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Preface

This book is intended as an introductory course for students in mathematics, physical
sciences, engineering, or in other related fields. It is based on the experience of proba-
bility lectures taught during the past 25 years, where the spectrum reached from two-
hour introductory courses, over Measure Theory and advanced probability classes, to
such topics as Stochastic Processes and Mathematical Statistics. Until 2012 these lectures
were delivered to students at the University of Jena (Germany), and since 2013 to those
at the University of Delaware in Newark (USA).

The book is the completely revised version of the German edition “Stochastik fiir das
Lehramt,” which appeared in 2014 at De Gruyter. At most universities in Germany, there
exist special classes in Probability Theory for students who want to become teachers of
mathematics in high schools. Besides basic facts about Probability Theory, these courses
are also supposed to give an introduction into Mathematical Statistics. Thus, the original
main intention for the German version was to write a book that helps those students
understand Probability Theory better. But soon the book turned out to also be useful as
introduction for students in other fields, e. g., in mathematics, physics, and so on. Thus
we decided, in order to make the book applicable for a broader audience, to provide a
translation in the English language.

During numerous years of teaching, I learned the following:

— Probabilistic questions are usually easy to formulate, generally have a tight relation
to everyday problems, and therefore attract the interest of the audience. Every stu-
dent knows the phenomena that occur when one rolls a die, plays cards, tosses a
coin, or plays a lottery. Thus, an initial interest in Probability Theory exists.

— In contrast, after a short time many students have very serious difficulties with un-
derstanding the presented topics. Consequently, a common opinion among students
is that Probability Theory is a very complicated topic, causing a lot of problems and
troubles.

Surely there exist several reasons for the bad image of Probability Theory among stu-
dents. But, as we believe, the most important one is as follows. In Probability Theory, the
type of problems and questions considered, as well as the way of thinking, differs con-
siderably from the problems, questions, and thinking in other fields of mathematics, i. e.,
from fields with which the students became acquainted before attending a probability
course. For example, in Calculus a function has a well-described domain of definition;
mostly it is defined by a concrete formula, has certain properties as continuity, differen-
tiability, and so on. A function is something very concrete which can be made vivid by
drawing its graph. In contrast, in Probability Theory functions are mostly investigated
asrandom variables. They are defined on a completely unimportant, nonspecified sam-
ple space, and they generally do not possess a concrete formula for their definition. It
may even happen that only the existence of a function (random variable) is known. The
only property of a random variable which really matters is the distribution of its values.

https://doi.org/10.1515/9783111325064-201
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This and many other similar techniques make the whole theory something mysterious
and not completely comprehensible.

Considering this observation, we organized the book in a way that tries to make
probabilistic problems more understandable and that puts the focus more onto expla-
nations of the definitions, notations, and results. The tools we use to do this are exam-
ples; we present at least one before a new definition, in order to motivate it, followed
by more examples after the definition to make it comprehensible. Here we act upon the
maxim expressed by Einstein’s quote:!

Example isn’t another way to teach, it is the only way to teach.

Presenting the basic results and methods in Probability Theory without using results,
facts, and notations from Measure Theory is, in our opinion, as difficult as to square the
circle. Either one restricts oneself to discrete probability measures and random vari-
ables or one has to be imprecise. There is no other choice! In some places, it is possible
to avoid the use of measure-theoretic facts, such as the Lebesgue integral, or the exis-
tence of infinite product measures, and so on, but the price is high.2 Of course, I also
struggled with the problem of missing facts from Measure Theory while writing this
book. Therefore, I tried to include some ideas and results about o-fields, measures, and
integrals, hoping that a few readers become interested and want to learn more about
Measure Theory. For those, we refer to the books [Coh13, Dud02], or [Bil12] as good
sources.

In this context, let us make some remark about the verification of the presented re-
sults. Whenever it was possible, we tried to prove the stated results. Times have changed;
when I was a student, every theorem presented in a mathematical lecture was proved —
really every one. Facts and results without proof were doubtful and soon forgotten. And
a tricky and elegant proof is sometimes more impressive than the proven result (at least
to us). Hopefully, some readers will like some of the proofs in this book as much as we
did.

One of most used applications of Probability Theory is Mathematical Statistics.
When I met former students of mine, I often asked them which kind of mathematics
they are mainly using now in their daily work. The overwhelming majority of them
answered that one of their main fields of mathematical work is statistical problems.
Therefore, we decided to include an introductory chapter about Mathematical Statis-
tics. Nowadays, due to the existence of good and fast statistical programs, it is very
easy to analyze data, to evaluate confidence regions, or to test a given hypothesis. But

1 See http://www.alberteinsteinsite.com/quotes/einsteinquotes.html

2 For example, several years ago, to avoid the use of the Lebesgue integral, I introduced the expected
value of a random variable as a Riemann integral via its distribution function. This is mathematically
correct, but at the end almost no students understood what the expected value really is. Try to prove that
the expected value is linear using this approach!


http://www.alberteinsteinsite.com/quotes/einsteinquotes.html

Preface =— IX

do those who use these programs also always know what they are doing? Since we
doubt that this is so, we stressed the focus in this chapter to the question of why the
main statistical methods work and on what mathematical background they rest. We
also investigate how precise statistical decisions are and what kinds of errors may
occur.

The organization of this book differs a little bit from those in many other first-course
books about Probability Theory. Having Measure Theory in the back of our minds causes
us to think that probability measures are the most important ingredient of Probability
Theory; random variables come in second. On the contrary, many other authors go ex-
actly the other way. They start with random variables, and probability measures then
occur as their distribution on their range spaces (mostly R). In this case, a standard
normal probability measure does not exist, only a standard normal distributed random
variable. Both approaches have their advantages and disadvantages, but as we said, for
us the probability measures are interesting in their own right, and therefore we start
with them in Chapter 1, followed by random variables in Section 3.

The book also contains some facts and results that are more advanced and usu-
ally not part of an introductory course in Probability Theory. Such topics are, for exam-
ple, the investigation of product measures, order statistics, and so on. We have assigned
those more involved sections with a star. They may be skipped at a first reading without
loss in the following chapters.

At the end of each chapter, one finds a collection of some problems related to the
contents of the section. Here we restricted ourselves to a few problems in the actual task;
the solutions of these problems are helpful to the understanding of the presented topics.
The problems are mainly taken from our collection of homeworks and exams during the
past years. For those who want to work with more problems we refer to many books,
e.g., [GS01, Ghal9, Pao06], or [Rss14], which contain a huge collection of probabilistic
problems, ranging from easy to difficult, from natural to artificial, from interesting to
boring.

Finally, I want to express my thanks to those who supported my work at the trans-
lation and revision of the present book. Many students at the University of Delaware
helped me improve my English and correct wrong phrases and expressions. To men-
tion all of them is impossible. But among them were a few students who read whole
chapters and, without them, the book would have never been finished (or readable).
In particular, I want to mention Emily Wagner and Spencer Walker. They both really
did a great job. Many thanks! Let me also express my gratitude to Colleen McInerney,
Rachel Austin, Daniel Atadan, and Quentin Dubroff, all students in Delaware and at-
tending my classes for some time. They also read whole sections of the book and cor-
rected my broken English. Finally, my thanks go to Professor Anne Leucht from the
Technical University in Braunschweig (Germany); her field of work is Mathematical
Statistics, and her hints and remarks about Chapter 8 in this book were important to
me.
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And last but not least, I want to thank the Department of Mathematical Sciences at
the University of Delaware for the excellent working conditions after my retirement in
Germany.

Newark, Delaware, June 6, 2016 Werner Linde

Changes in the second edition: The first edition of my textbook was well received by
scholars and students alike, and I would like to thank all of them for their comments
and positive criticisms.

There are a few changes to the second edition. For instance, I added more than 40
new examples, so that now the book contains about 280 of them. Among the new ones
are some classical examples as, e. g., the “Boy or Girl Paradox,” the “Secretary Problem,”
the “Two-Envelope Paradox,” or “Gambler’s Ruin,” which may be found in Sections 5.4
or 5.5, respectively. Other examples have been included for better understanding of the
general, sometimes quite abstract, topics.

Section 8 about Mathematical Statistics contains now three tables which summarize
the main tests and confidence regions for normal distributed populations. I hope that
these résumés help to get a quick overview about the most used techniques in Math-
ematical Statistics. Furthermore, there is a new Section 8.6.4 about confidence regions
for hypergeometric distributed samples, an important topic missing in the first edition.

A completely new ingredient in this edition are short summaries at the end of almost
every section. Here I give a compressed overview about basic notions and results pre-
sented in the preceding section. The aim of these abstracts is to tell the reader what were
the most important statements and what can possibly be omitted from the first reading.

I believe that graphical presentations of abstract mathematical statements are a
very helpful aid for better understanding, not only for beginners. Therefore, I added
more than 80 new figures, so that now the book contains more than 100 of them. The
increase is mainly due to the fact that there exist now powerful tools as, e. g., TikzZ for
drawing convincing figures, tools which either did not yet exist or which I was not aware
of when writing the first edition.

Besides I added several new problems, updated the list of references, and completed
itby adding a few classical books about Measure Theory and Probability as, for example,
[Hal14, Kal21] or [Par05].

Some minor misprints or incorrect arguments have been eliminated, a few parts
were rewritten in order to make them, as I hope, clearer and better understandable.

Finally, I would like to thank my former student Frank Aurzada, TU Darmstadt, for
the fruitful discussions about some newly added examples. Last but not least, I want to
express my gratitude to Nadja Schedensack from De Gruyter for her advice and helpful
remarks concerning layout and TEX problem:s.

Jena, Germany, January 8, 2024 Werner Linde
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1 Probabilities

1.1 Probability spaces

The basic concern of Probability Theory is to model experiments involving randomness,
that is, experiments with nondetermined outcome, shortly called random experiments.
The Russian mathematician A. N. Kolmogorov established the modern Probability The-
ory in 1933 by publishing his book (cf. [Kol33]) Grundbegriffe der Wahrscheinlichkeit-
srechnung. In it, he postulated the following:

Random experiments are described by probability spaces (Q, A, P). “

The triple (R, A, P) comprises a sample space Q, a g-field A of events, and a mapping PP
from A to [0, 1], called probability measure or probability distribution.

Let us now explain the three different components of a probability space in detail.
We start with the sample space.

1.1.1 Sample spaces

Definition 1.1.1. The sample space Q is a nonempty set that contains (at least) all possible outcomes of
the random experiment.

Remark 1.1.2. Due to mathematical reasons, sometimes it can be useful to choose Q
larger than necessary. It is only important that the sample space contains all possible
results.

Example 1.1.3. When rolling a die one time, the natural choice for the sample space is
Q ={1,...,6}. However, it would also be possible to take Q = {1,2,...} oreven Q = R. In
contrast, Q = {1,...,5} is not suitable for the description of the experiment.

Example 1.1.4. Roll a die until the number “6” shows up for the first time. Record the
number of necessary rolls until the first appearance of “6”. The suitable sample space in
this caseis Q = {1,2,...}. Any finite set {1, 2,..., N} is not appropriate because, even if we
choose N very large, we can never be 100 % sure that the first “6” really appears during
the first N rolls.

Example 1.1.5. Suppose in a lottery 6 numbers out of 49 are chosen. If we record the 6
numbers in the way they are chosen, then a suitable sample space is

Q={(w,...,wg): 1< w; <49, w; + w;, 1 #j}.

https://doi.org/10.1515/9783111325064-001
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But, in general, the chosen numbers are published ordered by their size. If this is so, as
corresponding sample space we may choose

Q:{((l)l,...,wﬁ)llgwl<"'<CL)6 S49}

Example 1.1.6. Say we have three urns, each containing white and black balls. Choose
one urn atrandom and take out a ball. Register if the chosen ball is white or black. Letting
Q = {w, b} as sample space is not appropriate. It does not take into account which urn
we had chosen. One suitable sample space would be Q = {(w, i), (b,1), i = 1,2,3}. Then,
for instance, (w, 1) occurs if we choose urn 1, take out a ball of this urn, and the chosen
ball is a white one.

Example 1.1.7. A light bulb is switched on at time zero and burns for a certain period
of time. At some random time ¢ > 0, it burns out. To describe this experiment, we have
to take into account all possible times t > 0. Therefore, a natural choice for the sample
space in this case is Q = (0, co), or, if we do not exclude that the bulb is defective from
the very beginning, then Q = [0, co).

Example 1.1.8. Customers arrive at the counter of a bank at certain random times. So,
for example, the first customer shows up at time ¢;, the second at time ¢, > t;, and so
on. Then the sample space consists of infinite sequences t; < t, < --- of positive real
numbers assuming hat at least one customer enters the bank that day. But, in fact, be-
cause the number of customers per day is finite, one may also choose

Q={(t,....t)): 0<ty <--- < t,, ne N}u{0},

where {0} occurs if no customer arrives at that day.

Subsets of the sample space Q are called events. In other words, the powerset P(Q)
is the collection of all possible events. For example, when we roll a die once there are
exactly 25— 64 possible events, as, for example,

0,{1},...,{6},{1,2},...,{1,6},{2,3},...,{2,6},...,{1,2,3,4,5},Q .

Among all events, there are some of special interest, the so-called elementary events.
These are events containing exactly one element. In Example 1.1.3, the elementary events
are

{1}, {2}, {3}, {4}, {5}, and {6} .

Remark 1.1.9. Never confuse the elementary events with the points that they contain.
Look at Example 1.1.3. There we have 6 € Q and for the generated elementary event
holds {6} € P(Q).

Let A ¢ Q be an event. After executing the random experiment, one observes a
result w € Q. Then two cases are possible:
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1. The outcome w belongs to A. In this case, we say that the event A occurred.
2. Ifwisnotin A, thatis, if w € A, then the event A did not occur.

Example 1.1.10. Roll a die once and let A = {2,4}. Say the outcome was number “6”.
Then A did not occur. But, if we obtained number “2,” then A occurred.

Example 1.1.11. Suppose we roll a die twice. The describing sample space consists of all
36 pairs of numbers from 1 to 6. If

A={11),...,(6,6)},

then A occurs if and only if the outcome of the first roll equals the that of the second roll.

Example 1.1.12. In Example 1.1.7, the occurrence of an event A = [T, co) tells us that the
light bulb burned out after time T or, in other words, at time T it was still shining.

Let us formulate some easy rules for the occurrence of events.

1. By the choice of the sample space, the event Q always occurs. Therefore, Q is also
called the certain event.

2. The empty set never occurs. Thus it is called the impossible event.

3. An event A occurs if and only if the complementary event A° does not, and vice
versa, A does not occur if and only if A° does.

4. If A and B are two events, then A U B occurs if at least one of the two events occurs.
Hereby we do not exclude that A and B may both occur.

5. The event A n B occurs if and only if A and B both occur.

1.1.2 o-fields of events™

The basic aim of Probability Theory is to assign to each event A a number P(4) in [0, 1],
which describes the likelihood of its occurrence. If the occurrence of an event A is very
likely, then P(A) should be close to 1 while P(A) close to zero suggests that the appear-
ance of A is very unlikely.! The mapping A — IP(A) must possess certain natural prop-
erties. Unfortunately, by mathematical reason it is not always possible to assign to each
event A a number P(A) such that A — IP(A) has the desired properties. The solution is
ingenious and one of the key observations in Kolmogorov’s approach: one chooses a sub-
set A ¢ P(Q) such that P(A) is only defined for A € A.If A ¢ A, then P(A) does not exist.
Of course, A should be chosen as large as possible and, moreover, at least “ordinary”
sets should belong to A.

1 If the weather forecast predicts a 70 % chance of rain, you will surely take your umbrella with you. On
the contrary, if the forecast is only 20 %, you will probably not do so. Why? In this case the probability
of the occurrence of the event 4, “it rains,” is significantly less likely.
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n Inthe case of “large” sample spaces, it is in general impossible to assign to each event a meaningful likelihood
of its occurrence. Consequently, for “large” sample spaces, as, for example, R or R”, the probability P(A) is
defined only for certain special events A.

The collection .4 of events for which IP(A4) is well defined has to satisfy some algebraic
conditions. More precisely, the following properties are supposed.

Definition 1.1.13. A collection A of subsets of Q is called a o-field if
1) 0e€A,

(2) ifAe AthenA® € A, and

(3) for countably many Ay, A,,... in A, it follows that [ J% 4; € A.

Let us verify some easy properties of o-fields.

Proposition 1.1.14. Let A be a g-field of subsets of Q. Then the following are valid:
@) Qe

(i) IfAq,A,, ..., A, are finitely many sets in A, then U}':l Aje A

(iii) If Ay, Ay, ... belong to A, then so does 2} A;.

(iv) Whenever A;,..., A, € A, then [ A; € A.

Proof. Assertion (i) is a direct consequence of § € .4 combined with property (2) of
o-fields.

To verify (ii), let A;,...,A, bein A. Set A, .4 =App =---=0.Thenforallj=1,2,...,
we have 4; € A and, by property (3) of o-fields, also Ujofl Aj € A.But note that we have
U2 4; = UL A), hence (i) is valid.

To prove (iii), we first observe that 4; € Ayields A7 € A, hence |Ji; A/ € A. Another
application of (2) implies (UJ‘?:O1 A]‘?)C € A. De Morgan’s rule asserts

o0 ¢ (]
(Ua) -(ia
j=1 j=1
which completes the proof of (iii).

Assertion (iv) may be derived from an application of (ii) to the complementary sets,
as we did in the proof of (iii). Or one can use the method in the proof of (ii), but this time
we choose 4,1 =App == Q. O

Corollary 1.1.15. If sets A and B belong to a o-field A, thensodo AU B, AnB, A\ B, and
ANB.

The easiest examples of g-fields are either A = {0, Q} or A = P(Q). However, the
former o-field is much too small for applications while the latter is generally too big,
at least if the sample space is uncountably infinite. We will shortly indicate how one
constructs suitable o-fields in the case of “large” sample spaces as, for example, R or R".
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Proposition 1.1.16. Let C be an arbitrary nonempty collection of subsets of Q. Then there

is a g-field A possessing the following properties:

1. It holds that C < A or; verbally, each set C € C belongs to the o-field A.

2. The a-field A is the smallest one possessing this property. That is, whenever A’ is
another o-field withC ¢ A', then A c A'.

Proof. Let @ be the collection of all o-fields A’ on @ for which ¢ ¢ A', that s,
D:={A' cP@):CccA, Aisao-field}.

The collection @ is nonempty because it contains at least one element, namely the pow-
erset of Q. Of course, P(Q) is a o-field and C ¢ P(Q) trivially, hence P(Q) € ®.
Next define A by

A= [ A ={AcQ:AecA, vA e}
A'ed

It is not difficult to prove that A is a o-field with C ¢ A. Indeed, if C € C, then C € A’ for
all A’ € ®, hence, by construction of A, we get C € A.

Furthermore, A is also the smallest g-field containing C. To see this, take an arbi-
trary o-field A containing C. Then A e ®, which implies A ¢ A because A is the inter-
section over all o-fields in ®. This completes the proof. O

Definition 1.1.17. Let C be an arbitrary nonempty collection of subsets of Q. The smallest o-field con-
taining C is called the o-field generated by C. It is denoted by a(C).

Remark 1.1.18. The o-field o(C) is characterized by the three following properties:
1. d(C)isa o-field.

2. Cca(C).

3. Ifc c A’ for some o-field A’, then a(C) c A’

Example 1.1.19. Let Q be an arbitrary nonempty set. If C = {Cy, ..., C,} where

n
NG =0 ifi#j and UC}.:Q,
=1

then o(C) consists of the empty set and any finite unions of the Cjs.
For example, if Q = {1,...,6} and C; = {1,2}, C, = {3}, and C; = {4,5, 6}, then the

elements of the generated o-field are the empty set ¢ and C;, C,, C3, C; U Cy, C; U Cs,
C, U (3, and Q.
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Definition 1.1.20. Let C < P(R) be the collection of all finite closed intervals in R, that is,
C={la,bl:a<b,a,beR}.

The o-field generated by C is denoted by 3(IR) and is called the Borel o-field. If B € B(R), then it is said
to be a Borel set.

Remark 1.1.21. By construction, every closed interval in R is a Borel set. Furthermore,
the properties of o-fields also imply that complements of such intervals, their countable
unions, and intersections are Borel sets. One might believe that all subsets of R are Borel
sets. This is not the case; for the construction of a non-Borel set, we refer to [Gha19,
Example 1.21] or [Dud02, pages 105-108].

Remark 1.1.22. There exist many other systems of subsets in R generating B(R). Let us
only mention two of them:

C1={(-00,b]:beR} or C,={(ac0):acR}.

Summary: There is a o-field of subsets in R (also in R”, as we will see later on), the collection of Borel sets,
for which we may always define their probability of occurrence. All sets of interest are Borel sets. Thus, in
fact, knowing probabilities only for those sets is necessary from a mathematical point of view, but for our
purposes this is only a theoretical restriction.

1.1.3 Probability measures

The occurrence of an event in a random experiment is not completely haphazard. Al-
though we are not able to predict the outcome of the next trial, the occurrence or nonoc-
currence of an event follows certain rules. Some events are more likely to occur, others
less. The degree of likelihood of an event A is described by a number P(A), called the
probability of the occurrence of A (in short, probability of A). The most common scale
for probabilities is 0 < P(4) < 1, where the larger IP(4), the more likely A is to occur.
One could also think of other scales as 0 < P(A) < 100. In fact, this is even quite often
used; in this sense, a chance of 50 % equals a probability of 1/2.

What does it mean that an event A has probability IP(A)? For example, what does it
tell us that an event occurs with probability 1/2? Does this mean a half-occurrence of A?
Surely not.

To answer this question, we have to assume that we execute an experiment not
only once? but several, say n, times. Thereby we have to ensure that the conditions of

2 It does not make sense to speak of the probability of an event that can be executed only once. For
example, it is (mathematically) absurd to ask for the probability that the Eiffel Tower will be in Paris for
yet another 100 years.
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the experiment do not change and that the single results do not depend on each other.
Let

a,(A) := Number of trials where A occurs.

The quantity a,(A) is called the absolute frequency of the occurrence of A in n trials.
Observe that a,(4) is a random number with 0 < a,(A) < n. Next we set

rp(4) = @

@D

and name it the relative frequency of the occurrence of A in n trials. This number is
random as well, but now 0 < r,,(4) < 1.

Example 1.1.23. At www.westlotto.de/lotto-6aus49 one finds a summary of the 6223
drawings in the German lottery between 10/09/1955 and 06/21/2023. Every time there
were 6 numbers chosen out of 49. To describe the experiment, we take as sample space

Q={Acf{l,...,49}: |A| = 6}.
Then we get [Q| = (). Given 1 < j < 49, define the event S; as
S]-:{Aesz:jeA}.
That is, S; occurs provided that the number j was among the chosen ones. Since

|51 = (*¢), we obtain

(¥) 6
P(S) = > = — = 0.1224.
J (469) 49
In the above cited summary, one finds the absolute frequency of all events S; with
j=1,...,49. For example, the frequencies Sg, Sy, and S,5 equal 825, 719, and 699, re-
spectively. Thatis, during the past n = 6223 drawings, the numbers 6, 20, and 45 appeared
825, 719, and 699 times, respectively. Thus, their relative frequencies are

825 719

r‘n(Se) = ﬁ =~ 0.1326, rn(SZO) = ﬁ ~ 0.1155, and
699

rn(845) = ﬁ =~ 0.1123.

One should compare these relative frequencies with the expected one (assumed that all
numbers are equally likely), given by

P(S)) = % =01224, j=1,...,49.


http://www.westlotto.de/lotto-6aus49

8 =—— 1 Probabilities

It is somehow intuitively clear® that the relative frequencies of an event A converge
to a (nonrandom) number as n — co. And this limit is exactly the desired probability
of the occurrence of the event A. Let us express this in a different way: say we execute
an experiment n times for some large n. Then, on average, we will observe n - P(A)
occurrences of A. For example, when rolling a fair die many times, an even number will
happen in approximately half the cases.

Or, in the setting of Example 1.1.23, on average each number from 1 to 49 should
approximately show up 6223- % = 762 times. Thus, the observed frequencies tell us that
either the drawings were not fair (some numbers are more likely than others) or that
the number n = 6223 of drawings is still too small.

Which natural properties of A — P(A) may be deduced from r,,(A) I P(A)?
Since 0 < r,(4) < 1, we conclude 0 < P(4) < 1

Because of () = 1for each n > 1, we get P(Q) = 1.

The property r,(0) = 0 yields P(9) = 0.

Let A and B be two disjoint events. Then r,,(A U B) = r,,(4) + r,(B), hence the limits
should satisfy a similar relation, that is,

W

P(AUB) =1P(A) + P(B) . 1.2)
Definition 1.1.24. A mapping P fulfilling eq. (1.2) for disjoint A and B is called finitely additive.

Remark 1.1.25. Applying eq. (1.2) successively leads to the following. If A,,...,A, are
disjoint, then

j=1 j=1

Finite additivity is a very useful property of probabilities, and in the case of finite
sample spaces, it completely suffices to build a fruitful theory. But as soon as the sample
space is infinite, it is too weak. To see this, let us come back to Example 1.1.4. Assume we
want to evaluate the probability of the event A = {2, 4,6, .. .}, that is, the first “6” appears
in an even number of trials. Then we have to split A into (infinitely) many disjoint events
{2}, {4}, ... The finite additivity of IP does not suffice to get P(A) = P({2}) + P({4}) +---. In
order to evaluate IP(A) in this way, we need the following stronger property of P.

Definition 1.1.26. A mapping P is said to be g-additive provided that for countably many disjoint
A, Ay, ... In Q we get

]P(UA,») =) PA4).
j=1 j=1

3 We will discuss this question more precisely in Section 7.1.
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Let us summarize what we have until now: a mapping P assigning each event its prob-
ability should possess the following natural properties:

1. ForallA,onehas0<P(A) <1

2. Wehave P(0) = 0 and P(Q) = 1.

3. The mapping P is g-additive.

Thus, given a sample space Q, we look for a function P defined on P(Q) satisfying the
previous properties. But, as already mentioned, if Q is uncountable, for example, if Q =
R, then only very special* P with these properties exist.

To overcome these difficulties, in such cases we have to restrict IP to a o-field A ¢
P(RQ).

Definition 1.1.27. LetQbe asample space and let.A be a g-field of subsets of Q. Afunction P : A — [0,1]
is called a probability measure or probability distribution on (Q, A) if

1. P(@) =0andP(Q) =1.

2. Pisc-additive, that is, for each sequence of disjoint sets A; € A,j = 1,2, ..., it follows that

]P<UA]»> =) P@A). (1.3)
=1 =1

Remark 1.1.28. Note that the left-hand side of eq. (1.3) is well defined. Indeed, since .A
is a o-field, 4; € Aimplies [ ]2 A; € A as well.

Now we are in a position to define probability spaces in the exact way.

Definition 1.1.29. A probability space is a triple (Q, A, P), where Q is a sample space, .A denotes a
o-field consisting of subsets of Q, and P : A — [0, 1] is a probability measure.

Remark 1.1.30. Given A € A, the number P(A) describes its probability or, more pre-
cisely, its probability of occurrence. Subsets A of Q with A ¢ A do not possess a proba-
bility.

Let us demonstrate a simple example on how to construct a probability space for a

given random experiment. Several other examples will follow soon.

Example 1.1.31. We ask for a probability space that describes rolling a fair die once. Of
course, Q@ = {1,...,6} and A = P(RQ). The mapping P : P(Q) — [0,1] is given by

P(A) = %, Ac{l,....6}.

Recall that |A| denotes the cardinality of the set A.

4 Discrete ones as we will investigate in Section 1.3.
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Remark 1.1.32. Suppose we want to find a model for some concrete random experi-
ment. How do we do this? In most cases, the sample space is immediately determined
by the results we expect. If the question about Q is settled, the choice of the o-field de-
pends on the size of the sample space. If Q is finite or countably finite, then we may
choose A = P(Q). If @ = R or even R", we take the corresponding Borel o-fields. The
challenging task is the determination of the probability measure IP. Here the following
approaches are possible:

1. Theoretical considerations quite often lead to the determination of IP. For example,
since the faces of a fair die are all equally likely, this already describes P completely.
Similar arguments can be used for certain games or also for lotteries.

2. If theoretical considerations are neither possible nor available then statistically
investigations may help. This approach is based on the fact that the relative fre-
quencies r,(A) converge to IP(A). Thus, one executes n trials of the experiment and
records the relative frequency of the occurrence of A. For example, one may ques-
tion n randomly chosen persons or do n independent measurements of the same
item. Then r,(A) may be used to approximate the value of P(A).

3. Sometimes also subjective or experience-based approaches can be used to find ap-
proximate probabilities. These may be erroneous, but they might give some hint for
the correct distribution. For example, if a new product is on the market, the distri-
bution of its lifetime is not yet known. At the beginning one uses data of an already
existing similar product. After some time, data about the new product become avail-
able, the probabilities can be determined more accurately.

Summary: A probability space (Q, A, P) is a triple where Q is a nonempty set, called sample space, A de-
notes a o-field of subsets of Q, and, finally, P : . A — [0, 1] is a probability measure (or probability distri-
bution). The probability measure IP possesses the following properties: it is normalized so that P(@) = 0
and P(Q) = 1, and it is g-additive. Given an event A € A, the number P(A) describes the likelihood of its
occurrence.

1.2 Basic properties of probability measures

Probability measures obey many useful properties. Let us summarize the most impor-
tant ones in the next proposition.

Proposition 1.2.1. Let (Q, A, P) be a probability space. Then the following are valid:

(1) The measure P is also finitely additive.

(2) IfA,B € Asatisfy A € B, then P(B\ A) = P(B) — P(A).

(3) WehaveP(A°) =1-TP(A) for A € A.

(4) Probability measures are monotone, that is, if A< B for some A,B € A, then
P(A) < P(B).
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(5) Probability measures are subadditive, that is, for all (not necessarily disjoint)
events® A€ A,

]P<UA]-> <)Y PA4). (14)
j=1

j=1

(6) Probability measures are continuous from below, that is, whenever A; € A satisfy
Al §A2 g ttYy

P A; | = lim P(4)) .
(U ) = pm s

(7) Inasimilar way, each probability measure is continuous from above: if A; € A sat-
isfy Aj2A,2- -, then

j=1

Proof. To prove (1), choose disjoint A;,...,A, in A and set A, = Ap,y = --- = 0. Then
Ay, A,, ... are infinitely many disjoint events in .4, hence the g-additivity of P implies

P(UAj> =Y P@4)).
j=1 j=1

Observe that U]ffl Aj = U]’Ll A;j and P(4)) = 0ifj > n, so the previous equation reduces
to

o(Ua)- 3wy,
j=1 j=1

and P is finitely additive.
To prove (2), write B = AU (B \ A) and observe that this is a disjoint decomposition
of B. Hence, by the finite additivity of IP, we obtain

P(B) =P(A) + P(B\A).

Relocating P(A) to the left-hand side proves (2).
An application of (2) to Q@ and A leads to

P(A%) = P(Q\ A) = P(Q) - P(A) =1-P(A),

which proves (3).

5 Estimate (1.4) is also known as Boole’s inequality.
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The monotonicity is an easy consequence of (2). Indeed,
P(B) - P(A) =P(B\A) >0,
implying P(B) > P(A).

To prove inequality (1.4), choose arbitrary A;,A4,,... in A. Set B; := A, and, ifj > 2,
then

Then By, By, ... are disjoint subsets in A with (J; B; = U, 4;. Furthermore, by the
construction, B; < A;, hence IP(B;) < IP(4;). An application of all these properties yields

IP(UAj> = IP(UB]-> =Y P(B) <) P4)).
j=1 j=1 j=1 j=1

Thus (5) is proved.
Let us turn now to the continuity from below. Choose A;,4,,... in A satisfying
A cAyc--- With4, := 0, set

Bk ::Ak\Ak—l’ k=1,2,...

The By s are disjoint and, moreover, | Jy2; By = Uf:1 A;. Furthermore, because of Ay_; C Ay,
from (2) we get P(By) = P(4;) — P(Ax_1). When putting this all together, it follows that

P(@Aj> (U3k> ZIP(Bk)—llmZ]P(Bk)

= lim Z P(A,) - P(Ag)] = hm []P (4) - P(4y)] = hm P(4)),

]—)

where we used P(4,) = P(0) = 0. This proves the continuity from below.
Thus it remains to prove (7). For this, choose 4; € A with 4; 2 4; 2 ---. Then the

complementary sets satisfy A ¢ A5 c - - -. The continuity from below lets us conclude
that
<UA >_ lim P(A )_ lim [1 P(4)] =1- hm P(4)). (1.5)
—00
But
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and plugging this into eq. (1.5) gives
[ee]
P ) =1 .
()
Jj=1
as asserted. O

Remark 1.2.2. Property (2) becomes false without the assumption A < B. But because of
B\A =B\ (AnB)andAn B ¢ B, we always have

P(B\A) =P(B)-P(ANB). 1.6)

Another useful property of probability measures is as follows.

Proposition 1.2.3. Let (Q, A, P) be a probability space. Then for all A,, A, € A, it follows
that

IP(Al UAz) = ]P(Al) + ]P(Az) - ]P(Al ﬂAz) . (17)
Proof. Write the union of the two sets as
A1 UAZ = A1 U [Az \ (Al nAz)]

and note that the two sets on the right-hand side are disjoint. Because of A; N 4, € A,,
property (2) of Proposition 1.2.1 applies and leads to

P(4; UA,) = P(A;) + P(4, \ (4; N 4y)) = P(4;) + [P(4,) - P(4; N 4,)].

This completes the proof. O
Given A;,A,, A5 € A, an application of the previous proposition to A; and A, U Ag
implies
]P(Al UA2 UA3) = ]P(Al) + ]P(Az) + ]P(A3)
- [P(A; N Ay) + P(A; NA3) + P(A; N Ay)]
+P(A4; NAy NA;).

Another application of eq.(1.7) to the second and third terms in the right-hand sum
proves the following result (compare Figure 1.1).
Proposition 1.2.4. Let (Q, A, P) be a probability space and let A, A,, and A; be in A. Then
P(A; U Ay UAz) = P(4;) + P(4y) + P(43)
- [P(A4; N A4y) + P(A; NA3) + P(A; N A3)]
+ ]P(Al n A2 n A3)
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As

Figure 1.1: The inclusion-exclusion formula for three sets.

Remark 1.2.5. A generalization of Propositions 1.2.3 and 1.2.4 from 2 or 3 to an arbitrary
number of sets can be found in Problem 1.7. It is the so-called inclusion—exclusion for-
mula. For example, if n = 4, this formula says, given events A;, A,, As, A,, that

4 4 4
]P(UAl) =Y P@A) - Y PANA)+ ) lP(AiﬂAjﬂAk)—]P<ﬂAi).
i=1 i=1 1<ic<j<4 1<i<j<k<4 i=1

Let us explain two easy examples of how the properties of probability measures
apply.

Example 1.2.6. Let (Q, A, P) be a probability space. Suppose two events A and B in A
satisfy

PA) =05, PB)=04, and PANB)=0.2.

Which probabilities do A U B, A \ B, A° U B, and A® N B possess?
Answer: An application of Proposition 1.2.4 gives

P(AUB)=PA)+PB)-P(ANB)=04+05-02=0.7.
Furthermore, by eq. (1.6), one gets
P(A\B) =P(A)-P(ANnB)=05-02=03.
Finally, by De Morgan’s rules and another application of eq. (1.6), we get
P(A°UB°)=1-P(ANB)=08 and P(A°NnB)=P[B\A) =PB)-PANB)=02.

In summary, say one has to take two exams A and B. The probability of passing exam
A is 0.5, the probability of passing B equals 0.4, and to pass both it is 0.2. Then with
probability 0.7 one passes at least one of the exams, with 0.3 exam A, but not B, with
probability 0.8 one fails at least once, and, finally, the probability to pass B but not A
is 0.2.
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Example 1.2.7. Choose at random (all numbers are equally likely) a number from 1
to 1000. How likely is it that the chosen number is neither divisible by 3, nor by 5,
nor by 7?

Answer: Let D be the set of numbers in {1,...,1000} which are neither divisible by
3, nor by 5, nor by 7. Then it follows that

D°=AuUBUC

where A consists of multiples of 3, B contains numbers divisible by 5, and C comprises
multiples of 7. Moreover, the numbers in AnB are multiples 0f 15, ANC contains multiples
of 21, and B n C consists of multiples of 35. Finally, we note that A n B n C includes only
numbers divisible by 105. Easy calculations lead to

PP(A) =0.333, P(B)=02, P(C)=0142, P(AnB)=0.066,
P(ANC)=0.047, PBNC)=0.028 and PANBNC)=0.009.

This implies

P(D°) = P(A) + P(B) + P(C)
- [P(ANB)+P(ANC)+P(BNC)]+P(ANBNC)
=0.333+ 0.2+ 0.142 - 0.066 — 0.047 — 0.028 + 0.009 = 0.543.

So we finally arrive at

P(D) =1-P(D°) =1~ 0.543 = 0.457.

1.3 Discrete probability measures

We start with the investigation of finite sample spaces. They describe random experi-
ments where only finitely many different results may occur, as, for example, rolling a
die n times, tossing a coin finitely often, and so on. Suppose the sample space contains
N different elements. Then we may enumerate these elements as follows:

Qz{wl, ,(UN}.

As g-field we choose A = P(Q).
Given an arbitrary probability measure P : P(Q) — R, set

In this way we assign to each probability measure P numbers p;, ..., py. Which proper-
ties do they possess? The answer to this question gives the following proposition.
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Proposition 1.3.1. If P is a probability measure on P(Q), then the numbers p; defined by
eq. (1.8) satisfy

N
0<pj<1 and ) p;=1. 1.9
j=

Proof. The first property is an immediate consequence of having P(A) > 0 for all A ¢ Q.
The second property of the p;s follows from

N N N
1=mm=P<wa>=ZPH%D=ZE' =
j=1 Jj=1

j=1

Conclusion. Each probability measure PP generates a sequence (pj)jl\i1 of real numbers
satisfying the properties (1.9). Moreover, if A ¢ Q, then we have

PA)= ) p. (1.10)

{J:w;eA}

In particular, the assignment P — (pj)j]i 1 1s one-to-one.

Property (1.10) is an easy consequence of A = | J wye a{w;}. Furthermore, it tells us
that P is uniquely determined by the p;s. Note that two probability measures P; and IP,
on (2, .A) coincide if P;(A) = P,(A) forall A € A.

Now let us look at the reverse question. Suppose we are given an arbitrary sequence
(p]-)jj\i ; of real numbers satisfying the conditions (1.9).

Proposition 1.3.2. Define P on P(Q) by

PA)= Y p;. (L1D)
{j:w;eA}

Then IP is a probability measure satisfying P({w;}) = p; for allj < n.

Proof. The map P has values in [0,1] and P(Q) = 1 by Zj]il p; = 1. Since the summation
over the empty set equals zero, P(9) = 0.

Thus it remains to show that P is g-additive. Take disjoint subsets 4;,4,, ... of Q.
Since Q is finite, there are at most finitely many of the 4;s which are nonempty. Say, for
simplicity, these are the first n sets 4,,...,4,. Then we get

00 n
IP(UAk>:IP<UAk>: Y p
k=1 k=1 {j:00j€Ugy A}

=Y X b= Y p=)PA,
k=1

k=1 {j:0€A} k=1 {j:0; €A}
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hence P is g-additive.
By the construction, P({w;}) = p;, which completes the proof. O

Summary: If Q = {wy,...,wy}, then probability measures P on P(Q) can be identified
with sequences (pj)jl\i , satisfying the conditions (1.9).

{Probability measures IP on P(Q)} = {Sequences (p/»)j'\/:1 for which (1.9) hold} “

Hereby the assignment from the left- to the right-hand side goes via p; = P({w;}) while
in the other direction P is given by eq. (1.11).

Example 1.3.3. Assume Q = {1,2,3}. Then each probability measure P on P(Q) is
uniquely determined by the three numbers p; = P({1}), p, = P({2}), and p; = P({3}).
These numbers satisty p;, p;, p3 = 0 and p; + p, + p; = 1. Conversely, any three numbers
P1, Py, and p; with these properties generate a probability measure on P(Q) via (1.11).
For example, if A = {1, 3}, then P(4) = p; + ps.

Next we treat countably infinite sample spaces, thatis, @ = {w;, w,, ...}. Also here we
may take P(Q) as g-field and, as in the case of finite sample spaces, given a probability
measure P on P(Q), we set

p] = ]P({w]}), ] =12,...
Then (p; ]‘-fl obeys the following properties:
pj=0 and ) pj=1. (1.12)
j=1

The proofis the same as in the finite case. The only difference is that here we have to use
the g-additivity of P because this time Q = Uf:l{wj}. By the same argument, it follows
for A ¢ Q that

PA)= )Y p.

{i>1: wjeA}

Hence, again the p;s determine PP completely.
Conversely, let (p; ]‘?jl be an arbitrary sequence of real numbers with properties
(1.12).

Proposition 1.3.4. The mapping P defined by

PA)= ) p (113)

{j=1: wjeA}

is a probability measure on P(Q) with IP({w]-}) =Dj, 1<j< oo
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Proof. The proofis analogous to that of Proposition 1.3.2 with one important exception.
In the case |Q| < oo, we used that there are at most finitely many disjoint nonempty
subsets. This is no longer valid. Thus a different argument is needed.

Given disjoint subsets A4, 4,, ..., in Q set

Ik:{j21:wj6Ak}.

ThenI nI, =0 if k # I, thus,

]P(Ak) = Z p] and ]P<UAI(> = Zp],

Jel k=1 jeI

where I = [Jg2;Ix. Use that i € I if and only if there is some k > 1 with i € I; or
equivalently, with w; € A, thatis, if and only if w; € [y, Ay
Since p; > 0, Remark A.5.6 applies and leads to

o(Jac)-3o-5 3~ 3 pun

jeI k=1jel

Thus P is g-additive.
The equality P({w;}) = pj, 1 < j < oo, is again a direct consequence of the definition
of P. O

Summary: If Q = {w, w,, ...}, then probability measures P on P(Q) can be identified
with (infinite) sequences (p; ]Ffl possessing the properties (1.12).

{Probability measures P on "P(Q)} = {Sequences (pj)f:‘} satisfying (1.12)}

Again, the assignment from the left- to the right-hand side goes via p; = P({w;}) while
the other direction rests upon eq. (1.13).

Example 1.3.5. For Q = N andj > 1,let p; = 27, These p;s satisfy conditions (1.12) (check
this!). The generated probability measure P on P(IN) is then given by

P(A) ;:Z%.

JjeA

For example, if A = {2,4,6, ...}, then we get

1 {1 1 1
PA)=Y ==Y —=——-1=2.
ja? ia 2% 1-1/4 3

Or,if B={N +1,N +2,...}for acertain N € N, then one obtains
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i 1 N1§1 N-1 N
P(B) = — =2 —=2""".2=2"".
j:N+12! j:OZI

Another way to evaluate the probability of B is

. Noq [1_2N1 ] v
PB)=1-P(B")=1- —=1-—-1(=2"".
(B) (B°) ,lef

Example 1.3.6. Let Q = Z \ {0}, that is, @ = {1,-1,2,-2,...}. With ¢ > 0 specified later
on, assume

c

:F, kEQ

Pk

The number ¢ > 0 has to be chosen so that the conditions (1.12) are satisfied, hence it has
to fulfill

But, as is well known,®

k=1 k

which implies ¢ = % Thus P on P(Q) is uniquely described by

B(K) = 5 50 KeZ\ (o).

For example, if A = N, then

381 3722 1
PA) == Y == —=>.
2 &k 26 2
OrifA ={2,4,6,...}, it follows that
321 1
P(A)= =Y — =SP(N) =~

For later purposes, we want to combine the two cases of finite and countably infinite
sample spaces and thereby introduce a slight generalization.

6 We refer to [Mor16], where one can find an easy proof of this fact. The problem to compute the value
of the sum is known as “Basel problem.” The first solution was found in 1734 by Leonhard Euler. Note
that )54 1/k2 = {(2) with Riemann’s {-function.
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Let @ be an arbitrary sample space. A probability measure P is said to be discrete
if there is an at most countably infinite set D < Q (i. e., either D is finite or countably
infinite) such that P(D) = 1. Then for A ¢ Q,

P(A) =P(AND) = ) P({w}).

weD

Since P(D°) = 0, this says that PP is concentrated on D. Of course, all previous results
for a finite or countably infinite sample space carry over to this more general setting.

Discrete probability measures IP are concentrated on an at most countably infinite set D. They are uniquely
determined by the values P({w}), where w € D.

Of course, if the sample space is either finite or countably infinite, then all probability
measures on this space are discrete. Nondiscrete probability measures will be intro-
duced and investigated in Section 1.5.

Example 1.3.7. We once more model a single rolling of a die, but now we take as sample
space Q = R. Define P({w}) = % ifw=1,...,6 and P({w}) = 0 otherwise. If D = {1, ..., 6},
then P(D) = 1, hence IP is discrete. Given A < R, it follows that

|A N D|

P(A) = 5

For example, we have P([-2,2]) = % and P([3, 00)) = %

Another, maybe a little artificial, example is as follows.

Example 1.3.8. It is known that the set Q of rational numbers is countably infinite.
Hence Q = {qy, q,, ...} with rational numbers q,. Take any sequence (py)y-, of positive
numbers with Y2, pi = 1. Then P defined by

PA)= > px, ACR,
keqiea)

is a discrete probability measure on R with P(Q) = 1. The problem with this probability
measure is that it is completely impossible to evaluate P(B) for almost all B € R, even if
the pys are known.

1.4 Special discrete probability measures

1.4.1 Dirac measure

The simplest discrete probability measure is concentrated at a single point. That is, there
exists an w, € Q such that P({wy}) = 1. This probability measure is denoted by 6, .
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Consequently, for each A € P(Q), one has

1 ifwyeA,

(1.14)
0 ifw, ¢ A.

60)0 (A) = {

Definition 1.4.1. The probability measure 6, defined by eq. (1.14) is called the Dirac measure or point
measure at .

Which random experiment does (2, P(Q), 6%) model? It describes the experiment
where, with probability one, the value w, occurs. Thus, in fact it is a deterministic
experiment, not random.

Dirac measures are useful tools to represent general discrete probability measures.
Assume P is concentrated on D = {wy, w,, ...} and let pj = ]P({a)j}). Then we may write

P =) pd,- (1.15)
j=1

Conversely, if a measure PP is represented as in eq. (1.15) with certain w; € Q and numbers
p;j =0, Z]?’fl p; = 1, then PP is discrete with P(D) = 1, where D = {w;, w,,.. .}.

1.4.2 Uniform distribution on a finite set

The sample space is finite, say Q = {w,,...,wy}, and we assume that all elementary
events are equally likely, that is,

P({w}) = -+ = P({wy}) .

A typical example is a fair die, where Q = {1,...,6}.
Since 1=P(Q) = Zj]\il P({w;}), we immediately get P({w;}) = 1/N for all j < N. If
A ¢ Q, an application of eq. (1.11) leads to

Al _ Al

P(4) = N (1.16)

Definition 1.4.2. The probability measure IP defined by eq. (1.16) is called the uniform distribution or
Laplace distribution on the finite set Q.

The following formula may be helpful for remembrance. If P is the uniform distribution
on a finite sample space Q, then

Number of cases favorable for A
P(A) = - , AcQ.
Number of possible cases
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Example 1.4.3. In a lottery, 6 numbers are chosen out of 49 and each number appears
only once. What is the probability that the chosen numbers are exactly the six marked
on my lottery coupon?

Answer: Let us give two different approaches to answer this question.

Approach 1: We record the chosen numbers in the order they show up. As a sample
space, we may take

Q= {(wl,...,we)I(lJiE{l,...,49}, (A)l:/:(l)jlfl#]}

Then the number of possible cases is

|Q| =49-48-47-46-45-44 = 4—9'
43!
Let A be the event that the numbers on my lottery coupon appear. Which cardinality
does A possess?

Say, for simplicity, that in our coupon the numbers 1,2,...,6 are marked. Then
it is favorable for A if these numbers appear in this order. But it is also favorable if
(2,1,3,...,6) shows up, that is, any permutation of 1,..., 6 is favorable. Hence |A| = 6!,
which leads to’

P(A) = 8 _ 1 oismax10°®
4944 (B) T '

Approach 2: We assume that the chosen numbers are already ordered by their size
(as they are published in a newspaper). In this case our sample space is

Q= {(wl,...,(})e):lgwl<"‘<0J6S49},

and now

2= ().
Why? Any set of six different numbers may be written exactly in one way in increas-
ing order and thus choosing six ordered numbers is exactly the same as choosing a
(nonordered) set of six numbers. And there are (469) possibilities to choose six numbers.
In this setting, we have |A| = 1, thus also here we get

PA) = —

()

7 To get an impression about the size of this number, assume we buy lottery coupons with all possible
choices of the six numbers. If each coupon is 0.5-mm thick, then all coupons together have a size of
6.992 km, which is about 4.3 miles. And in this row of 4.3 miles there exists exactly one coupon with the
six numbers chosen in the lottery.
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Example 1.4.4. A fair coin is labeled with “0” and “1”. Toss it n times and record the
sequence of zeroes and ones in the order of their appearance. Thus,

Q:={0,1}" = {(wy,...,w,) : w; € {0, 1},

and |Q| = 2". The coin is assumed to be fair, hence each sequence of zeroes and ones is
equally likely. Therefore, whenever A ¢ Q, one has

_ Al
P(4) = 5

Take, for example, the event A where for some fixed i < n the ith toss equals “0”,
that is,

A={(wy,...,w,) : w; =0}.
Then |A| = 2" leads to the (not surprising) result

2t
P(A) = =z,
(4) =3

Or let A occur if we observe for some given k < n exactly k times the number “1”. Then
|A| = (}), and we get

- () &

Suppose n > 2. How likely is it that the first and the last toss coincide? There are 2"2
possibilities that the first and the last toss are both 0 and also 2% ways for both tosses
to be 1. Hence, the probability of this event equals

e

n 2"
Example 1.4.5. We have k particles that we distribute randomly into n boxes. All possi-
ble distributions of the particles are assumed to be equally likely. How do we get P(A)
for a given event A?

Answer: In this formulation, the question is not asked correctly because we did not
fix when two distributions of particles coincide. Compare Figures 1.2 and 1.3 to under-
stand why itis important whether or not the particles are anonymous or distinguishable.

Let us illustrate this problem in the case of two particles and two boxes. If the parti-
cles are not distinguishable (anonymous) then there are three different ways to distribute
the particles into the two boxes. Thus, assuming that all distributions are equally likely,
each elementary event has probability 1/3.
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On the other hand, if the particles are distinguishable, that is, they carry names, here
1and 2, then there exist four different ways of distributing them, hence each elementary
event has probability 1/4.

Figure 1.2: Distributing two distinguishable particles into two boxes. Each event has probability 1/4.

Figure 1.3: Distributing two anonymous particles into two boxes. Each event occurs with probability 1/3.

Let us answer the above question in the two cases (distinguishable and anonymous)
separately.

Distinguishable particles: Recall that we have k particles and n boxes. So we may
enumerate the particles from 1 to k and each distribution of particles is uniquely de-
scribed by a sequence (ay; .. ., ay), where a; € {1,...,n}. For example, a; = 3 means that
particle one is in box 3. Hence, a suitable sample space is

Q={(a....,a;) : 1< a; < n}.

Since |Q| = nk , for events A ¢ Q, it follows that

A
P@A) =% -

Anonymous particles: We record how many of the k particles are in box 1, how many
are in box 2, and so on up to box n. Thus, as sample space we may choose

Q={ky....Kkp) : 0 <k <k, Ky +---+ky =K}

The sequence (ky, ..., k,) occurs if box 1 contains k; particles, box 2 contains k,, and so
on. From the results in case 3 of Section A.3.2, we derive

n+k-1
=" ).

Hence, if A € Q, then

_ AL, kl(n-1)!
) = Q] Al n+k-1"
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Summary: If we distribute k particles into n boxes and assume that all distributions are equally likely,? then
in the case of distinguishable or of anonymous particles for any set A of distributions,

P(A) = Rl P(A) = |A]| ko

respectively.

Let us evaluate IP(A) for some concrete event A in both cases. Suppose k < n and select
k of the n boxes. Set

A := {In each of the chosen k boxes, there is exactly one particle}. 117

To simplify the notation, assume that the first k boxes have been chosen. The general
case is treated in a similar way. Then in the “distinguishable case” the event A occurs if
and only if for some permutation 7 € S, the sequence (7(1),...,7(k),0,...,0) appears.
Thus |A| = k! and

Py = & (118)
n

In the “anonymous case,” it follows that |A| =1 (why?). Hence here we obtain

kl(n-1)!

]P(A):(n+k—1)!'

(1.19)

Additional question: For k < n, define the event B by
B := {Each of the n boxes contains at most 1 particle}.

Find IP(B) in both cases.

Answer: The event Bis the (disjoint) union of the following events: the k particles are
distributed in a given collection of k boxes. The probability of this event was calculated
in egs. (1.18) and (1.19), respectively. Since there are (}}) possibilities to choose k boxes
out of n, we get P(B) = (Z)]P(A), with A as defined by (1.17), that is,

n\ k! n!
b0 = () 38 = o
_(m\ kl(n-1r n!(n-1)!
]P(B)_(k) n+k-1)! -k n+k-1 (1.20)

respectively.

8 Compare Example 1.4.20 and the following remark.
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Example 1.4.6. Suppose we distribute 6 particles into 3 boxes such that all distributions
are equally likely. What is the probability that each of the three boxes contains exactly
two particles?

Answer: Let us first assume that the particles are distinguishable. If A is the event
that each box contains 2 particles, then it follows that

6 6!
Al = =2 -090.
Al (2, 2,2) 23 90

Consequently, we obtain

Al 10

P(A) = — = —.
W=5 =8

Let us turn now to the case of indistinguishable particles. Here we have |A| = 1 (why?),
hence in this case it follows that
6!3-1)! 2-6' 1

) = B+6-1! 8 28

Example 1.4.7. Let us check the validity of formula (1.20) by an easy test. In Exam-
ple A.3.15, we evaluate the number of tiles of a domino in the following way. There are 7
boxes and we place two particles into these boxes. Hereby, the particles are anonymous
and all distributions are equally likely. Then the event B defined by “at most one particle
in each box” corresponds to tiles with different numbers of dots. Now choose one of
the 28 tiles at random. Since there are 21 tiles with different numbers of dots, it follows
that

-2

28 4

On the other hand, formula (1.20) leads to (recall thatn = 7and k = 2)
n!(n-1)! 76! 6 3

P(B) =

-kl (n+k-1! 5.8 8 4
So we see, in this case formula (1.20) gives the correct value.

Example 1.4.8. Suppose the sample space Q is given by
Q= {(k1>""k6) : k1+"'+k6 =4, k € No}

and endowed with the uniform distribution. That is, all possible representations of the
number 4 by six nonnegative integers are equally likely. So, for example, the occurrence
of (1,2,0,0,1,0) is as likely as that of (0, 0, 0, 0, 0, 4) or that of (4,0, 0,0, 0, 0).

Questions:

(1) What is the cardinality of Q?
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(2) How likely is it to observe those (ki, ..., k) € Q for which 0 < k; < 1?

Answers: An equivalent model is as follows: one has six boxes and places four anony-
mous particles into these boxes. In this way, k; describes the number of particles in box
Jwith1<j<6.

In the setting of case 3 of Section A.3.2, we have k = 4 and n = 6. Hence, the cardi-
nality of the sample space equals

|Q|:<n+k—1>:<9):126.
n-1 5

To answer the second question, note that all numbers k; satisty k; < 1if and only if each
of the six boxes contains at most one particle. According to eq. (1.20), the probability of
this event is given by

nl(n-1)! _6!-50 5

= = — = 0.119048.
(n-k!(n+k-1)! 21-91 42

Another (more direct) way to obtain the last result is as follows: there are (2) ways to
write 4 as a sum of six numbers which are either 0 or 1. Hence, the desired probability
equals

§ 15 s
Q] 126 42°
Summary: The uniform distribution IP on a sample space Q = {w;, ..., wy} is characterized by
P({w}) =+ = P({wy}) = % or, equivalently, by
P(A) = 1Al _ Number of cases favorable for A _ Acaq.

N Number of possible cases

1.4.3 Binomial distribution

The sample spaceis Q@ = {0,1,...,n} for some n > 1and pisareal number with0 < p < 1.

Proposition 1.4.9. There exists a unique probability measure B, , on P(Q) satisfying

Byt = (3)pFa-p" ", k=0...on. 120

Proof. In order to use Proposition 13.2, we have to verify B,,({k})>0 and
ko B, p({k}) = 1. The first property is obvious because of 0 < p <land0<1-p <1
To prove the second, we apply the binomial theorem (Proposition A.3.8) with a = p and
with b = 1 - p. This leads to
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Y Byl = Y (1) P - = o+ a-p)' = 1.
k=0

k=0
Hence the assertion follows by Proposition 1.3.2 with py = B, ,({k}), k = 0,...,n. O

Compare Figure 1.4 for the values of B, ,({k}) in the case n = 9 and with, p = 1/2 and
p = 1/4, respectively.

0.10

0.05 W ( OM’H
0.00 \\’—‘\\\\ \\\\’—‘\\ 0.00 ’_"—‘

Figure 1.4: Probabilities B,,,p({k}) withn=9,p=1/2,andp=1/4,k=0,..., 9.

Definition 1.4.10. The probability measure B, , defined by eq. (1.21) is called the binomial distribution
with parameters n and p.

Remark 1.4.11. Observe that B, pacts as follows. If A € {0,...,n}, then

By = Y () a-pr*.

keA
Furthermore, for p = 1/2, we get

1

Bnpa(tk}) = (Z)Z_" :

As we saw in Example 1.4.4, this probability describes the k-fold occurrence of “1” when
tossing a fair coin n times.

Which random experiment describes the binomial distribution? To answer this
question, let us first look at the case n = 1. Here we have Q = {0, 1} with

B,p({0}) =1-p and B,,({1}) =p.

If we identify “0” with failure and “1” with success, then the binomial distribution de-
scribes an experiment where either success or failure may occur, and the success proba-
bility is p. Now we execute the same experiment n times and every time we may observe
either failure or success. If we have k times success, then there are () ways to obtain
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these k successes during the n trials. The probability for success is p and for failure 1-p.
By the independence of the single trials, the probability for the sequence is pk 1- p)”‘k .
Multiplying this probability with the number of different positions of successes, we fi-
nally arrive at (z)pk (1-p)™* the value of B, ({k}).

Example 1.4.12. An exam consists of 100 problems where each of the question may be
answered either with “yes” or “no.” To pass the exam, at least 60 questions have to be
answered correctly. Let p be the probability to answer a single question correctly. How
big does p have to be in order to pass the exam with a probability greater than 75 %?

Answer: The number p has to be chosen such that the following estimate is satis-
fied:

R 100\ & 100-k
p"(1-p) >0.75.
k=zﬁo< k )

Numerical calculations show that this is valid if and only if p > 0.62739.

Example 1.4.13. Inan auditorium there are N students. Find the probability that at least
two of them have their birthday on April 1.

Answer: We do not take leap years into account and assume that there are no twins
among the students. Finally, we make the (probably unrealistic) assumption that all days
of a year are equally likely as birthdays. Say success occurs if a student has birthday on
April 1. Under the above assumptions, the success probability is 1/365. Hence the number
of students having birthday on April 1is binomially distributed with parameters N and
p = 1/365. We ask for the probability of A = {2,3,..., N}. This may be evaluated by

i (111']) ( % )k( % )Nk =1~ By 1/365(10}) — By 1365 ({1})

k=2
_1_<@>N_1<@>”‘1
- 365 365 \ 365 :

For example, N = 500 this probability is approximately 0.397895.

Example 1.4.14. In an urn there are 40 white balls and 60 black ones. One chooses balls
one after another from the urn with replacement. How often does one have to choose
balls in order to observe with probability greater than 0.5 at least 10 white balls?

Answer: The success probability is p = 40/100 = 2/5. So we ask for the minimal
number n > 10 for which

n k n-k

B,,({10,11,...,n}) 205 & Z<Z>(§> <g> >05.

k=10

Numerical calculations give the following probabilities:
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n o B,,({10,11,...,n})

20 0.244663
21 0.308558
22 0.375648
23 0.443771
24 0.510920

So we see that n =24 is the minimal number of trials to obtain at least 10 white
balls with probability greater than or equal to 1/2. Of course, if we increase the number
of trials then it becomes more and more likely to get at least 10 white balls. For exam-
ple, if one takes out 40 balls, then the probability for at least 10 white balls is about
0.9845.

Summary: The binomial distribution describes the following setting. One executes n times independently
the same experiment where each time either success or failure may appear. The success probability is p. Then
By, p({k}) is the probability to observe exactly k successes or, equivalently, n — k failures.

1.4.4 Multinomial distribution
Given natural numbers n and m, the sample space for the multinomial distribution
is?

Q:={(ky,....ky) € NG @ Ky +---+ky=n}.

With certain nonnegative real numbers py, ..., p,, satisfying p; +--- + p,, = 1, set

n

P({(ky ... k) = (kl- ) )pfl---p;m, Kppo o k) € Q. (122)

- Ky

Recall that the multinomial coefficients appearing in eq. (1.22) were defined in eq. (A.16)
as

( n ) B n!
ki kyn/  Kyleo k!
The next result shows that eq. (1.22) defines a probability measure.

Proposition 1.4.15. There is a unique probability measure P on P(Q) such that (1.22)
holds for all (ky, ..., ky) € Q.

9 By case 3 in Section A.3.2, the cardinality of Q is ("**").
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Proof. An application of the multinomial theorem (Proposition A.3.20) implies

Y Pk k)= Y (kl,”'fk)pi‘l--pfn'"

(Kppeoki) €9 Kyt =n
k;20

=P +--+py)t=1"=1.

Since P({(ky, ..., k;y)}) = 0, the assertion follows by Proposition 1.3.2. O

In view of the preceding proposition, the following definition is justified.

Definition 1.4.16. The probability measure PP defined by eq. (1.22) is called the multinomial distribu-
tion with parameters n, m, and p, ..., Bie

Remark 1.4.17. Sometimes it is useful to regard the multinomial distribution on the
larger sample space Q = IN". In this case we have to modify eq. (1.22) slightly as follows:

kK,
14 P ifk, +---+k, =

lP({(kl,...,km)}):{( ..... K )Py D il .

0 1fk1+...+km¢n.

Which random experiment does the multinomial distribution describe? To answer
this question, let us recall the model for the binomial distribution. In an urn there are
balls of two different colors, say white and red. The proportion of the white balls is p,
hence 1-p is the proportion of the red ones. If we choose n balls with replacement, then
B, p({k}) is the probability to observe exactly k white balls.

What happens if in the urn there are balls of more than two different colors, say of
m, and the proportions of the colored balls are py,...,p, withp; +--- + pp, = 1?

As in the model for the binomial distribution, we choose n balls with replacement.
Given integers k; > 0, one asks now for the probability of the following event: balls of
the first color showed up k; times, those of the second k, times, and so on. Of course, this
probability is zero whenever k; + - -- + k,, # n. But if the sum is n, then pfl pfn"’ is the
probability for k; balls of color j in some fixed order. There are (k " 'k, ) ways to order the
balls without changmg the frequency of the colors. Thus the desired probability equals

Pm-

Remark 1.4.18. If m =2, thenp, = 1-p,, as wellas( ) (kln kl) ( 1).C0nsequently,

in this case the multinomial distribution coincides w1th the binomial distribution B, , .

Example 1.4.19. Suppose in an urn there are 3 white, 5 red, and 4 black balls. Choose 9
balls with replacement. How likely is it to observe three balls of each color.

Answer: The success probabilities are p; = 3/12, p, = 5/12, and p; = 4/12. Hence, the
desired probability equals

3 3 3

9 3 5 4 9!. 60
— (=)= ———— = 0.0703286.

(3,3,3)(12) (12) <12> 6% -12°
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Additional question: How likely is it to observe no white ball among the 9 chosen
ones?

Answer: An approach via the multinomial distributions would be possible. Then
one has to sum over all possible choices of red and black balls. But the problem can be
handled in a more direct way. Say success occurs if the chosen ball is white and failure
if this is not so. Then the success probability is 3/12 = 1/4. Thus, we ask for a total of 9
failures which has the probability (3/4)9 =~ 0.0750847.

Example 1.4.20. Suppose we have m boxes By, ..., B, and n particles that we place suc-
cessively into these boxes. Thereby p; is the probability to place a single particle into box
B;. What is the probability that after distributing all n particles there are k; particles in
the first box, k, in the second, and all the way up to k,, in the last one?

Answer: This probability is given by formula (1.22), that is,

P{k; particles are in By, ..., k,, particles are in B} = <k " K )pf1 X ~pfn'" .
1> >

m

For example, if we place 5 particles into 3 boxes with probabilities 1/2, 1/3, and 1/6, re-

3

Remark 1.4.21. In the case that all m possible different outcomes of an experiment are
equally likely, that is, we have

Ky ky ks

P{k, arein By, k, are in B,, k; are in B3} = < 5 )( 1)

1
ky, kyp k3 /\ 2 6

provided that ky + k; + k3 = 5.

P1="""=Pm=

1
m bl
then

1

e ki+---+ky=n. (1.23)

n
P({(kp . .., k)}) = <k1" ,km>
Example 1.4.22. Roll a fair die 12 times. How likely is it that each of the six possible
results appears exactly twice?

Answer: An equivalent formulation of the problem is as follows: there are 6 boxes
and 12 particles. Place these 12 particles randomly into the 6 boxes so that all boxes are
equally likely. Let the event A occur if in each of the six boxes there are two particles or,
equivalently, if each of the numbers from 1 to 6 appears twice. Then we get

12

12 1 121
P(A) = ( )(-) A £ 0.00343829.
W=522222\5) ~ ez

Example 1.4.23. Suppose that in Example 1.4.20 all m boxes are chosen with probabil-
ity 1/m. Then, if n < m, one may ask for the probability that each of the first n boxes
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B,,...,B, contains exactly one particle. By eq. (1.23), it follows that

19({(1,...,1,0,...,0)})=(1 ] ) t_n (1.24)

n 4...,10,...,0/m"* m"
n

Remark 1.4.24. From a different point of view, we investigated the last problem already
in Example 1.4.5. But why do we get in eq. (1.24) the same answer as in the case of distin-
guishable particles although the n distributed ones are anonymous?

Answer: The crucial point is that we assumed in the anonymous case that all parti-
tions of the particles are equally likely. And this is not valid when distributing the par-
ticles successively. To see this, assume n = m = 2. Then there exist three different ways
to distribute the particles, but they have different probabilities:

while P({(1,1)}) = %

RN

P({(0,2)}) = P({(2,0)}) =

Thus, although the distributed particles are not distinguishable, they get names due to
the successive distribution (first particle, second particle, etc.).

Example 1.4.25. Six people randomly enter a train with three coaches. Each person
chooses his wagon independently of the others and all coaches are equally likely to be
chosen. Find the probability that there are two people in each coach.

Answer: Wehavem =3, n=6,and p; = p, = p3 = % Hence the probability we are
looking for is
6 ) 1 6! 1 10

— = —— — = — =0.12345679 .
2,2,2/ 36 212121 36 81

P({22.2]) = (

Check how this result is related to that presented in Example 1.4.6.

Example 1.4.26. In a country 40 % of the cars are gray, 20 % are black, and 10 % are red.
The remaining cars have different colors. Now we observe at random 10 cars. What is
the probability to see two gray cars, four black, and one red?

Answer: By assumption m = 4 (gray, black, red, and others), p; = 2/5, p, = 1/5,
ps = 1/10, and p, = 3/10. Thus the probability of the vector (2,4, 1, 3) is given by

s R ) i 343
2,4,1,3/\5 5 10 10/ 2041113t 52 54 10 103

= 0.00870912.

Summary: The multinomial distribution is a generalization of the binomial distribution from two (failure or
success) tom > 2 possible results. In each single experiment, m different results may occur (e. g., m different
colors of balls) and each time the jth result, 1 < j < m, shows up with probability p;. If one executes the
experiment n times, then the multinomial distribution describes the probability of the following event: the
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first result occurs k; times, the second &, times, and so on. Here k;, ...,k are some nonnegative integers
withky + -+ + k, = n.

1.4.5 Poisson distribution

The sample space for this distribution is N = {0,1,2, ...}. Furthermore, A > 0is a given
parameter.

Proposition 1.4.27. There exists a unique probability measure Pois, on P(IN) such that

k
Pois, ({k}) = ’%e‘*, ke Np. (1.25)

Proof. Because of et >0, Pois; ({k}) > 0 follows. Thus it suffices to verify

But this is a direct consequence of

OOAk OOAk

Z—e"A:e_’lZ—:e_Ae’lzl. O
k!

k=0 k=0

Definition 1.4.28. The probability measure Pois; on P(INy) satisfying Eq. (1.25) is called the Poisson
distribution with parameter A > 0.

Compare Figure 1.5 for the values of the Poison distribution in the case A = 5. Most likely
are the eventsk =4 and k = 5.

0.15 -

0.05 -

0.00V_|H Hml_\.ﬁ

Figure 1.5: The values Poiss ({k}), k = 0,...,15.
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The Poisson distribution describes experiments where the number of trials is big, but
the single success probability is small. More precisely, the following limit theorem holds.

Proposition 1.4.29 (Poisson’s limit theorem). Let (p,)n2; be a sequence of numbers with
0<p,<land

nlLrgO np, =42
for some A > 0. Then for all k € N,
lim By, ({k}) = Pois;({k}).

Proof. Write

Bn,pn({k}) = (Z) pﬁ(l - pn)n_k
_ln(n—l)---(n—k+1)

np)  A-p)" A-p) 7~

Tk nk
~1[n n-1 n-k+1 Kk n K
“uln T T (npp)” A=pp)" A-py) ",

and investigate the behavior of the different parts of the last equation separately. Each
fraction in the left-hand brackets tends to 1, hence the whole factor in brackets tends
to 1. By assumption, we have np, — A, thus, lim,,_,,(n p,,)k = 2K, Moreover, because of
np, — Awith A > 0, we get p,, — 0, which implies lim,_, (1 - pn)’k =1

Thus, it remains to determine the behavior of (1 - p,)" as n — co. Proposition A.5.1
asserts that if a sequence of real numbers (x,,),-; converges to x € R, then

n
11m(1+ﬁ> — et
n—oo n
Setting x,, := —np,,, by assumption x,, — —A, hence
X n
: n_ “n 4
-t - (102 o,

If we combine all the different parts, then this completes the proof due to

. 1 - .
nll,rgoB")Pn({k}) = k—!Ak e = Pois, ({k}). O

The previous theorem allows two conclusions:
(1) Whenever n islarge and p is small, without hesitation one may replace B, , by Pois,
where A = n - p. In this way, one avoids the (sometimes) difficult evaluation of the bino-
mial coefficients.
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Example 1.4.30. In Example 1.4.13, we found the probability that among N students
there are at least two having their birthday on April 1. We then used the binomial distri-
bution with parameters N and p = 1/365. Hence the approximating Poisson distribution
has parameter A = N/365 and the corresponding probability is given by

Pois;({2,3,..}) =1-(1+ e =1- (1 + i) e V35
365
If again N = 500, hence A = 500/365, the approximate probability equals 0.397719. Com-
pare this value with the “precise” probability 0.397895 obtained in Example 1.4.13.

(2) Poisson’s limit theorem explains why the Poisson distribution describes experiments
with many trials and small success probability. For example, if we look for a model for
the number of car accidents per year, then the Poisson distribution is a good choice.
There are many cars, but the probability'® that a single driver is involved in an accident
is quite small.

Similarly, the Poisson distribution is used to model the number of customers enter-
ing some shop, to describe the number of phone calls arriving at a call center, or the
number of daily accesses to a website. This is due to the fact that there are many poten-
tial customers but with small probability a single one enters the shop. In the same way,
there are many people possessing a phone, but the probability that a single one calls a
certain center is very small.

Later on we will investigate other examples where the Poisson distribution appears
in a natural way.

Summary: The Poisson distribution Pois, occurs as the limit of the binomial distribution B, , in the following
sense: the number n of trials tends to infinity while at the same time the success probability p becomes smaller
and smaller. In other words, for large n and small success probability p, it follows that B, ,(A) ~ Pois; (4) with
A=np.

1.4.6 Hypergeometric distribution

Among N delivered machines M are defective. One chooses n of the N machines ran-
domly and checks them. What is the probability to observe m defective machines in the
sample of size n?

First note that there are (IX ) ways to choose n machines for checking. In order to
observe m defective ones, these have to be taken from the M defective. The remaining
n-mmachines are nondefective, hence they must be chosen from the N-M nondefective
ones. There are (M) ways to take the defective machines and (¥-) possibilities for the
nondefective ones.

10 To call it a “success” probability in this case is perhaps not quite appropriate.
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Thus the following approach describes this experiment:

My (N-M
() Gio)
N >
()
Recall that in Section A.3.1 we agreed that (}) = 0 whenever k > n. This turns out be
useful in the definition of Hy 5, ,. For example, if m > M, then the probability to observe

m defective machines is, of course, zero.
We want to prove now that eq. (1.26) defines a probability measure.

Hy yn(fm}) = 0O<m<n. (1.26)

Proposition 1.4.31. There exists a unique probability measure Hy ,; , on the powerset of
{0,...,n} satisfying eq. (1.26).

Proof. Vandermonde’s identity (cf. Proposition A.3.9) asserts that for all k, m, and n

S (M=)

Jj=0

Now replace n by M, next m by N — M, then k by n, and, finally, j by m. Doing so, eq. (1.27)

2 ()G =G

But this implies

4 N-M 1 (N
> Honatim) = a5 2 () o) =y () =1
m=0 m=0 ( n ) n
Clearly, Hy 5 ,({m}) = 0, which completes the proof by virtue of Proposition 1.3.2. [

Definition 1.4.32. The probability measure Hy y, , defined by eq. (1.26) is called the hypergeometric dis-
tribution with parameters N, M, and n.

Example 1.4.33. Aretailer gets a delivery of 100 machines; 10 of them are defective. He
chooses 8 machines at random and tests them. Find the probability that 2 or more of the
tested machines are defective.

Answer: The desired probability is

5 (e o1ss.

See Figure 1.6 for another example of a hypergeometric distribution. There are 40
defective machines among 100 and one checks a sample of size 15.
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0.05 f H
0.00 : = I_‘ ’—‘ =

Figure 1.6: Probabilities Hygg 40,45 ({m}) withm = 0,...,15. The maximal value is about 0.224 attained at
m = 6. That is, if there are 40 defective items among 100, most likely in a sample of 15 there are 6 defective
ones.

Remark 1.4.34. In the daily practice, the opposite question is more important. The size
N of the delivery is known and, of course, also the size of the tested sample. The number
M of defective machines is unknown. Now suppose we observed m defective machines
among the n tested. Does this (random) number m lead to some information about the
number M of defective machines in the delivery? We will investigate this problem in
Proposition 8.5.16.

Example 1.4.35. In a pond there are 200 fish. One day the owner of the pond catches
20 fish, marks them, and puts them back into the pond. After a while the owner catches
once more 20 fish. Find the probability that among these fish there is exactly one
marked.

Answer: We have N = 200, M = 20, and n = 20. Hence the desired probability is

D)
)

Hyg02020({1}) = = 0.26967.

Remark 1.4.36. The previous example is not very realistic because in general the num-
ber N of fish is unknown. Known are M and n, the (random) number m was observed.
Also here one may ask whether the knowledge of m leads to some information about N.
This question will be investigated later in Proposition 8.5.18.

Example 1.4.37. In a lottery, 6 numbers are chosen randomly out of 49. Suppose we
bought a lottery coupon with six numbers. What is the probability that exactly k,
k=0,...,6, of our numbers appear in the drawing?

Answer: There are n = 6 numbers randomly chosen out of N = 49. Among the 49
numbers, M = 6 are “defective.” These are the six numbers on our coupon, and we ask
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for the probability that k of the “defective” are among the chosen six. The question is
answered by the hypergeometric distribution Hyg ¢ 6, that is, the probability of k correct
numbers on our coupon is given by

Hyg6({k}) = (lg)(szl_gk)

The numerical values of these probabilities for k = 0,...,6 are

k Hyg6,6(tk})
0 0.435965
1 0.413019
2 0.132378
3 0.0176504
4 0.00096862
5 0.0000184499
6 7.15112-107%

Remark 1.4.38. Another model for the hypergeometric distribution is as follows: in an
urn there are N balls, M of them are white, the remaining N — M are red. Choose n balls
out of the urn without replacing the chosen ones. Then Hy , ,({m}) is the probability to
observe m white balls among the n chosen.

If we do the same experiment, but now replacing the chosen balls, then this is de-
scribed by the binomial distribution. The success probability for a white ballis p = M/N,
hence now the probability for m white balls is given by

Byan(im}) = (;)(%{)'"(1_ %)

It is intuitively clear that for large N and M (and comparably small n) the difference
between both models (replacing and nonreplacing) is insignificant. Imagine there are
10° white and also 10° red balls in an urn. When choosing two balls, it does not matter
a lot whether the first ball was replaced or not.

n-m

The next proposition makes the previous observation more precise.

Proposition 1.4.39. If0 <m<nand0<p <1, then

NIA%IPOO HN,M,n({m}) = Bn,p({m}) :

M/N—p

Proof. Suppose first 0 < p < 1. Then the definition of the hypergeometric distribution
yields
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M-(M-m+1) (N-M)-~(N-M—(n-m)+1)

: . m! (n-m)!
N,lfﬁrllm Hy (M) = N!IIWII[oo NN-D--(N-n+D)
M/N—p M/N—p - o
L (EDIA - ) - (1 - M)
- NIJ&IPOO (m) 1 n+l
M/N=p A-5)aA-7)
n _
= (m)p’"(l =p)"" =By(im}). (1.28)

Note that if either m = 0 or m = n, then the first or the second brackets in the second
line of eq. (1.28) become 1, thus they do not appear.

The cases p = 0 and p = 1 have to be treated separately. For example, if p = 0, the
fraction in the second line of eq. (1.28) converges to zero provided thatm > 1. If m = 0,
then

1- My, . (1 - Ml
Nl;ry( 0 CE ) B0
s (- )@= 5D

The case p = 11is treated similarly. Hence, the proposition is also valid in the border
cases. O

Example 1.4.40. Suppose there are N = 200 balls in an urn. In the first table, there are
M = 80 white balls. Choosing n = 10 balls with or without replacement, we get the
following numerical values. Note that p = M/N = 2/5. In the second table, we execute
the same experiment, but now there are 100 white balls among 200.

m  Hygog010({M})  Byg.4({m}) m  Hyg100,10({M})  Bygo5({m})
1 0.0372601 0.0403108 1 0.00847281 0.00976563
2 0.118268 0.120932 2 0.0410287 0.0439453
3 0.217696 0.214991 3 0.115292 0.117188
4 0.257321 0.250823 4 0.2082 0.205078
5 0.204067 0.200658 5 0.25247 0.246094
6 0.10995 0.111477 6 0.2082 0.205078
7 0.0397376 0.0424673 7 0.115292 0.117188
8 0.00921879 0.0106168 8 0.0410287 0.0439453
9 0.0012395 0.00157286 9 0.00847281 0.00976563

Let us shortly analyze the table on the right. Here 50 % of the balls are white. Draw-
ing 10 balls, it is more likely to observe 4, 5, or 6 white balls in the case of nonreplacement,
while it is the other way around in the remaining cases 1, 2, 3, 7, 8, and 9. Try to find a
heuristic explanation for this phenomenon.
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Summary: The hypergeometric distribution may be viewed as a counterpart to the binomial distribution in
the following sense: in an urn there are M white balls and N — M black. Choosing randomly n balls without
replacement,

() )
HN,M,n({m}) =
()
is the probability to observe m white balls. In contrast, the binomial distribution B, , with p = M/N applies in
the case of replacing the chosen balls. Of course, in this case the number N of balls does not matter, only the
proportion of white balls is of interest.

1.4.7 Geometric distribution

Atfirst glance, the model for the geometric distribution looks as that for the binomial dis-
tribution. In each single trial, we may observe “0” or “1”, that is, failure or success. Again
the success probability is a fixed number p. While in the case of the binomial distribu-
tion we executed a fixed number of trials, now this number is random. More precisely,
we execute the experiment until we observe success for the first time. Recorded is the
number of necessary trials until this first success shows up. Or, in other words, a number
k > 1occurs if and only if the first k — 1 trials were all failures and the kth one is a suc-

cess, that is, we observe the sequence (0, ..., 0,1). Since failure appears with probability
k-1
1 - p and success shows up with probability p, the following approach is plausible:

G,(k) =pA-p*", keN. (1.29)

Proposition 1.4.41. If0 < p < 1, then (1.29) defines a probability measure on P(IN).

Proof. Because of p (1—p)k‘1 > 0, it suffices to verify 2, G,({k}) = 1. Using the formula
for the sum of a geometric series, this follows directly from

020: k-1 020: k 1

p-py =p pU-p =p——==1

= k=0 1-a-p

Observe that by assumption 1-p <1, thus the formula for the geometric series
applies. O

Definition 1.4.42. The probability measure G, on P(IN) defined by Eq. (1.29) is called the geometric
distribution with parameter p.

If p = 0, then success will never show up, thus, G, is not a probability measure. On
the other hand, for p = 1, success appears with probability one in the first trial, that is,
Gp = §;. Therefore, this case is of no interest.
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Remark 1.4.43. Some authors define the geometric distribution in a slightly different
way. They ask for the probability for the first success in the (k+1)th trial. This is described

by
Gy({k}) =p(1-p), keNg.

To our opinion, the shift by 11is a little bit confusing. Therefore, we decided to define the
geometric distribution as we did in eq. (1.29).

Example 1.4.44. Given a numbern € N,letA, = {k € N : k > n}. Find GP(A,,).

Answer: We answer this question by two different approaches.

At first, we remark that A, occurs if and only if the first success shows up strictly
after n trials ox, equivalently, if and only if the first n trials were all failures. But this
event has probability B, ,({0}) = (1 - p)", hence Gp(4y) = (1~ "

In the second approach, we use eq. (1.29) directly and obtain

(9]

GyAn) = ) Gy({k})=p Z a-pt=pa-p" Z<1 D)
k=n+1 k=n+1
n 1 n
=pA-p) ———=(1-p)".
PU-P =5 = AP

Example 1.4.45. Roll a die until number “6” occurs for the first time. What is the prob-
ability that this happens in roll k?

Answer: The success probability is 1/6, hence the probability of the first occurrence
of “6” in the kth trial is (1/6)(5/6) .

k  6Gy/6({kD

1 0.166667
2 0.138889
3 0115741
12 0.022431

13 0.018693

Example 1.4.46. Roll a die until the first “6” shows up. What is the probability that this
happens at an even number of trials?

Answer: The first “6” has to appear in the second, or fourth, or sixth, and so on, trial.
Hence, the probability of this event is

2%k-1 _ %2 O 1 B E
Z Guyo({2K}) = 2(5/ 6) 2(5/ e O T
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Example 1.4.47. Play a series of games where p is the chance of winning. Whenever
you put x dollars into the pool you get back 2x dollars if you win. If you lose, then the x
dollars are lost.

Apply the following strategy. After losing, double the amount in the pool in the next
game. Say you start with $1 and lose, then next time put $2 into the pool, then $4, and
so on until you win for the first time. As easily seen, in the kth game, the stakes are 2kt
dollars.

Suppose for some k > 1youlost k —1 games and won the kth one. How much money
did you lose? If k = 1, then you lost nothing, while for k > 2 you spent

14244+ 4282291 4

dollars. Note that 2¥"1 — 1 = 0 if k = 1, hence for all k > 1 the total loss is 2¥* — 1 dollars.
On the other hand, if you win the kth game, you gain 25! dollars. Consequently, no
matter what the results are, you will always win 2! — (251 - 1) = 1 dollar.™
Let X be the amount of money needed to follow this strategy. One needs 1 dollar to
play the first game, 1 + 2 = 3 dollars to play the second, until

14244+ 4281 =2k
to play the kth game. Thus, in this case we have X = 2¥ _1and
P{X = ok _ 1} = P{first win in game k} = p(1 - p)k_l, k=12,...

In particular, if p = 1/2 then this probability equals 27 For example, if one starts the
game with 127 = 27 — 1 dollars in the pocket, then one goes bankrupt if the first success
appears after game 7. The probability for this equals Y ;2¢ 275 =277 = 0.0078125.

1.4.8 Negative binomial distribution

The geometric distribution describes the probability for having the first success in trial
k. Given a fixed n > 1, we ask now for the probability that in trial k success appears not
for the first but for the nth time. Of course, this question makes only sense if k > n. But
how to determine this probability for those k?

Thus, take k > n and suppose we had success in trial k. When is this the nth one? This
is the case if and only if we had n—1 successes during the first k —1 trials or, equivalently,
k — n failures. There exist (I’;jl) possibilities to distribute the k — n failures among the
first k — 1 trials. Furthermore, the probability for n successes is p" and for k — n failures

11 Starting the first game with x dollars, one will always win x dollars no matter what happens.
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itis (1 - p)k’", hence the probability for observing the nth success in trial k is given by

B, ,({k}) == (I’: 1) A-p*™, k=nn+1,... (1.30)

We still have to verify that there is a probability measure satisfying eq. (1.30).

Proposition 1.4.48. By
k-1 k-n _
np(K}) = ( n)P A-p*", k=nn+1l,..,

a probability measure B, , on P({n,n +1,...}) is defined.

Proof. Of course, B, ({k}) > 0. Hence it remains to show

b np
(o)
Y By,(ik}) =1 or, equivalently, Z B,,(tk+n})=1. (1.31)
k=n

Because of Proposition A.3.11, we get

B, ,(tk+n}) = (n * I}: - 1) P (1= p)k
= (_: )p" D a-p = <_: )p” -1, (1.32)

where the generalized binomial coefficient is defined in eq. (A.14) as

(—kn> _ -n(-n-1) ~l~<-!(—n -k+1) .

In Proposition A.5.2, we proved for |x| < 1that

> ()= a +1x)” ' (139

Note that 0 < p < 1, hence eq. (1.33) applies with x = p — 1 and leads to

1

Z( M-t - (1.34)

Combining eqs. (1.32) and (1.34) implies

ZB (tk+ny) =p" Z( )(p n=p = =1,

p"

thus the equations in (1.31) are valid and this completes the proof. O
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Definition 1.4.49. The probability measure B, , with

_ k-1 o k-1 =
Bn’p({k}) = (k_n)p"ﬂ—p)k "= (n_1>p"(1—p)k " k=nmn+1, ...

is called the negative binomial distribution with parameters n > 1and p € (0, 1). Of course, B{p = Gp.
Remark 1.4.50. We saw in eq. (1.32) that

_ n+k-1 -n
By(tkenp) = ("7 ot a-pt = () 0 - 0" 139
Alternatively, one may define the negative binomial distribution also via Eq. (1.35). Then
it describes the event that the nth success appears in trial n + k. The advantage of this
approach is that now k € Ny, that is, the restriction k > n is no longer needed. Its
disadvantage is that we are interested in what happens in trial k, not in trial k + n.

Example 1.4.51. Roll a die successively. Determine the probability that in the 20th trial
number “6” appears for the fourth time.

Answer: We have p = 1/6,n = 4, and k = 20. Therefore, the probability for this event
is given by

B, 1/6(120}) = (12) (%)4 (g)m = 0.0404407 .

Let us ask now for the probability that the fourth success appears (strictly) before trial
21. This probability is given by

4 k-4

%(k;w%) (g) - 0.433454.

k=4

Example 1.4.52. There are two urns, say U, and Uj, each containing N balls. Choose one
of the two urns at random and take out a ball. Hereby U, is chosen with probability 1-p,
hence U; with probability p. Repeat the procedure until we choose the last (the Nth) ball
out of one of the urns. What is the probability that there are m balls left in the other urn,
wherem=1,...,N?

Answer:Form =1,...,N let A, be the event that there are still m balls in one of the
urns when choosing the last ball out of the other. Then 4, splits into the disjoint events
A =A% UAL, where
- A?n occurs if we take the last ball out of U and U; contains m balls, and
- A}n occurs choosing the Nth ball out of U; with m balls remaining in Uj,.

Let us start with evaluating the probability ofA}n. Say success occurs if we choose urn Uj.
Thus, if we take out the last ball of urn U;, then success occurred for the Nth time. On
the other hand, if there are still m balls in Uy, then failure had occurred N — m times.
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Consequently, there are still m balls left in urn U, if and only if the Nth success shows
up intrial N + (N — m) = 2N — m. Therefore, we get

2N-m-1

P(4h,) = BN -mp) = (57"

) pra-pt. (1.36)
The probability of A?n may be derived from that of A}n by interchanging p and 1 - p
(success occurs now with probability 1 - p). This yields

2N - m - 1) P a-pY 137)

P(4}) = By (2N - mp) = (57"

Adding eqs. (1.36) and (1.37) leads to

2N-m-1

]P(A’"):( N-m

)" a-p e p A=l
form=1,...,N.
If p = 1/2, that is, both urns are equally likely, the previous formula simplifies to

2N -m- 1) g ANmid _ <2N —m- 1) 9 2N+m+1 (1.38)

IP(A’"):< N-m N-1

Remark 1.4.53. The case p = 1/2 in the previous problem is known as Banach’s match-
box problem. In each of two matchboxes, there are N matches. One chooses randomly a
matchbox (both boxes are equally likely) and takes out a match. What is the probability
that there are still m matches left in the other box when taking the last match out of one
of the boxes? The answer is given by eq. (1.38).

Remark 1.4.54. There exists a slightly different version of Banach’s matchbox problem.
Here one asks for the probability of the event A,, which occurs provided that there are
m matches left in one of the boxes when choosing for the first time an empty one. Note
that in this setting also m = 0 makes sense. To answer this modified problem, one has to
ask in the previous calculations for the (N +1)th success instead of the Nth one. In doing
S0, one obtains

2N - m) g2N+m _ <2N - m) 9g2N+m o m

=0,...,N.
N - N

P(Ay) = (
See Figure 1.7 for the values of these probabilities in the case N = 20.
What is more likely at the moment when choosing for the first time an empty box:
the unchosen box contains one match or it contains none?
The answer is that both events are equally likely. This follows from

S (2NY, v _ (2N)!, oy 2N (N -1)! Ly
IP(A")‘(N)Z _(N!)ZZ _NN!(N—l)!Z
=(2N—1

v 1>2—2N+1 - P@A,).
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Figure 1.7: Probabilities for 0 < m < 20 matches left in one box when choosing for the first time an empty
one. At the beginning, both boxes contained N = 20 matches.

Example 1.4.55. We continue Example 1.4.52 with 0 < p < 1 and ask the following ques-
tion: What is the probability that U; becomes empty before U,?

Answer: This happens if and only if U, is nonempty when choosing U; for the Nth
time, that is, when in U, there are m balls left for some m = 1,..., N. Because of eq. (1.36),
this probability is given by

N N

Y e =p" Y (0 a-p
m=1
N-1

=pN - <N+k—1

r ) 1-p. (1.39)

Remark 1.4.56. Formula (1.39) leads to an interesting (known) property of the binomial
coefficients. Since Zf]nzl P(4,,) =1, by eqgs. (1.39) and (1.37), we obtain

N-1 _
> (M a-p e a-pY e =1
k=0

or, settingn =N -1, to

Son+ K\, pe1 k n+l k
> [P A-p)+A-p"pt=1.
k:o( k )

In particular, if p = 1/2, this yields

n
Z('”k)lk:z", n=012...
AN
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Summary: One executes independently arbitrarily many experiments where either success or failure may
occur. Hereby, the success probability equals 0 < p < 1. The probability to observe the nth success in trial
k > nis given by the negative binomial distribution By defined by

B;,p({k}) = (II:::,)P" (a-p)" = (I;:Dp" A-p ", k=nn+1,...

Equivalently, when one asks for the nth success in trial n + ¢, then
B _(~M\ n 13 _
(e @) ={, )" (e-1" £=012,...
If n = 1, that is, one looks for the first success, then Gp = Bip is called the geometric distribution, and

G (k) =p-p)", k=12...

1.5 Continuous probability measures

Discrete probability measures are inappropriate for the description of random experi-
ments where uncountably many different results may appear. Typical examples of such
experiments are the lifetime of an item, the duration of a phone call, the measuring
result of workpiece, and so on.

Discrete probability measures are concentrated on a finite or countably infinite set
of points. An extension to larger sets is impossible. For example, there is no'? probability
measure P on [0, 1] with P({t}) > 0 for t € [0,1].

Consequently, in order to describe random experiments with “many” possible dif-
ferent outcomes, another approach is needed. To explain this “new” approach, let us
shortly recall how we evaluated IP(A) in the discrete case. If Q is either finite or count-
ably infinite and if p(w) = P({w}), w € Q, then with this p : @ —» R we have

P4) = ) pw). (1.40)

weA

If the sample space is R or R", then such a representation is no longer possible. Indeed, if
PP is not discrete, then, we will have p(w) = 0 for all possible observations w. Therefore,
the sum in eq. (1.40) has to be replaced by an integral over a more general function.
We start with introducing functions p, which may be used for representing P(4) via an
integral.

12 Compare with Problem 1.38.
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Definition 1.5.1. A Riemann integrable function p : R — Ris called a probability density function, or
simply a density function, if

p)>0, xR, and J pdx=1. (1.41)

Remark 1.5.2. Let us formulate more precisely the second condition for p in the previ-
ous definition. For all finite intervals [a, b] in R, the function p is Riemann integrable on
[a, b] and, moreover,

b
lim jp(x)dx:l.
b 5
The density functions we will use later on are either continuous or piecewise continu-

ous, that s, they are compositions of finitely many continuous functions. These functions
are Riemann integrable, hence in this case it remains to verify the two conditions (1.41).

Example 1.5.3. Define p on R by p(x) = 0if x > 0 and by p(x) = e if x > 0. Then p is
piecewise continuous, p(x) > 0if x € R, and it satisfies

00 b
J p(x)dx = lim Je""dx = lim [—e"x]g =1-lime?=1.
b—oo b—o0 b—o0

Hence, p is a density function.

Definition 1.5.4. Let p be a probability density function. Given a finite interval [a, b], its probability (of
occurrence) is defined by

b

P([a,b]) = Jp(x)dx.

a

A graphical presentation of the previous definition is as follows. As visualized in Fig-
ure 1.8, the probability IP([a, b]) is the area under the graph of the density p, taken from
atob.
Let us illustrate Definition 1.5.4 with the density function regarded in Example 1.5.3.
Then
b
P([a,b]) = Je"xdx = [—e_x]b —e%-e?

a

whenever 0 < a < b < co. On the other hand, if a < b < 0, then P([a, b]) = 0 while for
a < 0 < b the probability of [a, b] is calculated by

P([a,b]) = P([0,b]) =1-e "
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p(z)

P([a, 8])

x
I

a b

Figure 1.8: The size of the gray shaded area defines the probability of the interval [a, b].

Remark 1.5.5. Definition 1.5.4 of the probability measure PP does not fit into the scheme
presented in Section 1.1.3. Why? Probability measures are defined on o-fields. But the
collection of finite intervals in R is not a o-field. It is neither closed under taking com-
plements nor is the union of intervals in general again an interval. Furthermore, it is far
from being clear in which sense P should be og-additive.

The next result justifies the approach in Definition 1.5.4. Its proof rests upon an ex-
tension theorem in Measure Theory (cf. [Bau01, Coh13] or [Dud02]).

Proposition 1.5.6. Let B(R) be the a-field of Borel sets introduced in Definition 1.1.20.
Then for each density function p, there exists a unique probability measure P on B(R)
such that

b
P([a,b]) = Jp(x) dx foralla<bh. (1.42)

a

Definition 1.5.7. A probability measure P on B(RR) is said to be continuous provided that there exists a
density function p such that for a < b,

b
B((a.1) = [ po) dx.. (143)
a
The function p is called a density function, or simply density, of P.

Remark 1.5.8. The mathematically correct name would be “absolutely continuous”. But
since we do not treat so-called “singularly continuous” probability measures, there is
no need to distinguish between them, and we may shorten the notation to “continu-
ous.”

Remark 1.5.9. Note that changing the density function at finitely many points does not
change the generated probability measure. For instance, if we define p(x) = 0ifx < 0
and p(x) = e ¥ if x > 0, then this density function is different from that in Example 1.5.3
but, of course, generates the same probability measure.
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Moreover, observe that eq. (1.43) is valid for all a < b if and only if for each ¢ € R,

t
P((~c0, 1) = j px) dx. (144)

Consequently, PP is continuous if and only if there is a density p with eq. (1.44) for ¢ € R.

Proposition 1.5.10. Let P : B(R) — [0,1] be a continuous probability measure with den-

sity p. Then the following are valid:

1. PMR)=1

2. Foreacht € R, one has P({t}) = 0. More generally, if A C R s either finite or countably
infinite, then P(A) = 0.

3. Foralla < b, we have

b
P((a b)) = P((a,b]) = P([a, b)) = P([a,b]) = j p(x) dx.

Proof. Let us start with proving P(R) = 1. For n > 1, set 4, := [-n,n] and note that
Ay C Ay c -+, aswell as [J,2; A, = R. Thus we may use that P is continuous from below
and, by the properties of the density p, we obtain

P(R) = lim P(A,) = lim [ pedx= [ poodx=1.

-n —

To verify the second property, fix t € R and define for each n > 1 the intervals B, by

B, = [t t+ %]. Now we have B; 2 B, 2 --- and (|n2; B, = {t}. Use this time the continuity

from above. Then we get

t+l

B({)) = Jim P(B) = lim | peodx=0.
t

IfA = {t;,t,,.. .}, then the o-additivity of PP, together with P({¢;}) = 0, gives

P(4) = Y P({t}) = 0,

=

as asserted.
The third property is an immediate consequence of the second. Observe

[a,b] = (a,b) U {a} U {b},

hence P([a, b]) = P((a, b))+ P({a}) + P({b}), proving (1.43) due to P({a}) = P({b}) = 0. O
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Remark 1.5.11. Say a set C € R can be represented as C = U]‘-fllj with disjoint (open or
half-open or closed) intervals I] then

j=

P(C) :fjpmdx jp(x)dx.
]

More generally, if a set B may be written as B = (>, C, where the C,s are unions of
disjoint intervals and satisfy C; 2 C, 2 - - -, then

P(B) = lim P(C,) .

In this way, one may evaluate IP(B) for a large class of subsets B € R.

Summary: There are two completely different types of probability measures:

b
P discrete © IP([a,b]): Z ]P({w})] and []Pcontinuous =3 ]P([a b]) Jp(x)dx]

a<w<b

1.6 Special continuous distributions

1.6.1 Uniform distribution on an interval

Let I = [a, B] be a finite interval of real numbers. Define a function p : R — R by
1 .
— ifxe[ap],
p(x) = {ﬁ—“ e, ] (1.45)
0 ifx ¢ [a,B].

Proposition 1.6.1. The mapping p defined by eq. (1.45) is a probability density function.

Proof. Note that p is piecewise continuous, hence Riemann integrable. Moreover,
p(x) > 0for x e Rand

0o B 1
pdx= [ o dx= B0 =1,
| R
—00 a
Consequently, p is a probability density. O

Definition 1.6.2. The probability measure IP generated by the density in eq. (1.45) is called the uniform
distribution on the interval I = [a, 8].
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How is IP([a, b]) evaluated for some interval [a,b]? Let us first treat the case that
[a,b] c I. Then

P([a,b]) = dx

B-a ~ B-a Lengthof [a,fB] " (146)

b
J 1 _b-a Lengthof [a,b]
a

This explains why P is called the “uniform distribution.” The probability of an interval
[a,b] < I depends only on its length, not on its position. Shifting [a, b] inside I does not
change its probability of occurrence (compare Figure 1.9).

B—a [

:
‘ + —

[} o o a b B

Figure 1.9: If P is the uniform distribution on [a, 8], then P([a, b]) = P([d’, b']).

If [a,b] is arbitrary, not necessarily contained in I, then IP([a, b]) can be easily cal-
culated by

P([a,b]) = P([a,b] n1I).

Example 1.6.3. Let P be the uniform distribution on [0,1]. Which probabilities do
[-1,0.5], [0,0.25] U [0.75,1], (oo, t] if t € R,and A € R, where A = U‘,ﬁl[zn%l,z, Zin], have?
Answer: The first two intervals have probability % Ift € R, then

0 ift<0,
P((-oo,t]) =4t ifo<t<1,
1 ift>1.

Finally, observe that the intervals [2,%,2, 21"] are disjoint subsets of [0, 1]. Hence we get

P(A) = f 11 . (1—2*1/2)§ 1 g
- on o on+l/2 | T on :

n=1 n=1

Example 1.6.4. A stick of length L is randomly broken into two pieces. Find the proba-
bility that the size of one piece is at least twice that of the other.

Answer: This event happens if and only if the point at which the stick is broken is
either in [0,L/3] or in [2L/3, L]. Assuming that the point at which the stick is broken is
uniformly distributed on [0, L], the desired probability is % Another way to get this result
is as follows. The size of each piece is less than twice as that of the other if the point at



54 —— 1 Probabilities

which the stick is broken is in [L/3,2L/3]. Hence, the probability of the complementary
event is 1/3, leading again to 2/3 for the desired probability.

Example 1.6.5. Choose at random a real number uniformly distributed in [-1,1]. How
likely is it that its square is less than 1/4?

Answer: A number x € [-1,1] satisfies x* < 1/4if and only if -1/2 < x < 1/2. Hence,
if A is the event that the square is less than 1/4, then

11
P(A) = Length of (-3, 3] _ 1
Length of [-1,1] 2

Example 1.6.6. Let C, := [0,1]. Extract from C, the interval (%, %), thus there remains
¢ = [0, %] U [%, 1]. To construct C,, extract from C; the two middle intervals (%, é) and
(3,5),hence G, = [0, 51U [£, 31U [, 21U [5.1].

Suppose that through this method we already got the set C,, which is a union of
2" disjoint closed intervals of length 3. In order to construct C,,4, split each of the 2"
intervals into three intervals of length 3™ and erase the middle one. In this way, we
get C,.,1, which consists of 2" disjoint intervals of length 3™, Finally, one defines

The set C is known as the Cantor set. Let P be the uniform distribution on [0, 1]. Which
value does P(C) have?

Answer: First observe that C; > ¢; > C, > ---, hence, using that P is continuous
from above, it follows that

P(C) = lim P(Cp). (1.47)
n—oo
The set C, is a disjoint union of 2" intervals of length 3™". Consequently, it follows that
P(C,) = g—n which by eq. (1.47) implies P(C) = 0.
One might conjecture that C = @. On the contrary, C is even uncountably infinite. To

see this, we have to make the construction of the Cantor set a little bit more precise.
Givenn > 1, let

Ap={a=(ay,....,a,) :ay,...., 0,1 € {0,2}, a, =1}.

Ifa=(a,...,a,) € Ay, setx, = Yy g—ﬁ and I, = (X4, Xg + Sin). In this notation,

12 12 7 8 1 2
I(l):<§’§>’ I(O,l):<§’ §>, I(Z,l):<§’ 6), and I(O,O,l) :<ﬁ’ﬁ>

Then, if C; = [0,1], for n > 1 we have
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Co=Coa\ | I henceC:[O,l]\fj U L-

acA, n=1a€A,

Take now any sequence xq, Xy, ... with x; € {0,2} and set x = Y2, ’;—’; Then x cannot
belong to any I, because otherwise at least one of the x;s should satisfy x;, = 1. Thus
x € C,and the number of x that may be represented by x; s with x;. € {0, 2} is uncountably
infinite.

Summary: The uniform distribution IP on an interval I = [a, B] is characterized by the following property: if
[a,b] € I, then

dx = ——

b
_ [ g boa_ Lengthof [a,b]
P([a,b]) _Jﬁ’—a —a  Lengthof [a,8] °

1.6.2 Normal distribution
This section is devoted to the most important probability measure, the normal distribu-
tion. Before we can introduce it, we need the following result.

Proposition 1.6.7. We have

J e 12 dx = VIT. (1.48)

—00

Proof. Set
(o)
2
a:= J e dx
(o)

and note that a > 0. Then we get

(o] (0] o0 00
a* = < J e 2 dx)( J e dy> = J J e 2 gy dy .
—00 —00

—00 —00

Change the variables in the right-hand double integral as follows: x := rcos6 and
y:=rsinf, where 0 < r < co and 0 < 6 < 27. Observe that

dxdy = |D(r, 0)|dr do

with

D(r,0) = det o % :det< C_OSQ —rsind )zrc0329+rsin20:r.
sin 6 rcos @
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Using x +y* = r* cos? 6 + r? sin’ 0 = r?, this change of variables leads to

27T 00 2
2 21900
a* = J j re’ 2 drde = I[—e" 121546 = 2m,
00 0
which, due to a > 0, implies a = V27 This completes the proof. O

Given y e Rand o > 0, let

Do) = \/%m e 0y eR. (149)
Remark 1.6.8. The graph of the function x — p, ;(x) is “bell-shaped,” has its maximal
value 1/ V2o at x = y, attains only positive values, and is symmetric around x = y. If
X — 00 0r X — —o0, then p, ;(x) tends to zero very rapidly. The bigger the g > 0, the
flatter the graph of p, ;. Nevertheless, as we will show in the next proposition, the area
under the graph of p, , always equals 1, no matter how big or small ¢ > 0 is (compare
also Figure 1.10).

(=]
o

s
NAVAN
N

-2 2 4 6

Figure 1.10: The function p, ; with parameters s = 0,1,2,3 and ¢ = 0.5,0.75,0.9,1.1.

Proposition 1.6.9. Ifu € Rand g > 0, then p,, ; is a probability density function.

Proof. We have to verify

(o) (o)

2 2
J Puoc)dx =1, or I e W27 4x = Vart g
oo X

Setting u := (x — @)/o, it follows that dx = o du, hence Proposition 1.6.7 leads to

(o] o0

2 2 2
J X2 gy = g J e du=02m.
-0 )

This completes the proof. O
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Definition 1.6.10. The probability measure generated by p, ; is called the normal distribution with
expected value y and variance 0. It is denoted by N (s, 0%), that is, for all a < b,

b

1 J ()2 /20°
— |e dx .
V2no 2

N (. 0%)(la,b]) =
Remark 1.6.11. At this moment, the numbers u € R and o > 0 are nothing else than pa-

rameters. Why they are called “expected value” and “variance” will become clear after
we introduce these notations in Section 5.

Definition 1.6.12. The probability measure A/(0,1) is called the standard normal distribution. It is
given by

b
N(0,1)([a,b]) = \/% Je—lez "

a

1
Wordad 0.3989

I €T
a b

Figure 1.11: The area of the gray shaded region coincides with A/(0, 1)([a, b]).

For example, we have

N(©0,1)([-1,1]) = e dx = 0682689, or

SIE
S

N(0,1)([2,4]) = e 7% dx = 0.0227185.

gl-
S

e L

Summary: The normal distribution with expected value y/ € R and variance ¢® > 0 acts as

b
N iabl) = = [ o

The probability measure A/(0, 1) is called the standard normal distribution.
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1.6.3 Gamma distribution

Euler’s gamma function is a mapping from (0, co) to R defined by

(o)
I(x) := Js""le_sds, x>0.
0

The graph of the gamma function for small entries is drawn in Figure 1.12.

r(x)

. /

m /

1 2 3 4 5

Figure 1.12: The graph of the gamma function.

Let us summarize the main properties of the gamma function.

Proposition 1.6.13.

1. The gamma function maps (0, co) continuously to (0, co0) and possesses continuous
derivatives of any order.

2. Ifx >0, then

I'x+1) =xT'(x). (1.50)
3. Forn e N, it follows that T(n) = (n — 1)\. In particular;
Ir1)=r@2)=1 and T@3)=2.

4, One hasT(1/2) = v/m, which implies
1\ @n-1n _
F<n+2>— o VI, n=12,... (1.51)
Here the double factorial is defined by 2n - 1)!! = 2n-1)(2n-3)---3- 1.

Proof. For the proof of the continuity and differentiability, we refer to [Art64].
The proof of eq. (1.50) is carried out by integration by parts as follows:

o0 o0
T(x+1) = J s¥e’ds = [-s* e*s]gO + J x s e ™ds = xT(x).
0 0
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Note that s*e™* = 0ifs=0o0r s — co.
From

) = J eds=1
0

and eq. (1.50), it follows, as claimed, that
Tm=n-DI'nh-1)=mn-1)(n-2)I(n-2)=---=(n-1)---1- T =(n-1)!.

To prove the fourth assertion, we use Proposition 1.6.7. Because of

(o) (oe)
2 2
V2 = J e U4t =2 J e U724t
% 0

it follows that

J e 24t = \E . (152)
0

Substituting s = t2/2, thus ds = tdt, by eq.(1.52), the integral for I'(1/2) transforms
into

(o) OO\/E (o)
2 2
T(1/2) = Js’l/ze_sds = J Te"t 2tdt = V2 Je_t 24t = V7.
0 0 0

Formula (1.51) follows by a repeated application of eq. (1.50). Indeed, then we get

1 2n-1 1
r<n+z>— 2 F<n—é>

— — 1N
:2n 1.2n 3-1‘<n—§>:-~-:(2n 1)..1,(1).
2 2 2 2n 2

This completes the proof. O

If x — oo, then I'(x) increases very rapidly. More precisely, the following is valid
(cf. [Art64]):

Proposition 1.6.14 (Stirling’s formula for the gamma function). For x > 0, there exists a

number 6 € (0,1) such that
21 (x\" ojmx
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In view of
n!=T(n+1) =nl'(n),

formula (1.53) leads to' the following.

Corollary 1.6.15 (Stirling’s formula for n-factorial). For each natural number n, there is
some 0 € (0,1) depending on n such that

n
nl = N2 (g) efhin (1.54)

In particular, we have

: e"
lim —— n! = Var.
n=co p+1/2
Our next aim is to introduce a continuous probability measure with density tightly
related to the I-function. Given a,f > 0, define p, g from R to R by (see Figure 1.13 for
some examples)

" {0 ifx <0, .
pa,ﬁ X) = 1 B-1,-x/a .
Ty X € ifx>0.
1.2 ’\
1.0
0.8 \
0.4 —
0.2
\§
1 2 3 4

Figure 1.13: The functions py g with 8 = 0.5,1,1.5,2 and 2.5 from top left to bottom left.

Proposition 1.6.16. For all a, B > 0, the function p, g in eq. (1.55) is a probability density.

Proof. Of course, p, g(x) > 0. Thus it remains to verify

J Dapl0)dx =1. (1.56)

13 cf. also [Spi08, Chapter 27, Problem 19].
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By the definition of p, g, we have

a? T(B)

(o) 1 (o)
J Pap(x) dx = J xP e qx .
00 0

Substituting in the right-hand integral u := x/a, thus dx = adu, the right-hand side
becomes

B

Fle gy = (g =1.
r(ﬁ)!” erdu= P

Hence eq. (1.56) is valid, and p, g is a probability density function. O

Definition 1.6.17. The probability measure I'; g with density function pg g is called the gamma distribu-
tion with positive parameters a and . Forall0 < a < b < oo,

b
Fop(la,b]) = Ix’“ e /% dx. (157)

Q

Remark 1.6.18. Since pa,ﬁ(x) = 0 for x < 0, it follows that Faﬁ((—oo, 0]) = 0. Hence, if
a < b are arbitrary, then

Top([a, b)) = T4 5([0,00) N [, b]).

Remark 1.6.19. If 8 ¢ IN, then the integral in eq. (1.57) cannot be expressed by elemen-
tary functions. Only numerical evaluations are possible.

1.6.4 Exponential distribution

An important special gamma distribution is the exponential distribution. This probabil-
ity measure is defined as follows.

Definition 1.6.20. ForA > 0, let £ := I';-1; be the exponential distribution with parameter A > 0.

Remark 1.6.21. The probability density function p, of E; is given by

0 ifx<o0,
pa(x) = e

ifx > 0.
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Consequently, if 0 < a < b < oo, then the probability of [a, b] can be evaluated by

b
E)(la,b]) = A J eMdx=e e,

a

Moreover,
-2t
Ey([t,oco)) =e™, t>0.

See Figure 1.14 for certain graphs of densities generating exponential distributions.

Figure 1.14: The densities of £, with A =1,1/2,1/3, and 1/4.

Remark 1.6.22. The exponential distribution plays an important role for the descrip-
tion of lifetimes. For instance, it is used to determine the probability that the lifetime of
a component part or the duration of a phone call exceeds a certain time T > 0. Further-
more, it is applied to describe the time between the arrivals of customers at a counter
or in a shop.

Example 1.6.23. Suppose that the duration of phone calls is exponentially distributed
with parameter A = 0.1. What is the probability that a call lasts less than two time units?
Or what is the probability that it lasts between one and two units? Or more than five
units?

Answer: These probabilities are evaluated by

Ey4(0,2]) =1-e %% = 0.181269,
Eo1(1,2]) = e — 702 = 0.08611,
Ey1([5,00)) = e™%5 = 0.60653.
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1.6.5 Erlang distribution

Another important class of gamma distributions is that of Erlang distributions defined
as follows.

Definition 1.6.24. ForA > 0andn € N, let £ ; = T, . This probability measure is called the Erlang
distribution with parameters A and n.

Remark 1.6.25. The density p, , of the Erlang distribution is (see also Figure 1.15)

ifx <0,

0
=7 n
Pan { (n{ o X"Le™™ ifx > 0.

1 2 3 4

Figure 1.15: The densities of the Erlang distribution withA = 3and n = 2,3,4,and 5.

Of course, E, ; = E,. Thus, the Erlang distribution may be viewed as generalized expo-
nential distribution.

An important property of the Erlang distribution is as follows.

Proposition 1.6.26. If't > 0, then

PN
Ejn([t,00)) = Z (/}—f)] et

j=0

Proof. We have to show that for ¢ > 0,

c© An o0 ~ B n-1 At B
Jpl,n(x)dxz(n_l)' Jx"le“dx:Z(j—'ye“. (1.58)
t Tt j=0 7*
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This is done by induction over n.
If n = 1, then eq. (1.58) is valid due to

me(x) dx = J/le_b‘ dx = e
t t

Suppose now eq. (1.58) is proven for some n > 1. Next, we have to show that it is also
valid for n + 1. Thus, we know

n [ee]

A J Xn -1 —)Lxdx z (At)] (1'59)
(n_l)! j=0 ]'
t
and want

nt1 @

A [ e ax- Z G i (160)
n!

t

Let us integrate the integral in eq. (1.60) by parts as follows. Set u := x", henceu’ = n X
and v = e thusv = -Ate™, Doing so and using eq. (1.59), the left-hand side of
eq. (1.60) becomes

)ln+1 o0 1 )ln 2 0o )(n o 1
jx"e_x [——x"e""] + Jx”_ e Mdx
t

n! (n-1)!

= M et rf (At)] z (At)]

| il il
n: ]0] ]0]

This proves eq. (1.60) and, consequently, eq. (1.58) is valid for all n > 1. O

1.6.6 Chi-squared distribution

Another important class of gamma distributions is that of y-distributions. These prob-
ability measures play a crucial role in Mathematical Statistics (cf. Chapter 8).

Definition 1.6.27. Forn > 1, let
Xo =Tonp2 -
This probability measure is called the y?-distribution with n degrees of freedom.
Remark 1.6.28. Atthe moment, the integer n > 1in Definition 1.6.27 is only a parameter.

The term “degree of freedom” will become clear when we apply the y*-distribution to
statistical problems.
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Remark 1.6.29. The density p of a )(,Zl-distribution is given by (compare Figure 1.16)

0 {o ifx <0,
pX) = i lgxz
D ifx >0,

i.e,if 0 < a < b, then

b
2 1 n/2-1 .-x/2
,b]) = ——— dx .
X(@.8)) = S j e

Figure 1.16: Density functions of)(,f-distributions, n=13,5andn=7.

Summary: For each a, > 0, the probability measure I, g is given by

b
Jxﬁ'1e"‘/“dx, 0<a<bh<oo.

a

1
()

Fo([0,b]) =

Of special interest are the exponential distribution £ = T, ;, the Erlang distribution defined by £, , =T,
and the chi-squared distribution )(ﬁ =Ty HereA>0andn € N.

1.6.7 Beta distribution

Tightly connected with the gamma function is Euler’s beta function B. It maps (0, co)?
to R and is defined by
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1
B(x,y) := Js"_l(l —-sPlds, x,y>0. (1.61)
0

The link between the gamma and beta functions is the following important identity:

I'x) - I(y)
B(x,y) = ———=, , 0. 1.62
09 = Ty (1.62
For a proof of eq. (1.62), we refer to Problem 1.34.
Let us summarize further properties of the beta function. They are either easy to

prove or follow via eq. (1.62) by the properties of the gamma function.

Proposition 1.6.30.

1. The beta function is continuous on (0, co) x (0, co) with values in (0, co).
2. Forx,y >0, one has B(x,y) = B(y, x).

3. Ifx,y >0, then

X
B(x +1,y) = —— B(x,y) . 1.63
O +15) = - Blx.y) (1.63
For x > 0, one has B(x,1) = 1/x.
5. Ifm,n >1are integers, then
m-D!'(n-1)
B(mn) = ——————>
) = =D
6. It holds
(1) as
22

Definition 1.6.31. Leta, B > 0. The probability measure 5, ; defined by

b
Ix"*‘m —xf'dx, 0O<a<bs<i,

a

1

Bqp(la,b]) := 5@

is called the beta distribution with parameters a and S.

That is, the density function g, g of B, p is given by

Lyl -xp1 ifo<x<1,

q ’ (X) = B((I,ﬂ)
o {0 otherwise.

Compare Figure 1.17 for the densities of beta distributions with certain pairs of parame-
ters a, B > 0. Note that the densities are bounded provided that @, f > 1 and unbounded
whenever one of the parameters is less than 1.
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s\
2.0 \
sl O

o

i \
v ~\

0.2 0.4 0.6 0.8 1.0

Figure 1.17: Density functions of the beta distribution with parameters (0.5, 1.5), (1.5, 2.5), (2.5, 2), (1.5, 2),
(2,1.5), and (2.5,2.5).

Remark 1.6.32. Itis easy to see that q, g is a density function. Of course, it is nonnegative
and, moreover, we have

1

J Qap0)dx = —— Jxa_l(l—x)ﬂ_ldxz B@p) _,

Ba,p)

B(a, B)

0

Furthermore, since qa)ﬁ(x) = 0if x ¢ [0,1], the probability measure Byg is concentrated
on [0, 1], that is, Ba)ﬁ([o,l]) =1 or, equivalently, Ba)ﬁ(IR\ [0,1]) = 0.

Example 1.6.33. Choose independently n numbers X;,..., X, in [0,1] according to the
uniform distribution. Ordering these numbers by their size, we get x; < --- < x;. In
Example 3.7.11, we will show that the kth largest number x; is By ,_y,;-distributed. In
other words, if 0 < a < b <1, then

b
n! k- n-k
:—(k—l)!(n—k)'JX 11— )" dx .

‘a

P{a < x; < b} = By p_rs1([a, b])

Among the beta distributions B, g, the one with a = g = % is of special interest. It
plays an important role in the investigation of the symmetric random walk as well as of
the Brownian motion (see Proposition 5.5.19).

Proposition 1.6.34. The density q of the beta distribution B, , 1, is given by

1 1 .
qx) = {7 VXG0 Fo<x<l, (1.65)
0 otherwise.

Furthermore, if 0 < a < b <1, then it follows that

Byjpaa(la,b]) = %[arcsin( Vb) - arcsin(va)] . (1.66)
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Proof. Using eq. (1.64), representation (1.65) of the density easily follows from

1 19 19 1 1
X)= ————x2 " (1-x)2 " == ——, 0<x«<l1.
1= pa,172) T VXA X)
Assertion (1.66) is a consequence of
Eiarcsin(\/)_():E ! ! ! ! 0<x<1,
7 odx

y ,/1_(\/})2 ‘ﬁ:?r \/x(l—x)’

in view of the fundamental theorem of Calculus. See Figure 1.18 for the graph of the
density q. O

0.2 0.4 0.6 0.8 1.0

Figure 1.18: The density of the arcsine distribution.

Definition 1.6.35. The probability measure By, is called the arcsine distribution. Its density is given
by eq. (1.65), and for any 0 < a < 1t follows that

Biaa2([0,0]) = % arcsin(Va) . (1.67)

1.6.8 Cauchy distribution

We start with the following statement.
Proposition 1.6.36. The function p defined by

1
1+x%°

xXeR, (1.68)

NI

p(x) =

is a probability density.



1.7 Distribution function = 69

Proof. Of course, p(x) > 0 for x € R. Let us now investigate f; p(x) dx. Because of
lim,_,, arctan(b) = /2 and lim,,_,_, arctan(a) = —m/2, it follows that

0 b
j px)dx = 1 lim lim J ! dx = 71_[ alim lim [arctanx]g =1.
(0]

JT a>-©booco ) 1+ X2 —=00 h—co

Thus, as asserted, p is a probability density. O

Definition 1.6.37. The probability measure P with density p from Eq. (1.68) is called the Cauchy distri-
bution. It is characterized by

b

P([a,b]) = % I ; ! > dx = % [arctan(b) — arctan(a)], —co<a<b<oco.
+X
a

S

D
W

o o
P
S B
/

)

~

=3

s &
]

HN

i
D
G

— I
-6 -4 -2 2 4 6

Figure 1.19: The density function of the Cauchy distribution.

Remark 1.6.38. Comparing the density function of the Cauchy distribution in Figure 1.19
with that of the standard normal distribution in Figure 1.1, at a first glance both func-
tions look very similar. But, in fact they differ significantly. While the density of the stan-
dard normal distribution tends to 0 exponentially as x — oo, the convergence of the
density of the Cauchy distribution is only of quadratic order. That is, events lying far
away from zero possess an essentially greater probability for the Cauchy distribution as
they do in the case of the normal. This property of the Cauchy distribution is sometimes
expressed by saying that it is a distribution possessing “heavy tails.”

1.7 Distribution function

In this section we always assume that the sample space is R, even if the random exper-
iment has only finitely or countably infinitely many different outcomes. For example,
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rolling a die once is modeled by (R, P(R), P), where P({k}) = 1/6, k = 1,...,6, and
P({x}) = 0 whenever x ¢ {1,...,6}.

Thus, let P be a probability measure either defined on B(RR) (continuous case) or on
P(R) (discrete case).

Definition 1.7.1. The function F : R — [0, 1] defined by
F(t) = P((-0c0,t]), tE€R, (1.69)
is called the (cumulative) distribution function of P.
Remark 1.7.2. To shorten the notation, we will mostly call F in (1.69) the “distribution

function” instead of, as is often done in the literature, the “cumulative distribution func-
tion,” abbreviated CDE.

Remark 1.7.3. If P is discrete, that is, P(D) = 1 for some D = {Xy, Xy, ...}, then its distri-
bution function can be evaluated by

F(t)= Y B(ix}) = ) py>

X<t X<t
where p; = P({x;}), while for a continuous IP with probability density p,

t
F(t) = J p(x) dx.

—00
Example 1.7.4. Let PP be the uniform distribution on {1,...., 6}. Then
ift <1,

ifk<t<k+1,kefl,...,5},
ift>6.

F(t) =

= oo ©

(See Figure 1.20.)

Example 1.7.5. The distribution function of the binomial distribution B, , is given by

Fo= Y (pra-prt, ost<o,
0<k<t

and F(t) = 0if t < 0. (See Figure 1.21.)

Example 1.7.6. The distribution function of the exponential distribution E; is (see Fig-
ure 1.22 for an example)

F(t) = 0 ift <0,
1-e™ ift>0.
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Figure 1.20: Distribution function of the uniform distribution on {1,..., 6}.
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Figure 1.21: Distribution function of the binomial distribution B;s g 4.
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Figure 1.22: Distribution function of £ 5.

n
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Example 1.7.7. How does the distribution function F of the Erlang distribution E, , look
like? In view of Proposition 1.6.26, it follows that F(t) = 0if t < 0 and

N M e_M

n-1
F(t)=1—z 7 , 0<t<oo.
j=0

In the case n = 1, we rediscover the function stated in Example 1.7.6. Compare Figure 1.23
for certain distribution functions of the Erlang distribution.

0.8

0.6+

0.2

- P S S A S S S S SO SO S S R |

1 2 3 4 5 6 7

Figure 1.23: Distribution functions of E; ,, where from the left to the right n = 2, 4,6, 8.

Example 1.7.8. The distribution function of the standard normal distribution is de-
noted' by @, therefore also called Gaussian ®-function (see Figure 1.24),

t
1 —X%/2
cpt:—je“dx, feR. (1.70)
(1) o

Remark 1.7.9. The Gaussian ®-function is tightly related to the Gaussian error func-
tion defined by (compare Figure 1.25)

erf(t) =

Observe that erf(-t) = —erf(t).

14 Sometimes also denoted as “norm(-).”
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Figure 1.24: Distribution function of the standard normal distribution (®-function).

0.5

-2 -1 H 1 2

-0l
Figure 1.25: The Gaussian error function t — erf(t).
The link between the ® and the error function is
1
o(t) = E[l + erf<%)] and erf(t) = 20(vVZt) -1, teR. (A4.71)

Example 1.7.10. Let P be the uniform distribution on the interval [a, ]. Then its distri-
bution function (cf. Figure 1.26) is

0 ift<a,
F(t) = Ig%‘; ifa<t<p,
1 ift>p
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In particular, for the uniform distribution on [0, 1], one obtains

0 ift<0,
F(t)=4t ifo<t<1,
1 ift>1

il

-1 0 1 2

Figure 1.26: Distribution function of the uniform distribution on [-1, 2].

Example 1.7.11. Inview of eq. (1.67), the distribution function of the arcsine distribution
(see Definition 1.6.35) is given by (compare Figure 1.27)

0 if —co<t<O,
F(t) = %arcsin(\/f) ifo<t<i,
1 ifl<t<oo.
101
08
06
04
02
02 04 06 08 10

Figure 1.27: The distribution function of the arcsine distribution.
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Example 1.7.12. The distribution function of the Cauchy distribution is (compare Fig-
ure 1.28)

F(t):%flsz :arcinx+%, teR.
%0
1'Of
0.8:
0.67
0, i
0.2;
: ﬁ ;

Figure 1.28: The distribution function of the Cauchy distribution.

The next proposition lists the main properties of distribution functions.

Proposition 1.7.13. Let F be the distribution function of a probability measure P on R,
discrete or continuous. Then F possesses the following properties:

(1) Function F is nondecreasing.

(2) It holds

F(-c0) = lim F(t)=0 and F(co)= lim F(t) =1.
t—-00 t—oo
(3) Function F is continuous from the right.

Proof. Suppose s < t. This implies (—co0,s] ¢ (-0, t], hence, since P is monotone, we
obtain

F(s) = P((~c0,5]) < P((-00,1]) = F(1).

Thus F is nondecreasing.
Take any sequence (t,),~1 that decreases monotonically to —co. Set 4, := (-0, t,].
Then A; 2 4, 2 ---, as well as ()2, A, = 0. Since P is continuous from above, it fol-
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lows that
JLIBOF(t") = nlggo PA,) =P@) =0.

This being true for any sequence (t,),>1 tending to —co implies F(-oo0) = 0.

The proof of F(co) = 1is very similar. In this case, let (t,),>; be a sequence which
increases monotonically to co. If as before A, := (00, t, ], this time we get A; €A, € ---
and [J,2; A, = R. By the continuity of P from below, now we obtain

lim F(t,) = lim P(4,) = P(R) = 1.

Again, since the t,s were arbitrary, F(co) = 1.

Thus it remains to prove that F is continuous from the right. To do this, we take
t € R and a decreasing sequence (t,),>1 tending to t. We have to show that if n — oo,
then F(t,) — F(t).

As before set A, := (-oo,t,]. Again A; 2 A, 2 ---, but now (2,4, = (-oo,t].
Another application of the continuity from above yields

F(t) = P((-co,1]) = lim P(4,) = lim F(t,).

This is valid for each ¢t € R, hence F is continuous from the right. O

Properties (1), (2), and (3) in Proposition 1.7.13 characterize distribution functions.
More precisely, the following result is true. Its proof is based on an extension theorem
in Measure Theory (cf. [Bau01]). Therefore, we can show here only its main ideas.

Proposition 1.7.14. Let F : R — R be an arbitrary function possessing the properties
stated in Proposition 1.7.13. Then there exists a unique probability measure P on B(RR)
such that

F(t) =P((-00,t]), teR.
Idea of the proof: If a < b, set
Py((a, b)) := F(b) - F(a).

In this way, we get a mapping P, defined on the collection of all half-open intervals
{(a,b] : a < b}. The key point is to verify that P, can be uniquely extended to a proba-
bility measure P on B(R). One way to do this is to introduce a so-called outer measure
P* defined on P(R) by

[e0)

]P*(B) = lnf{z IPO((a,-,bi]) :BcC G(ai, bl]} .
i=1

i=1
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Generally, this outer measure is not g-additive. Therefore, one restricts P* to B(R). If P
denotes this restriction, the most difficult part of the proofis to verify that P is g-additive.
After this has been done, by the construction, PP is the probability measure possessing
distribution function F.

The uniqueness of P follows by a general uniqueness theorem for probability mea-
sures (see Theorem 5.7 in [Sch17] for a proof) asserting the following:

Let IP; and IP, be two probability measures on (2,.4) and let £ ¢ A be a collection
of events closed under taking intersections and generating A. If P;(E) = P,(E) for all
E € £, then P; = P,. In our case € = {(—oo, t] : t € R} and A = B(R).

Conclusion. If the outcomes of a random experiment are real numbers, then this ex-
periment can also be described by a function F : R — R possessing the properties in
Proposition 1.7.13. Then F(t) is the probability to observe a result that is less than or
equalto t.

Let us state further properties of distribution functions.

Proposition 1.7.15. If F is the distribution function of a probability measure P, then for
alla < b,

F(b) - F(a) = P((a,b]).
Proof. Observing that (—co, a] € (-0, b], this is an immediate consequence of

F(b) - F(a) = P((~00, b]) - P((~c0,a]) = P((-c0,b] \ (~00,a]) = P((a,b]). O

Since F is nondecreasing and bounded, for each ¢ € R the left-hand limit

F(t-0):= lsizrtlF(s)
s<t
exists and, moreover, F(t — 0) < F(t). Furthermore, by the right continuity of F, one has
F(t - 0) = F(t) if and only if F is continuous at the point ¢.
If this is not so, then h = F(t) — F(t — 0) > 0, that is, F possesses at t € R a jump of
height h > 0. This height is directly connected with the value of P({t}).

Proposition 1.7.16. The distribution function F of a probability measure P has a jump of
height h > 0 at t € R if and only if P({t}) = h.

Proof. Let (t,),>1 be a sequence of real numbers increasing monotonically to ¢. Then,
using that IP is continuous from above, it follows that

h=F({t)-F(t-0) = nlll’glo[F(t) -F(t)] = nanc}o P((t,. t]) = P({t}).

Observe that ﬂ‘,ﬁl(tn, t] = {t}. This proves the assertion. See Figure 1.29 for a visualiza-
tion of the result. O
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[aiy

(t) =P{=o0;

=

to

Figure 1.29: The height h of the jump of F at t, coincides with the probability P({t}).

Corollary 1.7.17. The function F is continuous at t € R if and only if P({t}) = 0.

Proof. Since F is nondecreasing and continuous from the right, it is continuous at some
point ¢ € R if and only if F(t — 0) = F(t). But, in view of Proposition 1.7.16, this happens
if and only if P({t}) = 0. O

Example 1.7.18. Suppose the function F is defined by

0 ift < -1,

1/3 if-1<t<0,
F(t)=141/2 ifo<t<1,
2/3 ifl<t<2,
(1 ift>2.

Then F fulfills the assumptions of Proposition 1.7.14. Hence there is a probability mea-
sure P with F(t) = P((-oco, t]). What does PP look like?

Answer: The function F has jumps at -1, 0, 1, and 2 with heights 1/3,1/6,1/6, and 1/3,
respectively. Therefore,

P({-1})=1/3, P{0})=1/6, P({1})=1/6, and P({2})=1/3,

hence P is the discrete probability measure concentrated on D = {-1, 0,1, 2} with P({t}),
t € D, given above.

Suppose now that PP is continuous with density function p. Recall that then

t
F(t) = P((~o0, £]) = J p(dx, teR. 172)

In particular, since F is a function of the upper bound in an integral, it is continu-
ous.



1.7 Distribution function == 79

Next we investigate the question whether we may evaluate the density p knowing
the distribution function F.

Proposition 1.7.19. Suppose p is continuous at some t € R. Then F is differentiable at t
with

N S
F'(0) = ZF(O) = p(o).

Proof. This follows immediately by an application of the fundamental theorem of cal-
culus to representation (1.72) of F. O

Remark 1.7.20. Let F be the distribution function of a probability measure P. If F is
continuous, then P({t}) = 0 for all t € RR. But does this also imply that P is continuous,
that is, that P has a density? The answer is negative. There exist probability measures P
on (R, B(R)) with a continuous distribution function but without possessing a density.
Such probability measures are called singularly continuous.

To get an impression of how such probability measures look, let us shortly sketch
the construction of an example. Let C be the Cantor set introduced in Example 1.6.6. The
basicidea is to transfer the uniform distribution on [0, 1] to a probability measure P with
P(C) = 1. The transformation is done by the function f defined as follows. If x € [0,1] is
represented as x = Y oy ’;—ﬁ with x; € {0,1}, then f(x) = Y2, 2% Note that f maps [0,1]
into C. If P denotes the uniform distribution on [0, 1], define the probability measure P
by

P(B) = P{x € [0,1] : f(x) € B}.

Then for all ¢ € R, we have P({t}) = 0, but since P(C) = 1, P cannot have a density.
Indeed, such a density should vanish outside C. But, as we saw, the probability of C with
respect to the uniform distribution is zero. Hence the only possible density would be
p(t) = 0, ¢t € R. This contradiction shows that P is not continuous in our sense.

Assuming a little bit more than the continuity of F, the corresponding probability
measure possesses a density (cf. [Coh13]).

Proposition 1.7.21. Let F be the distribution function of a probability measure P. If F is
continuous and continuously differentiable with the exception of at most finitely many
points, then P is continuous. That is, there is a density function p such that

t
F(t) = P((-o0,t]) = J px)dx, teR.

Remark 1.7.22. Proposition 1.7.19 implies p(t) = F'(t) for those ¢t where F'(t) exists. If F
is not differentiable at ¢, define p(t) arbitrarily, for example, p(t) = 0.
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Example 1.7.23. For some q, § > 0, define F by

o) = 0 ift<0,
1-e’ ift>o0.

It is easy to see that this function satisfies the conditions of Proposition 1.7.13. Moreover,
it is continuous and continuously differentiable on R \ {0}. By Proposition 1.7.21, the
corresponding probability measure PP is continuous and, since

Fl(t) = ift <0,
aptbte e iftso,

a suitable density function is p(t) = F'(t), t # 0, and p(0) = 0.

Example 1.7.24. For some a > 0, let

F () = 0 ift<1i,
‘ 1-t% ift>1.

Then F, is continuous, nondecreasing with F,(-oco) = 0 and F,(co) = 1. Hence, it is a
distribution function of a probability measure IP,. Moreover, at each point ¢t # 1, the
function F, is continuously differentiable with derivative

ift<1,

0
(t) =
Pa {at‘“‘l ift>1.

So we see that p, is a density of P, where we may define, for example, p,(1) = 0.
How does one get P,([a, b]) for some 1 < a < b < co? There is no need to evaluate

the integral j{f P.(x)dx. The much easier way is to use
1

P,([a,b]) = Fy(b) - F4(a) = % i

Summary: Let IP be a probability measure (discrete or continuous) on the Borel sets of R. Then its (cumula-
tive) distribution function F is defined by

Fit)y=P{xeR:x<t}, teR.

Distribution functions are characterized by the three properties stated in Proposition 1.7.13. Two probability
measures coincide if and only if they possess the same distribution function.
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1.8 Multivariate continuous distributions

1.8.1 Multivariate density functions

In this section we suppose that @ = R". A subset Q ¢ R" is called a (closed, n-dimensional)
box® provided that for some real numbers a; < b, 1<i<n,

Q={0q....xp) eR" :q;<x;<b;, 1<i<n}. (1.73)

Definition 1.8.1. A Riemann integrable function p : R” — R is said to be an n-dimensional probability
density function, or simply n-dimensional density function, if p(x) > 0 for x € R” and, furthermore,

Jp(x)dx:= T Tp(x1,...,x,,)dxn---dx1 =1.

R" -00  -00

Suppose a box Q is represented with certain a; < b; as in eq. (1.73). Then we set

P(Q) = Jp(x)dx = T--Tp(xl,...,xn) dx,, - - - dx;. 1.74)
0 4 a

In analogy to Definition 1.1.20, we introduce now the Borel o-field B(R").

Definition 1.8.2. LetC be the collection of all boxes in R”. Then o(C) := B(R") denotes the Borel g-field.
Recall that the existence of a(C) was proven in Proposition 1.1.16. In other words, B(R") is the smallest
ag-field containing all (closed) boxes in R”. Sets in B(R") are called (n-dimensional) Borel sets.

Remark 1.8.3. Asin the univariate case, there exist several other collections of subsets
in R" generating B(R™). For example, one may choose the collection of open boxes or
the sets which may be written as

(-OO,tﬂX”‘X(-OO,tn], tl,...,tHG]R.
With the previous notations, the following multivariate extension theorem is valid.
Compare with Proposition 1.5.6 for the univariate case.
Proposition 1.8.4. Let P be defined on boxes by eq. (1.74). Then P admits a unique exten-

sion to a probability measure P on B(R").

Definition 1.8.5. A probability measure P on B(R") is called continuous provided that there exists a
probability density p : R” — R such that P(Q) = jo p(x) dx for all boxes @ € R". The function p is said to
be the density function, or simply density, of IP.

15 Also called “hyperrectangle.”
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Remark 1.8.6. It is easy to see that the validity of eq. (1.74) for all boxes is equivalent to
the following. If ; e Rand B, _; = (-00,1;] x -+ X (-00, t,], then

4 tn

P(By, .t) = j px)dx = J J P(Xq, .., X)) Ay - - dxy . (1.75)

Bt1 —00 -0

Thus P is continuous if and only if eq. (1.75) is satisfied for all ¢; € R.
Let us first give an example of a multivariate probability density function.

Example 1.8.7. Consider p : R® — R defined by

48x1 X3 X3 f0<xy<xXp<x3<1,
P(Xq, Xp, X3) = ‘[

otherwise.

Of course, p(x) = 0 for x € RS Moreover,

J p(X) dX = 48 X1X2X3 XmdXZdX3

R3

S
Ot X Ot x
O e,

3 15
3 X X
2dX2dX3:4SJ§3dX3:1,
0

=

=48 ——=
2

O

hence it is a density function on R®. For example, if P is the generated probability mea-
sure, then

1/2 X3 X, 1 1
1po,1z3=48”j g dod = = = =
(10,1/21°) iy X1X2X3 OX1 X5 0X3 % ~ 64

There exists a quite general approach to construct multivariate density functions.
Proposition 1.8.8. Let py,...,p, be (univariate) density functions. Define a function
p:R" - Rby

pX) =pi(X) - Pp(Xy)s X =(Xp...,X,) € R, (1.76)

Then p is a multivariate distribution density.

Proof. Of course, we have p(x) > 0 for all x € R". Moreover, an application of Proposi-
tion A.5.5 (note that all p; are nonnegative) implies that

| pooax - T T[m(xl)mpn(xn)] oty -+ dxg

R —
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= ( Tpl(xl)d’Q)'”( Tpn(xn)dxn> =1.--1=1.

—00 —00
Thus, p is a density as asserted. O

Remark 1.8.9. Observe that not all multivariate densities p may be represented as a
product of univariate ones as stated in eq. (1.76). As can be seen easily, the function p
in Example 1.8.7 may not be written as a product of three univariate densities. We will
investigate this and related problems more thoroughly in Section 1.9.3.

1.8.2 Multivariate uniform distribution

Our next aim is the introduction and investigation of a special multivariate distribution,
the uniform distribution on a set K in R". To do so, we remember how we defined the
uniform distribution on an interval I in R. Its density p is given by

1 .
D) = i ifsel,
0 ifs¢l

Here |I| denotes the length of the interval I. Let now K ¢ R" be bounded. In order to in-
troduce a similar density for the uniform distribution on K, the length of the underlying
set has to be replaced by the n-dimensional volume, which we will denote by vol,(K).
But how is this volume defined? To answer this question, let us first investigate a box
Q represented as in eq. (1.73). It is immediately clear that its n-dimensional volume is
evaluated by

n
vol,(Q) = [ [ i - a).
i=1
If n = 1, then Q is an interval and its one-dimensional volume is nothing else as its
length. For n = 2 the box Q is the rectangle [ay, b;] % [ay, b,] and
voly(Q) = (by - a))(b; — @)

coincides with the area of Q. If n = 3, then vol3(Q) is the ordinary volume of bodies in R,
For arbitrary K ¢ R", the definition of its volume vol,(K) is more involved. Let us
shortly sketch one way how this can be done. Setting

vol,(K) := inf{Zvoln(Qj) 1K ¢ UQj, Q; box} , .77
j=1 Jj=1

at least for Borel sets K ¢ R", a suitable volume is defined. Compare Figure 1.30 to get
an impression how the two-dimensional volume of an ellipse is evaluated.
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N

Figure 1.30: An ellipse K covered by boxes, here squares. The smaller the covering boxes, the better the
approximation of vol, (K).

In the case of “ordinary” sets such as balls, ellipsoids, or similar bodies, this ap-
proach leads to the known values. The reason is the basic formula

vol, (K) = jj 1dx, - dx, (178)

valid for Borel sets K ¢ R". For example, if K is the square in R? (see Figure 1.31) with
corner points (1, 0), (0,1), (-1, 0), and (0, -1), then

0 1+xg 1 1-x
Volz(K) = jj ldX2dX1 = J. j d.deXl + J J dX2dX1
K -1-x-1 0 x-1
0 1
-1 0
X2 0 X2 !
=2[—1+x1] +2[x1——1] =2.
2 4 2 o

Figure 1.31: The square K € R? with corner points (1,0), (0,1), (-1,0), and (0, -1).
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Remark 1.8.10. The n-dimensional volume shares several important properties:
1. Itisinvariant under shifts. That is, if

K+z={x+z:x€eK}
denotes the shift of K by z € R", then it follows that
vol,(K +z) = vol(K), zeR".

2. Unitary transformations of a set do not change its volume. More precisely, if
U : R" — R"is a unitary transformation (cf. (A.24) for the definition), then

vol,(U(K)) = vol,(K) .

3. The n-dimensional volume is homogeneous of power n under dilation. Thus, given
a > 0,letaK = {ax : x € K} be the stretched (if @ > 1) or shrunk (if a < 1) set K.
Then it follows that

vol,(aK) = a" vol,(K).

Example 1.8.11. Let K, (r) be the n-dimensional ball of radius r > 0, that is,

Ky(r) = {x e R": x| <7} = {0, X)) € R :XF + -+ X2 <17}

If
V,(r) == vol, (K1), r>0,

denotes the n-dimensional volume of this ball, property (3) in Remark 1.8.10 implies
V,(r) =V, -r",where V, = V,(1). But for K,, = K,,(1), eq. (1.78) gives

Vn=J’"'J1an"'dX1=jl [ JJ 1an"'dXz]dX1

n 1 {4x2<l-x2)
1 1
= J Vg (Y1-x3) dxg = J Vo (V1-s?)ds.
| |

Hence, due to V,,_;(r) = " V,_;(1) = "1 V,_,, we obtain

1 1
V=V, - J 1-)""as=2v, ;- J 1-)"""gs.
-1 0
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The change of the variables s = y*2, thus ds = % y V2 dy, yields

1

_ _ 1 n+1
VH = Vn—l . Jy 1/2(1 _)’)(n 1)/2 dy = Vn—lB(E > T)
0
r(et
=TV, —2" .
VI Vi (% +1)

Hereby we used eq. (1.62), as well as T'(1/2) = +/7. Starting with V; = 2, a recursive
application of the last formula finally leads to

n/2 n/2

T 2m
vol (K, (r)) = V.(r) = r = m, r>0.
n(Kn(r)) = V() Uy nr()

If we distinguish between even and odd dimensions, properties of the I' function
imply

k 2k+1 ].[k

T
Vo (r) = o X and Vo () 2k

S ek+on

where 2k + D' =1-3-5---(2k — 1)(2k + 1). The first volumes are (see Figure 1.32)

47 7 8 1% Vs 16 77 t
V,=2, Vo=m, Vo=—, V=—, Vi=—or, Vi=—, Vi=——rr Vo=—.
1 2= Vs= 3 am o UsTapn YT 1T g5 V8T o
i . .
5+ °
: °
I o
41 .
3t °
: [ ]
2} ° °
] .
1F °
[ [ ]
‘2‘“4“‘6“‘8“‘10“‘12“‘14“

Figure 1.32: The volume of the unit ball as a function of the dimension. It attains its maximal value in di-
mension 5.
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After the question about the volume is settled, we are now in the position to in-
troduce the uniform distribution on bounded Borel sets in R". Thus let K ¢ R" be a
bounded Borel set in R" with volume vol, (K) > 0. Define p : R" — R by

1 .
—_ ifxeKk,

p(x) := {V"W) _ (1.79)
0 ifx ¢ K.

Proposition 1.8.12. The function p defined by eq. (1.79) is an (n-dimensional) probability
density function.

Proof. By virtue of eq. (1.78), one has

JP(X)dX=i{[ Vol:(K) dx = VOI:(K) JKJ 1dx,---dx

]R'l
_ vol,(K) 1
~ vol,(K)
Since p(x) > 0if x € R", as asserted, p is a probability density function. O

Definition 1.8.13. The probability measure P on (R”, B(R")) with density p given by eq. (1.79) is said to
be the (multivariate) uniform distribution on K.

Let P be the uniform distribution on K. How do we get IP(B) for a Borel set B? Let us first
assume B ¢ K. Then

J .Jlande _ vol,(B)

1
BB = Jp(x) dx = vol, (K) 1 vol,(K)

B B
If B ¢ R" is arbitrary, that is, B is not necessarily a subset of K, from P(B) = P(B N K) it
follows that

_ vol,(BNK)
P(B) = vol,(K)

If n = 1and K is an interval, the latter formula coincides with eq. (1.46).

Example 1.8.14. Two friends agree to meet in a restaurant between 1 and 2 pm. Both
friends go to the restaurant randomly during this hour. After they arrive, they wait 20
minutes each. What is the probability that they meet each other?

Answer: Let t; be the moment when the first of the two friends enters the restaurant,
while t, is the arrival time of the second one. They arrive independently of each other,
thus we may assume that the point t := (t;,¢,) is uniformly distributed in the square
Q := [1,2]% Observing that 20 minutes are a third of an hour, they meet each other if and
onlyifl1<t,t, <2and|t; - t,| <1/3.
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Setting B = {(t;,t,) € R? [t; — t,| < 1/3}, it is easy to see that vol,(B n Q) = 5/9
(see Figure 1.33). Hence, if P is the uniform distribution on Q, because of vol,(Q) = 1, it
follows that IP(B) = 5/9. Therefore, the probability that the friends meet is 5/9.

t2

2:00
1:40
B .’
1:20
f f a1

Figure 1.33: The two friends meet if (¢;,t,) belongs to the gray region.

Example 1.8.15. Place n particles independently of each other into a ball Kj of radius
R > 0 according to the uniform distribution. Let K, be a smaller ball of radius r > 0
contained in Kp. Find the probability that exactly k of the n particles are inside K, for
somek =0,...,n.

Answer: In the first step, we determine the probability that a single particle is in K.
Since we assumed that the particles are uniformly distributed in Ky, this probability
equals

_voly(K,) (43t ( r )3
" voly(Kp)  (4/3)mR3 \R

For each of the n particles, this p is the “success” probability to be inside K,., hence the
number of particles in K, is Bn,p-distributed withp = (r/R)B. Thus,

/N R - 3R
P{k particles in K,.} = Bn,p({k}) = (k><1_2> <T) , k=0,...,n.
If the number n of particles is big and r is much smaller than R, then the number of
3
particles in K, is approximately Pois, distributed, whereA =np = %. In other words,

3Kk
nr ) o IR

P{k particlesin K,} = %( FE

Example 1.8.16 (Buffon’s needle test). Take a needle of length a < 1 and throw it ran-
domly on a lined sheet of paper. Say the distance between two lines on the paper is 1.
Find the probability that the needle cuts a line.
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Answer: Whatis random in this experiment? Choose the two lines such that between
them the midpoint of the needle lies. Let x € [0, 1] be the distance of the midpoint of the
needle to the lower line. Furthermore, denote by 6 € [-7/2, /2] the angle of the needle
to a line perpendicular to the lines on the paper. For example, if 8 = 0, then the needle
is perpendicular to the lines on the paper while for 6 = +7/2 it lies parallel.

Hence, to throw a needle randomly is equivalent to choosing a point (6, x) uniformly
distributed in K = [-m/2,7/2] x [0,1].

The needle cuts the lower line (compare Figure 1.34) if and only if % cos @ > x, and
it cuts the upper line provided that % cos 6 > 1—x.If the set A is as in Figure 1.35 defined

by

A= {(O,X) € [-m/2,m/2] x [0,1] : x < gcose or 1-x< %cose},

then we get

voly(A)  voly(A)

P{the needle cuts a line} = P(A) = voL(K) .«

|

/ g cosf

Figure 1.34: A needle of length a < 1 hits the lower line. Here 0 < x < 1 denotes the distance of its
midpoint to the lower line and 8 is its angle to the perpendicular line.

But it follows that
/2
vol,(A) =2 J g cos0do = 2a,
—1/2
hence

PA) = 22
T
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-1.5 -1.0 -0.5 0.5 1.0 1.5

Figure 1.35: The set A where the needle cuts the lower or upper line, respectively. Since a < 1, the lower
and upper parts of A do not overlap.

Remark 1.8.17. Suppose we throw the same needle n times. Let r,, be the relative fre-
quency of the occurrence of A, that s,

_ Number of throws where the needle cuts a line

n n

As mentioned in Section 1.1.3, if n — oo, then r,, approaches P(4) = 2;“ Thus for large n,
we haver, = 2;‘1 or, equivalently, 77 = f—a . Consequently, throwing the needle sufficiently

often, 22 should be close™® to 7.

Summary: The uniform distribution IP on a bounded Borel set K € R” with vol,(K) > 0 is defined by

_vol,(BNK)

PO == w0 BeB(R").

1.9 Products of probability spaces”

1.9.1 Product o-fields and measures

Suppose we execute n (maybe different) random experiments so that the outcomes do
not depend on each other. In order to describe these n experiments, two different ap-
proaches are possible. Firstly, we record each single result separately, that is, we have n

16 For example, in 1901 Mr. Lazzerini threw a needle of length a = 5/6 exactly 3408 times. In 1808 of the
cases, the needle cut a line, leading to 3.1416 as an approximate value of 7.
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(maybe different) probability spaces (2, Ay, Py) to (2, Ay, P,) modeling the outcomes
of the first up to the nth experiment.

A second possible approach is that we combine the n experiments into a single one.
Thus, instead of n different outcomes w; to w,, we observe now a single vector w =
(w15 . .., wy). The sample space in this approach is given by Q = Q x--- x Q.

Example 1.9.1. When rolling a die n times, the outcome is a series of n numbers w, to
w,, each in {1,...,6}. Now, imagine we have a die with 6" equally likely faces. On these
faces, all possible sequences of length n with entries from {1, ..., 6} are written. Roll this
die once. The first experiment may be described by n probability spaces, one for each
roll. The second experiment involves only one probability space. Nevertheless, both ex-
periments lead to the same result, a random sequence of numbers from 1 to 6.

It is intuitively clear that both approaches to this experiment (rolling a die n
times) are equivalent; they differ only by the point of view. But how to come from
one model to the other? One direction is immediately clear. If the random result is a
vector w = (wy,...,w,), then its coordinates may be taken as the results of the single
experiments.”” But how about the other direction? That is, we are given n probability
spaces (2, Ay, Py), ..., (L, A,, P,,) and have to construct a model for the joint execution
of these experiments.

Of course, the “new” sample space is

Q=0 x--xQ,, (1.80)
but what are .A and P? We start with the construction of the product o-field.

Definition 1.9.2. Let A; be o-fields on Q;, 1 <j < n.SetQ = Q; x --- x Q. Then
A=0{Ay x - x A A € A}
is called the product o-field of A; to A, denoted by A = 4, ®---® A,,.
Remark 1.9.3. In other words, A is the smallest o-field containing measurable rectangle
sets, that is, sets of the form A, x --- x A, with 4; € A, 1<j<n

It is easy to see that P(Q) ® - - - ® P(L,,) = P(Q). A more complicated example is as
follows.

Proposition 1.9.4. Suppose Q; = --- = Q, = R, hence Q = R". Then the o-field B(R") of
Borel sets in R" is the n-fold product of the a-fields B(R) of Borel sets in R, that is,

17 Of course, one still has to verify that the distribution of the coordinates is the same as in the single
experiments. But before we can do this, we need a probability measure describing the distribution of
the vectors (cf. Proposition 1.9.10).
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B(R") = BR)®---® B(R) .

n times

Proof. We only give a sketch of the proof. Let Q be a box as in eq. (1.73). Then we have
Q = 4; x---x A,, where the A;s are intervals, hence in B(R). By the construction of the
product o-field, it follows that Q € B(R) ® --- ® B(R). But B(R") is the smallest o-field
containing all boxes, which lets us conclude

B(R") < BR)®---® B(R).

The inclusion in the other direction may be proved as follows: fix a, < b, to a, < b,, and
let

C=1{C € B(R) : C x [ag, by] x -+ x [ay, b,] € B(R")}.
It is not difficult to prove that C; is a o-field. If C = [ay, b;], then
C x [ay, by] X --- x [ay, by]

is a box, thus in B(R"). Consequently, C; contains closed intervals, hence, since B(R)
is the smallest o-field with this property, it follows C; = B(R). This tells us that for all
By € B(R) and all aj < bj,

By x [ag, by] x -+ x [a,, b,] € B(R").
In a next step, fix B; € B(R) and a; < b; up to a, < b,, and set
Cy = {C € B(R) : B; x C x [ag,b3] x --- x [ay, b,] € B(R")}.
By the same arguments as before, but now using the first step, we get C, = B(R), that is,
By x B, x [ag, bs] x -+ x [ay, by] € B(R™)

for all B, B, € B(R) and a; < b;.
Iterating further, we finally obtain that for all B; € B(R) it follows that

By x---x B, € B(R").

Since B(R) ® -+ ® B(R) = d{B; x -+ x B, : B; € B(R)} is the smallest o-field containing
sets B x - - - x By, this implies

B(R)®---® BR) c B(R")

and completes the proof. O
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Let us now turn to the probability measure IP on (2, .A) that describes the combined
experiment.

Definition 1.9.5. Let (Qq, .4, P;) to (Q,, A,, P,) be n probability spaces. Define Q by eq. (1.80) and en-
dow it with the product o-field A = 4;®---® A,. A probability measure IP on (Q, A) is called the product
measure of P;,..., P, if

P(A; x -+ xAy) = Py(A)) -+ P,(A;) forall 4 € A;. (1.81)
WewriteP=P;®---®P,andif P; =--- = P, = P, set

Py =Py® - ®P .
= =y
n times

It is not clear at all whether product measures exist and, if this is so, whether condition
(1.81) determines them uniquely. The next result shows that the answer to both ques-
tions is affirmative. Unfortunately, the proof is too complicated to be presented here.
The idea is quite similar to that used in the introduction of volumes in eq. (1.77). The
boxes appearing there have to be replaced by rectangle sets A; x --- x A, with 4; € A;
and the volume of the boxes by P;(4,) to P,,(4,), respectively. We refer to [Dur19, Sec-
tion 1.7], [Kle20] or [Coh13], for a detailed proof for the existence (and uniqueness) of
product measures.

Proposition 1.9.6. Let (Qy, Ay, Py),..., (R, Ay, P,) be probability spaces. Define Q by
eq.(1.80) and let A be the product o-field of the A;s. Then there is a unique probability
measure P on (Q, A) satisfying

P(A; x -+ xAp) = P1(A)) - Pp(4,) forall A; e A;. (1.82)

Hence, the product measure P = P; ® --- ® P, always exists and is uniquely determined
by (1.82).

Remark 1.9.7. While the product measure of rectangle sets can be evaluated directly by
eq. (1.82), it is more complicated to determine the probability for arbitrary non-rectangle
sets. Compare Figures 1.36 and 1.37.

Example 1.9.8. Let Q; = Q, = {1,...,6} be endowed with the uniform distributions IP;
and P,. That is, P;({w}) = P,({w}) = % forallw=1,...,6. Then

nglxgz = {(wl,wz)lwl,wz € {1,,6}},

and we get

|A1l 1Az _ |Ag X Ayl
(P, ® P,)(A; x Ay) = Py(4;) - Py(4,) = Tl . TZ = %
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Qo

A2 A1 X A2 (]Pl 4 Pg)(Al X AQ) = ]P’l (Al) . ]P’2(A2)

| |
x 1 !
Figure 1.36: The product measure IP; ® IP, applied to rectangle sets in Q; x Q.

Qo

(P1®@P)(K) =7

Lo}

95

Figure 1.37: How to evaluate (IP; ® P, )(K) ? Cover it in an optimal way by unions of rectangles.

for all A; € Q; and 4, € Q,. So we see that

B
(P& P,)(B) = ! = p(B)
36
whenever B = A; x A, is a rectangle set and where P denotes the uniform distribution
onQ = {1,...,6}% Since P, ® P, is uniquely determined by its values at rectangle sets, it
follows that the product measure is nothing else as the uniform distribution on Q. For

example, this implies that

By & P((1,1), 22)... 6.6)) = o = 1.

Note that {(1,1),..., (6, 6)} is no rectangle set, hence in this case, formula (1.82) does not
apply.
Corollary 1.9.9. Let Py,...,IP, be probability measures on (R, B(R)). Then there is a
unique probability measure P on (R", B(R")) such that

P(By x -+ x B,) = Py(By)---Py(B,) forall Bj € B(R).

Proof. The proof is a direct consequence of Propositions 1.9.6 and 1.9.4. Indeed, take
P=P;®---®P, and observe that B(R") = B(R) ® - - - ® B(R). O
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Let us shortly come back to the question asked at the beginning of this section. Sup-
pose we observe a vector w = (w,, ..., w,). How are the coordinates distributed?

Proposition 1.9.10. Let (Q, A,P) be the product probability space of (2, A;,P;) to
(Qn, Ay, ). Ifj <nand A € A;, then

P{(wy, ..., wy) € Q: wj € A} = Pj(4).
Proof. Observe that
{(W o 0p) €Q:wj €A} = QX - X Qg X AX Qi XX Q,
thus eq. (1.81) implies (see Figure 1.38)

P{(wy, ..., w,) € Q: w; € A}
=P(Q) -+ Pj_1(Q_1) - Pj(4) - Pjq(Ryya) - Pp(Qy) = P;(4),

as asserted. O

Q2 (]P’l ®]P2)(A X Qz) = Pl(A)

Q
(P1 ® P2)(21 X B) =P2(B)

AXQ2

Figure 1.38: The product measure IP; ® IP, applied to the cylindrical shaped sets A x Q, and Q; x B.

How do we get product measures in concrete cases? We answer this question for
discrete and continuous probability measures separately.

1.9.2 Product measures: discrete case
Let Q; to Q, be either finite or countably infinite sets. Given probability measures PP;

defined on P(2)), 1 < j < n, the following result characterizes the product measure of
the Pjs.
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Proposition 1.9.11. Probability measure P is the product measure of P, ..., P, if and
only if

P({w}) = P,({w}) - P, ({wy}) forallw = (wy,...,w,) € Q. (1.83)

Proof. One direction is easy. Indeed, if P = P; ® --- ® P,,, given w = (w,, ..., w,) € Q set
A ={w}and 4; = {w;}. Then A = A; x --- x A,, hence

]P({w}) =PA) = ]Pl(Al) T ]Pn(An) = Pl({wl}) e ]Pn({wn})’

proving eq. (1.83).

To verify the other implication, let P be a probability measure on (R, P(Q)) satisfy-
ing (1.83). We have to show that IP fulfills eq. (1.81). Thus choose arbitrary A; ¢ Q; and set
A =A; x---xA,. By applying eq. (1.83), it follows that

PA) =Y P(w)= Y P({@y....wp)})

WEA (W) EA

Z Pl({wl})"']Pn({wn})

W{€Ay,...W, €Ay

Y Pi(fw)) Y Pp({wn}) = Pi(Ay) -+ Py(Ay).

w1 €A W, €A,

This being true for all 4; ¢ Q; shows that P = P;®---®P,,, and the proof is complete. [

Summary: In the discrete case, the product measure is characterized as follows. Given A € Q,

Bre--®P)A) = Y Py({w})Py(lwy}).

(W15l ) EA

Example 1.9.12. Suppose two players, say U and V, each simultaneously toss a biased
coin. On both coins, “0” (failure) appears with probability 1 — p and “1” (success) with
probability p. Whoever gets the first “1” wins.

A pair (k,1) € N? occurs if player U has his first success in trial k and player V in
trial . Each single experiment is described by the geometric distribution G, hence the
model for the combined experiment is (N%, P(N%), G?z). Here

GHA) = Y GURNG,()= Y pa-p T, AcN.
(k,)eA (k,)eA

If A = {(k,k) : k > 1}, that is, the game ends in a draw, then

o] 2
G2(A) =2 Y (1 - p)2k? = 14 __pP_
P pk; P 1-A-p?* 2-p
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Consequently, with probability

2-2p
p 2-p’

p

2 —

either U or V wins. Since both players have the same chance to win, it follows that U
wins with probability ;:—’; and the same is true for V.

If we analyze the result, then we see that we have three possible outcomes of the
game: U wins or V wins, each with probability ;:—i, or the game ends in a draw with
probability 2%. In the case of a fair coin, that is, if p = 1/2, these three outcomes each
occur with probability 1/3. In the general setting, the following is true: the bigger the
success probability p, the more likely the game ends in a draw. On the contrary, if p is
near zero, then with great probability there will be a winner of the game.

Example 1.9.13. Toss a biased coin n times. Say the coin is labeled with “0” and “1”
and p € [0,1] is the probability of the occurrence of “1.” Recording each single result
separately, the describing probability spaces are ({0,1},P({0,1}),P;), 1 < j < n, with
PP;({1}) = p. Which probability space does the combined result describe?

Answer: Of course, the sample space is {0,1}" endowed with o-field P(Q). Let w =
(w1, . .., wy,) be an arbitrary vector in Q. Then by Proposition 1.9.11, the product measure
IP of the IP;s is characterized by

P({w}) = Py({wy}) --- P, ({w}) = p*@ - p)" "

wherek = [{j <n:w; =1} =Y o).

For example, tossing the coin five times, the sequence (0, 0,1, 1, 0) occurs with prob-
ability p*(1 - p)°.

In the general case, let A be the set of sequences possessing exactly k times the num-
ber “1.” Then

(IP1®®]Pn)(A) = z Pl({wl})ﬂ)n({wn})

- n -
=14l pfa-p) = ()t - prt.
This is another justification for the model described by the binomial distribution B, ,.

Example 1.9.14. Suppose we have two urns, both containing the same proportion of
white balls. Choose from each urn n balls with replacement. How likely is it to take out
the same number of white balls from each of the two urns?

Answer: The experiment is described by the product measure Bf?p where p denotes
the proportion of white balls in each urn. Hence, the probability to observe k white balls
from the first urn and ¢ from the second one equals

()P ca-p e, o<kesn.
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Consequently, if A is the event that one chooses the same number of white balls, then
®2 o (M2 2k 2n-2k
BE(4) = ;0 ( k) P2 = pyn2k (184)

Look at Figure 1.39 to get an impression how the probability of the event A depends on
the success probability p. For example, if either p = 0 or p = 1, then, of course, we will
for sure see the same number of white balls out of the two urns. Argue why we get the
same probability for A when we replace p by 1 - p.

0.2 0.4 0.6 0.8 1.0

Figure 1.39: The probability to observe the same number of white balls, when choosing 20 balls, depend-
ing on the proportion p. The minimal value is 0.125371 attained at p = 0.5.

If p = 1/2, then eq. (1.84) reduces to (use formula (A.19))
5550
o = \k 2m\n /)
Remark 1.9.15. Stirling’s formula (Corollary 1.6.15) implies
1L<i<2n><i n=12,...
2+mn 22\ n N 7

Hence, if in both urns the number of white balls equals that of black, then for large n the
probability to observe from both urns the same number of white balls is approximately

1/+/mn.
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1.9.3 Product measures: continuous case

Here we assume Q, = --- = Q, = R, hence the product sample space is @ = R". Further-
more, each Q; = R is endowed with the Borel o-field. Because of Proposition 1.9.4, the
product o-field on Q = R" is given by B(R").

The next proposition characterizes the product measure of continuous probability
measures.

Proposition 1.9.16. Let Py, ..., P, be probability measures on (R, B(RR)) with respective
density functions py, ..., p,, that is,

b
P;([a,b]) = Jpj(x)dx, 1<j<n.

a

Definep : R™ — [0, 00) by
px) = pi(X) -+ P(Xp) s X =(Xp...,X,) € R, (1.85)

Then the product measure P;®- - -®P,, is continuous with (n-dimensional) density p defined
by (1.85). In other words, for each Borel set A ¢ R",

(IP1®...®IPn)(A):J...J pl(Xl)...pn(Xn)dxn...dxlzjp(x)dx.
i A

A
Proof. First note that p is a density of the product measure P; ® - -- ® P, if
(B & P,)(Q) = [ i) dx
Q

for all boxes Q = [ay, by] x - - - X [a,, b,]. But this is an immediate consequence of

b, b,
[ poaax = [ [ piox)-+ Pty -
Q a a
by b,
- ([ o ) [t ) - i By,

=(Py®---®Py)([a;,b] x - x [a,,b,]) = (P;®---®P,)(Q).

This completes the proof. O

Because of its importance, let us explain through several examples how Proposi-
tion 1.9.16 applies. Further applications, for example, the characterization of indepen-
dent random variables, will follow in Sections 3 and 8.
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Example 1.9.17. Let the probability measures IP;, 1 < j < n, be uniform distributions on
[a]’, B]] Thus

1 .
i) = = ifg;<x<p;,
0 otherwise,

henceforth, if x = (xy,...,X,), then

ifx e K,

1
P00 = Pr0) -+ Palty) = g[fs*ﬁf'“ﬂ

otherwise.

Here K ¢ R" is the box [ay, B;] % - - x [ay, B,]. Since [ ;. (B; — ;) = vol,(K), it follows
that the product measure P; ® --- ® IP,, is nothing else as the (n-dimensional) uniform
distribution on K as introduced in'® Definition 1.8.13.

Summary: The product measure of n uniform distributions on intervals [a;, 8] is the uniform distribution
on the box [aq, 8] x -+ x [ap, By]-

Example 1.9.18. Let P be the uniform distribution on the unit sphere

K={(x,x) e R : X+ x5 <1}.

That is,
pia) = A0K w2,
The density p of P is given by
Lot v xd <1,
pix, %) =17
0 otherwise.

Then there are no functions p,, p, on R for which
(X1, X) = p1(X1) - P2(Xz) . Xp,Xp € R.

Indeed, if such a representation were to exist, then p,(x,) = 0 if xf >1- xf for all
-1 < x; < 1. Hence, p,(x,) = 0 for all x,. This contradicts the representation of the
density p. Consequently, P is not a product measure.

18 This result was already used in Example 1.8.14. Indeed, the arrival times ¢; and t, were described
by the uniform distributions on [1, 2], thus the pair t = (t;,t,) is distributed according to the product
measure, which is the uniform distribution on [1,2] x [1,2]. Similarly, in Example 1.8.16, we applied that
the pair (6, x) is uniformly distributed on [-7/2, 7/2] x [0, 1].
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Example 1.9.19. Assume now P; = --- = P, = E,, that is, we want to describe the
product of n exponential distributions with parameter A > 0. Since p;(s) = e ifs>0
and p;(s) = 0 if s < 0, their product measure E3" possesses the density

e At jfg s, >0,

0 otherwise.

p(sl,...,sn):{

Which random experiment does E;" describe? Suppose we have n light bulbs of the
same type with lifetime distributed according to E;. Switch on all n bulbs at once and
record the times t;,...,t, where the first bulb, the second, and so on, burns out. If
t = (t,...,t;) € R" denotes the generated vector of these times, then for Borel sets
A < [0,00)",

Pt ¢ A} = E™"(4) = A" J e A gs L ds, .
A

For example, if we want to compute the probability of
A={t,....t)):0<t; <+ <t}

that is, that the second bulb burns longer than the first, the third longer than the second,
and so on, then

00 Sn Sn-1 3 )
EMA) =" J e J e 1 J J e J e ™ids,---ds,.
0 0 0 0 0

Iterative integration leads to Ef’" (A) = 1/n!. This is more or less obvious by the following
observation. Each ordering of the failure times is equally likely. And since there are n!
different ways to order these times, each ordering has probability 1/n!. In particular, this
is true for the ordering t; < --- < t,,.

Next we ask how likely is it that all n bulbs still burn at time T > 0. That is, we ask
for the probability E;"(B) where B = [T, co)". The properties of product measures imply
that

E?"(B) = E;([T, 00)) -+ Ey([T, 00)) = ™7 .

n

Consequently, the probability that at least one of the n bulbs burns out before time T > 0
equals1- ™' In other words, if we say that the system of n bulbs becomes defective if
at least one bulb burns out, then the lifetime of this system is exponentially distributed
with parameter nA.

Next we give another example of a product measure that will play a crucial role in
Sections 6 and 8.
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Example 1.9.20. Let P;,...,P, be standard normal distributions. The corresponding
densities are

1 ey .
—e ", 1<j<n.
var J

Thus, by eq. (1.85), the density p of their product A/(0,1)®" coincides with

pj(x;) =

_yn 2 1 Iyl2
aont T
JT JT

px) = ,
where |x| = (Z}Ll x]-z)l/ 2 denotes the Euclidean distance of the vector x to 0 (see Sec-
tion A.4).

See Figure 1.40 for the visualization of the density p in the case n = 2.

Figure 1.40: The density of the two-dimensional standard normal distribution.

Definition 1.9.21. The probability measure N/ (0, 1)®" on B(R") is called the n-dimensional, or multi-
variate, standard normal distribution. It is described by

1 iv2
N(©,D)®"(B) = e M2 gx .
n/2
(2m) !

For example, if K ¢ R? denotes a circle of radius 1, then this leads to the following
integral:

N(O,1)K) = % ” e /267 2y dx,
K
1 1-x:

_ 1 j e—xf/Z

-1

1
J’ e’xf /2
0

(e

2
e/ 2dx,dx,

S|

A

e %/ 2dx,dx, ~ 0.393.

e
b—\><l\)
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Example 1.9.22. Finally, we describe the n-fold product measure of general normal dis-
tributions AV (y;, ojz) with ¢; € R and sz > 0. The densities are

1 —(0G-1,)? /202 .
pixj) = ———e T, 1<j<n.
van o

Hence, the product measure N (y;, 012) ® -0 N(Up, Gﬁ) possesses the density

n (X - )"
] ] n
= — —_— > = Yoo ]R .
p(x) L exp( ]Zl 207 ) X=X X) €
In particular, if/\f(,ul,olz) == Ny o,%) = N(u, o) by
i(xj - x - P
2 2
ia 20}. 20

where I = (,. .., 1), the n-fold product measure of A/(i, 0%) acts as follows:

N(wo®)™'(B) = e W2 gy B e B(RY). (1.86)

@ |
(27'[)”/20'”
B

Summary: Let (Q, Ay, Py) up to (Q,, A,, P,) be probability spaces. Then there exists a unique probability
measure P = IP; ® - - - ® IP,, (the product measure) on Q = Qq x - - - x Q,, such that

P(A) x -+ xA)) = Py(4) - Py(A), A €A.
In the discrete case, the product measure P is described by

PA) = Y Pi({w})Py(fws}), AcQ,
while for continuous IP; with densities p; the product measure is given by

B@) = [+ [ i) -par) by, Be B(R').
B

1.10 Problems

Problem 1.1. Let A, B, and C be three events in a sample space Q. Express the following
events in terms of these sets:

— Only A occurs.

— A and B occur, but C does not.

— Atleast one of the three events occurs.
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— Atleast two of the events occur.

— At most one of the three events occurs.
— None of the events occur.

— Not more than two of the events occur.
— Exactly two of the events occur.

Problem 1.2. Suppose an urn contains black and white balls. Successively one draws n
balls out of the urn. The event 4; occurs if the ball drawn in the jth trial is white. Hereby
1 <j < n. Express the following events By, ..., B, in terms of the A;s:

B, = {All drawn balls are white},
B, = {Atleast one of the balls is white},
B, = {Exactly one of the drawn balls is white},

B, = {All n balls possess the same color}.

Determine the cardinalities |Bjl,j = 1,...,4.

Problem 1.3. Argue why for every t € R the elementary event {t} is a Borel set. What is
wrong in the following argument? Since for any set B ¢ R one has

B={Jit},

teB

every subset B of R is union of Borel sets. Because B(R) is a o-field, the union of Borel
sets is a Borel set as well. Thus, any B € R is a Borel set.

Problem 1.4. Suppose P is a g-additive mapping from a o-field .A to [0, 1] with P(Q) = 1.
Show that then necessarily P(¢) = 0. Consequently, whenever a g-additive mapping P
satisfies IP(Q) = 1, then it is a probability measure.

Problem 1.5. Let IP be a probability measure on (2, .A). Given 4, B € A, show that
P(AAB) = P(A) + P(B) -2P(ANB).

Problem 1.6. The events A and B possess the probabilities IP(4) = 1/3 and P(B) = 1/4.
Moreover, we know that IP(A N B) = 1/6. Compute P(A€), P(A° U B), P(A U BY), P(A N B°),
P(AAB), and P(A€ U B°).

Problem 1.7 (Inclusion-exclusion formula). Let (2, .4, P) be a probability space and let
Ay, ..., A, € Abe some (not necessarily disjoint) events. Prove that

]P(LHJA]):i(—l)k” Y P4 Nn-NA4;).
j=1 k=1

1<) <<jr<n

Hint: One way to prove this is by induction over n, thereby using Proposition 1.2.3.
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Problem 1.8. Use Problem 1.7 to investigate the following question: The numbers from
1to n are ordered randomly. All orderings are equally likely. What is the probability that
there exists an integer m < n so that m is at position m of the ordering? Determine the
limit of this probability as n — co.

Another version of this problem is as follows. Suppose n persons attend a Christmas
party. Each of the n participants brings a present with him. These presents are collected,
mixed, and then randomly distributed among the guests. Compute the probability that
at least one of the participants gets his own present.

Problem 1.9. Suppose there are N ballsin an urn; k are white, l are red, and m are black.
Thus, k+1+m = N. Choose n balls out of the urn. Find a formula for the probability that
among the n chosen halls are those of all three colors. Investigate this problem if

1. the chosen ball is always replaced and

2. if n < N and the balls are not replaced.

Hint: If A is the event that all three colors appear then compute P(A°). To this end, write
A€ = Aj U Ay U A; with suitable Ajs and apply Proposition 1.2.4.

Problem 1.10. Asin Example 1.4.19, choose 9 balls with replacement out of an urn con-
taining 3 white, 5red and 4 black balls. How likely is it that among the 9 chosen balls are
those of all three colors?

Problem 1.11. Suppose events A and B occur both with probability 1/2. Prove that then
P(AUB) = P(A°UB°). 1.87)

Does (1.87) remain valid assuming IP(4) + P(B) = 1instead of P(A) = P(B) = %?

Problem 1.12. Three men and three women sit down randomly on six chairs in a row.
Find the probability that the three men and the three women sit side by side. What is
the probability that next to each woman sits a man (to the right or to the left)?

Problem 1.13. Let (@, A,IP) be a probability space. Prove the following: Whenever
events A, 4,, ... in A satisfy P(4;) = P(4,) = --- =1, then this implies

P@A,.) 1

Problem 1.14 (Paradox of Chevalier de Méré). Chevalier de Méré mentioned that when
rolling three fair indistinguishable dice there are 6 different possibilities for obtaining
either 11 or 12 as the sum. Thus he concluded that both events (sum equals 11 or sum
equals 12) should be equally likely. But experiments showed that this is not the case.
Why was he wrong and what are the correct probabilities for both events?
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Problem 1.15. A man has forgotten an important phone number. He only remembers
that the seven-digit number contained three times “1,” and “4” and “6” twice each. He
dials the seven numbers in random order. Find the probability that he dialed the correct
one.

Problem 1.16. In an urn there are n black and m red balls. One successively draws all
n + m balls (without replacement). What is the probability that the ball chosen last is
red?

Problem 1.17. A man hasin his pocket n keys to open a door. Only one of the keys fits. He

tries the keys one after another until he has chosen the correct one. Given an integer k,

compute the probability that the correct key is the one chosen in the kth trial.
Evaluate this probability in each of the two following cases:

— The man always discards wrong keys.

— The man does not discard them, that is, he puts back wrong keys.

Problem 1.18 (Monty Hall problem). At the end of a quiz, the winner has the choice be-
tween three doors, say 4, B, and C. Behind two of the doors there is a goat, behind the
third one is a car. His prize is what is behind the chosen door.

Say the winner has chosen door A. Then the quizmaster (who knows what is behind
each of the three doors) opens one of the two remaining doors (in our case either door
Bor door C) and shows that there is a goat behind it. After that the quizmaster asks the
candidate whether or not he wants to revise his decision, that is, for example, if B was
opened, to switch from A to C, or if he furthermore chooses door A.

Find the probabilities to win the car in both cases (switching or nonswitching).

Problem 1.19. In a lecture room there are N students. Evaluate the probability that at
least two of the students were born on the same day of a year (day and month of their
births are the same, but not necessarily the year). Hereby disregard leap years and as-
sume that all days in a year are equally likely. How big must N be in order that this
probability is greater than 1/2?

Hint: Try to evaluate the probability of the complementary event.

Problem 1.20. In an urn there are balls labeled from 0 to 6 so that all numbers are
equally likely. Choose successively and with replacement three balls. Find the proba-
bility that the three observed numbers sum up to 6.

Problem 1.21. As in Example 1.4.25, six persons enter independently of each other a
train with three coaches. How likely is it that no coach remains empty? Find the proba-
bility that there are exactly four persons in one of the three coaches.

Problem 1.22. When sending messages from A to B, on average 3% are transmitted
falsely. Suppose 300 messages are sent. What is the probability that at least three mes-
sages are transmitted falsely? Evaluate the exact probability by using the binomial
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distribution as well as the approximate probability by using the Poisson distribution.
Compute the probability (exact and approximate one) that all messages arrive cor-
rectly.

Problem 1.23 (C. Huygens, 1657). How often does one have to roll two fair dice in order
to observe the sum 12 with a probability greater than or equal to 1/2?

Problem 1.24. Suppose you are given 11 tiles labeled with letters. One tile is labeled with
“M,” two with “P” four tiles are labeled with “I,” and, finally, also four with “S.” Order
the tiles randomly in a row so that all orders are equally likely. Find the probability to
end up with the word “MISSISSIPP1.”

Problem 1.25. The number of accidents in a city per week is assumed to be Poisson
distributed with parameter 5. Find the probability that next week there will be either
two or three accidents. How likely is it that there will be no accidents?

Problem 1.26. In aroom there are 12 men and 8 women. One randomly chooses 5 of the
20 persons. Given k € {0,...,5}, what is the probability that among the five chosen are
exactly k women? How likely is it that among the five persons are more women than
men?

Problem 1.27. Two players A and B take turns rolling a die. The first to roll a “6” wins.
Player A starts. Find the probability that A wins. Suppose now there is a third player C
and the order of rolling the die is given by ABCABCA. . . Find each player’s probability of
winning.

Problem 1.28. Two players, say A and B, toss a biased coin where “head” appears with
probability 0 < p < 1. Whoever gets the first “head” wins. Player A starts, then B tosses
twice, then again A once, B twice, and so on. Determine the number p for which the
game is fair, that is, the probability that A (or B) wins is 1/2.

Problem 1.29. In an urn there are 50 white and 200 red balls.

(1) Take out 10 balls with replacement. What is the probability to observe four white
balls? Give the exact value via the binomial distribution as well as the approximate
one using the related Poisson distribution.

(2) Next choose 10 balls without replacement. What is the probability to get four white
balls in this case?

(3) The number of balls in the urn is as above. But now we choose the balls with re-
placement until for the first time a white ball shows up. Find the probability of the
following events:

(@) The first white ball shows up in the fourth trial.

(b) The first white ball appears strictly after the third trial.

(c) The first white ball is observed in an even number of trials, that is, in the second,
or in the fourth, or in the sixth, and so on, trial.
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Problem 1.30. Place successively and independently four particles into five boxes.
Thereby each box is equally likely. Find the probabilities of the following events:

— A :={Each box contains at most one particle} and

— B:={All 4 particles are in the same box]}.

Problem 1.31. Four students did not attend at an exam because they were on vacation
and drove home too late. Their excuse for missing the test was that they had a flat tire
on their way back. The professor tells them: “no problem, you can make up your exam
today”. He puts the four students in separate rooms and gives each a sheet of paper with
exactly one question: “Which of the four tires was flat?” How likely is it that the four
students gave the same answer?

Problem 1.32. Investigate the following generalization of Example 1.4.52: in urn U,
there are M balls and in urn U there are N balls for some N,M > 1. Choose U, with
probability 1 — p and U; with probability p, and take out a ball from the chosen urn.
Given1 < m < M, find the probability that there are m balls left in U, when choosing the
last ball out of U;. How do these probabilities change when 1 < m < N, and we assume
that there are m balls in U; when choosing the last ball from U,?

Problem 1.33. Let n € IN. Use properties of the gamma function to evaluate the follow-
ing integrals:

o0 (o)

2 2
sz"e x/ZdX and JX2n+1e X/ZdX.
0 0

Problem 1.34. Prove formula (1.62) that relates the beta and gamma functions.
Hint: Start with

TX)I(y) = J J WY e dudv
00

and change the variables as follows: u = f(z,t) = zt and v = g(z,t) = z(1 - t), where
0<z<ooandO<t<l

Problem 1.35. Prove that for integers n and k with 0 < k < n,

(k) :
k/ (m+1)Bn-k+1,k+1)
where B(-,-) denotes Euler’s beta function (cf. formula (1.61)).

Problem 1.36. Write x € [0,1) as finite or infinite decimal fraction x = 0.x;X, ... with
x; €{0,...,9}. Fix some m € {0,...,9} and set

Aj={x€[0,1):x;=mj}.
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That is, A; contains those real numbers for which the jth digit in its decimal expansion
equals m. For example, if m = 4, then x = 0.2534114. .. belongs to A, and A,. Let P be the
uniform distribution on [0, 1]. Evaluate

[ee]
P(4,) aswellas ]P(ﬂA]) .
j=1
Problem 1.37. If y > 0 and x; € R, set

1 y ]
X)==|——=——=|, xeR.
Foy®) =2 [ (x = xp)% + y?
Show that f, , is a probability density. Why is the generated probability measure a gen-
eralization of the Cauchy distribution as introduced in Definition 1.6.37? Compute the
distribution function of the probability measure with density f, ..

Problem 1.38. Let F : R — [0,1] be the distribution function of a probability measure.
Show that F possesses at most countably many points of discontinuity. Conclude from
this and Proposition 1.7.16 the following: If P is a probability measure on 5(R), then
there are at most countably infinitely many ¢ € R such that P({t}) > 0.

Problem 1.39. Let ® be the distribution function of the standard normal distribution
introduced in eq. (1.70). Show the following properties of ®:

L @0 =3.

2. Fort e R,onehas ®(-t)=1- @ (t).

3. Ifa>0,then

N0, 1)([-a,a]) =2®(a) - 1.

4. Prove formulas (1.71), that is,

®(t):%[1+erf(%>] and erf(t) = 20(V2t) -1, teR.

5. Compute

1-d(t)
t—o0 t—le—tz/Z :

Problem 1.40 (Bertrand paradox). Consider an equilateral triangle inscribed in a circle
ofradiusr > 0. Suppose a chord of the circle is chosen at random. What is the probability
that the chord is longer than a side of the triangle?
In this form, the problem allows different answers. Why? Because we did not define
in which way the random chord is chosen.
1. The “random endpoints” method: Choose independently two uniformly distributed
random points on the circumference of the circle and draw the chord joining them.
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2. The “random radius” method: Choose a radius of the circle, that is, choose a random
anglein [0, 2rr], choose independently a point on the radius according to the uniform
distribution on [0, r], and construct the chord through this point and perpendicular
to the radius.

3. The “random midpoint” method: Choose a point within the circle according to the
uniform distribution on the circle and construct a chord with the chosen point as
its midpoint.

Answer the above question about the length of the chord in each of the three cases.

Problem 1.41. A stick of length L > 0 is randomly broken into three pieces. Hereby
we assume that both break points are uniformly distributed on [0, L] and independent
of each other. What is the probability that these three parts piece together to form a
triangle?



2 Conditional probabilities and independence

2.1 Conditional probabilities

In order to motivate the definition of conditional probabilities, let us start with the fol-
lowing easy example.

Example 2.1.1. Roll a fair die twice. The probability of the event “sum of both rolls
equals 5” is 1/9. Suppose now we were told that the first roll was an even number. Does
this additional information make the event “sum equals 5” more likely? Or does it even
diminish the probability of its occurrence? To answer this question, we apply the so-
called technique of “restricting the sample space.” Since we know that the event B =
{First roll is even} had occurred, we may rule out elements in B and restrict our sam-
ple space. Choose B as the new sample space. Its cardinality is 18. Moreover, under this
condition, an event A occurs if and only if A N B does. Hence, the “new” probability of A
under condition B, written IP(A|B), is given by

_|AnB| _|AnB

B 8 2.1

IP(A|B)

In the question above, we asked for IP(4|B), and have
A = {Sum of both rolls equals 5} = {(1,4), (2,3), (3,2), (4, 1)}.

Since A n B = {(2,3), (4,1)}, we obtain P(A|B) = 2/18 = 1/9. Consequently, in this case,
condition B does not change the probability of the occurrence of A.

Define now A as a set of pairs adding to 6. Then P(4) = 5/36, while the conditional
probability remains 1/9. Note that now AN B = {(2,4), (4,2)}. Thus, in this case, condition
B makes the occurrence of A less likely.

Before we state the definition of conditional probabilities in the general case, let us
rewrite eq. (2.1) as follows:

JANB| _|ANnBI|/36 P(ANB)

PAB) =5 = TBss - PO

(2.2)

Equation (2.2) gives us a hint how to introduce conditional probabilities in the general
setting.

Definition 2.1.2. Let (Q, A, P) be a probability space. Given events A, B € .A with P(B) > 0, the proba-
bility of A under condition B is defined by

P(ANB)

P(A|B) = PB)

(2.3)

https://doi.org/10.1515/9783111325064-002
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Remark 2.1.3. If we know the values of P(A n B) and IP(B), then formula (2.3) allows us
to evaluate IP(A|B). Sometimes it happens that we know the values of P(B) and IP(A|B)
and want to calculate IP(A N B). In order to do this, we rewrite eq. (2.3) as

P(A N B) = P(B) P(A|B). (2.4)

In this way, we get the desired value of P(A N B). Formula (2.4) is called the law of mul-
tiplication.

The next two examples show how this law applies.

Example 2.1.4. In an urn there are two white and two black balls. Choose two balls
without replacing the first. We want to evaluate the probability of occurrence of a
black ball in the first draw and of a white in the second. Let us first find a suitable
mathematical model that describes this experiment. The sample space is given by
Q ={(,b), (b,w),(w,b), (w,w)}, and we consider the events

A = {Second ball is white} = {(b, w), (w,w)} and
B = {First ball is black} = {(b, b), (b, w)} .

The event of interest is then A N B = {(b, w)}.
Which probabilities can be directly determined? Of course, the probability of oc-
currence of B equals 1/2 because the number of white and black balls is the same. Fur-
thermore, if B had occurred, then in the urn two white balls and one black ball have re-
mained. Under this condition, event A occurs with probability 2/3, that is, P(A|B) = 2/3.

Using eq. (2.4), we obtain
P({(b,w)}) = P(ANB) = P(B) - P(A|B) =

DN =
Wi DN
|

Example 2.1.5. Among three indistinguishable coins, there are two fair and one biased.
Tossing the biased coin, “heads” appears with probability 1/3, hence “tails” appears with
probability 2/3. We choose at random one of the three coins and toss it. Find the proba-
bility to observe “tails” at the biased coin.

To solve this problem, let us first mention that the sample space Q = {H, T} is not
adequate to describe that experiment. Why? Because the event {H} may have different
probabilities depending on the occurrence using a biased or a fair coin. We have to dis-
tinguish between the appearance of “heads” or “tails” for the different types of coin.
Hence, an adequate choice of the sample space is

Q:={(H,B),(T,B),(H,F),(T,F)}.
Here, B stands for the biased and F for the fair coin. The event of interest is {(T, B)}. Set

T :={(T,B),(T,F)} and B:={(H,B),(T,B)}.
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Then T occurs if “tails” appears regardless of the type of the coin while B occurs if we
have chosen the biased coin. Of course, it follows that {(T,B)} = T n B. Since only one
of the three coins is biased, we have P(B) = 1/3. By assumption, P(T|B) = 2/3, hence an
application of eq. (2.4) leads to

2

P({(T,B)}) = P(B) P(T|B) =

W=
Wi N

Next, we present two examples where formula (2.3) applies directly.

Example 2.1.6. Rolladie twice. One already knows that the first number is not “6”. What
is the probability that the sum of both rolls is greater than or equal to “10”?

Answer: The model for this experimentis Q = {1,..., 6} endowed with the uniform
distribution P on P(Q). The event B := {First result is not “6”} contains 30 elements,
namely

{1LD,....,(51),...,1,6),...,(56)}
and if A consists of pairs with the sum equal to or larger than 10, then
A ={(4,6),(5,6),(6,6),(5,5), (6,5),(6,4)}, hence AnB=1{(4,6),(5,6),(5,5)}

Therefore, it follows that

PANB)  3/36 1

PAIB) = P(B)  30/36 10

In the case that all elementary events are equally likely, there exists a more direct
way to evaluate IP(A|B). We reduce the sample space as we already did in Example 2.1.1.

Proposition 2.1.7 (Reduction of the sample space). Suppose the sample space Q is finite
and let P be the uniform distribution on P(Q). Then for all events A and a nonempty B
in Q, we have

|ANB|

P(A|B) = B

2.5

Proof. This easily follows from

_P(AnB) |ANnBl/Ql lAnB
PAB=~p@ = Bael - B -

Example 2.1.8. We want to investigate Example 2.1.6 once more, this time using for-
mula (2.5) directly. Since |A n B| = 3 and |B| = 30, we get as before
JAnB] 3 1

|B| 30 10°

P(A|B) =
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Remark 2.1.9. It is important to state that Proposition 2.1.7 becomes false for general
probabilities P on P(R). Formula (2.5) is only valid in the case that P is the uniform
distribution on P(Q).

Example 2.1.10. Toss a fair coin 5 times. How likely is it to observe 3 times “1” under the
condition that the first toss was a “17?

Answer: The event A occurs if among the five tosses there are three with “1,” while
B occurs provided the first toss is “1.” Then |B| = 2* = 16 while |AN B| = (‘2*) = 6. Since by
assumption all sequences of zeroes and ones are equally likely, Proposition 2.1.7 applies
and leads to

AnB 6 3

B 16 8

P(A|B) =

Suppose now that the coin is no longer fair. Say “1” occurs with probability p and “0”
with probability 1 — p. Then we can no longer evaluate the conditional probability by
reducing the sample space. In this case one has to apply directly the definition of the
conditional probabilities and obtains

]P(AﬂB)_ 200 2
W—Gp(l D).

p®) =p, PUnB=()p0-pF = BB -
Example 2.1.11. The duration of a telephone call is exponentially distributed with pa-
rameter A > 0. Find the probability that a call does not last more than 5 minutes provided
it already lasted 2 minutes.

Solution: Let A be the event that the call does not last more than 5 minutes, that is,
A = [0,5]. We know it already lasted 2 minutes, hence event B = [2, co0) has occurred.
Thus, under condition B, it follows that

E(ANB)  E(25) e*-e™ 3

B@B="F® “E@o) ¥

Note the interesting fact that this conditional probability equals E;([0, 3]). What does
this tell us? It says that the probability that a call lasts no more than another 3 minutes
is independent of the fact that it has already lasted 2 minutes. This means that the dura-
tion of a call has not “become older.” Independent of the fact that it has already lasted
2 minutes, the probability for talking no more than another 3 minutes remains the same.

Let us come back to the general case. Fix an event B € A with P(B) > 0. Then
A~ P@AB), AcA,

is a well-defined mapping from A to [0,1]. Its main properties are summarized in the
next proposition.

Proposition 2.1.12. Let (Q, A, P) be an arbitrary probability space. For each B € A with
P(B) > 0, the mapping A — IP(A|B) is a probability measure on A. It is concentrated on B,
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that is,
P(BIB) =1 or, equivalently, P(B°|B) =0.
Proof. Of course, one has
P(@B) =P(ONB)/P(B)=0 and P(QIB)=P(QnB)/P(B)="PB)/PB)=1.

Thus, it remains to prove that IP(:|B) is g-additive. To this end, choose disjoint A4, A,, ...
in A. Then also A4; N B,A, N B, ... are disjoint and, using the g-additivity of IP leads to

P(GA]'IB> _PAUS4INE) P50 B)
=1

P(B) P(B)
YO P(ANB) X PANB X
- == lP(B]) =2 ]P](B) = ) P4B).
j=1 j=1

Consequently, as asserted, IP(- |B) is a probability. Since the identity P(B|B) = 1 is obvi-
ous, this ends the proof. O

Definition 2.1.13. The mapping IP(- [B) is called the conditional probability or also conditional distri-
bution (under condition B).

Remark 2.1.14. The main advantage of Proposition 2.1.12 is that it implies that condi-
tional probabilities share all the properties of “ordinary” probability measures. For ex-
ample, it holds that

]P(Az\AllB) = IP(Ale) - IP(AllB) provided that Al C Az,
or
P(A; U Ay|B) = P(A4|B) + IP(A2|B) — P(4; N Ay|B).

But note, there do not exist similar rules for P(A|B) independent of the event B and with
A fixed.

We come now to the so-called law of total probability. It allows us to evaluate the
probability of an event A knowing only its conditional probabilities P(A|B;) for certain
B; € A. More precisely, the following is valid.

Proposition 2.1.15 (Law of total probability). Let (R, A,P) be a probability space and let
By, ..., B, in Abe disjoint with P(B;) > 0 and U]’Ll B; = Q. Then for each A € A, one has

P(A) = ) P(B;) P(A|B)). (2.6)
j=1
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Proof. Let us start with the investigation of the right-hand side of eq. (2.6). By the defi-
nition of the conditional probability, this expression may be rewritten as

) P(B) P(A|B)) ZIP(B) ]P(B) ZIP(AHB) @.7)

j=1

The sets By, ..., B, are disjoint, hence so are AN By, ...,A N B,,. Thus, the finite additivity
of P implies

Y P(ANB) = ]P(U(A nBj)> = P((UB]) nA> =P(QNA) = P(A).
j=1

Jj=1 J=1
Together with eq. (2.7), this proves eq. (2.6). O
A first example illustrates how the law of total probability applies.

Example 2.1.16. Suppose we have n urns, each containing a certain (maybe different)
number of white and black balls. Choose urn U; with probability P(Uj), 1 < j < n, and
take out one hall of the chosen urn. Let W occur if the chosen ball is white. Then the law
of total probability asserts that

P(W) = P(UNP(W|Uy) + -+ + P(U)P(WU,),

where P(W|U;) is the proportion of white balls in urn Uj, 1 < j < n. In particular, if all
urns are equally likely, then one gets

P(W) = ZIP(WIU)
_] 1

Example 2.1.17. A fair coin is tossed four times. Suppose we observe exactly k “heads”
for some k = 0,...,4. According to the observed k, we take k dice and roll them. Find
the probability of the event A = {Number “6” does not show up}. Note that k = 0 means
that we do not roll a die, hence in this case “6” cannot appear.

Solution: As sample space, we choose Q@ = {(k,Y),(k,N) : k = 0,...,4}, where
(k,Y) means that we rolled k dice and at least on one of them we got a “6”. In the
same way, (k, N) stands for k dice and no “6”. Let N = {(0,N),...,(4,N)} and let B, =
{(k,Y),(k,N)},k = 0,...,4. Then B, occurs if we observed k “heads.” The conditional
probabilities equal

P(N|By) =1, P(N|B)=5/6, ..., P(NIB,) = (5/6)",

while
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The events By, ..., B, satisfy the assumptions of Proposition 2.1.15, thus Eq. (2.6) applies
and leads to

1 &g 175 N\ /1yt
lP(A)=2—4kZ:O<k) (5/6) =2—4<§+1> =<ﬁ> — 0.706066743.

Example 2.1.18. Three different machines, M;, M, and Mj, produce light bulbs. In a sin-
gle day, M; produces 500 bulbs, M, yields 200, and M provides 100. The quality of the
produced bulbs depends on the machines: Among the light bulbs produced by M, 5%
are defective; among those from M,, 10 % are defective; and only 2 % are defective from
M;. At the end of a day, a controller chooses 1 of the 800 produced light bulbs at random
and tests it. Determine the probability that the checked bulb is defective.

Solution: The probabilities that the checked bulb was produced by My, M,, or M,
are 5/8,1/4, and 1/8, respectively. The conditional probabilities for choosing a defective
bulb produced by M;, M, or M; were given as 1/20, 1/10, and 1/50, respectively. If D is
the event that the tested bulb was defective, then the law of total probability yields

51 1 1 1 1 47
IP(D)=g-E+Z~E+§-%=%=O.0587S.

Let us look at Example 2.1.18 from a different point of view. When choosing a light
bulb out of the 800 produced, there were certain fixed probabilities of whether it was
produced by M;, M,, or M;, namely 5/8, 1/4, and 1/8. These are the probabilities before
checking a bulb. Therefore, they are called a priori probabilities. After checking a bulb,
we obtained additional information that it was defective. Does this additional informa-
tion change the probabilities which of the machines M;, M,, and M; produced it? More
precisely, if the D above occurs when the tested bulb is defective, then we now ask for
the conditional probabilities P(M;|D), P(M,|D), and IP(M;|D). To understand that these
probabilities may differ considerably from the a priori probabilities, imagine that, for
example, M; produces almost no defective bulbs. Then it will be very unlikely that the
tested bulb has been produced by M;, although P(M;) may be big.

Because P(M;|D), P(M,|D), and IP(M;|D) are the probabilities after executing the
random experiment (choosing and testing the bulb), they are called a posteriori proba-
bilities.

Let us now introduce the exact and general definition of a priori and a posteriori
probabilities.

Definition 2.1.19. Suppose there is a probability space (Q,.4,P) and there are disjoint events
By,..., B, € AsatisfyingQ = U;':1 B;. Then we call P(By), ..., IP(B,) the a priori probabilities of By, ... ., B,.
Let A € A with IP(4) > 0 be given. Then the conditional probabilities P(B;|A), ..., IP(B,|A) are said to be
the a posteriori probabilities, that is, those after the occurrence of A.

To calculate the a posteriori probabilities, the next proposition turns out to be very use-
ful.
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Proposition 2.1.20 (Bayes’ formula). Suppose we are given disjoint events B, to B, satis-
fying U]’Ll B; = Q and P(B)) > 0. Let A be an event with P(A) > 0. Then for each j < n the
following equation holds:

P(B)) P(A|B))

PG = ST p@p@B)

(2.8)
Proof. Proposition 2.1.15 implies

Y P(B)P(A|B) = P(A).
i=1

Hence, the right-hand side of eq. (2.8) may also be written as
P(ANB;)
P(B)P(AIB) P(B) @) P@ANB)

T B T R A

and the proposition is proven. O
Remark 2.1.21. In the case PP(4) is already known, Bayes’ formula simplifies to

P(B;)P(A|B;)
P(BjlA) = ———L, j=1...,n 2.9
(BilA) 7 j n 29)
Remark 2.1.22. Let us treat the special case of two sets partitioning Q. If B; = B, then
necessarily B, = B¢, hence Q = B U B¢. Then formula (2.8) looks as follows:

~ P(B)P(A|B)

P(Bl4) = P(B)P(A|B) + P(BS)P(A|B) 210)
and

P(B|A) = P(B)P(AIB") (2.11)

" P(B)P(A|B) + P(B°)P(A|BS)"

Again, if the probability of A is known, the denominators in Egs. (2.10) and (2.11) may be
replaced by P(A).

Example 2.1.23. Let us use Bayes’ formula to calculate the a posteriori probabilities in
Example 2.1.18. Recall that D occurs if the tested bulb is defective. We already know
P(D) = 47/800, hence we may apply eq. (2.9). Doing so, we get

P(M;)P(D|M;) 5/8-1/20

POMID) = ——p o = mreng = BT
P(M,)P(D|M: :

POLID) = ¢ 2};(;)' 2 _ 12 L;/slé (1)0 =20/47,

PO, D) = POBIPOIM) _ 1/8-1/50 _ )\,

P(D) ©47/800
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By assignment of the problem, the a priori probabilities were given by P(M;) = 5/8,
P(M,) = 1/4, and P(M3) = 1/8. In the case that the tested light bulb was defective,
these probabilities changed to 25/47, 20/47, and 2/47. This tells us that it becomes less
likely that the tested bulb was produced by M; or Ms; their probabilities diminish by
0.0930851 and 0.0824468, respectively. On the other hand, the probability of M, increases
by 0.175532.

Finally, note that Proposition 2.1.12 implies that the sum of the a posteriori proba-
bilities has to be 1. Because of 25/47 + 20/47 + 2/47 = 1, this is true in that example.

Example 2.1.24. In order to figure out whether or not a person suffers from a certain
disease, say disease X, a test is assumed to give a clue. If the tested person is sick, then
the test is positive in 96 % of cases. If the person is well, then with 94 % accuracy the test
will be negative. Furthermore, it is known that 0.4 % of the population suffers from the
disease X.

Now a person, chosen at random, is tested. Suppose the result was positive. Find the
probability that this person really suffers from X.

Solution: As sample space, we may choose

Q = {&,p), (X, n), (X, p), (X*,m)},

where, for example, (X, n) means that the person suffers from X and the test was nega-
tive. Set A := {(X, p), (X, p)}. Then A occurs if and only if the test turned out to be positive.
Furthermore, event B := {(X, p), (X, n)} occurs in the case that the tested person suffers
from X. Known are

P(A|B) = 0.96, P(A|B) =0.06, and PP(B)=0.004, hence P(B) = 0.996.

Therefore, by eq. (2.10), the probability we asked for can be calculated as follows:

IP(B)IP(A|B)
P(B)P(A|B) + P(B°)P(A|B°)
~ 0.004-0.96 ~0.00384
"~ 0.004-0.96 +0.996-0.06  0.0636

P(B|A) =

= 0.0603774.

This tells us that it is quite unlikely that a randomly chosen person with a positive test
is really sick. The chance for this being true is only about 6 %.

Summary: Given two events A and B in a probability space (Q, A, P) with P(B) > 0, the probability of A
under the condition of the occurrence of B is given by

P(ANB)

PAIB) = —5 o

or, equivalently, by 1P(AnB) = P(B)P(A|B).

The basic properties of the conditional probability are summarized in the “Law of total probability” and in
“Bayes’ formula” (Propositions 2.1.15 and 2.1.20).
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2.2 Independence of events

What does it mean that two events are independent or, more precisely, that they occur
independently of each other? To get an idea, let us look at the following example.

Example 2.2.1. Roll a fair die twice. Event B occurs if the first number is even while
event A consists of all pairs (x;, x,), where x, = 50r x, = 6.Itisintuitively clear that these
two events occur independently of each other. But how to express this mathematically?
To answer this question, think about the probability of A under the condition B. The
fact whether or not B has occurred has no influence on the occurrence of A. For the
occurrence or nonoccurrence of 4, it is completely insignificant what happened in the
first roll. Mathematically, this means that IP(A|B) = P(A). Let us check whether this is
true in this concrete case. Indeed, it holds that P(A) = 1/3, as well as

P(AnB) 6/36

28

P(AIB) = P(B) 12

The previous example suggests that the independence of A of B could be described
by

P(A N B)

P(A) = P(A|B) = )

(2.12)
But formula (2.12) has a disadvantage, namely we have to assume P(B) > 0 to ensure
that P(A|B) exists. To overcome this problem, rewrite eq. (2.12) as

P(A N B) = P(A) P(B). (2.13)
In this form, we may take eq. (2.13) as the basis for the definition of independence.

Definition 2.2.2. Let (Q,.4, P) be a probability space. Two events A and B in A are said to be (stochasti-
cally) independent provided

P(ANB) =P(A) - P(B). 2.14)

In the case that eq. (2.14) does not hold, the events A and B are called (stochastically) dependent.

Remark 2.2.3. Inthe sequel, we use the notations “independent” and “dependent” with-
out adding the word “stochastically.” Since we will not use other versions of indepen-
dence, there should be no confusion.

Example 2.2.4. A fair die is rolled twice. Event A occurs if the first roll is either “1” or
“2” while B occurs if the sum of both rolls equals 7. Are A and B independent?

Answer: We have P(4) = 1/3, P(B) = 1/6, and IP(A n B) = 2/36 = 1/18. Hence, we get
P(AnB) =P(A) - P(B) and so A and B are independent.

Question: Are A and B also independent if A is as before and B is defined as a set of
pairs with sum 4?
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Example 2.2.5. In an urn, there are n > 2 white balls and also n black balls. One chooses
two balls without replacing the first. Let A be the event that the second ball is black while
B occurs if the first ball was white. Are A and B independent?

Answer: The probability of B equals 1/2. To calculate IP(A), we use Proposition 2.1.15.
Then we get

P(A) = P(B)P(A|B) + P(B°)P(A|B°) = % :

hence IP(A) - P(B) = 1/4.
On the other hand, we have

P(A N B) = P(B)P(A|B) = % :

Consequently, A and B are dependent.

Remark 2.2.6. Note that if n — oo, then

P(ANB) = ﬁ N % — P(4) P(B).

This tells us the following: if n is big, then A and B are “almost” independent or, equiv-
alently, the degree of dependence between A and B is very small. This question will be
investigated more thoroughly in Chapter 5 when a measure for the degree of depen-
dence is available.

Next, we prove some properties of independent events.

Proposition 2.2.7. Let (Q, A, P) be a probability space.
1. ForanyA € A, the events A and 0, as well as A and Q, are independent.1
2. IfA and B are independent, then so are A and B, as well as A® and B°.

Proof. We have
P(AN0)=P®) =0=PA)-0=PA) PO,

hence A and ¢ are independent.
In the same way, the independence of A and Q follows from

P(ANQ) =PA) =PA)-1=1PA) - P(Q).

To prove the second part, assume that A and B are independent. Our aim is to show that
A and B¢ are independent as well. We know that

1 For a more general result, see Problem 2.15.



122 — 2 Conditional probabilities and independence

P(ANB) = P(A) P(B)
and want to show that
P(A N B°) = P(A) P(B°).

Let us start with the right-hand side of the latter equation. Using the independence of A
and B and the fact A N B < B, it follows that

P(A) P(B°) = P(A)(1 - P(B)) = P(4) - P(4) - P(B)
=P(A) - P(An B) = P(A\(A N B)). (2.15)

Since A\(A N B) = A\B = A n B, using eq. (2.15), we derive
P(A) - P(B°) = P(A N B°).

Consequently, as asserted, A and B¢ are independent.

If A and B are independent, then so are B and A, and as seen above, so are B and A°.
Another application of the first step, this time with A° and B, shows that also A and B¢
are independent. This completes the proof. O

Suppose we are given n events 4y, ..., A, in A. We want to figure out when they are
independent. A first possible approach could be as follows.

Definition 2.2.8. EventsA,,...,A, are said to be pairwise independent if, whenever i # j,
P(A;nA) =P(4) - PA).

In other words, for all 1 </ <j < 1the events A; and 4; are independent.

Unfortunately, for many purposes, the property of pairwise independence is too weak.
For example, as we will see next, in general it does not imply the important equation

PA; N---NAp) =P(4;) --- P(4,). (2.16)
Example 2.2.9. Roll a die twice and define events A;, 4,, and A; as follows:

Ay ={2,4,6} x{1,...,6},
Ay ={1,...,6} x {1,3,5},
As = {2,4,6} x {1,3,5} U {1,3,5} x {2, 4, 6}.

Verbally this says that A; occurs if the first roll is even, A, occurs if the second one is
odd, and A; occurs if either the first number is odd while the second is even or vice
versa.
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Direct calculations give IP(4;) = P(4,) = P(43) = 1/2, as well as

Hence, A, A,, and A; are pairwise independent.
Since

Al ﬂAZ nA3 :Al ﬂAz,
it follows that

| =

# = = P(4;) - P(4,) - P(Ay).

FNN

So, we found three pairwise independent events for which eq. (2.16) is not valid.
After mentioning that pairwise independence of 4,,..., 4, does not imply
P(A;Nn---NA,) =P4,) --- P(4,), 217
it makes sense to ask whether or not pairwise independence can be derived from
eq. (2.17). The next example shows that, in general, this is also not true.

Example 2.2.10. LetQ = {1,...,12} be endowed with the uniform distribution PP, that is,
for any A ¢ Q we have P(A) = |A|/12. Define events A,, A,, and A3 as 4; = {1,...,9},
A, :=1{6,7,8,9}, and A5 := {9,10,11,12}. Direct calculations give

1

9 3 4 1 4
IP(Al) = ﬁ = Z N ]P(AZ) = E = g, and ]P(AB) = ﬁ = §

Moreover, we have

1 311
P(A; NA; NA;) = P({9}) = Z-133° P(4,) - P(Ay) - P(A3),
hence eq. (2.17) is valid. But, because of
1 1
P(A; NAy) = P(4y) = 3 * 1 P(Ay) - P(4,),

the events A,, A,, and A; are not pairwise independent.

Remark 2.2.11. Summing up, Examples 2.2.9 and 2.2.10 show that neither pairwise inde-
pendence nor eq. (2.17) are suitable to define the independence of more than two events.
Why? On the one hand, independence should yield eq. (2.17) and, on the other hand,
whenever 4, ...,A, are independent, then so should be any subcollection of them. In
particular, independence should imply pairwise independence.

A reasonable definition of independence of n events is as follows.
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Definition 2.2.12. The events A;,...,A, are said to be independent provided that for each subset
Ic{1,...,n}wehave

Jp(ﬂA,-) =[P (2.18)

iel iel

Remark 2.2.13. Of course, it suffices that eq. (2.18) is valid for setsI < {1,...,n} satisfying
|I] = 2. Indeed, if |I| = 1, then eq. (2.18) holds trivially.

Remark 2.2.14. Another way to introduce independence is as follows: For all m > 2 and
1<i) <.+ <ip < n, it follows that

]P(Ail ne--- ﬂAim) = ]P(All) e ]P(Alm)

Identify I with {ij, ..., i,} to see that both definitions are equivalent.

At a first glance, the previous Definition 2.2.12 looks complicated; in fact, it is not.
To see this, let us once more investigate the case n = 3. Here exist exactly four different
subsets I ¢ {1,2,3} with |I| > 2. These are I = {1,2}, I = {1,3},I = {2,3},and I = {1,2,3}.
Consequently, three events A,, A,, and A5 are independent if and only if the four follow-
ing conditions hold at once:

P(4; N Ay) = P(4;) - P(4y),
P(A; N Az) = P(4;) - P(A3),
P(A;, NA3) = P(4,) - P(4;), aswellas
P(A; N Ay NAj) = P(A) - P(4,) - P(A3).

Examples 2.2.9 and 2.2.10 show that all four equations are really necessary. None of them
is a consequence of the other three.
The independence of n events provides the following properties:

Proposition 2.2.15.

1. LetA,...,A, beindependent. For any ]  {1,...,n}, the events {4; : j € J} are inde-
pendent as well. In particular, independence implies pairwise independence.

2. For each permutation 7 of {1,...,n}, the independence of A, ..., A, implies that of*
Arys - Anny-

3. Suppose for each 1< j < n either B; = A; or B; = A]-C holds. Then the independence of
A,,..., A, implies that of By, ...,By.

Proof. The first two properties are an immediate consequence of the definition of inde-
pendence.

2 For example, in the case n = 3 with A, Ay, A3 also A3, Ay, A; and Ay, A3, A; are independent.
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To prove the third assertion, reorder A, ..., A, such that® B, = A{. In the first step,
we show that A{,A,,...,A, are independent as well, that is, we have B; = A{, B, = A,,
and so on. Given I ¢ {1,...,n}, it has to hold that

iel iel
In the case 1 ¢ I, this follows by the independence of 4,,...,4,.If 1 € I, we apply Propo-
sition 2.2.7 with* A; and € = Mieng Ai = Niengy Bi- Then Af = B; and C are independent
as well. Hence, by the independence of A,, ..., 4,, we get

P(ﬂ&) =P(B,nC)=PBy)-P(C)=PBy)- [[ PB)=]]PB).

iel iel\{1} iel

The general case then follows by reordering the A;s and by an iterative application of
the first step. This is exactly the procedure we did in the proof of Proposition 2.2.7 when
verifying the independence of A° and B for independent A and B. O

The next two examples show how independence of more than two events appears
in a natural way.

Example 2.2.16. Toss a fair coin n times. Let us assume that the coin is labeled with “0”
and “1.” Choose a fixed sequence (aj)]’»‘:1 of numbers in {0, 1} and suppose that the event
A; occurs if in the jth trial a; comes up.

We claim now that 4,,...,4, are independent. To verify this, choose a subset
I'c{1,...,n} with |I| = k for some k =2,...,n. The cardinality of ();;; 4; equals 2k,
Why? At k positions, the values of the tosses are fixed; at n — k positions, they still may
be either “0” or “1”. Consequently,

zn*k
P(ﬂAl) == =2" (219)

iel 2"
The same argument as before gives |Aj| = 2" hence IP(A]-) =1/2,1 < j < n. Conse-
quently, it follows that
1 1]
[Tr@) = (-) =2k (2.20)
L 2
iel

Combining Eqs. (2.19) and (2.20) gives

3 Ifall B; = A;, there is nothing to prove.
4 Why are A; and C independent? Give a short proof.
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1%ﬂ¢>=npm¢

iel iel
and since I was arbitrary, the sets 4, ..., A, are independent.

Remark 2.2.17. Even the simple Example 2.2.16 shows that it might be rather compli-
cated to verify the independence of n given events. For example, if we modify the pre-
vious example by taking a biased coin, then the A;s remain independent, but the proof
becomes more complicated.

Example 2.2.18. A machine consists of n components. These components break down
with certain probabilities py, ..., p,. Moreover, we assume that they break down inde-
pendently of each other. Find the probability that a chosen machine stops working. Be-
fore answering this question, we have to determine the conditions.

Case 1: The machine stops working provided at least one component breaks down.
Let M be the event that the machine stops working. If j < n, assume 4; occurs if
component j breaks down. By assumption, P(4;) = p;. Since

n

M=|]4;,
j=1

by the independence® it follows that

P@@:1—P@f)=1—P<fp§>=1—[IP@§)=1—[B1—M) (2.21)
j=1

j=1 j=1

Case 2: The machine stops working provided all n components break down.
Using the same notation as in case 1, we now have

M:ﬁ&
j=1

Hence, by the independence we obtain

P@@:P(ﬂAJ:[]W (2.22)
j=1 j=1

Remark 2.2.19. Formula (2.21) tells us the following: If among the n components there
is one of bad quality, say component ji, then p; is close to one; hence, 1 - p; is close to
zero, and so is ]_[;':1(1— p;)- Because of eq. (2.21), P(M) is large, and so the machine breaks
down with a large probability.

5 In fact, we also have to use Proposition 2.2.15.
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In the second case, the conclusion is as follows: if among the n components there
is one of high quality, say component ji,, then p; is small and so is H}‘zl p;- By eq. (2.22),
P(M) is also small, hence it is very unlikely that the machine stops working.

Summary: Two events A and B in a probability space (Q, .4, P) are said to be (stochastically) independent if
P(ANB) =PA)-P(B).

In general, events A,..., A, are (stochastically) independent provided that for all 2 < m < n and all choices
of indices1< iy <--- < i, < nonehas

]P(Ai1 ﬂ--~ﬂA,m) = IP(A,1)IP(A,m)

In particular, then the A;s are pairwise independent and P(4; N --- N A;) = P(A) - -- P(A,).

2.3 Problems

Problem 2.1 (Willem Jacob’s Gravesande, 1736). On a ship there are 84 passengers from
Belgium, 12 from England, and 4 from Germany.
1. One passengers leaves the ship. How likely is it that he or she is
(1) Belgian, (i) German, (iii) Belgian or German?
2. Two people leave the ship. How likely is it that at least one of them is Belgian?

Problem 2.2. The chance to win a certain game is 50 %. One plays six games. Find the
probability to win exactly four games. Evaluate the probability of this event under the
condition to win at least two games. Suppose one had won exactly one of the two first
games. Which probability does the event “winning 4 games” have under this condition?

Problem 2.3. Toss a fair coin six times. Define events A and B as follows:

A = {“Heads” appears exactly 3 times},

B = {The first and the second toss are “heads”}.

Evaluate P(A), P(A|B), and P(A|B°).

Problem 2.4. Let A and B be as in Problem 1.30, that is, A occurs if each box contains at
most one particle while B occurs if all four particles are in the same box.
Find now P(A|C) and PP(B|C) with C = {The first box remains emptys}.

Problem 2.5. Justify why Propositions 2.1.15 and 2.1.20 (Law of total probability and
Bayes’ formula) remain valid for infinitely many disjoint sets By, B,,... satisfying
IP(B;) > 0 and U;fl B =Q.

Prove that Proposition 2.1.15 also holds without assuming U}'Zl B; = Q. But then we
have to suppose A < J; B;.
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Problem 2.6. To go to work, a man can either use a train, a bus, or his car. He chooses

the train 50 %, the bus 30 %, and the car 20 % of workdays. If he takes the train, he arrives

on time with probability 0.95. By bus, he is on time with probability 0.8, and by car with

probability 0.7.

(a) Evaluate the probability that the man is at work on time.

(b) How big is this probability given the man does not use the car?

(c) Assume the man arrived at work on time. What are then the probabilities that he
came by train, bus, or car?

Problem 2.7. Let Uy, U,, and U, be three urns containing five balls each. Urn U; contains

four white balls and one black ball, U, has three white balls and two black balls and,

finally, U; contains two white balls and three black balls. Choose one urn at random

(each urn is equally likely) and, without replacing the first ball, take two balls out of the

chosen urn.

(a) Give a suitable sample space for this random experiment.

(b) Find the probability to observe two balls of different color.

(c) Assume the chosen balls were of different color. What are the probabilities that the
balls were taken out of Uy, U,, or Us?

Problem 2.8. Suppose we have three indistinguishable dice. Two of them are fair, the

remaining one is biased. For the latter, the number “6” appears with probability 1/5 while

all other numbers have probability 4/25. We choose at random one of the dice and roll

it.

(a) Find a suitable sample space for the description of this experiment.

(b) Give the probability of occurrence of {1} to {6} in that experiment.

(c) Suppose we have observed the number “2” on the chosen die. Find the probability
that this die was the biased one.

Problem 2.9 (P.S. Laplace, 1774). Two urns U; and U, contain w; white and b, black balls
and w, white and b, black balls, respectively. Choose one of the two urns at random and
take out n balls without replacement. Among the n chosen balls, w are white and b are
black. Find a formula for the probability that we took off the balls from U;?

Find the numerical value for the likelihood of U; in the case that there are 8 white
and 7 black balls in U;, 5 white and 15 black balls in U,, and that we chose 6 balls, with 4
of them white, hence 2 black.

Problem 2.10 (P.S. Laplace, 1786). In an urn there are three balls which are known to be
either white or black. Choosing n balls with replacement, we observe that all of them
were white. How likely is it that 0, 1, or 2 of the three balls are black? How likely is it that
the next chosen ball, the (n + 1)th, is white as well?

Problem 2.11. Let A and B be two events in a probability space with P(4) > 0 and
P(B) > 0. Under which conditions, do we have
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P(A|B) = P(B|A) ?

Problem 2.12. Let A and B certain events in a probability space with P(B) > 0. Do we
have

P(AUB|B) =P(A) and/or P(ANB|B)=P(ANB)?

Give a proof or a counterexample.

Problem 2.13.
(@) Let (R, A,P) be a probability space. Suppose we are given events A, ...,A, with
P(A;N---NA,_q) > 0. Prove the following chain rule for conditional probabilities:

]P(Al ne-- ﬂAn) = ]P(Al)lp(AzlAl) R ]P(An|A1 nAz Ne-- ﬂAnfl).

Argue why all occurring conditional probabilities are well defined.

(b) Choose at random three numbers from 1 to 10 without replacement. Find the proba-
bility that the first number is even, the second one is odd, and the third one is again
even.

(c) Compare this probability with that of the following event: among three randomly
chosen numbers in {1, ..., 10}, there are exactly two even and one odd.

Problem 2.14. Three persons, say X, Y, and Z, stand randomly in a row. All orderings
are assumed to be equally likely. Event A occurs if Y stands on the right-hand side of
X while B occurs in the case that Z is on the right-hand side of X. Hereby, we do not
suppose that Y and X or that Z and X stand directly next to each other. Are events A and
Bindependent or dependent?

Problem 2.15. Prove the following generalization of part1in Proposition2.2.7.LetA € A
be an event with either P(A) = 0 or P(4) = 1. Then for any B € A4, the events A and B
are independent.

Problem 2.16. Let (Q, 4, P) be a probability space. Given independent events A4, ..., A,
in A, prove that

]P(UA]-> =1-[[(1-P@)). (2.23)
Jj=1 Jj=1

Usel-x <e™ x = 0, to derive from eq. (2.23) the following:
If independent events® A;, A,, ... satisfy Y721 P(4)) = oo, then P(U;Z 4)) = 1.

Problem 2.17. An electric circuit (see Fig. 2.1) contains four switches A, B, C, and D. Each
of the switches is independently open or closed (then electricity flows). The switches are

6 Compare with Definition 7.1.17: for each n € IN, the events A4, ..., A, are independent.
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open with probability 1 - p and closed with probability p. Here, 0 < p < 1is given. Find
the probability that electricity flows from the left to the right.

Figure 2.1: An electric circuit with four switches.

Problem 2.18. Let (Q,.4, P) be a probability space. Suppose A and B are disjoint events
with P(A) > 0 and P(B) > 0. Is it possible that A and B are independent?

Problem 2.19. Let A, B, and C be three independent events.

1. Show that A n B and C are independent as well.

2. Even more, show that the independence of A, B, and C implies that of the events
AUBandC.

Problem 2.20.

1. Suppose that A and C, as well as B and C, are independent. Furthermore, assume
AnB=0.Show that A U B and C are independent as well.

2. Give an example showing that the preceding assertion becomes false without the
assumption AN B = 0.

Hint: To construct such an example, because of Problem 2.19, the events A, B, and C
cannot be chosen to be independent. Therefore, the sets defined in Example 2.2.9 are
natural candidates for such an example.

Problem 2.21. Suppose P(A|B) = PP(A|B°) for some events A and B with 0 < P(B) < 1.
Does this imply that A and B are independent?

Problem 2.22. Isit possible that an event A is independent of itself? If yes, which events
A have this property? Similarly, which A are independent of A?

Problem 2.23. Let 4, B, and C be three independent events with
1
P(A) = P(B) = P(C) = 3
Evaluate

P((ANB)U(ANOQ)).



3 Random variables and their distribution

3.1 Transformation of random values

Assume the probability space (2, 4, IP) describes a certain random experiment, for ex-
ample, rolling a die or tossing a coin. If the experiment is executed, a random result
w € Q shows up. In a second step, we transform this observed result via a mapping
X : Q — R In this way we obtain a (random) real number X (w). Let us point out that X
is a fixed, nonrandom function from Q into R; the randomness of X(w) stems from the
input w € Q.

Example 3.1.1. Toss a fair coin, labeled on one side with “0” and on the other side with
“1,” exactly n times. The appropriate probability space is (Q, P(R), P), where Q = {0, 1}"
and P is the uniform distribution on Q. The result of the experiment is a vector w =
(W, ..., wy) With w; = 0 or w; = 1. Let X from Q to R be defined by

X(w):X(wl,...,(lJn):w1+...+wn_

Then X(w) tells us how often “1” occurred, but we do no longer know in which order this
happened. Of course, X(w) is random because, if one tosses the coin another n times, it
is very likely that X attains a value different from that in the first trial.

Here we state the most important question in this topic: how are the values of X
distributed? As we know, in this case X attains a value k < n with probability (})2™".

Example 3.1.2. Roll a fair die twice. The sample space describing this experiment con-
sists of pairs w = (wy, w,), where w;, w, € {1,...,6}. Now define the mapping X : @ —» R
by X(w) := max{w,, w,}. Thus, instead of recording the values of both rolls, we are only
interested in the larger one.

Other possible transformations are, for example, X;(w) := min{w;, w,} or also
X5(wq, Wy) := Wy + W,.

Let A € Abe an event. Recall that this event A occurs if and only if we observe an
w € A. Suppose now X : Q — Ris a given mapping from Q into R and let B € R be some
event. When do we observe an w € Q for which we have X(w) € B or, equivalently, when
does the event

{XeBl:={weQ:X(w) e B}

occur? To answer this question, let us recall the definition of the preimage of B with
respect to X as given in eq. (A.2):

X'(B) = {w e Q: X(w) €B}.

We observe an w € Q for which X(w) € Bifand only if w € X “1(B). In other words, the
event {X € B} occurs if and only if X (B) does. Consequently, the probability to observe

https://doi.org/10.1515/9783111325064-003
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an w € Q with X(w) € B should be P(X ’1(B)). But to this end, we have to know that
X ‘l(B) € A; otherwise P(X ~1(B)) is not defined at all. Thus, a natural condition for X is
X"Y(B) € A for “sufficiently many” subsets B < R. The precise mathematical condition
reads as follows.

Definition 3.1.3. Let (Q, A, P) be a probability space. Amapping X : Q — Ris called a (real-valued) ran-
dom variable (sometimes also random real number), provided that it satisfies the following condition:

Be B(R) alwaysimplies X7'(B) € A. 361

Verbally, this condition says that for each Borel set B € R, its preimage X~'(B) has to be an element of
the o-field A.

Remark 3.1.4. Condition (3.1) is purely technical and will not be important later on. But,
in general, it cannot be avoided, at least if A # P(Q). On the contrary, if 4 = P(Q), for
example, if either Q is finite or countably infinite, then every mapping X : @ — Ris
a random variable. Indeed, in this case the condition X 1(B) ¢ A is trivially always
satisfied.

Remark 3.1.5. In order to verify that a given mapping X : @ — R is a random variable,
it is not necessary to show X '(B) € A for all Borel sets B ¢ R. It suffices to prove this
only for some special Borel sets B. More precisely, the following proposition holds.

Proposition 3.1.6. A function X : @ — R is arandom variable if and only if, for allt € R,
we have

X (~0o,t]) = {w e Q: X(w) < t} € A. (3.2)

The assertion remains valid when we replace the intervals (—oo, t] with intervals of the
form (-0, t), or we may take intervals [t, co) and also (t, co).

Proof. Suppose first that X is a random variable. Given t € R, the interval (-oo, t] is a
Borel set, hence X ’1((—oo, t]) € A. Thus, each random variable satisfies condition (3.2).

To prove the converse implication, let X be a mapping from Q to R satisfying condi-
tion (3.2) for each t € R. Set

C:={CeBM):X(C) € Al.

In the first step, one p]roves1 that C is a o-field. Moreover, (3.2) implies (-co, t] € C for
each t € R. But B(R) is the smallest o-field containing all these intervals. Since C is
another o-field containing the intervals (—oo, t], it has to be larger? than the smallest one,
that is, we have C 2 B(R). In other words, every Borel set belongs to C or, equivalently,

1 Use Proposition A.2.1 to verify this.
2 By the construction of C, it even coincides with B(R).
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for all B € B(R) it follows that X ’1(B) € A. Thus, as asserted, X is a random variable.
The proof for intervals of the other types goes along the same lines. Here one has to use
that these intervals generate the o-field of Borel sets as well. O

Summary: Let (Q, A, P) be a probability space. A function X : Q — R is a random variable provided that it
satisfies the following (purely technical) condition: for any Borel set B € RR,

X"'(B)={weQ:Xw) eB} € A.
This is equivalent to the property that for all t € R one has

fwea:xw<t}eA.

3.2 Probability distribution of a random variable

Suppose we are given a random variable X : @ — R. We define now a mapping Py from
B(R) to [0,1] as follows:

Py (B) := P(X '(B)) = P{w € Q: X(w) € B}, BeB[R).

Observe that Py is well defined. Indeed, since X is a random variable, for all Borel sets
B c Rwe have X (B) € A, hence P(X"'(B)) makes sense.
To simplify the notation, given B € B(R), we will often write

P{X € B} = P{w € Q : X(w) € B}.

This is generally used and does not lead to any confusion. Having said this, we may now
define Py also by

Py(B) = P{X € B}.

A first easy example shows how Py is calculated in concrete cases. Other more interest-
ing examples will follow after some necessary preliminary considerations.

Example 3.2.1. Toss a fair coin, labeled on one side by “0” and on the other side by “17,
three times. The sample space is @ = {0,1}> with the uniform distribution P describing
probability measure. Let the random variable X on Q be defined by

X(w) := w1 + Wy + w3 Whenever w = (Wy, Wy, W3) € Q.
It follows that

Px({0}) = P{X = 0} = P({(0,0,0)}) = %
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Px({1}) = P{X =1} = P({(1,0,0),(0,1,0),(0,0,)}) =

ol w

| w

Px({2}) = PIX = 2} = P({(1,1,0),(0,1,1), (1,0, D}) =

PABD=MX=$=anLnD:%,

>

Of course, these values describe the distribution of X completely. Indeed, whenever
BCR,

3
Py(B) = ) Py({k}).

k=0
keB

For example, we have

3 1
+o==.
8 2

0| =

Px([-1,1]) = Px({0}) + Px({1}) =
So, with probability 1/2, we observe an w = (w;, w,, w3) for which
—1S0)1+(JJ2+0)3S1.

The proof of the next result heavily depends on properties of the preimage proved
in Proposition A.2.1.

Proposition 3.2.2. Let (R, A, P) be a probability space. For arandomvariableX : Q — R,
the mapping Py : B(R) — [0,1] is a probability measure.

Proof. Using property (1) in Proposition A.2.1, one easily gets
Py (0) = P(X(9)) = P(9) = 0,
aswell as
Py(R) = P(X '(R)) = P(Q) = 1.

Thus it remains to verify the g-additivity of IPy. Take any sequence of disjoint Borel sets
By, B,,... inR. Then also X '(B;), X '(B,), ... are disjoint subsets of Q. To see this, apply
Proposition A.2.1, which, if i # j, implies

X' B)nX'(B)=X"(B;nB)=X"(0)=0.

Another application of Proposition A.2.1 and of the g-additivity of P finally gives

]PX<}©1Bj> = ]P<X"1<]©1Bj>> = P(QX‘l(Bj)>
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(e8] 1 (e8]
=Y P(X7'(B)) = ) Px(B)).
Jj=1 J=
Hence, Py is a probability measure, as asserted. O

Definition 3.2.3. The probability measure Py on (R, B(R)) defined by
Py(B) = P(X'(B)) = P{w € Q: X(w) € B} =P{X € B}, B e B(R),

is called the probability distribution of X (with respect to IP) or, in short, the distribution of X.

Remark 3.2.4. The distribution Py is the most important characteristic of a random
variable X. In general, it is completely unimportant how a random variable is defined
analytically; only its distribution matters. Thus, two random variables with identical
distributions may be regarded as equivalent because they describe the same random
experiment.

Remark 3.2.4 leads us to the following definition:

Definition 3.2.5. Two random variables X; and X, are said to be identically distributed provided that
Py, = Py,. Hereby, it is not necessary that X; and X, be defined on the same sample space. Only their

NP _— P _ . d
distributions have to coincide. In the case of identically distributed X; and X, one writes X; = X .

Example 3.2.6. Toss a fair coin, labeled on each side by “0” or “1,” twice. Let X; be the
value of the first toss and X, that of the second. Then

]P{X1=O}=]P{X2=0}=%ZIP{X1=1}=]P{X2=1}.

Hence, X; and X, are identically distributed, or X; e X,. Both random variables describe
the same experiment, namely a single toss of a fair coin. Now, toss the coin a third time
and let X5 be the result of the third trial. Then we also have X; a X5, but note that X; and
X3 are defined on different sample spaces.

Next, we state and prove some general rules for evaluating the probability distri-
bution of a given random variable. Here we have to distinguish between two different
types of random variables, namely between discrete and continuous ones. Let us start
with the discrete case.

Definition 3.2.7. A random variable X is discrete provided there exists an at most countably infinite set
D c RsuchthatX: Q — D.

In other words, a random variable is discrete if it attains at most countably infinitely many different
values.
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Remark 3.2.8. If a random variable X is discrete with values in D ¢ R, then, of course,
Py(D)=P{X € D} =1.

Consequently, in this case its probability distribution Py is a discrete probability mea-
sure on R. In general, the converse is not valid as the next example shows.

Example 3.2.9. We model the experiment of rolling a fair die by the probability space
(R,P(R), P), where P({1}) = - -- = P({6}) = 1/6 and P({x}) = 0 provided that x # 1,...,6.
IfX : R — Ris defined by X(s) = s then, of course, Py is discrete. Indeed, we have
Py (D) =1, where D = {1,4,9,16, 25, 36}. On the other hand, X does not attain values in a
countably infinite set; its range is [0, co).

Remark 3.2.10. If we look at Example 3.2.9 more thoroughly, then it becomes immedi-
ately clear that the values of X outside of {1,...,6} are completely irrelevant. With a
small change of X, it will attain values in D. More precisely, let X(w) = 1ifw # 1,...,6
and X(k) =k*, k=1,...,6; then X 2 % and X has values in {1,4,9,16,25, 36}.

This procedure is also possible in general: if Py is discrete with Py (D) = 1 for some
countable set D, then we may change X to X such that X 4 Xand X : @ — D. Indeed,
choose some fixed d, € D and set X(w) = X(w) if w € X"'(D) and X(w) = d, otherwise.
Then Py = P; and X has values in D.

Convention 3.1. Without losing generality, we may always assume the following: if a
random variable X has a discrete probability distribution, that is, P{X € D} = 1for some
finite or countably infinite set D, then X attains values in D.

The second type of random variables we investigate is that of continuous ones.®

Definition 3.2.11. A random variable X is said to be continuous provided that its distribution Py is a
continuous probability measure. That is, IPy possesses a density p. This function p is called the density
function or, in short, the density of the random variable X.

Remark 3.2.12. One should not confuse the continuity of a random variable with the
continuity of a function as taught in Calculus. The latter is an (analytic) property of a
function, while the former is a property of its distribution. Moreover, whether or not
a random variable X is continuous depends not only on X, but also on the underlying
probability space.

Remark 3.2.13. Another way to express that a random variable is continuous is as fol-
lows: there exists a function p : R — [0, co) (the density of X) such that

t
PloeQ: X(w)<t}=P{X<t}= Jp(x)dx, teR,

3 The precise term would be “absolutely continuous”; but for simplicity let us call them “continuous.”
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or, equivalently, for all real numbers a < b,

b
lP{weQ:asX(w)sb}=IP{asXsb}=Jp(x)dx

a

How do we determine the probability distribution of a given random variable? To
answer this question, let us first consider the case of discrete random variables.

Thus, let X be discrete with values in D = {xy, Xy, ...} ¢ R. Then, as observed above,
it follows that Py (D) = 1, and, consequently, Py is uniquely determined by the numbers

pj = Px(ix}) =PX =x} =Plw € Q: X(w) = x5}, j=12, ... (3.3)
Moreover, for any B ¢ R it follows that

P{w € Q: X(w) € B} =Px(B) = z p;-

xeB

Consequently, in order to determine Py for discrete X, it completely suffices to deter-
mine the p;s defined by eq. (3.3). If we know (p;);.4, then the probability distribution Py
of X is completely described.

Remark 3.2.14. In the literature, quite often, one finds a slightly different approach for
the description of Py. Define p : R — [0,1] by

p(x) =P{X =x}, xeR. (3.4)

This function p is then called the probability mass function of X. Note that p(x) = 0
whenever x ¢ D. This function p satisfies p(x) > 0, Y, g p(X) =1, and

P{X € B} = z p(x).

X€EB
In this setting, the numbers p; in eq. (3.3) coincide with p(x;).

Example 3.2.15. Roll a fair die twice. Let X on {1,..., 6}* be defined by
X(w) =X(W, W) == W + Wy, ©=(W,w,).

Which distribution does X possess?
Answer: The very first question one has to answer is always about the possible val-
ues of X. In our case, X attains values in D = {2, ...,12}, thus it suffices to determine

]Px({k}) = ]P{X = k} = ]P{((Ul, (lJz) €Q ZX(U.)l, (lJz) = k}, k = 2,,12

One easily gets
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1,1 1
PﬂQD=PKMmm:M+wZ:ﬂ:HggHzga
Px({3}) = P{(wy, wy) : 0y + wy =3} = w _ %’

_ @6, _ 6

Px({7}) = P{(wy, wy) : Wy + wy =7} 36 36’

_HEOH _ 1

]Px({lz}) = ]P{(wl, (1)2) : UJl + CL)Z = 12} 36 36)

hence Py is completely described. For example, it follows that

1 2 3 1
]P{X < 4} = lpx((—OO, 4]) = IPX({Z}) + lpx({g}) + IPX({4}) = % + % + % = E .
Example 3.2.16. A biased coin is labeled on one side by “0” and on the other side by
“1”: for some p € [0,1], number “1” shows up with probability p, thus “0” appears with
probability 1 — p. We toss the coin n times. The result is a sequence w = (wy, ..., wy,),

where w; € {0,1}, hence the describing sample space is
Q=1{0,1}"={w=(w,...,0,) : w; € {0,1}}.

Fori < n,letX; : @ — Rbe defined by X;(w) := w;. That is, X;(w) is the value of the ith
trial. What distribution does X; possess?

Answer: In Example 1.9.13, we determined the probability measure P on P(Q),
which describes the n-fold tossing of a biased coin. This probability measure was given

by
n
P{w}) =p*A-p)" K, k= ij where 0 = (wy,...,w,) . (3.5)
=1

The random variable X; only attains the values “0” and “1.” Thus, in order to determine
Py, it suffices to evaluate ]PXI_({O}) = P{w € Q : w; = 0}. Let w € Q be a sequence with
w; = 0. Then it may contain the value “1” at most n — 1 times. Given k < n — 1, there are
exactly ("lgl) such sequences w with w; = 0 and with k times “1.” Therefore, we obtain

n-1

IPXi({O}):lP{weQ:wi:O}:Z]P{weQ:wi:O, Wi+ +w, =k}
k=0

-1y k n-k T -1y x n-1-k
= pA-p) " =(1-p) p (1-p)

> (") > (")
—A-pp+a-p"=1-p.

Of course, this also implies ]Pxi({1}) =p.
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Remark 3.2.17. Note that all Xj, ..., X), possess the same distribution, that is,

=

% ix

Example 3.2.18. Roll a fair die twice and let w; and w, be the results of the first and
second toss, respectively. Define the random variable X by

X(Wy, Wy) = W — Wy, wy,wy €f{l,...,6}.
In a first step, we observe that X has values in D = {0,...,5}. Hence, it suffices to deter-
mine Py ({k}) = P(X = k) for k = 0,...,5. Doing so, we easily get

1

Px({0}) = ¢ and Px({l})=%, IPX({S}):%,

Summary: LetX : Q — R be a discrete random variable. In order to describe its distribution Py, one has to
do two things:

(1)  Determine the finite or countably infinite set D c R for which P{X € D} =1.

(2) Foreachx € D, evaluate

IPx({X}) =PX=x}= ]P{w €0: X(w) = X}_
If B € IR, then it follows that

PiXeB= ) Py(ix})= ) PX=x.

XeBnD XxeBnD

How do we determine the probability distribution of a random variable if it is contin-
uous? For each x € R, P{X = x} = 0, hence the values of P{X = x} cannot be used
to describe Py as they did in the discrete case. Consequently, a different approach is
needed, and this approach is based on the use of distribution functions.

Definition 3.2.19. Let X be a random variable, either discrete or continuous. Then its (cumulative) dis-
tribution function F, : R — [0, 1] is defined by

Fy(®) = Py((-00,t]) =PX < t}, teR. (3.6)

Remark 3.2.20. Observe that for discrete and continuous random variables the distri-
bution function equals

t
Fy()=) p; and Fy(t) = J p(x) dx,

X<t

respectively. Here, in the discrete case, the x;s and p;s are as in eq. (3.3), while p denotes
the density of X in the continuous case.
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Furthermore, note that Fy is nothing else than the distribution function of the prob-
ability measure Py, as it was introduced in Definition 1.7.1. Consequently, it possesses all
properties of a “usual” distribution function as stated in Proposition 1.7.13.

Summary: Let X be arandom variable on a probability space (Q, A, IP). The probability measure Py defined
by

Py(B) =P{weQ:X(w) e B}, BeBR),
denotes the probability distribution of X and
KO =PlweQ:Xw) <t}, teR,

is its (cumulative) distribution function.

Proposition 3.2.21. Let Fy be defined by eq. (3.6). Then it possesses the following proper-
ties:

(1) The function Fy is nondecreasing.

(2) It follows Fx(—c0) = 0 as well as Fx(co) = 1.

(3) The function Fy is continuous from the right.

Furthermore, ift € R, then
P{X =t} = Fx(t) - Fx(t - 0).
In particular, if X is continuous, then Fy is a continuous function from R to [0, 1].

Remark 3.2.22. Note that the converse of the last implication does not hold. Indeed,
there exist random variables X for which Fy is continuous, but X does not possess a
density. Such random variables are said to be singularly continuous. These are exactly
those random variables for which the probability measure Py is singularly continuous
in the sense of Remark 1.7.20.

The next result shows that under slightly stronger conditions about Fy a density of
X exists.

Proposition 3.2.23. Let Fy be continuous and continuously differentiable with the excep-
tion of at most finitely many points. Then X is continuous with density p(t) = % Fx ().
Hereby the values of p may be chosen arbitrarily at points where the derivative does not
exist; for example, set p(t) = 0 for those points.

Proof. The proof follows from the corresponding properties of distribution functions
for probability measures. Recall that Fy is the distribution function of Py. O

The previous proposition provides us with a method to determine the density of a
given random variable X. Evaluate the distribution function Fy and differentiate it. The
obtained derivative is the density function we are looking for.
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The next three examples demonstrate how this method applies.

Example 3.2.24. Let P be the uniform distribution on a sphere K of radius 1. That is, for
each Borel set B € B(]RZ), we have
vol,(BNK) _ vol,(BNK)

P(B) = voL,(K) = 7«

Define the random variable X : R* — R by X (x;,X,) := x;. Of course, Fy(t) = 0 whenever
t < -1and Fyx(t) = 1when t > 1. Thus, it suffices to determine Fy(t) if -1 < t < 1. For
those t € R, we obtain

vol,(S; N K
Fx(t) = —2(; )

where S, is the half-space {(x;,x;) € R* : X, < t} (compare Figure 3.1).

t X9

s ||

T

S~

Figure 3.1: The gray shaded set represents the intersection between K and the half-space S;.

If |t| <1, then
t
voly(S; NK) =2 J V1-x%dx,
4
hence,
9 t
Fy(0) == jw—dex, <1,

-1

and by the fundamental theorem of Calculus, we finally get
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_d 2 5
p(t) = 3 Fx(0) = Vi-¢, |t <1.
Summing up, the random variable X has the density p with

2\1-¢ if|t| <1,
pt)=1" ) . (3.7
0 if [t] >1.

Example 3.2.25. The probability space is the same as in Example 3.2.24, but this time we
define X by

X0, Xp) = X +x2, (X)) € R,

Of course, it follows Fx(t) = 0if t < 0 while Fy(t) = 1if t > 1. Take ¢ € [0,1]. Then

_voL(K(®)  Prn

Ex(®) = vol,(K(1) 7

>

where K(t) denotes a sphere of radius ¢. Differentiating Fy with respect to ¢ gives the
density

) = 2t ifo<t<l,
P 0 otherwise.

Example 3.2.26. Let P be the uniform distribution on [0, 1] and define the random vari-
able X by X(s) = min{s,1 - s}, s € R. Find the probability distribution of X.
Answer: It is not difficult to see that

P{X<t}=0 ift<0 and P{X<t}=1 ift>1/2.
Thus it remains to evaluate Fy(t) for 0 < t < 1/2. Here we obtain

Fy(t)=P{X<t}=P{se[0,1]:0<s<torl-t<s<1}
=P{se[0,1]:0<s<t}+P{se[0,1]:1-t<s<1}=2t.

Differentiating gives Fy(t) = 2if 0 < t < 1/2 and Fy(t) = 0 otherwise. Hence Py is the
uniform distribution on [0, 1/2].

Summary: To determine the density of a continuous random variable, proceed as follows:
1. Evaluate (if possible) the distribution function Fy (t) = P{X < t}.
2.  Differentiate Fy. If the derivative p(t) = F)’((t) is piecewise continuous, then p is the desired density of X.
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3.3 Special random variables

We agree upon the following notation: a random variable X is said to be ABC-distributed
(or distributed according to ABC) if its probability distribution is a probability measure
of type ABC. For example, a random variable is said to be Bn,p-distributed (or distributed

according to B, ) if Py = B, ,, that is, if

PX = k} = <Z>pk(1—p)"_k, k=0,....n.

Remark 3.3.1. To shorten the notation, at a few places we also write X ~ ABC whenever
PPy is the probability measure ABC. So, for example, X ~ B, , tells us that

P{X = k} = B,,({k}), k=0,....n.

In this way, we define the following random variables of special type: X is
— uniformly distributed on {xq, ..., Xy} if

PUX =X} = = PX =xy} = 1,

—  Poisson distributed or Pois,-distributed if

)lk
PX=ki==—e?, k=0,1,...,
k!
—  hypergeometrically distributed if
MY (N-M
P{X =m} = M m=0,...,n,

- Gy-distributed or geometrically distributed if
PX=ki=p1-pt, k=12...,

- By ,-distributed or negative binomial distributed if

k-1 k-1 .
]P{X:k}:(k_n>p"(1—p)k ":(n_1>pn(1—p)k "ok=nmn+l...

or, equivalently, if

]P{X:n+k}:(_kn)p"(p—1)k, k=0,12,...

Remark 3.3.2. In view of Convention 3.1, we may suppose that all random variables of
the preceding type are discrete. More precisely, we even may assume that X has values in
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the (at most countably infinite) set D with P (D) = 1. For example, if X is B, ,-distributed,
we may suppose that X has values in {0,...,n}.

In quite similar way, we denote specially distributed continuous random variables.
A real-valued random variable X is said to be

— uniformly distributed on [a, 8] if Py is the uniform distribution on [a, f]. That is, if
[a,b] < [a, B], then

]P{asXsb}zb_—a,

S

— normally distributed or N (i, 0*)-distributed if

b

Pla<X <b}= % Je—(x—u)z/z& dx,
a

—  standard normally distributed if it is A/(0, 1)-distributed, that is,

b
]P{asXsb}zx/%je‘xz/de,
JT
a

— gamma distributed or Fa,ﬁ-distributed iffor0<a<b < oo,

b

L j Xﬁ71 efx/adx ,
ITp) )

P{a<X <b}=

—  E,-distributed or Erlang distributed if it is I';-1 -distributed, that is, whenever
0<a<b<oo,then

b

n
Pla<X <b}= (n)i i Jx"’le’Ade,
’ a

or if, equivalently, for any ¢ > 0,
PIX >t} = Z (’W

— E,-distributed or exponentially distributed if for 0 < a < b < o0,

b
Pla<X <b}=2 Je’Axdx:e’Aa—e’Ab,

a
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— arcsine distributed if, given0 <a < b <1,

b
Pla<X<bh}= 1 J 1 dx = E[arcsin(\/ﬁ) - arcsin(va)] .
Vs 2 x(1-x) Vs
—  Cauchy distributed if
Pla<X <b}= 1 J dX2 = 1[arctanb— arctanaj .
T ; 1+x Vs

Remark 3.3.3. If a random variable X possesses a special distribution, then all proper-
ties of Py carry over to X. For example, in this language we may now formulate Poisson’s
limit theorem (Proposition 1.4.29) as follows.

Let X, be B, , -distributed and suppose thatnp, — 1> 0asn — co. Then

rllLIEOP{ank}zP{X=k}, k=0,1,...,

where X is Pois,-distributed.
Or if X is gamma distributed, then P{X > 0} = Px((0, 00)) = 1, and so on.

Remark 3.3.4. A common question is how does one get a random variable X possessing
a certain given distribution. For example, how do we construct a binomial or a normally
distributed random variable? Suppose we want to model the rolling of a die by a random
variable X, which is uniformly distributed on {1,..., 6}. The easiest solution is to take
Q ={1,...,6} endowed with the uniform distribution P and define X by X(w) = w. But
this is not the only way to get such a random variable. One may also roll the die n times
and choose X as the value of the first (or of the second, etc.) roll. In a similar way, random
variables with other probability distributions may be constructed. Further possibilities
to model random variables will be investigated in Section 4.4.

Summary: There are two ways to model a random experiment. The classical approach is to construct a
probability space that describes this experiment. For example, if we toss a fair coin n times and record the
number of “heads,” then this may be described by the sample space {0, ..., n} endowed with the probability
measure B, ;,,. Another way to model a certain random experiment is to choose a random variable X so that
the probability of the occurrence of an event B € R equals IP{X € B}. For example, the above experiment of
tossing a coin may also be described by a binomial random variable X (with parameters n and 1/2).

3.4 Random vectors

Suppose we are given n random variables X, ..., X,, defined on a sample space Q. Our
objective is to combine these n variables into a single variable. More precisely, we will
investigate the following type of vector-valued mappings.
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Definition 3.4.1. Let X be a mapping from Q — R” represented as
X) = (4W),.... 5, w), weQ.

Then, X is said to be an (n-dimensional) random vector or vector valued random variable, provided
that each of the X;s is a (real-valued) random variable. The random variables X;,1 < j < n, are called the
coordinate mappings of X.

Instead of X, we may also write (Xj,...,X),), that s,
Xy LX) (W) = (X (W), .. X (W), weQ.

A random vector X maps Q into R", that is, we assign to each observed w € Q a vector
X(w). The mapping X is again fixed and nonrandom. The randomness of X (w) is caused
by the input.

Example 3.4.2. Roll a die two times. Let X; be the maximum value, X, the mini-
mum, and X; the sum of both rolls. The three-dimensional vector X = (X;, X,, X;) maps
Q ={1,...,6}* into R®. For example, the pair (2,5) is mapped to (5,2,7) or the image of
(5,6) s (6,5,11).

Example 3.4.3. Suppose there are N people in an auditorium. Enumerate them from 1
to N and choose one person according to the uniform distribution on {1, ..., N}. Say we
have chosen person k. Let X; (k) be the height of this person and X, (k) his or her weight.
As a result, we get a random two-dimensional vector (X;,X,) mapping k to the vector
(X, (k), X,(k)) in R%.,

Example 3.4.4. We place n balls into m urns successively. Hereby, each urn is equally
likely. If X; denotes the number of balls in urn j, then we get an m-dimensional vector
X = (X,,...,X,,). Observe that the values of X lie in the set

D:{(kl,...,km)Ik1+"'+km:n}gNBn.

Remark 3.4.5. The preceding examples suggest that the values of the coordinate map-
pings depend on each other. For instance, in Example 3.4.3 larger values of X; make also
those of X, more likely, and vice versa. A basic aim of the following sections is to confirm
this guess, that is, we want to find a mathematical formulation that describes whether
or not two or more random variables are dependent or independent.

Summary: Let (Q, A, ) be a probability space. A mapping X : Q — R" is said to be an (n-dimensional)
random vector if)?(w) = (X1(w), ..., X,(w)) with random variablesz Q- R
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3.5 Joint and marginal distributions

The values of the vector X are randomly distributed in R". Consequently, as in the case
of random variables, events of the form {X’ € B} occur with certain probabilities. But, in
contrast to the case of random variables, the event B is now a subset of R", not of R as
before. More precisely, for events B ¢ R", we are interested in the following quantity:*

Plw e Q: X(w) € B} = Plw € Q: (X;(w),...,X,(w)) € B}. (3.8)
The next definition gives the exact formulation of the problem.

Definition 3.5.1. Let X : O — R” be a random vector with coordinate mappings X;,. .., X,. For each
Borel set B € B(R"), we set

P;(B) = Py, _x)(B) = P{X € B}. 3.9)

The mapping PPy, from B(R") into [0, 1] is said to be the probability distribution, or, in short, the distri-
bution of X. Often, Py = Px,,..x,) Will also be called the joint distribution of X;, ..., X,.

In eq. (3.9), we used the shorter expression
P{X € B} = P{w € Q: X(w) € B}.
As for random variables, the following is also valid in the case of random vectors.

Proposition 3.5.2. The mapping Py is a probability measure defined on B(R").

Proof. The proof is completely analogous to that of Proposition 3.2.2. Therefore, we de-
cided not to present it here. O

Let us evaluate IP;(B) for special Borel sets B ¢ R".If Qis a box in R" as in eq. (1.73),
that is, for certain real numbers a; < b; we have

Q=1lag, b] x---x[aybyl,
then it follows that
P:(Q) =P{X € Q} =P{w € Q:a; < X)(w) <by,...,a, < X, (W) < by}
The later expression may also be written as

Pla; <Xy <by,...,a, <X, <b,}.

4 TFor random vectors X and B € B(R"), it follows that X ’1(B) € A. This can be proved by similar
methods as we used in the proof of Proposition 3.1.6. Thus, if B € B(R"), then eqs. (3.8) and (3.9) are well
defined.
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Hence, for each box Q = [ay, b;] x - -- X [a,, b, ], we obtain
P3(Q) =Pla; <Xy <by,...,a, < X, < by}

Thus the quantity P;(Q) is the probability of the occurrence of the following event: X;
attains a value in [a;, b, ], and at the same time X, attains a value in [a,, b,], and so on up
to X,, attains a value in [a,, b,].

Example 3.5.3. Roll a fair die three times. Let X;, X,, and X; be the observed values in
the first, second, and third roll. If Q = [1,2] x [0,1] x [3,4], then

P4(Q) = P{X; € {12}, X, = 1, X; € {3,4}} = %.

Remark 3.5.4. The previous considerations can easily be generalized to sets B ¢ R" of
the form B = By x --- x B, with B; € B(R). Then

P3(B) = P{X; € B,..., X, € B} (3.10)
Next we introduce the notion of marginal distributions of a random vector.

Definition 3.5.5. Let X = (X;,...,X,) be a random vector. The n probability measures Py, to Py are
called the marginal distributions of X.

Observe that each marginal distribution IP X, is a probability measure on B(IR), while the
joint distribution Py  is a probability measure defined on B(R").

In this context, the following important question arises: does the joint distribution
determine the marginal distributions and/or can the joint distribution be derived from
the marginal ones?

The next proposition gives the first answer.

Proposition 3.5.6. Let X = (X,,...,X,) be a random vector. If 1<j <n and B € B(R), then
]PX](B) = ]P(Xl,...,Xn)(]RX e X _]B;_’X e X ]R) .

In particular, the joint distribution determines the marginal ones.

Proof. The proof is a direct consequence of formula (3.10). Let us apply it to B; = R if
i#jand Bj = B. Then, as asserted,

]P(Xl,n_xn)(IRxmx_demx]R)
j

:]P{Xle]R,...,XjeB,...,Xne]R}:]P{XjeB}:]PXj(B). O

The question whether or not the marginal distributions determine the joint distri-
bution is postponed for a moment. It will be investigated in Example 3.5.8 and, more
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thoroughly, in Section 3.6. Before, let us derive some concrete formulas to evaluate the
marginal distributions. Here we consider the two cases of discrete and continuous ran-
dom variables separately.

3.5.1 Marginal distributions: discrete case

To make the results in this subsection easier to understand, we only consider the case of
two-dimensional vectors. That is, we investigate two random variables and show how
their distributions may be derived from their joint one. We indicate later on how this
approach extends to more than two random variables.

In order to avoid confusing notations with many indices, given a two-dimensional
random vector, we denote its coordinate mappings by X and Y and not by X; and X,.
This should not lead to mix-ups. Thus, we investigate the random vector (X, Y) with joint
distribution Py y, and marginal distributions Py and IPy. This random vector maps Q
into R? and acts as follows:

X.V)(w) =Xw),Yw), weQ.

Suppose now that X and Y are discrete. Then, there are finite or countably infinite sets
D = {x;,Xy,...} and E = {y,y,,...}suchthatX : @ - DaswellasY : Q — E. Con-
sequently, the vector (X,Y) maps  into the (at most countably infinite) set D x E ¢ R
Observe that

DxE={(y):5j=12,...},
hence PPy y, is discrete as well and uniquely described by the numbers
Pj = P y({0eyp}) =PX =x, Y =y}, 0j=12, ... (3.11)
More precisely, given B ¢ R%, we have

Pyy)(B) =P{X,Y)eBl= >  py.
{(@):(x;y;)€B}

We turn now to the description of the marginal distributions Py and Py. These are
uniquely determined by the numbers

qi = Py({x}) = P{X =x;} and r;:=Py({y;}) = P{Y = y;}. (3.12)
In other words, if B, C € R, then it follows that

Py(B)=P{X €B}= ) ¢ and Py(C)=P{YeCl= ) 1.
{i:x;eB} {j:yjeC}
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The next proposition is nothing else than a reformulation of Proposition 3.5.6 in the
case of discrete random variables.

Proposition 3.5.7. Let the probabilities py, q;, and r; be defined by eqs. (3.11) and (3.12),
respectively. Then the q;s and r;s may be evaluated by the following equations:

) (]
qi=Yp; fori=12... and r;=)p; forj=12, ...
J=1 i=1

Proof. As already mentioned, Proposition 3.5.7 is a direct consequence of Proposi-
tion 3.5.6. But for better understanding, we prefer to give a direct proof.
By virtue of the g-additivity of IP, it follows that

qi=PX=x}=P{X=x,YecE} = IP{X =X;Y € G{yj}}
j=1

Y PX=xY el =Y P =x,Y =y} = p;.
j=1 j=1 j=1

This proves the first part. The proof for the r;s follows exactly along the same line. Here,
one uses

R=P{Y=y}=PXeDY=y}=)PX=x,Y =y} =) pj.
i=1 i=1

This completes the proof. O

The equations in Proposition 3.5.7 may be represented in table form as follows:

YX | xq X Xx3 ...

Yr |Pn Pn Pn --- |1

Y2 | P2 P2 P32 ---| T2

Y3 | D13 Pz P33 ---| T3
GG 9@ 9 ---|1

The entries in the above matrix are the corresponding probabilities. For example, the
entry ps, is put into the row marked by x; and into the column where one finds y, on
the left-hand side. This tells us ps, is the probability that X attains the value x; and, at
the same time, Y equals y,. On the right and in the lower margins,’ one finds the cor-
responding sums of the columns and of the rows, respectively. These numbers describe
the marginal distributions (that of X at the bottom and that of Y in the right margin).

5 This explains the name “marginal” for the distribution of the coordinate mappings.
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Finally, the number “1” at the right lower corner says that both the right column and
bottom row have to add up to “1.”

Example 3.5.8. There are four balls in an urn, two labeled with “0” and another two
labeled with “1.” Choose two balls without replacing the first. Let X be the value of the
first ball and Y that of the second. Direct calculations (use the law of multiplication) lead
to

PIX=0,Y=0}=-, PX=0Y=1}=

>

PX=1Y=0l=>, PX=1Y=1=

Wik o =
[SpY NSO

In tabular form, this result reads as follows:

"X |0 1
1 1 1
0 1§ 3|2
1 1 1
1 15 5]z
1 1
3 2|1

Now suppose that we replace the first ball. This time we denote the values of the first
and second ball by X’ and Y’, respectively. The corresponding table may now be written
as follows:

Y\’ | 0 1
1 1 1
0 i1z
1 1 1
1 i 1|3
1 1
3 3] 1

Let us look at Example 3.5.8 more thoroughly. In both cases (nonreplacing and re-
placing), the marginal distributions coincide, that is, Py = Py and Py = Py.. But, on
the other hand, the joint distributions are different, that is, we have Py y) # Py yr).

Conclusion. The marginal distributions do not, in general, determine the joint distribu-
tion. Recall that Proposition 3.5.6 asserts the converse implication: The marginal distri-
butions can be derived from the joint distribution.

Example 3.5.9. Roll a fair die twice. Let X be the minimum value of both rolls and Y the
maximum. Then, ifk,I =1,...,6, it is easy to see that

0 ifk>1

PX=kY=0U=1x ifk=1

& ifk<l

>
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Hence, the joint distribution in table form looks as follows:

Y\X 2 3 4 5 6
1 1
1 |[&£ 0 0 0 0 0 |
1 1 3
2 |4 L 0o 0 0 0 |2
1 1 1 5
3 |2 L L o0 o0 |2
1 1 1 1 7
4 g 5 58 % 0 0 |x%
1 1 1 1 1 9
5 |5 5 ® ® 3 O |3
6 |1 1 1 1 1 1 |1
18 18 18 18 18 36 36
nos 7 5 3 1 |4
36 36 36 36 36 36

If, for example, B = {(4,5),(5,4),(6,5),(5,6)}, then the values in the table imply
Px y)(B) = 1/9. In the same way, one gets P{2 < X < 4} = (9 +7 + 5)/36 = 7/12.

To finish, we shortly go into the case of more than two discrete random variables.
Thus, let X, ..., X}, be random variables with Xj Q- Dj, where the sets Dj are either
finite or countably infinite. The set D defined by

D=Dyx--xDy={(x,...,X,), X; € Dj}

is at most countably infinite and X : @ — D. Consequently, IP; is uniquely described by
the probabilities

Pxox, = P{Xy = Xp,.. . X =X}, X €D

Proposition 3.5.10. For1<j<nandx ¢ D;,

IP{X] =x}= Z Z Z x;) pxl,...,)g_l,x,xjﬂ,...,xn~

X,€Dy Xj-1€Dj_1 Xj1€D)11
Proof. The proof is as that of Proposition 3.5.7. Therefore, we omit it. O

Next, we want to state an important example that shows how Proposition 3.5.10
applies. To do so we need the following definition.

Definition 3.5.11. Let n and m be integers with m > 2 and let p;, . .., p,, be certain success probabilities
satisfyingp; > 0and py +---+p,,, = 1. An m-dimensional random vectorX = (X, ..., X,,) has multinomial
distribution with parameters n and p, ..., p, if, whenever k; + --- + k,, = n,

n
P =k, ..., Xy = m}=(k1 k )pl1(1"'pfrrv"'
so0oahi

Equivalently, a random vector X has multinomial distribution if and only if its probabil-
ity distribution P is a multinomial distribution as introduced in Definition 1.4.16.
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Remark 3.5.12. The m-dimensional random vector X in Example 3.4.4 is multinomial
distributed with parameters n and p; = 1/m. That means

n

n 1
P{Xlzkl,...,Xm: m}:(kl k ><—> > k1+"'+km:n.
> >m

m
Example 3.5.13. Let X : @ — R" be a multinomial random vector with parameters n
and py,...,p,,. What are the marginal distributions of X?

Answer: To simplify the calculations, we only determine the probability distribu-
tion of X,,. The other cases follow in the same way. First note that in the notation of
Proposition 3.5.10,

k K s
. ~ (kl’“’.l’km)pl1 coepgn ik 4+ ky =0,
Kypeooski = .
' 0 ifky +--+kp £ 0

P{X,, =k} = z e Z Diyy ke ok
kq=0 kin-1=0
n! K Kops K
= —pt---p "D
k1+...+;§71:n7k kil kgt k! 1 m-1F'm
— n! k (n - k)' K Kpq
K (Tl—k)!pm Z Kl ko o! P1 Py

ki+-+ky,_1=n-k

o,

Ky 44k =n—k +o> K

n _ n _
= (k)pﬁ Pr+- 4 D) = (k)pfn 1-p)" .

Hereby, in the last step, we used the multinomial theorem (Proposition A.3.20) with m-1
summands, with power n - k and entries p, ..., pp_1- Thus X, is binomial distributed
with parameters n and p,,. In the same way, one gets that each X; is Bn’p]_-distributed.

Remark 3.5.14. The previous result can also be seen more directly without using Propo-
sition 3.5.10. Assume we place n particles into m boxes, where p; is the probability to put
a single particle into box j. Fix some j < m and let success occur if a particle is placed
into boxj. Then X; equals the number of successes, hence it is Bn)p}_-distributed. Note that
failure occurs if the particle is not placed into box j, and the probability for this is given

byl-p;= Z%}_ p;-

Summary: Let (x;);»1 and (y;);=1 be the values of the (discrete) random variables X and Y, respectively. If the
joint distribution of (X, Y) is given by

p// = IP(X)V)({(X;,}//')}) = ]P{X =X[,Y :yf}’ /,j =12,...,
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then the marginal distributions are described by

g =Py({x}) =PX=x}=>p; and r=P,({y}) =P =y}=) p;.
= in

3.5.2 Marginal distributions: continuous case

Let us turn now to the continuous case. Analogous to Definition 3.2.7, a random vector is
said to be continuous whenever it possesses a density.® More precisely, we suppose that
a random vector shares the following property.

Definition 3.5.15. A random vector X = (X;,...,X,) is said to be continuous if there is a function p :
R" — R such that, for all numbers a; < b;, 1 <j < n,

by by
Pla, <Xy < by,...,0, <X, < by} = JJ PXq5 ... X)) dX, - dxq
o an

An equivalent formulation is: for all real numbers ¢;,..., t,, one has

4 t,
]P{Xlgtl"'-’XnStn}: J‘ J p(Xl,...,Xn)an'“Xm.

The function p is called the density function of X or the joint density of X;, ..., X,,.

Remark 3.5.16. Observe that a random vector X is continuous if and only if its prob-
ability distribution Py is such, that is, the joint distribution of X;, ... X, is a continuous
probability measure on B(R") in the sense of Definition 1.8.5. Moreover, its density func-
tion coincides with the density of P.

In the case of continuous random variables, the marginal distributions are evalu-
ated by the following rule.

Proposition 3.5.17. If a random vector X = (X,, ..., X,) has density p : R" — R, then for
eachj < n the random variable X; is continuous with density

(o] (0]

pi(x) = J J (e X1 X Xys - YW -+ Qg G g -+ g (3.13)
—00 —00
n-1 integrals

6 The following is true: for continuous random variables, the generated vector possesses a density. The
proofis far outside the scope of this book. Furthermore, we do not need this assertion because we assume
X to be continuous, not the X;s.



3.5 Joint and marginal distributions = 155

Proof. Fix an integerj < n. An application of Proposition 3.5.6 implies

IPX/'([a’b]):]PX(RX"'X[_aLd]X"'X]R)

J

0 b 0
= J J J p(X1>~-~an)an"‘dX1
& o
j

: J PC s Xjo1 Xp Xjygs - )X -+ AXyg AXg g - - dXg | dg

with p; defined by eq. (3.13). The interchange of the integrals was justified by Fubini’s
theorem (Proposition A.5.5); note that p is a density, hence it is nonnegative. Since the
preceding equation holds for all real numbers a < b, the function p; has to be the density
of Py. This completes the proof. O

Inthe case n = 2, formula (3.13) asserts the following. Let p : R?> — R be the joint density of the 2-dimensional “
vector (X, X,). Then the functions p; and p, defined by

(o) (o)
pi(xy) = J pix,x)dx; and  par(xp) = J p(x, %) dxq
(&) (o)

are densities of X; and X,, respectively.

Remark 3.5.18. Another way to formulate Proposition 3.5.17 is as follows: if the function
p: R" > Ris a joint density of X = (X;,...,X,), then p;,...,p, defined in eq. (3.13) are
densities of the random variables X;, . .., X,,, respectively.

Example 3.5.19. Choose by random a point x = (X, Xy, X3) in the unit ball of R®. How are
the coordinates x;, X,, and x5 distributed?
Answer: Let X = (X;, X, X;) be uniformly distributed on the unit ball

2.2, 2
K = {(X1; X0, X3) : X1 + X5 + X3 < 1}.

Then the joint density is given by’

7 Recall that vol3(K) = %ﬂ,
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3 .
p(x) = a” ifx € K,
0 ifx¢K.

An application of Proposition 3.5.17 leads to p;(x;) = 0 whenever |x;| > 1and, if [x;| <1,
then it follows that

3 3 3
p1(xy) = ype ” dxydxs = E(l—xf)” = Z(l—xf

2432 1 y2
Xy +X3<1-x7

).
Hence, X; has the density (compare Figure 3.2)

31_&% if _
pl(s):{4(1 9 if-1<s<1, 310

0 otherwise.

Of course, by symmetry, X, and X; possess exactly the same distribution densities.

-1.5 . . 0.5 1.0 15

Figure 3.2: The density p; defined by eq. (3.14).

Example 3.5.20. Suppose the two-dimensional random vector (X;, X,) has the density p
defined by?

8xix, f0<x <x<1,
P4, Xp) = (3.15)

otherwise.

Then, the density p; of X; is given by

0o 1
pi(x) = J plxy, Xp) dxy = 8xp szdxz —4(x-x), 0<x<1,
(ee]

X1

and p;(xq) = 0if x; ¢ [0,1].

8 Check that p is indeed a probability density.
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In the case of p,, the density of X,, it follows that

o0 Xy
pz(Xz): J‘ p(Xl,Xz)dX1:8X2 jX1dX1:4X§, 0SX2S1,
—00 0

and py(x,) = 0if x, ¢ [0,1]. See Figure 3.3 for the joint density of the random vector
(X3,X,) and its marginal distributions.

1.0 0.2 0.4 0.6 0.8 1.0

Figure 3.3: The two-dimensional density p defined by eq. (3.15) with marginal densities p; and p,.

Remark 3.5.21. Forp; : R —» Rand p, : R — R as in Example 3.5.20, define p : R> > R
by

PO, Xp) = p(x) - Pa(Xg),  (xp,Xp) € R,

In view of Proposition 1.8.8, the function p is a (two-dimensional) density and, moreover,
as can be seen easily, its marginal distributions are p; and p, as well. But note that p # p.
Thus, this is another example showing that the marginal distributions of a random vec-
tor do not determine its joint distribution.

Summary: LetX = (X;,...,X,) be arandom (n-dimensional) vector. The probability distribution PP; on B(R")
is said to be the joint distribution of Xy, ..., X, while the probability measures Py, 1 < j < n, denote the
marginal distributions of X. The joint distribution determines the n marginal distributions. In general, the
converse implication does not hold.

3.6 Independence of random variables

The central question considered in this section is as follows: when are n given random
variables independent? Surely everybody has an intuitive idea about the independence
or dependence of random values. But how do we express this property by a mathemat-
ical formula? Let us try to approach a solution of this problem with an example.
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Example 3.6.1. Roll afair die twice and define the two random variables X; and X, as the
results of the first and second roll, respectively. These random variables are intuitively
independent of each other. But what property of these random variables does this ex-
press? Take two subsets By, B, < {1,...,6} and look at their preimages A; = X; 1(B,) and
A, = X;(B,). Then A, occurs if the first result belongs to B; while the same is true for
A, whenever the second result belongs to B,. For example, A; might indicate that the
first result is an even number while A, could occur if the second result equals “4.” The
basic observation is that no matter how B; and B, were chosen, the occurrence of their
preimages A; and A, only depends on the first or second roll, respectively. Therefore,
they should be independent (as events) in the sense of Definition 2.2.2, that is, the fol-
lowing equation should hold:

P{X, € B, X, € By} = P(X;'(B)) N X;'(B,)) = P(4; N Ay)
= P(4,) - P(4y) = P(X;(By)) - P(X; (B,)) = P{X; € B;} - P{X, € By}.
This observation leads us to the following definition of independence.

Definition 3.6.2. LetX;,...,X, be n random variables mapping Q into R. These variables are said to be
(stochastically) independent if, for all Borel sets B CR,

P, €8B,,...,X, € By} = P{X; € By}---P{X, € B,}. (3.16)

Remark 3.6.3. By virtue of Remark 3.5.4, eq. (3.16) may also be written as
]P(X],---,Xn)(Bl XX Bn) = IPX] (Bl) e IPX"(BH) , B] € B(]R) .

Before proceeding further, we shortly recall Corollary 1.9.9.

Corollary 3.6.4. Given n probability measures P,,...,P, defined on B(R), there exists
a unique probability measure P on B(R"), the product measure, which is denoted by
P =P;®---®P,, such that for all Borel sets B; C R,

P(By x -+ x By) = Py(By) - Py(By). (317)

Now, we are prepared to state the characterization of independent random vari-
ables by properties of their distributions.

Proposition 3.6.5. The random variables X;, ..., X, are independent if and only if their
joint distribution coincides with the product probability of the marginal distributions.
That is, if and only if

]P(Xl’"-’Xn) = IPX1 ®:---® ]PXn .

Proof. In view of Corollary 3.6.4, the product probability P of Py, ..., Py is the unique
probability measure on B(R") satisfying
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P(B; x -+ x B,) = Py (By)--- Py (By), BjeB(R).
On the other hand, by Remark 3.6.3, the X]-s are independent if and only if
P, . x,)B1 % xBy) =Px (By)---Px (B,), BjeBR). (3.18)
Consequently, eq. (3.18) holds for all Borel sets B; if and only if Py x  is the product

probability Py ®---® Py . This completes the proof. O

Corollary 3.6.6. If X;,..., X, are independent, the joint distribution Py x  is uniquely
determined by its marginal distributions Py, ..., Py .

Proof. Proposition 3.6.5 asserts that Py, x ) = Px, ®--® Py . Hence, the joint distribu-
tion is uniquely described by the marginal ones. O

Another application of Proposition 3.6.5 deals with the existence of independent
random variables possessing given distributions.

Proposition 3.6.7. Let IP,,..., P, be given probability measures on the real line, discrete
or continuous. Then there is a probability space (2, A, P) and there are independent ran-
dom variablesz : Q — R such that ]ij =P, 1 <j < n. In other words, for all Borel sets
By,...,B, we have

IP{Xl € Bl’ e ,Xn € Bn} = IP{Xl € Bl} te ]P{Xn € Bn}‘ = ]P1(B1) e IPH(BH) .

Proof. Choose Q = R" and endow it with the probability distribution (product measure)
P =P, ®---®P,. Next we define random variables X; : R" — Rby

X]-(w)zX]-(wl,...,wn):w]-, l<j<n.

Thus, X = (Xj,...,X,) is the identity, hence P; = IP. Consequently, Proposition 1.9.10
implies ]PX]_ =P 1 <j < n, and, moreover, by the choice of PP it follows that

IP(XD...,X,[) = ]PX = ]P:]P1®"'®]Pn :]PX1 ®"'®]PX,[.
So, in view of Proposition 3.6.5 the random variables X; up to X, are independent, as
asserted. O

Example 3.6.8. Suppose we want to construct n independent Pois,-distributed random
variables X; up to X,,. To do so, choose Q = INj endowed with the product measure P of
n different Pois, measures. That is,

Ak1+~--+kn

]P({k}) = WE_M, I} = (kl,...,kn) € ]Ng
! !

Then the random variables X; : @ — N; with
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Xi(k) =k, k=(ky....k,) € Ny,

are the independent n random variables distributed according to Pois;.

The next proposition clarifies the relation between the properties “independence of
events” and “independence of random variables.” At a first glance, the assertion looks
trivial or self-evident, butitis not at all. The reason is that the definition of independence
for more than two events, as given in Definition 2.2.12, is more complicated than in the
case of two events.

Proposition 3.6.9. The random variables X, ..., X, are independent if and only if for all
Borel sets By, ..., B, in R the events

X;'(By),.... X, (By)

are stochastically independent in (Q, A, P).

Proof. When are X; 1(B1), Xy 1(Bn) independent? According to Definition 2.2.12, this
holds if for all subsets I < {1,...,n},

P(ﬂXi_l(Bi)> =[x '®). (3.19)
iel iel
On the other hand, by Definition 3.6.2, X, ..., X,, are independent if
n
lP(ﬂXi_l(Bi)> =P{X, €B,,...,X, € B,}
i=1

=[[pix;i e B} = [ P(x'(B)). (3.20)

n
=1 i=1

Of course, eq. (3.19) implies eq. (3.20); use eq. (3.19) with I = {1,...,n}. But it is far from
clear why, conversely, eq. (3.20) should imply eq. (3.19). As we saw in Example 2.2.10, for
fixed sets B; this is even false. The key observation is that eq. (3.19) has to be valid for all
Borel sets B;. This allows us to choose the Borel sets in an appropriate way.

Thus let us assume the validity of eq. (3.20) for all Borel sets in R. Given B; € B(R)
and a subset I of {1,..., n}, we introduce “new” By, ..., B, as follows: B; = B; if i € I and
B; = Rifi ¢ I. This choice of the B; implies X; !(B!) = Q whenever i ¢ I. An application
of (3.20) to Bj, ..., B} leads to (recall X;'(B}) = Qif i ¢ I)

p(Nx @) - P(ﬁx;l(BD) - TTPes e) = [TP(x " 5,).

This proves eq. (3.19) for any subset I of {1,...,n}. So, X; 1(B1), X, 1(Bn) are indepen-
dent as asserted. O
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Remark 3.6.10. To verify the independence of X, ..., X, it is not necessary to check
eq. (3.16) for all Borel sets B;. It suffices if this is valid for real intervals [a;, b;]. In other
words, Xj, ..., X, are independent if and only if, for all aj < b]-,

Pla; <Xy <by,...,a, <X, < by} =Play <Xy <by}---Pla, <X, <b,}.

Furthermore, it also suffices to choose the Borel sets as intervals (—co, tj] for G eR, ie.,
Xy,..., X, are independent if and only if, for all ¢ € R,

]P{Xl < tl""’Xn < tn} :IP{Xl Stl}IP{Xn Stn}

3.6.1 Independence of discrete random variables

As in Section 3.5.1, we restrict ourselves to the case of two random variables. The exten-
sion to more than two variables is straightforward and will be shortly considered at the
end of this section. We use the same notation as in Section 3.5.1. That is, the two random
variables are denoted by X and Y, and they map Qinto D = {xq,Xy,...} and E = {y,ys,...},
respectively. The joint distribution of (X, Y), as well as the marginal distributions, that
is, the distributions of X and Y, are described as in eqs. (3.11) and (3.12) by

pl] =P{X = Xi» Y :yj} > g = P{X = Xi}’ and r‘j =P{Y Zy]} .

With these notations the following result is valid.

Proposition 3.6.11. For the independence of two random variables X and Y, it is necessary
and sufficient that

piqu,-J”j, 1Sl,J<OO

Proof. The assertion is an immediate consequence of Propositions 1.9.11 and 3.6.5. But,
because of the importance of the result, we give an alternative proof avoiding the direct
use of product probabilities; only the techniques are similar.

Let us first show that the condition is necessary. Therefore, choose indices i and j,
and put By := {x;} and B, := {y]-}. Then {X € B;} occurs if and only if X = x;, and, in the
same way, the occurrence of {Y € B,} is equivalent to ¥ = y;. Since X and Y are assumed
to be independent, as claimed,

pl] = ]P{X =Xl',Y =y]} = ]P{X € Bl,Y €B2} = ]P{X eBl}IP{Y EBZ}
SPX =X} P(Y =y = g

To prove the converse implication, assume we have p; = ¢; - 1; for all pairs (i,j) of
integers. Let B; and B, be two arbitrary subsets of R. Then
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]P{X € Bl, Ye BZ} = IP(X,Y)(Bl X BZ) = Z pl]
{(i):(6;,y;)€B1 By}

= X wm= ) ) aT

{(i,j):X;€By, y;€Bs} {i:x;€By} {j:y;€By}
(2 a)( 2, n)-ramme
{ix;€By} {j:y;€By}

=P{X e B;} - P{Y € By}.

Since B; and B, were arbitrary, the random variables X and Y are independent. This
completes the proof. O

Remark 3.6.12. The previous proposition implies again that for (discrete) independent
random variables the joint distribution is determined by the marginal ones. Indeed, in
order to know the pys, it suffices to know the ¢;s and r;s.

Let us represent the assertion of Proposition 3.6.11 graphically. It tells us that the
random variables X and Y are independent if and only if the table describing their joint
distribution may be represented as follows:

Y\Xx Xy Xy X5

)1 Qir1 o Gy ... | T

Y2 @iy qoly qsly ... | T

Y3 413 Qa3 qsrs ... | T3
¢ ¢ qG ... |1

Example 3.6.13. Proposition 3.6.11lets us conclude that X and Y in Example 3.5.8 (with-
out replacing) are dependent while X’ and Y’ (with replacement) are independent. Fur-
thermore, by the same argument, the random variables X and Y in Example 3.5.9 (min-
imum and maximum value when rolling a die twice) are dependent as well.

Example 3.6.14. Let X and Y be two independent Pois,-distributed random variables.
Then the joint distribution of the vector (X, Y) is determined by

Ak+l
k!¢

-21

]P{sz,Yz(f}z e 5 (k,e)ENoxNo.

For example, applying this for Py y)(B) with B = {(k, £) : k = £} leads to

00 00 2k
PX=Y}= ) PX=kY=kj=) A—Ze*“.
k=0 ico (kY

Example 3.6.15. Suppose X and Y are two independent geometrically distributed ran-
dom variables, with parameters p and g, respectively. Evaluate P{X < Y}.
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Solution: By the independence of X and Y,

]P{XSY}:ozo:]P{X:k,YZk}:i]P{X:k}-]P{YZk}
k=1 k=1

=Y pa-p* Y q1-q"
k=1 =k

=pq<Z(1—p)">< Y (1—q)“>
k=0 ¢=k+1
pq(Z(l—p)")(Z(l—q)‘f)
k=0 =k
pq( (1—p)"<1—q>">(2(1—q>f>
£=0

= p = p .
1-1-p(A-q p+q-pq

T8

In Example 1.9.12, we investigated the case p = q from a different point of view. The
results obtained there let us conclude that

PX<Y}=PX<Y}+PX=VY}= I_’

which coincides with what we got above if p = q.

Example of application: Player A rolls a die and, simultaneously, player B tosses two
fair coins labeled with “0” and “1.” Find the probability that player A observes the num-
ber “6” for the first time strictly before player B gets a “1” at both coins.

Answer: Let {Y = k} be the event that player A observes his first “6” in trial k. Sim-
ilarly, {X = k} occurs if player B has his first two “1” in trial k. Then we ask for the
probability P{Y < X}. Note that X is geometrically distributed with parameter p = 1/4,
while the success probability for Y is g = 1/6. Hence, by the above calculations,

1/4 1

]P{Y<X}=1—]P{XSY}=1—m=§,

The next objective is to investigate in which cases two quite special random vari-
ables are independent. To this end, we need the following notation.

Definition 3.6.16. Let Q be a setand A < Q. Then the indicator function 1, : Q — R of A is defined
by

1 ifweA
1y(w) := i (3.21)
0 ifwé¢A.
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Let us state some basic properties of indicator functions.

Proposition 3.6.17. Let (Q, A, P) be a probability space.

(1) The indicator function of a set A € Q is a random variable if and only if A € A.

(2) IfA € A then 1, is B ,-distributed (binomial) where p = P(A).

(3) IfA,B € A, then the random variables 1, and 1y are independent if and only if the
events A and B are independent.

Proof. Given't ¢ R, the event {w € Q : 1,(w) < t} is either empty, A°, or Q whenever
t<0,0<t<1ort =1 respectively. Consequently, the set {w € Q : 14(w) < t}isin A
for all t € R if and only if A° € A. But this happens if and only if A € A, which proves
the first assertion.

To prove the second claim, we first observe that 1, attains only the values “0” and
“1.” Since

P{l, =1} =P{lweQ:1,(w) =1} = P4) =p,

itis By p-distributed with p = P(4) as claimed.
Let us turn to the last assertion. Given A4, B € A, their joint distribution in table form
is’
15\1, || 0 | 1]
0 P(A°nB°) | P(ANB°) | P(BY)
1 P(A°NB) | P(ANB) | P(B)
P(A%) P(A4)

Consequently, by Proposition 3.6.11, the random variables 1, and 15 are independent if
and only if the following equations are valid:

P(A° N B°) = P(A°) - P(B°), P(A°nB)="P(A°)-P(B),
P(ANB‘)=P(A)-P(B°), PANB)=PA)- P®B).

Because of Proposition 2.2.7, these four equations are satisfied if and only if the events
A and B are independent. This proves the third assertion. O

Finally, let us shortly discuss the independence of more than two discrete random
variables. Hereby we use the same notation as in Proposition 3.5.10, that is, the random
variables X;,..., X, satisfy X; : @ — D;, where D; is either finite or countably infinite.
Then the following generalization of Proposition 3.6.11 is valid. Its proof is almost iden-
tical to that for two variables. Therefore, we omit it.

9 Use, for example, that 1 4(w) = 0 and 13(w) = 0 if and only if w € A° N B.
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Proposition 3.6.18. The random variables X;, .. ., X,, are independent if and only if for all
X; € D;
Js P

P{Xlle)""Xn: n}:]P{Xlle}"'IP{Xn: I‘l}'

Example 3.6.19. Let us consider the problem of tossing a biased coin n times. The sam-
ple space is Q = {0,1}", and the describing probability measure P is as in eq. (3.5). The
random variables X; are defined as results of toss j. Thean Q- D;, where D; = {0,1}.
If we choose arbitrary Xj € Dj, then either Xj = Oor Xj = 1. Let k be the number of those
X;, which equals 1, that is, k = x4 + - - - + X,,. Formula (3.5) implies

PX, = Xp,.... X, = X} = P{0x,....x)} = p - p)" .

On the other hand, as shown in Example 3.2.16, the probability distribution of each X/
satisfies

P{X;=0}=1-p and P{X;=1}=p.
Since exactly k of the X;s are “1” and n — k are “0,”, this implies
P(X; =i} PX, = X} = p“CL-p)" .
Summing up, for all x; € D;,
P{X, = Xp, ... X, = X} = P - p)" K = PIX, = x} -+ PIX,, = X}

that is, X;, ..., X, are independent.

Summary: Two discrete random variables X and ¥ with values (x;);>1 and (y;);»1, respectively, are indepen-
dentif and only if for all 1 < /,j < oo,

PiX =x,YV =y} =PX =x} -P{Y = y;}.

3.6.2 Independence of continuous random variables

We will consider the question of when continuous random variables are independent.
Thus,let X, ..., X, be continuous random variables with distribution densities p;, . .., p,,
that is, for 1 < j < n and real numbers a < b,

b
]PX]_([a,b]) =Pla<Xj<b}= Jpj(x)dx.

With this notation, the independence of the X;s may be characterized as follows.
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Proposition 3.6.20. For random variables X, ..., X, with densities p;, ..., p,, we define a
functionp : R* — R by

PXps s Xy) = Pr(Xy) - Pa (%), (Xgs-..sXy) € R (3.22)

Then the X;s are independent if and only if p defined by eq. (3.22) is a distribution density
of the random vector X = (X;,...,X,).

Proof. As in the discrete case, the result follows directly from Propositions 1.9.16 and
3.6.5. Without using product probabilities, we may argue as follows.

First, we observe that p defined by eq. (3.22) is a distribution density of X if and only
if for all aj < b]-,

by
IP{al SXl < bl,...,an SXn < bn} = j j pl(Xl)"'pn(Xn)an"‘Xm. (323)
an

1
The right-hand side of eq. (3.23) coincides with

bl n
<Jp1(x1)dx1>~-~< Pn(X) dxn> =Pl{a; <X; <by}---Pla, <X, <by}.

1 n

From this we derive that eq. (3.23) is valid for all aj < b; if and only if
Play <Xy <by,...,ap <X, < by} =Play <Xy <by}---Pla, <X, <b,}.

By Remark 3.6.10, this is equivalent to the independence of the X;s, completing the
proof. O

Example 3.6.21. Throw a dart to a target, which is a circle of radius 1. The center of the
circle is the point (0, 0) and (X, x,) € K denotes the point where the dart hits the target.
We assume that the point hit is uniformly distributed on K. The question is whether
or not the coordinates x; and x, of the point hit are dependent or independent of each
other.

Answer: Let P be the uniform distribution on K, and define two random variables
X; and X, by X; (x4, X3) = x; and X,(Xy,X5) = X,. In this notation, the above question is
whether the random variables X; and X, are independent. The density p; of X; was found
in eq. (3.7). By symmetry, p,, the density of X,, coincides with p,, that is, we have

2 2 2 2
2a1-x5 if|x] <1, 2a1-x5 if|x] <1,
p(x) = {n 1 x| and p,(x,) = {g \ 2 ;]

0 if x| > 1, if [xy] > 1.

But py(xy) - p(X;) cannot be a distribution density of Py, x . Indeed, the vector X =
(X1, X,) is uniformly distributed on K, thus its (correct) density is p with
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1 e, 2, .2
— ifxy+x5 <1,

pxy, Xp) = { T

0 otherwise.

Thus, we conclude that X; and X, are dependent, hence also the coordinates x; and x, of
the point hit.

Example 3.6.22. We suppose now that the dart does not hit a circle but some rectangle
set R := [ay, B1] % [ay, By]. Again we assume that the point (x3, X;) € R is uniformly dis-
tributed on R. The posed question is the same as in Example 3.6.21, namely whether x;
and x, are independent of each other.

Answer: Define X; and X, as in the previous example. By assumption, the vector
X= (X3, X5) is uniformly distributed on R, hence its distribution density p is given by

if (x4, X3) € R,

1
(X X ) _ ] voh,(R)
P {o i (X, %,) ¢ R.

For the density p; of X;, we get

~ T _ P 1
P1(x1) —J p(X;, Xz) dXy = voL,(R)  Bi-a

provided that q; < x; < B;. Otherwise, we have p;(x;) = 0. This tells us that X; is uni-
formly distributed on [ay, ;]. In the same way, we obtain for x, € [a,, B;] that

1
Paa) = B -,
and p,(x,) = 0 otherwise. Hence, X, is also uniformly distributed, but this time on
[ay, B,]. From the equations for p; and p, it follows that for the joint density p one has

PO, Xy) = p1(xy) - pOg), (%, Xp) € R,

Consequently, by Proposition 3.6.20, the random variables X; and X, are independent,
and so are the coordinates x; and x, of the point hit.

Example 3.6.23. Let us look at Example 3.6.22 from the opposite side. Now we assume
that the coordinates are uniformly distributed, not the vector. Thus let Uj,..., U, be
independent random variables with U; uniformly distributed on the interval [a;, B;],
1 < j < n. Then the random vector U = (U, ..., U,) is (multivariate) uniformly dis-
tributed on the box K = [ay, 5] X --- % [a,, B,]. This is an immediate consequence of
Example 1.9.17 combined with Proposition 3.6.5. A direct proof of this fact, without us-
ing product measures, is as follows.

The density of U; is p; = lﬁ Lig, g5 hence by Proposition 3.6.20 the joint density p

of U is given by
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n
1 1
P00 = p1() -+~ Pr(x) = gwj Y= gy YT €K
and p(x) = 0if x ¢ K. Therefore,
o B _ vol,(KnB) n
P{U € B} = Jp(x)dx_ —Voln(K) , BeB(R"),

B

and U is uniformly distributed on K as asserted.

Example 3.6.24. Let X;,...,X, be independent standard normally distributed. Which
joint density does the vector X = (Xy>...,X;,) possess?
Answer: The density p; of the Xj, forj =1,...,n,is

—x2/2

1
—e , XeR.

Var

Consequently, by the independence of the Xjs, the joint density p equals

pj(x) =

1 (O 4tx
p(x) = pl(Xl) .. .pn(xn) — (zﬂ)n/z (X1+ +Xn)/2
1 Cvl2
B (271)n/2e M2 X = (e X))

This tells us that Py = N(0,1)®" (cf. Definition 1.9.21) or, equivalently, X is n-dimensional
standard normally distributed.

Example 3.6.25. IfX,,..., X, are independent E,-distributed, then

) = 0 ift <0,
PO =5 e o,

hence, the random vector X = (Xy,...,X},) has the joint density

p(t) = A"e_’l(t”“-*t”) , t=(th...t), tj >0,

and p(t) = 0 if one of the ¢;s is negative.

Example 3.6.26. Suppose two random variables X; and X, are independent and E; (ex-
ponentially) and uniformly on [0,1] distributed, respectively. Which distribution does
the vector X = (X;, X,) possess?

The density p of X equals

p(t,s) = A1 y(s) ift>0,
, 0 otherwise.
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For example, if B = {(t,s) : 0 < t < s <1}, then

1

1s
IP{XGB}:AJJe_Mdtds J( —e™Mds=1+ (e -1).
00

L

When does this event B occur? Say the lifetime of a component is exponentially dis-
tributed with parameter A > 0. Then the event B occurs if the component stops working
before a randomly chosen time s € [0,1]. This number s is taken uniformly distributed
on [0,1] and, moreover, independent of the lifetime of the component. For example, first
choose the number s € [0, 1], then check whether or not the component becomes defec-
tive before time s € [0,1].

Summary: Therandomvariables X, ..., X, are independent if for all Borel sets By, ..., B, in R it follows that
IP{X1 € B],...,Xn € Bn} = IP{X1 € B1}]P{Xn € Bn}

In other words, the joint distribution Py, ) has to coincide with the product measure of the marginal

distributions Py, 1 < j < n. Another equivalent condition for the independence is: for all real numbers

t1,...,tp, it follows that

PiX; <tg,..0 X, <t} =PiX <t} PX, <t}

IfX;,..., X, are continuous random variables with densities ps, ..., p,, then they are independent if and only
if

DXy s Xp) = Pr(Xq) oo Pn(Xn)s  (Xqs...sXy) € R,

is a density of the random n-dimensional vector X = (X;, ..., X,).

3.7 Order statistics”

This section is devoted to a quite practical problem. Suppose we execute independently
of each other the same random experiment n times. Say the results are the real numbers
Xy, - --»Xy. For example, one may think of n different measurements of the same item,
and xy,..., X, are the observed values. After getting the x;s, we reorder them by their
size. These “new” numbers are denoted by x7, ..., x, and satisfy x;' <--- < x;,. In other
words, the numbers are the same as before but now in nondecreasing order.

A slightly more precise way to introduce the ordered sample x;', ..., x,, is as follows:
There exists at least one permutation 7 of order n (maybe more than one if some of the
x;s are equal) for which x;;q) < Xz() < -+ < Xp() - Setting

X{ =Xgy, Xp =Xpg@p UPLO Xy = Xpgn,
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the new sample x7', ..., X, consists of the same values as x;, ..., X,,, but now these values
are ordered by their size.

For example, if x; = 8.5, X, = 7.1, and x3 = 7.9, then we obtain x;” = 7.1, x; = 7.9, and
X5 = 8.5.

In order to apply this ordering procedure to random observations, one needs an
algorithm for constructing the Xj*s. This is easy if x; # x; for i # j. Then

x; =min{x;:1<i<n} while x; =min{x;:x; >x;,} ifk>2.

For general values, that is, not necessarily different ones, the construction is slightly
more complicated. The basic observation is that the ordered values possess the following
property: givent € R, foralll < k <n,

Xy <t o Numberofx; <tisatleastk o |{i<sn:x<t}|>k. (324
This implies that
n
Xy =inf{t e R: [{i<n:x; <t} >k} = inf{t eR: Z Loo (X)) = k} . (3.25)
i=1

For better understanding, here an easy example.

Example 3.7.1. Assume our sample is

x1=3, Xx=1, x3=3, and x,=2.

Then we get
0 if—co<t<],
: 1 ifl<t<2,
[{i<4:x <t} =
2 if2<t<3,
4 if3<t<oo
which implies
1 ifk=1,
2 ifk=2,
inflt e R: [{i<4:x;<t}| 2k} =
3 ifk=3
3 ifk=4

So we finally arrive atx; =1, x, =2,x; =3,and x; = 3.

The basic question treated in this section is now as follows. Suppose the values
Xy» ..., X, were obtained by n random experiments, independently and according to a
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known distribution. How are then the ordered x;s distributed? For example, one rolls
a fair die 10 times and observes x;,..., Xy in {1,..., 6}. Then, for instance, one may ask
how likely it is that the third smallest value x; equals 5. Or which probability does the
event {x; = 3} possess?

The precise mathematical formulation of this problem is as follows: let X;,..., X,
be n independent identically distributed random variables defined on a sample space
Q. Define random variables X', ..., X, as its values ordered by their size. One possible
way to define these new random variables is by, for example, using eq. (3.25). That is,
givenk <nandw € Q,

X;(w) =inf{t e R: |{i <n: X;(w) < t}| > k}
= lnf{t eR: Z ]l(—oo,t] (Xl(w)) > k}
i=1

In particular, we get
X =min{X;, ..., X,} and X, =max{X;,...,X,}.

Remark 3.7.2. Those to whom the definition of the X;'s looks too complicated may use
the following construction: for each fixed w € Q, one chooses a permutation 7 of order
n, depending on w, for which

Xﬂ(l)(w) < Xpp(w) <--- < Xy ().
Then one gets the X;'s by setting
X (w) = X)), Xy (0) = Xp (@), upto X, (w) =Xy (w).

In this connection, it is important that there are at most finitely many (not more than n!)
different permutations 7, depending on w, for ordering the values X;(w) up to X, (w) by
their size. Thus, our sample space splits into at most n! subsets where in each of them
one special permutation orders all X;(w) in nondecreasing order.

Definition 3.7.3. The ordered random variables X;", ..., X are called the order statistics of X;, ..., X,.
Similarly, if xq,...,x, are observed random real numbers, the ordered x;'s are the order statistics of
the x;s.

Remark 3.7.4. By construction, the random variables X’ satisfy X;" < --- < X But note
that they are no longer independent nor are identically distributed.

Remark 3.7.5. Order statistics play an important role in Mathematical Statistics. For ex-
ample, suppose at time t = 0 we switch on n light bulbs of the same type. Let us record
the times 0 < ¢ < t; < --- < t,, where some of the n bulbs burn out. Then these times
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are nothing else than the order statistics of the lifetimes ¢;, .. ., t,, of the first, second, and
so on, light bulb.

Before we state and prove the main result of this section, let us recall that the Xjs
are assumed to be identically distributed. Consequently, all of them possess the same
distribution function F. That is, for all j < n, we have

F(t)=P{X;<t}, teR,
Proposition 3.7.6. LetXi,...,X, beindependent identically distributed random variables
with distribution function F. Then for each k < n, we have

P sth= Y (?)F(t)i 1-F©)", teR. (3.26)

Proof. Fixt € R. When does the event {X;; < t} occur? To answer this, for i < nintroduce
disjoint sets 4; as follows: the event 4; occurs if and only if exactly i of the X;s attain a
value in (—oo0, t]. More precisely,

Ai={weQ:|{j<n:Xw) <t} =if.

Using eq. (3.24), the event {X; < t} occurs if and only if at least k of the X;s attain a value
in (-co, t]. Thus, by the definition of the 4;s, the event {X; < t} coincides with U?:k A
Consequently, since the A;s are disjoint, it follows that

n
PX; <t} =) P4). (3.27)
i=k
LetY; = 1(_q (X)) Then Y; = 1if and only if X; < ¢ while ¥; = 0 otherwise. Hence, the
Y;s are binomial distributed with parameters 1 and p, where
p=PY; =1} =P{X; <t} = F(0).

Since the X;js are independent, so are the ¥;s and their sum!® ¥, + - + Y, is binomial
distributed with parameters n and p = F(t). Note that the event 4; occurs if and only if
Y, +---+ Y, =i, which implies

PA) =P+ Yy =i = (o= pr = (Do -Fo)™. 62s)

Plugging eq. (3.28) into eq. (3.27) proves eq. (3.26). O

10 Here we already use a result, which will be proved later on in Proposition 4.6.1.
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Example 3.7.7. Let us choose independently and according to the uniform distribution
nnumbers Xy, ..., X, outof {1,..., N}. Here, the same number may be chosen more than
once. Given integers m < N and k < n, find the probability that the kth largest number
X equals m.

Answer: The distribution function F of the uniform distribution on {1, ..., N} satis-
fies

F(m)=%, m=1, .. N.

Thus Proposition 3.7.6 implies

Pix; sm}:z<7><%> (1_%> ) (3.29)

In particular,

Because of {x; = m} = {x; <m}\ {x; < m-1}, we obtain

Pix; =m} = P{x; <m}-P{x; <m-1}

O -8R 652 ] s

Here the right-hand expression vanishes in the case m = 1. For instance, we get

o

]
=

5

n-i n

w1 =S (-5 - (-5

i=1
Another, more direct, approach for this result is as follows: One has x; > 1if and only if

all x;s satisfy x; > 2. And among all possible N " ways to choose the x;s, there are (N — H"
possible ones to choose the x;s in {2,..., N}.

Example 3.7.8. Roll a die four times and order the results in nondecreasing order as
X{ €X; <X <x;.Whatis the probability that x; equals m for some 1< m < 6?

Answer: Let us apply formula (3.29) with N =6,k =3,andn =4.Form € {1,...,6},
this implies

ei <m-$ (1) (551)

hence

()]
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The probabilities are

m  P{x; < m} m  Pix; =m}
1 0.0162037 1 0.0162037
2 0.111111 2 0.0949074
3 03125 and 3 0.201389
4 0.592593 4 0.280093
5 0.868056 5 0.275463
6 1 6 0.131944

Thus, the most likely value of x; is the number “4.”

Remark 3.7.9. If we choose as in a lottery 6 numbers out of 49, then Proposition 3.7.6
and/or Example 3.7.7 do not apply. Why? Let Xy, ..., Xg be the numbers chosen first, sec-
ond, and so on. Then they are identically distributed on {1, ..., 49}, but they are not inde-
pendent. For example, the probability that the second choice is number “2” given the first
number was “1” is not 1/49. This would be the case if the chosen number were replaced
after each choice. We refer to Problem 3.5 for the distribution of the order statistics in
the case of lottery numbers.

Let us now turn to the case of continuous random variables. That is, we assume that
the random variables X; possess a distribution density p satisfying

t
PO <t = [ poodr, teR.

Again we remark that the preceding formula holds for all j < n. Indeed, the Xjs are
identically distributed, hence they all have the same density. A natural question arises:
what distribution density does X, possess?

Proposition 3.7.10. Suppose p is the common density of the X;s. Let X{' < --- < X/ be the
order statistics of the X;. Then the distribution density py of X;; is given by
n!

_ k=174 n-k
KO = oo PO O™ (- F()

Proof. It holds that
n

P{X; <t} = %Z() ' (1- F(t))

1=

pi(t) =

Q—lg

_ )n—i—l

(33D

'M=

)
=~

z( )pOF©®™ (1 - Fo)" Z(n—z)( )pOFQ' (1-F(©



3.7 Order statistics® == 175

In fact, the index i in the second sum of eq. (3.31) runs only from k to n—1. Hence, shifting
it by 1, this sum becomes

Y (n-i+1) (i 111) p() F@&) (1= F)"".

i=k+1

Because of

i()- #&_w("‘””(i:)’

both sums in eq. (3.31) cancel out fori = k + 1,..., n. Thus, we obtain

pe® = k() pO FO* (1~ F0)"™

as asserted. O

Example 3.7.11. Let us choose independently and according to the uniform distribution
on [0,1] numbers x;, .. ., x,,. After reordering them, we get 0 < x;” <--- < x;; < 1. Which
distribution does x;; possess?

Answer: The density p of the uniform distribution on [0,1] is 1o 4. Furthermore, its
distribution function F is given by F(t) = ¢ for 0 < ¢ < 1. Thus, by Proposition 3.7.10, the
density pj, coincides with

Pi(t) = fla-o"*, o<t<1.

n!
(k-D'(n-k)!
As already mentioned in Example 1.6.33, this is nothing else than the density of a beta dis-
tribution with parameters k andn — k + 1. Hence,forallk = 1,...,nandall0 <a< b <1,
it follows that

b
|

P{a < x; < b} = Byp pa(la,b]) = m Jxkl(l -x)"Fdx.
Example 3.7.12. Let us investigate here the example that was already mentioned in Re-
mark 3.7.5. At time t = 0, we switch on n electric bulbs of the same type. The times
0 <t <---<t, are those where we observe that some of the bulbs burn out. If we as-
sume that the lifetime of each bulb is exponentially distributed, what can we say about
the distribution of the t; s?

Answer: Let X, ..., X, be the lifetimes of the n light bulbs. By assumption, they are
independent and exponentially distributed with some parameter A > 0. Then the distri-
bution of ¢}, is that of X; . Furthermore, we have p(t) = AeMand F(t) = 1-e ™ fort > 0.
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By Proposition 3.7.10, the distribution density p; of X; equals

n! k-1 _atn—
/\t) e)tt(nk+1)’ £>0.

P =2 i (1

For example, for ¢}, the time when we observe the first burnout of any of the bulbs, this
implies
pi(t) =Ane™™, t>0,

that is, t;" is Ey,-distributed.
Another case of interest is the behavior of t; which is the time of the last outage of
one of the n bulbs. Its density is

—At)n—l e—At

po(t) =An(1-e t>0.

IfF,(t)=01- e_’”)”, t > 0, then F,’l(t) = p,(t). Moreover, F,(0) = 0 and F,,(co) = 1, which
implies that F,, is a distribution function and p,, is its density. That is,

Pit: <t} = (1-e™)", t>0.
Note that there is a more direct way to determine the distribution of ¢;: use
P{t, <t} =P{X; <t,.... X, < t}

%
n

and the independence of X, ..., X,,.

Summary: LetX;,...,X, beindependent identically distributed random variables with distribution function
F:R— R.IfX" <--- <X isthe sequence of the ordered values, then

pix; <t} =Y ("_')F(t)" (1-F0)", teRr.

i=k
Moreover, if the X;s are continuous with density p, then for 1 < k < n, the density p; of X" equals

_ n! V= _ n—-k
Pt = G T POFO (1-F@®) . teR.

3.8 Problems

Problem 3.1. For n > 1, let S, be the set of permutations of order n. Suppose P is the
uniform distribution on S,,. That is, all permutations are equally likely. Define now a
mapping X from S, to {1,...,n} by X (1) = n(n), € S,,. Determine the probability distri-
bution Py of X. What happens if one defines X by X(rr) = n(k) for some fixed k < n?
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Problem 3.2. Roll a fair die twice. Let w = (wy, w,) be the observed values. Define two
random variables X; and X, by

Xi(w) = max{w;, wy} and Xy(w) = w; + w;.

Find the joint distribution of the random vector (X, X,), as well as its marginal ones.
Argue why X; and X, are not independent.

Problem 3.3. The joint distribution of a random vector X = (X;,X,) is described by

X\ |0 1
1 2

0 0 5

2 1

1 5

Define another vector Y = (¥;,Y,) by ¥; := min{X;, X,} and ¥, := max{X;, X,}. Find the
probability distribution of ¥ = (¥}, ¥,). Are ¥; and ¥, independent?

Problem 3.4. Let X = (X;,X,) be uniformly distributed on the square in R? with corner
points (0,1), (1, 0), (0, -1), and (-1, 0). Find the marginal distributions of X.

Problem 3.5. In a lottery, six numbers are chosen out of {1,...,49}. As usual in lotter-

ies, chosen numbers are not replaced. Let X, ..., Xg be the chosen numbers as they ap-

peared. That is, X; is the number chosen first while Xj is the number, which appeared

last.

1. Determine the joint distribution of the vector X = (X;,...,Xg), as well its marginal
distributions.

2. Argue whyX;,...,X; are not independent.

3. Reordering the six chosen numbers leads to the order statistics X;* < --- < X¢". Find
the joint distribution of the vector (X;,...,Xg), as well as its marginal distribu-
tions.

Problem 3.6. Arandom variable X is geometrically distributed. Given natural numbers
k and n, show that

PX=k+n|X>n}=P{X=k}.

Why is this property called “lack of memory property”?

Problem 3.7. A random variable is exponentially distributed. Prove
PX>s+t|X>st=P{X>t}

for all ¢, s > 0. Why is this called the “nonaging property” of exponentially distributed
lifetimes?
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Problem 3.8. Two random variables X and Y are independent and geometrically dis-
tributed with parameters p and q for some 0 < p, q < 1. Evaluate P{X < Y < 2X}.

Problem 3.9. Suppose two independent random variables X and Y satisfy
1
P{X =k} =P{Y =k} = o k=12, ...

Find the probabilities P{X < Y} and P{X = Y}.

Problem 3.10. Choose two numbers b and ¢ independently, the number b according to
the uniform distribution on [-1,1] and ¢ according to the uniform distribution on [0, 1].
Find the probability that the equation

X +bx+c=0

does not possess a real solution.

Problem 3.11. Use Problem 1.38 to prove the following: If X is a random variable, then
the number of points t € R with P{X = ¢} > 0 is at most countably infinite.

Problem 3.12. Suppose a fair coin is labeled with “0” and “1.” Toss the coin n times. Let
X be the maximum observed value and Y the sum of the n values. Determine the joint
distribution of (X, Y). Argue that X and Y are not independent.

Problem 3.13. Suppose a random vector (X, Y) has the joint density function p defined
by

c-uv ifu,v>0, u+vs<i,
p(u,v) =

0 if otherwise.

(a) Find the value of the constant ¢ so that p becomes a density function.
(b) Determine the density functions of X and Y.

(c) Evaluate P{X +Y < 1/2}.

(d) Are X and Y independent?

Problem 3.14. Gambler A has a biased coin with “heads” having probability p for some
0 < p <1, and gambler B’s coin is biased with “heads” having probability q for some
0 < g < 1. Gamblers A and B toss their coins simultaneously. Whoever gets “heads” first
wins. If both gamblers observe “heads” at the same time, then the game ends in a draw.
Evaluate the probability that A wins and the probability that the game ends in a draw.

Problem 3.15. Randomly choose two integers x; and x, from 1 to 10. Let X be the mini-
mum of x; and x,. Determine the distribution and the probability mass functions of X in
the two following cases:
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— The number chosen first is replaced.
—  The first number is not replaced.

Evaluate in both cases IP{2 < X < 3} and P{X > 8}.

Problem 3.16. There are four balls labeled with “0” and three balls are labeled with “2”
in an urn. Choose three balls without replacement. Let X be the sum of the values on the
three chosen balls. Find the distribution of X.

Problem 3.17. As in Example 3.7.7, choose independently n numbers uniformly dis-
tributed in {1,..., N}. How likely is it that the largest of the chosen n numbers equals
N? Answer this question by applying formula (3.30). Give also a direct argument for the
obtained result.

Problem 3.18. Roll a fair die 5 times. How likely is it that the fourth largest number
equals m for somem=1,...,6?
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4.1 Mappings of random variables

This section is devoted to the following problem: let X : @ — R be a random variable
and let f : R — R be some function. Set Y := f(X), that is, for all w € Q we have
Y(w) = f(X(w)). Suppose the distribution of X is known. Then the following task arises:

Determine the distribution of ¥ = f(X) for a given functionf : R — R.

For example, if f(t) = t%, and we know the distribution of X, then we ask for the proba-
bility distribution of X2. Is it possible to compute this by easy methods?

At the moment it is not clear at all whether Y = f(X) is a random variable. Only if
this is valid, the probability distribution Py is well defined. For arbitrary functions f,
this need not to be true, they have to satisfy the following additional property.

Definition 4.1.1. A function f : R — R is called measurable if for B € B(R) the preimagef"(B) isa
Borel set as well.

Remark 4.1.2. As all previous assumption about g-fields, random variables, Borel sets,
and so on, also this is a purely technical condition for f, which will not play an important
role later on. All functions of interest, for example, piecewise continuous, monotone,
pointwise limits of continuous functions, and so on, are measurable.

The measurability of f cannot be avoided because it is needed to prove the following
result.

Proposition 4.1.3. LetX : Q — R be arandomvariable. Iff : R — R is measurable, then
Y = f(X) is a random variable as well.

Proof. Take a Borel set B € B(RR). Then
Y'® =x'(f'®)=x"(B),

with B’ := f ‘1(B). We assumed f to be measurable, which implies B’ ¢ B(R), and hence,
since X is a random variable, we conclude Y’l(B) =X ’1(B’ ) € A. The Borel set B was
arbitrary, thus, as asserted, Y is a random variable. O

Solet Y = f(X) for some measurable function f : R — R and some random vari-
able X. Unfortunately, there does not exist a general method for the description of Py
in terms of Py. Only for some special functions f, for example, for linear functions or
for f being strictly monotone and differentiable, there exist general rules for the com-
putation of Py. Nevertheless, quite often we are able to determine Py directly. Mostly
the following two approaches turn out to be helpful.

https://doi.org/10.1515/9783111325064-004
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If X is discrete with values in D := {X;,X,, ...}, then Y = f(X) maps the sample space
Qinto f(D) = {f(xy).f(xy),...}. Problems arise if f is not one-to-one. In this case one has
to combine those x;s that are mapped onto the same element in f(D). For example, if X
is uniformly distributed on D = {-2,-1,0,1,2} and f(x) = x%, then Y = X? has values in
f(D) ={0,1,4}. Combining -1 and 1, as well as -2 and 2, leads to

P(Y=0)=P(X=0=F, P(Y=1=PX=-1}+PX=1=",
P{Y = 4} = P{X = -2} + P{X = 2} = ?.)
The case of one-to-one functions f is easier to handle because then

P{Y =f(x)} =PX =x}, j=12...,

and the distribution of Y can be directly computed from that of X.
For continuous X, one tries to determine the distribution function Fy of Y. Recall
that this was defined as

Fy(t)=P{Y <t} = P{f(X) < t}.

If we are able to compute Fy, then we are almost done because then we get the distribu-
tion density q of Y as the derivative of Fy.
For instance, if the continuous function f is increasing, one gets Fy easily by

Fy(t) = PX < f )} = Fy(F (1)

with the inverse function f ~1 (cf. Problem 4.16).
The following examples demonstrate how we compute the distribution of f(X) in
some special cases.

Example 4.1.4. Assume the random variable X is A/(0, 1)-distributed. Which distribu-
tion does ¥ := X2 possess?

Answer: Of course, Fy(t) = P{Y < t} = 0 when t < 0. Consequently, it suffices to
determine Fy(¢t) for t > 0. Then

N
1 2
Fy(t) =P{X* <t} =P{-Vt<X < Vt} = — Jes/zds
y(t) = P{ }=P{ } Vo
Vi
, ¥
2
- je‘s/zds:h(\/f),
27

0

where



182 —— 4 Operations on random variables

u
h(u) := % Je"sz/zds, u=0.

Differentiating Fy with respect to ¢, the chain rule and the fundamental theorem of Cal-
culus lead to

_r! _ d ! _ t_l/z \/z —t/2
q(t) = Fy(t) = a(\/?)h (Vo) = 5

_ 1 11 -2

- 21/21.,(1/2) e , t>0.

Hereby, in the last step, we used I'(1/2) = /7. Consequently, ¥ possesses the density

function
0 ift <0,
q(0) = 1 122

W(UZ)I‘ e ift>0.

But this is the density of a T, 1 -distribution. Therefore, we obtained the following result,
2
which we, because of its importance, state as a separate proposition.

Proposition 4.1.5. If X is N/(0,1)-distributed, then X* is T, 1-distributed or; equivalently,
)

distributed according to )(12.

Example 4.1.6. Let U be uniformly distributed on [0,1]. Which distribution does the
random variable Y = 1/U possess?

Answer: Again we determine Fy. From P{X € (0,1]} = 1, we derive P{Y > 1} =1,
thus, Fy(t) = 0if ¢t < 1. Therefore, we only have to regard numbers ¢ > 1. Here we have

1 1 1
Fy(t)=1P{5st}=]P{Uz;}:1—E.

Hence, the density function q of Y is given by

0 ift<1,

t)=Fy(t) =
W =FO {tlz ift>1.

Example 4.1.7 (Random walk on Z). A particle is located at the point 0 of Z. In the first
step, it moves either to —1 or to +1. In the second step, it jumps, independently of the
first move, again to the left or to the right. Thus, after two steps it is located either at
-2, 0, or 2. Hereby we assume that p is the probability for jumps to the right, hence
1 — p for jumps to the left. This procedure is repeated arbitrarily often. Let S,, be the
position of the particle after n jumps or, equivalently, after n steps.! The (random) se-

1 The value of S, can also be viewed as the loss or win after n games, where p is the probability to win
one dollar in a single game, while 1 — p is the probability to lose one dollar.
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quence (S,),s is called a (next-neighbor) random walk on Z, where by the construction
P{Sy = 0} = 1. See Figure 4.1 for a path of a random walk. Note that it is random, thus,
very likely it will look completely different in another experiment.

JIML W |

Figure 4.1: The (joined) points (n,S,),n = 0,...,400, of a symmetric random walk S,,.

After n steps, the possible positions of the particle are in
D,={-n-n+2,....,n-2,n}.

Note that an integer k belongs to D,, if and only if |k| < n and, furthermore, n + k (or
equivalently, n — k) is even.

Thus, S, is a random variable with values in D,,. Which distribution does S,, possess?
To answer this question define

Y, = %(Sn+n).

The random variable Y, attains values in {0,1,...,n} and, moreover, Y,, = m if the posi-
tion of the particle after n steps is 2m — n, that is, if it jumped m times to the right and
n—mtimes to the left. To see this, take m = 0, hence S,, = —n, which can only be achieved
if all jumps were to the left. If m = 1, then S, = —n + 2, that is, there were n — 1 jumps to
the left and 1 to the right. The same argument applies for all m < n.

This observation tells us that Y, is Bn,p-distributed, that is,

P{Y, = m} = (r'r’l)p’”(l—p)"*’", m=0,...n.
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Since Y, = % (S, + n), if k € D,, then it follows that

1 n -
P{S, = k} = 1p{yn =S+ n)} - (M>p(n+k)/2 (1= p)nbr. @)
2

For even n, we have 0 € D, thus one may ask for the probability of S,, = 0, that is,
for the probability that the particle returns to its starting point after n steps. Applying
eq. (4.1) with k = 0 gives for even n that

P{S, =0} = (Z)p"/z a _p)n/z.
2

Hence, if p = 1/2 (in this case the walk is said to be symmetric), then for even n we obtain

nN,n,_ n -n
P{S, = 0} = (g)z R

An application of Stirling’s formula (1.54) implies

lim n'2p(S, = 0} = lim nV2_ YZMW/E" oo _ \E
Reveh T daw /ety n

that is, if n — oo, then for even n it follows that P{S,, = 0} ~ \/% nY2, Another way to
formulate this is

IP{SZH = O} ~ \/% .

Example 4.1.8. Suppose X is B, -distributed, that is,

k-1

IP{X:k}:(k—n

)p”(l—p)k’”, k=nn+1,...
Let Y = X — n. Which probability distribution does Y possess?
Answer: An easy transformation (see formula (1.35)) leads to

Py =k =pix =k+n = (" ra-pi = (o0t @

forallk=0,1,...

Additional question: Which random experiment does Y describe?

Answer: We perform a series of random trials where each time we may obtain either
failure or success. Hereby, the success probability is p € (0,1). Then the event {Y = k}
occurs if and only if we observe the nth success in trial k + n.

We conclude this section with the investigation of the following problem. Suppose
X,..., X, are independent random variables. Given n measurable functions f;,....f;
from R to R, we define “new” random variables Y;,..., ¥, by



4.2 Linear transformations == 185

Yi::fi(Xi)’ 1<i<n.

It is intuitively clear that then Y3, ..., Y, are also independent; the values of ¥; only de-
pend on those of X, thus the independence should be preserved. For example, if X; and
X, are independent, then this should also be valid for Xf and 2X,.

The next result shows that this is indeed true.

Proposition 4.1.9. LetX,..., X, be independent random variables and let (f;);", be mea-
surable functions from R to R. Then fi(X1), ..., f,(X,) are independent as well.

Proof. Choose arbitrary Borel sets By,...,B, in R and set 4; := fi‘l(Bi), 1< i< n With
this notation, an w € Q satisfies f;(X;(w)) € B; if and only if X;(w) € A;. Hence, an appli-
cation of the independence of X; (use eq. (3.16) with the X;’s and the A;’s) leads to

]P{fl(Xl) € Bl’ e ,fn(Xn) € Bn} = ]P{Xl € Al’ e ,Xn S An}
= ]P{Xl € Al} . IP{Xn € An}
= ]P{fl(Xl) € Bl} T ]P{fn(Xn) € Bn} :

The B;s were chosen arbitrarily, thus the random variables f;(X;), ..., f,(X,) are in-
dependent as well. O

Remark 4.1.10. Without proof we still mention that the independence of random vari-
ables is preserved whenever they are put together into disjoint groups. For example, if
Xi,..., X, areindependent, thensoare f (X, ..., Xy) and g(Xj,4, - . ., X;;) for suitable func-
tions f and g. Assume we roll a die five times and let Xy, . .., X5 be the results. Then these
random variables are independent, but so are the two random variables max{X;, X,}
and X; + X, + X;, or the three X;, max{X,, X3}, and min{X,, Xs}.

4.2 Linear transformations

Let a and b real numbers with a + 0. Given a random variable Y = aX+b, thatis, Y arises
from X by a linear transformation. We ask now for the probability distribution of Y.

Proposition 4.2.1. DefineY = aX + bwitha,b € Randa # 0.
(@) Depending on whether a > 0 ora < 0,

Fy(t):FX<%> or FY(t):l—lP{X< %}

Ifa < 0 and Fy, is continuous at %, then

Fy(t) =1—Fx<%>.

(b) Let X be a continuous random variable with density p. Then Y is also continuous with
density q given by
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-b
qt) = 7 p( ) teR. 4.3)

Proof. Let us first treat the case a > 0. Then we get

Fﬂ0=PMX+bSG=P%gt;b}:&<%#>

as asserted.
In the case a < 0, we conclude as follows:

Fy(t)=IP{aX+bst}:IP{X2%}Zl_P{X<%}'

If Fy is continuous at &2 then P{X = Tb} =0, hence

1—IP{X<ﬂ}:l—]P{Xsﬂ}zl_pX<ﬂ>,
a a a

completing the proof of part (a).
Suppose now that p is a density function of X, that is,

t
Fy(t)=P{X <t} = Jp(x)dx, teR.

: b
If a > 0, by part (a) and after the change of variables x = YT we get

R0 =R L) - fp(x)dx jip(y%’)dwfq(y)dy.

—00 -0

Thus, q is a density of Y.
If a < 0, the same change of variables® leads to

(o) t
R0 =1-F(22) = [ pooax=- | 2p(220 )y

_ f L (2 )y jt ar(t - fq(y)dy.

This being true for all ¢t € R completes the proof. O

2 Observe that now a < 0, hence the order of integration changes and a minus sign appears.
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Example 4.2.2. Let X be N(0,1)-distributed. Given a # 0 and u € R, we ask for the
distribution of Y = aX + .
Answer: The random variable X is known to be continuous with density

1 2
oLl

Var
We apply eq. (4.3) with b = u to deduce that the density q of Y equals

1 (t-u > 1T —ewpd
)= —p[—")=——¢ .
10 =1 p( al )~ Varjal

p(t) =

That is, the random variable Y is (i, |a|*)-distributed. In particular,if ¢ > 0 and u € R,
then oX + y is distributed according to A'(y, 62).

Additional question: Suppose Y is (i, 0?)-distributed. Which probability distribu-
tion does X := % possess?

Answer: Formula (4.3) immediately implies that X has a standard normal distribu-
tion.

Because of the importance of the previous observation, we formulate it as proposi-
tion.

Proposition 4.2.3. Suppose u € R and g > 0. Then the following are equivalent:

X is N'(0,1)-distributed <=  oX + p s distributed according to N (i, 02).

Corollary 4.2.4. Let @ be the Gaussian ®-function introduced in eq. (1.70). For each inter-
val [a, b],

N o)) - o =E ) o 2F).

g

Proof. Thisis a direct consequence of Proposition 4.2.3. Indeed, if X has a standard nor-
mal distribution, then

N(,u,oz)([a,b]):IP{asaX+ysb}=lP{a_y <X< b—y}

A

as asserted. O

LetX bean MV (y, o%)-distributed random variable. The next result shows that X with
high probability (more than 99.7 %) attains values in [y — 3 0, u + 3 g]. Therefore, in most
cases, one may assume that X maps into [¢ — 3 g, u + 3 a]. This observation is usually
called “Three Sigma Rule”.
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Corollary 4.2.5 (Three Sigma Rule). IfX is distributed according to N'(u, 6*), then
P{IX -ul <20} >0954 and P{X -yl <30}>0.997.
Proof. By virtue of Corollary 4.2.4, for each ¢ > 0,
P{|X — y| < ca} = d(c) - d(-¢),

hence the desired estimates follow from

D(2) - P(-2) =29(2) -1>0.9545 and &(3) - D(-3)=29(3)-1>0.9973. O
Example 4.2.6. Let U be uniformly distributed on [0, 1]. What is the probability distri-
butionofalU + bifa + 0 and b € R?

Answer: The distribution density p of U is given by p(t) = 1if0 <t <land p(t) = 0
otherwise. Therefore, the density q of aU + b equals

Lojfo< b <,
q) =1 N
0 otherwise.

Assume firsta > 0. Then q(¢t) = 1/aifand only if b < t < a+b and g(t) = 0 otherwise.
Consequently, aU + b is uniformly distributed on [b, a + b].

If, in contrast, a < 0, then q(t) = 1/]al ifand onlyifa+b <t < band q(t) = 0
otherwise. Hence, now aU + b is uniformly distributed on [a + b, b].

It is easy to see that the reversed implications are also true. That is, we have

[b,a+b] ifa>0,

U uniformly distributed on [0,1] & aU + b uniformly distributed on
[a+b,b] ifa<O.

Corollary 4.2.7. A random variable U is uniformly distributed on [0,1] if and only if
1 — U is such. In other words, for a uniformly distributed U on [0,1] it follows that

vii-v.

Example 4.2.8. Suppose a random variable X is I'; g-distributed for some a, > 0 and
let a > 0. Which distribution does aX possess?
Answer: The distribution density p of X satisfies p(t) = 0if t < 0 and, if ¢ > 0, then

1 B-1 _-t/a
t) = e .
p(t) FT)
An application of eq. (4.3) implies that the density q of aX is given by q(t) = 0ift < 0
and, if t > 0, then
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1

B_
= 1 £ — 1 E —t/aa _ 1 B-1 _~t/aa
90 = a p(a) aab I‘(ﬁ)(a) ¢ (aa)P r([g)t e

Thus, aX is [;q p-distributed.

In particular, we have that X is Ty g-distributed if and only if for some (each) a > 0
it follows that aX is I'; g-distributed.

In the case of the exponential distribution £, = T’y 1, the previous result implies the
following: if a > 0, then a random variable X is E,-distributed if and only if aX possesses
an £, , distribution.

4.3 Coin tossing versus uniform distribution

4.3.1 Binary fractions

We start this section with the following statement: each real number x € [0,1) may be
represented as binary fraction x = 0.xyX, ..., where x;, € {0,1}. This is a shortened way
to express that

X= ) <.
L

The representation of x as binary fraction is in general not unique. For example,

% =0.10000..., butalso % = 0.01111...

Check this by computing the infinite sums in both cases.

It is not difficult to prove that two different representations admit exactly those
x € [0,1) which may be written as x = k/2" for somen € Nand somek =1,3,5,...,2"-1.
Those numbers are usually called dyadic rational numbers.

To make the binary representation unique, we declare the following:

Convention 4.1. If a number x € [0,1) admits the representations
X=0x...X,41000... and x=0x;...x,.10111...,

then we always choose the former one. In other words, there do not exist numbers
x € [0,1) whose binary representation consists only of 1s from a certain point onward.

How do we get the binary fraction for a given x € [0,1)?

The procedure is not difficult. First, one checks whether x <
former case, one takes x; = 0 and in the latter x; = 1.

With this choice, it follows that 0 < x - & < % In the next step, one asks whether

2
’% < % orx — ’% > ;11. Depending on this, one chooses either x, = 0 or x, = 1. This

or x > % In the

DI

X —
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choice implies 0 < x — ’% - ’2‘—5 < }1, and if this difference belongs either to [0, %) or [5—15, ;11),

then x; = 0 or x3 = 1, respectively. Proceeding further in this way leads to the binary
fraction representing x.

After this heuristic method, we now present a mathematically more exact way. To
this end, for each n > 1, we divide the interval [0,1) into 2" intervals of length 27",

We start with n = 1 and divide [0, 1) into two intervals,

1 1
102:[0,§> and 112:[2,1>.

In the second step, we divide each of the two intervals I, and I; further into two parts of
equal length. In this way, we obtain the four intervals

1 11 1 3 3
Io=10,- 1), In=|-=-=1), Ipy=|=,-), and I;:=| =,1).
=025 ) T=| 33 ) To=|503) w=[20)

Observe that the left end point of I, , equals a;/2 + a,/4, that s,
2 a: 2 a; 1
_ J J
Ialaz = |:Z E,Z 5 + 2—2>, a,,a, € {0,1}.
j=1 j=1
It is clear now how to proceed. Given n > 1 and numbers a, ..., a, € {0,1}, set
-4 4% 1
Iy .q = Z o 5 5 ) (4.4)

In this way, we obtain 2" disjoint intervals of length 27 where the left corner points
are 0.a4qa, ... a, (see Figure 4.2 for the first dyadic intervals).
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Figure 4.2: The first dyadic intervals of [0, 1).

The following lemma makes the above heuristic method more precise.

Lemma4.3.1. Forallay,...,a, € {0,1}, the intervals in (4.4) are characterized by

Iy.q, = {x€l0,]):x=00a,...q,...}.

Verbally, a number in [0,1) belongs to I, .., if and only if its first n digits in the binary
fractionare ay, ..., a,.
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Proof. Assume first x € I, ,.Ifa = 0.a;---a, denotes the left end point of I, , , by
definitiona < x < a+1/2" o, equivalently, 0 < x—a < 1/2". Therefore, the binary fraction
of x — a is of the form 0.00...0b,,4 ... with certain numbers by, by, ... € {0,1}. This
yields

x=a+(x-a)=0.a,...a,b,, ...

Thus, as asserted, the first n digits in the representation of x are a;, . .., a,.

Conversely, if x can be written as x = 0.x;x, ... withx; = a;,...,x, = a,, thena < x
where, as above, a denotes the left end point of Ial-nan' Moreover, by Convention 4.1, at
least one of the x;s, k > n, has to be zero. Consequently,

thatis, wehavea<x <a+ 21,1 or, equivalently, x € I, , as asserted. O
A direct consequence of Lemma 4.3.1 is as follows.

Corollary 4.3.2. Foreachn > 1, the 2" sets Iy, .q, form a disjoint partition of [0,1), that is,

U g =001 and I, , Ng.q =0
ay,...,0,€{0,1}

provided that (ay,...,a,) # (aj, ..., a)). Furthermore,

[xel01) : x; =0} = U Ig.ap 0
Ay, i1 €40,1}

4.3.2 Binary fractions of random numbers

We saw above each number x € [0, 1) admits a representation x = 0.x;x, ... with certain
X € {0,1}. What does happen if we choose a number x randomly, say according to the
uniform distribution on [0, 1]? Then the x; s in the binary fraction are also random, with
values in {0, 1}. How are they distributed?

The mathematical formulation of this question is as follows: let U : @ — R be a
random variable uniformly distributed on [0,1]. If w € Q, write?

U(0) = 0.X,(@)X,(@) ... = Y X’;S(“’) . 45)
k=1

In this way, we obtain infinitely many random variables X; : Q — {0,1}.

3 Note that P{U € [0,1)} = 1. Thus, without losing generality, we may assume U(w) € [0,1).
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Which distribution do these random variables possess? Answer gives the next
proposition.

Proposition 4.3.3. Ifk € N, then
1
P{X, = 0} = P{X; =1} = 7 (4.6)

Furthermore, given n > 1, the random variables X,, ..., X,, are independent.

Proof. By assumption, Py, is the uniform distribution on [0, 1]. Thus, the finite additivity
of P;, Corollary 4.3.2 and eq. (1.46) imply

IP{Xk=0}:1PU< U }Ial...akl())

;.. A1 €{0,1

1 2t 1
= Z Py, g, 0) = z T

Ay, €{0,1} Ay €10,1}

Since X attains only two different values, P{X; = 1} = 1/2 as well, proving the first part.

We want to verify that for all n > 1 the random variables Xj, ..., X, are indepen-
dent. Equivalently, according to Proposition 3.6.18, the following has to be proven: if
aj,...,a, €{0,1}, then

IP{Xl = al, e ,Xn = an} = ]P{Xl = al} M IP{Xn = an} . (47)

By eq. (4.6), the right-hand side of eq. (4.7) equals

1 1 1
]P{X1=a1}--~]P{Xn:an}:E-HE = 2—n .

To compute the left-hand side of eq. (4.7), note that Lemma 4.3.1 implies that we have
X, = aup to X, = a, ifand only if U attains a value in I, , .The intervalsI, , areof
length 27", hence by eq. (1.46) (recall that IP; is the uniform distribution on [0, 1]),

1
]P{Xl = al,. . ,Xn = an} = IP{U € Ial..‘an} = ]PU(Ial...an) = 2_n .

Thus, for all ay, ..., a, € {0,1}, eq.(4.7) is valid, and, as asserted, the random variables
Xi,..., X, are independent. O

To formulate the previous result in a different way, let us introduce the following
notation.

Definition 4.3.4. Aninfinite sequence X;, X,, ... of random variables is said to be independent provided
that any finite collection of the X;s is independent.
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Remark 4.3.5. Since any subcollection of independent random variablesis independent
as well, the independence of X;,X,,... is equivalent to the following. For all n > 1, the
random variables X;, ..., X, are independent, that is, for all n > 1 and all Borel sets
By, ..., By, it follows that

]P{Xl € Bl""’XH € Bn} = ]P{Xl € Bl}"']P{Xn € Bn}.

Remark 4.3.6. In view of Definition 4.3.4, the basic observation in Example 3.6.19 may
now be formulated in the following way. If we toss a (maybe biased) coin, labeled with
“0” and “1,” infinitely often and let X;,X,,... be the results of the single tosses, then
this infinite sequence of random variables is independent with P{X; = 0} =1 - p and
P{X; =1} = p. In particular, for a fair coin, the X; s possess the following properties:

1. Ifk € N, then P{X; = 0} = P{X}, =1} = 1/2.

2. X}, X,,...is an infinite sequence of independent random variables.

This observation leads us to the following definition.

Definition 4.3.7. An infinite sequence Xi,X,, ... of independent random variables with values in {0, 1}
satisfying

P{X, =0} =P{X, =1 =12, k=12,...,

is said to be a model for tossing a fair coin infinitely often.

Consequently, Proposition 4.3.3 asserts that the random variables X;,X,, ... defined by
eq. (4.5) serve as a model for tossing a fair coin infinitely often.

Example 4.3.8. Suppose a randomly chosen number in [0,1) is x = 0.1657432763. Its bi-
nary expansion is 0.0010101001101110001001101011111100111101100010 . . . Thus, translat-
ing this into a result of tossing a coin, the first observations are 0,0,1,0,1,... Of course,
since x is only approximately chosen uniformly, also only the first finitely many digits
of the binary expansion simulate the tossing of a fair coin.

Summary: Let U be some random variable distributed according to the uniform distribution on [0, 1]. Rep-
resent the values of U as binary fraction 0.X,X; ... where the X;s attain values in {0,1}. Then the random
variables X;s are independent with P{X; = 0} = P{X; = 1} = % Thus, in order to generate an infinite inde-
pendent sequence of equiprobable zeroes and ones, choose a number uniformly distributed on [0, 1] and
expand it as a binary fraction.

4.3.3 Random numbers generated by coin tossing

We saw in Proposition 4.3.3 that choosing a random number in [0, 1] leads to a model
for tossing a fair coin infinitely often. Our aim is now to investigate the opposite ques-
tion. That is, we are given an infinite random sequence of zeroes and ones and want to
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construct a uniformly distributed number in [0, 1]. The precise mathematical question
is as follows: suppose we are given an infinite sequence (Xj )y of independent random
variables with

PiXp =0} =P{X, =1} =1/2, k=12,... 4.8)
Is it possible to construct from these X, s a uniformly distributed U? The next propo-
sition answers this question to the affirmative.

Proposition 4.3.9. Let X;,X,,... be an arbitrary sequence of independent random vari-
ables satisfying eq. (4.8). If U is defined by

U =Y sz ()

k=1

, WERQ,

then this random variable is uniformly distributed on [0, 1].

Proof. In order to prove that U is uniformly distributed on [0, 1], we have to show that,
ift € [0,1), then

P{U<t}=t. 4.9)

We start the proof of eq. (4.9) with the following observation: suppose the binary
fraction of some ¢ € [0,1) is 0.t;¢, ... for certain t; € {0,1}.If s = 0.5;5, ..., thens < tif
and only if there is an n € N so that the following is satisfied:*

Sg=ty ..o Sy =ty Sp=0, and ¢t,=1.
Fix t € [0,1) for a moment and set
Apt) =1{s€[0,1): 8 =t;,...,81 = ty_q> Sp < bn}-

Of course, A, (t) N A, (t) = @ whenever n # m and, moreover, A,(t) # 0 if and only if
t, = 1. Furthermore, by the previous remark

(o)
[0,6) = JA,®) = ] A,0).
n=1 {n:t,=1}
Finally, if A,(t) # 0, that is, if t, = 1, then
IP{U € An(t)} = ]P{Xl = tl" . >Xn—1 = tn—l’ Xl‘l = 0}

1
=Py =t} - P&y = b} - P{Xy = 0} = o

4 Inthe casen =1, thissayss; =0and ¢; = 1.
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In the last step, we used both properties of the X;s, that is, they are independent and
satisfy P{X, = 0} = P{X =1} = 1/2.
Summing up, we get

P{U < t} = IP{U € An(t)} = Y P{U e A1)}
{n:t, =1} {n:t,=1}
- Z l - N t_" =t
{n:t, =1} 2 n=1 2"

This “almost” proves eq. (4.9). It remains to show that P{U < t} = P{U < t} oy, equiva-
lently, P{U = t} = 0. To verify this, we use the continuity of IP from above. Then

]P{U = t} = ]P{Xl = tl’XZ = tz,...}

= r}LrQOP{Xl =t,.. . Xy =t} = nhm

Consequently, eq. (4.9) holds for all ¢ € [0,1) and, as asserted, U is uniformly distributed
on [0,1]. O

Remark 4.3.10. Another possibility to write U is as binary fraction
U(w) = 0.X{(w)Xp(w)..., weQ.

Consequently, in order to construct a random number u in [0, 1] one may proceed as
follows: toss a fair coin with “0” and “1” infinitely often and take the obtained sequence
as binary fraction of u. The u obtained in this way is uniformly distributed on [0, 1].

Of course, in practice one tosses a coin not infinitely often. One stops the procedure
after N trials for some “large” N. In this way, one gets a number u, which is “almost”
uniformly distributed on [0, 1].

Example 4.3.11. Suppose tossing a fair coin led to the sequence 0,1,1,0,0,1,0,1. Then
the generated number u € [0,1] equals u = 0.39453125. In the same way, the sequence
1,1,1,0,1,1,0,1 when tossing leads to 0.92578125 as a randomly chosen number in [0, 1].

Then how does one construct n independent numbers u,, ..., u,, all uniformly dis-
tributed on [0, 1]? The answer is quite obvious. Take n coins and toss them. As functions
of independent observations the generated u, ..., u, are independent as well and, by
construction, each of these numbers is uniformly distributed on [0, 1]. Another way is to
toss the same coin n times “infinitely often,” thus getting n infinite sequences of zeroes
and ones.

Summary: If X;,X,,... is an arbitrary sequence of independent random variables such that P{X; = 0} =
PiX; =1} = %, thenU = Y2, )ZL; = 0.X1X; ... is uniformly distributed on [0,1]. Thus, in order to obtain
a number u uniformly distributed on [0, 1], toss a fair coin “infinitely” often and define u as binary fraction

according to the observed sequence of zeroes and ones.
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4.4 Simulation of random variables

Proposition 4.3.9 provides us with a technique to simulate a uniformly distributed ran-
dom variable U by tossing a fair coin. The aim of this section is to find a suitable function
f:10,1] — R, sothatthe transformed random variable X = f(U) possesses a given prob-
ability distribution.

Remark 4.4.1. Typical questions of this kind are as follows:
— Find a function f so that X = f(U) is standard normally distributed.
— Does there exist a function g : [0,1] — R for which g(U) is Bn)p-distributed?

Suppose for a moment we already found such functions f and g. According to Re-
mark 4.3.10, we construct independent numbers u, ..., u,, uniformly distributed on
[0,1], and set x; = f(y;) and y; = g(u;). In this way, we get either n standard normally
distributed numbers Xx;, ..., X, or n binomial distributed numbers y;, ..., y,. Moreover,
by Proposition 4.1.9, these numbers are independent. In this way, we may simulate in-
dependent random numbers possessing a given probability distribution.

We start with simulating discrete random variables. Thus suppose we are given real
numbers x,X,,... and p, > 0 with Y2, p, = 1, and we look for a random variable
X = f(U) such that

]P{X:Xk}:pk, k:1,2,...

One possible way to find such a function f is as follows: divide [0, 1) into disjoint intervals
I,1,,... of length |I;| = p; where k = 1,2,... Since Y2, px = 1, such intervals exist. For
example, take I; = [0, p;) and

k-1 k
Ik:[zpi’zpi>’ k=2,3,...
=1 =l
With these intervals I, we define f : [0,1] — R by
f&x)=x, ifxel, (4.10)

or, equivalently,
(o)
fOO =Y X 15,00 4.11)
k=1

Then the following is true.

Proposition 4.4.2. Let U be uniformly distributed on [0,1], and set X = f(U) with f de-
fined by eq. (4.10) or eq. (4.11). Then

IP{XZXk}Zpk, k=1,2,...
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Proof. Using that U is uniformly distributed on [0, 1], this is an easy consequence of
eq. (1.46) in view of

P{X = x¢} = P{f(U) = X} = P{U € L} = || = pi. 0

Remark 4.4.3. Note that the concrete shape of the intervals® I, is not important at all.
They only have to satisfy |I;| = p, for all k = 1,2,... Moreover, these intervals need
not necessarily be disjoint; a “small” overlap does not influence the assertion. Indeed,
it suffices that P{U € I} N I;} = 0 whenever k # l. For example, if always [I, N I;| < oo,
k # [, then the construction works as well. In particular, we may choose also I; = [0, p;]
and I = (Y55 py, YK, pilif k > 2.

Example 4.4.4. We want to simulate a random variable X, which is uniformly dis-
tributed on {xy,...,Xy}. How to proceed?

Answer: Divide the interval [0,1) into N intervals I;,. .., Iy of length zlv For exam-
ple, choose I, := [%, 1%), k=1...NIff = Z],lexk 1;, then X = f(U) is uniformly
distributed on {x;,. .., Xy}.

Example 4.4.5. Suppose we want to simulate a number k € N,, which is Pois,-
distributed. Set

k-1 4j k 4

¥ ol

Ik:: |:Z]—'e ,Zj—!e ), k:O,l,...,
]:0 ]:0

where the left-hand sum is supposed to be zero if k = 0. Choose randomly a number
u € [0,1] and take the k with u € I.. Then k is the number we are interested in.

Example 4.4.6. Finally, let us simulate B, ,-distributed random numbers. One possible
way is to divide [0,1) into n + 1 disjoint intervals as follows:

I = [lil(?)ﬁ(l—p)"‘j,jg (?)p’(l—p)"‘f>, k=0,....n.

j=0

If k = 0, the left-hand sum is taken as zero, that is, I, = [0, (1 — p)"). Next choose a
random number u uniformly distributed on [0, 1]. For example, use the technique pre-
sented in Remark 4.3.10. If this u € I, then k € {0,...,n} is the desired B, ,-distributed
integer.

For instance, if p = 1/2 and n = 4, the five intervals are

o L) n=[15) ho[B0) BB} (5,
16 1616 1616 1616 16

5 They do not even need to be intervals.

IOI
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After fixing the intervals, let us sufficiently often toss a fair coin labeled with “0” and
“1.” Say we observed the sequence 0,1,1, 0,1, 0. Since the dyadic number 0.011010 equals
u = 0.40625 in decimal representation, one notes that u € I,. Thus, the randomly chosen
number is k = 2. It is distributed according to B, o 5. Which number k € {0,1,2,3,4} do
we select if we toss 1,1,0,1,1,1?

Our next aim is to simulate continuous random variables. More precisely, suppose
we are given a probability density p. Then we look for a function f : [0,1] — R such that
p is the density of X = f(U), that is, we have to have

t
P{f(U)<t}=P{X <t} = J px)dx, teR. (4.12)
To this end, set
t
F(t) = J px)dx, teR. (4.13)

Thus, F is the distribution function of the random variable X, which we are going to
construct.

Suppose first that F is one-to-one on a finite or infinite interval (a, b), so that F(x) = 0
if x < a, and F(x) = 1if x > b. For example, this is valid if p(t) > 0 for all ¢ € (a, b). Since
F is continuous, the inverse function F~! exists and maps (0,1) to (a, b).

Proposition 4.4.7. Let p be a probability density and define F by eq. (4.12). Suppose F sat-
isfies the above condition. IfX = F~\(U), then

t
PIX <t} = J pO)dx, teR,

that is, p is a density of X.

Proof. Firstnote that the assumptions about F imply thatitis increasing on (a, b). Hence,
if t € R, then

t
P{X <t} = P{FY(U) < t} = P{U < F(0)} = F(t) = J pdx, teR.

Here we used 0 < F(t) < 1and P{U < s} = s whenever 0 < s < 1. This completes the
proof. O
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But what do we do if F does not satisfy the above assumption? For example, this
happens if p(x) = 0 on an interval I = (a, ) and p(x) > 0 on some left- and right-hand
intervals® of I. In this case F! does not exist, and we have to modify the construction.”

Definition 4.4.8. Let F be defined by eq. (4.13). Then we set
F(s)=inf{te R:F(t)=s}, O<s<1.

The function F~, mapping [0, 1) to [-co, 00), is called the pseudoinverse of F.

Remark 4.4.9. If 0 < s < 1, then F(s) € R while F~(0) = —oco. Moreover, if F is increas-
ing on some interval I, then F~(s) = F! (s)forsel.

Lemma 4.4.10. The pseudoinverse function F~ possesses the following properties:
1. Ifse(0,1)andt € R, then

F(F7(s))=s and F (F(t))<t.
2. Givent € (0,1), we have

F(s)<st e s<F(). (4.14)

Proof. The equality F(F™(s)) = s is a direct consequence of the continuity of F. Indeed,
if there are ¢, \ F~(s) with F(¢t,) = s, then

S = nILIBoF(t") =F(F(s)).

The second part of the first assertion follows by the definition of F~.

Now let us come to the proof of property (4.14). If F~(s) < t, then the monotonicity
of F and F(F(s)) = slead to s = F(F(s)) < F(t).

Conversely, if s < F(t), then F7(s) < F (F(t)) < t by the first part, thus, property
(4.14) is proved. O

Now choose a uniformly distributed U and set X = F~(U). Since P{U = 0} = 0, we
may assume that X attains values in R.

Proposition 4.4.11. Let p be a probability density, that is, we have p(x) > 0 and
j_cfo p(x)dx = 1. Define F by eq.(4.13) and let F~ be its pseudoinverse. Take U to be
uniformly distributed on [0,1] and set X = F~(U). Then p is a distribution density of the
random variable X.

6 Take, for instance, p with p(x) = % if x € [0,1] and if x € [1,2], and p(x) = 0 otherwise.

7 All subsequent distribution functions F possess an inverse function on a suitable interval (a, b). Thus,
Proposition 4.4.7 applies in almost all cases of interest. Therefore, if the statements about pseudoinverse
functions look too complicated, you may skip them.
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Proof. Using property (4.14), it follows that
Fx)=PX <t} =P{lweQ:F (U(w)) < t}
=Plwe Q: U(w) < F(t)} = F(t),
which completes the proof. O

Remark 4.4.12. Since F~ = F~! whenever the inverse function exists, Proposition 4.4.7
is a special case of Proposition 4.4.11.

Example 4.4.13. Let us simulate an N(0, 1)-distributed random variable, that is, we are
looking for a function f : (0,1) — R such that for a uniformly distributed U,

t
P{f(U) <t} = J e dx, teR.
(ee]

S

The distribution function

t
1 2
o= L | e*rax
® o

is one-to-one from R — (0,1), hence Proposition 4.4.7 applies, and ® (U) is a standard
normal random variable.

How does one get an A (u, o%)-distributed random variable? If X is standard nor-
mal, by Proposition 4.2.3 the transformed variable aX + u is (i, 0%)-distributed. Conse-
quently, c®(U) + u possesses the desired distribution.

How do we find n independent A/ (u, 6%)-distributed numbers x;, . . ., x,? To achieve
this, choose uy, ..., u, in [0,1] according to the construction presented in Remark 4.3.10
andsetx; =0 ® '(u;) + g, 1<i<n.

Example 4.4.14. Our next aim is to simulate an Ej-distributed (exponentially dis-
tributed) random variable. Here

o) = 0 ift<0,
1-e™ ift>0,

which satisfies the assumptions of Proposition 4.4.7 on the interval (0, co). Its inverse
F maps (0,1) to (0, co) and equals

i (s) = _ln(l -S) ’

0<s<1.
Therefore, if U is uniformly distributed on [0, 1], then X = — h‘(lﬂ—’U) is E;-distributed. This
is true for any uniformly distributed random variable U. By Corollary 4.2.7, the random
variable 1 - U has the same distribution as U, hence, setting
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y_ nd-a-u) _ I
B A RV

the random variable Y is E;-distributed as well.

Example 4.4.15. Let us simulate a random variable with Cauchy distribution (see Defi-
nition 1.6.37). The distribution function F is given by

F(t) =

t
1 1 1
— J dx:—arctan(t)+1, teR,
T 1+ x2 T 2

—00

hence X := tan(nU - %) possesses a Cauchy distribution.

Example 4.4.16. Finally, let us give an example where Proposition 4.4.11 applies and
Proposition 4.4.7 does not. Suppose we want to simulate a random variable X with dis-
tribution function F defined by

[0 ift <0,
: ifo<t<i,
F) =13 ifl<t<2 (4.15)
1 t-2
§+T leSt<3,
1 ift>3.

Direct computations imply (see Figure 4.3) that

28 ifo<s<3,
F(s)=141 ifs =3,

2s+1 if<s<1.

0.5

0 1 2 3 4 0 0.5 1

Figure 4.3: The functions F and F~ in Example 4.4.16.

Hence, if X is defined by

X=F{U)=2U1 (U)+(2U+1)Jl(1)1](U),

[0,5]
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then P{X < t} = F(t) with F defined by eq. (4.15). In other words, X is acting as follows.
Choose by random a number u € [0,1]. Ifu < % then X(u) = 2u, while for u > % we take
XW=2u+1.

Summary: Let P be a probability measure on the Borel sets of R. In order to simulate n independent num-
bersx;,...,x, distributed according to IP, one proceeds in the following way. In the first step, one constructs n
independent numbers u,, ..., u, uniformly distributed on [0, 1]. To this end, one tosses a fair coin sufficiently
often as explained in Remark 4.3.10.

The second step is then as follows: If PP is discrete, one defines the numbers x;, ..., x, by x; = f(u;) with
the function f constructed in (4.11). The probability that one (or each) x; belongs to a set B equals P(B). In
case of continuous PP, define X; as F”(uj) provided the distribution function F of PP is invertible. Otherwise
replace F~' by the pseudoinverse F~ introduced in Definition 4.4.8. As before, the x;s are independent and
distributed according to the given PP.

4.5 Addition of random variables

Suppose we are given two random variables X and Y, both mapping from Q into R. As
usual, their sum X + Y is defined by

X+Y)(w) =X(w)+Y(w), we.

The main question we investigate in this section is as follows: suppose we know the
probability distributions of X and Y. Is there a way to compute the distribution of X + Y?
For example, if we roll a die twice, X is the result of the first roll, Y that of the second,
then we know Py and Py. But how do we get Py, y?

Before we treat this question, we have to be sure that X+Y is also a random variable.
This is not obvious at all. Otherwise, the probability distribution of X + Y is not defined
and our question does not make sense.

Proposition 4.5.1. IfX and Y are random variables, thensois X + Y.

Proof. We start the proof with the following observation. For two real numbers a and b,
one has a < b if and only if there is a rational number q € Q such thata < gand b > q.
Therefore, given t € R, it follows that

{weQ: X(w)+Y(w) <t)={weQ:X(w) <t-Yw)}

= U[{w:X(w) <qln{w:q<t-Yw)}]. (4.16)
q<€Q

By assumption, X and Y are random variables. Hence, for each q € Q,

Ag={o:X(w)<qle A and By :={w:Y(w)<t-q}cA,
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which, by the properties of o-fields, implies C; := A, N B, € A. With this notation, we
may write eq. (4.16) as

{weQ: X(w)+Y(Ww) <t} = UCq'
q€Q

The o-field A is closed under taking countable unions, thus, since Q is countably infinite
and C; € A, it follows that {J,cq C; € A. Therefore, we have proven that, if ¢ € R, then

{weQ: X(w)+Y(w) <t}e A.

Proposition 3.1.6 lets us conclude that, as asserted, X + Y is a random variable. O

Remark 4.5.2. In view of Proposition 4.5.1, the following question makes sense: does
there exist a general approach to evaluate Py_ y by virtue of Py and of Py?

Answer: Such a general way does not exist. The deeper reason behind this is that,
in order to get Py, y, one has to know the joint distribution of (X,Y). And as we saw in
Section 3.5, in general, the knowledge of Py and PPy does not suffice to determine their
joint distribution, hence generally we also do not know Py y.

The next example emphasizes the previous remark.

Example4.5.3. LetX, Y, X ! and Y’ be as in Example 3.5.8, that is, we choose two balls
out of an urn where two balls are labeled by “0” and two by “1,” once without replacing
the first ball and once with replacing. The joint distributions of (X, Y) and (X', Y') are

]P{X=0,Y=O}:%, ]P{X:O,Yzl}:%,
1 1
PX=1Y=0=2, PX=1Y=T=c
]P{X’:O,Y’:O}:}l, P{X':O,Y':l}:%,
]P{X'=1,Y'=0}:%, IP{X’—l,Y':l}zz—ll.

Then Py = Py and Py = Py, but

lP{X+Y=0}=%, ]P{X+Y=1}=§, and IP{X+Y:2}=%,
while
1P{X'+Y’:0}:%, 1P{X’+Y':1}:%, and ]P{X’+Y':2}:}1.

Consequently, if we do not replace the chosen ball, the probability that the sum of both
choices equals “1” is 2/3 while it is 1/2 if we replace the first ball. And this happens al-
though in both cases the numbers “0” and “1” occur every time with probability 1/2.



204 — 4 Operations on random variables

On the other hand, as we saw in Proposition 3.6.5, the joint distribution is uniquely
determined by the marginal ones, provided the random variables are independent.
Therefore, for independent random variables X and Y, the distribution of X + Y is
determined by those of X and Y. The question remains, how Py can be computed.

4.5.1 Sums of discrete random variables
We first consider an important special case, namely that X and Y attain values in Z.
Here we have

Proposition 4.5.4 (Convolution formula for Z-valued random variables). Let X and Y be
two independent random variables with values in Z. If k € Z, then

n PX+Y=k}= 0ZOZIP{X:i}JP{Y:k—i}.

Proof. Fix k € Z and define B, € Z x Z by
By ={(ij)eZxZ:i+j=k}.
Then we get
PX +Y =k} = P{(X,Y) € By} = P(y.y)(By) @17

with joint distribution 1Py y. Proposition 3.6.11 asserts that for independent X and ¥
andBcZx2Z,

PyyB) = Y Px({i})-Py({}) = ) PX =i} -P{Y=j}.

(ij)eB (ij)eB

We apply this formula with B = By, and, from eq. (4.17), obtain

PX+Y=ki= ) P{X=i -P{Y=j

()€By
= ) PX=i-P{y=j
{(@)): t+j=k}
(e8]
= Y PX=i}-P{Y=k-1},
i=—0c0
as asserted. O

Example 4.5.5. Two independent random variables X and Y are distributed according
toP{X =j} =P{Y =} =1/2,j = 1,2,... Determine the probability distribution of X - Y.
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Solution: First note that P{X = j} = P{Y =j} = 0 forj < 0. Hence, given k € Z, an
application of Proposition 4.5.4 to X and -Y yields

P{X-Y=k}= i IP{X=i}-]P{—Y=k—i}=OZO:P{X=i}~P{Y=i—k}.
i=—00 i=1

Ifk >0,then P{Y =i-k} =0 fori<k,thus

(o0

(oe)
. . 1
]P{X—Y:k}z'z IP{X:l}-IP{Yzl—k}:‘Z =
i=k+1 i=k+1
S 1 ke 21 ko 4 2K
=20y =Ry g S
i=k+1 221 i=0 22l 3 3

For k < 0, it follows that

8

1 1 P01 g ok
P{X-Y:k}:_li-zﬂzz Zl—.:z Z—=§-
= =

We combine both cases and obtain
zflkl
P{X—Y:k}ZT, keZ.

Which random experiment does X — Y describe? Suppose player A and B both toss a fair
coin. Let X be the number of necessary trials for A to observe the first “heads.” Similarly,
Y describes how often B has to toss his coin to get the first “heads.” Thus, the value of
X - Y tells us how many trials later (or earlier if X — Y is negative) player A got his first
“heads” compared to B.

For example, if B got his first “heads” one trial earlier than A, then X — Y = 1. The
probability that this occurs equals 1/6.

One special case of Proposition 4.5.4 is of particular interest.

Proposition 4.5.6 (Convolution formula for IN,-valued random variables). Let X and Y be
two independent random variables with values in N,. If k € IN,, then it follows that

=

PX+Y=kl=YPX=i}- Py =k-i}. H

i=0

Proof. Regard X and Y as Z-valued random variables with P{X =i} = P{Y =i} = 0 for
alli=-1,-2,... If k € Ny, then Proposition 4.5.4 lets us conclude that

(o) k
PX+Y=ki= ) PX=i}- P{Y=k-i}=) PIX=i}-P{Y =k-1i}.

i=—00 i=0
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Here weused P{X =i} =0fori < Oand P{Y = k-1i} = 0ifi > k. For k < 0, it follows
that P{X + Y = k} = 0 because in this case P{Y = k — i} = 0 for all i > 0. This completes
the proof. O

Example 4.5.7. Let X and Y be two independent random variables, both uniformly dis-
tributed on {1, 2, ..., N}. Which probability distribution does X + Y possess?

Answer: Of course, X + Y attains only values in the set {2,3,...,2N}. Hence,
P{X + Y = k} is only of interest for 2 < k < 2N. Here we get

|

]P{X+Y=k}=m>

(4.18)
where I}, is defined by
Lo={ie{l,...,.N}:1<k-i<N}={ie{l,...,.N}:k-N<i<k-1}.

To verify eq. (4.18), use that for i ¢ I; either P{X = i} = 0 or P{Y = k — i} = 0. It is not
difficult to prove that

LS if2<k<N+1,
Mo laN—k+1 ifN+1<k<2N,

which leads to

k1 if2<k<N+1,

N
PX+Y=k}= % ifN+1<k<2N,
0 otherwise

IfN = 6,then X+Y may be viewed as the sum of two rolls of a die. Here the above formula
leads to the values of P{X +Y = k}, k = 2,...,12, which we, by a direct approach, already
computed in Example 3.2.15. For another example with N = 8 see Figure 4.4.

P{X +Y =k}

ool
.
.

T T T T T T T T T T T T T T T k

L
64 .
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 4.4: The sum of independent X and Y, both uniformly distributed on {1,..., 8}.

Finally, let us shortly discuss the case of two arbitrary independent discrete random
variables. Assume that X and Y have values in at most countable infinite sets D and E,
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respectively. Then X + Y maps into
D+E:={x+y:xeD, yeL}.

Note that D + E is also at most countably infinite.
Under these assumptions, the following is valid.

Proposition 4.5.8. Suppose X and Y are two independent discrete random variables with
values in the (at most) countably infinite sets D and E, respectively. For z € D+E, it follows
that

PX+Y =2z} = > P{X = x} - P{Y = y}.
{(x,y)eDXE : x+y=z}

Proof. For afixedz € D + E define B, € D x E by B, := {(x,y) : x +y = z}. Using this
notation, we get

]P{X + Y = Z} = ]P{(X, Y) € BZ} = IP(X,Y)(BZ) 5

where again PPy ) denotes the joint distribution of X and Y. Now we may proceed as in
the proof of Proposition 4.5.4. The independence of X and Y implies

Pxy)(B;) = > PIX = x}- P{Y =y},
{(X,y)eDXE:x+y=z}

proving the proposition. O

Remark 4.5.9. If D = E = Z, then Proposition 4.5.8 implies Proposition 4.5.4, while for
D = E = N, we rediscover Proposition 4.5.6.

Example 4.5.10. Suppose X is uniformly distributed on D = {1,2, 3,4} while Y is uni-
formly distributed on E = {5, 6,7, 8}. Their sum attains its values in {6,...,12}. If X and
Y are independent, then, for example,

PX+Y=Tt= ) PX=x}P{Y=y}

xeD,yeE

X+y=7
=P{X=1}-P{Y =6} + P{X = 2} - P{Y =5}
11 11 1
= — =4 — = = —,

4 4 4 4 8

4.5.2 Sums of continuous random variables

In this section we investigate the following question: let X and Y be two continuous
random variables with density functions p and q. Is X + Y continuous as well, and if this
is so, how do we compute its density?



208 —— 4 Operations on random variables

To answer this question, we need a special type of composing two functions.

Definition 4.5.11. Letf and g be two Riemann integrable functions from R to R. Their convolution f x g
is defined by

f*x9)x) = J fx-y)gly)dy, xeR. (4.19)

Remark 4.5.12. The convolution is a commutative operation, that is,
frg=8~*f.

This follows by the change of variables u = x — y in eq. (4.19), thus

(0@ (0]

¢ = [ fo-0g0)dy= [ f@gk-wdu=(g+fit0. xeR.

-0 -0

Remark 4.5.13. For general functions f and g, the integral in eq. (4.19) does not always
exist for all x € R. The investigation of this question requires facts and notations® from
Measure Theory; therefore, we will not treat it here. We only state a special case, which
suffices for our later purposes. Moreover, for concrete functions f and g, it is mostly easy
to check for which x € R the value (f * g)(x) exists.

Proposition 4.5.14. Let p and q be two probability densities and suppose that at least one
of them is bounded. Then (p = q)(x) exists for all x € R.

Proof. Say p is bounded, that is, there is a constant ¢ > 0 such that 0 < p(z) < c for all
z € R.Since q(y) > 0, if x € R, then

< jp(x—y)q(y)dysc I qy)dy =c < o0.

This proves that (p * g)(x) exists for all x € R.
Since p * q = q * p, the same argument applies if ¢ is bounded. O

The next result provides us with a formula for the evaluation of the density function
of X + Y for independent continuous X and Y.

Proposition 4.5.15 (Convolution formula for continuous random variables). Let X and Y
be two independent random variables with distribution densities p and q. Then X + Y is
continuous as well, and its density r may be computed by

8 For example, “exists almost everywhere.”
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0 =pxaw= [ py)ax-nd.

Proof. We have to show that r = p * ¢ satisfies

t
PX+Y <t} = Jr(x)dx, teR. (4.20)

Fix t € R for a moment and define B, ¢ R* by
B, :={wy) e R :u+y<t}.
Then we get
PX+Y <t} = P{(X,Y) € B} = Py y(B,). 4.21)

To compute the right-hand side of eq. (4.21), we use Proposition 3.6.20. It asserts that
the joint distribution PPy y) of independent X and Y has density (u,y) — p(w)q(y), that
is, if B ¢ R?, then

Py.y)(B) = ﬂ p(wq) dydu.
B

Choosing B = B, in the last formula, eq. (4.21) may now be written as

oo t=y
PIX+Y<t}= “ p(w) q(y)dydu = J [ J p(w) du] q(y)dy. 4.22)
B, —00 ~—00

Next we change the variables in the inner integral as follows:’ u = x -y, hence
du = dx. Then the right-hand integrals in eq. (4.22) coincide with

THP(X -y ] W dy= HTP(X y)q(y)dy]
Jt(p*q)(x)dx.

Hereby we used that p and g are nonnegative, so that we may interchange the integrals
by virtue of Proposition A.5.5. Thus, eq. (4.20) is satisfied, which completes the proof. [

9 Note that in the inner integral y is a constant.



210 — 4 Operations on random variables

4.6 Sums of certain random variables

Let us start with the investigation of the sum of independent binomial distributed ran-
dom variables. Here the following is valid.

Proposition 4.6.1. Let X and Y be two independent random variables, accordingly
B,,- and B ,-distributed for some n,m>1, and some p € [0,1]. Then X +Y is
By mp-distributed.

Proof. By Proposition 4.5.6, we get that for 0 < k < m + n,
k

PX+Y =k} = Z[(;l) Pa- p)”—f] : [(k"j]) P (1 = pyn-kD

j=0
k
=rta-pmt ];) (7)(;—1]) '

To evaluate the sum, we apply Vandermonde’s identity (Proposition A.3.9), which

asserts
K m n+m
]-_0<j><k—j> ) ( k )
This leads to
PIX +Y =k} = (” JI;’") P (1 - pymnk
and X +Yis B, +m,p-distributed. 0

Interpretation: In the first experiment, we toss a biased coin n times and in the sec-
ond m times. We combine these two experiments into one and toss the coin now n + m
times. Then we observe “heads” exactly k times during the n + m trials if there is some
j < k so that we had j “heads” among the first n trials and k — j among the second m.
Finally, we have to sum the probabilities of all these events overj < k.

Corollary 4.6.2. LetX;,..., X, be independent B, y-distributed, that is,
PX;=0j=1-p and PX;=1=p, j=1...n.

Then their sum X + --- + X, is By, ,-distributed.

Proof. Apply Proposition 4.6.1 successively, first to X; and X,, then to X; + X, and X;, and
SO OI. O

Remark 4.6.3. Observe that

Xi+-+X, =|{<n:X; =1
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Corollary 4.6.2 justifies the interpretation of the binomial distribution given in Sec-
tion 1.4.3. Indeed, the event {Xj = 1} occurs if in trial j we observe success. Thus, the
sum X; +--- + X, describes the number of successes in n independent trials. Hereby, the
success probability is P{X; = 1} = p.

In the literature, the following notion is common.

Definition 4.6.4. Afinite or infinite sequence X;, X, ... . of independent B, ,-distributed random variables
is called a Bernoulli trial or Bernoulli process, or also binomial trial, with success probability p € [0,1].

With these notations, Corollary 4.6.2 may now be formulated as follows:
Let X1, X, ..., be a Bernoulli trial with success probability p. Then for n > 1,

P{X; +- + X, = k} = (Z)P"(l—p)”"‘, k=0,....n.
Let X and Y be two independent Poisson distributed random variables. Which distribu-

tion does X + Y possess? The next result answers this question.

Proposition 4.6.5. Let X and Y be independent Pois;- and Pois,-distributed for some A > 0
and u > 0, respectively. Then X +Y is Pois,, -distributed.

Proof. Proposition 4.5.6 and the binomial theorem (see Proposition A.3.8) imply

PX+Y =k zg[j_: ol (:S)! <]

e ) Kk k!

K &= )

-(A+p) k . . k

e <k> j o ke _ A+ )

= . A u = —
k! ];) j

Ps]

—(A+u)
e .
k!

Consequently, as asserted, X + Y is Pois,, -distributed. O

Interpretation: The numbers of phone calls arriving per day at some call centers A
and B are Poisson distributed with parameters' A and u. Suppose that these two centers
have different customers, that is, we assume that the number of calls in A and B is in-
dependent of each other. Proposition 4.6.5 asserts that the number of calls arriving per
day either in A or in B is again Poisson distributed, but now with parameter A + p.

Example 4.6.6. This example deals with the distribution of raisins in a set of dough.
More precisely, suppose we have N pounds of dough and therein are n uniformly dis-

10 Later on, in Proposition 5.1.16, we will see that A and y are the mean values of arriving calls per day.
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tributed raisins. Choose at random a one-pound piece of dough. Find the probability that
there are k > 0 raisins in the chosen piece.

Approach 1: Since the raisins are uniformly distributed in the dough, the probability
that a single raisin is in the chosen piece equals 1/N. Hence, if X is the number of raisins
in that piece, it is B, ,-distributed with p = 1/N. Assuming that N is big, the random
variable X is approximately Pois,-distributed with A = n/N, that is,

A
P =kl={7e", k=01

Note that A = n/N coincides with the average number of raisins per pound dough.
Approach 2: Assume that we took in the previous model N — oo, that is, we have

an “infinite” amount of dough and “infinitely” many raisins. Which distribution does X,

the number of raisins in a one-pound piece, now possess?

First, we have to determine what it means that the amount of dough is “infinite” and
that the raisins are uniformly distributed™ therein. This is expressed by the following
conditions:

(@) The mass of dough is unbelievably huge, hence, whenever we choose two different
pieces, the numbers of raisins in the pieces are independent of each other.

(b) The fact that the raisins are uniformly distributed is expressed by the following
condition: suppose the number of raisins in a one-pound pieceisn > 0.If this piece is
split into two pieces, say K; and K, of weight a and 1-a pounds, then the probability
that a single raisin (out of n) is in K; equals a, and the probability that it is in K, is
1-a.

Fix 0 < a < 1 and choose in the first step a piece K; of a pounds and in the second one
another piece K, of weight 1-a. Let X; and X, be the numbers of raisins in each of the two
pieces. By condition (a), the random variables X; and X, are independent. If X = X; + X,
then X is the number of raisins in a randomly chosen one-pound piece. Suppose now
X = n, that is, there are n raisins in the one-pound piece. Then by condition (b), the
probability for k raisins in K; is described by the binomial distribution B, ,. Recall that
the success probability for a single raisin is a, thus, X; = k means, we have k successes.
This may be formulated as follows: for all 0 < k < n,

n

PUX; = KIX = 1} = By (1) =

Jaa-a*. 4.23)
Rewriting eq. (4.23) leads to

P{X,=k X,=n-k} =P{X, =k, X =n}

11 Note that the multivariate uniform distribution only makes sense (cf. Definition 1.8.13) if the under-
lying set has a finite volume.
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—PX, =KX =n} - PIX =n} = P{X = 1} - (Z)ak 1-a)*. (4.24)

Observe that in contrast to eq. (4.23), eq. (4.24) remains valid also if P{X = n} = 0.
Indeed, if P{X = n} = 0, by Proposition 4.5.6, the event {X; = k, X, = n — k} has zero
probability as well.

The independence of X; and X, and eq. (4.24) imply that, if n = 0,1,2,... and k =
0,...,n, then

PiX, = k} - P{X, = n—k} = P{X = n} - (Z)ak(l —ar k.

Setting k = n, we get
P{X, =n}-P{X, =0} = P{X =n}-a", (4.25)
while for n > 1and k = n — 1 we obtain
PX,=n-1}-PX,=1}=P{X=n}-n-a" " (1-a). (4.26)

In particulay, from eq. (4.25) P{X, = 0} > 0 follows. If this probability were zero,
then this would imply P{X = n} = 0 for all n € N, which is impossible in view of
P{X e No} =1.

In the next step, we solve eqs. (4.25) and (4.26) with respect to P{X = n} and make
them equal. Doing so, for n > 1 we get

=%t P&l py
X, =n} = (1-0) P 0] P{X, =n-1}
- 2 b =n-1), (4.27)
where A > 0 is defined by
— (ot P =1
A=01-a) P, =0} (4.28)

Do we have A > 0? If A = 0, then P{X, = 1} = 0 and, by eq. (4.26), P{X = n} = 0 for
n > 1. Consequently, P{X = 0} = 1, which says that there are no raisins in the dough. We
exclude this trivial case, thus it follows that A > 0.

Finally, successive application of eq. (4.27) implies for n € ]NO12 that

(ad)"

n!

PX, = n} = - P{X, = 0}, (4.29)

12 If n = 0, the equation holds trivially.
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leading to

1= i PLX, = n} = P{X, = 0} - i (a:') - P{X, = 0} ™,
n=0 :

n=0

that is, we have P{X; = 0} = e, Plugging this into eq. (4.29) gives

(ad)" e—a/l

]P{Xl = Tl} = n'

and so X; is Poisson distributed with parameter aA.

Let us interchange now the roles of X; and X,, hence also of a and 1 - a. An applica-
tion of the first step to X, tells us that it is Poisson distributed, but now with parameter
(1 - a))’, where in view of eq. (4.28) A’ is given by™

— —aA
e _1.]P{X1—1}:a_1a)le Y
]P{Xl = 0} e‘“)‘

Thus, X, is Pois(;_q;-distributed.
Since X; and X, are independent, Proposition 4.6.5 applies, hence X = X; + X, is
Pois;-distributed or, equivalently,

k

P{There are k raisins in a one-pound piece} = X e,

Remark 4.6.7. Which role does the parameter A > 0 play in this model? As already
mentioned, Proposition 5.1.16 will tell us that A is the average number of raisins per
pound dough. Thus, if p > 0 and we ask for the number of raisins in a piece of p pounds,
then this number is Poispx-distributed,14 that is,

s s : _ (P/\)k —pA
P{k raisins in p pounds of dough} = E e ™.

Assume that dough contains on average 20 raisins per pound. Let X be the number of
raisins in a piece of bread baked from five pounds of dough. Then X is Pois;,o-distributed
and

P({95 < X <105}) = 0.4176, ({90 < X < 110}) = 0.7065,
P({85 < X < 115}) = 0.8793, ({80 < X < 120}) = 0.9599,
P({75 < X < 125}) = 0.9892, P({70 < X < 130}) = 0.9976.

13 Observe that we have to replace X, by X; and1 - a by a.
14 Because on average there are pA raisins in a piece of p pounds.



4.6 Sums of certain random variables == 215

Additional question: Suppose we buy two loaves of bread baked from p pounds dough
each. What is the probability that one of these two loaves contains more than twice as
many raisins as the other?

Answer: Let X be the number of raisins in the first loaf, and Y the number of raisins
in the second. By assumption, X and Y are independent, and both are Pois,-distributed,
where as before A > 0is the average number of raisins per pound dough. The probability

we are interested in is (use Proposition 1.2.4 as well as that (X, Y) 4 (Y, X))
P{X >2YorY > 2X} = P{X > 2Y} + P{Y > 2X} = 2P{X > 2Y}

=2OZO:]P{sz,X>2k}=2i]P{Y:k}-]P{X>2k}

k=0 k=0

v S . o 2 (N 2 (oY
=2 ZIP{Y:k}-'Z P{X =j} =2e% ZT .Z o

k=0 Jj=2k+1 k=0 b j=2k+1 °

If the average number of raisins per pound is A = 20, and if the loaves are baked from
p = 5 pounds dough, then this probability is approximately

P{X >2Y or Y > 2X} ~ 3.17061 x 107° .
If p = 1, that is, the loaves are made from one-pound dough each, then
P{X >2Y or Y > 2X} ~ 0.0430079.

Next we investigate the distribution of the sum of two independent negative binomial
distributed random variables. Recall that X is B, ,-distributed if

k-1

]P{X:k}:<k—n

)p"(l—p)"‘", k=nn+1,...
Proposition 4.6.8. Let X andY be independent and respectively B, - and B, ,-distributed
forsomem,n>1ThenX +Y is B -distributed.

n+mp

Proof. We derive from Example 4.1.8 that, if k € Ny, then

T A (A ST IR o — Il — M\ m, . \k
P -n=k= () 0-1 and y-m=ki=(7")p" -1
An application of Proposition 4.5.6 to X — n and Y — m implies
k
— = = -n n - / -m m - kij
P{X+Y - (n+m)=k} ]Z(;[(j)p (p 1)’] [(k—j)p p-1 ]

e 3 (1))
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To compute the last sum, we use Proposition A.5.3, which asserts that

5060,

Consequently, for each k € Ny,

PX+Y-(n+m)=k} = (—nk m)p"”"(p L

Another application of eq. (4.2) (this time with n + m) leads to

k-1

]P{X+Y:k}:(k—(n+m)

)Pmm(l—p)k_(”m), k=n+mn+m+1,...,

completing the proof. O

Corollary 4.6.9. Let X,..., X, be independent G,-distributed (geometrically distributed)
random variables. Then their sum X + --- + X;, is B, -distributed.

Proof. Use G, = By, and apply Proposition 4.6.8 n times. O

Interpretation: The following two experiments are completely equivalent: one is to
play the same game until one observes success for the nth time. The other experiment
is, after each success to start a new game, until one observes success in the nth (and
last) game. Here we assume that all n games are executed independently and possess
the same success probability.

Let U and V be two independent random variables, both uniformly distributed on
[0,1]. Which distribution density does U + V possess?

Proposition 4.6.10. The sum of two independent random variables U and V, uniformly
distributed on [0, 1], has the density r defined by

X ifo<x<1,
rx)=42-x ifl<x<2, (4.30)
0 otherwise.

Proof. The distribution densities p and q of U and V are given by p(x) = q(x) = 1if
0 < x <land p(x) = q(x) = 0 otherwise. Proposition 4.5.15 asserts that U + V has density
r = p * q computed by

[} 1
r(x) = j px-y)q(y)dy = Jp(x -y)dy.
00 0

But p(x —y) =lifand only if 0 < x —y < 1 o1, equivalently, if and only if x -1 <y < x.
Taking into account the restriction 0 <y < 1, it follows that p(x — y)q(y) = 1if and only
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ify € [max{x — 1, 0}, min{x, 1}]. In particular, r(x) = 0 for x ¢ [0,2],and if 0 < x < 2, then
r(x) = min{x, 1} - max{x — 1,0} .

It is not difficult to see (treat the cases 0 < x < 1and 1 < x < 2 separately) that r(x) may

be written as stated in eq. (4.30). This completes the proof. O

Application. Suppose we choose independently and according to the uniform distribu-
tion two numbers u; and u, in [0,1]. Then the probability that a < u; + u, < b equals

j: r(x) dx with r given by eq. (4.30). For example (see Figure 4.5),

1 3 ; 3/2 3
P|: < <t [xaxs+ [@-nax=2.
{2<u1+u2<2} J-X +J( X) 2
1/2 1
1
1 1 i — T
0 0.5 1 1.5 2

Figure 4.5: The area of the gray-shaded set equals P{1/2 < U + V < 3/2}. Here the random variables U and
V are independent and both uniformly distributed on [0, 1].

We investigate now the sum of two gamma distributed random variables. Recall that
the density of a T, g-distributed random variable is given by

_ 1 1 xa
Pa,ﬁ(X)—aﬁr(ﬁ)x e

if x > 0, while p, g(x) = 0 otherwise.

Proposition 4.6.11. Let X; and X, be two independent random variables distributed ac-
cording toT, p and T, p , respectively. Then X; + X, is 'y p . p, -distributed.

Proof. If r denotes the density of X; + X,, Proposition 4.5.15 implies

(0]

r(X) = (Pap, * Pap,)(X) = J Pap, (X = YPep,M Ay, Xxe€R, 4.31)

-0

and we have to show thatr = p,g ., .
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It is easy to see that r(x) = 0if x < 0, hence it suffices to evaluate eq. (4.31) for x > 0.
Since pyp,(x -y) = 0ify > x,

X
Jyﬁl—l(x _y)ﬁz—l eV o=(x-)/a dy
0

1

r(x) = abrBT(B)T(B,)

X

-1 -1

_ 1 Bi+B=2 —x/a X A _ X g

= X e 1 dy.
aPBT(B)T(B,) A X

Changing the variable as u := y/x, hence dy = x du, we obtain

1

1 Pi+Br-1 —X/a j Bi-1 Br-1
r(x)= ——5—— x"""""e (1 -w du
) aPrPT(BT(B,) : ( )
_ B(ﬁpﬁz) ~Xﬂ1+ﬁ2_1 e—x/a , (4.32)
aPi B T(B) T(B,)
where B denotes the beta function defined by eq. (1.61). Equation (1.62) yields
By _ 1 4.33)

TBYTPBy) TPy +Py)’

hence, if x > 0, then, from eqs. (4.32) and (4.33), it follows that r(x) = Dap,+B, (x). This
completes the proof. O

Recall that the Erlang distribution is defined as E; , = I';1 ,. Thus, Proposition 4.6.11
implies the following corollary.

Corollary 4.6.12. Let X and Y be independent and distributed according to E, ,, and E) ,
respectively. Then their sum X + Y is E; ., p,-distributed.

Another corollary of Proposition 4.5.15 (or of Corollary 4.6.12) describes the sum of
independent exponentially distributed random variables.

Corollary 4.6.13. Let Xi,...,X, be independent E,-distributed random variables. Then
their sum X, + - -- + X, is Erlang distributed with parameters A and n.

Proof. Recall that E, = Ej ;. By Corollary 4.6.12, the sum X; + X, is distributed according
to E, ,. Proceeding in this way, every time applying Corollary 4.6.12 leads to the desired
result. O

Example 4.6.14. The lifetime of light bulbs is assumed to be E,-distributed for a certain
A > 0. At time zero, we switch on the first bulb. At the moment it burns out, we replace
it by the second one of the same type. If the second burns out, we replace it by the third,
and so on. Let S,, be the moment when the nth light bulb burns out. Which distribution
does S,, possess?
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Answer:Let X;, X,, ... be the lifetimes of the first, second, and so on, light bulb. Then
S, =X; +--- + X, Since the light bulbs are assumed to be of the same type, the random
variables X; are all E;-distributed. Furthermore, the different lifetimes do not influence
each other, thus, we may assume that the X;s are independent. Now Corollary 4.6.13 lets
us conclude that S, is Erlang distributed with parameters A and n, hence, if t > 0, by
Proposition 1.6.26, we get

n t n-1 j
P{S, <t} = (n’l_ o Jx“ e dx=1-) @ e (4.34)
) 5

Example 4.6.15. We continue the preceding example, but ask now a different question.
How often do we have to change light bulbs before some given time T > 0?

Answer: Let Y be the number of changes necessary until time T. Then for n > 0 the
event {Y = n} occurs if and only if §,, < T, but S,,,; > T. Hereby, we use the notation of
Example 4.6.14. In other words,

P{Y=n}=P{S, < T, S,y > T} =P({S, < T}\ {Sps1 < T}), n=0,1,...
Since {S,,1 < T} € {S, < T}, from eq. (4.34) it follows that

P{Y = n} = P{S, < T} - P{S,,; < T}

n-1 j n j
1§ o e_n] ) [1—2 ATy e_n]
= o J

_any

o e = Pois,({n}).

Summing up, the number of necessary replacements of burned out light bulbs until time
T > 0 is Poisson distributed with parameter AT where 1/ > 0 is the average lifetime of
a single bulb (compare with Example 5.1.30).

Let us still mention an important equivalent random “experiment”: customers ar-
rive at the post office randomly. We assume that the times between their arrivals are in-
dependent and E;-distributed. Then S,, is the time when the nth customer arrives. Hence,
under these assumptions, the number of arriving customers until a certain time T > 0
is Poisson distributed with parameter AT.

We investigate now the sum of two independent chi-squared distributed random
variables. Recall Definition 1.6.27: A random variable X is )(ﬁ-distributed if it is 1"2’%-
distributed. Hence, Proposition 4.6.11 implies the following result.

Proposition 4.6.16. SupposethatX is )(,zl-distributed andthatY is )(,Zn-distributed for some
n,m>1IfX and Y are independent, then X + Y is x%, ,-distributed.

Proof. Because of Proposition 4.6.11, the sum X + Y is Tynym = Xz, n-distributed. This
proves the assertion. O
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Proposition 4.6.16 has the following important consequence.

Proposition 4.6.17. Let X;,...,X, be a sequence of independent N (0, 1)-distributed ran-
dom variables. Then X; + - - - + X~ is y2-distributed.

Proof. Proposition 4.1.5 asserts that the random variables ij are Xlz-distributed. Further-
more, because of Proposition 4.1.9, they are also independent. Thus successive applica-
tion of Proposition 4.6.16 proves the assertion. O

Our next and final aim in this section is to investigate the distribution of the sum of
two independent normally distributed random variables. Here the following important
result is valid.

Proposition 4.6.18. Let X; and X, be two independent random variables distributed ac-
cording to N'(uy, 67) and N (uy, 02). Then X, + X, is N'(i; + ly, 0> + 0)-distributed.

Proof. Inthe first step, we treat a special case, namely y; = y, = 0 and gy = 1. To simplify
the notation, set A = g,. Thus we have to prove the following: if X; and X, are N (0,1)-
and N(0,2%)-distributed, then X; + X, is (0,1 + A%)-distributed.

Let py and py,, be the corresponding densities introduced in eq. (1.49). Then we
have to prove that

Po1 * Doz = Pojsse - (4.35)
To verify this start with
1 o0
Y 27932
(Pos * Po,e)0) = 5= J e W12 V2 gy
—00
1 (e}
B J ~3 0201+

=— | e? dy. (4.36)

2 A Ea

We use
x* - 2xy + (1 +)l_2)y2

=((1+ A’Z)l/zy -1+ /1’2)71/2 x)2 - xz<rlk2 - 1)

X2

- (1 /1_2 1/2 -1 /1_2 -1/2 |2
(@23 - @y e 2

X\  x
:<ay—a> +1+A2

with a := (1+ A7%)"/2, Plugging this transformation into eq. (4.36) leads to
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-2+ P .
7 J e W2 gy, 4.37)

-0

(Poa * Po2)(X) =

Next change the variables by u := ay — x/a, thus, dy = du/a, and observe that
al = (1+ A%)Y2, Then the right-hand side of eq. (4.37) transforms to

X224y R

e 2
2 (1+ A2)1/2 J e du = oy, 00.
—00

(Po1 * Po2) () =
Hereby, we used Proposition 1.6.7 asserting f; /2 du = v2. This proves the validity
of eq. (4.35).
In the second step, we treat the general case, that is, X; is NV (y, 012)- and X, is
N(uy, o2)-distributed. Set

01 %)

By Proposition 4.2.3, the random variables Y; and Y, are standard normal and, moreover,
because of Proposition 4.1.9, also independent. Thus, the sum X; + X, may be represented
as

X+ X =+l + 01V + O, = Wy + Ul + 01 Z,

where Z = Y; + AY, with A = gy/0;.

An application of the first step shows that Z is /(0,1 + A%)-distributed. Hence,
Proposition 4.2.3 implies the existence of a standard normally distributed Z; such that
Z = 1+ 2®)Y2z,. Summing up, X, + X, may now be written as

2,1/2 2 2\1/2
X+ Xy =ty + y + 01 (1+ A7) Zy = g + 4y + (07 + 03) "~ Zy,

and another application of Proposition 4.2.3 lets us conclude that, as asserted, the sum
X, + X5 is N(uq + Uy, 012 + o%)-distributed. O

“«_»

Summary: Let X and Y be independent random variables. As we agreed upon in Remark 3.3.1, by “~” we
mean that X, ¥, and X + Y posses the stated distribution. Then the following are valid:

X~Bpp and Y ~B,, = X+VY~By,,

X ~Poisy and ¥ ~Pois, = X+YV ~Pois,.

X~Bp,and Y~B,, = X+V~B,., .
X~Tap and Y ~Top = X+Y~Tgp.p.

X~Emand Y~E, = X+Y~Enp.,.

X~y and Y~y = X+Y~xi,.

X~N@,02) and ¥ ~ N(4p,03) = X+Y ~ N+, 07 +03).
Xi,...,X, independent and A/(0, 1)-distributed = X1Z e +X,f ~)(§.

® No vk wh =
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4.7 Products and quotients of random variables

Let X and Y be two random variables mapping a sample space Q into R. Then their
product X - Y and their quotient X/Y (assume Y(w) # 0 for w € Q) are defined by

X(w)
Y(w)’

The aim of this section is to investigate the distribution of such products and quotients.
We restrict ourselves to continuous X and Y because, later on, we will only deal with
products and quotients of those random variables. Furthermore, we omit the proof of
the fact that products and fractions are random variables as well. The proofs of these
permanent properties are not complicated and follow the ideas used in the proof of
Proposition 4.5.1. Thus, our interest are products X-Y and quotients X/Y for independent
X and Y, where, to simplify the computations, we suppose P{Y > 0} = 1.

We start with the investigation of products of continuous random variables. Thus, let
X and Y be two random variables with distribution densities p and q. Since we assumed
P{Y > 0} = 1, we may choose the density q such that q(x) = 0if x < 0.

weQ.

X -Y)(w) :=X(w) -Y(w) and < )( )= ——

Proposition 4.7.1. Let X and Y be two independent random variables possessing the
stated properties. Then X - Y is continuous as well, and its density r may be calculated by

(%) 99 g, | |
r(x) ! <y> y dy, xeR (4.38)

Proof. Fort € R, we evaluate P{X - Y < t}. To this end, fix t € R and set
={(wy) e Rx(0,00):u-y<t}. (4.39)

As in the proof of Proposition 4.5.15, it follows that

ocor tly
0 -—oo

In the inner integral of eq. (4.40), we change the variables by x = uy, hence we get
dx = y du. Notice that in the inner integral y is a constant. After this change of variables,
the right-hand integral in eq. (4.40) becomes®

t t

:ﬂ J p(y) ]Q;W dy = J [IPG—()‘IT(” dy]dx:jo r(x) dx.

—00 00

This being valid for all ¢t € R, the function r is a density of X - Y. O

15 The interchange of the integrals is justified by Proposition A.5.5. Note that p and q are nonnegative.
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Example 4.7.2. Let U and V be two independent random variables uniformly dis-
tributed on [0, 1]. Which probability distribution does U - V possess?

Answer: We have p(y) = q(y) = 1if0 <y < 1, and p(y) = q(y) = 0 otherwise.
Furthermore, 0 < U - V < 1, hence its density r satisfies r(x) = 0 if x ¢ [0,1]. For
x € [0,1], we apply formula (4.38) and obtain (see Figure 4.6)

r(x) = Ip<;1> qT(Y)dy: j;dy: ~In(x) =1n()1(>, 0<x<1. (441

0.2 0.4 0.6 0.8 1.0

Figure 4.6: The density r of U - V given by eq. (4.41).

Consequently, if 0 < a < b < 1, then
b
Pla<U-V<b}= —J In(x) dx = ~[xInx - x]” = aln(a) - bIn(b) + b - a.
a

In particular, it follows that
vol,(B,))=P{U-V <t}=t-tlnt, 0<t<l. (4.42)
Here B, is defined as in Fig. 4.7. That is,
B, ={wy) €[00 :uy<t}, 0<t<l.

In other words, B, = A, n [0, 1]2 with A, defined by eq. (4.39). Furthermore, the random
vector (U, V) is uniformly distributed on [0,1]%, so we get

P{(U,V) € A;} = P{(U,V) € B;} = voly(B,).
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Figure 4.7: The set B; = {(u,y) € [0,1]2 :uy <t}foragiven0<t<1.

Our next objective are quotients of random variables X and Y. We denote their den-
sities by p and g, thereby assuming g(x) = 0 if x < 0. Then we get

Proposition 4.7.3. Let X and Y be independent with P{Y > 0} = 1. Then their quotient
X/Y has the density r given by

(o)

rox) = jyp(xy) gy dy, xeR.
0

Proof. The proof of Proposition 4.7.3 is similar to that of Proposition 4.7.1. Therefore, we
present only the main steps. Setting now

A ={wy) e Rx(0,00): u<ty},

we obtain

(o]

ty
P{X/Y) <t} = Py y)(Ap) = J [ j p(w) du] q(y)dy. (4.43)
0 t-o0

We change the variables in the inner integral of eq. (4.43) by putting x = u/y. After
that, we interchange the integrals and arrive at

t
P{(X/Y) <t} = j r(x) dx

for all ¢ € R. This proves that r is the density of X/Y. O

Example 4.7.4. Let U and V be as in Example 4.7.2. We investigate now their quotient
U/V. By Proposition 4.7.3, its density r can be computed by

(e 1 1

1
r(x) = Jyp(xy)q(y) dy = Jyp(xy)dy = Jy dy = 7
0 0 0
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inthecase 0 < x <1.If1 < x < oo, then p(xy) = 0if y > 1/x, and it follows that

o= [ydy=o;
0

for those x. Combining both cases, the density r of U/V may be written as (see Figure 4.8)

; ifosx<i,
r(x) = % ifl<x < o0, (4.44)

0 otherwise.

1 2 3 4

Figure 4.8: The density r defined by eq. (4.44).

Question: Does there exist an easy geometric explanation for r(x) = % in the case
0<x<1?
Answer: If t > 0, then
FU/V(t) = ]P{U/V < t} = ]P{U < tV} = ]P(U,V)(Bt) 5
where now

B, = {(wv) € [0,1)*:0<u<vt}. (4.45)

If 0 < t < 1, then B, is a triangle in [0,1]* with area vol,(B,) = . The independence of U
and V implies (cf. Example 3.6.23) that Py, ) is the uniform distribution on [0, 1]% hence

t
FU/V(t) = IP(U,V)(B[) = Volz(Bt) = E 5 0 < t < 1,
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leading to r(t) = F; ()= % for those t. See Figure 4.9 for a geometric explanation of
this fact.

By

0 1 0 1yt 1

Figure 4.9: The set B;, defined in eq. (4.45). Here 0 < t < 1inthe left-hand figure,and 1 < t < coin the

right-hand one. The area of B, is either % or1- %, respectively.

4.7.1 Student’s t-distribution
Let us use Proposition 4.7.3 to compute the density of a distribution which plays a crucial
role in Mathematical Statistics.

Proposition 4.7.5. Let X be N(0,1)-distributed and Y be independent of X and )(%—dis—
tributed for some n > 1. Define the random variable Z as

X

\VY/n '

Then Z possesses the density r given by (see Figure 4.10 for the graphs of these functions
inthecasesn=1,n=2 andn = 8)

F(HT-i-l) X2 -n/2-1/2
r(X):\/n_n—l"(g)<1+ F) , XeR. (4.46)

Proof. In the first step, we determine the density of VY with Y distributed according
toxﬁ. Ift > 0, then
[2

Frt)=P{VY <t} =P{Y <’} = 2”/2;1"(2) Jx"/“ e gx.
270

Thus, if t > 0, then the density q of VY equals

! 1 n-2 2 _ 1 n 42
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-3 -2 -1 - 1 2 3

Figure 4.10: From bottom to top, these are the densities of ¢, t,, and tg distributions.

Of course, we have q(t) =0ift < 0.
In the second step, we determine the density 7 of Z = Z/+/n = X/VY. An application
of Proposition 4.7.3 for p(x) = \/LZ; e /2 and q given in eq. (4.47) leads to

f(x):Jy[L e‘(W)Z/ZH—l ye V| dy

Vo 2M2AIT(3)
1 (0]
- n o=@ 2 g
VI 222 T(E) 3
Change the variables in the last integral by setting v = y;(l +x%). Theny = %

and, consequently, dy = % v Y2 (1 + x*)"/2 dv. Inserting this into eq. (4.48) shows that

(o)

1 Zn/z vn/Z -1/2 e—v
\/Ezn/z F(g) J (1 +X2)n/2+1/2

n+1
(5~

IR

r(x) = dv

0

(1+x2) (4.49)

In the third step, we finally obtain the density r of Z. Since Z = v/nZ, formula (4.3)
applies with b = 0 and a = v/n. Thus, by eq. (4.49) for 7, as asserted,

-n/2-1/2
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Definition 4.7.6. The probability measure on (R, B(RR)) with density r, given by eq. (4.46), is called the
t,-distribution or Student’s t-distribution with n degrees of freedom. A random variable Z is said to
be t,-distributed (or t-distributed with n degrees of freedom), provided its probability distribution is a
t,-distribution, that is, for a < b,

b -n/2-1/2
rcsh) 2

IP{GSZSb}=\/n_n—I_(g)a<1+F) dx.

Remark 4.7.7. The t;-distribution coincides with the Cauchy distribution introduced in
Section 1.6.8. Observe that I'(1/2) = vmand T (1) = 1.

In view of Definition 4.7.6, we may now formulate Proposition 4.7.5 as follows.

Proposition 4.7.8. If X and Y are independent and N(0,1) and )(,2[ distributed, then %
is t,-distributed.

Proposition 4.6.17 leads still to another version of Proposition 4.7.5.
Proposition 4.7.9. IfX,X,,..., X, are independent N'(0,1)-distributed, then
X
Vi S X
is t,-distributed.

Corollary 4.7.10. If X and Y are independent and N (0,1)-distributed, then X/|Y| pos-
sesses a Cauchy distribution.

Proof. An application of Proposition 4.7.9 with n = 1 and X; = Y implies that X/|Y] is
t;-distributed. We saw in Remark 4.7.7 the ¢; and the Cauchy distributions coincide, thus,
X/|Y|is also Cauchy distributed. O

4.7.2 F-distribution
We present now another important class of probability measures or probability distri-
butions playing a central role in Mathematical Statistics.

Proposition 4.7.11. For two natural numbers m and n, let X and Y be independent and
)(,Zn- and Xﬁ-distributed. Then Z := %’;‘ has the distribution density r defined by

) {0 ifx <0, (450)
r(x) = min - 4.50
m/2 nj2  TCH7)  xmt .
m™en NORD e ifx > 0.

Proof. We first evaluate the density 7 of Z = X/Y. To this end, we apply Proposition 4.7.3
with functions p and q given by



47 Products and quotients of random variables =— 229

1 m/2-1 -x/2 n/2-1,-y/2
X)= ———X e and = e
p( ) om/2 T(m/2) Q()’) on/2 F(n/Z)y
whenever x,y > 0. Then we get

B 1 T m/2-1.n/2-1 ,~xy/2 ,~y/2

F(x) = e e”’“d

(x) 2 /2T (m/2) T(n/2) (J;y(w) Y Y

_ xm2-1 Ty(mm)/z -1 g y0/2 dy. (4.51)
2mtM/2T(m/2) T(n/2) : .

We replace in eq. (4.51) the variable y by u = y(1 + x)/2, thus, dy = ;7 du. Inserting
this into eq. (4.51), the last expression transforms to

xm/2-1 (n+m)/2 T (m+n)/2-1 .—u
FX) = ———— (1 +x)” u e Tdu
0=t i |
0
I1(#) X2

TTOONG) @ xR

Because of Z = % . Z, we obtain the density r of Z by Proposition 1.7.21. Indeed, then
_ m _[ mx . m/2  n/2 F(#) Xm/2—1
rx)=—7rl — |=m""n"" = ,
n TCPT(E)  (moc+ )2
as asserted. O

Remark 4.7.12. Using relation (1.62) between the beta and gamma functions, the density
r of Z may also be written as

r(X) ~ mm/2 nn/2 Xm/2—1 50
B(3.5)  (mx+n)mmi2’ '

For the behavior of r(x) as x — 0, we refer to Problem 4.17. For certain parameters m
and n the graphs of these densities can be found in Figure 4.11.

Definition 4.7.13. The probability measure on (R, B(IR)) with density r defined by eq. (4.50) is called the
Fisher-Snecedor distribution or F-distribution (with m and n degrees of freedom).
A random variable Z is F-distributed (with m and n degrees of freedom), provided its probability
distribution is an F-distribution. Equivalently, if 0 < a < b, then
b

m/2 -1
Pla<Z < b} =m™?n"?. res ,), J X dx
r(3r3) ] (mx + n)(m+m/2

The random variable Z is also said to be Fy, ,-distributed.
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Figure 4.11: Densities of F, 5, F3 4, and F, ¢ distributed random variables.

With this notation, Proposition 4.7.11 may now be formulated as follows:

Proposition 4.7.14. If two independent random variables X and Y are )(31 and )(,21 dis-
tributed, then % is Fy, p-distributed.

Finally, Proposition 4.6.17 implies the following version of the previous result.

Proposition 4.7.15. LetX;,...,X,,,Yy,...,Y, be independent N (0,1)-distributed. Then

X XB)m o YK
- 2 2 1
(YF+---+Y2)/n 2 z;':l sz

is Fy, ,-distributed.

Corollary 4.7.16. If a random variable Z is F,, ,-distributed, then 1/Z possesses an F p,
distribution.

Proof. This is an immediate consequence of Proposition 4.7.11. O

Summary: Arandom variable X is t,-distributed provided that for all a < b we have

(m) b 2 -n/2-1/2
P{aSXSb}:\/ninizr(ﬂ) <1+; dx.
27 g

IfX,X,..., X, are independent A/(0, 1)-distributed, then
X
V % 27:1 X/Z

Arandom variable X is F, ,-distributed if, whenever 0 < @ < b < oo, one has

is t,-distributed.
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b

m+n —

m2 nf2 FT) J Xm/21 y
) )

(
X
rere mx + n)mm/2

2 2

IfX,..., X Yis e e v Y, are independent (0, 1)-distributed, then

1 m 2
o iz Xi
1 n 2
n Zj:1 Y/

is Fr p-distributed.

4.8 Problems

Problem 4.1. Let U be uniformly distributed on [0,1]. Which distributions do the fol-
lowing random variables possess:

1

min{U,1-U}, max{U,1-U}, |2U-1], and ‘U_§?

Problem 4.2 (Generating functions). Let X be a random variable with values in IN,. For
k € Ny, let p;, = P{X = k}. Then its generating function ¢y is defined by

ox(t) = Y prt*.
k=0

1. Show that @y (t) exists if [t] < 1.
2. Let X and Y be two independent random variables with values in IN;,. Prove that
then

Px+y = Ox - Py -

3. Compute ¢y in each of the following cases:
(a) X is uniformly distributed on {1,..., N} for some N > 1.
b) Xis Bn)p-distributed for somen >1andp € [0,1].
(c) X is Pois,-distributed for some A > 0.
(d) Xis Gy-distributed for a certain 0 < p < 1.
(e) Xis B, ,-distributed.

Problem 4.3. Roll two dice simultaneously. Let X be the result of the first die and Y that
of the second. Is it possible to falsify these two dice in such a way that X + Y is uniformly
distributed on {2, ...,12}? It is not assumed that both dice are falsified in the same way.

Hint: One possible way to answer this question is as follows: investigate the gener-
ating functions of X and Y and compare their product with the generating function of
the uniform distribution on {2, ...,12}.

Problem 4.4. Let X,,..., X, be a sequence of independent identically distributed ran-
dom variables with common distribution function F and distribution density p, that is,
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t
M¥S”=H0=JpaML j=1....n.

—00
Define random variables X, and X* by
X, :=min{X;,....X,} and X" :=max{X;,...,X,}.

1. Determine the distribution functions and densities of X, and X* directly, that is,
without using general results about order statistics.

2. Describe the distribution of the random variables X, and X* in the case that the Xjs
are exponentially distributed with parameter A > 0.

3. Suppose now the X;s are uniformly distributed on [0, 1]. Describe the distribution
of X, and X™ in this case.

Problem 4.5. Let F be the distribution function of the uniform distributionon {1, ..., N}
for some N € IN. Determine its pseudoinverse function F~. Do the same if F is either
the distribution function of a binomial or a Poisson distribution. Given U uniformly
distributed on [0, 1], how is F~ (U) distributed in each of these cases?

Problem 4.6. Find a function f from (0, 1) to R such that
1
P{f(U) = k} = TR k=12,...
for U uniformly distributed on [0, 1].

Problem 4.7. Let U be uniform distributed on [0, 1]. Find functions f and g such that
X =f(U) and Y = g(U) have the distribution densities p and q with

, 0 ifxl>1
x) 0 ifx ¢ 0.1 and q(x) 1 if -1 0
= _ =X+ I -1<x<0,
P 2 ifx € (0,1) 1

2 1-x if0<x<l

Problem 4.8. Let X and Y be independent random variables with
1
PiX=k}=P{Y =k} = oK k=12,...

How is X + Y distributed?

Problem 4.9. The number of customers visiting a shop per day is Poisson distributed
with parameter A > 0. The probability that a single customer buys something equals p
for a given 0 < p < 1. Let X be the number of customers per day buying some goods.
Determine the distribution of X.
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Remark: We assume that the decision whether or not a single customer buys some-
thing is independent of the number of daily visitors.

A different way to formulate the above question is as follows: let X, X;, ... be inde-
pendent random variables with P{X;, = 0} = 1,

P{X;=1}=p, and P{X;=0}=1-p, j=12...,

for a certain p € [0, 1]. Furthermore, let Y be a Poisson-distributed random variable with
parameter A > 0, independent of the X;s. Determine the distribution of

Hint: Use the “infinite” version of the law of total probability as stated in Problem 2.5.

Problem 4.10. Suppose X and Y are independent and exponentially distributed with
parameter A > 0. Find the distribution densities of X — Y and X/Y.

Problem 4.11. Two random variables U and V are independent and uniformly dis-
tributed on [0,1]. Given n € N, find the distribution density of U + nV.

Problem 4.12. Let X and Y be independent random variable distributed according to
Pois, and Pois, respectively. Given n € N, and some k € {0,..., n}, prove

k n-k

n A u
PX=Kk|X+Y =n} = (k) <m> <m> = B,,,({K})
withp = /%

Reformulation of the preceding problem: An owner of two stores, say store A and
store B, observes that the number of customers in each of these stores is independent
and Pois, and Pois, distributed. One day he was told that there were n customers in both
stores together. What is the probability that k of the n customers were in store A, hence
n -k in store B?

Problem 4.13. Let X and Y be independent standard normal variables. Show that X/Y
is Cauchy distributed.

Hint: Use Corollary 4.7.10 and the fact that the vectors (X,Y), (-X,Y), (X,-Y), and
(=X, -Y) are identically distributed. Note that the probability distribution of each of
these two-dimensional vectors is the (two-dimensional) standard normal distribution.

Problem 4.14. Let X and Y be independent G,-distributed. Find the probability distri-
bution of X - Y.

Hint: Compare with Example 4.5.5. There we evaluated the distribution of X — Y in
the casep = %
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Problem 4.15. Let U and V be independent random variables, both uniformly dis-
tributed on [-1,1]. Determine the density of U - V.

Hint: Use the technique presented in Example 4.7.2 and its geometric explanation
in Figure 4.7. To this end, treat the cases UV > 0 and UV < 0 separately.

Problem 4.16. Suppose X is a random variable with values in (a,b) € R and with den-
sity p. Let f from (a,b) — R be (strictly) monotone and differentiable. Give a formula
for g, the density of f(X).

Use your result to evaluate the densities of e¥ and e where X is distributed ac-
cording to A/(0,1).

Problem 4.17. Let r be the density of an F,, ,-distributed random variable given by
eq. (4.50). Argue why r(x) - coasx — 0if m =1and n > 1. Why do we have r(0) = 1if
m=2andn > 1? Evaluate r(0)ifn=1,2,...and m > 3.
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5.1 Expected value

5.1.1 Expected value of discrete random variables

What is an expected value (also called mean value or expectation) of a random variable?
How is it defined? Which property of the random variable does it describe and how it
can be computed? Does every random variable possess an expected value? To answer
these questions, let us start with an example.

Example 5.1.1. Suppose N students attend a certain exam. The number of possible
points is 100. Given j = 0,1,...,100, let n; be the number of students who achieved j
points. Now choose randomly, according to the uniform distribution (a single student
is chosen with probability 1/N), one student. Name him or her w, and define X(w) as
the number of points that the chosen student achieved. Then X is a random variable
with values in D = {0,1,...,100}. How is X distributed? Since X has values in D, its
distribution is described by the probabilities

n.
. j .
pj=PX=jl=2, j=01..,100. G.1)

As expected value of X, we take the average number A of points in this exam. How is A
evaluated? The easiest way to do this is

1 100 100 ’H 100
A:]T/' Z]n]:Z]N:Z]p]’
j=0 Jj=0 j=0

where the p;s are defined by eq. (5.1). If we write EX for the expected value (or mean
value) of X, and if we assume that this value coincides with A, then the preceding equa-
tion says

100 100 100
EX =) jpi=)jPX=j}=) xPX=x},
j=0 j=0 j=0

where the x; = j withj = 0,...,100 denote the possible values of X.

In view of this example, the following definition for the expected value of a dis-
crete random variable X looks feasible. Suppose X has values in D = {xj, X, ...}, and let
pj =P{X = x;},j =1,2,.... Then the expected value EX of X is given by

j=1 j=1

Unfortunately, the sum in eq. (5.2) does not always exist. In order to overcome this diffi-
culty, let us recall some basic facts about infinite series of real numbers.

https://doi.org/10.1515/9783111325064-005
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A sequence (@;);»; of real numbers is called summable, provided its sequence of
partial sums (s,,),»1 With s, = a; + --- + a, converges in R. Then one defines

[oe] n
Zaj = nlgtgosn = nll)rgo‘ a;.
j=1 Jj=1
If the sequence of partial sums diverges, nevertheless, in some cases we may assign to
the infinite series a limit. If either lim,,_,, s, = —oo or lim,_, ., §,, = 0o, then we write
Y% a; = —coor ® a; = oo, respectively. In particular, if ¢; > 0 for j € N, then the
sequence of partial sums is nondecreasing, which implies that only two different cases
may occur: Either Z]‘-fl i < 0o (in this case the sequence is summable) or Z a =
Let (a;);»1 be an arbltrary sequence of real numbers. If 2]21 laj| < oo, then itis called
absolutely summable. Note that each absolutely summable sequence is summable.
This is a direct consequence of Cauchy’s convergence criterion. The converse implica-
tion is wrong, as can be seen by considering ((-1)" [Mps1-
Now we are prepared to define the expected value of a nonnegative random vari-
able.

Definition 5.1.2. Let X be a discrete random variable with values in {x;, x,, ...} for some x; > 0. Equiva-
lently, the random variable X is discrete with X > 0. Then the expected value of X is defined by

EX:= ) xP{X =x}. 53)
j=1

Remark 5.1.3. Since x; P{X = x;} > 0 for nonnegative X, for those random variables
the sum in eq. (5.3) is always well defined, but may be infinite. That is, each nonnegative
discrete random variable X possesses an expected value EX € [0, co].

Let us now turn to the case of arbitrary (not necessarily nonnegative) random vari-
ables. The next example shows which problems may arise.

Example 5.1.4. We consider the probability measure introduced in Example 1.3.6 and
choose a random variable X with values in Z distributed according to the probability
measure in this example. In other words,

3

2 k2’
If we try to evaluate the expected value of X by formula (5.2), then this leads to the
undetermined expression

3 Xk US| L1
;k,zmﬁ_nz n—00 Z_:ﬂz[nlmkzlEJrh—rgozE]

m—oo k=—m

P{X =k} = k € Z\{0}.

k0

1
ﬂz[nlm Z——n%gr&)kzl%] =00—-00.
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To exclude phenomenons as in Example 5.1.4, we suppose that a random variable
has to meet the following condition.

Definition 5.1.5. Let X be discrete with values in {x;,X,, ...} c R. Then the expected value of X exists,
provided that

[ee)
EIX] = ) G| P{X =x;} < 00. (5.4)
j=1

We mentioned above that an absolutely summable sequence is summable. Hence, under
assumption (5.4), the sum in the subsequent definition is a well-defined real number.

Definition 5.1.6. Let X be a discrete random variable satisfying E|X| < co. Then its expected value is
defined as

EX =) xPX =x}. 5.5)
j=1

As before, the numbers Xy, X,, ... in formula (5.5) are the possible values of X. For exam-
ple, if X attains values in {1, 4, 9}, then we may choose x; = 1, x, = 4, and x3 = 9. But we
could also take x; = 4,x, = 9,and x3 = 1, and so on. Every time we get the same expected
value.

Example 5.1.7. We start with an easy example that demonstrates how to compute the
expected value in concrete cases. If the distribution of a random variable X is defined as
P{X = -1} = 1/6, P{X = 0} = 1/8, P{X = 1} = 3/8, and P{X = 2} = 1/3, then its expected
value equals

EX=(-1)PX=-1}+0-P{X=0}+1-P{X =1} +2- P{X = 2}
1 3 2 7
“6'8'3 "%

Example 5.1.8. The next example shows that EX = co may occur even for quite natural
random variables. Thus, let us come back to the model presented in Example 1.4.47.
There we developed a strategy how to always win one dollar in a series of games. The
basic idea was, after losing a game, next time one doubles the amount in the pool. As
in Example 1.4.47, let X(k) be the amount of money needed when winning for the first
time in game k. We obtained

PiX =21} =pa-p*?t, k=12...
Recall that 0 < p < 1is the probability to win a single game. We ask for the expected
value of money needed to apply this strategy. It follows that
[ee]

EX = i(zk ~)Px =2 -1} =p Y (@ -na-p*. (5.6)
k=1 k=1
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If the game is fair, that is, if p = 1/2, then this leads to

because of (Zk - 1)/2" — lask — oo. This yields EX = oo for all! p <1/2.

Let us sum up: if p < 1/2 (which is the case in all provided games), the obtained
result tells us that the average amount of money needed, to use this strategy, is arbitrarily
large. The owners of gambling casinos know this strategy as well. Therefore, they limit
the possible amount of money in the pool. For example, if the largest possible stakes is
N dollars, then the strategy breaks down as soon as one loses n games for some n with
2" > N. And, as our calculations show, on average this always happens.

Remark 5.1.9. If p > 1/2, then the average amount of money needed is finite, and it can
be calculated by

EX = pZ 1)1-p)=2p Z(z 20 -p Za 2%
k=1

2p D B Zp 1 1

T1-@2-2p 1-(1-p) 2p-1 -1

5.1.2 Expected value of certain discrete random variables

The aim of this section is to compute the expected value of the most interesting discrete
random variables. We start with uniformly distributed ones.

Proposition 5.1.10. Let X be uniformly distributed on the set {X;, ..., Xy} of real numbers.
Then it follows that

1 N
EX == > X (5.7)

That is, EX is the arithmetic mean of the X;S.

Proof. This is an immediate consequence of P{X = x;} = 1/N, implying
N N 1
]EX:zllep{X:X]}zzlle_v D
J= Jj=

Remark 5.1.11. For general discrete random variables X with values x;, X, . .., their ex-
pected value EX may be regarded as a weighted (the weights are the p;s) mean of the x;s.

1 Ifp <1/2then1 - p > 1/2, hence the sum in eq. (5.6) becomes bigger and, therefore, it also diverges.
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Example 5.1.12. Let X be uniformly distributed on {1,...,6}. Then X is a model for
rolling a fair die. Its expected value is, as is well known,

1+---46 21 7
EX=—"—— "~ -2=__
6 6 2

Next we determine the expected value of a binomial distributed random variable.

Proposition 5.1.13. Let X be binomial distributed with parameters n and p. Then we get
EX =np. (5.8)

Proof. The possible values of X are 0,...,n. Thus, it follows that

EX=) k-PX=k}= Zk-(Z)pk(l—p)"”‘
k=0 k=1

_ n! Koq ok
_Z(k—l)!(n—k)!p(l P)

(n-1)! k—l n-k
pZ(k LA G

Shifting the index from k — 1 to k in the last sum implies

(n-1)! k n-1-k
= pzk,( i P 4P

wS (" pra-pr = mlpra-p
k=0

This completes the proof. O

Remark 5.1.14. The previous result tells us the following: if we perform n independent
trials of an experiment with success probability 0 < p < 1, then on average we will
observe np successes.

Example 5.1.15. One kilogram of a radioactive material consists of N atoms. The atoms
decay independently of each other and, moreover, the lifetime of each of the atoms is
exponentially distributed with some parameter A > 0. We ask for the time T, > 0, at
which, on average, half of the atoms are decayed; T is usually called radioactive half-
life.

Answer: If T > 0, then the probability that a single atom decays before time T is
given by

p(T) = E([0,T]) =1-eT.
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Since the atoms decay independently, the number of atoms decaying before time T is
By pry-distributed. Therefore, by Proposition 5.1.13, the expected value of decayed atoms

equals N -p(T)=N(1- e”). Hence, T, has to satisfy

N(1-e*To) = %[ ,

leading to T, = In2/A. Conversely, if we know T;, and want to determine A, then A =

In2/T,. Consequently, the probability that a single atom decays before time T > 0 can
also be described by

E([0,T]) =1- T!To g _7T/To

Next, we determine the expected value of Poisson distributed random variables.

Proposition 5.1.16. Forsome A > 0, let X be distributed according to Pois,. Then it follows
that EX = A.

Proof. The possible values of X are 0,1,... Hence, the expected value is given by

[s8) (&) Ak 2 o0 Ak_l 2
IEX:kz:Ok-lP{X:k}:I;kHe :Agme ;

which transforms by a shift of the index to

Sy A A
A[kzoﬁ]e =Ale']e™ =4,

proving the assertion. O

Interpretation: Proposition 5.1.16 explains the role of the parameter A in the defi-
nition of the Poisson distribution. Whenever certain numbers are Poisson distributed,
then A > 01is the average of the observed values. For example, if the number of accidents
per week is known to be Pois,-distributed, then the parameter A is determined by the
average number of accidents per week in the past. Or, as we already mentioned in Ex-
ample 4.6.6, the number of raisins in a piece of p pounds of dough is Pois,-distributed,
where A is the proportion of raisins per pound dough, hence Ap is the average number
of raisins per p pounds.

Example 5.1.17. Let us once more take a look at Example 4.6. There we considered light
bulbs with E;-distributed lifetime. Every time a bulb burned out, we replaced it by a new
one of the same type. It turned out that the number of necessary replacements until time
T > 0 was Pois, r-distributed. Consequently, by Proposition 5.1.16, on average, until time
T we have to change the light bulbs AT times.
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Finally, we compute the expected value of a negative binomial distributed random
variable. According to Definition 1.4.49, a random variable X is B;,p-distributed if

— — k-1\ » _ \ken _
IP{X_k}_(k_n>p A-pf ™, k=nn+1,...
or, equivalently, if
- (M Ko k=
IP{X—k+n}—(k>p P-D5, k=0,1,... (5.9)

Proposition 5.1.18. Suppose X is B, -distributed for some n > 1and p € (0,1). Then

Ex ="

3
Proof. Using eq. (5.9), the expected value of X is computed as

EX = OZO:kIP{X:k}: i(k+n)]P{X:k+n}
k=n k=0

=" Zk( "=k np" Z( ")o-v~. G:10)

To evaluate the two sums in eq. (5.10), we use Proposition A.5.2, which asserts

(1+x)” = Z ( ) (5.11)

k=0

for |x| < 1. Applying this with x = p — 1 (recall 0 < p < 1) yields

1
np" Z( )(p = ' oy (5.12)

Next we differentiate eq. (5.11) with respect to x and obtain

(1+x)”+1 Zk( )

which, multiplying both sides by x, gives

1+ x)"+1 Z k ( ) (5.13)

Letting x = p — 1in eq. (5.13), the first sum in eq. (5.10) becomes

"y -np-1) _nd-p)
p Zk( " p-1k= T (5.14)
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Finally, we combine eqs. (5.10), (5.12), and (5.14) to obtain

]EX:M.{.]’[:

n
p p

>

as claimed. O

Remark 5.1.19. Proposition 5.1.18 asserts that, on average, the nth success occurs in trial
n/p. For example, rolling a die, on average, the first appearance of number “6” will be
in trial 6, the second one in trial 12, and so on.

Corollary 5.1.20. If X is geometrically distributed with parameter p, then

EX = 1 (5.15)
p

Proof. Recall that G, = Bj > hence X is By -distributed, and EX = ;1) by Proposi-

tion 5.1.18. O

Because of its beauty, let us give another, more direct proof of Corollary 5.1.20.
Suppose X is G,-distributed. Then we write

EX=p Y k-p) " =p Y (k+Da-p’
k=1 k=0

=1-p) Y kpa-p+p Ya-pF=1-p)EX+1.
k=0 k=0

Solving this equation with respect to IEX proves eq. (5.15), as asserted. Observe that this
alternative proof is based upon the knowledge of EX < co. Otherwise, we could not
solve the equation for EX. But, because of 0 < p < 1, this fact is an easy consequence of

EX=p Y k(1-p)" <co.
i1

Summary: Let X be a discrete random variable with values x;, x,, ... Then

(o8] (o]
EX =) xP{X=x} providedthat E[X| =) x|P{X =x}<oo.
= =

5.1.3 Expected value of continuous random variables

Let X be a continuous random variable with distribution density p, that is, if t € R,
then
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t
PX <t} = J p(x) dx .

How to define EX in this case?

To answer this question, let us present formula (5.3) in an equivalent way. Suppose
X maps Q into a set D ¢ R, which is either finite or countably infinite. Let p : R — [0,1]
be the probability mass function of X introduced in eq. (3.4). Then the expected value of
X may also be written as

EX = pr(x).

X€R

In this form, the preceding formula suggests that in the continuous case the sum should
be replaced by an integral. This can made more precise by approximating continuous
random variables by discrete ones. But this is only a heuristic explanation; for a precise
approach, deeper convergence theorems for random variables are needed. Therefore,
we do not give more details here, we simply replace sums by integrals.

Doing so, for continuous random variables the following approach for the definition
of EX might be taken. If p : R — [0, o) is the distribution density of X, set

EX = J X px) dx. (5.16)

However, here we have a similar problem as in the discrete case, namely that the integral
in eq. (5.16) need not exist. Therefore, let us give a short digression about the integrability
of real functions.

Let f : R — R be a function such that for all a < b the integral j: f)dx is a
well-defined real number. Then

0 b
[ rooax= tim [rooax, 517)

b—co

provided both limits on the right-hand side of eq. (5.17) exist. In this case we call f inte-
grable (in the Riemann sense) on R.

Remark 5.1.21. Let us point out that the numbers a and b in eq. (5.17) tend indepen-
dently to —co and oo, respectively. For instance, as the example f(x) = x shows, it does
not suffice that limy,_, ﬁb f(x) dx exists. Another way to express the existence of the
integral in eq. (5.17) is as follows: the two limits

0 b
aglpm J f(x)dx and blim J fO0) dx (5.18)
0

Q
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have to exist, and if this is so, the integral I_OZO f(x) dx is defined as the sum of the two
limits in eq. (5.18).

If f(x) > 0, x € R, then the limit hmw oo j f(x) dx always exists in a generalized
sense, that is, it may be finite (then f is 1ntegrable) or infinite, then this is expressed by
[ F(x) dx = co.

If fzo [f(x)|dx < oo, then f is said to be absolutely integrable, and as in the case
of infinite series, absolutely integrable function are integrable. Note that x — sin x/x is
integrable, but not absolutely integrable.

After this preparation, we come back to the definition of the expected value for
continuous random variables.

Definition 5.1.22. Let X be a random variable with distribution density p. If p(x) = 0 for x < 0, or, equiv-
alently, P{X > 0} = 1, then the expected value of X is defined by

EX := J Xxp(x)dx. (5.19)
0

Observe that under these conditions on p or X, we have xp(x) > 0. Therefore, the in-
tegral in eq. (5.19) is always well defined, but might be infinite. In this case we write
EX = co.

Let us turn now to the case of R-valued random variables. The following example
shows that the integral in eq. (5.16) may not exist, hence, in general, without an addi-
tional assumption the expected value cannot be defined by eq. (5.16).

Example 5.1.23. Arandom variable X is supposed to possess the density (check that this
is indeed a density function)

) 0 if —1<x<1,
X) =
P o iflx 21

If we try to evaluate EX by virtue of eq. (5.16), then, because of

[e3) b b -1
. 1 .. dx .. dx
[ b tim [ xpeoax - z[&i‘z‘of Y rdm | 7]

b*?ooia “a

we observe an undetermined expression. Thus, there is no meaningful way to introduce
an expected value for X.
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We enforce the existence of the integral by the following condition.

Definition 5.1.24. Let X be a (real-valued) random variable with distribution density p. We say the ex-
pected value of X exists, provided p satisfies the following integrability condition:

EIX| = I Xl p(x) dx < oo. (5.20)

Remark 5.1.25. Atthis point, itis not clear that the right-hand integral in (5.20) is indeed
the expected value of | X |. This will follow later on by Proposition 5.1.38. Nevertheless,
we use this notation before giving a proof.

Condition (5.20) says nothing but that f(x) := xp(x) is absolutely integrable. Hence,
as mentioned above, f is integrable, and the integral in the following definition is well
defined.

Definition 5.1.26. Suppose condition (5.20) is satisfied. Then the expected value of X is defined by

EX := Txp(x) dx .

Summary: Let X be a continuous random variable with density p : R — R. Then

0 (o)
EX = I xp(x)dx provided that EJX] = J Xl p(e) dx < 00
00 00

5.1.4 Expected value of certain continuous random variables
We start with computing the expected value of a uniformly distributed (continuous) ran-
dom variable.

Proposition 5.1.27. Let X be uniformly distributed on the finite interval I = [a, §]. Then

a+p
EX = —=,
2

that is, the expected value is the midpoint of the interval I.

Proof. The distribution density of X is the function p defined as p(x)= (8 —a) L if x €1,
and p(x) =0 if x ¢ I. Of course, X possesses an expected Value,2 which can be evaluated

by

2 The product |x|p(x) is bounded and nonzero only on a finite interval.
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This proves the proposition.

T f b 1 [x 1
]EX=JXp(X)dX=J dx:—[—] =5 =

Next we determine the expected value of a gamma distributed random variable.

Proposition 5.1.28. Suppose X is I'; p-distributed with a, B > 0. Then its expected value is

EX=apf.

Proof. Because of P{X > 0} = 1, its expected value is well defined and computed by

[ N R S
IEX:pr(x)dx: FT) Jx-xﬁle /e qx

0

_ 1 Ooﬁ x/a

_aﬁ'l‘(ﬁ) Jx e dx

aB+1 @ 5 u ~ aﬁ+1 ~
J u—m'r(ﬁ+1)—aﬁ,

where we used eq. (1.50) in the last step. This completes the proof.
Corollary 5.1.29. Let X be E,-distributed for a certain A > 0. Then

1
EX =-.
A

Proof. Note that E; = Ty .

(5.21)

O

Example 5.1.30. The lifetime of a special type oflight bulbs is exponentially distributed.
Suppose the average lifetime constitutes 100 units of time. This implies A = 1/100, hence,

if X describes the lifetime, then

PX<ti=1-¢% ¢>0.

For example, the probability that the light bulb burns longer than 200 time units equals

P{X > 200} = e 2091 — e72 — 0.135335....
Remark 5.1.31. If we evaluate in the previous example

P{X > EX} = P{X > 100} = e ',
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then we see that in general P{X > EX} # 1/2. Thus, in this case, the expected value is
different from the median of X defined as a real number M satisfying P{X > M} > 1/2
and P{X < M} > 1/2. In particular, if Fy satisfies the condition of Proposition 4.4.7, then
the median is uniquely determined by M = F)}l(l/Z), i.e,by P{X < M} = 1/2. It is easy
to see that the above phenomenon appears for all exponentially distributed random
variables. Indeed, if X is E,-distributed, then M = In2/A while, as we saw, EX = 1/4,
compare Figure 5.1.

T ‘ T
0 M EX

Figure 5.1: The expected value IEX = 1/A and the median M = In 2/A of an £,-distributed random variable X.

Corollary 5.1.32. IfX is )(,zl-distributed, then
EX =n.

Proof. Since )(ﬁ = T’y /2, by Proposition 5.1.28 it follows that EX = 2-n/2 = n. O

Which expected value does a beta distributed random variable possess? The next
proposition answers this question.

Proposition 5.1.33. Let X be B, g-distributed for certain a, p > 0. Then

a

EX = .
a+p

Proof. Using eq. (1.63), from eq. (5.19) we obtain, as asserted,

1
1 Ca-la B
EX_B(a,ﬁ)JXX 1-x)"dx
1
1 apq -1 _Bla+1,p) «a
_B(a,,b’)(!x(l X" dx = B(a.p) _a+[3' O

Example 5.1.34. Suppose we choose independently n numbers x,..., X, uniformly
distributed on [0,1] and order them by their size. Then we get the order statistics
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0<x <---<x, <1 According to Example 3.7.11, if 1 < k < n, then the number x;; is
By n_k+1-distributed. Thus Proposition 5.1.33 implies that the average value of x;;, that is,
of the kth largest number, equals

kK k
k+(n-k+1) n+1’

In particular, the expected value of the smallest number is % while that of the largest

one is m

Does a Cauchy distributed random variable possess an expected value? Here we
obtain the following.

Proposition 5.1.35. If X is Cauchy distributed, then EX does not exist.

Proof. First, observe that we may not use Definition 5.1.22. The distribution density of X
is given by p(x) = hence, it does not satisfy p(x) = 0 for x < 0. Consequently, we

have to check whe7tThe1rHéZo’nd1t10n (5.20) is satisfied. Here we get
17 2 [ 1
BIX| = - L 1'+XL2 ax=2 J = L)) = 0.
Thus, E|X]| = oo, that is, X does not possess an expected value. O

Finally, we determine the expected value of normally distributed random variables.

Proposition 5.1.36. IfX is N (u, o*)-distributed, then
EX =u.

Proof. First, we check whether the expected value exists. The density of X is given by
eq. (1.49), hence

i 1t 17 -
J x| Py (X) dx = J x| e 5 dx = ﬁ_J |V2ou + p e

I/\

§|§ ?

(o) 2 (o)
2 2
Jue’” du + |yl 7 Je’” du < oo,
0
where we used the well-known fact® that for all k ¢ Ny,

(o)

2
Juke”du<oo.
0

3 See either [Spi08] or use that for all k > 1 one has sup,., uke™ < co.
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The expected value EX is now evaluated in a similar way as

o0 1 (o)
2 2
EX = J X Py () dx = J x e W20 gy
ES \/EJ_OO
1

= J (ov+ e dy

21
—00
17 17
2 2
—o— | ve"?dv + u— J eV 2 qy. (5.22)
2 J “ Var
—-00 -00

The function f(v) := ve /2 i odd, that is, f(-v) = —f(v), thus J—O:of (v)dv = 0, and the
first integral in eq. (5.22) vanishes. To compute the second integral, use Proposition 1.6.7
and obtain

=
SIE
S

j e_"z/zdv:u\/% V2 =u.

This completes the proof. O

Remark 5.1.37. Proposition 5.1.36 justifies the notation “expected value” for the param-
eter ¢ in the definition of the probability measure A/ (u, 02).

Summary: Let X be some random variable. Using the notation introduced in Remark 3.3.1, the following are
valid:

X uniformly distributed on {x;,...,xy} = EX =250

X~B,p, = EX=np.

X ~Pois; = EX=A

X~B, = EX=1

1
X~G = EX=1.

X uniformly distributed on [a,f] = EX= #
X~Tgpg = EX=af.

X~F, = EX=1

X ~)(,2, = EX=n.

10. X~Byg = EX=0
. X~N@o®) = EX=pu

12. X Cauchydistributed = X does not exist.

0 o N WS

5.1.5 Properties of the expected value

In this section we summarize the main properties of the expected value. They are
valid for both discrete and continuous random variables. But, unfortunately, within
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the framework of this book it is not possible to prove most of them in full generality.
To do so, one needs an integral (Lebesgue integral) fg fdP of functions f : @ — R for
some probability space (2, 4, P). Then EX = jg XdP, and all subsequent properties of
X — EX follow from those of the (Lebesgue) integral. We refer to [LG22] for a thorough
presentation of this (wonderful) topic.

Proposition 5.1.38. The expected value of random variables has the following properties:

m

(4]

3

@

(@)

(6)

The expected value of X only depends on its probability distribution Py, not on the way

how X is defined. That is, if X ly for two random variables X and Y, then EX = EY.
If X is constant with probability one, that is, there is some ¢ € RwithP{X = ¢} = 1,
then EX = c.

The expected value is linear: let X and Y be two random variables possessing an ex-
pected value and let a,b € R. Then E(aX + bY) exists as well and, moreover,

E(aX + bY) =aEX + bEY.

Suppose X is a discrete random variable with values x;, X,, ... Given a function f from
R to R, the expected value Ef (X) exists if and only if

Y |f ()| PX = x;} < 00,
i=1

and, moreover, then

Ef(X) = ) f() P{X = x;} . (5.23)

i=1

If X is continuous with density p, then for any measurable function f : R — R the
expected value Ef (X) exists if and only if

jmmmnM<m.

In this case it follows that

Ef(X) = J fOOp(x)dx . (5.24)

For independent X and Y possessing an expected value, the expected value of their
producl.‘4 XY exists as well and, moreover;

E[XY] =EX - EY.

4 Recall that (XY)(w) = X(w) - Y(w) for all w € Q.
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(7) WriteX < Y provided that X(w) < Y(w) for all w € Q. Ifin this sense |X| < Y for some
Y with EY < oo, then E|X| < co and, hence, EX exists.

(8) Suppose EX and EY exist. Then X <Y implies EX < EY. In particular, if X > 0, then
EX > 0.

Proof. We only prove properties (1), (2), (4), and (8). Some of the other properties are not
difficult to verify in the case of discrete random variables, for example, (3), but because
the proofs are incomplete, we do not present them here. We refer to [Bil12, Durl9] or
[Kho07] for the proofs of the remaining properties.

We begin with the proof of (1). If X and Y are identically distributed, then either
both are discrete or both are continuous. If they are discrete, and Py (D) = 1 for an at
most countably infinite set D, then X 4 Y implies Py (D) = 1. Moreover, by the same
argument Py ({x}) = Py({x}) for any x € D. Hence, in view of Definition 5.1.2, EX exists
if and only if EY does. Moreover, if this is valid, then EX = EY by the same argument.

In the continuous case, we argue as follows. Let p be a density of X. Due to X a Y, it
follows that

t
J () dx = Py((=00, t]) = Py((=c0,1]), teR.

Thus, p is also a distribution density of Y and, consequently, in view of Definition 5.1.24,
the expected value of X exists if and only if this is the case for Y. Moreover, by Defini-
tion 5.1.26, we get EX = EY.

Next we show that (2) is valid. Thus, suppose P{X = c} = 1 for some ¢ € R. Then X
is discrete with Py (D) = 1 where D = {c}, and by Definition 5.1.2 we obtain

EX=c-P{X=cl=c-1=c¢,

as asserted.
To prove (4), we assume that X has values in D = {x;,X,,...}. Then Y = f(X) maps
into f(D) = {y1,¥,,...}. Givenj € N, let D; = {x; : f(x;) = y;}. Thus,

]P{Y :y]} = IP{X € D]} = z ]P{X :Xi}'

X;€D;

Consequently, since D; N Dy = 0ifj # j', due to U}f1 D; = D, we get

ElY| =Y WIP(Y =y} =Y Y WP =x}
j=1 j=1x;€D;

=Y Y fO)IPLX = xi} = Y |[f(x)|P{X = x;}.
i1

j=1x;€D;
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This proves the first part of (4). The second part follows by exactly the same arguments
(replace |y;| by y)). Therefore, we omit its proof.

We finally prove (8). To this end, we first show the second part, that is, EX > 0 for
X > 0.If X is discrete, then X attains values in D, where D consists only of nonnegative
real numbers. Hence, x;P{X = x]-} > 0, which implies EX > 0. If X is continuous, in
view of X > 0, we may choose its density p such that p(x) = 0if x < 0. Then EX =
Iy pe)dx > 0.

Suppose now X < Y. Setting Z = Y - X, from the first step we get EZ > 0. But,
property (3) implies EZ = EY — EX, from which we derive EX < EY, as asserted. Note
that by assumption EX and EY are real numbers, so that EY -IEX is not an undetermined
expression. O

Remark 5.1.39. Properties (4) and (5) of the previous proposition, applied with the func-
tion f(x) = |x|, lead to

EIXI = Y I5IP(X =) or EIX| = [ Ixlp0odr,
j=1 -0

as we already stated in conditions (5.4) and (5.20), respectively.

Corollary 5.1.40. IfEX exists, then shifting X by u = EX, it becomes centralized. In other
words, if u = EX, then

E(X-u)=0.
Proof. If Y = X — y, then properties (2) and (3) of Proposition 5.1.38 imply
EY=EX-y)=EX-Fu=u-u=0,

as asserted. O
An important consequence of (8) in Proposition 5.1.38 reads as follows.

Corollary 5.1.41. IfEX exists, then
|EX| < E|X].
Proof. For all w € Q, it follows that
-|X(w)] < X(w) < |X(w)|,

that is, we have —-|X| < X < |X]. We apply now (3) and (8) of Proposition 5.1.38 and
conclude that

~ E|X| = E(-|X]) < EX < E|X|. (5.25)
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Since |a| < cfor a,c € Ris equivalent to —¢ < a < ¢, the desired estimate is a conse-
quence of inequalities (5.25) with a = EX and ¢ = E|X]. O

We now present some examples that show how Proposition 5.1.38 may be used to
evaluate certain expected values.

Example 5.1.42. Suppose we roll n fair dice. Let S,, be the sum of the observed values.
What is the expected value of S,;?

Answer: If X; denotes the value of the jth die, then X,..., X, are uniformly dis-
tributed on {1,..., 6} with EX; = 7/2 and, moreover, S, = X; +--- + X,,. Thus, property (3)
lets us conclude that

mn
ES, =EX;+---+X,) =EX; +---+ EX, = —.
Example 5.1.43. In Example 4.1.7, we investigated the random walk of a particle on Z.
Each time it jumped with probability p either one step to the right or with probability
1-p one step to the left. There S, denoted the position of the particle after n steps. What
is the expected position after n steps?

Answer: We proved that S, = 2Y, — n with a B, -distributed random variable Y,,.

Proposition 5.1.13 implies EY, = np, hence the linearity of the expected value leads to

ES,=2EY,-n=2np-n=n(2p-1). (5.26)

For p = 1/2, we obtain the (not very surprising) result ES,, = 0. But note that eq. (5.26)
can also be proved directly by using EX; = (-1)(1-p) +1-p=2p-1.

Remark 5.1.44. If we regard S, as the position of a particle after n jumps, then since
2p-1> 0ifp > 1/2 it follows that in this case the particle drifts on average to co. On the
contrary, if p < 1/2, the particle tends on average to —co.

On the other hand, if we interpret S,, as the loss or win after n games, we get the
following conclusion: whenever one plays a series of games with success probability
p < 1/2 (for example, roulette), in the long run one will lose on average an arbitrarily
big amount of money.

The next example demonstrates how property (4) of Proposition 5.1.38 may be used.

Example 5.1.45. Let X be Pois,-distributed. Find EX?.
Solution: Property (4) of Proposition 5.1.38 implies

00 Akl

EX? ZkzlP{X k} = ZRZ AZ T

k=0

—)L

We shift the index of summation in the right-hand sum by 1 and get

ooAk
AZ(k+1 /IZk et+ay e
k
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By Proposition 5.1.16, the first sum coincides with AEX = A%, while the second gives
APois; (INg) = A-1 = A. Adding both values leads to

EX? =2+ 1.

The next example rests upon an application of properties (3), (4), and (6) in Propo-
sition 5.1.38.

Example 5.1.46. Compute EX” for X being B, ,-distributed.

Solution: Let X;,...,X, be independent B, ,-distributed random variables. Then
Corollary 4.6.2 asserts that X = X +--- + X, is B, ,-distributed. Therefore, it suffices to
evaluate EX? with X = X; + -+ + X,,. Thus, property (3) of Proposition 5.1.38 implies

n n
EX* =EX;+ - +X)" =Y Y EX.X.
i=1j=1

Ifi # j, then X; and X; are independent, hence property (6) applies and yields
EXX; = EX;-EX;=p-p=p".
For i = j, property (4) gives
2 _ 2 2
EX; = 0% P{X; = 0} +1° - P{X; = 1} = p.

Combining both cases leads to

n
EX? = ) EX;-EX;+ Y EX, =n(n-1)p*+np=n’p* +np(1-p).
i j=

Example 5.1.47. Let X be G,-distributed. Compute EX2.
Solution: We claim that

Ex? - 2P y 6.27)
p
To prove this, let us start with
EX*= Y K*PX =k} =p Y K1-p)". (5.28)
k=1 k=1

We evaluate the right-hand sum by the following approach. If |x| < 1, then

1
R Ry
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Differentiating both sides of this equation leads to
)
1- x) ]
Next we multiply this equation by x and arrive at
xK
1- x)z kzl

Another differentiation of both functions on {x € R : |x| < 1} implies

1 Xk
(1—X)2 (1- X)3 Z

k=1

If we use the last equation with x = 1 - p, then, by eq. (5.28),

1 21-p) ] 2-p
EX? = =
Placa—pyr "a-a-ppl~ 2

>

as we claimed in eq. (5.27).
In the next example we us property (5) of Proposition 5.1.38.

Example 5.1.48. Let U be uniformly distributed on [0, 1]. Which expected value does
VU possess?
Solution: By property (5), it follows that

(00

1
]E\/ﬁ: J \/)_( ]l[oj](X)dX = J \/}dx = ;[XB/Z]%) = 2
0

-0

Another approach is as follows. Because of
F(t) =P{(VU < t} = P{U < ') =t

for 0 < t < 1, the density q of VU is given by q(x) = 2x, 0 < x < 1, and g(x) = 0 otherwise.
Thus,

( x° ! 2
]EﬁszZXdXzZ[—] =—.
] 3 3

0

Let us present now an interesting example called Coupon collector’s problem.
It was first mentioned in 1708 by A. De Moivre. We formulate it in a present-day lan-
guage.
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Example 5.1.49. A company produces cornflakes. Each pack contains a picture. We as-
sume that there are n different pictures and that they are equally likely. That is, when
buying a pack, the probability to get a certain fixed picture is 1/n. How many packs of
cornflakes have to be bought on average before one gets all possible n pictures?

An equivalent formulation of the problem is as follows. In an urn there are n balls
numbered from 1 to n. One chooses balls out of the urn with replacement. How many
balls have to be chosen on average before one observes all n numbers?

Answer: Assume we already have k different pictures for some k = 0,1,...,n - 1.
Let X}, be the number of necessary purchases to obtain a new picture, that is, to get one
which we do not have. Since each pack contains a picture,

PX,=1}=1.

If k > 1, then there are still n - k pictures that one does not possess. Hence, X}, is geomet-
rically distributed with success probability p, = (n-k)/n. If S, = Xy + - - - + X,,_1, then S,
is the totality of necessary purchases. By Corollary 5.1.20, we obtain
EX, = — = k=0,.,n-1.
Pk n-k
Note that EX; = 1, thus the previous formula also holds in this case. Then the linearity
of the expected value implies

1
ES,=1+EX;+---+EX, =1+ — +--- +
P1 Pn-1
n n L

=1+ —— + — 4. -
+n—1+n—2+ + nk;

s
x|

Consequently, on average, one needsn Y y_; % purchases to obtain a complete collection
of all pictures.

For example, if n = 50, on average, we have to buy 225 packs; if n = 100, then 519; for
n = 200, on average, there are 1176 purchases necessary; if n = 300, then 1885; if n = 400,
we have to buy 2628 packs; and, finally, if n = 500, we need to buy 3397.

Remark 5.1.50. Asn — oo, the harmonic series Y;_; % behaveslike In n. More precisely
(cf. [Lagl3] or [Spi08], Problem 12, Chapter 22)

n—oo

k=1

n
lim [z%—lnn] =y, (5.29)

where y denotes Euler’s constant, which is approximately 0.57721. Therefore, for large n,
the average number of necessary purchases is approximately n[Inn + y]. For example,
if n = 300, then the approximative value is 1884.29, leading also to 1885 necessary pur-
chases.
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Summary: The most important properties of the expected value are (we assume that all expected values
are well defined):

1. ForallX,Yanda,b € R, it follows that E[aX + bY] = a EX + bEY.

2. Iff : R — R then E[f(X)] = Y 2, fFx)PX = x,}, resp. E[f(X)] = jf:of(x)p(x)dx.

3. Forall random variables X, it follows that |EX| < E|X|.

4. IfXandY are independent, then E[X Y] = EX - EY.

5.2 Variance

5.2.1 Higher moments of random variables

Definition 5.2.1. Let n > 1 be some integer. A random variable X possesses an nth moment, provided
that E|X|” < co. We also say X has a finite absolute nth moment. If this is so, then EX” exists, and it is
called the nth moment of X.

Remark 5.2.2. Because of |X|" = |X"|, the assumption E|X|" < co implies the existence
of the nth moment EX".

Note that a random variable X has a first moment if and only if the expected value
of X exists, cf. conditions (5.4) and (5.20). Moreover, then the first moment coincides with
EX.

Proposition 5.2.3. Let X be either a discrete random variable with values in {X,X,, ...}
and with p; = P{X = x;}, or let X be continuous with density p. If n > 1, then

EX|" =Y Ix"-p; or EIX|"= J X" p(x) dx. (5.30)
j=1 —00

Consequently, X possesses a finite absolute nth moment if and only if either the sum or the
integral in eq. (5.30) are finite. If this is satisfied, then these moments are given by

EX" =Y x'-p; or EX"= Jx"p(x)dx.
Jj=1 00

Proof. Apply properties (4) and (5) in Proposition 5.1.38 with f (x) = |x|" or with f(x) = x",
respectively. O
Example 5.2.4. Let U be uniformly distributed on [0,1]. Then

1
]E|U|":]EU":JX"dx= L.
n+1
0

For the subsequent investigations, we need the following elementary lemma.
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Lemma5.2.5. If0 < a < B, thenforallx > 0,
x*<xf i1,
Proof. 1f0 < x <1, from xP > 0 it follows that
xP<1<xP 41,

and the inequality is valid.
If x > 1, then a < B implies x* < xﬁ, hence also for those x we arrive at

x* < xP < xP 41,

which proves the lemma. O

Proposition 5.2.6. Suppose a random variable X has a finite absolute nth moment. Then
X possesses all mth moments with m < n.

Proof. Suppose E|X|" < oo and choose an m < n. For a fixed w € Q, we apply
Lemma 5.2.5 with a = m, f = n, and x = |[X(w)|. Doing so, we obtain

X()|" < |X(W)|" +1,

and this being true for all w € Q implies |X|™ < |X|" + 1. Hence, property (7) of Proposi-
tion 5.1.38 yields

EIX|™ < E(IX|" +1) = EIX[" +1< co.

Consequently, as asserted, X possesses also an absolute mth moment. O

Remark 5.2.7. There exist much stronger estimates between different absolute mo-
ments of X. For example, Lyapunov’s inequality, a special case of Jensen’s inequality,
asserts that forany 0 < a < f5,

[EX1°" < [EIxXF)7P .

The case n = 2 and m = 1 in Proposition 5.2.6 is of special interest. Here we get the
following useful result.

Corollary 5.2.8. If X possesses a finite second moment, then E|X| < oo, that is, its ex-
pected value exists.

Let us state another important consequence of Proposition 5.2.6.

Corollary 5.2.9. Suppose X has a finite absolute nth moment. Then for any b € R, we also
have E |X + b|" < co.
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Proof. An application of the binomial theorem (Proposition A.3.8) implies
n L n k k
4B < (X1 10D = Y () X1 1br
k=0
Hence, using properties (3) and (7) of Proposition 5.1.38, we obtain

n
EIX+b" < ) (")|b|"*" EX < co.
k=0 k

Note that Proposition 5.2.6 implies E|X ¥ < oo for all k < n. This ends the proof. O

Example 5.2.10. Let X be I, g-distributed with parameters a, > 0. Which moments
does X possess, and how can they be computed?
Answer: In view of X > 0, it suffices to investigate EX". For all n > 1, it follows that

(o) (o)

n _ 1 n+p-1 —x/a n+B—1 -y
= —aﬁF(B) Jx e aﬁl"(ﬁ J e~ dy
=a"%;)") —d"(Brn-D(B+n-2)---B+1DB.

In particular, X has moments of any order n > 1.
In the case of an E;-distributed random variable X, we have a = 1/Aand § = 1, hence
n!
EX" = T
Example 5.2.11. Suppose a random variable is t,-distributed. Which moments does X
possess?

Answer: We already know that a t;-distributed random variable does not possess a
first moment. Recall that X is ¢;-distributed if it is Cauchy distributed. And in Proposi-
tion 5.1.35 we proved E|X| = oo for Cauchy distributed random variables.

But what can be said if n > 2?

According to Definition 4.6, the random variable X has the density p with

(n ) XZ -n/2-1/2
p(X)— \/—r( )<1 7) , XeR.
If m € N, then

( n+l 00 2\ ~N/2-1/2

EIX|™ \/_r( ) J Ix |’"<1+’%> dx.
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Hence, X has an mth moment if and only if the integral

L $2\ T2 o 2\ 2
J Ix|’"<1+—> dX:ZJXm<1+—> dx (5.31)
n n
is finite. Note that
2 ~N/2-1/2 -n/2-1/2
lim x™ 1+ = lim(x 2%+ = _ ph/2+1/2
X—00 n X—00 n >

thus, there are constants 0 < ¢; < ¢, (depending on n, but not on x) such that

—n/2-1/2

2
G _ym <1 + X—> <& (5.32)

Xn—m+1 - n - Xn—m+1

for large x, that is, if x > x, for a suitable x; € R.

Recall that LOO x%dx < coif and only if @ > 1. Having this in mind, in view of
eq. (5.31) and by the estimates in (5.32), we get E|X|™ < co ifand onlyifn-m+1 > 1,
that is, if and only if m < n.

Summing up, a t,-distributed random variable has moments of order 1,...,n -1,
but no moments of order greater than or equal to n.

Finally, let us investigate the moments of normally distributed random variables.

Example 5.2.12. How do we calculate EX" for an A/(0, 1)-distributed random variable?
Answer: Well-known properties of the exponential function imply

ElX|" = L T Ix"e 72 dx = 2 Tx" e 2 dx < 0o
V2 V2T
0

for all n € IN. Thus, a normally distributed random variable possesses moments of any
order. These moments are evaluated by

o0 o0
EX" = J X" poa(x) dx = % J Xte ™72 dx.
Vs

-0

2
If n is an odd integer, then x — x"e™* /% is an odd function, hence EX" = 0 for odd
integers n.
Therefore, it suffices to investigate even n = 2m with m € IN. Here we get

o0

1 2

Esz:Z-—szme X2 qx
var

0

which, by the change of variables y := x*/2, thus x = /2y with dx = % y Y2 dy, trans-
forms into
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(o0}
Exim - L gm Jym—1/2 e dy = £F<m+ 1)
Vr Vr 2)

Since I'(1/2) = /7 and by an application of eq. (1.50), we finally obtain

w5 o235 (o o (o
_2"T(1/2)-1/2-3/2---(m-1/2)
T
=2m-1)2m-3)---3-1=2m-1!.

Summary: Arandom variable X possess an nth moment if E|X|” < oco. Then its nth moment is defined by

00 [oe)
EX" = Zx;’ P{X =x} or EX"= J X" p(o)dx,
=i Ea

respectively. Here the x;s are in the discrete case the possible values of X or p denotes in the continuous case
its density.

If X possesses an nth moment, then this also so for all moments of order m < n. In particular, for each
random variable with second moment its expected value exists.

5.2.2 Variance of random variables

Let X be a random variable with finite second moment. As we saw in Corollary 5.2.8,
then its expected value u := EX exists. Furthermore, letting b = -y, by Corollary 5.2.9,
we also have E|X — | < co. After this preparation, we can introduce the variance of a
random variable.

Definition 5.2.13. Let X be a random variable possessing a finite second moment. If y := EX, then its
variance is defined as

VX := ElX - p|* = EIX - EX[.

Interpretation: The expected value u of a random variable is its main characteristic. It
tells us around which value the observations of X have to be expected. But it does not tell
us how far away from u these observations will be on average. Are they concentrated
around u or are they widely dispersed? This behavior is described by the variance. It is
defined as the average quadratic distance of X to its mean value. If VX is small, then we
will observe realizations of X quite near to its mean. Otherwise, if VX is large, then it is
very likely to observe values of X far away from its expected value.

How do we evaluate the variance in concrete cases? We answer this question for
discrete and continuous random variables separately.
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Proposition 5.2.14. Let X be a random variable with finite second moment and let u € R
be its expected value. Then it follows that

VX =) 0G-w'-p; and VX = J (x - w? p(x) dx (5.33)
ja J

in the discrete and continuous case, respectively. Hereby, Xy, X,, .. . are the possible values
of X and p; = P{X = X} in the discrete case, while p denotes the density of X in the
continuous case.

Proof. The assertion follows directly by an application of properties (4) and (5) of Propo-
sition 5.1.38 to f(x) = (x — u)z. O

Before we present concrete examples, let us state and prove certain properties of
the variance, which will simplify the calculations later on.

Proposition 5.2.15. Assume X and Y are random variables with finite second moment.
Then the following are valid:
(i) We have

VX = EX? - (EX)? . (5.34)

(i) IfP{X = c} = 1for somec € R, then’ VX = 0.
(iii) For a,b € R follows that

V@aX +b) = VX .
(iv) In the case of independent X and Y, one has

VX +Y)=VX+VY.

Proof. Let us begin with the proof of (i). With y = EX, we obtain
VX = EX - p)* = E[X? - 2uX + (%] = BX* - 2uEX +
=1EX2—2;12+;12 =]EX2—y2.

This proves (i).
To verify (ii), we use property (2) in Proposition 5.1.38. Then ¢ = EX = c, hence
P{X — u = 0} = 1. Another application of property (2) leads to

VX =EX-u?=0

as asserted.

5 The converse implication is also true. If VX = 0, then X is constant with probability 1.
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Next we prove (iii). If a,b € R, then E(aX + b) = aEX + b by the linearity of the
expected value. Consequently,

V(aX +b) = E[aX +b - (@aEX + b)]* = d® E(X - EX)? = & VX.

Thus (iii) is valid.
To prove (iv), observe that, if ¢ := EX and v := EY, then E(X + Y) = +v, and hence

VX +Y) = E[(X - ) + (¥ - )]’
= EX - w)® + 2E[(X - )(Y = v)] + E(Y - v)*
= VX +2E[(X - u)(Y - V)] + VY. (5.35)

By Proposition 4.1.9, the independence of X and Y implies that of X — ¢ and Y — v. There-
fore, from property (6) in Proposition 5.1.38, we derive

E[(X - (Y -~ V)] = B(X ~ ) - E(Y V) = (EX — 1) - (EY ~ ) =0-0=0.

Plugging this into eq. (5.35) completes the proof of (iv). O

Summary: Let X be a random variable with finite second moment. If y denotes the expected value of X,
its variance is defined by VX = E(X - /,l)2 = EX? - (]EX)2 . The variance may be evaluated in the discrete,
respectively continuous case as follows:

) (]
VX =) (% —u?PX=x} and VX= J O = u)* pOx)dx..
k=1 %
Here the x,s and p are the possible values of X and its density, respectively. The basic properties are
V(aX + b) = a®VX and VIX + Y] = VX + VY for independent X and Y.

5.2.3 Variance of certain random variables

Our first objective is to describe the variance of a random variable uniformly distributed
on a finite set.

Proposition 5.2.16. If X is uniformly distributed on {x, ..., Xy}, then
13 2
VX = 5306 - °,
Jj1
o o 1 N
where 1 is given by it = + ijl X; .

Proof. Because of p; = % 1 <j < N, this is a direct consequence of eq. (5.33). Recall that
u was computed in eq. (5.7). O
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Example 5.2.17. Suppose X is uniformly distributed on {1,...,6}. Then EX = 7/2, and
we get

-2 B @D -+ (6-9)

- 6

VX

25 9 1 1 9 25

atatatataty 35
6 12°

Thus, when rolling a die once, the variance is given by %

Now assume that we roll the die n times. Let X, ..., X, be the results of the single
rolls. The st are independent, hence, if S, = X; +- - - + X, denotes the sum of the n trials,
then, by (iv) in Proposition 5.2.15, it follows that

VSn:V(X1+-~-+Xn):VX1+-~-+VXn:gf—zn.

The next proposition examines the variance of binomial distributed random vari-
ables.

Proposition 5.2.18. If X is B, ,-distributed, then
VX =np(1-p). (5.36)

Proof. Let X be B, ,-distributed. In Example 5.1.47, we found EX? = n’p* +np(1-p).
Moreover, EX = np by Proposition 5.1.13. Thus, using formula (5.34) we derive

VX = EX® - (EX)* = np* + np(1 - p) - (np)* = np(1 - p),

as asserted. O

Remark 5.2.19. An alternative proof of Proposition 5.2.18 is as follows: if n = 1, then we
get

VX = (1-p)(0-p)* +p(-p)*=p-p)[p+A-p)] = p(l-p).

Thus, if X = X; +--- + X,, with X]-s independent Bl)p-distributed, then, on the one hand, X
is Bn’p-distributed and, on the other hand, we obtain

VX=VX +-+X,)=VX; +---+ VX, =nVX; =np(1-p).

Corollary 5.2.20. Binomial distributed random variables have maximal variance (with n
fixed) if p = 1/2.

Proof. The function p — np(1 - p) becomes maximal for p = % In the extreme cases
p = 0 and p = 1, the variance is zero. O
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Corollary 5.2.21. Let (S,),s¢ be a random walk, thatis, Sy = 0 and S,, = X + --- + X, if
n > 1 where the X;s are independent and attaining the values -1 and 1 with probabilities
1- p and p, respectively. Then, if n > 1, it follows that

VS, =4np(1-p). (5.37)

Proof. As shown in Example 4.1.7, the random variables Y, = (S, + n)/2 are B, -
distributed. Applying (iii) of Proposition 5.2.15, together with eq. (5.36), implies

VS, = V(2Y, — n) = 4VY, = 4np(1 - p),

as asserted. O
Next we determine the variance of Poisson distributed random variables.

Proposition 5.2.22. Let X be Pois,-distributed for some A > 0. Then
VX =A.

Proof. In Example 5.1.45, we computed EX? = A%+ A. Furthermore, by Proposition 5.1.16,
we know that EX = A. Thus, by eq. (5.34), we obtain, as asserted,

VX = EX? - (EX)? =22+ A=A = ). O

Next, we compute the variance of a geometrically distributed random variable.

Proposition 5.2.23. Let X be G,-distributed for some 0 < p < 1. Then its variance equals

Proof. In Example 5.1.47, we found EX* = Zp;zp, and by eq. (5.15) we have EX = %. Conse-
quently, formula (5.34) implies

as asserted. O

Corollary 5.2.24. If X is B, -distributed, then
vx=ni2P
p

Proof. LetX;,..., X, be independent G,-distributed random variables. By Corollary 4.6,
their sum X = X, +--- + X, is B, -distributed, hence property (iv) in Proposition 5.2.15
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lets us conclude that

VXzV(X1+~-~+Xn):VX1+--~+VXn:nVXlznll;—Zp. O
Interpretation: The smaller the p, the bigger the variance of a geometrically or neg-
ative binomial distributed random variable (for n fixed). This is not surprising, because
the smaller the p, the larger the expected value, and so the values of X may be very far
from 1/p (success is very unlikely).
We consider now variances of continuous random variables. Let us begin with uni-
formly distributed ones.

Proposition 5.2.25. Let X be uniformly distributed on an interval [a, §]. Then it follows
that

(B - @)
12

VX =

Proof. We know by Proposition 5.1.27 that EX = (a + §)/2. In order to apply formula
(5.34), we still have to compute the second moment EX2. Here we obtain

B
EX? = 1 J’dele_ﬁﬁ—as :ﬁ2+aﬁ+a2
3 B-a '

p-a) B 3

Consequently, formula (5.34) lets us conclude that

VX:]EXZ_(]EX)ZZBZ+aB+a2 _<a+ﬁ>2

3 2
3 B +ap +d* B a® + 2ap + B
- 3 4
_d-2p+p (-
- 12 12
This completes the proof. O

In the case of gamma distributed random variables, the following is valid.

Proposition 5.2.26. If X is I, p-distributed, then
2
VX =af.

Proof. Recall that EX = af by Proposition 5.1.28. Furthermore, in Example 5.2.10 we
evaluated EX" for a gamma distributed X. Taking n = 2 yields

EX*=a*(B+1)B,
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and, hence, by eq. (5.34),
VX = EX* - (EX)" = (B+1) B - (aP)’ = d’B,

as asserted. O

Corollary 5.2.27. If X is E,-distributed, then

1
VX = A_Z .
Proof. Because of £, = T'1 ,, this directly follows from Proposition 5.2.26. O
3

Corollary 5.2.28. For a y>-distributed X, it holds that
VX =2n.

Proof. Letus give two alternative proofs of the assertion. The first uses Proposition 5.2.26
and y? = Ty

The second proof is longer, but maybe more interesting. Let X, ..., X, be indepen-
dent \(0, 1)-distributed random variables. Proposition 4.6.10 implies that X+ - - +X? is
X,Zl-distributed, thus property (iv) of Proposition 5.2.15 applies and leads to

VX = VX} +--- + VX- = nVX;.

In Example 5.2.12, we evaluated the moments of an A/(0, 1)-distributed random variable.
In particular, EX? = 1and E(X?)* = EX; = 3!! = 3, hence

VX = nVX? = n(BX! - (EX?))) = 3-1n = 2n,

as claimed. O
Finally, we determine the variance of a normal random variable.
Proposition 5.2.29. If X is N'(u, o%)-distributed, then it follows that

VX = a?.

Proof. Of course, this could be proven by computing the integral

VX = [ 0= pya0ax.

We prefer a different approach that avoids the calculation of integrals. Because of Propo-
sition 4.2.3, the random variable X may be represented as X = X, + u for a standard
normal X . Applying (iii) in Proposition 5.2.15 gives
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But EX, = 0, and by Example 5.2.12 we have ]EXg =1, thus

VX =0’ VX,.

VXOzl_Ozl.

Plugging this into eq. (5.38) proves VX = o”.

Remark 5.2.30. The previous result explains why the parameter ¢* is called the “vari-
ance” of an \(u, o%)-distributed random variable. Recall that the other parameter u de-
notes its expected value. Moreover, it shows that the smaller the o> 0, the more are the
values of an N (u, 0%)-distributed random variable concentrated around the expected

value y; see Figure 5.2.

Figure 5.2: Densities of normal distributions with mean value 0 and variances (from bottom to top)
0% =17, 0% = 1,and 0% = 0.7. The larger the ¢2, the more likely are events away from zero.

-2 r 2

Summary: Let X be some random variable. Then we have

1.

ENENES

© 00 N o v

2 2
X uniformly distributed on {x;,...,xy} = VX = IO ity g = X,

X~B,, = VX=np(l-p).
X ~Pois;, = VX=A

X~B, = VX= —”(;;”).

X uniformly distributed on [a,f] = VX = @
X~Teg = VX= a®p.

X~Ep, = VX=3.

X ~X§ = VX=2n

X~N@pd®) = VX=d.
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5.3 Covariance and correlation

5.3.1 Covariance

Suppose we know or conjecture that two given random variables X and Y are depen-
dent. The aim of this section is to introduce a quantity that measures their degree of
dependence. Such a quantity should tell us whether the random variables are strongly
or only weakly dependent. Furthermore, we want to know what kind of dependence we
observe. Do larger values of X trigger larger values of Y or is it the other way round? To
illustrate these questions, let us come back to the experiment presented in Example 2.2.5.

Example 5.3.1. In an urn are n balls labeled with “0” and another n balls labeled with
“1.” Choose two balls out of the urn without replacement. Let X be the number appearing
on the first ball and Y that on the second. Then X and Y are dependent (check this), but
it is intuitively clear that if n becomes larger, then their dependence diminishes. We ask
for a quantity that tells us their degree of dependence. This measure should decrease as
n increases and it should tend to zero as n — oo.

Moreover, if X = 1 occurred, then there remained in the urn more balls with “0”
than with “1,” and the probability of the event Y = 0 increases. Thus, larger values of X
make smaller values of Y more likely.

Before we are able to introduce such a “measure of dependence,” we need some
preparation.

Proposition 5.3.2. Iftwo random variables X and Y possess a finite second moment, then
the expected value of their product XY exists.

2,12
Proof. We use the elementary estimate |ab| < % valid for a,b € R. Thus, if w € Q,
then

2 2
lX(w)Y(w)l < & + M R

2 2
that is, we have

2 2
xr < X8 (5.39)
2 2

By assumption,

2 2
E[%+Y7] = %[]EXZHEYZ] < 00,

consequently, because of estimate (5.39), property (7) in Proposition 5.1.38 applies and
tells us that E|XY| < oco. Thus, E[XY] exists as asserted. O
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How do we compute E[XY] for given X and Y? In Section 4.5 we observed that the
distribution of X + Y does not only depend on the distributions of X and Y. We have to
know their joint distribution, that is, the distribution of the vector (X, Y). And the same
is true for products and the expected value of the product.

Example 5.3.3. Let us again investigate the random variables X, ¥, X', and Y’ intro-
duced in Example 3.5.8. Recall that they satisfied

]P{XzO,YzO}:%, P{X:O,Y:n:%)

]P{X:l,Y:O}:%, ]P{X:l,Y:l}:%,

]P{X’_O,Y’:O}:%, ]P{X’:O,Y’:l}:i,

1P{X’=1,Y’:0}_1, ]P{X':l,Y':l}:l.

4 4

ThenPX:leandPY:Pyl,hut

IE[XY]=é(O-O)+%(1-O)+%(O-1)+%(1-1):% and

1 1 1 1 1

E[X'Y'|==(0- -1 Z0-D+=-Q1Q-)==.

(X'Y'] 10 0)+4( 0)+7© )+4( )=

This example tells us that we have to know the joint distribution in order to compute
E[XY]. The knowledge of the marginal distributions does not suffice.

To evaluate E[XY], we need the following two-dimensional generalization of for-
mulas (5.23) and (5.24).

Proposition 5.3.4. Let X and Y be two random variables and let f : R*> — R be some

function.

1. Suppose X and Y are discrete with values in {xy,X,,...} and in {y;,y,,...}. Set
Py =PX=x,Y =y} If

E|fX,Y)| = ) |f(x:y)|py < 00, (5.40)
ij=1

then Ef (X, Y) exists and can be computed by

Bf(X,Y) = ) fOuY)py-
ij=1

2. Letf:R*— R be continuous.® If p : R> — R is the joint density of (X,Y) (as intro-

6 In fact, we need only a measurability in the sense of Definition 4.1.1, but this time for functions f from
R? to R. For our purposes “continuity” of f suffices.
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duced in Definition 3.5.15), then

E|f(X,Y)| = j J |f6y)| p(x,y) dxdy < co (5.41)

implies the existence of Ef (X, Y), which can be evaluated by
(e o)
Ef(X,Y) = J J fx,y) p(x.y)dxdy. (5.42)
—00 —00

Remark 5.3.5. The previous formulas extend easily to higher dimensions. That is, if
X = (X, ...,Xy) is an n-dimensional random vector with (joint) distribution density
p:R" - R, then for continuous’ f : R" — R one has

BfX) = Bf (X, X,) = Jf(xl,...,xn)p(xl,...,xn) dx, - dxg

R

provided the integral exists. The case of discrete X;, ..., X, is treated in a similar way. If
X maps into the finite or countably infinite set D ¢ R", then

Ef()?) = IEf(Xl, ..,Xn) = Zf(x)]P{X — X},

xeD

If we apply Proposition 5.3.4 with f : (x,y) — x -y, then we obtain the following
formulas for the evaluation of E[XY]. Hereby, we assume that conditions (5.40) or (5.41)
are satisfied.

Corollary 5.3.6. In the notation of Proposition 5.3.4, the following are valid:

(x-y) p(x,y) dxdy

E(XY] = ) (x;-y)p; and E[XY]= J
ij=1 N

g—38

in the discrete and continuous case, respectively.

After all these preparations, we are now in a position to introduce the covariance
of two random variables.

Definition 5.3.7. Let X and Y be two random variables with finite second moments. Setting y = EX and
v = EY, the covariance of X and Y is defined as

Cov(X, ¥) = E[(X - p)(¥ - )].

7 Compare with the footnote for n = 2 in part 2 of Proposition 5.3.4.
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Remark 5.3.8. Apply Corollary 5.2.9 and Proposition 5.3.2 to see that the covariance is
well defined for random variables with a finite second moment. Furthermore, in view
of Proposition 5.3.4, the covariance may be computed as

CovlX, ¥) = 3 (5~ W0 - V)P
ij=1

in the discrete case (recall that p; = P{X = x;, Y = y;}), and as

Cov(X,Y) = J Ju—uxy—WPuyﬂh®

in the continuous case.

Example 5.3.9. Let us once more consider the random variables X, Y, X', and ¥’ in Ex-
ample 3.5.8 or Example 5.3.3, respectively. Each of the four random variables has the
expected value 1/2. Therefore, we obtain

covor )= g (0-3)-(0-3) +5(1-3) (°-3)

while
1-30-2)-0-1)
Cov(X,Y)—4 0 > 0 5 )
1 1 1 1 1 1
“(o-2)-(1-2)+=(1-2)-(1-2)=0.
4<° 2> < 2>+4< 2) < 2> °
The following proposition summarizes the main properties of the covariance.

Proposition 5.3.10. Let X and Y be random variables with finite second moments. Then
the following are valid:

1) Cov(X,Y) = Cov(Y,X).

(2) Cov(X,X)=VX.

(3) The covariance is bilinear, that is, for X;, X, and real numbers a; and a,,

Cov(a X + @)X, Y) = q;Cov(Xy, Y) + a,Cov(X,, Y)
and, analogously,
COV(X, b1Y1 + bZYZ) = b1COV(X, Yl) + szOV(X, Yz),

for random variables Y;, Y, and real numbers by, b,.
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(4) The covariance may also evaluated by
Cov(X,Y) = E[XY] - (EX)(EY). (5.43)
(5) Cov(X,Y) =0 for independent X and Y.

Proof. Properties (1) and (2) follow directly from the definition of the covariance.
Let us verify (3). Setting 1y = EX; and u, = EX,, the linearity of the expected value
implies

E(a,X; + a,Xp) = ayhy + Gyl .
Hence, if v = EY, then

Cov(a Xy + ,X,,Y) = EB[(ay(Xq — 1) + ay(Xy — ) )(Y = V)]
= GE[(X) - )Y - V)] + GE[(X; - )Y - V)]
=a;Cov(X;,Y) + a,Cov(X,,Y).

This proves the first part of (3). The second part can be proven in the same way or one
uses Cov(X,Y) = Cov(Y,X) and the first part of (3).
Next we prove eq. (5.43). With y = EX and v = EY, from

X-wY-v)=XY —uy -vX +uv,
we get that

Cov(X,Y) = E[XY — uY — vX + uv] = E[XY] - uEY — vVEX + pv
= E[XY] - uv.

This proves (4) by the definition of g and v.
Finally, we verify (5). If X and Y are independent, then, by Proposition 4.1.9, this is
also true for X — y and Y —v. Thus, property (6) of Proposition 5.1.38 applies and leads to

Cov(X,Y) =E[X —u)(Y -V)] = EX - W E(Y -v) = [EX — u] [EY —v] = 0.

Therefore, the proof is completed. O

Remark 5.3.11. Quite often the computation of Cov(X,Y) can be simplified by the use
of eq. (5.43). For example, consider X and Y in Example 3.5.8. In Example 5.3.3 we found
E[XY] = 1/6. Since EX = EY = 1/2, from eq. (5.43) we immediately get

__ L

Cov(X,Y) =

1.1
6 4 127

We obtained the same result in Example 5.3.9 with slightly more effort.
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Property (5) in Proposition 5.3.10 is of special interest. It asserts Cov(X, Y) = 0 for in-
dependent X and Y. One may ask now whether this characterizes independent random
variables. More precisely, are the random variables X and Y independent if and only if
Cov(X,Y) =107

The answer is negative as the next example shows.

Example 5.3.12. The joint distribution of X and Y is given by the following table:

Y\X | -1 0 1
4|1 1 1|3
10 10 10 10
1 2 1 2
0 |5 © 1 |5
11 1 1|3
10 10 10 10

3 2 3

10 5 10

Of course, EX = EY = 0 and, moreover,
E[XY] = %((—1)(—1) + (DD + (+)(-1) + (+1)(+D)) = 0,

which by eq. (5.43) implies Cov(X, Y) = 0. On the other hand, Proposition 3.6.11 tells us
that X and Y are not independent. For example,

P{X=0Y =0} = % while P{X = 0}P{Y = 0} = zi;‘

Example 5.3.12 shows that Cov(X,Y) = 0 is, in general, weaker than the indepen-
dence of X and Y. Therefore, the following definition makes sense.

Definition 5.3.13. Two random variables X and Y satisfying Cov(X, Y) = 0 are said to be uncorrelated.
Otherwise, if Cov(X, Y) # 0, then X and Y are correlated.

More generally, a sequence X;,..., X, of random variables is called (pairwise) uncorrelated, if
Cov(X;,X;) = 0 whenever i # j.

Using this notation, property (5) in Proposition 5.3.10 may now be formulated in the
following way:

X and Y independent =2 X and Y uncorrelated.

Example 5.3.14. Let A, B € .4 be two events in a probability space (Q,.4,P) and let 1,
and 13 be their indicator functions as introduced in Definition 3.6.16. How can we com-
pute Cov(1y, 1p)?
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Answer: Since E1, = P(4), we get

= P(ANB) - P(A) P(B).

This tells us that 1, and 13 are uncorrelated if and only if the events A and B are in-
dependent. But as we saw in Proposition 3.6.17, this happens if and only if the random
variables 1, and 1 are independent. In other words, two indicator functions are inde-
pendent if and only if they are uncorrelated.

Finally, we consider the covariance of two continuous random variables.

Example 5.3.15. Suppose a random vector (X,Y) is uniformly distributed on the unit
ball of R%. Then the joint density of (X, Y) is given by

Lifx®+y? <1,

oy =17
puey {O ifx*+y* > 1.

We proved in Example 3.5.19 that X and Y possess the distribution densities

Q(X):{% B, and r(y) = VLY i<t
0 if x| >1 0 if ly] > 1.

The function y — y (1-y*)"/is odd. Consequently, because we integrate over an interval
symmetric around the origin,

1

EX:EY:%JyO—f)
)

Y ay = 0.

By the same argument, we obtain
00 00 1 1 W
EUY] = | [ ocypooy dxdy - - jy[ | xdx]dy=o,
—00 -0

-1 7\/@

and these two assertions imply Cov(X,Y) = 0. Hence, X and Y are uncorrelated, but as
we already observed in Example 3.6.21, they are not independent.

Summary: Let X and Y be two random variables with second moment and expected values p and v, respec-
tively. Then

Cov(X, ¥) = E[(X — p)(Y = v)] = E[X V] - (EX)(EY)
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denotes the covariance of X and Y. It can be evaluated in the discrete case as follows:

CovlX, V) = Y (x; = p)(y; - VIPX =X,V =y}
i,j=1

If X and Y are continuous with joint density p, then

CovX, V) = j j(x—u)(y—v)p(x,wdxdy.

5.3.2 Correlation coefficient

The question arises whether or not the covariance is the quantity that we are looking
for, that is, which measures the degree of dependence. The answer is only partially af-
firmative. Why? Suppose X and Y are dependent. If a is a nonzero real number, then a
natural demand is that the degree of dependence between X and Y should be the same
as that between aX and Y. But

Cov(aX,Y) =aCov(X,Y),

thus, if a # 1, then the measure of dependence would increase or decrease. To overcome
this drawback, we normalize the covariance in the following way.

Definition 5.3.16. Let X and Y be random variables with finite second moments. Furthermore, we as-
sume that neither X nor ¥ are constant with probability 1, that is, we have VX > 0 and VY > 0. Then the
quotient

Cov(X,Y)

ALV 5.44
(V)2 (vy)1r2 G40

P(X, Y):=

is called the correlation coefficient of X and Y.

To verify a crucial property of the correlation coefficient, we need the following version
of the Cauchy-Schwarz inequality.

Proposition 5.3.17 (Cauchy-Schwarz inequality). For any two random variables X and Y
with finite second moments, it follows that

[E(XY)| < (Ex?)"* (BY?)"?.

(5.45)
Proof. By property (8) of Proposition 5.1.38, we have

0 < E(IX] - AlY])* = EX? - 22EIXY]| + A* EY? (5.46)
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for any A € R. To proceed further, we have to assume® EX? > 0 and EY? > 0. The latter
assumption allows us to choose A as

_ (EX2)1/2

(Ey2)1/2 :

If we apply inequality (5.46) with this A, then we obtain

0< EXZ—Z%EXYHEXZ =2£X2—2%E|XY|,
which easily implies (recall that we assumed EX? > 0)
EIXY| < (EXY)"* (EY?)".
To complete the proof, we use Corollary 5.1.41 and get
[E(XY)| < ElxY]| < (Ex?)" (EY?)",
as asserted. O

Remark 5.3.18. An analogue inequality as (5.45) for vectors in R" is as follows: let
X=(Xp...,Xy) andy = (yy,...,y,) be two elements in R". Then one has

() (31

In the language of scalar products and Euclidean distance, this says

1/2

Z XY

j=1

|6y < X1yl
Corollary 5.3.19. The correlation coefficient satisfies
-1<pX,Y) <1.

Proof. Let as before ¢ = EX and v = EY. Applying inequality (545)to X —pgand Y - v
leads to

1/2 1/2
(

|Cov(X, V)| = |EX - u)(Y - v)| < (EX - w)?) " (E(Y - v)?)

= (VX)) (vY)V?,

8 The Cauchy-Schwarz inequality remains valid for EX? = 0 or EY? = 0. In this case, it follows that
P{X =0} =1or P{Y = 0} = 1, hence P{XY = 0} = 1 and E[XY] = 0.
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or, equivalently,
~ (VXY (vY)? < cov(X, Y) < (VX)Y2 (vY)2.

By the definition of p(X,Y) given in eq.(5.44), this implies -1 < p(X,Y) <1, as as-
serted. O

Interpretation: For uncorrelated X and Y, we have p(X,Y) = 0. In particulay, this is
valid if X and Y are independent. On the contrary, p(X,Y) # 0 tells us that X and Y are
dependent. Thereby, values near to zero correspond to weak dependence, while p(X, Y)
near 1 or -1 indicate a strong dependence. The strongest possible dependence is when
Y = aX for some a # 0. Then p(X,Y) =1ifa > 0 while p(X,Y) = -1fora < 0.

Definition 5.3.20. Two random variables X and Y are said to be positively correlated if p(X,Y) > 0. In
the case that p(X, Y) < 0, they are said to be negatively correlated.

Interpretation: Random variables X and Y are positively correlated, provided thatlarger
(or smaller) values of X make larger (or smaller) values of Y more likely. This does not
mean that a larger X-value always implies a larger Y-value, only that the probability for
those larger values increases. And in the same way, if X and Y are negatively correlated,
then larger values of X make smaller Y-values more likely.

Let us explain this with two typical examples. Choose by random a person w in the
audience. Let X(w) be his or her height and Y(w) his or her weight. Then X and Y will
surely be positively correlated. But this does not necessarily mean that each taller per-
son has a higger weight. Another example of negatively correlated random variables
could be as follows: X is the average number of cigarettes that a randomly chosen per-
son smokes per day and Y is his lifetime.

Example 5.3.21. Let us come back to Example 5.3.1: in an urn there are n balls labeled
with “0” and n labeled with “1.” One chooses two balls without replacement. Then X is
the value of the first ball, Y that of the second. How does the correlation coefficient of X
and Y depend on n?

Answer: The joint distribution of X and Y is given by the following table:

Y| 0 1
n-1 n 1
0|5 mz |2
1] a1
4n-2 4n-2 2

1 1

3 3

Direct computations show EX = EY = 1/2 and VX = VY = 1/4. Moreover, it easily
follows E[XY] = ==L hence

n-2’
n-1 -1

1
Cov(X,Y) = 2 ,
VXY = Tl T a4
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and the correlation coefficient equals

1 -1
p(X, Y) — 8n-4 _

\E\E—m—l'

If n — oo, then p(X,Y) is of order ;—i Hence, if n is large, then the random variables X
and Y are “almost” uncorrelated.

Since p(X,Y) < 0, the two random variables are negatively correlated. Why? This
was already explained in Example 5.3.1: an occurrence of X = 1 makes Y = 0 more likely,
while the occurrence of X = 0 increases the likelihood of Y = 1. In the case n = 1, the
value of Y is completely determined by that of X, expressed by p(X,Y) = -1.

Summary: Let X and Y be two random variables with finite second moment. Then

Cov(X,Y)

P = v

is said to be their correlation coefficient. The random variables are said to be positively correlated if
p(X,Y) > 0, negatively correlated if p(X,Y) < 0, and uncorrelated if p(X,¥) = 0. The basic properties
are -1 < p(X,Y) < 1andp(X,Y) = 0 for independent X and Y. But note that uncorrelated X and ¥ need not
be independent.

5.4 Some paradoxes and examples

The aim of this section is to present a few more comprehensive examples of special
interest having a long history.

5.4.1 Boy or girl paradox

In 1959 Martin Gardner® phrased the following two questions:

1. Mr Jones has two children. The older child is a girl. What is the probability that both
children are girls?

2. Mr. Smith has two children. At least one of them is a boy. What is the probability
that both children are boys?

The basic assumptions for answering these questions are:
(@) Each child is either a boy or a girl.

9 Martin Gardner, Problems involving questions of probability and ambiguity, Scientific American, Octo-
ber 1959.
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(b) Boys and girls occur equally likely.
(c) The gender of the two children is independent of each other.

Answers: There are 4 different possibilities for the gender of the two children:
(G,G6), (B,G), (G,B), and (B,B).

For example, (B, G) means that the older child is a boy while the younger one is a girl.
In view of the basic assumptions, all 4 elementary events are equally likely, hence their
probability is 1/4.

Solution of the first question: Here one asks for the probability of {(G, G)} under the
condition {(G, B), (G, G)}. So we get
P{(G, G)}) 174 _1
P{(G, ®O}IH{(G,B),(G.G)})= ———F— == ==.
( it 2 P({(G,B),(G,G)}) 12 2
First solution of the second question: One chooses by random a family with two children.
Let the event A occur if the chosen family has at least one boy. That is,

A= {(B; G)) (G) B)) (B>B)} >

hence P(4) = 3/4. In question 2, we asked for the probability of the occurrence of {(B, B)}
under the condition A. Then we get
P{B,B)}) _1/4 1
P{(B,B)}|A) = —————~-=— =-.
We obtained this result by restricting the sample space and ruling out families with two
girls.

Alternative solution of the second question: We split the problem into two steps. In the
first step, one chooses at random a family with two children. But we do not have any
information about the gender of these children. Any of the four configurations (G, G),
(G, B), (B,G), and (B, B) is possible, each occurring with probability 1/4.

Next, in the second step, we choose equiprobable one of the two children of the
family, that is, of the family chosen in the first step. The result may be “B” or “G.” Set

S = {Second step leads to “B”}.

Thus, if the randomly chosen family with two children has a boy and a girl, then the
second step will lead equally likely to “B” and to “G.” Consequently,

B(SH(B,O)) = PSHG. B = 5.
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On the other hand, if the chosen family has either two girls or two boys, then it follows
that

P(SI{(G,®)}) =0 or P(S{BB)}) =1,

respectively.
By symmetry (recall that “B” and “G” are equally likely), one should have that P(S) =
1/2. A rigorous proof is based on the law of total probability. It implies

P(S) = P{(G.G)} - P(SI(G,G)) + P{(B.G)} - P(S|(B,G))
+P{(G, B)} - P(SI(G, B)) + P{(B, B)} - P(S|(B, B))

—10+1£+11+11—1
4 4 2 42 4 2
This lets us conclude that
P({(B,B 1/4 1
P({(B,BHS) = P(SI{(B,B)}) - TUBEN g V&1

P(S) 1/2 2

Consequently, the answer to the second question is: the probability for both children
being boys knowing that at least one child is a boy equals 1/2.

For the sake of completeness, we also state the other probabilities. These are
P{(G,G)}|S) = 0 and

P({(G.B)}IS) = P({B, G)}IS) = P(sI{(B,0)}) - PUBOD _ 1 14 _ 1

The obtained result may also be phrased as follows: the a priori probabilities of getting
(G,G), (G,B), (B,G), and (B, B) (the probabilities before choosing randomly a child) are
all 1/4 while the a posteriori probabilities (after observing a “B” in the second step) are
0,1/4,1/4, and 1/2, respectively.

Remark 5.4.1. One may wonder how it is possible that the answer to question 2 is at
the same time 1/3 and 1/2. Maybe there is some error in the calculations. This is not so.
The reason lies in the ambiguity of the way to use the information “At least one child
is a boy.” In the first approach, we use this information to rule out families with two
girls from the very beginning. That is, if we chose at random a family with two girls, we
discard it and make another trial.

The alternative approach looks more natural, at least to us. Choose at random any
family with two children. Then all four possibilities of the distribution of boys and girls
may occur. Having the family fixed, we check whether or not a randomly chosen child
(maybe the older, maybe the younger) is a boy. For example, we chose the family of Mr.
Smith, and we see him walking with one of his children who is a boy. There is a 50 %
chance that this is his older child, but, of course, it also could be the younger one.
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5.4.2 Randomly chosen entries

Let us extend the boy or girl paradox to a more general setting. It reads as follows: toss
a fair coin labeled by “0” and “1” exactly n > 2 times, without recording the obtained
results. After that, one gets the information that one of n the entries equals one. Given
some 1 < k < n, the question is now how likely is it that the observed sequence contains
exactly k times the number “1.”

Note that in the case n = k = 2 this is exactly question 2 in Section 5.4.1. To see this
link “B” with “1” and “G” with “0.”

But also here, in this generalized setting, the information that one of the entries
equals “1” can be interpreted in different ways.

One possible interpretation of the problem is to discard from the very beginning
sequences without “1.” So the restricted sample space contains 2" — 1 elements. Conse-
quently, if A, is the event to observe k times “1,” then

P(Aj|{At least one “17}) =

Of course, P(4y|{At least one “1”}) = 0

Another interpretation of the problem is as follows: one chooses at random a se-
quence x = (Xy, ..., x,) of “0”s and “1”s. The probability of its occurrence is 1/2". Next one
fixes the observed x = (xy,...,X,) and chooses at random one of its entries (all entries
are equally likely), say x; for some j < n. Then the event x; = 1 occurs with probability
k/n, where k is the number of “1”s in the chosen sequence x. Thus, if

= {The randomly chosen entry equals “1”},

it follows that
k
P(Sl{x}) = - whenever x € 4.

Recall that A; denotes the set of all sequences of “0” and “1” with k times “1.” The law
of total probability yields (see the proof of Proposition 5.1.13 for the evaluation of the
sum)

n

P©)= 3 ¥ PRSI = Y ¥ =
k=1xeA, XA,
1
2"

— 1 S n _ n-1
= 2K() = g 02 -

This result is not surprising at all and could also obtained heuristically. Indeed, by sym-
metry the occurrence of “0” and “1” has to be equally likely.

==

n M:
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Consequently, if x € A;, then

P k 1 1k
Ip({)<}IS)=1P(SI{X})-%= W AT g

Finally, since |Ax| = (}), the additivity of conditional probabilities leads to

n k n-1 1
P = () g = (e y) o K=teom

Summing up, we received the following result.

Proposition 5.4.2. Let n > 1. Tossing a fair coin n times, then for all1 < k < n it follows
that
n- 1) 1

P{Observe k times “1” | Randomly chosen entry is “1”} = ( k-1) i

Example 5.4.3. If we apply Proposition 5.4.2 to the case n = k = 2, we rediscover the
answer given in Section 5.4.1. Indeed, then
1

P{Both children are boys | A randomly chosen child is a boy} = 5

Another case of interest is as follows: one asks for the probability that a family with
three children has two boys, provided a randomly chosen child is a boy. Then n = 3
and k = 2, hence the probability for this event equals 2 - 1/4 = 1/2. Equivalently, under
the given condition, each of the events {(G, B, B)}, {(B, G, B)}, and {(B, B, G)} occurs with
probability 1/6. On the other hand, if a randomly chosen child of the three ones is a boy,
the occurrence of three boys possesses the probability 1/4. Without that knowledge, the
probability of {(B, B, B)} equals 1/8.

Remark 5.4.4. Proposition 5.4.2 tells us that the left-hand probability coincides with that
of the occurrence of k-1 times “1” when tossing a fair coin n—1times. There is a straight-
forward explanation of this coincidence. In the presented setting, we first toss the coin
and next choose randomly an entry of the observed sequence of zeroes and ones. But
we could do it also the other way round: first choosing randomly a number from 1to n
and after that tossing the coin. We leave the details as problem for the interested reader
(see Problem 5.25).

5.4.3 Secretary problem

This is a well-known problem in Probability Theory, also called “marriage problem” or
the “sultan’s dowry problem.”

A company wants to hire a secretary. There are n applicants interviewed in random
order. Immediately after the interview, the administrator decides whether or not the
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candidate is rejected or hired. Once rejected, the candidate cannot be recalled. The goal
of the company is to get the best applicant. To this end, every interviewed candidate is
ranked in a linear order. But note that the administrator has no information about the
quality of the unseen applicants.

Now the strategy of the administrator is a follows: Choose a number 0 <r < n-1,
interview the first r applicants and reject them all. After that choose the first candidate
who is better than all of the r rejected ones. If r = 0, then nobody is interviewed and the
first applicant is hired.

Questions: How likely is it that this strategy leads to the employment of the overall
best candidate? What is the optimal choice of the number r?

Before proceeding further, let us explain the problem with an easy example. Sup-
pose there are three candidates enumerated by 1, 2, and 3. We assume that applicant
2 is better than 1 and that candidate 3 is better than 2. Then there are 3! = 6 ways of
interviewing the applicants:

a=1,23), b=(@132), c=(213), d=231, e=312), f=@321.

If r = 0, only orderings (e) and (f) lead to the best candidate. So, the chance for hiring
the best oneis 2/6 = 1/3.

In the case r = 1, the company hires the best one in the cases (b), (¢), and (d). Hence, the
chance to get the best one equals 1/2.

Finally, if r = 2, only (a) and (c) are successful. Thus, also here the chance to get the best
applicant is 1/3.

Summing up, if n = 3, then the optimal strategy is to choose r = 1. That is, reject
the first applicant and then choose the next one who is better than the first. Of course,
it may happen that there is nobody better than the first, which occurs in the cases (e)
and (f). Then nobody is hired and the administrator failed to get the best applicant.

Let us transform the general problem into a mathematical setting. Name the can-
didates by numbers from 1,...,n and, without losing generality, let us assume that the
applicant n is the best, that applicant n - 1 is the second best, and so on. Suppose now
the candidates are interviewed in the order 7(1), 7(2),...,7m(n) for some permutation
7 € S,. In this context, the best applicant appears at position k if and only if 7(k) = n o,
equivalently, 7 (n) = k.

It is assumed that all orderings of the applicants are equally likely, so we have to
endow the set S,, of permutations with the uniform distribution P. That is, for all A ¢ S,
we have

1l

PO =150~ -

In particular, if

Ay ={m e S, : (k) = n},
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it follows that

(n-1)! _ 1

]P(Ak) = P H s k = 1,...,n. (547)

Recall that 7 € A, if and only if the best applicant is at position k in the queue of candi-
dates.

Let P(r) be the probability to hire the best candidate when choosing the strategy of
rejecting the first r candidates.

If r = 0, then the best candidate is hired if and only if 77(1) = n or, equivalently, if
and only if 7 € A;. Hence, we get in this case

P(0) = P(4,) = % .

Consider now an arbitrary 1 < r < n-1and suppose that 7 € A; foracertainl <k <n,
that is, the permutation satisfies 77(n) = k. When does the administrator choose the best
applicant? This happens if and only if k > r and, moreover,

a(r+1),...,7(k -1) < max{n(),...,7(r)} . (5.48)
Another way to formulate property (5.48) is as follows:
If 7m(a)=max{n(l),...,m(k-1)}, thennecessarilyl<ac<r. (5.49)

This may also be expressed as follows: whenever i € A for some k > 2, then the second
best candidate among the first k candidates has to be at position a for some a < r. Recall
that the best one occurs at position k. Compare the three possible situations discussed
in Figure 5.3.

Best of first k — 1 Best
s | Py
@ 1 * 1 1 | 1 1 1 ¢ !

(1) w(2) m(3) 7(4) (5) 7(r) w(7) m(8) 7(9) w(k) w(11)

Best of first k — 1 Best
® ————f—T——+——4—
(1) w(2) 7(3) w(4) 7(5) w(r) w(7) 7(8) w(9) m(k) w(11)

Best
© 1 + 1 1 % 1 1 1 1 !
(1) w(2) (k) 7(4) w(5) (r) w(7) m(8) 7(9) w(10) w(11)

Figure 5.3: In case (a), the company hires the best secretary while it fails to do so in the cases (b) and (c).

To proceed further, given 1 < a < k — 1, define disjoint subsets Sy of S,, by

Sp:={m €S, : m(a) = max{n(l),...,n(k - D}}.
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Verbally said, a permutation 77 belongs to S if and only if it attains its maximal value in
{1,...,k -1} at the given number a.
We claim now that if 2 < k < n, then

19(5,3|Ak)=ﬁ, a=1,...,k-1. (5.50)

Of course, IP(S,l{ |Ap) =+ = ]P(S,’;’1|Ak). Moreover, because k > 2, there always exists a
best candidate among positions 1 and k — 1, thus

k-1 k-1
1= ]P(U s,‘j|Ak> = > P(SglAx).

a=1 a=1

Clearly, these two properties prove eq. (5.50).
Summing up, in view of assertion (5.49), for a given order (1), ..., (n) the strategy
leads to the best candidate if and only if

3k>r, 3l<as<r, meSpnA, & Te U[Akm<USk>] (5.51)
k=r+1

Now we are prepared to evaluate P(r), the probability to choose the best applicant when
rejecting the first r candidates. Using (5.51), an application of the law of multiplication
together with egs. (5.47) and (5.50) implies (recall that the A;s and the Sis are disjoint

for fixed k)
P(r) = (
k r+1

n

S (S|
= Y Y P(SHAOPAL) = Z — 1:%2%.

k=r+la=1 k r+1

o G)]) 3 oo

a=1 k=r+la=1

Conclusion: The optimal choice of the number 1 < r < n is that for which
(5.52)

becomes maximal. For example, if n = 30, the maximal value is attained atr = 11and one
has P(11) = 0.378651. But note that also choices of r near to 11 lead to reasonably large
probabilities. For example, we have P(9) = 0.373139, P(10) = 0.377562, P(12) = 0.376711,
and P(13) = 0.371992. One should compare these values with the random choice of a
single candidate where the probability to get the best applicant equals 1/30 = 0.03. See
also Figure 5.4.

10 If1 < a,b < k - 1, define a bijection between S¢ and S» by 77 + 77 o i,,,, where i is the inversion of a
and b.
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02 —
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Figure 5.4: The values of P(r), 1 < r < 29, in the case of 30 applicants.

Remark 5.4.5. For large numbers n, it might be quite difficult to find the number r < n
for which the function in (5.52) becomes maximal. Here assertion (5.29) may be helpful.
Using

n-1 n-1 r-1
le ZIZE_EZE :I(lnn—lnr):Eln<ﬂ):—zln<£>,
ngZk ngk ngkon no\r no \n

it follows that for large n the optimal choice of r is % ~ Xo where x — —x1n x becomes
maximal at x,. Methods from Calculus imply x, = 1/e = 0.367879. Thus, a rough choice
of the optimal r is 37% of n. In the literature, this is quite often called the 37 %-rule.
If as above n = 30, then 30/e =~ 11.0364 while 37% of n = 30 gives 11.1. Thus, this also
leads to r = 11 as the optimal choice. Check Figure 5.5 to see that for large n one has
P(r) = —(r/n) In(r/n).

5.4.4 Two-envelope paradox

We finally present a famous paradox in Probability Theory called the “two-envelope
paradox” or the “envelope exchange paradox.” Imagine you may choose one of two in-
distinguishable envelopes, both containing a certain amount of money. You do not know
how much money is in the envelopes, but you have the information that one of the two
envelopes contains twice as much as the other. Having chosen an envelope at will, you
inspect it, and find x dollars. Hence, the other unopened envelope contains either 2x or
x/2 dollars, depending on whether the chosen envelope was that with the smaller or
larger sum.
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Figure 5.5: The values of P(r) for 30 applicants. The upper dots are the “correct” values while the lower
ones are the values of the approximation r — —(r/30) In(r/30).

After that you are given the chance to swap envelopes. Should you use this opportu-
nity? If you do not swap, then you keep the x dollars. Otherwise, you either double your
amount or halve it, both with probability 1/2. Thus, if E is the expected amount after
switching, it follows that

oo le(2) 10

2 2) 2 4

Consequently, on average, by switching you gain x/4 dollars. Imagine, for example, the
chosen envelope contains $100. Then by switching one either loses $50 or one wins $100,
both with probability 1/2. Of course, this contradicts the common sense. But what is
wrong?

First, there is a misinterpretation of the observed amount. The observed x is a ran-
dom value, not the expected value of the money you get. Say for some ¢ > 0, the en-
velopes contain ¢ and 2¢ dollars. Denote by X the money you get without switching,
then it follows that

1
IP{X:C}:]P{X:ZC}:E.
And after switching the new random variable X also satisfies
- 1 - 1
IP{X:C}:]P{X:ZC}:E and P{X=2}=P{X=c}= 3
Hence, it follows that EX = EX = 3¢/2, and on average there is no advantage by switch-
ing, exactly as one expects.

But there is still another missing information in the scenario. In which way are the
sums in the envelopes chosen? Are these, as assumed above, always (in each experiment)
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fixed amounts ¢ and 2¢? Or is there a positive random variable Y such that the envelopes
contain Y and 2Y dollars? In other words, before you take one of the two envelopes
at random, the included sums are chosen by another independent random experiment
described by a random variable Y. But, and this suggests the formulation of the problem,
thereby it is impossible to do it in a way such that all possible amounts of integers (or
positive real numbers) are equally likely.

Let us explain this (random) setting with an example. Assume the master of cer-
emonies rolls a die and, depending on the observed number k € {1,...,6}, he puts 2k
dollars into one envelope and 251 into the other. In the above setting, the random vari-
able Y satisfies

P{Y:Zk}:%, k=1,...,6, (5.53)

and if X denotes the obtained amount, then!

P{X:Z}:%-P{Y:l}:%, P{X=128}=%.IP{Y=6}=%
and
]P{X:Zk}:%-]P{X:Zlezk—l}+%JP{X:Zle:k}:%, k=2,...,6.
So we get
1 1 % 1
IEX:Z-E+E'I{Z=:22 +128- = =315. (5.54)

If X denotes the obtained amount after always switching, then
P{X =2} =P{x =25}, k=1,...,7,

hence nothing changes by always swapping.
But what happens if one swaps only in the case that the opened envelope contains
a “small” amount? Say, one swaps in the above example if there are less than $60 in the
envelope and otherwise one does not. Then the probability to get $32 diminishes to 1/12
while the probability of obtaining $64 increases to 3/12. Thus, after eventually swapping,
the average of the amount X equals
1

_ 1 1 1 1 3 1 -
EX=2—+4- ~+16-+32—-+64 —+128 — =34.16.
12+ 6+86+ 66+3 12+6 12+ 812 34.16

11 The possible pairs of included amounts are

2,4), 4,8), (816), (16,32), (32,64), and (64,128).
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So we see, this strategy improves the average of the money obtained. Moreover, the op-
timal case occurs if there are $32 and $64 in the envelopes12 and, furthermore, one had
chosen the envelope containing the smaller amount. Then by swapping one gets extra
$32. The probability that this happens equals 1/12.

But note that this strategy heavily depends on some foreknowledge about the size
of the amount in the envelopes. For example, if one decides to switch provided there are
less than $200 in the opened envelope,” then there is no improvement of EX.

Let us finally shortly discuss the case of general (discretely) distributed amounts in
the envelopes.* So suppose there are certain positive numbers Xy, x,, ... and nonnega-
tive p;s with Y32, py = 1. Choose a random variable Y for which

]P{szk}zpk’ k=1,2,...

Put with probability p; into one envelope x; and into the other 2x; dollars. After that,
choose equally likely one envelope at random.”® Then we get for the expected amount
X that

]P{X:xk}z% and ]P{X=2xk}=%.

This implies
EX = Zxk& + Z(Zxk)& = Zpkxk =-EY.
=2 A 225 2

For example, choosing Y as in eq. (5.53), it follows that

18, 3 3
IEY:—ZZ =21 = IEX:—-]EY:E-ZI:31.5.

k=1 2

This coincides with the result obtained in eq. (5.54).
If, as before, X denotes the obtained amount after switching, then

P = x,} = PIX = 2} = %’( and P = 2x) = PIX = x.} = % :

so nothing has changed and EX = EX = 3EY/2.

12 The result of rolling the die was “5.”

13 We encourage the reader to evaluate EX when swapping in the case that there are either less than 20
or less than 10 dollars in the chosen envelope. Find the optimal threshold for switching and nonswitching.
14 One may also choose continuous distributions of the included amounts, but this is more involved and
uses facts not included in the present book.

15 Note that the previous example fits into this setting. There we had x; = X aswellasp; = --- = Dg =
1/6 and p = 0ifk > 6.



5.4 Some paradoxes and examples =— 291

Thus, always swapping does not yield any advantage. But what happens if we use
the following strategy: Choose a threshold N > 0.If the amount x in the chosen envelope
satisfies x < N, then switch. Otherwise, if x > N, do not do so. For simplicity, we answer
this question only for special distributions of the amounts.

So suppose that for a certain k = 0,1,2,... one envelope contains 2% dollars and
the other 2°*1, and that the probability to choose this pair equals p, where p, > 0 and
Y %o Dic = 1. That is, the contents of one envelope is Y, that of the other 2Y where

P{Yy =2} =p,, k=0,12...

This leads to

IEX—§]EY—§020: 2
T T L bk

which implies that EX < co if and only if Y32, px 2% < co.

If EX = oo, it does not make sense to ask whether EX increases or decreases by
swapping or nonswapping. So let us assume that the expected gained amount is finite.
Choose a threshold N > 1. Swap if the amount in the chosen envelope is less than N. Do
not swap otherwise. Does this improve the expected value of gained money?

To answer this question take the integer £ > 0 for which 2° < N < 2¢*1, Let X be
the obtained amount after switching those envelopes where one observes an amount
smaller than N. Then the only change of the distribution of X occurs in the case where
2¢ and 2¢*! dollars are in the two envelopes. No matter if one were to choose the envelop
with the smaller or with the larger amount, in this case one would always get that with
261 dollars. Hence, it follows that

EX-Ex = L7 2% = p 2

This is the good news. But what is the bad? Since we assumed that the expected value of
X exists, it follows that

elim De 26 =0.

That is, the larger the threshold N, the less the expected advantage by choosing this
strategy.

Another way to formulate the result is as follows: choosing the threshold N such
that 2° < N < 2°", by switching one may gain 2! — 2¢ = 2¢ dollars, maybe a huge
amount. But the likelihood that this happens is p,/2, a very small number. Recall that is
so if and only if, firstly, there are 2¢ and 2°*! dollars in the envelopes and, secondly, one
had chosen the envelope containing the smaller amount.
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To illustrate the obtained results, choose p; = 2/3’”1, k=0,1,... Thatis,

P{y =2} = % k=0,12,...

In this case,

00 9 k+1 3
]EY:Z(—) =2 = EX=>.EY=3.
Z\3 2

If the chosen threshold N satisfies 2¢ < N < 2¢*1, then by switching envelopes with small
amounts, the expected value increases to
2@

]EX=3+W.

Note that the maximal expected advantage of 1/3 occurs if £ = 0.

Remark 5.4.6. There exists an interesting tightly related version of the two envelopes
paradox, sometimes called the two-number problem. A person writes two different
numbers on two slips of paper, one on each, so that you cannot see what is written. Next
you choose at random one of these two slips, turn it around and read the number stated
there. After that you may decide whether you keep the chosen slip or you better switch
and choose the other. At the end, after switching or nonswitching, you lose the game
if you have chosen the slip with the smaller number. Otherwise you win. It looks like
that your chance of winning is 50 %. But there exists a strategy to increase your chance
slightly. Take an arbitrary probability distribution Q on R satisfying Q([a, b]) > 0 for
all a < b. Simulate a random real number z distributed according to Q. If your number
x at the chosen slip satisfies x < z, then switch. Otherwise, if z < x, keep the chosen
slip.

Let us heuristically explain why this strategy improves your chance of winning. Sup-
pose the two numbers on the slips are a € R and b € Rwith a < b. If the simulated num-
ber z satisfies z < a, then, no matter which of the two slips you chose, you do not switch.
Hence, in this case your chance of winning remains 50 % as it was at the beginning. Sim-
ilarly, if z > b, then you always switch, and your chance of winning remains 50 % as it
was before switching. But what happens in the case a < z < b? If you have chosen the
slip with a on it, you switch and win. Otherwise, if your choice was already the larger
number b, you do not switch and you win as well. Due to the assumption about the un-
derlying probability distribution Q, no matter how bhig/small a < b are, with probability
Q([a,b]) > 0 the simulated number z will satisfy a < z < b, a case where the strategy
always leads to a win. Putting together all three cases, the chance of winning becomes
slightly greater than 50 %. We refer to [SamO04] for a precise presentation. Note that we
did not say anything about the rules for the choice of the numbers a < b. Recall that
there is no probability distribution PP on R such that P({a}) = P({b}) for all a < b.
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Summary: In the previous section, we presented three famous examples in Probability Theory: The “Boy or
Girl Paradox,” the “Secretary Problem,” and the “Envelope Exchange Paradox.” We gave full solutions and
discussed some generalizations of these classical problems.

5.5 Gambler’s ruin

Two players, say player A and his opponent B, play a series of independent games. Player
A wins each single game with probability p, hence the success probability for B equals
1 - p. Here and later on, we always assume 0 < p < 1because otherwise either A or B
always win. Each time the winner gets $1 from the loser. At the beginning, A hasa > 1
dollars in his wallet, B possesses b > 1 dollars. The gamblers decide to play as long as
one of them lost all of his money.

The basic question is how likely is it that A and/or B go bankrupt. To answer this
question, we use the technique of random walks as presented in Example 4.1.7. There
we investigated walks starting at zero. But, of course, this easily extends to walks starting
at an arbitrary integer k € Z.

Definition 5.5.1. Given an independent sequence (X;);>1 with
P, =1 =p and PX =-1}=1-p, i=12,...
LetSy =kandS, =k +X; +---+ X, ifn > 1. Then (S,) 50 is a (simple) random walk starting at k € Z.
In this setting, player A wins if a random walk (S, )5 starting at a > 1satisfies S, = a+b

for some n > 0 and, moreover, S] > 0if 0 < j < n. Note that §,, is the amount of money
which owns player A after n games. Compare Figure 5.6.

A wins
°

a+b

0 T T T T T \= T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12
A falls bankrupt

Figure 5.6: Players A and B start their series of games with @ > 1and b > 1 dollars, respectively.

Let 0 < k < a + b be an arbitrary integer. Set

Ay = {(Sppzo startsat k, and 3n >0, S, =a+band S; >0, j<n}.
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In other words, the event A, occurs if player A starts with k dollars, at some time he
reaches level a + b and before that he does not go bankrupt.
The basic properties of P(4;) are as follows:

P(4;) =0 and P(Ag,) =1,
andifl <k < a+b, then

P(Ay) = P(Ag|X; = DP{X; = 1} + P(A|X; = -DP{X; = -1}
=pPAxq) + A-p)P(Ax_q).

To see the last property, imagine A and B play one (their first) game and after that they
start a new series of games where now, depending on the result in the first game, player
A either owns k + 1 or k — 1 dollars.

Letting x; = P(4;), and setting g =1 - p, for any 0 < k < a + b we get

Xps1 = 1xk - gxk_l, Xo=0, and xgp=1. (5.55)
p p

So we obtained for the x;s a linear recurrence formula of second order with two bound-

ary conditions at k = 0 and k = a + b. The technique to solve such recurrence formulas

is well known; see, for example, page 41 in [CL23]. A basic role play the zeroes or roots

of the characteristic equation, which in the case of eq. (5.55) is given by

zz—lz+g=0.

p b

If p + q, thatis, if p # 1/2, then this equation has two different roots which are z; = 1
and z, = q/p (recall that g = 1 - p). Thus, there are constants ¢ and d such that

k k
xk:c-1k+d<g> :c+d<g> , k=0,...,a+b.
p p

The boundary conditions tell us thatc+d =0 and ¢ + d(q/p)“*b =1, hence

¢= (ﬂ)a_j)_l and d= (Q)aib_l’
p 14
leading to
(-1
]P(Ak):Xk:(lﬂ:;a#——b_l’ k:O,...,a+b.

If p = q = 1/2, the characteristic equation becomes

22-27+1=0
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with root z, = 1 of multiplicity 2. In this case, see, for example, page 43 in [CL23], one
gets

xe=cl¥+dk1¥=c+dk

with certain constants ¢ and d. The boundary conditions imply ¢ + d - 0 = 0 as well as
c+d(a+b)=1hencec=0andd =1/(a+b). So we finally conclude that
k

]P(Ak):Xk:m, k=0,...,a+b.

Choosing in both cases k = a, we obtain the following result.

Proposition 5.5.2. Suppose A and B play a series of games where every time A wins one
dollar with probability p, hence B wins one dollar with probability q = 1 — p. If the initial
amounts of money are a > 1 and b > 1, respectively, then

(41 .
P{B goes bankrupt} = P{A wins} = { &

What happens if both players start the series of games with identical amount a > 0?
The following corollary gives the answer.

Corollary 5.5.3. Suppose both players A and B start their games with the same amount
a > 0. As before, p and q = 1 - p are the success probabilities of players A and B, respec-
tively. Then it follows that

P{B goes bankrupt} = P{A wins} = .
(Bg Pt = PlA wins} = -7
P
Proof. The result is obviously true if p = 1/2, that is, if p = q. So let us assume that p # q.
Hence it follows that x := (q/p)* # 1. We apply now Proposition 5.5.2 with b = a and
obtain
M'-1 1 1 1

P{A wins} = £ = = = ,
{ } (-1 -1 T+x 1+(])

as asserted. O

Remark 5.5.4. The previous corollary shows the not very surprising fact that the
chances of player A are less than 1/2 whenever q > p, thatis, if 0 < p < 1/2. More-
over, in this case one observes the following: the bigger the initial amount a > 0, the less
the probability for A to win.
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Example 5.5.5. Suppose player A wins a single game with probability p = 0.49 and both
players A and B start their games with the same amount of a dollars. Then Corollary 5.5.3
applies and we get

1

1+(35)

P{A wins} =

For example, if a = 50, this probability equals 0.119175 while for a = 100 one gets
0.0179768. See Figure 5.7 for other probabilities with respect to the sums a =1,...,100.

0.5

03

0.1} P,

Figure 5.7: The probability that A wins when both players start with a dollars, a = 1,...,100. Here player A
wins a single game with probability p = 0.49.

Example 5.5.6. Let us play roulette where in every game we either win or lose $1 (for ex-
ample, put every time $1 either on red or on black). The chance of winning is p = 18/37,
hence g = 19/37. Say one stops gambling if either one had lost $10 or if one had won
$100. So, in the previous notation a = 10 and b = 100. Hence we get

()" -1

8 -
(Q)lT_l = 0.00187859. (5.56)
18

P{Win $100, starting with $10} =
Does it considerably improve the chance of winning $100 if one accepts in between a
bigger loss? Not really. For example, if one goes bankrupt after loosing $100, then the
chance of winning $100 equals 0.00446628. Note that this probability equals 1/2 in the
case of a fair game. Thus, even the small disadvantage of 1/18 changes the chance of
winning dramatically. See Figure 5.8 for the probabilities to win $100 starting with $10
up to $30, respectively.
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0.0035

0.0030
0.0025|

0.0020 [

0.0015

0.0010

0.0005 |-

0.0000 F

Figure 5.8: The probability to win $100 starting with a = 10, ..., 30 dollars when playing roulette. Each time
one wins or loses $1.

Another interesting numerical example isa = b = 10 and p = 18/37. That is, the
game is terminated when either one has lost or won $10. Here Corollary 5.5.3 leads to
0.368031 as probability for winning $10. In other words, playing roulette 100 times with
initial amount $10, on average in about 37 of the cases you will win $10, but in 63 of the
cases you are going to lose your initial sum.

Let us now come back to the general case of players A and B with success probabil-
ities p and q = 1 - p, owning at the beginning a and b dollars, respectively.

How likely is it that B wins? To answer this question, we use Proposition 5.5.2 but
turn the tables. Interchange A and B, p and ¢, as well as a and b. Doing so, we obtain the
following:

Proposition 5.5.7. Suppose A and B play a series of games where every time A wins with
probability p, hence B with probability q = 1 — p. If the initial amounts of money are a
and b, respectively, then
&r-1 . 1
Targ UP# 3
P{A goes bankrupt} = P{B wins} = { (@1 2
a+b 2°

An interesting question remained unanswered until now: is it possible that the se-
ries of games between A and B lasts forever? In other words, may it happen that neither
A nor B wins?

The following result shows that the answer is negative.

Proposition 5.5.8. Under the previous assumptions, it follows that

P{A wins} + IP{B wins} = 1.
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In particular, this implies
P{The game lasts forever} = 0.

Proof. If p = 1/2, by Propositions 5.5.2 and 5.5.7, one gets

P{A wins} + IP{B wins} = e + L =1,
a+b a+b
completing the proof in this case.
Thus, let us assume now p # q. To simplify the calculations, set x = q¢/p and
y =1/x = p/q. Note that both numbers are by assumption different from 1. With these

notations, Propositions 5.5.2 and 5.5.7 may be written as

a_1 _yb_ya+b yb_1

P{A wins} = X and IP{B wins} =

xatb _1 1 _ya+b ya+b -1
Consequently, the assertion follows from
b
y _ya+b+yb_1 _ya+b_yb+yb_1_ya+b_1_1 .
1_ya+b ya+b_1 - ya+b_1 _ya+b_1 -

In view of Proposition 5.5.8, the following natural question arises: Let T, j, be the
number of rounds that A and B play. That is, given a random walk (S,),¢ starting at
zero, for some a, b € N set

Typ=min{n>0:S, =-aorsS, =b}. (5.57)

What is the expected value of T, ,? In other words, how long does the series of games
last on average. The answer is as follows (for a proof, we refer to [Sti03] or [Fel68]; the
basic idea is similar to that used in the proof of Proposition 5.5.2, namely conditioning
on the first step which leads to a linear recurrence formula for E T, ;).

Proposition 5.5.9. Let a, b, p, and q = 1 - p be as before. If T, ;, denotes the number of
rounds before one of the players goes bankrupt, then

a a+b (%)a_l . 1

— g ey YDF 3

ET,), = {‘H’ e i (5.58)
a-b ifp=3.

Remark 5.5.10. In the case b = q, the first formula in eq. (5.58) simplifies to

(-1
a p 1
ET, = —— ) —.
aa q—p[(g)“ﬂ] P#3

The proof goes along the same lines as that of Corollary 5.5.3. Furthermore, as can be
easily seen, the expected value of T, , does not change if one interchanges p and g, or,
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equivalently, players A and B. This is, of course, because the length of the game does
not depend on who players A and B are, provided both start with the same amount of
money.

Note that in the case p # 1/2, it follows that

lim 1 ET,,= 1 .

a—oo g |p - q|
So in the long run, the expected time of the game is of order a/|p — q|. Compare this with
the case p = 1/2 where the expected time behaves like a?.

Example 5.5.11. Ifthe game is fair and both players start either with $50 or $100, then on
average the gamblers have to play either 2500 or 10, 000 rounds before there is a winner.
The situation changes drastically if the success probability of one player is diminished
to 0.49. That is, the game is “almost” fair. In this case the average number of necessary
rounds equals either 1904.13 or 4820.23, respectively.

Let us finally treat a related problem, sometimes called “the monkey at the cliff.”
A monkey is standing one step from the edge of a cliff and takes repeated independent
steps; forward, with probability p, or backward, with probability g = 1 — p. What is the
probability that the monkey, sooner or later, will fall off the cliff?

The mathematical formulation is as follows: let (S,,),~o be a random walk starting
at zero jumping with probability p to the right and with probability g = 1 - p to the left.
How likely is it that there exists an n > 1 such that S, = 1. More generally, one may ask
for the existence of an n > 1 with S;; = b for a given integer b > 1. The answer is as
follows:

Proposition 5.5.12. Let (S,),>1 be as before. Then for any integer b > 1t follows that

1 ifp =3,
P{S, = b for somen >1} = .

p=
&P ifp<

DI D=

Proof. Fix b > 1. Given a > 1, define events B, as follows: B, occurs if thereisann > 1
for which S,, = b and, at the same time, S; > —aif1 < j < n.ThenA4; € A, € --- and,
moreover,

(s}
{S,=b forsomen >1} = UBa.
a=1

To see this, suppose S, = b and choose a > 1such that min,_;, §; > —a.
Hence, by the continuity of probability measures from below (see property (6) in
Proposition 1.2.1), we obtain

P{S, =b forsomen>1} = ali_)n()lo P(B,) -
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Now Proposition 5.5.2 applies and leads to
(-1, 1
s p#3,
P{S, = b for some n >1} = lim { & 2

a—oo a . 1
D lfp— -
Of course,
(5t -1
lim —* -1 and lim 2~ -1 if T<1.
a»oo q+ b a—oo (g)a+b_1 p

Recall that x* el 0 provided that 0 < x < 1.
It remains to investigate the case q > p or, equivalently, p < 1/2. As before set
X =q/p>1landy =1/x < 1. Doing so, we get

b
Xa—l . yb_ya+b_ b p
im =lim=——=——=y =(>],
a—oo Xa+b _ 1 a—oo 1 _ya+b q
which completes the proof in the remaining case. O

Remark 5.5.13. Proposition 5.5.12 asserts that in the case p > 1/2, the monkey will fall
off the cliff with probability one, even if it is not only 1 but b > 1 steps away from the
cliff. On the other hand, if p < 1/2 and the monkey is b steps away from the cliff, then
with probability 1 - (p/q)b the monkey will be safe. Since in this case p/q < 1, hence
(p/q)b — 0 as b — oo, the situation of the monkey improves considerably as soon as it
is further away from the cliff.

Still another way to formulate Proposition 5.5.12 is as follows. Say player A has an
unlimited amount of money while his opponent starts with b dollars. Then A will win
with probability one provided his success probability p satisfies p > 1/2. On the other
hand, in the case of p < 1/2 his chance of winning equals (p/q)b <1l

Example 5.5.14. Let us investigate how likely it is to win b > 1 dollars in a roulette
provided one has an unlimited amount of money. As before, every time the chance to
win one dollar is p = 18/37 while one loses one dollar with probability g = 19/37. Hence,
in this case we obtain

18"

P{Win $b} = <E> .

For example, the chance to win $100 possessing an infinite amount of money equals

18 100
P{Win $100} = <E> =~ 0.00448632.

Compare this result with eq. (5.56) where we got 0.00187859 for the probability to win
$100 when starting with an initial amount of $10 or with the probability 0.00446628
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when starting with $100. So one sees, in order to win $100, it does not make a big dif-
ference whether one starts to play with $100 or with an unlimited amount of money.
The result will be the same in both cases: very likely one is going to lose a lot of money.
Compare Figure 5.9 for the probabilities to win b = 1,...,30 dollars playing roulette
possessing an unlimited amount of money.

0.8F M
04

I

0.0 I

Figure 5.9: The probability to win b = 1,...,30 dollars playing roulette possessing an unlimited amount of
money.

Suppose now one does not bet $1 each time, but $10. How likely is it now to win $100?
The answer is at follows: the likelihood to win $100 by $10 steps coincides with that to win
$10 by steps of size $1. Hence, the probability of this event equals (18/19)"° ~ 0.582357.

Remark 5.5.15. It might be of interest to compare this with the probability 0.368031 in
the case of an initial deposit of $10. This tells us that it is not unlikely to lose at some time
more than $10 before one finally wins $10. For example, the chance to win $10 becomes
for the first time greater than 1/2 if one starts gambling with an amount of $24. Then the
probability to win at some time $10 without going bankrupt equals 0.503344.

But note that this does not mean that one has an advantage. In the case of success,
one wins $10 while one loses $24 in the case of failure. Thus, on average there will be a
loss, no matter how big the initial amount was.

Remark 5.5.16. The symmetric (fair) case p = 1/2 is of special interest. By symmetry,
given b > 1, with probability one there also exists an n > 1 such that S,, = —b. Thus, with
probability one, a symmetric random walk attains any value in Z. See Example 7.2.15
for further asymptotic properties of symmetric walks.

In view of Proposition 5.5.12 and the previous remark, the following question arises:
let (S,,),>1 be a random walk starting at zero. Given b € N, how long does it take on
average before the walk reaches level b? To make it more precise, given b > 1, let
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r {min{n >0:8,=b} ifthereisann >0 withS, = b,
=

0 otherwise.
Then Proposition 5.5.12 may be rephrased as follows:

1 ifp>1
P{T}, < co} = { , 2
(’a’)b ifp < %
Proposition 5.5.17. Let (S,),>1 be a random walk starting at zero. Given b € NN,
b 1
ET, = p-q ip> 2
oo Ifp< %
Proof. If p <1/2,then P{T} = co} =1- (p/q)b > 0, hence E T}, = co as asserted.

The case 1/2 < p is more involved and may be found in [Sti03, Section 5.6]. Basic
ingredient is the so-called hitting time theorem asserting

(]
P{Tb:n}:%]P{Sn:b} and ET,=b ) P(S,=b}, b>1. (5.59)

n=1

A heuristic proof of Proposition 5.5.17 (without using the hitting time theorem) can
be given by using eq. (5.58). Assume we know that

]E Tb = all)rgo IE Ta,b
(which is true and can be made precise). Then, if p > 1/2, hence g/p < 1, it follows that

q\a
. a a+b (,‘;) -1 b
SR PRIt ey

The case p = 1/2 is even easier to handle and follows by evaluating the infinite sum in
the right-hand formula of (5.59) or from

ETb:(}LrgOETa,b:alirgoa-b:m. O

Remark 5.5.18. Most interesting in Proposition 5.5.17 is the case p = 1/2. Assume players
A and B play a series of fair games. Player A has an unlimited amount of money while B
starts with $1. Then A wins with probability 1, but on average it takes an arbitrarily long
time until B goes bankrupt.

Similarly, in the symmetric case, for sure the monkey will fall off the cliff, but on
average it takes a lot of time hefore this happens.
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Final remark: There exist many other interesting results about random walks not
included in the present book. For example, what can be said about the behavior of
max{Sy : 0 < k < n}? How are the zeroes of a symmetric walk (S, distributed? How
about recurrence or transience? How many changes of signs exist until a given time n?
Or what happens if, as in our case, the barriers are not absorbing but reflecting? Neither
did we treat random walks in the more general setting of jumping particles in 7% We
refer to [Fel68], to [Rev13], or to [Sti03] for further reading about this highly interesting
topic.

But let us shortly discuss one property of the symmetric walk, which, in our opinion,
is very surprising. Let (S,,) -0 be a symmetric random walk starting at zero. If

Ly =|tk<n:S >0}, (5.60)

then L} is the number of the times until n where the symmetric walk is located in the
positive half-space or, equivalently, where player A is ahead of player B provided both
players start with an unlimited amount of money. Probably everybody will guess that
for large n, player A will be about half of the time ahead B, and during the other half, B
will be ahead A. Recall that the walk is symmetric, hence jumps to the right are as likely
as those to the left.

The following result shows that this is not so. It is much more likely that most of
the time one of the players is ahead of the other. To verify this, one investigates the
proportion L; /n of times where the walk is above zero. Here the following holds (see
[Sti03, Section 6.8]):

Proposition 5.5.19 (Arcsine law for random walks). Let L, be defined by (5.60). Then for
any 0 < t < 1it holds that

t
LT 2 1 1
lim ]P{—"st}:—arcsin\/? :—J—dx
n—co” | n n (VD) T Vx(T-x)

Thus, the random variables (L; /n),; converge in distribution, that is, in the sense
of Definition 7.2.1, to an arcsine distribution. Recall that the arcsine distribution was
introduced in Definition 1.6.35.

Corollary 5.5.20. If0 < a < b <1, then for sufficiently large n we have

]P{a < Ly < b]» = %[arcsin(\/l—)) - arcsin(va)].

n

The numerical values in the casesa = 0.1, a = 0.2, and a = 0.5 are

P{0.05 < L;/n < 0.15} P{0.15 < L;/n < 0.25} 1P{0.45 < L, /n < 0.55}

=~ 0.1096 =~ 0.0802 = 0.06377
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These values, as well as Figure 5.10, tell us that it is much more likely that L,*l /nis
near zero or one than near 0.5. Recall that L /n is the proportion of those times k < n
where Sy > 0. Hence, the event that L, /n near 0.5 occurs if the walk is about half of the
time positive and the other half it is negative.

0.2 0.4 0.6 0.8

Figure 5.10: The approximate probabilities P{a — 0.05 < L' /n < a + 0.05} with a € [0.05, 0.95].

Summary: Two persons A and B play a series of games as long as one of them goes bankrupt. Hereby, in
every single game the loser has to pay $1 to the winner. The describing mathematical model is a random
walk starting at zero and with absorbing barriers at —a and b. Here a and b are the initial amounts of A and
B, respectively. Equivalently, one may regard a random walk starting at a and with barriers at 0 and a + b. Let
p be the success probability of player A, thus g = 1 — p is that of player B. Then the basic result asserts

(D=

e ifp# 1,
P{B goes bankrupt} = P{4 wins} = 4 ()"~ 2
o ifp=1
a+b P 2°

5.6 Problems

Problem 5.1.

1. Putsuccessively and independently of each other n particles into N boxes. Thereby,
each box is equally likely. How many boxes remain empty on average?
Hint: Definerandom variables X, ..., Xy as follows: set X; = 1ifbox i remains empty,
and X; = 0 otherwise.

2. Fifty persons write randomly (according to the uniform distribution), and indepen-
dently of each other, one of the 26 letters in the alphabet on a sheet of paper. On
average, how many different letters appear?
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3. Inafactory with N > 1 employees, every day of the year on which one of the em-
ployees has a birthday is a holiday. Let Ey; be the expected number of working days,
that is, the expected number of days which are not a holiday. For which N > 1 does
N-Ej (the expected total working time) become maximal? Hereby one assumes that
all 365 days of the year are equally likely to be birthdays.

Problem 5.2 (A. E. Lawrance, 1969). An urn contains eight white balls and two black.
Choose one after another a ball without replacing the chosen one. Let 1 < r < 9 be the
number of that choice where for the first time a black ball occurs. Which number r is
most likely for the appearance of the first black ball? Evaluate the average value over
all possible numbers r < 9.

Answer the same questions in the case that n > 2 balls are in the urn where 2 are
black and n - 2 are white.

Problem 5.3 (De Moivre, 1756). A man rolls a fair die six times. He gets an amount of M
francs, every time he

1. rollsa“l”or

2. ifhe rolls at least one “1.”

Evaluate in both cases the expected amount of money he gets.

Problem 5.4. Let (Q, A, P) be a probability space. Given (not necessarily disjoint) events
Ay,...,A, in A and real numbers aj, .. ., a,, define X : @ — R by'®

n
X = ZGjllAj .
j=1

1. Whyis X a random variable?
2. Prove

EX = Z a]]P(A]) and VX = z aia]‘ []P(Al ﬂA]) - IP(AI)]P(A])]
j=1 ij=1

How does VX simplify for independent events A, ...,A,?

Problem 5.5. Suppose a fair “die” has k faces labeled by the numbers from 1 to k.

1. How often one has to roll the die on the average before the first “1” shows up?

2. Suppose one rolls the die exactly k times. Let p, be the probability that “1” ap-
pears exactly once and g is the probability that “1” shows up at least once. Com-
pute p, and g, and determine their behavior as k — co, that is, find lim;_,, p; and

limy oo G-

16 For the definition of indicator functions 1,,, see eq. (3.21).
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Problem 5.6.
1. Let X be arandom variable with values in N, = {0,1,2, ...}. Prove that

EX =) P{X>k}.
k=1
2. Suppose now that X is continuous with P{X > 0} = 1. Verify
(e8] (e8]
YPX2kl<EX<1+) P{X>k}.
k=1 k=1

Problem 5.7. Let X be an INy-valued random variable with
PiX=ki=qF k=12...

for some g > 2.

(@ Why do we have to suppose q > 2, although Y 2, q‘k <ooforq>1?
(b) Determine P{X = 0}?

(c) Compute EX by the formula in Problem 5.6.

(d) Compute EX directly by EX = Y2 k P{X = k}.

Problem 5.8. Two independent random variables X and Y with finite third moment
satisfy EX = EY = 0. Prove that then

EX +Y)® = EX® + EY>.

Problem 5.9. A random variable X is Pois,-distributed for some A > 0. Evaluate

]E(L> and ]E(L>
1+X 1+X
Problem 5.10. In a lottery, 6 of 49 numbers are randomly chosen. Let X be the largest
number of the 6. Show that
6-43! &

EX = —or I; k(k - 1)(k - 2)(k - 3)(k — 4)(k - 5) = 42.8571.

Evaluate EX if X is the smallest number of the 6 chosen.
Hint: Either one modifies the calculations for the maximal value suitably or one
reduces the second problem to the first by an easy algebraic operation.

Problem 5.11. A fair coin is labeled by “0” on one side and with “1” on the other. Toss it
four times. Let X be the sum of the first two tosses and Y be the sum of all four. Determine
the joint distribution of X and Y. Evaluate Cov(X, Y), as well as p(X, Y).



5.6 Problems == 307

Problem 5.12. In an urn there are five balls, two labeled by “0” and three by “1.” Choose

two balls without replacement. Let X be the number on the first ball and Y that on the

second.

1. Determine the distribution of the random vector (X, Y) and its marginal distribu-
tions.

2. Compute p(X,7Y).

3. Which distribution does X + Y possess?

Problem 5.13. Among 40 students there are 30 men and 10 women. Also, 25 of the 30

men and 8 of the 10 women passed an exam successfully. Choose randomly, according

to the uniform distribution, one of the 40 students. Let X = 0 if the chosen person is a

man, and X = 1if it is a woman. Furthermore, set Y = 0 if the person failed the exam,

and Y = 1if she or he passed.

1. Find the joint distribution of X and Y.

2. Are X and Y independent? If not, evaluate Cov(X,Y).

3. Are X and Y negatively or positively correlated? What does it express, when X and
Y are positively or negatively correlated?

Problem 5.14. Let (Q, 4, P) be a probability space. Prove, for any two events A and B
in A, the estimate

[P(AnB) - P(A)P(B)| < % .

Is it possible to improve the upper bound %?

Problem 5.15 (Problem of Luca Pacioli in 1494; the first correct solution was found by Blaise
Pascal in 1654). Two players, say A and B, are playing a fair game consisting of several
rounds. The first player who wins six rounds wins the game and the stakes of 20 taler’
that have been bet throughout the game. However, one day the game is interrupted and
must be stopped. If player A has won five rounds and player B has won three rounds,
how should the stakes be divided fairly among the players?

Problem 5.16 (B. Pascal, 1654). Three players, say 4, B, and C, play a series of fair games.
Whoever first wins three games is the winner. One day the series of games had to be
stopped before one of the three players had won three games. Player A still needs one
win, B and C still need two wins each. How to distribute the stakes in this case in a fair
way?

Problem 5.17. In Example 5.1.49, we computed the average number of necessary pur-
chases to get all n pictures. Let m be an integer with 1 < m < n. How many purchases
are necessary on average to possess m of the n pictures?

17 Former German currency, root of the word “dollar.”
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For n even, choose m = n/2, and for n odd take m = (n — 1)/2. Let M,, be the av-
erage number of purchases to get m pictures, that is, to get half of the pictures. Deter-
mine

. M
lim —2.
n—oo n

Hint: Use eq. (5.29).
Problem 5.18. Compute E|X|***! for a standard normal distributed X and n = 0,1,...
Problem 5.19. Suppose X has the density

) = 0 ifx<1,
P Ce Xt ifx>1,

for some a < -1.
1. Determine ¢, such that p is a density.
2. For which n > 1 does X possess an nth moment?

Problem 5.20. Let U be uniform distributed on an interval [a, B]. Show that for n > 1,

B +af e+ d B "

EU"
n+1

Problem 5.21. Let X;,..., X, be random variables with finite second moment and with
EX; = 0. Show that

n n
E[X; + +X,)" = ) Cov(X, X)) = Y VX;+2 Y Cov(X,.X)).
ij=1 j=1 I<i<j<n

Problem 5.22. Show that

Ex = ™M
N

for a hypergeometrically distributed random variable X with

(1) (=)

S

Problem 5.23. Let X be N(0,1)-distributed. Determine VX 3 and Vx4

P{X=m}= m=0,...,n.

Problem 5.24. Given a nonnegative random variable X, define ¢y from [0,1] to [0,1] by

@x(t) = EtX. Then gy is called the generating function of X (see [GS20, Section 5.1]).

(1) Suppose X has values in IN;. Show that, if ¢ > 0, then this “new” definition of the
generating function coincides with that given in Problem 4.2.
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(2) LetXj,...,X, beindependent and nonnegative. For a; > 0,1 <j <n, let
X=X+ -+ a,X,.
Prove
ox() = @x, (t%) - o, ().

(3) Find ¢y for an exponentially distributed X.

Problem 5.25. Complete the arguments stated in Remark 5.4.4. That is, argue why the

following questions are equivalent:

1. Toss a fair coin n times and choose after that at random a number 1 < j < n. Suppose
the jth toss was a “1.” What is the probability that under this condition the observed
sequence has k “1”s for some 1 < k < n?

2. One tosses a fair coin n — 1 times. How likely is the appearance of k — 1 “1”s?



6 Normally distributed random vectors

6.1 Representation and density

In Example 3.4.3 we considered a two-dimensional random vector (X;, X,), where X; was
the height of a randomly chosen person and X, was his weight. From experience and in
view of the central limit theorem (cf. Section 7.2), it is quite reasonable to assume that X;
and X, are normally distributed. Suppose we are able to determine their expected values
and their variances. However, this is not sufficient to describe the experiment. Why? The
random variables X; and X, are surely dependent, and the most interesting problem is to
describe their degree of dependence. This cannot be done based only on the knowledge
of their distributions. What we really need to know is their joint distribution. Therefore,
we not only have to suppose X; and X, to be normal, but the generated vector (X;,X,)
has to be as well.

But what does it mean that a random vector is normally distributed? This section is
devoted to answer this and related questions.

Let us first recall the univariate case, investigated in Example 4.2.2 and in the subse-
quent Proposition 4.2.3. The main observation was that a random variable Y is normally
distributed if and only if it may be written as

Y=aX+u 6.1)

for some a + 0, ¢ € R, and a standard normal random variable X.

Let now ¥ = (¥;,...,Y,) be an n-dimensional random vector. We want to represent
it in the same way as Y in eq. (6.1). Consequently, we have to replace X by a multivariate
standard normal vector and the function x — ax + g by a suitable mapping from R"
to R"™. But which kind of mapping should this be and what is an n-dimensional standard
normal vector?

Let us begin by answering the second question. Therefore, recall the definition of
the multivariate standard normal distribution A/(0,1)®*" introduced in Definition 1.9.21.
This probability measure on (R", B(R")) acts as follows: if B € B(R"), then its probability
equals

o, 1 )
NODTB) = o l!e dx

2 2
-t J J e O gy L dy.

B

Thus, a random vector X should be standard normally distributed whenever its proba-
bility distribution is A’(0,1)®". Let us formulate this as a definition.

https://doi.org/10.1515/9783111325064-006
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Definition 6.1.1. A random vector X = (X;,...,X,) is standard normally distributed (or is standard
normal) if its probability distribution satisfies Py = N(0,1)%".

To make this definition more descriptive, let us state some equivalent properties.

Proposition 6.1.2. For a random vector X = (X,,...,X,), the following are equivalent:
1. X is standard normal
2. IfB e B(R"), then

P{X € B} = Je*""z/z dx .

2 n/2
@mm= ]

3. The coordinate mappings X, ..., X, are (univariate) standard normally distributed
and independent. That is, for all t; e R, 1<j <n,

]P{Xl < tl""’Xn < tn} = ]P{Xl < tl}IP{Xn < tn}
t t,

|
1 —XZ/Z 1 J —xz/2
= —= | e Pax, |- [ — | e™%ax, ).
-00 -00

Proof. Taking into account the definition of A’(0,1)®", this is an immediate consequence
of Propositions 3.6.5 and 3.6.20. Compare also the considerations in Example 3.6.24. O

Remark 6.1.3. The density of the n-dimensional standard normal distribution possesses
nice properties: it attains its maximal value (2r) ™/ at zero, it is invariant under rota-
tions of the arguments and its level sets are circles. See Figure 6.1 for the graph of this
density in the case n = 2.

Figure 6.1: The density of a 2-dimensional standard normal vector.

An adequate substitute for x — ax + u in representation (6.1) is still undetermined.
Which mappings in R" should be considered?
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Observe that x +— ax + u is affine linear from R to R. The counterpart in R" is of the
form x — Ax + u, where A is a linear mapping in R" and ¢ € R". Linear mappings in R"

are described by n x n matrices A = (a;);;_, and act as follows:

n n

n

Ax = (Zaljxj, ...,Zanjxj>, X=(Xp,...,Xy) € R".
J=1 J=1

Consequently, the suitable generalization of x — ax + u is the mapping x — Ax + y with
annxnmatrix A and u € R". The condition a # 0 transfers to det(A) # 0 or, equivalently,
A has to be regular, that is, the generated mapping is one-to-one from R" onto R". Here
and in the sequel we will use results and notations as presented in Section A.4.

Now we are in position to define normally (distributed) random vectors.

Definition 6.1.4. A random vector ¥ is said to be normally distributed (or simply, normal) provided
there exists a regular n x n matrix A and a vector y € R" such that

Y =AX + u (6.2)
for some standard normal X.
Remark 6.1.5. Let us reformulate Definition 6.1.4 due to its importance. A random vec-

tor Y = (Yy,...,Y,) is normally distributed if and only if there exists a regular matrix
A = (@)}, and a vector g = (uy, ..., ) such that

n
Yi=Za,~ij+y,-, 1Si£n,
j=1

with Xi, ..., X, independent N (0, 1)-distributed.
Example 6.1.6. Suppose the three-dimensional random vector ¥ = (¥}, ¥,, ¥;) is defined
by

Y, =2X+X,-X;+4, Y,=X;-2X,+X;-2, and

Yy =X, - 2X;+5

with (0, 1)-distributed independent X;, X,, X;. Then ¥ is normally distributed. Observe
that it may be represented in the form of eq. (6.2) with A given by

2 1 -1
A= 1 -2 1
1 0 -2

and with u = (4, -2, 5). Moreover, we have det(4) = 9, hence A is regular.

Remark 6.1.7. If the n-dimensional vector ¥ is represented as ¥ = AX + u with X stan-
dard normal, 4 € R" and a nonregular n x n-matrix A, then ¥ may also be regarded as
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normal, yet in a more general setting. In this case it follows that P{Y € range(A) +u} = 1
where range(A) is a strict subspace of R". For example, if Y, = X; + X, and ¥, = -X; - X;,
then P{Y € E} = 1with E = {(t,—t) : t € R}. Thus, IP; is concentrated on the subspace
E # R% Here and in the sequel, we want to exclude such “degenerated” normal vectors
by assuming that the generating matrix A is regular.

Given a normal vector ¥, how do we get the standard normal X in representa-
tion (6.2)? The next proposition answers this question.

Proposition 6.1.8. A randomvector Y = (Y,,...,Y,) is normal if and only if there exists a
regular n x n matrix B = (ﬁU)ijl and a vector v = (vy,...,v,) € R" such that the random
variables X;, defined by

are independent standard normal.

Proof. This is a direct consequence of the following observation. One has ¥ = AX + y if
and only if X may be represented as X = A™'Y — A" . Therefore, the assertion follows
by choosing B and v such that B= A" and v = -A~ . O

Example 6.1.9. For the random vector ¥ investigated in Example 6.1.6, the generated
independent standard normal random variables X;, X,, and X; may be represented as
follows:

X1= %(4Y1+2Y2—Y3+7), X2= é(Yl_YZ_YS-'—l)’

X3 = %(ZYl + YZ - 5Y3 - 19)

Suppose ¥ = AX +u is anormal vector. How can we evaluate its distribution density?
To answer this question, we introduce the following function. Let R > 0 be an nxn-matrix
and u € R"™. The inverse matrix of R is R and to simplify the notation, set |R| = det(R).
Observe that R > 0 implies |R| > 0. With these notations, we define a function Dur from
R" to R by
— —(R7 (-, (x-0)) /2 n
py,R(x) = (Zn)n/2|R|1/2e , XeR". 6.3
Note that the expression in the exponent may be written as follows. If R™! = (fij)gjzl is
the inverse matrix of R, then one gets
1 1<
(R -, (x - ) /2= 5 _Zl Fy O = ) 0G = ) -
Lj=

Now we are prepared to answer the above question about the density of ¥.



314 — 6 Normally distributed random vectors

Proposition 6.1.10. Suppose the normalvector Y is represented as in eq. (6.2) with regular
Aand u € R™. Define the positive matrix R by R = AAT. Then Dur» Gs given in eq. (6.3), is
the distribution density of Y. In other words, if B € B(R"), then

Veplo_— 1 (R -0, (x40} 2
P{Y € B} = W ! e dx.

Proof. Because Y = AX + u with X standard normal, Proposition 6.1.2 implies

P{Y ¢ B} =P{AX +u ¢ B} = P{X c A '(B - u)}
1 .[ e—l)’|2/2 dy

- (zﬂ)n/z
A7 (B-u)

for any Borel set B ¢ R". Hereby, B - i denotes the set {b—u : b € B}. In the next step, we
change the variables by setting x = Ay + y. Then dx = | det(4)|dy, where by assumption
det(A) # 0 and, moreover, we have y ¢ AYB- u) if and only if x € B. Therefore, the last
integral transforms to

> _ 1 [ A w2
P{Y € B} = o |det(A)] J e dx. (6.4)

Proposition A.4.1 implies R > 0 and, moreover,
IR| = det(R) = det(AAT) = det(A) - det(A”) = det(4)*.
Since |R| = det(R) > 0, this leads to |R|"? = | det(4)|, that is, to
|det(a)] " = |RITV2. 65)
Note that
A -l = AT -, AT - ) = (AT AT -, (- ),

which, due to

1 -1

@A oat=@N T oal=(a.a")" =R,
implies

A7 - = (R0 - ), (x - ). (6.6)

Plugging eqs. (6.5) and (6.6) into eq. (6.4), we get
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P(Y € B} = [ pua0 dx
B

with p, r as in eq. (6.3). This completes the proof. O

Remark 6.1.11. How does Proposition 6.1.10 look like for n = 1? Here Y = aX + , that is,
A = (a), and since A has to be regular, this implies a # 0. Hence we getR = AAT = (az),
R'= (a’z), and |R|1/ 2= |al. Thus, the density of Y is given by

I 1 v 2 o
RECowx=m/f2 _ = o=Oewf2a” R

X)= ————e = ,
PurX) = (iR 2m)?|a]

This coincides with the result obtained in Example 4.2.2.

In view of Proposition 6.1.10, we will use the following notation.

Definition 6.1.12. A normal vector Y is said to be N (u, R)-distributed ipr is its density, that is, if

. _ 1 R ). (- 2
P{Y e B} = -(ZIT)"/2|R|1/2 Z!.e dx.

Remark 6.1.13. It follows from Proposition A.4.2 that, given any u € R" and any R > 0,
there exists a normal vector ¥ thatis A/(u, R)-distributed. Indeed, write R > 0 asR = AAT
and set ¥ = AX + y with X standard normal. Then ¥ is A/(u, R)-distributed by Proposi-
tion 6.1.10.

{Distributions of R"-valued normal vectors} &  {(4,R) : g € R, n x n matrix R > 0}.

Example 6.1.14. Assume
Y1:X1—X2+3 and Y2=2X1+X2—2

for X;, X, independent A/(0, 1)-distributed. Then we get

1 -1
u=3,-2) and A—(Z 1>,

which implies

aar (1AL 12y (21
R=A4 "(2 1 )(—1 1 >'<15 ) 67

Thus, ¥ is AV (u, R)-distributed with u = (3,-2) and R as in eq. (6.7).
Which density does ¥ possess? To answer this, we have to compute det(R) and R
One easily gets det(R) = 9. The inverse matrix of R equals



316 — 6 Normally distributed random vectors
1 1 5 -1
R'=2Z .
s(3 )
Therefore, the distribution density p,, p of Y= (Y3, Y,) is given by (see Fig. 6.2)

1 1, _
Pur(X3, %) = exp(—E(R 1 = 3,% +2), (X =3, %, + 2))>

1 1
- exp(—E [506, - 3)* — 2(x; — 3)(X, + 2) + 20X, + 2)Z]> NGRS

Figure 6.2: The density given by eq. (6.8). It attains its maximal value 1/6m at the point (3, -2).

For later purposes, we have to name the probability measures on (R", B(R")) ap-
pearing as distributions of normal vectors.

Definition 6.1.15. Given y € R” and R > 0, the probability measure N/ (u, R) on (R”, B(R")) is defined
by

_ _ 1 — LR ) )
N@R®) = [ puatdx = I [t dx.

B B

Measure A/ (4, R) is called a multivariate normal distribution with expected value p and covariance
matrix R.

According to Definition 6.1.15, we may now formulate Proposition 6.1.10 as follows:

Proposition 6.1.16. Let ¥ be a random vector. Then the following are equivalent:

1. Y is N(u R)-distributed.

2. ]Pf, = N([,I,R)

3. Thereis aregular n x n matrix A with R = AAT such that for some standard normal
)?onehas?:A)?HL

Remark 6.1.17. If ¥ is A/(u, R)-distributed, the representing matrix A in (3) is not
unique; compare Remark A.4.3. This is already so in the univariate case where an
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N (u, 0*)-distributed random variable Y may either be represented as Y = aX + y or as
Y = (-0)X' + u for some standard normal random variables X and X'.

Remark 6.1.18. The case R = I, (as in Section A.4, we denote the identity matrix in R"

byI,) and u = 0is of special interest. Because I,jl = I, and det(I,) = 1, we get

1 —Ix[%/2
Po,, (X) = o e M2 x e R,

This tells us that A'(0, I,,) is nothing else as the multivariate standard normal distribution
introduced in Definition 1.9.21. Written as formula, this means

N(©O,1)%" = N(0, 1)
More generally, in view of eq. (1.86), it follows that
N(po")™ = N (@ 0" 1)

where [i = (,...,4) € R" and ¢ > 0. In other words,

29" By — Af(ii. o2 R SR (L
N (g, 6% (B) = N (i, 6 I, (B) (Zn)"/zo"l}[e . 6.9)

For later purposes, the next result is of importance.
Proposition 6.1.19. Suppose a normal vector Y = (Y;,...,Y,) may be written as
Y =UX
with an N (0, I))-distributed (standard normal) X and a unitary matrix U. Then its coor-
dinate mappings Y4, ..., Y, are independent standard normal random variables.

Proof. The random vector YisN(0,UU T)-distributed. But U is unitary, hence, UU T_ I,
and Y is (0, I,)) or, equivalently, standard normally distributed. Then the assertion fol-
lows by Proposition 6.1.2. O

Remark 6.1.20. The previous result may be phrased also as follows: If B is a Borel set in
R" and B' = U(B) = {U(x) : x € B} for some unitary transformation U, then this implies

N(0,1,)(B) = N(0,I,)(B").

That is, the n-dimensional standard normal distribution is invariant under unitary
transformations as, e. g., rotations or reflections.

Example 6.1.21. For 0 € [0, 277), define the 2 x 2 matrix U by

U—( cos O sin@)
"\ —sinf® cosh /°



318 —— 6 Normally distributed random vectors

The matrix U is unitary (it is a rotation by the angle 6) and, due to Proposition 6.1.19, the
vector ¥ = UX is standard normal. In other words, given independent standard normal
X, and X,, for each 0 € [0, 277) the random variables

Y :=cosfX; +sinfX, and Y,=-sinfX;+cosbX,

are independent and standard normally distributed as well. That is, if a; < b; and
a, < b,, then we obtain

by by

P{a, <Y, <b;, ay< Y, <by} = %(J exf/zdx1><J e"g/zdxz>

a; @

L] et

[ay,b,1x[az,b, ]

6.2 Expected value and covariance matrix

We start with the following definition.

Definition 6.2.1. LetY = (Y4,...,Y,) be arandom vector such that ]Elel < oo forall1 <j < n.Then the
vector

EY := (BY,, ..., EY,) = (U1, .. i)

is called the (multivariate) expected value of Y.
IfIEYj2 < 00,1 <j < n, then the matrix

Covy == (Cov(¥, Y;

n n
I))iJ:1 = (E(; = (Y, _p/))i,j:1

is said to be the covariance matrix of ¥.

Remark 6.2.2. It is important to notice that both EY and the covariance matrix Covy
depend only on the distribution of Y. That is, whenever ]Pf,1 = ]Pf/z’ then

EY, =EY, and Cov;,1 = Covf,z .

The next proposition describes the (multivariate) expected value and the covari-
ance matrix of a normally distributed vector.

Proposition 6.2.3. AssumeY = AX+ufor some regular matrix A, with X standard normal

and € R". Define R = (ryj);;_, asR = AAT . Then the following are valid:

(1) We have EY = g and Covy = (Cov(Y;, ¥}))j;y = R.

(2) Givena ¢ R", a # 0, then (17', a) is a normal random variable with expected value
(4, ay and variance (Ra, a).
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() The coordinate mappings Y; are N (u;, ry)-distributed, 1 < i < n, that is, the marginal
distributions of Y are the probability measures N (;, ;).

Proof. By assumption,

n
Y=Y agXj+p;, i=1,...,n, (6.10)
j=1
hence, the linearity of the expected value and EX; = 0 imply
n
]EYi=2al-]-]EX]~+yi=yi, 1<i<n.

jA

This proves EY = (EYy,...,EY,) = 1.
Let us now verify the second part of property (1). Using y; = EY}, from representa-
tion (6.10) we get

Cov(Y;, ¥;) = E[(Y; - u)(Y; - )] = ]E< D aika><Z ajeXe>
k=1 =1

n
= Z aikaje ]EXkXE .
k=1

The Xjs are independent N (0, 1)-distributed, hence

1 ifk=¢,

EX, X, =
K {0 ifk ¢,

leading to
n
COV(Yi, Y) = z aikajk = I”ij .
k=1

To see this, recall that R = AA”, hence ryj = Yo @i - This proves Covy = R, as asserted.

To verify property (2), we first treat a special case, namely that the random vector
is standard normally distributed. So suppose that X is A’(0, I,,)-distributed. In this case,
property (2) asserts the following. For any b € R", b # 0, we have

(X, by is distributed according to (0, |b[*) . (6.11)

Ifb = (by,...,by), then

n n
X.b) =) bXi =) 7,
j=1 j=1
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with Z; = b;X;. The random variables Z;,...,Z, are independent and, moreover,
by Proposition 4.2.3, the Z;s are N(0, b]?)-distributed. Proposition 4.6.11 implies that
ZJ’Lle is distributed according to A/(0, Z]’Ll b]?). In view of Z}il b]z = |bf?, this proves
assertion (6.11).
Let us now turn to the general case. Recall that

Y=AX + u
and R = AAT.If a € R" is a nonzero vector, then we take the scalar product with respect
to a on both sides of the last equation and obtain

(Y,a) = (AX,a) + (u,a) = (X,A"a) + (u, a).

An application of statement (6.11) with b = ATa lets us conclude that (X,ATa) is
N(0,|AT al*)-distributed, that is, (¥,a) is A'({i, ), |A”a|*)-distributed. Here we used
that A, hence also AT, is regular, so that a + 0 yields b = ATa + 0, and statement (6.11)
applies. Assertion (2) follows now from

|ATa|2 =(ATa,ATa) = (4A"a,a) = (Ra, a).

Property (3) is an immediate consequence of the second. An application of property (2)
to the ith unit vector ¢; = (0,...,0, _1 ,0,...,0) in R" leads, on the one hand, to

> >
1

(Y,e)=Y;, 1<ic<n,
and, on the other hand, to
(Rej,e;) =1; and (u,e;) =p;, 1l<i<n.

Thus, by property (2), for each i < nthe random variable Y; is A/(u;, rj;)-distributed. This
completes the proof. O
Corollary 6.2.4. If Y is N(u, R)-distributed, then EY = u and Covy =R

Proof. Choose any regular n x n matrix A such that R = AA”. The existence of such an A
is proved in Proposition A.4.2. Set Z = AX + u for some standard normal vector X. Then

Y and Z are both A (u, R)-distributed, hence Z iy, Proposition 6.2.3 implies EZ = y and
Cov; = R. Consequently, by Remark 6.2.2, it follows that

EY =EZ=y and Covy = Covy =R,

which completes the proof. O

In view of property Corollary 6.2.4, we will use the following notation.
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Definition 6.2.5. If ¥ is N (u, R)-distributed, then the parameters p and R are called the (multivariate)
expected value and the covariance matrix of ¥, respectively.

Remark 6.2.6. We proved above that, for any normal vector Y, the coordinate mappings
Y; = (¥,e;) are normal as well. The converse is not valid. There are random vectors ¥
with all random variables (Y, e;) normal, 1 < i < n, but Y is not normal.

In contrast to this remark, the following is valid.
Proposition 6.2.7. If (Y, a) is normal for all nonzero a € R", then Y is normal as well.

Idea of the proof. By assumption, for each a # 0 there are real numbers u, and g, > 0
such that (¥, a) is N (1, oﬁ)-distributed. In order to prove the proposition, one has to
show that there are a g € R" with 4, = (u,a) and an R > 0 such that oﬁ = (Ra,a),
a € R". The existence of the vector y easily follows from

Uaarpp = E(Y, aa + Bb) = aE(Y,a) + B(Y,b) = a, + Buy ,

using the fact that each linear mapping from R" to R is of the form a — (a,u) for a
suitable y € R".

The existence of an R > 0 with ofl = (Ra,a) is consequence of a representation
theorem for positive quadratic forms on R". To this end, one has to show that a 02 is

a positive quadratic form, which follows by using 05 = E(Y,a)% O

As we saw above (see Proposition 5.3.10), independent random variables are un-
correlated. On the other hand, Examples 5.3.12 and 5.3.15 showed the existence of un-
correlated variables that are not independent. Thus, in general, the property of being
uncorrelated is weaker than that of being independent.

One of the basic features of normal vectors is that for them uncorrelated coordinate
mappings are already independent. This somehow explains why in the common speech
these properties are synonyms.

Proposition 6.2.8. Let Y = (Y,,...,Y,) be a normally distributed vector. Then the follow-
ing are equivalent:

D Yi,...,Y, areindependent.

(@) Yi,...,Y, areuncorrelated.

(3) The covariance matrix Covy is a diagonal matrix.

Proof. The implication (1) = (2) follows by Proposition 5.3.10. If the ¥;s are uncorre-
lated, then this tells us that Cov(Y;,Y;) = 0 whenever i # j. Thus, Covy is a diagonal
matrix, which proves (2) = (3).

It remains to verify (3) = (1). Thus assume that Yis (u, R)-distributed, where
R > 0is a diagonal matrix. Let ryy,..., T, be the entries of R at the diagonal. Define A
as diagonal matrix with rﬂz, ...,7Y2 on the diagonal. Note that R > 0 implies r; > 0,
hence A is well defined. Of course, then AAT = R, hence Y has the same distribution as
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the vector (Z;,...,Z,) with
Zi=r’X;+y;, 1<i<n,

where X;,...,X, are independent standard normal. Proposition 4.1.9 lets us conclude

that Z,, ..., Z, are independent normal random variables. But since ¥ 2 Z, the random
variables Y;, ..., Y, are independent as well.! O

Remark 6.2.9. Another property, being equivalent to those in Proposition 6.2.8, is as
follows. The density function of ¥ with independent coordinates equals

n 2
py,R(X) = e~ Y (=) /2 ., X = (Xl) . ’Xn) .

1
(27'[)"/2|R|1/2
Note that |R| = det(R) = Iyq -+ Ty

Finally, we investigate the case of two-dimensional normal vectors more thoroughly.
Thus assume ¥ = (Y}, ¥,) is a normal vector. Then the covariance matrix R is given by

_( vy, Cov(Y;,Y,) >
~\ Cov(Y,,Y,) VY, ’

Let 012 and 022 be the variances of Y; and Y, respectively, and let p = p(Y3, ;) be their
correlation coefficient.” Because of

COV(Yl, Yz) = (VYl)l/z(VYZ)l/Z p(Yl’ Yz) = 0'10'2 p,

we may rewrite R as

R= < g  poig, )
= 2 .
po10; 0y
This implies det(R) = 0120"22(1 - p?). Since 0"12 > 0, the matrix R is positive if and only if
Ip| < 1. The inverse matrix R can be computed by Cramer’s rule as

2 R

Rl 1 %) P00y \ 1 7 0o
T 24201 _ A2 2 T 1_pn2 - 1
agros(1 — 1 - 1
10,1-pI)\ -pojo, o P\ 5o p

Consequently,

1 Indeed, use the characterization of independent random variables given in Proposition 3.6.5. The con-
dition stated there depends only on the joint distribution.

2 Recall that p describes the degree and the way of the dependence between Y; and Y,. These two random
variables are positively correlated if p > 0, negatively if p < 0, strongly dependent if p is near 1 or -1,
and only weakly dependent in the case that p is near zero.
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2 2

_ 1 X{  2pXXy, X

(Rxx) = 2<—12— PA% +—22>, X=(x,%) e R
1-p*\o; 0,0, g,

If u = (uy, 11, = (EY;, EY,) denotes the expected value of ¥, then for a; < b; and a, < b,,

1

Pla; <Yy <h,ay <Yy <bhpt = ———
{a, <Yy <by,a, <Y, < by} 27~ P00,

b, b
172 _ 2 _ -~ _ 2
o J' JEXp(— 1 ' (xq 2#1) 2p (4 — 1) (X — i) N (X%, 2112) ])dxz dx,
i 2(1-p?) a7 010, g,

(6.12)

Compare this with the case of independent Y, and Y, or, equivalently, with the case p = 0.
Here it follows that

]P{al < Yl < bl,az < Yz < bz}

by b 2 2
- ”exp(—1 Ca-p), Doty ])dxzdxl. (6.13)
27m0,0, aa 2 oy 5

It is worthwhile to mention that in both cases (dependent and independent) the mar-
ginal distributions are the same, namely N (y, 012 ) and N (uy, 022). A comparison of
eqs. (6.12) and (6.13) shows clearly the influence of the correlation coefficient to the
density (see Fig. 6.3).

Summary: An n-dimensional random vector Y= (Y4,...,Y,) issaid to be normal (or the Yjsare called jointly
normal) if there are a regular n x n matrix A = (01,-/-),’-’)/-:1 and a vector g = (Uy,...,HU,) € R such that with
independent A/ (0, 1)-distributed X;, ..., X,,

n
Vi=Y aX+p, 1<i<n.
=

Equivalently, ¥ is normal if and only if there are a positive n x n matrix R = (r,-j),’»fj:1 and ap € R” such that

S B 1 ~R7 =), (x-p)) [2
]P{YGB}—WZ!‘E dx.

The matrices A and R are linked by R = AAT. If ¥ is normal, the coordinates Y, ..., ¥, are normal (univariate)
random variables (the converse is in general not true) with

EY;=p; and Cov(V,V)=ry, 1<ij<n.
Let ¥ be a normal vector. Then the ¥;s are pairwise uncorrelated if and only if they are independent:

¥1,...,Y, independent & Cov(Y,,Yj):O,‘Isi<jsn.
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Figure 6.3: The 2-dimensional densities of a normal vector withy; = p, = 0,01 = 2,0, = 1,and

p =0, 0.25, 0.75, 0.5 from top left to bottom right. Thus, the coordinates of normal vectors with these
densities are either independent (p = 0), weakly (p = 0.25) or strongly (p = 0.75) positively correlated. In
the last case (p = —0.5), they are moderately negatively correlated; values in the regions {x > 0,y < 0} and
{x < 0,y > 0} become more likely.

6.3 Problems

Problem 6.1. Let Y = (Y;,...,Y,) be an arbitrary (not necessarily normal) random vec-

tor.

1. Show that E|Yj| < co,1 < j < n,if and only if E|Y| < co. Here |Y| denotes the
Euclidean distance of ¥.

2. Let Abe an arbitrary n x n matrix. Prove that

E(AY) = A(EY)

provided that E|Y| < oo.

3. Show that E|Y;|* < oo, 1 <j <n,ifand only if E|Y)? < co.
Suppose ]El?lzl < oo. Let Covy be the covariance matrix of Y. Prove that Covy is
nonnegative definite, that is,

(Covyx,x) 20, xeR".

Problem 6.2. Roll a fair die two times. Let X; be the greater of the two rolls and X, de-
notes the smaller one. Evaluate the expected value 4 € R? and the covariance matrix of
the random vector X = (X, X;).
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Problem 6.3. Let X; and X, be two independent standard normal random variables.
Define Y; and Y, by

Y1:2X1—2X2+1 and Y2:3X1+X2—2.

1. Find g € R? and the positive 2 x 2 matrix R such that ¥ = (¥, Y,) is N'(u, R)-
distributed.

2. Determine Covy and the correlation coefficient p = p(Y;,Y). Are ¥; and Y, posi-
tively or negatively correlated?

3. Which distribution do Y; + Y, and Y; — Y, posses?
Evaluate the distribution density of ¥.

Problem 6.4. Let X = (X;,X,) be a two-dimensional standard normal vector. Compute
P{IX| <1} = P{X? + X; <1}.

Hint: Compare with the proof of Proposition 1.6.7.
Problem 6.5. Let X;,..., X, be a sequence of independent standard normal random

variables. For an n x n matrix A = (ozl-j)gj-:1 and an m x m matrix B = (ﬁk,)ZfH, define two
normal vectors ¥ and Z by

n m
Yi=) aX; and Z =) BuXim
=t =1

with1 <i<nand1<k < m. Let (Y,Z) be the (n + m)-dimensional vector

o o

(Y,Z) = (Yl""’Yn’Zl"”’Zm)~

Why is (¥, Z) normal? Show that the covariance matrix Cov; 5, is given by

¥.2)

Covs 0
Cov g5 = Y .
¥.2) < 0 COVZ )

Problem 6.6. Let X;, X,, and X; be three standard normal independent random vari-
ables. Define the random vector ¥ by

Y= (X -1LX + X, - LX + X, + X; - 1).

1. Argue why Y is normal. Determine its expected value, covariance matrix, and the
correlation coefficients p(Y;, Yj), 1<i<j<3
2. Determine the distribution density of Y.
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Problem 6.7. The random vector ¥ = (Y;,...,Y,) is N'(u, R)-distributed for some u € R"
and R > 0. Determine the distribution of Y; + - -- + ¥,,.

Problem 6.8. Prove the following assertion: If ¥ is A/(0, R)-distributed, then there exist
an orthonormal basis (]j-)}';l in R", positive numbers A,, ..., A, and independent A/(0, 1)-
distributed &, ..., &, such that

n

Y=Y A& (6.14)
j=1

Hint: Use the principal axis transformation for symmetric matrices and the fact that
unitary matrices map an orthonormal basis onto an orthonormal basis.

Conclude from eq. (6.14) the following: If VisN (0, R)-distributed, then there are
aj,...,a, in R" such that (¥,a,),..., (¥, a,) is a sequence of independent standard nor-
mal random variables.

Problem 6.9. The n-dimensional vector ¥ is distributed according to A/(1, R). For some
regular n x n matrix S, define Z by Z := S¥. Is Z normal? If this is so, determine the
expected value and the covariance matrix of Z.

Problem 6.10. Let X = (X, X,) be standard normal. Define random variables ¥; and Y,
by

1 1
= %(Xl + Xz) and Yz = %(Xl —Xz) .

Why are Y; and Y, also independent and standard normal?

n



7 Limit theorems

Probability Theory does not have the ability to predict the occurrence or nonoccurrence
of a single event in a random experiment; besides, this event occurs either with prob-
ability one or with probability zero. For example, Probability Theory does not give any
information about the next result when rolling a die, it does not predict the numbers
appearing next week on the lottery nor is it able to foresee the lifetime of a component
in a machine. Such statements are impossible within the theory. The theory is only able
to say that some events are more likely and others are less likely. For instance, when
rolling a die twice, it is more likely that the sum of both rolls will be “7” than “2.” Never-
theless, next when we roll the die the sum may be “2,” not “7.” The event “the sum is 2”
is not impossible, only less likely.

In contrast, Probability Theory provides us with very precise and far-reaching in-
formation about the behavior of the results when we execute “many” identical random
experiments. As already said, we cannot tell anything about the expected number on a
die when we roll it once, but we are able to say a lot about the frequency of the number
“6” when rolling a die many times, namely that, on average, this number will appear in
one of six cases (provided the die is fair). In this example, certain laws of Probability The-
ory, which we will present in this section, are operating. These laws are only applicable
in the case of many experiments, not in that of a single one.

Limit theorems in Probability Theory belong to the most beautiful and most im-
portant assertions within this theory. They are always the highlight of a lecture about
advanced Probability Theory. However, their proofs require a longer comprehensive
mathematical explanation, which is impossible to give here within the framework of
this book. Those who are interested in knowing more about this topic may look into one
of the more advanced hooks, such as [Bil12, Dur19] or [Kho07]. Although the proofs of
the limit theorems are mostly quite complicated, they are very important, and their con-
sequences influence our daily lives. Moreover, great parts of Mathematical Statistics are
based on these results. Therefore, we decided to state here the crucial assertions with-
out proving most of them. Thus, our main focus is to present the most important limit
theorems, to explain them in detail, and to give examples that show how they apply. If
possible, we give some hint as to how the results are derived, but mostly we must resign
to prove them.

7.1 Laws of large numbers

7.1.1 Chebyshev’s inequality

Our first objective is to prove Chebyshev’s inequality. To do so, we need the following
lemma.

https://doi.org/10.1515/9783111325064-007
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Lemma 7.1.1. Let Y be a nonnegative random variable. Then for each A > 0 it follows that
P{Y > A} < ]ETY . (7.0

Proof. Let us first treat the case that Y is discrete. Since Y > 0, its possible values
Y1,Vs, ... are nonnegative real numbers. Therefore, we get

EY = Z)’j P{Y =y;} > Z)’j P{Y =y;}

j=1 yj2A
> ) P{Y =y} = AP{Y 2 A}
y]‘ZA

Solving the inequality for P{Y > A} proves inequality (7.1).

The proof of estimate (7.1) for continuous Y uses similar methods. If q denotes the
distribution density of Y, by Y > 0 we may suppose q(y) = 0 for y < 0. Then, as in the
discrete case, we conclude that

(o) (o)

EY - qu(y) dy > qu(y) dy = A j 40 dy = AP{Y > 2.
0 A A

From this inequality, (7.1) follows directly. O

Remark 7.1.2. Sometimes it is useful to apply inequality (7.1) in a slightly modified way.
For example, if Y > 0 and a > 0, then one derives

EY*
a

P{Y >} = P{Y" > 2%} <

Or, if Y is real valued, then for A € R we obtain

PY <A} =Ple Y e} <

Now we are in a position to state and to prove Chebyshev’s inequality.

Proposition 7.1.3 (Chebyshev’s inequality). Let X be a random variable with finite second
moment. Then, if ¢ > 0, it follows that

P{IX - EX| > c} < V—j( . (7.2)
C

Proof. Setting Y := |X — EX|?, we have Y > 0 and EY = VX. Now apply inequality (7.1)
to ¥ with A = c2. This leads to

EY _ VX

P{|X - EX| > ¢} = P{|X -EX* > ¢*} = P{Y > ¢}} < ==

>

and estimate (7.2) is proven. O
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Interpretation: Inequality (7.2) quantifies the interpretation of VX as a measure for
the dispersion of X. The smaller the VX, the less the probability that the values of X are
far away from its expected value EX.

Remark 7.1.4. Another way to formulate inequality (7.2) is as follows. If ¥ > 0, then
P{IX - EX| > k (VX)"?} < 12 :
K

To see this, apply inequality (7.2) with ¢ = k (VX)Y2.

Example 7.1.5. Roll a fair die n times. If, for example, A = {6}, we are interested in the
relative frequency r,(A) of the occurrence of A. Recall that this frequency was defined
in eq. (1.1). Moreover, we claimed in this section that lim,,_,., r,(4) = P(4) = % Is it
possible to estimate the probability for |r,,(4) - %l being bigger than some given ¢ > 0?

Answer: Define the random variable X as the absolute frequency of the occurrence
of A, that is, we have X = k for some k = 0,...,n provided that A occurred exactly k
times. Then X is binomial distributed with parameters n and p = 1/6. To see this, define
“success” as appearance of “6.” Consequently, the relative frequency can be represented
asry(4A) = %‘ An application of eqs. (5.8) and (5.36) gives

npl-p) _ 5

1 n 1
IErn(A):H]EX:WP:p:E and Vry(4) = 0 = 3%n"

Thus, inequality (7.2) leads to

i

If, for example, n = 10%, and if we choose ¢ = 1/36, then Chebyshev’s inequality yields

5
36c2n’

ra(4) - %‘ > c} <

5 7 9
]P{% < rlOS(A) < %} 21— % = 082

For the absolute frequency, this means
P{139 < a,;3(A) < 194} > 0.82.

Let us interpret the result. Suppose we roll a fair die 1000 times. Then, with a probability
of at least 82 %, the frequency of “6” will be between 139 and 194.

Let us present a second quite similar example.

Example 7.1.6. Roll a fair die n times and let S, be the sum of the n results. Then §,, =
X + -+ + X, where Xi, ..., X, are uniformly distributed on {1,..., 6} and independent.
By Example 5.2.17, we know that

35n

7
ES, = EX, + --- +15Xn=7" and VS, = VX + - + VX, = =%,



330 —— 7 Limittheorems

hence

E<ﬁ> = z and V<ﬁ> = ﬁ
n 2 n 12n

An application of inequality (7.2) leads then to
Yo

n 2 ~ 12nc?’
For example, ifn = 10% and c is chosen as ¢ = 0.1, then

8103
P34 < 0% <3.6F>0.709.

The interpretation of this result is as in the previous example. With a probability larger
than 70 % the sum of 1000 rolls of a fair die will be a number between 3400 and 3600.

This looks like to be a pretty rough estimate and, indeed, this is so. Sharper bounds
follow by using the central limit theorem as we will see in Example 7.2.14.

Summary: Let X be a random variable with finite second moment. Then Chebyshev’s inequality asserts that
foranyc > 0,

IP{|X—]EX|2c}gY—;(.

This inequality clarifies once more the role of the variance VX. The smaller the V(X), the more likely the
random observations are concentrated around EX.

7.1.2 Infinite sequences of independent random variables™

Whenever one wants to describe the limit behavior of random variables or random
events, one needs a model for the infinite performance of random experiments. Oth-
erwise, we cannot investigate limits or other related quantities. This is comparable with
similar investigations in Calculus. In order to analyze limits, infinite sequences are nec-
essary, not finite ones. Thus, for the examination of limits of random variables we need
an infinite sequence X;, X,, ... of random variables, which are, on the one hand, inde-
pendent in the sense of Definition 4.3.4 and, on the other hand, possess some given prob-
ability distributions.

Example 7.1.7. In order to describe the infinite tossing of a fair coin, we need indepen-
dent random variables X;, X, ... such that P{X; = 0} = P{X; = 1} = % Or, similarly, for
a model of rolling a die infinitely often, we need infinitely many independent random
variables all uniformly distributed on {1,...,6}.
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In Proposition 4.3.3, we presented the construction of independent (Xj)]‘?f1 dis-
tributed according to By ;5. This technique can be extended to more general sequences
of random variables, but it is quite complicated. Another, much smarter way is to use
so-called infinite product measures.! Their existence follows by a deep theorem due
to A.N. Kolmogorov. As a consequence, one gets the following result, which cannot be
proven within the framework of this book. We refer to [Kho07, Chapter 5, § 2] or [Ros06,

Theorem 7.1.1] for proofs.

Proposition 7.1.8. Let IP;,P,, ... be arbitrary probability measures on (R, B(R)). Then

there are a probability space (2, A,P) and an infinite sequence of random variables

X; : Q — Rsuch that the following hold:

1. Theprobability distribution of X; isP;,j = 1,2,... That s, for allj > 1and all B € B(R),
it follows that

P{X; € B} = P(B).

2. The random variables X1, X,, ... are independent in the sense of Definition 4.3.4. This
says, for alln > 1 and all B; € B(R), it follows that

]P{Xl € Bl"' .,Xn € Bn} = ]P{Xl € Bl} . ]P{Xn € Bn}
= Py(By) - Pn(By).

Of special interest is the case P; = P, = --- = P, for a certain probability measure
Py on R. Then the previous proposition implies the following.

Corollary 7.1.9. Given an arbitrary probability measure P, on B(R), there are random
variables X;,X,, ..., defined on some probability space (Q, A, P), such that for alln > 1
and all Bj € B(R),

]P{Xl € Bl’ ,Xn € Bn} = ]PO(BI)]PO(BH) .

Example 7.1.10. Choosing as IP; the uniform distribution on [0, 1], the previous corol-
lary ensures the existence of (independent) random variables X;, X,, . .. such that for all
nzlandaHOsaj <bj <1,

n
Pla, <X, <by,...,a, <X, < b} =[[(b;-a).
j=1

The sequence X;,X,, ... models the independent choosing of infinitely many numbers
uniformly distributed in [0, 1].

1 Compare with Proposition 3.6.7 for the construction of finitely many independent random variables
possessing given distributions. There we used finite product measures to obtain independent random
variables possessing given distributions P, ..., P,.
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Remark 7.1.11. One may ask whether the kind of independence in Definition 4.3.4 suf-
fices for later purposes. Recall, we only require X;, ..., X, to be independent for all (fi-
nite) n > 1. Maybe one would expect a condition that involves the whole infinite se-
quence, not only a finite part of it. The answer is that such a condition for the whole
sequence is a consequence of Definition 4.3.4. Namely, if B;, B, ... are Borel sets in R,
then, by the continuity of probability measures from above, it follows that

]P{Xl € Bl’XZ € Bz,. . } = Y}LIEO ]P{Xl € Bl’ e ,Xn € Bn}

nhj& P{X; € By} ---P{X,, € B,}

n (&)
g&quewquwew.
J= J=

In particular, if a; < b, j=1,2,...,thisimplies
(o)
Pla; <X, <b,a, <X, <by, ...} = [ [ Plg; < X; < b}}. (7.3)

Example 7.1.12. LetX;,X,,...be asequence of independent E,-distributed random vari-
ables for some A > 0. Given real numbers @; > 0, we ask for the probability of

PiX;<a,Xp <ay,...}.

Answer: If we apply eq. (7.3) with ; = 0 and with b; = a;, then we get

[1-e™9].

—g

(o)
]P{Xl < al,Xz < (12,...} = H]P{)(] < a]} =

-
Il

—_
~
Il

[

Of special interest are sequences (a]-)]-zl such that the infinite product converges, that is,
for these sequences (a;);>; we have []%[1 - e9] > 0. This happens if and only if

o0 (oe)
ln<n[1 - eaaf]> =Y In[1- e ] > —co. (7.4)
j=1 j=1
Because of
Jim 2A=X _
x—0 -X

by the limit comparison test for infinite series, condition (7.4) holds if and only if

e < 0.

M8

-
Il
JUN
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If, for example, a; = ¢ - In(j + 1) for some ¢ > 0, then

o0 [oe] 1
z e—/laj _ : )
j =R

This sum is known to be finite if and only if Ac > 1, that is, if ¢ > 1/A.
Another way to formulate this observation is as follows. One has

X 00
IP{sup / c]» =P{X;<cln(+1), Vj=21} = H(l ! >

—— < - —
j21 InG +1) i\ e

and this probability is positive if and only if ¢ > 1/A.

Summary: Aninfinite sequence X;, X5, ... of random variables is said to be independent if for each n > 1 the
finite sequence X;, ..., X, is independent. In particular, this implies for all a; < b; that

Given probability measures Py, P, ... on R, there are independent random variables X;, X,, ... on a proba-
bility space (Q, A, P) so that IPX/ =P,j= 1,2,... That is, for all Borel sets Bin B(R) andj = 1,2,..., we
have

P{w e Q: X(w) € B} = P{X; € B} = P(8).
For example, there are infinitely many independent random variables X; such that

1
PRty =1} = =Pl =6} = ;.

These X;s may serve as model for rolling a die infinitely often.

7.1.3 Borel-Cantelli lemma*

The aim of this section is to present one of the most useful tools for the investigation of
the limit behavior of infinite sequences of random variables and events. Let (Q, A, P)
be a probability space and let A;, 4,, ... be a sequence of events in .4. Then two typical
questions arise. What is the probability that there exists some n € IN such that all events
A,, with m > n occur? The other related question asks for the probability that infinitely
many of the events 4, occur.

To explain why these questions are of interest, let us once more regard Example 4.1.7
of the random walk. Here S,, denotes the integer where the particle is located after n
random jumps. For example, letting 4, := {w € Q : S,(w) > 0}, then the existence of an
n € N such that A,, occurs for all m > n says that the particle from a certain (random)
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moment attains only positive numbers and never goes back to the negative ones. Or, if
we investigate the events B, := {w € Q : S, (w) = 0}, then the B,;s occur infinitely often if
and only if the particle returns to zero infinitely often. Equivalently, there are (random)
n < ny<---with Snj(w) =0.

To formulate the two previous questions more precisely, let us introduce the follow-
ing two events.

Definition 7.1.13. LetAj,A,, ... be subsets of Q. Then

An and limsupA, :=
n n—o0

s
8
8
s
5

liminfA, =
n—oo

N
3

I
N
=

I
=

n n:

are called the lower and upper limit of the A,s.

Remark 7.1.14. Let us characterize when the lower and the upper limit occur.

1. Anelement w € Q belongs to liminf,_, A, if and only if there is an n € IN such
that w € (|, An, that is, if it is an element of A,, for m > n. In other words, the
lower limit occurs if there is an® n € N such that after n the events A,, always occur.
Therefore, we say that liminf,,_, ., A, occurs if the A,s finally always (abbreviated
as f.a.) occur. Thus,

PlweQ:3nsuchthatw e A,, m>n} = ]P(lirmg)lfAn).

2. Anelement w € Q belongs to limsup,_,., 4, if and only if for each n € N there is
an m > nsuch that w € A,,. But this is nothing else as saying that the number of
A,swith w € A, is infinite. Therefore, the upper limit consists of those elements for
which we have infinitely often (abbreviated asi.o.) w € A,. Note that also these
events may be different for different w. Thus,

P{w € Q : w € A, for infinitely many n} = ]P(lim supAn).
n—oo

Example 7.1.15. Suppose a fair coin is labeled on one side with “0” and on the other side
with “1.” We toss it infinitely often. Let A, occur if the nth toss is “1.” Then liminf, _, . A,
occurs if after a certain number of tosses “1” always shows up. On the other hand,
lim sup,,_,, A, occurs if and only if the number “1” appears infinitely often. The sub-
sequent results imply that the probability of the lower limit of these A,s equals zero,
while with probability one the they will occur infinitely often.

Let us formulate and prove some easy properties of the lower and upper limit.

2 Note that this n is random, that is, it may depend on the chosen w € Q.
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Proposition 7.1.16. If A, A,, ... are subsets of Q, then

1) h,{ﬂ g}fAn climsupA,,

n—oo

c
n-

@) (hgl sup An)c =liminf4; and (lim g}fAn)c = limsup A
Proof. We prove these properties in the interpretation of the lower and upper limit
given in Remark 7.1.14.
Suppose that w € liminf,_, A,. Then for some n > 1 it follows that w € 4,,
m > n. Of course, then the number of events with w € A, is infinite, which implies
w € limsup,,_, ., Ap,. This proves (1).
Observe that we have w ¢ lim sup,,_, ., A, ifand only if w € A,, for only finitely many
n € N. Equivalently, there is an n > 1 such that whenever m > n, then w ¢ A, or, that
w € A In other words, this happens if and only if w € liminf,_, Aj,. This proves the
left-hand identity in (2). The right-hand one follows by the same arguments. One may
also prove this by applying the left-hand identity with Aj. O

Before we can formulate the main result in this section, we have to define when an
infinite sequence of events is independent.

Definition 7.1.17. A sequence of events A, 4,, ... in A is said to be independent provided that for all
n > 1theeventsA,..., A, are independent in the sense of Definition 2.2.12. An equivalent formulation is
a follows: given m > 1and indices iy < i, < --- < iy, then this implies

]P(A,'1 ﬂ~--ﬂA,-m) = IP(A,1)IP(A,,")

Remark 7.1.18. Using the method for the proof of eq. (7.3), one may deduce the following
“infinite” version of independence. For independent 4;, A,, ... follows that

o(fjs.) - e
n=1 n=1

Remark 7.1.19. According to Proposition 3.6.9, the independence of random variables
and events are linked as follows. The random variables X;, X,, ... are independent in
the sense of Definition 4.3.4 if and only if for all Borel sets By, B,, ... in R the preimages
X/ 1(B1),X2’ 1(32), ... are independent events as introduced in Definition 7.1.17.

Now we are in the position to state and prove the main result of this section.

Proposition 7.1.20 (Borel-Cantelli lemma). Let (2, A, P) be a probability space and let
ApeAn=12,...
1 IfY 2 P(4,) < oo, then

P(limsup4,) = 0. (7.5)

n—oo
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2. For independent A, 4,,.. ., the following is valid. If Y 7>, P(4,) = oo, then

]P(lim supAn> =1.

n—-oo
Proof. We start with proving the first assertion. Thus, take arbitrary subsets 4, € A

satisfying Y "°) P(A,,) < co. Write

limsupA4, = ﬂB

n—-oo n=1

with B, := Uy, An. Since By 2 B, 2 ---, property (7) in Proposition 1.2.1 applies and,
together with (5) in the same proposition, leads to

(hm SUpA, ) = lim P(B,) < liminf Z P(A,,) (7.6)
n—oo
If aj,a,,... are nonnegative numbers with Y7° a,<co, then it is known that

Ymen@n — 0asn — oco. Applying this observation to a, = P(4,), assertion (7.5) is
a direct consequence of estimate (7.6). Thus, the first part is proven.

To prove the second assertion, we investigate the probability of the complementary
event. Here we have

(lim supAn)C = G ﬁ A

n—oo n=1m=n

< ﬁ ﬁ,,) (7.7)

Fixn € N and for k > nset By := ﬂfn:n A .Then B, 2 B, 2 ---, hence by property (7)
in Proposition 1.2.1 it follows that

(o) o) k
P AS | =P By | = lim P(By) = lim [ [(1-P(4,,)).
(Fian)-e{{13c) - m pmo - [0~

Here in the last step we used that, due to Proposition 2.2.15, the events A{, A5, ... are
independent as well. Next we apply the elementary inequality

An application of (5) in Proposition 1.2.1 implies

IP((limsupA ) )5

n—oo

i M8

1-x<e™, 0<x<l,

for x = P(4,,) and, because of Z,’jl":n P(4,,) = co, we arrive at
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00 k
IP( ﬂ Afn> < lim sup exp(— D IP(Am)> =0.

k—o0 m=n

Plugging this into estimate (7.7) finally yields

]P((lim supAn)C) =0, hence ]P(lim supAn) =1,

n—-oo n—-oo

as asserted. O

Remark 7.1.21. The second assertion in Proposition 7.1.20 remains valid under the
weaker condition of pairwise independence. But then the proof becomes more compli-
cated (see Examples 6.4 and 6.5 in [Bil12] or Lemma 11.1 in [Bau96]).

Corollary 7.1.22. Let A, € A be independent events. Then the following are equivalent:

P(limsup4,)=0 OZO“]P(A,I) < 00,

n—-oo n=1

]P(limsupAn) =1 e HZ]P(AH) =00.

n—-oo

Example 7.1.23. Suppose we play a series of independent games where the success
probability in the nth game is p, for some given py,p,,... How likely is it to win in-
finitely many of the games?

Answer: Let the event A, occur if one wins game n. By the choice of the p,s, it follows
that P(4,) = p,. Thus, the Borel-Cantelli lemma asserts that one wins with probability
1 infinitely many games if and only if Y, p, = co. On the other hand, if ¥ >, p, < oo,
then with probability 1 one loses all games after a finite random number of games. So,
for example, if p, = 1/n, then with probability 1 one wins infinitely often although the
success probability becomes smaller and smaller. On the contrary, in the case p, =1/ n?
there will be an N € N so that one loses all games after the Nth one.

Example 7.1.24. Let (U,),~1 be a sequence of independent random variables, uniformly
distributed on [0, 1]. Given positive real numbers (a,),-;, we define events A, by setting
A, = {U, < a,}. Since the U,;s are independent, so are the events A,, and Corollary 7.1.22
applies. Because of P(4,) = a,, this leads to

0 if Y2, a, < oo,

P{U, <a,io}=
e {1 if ¥, a, = oo,

or, equivalently, to

0 if Y2, a, = oo,
P{U, > a, f.a} = I 2oy ty = 00
1 if Y2, a, < 0.



338 —— 7 Limittheorems

For example, we have

P{U,<1/nio}=1 and P{U,<1/n*io0}=0.
Example 7.1.25. Let (X,),>; be a sequence of independent A/(0,1)-distributed random
variables and let ¢, > 0. What probability does the event to observe {|X,,| > c¢,} infinitely

often possess?
Answer: It holds that

Y P{IX,| 2 ¢} = 2 >
n=1

n=1 7[

(o) 2 00
J e 72 dx Z o(c)
Cn 27[ n=1

where

o(t) = Je"xz/zdx, teR.
t

Setting (t) == t1e7C/2 t 5 0, one obtains
£ 1 g2
o'(t)=—-e"" and lp’(t):—<1+t—z>e e
hence 'Hopital’s rule implies
90 o)
lim ~——= =1, thus lim =1.
t—oo w’(t) t—oo lﬁ( )

The limit comparison test for infinite series tells us that Y >, ¢(c,) < oo if and only if
Yoy Y(cy) < co. Thus, by the definition of g, the following are equivalent:

00 00 efcﬁ/z
Y P{X, 2l <0 = <00.
n=1 n=1 Cn

In other words, we have

For example, if ¢, = ¢ VInn for some ¢ > 0, then

&) —C/Z

1 (o]
5 oo c Z nCZ/2 Vinn
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if and only if ¢ > V2. In particular, this yields the following interesting fact:
P{|X,] > V2Innio} =1,

while for each ¢ > 2,
P{|X,l > VcInnio}=0.

From this, we derive

IP{cu € Q:limsupM = \/E]» =1.
n-co VInn
Example 7.1.26. In alottery, 6 of 49 numbers are randomly chosen. Find the probability
to have infinitely often the six chosen numbers on your lottery ticket.
Answer: Let A, be the event to have in the nth drawing the six chosen numbers on
the ticket. We saw (see Example 1.4.3) that

P(A,) = = =8> 0.

Consequently, it follows that ', P(4,) = co and, since the A,s are independent, Propo-
sition 7.1.20 implies

P{The A,s occuri.o}=1.

Therefore, the event to win infinitely often has probability 1. One does only not play long
enough!

Remark 7.1.27. Corollary 7.1.22 shows in particular that for independent A,s either

lP(lim supAn) =0 or lP(lim supAn) =1.
n—oo n—-oo

Because of Proposition 7.1.16, the same is valid for the lower limit. Here the so-called
0-1 laws operate, which, roughly speaking, assert the following. Whenever the occur-
rence or nonoccurrence of an event is independent of the first finitely many results,
then such events occur either with probability 0 or 1. For example, the occurrence or
nonoccurrence of the lower or upper limit is completely independent of what had hap-
pened during the first n results, n > 1.

Summary: LetAq,A,, ... be a sequence of events in a probability space (Q, A, IP). A basic question in Prob-
ability Theory is how likely the occurrence of infinitely many of the events A, is. This question is answered by
the Borel-Cantelli Lemma. It asserts

Y P(A,) <co = P{TheA,soccuri.o}=0.

n=1
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Conversely, if the A,s are independent events, then it follows that
o0
Y P@A,)=c0 = P{TheA,soccuri.o}=1.
n=1

In particular, if the events Ay, A,, . . . are independent, then the A, s occur infinitely often either with probability
Oort.

7.1.4 Weak law of large numbers

Given random variables X;,X,, .. ., let
Sn ::X1+ +Xn (78)

be the sum of the first n values. One of the most important questions in Probability
Theory is that about the behavior of S, as n — co. Suppose we play a series of games
and X; denotes the loss or the gain in game j > 1. Then §;, is nothing else than the total
loss or gain after n games. Also recall the random walk presented in Example 4.1.7. Set
X; = -1if in step j the particle jumps to the left, and X; = 1 otherwise. Then S, is the
point in Z where the particle is located after n jumps.

Let us come back to the general case. We are given arbitrary independent and iden-
tically distributed random variables X;, X, ... Recall that “identically distributed” says
that they all possess the same probability distribution. Set S, = X; +- - - + X,,. The first re-

sult gives some information about the behavior of the arithmetic mean S,/nasn — co.

Proposition 7.1.28 (Weak law of large numbers). Let X;,X,, ... be independent identically
distributed random variables with (common) expected value u € R. Ife > 0, then it follows
that

lim ]P{

n—oo

Sﬂ
M _ulzet=0.
e =

Proof. We prove the result only with an additional condition, namely that X; and hence
all X] possess a finite second moment. The result remains true without this condition,
but then its proof becomes significantly more complicated.

From (3) in Proposition 5.1.38, we derive

E(&):]E_Sn: EX +---+Xp) _ EX; +--- + EX, _

n n n n n i

Furthermore, by the independence of the X;s, property (iv) in Proposition 5.2.15 also
gives

V(S_n>:VSn:M:V_X1
n? n? n
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Consequently, inequality (7.2) implies

n

{
P
n

&  ng’

Js 8} _ VS _ VX,

and the desired assertion follows from

lim sup ]P{

n—-oo

zs}slM1Y§l:0. O

n—oo ngz

Sn
;—‘U

Remark 7.1.29. The type of convergence appearing in Proposition 7.1.28 is usually called
convergence in probability. More precisely, given random variables Y;,Y,,..., they
converge in probability to some random variable Y provided that for each € > 0,

Jlim P{|Y,-Y|>¢}=0.

Hence, in this language the weak law of large numbers asserts that S,/n converges in
probability to a random variable Y, which is the constant u.

Interpretation of Proposition 7.1.28. Fix € > 0 and define events 4,, n > 1, by

o

Then Proposition 7.1.28 implies lim,_,., P(4,) = 1. Hence, given § > 0, there is an
ng = ny(g, 6) such that P(4,) > 1 - § whenever n > ny. In other words, if n is suffi-
ciently large, then with high probability (recall, u is the expected value of the X;s)

Sp(w)
n

An:={wesz: -u

U-€<

S|

n
ZX]-SM+€.
j=1

This confirms once more the interpretation of the expected value as (approximate) arith-
metic mean of the observed values, provided that we execute the same experiment ar-
bitrarily often and the results do not depend on each other.

7.1.5 Strong law of large numbers

Proposition 7.1.28 does not imply S,,/n — p in the usual sense. It only asserts the conver-
gence of S,,/n in probability, which, in general, does not imply pointwise convergence.
The following theorem due to A. N. Kolmogorov shows that, nevertheless, a strong type
of convergence takes place. The proof of this result is much more complicated than that
of Proposition 7.1.28. Therefore, we cannot present it in the scope of this book, and we
refer to [Dur19, Section 2.4] or [Ros06, Chapter 5] for a proof.
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Proposition 7.1.30 (Strong law of large numbers). Let X;,X,,... be a sequence of indepen-
dent identically distributed random variables with expected value u = EX;. If S, is defined
by eq. (7.8), then

]P«[we.Q: lim M:u]»:l.

n—oco n

Remark 7.1.31. Givenrandom variablesY;,Y,,...and Y, one says that the Y,;s converge
to Y almost surely, if

lP{nli_{go Y, = Y} = ]P{w €Q: Y}Lrgo Y, (w) = Y(a))} =1.

Thus, Proposition 7.1.30 asserts that S,/n converges almost surely to a random vari-
able Y, which is a constant .

Remark 7.1.32. Proposition 7.1.30 allows the following interpretation. There exists a
subset Q, in the sample space Q with P(Q,) = 1such thatforall w € Qj and all € > 0,
there is an ny = ny(e, w) with

Su(@)

ul<e

whenever n > n,.

In other words, with probability one the following happens: given € > 0, there is
a certain n, depending on w, hence random, such that for n > n; the arithmetic mean
S,/nisin an e-neighborhood of u and never leaves it again.

Let us emphasize once more that S, /n is random, hence S, /n may attain different
values for a different series of experiments. Nevertheless, starting from a certain point,
which may be different for different experiments, the arithmetic mean of the first n
results willbe in (u — &, u + €).

When we introduced probability measures in Section 1.1.3, we claimed that the num-
ber P(A) may be regarded as the limit of the relative frequencies of the occurrence of
the event A. As the first consequence of Proposition 7.1.30, we show that this is indeed
true.

Proposition 7.1.33. Suppose a random experiment is described by a probability space
(R, A, P). Execute this experiment arbitrarily often. Given an event A € A, let r,(A) be
the relative frequency of A in n trials as defined in eq. (1.1). Then almost surely

lim r,(4) = P(4).

Proof. Define random variables X;,X,,... as follows. Set X; = 1if A occurs in trial j,
while X; = 0 otherwise. Since the experiments are executed independently of each other,
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the X;s are independent as well. Moreover, we execute every time exactly the same ex-
periment, hence the X;s are also identically distributed.
By the definition of the X;s,

S
7" =r,(A).

Thus, it remains to evaluate ¢ = EX;. To this end observe that the X;s are B, ,-distributed
with success probability p = P(A). Recall that X; = 1if and only if A occurs in experi-
ment j, and since the experiment is described by (Q, A, P), the probability for X; being 1
is P(A). Consequently, EX; = P(A).

Proposition 7.1.30 now implies that almost surely

. .S,
nILIEO r,(A) = nILrQO o EX; = P(4).

This completes the proof. O

What happens in the case when the X;s do not possess an expected value? Does
then S,,/n converge nevertheless? If this is so, could we take this limit as a “generalized”
expected value? The next proposition shows that such an approach does not work. For
a proof, see [Durl9, Theorem 2.4.5]; see also [Eri73] for further reading.

Proposition 7.1.34. Let X,X,,... be independent and identically distributed with
E|X;| = co. Then it follows that

]P{w €Q: # diverges} =1.

For example, if we take an independent sequence (X;);»; of Cauchy distributed ran-
dom variables, then their arithmetic means S, /n will diverge almost surely.

Remark 7.1.35. Why does one need a weak law of large numbers when there ex-
ists a strong one? This question is justified and, in fact, in the situation described in
this book the weak law is a consequence of the strong one, thus, it is not necessarily
needed.

The situation is different if one investigates independent, but not necessarily iden-
tically distributed, random variables. Then there are sequences X;,X,, ... satisfying the
weak law but not the strong one.?

Let us state two applications of Proposition 7.1.30, one taken from Numerical Math-
ematics, the other from Number Theory.

3 In the case of nonidentically distributed X;s, one investigates if % Z}Ll(Xj - EX;) converges to zero
either in probability (weak law) or almost surely (strong law).
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Example 7.1.36 (Monte Carlo method for integrals). Suppose we are given a quite “com-
plicated” function f : [0,1]" — R. The task is to find the numerical value of

1

J FOO dx = J Jlf(xl,...,xn)dx,,-ndxl.
[0,11" 0 0

For large n, this can be a highly nontrivial problem. One way to overcome this difficulty
is to use a probabilistic approach that is based on the strong law of large numbers.

To this end, choose an independent sequence Uy, U,,... of random vectors uni-
formly distributed on [0,1]". For example, such a sequence can be constructed as fol-
lows. Take independent Uy, U,, ... uniformly distributed on* [0,1] and build random
vectors by U; = (Uy, ..., Uy), Uy = (Upyss - - . Uyy), and so on.

Proposition 7.1.37. As above, let Uy, U,, . .. be independent random vectors uniformly dis-
tributed on [0,1]". Given an integrable function f : [0,1]" — R, with probability one,

1 &
lim © Y f@) = | fooax.
j=1

N—oo N
[o1]"

Proof. Set X; := f (U]-), J =1,2,... By construction, the X;s are independent and iden-
tically distributed random variables. Proposition 3.6.20 implies (compare also with
Example 3.6.23) that the distribution densities of the random vectors U] are given

by

1 ifx e [0,1]",
p(x) = . n
0 ifx¢[0,1]"

As already mentioned in Remark 5.3.5, formula (5.42), stated for a function of two vari-
ables, also holds for functions of n variables, n > 1 arbitrary. This implies

EX = Bf (0 - [ foopeadr= | fonax.
R" (o1
Thus, Proposition 7.1.30 applies and leads to

N
J f(X)dx} :P{A}Eﬂozlvleszxl} =1,
Jj=

18
P{I}Eﬂo 2SO =
j=1 [0,

as asserted. O

4 Use the methods developed in Section 4.4 to construct such Ujs.
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Remark 7.1.38. The numerical application of the preceding proposition is as follows.
Choose independent numbers u?), 1<i<n1<j< N,uniformly distributed on [0, 1]
and set

IR ) i)
Ry(f) := N Zf(u1 el

j=1

Proposition 7.1.37 asserts that Ry(f) converges almost surely to J[o " f(x)dx. Thus,
if N > 1islarge, then Ry (f) may be taken as approximate value for J[o " f(x)dx.
If we apply Proposition 7.1.37 to the indicator function of a Borel set B ¢ [0,1]", that

is, we choose f' = 1 with 1 as in Definition 3.6.16, then with probability 1 it follows that

[ <N:TjeBy

N R S
woh(8) = | 1px= Jim 53 1a(%) = fim =

[0.1)"

This provides us with a method to determine the volume vol, (B), even for quite “com-
plicated” Borel sets B ¢ R".

Example 7.1.39. A way to approximate r7/4 by the described method is as follows: draw
a quadrant Q of a circle with radius 1 inside a square S of side length 1. Next choose
independently points u, Uy, . . ., u,, uniformly distributed in [0,1]%. Then, as n — oo,

i< n:ueQ)
| <n;u; € S}

converges to vol,(Q)/vol,(S) = /4. See Fig.7.1.

Figure 7.1: Asn — oo, he proportion of the randomly chosen points inside the quadrant Q converges to
/4. In the above figure, there are 26 of the 32 points inside Q. This gives 0.8125 as an approximation of
/4 ~ 0.7854.

Example 7.1.40 (Normal numbers). As we saw in Section 4.3.1, each x € [0,1) admits a
representation as binary fraction x = 0.xX, ... with x; € {0, 1}. Take some fixed x € [0,1)
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with binary representation x = 0.xyX, ... Then one may ask whether in the binary rep-
resentation of x one of the numbers 0 or 1 occurs more frequently than the other. Or do
both numbers possess the same frequency, at least on average?

To investigate this question, for n € IN set

ag(x) =|{fk<n:x =0} and a,ll(x) =[k<n:ix =1, x=0xx...

Thus, ag (x) is the frequency of the number 0 among the first n positions in the represen-
tation of x.

Definition 7.1.41. Anx € [0, 1) is said to be normal (with respect to base 2) if

im @0 _ 1

n—oco n n—oco n 2"

In other words, a number x € [0, 1) is normal with respect to base 2 if, on average, in its
binary representation the frequency of 0, and hence also of 1, equals 1/2. Are there many
normal numbers as, for example, x = 0.0101010.. ., or are there maybe only a few? The
next proposition gives the answer.

Proposition 7.1.42. Let P be the uniform distribution on [0,1]. Then there is a subset
M < [0,1) with P(M) = 1such that all x € M are normal with respect to base 2.

Proof. Define random variables X : [0,1) - R, k = 0,1,..., by X, (x) := x; whenever
X = 0.X1X, ... Proposition 4.3.3 tells us that the X, s are independent with P{X; = 0} = 1/2
and P{X;, = 1} = 1/2. Recall that the underlying probability measure P on [0,1] is the
uniform distribution. By the definition of the X;s it follows that

Sp(X) = X 00) + - + Xy (x) = [{k < n: X (x) = 1}] = ap(x) .

Since EX; = 1/2, Proposition 7.1.30 implies the existence of a subset M < [0,1) with
P(M) = 1such that for x € M it follows that

1
a,(x
lim 2% 000 gy 1
n—-oo n n—oo n 2
Since ag xX)=n- a}l (x), this completes the proof. O

Remark 7.1.43. The previous considerations do not depend on the fact that the base
of the representation was 2. It extends easily to representations with respect to any
base b > 2. Here, the definition of normal numbers has to be extended slightly. Fix
b > 2. Each x € [0,1) admits the representation x = 0.x;X, ... where Xj € {0,...,b -1}
provided that x = Y2, Z—i To make this representation unique, we do not allow rep-
resentations x = 0.xyX,... where for some k, ¢ N we have x, = b — 1 whenever
k > k.
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Then a number x is said to be normal with respect to the base b > 2 if for all

£=0,....,b-1,
_W=snixg=8 1
nhﬂr(r)lof =5 X =0x%5...

Similar methods as used in the proof of Proposition 7.1.42 show that there is a set
M, < [0,1] with P(M},) = 1 such that all x € M, are normal with respect to base b.
Letting M = ()2, M}, then property (5) (Boole’s inequality) in Proposition 1.2.1 easily
gives P(M) = 1. Numbers x € M are completely normal, which says that they are
normal for any base b > 2. Again we see that with respect to the uniform distribution
on [0,1] almost all numbers are completely normal.

Summary: Laws of large numbers are among the most important assertions in Probability Theory.® Verbally
said, these laws assert the following: if x;, X,, . .. are the random results of identical experiments, obtained
independently of each other, then the sequence of arithmetic means (x; + - -+ + x,)/n converges in a weak,
as well as in a strong sense, to the expected value of the x;s, provided the expected value exists.

In particular, these laws justify regarding the probability IP(A) of an event A as the limit of the relative
frequencies r,(A) of its occurrence, as we claimed in Section 1.1.3. We emphasize once more, the arithmetic
mean, as well as the relative frequency, is random, thus may be different in different trials, but the expected
value and P(A) are both fixed nonrandom real numbers.

7.2 Central limit theorem

Why does the normal distribution play such an important role in Probability Theory and
why are so many observed random phenomena normally distributed? The reason for
this is the central limit theorem, which we are going to present in this section.

Consider a sequence of independent and identically distributed random variables
(X))j>1 with finite second moment. As in eq. (7.8), let S, be the sum of X, ..., X,,. For exam-
ple, if X; is the loss or gain in the jth game, then S, is the total loss or gain after n games.
Which probability distribution does S, possess? Theoretically, this can be evaluated by
the convolution formulas stated in Section 4.5. But practically, this is mostly impossible;
imagine, we want to determine the distribution of the sum of 100 rolls with a fair die.
Therefore, one is very interested in asymptotic statements about the distribution of S,,.

To get a clue about possible asymptotic distributions of §,, take independent
B, ,-distributed X;s. In this case, the distribution of S, is known to be B, ,.

For example, if p = 0.4 and n = 30, then P{S,, = k} = Bn’p({k}), k=0,...,30, may be
described in Fig. 7.2.

5 Sometimes it is said that the strong law of large numbers is one of the three pearls in Probability
Theory. The two other are the central limit theorem and the so-called law of iterated logarithm, shortly
discussed in Remark 7.2.16.
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Figure 7.2: Probability mass function of B, ,, n = 30 and p = 0.4.

The peak of the diagram occurs at k = 12, which is the expected value of S3,. Enlarg-
ing the number of trials leads to a shift of the peak to the right. At the same time, the
height of the peak becomes smaller.

The shape of the diagram in Fig. 7.2 lets us suggest that sums of independent, identi-
cally distributed random variables are “almost” normally distributed. If this is so, which
expected value and which variance will the approximating normal distribution possess?

Let us investigate this question in the general setting. Thus, we are given a sequence
(X))j>1 of independent identically distributed random variables with finite second mo-
ment and with ¢ = EX; and o = VX; > 0.1f, as before, S,, = X; + --- + X,,, then

ES,=nu and VS, = no*.

Consequently, if we conjecture that S, is “approximately” normally distributed, then the
normalized sum (S, — nu)/o+/n should be “approximately” A(0, 1)-distributed. Recall
that Propositions 5.1.38 and 5.2.15 imply

S —ny) (Sn—ny>
E[2—F)=0 d v(Z—)=1
( ovn an avn

The question about the possible limit of the normalized sums (S, — nu)/o+/n remained
open for long time. In 1718 Abraham de Moivre investigated the limit behavior for a spe-
cial case of binomial distributed random variables. As limit he found some infinite se-
ries, not a concrete function. In 1808 the American scientist and mathematician Robert
Adrain published a paper where for the first time the normal distribution occurred.
Avyear later, independently of the former work, Carl Friedrich Gaufd used the normal dis-
tribution for error estimates. In 1812 Pierre-Simon Laplace proved that the normalized
sums of independent binomial distributed random variables approximate the normal
distribution. Later on, Andrei Andreyevich Markov, Aleksandr Mikhailovich Lyapunov,
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Jarl Waldemar Lindeberg, Paul Lévy, and other mathematicians continued the work of
De Moivre and Laplace. In particular, they showed that the normal distribution occurs
always as a limit, not only for binomial distributed random variables. The only assump-
tion is that the random variables possess a finite second moment. We refer to the very
interesting book [Fis11] for further reading about the history of normal approximation.

It remains the question in which sense does (S, —nu)/c+/n converge to the standard
normal distribution. To answer this, we have to introduce the concept of the convergence
in distribution.

Definition 7.2.1. LetY;,Y,,...and Y be random variables with distribution functions Fy, F,, ... and F, re-
spectively. The sequence (V;,),> converges to Y in distribution provided that

nILrgo F,(t) =F(t) forallt e R atwhich F is continuous. (7.9)

In this case, one writes Y, 2, Y.
Remark 7.2.2. An alternative way to formulate property (7.9) is as follows:
nlLrgo P{Y,<t}=P{Y <t} forallte RwithP{Y =¢}=0.

Without proof, we state two other characterizations of convergence in distribution.

Proposition 7.2.3. One has Y, 2y if and only if for all bounded continuous functions
f:R->R

Am Ef (Yy,) = Ef(Y).
Furthermore, this is also equivalent to

lim sup P{Y, € A} < P{Y € A}

n—-oo

for all closed subsets A € R, or also to
liminfP{Y, € G} = P{Y € G}
n—oo
whenever G € R is an open set.
Remark 7.2.4. Note that in general Y, . Y does not imply
lim P{Y,, € B} = P{Y ¢ B}
n—oo

for all Borel sets B < R. For example, if P{Y, = 1/n} = 1and P{Y = 0} = 1, then the
Y,s converge to Y in distribution (check this), but if B = (0, 1), then P{Y,, € B} does not
converge to P{Y ¢ B}.
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If the distribution function of Y is continuous, that is, we have IP{Y = t} = 0 for all
D . . . . o
t € R, then Y, — Y is equivalent to lim,_,, F,(t) = F(t) for all t € R. Besides, in this
case, the type of convergence is stronger as the next proposition shows.
Proposition 7.2.5. Let Y,,Y,,... and Y be random variables with P{Y = t} = 0 for all
D .. o . ;
t € R Then Y, — Y implies that the distribution functions converge uniformly:

lim sup|P{Y, <t} -P{Y <t}| =0, hencealso
=00 teRr
lim sup|P{a<Y, <b}-P{a<Y <bh}|=0.
n—-oo a<b
We have now all notations and definitions that are necessary to formulate the cen-
tral limit theorem. Mostly, this theorem is proved via properties of the so-called charac-

teristic functions (see Chapter 3 of [Dur19] for such a proof). For alternative proofs using
properties of moment generating functions, we refer to [Rss14] and [Gha19].

Proposition 7.2.6 (Central limit theorem). Let (X;);., be a sequence of independent identi-
cally distributed random variables with finite second moment. Let u be the expected value
of the X;s and let o > 0 be their variance. Then for the sums S, = X+ - -+X,, it follows that

S,-nu D
Z. 7.10
ovn (7.10)

Here Z is an N (0, 1)-distributed random variable.

Since the limit Z in statement (7.10) is a continuous random variable, Proposi-
tion 7.2.5 applies, and the central limit theorem may also be formulated as follows.

Proposition 7.2.7. Suppose (X;);>1 and S, are as in Proposition 7.2.6. Then it follows that

t
. S, —nu 1 ey
lim su ]P{"—st]»——Je”dx:O and (7.11)
n—00 te]}g \n \/27'[700
S 1 i
. - nu -x*/2
lim su ]P{agn—sb}——Je dx|=0. (7.12)
n—co a<g G\/ﬁ V2 2

Remark 7.2.8. Recall that ® denotes the distribution function of the standard normal
distribution as introduced in eq. (1.70). Thus, another way to write eq. (7.11) is as follows:
if F,(t) = P{S, < t} denotes the distribution function of S,,, then

Sn— it }_ ‘_,
]P{ S S e 0 01

Example 7.2.9. Suppose X;,X,, ... are independent Pois;-distributed. Hence, their sum
S, = X1 +--- + X, is a Pois,-distributed random variable, and

sup|Fp(ovnt + nu) — (t)| = sup
teR teR
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k
n _
F() =P{S, <t}= ) Tk "
O<ks<t
Since u = 0 = A =1, eq. (7.13) tells us that (compare Figure 7.3)

k
FGrtem= Y et — o). (7.14)

| n—oo
O<k<+nt+n

Moreover, the convergence takes place uniformlyin ¢t € R.
1.0

0.8+ -

I f L L L 1 L L L L L L L L 1 L L L L 1

-2 -1 I 1 2

Figure 7.3: The approximation of ®(t) in eq. (7.14) with n = 30.

Our next objective is another reformulation of eq. (7.12). If we set @’ = ag+n + nu
and b' = ba+/n + ny, then these numbers depend on n € N. But since the convergence
in eq. (7.12) is uniform, we may replace a and b by a’ and b’, respectively and obtain

- b’ —nu
lim sup|P{a’ <S, <b' —IP{a Wz« H:o. 7.15
nﬁooa,}b), { n J ovn ovn (7.15)

Here, as before, Z denotes a standard normally distributed random variable. For a final
reformulation, set

Z,:=oVnZ+nu.
Then eq. (7.15) is equivalent to

lim sup|P{a’ <S, <b'}-P{d’ <Z, <b'}|=0. (7.16)
=00 gicy
By Proposition 4.2.3, the random variables Z, are A (ny, na?)-distributed, which allows
us to interpret eq. (7.15), or eq. (7.16), as follows. If 4 = EX; and o’ = VX;, then for large n,
the sum S,, is “approximately” A (nu, no®)-distributed.
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In other words, for —oo < a < b < co it follows that

b\ fa-ny
]P{assnsb}~¢< a(n) ¢<70\Fn )

Interpretation: We emphasize once more that the central limit theorem is valid for all
sequences of independent identically distributed random variables possessing a second
moment. For example, it is true for X;s that are binomial distributed, for X;s being expo-
nentially distributed, and so on. Thus, no matter how the random variables with second
moment are distributed, all their normalized sums possess the same limit, the normal
distribution. This explains the outstanding role of the normal distribution.

The deeper reason for this phenomenon is that S,, may be viewed as the superpo-
sition of many “small” independent errors or perturbations, all of the same kind.® Al-
though each perturbation is distributed according to Py, , the independent superposition
of the perturbations leads to the fact that the final result is approximately normally dis-
tributed. This explains why so many random phenomena may be described by normally
distributed random variables.

Remark 7.2.10 (Continuity correction). A slight technical problem arises in the case of
discrete random variables X] Then the S,;s are discrete as well, hence their distribution
functions F,, have jumps. If these noncontinuous functions F, approximate the continu-
ous function @, then certain errors occur at the points where the jumps of F,, are (com-
pare Figure 7.4).

//Maximal error

f s L L L 1 L L L L L L L L 1 L L L L 1

-2 -1 L 1 2

Figure 7.4: A sequence of noncontinuous functions (here a sequence of distribution functions of binomial
random variables) approximates the continuous function ®.

6 The central limit theorem also holds for not necessarily identically distributed random variables pro-
vided that all “errors” become uniformly small. That is, one has to exclude that certain errors are domi-
nating the others.
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To understand the problem, assume that the X;s possess values in Z, then S, is also
Z-valued, hence for any 0 < h <1, and all integers k < ¢, it follows that (see Figure 7.5)

Plk<S,<¢}=P{k-h<S,<¢+h}.

k-1 k 14 {41
k—h L+ h

Figure 7.5: If S, has values in Z, then forany0 < h < 1onehask < S, < ¢ifandonlyifk —h < S, < €+h.
Thus, both events possess the same probability.

Consequently, for each such number h, the value

€+h—ny> (k—h—nu)

o ——F ) ———*—

( ovn ovn

may be taken as normal approximation of the above probability. Which number h < 1

should be chosen?
To answer this question, observe the following. If k < m < ¢, then

Plk<S, <&} =Plk<S, <m}+Pim+1<S§, <¢},
which, after choosing h in [0, 1), is approximated by
€+h—ny> <m+1—h—ny> <m+h—nu> <k—h—ny>
P -0 Pl —— |- — |.
< ovn ovn " ovn ovn
Thus, in order to get neither an overlap nor a gap between m+1-h—-nuand m+h-ny,
it is customary to choose h = 0.5. This leads to the following definition.

Definition 7.2.11. Suppose X;, X5, ... are independent identically distributed with values in Z. Then the
corrected normal approximation is given by

€+0.5-ny k—0.5-ny
Pk<S, <}~ ——— |- — ).
sy =0 LI ) o 0T )

Itis called the continuity correction or histogram correction for the normal approximation. In a similar
way, one corrects the approximation for infinite intervals by

]P{SHSZ}:¢<€+O.5—n//>

ovn
and by

4 o K=05-—nu\ _(ng—k+05
P{S, > k} =1 CD(—U\/E >_¢(—0W > (7.17)



354 —— 7 Limittheorems

The next result tells us that the continuity correction is only needed for small values of
nx=1

Proposition 7.2.12. For allx e Rand h € R, it follows that

‘¢<x+h—ny>_¢<x—ny)‘ - |h|

ovn ovn /|~ ov2rm

Proof. The mean value theorem of Calculus implies the existence of an intermediate
value & in (XM XHRIZTUy o o that

gyn ’ ovn
_ _ !
’®<X+h ny)_q)(x ny)‘:”l'tb(f).
ovn ovn ovn
Using
1 gp_ 1
¢E) = ——=e s ——
Vi SV
this proves the asserted estimate. O

Remark 7.2.13. An application of Proposition 7.2.12 with x = k and/or x = ¢, and with
h = £0.5, shows that the improvement by the continuity correction is at most of order
n~¥2, Thus, it is no longer needed for large n.

Example 7.2.14. Roll a fair die n times. Let S, be the sum of the n rolls. In view of
eq. (7.16), this sum S,, is approximately N (77", %")-distributed. In other words, it follows
that

b
. S, —7n/2 1 2/
llmlp{as"—sb}:—Jex/ dx = ®(b) — ®(a).
n—o0 v/35n/12 \/Zna ®) (@

Moreover, this convergence takes place uniformly for all a < b. Therefore, at least for
large n, the right-hand side of the last equation may be taken as an approximate value
of the left-hand one.

At first, we consider an example with a small number of trials. We roll a die three
times and ask for the probability of the event {7 < S; < 8}. Let us compare the exact
value

P{7383s8}:%=0.1€

with that we get by applying the central limit theorem. Without continuity correction,
the approximate value is

8- 21/2 ) ( 7-21/2 )
o =2 ) o ——=L2 ) < 0.08065,
( \3-35/12 \3-35/12
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while an application of the continuity correction leads to

q)<8+0.5—21/2> _®<7—0.5—21/2
V3 -35/12 v3-35/12
We see an improvement using the continuity correction.

Next we treat an example with large n. Let us investigate once more Example 7.1.6,
but this time from the point of view of the central limit theorem. Choose again n = 10°,

> =~ 0.16133.

100 V12 _ 100 V2 .
~ V3500 And b = == Then it follows that
b
P(3400 < 5, < 3600} = —— je*"zﬂ dx ~ 0.93592
o Var )

As we see, the use of the central limit theorem improves considerably the bound 0.709
obtained by Chebyshev’s inequality.

Example 7.2.15. The aim of this example is to apply the central limit theorem for the
investigation of the asymptotic behavior of random walks as they were introduced in
Example 4.1.7 and Section 5.5. Recall that we suppose S, = 0 and, if n > 1, then §,, =
X1+ --+X,, where the X;s are independent and attain the values —1 and 1 with probability
1 - p and p, respectively. In eqs. (5.26) and (5.37), we got

ES,=n(2p-1) and VS, =4np(1-p).

Consequently, the central limit theorem leads in this case to the following: for all real
numbers a < b, we have

. S, —n@p-1) }
I§ _— =®(b) - P(a).
nLrQOIP{a < D) <b (b) — @(a)

In the case of a symmetric walk, that is, p = 1/2, this simplifies to

b
S 1 2
lim]P{as—”sb}chb —®(a =—Je"/2dx.
Aim i (b) - ®(a) _zﬂa

For instance, if a = -2 and b = 2, then it follows that

2

1 2
lim P{-2vii < S, < 2v0 =—Jex/2dx:0.954.
n—oo { " } V2

Keep in mind that the possible values of S,, are between —n and n. But in reality, if n is
large enough, then with probability greater than 0.95, the value of S,, will be in the much
smaller interval [-2+/n, 2+/n] (see Figure 7.6 for a graphically presentation of this fact).
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Figure 7.6: Two independent symmetric random walks compared with t — +2 /.

On the other hand, if we ask for the probability that S, is between —+/n and vn, we
obtain

1
J e X2 dx ~ 0.6827.

1
lim P{-Vvn<S, < Vn} = —
lim P n o
Maybe more impressive than the previous statements is the following fact: for any ¢ > 0,
it holds that

1 [ e
lim P{S, > cvn} =1-®(c :—Jet/zdt.
Aim P{S, } (0) \/EC

Remark 7.2.16. More precise statements about the asymptotic behavior of symmetric
random walks are available. For example, the central limit theorem implies

N
P{limsup 2 > c]» >0 (7.18

{ n—>oop \/ﬁ )
for any ¢ > 0. A zero-one law tells us that the probability in (7.18) is not only positive,
but equals 1. This leads to

S S
P1limsup =& = } =1 and ]P{liminf—" =- } =1.
{ nﬂoop \/ﬁ * n—oo \/ﬁ *
Thus, v/n is not the right scaling factor for S,. Some other, bigger, sequence is needed.
On the other hand, a scaling of S,, by n is also not appropriate. Why? Observe that
the strong law of large numbers asserts that

o 5 o} -1.

n—oo n
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Hence, an appropriate scaling of the S,;s should be a sequence lying between +/n and n.
Surprisingly, the correct sequence of normalization is 4/2nloglog n. The law of iterated
logarithm due to Hartman and Wintner (see, e. g., [Bil12, Theorem 9.5], or [Kle20]) im-
plies

]P{lim su liminfs—" = —1} =1.

s~ =P e
—_— = 1 = ]P =
n—>oop 2nloglogn n—co 4/2nloglogn

Consequently, for any € > 0 one gets
P{S, = (1-¢)y/2nloglogni.o.} =1,

while

P{S, = (1+¢&)y2nloglogni.o.} =0.

Example 7.2.17 (Round-off errors). Many calculations in a bank, for instance, of interest,
lead to amounts that are not integral in cents. In this case the bank rounds the calculated
value either up or down, whether the remainder is larger or smaller than 0.5 cent. For
example, if the calculations lead to $12.837, then the bank transfers $12.84. Thus, in this
case, the bank loses 0.3 cent. This seems to be a small amount, but if, for example, the
bank performs 10° calculations per day, the total loss or gain could sum up to an amount
of $5000.00. But does this really happen?

Answer: Theoretically, the rounding procedure could lead to huge losses or gains of
the bank. But, as the central limit theorem shows, in reality such a scenario is extremely
unlikely. To make this more precise, we use the following model. Let X; be the loss or
gain (in cents) of the bank in calculation j. Then the X; are independent and uniformly
distributed on [-0.5,0.5]. Thus, the total loss or gain after n calculations equals S, =
X + -+ + X,,. By Propositions 5.1.27 and 5.2.25, we know that

1
u=EX; =0 and GZZVXlzﬁ,

hence, if a < b, the central limit theorem implies

lim P

n—oo

for b\/ﬁ}zife—xz/zdx_

— <S, < —
ViZ izl ~ Ven )

For example, ifn = 106, then taking a = V12 and b = oo, this leads to

P{S, > $10} = P{S, > 10° cents} ~

gl-
S

[ee]
j e ™72 dx ~ 0.00026603,
N
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which is an extremely small probability. By symmetry, it also follows that

V12
P(S, < -$10} ~ —— j ™2 dx = 0.00026603
"= vor
In a similar way, one obtains
P{S, > $1} = 0.364517, P{S, > $2} = 0.244211,

P{S, > $5} ~ 0.0416323 and P{S, > $20} ~ 2.1311 x 1072,

This shows that even for many calculations, in our case 10°, the probability for a loss
or gain of more than $5 is very unlikely. Recall that theoretically an amount of $5000.00
would be possible.

Example 7.2.18. Suppose n people choose independently of each other an integer in
{0, ..., 9}. Thereby, each of the 10 numbers is equally likely. Of course, the expected value
of the chosen numbers is u = 9/2. Moreover, the variance of a single choice can be eval-
uated by

1 < 33

2 2

0" = — g k—-9/2)" = —.
10 k:O( 9/2) 4

Let S,, be the sum of the chosen n numbers. Then the strong law of large numbers yields
that with probability 1,

We ask now how far or near we may expect S,,/n to 9/2, of course, depending on n.
To answer this question, we apply the central limit theorem. It asserts that, given
a<bh,

Su-9m2 o
P{QSZW Sb} ~¢’(b) (D(a)

Equivalently, this is

av33 S, 9 _bv33] _
p{ L2 gz-isﬁ}&(b)—dn(a).

Setting a = —2¢/+/33 and b = 2¢/+/33, an application of Corollary 4.2.5 leads to

IP{ ‘%"— gl < %} N @(%) _¢><_%> > 0.9973

provided that 2¢//33 > 3, that is, if ¢ > 8.17.
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We refer to Problem 7.8 for a general approach to the question treated in this
example.

Special cases of the central limit theorem

Binomial distributed random variables. In 1738 De Moivre, and later on in 1812 Laplace,
investigated the normal approximation of binomial distributed’ random variables. This
was the starting point for the investigation of general central limit theorems. Let us state
their result.

Proposition 7.2.19 (De Moivre-Laplace theorem). Let the X;s be independent B ,-dis-
tributed random variables. Then their sums S, = X, + - - - + X,, satisfy

b
. S, —np 1 X2/
hmlP{as"—sb}z—Jex/dx. (7.19)
n—co vnp(1-p) v )

Proof. Recall that for a B; ,-distributed random variable X, we have y = EX = p and
0% = VX = p(1 - p). Consequently, Proposition 7.2.7 applies and leads to eq. (7.19). O
Remark 7.2.20. By Corollary 4.6.2, we know that S, = X + -+ + X, is B, ,-distributed.
Consequently, eq. (7.19) may also be written as
. b
; n\ k n-k /2
] (Rt a-pr*=— J dx,

n—oo
eIn,a,b 27[ a

where

k-np }
Lap=1k=20:a< ———— < b;.
e { np(L—p)

Another way to formulate the De Moivre-Laplace theorem is as follows. For “large” n,
S, is approximative A (np, np(1 — p))-distributed. That is, if 0 < £ < m < n, then

é(g)pk(l—p)n_kch< \/% >_q>< % ) (7.20)

Since the sums S, are integer-valued, the continuity correction should be applied for n
small, that is, on the right-hand side of eq. (7.20) the numbers m and ¢ should be replaced
by m + 0.5 and by ¢ — 0.5, respectively.

Example 7.2.21. Play a series of games with success probability 0 < p < 1. Let a € (0,1)
be a given security probability, and m € IN is some integer. How many games does one

7 De Moivre investigated sums of By;j-distributed random variables while Laplace treated By -
distributed ones for general 0 < p < 1.
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have to play in order to have with probability greater than or equal to 1 — a at least m
successes?

Answer: Define random variables X; by setting X; = 1 when winning game j, while
X; = 0 in the case of losing it. Then the X;s are independent and B ,-distributed. Hence,
if S, = X; + --- X),, then the above question may be formulated as follows. What is the
smallest n € IN for which

P{S,2m}>1-a? (7.21)

By Corollary 4.6.2, the sum S, is B, ,-distributed and, therefore, the estimate in (7.21)
transforms to

n

Y (Z)pk A-p"*>1-a. (7.22)

k=m

Thus, the “exact” answer to the above question is as follows. Choose the minimaln > 1
for which estimate (7.22) is valid.

Remark 7.2.22. For large m, it may be a difficult task to determine the minimal n satis-
fying estimate (7.22). Therefore, one looks for an “approximate” approach via Proposi-
tion 7.2.19. Rewriting estimate (7.21) as

{ S,—np . _m-np }>1—a
Vnp-p) ~ npd-p)J)

an “approximate” condition for n is

1_asl_¢<ﬂ> :@<M>,
vnp(1-p) vnp(1-p)
Given f8 € (0,1), let us define® zp by ®(zp) = B. Consequently, an approximate solution of

the above question is to choose the minimal n > 1 satisfying

np-m

— 27 ,.
vnp(1-p)

For “small” n, we have to modify the previous approach slightly. Here we have to use
the continuity correction. In view of eq. (7.17), the condition is now

(7.23)

1_a5¢<w>,

vnp(1-p)

8 Later on, in Proposition 8.4.3, these numbers z; will play an important role; compare also with Defi-
nition 8.4.8.
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leading to
np-m+0.5
—2>7,. (7.24)
Vnp(T-p) ‘
Let us explain Remark 7.2.22 with the help of a concrete example.

Example 7.2.23. Find the minimal n > 1such that, rolling a fair die n times, one observes
with probability greater than or equal to 0.9 at least 100 times the number 6?
For the “exact” answer choose the minimal n > 1 satisfying

3G e

Numerical calculations give that the left-hand side equals 0.897721 if n = 670, and it
is 0.900691 if n = 671. Thus, in order to observe, with probability greater than 0.9, the
number 6 at least 100 times, one has to roll the die at least 671 times.

Let us compare this result with that we obtained by the approximation approach.
First, we approximate S, directly, that is, without applying the continuity correction.
Here estimate (7.23) says that we have to look for the minimal n > 1 satisfying

n
F-m  n-600
6 = > 274 = 1.28155. (7.25)
1.5, von o
6 6
Since
665 — 600 666 — 600
2277 2112724 and  ———— =1.4373,
/5665 \/5-666

the smallest n satisfying estimate (7.25) is 666.
Applying the continuity correction, by estimate (7.24), condition (7.25) has to be re-
placed by

§-m+05 n_600+3
15, V5n
6 6

> 20.9 = 128155 .

The left-hand side equals 1.27757 for n = 671 and 1.29387 if n = 672. Consequently, this
type of approximation gives the (more precise) value n = 672 for the minimal number
of necessary rolls of the die.

Poisson distributed random variables. Let X;,X,,... be independent and Pois;-dis-
tributed. By Propositions 5.1.16 and 5.2.22, we know

IEXl = A and VXl = )l .

Thus, in this case Proposition 7.2.7 reads as follows.
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Proposition 7.2.24. Let (X;);., be independent Pois,-distributed random variables. Then
the sums S, = X; + - - - + X,, satisfy

b
S, —nA 1 _x
lim P{as”—sb}z—Jex/de. (7.26)
n—00 vnA \/Zna

Remark 7.2.25. By Proposition 4.6.5, the sum S, is Pois;,-distributed, hence eq. (7.26)
transforms to

k
lim Z @) et o L J e X2 g, (7.27)
n—00 k! 27

kejn,a,b a

where

]n’a’b::{kE]NO:aSk_rMSb]».

Another way to express this is as follows. If 0 < £ < m < co, then

o))

Remark 7.2.26. Choosing in eq. (7.27) the numbers as a = —co, b = 0, and A = 1, we get

n k 1

2n nk 1 bn P
lim [e™" = J e /de‘ =0,
n—oo k:0 27-[ 2
hence, because of
1 vn
lim — J e 2dx =1
n—oo \/ﬁ ES

we obtain
. _n n
nlLl’Eloe kz—() Kk~

Gamma distributed random variables. Finally, we investigate sums of gamma distributed
random variables. Here the central limit theorem leads to the following result.
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Proposition 7.2.27. Let X;,X,,... beindependentT, g-distributed random variables. Then
their sums S, = X, +--- + X, satisfy

b

. S, - naﬁ 1 —x%/2
hm]P{as”—sb}:—Jex/dx. (7.28)
n—co anp v

Proof. Propositions 5.1.28 and 5.2.26 tell us that the expected value and the variance of
the X;s are given by y = EX = aB and 0 = VX, = a’p. Therefore, eq. (7.28) follows by
an application of Proposition 7.2.7. O

Remark 7.2.28. Note that Proposition 4.6.4 implies that S, is T, s-distributed. Thus, set-
ting
In,a,b:z {XZO:aS )ﬂ Sb},

anp

eq. (7.28) leads to

b
lim _ 1 J XM qx = 1 J e ™2y
n—co q"AT(np) . var )

nab

Another way to express this is as follows. If 0 < a < b, then

b
oy | e ) (g )

a

Two cases of Proposition 7.2.27, or Remark 7.2.28, are of special interest.
(@ Forn=>11letS,bea Xﬁ-distributed random variable. Then it follows that

b

S, —n 1 2
lim]P{as n sb}:—Jex/zdx.
no0 N N

a

Another way to express this as follows: if the S,;s are )(,%-distributed, thenfort € R
and n sufficiently large,

t

<L [ a2y
P{sngx/ﬂt+n}~mJe dx = o(t).

In Fig.7.7, one sees how good the approximation of @ is even for small n.



364 —— 7 Limittheorems

P

3 2 1 [ 1 2 3

Figure 7.7: The normalized and shifted distribution function P{S, < v2nt + n} of a,(,f—distributed random
variable S,. We chose n = 5 (upper graph at zero) and n = 16 (middle graph), in comparison with the
approximated ®(t) (lower graph).

(b) If S, is distributed according to the Erlang distribution E, ,,, then we get

b
. AS, - n 1 —x%/2
hmlP{as n sb}:—JeX/dx.
n—oo 1/n 1/2ﬂa

For A = 1, this implies (set a = —co and b = 0) that

n 0
m LJx""le""dx: L J e X2 dx = 1
2 2

—00

Additional remarks

(1) We play a series of the same game. Suppose in each game we may lose or win

a certain amount of money. A natural condition for these games (among friends) is

whether it should be fair. But what does it mean that a series of games is fair? Is this the

case

(i) if the average loss or gain in each single game is zero, or

(ii) if the probability that, after n games, the total loss or gain is positive, tends to 1/2 as
n tends to infinity?

The mathematical formulation of the previous question is as follows. Let X;, X,, ... de-
note the win or loss in the first game, the second, and so on. Then the X]-s are independent
identically distributed random variables. The above question reads now as follows. Is
the game fair

(i) if the expected value u = EX; satisfies u = 0, or
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(i) ifthe sum S, := X; +--- + X, fulfills
Y}Lr& P{S, <0} = nlLrgo P{S, >0} = %? (7.29)

In the sequel, we have to exclude the trivial case ]P{Xj = 0} = 1, that is, in each game one
neither wins nor loses some money. Of course, then eq. (7.29) does not hold.

At a first glance, one might believe that the two possible definitions of fairness de-
scribe the same fact. But this is not so as one may see in an example in [Fel68, Chapter X,
Section 4]. There one finds a sequence of independent random variables X;, X,, ... with
EX; = 0, however,

lim Pfs, <0} =1.

In particular, this tells us that, in general, condition (i) does not imply condition (ii).
The next result clarifies the relation between these two definitions of fairness in the
case that the random variables possess a finite second moment.

Proposition 7.2.29. Let X;,X,,... be independent and identically distributed with ex-

pected value . Assume P{X; = 0} < 1.

1. Then eq.(7.29) always implies p = 0. That is, a fair game in the sense of (ii) also
satisfies condition (i).

2. Conversely, if E|X,|* < oo, then (ii) is a consequence of (i). Hence, assuming the exis-
tence of a second moment, conditions (i) and (ii) are equivalent.

Proof. We prove the contraposition of the first statement. Thus, suppose that (i) does not
hold, that is, we have u # 0. Without losing generality, we may assume u > 0. Otherwise,
investigate —X;, -X,, ... An application of Proposition 7.1.28 with & = /2 yields

Su

n K

lim ]P{

n—-oo

U
—r=1. 7.
< 2} (7.30)
Since |SW" — u| < /2 implies S—n" > u/2, hence S, > 0, it follows that

n

p|2
n

Consequently, from eq. (7.30) we derive

-u

s%}s]P{SnzO}.

lim P{s, > 0} =1,

hence eq. (7.29) cannot be valid. This proves the first part of the proposition.
We prove now the second assertion. Thus, suppose u = 0 as well as the existence of
the variance ¢® = VX;. Note that g* > 0. Why? If a random variable X satisfies EX = 0
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and VX = 0, then necessarily P{X = 0} = 1. But, since we assumed P{X; = 0} < 1, we
cannot have g% = VX; = 0.
Thus, Proposition 7.2.7 applies and leads to

. T Sn _ OO_XZ/Z _1
nan.}OIP{SHZO}—nlLrgO{G\/ﬁ20}_—Je dx_i.

The proof for P{S,, < 0} — 1/2 follows in the same way, thus eq. (7.29) is valid. This
completes the proof. O

(2) How fast does S(';_—f’;f' converge to a normally distributed random variable? Before
we answer this question, we have to determine how this speed is measured. In view of
Proposition 7.2.7, we use the following quantity depending on n > 1:

sup
teR

t
S —nu } 1 J /2
Py Sty-— | e dx|.
{ ovn var )

Doing so, the following classical result holds (see [Dur19, Section 3.4.4], for a proof).

Proposition 7.2.30 (Berry-Esséen theorem). Let X;,X,, ... be independent identically dis-
tributed random variables with finite third moment, that is, with E|X;|* < co. If u = EX;
and o* = VX, > 0, then it follows that

sup

t
S, - _ ElX, > _
]P{ 1 nust}—ijexz/zdx‘g0|—;|nl/z. (7.31)
teR o

ovn \/ﬂ_m

Here C > 0 denotes a universal constant.

Remark 7.2.31. The order n” "2 in estimate (7.31) is optimal and cannot be improved.
This can be seen by the following example. Take independent random variables X;, X,, . ...
with IP{Xj =-1}= ]P{Xj =1} = 1/2. Hence, in this case u = 0 and ¢® = 1. Then one has

h,{L‘ infn'/? sup >0. (7.32)

0 teR

t
S, 1 2
SERIET U
{\/ﬁ Vo )

Assertion (7.32) is a consequence of the fact that, if n is even, then the function t —
]P{f—"m < t} has a jump of order n"Y2 at zero. This follows by the calculations in Exam-
ple 4.1.7. On the other hand, t — ®(t) is continuous, hence the maximal difference be-
tween these two functions is at least half of the height of the jump.

Remark 7.2.32. The exact value of the constant C > 0 appearing in estimate (7.31) is, in
spite of intensive investigations, still unknown. At present, the best-known estimates are
0.40973 < C < 0.4748.
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Summary: The central limit theorem belongs to the most important mathematical results. It explains why so
many random observations in nature, community or business, etc., are distributed according to the normal
distribution.

The precise statement of the central limit theorem is as follows: if X;, X, . .. are independent identically
distributed random variables with expected value y and variance g > 0, then their sum S, = X; +--- + X, is
approximative A (ny, na?)-distributed. After normalizing the sum S,, in the right way, this says that

b
S, —nu } 1 J_XZ/Z
Pia< ——<b db)-D(a)=—— | e dx.
{ ovn et (b) — ®(a) Tna

In case of integer valued X;s and small n the continuity correction improves the approximation of S, by the
normal distribution as follows: if k < € are integers, then one uses as approximation

€+05-ny k-0.5-ny
Pk<S, <€)= ——— |- — ).
sy =o ST ) o £SO )

7.3 Problems

Problem 7.1. Let A, A,,... and By, B,,... be two sequences of events in a probability
space (R, A, P). Prove that

lim sup(4, U B,) = lim sup(4,) ulimsup(B,,) .
n—.oo n—00 n—oo
Is this also valid for the intersection? That is, does one have

lim sup(4, N B,) = lim sup(4,) nlim sup(B,)?

n—oo n—oo n—oo

Problem 7.2. Let A;,A,, ... be a sequence of subsets in Q. Show that
l{lim infA,} = llrm(l)l.}f ]lAn and ]l{lim supA,} = lim sup ]'An .
n—oo

Here 1, denotes the indicator function of a set A as introduced in Definition 3.6.16.

Problem7.3. Let (X),),-1 be a sequence of independent E;-distributed random vari-
ables. Characterize sequences (c,),»1 0f positive real numbers for which

P{X, >c,i.0}=1?

Problem 7.4. Letf : [0,1] — R be a continuous function. Its Bernstein polynomial B{l
of degree n is defined by

Bl(x) := if<%><n>xk(l—x)"‘k, 0<x<1.

k=0 k



368 =—— 7 Limittheorems

Show that Proposition 7.1.30 implies the following. If IP is the uniform distribution
n [0,1], then

P{x € [0,1]: lim B,(x) =f(0} =1.

Remark: Using methods from Calculus, one may even show the uniform conver-
gence, that is,

lim sup |B/;(x) -f0)|=0.
N0 g<x<1

Problem 7.5. Roll a fair die 180 times. What is the probability that the number “6” occurs
at most 25 times. Determine this probability by the following three methods:

— Directly via the binomial distribution.

— Approximately by virtue of the central limit theorem.

— Approximately by applying the continuity correction.

Problem 7.6. Toss a fair coin 16 times. Compute the probability to observe exactly eight
times “heads” by the following methods:

— Directly via the binomial distribution.

— Approximately by applying the continuity correction.

Why does one not get a reasonable result using the normal approximation directly, that
is, without continuity correction?

Problem 7.7. Let X;,X),... be a sequence of independent G,-distributed random vari-
ables, that is, for some 0 < p < 1 one has

P{X; =k} =p1-p)', k=12...
1. What does the central limit theorem tell us in this case about the behavior of the

sums S, =X; +--- + X,,?
2. For two real numbers a < b, set

In,a,b:={k20:agw£b}.

vyn(1-p)

Argue why

-n 1
li "-pk = —
i, X (Gpra-nt- 5

Hint: Use Corollary 4.6 and investigate S,, — n.
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Problem 7.8. Extend the question treated in Example 7.2.18 to the general setting. That
is, given independent, identically distributed random variables X;, X;, ... with expected
value u and variance o2, find ¢ > 0 depending on ¢” such that for sufficiently large n it
follows that

#

c

X+ +X
e S e R [ —} > ©(3) - ©(-3) ~ 0.9973.
Vn

n -u




8 Mathematical statistics

8.1 Statistical models

8.1.1 Nonparametric statistical models

The main objective of Probability Theory is to describe and analyze random experi-
ments by means of a suitable probability space (R, A, P). Here it is always assumed that
the probability space is known, in particular, that the describing probability measure,
P, is identified.

Probability Theory:
Description of a random experiment and its properties by a probability space. The distribution of the out-
comes is assumed to be known.

Mathematical Statistics deals mainly with the reverse question: one executes an exper-
iment, that is, one draws a sample (e. g., one takes a series of measurements of an item
or one questions several people), and, on the basis of the observed sample, one wants
to derive as much information as possible about the (unknown) underlying probability
measure IP. Sometimes the precise knowledge of IP is not needed,; it may suffice to know
a certain parameter of IP.

Mathematical Statistics:
As a result of a statistical experiment, a (random) sample is observed. On its basis, conclusions are drawn
about the unknown underlying probability distribution.

Let us state the mathematical formulation of the task: first, we mention that it is stan-
dard practice in Mathematical Statistics to denote the describing probability space by
(X, F,P). As before, X' is the sample space (the set that contains all possible outcomes
of the experiment), and F is a suitable o-field of events. The probability measure P de-
scribes the experiment, that is, IP(A) is the probability of observing a sample belonging
to A, but recall that IP is unknown.

Based on theoretical considerations or on long-time experience, quite often we are
able to restrict the entirety of probability measures in question. Mathematically, this
means that we choose a set P of probability measures on (X', 7) which contains what
we believe to be the “correct” P. Thereby, it is not impossible that P is the set of all
probability measures, but for most statistical methods it is very advantageous to take P
as small as possible. On the other hand, the set P cannot be chosen too small, because
we have to be sure that the “correct” P is really contained in P. Otherwise, the obtained
results are either false or imprecise.

https://doi.org/10.1515/9783111325064-008
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Definition 8.1.1. Asubset P of probability measures on (X, ) is called a distribution assumption, that
is, one assumes that the underlying (unknown) IP belongs to the collection P.

After having fixed the distribution assumption P, one now regards only probability mea-
sures P € P or, equivalently, measures not in P are discarded.

To get information about the unknown probability measure, one performs a statisti-
cal experiment or analyzes some given data. In both cases, the result is a random sample
x € X. The task of Mathematical Statistics is to get information about P € P, based on
the observed sample x € X. A suitable way to describe the problem is as follows.

Definition 8.1.2. A(nonparametric) statistical model is a collection of probability spaces (X, 7, P) with
P € P. Here, X and F are fixed, and IP varies through the distribution assumption P. One writes for the
model

(X, F,P)pep Or {(X,F,P):PeP}.

Let us illustrate the previous definition with two examples.

Example 8.1.3. In an urn there are white and black balls of an unknown ratio. Let § €
[0,1] be the (unknown) proportion of white balls, hence 1- 6 is that of the black ones. In
order to get some information about 8, one randomly chooses n balls with replacement.
The result of this experiment, or the sample, is a number k € {0,...,n}, the frequency
of observed white balls. Thus, the sample space is X = {0, ...,n} and as o-field we may
choose, as always for finite sample spaces, the powerset P(X). The possible probability
measures describing this experiment are binomial distributions B, g with 0 < 6 < 1.
Consequently, the distribution assumption is

P={B,y: 0¢[0,1]}.
Summing up, the statistical model describing the experiment is
(X, P(X),P)pp wWhere X ={0,...,n} and P={B,o:0<6<1}.

Next, we consider an important example from quality control.

Example 8.1.4. A buyer obtains from a trader a delivery of N machines. Among them
M < N are defective. The buyer does not know the value of M. To determine it, he
randomly chooses n machines from the delivery and checks them. The result, or the
sample, is the number 0 < m < n of defective machines among the n tested.

Thus, the sample space is X’ = {0,...,n}, F = P(X), and the probability measures
in question are hypergeometric ones. Therefore, the distribution assumption is

P:{HN,M,HZMZO""’N}’

where Hy , , denotes the hypergeometric distribution with parameters N, M, and n, as
introduced in Definition 1.4.32.
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Before we proceed further, we consider a particularly interesting case of statisti-
cal model, which describes the n-fold independent repetition of a single experiment. To
explain this model, let us investigate the following easy example.

Example 8.1.5. We are given a die that looks biased. To check this, we roll it n times
and record the sequence of numbers appearing in each of the trials. Thus, our sample
space is X = {1,...,6}", and the observed sample is x = (xj,...,X,), with 1 < x; < 6.
Let 0y,...,0¢ be the probabilities for 1 to 6. Then we want to check whether or not
0= =0g = %, that is, whether P, given by Py({k}) = 6;,1 < k < 6, is the uni-
form distribution. What are the possible probability measures on (X, P(X)) describing
the statistical experiment? Since the results of different rolls are independent, the de-
scribing measure P is of the form P = P{" with

]Pg’"({x}) = Po({x1}) - Po({X,}) = 0;"1 ---9?6 , X =05 Xp) s

and where the m; s denote the frequency of the number 1 < k < 6 in the sequence x.
Consequently, the natural distribution assumption is

P = {P;" : P, probability measure on {1,...,6}}.

Suppose we are given a probability space (X, 7y, IPy) with unknown P, € P,. Here,
P, denotes a set of probability measures on (Xj, 7,), hopefully containing the “cor-
rect” Py. We call (X, Fo, Pg)p,ep, the initial model. In Example 8.1.5, the initial model
is Xy = {1,..., 6}, while P, is the set of all probability measures on (X;, P(F)).

In order to determine PPy, we execute n independent trials according to IP,. The
result, or the observed sample, is a vector x = (Xy,...,X,) with x; € X,. Consequently,
the natural sample space is X' = X

Which statistical model does this experiment describe? To answer this question,
let us recall the basic results in Section 1.9, where exactly those problems have been
investigated. As o-field 7, we choose the n-fold product o-field of 7, that is,

F=Fy®-®F,

n times

and the describing probability measure P is of the form PP§", that is, it is the n-fold prod-
uct of Py. Recall that, according to Definition 1.9.5, the product P§" is the unique proba-
bility measure on (X, F) satisfying

Py (A x -+ x Ap) = Py(Ay) - Py(4,),
whenever 4; € . Since we assumed P, € Py, the possible probability measures are

Pg" with P, € Py,
Let us summarize what we obtained until now.
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Definition 8.1.6. The statistical model for the n-fold independent repetition of an experiment, deter-
mined by the initial model (X, 7o, Po)p,cp, is given by

(X’ Fs ]Pben)lpoePo

where X = X7, F denotes the n-fold product o-field of Fy, and P is the n-fold product measure of Pg.

Remark 8.1.7. Of course, the main goal in the model of n-fold repetition is to get some
knowledge about PP,. To obtain the desired information, we perform n independent tri-
als, each time observing a value distributed according to IP,. Altogether, the sample is a
vector X = (Xy, ..., X,), which is now distributed according to Pg".

The two following examples explain Definition 8.1.6.

Example 8.1.8. A coin is labeled on one side with “0” and on the other side with “1.”
There is some evidence that the coin is biased. To check this, let us execute the follow-
ing statistical experiment: toss the coin n times and record the sequence of zeroes and
ones. Thus, the observed sample is an x = (xq,...,X,), with each x; being either “0”
or “1.”

Our initial model is given by &; = {0,1} and P, = B for a certain (unknown)
6 € [0,1]. Then the experiment is described by X = {0,1}" and P = {By : 0 < 6 < 1}.
Note that

B (1) = 05— 0K, k=4t x,

Example 8.1.9. A company produces a new type of light bulb with an unknown distri-
bution of the lifetime. To determine it, n light bulbs are switched on at the same time.
Lett = (t,...,t,) be the times when the bulbs burn out. Then our sample is the vector
t € (0,00)".

From long-time experience, one knows the lifetime of each light bulb is exponen-
tially distributed. Thus, the initial model is (R, B(R), Py) with P, = {E; : A > 0}. Conse-
quently, the experiment of testing n light bulbs is described by the model

(R BR"), P )pep, = (R, B(R"), E"),.0

where Py = {E; : A > 0}. Recall that E;" is the probability measure on (R", B(R")) with
density p(ty, ..., t,) = A"e7A(t; +--- + t,) for t; > 0.

Summary: The basic problem in Mathematical Statistics is as follows: One observes a random sample x
belonging to a sample space X and, depending on this observed x, one wants to get as much information
as possible about the underlying unknown probability measure PP. The statistical model to describe this task
is a triple

(X, F,P)pep Or {(X,F,P):PeP}.
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Here X is the sample space, F denotes a o-field of subsets of X', mostly P(X’) or B(R), and P is a certain set
of probability measures defined on F. The collection P of probability measures is said to be the distribution
assumption. One conjectures or knows by theoretical considerations that the underlying unknown probability
measure P belongs to P.

8.1.2 Parametric statistical models

In all of our previous examples, there was a parameter that parametrized the proba-
bility measures in P in natural way. In Example 8.1.3, this is the parameter 6 < [0,1],
in Example 8.1.4, the probability measures are parametrized by M € {0,...,N}, in Ex-
ample 8.1.8 the parameter is also 6 € [0,1], and, finally, in Example 8.1.9 the natural
parameter is A > 0. Therefore, from now on, we assume that there is a parameter set ©
such that P may be represented as

P={Py:0cO}.

Definition 8.1.10. A parametric statistical model is defined as
(X, F, Pg)geo

with parameter set O. Equivalently, we suppose that the distribution assumption P, appearing in Defini-
tion 8.1.2, may be represented as P = {IPy : 6 € ©} .

In this notation, the parameter sets in Examples 8.1.3, 8.1.4, 8.1.8, and 8.1.9 are ® = [0, 1],
0={0,...,N},0 =[0,1], and © = (0, c0), respectively.

Remark 8.1.11. It is worthwhile mentioning that the parameter can be quite general;
for example, it can be a vector 6 = (6, ..., 0y), so that in fact there are k unknown pa-
rameters Gj, combined into a single vector 6. For instance, in Example 8.1.5, the unknown
parameters are 8;,.. ., 6, thus, the parameter set is given by

92{0:(61,...,06):9k20, 01+~..+66:1}'

Let us present two further examples with slightly more complicated parameter sets.

Example 8.1.12. We are given an item of unknown length. It is measured by an instru-
ment of an unidentified precision. We assume that the instrument is unbiased, that is,
on average, it shows the correct value. In view of the central limit theorem, we may sup-
pose that the measurements are distributed according to a normal distribution A (1, *).
Here u is the “correct” length of the item, and o > 0 reflects the precision of the measur-
ing instrument. A small ¢ > 0 says that the instrument is quite precise, while alarge o > 0
corresponds to an inaccurate instrument. Consequently, by the distribution assumption
the initial model is given as
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(R, B(R), N (1, 0”))

uer,a?>0

In order to determine y (and maybe also o), we measure the item n times by the same
method. As a result, we obtain a random sample x = (X, ...,X,) € R". Thus, our model
describing this experiment is

2\®Nn
(]RH’B(]RH)’N(%G ) )(y,gl)e]}zx(o,oo)-

Because of eq. (6.9), the model may also be written as
S 2
(]Rn» B(]Rn)»/\[(U) g In))(!l,o'z)e]Rx(O,oo)

with i = (4,...,4) € R", and with diagonal matrix ¢°I,. The unknown parameter is
(u, 02), taken from the parameter set R x (0, co).

Example 8.1.13. Suppose now we have two different items of lengths y; and y,. We take
m measurements of the first item and n of the second. Thereby, we use different instru-
ments with maybe different degrees of precision. All measurements are taken indepen-
dently of each other. As a result, we get a vector (x,y) € R™", where x = (x;,...,X,,)
are the values of the first m measurements and y = (y;,...,y,) those of the other n. As
before we assume that the x;s are distributed according to NV (1, 012), and the y;s accord-
ing to N (uy, 022). We neither know g, and p, nor 012 and 022. Thus, the sample space is
R™" and the vectors (x,y) are distributed according to N ((f, fp), Ry2,2) With diagonal

matrix R ;» having o? as its first m entries and o7 as the remaining n.
Note that by Definition 1.9.5,

n

N((ﬂlrﬁz)>Rof,a§) = N(w, 012)®m ® N (U, 022)® .
This is valid because, if A € B(R™) and B € B(R"), then it follows that
N((Eys i), Roz, 2)(A x B) = N (114, 07)™" () - N (115, 93)™" (B)..

The parameter set in this example is given as R? x (0, c0)?, hence the statistical model
may be written as

(R™", BR™™), N (1, 07)™" ® N (115, 3)

®n
)(.Ll1,,Ll2,(712,(I22)EIRZ><(O,oo)2 .

Summary: A parametric statistical model is a statistical model represented as (X, F, Pg)gcq - Equivalently,
the distribution assumption may be written as P = {Py : § € ©} with a suitable index set ©. A typical example
is X =1{0,...,n}, F=P(X), ©=[0,1],and Py = B,g.
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8.2 Statistical hypothesis testing

8.2.1 Hypotheses and tests

We start with a parametric statistical model (X, F, Py)gcq. Suppose the parameter set ©
is split up into disjoint subsets 8, and ©;. The aim of a test is to decide, on the basis of
the observed sample, whether or not the “true” parameter 6 belongs to ©, or to 0.

Let us explain the problem with two examples.

Example 8.2.1. Consider once more the situation described in Example 8.1.4. Assume
there exists a critical value M, < N such that the buyer accepts the delivery if the num-
ber M of defective machines satisfies M < M,. Otherwise, if M > M,, the buyer re-
jects it and sends the machines back to the trader. In this example the parameter set is
0 = {0,...,N}. Letting ) = {0,...,My} and ©; = {M, + 1,...,N}, the question about
acceptance or rejection of the delivery is equivalent to whether M € ©; or M € 0;. As-
sume now the buyer checked n of the N machines and found m defective. On the basis of
this observation, the buyer has to decide about acceptance or rejection, or, equivalently,
about M € ©yor M € 0,.

Example 8.2.2. Let us consider once more Example 8.1.13. There we had two measuring
instruments, both being unbiased. Consequently, the expected values y; and u, are the
correct lengths of the two items. The parameter set was © = R* x (0, c0)*. Suppose we
conjecture that both items are of equal length, that is, we conjecture y; = u,. Letting

0y = {(Lp,01,03) : € R, 07,05 > 0}

and ©®; = O\ O, to prove or disprove the conjecture, we have to check whether
(g, Uy, 012, 022) belongs to © or 0.

On the other hand, if we want to know whether or not the first item is smaller than
the second, then we have to choose

0 = {(ty, 113, 01, 07) : —00 < iy < fly < 00, 07,05 > 0}

and to check whether or not (u, u,, 012, 022) belongs to ©,.

An exact mathematical formulation of the previous problems is as follows.

Definition 8.2.3. Let (X, F,Pg)sco be a parametric statistical model and suppose © = 04 U ©; with
0y NG =0.

Then the hypothesis or, more precisely, null hypothesis IH, says that for the “correct” 8 € © one
has 6 € ©,. This is expressed by writing Hy : 6 € ©, .

The alternative hypothesis H; says 6 € ©,. Thus, H; : 8 € ©,, and we have to check

Hy:0 €0, against H;:0€0,.



8.2 Statistical hypothesis testing === 377

After the hypothesis is set, one executes a statistical experiment. Here the order is im-
portant: first, one has to set the hypothesis, then test it, not vice versa. If the hypothesis
is chosen on the basis of the observed results, then, of course, the sample will confirm
it.

Say the result of the experiment is some sample x € X. One of the fundamental
problems in Mathematical Statistics is to decide, on the basis of the observed sample,
about acceptance or rejection of H,,. The mathematical formulation of the problem is as
follows.

Definition 8.2.4. A (hypothesis) test T for checking Hy (against Hy) is a disjoint partition T = (Xp, X;)
of the sample space X. The set A&} is called the region of acceptance while X; is said to be the critical
region, sometimes also called critical section or region of rejection. By mathematical reasoning, we
have to assume X, € F, which of course implies X; € F as well.

Remark 8.2.5. A hypothesis test T = (X, X;) operates as follows: if the statistical ex-
periment leads to a sample x € X, then we reject H. But, if we get an x € X, then
this does not contradict the hypothesis, and for now we may furthermore work with
it.

Important comment: If we observe an x € X, then this does not say that H, is correct.
It only asserts that we failed to reject it or that there is a lack of evidence against it.
Let us illustrate the procedure with Example 8.2.1.

Example 8.2.6. By the choice of ©; and 04, the hypothesis Hy is given by
Hy:0<M<M,, henceH;:My<M<N.

To test H, against H;, the sample space X = {0,...,n} is split up into the two regions
X :={0,...,mp} and X, := {m;y + 1,...,n} with some (for now) arbitrary number m, ¢
{0,...,n}. If among the checked n machines m are defective with some m > m,, then
m € X, hence one rejects H. In this case the buyer refuses to take the delivery and
sends it back to the trader. On the other hand, if m < my, then m € X, which does not
contradict Hy, and the buyer will accept the delivery and pay for it. Of course, the key
question is how to choose the value m, in a proper way.

Remark 8.2.7. Sometimes tests are also defined as mappings ¢ : X — {0,1}. The link
between these two approaches is immediately clear. Starting with ¢, the hypothesis test
T = (X, ;) is constructed by Xy = {x € X : ¢(x) = 0} and X} = {x € X : o(x) = 1}.
Conversely, if T = (X}, X;) is a given test, then set p(x) = 0if x € A and p(x) = 1
for x € X;. The advantage of this approach is that it allows us to define the so-called
randomized tests. Here ¢ : X — [0,1]. Then, as before, X; = {x € X : ¢(x) = 0} and
Xi={xeX:p(x)=1.1If0 < p(x) <1, then

o(x) = P{reject Hy if x is observed} .
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That is, for certain observations x € X, an additional random experiment (e. g., tossing
a coin) decides whether we accept or reject H,. Randomized tests are useful in the case
of finite or countably infinite sample spaces.

When applying a test T = (X, A}) to check the null hypothesis H, : 8 € 0, two
different types of errors may occur.

Definition 8.2.8. An error of the first kind or type I error occurs if Hy is true but one observes a sample
X € X, hence rejects Hy.

Type I error = incorrect rejection of a true null hypothesis

In other words, a type I error happens if the “true” 6 is in ©,, but we observe an x € A;.

Definition 8.2.9. An error of the second kind or type II error occurs if Hj is false, but the observed
sample lies in X, hence we do not reject the false hypothesis Hj.

Type II error = failure to reject a false null hypothesis

Consequently, a type II error occurs if the “true” 6 is in ©,, but the observed sample is
an element of the region of acceptance Xj,.

Example 8.2.10. Inthe context of Example 8.2.6, a type I error occurs if the delivery was
good, but among the checked machines more than m, were defective, so that the buyer
rejected the delivery. Since the trader was not able to sell a proper delivery, this error is
also called the risk of the trader.

On the other hand, a type II error occurs if the delivery is not in good order, but
among the checked machines only a few were defective (at most m,). Thus, the buyer
accepted the bad delivery and paid for it. Therefore, this type of error is also called the
risk of the buyer.

Summary: Let (X, F,Pg)gco be a parametric statistical model and suppose © = 8, U ©; with 85 N 0, = 0.
Then the hypotheses H, and H;, are

Hy:0€0, against H;:0¢€0,.

A (hypothesis) test T for checking H, (against Hy) is a disjoint partition T = (X}, X;) of the sample
space X. The set X} is called the region of acceptance while X; is said to be the critical region. If the
observed sample x € X, one rejects Hy. If x € A}, we cannot reject Hy and have to work with it further-
more.

Type I error = incorrect rejection of a true null hypothesis & x € X} and 6 € 0,

Type II error = failure to reject a false null hypothesis o xeXyand 0 €0,
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Verbally said:! A type I error is the mistaken rejection of a null hypothesis that is actually true; for example,
“due to a false witness report, an innocent person is convicted.” A type II error is the failure to reject a null
hypothesis that is actually false; for example, “due to the lack of evidence, a guilty person is not convicted.”

8.2.2 Power function and significance tests

The power of a test is described by its power function defined as follows.

Definition 8.2.11. Let T = (X}, X)) be a test for Hy : 6 € ©¢ against H; : 8 € ©,. The function Sy from
O to [0, 1] defined as

Br(6) = Py(Xy)

is called the power function of the test T.

Remark 8.2.12. If 6 € Oy, that is, if H is true, then f3(0) = Py(X;) is the probability
that A, occurs or, equivalently, that a type I error happens.

On the contrary, if 6 € ©,, thatis, H is false, then 1-1(0) = Py(X}) is the probability
that X occurs or, equivalently, that a type II error appears.

Thus, a “good” test should satisfy the following conditions: the power function Sy
attains small values on 0, and/or 1 — Sy has small values on ;. Then the probabilities
for the occurrence of type I and/or type II errors are not too hig.2

Example 8.2.13. What is the power function of the test presented in Example 8.2.6? Re-

callthat® = {0,...,N}and X; = {my +1,...,n}. Hence, By maps {0,...,N} to [0,1] in the

following way:

Lo GG

Br(M) = Hy ppn(Xy) = ) SR Ems, 8.1)
m=my+1 (n)

If the hypotheses are
Hy:0<M <M, against H;:My<M<N,

then the maximal probability for a type I error is given by

no (M)W
max fr(M)= max nm

0<M<M, 0<M<M, momy 1 (JX) >

(8.2)

1 See [Fsh71].

2 In the literature, the power function is sometimes defined in a slightly different way. If 6 € 0, then it
is as in our Definition 8.2.11 while for 6 € ©, one defines it as 1 — f(6). Moreover, for 1 — Bt one finds
the notion of the operation characteristics or oc-function.
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while the maximal probability for a type II error equals

()0
Morgzaw)éN(l = Pr) = MUIE]?/I);N = T ' ®3

Let us give a concrete example for the power function in eq. (8.1). Suppose the trader
submits a delivery of 30 machines. Hence, N = 30 and O = {0, ..., 30}. The buyer chooses
randomly 10 machines and tests them. That is, n = 10. Assume, the testis T = (X, &)
where X, = {0,1,2,3,4}, hence X; = {5,6,7,8,9,10}. Thus, m; = 4. In other words, if
there are at most 4 defective machines among the tested 10, then the buyer accepts the
delivery. Otherwise, he rejects it.

Then the power function of the test T equals

< G om)

Pr(M) = )y R M =0,...,30. (8.4)
mes (o)
Note that
pr(0) =---=pr(4) =0 while fp(25) = --- = p(30) = 1.

Why is this so? First, if there are only 4 or less defective machines among the delivered, it
isimpossible to observe 5 or more defective machines among the 10 chosen. On the other
hand, if there are 25 or more defective machines among 30, then at most 5 machines are
nondefective. Hence, among the 10 chosen there are at least 5 defective.

Some other interesting values of B are (see also Figure 8.1)

M 5 6 7 8 9 10 1

Br(M) 0.001768 0.008842 0.02564 0.05632 0.1037 0.1687 0.2500

These values of Sy tell us the following: if, for example, there are 11 defective ma-
chines in the delivery, then there is a 25 % chance to observe in the sample 5 or more
defective. Equivalently, the probability to observe at most 4 defective machines is still
75 %. Thus, in this case the likelihood of a type Il error is rather big. The situation changes
drastically for larger M. If, for example, the number of defective machines is 18, among
100 trials the sample will on average 88.2 times contain 5 or more defective items.

Remark 8.2.14. Formulas (8.2) and (8.3) already illustrate the dilemma of hypothesis
testing. To minimize the type I error, one has to choose m, as large as possible. But
increasing m, enlarges the type II error.

This dilemma occurs always in the theory of hypothesis testing. In order to mini-
mize the probability of a type I error, the critical region ; has to be chosen as small as
possible. But making x; smaller enlarges X, hence the probability for the occurrence
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Figure 8.1: The power function Sy in eq. (8.4).

of a type II error increases. In the extreme case, if X; = 0, hence X, = X, then a type I
error cannot occur at all. In the context of Example 8.2.6 that means the buyer accepts
all deliveries and the trader takes no risk.

On the other hand, to minimize the occurrence of a type II error, the region of ac-
ceptance X has to be as small as possible. In the extreme case, if we choose X, = 0, then
a type II error cannot occur hecause we always reject the hypothesis. In the context of
Example 8.2.6, this says the buyer rejects all deliveries. In this way he avoids buying any
delivery of bad quality, but he also never gets a proper one. Thus the buyer takes no risk.

Itis pretty clear that both extreme cases presented above are absurd. Therefore, one
has to find a suitable compromise. The approach for such a compromise is as follows: in
the first step, one chooses tests where the probability of a type I error is bounded from
above. And in the second step, among all these tests satisfying this bound, one takes that
which minimizes the probability of a type II error. More precisely, we will investigate
tests satisfying the following condition.

Definition 8.2.15. Suppose we are given a number a € (0, 1), the so-called significance level. A test
T = (X}, X;) for testing the hypothesis Hy : 6 € 0, against H; : 8 € ©; is said to be an a-significance
test (or simply a-test), provided the probability for the occurrence of a type I error is bounded by a. That
is, the test has to satisfy

sup Br(6) = sup Pg(X;) < a.
0€0 6e0q

Interpretation: The significance level a is assumed to be small. Typical choices are a =
0.1or a = 0.01. Let T be an a-significance test and assume that Hy, is true. If we observe
now a sample in the critical region X}, then an event occurred with probability less than
or equal to a, that is, a very unlikely event has been observed. Therefore, we can be very
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sure that this could not have happened provided H, had been true, and we reject this
hypothesis. The probability that we made a mistake is less than or equal to the chosen
a > 0, hence very small.

Recall that a-significance tests admit no bound for the probability of a type II error.
Therefore, we look for those a-significance tests that minimize the probability for a type
IT error.

Definition 8.2.16. Let T, and T, be two a-significance tests for checking H, against IH;. If their power
functions satisfy

Br,(6) = Br,(0), 6 €6y,

then we say that Ty is (uniformly) more powerful than T,.
A (uniformly) most powerful a-test T is that which is more powerful than all other a-tests.

Remark 8.2.17. Note that By, (6) > Br, (6) implies 1-By, (6) < 1B, (6), hence if T; is more
powerful than T,, then, according to Remark 8.2.12, the probability for the occurrence
of a type II error is smaller for T, than it is for T,. Therefore, a most powerful a-test is
that which minimizes the probability of occurrence of a type II error.

Remark 8.2.18. The question about existence and uniqueness of most powerful a-tests
is treated in the Neyman—Pearson lemma and its consequences. We will not discuss that
problem here; instead, we will construct most powerful tests in concrete situations. See
[CBO2, Chapter 8.3.2] for a detailed discussion of the Neyman-Pearson lemma and its
consequences.

We start with the construction of such tests in the hypergeometric case. Here we
have the following.

Proposition 8.2.19. If the statistical model equals (X, P(X), Hy p n)p=o,.. v With X =
{0,...,n}, then the most powerful a-test for testing M < M, against M > M, is given
by T = (X, X}), where X, = {0,...,my}, and my is defined by

mO::max{ksn: i %ﬂ>a}

m=k n
n o (My\(N-M,
= min{k <n: Y —(’”)(N"‘m) < a]» .
m=k+1 (n

Proof. The proof of Proposition 8.2.19 needs the following lemma.

Lemma 8.2.20. The power function, defined by eq. (8.1), is a nondecreasing function on
the set {0,...,N}.

Proof. Suppose we get a delivery of N machines containing M defective. Now there are
not only defective machines within the delivery, but also M — M false ones for some
M > M. We take a sample of size n and test these machines. Let X be the number of
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defective machines and let X be the number of machines that are either defective or
false. Of course, we have X < X implying P(X > m,) < P(X > m,). Note that X is Hyyn
distributed while X is distributed according to Hy ; ,. These observations lead to

Br(M) = Hy pyn(img +1,...,0}) = P{X > mg} < P{X > my}
= Hy jgn({mo +1,....1}) = Br(M).

This being true for all M < M proves that By is nondecreasing. O

Let us come back to the proof of Proposition 8.2.19. Set x; := {0,...,mg}, thus X; =
{my +1,...,n} for some (at the moment arbitrary) m, < n. Because of Lemma 8.2.20, the
test T = (X, &;) is an a-significance test if and only if it satisfies

n(Mo)(N-Mo)
Z = Nn—m = HN,Mo,n(Xl) = sup Hya(X) <a.
b ) M<M,

To minimize the probability for the occurrence of a type II error, we have to choose X;
as large as possible or, equivalently, m, as small as possible, that is, if we replace m, by
my — 1, then the new test is no longer an a-test. Thus, in order that T is an a-test that
minimizes the probability for a type II error, the number m, has to be chosen such that

n MO N—Mﬂ n M{) N—Mg
z M <a and z (m)(N#m) >a.
m=my+1 (n) m=m, (n)
This completes the proof. O

Example 8.2.21. A buyer gets a delivery of 100 machines. In the case that there are
strictly more than 10 defective machines in the delivery, he will reject it. Thus, his hy-
pothesis is Hy : M < 10. In order to test IHy, he chooses 15 machines and checks them.
Let m be the number of defective machines among the checked. For which m does he
reject the delivery with a significance level a = 0.01?

Answer: We have N = 100, M, = 10, and n = 15. Since a = 0.01, from

15 (10)( 90 ) 15 (10)( 90 )
Y B - 0,0063...<a and ) P = 0.04...>a,
m=5 (15) m=4 (15)

it follows that the optimal choice is m, = 4. Consequently, we have X, = {0, ..., 4}, thus,
X, = {5,...,15}. If there are 5 or even more defective machines among the tested 15,
then the buyer should reject the delivery. The probability that his decision is wrong is
less than or equal to 0.01.

What can be said about the probability for a type II error? For this test, we have

15 (l\n/{) (100—M)

Br(M) = ) i

— o (8.5)
m=>5 (1{]50)
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hence
4 (M(100-M)
L=Br0) = ), it
moo (55)
Since By is nondecreasing, 1 — By is nonincreasing, and the probability for a type II
error becomes maximal for M = 11. Recall that ®; = {0,...,10} and, therefore, ®; =
{11,...,100}. Thus, an upper bound for the probability of a type II error is given by
& Glsow)
1-pr(M) <1-B(11) = z —00s

—0.989471, M =11,...,100.
m=0 ( 15 )

This tells us that even in the case of most powerful tests the likelihood for a type II error
may be quite large. Even if the number of defective machines is big, this error may occur
with higher probability. For example, we have 1 — f;(20) = 0.853089 and 1 — f3(40) =
0.197057. See also Figure 8.2.
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Figure 8.2: The power function S defined by eq. (8.5).

If one is willing to take a greater risk and chooses a = 0.1, then, since

15 (10) 90 ) 15 (10)( 90 )
Y B 0063, <a and Y B 01705, > g,
moa (55) s ()

one may take X, = {0, 1, 2, 3} as the region of acceptance. Thus, in this case the buyer will
reject the delivery if there are 4 defective machines among the 15 tested. The probability
that this is a wrong decision is less than 0.1, but greater than 0.01.

Remark 8.2.22 (Important!). An a-significance test provides us with quite precise infor-
mation when rejecting the hypothesis Hy. In contrast, when we observe a sample x € X,
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the only information we get is that we failed to reject IH,, thus, we must continue to re-
gard it as true. Consequently, whenever fixing the null hypothesis, we have to fixitin a
way that either a type I error has the most serious consequences or that we can attain
the most information by rejecting H,. Let us explain this with two examples.

Example 8.2.23. A certain type of food sometimes contains a special kind of poison.
Suppose there are g milligrams of poison in one kilogram of the food. If u > y,, then
eating this becomes dangerous while for u < y; it is unproblematic. How do we success-
fully choose the hypothesis when testing some sample of the food? We could take either
Hy : u > gy or Hy : p < py. Which is the right choice?

Answer: The correct choice is Hy : u > uy. Why? If we reject H, then we can be very
sure that the food is not poisoned and may be eaten. The probability that someone will
be poisoned is less than a. A type II error occurs if the food is harmless, but we discard
it because our test tells us that it is poisoned. That results in a loss for the company that
produced it, but no one will suffer from poisoning. If we were to choose Hy : u < y,
then a type II error would occur if H, is false, that is, the food is poisoned, but our test
says that it is eatable. Of course, this error is much more serious, and we have no control
in regards to its probability.

Example 8.2.24. Suppose the height of 18-year-old males in the US is normally dis-
tributed with expected value u and variance ¢ > 0. We want to know whether the
average height is above or below 6 feet. There is strong evidence that we will have
U < 6, but we cannot prove this. To do so, we execute a statistical experiment and
choose randomly n males of age 18 and measure their height. Which hypothesis should
be checked? If we take H, : ¢ < 6, then it is very likely that our experiment will lead
to a result that does not contradict this hypothesis, resulting in a small amount of in-
formation gained. But, if we work with the hypothesis H, : u > 6, then a rejection of
this hypothesis tells us that H is very likely wrong, and we may say the conjecture is
true with high probability, namely that we have y < 6. Here the probability that our
conclusion is wrong is very small.

Summary: The power function of a test T = (X}, A;) for Hy : 8 € O, against H, : § € O, is defined by
Br(6) =Pg(X7), 6€0.

If Tis a “good” test, then the power function By should be small on ©, and near to one on ©,. Givena > 0,
an a-significance test T satisfies

sup Br(6) = sup Py(X;) <a.
0€0 6e0q

That is, if T is an a-test, the probability of a type I error is bounded by a.
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8.3 Tests for binomial distributed populations

Because of their importance, we present tests for binomial distributed populations in a
separate section. The starting point is the problem described in Examples 8.1.3 and 8.1.8.
In a single experiment, we may observe either “0” or “1,” but we do not know the prob-
abilities for the occurrence of these events. To obtain some information about the un-
known probabilities, we execute n independent trials and record how often “1” occurs.
This number is B, y-distributed for some 0 < 6 < 1. Hence, the describing statistical
model is given by

(X, P(X),Brg)geroy; Where X ={0,....n}. (8.6)

Two-sided tests: We want to check whether the unknown parameter 0 satisfies 6 = 6,
or 6 + 6, for some given 6, € [0,1]. Thus, 6, = {6y} and 0; = [0,1] \ {6}. In other words,
the null and the alternative hypothesis are

]H0:9=90 and ]leerkeo,

respectively.

To construct a suitable a-significance test for checking H,, we introduce two num-
bers n, and n, as follows. Note that these numbers depend on 6, and, of course, also
on a. The numbers are defined by

K oy p
ny:=min{k <n: ,9’(1—9)"’>a/2}
o=minfin: 3 (F)a-o
k1o .
=max{ksn: (’.1)95(1—90)"13(1/2} ®.7
=0

and

n = max{k <n: i (n)%(l - go)n—l' > az/Z]>
=&
- min{k <n: Y ("o~ 09 < a/z} , 8.8)
okt M

Proposition 8.3.1. Consider the statistical model (8.6) and let 0 < a < 1 be a significance
level. The hypothesis test T = (X,, X;) with

Xy ={ngng+1,....,ny-1Lny} and X =1{0,....,np-Bui{n +1,...,n} (8.9)

is an a-significance test to check Hy : 8 = 0, against H, : 6 + 6,. Here ny and n, are
defined as in egs. (8.7) and (8.8).
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Proof. Since 0, consists only of the point {6,}, an arbitrary test T = (Xj, X;) is an
a-significance test if and only if B, g (X;) < a. Now let T be as in the formulation of
the proposition. By the definition of the numbers n, and n;, we obtain

"l my AW i a a
Bug =y (M)ea-e 7+ Y (Mea-0T <5+ S =a,
~ \j . j 2 2
j=0 Jj=n+1
that is, as claimed, the test T := (X, X}) is an a-significance test. O

Remark 8.3.2. In this test the critical region X; consists of two parts or tails. Therefore,
this type of hypothesis test is called a two-sided test.

Remark 8.3.3. By the choice of ny and ny, the regions X, and ; in eq. (8.9) are optimal
in the following sense: If T = (X, X;) with

Xy={ng+1...,ny—-1 and A =1{0,...,ng}ufny,...,n},

then

y

Bug, (%) =) (?)9{)(1 S NEED (;’)0{)(1 — 0" > g + g —a.

j=0 j=m

Hence, T is no longer an a-significance test. But note that we cannot exclude that the
tests with either

Xoiz{no,...,nl—l} or Xol:{n0+1,...,n1}

are still a-significance tests.

Example 8.3.4. In an urn there is an unknown number of white and black balls. Let
0 € [0,1] be the proportion of white balls. We conjecture that there are as many white as
black balls in the urn. That is, the null hypothesis is Hy : 8 = 0.5. To test this hypothesis,
we choose one after another 100 balls with replacement. In order to determine n, and
n, in this situation, let ¢ be defined as

100

o(k) = i(m.o) : G) = Biooos(10,....K}).

=
Numerical calculations give

¢(36) = 0.00331856, @(37) = 0.00601649, @(38) = 0.0104894,
®(39) = 0.0176001,  @(40) = 0.028444, ©(41) = 0.044313,
©(42) = 0.0666053,  ¢(43) = 0.096674, ©(44) = 0.135627,
0(45) = 0.184101, ©(46) = 0.242059, ©(47) = 0.30865,
©(48) = 0.382177, ©(49) = 0.460205.
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If the significance level is chosen as a = 0.1, we see that ¢(41) < 0.05, but ¢(42) > 0.05.
Hence, by the definition of n; in eq. (8.7), it follows that n, = 42. Either by symmetry
or by similar calculations, for n; defined in eq. (8.8), we get n; = 58. Consequently, the
regions of acceptance and rejection are given by

Xy =1{42,43,...,57,58} and AX; ={0,...,41} U {59,...,100}.

For example, if we observe during 100 trials k white balls for some k < 42 or some k > 58,
then we may be quite sure that our null hypothesis is wrong, that is, the numbers of
white and black balls are significantly different. This assertion is 90 % sure. The power
function of this test (see Fig. 8.3) is given by

41 100
g0 =Y (1) )era- otk Y (V)ea-0™*, <0<t ®10)
k=0 k k=59 k

0.3 0.4 0.5 0.6 0.7 0.8

Figure 8.3: The power function Sy in eq. (8.10) with significance level @ = 0.1.

If we want to be more certain about the conclusion, we have to choose a smaller
significance level. For example, if we take a = 0.01, the values of ¢ imply n, = 37 and
n, = 63, hence in this case we conclude that

Xy =1{37,38,...,62,63} and X;=1{0,...,36}U{64,...,100}.

Again we see that a smaller bound for the probability of a type I error leads to an en-
largement of X, thus, to an increase of the chance for a type II error.
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One-sided tests: Now the null hypothesis is Hy : 8 < 6, for some 8, € [0,1]. In the
context of Example 8.1.3, we claim that the proportion of white balls in the urn does not
exceed 6. For instance, if 6, = 1/2, then we want to test whether or not the number of
white balls is less than or equal to that of black.

Before we present a most powerful test for this situation, let us define a number n,
depending on 6, and on the significance level 0 < a < 1, namely

= k<n: .)6,(1-6,)"
ny max{ <n ;{(1) (1= 60) >a]»

= min{k <n: i <;l>06(1 - 00)"*1' < a} . (8.11)

Jj=k+1

Now we are in a position to state the most powerful one-sided a-test for a binomial dis-
tributed population.

Proposition 8.3.5. Suppose X = {0,...,n}, and let (X, P(X), B g)pc(0,4) be the statistical
model describing a binomial distributed population. Given 0 < a < 1, define ny by (8.11)
and set Xy = {0, ...,ng}, hence X; = {ny+1,...,n}. Then T = (X, X;) is the most powerful
a-test to check the null hypothesis H,, : 6 < 0, against H, : 6 > 0,,.

Proof. Fixing an arbitrary 0 < m < n, we define the region of acceptance X of a test T
by &, = {0, ..., m}. Its power function is given by

Br(0) = Bg(t) = Y (;’)ef 1-0"7, 0<o<1. 8.12)

Jj=m+1
To proceed further, we need the following lemma.
Lemma 8.3.6. The power function (8.12) is nondecreasing in [0, 1].

Proof. Suppose in an urn there are white, red, and black balls. Their proportions are 6;,
0, —0; and 1- 6, for some 0 < 6; < 6, < 1. Choose n balls with replacement. Let X be the
number of chosen white balls, and Y the number of balls that were either white or red.
Then X is B, g -distributed, while Y is distributed according to B, 4,. Moreover, X < Y,
hence it follows that P(X > m) < P(Y > m), which leads to

Br(6)) = Byp (Im+1,...,n}) = P(X > m) < P(Y > m)
= Bpg,(Im+1,...,n}) = Br(6y).

This being true for all ; < 0, completes the proof of the lemma. O
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An application of Lemma 8.3.6 implies that the above test T is an a-significance test
if and only if

n

5 (oo -y <

j=m+1

In order to minimize the probability of a type II error, we have to choose X, as small as
possible. That is, if we replace m by m — 1, the modified test is no longer an a-test. Thus,
the optimal choice is m = n, where n; is defined by eq. (8.11). This completes the proof
of Proposition 8.3.5. O

Example 8.3.7. Let us come back to the problem investigated in Example 8.1.3. Our null
hypothesisis Hy : 8 < 1/2, that is, we claim that at most half of the balls are white. To test
H,, we choose 100 balls and record their color. Let k be the number of observed white
balls. For which k must we reject H, with a confidence of 90 %?

Answer: Since

100 100
y (100)2*100 - 0135627 and ) (100)2*100 = 0.096674,
S\ Kk i K

for @ = 0.1 the number n; in eq. (8.11) equals n, = 56. Consequently, the region of ac-
ceptance for the best 0.1-test is given by &, = {0,...,56}. Thus, whenever there are 57 or
more white balls among the chosen 100, the hypothesis has to be rejected. The probabil-
ity for a wrong decision is less than or equal to 0.1. The power function of this test T is
given by (compare Figure 8.4)

X /100 100-k
Br®) = Y ( )9 1-0)9k g<p<1. @8.13)
k=57 k
1.0}
0.8}
0.6}
0.4;
0.2}
014 o 015 N 016 N 017

Figure 8.4: The power function Sy in eq. (8.13) with significance level a = 0.1.
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Making the significance level smaller, for example, taking a = 0.01, since

100 100
y (100)2‘100 =0.0104894 and Y (100)2‘100 = 0.00601649,
S\ k Par AN

we obtain n, = 62. Hence, if the number of white balls is 63 or larger, a rejection of H
is 99 % sure.

Remark 8.3.8. Example 8.3.7 emphasizes once more the dilemma of hypothesis testing.
The price one pays for higher confidence when rejecting H, is the increase of the like-
lihood of a type II error. For instance, replacing a = 0.1 by a = 0.01 in the previous
example leads to an enlargement of X}, from {0, ..., 56} to {0, ..., 62}. Thus, if we observe
60 white balls, we reject H, in the former case, but we cannot reject it in the latter one.
This once more stresses the fact that an observation of an x € X, does not guarantee
that H is true. It only means that the observed sample does not allow us to reject the
hypothesis with high probability.

Summary: The model for testing binomial distributed populations is (X, P(X),B,6)gcf01; Where
X ={0,...,n}.Given §, € [0,1], the hypotheses in the two-sided case are Hy : 8 = 8y against H, : 8 + 6.
If

) a a
no = mln{ksn:Bn)go({O,...,k}) > 5} and n = max{k <n:B,g ({k....n}) > f}’

then X, = {ny,...,n} is the region of acceptance of an a-test checking H, against H;.
In the one-sided case Hy : 6 < 8, against H; : 8 > 6, choose X, = {0,...,ny} where now

ny = max{k <n: B,,,go({k,...,n}) > a}.

8.4 Tests for normally distributed populations

In this section we always assume X = R". That is, our samples are vectors x = (Xy, ..., Xp)
with x; € R. Given a sample x € R", we derive from it the following quantities that will
soon play a crucial role.

Definition 8.4.1. Ifx = (x;,...,X,) € R", then we set

=

S|=

J 1 < _ i <L _
21:)(1», 2= — Z;(xj 0% and of:= - 21:()(1» —%)°. (8.14)
j= J= j=

The number % is said to be the sample mean of x, while s2 and a2 are said to be the unbiased sample
variance and the (biased) sample variance of the vector x, respectively.
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Analogously, if X = (X;, .. .,X,) is an n-dimensional random vector, then we define the
corresponding expressions pointwise. For instance, we have
1 n

X(w) == me)am %W);11ZXW)XW
] =1 Jj=1

8.4.1 Fisher’s theorem

We are going to prove important properties of normally distributed populations. They
turn out to be the basis for all hypothesis tests in the normally distributed case. The
starting point is a crucial lemma going back to Ronald Aylmer Fisher (1890-1962).

Lemma 8.4.2 (Fisher’s lemma). LetY,,...,Y, be independent N/(0,1)-distributed random
variables and let B = (Bij)gjzl be a unitary n x n matrix. The random variables Z,, ..., Z,
are defined as

They possess the following properties:
(i) Thevariables Z,,...,Z, are also independent and N (0,1)-distributed.
(i) Form < n, let the (random) quadratic form Q on R" be defined by

Then Q is independent of all Z,, . . ., Z,, and, moreover, distributed according to )(fl_m.

Proof. Assertion (i) was already proven in Proposition 6.1.19.
Let us verify (ii). The matrix B is unitary, thus it preserves the length of vectors in R".
Applying thisto Y = (Y3,...,Y,) and Z = BY gives

n n
Y Zi =|z3 = |BY; = |Y]; = ) ¥/,
=1 j=1

which leads to

Q=22+ +7Z%. (8.15)

m n

3 To simplify the notation, now and later on, we denote random vectors by X, not by X as we did before.
This should not lead to confusion. For example, X does not look very nice.
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By virtue of (i), the random variables Z;, .. ., Z, are independent, hence by eq. (8.15) and
Remark 4.1.10 the quadratic form Q is independent of Z;, ..., Z,.

Recall that Z,.4,...,Z, are independent A/(0,1)-distributed. Thus, in view of
eq. (8.15), Proposition 4.6.10 implies that Q is )(,zl_m-distributed. Observe that Q is the
sum of n — m squares. O

Now we are in a position to state and prove one of the most important results in
Mathematical Statistics.

Proposition 8.4.3 (Fisher’s theorem). SupposeX;,...,X, are independent and distributed
according to N' (i, 0*) for some i € R and some ¢ > 0. Then the following are valid:

X ~ B is A0, 1)-distributed; (8.16)
32
(n-1) G—§ is x> _-distributed; (8.17)
7 Xs— is ¢, y-distributed, where sy := +1/s% (8.18)
X

Furthermore, X and s% are independent random variables.*

Proof. Let us begin with the proof of assertion (8.16). Since the X;s are independent
and N (u, 0%)-distributed, by Proposition 4.6.11 their sum X; + --- + X, possesses an
N (ny, ng?) distribution. Consequently, an application of Proposition 4.2.3 implies that
X is N'(u, o /n)-distributed, hence, another application of Proposition 4.2.3 tells us that
f/;\/“ﬁ is standard normal. This completes the proof of statement (8.16).
We turn now to the verification of the remaining assertions. Letting

R

ji= 2=, 1sjsn, (8.19)

the random variables Y,,..., Y, are independent N(0,1)-distributed. Moreover, their
(unbiased) sample variance may be calculated by

=ﬁ{21@2—2n1‘72+n1‘72}=i{ sz—(\/ﬁ?)z}. (8.20)
j=1

4 Recall that
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To proceed further, set b; := (n"2,...,n""/?), and note that b, is a normalized n-dimen-

sional vector, that is, we have |b1|2 = 1. Let E ¢ R" be the (n — 1)-dimensional sub-
space consisting of elements that are perpendicular to b;. Choosing an orthonormal
basis b,, ..., b, in E, by the choice of E, the vectors b, ..., b, form an orthonormal ba-
sis in R". If b; = (By,...,Bwn)s 1 < 1 < n, let B be the n x n-matrix with entries gy,
that is, the vectors by,..., b, are the rows of B. Since (b;){., are orthonormal, B is uni-
tary.

Asin Lemma 8.4.2, define Z;,...,Z, by

and the quadratic form Q (with m = 1) as
n

Q:= 2.} -

Jj=1

N
)

Because of Lemma 8.4.2, the quadratic form Q is X,Zl_l-distributed and, furthermore, it is
independent of Z;. By the choice of B and b,

172
Bu=-=Pn=n /

hence Z; = n'?y and, due to eq. (8.20), this leads to

z (n"*7)" = (n-1)s.

This observation implies (n-1)s% is y>_,-distributed and, moreover, (n —1)s> and Z; are
independent, thus also sY and Z;.
The choice of the Y;s in eq. (8.19) immediately implies Y = 22¢ hence

R A I ST
R >=a—’é<n—1>>

j=1 j=1

which proves assertion (8.17).

Recall that Z, = n"27 = n"/2X£ which leads to X = n™"2 0z, + . Thus, because
of Proposition 4.1.9, the independence of s> = s%/d* and Z; implies that s and X are
independent as well.

It remains to prove statement (8.18). We already know that V := +n )% is stan-
dard normal, and W := (n - 1) s§( /d?is X,zl_l-distributed. Since they are independent, by
Proposition 4.6, applied with n — 1, we get
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v Xs_ £ 1V is t, -distributed.
X i w
This implies assertion (8.18) and completes the proof of the proposition. O

Remark 8.4.4. It is important to mention that the random variables Xj, ..., X,, satisfy
the assumptions of Proposition 8.4.3 if and only if the vector (X;,...,X,) is N'(u, *)®"-
distributed or, equivalently, if its probability distribution is (L, 6°I,,).

Summary: LetX,,...,X, be independent and N (u, 02)-distributed. Then

_ 5 _
X-p Sx .2 X-y
«m7 ~N(@©,1), (-1 2~ WT ~ty .

Furthermore, X and s7 are independent random variables.

8.4.2 Quantiles

Let X be a (real-valued) random variable. Given a number 0 < f < 1, a up € R is said to
be a f-quantile of X provided that

P{X <upt>B and P{X=>ugt=>1-8.
Another way to write this is
Py((—0o0, uﬁ]) >B and IPX([uﬁ, 00)) 21-B.

In particular, this implies that the quantile only depends on the distribution of a random
variable, not on the way it is defined. Since

IP{XZ uﬁ} =1—IP{X< Uﬁ},
the condition for the quantile may also be formulated as
P{X < uﬂ} >f and P{X< uﬁ} <B.

Example 8.4.5. Suppose that P{X = 0} = P{X =1} = % Then there is no f-quantile in
the case 8 # % Why? This is due to the fact that the distribution function ¢ — P{X < t}
attains only the values 0, % and 1. If B = 1/2, then every number u ¢ [0, 1) satisfies
1 1
]P{Xsu}zz and ]P{X<u}sz,

hence each u € [0,1) is a (1/2)-quantile of X.
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This example tells us two facts: quantiles do not always exist and, moreover, if they
exist, then they need not be unique.

The situation becomes completely different if X possesses a positive distribution
density.

Proposition 8.4.6. Suppose that there this a positive density p such that

t
Fy(t)=P{X <t} = Jp(x)dx, teR.

Then for each B € (0,1), there is a unique p-quantile ug. That is, there is a unique ug € R
for which

Ug
Fy(up) = P{X < ug) = J p(Odx = B. (821)

—00

Proof. Under these assumptions about X, its distribution function Fy is a one-to-one
mapping from R onto (0,1). Hence, its inverse function F; exists and ug = Fgl (p) is the
unique number satisfying (8.21). O

Remark 8.4.7. Of course, Proposition 8.4.6 remains valid if there are a € Rand/orb € R
such that the density p satisfies p(x) = 0 if x < a and/or p(x) = 0if x > b. In this case the
quantile ug satisfies either ug > a or ug < b, respectively.

Let us now introduce some quantiles which will play an important later on. The first
quantiles we consider are those of the standard normal distribution.

Definition 8.4.8. Let ® be the distribution function of A/(0, 1), as it was introduced in Definition 1.6.2.
For a given B € (0,1), the B-quantile zg of the standard normal distribution is the unique real number
satisfying

®(z) =B orequivalently, zp=0"'(8).

Another way to define is as follows. Let X be a standard normal random variable. Then
zp is the unique real number such that

]P{XSZﬁ}ZB.

The following properties of zz will be used later on. Compare also Figure 8.5 for the
assertions.

Proposition 8.4.9. Let X be standard normally distributed. Then the following are valid:
1. Wehavezy, =0, zg<0 for0<p<1/2, andzg > 0 for 1/2<p <1.

2. Forall0< B <1, itfollows that P{X > zg} =1~ B.

3. If0<B<1thenz, _g=-zg.

4. For0<a<1lwehaveP{|X| 22z _qp} = a.
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B
1-p8
\ z \ z
ZB 2B
1-8 1-5 a/2 a/2
T T Z I I x
—Zp Zp —Z1—a/2 Z1—a/2

Figure 8.5: The assertions of Proposition 8.4.9.

Proof. The first property easily follows from ®(0) = 1/2, hence @(¢t) > 1/2 if and only if
t>0.

Let X be standard normal. Then P{X > zp} = 1 - P{X < zg} = 1 - B, which proves
the second assertion.

Since —-X is standard normal as well, by property 2 it follows that

]P{X < _Zﬁ} = IP{—X > Zﬁ} = ]P{X > Zﬁ} =1- B = IP{X < Zl—ﬁ} s

hence z,_g = -z as asserted.
To prove the fourth assertion, note that properties 2 and 3 imply
IP{'X' > Zlfa/Z} = ]P{X < _Zlfa/Z or X> Zlfa/Z}
= PX < -z qpp} + P{X 2 21 o}
= IP{X < Z(I/Z} + ]P{X > Zl—a/z} = a/Z + a/Z =a.
Here we used 1 - a/2 > 1/2 implying z,_,/, > 0, hence the events {X < -z;_,,} and
{X 2 zy_g5} are disjoint. O

To get an impression about the size of the quantiles zg, let us state a few of them.

B 0.999  0.995 0.99 0.95 0.9 0.8 0.75

zg 3.0902 25758 23263 1.6449 12816 0.8416 0.6745
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The values for small 8 > 0 follow by z,_g = —z;. So, for example,
ZO.l = _20.9 = —12816 .
The next quantiles, needed later on, are those of a )(i distribution.

Definition 8.4.10. Let X be distributed according t0)(,2, and let 0 < B < 1. The unique (positive) number
Xr%;ﬁ satisfying

]P{X SXg;ﬁ} = ﬁ

is called the B-quantile ofthe)(,z, distribution.

Two other, equivalent, ways to introduce these quantiles are as follows:
1. IfX,...,X, are independent standard normal, then

P{X{ +++ Xy < Yngl = B

2. The quantile )(,Zl;ﬁ satisfies

Xﬁ;ﬁ
1 I XM e 2y Z g
22T (n/2) :

For later purposes, we mention also the following property. If 0 < a < 1, then for any
x2-distributed random variable X (see Figure 8.6),

P{X ¢ [szz;a/z ’szl;l—a/Z]} =a. (8.22)

a/2 a/2

xX
\ \

2 2
X102 X41—a/2

Figure 8.6: Graphic presentation of formula (8.22) for)(f.

In a similar way, we define now the quantiles of Student’s ¢, and of Fisher’s F,, ,, distri-
butions. For their descriptions, we refer to Definitions 4.7.6 and 4.7.13, respectively.
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Definition 8.4.11. Let X be ¢,-distributed and let ¥ be distributed according to Fy, ,. For B € (0,1) the
B-quantiles t,.5 and Fy, .g of the ¢, and F,, , distributions are the unique numbers satisfying

PiX <typ} =B and P{Y <Fy,p}=p.
Remark 8.4.12. Let X be t,-distributed. Then —-X is t,-distributed as well, hence

P{X <s} = P{-X < s} for s € R. Therefore, as in the case of the normal distribution, we
get —tyg = ty_p,and also

]P{|X| > tn;l_a/z} = ]P{le Z tn;l_a/z} =a. (823)

Remark 8.4.13. Another possibility to introduce the p-quantile of the ¢, distribution is
as follows: if X and X, ..., X,, are independent standard normal variables, then

=B.

]P{% Stmﬁ}
n
Vn Zis X7

Similarly, one may characterize the quantiles of the F,, , distribution in the follow-
ing way. Let X and Y be independent and distributed according to szn and )(,21, respec-
tively. Then the S-quantile Fy, . is the unique number satisfying

X/m 3
B ¥in = s} =P

Note that the quantiles F,, .5 are positive numbers while the ¢,z are negative if
0 < f < 1/2 and positive in the case 1/2 < f < 1.

If s > 0, then

p{X/_’" gs} :]P{Y—/n > 1} :1_1p{Y_/" gl},
Y/n X/m s X/m ™~ s

which immediately implies

1

F nm;1-f .

Fm,n;ﬁ =

Summary: The following 8-quantiles will play an important role later on:

X~N@O1) = PX<zi=f X~x; = PX<)yul=p
X ~t, = PX<ty)=Bf X~Fuy = PX<Fyg=p
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8.4.3 Z-tests or Gauss tests

Suppose we have an item of unknown length. In order to get some information about its
length, we measure the item n times with an instrument of known accuracy. As sample
we get a vector X = (xy,...,X,), where x; is the value obtained in the jth measurement.
These measurements were executed independently, thus, we may assume that the x;s
are independent A (y, Gg)-distributed with known og > 0 and unknown length u € R.
Therefore, the describing statistical model is

(R" BR"), N (14, 5) ™) jeg = (R BIR"), N ([ 051, e
From the hypothesis, two types of test apply in this case. We start with the so-called one-
sided Z-test (also called one-sided Gauss test). Here the null hypothesis is Hy : u < g,
where u, € R is a given real number. Consequently, the alternative hypothesis is
H; : u > U thatis, 8, = (—o0o,ly] while ; = (yp, c0). In the above context, this
says that we claim that the length of the item is less than or equal to a given u, and to
check this we measure the item n times.

Proposition 8.4.14. Let a € (0,1) be a given significance level. Then T = (X, X;) with®

2 09 Z1_q}

Xop={xeR":x<py+n"
and with

/

X=X eR" : x> uy+nayz, )

is an a-significance test to check H, : u < yg against Hy : u > u,. Here z,_, denotes the
(1 - a)-quantile introduced in Definition 8.4.8.

Proof. The assertion of Proposition 8.4.14 says that

sup P, (X;) = sup N(g, 0(2,)®n(2(1) <a.
<ty <ty

To verify this, let us choose an arbitrary y < g, and define S : R" — R by
S(x) == Vi )% XeR", (8.24)
0

Regard S as a random variable on the probability space (R", B(R"), V'(u, c§)®”). We
claim that S is a standard normally distributed random variable. This fact is crucial.
Therefore, let us give a more detailed reasoning.

5 Recall that X denotes the arithmetic mean of an vector x = (xy,...,X,) in R".
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Define random variables X; on the probability space (R", B(R™), N'(u, o§)®”) by
Xj(x) = X;, where x = (X,...,X,). Then the random vector X = (X, ..., X,) is the identity
on R", hence A/ (u, 03)®"-distributed. In view of Remark 8.4.4 and since

X(x)—u
g

S(x) = vn

assertion (8.16) applies for S, that is, it is A/(0, 1)-distributed. Consequently,
2\®n n
N op) xeR":8X) >z .} =a. (8.25)

Since u < py, we have

X={xeR": x> uy+n?

2

0) Z1_q}

cixeR" :x>u+n oz o) = [x e R*:S(X) > 244}

hence, by eq. (8.25), it follows that
N(y, oé)m()(l) < N(u, ag)m{x eR":S(X) > 24} = a.

This completes the proof. O

How does the power function of the Z-test in Proposition 8.4.14 look like? If S is as
in eq. (8.24), then, according to Definition 8.2.11,

Br(w) = N, 03)™" (%) = N(u, 03)™" {x N zl_a}
0

= N(u,a2)™ {x e R": S(X) > zy_q + (Uy — 1) ?}
0
vn Vn
= 1_CD<Z1—01 + (Up — 1) —> = ‘I’<Za + (U - o) —>
Op Jo
In particular, By is increasing on R with fr(¢y) = a. Moreover, we see that fp(u) < a if
U < o, and Br(u) > a for u > py. See Figure 8.7 for an example of the power function.
While the critical region of a one-sided Z-test is an interval, in the case of the two-
sided Z-test it is the union of two intervals. Here the null hypothesis is Hy : ¢ = y,
hence the alternative hypothesis is given as H; : u # Y-

Proposition 8.4.15. The test T = (X, &;), where

-1/2 . 12
Ay:={xeR":yy-n /0021-a/2 <X<Uy+n /0021-a/2}

)_(_
= {x eR": \/ﬁl Hol < zl,a/z}
0o

and X, = R" \ X,, is an a-significance test for Hy : u = i, against Hy : u # u,.
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1.0~

0.8+

0.4

0.2

1 2 3 4

Figure 8.7: Power function of the one-sided Z-test T with a = 0.1, iy = 2,0y = 1,and n = 10.

Proof. Since here ©, = {u,}, the proof becomes easier than in the one-sided case. We
only have to verify that

N 03)™" () < a. (8.26)

Regarding S, defined by

SO0 = V£,
0o
as a random variable on (R", B(R™), N (4, o§)®"), by the same arguments as in the pre-
vious proof, it is standard normally distributed. Thus, using assertion (4) of Proposi-
tion 8.4.9, we obtain

N(Ho»“é)m()(l) = N(ﬂo’ag)m{x eR": ISe)] > Zl—a/Z} =a.

Of course, this completes the proof. O

Recall that Sy(u) is the probability to observe an x = (xy, ..., x,) in the critical region
X, provided p is the “true” mean value. As can be seen in Fig. 8.8, this probability is small
(equal @) if u = uy and becomes rapidly big for u different of the suggested u,.

Remark 8.4.16 (Important!). How to apply the one- or two-sided Z-test in a concrete sit-
uation? If the hypothesis is either Hy : ¢t < yy or Hy : ¢t = Uy, then the regions x; of
rejection are either

X - X-
{xe]R": yn Xt >zl,a} or {xe]R": \/ﬁ' Hol >Zl—a/2}~
gy 0o
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1 2 3 4

Figure 8.8: Power function of the two-sided Z-test Twith a = 0.1, yg = 2, 05 = 1, and n = 10.

By the definition of the quantile, the former is equivalent to
d)(ﬁ)ﬂ) >l-a o @(\/ﬁlﬂ> <a.
Go To
Similarly, in the two-sided test, one has x € X; if and only if either

d)(\/ﬁﬂ> <aj2 or (I)(\/ﬁll()_—)?) <a/2.

) Jp

Suppose now we observed nvalues x = (xy, ..., X,) which are independent and N (y, ag)-
distributed for some unknown u € R. If

@(\/ﬁl%><a = reject Hy:u<u.
0
Similarly, we have to reject Hy : u = y, if either
@(ﬁ)ﬂ)«z/z or @(\/ﬁM><a/Z.
0o 0o

In both cases (one- and two-sided test) the probability for an erroneous decision is
bounded by a > 0.

Example 8.4.17. Suppose the hypothesis is H; : 4 < u, and our calculations lead to
k=X _ 513
Op

Since ®(-2.13) = 0.0165858, we may reject H, with significance level a whenever
a > 0.0165858. But we cannot reject it with smaller risk. For example, if a = 0.01, then
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the result does not contradict the hypothesis. There is a great likelihood that Hj, is
wrong, but if we want to be very sure that this is so, we cannot derive this from the
obtained result.

8.4.4 t-tests

The problem is similar to that considered in the case of the Z-test. But there is one im-
portant difference. We do no longer assume that the variance is known, which will be
so in most cases. Therefore, this test is more realistic than the Z-test.

The starting point is the statistical model

(]Rn> B(IR"),N(y, 02)®n)(y,gz)emx(o,oo) .
Observe that the unknown parameter is now a vector (i, 0%) € R x (0, co). We begin by
investigating the one-sided t-test. Given some y, € R, the null hypothesis is as before,
that is, we have H,, : ¢ < y,. In the general setting, this means 0, = (oo, iy] % (0, c0),
while 0; = (g, 00) x (0, 00).

To formulate the next result, let us shortly recall the following notations. If si de-
notes the unbiased sample variance, as defined in eq. (8.14), set s, := +\/£. Further-
more, t, 4, denotes the (1 - a)-quantile of the ¢, ;-distribution, as introduced in Defi-
nition 8.4.11.

Proposition 8.4.18. Given a ¢ (0,1), the regions X, and X, in R" are defined by

X -
XO = {X € ]Rn : ﬁ S 110 < tn,1;1,a}

X

and X; = R\ &,. With this choice of X and X,, the test T = (X,, X;) is an a-significance
test for Hy : p < g against Hy : 4 > Ug.

Proof. Given y < iy, define the random variable S on (R", B(R"), N (i, *)®") as

S(x) := inTH o xeRrt.

Sx

Property (8.18) implies that S is t,_;-distributed, hence by the definition of the quantile
tn_1.1-¢- it follows that

N, 0¥ {x e R": S(x) > trotda) = Q.
From u < u,, we easily derive

Xl C {X € IRn IS(X) > tn—l;l—a} 5
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thus, as asserted,

sup N (1, 0%) ™" (&) < N (1, 0%) ™ {x € R": S(x) > th11q} = Q. O
Hspty

As in the case of the Z-test, the null hypothesis of the two-sided t-test is Hy : 1t =
for some 1, € R. Again, we do not assume that the variance is known.
A two-sided t-test with significance level @ may be constructed as follows.

Proposition 8.4.19. Given a € (0,1), define regions X, and X; in R" by

X — Yo

X

Xo:z{XE]Rn:ﬁ

< tn—l;l—a/Z}
and X; = R\ X,. Then T = (&, X)) is an a-significance test for Hy : u = y, against
Hy =y # Uy

Proposition 8.4.19 is proven by similar methods, as we have used for the proofs of
Propositions 8.4.15 and 8.4.18. Therefore, we decline to prove it here.

Example 8.4.20. We claim a certain workpiece has a length of 22 inches. Thus, the null
hypothesis is H, : 4 = 22. To check H,, we measure the piece 10 times under the same
conditions. The 10 values we obtained are (in inches)

2217, 2211, 2210, 2214, 22.02, 2195 22.02, 22.08, 2198, 2215

Do these values allow us to reject the hypothesis or do they confirm it? We have

X =22
Sx

X=22072 and s, = 0.07554248, hence V10 = 3.013986.

If we choose the significance level a = 0.05, we have to investigate the quantile tq 975,
which equals t,9 975 = 2.26. This lets us conclude the observed vector x = (xy,...,Xy)
belongs to X;, and we may reject H,. Consequently, with a confidence of 95 % we may
say, U # 22.

Another way to argue is as follows: Let S(x) = ";—XZZ = 3.013986. Then we have S(x) <
tg0.975 if and only if for a t4-distributed X it follows that

Fy(S(x)) = P{X < S(x)} <0.975.
But in our case Fx(S(x)) = 0.992687. So, we also get by this argument that H, has to be
rejected.

Remark 8.4.21. If we plug these 10 values, together with u, = 22, into a mathematical
program, the result will be a number a, = 0.00128927. What does this number tell us?
It says the following. If we have chosen a significance level a > a,, then we have to
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reject Hy. But, if the chosen a satisfies a < a,, then we fail to reject Hy. In our case we
had a = 0.05 > 0.00128927 = a,, hence we may reject H,.

Thus, the price we pay for choosing a higher certainty and taking a < q; is that
we are no longer able to reject the hypothesis Hy. It is as in the daily life: if one
wants to be 99.9 %-sure of not having a car accident, the best way is to avoid driving a
car.

8.4.5 y’-tests for the variance

The aim of this section is to get some information about the (unknown) variance of a
normal distribution. Again we have to distinguish between the following two cases. The
expected value is known or, otherwise, the expected value is unknown.

Let us start with the former case, that is, we assume that the expected value is known
to be some y, € R. Then the statistical model is

(R, BR"), N (tg, 6°)™") oz

In the one-sided y>-test, the null hypothesis is H, : o’ < ag, for some given ag > 0,
while in the two-sided y*-test we claim that H, : 0* = g3.

Proposition 8.4.22. In the one-sided setting, an a-significance y*-test T = (X,, X, ) is given
by

X, {x eR" Z yo) ﬁ;la} .
j=1

0

For the two-sided case, choose

n L 2
05— H) _ 2 } 8.27)

n, .2
Xy = {x €R": Jun <) ——5— <Xni-ar2
= 9%

to obtain an a-significance test. In both cases, the critical region is X; := R" \ &,

Proof. We prove the assertion only in the (slightly more difficult) one-sided case. For an
arbitrarily chosen o2 < og, let NV (uy, 0?)®" be the underlying probability measure. We
define now the random variables X; : R" - R as X;(x) = x; for x = (x3,...,xy). Then

the X;s are independent N (uo, o?)-distributed. The normalization Y, = @ leads to
independent standard normal Yjs. Thus, if
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then, by Proposition 4.6.10, the random variable S is )(ﬁ-distributed. By the definition of
quantile, we arrive at
N (g, 4™ X € R™ : S(X) > Yni_a} = @.

2

Since o* < o7, it follows that

X € {x e R": S(X) > Ynaal»
hence MV (uy, 02)®"(X1) < a. This proves, as asserted, that T = (X}, X;) is an a-significance
test. O

Let us now turn to the case where the expected value is unknown. Here the statistical
model is given by

(R, B(R"), N (1, 6*)™")

(1,0%)€Rx(0,00) *
In the one-sided case, the null hypothesis is Hy : 6 < 8,. Thus, the parameter set
0 = R x (0, 00) splits into ® = O, U ©; with
@ = Rx(0,02] and ©; = Rx(02,00).
In the two-sided case, the null hypothesis is Hj : 8 = ;. Hence, in this case we have
8y =Rx {0} and ©;=Rx[(0,0%)u (03,00)].

Proposition 8.4.23. In the one-sided case, an a-significance test T = (X, X;) is given by
n sZ 2
Xy = {x eR":(n-1) G—’; S)(n_m_a}.
0

In the two-sided case, choose the region of acceptance as

2

N

Xy = {x €ER": s 1qp<s(n-1) G—XZ <Xoiia ,2} (8.28)
0

to get an a-significance test. Again, the critical regions are given by X; := R" \ X,
Proof. The proof is very similar to that of Proposition 8.4.22, but with some important
difference. Here we have to set

&2
Sx):=(n-1)=, xeR".
o

Then property (8.17) applies, and it lets us conclude that S is Xﬁ_l-distributed, provided
that (1, 2)®" is the true probability measure. After that observation the proof is com-
pleted as that of Proposition 8.4.22. O
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Summary: The mostimportant one-sample a-significance tests for normally distributed
populations are

Name Parameters Hypotheses  Critical region X
One-sided Z-test % > 0 known Hy:p<py {xeR": v >z .}
Hy =y > po
Two-sided Z-test a® > 0 known Hy:p=py {xeR": Va2 > 2z 4}
Hy =y # o
One-sided t-test o’ >0unknown Hp:p<p,  fxeR": VAR s 00}
Hy =y > o
Two-sided t-test o’ >0unknown Ho:p=py X eR": VAT > b, 4 0}
Hy :p # o
2
One-sided y-test with ~ y € R known Hy:0’<o; {xeR": Y7, % > Xoral
known mean value H; : 0 > o} ¢
N2
Two-sided y>-test with ~ y € R known Hy:0°=0f {xeR": Y (X’Uf) <Xpap}U
known mean value H,: 0% # 0(2) ¢

C-p® 2
{X eER": Y 'aél >Xn;1—a/2}

12
One-sided y*testwith ~ y € Runknown ~ Hy:0” <oy {xeR": ¥ (X’;;) > Xoral
unknown mean value H,:0%> 0(2) 0

2
Two-sided y>-testwith ~ y € Runknown ~ Hp:0’ =05 {xeR": ¥ % <Xtapty
unknown mean value H, 040 ’,
1 0 - 2
rer: U 52 )

2
%

8.4.6 Two-sample Z-tests

The two-sample Z-test compares the parameters of two different populations. Suppose
we are given two different series of data, say x = (Xy,...,X,) andy = (¥4, ...,y,), which
were obtained independently by executing m experiments of the first kind and n exper-
iments of the second. Combine both series to a single vector (x,y) € R™™".

A typical example for the described situation is as follows. A farmer grows grain on
two different lots. On one lot he added fertilizer, on the other he did not. Now he wants
to figure out whether or not adding fertilizer influenced the amount of grain gathered.
Therefore, he measures the amount of grain on the first lot at m different spots and that
on the second lot at n spots. The aim is to compare the mean values in both series of
experiments.

We suppose that the samples x;,...,x,, of the first population are independent
and N(u, Gf)—distributed, while the yj,...,y, of the second population are indepen-
dent and N (uy, o%)—distributed. Typical questions are as follows. Do we have u; = u,
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or, maybe, only 4y < u,? One may also ask whether or not 012 = 022 or, maybe, only
ol <a.

To apply the two-sample Z-test, one has to suppose that the variances 012 and 022 are
known. This reduces the number of parameters from 4 to 2, namely to y; and g, in R.

Thus, the describing statistical model is given by

(R™™, BR™"), N (11, 67)™" @ N (11, 05)°") (8.29)

(Uit ER? *

Recall that NV (y4, 012)®m QN (Uy, 022)®” denotes the multivariate normal distribution with

expected value (iy,..., {3, {5, .., ly) and covariance matrix R = (ry);j{, where ry = a?
m n

iflgism,andrﬁ:czzifm<ism+n.Furthermore,rU-:Oifiq&j.

Proposition 8.4.24. The statistical model is that in (8.29). To test Hy : yy < U, against

]I_Il !.ul > uz, set
Xy = {(x,y) e R™" . % (x-y) < zl_a]»
nol + TTlO'2

and X, = R™™"\ X,. Then the test T = (X,, X)) is an a-significance test for checking H,
against Hy. To test Hy : 1y = Uy against Hy : yy # U,, let

m+n mn

Xy = {(x,y) e R™" . X -yl < Zl—a/Z}

2 2
no? + mos
and X, = R™"\ A,. Then the test T = (X, X,) is an a-significance test for checking T,
against H;.

Proof. Since the proof of the two-sided case is very similar to that of the one-sided,
we only prove the first assertion. Thus, let us assume that H,, is valid, that is, we have
Uy < Uy. Then we have to verify that

Ny, 6™ @ N (15, 02)™" (X)) < a. (8.30)

To prove this, we investigate the random variables X; and Y; defined as X;(x,y) = x; and
Y;(x,y) = y;. Since the underlying probability space is

(R™™, BR™™), N (11, 67)™" @ Nt 57)™)

these random variables are independent and distributed according to A (u, 012) and
- 2 _
N (uy, 0'22), respectively. Consequently, X is NV (yy, %)-distributed, while Y is distributed
2 — —
according to NV (uy, % ). By the construction, X and Y are independent as well, and, more-
— 2 - -
over, since —Y is N/ (-, c%)-distributed, we conclude that the distribution of X -Y equals

N (g - Uy, %12 + %22). Therefore, the mapping S : R™*" — R defined by
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2 2\ -1/2
S(y) = (% + %) [(R00Y) - T009) - (g - )]

is standard normal. By the definition of the quantile, this leads to
N (g, )™ @ N (1, )™ {06,Y) € R™™ : S(,Y) > 21} = @. 8.31)
Since we assumed H,, to be correct, that is, we suppose p; < U, it follows that

2 2\ —1/2
%, B\ Koy - 7o) — T Xy - §
S(x,y) = < o + . ) (X0 y) - Y (x,y)] ncrlz " mcrzz (X0, y) - Y y)].

Hence
A < {y) e R™™:S(x,y) > 214} »

which by eq. (8.31) implies estimate (8.30). This completes the proof of this part of the
proposition. O

8.4.7 Two-sample t-tests

The situation is similar as in the two-sample Z-test, yet with one important difference.
The variances 012 and 022 of the two populations are no longer known. Instead, we have
to assume that they coincide, that is, we suppose

0] =0y :=0".

Therefore, there are three unknown parameters, the expected values y, 4y, and the
common variance o2. Thus, the statistical model describing this situation is given by

2\®m 2.\®n
(Rm+n)B(Rm+n))N(y1> %) e N(u,0%) )(yl,yz,GZ)GRZX(O,oo) . (8.32)
To simplify the formulation of the next statement, introduce T : R™" — R as
T(iy) = | =D mn X-y ,(Gy) € ™™ (8.33)
man o \m-1sk+ (n-1sk

Proposition 8.4.25. Let the statistical model be as in (8.32). If
X = {(X’y) e R™™": T(xy) < tm+n—2;1—a}

and X, = R™"\ x,, then T = (X,, X)) is an a-significance test for Hy : y; < u, against
Hy @ gy > .
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On the other hand, the test T = (X;, X;) with
Xy = {(X’y) e R™": |T(X>y)| < tm+n—2;1—a/2}

and X; = R™™\ Ay is an a-significance test for Hy : iy = U, against Hy : iy # Us.

Proof. This time we prove the two-sided case, that is, the null hypothesis is given by
Ho : g = Uy.

Let the random vectors X = (X;,...,X,;) and Y = (Y;,...,¥;) on R™" be defined
with X;s and ¥}s as in the proof of Proposition 8.4.24, that is, we have X(x,y) = x and
Y(x,y) = y. Then by Proposition 4.1.9 and Remark 4.1.10, the unbiased sample variances

M=

m
sy = 1 Y X -X) and s} = (¥, - 7)*
m-13

1
n-1:¢+
J

Il
JUN

are independent as well. Furthermore, by virtue of statement (8.17), the random vari-
ables

s s
(m—1)—)§ and (n—l)—g
o o

are distributed according to )(,Z,H and Xip respectively. Proposition 4.6.9 implies that

2
S,y

1
= ;{(m - 1)s§( +(n- 1)s§,}
is )(,Zn +n_p-distributed. Since sf( and X, as well as s%, and Y, are independent, by Propo-

sition 8.4.3, this is also so for Sfy ;) and X — ¥. As in the proof of Proposition 8.4.24, it
follows that X — ¥ is distributed according to NV (u; — ts, %Z + %Z). Assume now that T,
is true, that is, we have y; = y,. Then the last observation implies that G@n X-Y
is a standard normally distributed random variable and, furthermore, independent of

S(ZX,Y). Thus, by Proposition 4.6, the distribution of the quotient

ymn_ (g _ )
7 = \/m+n_2L

Sex.y)

where Sy yy = +1 /S(ZX’Y), iS t,, n_p-distributed. If T is as in eq. (8.33), then it is not difficult
to prove that Z = T(X, Y). Therefore, by the definition of X and Y, the mapping T is a
tmsn_z-distributed random variable on R™™", endowed with the probability measure
Py 0t = N, 0™ @ N (15, 6*)®". By eq. (8.23), this implies

Py ot (X)) =Py 2{06Y) € R |TOOCY)| > tnynzaoape) = @

as asserted. O
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8.4.8 F-tests

In this final section about tests, we compare the variances of two normally distributed

sample series. Since the proofs of the assertions follow the schemes presented in the

previous propositions, we decline to verify them here. We only mention the facts that

play a crucial role during the proofs.

1. IfX,,....,X,andY,,...,Y, are independent and distributed according to N (u, 012)
and N (i, 07), then

1 m
Vi S Y Xi-w)t and W= = 5 (- )’
1

i=1 1

S| -
M=

J

are )(,Zn and )(,Zl-distributed and independent. Consequently, the quotient % is
F,, p-distributed.

2. ForXi,...,X,andY,,..., Y, independent and standard normal, the random vari-
ables

s 5
(m—l)—}; and (n—l)—g
0 gy

are independent and distributed according to szn—l and Xr21—1: respectively. Thus, as-
suming g, = g,, the quotient sf( /s?, possesses an F,_; , ¢-distribution.

When applying an F-test, as before, two different cases have to be considered.
(K) The expected values y4 and y, of the two populations are known. Then the statistical
model is given by

2,\®m 2\®Nn
(R™, BR™™), N (1, 07) " ® N (t3,07) )(012,022)5(0,00)2 .
(U) The expected values are unknown. This case is described by the statistical model

m+n m+n 2\®m 2\®Nn
(IR ’B(]R )’N(xul’ Gl) ®N([12,O'2) )(yl,yz,glz,azz)esz(O,oo)z .
In both cases the null hypothesis may either be H : crz in the one-sided case or
H, : 0> = o2 in the two-sided one. The regions of acceptance in each of the four different
cases are given by the following subsets of R™", and always &; = R™™" \ X,
Casel: Hy: 012 < 022 and y, 4, are known. Then

Lyl O — )’ }
T <n ., m,n;l-a

Xp = {(x,y) e R™™" < Fona-
% Z}’ﬂ(yf - 1)

Case 2: Hy : 012 = 0'22 and y, 4, are known. Then
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1 ym 2
m 2i=1(Xi — )
X = {(X,)’) e R™" : Frnsayz < Tn—z s m,n;l—a/z}‘
2 2w — )
j
Case 3: Hy : 012 < 022 and py, u, are unknown. Then
2
‘XO = {(X,y) € an’H—n : S_)z( < Fm—l,n—l;l—a}~
Y
Case4: Hy : 012 = 022 and 4, 4, are unknown. Then
&2
Xp = {(X,)’) R s_)z( <F m—l,n—l;l—a/z}-
y

Example 8.4.26. Suppose there exist two different methods to measure certain items.
Some evidence lets us suggest that method 2 is more precise than method 1. That is, we
believe that the variance of the measurements by method 2 is smaller than the one by
method 1.

To check this we measure some given item 39 times by method 1 and a maybe dif-
ferent item 28 times by method 2. As result we get x = (Xy,...,X3q) values obtained by
method 1 and another 28 values y = (y4,...,¥3) by method 2. Thus, in order to apply an
F-test, we have m = 39 and n = 28.

Assume the unbiased variances of the samples x and y are

N
s»=10963 and s, =6599, hence =% =166.

2
2x
2
5y
Let olz and 022 be the unknown variances of the x;s and y;s, respectively. To obtain as

much information as possible, let us choose as hypotheses
Hy:0; <0, and H:0; >0;. (8.34)

Take a = 0.1 as a significance level. If s,z(/si > F3g97.0.9, then an application of the one-
sided F-test implies that we may reject H,. Note that m—-1=38andn-1=27.
Let X be an Fq 5;-distributed random variable. Then

Si/sy > Fygprog  © ]P{Xs }>0.9.

\<U=N | ><an

Tables or mathematical programs give

2

IP{X < S—;} — P{X <166} = 091402 >09=1—a.
S

y
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So we may reject H, and conclude that 022 < 012. That is, with probability greater than
0.9 we may say that method 2 is more precise than method 1.

Let us one more time emphasize the importance of the choice of the hypotheses
in (8.34). If we were to choose H : 0> < o7, then our test would confirm H,, but we
could not say that H, is valid with a likelihood of at least 90 %.

Summary: The mostimportant two-sample a-significance tests for normally distributed
populations are

Name Parameter Hypotheses  Critical region X,
One-sided Z-test a2, a2 known Ho:py <y {06y) e R Vm__ L (x — ) > Z1_q}
\noZ+ma2
Hy :py >
Two-sided Z-test a2, a2 known Ho:p =4y {06y) e R™: Vi (g -] > Zi_qp}
\naZ+ma2
Hy :p # 43
2 V(m+n-2)mn

One-sided t-test o7 =03 > Ounknown Hy:py <, {0y) e R™:
Hy:pp>pp XV
(m—1)s)2(+(n—1)sf

R, Nmn—om

m+n

m+n
> tm+n—2;1—a}
Two-sided t-test 012 = 0% > 0unknown Hj:pq =p, {(x,y) €
Hyopy #4y X7l

—— >0 2.1_
(m=1)sg+(n-1)s} mn-2;1 a/Z}

1ym )2
One-sided F-test i, 4 known Hy:0f <05 {(xy) eR™: % [ p——
7 Zj=1Vj=Ha
H, : 07 > 02 "
; 2 2 men . T Gimpn)?
Two-sided F-test 4, y, known Hy: 07 =0y {(X,y) e R % > Fm,n;1—a/2}
n 2j=1Vj7H2
H, :012 * U% 10 2
n 2:1(}"*}’2)
uloy) e R™", 120V 2 S p
{( y) %Z,"’:H(Xi—lﬁ)z nm; 1 a/Z}
One-sided F-test iy, 4, € Runknown — Ho:0; <05 {(,y) € R™ : $3/s) > F_1.n-1,1-q}
H,: 012 > U%

Two-sided F-test gy, pr, € Runknown — Hy: 07 =05 {(6y) € R™" 2 /57 > Foq1.4-ap2}

2, 2
Hy:07#0;  Uf(ny) eR™: Sf/s)% > Fotmety1-as2}

8.5 Point estimators

Starting point is a parametric statistical model (X, F, Py)gce. ASSume we execute a sta-
tistical experiment and observe a sample x € .X'. The aim of this section is to show how
this observation leads to a “good” estimate of the unknown parameter 6 € ©.

Example 8.5.1. Suppose the statistical model is (R", B(R™), (4, US)W‘)#E]R for some
known ag > 0. Thus, the unknown parameter is the expected value p € R. To estimate

it, we execute n independent measurements and get x = (X, ..., X,) € R". Knowing this
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vector x, what is a “good” estimate for y? An intuitive approach is to define the point
estimator i : R" — R as

N 1¢ _
fa(x) = ;ijzx, X=(Xp..., X)) € R".
j=1

In other words, if the observed sample is x, then we take its sample mean fi(x) = X as
an estimate for 4. An immediate question is whether j is a “good” estimator for y. Or do
there exist maybe “better” (more precise) estimators for u?

Before we investigate such and similar questions, the problem has to be generalized
slightly. Sometimes it happens that we are not interested in the concrete value of the
parameter 6 € 0. We only want to know the value y(0) derived from 6. Thus, for some
function y : ® — R we want to find a “good” estimator  : X — R for y(0). In other
words, if we observe a sample x € X, then we take y(x) as an estimate for the (unknown)
value y(6). However, in most cases the function y is not needed. That is, here we have
p(6) = 6, and we look for a good estimator 6 : X — © for 6.

Let us state an example where a nontrivial function y plays a role.

Example 8.5.2. Let (R", B(R"), N (i1, 6*)*") 02,
the unknown parameter is the two-dimensional vector (u, 02). But, in fact, we are only
interested in g, not in the pair (i, 0%). That is, if

eRx(0,00) D€ the statistical model. Thus,

y(0?) =, (1,0") € Rx(0,00),

then we want to find an estimate for y(u, g2).
Analogously, if we only want an estimate for ¢, then we choose y as

2 2 2
Yo%) =0, (1,0°) € Rx(0,00).
After these preliminary considerations, we state now the precise definition of an
estimator.

Definition 8.5.3. Let (X, F,Pg)s.0 be a parametric statistical model and lety : © — R be a function of
the parameter. A mapping y : X — Ris said to be a point estimator (or simply estimator) for y(0) if,
givent € R, the set {x € X : j(x) < t} belongs to the o-field 7. In other words, y is a random variable
defined on X’.

The interpretation of this definition is as follows. If one observes the sample x € X, then
y(x) is an estimate for y(6). For example, if one measures a workpiece four times and gets
22.03, 21.87, 22.11, and 22,15 inches as results, then using the estimator j in Example 8.5.2,
the estimate for the mean value equals 22.04 inches.
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8.5.1 Maximum likelihood estimation

Let (X, F,Py)gep be a parametric statistical model. There exist several methods to con-
struct “good” point estimators for the unknown parameter 6. In this section we present
the probably most important of these methods, the so-called maximum likelihood
principle.

To understand this principle, the following easy example may be helpful.

Example 8.5.4. Suppose the parameter set consists of two elements, say © = {0, 1}. More-
over, also the sample space X has cardinality two, that is, X = {a, b}. Then the problem
is as follows. Depending on the observation a or b, we have to choose either 0 or 1 as an
estimate for 6.

For example, let us assume that Py({a}) =1/4, hence Py({b}) =3/4, and
P;({a}) = P;({b}) = 1/2. Say, an experiment has outcome “a.” What would be a good
estimate for 6 in this case? Should we take “0” or “1”? The answer is that we should
choose “1.” Why? Because the sample “a” fits IP; better than ;. By the same argument,
we should take “0” as an estimate if we observe “b.” Thus, the point estimator for 6 is
given by H(a) = 1and 6(b) = 0.

Example 8.5.5. Let us transform the previous example into one of daily life. Say your
friend is planning to visit you. He will either arrive by train or by car. If he comes by
train, he will be on time with probability 3/4, and by car with probability 1/2. Say he
arrived on time. What would be your estimate for his choice? Do you guess he came by
train or do you conjecture that he used the car? Justify your answer. What if your friend
arrived late?

Which property characterizes the estimator 6 in Example 8.5.4? To answer this ques-
tion, fix x € X and look at the function

0 Py({x}), 6¢0. (8.35)

If x = a, this function becomes maximal for 6 = 1, while for x = b it attains its maximal
value at 6 = 0. Consequently, the estimator 6 could also be defined as follows. For each
fixed x € X, choose as an estimate the 8 € © for which the function (8.35) becomes
maximal. But this is exactly the approach of the maximum likelihood principle.

In order to describe this principle in the general setting, we have to introduce the
notion of the likelihood function. Let us first assume that the sample space X’ consists of
at most countably many elements.

Definition 8.5.6. The function p from © x X’ to R defined as
p8,x) = Po({x}), 6€0, xexXx,

is called the likelihood function of the statistical model (X, P(X), Pg)gco-
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We come now to the case where all probability measures P, are continuous. Thus, we
assume that the statistical model is (R", B(R"), Pg)gco and, moreover, each Py is contin-
uous, that is, it has a density, mapping R" to R. This density is not only a function of
x € R", it also depends on the probability measure Py, hence on 6 € @. Therefore, we
denote the densities by p(8, x). In other words, for each 8 € © and each box Q < R" as
in eq. (1.73) we have

b, b,
Py(Q) = Jp(B,X)dx = jj p(0, Xy, ..., %) dx, -+ -dxg . (8.36)
Q al an

Definition 8.5.7. The function p : @ x R” — R satisfying eq. (8.36) for all boxes Q and all § € O is said
to be the likelihood function of the statistical model (R”, B(R"), Pg)gco-

For a better understanding of Definitions 8.5.6 and 8.5.7, let us give some examples of

likelihood functions.

1. First take (X, P(X), By g)o<p<1 With X = {0,...,n} from Section 8.3. Then its likeli-
hood function equals

p(6, k) = (Z)e"u —0" ., 6e[0,1], kefo,....n). (837)

.....

Then its likelihood function is given by

P(M,m)=%:)—m)’

3. The likelihood function of the model (Ng, P(INg), Poisy");,, investigated in Exam-
ple 8.5.22is

M=0,...,N, m=0,...,n. (8.38)

Ak1+"'+k"

p(A)kl’”-)kn):me_An, A>0, kjeNo. (839)

4. The likelihood function of (R", BIR"), N (i, 6%)®") , 42y Rx(0,00) frOM Example 8.1.12
can be calculated by

1 Ix — il
p(u, 0%, x) = Zoon exp(— 20‘;‘ > peR, o*>0. (8.40)

Here, as before, let i = (4, ..., Y).
5. The likelihood function of (R", B(R"), E5");5o from Example 8.1.9 may be repre-
sented as

(8.41)

N =Atytty)  ie s
P(A,tl,...,tn):<|7l e b ift; >0, 2> 0,

0 otherwise.
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Definition 8.5.8. Let (X,F,Pg)gco be a parametric statistical model with likelihood function
p:0xX — R. An estimator 6:X — 0 is said to be a maximum likelihood estimator (MLE) for
0 € © provided that, for each x € X, the following is satisfied:

p(8(x),x) = Teanp(e’X)

Remark 8.5.9. Another way to define the MLE is as follows:®

é(x) =argmaxp(0,x), xeX.
0O

How does one find the MLE for concrete statistical models? One observation is that
the logarithm is an increasing function. Thus, the likelihood function p(-, x) becomes
maximal at a certain parameter 0 € 0 if its logarithm In p(-, x) does.

Definition 8.5.10. Let (X, F,Py)sco be a statistical model and letp : © x X — R be its likelihood
function. Suppose p(6,x) > 0 for all (8, x). Then the function

L(B,x):=Inp(B,x), €O, xeX,

is called the log-likelihood function of the model.

Thus, 6 is an MLE if and only if

é(x) =argmaxL(0,x), xeX,
1]

or, equivalently, if
L(@(x),x) =maxL(0,Xx).
0O

Example 8.5.11. If p is the likelihood function in eq. (8.37), then the log-likelihood func-
tion equals

LO,k)=c+klnf+(n-k)In1-6), 0<6<1, k=0,...,n. (8.42)

Here c € R denotes a certain constant independent of 6.

Example 8.5.12. The log-likelihood function of p in eq. (8.41) is well defined for A > 0
and ¢; > 0. For those As and ¢s, it is given by

L(A,tl,...,tn):nln/l—)l(l’1+~~+tn).

6 If f is a real-valued function with domain A, then x = argmax f(y) if x € A and f(x) > f(y) for all
YeA

y € A. In other words, x is one of the points in the domain A where f attains its maximal value.
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To proceed further, we assume now that the parameter set 0 is a subset of R¥ for
some k > 1. That is, each parameter 6 consists of k unknown components, that is, it
may be written as 6 = (6;,..., 6;) with 6; € R. Furthermore, suppose that for each fixed
x € X thelog-likelihood function L(-, x) is continuously differentiable’ on ®. Then points
0" € ® where L(-, x) becomes maximal must satisfy

0
a—elL(e,X)

=0, i=1...,k. (8.43)
0=6"

In particular, this is true for the MLE 6(x). If for each x € X, the log-likelihood function
L(-,x) is continuously differentiable on © ¢ RK , then the MLE 0 satisfies

Sie| =0, i=tk. H
26;

6=6(x)

Example 8.5.13. Let us determine the MLE for the log-likelihood function in eq. (8.42).
Here we have 0 = [0,1] € R, hence the MLE @ : {0,...,n} — [0,1] has to satisfy
0 5 k n-k

Crem,k) = — - 1%
(60K k) = 0k) 1-0(k)

This easily gives 8(k) = ’r—i that is, the MLE in this case is defined by

o(k) = ’f, k=0,...,n.
n

Let us interpret this result. In an urn there are white and black balls of unknown pro-
portion. Let 6 be the proportion of white balls. To estimate 6, draw n balls out of the urn,
with replacement. Assume k of the chosen balls are white. Then é(k) = %‘ is the MLE for
the unknown proportion 6 of white balls.

Example 8.5.14. The logarithm of the likelihood function p in eq. (8.40) equals

3

1 n
L(u, 0%, x) = L(1t, 6% Xy, .. ., Xy )—C—E Ing* - —2;)( - w?

with some constant ¢ € R, independent of 4 and of o Thus, here ©® ¢ IRZ, hence, if
0* = (u*, %) denotes the pair satisfying eq. (8.43), then

=0.

0 2
—L ,oz,x =0 and —L(u,0%x
(0% x) g2 L 0%x) e o)

ou (1,0%)=(u*,0%")

7 The partial derivatives exist and are continuous.
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Now

n
ZXj—ny],

—L( ox)—li(x-— )—l
u T @ LN 5 bt

which implies u* = 1 ¥ x; = x.
The derivative of L with respect to 62, taken at u* = X, equals
0 n 1

1 & 9
— L(X,0%x) = - -—+—§(x-—)‘().
2 VB P 4 J
oo ot 3

It becomes zero at g°" satisfying

where 0)2( was defined in eq. (8.14). Combining these observations, we see that the only
pair 6* = (u*,0%") satisfying eq. (8.43) is given by (X, a2). Consequently, as MLE for 0 =
(u, 02) we obtain

fa(x)=x and az(x):o,f, xeR".

Remark 8.5.15. Similar calculations as in the previous examples show that the MLE for
the likelihood functions in eqs. (8.39) and (8.41) coincide with

n
Aky,... k) = %Zki and Aty,....t,) = 1+
i=1 2 2ic b
Finally, we present two likelihood functions where we have to determine their max-
imal values directly. Note that the above approach via the log-likelihood function does
not apply if the parameter set © is either finite or countably infinite. In this case a deriva-
tive of L(-, x) does not make sense, hence we cannot determine points where it vanishes.
The first problem is that discussed in Remark 1.4.33. A retailer gets a delivery of N
machines. Among the N machines are M defective. Since M is unknown, the retailer
wants a “good” estimate for it. Therefore, he chooses at random n machines and tests
them. Suppose he observes m defective machines among the tested. Does this lead to
an estimate of the number M of defective machines? The next proposition answers this
question.

,,,,,

MLE M for M is of the form

m(N+1) J

M(m):{l n
N

ifm<n,
ifm=n.
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Here | x] denotes the floor function (integer part) of a real number x. For example, [1.2] = 1
and || = 3.

Proof. The likelihood function p was determined in eq. (8.38) as
MY(N-M
() i)
™
First note that p(M, m) # Oifand onlyif M € {m,..., N —n+m} and, therefore, it suffices

to investigate p(M, m) for Ms in this region. Thus, if M — 1 > m, then easy calculations
lead to

p(M,m) = M=0,...,.N, m=0,...,n.

pM,m) = M _N—M+1—(n—m)

= 8.44
pM-1m)y M-m N-M+1 (844)

By eq. (8.44), it follows that we have p(M, m) > p(M — 1, m) if and only if
M(N-M+1-(n-m))>(M-m)(N-M+1).
Elementary transformations show the last estimate is equivalent to

-nM >-mN -m,

which happens if and only if M < ™D,

n
Consequently, M — p(M, m) is nondecreasing on {0, ..., L@J}, and it is nonin-

creasing on {LMJ, ...,N}. Thus, if m < n, then the likelihood function M — p(M, m)

n
becomes maximal for M* = L@J, and the MLE is given by

M(@m) = , m=0,....,n-1.

{ m(N +1) J
n

If m = n, then M — p(M, m) is nonincreasing on {0, ..., N}, hence in this case the likeli-

hood function attains its maximal value at M = N, that is, M(n) = N. O

Example 8.5.17. Aretailer gets a delivery of 100 TV sets for further selling. He chooses at
random 15 sets and tests them. If there is exactly one defective TV set among the 15 tested,
then the estimate for the number of defective sets in the delivery is 6. If he observes 2
defective sets, the estimate is 13, for 4 it is 26, and if there are even 6 defective TV sets
among the 15 chosen, then the estimate is that 40 sets of the delivery are defective.

Finally, we come back to the question asked in Remark 1.4.36. In order to estimate
the number N of fish in a pond, one catches M of them, marks them and puts them back
into the pond. After some time one catches fish again, this time n of them. Among them
m are marked. Does this number m lead to a “good” estimate of the number of fish in
the pond? To describe this problem, we choose as statistical model
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(X, P(X), Hy pn)y-01

.

where & = {0,...,n}. Here Hy , , denotes the hypergeometric probability measure in-
troduced in Definition 1.4.32. Thus, in this case the likelihood function is given by

MY\(N-M

GG

— N
( n )

In the sequel, we have to exclude m = 0; in this case, there does not exist a reasonable

estimate for N.

p(N,m) = N=01,..., m=0,...,n.

Proposition 8.5.18. If1< m < n, then the MLE N for N is

Mn J . (8.45)

N(@m) = {_
m
Proof. The proof is quite similar to that of Proposition 8.5.16. Since

p(N’m) _N_M . N-n
p(N-1,m) N N-M-(n-m)’

it easily follows that the inequality p(N,m) > p(N - 1,m) is valid if and only if N < %
Therefore, N — p(N,m) is nondecreasing if N < L%J and nonincreasing for the re-
maining N. This immediately shows that the MLE is given by eq. (8.45). O

Example 8.5.19. An unknown number of balls are in an urn. In order to estimate this
number, we choose 50 balls from the urn and mark them. We put back the marked balls
and mix the balls in the urn thoroughly. Then we choose another 30 balls from the urn.
If there are 7 marked among the 30, then the estimate for the number of balls in the urn
is 214. In the case of two marked balls, the estimate equals 750 while in the case of 16
marked balls we estimate that there are 93 balls in the urn.

summary: Let (X, F,Py)pcq be a parametric statistical model. A function 8 : X — @ is said to be a point

estimator for the unknown parameter 6. That is, observing a sample x € X, then @(x) is our estimate for 6.

The basic idea of the maximum likelihood estimator (MLE) is as follows: observing an x € X, one chooses

that 8 for which the likelihood function p(68,x) = Py({x}) becomes maximal. This works well in the case of

discrete Pgs. In the case of continuous PPgs, one asks for the maximum of the densities p(6, x) of the Pgs.

Thus, if x € X, then 9(x) = arg max p(6, x) defines the MLE for this model. The logarithm is an increasing
6c0

function, so that this is equivalent to

B(x) = argmax L(8,x), X € X,
60

where the log-likelihood function L is defined by L(6, x) = In p(6, x).
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8.5.2 Unbiased estimators

Let us come back to the general setting. We are given a function y : ® — R and look
for a “good” estimate for y(60). If (x) is the estimate, in most cases it will not be the
correct value y(6). Sometimes the estimate is larger than y(6), sometimes one ohserves
an x € X for which p(x) is smaller than the true value. For example, if the retailer in
Example 8.5.17 gets every week a delivery of 100 TV sets, then sometimes his estimate
for the number of defective sets will be bigger than the true value, sometimes smaller.
Since he only pays for the nondefective sets, sometimes he pays too much, sometimes not
enough. Therefore, a crucial condition for a good estimator should be that, on average,
it meets the correct value. That is, in the long run, the loss and gain of the retailer should
balance. In other words, the estimator should not be biased by a systematic error.

In view of Proposition 7.1.30, this condition for the estimator y may be formulated
as follows. If 6 € O is the “true” parameter, then the expected value of y should be y(0).
To make this more precise,® we need the following notation.

Definition 8.5.20. Let (X, F,Pg)qcp be a statistical model and let X : X — R be a random variable. We
write EgX whenever the expected value of X is taken with respect to IPg. Similarly, in this case define

VX = EglX — EgX|?

as variance of X. Of course, we have to assume that the expected value and/or the variance exist.

Remark 8.5.21. If X is discrete with values in {¢, f,,.. .}, then

(e8]
EgX = Y t; PolX = t;}.
j=1

The case of continuous X is slightly more difficult because here we have to describe the
density function of X with respect to Pg.

To become acquainted with Definition 8.5.20, the two following examples may be
helpful. The first deals with the discrete case, while the second with the continuous
one.

Example 8.5.22. Suppose the daily number of customers in a shopping center is Pois-
son distributed with unknown parameter A > 0. To estimate this parameter, we record
the number of customers on n different days. Thus, the sample we obtain is a vector
k= (ky, ..., ky) with k; € No, where k; is the number of customers on day j. The de-
scribing statistical model is given by (N7, P(INj), Pois§");. with distribution Pois;. Let
X : Nj — Rbe defined by

8 How the expected value is defined? Note that we do not have only one probability measure, but many
different ones.
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X(R) = X(kys ... Ky) =

S

n
Y ki, k=(ky....k,) € Ny.
j=1

Which value does E;X possess?

Answer: If we choose Poisf" as probability measure, then all Xjs defined by
Xj(ky, ..., ky) := k;j are Pois,-distributed (and independent, but this is not needed here).
Note that X; is nothing else as the number of customers at day j. Hence, by Proposi-
tion 5.1.16, the expected value of X; is A, and since X = % Z}’:l X;, we finally obtain

2\®n
(]Rn’ B(Rn)>N(u’ o ) )(y,az)e]Rx(O,oo)

as the statistical model. Thus, the parameter is of the form (u, 6*) for some u € R and
o? > 0. Define X : R — R by X(x) = . If the underlying measure is A/(i, %)®", then®
X is N'(u, 0%/n)-distributed. Consequently, in view of Propositions 5.1.36 and 5.2.29, we
obtain

o2
E pX=p and V,pX= o

Using the notation introduced in Definition 8.5.20, the above-mentioned require-
ment for “good” estimators may now be formulated more precisely.

Definition 8.5.24. An estimator j : X — Ris said to be an unbiased estimator for y : ® — R provided
that for each 6 € ©,

Eglfl < oo and Egp =y(0).

Remark 8.5.25. In view of Proposition 7.1.30, an estimator y is unbiased if it possesses
the following property: observe N independent samples x',...,x" of a statistical ex-
periment. Suppose that 6 € © is the “true” parameter (according to which the X's are
distributed). Then

1Y
lPinggO]—vj_Zly(xf)w(G)} =1.

Thus, on average, the estimator y approximately meets the correct value.

9 Compare with the first part of the proof of Proposition 8.4.3.
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Example 8.5.26. Let usinvestigate whether the estimator in Example 8.5.13 is unbiased.
The statistical model is (X, P(X), B g)o<p<1» Where X = {0,...,n} and the estimator 6
acts as

0(k) = 5, k=0,...,n.
n

Setting Z := n#, then Z is the identity on X', hence B, p-distributed. Proposition 5.1.13
implies EyZ = n 6, thus,

Egb = Eg(Z/n) = EgZ/n = 6. (8.46)

Equation (8.46) holds for all 6 € [0, 1], that is, 6 is an unbiased estimator for 6.

Example 8.5.27. Next we come back to the problem presented in Example 8.5.22. The
number of customers per day is Pois,;-distributed with an unknown parameter A > 0.
The data of n days are combined into a vector k = (ky, ..., k,) € Ng. Then the parameter
A > 0 is estimated by A defined as

AR) = Ky, ky) = k..

Is this estimator for A unbiased?
Answer: Yes, it is unbiased. Observe that A coincides with the random variable X
investigated in Example 8.5.22. There we proved E, = A, hence, if A > 0, then we have

Ed=A.

Example 8.5.28. We are given certain data x, ..., X,,, which are known to be normally
distributed and independent, and where the expected value u and the variance ¢* of the
underlying probability measure are unknown. Thus, the describing statistical model is

(R", B(R"), N (1, Uz)n)(y,az)e e With ® = Rx (0,00).

The aim is to find unbiased estimators for u and for o Let us begin with estimating .
That is, if y is defined by y(u, 0%) = u, then we want to construct an unbiased estimator
y for y. Let us take the MLE y defined as

yx) =X = X;

Gy X = (X5 X))

S|
1=

I
=N

J

Due to the calculations in Example 8.5.23, we obtain
Ey o P =t =y(,0%).

This holds for all u and 6%, hence  is an unbiased estimator for u = y(u, 6%).
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How to find a suitable estimator for ¢*? This time the function y has to be chosen as
y(u, 0%) = %, With s,z( defined in eq. (8.14), set

n

N 1 & _
y(x)::s,z(:—lz:(xj—x)z, x e R".
n-14

Is this an unbiased estimator for *? To answer this, we use property (8.17) of Proposi-
2

tion 8.4.3. It asserts that the random variable x — (n-1) % is x2_,-distributed, provided

it is defined on (R", B(R™), (1, %)®"). Consequently, by Corollary 5.1.32, it follows that

&
Eu,oz[("_l)a_);] =n-1.

Using the linearity of the expected value, we finally obtain
N 2_ 2
E g2V =E,n8=0".

Therefore, p(x) = s,z( is an unbiased™ estimator for 2.

Remark 8.5.29. Taking the estimator p(x) = af in the previous example, then, in view

of 0% = "T"lsf( it follows that

Thus, the estimator y(x) = of is biased. But note that

. n-1
lim —— o° = 0%,
n-co n
hence, if the sample size n is big, then this estimator is “almost” unbiased. One says in

this case the sequence of estimators (in dependence on n) is asymptotically unbiased.
The next example is slightly more involved, but of great interest in application.

Example 8.5.30. The lifetime of light bulbs is supposed to be exponentially distributed
with some unknown parameter A > 0. To estimate A, we switch on n light bulbs and
record the times t,...,t, when they burn out. Thus, the observed sample is a vector
t=(t,...,t,) in (0,00)". As an estimator for A we choose

n

j(t) =cn o
Yjal

=1/t.

Is this an unbiased estimator for A?

10 This explains why sf( is called the unbiased sample variance.
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Answer: The statistical model describing this experiment is
(R, B(R"),E{") 10

If the random variables X; are defined by X;(¢) := ¢, then they are independent and
E,-distributed. Because of Proposition 4.6.6, their sum X := Z]'-'le]- possesses an Erlang
distribution with parameters n and A. An application of eq. (5.24) in Proposition 5.1.38
for f(x) := ¢ implies

(o]
s (nY_[(n A aa
EAA_EA<}>_J; (n_l)!x e dx.

A change of variables s = Ax transforms the latter integral into

An Oon_z_s _An PN n o n
(n—l)!!s e ds—(n_l)ll“(n 1)_(n—1)! n-2)!=2 1

This tells us that A is not an unbiased estimator for A. But, as mentioned in Remark 8.5.29
for crf, the sequence of estimators is asymptotically unbiased as n — co.

Remark 8.5.31. If we replace the estimator in Example 8.5.30 by
n-1 1

A(t) = —_ t —_ (t . t )
- n - n > - > stn/>
zj—l t] n— Zj——l l]

then the previous calculations imply

]EA)]:"__l.A.L:A_
n n-1
Hence, from this small change we get an unbiased estimator A for A.
Observe that the calculations in Example 8.5.30 were only valid forn > 2.Ifn = 1,
then the expected value of A does not exist.

Summary: Suppose we want to estimate the value y(6) for some functiony : @ —» R. Lety : X — Rbe
some point estimator for y(6). A basic property of a good estimator y is that it should be unbiased. That is,
on average, it should give us the correct value y(6), no matter which 8 € O is the right one. In formulas, this
means that an estimator  is unbiased if given 6 € ©, Egp = y(6).

8.5.3 Risk function

Let (X, F,Pg)pcp be a parametric statistical model. Furthermore, y : ® — R is a func-
tion of the parameter and y : X — © is an estimator for y. Suppose 0 € 0 is the true
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parameter and we observe some x € X. Then, in general, we will have y(6) + y(x), and
the quadratic error |y(6) - }“/(x)l2 occurs. Other ways to measure the error are possible
and useful, but we restrict ourselves to the quadratic distance. In this way, we get the
so-called loss function L : © x X — R of y defined by

L(6.%) = [y(®) -y’

In other words, if 6 is the correct parameter and our sample is x € X, then, using y as
the estimator, the (quadratic) error or loss will be L(6, x). On average, the (quadratic)
loss is evaluated by Eg|y(6) - p|*.

Definition 8.5.32. The function R describing this average loss of y is said to be the risk function of the
estimator . It is defined by

RO.7) = Eoly(®) i, 6¢€o0.

Before giving some examples of risk functions, let us rewrite R as follows.
Proposition 8.5.33. Iff € O, then it follows that

R(6,7) = |y(0) - Egi[* + V7. (8.47)
Proof. The assertion is a consequence of

R(O.9) = Eq[y(®) - 7" = Eo[(v(0) - Egf) + (Egp ~ )]
= |y(6) - Ee?lz +2(y(0) — Egp) Eg(Egp ) + V).

Because of

Eg(Egy - y) = Egp — Egy = 0,

this implies eq. (8.47). O

Definition 8.5.34. The function 8 — |y(6) — Eqy|?, appearing in eq. (8.47), is said to be the bias or the
systematic error of the estimator j.

Corollary 8.5.35. A point estimator y is unbiased if and only if for all 6 € © its bias is
zero. Moreover; if this is so, then its risk function is given by

R(0.9) =V, 6€0.

Remark 8.5.36. Another way to formulate eq. (8.47) is as follows. The risk function of an
estimator consists of two parts. One part is the systematic error, which does not occur
for unbiased estimators. And the second part is given by V). Thus, the smaller the bias
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and/or V,), the smaller the risk to get a wrong estimate for y(6), and the better the
estimator.

Example 8.5.37. Let us determine the risk functions for the two estimators presented
in Example 8.5.28. The estimator y for u was given by y(x) = X. Since this is an unbiased
estimator, by Corollary 8.5.35, its risk function is computed as

R((H, 02)) )7) = V(‘u,az)i} .

The random variable x — X is A'(u, a? /n)-distributed, hence

K(no)) =

There are two interesting facts about this risk function. First, it does not depend on the
parameter y that we want to estimate. And secondly, if n — oo, then the risk tends to
zero. In other words, the bigger the sample size, the less the risk for a wrong estimate.

Next we evaluate the risk function of the estimator y(x) = s)z(. As we saw in Exam-
ple 8.5.30, this y is also an unbiased estimator for 02, hence

R((y’ 0-2)) }7) = V(‘u,oz))} .

From eq. (8.17), we know that "0—‘21 s%is y2_,-distributed, hence Corollary 5.2.28 implies

n-1,
V(‘u’az) [? SX] =2 (n - 1) .
From this, one easily derives

a* 20*

2\ 5 2
R((1,0%),7) = Vs, =2(n—1) - R

Here, the risk function depends heavily on the parameter ¢ that we want to estimate.
Furthermore, if n — oo, then also in this case the risk tends to zero.

Example 8.5.38. Finally, consider the statistical model (X,P(X),B,g)o<p<;; Where
X ={0,...,n}. In order to estimate 6 € [0, 1], we take, as in Example 8.5.26, the estimator
@(k) = % There it was shown that the estimator is unbiased, hence, by Corollary 8.5.35,
it follows that

R6,0)=V,0, 0<6<1.

If X is the identity on X, by Proposition 5.2.18, its variance equals V4X = n6(1-6). Since
0= %(, this implies

R(6,0) = Vy(X/n) =

VX  0(1-6)
n n
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Consequently, the risk function becomes maximal for 6 = 1/2, whilefor 6 =0and 6 =1
it vanishes.

We saw in Corollary 8.5.35 that R(0, §) = V,p for unbiased y. Thus, for such estima-
tors inequality (7.2) implies

Vo
2

~

Pofx e X : |p(0) - p(x)| > c} <

>

that is, the smaller the Vg, the greater the chance to estimate a value near the correct
one. This observation leads to the following definition.

Definition 8.5.39. Let j; and y, be two unbiased estimators for y(6). Then j; is said to be uniformly
better than j, provided that

Vgjy < Vg, forall@e®.

An unbiased estimator y, is called the uniformly best estimator if it is uniformly better than all other
unbiased estimators for y(6).

Example 8.5.40. We observe values that, for some b > 0, are uniformly distributed on
[0, b]. But the number b > 0 is unknown. In order to estimate it, one executes n indepen-
dent trials and obtains as sample x = (xy,...,X,). As point estimators for b > 0 one may
either choose

N n+1 - 2 ¢
bi() = == maxx; or by():= i_zlxi.

According to Problem 8.4, the estimators b, and b, are both unbiased. Furthermore, not
too difficult calculations show that

. bZ R bZ
Vbbl = n(n A 2) and Vbbz = —.

3n?

Therefore, V,,b; < Vb, for all b > 0. This tells us that b, is uniformly better than b,.

Remark 8.5.41. A very natural question is whether there exists a lower bound for the
precision of an estimator. In other words, are there estimators for which the risk func-
tion becomes arbitrarily small? The answer depends heavily on the inherent informa-
tion in the statistical model. To explain this, let us come back once more to Example 8.5.4.

Suppose we had Py({a}) = 1and P;({b}) = 1. Then the occurrence of “a” would tell us
with 100 % confidence that 6 = 0is the correct parameter. The risk for the corresponding
estimator is then zero. On the contrary, if Py({a}) = P;({b}) = 1/2, then the occurrence
of “a” or “b” does us tell nothing about the correct parameter.

To make the previous observation more precise, we have to introduce some quantity
that measures the information contained in a statistical model.
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Definition 8.5.42. Let (X, F,Py)gco be a statistical model with log-likelihood function L introduced in
Definition 8.5.10. For simplicity, assume © € RR. Then the functionI : © — R defined by

2
L
1(9) = Eg(%)

is called the Fisher information of the model. Of course, we have to suppose that the derivatives and
the expected value exist.

Example 8.5.43. Let us investigate the Fisher information for the model treated in Ex-
ample 8.5.14. There we had

2 2 n. 5, 1 2
L(y,a,x)=L(y,0,xl,...,xn)=c—51n0 _ﬁ;(xj_“) :

Fix 02 and take the derivative with respect to u. This leads to

oL _ nx-ny
u a2

>

hence

OE
u) A TH

Recall that x is M (u, oz/n)-distributed, hence the expected value of [x — ,u|2 is nothing
else than the variance of x, that is, it is a’ln. Consequently,

2 2 2
oL n“ o n
0= E(5) - |

The following result answers the above question: how precise can an estimator be-
come at the most?

Proposition 8.5.44 (Rao-Cramér-Frechet). Let (X, F,Pg)gcp De a parametric model for
which the Fisher informationI : © — R exists. If 0 is an unbiased estimator for 6, then

1

Ok 0ecoO. (8.48)

Vo0 >

Remark 8.5.45. Estimators @ that attain the lower bound in estimate (8.48) are said to
be efficient. That is, for those estimators Veé = 1/I(0) for all 6 € O. In other words,
efficient estimators possess the best possible accuracy.

In view of Examples 8.5.37 and 8.5.43, for normally distributed populations the esti-
mator f(x) = X is an efficient estimator for u. Other efficient estimators are those inves-
tigated in Examples 8.5.27 and 8.5.13. On the other hand, the estimator for ¢* in Exam-
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ple 8.5.28 is not efficient. But it can be shown that s)z( is a uniformly best estimator for o2,
that is, there do not exist efficient estimators in this case.

Summary: Lety : X — R be a point estimator for y (). Using j as estimator for y(8), the mean quadratic
error is measured by the risk function defined by

R 2
R@.V) = 1Eg|y(9) —y| , f8¢co.
The smaller the risk function, the better the estimator y. It holds that

RO.7) = [y(®) - Egf| + Va7

The first term is the systematic error which vanishes in the case of unbiased estimators, hence then R(8,y) =
Vgy. It depends on inner properties of the model (X, F,Pg)gce how small V4j can be chosen at most.
Estimators attaining this lower bound are said to be efficient.

8.6 Confidence regions and intervals

8.6.1 Construction of confidence regions

Point estimations provide us with a single value 6 € 0. Further work or necessary deci-
sions are then based on this estimated parameter. The disadvantage of this approach is
that we have no knowledge about the precision of the obtained value. Is the estimated
parameter far away from the true one or maybe very near? To explain the problem, let
us come back to the situation described in Example 8.5.17. If the retailer observes 4 de-
fective TV sets among 15 tested, then he estimates that there are 26 defective sets in the
delivery of 100. But he does not know how precise his estimate of 26 is. Maybe there are
much more defective sets in the delivery, or maybe less than 26. The only information
he has is that the estimates are correct on average. But this does not say anything about
the accuracy of a single estimate.

This disadvantage of point estimators is avoided when estimating a certain set of
parameters, not only a single point. Then the true parameter is contained with great
probability in this randomly chosen region. In most cases, these regions will be intervals
of real or natural numbers.

Definition 8.6.1. Suppose the parametric statistical model is (X, F, Pg)gco- A mapping € : X — P(O)
is called an interval estimator, provided for fixed 6 € ©,

frex:oecwler. (8.49)
Remark 8.6.2. A better notation for the mapping C would be region or set estimator

because C(x) € ® may be an arbitrary subset, not necessarily an interval, but “interval
estimator” is commonly accepted, therefore, we use it here also.
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Remark 8.6.3. Condition (8.49) is quite technical and will play no role later on. But it is
necessary because otherwise the next definition does not make sense.

Definition 8.6.4. Leta be areal numberin (0, 1). Suppose an interval estimator € : X — P(0) satisfies,
for each 6 € ©, the condition

Po{x e X:0€C()}21-a. (8.50)

Then C is said to be a 1 — a interval estimator (also 1 — a estimator). The sets C(x) € © with x € X are
called 1 - a confidence regions or confidence intervals (sometimes also called 100(1 — a)% confidence
regions or intervals).

How does an interval estimator apply? Suppose 6 € 0 is the “true” parameter. In a statis-
tical experiment, one obtains some sample x € X distributed according to P,. Depend-
ing on the observed sample x, we choose a set C(x) of parameters. Then with probability
greater than or equal to 1 — @, the observed x € X leads to a region C(x) of parameters
which contains the true parameter 6.

Remark 8.6.5. It is important to say that the set C(x) is random, not the unknown pa-
rameter 0 € ©. Metaphorically speaking, a fish (the true parameter ) is in a pond at
some fixed but unknown spot. We execute a certain statistical experiment to get some
information about the place where the fish is situated. Depending on the result of the ex-
periment, we throw a net into the pond. Doing so, we know that with probability greater
than or equal to 1 - a, the result of the experiment leads to a net that catches the fish. In
other words, the position of the fish is not random, it is the observed sample, hence also
the thrown net.

Remark 8.6.6. It is quite self-evident that one should try to choose the confidence sets
as small as possible, without violating condition (8.50). If we are not interested in “small”
confidence sets, then we could always chose C(x) = ©. This is not forbidden, but com-
pletely useless because we do not get any information about the true value 6.

Construction of confidence regions via significance tests: For a better understanding of
the subsequent construction, let us shortly recall the main assertions about hypothesis
tests from a slightly different point of view.

Let (X, F, Py)gcp be a statistical model. We choose a fixed, but arbitrary, 0 € ©. With
this chosen 6, we formulate the null hypothesis as Hy : ¢ = 6. The alternative hypothesis
isthen H; : ¢ # 0. Let T = (X, X;) be an a-significance test for H, against H;. Because
the hypothesis, hence also the test, depends on the chosen 8 € 0, we denote the null
hypothesis by H,(0) and write T(0) = (X(0), X;(0)) for the test. That is, Hy(0) : & = 0
and T(0) is an a-significance test for H,(6). With this notation set (compare Figure 8.9)

C(x):={0e®:xeXxy0)}. (8.51)
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! {(0,2) : v € X0(0)} x {(6,2) : & € X(0)}

Xo(0)

C(x)

> — - —

Figure 8.9: The equivalence between x € X;,(8) and 8 € C(x).

Remark 8.6.7. Verbally said, an index 6 € 0 belongs to C(x) provided the observation
of x € X supports the hypothesis that 0 is the correct parameter. For example, assume
that there are only finitely many indices 0,,. .., 8,. Then one may formulate n different
hypothesis, namely Hy(6,) : & = 0; up to Hy(6,,) : & = 6,. Applying to each of these
hypotheses an a-significance test, we obtain n regions X;,(6;) up to X, (8,) of acceptance.
Now, observing x € X, we choose those 9]- for which x € XO(Gj). That is, observing x € X,
for those 6]- this would not lead to a rejection of IHO(GJ-). So we set

C(X) = {9] X € Xo(ej)} .

Example 8.6.8. Choose the hypothesis and the test as in Proposition 8.4.15. The statis-
tical model is then given by (R", B(R"), V' (v, oS)®")veR, where this time we denote the
unknown expected value by v. For some fixed, but arbitrary, u € R let

Ho(u):v=yu and Hyu):v+u.

The a-significance test T(u) constructed in Proposition 8.4.15 possesses the region of ac-
ceptance

X

Xp(u) = {xe R": vn

—u
<z .
% 1- a/z}
Thus, in this case, the set C(x) in eq. (8.51) consists of those 1 € R that satisfy the estimate
vn |%| < Zy_qp- Thatis, given x € R", then C(x) is the interval

C(X) = [)_(— % Zl_a/z 5 )_( + %Zl_a/z] .

Let us come back to the general situation. The statistical model is (X, F, Py)gco-
Given 0 € 0,let T(6) be an a-significance test for H(6) against IH;(6) where H,(0) is the
hypothesis Hy(0) : & = 6. Given x € X, define C(x) € © by eq. (8.51). Then the following
is valid.

Proposition 8.6.9. Let T(0) be as above an a-significance test for Hy(0) against H, ().
Define C(x) by eq. (8.51) where X,,(0) denotes the region of acceptance of T(). Then the
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mapping x — C(x) from X into P(©) is a1 - a interval estimator. Hence, {C(x) : x € X} is
a collection of 1 — a confidence regions.

Proof. By assumption, T(6) is an a-significance test for H(6). The definition of those
tests tells us that

Pg(X1(0)) <a, hence Py(Ap(0)) =1-a.

Given 6 € 0 and x € X, by the construction of C(x), one has 6 € C(x) if and only if
X € Xy(0). Combining these two observations, given 6 € 0, then it follows that

Po{x € X : 0 € C(x)} = Pp{x € X : x € Xy(0)} = Pp(X,(0)) >1-a.

This completes the proof. O

Summary: Suppose the parametric statistical model is (X, F, Pg)gco. To €ach x € X, we assign a subset
C(x) < O such that for a given a > 0 the following holds: if P4 is the true probability measure, then with
probability greater than 1 — a we observe an x € X such that 8 € C(x). Thatis, for all 8 € © it follows
that

Po{x e X:0eC()}21-a.
The (random) sets C(x) are called 1 — a confidence sets.
There exists a tight relation between the construction of the confidence sets C(x) and hypothesis tests.
IfT(8) = (X,(0), X;(0)) is an a-test for the hypothesis Hj : “0 is the true parameter,” then

Cx) ={6e0:xex)0)}

are 1—a confidence sets. Verbally said, a parameter 8 belongs to C(x) if the occurrence of x does not contradict
the hypotheses that 8 is the correct parameter.

Test of a hypothesis Hy = fixed region X € X of acceptance,

Confidence regions =  random region C(x) € © of probable parameters.

8.6.2 Normally distributed samples

The aim of this section is to apply Proposition 8.6.9 to transform results about two-sided
significance tests for normally distributed samples into assertions about confidence in-
tervals.

We start with the application of the two-sided Z-test for A/(u, aé)-distributed sam-
ples with known variance 0(2, > 0.

Proposition 8.6.10. Letx = (Xy,...,X,) be asample of nindependent N (u, og) distributed
numbers. Here u € R is unknown while GS is known. Then with probability greater than
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1 - a the observed sample x € R" leads to™

- Oy -
X— =22y gp<p<X+

9o
n W Z1_q/2 -
Recall that zg denotes the B-quantile of the standard normal distribution.

Proof. Thisis a direct consequence of applying Proposition 8.6.9 to the result presented
in Example 8.6.8. O

Example 8.6.11. Choose a = 0.05 and suppose we observed the nine values
101, 92, 102, 103, 101, 9.9, 100, 9.7, 98,

then x = 9.9222. The variance g, is known to be og = 0.330824. That is, we assume that
s)z( is the correct variance. Because of z;_; = z( ¢75 = 1.95996, with a confidence of 95 %
our sample of nine numbers leads to

9.7061 < yt < 10.1384.

In the next result we describe the confidence intervals generated by the t-test
treated in Proposition 8.4.15.

Proposition 8.6.12. Letx = (x;, ..., X,) be a sample of n independent N (u, 6*) distributed
numbers. Here i1 € R and o> are both unknown. Then with probability greater than1 - a
the observed sample x € R" leads to

_S S,
X-—=lpqgap SUS X+ NG bi11-as2-

Vn
Recall that t,,_; 5 denotes the f-quantile of the Student ¢,_;-distribution.

Proof. This is a direct consequence of

Xy(u) = {xe]R":x/ﬁ

X-u
SX

< tn—l;l—a/z} >

hence Proposition 8.6.9 implies that, given x € R", then

)_( —
CO) = {# €eR:Vn 5 fl < tn—l;l—a/z}’
X
s s
= [X - 7% th1a-aj2> X + 7% tn—l;l—a/z] . 0

11 We want to point this out again: not y is random but the chosen interval is such. And 1 - a is the
probability to observe an x for which the random interval contains the correct y.
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Example 8.6.13. Let us explain the previous result by the concrete sample investigated
in Example 8.4.20. There we had x = 22.072, s, = 0.07554248, and n = 10. If a = 0.05,
the quantile of ¢y equals to 975 = 2.26. From this, we derive [22.016, 22.126] as the 95%
confidence interval.

Verbally this says that with a confidence of 95 % we observed those xi, ..., X for
which u € C(x) = [22.016, 22.126].

Finally, let us construct 1 — a confidence intervals for the unknown variance of a
normal sample.

Proposition 8.6.14. Letx = (xy,...,X,) be asample of n independent N (u, o?) distributed
numbers. If u is known, then with probability greater than 1-a the observed sample x € R"
leads to

2 2
Znox <o’ < rzw"
Xnsi-aj2 Xnsaj2
where, in contrast to eq. (8.14),
1
== Z(X y) (8.52)

If, on the contrary, u is unknown, then with probability greater than 1 — a the observed
sample x € R" gives

(n-1)s> Lot (n-1)s>

2 2
Xnt-a/2 Xn—t5a/2

Here s,z( is as in Definition 8.4.1 and )(i;ﬂ denotes the S-quantile of a )(,Zl distribu-
tion.

Proof. Both assertions easily follow from eqs. (8.27) and (8.28). Recall that they imply for
known mean value y that

L (- )’
Xy(0%) = {x eR" inzl;a/z < Z J
=1

2
< Xn;l—a/z }
while in the case of unknown y one has

&
Xy(0%) = {XE]R L Xo ta2 < (M= 1)G—X Xo 11— a/Z}

Letting in both cases C(x) = {0*>0:x¢ XO(O'Z)} completes the proof. O

Example 8.6.15. A measuring instrument possesses an unknown precision. In order to
get some information about it, we measure a certain item 9 times. The obtained re-
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sults are
101, 103, 10.2, 10.7, 99, 10.0, 109, 89 and 11.0.

Letx = (X3, ..., Xg) be the collection of these measurements. Then the mean value equals
X =10.222, hence the unbiased variance of the observed sample is calculated by

2 _
Sy =

e RN

9
Y (- %)* = 0.4019.
j=1

If we choose a = 0.1as a significance level, then, in order to determine a 90 % confidence
interval, we need the 0.05 and 0.95 quantiles of a )(é distribution. They are

Xeoos = 273264 and  xj 4.5 = 15.5073.

So we finally obtain that there is chance of 90 % that the unknown variance ¢* of the
measuring instrument satisfies

8-0.4019
15.5073

=0.207334 < 0° < 8-0.4019 =1.17659.
2.73264
Note that another n measurements by this instrument, of this or of a different item, will

surely lead to different bounds for o2,

To conclude this section, let us summarize the most important confidence intervals
for normally distributed samples. Here af and 3)2( are defined by egs. (8.52) and (8.14),
respectively.

Name Parameters 1 - a Confidence Intervals

Confidence intervals for the meanvalue @2 > 0 known [*= G 21an s X+ 5 21ap)

Confidence intervals for the mean value 0 > 0 unknown [)—(_57% th-1;1-a/2 > )'(+S—\Xrn t,,,m,a/z]
. . . HUZ nUZ

Confidence intervals for the variance p € Rknown [ X X ]

7 v
Xn-ar2 - Xnaj2

N2 N2
Confidence intervals for the variance ¢ € Runknown D5 b5

2 > 2
anmfa/z anha/z

8.6.3 Binomial distributed populations

The aim of this section is to show how Proposition 8.6.9 applies in the case of binomial
distributed populations. Thus, we execute n independent trials where every time occurs
either success or failure. Hence, the number of successes is B, o-distributed for a certain
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0 € [0,1]. But, in contrast to the investigations in Section 1.4.3, now the parameter 0 is
unknown.

Say we observed 0 < k < n times success. Then we look for a confidence interval
C(k) < [0,1] such that very likely 8 € C(k). More precisely, given 0 < a < 1, we want that
for any parameter 6 € [0,1],

Bpofk<n:0eCk)}>1-a.

That is, with probability greater than 1 — a the observation of k successes leads to an
interval C(k) containing the correct parameter 6.

Proposition 8.6.16. The statistical model is (X, P(X), B, g)o<p<1 Where the sample space
isX ={0,...,n}.Givena >0andk = 0,...,n, define sets C(k) < [0,1] as follows:

C(k) = {0: Buo({0,...,k}) > a/2} N {6 : Byg(ik,...,n}) > a/2}. (8.53)

Then for each k < n, the set C(k) is an 1 - a confidence interval for 6 € [0,1].

Proof. In order to get these confidence regions, we use Proposition 8.6.9. As shown in
Proposition 8.3.1, the region of acceptance X;(0) of an a-significance test T(8), where
H, : 9 = 0, is given by

Xo(e) = {n0(9), cees nl(e)} .

Here, the numbers ny(6) and n,(6) were defined by
K oy '
ny(0) := min«{k <n: Z <j )9’(1 -7 > a/Z]»
j=0
and
n n . .
my(6) = max«]k <n:y (},)9’(1 — > a/Z} .
j=k

Applying Proposition 8.6.9, the sets
C(k):={0€[0,1] : k € Xy(0)} ={0 € [0,1] : ny(0) < k <nmy(0)}, k=0,...,n,

are 1 - a confidence regions. By the definition of ny(6) and n;(9), given k < n, then a
number 0 € [0,1] satisfies ny(0) < k < n(0) if and only if at the same time

B p({0,...,k}) = (?)d(l -0)"7 >a/2 and

Byp({k,....n})

M= I~

1]
>~

} (;,’)9"(1 — 07 > a/2.
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Thus, as claimed,
C(k) =1{0: B, 4({0,...,k}) > a/2} n {6 : Bpy(ik,...,n}) > a/2}

are 1 — a confidence sets.
It remains to prove that these are indeed intervals, which by the definition of the
sets C(k) is not so obvious. We know by Lemma 8.3.6 that the function

n n ) i
fierg 1 0 & )ga-om’ (8.54)
=k} ];( ( ])
is nondecreasing for any k > 0. Hence,
k n
.0 Mo _oyd —1_ M\gi1 _ gy
Sy 0 Z(j)G’(l 0)"7=1- ) (.)9’(1 6) (8.55)

j=0 jok+1

is nonincreasing. Letting

0 = inf«[@ : fiony (0) > g} and 6y = sup{@ : fieny (0) > %]»

it follows that C(k) = (0, 9;;). This completes the proof. O

Remark 8.6.17. The intervals C(k) = (6, 9;;) are usually called 100(1 — a)% Clopper-
Pearson intervals or also exact confidence intervals for the binomial distribution.

Since the functions fi;, and fi.4, are continuous on [0,1], in the case 1 < k < n, the
numbers 6, and 6, are also characterized by

. a a
fiong(0%) = 2 and  fiy(6;) = h

In other words, if 1 < k < n, then the endpoints of the Clopper—Pearson intervals are
the unique solution 6 € (0,1) of

n ' ' , | |
];{ (7)9](1 - 9)”—] = % or ];) <7>9](1 _ 9)"_] _ g ,

respectively. For the cases k = 0 and k = n, we refer to Problem 8.6.

Example 8.6.18. Suppose we execute n = 20 trials and observe k = 5 successes. What
can be said about the underlying success probability 8? The functions in eqs. (8.54)
and (8.55) are in this case given by

20 . . 5 . |
Jiesy(0) = z (2]'0>9](1 ~0®J and fi<5(0) = Z (2]-0)9](1 - 927,

Jj=5 Jj=0
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If a = 0.1, then numerical calculations lead to (see also Fig. 8.10)

65 = inf{f : fi.5,(6) > 0.05} =~ 0.1041 and
05 = sup{6 : fi5,() > 0.05} ~ 0.4566..

1.0F
0.8F
0.6F
04F
0.2F
0.10 0.4556
et 1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6

Figure 8.10: The increasing function fi.5; and the decreasing one f;.s;, both taken with for n = 20. The
horizontal line marks the significance level a/2 = 0.05.

Consequently, with the probability of 90 % our observation of five successes implies that
the underlying success probability 6 satisfies

0.1041 < 0 < 0.4566 . (8.56)

The estimates for 6 obtained in (8.56) are quite rough. This is mainly due to the fact
that the number n = 20 of trials is pretty small. Also different numbers of success do not
yield significantly tighter bounds. So, for example, if one observes 10 successes, then as
the 90 % confidence interval one gets

0.30196 < 6 < 0.69804 .

The next example provides sharper bounds for larger n > 1.

Example 8.6.19. In an urn there are white and black balls with an unknown proportion
0 of white balls. In order to get some information about 8, we choose randomly 500 balls
with replacement. Say 220 of the chosen balls are white. What is the 90 % confidence
interval for 6 based on this observation?

Answer: We have n = 500 and observed k = 220 white balls. Consequently, a 90 %
confidence interval C(220) consists of those 6 € [0,1] for which at the same time

ﬁzzzo}(e) > a/Z = 005 and f{szzo}(e) > a/Z = 005 .
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Note that in this case

220 ‘ |
fiany(0) =Y (59())91(1 9 and
j=0J
500 ' |
fio2201(0) = Z <5?0)91(1 _ )0

j=220

Numerical calculations tell us that
Oy ~ 04028 and 65, ~ 0.4777.
Therefore, a 90 % confidence interval C(220) is given by
C(220) = (0.4028,0.4777) .

For n = 1000 and 440 observed white balls, the calculations lead to the smaller, hence
more significant, interval C(440) = (0.4139, 0.4664) .

Remark 8.6.20. The previous example already indicates that the determination of the
Clopper—Pearson intervals becomes quite complicated for large n. Therefore, one looks
for “approximate” intervals. Background for the construction is the central limit theo-
rem in the form presented in Proposition 7.2.19. For S,s distributed according to B, , it
implies

hmlp{sn;ne <7z ],—1_(1
noeo || Vo -yl ’
or, equivalently,
k-no
lim B {ksn: ‘— <z }zl—a.
00 n,o n0(1— 9) 1-a/2

Here z;_,/, is the 1- a/2 quantile introduced in Definition 8.4.8. Thus, an “approximate”
region of acceptance, testing the hypothesis “the unknown parameter is 6,” is given

by

(8.57)

XO(B):{ksn: %‘—9

9(1—9)}_

<Zyqp ”

An application of Proposition 8.6.9 leads to certain confidence regions, but mostly they
cannot be described explicitly. Due to the term +/0(1—- ) on the right-hand side of
eq. (8.57), it is not possible, for a given k < n, to determine those s for which k € A;(0).
To overcome this difficulty, we change X;(6) yet again by replacing 6 on the right-hand
side by its MLE A(k) = IH( That is, we replace eq. (8.57) by
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K-k

n n
< Z1ap n } .

Doing so, an application of Proposition 8.6.9 leads to the “approximate” confidence in-
tervals C(k), k = 0, ..., n, defined as

XO(G):{ksn: %‘—9

(8.58)

—(1——) K —(1—%‘)]

Ck)= | = = 21_qp o T Aan -

Example 8.6.21. We investigate once more Example 8.6.19. Among 500 chosen balls we
observed 220 white. This observation led to the “exact” 90 % confidence interval C(220) =
(0.4028, 0.4777).

Let us compare this result with the interval we get by using the approximative ap-
proach. Since the quantile z,_, , for a = 0.1 equals zj g5 = 1.64485, the left and the right
endpoints of the interval (8.58) with k = 220 are evaluated by

220 1 6aag5- /222280 _ 04035 and
500 5003

220 1 64485 /222280 _ (4765

500 5003

Thus, the “approximate” 90 % confidence interval is C(220) = (0.4035,0.4765), which
does not differ too much from C(220) = (0.4028, 0.4777).
In the case of 1000 trials and 440 white balls, the endpoints of a confidence interval

are evaluated by
440 _ 1.64485 - M =0.414181 and
1000 10003

440 +1.64485 - M =0.4645819.
1000 10003

That is, C(440) = (0.4142, 0.4659) compared with C(440) = (0.4139, 0.4664).

Example 8.6.22. A few days before an election, 1000 randomly chosen people are ques-
tioned whom they will vote for next week, either candidate A or candidate B. Suppose
540 of the interviewed people answered that they would vote for candidate A, the re-
maining 460 favored candidate B. Find a 90 % confidence interval for the expected result
of candidate A in the election.

Solution: We have n = 1000, k = 540, and a = 0.1. The quantile of level 0.95 of
the standard normal distribution equals z, o5 = 1.64485 (see Example 8.6.21). This leads
to [0.514,0.566] as “approximate” 90 % confidence interval for the expected result of
candidate A.
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If one questions another 1000 randomly chosen people, another confidence inter-
val will occur. But, on average, in 9 of 10 cases questioning 1000 people will lead to an
interval containing the correct value.

Summary: The statistical model is (X, P(X), B, g)o<p<1 With X = {0,...,n}. Givena > 0and k = 0,...,n,
define numbers 6, and 6; by

- . 20\ o\ g
Gk_lnf{96[0,1].%(j>9’(1 0) >2},

J
K ny\ . —j a
6 = 6€[0,1]: da-9" > ¢
i sup{ €l ]/;)(j)( ) >2}

Letting C(k) = [9,:,9;], the C(k)s, 0 < k < n, are 1 — a confidence intervals for the unknown 6 € [0, 1]. That
is, for all 8 € [0,1],

Brofk<n:6ecCk}=1-a.

For large n > 1, the central limit theorem applies and leads to the approximate 1 — a confidence intervals

Kk Kk
o |k \/;(1—;) k \j;“‘g)
Clk) = [H ~21_qp2 » o+ leap ] .

n n

8.6.4 Hypergeometric distributed populations

Finally, we construct confidence intervals for hypergeometric distributed populations.
Since the technique is quite similar to that used in the case of binomial distribution, we
will not state all details. We refer everybody interested in them to Problem 8.7, to add
missing details in the construction.

So assume that in an urn there are N balls, colored white and black. Among them
there are M < N white balls, hence N — M are black. Hereby, the number M is unknown.
We choose now at random n < N balls. Denote by m < n the number of chosen white
balls. The aim is to determine for each m < n a set C(m) ¢ {0,...,N} so that

Hyynfm<n:MeCm)}>1-a, 0<M<N.

Of course, thereby the confidence sets should be chosen as small as possible.

Before we can introduce confidence intervals for hypergeometric distributed sam-
ples, we first have to extend Proposition 8.2.19 to the case of two-sided tests. Since the
proof of this two-sided case is very similar to that for binomial distributed samples in
Proposition 8.3.1, we omit it. Furthermore, we formulate the two-sided tests already in
a way appropriate for later use.
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,,,,,

space X = {0,...,n}. Given an arbitrary M < N, an a-test for testing K = M against
K #+ M is givenby T(M) = (Xy(M), X,(M)) where the region of acceptance equals X,(M) =
{my(M), ..., my(M)} with my(M) and m,(M) defined by

KOO
my(M) = min{k <n: Z % > a/Z} and
m=0 n
_ R [ o)
my(M) :==max{k<n: ) TNI/Z )
m=k n

Before proceeding further, let us introduce two functions similar to those in
eqs. (8.54) and (8.55). For each k = 0,...,nand M < N, set
& GoG)

f{gk}(M): z m’\n-m

S = Hy Uk
Z (Ir\{) Nl n})

and
L OnGo)
fiany M) = Y e
m=0 (n)
Lemma 8.2.20 implies that fi;, is nondecreasing, hence fi;, is nonincreasing. Verbally
said, if there are M white balls in the urn, then f{zk} (M) is the probability to observe at
least k white in the sample of size n, while fi;, (M) tells us how likely it is for us to get k
or less white balls.

Given k = 0,...,n, define two numbers M, and M, (depending on a) by

= Hypn({0,....K}).

M = min{M fioia (M) > g]» and M; = maX{M  frag (M) > %]»

Compare Figure 8.11 for an example with N = 60, n = 15, and a = 0.1.

.....

space X = {0,...,n}. Given an arbitrary a > 0, for each 0 < k < n, the sets

ck) = [Mg, M} = {MsN:f{zk}(M) > g} n {MsN:f{Sk}(M) > g}

are 1 - a confidential intervals for the unknown parameter M < N.
Proof. Applying Propositions 8.6.9 and 8.6.23, for each k < n, the sets
M<N:keXy(M)={M<N:myM)<k<m@M)}, k=0,...,n,

are 1-a confidential sets. But by the definition of my(M) and m;(M), we have
my(M) < k < my(M) if and only if
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10F e 00000, ,
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°
L] ° . .
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Figure 8.11: The increasing function f,4 and the decreasing fi4 in the case N = 60 and sample size
n = 15. The horizontal line marks the significance level a/2 = 0.05.

a a
fen@M) > 5 and - figg(M) > o

This proves that

C(k) = {MsN:f{zk}(M) > %} n {MsN:ﬁsk}(M) > g}

are 1 — a confidence sets. Finally, since f{zk} and f{gk} are monotone, we observe that
M <M < Mj/ if and only if fi.}y (M) > 5 and fi(M) > 7. Hence, C(k) = [M;;, M}],
which completes the proof. O
Example 8.6.25. In an urn there are 200 balls. We choose randomly a sample of 60 balls.
Among them 25 are white. What can be said about the number of white balls in the urn?

Answer: We are asking for a 90 % confidence set for the unknown number M of
white balls in the urn. In this case the functions of interest are

E () Com) G0, ((200-11)
f{sZS}(M) = Z W and f{225}(M) = z (20—0)
m=0 60 m=25 60

Since

fi25(65) = 0.0508,  fip5(64) = 0.0408, and
f{525} (103) = 0048, ﬁszs} (102) = 00507,

we conclude that M;, = 65 and My = 102, hence C(25) = [65,102] is a 90 % confidence
interval for the unknown number M of white balls. If one asks for sharper bounds,
one has to relax the significance level. So, for example, as 80 % confidence interval one
gets [68, 98].
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Note that Proposition 8.5.16 gives in this case M(25) = 83 as a point estimator which
is in the middle of both confidence intervals.

If there are only 10 white balls among the chosen 60, the 90 % confidence region
is [20, 50].

Remark 8.6.26. Proposition 1.4.39 shows the tight connection between the binomial and
hypergeometric distributions. Hence, it could be of interest what happens if we replace
in the preceding example the hypergeometric distribution by the binomial. To do so,
the unknown success probability equals M/200. In other words, instead taking 60 balls
without replacement we choose now 60 balls and replace every time the chosen ball.
Applying eq. (8.58) with n = 60 and k = 25, our observation of 25 white balls leads to the
90 %-sure estimates

M
311977 < — < 0.521356 .
0.3119 <200<05 356

Compare this with the hypergeometric case where we got the 90 %-sure estimates

0.325 = hil < M 102

B
200 < 200 <200 - °°

Thus, in this case nonreplacing of chosen balls leads to sharper bounds for the unknown
number of white balls than the bounds one gets in the case of replacing. Of course, one
has to assume that in both cases the number of chosen white balls coincides.

,,,,,

My :min{0<M<N: i (%)((Al'}l):g) > g}
m=k n
LG
>

m=0 (/,Y)

M,:’:max{OsMsN:

NI
[

then for k = 0,...,n the sets C(k) = [M,;,M;] are 1 — a confidence intervals for the unknown parameter
M < N.

8.7 Problems

Problem 8.1. For some b > 0, let P;, be the uniform distribution on [0, b]. The precise
value of b > 0is unknown. We claim that b < b for a certain b, > 0. Thus, the hypotheses
are

H‘IoibSbO and H1:b>b0.

To test Hy, we chose randomly n numbers Xy, . . ., X,, distributed according to IP,. Suppose
the region of acceptance X, of a hypothesis test T, is given by
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Xy = {(xl,...,xn) :maxx; < c}
1<i<n

for some ¢ > 0.

1. Determine those ¢ > 0 for which T, is an a-significance test of level a < 1.

2. Suppose T, is an a-significance test. For which of those ¢ > 0 does the probability
for a type II error become minimal?

3. Determine the power function of the a-test T, that minimizes the probability of the
occurrence of a type I error.

Problem 8.2. For 0 > 0, let IP; be the probability measure with density p, defined by

5a(s) = 0s! ifs e (0,1],
6 0 otherwise.

1. Check whether the pys are probability density functions.
In order to get information about 6, we execute nindependent trials according to P.
Which statistical model describes this experiment?

3. Find the maximum likelihood estimator for 6.

Problem 8.3. The lifetime of light bulbs is exponentially distributed with unknown pa-
rameter A > 0.In order to determine A, we switch on nlight bulbs and record the number
of light bulbs that burn out until a certain time T > 0. Determine a statistical model that
describes this experiment. Find the MLE for A.

Problem 8.4. Consider the statistical model in Example 8.5.40, that is, we have
(R", BR"), Py")y5o With uniform distribution Py, on [0, b]. There are two natural es-
timators for b > 0, namely 131 and 132, defined by

. n+1 . 2 &
b,(x) .= —— maxx; and b,(x):= = . =X, R".
1(X) n 1SiS)Y§Xl Z(X) n i:Zle X (Xl Xn) €

Prove that 131 and Bz possess the following properties:
1. The estimators b; and b, are unbiased.
2. One has

R bZ . bZ
Vbbl = m and Wbe = ﬁ .

Problem 8.5. In a questionnaire, out of 2000 randomly chosen people 1420 answered
that they regularly use the Internet. Find an “approximate” 90 % confidence interval for
the proportion of people using the Internet regularly. Determine the inequalities that
describe the exact intervals in eq. (8.53).
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Problem 8.6. How do the confidence intervals C(k) in eq. (8.53) look like for k = 0 and
k = n? Is it possible that for some k = 0,...,n and n > 1 it follows that 0 € C(k) or
1 € C(k)? If so, when does this happen?

Problem 8.7. Suppose the statistical model is (X, P(X), Hy p;n)p<y With the sample
space X' ={0,...,n} and with the hypergeometric distributions Hy ,,, introduced in
Definition 1.4.32.

1. For some M, < M, the hypotheses are H, : M = M, against H; : M # M,. Find
(optimal) numbers 0 < my; < my < n such that X, = {m,,..., my} is the region of
acceptance of an a-significance test T for H, against H;.

Hint: Modify the methods developed in Proposition 8.2.19 and compare the construc-
tion of two-sided tests for a binomial distributed population.

2. Use Proposition 8.6.9 to derive from .X;; confidence intervals C(k), 0 < k < n, of level
1 - a for the unknown parameter M.

Hint: Follow the methods in Proposition 8.6.16 for the binomial distribution.






A Appendix

A.1 Notations

Throughout the book, we use the following standard notations:

1. The natural numbers starting at 1 are always denoted by IN. In the case 0 is in-
cluded, we write Nj,.

2. Asusual, the integers Z are givenby Z ={...,-2,-1,0,1,2,.. .}.

3. By R we denote the field of real numbers endowed with the usual algebraic opera-
tions and its natural order. The subset Q ¢ R is the union of all rational numbers,
that is, of numbers m/n where m,n € Z and n # 0.

4, Givenn >1,let R" be the n-dimensional Euclidean vector space, that is,

R" = {x = (X;,...,X,) : Xj € R}.
Addition and scalar multiplication in R" are carried out coordinate-wise,
X+Y =X X)) + (155 Yn) = (X Y1505 Xp + V)
and if a € R, then

ax = (axy,...,ax,).

A.2 Elements of set theory

A.2.1 Set operations

Given a set M, its powerset 7P(M) consists of all subsets of M. In the case that M is finite,
we have [P(M)| = 2MI where |A| denotes the cardinality (number of elements) of a
finite set A.

If A and B are subsets of M, written as A, B < M or also as A, B € P(M), their union
and their intersection are, as usual, defined by (compare Figure A.1)

AUB={xeM:xceAorxeB} and AnB={xeM:xeAandx e B}.
Of course, it always holds that
ANBCACAUB and ANBCBCAUB.

In the same way, given subsets A, A, . .. of M their union U]‘-fl A; and intersection ﬂ]‘-fl A;
is the set of those x € M that belong to at least one of the 4; or that belong to all 4;,
respectively.

https://doi.org/10.1515/9783111325064-009
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A B A B

Figure A.1: The Venn diagrams of the union A U B and the intersection A N B.

Quite often we use the distributive law for intersection and union. This asserts

An(@%)=@@n%)
j=1

j=1

Two sets A and B are said to be disjoint! provided that A n B = 0. A sequence of sets
Ay, A,, ... is called disjoint* whenever A; N Aj=0ifi#].

An element x € M belongs to the set difference A \ B provided that x € Abutx ¢ B.
Using the notion of the complementary set B¢ := {x € M : x ¢ B}, the set difference
may also be written as (compare Figure A.2)

A\B=AnB".

AC

Figure A.2: The Venn diagrams of the set difference A \ B and of the complement A of A with respect to a
superset M.

Another useful identity is
A\B=A\(ANB).

Conversely, the complementary set may be represented as the set difference B = M \ B.
We still mention the obvious (B€)¢ = B.

1 Sometimes called “mutually exclusive.”
2 More precisely, one should say “pairwise disjoint.”
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Finally, we introduce the symmetric difference AAB of two sets A and B as (see
Figure A.3)

AMAB:=(A\B)U(B\A)=(AnB)U(BNA°)=(AUB)\(ANB). (A

Note that an element x € M belongs to AAB if and only if x belongs exactly to one of the
sets A or B.

A B

Figure A.3: The symmetric difference AAB.

De Morgan’s rules are very important and assert the following:

(9] ¢ (0] (o] ¢ 00
c Cc
(Ua) ~fla e (f1a) -Uss
j=1 j=1 j=1 j=1
Given sets 4;,...,4A,, their Cartesian product 4; x --- x A4, is defined by (see Fig-
ure A4 for an example of the Cartesian product)
Ayx-ox Ay = {(ay,. .., ay) : G5 € A}
with
(al,...,an):(bl,...,bn) (=1 alzbl,...,anzbn.

Note that [A; x -+ x Apl = [A4] -+ |4,

(aib) (b/b) (c.b)

(aja) (bja) (c,a)

a b c

Figure A.4: The Cartesian product {a, b, c} x {a, b}.
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A.2.2 Preimages of sets

Let S be another set, for example, S = R, and let f : M — S be some mapping from M to
S. Given a subset B ¢ S, we denote the preimage of B with respect to f by

f'(B):=={x e M:f(x) e B}. (A2)

In other words, an element x € M belongs to f~1(B) if and only if its image with respect
to f is an element of B (compare Figure A.5).

In B, but not in the range of f

Figure A.5: Only elements from f~'(B) are mapped to B. All other elements in M have to have their image
outside B. But not every element in B needs to be the image of an element in M.

We summarize some crucial properties of the preimage in a proposition.

Proposition A.2.1. Letf : M — S be a mapping from M into another set S.
@ fY0)=0andfS) =M.
(2) For any subsets B; < S, the following equalities are valid:

f‘1<U Bj> = Jsr'®) and f‘1<ﬂ3j> =(f"'a). (A3)

j=1 j=1 j=1 j=1

Proof. We only prove the left-hand equality in eq. (A.3). The right-hand one is proved by
the same methods. Furthermore, assertion (1) follows immediately.
Take x € f ’1(Uj21 B;). This happens if and only if

fx e B (A4)

j=1

is satisfied. But this is equivalent to the existence of a certain j, > 1 with f(x) € B; .
By definition of the preimage, the last statement may be reformulated as follows: there
exists a jy > 1such that x € f~'(B; ). But this implies

xel @), (A5)

j=1

Consequently, an element x € M satisfies condition (A.4) if and only if property (A.5)
holds. This proves the left-hand identity in formulas (A.3). O
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A.2.3 Problems

Problem A.1. For any three sets A, B, and C, prove the following assertions:
A\(BUC)=A\B)N(A\C) and (ANB)UC=(AUC)N(BUC).
Problem A.2. For any sets A, B ¢ M, prove that
(B\A'NB=AnB and (AUB)‘NB=90.
Problem A.3. Let A and B two finite sets. Show that
|AUB| =|A| +|B|-1AnB.

Let C be another finite set. Find a similar formula for |A u B U C| and prove it.

Problem A.4. Prove that all three expressions in eq. (A.1) define the symmetric differ-
ence of two sets. That is, show that

(A\B)UB\A)=(AnB)U(BNA°)=(AUB)\(ANB)

for all sets A and B.

Problem A.5. Let A, B, and C be three sets. Show that an element x belongs to AABAC if
and only if x belongs either to all three sets or to exactly one of those. In other words,
X ¢ AABAC if and only if x is either in none of the three sets or exactly in two of them.

Problem A.6. Let A and B be two subsets of a set M. Which of the following equations
are valid? Prove the correct identities, give counterexamples for the false ones:

(AxB)° =A°x B,

(AxB)" = (A°xB°)U(A° x M) U (M x B°),
(AxB)‘ = (A°xB) U (A x B°),

(AxB)" = (A°xM) U (M x B°).

Problem A.7. Define f from N to Z by

0 ifniseven,
fn) = 1

1 ifnisodd.

Describe f ’1(B) forallBc Z.

Problem A.8. Determine

£7([0,5]) and f7Y([0,00))
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where f : R — R denotes the floor function. That is,

fOO=1x], xeR.

A.3 Combinatorics

A.3.1 Binomial coefficients

A one-to-one mapping 7 from {1,...,n} to {1,...,n} is called a permutation (of order
n). Any permutation reorders the numbers from 1 to n as 7(1), 7(2),...,m(n) and, vice
versa, each reordering of these numbers generates a permutation. One way to write a
permutations is

i < 1 2 ... n )
“\ ) n@ ... nn )
For example, if n = 3, then 77 = (}33) is equivalent to the order 2,3,1 or to 77(1) = 2,
m(2) =3, and 7(3) = 1.
Let S,, be the set of all permutations of order n. Then one may ask for |S,| o, equiv-

alently, for the number of possible orderings of the numbers {1,..., n}.
To treat this problem, we need the following definition.

Definition A.3.1. For n € IN, we define n-factorial by setting
n=1-2---(n-1) -n.

Furthermore, let 0! = 1.

Now we may answer the question about the cardinality of S,,.

Proposition A.3.2. We have
Spl = n! (A.6)

or; equivalently, there are n! different ways to order n distinguishable objects.

Proof. The proof is done by induction over n. If n = 1then |S;] = 1 = 1! and eq. (A.6) is
valid.

Now suppose that eq. (A.6) is true for n. In order to prove eq. (A.6) for n + 1, we split
Sy as follows:

n+1

Sni = UAk’
k=1

where
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Ap={me S :m(n+1) =k}, k=1...,n+1.

Each m e A, generates a one-to-one mapping 7 from {1,...,n} onto the set
{1,....,k-1,k+1,...,n+1} by letting 77(j) = 7(j), 1 < j < n. Vice versa, each such 7 defines
a permutation 7 € A, by setting 7(j) = 72(j),j < n, and 7(n + 1) = k. Consequently, since
eq. (A.6) holds for n, we get |Aj| = n!. Furthermore, the A;s are disjoint, and

n+l1
ISnetl = ) 1Akl = (n+ 1) -nl = (n+1)!,
k=1
hence eq. (A.6) also holds for n + 1. This completes the proof. O

Next we treat a tightly related problem. Say we have n different objects and we want
to distribute them into two disjoint groups, one having k elements, the other n—k. Hereby
it is of no interest in which order the elements are distributed, only the composition of
the two sets matters.

Example A.3.3. There are 52 cards in a deck that are distributed to two players, so that
each of them gets 26 cards. For this game, it is only important which cards each player
has, not in which order the cards were received. Heren =52 and k = n — k = 26.

The main question is: how many ways can n elements be distributed, say the num-
bers from 1 to n, into one group of k elements and into another of n — k elements? In
the above example, that is how many ways can 52 cards be distributed into two groups
of 26.

To answer this question, we use the following auxiliary model. Let us take any per-
mutation 7 € S,,. We place the numbers (1), ...,m(k) into group 1 and the remaining
m(k +1),...,m(n) into group 2. In this way, we obtain all possible distributions but many
of them appear several times. Say that two permutations 77; and 7, are equivalent if (as
sets)

{ﬂl(l), e ,ﬂl(k)} = {ﬂz(l), e ,ﬂz(k)} .
Of course, this also implies
{mk +1),....m()} = {mk +1),...,m,(n)},

and two permutations generate the same partition if and only if they are equivalent.

Equivalent permutations are achieved by taking one fixed permutation 7, then permut-

ing {rr(1),...,m(k)} and also {rr(k +1),...,m(n)}. Consequently, there are exactly k!(n—k)!

permutations that are equivalent to a given one. Summing up, we get that there are
n__ different classes of equivalent permutations. Let

k!(n-k)!
(n) _ n!
k) kitn-k)’
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There are (Z) different ways to distribute n objects into one group of k and into another one of n—k elements.
Foranyn > 0,weset (f) = 1and (}) = Oincase of k > nork < 0.

Definition A.3.4. The numbers

n n!
(k)_ m n=0,1,... and k=0,...,n,

are called binomial coefficients, read “n choose k.”

Example A.3.5. A digital word of length n consists of n zeroes or ones. Since at every
position we may have either “0” or “17, there are 2" different words of length n. How
many of these words possess exactly k ones or, equivalently, n — k zeroes? To answer
this, put all positions where there is a “1” into a first group and those where there is a
“0” into a second one. In this way, the numbers from 1 to n are divided into two different
groups of size k and n - k, respectively. But we already know how many such partitions
exist, namely (Z). As a consequence, we get

n There are (};) words of length n possessing exactly k ones and n — k zeroes.

The next proposition summarizes some crucial properties of binomial coeffi-
cients.

Proposition A.3.6. Let n be a natural number, k = 0,...,n, and let r > 1 be an integer.
Then the following equations hold:

(Z) - <n ’ k)’ (A7

(Z) - (";1) * (Z:D and (A8)
n _i 1 n i1
()-S5

Proof. Equations (A.7) and (A.8) follow immediately by the definition of the binomial
coefficients. Note that eq. (A.8) also holds if k = n because we agreed that (") = 0.
If k < n, then an iteration of eq. (A.8) leads to
(-2
k i k-j

Replacing in the last equation n by n+r, as well as k by n (note that n+r > n), we obtain
theleft-hand identity (A.9). The right-hand equation follows by inverting the summation,
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that is, one replaces j by n — j. Observe that (A.9) becomes wrong in the case r = 0. Then
the left-hand side is 1 while the right-hand one equals 0. O

Remark A.3.7. Equation (A.8) allows a graphical interpretation by Pascal’s triangle.

The coefficient (}) in the nth row follows by summing the two values (}71) and (*')

above (}}) in the (n - 1)th row. Look at Figure A.6 for a visualization of the triangle.

1
1 1
1 2 1
1 3 3 1
1 () ™ 1

Figure A.6: Pascal’s triangle.

Next we state and prove an important binomial theorem.

Proposition A.3.8 (Binomial theorem). For real numbers a,b, and any n € IN,

n 4 n k yn-k
(a+b) = a b, (A.10)
> ()

Proof. The binomial theorem is proved by induction over n. If n = 0, then eq. (A.10)
holds trivially.

Suppose now that eq. (A.10) has been proven for n — 1. Our aim is to verify that it is
also true for n. Using that the expansion holds for n — 1, we get

n-1,,
@b =@+h) @b =@rb) ¥ (" )ab
k=0
_ nz_:l (" - 1>ak+1bn—1—k N ni <n - 1)akbn—k
k=0 k k=0 k
n-2 n-1

-1 1o n-1 _
—d'+ (n )ak+lbn Ik pn ( )akbn k
2k 2k

n-1 n
_on ., n n_l) (n_1>] kpn-k _ (n) k .n-k
=d*+b +I;[(k_1+ r ab _z kab ,

k=0

where we used eq. (A.8) in the last step. O
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The following property of binomial coefficients plays an important role when in-
troducing the hypergeometric distribution (see Proposition 1.4.31). It is also used during
the investigation of sums of independent binomial distributed random variables (see
Proposition 4.6.1).

Proposition A.3.9 (Vandermonde’s identity). Ifk, m, and n are all in N, then

SO )-(5m)

Proof. An application of the binomial theorem leads to

n+m
@L+x)"M =y (n J;{m) X, xeR. (A12)
k=0

On the other hand, another use of Proposition A.3.8 implies®

A+x)"™ =1+ A +x)"

00| (0] 25 ()

S OMR-EEO) e

The coefficients in an expansion of a polynomial are unique. Hence, in view of eqs. (A.12)
and (A.13), we get for all k < m + n the identity

k

"0

Hereby note that both sides of eq. (A.11) become zero whenever k > n+m. This completes
the proof. O

Remark A.3.10. Another, more heuristic, way to prove Vandermonde’s identity is as fol-
lows. Suppose one has n + m fruits, n apples and m oranges. There are ("}™) ways to
choose k fruits out of the n + m ones. These possibilities split into the following k + 1
disjoint events: among the chosen k fruits there are zero apples and k oranges, or one
apple and k — 1 oranges up to k apples and zero oranges. If the number of apples in the
sample is j, then there are (7) ways to choose the apples and (k’"]) ways to choose the

3 When passing from line 2 to line 3, the order of summation is changed. One no longer sums over the
rectangle [0, m] x [0, n]. Instead, one sums along the diagonals, where i + j = k.
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oranges, respectively. Summing over all possibilitiesj = 0,..., k proves Vandermonde’s
identity.

Our next objective is to generalize the binomial coefficients. In view of

<Z>= n(n—1)~];!(n—k+1)

for k > 1and n € N, the generalized binomial coefficient is introduced as

(A14)

(—kn> — -n(-n-1) k' (-n-k+1) '

The next lemma shows the tight relation between generalized and “ordinary” binomial
coefficients.

LemmaA.3.11. Fork>1andn € N,

()= (")

Proof. By definition of the generalized binomial coefficient, we obtain

(—n)_(—n)(—n—l)--~(—n—k+1)

k)~ k!

km+k-Dn+k-2)---(n+n _ rn+k-1
k! '(_1)< k )

= (-1)

This completes the proof. O

For example, Lemma A.3.11 implies (3!) = (-1 and () =-n

A.3.2 Drawing balls out of an urn

Assume that there are n balls labeled from 1 to n in an urn. We draw k balls out of the urn,
thus observing a sequence of length k with entries from {1, ..., n}. How many different
results (sequences) may be observed? To answer this question, we have to decide on the
arrangement of drawing. Do we or do we not replace the chosen ball? Is it important in
which order the balls were chosen or is it only of importance which balls were chosen at
all? Thus, we see that there are four different ways to answer this question (replacement
or nonreplacement, recording the order or nonrecording).

Example A.3.12. Let us regard the drawing of two balls out of four, that is, n = 4 and
k = 2. Depending on the different arrangements, the following results may be observed.
Note, for example, that in the two latter cases (nonrecording of the order) the pair (3,2)
does not appear because it is identical to (2, 3).
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Replacement and the
order is important

Nonreplacement and
the order is important

(L1 1,2 (1,3) (1,4
2,1 @2,2) 2,3) (2,9
31 (32 33 349
4,1 42 43) 449

(1,2) (1,3) (1,4)
2,1 . (2,3) (2,4)
3,1 (32 . (3,4)
4,1 42 43)

16 different results

Replacement and the
order is not important

12 different results

Nonreplacement and the
order is not important

LY 1,2 (1,3) (1,4
2,2) (2,3) (2,4
(3,3) (3,4)

(4,4)

1,2) (1,3) (1,49
2,3) (2,4
(3.4

10 different results

6 different results

Let us come back now to the general situation of n different balls from which we
choose k at random:

Case 1. Drawing with replacement and taking the order into account. We have n different
possibilities for the choice of the first ball and, since the chosen ball is placed back, there
are also n possibilities for the second one, and so on. Thus, there are n possibilities for
each of the k balls, leading to the following result.

“ The number of different results in this case is n*.

Example A.3.13. Lettersin Braille, a scripture for blind people, are generated by dots or
nondots at six different positions. How many letters may be generated in that way?

Answer: It holds that n = 2 (dot or no dot) at k = 6 different positions. Hence, the
number of possible representable letters is 2° = 64. In fact, there are only 63 possibilities
because we have to rule out the case of no dots at all 6 positions.

Case 2. Drawing without replacement and taking the order into account. This case only
makes sense if k < n. There are n possibilities to choose the first ball. After that there are
still n — 1 balls in the urn. Hence there are only n — 1 possibilities for the second choice,
n — 2 for the third, and so on. Summing up, we get the following.

!
n The number of possible results in this case equalsn(n = 1)--- (n—k +1) = ” n.k)'.
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Example A.3.14. In a lottery, 6 numbers are chosen out of 49. Of course, the chosen
numbers are not replaced. If we record the numbers as they appear (not putting them
in order), how many different sequences of six numbers exist?

Answer: Here we have n = 49 and k = 6. Hence the wanted number equals

49!

— =49...44 =10, 068, 347, 520.
43!

Case 3. Drawing with replacement not taking the order into account. This case is more
complicated and requires a different point of view. We count how often each of the n
balls was chosen during the k trials. Let k; > 0 be the frequency of the first ball, k, > 0
that of the second one, and so on. In this way we obtain n nonnegative integers ki, .. ., k,,
satisfying

kj+---+k,=k.

Indeed, since we choose k halls, the frequencies have to sum to k. Consequently, the
number of possible results when drawing k of n balls with replacement and not taking
the order into account coincides with

[{(Kys . ), Ky € No, Ky + -+ Ky = K} (A15)

In order to determine the cardinality (A.15), we use the following auxiliary model:

Let By, ..., B, be nboxes. Given n nonnegative integers ki, . . ., k,, summing to k, we
place exactly k; dots into By, k, dots into B,, and so on. At the end we distributed k indis-
tinguishable dots into n different boxes. Thus, we see that the value of (A.15) coincides
with the number of different possibilities to distribute k indistinguishable dots into n
boxes. Now assume that the boxes are glued together; on the very left we put box B,
on its right we put box B,, and continue in this way up to box B,, on the very right. In
this way, we obtain n + 1 dividing walls, two outer and n — 1 inner ones. Now we get all
possible distributions of k dots into n boxes by shuffling the k dots and the n — 1 inner
dividing walls. For example, if we get the order d, d, d, w, w,d, w, ... then this means that
there are three dots in By, none in B,, and one in B;, and so on (compare Figure A.7 for
a slightly more general example).

[ ]
N U e N N T I T
B Bo Bs B,-1 B,

Figure A.7:Thecase ky =3,k =0, ks =1,...,k,_1 = 2, k, = 0: k dots and n —1inner walls.

Summing up, we have N = n + k — 1 objects, k of them are dots and n — 1 are walls.
As we know, there are (llf ) different ways to order these N objects. Hence we arrived at
the following result.
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The number of possibilities to distribute k anonymous dots into n boxes equals

(n+k—1) 3 (n+k—1)

k "\ n-1 )

It coincides with |{(k,...,k,) .,k € Ng,k +--- + k, = k}|, as well as with the number of different results
when choosing k balls out of n with replacement and not taking order into account.

Example A.3.15. Dominoes are marked on each half either with no dots, one dot, or up
to six dots. Hereby the dominoes are symmetric, that is, a tile with three dots on the left-
hand side and two ones on the right-hand side is identical with that having two dots on
the left-hand side and three dots on the right-hand side. How many different dominoes
exist?

Answer: Tt holds* n=7 and k = 2, hence the number of different dominoes

equals
(37)-()-=

Case 4. Drawing without replacement not taking the order into account. Here we also
have to assume k < n. We already investigated this case when we introduced the bino-
mial coefficients. The k chosen numbers are put in group 1, the remaining n — k balls
in group 2. As we know, there are (}) ways to split the n numbers into such two groups.
Hence we obtained the following.

The number of different results in this case is ().

Example A.3.16. If the order of the six numbers is not taken into account in Exam-
ple A.3.14, that is, we ignore which number was chosen first, which second, and so on,
the number of possible results equals
49\ 49..-43
= ——— =13,983, 816.
(5)- %
Let us summarize the four different cases in a table. Here O and NO stand for record-
ing or nonrecording of the order while R and NR represent replacement or nonreplace-
ment, and one chooses k balls out of n possible.

4 There are 7 boxes B, up to Bg and two particles distributed into these 7 boxes. The number of the box
containing a particle corresponds to the number of dots on the tile. For example, if one particle is in box
B, and the other in By, then the corresponding tile is that with 2 and 4 dots on it. Or both particles in Bg
means that our tile has 6 dots at each side. Another possibility to describe these tiles is to represent 2 as
2=040+1+0+1+0+00r2=0+0+0+0+0+0 + 2, respectively.



A3 Combinatorics == 465

NO (n+II§—1) (n)

A.3.3 Multinomial coefficients

The binomial coefficient (}}) describes the number of possibilities to distribute n objects
into two groups of k and n - k elements. What happens if we have not only two groups
but m > 2? Say the first group has k; elements, the second has k, elements, and so on,
up to the mth group that has k;, elements. Of course, if we distribute n elements the k;s
have to satisfy

ki+---+ky,=n.

Using exactly the same arguments as in the case where m = 2, we get the following.

There exist exactly h,"—’km, different ways to distribute n elements into m groups of sizes kq, k,, . .., k,, where
ky+ -+ ky =n.

In accordance with the binomial coefficient, we write

( n )._ n Ki+-+k. =n (A.16)
K. k) kgl k! m= '

. ) amultinomial coefficient, read “n chose k; up to kp,.”
..... n

Remark A.3.17. If m = 2, then k; + k, = n, and

(i) = (- 10) = ()= (i)

Example A.3.18. Adeck of cards for playing skat consists of 32 cards. Three players each
gets 10 cards; the remaining two cards (called “skat”) are placed on the table. How many
different distributions of the cards exist?

Answer: Let us first define what it means for two distribution of cards to be iden-
tical. Say this happens if each of the three players has exactly the same cards as in the
previous game. Therefore, the remaining two cards on the table are also identical. Hence
we distribute 32 cards into 4 groups possessing 10, 10, 10, and 2 elements. Consequently,
the number of different distributions equals’

5 The huge size of this number explains why playing skat never becomes boring.
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32 32! 15
= ——— =2.753294409 x 10”.
(10, 10,10, 2) (1013 2! *
Remark A.3.19. One may also look at multinomial coefficients from a different point of
view. Suppose we are given n balls of m different colors. Say there are k; balls of the first
color, k, balls of the second color;, up to k,, balls of color m where, of course, we have
ki +--- + k;; = n. Then there exist
(k)
ki,....kn

different ways to order these n balls. This is followed by the same arguments as we used
in Example A.3.5 form = 2.
For instance, given 3 blue, 4 red, and 2 white balls, there are

9 9!
= —— =1260
(3, 4,2) 314121

different ways to order them.

Finally, let us still mention that in the literature one sometimes finds another
(equivalent) way of introducing the multinomial coefficients. Given nonnegative inte-
gersky, ..., k, with k; +--- + k,;, = n, it follows that

<k1, o km) - (:1) (" ;Zkl) (" 123_ kz) ("7 . e k’”‘l) (A.17)

A direct proof of this fact is easy and left as an exercise.

There is a combinatorial interpretation of the expression on the right-hand side of
eq. (A.17). To reorder n balls of m different colors, one chooses first the k; positions for
balls of color 1. There are ( ,?1 ) ways to do this. Thus, there remain n—k; possible positions

for balls of color 2, and there are (";Zkl) possible choices for this, and so on. Note that at
the end there remain k,, positions for balls of color m; hence, the last term on the right-
hand side of eq. (A.17) equals 1.

Let us come now to the announced generalization of Proposition A.3.8.

Proposition A.3.20 (Multinomial theorem). Let n > 0. Then for any m > 1 and real num-
bers xq, ..., Xm,

R D N I L (A18)
1o+ R

kytetkm=n
K20
Proof. Equality (A.18) is proved by induction. In contrast to the proof of the binomial
theorem, now induction is done over m, the number of summands.
If m = 1, the assertion is valid due to trivial reasons.
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Suppose now eq. (A.18) holds for m, all n > 1, and all real numbers x;, ..., X,,. We
have to show the validity of eq.(A.18) for m + 1 and all n > 1. Given real numbers
Xy Xppp and n > 1sety := xq + -+ + Xp,. Using Proposition A.3.8, by the validity of
eq.(A.18) formand alln - j, 0 <j < n, we obtain

n

n n n! j n—j
X+ 4 Xpyg)” = Y+ Xpy1)” = z T Xme

j;lj!(n_])!
n .
M= ko ki
— X XX
]Z]l(n ])' kﬁ%,ln]kl!“'km! ! m o

ki=0

Replacing j by k., and combining both sums leads to

n! k K
(X1+"'+Xm+1)n: Z lel ”X"Hll’
ky+etkpq=n 1- m+1-
k=0
hence eq. (A.18) is also valid for m + 1. This completes the proof. O

Remark A.3.21. The number of summands in eq. (A.18) equals® (””r’f’l).

Example A.3.22. Let w, x,y, and z be four real numbers. Then we get

W+x+y+2)° = ) Fuxkeyks gk

k1+...+k4=5<k1, Kook Ky

So, for example, the coefficient of w’xyz is (21511) =60 or that of w’x%y equals
(2,2?1,0) = 30.

A.3.4 Problems

Problem A.9. Given aset M of cardinality n > 1. Argue why there are exactly (Z) subsets
A ¢ M with cardinality k < n.

Problem A.10. Determine, with proof, the number of ordered triples (4;,4,,A4;) of sets
such that

AjUAyUA; = {1,2,3,4,5,6,7,8,9,10} and A;NA,NA; = 0.

Problem A.11. Prove that

50

6 Compare with Case 3 in Section A.3.2.
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Problem A.12. Let n be a natural number. Prove that

2% <2n
<

22n+l . <2n + 1) ~ <2n + 1) _ et
2n+1 n - )

)<22" and
2n+2 n n+1

Problem A.13. Let n be a natural number. Give proofs of the identities
n n n n
. =2
(o) i (1) T (n)
and
n n n(n)
_ e (-1 =0.
(o) (1) -+ 0 (
Problem A.14. Givenr € N and an integer n > r, show that
(r) <r+1) (n) <n+1>
+ +ee 4t = .
r r r r+1
For example, if n > 4, then

() (@)= (-5

Problem A.15. What is the coefficient of x? in (3x2 —2x‘1)7 where x # 0is some variable?

Problem A.16. Givenintegersn >1and k > n, how many vectors (ki, ..., k,) of integers
exist for which k; > 1and k; + --- + k, = k. How about if we ask for k;s with k; > M,
1 <j < n, for some integer M > 1? Of course, this question makes only sense if k > n M.

Problem A.17. Give an algebraic proof of equation (A.17).

A.4 Vectors and matrices

The aim of this section is to summarize results and notations about vectors and matrices
used throughout this book. For more detailed reading, we refer to any book about Linear

Algebra, for example, [Ax115].
Given two vectors x and y in R", their’ scalar product is defined as
n
06Y) =Xy X=X, X0), Y= DoY)
j=1

If x € R", then

7 Sometimes also called “dot-product.”
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1/2

|x] := (x,x)l/2 = (fo)
j=1

denotes the Euclidean distance from x to 0. Thus, |x| may also be regarded as the length
of the vector x € R". In particular, we have |x| > 0 for all nonzero x € R".

Any matrix A = (011-]-)2}-:1 of real numbers a;; generates a linear® mapping (also de-
noted by A) via

n n
Ax = (Zaljxj, ...,Zanjxj>, X=(Xp,...,Xy) € R". (A.20)
= =

Conversely, any linear mapping A : R" — R" defines a matrix (ai]-);fj:l by representing
Ae; ¢ R" as
Aej = (ayj,...,ay), Jj=1,...,n.
Here ¢; = (0,...,0,_1,0...,0) denotes the jth unit vector in R". With this generated
J

matrix (ai]-)lfszl, the linear mapping A acts as stated in eq. (A.20). Consequently, we may
always identify linear mappings in R" with n x n-matrices (aij)szl.

Given two n x n matrices A = (aU)ijl and B = (ﬁij)zjzl, their product A - B, or ABin
short, is the matrix C = (yl-]-)z]-:1 where

n
k=1
Note that in general A B # BA. An important formula for the determinant of the product
of two matrices is

det(A B) = det(A) - det(B). (A.21)

An n x n matrix A is said to be regular® if the generated linear mapping is one-to-
one, that is, if Ax = 0 implies x = 0. This is equivalent to the fact that the determinant
det(A) is nonzero.

Let A = (aij)i")]-:1 be an n xn matrix. Then its transposed matrix is defined as
AT = (aji)gjzl. With this notation, it follows for x,y € R" that

(Ax,y) = (x,A"y).

Moreover, we have (AB)T = BTAT for any two n x n matrices A and B, and, of course,

8 Amapping A : R" — R" is said to be linear if A(ax + By) = adx + BAy for all @, f € Rand x,y € R".
9 Sometimes also called nonsingular or invertible.
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(ATYT = A. The following property of the transposed matrix is crucial:
det(A”) = det(4).

In particular, the matrix A is regular if and only if A” is regular.
A matrix A with A = AT is said to be symmetric. Equivalently, A satisfies

(Ax,y) = (Ay), X,y eR".

An n x n matrix R = (rij)gj:l is positive definite (or positive in short) provided it is
symmetric and

n
(Rx,X) = z ryXiX; > 0, Xx=0q....x,) #0.
ij=1

We will write R > 0 in this case. In particular, each positive matrix R is regular and its
determinant satisfies det(R) > 0.
LetA = (aij)zjzl be an arbitrary regular n x n matrix. Set

R:=AAT, (A.22)
that is, the entries r; of R are computed by
n
rij=Zaikajk, 1§i,an.
k=1
Proposition A.4.1. Suppose the matrix R is defined by eq. (A.22) for some regular A. Then

it follows that R > 0.

Proof. Because of

T

R = (aa") = (") A" =aA" =R,

the matrix R is symmetric. Furthermore, for x € R" with x # 0, we obtain
(Rx,x) = (AATx,x) = (A"x,ATx) = |ATX|2 > 0.

Hereby we used that for a regular A, the transposed matrix AT is regular, too. Conse-
quently, if x # 0, then ATx # 0, and thus |A”x| > 0. This completes the proof. O

The identity matrix I, is defined as the n x n matrix with entries §,
where

pl<ijs<n

s _{1 ifi=j, (A.23)
ij= e -
0 ifi+j.
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Of course, I, x = x for x € R" and, moreover, det(J,,) = 1.

Given a regular n x n matrix A, there is a unique matrix B such that AB = I,,. The
matrix Bis called the inverse matrix of A and denoted by A™!. Recall that also A4 = I,
and, moreover, (A7) = (A™HT. Equation (A.21) lets us conclude that for any regular
matrix A, it follows that

- = _ 1
1=det(l,) = det(AA™") = det(4) - det(4™) = det(d™)= PR
An n x n matrix U is said to be unitary or orthogonal provided that
vl =v'u =1, (A.24)

with identity matrix I,. Another way to express this is either that U7 = U o, equiva-
lently, that U satisfies

(Ux,Uy) = (x.y), xyeR".
In particular, for each x ¢ R" it follows that
|UXI* = (Ux, Ux) = (%) = I,

that is, U preserves the length of vectors in R". Indeed, this property characterizes uni-
tary matrices. It is a nice task to prove this.

It is easy to see that an n x n matrix U is unitary if and only if its column vectors
Uy, ..., U, form an orthonormal basis in R". That s, (u;, ;) = 6; with §;s as in (A.23). This
characterization of unitary matrices remains valid when we take the column vectors
instead of those generated by the rows.

We saw in Proposition A.4.1 that each matrix R of the form (A.22) is positive. Next
we prove that conversely, each R > 0 may be represented in this way.

Proposition A.4.2. Let R be an arbitrary positive nx n matrix. Then there exists a regular
matrix A such that R = AA”.

Proof. Since R is symmetric, we may apply the principal axis transformation for sym-
metric matrices. It asserts that there exists a diagonal matrix'® D and a unitary matrix
U such that

R=UDUT.

Let§;,..., 8, be the entries of D at its diagonal. From R > 0 we derive §; > 0,1 <j < n.
To see this fix j < n and set x := Ue; where as above e; denotes the jth unit vector in R".
Then UTx = e, hence

10 The entries d;; of D satisfy d; = 0if i # J.
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0 < (Rx,x) = (UDU"x,x) = (DU"x, U"x) = (Dej, e;) = &;.

Because of §; > 0, we may define D"/* as diagonal matrix with entries 6].1/ 2 on its diagonal.
Setting A := UD"? and because (DY%)T = D2 it follows that

R = (UDY*)(uD"?)" = AA” .
Since
det(A)* = det(4)det(4) = det(A)det(A”) = det(AA”) = det(R) > 0,

the matrix A is regular, and this completes the proof.

Another way to argue without using properties of determinants is as follows. As-
sume the matrix A is not regular. Then this is also true for A”. Hence there is a nonzero
vector x € R" such that ATx = 0. But this implies Rx = A(ATX) = A(0) = 0 which
contradicts the regularity of R. Thus, A has to be regular. O

Remark A.4.3. Note that representation (A.22) is not unique. Indeed, if R = AAT then
we also have R = (AV)(AV)T for any unitary matrix V.

A.5 Some analytic tools

The aim of this section is to present some special results of Calculus that play an impor-
tant role in the book. Hereby we restrict ourselves to those topics that are maybe less
known and that are not necessarily taught in a basic Calculus course. For a general intro-
duction to Calculus, including those topics as convergence of power series, fundamental
theorem of Calculus, mean-value theorem, and so on, we refer to the books [Spi08] and
[Stel5].

We start with a result that is used in the proof of Poisson’s limit theorem (Theo-
rem 1.4.22). From Calculus, it is well known that for x € R,

n

lim <1 + %) =, (A.25)

n—-oo

The probably easiest proof of this fact is via the approach presented in [Spi08]. There
the logarithm function is defined by In t = jlt %ds, t > 0. Hence, ’'Hopital’s rule implies

limt1n<1+)?(>:x, X € R.

t—o0

From this, eq. (A.25) easily follows by the continuity of the exponential function.
The next proposition may be viewed as a slight generalization of eq. (A.25).
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Proposition A.5.1. Let (x,),>1 be a sequence of real numbers with lim,_, X, = X for
some x € R. Then we get

n

lim <1+ﬁ> =e*.
n—oo n

Proof. Because of eq. (A.25), it suffices to verify that
n

lim |<1+ ﬁ) —<1+ )—(>
n—oo n n

Since the sequence (x,),>1 IS convergent, it is bounded. Consequently, thereisac > 0
such that for all n > 1, we have |x,| < c. Of course, we may also assume |x| < c. Fix for a
moment n > 1and set

n

=0. (A.26)

a::1+)& and b::1+)—(.
n n
The choice of ¢ > 0 yields |a| <1+ ¢/n, as well as |b| <1+ c¢/n. Hence it follows

la" -b"| =la-bl|a" " +a" b+ +ab" 2+ b

<la-bl(la™™ +|a"2b| +--- + |al|b|" 2 + |b|"")
n-1

S|a—b|n<1+%> <Cnla-b|.

Here C > 0 is some constant that exists since (1+¢/n)" converges to €. By the definition
of a and b,
X, \" x\" [x, — x|
‘<1+ —"> —<1+—> <Cn—l——=Clx-x,.
n n n
Since x,, — X, this immediately implies eq. (A.26) and proves the proposition. O

Our next objective is to present some properties of power series and functions gen-
erated by them. Hereby we restrict ourselves to such assertions that we will use in this
book. For further reading, we refer to Part IV in [Spi08].

Let (ay )k be a sequence of real numbers. Then its radius of convergencer < [0, co]
is defined by

r= 1
lim supy_, ., laz |k

Hereby we let 1/0 := oo and 1/00 := 0. If 0 < r < co and |x| < r, then the infinite series

f00 =Y apx* (A.27)

k=0
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converges (even absolutely). Hence the function f generated by eq. (A.27) is well defined
on its region of convergence {x € R : |x| < r}. We say that f is represented as a power
serieson {x e R: |x| <r}.

The function f defined by eq. (A.27) is infinitely often differentiable on its region of
convergence and (compare with [Spi08, Chapter 27, Theorem 6])

) = Zk(k - (k-n+1)ax*"

= Z(k+n)(k+n—1)~--(k+1)ak+nxk
k=0

S /m+k k
=n! . A.28
" ,;]( o) (4.28)

The coefficients n!(";k) a,,; in the series representation of the nth derivative f™
possess the same radius of convergence as the original sequence (a;)yso. This is easy to
see for n = 1. The general case then follows by induction.

Furthermore, eq. (A.28) implies a, = f (")(0) /n!, which, in particular, tells us that
given f, the coefficients (a;);-( in representation (A.27) are unique.

Proposition A.5.2. Ifn >1and |x| < 1then

e AR 829

Proof. Using the formula to add a geometric series and applying (‘kl) = (-1 yields for
|x| < 1that

Consequently Proposition A.5.2 holds for n = 1.
Assume now we have proven the proposition for n — 1, that is, if x| < 1, then

1 S (—n+1> X
— = X
1+ x)n-1 kz=0 k

Differentiating this equality in the region {x : |x| < 1} implies

“ @ aF x)” - Z (" )= 2(_;:11) (k+Dx". (4.30)
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Direct calculations give

_k+1 (—n+1):_k+1.(—n+1)(—n)~--(—n+1—(k+1)+1)
k+1 n-1 (k+1)

_ (-n)(-n-1)---(-n-k+1) _ (—n)

k! k/’

which, together with eq. (A.30), leads to
(1 + x)" IZ‘ < )
This completes the proof of Proposition A.5.2. O

The next proposition may be viewed as a counterpart to eq.(A.11) in the case of
generalized binomial coefficients.

Proposition A.5.3. Fork > 0andm,n € N,
()=
Ay k-j k

Proof. The proof is similar to that of Proposition A.3.9. Using Proposition A.5.2, we rep-
resent the function (1+x)™"™ as a power series in two different ways. On the one hand,
for |x| < 1, we have the representation

1 S (-n-m
_ kz ( )Xk (A31)

(1 + x)mm

and, on the other hand,

e~ |57

Jj=0

-2 2 T

k=0"j+l=k

S X (4 8 P E

As observed above, the coefficients in a power series are uniquely determined. Thus,
the coefficients in egs. (A.31) and (A.32) have to coincide, which implies

ST

as asserted. O
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Letf : R" — R be a function. How does one define the integral .[]R" f(x) dx? To sim-
plify the notation, let us restrict ourselves to the case n = 2. The main problems already
become clear in this case and the obtained results easily extend to higher dimensions.

The easiest way to introduce the integral of a function of two variables is as follows:

[ rooax = T[ T f(xl,xz)dxz]dxl.

Rr? —00 =—00

In order for this double integral to be well defined, we have to assume the existence
of the inner integral for each fixed x; € R and then the existence of the integral of the
function

(0]

X~ J fxp, x) dxy .

-0

In doing so, the following question arises immediately: why do we not define the integral
in reversed order; that is, first integrating with respect to x; and then with respect to x,?
To see the difficulties that may appear, let us consider the following example.

Example A.5.4. The function f : R> — R is defined as follows (see Fig. A.8): If either
X, < 0orx, <0setf(x,xy) =0.If xq, X, > 0 define f by

+1 ifx <X <x+1,
fxpx)=1-1 ifxq+1<x<x+2

0 otherwise.

We immediately see that

Jf(xl,xz)dXZ:O forall x; e R, hence J[ f(xl,xz)dxz]dxlzo.
0 0o

On the other hand, it follows

o () dxg =X if0<x, <1,

Jf(xl,xz) dx, = (;(2_1(—1) dx; + J€2—1(+1) dq=2-x ifl<x, <2,

0 J;?,Z (X x)dxy =0 if2 < x5 < 00,
leading to

T[ Tf(Xsz)dM] dx, = fxz dx, + Jz(z_xz)dxz -1,
050 ) ]
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Thus, in this case

T[ Tf(xpxz) dX1:| dx, # T[ Tf(xpxz) dxz] dxy .
0 0

0

: T1 T1
0 1 2 3 4 0 1 2 3 4

Figure A.8: On the left-hand side, one first integrates f over x, with x; fixed. On the right-hand side, the
integration of f is done over x; with x, fixed. In this case three different regions for the choice of x, have to
be considered.

Example A.5.4 shows that neither the definition of the integral of functions of several
variables nor the interchange of integrals are unproblematic. Fortunately, we have the
following positive result (see [Dur19, Section 1.7], for more information).

Proposition A.5.5 (Fubini’s theorem). If f(xq,x5) = 0 for all (x1,x;) € R%, then one may
interchange the order of integration. In other words,

]9 [ Tf(xl,xz)dxl] dx, = T [ Tf(xl,xz)dxz] dx; . (A.33)

—00 =—00

Hereby we do not exclude that one of the two, hence also the other; iterated integral is
infinite.

Furthermore, in the general case (the function f may attain also negative values)
equality (A.33) holds provided that one of the iterated integrals, for example,

|

is finite. Due to the first part, then we also have

(6e)

[ J 1F 0 %) dxl] dx,

—00

T[ Tlf(xlxxzﬂdxz] dx < co.
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Whenever a function f on R* satisfies one of the two assumptions in Proposi-
tion A.5.5, by
00[
cL

the integral of f is well defined. Given a subset B ¢ R?, we set

Jf(x)dx = T[ Tf(Xsz)Xm] dx, =

R? -

j fa,x5) dxz] dx

Jﬂmm:JﬂnMumL

B Rr?

provided the integral exists. Recall that 1z denotes the indicator function of B introduced
in eq. (3.21).

For example, let K; be the unit circle in lRZ, thatis, K; = {(xy,x3) : xf + x% < 1}, then
it follows

Jf(X)dX=J J Fxg,x,) doxy dxg
1o \ioe

K
O, if B = {(X3, X, X3) € R3 : X; < X, < X3}, we have

X3 X

Jf(X)dX T J jf(Xsz»Xs dx; dx, dxs .

Remark A.5.6. Proposition A.5.5 is also valid for infinite double series. Let a;; be real
numbers either satisfying a; > 0 or >0 ZJ o lajjl < oo, then this implies

T [\/]8

(e8] o0 o0 (e8]
Z ZZ%?Z%-
Jj=0 j=0 ij=0

i=0

Even more generally, if the sets I, < ]N%,, k € Ny, form a disjoint partition of N3, then

(o]
2a=2 2 G
i,j=0 (i))el}

I.I
i M8

For example, if I = {(i,)) € N2 . i +j =k}, then

o0

Zaifi > aij=§iaik+

=0 k=0 (i,j)el, k=0i=0
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Absolute nth moment

- of arandom variable 257
a-significance test 381

- most powerful 382
Arcsine distribution 68
Arcsine law

- for random walks 303

B, g, beta distribution 66
Banach’s matchbox problem 46
Basel problem 19

Bayes’ formula 118
Bernoulli trial 211

Bernstein polynomial 367
Berry-Esséen theorem 366
Bertrand paradox 109

Beta distribution 66

Beta function 65

Bias

- of an estimator 428

Binary fraction 189

Binomial coefficient 458

- generalized 461

Binomial distribution 28
Binomial theorem 459

B, ,, binomial distribution 28

n.ps
B;)Z, negative binomial distribution 45
Boole’s inequality 11

Borel o-field

-onR 6

-onR" 81

Borel set

-inR 6

-inR" 81

Borel-Cantelli lemma 335

Box

- n-dimensional 81

Boy or girl paradox 279

Buffon’s needle test 88

Cantor set 54

Cardinality of a set 451
Cartesian product 453

Cauchy distribution 69

- general 109
Cauchy-Schwarz inequality 276
CDF 70
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Central limit theorem 350
- for I-distributed random variables 363
- for binomial random variables 359
- for Poisson random variables 361
Chain rule
- for conditional probabilities 129
Chebyshev’s inequality 328
x2-distribution 64
x*-tests
- known expected value 406
- unknown expected value 407
Clopper-Pearson intervals 440
Complementary set 452
Completely normal numbers 347
Conditional distribution 115
Conditional probability 115
Confidence intervals 433
- for binomial populations 438

- approximative ones 443

- exact ones 440
- for hypergeometric populations 444
- for normal populations 435
Confidence regions 433
Continuity correction
- for normal approximation 353
Continuity of a probability measure
- from above 11
- from below 11
Convergence
- almost surely 342
- in distribution 349
- in probability 341
Convolution
- of two functions 208
Convolution formula
- Ny-valued random variables 205
- Z-valued random variables 204
- continuous random variables 208
Coordinate mappings
- of arandom vector 146
Correlated random variables 274
Correlation coefficient 276
Coupon collector’s problem 255
Covariance
- of two random variables 271
- properties 272
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Covariance matrix

- of a normal vector 320

- of a random vector 318
Critical region 377

Cumulative distribution function
- of a probability measure 70

- of arandom variable 139

De Morgan’s rules 453
Density
- of a probability measure

- multivariate 81

- univariate 50
Density function
- of a probability measure

- multivariate 81

- univariate 49
- of a random variable 136
- of arandom vector 154
Dependence of events 120
Dilemma
- of hypothesis testing 380
Dirac measure 21
Discrete random variable 136
Disjoint sets 452
Distributing particles 23, 32
- anonymous ones 24
- distinguishable ones 24
Distribution
- of a random variable 135
- of arandom vector 147
Distribution assumption 371
Distribution density
- of arandom variable 136
- of arandom vector 154
Distribution function
- of a probability measure 70
- of a random variable 139
Distributive law
- intersection and union 452
Double factorial 58
Drawing with replacement
-no order 463
- with order 462
Drawing without replacement
-noorder 463
- with order 462
Dyadic rational number 189

E,, exponential distribution 61
E) 5, Erlang distribution 63
Elementary event 2
Envelope exchange paradox 287
Erlang distribution 63
Error

- of the first kind 378

- of the second kind 378
Error function

- Gaussian 72

Estimator 415

- efficient 431

- maximum likelihood 418
- unbiased 424

- uniformly best 430
Euclidean distance

-inR" 468

Euler’s constant 256

Event 2

- certain 3

- elementary 2

- impossible 3

Expected value

- of continuous random variables 245

- of discrete random variables 235
- of nonnegative random variables
- continuous case 243
- discrete case 236
- of random vectors 318
- properties 250
Exponential distribution 61

F-distribution 229

F-tests 412

f.a. 334

Factorial 456

Finite additivity 8

Fisher information 431
Fisher-Snecedor distribution 229
Fisher’s

-lemma 392

- theorem 393

Floor function 456
Frequency

- absolute 7

- relative 7

Fubini’s theorem 477
Function

- absolutely integrable 244



- integrable 243
- measurable 180

Gambler’s ruin 293

I'q,p- gamma distribution 61

Gamma function 58

Gauss test

- one-sided 400

- two-sided 401

Gaussian ®-function 72

Gaussian error function 72
Generalized binomial coefficient 461
Generated o-field 4

Generating function

- of a nonnegative random variable 308
- of an INy-valued random variable 231
Geometric distribution 41

Gp, geometric distribution 41

Histogram correction

- for normal approximation 353
Hitting time theorem 302

Hp m n» hypergeometric distribution 39
Hypergeometric distribution 39
Hypothesis

- alternative 376

- null 376

Hypothesis test 377

Identically distributed 135

Identity matrix 470
Inclusion-exclusion formula 14,104
Independence

- of infinitely many events 335

- of nevents 123

- of two events 120

Independent random variables 157
- continuous case 165

- discrete case 161

- infinitely many 193

Independent repetition

- of an experiment 372

Indicator function

- of aset 164

Inequality

- Boole’s 11

- Cauchy-Schwarz 276

- Chebyshev’s 328

- Lyapunov’s 258

Index

Initial model

- of a statistical experiment 372
Intersection

- of sets 451

Interval estimator 432

i.o. 334

Joint density

- of nrandom variables 154
Joint distribution

- of nrandom variables 147

Laplace distribution 21
Law

- of iterated logarithm 357
- of multiplication 112

- of total probability 115
Lemma

- Borel-Cantelli 335

- Fisher’s 392

Likelihood function

- continuous case 417

- discrete case 417
Log-likelihood function 418
Loss function

- of an estimator 427
Lower limit

- of events 333

Marginal distributions

- of arandom vector 148
- continuous case 154
- discrete case 150

Marriage problem 283

Matchbox problem 46

Matrix

- identity 470

- inverse 471

- invertible 469

- nonsingular 469

- orthogonal 471

- positive definite 470

- regular 469

- symmetric 470

- transposed 469

- unitary 471

Maximum likelihood estimator 418

Measurable function 180
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Median

- of arandom variable 247
MLE 418

Moments

- of arandom variable 257
Monkey at the cliff 299
Monte Carlo method 344
Monty Hall problem 106
Multinomial

- coefficient 465

- random vector 152

- theorem 466
Multinomial distribution 31

IN, natural numbers 451

Needle test 88

Negative binomial distribution 45
Negatively correlated 278

N (u, R), normal distribution

- multivariate 316

N (y,0%), normal distribution

- univariate 57

Normal distribution

- multivariate 316

- univariate 57

Normal numbers 346

Ny, natural numbers with zero 451

Occurrence

- ofanevent 3
Occurrence of events

- finally always 334

- infinitely often 334
Order statistics 171

- density 174

- distribution function 172

Pairwise independence 122
Paradox

- boy or girl 279

- envelope exchange 287
- of Bertrand 109

- of Chevalier de Méré 105
Parameter set 374

Pascal’s triangle 459
Permutation 456

Point estimator 415

Point measure 21

Pois,, Poisson distribution 34

Poisson distribution 34
Poisson’s limit theorem 35
Positively correlated 278
Power function
- of atest 379
Power series 473
Powerset 451
Preimage 454
Principal axis transformation 471
Probabilities
- a posteriori 117
- a priori 117
Probability density function
- multivariate 81
- univariate 49
Probability distribution 9
- of arandom variable 135
- continuous case 139
- discrete case 137
- of arandom vector 147
Probability mass function 137
Probability measure 9
- continuous
- multivariate 81
- univariate 50
- discrete 20
Probability space 9
Product o-field 91
Product measure 93
- of continuous probabilities 99
- of discrete probabilities 95
Pseudoinverse
- of a distribution function 199

Q, rational numbers 451

Quantile

= Fpp p-distribution 399

- x2-distribution 398

- t,-distribution 399

- general setting 395

- standard normal distribution 396

R, real numbers 451
Radius of convergence 473
Raisins in dough 211
Random experiment 1
Random real number 132
Random variable 132

- continuous 136



- discrete 136

- real-valued 132

- singularly continuous 140
- vector valued 146
Random variables

- identically distributed 135
- independent 157
Random vector 146

- N(u, R)-distributed 315

- continuous 154

- discrete 149

- multinomial distributed 152
- normally distributed 312
- standard normally distributed 311
Random walk

- limit behavior 355

- (next neighbor) on Z 183
- starting at an integer 293
- symmetric 184
Randomized test 377
Reduction

- of the sample space 113
Region

- of acceptance 377

- of rejection 377

Region of convergence

- of a power series 474
Risk

- of the buyer 378

- of the trader 378

Risk function

- of an estimator 427

R”, n-dimensional Euclidean space 451
Roulette

- chance of winning 296
Round-off errors 357

Sample

-random 371

Sample mean 391
Sample space 1
Sample variance

- biased 391

- unbiased 391

Scalar product

- of two vectors 468
Secretary problem 283
Sequence

- absolutely summable 236

Index

- summable 236
Set difference 452
o-additivity 8
o-field 4
- generated 5
Significance level 381
Significance test 381
- for a binomial population
- one-sided 389
- two-sided 386
- for a hypergeometric population
- one-sided 382
- two-sided 449
Simulation
- of arandom variable
- continuous case 198
- discrete case 196
Standard normal distribution
- multivariate 102, 317
- univariate 57
Statistical model
- nonparametric 371
- parametric 374
Stirling’s formula
- for n-factorial 60
- for the M-function 59
Strong law of large numbers 342
Student’s t-distribution 228
Success probability 30
Sultan’s dowry problem 283
Symmetric difference 453
Systematic error
- of an estimator 428

t-distribution 228

t-test

- one-sided 405

- two-sided 405
Theorem

- Berry-Esséen 366

- binomial 459

- De Moivre-Laplace 359
- Fisher’s 393

- Fubini’s 477

- multinomial 466

- Poisson’s limit 35

- Rao-Cramér-Frechet 431
37% rule 287

Three sigma rule 187
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Tossing a coin

- infinitely often 193
Two-envelope paradox 287
Two-number problem 292
Two-sample t-tests 410
Two-sample Z-tests 408
TypeIerror 378

Type Il error 378

Unbiased estimator 424
Uncorrelated random variables 274
Uniform distribution

- on afinite set 21

-onasetinRR" 87

-onaninterval 52

Uniformly best estimator 430
Union

- of sets 451

Upper limit
- of events 333

Vandermonde’s identity 460
Variance

- of arandom variable 261
- properties 262

Volume

- n-dimensional 83

Weak law of large numbers 341

Z,integers 451
Z-test

- one-sided 400
- two-sided 401
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