]:

fDG(r) =
1
(1 + η)π

[
1
α2

exp(−( r
α
)
2

) +
η
β2

exp(−( r
β
)
2

)], (3.9)

where r is again the radius measured from the center of the beam. α, β and η are fit pa-
rameters taken from [206] that are reproduced for convenience in Table 3.3. Using fDG(r),
a calculation of the area dose during electron-beam lithography based on a certainmask
can be implemented in a straightforward manner.

Table 3.3: Double-Gaussian electron-beam parameters [206].

Beam energy (keV) α (µm) β (µm) η

5 1.33 [0.18] [0.74]
10 0.39 [0.60] [0.74]
20 0.12 2.0 0.74
50 0.024 9.5 0.74
100 0.007 31.2 0.74

Figure 3.19(a), left panel, shows a structure consisting of two back-to-back L-patterns
(gray area), which is intended to be printed subject to a distribution of exposure spots
on a regular quadratic lattice with 4 nm distance between adjacent spots. The patterns
have a lateral extension of 15 nm and are 20 nm apart from each other. Here, a 100 keV
exposure of a silicon substrate covered with 200 nm PMMA is considered (see Table 3.3
for the used parameters).

In (a), all spots obtain a dose factor of 1, i. e., no proximity correction is applied in
this case, leading to the exposure pattern shown in the center panel of Figure 3.19(a).
Obviously, the pattern significantly deviates from the intended one with underexposed
convex and overexposed concave corners leading to a blurred image. The right panel
shows the resist pattern after development (an arbitrary threshold dose for develop-
ment was assumed here).
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Figure 3.19: Left: Intended mask pattern (gray area) and exposure spots that are assumed to be on a regu-
lar 4 nm × 4 nm grid. Simulated dose distribution (center panels) of e-beam lithography with 100 keV elec-
trons based on a double Gaussian distribution. The substrate consists of 200 nm PMMA on silicon. Right:
resist pattern after development. (a) Uniform initial dose and (b) optimized dose distribution determined
with a nonnegative least-square calculation.

A correction of the proximity effect involves decreasing the exposure dose in areas
with neighboring structures and increasing the dose in sections that are rather isolated.
In principle, this can be done in an iterative process by carrying out a number of ex-
posures and comparing the obtained results after development with the intended mask
pattern (see QR code #30 and try yourself). Alternatively, an optimization algorithm can
be used to adjust the exposure dose at each spot in order to realize the best match with
the intended mask. Figure 3.19(b), left panel, shows the dose each spot obtains after a
proximity correction based on the double Gaussian exposure function Equation (3.9)
using a nonnegative least-square optimization scheme that minimizes the sum of the
squares of the difference between actual and intended dose pattern; the appropriate
dose factors are displayed in the left panel, too. With proximity correction substantially
better dose distribution (center panel) and printing results (right panel) are obtained
(using the same threshold for full resist development as in (a)).

30
Adapting the dose dis-

tribution to the Gaussian beam, the same least-square algorithm can also be used to
suppress the proximity effect in laser lithography.

https://www.iht.rwth-aachen.de/global/show_document.asp?id=aaaaaaaachglazk
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3.5.3.2 E-Beam Resists—PMMA
There are a number of electron beam resists with different characteristics commercially
available. The most prominent and mostly used e-beam resist is polymethylmethacry-
late (PMMA). PMMA is relatively easy to handle, allows a high resolution and can be
used as a positive- as well as negative-tone resist depending on the exposure dose.

After resist coating of a sample, the prebake of PMMA (driving the solvents out of the
PMMA) is usually done at temperatures of approximately 165–180 °C for 5–10min either
on a hot plate or in a convection oven. The prebake may have an impact on the line-
edge roughness of the printed patterns. The reason for this is that during the prebake
aggregations of the polymer can form that exhibit a different solubility in the developer
compared to the remainder of the resist. Interestingly, if the prebake is carried out at
a rather high temperature of 250 °C for a very short time of 15 s the polymers of the
PMMA cannot form aggregations and as a result, a reduced LER has been observed [16].
However, the prebake at such a high temperature needs to be very short since otherwise
the PMMA will degrade.

3.5.3.3 PMMA Development
After exposure, the PMMA needs to be developed. Several different solutions can be
used to do so. The most common developer is a 1:3 mixture of methylisobutylketone
(MIBK) and isopropyl alcohol (IPA). Samples are immersed in the solution for ∼30 s and
subsequently rinsed for 30 s in pure IPA and blown dry with nitrogen. In particular,
when cooled to −15 °C, optimumdevelopment characteristics with highest contrast have
been found [55].

Alternatively, a 7:3 mixture of IPA and DI water in combination with ultrasonic ag-
itation has proven to yield a superb development [281]. In [204], a 4:1 ethanol/DI water
mixture is used, which also leads to excellent results. Instead of rinsing the sample in
IPA or pure ethanol, the best pattern fidelity is obtained when simply blowing dry the
samples with nitrogen immediately after the development [204].

3.5.3.4 E-Beam Resist Residues
Similar to photoresist, it is important to be aware of resist residues after the develop-
ment when working with PMMA (and other e-beam resists). These residues are not only
found in electron-beam exposed and developed areas but residues also remain on the
substrate after simply removing the resist with a solvent such as acetone. The resist
residues have a thickness of approximately 1–2 nm [185], and thus may play an impor-
tant role in the formation of contacts when using a lift-off process.

Numerous publications on resist residues and PMMA removal strategies can be
found in literature. A recent study shows that after almost all common treatments,
residues can still be found on the substrate [185]. The most effective treatment remov-
ing all residues is an oxygen plasma. However, it is often impossible to carry out such a
DESCUM process, in particular when 2Dmaterials such as graphene are to be contacted.
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With sufficiently high electron dose in the contact areas, the thickness of the residues
can be reduced to approximately 0.5 nm. Nevertheless, one needs to keep in mind that
even such a thin layer may have an impact on the contact formation and the interaction
between semiconductor and metal. Laser cleaning has been successfully employed to
locally remove residues [120] and annealing the samples after the lift-off has been found
to be rather effective to obtain low contact resistances. Alternatively, a sacrificial inter-
layer, e. g., a very thin deposited SiO2, can be used that allows carrying out a DESCUM
process with an oxygen plasma. Then immediately before the metal deposition, the
sacrificial layer is removed (e. g., with HF in the case of SiO2). When contacting silicon,
this procedure is done automatically, since the native oxide (=sacrificial layer) needs to
be removed in order to contact the silicon.

3.5.3.5 Electron Beam Lithography on Insulating Substrates
It wasmentioned above that the resolution of electron-beam lithography is to a large ex-
tent determined by the interaction of the injected electrons with the substrate. In partic-
ular, if an insulating substrate is used, the injected electrons can lead to a strong charging
effect that deteriorates the lithography result. A sufficiently large negative charge-up de-
flects the electron beam such that patterns may even be printed at a different location,
as was shown in [121]. To avoid this, several strategies can be used. For instance, a thin
conducting layer connected with ground deposited on top of the resist can be employed
to reduce excessive charging of the substrate.

An alternative route is to avoid charging in the first place. This can be accomplished
by noting that a substrate subject to irradiation with electrons can be charged positively
or negatively depending on the energy of the electrons. At very low energies (≲100 eV),
injected electrons are captured in the insulating substrate leading to a net negative
charge. At higher electron energies, incident electrons knock out secondary electrons
from the substrate; in this mid-range of energies, both electrons can leave the sample
resulting in a net positive charge. Finally, at even higher energies electrons penetrate
deeply into the substrate such that they cannot leave it anymore giving rise to a net
negative charge. Therefore, two cross-over energies exist where the effects cancel each
other leaving the substrate uncharged [121]. Choosing the acceleration energy of the elec-
trons to be equal to a cross-over energy avoids substrate charging effects altogether. The
cross-over energy can be found experimentally by taking an SEM image of a certain area
of the insulating substrate. Then zooming out, the originally observed area either ap-
pears dark, whitish or cannot be observed.9 In the first case, (dark) the area is positively
charged, in the second case it is negatively charged. If it cannot be observed, electrons
are injected into the substrate at the cross-over energy, which should be used for the
electron-beam lithography.

9 This is a well-known phenomenon when imaging with a scanning electron microscope.
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3.5.4 Spacer Patterning

The final patterning technique discussed here is the so-called spacer patterning. The
basic idea is to replace the critical part, i. e., the lithographic definition of very narrow,
lateral patterns, with a fabrication process that can be controlledwith highest precision,
namely thin film deposition (whichwill be presented in detail in Section 3.8). Indeed, us-
ing atomic layer deposition (ALD), the thickness of the deposited layer can be controlled
down to plus or minus a single monolayer.

For spacer patterning, a sacrificial layer (amorphous Si in Figure 3.20) is deposited
onto a substrate and patterned with regular lithography and etching yielding vertical
side walls (see Figure 3.20(a)). Then conformal deposition with ALD, low pressure chem-
ical vapor deposition (CVD) or remote plasma-enhanced CVD is used to realize a layer
with the same thickness on horizontal and vertical areas (b). Subsequently, anisotropic
reactive ion etching (see Section 3.7.1) removes the deposited layer from horizontal ar-
eas. But due to the effectively thicker film (with respect to the direction of the anisotropic
etching) on the vertical areas a so-called spacer remains (c). Finally, selectively removing
the sacrificial layer leaves the spacer as a mask pattern on the substrate (d) whose lat-
eral size is determined by the deposition and not a lithography process. The spacer can
nowbe used as etchmask to transfer the pattern into the substrate underneath. Further-
more, the process can be carried out repeatedly using the spacer itself as the sacrificial
structure for a subsequent spacer patterning process. With such a double spacer pro-

Figure 3.20: Schematic illustration and electron micrographs of a spacer patterning process based on an
amorphous Si sacrificial layer and (ICP)PE-CVD-grown SiO2. After anisotropic reactive ion etching of the
SiO2 and selective removal of the sacrificial layer 15 nm, SiO2 patterns are obtained.
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cess, it is possible to strongly increase the density of mask patterns based on an original
lithography pattern that can be substantially larger since each spacer process doubles
the number of features.

Apart from enabling the generation of lithography-independent nanoscale struc-
tures, spacer patterning has another benefit, which however requires a bit more ex-
planation. Suppose a line pattern is printed using, e. g., optical lithography and etching.
There will always be a certain amount of line-edge roughness (LER) at each of the two
sides of the line pattern. If we assume that the LER on both sides are completely uncorre-
lated, therewill be a line-width-roughness (LWR) in addition to LERwith LWR = √2⋅LER.
The top panels of Figure 3.21 illustrate the difference between LER and LWR; here, a sac-
rificial mask pattern is depicted. Creating a spacer (light blue) and using this as themask
for pattern transfer, allows reducing LWR to almost zero provided a thickness ddep of the
deposited spacer layer is chosen that is sufficiently thin (see electronmicrographs in Fig-
ure 3.21). In this respect, sufficiently thin means the following: the LER (of a lithography
process) as a function of the spatial coordinate along the edge of themask can be Fourier
analyzed [107, 92]. Plotting the obtained spectrum as a function of (spatial) wavelength,
LWR approaches zero if the deposited spacer thickness ddep is smaller than the wave-
length(s) of the dominant frequency (range) since the spacer reproduces the edge of the
sacrificial mask on both sides of the spacer. In other words, the LER on both sides of the
spacer are fully correlated (see Figure 3.21, lower panel).

Figure 3.21: Line-edge roughness (LER) and line-width roughness (LWR) of a mask pattern on top of a
substrate (top panel). Creating an appropriately thin spacer that will be used as the actual mask for pattern
transfer allows reducing LWR to zero (lower panels). Right panels: electron micrographs of a sacrificial
amorphous Si pattern (top) with Al2O3 spacer (bottom).

If, on the other hand, the thickness of the deposited spacer layer is larger than those
wavelengths of the LER that are of the same order and smaller than the critical dimen-
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sions of the patterned structure,10 the conformal deposition yields a smoothing of the
LER on one side of the spacer. In order to illustrate this smoothing, a Monte-Carlo simu-
lation of a fully conformal deposition process (light blue areas in Figure 3.22) that could
be realized with ALD has been carried out. Figure 3.22 shows a bird’s eye view of the
edges of two sacrificial patterns (dark blue) with two different dominant wavelengths
(top and bottom panels). From left to right, the number of (ALD) deposited layers in-
creases as stated in the figure. One can clearly see that a deposition of 15 layers (left)
yields a ddep thin enough that in both cases LER is unchanged but LWR tends to zero. If
the number of deposited layers increases, LER at the upper edge decreases. Moreover,
in the case of the smaller wavelength (lower panels), a smaller deposition thickness ddep
is sufficient to remove most of the LER at the resulting edge.

Figure 3.22:Monte Carlo simulation of a fully conformal atomic layer deposition process. The panels show
a bird’s eye view of the edge of patterns that exhibit LER with two different dominant wavelengths at three
different numbers of deposited layers. The smaller the dominant wavelength of LER, the thinner can ddep
be to yield a reduction of LER.

In order to exploit the reduced LER, a second spacer layer needs to be deposited
while the sacrificial pattern and the first spacer have to be removed. In the latter case,
the second spacer can be thin, yielding a suppression of LWRaswell as LER. Thus, spacer
patterning allows realizing very small and dense features with suppressed LER as well
as LWR yielding strongly diminishing variability [45, 246].

10 Longwavelengths can be neglected, since changeswith respect to the lithographic patterns are small.
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3.6 Wet Chemical Etching

In order to transfer a lithography pattern into a substrate, etching is required. The most
straightforward way is wet chemical etching. In the majority of cases, however, wet
chemical etching is isotropic, i. e., it etches with an almost equal rate in vertical and
lateral directions. As a result, wet chemical etching leads to a mask undercut, and thus
to a reduction of pattern size. On the other hand, advantages ofwet chemical etching are
that it is simple, relatively cheap and does not require a sophisticated tool set. Themajor
benefit is that wet chemical etching offers vastly different etch rates for different mate-
rials, i. e., very high selectivities can be realized. The latter is the reason that wet chem-
ical etching is ideally suited for cleaning processes and—if an appropriate etch stop is
available—can be used to thin down nanostructures or remove ultrathin layers from
entire substrates in a very controlled way. In the following, a number of typical/useful
wet chemical etchants are briefly discussed.

3.6.1 Etching of Oxides

The most prominent example of wet chemical etching is arguably the etching of SiO2
with respect to silicon using hydrofluoric (HF) acid. Here, a very high selectivity is ob-
tained. There are basically three ways SiO2 can be etched: with (i) an aqueous solution
of HF (such as diluted HF or DHF), (ii) buffered oxide etch (BOE or BHF) and (iii) vapor
HF. Concentrated HF usually has an etch rate that is by far too high for typical silicon
fabrication and is hence prohibitive for appropriate process control. Therefore, diluted
HF is usually used; for instance, 1% HF etches the native oxide on a silicon (100) surface
in approximately 10 s. HF is a relatively weak acid with a pH-value between ∼0.9–1.5
(for HF 49%) and ∼1.3–2.3 (for HF 10%). Nevertheless, it attacks photoresist and leads to
underetching and delamination of the resist mask.

Buffered oxide etch is amixture of NH4F andHF commercially available in different
mixing ratios; a typical mixing ratio is 7:1 (NH4F(40wt%):HF(49wt%) = 87.5%:12.5%).
The buffering agent NH4F provides a constant concentration of F-ions during an etch
process, and thus yields improved process stability compared to HF. More importantly,
BOE(7:1) has a pH-value of 4.5 and since photoresist is not attacked by chemical solutions
with pH > 3, BOE is preferred for patterned etching of SiO2. On the other hand, it was
shown that etching with BOE roughens Si(100) surfaces on the atomic scale due to its
pH < 7 [2]. This roughening can be avoidedwith the use of pure, aqueous 40%NH4F(aq)
leading to atomically smooth Si(111) and Si(100) surfaces (if hydrogen bubble formation
can be avoided) [50]. As an example, Figure 3.23 shows atomic force microscopy images
of Si (111) surfaces after removing the surface SiO2 layer with DHF (a) and etching in
a mixture of NH4F + (NH4)SO3 + NH3 (10:1:1) (b) [3]. The addition of (NH4)SO3 reduces
residues on the wafer surface and NH3 increases the pH to ∼7.8 yielding an atomically
flat Si (111) surface.
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Figure 3.23: Oxide removal from a Si (111) surface with DHF (a) and 15min etching in
NH4F + (NH4)SO3 + NH3 (10:1:1) (b).

A variant of HF etching that is particularly suited for the release of nano-
structures is the use of vapor HF. During vapor HF etching, a sample is mounted on a
chuck whose temperature can be controlled. Adjusting the temperature in the range of
35 °C to 60 °C enables tuning the condensation of HF vapor on the sample, and thus the
etch rate. The benefit of vapor HF is that the sample is immediately dry when removed
from the etching and issues with stiction due to the surface tension at the liquid–air
interface are avoided. Interestingly, ion implantation into SiO2 allows strongly modify-
ing the vapor HF etch rate such that a selectivity of up to 150:1 between implanted and
nonimplanted SiO2 can be achieved (in contrast, the selectivity is 3 with aqueous HF
etching) as has been demonstrated recently [212].

When etching SiO2, a hydrogen-terminated, hydrophobic silicon surface is obtained
once the hydrophilic SiO2 is completely removed. The changeover from hydrophilic to
hydrophobic is easy to observe, and thus provides a simple yet effectivemethod for pro-
cess control. Moreover, the hydrogen termination prevents a reoxidation of silicon for
a certain amount of time (for a review on surface passivation, see [91]). Usually, when
a DI water rinse is carried out after the removal of the SiO2 reoxidation is prevented
for approximately 20–30min. The reason for this rather short time is that the hydrogen
termination is not complete and during the final DI water rinse, part of the dangling
bonds are saturatedwith hydroxyl groups andfluorine that aremuch less stable thereby
enabling the reoxidation. An almost perfect hydrogen termination was reported to be
obtained when removing the oxide with a HF/ethanol mixture without DI water rinse
[71]. Also, drying with IPA has been reported to yield passivated Si surfaces whose reox-
idation is prevented for up to a few days (as already mentioned in Section 3.1.3.3). Such
clean silicon surfaces are important for a subsequent epitaxial growth of Si/SiGe but also
to enable proper contact formation.
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3.6.2 Etching of Silicon Nitride

A major benefit of silicon processing is that there are a number of different materials
that can be deposited, patterned and removed selectively with respect to each other. In
Figure 3.4(a), a local oxidation of silicon is shown that is the result of using the property
of silicon nitride to act as an effective diffusion barrier. After the oxidation, the nitride
layer often needs to be removed and this can be done with hot phosphoric acid (to be
precise, the top part of the silicon nitride is oxidized during the LOCOS process and this
oxynitride layer has to be removed with HF first). Phosphoric acid at a temperature of
165 °C enables etching stoichiometric Si3N4 selectively with respect to silicon and SiO2.

11

However, with pure H3PO4 a selectivity between Si3N4 and SiO2 of only ∼17 can be re-
alized. Adding sulfuric acid has been shown to be effective to increase the selectivity
[226]. Figure 3.24 shows measurements of the etch rate of Si3N4 (black dots) and SiO2
(blue dots) in hot phosphoric acid as a function of the concentration of sulfuric acid
proving that a selectivity of ∼60 can be obtained with an optimummixing ratio.

Figure 3.24: Dependence of the Si3N4- and SiO2-etch rates as a function of H2SO4 content of a 165 °C
H3PO4/H2SO4 etch solution. The red data points show an optimum selectivity at wt 60%.

3.6.3 (Digital) Etching of Silicon

Silicon canbe etchedwith amixture consisting ofHNO3 andHF. Thismeans that the etch-
ing occurs via an intermediate oxidation of the silicon and simultaneous HF stripping

11 In the case of a silicon-rich nitride, the selectivity between nitride and SiO2 may drop to approxi-
mately one.
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of the generated oxide. As has been discussed in Section 3.2.3, the oxidation of silicon
with nitric acid is nearly self-terminating and, therefore, the etch rate of silicon can be
tuned by adjusting the HNO3/HF ratio in themixture. Since the HF-stripping of the oxide
yields a hydrophobic Si surface, citric acid is usually added to the etch mixture in order
to improve the wetting of the Si surface thereby improving the uniformity of the etch.

Numerous textbooks are available that discuss wet chemical etching of silicon in
detail and the reader is referred to those publications for further details. However, an
important point about Si etching deserves more attention: When employed alone, each
of the two ingredients of the silicon etch mixture provide a self-terminating process, ei-
ther oxidation or a virtually infinite etch selectivity. Therefore, splitting the etching into
two sequential process steps yields excellent process control over the etch rate. Due to
the separation into an oxidizing and a stripping step, the etch process is often called
“digital etching” and is particularly suited to thin down silicon (as well as SiGe) nanos-
tructures. For instance, using a room temperature nitric acid an oxide of approximately
1 nm is grown (cf. Figure 3.5(a)) and taking into consideration that the ratio of the con-
sumed Si and the grown SiO2 is ∼0.46, less than 5 Å of Si can be removed during one
cycle of the two-step etching providing unprecedented process control. The ultrathin
silicon-on-insulator layer shown in Figure 3.5(b) has been thinned down to ∼1.7 nmwith
digital etching. A separation of the etching into two steps is also known in dry etching
where it is usually referred to as atomic layer etching (ALE), which will be discussed in
Section 3.7.6.

3.6.4 Anisotropic Silicon Etching

While wet chemical etching usually exhibits an isotropic etch behavior, silicon can also
be etched anisotropically exploiting the variable etch rates of different crystallographic
planes in hydroxide alkaline solutions. Most notably, aqueous KOH solutions are used
to etch silicon with etch ratios between the {100} and {111} planes as large as 400:1 [69].
In the case of a (100) silicon wafer, the {111} planes enclose an angle of 54.7° with the sur-
face plane and are aligned along the ⟨110⟩ directions. Hence, when etching (100) silicon
wafers with KOH V-shaped grooves appear that are bound by {111} planes as illustrated
in Figure 3.25. As a result, the etching basically stops once a V-groove has been fully
formed. Due to this self-terminating etch behavior of the {111} planes, the etching un-
dercuts a masking layer until a {111} plane has been prepared. For instance, a circular
mask will lead to an inverse pyramid, which can be used to determine the crystallo-
graphic orientation of a substrate. Furthermore, in Si(110) wafers, the {111} planes are
perpendicular to the wafer surface (if aligned along a [110] direction). Hence, rectan-
gular structures with completely vertical side walls can be etched into silicon which
allows fabricating tall fin-structures with high aspect ratio using wet chemical etching
(see Figure 3.28, right panels).
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Figure 3.25: Left: Schematic of a Si (100) wafer with V-groove structures etched with anisotropic silicon
etching. The right panels show a cross-section electron micrograph and a transmission electron microscope
image of the tip region of a V-groove etched into (100) silicon with KOH.

Task 15.
Anisotropic Si etching: Anisotropic silicon etching exploits the very slow etch rate of the {111} planes of
silicon in KOH/TMAH. Compute the angle between the {100} and {111} planes and show that it is 54.7°.
Figure 2.26 may be helpful in answering the question. Now suppose you want to etch a V-groove in a
Si(100) wafer that is 200 nm deep. What is the width of a required mask opening if the etch rate of the
{111} planes can be neglected and themask is not attacked? How do

31
you have to change your mask, when

the ratio between the etch rates of the {100} and {111} planes is 50:1?

Typical mask materials for KOH etching are SiO2 and Si3N4 (see [69] for more details).
Moreover, silicides can also be used as mask material; in fact, the deposition of a metal
on top of a hydrogen passivated silicon surface leads to the formation of an ultrathin
silicide layer already at room temperature. This ultrathin layer is sufficient to serve as
an etch mask. When designing an appropriate mask the different behavior of convex
and concave corners needs to be taken into consideration. In particular, there is no ter-
mination of the etching at convex corners and the resulting mask undercut must be
accounted for with an appropriate mask design [138].

In general, the etch rate of KOH depends on the concentration and temperature of
the KOH solution [69]. Interestingly, the etch rate shows a maximum at a concentra-
tion of 20%. This means that during etching a sufficient amount of KOH solution has to
be used and stirring is indispensable in order to avoid concentration gradients. Apart
from the etch rate, the concentration also has an impact on the smoothness of the result-
ing {100} planes: concentrations beyond 40% are required to obtain mirror-flat {100}
planes. Figure 3.25 shows a cross-section electronmicrograph of a KOH-etched V-groove
showing the 54.7° angle of the {111} planes with respect to the wafer surface. A close-up
of the tip region using transmission electron microscopy is displayed in the lower panel
of Figure 3.25 showing that a very small radius of curvature of approximately 5 nm can
be achieved with KOH etching.

https://vimeo.com/465648991
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Figure 3.26: Left: Schematic of a (100) wafer with a mask oriented along a [100] direction. Rectangular etch
grooves bound by smooth crystallographic {100} planes are obtained when IPA is added to KOH (see center
image). The etching does not stop on the {100} planes, and hence mask undercut is obtained (see right
electron micrograph).

The etch characteristic of KOH can be modified by adding isopropyl alcohol (IPA) to
theKOHsolution. The addition of IPA increases the etch ratio between the {100} and {110}
planes and reduces the etch rate of high-index planes (such as {221}, {331} and {441}).
The latter decreases themask undercut at convex corners [43, 291]. Moreover, IPA yields
smooth {100} planes and if a mask is oriented along a [100] direction, rectangular etch
grooves bound by {100} planes are obtained as shown in Figure 3.26 [242]. Since the KOH
etch does not stop on {100} planes, mask undercut is observed (left electron micrograph
in Figure 3.26).

Potassium diffuses easily through the gate oxide of field-effect transistors leading
to a shift of the threshold voltage, and hence to a drift of the electrical characteris-
tics. Therefore, potassium needs to be thoroughly cleaned off the wafer surface after
anisotropic silicon etching. This can be done with a 1:1:1 mixture of standard clean 2 (cf.
Section 3.1.3.2). Alternatively, tetramethyl-ammonium-hydroxide (TMAH) can be used
where the potassium is replaced with the TMA group. TMAH is in widespread use, since
it replaces KOHwhenever a process should be “CMOS-compatible,” i. e., when a possible
contamination with potassium should be avoided altogether (for instance, in “metal-
ion-free” developers for photoresists). The etch characteristics of TMAH slightly deviate
from KOH. For instance, high-index crystallographic planes are etched differently (see
[69] for more details). However, although the etch rate of {111} planes with TMAH is
higher compared to KOH, the process still yields proper V-groove structures in (100)-
oriented silicon. An example is displayed in Figure 3.27 that shows an electron micro-
graph (center right panel) of a TMAH-etched line pattern. Using AFM, the etched sur-
faces, both {111} planes as well as {100} planes, are shown to be atomically flat.
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Figure 3.27: Atomic Force Microscopy of TMAH-etched {111} and {100} planes displayed in the central elec-
tron micrograph.

A note on TMAH:Working with TMAH requires particular care and attention. Recently, a number of stud-
ies have been published that show that TMAH is an extremely hazardous chemical. The hazardousness
stems from the absence of alertness due to the unnoticeable skin contact with TMAH. It is even more
dangerous than HF because there is no effective medical treatment available and a wrong way of rinsing
may even enlarge the exposed area. In fact, several cases of lethal TMAH incidences have been reported
[273, 165, 272]. Based on experiments with rats [272], the concentration of TMAH and the exposed body
area are the most decisive factors. However, even at low concentrations, i. e., around 1%, TMAH is a haz-
ardous chemical and needs to be treated accordingly.

The self-terminating property of anisotropic silicon etching can, for instance, be used to
deliberately undercut a mask until a {111} plane is prepared. This allows one to reduce
line-edge roughness to a minimum as illustrated in the left panels of Figure 3.28; the
lower left panel shows a V-groove in Si(100) etched with TMAHwhere the silicon nitride
mask has been underetched. Moreover, the right panels of Figure 3.28 display results
of anisotropic silicon etching in Si(110) substrates. The schematic and the left scanning
electronmicrograph show the realization of a nanowire structure in (110) SOI using KOH
etching with ∼11 nm width. The side walls of the nanowire are bound by {111} planes
such that line-edge roughness existing in the original mask pattern was underetched,
and thus strongly reduced. The right SEM image depicts high-aspect ratio fin-structures
etched in bulk Si(110) with TMAH. Here, the higher etch rate of TMAH regarding the {111}
planes yields a substantial underetching of the SiN mask.
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Figure 3.28: Anisotropic Si etching with TMAH/KOH. A V-groove is formed in the case of (100) substrates
(left). Underetching of the mask leads to a reduction of LER. Fabrication of a ∼11 nm nanowire with KOH
etching of (110) SOI (center). The right panel shows a Si-fin etched with TMAH into (110) bulk-Si.

3.7 Dry Etching

When pattern fidelity is required, dry etching is the preferred method to transfer litho-
graphic patterns into a substrate. A wide range of different processes and methods has
beendeveloped that rely on the generation of a cold plasma. The variousmethods enable
different etch characteristics and it is this versatility in combination with reproducibil-
ity that is the reason for the widespread use of dry etching techniques in semiconductor
fabrication. In the present section, the most important techniques are briefly discussed.

3.7.1 Reactive Ion Etching

For reactive ion etching (RIE), a plasma is ignited in a reactor that in its simplest version
contains two parallel-plate electrodes. The top electrode is grounded while the bottom
electrode is connected via a blocking capacitor to a radio-frequency (RF) generator
(cf. Figure 3.29). If a process gas is injected into the reactor, some of the gas molecules
or atoms may become ionized. The frequency of the RF generator is chosen such that
the light electrons can follow the oscillating electric-field thereby colliding with gas
molecules/atoms that may either be excited or ionized, too. At the same time, the fre-
quency of the RF generator is high enough so that the heavy ions cannot follow the
oscillating electric field and can be considered to be unaffected. Initially, the plasma in-
between the top and bottom electrodes therefore consists of neutral process gas species,
fast oscillating electrons and slowly moving ions. Far away from surfaces, the density
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Figure 3.29: Illustration of a simple parallel-plate reactive ion etcher (left). The right panel shows the elec-
trostatic potential with Vpp and −Vbias being the positive plasma potential and the negative DC bias, respec-
tively.

of ions within the plasma is the same as the density of electrons, such that the plasma is
overall neutral. However, electrons in the vicinity of the electrodes or the reactor walls
may hit the respective electrode/wall in a one-half period of the RF-oscillation where
they get trapped. As a result, the areas around the electrodes get depleted of electrons.
Since the bottom electrode is connected to the RF generator via a capacitor, no DC cur-
rent can flow, and hence the bottom electrode is charged increasingly negative during
each half-period of the RF-field where electrons are accelerated toward the bottom
electrode; this charge-up will continue until further electrons are completely repelled
from the electrode (in other words, the capacitance associated with it is charged). The
top electrode on the other hand is connected to ground such that it is not charged up.
The resulting electrostatic potential in between the electrodes can be computed with
the Poisson equation. Somewhere in the middle between the two electrodes, the plasma
is neutral and lies on the so-called plasma potential Vpp. Due to the positively charged
depletion region at the top electrode, Vpp is positive preventing the electrons within
the central plasma region from leaving. The negative charge-up of the bottom electrode
leads to a substantial bias voltage−Vbias building up between the plasma and the bottom
electrode (see Figure 3.29). The bias voltage leads to an acceleration of the positively
charged ions toward the bottom electrode, and hence the bottom electrode is where
the substrates are being placed. The accelerated ions lead to a bombardment of the
substrates that is exploited in reactive ion etching in that byproducts are sputtered off
the sample surface or chemical reactions are induced.

A proper design of the areas of the top electrode Atop and of the substrate elec-
trode Asub helps increasing the bias voltage. Using the dependence∝ V 3/2

d2 of the space-
charge limited current (an easy-to-follow derivation of this can be found in [253]), and
noting that the ion currents toward the top and the bottom (i .e. substrate) electrode
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should be equal, one obtains V 3/2
sub
d2sub
=

V 3/2
top
d2top

where dtop,sub are the widths of the depletion
regions at the two electrodes (cf. Figure 3.29) and Vtop,sub are the respective voltages
between plasma and electrode potential. Noting that the reactor can be considered as
two capacitors Csub/top =

Asub/top
dsub/top

in series (connected through the plasma), one obtains
Asub
dsub

Vsub =
Atop
dtop

Vtop. Inserting the relation above finally yields Vsub
Vtop
= [

Atop
Asub
]4. Experimen-

tally, an exponent rather equal to 2 is found. In any case, the bias voltage canbe increased
if Atop > Asub.

In addition to ionization, further plasma processes include dissociation as well as
the generation of radicals, which lead to chemical etching of the substrate if an appro-
priate process gas is employed. The chemical reaction leads to volatile products that are
pumped out of the reactor. Therefore, reactive ion etching always implies a chemical
etching component as well as a physical component due to ion bombardment. Choosing
appropriate gas mixtures with suitable flux and pressure in the reactor and adjusting
the power of the RF generator allows tuning the etch characteristics of RIE over a wide
range including the etch rate, etch selectivities as well as the anisotropy of the etch pro-
cess.

3.7.2 Inductively Coupled Plasma Etching

The density of ions in a plasma is typically very small (approximately a factor 103 smaller
compared to neutral gas species) [68]. Increased ion densities and increased density of
dissociated gas molecules can be realized by increasing the RF power. However, this
implies amore negative −Vbias, and hence increased ion bombardment, whichmay lead
to a loss of selectivity between substrate and masking material (mask erosion), to a loss
of selectivity between different materials within the substrate and to the damage of the
etched surfaces because of a disproportionate physical component of the etch process.
Since the reason for the formation of the DC bias is the blocking capacitor, shunting it
with a variable resistor would enable tuning Vbias. This has indeed been investigated
(see, e. g., [211]) but leads to a decreased plasma stability. The preferred way to increase
the plasma density is therefore adding a second source to the RIE chamber that allows
coupling more power into the plasmawithout increasing the bias voltage. Conceptually,
the most straightforward way is an inductively coupled plasma (ICP).

An ICP-RIE reactor is depicted in Figure 3.30 and consists of a RIE chamber where
the top electrode has been replaced with a dielectric tube with a coil wrapped around it.
The coil creates an oscillating magnetic field that induces alternating RF electric fields.
In turn, this yields oscillations of the electrons within the plasma, which lead to an in-
creased rate of ionization and dissociation without necessarily increasing Vbias. High
etch rates can be obtained and due to the increased ionization/dissociation rate, the
pressure in the reactor can be reduced which is a prerequisite to obtain anisotropic
etching at relatively low Vbias (see the next section).
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Figure 3.30: Schematic of an ICP-reactive ion etching tool.

3.7.3 Tuning the Anisotropy of Dry Etching

Anisotropic dry etching can, in principle, be achieved by simply exploiting the sputter-
etching of the ions accelerated due to the bias voltage Vbias. However, as already men-
tioned above, pure mechanical etching is not selective and may damage the etched sur-
faces. Therefore, to realize selectivity and anisotropy during dry etching, chemical and
physical components need to be combined with appropriate proportion.

Two different mechanisms can be exploited for achieving anisotropic etching (see
e. g., [118]). In the first case, the process gas does not lead to spontaneous etching (i. e., the
formation of a volatile byproduct) but solely to a modification of the surface. This is, for
instance, the case when etching silicon with chlorine: the chlorine merely weakens the
Si-Si bonds. However, if ion bombardment is added, the modified surface region will be
released and volatile SiCl4 is generated (see Figure 3.31(a)). A similar effect is used when
etching silicon with XeF2. While XeF2 etches silicon spontaneously, and hence isotropi-
cally, ion bombardment renders XeF2 more reactive and sputters away the byproducts;
hence, a directional ion bombardment results in an increased etch rate in this direction
and, therefore, to anisotropic etching.

The second method exploits the fact that with appropriate etch chemistry, a passi-
vation layer is formed that is deposited onto the substrate during etching. This passiva-
tion prevents the chemical component from attacking the substrate. Consequently, the
etching would stop rather quickly. However, with appropriate ion bombardment, the
passivation layer is sputtered away on surfaces that are hit by the impinging ions and
further etching occurs. If the pressure in the reactor is low, and consequently, the ion
flux is perpendicular to the wafer surface, the passivation will remain intact at vertical
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Figure 3.31:Methods to adjust the anisotropy of RIE etching. (a) A chemical reaction yielding a volatile
product is induced by ion bombardment. Etching occurs preferentially in the direction of the ion flux. (b)
A passivation layer is removed due to ion bombardment enabling further etching in this direction. In both
cases, the anisotropy can be modified with the process pressure.

side walls, and hence an anisotropic, vertical etch behavior is obtained as illustrated in
Figure 3.31(b). After the etching, an isotropic cleaning plasma (usually anoxygenplasma)
is required to remove the passivation from the side walls. A typical process that exploits
this behavior is etching siliconwith SF6. While SF6 etches Si isotropically, adding oxygen
to the process gas leads to the formation of a SiOxFy passivation layer. Thus, adjusting
the oxygen flow allows tuning the anisotropy of the process.

In both cases mentioned so far, a proper vertical etch behavior is obtained if the ion
bombardment occurs perpendicular to the surface. This can be ensured by reducing the
pressure in the RIE reactor resulting in a sufficiently large mean free path of the ions.
Hence, ICP-RIE is ideally suited for this purpose since the pressure can be reduced still
providing a high density plasma. In turn, this means that increasing the pressure allows
one to randomize the motion of the ions such that they hit the substrate and side walls
under a certain angular distribution. As a result, the etching becomes more isotropic, as
depicted in the lower panels of Figure 3.31.

3.7.4 Selectivity of Dry Etching

The selectivity of RIE etching can be adjusted with an appropriate process gas mixture.
A prominent example is the selective reactive ion etching of SiO2 with respect to Si.
Both materials can be etched with a similar rate using a CF4 plasma. Adding H2 to CF4
reduces the amount of fluorine available for silicon etching (i. e., for the formation of
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Table 3.4: Typical process gas (compositions) for reactive ion etching.

Material Process gas Material Process gas

Si/a-Si 1) CF4(O2) SiO2 1) CF4(H2)
2) SF6(O2) 2) CHF3
3) HBr III–V CH4/H2
4) Cl/BCl3 SiN CF4/O2

Al Cl/BCl3 resist O2

volatile SiF4). As a result, Si etching is suppressedwhile the etching of SiO2 is only slightly
affected. On the other hand, adding oxygen to CF4 leads to an increase of the amount of
fluorine radicals, and thus to an increase of the Si etch rate. Table 3.4 lists a few possible
process gas and gas mixtures for a number of common materials. For detailed recipes,
the reader is referred to the vast literature available. Note, however, that each process
needs to be adapted to a specific tool.

3.7.5 Plasma Etching

Dry etching can also be carried out in a way that mostly relies on the chemical etching
component of the process gas. This is preferable whenever a dry etching process with
very high selectivity is desired and pattern fidelity is rather unimportant. A pronounced
chemical component can be obtained by grounding the substrate electrode (and bymak-
ing Atop = Asub). In this case, only the plasma potential Vpp leads to a small acceleration
of the ions toward the substrate such that ion bombardment is strongly suppressed.

Completely avoiding ion bombardment is possible with special reactor geometries.
The most common one is a barrel reactor as depicted in Figure 3.32. Here, samples are
mounted at the center of a quartz barrel. Process gas is injected into the quartz bar-
rel and two electrodes are arranged around the barrel, one connected to an RF gener-
ator, the other one grounded. In addition, a perforated Faraday cage is inserted such
that only neutral gas species (radicals) enter the central region of the barrel where the
sample is mounted. The particular geometry of the barrel reactor leads to an inhomo-
geneous etching. However, due to the absence of a physical etch component, samples
can be overetched for an extended period of time provided the etching is highly selec-
tive. The most prominent example is photoresist ashing in an oxygen plasma (Often, a
further gas such as nitrogen is added in order to prevent recombination of radicals and
thus increase their concentration.). Due to the absence of ion bombardment and the
extremely high selectivity of oxygen plasmas, the process can even be carried out as a
batch process with multiple wafers at the same time.
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Figure 3.32: Schematic of a barrel reactor with Faraday cage preventing ion bombardment of the sample.
The method is particularly suited for resist ashing in an oxygen plasma.

3.7.6 Sequential Etch Process I—Atomic Layer Etching

In Section 3.6.3, digital etching using wet chemistry was discussed. Digital etching pro-
vides excellent process control because the etching is split into a self-limiting and a
highly selective process step that are cyclic repeated. This idea can also be used in the
case of RIE, if the etching of the substrate with a certain gas species works as depicted
in Figure 3.31(a). Here, a process gas weakens the bonds of the substrate material and
a simultaneous ion bombardment leads to the removal of substrate material. As men-
tioned above, a typical example of such a process is the etching of silicon with chlorine
[18]. A two-step dry etching would then work as depicted in Figure 3.33: Chlorine gas is
first injected into the chamber until it has been adsorbed (chemisorbed) at the surface.
Since there is no ion bombardment no spontaneous etching occurs. Next, the reactor
is evacuated. It is important to remove all process gas within the chamber before the
second process step starts. In step 2, argon is injected into the reactor and a plasma is
ignited. The choice of argon avoids any chemical etching of the substrate by the process
gas (Ar) during this process step. Step 2 leads to an excellently controlled removal of
a single layer, if the bias voltage is adjusted appropriately such that the bombardment
with Ar ions has sufficient energy to induce a removal of the surface layer in contact
with the chlorine while at the same time being low enough to avoid physical etching.
Furthermore, an extraordinary anisotropic etch behavior can be obtained if a low pres-
sure Ar plasma is ignitedwhere ions are accelerated only perpendicular to the substrate
surface. After the Ar ion bombardment, the chamber is evacuated and a new cycle starts
by exposing the sample to Cl gas leading to an unprecedented process control with layer
by layer etching.

Results of a kinetic Monte Carlo simulation of such a two-step RIE for different pro-
cess parameters are displayed in Figure 3.33(b); here, the gray shaded area has been
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Figure 3.33: (a) Two consecutive process steps (with evacuation steps in-between) enable atomic layer
etching (adapted from [17]). (b) Results of a kinetic Monte Carlo simulation with different process condi-
tions. The gray shaded area has been removed, i. e., it shows the cross-section of the substrate prior to
ALE.

removed, i. e., it shows the substrate cross-section before and after the etching. A too
short Cl-exposure in step 1 yields a small etch depth with very rough surface. A too high
Ar pressure leads to a substantial mask undercut. If the Ar ion energy in step 2 is too
high, a large etch depth with rough surface is obtained. The result of optimized pro-
cess parameters is displayed in the right panel of Figure 3.33(b). The kinetic Monte Carlo
program to simulate the etch process is accessible through QR code #32.

32Due to the similarity with atomic layer deposition (cf. Section 3.8.3.1), this RIE-
process is called atomic layer etching (ALE). While special ALE RIE tools are available
that allow automated and quick switching between the process steps, ALE can in prin-
ciple be performed with standard equipment, too [1].

3.7.7 Sequential Etch Process II—Bosch Process

Another method where the splitting of the etching into sequential process steps is used
is the so-called Bosch-process. Here, the process is split into a deposition of a passivating
layer and two subsequent etch steps. Figure 3.34 (left panels) shows a schematic of the
process sequence: in the first step, a thin polymer layer is deposited conformally, which
is done with a C4F8 plasma at high process pressure. Next, C4F8 is evacuated and SF6 is
injected into the chamber. A plasma is ignited with appropriate RF power that results in
a−Vbias sufficiently high to sputter away the polymer layer: this is done at a lowpressure

https://www.iht.rwth-aachen.de/global/show_document.asp?id=aaaaaaaachgkvhm
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Figure 3.34: Left panel: Schematic of a Bosch-process cycle. (i) Conformal deposition of a polymer with a
C4F8-plasma, (ii) anisotropic removal of the polymer with ion bombardment (SF6-plasma) and (iii) isotropic
plasma etching with SF6. The cycle is repeated multiple times. Right panel: Electron micrograph of residues
due to overpolymerization after a Bosch process.

to ensure an anisotropic etch behavior leaving vertical areas covered with the polymer.
After the removal of the polymer layer, the RF power is switched off in order to avoid
ion bombardment, and hence prohibit further physical etching. Thus, only the chemical
component of the process acts and leads to an isotropic etch behavior that results in the
formation of so-called scallops (cf. Figure 3.34). After evacuation of the chamber, a new
process cycle starts again with depositing a polymer layer. Care has to be taken with
respect to overpolymerization, which may lead to the formation of silicon-rich residues
in the scallops that canhardly be removedwith oxygenplasma anymore. The right panel
of Figure 3.34 shows a scanning electron microscopy image of such residues that clearly
exhibit the shape of the etched side walls (scallops).

The cycles of the Bosch process can be repeatedmultiple times until the desired etch
depth is achieved. Due to the fact that the actual etching of silicon occurs only based on
the chemical component, a very high selectivity between silicon and the mask material
can be realized. As a result, even rather thin photoresist layers are suitable for large
etch depths.

Task 16.
Bosch process: Suppose that the cross-sections of the scallops generated during a Bosch process can be
described by a half-circle whose radius is approximately half of the etch depth of the isotropic SF6 etch
step (this is certainly not the case and only a crude approximation). You would like to etch 10 µm deep
into a

33
Si substrate and the side-wall roughness due to scallop formation must not be larger than 50 nm.

How many Bosch cycles do you need?

An example of a deep reactive ion etching (DRIE) using a Bosch process is shown in
the electron micrograph in the left panel of Figure 3.35 where ∼26 µm were etched
with a 1.6 µm thin photoresist mask. A closer look at the etch flanks reveals the scallop-
formation during the Bosch process. Scallops become less pronounced if the duration

https://vimeo.com/465410989
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Figure 3.35: Left and center panels: Electron micrographs of deep trenches etched with the Bosch pro-
cess. Right panel: Bosch process etched with a circular mask. The larger, spherical structures are due to a
prolonged isotropic SF6 etch step.

of the isotropic etch step is reduced at the price of a substantially longer overall process
time due to the increased number of evacuation steps. On the other hand, the formation
of scallops can also be exploited: The right panel of Figure 3.35 shows circular shaped
patterns etched with the Bosch process. Varying the length of the isotropic etch step
leads to a pattern as displayed where 9 Bosch cycles with a short isotropic etch step and
one long etch cylce lead to the spherical pattern; this is followed by another sequence of
multiple short and one long isotropic etch steps. In Section 3.12, we discussed how such
a pattern can be used to form voids in a silicon substrate stacked on top of each other
that may be used to realize, e. g., pressure sensors.

3.7.8 Issues of Dry Etching—Mask Erosion and Overpolymerization

During dry etching, two mechanisms may lead to distortions of the resulting etch pat-
tern: (i) mask erosion and (ii) overpolymerization. Mask erosion is a severe issue that
can strongly affect the outcome of the pattern transfer. If the masking layer has flanks
that are not perpendicular to the substrate surface (e. g., as a result of a low resist con-
trast, see Section 3.5.2.2, or because of resist reflow due to a hard bake, cf. Figure 3.17)
and if the etch selectivity is not infinite, mask erosion will lead to a widening of the etch
pattern and to nonvertical etch flanks as illustrated in Figure 3.36(a). In fact, depending
on the initial mask geometry and the selectivity the angle α of the beveled etch flank can
be adjusted as is shown in the two cross-section electron micrographs in Figure 3.36(a).
In the two cases displayed, the initial mask geometry wasmodified with a hard-bake (cf.
Figure 3.17) and the selectivity of the etch process was tuned with adding oxygen to a
SF6 plasma. Very shallow etch flanks can be generated with this method.
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Figure 3.36: (a) Mask erosion leads to a lateral increase of the transferred pattern and a beveled etch flank
with angle α. The angle α can be adjusted by annealing the photoresist mask and by decreasing the etch
selectivity due to the addition of oxygen to the process gas. (b) Overpolymerization leads to an etch-flank
passivation whose thickness increases during etching, resulting in a beveled etch flank.

As discussed above, the deposition of a polymer on the etched side walls facilitates
an anisotropic etch characteristic. However, overpolymerization (as already shown
when discussing the Bosch process, see Figure 3.34) may increase this side-wall pas-
sivation layer during the etching and as a result, a beveled etch flank with a certain
angle is obtained as illustrated in Figure 3.36(b). In contrast to mask erosion, over-
polymerization leads to a reduced width of the bottom of the etch pattern. Therefore,
the resulting etch pattern needs to be compared with the intended mask pattern in
order to determine whether mask erosion or overpolymerization led to the loss of
anisotropy. Overpolymerization can be mitigated by adding oxygen to the process gas
and/or increasing the pressure in the reactor; both are measures that would worsen
mask erosion.

3.7.9 Issues of Dry Etching—ARDE, Microloading, Trenching, Grassing

In addition to mask erosion and overpolymerization discussed in the preceding section,
further issues may occur that strongly impact the etch result (see Figure 3.37). First, in
deep reactive ion etching, the so-called aspect-ratio-dependent etching (ARDE) [89] leads
to a lower etch rate of patterns with a smaller lateral extent as shown in the electron
micrograph and schematic of Figure 3.37. In the case of the Bosch process, it has been
shown that this unfavorable effect can be reduced to less than 2–3% by adjusting the
individual Bosch process steps, i. e., polymer deposition rate, polymer removal rate and
the silicon etching rate [161]. Microloading is another encountered issue that refers to
the dependence of the etch rate on the density of features. This means that features
with equal width are etched at a lower rate if they are placed closer to each other on
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Figure 3.37: Cross-section of a bulk Si sample showing ARDE, grassing and trenching that may occur dur-
ing reactive ion etching.

the sample. Microloading is due to a local depletion of etch species in areas with higher
density of features [102].

During etch processes carried out in inductively coupled plasma tools, the ion den-
sity can become rather high and as a result, trenching may occur [201] where the etch
rate at the base of the etched side walls is substantially increased leading to an etch pro-
file as shown in Figure 3.37. Trenching stems from a specular reflection of ions hitting
the side walls at grazing angles, which leads to a focusing of the etch species [57] close
to the side wall of the etched structure. In addition, a redeposition of material at the
etched side walls (particularly polymers) may occur at a high ion density in the plasma.
In this case, the physical component of etching, i. e., sputtering may become dominant;
no volatile byproduct due to a chemical reaction is generated and the sputteredmaterial
is redeposited.

Finally, in highly anisotropic etch processes (low pressure, high ion density), rede-
posited (mask) material, strongly eroded resist or an incomplete removal of the passiva-
tion layer result in micromasking that in turn leads to the formation of so-called grass.
An example of this grassing is shown in the top left inset in Figure 3.37. Carefully remov-
ing resist residues with a DESCUM process, increasing the oxygen content of the process
gas (in the case of a polymer used as passivation) or decreasing it (in the case of a SiOxFy
passivation) and/or slightly increasing the pressure in the RIE reactor help to avoid grass
formation.

3.8 Thin Film Deposition
The ability to deposit thin films onto substrates (adding material) is equally important
as etching (removing) and together with lithography allows to realize complex, three-
dimensional device structures. One distinguishes between chemical vapor deposition
(CVD) and physical vapor deposition (PVD). CVD and PVD can be carried out with a num-
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Figure 3.38: Schematic of a general deposition process with transport through the gas phase (1), adsorp-
tion (2), diffusion across the substrate (3), (4), desorption (5), evaporation (6) and thin film growth (7).

ber of different techniques that are optimized for particular purposes. Let us first discuss
general aspects of thin film deposition that determine the resulting distribution of the
film across a substrate.

Figure 3.38 depicts a general deposition process showing that it can be subdivided
into the three parts (i) emission from the source, (ii) transport in the gas phase and (iii)
deposition on (including diffusion across) the substrate. The source is characterized by
its lateral extent S, the angular distribution and velocity with which material is ejected
into the gas phase. The gas phase is characterized by the distance dss between source and
substrate aswell as themean free path lmfp in-between two scattering events.When par-
ticles (e. g., precursor molecules or evaporant) scatter during their transport through
the gas phase, their velocity and directions may be randomized (process denoted (1)).
Using kinetic theory, lmfp within the gas phase can be deduced by noting that the inter-
action volume for a single collision is lmfp ⋅ πd

2 where d is the diameter of the molecule.
Hence, the mean distance per collision is lmfp ∝ 1/(πd2nV ) with nV being the density
of molecules in the gas phase. Assuming an ideal gas, nV = pNA/(RT) and, therefore,
lmfp ∝ T/p is a function of temperature T and pressure p [109, 207]. When particles
hit the substrate, a number of processes can occur including adsorption (2), diffusion
across the substrate (3), (4), desorption (5), evaporation (6) and incorporation (7) (thin
film growth) all of which are to a large extent determined by the substrate temperature.

In the following, a number of CVD/PVD deposition methods are discussed. The pro-
cesses (1)–(7) mentioned above are generic to all of them and the result of the deposition
process is a matter of their importance relative to each other. While in some limiting
cases a straightforward qualitative forecast of the deposition is feasible, some of the
next subsections are fortified with QR codes that allow downloading simulation tools
for further exploration of the dependence of deposition results on various process pa-
rameters. These simulation tools are based on kinetic Monte Carlo (kMC) calculations
(see reference [5], for instance).
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3.8.1 Physical Vapor Deposition—Electron-Beam Evaporation

Electron-beamevaporation (EBE) is one of themostwidespreadmetalization techniques
because of its simplicity and ability to evaporate a great variety of different materials.
During EBE, a current of electrons extracted from a filament and accelerated by a high
voltage is bent via an appropriate magnetic field onto a crucible filled with the material
that is to be evaporated (see the illustration in Figure 3.41, right). The material is lo-
cally heated and will evaporate when a sufficiently high temperature is reached. Due to
heating of the target with a focused beamof electrons, EBE allows evaporatingmaterials
with highmelting temperature and the evaporation occurs from a point-like source. The
latter means that a relatively small crucible can be employedmaking themethod poten-
tially cost effective. In addition, crucible and substrate are several tens of centimeters
apart from each other (dss) and the deposition needs to be carried out in a high vacuum
chamber. This means that in EBE, S < L, dss ≫ S and lmfp ≫ dss and as a result, the
evaporated material hits the sample under an angle of 90° with respect to the sample
surface. Furthermore, the energy input due to deposited material hitting the resist and
sample is in the meV-range and the condensation and radiant heat usually do not sig-
nificantly heat up the sample. As a result, in most cases the substrate temperature stays
below ∼100 °C, and thus diffusion across the substrate (see Figure 3.38) can be neglected,
i. e., evaporated material will stay at the position where it hits the substrate. This leads
to a deposition almost exclusively on lateral areas without coverage of vertical areas
(depicted in Figure 3.39(a) and (b)) which is ideally suited for lift-off processes (cf. Fig-
ure 3.12).

Figure 3.39: (a) Schematic of a EBE deposition process. The source can be considered as a point source
yielding a horizontal front of evaporant parallel to the wafer surface. (b) Evaporation of Al onto a Si sample
with a resist mask generated with an image reversal process (cf. Section 3.5.2.3).
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Figure 3.40: Cross-section electron micrograph of a PMMA film after e-beam lithography and development
(a) and after EBE of Ni (b) and Ti/Au (c). Resist shrinkage leads to cracks and a degradation of the resist
flanks. The lower row shows blistering after EBE of Ti/Au, Pt and Co.

However, frequently encountered issues during EBE are resist shrinkage and blis-
tering of the metallic film particularly when deposited onto resists used for electron
beam lithography. Figure 3.40 shows exemplary cross-section electron micrographs of
a PMMA resist film after EBL and development (a) and the same film after EBE ((b) and
(c)). The shrinkage of the resist and the degradation of the resist flanks are clearly ob-
servable. Moreover, (d)–(f) show blistering and strain after Ti/Au, platinum and Co de-
positions; strain due to resist shrinkage leads to cracks in the metal film. Blistering and
resist shrinkage of deposited metallic films may deteriorate the results of a lift-off pro-
cess or even render it impossible. Both phenomena are not related to thermal stress. The
reason for their occurrence is a bombardment of the sample with charged particles, i. e.,
high-energetic electrons that are back-scattered from the crucible during evaporation
as well as ions [210, 243].12 In the next section, a passive and simple method is briefly
discussed that allows avoiding resist shrinkage and blistering.

3.8.1.1 How to Avoid Resist Blistering and Shrinkage
Blistering and resist shrinkage can be avoided by reducing the bombardment of the sam-
ples with back-scattered electrons and ions. This can be done with additional electrodes
in a parallel-plate capacitor configuration aligned along the path of the charged particle.
Applying a sufficiently high voltage deflects positive and negative charges as suggested

12 The generation of X-rays during EBE may be problematic, too [189].
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Figure 3.41: (a) Schematic of an EBE system equipped with a strong magnet and an insulated, cylindrical
electrode. The magnet bends the path of charged particles so that they cannot reach the sample surface
anymore. (b) Blistering and resist shrinkage are completely suppressed and perfect lift-off results can be
obtained even in the case of Pt [243].

in [210]. However, relatively large voltages and/or a long capacitor are required includ-
ing feed-throughs to contact the electrodes.

An attractive alternative to an active electrode is mounting strong permanent mag-
nets arranged as illustrated in Figure 3.41(a). The resulting magnetic field deflects the
light electrons strongly away from the sample. The path of the heavier ions, though,
is only bent slightly. Therefore, adding a passive, cylindrical electrode with a sufficient
length of the cylinder prevents the sample from being bombarded with charged parti-
cles [243]. Indeed, the combination of permanentmagnets and passive cylinder removes
blistering completely during EBE of different materials. As examples, the results of Ni-
and Pt depositions are shown in Figure 3.41(b). Because the inverted resist flanks of the
PMMA survive the deposition, proper lift-off results are obtained (bottom panel of Fig-
ure 3.41(b)).

3.8.2 Physical Vapor Deposition—Sputter Deposition

An alternative PVD method to EBE is sputter deposition. In its simplest form, a plasma
is ignited in a vacuum chamber containing two parallel plate electrodes by applying a
sufficiently high DC voltage. Ions of an inert gas such as argon will then be accelerated
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toward the cathode consisting of the target material. The ions knock out material from
the target that is deposited onto the substrate lying on the anode. A major benefit of
sputtering is therefore the ability to deposit even materials with rather high melting
temperature. On the other hand, this may also be a drawback since the material sput-
tered from the target hits the sample with an energy on the order of a few eV, whichmay
damage the substrate material (for instance, monolayers of 2Dmaterials). Furthermore,
damage due to UV irradiation emitted from the plasma may also become an issue.

In many cases, a RF plasma tool is employed since DC sputtering only works with
conductive targetmaterials. A RF sputter tool is conceptionally very similar to a parallel-
plate RIE reactor. The difference is that the substrate is now mounted on the grounded
electrode and the target material is on the electrode that is coupled via the blocking
capacitor to the RF power supply such that the developing bias voltage−Vbias accelerates
ions toward the target.

In a simple parallel-plate reactor design, a significant deposition rate can only be
obtained at a relatively high pressure within the reactor. However, as will be discussed
below, to obtain a good step coverage a low chamber pressure is required. A higher ion
density in the plasma in the case of sputtering can be achieved by placing a permanent
magnet at the rear side of the target electrode (cathode). This magnet (cf. Figure 3.42(a))
creates an inhomogeneousmagnetic field that forces the electrons tomove on spirals to-
ward the cathode thereby increasing the probability to ionize the gas (argon). The result-
ing inhomogeneous sputtering across the target (see the photography of such a plasma
and the resulting inhomogeneously sputtered target in Figure 3.42(b)) is compensated
by rotating the sample. This so-called magnetron sputtering yields high deposition rates
at low process pressures.

Figure 3.42: (a) Schematic of a RF magnetron sputtering tool. (b) Photography of the plasma (top) during
NiCr sputtering. The inhomogeneous plasma due to the magnet is clearly visible leading to an inhomoge-
neous wear of the target (bottom).
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Instead of using an inert gas, sputtering can also be carried out with other process
gases such as oxygen or nitrogen. In this case, a reactionwill occur between knocked out
target material and the process gas, which is called reactive sputtering. Typically, TiN is
sputtered reactively with a titanium target and a nitrogen/argon mix as process gas.
Reactively sputtered aluminum with oxygen/argon usually leads to substoichiometric
alumina; sputtering of an alumina target with a small addition of oxygen (to argon), on
the other hand, yields good results.

From the general discussion about thin film deposition above, the deposition char-
acteristics of (magnetron) sputtering can be estimated in the following way: In typical
tools, dss is on the order of centimeters and due to the low pressure lmfp > dss. At the
same time, S > L, and since deposition is carried out at room temperature, diffusion
across the substrate can be neglected to first order. Furthermore, the material ejected
from the target assumes a random angle. Thus, the thickness of the deposited layer is de-
termined by the so-called arrival angle θ. The arrival angle refers to the possible angles
under which atoms/molecules may arrive at a particular spot on the sample. In two-
dimensions, the maximum arrival angle is 180° on extended (horizontal and vertical)
planes. Practically, however, θ < 180° and approximately given by θ1 ≈ 2 ⋅arctan(S/2dss).
In addition, if a topography needs to be taken into consideration, θ will be even smaller
as illustrated in Figure 3.43: in the case of the deep trench with opening dop and depth
ddepth = 2 × dop, the angle θ3 ≲ 2 ⋅ arctan(dop/(2ddepth)) = 2 ⋅ arctan(1/4) ≈ 28°.

Figure 3.43: (a) Schematic of the sputter deposition process leading to the depicted coating of a topogra-
phy. The ratio of the arrival angles θ allows estimating the expected film thickness distribution across the
sample. (b) Sputter-deposited SiO2 onto two parallel amorphous Si lines.

The ratio of the arrival angles allows estimating the thickness distribution across
the topography. In the example above and assuming θ1 ≈ 115° (assuming S = 16 cm,
dss = 5 cm), the thickness on the bottom of the deep trench (right) is only θ3/θ1 ≈ 24.3%
of the thickness on horizontal areas of the substrate surface. On the other hand, the part
of the side flanks close to the wafer surface and exhibits an arrival angle θ2 > θ3. Thus, a
good step coverage of a topography is obtainedwith sputter deposition if the aspect ratio
of the topography dop/ddepth ≳ 1. The right panel of Figure 3.43 shows sputter-deposited
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SiO2. Besides the deposition characteristics expected from thediscussion above, a colum-
nar growth due to the low growth temperatures can be seen.

Task 17.
Sputter deposition: Consider two sputter deposition tools. Tool1 has a target with S = 20 cm and dss =
4 cm; in tool2 S = 5 cm and dss = 30 cm. You would like to deposit on a sample with two trenches. Trench1
has a width of 10 µm and a depth of 5 µm, the width of trench2 is 5 µm and the depth is 30 µm. Determine
approximately the ratio of the thickness of the deposited films in the center of the two trenches (bottom)
and the middle of the side flank with

34
respect to horizontal areas. Which tool is better suited for a good

step coverage and uniform deposition into the trenches?

3.8.2.1 Sputter Deposition for Lift-Off
The good step coverage achievable with magnetron sputtering can also be a disadvan-
tage, particularly in the case of patterning of a metal filmwith lift-off (cf. Sections 3.5.2.3
and 3.8.1). In this case, the resist side flanks may be covered during the deposition pro-
cess either preventing a proper lift-off or leading to metallic flakes that stand more or
less vertically with respect to the substrate. Figure 3.44(a) and (b) show cross-sectional
scanning electron microscopy images of such a behavior. In this example, the aspect
ratio of resist opening versus resist thickness (i. e., dop/ddepth in the discussion above)
is much larger then unity and, therefore, good step coverage is expected. However, if

Figure 3.44: (a) Electron micrograph of Ni sputter deposition on a resist mask with dop/ddepth > 1. The
good coverage of the resist side flanks leads to metal flakes remaining after lift-off (b). (c) Result of a kinetic
Monte Carlo simulation reproducing qualitatively the experimental results. The lower panel shows that a
reduction of dop/ddepth enables a lift-off with sputter deposition.

https://vimeo.com/900728971


3.8 Thin Film Deposition � 153

the resist opening is strongly reduced (i. e., dop/ddepth → 0), the arrival angle is substan-
tially decreased. Figure 3.44(c) shows cross-sections of deposition results simulatedwith
a kinetic Monte Carlo approach [5]. The top image qualitatively reproduces the experi-
mental result with coverage of the inverted resist flanks and inhomogenous thickness
distribution on the substrate surface. As expected, if the opening of the resist pattern is
significantly reduced, there is almost no deposition onto parts of the resist side flanks
anymore because of the low arrival angle. This enables a lift-offwithoutmetal flakes but
at the expense of a much thinner overall film thickness on the sample surface.

3.8.3 Chemical Vapor Deposition—Low Pressure CVD

Chemical vapor deposition is a conceptionally simple process: a flux of precursor gas(es)
is injected into a heated furnace (cf. Figure 3.45(a)) and diffuses toward a heated sub-
strate (b). The precursor(s) is(are) adsorbed at the substrate surface where it(they) de-
compose(s). The reactants then lead to the growth of a layer due to site incorporation
into the growing thin film.

Figure 3.45: (a) Schematic illustration of a LP-CVD furnace. (b) A flux jg of precursor through the boundary
layer leads to a “flux” jdep of thin film growth. (c) Growth rate as a function of 1/T in the case of a low and
high pressure in the LP-CVD furnace.

In the present case, the source of materials to be deposited can be considered be-
ing distributed around the substrate and it is therefore the transport through the gas
phase, in particular, the boundary layer close to the substrate surfaces, thatmatters. Sim-
ilar to the Deal–Grove model (see Section 3.2.1), the flux of precursor/reactant through
the boundary layer can be written as jg = hg(cg − cs) where hg is the mass transport
coefficient (process (1), Figure 3.38) and cg,s the reactant concentrations at the edge of
the boundary layer and the wafer surface. At the surface, a “flux” of materials growth
jdep = csks can be defined where ks is the surface reaction coefficient. Note that ks in-
cludes all processes (denoted (2)–(7), Figure 3.38) related to adsorption, diffusion, desorp-
tion and incorporation of reactant, effectively leading to thin filmgrowth. The continuity
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Figure 3.46: (a) Conformal deposition obtained with LP-CVD or ALD. In the case of LP-CVD, the elevated
substrate temperature leads to surface migration of the precursor molecules such that an equal thin film
growth on horizontal and vertical areas as well as within deep trenches is obtained. (b) Electron micrograph
cross-section of Al2O3 deposited with ALD on top of two a-Si lines.

of fluxes requires jg = jdep ≡ j. Solving jg = jdep for cs and inserting this into j = jdep yields
j = csks = cg

kshg
ks+hg

. With N being the number of atoms incorporated into the growing

film per unit volume, the growth rate R is R = j
N ∝

kshg
ks+hg

. This means that in the limiting
cases ks ≫ hg → R ∝ hg and ks ≪ hg → R ∝ ks. In the first case, growth is mass trans-
fer limited, while in the second case it is surface reaction controlled (cf. Figure 3.45(c)).
In order to avoid depletion of precursor gas, which would result in an inhomogeneous
deposition and in order to facilitate batch processing of many wafers at once, the case
R ∝ ks is highly desirable. At the same time, high growth temperatures are preferable
to obtain high quality films. In addition, high substrate temperatures facilitate surface
migration, which leads to conformal deposition as illustrated in Figure 3.46(a). However,
the surface reaction coefficient ks ∝ exp(−EA/kBT)with an activation energy EA. Conse-
quently, increasing the temperature exponentially increases ks driving the process into
the mass transfer controlled regime. Luckily, hg =

Ddiff
dbl

, with the diffusion coefficient

proportional to Ddiff ∝
T3/2

p , and hence lowering the pressure p in the furnace allows
the surface reaction controlled regime to be extended to higher process temperatures
(cf. Figure 3.45(c)). Therefore, low pressure(LP)-CVD is the preferred method when high
quality films with conformal deposition in a batch process are required.

Typical precursor gases for LP-CVD include silane (SiH4), oxygen, ammonia, nitrous
oxide, dichlorosilane (SiH2Cl2) and tetrathyl orthosilicate (TEOS), which enable the con-
formal growth of high quality polycrystalline Si, SiO2, Si3N4 and oxynitride at different
temperatures.

3.8.3.1 Chemical Vapor Deposition—Atomic Layer Deposition
Atomic layer deposition (ALD) is a chemical vapor deposition process where the de-
position occurs in the ideal case in discrete steps, i. e., monolayer by monolayer. This
is possible because the deposition process due to a reaction of appropriate precursor
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Figure 3.47: Schematic illustration of an atomic layer deposition of Al2O3 on SiO2. Sequential TMA- (a) and
H2O-steps (b) yield a single monolayer of aluminum oxide.

gases is subdivided into sequential process steps. The most prominent ALD process is
the deposition of Al2O3 with the precursors tetramethylaluminum (TMA) and water. In
its simplest form, a reactor for ALD is a container with heated chuck connected to a vac-
uum pump with two mass-flow-controlled feed lines for the two precursors. Figure 3.47
shows schematically the progression of the ALD deposition of Al2O3 on a SiO2-covered
substrate. In the first step, TMA is injected into the chamber. The TMA reacts with the
hydroxyl groups present at the SiO2-surface. As a result, one of the aluminum bonds is
connected to oxygen and a volatile CH4 byproduct is built. When the complete surface
is covered, the TMA feed line is closed and all remaining precursor and byproducts are
pumped out of the reactor. Next, water is injected into the reactor, which reacts with
the remaining two CH3-groups, again forming CH4 as byproduct. When all CH3-groups
have reacted, the water feed line is closed and the reactor is evacuated. This process
sequence yields a first monolayer Al2O3. Since the new surface is again covered with
hydroxyl groups, the process can now be cyclic repeated yielding one monolayer after
each sequence. ALD is also possible using a remote plasma. Plasma-enhanced ALD (PE-
ALD) allows deposition of a broader range of materials with ALD even at low substrate
temperatures. ICP sources are usually used for the generation of the plasma.

Apart from the fact that ALDprovides unprecedented process control over the thick-
ness of the deposited layer, the separation of the deposition into two sequential steps can
lead to a near ideal conformal deposition (cf. Figure 3.46(b)). The reason is simply the
fact that the separation into two sequential steps allows the precursor gases to diffuse
even into deep trenches and can therefore cover the entire surface (vertical and hor-
izontal) equally while there is no deposition of a full monolayer (due to a lack of the
complementary precursor). As a result, ALD is ideally suited for the fabrication of gate
stacks in wrap-gate device architectures, spacer formation or vertical capacitors. How-
ever, a near ideal conformal deposition can only be achieved if each of the process steps
is sufficiently long. This in turnmay strongly reduce the throughput during device fabri-
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cation. Therefore, carefully adjusting the duration of the ALD steps is necessary in order
to obtain optimum results in an acceptable time. QR code #35 provides access to results
on ALD obtained

35
with a kMC simulation tool (that can be downloaded) with which the

impact of the ALD parameters can be qualitatively investigated.

3.8.4 Chemical Vapor Deposition—Plasma-Enhanced CVD

While LP-CVD or ALD are the preferred methods to obtain high quality, conformal de-
position, relatively high temperatures are required in the case of LP-CVD and ALD is
only suited for thin films. If deposition of rather thick layers at substantially lower tem-
peratures is necessary, plasma-enhanced CVD (PE-CVD) is the method of choice. PE-CVD
exploits a plasma instead of the hot wafer surface to decompose the precursor enabling
the thin film growth. To this end, basically the same reactor as in the case of plasma etch-
ing can be used with the substrate electrode connected to ground and both electrodes
in the parallel-plate reactor having similar size.

While PE-CVD provides high quality films with good uniformity at low tempera-
tures, the deposition is usually not conformal, in particular, if a rather high growth rate
is desired. The reason for this is that the lower temperature compared to LP-CVD leads to
strongly reduced surface migration. In addition, the relatively high pressure of parallel-
plate PE-CVD reactors yields a small lmfp, i. e. a randomization of particle motion in the
gas phase, and thus arrival angles up to 270° at convex corners. This leads to a thicker
film thickness at such corners and an imperfect deposition in concave corners (cf. Fig-
ure 3.48(a)). An experimental example of a PE-CVD deposition is shown in Figure 3.48(b);
here, SiO2 was deposited on trenches in a Si substrate. The deviation from the expected
shape of the deposited film cross-section (see inset) is likely to stem frommaterial being
sputtered away due to slight ion bombardment.13 Using a remote plasma source such as
an ICP source to densify the plasma, reducing the process pressure and the deposition
rate as well as choosing a deposition temperature of 300 °C allows one to improve the
step coverage and morphology significantly as is shown in the examples displayed in
Figure 3.48(c) and (d) (compare with magnetron sputtered SiO2, Figure 3.43(b)).

3.9 Damascene Process

Lift-off processes are useful whenever an appropriate etch process for a specific mate-
rial is not available and, indeed, very narrowcontact or gate electrodes canbe fabricated
(in combination with electron-beam lithography). However, they lack reproducibility,

13 Although the substrate is on ground, the plasma potential leads to an acceleration of ions from the
plasma toward the substrate.

https://www.iht.rwth-aachen.de/global/show_document.asp?id=aaaaaaaachiodyt
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Figure 3.48: (a) Schematic of the deposition characteristic of PE-CVD. (b) PE-CVD grown SiO2 on top of a
trench exhibiting poor step coverage. The dashed white line in the inset shows the expected deposited
profile (as in (a)). The deviation is due to material sputtered away due to ion bombardment during the
deposition. (c) Remote plasma enhanced (RPE-)CVD deposition of SiO2 showing a step coverage similar to
magnetron sputtering with improved morphology. (d) RPE-CVD with reduced deposition rate of SiO2 (top)
and SiO2/Si3N4 multilayers (bottom) with improved step coverage.

reliability and pattern fidelity. A process that combines all requirements concerning
process control but does not require to etch a certain material is the so-called dama-
scene process depicted in Figure 3.49(a). During a damascene process a “mold” is etched
into a thin film of a sacrificial material for which appropriate (selective, anisotropic)
dry etching exists. After etching and resist removal, the material that was intended to
be patterned in the first place is deposited, e. g., with sputter deposition or ALD. Finally,
chemical-mechanical polishing (CMP) is utilized to remove the overburden and stop on
the sacrificial material. As an example for such a damascene process, Figure 3.49 shows
images of 4′′ silicon wafers deposited with Al with incomplete polishing (b) and com-
plete polishing (c). In (b), metal residues on the patterns (toward the wafer edge) would
short-circuit all devices in this area; adjusting the CMP parameters leads to complete
polishing, and hence patterning of the Al is achieved without the necessity of etching
aluminum.

A damascene process also facilitates patterning of materials on very small length
scales. As an example, Figure 3.50(a) shows an SEM image of a mold etched into silicon
with anisotropic Si etching (Section 3.6.4). Subsequently, alternating layers of TiN and
Al2O3 are depositedwithALD. Finally, CMP is used such that amultielectrode structure is
obtained. Figure 3.50(b) shows the structure after CMP. Because of the extremely smooth
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Figure 3.49: Damascene processes to form a gate electrode (a). Images of an incomplete (b) and a com-
plete (c) polishing of a 4′′ silicon wafer with an aluminum damascene process [155].

Figure 3.50: Damascene process of a Al2O3/TiN multilayer stack deposited with ALD onto a TMAH-etched
Si substrate (a). (b) CMP allows the fabrication of sub-5 nm TiN electrodes with sub-5 nm interelectrode
distance (see the inset) [225].

etch flanks obtained with anisotropic silicon etching using TMAH (cf. Figure 3.27) and
combining this with ALD, a buried multielectrode structure can be realized with sub-
5 nm electrode size and sub-5 nm interelectrode distance (see the inset of Figure 3.50(b))
[225]. The damascene process avoids many issues regarding the development and/or
availability of appropriate etch processes. In return, it requires reliable CMP processes
for different materials.

During chemical-mechanical polishing, a wafer is polished with a slurry that con-
tains abrasive particles (SiO2 or alumina) and chemical additives. The latter enable a cer-
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tain degree of selectivity with polishing, e. g., the deposited metal at a higher rate com-
pared to other materials on the sample. In addition, if the overall area of regions where
the deposited (metal) film should be removedwith polishing is significantly smaller than
the area of the wafer where the material is supposed to stay, removing the overburden
will occur at a much faster rate than further polishing a flat wafer surface. Therefore,
adding supporting structures or removing irrelevant parts of the “mold” on the sub-
strate is a viable way to improve CMP results. Furthermore, a polishing selectivity is
achieved by choosing materials with appropriate hardness for the substrate material
(i. e., the “mold”) if this is possible. At first sight, a large difference in the hardness of
mold and polished materials appears beneficial: If the hardness of the substrate ma-
terial is larger than the hardness of the deposited (electrode) material, polishing will
strongly slow down once the electrode material on top of the substrate material has
been polished away. This slow-down of the polishing rate can be used for an endpoint
detection providing process control. On the other hand, a large difference in hardness
promotes scratching, erosion and dishing in the soft material. Dishing is the result of
increased polishing in the center of a structure that consists of a softer material than its
surroundings (mold) leading to a dish-shaped cross-sectional polishing profile. Dishing
is more pronounced in larger structures (see Figure 3.51).

An example of a CMP process with materials strongly differing in their hardness is
the generation of aluminum electrodes buried into an oxidized silicon wafer as shown
in the lower panel of Figure 3.51(a). Here, ansisotropic Si etching was used to form a

Figure 3.51: (a) AFM image of the polished Al electrode shown in the electron micrograph (lower panel),
the inset shows a close-up of the polished Al surface. (b) Averaged height profile extracted from AFM mea-
surements to determine erosion and dishing of the Al electrodes. (c) Dishing for several Al electrode struc-
tures of different size [155].
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V-groove in a silicon-on-insulatorwafer. After thermal oxidation, aluminum is sputtered
onto the substrate followed by CMP [197]. The top panel of Figure 3.51(a) shows an AFM
image, which was used to determine dishing and erosion of the aluminum electrode
shown in (b). Although the hardness of SiO2 and Al is quite different, a CMP process
was found that yields little erosion (∼2.3 nm) and dishing (∼1.8 nm across approximately
1.6 µm). Indeed,measuring the dishing of several Al electrodeswith different size, amax-
imum dishing of ∼ 1

1000 of the lateral structure size was observed (displayed in (c)) [155].

3.10 Ion Implantation and Activation

Ion implantation is one of the most important and versatile techniques for semicon-
ductor technology. It allows modifying the semiconducting properties locally within
nanoscale volumes (see the discussion in Section 4.1). This is accomplished with an ap-
propriate mask on top of a substrate. Choosing a proper mask material, thickness and
ion energy, the flux of ions is blocked in the masked regions. As a result, ions are merely
injected into the unmasked semiconductor areas. The depth of the dopants can be ad-
justed with the energy of the ions. Hence, combining multiple successive implantations
with different mask materials on the wafer surface sophisticated three-dimensional
doping profiles can be realized. In recent years, however, the active volumes in semi-
conductor devices have become so small that the statistical nature of the implantation
process becomes relevant. Variability issues due to a random dopant distribution have
since been a matter of intense investigations. Ultimately, random dopant related issues
can only be mitigated by either removing all dopants from the device or by avoiding
the randomness. The former will be studied in Section 4.4 and Chapter 7. The latter can
be accomplished by realizing deterministic implantation. Deterministic implantation is
challenging since for a process on industrial scale one needs to create a dense array of
ion channels that can be switched on and off and that are enabled to detect the passing
of a single ion; so far, a demonstration of such an array has not been accomplished.
However, using an AFM tip and drilling an ion channel into it, deterministic doping of
individual dopants has been demonstrated successfully [191].

Apart from the statistical nature of ion implantation, there is another important is-
sue: the implanted ions need to be activated, i. e., they need to replace a host atom of
the semiconductor in order to donate or accept an electron. To this end, an annealing
of the sample after the implantation needs to be carried out. Unfortunately, dopants, in
particular boron, will diffuse during the annealing thereby broadening the dopant dis-
tribution. Consequently, the activation anneal should be as short as possible for which
rapid thermal annealing has been employed that allows annealing with high heating
and cooling ramps. However, studying the diffusion of boron in SOI annealed with dif-
ferent thermal budgets reveals that even a spike anneal in a rapid thermal annealing
tool leads to substantial diffusion of dopants [164]. Figure 3.52 shows secondary ionmass
spectrometry (SIMS) profiles of boron implanted into a 70 nm thick SOI layer. Obviously,
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Figure 3.52: Boron distribution (acquired with SIMS) within a silicon-on-insulator layer after ion implanta-
tion and annealing with different thermal budgets. (a) Rapid thermal annealing with 20 s and 5 s, (b) spike
annealing with 1000 °C and 1050 °C, (c) flash lamp annealing [164].

annealing leads to strong diffusion (a) and even when spike annealing is employed, the
profile significantly deviates from the as-implanted distribution (b). Only flash lamp an-
nealing allows one to mitigate diffusion such that the annealed and as-implanted dis-
tributions are almost the same (c). The reason for this is that during the µs-short flash
lamp annealing only the top part of the substrate is heated to elevated temperatures
where dopants have been implanted. The bulk part remains at ∼600 °C, and thus acts as
efficient heat sink; heating and cooling ramps are hence way faster compared to rapid
thermal (spike) annealing.

3.11 Silicidation

In the preceding section, it was discussed that the statistical nature of ion implanta-
tion and the diffusion during an activation anneal are problematic in nanoscale devices.
Moreover, in Section 4.3.2 it will become clear that dopants may get deactivated in nano-
structures giving rise to high parasitic resistances. Hence, it appears desirable to replace
dopants withmetals that provide high conductivity and atomically abrupt interfaces. In
this respect, transitionmetal silicides are highly attractive. A number of silicides exhibit
properties that are compatible and suitable for use in Si(Ge) technology. Table 3.5 shows
the most common silicides with typical properties.

A major benefit of silicides is that they can be realized in a self-aligned way. This
means that a silicidation process is carried out by opening the areas where the silicide is
supposed to be formed. Next, themetal is deposited on top of the entire sample followed
by an annealing step. During annealing, the silicide only forms in the areas where the
metal was in contact with silicon. Finally, the superficial metal is selectively removed
from the sample. To this end, several different acidic etch solutions (for instance pi-
ranha) canbeused that neither attack the silicide nor Si, SiO2 or Si3N4. As a result, ametal
electrode is formed without the need for an etching process or additional lithography. If
the process is done as depicted in Figure 7.9 (bottompanels),metal source/drain contacts
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Table 3.5: Properties of common transition metal silicides.

Silicide Thin film
resistivity
(µΩcm)

Sintering
temperature

(°C)

Stable on
Si up to T

(°C)

nm of Si
consumed

per nmmetal

nm of resulting
silicide per nm

metal

Barrier
height to
n-Si (eV)

PtSi 28–35 250–400 ∼750 1.12 1.97 0.84
TiSi2 13–16 700–900 ∼900 2.27 2.51 0.58
CoSi2 14–20 600–800 ∼ 950 3.64 3.52 0.65
NiSi 14–20 400–600 ∼650 1.83 2.34 0.64
NiSi2 40–50 600–800 3.65 3.63 0.66
WSi2 30–70 1000 1000 2.53 2.58 0.67

self-aligned with respect to the gate are realized (called SALICIDE=self-aligned silicida-
tion).

From the silicides listed in Table 3.5, TiSi2, CoSi2 and NiSi show the lowest resistivity.
Moreover, NiSi also consumes the least amount of silicon and can be formed at relatively
low temperatures. Therefore, it has received a great deal of attention and we will exclu-
sively concentrate on nickel silicide in the following.

3.11.1 Nickel Silicidation

During nickel silicidation, nickel is the diffusing species and, therefore, lateral diffu-
sion of NiSi needs to be carefully observed. In fact, when working with fully silicided
source/drain contacts, the lateral diffusion of NiSi during silicidation can cause severe
encroachment of NiSi into the channel. Ultimately, the channel of short channel devices
may become short-circuited. As it turns out, the diffusion of nickel silicide strongly de-
pends on temperature and on the geometry of the silicided silicon volume. The left panel
of Figure 3.53 shows the silicide diffusion length as extracted from scanning/transmis-
sion electron microscopy images, exemplarily shown in the right panels of Figure 3.53.
Here, two sets of different nanostructures were silicided: silicon-on-insulator layers
(green and yellow data points in Figure 3.53) and silicon nanowires (blue and red data
points) [10]. The silicidation length is plotted as a function of the inverse of the SOI-
thickness/nanowire diameter. As expected, the diffusion depends on the annealing tem-
perature yielding significantly longer lengths if the SOI is silicided at 450 °C compared to
400 °C. Less expected is the fact that the data clearly shows a stronger dependence of the
silicide diffusion on the geometry of the silicided Si nanostructure than on temperature.
In fact, if a nanowire is chosen, an annealing temperature of only 280 °C (note that at
such a low temperature the resulting silicide is not NiSi but rather Ni2Si) yields diffusion
far above the SOI samples. It is therefore extremely important to control the diffusion
of the silicide when working with nickel.
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Figure 3.53: (a) Diffusion length during nickel silicide formation as a function of the SOI thickness and
the diameter of Si nanowires (both called dsi) for different formation temperatures [10]. (b) Scanning and
transmission electron micrographs of silicided Si nanowires and silicon-on-insulator.

Continued silicide diffusion is possible when there is a (quasi-)infinite source of
nickel on top of the silicon, which was the case in the experiments shown in Figure 3.53.
If, on the other hand, the available nickel is limited, diffusion will stop once the entire
nickel has been consumed. Hence, silicide diffusion can be controlled even in nanostruc-
tures, when the amount of nickel can be precisely controlled. For silicon-on-insulator,
this can be accomplished easily by depositing an appropriate thickness of nickel on top
of the silicon (with the factor provided in Table 3.5). If nanowires are being used, de-
position of the appropriate amount is not trivial due to the three-dimensional geom-
etry. A suitable way to circumvent excessive silicide diffusion is therefore a two-step
silicidation. This means that after nickel deposition, a first low temperature and short
silicidation process is carried out. At low temperatures, a Ni-rich phase is formed and
thus, removing the superficial nickel, a finite source of Ni is realized, i. e., the superficial
nickel within the Ni2Si. In a second annealing at higher temperatures, NiSi (400–600 °C)
or NiSi2 (600–800 °C) then forms without excessive diffusion.

3.11.2 Dopant Segregation During Nickel Silicidation

The last row in Table 3.5 shows that all silicides exhibit a rather large Schottky barrier
with respect to the conduction band of silicon (thiswill be elaborated on in Section 4.6.2).
To overcome the barrier and realize a proper Ohmic contact, the semiconductor is usu-
ally heavily doped, which yields a thin, highly transmissive Schottky barrier (cf. Fig-
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ure 4.22). However, in many device applications (such as the emitter of solar cells, fully-
depleted SOIMOSFETs, etc.) an inhomogeneous doping profilewith a highly doped layer
only at the silicide–silicon interface is desirable. In the case of a highly doped interface
layer and provided the layer has an appropriate thickness, a strong band bending can be
expected, which makes the Schottky barrier thinner thereby promoting the tunneling
of carriers through the barrier.

Nonuniform doping profiles can be realized with the technique of dopant segrega-
tion during silicidation, which is depicted in Figure 3.54: Consider a bulk silicon sample
intowhich dopants have been implanted. If the sample is coatedwith nickel and if subse-
quently the entire implanted volume in the silicon sample is nickel-silicided, the dopants
redistribute and are piled up at the silicide–silicon interface. This phenomenon is called
dopant segregation during nickel silicidation. The fact that nickel is the diffusing species
in the NiSi formation leads to a “consumption” of the implanted silicon volume thereby
pushing the dopants in front of the moving NiSi-Si interface resulting in a substantial
change of the dopant profile.

Figure 3.54: Left: Schematics of dopant segregation during nickel silicidation in bulk silicon. The right
panel depicts SIMS profiles showing the segregation of arsenic after nickel silicidation.

Whether dopant segregation occurs or not is determined by the diffusivity and solid
solubility of the dopants in the silicide and the presence of point defects at the silicide–
silicon interface. A significant change of volume is involved when the silicide is formed,
which leads to a high strain at the interface. As a result, point defects (self-interstitial or
vacancies) can be generated in order to partially relieve the stress. Due to the formation
of vacancies, the diffusivity of dopants in silicon is enhanced such that theymove toward
the interface where they get piled up. With dopant segregation during silicidation, a
local dopant concentration higher than the solid solubility can be realized due to the
high density of strain-induced point defects.

The occurrence of dopant segregation in the NiSi–silicon system is confirmed by
a secondary ion mass spectroscopy (SIMS) investigation of bulk silicon samples, which
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are implantedwith arsenic, and subsequently thewhole implanted area is fully silicided.
The right panel of Figure 3.54 shows the depth distribution of arsenic as measured by
time-of-flight SIMS. The resulting depth profiles indicate that dopant segregation occurs
at the NiSi–silicon interface. The As-concentration exceeds 1×1020 cm−3 for an initial im-
plantation dose larger than 5×1014 cm−2 (see Figure 3.54, right). The pronounced peak at
a depth of ∼100 nm corresponds to the silicide–silicon interface indicating that the ini-
tially implanted region (with peak at∼10 nm) is totally silicided.Moreover, Figure 3.55(a)
shows that the dopants are pushed in front of the silicidation front into the bulk of the
substrate similar to a snow-plow maintaining a steep dopant distribution. In addition,
there is only a slight reduction of the peak As concentration observable with increasing
NiSi thickness. As a result, dopants can be redistributed and piled up at the NiSi inter-
face enabling inhomogeneous and steep doping profiles. The question now is whether
these dopants are active keeping in mind that no activation anneal is done after the
silicidation (and most of the times also prior to silicidation) and that the silicidation
is carried out at rather low temperatures. To clarify this, electrochemical capacitance
voltage measurements are required as shown in Figure 3.55(b). Here, the distribution of
active dopants in a silicon substrate is shown prior (blue) and after nickel silicidation.
One clearly observes the redistribution with a strong increase of the peak concentra-
tion. More importantly, these dopants are active proving that dopant segregation can be
used to create inhomogeneous and steep doping profiles with high active peak concen-
trations.

Figure 3.55: (a) SIMS profiles of arsenic segregation for different NiSi thicknesses. (b) Depth profiles of
active dopants (phosphorous) in silicon prior (blue) and after nickel silicidation (red).

3.12 Hydrogen Annealing

Annealing structures etched into silicon in pure hydrogen allows rather drastic shape
transformations. If properly done, H2-annealing increases the surface migration of Si
atoms and hence leads to a reflow and rearrangement of the Si surface [166]. This is
used, for instance, to smoothen etched Si fins and nanowires [67], remove variability
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Figure 3.56: (a) Hydrogen annealing of bulk Si. Simulation results utilizing the level-set method (top) and
experimental results (bottom) [245]. (b) H2-annealing of a SOI sample. [245].

and transform a rectangular cross-section of a Si nanowire to a rather circular one (cf.
Figure 3.58). At elevated temperatures above ∼950 °C, H2 annealing can lead to a strong
reflow enabling spectacular shape transformations. Figure 3.56 shows two such exam-
ples: in (a) a series of periodically arranged holes have been etched into bulk silicon
with a sequence consisting of multiple short and two long Bosch etch steps that lead to
the pattern shown in Figure 3.56(a) (lower panel). Upon hydrogen annealing, a double
membrane with two empty spaces in silicon is created. The upper panels show a simu-
lation based on a level-set approach, nicely reproducing the experimental results [245].
In (b), a similar pattern of holes (only short Bosch etch steps) is etched into a SOI wafer.
Subsequently, the buried oxide has been removed with HF followed by H2 annealing.
As a result of the reflow (an animation of the effect of hydrogen annealing
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is provided

through QR code #36), a closed, crystalline Si membrane on top of an empty space is
obtained.

3.13 Low-Dimensional Semiconductors

As will be discussed in detail in Chapter 5, nanostructures with extremely small dimen-
sions, are ideally suited for the realization of high performance transistor devices in
highly integrated circuits. Suitable nanostructures comprise nanowires/nanotubes that
can be fabricated with a so-called top-down or bottom-up approach, which will both be
discussed briefly in the following sections. In addition, two-dimensional materials such
as graphene, transition metal dichalcogenides and black phosphorous have recently at-
tracted a great deal of attention. Therefore, processes specific for the manipulation of
2D materials (such as transfer from a host to a different substrate) will be presented at
the end of the chapter.

https://vimeo.com/466225794
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3.13.1 Top-Down Fabrication of Nanowires

Nanowires can be readily fabricated using a top-down approach with e-beam lithogra-
phy (cf. Section 3.5.3) and reactive ion etching as illustrated in Figure 3.57. Using silicon-
on-insulator, an H-shaped pattern is etched down to the buried oxide followed by the
removal of the BOX to release the nanowire from the substrate. However, a lithographic
process always leads to line-edge roughness, which becomes increasingly problematic
when the size of the nanostructure is scaled down. A viable way to mitigate this is to
pattern a larger nanostructure and then trim down the nanowire to the desired size em-
ploying thermal oxidation (cf. Figure 3.4, bottom right) and HF-stripping and/or digital
etching (cf. Section 3.6.3). In fact, with appropriate thermal oxidation conditions, even
a self-terminating process can be exploited that prohibits the nanostructure to become
fully oxidized leaving a silicon nanowire core with a few nanometers in diameter [200].
In addition to oxidation, annealing in a pure, low pressure hydrogen atmosphere can be
used in order to reshape and smoothen the nanowires before the formation of the gate
dielectric (see the preceding section) [166, 67].

Figure 3.57: Process flow for the top-down fabrication of lateral Si nanowires.

An alternative approach to nanowire fabrication can be implemented with the help
of anisotropic silicon etching. This process does not require the use of a lithography
method with nanoscale resolution such as EBL [286, 244]. Figure 3.58 shows an example
of such a process: First, a thin SiN mask is generated (e. g., with RTN, see Section 3.3) on
top of a SOI wafer. After patterning the SiN along a [110]-direction (a), anisotropic silicon
etching is employed (Section 3.6.4) (b), followed by a dry oxidation. Since the SiN serves
as a diffusion barrier, the Si will only oxidize locally on the exposed {111} crystalline
facets (Section 3.2.2) (c). A second mask layer is generated with optical lithography (d)
and the SiN is selectively patterned (Section 3.6.2) (e). Subsequently, anisotropic Si etch-
ing is carried out a second time (f). Since the first etch flank is covered by the LOCOS
oxide, a nanowire with triangular cross-section is obtained. Finally, the LOCOS oxide is
removed and the nanowire released from the substrate (g). An oxidation plus HF strip-
ping or hydrogen anneal can then be used to realize circular, smooth nanowires (h).

A very interesting approach that allows the fabrication of a whole array of multiple
silicon nanowires is to exploit the scallop formation during the Bosch process [200, 36]: if
a (multiple) nanoscale fin-structure(s) is etched into silicon with a Bosch process where
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Figure 3.58: Schematic process flow for the top-down fabrication of lateral, suspended Si nanowires real-
ized with a combination of anisotropic silicon etching and local oxidation of silicon [286, 244].

Figure 3.59: Array with vertically stacked nanowires realized exploiting the overlap of Bosch scallops (red
dashed lines) when etching fins with dfin < 2 ⋅ dscallop [200]. The electron micrographs show a cross-section
of a single diamond-shaped nanowire (left) and an experimental realization of vertically stacked nanowires
(right).

the isotropic etch step leads to a depth of the scallops dscallop on the order of or larger
than half of the fin width dfin (cf. Figure 3.59), diamond-shaped patterns appear as il-
lustrated in Figure 3.59. Subsequently, (self-terminating) oxidation and HF-stripping or
digital etching in combination with hydrogen annealing can be employed to trim down
and round the Si nanostructures [200]. A similar stack of nanowires can also be realized
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based on Si/SiGe heterostructures (see Section 5.8.3). The addition of self-terminating
and self-adjusting processes to top-down fabrication provides unprecedented control
over the geometry and position of the nanostructures.

3.13.2 Growth of Nanowires

Nanowires can also be realized with a (bottom-up) growth process. One of the most fre-
quently used approaches is the so-called VLS (vapor-liquid-solid) method [263] which
exploits the properties of a eutectic such as the AuSi system; its binary phase diagram is
depicted in Figure 3.60. Suppose that a Au nanoparticle is at a temperature of 400–500 °C
with a Si content of 30%. If the Si concentration dissolved in the nanoparticle is contin-
uously increased (e. g., by providing Si through the catalytic decomposing of silane as
illustrated in the inset) the liquidus (red line) is crossed horizontally and the AuSi sys-
tem enters the binary (liquid/solid)phase region. Interestingly, the Au concentration in
the solid phase is zero and as a result, a pure Si solid grows out of the Au nanoparticle.

Figure 3.60: The gold-silicon binary phase diagram. The inset shows a schematic of a nanowire growing
from a gold nanoparticle due to supersaturation of Si.

If a silicon substrate with Au nanoparticle is mounted into a CVD chamber and, e. g.,
silane is provided the nanowire will grow at the silicon–nanoparticle interface. Because
the solid Si phase within the binary phase region does not contain Au, the gold nanopar-
ticle is not consumed during the growth but “moves” upwards staying at the top of the
nanowire. This behavior is shown in Figure 3.61 [230]. Here, a gold-disc is deposited
onto a patterned Si/SiO2 substrate with EBL and lift-off. Annealing the sample yields a
gold nanoparticle fromwhich the Si nanowire grows. In this respect, another important
property of the eutectic is exploited; the eutectic point of the AuSi system is at a rather
low temperature. This means that the VSL growth can be carried out at temperatures
significantly below the temperature where the precursor (e. g., silane) spontaneously
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Figure 3.61: Illustration and electron micrographs of a vapor-liquid-solid growth of silicon nanowires using
the AuSi eutectic material system [230].

decomposes. As a result, planar Si-growth is avoided, which means that the nanowire
diameter will stay (almost) constant during the growth and is determined by the diam-
eter of the Au nanoparticle. After the growth, the gold is etched away, and subsequently
the nanowire can be harvested (mechanically scratching it off the sample or by using
ultrasound) or further used to realize, e. g., vertical nanowire FETs (see Section 9.2.3).

It is certainly a viable question what the benefit of a nanowire growth is if either
harvesting of the nanowires and transfer to another substrate after the growth process
or if a lithography process for patterning and positioning of the seed particles is nec-
essary. The answer is that at the nanoscale materials can be grown epitaxially on top
of each other that exhibit vastly different lattice constants (cf. [258], for instance). This
provides a great deal of opportunities to tailor material properties with appropriate
heterostructures along the nanowire axis unparalleled in conventional bulk epitaxial
growth. Moreover, increasing the temperature during nanostructure formation, such
that planar CVD growth is enabled, opens the possibility to realize axial and radial het-
erostructures (core-shell nanowires) within the same nanowire. Therefore, nanowire
growth is a perfect test bed for the exploration of ways to optimize devices or explore
new device functionalities.

3.13.3 2D Materials—Exfoliation and Visibility on Substrates

The first investigations of the electronic transport in a two-dimensional material were
carried out byNovoselov andGeim [203] and initiated a newfield of research. Soon after
the demonstration of monolayers of graphene, a great variety of different, graphene-
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like two-dimensional materials (2D materials) were found (see Section 2.8). Since then,
transition metal dichalcogenides (TMDCs) such as MoS2 and WSe2 but also materials
such as black phosphorous have attracted a great deal of attention.

The initial realization of graphene relied on exfoliating flakes of mono- and multi-
layer graphene with an adhesive tape (often called the “scotch-tape” method) from a
block of graphite. After thinning the exfoliated flake, it is transferred to an insulat-
ing substrate (usually oxidized silicon) by pressing the tape onto the substrate. Sub-
sequently, the substrate is inspected using optical microscopy to find suitable flakes,
preferably exhibiting parts withmonolayer thickness. Finding amonolayer of graphene
with optical microscopy (OM) on suitable substrates is possible because of multiple
reflections and interference of the light at the graphene surface as well as graphene-
insulator and insulator–substrate interfaces. In order to obtain a sufficiently high con-
trast enabling to distinguish amonolayer graphene from a spot on the substrate without
any flake and even to distinguish between a mono and a bilayer, an appropriate com-
bination and thicknesses of substrate and insulator need to be chosen. As mentioned
above, the most straightforward substrate and insulator are silicon and SiO2, respec-
tively. However, in many cases other substrate materials and other two-dimensional
materials are desirable. Being able to identify the number of layers of a specific 2D flake
from OM images is therefore extremely helpful when working with 2D materials.

Figure 3.62 shows optical microscopy images of (a) graphene on a 300 nm SiO2/Si
substrate [154], (b) WSe2 on a 287 nm SiO2/Si substrate [196] and (c) WSe2 on a 7 nm
Al2O3/Al substrate [198]. Simulations of the visibility are plotted in the figures, too, show-
ing that the color impression can be reproduced very well. This allows the identification
of suitable areas with a specific number of layers of a 2D material on a substrate and it

Figure 3.62: (a) Visibility of monolayer (ML) and bilayer (BL) graphene on 300 nm SiO2/Si (top), simulated
color of graphene on (i) 101 nm SiO2/34 nm BaTiO3/125 nm HfO2/Si and (ii) 29 nm SiO2/47 nm Al2O3/12 nm
BaTiO3/Si [154]. (b) Optical microscopy (OM) of WSe2 on SiO2/Si. The color coding was confirmed with AFM
(inset). The lower panel compares experimental and simulated colors [196]. (c) OM (top) and simulated
visibility of WSe2 on Al2O3/Al [198].
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enables the prediction of the dielectric layer sequences of substrates providing optimum
visibility such as (i) and (ii) shown in Figure 3.62(a) for graphene [154]. The visibility and
color impression for various additional substrates are shown in Figure A.1, Appendix A.
A computer
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program that allows the simulation of the visibility can be downloaded

through the QR code #37.

3.13.4 2D Materials Transfer—PVA/PMMAMethod

In many cases, the 2D material needs to be transferred from one substrate to another
one. For instance, growth of graphene is often done on copper foils, which are obviously
conductive and cannot be used as a substrate for a device. Transfer of 2D materials is
also required if the material needs to be placed at a specific position on the substrate
since simple exfoliation leads to a random distribution of flakes with different thick-
nesses across a substrate. Finally, if heterostructures consisting of several 2D materials
are realized, transfer of several different 2D materials on top of each other is required.
There are quite a few different methods of transfer from different substrates. In the
present chapter, only the frequently used PVA/PMMAmethod is described; the reader is
referred to [125] that discusses in detail various alternative approaches.

In order to enable the 2Dmaterial transfer, an intermediary substrate based on bulk
silicon is fabricated as illustrated in Figure 3.63. First, an array of marker structures is
etched into the substrate (a). Next, PVA and PMMA are spun on the substrate followed
by baking the sample on a hot plate. Themarker structures in the Si substrate need to be
deep enough so that they are transferred into the dual polymer film. Afterwards, flakes
are exfoliated onto the PMMA (b). The color contrast (see preceding section) helps to
identify regions with mono-, bi- and multilayer material. As described in more detail
below, Raman characterization is then carried out in order to determine the number of

Figure 3.63: Process flow of the PVA/PMMA method for 2D materials transfer. (a) Marker etching, (b)
spin-coating of PVA and PMMA, exfoliation of 2D material, (c) dissolution of PVA in water, (d) fishing of the
PMMA floating on the water, (e) transfer of the PMMA with the 2D material upside down onto a new wafer.

https://www.iht.rwth-aachen.de/global/show_document.asp?id=aaaaaaaaatdpiie
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layers of the respective material unambiguously. After scratching one side of the poly-
mer layer, the sample is carefully put on the surface of water making sure that the sam-
ple floats (c). The scratch enables the water to dissolve the PVA starting from the side
of the sample with the scratch. When the PVA is completely dissolved, the PMMA sheet
floats on the water surface and can be fished with an appropriate device (d). Finally, the
PMMA including the 2Dmaterial is put upside down onto the new substrate. The hole in
the fishing device allows observing the marker structures of the initial silicon substrate
that have been transferred into the PMMA. Knowing the position of the 2Dmaterial flake
with respect to themarkers allows aligning the flakewith respect to a pattern on the new
substrate. Finally, the PMMA is removed, which can in principle be done with acetone
or by heating it off in an appropriate furnace.

Figure 3.64 shows optical microscopy images of a PVA/PMMA transfer. The marker
structures of the initial substrate are clearly visible in (a) and also in (b), which shows
the PMMA upside down on the new substrate (featuring a multielectrode structure). (c)
shows the final result where the PMMA has been removed.

Figure 3.64: Optical microscopy images of a 2D material transfer. (a) Exfoliated graphene on top of a
PVA/PMMA coated Si substrate. (b) Transferred graphene and PMMA layer on the new substrate; (c) after
the removal of the PMMA.

Although an appropriate substrate allows to distinguish between mono-, bi- and
multilayer (cf. Section 3.13.3), an unambiguous determination whether a 2D material
flake is a monolayer or not requires a Raman characterization. Exemplarily for the case
of graphene on a PVA/PMMA-coated Si substrate, Figure 3.65(a) shows an optical and
an atomic force microscopy image (AFM) together with Raman spectra measured at the
spots on the graphene flake marked with the colored dots in the OM image. One clearly
observes that in the case of the PVA/PMMA substrate it is rather difficult to distinguish
betweenmono-, bi- andmultilayer usingmerely optical contrast. Furthermore, the AFM
image does not allow one to distinguish the number of layers either. This is mainly due
to the fact that because of the deposition of the flake onto the intermediary PVA/PMMA
stack, graphene forms bubbles, which can be as tall as 10 nm, i. e., much larger than the
step height of a graphene layer. Therefore, Raman characterization (see main panel of
Figure 3.65(a)) is mandatory.
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Figure 3.65: (a) Optical microscopy, AFM and Raman characterization of a graphene flake with mono-, bi.,
and multilayer regions. The colored dots in the OM image show where the respective Raman measure-
ments were carried out. (b) Typical Raman spectra for different layers of MoS2. The difference between the
E12g- and the A1g-modes is plotted in the lower panel and allows a clear distinction between mono-, bi- and
triple-layers of MoS2.

Three peaks in the Raman spectrum are characteristic for graphene. The G-peak
(at ∼1581 cm−1) is due to bond stretching in all pairs of atoms of the hexagonal carbon
lattice. The D and the 2D-peaks (at ∼1343 cm−1 and ∼2674 cm−1) can be explained by a
double resonance scheme. The 2D-peak is key to the differentiation of mono- and bi-
layer graphene. In the case of a monolayer, a single Lorentzian peak is observed (see
Figure 3.65). In contrast, a bilayer shows a 2D-peak, which is asymmetric, and exhibits
a characteristic shoulder on its lower Raman-shift side [90]. The spectra of graphene
exhibiting three layers or more are all very similar and symmetric. As an additional in-
dicator for the identification of a monolayer graphene, the ratio between the heights of
the 2D- and G-peaks can be used, which should be greater than 10 : 1 (cf. Figure 3.65(a)).

Raman spectroscopy allows also the identification and differentiation of the num-
ber of layers in TMDCs. Figure 3.65(b) shows the Raman spectra of MoS2 flakes. Here, the
difference between the E12g and the A1g modes serves as an indicator of the number of
layers present in the investigated flake. The differences of the Raman shifts are plotted
as a function of the number of layers in Figure 3.65(b), lower panel. Obviously, one can
distinguish between 1–4 layers within the flake.
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After the transfer of a flake of 2D material, contacts have to be made to the flake
using, e. g., PMMA, electron-beam lithography and lift-off. However, for the transfer pro-
cess itself, PMMA is used and as a result, the PMMA layer can be utilized for the contact
formation. To this end, the EBL is carried out before the transfer, i. e., while the flake still
resides on the host substrate. The benefit of this is that a stable substrate with marker
structures can be used for the lithography while the substrate the flake will be trans-
ferred to, can be optimized to facilitate best performance of a targeted device concept.
For example, 2Dmaterials show strain-dependent electrical properties and to study this,
flexible substrates are required. Processing the sample on a flexible substrate, however,
is not a trivial task. Carrying out the e-beam lithography on the intermediary substrate
(i. e., exposure through the 2D material into the PMMA), transferring the sample and
then develop the PMMA allows using the PMMA as transfer substrate and lithography
mask. After final deposition of a metal and lift-off, contact electrodes can readily be
fabricated even on flexible (or extremely small) substrates. As an example, Figure 3.66
shows three optical microscopy images of (a) the PVA/PMMA substrate (the dashed lines
are the contact areas exposed with 10 keV e-beam lithography), (b) the transferred and
developed pattern (note themirror-inverted electrodes) and (c) the structure aftermetal
deposition (EBE) and lift-off.

Figure 3.66: 2D material transfer process including electrode patterns written with EBL into the PMMA
layer used for the transfer prior to the actual transfer process (a). The development of the PMMA is carried
out after the transfer on the new substrates (b). After EBE, a lift-off is carried out (c).

Exercises

Exercises togetherwith solutions are accessible via theQR code. 38

https://www.iht.rwth-aachen.de/global/show_document.asp?id=aaaaaaaachgkunu


4 Basic Ingredients for Nanoelectronics Devices

The present chapter introduces the most important ingredients for nanoelectronics
devices and in particular field-effect transistors. First, doping of semiconductors is dis-
cussed ranging from simple p-n-junctions to studying effects related to doping at the
nanoscale and a possible alternative to impurity doping. As a second ingredient, metal-
oxide-semiconductor capacitors (MOS capacitor) will be investigated. Finally, metal-
semiconductor contacts will be elaborated on in detail followed by a short discussion of
heterostructures.

4.1 Doping of Semiconductors
In the case of an intrinsic semiconductor, all electrons in the conduction band have been
thermally excited from the valence band. Using the density of states (DOS) in three di-
mensions (cf. Equation (2.83)) the bulk electron density n can be computed as energy
integral of the DOS multiplied with the Fermi distribution function:

n =
∞

∫
−∞

dED3D(E) ⋅ f (Ef ) ≈
∞

∫
Ec

dE
m⋆DOS
2π2ℏ3
√2m⋆DOS(E − Ec) ⋅ exp(−

E − Ef
kBT
) (4.1)

where on the right-hand side the Fermi distribution function has been replaced with
the Boltzmann approximation. This is justified because in the undoped (intrinsic) case
the Fermi level will be located within the band gap with Ec − Ef ≫ kBT . Note that de-
generacy, e. g., due to the different valleys in the silicon conduction band can be taken
into consideration by choosing an appropriate density of states effective mass m⋆DOS,c/v
for the conduction or valence band (see Section 2.11.2). The right side of Equation (4.1) is
a definite integral and can be rewritten as a product of a prefactor and an exponential
term, which yields ni = Nce

−(Ec−Ef )/kBT . Here,Nc is the so-called effective density of states
of the conduction band as has already been stated in Section 2.11.3 (cf. Equation (2.94)).
This means that the carrier density appears as being located at the conduction band
edge Ec with a certain density given by Nc = 2(

2πm⋆DOS,ckBT
h2 )

3/2 multiplied with the Boltz-
mann factor, i. e., the probability that carriers can be found at Ec . Replacing Ec −Ef with

Ef − Ev and Nc with Nv = 2(
2πm⋆DOS,vkBT

h2 )
3/2 allows computing the density of holes p in the

valence band in the same fashion. With appropriate values for the effective masses, one
obtains Nc ≈ 2.81 × 10

25 m−3 and Nv ≈ 1.83 × 10
25 m−3 at room temperature.

Since in the intrinsic case all electrons are thermally excited from the valence band
leaving behind a hole, the intrinsic carrier density ni must be equal to n, which is equal
to p and as a result, ni = √n ⋅ p. Inserting Equation (4.1) and its equivalent for p yields
the well-known relation between ni and the band gap,

ni = √Nc ⋅ Nv exp(−
Eg

2kBT
), (4.2)
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with Eg = Ec − Ev. The exponential dependence of the intrinsic carrier density on the
band gap yields rather small ni at room temperature if the band gap is not small. In fact,
in silicon, ni ≈ 1.5 × 10

10 cm−3, which means that undoped silicon at room temperature
is a rather bad conductor. We can define an intrinsic Fermi level Eif using Equation (4.2)

by inserting ni = Nc exp(−
Ec−E

i
f

kBT
). Solving for Eif yields after some algebra

Eif =
Ec + Ev

2
+
kBT
2

ln(Nv
Nc
), (4.3)

meaning that the Fermi level in an intrinsic semiconductor is close to midgap; if the
effective densities of states in the conduction and valence bands Nc,v are equal, Eif is
exactly at midgap.

Task 18.
Nondegenerate carrier density: Explicitly carry out the computation of the carrier density in a bulk
semiconductor in the nondegenerate limit.

39
Youmaywant to use the definite integral∫∞0 √x exp(−x) dx =

√π/2.

In order to increase the number of carriers and thereby the conductivity of the semi-
conductor, doping is necessary. Doping of semiconductors is one of the most important
techniques of microelectronics that virtually enabled all of today’s electronic devices
such as diodes, bipolar and field-effect transistors as well as photodetectors and solar
cells. The reason for this importance is that doping allows very large changes in the con-
ductivity of the semiconductor based on electron conduction (n-type) in the conduction
band as well as hole conduction (p-type) in the valence band. A very important fact is
that these conductivity changes can be accomplished while leaving the band gapmostly
intact (apart from a band-gap lowering and band-tailing, see discussion below) because
the energy levels of the dopants are close to the conduction band (in the case of donors)
or to the valence band (for acceptors).

Let us consider an elemental group IV semiconductor (e. g., silicon or germanium)
and assume that the semiconductor is doped n-type (p-type) with a concentration of Nd
donors (Na acceptors). In order to act as a donor (acceptor), a group V (group III) im-
purity is needed that replaces an atom on a crystal lattice site of the host semiconduc-
tor. Since four electrons are needed to form covalent bonds with the adjacent atoms,
donors (acceptors) exhibit one superficial (one deficit) electron. A simple model to esti-
mate the ionization energy of the donors (acceptors) is to consider the donor (acceptor)
as a hydrogen-like atom (thismodel is further elaborated on in Section 4.3.1). Essentially,
due to the donor (acceptor) being embedded into the dielectric of the host semiconduc-
tor and due to a change in effective mass, the ground-state energy of the (hydrogen-like)
donor is the donor level Ed and the ionization energy is Eion = Ec − Ed . For better read-
ability, the following discussion will be stated explicitly for donors as dopants; a similar
analysis can be carried out for acceptors.

https://vimeo.com/465493351
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Since typical donors have an Ed close to the conduction band, most dopants are
ionized at room temperature providing their superficial electron into the conduction
band thereby leaving behind a positively charged donor. The probability of finding ion-
ized donors is meditated by the Fermi distribution function for donors fdonor (see Equa-
tion (2.72)) or one should rather say 1 − fdonor, i. e., by the probability that the donor
states are empty. If the doping concentration is rather small, such that all dopants can
be considered as being isolated from each other (see the next section and Figure 4.2,
left panel) the density of states for the dopants is simply given by a delta function (as
in Equation (2.78)) multiplied with the dopant density, i. e., Ddop(E) = Ndδ(E − Ed). As a
result, the density of ionized (positive charge) donors is

N+d = ∫ dENdδ(E − Ed)(1 −
1

1 + 1
2e

E−Ef
kBT

) =
Nd

1 + 2e
Ef −Ed
kBT

(4.4)

where the integration can be carried out right away due to the delta function. Remem-
ber that the factor 1

2 has to be introduced in the Fermi function for donors to account
for the two possibilities of occupying the donor state (see the discussion in Section 2.10.1
regarding the derivation of the Fermi function in the case of distinguishable and indis-
tinguishable states). Hence, the particle density of electrons is given by

n ≈ N+d + p
p=

n2i
n→ n ≈ N+d +

n2i
n

(4.5)

where we considered the case without any acceptors in the semiconductor. Expres-
sion (4.5) yields a quadratic equation for the determination of n. However, in the case
of sufficiently high n-type doping and/or low temperatures n2i /n ≪ n and, therefore, the
term is often neglected resulting in n ≈ N+d . With increasing temperature on the other
hand, the carrier density eventually is again dominated by thermal excitation from the
valence band such that the contribution of p needs to be incorporated and ultimately
yields n ≈ p as in the intrinsic case.

Equation (4.5) allows computing the energetic position of Ef as a function of doping
concentration and temperature. Explicitly writing down Equation (4.5) in the nondegen-
erate case, it is clear that Ef (T) needs to be computed numerically by solving

Nce
−
Ec−Ef
kBT =

Nd

1 + 2e
Ef −Ed
kBT

+ NcNve
−

Eg
kBT

1
Nc

e−
Ef −Ec
kBT (4.6)

where Nc,v ∝ (kBT)
3/2. As discussed already above, for high temperatures the intrinsic

case is obtainedwith Ef lying close tomid-gap. For cryogenic temperatures, on the other

hand, Ef −EdkBT
≫ 1, and hence n ≈ N+d → Nce

−
Ec−Ef
kBT ≈ Nd

2 e
−
Ef −Ed
kBT . We can now define a low

temperature (LT) carrier density nLT = √n ⋅ N+d in the same way as the intrinsic carrier



4.1 Doping of Semiconductors � 179

density has been derived above which results in nLT = √
NcNd
2 e−

Ec−Ed
2kBT . This means that

(apart from the factor of 2 under the square root) the same equations are obtained as in
the intrinsic case. But now, the doping energy level Ed plays the role of the valence band
and the difference Ec −Ed the role of the band gap. Hence, at cryogenic temperatures Ef
approaches the level (approximately) in the middle between Ec − Ed according to

Ef =
Ec − Ed

2
+
kBT
2

ln( Nd
2Nc
) (4.7)

where the second term becomes rather small due to the temperature dependence of Nc
and the factor in front of the natural logarithm. Ef (T) is shown schematically in Fig-
ure 4.1 for an arbitrary doping concentration Nd . The exact quantitative relation de-
pends of course on the numerical values of Nd ; qualitatively, however, the curves will
behave as shown. With the same reasoning, Ef will be in between the acceptor level Ea
and the valence band Ev in the case of p-type doping (see Figure 4.1, right panel). This
means that even small doping concentrations are sufficient tomove the Fermi level close
to the conduction or valence bands when cooling the sample to sufficiently low temper-
atures. However, in the case of nondegenerate doping with a finite gap between Ec(Ev)
and Ed(Ea) a very small free carrier density will be obtained even in the case that the
Fermi level is moved to ∼15–25meV below (above) the conduction (valence) band (since
kBT = 0.083meV at T = 1 K). This lack of free carriers in the conduction (valence) band
in nondegenerate semiconductors at low temperatures is called “freeze-out” and leads
to an insulating behavior at low temperatures.

Figure 4.1: Fermi level relative to the conduction and valence bands together with the energy level of the
donors Ed and acceptors Ea as a function of temperature. For low T , the Fermi level moves in between the
dopant level and the respective band. For high temperatures, the semiconductor becomes intrinsic.

4.1.1 Degenerate Doping Concentration

With ion implantation, it is possible to implant a very high concentration of dopants
into a host substrate that can be activated with an appropriate annealing technique (cf.
Section 3.10). At sufficiently high doping concentrations, the semiconductor is said to be
degenerately doped and behaves similar to ametal. If we assume for the time being that



180 � 4 Basic Ingredients for Nanoelectronics Devices

we were able to place the dopants on a regular lattice, then we would simply obtain a
superlattice of dopants within the periodic crystal structure of the host solid. As a result,
we could use the tight binding approach (see Section 2.4) and expect a band to develop
centered around Ed . If we adopt the (simplistic) picture of dopants being hydrogen-like
atoms,we expect a cosine band as illustrated, e. g., in Figure 2.16.With further increasing
dopant concentration, the overlap between adjacent dopants increases giving rise to a
band with larger energetic width (cf. Figure 2.13). At sufficiently high concentration, the
band of dopants overlaps with the conduction band of the host crystal. Once this hap-
pens, the semiconductor is said to be degenerately doped. In silicon, the concentration
of dopants required to reach degeneracy is ∼3 × 1019 cm−3.

Extending Equation (2.34), the cosine band in three dimensions for a hydrogen-like
superlattice of dopants yields E(k⃗) = Ed−2V

dop
ss cos(kxa)−2V

dop
ss cos(kya)−2V

dop
ss cos(kza)

with Vdop
ss being the overlap between adjacent dopant atoms. This yields a bandwidth

of Ed ± 6V
dop
ss . When the semiconductor becomes degenerate, Ec − Ed ≈ 6Vdop

ss . For a
typical dopant in silicon with an ionization energy of Ec − Ed ∼ 30meV, an overlap of
Vdop
ss ≈ 5meV is obtained. In silicon, there are ∼5 × 1022 atoms per cubic centimeter,

and hence at the threshold of degeneracy approximately one out of 5⋅1022
3⋅1019 ≈ 1667 silicon

atoms is replacedwith a dopantmeaning that in each direction every 3√1667 ≈ 12th atom
is a dopant. The strong decrease of the overlap Vss of s-orbital-like wavefunctions with
increasing distance in between adjacent (dopant) atoms roughly fits the estimated value
of Vdop

ss in the meV range.
Degenerate doping has twomajor consequences: first, the effective band gap is low-

ered. In fact, theminimumenergy that is required to excite an electron from the valence
band into the conduction band is not Eg anymore. Instead, it is sufficient to overcome
the gap between the valence band edge and the bottom of the band of dopants. Since
the energetic width of the dopant band depends on the dopant concentration, the effec-
tive band gapwill also depend on the dopant concentration. Second, in the degenerately
doped case the band of dopants overlaps with the conduction (valence) band, and as a
result, even at lowest temperatures there will be free carriers available and the semi-
conductor does not “freeze out” anymore.

In real semiconductors, the dopants are of course not on a regular lattice. Ion im-
plantation and annealing or the diffusion of dopants are statistical processes that lead to
a randomdistribution of the dopants. As a result, the dopants do not form a proper band
with sharp edges because of the strong disorder of the dopant band (cf. Chapter 2.12.2).
Instead, the band will be smeared out giving rise to a density of states of the dopants
that is a delta function at low dopant concentration (cf. Figure 4.2) and develops into a
Gaussianwith increasingNd (a similar behavior is expected for acceptors). In the case of
a heavily doped semiconductor, the band gap is not only narrowed but also smeared out
as depicted in Figure 4.2, right panel. This has important consequences for the so-called
band-to-band tunnel FETs (cf. Section 9.1.3.5).
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Figure 4.2: Conduction and valence bands together with the dopant band centered around the energy
level of individual dopants Ed . In the case of an increasing dopant concentration, the energetic width of the
band of dopants increases eventually overlapping with the conduction band. The right parts of the images
show the density of states with the√E behavior expected for a three-dimensional semiconductor together
with the DOS of the dopant band.

4.2 P-N Junctions

One of the most important ingredients of any semiconductor device is the p-n junction.
Doping neighboring areas with donors and acceptors allows one to create the potential
distribution shown in Figure 4.3. In equilibrium, the so-called built-in potential Φbi is es-
tablished that is determined by the energetic difference between the conduction bands
in the n- and p-type regions far away from the junction interface. Φbi is the driving force
for carrier separation in solar cells and photo detectors and provides the necessary po-
tential barrier that suppresses carrier flow in transistor devices.

Figure 4.3: (a) p-type and n-type semiconductors with the energetic position of the Fermi energy Ep,nf , and
the dopant energy levels Ed for donors and Ea for acceptors. (b) p-n junction in equilibrium. The depletion
zones at the junction with ionized acceptors (negative charge) and donors (positive charge) yield the band
bending.
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If brought into contact, a diffusion current of electrons will flow from the n-type re-
gion to the p-type region and occupy empty states in the conduction and valence bands
due to the large concentration gradient.1 In addition, recombination may occur in both
regions, since the diffusion of carriers leads to electrons in the conduction band of the
p-type region and empty states in the valence band of the n-type part. As a result, there
will be a surplus of negative charge in the p-type region and a surplus of positive charge
in the n-type region. Solving the Poisson equation shows that the surplus of charge low-
ers the bands in the n-type region (due to the surplus of positive charge) and lifts the
bands in the p-type region. In equilibrium, there needs to be a common Fermi level in
both regions and far away from the interface the semiconductor regions need to be neu-
tral and the Fermi level must be on the same level as if they were not in contact with
each other. At the interface, therefore, the potential barrier Φbi builds up that repels the
free carriers from the interface region leading to two depletion regions. The charge in
both depletion regions is determined by the ionized donors and acceptors. Within the
so-called depletion approximation, it is assumed that there is a constant density of ion-
ized donors and acceptors within the respective depletion region of length La,ddepl. Thus,
solving the Poisson equation in the p- and n-type regions is straightforward (see Task 19)
and simply yields a quadratic dependence on the spatial coordinate x. With the bound-
ary conditions that the electric field needs to be zero at the edge of the depletion zones,
the potential needs to be continuous across the p-n junction interface and that we have
charge neutrality (i. e., Ladepl ⋅ Na = L

d
depl ⋅ Nd) one obtains

Φn(x) =
e2

2εsiε0
Nd(L

d
depl − x)

2 x ≥ 0,

Φp(x) = Φbi −
e2

2εsiε0
Na(L

a
depl + x)

2 x ≤ 0, (4.8)

where the depletion lengths in the case of acceptors Ladepl and donors Lddepl are given by

Ladepl = √(
Nd

Na + Nd
)
2εsiε0Φbi
Nae2
, Lddepl = √(

Na
Na + Nd

)
2εsiε0Φbi
Nde2
. (4.9)

Since Φbi = E
n
f − E

p
f when the two parts of the semiconductor are not in contact (see

Figure 4.3(a)), the built-in potential in the nondegenerate case is simply given by

Φbi = E
n
f − E

p
f = kBT ln(NaNd

n2i
). (4.10)

1 Remember the discussion in Section 2.10. You may equally well think of electrons flowing from the n-
to the p-region and holes being injected from the p-type into the n-type region.
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Figure 4.4: Conduction and valence bands of a p-n junction with different doping levels (see the figure) in
the p- and n regions giving rise to substantially different depletion lengths La,ddepl.

Figure 4.4 shows the conduction and valence bands of three different p-n junctions
computed with the depletion approximation (see Task 19 for details) for an increasing
doping concentration in the n-type region. One clearly sees that in the case of the highest
doping a rather small depletion length (see figure) is obtained in the n-type region such
that it seems that the entire bandbending occurs in thep-type section. The reason for this
is the twoorders ofmagnitudehigher density of ionizeddopants in then-type region that
yields a strong screening over a short depletion length; nevertheless, charge neutrality
with LadeplNa = L

d
deplNd is preserved.

Applying a negative voltage Vpn (reverse bias) between p- and n-type regions in-
creases the built-in potential by separating the Fermi levels of the p- and n-sides such
that Φbi − eVpn has to be used in the equations above. In this case, a depletion capaci-
tance is associated with the p-n junction that can be computed simply with Cpn = |

𝜕Q
𝜕Vpn
|

where for the charge per area Q = eNaL
a
depl(Vpn) (because of charge neutrality, ionized

donors or acceptors can be used interchangeably). Taking the derivative of Ladepl(Vpn)
with respect to Vpn yields the capacitance per area:

Cpn =

eNa
𝜕Ladepl
𝜕Vpn


= √

NaNd
Na + Nd

2εsiε0e
1

2√Φbi − eVpn
. (4.11)

Applying a positive voltage (forward bias), a diffusion capacitance can also be defined,
which is due to the free carriers diffusing toward the p-n junction interface.

Task 19.
Potential profile of a p-n junction: Compute explicitly the expression for the potential profile of a p-n
junction stated above by solving the Poisson equation using the depletion approximation. Also,

40
verify the

expression given for the depletion regions in the p-type section Ladepl and the n-type region Lddepl.

https://vimeo.com/466232934
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4.3 Doping at the Nanoscale

In the following chapters, we will deal with nanoscale field-effect transistors. It will be-
come clear that preserving electrostatic control at nanoscale channel lengths requires
the use of nanostructures such as nanowires/tubes or two-dimensional materials with
an extremely thin channel layer thickness. While ion implantation and in particular
the activation of dopants in nanostructures with nanoscale control over the position of
the dopants is itself a severe technological challenge, let us assume for the time being
that this issue can be handled by employing either in situ doping during the growth of
a nanostructure (cf. Section 3.13.2) or an appropriate ion implantation and flash lamp
annealing (see Section 3.10). However, at nanoscale dimensions it is not immediately ob-
vious howdopantswill behave. In order to assesswhat difficultiesmight arise regarding
doping of nanoscale structures and what mitigation strategies could be applied, a closer
look at doping is necessary, which will be done in the present section.

4.3.1 Hydrogen Model for Activation of Dopants

For first-order estimations of the behavior of dopants, the hydrogenmodel used already
above is employed again. Let us consider phosphorous embedded into a silicon matrix.
We seek an approximate expression of the ionization energy Eion = Ec−Ed (cf. Figure 4.2,
left), which can be obtained using Bohr’s model of the hydrogen atom and replace ε0 →
ε0εsemi as well as m0 → m⋆. The latter approximation is well justified in single-band
semiconductors such as GaAs but less in silicon [205]. In fact, in GaAs, for instance, the
ionization energy of dopants is rather independent of the dopant species, while this is
different in silicon. Nevertheless, using εsi = 11.2 and the light effective conduction band
mass of siliconm⋆ = 0.19m0 in

Eion =
e4m⋆

2(4πε0εsiℏ)2
(4.12)

an ionization energy of Eion ≈ 20.6meV is obtained in silicon, which is reasonably close
to the actual value, at least for the most common shallow donors. Equation (4.12) sug-
gests that the ionization energy strongly depends on the host material through the di-
electric constant. Indeed, Figure 4.5 shows the Coulomb potential VCoul(r) of a hydrogen
atomwithin a dielectric matrix exhibiting three different dielectric constants (εsemi = 1,
εsemi = 3.9 and εsemi = 11.2). One clearly observes a substantially stronger screening of
the potential with increasing εsemi leading to a significant reduction of the spatial extent
(along the radius r) of the dopant atom’s Coulomb potential. Together with a lower m⋆

within a host solid, this leads to a strong energetic increase of the ground-state level,
i. e., it strongly reduces the ionization energy.

Using the simple hydrogen model allows understanding the impact of the dielec-
tric environment and the geometrical size of the silicon nanostructure on the ionization
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Figure 4.5: Coulomb potential of a single positive charge in three dielectric environments. A higher εsemi
leads to an increased screening of the potential, which together with a smaller effective mass (red) within a
semiconductor yields a significantly reduced ionization energy compared to the vacuum case (blue).

energy of the dopants. It is important to note that in the case of an increasing ioniza-
tion energy, the dopants become increasingly deactivated since a higher Eion = Ec − Ed
necessarily leads to a substantially reduced probability of activation proportional to
exp(− EionkBT

). When scaling down the geometrical size of a nanostructure, the averaged, ef-
fective dielectric environment will at some nanoscale dimension change and approach
unity with further downscaling of the nanostructure. As a result, an increasing deacti-
vation of dopants due to an increasing Eion is expected. Hence, the doping efficiency in
nanoscale devices drops significantly leading to large parasitic resistances in the doped
regions such as source and drain in MOSFETs.

In order to sort out the main effects for dopant deactivation and to study their de-
pendence on the geometrical size of the silicon nanostructure, the Poisson equation of
a single positive charge (representing the donor hydrogen-like atom) within a material
characterized by its dielectric constant has been computed numerically. To this end, the
dopant is considered to be at the center of a silicon sphere with radius rsi-sphere; a sphere
is used here in order to simplify the computation to a one-dimensional calculation along
the radius r (cf. Figure 4.6(a)). The silicon sphere is surrounded by a dielectric shell with
dielectric constant εshell. In addition to the Coulomb potential of the donor atom, a con-
finement potential of 3 eV at the boundary of the Si sphere has been considered leading
to substantial quantization in the case of an appropriately small rsi sphere.

After solving the Poisson equation numerically, the resulting potential VCoul(r) has
been used to solve Schrödinger’s equation to extract the ground-state energy. Calcula-
tions were carried out with three different dielectric environments, namely air with
εshell = 1, SiO2 with εshell = 3.9 and Si with εshell = 11.2, and with or without a 3 eV con-
finement potential barrier around the silicon sphere; the latter case, i. e., εshell = 11.2
and without quantization represents the bulk silicon case.

First, we consider the effect of a locally varying dielectric environment alone, i. e.,
without additional quantization (the impact of different bulk dielectric environments
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Figure 4.6: (a) Single dopant atom sitting in the center of a Si sphere (εsi = 11.2) with radius rsi sphere =
5 nm. The Coulomb potentials for three different cases are shown in both panels: The red line is the
Coulomb potential in bulk silicon, the green line is the potential if the Si sphere is surrounded by a shell
of air (top panel) and SiO2 (bottom panel); note that the energy scales are different in both panels in or-
der to show the potential difference in the case of εshell = εox. Finally, the green dashed lines show the
Coulomb potential for the Si spheres embedded in air and SiO2 if an additional confining potential barrier
of 3 eV is present at the boundary of the Si sphere. (b) Ionization energy Eion of a dopant atom located in
the center of a silicon sphere (εsemi = εsi = 11.2) as a function of the radius of the silicon sphere rsi-sphere.
Results for different dielectric shells as well as with and without quantization are plotted.

on the potential VCoul(r) is displayed in Figure 4.5, here εsemi = 11.2 is used). As already
mentioned above, the absolute value of the energetic position of the ground-state wave
function represents the ionization energy Eion since the conduction band is reached at
an energy E = 0 eV (without additional quantization). Figure 4.6(b) displays Eion as a
function of rsi sphere for a silicon sphere with a shell consisting of air (red line/circles)
and SiO2 (black line/squares). Obviously, the ionization energy strongly increases as the
radius of the silicon sphere decreases. In particular, if the dielectric contrast between
the silicon sphere and the shell is large, the ionization energy increases rapidly. Next,
we discuss the case of quantization alone (green line/hollow squares). To this end, a sil-
icon sphere is considered, which is embedded into a dielectric with the same dielectric
constant as silicon but with a confining potential of 3 eV (see, e. g., [49]). In this case, the
ionization energy increases stronger at small rsi-sphere compared to the pure dielectric
mismatch case leading to rather high values of Eion at the smallest radii of the silicon
sphere. The exact quantitative value depends of course on the system that is consid-
ered. In the present case, a silicon sphere is considered, which leads to substantially
higher quantization energies than one would expect in a nanowire object. In addition,
the local changes in dielectric environment will be different in a nanowire compared
to the sphere. Nevertheless, qualitatively, the considerations can be transferred to other
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doped nanostructures and show that deactivation of dopants is expected due to dielec-
tric mismatch already at geometrical sizes of a nanostructure where quantization due
to confinementmay not play a significant role. In the next section, experiments concern-
ing donor deactivation in silicon nanostructures are discussed and it is indeed shown
that this observation is correct.

Dopant deactivation due to dielectric mismatch can be mitigated by embedding the
nanostructure into an environment of the same dielectric constant as the host material.
However, there is also a different way of accomplishing this: The blue line/triangles in
Figure 4.6(b) showEion as a function of rsi-sphere in the case of a silicon sphere surrounded
by a dox = 3 nm thin SiO2 followed by a metallic gate electrode (in the simulation this
has been realized by enforcing VCoul(r = rsi-sphere+dox) = 0with Dirichlet boundary con-
ditions). In the present case, no additional confining potential was assumed so that the
curve can be compared with curves for the dielectric mismatch (black and red) cases.
Interestingly, the ionization energy slightly drops and approaches the bulk value when
rsi sphere is reduced and then increases for even smaller rsi sphere. This increase of Eion can
be disregarded here since it stems from an unwanted confinement because the compu-
tational domain is truncated at the metal surface. However, for a radius, where quanti-
zation can be neglected Eion decreases. The reason for this peculiar behavior is that the
presence of the gate electrode with high carrier density leads to additional screening
of the Coulomb potential. The smaller rsi-sphere the closer is the screening electrode to
the dopant atom, and thus Eion decreases. In fact, without the unwanted confinement
the ionization energy can even become smaller than the bulk Si value because the ad-
ditional screening due to the close proximity of the gate electrode is comparable to an
effective dielectric with higher εsemi than 11.2. As a result, deactivation due to a dielectric
mismatch can be avoided by wrapping nanostructures into appropriate gate electrodes.

4.3.2 Deactivation of Dopants in Nanoscale Structures

In the preceding section, the deactivation of dopants due a dielectric mismatch of the
semiconducting nanostructure and its surrounding was studied. The results obtained
suggest that deactivation occurs at geometrical sizes of the nanostructure well above
where quantum confinement has an impact. This is important because already at such
geometrical sizes a deactivation may occur that will lead to parasitic resistances partic-
ularly of the source/drain extensions of nanoscale transistors.

In order to study the impact of dielectric mismatch in more detail and the geo-
metrical dimensions of nanostructures at which it occurs, a nanostructure is needed
where the amount of dopants can be controlled while the size of the nanostructure is
reduced. An appropriate method appears to be in situ doping of silicon nanowires dur-
ing the growth process using the vapor-liquid-solid method in a chemical vapor depo-
sition tool (see Section 3.13.2) [263]. Therefore, silicon nanowires with different diame-
ters are grown using gold particles as seed with diameters in the range between 10 nm
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and 100 nm [28, 230]. For the growth of the n-type doped Si-nanowires, silane and phos-
phine are used as precursor gases. A growth temperature of 440 °C is used to realize
nanowires that are taper-free and do not exhibit a polysilicon coating (see Section 3.13.2
and [28]). Doping the nanowires during the growth ensures that they contain the same
volume doping concentration independent of the nanowire diameter. After the growth,
the nanowires are transferred on an oxidized silicon substrate and are contacted with
titanium/gold electrodes using electron beam lithography and a lift-off process to facili-
tate four-point probe measurements.

Figure 4.7 shows an electron micrograph of the nanowire on top of an oxidized sil-
icon substrate together with a schematic of the four-point probe measurement configu-
ration. Since the surfaces of the nanowires are not passivated, they exhibit a rather large
density of interface states, which results in a donut-shaped depletion region at the edge
of the nanowire. Estimating this interface state density and calculating the resulting de-
pletion region allows one to compute the area through which current flows through the
nanowire. This area is given by πr2elec where the “electronic radius” relec is introduced.
Using relec the resistivity of the nanowires (which is a function of the physical radius rnw
determined by the gold seed nanoparticles) can be rescaled.

Figure 4.7: (a) Electron micrograph of a VLS-grown, in situ doped Si nanowire with four contacts to facili-
tate four-point probe measurements [28]. (b) Schematic of the nanowire with depletion region at the edge
of the wire that results from interface states present at the nanowire surface. Subtracting the depletion
length from the physical radius rnw yields the electronic radius relec.

Figure 4.8(a) shows the resistivity ρs obtained from the four-probe measurements
as a function of relec for three different doping concentrations. In all three cases, the
resistivity strongly increases when the diameter of the nanowire is scaled down. Since
the depletion at the edge of the nanowire has already been eliminated by rescaling the
resistivity using relec and because quantization due to confinement plays no role at the
diameters considered here, the reason for the increase of the resistivity is the large di-
electric mismatch between the silicon nanowire and its surrounding (εSi = 11.2, εair = 1).
As discussed above, the dielectric mismatch leads to an increasing ionization energy
Eion, and hence to increasingly deactivated dopants with decreasing nanostructure size
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Figure 4.8: (a) Resistivity versus electronic radius relec. The experimental data was rescaled by subtract-
ing the length of the depletion layer (that develops due to the existence of a rather large interface-state
density) from the physical radius of the nanowire. This shows that the strong increase for all three doping
concentrations is not a result of depletion but is due to the dielectric mismatch between nanowire and air.
The dashed horizontal lines show the expected resistivity without deactivation. (b) Normalized resistivity as
a function of electronic radius. The solid line belongs to a theoretical calculation [66, 28].

(cf. Figure 4.6(b)). While the effect of the dielectric mismatch on the ionization energy
decreases toward the center of the nanowire, its impact extends over several nanome-
ters, and thus dopant deactivation is observed in nanowires with relatively large di-
ameters [28]. Similar results have been published in [214] where it was found that the
dielectric surrounding increases significantly the ionization energy of a single dopant
in a nanoscale silicon FET. Moreover, dopant deactivation has recently been shown to
appear in doped InN nanowires and is hence not restricted to silicon nanowires [30].

In Figure 4.8(b), the normalized resistivity is plotted as a function of relec where ρs
is normalized to the resistivity belonging to the largest diameter ρ0 (which is basically
the resistivity without deactivation). All data points of the three doping concentrations
lie on the same curve showing that the mechanism of the deactivation is universal and
does not depend on the particular doping concentration; the straight line in Figure 4.8(b)
was calculated using the theory regarding Eion in Si nanostructures given in [66], which
is in excellent agreement with the experimental data.

It has already been mentioned above that the deactivation of dopants in nano-
structures due to a dielectric mismatch can in principle be avoided by putting a di-
electric on top of the nanostructure with approximately the same dielectric constant.
Indeed, depositing Al2O3 on top of the Si nanowire, depicted in Figure 4.7(a), it was
shown that a decrease of the resistance of the nanowires could be obtained [28]. How-
ever, in a nanowire architecture as illustrated in Figure 5.18, substantially increased
parasitic capacitances Cpar

s,d are obtained when the source/drain extensions are covered
with a high-k material that in the best case exhibits the dielectric constant of silicon.
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As a result, the dielectric mismatch requires finding the optimum trade-off between
parasitic resistance versus parasitic capacitances of the source/drain extensions.

Further downscaling of the channel length L of field-effect transistors requires a
further decrease of the diameter dnw of the nanowire (or channel layer thickness of
nanostructures in general, see Section 5.6) in order to maintain electrostatic integrity of
the devices. Therefore, quantum confinement will inevitably occur and—as discussed
above—may result in a severe deactivation of dopants due to strong quantum confine-
ment. Interestingly, in siliconnanostructureswith very small feature size (below∼3 nm),
impurity atoms are not necessary any more in order to realize doping. The growth of a
thin SiO2- or SiN-layer is sufficient to shift the conduction and valence bands such that an
effective n-type and p-type doping is obtained [159]. This phenomenon will be discussed
in detail in the next section.

4.4 NESSIAS as an Alternative to Impurity Doping

At Si/SiO2 and Si/Si3N4 interfaces, an interesting quantum chemical effect occurs that is
due to an interface charge transfer (ICT) driven by the difference in the ionicity of bond
of silicon and the two anionsO andN (see the thorough treatment and explanation of the
effect in [156]). In the case of Si/SiO2, charge is moved toward oxygen resulting in shift-
ing the electronic structure to lower energies [153, 160, 157]; in the following, this effect
is called nanoscopic electronic structure shift induced by anions at surfaces (NESSIAS)
[156]. NESSIASmodifies the bands on a very small spatial length scale of λN ≈ 1.5±0.2 nm
[160, 156], and thus has beenmostly overlooked so far. But if nanoscale volumes of silicon
are considered, it becomes relevant and significantly changes the electronic structure
when compared to the expectation.

If we considerNESSIAS as a potential drop at a Si/SiO2 interface that is exponentially
screened on the length scale λN , then we can estimate the size of a silicon nanovolume
when NESSIAS becomes relevant: if a nanowell or nanosheet with two interfaces are
considered, the thickness of the nanosheet needs to be less than ∼2λN to have a mea-
surable impact on the electronic structure, whichmatches previous theoretical findings
[158]. In the case of a nanowire with four interfaces, it is expected that NESSIAS starts to
become relevant if the nanowire diameter is less than ∼4λN . In the following, the case of
a Si nanosheet will be discussed in detail since this is supported by experimental data.

In a nanosheet or quantumwell of thickness dqw, the potential across the nanosheet
can be approximated as ΦIoB(exp(−x/λN ) + exp(−(dqw − x)/λN )), which is schematically
shown (white line) in the right panel of Figure 4.9. If the thickness dqw of the quantum
well is reduced (left panel), the overlapping regions where NESSIAS is present (∼λN )
move the entire conduction band downwards (the red dashed line in the main panel
is the maximum potential at dqw/2). However, vertical quantization in the nanosheet
(cf. Section 2.2) leads to a competing increase of the conduction band (illustrated by the
green dashed line). The overall resulting potential is shown by the blue line in Figure 4.9.
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Figure 4.9: Schematic explanation (left and right panel) and resulting dependence of the effective conduc-
tion band edge (blue line) as a function of dqw due to the competition of NESSIAS (red dashed line) and
quantization (green dashed line) in a silicon quantum well.

Interestingly, this simplistic treatment shows a minimum of the potential at dqw ≈ 2 nm
where the conduction band is moved even below the bulk value (dashed black line).

In order to study the NESSIAS effect experimentally, ultrathin single-crystalline
silicon nanosheets were realized with digital etching (see Section 3.6.3) of silicon-on-
insulator substrates (for details, see [159]). After thinning, NAOS is used to grow a SiO2
in a self-terminating way (Section 3.2.3). As a result, the ultrathin Si nanosheet is em-
bedded in SiO2 (NAOS and BOX); a transmission electron microscopy image of such a
nanosheet is shown in Figure 3.5(b). To embed the nanosheet in SiN, rapid thermal ni-
tridation (∼3 nm) is used after the thinning and HF stripping, followed by the deposition
of PE-CVD grown SiN and SiO2. The sample is then wafer-bonded (see Section 3.4) onto
an oxidized wafer with hydrophilic bonding. Finally, the handle wafer and the BOX of
the original SOI wafer are removed and a second SiN is grown with RTN [78].

Synchrotron X-ray absorption spectroscopy at total flourescence yield (XAS-TFY) as
well as ultraviolet photoemission spectroscopy (UPS) measurements were carried out
at the BACH and BaDelPh beamlines in Trieste in order to measure the conduction and
valence band edges as a function of dqw. The results for the nanosheet embedded in SiO2
are plotted in Figure 4.10(a) (blue data points) and show that at dqw ≈ 2 nm, the conduc-
tion band is moved ∼200meV below the bulk conduction band, which is equivalent to
a very high n-type doping. In this respect, it is important to note that at dqw ≈ 2 nm the
mobility of carriers is expected to be substantially degraded [252]. However, because of
the four interfaces in a nanowire structure, it is plausible that NESSIAS yields a similarly
high shift of the conduction band (and hence equivalence to doping) in a nanowire with
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Figure 4.10: (a) Conduction and valence band edges of ultrathin single-crystalline Si embedded into SiO2
as measured with synchroton XAS-TFY and UPS (blue data points and line) [159, 157, 156]. The bulk values
are shown as the black dashed lines. The green and the red dashed lines show the evolution of the band
edges with dqw due to quantization and NESSIAS, respectively. The orange data points show the valence
band edge of nanosheets embedded in SiN. (b) Eg of a Si nanosheet embedded in SiO2 as a function of dqw
extracted from the measurements shown in (a).

4–5 nm diameter,2 which corresponds to a nanosheet with dqw ≈ 2 nm. At the same time,
quantization at 4–5 nm is not expected to counteract the benefit of NESSIAS.

While encapsulation into SiO2 yields an alternative to heavy n-type doping, density
functional theory calculations suggested that a coating of silicon with SiN leads to an
upshift of the band structure, which is equivalent to p-type doping. For an experimen-
tal verification of the effect of SiN coating, the ultrathin Si nanosheets embedded in SiN
fabricated with wafer bonding (see above) were measured with synchrotron UPS. Fig-
ure 4.10(a) shows the valence band edge extracted from the measurement as a function
of dqw and indeed an upshift of the valence band edge above the bulk value is observed,
which is equivalent to a high p-type doping.

It was discussed earlier that even in heavily doped silicon, the density of impurity
atoms is still rather small leading to variability at the nanoscale. The coating of Si nano-
volumes with SiO2 and SiN provides a large (and increasing with increasing surface to
volume ratio) number of bonds. Therefore, variability comparable to random dopant
effects is not expected in NESSIAS. Moreover, NESSIAS is to a large extent temperature-
independent. Therefore, freeze-out at low temperatures and deactivation are avoided.
As a result, highly conducting, ultrathin n-type and p-type nanowires without impurity
doping may become feasible.

Apart from the fact that a simple encapsulation of ultrathin silicon into SiO2 and
SiN yields a band structure shift equivalent to heavy doping, another very interesting

2 When estimating the impact of NESSIAS in the nanosheet, the potential in the nanosheet center at
dqw/2 has been assumed such that this potential is reduced∝ e−dqw/2λN . In a nanowire, the sameNESSIAS
is expected for a diameter of 2dqw.
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point can be inferred from themeasurements displayed in Figure 4.10(a). Since the XAS-
TFY and UPS measurements of the SiO2-encapsulated samples yield the conduction and
valence band edges, Eg as a function of dqw can be extracted, which is displayed in
Figure 4.10(b). In contrast to the analysis in Section 2.2.2 based on a particle-in-the-box
model, a nonmonotonic behavior is observed, which is due to the competition between
carrier confinement and NESSIAS.

4.5 Metal-Oxide-Semiconductor Capacitor

The metal-oxide-semiconductor (MOS) capacitor is another central ingredient of a
(nano)electronic device and, therefore, deserves an in-depth consideration. In the
present section, the discussion will be carried out based on silicon as semiconduct-
ing material due to its widespread use. However, the general concepts and conclusions
are valid with appropriate modifications also for other semiconducting materials.

The discussion of the MOS capacitor is exemplarily carried out considering a p-type
substrate. The MOS capacitor has the simple structure illustrated in Figure 4.11(a): On
top of the p-type silicon substrate there is a gate dielectric of thickness dox with dielectric
constant εox and ametallic gate electrode. Applying a voltage Vgs between gate electrode
and substrate yields different band situations that will be discussed in the following.
For simplicity, it is assumed that the metal exhibits a work function such that at zero
gate-substrate voltageVgs, the bands in the silicon substrate at the gate dielectric–silicon
interface are flat as illustrated in Figure 4.12(a). For the following discussion, any gate
leakage current is neglected.

Figure 4.11: (a) Schematic illustration of a simple MOS capacitor with parallel and series combination of
the depletion capacitance Cdepl, the interface capacitance Cit, the inversion(accumulation)-layer capaci-
tance Cinv,acc and the geometrical oxide capacitance Cox in a MOS capacitor. (b) Experimental high- (HF, blue
curve) and low-frequency (LF, red curve) capacitance voltage characteristics of a Si/SiO2 MOS capacitor. The
black dashed line is a simulation.
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Figure 4.12: (a) Metal-oxide-semiconductor capacitor in the case of flat band. (b) For positive gate volt-
ages a depletion layer consisting of negatively charged ionized acceptors builds up. In real (nonideal) MOS
capacitors, there is a nonzero density of interface states Dit illustrated with the light blue area at the silicon-
gate dielectric interface (c), which is U-shaped and yields conduction band-like states close to the con-
duction band and valence band-like states for energies close to the valence band edge; ECNL refers to the
charge neutrality level.

The overall gate-substrate capacitance Cgs is determined by the change of the charge
on the capacitor—which is equal to the negative of the chargewithin the semiconductor
−Qsemi—with respect to a change of the applied voltage at the gate electrode:

Cgs = −
𝜕Qsemi
𝜕Vgs
. (4.13)

The most widespread method to determine Cgs experimentally is to measure the
impedance of a MOS capacitor by applying a gate voltage Vgs = VDC + VAC sin(ωt)
with |VAC| ≪ |VDC| and ω = 2πf . The current of the gate electrode is then Ig =

dQg
dt =

− dQsemi
dt = −

dQsemi
dVgs

dVgs
dt . The second term dVgs

dt = ωVAC cos(ωt) and the first term is the gate
capacitance. Figure 4.11(b) shows simulated (black dashed line) and experimental (blue
and red lines) Cgs −Vgs curves; the blue curve shows the results at low and the red curve
at a high-frequency f of the small signal, oscillating gate voltage superimposed to VDC
(see above). At low-frequency (LF), states within the band gap (interface states) can be
charged and discharged, and hence contribute to Cgs. In the high-frequency case (HF),
the occupation of these states does not change with the oscillating gate voltage, and
hence Cgs drops. The difference (gray shaded area) in the depletion region is a measure
for the interface density of states. Compared to simulations, the experimental LF char-
acteristics show a shift to more positive gate voltages, which may be due to fixed charge
within the oxide and the work function of the gate electrode.
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To calculate Cgs, we need to compute the charge density Qsemi. Looking at Fig-
ure 4.12(b) and (c), it is obvious that Vgs drops partly across the gate dielectric and the
remainder across the semiconductor. Since the energetic position of the bands in the
semiconductor will be crucial for the following discussion, voltages will be transferred
into potential energies, which basically implies multiplying the voltages with −e. The
potential energy drop across the oxide is then simply Φ0 − (Φg + Φbi) where Φg is the
gate potential and Φ0 the surface potential of the conduction band at the silicon-gate
dielectric interface. Note that here, the built-in potential Φbi takes the work function of
the metal, the position of the Fermi level in the doped silicon and the electron affinity of
the semiconductor into account ensuring the assumed flat band conditions at Vgs = 0 V.
Using the chain rule, Equation (4.13) can then be written as

Cgs = −
𝜕Qsemi
𝜕Φ0

𝜕Φ0
𝜕Φg

𝜕Φg

𝜕Vgs
= Csemi
𝜕Φ0
𝜕Φg
. (4.14)

In this equation, the last factor 𝜕Φg
𝜕Vgs

simply yields −e and together with the first fac-

tor the capacitance Csemi = (−e) (−
𝜕Qsemi
𝜕Φ0
) is obtained. To determine Csemi, we need to

compute all charges within the semiconductor. There are basically three main contri-
butions to the total charge Qsemi, which are (i) the depletion charge Qdepl due to ionized
dopants (acceptors in the present case), (ii) the interface charge Qit due to the occupa-
tion of traps, unsaturated bonds etc. and (iii) the inversion charge Qinv due to mobile
carriers in the conduction band for large Vgs or accumulation charge Qacc for negative
Vgs in the valence band. Each of these contributions will be discussed in further detail
below. However, general statements regarding the MOS capacitance can be made prior
to the detailed analysis.

Since for positive Vgs, the total charge in the semiconductor is Qsemi = Qdepl +Qinv +
Qit the capacitance Csemi is given as a sum of three components according to

Csemi = (−e)(−
𝜕Qsemi
𝜕Φ0
) = e
𝜕Qdepl

𝜕Φ0
+ e𝜕Qinv
𝜕Φ0
+ e𝜕Qit
𝜕Φ0

= Cdepl + Cinv + Cit. (4.15)

Because the overall gate-substrate capacitance Cgs is a series combination of the geo-
metrical oxide capacitance Cox and the capacitance related to the charge in the semi-
conductor Csemi, one obtains Cgs =

CsemiCox
Csemi+Cox

(see Figure 4.11(a)). Comparing this with

Equation (4.14), the factor 𝜕Φ0
𝜕Φg

can be identified to be Cox/(Csemi + Cox) and using Equa-
tion (4.15) this yields

𝜕Φ0
𝜕Φg
=

Cox
Cdepl + Cinv + Cit + Cox

. (4.16)
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Rewriting the above expression (by multiplying both sides with δΦg ), it states that a
change of gate potential δΦg is translated into a change of surface potential δΦ0 depend-
ing on the ratio of the geometrical oxide capacitance and the sum of all capacitances.
This relation will be very important when considering the switching behavior of metal-
oxide-semiconductor field-effect transistors in Chapter 5 and it will also be central in
metal-semiconductor contacts (cf. Section 4.6).

4.5.1 Depletion Capacitance

When a positive voltage is applied at the gate, the Fermi level of the gate will be moved
to lower energies, which results in a bending of the bands within the silicon. This band
bending is a consequence of the negatively charged acceptors (with density Na) whose
states are moved further below the Fermi level of the semiconductor. In turn, this yields
an increase of the occupation probability of the acceptor states while pushing away free
mobile holeswith positive charge that counterbalance thenegative space charge. Thus, a
negative space or depletion charge is present within the depletion length Ldepl (counted
from the gate dielectric-silicon interface).

Employing the depletion approximation (see Section 4.2), the charge density due
to ionized acceptors is considered being constant between z = 0 and z = Ldepl and
zero otherwise. This enables an analytic calculation of the band bending by simply in-
tegrating the Poisson equation twice yielding a parabolic behavior. As a result, the de-
pletion charge (per unit area) is Qdepl = −eNa ⋅ Ldepl. Here, it was assumed that all ac-
ceptors are ionized within the depletion region Ldepl, which itself is a function of the
surface potential (and hence the gate voltage) Φ0. From Poisson’s equation, one obtains
Φ(z) = −e2 Na

2ε0εsi
(z − Ldepl)

2 with Φ(z = 0) = Φ0, and hence the well-known expression

for Ldepl = √
2Φ0ε0εsi
|e|2Na

.3 As a result, the MOS capacitor is similar to a p-n junction (cf. Sec-

tion 4.2) where the charge on the n-side (the gate, i. e.,Qg ) is very high (it is a metal) such
that it can be considered as being δ-shaped (see Qg in panels (b) and (c) in Figure 4.12)
and, moreover, the positive and negative charges are spatially separated by the gate ox-
ide. Eventually, the depletion capacitance is given by

Cdepl = (−e)
𝜕(−eNaLdepl)
𝜕Φ0

= |e|2Na
2ε0εsi
|e|2Na

1
2
√ |e|

2Na
2ε0εsiΦ0

= ε0εsi
1

Ldepl
(4.17)

where the charge, and consequently, the capacitance are computed per area. Equa-
tion (4.17) shows that the depletion capacitance can be considered as a simple parallel
plate capacitor with Ldepl being the “oxide” thickness and εsi the dielectric constant

3 Note that in order to distinguish the potential energy from the voltage, it has been denotedwith capital
Greek letters in contrast to the nomenclature used in Chapter 2.
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of the “oxide”. Due to the 1/√Na-dependence of the depletion length on the acceptor
concentration, Cdepl ∝ √Na.

Note the difference between the depletion capacitance Cpn of the p-n junction given
in Equation (4.11) and Cdepl in a MOS capacitor (Equation (4.17)), whereas Cdepl is the
capacitance due to a change of the depletion charge with respect to a change of the
surface potential at the gate dielectric interface, Cpn has been computed as the change
of depletion charge with respect to a change of the voltage applied to the p-n junction.4

4.5.2 Interface-States Capacitance

At the surface of a bulk semiconductor, there is a high density of surface states due to
dangling bonds. For instance, depending on the crystallographic plane the surface atom
density of silicon varies between 6.78 ⋅ 1014 cm−2 and 9.59 ⋅ 1014 cm−2 (cf. Figure 2.26)
resulting in a high surface density of states. A major benefit of silicon is that a SiO2 can
be grown on the surface that facilitates a reduction of the density of states at the Si/SiO2
interface Dit by five orders of magnitude (see Section 3.2).

If the Dit remaining after the growth of SiO2 is considered to be continuously dis-
tributed across the band gap, a charge neutrality level ECNL (see Figure 4.12(c)) can
be defined, which refers to the energetic position of the Fermi level at the semicon-
ductor surface Esf that yields an equal occupation of conduction-band- and valence-
band-like interface states, and hence a neutral interface is obtained if ECNL = Esf .
ECNL represents the top (bottom) of the valence (conduction) band-like interface states
and is thus the energy relevant for computing the interface charge. Hence, Qit =
−e ∫Φ0

ECNL
Dit(E)f (E

s
f ) + e ∫

ECNL
Φ0−Eg

Dit(E)(1 − f (E
s
f )) where Φ0 is the conduction band at the

MOS-interface (cf. Figure 4.12). In this expression, the first (second) term is the negative
(positive) interface charge due to an occupation of the conduction(valence) band-like
states with electrons(holes).

When applying different gate voltages at a MOS capacitor, the Fermi level Esf within
the semiconductor remains unaltered (if leakage between semiconductor and gate elec-
trode is negligibly small) and the conduction/valence bands are moved relative to the
Fermi level. However, since the interface states are located within a tiny region at the
Si/SiO2 interface, moving the bands with respect to Esf yields (almost) the same change
of surface charge (up to a sign change) as if Esf was moved relative to constant conduc-
tion/valence bands. As a result, 𝜕𝜕Φ0

= − 𝜕𝜕Esf
and, therefore, the capacitance (per area

since Dit is the density-of-interface states per energy and area) Cit related to the inter-
face charge Qit can be written as

4 A similar result as in Equation (4.17) would be obtained for the p-n junction if we computed Cpn =
𝜕e2NaL

a
depl

𝜕Φ(x=0) , where Φ(x = 0) is the potential profile of the p-n junction at the junction interface.



198 � 4 Basic Ingredients for Nanoelectronics Devices

Cit = e
𝜕Qit
𝜕Φ0
= |e|2

Φ0

∫
ECNL

dE Dit(E)(−
𝜕
𝜕Esf

f (Esf ))

+ (−|e|2)
ECNL

∫
Φ0−Eg

dE Dit(E)(−
𝜕
𝜕Esf
[−f (Esf )])

= |e|2
Φ0

∫
Φ0−Eg

dE Dit(E)(−
𝜕
𝜕Esf

f (Esf )). (4.18)

In Section 2.10, it was shown that the negative derivative of f (Esf ) with respect to the
Fermi energy Esf can be approximated with a delta function (cf. lower panel of Fig-
ure 2.44). Using this in Equation (4.18) yields

Cit = |e|
2

Φ0

∫
Φ0−Eg

dE Dit(E)
1

kBT
e
E−Esf
kBT

(1 + e
E−Esf
kBT )2
≈ |e|2

Φ0

∫
Φ0−Eg

dE Dit(E)δ(E − E
s
f ) = |e|

2Dit(E
s
f ).

(4.19)
If there is negligible inversion or accumulation charge on the MOS capacitor and if
Cdepl ≪ Cox, Equation (4.16) can be written as

𝜕Φ0
𝜕Φg
= 1

1 + Cit
Cox

≈ 1

1 +
|e|2doxDit(Esf )

ε0εox

. (4.20)

This relation will play a prominent role when discussing metal-semiconductor contacts
and the appearance of Fermi level pinning further below.

4.5.3 Density-of-States or Quantum Capacitance

For sufficiently large gate voltages, the conduction band is moved below the intrinsic
Fermi level, meaning that the silicon surface layer changes from p-type to n-type behav-
ior, which is called inversion. For even larger gate voltages, there will be a substantial
amount of free charge in the conduction band at the silicon-gate dielectric interface.
In the following, the charge in this inversion layer is calculated enabling the compu-
tation of the inversion-layer capacitance (often called density of states or quantum ca-
pacitance) Cinv. As an example of a nontrivial dispersion relation, the case of the silicon
conduction band is discussed. Therefore, we need to know how the quantization within
the inversion layer modifies the six ellipsoids (cf. Figure 2.28(b)). Due to its importance,

41
the formation of the Si inversion layer is also explained in the video accessible through
QR code #41.

https://vimeo.com/900731236
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For large gate voltages, the conduction band at the Si/SiO2 interface appears like a
triangularly-shaped potential barrier consisting of the band gap of silicon and the oxide
barrier (see Figure 4.13, left panel). In order to compute the density of mobile charge
in the inversion layer, the Schrödinger equation needs to be solved. The MOS capacitor
is considered to have a very large width W and length L, so that the potential distri-
bution Φ(x, y, z) = Φ(z) within the semiconductor can be considered as being indepen-
dent of x and y. Hence, a separation ansatz for the wavefunction is appropriate with
ψk⃗(x, y, z) = ϕkx (x)φky (y)ηkz (z). Since the potential Φ(z) does not depend on x and y, the
wavefunctions ϕkx (x) and ψky (y) are simply plane waves and we only have to compute
the wavefunction along the z-direction.

The quantization within the triangular potential well (see white dahed line in the
inset of the left panel in Figure 4.13) yields discrete energy levels along the z-direction.
Solving the Schrödinger equation in a triangular potential well results in so-called Airy
functions for ηkz (z) and a quantization energy of

En = (
e2ℰ2

siℏ
2

2m⋆
)
1/3

an with an ≈ (
3π
2
(n − 1

4
))

2/3

(4.21)

where ℰsi =
1
|e|
𝜕Φ(z)
𝜕z |z=0 is the electric field of the triangular potential and n = 1, 2, . . .

an integer number. The eigenenergies increase with decreasing effective mass and vice
versa, similar to the quantization energies in a particle-in-the-box (cf. Section 2.1.2). As
discussed at length in Section 2.2.1, the quantization in the z-direction yields 2D subbands
with a free motion of carriers along x and y starting from Φ0 + En, with En given in
Equation (4.21). From Figure 4.13, we can infer that there are two ellipsoids or “valleys”
(red), which have the long axis along the z-direction and four valleys (green) lie within
the x–y plane (recall that in a cubic lattice such as silicon kx , ky, kz are alignedwith x, y, z
directions in real space). In order to obtain the 2D subbands in the conduction band
inversion layer of silicon, the two types of ellipsoids can be considered separately. The
red ellipsoids have the heavy effective mass of m⋆h = 0.92m0 in quantization direction
(i. e., z-direction)whereas the green valleys(ellipsoids) have the light effectivemassm⋆l =
0.19m0 in quantization direction. Thus, we expect two sets of quantization energies, and
hence two sets of 2D subbands stemming from the red and green valleys.

The right panels of Figure 4.13 show the six ellipsoids of the silicon conduction band
(top left). Since the kx - and ky-directions are equivalent, the kx,y,z coordinate system can
be tilted so that the ky direction is aligned perpendicular to the plane of the page. Due
to confinement there are only discrete kz values allowed and if the energy is increased,
it becomes clear that a 2D subband can only appear if the ellipsoids cross the dashed
black lines, which indicate an allowed knz -state. Since the red valleys expandmuchmore
quickly along the kz-direction (because the heavy mass is aligned in this direction), the
two red valleys provide the first 2D subband at an energy of E = E1, which is degenerate
twice. If the energy increases to E = E2, the green valleyswill also result in a 2D subband,
which is four times degenerate since four green valleys cross the black dashed line of
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Figure 4.13:Metal-oxide-semiconductor capacitor in the case of strong inversion (left panel). The six-fold
degeneracy of the silicon conduction band splits into two red and four green valleys due to quantum con-
finement in the approximately triangular (illustrated with the white dashed line) potential well. The inset
shows a plot of the local DOS of the red and green valleys.

allowed kz-values. Eventually, at a slightly higher energy E = E3 the red valleys lead to
a second 2D subband, which is again degenerate twice.

Projecting the constant energy surfaces onto the kx–ky plane at the energy E ≳ E3
yields the image shown in the bottom right panel of Figure 4.13. Here, the four ellipsoids
from the green valleys and two circles from two 2D subbands stemming from the red
valleys are shown. Since the red valleys have the heavy effective mass in the quantiza-
tion direction, the 2D dispersion relation will be a rotational paraboloid explicitly given
by

Ered(kx , ky, n) =
ℏ2(k2x + k

2
y)

2m⋆l
+ (

e2ℰ2
siℏ

2

2m⋆h
)
1/3

(3π
2
(n − 1

4
))

2/3

. (4.22)

The green valleys, on the other hand, have the light effective mass in the direction of
quantization, and thus exhibit the light and heavy effective masses along kx/ky giving
rise to an ellipsoid (cf. bottom right panel in Figure 4.13). Because the ellipsoids lie on
the kx - and ky-axes, silicon shows isotropic conduction properties (see Section 2.11.2).
Replacing the effective masses m⋆l and m⋆h with a 2D density-of-states effective mass
m⋆DOS = √m⋆l m

⋆
h allows for writing the dispersion relation of the green valleys Egreen

in the same form as Equation (4.22) withm⋆DOS instead ofm⋆l .
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Finally, the electric field ℰsi at the silicon-gate dielectric interface can be related
to the gate voltage by noting that the dielectric displacement needs to be continuous
across the interface, i. e., εsiℰsi = εoxℰox with the electric field in the oxide being equal to
ℰox =

1
|e|

Φ0−(Φg+Φbi)
dox

.
After these considerations, we are now in a position to compute the carrier density

n(x, y, z), which in equilibrium is given by the energy integral of the product of the local
density of states (see inset of Figure 4.13, left panel) and the Fermi distribution function.
Since thewavefunctions in x- and y-directions are planewaves, the local density of states
depends only on z (cf. Equation (2.79) and Task 12 for details onm⋆DOS) and becomes

D(E, z) = ∑
kx ,ky ,n

1
W ⋅ L

δ(E − E(kx , ky, n))
ηn(z)

2 =∑

n

m⋆DOS
πℏ2
ηn(z)

2Θ(E − En), (4.23)

i. e., a sum over the two-dimensional density of states due to the different red and green
subbands. Here, Θ(E − En) is the Heaviside function resulting in a 2D DOS contribution
for each subband En. As a result, one obtains the following expression for the charge
density in the inversion layer of the conduction band of a silicon (100) MOS capacitor:

Qinv(z) = (−e)ninv(z) = 2(−e) × ∑
n,red valleys

∞

∫
En

dE
m⋆l
πℏ2
ηn(z)

2f (Esf )

+ 4(−e) × ∑
j,green valleys

∞

∫
Ej

dE
√m⋆l m

⋆
h

πℏ2
ηj(z)

2f (Esf ). (4.24)

Note that the prefactors 2 and 4 account for the degeneracy of the red and green val-
leys. Next, since at the moment we are not interested in the spatial dependence of the
carrier density on z, we can integrate over the z-coordinate and obtain the carrier den-
sity per area. The integration can be readily carried out since the wavefunction η(z) is
considered to be normalized, and thus ∫ dz|η(z)|2 = 1. Moreover, the integration over
energy can also be carried out due to the constant two-dimensional density of states
(cf. Section 2.11.3). However, we can also cast Equation (4.24) into the usual form n =
∫∞−∞ dEDeff(E − Φ0)f (E

s
f ) with an effective density of states given by

Deff(E − Φ0) = 2∑
n
Θ(E − En)

m⋆l
πℏ2
+ 4∑

j
Θ(E − Ej)

√m⋆l m
⋆
h

πℏ2
(4.25)

where again the Heaviside step function Θ(E − En,j) is used that is zero for E < En,j and
unity otherwise. This allows for writing the inversion layer or density of states capaci-
tance in the form
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Cinv = −|e|
2 𝜕
𝜕Φ0

∞

∫
Φ0

dE Deff(E − Φ0)f (E
s
f ) = −|e|

2
∞

∫
0

dE D(E) 𝜕
𝜕Φ0

f (E + Φ0 − E
s
f ). (4.26)

In the final step in Equation (4.26), the transformation of variables E → E − Φ0 was
carried out in order to remove the dependence on Φ0 from the lower bound of the in-
tegration as well as from Deff. As a result, the derivative 𝜕𝜕Φ0

only applies to the Fermi
distribution function, which can be computed analytically. As has been done in the pre-
ceding section, the derivative of the Fermi distribution function is approximated with
the delta function (cf. Section 2.10), i. e., 𝜕f (E+Φ0−E

s
f )

𝜕Φ0
≈ −δ(E − (Esf − Φ0)). The integration

can then be carried out trivially and one obtains for the inversion-layer capacitance

Cinv ≈ |e|
2Deff(E

s
f − Φ0). (4.27)

This means that the inversion-layer capacitance is approximately proportional to the
density of states (hence the frequently used name density of states capacitance).

Looking at the MOS capacitor within the conduction band of the (100) silicon sur-
face an important implication can be extracted: for increasing gate voltage, an increas-
ing number of two-dimensional subbands are moved toward the Fermi energy, mean-
ing that the effective density of states in the inversion layer steadily increases with
increasing gate voltage. As a result, at some arbitrary Vgs the density of states capaci-
tance will become larger than all other capacitances in the MOS capacitor, i. e., Cinv ≫
Cox + Cit + Cdepl. In this case, the gate capacitance is

Cgs =
Cox(Cinv + Cit + Cdepl)
Cox + Cinv + +Cit + Cdepl

≈
CoxCinv
Cinv
= Cox. (4.28)

This can also be seen in the experimental curve in Figure 4.11(b) that approaches Cox at
large Vgs. So, the reasonwhy in classical textbooks (e. g., to compute theMOSFET charac-
teristics within the gradual channel approximation, see Section 5.1) the gate capacitance
is simply replaced with the geometrical oxide capacitance is the high density of states in
a silicon inversion layer. However, there are cases where Cinv may become rather small
and Cox will be the dominant capacitance. In this case, (assuming Cdepl and Cit can be
neglected), Cox ≫ Cinv leading to the peculiar case where Cgs ≈ Cinv. In literature, this
limit is often called the quantum-capacitance limit andwill be further discussed in Chap-
ter 5.9.1. Interestingly, in the quantum-capacitance limit one can measure the density of
states simply by carrying out a capacitance-voltage measurement of the MOS capacitor.

4.5.4 Accumulation Capacitance

If the gate voltage of the MOS capacitor considered here (with the flat-band case at
Vgs = 0 V) is negative, the valence band is moved toward and eventually above the
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Figure 4.14:Metal-oxide-semiconductor capacitor in accumulation. In the case of a p-type substrate, nega-
tive gate voltages move the valence band above Esf giving rise to a large accumulation density of holes.

Fermi level Esf . Hence, the acceptors will remain empty and, therefore, neutral since
their occupation probability strongly decreases. However, at the Si/SiO2 interface a large
accumulation of holes occurs as illustrated in Figure 4.14. Knowing the dispersion rela-
tion in the valence band the charge density can be computed in the same fashion as
has been done in Section 4.5.3, namely summing over the different 2D subbands. The
silicon valence band is twice degenerate with one band exhibiting a heavy hole mass
m⋆hh = 0.49m0 and one band with a light effective hole massm⋆lh = 0.16m0. In addition, a
split-off band can be found 0.044 eV below the valence band edge with an effective hole
mass of m⋆sh = 0.29m0. For sufficiently small energies (i. e., below the valence band), all
three bands can be considered as being isotropic. As a result, the capacitance associated
with the accumulation layer Cacc is similar to the one obtained in the conduction band.
The only difference is the effective density of states where the different effective masses
have to be used and each bandhas a degeneracy factor of unity.With the same reasoning
as above, an increasing number of 2D subbandswill contribute to the density of states in
the valence band, and thus Cacc ≫ Cox will eventually be reached. Therefore, Cgs ≈ Cox
for large negative gate voltages as has been found in the case of strong inversion (see
also Figure 4.11(b) for negative Vgs).

4.5.5 Gate Dielectrics with High Dielectric Constant

It has been mentioned a few times above that one of the major advantages of silicon as
thematerial of choice for the realization of highly integrated circuits is the existence of a
native oxide, SiO2, which fulfills all requirements for a proper gate dielectric. SiO2 is an
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excellent insulator exhibiting a large band gap of∼9 eVwith appropriate conduction and
valence band offsets ΔEc and ΔEv (see Figure 4.16). Equally important, it facilitates a very
strong reduction of the interface density of states such that Cox ≫ Cit can be achieved,
which is of utmost importance for proper switching of MOSFETs (cf. Section 5.2.2). In
addition, silicon dioxide can be grown in a straightforward way either with wet or dry
thermal oxidation (cf. Section 3.2). However, as will be discussed in detail in the next
chapter, scaling down the dimensions of metal-oxide-semiconductor field-effect transis-
tors requires a strong increase of Cox in order to maintain appropriate electrostatic gate
control of the device. In this respect, themajor drawback of SiO2 is the low value of its di-
electric constant with εox = 3.9. As a result, extremely thin SiO2 thicknesses are required
that eventually lead to a strong increase of leakage current due to direct tunneling of car-
riers through the gate insulator; in Section 5.9.3, this will be further elaborated on with
simulations. Because of the exponential dependence of the direct tunneling current on
the thickness of the gate dielectric, gate leakage becomes increasingly deleterious as dox
is scaled down and becomes intolerable for dox ≲ 1.5 nm.

Therefore, gate dielectric materials with substantially higher dielectric constant εk
are in use nowadays. The idea behind this is rather simple: If a gate dielectric with a
higher dielectric constant is used, the same value of geometrical oxide capacitance Cox
can be obtained with a thicker insulator dk that yields an exponentially suppressed gate
leakage current. In order to facilitate a simple comparison between SiO2 and the use
of an alternative gate dielectric material, the so-called “effective oxide thickness” (EOT)
was introduced. The EOT is the thickness of the gate dielectric if it was SiO2 yielding the
same capacitor values as in the case of εk :

Cox =
ε0εox
dox
=
ε0εk
dk
→ EOT = εox

εk
dk (4.29)

where again Cox is the geometrical oxide capacitance per area. As a result, the physical
thickness dk can be a factor εk/εox larger still leading to the same capacitance value but
the leakage current due to direct tunneling will be exponentially suppressed.

The integration of materials with high εk value is a delicate issue due to a number
of reasons:
– When depositing an alternative gate dielectric an interfacial SiOx ormetal silicate is

likely to form such that an interface layer of thickness di builds up. In addition, even
if highly doped polysilicon is used as the gate electrode, a (gate-voltage-dependent)
depletion layer of thickness Lgatedepl exists at the interface between the gate electrode
and dielectric (illustrated in Figure 4.15(a)). In this case, the gate stack consists of
three geometrical capacitors in series, namely Ck =

ε0εk
dk

, Ci =
ε0εi
di

and Cgate
depl =

ε0εsi
Lgatedepl

.

As a result, the effective oxide thickness is given by

EOT = εox
εk

dk +
εox
εi
di +

εox
εsi

Lgatedepl. (4.30)
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Figure 4.15: (a) MOS capacitor consisting of a poly-Si gate electrode with depletion length Lgatedepl and an
ultrathin SiO2 that leads to direct tunneling. (b) MOS capacitor with a high-εk material of physical thickness
dk and a metal gate. (c) Transmission electron microscopy image of a TiN/HfO2 gate stack on strained Si on
SiGe (M. Luysberg, FZ-Jülich).

It is clear that the last two terms limit the achievable values of EOT, and hence di
and Lgatedepl need to be made as thin as possible.

– The contribution Lgatedepl can be made negligible by replacing poly-Si as gate electrode
with a metal (cf. Figure 4.15(b) and (c)). To circumvent issues with the thermal bud-
get (e. g., during the activation anneal of implanted dopants), the replacement-gate
technique using a damascene process (see Section 3.9) was invented. Avoiding the
formation of an interfacial layer, di is substantiallymore involved. On the one hand,
if one was able to completely remove di, the smallest EOT would be obtained. How-
ever, this usually leads to a higher density of interface states, and thus potentially a
strong increase in Cit. On the other hand, the formation of an interfacial oxide layer
reduces Cit but yields a minimum possible EOT = di (where εi = εox was assumed
for simplicity). Therefore, obtaining extremely thin interface layers requires a very
careful surface treatment prior to the deposition of the high εk material.

– The value εk of the gate dielectric needs to be as large as possible but at the same
time appropriate insulation is needed. In this respect, the trend of a decreasing band
gap and decreasing conduction band offset ΔEc with increasing εk (displayed in Fig-
ure 4.16) limits the amount of useful materials. In addition, possible gate dielectric
materials need to be compatible with the fabrication processes and must be ther-
mally stable on silicon.

The family of hafnium-oxide-based materials, specifically HfO2, HfSixOy, HfOxNy and
HfSiOxNy, have been selected and implemented in the most advanced CMOS chips [94].
The εk -value of pure HfO2 amounts to 22, while those of other Hf-based compounds have
lower values.
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Figure 4.16: Band gap and conduction/valence band offsets ΔEc/ΔEv with respect to the silicon band gap
(green straight lines) of various gate dielectric materials as a function of their dielectric constant. The light
blue region illustrates the minimum energy range required for a proper gate dielectric ensuring appropri-
ate insulation. The general trend of a reduced band gap and conduction band offset with increasing εk can
be seen.

4.6 Metal-Semiconductor Contacts

Metal-semiconductor contacts are one of the most important ingredients for electronic
devices. Any device is only useful if it can be connected to the “outside world” to in-
ject or extract charges from the semiconductor. As a result, a metal-semiconductor (MS)
contact will always be present and, therefore, a tremendous amount of work has been
devoted to MS contacts. Due to the advent of “novel” 2D materials such as transition-
metal dichalcogenides (see Chapter 10) but also in rather classical semiconductors such
as silicon (for instance, to realize passivated contacts in solar cells [227]), germanium or
III–V compound semiconductors the realization of proper contacts is today still a very
important topic.

When a metal and a semiconducting material are brought into contact, there will
be an exchange of charge between the two materials. This ensures that in equilibrium
there will be a constant Fermi level throughout the MS-contact. In addition to this re-
quirement, there is a second condition that needs to be fulfilled. Each material has its
own work function Φm, i. e., the energy that is required in order to remove an electron
from it. Thework function is usuallymeasuredwith respect to the Fermi level. In a semi-
conductor, however, the Fermi level may lie within the band gap where no states can be
found, and hence, in suchmaterials the electron affinity χsemi is used. χsemi is the energy
needed to remove an electron from the conduction band of the semiconductor. Now, the
second condition to be fulfilled at a metal-semiconductor contact is that the work func-
tion of the metal and the electron affinity of the semiconductor are at the same energy
at the interface. As a result, in ideal metal-semiconductor contacts the energy difference
between the Fermi level in the metal and the conduction band in the semiconductor is
ΦSB = Φ0−Ef = Φm−χsemi; this potential barrier is called the Schottky barrier. If thework
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Figure 4.17: Ideal metal-semiconductor contact in the case of a large work function (a) and a small work
function (b) of the metal. The requirements of a constant Fermi level and that the work function and the
electron affinity need to be at the same energy at the interface allows in principle Ohmic contacts to the
valence band (a) and the conduction band (b).

function of the metal is so large that ΦSB ≳ Eg , the band bending in the semiconductor
leads to an Ohmic contact formation to the valence band as depicted in Figure 4.17(a).
On the other hand, if Φm is small resulting in ΦSB = Φm − χsemi ≲ 0 then a band bend-
ing in the other direction occurs enabling an Ohmic contact to the conduction band (cf.
Figure 4.17(b)).

Figure 4.18 shows thework function of variousmaterials (values are extracted from
[247]). Obviously, suitable metals that straddle a rather large range of different work
functions can be identified (for instance, the red marked metals in Figure 4.18). This
means that if metal-semiconductor contacts were ideal and behaved according to what
is called the Schottky–Mott limit one would just need to choose an appropriate metal
and the issue of Ohmic contact formation to a semiconductor would be resolved. For in-
stance, a lowwork functionmetal such as scandium ormagnesium and even aluminum

Figure 4.18:Work function of various metals; the values were extracted from [247].



208 � 4 Basic Ingredients for Nanoelectronics Devices

would be useful to realize contacts to n-doped silicon, whereas platinum or palladium
would be appropriate for contacting p-doped silicon. However, metal-semiconductor
contacts are unfortunately far from being ideal.

4.6.1 Fermi Level Pinning

When depositing different metals with different work functions on the same semicon-
ductor, one finds in almost all cases a phenomenon called “Fermi level pinning.” This
means that the MS contacts show similar electrical properties irrelevant of the metal
that was deposited onto the semiconductor; the Fermi level appears to be pinned at a
specific energy (or within a small energy range), which for most technologically useful
semiconductors lies within the band gap. As a result, a Schottky barrier builds up at MS
contacts and carriers need to tunnel through this barrier and/or need to be thermally
exited over this barrier in order to be injected into the semiconductor. This strongly
deteriorates the electrical behavior of devices due to a high contact resistance (cf. Chap-
ter 7).

There has been a decade-long debate about the origin of Fermi level pinning. An
obvious cause may be dangling bonds at the surface of a bulk semiconductor. However,
dangling bonds as the main course does, for instance, not fit to the experimental ob-
servation of Fermi level pinning at the interface between metals and 2D materials (cf.
Chapter 10). A model that is able to explain the experimental observations is the model
of “metal-induced gap state” (MIGS) [199]. MIGS stem from evanescent waves penetrat-
ing the (classically forbidden) band gap of the semiconductor from the metal side. As a
result, a high density of interface states is obtained continuously distributed across the
band gap. At the metal-semiconductor interface, there will certainly also be defects and
dangling bonds that contribute to the overall density of interface states. And if the den-
sity of these defects/bonds becomes very large, they will have an impact on Fermi level
pinning and the formation of Schottky barriers at the metal-semiconductor interfaces.
However, the density of the MIGS is usually higher and they penetrate deeper into the
semiconductor, and hence are the dominant factor for Fermi level pinning. As an exam-
ple, Figure 4.19 shows the local density of states at a GaAs-AuMS contact (measuredwith
scanning tunneling spectroscopy) that was fabricated in ultrahigh vacuum to avoid any
impact of defects, impurities, etc. The MIGS can clearly be observed leading to a sub-
stantial density of states at the interface across the entire band gap [115]. Figure 4.19(b)
shows the computed local density of states of a MS contact within the band gap of the
semiconductor (for details on the computation, see Chapter 6). The MIGS can be identi-
fied and can be subdivided into conduction band-like and valence band-like states (as
has already been done above, see Section 2.4.7), separated by the branching energy Ebr
(cf. Figure 2.20). If Eg is large enough (top panel), the charge neutrality level ECNL is ap-
proximately at Ebr since the density of MIGS within the relevant energy range (∼4kBT )
above and below Ebr is similar. As a result, Fermi level pinning will occur close to Ebr. If
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Figure 4.19: (a) Local density of states of a GaAs-Au contact measured with scanning tunneling microscopy
showing MIGS at the MS interface (M. Wenderoth, University of Göttingen) [115]. (b) Computed local DOS
of MS contacts in the case of GaAs (top) and a semiconductor with small Eg but same effective masses
(bottom). For better visibility, the conduction and valence band-like MIGS are colored, separated by Ebr.

the band gap is rather small or if further bands need to be considered, ECNL may deviate
from Ebr (lower panel).

The Fermi level at theMS interfacemust be close to the charge neutrality level since
otherwise a large interface chargewill be present shifting conduction and valence bands
so as to reduce the interface charge. The Schottky-barrier ΦSB = Φc − Ef is thus deter-
mined by

ΦSB = SMIGS(Φm − χsemi) + (1 − SMIGS)ECNL with SMIGS =
𝜕ΦSB
𝜕Φm

(4.31)

where the so-called slope parameter SMIGS is between 0 and 1. Equation (4.31) means
that if SMIGS = 1, the Schottky barrier changes one to one with Φm which is the ideal
MS contact depicted in Figure 4.17. On the other hand, if SMIGS → 0, ΦSB is determined
by the charge neutrality level and becomes independent of Φm, i. e., the Fermi level is
pinned at ECNL resulting in ΦSB = ECNL. The factors SMIGS and ECNL that determine the
MS contact are further elaborated on in the next sections.

4.6.1.1 Charge Neutrality Level
In order to compute the charge neutrality level, we could in principle use the Green’s
function approach detailed in Section 2.12.3 utilizing the tight-binding recipe given in
Section 2.7. The Green’s function approach allows even to incorporate dangling bonds,
surface reconstruction, etc. by first computing iteratively a semiinfinite contact and us-
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ing the surface Green’s function of this to couple it via appropriate self-energies to the
layer containing the dangling bonds. The imaginary part of the retarded Green’s func-
tion then provides the density of states and from this the charge neutrality level can in
principle be determined. Such a calculation is certainly rather involved. However, it has
been shown that although the complex band structure is a bulk property, ECNL can be re-
lated to it as has beendone in Figure 4.19(b).5 As a result, a detailedmodel of the interface
is not required and an appropriate value for ECNL can be obtained merely based on the
(complex) band structure of the bulk semiconductor material [64]. To be specific, ECNL is
found by varying the Fermi level taking the conduction and valence band-like character
of the complex band structure (separated by Ebr) as well as the density of states within
conduction and valence bands into account and requiring zero net charge.

As an example, let us consider the 1D two-band model discussed in Section 2.4.7.
With a nonzero coupling Vsp ̸= 0, the complex band structure connects the two bands
(in the following, these bands are referred to as conduction and valence bands). The
density of states within each band can be obtained with the computed dispersion rela-
tion utilizing, e. g., the smearing method (Section 2.12.1). The complex band structure is
(if an analytical computation is not possible) calculated by finding the complex κ that
belongs to a real energy within the band gap. In this case, the smearing method does
not provide appropriate results for the DOS since it yields a density of states that ap-
proaches zero at Ebr. While this is indeed expected since D(E) ∝ dk/dE (see, e. g., [75],
p. 4), here we would like to use the complex band structure to mimic the situation at a
metal-semiconductor interface. Therefore, the fact that the density of states in 1D is pro-
portional to 1/k → 1/κ is used. The latter is strictly valid only in the case of a quadratic
dispersion (i. e., in the vicinity of the band edges) but is used within the entire band gap.
Hence, because wavefunctions decay exponentially into the band gap according to e−κx ,
the decay can be associated with a length scale δ = κ−1. The larger κ, the smaller will the
density ofMIGS be. This has important implications for Fermi-level pinning as discussed
below.

Figure 4.20 shows conduction and valence bands together with the complex band
structure of the 1D two-band model. In (a), the coupling strength between s- and px -
orbitals is varied. Aweak coupling (red) leads to larger κ-values and also to aEbr closer to
the valence band compared to the casewith (three times) stronger coupling (green). As a
result, a stronger suppression of the DOSwithin the band gap is obtained in the red case.
In Figure 4.20(b), the same 1D two-band model is computed. However, in this case, two
two-bandmodels are added that exhibit different band gaps. Thismimics the casewhere
the valence band has a light (LH) and a heavy hole (HH) band but there is only a single
conduction band (withmuch lighterm⋆) as found in lowband gap III–V semiconductors.
In this case, the complex band structure of the heavy hole mass band is connected to an

5 In fact, in Figure 4.19(b), Flietner’s dispersion relation was used as a simple way to take the bulk com-
plex band structure into account.
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Figure 4.20: (a) 1D two-band model with complex band structure and DOS for two different coupling
strengths Vsp between s-(valence) and px -(conduction) band. (b) Two two-band models with complex band
structure and DOS to mimic a semiconductor exhibiting a light (LH) and heavy-hole (HH) valence band.

energetically higher lying band. However, since the branching energy of the latter band
is at a higher energy, the complex band structure of HH contributes substantially to the
hole density at the interface, which shifts ECNL closer to the conduction band.

4.6.1.2 Slope Parameter for Fermi-Level Pinning
The impact of MIGS on Fermi-level pinning can be described by the slope parameter
SMIGS (cf. Equation (4.31)) that is equal to the change of the Schottky-barrier height with
changing work function of the metal. With the knowledge about the MOS capacitor, we
can now derive an expression for SMIGS.

A metal-semiconductor can be considered as a MOS capacitor with extremely thin
insulator. Changing the work function of the contact metal will therefore result in a
change of the band bending in the semiconductor that depends on the magnitude of the
density of MIGS, similar to the impact of a variation of the applied gate voltage in the
MOS capacitor. Hence, we can replace 𝜕Φ0

𝜕Φg
in Equation (4.20) with 𝜕Φ0

𝜕Φm
and since the sur-

face potential Φ0 (see Figure 4.17(a)) equals the Schottky barrier (tacitly setting Ef = 0)
we obtain an expression for SMIGS very similar to Equation (4.20) [56]. If the density of in-
terface states Dit of the MOS capacitor is replaced with the density of metal-induced gap
states DMIGS and if the geometrical oxide capacitance is interpreted as the capacitance
associated with the decay length δ = κ−1 of the MIGS around ECNL (i. e., Cox =

εox
dox
→ εsi

δ ),
we obtain

SMIGS =
𝜕ΦSB
𝜕Φm
= 1

1 + e2δ×DMIGS
ε0εsi

(4.32)

in the case of a metal-semiconductor(silicon) contact. As already mentioned above, the
decay length δ = κ−1 depends on the complex band structure of the semiconductor. As a
result, SMIGS appears to be completely determined by properties of the semiconductor.
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In fact, in the two-band example above, the DOS within the band gap (see Figure 4.20)
was computedwithDMIGS ∝ κ

−1. Since for not too small band gaps, ECNL is roughly at the
branching energy where κ is maximal and because κmax is approximately proportional
to Eg the product δ × DMIGS is expected to be proportional to E−2g [97]. If we rewrite

Equation (4.32) as 1/SMIGS−1,we obtain the factor e2δ×DMISG
ε0εsi

and if the value for 1/SMIGS−1 is
extracted for various materials including insulators and different semiconductors and
plotted as a function of the band gap of the material, one obtains the graph shown in
Figure 4.21. Here, the green data points belong to the linear axis and the blue to the
double logarithmic; the red data points represent MoS2 and MoTe2.

Figure 4.21: 1/SMIGS − 1 extracted from literature as a function of Eg of different insulators and semicon-
ductors. The green data belong to the linear plot, the blue to the logarithmic plot. Both show excellent
agreement with a fit (straight lines)∝ 1/(Eg)

2. The red marked data points belong to MoS2 and MoTe2.

Both plots show excellent agreement with a fit 1/SMIGS − 1 ≈ 15/(Eg)
2 (straight lines),

whichmeans that indeed δ×DMISG ∝ E
−2
g . This strong dependence on the band gap is also

the reasonwhyFermi-level pinning is not observed in proper insulatorswith sufficiently
large Eg . On the other hand, for any semiconductor with a reasonable band gap Fermi-
level pinning is expected to occur. The Fermi level is pinned around the charge neutrality
point ECNL (see Figure 4.12) that can be extracted from the complex band structure. The
impact of the work function of the metal is taken into consideration via Equation (4.31)
using Equation (4.32) giving rise to a substantial Schottky barrier in most MS contacts.

4.6.2 MS Contacts to Highly Doped Semiconductors

Fermi-level pinning leads to a substantial Schottky barrier at metal-semiconductor in-
terfaces, which is prohibitive for any reasonable device functionality. There are ba-
sically two approaches to resolving the issue: first Fermi-level depinning, and second
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strong “thinning” of the Schottky barrier in order to increase the tunneling probability
such that carriers can be injected with a transmission close to unity. Fermi-level depin-
ning will be discussed in the succeeding section, so let us concentrate on the second
approach.

Thinning the potential barrier is easily accomplished by heavily doping the semi-
conductor in contact with the metal. With the depletion approximation6 used in Sec-
tion 4.2 and assuming strong Fermi-level pinning yielding a constant Schottky barrier
ΦSB, the potential distribution at the metal-semiconductor interface is parabolic within
the depletion region (cf. Figure 4.22) where the depletion length is related to the doping

concentration Nd and the Schottky-barrier height according to Ldepl = √
2ε0εsiΦSB
e2Nd

. Using

the WKB approximation, the transmission probability for carriers to tunnel through
the SB can be computed in the following way: Within the classically forbidden region, a
planewave solution of the Schrödinger equation yieldsϕk(x) = Ae

ikx with apurely imag-
inary wavenumber k = i√ 2m⋆(Φ(x)−E)

ℏ2
. The wavefunction ϕ(x) at x + dx is then given by

ϕ(x+dx) = Ae−k(x+dx) = ϕ(x)e−kdx . If the classically forbidden region extends from x = 0
to x = dWKB, the wavefunction will be ϕ(dWKB) = ϕ(0) exp(−∫

dWKB

0 √
2m⋆(Φ(x)−E)
ℏ2

dx). The
transmission probability T(E) is then simply given by the ratio of the absolute squares
of the transmitted wavefunction (i. e., ϕ at x = dWKB) and the incident wavefunction (at
x = 0):

T(E) ≈ |ϕ(dWKB)|
2

|ϕ(0)|2
= exp(−2

dWKB

∫
0

dx√2m
⋆(Φ(x) − E)
ℏ2

). (4.33)

An analytic solution for T(E) can in principle be obtained by inserting the parabolic po-
tential distribution computed within the depletion approximation into Equation (4.33).
However, a more handy expression can be calculated by approximating the parabolic
potential distribution with a triangular potential barrier (as illustrated in Figure 4.22)
whose height is ΦSB and its width approximately 3

4Ldepl. As illustrated in the right panel
of Figure 4.22 (black dashed lines), the full Ldepl would underestimate the tunneling
probability whereas using the slope of Φ(x) at the Schottky barrier leads to a triangular
barrier with width 1

2Ldepl, which overestimates the transmission. As a result, the trans-
mission probability is approximately given by

T(E) ≈ exp(−√2m
⋆

ℏ2
√2ε0εsi
e2Nd
(

ΦSB − E
ΦSB − Φ0

)
3/2

). (4.34)

6 In the case of heavy, i. e., degenerate doping, the depletion approximation is not necessarily fully jus-
tified but allows for obtaining a fairly accurate picture in terms of trends and dependencies of the MS
contact on the device parameters.
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Figure 4.22:Metal-semiconductor contact. A highly doped semiconductor yields a very thin Schottky bar-
rier. Carriers can tunnel through the thin SB with a probability close to unity facilitating Ohmic contact
formation to the semiconductor.

At E = 0 (i. e., at the Fermi level in the MS contact), with a typical Schottky barrier of
∼0.6 eV, an (electron) tunneling effective mass for silicon of ∼0.19m0 one obtains T ≈
0.009 at a doping concentration of Nd = 1 ⋅ 1020 cm−3 and T ≈ 0.066 at 3 ⋅ 1020 cm−3.
Apart from the uncertainties of the exact numerical value of T due to the approximate
calculation, this clearly shows that very high dopant concentrations are necessary in
order to guarantee Ohmic contact behavior. Since a doping concentration of Nd = 3 ⋅
1020 cm−3 approaches the solubility limit for most dopants, a further reduction of the
contact resistance can only be obtained with a reduction of the Schottky-barrier height
ΦSB itself. This, however, requires a depinning of the Fermi level.

4.6.3 Fermi-Level Depinning with Ultrathin Insulators

It has been discussed above that MIGS are responsible for Fermi-level pinning and this
prevents realizing Ohmic contacts to the conduction and valence bands with an appro-
priate choice of thework function of themetal contact. Therefore, a removal of theMIGS
allows depinning the Fermi level. This can be done by deliberately inserting an insula-
tor of thickness diso with band gap Eiso

g in between the metal and the semiconductor in
order to suppress the MIGS. Such an insulator must fulfill a number of requirements:
(i) its band gap needs to be large enough to avoid a repinning at a different energy, (ii) it
must have an appropriate thickness in order to suppressMIGS and simultaneously allow
low contact resistances, (iii) the interface between the semiconductor and the insulator
should exhibit a low Dit (e. g., due to dangling bonds) and (iv) one should be able to con-
trol the fabrication.

The first point (i) is only necessary if a single insulator is desired that enables n-
and p-type devices to be realized with an appropriate metal. A first guess for suitable
insulators can be obtained, if a range of available work functions of ΔΦm ≈ 2 eV is as-
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sumed (see Figure 4.18). In order to contact conduction and valence bands of silicon,
ΔΦm must be sufficient to move the surface potential Φ0 through the entire band gap of
the semiconductor, i. e., ΔΦ0 = 1.12 eV in the case of silicon. As a result, SMIGS ≈

ΔΦ0
ΔΦm
=

1.12/2 ≈ 0.5. Figure 4.21 can then be used to extract suitable band gaps of the insulator.
With 1/SMIGS − 1 ≈ 2 − 1 = 1, it is clear that E

ins
g ≥ 4 eV (see black arrows in Figure 4.21).

Amore rigorous analysis can be carried out based on Equation (4.32) [97]: if the sur-
face including the insulator is considered as a series combination of capacitors, the ratio
δ/(ε0εsi) in Equation (4.32) needs to be replaced with δsi/(ε0εsi)+diso/(ε0εiso). Moreover,
the density of MIGS in silicon is replaced with Dsi

MIGS = D
iso
MIGS exp(−diso/δiso)where δsi,iso

are the decay lengths in silicon and the insulator, respectively, andDiso
MIGS is the density of

MIGS at the metal-insulator interface. Since, both, δiso ∝ 1/Eiso
g and Diso

MIGS ∝ 1/Eiso
g , the

slope parameter SMIS
MIGS of the combinedmetal-insulator-semiconductor contact becomes

a function of Eiso
g and the thickness diso:

SMIS
MIGS = (1 +

e2Diso
MIGSe
−diso/δiso (εisoδsi + εsidiso)

ε0εisoεsi
)
−1

. (4.35)

This equation suggests that either a large diso or a large E
iso
g (or both) is preferable since

SMIS
MIGS → 1 in this case. However, it is clear that both measures eventually prohibit a
proper, Ohmic contact formation. If we use theWKB approximation (cf. Equation (4.33))
and assume, for simplicity, a constant potential barrier of approximately Eiso

g /2 − E
si
g /2,

then TWKB ∝ exp(−√Eiso
g − Esi

g diso). This shows, that in terms of tunneling probability, it
is preferable to increase Eiso

g instead of diso since the exponent in TWKB depends linearly
on diso but only as the square root of Eiso

g . The bottom line is that for contact forma-
tion a (likely ultrathin) diso has to be chosen such that Fermi-level pinning is sufficiently
suppressed while still allowing a decent tunneling probability into the conduction or
valence bands.

Thermally grown silicon nitride is an excellent option to serve as an insulator to de-
pin the Fermi level inmetal-silicon contacts. Reasons for this include: first, that the band
gap of silicon nitride is large enough to avoid (re)pinning at the SiN-metal interface. Sec-
ond, SiN can be grown in a rapid thermal annealing process using NH3 with an almost
self-limiting growth kinetics (cf. Section 3.3) that enables excellent process control and
reproducibility of ultrathin SiN layers. Furthermore, since silicon nitride is an excellent
diffusion barrier, even an ultrathin SiN prevents oxidation of the silicon and, therefore,
allows reliable processing.7 Finally, the energetic alignment of the band gapwith respect
to the silicon band gap is favorable in that it is aligned approximately mid-gap with
respect to silicon (see Figure 4.16). As a result, choosing an appropriate SiN thickness,

7 An approximately 3 nm thin thermally grown SiN even prevents rapid thermal oxidation as shown in
Figure 3.4.
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Figure 4.23: (a) Schematic of the metal-SiN-silicon contact. The blue dashed line represents a WKB ap-
proximation of the transmission probability T(E), the red dotted line is the Fermi- distribution function and
the orange line is the product of both. In the present calculation, a SiN thickness of 8 Å,m⋆ = 0.2m0 and
ESiNg = 5 eV was assumed. (b) Measured Schottky barriers as a function of Φm for various metal-Si (red)
[247] and metal-SiN-Si contacts (green) [223].

metal-induced gap states are strongly reduced such that the Fermi level is depinned at
the silicon surface. Replacing a potential barrier (i. e., the Schottky barrier) with another
potential barrier (the SiN) does at first sight not appear reasonable. However, to explain
the rationale behind this in a bit more detail consider Figure 4.23(a). Here, the tunneling
probability T(E) through the SiN layer is plotted as a function of energy. T(E) was com-
puted with the WKB approximation and it clearly shows that it increases exponentially
for larger energies. This means that the MIGS that pin the Fermi level approximately
around mid-gap (at ECNL) are substantially stronger suppressed than electronic states
that would inject, for instance, into the conduction band. As a result, with appropriate
SiN thickness, MIGS can be suppressed while the injection into the conduction band is
much less affected. Thicknesses of the SiN in the range of 4–8Å are best suited for de-
pinning the Fermi level.

With SiN depinning layer, contact formation to the conduction band aswell as to the
valence band is enabled using metals with appropriate work functions. An example of
n- and p-type devices realizedwith two differentmetallic source/drain contacts with low
and high Φm will be discussed in Section 7.3. Figure 4.23(b) shows experimentally mea-
sured Schottky-barrier heights of metal-Si contacts as a function of Φm (the respective
metals are stated in the figure). The red data points (taken from [247]) show the expected
strong Fermi level pinning with SMIGS ≈ 0.19. On the other hand, with a 8 Å SiN layer
(green data), Fermi level pinning is substantially suppressed resulting in SMIGS = 0.58
[223].



4.6 Metal-Semiconductor Contacts � 217

4.6.4 Transfer Length of Contacts

Ametal-semiconductor contact is oftenmade in away that themetal covers a part of the
semiconductor and the actual contact is distributed across a certain length lcon. The con-
tact can thenbemodeled by considering it as a distributed resistor network as illustrated
in Figure 4.24 where it is assumed that there is only a variation of the contact properties
along the x-direction. If the entire contact is subdivided into n small sections of length
δx with lcon = n ⋅ δx, then in each section three resistances can be defined belonging
to the metallic lead (rmet), to the semiconductor (rsemi) and to the coupling between the
metal and the semiconductor (rt) mediated, for instance, by a tunneling process either
through a Schottky barrier in the usualMS-contact case or through anultrathin SiN layer
if depinning of the Fermi level is used. All resistances are in units Ω⋅m and need to be
divided by the width of the respective contact part in order to obtain the resistance. For
instance, the resistance of the metal contact lead is given by rmet = ρm/dmet ⋅ δx with ρm
being the specific resistivity of themetal and dmet its thickness. A similar expression can
be found for rsemi and rt , depending in the particular case considered.

Figure 4.24: Schematic of the typical contact geometry where a metal covers a part of the semiconductor
over a length lcon. The contact can be regarded as a distributed resistor network with the sheet resistances
of the contact metal rmet and of the semiconductor rsemi. The tunneling resistance rt can be computed with
the WKB approximation. The right panel shows the part of the distributed resistor network that is repeated
along the length of the contact.

Using four-pole theory, it is straightforward to determine the impedance matrix Zi
for one particular section of the resistor network to be

Zi = (
rmet + rsemi + rt rsemi + rt

rt rt
) (4.36)

from which the transmission matrix Ai for one section (gray area in Figure 4.24, right
panel) can be computed. The overall matrix for the entire network is then simply the
product of the matrices for each of the n sections∏i Ai. Since all sections are alike, this
yields An. An analytical calculation can be carried out by first diagonalizing the matrix
A yielding D = S−1AS where S is the orthogonal transformation consisting of the eigen-
vectors of A. As a result,

An = SDnS−1 = S( λn1 0
0 λn2

) S−1 (4.37)
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where λ1,2 are the eigenvalues of the matrix that can be obtained by solving the char-
acteristic polynomial. The total contact resistance rcon can then be read off from the
matrix An: the inverse of the (2,1)-element of An divided by the width of the con-
tact is the total contact resistance. If rmet, rsemi and rt are constant throughout the
contact of length lcon, the contact resistance can be computed analytically yielding
rcon ∝ lT coth

−1(lcon/lT ) where lT is the so-called transfer length. As a result, if lcon > lT
the contact resistance saturates and, therefore, a further increase of the contact length
does not yield any benefit. On the other hand, this means that the minimum contact
length should be lmin

con ≈ lT , since otherwise the contact resistance strongly increases.

4.7 Heterostructures
Heterostructures are a unique possibility to tailor the potential profile within a device
to enable or improve a certain functionality. Prominent examples include diode lasers
and high-electronmobility transistors. When two semiconductors are brought into con-
tact, the band line-up is obtained with the same requirements already stated above: In
equilibrium, a single Fermi level is obtained and at the interface the work functions
(electron affinities) of the twomaterials need to match. Doing so, the three different sce-
narios schematically shown in Figure 4.25 are possible: in a so-called type I heterostruc-
ture, the band gap of the material with the small Eg is completely straddled by the band
gap of the second material. A conduction or valence band offset ΔEc/ΔEv can be used
to create carrier confinement in, e. g., the triangular potential shown in the left panel.
In so-called type II heterostructures, either a staggered or a broken band line-up (center
and right panels) is possible. Type II heterostructureswill be discussed in the framework
of band-to-band tunnel FETs in Chapter 9.

Figure 4.25: Possible heterostructure band line-ups between two different semiconductors.

Exercises

Exercises togetherwith solutions are accessible via theQR code. 42

https://www.iht.rwth-aachen.de/global/show_document.asp?id=aaaaaaaachgkupu


5 Metal-Oxide-Semiconductor Field-Effect
Transistors

In the present chapter, the working principles of metal-oxide-semiconductor field-effect
transistors will be discussed. The focus of the present chapter is on nanoscale MOSFETs
based on low-dimensional nanostructures such as ultrathin-body silicon-on-insulator
and nanowires. However, before going into more detail it is instructive to start the
discussion with recapitulating the classical textbook version of MOSFET functionality
based on the gradual channel approximation.

5.1 Operation Principles—Gradual Channel Approximation

Figure 5.1(a) shows a cross-section of a conventional, planar, single-gate siliconMOSFET.
Note that the following discussion will be restricted to n-type MOSFETs; the extension
to p-type devices is, however, straightforward with appropriate modifications (such as
changing polarity of voltages, etc.). Two highly n-doped source and drain regions are
separated by a channel of length L within the p-doped silicon substrate. On top of the
substrate, a gate electrode consisting of highly doped polysilicon or ametal is placed and
insulated from the substrate by a gate dielectric with dielectric constant εox and physical
thickness dox. The gate electrode has a width W and the gate length is considered to
be equal to the channel length L. A coordinate system is chosen with the x-direction
along the channel, y along the width and the z-direction is oriented perpendicular into
the substrate.W is assumed to be very large such that the potential distribution in the
device is independent of the y-coordinate.

Figure 5.1: (a) Schematic of a conventional n-type, planar, single-gate MOSFET with channel length L and
widthW . (b) Potential distribution in the conduction band of the MOSFET with applied voltages.

The current density j in such a transistor is j = (−e)n(x, z)v(x) with the carrier den-
sity n(x, z) and the carrier velocity v(x) both being independent of y due to the assump-
tion of a very wide transistor. Furthermore, the current flowing through the transistor

https://doi.org/10.1515/9783111054421-005

https://doi.org/10.1515/9783111054421-005
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will consist of inversion charge (cf. Section 4.5) induced by a sufficiently high gate volt-
age. The carriers of the inversion charge occupy 2D subbands that are a result of con-
finement in the triangular potential well between substrate and gate insulator such that
n(x, z) depends on x and z. Due to the confinement, there is certainly no current flow in
the z-direction, and hence v(x) solely depends on x. The current density j flows through
an area of size W times the channel thickness (which is a not very well-defined quan-
tity in the z-direction) and the total current is obtained by integrating over the y- and
z-coordinates. Carrier confinement ensures that the wavefunctions exponentially drop
in the z-direction (cf. Figure 4.13, left panel) and, therefore,

I =
W

∫
0

dy
∞

∫
0

dz en(x, z) ⋅ v(x) = WQ◻(x) ⋅ v(x) (5.1)

whereQ◻ is the charge per unit area. The carrier velocity v(x) is proportional to the elec-
tric field ℰ according to v(x) = μℰ with μ being the carrier mobility (cf. Section 2.13.1).
In Section 4.5.3, it was found that in the strong inversion case of silicon the gate capaci-
tance can be replacedwith the geometrical oxide capacitance. Therefore, the charge per
unit area Q◻ can be written as C◻ox(Vgs − Vth), where Vgs − Vth is the so-called gate over-
drive with Vgs being the applied gate-source voltage and Vth the threshold voltage.1 The
threshold voltage is the gate voltagewhen strong inversion is obtained. Here, the thresh-
old voltage is taken to be the gate voltage necessary to move the energy level of the first
2D subband in the inversion layer to the same energy as the Fermi level Esf in source (cf.
Figure 4.5.3). Thus, it is clear that the gate overdrive Vgs − Vth drives the MOSFET well
into strong inversion, and hence into the on-state.

The gate overdrive Vgs − Vth applies only at the source end of the channel. At the
drain end, on the other hand, the drain-source bias Vds leads to an effective reduction of
the overdriveVgs−Vth−Vds, and in general, along the channel, one obtainsVgs−Vth−V (x).
Then noting that ℰ = dV

dx one finally obtains

I = WC◻oxμ(Vgs − Vth − V (x))
dV
dx
→ I dx = WC◻oxμ(Vgs − Vth − V (x))dV

→
L

∫
0

I dx =
Vds

∫
0

WC◻oxμ(Vgs − Vth − V )dV . (5.2)

Integrating both sides of the equation and noting that due to the requirement of current
continuity in an ideal MOSFET I is independent of x, we finally obtain

1 There are only somany Latin and Greek letters, which leaves us with the dilemma that the potential in
the Hamiltonian is denoted with the Latin V in order to distinguish it from the Greek Φ, which is mostly
used for the wavefunction. Here, however, V is used for voltages.
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Id = μ
W
L
C◻ox(Vds(Vgs − Vth) −

V 2
ds
2
), (5.3)

where the current is now denoted as the drain current Id . In the case of a small Vds, a
Taylor expansion of Equation (5.3) yields Id = μ

W
L C
◻
ox(Vgs − Vth)Vds. If the drain–source

bias is increased and reaches Vds = Vgs − Vth, the gate voltage overdrive at the drain
end of the channel vanishes and the channel is said to be pinched off. The simple equa-
tion for the carrier density above tells that the charge at pinch-off goes to zero and for
further increased Vds the pinch-off point moves toward the source contact. Of course,
the carrier density cannot become zero, since if it was zero the current would vanish,
which violates current continuity. Hence, the carrier density becomes only very small
and this reduction of carrier density is compensated with a higher carrier velocity in
order to fulfill current continuity. It will be discussed in Section 5.2.3 in the framework
of the Landauer formalism (cf. Section 2.13.2) that this is indeed the case. Anyway, for a
bias voltage Vds ≥ Vgs − Vth the current remains constant. In this saturation regime, Id
depends quadratically on Vgs according to

Isatd = μ
W
L
C◻ox
(Vgs − Vth)

2

2
. (5.4)

The left panel of Figure 5.2 shows the Id–Vds curves for several Vgs obtained with
the gradual channel approximation. The insets illustrate the pinch-off of the channel at
the drain end when Vds = Vgs − Vth and the appearance of current saturation due to
shifting the pinch-off point in the channel toward source when the bias increases. The
right panel shows exemplarily one transfer characteristic for a drain-source bias where
the MOSFET is in current saturation. Below Vth, the current drops to very small values
close to zero and increases for larger Vgs according to Equation (5.4).

Figure 5.2: Output (left) and transfer (right) characteristics of an ideal, conventional long-channel MOSFET
according to the gradual-channel approximation. The insets illustrate the pinch-off of the channel at the
drain end for sufficiently large Vds leading to current saturation.
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5.2 Nanoscale Transistors with Ballistic Transport—From 1D to 2D
to Bulk MOSFETs

The gradual channel approximation allows deriving a closed expression for the current
through a MOSFET as a function of the applied voltages as well as of the geometrical
and material parameters. As such, it is capable of describing the general functionality
of large-scale, bulk-Si MOSFETs and provides guidelines on how to obtain performance
improvements. However, it is certainly inadequate to describe effects such as quantiza-
tion, tunneling of carriers, etc. as expected in the truly nanoscale MOSFETs of current
and future technology generations. Therefore, instead of going top-down and refining
the GCA, let us start bottom up and describe field-effect transistors based on a micro-
scopic, i. e., quantum mechanical picture. To this end, a transistor is considered that is
supposed to be short enough such that scattering can be neglected and electronic trans-
port can be considered as being ballistic. Moreover, let us start with a device based on a
nanowire/tube small enough such that current transport is one-dimensional.

The exact potential distribution in the channel needs to be computed by solving
the Poisson equation within the device, which will be done in Section 5.5. For the time
being, it is sufficient to note that because of then-p junction at the source channel and the
p-n junction at the channel-drain interfaces there must be a potential maximum in the
channel that will be denoted with Φ0

f (as in the discussion of the MOS capacitors) and it
is this potential maximum and its dependence on the terminal voltages that determines
the electrical behavior of the device.

Figure 5.3(a) schematically shows the conduction band profile along the direction of
current transport for a nanowire transistor with cross-sectionW ×W small enough, so
that confinement leads to the formation of discrete 1D subbands.2 The Landauer expres-
sion for a 1D subband, derived in Section 2.13.2, can now be used to compute the current
flow through such a device. The net current is given by the difference between carriers
injected from the source over the potential maximum Φ0

f and those injected from the
drain flowing toward the source (cf. Figure 2.53). These two carrier populations are de-
picted in Figure 5.3(a) in red and blue for carriers injected from source occupying the
right branch of the dispersion and injected from drain occupying the left part of the dis-
persion relation, respectively. Hence, the current for the first 1D subband depicted in
Figure 5.3(a) is given by (cf. Equation (2.117))

I1Dd =
2e
h

∞

∫

Φ0
f +E1

dE(fs(E
s
f ) − fd(E

d
f )). (5.5)

2 Quantization is for clarity only shown along the y-direction but is supposed to also include the
z-direction.
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Figure 5.3: (a) Confinement in a nanowire FET with cross-sectionW × W leads to discrete 1D subbands with
quantization energies E1,2,.... (b) 2D MOSFET with very large widthW along the y-direction. Only the first 2D
subband in z-direction with quantization energy Ez1 contributes. The 2D current is obtained by summing
over independent 1D-subbands.

The one-dimensional case allows obtaining a closed expression of the drain current
Id since the integral in Equation (5.5) can be solved analytically (cf. Task 13 and Sec-
tion 2.11.3). Before explaining where gate and drain-source voltages are hidden in the
equation, an extension to higher-dimensional devices will be derived.

Pure 1D transport in FETs is difficult to obtain at room temperature even in carbon
nanotube FETs (see Chapter 8). Consequently, in most nanowire/-tube devices at least
a few 1D subbands contribute to the current and need to be taken into account. The
total current in the ballistic case (which implies no interband scattering such that the
subbands can be treated as independent) is simply a sum over the discrete 1D subbands
(max. = 3 in the case depicted in Figure 5.3(a)) leading to

Imulti-mode
d =

max.
∑
n=1

dndeg
2e
h

∞

∫

Φ0
f +En

dE(fs(E
s
f ) − fd(E

d
f )) (5.6)

where each of the subbands starts at the energy Φ0
f + En. The energy En is the energy of

the respective 1D subband that is a consequence of confinement in y- and z-directions. If
the cross-section of the nanowire isW×W and a particle-in-the-box quantization is used
the subbands are at energies En = E

m,l = ℏ
2π2

2m⋆W 2m2 + ℏ
2π2

2m⋆W 2 l2 as has been discussed in
detail in Section 2.2.2. The factor dndeg in Equation (5.6) is the degeneracy factor of the nth
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1D subband. For instance, the second subband is twice degenerate since E2 = E
21 = E12,

and hence d2deg = 2 (cf. Section 2.2.2).
If the widthW in one spatial direction (say y) is made very large whereas the con-

finement is such that in z-direction only the first subband is occupied, a two-dimensional
MOSFET is obtained as illustrated in Figure 5.3(b). In such an idealistic, infinitely wide
device with ballistic electronic transport, there is no electric field component in the
y-direction. As a result, themomentum py = ℏky, and thus ky, is conserved. Consequently,
the 2D transport can be considered to consist of a multitude of 1D subbands that are in-
dependent of each other, and the current is therefore obtained by summing over these
independent 1D subbands depicted in Figure 5.3(b). Each 1D subband starts at the energy
Φ0
f +E

z
1 +
ℏ2k2y
2m⋆ where Ez1 is the first quantization energy due to carrier confinement in the

z-direction and ℏ
2k2y
2m⋆ is the dispersion relation in the y-direction. If periodic boundary

conditions in y-direction are used, the sum over ky can be transferred into an integral
as has been described in the info-box in Section 2.11.1. To this end, a factor of 1 = Δky

2π/W
is inserted in the integral. ThenW →∞, which implies Δky → dky, and thus

I2Dd =
2e
h
∫ dky⏟⏟⏟⏟⏟⏟⏟
= dϵℏ √ m⋆

2ϵ

W
2π

∞

∫

Φ0
f +E

z
1+
ℏ2k2y
2m⋆

dE(fs(E
s
f ) − fd(E

d
f )). (5.7)

Using the dispersion relation ϵ = ℏ
2k2y
2m⋆ , variables are changed from ky to ϵ and, since

the integral over dE can be carried out analytically (see Section 2.11.3), one eventually
arrives at

I2Dd = W
2e
h2
√m
⋆

2
kBT
∞

∫
0

dϵ 1
√ϵ

ln(
1 + exp( E

s
f −(Φ

0
f +E

z
1+ϵ)

kBT
)

1 + exp(
Edf −(Φ

0
f +E

z
1+ϵ)

kBT
)
), (5.8)

where the final integration over ϵ needs to be computed numerically. As expected, the
expression for I2Dd is proportional to the widthW of the transistor. Furthermore, in con-
trast to the 1D expression, the current in 2Ddepends explicitly on thematerial properties
of the semiconductor through√m⋆. Interestingly, it appears as if I2Dd dropswith decreas-
ing effective mass. This, however, is only partly true since Φ0

f (see discussion below) de-
pends on the charge in the channel and, therefore, also on the density of states, which
is ∝ m⋆ in 2D. As a result, the dependence of I2Dd on m⋆ is more involved than imme-
diately apparent from the √m⋆-dependence. On the other hand, if perfect gate control
over Φ0

f is obtained (see Section 5.9.1) Φ0
f becomes independent of the charge, and in this

case the drain current of a 2D FET will indeed be deteriorated with decreasing DOS (i. e.,
decreasingm⋆) in the channel [265].

Finally, having calculated the 2D current I2Dd (E
z
1 ) as a function of the subband en-

ergy Ez1 , it is in principle straightforward to extend the expression covering multiple 2D
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subbands that carry the current as appropriate for a bulkMOSFET. For instance, quanti-
zation in the z-direction due to the (approximately) triangular potential of an inversion
layer (see Figure 4.13) leads to the formation of 2D subbands with energies denoted Ezn
(Equation (4.21)), and thus one arrives at

Ibulkd =
N
∑
n=1

I2Dd (E
z
n). (5.9)

5.2.1 Dependence on Terminal Voltages—Top-of-the-Barrier Model

Looking at the expression in Equation (5.5) it is not immediately obvious how the current
depends on the applied drain-source and gate voltages. Considering the fact that Edf =
Esf − |e|Vds, it is clear that Vds appears in the drain Fermi distribution. But what about
the dependence of Φ0

f on Vgs and how does Vds impact Φ0
f ? To answer this question, we

would need to solve the Poisson equation (self-consistently) in the device, which has to
be done numerically. However, using the so-called “top-of-the-barrier” model [218], we
can further elaborate on the working principles of MOSFET without carrying out such
a calculation.

In the “top-of-the-barrier” model, the transistor is considered to consist of capac-
itors depicted in Figure 5.4(a). Here, the conduction band of an n-type MOSFET along
the direction of current transport is shown; similar considerations can certainly also
be carried out for p-type MOSFETs. The capacitors related to the source-channel p-n
junction Cs, the channel-drain junction Cd as well as the geometrical oxide capacitance
Cox are all connected to the potential maximum Φ0

f (i. e., the top of the barrier). Φ0
f in

Figure 5.4: (a) Conduction band along the direction of current transport in an n-type MOSFET (green line).
Various capacitors can be defined and the charge in the channel is shared among the capacitors Cs , Cd ,
and Cox. (b) Schematic of a conventional MOSFET showing the simple approximation of Cd as parallel-plate
capacitor in-between the two green areas of source and drain.
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turn determines the overall charge within the channel Qch that consists of the con-
tributions from the depletion charge and the inversion charge as well as a possible
contribution due to interface charge of the MOS capacitor (cf. Section 4.5), i. e., Qch =
Qdepl + Qinv + Qit. On the other hand, Qch is shared among the three capacitors Cs, Cd
and Cox, and thus Qch = Qs + Qd + Qg . The charge on the various capacitors can be
stated explicitly; for instance, the charge on the gate capacitor Qg is given by the dif-
ference between surface- and gate-potentials multiplied with the geometrical oxide ca-
pacitance, i. e., − 1e (Φ

0
f − Φg − Φbi)Cox = Qg , where Φg and Φbi are the gate and built-in

potentials (note that in Section 4.5 Qg = Qch because there were no source/drain elec-
trodes). Similar relationships are obtained in the case of the remaining charge contribu-
tions: − 1e (Φ

0
f − Φs)Cs = Qs, −

1
e (Φ

0
f − Φd)Cd = Qd for the charges on the source and drain

capacitors. Inserting this into Qch = Qs + Qd + Qg yields

eQch = (Φg + Φbi − Φ
0
f )Cox + (Φs − Φ

0
f )Cs + (Φd − Φ

0
f )Cd . (5.10)

Solving this equation for Φ0
f results in

Φ0
f (Cox + Cs + Cd) = (Φg + Φbi)Cox + ΦsCs + ΦdCd − eQch. (5.11)

With CΣ = Cox + Cs + Cd , an expression for Φ0
f is obtained:

Φ0
f =

Cox
CΣ
(Φg + Φbi) +

Cs
CΣ

Φs +
Cd
CΣ

Φd −
eQch
CΣ
. (5.12)

If we knew how Qch depends on Φ0
f , Equation (5.12) could be solved for Φ0

f and
this in turn could be inserted into the expressions for the drain current as derived for
transistors in various dimensions above. While in equilibrium the calculation of Qch is
rather straightforward (cf. Section 4.5.3), electronic transport in a transistor requires a
nonequilibrium expression of the charge (see Chapter 6 for a proper treatment based
on the nonequilibriumGreen function formalism). However, as a first-order approxima-
tion, we can separate the carriers into two populations: injected from the source with
positive group velocity occupying the right branch of the dispersion relation, and carri-
ers injected from the drain with negative group velocity occupying only the left branch
of the dispersion. Due to ballistic transport, the two carrier populations will not mix and
occupy the dispersion according to the Fermi level of the terminal they were injected
from (as depicted in Figure 5.3(a)). As a result, the density of states within the channel
can simply be divided by two and the carrier density is then computed with the Fermi
distributions of source and drain.

As an example of such a calculation, a 2D transistor is considered consisting of an
isotropic material with effective massm⋆ yielding a DOS equal to m⋆

πℏ2 (cf. Section 2.11.1).
To simplify the argumentation, the transistor is considered to be very long, so that Cs
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and Cd can be neglected. Furthermore, depletion and interface-state charges are also
considered to be negligible. As a result, Equation (5.12) boils down to

Φ0
f = Φg + Φbi −

eQch
Cox

(5.13)

and Qch consists only of mobile inversion charge. The two contributions of Qch = Q
s
ch +

Qdch due to injection from source and drain are given by

Qch ≈ (−|e|)
∞

∫

Φ0
f +E

z
1

dE 1
2
m⋆

πℏ2
fs(E

s
f )

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Qs
ch

+ (−|e|)
∞

∫

Φ0
f +E

z
1

dE 1
2
m⋆

πℏ2
fd(E

d
f )

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Qd
ch

(5.14)

where Edf = E
s
f − |e|Vds and E

z
1 is again the quantization energy of the first 2D subband.

Equation (5.14) can be solved analytically (cf. Equation (2.95)) and provides the required
relation between Φ0

f and the terminal voltages Vds and Vgs:

Φ0
f = Φg + Φbi −

e2

Cox
m⋆kBT
2πℏ2
[ln(1 + e

Esf −(Φ0f +Ez1 )
kBT ) + ln(1 + e

Edf −(Φ0f +Ez1 )
kBT )] (5.15)

When solved for Φ0
f and inserted into the expressions for the drain current, a self-

consistent description of the current as a function of the terminal voltages that depends
also on the geometrical and material properties is obtained. Moreover, the impact of
channel length scaling, depletion as well as interface charges, can be taken into consid-
eration when employing Equation (5.12) and using the appropriate density of states for
the calculation of the inversion charge. This yields a rather comprehensive description
of a nanoscale MOSFET with ballistic transport.

Often, one is only interested in the change of the surface potential with changing
gate and/or drain potentials. In this case the variation δΦ0

f has to be computed resulting
in

CΣδΦ
0
f = CoxδΦg + CdδΦd −

e𝜕Qch
𝜕Φ0

f
δΦ0

f , (5.16)

where δΦs = 0, since the potential in source Φs is usually set to ground and stays con-
stant. The term e𝜕Qch

𝜕Φ0
f
can bewritten as e𝜕Qinv

𝜕Φ0
f
+ e𝜕Qit
𝜕Φ0

f
+
e𝜕Qdepl

𝜕Φ0
f

and the individual summands
are already known to be the inversion-layer capacitance Cinv, the interface-state capac-
itance Cit and the depletion capacitance Cdepl. Moving the term e𝜕Qch

𝜕Φ0
f
δΦ0

f = (Cinv + Cit +

Cdepl)δΦ
0
f to the left side of Equation (5.16) and dividing both sides by CΣ+Cinv+Cit+Cdepl

finally yields

δΦ0
f =

Cox
Cox + Cit + Cdepl + Cs + Cd + Cinv

δΦg
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+
Cd

Cox + Cit + Cdepl + Cs + Cd + Cinv
δΦd . (5.17)

This expression states that changing Φg (i. e., changing the gate-source voltage) and/or
changing Φd (i. e., modifying the drain-source bias) leads to a change of the potential
maximum Φ0

f and, therefore, of the current Id .
Using expression (5.17), we can already obtain a number of insights and even scal-

ing rules regarding proper MOSFET operation. As an example, the single-gate, planar,
bulk-like MOSFET depicted in Figure 5.4(b) is considered. In the case of such a MOS-
FET, the various capacitors can be stated explicitly (at least approximately) with sim-
ple geometrical expressions. As a result, a scaling rule is obtained, which appears to be
oversimplified but which is consistent with the more elaborate analysis carried out in
Section 5.5.

A well-functioning MOSFET is required to be exclusively switched by the gate volt-
age. Hence, Φ0

f should not be impacted by Φd , which is the case when the capacitance
ratio in front of δΦd in Equation (5.17) vanishes, i. e., when

Cd ≪ Cox + Cdepl + Cs + Cd + Cinv. (5.18)

Since in the off-state of the transistor there is very little inversion charge in the channel,
the capacitance Cinv can be neglected. Furthermore, Cs is smaller than the remaining
capacitors and if we assume an excellent gate dielectric leading to a very low interface
density of states Equation (5.18) becomes Cd ≪ Cox + Cdepl + Cd .

In the bulk MOSFET depicted in Figure 5.4(b), the following geometrical relations
can be used to provide approximate expressions for the capacitors Cox, Cdepl and Cd :
The geometrical oxide capacitance is simply the parallel-plate capacitor Cox = ε0εox

W ⋅L
dox

,
the depletion capacitance can be approximated with Cdepl = ε0εsi

W ⋅L
Ldepl

where Ldepl is the
depletion length of the depletion region in the p-doped bulk silicon (cf. Equation (4.17)).
Finally, the drain capacitance Cd is approximated by considering the parallel-plate ca-
pacitor in between the two green-shaded areas of the source/drain doping profiles re-
sulting in Cd = ε0εsi

W ⋅dcon
L where dcon is the depth of the contacts. Inserting the expres-

sions for the capacitors eventually yields

εsi
W ⋅ dcon

L
≪ εox

W ⋅ L
dox
+ εsi

W ⋅ L
Ldepl

→ L ≫ √
εsidcondox

εox + εsidox/(Ldepl)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
λ

. (5.19)

Here, λ represents a “natural” length scale of the transistor under consideration. In or-
der to avoid an impact of the drain bias on the potential barrier Φ0

f within the channel,
and thus to fulfill the inequality (5.18), λ needs to bemade sufficiently small. From Equa-
tion (5.19), it is obvious that this can be accomplished by reducing the physical oxide



5.2 Nanoscale Transistors with Ballistic Transport—From 1D to 2D to Bulk MOSFETs � 229

thickness dox, reducing the contact depth dcon, increasing the dielectric constant of the
gate oxide εox but also by decreasing the depletion length Ldepl. The latter can in prin-
ciple be achieved by increasing the doping concentration within the channel. However,
as will become clear when discussing the switching of MOSFETs, increasing the channel
doping may become detrimental to the off-state performance of the devices.

5.2.2 Off-State

Let us now concentrate on the off-state performance of a transistor, i. e., when the gate
voltage is below the threshold voltage Vth (cf. Figure 5.2). To simplify the discussion, a
1D nanowire FET is considered here. However, the findings are also valid for the 2D and
bulk device (see Task 20). Since in the off-state, Φ0

f lies substantially above the Fermi
energy (of source and drain), we can replace the Fermi distribution functions with the
Boltzmann approximation. As a result, the current depends exponentially on Φ0

f , which
in turn is a function of the gate potential Φg (cf. Equation (5.12)). One obtains

Id ≈
2e
h

∞

∫

Φ0
f

dE fs(E)
(Φ0

f −E
s
f )≫kBT
≈

2e
h
kBT exp(−

Φ0
f (Φg) − E

s
f

kBT
). (5.20)

Here, Vds has been assumed large enough, such that carrier injection from the drain is
negligible because it is exponentially smaller than the contribution from source.

The switching behavior of a MOSFET is characterized by the so-called inverse sub-
threshold slope S. The inverse subthreshold slope has the unit mV/dec, i. e., it states the
gate voltage change needed in order to change the current through the transistor by one
order of magnitude, which is illustrated in Figure 5.5, right panel. At a constant Vds, S is
given by

S = (𝜕 log(Id)
𝜕Vgs
)
−1

= ln(10)( 𝜕Id
𝜕Vgs

1
Id
)
−1

. (5.21)

Inserting Equation (5.20) into Equation (5.21) allows one to compute a closed expression
for S in the following way. First, note that using the chain rule

𝜕Id
𝜕Vgs
=
𝜕Id
𝜕Φ0

f⏟⏟⏟⏟⏟⏟⏟
=−

Id
kBT

⋅
𝜕Φ0

f

𝜕Φg⏟⏟⏟⏟⏟⏟⏟
= CoxCΣ

⋅
𝜕Φg

𝜕Vgs⏟⏟⏟⏟⏟⏟⏟⏟⏟
=−e

, (5.22)

where the first term is computed using Equation (5.20) and the third term is simply the
relation between the gate voltage and gate potential. The second term stems from Equa-
tion (5.17) at constant Vds (i. e., δΦd = 0). Since the off-state is considered (i. e., Cinv ≈ 0)
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Figure 5.5: Conduction band profiles along current transport of a n-type MOSFET for constant Vds and
varying gate voltage Vgs. The right panel displays a semilogarithmic Id–Vgs curve with exponential increase
of the current in the device’s off-state. The gray shaded projections onto the Id and Vgs axes show how the
inverse subthreshold slope S is determined.

and neglecting again Cs, one finds 𝜕Φ
0
f
𝜕Φg
= Cox

Cox+Cdepl+Cit+Cd
. Inserting this expression into

Equation (5.21) finally yields

S = kBT
|e|

ln(10) ⋅
𝜕Φg

𝜕Φ0
f
=
kBT
|e|

ln(10)(
Cox + Cdepl + Cit + Cd

Cox
). (5.23)

The inverse subthreshold slope S should be as small as possible in order to ensure
that the transistor can be switched with a voltage interval as small as possible. The rea-
son for this is that the smaller S the smaller can the supply voltage of an integrated
circuit be, and hence the lower the power it will consume (see Section 5.2.2 for more
discussion on this topic). It is thus clear that Cdepl+Cit+Cd

Cox
should be as small as possible,

which can only be achieved with Cox ≫ Cdepl + Cit + Cd . The discussion related to the
natural length scale λ in the preceding section can now be completed; while a high dop-
ing concentration yields steep p-n junctions, and thus eventually prevents an impact of
Φd on Φ0

f , it results in a large Cdepl that may lead to an unfavorable ratio between Cox
and Cdepl ultimately leading to a higher inverse subthreshold slope.3 The same is true
for the ratio Cd/Cox and Cit/Cox. In all cases, Cox needs to be the largest capacitance and
if this is the case, δΦ0 = δΦg,meaning that perfect gate control with a one-to-one change
of the potential maximum in the channel with gate potential is obtained (see the video

3 This is the reason for the complicated ion implantation profiles with super steep retrograde channel
implants, etc. in bulk MOSFETs facilitating a suppression of leakage currents through the bulk while
giving rise to a small Cdepl.
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provided through the QR code #43 for additional information). Hence, Equation (5.23)
reduces to the

43
famous expression yielding 60mV/dec at room temperature:

S = kBT
|e|

ln(10) ≈ 60mV/dec. (5.24)

Equation (5.24) is a remarkable result since it states that the minimum achievable
inverse subthreshold slope only depends on temperature but neither on geometrical
nor on material properties of a device. The reason for this fact is the injection of car-
riers from a thermally broadened Fermi distribution function. In turn, this means that
any FET relying on the field-effect-controlled modulating of carrier injection from a
thermally broadened Fermi distribution function will exhibit at best 60mV/dec at room
temperature and there is nothing one can do about this. However, in Chapter 9 device
concepts will be discussed that potentially allow one to overcome the 60mV/dec limit by
circumventing the injection of carriers from a thermally broadened Fermi distribution.

Task 20.
Off-state of a 2D MOSFET: Compute the inverse subthreshold slope in a two-dimensional MOSFET
based on the Landauer formalism (Equation (5.8)) and prove that a 2D MOSFET indeed shows the same
60mV/dec limit as a 1D transistor. To simplify the calculation, you may assume that a drain-source bias
has been applied,

44
which is large enough so that the contribution of drain to the net current can be

neglected.

Figure 5.5 illustrates the switching behavior of MOSFETs discussed so far. The left panel
shows conduction band profiles for various gate voltages. Carriers are injected from
source (again, Vds has been assumed large enough such that the drain contribution is
negligible) and only carrierswith energies aboveΦ0

f can contribute to the current.When
Φ0
f is moved down with increasing Vgs, an increasing fraction of the source Boltzmann

tail (red part) contributes to Id giving rise to an exponential increase of the current. In
the semilogarithmic Id–Vgs plot shown in the right panel of Figure 5.5, this yields a linear
current increase with inverse subthreshold slope S.

5.2.3 On-State—Output Characteristics

In the present section, the on-state and in particular the Id–Vds characteristics will be
discussed. For simplicity, a 1D transistor is considered as in the preceding section. More-
over, it is again assumed that Cox is substantially larger than Cdepl and Cd (as well as
Cit and Cs). As a result, the potential maximum is given by Equation (5.13). Let us now
assume that a certain potential maximum Φ0

f has been computed self-consistently (for
instance, by solving a 1D equivalent of Equation (5.15)). Note that in the on-state, when
there is a substantial charge Qch in the channel, the potential maximum Φ0

f in the chan-
nel will become dependent on Φd although Cox ≫ Cd has been assumed. The reason

https://vimeo.com/466236904
https://vimeo.com/464311929
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for this is the drain contribution to the charge Qch (cf. Equation (5.14)). For small Vds,
the channel charge is approximately given by its equilibrium value. However, even for
large Vds the charge is reduced at most by a factor of two (when only the branch with
positive group velocity of the dispersion relation is occupied with carriers). Therefore,
the dependence of Φ0

f on Φd plays only a role in the transition region between low bias
and saturation of the device and will therefore not be considered for the time being.

The drain current I1Dd as a function of the bias Vds behaves as depicted in Figure 5.6.
That is, for small bias, the current increases linearly and saturates for larger Vds, which
can be understood as follows: Applying a (positive) Vds between source and drainmoves
the Fermi level of drain Edf energetically downwards leading to Edf = E

s
f −|e|Vds. For small

Vds, the drain Fermi distribution can be Taylor-expanded resulting in f (Edf ) ≈ f (E
s
f ) −

1
kBT
𝜕f (Esf )
𝜕E (−|e|Vds). Hence, the integral in Equation (5.5) becomes

Id ≈
2e

hkBT

∞

∫

Φ0
f

dE
𝜕f (Esf )
𝜕E
(−|e|Vds) =

2e2

h
1

1 + exp(
Φ0
f −E

s
f

kBT
)
Vds (5.25)

and indeed the drain current depends linearly on the bias for small Vds. If, on the other
hand, the bias is made so large that Edf is moved substantially below Φ0

f , the carrier
injection from drain into the channel drops according to the Boltzmann tail of the drain
Fermi distribution function, i. e.,∝ exp(−Φ

0
f −(E

s
f −|e|Vds)
kBT
). As a result, for sufficiently high

Vds, there will be a negligible injection of carriers from the drain into the channel, and

Figure 5.6: Conduction band of a MOSFET along the direction of current transport for three different Vds
(left panel). A small bias leads to a linear increase of the current while at larger bias current saturation oc-
curs because of source exhaustion: only the right branch of the dispersion relation with positive carrier
velocity is occupied in this case as illustrated in the left panel. The right panel shows Id–Vds curves for dif-
ferent Vgs.
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hence current saturation occurs due to source exhaustion giving rise to the saturation
current:

Isatd =
2e
h

∞

∫

Φ0
f

dEf (Esf ) =
2e
h
kBT ln[1 + exp(

Esf − Φ
0
f

kBT
)]. (5.26)

In Section 5.1, current saturation was explained with the pinch-off of the channel
at the drain end for sufficiently high Vds. Here, we see that current saturation is due
to source exhaustion and is thus rather a matter of source than a property of drain.
However, the pinch-off can also be understood within the framework of the Landauer
equation: When deriving the Landauer current formula (cf. Section 2.13.2), it was found
that Id = 2e/h ∫ dEv(E)D(E)/2 (fs − fd) and it turned out that the product of the energy-
dependent carrier velocity v(E) and (half of) the 1D-density of states D(E)/2 is equal to
1/h. For our consideration here, this means that the pinch-off at the drain is due to the
fact that the potential bends downwards into the drain contact leading to a high electric
field in the drain end. This high electric field accelerates the carriers and they acquire
kinetic energy (the overall energy is of course constant due to the ballistic transport we
consider here). As a result, the carriers become faster but the current stays constant be-
cause when carriersmove up in energy in a quadratic dispersion relation, the density of
states is reduced by the same amount as carriers are accelerated. Therefore, the carrier
density (not the current) at the drain end indeed drops substantially, which can be inter-
preted as a “pinch-off” of the channel. Figure 5.7 illustrates this scenario schematically.

Figure 5.7: Ballistic transport at high drain-source bias. Due to the lack of inelastic scattering, the energy of
the carriers remains unchanged leading to a strong increase of their kinetic energy at the drain end. Since
the density of states (red curve) drops the same amount as carrier velocity increases the current remains
constant. The reduced density of states (position of the black dots) leads to a reduced carrier density at the
drain end, which can be interpreted as a pinch-off of the channel.
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Here, the green parabolas are the dispersion relation and the red curves the density
of states. The red dots illustrate the carriers and the black dots their value of the DOS
reflecting the strongly reduced carrier density at the drain end.

5.2.4 On-State—Transfer Characteristics

From our discussion so far, the transfer characteristics of a MOSFET in its on-state are
obvious—provided the dependence of Φ0

f on the gate voltage has been calculated—and
have beenmentioned explicitly for 1D and 2D devices (see above). However, there is one
point concerning multimode transport that should be mentioned.

Suppose we know how Φ0
f depends on the gate voltage, then the integration of the

1D Landauer expression can be carried out, leading to

Id =
2e
h

∞

∫

Φ0
f

dE(fs(E
s
f ) − fd(E

d
f )) =

2e
h
kBT ln(

1 + exp( E
s
f −Φ

0
f

kBT
)

1 + exp(
Edf −Φ

0
f

kBT
)
). (5.27)

As a result, a transfer characteristic is obtained as illustrated in Figure 2.54: if Φ0
f is

moved on the same energetic level as Esf , the MOSFET is in its on-state and current in-
creases approximately linearly. In the case of small Vds, the current will saturate for
larger gate voltages (see Figure 2.53). However, if the gate voltage is large enough that
a second, third, etc. subband can contribute to the current, a stepwise increase of the
current is expected if the energetic subband spacing ΔEsb is substantially larger than
∼4×kBT and larger than |eVds| as has already been discussed in Section 2.13.3. However,
in real MOSFETs multimode transport is usually not observed. The most obvious rea-
son is a subband spacing, which is too small. For instance, in the 2D MOSFET discussed
in Section 5.2, the subband spacing ΔEsb → 0, and hence the number of contributing
subbands continuously increases with increasing gate voltage, which leads to a contin-
uously increasing drain current.

5.3 Impact of Scattering

Up to now, transport has been considered as being ballistic. However, the impact of scat-
tering can be incorporated into the Landauer formalismby introducing a probability for
transmission through the channel Tch(E). Without mentioning it explicitly, we assumed
so far that Tch(E) = 0 for energies below Φ0

f and Tch(E) = 1 in the case E ≥ Φ0
f . Hence,

generalizing the Landauer expression for current flow, Id can be written as

Id =
2e
h

∞

∫
−∞

dETch(E)(fs(E
s
f ) − fd(E

d
f )). (5.28)
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For the time being, tunneling through the channel will be neglected (see Section 5.9.4
for further discussion), but for energies above the potential maximum Φ0

f the impact of
scattering can be included with the transmission probability [182, 184]

Tch(E) =
lmfp(E)

L + lmfp(E)
, (5.29)

where lmfp is the mean free path for scattering and L is the channel length. Equa-
tion (5.29) allows for a smooth transition from the ballistic (where lmfp →∞ and hence
Tch(E) → 1) to the scattering regime of electronic transport (with lmfp ≪ L → Tch(E) →
lmfp/L); for details on the derivation of Equation (5.29), the reader is referred to [60, 183].
Equation (5.29) can be understood when considering the 1D case at T = 0K, which led to
Equation (2.118). Inserting Tch(E) then yields Id =

2e2
h TchMV , with M being the number

of 1D modes. Rearranging this equation to compute the resistance results in

Rtot =
V
Id
=

h
2e2

M−1(Tch)
−1 =

h
2e2M

L
lmfp⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Rcond

+
h

2e2M
lmfp

lmfp⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Rcont

(5.30)

where Rcond ∝ L/lmfp and Rcont are the expected resistance of the conductor (channel)
and the contact resistance, respectively.

5.4 Optimizing the Performance of MOSFETs

With the knowledge about the working principles of MOSFETs, the question can now
be answered how the performance of MOSFETs can be improved. To this end, it is not
sufficient to look at an individual device, since improving the on-current of a MOSFET
can be accomplished easily by, e. g., increasing Cox or even simpler, by choosing a larger
width. Rather, the devices have to be regarded in a circuit environment. In this case,
the current of one device is used to charge the gate of a succeeding transistor and as
such, the mere on-current is not a good measure. An appropriate figure of merit for the
on-state performance is the gate delay, also called “CV -over-I” metric, τ = CgVdd

Iond (Vgs=Vds=Vdd)

where Vdd is the supply voltage of the circuit. Thus, τ represents the ratio of the charge
required on the gate to realize a certain on-current. Optimized MOSFETs should make
the gate delay as small as possible. Inserting the saturation current from the GCA and
setting Cg ≈ C

◻
oxWL, one obtains τ ∝ L2Vdd

μ(Vdd−Vth)2
. Note that C◻ox and W drop out of this

expression as they should (to first order); increasing both yields a higher Iond but also a
gate capacitanceCg of the succeeding device in an integrated circuit (IC) that is increased
by the same amount.

An improved performance can in principle be obtained by increasing either Vdd
and/or the gate overdrive Vdd −Vth. However, the performance of the transistors should
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be improved while at the same time the power consumption of the circuit (consisting of
those devices) should be reduced as much as possible. The right part of Equations (5.31)
is an approximate expression for the power consumption P of highly integrated circuits.
We have for τ and P,

τ =
CgVdd

Iond
∝

L2Vdd
μ(Vdd − Vth)2

, P = A ⋅ Ctot ⋅ f ⋅ V
2
dd⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

dynamic

+ Ileak ⋅ Vdd⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
static
. (5.31)

As alreadymentioned,Vdd is the supply voltage of the IC. Ctot is the total load capacitance
(including all device-related capacitances as well as all capacitances due to metal leads,
interconnects, etc.) and f is the clock frequency of the integrated circuit.

Optimized devices/circuits must reduce τ and P at the same time. Hence, increasing
Vdd is obviously not an option: while τ would be reduced, a larger Vdd strongly increases
the dynamic part of P. On the other hand, decreasingVdd to save power leads to a perfor-
mance loss due to a reduction of Iond (by ≈50% in the case shown in Figure 5.8). Further-
more, increasing the gate overdrive Vdd − Vth by reducing Vth is also not an option. The
reason for this is the minimum inverse subthreshold slope of MOSFETs of 60mV/dec at
room temperature (cf. Section 5.2.2); a reduced Vth would shift the transfer characteris-
tics “rigidly” along the gate voltage axis toward lower Vgs, which leads to an exponential
increase of the off-state leakage current Ileak as depicted in Figure 5.8. Therefore, the best
choices to improve the MOSFET performance are downscaling of the channel length L
and increasing the carrier mobility μ. In particular, downscaling has been very attrac-
tive since it allows putting a larger number of better performing devices onto the same
chip area. The next sections are therefore devoted to the effects occurring when scal-
ing down MOSFETs. However, as scaling becomes increasingly difficult and will hit the
physical limit in the very near future, increasing the mobility by incorporating novel

Figure 5.8: Transfer characteristics of a conventional MOSFET with optimum inverse subthreshold slope
at room temperature (green curve). Reducing Vdd either leads to a loss of on-state performance or to an
exponential increase of leakage (blue curve) due to Smin = 60mV/dec.
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materials into existing technology has been a second path used by industry to improve
transistor performance.

5.5 A Simple Model for the Electrostatics

While the top-of-the-barrier model used in preceding sections provided a number of
insights into the functionality and performance of MOSFETs, it appears to be rather
simplistic neglecting the exact potential distribution. The electrostatics within a MOS-
FET has to be computed by solving Poisson’s equation and since a MOSFET is a three-
dimensional object, in principle a 3D Poisson equation needs to be solved. However,
considering a very wide, planar MOSFET, solving a 2D Poisson equation is sufficient. We
have

𝜕2Φ(x, z)
𝜕x2
+
𝜕2Φ(x, z)
𝜕z2
= −

e2(n(x, z) ± Ndop)

ε0εsi
(5.32)

where n(x, z) is the density of inversion charge andNdop is the density of ionized dopants
(donors or acceptors) and Φ the potential energy. Although reduced to a 2D equation,
solving Equation (5.32) requires numerical methods, which will be presented in Chap-
ter 6. Fortunately, the electrostatics of thin-body devices, such as silicon-on-insulator
FETs and nanowire transistors, can be reduced to a one-dimensional modified Poisson
equation that provides a rather accurate description of the electrostatics. The solution
of this 1D modified Poisson equation can then be used to obtain a more accurate, semi-
analytical description of the device behavior. In Chapter 6, this Poisson equation will
also be used for numerical simulations of nanoscale FETs.

To reduce the electrostatics to a one-dimensional equation, the approach by Young
[284] and Yan [278] (see also Auth and Plummer [19]) is used. In the following, the deriva-
tion for a planar single-gate MOSFET is explicitly stated. The main approximation used
in this respect is a quadratic expansion of the potential distribution in the z-direction
(see Figure 5.9), which yields

Φ(x, z) ≈ c0(x) + c1(x)z + c2(x)z
2. (5.33)

This approximation is reasonable since, similar to the discussion in Section 5.1, the de-
pendence of n on z can be neglected. And in this case, the potential is essentially deter-
mined by the charge in the depletion region in the MOS capacitor (gray shaded area in
Figure 5.9). Using the depletion approximation, a solution of the Poisson equation is ob-
tained by simply integrating twice over the constant charge density due to the ionized
dopants, and as a result a quadratic potential is expected as illustrated with the light
blue parabola in Figure 5.9.

Equation (5.33) requires one to determine the three “constants” (with respect to z)
c0, c1 and c2. In the following, we are interested in the surface potential Φf (x) at z = 0
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Figure 5.9: Conduction and valence bands within a MOS capacitor (green curves). The light blue line is a
quadratic approximation to the potential distribution along the z-direction.

i. e., Φ(x, z)|z=0 = Φf (x). At z = 0, Equation (5.33) yields Φf (x) = c0(x), so the first “con-
stant” has already been determined. Next, at the interface between the silicon substrate
and the gate dielectric, the dielectric displacement needs to be continuous leading to
the boundary condition: εsiℰsi = εoxℰox. The electric field ℰsi within the silicon at z = 0
is given by (−e)ℰsi = −

𝜕Φ(x,z)
𝜕z |z=0. From Equation (5.33), we obtain 𝜕Φ(x,z)𝜕z |z=0 = c1(x) +

2c2(x)z|z=0 = c1(x). Furthermore, the electric field within the gate dielectric is (−e)ℰox =

−
Φf (x)−(Φg+Φbi)

dox
(cf. Figure 5.9). Putting this together allows for the determination of the

second constant c1(x) =
εox
εsi

Φf (x)−(Φg+Φbi)
dox

. Finally, at z = Ldepl the depletion zone ends
and the potential becomes horizontal with zero electric field. Hence, 𝜕Φ(x,z)𝜕z |z=Ldepl =
c1(x)+2c2(x)Ldepl ≈ 0, which leads to c2(x) = −

1
2Ldepl

c1(x) = −
εox

2Ldepldoxεsi
(Φf (x)−(Φg +Φbi)).

Inserting c0, c1 and c2 into Equation (5.33) results in an approximation for the two-
dimensional potential. However, while the z-dependence is now determined, the de-
pendence on x is not. This means that Equation (5.33) with the constants c0, c1 and c2
needs to be inserted into the Poisson equation (5.32) and evaluated at z = 0 to obtain the
x-dependence of the surface potential Φf (x).

The second derivative of Φ(x, z) with respect to x evaluated at z = 0 results in
𝜕2Φ(x,z)
𝜕x2 |z=0 =

𝜕2Φf (x)
𝜕x2 and the second derivative with respect to z yields 𝜕

2Φ(x,z)
𝜕z2 |z=0 =

2c2(x) = −
εox

Ldepldoxεsi
(Φf (x)− (Φg +Φbi)). Inserting this into Equation (5.32), one obtains the

following 1D modified Poisson equation:

𝜕2Φf (x)
𝜕x2
−
Φf (x) − (Φg + Φbi)

λ2
= −

e2(n(x) ± Ndop)

ε0εsi
(5.34)

where λ = √ εsi
εox
Ldepldox. If the carrier density is assumed to be constant, Equation (5.34)

can be solved analytically with the ansatz Φf (x) = Ae
x/λ +Be−x/λ +C which can easily be
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verified by inserting the ansatz into Equation (5.34). Thismeans that potential variations
are screened on the length scale λ. In particular, the p-n junctions at the source-channel
and channel-drain interfaces are determined by λ even if the channel is intrinsic. The
reason for this screening is the proximity of the gate electrode: The gate electrode is
considered as being metallic and as such provides a sufficiently large amount of free
carriers to ensure a flat potential. Reducing, e. g., the physical oxide thickness dox brings
this equipotential electrode closer to the silicon surface enforcing a flat potential within
the silicon in the vicinity of the silicon-gate dielectric interface. Therefore, screening is
obtained not only due to chargewithin the semiconductor (ionized dopants in the deple-
tion zones of p-n junctions, mobile charge, etc.) but also with charge spatially separated
(by a gate dielectric) from the channel of the device under consideration (see Section 5.7
for more discussion on screening lengths and also Section 4.3.1).

While the modified Poisson equation has been derived based on a bulk Si MOSFET,
we only used this fact to obtain a suitable boundary condition for the electric fieldwithin
the substrate to determine the parameter c2(x). The derivation is thus not bound to bulk
MOSFETs. For instance, if a device based on silicon-on-insulator with an SOI layer thick-
ness of dSOI is considered and the thickness of the buried oxide dBOX is rather thick, then
the electric field at the SOI-buried oxide interface is∝ 1/dBOX, and hence approximately
zero. In this case, the samemodified Poisson equation is obtained; the only difference is
the screening length, which is now given by λ = √ εsi

εox
doxdSOI. Furthermore, in a double-

gate MOSFET (see Task 21), the electric field will be zero exactly in the middle of the
channel layer due to symmetry reasons and, therefore, an equivalent derivation of the
modified Poisson equation can be carried out. As a result, in the case of different device
architectures, the modified Poisson equation is always given by Equation (5.34), and the
specific device architecture is reflected only in the expression for λ. Figure 5.12 shows
different device layouts and the associated screening lengths.

Task 21.
Modified 1D Poisson equation: Compute the modified one-dimensional Poisson equation (i) in the case
of a double-gate silicon MOSFET with channel thickness dch and gate oxide thickness dox and (ii) in the
case of a wrap-gate transistor architecture

45
with a silicon nanowire with a diameter of dnw and a gate oxide

thickness of dox using cylindrical coordinates.

5.6 Scaling and the Appearance of Short-Channel Effects

Figure 5.10 shows schematic cross-sections of a long- and a short-channel n-type bulk
MOSFET together with conduction profiles in the devices’ off-state. In the case of the
long-channel device, the channel length Llong is substantially larger than the spatial ex-
tent of the channel-electrode p-n junctions, i. e., the screening length λ. A potential profile
is then obtained (white line in Figure 5.10) where the potential maximum Φ0

f is deter-

https://vimeo.com/466243416
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Figure 5.10: Conduction band Ec of a long-channel MOSFET (white line) and in the case of a short-channel
device (green). The overlapping source-channel and channel-drain p-n junctions in the short-channel tran-
sistor lead to a reduction of the potential maximum in the channel when Lshort and λ are of the same order.
The reduced barrier leads to strongly increased leakage.

mined merely by the applied gate voltage. Scaling this device to a channel length Lshort
on the order of λ eventually leads to overlapping p-n junctions at the source-channel and
channel-drain interfaces. This in turn results in a reduction δΦ0

f of the potential maxi-
mum as illustrated with the green potential profile in Figure 5.10. Since Φ0

f determines
the injection of carriers from the source Fermi distribution function (as long as tunnel-
ing can be neglected), a reduced barrier leads to an exponentially increased leakage
current in the off-state of the MOSFET.

The overlap of the p-n-junctions in an (inadequately scaled) short-channel MOS-
FETmanifests itself in a number of measurable performance degradations called short-
channel effects (SCEs), which are illustrated in Figure 5.11. First, a representative Id–Vgs
curve of the short-channel device is displayed in the right panel of Figure 5.11(a) (red
curve) and shows a significantly larger inverse subthreshold slope S, which leads to an
exponential increase of the leakage current. Furthermore, the threshold voltage of the
short-channel device is reduced compared to the long-channel counterpart (blue curve),
which is called threshold-voltage roll-off. The right panel of Figure 5.11(b) displays out-
put characteristics of the short-channel device showing a loss of current saturation for
larger Vds.

SCEs can all be traced back to the overlap of the source-channel/channel-drain p-n
junctions as illustrated in the left panels of Figure 5.11. In case (a), the overlap results in
a reduced barrier and hence to a shift of Vth. In addition, the gate control is reduced: in
the present case δΦ0

f < δΦg and as a result, S = kBT
|e| ln(10)

𝜕Φg

𝜕Φ0
f
> 60mV/dec. Moreover,

the potential maximum is not only modified by Φg but also by the drain potential Φd (cf.
Equation (5.17)), which is responsible for the loss of current saturation. This so-called
drain-induced-barrier lowering (DIBL) is experimentally measurable as δVth/δVds and
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Figure 5.11: (a) Potential profile and transfer characteristics of a conventional MOSFET showing strong SCE
(red curve) that lead to a deteriorated S, a strongly increased off-state leakage and a reduction of Vth com-
pared to a device without SCEs (blue curve). (b) Potential profile and output characteristic of a conventional
MOSFET with strong SCE (red curve). Drain-induced-barrier lowering results in a loss of current saturation.

given in mV/V. Looking at the conduction band profiles, it is obvious that DIBL stems
from the reduction δΦ0

f with changing δΦd .
From the discussion of the top-of-the-barrier model, the appearance of SCEs was ac-

tually expected. The loss of gate control, i. e., δΦ0
f /δΦg for constant Φd , as well as DIBL =

δΦ0
f /δΦd for constant Φg can be computed from Equation (5.17) to be δΦ0

f
δΦg
= Cox

Cox+Cd
and

δΦ0
f

δΦd
= Cd

Cox+Cd
(neglecting all other capacitances). Moreover, it has also already beenmen-

tioned above that ensuring Cox ≫ Cd yields δΦ
0
f /δΦg → 1 and δΦ0

f /δΦd → 0. Thismeans
SCEs are suppressed if Cox ≫ Cd .

Based on themodified Poisson equation, we can now put the appearance of SCE and
their suppression on a firmer basis by solving Equation (5.34) in the off-state of the de-
vice. To simplify the notation, an intrinsic channel is considered. Note, however, that a
constant dopant density can simply be incorporated into the built-in potential Φbi. In-
serting the ansatz Φf (x) = Ae

x/λ + Be−x/λ + C into Equation (5.34) yields C = Φg + Φbi.
Moreover, since the source is set to ground, the boundary conditionΦf (x = 0) = 0 results

inB = −A−(Φg+Φbi) andwithΦf (x = L) = Φd = −eVds one obtainsA =
Φd+(Φg+Φbi)(e

−L/λ−1)
2 sinh(L/λ) .

Putting things together, the potential profile along the direction of current transport be-
comes [278]
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Φf (x) =
sinh(x/λ)
sinh(L/λ)

(Φd + (Φg + Φbi)(e
−L/λ − 1) + Φg(1 − e

−x/λ)). (5.35)

The potential maximum Φ0
f can now be computed with dΦf (x)

dx = 0, which yields the
position x0 resulting in Φ0

f = Φf (x = x0). It is straightforward to show that x0 =
λ
2 ln[−(1+

Φg+Φbi
A )]. Although in a device with SCE, L and λ may be of similar order, we can still

assume L > λ such that sinh(L/λ) ≈ eL/λ. Using this approximation, one finally obtains

x0 ≈
L
2
+
λ
2
ln(

Φg + Φbi

Φg + Φbi − Φd
), (5.36)

which states that at Φd = 0, the potential maximum is in the middle of the channel and
moves towards source when the bias is increased. This effect is stronger in devices with
a large λ. Next, inserting x0 yields

Φ0
f ≈ Φg(1 − 2e

− L
2λ ) + Φde

− L
2λ . (5.37)

As a result, the inverse subthreshold slope S and DIBL in devices with SCE are

S ≈ kBT
|e|

ln(10)( 1
1 − 2e−

L
2λ

), DIBL =
𝜕Φ0

f

𝜕Φd
≈ e−

L
2λ . (5.38)

5.7 Screening Lengths in Nanoscale FETs

It was briefly discussed in Section 5.5 that the screening length λ is the relevant length
scale for potential variations. However, this is only true in the case that there is no addi-
tional mobile charge (within the channel, i. e., if the device is in the off-state). Additional
screening can be taken into consideration in the followingway: Consider Equation (5.34)
and assume that a small amount of charge δn is added leading to a change δΦf of the
potential. As a result, Equation (5.34) can be written as4

𝜕2(Φf + δΦf )

𝜕x2
−
(Φf + δΦf ) − (Φg + Φbi)

λ2ch
=
e2(n + δn)
ε0εch

(5.39)

Since Φf and n are supposed to fulfill Poisson’s equation (5.34), and since δn = 𝜕n𝜕Φf
δΦf ,

Equation (5.39) becomes

𝜕2(δΦf )

𝜕x2
−
δΦf

λ2ch
=

e2

ε0εch
𝜕n
𝜕Φf

δΦf . (5.40)

4 In order to distinguish the different screening mechanisms, the subscript “ch” for λ due to the device
architecture is used in the following, i. e., λch = √

εch
εox

dchdox in the case of a single-gate SOI transistor.
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As an example, let us consider the case of a moderate carrier concentration with n(x) ∝
exp(Φf /kBT) such that 𝜕n𝜕Φf

= n/kBT . Hence, the right-hand side of Equation (5.40) is
e2n

ε0εchkBT
δΦf . Moving the right-hand side on the left side of the equation and noting that

the Debey length is λdebey = √
ε0εchkBT

e2n , an overall screening length λtot can be defined by

λtot =
1

√ 1
λ2ch
+ 1

λ2debey

. (5.41)

Equation (5.41) is generally valid, i. e., the way how screening due to different mecha-
nisms is combined (see, e. g., [42]). For instance, it also yields the appropriate screening
in the case of a double-gate FET when both gates are regarded to provide the screen-
ing of a single-gate SOI transistor architecture. Furthermore, Equation (5.19) can also
be converted into the same form. Moreover, it can also be used in the case of degener-
ate doping where λdebey needs to be replaced with the Thomas–Fermi screening length.
An example of this will be briefly discussed when dealing with device simulations in
Section 6.1.1.

5.8 Ultrathin-Body Field-Effect Transistors

From the considerations of the preceding sections, it is now clear that short-channel
effects are suppressed if λch ≪ L. An appropriate measure can be found by requiring
maximum tolerable values for S and DIBL and then use Equation (5.38) to find a rela-
tion between λch and L. For instance, if S < 75mV/dec is stipulated, L ≥ 5 × λch, which
is reasonable keeping in mind that λch is the length scale on which potential variations
are screened. As already mentioned above, λch depends on the actual device layout con-
sidered (cf. Task 22). Figure 5.12 displays different device layouts together with the asso-
ciated screening length λch. Obviously, in all cases, a thin dox, a gate dielectric with high
εox and an ultrathin channel layer are preferable in order to keep λch small and enable
transistors with short channel lengths L but without SCEs. In fact, the best suited device
architecture is the gate-all-around nanowire transistor based on a nanowire with ul-
trasmall diameter.5 In the following sections, experimental examples of such ultrathin-
body transistors are discussed. The fabrication techniques used to realize the devices
will only be summarized briefly; details can be found in Chapter 3.

5 This is one of the main reasons why carbon nanotubes are perhaps the best suited nanostructures for
ultimately scaled field-effect transistors.
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Figure 5.12: Three different ultrathin-body device architectures and their natural length scale λch. (a)
Ultrathin-body silicon-on-insulator MOSFET with a single gate (UTB-SOI-FET), (b) double-gate MOSFET
(DG-FET) and (c) a gate-all-around nanowire-FET (GAA NW-FET).

5.8.1 Single-Gate Ultrathin-Body SOI-MOSFETs

Silicon-on-insulator (SOI) is a very attractive substrate platform to realize ultrathin-body
field-effect transistors that can be scaled to very short-channel lengths. Thinning down
the top silicon layer to a desired thickness can be done very precisely (for instance, using
“digital etching” as explained in Section 3.6.3). Furthermore, using ultrathin SOI has an
additional benefit. If the SOI thickness is made substantially smaller than the depletion
length Ldepl atVgs = Vth, the SOI is said to be fully depleted (FD). As a result, the depletion
capacitance Cdepl = (−e)

𝜕Qdepl

𝜕Φ0
f
(cf. Equation (4.17)) vanishes in FD-SOI. Therefore, an ideal

off-state behavior with Cdepl = 0, and consequently, S = 60mV/dec is obtained.
Figure 5.13 shows a cross-section transmission electron microscopy image of an

ultrathin-body SOI transistor [13, 14]. In order to realize very short-channel lengths L
without highly sophisticated lithography a combination of epitaxial silicon growth and
anisotropic wet chemical etching with KOH (cf. Section 3.6.4) is used. Molecular beam
epitaxy (MBE) is employed to grow a highly n-doped (antimony with a concentration of

Figure 5.13: Transmission electron micrograph of a single-gate UTB SOI MOSFET fabricated with
anisotropic silicon etching. The inset shows a close-up with a minimum channel length of 36 nm [13, 14].
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∼1020 cm−3) silicon layer on a nominally undoped (100) SOI substrate with dSOI = 15 nm.
The high doping concentration in the epitaxial layer is necessary since this layer will
play the role of the source and drain contacts in the final device. MBE growth and the
use of antimony ensure that an abrupt interface between the contacts and the SOI layer
is achieved and that dopant diffusion due to thermal treatments during the fabrication
process is suppressed as much as possible. A SiO2 hardmask is then grown and electron-
beam lithography is used to pattern appropriate parallel line patterns aligned along
the ⟨110⟩-crystalline direction. Subsequently, a V-groove is etched using KOH. The ini-
tial width of the line patterns is adjusted with respect to the thickness of the epitaxial
layer in a way that ensures that the tip of the V-groove cuts through the highly doped
epitaxial layer. This way, source and drain regions are formed separated by a channel
within the nominally undoped SOI.

Figure 5.13 reveals that the epitaxial layer shows substantial crystalline defects that
lead to an imperfect V-groove formation. Nevertheless, single-gate SOI transistors could
be realized with three different channel lengths of L ≈ 36 nm, 46 nm and 56 nm. Fig-
ure 5.13 also shows that the tip area is actually not a tip but rather flat. The reason for
this is the ex situ cleaning procedure of the substrate prior to the epitaxial growth: strip-
ping the native oxide on top of the SOI with HF leads to an incomplete hydrogen pas-
sivation of the silicon surface and the hydrophobic nature makes the surface prone to
adsorption of carbon and oxygen contaminants (see the discussion in Section 3.1). After
V-groove formation the samples are thoroughly cleaned with SC2 (cf. Section 3.1.3.2) fol-
lowed by the wet thermal growth of a 2.6 nm thin SiO2 gate oxide [6]. Finally, a tungsten
gate is patterned with electron-beam lithography and wet etching in H2O2 followed by
the patterning of aluminum contact leads.

Figure 5.14 shows output (left panel) and transfer (right panel) characteristics of
the three SOI-MOSFETs. It is clearly visible that the transistor with the longest-channel
length of L = 56 nm shows the least short-channel effects. This device exhibits current
saturation (orange curves in Figure 5.14) in the output characteristics and the steepest
inverse subthreshold slope. From the device characteristics, an inverse subthreshold

Figure 5.14: Output (left) and transfer (right) characteristics of V-groove SOI-MOSFETs [13].
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slope of S = 80mV/dec and a value for drain-induced barrier lowering of ∼90mV/V
can be extracted. Reducing the channel length (keeping dox and dSOI constant) strongly
increases short-channel effects. For the device with L = 46 nm, an inverse subthreshold
slope S = 90mV/dec and DIBL ≈ 125mV/V are obtained and finally in the shortest device
S = 160mV/dec and DIBL = 214mV/V.

The experimental figures of merit can now be compared with our expectation. In
the present case, the screening length λch = √

εsi
εox
dSOIdox turns out to ∼10.6 nm. From

Equation (5.38), we obtain theoretical inverse subthreshold slopes of S56 nmtheo = 70mV/dec,
S46 nmtheo = 77mV/dec and S36 nmtheo = 95mV/dec that underestimate the experimentally ob-
served values. However, there is a significant uncertainty in the geometrical parame-
ters of the device. For instance, dox was determined on a reference bulk Si sample; from
Figure 5.13, the oxide thickness could also be larger, dSOI thinner, and although the tem-
perature budget was kept low, dopants could have diffused into the channel, thereby
reducing the effective channel length. The experimentally found values of DIBL are
also consistently underestimated with DIBL56 nmtheo = 71mV/V, DIBL46 nmtheo = 114mV/V and
DIBL36 nmtheo = 183mV/V. Qualitatively, however, the measured data is consistent with our
analysis above of increasing SCE when downscaling the devices.

5.8.2 Double-Gate FinFETs

In the preceding section, strong SCEs are observed in the UTB-SOI MOSFET with a chan-
nel length of 36 nm. In order to mitigate the SCEs, the gate control needs to be improved.
Since dox and dSOI are already rather thin, this is accomplished best by using so-called
multigate devices. In the case of a double-gate transistor as depicted in Figure 5.12(b), the
screening length is reduced by a factor of √2 compared to the single-gate SOI-MOSFET.
However, the fabrication of such a planar double-gate FET is extremely difficult due to
the required alignment accuracy of the two gates with respect to each other. Therefore,
so-called FinFETs (see Figure 5.15(b), (c)) were invented where the channel is rotated by
90° such that a double-gate layout can be realized by placing the two gates to the left and
right of the fin. This can be done with a single lithography and etch step, and thus the
issue of properly aligning the two gates is avoided. The challenges of the FinFET are the
fabrication of appropriately thinfins aswell as the fact that theMOS surface is nowat the
vertical, etched flank of the fin instead of the highly perfect substrate surface. However,
for both issues solutions were found. First, spacer lithography (also called self-aligned
double patterning, SADP) is used to realize the required, extremely thin hard masks for
fin etching (see Section 3.5.4). SADP comeswith the additional benefit that the conformal
deposition employed for spacer formation can be used to reduce the line edge roughness
while at the same time the line width roughness can be made negligibly small [45]. Sec-
ond, hydrogen annealing (Section 3.12) allows smoothening the vertical etch flanks such
that mobility degradation due to reactive ion etching is avoided.
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Figure 5.15: (a) Tilting the planar double-gate MOSFET (a) by 90° yields a FinFET that can be realized either
on SOI (b) or on bulk Si substrates (c).

5.8.3 Multigate Nanosheet and Nanowire FETs

With continued scaling, the ratio λch/L becomes unfavorable again at some channel
length L since a reduction of the fin thickness becomes increasingly difficult, and thus
SCE reappear. To mitigate this, the height of the fin could be reduced such that the de-
vice evolves into a triple-gate FET exhibiting a λch approximately√3 smaller compared
to a single-gate device. However, reducing the fin height comes with a decreased abso-
lute value of the transistor current. A clever way to circumvent this is the realization of
nanosheet or nanoribbon FETs as illustrated in Figure 5.16(a) and (b). To this end, alter-
nating layers of Si and SiGe are grown epitaxially on top of each other where the SiGe
serves as sacrificial interlayer. Epitaxial growth allows to grow single crystalline layers
with excellent control over the thickness of the layers. In a next step, a fin is etched out
of the multilayer stack and then the SiGe layers are removed selectively (the remaining
silicon nanosheets are certainly connected to a larger contact area not shown in the fig-
ure). As a result, multiple crystalline nanosheets or nanoribbons are formed on top of
each otherwhose thickness is controlled by the epitaxial growth. In contrast to a FinFET,
this means that the silicon channel is again titled by 90°. The width of the fin etched into
the epitaxial material stack in combination with the number of nanosheets determines
the effective width of the overall transistor. Finally, a gate dielectric and gate-all-around
electrode are realized with conformal deposition (e. g., ALD, Section 3.8.3.1).

Ultimate scalability in terms of the suppression of SCEs is obtained in gate-all-
around (GAA) nanowire FETs giving rise to the smallest possible λch. Realizing such
small screening lengths requires very low nanoscale diameters of the nanowires. This
can be realized with etching very narrow fins into the Si/SiGe multilayer stack and
again removing the sacrificial SiGe as depicted in Figure 5.16(c). However, in such small
nanostructures, deactivation of dopants (see Section 4.3) in the source/drain exten-
sions is likely to deteriorate the device performance. The NESSIAS effect discussed in
Section 4.4 may be a solution to this issue.

Multiple nanowire MOSFETs are usually needed in parallel in order to provide the
necessary drive currents required in a circuit environment. This can be accomplished
by an appropriate number of pairs of Si/SiGe layers of the epitaxial stack as is shown in
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Figure 5.16: (a) Epitaxially grown Si/SiGe layer stack where the SiGe serves as sacrificial layer to realize
either multiple, vertically stacked, horizontally oriented nanosheet (b) or nanowire (c) FETs.

Figure 5.16(c) resulting in several vertically stacked nanowires. With sacrificial oxida-
tion and/or hydrogen annealing, nanowires with cylindrical cross-section are obtained.
However, manufacturing such vertically stacked nanowires is challenging.6 Therefore,
multiple nanowire FETs are often fabricated laterally as is shown in the top panel of
Figure 5.17 [290]. The lower panel shows an individual wrap-gate MOSFET consisting of
a Si nanowire with ∼8 nm diameter, a HfO2 gate dielectric and a TiNwrap-gate electrode
as can be seen in the transmission electron microscopy close-up shown in the bottom
right panel [150]. Although the area consumed by a lateral arrangement is too large for
real applications, it allows a straightforward fabrication (cf. Section 3.13.1, Figure 3.57)
and enables investigating benefits and requirements of GAA nanowire FETs.

As already mentioned, the gate-all-around (or wrap-gate) device layout yields the
smallest screening lengths λch (cf. Figure 5.12(c)), and thus allows for the shortest-
channel lengths of MOSFETs without suffering from SCEs. In the present case of the
GAA nanowire FET with ∼8 nm diameter and HfO2 a very small λch of approximately
2–3 nm is obtained, which would enable scaling the device down to a channel length of
L ≈ 10–15 nm without significant SCEs.

Instead of a lateral or vertical arrangement of horizontally oriented nanowires, they
can also be grown (e. g., with a vapor–liquid–solid approach, see Section 3.13.2) or etched
out of a volume material vertically. Benefits of such a vertical arrangement are an eas-
ier fabrication of the gate-all-around and, most importantly, they can be arranged in a
bundle that allow reducing parasitic capacitances as will be discussed below.

6 As an alternative to the Si/SiGe heteroepitaxial substrate, reactive ion etching of a fin with the Bosch
process in combination with digital etching may be used (see Figure 3.59).
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Figure 5.17: Top panel: electron micrograph of several parallel, lateral gate-all-around nanowire FETs (see
Figure 3.57 for the fabrication process). The lower left panel shows a close-up of a GAA nanowire FET fab-
ricated based on strained silicon-on-insulator with a diameter of ∼8 nm. The bottom right panel shows a
transmission electron micrograph of the same device with HfO2 as gate dielectric and a TiN gate electrode
(Q. T. Zhao, FZ-Jülich) [150, 290].

5.9 Ultimate Scaling of MOSFETs

5.9.1 Classical and Quantum Capacitance Limits

In an electrostatically well-behaved device where Cd and Cdepl can be neglected, the to-
tal gate capacitance in the transistor’s on-state is given by Cg =

CoxCinv
Cox+Cinv

where Cinv =
|e|𝜕Qch/𝜕Φ

0
f is the inversion-layer capacitance (or density of states or quantum capac-

itance) introduced in Section 4.5.3. Cinv is (approximately) proportional to the density
of states and it has been discussed earlier, that the value of Cinv is roughly in-between
the full DOS and half of it, depending on the source/drain bias. For convenience, the
expression for Cinv is repeated here7

Cinv = (−e)
𝜕Qch
𝜕Φ0

f
∝ −e2 ∫ dE dneqD(E)

𝜕fs(E
s
f )

𝜕E
≈ e2D(Esf − Φ

0
f ) (5.42)

where the factor dneq is between 0.5 (large Vds) and unity if Vds → 0.
In a classical, bulk(Si-) MOSFET, the density of states will increase with increasing

gate voltage due to the fact that an increasing number of 2D subbands will be populated
with carriers (cf. Section 4.5.3). As a result, Cinv ≫ Cox at some gate voltage, and hence
Cg ≈ Cox as was found already earlier. In this case, the change of surface potential Φ0

f

7 Note that all capacitances are meant as per area in two dimensions and per length in 1D.
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with changing gate voltage will approach zero and the MOS capacitor of the transistor
behaves like a standard (parallel plate in 2D) capacitance. However, this situation can
be very different when a semiconductor is used that exhibits a very small density of
states. For instance in graphene (cf. Section 2.12.4), the DOS linearly depends on energy
and approaches zero at the Dirac point. As a result, in a graphene FET, the relation be-
tween Cox and Cinv will be reversed compared to a conventional bulk transistor (at least
within a certain gate voltage range). Moreover, in one-dimensional systems, the DOS is
proportional to 1/√Ef − Φ0

f , i. e., it drops with increasing Vgs. In both cases (graphene
around the Dirac point, or 1D nanowires at large gate voltages), the so-called quantum-
capacitance limit (QCL) can be reached with

Cg =
CoxCq
Cox + Cq

Cq≪Cox
≈

CoxCq
Cox
= Cq (5.43)

where the nomenclature has been changed from Cinv to Cq in order to stress that the
QCL is considered here.

The QCL has a number of interesting consequences. First, since Cg ≈ Cq ≈ e
2D(Esf −

Φ0
f ) a capacitance voltage characterization allows measuring the density of states of the

channel material. Indeed, this has been carried out by Chen and Appenzeller [39] who
showed a linear dependence of the gate capacitance in a graphene MOS capacitor for
small Vg reflecting the linear dependence of the dispersion relation and hence the DOS
in graphene (cf. Section 2.12.4 and Figure 2.50(b)). Next, in the case of a constant Vds (i. e.,
δΦd = 0) Equation (5.17) results in

δΦ0
f =

Cox
Cox + Cq

δΦg
Cox≫Cq
≈ δΦg → Φ0

f = Φg + const. (5.44)

This means that we obtain the same one-to-one dependence of the surface potential on
the gate potential as in the off-state of a well-scaled transistor. Hence, the surface poten-
tial and the gate potential are related to each other simply by a constant that contains
work function differences, etc. The implication of this is that in a 1D nanowire FET in
the QCL, the current as a function of gate-source and drain-source bias can be stated
explicitly as

IQCLd =
2e
h

∞

∫
Φg+const.

dE(fs(E
s
f ) − fd(E

d
f ))

=
2e
h
kBT ln(

1 + exp( E
s
f −(−eVgs+const.)

kBT
)

1 + exp(
(Esf −eVds)−(−eVgs+const.)

kBT
)
). (5.45)

This is a remarkable result, since there is no dependence on the material properties
anymore. The ingredients to get there are: (i) 1D electronic transport, (ii) ballistic trans-
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port and (iii) the quantum-capacitance limit. In principle, one-dimensionality and bal-
listic transport can be realized in carbon nanotubes. Furthermore, since CNTs exhibit
an extremely small diameter, a gate-all-around device architecture would allow the re-
alization of very large geometrical oxide capacitances Cox, and hence the QCL could be
reached. An interesting additional aspect is that at large Vgs, the exponential terms in
Equation (5.45) dominate, and thus a linear dependence of IQCLd on Vgs is obtained. Such
a linear behavior is, for instance, required for an amplification of RF signals without dis-
tortion. With conventional MOSFETs, this has to be realized with some circuit overhead
leading to significant parasitic power consumption of the amplifier. A linear dependence
of Id on Vgs is therefore highly desirable particularly formobile communication devices.

5.9.2 Reducing Parasitic Capacitances with Nanowire Bundles

When scaling down the transistor devices in an integrated circuit to the nanoscale, the
RF performance of the IC may ultimately be determined by parasitic capacitances and
not by the (device-) intrinsic gate capacitance Cg . The reason is a continuously reduced
Cg (per length) with MOSFET width such that eventually, the parasitics overwhelm the
gate capacitance. However, when the width is reduced so far that the device is scaled to
the limit where only a single 1D subband contributes, a constant gate capacitance (per
length) is reached in such a nanowire device. While being constant, Cg is nevertheless
very small and in a typical lateral nanowire device architecture as shown in the top
panel of Figure 5.17, the parasitic capacitances between the gate electrode and the ex-
tended source/drain contacts Cpar

s,d can become rather large. In particular, if issues with
dopant activation play a role (cf. Section 4.3.2), the length of the source/drain extensions
needs to be as small as possible aggravating the issue with parasitic capacitances. In this
context, it is necessary to distinguish between local source/drain parasitics, Cpar

s,d , com-
mon to each nanowire device, and global parasitics such as capacitances associatedwith
the wiring of the chip. As will become clear below, using a nanowire bundle configura-
tion as depicted in Figure 5.18 (left panel) allows for reducing the impact of local and
global parasitic capacitances.

Dominance of the local capacitances (Cg as well as Cpar
s,d ) over the global parasitics

is obtained by simply making the bundle large enough. Reducing the impact of Cpar
s,d re-

quires some deeper discussion. If the nanowires are closely packed as illustrated in Fig-
ure 5.18, left panel, each individual nanowire device is surrounded by six neighboring
transistors. As a result, each individual nanowire MOSFET can be approximated as a
cylindrical device (see Figure 5.18). The symmetry of the arrangement suppresses con-
tributions of fringing fields to the parasitic capacitances, because of the zero electric
field condition at the edge of the nanowires device (i. e., the edge of the device depicted
in the close-up in the center of Figure 5.18) as shown in the right panel of Figure 5.18.
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Figure 5.18: Schematic illustration of a GAA nanowire MOSFET bundle (left). The close proximity of the
nanowire devices with a specific device being surrounded by six adjacent ones leads to zero electric field
in between adjacent transistors due to symmetry reasons. This truncation of the fringing fields in the
source/drain underlap regions reduces parasitic capacitances significantly.

Here, equipotential lines within one nanowire MOSFET are displayed showing the zero-
field condition at the edges.

Before carrying out a deeper analysis based on simulations, let us start with a sim-
plified discussion and disregard the capacitance contribution between the source/drain
extensions of the nanowire and the gate electrode. In this case, Cpar

s,d are approximately
given by the parallel-plate capacitor made up of the two opposite discs of the gate and
source/drain electrodes, respectively. The radius rd of the disc is rd = dnw/2 + dox + hgate
(cf. Figure 5.18), and hence Cpar

s,d ≈ ε0
πr2d
lext

. If hgate, dox and dnw are reduced this leads to
a strong reduction of Cpar

s,d but since the nanowire FET is scaled into the quantum limit
with a single 1D subband contributing, the (intrinsic) gate capacitance of the device ap-
proaches a constant. Moreover, due to the quadratic dependence of Cpar

s,d on rd , it is ex-
pected that reducing rd enables shorter lext, and hence more compact devices while still
obtaining reduced local parasitic capacitances. This ultimately allows reducing the rela-
tive importance of Cpar

s,d compared to Cg . At the same time, a larger number of nanowire
FETs can be integrated onto the same area such that eventually the global parasitics be-
come less relevant. The nanowire bundle geometry thus represents the ultimate scaling
potential for nanowire transistors. In this respect, a vertical layout (see preceding sec-
tion) is preferable since employing suitable top-down fabrication methods allows the
realization of dense arrays of nanowires.

The simple argument regarding the reduction of Cpar
s,d due to considering it as disc-

shaped parallel-plate capacitor is certainly oversimplifying and a detailed calculation
is necessary in order to study the benefits of the nanowire bundle configuration. To do
so, self-consistent Poisson–Schrödinger computations using the nonequilibrium Green
function formalism are employed (see Chapter 6 for details). While a 1D approximation
of the electronic transport is chosen, the electrostatics is computed exploiting the radial
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symmetry of the cylindrical transistor layout displayed in Figure 5.18. At the edge of the
device, Neumann boundary conditions with zero electric field are assumed as required
by the symmetry discussed above; details on the finite difference solution of the Poisson
equation with dielectric boundaries can be found in Chapter 6.

In order to show the reduction of the local parasitic capacitances Cpar
s,d , three dif-

ferent wrap-gate nanowire devices with (i) L = 15 nm, lext = 15 nm, hgate = 7.5 nm,
dnw = 9 nm, dox = 3 nm, (ii) L = 10 nm, lext = 10 nm, hgate = 5 nm, dnw = 6 nm, dox = 2 nm
and (iii) L = 5 nm, lext = 5 nm, hgate = 2.5 nm, dnw = 3 nm, dox = 1 nm are simulated.
The total capacitance Ctot is determined from CtotVdd = Q(Vds = 0,Vgs = Vdd) − Q(Vds =
Vdd,Vgs = 0) where the supply voltage is assumed to be Vdd = 0.5 V. The doping of the
source/drain extensions is considered to be 1020 cm−3. A small section of 2.5 nm at the
interface between source/drain extension and gate is considered to be undoped.

Figure 5.19 shows the total capacitances Ctot extracted from the simulations of the
three devices as a function of the length lext of the source/drain extension. First of all, in
the case of L = 15 nm, Ctot increases when lext < 20 nm due to increasing Cpar

s,d that even-
tually surpass Cg . However, reducing the distance between the nanowire MOSFETs (i. e.,
reducing dox, hgate and dnw) strongly decreases Cpar

s,d such that in the case of the device
with L = 10 nm, Ctot is dominated by Cg until lext is less than 10 nm. For the shortest de-
vice with L = 5 nm, the parasitic capacitances have become irrelevant. This reconfirms
our discussion above and shows that the nanowire bundle configuration indeed repre-
sents the ultimate scaling potential for nanowire transistors. It is obvious that reaching
this limit requires ultrathin gate dielectrics that are prone to breakdown and leakage
(see next section). Furthermore, extremely thin nanowire diameters are necessary. In
this respect, our discussion about the NESSIAS (cf. 4.4) effect as an alternative for impu-
rity doping is highly relevant and may allow the realization of appropriately thin GAA
nanowire FETs.

Figure 5.19: Total capacitance Ctot = Cg + C
par
s + C

par
d of a gate-all-around nanowire MOSFET within a

nanowire bundle configuration for the different geometries given in the figure. Refer to Figure 5.18 for the
various device parameters.
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5.9.3 Tunneling Through the Gate Dielectric

Ultimately scaled MOSFETs need very small effective oxide thicknesses to prevent off-
state leakage due to SCEs. Eventually, however, tunneling through the gate dielectric be-
comes an issue leading again to off-state leakage if the physical thickness of the insulator
is made too thin. While an estimate of the gate leakage can be obtained using the WKB
approximation, in a MOSFET the particular band profile along the current transport di-
rection needs to be taken into consideration (cf. Figure 5.1(b)). Due to the potential drop
toward drain, this part of the channel contributes most to the gate leakage, which in
turn depends on the applied bias and gate voltage. As a result, simulations are required
in order to study the contribution of gate leakage currents (for details see Chapter 6).

Figure 5.20 shows transfer characteristics of an ultrathin-body SOI MOSFET ob-
tained from self-consistent nonequilibrium Green’s function formalism simulations at
two different bias voltages. An extremely thin SiO2 of dox = 0.8 nm was chosen here;
thus, substantial gate leakage is expected. The gate leakage current (green dashed line
for Vds = 0.2 V and orange dashed line for Vds = 0.6 V) changes its direction and,
therefore, the diagram is split into two sections in order to show it on a logarithmic
scale. The images on the left depict the device at three gate voltages. In the case of
small Vgs (top panel), the drain current is dominated by the gate-drain leakage Igd, i. e.,

Figure 5.20: Simulated transfer characteristics of an ultrathin-body SOI MOSFET with strong gate leakage
for Vds = 0.2 V (blue curve) and Vds = 0.6 V (red curve). The dashed lines show the gate leakage current,
which becomes negative when Vgs > Vds. In the case of Vds = 0.2 V, this leads to a part in the transfer
characteristic with seemingly S < 60mV/dec.
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Id = Isd+Igd ≈ Igd, where Isd refers to the source-to-drain current.WhenVgs = Vds (center
panel), then Id = Isd since Igd = 0. For larger Vgs (bottom panel), the gate-drain current
becomes negative Igd → −Igd and as long as |Ids| < |Igd| the drain currentwill be negative
with Id = Isd − Igd < 0. Eventually, when the transistor is switched into its on-state, the
source-to-drain current dominates, and thus Id ≈ Isd. If the regime Vgs > Vds falls into
the off-state of the device (as is the case for Vds = 0.2 V in Figure 5.20, blue curve), a pe-
culiar situation occurs: around Vgs ≈ 0.3 V the inverse subthreshold seemingly becomes
steeper than 60 mV/dec. From the consideration of the gate leakage, it is clear that this
happens simply because of tunneling through the gate dielectric. Moreover, it is clear
from Section 5.2.2 that S < 60mV/dec is impossible in a conventional MOSFET at room
temperature. In Chapter 9, however, when steep slope transistors are discussed, gate
leakage can be deceiving since if such devices are optimized a steep slope is expected.
In this case, particular care has to be taken with respect to gate leakage and its impact
in order to avoid misinterpretations of experimental data.

5.9.4 Direct Source-To-Drain Tunneling

In ultimately scaled MOSFETs, the channel length will become so small that direct
source-to-drain tunneling can become an issue that eventually limits the scalability, and
hence deserves further consideration. As a criterion for a properly working MOSFET,
one could require that the leakage through the device because of direct source/drain
tunneling at Vgs = 0 V is smaller than the current due to thermal emission of carriers
over the potential barrier in the channel. Based on this criterion, a minimum possible
channel length Lmin for a particular transistor can be estimated in the following way.
Since for ultimate scalability λch needs to be very small, the exact potential distribution
is neglected and instead we assume a step-function potential distribution as illustrated
in Figure 5.21. Let us consider a one-dimensional nanowire FET such that the current

Figure 5.21: Direct source/drain tunneling may become important in ultrasmall channel MOSFETs. Proper
functionality of the MOSFET is obtained as long as I thermal

d > I tunneld at zero gate voltage.
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can be computed with the Landauer expression I1Dd . In the following, a small drain-
source bias will be assumed in order to obtain analytic expressions for the two current
components. The thermal emission current can be computed right away and although
a small bias is considered the drain contribution to the current is negligible; this is
justified because the source/drain Fermi distribution functions can be replaced with
their Boltzmann approximations. Therefore,

I thermal
d ≈

2e
h

∞

∫

Φ0
f

dE exp(−
E − Esf
kBT
) =

2e
h
kBT exp(−

Φ0
f − E

s
f

kBT
). (5.46)

The tunneling current on the other hand is obtained using Equation (5.28) with a trans-
mission probability T(E) for the tunneling through the potential barrier within the en-
ergy range between the conduction band in the source (set to zero) and the potential
maximum Φ0

f . As a result, I
tunnel
d is approximately

I tunneld =
2e
h

Φ0
f

∫
0

dET(E)(fs(E
s
f ) − fd(E

d
f )) ≈

2e2

h

Φ0
f

∫
0

dET(E)(−𝜕fs
𝜕E
)Vds (5.47)

since the difference fs(E
s
f ) − fd(E

d
f ) can be Taylor expanded yielding − 𝜕fs𝜕E (−e)Vds. The

lower bound of the integration was chosen because the band gap in the source prevents
current flow below the conduction band (i. e., below E = 0 eV). The derivative of the
Fermi distribution function can be approximated with a delta function and as a result,
the integration over energy yields T(Esf ). The transmission probability, in turn, can be
computed with the WKB approximation leading to the following approximate expres-
sion for the source/drain tunneling:

I tunneld ≈
2e
h
Vds exp(−

2L
ℏ
√m⋆(Φ0 − Esf )). (5.48)

As already mentioned above, for proper device functionality one may require
that I thermal

d ≥ I tunneld . Assuming Vds ≈ kBT allows a direct comparison of the terms

in the exponential factors of Equations (5.46) and (5.48) and it follows that Φ0
f −E

s
f

kBT
≤

2Lmin
ℏ √m

⋆(Φ0
f − E

s
f ). Rewriting finally leads to an expression for a minimum possible

channel length Lmin ≥
ℏ

2kBT
√Φ0

f −E
s
f

2m⋆ . For instance, if Φ0
f − E

s
f = 0.55 eV as with intrinsic

silicon, an effective mass of 0.023m0 as in InAs leads to a minimum channel length of
∼27 nm. Replacing silicon with high mobility III–V materials is therefore questionable
since it may limit further downscaling. In this respect, the relatively heavy effective
masses of 2D materials such as transition metal dichalcogenides are much more attrac-
tive and reasonable than they might appear.
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Task 22.
Direct source/drain tunneling: Compute the transmission probability T(E) in the case of a step-function
like potential distribution with a constant potential barrier of Φ0 and a thickness of L (as

46
illustrated in

Figure 5.21). To this end, use the WKB approximation.

Exercises

Exercises togetherwith solutions are accessible via theQR code.
47

https://vimeo.com/464180087
https://www.iht.rwth-aachen.de/global/show_document.asp?id=aaaaaaaachgkuto


6 Device Simulation

In the present chapter, a simulation frameworkwill be described that is used frequently
in the book to study the electronic behavior of field-effect transistors. Since we are deal-
ing with nanoscale devices, quantum effects play an important role in understanding
the device properties. Therefore, self-consistent Poisson–Schrödinger simulations us-
ing the nonequilibrium Green’s function formalism (NEGF) are introduced in order to
compute the electronic transport properties of the devices. To simplify matters, the bulk
part of the chapter will deal with one-dimensional devices such as carbon nanotubes
and nanowires devices. The electrostatics of such transistors can be described using the
one-dimensional modified Poisson equation (Equation (5.34)) derived in the preceding
chapter. This facilitates conceptually simple and easy to implement simulations that are
computationally efficient and yield reasonable results in amanageable time even on lap-
top computers. In addition, several add-ons to the simulation framework such as scat-
tering via Buettiker probes andmultiple independent subbands will be discussed. Even-
tually, an extension to simulating two- and three-dimensional devices will be briefly in-
troduced that may serve as starting point for more elaborate simulations.

6.1 Poisson’s Equation in 1D Devices

In the present section, the discretization of the one-dimensional Poisson equation de-
rived in Section 5.5 will be discussed. Using conformal mapping, the applicability of
the modified Poisson equation can be extended to incorporate fringing fields in the
source/drain extensions.

6.1.1 Finite Difference Discretization

In Section 5.5, a one-dimensional modified Poisson equation (cf. Equation (5.34)) was
derived that allows describing the electrostatics of ultrathin-body devices such as SOI-,
nanotube- or nanowire transistors. In this one-dimensional modified Poisson equation,
the third term that gives rise to a screening of potential variation on the length scale λch,
takes the specific device geometry into consideration. For single-gate, double-gate and
gate-all-around field-effect transistors, the appropriate screening lengths are explicitly
stated in Figure 5.12. Therefore, the specific device architecture considered is irrelevant
for the discretization of the Poisson equation.

Discretization can be carried out in a straightforward way by considering a finite
difference lattice with lattice constant a as shown in the top panel of Figure 6.1. In a
first step, we need to approximate the second derivative of Φf (x)with respect to x with
appropriate difference quotients. To this end, we can either choose the forward or the

backward finite difference, i. e., dΦf (x)
dx ≈

Φf (xj+1)−Φf (xj)
a =

Φj+1
f −Φ

j
f

a or =
Φj
f −Φ

j−1
f

a , which can

https://doi.org/10.1515/9783111054421-006

https://doi.org/10.1515/9783111054421-006
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Figure 6.1: Discretization of Φf (x) on a regular finite difference grid with lattice constant a. The lower
panel illustrates how an appropriate expression for the electric field is obtained.

give vastly different values if the curvature of Φf (x) is large; an example is shown in the
lower panel of Figure 6.1where the two slopesm1 andm2 are quite different. However, in
the case of the second derivativewe obtain a symmetric expression by taking the deriva-
tive of the forward difference quotient and then choosing the backward difference for
the first term and the forward difference for the second:

d
dx
(
Φj+1
f − Φ

j
f

a
) =

Φj+1
f −Φ

j
f

a −
Φj
f −Φ

j−1
f

a
a

=
Φj+1
f − 2Φ

j
f + Φ

j−1
f

a2
. (6.1)

Discretizing the terms proportional to 1/λ2ch and the charge in Equation (5.34) is straight-
forward yielding Φf (x) → Φj

f and n(x) → nj . As a result, the following discrete form of
the modified Poisson equation is obtained:

Φj+1
f − 2Φ

j
f + Φ

j−1
f

a2
−
Φj
f − Φbi − Φg

λ2ch
= −

e2nj
ε0εch

(6.2)

where Φbi and Φg are again the built-in and the gate potential, respectively.
Equation (6.2) can bewritten inmatrix form,which results in a tridiagonalmatrixM

applied to the vector that contains the values of the potential energy Φj
f at the different

sites j of the finite difference lattice. Such a tridiagonal matrix can be solved efficiently
with, e. g., the Thomas algorithm. To set up the full modified Poisson equation, there are
two ingredients missing: first, since we would like to simulate field-effect transistors,
the source and drain contacts need to be taken into consideration. Second, appropriate
boundary conditions are required for a unique solution.
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Figure 6.2: Conduction and valence band along the direction of current transport in an n-type MOSFET. The
channel is considered to be intrinsic; source and drain are doped with a donor concentration of Nd .

Figure 6.2 displays the conduction band (and valence band in light green) profile
along the direction of current transport in an n-type FET. For simplicity, we assume that
in source and drain all donors are fully ionized (a more elaborate consideration needs
to take the occupation of the donor levels into consideration as was done in Section 2.10)
constituting a constant and fixed positive charge. The source contact is considered to be
connected to ground such that the potential Φs in source sufficiently far away from the
source-channel interface is put to Φs = 0 eV. Since a source-drain bias Vds is applied, the
potential in drain Φd is considered to be at an energy of Φd = −eVds. Note that in a real
experiment it is not the (conduction) band that ismoved by applying a voltage difference
Vds between the source and drain. Instead, the Fermi levels in the source and the drain
are separated by the terminal voltages, and as a result of this, charges will rearrange in
order to ensure charge neutrality deep within the source and drain contacts; hence, the
bands move to appropriate energies. This will be discussed a bit further in connection
with appropriate boundary conditions when dealing with self-consistency.

In Section 6.2.5, the Newton–Raphson scheme will be introduced in order to find a
self-consistent solution. The Newton–Raphson scheme, however, is not globally conver-
gent. In order to help obtaining a self-consistent solution, themodified Poisson equation
can be set-up in a way, which yields a potential distribution that is already close to the
real solution without knowledge of the charge distribution within the device. To this
end, Equation (6.2) will be used throughout the entire device and we therefore have to
distinguish between source, channel and drain in the following way: To ensure Φs = 0
at the boundary, the built-in and gate potentials in source need to be zero. In the case
of Φsource

g , this is obvious since there is no gate electrode in source (apart from fringing
fields that are neglected here but will be discussed in Section 6.1.2); Φsource

bi = 0 follows
from the fact that deep inside the source contact the curvature term (second derivative)
is zero and since the density of negative electronic charge equals the density of fixed



6.1 Poisson’s Equation in 1D Devices � 261

ionized donors Nd , charge neutrality applies yielding Φs = 0. The potential in drain, on
the other hand, will be at Φd = −eVds, because deep inside the drain contact charge neu-
trality applies as well, we should obtain Φd = −eVds. This is indeed ensuredwhenwe im-
plement a built-in potential Φdrain

bi = −eVds in the drain contact. As in source, Φdrain
g = 0

since there is no gate electrode in drain. It is important to keep in mind that we actually
botched here: assuming a built-in potential within the contacts is equivalent to placing
a gate electrode there that keeps the potential at the potential given by Φbi. In the source
and the drain, there is usually no additional gate electrode, though. However, if highly
doped source/drain contacts are assumed (which is usually the case) the screening due
to charges within the contacts will in most cases be significantly more effective than
the screening provided by the (nonexisting) gate electrode (see discussion in Section 5.7
on combining screening lengths). Implementing the simulations as described, allows
reaching self-consistency quicker and in a more stable fashion. Finally, it is assumed
that the channel is intrinsic meaning that the source-channel n-i junction gives rise to a
built-in potential. In this case, Φbi will be approximately at mid-gap (cf. Equation (4.3))
Φbi ≈

Eg
2 + E

s
f , where Eg and Esf are the band gap and the Fermi energy in source, re-

spectively.1 Of course, this choice requires a gate metal with appropriate work function,
which is implicitly included in Φbi.

Appropriate boundary conditions (BC) are required in order to solve the Poisson
equation. In principle, we could fix the first point of the finite difference lattice to the
source potential Φs and the last point to Φd . Such fixed boundary conditions are called
Dirichlet BC. The implementation of the Dirichlet BC is rather simple (illustrated in Fig-
ure 6.1 at the last lattice point at j = N) andwewould set Φj=0

f = 0 andΦ
j=N
f = Φd = −eVds

leaving us with N − 2 equations to be solved. However, as has already been mentioned
above, physically the applied terminal voltages do not determine the position of the
bands. The bands move to their position to ensure charge neutrality at the source and
drain boundaries (to this end, a self-consistent solution is necessary). Because the effec-
tive charge (negative free carrier density −e ⋅ nminus positive ionized donors e ⋅ Nd) at
the source/drain boundaries must be zero, the electric field at the boundaries is zero,
too. Therefore, we need to consider how an electric field ℰ can be used as a boundary
condition.

BC that impose an electric field are called Neumann BC and can be implemented in
the following way: The electric field is simply the first derivative of the potential with
respect to the spatial coordinate(s). However, we already discussed above that we could
choose between forward and backward difference, which can be substantially different.

1 Note the difference between Fermi level and Fermi energy: While the Fermi level is the energetic
position where the Fermi level lies with respect to a chosen energy scale, the Fermi energy in heavily
n-doped (p-doped) contacts is the position of the Fermi level above (below) the conduction(valence) band.
For instance, while the Fermi level in the drain is at Edf = E

s
f − eVds, the Fermi energy in the source and

drain are the same due to the (symmetric) doping.
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In order to obtain a symmetric second-order expression, consider again Figure 6.1. To
incorporate the Neumann BC into our calculation, a virtual point is added to the finite
difference lattice at j = 0. At the left boundary, the forward and backward finite differ-
ence are shown that lead to slopesm1 andm2 centered around the point j = 1. The best
approximation to the real electric field is thus the average of the two slopes, i. e., m1+m2

2 .

Inserting the finite differences yields 1
2 (

Φ0
f −Φ

1
f

a +
Φ1
f −Φ

2
f

a ), and hence the electric field at

position j = 1 is ℰ1 = −
1
e
Φ0
f −Φ

2
f

2a . The expression for ℰ1 can then be solved for the unknown
Φ0
f = (−e)2aℰ1 + Φ

2
f such that the discrete Poisson equation centered at j = 1 becomes

(−e)2aℰ1 − 2Φ
1
f + 2Φ

2
f

a2
+

Φ1
f

λ2ch
= −

e2(n1 − Nd)
ε0εch

. (6.3)

The first term on the left can now be moved onto the right side of the equation and
incorporated into the charge term; a similar expression can be set-up for drain.

It was mentioned above that the set of N equations can be cast in the form of a ma-
trix equation according toMΦ⃗ = − e2

ε0εch
n⃗ that can be solved. In order to write down this

matrix equation explicitly, a finite difference lattice consisting of two points in source,
two points in the channel and two points in drain is considered. If we further assume
that Neumann BC apply in source and drain with ℰs,d = 0 due to charge neutrality, the
resulting discretized Poisson equation is explicitly given by

((((((((((

(

− 2
a2 +

1
λ2ch

2
a2 0 0 0 0

1
a2 − 2

a2 +
1
λ2ch

1
a2 0 0 0

0 1
a2 − 2

a2 +
1
λ2ch

1
a2 0 0

0 0 1
a2 − 2

a2 +
1
λ2ch

1
a2 0

0 0 0 1
a2 − 2

a2 +
1
λ2ch

1
a2

0 0 0 0 2
a2 − 2

a2 +
1
λ2ch

))))))))))
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⋅
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(
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Φ2

Φ3

Φ4

Φ5

Φ6
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)

=
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− e
2(n1−Nd)
ε0εch

− e
2(n2−Nd)
ε0εch

− e
2(n3)
ε0εch
+

Φg+Φbi
λ2ch

− e
2(n4)
ε0εch
+

Φg+Φbi
λ2ch

− e
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ε0εch
+ −eVds

λ2ch

− e
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+ −eVds

λ2ch
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(6.4)
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where the gate potential Φg needs to be considered only at the points j = 3, 4 belonging
to the channel; Φd = −eVds only appears on the drain side (points j = 5, 6). The Neumann
BCwith zero electric field are accounted for by simply changing the (1, 2)- and (N ,N −1)-
elements of the matrixM in Equation (6.4) from 1/a2 to 2/a2.

The matrix equation (6.4) can be solved for the potential profile Φf (xj) provided
that the carrier density n(xj) is known. Since n(xj) needs to be computed using the
Schrödinger equation that itself depends on the potential profile Φf (xj), a self-consistent
solution must be found. However, before the quantum mechanical calculation of the
charge density and self-consistency will be discussed, the one-dimensional Poisson
equation will be further elaborated on.

6.1.2 Conformal Mapping

In the source and drain regions, there will be fringing fields from the gate electrode
that may have an impact on the potential distribution within the contacts (illustrated in
Figure 6.3, top left). These fringing fields in the source/drain regions can be taken into
consideration employing the technique of conformal mapping. As a result, a spatially
dependent dox(x) is obtained such that the gate impact on source and drain can be in-
corporated properly using Equation (5.34). This significantly speeds up simulations since
one does not have to solve a 2D/3D Poisson equation.

Figure 6.3: Conformal mapping allows transforming the area in the source(drain)-gate region onto a par-
allel plate capacitor. Mapping the horizontal field lines back yields a spatially dependent effective oxide
thickness. With this, the electrostatics can be described in the entire device based on the 1D modified Pois-
son equation including the regions with fringing fields.

A conformal map w = f (z) (with w = u + iv and z = x + iy) maps the x, y-plane onto
the u, v-plane preserving orientation and angles locally. As such, the area with the fring-
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ing fields can be mapped onto a simpler geometry that allows immediate evaluation of
the value of, e. g., the capacitance since the right angles between electric field lines and
equipotential lines are preserved (cf. top panel of Figure 6.3). Hence, the idea here is
to map the capacitor associated with the fringing fields (in between the light blue and
blue thick lines) conformally onto a parallel plate capacitor as depicted in Figure 6.3.
The fringing field lines in the x, y-plane are mapped onto horizontal field lines in the
u, v-coordinate system. Back-transforming the field lines allows the extraction of an ef-
fective oxide thickness givenby the length of the respectivefield line. This effective oxide
thickness will then appear in the screening length λch, i. e., a spatially dependent λch(x)
is obtained that enables the proper use of the modified 1D Poisson equation throughout
the entire device structure.

An appropriate map w = f (z) from x, y-coordinates to u, v-coordinates for the
present fringing field problem is provided by the transformation ny + ix = K sin(u + iv)
[171]. Writing the real and imaginary parts separately this yields

y = K
n
sin(u) cosh(v) x = K sinh(v) cos(u) (6.5)

where the constants n andK are given by (see Figure 6.3 for the geometrical parameters)
n = ls

dox sinh(cosh
−1(

dox+hg
dox
))
and K = ls

sinh(cosh−1( dox+hgdox
))
.

Let us now use the map f (z) and transform the points A, B, C and D. Inserting each
point into the transformation Equation (6.5) yields A = (0, dox) → A′ = (π/2, 0), B =
(0, dox + hg) → B′ = (π/2, cosh−1( dox+hgdox

)), C = (0, 0) → C′ = (0, 0) and D = (ls, 0) → D′ =

(0, cosh−1( dox+hgdox
)) as shown in the figure. In order to obtain a spatially dependent oxide

thickness, and thus λch(x), one needs to compute the line integral from = 0 → π
2 for a

constant v, which provides the desired dox(v(x)),

dox(v) =
π/2

∫
0

du


d ⃗r
du


=

π/2

∫
0

du√(dx(u, v)
du
)
2

+ (
dy(u, v)
du
)
2

. (6.6)

With Equation (6.5) and rewriting the result this yields

dox(v) =
K
n
cosh(v)

π/2

∫
0

du√1 − sin2(u)(n2 tanh2(v) + 1). (6.7)

Since the discrete points on the finite difference grid along the x-direction (points de-
noted 1, 2 and 3 in Figure 6.3) are mapped onto the v-axis where u = 0, the coordinate
v in the expression above can be written (using Equation (6.5)) as v(x) = arsinh(x/K).
Inserting this into Equation (6.6) and noting that K

n = dox yields the desired dox(x):

dox(x) = dox√1 − (
x
K
)
2 π/2

∫
0

du√1 − sin2(u)(
x2/d2ox

1 − x2/d2ox
+ 1) (6.8)
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In the discretized case required for our simulations, lattice points on the finite dif-
ference grid are mapped onto their counterparts in the u, v-plane and then are back-
transformed in order to determine the length of the effective gate oxide at a particular
site of the finite difference lattice. To give a specific example, in the case depicted in the
figure the source extension of length ls is subdivided into four equidistantly spaced parts
with lattice constant a = ls/4, and thus the points 1, 2 and 3 aremapped to the 1′, 2′ and 3′

as shown in the lower panel of Figure 6.3. Having found the mapped v-coordinates of 1′,
2′ and 3′, we can compute dox(xj) = dox(aj) shown in the bottom right part of Figure 6.3.
Inserting this into the screening length of, e. g., a single-gate UTB SOI-MOSFET, we finally
arrive at

λjch = √
εsi
1
dSOIdox(aj) (6.9)

where j = 0, . . . , 4 with j = 0 being point C and j = 4 being point D; note that εox is set to 1
(air). As a result, the one-dimensionalmodifiedPoisson equation canbeused throughout
the entire device to describe the electrostatics within the transistor including the impact
of fringing fields.

In some device concepts (such as the one discussed in Section 9.1.3.4), the source/
drain contacts are as illustrated in Figure 6.4, left panel, where an extension of length
ls separates source and gate electrodes from each other (for instance, in the nanowire
bundle configuration shown in Figure 5.18). In this case, two subsequentmappings from
x, y → u, v and u, v → s, t coordinates have to be carried out [276]. Appropriate maps
are given by

nu + iv = k sin(x + iy) n = CB
CD sinh(cosh−1( CECD ))

k = nCD (6.10)

with CB = dox + hg , CD = ls, CE = ls + dox + hg and

n′v + iu = k′ sin(s + it) n′ = C′E′

A′C′ sinh(cosh−1( C
′B′

A′C′ ))
k′ = n′A′C′. (6.11)

Figure 6.4: Two subsequent conformal mappings transform the source extension region illustrated in the
left image onto a parallel plate capacitor [276].
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6.2 Nonequilibrium Green’s Function Formalism in Single-Band
1D-FETs

Having taken care of the Poisson equation and its discretization, we need to compute in
a next step the carrier density and the current through the transistor. In this respect, the
following questions need to be addressed. First, a transistor is basically an open quan-
tum system since it is connected to a source and a drain contact. Numerical calculations,
however, need to be carried out on a finite computational domain. Therefore, we need
to know how to incorporate contacts in an appropriate way. Second, supposed we were
able to solve the Schrödinger equation of the open quantum system then we would be
able to calculate the local density of states (cf. Section 2.11.1), and hence the carrier den-
sity n(x). However, we would only be able to do this in equilibrium. But how should the
nonequilibrium situation when current flows be taken into consideration? How can the
density of states be split into a part stemming from source and one part from drain?
Answers to these questions can be obtained using the nonequilibrium Green’s function
formalism (NEGF) that has been used for most simulations in this book. In the follow-
ing sections, an introduction to NEGF will be given that follows closely the approach by
Datta [60]. A pragmatic approach is chosen that is certainly not rigorous but provides
sufficient background to understand the derivation, and thus allows for working with
NEGF.

6.2.1 The Green’s Function

Consider a linear operator ℒ that operates on an unknown function Φ(x) resulting in
a given source f (x) according to ℒΦ(x) = f (x) (for simplicity, the current derivation
will be carried out in 1D). An operator is linear if ℒ(aϕ + bφ) = aℒϕ + bℒφ with ϕ and
φ denoting two vectors/functions that are mapped onto another vector/function using
the linear operator and a, b are complex numbers. For any linear operator, a Green’s
function G(x, x′) can be found that is the solution of ℒG(x, x′) = δ(x − x′). If we write
f (x) = ∫ dx′f (x′)δ(x−x′) and using the defining equation forG(x, x′), one obtains f (x) =
∫ dx′f (x′)(ℒG(x, x′)). Since ℒ is a linear operator, f (x) = ℒ∫ dx′G(x, x′)f (x′) = ℒΦ(x).
Comparison of the two sides of this equation yields Φ(x) = ∫ dx′G(x, x′)f (x′) (plus a
boundary term). This means that once G(x, x′) is known, a solution can be computed for
any source function f (x) by integrating G(x, x′)f (x′) over x′.

The Green’s function depends on two spatial coordinates x and x′ and on two differ-
ent times t and t′. However, here only stationary systems will be considered, such that
theGreen’s functionmerely depends on the time difference t−t′. Fourier transformation
then yields G(x, x′, E), i. e., an energy-dependent Green’s function. We are interested in
the Green’s function associated with the Hamiltonianℋ. Therefore, the linear operator
is ℒ = E −ℋ and the defining equation for the Green’s function is
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(E −ℋ)G(x, x′, E) = δ(x − x′). (6.12)

For the following derivations, a single band, effective mass approximation is assumed.
With this, it can be shown that the Green’s function of the operator E −ℋ is given by

G(x, x′, E) =∑
k

ϕk(x)ϕ
⋆
k (x
′)

E − ϵk
(6.13)

where ϕk(x) are the eigenfunctions and ϵk the eigenenergies of the system under con-
sideration. Indeed, inserting expression (6.13) into the defining equation for the Green’s
function results in

(E −ℋ)∑
k

ϕk(x)ϕ
⋆
k (x
′)

E − ϵk
=∑

k

(E −ℋ)ϕk(x)ϕ
⋆
k (x
′)

E − ϵk
=∑

k

(E − ϵk)ϕk(x)ϕ
⋆
k (x
′)

E − ϵk

=∑
k
ϕk(x)ϕ

⋆
k (x
′) = δ(x − x′) (6.14)

where we used the linearity of the operator in the second step. The final result is the
so-called completeness relation, which is ∑k ϕk(x)ϕ

⋆
k (x
′) = δ(x − x′), and thus Equa-

tion (6.13) is indeed a solution for the Green’s function. However, what do we gain
from this expression since for Equation (6.13) we need to know the eigenfunctions and
eigenenergies, i. e., we need the full solution of the Schrödinger equation. This question
will be answered further below. Let us first further elaborate on what we have found
so far. To this end, we assume that the 1D system under consideration is at a constant
potential (set equal to zero for simplicity) stretching from −∞ to ∞. In this case, the
eigenfunctions are known to be plane waves of the form 1

√L
eikx and the eigenenergy is

simply ϵk =
ℏ2k2
2m⋆ . The sum over all k can be transformed into an integral using the trick

detailed in the info-box in Section 2.11.1, which yields

G(x, x′, E) =∑
k

Δk
2π/L

1
Le

ikxe−ikx
′

E − ϵk
Δk→dk
→

∞

∫
−∞

dk L
2π

1
Le

ik(x−x′)

E − ℏ
2k2
2m⋆
. (6.15)

Obviously, the integration cannot be carried out because the denominator diverges
whenever the energy E is equal to the eigenenergy ϵk . To avoid this issue, and thus to
find a unique solution forG the denominator is written as E− ℏ

2k2
2m⋆ = −

ℏ2

2m⋆ (k
2−K2)where

K is defined as K = √ 2m⋆E
ℏ2

. This allows writing the denominator as − ℏ
2

2m⋆ (k + K)(k − K),
and thus the integrand diverges at k = ±K . Next, a small imaginary part iδ is added to
or subtracted from K to move the divergence away from the real k-axis. Doing so, the
residue theorem can be used to compute the integral. To this end, the integral over the
real-values k is extended into a contour integration over a closed path in the complex
κ-plane, i. e., → ∮ dκ. Obviously, the closed contour has to include the path along the
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real k-axis, and thus, in order to decide how to close the contour, we have to distinguish
the following cases:
(1) δ > 0 and x > x′: This means that the denominator diverges at k = K + iδ and at

k = −(K + iδ). Since x > x′, the exponential factor in the numerator of the integrand
eiκ(x−x

′) yields an exponentially damped term for complex κ-values in the upper
half of the κ-plane as illustrated in Figure 6.5(a). Therefore, a contour as displayed
in (a) is chosen and if the contour is extended to range from k = −∞... +∞ the
contribution of the upper half circle can be neglected. As a result, ∮ dκ → ∫∞−∞ dk.
With the residue theorem,

∮ dzf (z) = 2πi∑
a
Resaf (z), Resaf (z) = limz→a(z − a)f (z), (6.16)

one obtains

G(x, x′, E) = −m
⋆

πℏ2
∮ dk eik(x−x

′)

(k − (K + iδ))(k + (K + iδ))

= −2πi m
⋆

πℏ2
lim

k→K+iδ
(k − (K + iδ)) eik(x−x

′)

(k − (K + iδ))(k + (K + iδ))
(6.17)

since there is only a single residue within the contour. With δ → 0, one finally
obtains

G(x, x′, E) = − i
ℏv
eiK(x−x

′) where v = ℏK
m⋆
. (6.18)

(2) δ > 0 and x < x′: A very similar derivation as in case (1) can be carried out. The
only difference is that the contour is closed in the lower half of the complex plane
(see Figure 6.5 (b)), since x < x′. One finally ends up with G(x, x′, E) = − i

ℏve
iK |x−x′|.

(3) δ < 0 and x > x′ or x < x′: Subtracting a small imaginary part from K and distin-
guishing again between x > x′ and x < x′ yields the solutionG(x, x′, E) = i

ℏve
−iK |x−x′|

using basically the same derivation as under (1) and (2).

Figure 6.5: Contour integration for the two cases δ > 0, x > x′ and δ > 0, x < x′. The sign of (x − x′)
determines whether the contour is closed in the upper or lower complex half-plane.
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As a result, we obtain two solutions of the Green’s function, the first is an outgoingwave,
the second an incomingwave. If the delta function is interpreted as an impact excitation
at x = x′, then the first solution of the Green’s function would be the causal one since it
represents the outgoing wave due to the excitation and is therefore called a “retarded”
Green’s functionGr . The incomingwave is called an advancedGreen’s functionGa. From
the equations above, it is clear that the two solutions are not independent but can be
converted into each other by exchanging the arguments x and x′ and computing the
conjugate complex: Gr(x, x′, E) = (Ga(x′, x, E))⋆.

Let us now come back to answer the question what all this is good for. The small
imaginary part +iδ can be accounted for by a small imaginary part +iη added to the
energy such that the equation for the retarded Green’s function becomes (E + iη −
ℋ)Gr(x, x′, E) = δ(x − x′) with the solution

Gr(x, x′, E) =∑
k

ϕk(x)ϕ
⋆
k (x
′)

E − ϵk + iη
. (6.19)

Consider the imaginary part ofGr(x, x, E) (i. e., for x = x′), which can be computed easily
to be

Im(Gr(x, x, E)) = −∑
k
|ϕk(x)|

2 η
(E − ϵk + iη)(E − ϵk − iη)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

η
(E−ϵk )

2+η2

. (6.20)

Next, η → 0, which leads to η
(E−ϵk )2+η2

η→0
→ πδ(E − ϵk). As a result, Equation (6.20) multi-

pliedwith− 1π yields the local density of states (cf. Section 2.11.1). That is a very important
result since we know now how to compute the spatially-dependent carrier density (in
equilibrium, though):

n(x) = ∫ dE (− 1
π
ImGr(x, x, E))f (E − Ef ). (6.21)

Before taking care of contacts and addressing the question of how to simulate an open
quantum system, let us first discretize the equation for Gr .

6.2.2 Discretization of the Green’s Function

The Green’s function is discretized on the same finite difference grid with lattice con-
stant a as the Poisson equation (cf. Figure 6.1). To this end, we need a discrete form of
the operatorE+iη−ℋ, ofGr(x, x′, E) andof the delta function δ(x−x′) (cf. Equation (6.12)),
which leads to amatrix equation. In order to state thesematrices explicitly, a particle-in-
the-box system with infinitely high potential barriers at its edges and consisting of four
finite difference lattice points is considered in the following. Let us begin with E + iη,



270 � 6 Device Simulation

which is straightforward to write in matrix notation as (E + iη)1, i. e., as multiplication
with the unitmatrix 1. Next, the discretized form ofℋ can also bewritten down immedi-
ately because it was already discussed in Section 2.4.1 and we arrived at Equation (2.14)
for an arbitrary lattice point j. In the case of the PIB system with four lattice points, we
therefore obtain

E + iη −ℋ→ (E + iη)(

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

) −(

2t + Φ1
f −t 0 0
−t 2t + Φ2

f −t 0
0 −t 2t + Φ3

f −t
0 0 −t 2t + Φ4

f

)

(6.22)

where again t = ℏ
2

2m⋆a2 and Φj
f is the potential at lattice site j = 1, . . . , 4. Note that due to

the infinitely high potentials at the edges of the PIB system the wavefunctions at virtual
points j = 0 and j = 5 vanish completely and Equation (6.22) is obtained. Moreover, the
discrete form of Gr(x, x, E) is also easy to write down, since we just need to note that
x → xj and x

′ → xl and we obtain Gr(j, l, E) = Grj,l(E) as

Gr(j, l, E) =(

Gr1,1 Gr1,2 Gr1,3 Gr1,4
Gr2,1 Gr2,2 Gr2,3 Gr2,4
Gr3,1 Gr3,2 Gr3,3 Gr3,4
Gr4,1 Gr4,2 Gr4,3 Gr4,4

) . (6.23)

Finally, the delta function can be cast into a discrete form by replacing it with the Kro-
necker delta δj,l multiplied with 1

a in order to ensure a smooth transition from the dis-
crete form to the continuous representationwhen a → 0. As a result, δ(x−x′) → 1

aδj,l =
1
a 1. Putting everything together, we arrive at

((E + iη) −ℋ)Gr = 1
a
1→ Grj,l(E) =

1
a
([E + iη −ℋ]−1)j,l . (6.24)

This equationmeans that the Green’s function is simply the inverse of thematrix (E+iη−
ℋ) (apart from the factor 1/a). Therefore, computing the retarded Green’s function and
from it the density of states, and finally the local carrier density is (at least conceptually)
rather simply, following the recipe:
(1) Set up a vector containing all discrete energies En that need to be considered. In the

simplest form, this is just a vector with equidistant energies En = n ⋅ ΔE with some
appropriately chosen ΔE.

(2) Set up the matrix En + iη − ℋ for each n and invert it. If equidistant energies are
chosen and if there are bound states (such as in a PIB), η should be on the same
order of magnitude as ΔE. Without bound states η ∼ 10−8 eV works well (see the
video accessible through the QR code #48 for more details).
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(3) Extract the imaginary part of the main diagonal elements (i. e., j = lmeaning xj = xl
which is x = x′) of the inverse and store. When multiplied with − 1π , this yields the
local density of states −1/π ImGr(j, j, En) = D(xj , En).

(4) Sum over all En to obtain the carrier density as nj = ∑n ΔE ⋅ Dj(En)f (En − Ef ) where
f (En − Ef ) is the Fermi distribution function.

48
Details on an example of such a calculation in a simple PIB with constant potential are
provided through the QR code #48.

6.2.3 Including Contacts

In a next step, contacts need to be included in order to enable the calculation of an
open quantum system. To this end, a semiinfinite system separated into a contact area
(denoted with subscript C in the following) and a device (denoted with subscript D) is
considered. The device may consist of an arbitrary numberN of lattice sites; the contact
is semiinfinite. Hence, we can write the matrix equation for determining the Green’s
function as a 2 × 2 block matrix of the form

[(E + iη)( 1D 0
0 1C

) − (
ℋD τ
τ† ℋC

)](
GrD GrDC
GrCD GrC

) =
1
a
(

1D 0
0 1C

) (6.25)

where the matrix τ is a N ×∞-dimensional coupling matrix with only a single entry
−t on the (N , 1)-element (and zero anywhere else), τ† is an∞ × N -dimensional matrix
with −t only on the (1,N)-element and zero otherwise;ℋD,C are the Hamiltonians of the
isolated device and isolated contact, respectively.

Multiplying the first column of Gr with the second row of E + iη −ℋ yields

(E + iη)1CG
r
CD − τ

†GrD −ℋCG
r
CD = 0

→ [(E + iη) −ℋC]G
r
CD = τ

†GD → GrCD = [E + iη −ℋC]
−1

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=GrC

τ†GrD. (6.26)

Next, multiplying the first column of Gr with the first row of E + iη −ℋ, one obtains

(E + iη)1DG
r
D −ℋDG

r
D − τG

r
CD =

1
a
1D

→ [(E + iη)1D −ℋD]G
r
D − τG

r
Cτ
†GrD =

1
a
1D (6.27)

where the result of Equation (6.26) has been used. Equation (6.27) can be rewritten as
[(E + iη)1D − ℋD − Σ

r]GrD =
1
a 1D where Σr = τGrCτ

† is called the retarded self-energy
function. The importance of Equation (6.27) is that an infinite, open quantum system
can now be computed based on a finite number of lattice points N . Note that up to now

https://vimeo.com/466440343
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the derivation is exact and no approximation has been used. While the matrix equation
has only finite dimensions N × N , we still need to know what GrC is and this matrix
belongs to the semiinfinite contact, i. e., it has∞×∞ dimensions. So, what didwe gain by
computing Equation (6.27)? Looking at the self-energy Σr , it becomes clear that after the
matrix multiplication there is only a single matrix element different from zero, namely
the (N ,N)-element which is equal to (−t)(GrC)1,1(−t). Now attention has to be paid to the
different indices: It should be clear that the (1, 1)-element of GrC is actually equal to the
(N + 1,N + 1)-element of the overall matrix Gr . This means that in order to determine
the self-energy function we only need this (1, 1) element of the isolated contact, which is
called the surface Green’s function. Hence, if we find an alternative way of computing
the surface Green’s function of an isolated contact, wewill be in a position to incorporate
a semiinfinite contact in an exact way.

In order to compute the surface Green’s function of an isolated contact, we consider
a semiinfinite contact on a constant potential Φ0

f throughout all lattice points. Splitting
the contact into a device consisting merely of the first point (illustrated in the equation
belowwith the horizontal and vertical lines), we go through the same analysis as above:

[[[[[[

[

(E + iη)(

1 0 0 ⋅ ⋅ ⋅
0 1 0 ⋅ ⋅ ⋅
0 0 1 ⋅ ⋅ ⋅

0 0
...

. . .

) −(

2t + Φ0
f −t 0 ⋅ ⋅ ⋅
−t 2t + Φ0

f −t ⋅ ⋅ ⋅
0 −t 2t + Φ0

f ⋅ ⋅ ⋅

0 0
...

. . .

)

]]]]]]

]

×(

Gr1,1 Gr1,2 Gr1,3 ⋅ ⋅ ⋅
Gr2,1 Gr2,2 Gr2,3 ⋅ ⋅ ⋅
Gr3,1 Gr3,2 Gr3,3 ⋅ ⋅ ⋅
...

...
...

. . .

) =
1
a
(

1 0 0 ⋅ ⋅ ⋅
0 1 0 ⋅ ⋅ ⋅
0 0 1 ⋅ ⋅ ⋅

0 0
...

. . .

) .

(6.28)

Since we are considering only a single point, we can immediately write down what the
Green’s function is (the inverse of the “matrix” is simply the inverse of a number):

Gr1,1 = [(E + iη) −ℋ1,1 − Σ
r
1,1]
−1

→ Gr1,1 =
1

E + iη − (2t + Φ0
f ) − t

2Gr2,2
(6.29)

Note thatGr2,2 is the surface Green’s functionwe are looking for. So, it is the (1, 1)-element
of the isolated semiinfinite contact (which is the (N+1,N+1) = (2, 2)-element of the over-
all matrix) as mentioned above. The important step now is to realize that Gr1,1 and G

r
2,2

are actually equal: both are the surface Green’s function of a semiinfinite contact with
constant potential Φ0

f . G
r
1,1 is simply the surface Green’s function of the contact ranging

from 1, . . . ,∞where the part from 2, . . . ,∞ has been taken care of with an appropriate
self-energy. At the same time, Gr2,2 is the surface Green’s function of the contact ranging
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from 2, . . . ,∞. But there is no difference between the gray area in Equation (6.28) and
the entire matrix. As a result, the surface Green’s function, called Grsurf in the following,
can be determined by solving the quadratic equation

Grsurf =
1

E + iη − (2t + Φ0
f ) − t

2Grsurf
. (6.30)

Note that iη→ 0 and it will therefore be dropped in the following. Equation (6.30) yields

two solutions of the formGrsurf =
1
t (

E−2t−Φ0
f

2t ± i√1 − (
E−2t−Φ0

f
2t )

2). The solution with “−” sign
is appropriate here (the “+”-sign results in the advanced surface Green’s function). Next,
utilizing ei arccos(x) = x + i√1 − x2, setting x = − E−2t−Φ

0
f

2t and using the discrete dispersion
relation E = 2t − 2t cos(ka) + Φ0

f (cf. Section 2.4.1) it is easy to see that x = cos(ka) and
therefore we obtain for the surface Green’s function the following expression:

Grsurf = −
1
t
eika. (6.31)

As a result, we arrived at a very simple expression for the retarded self-energy Σr =
−teika where k is the wave number that can be computed from the dispersion rela-
tion. Using the surface Green’s function computed above,we can now immediatelywrite
down the self-energy for a semiinfinite contact connected to the right of a device: Σr is a
matrix of the same dimension N as the device with the (N ,N)-element equal to −teika as
the only nonzero matrix element. In fact, this result cannot be overappreciated; with an
analytically computable self-energy the coupling to a semiinfinite contact, and hence the
expansion of a finite device into an open quantum system is taken into account without
any approximation.

49In a subsequent step, the same analysis as before can now be carried out for a
contact that is connected at the left end of the device in order to realize source and
drain contacts. Note that this contact may be on a different potential such that the dis-
persion relation in the source contact is E = 2t − 2t cos(ksa) + Φ

s
f and in the drain

E = 2t − 2t cos(kda) + Φ
d
f . Eventually, the following equation is obtained:

Gr = 1
a
[E + iη −ℋ − Σrs − Σ

r
d]
−1 (6.32)

with Σrs = −te
iksa01,1 and Σrd = −te

ikda0N ,N where ks,da are determined from the disper-
sion relations given above and 01,1(0N ,N ) is a matrix with 1 at its (1, 1)((N ,N))-entry and
zero anywhere else.

One final important remark needs to be made: In order to be able to describe the
coupling of a contact with the simple self-energy obtained, the potential needs to be con-
stant throughout the semiinfinite contact and equal to the potential at the point where
the contact is connected to the device. Therefore, the device that wewant to compute in-
cludes source and drain sections long enough such that the potential becomes constant.

https://vimeo.com/466447071
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For instance, the conduction band displayed in Figure 6.2 can be used and contacts with
Φs
f = 0 and Φd

f = −eVds can be connected at the right and left edges (see QR code #49 for
a detailed calculation and local density of states plots).

Task 23.
Retarded Green’s function: Consider a “system” consisting of a single finite difference lattice site (a
single dot) connected to two one-dimensional, semiinfinite contacts, all at the same potential (set

50
equal

to 0) and coupled via t. Compute the density of states in this system and compare with your expectation.

6.2.4 Carrier Density in Nonequilibrium

Up to now, we discussed how to compute the carrier density as a function of x in an open
quantum system with Green’s functions where the contacts have been incorporated ex-
actly through analytic self-energy functions. However, the consideration so far is only
valid in equilibrium. In order to describe nonequilibrium situations, we need to split the
density of states into one part for carriers from the source and a part for carriers from
the drain contact. To do so, an additional function iΓ = Σa − Σr is defined where Σa is the
advanced self-energy function, which is (Σr)†.2 This means that Γ = 2 Im(Σr). Moreover,
since we can define a retarded and advanced self-energy function for the source and
drain contacts separately, Γ will be the sum Γs + Γd for the source and drain contacts.

Next, we can write the equation for Gr and Ga as (the factor 1/a has been dropped
here for a more compact notation)

Gr = (E −ℋ − Σr)−1, Ga = (E −ℋ − Σa)−1. (6.33)

Note that Σr,a are complex-valued functions that provide the imaginary part needed in
order to obtain a unique retarded or advanced Green’s function. The expressions for
Gr,a in Equation (6.33) can both be inverted giving rise to

(Gr)−1 − (Ga)−1 = (E −ℋ − Σr) − (E −ℋ − Σa) = Σa − Σr = iΓ. (6.34)

Equation (6.34) will now be multiplied from the left with Gr and from the right with Ga,
which leads to

GriΓGa = Gr[(Gr)−1 − (Ga)−1]Ga = Gr(Gr)−1Ga − Gr(Ga)−1Ga

= Ga − Gr = −2i Im(Gr). (6.35)

2 Since only the first and lastmain diagonal elements are occupied transposing thematrix does not yield
any change so Σa is simply the conjugate complex here.

https://vimeo.com/466487786
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The function GrΓGa is called spectral function A. From Equation (6.20), we know that
− 1π ImGr(x, x, E) = D(x, E) is equal to the density of states and as a result A(x, x, E) di-
vided by 2π yields the local density of states D(x, E). The importance of writing the local
DOS as the main diagonal of the spectral function is that Γ = Γs + Γd , and thus

A = GrΓsG
a + GrΓdG

a = As + Ad . (6.36)

This means that the main diagonal elements of the spectral functions As and Ad provide
the density of states for carriers injected from the respective contacts and as a result the
nonequilibrium carrier density is given by

nneq(x) = ∫ dE
1
2π
(As(x, x, E)fs(E

s
f ) + Ad(x, x, E)fd(E

d
f )). (6.37)

Equation (6.37) only provides the carrier density in 1D. As alreadymentioned above,
the NEGF equations need to be solved self-consistently with the Poisson equation (see
next section). To do so, a 3D carrier density is needed, which can be obtained in the fol-
lowing way. Let us consider a nanowire FET with a very small quadratic cross-section
dnw × dnw of the nanowire in order to justify 1D electronic transport (i. e., only the first
subbandwill be occupied). If the potential variations along the x-direction canbe consid-
ered slow enough to justify a separation ansatz, Equation (6.19) for the retarded Green’s
function can be written in 3D as

Gr( ⃗r, ⃗r′, E) =∑
k⃗

ϕk⃗( ⃗r)ϕ
⋆
k⃗ ( ⃗r
′)

E − ϵk⃗ + iη

→∑
kx

ψ1(y)ξ1(z)χkx (x)ψ
⋆
1 (y
′)ξ⋆1 (z

′)ζ⋆kx (x
′)

E − (ϵkx + E
y
1 + E

z
1 ) + iη

(6.38)

wherewe used the fact, that in the y- and z-directions the nanowire can be considered as
a closed PIB systemwhere thewavefunctions are known. Due to the strong quantization,
only the first subband (therefore the energies Ey1 and E

z
1 within the denominator) needs

to be considered, and hence the index ‘1’ at ψ(y) and ξ(z). Because of the coupling to the
contacts in the x-direction we do not know what the wave-functions in x-direction are,
and thus leave them as given in Equation (6.38). Ultimately, we are only interested in the
main diagonal elements of Gr , and hence

Gr( ⃗r, ⃗r, E) ≈ ψ1(y)

2ξ1(z)

2
∑
kx

χkx (x)ζ
⋆
kx (x
′)

E − (ϵkx + E
y
1 + E

z
1 ) + iη⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Gr1D computed with NEGF

. (6.39)

Thismeans thatwe can simplymultiply our results so farwith the absolute square of the
wavefunctions in the y, z-directions and obtain a 3D version of the Green and spectral
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functions, and hence of the carrier density. Keep inmind, however, that this approxima-
tion was made on the assumption that a separation ansatz can be used.

Inmany cases, it is sufficient that we average thewavefunctions over y and z, mean-
ing that we integrate ∫ dydz and divide by the area of the nanowire d2nw. Since the wave-
functions in the y- and z-directions are normalized, the integration yields unity and as
a result, the three-dimensional carrier density is obtained simply by dividing the com-
puted 1D density by the cross-sectional area of the nanowire and by taking the quan-
tization energy Ey1 + E

z
1 of the first subband into account. If you do so, it is important

to keep in mind that the carrier density does not steadily decrease ∝ 1/d2nw since, for
increasing nanowire cross-section, multiple 1D subbands may contribute to the charge
in the nanowire, which need to be taken into consideration.

6.2.5 Self-Consistency

In order to compute the carrier density based on NEGF, we need to know what the po-
tential profile Φf (x) along the direction of current transport is. However, Φf (x) is the
solution of the Poisson equation and to solve Poisson’s equation we need to know what
the carrier density is. Therefore, the Poisson equation and the NEGF equations need to
be solved self-consistently. A simple iteration between Poisson equation and NEGF will
most likely not lead to a solution because of the highly nonlinear dependence of the
carrier density on the exact potential profile. Therefore, we use the Newton–Raphson
method to find a self-consistent solution.

The Newton–Raphson method is used to iteratively find the root of a function. In
the present case of the simulations considered here, we need to find the root of

F(Φf (x)) :=
𝜕2Φf (x)
𝜕x2
−
Φf (x) − Φg − Φbi

λ2
+
e2ñ(x)
ε0εsi

(6.40)

where the density of ionized dopants has been incorporated into ñ(x) to simplify the
notation.

Before we work on finding the root of F(Φf (x)), let us quickly go through the
Newton–Raphson method in the simplest case, namely finding an approximate root
of an arbitrary one-dimensional function f (x) in order to understand how the method
works. To do so, the function f (x) is linearized around a test point x0. The linear ap-
proximation y1(x) = mx + n has the slopem = df

dx |x=x0 = f
′(x0) in x0. Since y1(x0) = f (x0)

and y1(x0) = f
′(x0)x0 + n, the constant n can be determined to be n = f (x0) − f

′(x0)x0.
Consequently, as a next best guess for the actual root, we take the root of y1(x), which
follows from y1(x1)

!
= 0 resulting in 0 = f ′(x0)x1 + f (x0) − f

′(x0)x0. Rewriting the lat-
ter expression yields f ′(x0)(x1 − x0) = −f (x0) or f

′(x0)δx = −f (x0) with δx = x1 − x0.
Therefore, computing δx = − f (x0)f ′(x0)

yields x1 = x0 + δx as the next approximation to the
actual root. x1 will then be used for a subsequent linearization, which provides another
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approximation x2 of the root with f ′(x1)δx = −f (x1) and δx = x2 − x1 → x2 = x1 + δx. It
is now easy to see that we obtain a general iteration sequence with

δxi =
−f (xi)
f ′(xi)
→ xi+1 = xi + δxi (6.41)

where i is the index of the respective iteration step. The Newton–Raphson method is
not globally convergent, and hence the zeroth iteration guess of the solution has to be
close enough to the real root in order to obtain a solution. Furthermore, a simple way
to improve the convergence is to use in each iteration step not the full Newton step δx
but only a part of it. The exact value is a matter of the particular situation but a factor
of ∼0.3, . . . , 0.4 yields a converging iteration in most cases. Hence, xi+1 = xi + 0.3δxi.

In a next step, we need to expand themethod to find the root of F(Φf (x)). To this end,
Equation (6.41) needs to be extended in the following way: instead of x, the variables are
now the N potential values at the N points of the finite difference grid, and thus x → Φj

f
with j = 1, . . . ,N . Consequently, an update of the potential is obtained with

(

Φ1
f

Φ2
f
...

ΦN
f

)

i+1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=̂xi+1

=(

Φ1
f

Φ2
f
...

ΦN
f

)

i⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=̂xi

+(

δΦ1
f

δΦ2
f

...
δΦN

f

)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=̂δx

. (6.42)

The function f (xi) with Neumann BC is extended into

f (xi)→(

F(Φ1
f )

F(Φ2
f )

...
F(ΦN

f )

)

i

=(

F1
F2
...
FN

)

i

=
((((

(

−2Φ1
f +2Φ

2
f

a2 −
Φ1
f −Φg−Φbi

λ2ch
+ e2ñ1

ε0εch
Φ1
f −2Φ

2
f +Φ

3
f

a2 −
Φ2
f −Φg−Φbi

λ2ch
+ e2ñ2

ε0εch
...

−2ΦN−1
f +2Φ

N
f

a2 −
ΦN
f −Φg−Φbi

λ2ch
+ e2ñN

ε0εch

))))

)i

.

(6.43)

Finally, the derivative of f ′(x) with respect to x becomes

f ′(xi)→
(((

(

𝜕F1
𝜕Φ1

f

𝜕F1
𝜕Φ2

f
⋅ ⋅ ⋅ 𝜕F1𝜕ΦN

f

𝜕F2
𝜕Φ1

f

𝜕F2
𝜕Φ2

f
⋅ ⋅ ⋅ 𝜕F2𝜕ΦN

f
...

...
. . .

...
𝜕FN
𝜕Φ1

f

𝜕FN
𝜕Φ2

f
⋅ ⋅ ⋅ 𝜕FN𝜕ΦN

f

)))

)i

= Ji. (6.44)
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In all equations above, i indicates the iteration step. The matrix J is called the Jacobi
matrix. In the case considered here (i. e., based on themodified one-dimensional Poisson
equation), its elements are given by

𝜕Fl
𝜕Φj

f

=
𝜕

𝜕Φj
f

(
Φl−1
f − 2Φ

l
f + Φ

l+1
f

a2
−
Φl
f − Φg − Φbi

λ2ch
+
e2ñl
ε0εsi
). (6.45)

The partial derivatives of the first two terms in Equation (6.45) result in a tridiagonal
Jacobimatrix very similar to thematrix of the Poisson equation (cf. Equation (6.4)).What
remains to be determined is the derivative of the charge density, i. e., 𝜕ñl

𝜕Φj
f
= 𝜕nl
𝜕Φj

f
(note

that the dopant density drops out here because it does not depend on Φf ). In order to
determine this factor a local, semiclassical approximation is followed and we neglect
all nondiagonal terms. Hence, 𝜕nl

𝜕Φj
f
≈ δlj ⋅

𝜕
𝜕Φj

f
(∫
∞
Φj
f
dE D(E − Φj

f )f (E
j
f )) can be used where

D(E − Φj
f ) is the analytically computed density of states as given in Table 2.4 and Ejf is

the quasi-Fermi level extracted from nj
!
= ∫
∞
Φj
f
dE D(E − Φj

f )f (E
j
f ) [162].

To be explicit, putting everything together we arrive at the following iterative
scheme for the Newton–Raphson method:

(

δΦ1
f

δΦ2
f

...
δΦN

f

) = −(

− 2
a2 −

1
λ2ch
+ e2

ε0εsi
𝜕n1
𝜕Φ1

f

2
a2 0 ⋅ ⋅ ⋅

1
a2 − 2

a2 −
1
λ2ch
+ e2

ε0εsi
𝜕n2
𝜕Φ2

f

1
a2 0

...
...

...
. . .

)

−1

×(

F1
F2
...
FN

) . (6.46)

Note that the vector F⃗ contains the full charge density ñ = n − Nd whereas the Jacobi
matrix only contains the derivative of n since Nd is considered to be constant, as men-
tioned above. Furthermore, note the factor of 2/a2 in the (1, 2) and (N ,N −1) entries (and
also in the first and last entry of F⃗) due to the Neumann BC.

The update of the potential distribution computed with the Newton–Raphson
method will be used to set up the Hamiltonian to calculate an update of the charge
density. With the new charge density, the Newton–Raphson method is again employed
to obtain a further update of the potential. This procedure will be iterated until a
specified convergence criterion is met (for instance, that the maximum change of the
potential variation δ ⃗Φf is less than 1meV).
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6.2.6 Current Flow

After self-consistency has been reached, the current has to be calculated. This can be
donewith the so-called Fisher–Lee relation [73], which relates the Green’s function with
the transmission function used in the Landauer formalism. The details of the derivation
of the Fisher–Lee relation (also called the Caroli expression) will be left out here and
only the final result is given:

T(E) = Tr(ΓsG
rΓdG

a) (6.47)

where Tr means taking the trace of the matrix. Let us again consider a “device” consist-
ing of 4 finite difference points so that the matrix relations leading to T(E) can be stated
explicitly. In this case, one obtains for the part ΓsG

r ,

ΓsG
r =(

−2t sin(ksa) 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

) ⋅(

Gr1,1 Gr1,2 Gr1,3 Gr1,4
Gr2,1 Gr2,2 Gr2,3 Gr2,4
Gr3,1 Gr3,2 Gr3,3 Gr3,4
Gr4,1 Gr4,2 Gr4,3 Gr4,4

)

= −2t sin(ksa)(

Gr1,1 Gr1,2 Gr1,3 Gr1,4
0 0 0 0
0 0 0 0
0 0 0 0

) . (6.48)

A similar calculation for ΓdG
a yields a matrix where only the last line has entries so that

ΓdG
a = −2t sin(kda)(

0 0 0 0
0 0 0 0
0 0 0 0
Ga4,1 Ga4,2 Ga4,3 Ga4,4

) . (6.49)

Finally, multiplying the two matrices and taking the trace one obtains for the transmis-
sion probability

T(E) = 2t sin(ksa)G
r
1,4G

a
4,12t sin(kda) = Γ

1,1
s |G

r
1,4|

2Γ4,4d . (6.50)

This equation can be interpreted in the following way: Γ1,1s is the rate of carrier injection
at the interface between the source and the computed device, |Gr1,4|

2 is the probability
for propagation from the first lattice point 1 to the last lattice point 4 (in general N) and
finally Γ4,4d is the rate of carrier extraction at the interface between the device and the
semiinfinite drain contact. T(E) is then inserted into the Landauer expression and the
final current is computed as

Id =
2e
h
∫ dE Γ1,1s |G

r
1,N |

2ΓN ,Nd (fs(E
s
f ) − fd(E

d
f )). (6.51)
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6.3 Extensions of the 1D NEGF

6.3.1 Scattering with Buettiker Probes

Up to now, the electronic transport has been considered as being completely ballis-
tic. Assuming ballistic transport is often justified in nanoscale devices, particularly in
Schottky-barrier MOSFETs and band-to-band tunneling FETs where a tunneling barrier
exists that usually represents the main scattering event (cf. Chapters 7 and 9). However,
there are also many cases where scattering, especially inelastic scattering, plays an im-
portant role and needs to be included in the analysis.

One of the major benefits of NEGF is that scattering, for instance due to electron–
electron, electron–phonon interaction etc., can be taken into consideration with ad-
ditional self-energies. However, when the details of the scattering are not important,
scattering—elastic as well as inelastic—can be accounted for by so-called Buettiker
probes [259]. Buettiker probes are virtual contacts that are attached to the device. Each
Buettiker probe is in equilibrium with its own Fermi distribution function. But in con-
trast to regular contacts, Buettiker probes are not connected to any voltage source so
that their Fermi level is not fixed. As a result, the Fermi level will be adjusted so that
each Buettiker probe carries zero net current; this is important in order to ensure cur-
rent continuity. While Buettiker probes carry zero net current, their contribution is
to impose a carrier distribution according to their Fermi distribution. If the Buettiker
probes are connected to each site of the finite difference lattice (illustrated in Figure 6.6
(a)) and, moreover, if the Buettiker probes are connected to the various sites with a
certain strength γ = 0, . . . , 1 then the scattering is spread over several probes; the di-
mensionless coupling parameter γ is set to zero for ballistic transport and γ → 1 for
increasing scattering. As a result, the scattering can be adjusted in terms of its strength
and its location via the Buettiker probes and the coupling factor γ.

Figure 6.6: Incorporation of scattering by attaching Buettiker probes with floating Fermi levels at each
grid point. The resulting Fermi levels in the probes constitute the quasi-Fermi level distribution along the
current transport direction (red dashed line).
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Buettiker probes can be used to describe elastic as well as inelastic scattering. Elas-
tic scattering can bemimicked by the requirement that the current each Buettiker probe
provides is zero at each energy. In this case, carriers are extracted from the channel and
reinjected into the channel at the same energy, which indeed represents elastic scatter-
ing. Alternatively, a zero net current can also be obtained by requiring that the injected
and extracted current components summed over all energies vanish. The latter means
that a charge carrier can be extracted into a Buettiker probe at site j at a specific energy.
The extracted carrier relaxes within the Buettiker probe and charge is reinjected from
the Fermi distribution of the respective Buettiker probe as illustrated in Figure 6.6(b);
this way of using Buettiker probes is equivalent to inelastic scattering used in some de-
vice simulations discussed in later chapters.

Although the existence of a Fermi level is strictly an equilibrium property, it is com-
mon practice to work with so-called quasi-Fermi levels. A quasi-Fermi level is the level a
certain carrier densitywould exhibit if it was in equilibrium; inmany cases, quasi-Fermi
levels are even defined for the electron and hole population separately [247]. The Fermi
levels of the Buettiker probes represent such a (spatially dependent) quasi-Fermi level
as is shown in Figure 6.6(a) with the red dashed line. As mentioned above, the scatter-
ing rate is mediated by the dimensionless parameter γ. This parameter can be related to
the mean-free path for scattering lmfp. As was shown by Venugopal (see the Appendix of
[259]) lmfp = 2a×

1
γ where a is the lattice constant of the finite difference grid. Obviously,

when γ → 0 the mean-free path becomes very large, i. e., one approaches the ballistic
limit.

When working with Buettiker probes, one has to make sure during the self-
consistent simulation that the Fermi levels of the Buettiker probes are always adjusted
in such a way as to ensure zero net current. Since the current in each probe depends
on all other probes, this requires a second self-consistency loop within the Poisson–
Schrödinger (NEGF) self-consistency loop. To understand how this is done, let us con-
sider the case where Buettiker probes are attached at each finite difference lattice site
(shown in Figure 6.6(a)) via appropriate self-energy functions. Each electrode at site j
(either Buettiker probe or source/drain contact) contributes to the overall self-energy
Σr a matrix, which has zero entries everywhere except of the (j, j)-matrix element such
that Σr becomes a diagonal matrix. To be specific, the diagonal elements of Σr are given
by

Σr = −t
(((

(

eiksa 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
...

...
. . . . . .

...
...

...
. . . 0 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 eikda

)))

)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=Σrs+Σrd

−γt
(((

(

0 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 eik2a 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
... ⋅ ⋅ ⋅ eikja

. . .
...

...
...

. . . eikN−1a
...

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 0

)))

)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=Σbuet

(6.52)
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where j = 2, . . . , (N − 1) runs over all sites with Buettiker probes and N being the di-
mension of the finite difference grid. Note that the kja-terms in the self-energy for the
Buettiker probes are simply given by the discrete dispersion relation with the potential

energy Φj
f at the point j: kja = arccos(

Φj
f −E−2t
2t ). The imaginary part of the self-energies

stated above yields the matrices Γj where j includes all sites of the finite difference grid.
Using the Fisher–Lee relation, Equation (6.47), and the quasi-Fermi levels Ejf the current
of each Buettiker probe at site j can be computed according to

Ij =
2e
h
∫ dE ∑

i
Γi|G

r
i,j|

2Γj(f (E
i
f ) − f (E

j
f )) (6.53)

where the retarded Green’s function is computed including the full diagonal self-energy
matrix Equation (6.52) and the sum over i includes source and drain.

The (quasi-) Fermi levels Ejf , j = 2, . . . ,N − 1 need to be found ensuring that the net
currents at all Buettiker probes are zero. This has to be done iteratively using again the
Newton–Raphson scheme (cf. Equation (6.46)), which leads to

(

δE2
f

δE3
f
...

δEN−1f

) = −((

(

𝜕I2
𝜕E2

f

𝜕I2
𝜕E3

f
⋅ ⋅ ⋅ 𝜕I2
𝜕EN−1f

𝜕I3
𝜕E2

f

𝜕I3
𝜕E3

f
⋅ ⋅ ⋅ 𝜕I3
𝜕EN−1f

...
...

...
...

𝜕IN−1
𝜕E2

f

𝜕IN−1
𝜕E3

f
⋅ ⋅ ⋅ 𝜕IN−1
𝜕EN−1f

))

)

−1

(

I2
I3
...

IN−1

) (6.54)

where 𝜕Ij
𝜕Ejf
= 2e

h ∫ dE ∑i Γi|G
r
i,j|

2Γj
𝜕f (Ejf )

𝜕Ejf
and 𝜕Ij
𝜕Eif
= − 2eh ∫ dE Γi|G

r
i,j|

2Γj
𝜕f (Ejf )
𝜕Eif

. Having de-

termined all (quasi-) Fermi levels, the carrier density can be computed by multiplying
all diagonal elements of Γ with the Fermi distribution function using the Ejf including

source and drain, i. e., Γsf (E
s
f ), Γjf (E

j
f ) for j = 2, . . . ,N − 1 and Γdf (E

d
f ). Multiply from left

with Gr and from the right with Ga and divide by 2π. Finally, integrate over all energies.
This is basically the same as was done in the ballistic limit where the spectral function
was split up into one part from source multiplied with f (Esf ) and one part from drain
multiplied with f (Edf ); the difference is that this has to be done for the Buettiker probes,
too. With the carrier density, an update of the potential needs to be computed as has
been detailed above. Finally, after a self-consistent solution has been found including
(quasi-) Fermi levels in the Buettiker probes that render the current of each Buettiker
probe (close to) zero, the drain current is computed as stated in Equation (6.53) setting j
equal to the drain.
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6.3.2 Gate Leakage with Buettiker Contacts

When the gate dielectric thickness is scaled down, gate leakage occurs because of direct
tunneling of carriers through the gate insulator. As a result, current is injected from the
gate electrode into the channel contributing to the overall drain current Id ; the results of
gate leakage have been discussed in Section 5.9.3. In the simulations, gate leakage can be
taken into account using Buettiker probes [140]. The difference between the Buettiker
probes used for scattering and the Buettiker probes for gate leakage is that in the latter
case the probes are all short-circuited and share a Fermi level that is determined by the
gate voltage (illustrated in Figure 6.7). As such, these gate Buettiker probes may inject
(or extract) carriers into (from) the channel.

Figure 6.7: Incorporation of gate leakage with short-circuited Buettiker whose Fermi levels equal Φg.

In order to account for the tunneling through the gate dielectric, the gate Buettiker
probes are connected to each finite difference lattice point j of the channel via a spatially
dependent coupling parameter tjg that, for any finite thickness of the gate dielectric, is
smaller than the coupling t along the source-to-drain direction. These coupling param-
eters are essentially determined by an exponential factor due to tunneling of carriers
through the gate dielectric. However, because the electric field across the gate dielectric
depends on the position (cf. Figure 5.1(b)) along the source-to-drain direction and since
the electric field substantially impacts the tunneling probability, we need to compute an
individual coupling parameter for every finite difference grid point j within the chan-
nel region. The coupling between each gate (Buettiker) probe and the channel is again
described with a factor γj = 0, . . . , 1, and thus tjg = γj ⋅ twith γj = 0 representing a perfect
insulator and γj ̸= 0 leads to gate leakage.

The coupling parameter γj at point j can be related to the potential barrier of the
gate insulator by analytically calculating the transmission probability 𝒯 (E) through a
potential barrier using the WKB approximation and comparing this with the transmis-
sion function T(E) calculated with the Fisher–Lee relation of a single site system that is
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connected to the right to a semiinfinite contact and to the left to a semiinfinite contact
whose coupling is mediated by the parameter γ.

The WKB approximation for the transmission 𝒯 (E) through a potential barrier has
already been discussed in Section 4.6.2. In the present case, this results in

𝒯 (E) = exp(−2
dox

∫
0

dz√2m
⋆

ℏ2
√Φ(z) − E). (6.55)

The potential Φ(z = 0) is given by Φg + Φbi + Φox where Φg is the gate potential, Φbi the
built-in potential of the channel and Φox = 3.1 eV is the conduction band off-set between
silicon and SiO2 (note that Φ(z) depends on the lattice site and, therefore, an index j will
be added further below); for simplicity, flat-band conditions at Φg = 0 are assumed here.
Moreover, Φ(z = dox) = Φ

j
f + Φox where Φj

f is the surface potential for the channel at

position j. As a result, Φj(z) =
Φj
f −Φg−Φbi

dox
z + Φg + Φbi + Φox. Inserting this expression into

Equation (6.55) yields

𝒯 (E) = exp(−2√2m
⋆

ℏ2
2dox

3(Φj
f − Φg − Φbi)

[(Φj
f + Φox − E)

3
2

− (Φg + Φbi + Φox − E)
3
2 ]). (6.56)

This equation can now be compared with the expression for the transmission probabil-
ity obtained from NEGF. As mentioned above, a single site connected to a semiinfinite
contact on the one side and to the gate electrode via γ ⋅ t on the other side is considered.
In this case, the retarded Green function Gr is given by

Gr = [E − 2t + teika + γteika]−1 = [γteika − te−ika]−1. (6.57)

With Γl = −2γt sin(ka) and Γr = −2t sin(ka), the transmission function T(E) is

T(E) = 4γ sin2(ka)
1 + γ2 − 2γ(cos2(ka) − sin2(ka))

ka≪1
≈

1
1 + t(1−γ)2

4γ(E−Φbot)

, (6.58)

where Φbot is considered as the conduction band bottom of the electrodes (contact
and gate) attached to the single site. Since γ is very small, (1 − γ)2 ≈ 1 and, moreover,
t(1−γ)2

4γ(E−Φbot)
≫ 1, and hence T(E) ≈ 4γ(E−Φbot)

t . Equating this with 𝒯 (E) and solving for γ
yields

tjg = γj ⋅ t =
t2

4(E − Φbot)
exp(−2√2m

⋆

ℏ2
2dox

3(Φj
f − Φg − Φbi)

[(Φj
f + Φox − E)

3
2

− (Φg + Φbi + Φox − E)
3
2 ]). (6.59)
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Moreover, we can simply replace E−Φbot with the Fermi energy of themetallic gate elec-
trode. The effective mass in Equation (6.59) is the effective mass for tunneling through
the gate dielectric and can serve here together with the Fermi energy as a fit parameter
to adjust the gate leakage to experimental data. In the case considered in Section 5.9.3
(see Figure 5.20), the effective mass was set to m⋆ = 0.42m0 and the Fermi energy 1 eV
[140]. The expression above gives an upper cut-off for possible gate leakage currents.

The total drain current is the sum of the current from source to drain and from each
individual gate (Buettiker) probe to the drain contact. Id is therefore explicitly given by

Id = Isd +
N
∑
j=1

I jgd , (6.60)

where I jgd =
2e
h ∫ dE Γj|G

r
j,N |

2Γd[f (E
s
f − |e|Vgs) − f (E

d
f )] with Γj = −2 Im(Σ

r
j ) of each gate

contact and Γd = −2 Im(Σ
r
d) for the drain contact.

6.3.3 Multimode Transport with Independent 1D Subbands

When the diameter of the nanowire/tube FET increases, multiple one-dimensional sub-
bands have to be incorporated in the simulation. In a rigorous analysis, we would have
to extend NEGF and the calculation of the Poisson equation to higher dimensions (see
Section 6.4). However, in many cases the 1D subbands can be considered as being in-
dependent of each other and if we can still assume that a separation ansatz is appro-
priate, the contribution of multiple subbands can be simply computed individually and
then added (both in terms of charge and current). This saves a great deal of computa-
tional burden since the time for the calculation only increases linearly according to the
number of subbands. As an example, Figure 6.8(a) shows the local density of states of
a conventional nanowire FET where the contribution of three 1D subbands have been
accounted for. Here, a nanowire with quadratic cross-section dnw × dnw and particle-
in-the-box-like quantization in the direction perpendicular to current transport is as-
sumed. Thus, the subband energies are split off the conduction band bottom leading to
the 1D subbands; the appropriate contact self-energy functions exhibit the same sub-
band structure. For simplicity, self-consistency is not considered here.

At the end of Section 6.2.4, it was discussed that the charge in each subband de-
creases when the cross-sectional area of the nanowire increases according to 1/d2nw.
However, it is important to keep in mind that an increasing number of subbands will
be occupied with carriers in the case of larger nanowire diameters. For instance, if one
dimension of the nanowire is continuously increased, an increasing number of modes
will gradually lead from a 1D nanowire with a single or few contributing subbands to a
two-dimensional system (as has been done with an analytic calculation in Section 5.2).

Scattering in the case of multimode transport can also be take into consideration
by employing Buettiker probes. In this case, one can even distinguish between intra-



286 � 6 Device Simulation

Figure 6.8: (a) Local density of states of the first three 1D subbands in a MOSFET. The subbands are con-
sidered to be independent of each other, such that the local DOS is simply obtained by adding the con-
tributions of the subbands. (b) Local density of states in a MOSFET with conduction and valence bands
exhibiting different effective masses. For simplicity, both calculations were done without self-consistency.

and inter-subband inelastic scattering. In the case of intra-subband scattering, Buettiker
probes can be connected to each finite difference site for each individual subband with
the requirement that the net current each Buettiker probe carries will vanish within
each subband. This means that at each finite difference site there will be as many Buet-
tiker probes connected as there are subbands. Each of the probes injects carriers only
from the local subband energy on at the particular finite difference site and will have
its own floating quasi-Fermi level that ensures that the net current injected by the Buet-
tiker probes within each subband is zero. Alternatively, one Buettiker probe per finite
difference site and subband can be connected as before. But now, all Buettiker probes at
a specific finite difference site are short-circuited, sharing the same quasi-Fermi level. In
this case, the overall net current at each finite difference site has to be zero. As a result,
carriers extracted at a certain energy from one of the Buettiker probes can also be in-
jected at another energy into a different subband. Hence, using Buettiker probes in this
way mimics the effect of inter-subband scattering. An example of this will be discussed
in Section 8.1.2.

6.3.4 Including Conduction and Valence Bands—Energy-Dependent Effective Mass

So far, we only considered the conduction band including multiple subbands in the ef-
fective mass approximation. This implies that for energies below the conduction band
(i. e., within the band gap of the semiconductor), the quadratic dispersion relation will
be continued with a purely imaginary κ (see Figure 2.23, thin black lines). However, the
band gap Eg is certainly finite and (at least in a direct semiconductor) it has to be en-
sured that the complex band structurewithin the band gap connects the conduction and
valence bands (cf. Figure 2.23, green dotted line). A smooth transition from conduction
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to valence band, while maintaining the simplicity of the effective mass approach, can
be implemented with Flietner’s dispersion relation [74, 101], which was already briefly
discussed in Section 2.5.2. Using Equation (2.45), the energy effective mass m⋆E can be
written as

m⋆E = m
⋆
c (1 +

E − Φj
f

Eg
) ⋅ (1 + α

E − Φj
f

Eg
)
−2

(6.61)

which is valid for energies between the conduction band Φj
f at j and Φj

f − Eg/2. Here,

α = 1 −√m⋆c /m⋆v andm⋆c andm⋆v are the conduction and valence band effective masses
at the band edges, respectively. For energies in the lower half of the band gap, the energy
effective mass is given by

m⋆E = m
⋆
c (1 +
(Φj

f − Eg) − E

Eg
) ⋅ (1 + α

(Φj
f − Eg) − E − Eg

Eg
)
−2

. (6.62)

Note that in the case of a symmetric semiconductor (for instance, a semiconducting car-
bon nanotube) the effective masses in the conduction and valence bands are equal, and
consequently, m⋆c = m

⋆
v = m

⋆ so that α = 0. The energy effective masses can be used
to determine the hopping parameter t = ℏ

2

2m⋆Ea
2 within the band gap. However, sincem⋆E

depends on the lattice site j the discretized form of the Hamiltonian has to be modified
according to (compare with Equation (6.22))

ℋjl =

{{{{{
{{{{{
{

t− + t+ + Φj
f j = l,

−t− j − 1 = l,
−t+ j + 1 = l,
0 otherwise,

(6.63)

where j, l are indices of different points of the finite difference grid. t∓ = [ 12tj +
1

2tj∓1
]−1 and

the hopping parameters tc(v)j =
ℏ2

2m⋆c(v)a
2 in the conduction (valence) band and tj =

ℏ2

2m⋆Ea
2

within the band gap. With Equation (6.63), the equations to solve for the retarded and
advanced Green function can be set up in the way described in the preceding sections.
Figure 6.8(b) shows a typical local density of states of aMOSFETwith conduction and va-
lence bands exhibiting two different effective masses (see figure) computed with an en-
ergy effective mass using Flietner’s dispersion relation; the local DOS plot in Figure 4.19
has also been calculated accordingly.

6.3.5 Including Conduction and Valence Bands—1D Simulation with Two-Band
Tight-Binding Calculation

The use of Flietner’s dispersion relation maintains the simplicity of the effective mass
approximation to compute the Green’s functions. This, however, implies an energy-
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dependent effective mass that renders the Hamiltonian non-Hermitian. As an alterna-
tive approach, which is almost as computationally efficient and can serve as starting
point for NEGF simulations taking a full tight-binding calculation of the semiconductor
into account, a 1D artificial solid can be defined and the band structure based on a tight-
binding description (cf. Section 2.4.3 and 2.4.6) is included in the NEGF. This artificial
1D solid works particularly well for a symmetric semiconductor with equal effective
massesm⋆c = m

⋆
v as is the case in, e. g., a carbon nanotube.

Considering the recipe for TB calculations discussed in Section 2.4.6, it is clear that
such a 1D solid needs to consist of either two atoms with a single orbital in each unit cell
or a single atomwith two orbitals in each unit cell. Here, we choose the former with two
atoms exhibiting different nearest neighbor overlap integrals within a unit cell and in
between adjacent unit cells as illustrated in Figure 6.9. Doing so we can reproduce the
band structure of a carbon nanotube well within a certain energy range (see below). We
have


(

ϵr V 1
ss

V 1
ss ϵb

) + (
0 0
−V 2

ss 0
) eika + ( 0 −V 2

ss
0 0

) e−ika − ( E 0
0 E
)

= 0. (6.64)

In order to get a symmetric band structure, red and blue atoms are equal, and hence the
on-site energies ϵr = ϵb and for simplicity we set ϵr = 0. Solving Equation (6.64) yields

E(k) = ±√(V 1
ss)

2
+ (V 2

ss)
2
− 2V 1

ssV 2
ss cos(ka). (6.65)

Figure 6.9: Schematic of the artificial, 1D solid with two atoms per unit cell (gray area, lattice constant a)
each providing a single s-orbital. A tight-binding calculation yields a two-band structure with conduction
and valence bands.

In the case |(V 1
ss)

2 + (V 2
ss)

2| > |2V 1
ssV

2
ss|, the desired band structure with symmet-

ric conduction/valence bands and direct band gap is obtained (green solid lines in Fig-
ure 6.10). Around the band gap, the computed band structure resembles a quadratic
dispersion (green dashed line). However, further away from Eg the band structure be-
comes almost linear (comparewith the blue dashed lines in Figure 6.10) before deviating
from the linear behavior. Thus, the band structure of the artificial 1D solid nicely repro-
duces the qualitative appearance of the band structure of a carbon nanotube within the
light gray energetic range. In fact, it reproduces the nanotube dispersion significantly
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Figure 6.10: The band structure according to the two-band model approximates a quadratic dispersion
relation well within the gray energy range. Within the substantially larger, light gray range, the two-band
model reproduces well the band structure of a CNT.

better than an effective mass approximation (which only fits within the gray range).
Note that with the artificial 1D solid no energy-dependent effective mass has to be intro-
duced, since the appropriate complex band structure is part of the solution: indeed, for
small k, the cosine-term can be Taylor expanded, and as a result one obtains the same
band structure as given in Equation (2.60). This also means that replacing k with iκ one
obtains the same result as given in Section 2.9.

Depending on the particular carbon nanotube (or another semiconductor if the en-
ergy range is restricted to the dark gray energy range in Figure 6.10), one has to adjust
the parameters in order to realize certain effectivemasses and band gaps. The band gap
is Eg = 2×E(k = 0) = 2×√(V 1

ss)
2 + (V 2

ss)
2 − 2V 1

ssV 2
ss = 2|V

1
ss −V

2
ss|. Extracting the effective

mass around k ≈ 0, one obtainsm⋆ = ℏ2 Eg
2a2V 1

ssV 2
ss
. If a real nanotube is to be simulated, Eg

andm⋆ can be extracted from, e. g., a full tight-binding calculation and then the expres-
sions above can be used to solve for V 1

ss and V
2
ss. Before setting up the Green’s function

for the two-bandmodel, solve Task 24 to recapitulate the computation of surface Green’s
functions (this has been used to compute the surface DOS in Section 2.12.3):

Task 24.
Surface Green’s function: Explicitly compute the surface Green’s function of the surface of the semiinfi-
nite 2D crystal shown in Figure 2.21(a) with s, px -orbitals; set Vsp = 0.

51

https://vimeo.com/900734347
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In a next step, the NEGF matrices have to be set up in a similar way as above. From
Equation (6.64) it is known how the Hamiltonian has to be constructed, which yields

ℋ =

((((((((

(

Φj
f V 1

ss 0 0 0 0 ⋅ ⋅ ⋅

V 1
ss Φj

f −V 2
ss 0 0 0 ⋅ ⋅ ⋅

0 −V 2
ss Φj+1

f V 1
ss 0 0 ⋅ ⋅ ⋅

0 0 V 1
ss Φj+1

f −V 2
ss 0

. . .

0 0 0 −V 2
ss Φj+2

f V 1
ss 0

...
...

...
...

...
...

. . .

))))))))

)

. (6.66)

Setting all potentials to the same valueΦ0
f one can go through the same analysis as above

to incorporate contacts via appropriate self-energies (cf. Section 6.2.3). The self-energy
in this case will be a 2 × 2-matrix. However, since only one of the atoms of each unit cell
is connected to the adjacent cells, the self-energy is

Σr = τGrCτ
† = (

0 0 0 ⋅ ⋅ ⋅
−V 2

ss 0 0 ⋅ ⋅ ⋅
)GrC(

0 −V 2
ss

0 0
0 0
...

...

) = (
0 0
0 (V 2

ss)
2(GrC)1,1

) .

(6.67)
The surface Green’s function is therefore obtained from

(
(GrC)1,1 (G

r
C)1,2

(GrC)2,1 (G
r
C)2,2
) = [E + iη − (

Φ0
f V 1

ss
V 1
ss Φ0

f
) − (

0 0
0 (V 2

ss)
2(GrC)1,1

)]
−1

. (6.68)

The inverse of the 2 × 2-matrix can easily be computed (see also Task 24) so that the
surface Green’s function (only the (GrC)1,1-element is needed) is obtained by solving

(GrC)1,1 =
E + iη − (V 2

ss)
2(GrC)1,1

(E − Φ0
f )(E + iη − Φ

0
f − (V

2
ss)

2(GrC)1,1) − (V
1
ss)

2 . (6.69)

All other relations will then be similar to the discussion above.

6.4 Simulations of Devices in Higher Dimensions

In the preceding sections, electronic transport and the Poisson equation have been de-
scribed in a 1D framework. Within this framework, the source/drain extensions can be
included using conformal mapping and multiple independent subbands can be incor-
porated to simulate nanowire devices with larger diameter. However, a more rigorous
treatment of the device behavior is sometimes needed. In particular, the electrostatics
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of the device plays a very important role for the functionality. For instance, the calcula-
tion of the parasitic capacitances of nanowire bundle FETs in Section 5.9.2 is based on
a 1D NEGF of the electronic transport, while the electrostatics is considered in 3D (here
2D due to the (approximately) cylindrical symmetry of the device). Therefore, an exten-
sion of the numerical solution of the Poisson equation to the 2D/3D case will be provided
before a brief introduction into NEGF in higher dimensions will be given.

6.4.1 Poisson Equation

As an example for setting up a numerical finite difference framework for the 2D case,
Figure 6.11 shows a schematic image of a conventional bulk transistor. If the width W
of the device can be considered to be very large, all quantities are independent of the
y-coordinate and the calculation can be reduced to a 2D finite difference problem as
illustrated.

Figure 6.11: Two-dimensional cross-section of a bulk-MOSFET with finite-difference grid (left). The right
panel shows a close-up of the five-point stencil of the 2D finite-difference grid centered around lattice point
(j, i) at the silicon-gate dielectric interface.

Let us start by subdividing the computational domain into a regular grid with lattice
constant a in the x- and b in the z-direction, as illustrated in Figure 6.11. The right panel
of Figure 6.11 shows a close-up of the so-called five-point stencil for the potential Φ(xj , zi)
centered around thepoint (j, i). From the simple 1Dfinite difference formula given above
(cf. Equation (6.1)), it is easy to see that the Laplace operator in 2D is

𝜕2Φ(x, z)
𝜕x2
+
𝜕2Φ(x, z)
𝜕z2
→

Φj+1,i − 2Φj,i + Φj−1,i

a2
+
Φj,i+1 − 2Φj,i + Φj,i−1

b2
. (6.70)

Equation (6.70) can be written in matrix form and solved for the potential distribution
once the carrier density is known. The extension from 1D to 2D is thus straightforward
including boundary conditions (see Task 25); only the interfaces of regionswith different
dielectric constants need more attention.
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Task 25.
2D Poisson equation: Write down explicitly the matrix equation for the 2D Poisson equation consider-
ing a square lattice with 3 × 3 lattice points and lattice constants a (in the x- and y-directions). Assume
Neumann boundary conditions with zero electric field at the bottom and left boundaries and Dirichlet
boundary conditions

52
at the remaining two boundaries with constant Φ0 at the top and Φ1 at the right

boundary. Moreover, a constant charge density is assumed.

To include dielectric boundaries in the Poisson equation, we need to consider the gen-
eralized form of it given by

∇(ε(x⃗)∇Φ(x⃗)) = −e
2n(x⃗)
ε0
. (6.71)

In order to find an appropriate expression for the finite difference representation of the
generalized Poisson equation incorporating regions of different dielectric constants, we
define an auxiliary latticewith the same lattice constants a and bbut shiftedwith respect
to the original one as illustrated with the hollow black circles in Figure 6.11, right panel.
If Equation (6.71) is integrated over the gray shaded area, i. e., over one unit cell of area
A = a⋅b of the auxiliaryfinite difference lattice, the right-hand sidewill lead to the charge
(−e)nj,i ⋅a ⋅b (per length, since we do not consider the y-direction) on the site (j, i) divided
by ε0. On the other hand, Gauss’ law tells us that ∫A ∇(ε∇Φ) dx dz = ∮C ε∇Φ dn⃗ where C
is the circumference (dashed line) of A and dn⃗ is the differential unit normal vector.
The contour integral ∮ can be subdivided into individual integrations along the four
sides of A. Exemplarily, the integration along the right vertical edge is carried out. Using
the coordinate system as displayed in the figure, it is clear that at this edge the scalar
product of ∇Φ and dn⃗ yields only 𝜕Φ𝜕x ⋅ dz +

𝜕Φ
𝜕x ⋅ 0. The derivative can be approximated

with the forward difference 𝜕Φ(x, z)/𝜕x ≈ 1
a (Φj+1,i −Φj,i). Integrating along the edge, one

half is in the region with εi−1j+1 and the other half with εi+1j+1 (doped silicon and air in the
example displayed in Figure 6.11). Since the partial derivative is constant along the edge,
we obtain (assuming the origin is at lattice point (j, i))

0

∫
−b/2

dz εi−1j+1
Φj+1,i − Φj,i

a
+

b/2

∫
0

dz εi+1j+1
Φj+1,i − Φj,i

a
= b

εi−1j+1 + ε
i+1
j+1

2
Φj+1,i − Φj,i

a
. (6.72)

Similar expressions can be set up for the remaining three edges of the contour. Putting
everything together (and dividing both sides by a ⋅ b) we obtain the following discrete
Poisson equation:

εi−1j+1+ε
i+1
j+1

2 Φj+1,i −
εi−1j+1+ε

i+1
j+1+ε

i+1
j−1+ε

i−1
j−1

2 Φj,i +
εi+1j−1+ε

i−1
j−1

2 Φj−1,i

a2

+
εi+1j−1+ε

i+1
j+1

2 Φj,i+1 −
εi−1j+1+ε

i+1
j+1+ε

i+1
j−1+ε

i−1
j−1

2 Φj,i +
εi−1j+1+ε

i−1
j−1

2 Φj,i−1

b2
= −

e2nj,i
ε0
. (6.73)

https://vimeo.com/466064357
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This equation has a simple form, namely it is basically Equation (6.70) where each po-
tential is multiplied with the average dielectric constant at the particular point.

A further extension into 3D is conceptually straightforward. However, since this re-
quires a third index together with possible eight different dielectric constants the no-
tation will become somewhat messy and will not be stated here explicitly. Boundary
conditions, either Dirichlet or Neumann, can be implemented in the same way as has
been done in the one-dimensional case stated earlier.

Task 26.
Finite difference with cylindrical coordinates: Derive a finite difference expression for the Poisson
equation in cylindrical coordinates. A regular lattice with lattice constant a should be used.

53

6.4.2 NEGF Devices in 2D/3D

The one-dimensional NEGF simulations presented above can be extended to the 2D or 3D
case. In Section 6.3.5, the 1D model was already extended to include a conduction and a
valence band. While in this case the inversion of the matrix equation (6.68) can be done
analytically, in the general case of a high-dimensional system, the surface Green’s func-
tions that describe the contacts need to be computed iteratively with Equation (6.29).
The iteration scheme to determine the surface Green’s function converges slowly but
can be sped up using, e. g., the algorithm suggested in [178]. Since in the case of ballistic

Figure 6.12: (a) Local density of states in an ultrathin-body 2D device with idealistic step-function potential
distribution (green line). For simplicity, a particle-in-the-box quantum confinement was assumed in one
direction and three subbands are visible in the plotted energy range. (b) 3D plot of the same local density
of states.

https://vimeo.com/466497354
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transport only the first and the last columns of the overall Green’s function are needed a
recursive Green’s function algorithm is usually employed. The reader is referred to the
extensive literature available on the subject. Figure 6.12 shows a local density of states
plot at the center of an ultrathin-body device where carrier confinement in one spatial
direction leads to the formation of subbands. For simplicity, a particle-in-the-box quan-
tization has been assumed. Furthermore, in order to illustrate the local density of states
in the 3D image, a simple step-function potential distribution has been implemented.
Figure 6.12(b) allows a clear observation of the three subbands shown in (a). An exten-
sion of theNEGF calculations presented here is in principle straightforward but requires
clever coding in order to cope with the numerical burden of a 2D or even 3D simulation.

Exercises

Exercises togetherwith solutions are accessible via theQR code. 54

https://www.iht.rwth-aachen.de/global/show_document.asp?id=aaaaaaaachgkuvx


7 Metal-Source-Drain Field-Effect Transistors

When scaling down transistors, one has to ensure that the parasitic resistances asso-
ciated with the doped source and drain regions are always substantially smaller than
the resistance of the channel in the device’s on-state. The reason for this is the follow-
ing: Looking at Figure 7.1, it is clear that the effective drain-source voltage V eff

ds and ef-
fective gate-source voltage V eff

gs are substantially reduced if the parasitic source/drain
resistances Rpars,d become significant. In this case, one obtains V eff

gs = Vgs − IdR
par
s and

V eff
ds = Vds − Id(R

par
s + R

par
d ). Inserting this into the expression for the drain current cal-

culated with the gradual channel approximation in Section 5.1 yields

Id = μCox
W
L
((Vds − (R

par
s +R

par
d )Id)(Vgs −R

par
s Id −Vth)−

(Vds − (R
par
s + R

par
d )Id)

2

2
), (7.1)

which can be solved for Id .

Figure 7.1: Parasitic source/drain resistances Rpars,d in series with the channel resistance Rch lead to a reduc-
tion of the effective gate voltage Veffgs and the effective drain-source bias Veffds .

However, reducing the parasitic resistances becomes increasingly difficult when
scaling down the transistor dimensions. Issues associated with doping source and drain
include a finite solid solubility of dopants in the semiconductor, the nanoscale dimen-
sions of source/drain extensions in nanowire devices that lead to deactivation of dopants
(see Section 4.3.2 and Chapter 5) and variability due to random dopant effects. All these
issues make a replacement of the doped source/drain regions with metallic electrodes
highly attractive. Obvious advantages are: (i) very low parasitic resistances, (ii) no im-
plantation/activation is necessary, and thus, dopant diffusion is avoided, leading to (iii)
well-defined, atomically abrupt interfaces between source/drain and channel holding
promise for reduced variability.

https://doi.org/10.1515/9783111054421-007

https://doi.org/10.1515/9783111054421-007
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Figure 7.2: (a) Schematic of a silicon-on-insulator Schottky-barrier MOSFET with a thin channel layer
dch = dSOI, channel length L and widthW ; the local density of states together with the conduction and
valence bands along the direction of current transport are depicted underneath. Metal-induced gap states
can clearly be identified at the metal-semiconductor interfaces. (b) TEM image of the source area of an
experimental SOI SB-MOSFET with NiSi contacts [149].

Figure 7.2(a) (top panel) shows a schematic of a MOSFET with metallic source/drain
contacts and (b) displays a transmission electronmicrographof the source region of such
a MOSFET with nickel silicide contacts (see Chapter 3) clearly showing the well-defined
geometry of the source electrode [149]. However, as was elaborated on in Section 4.6,
at a metal-semiconductor interface a Schottky barrier builds up due to Fermi level pin-
ning, which leads to a substantial potential barrier at the contact channel interfaces.
The lower panel of Figure 7.2(a) shows a plot of the local density-of-states (lDOS) in the
channel of aMOSFETwithmetallic source/drain contacts. Fermi level pinning at approx-
imatelymid-gaphas been assumed in the present case.Metal-induced gap states lead to a
high density of interface states as apparent from the bright areas at the contact-channel
interfaces. In the case of ΦSB ≳ 4–5 × kBT , carriers are injected into the channel mainly
via tunneling through the SB as indicated with the red arrow in Figure 7.2(a). There-
fore, MOSFET devices with metallic source/drain contacts are called Schottky-barrier
MOSFETs (SB-MOSFETs).1 SB-MOSFETs have attracted a great deal of interest due to the
reasonsmentioned above. However, the presence of the Schottky barrier has a large im-
pact on the device’s on- and off-state behavior. Hence, a great deal of research has been
focused on the reduction of the Schottky-barrier height.

In the present chapter, the operating principles of SB-MOSFETs, strategies for their
optimization and limitations will be discussed. Note that, even though SB-MOSFETs ex-

1 Note that there is a Schottky barrier for electron injection Φelec
SB and for hole injection Φhole

SB with Φelec
SB +

Φhole
SB = Eg . Throughout the book, the term Schottky barrier refers to the barrier for electron injection

(if not stated otherwise) denoted with ΦSB.
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hibit a number of drawbacks, there is good reason to thoroughly study them: virtually
all devices based on novel materials (such as carbon nanotubes and 2D materials; see
Chapters 8 and 10) are basically Schottky-barrier MOSFETs because contacting those
materials by simply depositing a metal on them is the most straightforward (and some-
times the only) way for making a device. Knowledge about the operating principles of
SB-MOSFETs is therefore mandatory, since wrong conclusions may be drawn from ex-
perimental data, in particular with respect to extracting carrier mobilities.

7.1 Operating Principles of SB-MOSFETs

It has been already mentioned above (cf. Section 4.6) that at metal-semiconductor inter-
faces a Schottky barrier builds up due to Fermi level pinning.2 In the following we will
assume that Fermi level pinning is strong enough for the Schottky barrier to be fixed
and that it depends neither on the doping concentration in the semiconductor nor on
the carrier density induced by applying a gate voltage or the gate voltage itself. This ap-
proximationworks very well inmany cases and allows for drawing a number of conclu-
sions regarding the operation of SB-MOSFETs without complicated calculations. Hence,
before further quantitatively elaborating on this let us first try to understand qualita-
tively how SB-MOSFETs work.

To start with, wewill look at a long-channel, n-type SB-MOSFET andwill concentrate
on the injection of carriers at the source–channel interface into the conduction band of
the channel. Figure 7.3 shows several conduction band profiles along the direction of
current transport. At small gate voltages, the potential maximum Φ0

f that determines
the current flow (cf. Section 5.2.1) is located energetically above the Schottky barrier.
Increasing the gate voltagemovesΦ0

f to lower energies. As long asΦ0
f ≥ ΦSB, the Schottky

barrier will have no impact on the current flow and the device behaves exactly like
a conventional-type transistor since it is based purely on thermal emission of carriers
over Φ0

f . As a result, an exponential increase of the currentwith an inverse subthreshold
slope of at best 60mV/dec is obtained. However, as soon as Φ0

f is moved below ΦSB, the
Schottky barrier is the maximum barrier in the channel, and hence will determine the
injection of carriers.

How the current further increases with increasing Vgs depends on the details of the
potential profile of the Schottky barrier (which will be a function of the device geom-
etry) and on the material properties (effective mass, band gap, dielectric constant etc.)
of the channel. In any case, it is clear that a further increase of current will be some-
where within the gray shaded area in Figure 7.3: if there was no tunneling through the
Schottky barrier at all, the current would be determined by thermal emission over the

2 Even in the absence of Fermi level pinning a potential barriermay build up according to the difference
in work functions of the contact metal and the semiconductor in use.
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Figure 7.3: Left: Conduction band in a SB-MOSFET for different gate voltages. As long as Φ0
f ≥ ΦSB, the

transistor behaves like a conventional MOSFET with an inverse subthreshold slope of at best 60mV/dec as
illustrated in the right panel. If Φ0

f < ΦSB, the increase of current is given by the change of the tunneling
probability with Vgs yielding S > 60mV/dec and a deteriorated on-state performance.

constant Schottky barrier, and thus there would be no further change of Id with gate
voltage as illustrated with the red dashed line in Figure 7.3. If, on the other hand, the
tunneling probability through the Schottky barrier approached unity, the currentwould
further increase as in a conventional MOSFET (blue dashed line in Figure 7.3). Thus, in
the case of finite tunneling the curve will lie in-between these two extremes. As a result,
one observes a distinct kink in the Id–Vgs-curves at the voltage where the device behav-
ior changes from thermal emission to tunneling. The lower the tunneling probability
through the SB, the more pronounced the kink.

Up to now, we only discussed the contribution of the conduction band. However,
from the bottom panel of Figure 7.2(a) it is clear that because the metallic source and
drain electrodes do not have a band gap, carriers can be injected into the conduction and
into the valence band of the channel depending on the particular gate voltage applied.
This leads to so-called ambipolar behavior, i. e., SB-MOSFETs can be operated as n-type
and as p-type transistors, depending on the applied voltages.

Figure 7.4 shows Id–Vgs-curves for three different Schottky-barrier heights: (a) dis-
plays the transfer characteristics and three conduction/valence band profiles in the case
ΦSB = 0, (b) shows the same for ΦSB = Eg/2 and (c) in the case of ΦSB = Eg . The trans-
fer characteristics in each case can be constructed using the behavior discussed in Fig-
ure 7.3 by plotting the branches for the injection of electrons and holes separately. The
cross-over from electron to hole branch (or vice versa) occurs when the currents of both
branches are equal. Each branch consists of a thermal emission and tunneling part with
a kink separating the two regimes. The position (with respect to the gate voltage) of the
kink depends on the height of the Schottky barrier and on the applied bias: In the case of
ΦSB = 0 (ΦSB = Eg ), the kink in the transfer characteristics of the electron branch (hole
branch) lies close to the on-state of the SB-MOSFETwhen operated as n-type (p-type) FET,
and thus can hardly be observed. On the other hand, the kink in the hole branch (elec-
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Figure 7.4: Ambipolar characteristics of SB-MOSFETs for three different ΦSB explaining how electron and
hole branches determine the appearance of the Id–Vgs-curves in SB-MOSFETs.

tron branch) is hidden by the quickly increasing current of the electron (hole) branch.
As a result, in the case of (a) and (c) one obtains a device with a switching behavior
similar to a conventional FET but increased leakage due to the ambipolar operation. If
the Schottky barrier is at mid-gap, the switching behavior is exclusively determined by
tunneling through the Schottky barriers for the electron and hole branches. Note that in
this symmetric case the kink in the Id − Vgs-curves is hidden for both electron and hole
branches,which becomes obviouswhen looking at the conduction/valence bandprofiles
on top of Figure 7.4(b); if we assume a similar tunneling probability for electrons and
holes, the hole branch already sets in before the electron branch enters the regime of
thermal emission, and hence no kink can be observed. The inverse subthreshold

55
slope

in this case is S > 60mV/dec, for both, electron and hole branches. QR code #55 provides
more details on the transfer characteristics of SB-MOSFETs.

The simultaneous injection of carriers into the conduction and the valence has an
important consequence for the operation of SB-MOSFETs; Figure 7.5 shows the conduc-
tion and valence bands of a SB-MOSFET for a fixed gate voltage but two different drain-
source biases. Obviously, the injection of electrons does not change since the potential
distribution at the source-side of the channel has not changed. However, the drain side
looks different in the two cases. In fact, relative to the drain, the valence band has been
“moved” upwards yielding a thinner drain-side Schottky barrier, and thus an increased
injection of holes from the drain into the channel when increasing Vds. Consequently,
a higher Vds yields a higher gate-drain voltage Vgd (at constant Vgs), and thus a higher
current of the hole branch as shown in the right panel of Figure 7.5.

Figure 7.6 shows experimental transfer characteristics belonging to the silicon-on-
insulator SB-MOSFET with nickel silicide source/drain electrodes shown in Figure 7.2(b)

https://vimeo.com/466501406
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Figure 7.5: Ambipolar transfer characteristics of a SB-MOSFET for two different Vds. In the case of a con-
stant gate-source voltage Vgs, an increased Vds appears as an increased gate-drain voltage, which leads to a
larger injection of holes.

Figure 7.6: Typical transfer characteristics of a SOI Schottky-barrier MOSFET with NiSi contacts [289].

(the fabrication of such a device will be discussed in the next section) [289]; note that
in the present case, the transistor is operated as a p-type device, i. e., Vds is biased neg-
atively. The data show all features that have been discussed so far: One can clearly ob-
serve ambipolar behavior with a strongly increasing current for fixed Vgs of the elec-
tron branch when Vds decreases from −0.2 V to −1.4 V. Moreover, a distinct kink is visi-
ble in the hole branch. The clear appearance of a kink means that the Schottky barrier
for hole injection Φhole

SB is smaller than the corresponding for electron injection. Three
different inverse subthreshold slopes can be extracted from Figure 7.6; for gate volt-
ages larger than the kink position, the current decreases with an inverse subthreshold
slope of 70mV/dec (region ii)), i. e., close to the thermal limit showing that this part of
the transfer characteristics is determined by thermal emission of holes in the valence
band and not tunneling through a Schottky barrier. In the case of more negative Vgs, the
Id–Vgs-curves kink and current increases with a substantially larger inverse subthresh-
old slope of 330mV/dec (region i)). The latter is clearly determined by hole injection into
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the valence band via tunneling through the source side Schottky barrier. The inverse
subthreshold slope of 250mV/dec (region iii)) of the electron branch is a result of tunnel-
ing through the drain-side Schottky barrier due to electron injection into the conduction
band. Although Φelec

SB > Φ
hole
SB the inverse subthreshold slope Siii) is steeper for electron

injection compared to hole injection Si). The reason for this will become clear in the next
section. The point is that the height of the Schottky barrier determines the magnitude of
the drain current but to first order not the change of current with gate voltage, i. e., the
subthreshold swing. The steeper slope of the electron branch is then a consequence of
the lighter effective mass of electrons in silicon compared to holes.

7.1.1 Ultrathin-Body SB-MOSFETs

After the rather qualitative discussion of Schottky-barrier MOSFETs in the preceding
section, we will now introduce a model that allows computing the electrical behavior
of SB-MOSFETs without the necessity of elaborate simulations. This model will also help
extracting guidelines for the optimization of SB-MOSFETs.

In order to discuss electronic transport through a transistor, we need to compute
the potential distribution within the device. However, particularly in long-channel SB-
MOSFET (more precisely without SCE) it is the potential distribution of the source-side
Schottky barrier that matters most, since the current through the device is to a large
extent determined by the injection through this barrier. In order to compute the poten-
tial distribution, we will use the one-dimensional modified Poisson equation derived in
Section 5.5. As amodel system, a single-gate device based on a thin, fully depleted silicon-
on-insulator substrate is chosen, as is illustrated in Figure 7.2(a). Note, however, that the
following discussion does not depend on the particular model system and is also valid
for other (ultra)thin-body FETs such as nanowire/tube transistors with multiple gates.
The channel length of the device is assumed to be long enough to ensure that the drain-
source bias has no impact on the potential distribution at the source contact (i. e., that
short-channel effects are avoided). In this case, we can restrict the discussion to electron
injection through the source-side Schottky barrier. In the next sections, we will consider
the off-state and the on-state of SB-MOSFETs separately.

7.1.1.1 Off-State Behavior
In the off-state of a transistor, the density of mobile charge is negligible, i. e., (−e) ⋅ n ≈ 0.
As a result, Equation (5.34) can be solved analytically leading to an exponential depen-
dence of the potential distribution Φf (x) on the spatial coordinate x. With the assump-
tionmade that the SB-MOSFETunder consideration has a very long-channel lengthL, the
energetic position of the conduction band Φ0

f within the channel (approximately at L/2,
i. e., far enough from the source-channel and channel-drain interfaces) is determined by
the applied gate voltage, built-in voltage and work-function difference. This means that
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Φ0
f is the same as in a conventional, long-channel transistor in the off-state, and hence

is given by

−
Φ0
f − Φbi − Φg

λ2ch
≈ 0. (7.2)

Thus, Φ0
f = Φbi − eVgs where Vgs is the gate-source voltage and Φbi the built-in potential

(see Section 5.5). Since a sufficiently long channel is assumed (andVds is considered large
enough so that only carrier injection from sourcematters), Equation (5.34) can be solved
with the boundary conditions Φf (x = 0) = ΦSB and Φf (x = L/2)

L/2→∞
→ Φ0

f . As a result,
the potential distribution at the source-side Schottky barrier is

Φf (x) = (ΦSB − Φ
0
f ) exp(−

x
λch
) + Φ0

f . (7.3)

An analytic expression for the current in the off-state, and hence the inverse sub-
threshold slope can be obtained when the potential distribution given by Equation (7.3)
is replaced by an effective Schottky barrier Φeff

SB for thermal emission of carriers. Fig-
ure 7.7 shows the transmission probability as a function of energy (red line) computed
quantum mechanically with the Fisher–Lee relation (see Section 6.47) using the poten-
tial distribution (green line) given by Equation (7.3). A sharp transition is observed with
the transmission probability decreasing stronger than a simple exponential function for
increasing thickness of the Schottky barrier. Therefore, a tunneling distance dtunnel can
be introduced that divides the Schottky barrier into two regimes; if the potential barrier
is thinner than dtunnel, i. e., close to the tip of the Schottky barrier, the probability for tun-
neling through the barrier is set to unity T(E) = 1. On the other hand, if the potential

Figure 7.7: Conduction band profile (green line) of the source-side Schottky barrier together with the trans-
mission probability T(E) (red line) on a semilogarithmic plot (top-axis).
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is thicker than dtunnel tunneling is completely neglected by setting T(E) = 0 (see insets
of Figure 7.8). Compared to the WKB approximation used in Section 4.6.2, this rather
crude approximation is possible since in the present case the potential distribution of
the source-side Schottky barrier depends exponentially (in contrast to the quadratic de-
pendence of doped MS-contacts) on the spatial coordinate. Because T(E) itself depends
exponentially on the thickness of the potential barrier, it shows the sharp transition from
negligible values to a probability close to one, shown in Figure 7.7.

The discussion above justifies replacing the actual Schottky barrier with a simple
effective Schottky barrier for thermal emission alone Φeff

SB = Φf (x = dtunnel). With T(E) =
0 forE ≤ Φeff

SB andT(E) = 1 ifE > Φ
eff
SB , we canuse the Landauer formalism to compute the

current. Inserting dtunnel into Equation (7.3) leads to the following result for the effective
Schottky-barrier height Φeff

SB :

Φeff
SB = (ΦSB − Φ

0
f ) exp(−

dtunnel
λch
) + Φ0

f . (7.4)

The exact value of dtunnel does not matter for the time being. However, an estimate
can be obtained using the WKB approximation showing that dtunnel mainly depends on
material-specific parameters in particular m⋆. Hence, dtunnel is considered to be inde-
pendent of Vgs in the following. In silicon SB-MOSFETs, a reasonable value for dtunnel is
in the range of 3.5–3.7 nm [147, 149], whereas, e. g., in carbon nanotubes, dtunnel is in the
range of 5 nm due to the lighter effective mass (see Section 8.1) [136].

From Equation (7.4), it is obvious that the effective Schottky barrier sensitively de-
pends on λch, and thus on the gate dielectric thickness dox, the channel layer thickness
dch, the respective dielectric constants and on the device geometry (cf. Figure 5.12 for
the λch-values associated with different device geometries). Figure 7.8 shows the poten-
tial distribution of the source-side SB in the case of (a) a rather large λch and (b) a much

Figure 7.8: Conduction band for two different Vgs at the source-side Schottky barrier in the case of a large
λch (a) and a small λch (b). The insets show close-ups illustrating the impact of Vgs on Φeff

SB .
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smaller λch for two different Vgs. In the case of the smaller screening length λch, Fig-
ure 7.8(b) shows that the effective Schottky-barrier height Φeff

SB is changed substantially
more with Vgs compared to the case of a larger λch, i. e., δΦ

eff,small λch
SB > δΦeff,large λch

SB . Fig-
ure 7.8 also explains that in all cases δΦeff

SB < δΦ
0
f .

We can now compute the current in the off-state of SB-MOSFETs using the Landauer
formula. For instance, in the two-dimensional case this yields (cf. Section 5.2):

Id =
2e
h
∑
ky

Δky
2π/W

∞
∫

Φeff
SB+ ℏ2k2y2m⋆

dE fs(E
s
f ) (7.5)

where the source–drain bias was assumed large enough so that fd(E
s
f ) can be neglected

in Equation (7.5) but at the same time small enough so that ambipolar operation is sup-
pressed and Id is determined by the injection of carriers from source alone. In the off-
state, the Fermi distribution function can be replaced with the Boltzmann distribution
and as a result of the integration the drain current is proportional to exp(− Φ

eff
SB

kBT
) (com-

parewith Equation (5.20)). The inverse subthreshold slope is now calculated in the same
way as was done in Section 5.2.2:

S = (𝜕 log(Id)
𝜕Vgs
)
−1
= ln(10)( 𝜕Id

𝜕Φeff
SB

𝜕Φeff
SB
𝜕Φ0

f

𝜕Φ0
f

𝜕Φg

𝜕Φg

𝜕Vgs

1
Id
)
−1
. (7.6)

Due to the exponential dependence of the current on Φeff
SB , one obtains 𝜕Id𝜕Φeff

SB
= − Id

kBT
.

From Equation (7.4), it is clear that 𝜕Φeff
SB𝜕Φ0
f
= 1 − e−dtunnel/λch . Furthermore, the change of

surface potential δΦ0
f with changing gate potential δΦg is the same as in a conventional

MOSFET and, therefore, 𝜕Φ0
f𝜕Φg
= 1 in the optimum case. Finally, noting that 𝜕Φg𝜕Vgs

= −e a
closed expression for S is obtained:

S = kBT
e

ln(10) 1
1 − exp(−dtunnel/λch)

λch>dtunnel≈ kBT
e

ln(10)( 1
2
+

λch
dtunnel
). (7.7)

Note that the approximation on the right side of Equation (7.7) is only valid if λch >
dtunnel, which is often the case in experiments. However, λch ≲ dtunnel would result in
S < 60mV/dec, which is not possible for a SB-MOSFET at room temperature. In this case,
the full expression (left part of Equation (7.7)) needs to be used.

Task 27.
SCEs in SB-MOSFETs: Compute an approximate expression for the inverse subthreshold slope of a SB-
MOSFET in the case of a device that shows substantial short-channel effects.

56
Use the simple expression

for the drain capacitance Cd as given in Equation (5.19).

https://vimeo.com/466504281
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Task 28.
Minimal off-current of SB-MOSFET: Consider a carbon nanotube, single gate Schottky-barrier transistor
with ballistic transport and mid-gap Fermi level pinning. Compute an explicit expression for the minimal
off-state current as a function of bias voltage Vds, channel layer

57
thickness dch, gate dielectric thickness

and constant dox, εox as well as Schottky-barrier height ΦSB and band gap Eg.

7.1.1.2 Comparison with Experiments
According to Equation (7.7), the inverse subthreshold slope S, i. e., the switching behav-
ior, depends strongly on λch. Thismeans that the electrical characteristics of SB-MOSFETs
can be improved substantially using thinner gate dielectrics, employing an ultrathin-
body channel, gate dielectrics with high εk -value and a multigate device architecture.
Fortunately, all these measures have to be implemented when scaling down field-effect
transistor devices in order to avoid short-channel effects.

The improvement of SB-MOSFETs concerning their switching behavior can be as-
cribed to the exponential screening of potential variations on the length scale λch that
emerged as one of the main results of the derivation of the one-dimensional modified
Poisson equation (5.34). As will be discussed in Chapter 9, the same reasoning is also
important for optimization strategies of so-called band-to-band tunnel field-effect tran-
sistors. Hence, it is important to verify the assertion of increased tunneling through
the Schottky barrier by comparing theoretical predictions with experiments. For such a
comparison, the inverse subthreshold slope is the ideal figure of merit. First, it is a dif-
ferential measure and, therefore, independent of variations of the threshold voltage in
experimental devices. Second, since it is extracted in the off-state of the transistor, vari-
ations of the on-current due to channel length variations and/or parasitic source/drain
resistances do not play a role.

Schottky-barrier MOSFETs with fully nickel silicided source/drain electrodes are
fabricated on SOI wafers with a p-type doping of 1 × 1015 cm−3 of varying thickness
(see Chapter 3 for details on the mentioned fabrication processes). Digital etching is
used to thin down the wafers to the desired thickness. Next, the SOI thickness is mea-
sured using spectroscopic ellipsometry; here, a map of the entire wafer/sample piece is
recorded in order to extract a probability distribution of the measured SOI thicknesses.
Subsequently, optical lithography is used to pattern the active areas of the devices. Reac-
tive ion etching is then employed to etch through the SOI layer creating insulated mesa
structures. After mesa insulation, gate oxides with different thicknesses are grown by
low temperature wet thermal oxidation [6] followed by the deposition of 200 nm n-type
polysilicon with LP-CVD. The gate is patterned with optical lithography and RIE and
spacers are formed with conformal SiO2-deposition and anisotropic dry etching. The
last steps include a self-aligned silicidation process with nickel deposition, silicidation
at 500 °C for 20 s and the removal of superficial nickel (cf. Section 3.11). The process se-
quence is schematically shown in Figure 7.9. Only long-channel devices with a channel
length of L = 2 µm are fabricated in order to rule out any influence of short-channel ef-

https://vimeo.com/466506847
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Figure 7.9: Schematics of the SOI SB-MOSFET fabrication with a self-aligned silicidation process.

fects. Figure 7.2(b) shows a TEM image of the source area of a readily fabricated device.
One clearly sees the encroachment of the nickel silicide underneath the spacer and part
of the gate electrode as has been discussed in Section 3.11.1. Since the SOI thickness has
a rather strong impact on the NiSi encroachment, the temperature and time for the sili-
cidation are chosen long enough to ensure that the NiSi-silicon interface lies well below
the gate electrode in all cases. As already mentioned above, a possible channel length
variation that may be obtained with this procedure is irrelevant here since we only use
the off-state region of the transistor characteristics to carry out the analysis.

A multitude of SB-MOSFETs are measured and the inverse subthreshold slope is ex-
tracted from the transfer characteristics. Figure 7.10 shows exemplarily transfer charac-
teristics of devices with fixed dox and varying dSOI (a) and fixed dSOI and three different
gate oxide thicknesses (b). While the chosen gate oxide thicknesses can be realized eas-
ily by an appropriate oxidation step, adjusting different SOI thicknesses is not as simple.
However, using the fact that according to Equation (7.7) the SOI thickness has a direct im-
pact on S whereas small variations of the channel length or parasitic resistance do not,
a statistical approach is chosen and the probability distribution of measured S-values is
correlated with themeasured probability distribution of SOI thicknesses [40, 149]; a few
transmission electron microscopy images are taken to verify the correlation between

Figure 7.10: (a) Id–Vgs-characteristics for SOI SB-MOSFETs with constant dox and varying dSOI and (b) con-
stant dSOI thickness and different dox; the bias is 1 V in all cases [287]. (c) Inverse subthreshold slopes as
a function of dSOI in SOI-SB-MOSFET [149, 287]. Symbols belong to experimentally extracted S-values, the
dotted lines are calculated based on Equation (7.7).
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the two probability distributions. As a result, S-values from ∼60 SB-MOSFETs with dSOI
in the range of 7–55 nm are obtained.

Figure 7.10(c) shows extracted values of the inverse subthreshold slope (symbols)
together with theoretical S-values (dotted lines) based on Equation (7.7) as a function
of the channel layer thickness dSOI for four different dox [149, 287]. Note that for all the-
oretical curves only a single dtunnel = 3.4 nm was used. Obviously, theoretical expecta-
tion and the experimental data are in very good agreement apart from the data points
marked with the red ellipse. The deviation of these data points from the theoretical pre-
diction is due to the fact that in these cases rather thick dSOI is combined with thin gate
dielectrics. In this case, the description of the electrostatics using the one-dimensional
modified Poisson equation breaks down since the actual channel layer thickness cannot
be replaced by the physical SOI thickness anymore; in this case, the theoretical model
overestimates the subthreshold swings.

The conclusion of the comparison between experiments and theoretical data is that
decreasing dSOI and dox leads to significantly steeper inverse subthreshold slopes, and
consequently, to an improved injection of carriers through the Schottky barrier. The
strong impact of the device geometry on the switching behavior of ultrathin-body SB-
MOSFETs is not only valid for silicon-on-insulator as channel material but it also ex-
plains why carbon nanotubes and 2D materials (cf. Chapters 8 and 10) are very well
suited for high-performance SB-MOSFETs. However, as usual, there is a trade-off that
needs to be taken into consideration. If the transmission probability is increased bymak-
ing λch as small as possible in order to, say, increase electron injection, this is also true for
hole injection. As a result, devices based onultrathin channels/nanowireswithmultigate
architecture show strongly increased leakage due to ambipolar operation. This is par-
ticularly true if bias voltages on the order of the band gap are applied. Figure 7.11 shows
the transfer characteristics of twonanotube devices simulatedwith self-consistentNEGF
(cf. Chapter 6) with asymmetric Schottky barriers Φelec

SB = 0.2 eV and Φhole
SB = 0.8 eV for

Figure 7.11: Transfer characteristics simulated with self-consistent NEGF of nanotube SB-MOSFETs with
single-gate (blue) and gate-all-around (red) device architecture.
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different Vds; the blue curves belong to a device with dox = 20 nm in single-gate (SG)
geometry and the red curves belong to a FET with gate-all-around (GAA) architecture
and dox = 3 nm. Obviously, the on-state and the switching are improved. Unfortunately,
the extremely thin SB in the GAA case also leads to strong leakage. In fact, for Vds = 0.9 V
the transistor cannot be switched off anymore restricting its use to the low bias range.

7.1.1.3 On-State Behavior of SB-MOSFETs
While in the off-state of SB-MOSFETs, the tunneling of carriers through the source-side
Schottky barrier can be described well by thermionic emission of carriers over an effec-
tive barrier Φeff

SB , the on-state of SB-MOSFETs requires further consideration.
In the device’s on-state, the charge in the channel cannot be neglected anymore

since it will have a significant impact on the potential distribution within the channel
and in turn also on the potential landscape of the source and drain Schottky diodes. In
order to account for the charge in the channel and also for scattering in the channel, we
subdivide the channel into two segments. The first segment (denoted with a roman I)
comprises the Schottky barrier and has a spatial extend on the order of ∼2λch, as illus-
trated in Figure 7.12(a). The second segment (denoted II) extends up to the drain contact
(where the particular potential landscape at the device’s drain end is disregarded for
simplicity). Depending on the tunneling probability through the source Schottky barrier
and the scattering within the channel, part of the drain-source voltage will drop across
segment I and the remainder drops along the channel. In order to calculate an approx-
imate expression for the on-state current, the potential Φ0

f (x ≈ 2λch) and with this the
effective Schottky barrier Φeff

SB need to be computed. In contrast to the preceding section,
in the on-state Φ0

f needs to be computed self-consistently and to do so the charge density
is required. With the concept of a quasi-Fermi level (orange dashed line in Figure 7.12),
the charge density can be computed by simply integrating over energy the product of
the density of states at x = 2λch and an equilibrium Fermi distribution function f (E0

f )

where E0
f is the quasi-Fermi level at x = 2λch. The quasi-Fermi level E0

f can be calculated
by equating the individual current components through segment I and II yielding3

lmfp

lmfp + 2λch

∞
∫

Φeff
SB

dE(f (Esf ) − f (E
0
f ))
!
=

lmfp

lmfp + L

∞
∫

Φ0
f

dE(f (E0
f ) − f (E

d
f )) (7.8)

where a device with one-dimensional electronic transport was assumed for simplicity;
for devices in 2D or higher dimensions, the summation over appropriate ky,z can be
carried out (as has been done before) without changing the qualitative picture of the

3 Note that this is similar to attaching a Buettiker probe at position x = 2λch, i. e., an inelastic scattering
mechanism has been assumed implicitly, which is responsible for the potential drop across the Schottky
barrier.
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Figure 7.12: (a) Conduction band in the on-state of a SB-MOSFET. The orange dotted line illustrates
the quasi-Fermi level within the device. The exponential potential distribution of the Schottky barrier
suppresses effectively backscattering of carriers (red arrows) [7]. (b) Simulated on-current at constant
Vgs and Vds for two devices with high (green) and low (red) ΦSB as a function of the mean free path for
scattering [147].

argumentation. In Equation (7.8), scattering in the channel has been accounted for with
an energy-independent transmission function T = lmfp/(lmfp +L)where lmfp is the mean
free path for scattering (cf. Section 5.3 and [183]).

For carriers that scatterwithin the regionwith steep potential variation (segment I),
it is unlikely to be scattered back into the source contact once they have lost kBT in en-
ergy since the Schottky diode rapidly becomes “thicker” preventing the carriers from
tunneling back [181, 147]. Thus, the exact transmission function T(E) can be replaced
with the same step function used in the preceding section. In addition, the channel
length L needs to be replacedwith 2λch as has been done in the left term of Equation (7.8)
[7]. Equation (7.8) yields a transcendent equation for E0

f that can be solved numerically
or graphically. Note that |E0

f /e| is the voltage drop across segment I. This means that, if
E0
f ≈ 0, then almost all of the drain-source bias drops across the channel whereas for
|E0
f | → |eVds| all voltage drops at the source Schottky diode. If the scattering mean free

path lmfp is not excessively small, the main dependence of the left part of Equation (7.8)
on λch is due to the exponential dependence of Φeff

SB on λch (cf. Equation (7.4)) and not
because of lmfp/(lmfp + 2λch). This means that in many experimental situations where
devices with moderate channel lengths L are studied, the current is mostly determined
by the injection of carriers through the source-side Schottky barrier, which represents
themain scattering event. In this case, the drain current hardly depends onL (if at all). In
other words, in such a SB-MOSFET the current does not depend on the carrier mobility
in the channel. Therefore, care has to be taken when analyzing and interpreting exper-
imental data with respect to the electronic transport properties of the channel material
used.

To study the impact of scattering on the on-state performance of SB-MOSFETs fur-
ther, simulations are carried out using the Buettiker-probe approach presented in Sec-
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tion 6.3.1 [147]. Devices with a Schottky-barrier height of ΦSB = 0.5 eV and ΦSB = 0 eV, dif-
ferent channel lengths L and scattering mean free paths lmfp are simulated. If not stated
otherwise, Vds = 1.3 V, Vgs = 1.2 V, dSOI = 5 nm and dox = 1 nm in all cases. Figure 7.12(b)
shows results for a constant channel length of L = 25 nm [147]. The green solid circles
belong to devices with a high SB of ΦSB = 0.5 eV; the red hollow squares belong to a
SB-MOSFET with ΦSB = 0 eV. In both cases, the on-current increases quickly and then
saturates for lmfp > 4–8 nm. This can be understood based on the model of SB-MOSFET
discussed above where the transmission probability within the steep potential region of
the SB (regime I) was T ≈ lmfp

lmfp+2λch . Since for the given dSOI and dox, the screening length
λch ≈ 3.8 nm it is clear that for lmfp > 8 nm the transmission T plays a decreasing role.
Note that although the absolute current levels of the two SB-MOSFETs displayed in Fig-
ure 7.12(b) are very different due to the different SB heights the dependence on lmfp is
the same. The reason for this is the rather short L considered in the simulation.

Figure 7.13(a) shows the on-state current for the same two devices and the same pa-
rameters as above as a function of the channel length L for devices with lmfp = 2 nm,
lmfp = 4 nm and lmfp = 10 nm. Increasing L decreases the on-current in all three cases
in the device with the low SB height of ΦSB = 0 eV. In contrast, for the devices with
ΦSB = 0.5 eV and the same different lmfp the channel length is irrelevant (for the chan-
nel length range considered here) reconfirming the conclusions drawn from the semi-
analytic consideration above, namely that in SB-MOSFETs with typical SB heights (here
0.5 eV) and where the channel length is not very large, the on-current is limited by scat-
tering that occurs within the characteristic length scale 2λch at the source-channel inter-
face. In otherwords, for ΦSB = 0.5 eV, even for a thin gate oxide of 1 nm and a dSOI = 5 nm
and channel lengths at least up to ∼100 nm the Schottky barrier is the main scattering

Figure 7.13: (a) Simulated on-currents for lmfp = 2 nm, 4 nm and 10 nm for different channel lengths; Vds =
1.3 V and Vgs = 1.2 V in all cases [147]. (b) Averaged on-currents of several p-type SB-MOSFETs with different
gate lengths ranging from L = 1.0..4.0 µm with and without dopant segregation at Vgs − Vth = Vds =−1.8 V [255]. Dopant segregation enables a substantial reduction of the SB such that the experimental data
agrees qualitatively with the simulated data shown in (a).
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event rendering scattering (and hence mobility of the channel material) irrelevant in
this case. Note, however, that for very long channels the transmission through the chan-
nel T = lmfp

lmfp+L eventually will dominate over the tunneling through the source Schottky
barrier, and in this case, electronic transport through the device is again determined
by the carrier mobility. The required minimum channel length for this depends sensi-
tively on the SB height, the effective mass and λch of the device (see also the discussion
in Section 9.1.2.2).

Figure 7.13(b) displays experimental on-currents (at Vgs − Vth = Vds = −1.8 V) ex-
tracted frommeasurements ofmultiple SOI SB-MOSFETswith nickel silicide (NiSi) Schot-
tky contacts [255]. In the present case, devices with andwithout dopant segregation (DS)
were compared. Dopant segregation, which will be discussed in detail in Section 7.2 (see
also Section 3.11.2), allows one to strongly reduce the effective Schottky-barrier height.
This means that the green data points (without DS) belong to a SB-MOSFET with a typi-
cal Schottky barrier of Φhole

SB ∼ 0.45 eV of the NiSi-Si interface.4 In qualitative agreement
with the results obtained from simulations, the experimental on-currents do not show
any dependence on the channel length, which in turn means that the injection through
the Schottky barrier is the main scattering event in the device (see also the discussion
leading to Equation (8.6)). In contrast, the two other devices with substantially reduced
effective Schottky-barrier height due to DS (red and blue data points) show a depen-
dence Id ∝ 1/L expected from a conventional MOSFET. Again, qualitative agreement
with the simulation results shown in Figure 7.13(a) is observed.

7.1.2 Output Characteristics

So far, the on-state has been only considered at large bias. However, the particular layout
of SB-MOSFETs with two metal electrodes in immediate contact with a semiconductor
impacts the entire output characteristics. Especially in the case of low bias, a sublinear
Id–Vds behavior is obtained that leads to a substantial degradation of voltage transfer
curves of inverters and is therefore highly undesirable.

Task 29.
Inverter with SB-MOSFETs: Suppose a conventional MOSFET and a SB-MOSFET exhibit very similar out-
put characteristics. Their only difference is that the SB-MOSFETs exhibits a pronounced sublinearity for
small bias (cf. Figure 7.15(a)). Construct (graphically) a voltage transfer curve of an inverter (load free) for
both device types assuming that

58
n- and p-type FETs exhibit the same on-state performance. Exploit the

fact that no current flows through the output terminal of the inverter.

4 Note that the device is operated in the p-branch of the ambipolar characteristics.

https://vimeo.com/900735249
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Figure 7.14: Typical experimental output characteristics of the silicon-on-insulator Schottky-barrier MOS-
FET with NiSi contacts shown in Figure 7.2(b) [289].

Figure 7.14 shows typical experimental output characteristics of a p-type SOI SB-MOSFET
with NiSi source/drain contacts [289]. The sublinear behavior for small bias voltages
is clearly observable. At first sight, it appears obvious that this sublinearity is due to
the forward-biased Schottky junction (i. e., diode) at the drain end of the transistor and
SB-MOSFET device characteristics have been described accordingly [271, 33, 119]. How-
ever, this interpretation can obviously not be correct. If the sublinearity was a pure
drain property, one would not observe linear output characteristics in experimental
SB-MOSFETs with very long-channel lengths where—as has been discussed above—the
transport properties of the channel dominate. Rather, one would always expect a sub-
linear behavior for small bias.

In order to clarify the reason for the sublinearity, self-consistent NEGF simulations
were carried out using the formalism presented in Chapter 6. For simplicity, a one-
dimensional channel contacted by metallic source/drain electrodes with fixed SB Φs

SB
at the source and Φd

SB at the drain is considered (the parameters of the device are pro-
vided in the figures below). Scattering has been incorporated via Buettiker probes (cf.
Section 6.3.1) and a mean free path of lmfp = 50 nm has been assumed.5 Below, only
n-type characteristics are simulated, p-type SB-MOSFETs, however, show the same qual-
itative behavior.

It is important to note that in the following, devices are considered that may ap-
pear unreasonable in terms of the parameters chosen. The reason for this choice is
that using Equation (5.34) together with 1D electronic transport allows to adjust the
charge density within the channel, and hence the feedback on the potential distribution
while keeping the geometrical electrostatics (expressed through the screening length
λch) unchanged. For instance, considering awrap-gate device with quadruple gate, λch =

5 The chosen mean free path lmfp ∼ L ensures that the device characteristics are not determined by the
electronic transport properties of the channel as discussed in Section 7.1.1.3.
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√εsi/εoxdoxdnw/4 (see Section 5.8.3), the same screening length can be obtained either
with dnw = 1 nm and dox = 20 nm or dnw = 5 nm and dox = 4 nm. Thus, the screen-
ing length will be the same in both cases but the charge density and its impact on the
potential will be substantially different.

The output characteristics of the following devices are simulated and the results for
a constant Vgs are plotted in Figure 7.15: L = 60 nm, lmfp = 50 nm, dnw = 1 nm, a band gap
of Eg = 1 eV and an effective mass ofm⋆ = 0.2m0 in a single gate geometry. Figure 7.15(a)
shows the Id−Vds curves atVgs = 1.4 V in the case of (i) Φs

SB = Φ
d
SB = 0.5 eV, (ii) Φ

s
SB = 0.5 eV

and Φd
SB = 0.3 eV, (iii) Φs

SB = 0.5 eV and Φd
SB = 0.1 eV as well as (iv) Φs

SB = 0.5 eV and
Φd
SB = 0.0 eV. Although the sublinearity is slightly reduced with decreasing Φd

SB, in all
cases a strong sublinear behavior is observed even though the Schottky barrier at the
drain end vanishes in the case (iv). The reason for this behavior can be understoodwhen
looking at the conduction bands for different bias voltages as depicted in Figure 7.15(b)
(note that although the simulations include electron andhole contributions only the con-
duction band is displayed for clarity of the illustrations). Here, the conduction band is
plotted for constant Vgs and three different Vds in the case of Φd

SB = 0 eV. A strong impact
of Vds on the potential distribution within the channel is observed. Indeed, δΦ0

f /δΦd ap-

proaches almost unity in the displayed case. In conventionalMOSFETs, 𝜕Φ0
f𝜕Φd
> 0, is due to

short-channel effects and is called DIBL (see Section 5.6). However, here it is not a short-
channel effect6 but it is due to the fact that the charge carrier density in the channel
varies muchmore in SB-MOSFETs than in a conventional FET; for Vds = 0, carriers from
the source and the drain are injected and the channel is filled according to an equilib-
rium Fermi distribution irrelevant of the SBs. A MOS capacitor is obtained where the
position of Φ0

f is determined by the charge in the channel and the applied gate voltage.

Figure 7.15: (a) Output characteristics for a fixed Vgs = 1.4 V of a NW SB-MOSFET (see the figure for the
simulation parameters) with Φs

SB = 0.5 eV and varying Φd
SB. (b) Band profiles (solid green lines) and quasi-

Fermi level (dotted red lines) in the case of Φs
SB = 0.5 eV and Φd

SB = 0 eV for varying Vds [146].
6 A similar behavior is also observed in tunnel FETs, as will be discussed in Chapter 9.
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If Vds is increased, carrier injection occurs increasingly from source only and since the
carriers nowneed to tunnel through the source-side SB, their density drops strongly. As a
result, the bands are moved downwards because of the applied Vgs (and thus also is Φ0

f ),
thereby reducing the effective Schottky-barrier height leading to an increased carrier
injection, and thus the sublinear current increase. Once Vds is large enough such that
the position of Φ0

f is only determined by Vgs and the charge injected from the source,
current saturation is obtained.

The discussion above is supported by the behavior of the quasi-Fermi level. In Fig-
ure 7.15(b), the quasi-Fermi level (red dotted line) drops at the source side and is (almost)
at the same level as Ef in drain. Hence, the sublinearity in the present case is purely due
to the source-side Schottky-barrier.7 A further important observation can bemadewhen
looking at Figure 7.15(a); the saturation current is constant in the case of varying Φd

SB,
which underlines that the source-side Schottky diode is decisive for the electrical behav-
ior of SB-MOSFETs.

The fact that in a SB-MOSFET it is the impact of the channel charge on the source-
side junction that plays the dominant role leading to the sublinearity is corroborated
by simulations carried out for NW SB-MOSFETs with constant Φs

SB = Φ
d
SB = 0.5 eV but

varying dox and dnw. In order to avoid an immediate impact of dox and dnw on the trans-
mission probability through the SB, the gate oxide and channel thicknesses are changed
so as to leave the screening length λch constant.8 To be specific, the following four de-
vices are considered: (1) dox = 20 nm, dnw = 1 nm, (2) dox = 10 nm, dnw = 2 nm, (3)
dox = 5 nm, dnw = 4 nm and (4) dox = 2 nm, dnw = 10 nm. Since a single-gate device
architecture is considered, λch = √

εnw
εox
doxdnw = 7.58 nm in all cases. Furthermore, an in-

crease in dnw yields a reduced carrier density because purely 1D electronic transport is
considered with the charge carriers confined to the NW cross-section (i. e., a particle-
in-the-box approximation is used). As a result, the wavefunction spreads across the
nanowire cross-section leading to a carrier density reduction (approximately accord-
ing to n(x) ∝ n1D(x)/d2nw where n1D(x) is the carrier density computed with NEGF) for
increasing dnw since contributions from higher subbands of the nanowire have delib-
erately not been taken into account. In addition, to carve out the impact of the channel
charge more clearly, the effective mass is lowered fromm⋆ = 0.2m0 tom

⋆ = 0.05m0 (an
increase of the effective band gap due to carrier confinement is neglected).

Figure 7.16 shows output characteristics for the different dnw and dox mentioned
above. Obviously, an increasing sublinear behavior develops if dnw decreases (and dox
increases). The reason for this is the increasing charge carrier density with decreasing

7 Note that the case Φs
SB < Φd

SB is not discussed here since it obviously leads to a sublinear behavior due
to the forward-biased SB diode at drain. Further information including this case is given in [146].
8 Note that in the on-state and small bias, the charge (−e)n in the channel yields additional screening
λn as discussed in Section 5.7. As a result, the transmission probability is determined by an effective
screening length λ−2eff = λ−2ch + λ−2n . In the present case, λch = const. and λn strongly increases with Vds.
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Figure 7.16: Output characteristics for a fixed Vgs = 1.4 V of a nanowire SB-MOSFET (see the figure for the
simulation parameters) with Φs

SB = Φd
SB = 0.5 eV and varying dnw and dox resulting in the same λch [146].

dnw, leading to a stronger charge-mediated impact of the potential distribution of the
source-side SB with larger Vds. In contrast, the carrier density becomes rather small and
the oxide capacitance large in the case (4) and, therefore, substantially less impact of
the charge on the potential distribution is obtained. As a result, the decreasing impact
of the charge (from device (1) toward device (4)) on the source-side SB gradually results
in linear output characteristics corroborating the role of the source-side SB determining
the electrical behavior of SB-MOSFETs.

7.2 Schottky-Barrier Lowering with Dopant Segregation During
Silicidation

From the discussion of the preceding sections, it is clear that lowering the Schottky-
barrier height is of utmost importance to improve the switching behavior and increase
the on-state performance of MOSFETs with metallic source/drain electrodes. In Sec-
tion 4.6.2, it was shown that a proper ohmic contact between a metal and a semicon-
ductor is usually made by heavily doping the semiconductor, which yields a thin, highly
transmissive Schottky barrier. However, doping the channel results in a large depletion
capacitance, which can only be tolerated as long as Cox ≫ Cdepl. Moreover, in order
to suppress short-channel effects, ultrathin channel layers need to be used eventually
leading to fully depleted SOI. While this is certainly preferable to provide optimum
switching of the transistor (cf. Section 5.8.1), doping the channel in fully-depleted SOI
SB-MOSFETs simply yields a shift of the threshold voltage but no improvement of the
carrier injection [147]. This can be understood by looking at Equation (5.34); if the charge
density due to donors (acceptors) Nd,a is constant (as is the case for fully-depleted SOI),
Nd,a simply leads to an additional constant term that results in a shift of Φbi, and hence
to a shift of the threshold voltage. The injection of carriers, however, is the same, so that
the inverse subthreshold slope and the on-current at the same gate voltage overdrive
remain unchanged. This scenario is shown in Figure 7.17(a), which shows conduction
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Figure 7.17: (a) Conduction band profile along the channel of a SB-MOSFET for three different doping sce-
narios. In the case of fully-depleted SOI, the doping results merely in a shift of the threshold voltage. An
inhomogeneous doping profile (orange areas) with high doping concentration at the contact-channel in-
terfaces leads to a reduction of Φeff

SB . (b) Simulated transfer characteristics of SB-MOSFETs with nonuniform
dopant profile and L = 28 nm (blue), L = 31 nm (green) and L = 38 nm (red). In all cases, the dopant con-
centration drops with ξdop = 18 nm/dec. The blue dotted line belongs to a device without any dopants in
the channel and L = 28 nm [147].

band profiles for three different cases: the blue curve belongs to a SB-MOSFET without
any dopants within the channel, the red dashed profile depicts the conduction band for
a homogeneous, high doping concentration in the channel.

What is needed in order to improve the device behavior without (merely) shifting
the threshold voltage is a nonuniform doping profile with highly doped semiconductor
sections only at the interfaces between the contact electrodes and the channel as illus-
trated with the orange areas in Figure 7.17(a). Such a nonuniform doping profile results
in the conduction band profile shown with the green curve. Strong band bending is ob-
served, which makes the Schottky barrier thinner thereby promoting the tunneling of
carrierswithout changing the threshold voltage. As a result, a reduced effective Schottky
barrier Φreduced

SB is obtained.
The required doping profile must have a very small lateral extent in order to avoid

parasitic capacitances. Furthermore, it must exhibit the steepest possible drop of the
dopant concentration to enable scaling the SB-MOSFETs to very short-channel lengths.
The latter requirement is very important as the simulations displayed in Figure 7.17(b)
prove. Here, the transfer characteristics of SB-MOSFETs are shown that exhibit a dop-
ing profile with a high concentration Nd at the contact-channel interfaces; the drop of
the dopant concentration, however, is not steep with ξdop = 18 nm/dec [147]. When the
channel length of the SB-MOSFET is scaled down the left and right doping profiles even-
tually overlap, leading to an increasing doping concentration in the channel with de-
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creasing L. This in turn leads to a shift of Vth and eventually degrades the switching
behavior for the shortest device with L = 28 nm (cf. main panel of Figure 7.17(b)). In
this case, the overlapping dopant profiles have increased the concentration of dopants
in the channel so much that the profile rather resembles a uniform doping. As a result,
the switching behavior is deteriorated and now shows the same inverse subthreshold
slope as a reference SB-MOSFET without any dopants in the channel (blue dotted line
in Figure 7.17(b)). Therefore, the simulations reconfirm the considerations above and
prove that very steep and narrow dopant profiles with high concentration are required
in order to improve the performance of SB-MOSFETs.

The question now is how such dopant profiles can be realized. A very elegant way
is the use of dopant segregation during nickel silicidation (NiSi), which is discussed in
detail in Section 3.11.2. During the NiSi formation, dopants are collected at the silicide-
silicon interface due to the substantially different solid solubilities. As a result, a narrow,
ultrasteep dopant profile with concentrations beyond 1020 cm−3 can be achieved, as has
been confirmed with SIMS and ECV measurements (see Figure 3.55).

In order to exploit dopant segregation in n-type and/or p-type SB-MOSFETs, a fab-
rication sequence as schematically shown in Figure 7.18 is carried out. The fabrication
is actually the same as has been described in Section 7.1.1.2. The only difference is that
after the patterning of the gate electrode, ions are implanted into the source and drain
regions but no activation anneal is carried out. In the present case, arsenic is implanted
at 5 keV with a dose of 5 × 1014 cm−2, leading to an implantation depth of approximately
8 nm; boron is implanted at 2 keVwith a dose of 3×1015 cm−2 with an implantation depth
of 10 nm. Next, spacers are generated and in order to avoid any diffusion of dopants,
this is done with PE-CVD. Finally, the gate oxide is removed in the source/drain areas,
nickel is deposited and a self-aligned silicidation is carried out. During silicidation, the
entire source/drain areas are fully silicided. The silicidation is carried out at a tempera-
ture of 450 °C for 20–30 s. This ensures the encroachment of NiSi underneath the spacers
facilitating the segregation of dopants. Thus, all dopants implanted into the region un-
derneath the spacers are piled up at the silicide/silicon front. Afterwards, the unreacted
nickel is selectively removed using Piranha (cf. Chapter 3). A transmission electron mi-
croscopy cross-section of such a SOI SB-MOSFET is shown in Figure 7.2(b) [289].

Figure 7.18: Schematics of the SOI SB-MOSFET fabrication with dopant segregation; the realization of the
control samples without dopant segregation is depicted in Figure 7.9.



318 � 7 Metal-Source-Drain Field-Effect Transistors

7.2.1 Measurements and Discussion

Typical transfer characteristics of a SOI SB-MOSFET with nickel silicide source/drain
contacts but without dopant segregation have already been discussed above (see Fig-
ure 7.6). Incorporating dopant segregation into the fabrication as described in the pre-
ceding section yields the required highly doped and steep dopant profiles at the NiSi/Si
interfaces.

Figure 7.19 shows transfer (main panels) and output (insets) characteristics of SOI
SB-MOSFETs with boron (left) and arsenic (right) segregation [289]. Ambipolar opera-
tion can still be observed but the n-type (p-type) branch is significantly suppressed and
the on-current in the p-type(n-type) branch is increased by approximately one order
of magnitude in the boron (arsenic) segregation devices compared to the SB-MOSFET
displayed in Figure 7.6. The most prominent difference of the devices with dopant seg-
regation compared to the devicewithout dopant segregation is the inverse subthreshold
slope of the p-type (n-type) branch: S = 65mV/dec (S = 70mV/dec), which is close to the
thermal limit and proves the effectiveness of dopant segregation in reducing the effec-
tive Schottky barrier height Φreduced

SB . This reduction is also observed when plotting the
on-current for a fixed gate voltage overdrive and bias as a function of the channel length
L of the devices. Figure 7.13(b) exemplarily shows this in a device with boron segrega-
tion (blue and red). Two different dopant doses have been used to implant boron into
the source/drain regions prior to segregation, which yields two different dopant con-
centrations in the segregation layer. When discussing the on-state of SB-MOSFETs this
figure has already been used to show, that a strong reduction of the SB height yields a
dependence of the on-current ∝ 1/L as in a conventional MOSFET (cf. Equation (5.4)),
which is indeed observed. This underlines that dopant segregation is capable of strongly
reducing Φreduced

SB .

Figure 7.19: Transfer and output (insets) characteristics of SOI SB-MOSFETs with boron segregation (left)
and arsenic segregation (right) during nickel silicidation [289].
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Looking, however, at the output characteristics (insets of Figure 7.19), a difference
between the boron and arsenic devices becomes apparent. While the arsenic device
shows a linear increase of current for small bias (right inset), typical of a conventional
MOSFET, the boron device exhibits the nonlinear increase of current for small drain-
source voltages usually observed in SB-MOSFETs (left inset). The reason for this is that
in the case of the arsenic device the dopant concentration in the segregation layer is
larger than in the boron device leading to a more efficient reduction of Φreduced

SB [289].

7.2.2 Temperature Dependence

More insights into the operational principles of SB-MOSFETs can be obtained with
temperature-dependent measurements. Although the experimental data discussed be-
low belongs to SB-MOSFETs with dopant segregation, it is important to note that DS is
only a means to modify the effective Schottky barrier height, and thus the results are
also true for other ways to vary the SB height (of particular interest is, of course, how
much the effective Schottky barrier can be lowered when dopant segregation during
silicidation is employed).

Temperature-dependentmeasurements of the drain current as a function of Vgs are
carried out and the effective potential barrier is extracted from the measurements. The
potential barrier extracted this way is an effective barrier Φeff for thermal emission
alone. This means, if the effective SB height Φeff

SB is smaller than the potential maximum
in the channel Φ0

f , Φ
eff = Φ0

f . If, on the other hand, Φ0
f < Φ

eff
SB thenΦeff = Φeff

SB . Both Φ0
f and

Φeff
SB show a distinctly different dependence on a change of the gate potential. In an elec-

trostatically well-behaved FET, we have ΔΦ0
f = ΔΦg = −eΔVgs, and hence ΔΦeff = ΔΦ0

f

if Φeff
SB ≤ Φ0

f and ΔΦeff = ΔΦeff
SB = (1 − exp(−dtunnel/λch))ΔΦ

0
f if Φeff

SB > Φ0
f (see Equa-

tion (7.4)). The reduced effective Schottky-barrier height Φreduced
SB , i. e., the barrier height

without the impact of the gate electric field can be deduced from a plot of the extracted
Φeff as a function of Vgs. Such a plot is displayed in the left panel of Figure 7.20 showing
the extracted values of Φeff as a function of Vgs at a bias of Vds = 0.1 V. In the case of
small gate voltages, Φeff exhibits an almost one-to-one dependence on Vgs. As discussed
above, this means that Φeff

SB < Φ0
f and hence ΔΦeff = ΔΦ0

f as is the case in a conven-
tional MOSFET. The right panel of Figure 7.20 shows a close-up of the conduction band
profiles at the source-channel interface. Obviously, in the green-marked gate voltage
range the strong band bending due to the segregation layer yields a substantially re-
duced Schottky barrier Φreduced

SB . This reduced Schottky barrier can be determined from
the point where the Φeff–Vgs-graph deviates from the slope −1 (one-to-one behavior).
In the present case, Φreduced

SB ≈ 0.1 eV, i. e. substantially smaller than the original SB of
ΦSB = 0.67 eV at the NiSi/Si interface. This means that in the Vgs-range leading to the two
red potential profiles, the injection of carriers is determined by Φreduced

SB . The magnitude
of the change of the tunneling probability through this reduced barrier with changing
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Figure 7.20: Effective barrier heights extracted from temperature-dependent measurements (left panel) as
a function of Vgs to determine Φreduced

SB . The right panel shows four different conduction band profiles that
belong to the two green and red indicated gate voltage ranges [288].

gate voltage is much smaller than unity, meaning that |ΔΦeff
SB(Vgs)| ≪ |eΔVgs| (illustrated

with the red dashed lines in Figure 7.20), which eventually limits the on-state perfor-
mance.

From the temperature-dependent measurements, one can also extract the inverse
subthreshold slopes of the SB-MOSFET. Figure 7.21 shows experimental values (light blue
squares) extracted from the same devices with dopant segregation as discussed in the
preceding section. S apparently depends almost linearly on temperature up to approxi-
mately 200 K, then remains constant anddrops againwith a different slope below∼125 K.

Figure 7.21: (a) Simulated (dark blue) and experimental (light blue) values of the inverse subthreshold
slopes as a function of temperature for SB-MOSFETs with dopant segregation. In the temperature range
where 4 × kBT ≳ Φreduced

SB , an almost ideal switching is obtained. For lower temperatures, the switching
approaches the behavior of a SB-MOSFET, which is determined by the change of the tunneling probability
through the Schottky barrier [148]. (b) Simulated output characteristics of a nanowire SB MOSFET with
ΦSB = 0.05 eV at 300 K and 100 K.
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This behavior can be explained with a cross-over from a transistor that behaves like
a conventional MOSFET (i. e., along the red dotted line in Figure 7.21) at temperatures
in the range 200–300K and turns into a SB-MOSFETs with larger S at lower tempera-
tures (green dotted line). This cross-over occurs when ∼4kBT < Φ

reduced
SB , which is con-

sistent with the value Φreduced
SB ≲ 0.1 eV found with the temperature-dependent mea-

surements. To confirm this behavior, simulations assuming a SB-MOSFET with dopant
segregation were carried out (dark blue circles in Figure 7.21(a)) that show qualitatively
the same behavior with cross-over in the same temperature range as the experimental
devices [148].

Finally, let us now turn to the temperature dependence of the output characteris-
tics. Suppose Φreduced

SB ≲ 0.1 eV, which leads to a carrier injection at room temperature
that is dominated rather by thermionic emission than tunneling. As a result, the out-
put characteristics show a linear Id − Vds behavior for small bias as is indeed observed
experimentally; see Figure 7.19 (right inset). Simulations of a SB nanowire device with
ΦSB = 0.05 eV reflect this behavior and are shown in Figure 7.21(b), blue curves (simu-
lation details are given in the figure). If the temperature is lowered, the thermal broad-
ening of the source Fermi distribution is decreased, eventually leading to kBT ≪ ΦSB.
As a result, carrier injection is again determined by the tunneling through the source-
side SB, and hence the sublinear behavior of the output characteristics is recovered.
Figure 7.21(b) displays simulated output characteristics (see Figure for details) at room
temperature (blue) and at T = 100 K (red) showing the expected transition from a linear
to sublinear behavior.

7.3 Interface Engineering with Depinning Layers

In the preceding section, it was discussed how dopant segregation during silicidation
can be used in order to obtain a reduced Schottky-barrier height Φreduced

SB . However, the
actual Schottky barrier ΦSB that is a result of Fermi level pinning is not reduced with
dopant segregation. Only the tunneling probability through the barrier is increased.9

It was discussed in Section 4.6.3 that depinning of the Fermi level can be accom-
plished by inserting an ultrathin insulating layer in-between the metal and the semi-
conductor. The insulator needs to ensure that the density of dangling bonds at the sur-
face of the semiconductor is reduced. More importantly, the insulator needs to be thick
enough to reduce the interface density of states due to metal-induced gap states (MIGS)
while at the same time being thin enough to allow for tunneling of carriers with a suffi-
ciently high transmission probability so that overall an optimized trade-off in terms of
the contact resistance can be found.

9 One could certainly argue that the experimental observations would be the same if the barrier was
simply reduced by the additional positive charge of the ionized dopants within the segregation layer.
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7.3.1 Metal Source/Drain Device Using Interface Engineering

As discussed in Section 4.6.3, silicon nitride is a viable option for the realization of de-
pinnedmetal-semiconductor contacts. In fact, it is expected that the use of silicon nitride
allows n-type and p-type contacts to be realized merely by using metallic contact elec-
trodes with appropriate work functions. The reason for this is that on the one hand the
band gap of SiN is sufficiently large to ensure that no repinning occurs (cf. Section 4.6.1
and Figure 4.21); repinning which would simply pin the Fermi level of a contact metal at
a different energy level prohibits either n- or p-type devices. On the other hand, the band
gap is also substantially smaller than SiO2, allowing one to find an optimum insulator
thickness that combines depinning with appropriate carrier injection and, therefore, a
reduction of the contact resistance [54]. In addition, SiN can be grown very precisely on
top of silicon, preventing any further oxidation, thereby providing a stable insulator (cf.
Section 3.3).

In order to study the interface engineering approach with SiN experimentally,
silicon-on-insulator substrates (5–10Ωcm, p-type) with a SOI layer of 200 nm and 200 nm
buried oxide (BOX) are used for the fabrication of so-called pseudo-MOSFETs, i. e., de-
vices where the BOX is used as gate dielectric and the handle wafer as a large area
back-gate. Circular mesa structures are patterned into the SOI using optical lithogra-
phy and reactive ion etching (SF6/O2 plasma). After resist removal, a standard clean is
carried out. Immediately before the samples are mounted in a cold-wall rapid thermal
annealing furnace, the chemically grown oxide is removed with a short HF dip. The
samples are then annealed in an Ar/NH3 atmosphere for 1min at different tempera-
tures. Since the SiN is grown and not deposited an increase in thickness can only occur
when NH3 diffuses through the grown SiN layer to generate further nitride. But because
SiN is an excellent diffusion barrier, its growth is self-terminating (cf. Section 3.3). The
thickness of the grown SiN layer almost exclusively depends on the process temper-
ature (exponential dependence). Hence, very stable and reproducible thicknesses of
SiN layers are obtained by simply changing the temperature enabling the controlled
generation of sub-1 nm thin nitride layers [54, 84, 72, 223].

In the present case, ∼8Å SiN was grown on top of the SOI mesa structures. In con-
trast to Connelly and coworkers who found the optimum SiN thickness to be approxi-
mately 4 Å [54], we deliberately chose a SiN thickness approximately twice as large, since
this yields contacts that behave similar to doped semiconductor sections enabling FETs
with unipolar operation as has been explained in Section 4.6.3 [84]. After the SiN growth,
source/drain metal contacts are deposited. This is done either with a shadow mask or
using optical lithography, electron beamevaporation and lift-off. The contactmetals con-
sist either of 200 nmaluminumor 25 nm/200 nmplatinum/aluminum, thereby providing
a rather low and a high work function for the realization of n-type and p-type devices.

Figure 7.22(a) shows the transfer characteristics of a pseudo-MOSFET with Al con-
tacts (green curves) as reference and a pseudo-MOSFET with SiN interface layer in-
between the silicon and the Al contact (red curves) [84]. The reference device shows
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Figure 7.22: The top panel shows an image of a pseudo-MOSFET with circular mesa structure and Al con-
tacts. The schematic image provides details on the metal-insulator-silicon contact. (a) Experimental transfer
characteristics of a pseudo-MOSFET with Al contact with and without SiN interface layer [84]. (b) Transfer
characteristics of a pseudo-MOSFET with SiN interface layer and Al- (red curve) and Pt-contacts (blue curve)
[72]. (c) Simulated on-currents for SB-MOSFETs with horizontal contacts exhibiting three different SiN layer
thicknesses as a function of the contact length.

the typical ambipolar behavior as expected from a SB-MOSFET. The device with inter-
face layer, on the other hand, exhibits an increased on-current and a steeper inverse
subthreshold slope because the depinning leads to a reduced SB. Furthermore, the char-
acteristics of the device with SiN interface layer show unipolar behavior. As mentioned
above, the reason for this is the strong suppression of MIGS with the relatively thick SiN
of ∼8Å leading to contacts behaving similar to a doped semiconductor.

Figure 7.22(b) shows transfer characteristics of another pseudo-MOSFET with alu-
minum contacts (red curve) and platinum/aluminum contacts (blue curve); note that the
reason for the large gate voltages is the thick buried oxide serving as gate dielectric. Ob-
viously, n-type behavior is achieved in the case of Al contacts, whereas p-type behavior
is obtained in the Pt case. Furthermore, unipolar device characteristics can be observed
in both cases [72]. This proves that the SiN is effective in depinning (not repinning) the
Fermi level because the work function of the respective contact metal acts equivalently
to a gate voltage in a MIS capacitor shifting the conduction or valence bands close to the
Fermi level.

7.3.2 Horizontal Metal-Insulator Contacts

Inserting a potential barrier in-between the metal contact effectively depins the Fermi
level at a metal-semiconductor junction. However, the price paid for the depinning is
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simply another potential barrier and this raises the question of the contact resistivity
and the required contact lengths. Horizontal contacts where the contact metal is de-
posited over a certain length lcon (see the schematic in the top panel of Figure 7.22) are
usually described by a transmission line model consisting of a resistor network as dis-
cussed in Section 4.6.4. However, such a model does not account for the modification
of the density of states in the semiconductor underneath the metal contact electrodes.
Therefore, self-consistent NEGF simulations were carried out based on the formalism
presented in Chapter 6. A central ingredient in the model used to study the impact of
different insulator thicknesses and contact lengths is the way of incorporating the hori-
zontal contact; the contact metal is represented bymultiple Buettiker probes all sharing
the same Fermi level. These Buettiker probes are connected to the semiconductor via a
coupling factor γ that allows for tuning the coupling strength and basically reflects the
thickness of the insulating layer in-between the metal and the semiconductor. The con-
tact model is indeed the same as used to explain gate leakage in Chapter 6 and to study
the electrical behavior of carbon nanotube field-effect transistors discussed in the next
chapter. More details on the contact model can therefore be found in Section 8.1.3.

The important point is that the coupling betweenmetal and silicon canbe connected
with the potential barrier and effective mass of the insulator (SiN). In the case of weak
coupling (small γ), there is hardly any impact on the density of stateswithin the band gap
of the semiconductor and as a result, themetal-insulator-semiconductor systembehaves
like a doped contact as mentioned already above. This means that a weak coupling, i. e.,
a thicker SiN layer is preferable to obtain unipolar behavior. On the other hand, a weak
coupling increases the contact resistance andmakes longer contacts necessary. This fact
is depicted in Figure 7.22(c), which shows the on-current through the simulated device
for three different coupling strengths (γ = 0.1, 0.01 and 0.001) as a function of contact
length computed with the NEGF model, briefly described above [84]. The chosen val-
ues for γ belong to SiN layer thicknesses of dSiN = 2.7 Å, dSiN = 5.3 Å and dSiN = 8Å
(if an effective mass of 0.35m0 is used). Obviously, in the case of weak coupling signif-
icantly longer contacts are required. However, if the coupling gets too weak it cannot
be compensated for anymore with an increase of lcon. Nevertheless, in a range between
dSiN = 4, . . . , 8Å, which is experimentally accessible, depinned contacts can be realized
and their properties can be tuned to exhibit a low contact resistance and to yield unipo-
lar device behavior.

7.4 Reconfigurable Devices

In the preceding sections, we found that Schottky-barrier devices usually performworse
than conventional MOSFETswith doped source/drain regions. Evenwith processes such
as dopant segregation during silicidation, it is difficult to lower the Schottky barrier suf-
ficiently. The use of ultrathin-body channel layers such as nanowires in a wrap-gate ar-
chitecture with ultrathin gate dielectrics strongly improves the device characteristics
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but also increases the off-state leakage current due to the ambipolar operation of SB-
MOSFET. As a result, the specific advantages of SB-MOSFETs are overcompensated by
their drawbacks. However, separating the gate electrode in two or three individual gate
electrodes along the channel length allows realizing so-called reconfigurable MOSFETs
(reconFETs). Reconfigurable transistors can be switched, i. e., configured to operate ei-
ther as an n-type or as a p-type device [104, 193]. While one could argue that this is also
true for a SB-MOSFET due to the ambipolar operation, what is meant here is that re-
conFETs can be switched from unipolar n-type to unipolar p-type operation, thereby
avoiding the large off-state leakage of SB-MOSFETs. The realization of reconFETs relies
on the ability to change the “doping” character of certain sections of the channel. This
can be accomplished by using additional, independent gate electrodes. Obviously, addi-
tional gate electrodes increase the complexity of the fabrication process but it has been
shown that reconFETs enable a reduction of the complexity of integrated circuits over-
compensating the drawback of at least one additional gate in such devices [193].

In the simplest configuration, a reconFET features two independent gate electrodes
as illustrated in the top panel of Figure 7.23. Since in reconFETs it is desired that the
n- and p-type devices operate similarly, Fermi level pinning around mid-gap is actually
required, meaning that both device types suffer from the tunneling injection through
a rather high Schottky barrier. Therefore, reducing λch as much as possible, i. e., realiz-
ing a wrap-gate architecture with a nanowire/tube with smallest possible diameter and
employing ultrathin gate dielectrics with high dielectric constants, is most effective in

Figure 7.23: A schematic illustration of a reconFET is shown in the top panel. The two-gate electrodes are
called control and program gate, respectively. (a) Scanning electron micrograph of a reconfigurable silicon
nanowire FET with nickel silicide source/drain contacts based on a VLS-grown Si nanowire. The inset shows
the interface between the silicon nanowire and the silicide. (b) Transfer characteristics of a reconfigurable
silicon nanowire FET operating as p-type FET (red hollow circles) and as n-type FET (blue hollow squares)
depending on the program voltage [103] (W. Weber, NaMLab, Dresden and TU Vienna) [103].
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order to improve the electrical behavior of reconFETs. An electronmicrograph of an ex-
perimental reconfigFET with nanowire channel and trigate is shown in Figure 7.23 (a).
This reconFET is based on a VLS-grown silicon nanowire (cf. Section 3.13.2) that is ther-
mally oxidized to generate an 8 nm SiO2 gate dielectric [103]. The oxide is removed in
the contact areas, nickel is deposited and a silicidation at 450 °C is carried out leading to
an axial diffusion of the silicide along the nanowire axis (cf. Section 3.11.1). The inset of
Figure 7.23(a) shows the NiSi2-silicon interface. Finally, Ti/Al program and control gates
are fabricated with electron beam lithography and lift-off.

At the drain-side (here: right) gate electrode, called the program gate (PG), a con-
stant voltage is applied to generate a p- or n-type section, whereas the source-side (left)
gate, called the control gate (CG), is used to switch the transistor. Two conduction and
valence band profiles of the device configured as n-type (blue) and p-type (red) transis-
tor are shown in the insets of Figure 7.23(b). From the band profiles, it becomes clear
that the fixed program gate suppresses the leakage from drain, i. e., hole(electron) injec-
tion in the n-(p-)type device, yielding unipolar device characteristics. The control gate
switches the reconFET by exploiting the ambipolar carrier injection at a metal semi-
conductor Schottky junction to modulate the electron (n-type) or hole (p-type) injection,
respectively. Exemplarily, Figure 7.23(b) shows experimental Id − Vgs(= VCG) character-
istics of both configurations of the device displayed in (a), proving that reconfiguration
can indeed be accomplished. In addition, an almost perfectly symmetric n- and p-FET
performance is obtained [103].

7.4.1 Program-Gate at Drain versus Program-Gate at Source

When operating the reconFET shown in Figure 7.23, the control gate that switches the
transistor and controls the current flow through thedevice is at the source-side Schottky-
junction. In order to provide a symmetric n- and p-type performance, the Fermi level at
themetallic source contact needs to be aligned approximatelymid-gap resulting in equal
electron or hole injections through Φe

SB and Φh
SB, respectively. Therefore, the switching

is always determined by tunneling, and hence worse compared to a conventional MOS-
FET as has been discussed in Section 7.1.1.1. The question now is: what would the device
performance be if control and program gates were interchanged? In this case, we have
to distinguish between the two configurations program-gate at drain (PGAD), which has
been discussed so far and program-gate at source (PGAS). The answer which configu-
ration is preferable is not straightforward and depends crucially on the semiconductor
in use and the supply voltage of an envisaged circuit. To elucidate the question, self-
consistent NEGF simulations have been carried out (see Chapter 6). To simplify the com-
putation, a one-dimensional nanotube channel with symmetric band structure has been
assumed. Scattering (lmfp is 15 nm) has been implemented with Buettiker probes. Fur-
thermore, Eg = 1 eV,m

⋆ = 0.1, dch = 1 nm, dox = 5 nm and a wrap-gate architecture have
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been assumed. These parameters are chosen for convenience (to obtain a converged so-
lution of the simulation) and do not affect the general validity of the results. Finally, a
symmetric Schottky barrier of Eg/2 = 0.5 eV is used.

Simulations have been carried out for PGAD and PGAS configurations; for clarity,
only n-type reconfigurable FETs are studied in the present section but the results hold
equally well for p-type reconFETs when voltages are appropriately reversed. The re-
sulting transfer characteristics are shown in Figure 7.24. Let us first consider the PGAD
configuration (illustrated in the top right panel of Figure 7.24), which is also the config-
uration discussed in the preceding section. In PGAD, an n-doped section is formed at the
drain, leading to a low leakage, and hence to unipolar device behavior also for large Vds
because carrier injection from drain is suppressed. The control gate is at source, and
thus switching of a reconFET in PGAD is the same as in a SB-MOSFET. This is exactly
the behavior shown in Figure 7.24 with the blue curves and it means that the price paid
for the low off-state leakage and unipolar behavior is a deteriorated switching behavior
with Sreconf = SSB > 60mV/dec.

Figure 7.24: Simulated transfer characteristics of reconfigurable FETs with PGAS- (light blue dotted lines)
and PGAD-configuration (blue lines); associated conduction and valence band profiles are depicted in the
two panels on the right. While the PGAS yields almost ideal inverse subthreshold slopes, it shows larger
off-state leakage than the PGAD-configuration.

Next, we study the PGAS configuration which is illustrated in the bottom right panel
of Figure 7.24. Since the PG is now at source, significantly more leakage is expected in
particular for large Vds due to carrier injection from drain. However, if the drain-source
bias is kept small, the leakage current due to injection of carriers at the drain end will
be tolerable because the bands at the source end are sufficiently moved down. In the
present case with Vds = 0.5 eV, an effective barrier of approximately Eg/2 blocks the
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hole flow through the valence band, and as a result the off-state leakage is larger than
in PGAD configuration yet smaller than in a SB-MOSFET. More importantly, the n-type
section created with the PG is almost in equilibrium with the metallic source contact
as long as the device is in the off-state. This means that the section underneath the PG
acts as a virtual, n-doped source contact. Therefore, increasing the CG-voltage the device
behaves similar to a conventionalMOSFET and, correspondingly, one obtains an inverse
subthreshold slope of 65mV/dec close to the Boltzmann limit (light blue dotted curves in
Figure 7.24). The on-state performance, however, is ultimately limited by the tunneling
through the source Schottky barrier and hence saturates for large CG-voltages. The on-
current can only be increased with a higher PG-voltage, which is indeed the case. But
when considered in a circuit environment, a higher PG-voltage necessitates a higherVdd,
which implies a larger Vds leading to an exponential increase of the off-state leakage
current. Ultimately, two different voltage levels would be needed in order to exploit the
PGAS configuration without suffering from increased leakage.

The findings above regarding the difference of PGAS and PGAD configurations have
also been verified experimentally [244]. To this end, top-down Si nanowires are fabri-
cated with the approach illustrated in Figure 3.58 using anisotropic silicon etching in
combination with a LOCOS process [286, 244]. Figure 7.25 shows an electronmicrograph
of the reconFETdevice (see figure caption for details on the device dimensions). Transfer
characteristics in bothmodes of operation, PGAD and PGAS, are displayed in Figure 7.26.
The device can obviously be operated as p-type (a) and n-type (b) transistor and in both
operation modes. In both cases, it shows the distinctly different behavior in PGAS ver-
sus PGAD that is expected from the analysis of the device simulations discussed above
(compare Figure 7.26(b) with the main panel of Figure 7.24); the PGAS mode exhibits a
steeper inverse subthreshold slope but also a larger off-state leakage.

Figure 7.25: Scanning electron micrograph of a top-down fabricated nanowire reconFET with NiSi
source/drain contacts. The device has an oxide thickness dox = 15 nm, a nanowire diameter dnw = 25 nm
and the length of the gates and their interdistance are 500 nm and 450 nm, respectively [244]. The inset
shows a close-up of the NiSi-silicon nanowire interface.
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Figure 7.26: (a) ReconFET operated as p-type FET in PGAS (dark red) and PGAD (red) modes. (b) ReconFET
operated as n-type FET in PGAS (light blue) and PGAD (blue) modes [244].

Looking at the transfer characteristics alone it seems that, in spite of a somewhat
larger leakage, the PGAS is the preferred mode of operation. However, when taking the
output characteristics into consideration things get less clear. If two different voltages
are applied to the source and drain side gates, then the effective SB at the respective
junctions will have different values (cf. Equation (7.4)) with the smaller being obviously
at the sidewith the larger applied gate voltage. As a result, in PGAS there is a largerΦeff

SB at
the drain compared to source. The current flow through the reconFET is therefore dom-
inated by the forward biased Schottky junction at drain leading to a very pronounced
sublinear behavior, which is indeed experimentally observed (see Figure 7.27(a)). How-
ever, even in PGAD, where Φeff

SB is larger at source, a clear sublinearity can be seen (Fig-
ure 7.27(b)) due to the charge feedback on the source-side Schottky-junction discussed
in detail in Section 7.1.2 providing experimental verification of the simulation results
presented there.

Figure 7.27: Output characteristics for different combinations of applied voltages at the source- and drain-
side gate electrodes. PGAS operation mode is shown in (a), PGAD in (b) [146, 244].
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In conclusion, reconfigurableMOSFETs are an attractive variant of Schottky-barrier
devices that allow in principle substantially better performance than SB-MOSFETs and
enable a reduction of circuit topologies despite the more complex device architecture.
However, further performance improvements are necessary to exploit the potential of
reconFETs. This can only be done if Fermi level pinning is removed such that the pro-
gram gate is able to move conduction and valence bands with respect to the Fermi level
of the metal contact, enabling carrier injection without a tunneling process through a
Schottky barrier. In Section 8.1.4, an approach based on carbon nanotube FETs will be
presented that potentially allows significantly higher on-currents to be obtained.

Exercises

Exercises togetherwith solutions are accessible via theQR code. 59

https://www.iht.rwth-aachen.de/global/show_document.asp?id=aaaaaaaachgkuye


8 Carbon Nanotube Field-Effect Transistors

In many respects, carbon nanotubes (CNTs) appear to be the best choice for ultimately
scaled field-effect transistors. They exhibit an extremely small diameter, and they of-
fer a symmetric band structure with values of the band gaps and effective masses in
a range ideally suited for nanoelectronics devices (cf. Section 2.9). Recent research on
carbon nanotubes resulted in significant progress regarding scalability of carbon nan-
otube field-effect transistors (CNTFETs), contact formation as well as the realization of
integrated circuits [37, 77, 106, 217]. Therefore, the electronic properties of CNTFETs will
be studied in the present chapter with experiments as well as simulations.

8.1 Carbon Nanotube FETs as SB-MOSFETs

The easiest way of realizing a CNTFET is to disperse nanotubes on an oxidized piece of
silicon and contact them with metallic electrodes using electron beam lithography and
lift-off. In this case, the silicon wafer serves as a large area back-gate and the oxide on
top plays the role of the gate dielectric. Figure 8.1(a) shows an electron micrograph of
such a simple back-gated CNTFET with two nickel source/drain electrodes that cover
a larger nanotube section. The actual details of the metal-nanotube contacts are a bit
more involved (see Section 8.1.3.1) and require a model for the contacts similar to the
metal-SiN-Si contact studied in Section 7.3. However, in order to elucidate a number of
experimental observations—in particular, the rather large dependence of the inverse
subthreshold slope S and the on-current on the gate oxide thickness dox—it is sufficient
to describe themetal-CNT electrodes as simplemetal-semiconductor contactswith a cer-
tain Schottky-barrier (SB) height. Many experimentally observable features of CNTFETs
can therefore be understood by considering them as Schottky-barrier FETs (detailed ex-
planations on the principles of operation of SB-MOSFETs are provided in Chapter 7).

8.1.1 Impact of the Device Geometry

Figure 8.1(b) shows a typical transfer characteristic for a small drain-source bias of the
CNTFET shown in (a). The device exhibits ambipolar behavior, typical of SB-MOSFETs,
which is expected when the source/drain contacts are regarded as simple metal-
semiconductor contacts. Extracting the inverse subthreshold slope S of a large num-
ber of CNTFETs with different thicknesses of the gate oxide dox one observes a strong
dependence of S on dox shown in Figure 8.1(c) [8, 136]. As discussed in Chapter 7, this pe-
culiar behavior is a consequence of the dependence of the carrier injection through the
Schottky barrier on the screening length λch, which in the present case is √ εCNTεox

doxdCNT
because the electrostatics of a simple, back-gated CNTFET can approximately be de-
scribed as a single-gate planar device [8]. The dotted red line in Figure 8.1(c) shows the

https://doi.org/10.1515/9783111054421-008

https://doi.org/10.1515/9783111054421-008
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Figure 8.1: (a) Electron micrograph of a back-gated carbon nanotube field-effect transistor. The CNT is dis-
persed on an oxidized piece of silicon wafer that serves as large-area back-gate. Electron beam lithography
and lift-off are used to form nickel source/drain contact electrodes. (b) Typical transfer characteristic of a
CNTFET showing asymmetric ambipolar behavior with better p-type performance than n-type behavior. (c)
S as a function of dox for CNTFETs [8]. The dotted lines are computed with Equation (7.7) and the hollow
symbols are experimental data.

inverse subthreshold slope as a function of dox as computed with Equation (7.7), which
overall agrees very well with the experimental data (hollow circles). The CNTFETs ex-
hibit the same dependence of S on dox as we already obtained when discussing SOI
SB-MOSFETs (see Figure 7.11). The only difference between the analytic calculation in
Figure 7.11 and Figure 8.1(c) is the tunneling distance dtunnel, which is ∼3.4 nm in the
case of the SOI SB-MOSFETs and ∼5 nm in the case of the CNTFETs. With an effective
mass in the CNT that is approximately a factor of two smaller than the light effective
mass in silicon, the latter can be understood since the tunneling distance scales roughly
as∝ 1√m⋆ [136].

The importance of the dependence of S on dox is that this experiment and the
appropriate analysis clearly shows that CNTFETs are Schottky-barrier devices and
not conventional FETs as one might think when looking at, e. g., the output charac-
teristics (not shown here) or considering the relatively steep inverse subthreshold
slopes of S ≈ 100mV/dec that are observed in CNTFETs with thin gate oxide. Hence,
extracting meaningful values for the mobility requires extra care. Furthermore, the
presence of Schottky barriers at the contacts has also important implications regard-
ing the expected multimode transport in CNTFETs as will be elaborated on in the next
section.

Task 30.
CNTFET as SB-MOSFETs: Consider a (11, 7) carbon nanotube in a single-gate transistor architecture
(dox = 10nm SiO2) and metal contacts. The Fermi level at the metal-CNT interface is at mid-gap.
Compute the inverse subthreshold slope of the

60
transistor and the minimum off-state current at Vds =

0.5V.

https://vimeo.com/466509523
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8.1.2 Multimode Transport in CNTFETs

In Section 2.13.3, it was discussed that in a nanowire/tube transistorwhere vertical quan-
tization leads to a sufficient energetic separation of the one-dimensional subbands, the
contribution of each subband may be observable as a (smeared out) step-like increase
of current in the transfer characteristics of field-effect transistors. However, a step-like
increase can only be observed provided that the energetic separation is significantly
larger than kBT and larger than the applied bias Vds (cf. Figure 2.54). In addition, elec-
tronic transport with a quantized increase of conductance according to 2e2

h will only
occur if the geometry of the source contact channel region resembles a quantum point
contact where a region with many subbands (source) is gradually tapered into the
nanowire/tube such that all subbands can be occupied with the same amount of charge
when an appropriate gate voltage is applied.

A carbonnanotube is an inherently small, true nanoscale object and since low-index
(n,m) nanotubes exhibit the necessary subband splitting it is expected that multimode
transport should be observable in the electrical characteristics of CNTFETs. To be spe-
cific, let us compute what we expect in terms of subband splitting. In Section 2.9, the
band structure of carbon nanotubes is computed from which the band gap as well as
the subband structure can be extracted. Using Equation (2.60), the band gaps for the
various subbands of a (n,m) nanotube (at κ = 0) are given as

Eñg = 2π√3Vppπ
|ñ − n−m

3 |
√n2 +m2 + nm

(8.1)

where ñ is the subband index; note that the diameter of the nanotube is dCNT =
|C⃗|
π =

a√n2+m2+nm
π . Band gaps of typical nanotubes used in the experiments discussed here are

on the order of 0.6–0.7 eV. Such a band gap can be realized with a (12, 8) CNT, for in-
stance. Inserting n = 12 and m = 8 into Equation (8.1) yields the band gap of the first
subband with ñ = 1 (the actual band gap) to be Eg = 0.62 eV and dCNT ≈ 1.4 nm. The
band gap energies of higher subbands are obtained with other positive and negative
integer values of ñ. Dividing these gap energies by two provides the position of the con-
duction band minima and the energetic separation between adjacent subbands can be
determined. In the case of the (12, 8) nanotube, the minima of the conduction band sub-
bands are given by Eñ=1g /2 = 0.31 eV (first subband), Eñ=2g /2 = 0.62 eV (second subband),
Eñ=0g /2 = 1.24 eV (third subband), etc. (cf. Section 2.9). Exemplarily, Figure 8.2(a) shows
the conduction and valence bands in a Schottky-barrier CNTFET taking into account the
multiple 1D subbands of the (12, 8) nanotube with the energetic subband separations
computed above.

The subband spacing in the considered (12, 8) nanotube is substantially larger than
kBT = 25meV at room temperature and as a result, multimode transport with a step-
function like increase of the current for increasing gate voltage is expected. Since the
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Figure 8.2: (a) Conduction and valence bands of a SB-CNTFET based on a (12, 8) nanotube with second
and third 1D subband. The Fermi level is assumed to be aligned at mid-gap. (b) Transfer characteristics of a
CNTFET with light potassium doping [9].

subbands are degenerate, the current steps should be proportional to 4e2
h Vds. However,

looking at the experimental Id−Vgs curves of a CNTFET (with a CNT of similar dimension
as (12,8) tube) as displayed in Figure 8.2(b), no apparent subband structure can be seen,
and consequently, transport in CNTFETs has been interpreted as being purely 1D. So,
what ismissing in the description of electronic transport? Is the energetic splitting of the
subband actually far smaller than anticipated from our band-structure calculations? Or
will higher subbands not be occupied because the quantum capacitance Cq of the CNT
dominates, i. e., Cq ≫ Cox (cf. Section 4.5.3) for higher gate voltages leading to δΦ0

f → 0?
Although theDOS in a carbonnanotube is somewhat different froma true 1D system

in that it first drops proportional to 1/√E and then approaches a constant for higher en-
ergies (see Equation (2.104)), the inversion layer/quantum capacitance Cq nevertheless
drops to a small value with increasing Vgs. As a result, it is possible tomove the bands by
applying appropriate gate voltages leading to the occupation of higher subbands. Con-
sequently, the second question can be negated. As it turns out, it is the Schottky barrier
at the source-channel interface that prevents the observability of multimode transport
even though more than a single 1D subband contributes to the current.

Let us start the discussion by calculating the current through a carbon nanotube
FET using the Landauer approach. In the case of small Vds, the difference of source and
drain Fermi distribution functions can be Taylor expanded yielding (cf. Equation (5.25))
f (Esf ) − f (E

d
f ) ≈ −

1
kBT
𝜕f (Esf )𝜕E (|e|Vds) ≈ δ(E − E

s
f )
|e|Vds
kBT

. Thus, the drain current is

Id ≈
2e2

h
T tot
SB (E

s
f ,Φ

0
f )

1

1 + exp(
Φ0
f −Esf
kBT
)
Vds, (8.2)

where the derivative of the Fermi distribution function with respect to energy is ap-
proximatedwith a delta function. In addition, T tot

SB is the overall transmission probability
through the Schottky barriers at the source anddrain. Note that in the equation aboveΦ0

f
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is a function of the gate potential Φg , which needs to be determined taking the effect of
charge self-consistently into account (see Chapters 5 and 7). Since the bias Vds is consid-
ered to be small and the device as being a long channel transistor, Φ0

f −Φg = −
Qch
Cox

where
the equilibrium value can be used for the channel charge Qch. Furthermore, the small
Vds also justifies that T

tot
SB can be assumed to consist of two equal transmission probabil-

ities T sSB = T
d
SB, which can be approximated with the WKB approximation. The question

is now how the two individual transmission probabilities T s,dSB must be combined in or-
der to obtain T tot

SB . So, before proceeding, let us briefly discuss how two transmission
probabilities are connected to each other.

Combining two transmission probabilities: Two transmission probabilities T1 and T2 (for instance, due
to two potential barriers or two Schottky barriers within a device), cannot be combined by simply multi-
plying them, i. e., Ttot ̸= T1T2. If we described the resistance of a wire with length L by n pieces δx = L/n
with a transmission Tδx = lmfp

lmfp+δx = lmfp
lmfp+L/n = 1

1+L/(lmfpn) simply by Ttot = (Tδx)n, this would result in an

exponential decrease of the transmission since limn→∞ ( 1
1+L/(lmfpn))n = exp(−L/lmfp) which is certainly

in contradiction with Ohm’s law. In fact, multiple reflections in between the two potential barriers need
to be taken into consideration and one has to sum over all possible paths (four are explicitly shown in
Figure 8.3) in order to obtain the total transmission

Ttot = T1T2 + T1R2R1T2 + T1R2R1R2R1T2 + ⋅ ⋅ ⋅ = T1 (1 + R2R1 + R2R1R2R1 + ⋅ ⋅ ⋅)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟= 1
1−R2R1 T2 (8.3)

and, since R1 = 1 − T1 and R2 = 1 − T2, this yields Ttot = T1T2
T1+T2−T1T2 .

Figure 8.3: Two potential barriers as scattering centers with transmission and reflection probabilities T1,2
and R1,2, respectively. The overall transmission probability Ttot is a sum over all possible paths including
multiple reflections as depicted in the figure.

According to Equation (8.3), combining the transmissions through the two Schottky bar-
riers yield

T tot
SB =

TWKB
SB

2 − TWKB
SB
. (8.4)

In Section 4.33, the WKB approximation for a Schottky barrier in depletion approxi-
mation was introduced. In the present case, the potential of the Schottky barrier is de-
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termined by the screening length λch instead of the depletion length. As a first-order
estimate, we can therefore use the WKB expression with Ldepl being replaced by λch:

TWKB
SB (E

s
f ) = exp(−

4
3
λch√

2m⋆
ℏ2
(ΦSB)

3/2
(ΦSB − Φ0

f )
). (8.5)

The expression above shows that the transmission TSB broadens the contributions of
each subband and depending on λch, a large gate voltage range (equivalent to a Φ

0
f -range

if we assume perfect gate control) is required in order to reach a constant transmission
for each subband. Indeed, in Figure 8.4 the (added) transmission computed with Equa-
tion (8.5) of three subbands in the (12, 4) nanotube considered so far is shown for three
different values of λch as a function of Vgs; perfect gate control was assumed, which is
justified considering the small values of λch (and thus the large geometrical oxide capac-
itance Cox) chosen here.

Figure 8.4: Transmission of three subbands (at 0.31 eV, 0.62 eV and 1.24 eV) as a function of gate voltage
for a CNTFET with (12,4) nanotube for three different screening lengths λch. The dashed line shows the
transmission if there was no SB.

Obviously, extremely small λch are required to obtain a step-like increase in the
transmission. But even in the case of anunrealistically small λch = 0.11 nmonewouldnot
getT = 1 in each of the subbands. Hence,multimode transport even in a devicewith such
a small λch would not be in steps of 4e2

h . For somewhat larger andmore realistic values of
λch, the steps shrink, and for a λch = 2.8 nm (which is still very small and experimentally
not easy to realize), the transmission function of each subband is broadened so much
that hardly any step is visible. If transport is at room temperature, no step will be visible
at all, although three subbands contribute to the current at higher Vgs.

To be able to observe multimode transport, it is necessary that the current in one
mode saturateswith increasing gate voltage before a subsequentmode significantly con-
tributes to the current. For a specific nanotube, this can be done in two different ways.
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First, the transmission through the Schottky barriers could be strongly increased by
making the screening length λch as small as possible as explained when discussing Fig-
ure 8.4 above. However, this implies modifying the device structure employing, e. g., di-
electrics with high dielectric constant, using a wrap-gate architecture, etc. which can be
difficult to realize. The second approach is to limit the transmission probability through
the channel independent of the Schottky barriers, so that the current in one mode sat-
urates quickly when increasing Vgs. This ansatz can be followed by deliberately dete-
riorating the carrier mobility within the nanotube, i. e., by exploiting scattering in the
channel of the devices. In Section 7.1.1.3, it was argued that in SB-MOSFETs the tunnel-
ing through the SB often dominates over the carrier mobility. Therefore, rather strong
scattering in the channel is needed for the second approach.

Scattering can be incorporated into our semianalytical considerations in the follow-
ing way: the transmission through the channel in the presence of scattering denoted as
Tch is connected to the mean free path and the channel length as Tch = lmfp/(L + lmfp)
(cf. Section 5.3). Hence, the overall transmission probability is

Ttot =
T tot
SB Tch

T tot
SB + Tch − T

tot
SB Tch
= 1
L/lmfp + 1/T tot

SB
. (8.6)

As a result, if the ratio L/lmfp ≫ 1/T tot
SB then Ttot ≈ lmfp/L as in a conventional FET. Conse-

quently, the current saturation of each subband becomes independent of the Schottky
barriers and it is expected that multimode transport will be observable in this case.
From Equation (8.6), it is clear that this can be achieved by making L very large and/or
lmfp small (and certainly also by increasing the transmission T tot

SB for a given ratio L/lmfp,
i. e., realizing a wrap-gate architecture and/or decreasing the effective oxide thickness).

Experimentally, an elegant way to increase the ratio L/lmfp is the introduction of
scattering within the channel of an SB-CNTFET with potassium doping [31]. Potassium
doping yields a large amount of Coulomb scattering sites at the surface of the nanotube
reducing lmfp when the K-concentration increases. Above a certain amount of doping,
multimode transport becomes visible and transfer characteristics with a (broadened)
stepwise increase of the drain current are obtained. The main panel of Figure 8.5(a)
shows experimental transfer characteristics of K-doped CNTFETs where three modes
can be identified to contribute to the current; the inset shows the samedevice on a larger
Vgs-range where a larger number of modes is observed [9].

In order to support the experimental observations, self-consistentNEGF simulations
have been carried out, accounting for scattering with the Buettiker probe approach ex-
plained in Section 6.3.1. A device with dCNT = 1.4 nm, dox = 2 nm in a wrap-gate architec-
ture and L/lmfp = 30 is considered in order to guarantee a large T tot

SB as well as L/lmfp-
ratio. The main panel of Figure 8.5(b) shows the result. In the present case, a constant
subband spacing of 0.25 eV and a Schottky barrier of ΦSB = 0.35 eV are assumed. One
clearly observes a step-like increase of the current and three different subbands can be
identified (note that in the present case equidistant subbands were assumed in order
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Figure 8.5: (a) Experimental transfer characteristics of a SB-CNTFET exhibiting multimode transport. The
inset shows a larger gate voltage range [9]. (b) Simulated Id–Vgs characteristics using NEGF and Buettiker
probes to include strong scattering. The inset shows the results of the same device in the case of ballistic
transport [136].

to reduce the computational burden). However, in the case of ballistic transport (shown
in the inset of Figure 8.5(b)) the different modes cannot be resolved anymore although
multimode transport with the first threemodes contributing significantly to the current
occurs in this case, too. This inability of observing multimode transport has to be taken
into account not only when interpreting carbon nanotube data but also when analyzing
other ultrathin-body SB-MOSFETs.

8.1.3 Contact Formation to CNTs

As discussed in the preceding section, the electrical behavior of carbon nanotube FETs is
to a large extent determined by the presence of Schottky barriers at the metal-nanotube
interfaces. The very small diameter of nanotubes leads to a high injection of carriers
through the Schottky barriers such that the electrical behavior was at first interpreted
in the framework of conventional transistors with possible false extraction of nanotube
properties such as the mobility from the experimental data. Extracting the inverse sub-
threshold slope of a larger number of CNTFETs with different oxide thicknesses showed
that the behavior of CNTFETs can indeed be described by assuming Schottky contacts
at the metal-nanotube interfaces. However, a closer look at CNTFET data and compari-
son with the expectation from simulations show discrepancies in that the difference in
the on-currents of CNTFETs with different contact electrode materials are much larger
than expected (cf. Figure 8.8(a)). In particular for nanotubes with a diameter small
enough to yield energy gaps in the range 0.7–1.0 eV, one observes on-currents with or-
ders of magnitude difference for different contact metals used in otherwise equally
fabricated devices. There are several aspects to this fact that cannot be explained with
a metal-semiconductor contact giving rise to a Schottky barrier. First, from the MIGS
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model discussed in Section 4.6.1 (in particular, see Figure 4.21) a Fermi level pinning
even stronger than in silicon is expected. As such, there is not much deviation in the
on-currents expected when the contact metal is changed. Second, even if Fermi level
pinning was not strong, the large differences of on-currents in experimental CNTs can-
not be explained with a variation of the Schottky-barrier height, given the fact that the
screening length, and hence the effective Schottky barrier is not large anyway. Third, the
Schottky-barrier model overestimates the ambipolarity of the transfer characteristics.
Figure 8.6(b) shows exemplarily a comparison between experimental (blue triangles)
and simulated transfer characteristics (red curve) showing a substantial difference in
the case of a band gap of 1 eV [143].

Figure 8.6: (a) Side-contact model for a metal-nanotube contact. A metal covers the nanotube over a
length lcon. In the simulations, the metal is subdivided into a large number of individual, short-circuited
Buettiker probes that are connected to each lattice site of the finite difference grid. (b) Comparison of
experimental transfer characteristics (blue triangles) with a simple Schottky contact (red curve) and the
side-contact model (green curve) [143].

The reason for the discrepancy between experiment and simulation is the contact
geometry considered in the Schottky-contact model compared to the actual experimen-
tal situation. Instead of ametal in direct contact with the nanotube, CNTFETs are usually
contacted with a metal covering a certain portion of length lcon of the nanotube as de-
picted in Figure 8.6(a). This way of contacting the nanotube makes a more elaborate
contact model necessary.

It has been noted by Tersoff that a substantial potential barrier Φbar > 10 eV exists
at the metal-nanotube interface in the case of a metal deposited on top of the nanotube,
which is a result of the rapidly decaying wavefunction perpendicular to the nanotube
axis [249]. In addition, since themetal is a van derWaals distance (lvdW ≈ 3 Å) away from
the nanotube, there is a very thin but rather high potential barrier in-between themetal
and the nanotube. As a result, the actual contact is rather similar to the metal-ultrathin
nitride-silicon contact discussed in Section 7.3.2. In fact, the high but extremely thin po-
tential barrier between metal and nanotube can be interpreted as a depinning layer,
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which explains why the material of the metal contact (i. e., the work function) plays
such a prominent role for CNTFETs. The potential barrier also elucidates why experi-
mental devices exhibit less ambipolarity than expected based on the simple SB model.
Since the potential barrier in between metal and nanotube is inherent to the contact it
needs to be taken into account when quantitative comparisons between experiments
and simulations are made.

8.1.3.1 Modeling Metal-Nanotube Contacts
Figure 8.6(a) shows schematically the geometry of what is called a horizontal or side-
contact in the following: the metal is deposited on top of a nanotube and covers a sec-
tion of length lcon. In order to incorporate such side-contacts into NEGF simulations, we
use the Buettiker probe model introduced in Section 6.3.1. The metal is subdivided into
individual, short-circuited contact portions. Each portion of the metal is connected with
the nanotube at a specific site of the underlying finite difference grid and represented
by a Buettiker probe. As in the case of gate leakage, all Buettiker probes within source
(drain) share the same Fermi level fixed by the terminal voltage (e. g., ground poten-
tial in the source). The weak coupling between each Buettiker probe and the nanotube
is described with the simple coupling factor γ = 0, . . . , 1 as has already been done in
Sections 6.3.1 and 6.3.2. The value γ = 0 insulates the contacts from the nanotube and
γ = 1 yields the strongest possible coupling. As will be discussed below, the case γ = 1 is
equivalent to the Schottky-barrier model used in Sections 8.1 and 8.1.2.

In a similar way as has already been done in the case of gate leakage (see Sec-
tion 6.3.2), the coupling parameter γ can be related to the potential barrier present at
the nanotube-metal interface by analytically calculating the transmission function 𝒯 (E)
through a potential barrier of heightΦbar andwidth lvdW using elementary quantumme-
chanics. 𝒯 (E) is then comparedwith the transmission function T(E) through a single site
finite difference “grid” using NEGF. To this end, the single site (with potential Φsite = 0)
is connected to the right to a semiinfinite contact and to the left to a semiinfinite contact
whose coupling is mediated by the parameter γ (see lower panel of Figure 8.6(a)). The
retarded Green function Gr of the one-site problem is

Gr = [E − 2t + teika + γteika]−1 = [γteika − te−ika]−1. (8.7)

With Γl = 2γt sin(ka) and Γr = 2t sin(ka), the transmission function T(E) follows using
the Fisher–Lee relation (see Equation (6.47)):

T(E) = 4γ sin2(ka)
1 + γ2 − 2γ(cos2(ka) − sin2(ka))

≈ 1
1 + t(1−γ)2

4γE

(8.8)

since ka ≪ 1. This result has to be compared with the 𝒯 (E) given by
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𝒯 (E) = 1

1 +
(Φbar)2
Φbar−E sinh2(KlvdW)

4E

(8.9)

whereK = √ 2m⋆(Φbar−E)ℏ2 . As wasmentioned above, Φbar > 10 eV and, therefore, Φbar−E ≈
Φbar. As a result, 𝒯 (E) and T(E) are of the same form and a quadratic equation for γ can
be identified. Since γ has to be between 0 and 1, a unique solution can be found given by

γ =
2 + Φbar

t sinh2(√ 2m⋆Φbarℏ2 lvdW)
2

−√
(2 + Φbar

t sinh2(√ 2m⋆Φbarℏ2 lvdW))2

4
− 1. (8.10)

Note that γ explicitly depends on m⋆ and a through the hopping parameter t = ℏ22m⋆a2 .
For typical values ofm⋆ and a used in the simulations, γ is less than 10−2. It is therefore
in a similar range as in the analysis of Section 7.3, confirming that the high but extremely
thin potential barrier Φbar plays the role of a depinning layer. As a result, the presence
of this depinning layer enables the work-function difference between CNT and metal to
determine where the Fermi level lies with respect to the conduction and valence bands.
In addition, the metal-nanotube coupling yields a modified density of states (a reduc-
tion of MIGS) of the nanotube portion underneath the metal, i. e., the part of the CNT
from which carriers are injected into the channel. Therefore, a strong dependence of
the carrier injection, and thus of the on-current on the metal work function is expected.

Plots of the local density of states for strong and weak coupling are shown in Fig-
ure 8.7(a) and (b), respectively. The case of strong coupling would be obtained if there
was no potential barrier in between metal and nanotube. In this case, the band gap
would vanish completely due to metal-induced gap states within Eg originating from

Figure 8.7: Local DOS in CNTFETs in the case of strong (a) and weak (b) metal-CNT coupling. Strong cou-
pling yields a pronounced modification of the DOS underneath the metal resulting in a Schottky contact
behavior. The weak coupling leads to a slight modification of the DOS with semiconductor-like behavior.



342 � 8 Carbon Nanotube Field-Effect Transistors

the intimate contact between metal and CNT. As a result, the density of states becomes
“metal-like,” and hence carriers can be injected from source and drain at “all” energies
as is the case in a metal-semiconductor Schottky contact (Figure 8.7(a)). This would lead
to pronounced ambipolar behavior with large leakage currents in the off-state (cf. Fig-
ure 7.11). A weak coupling, on the other hand, leads to a “semiconductor-like” density of
states with an almost unmodified, intact band gap (cf. Figure 8.7(b)). This in turn results
in a suppression of ambipolar behavior, since depending on the position of the Fermi
level, either electron or hole injection into the channel dominates. For sufficiently large
Eg and appropriately weak coupling, this even yields unipolar device behavior (as ob-
served in the silicon pseudo-MOSFETs shown in Figure 7.22).

8.1.3.2 Comparison with Experiments
The side-contactmodel canbeused to learnmore about the specificmetal-nanotube con-
tact properties. To this end, simulated transfer characteristics are comparedwith exper-
imental data obtained from CNTFETs fabricated with three different contact metals—
aluminum, titanium and palladium. At first, experimental devices with aluminum con-
tacts are used to find a suitable coupling parameter γ. The reason for this is that in the
case of the aluminum contacts, the lowest on currents aremeasured, which is due to the
relatively low work function (compared to the other two metals (cf. Figure 4.18)) result-
ing in a Fermi level that lies within the nanotube band gap. Since a coupling strength of
γ ≲ 0.01 is expected, the coupling is rather weak, and thus the density of metal-induced
gap states is expected to be rather low. This means that the on-current of the CNTFET
with Al contacts sensitively depends on γ, providing a rather robust determination of
the coupling strength. As a result of this comparison, γ = 0.007 was found. With this
coupling strength, the devices with Ti and Pd contacts were simulated.

Figure 8.8(a) displays the comparison between the simulated and the experimental
data showing excellent agreement [40]. It is important to note that the only parameter
changed in the three simulations is the position of the Fermi level with respect to the va-
lence band according to the work functions of Ti and Pd, yet the different current levels
and shift of the threshold voltage are nicely reproduced. Moreover, the relatively bad
inverse subthreshold slope of the aluminum device and even the kink in the transfer
characteristics (cf. Figure 7.4 for more explanations) of the titanium CNTFET are well
replicated [40]. Deviations at very low current levels are due to the fact that in the sim-
ulations nonidealities such as gate leakage are excluded. The side-contact model is also
compared with experimental data from the literature (the data is extracted from [77]).
Figure 8.8(b) displays a comparison, which again shows excellent agreement between
simulation and experiment. This proves that the contact model very well describes the
properties ofmetal-nanotube contacts. It also shows that the assumption of the presence
of the potential barrier Φbar is well justified. More importantly, this potential barrier
Φbar indeed depins the Fermi level.
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Figure 8.8: (a) Comparison of simulated (straight line) and experimental CNTFET characteristics using the
side-contact model for Pd, Ti and Al as contact metals [40]. (b) Comparison of simulated [52] and experi-
mental data extracted from [77].

Next, simulating the electrical characteristics over a wide range of metal-nanotube
work-function differences with a constant coupling strength of γ = 0.007 leaves the po-
sition of the Fermi level with respect to the valence band of the nanotube |Ev − Ef | as
the only parameter to adjust in order to compare simulated with experimental data. In
fact, the energetic difference |Ev − Ef |would be the same as the Schottky-barrier height
Φhole
SB in the simple metal-nanotube model. Therefore, comparing simulations with ex-

periments allows for extracting the calibration plot displayed in Figure 8.9, which maps
the on-currents of CNTFETs (at a constant gate voltage overdrive of |Vgs −Vth| = 0.5 V) to
Schottky-barrier heights present at the metal-nanotube interface [40]. This calibration
plot provides immediate access to the SB height in CNTFETs i. e., to |Ev−Ef| fromwhich a
first estimate of the band gap, and thus the nanotube diameter in experimental devices
can be extracted (when comparing different devices with the same contact metal).

Figure 8.9: Calibration curve that maps the on-current of a CNTFET to the Schottky barrier at the metal-
nanotube interface [40].
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The weakmetal-nanotube coupling appears to be beneficial for CNTFETs because it
depins the Fermi level and suppresses ambipolar operation in the devices. On the other
hand, a weak coupling increases the contact length required in order to obtain a low
contact resistance. The side-contact model relies on using Buettiker probes, and thus
the coupling strength γ can be related to a mean free path for scattering. This mean free
path is essentially equivalent to the transfer length, and thus represents a minimum re-
quired contact length (see Section 6.3.1). Following Venugopal and coworkers [259], the
mean free path can be expressed as lmfp = a/γ ≈ l

min
con where a is the lattice spacing of

the finite difference grid. For the coupling strength of γ = 0.007 that enabled the excel-
lent agreement between simulation and experiment shown above, a minimum contact
length, i. e., a transfer length lT ≈ 70 nm is obtained. Reducing the contact length below
this minimumwill lead to increased contact resistivity, which has recently also been ob-
served experimentally [76]. This would ultimately limit the scalability of CNTFETs. A vi-
able approach to circumvent this has recently been demonstrated in [37]. Transferring
molybdenum side-contacts into end-bonded contacts, low contact resistances indepen-
dent of the contact length could be realized; such end-bonded contacts are illustrated
in Figure 8.10 where the contact is basically transferred from a weakly to a strongly
coupled contact by breaking the carbon-carbon bonds of the CNT. However, it was men-
tioned above that with such contacts an increased off-state leakage due to ambipolar
operation is expected, which limits devices to be usedwith low Vds only (see Figure 7.11).

Figure 8.10: Carbon nanotube with side-contact (left) and end-bonded contact (right).

8.1.4 Reconfigurable CNTFETs

Irrespective of the contact model, it is clear from the discussion so far that CNTFETs be-
have similar to SB-MOSFETs. Due to the extremely small diameter of CNTs and the pos-
sibility of realizing a wrap-gate architecture, the screening length λch can be made very
small, resulting in strong improvements in the tunneling probability through the Schot-
tky barrier. However, as discussed in Section 7.1.1, improving the tunneling probability is



8.1 Carbon Nanotube FETs as SB-MOSFETs � 345

not exclusively beneficial: it also increases the leakage current due to the ambipolar op-
eration (cf. Figure 7.11). Reconfigurable FETs (cf. Section 7.4), on the other hand, feature
an additional gate electrode that allows for adjusting the potential distribution in the
channel to block the ambipolar operation. In this respect, carbon nanotubes appear to
be ideally suited for reconFETs, since they exhibit a symmetric band structure enabling
symmetric injection of electrons and holes and they allow strongly increased carrier
injection due to the inherently small diameter of the nanotube. The aim of the present
section is, therefore, to study reconfigurable CNTFETs and to see how their performance
can be improved. For convenience, some of the concepts and explanations related to the
working principle of reconFETs will be repeated here (cf. Section 7.4).

Figure 8.11 shows an electron micrograph together with a schematic device cross-
section of a dual-gate carbon nanotube transistor [11, 172]. The device is fabricated by
depositing a thin aluminum gate on top of an oxidized siliconwafer (the thickness of the
SiO2 is 10 nm). After forming an approximately 4 nm thin Al2O3 (in a water rich ambient
at 160 °C for 1.5 h) that serves as the actual gate dielectric, a nanotube is dispersed on top
of the structure and contacted with titanium contact electrodes (for details on the de-
vice and its fabrication, see [11]). The particular device design where the aluminum gate
lies on top of the oxidized silicon wafer allows using the wafer as a large area polarity
gate (PG) that acts only on the source/drain extension regions since the channel area is
screened by the aluminum gate. Hence, applying a positive/negative back-gate voltage
induces electrons/holes in the source and drain extensions thereby creating electrostati-

Figure 8.11: Electron micrograph and schematic illustration of a dual-gate carbon nanotube FET with a
large area back-gate that serves as polarity gate (PG). A central control gate (CG) is made of aluminum and
lies underneath the nanotube, thereby preventing any impact of the PG in the CG-region; exemplarily, band
profiles for p-type and n-type polarity are shown on top of the respective transfer characteristics (right
panel) [172].
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cally n/p-type doped contact regions. This gate-controlled n- and p-type doping is shown
in Figure 8.11, right panel. Here, conduction and valence bands along the direction of
current transport are shown exemplarily for the two polarities. Applying an appropri-
ate voltage at the Al control gate (CG) allows for switching the CNTFETs on and off. The
lower right panel of Figure 8.11 shows transfer characteristics of such a dual-gate re-
configurable CNTFET [172] operated as n-FET (blue) and p-FET (red). Unipolar device
operation is obtained as expected for a reconFET. Note, however, the difference to the
reconfigurable devices presented in Section 7.4; here, the PG is a large gate acting on
source and drain. As such, the device shown here acts similar to the PGAS configuration
without leakage, since the conduction/valence band profiles resemble regular n-p-n or
p-n-pMOSFETs, respectively.

In order to obtain symmetric carrier injection in reconFETs (note that the titanium
contacts in the dual-gate reconFET above are not ideal since they yield better hole injec-
tion compared to electron injection), a mid-gap line up of the Fermi level with respect to
the conduction and valence band is required. However, the weak metal-nanotube cou-
pling (see preceding section) leads to strongly reduced MIGS, and thus to a strongly re-
duced carrier injection in the case of a Fermi level line-up close tomid-gap aswas shown
above in the case of Al contacts (see Figure 8.8(a)). Even the small screening length λch
that can be achieved in devices based on CNTs does not help much in this case unless
the device is changed from a side-contact to an end-bonded device. But even with end-
bonded contacts, the resulting SB will limit the performance of such reconFET. As a re-
sult, it would be highly desirable to realize reconfigurability without Schottky barriers;
this can be accomplished exploiting the weak coupling of metal-nanotube contacts.

Consider the two device layouts for reconFETs shown in the insets of Figure 8.12.
The case shown on the right side resembles the reconfigurable FETs discussed in Sec-
tion 7.4 with PG and CG next to each other. In the case shown in the left inset, the po-
larity gate is located only underneath the metal-nanotube contact. How can this lead
to reconfigurability? It was mentioned above that the metal-nanotube coupling is weak
leading merely to small modifications of the density of states within the band gap (as
a result of the suppressed MIGS). It is therefore expected that the conduction and va-
lence bands of the nanotube can be moved with respect to the Fermi level of the contact
electrode by applying an appropriate voltage at the PG (back-gate) underneath the nan-
otube. The upper left inset of Figure 8.12 displays a 2D calculation of the electrostatics of
the metal-nanotube contact showing that the contact does not fully screen the impact of
the bottom gate electrode. Therefore, the PG (back-gate) can be used to tune the polarity.
As a result, while the device with PG and CG next to each other exhibits a Schottky bar-
rier at the metal-nanotube interface, there will only be the extremely thin barrier Φbar
associated with the depinning layer in the second case, provided that the voltages at the
back-gate (PG) are sufficiently high. Hence, the latter device layout with back-gate as PG
(left inset in Figure 8.12) should provide substantially larger on-currents than the other,
rather conventional (i. e., with Schottky barriers), reconFET device architecture.
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Figure 8.12: Drive current as a function of the polarity gate voltage of the two device configurations
depicted in the insets. Simulations are done for devices with L = 15 nm, nanotube diameter 1.3 nm,
dox = 3 nm, Vgs = 0.9 V, Vds = 0.4 V, Eg = 1.0 eV and γ = 0.007 [144].
Reconfigurable MOSFETs based on the two device layouts were simulated with self-
consistent NEGF calculations. Exemplarily, the drive current for the n-type polarity is
computed as a function of the voltage at the PG (see the caption of Figure 8.12 for details
on the device parameters) [144]. The main panel of Figure 8.12 shows the on-current
extracted at a control gate voltage of Vgs = 0.9 V for the two device layouts. Obviously,
the CNTFET with the polarity gate underneath the contact (green data points) shows
a superior performance since for sufficiently large back-gate voltages the conduction
band in the contact area is moved close to or even below the Fermi level. In contrast,
the device with PG next to the contact shows a saturating current at large PG voltages.
Note that Ti contacts have been assumed here; with Al contacts the difference between
the two devices is expected to be even larger.

Due to the symmetric band structure of carbon nanotubes, the same behavior is ex-
pected for hole injection if an appropriate negative voltage at the polarity gate is applied.
In other words, due to the weak metal-nanotube coupling, the energetic position of the
Fermi level with respect to the conduction and valence bands, which is due to the work-
function difference of metal and nanotube, can be changed by applying appropriate
voltages at the back-gate PG. This means that the resulting potential barrier for carrier
injection can be tuned such that excellent electron or hole injection is obtained. On the
other hand, in the device where the polarity gate is placed next to the contact, the on-
current saturates for increasing polarity-gate voltage in the case of side-contacts. Even if
end-bonded contacts were realized, the current increase would be substantially weaker
compared to the case of a back-gate PG since there will always be a residual effective
Schottky-barrier height in the former case even for large program voltages. Therefore,
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gate-controlled doping in combination with the weakly coupled metal-nanotube side-
contacts and back-gate PG appears ideally suited for the realization of reconfigurable
FET devices.

8.2 Conventional CNTFET Devices

As mentioned above, the reconfigurable carbon nanotube FET with dual-gate architec-
ture discussed in the preceding section allows for adjusting conduction/valence band
profiles as in a conventional MOSFET. Therefore, such a dual-gate CNTFET can be used
to study carbon nanotubes in a regular p-n/i-p device layout.

Figure 8.13(a) shows the transfer characteristics of a dual-gate CNTFET with a chan-
nel length of 200 nm (green curves) and 40 nm (red curves) for two different Vds [12].
Unipolar, regular transfer characteristics are observed in the case of L = 200 nm. How-
ever, scaling down the channel length to 40 nm results in a severe deterioration of the
off-state with high leakage currents particularly in the case of a large bias voltage. The
reason for such a behavior could be short channel effects. In Section 5.6, a criterion for
the appearance of SCEs was given, stating that at (4–5) × λch ≈ L SCEs start to appear. In
the present case, the dual-gate CNTFET is equivalent to a single-gate architecture. Tak-
ing the aluminum oxide as gate dielectric and the small nanotube diameter into con-
sideration, the screening length λch can be estimated to be not larger than λch ≲ 3 nm;
this means that we do not expect any SCE in the present device, even if L = 40 nm. So,
what is the reason for the degradation of the off-state in the short CNTFETs? In order to
clarify the mechanism, self-consistent NEGF simulations are carried out (cf. Chapter 6).
Figure 8.13(b) shows the simulated transfer characteristics of a conventional nanotube
transistor. In the simulation, a channel length of 10 nm (to speed up the simulation) and
a wrap-gate architecture with a gate oxide thickness dox = 3 nm are assumed [141]. Fur-

Figure 8.13: (a) Experimental transfer characteristics for a dual-gate CNTFET with L = 200 nm (green
curves) and L = 40 nm (red curves) [12]. (b) Simulated transfer characteristics of a CNTFET with doped
source/drain regions with L = 10 nm [141].
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thermore, the Fermi energy in source and drain is considered to be 0.1 eV above the
band edge and the band gap Eg = 0.6 eV. Although the channel length is rather short,
the wrap-gate architecture yields λch ≈ 1.1 nm, and thus no SCE are expected in the
simulated devices. Comparing the experimental and simulated data, it is obvious that
they are qualitatively in excellent agreement although the absolute current levels do
not match because of the difference in the device geometries. In particular, the deterio-
rated off-state is well reproduced.

The mechanism behind the deteriorated switching behavior is revealed in Fig-
ure 8.14, which shows conduction and valence band profiles in the simulated device.
The dashed lines in the left panel show bands if the charge in the conduction band
is completely disregarded. However, electrons are injected into the channel from the
drain contact due to band-to-band tunneling (BTBT). For the chosen Vds, these carriers
cannot leave the channel into the source contact, because their movement is blocked
by the band gap in source. Therefore, a pile-up of negative charge in equilibrium with
the drain Fermi distribution occurs within the channel. This negative charge within the
channel moves the conduction/valence bands upwards in energy (solid lines in the left
panel of Figure 8.14 computed self-consistently) and, as a result, a larger hole current in
the device’s off-state will flow. The right panel of Figure 8.14 shows the conduction/va-
lence bands for two different bias points. The larger (i. e., the more negative) Vds, the
larger the electron density within the channel and the more severe the effect. This
way, a kind of drain induces a barrier “lowering” (in fact, the barrier moves upwards
because a p-type FET is considered here) is obtained. Nevertheless, the mechanism is

Figure 8.14: Left panel: Illustration of the impact of carriers injected into the channel due to BTBT in a
conventional CNTFETs. The dashed lines show simulated conduction and valence bands at a fixed Vds dis-
regarding the charge in the conduction band. Taking the charge into consideration yields bands that are
moved upwards in energy (solid lines). As a result of this, the off-state hole leakage current increases. Right
panel: Bands for two different Vds. The larger the bias the larger the injection charge, and thus the more
severe the effect.
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substantially different from DIBL1 and relies on strong BTBT. An interesting aspect of
this behavior is that it allows one in principle to measure the band movement when
charge is in the channel. Moreover, the strong BTBT is certainly due to the very small
values of λch that can be realized with carbon nanotubes. In the next chapter, so-called
tunnel FETs will be introduced and experimental devices will be discussed that exploit
the strong BTBT in carbon nanotubes.

Exercises

Exercises togetherwith solutions are accessible via theQR code. 61

1 It rather resembles the mechanism that leads to the sublinear output characteristics of SB-MOSFETs
(cf. Section 7.1.2).

https://www.iht.rwth-aachen.de/global/show_document.asp?id=aaaaaaaachgkvbe


9 Steep Slope Transistors

In Chapter 5, performance improvements of conventional MOSFETs have been dis-
cussed. As a central result, it was found that the limitation of any conventional field-
effect transistor to a minimum inverse subthreshold slope of Smin = 60mV/dec at
room temperature is one of the major roadblocks hindering a further reduction of the
power consumption of highly integrated circuits built from such devices. Reducing the
power consumption requires lower supply voltages Vdd. However, with devices bound
to the 60mV/dec limit, a smaller supply voltage inevitably leads to either a substantial
performance loss or to a strong increase of the static power consumption due to the
exponentially increasing off-state leakage. This scenario is shown in Figure 9.1 (repro-
duced from Chapter 5 for convenience) where the green and blue curves belong to
conventional MOSFETs.

Figure 9.1: Transfer characteristics of a conventional MOSFET with optimum subthreshold swing at room
temperature (green curve). Scaling down Vdd either leads to a loss of on-state performance or to an expo-
nential increase of leakage (blue curve) due to Smin = 60mV/dec. An optimized steep-slope transistor (red
curve) would allow reducing Vdd while maintaining the on-state performance at a lower off-state leakage.

Ideally, a device would show a behavior as illustrated by the red curve in Figure 9.1;
an inverse subthreshold slope significantly steeper than 60mV/dec in combination with
ahigh on-state performancewould allowdecreasingVdd, and thus reducing the dynamic
power consumption (cf. Equation (5.31)). At the same time, the steep slope would en-
able reaching lower off-state leakage currents in a certain Vdd-interval. Such devices
are highly desirable for the realization of ultralowpower integrated circuits (ICs) needed
formobile applications, autonomous sensor devices and internet-of-things applications.
Device concepts that are (at least potentially) able to provide S < 60mV/dec are called
steep-slope transistors. A number of different steep-slope transistor concepts have been
proposed and intensively investigated in recent years. The present chapter explains the
device physics and operating principles of a selection of these concepts.

https://doi.org/10.1515/9783111054421-009

https://doi.org/10.1515/9783111054421-009
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9.1 Band-to-Band Tunnel Field-Effect Transistors

Field-effect transistors based on band-to-band tunneling (TFETs) are the most wide-
spread investigated steep-slope transistor concept and have been intensively studied
for more than 15 years by many groups [23, 11, 116, 179, 173, 112, 224]. The strong in-
terest in TFETs stems from the fact that they (potentially) allow for the realization
of steep-slope transistors with a device structure that is very similar to conventional
MOSFETs; the only difference is that they exhibit an n-(p-)type source and a p-(n-)type
drain contact instead of either n-type or p-type source/drain contacts. As an example,
Figure 9.2(a) shows a schematic (left) and an experimental realization (right) of a TFET
fabricated on a thin-body silicon-on-insulator substrate [229]. The fabrication of TFETs
is therefore very similar to conventional MOSFETs, and thus, integrating TFET tech-
nology into existing CMOS production lines would only require small changes to be
implemented. Furthermore, as will be discussed in detail below, measures that need to
be taken in conventional CMOS technology to avoid short-channel effects (such as ultra-
thin gate dielectrics preferably with a high dielectric constant, wrap-gate architectures,
etc.) turn out to be performance boosters of TFETs. Again, very few changes would be
necessary for an integration of TFETs as add-on or replacement of conventional CMOS.

Figure 9.2: (a) Schematic and electron micrograph of a SOI TFET with n-doped source and p-doped drain
[229]. (b) Transfer characteristics of two TFETs with different dox [229]. Plotted are the absolute values of
the drain current Id and gate leakage current Ig. The red dashed line illustrates an S = 60mV/dec. Panel (c)
shows typical output characteristics of a long-channel (L = 2 µm) TFET with sublinear behavior for small Vds
[229].
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While tremendous progress regarding various TFET implementations and improve-
ments has been made recently, experimental realizations so far still lack a satisfying
performance.

TFETs exhibit a number of electrical properties that are similar to SB-MOSFETs, and
hence are less favorable. Figure 9.2(b) shows transfer characteristics of the single-gate
SOI TFET shown in the electronmicrograph (a). Clearly observable is the fact that TFETs
exhibit ambipolar operation. Moreover, the device shows an inverse subthreshold slope
substantially larger than 60mV/dec (the red dashed line shows 60mV/dec as a refer-
ence) and the on-current is lower than in a conventional MOSFET. In addition, like SB-
MOSFETs, TFETs exhibit a sublinear regime in the small bias region of their output char-
acteristics (c), which is unfavorable for a proper functionality of inverters, for instance
(see Task 29).

In order to understand the electrical behavior of TFETs and how their performance
can be improved, the next sections are devoted to explaining the operating principles of
TFETs. As will become clear below,manymeasures that at first seem to improve the per-
formance of TFETs do have drawbacks and become rather intricate and involved when
spatial dimensions are reduced to the nanoscale such as in nanowire TFETs. This will
be studied at length and the various interdependencies of different TFET optimization
strategies will be discussed in detail in order to elaborate on their impact and effective-
ness.

9.1.1 Operating Principles of TFETs—Off-State

TFETs are gated n-i-p(p-i-n) devices with a degenerately n(p)-doped source contact, a
gated intrinsic(or lightly doped) channel area and a p(n)-doped drain contact. Figure 9.3
shows the conduction band of a conventional n-type MOSFET (left panel) and conduc-
tion/valence bands of an n-type TFET (right) together with the associated transfer char-

Figure 9.3: Comparison of the switching in a conventional MOSFET (left) and an optimized TFET (right
panel). The center panel shows schematic Id–Vgs curves of the two device types.
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acteristics (middle panel). Whereas in the conventional n-MOSFET, lowering the poten-
tial maximum within the channel by applying appropriate gate voltages yields an ex-
ponential increase of the current with at best 60mV/dec at room temperature (cf. Sec-
tion 5.2.2), an energetic window for band-to-band tunneling (BTBT) is opened at the
source-channel interface in the case of TFETs. As a result, the switching is not deter-
mined by modulating carrier injection from a thermally broadened Fermi distribution
function but by field-effect modulated BTBT. With suitable optimizations, TFETs may
therefore switch in a smaller gate voltage range than conventional MOSFETs, i. e., with
an inverse subthreshold slope S < 60mV/dec.

Let us start studying the operating principles of TFETs and how their performance
can be optimized by introducing a semianalytical model for a TFET. To keep the dis-
cussion as simple as possible, let us consider a one-dimensional device layout, i. e., a
nanowire or nanotube channel, with ballistic electronic transport. The current through
such a TFET can be computedwith the Landauer expression using an appropriate trans-
mission probability T(E) (cf. Equation (2.117)):

Id =
2e
h

∞

∫
−∞

dE T(E)(fs(E
s
f ) − fd(E

d
f )). (9.1)

There is an important point that needs to be clarified beforewe proceed.When deal-
ing with semiconductors, we usually distinguish between electrons in the conduction
band and holes in the valence band. However, here we deal with band-to-band tunnel-
ing, so how do we handle the two types of carriers and in particular the transfer from
electron to hole behavior due to tunneling between the bands? First of all, remember
that holes are just a construction that helps with counting charge carriers in the valence
band. Instead of counting all the electrons from the top of the valence band to the bot-
tom of the band, it is a lot easier to pretend that holes are a type of charge carriers with
positive effective mass and positive charge. But holes are really only empty states in the
valence band, i. e., missing electrons giving rise to a positive charge due to the positive
background from the host crystal atoms. Hence, there are not two different carrier types
but simply just electrons. I should rather say electrons or holes, but not electrons and
holes, because instead of considering TFETs based on electrons one can equally well use
holes throughout the device (i. e., within the valence and conduction bands). The bottom
line is that you can either choose the electron picture or the hole picture—both do the
trick.

Next, in a direct semiconductor, band-to-band tunneling at a p-n junction can be
understood as charges moving through the complex band structure as illustrated in Fig-
ure 9.4(a). Here, an electron in the valence band moves toward the left, i. e., it resides
on the right branch of the dispersion relation in the valence band. The carrier “follows”
the complex band structure (cf. Figure 2.23) illustrated with the dark green dotted line
and enters on the left side of the dispersion in the conduction band to maintain the neg-
ative carrier velocity. Hence, the complex band structure plays an important role for
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Figure 9.4: (a) Illustration of BTBT at a n-p junction. A charge carrier is transferred from the valence to the
conduction band via the complex band structure (red). The carrier is transferred from the right (left) side
of the dispersion in the valence band to the left (right) side of the dispersion in the conduction band to
maintain the negative (positive) direction of carrier velocity. (b) Conduction and valence bands of a TFET
along the direction of current transport. The BTBT barrier at the source-channel interface is replaced with a
triangular shaped barrier (gray-shaded area) that allows using the WKB approximation.

the tunneling probability; it has already been dealt with in earlier chapters and can be
computed, e. g., with the tight-binding method (Section 2.4.7), or taken into considera-
tion with an energy-dependent effective mass (Section 2.5.2). Additional complications
are expected in the case of an indirect semiconductor such as silicon. Here, a phonon
is required in order to provide the necessary momentum change to allow carriers to
tunnel from the conduction to the valence band (or vice versa). Taking all these aspects
into consideration requires elaborate simulation.

For the time being, however, we will disregard these details and treat the band-
to-band tunneling barrier as a regular potential barrier for carriers. With the Landauer
expression for current transport, the drain current can then bewritten as a sum of three
contributions, as depicted in Figure 9.4(b).

The first contribution is the injection of electrons from source with energies higher
than the conduction band in source Esc , i. e., from the Boltzmann tail of the source
Fermi distribution function. These electrons travel through the channel to find empty
states in drain. Therefore, the current contribution is given by I = 2e

h ∫
∞
Esc

dE(fs − fd) ≈
2e
h ∫
∞
Esc

dE fs(E
s
f ).

The second contribution stems from electrons injected from the valence band in
source with energies below the valence band in drain Edv . Since the Fermi distribution
of source in this energy range can be set to unity this current contribution is approxi-
mately I ≈ 2e

h ∫
Edv
−∞ dE(1− fd(E

d
f )). The latter two current contributions are due to thermal

emission and denoted accordingly Itherm in Figure 9.4(b).
The third contribution eventually stems from BTBT (large blue arrow in Fig-

ure 9.4(b)) and is denoted IBTBT. As long as direct source-to-drain tunneling can be



356 � 9 Steep Slope Transistors

neglected, IBTBT yields only a nonzero contribution in the energetic window ΔΦ be-
tween the conduction band in the channel and the valence band in source. As a result,
the total current is given by

Id ≈
2e
h

∞

∫
Esc

dE fs(E
s
f ) +

2e
h

Edv

∫
−∞

dE (1 − fd(E
d
f ))
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IBTBT

(9.2)

where T(E) is the band-to-band tunneling probability. This means that the two current
contributions due to thermal emission represent theminimumpossible off-state leakage
current Itherm = Ileak of TFETs. Since Ileak stems from the Boltzmann tail of the respective
Fermi distribution functions, it can be approximated as

Ileak ≈
2e
h

∞

∫
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e−
E−Esf
kBT
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≈ 22e
h
kBTe
−

Eg
kBT (9.3)

where we set Esc − E
s
f ≈ Eg and Edf − E

d
v ≈ Eg , which is a suitable approximation since

degenerately doped source/drain contacts are assumed.
An analytic expression for T(E) due to BTBT can be obtained by replacing the exact

conduction/valence band profiles (dark green dashed lines in Figure 9.4(b)) at the inject-
ing contact-channel interface with straight, parallel bands as illustrated with the green
lines in Figure 9.4(b). The spatial extent of the source-channel p-n junction is given by
the sum of the screening lengths due to doping in source, λdop, and due to the electro-
statics of the particular device architecture under consideration, λch (cf. Figure 5.12). The
height of the source-channel p-n potential barrier is equal to Eg + ΔΦ where ΔΦ is the
energetic width of the BTBT window, i. e., the energetic difference between the valence
band in the source and the conduction band in the channel. As a result, a triangular BTBT
barrier is obtained (gray triangle in Figure 9.4(b)) whose tunneling probability can be
computed analytically using the WKB approximation. Moreover, this triangular barrier
does not change when changing the energy. This means that TWKB will not depend on
energy, which is a major simplification because it allows for computing a fully analytic
expression for the drain current.

Let us now calculate TWKB and with this the drain current through a TFET, which
will then facilitate the computation of the inverse subthreshold slope and determine the
device parameters that predominantly impact the TFET performance. Figure 9.5 shows
the conduction/valence band profiles at the source-channel interface at two different
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Figure 9.5: Source channel p-n junction at two different Vgs. The BTBT barrier is approximated with the
(dark) gray triangle, facilitating the use of the WKB approximation.

Vgs where the exact potential profile has been approximated with straight lines as men-
tioned above. The WKB approximation yields (cf. Equation (4.33))

T(E) ≈ TWKB = exp(−2
dWKB

∫
0

dx√
2m⋆(Φf (x) − E)
ℏ2

). (9.4)

With the potential of the BTBT barrier replaced with a triangular barrier, one obtains
Φf (x) − E =

Eg
dWKB

x as apparent from Figure 9.5. Inserting this into Equation (9.4) and
carrying out the integration over x yields (with units [Eg] = J and [ℏ] = Js)

TWKB = exp(−2
2√2m⋆

3ℏ
√EgdWKB). (9.5)

The final thing to do is to compute dWKB, i. e., the base of the triangular barrier that needs
to be tunneled through. Looking at Figure 9.5 one can relate dWKB to device parameters
in the following way. The light and the dark gray triangles in the figure have the same
angles meaning that the ratio Eg

dWKB
is the same as Eg+ΔΦ

λdop+λch
. Solving for dWKB and inserting

into Equation (9.5) finally results in

TWKB = exp(−
4(λdop + λch)√2m⋆(Eg)

3/2

3ℏ(Eg + ΔΦ)
) (9.6)
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where the units are again [Eg] = [Eg + ΔΦ] = J. As expected, TWKB does not depend on
energy, and thus inserting it into Equation (9.2) enables the calculation of an analytic ex-
pression for the drain current (first term), including the leakage current due to thermal
emission (second term):

Id ≈
2e
h
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4(λdop + λch)√2m⋆(Eg)

3/2

3ℏ(Eg + ΔΦ)
)
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Equation (9.7) allows us already to briefly touch on a critical point, namely the size of
the band gap Eg . While the BTBT current increases proportionally to∝ exp(−√Eg)with
decreasing Eg , the leakage Ileak increases according to∝ exp(−Eg/kBT). If Ileak becomes
too large it may dominate the off-state of the TFET and as a result, the steep inverse
subthreshold slope is lost. The issue of the size of the band gap is intricate and will be
discussed in more detail later. For the time being, let us assume that the leakage current
can be neglected. In this case, the inverse subthreshold slope is obtained from the first
term of Equation (9.7). To simplify the notation, the current Id can be written as a prod-
uct of TWKB(ΔΦ) and F(Φ

0
f , E

s
v) = F(ΔΦ) with ΔΦ = Esv − Φ

0
f (cf. Equation (9.7)). Note that

the surface potential Φ0
f in a TFET is equivalent to the potential maximum in a conven-

tional MOSFET; the only difference is that Φ0
f is the deflection point (not the maximum)

of the potential distribution along the channel. Therefore, the top-of-the-barrier model
can be used here to relate Φ0

f to the gate voltage. From Equation (5.17), we obtain for a
constant Vds,

δΦ0
f =

Cox
Cox + Cdepl + Cs + Cd + Cinv

δΦg . (9.8)

If a fully depleted, long-channel TFET in the off-state is considered; this expression boils
down to δΦ0

f = δΦg and because ΔΦ = Esv − Φ
0
f it is immediately apparent that 𝜕ΔΦ𝜕Φg

= −1
in this case. With this, S can be computed to be

S = (𝜕 log Id
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)
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Carrying out the derivative 𝜕Id𝜕ΔΦ , the following two contributions are obtained:

S = ln(10)
|e|
(
TWKB(ΔΦ)

𝜕F(ΔΦ)
𝜕ΔΦ

TWKB(ΔΦ)F(ΔΦ)
+

F(ΔΦ) 𝜕TWKB(ΔΦ)
𝜕ΔΦ

TWKB(ΔΦ)F(ΔΦ)
)
−1

. (9.10)
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The first part is exclusively determined by the change of the incomplete Fermi inte-
gral F(ΔΦ)whereas the second part is due to a change of the tunneling probability with
changing gate potential [142].

The two contributions in Equation (9.10) allow for two different mechanisms to re-
alize an S smaller 60mV/dec. First, if TWKB is small but rapidly changeswith gate voltage,
the second term in Equation (9.10) dominates. In this case, the change of currentwithVgs
is not determined by thermal emission anymore (which yields S = 60mV/dec) but by the
change of the tunneling probability. Using theWKB approximation for the transmission
probability, S can be calculated to be

S ≈ ln(10)
|e|

3ℏ(ΔΦ + Eg)
2

4(λdop + λch)√2m⋆E
3/2
g

(9.11)

where again ΔΦ = Esv − Φ
0
f . This means that, for small ΔΦ, S can be made very small.

Note that the dependence∝ (λdop + λch)
−1 is actually counterintuitive, since TWKB drops

with increasing λdop+λch. However, it is important to note that S can only bemade steep
in a very small Vgs-range leading to switching in a practically irrelevant current range
(this current range would actually be overcompensated by the leakage due to thermal
emission). In addition, due to the quadratic dependence of S on ΔΦ the inverse sub-
threshold slope rapidly increases and a small S at some gate voltage is not sufficient
for a steep-slope transistor to perform better than a conventional MOSFET. An averaged
Sav < 60mV/dec over several orders of magnitude in drain current is needed to enable
low off-state leakage and high on-state currents in a reduced Vdd voltage interval. As a
result, if the second term of Equation (9.10) was dominant, TFETs would not be useful.
So, let us turn our attention to the first term.

The first term in Equation (9.10) becomes dominant if TWKB is close to unity and thus
changes only slightly with gate voltage. In this case, the inverse subthreshold slope is
determined by the change of the function F(ΔΦ). Consequently, the inverse subthreshold
slope becomes

S ≈ ln(10)
|e|

ΔΦ. (9.12)

This expression shows that very small inverse subthreshold slopes are feasible for ΔΦ→
0. Moreover, S does only depend linearly on gate voltage and, as a result, S < 60mV/dec
can be expected over several orders of magnitude.

62The reason why an inverse subthreshold slope steeper than 60mV/dec can poten-
tially be obtained if the second term of Equation (9.10) is dominant is the fact that the
transmission TWKB has become close to unity in the entire energy interval ΔΦ. Hence,
the band gaps within the source and channel regions act as a band-pass filter that cuts
of the high and low energy tails of the source Fermi distribution function, which is sim-
ilar to cooling the source Fermi function [142]. In the video provided via QR code #62,
this point is illustrated in more detail.

https://vimeo.com/466511902
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9.1.2 Operating Principles of TFETs—On-State

The preceding sectionmostly dealt with the off-state behavior of TFETs. However, based
on the 1D model used above, we are also able to understand specific properties of the
on-state of TFETs. Let us consider a TFET well in the on-state with a rather small bias
applied. This leads to a conduction/valence band profile as illustrated in Figure 9.6. Elec-
trons are injected from source and drain into the conduction band in the channel where
they give rise to a significant charge density that needs to be taken into consideration.
The charge within the channel can be computed approximately in the following way.
When charge is injected from drain, carriers will have a positive group velocity and oc-
cupy the right branch of the dispersion relation in the channel (depicted in Figure 9.6),
thereby occupying approximately half of the available density of states within the chan-
nel. The injected carriers move toward the BTBT barrier where a fraction TWKB will be
transmitted into the source contact due to BTBT and a fraction 1−TWKB will be reflected,
occupying a part of the left branch (with negative group velocity) of the dispersion re-
lation. At the same time, the left branch will also be occupied with electrons that are
injected from source via BTBT (this process is depicted in Figure 9.4(a)). If we split the
available DOS D(E) into two equal parts for the left and right branches of the dispersion
relation, the charge in the channel Qch is given by

Qch = e
∞

∫

Φ0
f

dED(E)
2

fd(E
d
f )

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
injected from drain

+ eTWKB

Esv

∫

Φ0
f

dED(E)
2

fs(E
s
f )

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
injected from source

+ e(1 − TWKB)
∞

∫

Φ0
f

dED(E)
2

fd(E
d
f )

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
reflected

(9.13)

where in the third term the transmission is TWKB = 0 if energies are above Esv and thus
the upper integration limit can be put to∞, since in the on-state, the Fermi distribution

Figure 9.6: Carrier injection into the channel of a TFET. Electrons from drain are injected and occupy the
right branch of the dispersion. Within the energetic window ΔΦ, the fraction 1 − TWKB of the carriers is
reflected and occupies also the left branch. Carriers from source are injected with a probability TWKB into
the channel and occupy states on the left branch of the dispersion.
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functions provide a negligible contribution for energies above Esc . Using Equation (9.13)
together with Equation (5.12), the potential Φ0

f can be computed as a function of Vds, gate
voltage and geometrical parameters such as dox and dielectric constant (in Cox and via
λch in TWKB), channel thickness dch, its dielectric constant and device geometry (in λch,
and henceTWKB), band gap anddoping concentration (in λdop) aswell as temperature. Φ0

f
needs to be computed numerically; once known, it can be used to compute the current
through the TFET using Equation (9.7).

Although a number of approximations were necessary to obtain this expression, it
opens the possibility for a relatively complete (semi) analytical description of the elec-
trical behavior of TFETs, takingmost of the important device parameters into considera-
tion; employing NEGF simulations it will become clear that somemore subtle properties
are not accounted for with the simple Landauer model presented here. However, the
model can be used to explain an important aspect of TFET operation. Supposed TWKB
was rather small so that to first order the second contribution to the charge in Equa-
tion (9.13) could be neglected and (1 − TWKB) ≈ 1 in the third term. The channel would
then be in equilibriumwith the drain Fermi distribution and a certain surface potential
Φ0
f is obtained. For increasing Vgs, the situation would actually resemble a MOS capac-

itor in inversion/accumulation with increasing charge density, and thus increasing in-
version layer/accumulation layer capacitance Cinv,acc (in the following, the appropriate
capacitor will be called Cinv for simplicity). If the device is not in the quantum capaci-
tance limit, at some gate voltage Cinv > Cox, and consequently, a change of gate voltage
yields δΦ0

f =
Cox

Cinv+Cox
δΦg → 0 in the classical limit (cf. Section 5.9.1) where a constant

bias and negligible Cs,d,depl,it are assumed. If the drain-source bias is now increased the
Fermi distribution of the drain that injects carriers into the channel is moved down in
energy, and thus the injection of carriers drops so that only carriers from the source are
injected. Since TWKB ≪ 1, the carrier density, and thus Cinv → 0. As a result, δΦ0

f ≈ δΦg
and the surface potential is moved according to the applied gate voltage. In turn, this
will increase TWKB giving rise to an increased drain current. This mechanism is the rea-
son for the exponential increase of the on-current of a TFET in the small bias regime (cf.
Figure 9.2(c)) [142]. Since the current increase is induced by drain, it will be called “drain-
induced-barrier thinning” (DIBT) in the following. In Section 7.1.2, it was shown that a
very similar effect is also responsible for the sublinearity of the output characteristics
of SB-MOSFETs.

The occurrence of DIBT can be expressed in the following way. Starting from Equa-
tion (5.12), we can again compute δΦ0

f . However, this time the dependence of Qch on the
drain-source bias (i. e., the drain potential Φd) needs to taken into consideration. As a
result, the last term in Equation (5.12) yields two terms. Then, assuming that Cdepl and
Cs,d,it can be neglected (i. e. CΣ = Cox), one obtains

δΦ0
f = δΦg −

e𝜕Qch/𝜕Φ
0
f

Cox⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=Cinv/Cox

δΦ0
f −

e𝜕Qch/𝜕Φd
Cox⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=−Cinv/Cox

δΦd (9.14)
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where e𝜕Qch/𝜕Φd = −Cinv because a change of Φd with constant potential in the channel
Φ0
f yields the same absolute value of Cinv as leaving Φd constant and changing Φ0

f ; the
only difference is the sign of the change. Equation (9.14) can be rewritten by moving the
second term of the left-hand side to the right-hand side of the equation, and factor out
δΦ0

f , which yields

δΦ0
f =

Cox
Cox + Cinv

δΦg +
Cinv

Cox + Cinv
δΦd . (9.15)

This expression reflects the discussion above, namely that changes of Φg andΦd lead to a
change of Φ0

f , and thus to an exponential increase of the current. In fact, Equation (9.15)
resembles Equation (5.17), which described the impact of short-channel effects. How-
ever, here, the dependence of Φd enters through Cinv and not Cd . Hence, DIBT is not a
short-channel effect. It also appears in long-channel devices. What matters is the ratio
Cinv/Cox. As a result, Equation (9.15) provides a strategy to suppress DIBT: in the quan-
tum capacitance limit (cf. Section 5.9.1), Cinv ≪ Cox, which would lead to the desired
δΦ0

f = δΦg .
To further proceed with the analysis regarding TFET performance, self-consistent

simulations of TFETs using NEGF (detailed in Chapter 6) are carried out. The quantum
capacitance limit can be obtained in 1D wrap-gate structures with a material exhibit-
ing a small effective mass. Therefore, device and material parameters are chosen ac-
cordingly (see Figure 9.7). Comparing the device in the quantum capacitance limit and
classical limit is usually not trivial, because changing the device parameters such as dox
or m⋆ will have an immediate impact on the BTBT probability. The impact of charge is
always interrelated to a change in BTBT. In order to avoid this interrelation, the car-
rier density is multiplied with an artificial degeneracy factor during the self-consistent
computation of the potential profile, that allows tuning the carrier density without ma-
jor changes in the BTBT probability; for the calculation of the current, this factor is set

Figure 9.7: Simulated conduction and valence band profiles in the on-state of a nanowire TFET for different
Vds at constant Vgs. In (a), the carrier density was artificially increased leading to substantial DIBT because
Cox < Cinv whereas in (b) δΦ0/δΦd → 0 since Cox ≫ Cinv.
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to unity. Figure 9.7 displays the conduction and valence bands along current transport
in the “classical” limit (CL) where Cox < Cinv (a) and in the quantum capacitance limit
(QCL) with Cox ≫ Cinv (b). The impact of the drain on the energetic position of Φ0

f in (a)
is clearly visible reflecting the discussion above. In (b), Φ0

f is almost independent of Φd ,
and hence fully determined by the gate voltage.

To further illustrate the impact of charge in the channel on the output characteris-
tics of TFETs, simulations were done with degeneracy factors (see above) of 0.1, 1, 5, 10
and 20 where 0.1 yields the QCL and 20 the CL. The corresponding output characteristics
are shown in Figure 9.8. Due to the impact of drain on the channel potential as displayed
in Figure 9.7(a), an exponential increase of the current in the small bias regime (blue
curve in Figure 9.8) is obtained qualitatively mirroring the behavior of the experimen-
tal device shown in Figure 9.2(c). Lowering the degeneracy factor the device approaches
the QCL. As a result, the sublinearity in the small bias regime becomes increasingly sup-
pressed. Eventually, in the QCL the bands are not affected by the drain-source bias any-
more as depicted in Figure 9.7(b). As a result, regularMOSFET-like output characteristics
are obtained (cf. Figure 9.8, green curve). Also, note that in the QCL the on-state current
increases because the gate is able to control Φ0

f completely, thereby increasing BTBT.

Figure 9.8: Output characteristics for constant Vgs of TFETs with different ratios between Cox and Cinv. The
device with Cox ≫ Cinv (green curve) shows regular MOSFET behavior with a linear increase of Id for low
bias (cf. Figure 9.7(b)). The TFET with Cox < Cinv resembles a SB-MOSFET.

9.1.2.1 Channel Length Scaling—Short-Channel Effects in TFETs
In the literature, it is often stated that TFETs exhibit fewer or even no short-channel ef-
fects (recall that drain-induced barrier thinning is no SCE), when compared to conven-
tional devices, since the tunneling process only involves the source-channel interface.
However, this is not the case.1 In Section 5.6, we saw that short-channel effects in con-

1 It is certainly a matter of the definition of SCEs. For instance, there will be no Vth roll-off in a short-
channel TFET. But extrapolating a scaling benefit from this observation is not correct.
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ventional MOSFETs appear because of overlapping source-channel and channel-drain
p-n junctions when the channel length L is approximately of the same order as λch. This
overlap reduces the potential barrier Φ0

f leading to DIBL. TFETs are not too different
from conventional MOSFETs in this respect. The only difference is that the potential
maximum of a conventional MOSFET is replaced with the deflection point (also called
Φ0
f ) as already used above. The overlapping p-n junctions will then impact this deflec-

tion point. In the off-state of the TFET and for sufficiently large drain-source bias, Cinv
vanishes and we obtain δΦ0

f =
Cox

Cox+Cd
δΦg +

Cd
Cox+Cd

δΦd where Cd is the drain capacitance
following the same reasoning as in Section 5.6. Using this expression and assuming a
constant bias, the inverse subthreshold slope can be recalculated resulting in

S = ln(10)
e
(
𝜕F/𝜕Φg

F
+
𝜕TWKB/𝜕Φg

TWKB
)(1 + Cd

Cox
) (9.16)

i. e., we obtain the same result as above simply multiplied with the factor 1 + Cd
Cox

as in

a conventional MOSFET. Since the ratio of Cd and Cox is equal to λ2ch
L2 , it is obvious that

severe short-channel effects will strongly degrade the switching of TFETs.
The appearance of SCE in TFETs is schematically shown in the left panel of Fig-

ure 9.9, which displays the conduction/valence bands in the case of a TFET with strong
overlap of source-channel and channel-drain p-n junctions (light gray areas). Obviously,
the potential profile in the channel is to a large extent determined by the drain poten-
tial rather than the gate. In other words, the gate potential loses control over Φ0

f , which
determines the BTBT probability TWKB. Figure 9.9, right panel, shows simulated trans-
fer characteristics of nanowire TFETs with decreasing channel lengths L [7]. Obviously,
the switching of TFETs is deteriorated for smaller L. Note that in the case of the short-
est device, direct source-drain tunneling occurs in addition to SCE. However, the loss of
steepness of the inverse subthreshold slope is mostly due to short-channel effects [7].

Figure 9.9: (a) Conduction and valence bands in a TFET with strong overlap of the p-n junctions (L ∼ λch).
(b) Simulated transfer characteristics of short-channel TFETs with decreasing L [7].
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Clearly, the overlapping source/drain p-n junctions in TFETs do not lead to an exponen-
tial increase of the leakage current as observed in a conventional MOSFET due to DIBL.
Yet, TFETs that are not properly scaled lose their major benefit, namely potentially en-
abling S < 60mV/dec.

9.1.2.2 Channel Length Scaling—The Impact of Carrier Mobility
In conventional MOSFETs, the carrier mobility μ is one of the most important figures of
merit. Increasing the mobility improves the performance of MOSFETs without scaling.
Butwhat about the carriermobility in TFETs? In order to assess the impact of carriermo-
bility in TFETs, the transmission probability for scattering Tmfp = lmfp/(lmfp + L) (where
lmfp is again the scatteringmean free path; cf. Equation (5.29)) can be combined with the
BTBT probability TWKB. In the sameway as in Section 8.1.2 (see Equation (8.3)), we obtain

Ttot =
TWKBTmfp

TWKB + Tmfp − TWKBTmfp
=

1

exp( 4λ
√2m⋆E3/2

g
3ℏ(Eg+ΔΦ)

) + L
lmfp

. (9.17)

From the expression above, it is clear that Ttot ≈ TWKB if TWKB ≪ Tmfp, which is the
case in most TFETs unless the channel length is excessively long or the mean free path
extremely short. This makes sense because a TFET is a contact-switching device very
similar to a SB-MOSFET for which we have already discussed that the transport proper-
ties of the channel material are often irrelevant (cf. Section 7.1.1.3). This means that the
mobility is expected to play an insignificant role if any at all.

Figure 9.10(a) displays experimental on-state currents of SOI TFETs similar to the
one depicted in Figure 9.2(a) for various gate voltages (i. e., increasing TWKB) as a func-
tion of channel length, showing complete independence of L in all cases [229]. The car-
rier mobility μ is thus irrelevant for the TFETs. Furthermore, (b) shows simulated on-
currents (discrete data points) as a function of channel length L for four different dox
together with analytical current calculations (straight lines) based on the Landauer for-
malism and Equation (9.17). The simulations2 and analytical calculations are done for
double-gate silicon TFETs and are in excellent agreement. This reconfirms the useful-
ness of the WKB approximation (including scattering) to describe the performance of
TFETs. As expected, Id is almost independent of L and drops only for rather long-channel
lengths (note the logarithmic scale of the axis). Based on Equation (9.17) a minimum
channel length can be computed for μ to become significant. This minimum channel
length is given by Lmin ≥ lmfp exp(4λ√2m⋆E

3/2
g /(3ℏ(Eg + ΔΦ))) and provides a design

rule for TFETs. As long as the channel length of a targeted TFET is well below Lmin one
can choose the material and the geometry of the TFET without taking care of the carrier

2 Simulations were carried out with Centaurus TCAD by K. Boucart in A. Ionescu’s group at EPFL,
Switzerland.
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Figure 9.10: (a) Experimental on-state currents of SOI-TFETs for different channel lengths L and at four
different Vgs [229]. The data is extracted from devices as shown in Figure 9.2(a). (b) Simulated and analytic
data of the on-state current as a function of L for four different TFETs.

mobility. For instance, a possible loss of μ, likely to occur if extremely thin SOI is used,
is overcompensated by the performance benefit due to increased BTBT.

9.1.3 TFET Optimization

In the preceding sections, a model for TFET performance in the off- and on-state has
been developed that provides guidelines for the optimization and for achieving a steep
slope over several orders of magnitude. It was already found that in a TFET a band-pass
filter behavior needs to be created that enables an effective “cooling” of the source Fermi
distribution. To this end, the BTB tunneling probability must be increased as much as
possible, which, according to Equation (9.6), can be done by decreasing dox, decreasing
Eg , using a material with a small effective mass, decreasing the channel thickness dch,
increasing the dielectric constant of the gate dielectric and increasing the dopant con-
centration in the source contact. Furthermore, the quantum capacitance limit appears
to be effective in avoiding the sublinearity of the output characteristics. This looks like a
clear plan how to get rid of all TFET performance issues. Unfortunately, things are more
intricate and not as straightforward as the model developed so far suggests. Therefore,
each of the mentioned performance boosters will be discussed in greater depth in the
following sections.

9.1.3.1 Dependence on the Gate Oxide Thickness
Scaling down the effective oxide thickness EOT (i. e., reducing the physical gate dielectric
thickness and/or increasing the dielectric constant of the gate oxide) is themost effective
performance booster for TFETs. The reason for this is that as long as gate leakage is
avoided there is no trade-off, no accompanying interrelation that would deteriorate the
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performance of TFETs when reducing EOT. A small EOT reduces λch, thereby increasing
the BTBT probability. In addition, decreasing EOT increases Cox and therefore drives the
device more toward the QCL with its benefit of realizing linear output characteristics in
the low bias regime (cf. Figure 9.8) [135].

In real experiments, gate leakage can of course occur, particularly if an ultrathin
gate dielectric is used. In this case, it is very important to carefully examine the results
before a clear statement concerning the transport mechanism can be made. Gate leak-
age can be deceiving and TFET characteristics may appear like devices that show a sub-
60mV/dec behavior. The impact of gate leakage has been discussed in Section 5.9.3 and it
was found that depending on the bias conditions and the tunneling probability through
the gate insulator, the drain current can exhibit a regime where S < 60mV/dec seem-
ingly appears. The smaller Vds, the more likely is the observation of such a regime in the
transfer characteristics. The reason for this is of course only the change of the direction
of the gate-drain bias and if this occurs in the off-state of the device, a steep turn-off
behavior of Id seemingly appears. In TFETs, which are supposed to operate with small
supply voltages (and hence small Vds) and that require extremely thin gate dielectrics
to increase the BTBT probability, one needs to be very careful when interpreting the
measured data and always observe source, drain and gate currents simultaneously.

9.1.3.2 Dependence on the Channel Layer Thickness
Equation (9.6) shows the strong dependence of the BTBT probability on λch. Therefore,
employing a nanowire wrap-gate device architecture with very small nanowire diam-
eter appears very promising for improving the performance of TFETs. However, this is
only partly true. If a nanowire consisting of a material with low effective mass is used,
quantization due to carrier confinement will lead to an effective increase of the band
gap. If, for simplicity, a simple particle-in-the-box quantization is considered (see Sec-
tion 2.2.2), the effective band gap scales as Eeff

g = Eg +
ℏ2π2

m⋆c d2ch
+ ℏ

2π2

m⋆v d2ch
, where m⋆c,v are the

effectivemasses in the conduction and valence bands. As a result, the benefit of a smaller
λch when reducing dch will be overcompensated at some diameter by the increasing Eeff

g
that deteriorates TFET performance.

Equation (9.6) can be used to assess the impact of diameter scaling by replacing Eg
with Eeff

g = Eg +2
ℏ2π2

m⋆d2ch
where a single effectivemass 2/m⋆ = 1/m⋆c +1/m

⋆
v is used. If TWKB

is computed at the gate voltage when the TFET starts to switch (yielding ΔΦ = 0) and if
we assume that the screening in the source contact due to doping results in λdop ≪ λch,
the BTBT probability is given by

TWKB ≈ exp(−
4
3ℏ
√ εch
εox

doxdch
4
√2m⋆√Eg + 2

ℏ2π2

m⋆d2ch
) (9.18)

where the screening due to the wrap-gate architecture was approximated with a
quadruple gate structure to simplify the discussion. It is obvious that in the case of
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larger diameters the quantization energy vanishes and TWKB ∝ exp(−√dch), whereas
decreasing the diameter such that the quantization energy dominates (this may occur
in nanowires made of a material with smallm⋆ and small bulk Eg ) the term containing

the band gap becomes √Eg + 2
ℏ2π2

m⋆d2ch
≈ √2 ℏ

2π2

m⋆d2ch
and as a result, TWKB ∝ exp(−1/√dch).

Therefore, a material-specific optimum diameter for nanowires used in TFETs exists.
A material such as carbon nanotubes is preferable in this respect; extremely small di-
ameters on the order of 1, . . . , 1.5 nm are required for a nanotube to exhibit a band gap
suitable for a TFET (see Section 9.1.3.5).

9.1.3.3 Dependence on the Density of States
So far, the optimization of TFET performance has been concentrating on the screening
length λch in the channel. However, in order to obtain steep p-n junctions the screening
length in the source contact λdop also needs to be as small as possible. λdop is related to the
density of states within the source contact and, therefore, amore elaboratemodel needs
to be used. In order to obtain a complete picture of the operation and optimization of
TFETs, self-consistent NEGF simulations have been carried out based on the formalism
presented in Chapter 6.

An essential ingredient in the simulation is the proper incorporation of the electro-
statics of the device. Therefore, a TFET in a nanowire bundle configuration as depicted
in Figure 9.11(a) is considered that serves as a reference device.3 The bundle configu-
ration allows truncating the electrostatics to the cylindrical device shown in the lower
panel of (a) due to the zero electric field-condition at the boundaries of each device (cf.
Figure 9.11(b)). Therefore, the full three-dimensional electrostatics of the device is taken

Figure 9.11: (a) TFET nanowire bundle architecture with wrap-gate that allows reducing the electrostatics
to the displayed cylindrical device. (b) Equipotential lines in two adjacent nanowire TFETs. (c) Local density
of states in a nanowire TFET device [135].

3 Note that this is the same nanowire bundle configuration as was used in Section 5.9.2.
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into account. The nanowire is sufficiently thin, so that one-dimensional electronic trans-
port is appropriate. The conduction and valence bands are considered to have different
effectivemasses and the complex band structurewithin the direct band gap is accounted
for using Flietner’s dispersion relation (see Chapter 6 and Section 2.5.2). Figure 9.11(c)
shows the local DOS in a TFET with different effective masses in the conduction and va-
lence bands. All relevant device parameters are given in the figure captions showing the
simulation results.

It is important to note that the nanowire bundle TFET considered here represents a
best case scenario in terms of the electrostatics, since a wrap-gate architecture is stud-
ied providing the smallest λch and the parasitic impact of the gate on the source/drain
extensions is minimized due to the particular bundle configuration. Moreover, a direct
semiconductor and ballistic transport are considered, thereby providing an upper limit
of possible TFET performance.

Before proceeding with the analysis a new figure of merit for the off-state is in-
troduced that is particularly useful for TFETs. The reason for this is that, in contrast
to conventional MOSFETs, the inverse subthreshold slope S in TFETs depends on Vgs
(cf. Section 9.1.1). As a result, the Id–Vgs-curve exhibits a steep slope usually only in a
small Vgs-range. Consequently, the minimum inverse subthreshold slope Smin of the en-
tire Id–Vgs-curve (called point slope) is not necessarily ameaningful number. Instead, an
average inverse subthreshold slope Sav between the off-state and the threshold voltage
could be used. However, Vth is not well-defined in TFETs making it difficult to compare
different TFETs based on Sav. To provide a proper measure for comparison of TFETs
and study how well they approach a steep-slope transistor, the current level I60 can be
used [256], i. e., the current where S = 60mV/dec is reached. The higher I60, the better
the TFET because up to the Vgs reaching I60, the device operates with an average slope
smaller than 60mV/dec. The difference between point slope Smin, average slope Sav and
the I60-figure of merit is shown in Figure 9.12. In the following, Smin and I60 are used as
relevant figures of merit.

It was discussed above that a small effective mass leads to a higher BTBT proba-
bility, provided that vertical quantization does not result in a substantial increase of
the effective band gap. Furthermore, a small effective mass yields a small DOS within
the channel such that the quantum capacitance limit could in principle be reached that
allows avoiding DIBT. However, it is important to note thatwhen computing the TFET be-
havior displayed in Figure 9.7, the source and drain contact regions were considered to
have been fortified with additional gate electrodes, providing sufficient screening. Yet,
in a real device a certain underlap region is required to avoid short circuiting contact
and gate electrodes. The electrostatics in these source/drain extensions turns out to be
problematic, once taken into account.

The left panel of Figure 9.13 shows self-consistently computed conduction and va-
lence bands of the source-extension region in the case of four different effective masses
for the nanowire bundle TFET depicted in Figure 9.11. In the present case, a constant
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Figure 9.12: Illustration of the different figures of merit to characterize the switching of a TFET: point slope
Smin, average slope Sav and I60.

Figure 9.13: Left: Conduction and valence band profile within the source-extension region and the channel
of the injecting contact for several effective masses. The top image shows a schematics of the wrap-gate
nanowire device with equipotential lines computed with self-consistent NEGF simulations. The right panel
displays Smin and I60 for nanowire TFETs shown on the left. The inset depicts transfer characteristics for
differentm⋆ [135].

Fermi energy of Esf = 0.1 eV is assumed within the source extension; all other parame-
ters are given in the figure. Vertical quantization has been accounted for with a simple
particle-in-the-boxmodel, which is the reasonwhy the band gap increases with decreas-
ing effective mass. Decreasing m⋆ leads to a smaller DOS in the nanowire, and conse-
quently, to a lower carrier density in the source extension. The reduced carrier density
in turn leads to a reduced screening, which results in a broadening of the n-p junction
within the source extension. In other words, λdop increases when m⋆ decreases, which
ultimately limits the achievable BTBT probability even if everything else (EOT, dch, Eg ,
etc.) has been optimized.
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The right panel of Figure 9.13 shows Smin and I60 for TFETs as a function of m⋆.
Interestingly, while the smallestmasses result in the steepest Smin due to improved BTBT,
they also yield the smallest I60 due to the largest λdop. Vice versa, the largestm

⋆ leads to
the highest I60 but also the largest Smin. The inset of the right panel displays the transfer
characteristics (the same parameters as given in the left panel), clearly showing that the
highest on-currents are actually obtained with the largest effective masses. Again, it is
the improved screening of the gate action on the source extension with increasing m⋆

that leads to this counterintuitive situation that a large effective mass yields the better
TFET.

The scenario discussed so far is certainly very unsatisfactory. While it is clear that a
large effective mass will degrade the BTBT probability, it is nevertheless the best choice.
However, there is an important factor that was left out in the discussion regarding the
screening. In the computation of the impact ofm⋆, a constant Fermi energy of 0.1 eVwas
assumed. But if a reduced effective mass leads to a degradation due to the reduced car-
rier density in the source extension, what about increasing Ef ? Figure 9.14(a) shows Smin
and I60 as a function of Ef in the source; all other parameters of the simulated device are
given in the figure. As expected, I60 increaseswith Ef because of the improved screening.
However, Smin also increases approaching 50mV/dec for larger Ef . The reason for this
behavior is shown in (b).When the Fermi energy increases, the band-pass filter provided
by the p-n junction at the source-channel interface sits energetically at the wrong posi-
tion in that carriers from the Boltzmann tail of the source Fermi distribution function
are injected when the device switches on, similar to a conventional MOSFET. Indeed, if
the BTBT probability was close to unity, a high Ef would lead to S ≈ 60mV/dec [142]. As
a result, the trade-off between the requirement of a low effective mass to improve BTBT
and a highm⋆ to allow for optimized screening at a low Ef cannot be resolved easily.

Figure 9.14: (a) Smin (red) and I60 (blue) as a function of Ef in source [135]. (b) Conduction and valence
bands in a TFET (light green) when switching into the on-state. In the case of a large Fermi energy, the
band-pass filter resides in the Boltzmann tail of the source Fermi distribution and the device behavior is
similar to a conventional n-type MOSFET (blue line).
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Task 31.
Source contact with large Fermi energy: Consider a TFET with ideally abrupt source-channel and
channel-drain junctions leading to a step-function appearance of the potential profile. To realize such
steep p-n junctions, a very high doping concentration in the source contact is necessary (apart from
an extremely small screening length in the channel). Such a high doping concentration may lead to a
rather large Fermi energy in source. Compute the drain current with Equation (9.1) (neglect the parts
due to thermal emission) of a 1D TFET with step-function-like potential profile and a Fermi energy of
Esf = 0.25 eV. You may assume that the transmission probability is large enough to justify T = 1 within the
energy range of BTBT. Furthermore, any contribution from the drain

63
can be neglected and perfect gate

control with δΦ0
f = δΦg is considered.

9.1.3.4 Dependence on the Band Gap—Heterostructure TFETs
It was mentioned above that the size of the band gap Eg determines to a large extent
the minimum off-state leakage, since it blocks the thermally activated carrier flow (cf.
Equation (9.3)). On the other hand, decreasing Eg increases the BTBT, leading to an im-
proved TFET performance. Therefore, a trade-off between boosting BTBT while keeping
the leakage low needs to be found, which is again unsatisfactory. One way out of this
dilemma is the use of an axial heterostructure [22, 231, 137, 173]. Two scenarios are pos-
sible. In the first scenario, a material with substantially smaller band gap is inserted at
the source-channel interface. Doing so provides a small band gap for BTBT but a larger
one in the remainder of the device resulting in a low leakage current. The second ap-
proach employs a type-II heterointerface.

In Section 4.7, the three types of heterostructures have already been discussed
briefly. A type-II heterointerface with broken band alignment appears ideally suited to
increase TFET performance since it promises a very high BTBT probability while the
band gaps in source, channel and drain can be much larger. As an example, the het-
erosystem InAs/AlxGa1−xSb is considered with self-consistent NEGF simulations. Using
this ternary III–V compound, broken or staggered band line-ups at the source-channel
heterojunction can be realized by varying the Al mole fraction x.

Figure 9.15(b) shows the device layout under consideration. A nanowire of diameter
dch consisting of AlxGa1−xSb is grown onto a highly n-doped InAs substrate with doping
concentration Nd and a metallic gate of length L is wrapped around the NW insulated
by a dielectric of thickness dox. The type II heterointerface is at the nanowire-substrate
interface. While the position is therefore well known, to avoid short-circuits between
gate and source an underlap with length lext is required. Hence, the gate action in the
underlap region must be accounted for appropriately. This is done by approximating
the wrap-gate architecture with four gates (quadruple gate architecture) placed around
the channel, which leads to a slight underestimation of the gate impact in the underlap
region. The benefit is that the area bound by the points 1, 2, 3 and a, b can now be con-
formally mapped (see Section 6.1.2) onto a parallel plate capacitor (Figure 9.15(b)). The
lengths of the back-transformed electric field lines yield a spatially dependent dox(x),

https://vimeo.com/466514219
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Figure 9.15: (a) Extracted S-values (top) and on-current (bottom) as a function of composition x of the
InAs/AlxGa1−xSB-heterostructure for different doping concentrations. (b) Schematics of the wrap-gate
nanowire TFET layout. Conformal mapping is used to take the source underlap region into account. (c)
Grayscale plot of the local DOS close to the on-state of the TFET [137].

which is inserted into λch(x) = √
εIII−V
4εox

dox(x)dch. Thus, the one-dimensional modified
Poisson equation (5.34) derived in Section 5.5 can be used in the entire device. Since
the drain contact has little impact on the TFET performance as long as it is sufficiently
transmissive, we assume a metallic drain contact with the drain Fermi level always be-
ing aligned with the valence band.

Self-consistent NEGF simulations have been carried out for the nanowire hetero-
junction TFET as a function of the aluminum mole fraction x for three different doping
concentrations in the source (InAs). Scattering with a mean free path of lmfp = 30 nm is
taken into consideration with Buettiker probes. This ensures that the potential notch in
the virtual source (see Figure 9.15(c)) will be occupied with carriers. Inverse subthresh-
old slopes averaged over three orders of magnitude change in Id and the on-currents
are extracted from the simulations and plotted in Figure 9.15(a) (for details see [137]).
Interestingly, an inverse subthreshold slope steeper than 60mV/dec is only obtained in
the case of low doping and staggered band gaps (with 0.5 < x < 0.8) with a minimum of
Sav = 35mV/dec at x = 0.6 and Nd = 10

19 cm−3. This may appear to be counterintuitive
since a broken band line-up seems to be best suited for TFETs. However, in the case of
a broken line-up, a virtual source (black dashed box in Figure 9.15(c)) builds up from
which thermal emission occurs.
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ForNd = 5 ⋅ 10
19 cm−3, S is slightly below 60mV/dec at x = 0.5 and strongly increases

for larger x. The reason for this is the large Fermi energy in the source, yielding a car-
rier injection from the Boltzmann tail of the source Fermi distribution function (cf. Fig-
ure 9.14). The lower panel of Figure 9.15(a) shows Ion evaluated by placing 2/3 ⋅Vdd above
and Vdd/3 below Vth (evaluated by extrapolating linear Id–Vgs plots to zero Id) [137]. The
optimum performance in terms of on/off-current ratio is obtained at x = 0.6 where S
occurs at a minimum and at the same time the on-current is almost at its maximum. In
summary, type II heterostructures are indeed useful to improve the performance if a
staggered, close to broken band line-up is chosen. Themajor concern of heterostructure
TFETs is, however, the alignment of the heterointerface with respect to the gate, which
is difficult to realize experimentally.

9.1.3.5 Electrostatic Doping in TFETs
An important result so far is that optimized TFET performance requires appropriate
screening in the channel and the source contact. The issue is that a high doping con-
centration in 1D nanowire devices with low effective mass leads to a high Fermi energy,
which in turn results in S approaching 60mV/dec. Moreover, since doping is a random
process, a high doping concentration leads to disorder, and thus to smearing out the
band edge of the source contact with a DOS exponentially decaying into the band gap
(cf. Section 2.12.2) shown in Figure 4.2. In addition, diffused dopants and/or the implan-
tation process may result in trap states within the band gap at the source/channel inter-
face that allow for trap-assisted tunneling even when the device is in its off-state. Both
effects, a smearing of the band edge and traps, lead to a deterioration of the steepness
of the switching behavior of TFETs [228]. To illustrate this effect, a one-dimensional nan-
otube TFET (the parameters are given in Figure 9.16) is simulated usingNEGF. A smeared
distribution of dopants centered at 50meV below the conduction band was considered
adopting the approach outlined in [130]. Inelastic scattering due to phonon absorption
or emission, must be present in order to induce vertical transport, which is taken into
consideration with Buettiker probes.

Figure 9.16 shows transfer characteristics in the case of a TFET with (red curve) and
without (blue curve) trap-assisted tunneling (TAT). The inset shows a gray-scale plot of
the local density of states; the trap-/dopant-related band below the conduction band is
clearly visible. Vertical transport due to TAT (illustrated with the red arrow in the inset
of Figure 9.16) results in a substantial degradation of S. The reason for this is that the
band-pass filter functionality of the source-channel n-p junction is deteriorated and thus
current can already flow before the gate voltage moves the valence band in the channel
on the same energy as the conduction band is source.

In Section 7.4, reconfigurable FETs were studied where gate electrodes have been
used to implement an effective n- and p-type “doping” concentration by applying appro-
priate gate voltages. The same approach can be used in TFETs in order to resolve the
trade-off between the necessity for screening in source and the requirement for a low
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Figure 9.16: Simulated Id − Vgs-curve for a nanotube TFET. The red curve shows the transfer characteristic
with trap states present at an energy of 50meV below the conduction band edge. The blue curve belongs
to the device without TAT. The inset shows the local density of states with trap states. The presence of traps
together with inelastic scattering yields a substantial deterioration of the steepness of S.

Ef and an undisturbed band gap with sharp band edge. In fact, the high carrier density
within themetallic gate electrode provides the necessary screening, if the effective oxide
thickness is made small enough (cf. Section 4.5.5). The latter point is very important and
worth elaborating on: In Section 5.7, it has been discussed how the screening lengths due
to, e. g., a gate electrode in source λs andmobile charge λn ought to be combined to obtain

an overall screening length λ−1tot = √
1
λ2s
+ 1

λ2n
. In order to avoid the adverse effect of a high

carrier density in a 1D nanowire with low DOS (leading to S approaching 60mV/dec)
one has to ensure that λs is always the dominant, i. e., the smallest screening length. In
other words, λs ≪ λn since otherwise (by inducing more carriers with applying higher
gate voltages at the source gate) a large Fermi energy is eventually obtained that injects
carriers from the Boltzmann tail. As a result, for optimum TFET performance the EOT
of (at least) the source and channel electrodes must be as small as possible to ensure a
high BTBT probability. This requirement is actually difficult to meet. When fabricating
triple-gate devices in order to implement the appropriate n- and p-regions with electro-
static doping, the three gate electrodes need to be insulated from each other but in the
best case without leading to an ungated underlap region in between two adjacent gates
(cf. Figure 9.18).

The underlap can be avoidedwith a vertical arrangement of the gates with partially
overlapping gates. However, this implies that the EOT in either the source or channel is
larger than in the channel or source (unless an elaborate spacer process is utilized). In
the best case, the channel has to be placed in between bottom- and top-gates in order
to have the same small dox and no gate underlap, which may be challenging technologi-
cally. In this respect, carbon nanotubes are an attractive material since their ultra small
diameters allow small λs even if EOT is not extremely small. Concluding, electrostatic
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instead of impurity doping allows disentangling the necessity for strong screening from
the magnitude of the carrier density in source if properly made.

As an attempt to realize a TFET based on electrostatic doping, the reconfigurable,
dual-gate carbon nanotube FET studied in Section 8.1.4 is used [11]. In this device, the
nanotube is manipulated by two gate electrodes with an EOT of 10 nm and ∼2.5 nm,
which yields, together with the very small diameter dCNT = dch of the nanotube, screen-
ing lengths λs and λch of a few nanometers only. Applying negative voltages to the large
area back gate (cf. Figure 8.11) creates p-type sections in-between the Ti-contacts and the
actual gate. If negative voltages are applied to the center gate electrode, a conventional
MOSFET is obtained where the switching of the device is due to field-effect modulated
thermal emission of holes. Indeed, the left branch of the transfer characteristic displayed
in Figure 9.17 (gray shaded area) shows an inverse subthreshold slope of 65mV/dec, close
to the thermal limit. On the other hand, if sufficiently large positive voltages are applied
at the center gate electrode, a window for BTBT opens up as is illustrated in the two
right panels in Figure 9.17. Here, the conduction and valence bands for two different Vgs
are depicted, showing that in the current situation BTBT occurs at the source-channel
and channel-drain interfaces. In the present case, BTBT leads to aminimum inverse sub-
threshold slope of Smin = 40mV/dec, steeper than the thermal limit. Note that there are
only few data points in the gate voltage range where the device shows a steep switching
behavior. Therefore, in order to reconfirm the observation of a steep current increase,
self-consistent NEGF simulations were carried out (red and blue lines in Figure 9.17),
which are in excellent agreementwith the experimental data. A further important point

Figure 9.17: Transfer characteristic of a reconfigurable, dual-gate CNTFET operated as a p-type device. For
negative Vgs, the device acts as a conventional MOSFET, for positive gate voltages as a TFET. Conduction/va-
lence band profiles at two Vgs in the TFET-operation regime are shown in the two panels on the right. An
inverse subthreshold slope of 40mV/dec is achieved, reconfirmed with self-consistent NEGF simulations
(straight red and blue line) [11].
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is that the reason for the rather low on-state current in the right (BTBT) branch of the
device is the existence of two BTBT barriers that carriers need to tunnel through.

In order to improve the CNT TFET discussed above, the bottom gate electrode needs
to be split up into two separate gate electrodes in order to realize the n-i-p band structure
of a TFET with only a single BTBT barrier (see also Section 10.2.1). Such a CNT TFET
has recently been demonstrated [209]. Figure 9.18(a) shows an electron micrograph and
a schematics of a TFET that exhibits three separate gates that can be used as source-
side program-gate (PG1), control gate (CG) and as drain-side program-gate (PG2). The
gate dielectrics consist of a single layer of HfO2 (6 nm) in the source-/drain-side gate
regions and a double layer of HfO2 (i. e., 12 nm) in the control gate region.4 Figure 9.18(b)
displays transfer characteristics for two different source-side program voltages (PG1).
A minimum inverse subthreshold slope of Smin = 41mV/dec is obtained, similar to the
dual-gate TFET shown above. However, as expected, the on-current is more than one
order of magnitude larger.

Figure 9.18: (a) Colored electron micrograph and schematics of a CNT TFET with separate source- (PG1) and
drain-side program gates (PG2) (Z. Chen, Purdue University). (b) Transfer characteristics for two different
source-side program gate voltages [209]. A minimum inverse subthreshold slope of 41mv/dec is obtained.

9.2 Alternative Steep-Slope Transistor Concepts

The optimization of TFETs requires a number of trade-offs to be made due to the in-
terdependencies of the various performance boosters. Moreover, even if a steep slope
can be realized, the presence of the BTBT barrier will always deteriorate the on-state
performance, when compared to conventional transistors. Therefore, modifications of

4 The fabrication leads to a λs < λch and a small gate underlap at the source-channel and channel-drain
interfaces.
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TFETs that particularly address the issue of on-state performance have been proposed.
In addition, completely novel steep-slope transistor concepts have been intensively in-
vestigated. In the present section, selected alternative steep-slope transistor concepts
are briefly discussed.

9.2.1 TFETs with Line-Tunneling

In TFETs as discussed so far, band-to-band tunneling occurs at the interface between
source and channel, i. e., at a particular location within the device. Therefore, this tun-
neling is sometimes called point tunneling. In order to improve the on-state current of
a TFET the idea is now to spread the BTB tunneling over a larger area, which is called
line tunneling. The idea behind line tunneling is basically the same as, e. g., in horizontal
metal-SiN-semiconductor contacts discussed in Section 7.3.2; increasing the length of the
contact beyond the transfer length allows decreasing the contact resistance. For a TFET,
this enables increasing the on-state performance.

There are two (similar) ways how line tunneling is realized that are illustrated in
Figure 9.19. In (a), a buried p-doped pocket is realized underneath a part of the gate elec-
trode. Applying a positive gate voltage moves the bands in the intrinsic section (thick-
ness dn) in between the gate dielectric and the p-pocket downwards in energy, so that
BTBT can occur. As a result, BTBT is distributed along the length of the pocket Ln so that
the overall transmission probability due to BTBT increases [110]. A very similar con-
cept is the so-called electron-hole bilayer TFET (EHB-TFET) [4, 221] as depicted in Fig-
ure 9.19(b). Here, instead of a doped pocket, two individual gate electrodes (gate 1 and 2)
are used to induce two opposing sheets of electrons and holes. For sufficiently large gate

Figure 9.19: (a) TFET with p-doped pocket and (b) electron-hole-bilayer TFET. The schematics on top show a
cross-section of the MOS capacitor at the position of the dashed line. Carrier confinement in the triangular
potential well leads to an increase of the effective band gap.
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voltages, BTBT occurs, distributed across the entire length of the overlap of gate 1 and
gate 2, thereby increasing the BTBT probability.

Compared to a TFET with point tunneling, there is an important difference in the
two device concepts. In order to obtain a steep slope the thickness dn in the concept
shown in (a) (called pocket TFET in the following) and the thickness of the electron-hole
bilayer dbl in (b) need to be extremely thin. The reason for this is that the potential can
be thought of as being fixed by the highly p-doped section in the pocket TFET and by the
two gate voltages in the EHB-TFET. The cross-sections of the BTBT region in Figure 9.19
show the conduction/valence band situation. Let us first focus on the pocket TFET. If the
depletion region in the p-doped pocket and the effect ofmobile charge are neglected, the
bands can be approximated with straight lines (see Figure 9.19), and hence theWKB ap-
proximation elaborated in Section 9.1.1 can be used again. This time Φ0

f is determined by
noting that between the p-doped pocket and the gate electrode there is a series combina-
tion of Cox = εox/dox and Cn = εsi/dn. Hence, Φ

0
f =

Cox
Cox+Cn

Φg + const. where the constant
contains the work-function difference (set to zero for simplicity). Inserting into TWKB
yields

TWKB = exp(−
4dn√2m⋆E

3/2
g

3ℏ(Eg + Φg
εoxdn

εoxdn+εsidox
)
). (9.19)

A similar relation can be derived for the EHB-TFET (dn needs to be replaced with
dbl/2 if a symmetric device layout and Φ1

g = −Φ
2
g are assumed). As a result, dn and dbl

need to be made extremely thin in order to increase TWKB. This, however, decreases the
gate control over Φ0

f , and thus a simultaneous and strong reduction of Cox is manda-
tory, since Cox ≫ Cn is required for optimum gate control. While in TFETs with point
tunneling, a reduction of the effective oxide thickness (EOT) leads to a continuous im-
provement, in pocket- and EHB-TFETs, once perfect gate control over Φ0

f is achieved,
no further improvement due to EOT scaling is possible. The latter argument is certainly
only true for a constant dn and dbl. However, decreasing dn and dbl below a certain thick-
ness leads to quantization (illustrated with the inset in between Figure 9.19(a) and (b)),
which increases the effective band gap. An increasedband gap in turndeterioratesTWKB.
Moreover, in EHB-TFETs the simultaneous quantization in the conduction and valence
bands may prevent BTBT to occur at all. As a result, dn- and dbl-scaling is limited and,
therefore, also EOT scaling andwith this the achievable BTBT probability. Obviously, op-
timizing pocket- or EHB-TFETs is also intricate [221] and requires materials with rather
low band gaps to start with. In this respect, III–V heterostructures such as InAs/GaSb
with a broken type II-heterointerface may be a solution [208]. Promising is the use of 2D
materials that are one monolayer in thickness and, therefore, seem to be ideally suited
for EHB-TFETs [169]. However, one major concerns remains; the approach is not very
scalable, since reducing the device size also decreases the current through the device
due to reduction of the length over which line tunneling occurs.
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9.2.2 Energy-Filtering Devices

Amajor drawback of TFETs (including pocket- and EHB-TFETs) is the band-to-band tun-
neling barrier at the source-channel interface that limits the achievable on-currents
and—if not done properly—also yields Sav > 60mV/dec. However, as explained in Sec-
tion 9.1.1 (see also the video provided by QR code #62), the ideal functionality of TFETs is
obtained when the BTBT barrier plays the role of a band-pass filter cutting off the high
and low energy tails of the source Fermi distribution function. Hence, a band-pass fil-
ter is what is required for a steep-slope transistor, not a tunneling barrier. Inserting an
appropriate energy filter in-between source and channel that acts as a band-pass filter
yields a so-called energy-filtering device (EF-FET). EF-FETs potentially allow for combin-
ing a steep slope with a high on-state current [26, 86].

Figure 9.20 illustrates an energy-filtering device. A band-pass filter has been in-
serted in between the source contact and the channel, and if a gate voltage is applied,
the bands within the regular MOSFET channel are moved downwards in energy. Since
the energy filter blocks current injection from the Boltzmann tail of the source Fermi
distribution function, the off-state leakage is suppressed. Only when the potential max-
imum in the channel is moved below the (energetic) upper edge of the energy filter a
current will flow through the device. If the Fermi level in the metallic source electrode
is at an appropriate energy (illustrated in Figure 9.20), the current rises abruptly into
the on-state of the transistor yielding a MOSFET-like on-state performance.

Figure 9.20: Illustration of an energy-filtering device: A band-pass filter (black) is inserted in between the
source and channel of a regular MOSFET blocking carrier injection from the Boltzmann tail of the source
Fermi distribution function. Once Φ0

f is moved below the upper energetic edge of the band-pass filter, the
device abruptly switches into its on-state (right panel).

The question now is how such an energy filter can be realized. One suitable way to
create an energy filter is the use of a superlattice as is illustrated in Figure 9.21. Here, a
metallic contact electrode is connected to a superlattice consisting of a number (seven
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Figure 9.21: Energy filter in front of a metallic contact realized with a superlattice consisting of coupled
particle-in-the-box systems in a lattice with lattice constant a. The filtered Fermi function can be used to
realize steep-slope devices.

in the present case) of particle-in-a-box systems (green lines) coupled to each other. This
results in a one-dimensional artificial solid state with lattice constant a giving rise to the
formation of a cosine-shaped miniband as shown in Figure 9.21 (see also Section 2.4.1).
If we assume that the potential barriers and well widths can be realized with great pre-
cision, the miniband has sharp band edges and represents the desired band-pass filter.
Driving a current from themetallic electrode through theminibandwill basically result
in a filtered Fermi distribution function. If the original Fermi level lies energetically well
above the top edge of the miniband, the filtered Fermi distribution function resembles
a step function, i. e., a Fermi distribution function at low temperatures where the upper
edge of the miniband can be thought of as an effective, new Fermi level (cf. Figure 9.21).
As we know from our considerations in Chapter 2, there will be a second (and third,
etc.) miniband developing, which stems from the second eigenstate of the particle-in-
the-box system. As a result, the original Fermi level cannot be placed energetically too
high above the upper edge of the miniband, since otherwise a substantial part of the
Boltzmann tail of the Fermi function may inject carriers into the channel through the
second superlattice miniband.

A superlattice as required for an energy filter can technologically be realized with
heteroepitaxial growth of compound semiconductors. The GaAs/AlGaAs [86] or the
InGaAs/InAlAs [177] heterosystems have been investigated where sufficiently large
conduction band offsets can be realized. Figure 9.22 shows a simulation of an energy-
filtering FET. In (a), the local density of states is displayed together with the conduction
band [26]. Due to the superlattice, a miniband appears that can clearly be identified.
Figure 9.22(b) shows the transfer characteristics of the device, simulated with NEGF (cf.
Chapter 6). A steep turn-on behavior with an inverse subthreshold slope of 25mV/dec
over several orders of magnitude is visible. Furthermore, the device (a 1D nanowire
FET) shows the expected MOSFET-like on-state currents.



382 � 9 Steep Slope Transistors

Figure 9.22: (a) Local DOS in a 1D energy filtering device computed with NEGF. A miniband forms in the
source contact that filters the Fermi distribution. (b) Transfer characteristics of an energy-filtering device
showing S = 25mV/dec and MOSFET-like on-currents.

In the present case, ballistic transport has been assumed and, furthermore, any
impact of the gate on the superlattice has been neglected. It is clear that taking both
into consideration is likely to yield a degradation of the turn-on behavior. However, re-
cent self-consistent simulations showed that even considering the full electrostatics of
a nanowire energy-filtering device [85], a steep-slope behavior is still observed. Realiza-
tions of such a device concept have so far not been convincing, though.

9.2.3 Impact Ionization Field-Effect Transistors

Impact-ionization (II) MOSFETs (IMOS) exploit an avalanche breakdown due to II in or-
der to amplify the current within the device and thereby circumvent the 60mV/dec limit
of conventional MOSFETs. Similar to TFETs, IMOS devices consist of a gated, reversed
biased p-i-n structure. However, in contrast to TFETs, the gate covers only a part of the
intrinsic (i) region. Applying sufficiently large gate-source and drain-source voltages, a
high electric field builds up within the intrinsic region leading to impact ionization and
eventually avalanche breakdown. The avalanche multiplication of carriers results in
extremely steep turn-on characteristics with inverse subthreshold slopes significantly
smaller than 60 mV/dec. At the same time, rather large on-state currents are obtained
due to the internal gain [88].

For avalanche breakdown to occur, the carriers need to be accelerated to at least the
kinetic energy equivalent to the band gap of the semiconducting material. Therefore, a
reduction of the supply voltage is only possible using low band-gap semiconductors. A
major reliability concern of IMOS devices is that the hot carriers generated by the large
electric fields in the II-region lead to hot carrier injection into the gate dielectric result-
ing in a loss of the steep switching behavior already after a few switching cycles [88]
and eventually to a dielectric breakdown. However, the amount of hot carrier injection
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Figure 9.23: Schematics of an SOI IMOS (a) and a wrap-gate nanowire IMOS (b) together with the potential
distribution in the device.

depends on the device architecture and can thus be engineered in order to reduce or
even avoid hot carrier degradation. To illustrate this, let us compare Figure 9.23(a) and
(b); (a) shows a schematic of a silicon-on-insulator, planar IMOS and the inset displays
the potential profile perpendicular to the direction of current transport. Obviously, the
large electric field induced by the positive gate-source voltage and the negative drain-
source bias required for II results in a substantial field component, accelerating the hot
carriers toward the gate dielectric. On the other hand, a gate-all-around nanowire de-
vice architecture exhibits a strongly reduced hot carrier injection. The potential profile
in such a wrap-gate nanowire IMOS is depicted in Figure 9.23(b); reducing the nanowire
diameter yields an overlap of the potential distribution perpendicular to the nanowire
axis (cf. inset), and thus reduces the electric field at the nanowire surface. Since this
electric field is responsible for hot carrier injection, it is expected that a nanowire IMOS
shows strongly improved reliability.

Finally, carrier confinement can be employed to avoid hot carrier injection alto-
gether. Utilizing a III–V nanowire with small bulk band gap Eg (such as InSb), the rather
different conduction and valence band effective masses (m⋆c and m⋆v ) can be exploited.
Reducing the diameter dnw of the nanowire (assuming a square cross-section and a
particle-in-the box quantization), the energetic difference between first and second
subband in the conduction band can be made larger than the effective band gap, i. e.,
ℏ2π2

2m⋆c d2nw
((22+1−2)) > Eg +2

ℏ2π2

2m⋆c d2nw
+2 ℏ

2π2

2m⋆v d2nw
(see Section 2.2.2). In this case, the hot carriers

will remain in the first subband, and thus hot carrier degradation is avoided [24].

Task 32.
Suppression of hot carrier injection: Consider an InSb nanowire with square cross-section and as-
sume particle-in-the-box quantization.

64
Plot the effective band gap and the energy of the first and second

subband in the conduction band and compute a criterion for avoiding hot carrier injection if the InSb
nanowire is used in an IMOS device.

https://vimeo.com/900736455
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The benefit of a nanowire IMOS architecture is shown experimentally by realizing verti-
cal, wrap-gate IMOSdevices based onundoped Si-nanowires epitaxially grownon n-type
(111) Si wafers (see Section 3.13.2). After nanowire growth and removal of the Au catalyst,
SiO2 as a gate dielectric is deposited via PECVD. A wrap-gate is realized by depositing Al
and planarization with photoresist. After RIE etching of the resist, the aluminum cov-
ering the top of the nanowire can be removed. This gate recess defines the gate length
of the device. Final steps include planarization with polyimide and the formation of a
nickel top contact [25]. The center panel of Figure 9.24 shows an electron micrograph of
a fabricated device without the top contact.

Figure 9.24: Schematic of a vertical NW-IMOS together with a scanning electron micrograph of the experi-
mental device (center); note that the top contact has been removed. The conduction/valence band profiles
in the on-state of the IMOS transistor for negative (left) and positive (right) gate voltages are displayed,
too, showing the two different II regions within the device.

Figure 9.25(a) shows transfer characteristics of the IMOS device for bias voltages
−0.5 V, −2.5 V and −4.5 V. In the present case, the bottom contact is grounded and Vds
is applied at the nickel top contact. A slight shift of the threshold voltage with changing
Vds can be observed, however,more importantly subthreshold swings as lowas 5mV/dec
and 14mV/dec are measured when Vds is increased to −4.5 V (red curve). The reason for
the ambipolar behavior is the presence of two possible impact-ionization regions in the
device, which are schematically shown in Figure 9.24. Impact ionization occurs in either
of the two depending on the applied voltages giving rise to the experimentally observed
ambipolar behavior.

It was mentioned above that a major disadvantage of IMOS devices is that they are
prone to degradation due to hot carrier injection into the gate dielectric. Figure 9.25(b)
shows transfer characteristics of the vertical nanowire IMOS device for several (>100)
sweeps of gate voltage. A hysteresis is observed, which is mainly due to the use of a
low temperature PE-CVD gate oxide giving rise to a rather large number of defect/in-
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Figure 9.25: (a) Transfer characteristics of a wrap-gate Si nanowire IMOS for three different bias conditions
[25]. (b) Repeated measurements (>100 voltage sweeps) of the vertical wrap-gate Si nanowire-IMOS. Note
that the observed hysteresis is due to the PE-CVD-deposited gate dielectric. A shift of the threshold voltage
is not observed [27].

terface states [27]. The important point, however, is that the threshold voltage (of each
forward/backward sweep) remains almost unaltered while sweeping the gate voltage.
Reasons for the suppression of hot electron degradation are the lower operating volt-
ages compared to more conventional, planar IMOS FETs and—as already mentioned
above—the smaller vertical fields within the channel due to the use of a nanowire with
small diameter in a wrap-gate configuration [27].

9.2.4 FETs with Feedback Mechanism

An interesting approach to realize deviceswith an extremely steep inverse subthreshold
slope is exploiting a charge feedback mechanism which can, for instance, be achieved
in forward biased n-pe-ne-p devices where the subscript “e” indicates that these parts of
the device are fortified with gate electrodes and the “doping” is realized by applying ap-
propriate gate voltages (see top panel of Figure 9.26(a)). Such a device, called Z2-FET has
recently been demonstrated and intensively studied (see, e. g., [264]). The device works
in the following way: constant gate voltages (with respect to source) are applied at gate
1 and 2 such that at small drain-source bias a n-p-n-p potential profile results where
electron and hole currents are blocked. On increasing Vds, the current increases expo-
nentially since holes are injected fromdrain into the channel. At a certain threshold bias
(Vds), the amount of holes injected is so large that they pile up in the pe-part (gate 1) of the
channel where they lower the potential barrier (similar to the charge pile up discussed
in Section 8.2). As a result, the injection of electrons over the pe-barrier increases such
that electrons are piled up in the ne-region (gate 2) where they lift up the potential bar-
rier leading to more hole injection. This feedback continues until there is a balance of
electrons and holes in the pe and ne sections and the device switches from a low current
in the off-state with basically zero S into the on-state. The main panel of Figure 9.26(a)
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Figure 9.26: (a) Schematic of a Z2-FET (top) and an illustration of the output characteristics with steep
turn-on and hysteresis. (b) Conduction and valence bands (initial profiles in black) after a self-consistent
computation (green lines). The top panel is with inelastic scattering, the lower panel shows the case of
ballistic transport.

shows this behavior schematically. Switching the device off, requires a lower Vds result-
ing in a hysteretic behavior (A similar behavior can also be obtained as a function of
gate voltage (either gate 1 or 2) if appropriate voltage combinations are chosen.). The IV
characteristics are therefore distinctly different when compared to a regular MOSFET
but are suitable for, e. g., the realization of a 1T dynamic random access memory [264].

The functionality of the device relies on the charge feedback of the negative (pos-
itive) charges collected in the ne (gate 2)- and pe regions (gate 1) as illustrated in the
top panel of Figure 9.26(b). Therefore, the device does only work if the following two
conditions are fulfilled: (i) Inelastic scattering must be present ensuring that the elec-
trons (holes) that are injected above (under) the potential barrier in the pe-region (ne-
region) lose their energy and are piled-up in the ne-region (pe-region). The top panel
of Figure 9.26(b) shows exemplary conduction and valence band profiles computed self-
consistentlywithNEGF; here, the black curve is the initial potential profile and the green
curve is the self-consistent result. Indeed, electron and hole pile-up yield a strong modi-
fication of the potential barriers in the gated regions leading to a large on-state current
for gate voltages where the device would still be off without the feedback. The lower
panel of Figure 9.26(b) shows the same calculation at the same voltages in the case of
ballistic transport. Apparently, no feedback occurs in this case, as expected. (ii) While at
room temperature, there will likely be a sufficient amount of inelastic scattering the sec-
ond prerequisite for the realization of aworking transistor is that charge pile-up leads to
a bandmovement. To this end, the device must not be in the quantum capacitance limit.
It was already discussed in Section 5.9.1 that when Cox ≫ Cinv the charge in the channel
has no impact on the energetic position of the bands anymore. For the device considered
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here, thismeans that the feedback, and hence the steep switching is completely lost. This
point may become problematic if scaled, GAA nanowire representations of a Z2-FET are
considered.

9.2.5 Negative Capacitance FETs

In recent years, a lot of research has been devoted to the exploration of so-called neg-
ative capacitance field-effect transistors (NC-FETs). The idea behind NC-FETs is the fol-
lowing. In Section 5.2.2, the off-state of a conventional MOSFET has been introduced, the
inverse subthreshold slopewas calculated and Equation (5.23) has been obtained, which
is reproduced below for convenience:

S = kBT
|e|

ln(10) ⋅
𝜕Φg

𝜕Φ0
f
=
kBT
|e|

ln(10)(Cox + Csemi
Cox
), (9.20)

where all capacitors related to charges in the semiconductor are summarized in Csemi.
As a result, the term in parentheses is 1+ Csemi

Cox
and sinceCox andCsemi are both larger than

zero, the parentheses is ≥1, and hence S ≥ 60mV/dec at room temperature. However, if
one was able to make Cox negative then S < 60mV/dec would become possible. Such
negative capacitances can be realized with ferroelectric gate dielectrics; the reader is
referred to the large number of studies on the topic available in the literature.

Admittedly, I have neither sufficiently thought about nor worked on negative ca-
pacitance FETs in order to present a more comprehensive and thorough analysis. But
if one translates the concept of negative capacitance FETs into a mechanical analogon,
one obtains the schematics shown in Figure 9.27: the conduction band of a conventional
(n-type) MOSFET where neither depletion charge nor interfaces charges play a role can
be represented by a long rod (green line in the left panel) that is rotatably mounted
(black circle) deep within the “substrate.” Switching the transistor on and off requires

Figure 9.27:Mechanical analogons of a conventional MOSFET (left panel) and a negative capacitance FET
(right panel).
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a certain interval ΔΦ0. If the gate dielectric is very thin, ΔΦ0 = ΔΦg , i. e., the voltage
interval (supply voltage) applied to the gate. On the other hand, ΔΦ0 > ΔΦg can be real-
ized by inserting a joint in the red lever (black circle, right panel) ensuring that l1 > l2.
While indeed a smaller gate voltage interval is required, there is more force needed
to switch between on- and off-state. The bottom line is that in terms of energy needed
to do cyclic switching of the transistors nothing is gained. NC-FETs are often realized
with an additional, external capacitor with ferroelectric dielectric connected to the gate
(or with a large area back-gate leading to a substantially larger area of the capacitance
associated with the ferroelectric compared to the channel of the device). The charging
and discharging of this capacitor provides the energy needed for the steep switching.
In other embodiments of NC-FETs, the ferroelectric capacitor is of the same geometrical
size and placed directly on top of the regular gate dielectric. These devices show hys-
teretic transfer characteristic (again, I do have to admit that I checked only parts of the
literature) with a large hysteresis when a steeper slope is observed (and an increasing
S toward 60mV/dec for decreasing hysteresis). This means when cycling between on-
and off-state between two fixed endpoints (in terms of off-state leakage and on-current)
the energy consumed is the same for the hysteretic NC-FET device and a conventional
MOSFET. This scenario is schematically shown in Figure 9.28.

Figure 9.28: Illustration of transfer characteristics of a conventional MOSFET (green curve) and a NC-FET
with hysteretic behavior. Cyclic switching between, e. g., the red points leads to the same energy consump-
tion of the two devices.

9.2.6 Field-Effect Controlled Modulation of the Band Gap

In a regular FET, current modulation is obtained by shifting the band gap energetically
in order to increase/decrease the injection of carriers into the channel. With perfect
gate control, this leads to the 60mV/dec limit, frequently discussed in this book. Now
suppose wewere able to shift the band gap energetically and at the same timemodulate
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its magnitude, then a steep-slope transistor would be obtained showing MOSFET-like
on-state behavior with S < 60mV/dec.

In Section 2.8.2, it was shown that applying a vertical electric field allows creating
and tuning a band gap in bilayer graphene in a certain energy range. Such a field-effect-
controlled band gap appears highly attractive for a steep-slope transistor that combines
band movement with band gap tuning. In the present section, we will therefore briefly
study the suitability of bilayer graphene for steep-slope transistors via a tunable band
gap. To this end, the electric field-dependence of the band gap calculated with tight-
binding will be used that resulted in Equation (2.54); experimental investigations on
bilayer graphene can be found in Sections 10.1.3 and 11.3.2.

In order to assess whether a steep slope, FET can be realized with bilayer graphene
the most ideal case will be considered: It is assumed that the top and bottom gate ca-
pacitors to realize the vertical electric field (cf. Figure 2.33) have very high dielectric
constants and are thin enough so that the potentials of the two graphene layers are the
same as the potentials of the two gate electrodes. This means that Δ = Φ1

g − Φ
2
g and the

band gap becomes Eg =
V⊥(Φ

1
g−Φ

2
g )

√V 2
⊥+(Φ1

g−Φ2
g )

2
. Now, the following two limiting cases are possible.

First, Φ1
g is kept constant while Φ2

g is changed (shown in Figure 9.29(a)) and second, Φ1
g

and Φ2
g are changed simultaneously with opposite sign (Figure 9.29(b)); any other case

will be a mixture of these two.

Figure 9.29:Modulation of Eg in bilayer graphene. The potential across the bilayer graphene is shown in
the left part of each panel. Eg and its energetic position is shown in the center and right. In (a), the bottom
gate remains constant (here Φ1

g = 0), while gate 2 is used to move the bands and tune Eg. In (b), opposite
gate voltages are applied to gates 1 and 2.

Let us consider an n-type FET, and thus the energetic position of the conduction
band maximum Φ0

f (see Figure 9.29) determines the carrier injection. In both cases, (a)
and (b), the maximum Φ0

f is determined by Φ2
g . With Δ = Φ2

g − Φ
1
g = Φ2

g and Φ0
f =

Eg/2+Δ/2 one can compute 𝜕Φ0
f /𝜕Φ

2
g needed to calculate the inverse subthreshold slope

of such a transistor (cf. Equation (5.23)). With Equation (2.54), the limit for small gate
voltages becomes 𝜕Φ0

f /𝜕Φ
2
g → 1/2+ 1/2, whereas for large gate voltages 𝜕Φ0

f /𝜕Φ
2
g → 1/2.



390 � 9 Steep Slope Transistors

As a result, the minimum inverse subthreshold slope one obtains with a tunable band
gap in bilayer graphene in the device configuration displayed in Figure 9.29 is Smin =
60mV/dec approaching 120mV/dec for larger Φ2

g . The reason is that Eg does not increase
beyond the potential Φ2

g , as illustrated in Figure 9.29(a) with the (dark/light)green bars.
The same is true in the case depicted in (b) and any other combination of the two cases.
What has been neglected so far is the contribution from holes that are injected into the
valence band. In case (a), a rather high hole leakage is expected prohibiting a proper
off-state behavior. However, even if we neglect this leakage component, or if the device
is switched as shown in Figure 9.29(b), it is apparent that a FET based on tuning the
band gap of bilayer graphene cannot exhibit an inverse subthreshold slope steeper than
60mV/dec.

An alternative way to exploit the tunable band gap of bilayer graphene is to use
mechanical strain in order tomodifyV⊥ instead of Δ (see Equation (2.54)).V⊥ stems from
the van derWaals interaction and as such depends strongly on the distance between the
two layers. Increasing V⊥ allows larger band gaps to occur, and thus potentially a steep-
slope device to be realized [58].

Exercises

Exercises togetherwith solutions are accessible via theQR code. 65

https://www.iht.rwth-aachen.de/global/show_document.asp?id=aaaaaaaachgkvca
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In Chapter 5, it was discussed that an ultrathin channel layer is required in order to pre-
serve electrostatic integrity in MOSFET devices that are downscaled to very short chan-
nel lengths. In principle, gate-all-around nanowire/tube devices enable the realization
of the smallest screening lengths λch. In particular, carbon nanotubes are ideally suited
for this purpose since they do not only represent nanostructures with a diameter in the
1, . . . , 2 nm rangewith suitable band gaps. The electronic transport in any nanostructure
of similar dimensions etched out of a volume material would be significantly impaired
with strong variability and degradation of mobility. A nanotube, on the other hand, is a
close to perfect object with periodic boundary conditions along the circumference and
a weak interaction with neighboring materials due to a radially quickly decaying wave-
function. However, although there has recently been tremendous progress and a 16bit
carbon nanotube processor has been demonstrated [106], from a technological point of
view, fabricating billions of nanotube devices with the same dimensions, well-defined
electrical properties and at predefined locations is extremely challenging.

Initiated by the first demonstration and investigation of monolayers of graphene,
the so-called 2D materials have gained tremendous attention since they offer, down to
a single atomic layer, the thinnest conceivable electronic material featuring carrier mo-
bilities not found in other two-dimensional systems (such as a two-dimensional electron
gas in III–V heterostructures, for instance) of similar dimension and a great variety of
different electronic properties including metallic, semiconducting, insulating and even
superconducting behavior. Furthermore, the two-dimensionality facilitates the use of
highly sophisticated top-down fabrication techniques for the realization of appropriate
devices and circuits. From a nanoelectronics point of view, the mentioned properties
make 2D materials highly attractive. Especially the combination of different 2D materi-
als into so-called van der Waals heterostructures holds promise to realize ultracompact
devices and to engineer novel materials by appropriate combinations of 2D materials.
The latter is particularly appealing since van der Waals heterostructures are generated
by stacking crystalline materials on top of each other without the need for epitaxy. This
holds great promise for, e. g., next generation flexible electronics, multifunctional nano-
electronics, 3D integration, etc.

The present chapter provides an introduction to 2D materials for nanoelectronics
and discusses some of the properties of and devices based on 2D materials.

10.1 Graphene FETs

Graphenewas the first 2Dmaterial to be intensively studied [203, 82] and caused a down-
right hype with worldwide interest in the material. With a thickness of ∼3 Å, it allows
for electrostatic integrity of field-effect transistors down to smallest dimensions. In ad-
dition, graphene exhibits potentially a very large carriermobility facilitating field-effect

https://doi.org/10.1515/9783111054421-010

https://doi.org/10.1515/9783111054421-010
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transistors whose performance can be optimized through decreasing L and increasing
μ (cf. Equation (5.31)). First MOSFET devices were fabricated and characterized [168].
However, severe ambipolar behavior and very low on/off-current ratios were observed.
This is not surprising considering the band structure of graphene. As already discussed
in Section 2.8.1, a linear dispersion is obtained that exhibits two cones for the conduc-
tion and valence bands that meet at the Dirac point (see Figure 2.32). Due to the honey-
comb lattice, the density of states vanishes at the Dirac point (Figure 2.50), which is why
graphene is called a zero-gap semiconductor. This means that the current modulation
as a function of Vgs observed in graphene field-effect transistors (provided that a very
small bias is applied) stems merely from the linear energy-dependence of the density of
states. Figure 10.1 shows a typical transfer characteristic of a back-gated graphene field-
effect transistor. Schematics of the conduction and valence band cones with respect to
the Fermi level are depicted in the insets. When the gate voltage moves the Dirac point
through the source/drain Fermi levels, the current becomes minimal, because of the de-
creased density of states. Due to the thermal broadening of the Fermi distribution and
nonideal features such as substantial potential fluctuations (see below), a very small
on/off-current ratio is obtained.

Figure 10.1: Transfer characteristics of a back-gated graphene FET with Ti/Au contacts. The insets show the
cones of the graphene band structure at the respective back-gate voltage.

The lack of a band gap is one of the major issues of graphene considering nanoelec-
tronics applications. A band gap can in principle be created either with a nanoribbon or
with bilayer graphene (cf. Sections 2.8.5 and 2.8.2), whichwill be discussed further below.
Looking at the Id–Vgs-characteristics in Figure 10.1 an asymmetry is obvious, which is
not necessarily expected from the idea of carrier injection into the band structure as de-
picted in the insets of Figure 10.1. The origin of this asymmetry is theway the contacts are
made in the device. Due to the importance of contacts, this point will be discussed first.
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10.1.1 Graphene FETs—Contacts

Contacts to 2D materials are often made by simply depositing an appropriate metal on
top of a portion of the material. Figure 10.2(a) shows an electron micrograph of a typi-
cal graphene field-effect transistor (GFET) [139]. The contacts resemble the side contacts
studied in carbon nanotube transistors in Chapter 8. Indeed, as will be discussed below,
depositedmetal-graphene contacts behave in a very similarway asmetal-nanotube con-
tacts and can therefore be described in the same fashion. One of the central results in
metal-nanotube contacts is the existence of an extremely thin but high potential barrier
in between metal and nanotube that leads to a weak coupling (and hence depins the
Fermi level) between the two materials.

Figure 10.2: (a) Electron micrograph of the graphene device structure under investigation. A cross-section
of the devices of type A and B is shown in (b) [39, 139].

The coupling strength between nanotube and metal could be studied by simulat-
ing CNTFETs with different contact metals and coupling strengths and comparing this
with experimental transfer characteristics. The strong variations in on-state current
particularly formetals such as aluminum facilitated a robust comparisonwith excellent
agreement between experiment and theory (cf. Section 8.1.3). In a GFET, such a scheme
cannot be employed and it is much less obvious how relevant information about the
metal-graphene coupling can be obtained. However, a dual-gate graphene field-effect
transistor with front- and back-gate electrodes can be employed to answer this ques-
tion. Such a device is displayed in Figure 10.2: (a) shows a colored electron micrograph
and (b) a schematic cross-section of such a GFET. The GFETs are realized by exfoliation
of a monolayer graphene onto a heavily doped silicon substrate with 300 nm thermally
grown SiO2 (facilitating proper visibility with optical microscopy; see Section 3.13.3). The
graphene is contacted using Ti/Pd/Au (0.5 nm/20 nm/20 nm) electrodes followed by the
deposition of a 10 nm Al2O3 employing ALD. The devices are finalized with the forma-
tion of a Ti/Au(1 nm/40 nm) front-gate electrode (see [39] for details). Two different types
of devices are fabricated, called A and B (Figure 10.2). In the following, only the device
of type B will be considered with the source, gate and drain electrodes being as close to
each other as possible [39, 139].
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Information on the metal-graphene interface can be obtained by operating the de-
vice in the following way: A constant front-gate voltage Vfg is applied and the current is
recorded as a function of the back-gate voltageVbg. A rather small bias (hereVds = 0.01 V,
which is smaller than kBT/|e| at room temperature) is applied such that the device be-
havior can be described assuming a single Fermi level. Figure 10.3, left panel, shows the
measured resistance versus back-gate sweeps for several front-gate voltages.

Figure 10.3: Resistance versus back-gate voltage for several Vfg of a dual-gate GFET. Left panel: Experimen-
tal data of the device B displayed in Figure 10.2. Right panel: Theoretical data obtained with self-consistent
NEGF simulations with appropriate side-contacts [139].

For small Vfg, the dependence of Id on Vbg shows the resistance peak (i. e., drop in
current) discussed above (e. g., gray curve in Figure 10.3, left). However, for larger front-
gate voltages, a second, shallow resistance peak is observed (green and red curves in
Figure 10.3, left) that allows for investigating the metal contact properties. The reason
for the second resistance peak is that the front-gate voltage enables separating the Dirac
points in the channel area and underneath the source/drain contacts. Since the conduc-
tion and valence bands in graphene are not pinned by themetal, sweeping the back-gate
voltage (at constant Vfg) moves the cones in source/drain and in the channel through the
Fermi level. For sufficiently large (energetic) separation of the Dirac points, i. e., for suffi-
ciently largeVfg, the Dirac points of the channel and of source/drain cross the Fermi level
at distinctly different back-gate voltages, leading to two observable resistance peaks.
While the large resistance peak stems from the graphene band structure in the channel,
the second, shallow peak is due to the band structure in source and drain. Figure 10.4
shows this situation schematically: in (a) the two resistance peaks overlap (black and red
dashed lines), while in (b) the large Vfg separates them. The fact that the second peak is
substantially broader and the peak height significantly less pronounced compared to
the first resistance peak suggests a metal-induced modification of the density of states
in the graphene.

To study the contact properties in more detail, self-consistent NEGF simulations of
the dual-gate GFET (type B in Figure 10.2) using the same simulation tool already applied
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Figure 10.4: Schematic illustration of resistance versus back-gate voltage characteristics for Vfg = 0 (a) and
a large front-gate voltage (b). The overall resistance peak is a superposition of the first peak (black dashed
line) and the second peak (red dashed line).

successfully to describe metal-CNT contacts (see Section 8.1.3 and Chapter 6) are carried
out. Due to the dual-gate device structure, the 1Dmodified Poisson equation (5.34) is ide-
ally suited to describe the electrostatics of the GFET. An independent mode approach
is employed as illustrated in Figure 10.6 (cf. Section 5.2) in order to account for the 2D
graphene flake. An energy-dependent effective mass (see Sections 2.5.2 and 6.3.4) is used
that reproduces the band structure of each 1D subband (including linearity of the dis-
persion for higher energies and the complex band structure within the energy gap) ap-
propriately. The metal-graphene contacts are described with Buettiker probes within
the contact area. All Buettiker probes within one contact have a common Fermi level
given by the terminal voltage and are coupled to each subband. The metal-graphene
coupling strength is again mediated by the coupling constant γ = 0, . . . , 1 as described
in Section 8.1.3. In order to keep the computational burden as small as possible, we sim-
ulate GFETs with a channel length of L = 25 nm, equal front- and back-gate dielectric
(SiO2) thicknesses of dox = 3 nm and a width of the device of W = 400 nm resulting
in two-hundred 1D subbands that are considered in the simulations. In addition, the
thickness of the graphene layer dG and the metal-graphene separation are both taken to
be 3 Å; finally, room-temperature conditions and ballistic transport are assumed in all
simulations.

Figure 10.5 shows two color plots of the local density of states along the device. Be-
cause of the metal-graphene coupling (in the present case γ = 0.05 was chosen to bet-
ter illustrate the effect) in the contact areas the density of states is modified and does
not vanish anymore at the Fermi level (red line in Figure 10.5, left). In contrast, in the
channel the DOS is unperturbed exhibiting the well-known linear behavior (black line
in Figure 10.5, right). The simulations therefore reconfirm the assumption made when
explaining the appearance of the two resistance peaks.

Simulations of the resistance versus back-gate for several front-gate voltages were
carried out as a function of the coupling strength γ [139]. A strength of γ = 0.01, . . . , 0.02
was found to reproduce best the experimental observations. Figure 10.3(b) displays the
simulated data showing excellent qualitative agreement with the experimental data in
(a). The analysis shows that themetal-graphene coupling is ratherweak resultingmerely
in a slight modification of the DOS of graphene underneath the contact (compare with
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Figure 10.5: Local density of states plots in the contact and channel region. The metal-graphene coupling
yields a modified density of states within the contacts that is responsible for the second resistance peak.

Figure 10.6: Schematics of the simulated device structure. An independent 1D-mode approach with an
energy-dependent effective mass is employed as illustrated by the five intersections between the graphene
cone and the planes of constant k-values quantized along the direction ofW [139].

Figure 10.5). This is expected since there are hardly any surface sites the metal can
bond to. While this is the reason why graphene shows excellent electronic transport
properties, it limits the achievable contact resistivities at the same time. The latter can
be circumvented by using end-bonded or edge contacts (similar to carbon nanotubes)
[267]. Such contacts are realized by encapsulating the graphene (for instance in hexag-
onal boron nitride) and then etch through the entire material stack; Figure 10.7 shows
a schematic of the two contact geometries. Doing so carbon–carbon bonds are cut, the
bonding orbitals are exposed and formcontacts to ametal along the exposed edge. Excel-
lent contact properties have been demonstratedwith thismethod [267].While in carbon
nanotubes, side-contacts definitely have theirmerits since they allow one to suppress an
ambipolar operation, which may lead to severe leakage (cf. Figure 7.11), this argument
is irrelevant in graphene.
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Figure 10.7: Side- and end-bonded contact geometries in metal-graphene contacts.

10.1.2 Graphene Nanoribbon FETs

Oneway to generate a band gap in graphene is to exploit quantization due to carrier con-
finement by forming a nanoribbon of appropriate width. In Section 2.8.5, we already
computed the band structure of armchair graphene nanoribbons (AGNRs) and found
that an extremely small width of approximately 1, . . . , 2 nm is required to obtain an Eg in
a useful range (cf. Figure 2.38). Manufacturing such an AGNRwith lithography and etch-
ing is close to impossible. It is not only the extremely small width that is problematic but
one also needs to align the etchmaskperfectlywith respect to the graphene lattice.More-
over, the slightest line edge roughness at these dimensions will have a strong impact on
the nanoribbon, resulting in significant variability due to fluctuations of the band gap.
In a carbon nanotube, rolling up a nanoribbon yields perfect periodic boundary condi-
tions along the circumference of the tube. In contrast, in a graphene nanoribbon carbon
atoms at the edges exhibit dangling bonds resulting in edge scattering [280] and con-
ductivity fluctuations [195, 41]. And even if one was able to saturate the edge dangling
bonds with hydrogen, a line edge roughness of the etch mask would lead to variations
of the band gap [70]. On the other hand, chemically derived nanoribbons [170] showed
semiconducting behavior with appropriate band gaps that enabled the fabrication of
excellently performing transistors device [268]. However, these ribbons are processed
from a solution and thus the benefit over carbon nanotubes, namely the possibility of a
deterministic fabrication technology is lost.

In addition to fluctuations due to the patterning of nanoribbons, the substrate
plays a very important role (see also Section 11.3.2 on cryogenic bilayer graphene FETs).
Substrate-induced structural distortions or charged impurities in the substrate and
chemical doping due to resist residues lead to strong potential fluctuations. These fluc-
tuations result in the formation of charge “puddles” in graphene, i. e., separated sections
with positive or negative charge that result in a strong reduction of the carrier mobil-
ity. As a result, a mobility gap forms that becomes apparent when low-temperature
measurements with such a graphene sample are carried out [79, 238].

As an experimental example of a graphene nanoribbon device, Figure 10.8(a) shows
an electronmicrograph of a nanoribbonwith ∼30 nmwidth on top of a substrate featur-
ing three independently addressable gate electrodes. The three gate electrodes offer in-
dividual control over the electronic properties of the respective sections of the nanorib-
bon via gate-controlled doping. Such buried triple-gate (BTG) substrates are fabricated
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Figure 10.8: (a) Combination of top view and cross-sectional electron micrograph of a graphene nanorib-
bon with a width of ∼30 nm on top of a buried triple-gate substrate. (b) Temperature-dependent measure-
ments at side-gate voltages of V source/drainside−gate = 0 V. (c) Transfer characteristics of the graphene nanoribbon
FET shown in (a) for various, equal side-gate voltages (bottom panel). The top panel shows exemplarily the
transfer characteristics for V source/drainside−gate = −12.2 V (red), −1.8 V (black) and 22.7 V (blue) [197].

in the following way (for details on the fabrication techniques see Chapter 3): a highly
doped SOI layer is etched anisotropically using TMAH to form two electrically insulated
SOI regions that serve as source anddrain side gates. Subsequently, an SiO2 layer (100 nm
in thickness) is grown by wet thermal oxidation followed by a sputter deposition of alu-
minum. After chemical-mechanical polishing (see Figure 3.51), the aluminum is oxidized
to form ∼5 nm of Al2O3 as gate dielectric. Finally, the three gates are contacted [197]. A
graphene flake is transferred onto the BTG substrate using the PVA/PMMA method as
described in Section 3.13.4. E-beam lithography and etching in an oxygen/argon plasma
are then used to form the nanoribbon, which is displayed in the inset of Figure 10.8(a).

Temperature-dependent measurements of graphene nanoribbon devices on BTG
substrates are carried out as displayed in Figure 10.8(b). Decreasing the temperature
leads to substantial current fluctuations, which are associated to potential fluctuations.
This is consistent with an on/off-current ratio of only ∼100 at T = 26 K, while the off-state
regime is found in aVgs-range between−0.5 and 0.5 V. This range is too large for the small
on-/off-ratio observed and also does not fit with the size of the semiconducting gap ex-
pected at a nanoribbon width of 30 nm. Therefore, the off-current range clearly shows
a transport gap [99]. The lower panel of Figure 10.8(c) shows a two-dimensional plot of
measurements at 25 K applying different side-gate voltages; exemplarily, the top panel of
Figure 10.8(c) shows transfer characteristics for V source/drain

side−gate = −12.2 V (red line), −1.8 V
(black line) and 22.7 V (blue line), respectively. One observes that by applying appro-
priate side-gate voltages a device with rather n-type character (blue line), p-type char-
acter (red line) and a device without significant current flow due to the source/drain
regions being within the transport gap (black line) can be realized. While fluctuations
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due to roughness and dangling bonds at the nanoribbon edge are difficult to mitigate,
substrate-induced potential fluctuations can to a large extent be avoided by encapsulat-
ing the graphene into hexagonal boron nitride and by using graphitic gate electrodes
(see Section 11.3.2) [63, 113].

10.1.3 Bilayer Graphene

A band gap in graphene can also be generated using bilayer graphene. If the bilayer is
placed in-between two gate electrodes (see Figure 2.33) and a vertical electric field is
applied the Dirac points of the two graphene layers are shifted by Δ with respect to each
other and a band gap of size Eg = ΔV⊥

√Δ2+V 2⊥ is generated where V⊥ ≈ 0.3 eV is the overlap

integral of the van der Waals interaction (cf. Section 2.8.2).
Figure 10.9(a) shows transfer characteristics of a dual-gate bilayer graphene FET

[48]; the inset shows an electron micrograph of the device. To fabricate such a device, a
bilayer is transferred to an oxidized silicon wafer that serves as large area back-gate.
The SiO2 has a thickness of 90 nm ensuring good visibility of the flakes with optical
microscopy (cf. Section 3.13.3). On top of the bilayer, a 10 nm thick HfO2 serves as the
gate dielectric for the top-gate electrode [48]. Applying various constant back-gate volt-
ages, the drain current is measured as a function of top-gate voltage at a low bias of
Vds = 10mV (see Figure 10.9(a)). Obviously, the off-current, and hence the on/off-current
ratio increases with increasing back-gate voltage. With a constant back-gate voltage, the
gap will slightly change during the front-gate sweep. Nevertheless, the minimum cur-
rent is obtained when the created band gap is shifted such that Eg/2− |e|Vds/2 blocks the
injection of electrons and holes (see inset of Figure 10.9(b)).

Task 33.
Band gap in bilayer graphene: Based on a simple Landauer approach of current transport in a 1D chan-
nel compute the ambipolar current flow due to electron and hole injection over the band gap Eg in bilayer
graphene. To this end, you may assume that the Fermi levels in source and drain Es,df are fixed (and sep-
arated by a bias of Vds = 10mV) and the band gap is moved by applying appropriate gate voltages with
respect to Esf and E

d
f . Next, compute the on/off-current

66
ratio as a function of band gap and compare the

calculation with the on/off-current ratios obtained in bilayer graphene.

In order to determine the band gap that has been created with the vertical field, a sim-
ple 1D Landauer model can be used as illustrated in the inset of Figure 10.9(b). Although
the model is one-dimensional, comparing only the on/off-current ratios with the exper-
imental data, it allows determining the band gap for electronic transport; see Task 33
for details. This band gap Eg is plotted in Figure 10.9(b) as a function of the difference
between top- and back-gate voltages showing that band gaps of up to approximately
250mV can be generated. The green line in (b) depicts the expectation from the ana-

https://vimeo.com/466516422
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Figure 10.9: (a) Transfer characteristics at Vds = 10mV of a dual-gate bilayer graphene FET (shown in the
inset) as a function of the top-gate voltage for different back-gate voltages (Z. Chen, Purdue University)
[48]. (b) Extracted band gaps (blue data points) obtained from comparing the on-/off-current ratio with
expectations from a simple Landauer model (illustrated in the inset). The green line belongs to the analytic
expectation of Eg as a function of Δ, the energetic separation of the Dirac points of the bilayer.

lytic tight-binding calculation (cf. Section 2.8.2). Comparing the blue data points and the
green line, enables an extraction of Δ andwith this of the internal electric field generated
between the two graphene layers. In any case, the gaps that can be created with the ver-
tical electric field in bilayer graphene are at best ∼250meV and, therefore, too small for
logic applications. Nevertheless, the ability of a field-effect tunable band gap is appeal-
ing, in particular in the framework of novel device functionalities (see the discussion in
Section 9.2.6).

10.2 Transition Metal Dichalcogenides

In the preceding section, it became clear that creating a band gap sufficiently large to en-
sure proper switching in logic devices is difficult to achieve in graphene. Luckily, there
are many other 2D materials that exhibit band gaps in a suitable range. While there is
actually a whole bunch of different 2Dmaterials with promising properties, the present
section will only deal with the most widely investigated materials, namely transition
metal dichalcogenides (TMDCs). Thematerial properties and the band structure of some
selected TMDCs have already been discussed in Section 2.8.3. Obviously, withmonolayer
thicknesses of ∼6 Å and band gaps in the range 1.2–1.8 eV they appear to be ideally suited
for ultimately small scaled transistor devices. Moreover, TMDCs exhibit relatively large
effective masses, which at first sight may appear as a drawback. However, this is not
necessarily the case. As was discussed in Section 5.9.4, direct source tunneling strongly
increases with decreasing effective mass, thereby severely limiting the minimum possi-
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ble channel lengths necessary for proper device functionality. Therefore, the relatively
large effective masses in TMDCs are actually beneficial in terms of scalability.

One of themain issues of TMDC devices is the realization of appropriate, low-ohmic
contacts [175]. Usually, strong Fermi level pinning is observed at metal-TMDC interfaces
giving rise to a substantial Schottky barrier at the interface between metal contact and
TMDC, which severely limits the performance of devices. Considering the fact that there
are no dangling bonds at the surface of a TMDC this might be surprising at first sight.

Figure 10.10 shows different ways of contacting TMDCs. In most cases, contacts are
actually realized by simply depositing them on top of the TMDC (Figure 10.10(a) and (b)),
similar to contacting carbon nanotubes or graphene. Recently, also end-bonded (c) and
edge-bonded (d) contacts with graphene have been demonstrated [47, 95]. While this
looks like many different ways of contacting, also considering the details of the metal-
TMDC interface [124], it basically boils down to two different contacts and these are ex-
actly the same ones that were already discussed in earlier chapters. First, when covalent
bonding between the metal and the TMDC occurs (as is the case for Ti and Mo, see (a))
one basically obtains an intimate metal-semiconductor contact. Since the bond length
between metal and chalcogen is very short, no real difference between contact scheme
(a) and the end-bonded contacts in (c) is expected [96]. The strong Fermi level pinning
is simply due to metal-induced gap states as has been discussed in Section 4.6.1. Indeed,
in Figure 4.21 the pinning factor SMIGS is plotted as a function of 1/E2

g for several differ-
ent semiconductors. The red marked points belong to MoS2 and MoTe2 and they fit very
well into the MIGS picture as has recently been noted in [96]. This case is basically what
has been termed “strong coupling” in Figure 8.7(a) and although the model presented
in Section 8.1.3.1 may appear to be too simplistic for the metal-TMDC case, it reflects
the actual situation: in both cases, end-bonded and (deposited) covalently bonded con-
tacts, Fermi level pinning within the band gap is obtained giving rise to a Schottky bar-

Figure 10.10: Different ways of contacting a TMDC monolayer. (a) Top contact with covalent bonding (Mo to
MoS2), (b) side-contact with a metal a van der Waals distance away from the TMDC, (c) end-bonded contact
(Pt to WSe2) and (d) edge-contact between graphene and MoS2 [232, 47, 95].
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rier through which carriers are injected into the TMDC in a device. The second contact
scheme is the one depicted in Figure 10.10(b) where there is a van der Waals distance
betweenmetal and TMDC. This contact is equivalent to the side-contact model discussed
in Section 8.1.3.1 in the case of weak coupling. Due to the van der Waals distance, there
is a substantial potential barrier in between metal and TMDC and this potential barrier
leads to a strong suppression of MIGS. In addition, since there is no bonding between
metal and TMDC and the TMDChas no dangling bonds it is expected that Fermi level pin-
ning is suppressed (as has been the case in carbon nanotubes; see Section 8.1.3.1). Why
is this usually not observed in experiments? Because the deposition of the metal leads
to defects [176] within the TMDC. These defects in turn lead to an additional density of
defect states that results in strong Fermi level pinning. Interestingly, by laminating atom-
ically flat metal electrodes onto a TMDC instead of depositing, a recent study was able
to show that Fermi level pinning in van der Waals metal-TMDC contacts can be avoided
[176]. Due to the lamination process, the defect density of states as well as the density of
metal-induced gap states could be strongly suppressed. As a result, the Schottky–Mott
limit was obtained, i. e., Fermi level pinning was suppressed. However, depinned van
der Waals contacts are only possible due to the potential barrier in between metal and
TMDC and this does not necessarily yield lower contact resistances.

In real experimental situations, a mixture of the two limiting contact situations in-
cluding defects will be present. Furthermore, contact is often made to a multilayer of
TMDC and in this case the injected current is distributed among the different layers be-
cause of theweak coupling in between them [275, 232]. The bottom line is that oneusually
has to deal with substantial Schottky barriers at themetal-TMDC interface. Devices built
from TMDCs therefore show SB-MOSFET behavior with the features discussed in detail
in Chapter 7.

10.2.1 Reconfigurable TMDC-FETs with Triple-Gate Structures

The impact of contact details on the behavior of a device can be avoided with the use of
electrostatic doping, which has already been used in Section 8.2, to study conventional
p-i-p CNTFETs. In addition, reconfigurable devices can be realized with additional gate
electrodes. Reconfigurable devices have already been discussed in Section 7.4 (based
on silicon nanowires) and 8.1.4 (using carbon nanotubes). In these two cases, the inves-
tigated transistors exhibit only two independently addressable gate electrodes, which
allows adjusting n- and p-type device behavior. It would certainly be highly attractive
if one was able to switch a device not only between n- and p-behavior but also to work
as a band-to-band tunnel FET. This would allow using the high on-state performance
of conventional transistor operation and combine this—whenever possible and/or
necessary—with the low power operation of TFETs. The drawback is of course that a
third gate electrode is necessary in order to realize this.
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In Chapter 9, it was discussed that TFET performance can be strongly improved
when the screening lengths λch and λdop are made small in the source contact and the
channel. Furthermore, the trade-off between the required high doping concentration in
the source and a loss of the steepness of the inverse subthreshold slopewas investigated,
too. One result was that gate electrodes instead of conventional doping may be used to
disentangle the screening from the necessity to dope the source region (provided the
screening length λs in source can be made small enough without inducing a large car-
rier density, see p. 374). Moreover, for a reconfigurable device, a symmetric injection of
electrons and holes is necessary which is obtained when the Fermi level at the metal-
semiconductor interface is pinned around mid-gap (cf. Section 7.4). For these reasons,
a device architecture featuring three independent gate electrodes with thin gate dielec-
tric and using WSe2 as ultrathin channel layer, with Fermi level pinning approximately
at mid-gap, is fabricated and studied. To this end, buried triple-gate substrates are man-
ufactured as illustrated in Figure 10.11(a) with a slightly modified approach compared
to the one presented in Section 10.1.2.

Figure 10.11: (a) Fabrication sequence for buried triple-gate substrates using anisotropic Si etching, local
oxidation of silicon and an Al damascene process. (b) Combined cross-sectional SEM and AFM image of a
WSe2-flake on a BTG substrate [198].

Silicon-on-insulator with a 340 nm (100) top silicon layer is degenerately doped with
phosphorous. Subsequently, 200 nm of Si3N4 is deposited with PE-CVD. Optical lithogra-
phy and reactive ion etching in a CHF3/O2 plasma are employed to etch line patterns
into the nitride layer. After photoresist removal and a short dip in buffered oxide etch,
anisotropic silicon etching with TMAH is carried out to form a V-groove in the SOI layer.
Next, the wafer is oxidized with wet thermal oxidation. Since the wafer surface is cov-
ered with nitride, a local-oxidation of silicon occurs only at the Si (111)-planes, exposed
during the anisotropic silicon etching (see Figure 3.4(a)). After the removal of the Si3N4
with hot phosphoric/sulfuric acid, aluminum is sputtered onto the sample followed by
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chemical-mechanical polishing. Finally, a thin Al2O3-layer (∼7 nm) is depositedwith ALD
serving as a gate dielectric [198]; details on all process steps can be found in Chapter 3.

WSe2 is transferred to the BTG substrates by simple exfoliation with blue adhesive
tape. Optical microscopy can then be used to identify thin flakes with a thickness of less
than 10 nm (cf. Figure 3.62) lying across the aluminum gate. Afterwards, electron-beam
lithography is used to pattern source/drain contact structures into PMMA. Subsequently,
deposition of 90 nm nickel and lift-off are employed to obtain the contact structures and
complete the devices. Figure 10.2(b) displays a combined scanning electron and atomic
force microscopy image showing a thin (∼6–8 nm) WSe2 on top of the BTG substrates.
All three gates can be used to manipulate the WSe2.

Figure 10.12 displays transfer characteristics of a WSe2 with a thickness of dWSe2 =
3 nm determined by AFM for three operating modes. In the case of the p- and n-type
FETs, a constant drain-source bias of Vds = 1 V is applied and transfer characteris-
tics are recorded for several side-gate voltages (in the case of p- and n-type devices,
both side-gate voltages are equal, positive or negative). Note that due a positive Vds =
1 V in the case of a p-type FET, holes are injected from drain (i. e., right contact in Fig-
ure 10.11(b)), which now plays the role of the source contact. One clearly observes the
expected unipolar device behavior and a strong increase of the on-current with increas-

Figure 10.12: Transfer characteristics of a ∼3 nm thick WSe2-flake. Applying appropriate voltages at the
gate electrodes of the triple-gate substrates allows for operation of the device as n-type, p-type and as TFET
[198].
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ing (decreasing) side-gate voltage in the n-type (p-type) devices. The reason for this be-
havior is that the Schottky barrier at the nickel-WSe2 interface limits the current flow
and this barrier becomes thinner when the side-gate voltage is increased (decreased)
as has already been discussed in detail in Chapter 7. The maximum on-currents of n-
and p-type devices differ substantially, which is a clear signature that the Fermi level
is pinned closer to the conduction band. Together with the lower effective mass in the
conduction band (cf. Table 2.2), this yields a significantly different carrier injection for
electrons and holes.

To operate the device as a TFET, side-gate voltages are applied with different polar-
ities. An n-type source with a positive source side-gate voltage VSSG = 4 V and a p-type
drain with the drain side-gate voltage VDSG = −4,−5,−6 V are created; the drain-source
bias is constant at Vds = −0.5 V.1 The lower panel of Figure 10.12 shows transfer charac-
teristics in the TFET device operation mode. First, it is important to note that the gate
leakage (not shown here) is at least 30× lower than the drain current in the entire Vgs-
range (cf. the discussion in Section 5.9.3). Together with the fact that n- and p-type de-
vices can be realized with appropriate side-gate voltages, the exponential increase of
the current around Vgs ≈ 0 V is due to band-to-band tunneling. This is also consistent
with the fact that Id increases with increasingly negative drain side-gate voltages since
the tunneling probability increases at the channel-drain interface, while at the same
time thermionic transport over the potential barrier in the drain is exponentially re-
duced.

The Ion/Ioff ratio is ∼4.5 × 102 at VDSG = −6 V and the inverse subthreshold slope is
S ≈ 366mV/dec. This rather large value is due to the fact that overpolishing during the
CMP fabrication process led to an insulation (i. e., gate underlap) between the Al-gate
and the highly doped silicon side gates (realized with the LOCOS process) of approxi-
mately 90 nm (see Figure 10.2(b)) that limits the performance. From the mere consid-
eration of the band gap of WSe2, we would expect a larger on-/off-current ratio with
significantly smaller off-state currents. However, as stated above, the leakage is not due
to gate leakage. An explanation of this phenomenon requires a detailed simulation of
the device structure including the fact that in the present device the distribution of the
injected current among the various WSe2-layers depends on the different (side-) gate
voltages [59]. Therefore, it is likely that a combination of band-to-band tunneling and
interlayer coupling is responsible for the electrical behavior of the device in TFET con-
figuration.

1 Note that the nomenclature of source and drain may be confusing: the left contact is denoted with
source and the right contact with drain throughout the discussion as illustrated in Figure 10.2(b). How-
ever, in Chapter 9 the electrode where band-to-band tunneling occurs was called source. Here, BTBT
occurs at the drain-channel interface; the nomenclature has not been interchanged in order to give the
two electrodes unambiguous names in the three operating modes.



406 � 10 Device Based on Two-Dimensional Materials

10.3 Van der Waals Heterostructures

One of the most interesting opportunities that 2D materials offer is the ability to create
heterostructures that allow novel materials functionalities to be obtained and also the
realization of ultracompact devices. Using 2D material transfer processes such as de-
scribed in Section 3.13.4, one can stack 2D materials with different properties on top of
each other enabling all-2D-material FETs, for instance. As an example, such an all-2D-
material FET (see also Section 11.3.2) is shown in Figure 10.13. For the realization of this
device, a trilayer graphenewas transferred onto an oxidized siliconwafer andpatterned
into stripe-shaped electrodes with electron-beam lithography and argon/oxygen plasma
etching. After the removal of the resist, a 4 nm thick (equivalent to 13 layers) multilayer
of hexagonal boron nitride is transferred on top of the graphene. Subsequently, a 2 nm
thin MoS2 flake is transferred and contacted with nickel contacts using again electron-
beam lithography and lift-off.

Figure 10.13: (a) Optical microscopy image of an all-2D-material FET consisting of a graphene gate, hBN
gate insulator and MoS2-channel as illustrated in (b). The lower panel of (a) shows an AFM image of the
device. (c) Transfer characteristics of the all 2D-material FET.

Figure 10.13(a) shows an optical microscopy image of the device (top panel); the
lower panel displays an AFM image of the active area with the different sections of the
device marked with dashed lines. A cross-section schematic of the all-2D-material FET
is shown in (b). The transistor has a channel length of ∼800 nm and a width of ∼1.8 µm.
Transfer characteristics for different drain-source bias are displayed in Figure 10.13(c)
showing regular switching behaviorwith on/off current ratios of up to 106, an on-current
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of Ion ≈ 1mA/mm and a minimum inverse subthreshold slope of 150mV/dec. The rather
strong dependence of Ion on Vds is due to the presence of the Schottky barrier, which
ultimately also limits the on-currents. A slight kink is observable as expected in the case
of a Schottky-barrier MOSFET (cf. Section 7.1).

While the electrical figures of merit found in the all-2D-material FET are not too
impressive one has to keep in mind that this is a device that can be fabricated merely
with two electron-beam lithography steps and one etching step. No high temperature
thermal annealing, no epitaxial growth, etc. are necessary. The entire device layer has a
thickness of ∼7 nm. This demonstrates the great potential 2D materials may offer in the
future, namely the realization of material stacks with multiple active device layers and
tailored properties for ultradense, three-dimensional integrated circuits.

Exercises

Exercises togetherwith solutions are accessible via theQR code. 67
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11 Cryogenic Electronics

Cryogenic electronics has recently attracted a renewed interest. The reason for this two-
fold. Thefirst reason is related to vonNeumann computing architectures: the power con-
sumption due to the increased number of devices has become so large that it actually is
more energy efficient to cool down the chips, andhence to exploit the strong reduction of
power consumption that comeswith the reduction of the supply voltage that the steeper
inverse subthreshold slope allows at low temperatures. The second reason is related to
the tremendous progress in quantum computation. Silicon-based spin qubits are a very
attractive choice for the realization of complex qubit chips [282, 188, 240, 241, 283, 213,
202, 277, 186, 194] since the material system allows to combine large coherence times
(particularly in nuclear spin-free, isotopically cleaned 28Si) with the extremely sophis-
ticated silicon CMOS fabrication technology. However, in order to enable an up-scaling
of quantum information processors a classical electronics that controls the qubits is re-
quired, which needs to be located in the vicinity of the chip hosting the qubits [257, 34].
This means that the classical control electronics must be operable at cryogenic temper-
atures [80, 93, 108]. In the present chapter, we will therefore discuss the operation and
optimization of cryogenic field-effect transistors.

11.1 MOSFETs at Cryogenic Temperatures

For the realization of spin qubits, gate electrodes are used in order to define electrostat-
ically a quantum dot with two distinct energy levels to represent a two-state qubit. To
properly set-up, tune, manipulate and couple qubits, a multitude of gate electrodes is
required. As an example, Figure 11.1 shows an electron micrograph of an 8-qubit de-
vice based on a Si0.7Ge0.3/Si heterostructure [163]. Here, screening gates (brown) are
used to define a 1D channel in-between two single-electron transistors (SET). Additional
top-gates (orange, red) facilitate the formation of qubits with tunable coupling. More-
over, applying appropriate gate voltages a certain spin state can be moved along the 1D
channel from one end to the opposite thereby potentially enabling coherent shuttling.
While controlling a low number of gates with room temperature electronics is feasi-
ble, up-scaling the number of qubits ultimately requires a cryogenic control electron-
ics located in immediate vicinity of the qubits as illustrated in Figure 11.1 [257]. Due to
the limited cooling power of fridges at cryogenic temperatures, the control electronics
needs to work at ultralow power levels.1 From the discussion in Section 5.4 (see Equa-
tion (5.31)) and Chapter 9, it is clear that ultralow power levels require a strong reduc-

1 Although the exact operating temperature depends on, e. g., the highest possible temperature for qubit
operation and how well the electronics can be thermally insulated from the qubit chip, it is fair to say
that the lower the power consumption the larger the complexity of the cryogenic control electronics and
hence the larger the overall number of addressable qubits.

https://doi.org/10.1515/9783111054421-011

https://doi.org/10.1515/9783111054421-011
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Figure 11.1: Electron micrograph of an 8-qubit device based on a Si/SiGe heterostructure with strained Si
quantum well (L.R. Schreiber, RWTH Aachen University). The gate electrodes are used to manipulate, couple
and move qubits along a 1D channel [163]. A classical cryogenic electronics must be located in the vicinity
to enable an up-scaling of the number of qubits.

tion of the supply voltage Vdd. In fact, a back-on-the-envelop calculation shows that the
required Vdd should be in the few tens of millivolts range. In turn, this means that cryo-
genic field-effect transistors must exhibit extremely steep inverse subthreshold slopes
and require a very tight threshold voltage control. Furthermore, they must be operable
with very small drain-source bias. In the following sections, the implications of these
requirements will be elaborated on in detail.

11.1.1 Switching Behavior of Cryogenic MOSFETs

Whendiscussing the switching behavior ofMOSFET devices in Section 5.2.2, we obtained
an ideal inverse subthreshold slope of

Smin =
kBT
|e|

ln(10). (11.1)

Hence, it appears that obtaining the required steep inverse subthreshold slopes at cryo-
genic temperatures comes “for free.” Indeed, at a temperature of 1 K, S is expected to
be as low as 0.2mV/dec, which would allow switching of five orders of magnitude in as
little as 1mV. Then, using twice this gate voltage range as gate overdrive, a supply volt-
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age around 3–4mV appears feasible. However, whenmeasuring the temperature depen-
dence of S of a number of different field-effect transistors (bulk Si, UTB SOI, FinFETs and
nanowire FETs) experimentally, a saturation of the inverse subthreshold slope below a
certain temperature is observed resulting in a minimum subthreshold swing Smin well
above the expected Boltzmann limit [20, 21, 32]. Figure 11.2 displays exemplary data of S
as a function of T taken from literature (see figure). While Smin shows a somewhat dif-
ferent behavior depending on the device architecture, a saturation of S below a critical
temperature T⋆ is observed in all devices. The saturation values of S are at least one
order of magnitude larger than theoretically expected; in bulk devices, S even saturates
at ∼10mV/dec.

Figure 11.2: Experimental data of S(T) extracted from literature (see figure) showing a saturation of the in-
verse subthreshold slope. The straight lines show S as a function of temperature for different T⋆ computed
with Equation (11.6) assuming Cox ≫ C locit and Cox ≫ Cdepl.

We already discussed in earlier Sections (see, for instance, Section 2.7, 2.12.3 and 4.5)
that the metal-oxide-semiconductor interface of a MOSFET based on a three-dimen-
sional material (e. g., silicon or silicon-on-insulator) represents a very strong distur-
bance of the lattice periodicity of the underlying crystal structure. Dangling bonds at
the MOS surface lead to a large density of interface states that strongly impacts the
functionality of a MOSFET. While the fabrication of an appropriate gate dielectric leads
to orders of magnitude reduction of the interface density of states, the growth of an
oxide at the silicon surface leads to oxygen diffusion resulting in a microroughness.
In addition, traps due to unsaturated dangling bonds, charged defects, lattice defor-
mations, electron phonon and electron-electron interactions all lead to disorder at the
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Figure 11.3: (a) Potential disorder at a MOS interface based on bulk material. (b) Nanowire with quadratic
cross-section and wrap-gate. Charged defects are randomly distributed within the gate dielectric. (c) Den-
sity of states without (orange thin line) and with (red) disorder due to randomly distributed charged de-
fects in the nanowire FET shown in (b). Band-tailing with an extension ΔE is obtained in the latter case.

silicon surface (illustrated in Figure 11.3(a)). Using a simple 1D model, the impact of
disorder was already studied in Section 2.12.2 and led to a smearing of the band edges
called band-tailing with a density of states that exponentially decays into the band gap
(see Figure 2.48). Hence, the DOS due to band-tailing is approximately given by

Dbt(E) ∝ exp(−Φc − E
ΔE
) (11.2)

where ΔE is the band-tail extension into the band gap around the band edge Φc (exem-
plarily, the conduction band is considered). The band tail extension ΔE is in the range of
a few (tens of) meV and (energetically) located at the respective band edge (see below).
Because band-tailing affects the device only in the transition region around the thresh-
old voltage, at room temperature it can usually be neglected in conventional MOSFETs
since kBT > ΔE. At cryogenic temperatures, kBT < ΔE and, therefore, the lower the tem-
perature the more the device behavior will be affected by band-tailing. The important
point here is that Dbt is considered to consist of mobile states, i. e., states that carry cur-
rent from source to drain. This is certainly a reasonable assumption since these states
lie close to the band edge, and hence may contribute to the current through hopping
transport, for instance.

In order to put the discussion on amore formal basis, let us consider a 1D nanowire
with a wrap-gate. To simplify the following computation, a nanowire with a 4 × 4 nm2

quadratic cross-section, surroundedby 4 nmSiO2 is assumedas depicted in Figure 11.3(b).
A configuration of charged defects randomly distributed within the gate dielectric af-
fects the potential within the nanowire; the resulting local density of states is computed
in the nanowire using NEGF (see Chapter 6). While the nanowire is considered to be
one-dimensional to simplify the NEGF calculations, the Poisson equation, and hence the
effect of the charged defects on the conduction band and resulting DOS is taken into
consideration with a 3D finite difference approximation (Section 6.4.1). After the com-
putation of 1000 random defect configurations with a total number of defects Ndef = 30
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along a 100 nm long section of the wrap-gate device, the local density of states is av-
eraged and displayed in Figure 11.3(c). A clear exponential band tail is observed; for
comparison, the orange thin line shows the 1D DOS without disorder. An exponential fit
(blue line) can then be used to extract the band tail extension ΔE, which is 18meV in the
present case consistent with values that have been used in a drift-diffusion simulation
of cryogenic FETs [123].

Let us consider a 1D nanowire FET and compute the current at cryogenic tempera-
tures incorporating an exponentially decaying DOS. When we derived the current in a
1D system using the Landauer approach (cf. Section 2.13.2), it was shown that with the
top-of-the-barrier model Id is given by (Equation (2.117))

Id = 2e
∞

∫
Φ0

dED1D(E)
2

v(E)(fs − fd). (11.3)

If we assume that Vds is large enough such that there is no carrier injection from drain,
the contribution from drain can be neglected. At cryogenic temperatures (T → 0K), we
can replace the Fermi distribution with a step function, and consequently, the current is
determined by carriers with the highest, i. e., the Fermi velocity vsf . Furthermore, when
Esf lies below the conduction bandmaximum (i. e., when the device is in the off-state) we
have to replace D1D(E) with Dbt(E) and obtain

Id ∝

Esf

∫
−∞

dE vsf Dbt = v
s
f ΔE exp(−

Φc − E
s
f

ΔE
). (11.4)

With this expression of the current, we can compute the inverse subthreshold slope
based on Equation (5.21). In the present case, the derivative of the current with respect
to the gate voltage yields

𝜕Id
𝜕Vgs
=
𝜕Id
𝜕Φc
⋅
𝜕Φc
𝜕Φg
⋅
𝜕Φg

𝜕Vgs
= −

Id
ΔE
⋅

Cox
Cox + CΣ

⋅ (−e). (11.5)

Note that in addition to the band-tails there may be localized interface states that do not
contribute to the current but give rise to a capacitance. Therefore, CΣ includes all ca-
pacitances in series with Cox such as the depletion capacitance, localized interface state
capacitance, etc. This means that we obtain the same expression as Equation (5.21) with
kBT being replaced with ΔE. Thus, when cooling downMOSFETs, the inverse subthresh-
old slope is proportional to kBT as long as kBT > ΔE and saturates when T drops below
the critical temperature T⋆ = ΔE/kB [21, 32, 83].

It was already mentioned above that in addition to Dbt, there may also be a density
of localized states, called Dloc

it in the following, centered around the band edge (e. g., due
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to defects within the gate dielectric). Such states do not carry current,2 and thus do not
contribute to Id directly but they degrade the switching since they result in an additional
contribution to the capacitanceCΣ, which is approximately given byCloc

it ≈ e
2Dloc

it (Φc) (cf.
Equation (4.19)) leading to a gate voltage dependent S. The difference between Cit con-
sidered so far and Cloc

it is the energy(gate voltage)-range where the capacitors matter:
While Cit stems from interface states within the band gap and deteriorates the switch-
ing of room temperature devices, Cloc

it is due to the density of localized states around the
band edge; this is an important point and will be elaborated on further below. The local-
ized states at the band edge result in the so-called inflection phenomenon, i. e., a degra-
dation of the inverse subthreshold slope in the transition region around the threshold
voltage. Due to the thermal broadening, this region is not considered to be a part of the
off-state in room temperature devices.

The discussion so far can be summarized in an empirical, closed-form expression
for S over the entire temperature range (suggested in [83]):

S = ΔE
e

ln(10)(1 +
Cloc
it + Cdepl
Cox
)[1 + α ln(1 + exp(kBT − ΔE

αΔE
))], (11.6)

where α ≈ 0.1 is a smoothening parameter. Figure 11.2 displays S as a function of tem-
perature based on Equation (11.6) for three different T⋆ clearly showing the saturation
for T < T⋆.

The impact of band-tailing (i. e., a density of mobile states Dbt) and inflection (i. e.,
a density of localized states Dloc

it ) on the transfer characteristic of a cryogenic MOSFET
is summarized in Figure 11.4. Without disorder and without an additional Dloc

it , a sharp
band edge yields a minimum inverse subthreshold slope according to the Boltzmann
limit. Disorder results in band-tailing with a density of mobile states exponentially de-
caying into the band gap. This Dbt degrades S since current flows through these mobile
states at a gate voltage where there is orders of magnitude less current in the ideal de-
vice (Figure 11.4(b)). Finally, with an additional Dloc

it inflection occurs with a deteriora-
tion of the switching around Vth. Since inflection degrades the switching and renders
S dependent on Vgs the inverse subthreshold slope is often plotted as a function of Id .
This way the switching behavior of cryogenic MOSFETs can be properly compared and
qualified instead of giving only either the minimum inverse subthreshold slope or an
average over some orders of magnitude; in TFETs, a similar issue led to the definition of
the current I60 as a figure of merit (see Figure 9.12). Figure 11.5 shows S as a function of
Id schematically in the ideal case (green line), with band-tailing (blue line), and finally
also including inflection (red line).

From the discussion so far, it is clear that in order to improve the switching of
cryogenic MOSFETs, the impact of band-tailing, i. e., Dbt, and the density of localized

2 But they lead to a disordered potential resulting in a density of mobile states as has been used when
computing Figure 11.3(c).
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Figure 11.4: (a) Conduction band along current transport direction (green line), density of states (red line)
and transfer characteristics of an ideal 1D cryogenic MOSFET, (b) 1D cryogenic MOSFET with band-tailing
and (c) a 1D device with band-tailing and a density of localized states centered at the conduction band.

Figure 11.5: (a) Ideal transfer characteristics (green line), the impact of band-tailing (blue line) and a real
curve with inflection (red). (b) In general, S depends on the gate voltage and is therefore plotted as a func-
tion of log(Id) to show the entire off-state behavior.
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states Dloc
it need to be reduced as much as possible. The strategy to reduce the impact

of Dloc
it , and hence to avoid inflection is straightforward; one simply has to ensure that

Cox ≫ Cloc
it , which can be accomplished by reducing the gate dielectric thickness and/or

increasing the dielectric constant of the gate insulator; an optimized processing of the
MOS interface is certainly required. However, how dowe reduce the impact of disorder?
This second point is more involved and requires an in-depth discussion. Two ways how
to reduce band-tailing and hence optimize the switching of cryogenic MOSFETs will be
presented in the following two sections.

11.2 Optimizing the Switching of Cryogenic MOSFETs—Improved
Screening

In Chapter 5, a one-dimensional modified Poisson equation (Equation (5.34)) has been
derived that has proven to be an excellent description of the electrostatics of ultrathin-
body field-effect transistors. This equation shows that the presence of the gate electrode
yields an exponential screening of potential variations on the length scale λch. Since
at cryogenic temperatures band-tailing is dominated by static disorder due to charged
impurities, defects, etc. (phonons freeze out at those temperatures), it is expected that
band-tailing can be reduced by making the screening length λch as small as possible.
This implies a very small effective oxide thickness (cf. Section 4.5.5), i. e., a very thin gate
dielectric dox and a gate insulator with high dielectric constant ϵox as well as a reduction
of λch with a wrap-gate nanowire device exhibiting a small nanowire diameter dnw. In
the following sections, the impact of λch-scaling on cryogenic MOSFETs will be explored.

11.2.1 Suppression of Band-Tailing with Effective Oxide Scaling

In order to assess in how far band-tailing can be suppressed with scaling of the effec-
tive oxide thickness (EOT, cf. Equation (4.29)), the dependence of ΔE on dox and εox in
the field-effect transistor configuration displayed in Figure 11.3(b) is computed. The de-
vice structure to do this, has already been presented above but will be repeated here for
convenience: A piece of a silicon nanowire with a 4 × 4 nm2 quadratic cross-section and
surrounded by a gate dielectric of thickness dox with dielectric constant εox and GAA-
electrode is considered. Furthermore, a gate voltage in the device’s off-state is assumed
such that the effect of mobile charge can be neglected. Static disorder is simulated by
randomly distributing a number Ndef of positively charged defects within the gate di-
electric as depicted in Figure 11.3(b). The 3D Poisson equation is solved using the finite
differencemethod presented in Section 6.4.1, which yields the impact of the random dis-
tribution of defects on the conduction band of the nanowire. The local density of states is
then computed using NEGF (cf. Chapter 6). Semiinfinite contacts at the same potential as
the nanowire are attachedwith appropriate self-energies in order to avoid quantization
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effects along the nanowire axis. Since the diameter of the nanowire is assumed to be in
the few nanometer range, carrier confinement yields one-dimensional electronic trans-
port. The DOS is therefore only computed in the center of the nanowire. This greatly
speeds up the simulations such that the local DOS of a large number (1000 in the present
case) of random defect configurations can be computed and averaged to mimic static
disorder. From such an averaged DOS, the band tail parameter ΔE is extracted by fitting
an exponential decay to it.

The averaged DOS is computed for varying dox, dielectric constant εox and for dif-
ferent numbers of defectsNdef. Figure 11.6 shows exemplarily plots of the averaged DOS
(red lines) together with the fits (blue lines) to extract ΔE for the cases stated in the dif-
ferent panels. Figure 11.7 shows ΔE as a function of εox in (a) and its dependence on dox
in (b). As is clearly visible from the graphs, the band-tailing parameter is proportional to

dox and inversely proportional to εox. Since in the quadruple gate case λch = √
εsi
εox

dox
4 dch,

it is obvious that ΔE ∝ λ2ch ∝ C−1ox where Cox is the geometrical oxide capacitance per
area (in 2D) or per length as in the case of the quadruple nanowire considered here.
There is an important thing to mention: the dependence ΔE ∝ λ2ch is only valid as long
as ΔE/kB > T ; in the case of very large oxide capacitances Cox (i. e., very small λch, and
hence ΔE), Equation (11.6) approaches the ideal Boltzmann limit with S ∝ kBT .

Figure 11.6: Averaged density of states (red lines) in a 100 nm nanowire section equipped with a quadruple
wrap gate. The blue lines show exponential fits for the cases stated in the respective panels. The averaged
DOS is based on 1,000 random defect configurations with Ndef distributed across the gate dielectric.
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Figure 11.7: Dependence of the band-tailing parameter ΔE on the dielectric constant εox of the gate dielec-
tric for three different numbers of charged defects Ndef (a), and (b) as a function of dox for two different εox
[145].

To show experimentally that the scaling of EOT is suitable to suppress band-tailing,
long-channel silicon-on-insulator (SOI) MOSFETs with different effective oxide thick-
nesses (depicted in the inset of Figure 11.8, left panel) are fabricated. For the fabrication,
standard processes such as optical lithography, reactive ion etching, etc. are used (details
on the fabrication can be found in [222] and on the processes involved in Chapter 3). The
important point here is that three different gate stacks with three different effective ox-
ide thicknesses are realized: (i) 0.8 nm SiN grown with rapid thermal nitridation and
18 nm SiO2 deposited with remote plasma enhanced CVD, (ii) chemically grown (with
standard clean 2) SiOx and 18 nmALD-deposited HfO2 and (iii) 18 nmHfO2 deposited im-
mediately on the silicon surface after the removal of the native oxide with a HF dip. The
left panel of Figure 11.8 (also stating the approximate effective oxide thicknesses) shows
the extracted S as a function of log(Id) at T = 4.2 K. Obviously, the smaller EOT the better
the switching behavior with smaller minimum values of S (i. e., reduced band-tailing)
as well as reduced inflection.

Since ΔE ∝ C−1ox and because the critical temperature T⋆ = ΔE/kB is substantially
larger than the measurement temperature of T = 4.2 K, S ∝ ΔE

e ln(10) can be assumed.
Therefore, the ratios of the minimum inverse subthreshold slopes of the different de-
vices, i. e., the S-values for the smallest Id where the impact of inflection is negligible,
should be inversely proportional to the ratio of the oxide capacitors of the different de-
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Figure 11.8: Left: Extracted inverse subthreshold slope S as a function of log(Id) for SOI-MOSFETs with
three different effective oxide thicknesses [222]. The inset shows an optical microscope image and a
schematic of the fabricated SOI-MOSFETs. Right: Inverse subthreshold slope as a function of log(Id) for a
wrap-gate nanowire (blue dots) and a FD-SOI device (orange line) compared to the Boltzmann limit (green
line) FET [100]. The inset shows a schematic illustration of the wrap-gate nanowire FET and a transmission
electron micrograph of the fabricated device (Q. T. Zhao, FZ Jülich).

vices. However, the mentioned gate stacks do not only exhibit a different EOT but also
the treatment of the interface is different. It is therefore not expected that the ratio of
the inverse subthreshold slopes fits the expected behavior. Yet, comparing stack (ii) and
(iii), both having the same 18 nm HfO2 the ratio S(ii)min/S

(iii)
min ≈ EOT(ii)/EOT(iii) (see Fig-

ure 11.8); the ratio S(i)min/S
(ii)
min is approximately 1.46, and thus substantially smaller than

EOT(i)/EOT(ii) ≈ 3.68. The different interface treatment as well as the different oxide
material make a direct comparison questionable. In fact, in Section 11.3.1 the role of
the treatment of the MOS interface will be further elaborated on and it will be shown
that a proper interface treatment can be more effective than EOT scaling. Nevertheless,
the experiments show that scaling the effective oxide is a suitable method to reduce
band-tailing yielding (approximately) the expected magnitude of lowering the inverse
subthreshold slope.

11.2.2 Suppression of Band-Tailing with λch-Reduction

In the preceding section, it was demonstrated that Cox-scaling is effective in reducing
band-tailing. While in the experimental SOI-MOSFETs, the scaling of λch is limited to
a reduction of EOT, smaller screening lengths λch, and hence further improvements of
the switching are expected if a wrap-gate nanowire device architecture (see Figure 5.12
for the screening lengths of different device architectures) is chosen. To investigate
this, Si nanowire wrap-gate transistors are fabricated with a top-down approach us-
ing electron-beam lithography and digital etching to form nanowires with diameters
down to ∼5 nm. The nanowires are fortified with a HfO2 gate dielectric with a thick-



11.3 Optimizing the Switching of Cryogenic MOSFETs—Reduction of Disorder � 419

ness of dox = 4 nm and a TiN gate electrode. Further details of the fabrication can be
found in [100] and details of the processes involved are given in Chapter 3. The source
and drain contacts are realized with NiSi2; ion implantation and subsequent annealing
yield the dopants to segregate to the NiSi2/Si interface where they allow reducing the
Schottky-barrier height and form (near) Ohmic contacts (see Section 7.2).

Simultaneously with the wrap-gate NW devices, SOI MOSFETs are fabricated in a
mostly similar way, in order to enable a comparison of a single-gate SOI device archi-
tecture with a wrap-gate nanowire layout [100]. Again, NiSi2 source/drain contacts with
dopant segregation are realized and the same HfO2 gate dielectric is used as in the case
of the nanowire device.

The right panel of Figure 11.8 displays S as a function of log(Id) (normalized to the
width of the SOI device and the circumference of the nanowire) of the SOI MOSFET (or-
ange line) and the GAA nanowire FET (blue data points) at a temperature of 5.5 K; for
reference, the ideal Boltzmann limit is also shown (green line). Comparing the two ex-
perimental results clearly shows that the inverse subthreshold slope of the nanowire
FET follows almost the ideally expected behavior whereas the SOI device exhibits sig-
nificantly stronger band-tailing (larger minimum S-value) and inflection. Moreover, the
minimum inverse subthreshold slope of the GAA nanowire device is 2.3mV/dec, which
is only a factor of 2 larger than the expected S = 1.1mV/dec at T = 5.5 K [100]. Further-
more, comparing the minimum inverse subthreshold slopes of the GAA nanowire FET
with the SOI-MOSFET, a ratio SSOImin/S

GAA
min ≈ 5.2 is obtained, which fits well the ratio of

λ2ch,SOI/λ
2
ch,GAA (where again S ∝ λ2ch, is used), which is between 4 and 6.7 depending

on whether a quadruple or cylindrical GAA device architecture is considered. Conse-
quently, nanowire FETs with wrap-gate device structure and high-k gate dielectric are
the preferred embodiment for cryogenic MOSFETs due to the superior screening that
suppresses band-tailing and reduces inflection due to the excellent electrostatics.

11.3 Optimizing the Switching of Cryogenic MOSFETs—Reduction
of Disorder

In the preceding sections, the impact of band-tailing has been suppressed by appropriate
screening making λch as small as possible. However, reducing disorder in the first place
is certainly a betterway to avoid band-tailing and its detrimental effects on the switching
behavior. In the following, two such approaches are discussed.

11.3.1 Suppression of Disorder with Ultrathin SiN Layers

The first approach to realize a reduced disorder in Si MOSFETs is using an alternative
gate dielectric or dielectric stack. Here, the use of ultrathin SiN layers grown with rapid
thermal nitridation (see Section 3.3) is studied. The reason for using SiN is twofold: first,
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it can be grown in a self-terminating way, and hence ultrathin layers can be generated
reliably and reproducibly. Moreover, with an appropriate RTP tool, an in situ process of
hydrogen anneal to smoothen the silicon surface, followed by the growth of the SiN layer
is conceivable. Second, SiN is an excellent diffusion barrier and as such prevents silicon
from oxidizing during, e. g., the deposition of a high-k gate dielectric. Since its thickness
can be sub-1 nm and its dielectric constant is larger then SiO2 it allows in principle very
low effective oxide thicknesses. In the following, we employ a stack consisting of an
ultrathin SiN layer followed by HfO2 deposited with ALD.

The only drawback of SiN is that it leads to an increased density of interface states
within the band gap and, therefore, deteriorates the off-state behavior of room temper-
ature MOSFETs. Indeed, the ultrathin SiN layers used here show an increased density of
interface states within the band gap. However, it has already been discussed above that
at cryogenic temperatures the DOS within the band gap is to a large extent irrelevant.3

The reason for this is the fact that switching at room temperature requires moving the
band gap in the channel over a much larger energetic range (larger than Eg/2) whereas
in a cryogenic FET only the few (tens of) meV close to the band edge matter.

Figure 11.9 shows S versus log(Id) of SOI MOSFETs with two different HfO2 thick-
nesses, with andwithout a 1.8 nm thin SiN interlayer (see figure for details) [222]. In both
cases, the SiN interlayer helps reducing inflection although the effective oxide thickness
is increased. Interestingly, there is hardly any difference for the minimum inverse sub-
threshold slope in the case without interlayer although EOT, and hence Smin should be

Figure 11.9: Inverse subthreshold slope S as a function of log(Id) for planar, long-channel SOI-MOSFETs
with the gate stacks given in the figure [222].

3 It is certainly true that states within the band gapwill be charged by driving the device into its on-state
and this may lead to a slight increase of static disorder due to charged defects counteracting partly the
expected gain of using SiN.
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halved when the HfO2 thickness is reduced from 18 nm to 9 nm. The reason for this is
likely to be interface states that are generated, when during HfO2 deposition an interfa-
cial oxide grows. Furthermore, the combination of a 1.8 nm SiN layer with 9 nm of HfO2
(orange dashed curve in Figure 11.9) yields best results with a steep S over the largest
Id-range. Note that the increase of S at low Id is due to increasing gate leakage; similarly
fabricated devices with less gate leakage (not shown) showed a steep S also at lower
currents.

The observed behavior of the cryogenic MOSFETs shows that alternative gate di-
electrics, possibly unsuited for room temperature electronics, may be useful for cryo-
genic electronics. In the case presented here, a SiN layer reduces band-tailing and in-
flection. Combined with a gate-all-around nanowire device structure and a high-k gate
dielectric, this holds promise to enable cryogenic MOSFETs that can be operated at ex-
tremely low operational voltages.

11.3.2 Suppression of Disorder in All-2D Bilayer Graphene Devices

In MOSFETs based on bulk materials, band-tailing can only be reduced up to a certain
level due to the inherent disorder of the surface/interface of a bulk material with, e. g.,
unsaturated dangling bonds, a smoothness of the surface not better than ± one atomic
layer, etc. (see illustration in Figure 11.3(a)). In addition, regular MOSFETs are equipped
with a (usually amorphous) “bulk” dielectric containing charged defects, which cannot
be completely eliminated even with the most sophisticated process technologies. On the
other hand, pristine 2D materials do not exhibit dangling bonds at their surface and
only interact via van der Waals interaction with their environment. Yet, when placed
on regular substrates and combined with “bulk”-dielectrics, 2D materials devices suffer
from the disorder induced by the substrate/dielectric resulting in low carrier mobility
and in the case of graphene nanoribbons, a mobility instead a real band gap (see Fig-
ure 10.8). Recently, it was shown that in bilayer graphene encapsulated into hexagonal
boron nitride (hBN) with atomically smooth graphitic top and bottom gate electrodes, a
very clean band gap Eg can be induced by applying appropriate (opposite) voltages at
top and bottom gates [113, 114]. The devices are fabricated by a dry van der Waals trans-
fer using a polycarbonate membrane to sequentially stack flakes of hBN, graphite and
bilayer graphene fabricated by mechanical exfoliation (see [114] for details). Applying a
symmetric voltage bias±Vds/2 at source and drain and changing the top and bottom gate
voltages simultaneously in order to keep the displacement field (here, D = 0.46 V/nm),
and hence the induced band gap Eg =

Δ(D)V⊥
√V 2
⊥+Δ(D)2

(Equation (2.54)) constant allows ob-

taining regular field-effect transistor device characteristics. Figure 11.10(a) illustrates
the device layout and shows the Mexican-hat shaped band structure (see Section 2.8.2)
that results in the double-gate area when an appropriate displacement field is imple-
mented.



422 � 11 Cryogenic Electronics

Figure 11.10: (a) Schematic of the bilayer graphene device with conduction/valence bands in source, chan-
nel and drain. (b) Transfer characteristics of a bilayer graphene device encapsulated in hBN as gate dielec-
tric and equipped with graphite gate electrodes. The extracted minimum inverse subthreshold slope is
below 0.5mV/dec at T = 1.5 K [114].

Figure 11.10(b) shows transfer characteristics of the fabricated bilayer graphene de-
vices for two different bias voltages at a temperature of 1.5 K. Due to the device lay-
out (see Figure 11.10(a)), the transistor exhibits ambipolar operation. Both branches,
electron and hole branch show an excellent switching behavior with an Smin less than
0.5mV/dec at T = 1.5 K. In fact, lowering the temperature to 100mK reduces the inverse
subthreshold slope to ∼200 µV/dec (not shown here) [114]. Note that these very low val-
ues have been achieved in spite of the low dielectric constant of hBNwhich leads to little
screening of disorder (much lower than in the devices shown in the preceding section
featuring HfO2 as gate dielectric). This is therefore a clear signature of a very strong
reduction of disorder in the all-2D materials FET.

11.4 Scalability of Cryogenic MOSFETs

The preceding section demonstrated that an all-2Dmaterial FETwould be an ideal candi-
date for cryogenic electronics. However, 2D materials lack the maturity of silicon CMOS
technology and in the example above with bilayer graphene, even two gate voltages
needed to be applied and modified appropriately in order to maintain a proper band
gap. As a result, the bilayer graphene cryogenic FET is an idealistic device demonstrat-
ing the importance of reducing disorder at the MOS interface in order to realize steep
slope cryogenic MOSFETs. For real technological applications, it is rather likely that the
approach discussed in Section 11.2, i. e., suppressing band-tailing by screening (smallest
EOT, GAA nanowire architecture) is themost viable approach. Therefore, let us consider
in the following a GAAnanowire FETwith a nanowire diameter sufficiently thin to guar-
antee 1D electronic transport. To reduce band-tailing as much as possible, the use of a
gate dielectric thickness dox as thin as possible and a high-kmaterial with very large εox-
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value is needed since ΔE ∝ C−1ox . The smaller ΔE, themore does the inverse subthreshold
slope approach the Boltzmann limit at cryogenic temperatures (cf. Equation (11.6)).

Let us assume that the cryogenic transistor should switch X orders of magnitude
(e. g., X = 5) from the off- to the on-state and further assume a gate overdrive twice
as large as the off-state Vgs-range. Thus, the supply voltage Vdd of a cryogenic circuit is
Vdd = 3 ⋅X ⋅ S (because the gate overdrive of 2 ⋅X ⋅ S). As already discussed in Section 5.4,
in order to reduce the power consumption as much as possible Vdd should be as small
as possible since the dynamic power consumption Pdyn ∝ Ctot ⋅ V

2
dd ⋅ f (Equation (5.31))

to comply with the small available cooling power of refrigerators.
Since the transition from the Boltzmann limit to the saturation of the inverse sub-

threshold slope (Equation (11.6) and Figure 11.2) occurs at T = T⋆ = ΔE/kB ∝ C−1ox ,
one should increase Cox (decrease EOT) so much that T⋆ equals the desired operation
temperature Top of the cryogenic electronics. A further increase of Cox, however, will
not allow a further reduction of Vdd. For example, consider the wrap gate nanowire
device presented in Section 11.2.2 with a minimum S = 2.3mV/dec and let us assume
that this is the saturation value of this device (which is not really the case). Then the
critical temperature is T⋆ = 300K ⋅ 2.3/60 = 11.5 K, and thus the band-tail extension is
ΔE = kBT

⋆ ≈ 0.96meV. At a desired operation temperature of, say, Top = 1 K the satura-
tion of S to a value of 2.3mV/dec requires aminimal Vdd = 3 ⋅X ⋅2.3mV = 34.5mV (where
X = 5 decades is assumed). Now, in order to obtain the optimum low supply voltage, Cox
must be increased in order to ensure Top = ΔE/kB. This means Cox has to be increased by
a factor of T⋆/Top = 11.5. An increase by a bitmore than one order ofmagnitude is rather
difficult to realize considering the fact that the nanowire wrap-gate device already had
a 4 nm thin HfO2 high-k gate dielectric. This underlines the fact that from a practical
point of view a further reduction of band-tailing can only be achieved by combining
the wrap-gate nanowire with high-k gate dielectric with interface engineering (such as
an ultrathin SiN layer) to reduce band-tailing further. Alternatively, one could possibly
think about using high-k gate dielectrics with very high εox-value. As these materials
usually exhibit a decreasing band gap with increasing εox (see Figure 4.16), they have
been disregarded for room temperature devices. However, at cryogenic temperatures
the small potential barrier height associated with the small band gap may be sufficient
to realize the necessary insulating properties of thematerial. It thereforemakes sense to
consider the use of high-kmaterial with very high εox. In the example above, a reduction
of T⋆ by one order of magnitude implies a reduction of Vdd by the same factor. And since
the dynamic power consumption Pdyn ∝ (Vdd)

2, a two orders of magnitude reduction in
power consumption can be obtained. However, the reduction of band-tailing, and hence
Vdd comes with a price, namely a strong increase in Cox.

According to classical scaling [65], the increase of Cox due to a reduction of the ef-
fective oxide thickness is compensated by downscaling the channel length L (and width
but we are considering a nanowire FET here). This ensures that the power delay prod-
uct PDP = Cg(Vdd)

2 ≈ Cox(Vdd)
2 remains constant. However, channel length scaling in

cryogenic MOSFETs is different from classical MOSFETs. The reason for this is the fact
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that at cryogenic temperatures, the potential barrier in the channel that blocks the cur-
rent flow, is rather small since switching must not require more then a few mV of gate
voltage interval. As a result, the electronic wave function of source and drain (an ex-
ample is shown in Figure 11.11(a) with the white lines) penetrate rather deeply into the
band gap since tunneling depends exponentially on the potential barrier height, giving
rise to a density of states that exponentially decays into the band gap. This means, that
even without disorder, band-tailing is obtained in short channel devices that leads to an
increasing degradation of S with decreasing channel length [126, 98]. Figure 11.11 shows
this scenario: (a) depicts a local density of states in a L = 25 nm GAA nanowire FET
(the same parameters have been used as displayed in Figure 11.12) close to Vth, showing
how the penetration of the electronic wave function from source and drain (bright ar-
eas) leads to a nonzero DOS within the band gap (i. e., band-tailing). (b) shows the DOS
evaluated in the middle of the channel (dashed white line in (a)) in three devices with
decreasing channel length. Obviously, short channels lead to a band-tailing very similar
to disorder (compare Figure 11.6). Hence, direct source-to-drain tunneling affects cryo-
genic devices much more than devices at room temperature (see Section 5.9.4).

Figure 11.11: (a) Simulated local density of states in a GAA nanowire FET close to the threshold voltage;
L = 25 nm, all other parameters are given in Figure 11.12. The penetration of the wave function (as an
example shown with the white line) leads to band-tailing. (b) Density of states (at the position of the white
dashed line in (a)) for three different channel lengths showing clearly how band-tailing due to quantum
mechanical tunneling increases with decreasing L. Fitting the DOS with an exponential function yields
ΔE = 0.007 eV if L = 15 nm, ΔE = 0.003 eV for L = 25 nm and ΔE = 0.001 eV in the case L = 50 nm.

In order to assess the scalability with respect to the channel length, self-consistent
simulations of GAA nanowire FETs are carried out with NEGF at a temperature of T =
4.2 K. The resulting transfer characteristics are plotted as a function of channel length L
in Figure 11.12(a) for five different channel lengths. From such curves, S is extracted for
various channel lengths and two different gate dielectrics in (b). The slightly better be-
havior in the case of εox = 20 is due to steeper p-n junctions giving rise to a slightly longer
effective channel length compared to the case εox = 4. Note that in the present case band-
tailing due to disorder has been dropped such that ideal switching can in principle be
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Figure 11.12: (a) Simulated Id − Vgs curves for five different L. (b) Inverse subthreshold slope as a function
of channel length L of GAA nanowire FETs at T = 4.2 K for two different gate dielectrics.

expected. Obviously, the switching is increasingly deteriorated when scaling down the
channel length due to band-tailing induced by direct source-to-drain tunneling. It fol-
lows that in order to avoid a degradation of S the channel length should not be scaled
below ∼50 nm.

According to the above finding, the channel length L is considered being constant in
the following discussion (and sufficiently long to avoid a contribution to ΔE due to direct
source-to-drain tunneling). To study the impact of scaling Cox, the dependence of the
PDP on the effective oxide thickness is computed based on the following assumptions:
(i) Cox ≫ Cdepl, since the channel is considered to be undoped, (ii) the density of localized
interface states is small enough and/or Cox is always large enough to guarantee Cox ≫
Cloc
it and (iii) as above, it is assumed that an on/off current ratio of X orders of magnitude

is required (resulting in Vdd = 3 ⋅ X ⋅ S). As a result, the PDP can be written as

PDP = CgV
2
dd ≈

CoxCq
Cox + Cq

(3 ⋅ X 1
Cox

ln(10)
e
[1 + α ln(1 + exp(kBT − ΔE

αΔE
))])

2

(11.7)

where Equation (11.6) has been used and the gate capacitance Cg has been replacedwith
the series combination of the density-of-states or quantum capacitance Cq (called Cinv in
Section 5.9.1) and the geometrical oxide capacitanceCox.Moreover, ΔE ∝ C−1ox has already
been inserted in Equation (11.7). The following two cases can nowbe distinguished: if the
device is inwhatwas called classical capacitance limit in Section 5.9.1, Cox ≪ Cq, we have
Cg ≈ Cox, and thus the PDP is being reduced according to PDP ∝ 1/Cox. This is true until
ΔE ∝ C−1ox becomes equal to kBTop. In this case, S approaches the Boltzmann limit, and
hence does not decrease anymore. As a result, the power-delay-product will increase if
Cox is further increased. This means that in this case one would “over-scale” Cox leading
to an unnecessary increase of the capacitance, and hence of the PDP. The optimum Cox
depends of course on the operation temperature Top of the cryogenic electronics, which
is exactly reflected in Figure 11.13.
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Figure 11.13: Power delay product (in eV/m) for three different operation temperatures Top computed with
Equation (11.7). A silicon GAA nanowire FET with quadruple gate is assumed. All device parameters are as
stated in Figure 11.12.

On the other hand, if we consider the quantum capacitance limit where Cox ≪ Cq,
and hence Cg ≈ Cq, a reduction of PDP is also expected. But once ΔE = kBTop and the
Boltzmann limit for S is reached, the power delay product saturates at the lowest level,
even if Cox is further reduced.

Figure 11.13 shows the PDP as a function of EOT, which has been computed with
Equation (11.6) using the extracted dox/εox-dependence displayed in Figure 11.6. In order
to determine the capacitors, we consider again a gate-all-around nanowire FET with
1D electronic transport; the effective mass is assumed to be m⋆ = 0.19, i. e., the light
effective mass of silicon. Hence, the quantum capacitance (per length) is approximated
as Cq ≈ e

2D1D(E
s
f − Φc) = e

2 2
h√

2m⋆
Esf −Φc

. As an upper limit for Cq, we use Esf − Φc ≈ 2kBT ,

and hence Cq ≈ 9.24 ⋅
1
√T

nF/m with T in Kelvin. Assuming a quadruple gate-all-around
electrode [53] and a silicon nanowire with dch = 4 nm, Cox ≈ 0.553/EOTnF/mwhere EOT
is in nanometers. Hence, in the targeted temperature range for cryogenic electronics
(approximately 1 K) Cox < Cq.

In summary, for the targeted low operating temperatures of cryogenic electronics,
scaling Cox even by utilizing dielectrics with very high dielectric constants appears to be
a viable approach to reduce the overall power consumption.

11.5 Dopants in Cryogenic MOSFETs

The ability to manipulate the conductivity of semiconductors via appropriate impurity
doping is one of the key techniques that enables the functionality of virtually all semi-
conductor devices. The behavior of dopants in cryogenic devices deserves therefore a
separate consideration.
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11.5.1 Dopants in Source/Drain in Nanoscale Cryogenic FETs

In nondegenerately n-(p-)doped source and drain regions, the Fermi level will move
in between the conduction (valence) band and the dopant levels (see Figure 4.1) when
cooled to cryogenic temperatures. As a result, the semiconductor freezes out since there
is not enough thermal energy available to excite an electron into the conduction band
(to occupy an acceptor level). This yields high source/drain resistances prohibiting a
low power operation. Hence, cryogenic MOSFETs require degenerately doped source
and drain contacts that prevent carrier freeze-out due to the formation of a dopant
band that overlaps with the conduction (valence) band (see Figure 4.2). However, at
nanoscale dimensions, required to ensure an effective suppression of short-channel ef-
fects and to yield appropriately small λch to reduce band-tailing, the ionization energy
Eion of dopants increases due to dielectric mismatch as well as due to carrier confine-
ment (discussed in detail in Section 4.3.2). In turn, the increase of Eion

4 leads to a deac-
tivation of the dopants already at room temperature. At cryogenic temperatures, this
effect becomes more severe. Thus, an even higher doping concentration is required to
ensure that the dopant band straddles the energy range between dopant level and con-
duction(valence) band to prevent freeze-out (see the discussionwith the simplemodel of
a dopant band in Section 4.1.1). Ultimately, this may become impossible and, therefore,
alternatives for regular doping need to be employed.

One approach to circumvent issueswith dopants is to useNiSi2 togetherwith dopant
segregation in order to combine metallic source/drain regions with an appropriate re-
duction of the Schottky barrier that builds up at the NiSi2-Si interface. In fact, the GAA
nanowire FET shown in Figure 11.8, left panel, used this approach. As apparent from
the experimental results, the dopants at the NiSi2/Si interface do not freeze out. The rea-
son for this is the fact that the NiSi2 is diffused so far into the nanowire that there is no
ungated underlap region anymore. As a result, the doped area is gated and it has been
discussed in Section 4.3.1 that the presence of a gate provides the necessary screening
in order to avoid deactivation.

A second alternative may be to exploit the NESSIAS effect discussed in Section 4.4.
Since this effect does not depend on temperature, it is expected that the electronic struc-
ture shift observed in ultrathin silicon nanostructures will persist at cryogenic tempera-
tures. Because n- as well as p-type doping can be realized with appropriate SiO2 and SiN
coatings, this may be an interesting approach for future nanoscale cryogenic MOSFETs.

4 Remember that in the case ofn-type doping (the same is true forp-type doping considering the acceptor
level Ea and the valence band Ev) Eion = Ec − Ed with Ec being the conduction band edge and Ed the
donor level. As a result, a dielectric mismatch and carrier confinement increase Ec − Ed , i. e., they move
Ed further toward midgap.
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11.5.2 Dopants in the Channel of Nanoscale Cryogenic FETs

Dopants in the channel behave differently from dopants in source and drain. In a reg-
ular MOSFET device, one usually considers p-type dopants in the channel of an n-type
transistor. While the p-type concentration is low enough and will lead to a freeze-out of
the bulk, applying an appropriately high gate voltage will certainly activate the dopants
as illustrated in Figure 11.14. Therefore, a depletion capacitance is present and one needs

Figure 11.14:MOS capacitor with p-type silicon substrate at T = 4 K for two different gate voltages. The
Fermi level is shifted in between the valence band and the dopant (acceptor) level within the Si bulk in case
of cooling to cryogenic temperatures. For larger gate voltages (right panel), field-induced activation of
acceptors occurs even though the bulk freezes out at cryogenic temperatures.

Figure 11.15: Realization of a n-n region with potential barrier |eVnn| in the meV-range exploiting the NES-
SIAS effect at different SOI thicknesses. The achievable small potential barriers can be used to realize the
required low threshold voltages of cryogenic MOSFETs.
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to ensure that Cox ≫ Cdepl to not degrade the inverse subthreshold slope. However, even
if this is the case a strong potential variation within the channel is obtained that lead to
Coulomb oscillations and strong device-to-device variability.

As a consequence of the discussion above, dopants should be avoided altogether,
i. e., in the source/drain contacts as well as within the channel. In principle, the NESSIAS
effect could be used in the entire device structure. If the thickness of the ultrathin silicon
slab (silicon nanowire) is made slightly thicker in the channel region compared to the
source/drain regions, a very shallow potential barrier of size |eVnn| can be realized as
depicted in Figure 11.15, which can be used to achieve the required low threshold volt-
ages of cryogenic MOSFETs. Obviously, in this case, an interface layer consisting of SiN
can only be used for the realization of p-type cryogenic FETs.

Exercises

Exercises togetherwith solutions are accessible via theQR code. 68

https://www.iht.rwth-aachen.de/global/show_document.asp?id=aaaaaaaachgkvgr




A Color Map for 2D Materials

Figure A.1: Color maps for identifying monolayers of different 2D materials on various layered dielectric
substrates [196].
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