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Preface 

Optimization problems in practice depend mostly on several model parameters, noise 
factors, uncontrollable parameters, etc., which are not given fixed quantities at the 
planning stage. Due to several types of stochastic uncertainties (physical uncertainty, 
economic uncertainty, statistical uncertainty, model uncertainty), these parameters 
must be modeled by random variables having a certain probability distribution. In 
most cases at least certain moments of this distribution are known. 

In order to cope with these uncertainties, a basic procedure in the behavior of 
the structure/system from the prescribed performance (output, behavior), i.e., the 
tracking error, is compensated by (online) input corrections. However, the online 
correction of a system/structure is often time consuming and causes mostly increasing 
expenses (correction, repair, or recourse costs). Very large recourse costs may arise in 
case of damages or failures of the plant. This can be omitted to a large extent by taking 
into account already at the planning stage the possible consequences of the tracking 
errors and the known prior and sample information about the random data of the 
problem. Hence, instead of relying on ordinary deterministic parameter optimization 
methods—based on some nominal parameter values—and applying then just some 
correction actions, stochastic optimization methods should be applied: Incorporating 
the consequences of stochastic parameter variations into the optimization process, 
large and increasing recourse, repair, recovery costs can be omitted or at least reduced 
to a large extent. 

Consequently, for the computation of robust optimal decisions/designs, i.e., 
optimal decisions which are insensitive with respect to random parameter varia-
tions, appropriate deterministic substitute problems must be formulated first. Based 
on decision theoretical principles, these substitute problems depend on probabilities 
of failure/success and/or on more general expected cost/loss terms. Since proba-
bilities and expectations are defined by multiple integrals in general, the resulting 
often nonlinear and also non-convex deterministic substitute problems can be solved 
by approximate methods only. Two basic types of deterministic substitute problems 
occur mostly in practice:
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• Minimization of the expected primary costs subject to expected recourse cost 
constraints (reliability constraints) and remaining deterministic constraints, e.g., 
box constraints. 

• Expected Total Cost Minimization Problems subject to deterministic constraints. 

In case of piecewise constant cost functions, probabilistic objective functions and/or 
probabilistic constraints occur. 

Main analytical properties of the substitute problems have been examined in the 
first three editions of the book, where also appropriate deterministic and stochastic 
approximation and solution procedures can be found. 

The aim of the present fourth edition is the presentation of updated methods 
for the transformation of actual technical and economic optimization problems 
with random parameters into appropriate deterministic substitute problems. Hence, 
updated analytical and numerical tools are provided for the approximate computa-
tion of robust optimal decisions/designs/control, as needed in concrete engineering/ 
economic applications. 

Last but not least I would like to thank Dipl. Math. Ina Stein, Munich, for her excel-
lent support in the LaTeX-typesetting as well as in the final proofreading. Moreover, I 
am indebted to Springer Nature for inviting a new edition of the monograph Stochastic 
Optimization Methods. I would like to thank especially the Senior Editor for Business/ 
Economics/Operations Research of Springer-Verlag Heidelberg, Germany, Christian 
Rauscher and the Springer Editors Yvonne Schwark-Reiber, Books Editorial Projects 
Management, and Jialin Yan, Book Editor Operations Research and Management, 
Information Systems and Applied Statistics, for their advice during the preparation 
of this new edition. 

Munich, Germany 
March 2024 

Kurt Marti
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Chapter 1 
Stochastic Optimization Methods 

Abstract Basic methods for treating stochastic optimization problems (SOP), 
hence, optimization problems with random data are presented: Optimization prob-
lems in practice depend mostly on several model parameters, noise factors, uncon-
trollable parameters, etc., which are not given fixed quantities at the planning stage. 
Typical examples from engineering and economics/operations research are: Material 
parameters (e.g., elasticity moduli, yield stresses, allowable stresses, moment capac-
ities, specific gravity), external loadings, friction coefficients, moments of inertia, 
length of links, mass of links, location of the center of gravity of links, manufactur-
ing errors, tolerances, noise terms, demand parameters, technological coefficients in 
input-output functions, cost factors, interest rates, exchange rates, etc. Due to sev-
eral types of stochastic uncertainties (physical uncertainty, economic uncertainty, 
statistical uncertainty, model uncertainty) these parameters must be modeled by ran-
dom variables having a certain probability distribution. In most cases at least certain 
moments of this distribution are known.n order to cope with these uncertainties, a 
basic procedure in the engineering/economic practice is to replace first the unknown 
parameters by some chosen nominal values, e.g., estimates, guesses, of the parame-
ters. Then, the resulting and mostly increasing deviation of the performance (output, 
behavior) of the structure/system from the prescribed performance (output, behavior), 
i.e., the tracking error, is compensated by (online) input corrections. However, the 
online correction of a system/structure is often time consuming and causes mostly 
increasing expenses (correction or recourse costs). Very large recourse costs may 
arise in case of damages or failures of the plant. This can be omitted to a large extent 
by taking into account already at the planning stage the possible consequences of the 
tracking errors and the known prior and sample information about the random data 
of the problem. Hence, instead of relying on ordinary deterministic parameter opti-
mization methods - based on some nominal parameter values—and applying then 
just some correction actions, stochastic optimization methods should be applied: 
Incorporating stochastic parameter variations into the optimization process, expen-
sive and increasing online correction expenses can be omitted or at least reduced to a 
large extent. Consequently, for the computation of robust optimal decisions/designs, 
i.e., optimal decisions which are insensitive with respect to random parameter varia-
tions, appropriate deterministic substitute problems must be formulated first. Based 
on decision theoretical principles, these substitute problems depend on probabilities 
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2 1 Stochastic Optimization Methods

of failure/success and/or on more general expected cost/loss terms. Two basic types 
of deterministic substitute problems occur mostly in practice: 

• Reliability-Based Optimization Problems: primary cost minimization subject to 
expected recourse (correction) cost constraints: Minimization of the expected pri-
mary costs subject to expected recourse cost constraints (reliability constraints) 
and remaining deterministic constraints, e.g., box constraints. In case of piece-
wise constant cost functions, probabilistic objective functions and/or probabilistic 
constraints occur; 

• Expected Total Cost Minimization Problems: Minimization of the expected total 
costs (costs of construction, design, recourse/correction, repair costs, etc.) subject 
to the remaining deterministic constraints. 

Since probabilities and expectations are defined by multiple integrals in general, the 
resulting often nonlinear and also non-convex deterministic substitute problems can 
be solved by approximate methods only. 

1.1 Introduction 

Many concrete problems from engineering, economics, operations research, etc., can 
be formulated by an optimization problem of the type 

.min f0(a, x) (1.1a) 

. s.t.

fi (a, x) ≤ 0, i = 1, . . . ,m f (1.1b) 

.gi (a, x) = 0, i = 1, . . . ,mg (1.1c) 

.x ∈ D0. (1.1d) 

Here, the objective (goal) function . f0 = f0(a, x) and the constraint functions 
. fi = fi (a, x), i = 1, . . . ,m f and .gi = gi (a, x), i = 1, . . . ,mg, defined on a joint 
subset of .Rν × R

r , depend on a decision, design, control orinput vector . x =
(x1, x2, . . . , xr )T and a vector .a = (a1, a2, . . . , aν)

T ofmodel parameters. Typical 
model parameters in technical applications, operations research, and economics are 
material parameters, external load parameters, cost factors, technological parameters 
in input-output operators, demand factors. Furthermore, manufacturing and model-
ing errors, disturbances or noise factors, etc., may occur. Frequent decision, control, 
or input variables are material, topological, geometrical and cross-sectional design 
variables in structural optimization [ 23], forces and moments in optimal control of 
dynamic systems and factors of production in operations research and economic 
design. 

The objective function (1.1a) to be optimized describes the aim, the goal of the 
modeled optimal decision/design problem or the performance of a technical, eco-
nomic system or process to be controlled optimally. Furthermore, the constraints
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(1.1b)–(1.1d) represent the operating conditions guaranteeing a safe structure, a cor-
rect functioning of the underlying system, process, etc. Note that the constraint (1.1d) 
with a given, fixed convex subset.D0 ⊂ R

r summarizes all (deterministic) constraints 
being independent of unknown model parameters . a, as, e.g., box constraints: 

.x L ≤ x ≤ xU (1.1e) 

with given bounds .x L , xU . 
Important concrete optimization problems, which may be formulated, at least 

approximate, this way, are problems from optimal design of mechanical structures 
and structural systems [ 1, 23, 43, 48], adaptive trajectory planning for robots [ 2, 
3, 14, 30, 37, 45], adaptive control of dynamic system [ 46, 47], optimal design of 
economic systems [ 22], production planning, manufacturing [ 26, 38] and sequential 
decision processes [ 34], etc. 

In optimal control, cf. Chap. 3, the input vector .x := u(·) is interpreted as a 
function, a control or input function .u = u(t), t0 ≤ t ≤ t f , on a certain given time 
interval .[t0, t f ]. Moreover, see Chap. 3, the objective function . f0 = f0(a, u(·)) is 
defined by a certain integral over the time interval .[t0, t f ]. In addition, the constraint 
functions. f j = f j (a, u(·)) are defined by integrals over.[t0, t f ], or. f j = f j (t, a, u(t))
may be functions of time . t and the control input .u(t) at time . t . 

A basic problem in practice is that the vector of model parameters . a = (a1, . . . ,
aν)

T is not a given, fixed quantity. Model parameters are often unknown, only partly 
known and/or may vary randomly to some extent. 

Several techniques have been developed in the recent years in order to cope with 
uncertainty with respect to model parameters . a. A well-known basic method, often 
used in engineering practice, is the following two-step procedure [ 3, 14, 37, 45, 46]: 

(I) Parameter Estimation and Approximation: 
First, replace first the .ν-vector . a of the unknown or stochastic varying model 
parameters .a1, . . . , aν by some estimated/chosen fixed vector .a0 of so-called 
nominal values .a0l , l = 1, . . . , ν. 
Then, apply an optimal decision (control).x∗ = x∗(a0)with respect to the result-
ing approximate optimization problem 

.min f0(a0, x) (1.2a) 

. s.t.

fi (a0, x) ≤ 0, i = 1, . . . ,m f (1.2b) 

.gi (a0, x) = 0, i = 1, . . . ,mg (1.2c) 

.x ∈ D0. (1.2d) 

Due to the deviation of the actual parameter vector . a from the nominal vector 
.a0 of model parameters, deviations of the actual state, trajectory or performance 
of the system from the prescribed state, trajectory, goal values occur.
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(II) Compensation or correction: 
Then, the deviation of the actual state, trajectory or performance of the system 
from the prescribed values/functions is compensated by online measurement and 
correction actions (decisions or controls). Consequently, in general, increasing 
measurement and correction expenses result in course of time. 

Considerable improvements of this standard procedure can be obtained by taking 
into account already at the planning stage, i.e., offline, the mostly available a priori 
(e.g., the type of random variability) and sample information about the parameter 
vector. a. Indeed, based, e.g., on some structural insight, or by parameter identification 
methods, regression techniques, calibration methods, etc., in most cases information 
about the vector. a of model parameters can be extracted. Repeating this information 
gathering procedure at some later time points .t j > t0 (= initial time point), . j =
1, 2, . . . , adaptive decision/control procedures occur [ 34]. 

Based on the inherent random nature of the parameter vector . a, the observation 
or measurement mechanism, resp., or adopting a Bayesian approach concerning 
unknown parameter values [ 6], here we make the following basic assumption: 

Stochastic (Probabilistic) Uncertainty : The unknown parameter vector . a is a 
realization 

.a = a(ω)ω ∈ Ω, (1.3) 

of a random .ν-vector .a(ω) on a certain probability space .(Ω,A0, P), where the 
probability distribution .Pa(·) of .a(ω) is known, or it is known that .Pa(·) lies within 
a given range .W of probability measures on .Rν . Using a Bayesian approach, the 
probability distribution .Pa(·) of .a(ω) may also describe the subjective or personal 
probability of the decision maker, the designer. 

Hence, in order to take into account the stochastic variations of the parameter 
vector . a, to incorporate the a priori and/or sample information about the unknown 
vector . a, resp., the standard approach “insert a certain nominal parameter vector 
. a0, and correct then the resulting error”, must be replaced by a more appropriate 
deterministic substitute problem for the basic optimization problem (1.1a)–(1.1d) 
under stochastic uncertainty. 

1.2 Deterministic Substitute Problems: Basic Formulation 

The proper selection of a deterministic substitute problem is a decision theoretical 
task, see [ 27]. Hence, for (1.1a)–(1.1d) we have first to consider the outcome map 

. e = e(a, x)

:=
(
f0(a, x), f1(a, x), . . . , fm f (a, x), g1(a, x), . . . , gmg (a, x)

)T
, (1.4a) 

a ∈ Rν , x ∈ Rr , (x ∈ D0),
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and to evaluate then the outcomes .e ∈ E ⊂ R
1+m0 ,m0 := m f + mg, by means of 

certain loss or cost functions 

.γi : E → R, i = 0, 1, . . . ,m (1.4b) 

with an integer.m ≥ 0. For the processing of the numerical outcomes. γi
(
e(a, x)

)
, i =

0, 1, . . . ,m, there are two basic concepts: 

1.2.1 Minimum or Bounded Expected Costs 

Consider the vector of (conditional) expected losses or costs 

.F(x) =

⎛
⎜⎜⎜⎝

F0(x)
F1(x)

...

Fm(x)

⎞
⎟⎟⎟⎠ :=

⎛
⎜⎜⎜⎝

Eγ0(e(a(ω), x))
Eγ1(e(a(ω), x))

...

Eγm(e(a(ω), x))

⎞
⎟⎟⎟⎠ , x ∈ R

r , (1.5) 

where the (conditional) expectation “. E” is taken with respect to the time history 
.A = At , (A j ) ⊂ A0 up to a certain time point . t or stage . j . A short definition of 
expectations is given in Sect. 1.3, for more details, see, e.g., [ 5, 18, 40]. 

Having different expected cost or performance functions .F0, F1, . . . , Fm to be 
minimized or bounded, as a basic deterministic substitute problem for (1.1a)–(1.1d) 
with a random parameter vector .a = a(ω) we may consider the multi-objective 
expected cost minimization problem 

.“min” F(x) (1.6a) 

.s.t. x ∈ D0. (1.6b) 

Obviously, a good compromise solution .x∗ of this vector optimization problem 
should have at least one of the following properties [ 13, 41]: 

Definition 1.1 

(a) A vector .x0 ∈ D0 is called a functional-efficient or Pareto optimal solution of 
the vector optimization problem (1.6a), (1.6b) if there is no .x ∈ D0 such that 

.Fi (x) ≤ Fi (x
0), i = 0, 1, . . . ,m (1.7a) 

and 

.Fi0(x) < Fi0(x
0) for at least one i0, 0 ≤ i0 ≤ m. (1.7b)
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(b) A vector.x0 ∈ D0 is called a weak functional-efficient or weak Pareto optimal 
solution of (1.6a)–(1.6b) if there is no .x ∈ D0 such that 

.Fi (x) < Fi (x
0), i = 0, 1, . . . ,m (1.8) 

(Weak) Pareto optimal solutions of (1.6a)–(1.6b) may be obtained now by means 
of scalarizations of the vector optimization problem (1.6a)–(1.6b). Three main ver-
sions are stated in the following: 

(I) Minimization of primary expected cost/loss under expected cost constraints 

.min F0(x) (1.9a) 

. s.t.

Fi (x) ≤ Fmax
i , i = 1, . . . ,m (1.9b) 

.x ∈ D0. (1.9c) 

Here,.F0 = F0(x) is assumed to describe the primary goal of the design/decision-
making problem, while .Fi = Fi (x), i = 1, . . . ,m, describe secondary goals. 
Moreover, .Fmax

i , i = 1, . . . ,m, denote given upper cost/loss bounds. 

Remark 1.1 An optimal solution.x∗ of (1.9a)–(1.9c) is a weak Pareto optimal solu-
tion of (1.6a)–(1.6b). 

(II) Minimization of the total weighted expected costs 
Selecting certain positive weight factors .c0, c1, . . . , cm , the expected weighted 
total costs are defined by 

.F̃(x) :=
m∑
i=0

ci Fi (x) = E f
(
a(ω), x

)
, (1.10a) 

where 

. f (a, x) :=
m∑
i=0

ciγi
(
e(a, x)

)
. (1.10b) 

Consequently, minimizing the expected weighted total costs.F̃ = F̃(x) subject 
to the remaining deterministic constraint (1.1d), the following deterministic 
substitute problem for (1.1a)–(1.1d) occurs 

.min
m∑
i=0

ci Fi (x) (1.11a) 

.s.t. x ∈ D0. (1.11b)
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Remark 1.2 Let .ci > 0, i = 1, 1, . . . ,m, be any positive weight factors. Then, an 
optimal solution.x∗ of (1.11a)–(1.11b) is a Pareto optimal solution of (1.6a)–(1.6b). 

(III) Minimization of the maximum weighted expected costs 
Instead of adding weighted expected costs, we may consider the maximum of 
the weighted expected costs: 

.F̃(x) := max
0≤i≤m

ci Fi (x) = max
0≤i≤m

ci Eγi

(
e
(
a(ω), x

))
. (1.12) 

Here again, .c0, c1, . . . , cm , are positive weight factors. 
Thus, minimizing .F̃ = F̃(x) we have the deterministic substitute problem 

.min max
0≤i≤m

ci Fi (x) (1.13a) 

.s.t. x ∈ D0. (1.13b) 

Remark 1.3 Let .ci , i = 0, 1, . . . ,m, be any positive weight factors. An optimal 
solution of.x∗ of (1.13a)–(1.13b) is a weak Pareto optimal solution of (1.6a)–(1.6b). 

1.2.2 Minimum or Bounded Maximum Costs (Worst Case) 

Instead of taking expectations, we may consider the worst case with respect to the 
cost variations caused by the random parameter vector.a = a(ω). Hence, the random 
cost function 

.ω → γi

(
e
(
a(ω), x

))
(1.14a) 

is evaluated by means of 

.F sup
i (x) := ess sup γi

(
e
(
a(ω), x

))
, i = 0, 1, . . . ,m. (1.14b) 

Here, ess sup.(. . .) denotes the (conditional) essential supremum with respect to the 
random vector.a = a(ω), given information. A, i.e., the infimum of the supremum of 
(1.14a) on sets .A ∈ A0 of (conditional) probability one, see, e.g., [ 40]. 

Consequently, the vector function .F = Fsup(x) is then defined by 

.Fsup(x) =

⎛
⎜⎜⎜⎝

F0(x)
F1(x)

...

Fm(x)

⎞
⎟⎟⎟⎠ :=

⎛
⎜⎜⎜⎜⎜⎜⎝

ess sup γ0

(
e
(
a(ω), x

))

ess sup γ1

(
e
(
a(ω), x

))

...

ess sup γm

(
e
(
a(ω), x

))

⎞
⎟⎟⎟⎟⎟⎟⎠

. (1.15)
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Working with the vector function.F = Fsup(x), we have then the vector minimization 
problem 

.“min” Fsup(x) (1.16a) 

.s.t. x ∈ D0. (1.16b) 

By scalarization of (1.16a)–(1.16b) we then obtain deterministic substitute prob-
lems for (1.1a)–(1.1d) related to the substitute problem (1.6a)–(1.6b) introduced in 
Sect. 1.2.1. 

More details on the selection and solution of appropriate deterministic substitute 
problems for (1.1a)–(1.1d) are given in the next sections. Deterministic substitute 
problems for optimal control problems under stochastic uncertainty are considered 
in Chap. 3. 

1.3 Optimal Decision/Design Problems with Random 
Parameters 

In the optimal design of technical or economic structures/systems, in optimal decision 
problems arising in technical or economic systems, resp., two basic classes of criteria 
appear. 

First there is a primary cost function 

.G0 = G0(a, x). (1.17a) 

Important examples are the total weight or volume of a mechanical structure, the 
costs of construction, design of a certain technical or economic structure/system, 
or the negative utility or reward in a general decision situation. Basic examples in 
optimal control, cf. Chap. 3, are the total run time, the total energy consumption of 
the process or a weighted mean of these two cost functions. 

For the representation of the structural/system safety or failure, for the represen-
tation of the admissibility of the state, or for the formulation of the basic operating 
conditions of the , certain state, performance or response functions 

.yi = yi (a, x), i = 1, . . . ,my (1.17b) 

are chosen. In structural design these functions are also called “limit state func-
tions” or “safety margins”. Frequent examples are some displacement, stress, load 
(force and moment) components in structural design, or more general system output 
functions in engineering design. Furthermore, production functions and several cost 
functions are possible performance functions in production planning problems, opti-
mal mix problems, transportation problems, allocation problems and other problems 
of economic decision.
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In (1.17a,b), the design or input vector . x denotes the .r -vector of design or input 
variables, .x1, x2, . . . , xr , as, e.g., structural dimensions, sizing variables, such as 
cross-sectional areas, thickness in structural design, or factors of production, actions 
in economic decision problems. For the decision, design or input vector . x one has 
mostly some basic deterministic constraints, e.g., nonnegativity constraints, box con-
straints, represented by 

.x ∈ D, (1.17c) 

where .D is a given convex subset of .Rr . Moreover, . a is the .ν-vector of model 
parameters. In optimal structural/engineering design 

.a =
(
p
R

)
(1.17d) 

is composed of the following two subvectors:. R is the.m-vector of the acting external 
loads or structural/system inputs, e.g., wave, wind loads, payload, etc. Moreover, 
.p denotes the .(ν − m)-vector of the further model parameters, as, e.g., material 
parameters, like strength parameters, yield/allowable stresses, elastic moduli, plastic 
capacities, etc., of the members of a mechanical structure, parameters of an electric 
circuit, such as resistances, inductances, capacitances, the manufacturing tolerances 
and weight or more general cost coefficients. 

In linear programming, as, e.g., in production planning problems, 

.a = (A, b, c) (1.17e) 

is composed of the .m × r matrix .A of technological coefficients, the demand .m-
vector . b and the .r -vector . c of unit costs. 

Based on the .my-vector of state functions 

.y(a, x) :=
(
y1(a, x), y2(a, x), . . . , ymy (a, x)

)T
, (1.17f) 

the admissible or safe states of the structure/system can be characterized by the 
condition 

.y(a, x) ∈ B, (1.17g) 

where .B is a certain subset of .Rmy ; B = B(a) may depend also on some model 
parameters. 

In production planning problems, typical operating conditions are given, cf. 
(1.17e), by 

.y(a, x) := Ax − b ≥ 0 or y(a, x) = 0, x ≥ 0. (1.18a) 

In mechanical structures/structural systems, the safety (survival) of the struc-
ture/system is described by the operating conditions
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.yi (a, x) > 0 for all i = 1, . . . ,my (1.18b) 

with state functions .yi = yi (a, x), i = 1, . . . ,my , depending on certain response 
components of the structure/system, such as displacement, stress, force, moment 
components. 

Hence, a failure occurs if and only if the structure/system is in the .i-th failure 
mode (failure domain) 

.yi (a, x) ≤ 0 (1.18c) 

for at least one index .i, 1 ≤ i ≤ my . 

Note 1.1 The number.my of safety margins or limit state functions. yi = yi (a, x), i =
1, . . . ,my , may be very large. For example, in optimal plastic design the limit state 
functions are determined by the extreme points of the admissible domain of the dual 
pair of static/kinematic LPs related to the equilibrium and linearized convex yield 
condition, see [ 32, 33]. 

Basic problems in optimal decision/design are 

(I) Primary (construction, planning, investment, etc.) cost minimization under oper-
ating or safety conditions 

.min G0(a, x) (1.19a) 

. s.t.

y(a, x) ∈ B (1.19b) 

.x ∈ D. (1.19c) 

Obviously we have .B = (0,+∞)my in (1.18b) and .B = [0,+∞)my or .B = {0} in 
(1.18a). 

(II) Failure or recourse cost minimization under primary cost constraints 

.“min” γ
(
y(a, x)

)
(1.20a) 

. s.t.

G0(a, x) ≤ Gmax (1.20b) 

.x ∈ D. (1.20c) 

In (1.20a) .γ = γ (y) is a scalar or vector valued cost/loss function evaluating viola-
tions of the operating conditions (1.19b). Depending on the application, these costs 
are called “failure” or “recourse” costs [ 20, 21, 31, 39, 43, 44]. As already discussed 
in Sect. 1.1, solving problems of the above type, a basic difficulty is the uncertainty 
about the true value of the vector . a of model parameters or the (random) variability 
of . a. In practice, due to several types of uncertainties such as, see [ 49],
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• physical uncertainty (variability of physical quantities, like material, loads, dimen-
sions, etc.) 

• economic uncertainty (trade, demand, costs, etc.) 
• statistical uncertainty (e.g., estimation errors of parameters due to limited sample 
data) 

• model uncertainty (model errors). 

The .ν-vector . a of model parameters must be modeled by a random vector 

.a = a(ω), ω ∈ Ω, (1.21a) 

on a certain probability space .(Ω,A0, P) with sample space .Ω having elements . ω, 
see (1.3). For the mathematical representation of the corresponding (conditional) 
probability distribution .Pa(·) = PA

a(·) of the random vector .a = a(ω) (given the time 
history or information.A ⊂ A0), two main distribution models are taken into account 
in practice: 

(i) Discrete probability distributions, 
(ii) Continuous probability distributions. 

In the first case there is a finite or countably infinite number .l0 ∈ N ∪ {∞} of 
realizations or scenarios . al ∈ R

ν, l = 1, . . . , l0,

.P
(
a(ω) = al

)
= αl, l = 1, . . . , l0, (1.21b) 

taken with probabilities .αl, l = 1, . . . , l0. 
In the second case, the probability that the realization .a(ω) = a lies in a certain 

(measurable) subset .B ⊂ R
ν is described by the multiple integral 

.P
(
a(ω) ∈ B

)
=

{

B

ϕ(a) da (1.21c) 

with a certain probability density function .ϕ = ϕ(a) ≥ 0, a ∈ R
ν,

{
ϕ(a)da = 1. 

The properties of the probability distribution .Pa(·) may be described—fully or in 
part—by certain numerical characteristics, called parameters of .Pa(·). These distri-
bution parameters .θ = θh are obtained by considering expectations 

.θh := Eh
(
a(ω)

)
(1.22a) 

of some (measurable) functions 

.(h ◦ a)(ω) := h
(
a(ω)

)
(1.22b)
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composed of the random vector .a = a(ω) with certain (measurable) mappings 

.h : Rν −→ R
sh , sh ≥ 1. (1.22c) 

According to the type of the probability distribution.Pa(·) of.a = a(ω), the expec-

tation .Eh
(
a(ω)

)
is defined, cf. [ 4, 5], by 

.Eh
(
a(ω)

)
=

⎧
⎪⎨
⎪⎩

l0∑
l=1

h
(
al
)

αl, in the discrete case (1.21b)
{
Rν

h(a)ϕ(a) da, in the continuous case (1.21c).
(1.22d) 

Further distribution parameters . θ are functions 

.θ = ψ(θh1 , . . . , θhs ) (1.23) 

of certain “.h-moments” .θh1 , . . . , θhs of the type (1.22a). Important examples of the 
type (1.22a), (1.23), resp., are the expectation 

.a = Ea(ω) (for h1(a) := a, a ∈ R
ν) (1.24a) 

and the covariance matrix 

.Q := E
(
a(ω) − a

)(
a(ω) − a

)T = Ea(ω)a(ω)T − a aT (1.24b) 

of the random vector .a = a(ω). 
Due to the stochastic variability of the random vector .a(·) of model parameters, 

and since the realization.a(ω) = a is not available at the decision-making stage, the 
optimal design problem (1.19a)–(1.19c) or  (1.20a)–(1.20c) under stochastic uncer-
tainty cannot be solved directly. 

Hence, appropriate deterministic substitute problems must be chosen taking into 
account the randomness of .a = a(ω), cf. Sect. 1.2. 

1.4 Deterministic Substitute Problems in Optimal 
Decision/Design 

According to Sect. 1.2, a basic deterministic substitute problem in optimal design 
under stochastic uncertainty is the minimization of the total expected costs including 
the expected costs of failure
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.min cG · EG0

(
a(ω), x

)
+ c f · p f (x) (1.25a) 

.s.t. x ∈ D. (1.25b) 

Here, 

.p f =p f (x) := P
(
y
(
a(ω), x

)
/∈ B

)
(1.25c) 

is the probability of failure or the probability that a safe function of the structure, 
the system is not guaranteed. Furthermore, .cG is a certain weight factor, and. c f > 0
describes the failure or recourse costs. In the present definition of expected failure 
costs, constant costs for each realization .a = a(ω) of .a(·) are assumed. Obviously, 
it is 

.p f (x) = 1 − ps(x) (1.25d) 

with the probability of safety or survival 

.ps(x) := P
(
y
(
a(ω), x

)
∈ B

)
. (1.25e) 

In case (1.18b) we have  

.p f (x) = P
(
yi
(
a(ω), x

)
≤ 0 for at least one index i, 1 ≤ i ≤ my

)
. (1.25f) 

The objective function (1.25a) may be interpreted as the Lagrangian (with given 
cost multiplier . c f ) of the following reliability-based optimization (RBO) problem, 
cf. [ 1, 29, 39, 43, 49]: 

.min EG0

(
a(ω), x

)
(1.26a) 

. s.t.

p f (x) ≤ αmax (1.26b) 

.x ∈ D, (1.26c) 

where.αmax > 0 is a prescribed maximum failure probability, e.g., .αmax = 0.001, cf.  
(1.19a)–(1.19c). 

The “dual” version of (1.26a)–(1.26c) reads 

.min p f (x) (1.27a) 

. s.t.

EG0

(
a(ω), x

)
≤ Gmax (1.27b) 

.x ∈ D (1.27c) 

with a maximal (upper) cost bound .Gmax, see  (1.20a)–(1.20c).
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1.4.1 Expected Cost or Loss Functions 

Further substitute problems are obtained by considering more general expected fail-
ure or recourse cost functions 

.⎡(x) = Eγ
(
y
(
a(ω), x

))
(1.28a) 

arising from structural systems weakness or failure, or because of false operation. 
Here, 

.y
(
a(ω), x

)
:=

(
y1
(
a(ω), x

)
, . . . , ymy

(
a(ω), x

))T
(1.28b) 

is again the random vector of state or performance functions, and 

.γ : Rmy → R
mγ (1.28c) 

is a scalar or vector valued cost or loss function. In case .B = (0,+∞)my or . B =
[0,+∞)my it is often assumed that .γ = γ (y) is a non-increasing function, hence, 

.γ (y) ≥ γ (z), if y ≤ z, (1.28d) 

where inequalities between vectors are defined component-by-component. 

Example 1.1 If .γ (y) = 1 for .y ∈ Bc (complement of . B) and .γ (y) = 0 for .y ∈ B, 
then .⎡(x) = p f (x). 

Example 1.2 Suppose that .γ = γ (y) is a nonnegative measurable scalar function 
on .R

my such that 
.γ (y) ≥ γ0 > 0 for all y /∈ B (1.29a) 

with a constant .γ0 > 0. Then for the probability of failure we find the following 
upper bound 

.p f (x) = P
(
y
(
a(ω), x

)
/∈ B

)
≤ 1

γ0
Eγ

(
y
(
a(ω), x

))
, (1.29b) 

where the right-hand side of (1.29b) is obviously an expected cost function of type 
(1.28a)–(1.28c). Hence, the condition (1.26b) can be guaranteed by the expected cost 
constraint 

.Eγ
(
y
(
a(ω), x

)) ≤ γ0α
max. (1.29c) 

Example 1.3 If the loss function .γ (y) is defined by a vector of individual loss 
functions .γi for each state function .yi = yi (a, x), i = 1, . . . ,my , hence, 

.γ (y) =
(
γ1(y1), . . . , γmy (ymy )

)T
, (1.30a)
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then 

. ⎡(x) = (
⎡1(x), . . . , ⎡my (x)

)T
, ⎡i (x) := Eγi

(
yi
(
a(ω), x

))
, 1 ≤ i ≤ my,

(1.30b) 
i.e., the .my state functions .yi , i = 1, . . . ,my, will be treated separately. 

Working with the more general expected failure or recourse cost functions . ⎡ =
⎡(x), instead of (1.25a)–(1.25c), (1.26a)–(1.26c) and (1.27a)–(1.27c) we have the  
related substitute problems: 

(I) Expected total cost minimization 

.min cG EG0

(
a(ω), x

)
+ cTf ⎡(x), (1.31a) 

.s.t. x ∈ D. (1.31b) 

(II) Expected primary cost minimization under expected failure or recourse cost 
constraints 

.min EG0

(
a(ω), x

)
(1.32a) 

. s.t.

⎡(x) ≤ ⎡max (1.32b) 

.x ∈ D, (1.32c) 

(III) Expected failure or recourse cost minimization under expected primary cost 
constraints 

.min ⎡(x) (1.33a) 

. s.t.

EG0

(
a(ω), x

)
≤ Gmax (1.33b) 

.x ∈ D. (1.33c) 

Here, .cG, c f are (vectorial) weight coefficients, .⎡max is the vector of upper loss 
bounds, and “min” indicates again that .⎡(x) may be a vector valued function. 

1.5 Basic Properties of Deterministic Substitute Problems 

As can be seen from the conversion of an optimization problem with random param-
eters into a deterministic substitute problem, cf. Sect. 1.4.1, a central role is played 
by expectation or mean value functions of the type
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.⎡(x) = Eγ
(
y
(
a(ω), x

))
, x ∈ D0, (1.34a) 

or more general 

.⎡(x) = Eg
(
a(ω), x

)
, x ∈ D0. (1.34b) 

Here, .a = a(ω) is a random .ν-vector, .y = y(a, x) is an .my-vector valued function 
on a certain subset of .Rν × R

r , and .γ = γ (z) is a real-valued function on a certain 
subset of .Rmy . 

Furthermore, .g = g(a, x) denotes a real-valued function on a certain subset of 
.R

ν × R
r . In the following we suppose that the expectation in (1.34a)–(1.34b) exists  

and is finite for all input vectors . x lying in an appropriate set .D0 ⊂ R
r , cf.  [  7]. 

The following basic properties of the mean value functions . ⎡ are needed in the 
following again and again. 

Lemma 1.1 (Convexity) Suppose that .x → g
(
a(ω), x

)
is convex a.s. (almost sure) 

on a fixed convex domain .D0 ⊂ R
r . If  .Eg

(
a(ω), x

)
exists and is finite for each 

.x ∈ D0, then .⎡ = ⎡(x) is convex on .D0. 

Proof This property follows [ 20, 21, 27] directly from the linearity of the expectation 
operator. ⬜ 

If .g = g(a, x) is defined by .g(a, x) := γ
(
y(a, x)

)
, see  (1.34a), then the above 

theorem yields the following result: 

Corollary 1.1 Suppose that . γ is convex and .Eγ
(
y
(
a(ω), x

))
exists and is finite 

for each .x ∈ D0. 

(a) If .x → y
(
a(ω), x

)
is linear a.s., then .⎡ = ⎡(x) is convex. 

(b) If.x → y
(
a(ω), x

)
is convex a.s., and. γ is a convex, monotoneous nondecreasing 

function, then .⎡ = ⎡(x) is convex. 

It is well known [ 25] that a convex function is continuous on each open subset of 
its domain. A general sufficient condition for the continuity of . ⎡ is given next. 

Lemma 1.2 (Continuity) Suppose that .Eg
(
a(ω), x

)
exists and is finite for each 

.x ∈ D0, and assume that .x → g
(
a(ω), x

)
is continuous at .x0 ∈ D0 a.s.. If there is 

a function .ψ = ψ
(
a(ω)

)
having finite expectation such that 

.

|||g
(
a(ω), x

)||| ≤ ψ
(
a(ω)

)
a.s. for all x ∈ U (x0) ∩ D0, (1.35) 

where .U (x0) is a neighborhood of . x0, then .⎡ = ⎡(x) is continuous at . x0.
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Proof The assertion can be shown by using Lebesgue’s dominated convergence 
theorem, see, e.g., [ 27]. ⬜ 

For the consideration of the differentiability of .⎡ = ⎡(x), let  .D denote an open 
subset of the domain .D0 of . ⎡. 

Lemma 1.3 (Differentiability) Suppose that 

(i) .Eg
(
a(ω), x

)
exists and is finite for each .x ∈ D0, 

(ii) .x → g
(
a(ω), x

)
is differentiable on the open subset .D of .D0 a.s. and 

(iii) 

.

||||||∇x g
(
a(ω), x

)|||||| ≤ ψ
(
a(ω)

)
, x ∈ D, a.s., (1.36a) 

where .ψ = ψ
(
a(ω)

)
is a function having finite expectation. Then the expectation of 

.∇x g
(
a(ω), x

)
exists and is finite, .⎡ = ⎡(x) is differentiable on .D and 

.∇⎡(x) = ∇x Eg
(
a(ω), x

)
= E∇x g

(
a(ω), x

)
, x ∈ D. (1.36b) 

Proof Considering the difference quotients.
Δ⎡

Δxk
, k = 1, . . . , r , of. ⎡ at a fixed point 

.x0 ∈ D, the assertion follows by means of the mean value theorem, inequality (1.36a) 
and Lebesgue’s dominated convergence theorem, cf. [ 20, 21, 27]. ⬜ 

Example 1.4 In case (1.34a), under obvious differentiability assumptions con-

cerning . γ and . y we have .∇x g(a, x) = ∇x y(a, x)T∇γ
(
y(a, x)

)
, where . ∇x y(a, x)

denotes the Jacobian of .y = y(a, x) with respect to . a. Hence, if (1.36b) holds, then 

.∇⎡(x) = E∇x y
(
a(ω), x

)T∇γ
(
y
(
a(ω), x

))
. (1.36c) 

1.6 Approximations of Deterministic Substitute Problems 
in Optimal Design/Decision 

The main problem in solving the deterministic substitute problems defined above is 
that the arising probability and expected cost functions. p f = p f (x), ⎡ = ⎡(x), x ∈
R

r , are defined by means of multiple integrals over a .ν-dimensional space. 
Thus, the substitute problems may be solved, in practice, only by some approx-

imative analytical and numerical methods [ 16, 20, 27, 33]. In the following we 
consider possible approximations for substitute problems based on general expected 
recourse cost functions .⎡ = ⎡(x) according to (1.34a) having a real-valued convex 
loss function.γ (z). Note that the probability of failure function.p f = p f (x) may be
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approximated from above, see (1.29a)–(1.29b), by expected cost functions. ⎡ = ⎡(x)
having a nonnegative function .γ = γ (z) being bounded from below on the failure 
domain .Bc. In the following several basic approximation methods are presented. 

1.6.1 Approximation of the Loss Function 

Suppose here that .γ = γ (y) is a continuously differentiable, convex loss function 
on .R

my . Let then denote 

.y(x) := Ey
(
a(ω), x

)
=

(
Ey1

(
a(ω), x

)
, . . . , Eymy

(
a(ω), x

))T
(1.37) 

the expectation of the vector .y = y
(
a(ω), x

)
of state functions . yi = yi

(
a(ω), x

)
,

.i = 1, . . . ,my . 
For an arbitrary continuously differentiable, convex loss function . γ we have 

.γ
(
y
(
a(ω), x

))
≥ γ

(
y(x)

)
+ ∇γ

(
y(x)

)T (
y
(
a(ω), x

)
− y(x)

)
. (1.38a) 

Thus, taking expectations in (1.38a), we find Jensen’s inequality 

.⎡(x) = Eγ
(
y
(
a(ω), x

))
≥ γ

(
y(x)

)
(1.38b) 

which holds for any convex function . γ . Using the mean value theorem, we have 

.γ (y) = γ (y) + ∇γ (ŷ)T (y − y), (1.38c) 

where . ŷ is a point on the line segment .yy between . y and . y. By means of (1.38b), 
(1.38c) we get 

.0 ≤ ⎡(x) − γ
(
y(x)

)
≤ E

||||||∇γ
(
ŷ
(
a(ω), x

))|||||| ·
||||||y

(
a(ω), x

)
− y(x)

|||||| . (1.38d) 

(a) Bounded gradient 

If the gradient .∇γ is bounded on convex hull .Rconv(y(·, ·)) of the range of 

.y = y
(
a(ω), x

)
, ω ∈ Ω, x ∈ D, i.e., if 

. ||∇γ (y)|| ≤ ϑmax for each y ∈ Rconv(y(·, ·)), (1.39a) 

with a constant .ϑmax > 0, then
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.0 ≤ ⎡(x) − γ
(
y(x)

)
≤ ϑmaxE

||||||y
(
a(ω), x

)
− y(x)

|||||| , x ∈ D. (1.39b) 

Since .t → √
t, t ≥ 0, is a concave function, we get 

.0 ≤ ⎡(x) − γ
(
y(x)

)
≤ ϑmax

√
q(x) , (1.39c) 

where 

.q(x) := E
||||||y

(
a(ω), x

)
− y(x)

||||||
2 = tr Q(x) (1.39d) 

is the generalized variance, and 

.Q(x) := cov
(
y
(
a(·), x

))
(1.39e) 

denotes the covariance matrix of the random vector .y = y
(
a(ω), x

)
. Conse-

quently, the expected loss function .⎡(x) can be approximated from above by 

.⎡(x) ≤ γ
(
y(x)

)
+ ϑmax

√
q(x) for x ∈ D. (1.39f) 

(b) Bounded eigenvalues of the Hessian 

Considering second-order expansions of . γ , with a vector .ỹ ∈ ȳ y we find 

.γ (y) − γ (y) = ∇γ (y)T (y − y) + 1

2
(y − y)T∇2γ (ỹ)(y − y). (1.40a) 

Suppose that the eigenvalues. λ of.∇2γ (y) are bounded from below and above on 

the convex hull.Rconv(y(·, ·)) of the range of.y = y
(
a(ω), x

)
for all. ω ∈ Ω, x ∈

D, i.e., 

.0 < λmin ≤ λ
(∇2γ (y)

) ≤ λmax < +∞, for each y ∈ Rconv(y(·, ·)), (1.40b) 

with constants .0 < λmin ≤ λmax. Taking expectations in (1.40a), we get 

.γ
(
y(x)

)
+ λmin

2
q(x) ≤ ⎡(x) ≤ γ

(
y(x)

)
+ λmax

2
q(x), x ∈ D. (1.40c) 

Consequently, using (1.39f) or (1.40c), various approximations for the determinis-
tic substitute problems, (1.31a), (1.31b), (1.32a)–(1.32c), (1.33a)–(1.33c) may be 
obtained.
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Based on the above approximations of expected cost functions, we state the fol-
lowing two approximates to (1.32a)–(1.32c), (1.33a)–(1.33c), resp., which are well 
known in robust optimal design: 

(i) Expected primary cost minimization under approximate expected failure or 
recourse cost constraints 

.min EG0

(
a(ω), x

)
(1.41a) 

. s.t.

γ
(
y(x)

)
+ c0q(x) ≤ ⎡max (1.41b) 

.x ∈ D, (1.41c) 

where .c0 is a scale factor, cf. (1.39f) and (1.40c); 

(ii) Approximate expected failure or recourse cost minimization under expected pri-
mary cost constraints 

.min γ
(
y(x)

)
+ c0q(x) (1.42a) 

. s.t.

EG0

(
a(ω), x

)
≤ Gmax (1.42b) 

.x ∈ D. (1.42c) 

Obviously, by means of (1.41a)–(1.41c) or  (1.42a)–(1.42c) optimal designs . x∗
are achieved which 

• yield a high mean performance of the structure/structural system 
• are minimally sensitive or have a limited sensitivity with respect to random param-
eter variations (material, load, manufacturing, process, etc.) and 

• cause only limited costs for design, construction, maintenance, etc. 

1.6.2 Approximation of State (Performance) Functions 

The numerical solution is simplified considerably if one can work with one single 
state function .y = y(a, x). Formally, this is possible by defining the function 

.ymin(a, x) := min
1≤i≤my

yi (a, x). (1.43a)
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Fig. 1.1 Loss function. γ

Indeed, according to (1.18b), (1.18c) the failure of the structure, the system can 
be represented by the condition 

.ymin(a, x) ≤ 0. (1.43b) 

Thus, the weakness or failure of the technical or economic device can be evaluated 
numerically by the function 

.⎡(x) := Eγ
(
ymin

(
a(ω), x

))
(1.43c) 

with a non-increasing loss function .γ : R → R+, see Fig. 1.1. 
However, the “min”-operator in (1.43a) yields a nonsmooth function . ymin =

ymin(a, x) in general, and the straightforward computation of the mean and vari-
ance function 

.ymin(x) := Eymin
(
a(ω), x

)
(1.43d) 

.σ 2
ymin(x) := Var

(
ymin

(
a(·), x

))
(1.43e) 

by means of Taylor expansion with respect to the model parameter vector . a at . a =
Ea(ω) is not possible, cf. Sect. 1.6.3. 

According to the definition (1.43a), an upper bound for .ymin(x) is given by 

. ymin(x) ≤ min
1≤i≤my

yi (x) = min
1≤i≤my

Eyi
(
a(ω), x

)
.

Further approximations of .ymin(a, x) and its moments can be found by using the 
representation 

.min(a, b) = 1

2

(
a + b − |a − b|

)
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of the minimum of two numbers .a, b ∈ R. For example, for an even index .my we 
have 

. ymin(a, x) = min
i=1,3,...,my−1

min
(
yi (a, x), yi+1(a, x)

)

= min
i=1,3,...,my−1

1

2

(
yi (a, x) + yi+1(a, x) − ||yi (a, x) − yi+1(a, x)

||).

In many cases we may suppose that the state (performance) functions . yi =
yi (a, x), i = 1, . . . ,my , are bounded from below, hence, 

. yi (a, x) > −A, i = 1, . . . ,my,

for all .(a, x) under consideration with a positive constant .A > 0. Thus, defining 

. ỹi (a, x) := yi (a, x) + A, i = 1, . . . ,my,

and therefore 
. ỹmin(a, x) := min

1≤i≤my

ỹi (a, x) = ymin(a, x) + A,

we have 
. ymin(a, x) ≤ 0 if and only if ỹmin(a, x) ≤ A.

Hence, the survival/failure of the system or structure can also be studied by means 
of the positive function.ỹmin = ỹmin(a, x). Using now the theory of power or Hölder 
means [ 12], the minimum .ỹmin(a, x) of positive functions can be represented also 
by the limit 

. ỹmin(a, x) = lim
λ→−∞

(
1

my

my∑
i=1

ỹi (a, x)λ
)1/λ

of the decreasing family of power means 

. M [λ](ỹ) :=
(

1

my

my∑
i=1

ỹλ
i

)1/λ

, λ < 0.

Consequently, for each fixed .p > 0 we also have 

.ỹmin(a, x)p = lim
λ→−∞

(
1

my

my∑
i=1

ỹi (a, x)λ
)p/λ

.



1.6 Approximations of Deterministic Substitute Problems in Optimal Design/Decision 23

Fig. 1.2 Approximation.ỹ(a, x) of.ymin(a, x) for given. x

Assuming that the expectation .EM [λ]
(
ỹ
(
a(ω)

)
, x

)p
exists for an exponent . λ =

λ0 < 0, by means of Lebesgue’s bounded convergence theorem we get the moment 
representation 

. E ỹmin
(
a(ω), x

)p = lim
λ→−∞ E

(
1

my

my∑
i=1

ỹi
(
a(ω), x

)λ

)p/λ

.

Since .t → t p/λ, t > 0, is convex for each fixed .p > 0 and .λ < 0, by Jensen’s 
inequality we have the lower moment bound 

. E ỹmin
(
a(ω), x

)p ≥ lim
λ→−∞

(
1

my

my∑
i=1

E ỹi
(
a(ω), x

)λ

)p/λ

.

Hence, for the . pth order moment of .ỹmin
(
a(·), x

)
we get the approximations 

. E

(
1

my

my∑
i=1

ỹi
(
a(ω), x

))p/λ

≥
(

1

my

my∑
i=1

E ỹi
(
a(ω), x

)λ

)p/λ

for some .λ < 0. 

Using regression techniques, Response Surface Methods (RSM), etc., for given 
vector . x , the function .a → ymin(a, x) can be approximated [ 8, 11, 19, 24, 42] by  
functions.~y = ~y(a, x) being sufficiently smooth with respect to the parameter vector 
. a (Fig. 1.2). 

In many important cases, for each .i = 1, . . . ,my, the state functions 

.(a, x) −→ yi (a, x)
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are bilinear functions. Thus, in this case .ymin = ymin(a, x) is a piecewise linear 
function with respect to . a. Fitting a linear or quadratic Response Surface Model 
[ 9, 10, 35, 36] 

.~y(a, x) := c(x) + q(x)T (a − a) + (a − a)T Y (x)(a − a) (1.43f) 

to .a → ymin(a, x), after the selection of appropriate reference points 

.a( j) := a + d( j)
a , j = 1, . . . , p, (1.43g) 

with “design” points .d( j)
a ∈ R

ν, j = 1, . . . , p, the unknown coefficients . c = c(x),
q = q(x) and .Y = Y (x) are obtained by minimizing the mean square error 

.ρ(c, q,Y ) :=
p∑

j=1

(~y(a( j), x) − ymin(a( j), x)
)2

(1.43h) 

with respect to .(c, q,Y ). Since the model (1.43f) depends linearly on the function 
parameters .(c, q,Y ), explicit formulas for the optimal coefficients 

.c∗ = c∗(x), q∗ = q∗(x),Y ∗ = Y ∗(x) (1.43i) 

are obtained from this least squares estimation method, cf. [ 33]. 

1.6.2.1 Approximation of Expected Loss Functions 

Corresponding to the approximation (1.43f) of  .ymin = ymin(a, x), using again least 

squares techniques, a mean value function .⎡(x) = Eγ
(
y
(
a(ω), x

))
, cf. (1.28a), 

can be approximated at a given point .x0 ∈ R
ν by a linear or quadratic Response 

Surface Function 

.~⎡(x) := β0 + βT
I (x − x0) + (x − x0)

T B(x − x0), (1.43j) 

with scalar, vector and matrix parameters.β0, βI , B. In this case estimates. y(i) = ⎡̂(i)

of .⎡(x) are needed at some reference points .x (i) = x0 + d(i), i = 1, . . . , p. Details 
are given in [ 33].
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1.6.3 Taylor Expansion Methods 

As can be seen above, cf. (1.34a)–(1.34b), in the objective and/or in the constraints 
of substitute problems for optimization problems with random data mean value func-
tions of the type 

. ⎡(x) := Eg
(
a(ω), x

)

occur. Here, .g = g(a, x) is a real-valued function on a subset of .Rν × R
r , and . a =

a(ω) is a random. ν vector. 

1.6.3.1 (Complete) Expansion with Respect to . a

Suppose that on its domain the function .g = g(a, x) has partial derivatives 
.∇l

ag(a, x), l = 0, 1, . . . , lg + 1, up to order.lg + 1. Note that the gradient. ∇ag(a, x)

contains the so-called sensitivities .
∂g

∂a j
(a, x), j = 1, . . . , ν, of . g with respect to the 

parameter vector . a at .(a, x). In the same way, the higher order partial derivatives 
.∇l

ag(a, x), l > 1, represent the higher order sensitivities of . g with respect to . a at 
.(a, x). Taylor expansion of .g = g(a, x) with respect to . a at .a := Ea(ω) yields 

. g(a, x) =
lg∑
l=0

1

l!∇
l
ag(ā, x) · (a − ā)l + 1

(lg + 1)!∇
lg+1
a g(â, x) · (a − ā)lg+1,

(1.44a) 
where.â := ā + ϑ(a − ā), 0 < ϑ < 1, and.(a − ā)l denotes the system of.l-th order 
products 

. 

ν∏
j=1

(a j − ā j )
l j

with .l j ∈ N ∪ {0}, j = 1, . . . , ν, l1 + l2 + . . . + lν = l. If .g = g(a, x) is defined by 

. g(a, x) := γ
(
y(a, x)

)
,

see (1.34a), then the partial derivatives .∇l
ag of . g up to the second-order read 

.∇ag(a, x) =
(
∇a y(a, x)

)T∇γ
(
y(a, x)

)
(1.44b) 

.∇2
a g(a, x) =

(
∇a y(a, x)

)T∇2γ
(
y(a, x)

)
∇a y(a, x) (1.44c) 

+ ∇γ 
( 
y(a, x) 

) 
· ∇2 

a y(a, x),
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where 

.(∇γ ) · ∇2
a y :=

(
(∇γ )T

∂2y

∂ak∂al

)

k,l=1,...,ν

· (1.44d) 

Taking expectations in (1.44a), .⎡(x) can be approximated, cf. Sect. 1.6.1, by  

.~⎡(x) := g(ā, x) +
lg∑
l=2

∇l
ag(ā, x) · E

(
a(ω) − ā

)l
, (1.45a) 

where.E
(
a(ω) − ā

)l
denotes the system of mixed. lth central moments of the random 

vector .a(ω) =
(
a1(ω), . . . , aν(ω)

)T
. Assuming that the domain of .g = g(a, x) is 

convex with respect to . a, we get the error estimate 

. 

|||⎡(x) −~⎡(x)
||| ≤ 1

(lg + 1)! E sup
0≤ϑ≤1

||||||∇lg+1
a g

(
ā + ϑ

(
a(ω) − ā

)
, x

)||||||

×
||||||a(ω) − ā

||||||
lg+1

. (1.45b) 

In many practical cases the random parameter .ν-vector .a = a(ω) has a convex, 
bounded support, and .∇lg+1

a g is continuous. Then the .L∞-norm 

.r(x) := 1

(lg + 1)! ess supω∈Ω

||||||∇lg+1
a g

(
a(ω), x

)|||||| (1.45c) 

is finite for all . x under consideration, and (1.45b), (1.45c) yield the error bound 

.

|||⎡(x) −~⎡(x)
||| ≤ r(x)E

||||||a(ω) − ā
||||||
lg+1

. (1.45d) 

Remark 1.4 The above-described method can be extended to the case of vector 

valued loss functions .γ (z) =
(
γ1(z), . . . , γmγ

(z)
)T

. 

1.6.3.2 Inner (Partial) Expansions with Respect to . a

In generalization of (1.34a), in many cases .⎡(x) is defined by 

.⎡(x) = Eγ
(
a(ω), y

(
a(ω), x

))
, (1.46a) 

hence, the loss function.γ = γ (a, y) depends also explicitly on the parameter vector 
. a. This may occur, e.g., in case of randomly varying cost factors.
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Linearizing now the vector function .y = y(a, x) with respect to . a at . ā, thus, 

.y(a, x) ≈ y(1)(a, x) := y(ā, x) + ∇a y(ā, x)(a − ā), (1.46b) 

the mean value function .⎡(x) is approximated by 

.~⎡(x) := Eγ
(
a(ω), y(ā, x) + ∇a y(ā, x)

(
a(ω) − ā

))
. (1.46c) 

This approximation is very advantageous in case that the cost function . γ = γ (a, y)
is a quadratic function in . y. In case of a cost function .γ = γ (a, y) being linear in 
the vector . y, also  quadratic expansions of .y = y(a, x) with respect to . a many be 
taken into account. 

Corresponding to (1.37), (1.39e), define 

.y(1)(x) := Ey(1)

(
a(ω), x

)
= y(a, x) (1.46d) 

.Q(1)(x) := cov
(
y(1)

(
a(·), x

))
= ∇a y(a, x) cov

(
a(·)

)
∇a y(a, x)T . (1.46e) 

In case of convex loss functions. γ , approximates of . ~⎡ and the corresponding substi-
tute problems based on . ~⎡ may be obtained now by applying the methods described 
in Sect. 1.6.1 Explicit representations for .~⎡ are obtained in case of quadratic loss 
functions . γ . 

Error estimates can be derived easily for Lipschitz(L)-continuous or convex loss 
function . γ . In case of a Lipschitz-continuous loss function .γ (a, ·) with Lipschitz 
constant .L = L(a) > 0, e.g., for sublinear [ 27, 28] loss functions, using (1.46d) we  
have 

.

|||⎡(x) −~⎡(x)
||| ≤ L0 · E

||||||y
(
a(ω), x

)
− y(1)

(
a(ω), x

)|||||| , (1.46f) 

provided that .L0 denotes a finite upper bound of the L-constants .L = L(a). 
Applying the mean value theorem [ 15], under appropriate second-order differ-

entiability assumptions, for the right-hand side of (1.46f) we find the following 
stochastic version of the mean value theorem 

. E
||||||y

(
a(ω), x

)
− y(1)

(
a(ω), x

)||||||

≤ E
||||||a(ω) − a

||||||
2
sup

0≤ϑ≤1

||||||∇2
a y

(
a + ϑ

(
a(ω) − a

)
, x

)|||||| . (1.46g)
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1.7 Approximation of Probabilities—Probability 
Inequalities 

In reliability analysis of engineering/economic structures or systems, a main problem 
is the computation of probabilities 

.P

(
NU
i=1

Vi

)
:= P

(
a(ω) ∈

NU
i=1

Vi

)
(1.47a) 

or 

.P

⎛
⎝

N∩
j=1

Sj

⎞
⎠ := P

⎛
⎝a(ω) ∈

N∩
j=1

Sj

⎞
⎠ (1.47b) 

of unions and intersections of certain failure/survival domains (events) .Vj , Sj , 
. j = 1, . . . , N . These domains (events) arise from the representation of the structure 
or system by a combination of certain series and/or parallel substructures/systems. 
Due to the high complexity of the basic physical relations, several approximation 
techniques are needed for the evaluation of (1.47a), (1.47b). 

1.7.1 Bonferroni-Type Inequalities 

In the following .V1, V2, . . . , VN denote arbitrary (Borel-)measurable subsets of the 
parameter space .R

ν , and the abbreviation 

.P(V ) := P
(
a(ω) ∈ V

)
(1.47c) 

is used for any measurable subset .V of .Rν . 
Starting from the representation of the probability of a union of .N events, 

.P

⎛
⎝

NU
j=1

Vj

⎞
⎠ =

N∑
k=1

(−1)k−1sk,N , (1.48a) 

where 

.sk,N :=
∑

1≤i1<i2<···<ik≤N

P

(
k∩

l=1

Vil

)
, (1.48b) 

we obtain [ 17] the well-known basic Bonferroni bounds
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.P

⎛
⎝

NU
j=1

Vj

⎞
⎠ ≤

ρ∑
k=1

(−1)k−1sk,N for ρ ≥ 1, ρ odd (1.48c) 

.P

⎛
⎝

NU
j=1

Vj

⎞
⎠ ≥

ρ∑
k=1

(−1)k−1sk,N for ρ ≥ 1, ρ even. (1.48d) 

Besides (1.48c), (1.48d), a large amount of related bounds of different complexity 
are available, cf. [ 17, 50]. Important bounds of first and second degree are given 
below: 

. max
1≤ j≤N

q j ≤ P

⎛
⎝

NU
j=1

Vj

⎞
⎠ ≤ Q1 (1.49a) 

.Q1 − Q2 ≤ P

⎛
⎝

NU
j=1

Vj

⎞
⎠ ≤ Q1 − max

1≤l≤N

∑
i /=l

qil (1.49b) 

.
Q2

1

Q1 + 2Q2
≤ P

⎛
⎝

NU
j=1

Vj

⎞
⎠ ≤ Q1. (1.49c) 

The above quantities .q j , qi j , Q1, Q2 are defined as follows: 

.Q1 :=
N∑
j=1

q j with q j := P(Vj ) (1.49d) 

.Q2 :=
N∑
j=2

j−1∑
i=1

qi j with qi j := P(Vi ∩ Vj ). (1.49e) 

Moreover, defining 

.q := (q1, . . . , qN ), Q := (qi j )1≤i, j≤N , (1.49f) 

we have 

.P

⎛
⎝

NU
j=1

Vj

⎞
⎠ ≥ qT Q−q, (1.49g) 

where .Q− denotes the generalized inverse of . Q, cf.  [  50].
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1.7.2 Tschebyscheff-Type Inequalities 

In many cases the survival or feasible domain (event).S = ∩m
i=1 Si is represented by 

a certain number .m of inequality constraints of the type 

.yli < (≤)yi (a, x) < (≤)yui , i = 1, . . . ,m, (1.50a) 

as, e.g., operating conditions, behavioral constraints. Hence, for a fixed input, design 
or control vector . x , the event .S = S(x) is given by 

.S := {a ∈ R
ν : yli < (≤)yi (a, x) < (≤)yui , i = 1, . . . ,m} . (1.50b) 

Here, 
.yi = yi (a, x), i = 1, . . . ,m (1.50c) 

are certain functions, e.g., response, output, or performance functions of the structure, 
system, defined on (a subset of) .Rν × R

r . 
Moreover, .yli < yui , i = 1, . . . ,m, are lower and upper bounds for the variables 

.yi , i = 1, . . . ,m. In the case of one-sided constraints some bounds.yli , yui are infinite. 

1.7.2.1 Two-Sided Constraints 

If .yli < yui , i = 1, . . . ,m, are finite bounds, (1.50a) can be represented by 

.|yi (a, x) − yic| < (≤)ρi , i = 1, . . . ,m, (1.50d) 

where the quantities .yic, ρi , i = 1, . . . ,m, are defined by 

.yic := yli + yui
2

, ρi := yui − yli
2

. (1.50e) 

Consequently, for the probability .P(S) of the event . S, defined by (1.50b), we have 

.P(S) = P
(|||yi

(
a(ω), x

)
− yic

||| < (≤)ρi , i = 1, . . . ,m
)

. (1.50f) 

Introducing the random variables 

.ỹi
(
a(ω), x

)
:=

yi
(
a(ω), x

)
− yic

ρi
, i = 1, . . . ,m, (1.51a) 

and the set 
.B := {

y ∈ R
m : |yi | < (≤)1, i = 1, . . . ,m

}
, (1.51b)



1.7 Approximation of Probabilities—Probability Inequalities 31

with .ỹ = (ỹi )1≤i≤m, we get 

.P(S) = P
(
ỹ
(
a(ω), x

)
∈ B

)
. (1.51c) 

Considering any (measurable) function .ϕ : Rm → R such that 

.i)ϕ(y) ≥ 0, y ∈ R
m (1.51d) 

.i i)ϕ(y) ≥ ϕ0 > 0, if y /∈ B, (1.51e) 

with a positive constant . ϕ0, we find the following result: 

Theorem 1.1 For any (measurable) function .ϕ : Rm → R fulfilling 
conditions (1.51d), (1.51e), the following Tschebyscheff-type inequality holds 

. P
(
yli < (≤)yi

(
a(ω), x

)
< (≤)yui , i = 1, . . . ,m

)

≥ 1 − 1

ϕ0
Eϕ

(
ỹ
(
a(ω), x

))
, (1.52) 

provided that the expectation in (1.52) exists and is finite. 

Proof If .P
ỹ
(
a(·),x

) denotes the probability distribution of the random.m-vector . ỹ =
ỹ
(
a(ω), x

)
, then 

. Eϕ
(
ỹ
(
a(ω), x

))
=

{

y∈B
ϕ(y)Pỹ(a(·),x)(dy) +

{

y∈Bc

ϕ(y)Pỹ(a(·),x)(dy)

≥
{

y∈Bc

ϕ(y)Pỹ(a(·),x)(dy) ≥ ϕ0

{

y∈Bc

Pỹ(a(·),x)(dy)

= ϕ0P
(
ỹ
(
a(ω), x

)
/∈ B

)
= ϕ0

(
1 − P

(
ỹ
(
a(ω), x

)
∈ B

))
,

which yields the assertion, cf. (1.51c). ⬜ 

Remark 1.5 Note that.P(S) ≥ αs with a given minimum reliability.αs ∈ (0, 1] can 
be guaranteed by the expected cost constraint 

. Eϕ
(
ỹ
(
a(ω), x

)) ≤ (1 − αs)ϕ0.

Example 1.5 If .ϕ = 1Bc is the indicator function of the complement .Bc of . B, then 
.ϕ0 = 1 and (1.52) holds with the equality sign (Fig. 1.3). 

Example 1.6 For a given positive definite .m × m matrix . C , define . ϕ(y) := yTCy,
y ∈ R

m . Then, cf. (1.51b), (1.51d), (1.51e),
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Fig. 1.3 Function. ϕ = ϕ(y)

.miny∈| Bϕ(y) = min
1≤i≤m

{
min
yi≥1

yTCy, min
yi≤−1

yTCy
}
. (1.53a) 

Thus, the lower bound .ϕ0 follows by considering the convex optimization prob-
lems arising in the right-hand side of (1.53a). Moreover, the expectation . Eϕ(ỹ)
needed in (1.52) is given, see (1.51a), by 

. Eϕ(ỹ) = E ỹTC ỹ = E trC ỹ ỹT ,

= trC(diag ρ)−1

(
cov y

(
a(·), x

)
+

(
y(x) − yc

)(
y(x) − yc

)T
)

(diag ρ)−1,

(1.53b) 

where ”tr” denotes the trace of a matrix, diag . ρ is the diagonal matrix diag . ρ :=
(ρiδi j ), yc := (yic), see  (1.50e), and .y = y(x) :=

(
Eyi

(
a(ω), x

))
. Moreover, for 

.Eϕ(ỹ) we have the upper bound 

.Eϕ(ỹ) ≤ ||C|| ||(diag ρ)−1||2
(
tr covy

(
a(·), x

)
+ ||y(x) − yc||2

)
. (1.53c) 

Example 1.7 Assuming in Example 1.6 that .C = diag .(cii ) is a diagonal matrix 
with positive elements .cii > 0, i = 1, . . . ,m, then 

.miny∈| Bϕ(y) = min1≤i≤mcii > 0, (1.53d) 

and .Eϕ(ỹ) is given by
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.Eϕ(ỹ) =
m∑
i=1

cii
E
(
yi
(
a(ω), x

)
− yic

)2

ρ2
i

(1.53e) 

= 
m∑ 

i=1 

cii  
σ 2 yi 

( 
a(·), x 

) 
+ 

( 
yi (x) − yic  

)2 

ρ2 
i 

. 

1.7.2.2 One-Sided Inequalities 

Suppose that exactly one of the two bounds.yli < yui is infinite for each.i = 1, . . . ,m. 
Multiplying the corresponding constraints in (1.50a) by .−1, the admissible domain 
.S = S(x), cf.  (1.50b), can be represented by 

.S(x) = {a ∈ R
ν : ỹi (a, x) < (≤) 0, i = 1, . . . ,m} , (1.54a) 

where .ỹi := yi − yui , if  .yli = −∞, and .ỹi := yli − yi , if  .yui = +∞. If we set  

.ỹ(a, x) :=
(
ỹi (a, x)

)
and 

.B̃ :=
{
y ∈ R

m : yi < (≤) 0, i = 1, . . . ,m
}
, (1.54b) 

then 
.P
(
S(x)

)
= P

(
ỹ
(
a(ω), x

)
∈ B̃

)
. (1.54c) 

In this case, cf. (1.51d), (1.51e), also consider a function .ϕ : Rm → R such that 

.i)ϕ(y) ≥ 0, y ∈ R
m (1.55a) 

.i i)ϕ(y) ≥ ϕ0 > 0, if y /∈ B̃. (1.55b) 

Then, corresponding to Theorem 1.1, we have this result: 

Theorem 1.2 (Markov-type inequality) If .ϕ : Rm → R is any (measurable) func-
tion fulfilling conditions (1.55a,b), then 

.P
(
ỹ
(
a(ω), x

)
< (≤) 0

)
≥ 1 − 1

ϕ0
Eϕ

(
ỹ
(
a(ω), x

))
, (1.56) 

provided that the expectation in (1.56) exists and is finite. 

Remark 1.6 Note that a related inequality was already used in Example 1.2. 

Example 1.8 If .ϕ(y) :=
m∑
i=1

wi eαi yi with positive constants .wi , αi , i = 1, . . . ,m, 

then
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. inf
y∈| B̃

ϕ(y) = min1≤i≤mwi > 0 (1.57a) 

and 

.Eϕ
(
ỹ
(
a(ω), x

))
=

m∑
i=1

wi Ee
αi ỹi

(
a(ω),x

)
, (1.57b) 

where the expectation in (1.57b) can be computed approximately by Taylor expan-
sion: 

. Eeαi ỹi = eαi ỹi (x)Eeαi

(
ỹi−ỹi (x)

)

≈ eαi ỹi (x)

(
1 + α2

i

2
E
(
yi
(
a(ω), x

)
− yi (x)

)2)

= eαi ỹi (x)

(
1 + α2

i

2
σ 2
yi (a(·),x)

)
. (1.57c) 

Supposing that .yi = yi
(
a(ω), x

)
is a normal distributed random variable, then 

.Eeαi ỹi = eαi
¯̃yi (x)e

1
2 α2

i σ
2
yi (a(·),x) . (1.57d) 

Example 1.9 Consider .ϕ(y) := (y − b)TC(y − b), where, cf. Example 1.6, . C is a 
positive definite .m × m matrix and .b < 0 a fixed  .m-vector. In this case we again 
have 

. miny∈| B̃ϕ(y) = min1≤i≤m minyi≥0ϕ(y)

and 

. Eϕ(ỹ) = E
(
ỹ
(
a(ω), x

)
− b

)T
C
(
ỹ
(
a(ω), x

)
− b

)

= trCE
(
ỹ
(
a(ω), x

)
− b

) (
ỹ
(
a(ω), x

)
− b

)T
.

Note that 

. ỹi (a, x) − bi =
{
yi (a, x) − (yui + bi ), if yli = −∞
yli − bi − yi (a, x), if yui = +∞,

where .yui + bi < yui and .yli < yli − bi . 

Remark 1.7 The one-sided case can also be reduced approximatively to the two-
sided case by selecting a sufficiently large, but finite upper bound .ỹui ∈ R, lower  
bound .ỹli ∈ R, resp., if .yui = +∞, yli = −∞.
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Chapter 2 
Solution of Stochastic Linear Programs 
by Discretization Methods 

Abstract Solution procedures for stochastic linear optimization problems (also 
called stochastic linear programs (SLP)) by means of discretization of the probability 
distribution of the random parameters are treated in this chapter: Given a stochastic 
cost vector .c(ω), a stochastic technology matrix .T (ω) and a stochastic right-hand 
side, .h(ω), consider a linear program for minimizing a linear function .c(ω)T x of 
the design vector . x subject to the linear constraints .T (ω)x = h(ω), .x ≥ 0. Due  to  
the stochastic variations of the data.(c, T, h) = (c(ω), T (ω), h(ω)), for the selection 
of an optimal decision vector . x∗, an appropriate deterministic substitute problem 
has to be chosen. Here, we look for optimal decision vectors .x∗ ≥ 0 minimizing 
the expected total cost defined by the sum of the primal costs .c(ω)T x and the costs 
.p(T (ω)x − h(ω)) caused by the violation of the equality constraints.T (ω)x = h(ω). 
These costs are determined here by means of sublinear functions.p = p(z), involving, 
e.g., the class of norms for an error vector . z. Moreover, several sublinear cost func-
tions can be represented by the value function of an optimization problem, as, e.g., 
a Minkowski functional, see Chap. 11. Then, error estimates are given, and a priori 
bounds for the approximation error are derived. Furthermore, exploiting invariance 
properties of the probability distribution of the random parameters, problem-oriented 
discretizations are derived which simplify then the computation of admissible descent 
directions at non-stationary points. 
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2.1 A Priori Error Bounds 

A well-known method to handle linear programs 

. min c(ω)T x (2.1) 

s.t. 

T (ω)x = h(ω), 
x ∈ D 

with random data.
(
c(ω), T (ω), h(ω)

)
on a probability space.(Ω,A, P) is to replace 

(2.1), cf. [ 5, 10], by the stochastic optimization problem 

. min F(x) (2.2a) 

s.t. x ∈ D, 

where 
.F(x) = E

(
c(ω)T x + p

(
h(ω) − T (ω)x

))
(2.2b) 

and .p = p(z) denote the so-called second stage costs defined by 

.p(z) = inf{gT y : Wy = z, y ≥ 0}, z ∈ R
m . (2.2c) 

Here,.D is a fixed convex polyhedron in.R
n , hence, “.x ∈ D” represents the deter-

ministic constraints in (2.1), and “E” denotes the expectation operator. In the follow-
ing we suppose that the .m × n1 matrix .W and the .m vector . q are related such that 

.{Wy : x ≥ 0} = R
m . (2.3a) 

.{v : WT v ≤ q} /= ∅. (2.3b) 

Thus, the loss function. p is defined on the whole.R
m . If .q ≥ 0, then (2.3b) holds, 

and . p is nonnegative. According to [ 4] we know that . p is a sublinear function on 
.R

m , thus 

.p(z + w) ≤ p(z) + p(w) for all z, w ∈ R
m (2.4a) 

.p(λz) = λp(z) for all z ∈ R
m, λ ≥ 0. (2.4b) 

Consequently, . p is a convex function on .R
m , and we have that 

.p(0) = 0 (2.4c) 

. − p(−z) ≤ p(z) for all z ∈ R
m (2.4d) 

. − p(z − w) ≤ p(w) − p(z) ≤ p(w − z) for all z, w ∈ R
m . (2.4e)
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Moreover, if 
.||p|| = sup

||z||E≤1

|||p(z)
||| = sup

||z||E=1

|||p(z)
||| (< +∞) (2.4f) 

denotes the norm of the sublinear function . p, then 

. |p(z)| ≤ ||p|| ||z|| for all z ∈ R
m, (2.4g) 

. |p(w) − p(z)| ≤ ||p|| ||w − z|| for all z, w ∈ R
m . (2.4h) 

Denoting .Ec(ω) by . c, (2.2b) reads 

.F(x) = cT x + Ep
(
h(ω) − T (ω)x

)
. (2.5) 

2.2 Disretization and Error Bounds 

Approximating now the .m × (n + 1) random matrix .
(
T (ω), h(ω)

)
by a certain 

sequence of random matrices 

. 

(
T 1(ω), h1(ω)

)
,
(
T 2(ω), h2)(ω)

)
, . . . ,

(
T N (ω), hN (ω)

)
, . . . ,

converging in some probabilistic sense to.
(
T (ω), h(ω)

)
, we obtain the approximative 

objective functions 

.FN (x) = cT x + Ep
(
hN (ω) − T N (ω)x

)
, N = 1, 2, . . . . (2.6) 

Using (2.4d), for .F(x) − FN (x) we obtain, see [ 4]. 

. − ϑN (x) ≤ F(x) − FN (x) ≤ ηN (x), (2.7a) 

where the lower, upper error term.ϑN (x), ηN (x), resp., is defined by 

.ϑN (x) := Ep
((

T (ω) − T N (ω)
)
x +

(
hN (ω) − h(ω)

))
(2.7b) 

.ηN (x) := Ep
((

T N (ω) − T (ω)
)
x +

(
h(ω) − hN (ω)

))
. (2.7c) 

Using discretization methods, the approximations .
(
T N (ω), hN (ω)

)
are piecewise 

constant random variables, hence 

.

(
T N (ω), hN (ω)

)
=

(
T N , j , hN , j

)
for all ω ∈ ΩN , j , j = 1, 2, . . . , rN , (2.8a)
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where 
.ΩN ,1,ΩN ,2, . . . , ΩN , j , . . . , ΩN ,rN is a partition of Ω. (2.8b) 

Consequently, .FN (x), given by (2.6), reads 

.FN (x) = cT x +
rN∑
j=1

P(ΩN , j )p(hN , j − T N , j x). (2.8c) 

Using Jensen’s inequality, for the error estimate .ϑN (x) we get 

. ϑN (x) =
{

p
((

T (ω) − T N (ω)
)
x +

(
hN (ω) − h(ω)

))
P(dω)

=
rN∑
j=1

{

ΩN , j

p
((

T (ω) − T N , j
)
x +

(
hN , j − h(ω)

))
P(dω)

≥
rN∑
j=1

P(ΩN , j )p
((

T
ΩN , j − T N , j

)
x +

(
nN , j − h

ΩN , j ))
, (2.9a) 

where 

.T
ΩN , j = 1

P(ΩN , j )

{

ΩN , j

T (ω)P(dω), (2.9b) 

.h
ΩN , j = 1

P(ΩN , j )

{

ΩN , j

h(ω)P(dω) (2.9c) 

are the conditional expectation of.T (ω), h(ω), resp., with respect to.ΩN , j . Obviously, 
for .ηN (x) we obtain 

.ηN (x) ≥
rN∑
j=1

P(ΩN , j )p
((

T N , j − T
ΩN , j )

x +
(
h

ΩN , j − hN , j
))

. (2.9d) 

Several publications [ 1, 2, 11] suggest to select the values.T N , j , hN , j , resp., accord-
ing to 

.T N , j = T
ΩN , j = 1

P(ΩN , j )

{

ΩN , j

T (ω)P(dω), (2.10a) 

.hN , j = h
ΩN , j = 1

P(ΩN , j )

{

ΩN , j

h(ω)P(dω). (2.10b)
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In this case, (2.9a), (2.9d) and (2.4c) immediately yield this result: 

Lemma 2.1 If the approximation .
(
T N (ω), hN (ω)

)
of .

(
T (ω), h(ω)

)
is defined by 

(2.8a), (2.8b) and (2.10a), (2.10b), then .ϑN (x) ≥ 0, ηN (x) ≥ 0 for all .x ∈ R
n. 

If the norm .||p|| of the sublinear loss function is known, then the error terms 
.ϑN (x), ηN (x) can be further estimated from above. Indeed, (2.7b), (2.7c) and (2.4f) 
yield 

. |ϑN (x)|, |ηN (x)| ≤ ||p||
(
E

||||||
(
T (ω) − T N (ω)

)
x
|||||| + E

||||hN (ω) − h(ω)
||||)

.

(2.11a) 
Denoting by 

.PN , j (dω) = 1

P(ΩN , j )
1ΩN , j P(dω) (2.11b) 

the restriction of .P to the subdomains .ΩN , j of . Ω, according to (2.8a)–(2.8c), from  
(2.11a), (2.11b) we obtain 

. |ϑN (x)|, |ηN (x)|

≤||p||
rN∑
j=1

P(ΩN , j )

⎛
⎝

{

ΩN , j

||||||
(
T (ω) − T N , j

)
x
|||||| PN , j (dω)

+
{

ΩN , j

||hN , j − h(ω)||PN , j (dω)

⎞
⎠ . (2.11c) 

Remark 2.1 (More general loss functions) If the sublinear loss function .p is 
replaced by a more general convex loss function . u, then the inequalities (2.11a), 
(2.11c) remain true if the left-hand side in (2.11a), (2.11c) is simply replaced by 
.|F(x) − FN (x)|, and .||p|| is replaced by a Lipschitz constant .L > 0 of . u, provided 
that . u is Lipschitzian with constant .L on the union of the supports of the random 
.m-vectors .T (ω)x − h(ω) and .T N (ω)x − hN (ω), N = 1, 2, . . . , x ∈ D, cf. [  4]. 

Because of 

. 

||||||
(
T (ω) − T N , j

)
x
|||||| =

)||||||
(
T (ω) − T N , j

)
x
||||||
2
)1/2

=
)
xT

(
T (ω) − T N , j

)T(
T (ω) − T N , j

)
x

)1/2

and the concavity of .t → √
t , we have that
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. 

{

ΩN , j

||||||
(
T (ω) − T N , j

)
x
|||||| PN , j (dω) ≤

⎛
⎜⎝

{

ΩN , j

||||||
(
T (ω) − T N , j

)
x
||||||
2
PN , j (dω)

⎞
⎟⎠

1/2

=
⎛
⎜⎝xT

⎛
⎜⎝

m∑
i=1

{

ΩN , j

(
Ti (ω) − T N , j

i

)T (
Ti (ω) − T N , j

i

)
PN , j (dω)

⎞
⎟⎠ x

⎞
⎟⎠

1/2

≤ ||x||
⎛
⎜⎝

m∑
i=1

n∑
k=1

{

ΩN , j

(
tik(ω) − t N , j

ik

)2
PN , j (dω)

⎞
⎟⎠

1/2

(2.12a) 

where .Ti , T
N , j
i is the .i-th row of the .m × n matrices . T (ω) =

(
tik(ω)

)
, T N , j =(

t N , j
ik

)
, respectively. Moreover, 

.

{

ΩN , j

||hN , j − h(ω)||PN , j (dω) ≤
⎛
⎝

m∑
i=1

{

ΩN , j

(
hN , j
i − hi (ω)

)2
PN , j (dω)

⎞
⎠ . (2.12b) 

Clearly, if (2.10a), (2.10b) holds, then 

.

{

ΩN , j

||||||
(
T (ω) − T N , j

)
x
|||||| PN , j (dω) ≤

)
x '

)
m∑
i=1

varN , j
(
Ti (·)

))
x

)1/2

(2.12c) 

.

{

ΩN , j

||hN , j − h(ω)||PN , j (dω) ≤
)

m∑
i=1

varN , j
(
hi (·)

))1/2

, (2.12d) 

where .varN , j
(
Ti (·)

)
is the covariance matrix of the .i-th row .Ti (ω) of .T (ω), and 

.varN , j
(
hi (·)

)
is the variance of the .i-th component .hi (ω) of .h(ω) with respect to 

the conditional distribution .PN , j = P|ΩN , j . 

Remark 2.2 For the general case given by (2.12a), (2.12b) we have that 

. 

{

ΩN , j

(
Ti (ω) − T N , j

i

)T(
Ti (ω) − T N , j

i

)
PN , j (dω) = varN , j

(
Ti (·)

)

+
(
T

ΩN , j

i − T N , j
i

)T(
T

ΩN , j − T N , j
i

)
, (2.12e) 

.

{

ΩN , j

(
hi (ω) − hN , j

i

)2
PN , j (dω) = varN , j

(
hi (·)

)
+

(
h

ΩN , j

i − hN , j
i

)2
, (2.12f) 

respectively.
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Because of (2.11c) and (2.12a), (2.12b) we still have to compute an upper estimate 
of.||p||. Representing any vector.z ∈ R

m by.z = ∑m
i=1 zi ei , where.z1, z2, . . . , zm are 

the components of . z and .e1, e2, . . . , en are the unit vectors of the .m coordinate 
directions, because of the sublinearity of . p we find 

. p(z) = p

)
m∑
i=1

zi ei

)
≤

m∑
i=1

p(zi ei ) =
m∑
i=1

p
(
(z+

i − z−
i )ei

)

≤
m∑
i=1

(
p(z+

i ei )
)

+ p
(
z−
i (−ei )

)
=

m∑
i=1

(
z+
i p(ei ) + z−

i p(−ei )
)

≤
m∑
i=1

(z+
i + z−

i )max
{
p(ei ), p(−ei )

}
=

m∑
i=1

πi |zi |, (2.13a) 

where 
.πi = max

{
p(ei ), p(−ei )

}
, i = 1, 2, . . . ,m. (2.13b) 

Note that for the computation of the .m coefficients .π1, π2, . . . , πm we have to solve 
the following .2m linear programs 

. min qT y s.t.Wy = ±ei , y ≥ 0 for i = 1, 2, . . . ,m. (2.13c) 

From (2.13a) we obtain 
.p(z) ≤ ||π|| · ||z||, (2.13d) 

where.||π||, ||z|| denote the Euclidean norm of.π = (π1, π2, . . . , πm)T and. z, respec-
tively. 

Thus, according to (2.4f) we have the upper norm bound 

.||p|| ≤ ||π|| =
)

m∑
i=1

π2
i

)1/2

=
)

m∑
i=1

(
max

{
p(ei ), p(−ei )

})2
)1/2

, (2.14) 

where .||π|| can be calculated from the given data, cf.  (2.2c), (2.13c). 
Summarizing the above consierations, from (2.11c), (2.12a)–(2.12f), and (2.14) 

we get 

Theorem 2.1 If.
(
T N (ω), hN (ω)

)
is given by (2.8a), (2.8b) and (2.3a), (2.3b) holds, 

then for each .x ∈ R
n we have that
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. 0 ≤ ϑN (x), ηN (x) ≤ ||π||
rN∑
j=1

P(ΩN , j )

⎛
⎜⎝||x||

⎛
⎜⎝

m∑
i,k=1

{

ΩN , j

(
tik(ω) − t N , j

ik

)2
PN , j (dω)

⎞
⎟⎠

⎞
⎟⎠

1/2

+
⎛
⎜⎝

m∑
i=1

{

ΩN , j

(
hi (ω) − hN , j

i

)2
PN , j (dω)

⎞
⎟⎠ (2.15a) 

Moreover, if equations (2.10a)–(2.10b) hold, then 

. 0 ≤ ϑN (x), ηN (x) ≤ ||π||
rN∑
j=1

P(ΩN , j )

⎛
⎜⎝||x||

⎛
⎝

m∑
i,k=1

varN , j
(
tik(·)

)
⎞
⎠

1/2

+
)

m∑
i=1

varN , j
(
hi (·)

))1/2
⎞
⎠ . (2.15b) 

2.2.1 Special Representations of the Random Matrix 

. 

(
T (·), h(·)

)

A common, well-known representation of .
(
T (ω), h(ω)

)
is given by 

. 

(
T (ω), h(ω)

)
=

(
T

(
ξ(ω)

)
, h

(
ξ(ω)

))
= (T , h) +

L∑
s=1

ξs(ω)
(
T (s), h(s)

)
,

(2.16) 

where .(T , h) denotes the mean of .
(
T (ω), h(ω)

)
,
(
T (s), h(s)

)
, s = 1, 2, . . . , L , are  

given.m × (n + 1)matrices, and.ξ1(ω), ξ2(ω), . . . , ξL , are zero-mean, stochastically 
independent random variables. 

Based on representation (2.16), the approximation .
(
T N (ω), hN (ω)

)
of . 

(
T (ω),

h(ω)
)
according to (2.8a), (2.8b) can be described then by the following piecewise 

constant approximation .ξ N (ω) of the random .L-vector . ξ(ω) =
(
ξ1(ω), ξ2(ω), . . . ,

ξL(ω)
)
. 

Let. Ξ denote the support of.ξ(ω) or a set containing the support of.ξ(ω). Moreover, 
let 

.ΞN ,1, ΞN ,2, . . . , ΞN , j , . . . , ΞN ,rN (2.17a) 

be the partition of .Ξ generated by the partition (2.8b) of . Ω, hence
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.ΞN , j =
{
ξ(ω) : ω ∈ ΩN , j

}
. (2.17b) 

Thus, with fixed .L-vectors .ξ N , j =
(
ξ
N , j
1 , . . . , ξ

N , j
L

)
∈ ΞN , j we have that 

.ξ N (ω) = ξ N , j for all ω ∈ ΩN , j (2.17c) 

and therefore 

.(T N , j , hN , j ) = (T , h) +
L∑

s=1

ξ N , j
s

(
T (s), h(s)

)
. (2.17d) 

Because of the properties of the random variables.ξ1(ω), . . . , ξL(ω) in the representa-

tion (2.16) of .
(
T (ω), h(ω)

)
, we suppose that .Eξ N

s (ω) = 0 and. Eξ N
s (ω)ξ N

t (ω) = 0

for all .s = 1, . . . , L , t = 1, . . . , L , t /= s, hence 

.

rN∑
j=1

ξ N , j
s Pξ(·)(ΞN , j ) = 0,

rN∑
j=1

ξ N , j
x ξ

N , j
t Pξ(·)

(
ΞN , j

)
= 0, (2.17e) 

whereas .s, t = 1, . . . , L , t /= s. 
In many cases we may suppose that 

.Ξ =
L∏

s=1

Ξs, Ξs = [αs, βs) (2.18a) 

is a half-open .L-dimensional interval. In this case .Ξ is then partitioned into certain 
subintervals .ΞN , j . Hence, we set 

. j = ( j1, j2, . . . , jL), rN = (rN1, rN2, . . . , rNL), (2.18b) 

.ξ N , j =
(
ξ
N , j1
1 k, ξ N , j2

2 , . . . , ξ
N , jL
L

)
, (2.18c) 

where . js = 1, 2, . . . , rNs , s = 1, . . . , L , and a cell .ΞN , j is given by 

.ΞN , j = ΞN ,( j1,..., jL ) =
L∏

s=1

ΞN , js
s (2.18d) 

with certain half-open subintervals 

.ΞN , js
s =

[
αN , js
s , βN , js

s

)
, js = 1, 2, . . . , rNs , s = 1, 2, . . . , L (2.18e) 

with
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.ξ N , js
s ∈

[
αN , js
s , βN , js

s

)
, js = 1, 2, . . . , rNs , s = 1, 2, . . . , L . (2.18f) 

Moreover, (2.17d) reads in the present case 

. (T N , j , hN , j ) =
(
T N ,( j1,..., jL ), hN ,( j1,..., jL )

)
=

= (T , h) =
L∑

s=1

ξ N , js
s

(
T (s), h(s)

)
. (2.18g) 

For the integrals in the error estimation (2.15a), by (2.16), (2.17d), (2.18g) and 
the cell representation (2.18d), we get 

. 

{

ΩN , j

(
tik(ω) − t N , j

ik

)2
PN , j (dω) = 1

Pξ(·)(ΞN , j )

{

ξ∈ΞN , j

(
tik(ξ) − t N , j

ik

)2
Pξ(·)(dξ)

and therefore 

. 

{

ΩN , j

(
tik(ω) − t N , j

ik

)2
PN , j (dω) =

L∑
s,σ=1
s /=σ

t (s)ik t (σ )
ik

)
ξ

Ξ
N , js
s

s − ξ N , js
s

))
ξ

Ξ
N , jσ
σ

σ − ξ N , jσ
σ

)

+
L∑

s=1

t (s)2ik

1

Pξs (·)(Ξ
N , js
s )

{

ξs∈Ξ
N , js
s

(ξs − ξ N , js
s )2Pξs (·)(dξs) (2.19a) 

as well as 

. 

{

ΩN , j

(
hi (ω) − hN , j

i

)2
PN , j (dω) =

L∑
s,σ=1
s /=σ

h(s)
i h(σ )

i

)
ξ

Ξ
N , js
s

s − ξ N , js
s

) )
ξ

Ξ
N , jσ
σ

σ − ξ N , jσ
σ

)

+
L∑

s=1

h(s)2
i

1

Pξs (·)(Ξ
N , js
s )

{

ξs∈Ξ
N , js
s

(ξs − ξ N , js
s )2Pξs (·)(dξs), (2.19b) 

where 

.ξ
Ξ

N , js
s

s = E(ξs |ΞN , js
s ) := 1

Pξs (·)(Ξ
N , js
s )

{

ξs∈Ξ
N , js
s

ξs Pξs (·)(dξs) (2.19c) 

in the conditional mean of .ξs(ω) with respect to .Ξ
N , js
s , cf.  (2.9b), (2.9c). 

Since .ξ N , js
s ∈

[
α
N , js
s , β

N , js
s

)
, cf. (2.18f), and .ξ

Ξ
N , js
s

s ∈
[
α
N , js
s , β

N , js
s

)
, the first 

terms in (2.19a), (2.19b) can be estimated from above as follows:
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. 

|||||||

L∑
s,σ=1
s /=σ

t (s)ik t (σ )
ik

)
ξ

Ξ
N , js
s

s − ξ N , js
s

) )
ξ

Ξ
N , jσ
σ

σ − ξ N , jσ
σ

)
|||||||
≤

L∑
s,σ=1
s /=σ

|||t (s)ik t (σ )
ik

|||
(
βN , js
s − αN , js

s

)(
βN , jσ

σ − αN , jσ
σ

)
, (2.19d) 

. 

|||||
L∑

s,σ=1

h(s)
i h(σ )

i

(
ξ

Ξ
N , js
s

s − ξ N , js
s

)(
ξ

Ξ
N , jσ
σ

σ − ξ N , jσ
σ

)||||| ≤

L∑
s,σ=1
s /=σ

|||h(s)
i h(σ )

i

|||
(
βN , js
s − αN , js

s

)(
βN , jσ

σ − αN , jσ
σ

)
. (2.19e) 

If the interval .Ξs = [αs, βs) is partitioned into .rNs equidistant subintervals 
.[αN , js

s , β
N , js
s ), js = 1, 2, . . . , rNs , then 

. 

L∑
s,σ=1
s /=σ

|||t (s)ik t (σ )
ik

||| (βN , js
s − αN , js

s

) (
βN , jσ

σ − αN , jσ
σ

)

= (βs − αs)

rNs

(βσ − ασ )

rNσ

L∑
s,σ=1
s /=σ

|||t (s)ik t (σ )
ik

|||, (2.19f) 

. 

L∑
s,σ=1
s /=σ

|||h(s)
i h(σ )

i

|||
(
βN , js
s − αN , js

s

)(
βN , jσ

σ − αN , jσ
σ

)

= (βs − αs)
2

rNsrNσ

L∑
s,σ=1
s /=σ

|||h(s)
i h(σ )

i

|||. (2.19g) 

If the values .ξ N , js
s , js = 1, 2, . . . , rNs, s = 1, 2, . . . , L , are selected such that 

.ξ N , js
s = ξ

Ξ
N , js
s

s , js = 1, 2, . . . , rN s, s = 1, 2, . . . , L , (2.20a) 

see (2.10a), (2.10b) then (2.19a), (2.19b) is reduced to 

.

{

ΩN , j

(
tik(ω) − t N , j

ik

)2
PN , j (dω) =

L∑
s=1

t (s)2ik varN , js
(
ξs(·)

)
, (2.20b) 

.

{

ΩN , j

(
hi (ω) − hN , j

i

)2
PN , j (dω) =

L∑
s=1

h(s)2
i varN , js

(
ξs(·)

)
, (2.20c)
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where 

.varN , js
(
ξs(·)

)
= 1

Pξs (·)(Ξ
N , js
s )

{

ξs∈Ξ
N , js
s

(
ξs − ξ

Ξ
N , js
s

s

)2
Pξs (·)(dξs) (2.20d) 

is the conditional variance of .ξs(ω) with respect to .Ξ
N , js
s . 

Example 2.1 Suppose that.ξs(ω) has a density. fs(z) such that for all. s = 1, 2, . . . , L
and . js = 1, 2, . . . , rN ,s we have that 

. 0 < f N , js
s,m := inf

{
fs(z) : z ∈ ΞN , js

s

}

≤ f N , js
s,M := sup

{
fs(z) : z ∈ ΞN , js

s

}
< +∞. (2.21a) 

This yields 

.Pξs (·)(Ξ
N , js
s ) ≥ f N , js

s,m

(
βN , js
s − αN , js

s

)
, (2.21b) 

.

{

ξs∈Ξ
N , js
s

(
ξs − ξ

Ξ
N , js
s

s

)2
Pξs (·)(dξs) ≤ f N , js

s,M

β
N , js
s{

α
N , js
s

(
ξs − ξ

Ξ
N , js
s

s

)2
dξs (2.21c) 

and therefore 

. varN , js
(
ξs(·)

)
≤ f N , js

s,M

f N , js
s,m

⎛
⎜⎝ 1

β
N , js
s − α

N , js
s

β
N , js
s{

α
N , js
s

)
ξs − α

N , js
s + β

N , js
s

2

)2

dξs

+
)

α
N , js
s + β

N , js
s

2
− ξ

Ξ
N , js
s

s

)2
⎞
⎠

= f N , js
s,M

f N , js
s,m

⎛
⎝ (β

N , js
s − α

N , js
s )2

12
+

)
α
N , js
s + β

N , js
s

2
− ξ

Ξ
N , js
s

s

)2
⎞
⎠ .

(2.21d) 

Since.
α
N , js
s +β

N , js
s

2 and.ξs
Ξ

N , js
s are elements of .ΞN , js

s =
[
α
N , js
s , β

N , js
s

)
, from  (2.20d) 

and (2.21a)–(2.21d) we obtain 

.varN , js
(
ξs(·)

)
≤ f N , js

s,M

f N , js
s,m

13

12

(
βN , js
s − αN , js

s

)2
(2.22a)
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If each .Ξs is partitioned into .rNs equidistant subintervals . Ξ
N , js
s , js = 1, 2, . . . ,

rNs , then .β
N , js
s − α

N , js
s = 1

rNs
for all . j = 1, 2, . . . , rNs and therefore 

.varN , js
(
ξs(·)

)
≤ 13

12

f N , js
s,M

f N , js
s,m

· 1

r2Ns

. (2.22b) 

2.3 Approximations of . F with a Given Error Level . ε

According to (2.7a)–(2.7c) and (2.15a), (2.15b) we have that 

.

|||F(x) − FN (x)
||| ≤ ||π||

rN∑
j=1

P(ΩN , j )
(
||x||V N , j

(
T (·)

)
+ V N , j

(
h(·)

))
, (2.23a) 

with the estimation errors 

.V N , j
(
T (·)

)
=

⎛
⎝

N∑
i,k=1

{

ΩN , j

(
tik(ω) − t N , j

ik

)2
PN , j (dω)

⎞
⎠

1/2

, (2.23b) 

.V N , j
(
h(·)

)
=

⎛
⎝

N∑
i,k=1

{

ΩN , j

(
hi (ω) − hN , j

i

)2
PN , j (dω)

⎞
⎠

1/2

. (2.23c) 

Knowing that .D is bounded, hence 

.D ⊂
{
x ∈ R

n : ||x|| ≤ ρ0

}
(2.24a) 

for some .ρ0 > 0, from (2.23a) we obviously get 

.|F∗ − FN ∗| ≤ ||π||
rN∑
j=1

P(ΩN , j )
(
ρ0V

N , j
(
T (·)

)
+ V N , j

(
h(·)

))
, (2.24b) 

where .F∗ is the optimal value of (2.2a)–(2.2c) and .FN ∗
the optimal value of the 

approximating problem 
. min FN (x) s.t. x ∈ D. (2.24c) 

Furthermore, if it is known that there is an optimal solution .x∗ of (2.2a)–(2.2c) 
such that with some.p ≥ 1 we have that 

.||x∗||p ≤ ρ0p for some given ρ0p > 0, (2.25a)
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where .||x||p is the .p-norm of . x , then again (2.7a)–(2.7c) and (2.15a), (2.15b) yield 

.

|||F∗ − FN
ρ0

∗| ≤ ||π||
rN∑
j=1

P(ΩN , j )
(
ρ0V

N , j
(
T (·)

)
+ V N , j

(
h(·)

))
, (2.25b) 

where.ρ0 := ρ0p max{||u|| : ||u||p ≤ 1}, and.FN
ρ0

∗
is the optimal value of the approx-

imation 
. min FN (x) s.t. x ∈ D, ||x||p ≤ ρ0p. (2.25c) 

Note that if .FN (x) is generated by a discretization process of .P(
T (·),h(·)

), and 
.p = 1 or .p = 1 or .p = +∞, then (2.25c) can again be represented by a linear 
program. 

The above considerations yield now the following result: 

Theorem 2.2 Selecting the approximation .

(
T N (ω), hN (ω)

)
of .

(
T (ω), h(ω)

)
such 

that 

..||π||
rN∑
j=1

P(ΩN , j )
(
ρ0V

N , j
(
T (·)

)
+ V N , j

(
h(·)

))
≤ ε, (2.26a) 

where .ε > 0 is an a priori given error bound, then in cases (2.24a) and (2.25a) we 
have the a priori error bound 

..|F∗ − FN ∗| < ε, |F∗ − FN
ρ0

∗| < ε, (2.26b) 

respectively. 

While (2.24a) is a simple property of the convex polyhedron .D which may hold 
or not, the relation (2.25a) is more involved. 

2.4 Norm Bounds for Optimal Solutions of (2.2a)–(2.2c) 

For finding upper norm bounds .ρ0 for an optimal solution .x∗ of (2.2a)–(2.2c) we  
have to study the growth properties of .F first. These can be obtained if for the loss 
function . p, see  (2.2c), appropriate lower bounds can be derived. 

Using condition (2.3a), (2.3b), where we assume that . q has components 

.q1 > 0, q2 > 0, . . . , qμ > 0, (2.27a) 

we define now the closed, convex polyhedron .K by 

.K = conv

{
1

q1
w1,

1

q2
w2, . . . ,

1

qμ

wμ

}
, (2.27b)
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where .qk > 0, k = 1, . . . , μ, are the components of .q and .w1, w2, . . . , wμ are 
the columns of the matrix . W , cf. (2.13c), where we may assume—without any 
restrictions—that .wk /= 0 for all .k = 1, . . . , μ. According to [ 3, 4] we know that in 
this situation the loss function . p has the representation 

.p(z) = inf
{
λ > 0 : z

λ
∈ K

}
, z ∈ R

m . (2.28) 

Having (2.27a), (2.27b) and defining 

.q0 = max
1≤k≤μ

1

qk
||wk||, (2.29a) 

where .q0 > 0, we find 
. ||z|| ≤ q0 for each z ∈ K .

Since the relation.
1

λ
z ∈ K obviously implies that.

||||||||
1

λ
z

|||||||| ≤ q0, for the loss function 

. p, having representation (2.28), for each .z ∈ R
m we have that 

.p(z) ≥ inf
{
λ > 0 :

|||||| z

λ

|||||| ≤ q0
}

= 1

q0
||z|| =

)
min
1≤k≤μ

qk
||wk||

)
||z||. (2.29b) 

If (2.29b) holds, then (2.5) yields 

.F(x) ≥ cT x + pE||T (ω)x − h(ω)||, (2.30a) 

where 
.p = min

1≤k≤μ

qk
||wk|| . (2.30b) 

In the following we assume that .
(
T (ω), h(ω)

)
is bounded a.s., hence, there is a 

constant .⎡ > 0 such that 

.

||||||
(
T (ω), h(ω)

)|||||| ≤ ⎡ w.p. 1. (2.31) 

Defining for any . x ∈ R
n

. x̂ = (xT , 1)T , ex̂ = x̂

||x̂|| ,

we find 

.||T (ω)x − h(ω)|| =
||||||
(
T (ω), h(ω)

)
x̂
|||||| = ||x̂|| ·

||||||
(
T (ω), h(ω

)
ex̂

|||||| ;
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furthermore, we have that 

. 

||||||
(
T (ω), h(ω)

)
ex̂

||||||
2 =

||||||
(
T (ω), h(ω)

)
ex̂

|||||| ·
||||||
(
T (ω), h(ω)

)
ex̂

||||||
≤

||||||
(
T (ω), h(ω)

)
ex̂

|||||| · ⎡

and therefore 

.

||||||T (ω)x − h(ω)

|||||| ≤ 1

⎡
||x̂|| ·

||||||
(
T (ω), h(ω)

)
ex̂

||||||
2
, (2.32a) 

see (2.31). Taking expectations on both sides of (2.32a), we get 

.E||T (ω)x − h(ω)|| ≥ 1

⎡
||x̂||eTx̂ E

(
T (ω), h(ω)

)T(
T (ω), h(ω)

)
ex̂ . (2.32b) 

Denoting by .λmin(Q) the minimal eigenvalue of any symmetric matrix . Q, from  
(2.32b) we obtain 

. E||T (ω)x − h(ω)|| ≥ 1

⎡
||x̂||λmin

)
E

(
T (ω), h(ω)

)T (
T (ω), h(ω)

))

≥ 1

⎡
||x̂||Eλmin

)(
T (ω), h(ω)

)T (
T (ω), h(ω)

))
. (2.32c) 

Note that 

. E
(
T (ω), h(ω)

)T(
T (ω), h(ω)

)
=

m∑
i=1

(
cov

(
Ti (·), hi (·)

)
+ (T i , hi )

T (T i , hi )
)

,

(2.32d) 

where cov .

(
Ti (·), hi (·)

)
designates the covariance matrix of the .i-th row.(Ti , hi ) of 

.
(
T (ω), h(ω)

)
. If the random matrix .

(
T (ω), h(ω)

)
is represented by (2.16), then 

.E
(
T (ω), h(ω)

)T(
T (ω), h(ω)

)
= T

T
T +

L∑
s=1

cov (ξs)T
(s)T T (s), (2.32e) 

hence, this matrix can be computed easily. Let then .λ0 be defined by 

. λ0 := λmin

)
E

(
T (ω), h(ω)

)T(
T (ω), h(ω)

))
or

λ0 = Eλmin

(
T (ω), h(ω)

)T(
T (ω), h(ω)

)
. (2.33)
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Summarizing the above considerations, according to (2.30a) and (2.32b) we find 
the following result. 

Lemma 2.2 Suppose that conditions (2.3a), (2.3b) and (2.31) hold true. If . p, ⎡, λ0

are defined by (2.30b), (2.31), (2.33), resp., then 

.F(x) ≥ cT x + pλ0

⎡
||x̂|| for all x ∈ R

n. (2.34) 

Consider now any element.x0 of the feasible domain. D of (2.2a). If.x∗ is an optimal 
solution of (2.2a)–(2.2c), then (2.34) and (2.13d) yield the following inequalities 

. cT x∗ + pλ0

⎡
||⌃x∗|| ≤ F(x∗) ≤ F(x0) = cT x0 + ||π||E||T (ω)x0 − h(ω)||

≤ cT x0 + ||π||
)

⌃x0E
(
T (ω), h(ω)

)T(
T (ω), h(ω)

)⌃x0
)1/2

:= F0, (2.35) 

where the last inequality is guaranteed by the concavity of the function.z → √
z. Note  

that the upper bound .F0 can be computed easily, see (2.14), (2.32e). Since . ||⌃x∗|| =(
1 + ||x∗||2

)1/2
, we now have the following norm bounds for optimal solutions . x∗

of (2.2a)–(2.2c). 

Theorem 2.3 Suppose that the assumptions of Lemma 2.2 hold, and let .x0 be any 
feasible solution of (2.2a)–(2.2c). Moreover, let .F0 be defined as in (2.35). 

(a) If .c'x ≥ 0 for all .x ∈ D, then for any optimal solution .x∗ of (2.2a)–(2.2c) we 
have that 

.||x∗|| ≤
⎛
⎝

)
⎡

pλ0 − ⎡||c|| F(x0)

)2

− 1

⎞
⎠

1/2

≤
⎛
⎝

)
⎡F0

pλ0

)2

− 1

⎞
⎠

1/2

. (2.36a) 

(b) If .||c|| <
pλ0

⎡
, then for any optimal solution .x∗ of (2.2a)–(2.2c) it holds 

. ||x∗|| ≤
⎛
⎝

)
F(x0)⎡

pλ0 − ⎡||c||

)2

− 1

⎞
⎠

1/2

≤
⎛
⎝

)
F0⎡

pλ0 − ⎡||c||

)2

− 1

⎞
⎠

1/2

.

(2.36b)
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Proof 

(a) Here, from (2.34) and (2.35) we get 

. F0 ≥ F(x0) ≥ cT x∗ + pλ0

⎡
||⌃x∗|| ≥ pλ0

⎡

(
1 + ||x∗||2

)1/2

which yields the first assertion (2.36a). 
(b) The next assertion (2.36b) follows from 

.F0 ≥ F(x0) ≥ cT x∗ + pλ0

⎡
||⌃x∗|| ≥ −||c|| · ||x∗|| + pλ0

⎡
||⌃x∗||

≥
)

−||c|| + pλ0

⎡

)
(1 + ||x∗||2)1/2.

□

2.5 Invariant Discretizations 

According to Theorem 2.1, (2.23a)–(2.23c), there is a large variety of possible dis-

cretizations .(T N , hN ) of .
(
T (ω), h(ω)

)
guaranteeing a certain given a priori error 

bound, see (2.26b). Hence, the problem is to find discretizations taking into consid-
eration the special structure of the underlying problem [ 6]. A main idea in stochastic 
linear programming with recourse is the use of special refining strategies for refin-
ing the partitions .ΞN ,1, . . . , ΞN ,rN of . Ξ, see  (2.17a)–(2.17e), such that only cells 
.ΞN , j are further partitioned which contribute most to the increase of the accuracy of 
approximation, see [ 1, 2]. 

Very often the probability distribution.P(
T (·),h(·)

) has certain symmetry or invari-

ance properties, [ 7]. Not destroying these invariance properties during the discretiza-
tion process, in several cases descent discretions can be constructed very easily. 

Considering the approximation .
(
T N (ω), hN (ω)

)
, given by (2.8a), (2.8b) or  

(2.17a)–(2.17e), we define .

(
T N
0 (ω), hN

0 (ω)
)
by 

.

(
T N
0 (ω), hN

0 (ω)
)

:=
(
T N (ω) − T

N
, hN (ω) − h

N
)
, (2.37a) 

where.
(
T

N
, h

N
)
is the mean of.

(
T N (ω), hN (ω)

)
. Using the results of [ 9], we define 

the distribution invariance as follows, where the set.Bα of.rN × rN matrices. B = (bi j )
is given by 

.Bα = {B : 1T B = 1T , Bα = α, B ≥ 0}. (2.37b)
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Here, 1 denotes the .rN -vector .1 = (1, 1, . . . , 1) and . α is the .rN -vector 

.α =
(
P(ΩN ,1), P(ΩN ,2), . . . , P(ΩN ,rN )

)T
(2.37c) 

or 

.α =
(
Pξ(·)(ΞN ,1), Pξ(·)(ΞN ,2), . . . , Pξ(·)(ΞN ,rN )

)T
(2.37d) 

and .B ≥ 0 means that .bi j ≥ 0 for all elements .bi j of . B. 

Definition 2.1 The distribution .P(
T N
0 (·),hN

0 (·)
) of .

(
T N
0 (ω), hN

0 (ω)
)
is called invari-

ant if there is a matrix .B ∈ Bα and an .n × n matrix .C such that for each row 
.i = 1, 2, . . . ,m we have that 

.BT

⎛
⎜⎜⎜⎝

T N ,1
0,i

T N ,2
0,i
...

T N ,rN
0,i

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

T N ,1
0,i

T N ,2
0,i
...

T N ,rN
0,i

⎞
⎟⎟⎟⎠C (2.38a) 

.BT

⎛
⎜⎜⎜⎝

hN ,1
0,i

hN ,2
0,i
...

T N ,rN
0,i

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

hN ,1
0,i

hN ,2
0,i
...

hN ,rN
0,i

⎞
⎟⎟⎟⎠ . (2.38b) 

For the general case, we have to introduce some more notations: 
Let denote . z̃ the .(1 + m)-vector 

.z̃ =
)
t

z

)
with t ∈ R, z ∈ R

m, (2.39a) 

where we set.z̃ = (z̃0, z̃1, . . . , z̃m)with.z̃0 = t, z̃i = zi , i = 1, . . . ,mi . Furthermore, 
let .u(z̃) denote the total loss function 

.u(z̃) = t + p(z) (2.39b) 

of (2.2a)–(2.2c). 
Obviously, the total loss function .u = u(z̃) is monotonous nondecreasing with 

respect to the component .z0 = t . In many cases the loss function .p itself has 
some (partial) monotonicity properties, see, e.g., [ 8]. Hence, supposing in the 
following—for example—that . p is also partially nondecreasing, we have a subset 
.J ⊂ {0, 1, . . . ,m} with .0 ∈ J and a corresponding partition 

.z̃ =
)

z̃ I
z̃ I I

)
, z̃ I = (z̃i )i∈J , z̃ I I = (zi )i /∈J (2.40a)
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of . z̃ into two subvectors .z̃ I , z̃ I I such that for any vectors .z̃, w̃ ∈ R
1+m the following 

relation hold: 
.z̃ I ≤ w̃I , z̃ I I = w̃I I ⇒ u(z̃) ≤ u(w̃), (2.40b) 

where .z̃ I ≤ w̃I means that .zi ≤ wi for all .i ∈ J . Of course, in many cases we also 
have the stronger condition 

. z̃ I ≤ w̃I , z̃ I I = w̃I I , z̃i < w̃i for at least one i ∈ J ⇒ u(z̃) < u(w̃).

(2.40c) 
Based on the above definitions, the invariance of an arbitrary distribution 

.P(
AN (·),bN (·)

) with 

.

(
AN (ω), bN (ω)

)
=

)
cT 0

T N (ω) hN (ω)

)
(2.41) 

is stated as follows, where the following inclusion is still assumed: 

.D ⊂ R
n
+. (2.42) 

Definition 2.2 The probability distribution .P(
AN (·),bN (·)

) of .
(
AN (ω), bN (ω)

)
is 

called invariant it there is a matrix .B ∈ Bα and an .n × n matrix .C such that the 
following relations hold: 

(i) 
.c ≥ cTC (2.43a) 

(ii) 

.T I ≤ T IC (2.43b) 

.T I I = T I IC (2.43c) 

(iii) 
.(2.8a) and (2.38b) are fulfilled. (2.43d) 

where .T I , T I I , resp. is the matrix containing the rows.T i with.i ∈ J, i /∈ J , respec-
tively. 

Remark 2.3 Note that condition (2.43d), hence, relations (2.38a) and (2.38b) can be 
interpreted as conditions for the discretization of the distribution of the centralized 

random matrix.

(
T0(ω), h0(ω)

)
=

(
T (ω) − T , h(ω) − h

)
, where.(T , h) is the mean 

of .
(
T (ω), h(ω)

)
.
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The significance of the above invariance concept follows from the following result, 
cf. [ 9]. 

Theorem 2.4 Suppose that .D ⊂ R
n+. If .

(
AN (·), bN (·

)
has an invariant distribution 

with matrices .B ∈ Bα,C according to Definition 2.2, then 

(I) .FN (y) ≤ FN (x) with .y := Cx for every . x ∈ R
n

(II) .h = y − x is a descent direction for .FN at . x, provided that only .FN is not 
constant on the line segment .xy joining . x and .y /= x. 

As an important consequence of Theorem 5.1 we find the following result: 

Corollary 2.1 Assume that .P(
AN (·),bN (·)

) is invariant with matrices . B ∈ Bα,C

according to Definition 2.2. Furthermore, suppose that .FN (x) is not constant on 
each line segment .xy in . D. If .x∗ is an optimal solution of the approximating problem 
(2.24c), then 

. 
Cx∗ = x∗ or
h = Cx∗ − x∗ is not a feasible direction for D at x∗.

Note 2.1 Corollary 2.1 holds also under weaker conditions concerning .FN . 
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Chapter 3 
Optimal Control Under Stochastic 
Uncertainty 

Abstract Optimal control problems as arising in different technical (mechanical, 
electrical, thermodynamic, chemical, etc.) plants and economic systems are modeled 
mathematically by a system of first-order nonlinear differential equations for the plant 
state vector.z = z(t) involving, e.g., displacements, stresses, voltages, currents, pres-
sures, concentration of chemicals, demands, etc. This system of differential equations 
depends on the vector .u(t) of input or control variables and a vector .a = a(ω) of 
certain random model parameters. Moreover, also the vector .z0 of initial values of 
the plant state vector .z = z(t) at the initial time .t = t0 may be subject to random 
variations. While the actual realizations of the random parameters and initial values 
are not known at the planning stage, we may assume that the probability distribution 
or at least the occurring moments, such as expectations, variances, etc., are known. 
Moreover, we suppose that the costs along the trajectory and the terminal costs. G are 
convex functions with respect to the pair.(u, z) of control and state variables u, z, the 
final state.z(t f ), respectively. The problem is then to determine an open-loop, closed-
loop, or an intermediate open-loop feedback control law minimizing the expected 
total costs consisting of the sum of the costs along the trajectory and the terminal 
costs. For the computation of stochastic optimal open-loop controls at each starting 
time point . tb, the stochastic Hamilton function of the control problem is introduced 
first. Then, a ..H -minimal control can be determined by solving a finite-dimensional 
stochastic optimization problem for minimizing the conditional expectation of the 
stochastic Hamiltonian subject to the remaining deterministic control constraints at 
each time point . t . Having a  ..H -minimal control, the related Hamiltonian two-point 
boundary value problem with random parameters is formulated for the computation 
of the stochastic optimal state and adjoint state trajectory. In the case of a linear-
quadratic control problem the state and adjoint state trajectory can be determined 
analytically to a large extent. Inserting then these trajectories into the .H -minimal 
control, stochastic optimal open-loop controls are found. For approximate solutions 
of the stochastic two-point boundary problem, cf. [ 31]. 
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3.1 Stochastic Control Systems 

Optimal control and regulator problems arise in many concrete applications (mechan-
ical, electrical, thermodynamical, chemical, etc.) are modeled [ 3, 17, 34, 37] by  
dynamical control systems obtained from physical measurements and/or known 
physical laws. The basic control system (input-output system) is mathematically 
represented [ 18, 38] by a system of first-order random differential equations: 

.ż(t) = g
 
t, ω, z(t), u(t)

 
, t0 ≤ t ≤ t f , ω ∈  (3.1a) 

.z(t0) = z0(ω). (3.1b) 

Here, . ω is the basic random element taking values in a probability space.( ,A, P), 
and describing the present random variations of model parameters or the influence 
of noise terms. The probability space .( ,A, P) consists of the sample space or set 
of elementary events .  , the  .σ -algebra .A of events and the probability measure . P . 
The plant state vector .z = z(t, ω) is an .m-vector involving direct or indirect mea-
surable/observable quantities like displacements, stresses, voltage, current, pressure, 
concentrations, etc., and their time derivatives (velocities),.z0(ω) is the random initial 
state. The plant control or control input .u(t) is a deterministic or stochastic.n-vector 
denoting system inputs like external forces or moments, voltages, field current, thrust 
program, fuel consumption, production rate, etc. Furthermore, . ż denotes the deriva-
tive with respect to the time. t . We assume that an input .u = u(t) is chosen such that 
.u(·) ∈ U , where .U is a suitable linear space of input functions . u(·) : [t0, t f ] → R

n

on the time interval.[t0, t f ]. Examples for. U are subspaces of the space.PCn
0 [t0, t f ] of 

piecewise continuous functions.u(·) : [t0, t f ] → R
n normed by the supremum norm 

. 

   u(·)
   ∞

= sup
   u(t)  : t0 ≤ t ≤ t f

 
.

Note that a function on a closed, bounded interval is called piecewise continuous if it 
is continuous up to at most a finite number of points, where the one-sided limits of the 
function exist. Other important examples for .U are the Banach spaces of integrable, 
essentially bounded measurable or regulated [ 8] functions . Ln

p([t0, t f ],B1, λ1), p ≥
1, .Ln∞([t0, t f ],B1, λ1), .Reg([t0, t f ];Rn), resp., on .[t0, t f ]. Here, . 

 [t0, t f ],B1, λ1
 

denotes the measure space on .[t0, t f ] with the .σ− algebra .B1 of Borel sets and 
the Lebesgue-measure.λ1 on.[t0, t f ]. Obviously, .PCn

0 [t0, t f ] ⊂ Ln∞([t0, t f ],B1, λ1). 
If .u = u(t, ω), t0 ≤ t ≤ t f , is a random input function, then correspondingly we 
suppose that .u(·, ω) ∈ U a.s. (almost sure or with probability 1). Moreover, we 
suppose that the function .g = g(t, ω, z, u) of the plant differential equation (3.1a) 
and its partial derivatives (Jacobians) .Dzg, Dug with respect to . z and . u are at least 
measurable on the space .[t0, t f ] ×  × R

m × R
n . 

The possible trajectories of the plant, hence, absolutely continuous [ 32] m-vector 
functions, are contained in the linear space .Z = Cm

0 [t0, t f ] of continuous functions 
.z(·) : [t0, t f ] → R

m on .[t0, t f ]. The space .Z contains the set .PCm
1 [t0, t f ] of con-
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tinuous, piecewise differentiable functions on the interval .[t0, t f ]. A function on a  
closed, bounded interval is called piecewise differentiable if the function is differen-
tiable up to at most a finite number of points, where the function and its derivative 
have existing one-sided limits. The space . Z is also normed by the supremum norm. 
.D(⊂ U ) denotes the convex set of admissible controls .u(·), defined, e.g., by some 
box constraints. Using the available information.At up to a certain time. t , the problem 
is then to find an optimal control function .u∗ = u∗(t) being most insensitive with 
respect to random parameter variations. This can be obtained by minimizing the 
total (conditional) expected costs arising along the trajectory .z = z(t) and/or at the 
terminal state .z f = z(t f ) subject to the plant differential equation (3.1a), (3.1b) and 
the required control and state constraints. Optimal controls being most insensitive 
with respect to random parameter variations are also called robust controls. Such 
controls can be obtained by stochastic optimization methods [ 26]. 

Since feedback control (FB) laws can be approximated very efficiently, cf. [ 2, 
19, 34], by means of open-loop feedback (OLF) control laws, see Sect. 3.2, for  
practical purposes we may confine to the computation of deterministic stochastic 
optimal open-loop (OL) controls .u = u(·; tb), tb ≤ t ≤ t f , on arbitrary “remaining 
time intervals”.[tb, t f ] of.[t0, t f ]. Here,.u = u(·; tb) is stochastic optimal with respect 
to the information .Atb at the “initial” time point . tb. 

3.1.1 Random Differential and Integral Equations 

In many technical applications the random variations are not caused by an additive 
white noise term, but by means of possibly time-dependent random parameters. 
Hence, in the following the dynamics of the control system is represented by random 
differential equation, i.e., a system of ordinary differential equations (3.1a), (3.1b) 
with random parameters. Furthermore, solutions of random differential equations 
are defined here in the parameter (point)-wise sense, cf. [ 4, 6]. 

In case of a discrete or discretized probability distribution of the random ele-
ments, model parameters, i.e., .  = {ω1, ω2, . . . , ω }, P(ω = ω j ) = α j > 0, j =
1, . . . ,  ,

  
j=1

α j = 1, we can redefine (3.1a), (3.1b) by  

.ż(t) = g
 
t, z(t), u(t)

 
, t0 ≤ t ≤ t f , (3.1c) 

.z(t0) = z0, (3.1d) 

with the vectors and vector functions 

.z(t) :=
 
z(t, ω j )

 
j=1,..., 

, z0 :=
 
z0(ω j )

 
j=1,..., 

g(t, z, u) :=
 
g(t, ω j , z( j), u)

 
j=1,..., 

, z := (z( j)) j=1,..., ∈ R
 m .
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Hence, in this case (3.1c), (3.1d) represent again an ordinary system of first order 
differential equations for the . m unknown functions 

. zi j = zi (t, ω j ), i = 1, . . . ,m, j = 1, . . . ,  .

Results on the existence and uniqueness of the systems (3.1a), (3.1b) and (3.1c), 
(3.1d) and their dependence on the inputs can be found in [ 8]. 

Also in the general case we consider a solution in the point-wise sense. This  
means that for each random element .ω ∈  , (3.1a), (3.1b) is interpreted as a system 
of ordinary first-order differential equations with the initial values .z0 = z0(ω) and 
control input.u = u(t). Hence, we assume that to each deterministic control. u(·) ∈ U
and each random element .ω ∈  there exists a unique solution 

.z(·, ω) = S
 
ω, u(·)

 
= S

 
ω, u(·)

 
, (3.2a) 

.z(·, ω) ∈ Cm
0 [t0, t f ], of the integral equation 

.z(t) = z0(ω) +
t 

t0

g
 
s, ω, z(s), u(s)

 
ds, t0 ≤ t ≤ t f , (3.2b) 

such that .(t, ω) → S
 
ω, u(·)

 
(t) is measurable. This solution is also denoted by 

.z(t, ω) = zu(t, ω) = z(t, ω, u(·)), t0 ≤ t ≤ t f . (3.2c) 

Obviously, the integral equation (3.2b) is the integral version of the initial value 
problem (3.1a), (3.1b): Indeed, if, for given.ω ∈  ,.z = z(t, ω) is a solution of (3.1a), 
(3.1b), i.e., .z(·, ω) is absolutely continuous, satisfies (3.1a) for almost all . t ∈ [t0, t f ]
and fulfills (3.1b), then .z = z(t, ω) is also a solution of (3.2b). Conversely, if, for 
given .ω ∈  , .z = z(t, ω) is a solution of (3.2b), such that the integral on the right-
hand side exists in the Lebesgue-sense for each .t ∈ [t0, t f ], then this integral as a 
function of the upper bound. t and therefore also the function.z = z(t, ω) is absolutely 
continuous. Hence, by taking .t = t0 and by differentiation of (3.2b) with respect to 
. t , cf.  [  32], we have that .z = z(t, ω) is also a solution of (3.1a), (3.1b). 

3.1.1.1 Parametric Representation of the Random Differential/Integral 
Equation 

In the following we want to justify the above assumption that the initial value problem 
(3.1a), (3.1b), the equivalent integral equation (3.2b), resp., has a unique solution 
.z = z(t, ω). For this purpose, let.θ = θ(t, ω) be an.r -dimensional stochastic process, 
as, e.g., time-varying disturbances, random parameters, etc., of the system, such that 
the sample functions .θ(·, ω) are continuous with probability one. Furthermore, let
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. g̃ : [t0, t f ] × R
r × R

m × R
n → R

m

be a continuous function having continuous Jacobians.Dθ q̃, Dzg̃, Dug̃with respect to 
.θ, z, u. Now consider the case that the function. g of the process differential equation 
(3.1a), (3.1b) is given by 

. g(t, ω, z, u) := g̃
 
t, θ(t, ω), z, u

 
, (t, ω, z, u) ∈ [t0, t f ] ×  × R

m × R
n.

The spaces .U, Z of possible inputs, trajectories, resp., of the plant are chosen as 
follows:.U := Reg([t0, t f ];Rn) is the Banach space of all regulated functions. u(·) :
[t0, t f ] → R

n , normed by the supremum norm. ·  ∞. 
Furthermore, we set .Z := Cm

0 [t0, t f ] and . := Cr
0[t0, t f ]. Here, for an integer . ν, 

.Cν
0 [t0, t f ] denotes the Banach space of all continuous functions of .[t0, t f ] into . Rν

normed by the supremum norm. ·  ∞. By our assumption we have.θ(·, ω) ∈  a.s. 
(almost sure). Define 

.  = R
m ×  ×U ;

. is the space of possible initial values, time-varying model/environmental param-
eters and inputs of the dynamic system. Hence, . may be considered as the total 
space of inputs 

. ξ :=
⎛
⎝

z0
θ(·)
u(·)

⎞
⎠

into the plant, consisting of the random initial state . z0, the random input function 
.θ = θ(t, ω) and the control function.u = u(t). Let now the mapping. τ :  × Z → Z
related to the plant equation (3.1a), (3.1b) or (3.2b) be given by 

. τ
 
ξ, z(·)

 
(t) = z(t) −

⎛
⎝z0 +

t 

t0

g̃
 
s, θ(s), z(s), u(s)

 
ds

⎞
⎠ , t0 ≤ t ≤ t f .

(3.2d) 
Note that for each input vector.ξ ∈  and function.z(·) ∈ Z the integrand in (3.2d) 

is piecewise continuous, bounded or at least essentially bounded on .[t0, t f ]. Hence, 
the integral in (3.2d) as a function of its upper limit . t yields again a continuous 
function on the interval .[t0, t f ], and therefore an element of . Z . This shows that . τ
maps . × Z into . Z . 

Obviously, the initial value problem (3.1a), (3.1b) or its integral form (3.2b) can 
be represented by the operator equation 

.τ(ξ, z(·)) = 0. (3.2e)
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Operators of the type (3.2d) are well studied, see, e.g., [ 8, 20]: It is known that 
. τ is continuously Fréchet .(F)-differentiable [ 8, 20]. Note that the F-differential is a 
generalization of the derivatives (Jacobians) of mappings between finite-dimensional 
spaces to mappings between arbitrary normed spaces. Thus, the .F-derivative .Dτ of 

. τ at a certain point .
 
ξ, z(·)

 
is given by 

.

 
Dτ
 
ξ̄ , z̄(·)

 
·
 
ξ, z(·)

  
(t) (3.2g) 

= z(t) −
 
z0 + 

t 

t0 

Dz g̃
 
s, θ̄ (s), z̄(s), ū(s)

 
z(s)ds  

+ 
t 

t0 

Dθ g̃
 
s, θ̄ (s), z̄(s), ū(s)

 
θ(s)ds  

+ 
t 

t0 

Du g̃
 
s, θ̄ (s), z̄(s), ū(s)

 
u(s)ds  

⎞ 

⎠ , t0 ≤ t ≤ t f , 

where.ξ̄ =
 
z̄0, θ̄ (·), ū(·)

 
and.ξ =

 
z0, θ(·), u(·)

 
. Especially, for the derivative of 

. τ with respect to .z(·) we find 

. 

 
Dzτ

 
ξ̄ , z̄(·)

 
· z(·)

 
(t) = z(t) −

t 

t0

Dzg̃
 
s, θ̄ (s), z̄(s), ū(s)

 
z(s)ds, t0 ≤ t ≤ t f .

(3.2g) 
The related equation 

.Dzτ
 
ξ̄ , z̄(·)

 
· z(·) = y(·), y(·) ∈ Z (3.2h) 

is a linear vectorial Volterra integral equation. By our assumptions this equation has 
a unique solution .z(·) ∈ Z . Note, that the corresponding result for scalar Volterra 
equations, see, e.g., [ 36], can be transferred to the present vectorial case. Therefore, 

.Dzτ
 
ξ̄ , z̄(·)

 
is a linear, continuous one-to-one map from. Z onto . Z . 

Hence, its inverse.

 
Dzτ

 
ξ̄ , z̄(·)

  −1

exists. Using the implicit function theorem 

[ 8, 20], we now obtain the following result: 

Lemma 3.1 For given .ξ̄ =
 
z̄0, θ̄ (·), ū(·)

 
, let .

 
ξ̄ , z̄(·)

 
∈  × Z be selected such 

that .τ
 
ξ̄ , z̄(·)

 
= 0, hence, .z̄(·) ∈ Z is supposed to be the solution of
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.ż(t) = g̃
 
t, θ̄ (t), z(t), ū(t)

 
, t0 ≤ t ≤ t f , (3.3a) 

.z(t0) = z̄0 (3.3b) 

in the integral sense (3.2b). Then there is an open neighborhood of . ξ̄ , denoted by 
.V 0(ξ̄ ), such that for each open connected neighborhood .V (ξ̄ ) of . ξ̄ contained in 
.V 0(ξ̄ ) there exists a unique continuous mapping.S : V (ξ̄ ) → Z such that (a). S(ξ̄ ) =
z̄(·); (b) .τ

 
ξ, S(ξ)

 
= 0 for each .ξ ∈ V (ξ̄ ), i.e., .S(ξ) = S(ξ)(t), t0 ≤ t ≤ t f , is the  

solution of 

.z(t) = z0 +
t 

t0

g̃
 
s, θ(s), z(s), u(s)

 
ds, t0 ≤ t ≤ t f , (3.3c) 

where .ξ =
 
z0, θ(·), u(·)

 
; (c) . S is continuously differentiable on .V (ξ̄ ), and it holds 

.DuS(ξ) = −
 
Dzτ

 
ξ, S(ξ)

  −1
Duτ

 
ξ, S(ξ)

 
, ξ ∈ V (ξ̄ ). (3.3d) 

An immediate consequence is given next: 

Corollary 3.1 The directional derivative. ζ(·) = ζu,h(·) = DuS(ξ)h(·)(∈ Z), h(·) ∈
U, satisfies the integral equation 

. ζ(t) −
t 

t0

Dzg̃
 
s, θ(s), S(ξ)(s), u(s)

 
ζ(s)ds

=
t 

t0

Dug̃
 
s, θ(s), S(ξ)(s), u(s)

 
h(s)ds, (3.3e) 

where .t0 ≤ t ≤ t f and .ξ =
 
z0, θ(·), u(·)

 
. 

Remark 3.1 Taking the time derivative of equation (3.3e) shows that this integral 
equation is equivalent to the so-called perturbation equation, see, e.g., [ 18]. 

For an arbitrary .h(·) ∈ U the mappings 

.(t, ξ) → S(ξ)(t), (t, ξ) →
 
DuS(ξ)h(·)

 
(t), (t, ξ) ∈ [t0, t f ] × V (ξ) (3.3f) 

are continuous and therefore also measurable. 

The existence of a unique solution .z̄ = z̄(t), t0 ≤ t ≤ t f , of the reference dif-
ferential equation (3.3a), (3.3b) can be guaranteed as follows, where solution is 
interpreted in the integral sense, i.e., .z̄ = z̄(t), t0 ≤ t ≤ t f , is absolutely continuous,
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satisfies equation (3.3a) almost everywhere in the time interval.[t0, t f ] and the initial 
condition (3.3b), cf. [ 7, 40]. 

Lemma 3.2 Consider an arbitrary input vector .ξ̄ =
 
z̄0, θ̄ (·), ū(·)

 
∈  , and 

define, see (3.3a), (3.3b), the function.g̃θ̄ (·),ū(·) = g̃θ̄ (·),ū(·)
 
t, z
 := g̃

 
t, θ̄ (t), z, ū(t)

 
. 

Suppose that 

(i) .z → g̃θ̄ (·),ū(·)
 
t, z
 
is continuous for each time .t ∈ [t0, t f ], 

(ii) .t → g̃θ̄ (·),ū(·)
 
t, z
 
is measurable for each vector . z, 

(iii) generalized Lipschitz condition: For each closed sphere .K ⊂ R
n there exists 

a nonnegative, integrable function .LS(·) on .[t0, t f ] such that 
(iv) . g̃θ̄ (·),ū(·)

 
t, 0
  ≤ LK (t), and .  g̃θ̄ (·),ū(·)

 
t, z
 − g̃θ̄ (·),ū(·)

 
t, w

  ≤ LK (t)
 z − w on .[t0, t f ] × K. 

Then, the initial value problem (3.3a), (3.3b) has a unique solution .z̄ = z̄(t; ξ̄ ). 
Proof Proofs can be found in [ 7, 40].  

We observe that the controlled stochastic process.z = z(t, ω) defined by the plant 
differential equation (3.1a), (3.1b) may be a non Markovian stochastic process, see 
[ 3, 17]. Moreover, note that the random input function .θ = θ(t, ω) is not just an 
additive noise term, but may describe also a disturbance which is part of the nonlinear 
dynamics of the plant, random varying model parameters such as material, load or 
cost parameters, etc. 

3.1.1.2 Stochastic Differential Equations 

In some applications [ 3], instead of the system (3.1a), (3.1b) of ordinary differential 
equations with (time-varying) random parameters, a so-called stochastic differential 
equation [ 33] is taken into account: 

.dz(t, ω) = g̃
 
t, z(t, ω), u(t)

 
dt + h̃

 
t, z(t, ω), u(t)

 
dθ(t, ω). (3.4a) 

Here, the “noise” term.θ = θ(t, ω) is a certain stochastic process, as, e.g., the Brow-
nian motion, having continuous paths, and .g̃ = g̃(t, z, u), h̃ = h̃(t, z, u) are given, 
sufficiently smooth vector/matrix functions. 

Corresponding to the integral equation (3.2a), (3.2b), the above stochastic differ-
ential equation is replaced by the stochastic integral equation 

. z(t, ω) = z0(ω) +
t 

t0

g̃
 
s, z(s, ω), u(s)

 
ds +

t 

t0

h̃
 
s, z(s, ω), u(s)

 
dθ(s, ω).

(3.4b) 
The meaning of this equation depends essentially on the definition (interpretation) 
of the “stochastic integral”
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.I
 
ξ(·, ·), z(·, ·)

 
(t) :=

t 

t0

h̃
 
s, z(s, ω), u(s)

 
dθ(s, ω). (3.4c) 

Note, that in case of closed-loop and open-loop feedback controls, see the next 
Sect. 3.2, the control function .u = u(s, ω) is random. If 

.h̃(s, z, u) = h̃
 
s, u(s)

 
(3.5a) 

with a deterministic control .u = u(t) and a matrix function .h̃ = h̃(s, u), such that 

.s → h̃
 
s, u(s)

 
is differentiable, by partial integration we get, cf. [ 33], 

. I
 
ξ, z(·)

 
(t) = I

 
θ(·), u(·)

 
(t) = h̃

 
t, u(t)

 
θ(t) − h̃

 
t0, u(t0)

 
θ(t0)

−
t 

t0

θ(s)
d

ds
h̃
 
s, u(s)

 
ds, (3.5b) 

where .θ = θ(s) denotes a sample function of the stochastic process .θ = θ(t, ω). 

Hence, in this case the operator .τ = τ
 
ξ, z(·)

 
, cf.  (3.2d), is defined by 

. τ
 
ξ, z(·)

 
(t) := z(t) −

 
z0 +

t 

t0

g̃
 
s, z(s), u(s)

 
ds + h̃

 
t, u(t)

 
θ(t)

−h̃
 
t0, u(t0)

 
θ(t0) −

t 

t0

θ(s)
d

ds
h̃
 
s, u(s)

 
ds

 
. (3.5c) 

Obviously, for the consideration of the existence and differentiability of solutions 

.z(·) = z(·, ξ) of the operator equation .τ
 
ξ, z(·)

 
= 0, the same procedure as in 

Sect. 3.1.1 may be applied. 

3.1.2 Objective Function 

The aim is to obtain optimal controls being robust, i.e., most insensitive with respect 
to stochastic variations of the model/environmental parameters and initial values of 
the process. Hence, incorporating stochastic parameter variations into the optimiza-
tion process, for a deterministic control function.u = u(t), t0 ≤ t ≤ t f , the objective 

function.F = F
 
u(·)

 
of the controlled process.z = z(t, ω, u(·)) is defined, cf. [ 26],
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by the conditional expectation of the total costs arising along the whole control pro-
cess: 

.F
 
u(·)

 
:= E f

 
ω, S

 
ω, u(·) , u(·)

 
. (3.6a) 

Here, .E = E(·|At0), denotes the conditional expectation given the information . At0
about the control process up to the considered starting time point . t0. Moreover, 

. f = f
 
ω, z(·), u(·)

 
denote the stochastic total costs arising along the trajectory 

.z = z(t, ω) and at the terminal point .z f = z(t f , ω), cf.  [  3, 38]. Hence, 

. f
 
ω, z(·), u(·)

 
:=

t f 

t0

L
 
t, ω, z(t), u(t)

 
dt + G

 
t f , ω, z(t f )

 
, (3.6b) 

.z(·) ∈ Z , u(·) ∈ U . Here, 

. 
L : [t0, t f ] ×  × R

m × R
n → R,

G : [t0, t f ] ×  × R
m → R

are given measurable cost functions. We suppose that .L(t, ω, ·, ·) and.G(t, ω, ·) are 
convex functions for each.(t, ω) ∈ [t0, t f ] ×  , having continuous partial derivatives 
.∇z L(·, ω, ·, ·),∇u L(·, ω, ·, ·),∇zG(·, ω, ·). Note that in this case 

.

 
z(·), u(·)

 
→

t f 

t0

L
 
t, ω, z(t), u(t)

 
dt + G

 
t f , ω, z(t f )

 
(3.6c) 

is a convex function on.Z ×U for each.ω ∈  . Moreover, assume that the expectation 

.F
 
u(·)

 
exists and is finite for each admissible control .u(·) ∈ D. 

In the case of random inputs .u = u(t, ω), t0 ≤ t ≤ t f , ω ∈  , with definition 

(3.6b), the objective function .F = F
 
u(·, ·)

 
reads 

.F
 
u(·, ·)

 
:= E f

 
ω, S

 
ω, u(·, ω)

 
, u(·, ω)

 
. (3.6d) 

Example 3.1 (Tracking problems) If a trajectory.z f = z f (t, ω), e.g., the trajectory 
of a moving target, known up to a certain stochastic uncertainty, must be followed 
or reached during the control process, then the cost function . L along the trajectory 
can be defined by 

.L
 
t, ω, z(t), u

 
:=
    z

 
z(t) − z f (t, ω)

    
2 + ϕ(u). (3.6e) 

In (3.6e) . z is a weight matrix, and .ϕ = ϕ(u) denotes the control costs, as, e.g.,
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.ϕ(u) =   uu 2 (3.6f) 

with a further weight matrix . u . 
If a random target.z f = z f (ω) has to be reached at the terminal time point.t f only, 

then the terminal cost function .G may be defined, e.g., by 

.G
 
t f , ω, z(t f )

 
:=
   G f

 
z(t f ) − z f (ω)

    
2

(3.6g) 

with a weight matrix .G f . 

Example 3.2 (Active structural control, control of robots) In case of active structural 
control or for optimal regulator design of robots, cf. [ 24, 37], the total cost function 
. f is given by defining the individual cost functions . L and .G as follows: 

.L(t, ω, z, u) :=zT Q(t, ω)z + uT R(t, ω)u (3.6h) 

.G(t f , ω, z) :=G(ω, z). (3.6i) 

Here, .Q = Q(t, ω) and .R = R(t, ω), resp., are certain positive (semi)definite 
.m × m, n × n matrices which may depend also on .(t, ω). Moreover, the terminal 
cost function .G depends then on .(ω, z). For example, in case of endpoint control, 
the cost function .G is given by 

.G(ω, z) = (z − z f )
T G f (ω)(z − z f ) (3.6j) 

with a certain desired, possibly random terminal point .z f = z f (ω) and a positive 
(semi)definite, possibly random weight matrix .G f = G f (ω). 

3.1.2.1 Optimal Control Under Stochastic Uncertainty 

For finding optimal controls being robust with respect to stochastic parameter vari-
ations .u (·), u (·, ·), resp., in this chapter we are presenting now several methods for 
approximation of the following minimum expected total cost problem: 

. min F
 
u(·)

 
s.t. u(·) ∈ D, (3.7) 

. min F
 
u(·, ·)

 
s.t. u(·, ω) ∈ D a.s. (almost sure) ,

u(t, ·) At -measurable, ( 3.7)

where .At ⊂ A, t ≥ t0, denotes the .σ -algebra of events .A ∈ A until time . t .
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Information set .At at time . t : In many cases, as, e.g., for .PD− and .P I D− con-
trollers, see Chap. 10, the information .σ -algebra .At is given by .At = A(y(t, ·)), 
where .y = y(t, ω) denotes the .m̄−vector function of state-measurements or -
observations at time . t . Then, an .At− measurable control .u = u(t, ω) has the repre-
sentation, cf. [ 5], 

.u(t, ω) = η(t, y(t, ω)) (3.8) 

with a measurable function .η(t, ·) : Rm̄ → R
m . 

Since parameter-insensitive optimal controls can be obtained by stochastic opti-
mization methods incorporating random parameter variations into the optimization 
procedure, see [ 26], the aim is to determine stochastic optimal controls: 

Definition 3.1 An optimal solution of the expected total cost minimization problem 
(3.7), (. 3.7), resp., providing robust optimal controls, is called a stochastic optimal 
control. 

Note 3.1 For controlled processes working on a time range .tb ≤ t ≤ t f with an 
intermediate starting time point . tb, the objective function .F = F(u(·)) is defined 
also by (3.6a), but with the conditional expectation operator .E = E(·|Atb), where 
.Atb denotes the information about the controlled process available up to time . tb. 

Problem (3.7) is of course equivalent.
 
E = E(·|At0)

 
to the optimal control prob-

lem under stochastic uncertainty: 

. min E

⎛
⎝

t f 

t0

L
 
t, ω, z(t), u(t)

 
dt + G

 
t f , ω, z(t f )

    At0

⎞
⎠ (3.9a) 

s.t. 

.ż(t) = g
 
t, ω, z(t), u(t)

 
, t0 ≤ t ≤ t f , a.s. (3.9b) 

.z(t0, ω) = z0(ω), a.s. (3.9c) 

.u(·) ∈ D, (3.9d) 

cf. [ 21, 22]. 

Remark 3.2 Similar representations can be obtained also for the second type of 
stochastic control problem (. 3.7). 
Remark 3.3 State constraints. In addition to the plant differential equation (dynamic 
equation) (3.9b), (3.9c) and the control constraints (3.9d), we may still have some 
stochastic state constraints 

.hI

 
t, ω, z(t, ω)

 
≤ (=)0 a.s. (3.9e)
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as well as state constraints involving (conditional) expectations 

.EhI I

 
t, ω, z(t, ω)

 
= E

 
hI I

 
t, ω, z(t, ω)

    At0

 
≤ (=)0. (3.9f) 

Here,.hI = hI (t, ω, z), hI I = hI I (t, ω, z) are given vector functions of.(t, ω, z). By  
means of (penalty) cost functions, the random condition (3.9e) can be incorporated 
into the objective function (3.9a). As explained in Sect. 3.8, the expectations arising 
in the mean value constraints (3.9f) and in the objective function (3.9a) can be 
computed approximatively by means of Taylor expansion with respect to the vector 
.ϑ = ϑ(ω) := (z0(ω), θ(ω) of random initial values and model parameters at the 

conditional mean.ϑ = ϑ
(t0) := E

 
ϑ(ω)|At0

 
. This yields then ordinary deterministic 

constraints for the extended deterministic trajectory (nominal state and sensitivity) 

. t →
 
z(t, ϑ), Dϑ z(t, ϑ)

 
, t ≥ t0.

3.2 Control Laws 

Control or guidance usually refers [ 3, 18, 20] to direct influence on a dynamic system 
to achieve the desired performance. In optimal control of dynamic systems mostly 
the following types of control laws or control policies are considered: 

(I) Open-Loop Control (OL) 
Here, the control function .u = u(t) is a deterministic function depending only 
on the (a priori) information .It0 about the system, the model parameters, resp., 
available at the starting time point. t0. Hence, for the optimal selection of optimal 
(OL) controls 

.u(t) = u
 
t; t0, It0

 
, t ≥ t0, (3.10a) 

we get optimal control problems of type (3.7). 

(II) Closed-Loop control (CL) or Feedback Control 
In this case the control function .u = u(t) is a stochastic function 

.u = u(t, ω) = u(t, It ), t ≥ t0 (3.10b) 

depending on time. t and the total information. It about the system available up to 
time. t . Especially. It may contain information about the state.z(t) = z(t, ω) up to 
time . t . Optimal (CL) or feedback controls are obtained by solving problems of 
type (. 3.7). 

Remark 3.4 Information set .At at time . t : Often the information . It available up to 
time. t is described by the information set or.σ−algebra.At ⊂ A of events. A occurred
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Fig. 3.1 Remaining time interval for intermediate time points. t

up to time . t . In the important case .At = A(y(t, ·)), where .y = y(t, ω) denotes the 
.m̄−vector function of state-measurements or -observations at time . t , then an . At−
measurable control .u = u(t, ω), see problem (. 3.7), has the representation, cf. [ 5], 

.u(t, ω) = ηt (y(t, ω)) (3.10c) 

with a measurable function .ηt : Rm̄ → R
m . Important examples of this type are the 

.PD− and .P I D−controllers, see Chap. 10. 

(III) Open-Loop Feedback (OLF) Control/Stochastic Open-Loop Feedback (SOLF) 
Control 
Due to their large complexity, in general, optimal feedback control laws can 
be determined approximatively only. A very efficient approximation procedure 
for optimal feedback controls, being functions of the information . It , is the  
approximation by means of optimal open-loop controls. In this combination 
of (OL) and (CL) control, at each intermediate time point .tb := t , .t0 ≤ t ≤ t f , 
given the information . It up to time . t , first the open-loop control function for 
the remaining time interval .t ≤ s ≤ t f , see Fig. 3.1, is computed, hence, 

.u[t,t f ](s) = u
 
s; t, It

 
, s ≥ t. (3.10d) 

Then, an approximate feedback control policy, originally proposed by Dreyfus 
(1964), cf. [ 10], can be defined as follows: 

Definition 3.2 The hybrid control law, defined by 

.ϕ(t, It ) := u
 
t; t, It

 
, t ≥ t0 (3.10e) 

is called open-loop feedback (OLF) control law. 

Thus, the OL control .u[t,t f ](s), s ≥ t , for the remaining time interval .[t, t f ] is 
used only at time .s = t , see also [ 2, 9– 11, 15, 19, 39]. Optimal (OLF) controls 
are obtained therefore by solving again control problems of the type (3.7) at each 
intermediate starting time point .tb := t , .t ∈ [t0, t f ]. 

A major issue in optimal control is the robustness, cf.  [  12], i.e., the insensitivity of 
an optimal control with respect to parameter variations. In case of random parameter 
variations robust optimal controls can be obtained by means of stochastic optimiza-
tion methods, cf. [ 26], incorporating the probability distribution, i.e., the random
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characteristics, of the random parameter variation into the optimization process, cf. 
Definition 3.1. 

Thus, constructing stochastic optimal open-loop feedback controls, hence, optimal 
open-loop feedback control laws being insensitive as far as possible with respect 
to random parameter variations, means that besides the optimality of the control 
policy also its insensitivity with respect to stochastic parameter variations should be 
guaranteed. Hence, in the following sections we also develop a stochastic version 
of the optimal open-loop feedback control method, cf. [ 25, 27– 29]. A short overview 
on this novel stochastic optimal open-loop feedback control concept is given below: 

At each intermediate time point.tb = t ∈ [t0, t f ], based on the given process obser-
vation . It , e.g., the observed state .zt = z(t) at .tb = t , a stochastic optimal open-loop 
control .u∗ = u∗(s) = u∗(s; t, It ), t ≤ s ≤ t f , is determined first on the remaining 
time interval .[t, t f ], see Fig. 3.1, by stochastic optimization methods, cf. [ 26] .  

Having a stochastic optimal open-loop control .u∗ = u∗(s; t, It ), t ≤ s ≤ t f , on  
each remaining time interval .[t, t f ] with an arbitrary starting time point . t , . t0 ≤ t ≤
t f , a  stochastic optimal open-loop feedback (SOLF) control law is then defined— 
corresponding to Definition 3.2—as follows: 

Definition 3.3 The hybrid control law, defined by 

.ϕ∗(t, It ) := u∗
 
t; t, It

 
, t ≥ t0. (3.10f) 

is called the stochastic optimal open-loop feedback (SOLF) control law. 

Thus, at time .tb = t just the “first” control value .u∗(t) = u∗(t; t, It ) of . u∗ =
u∗(·; t, It ) is used only. 

For finding stochastic optimal open-loop controls, on the remaining time inter-
vals .tb ≤ t ≤ t f with .t0 ≤ tb ≤ t f , the stochastic Hamilton function of the control 
problem is introduced. Then, the class of..H -minimal controls, cf. [ 18], can be deter-
mined in case of stochastic uncertainty by solving a finite-dimensional stochastic 
optimization problem for minimizing the conditional expectation of the stochastic 
Hamiltonian subject to the remaining deterministic control constraints at each time 
point . t . Having a.H -minimal control, the related two-point boundary value problem 
with random parameters will be formulated for the computation of a stochastic opti-
mal state- and costate-trajectory. In the important case of a linear-quadratic structure 
of the underlying control problem, the state and costate trajectory can be determined 
analytically to a large extent. Inserting then these trajectories into the H-minimal 
control, stochastic optimal open-loop controls are found on an arbitrary remaining 
time interval. According to Definition 3.2, these controls yield then immediately a 
stochastic optimal open-loop feedback control law. Moreover, the obtained controls 
can be realized in real-time, which is already shown for applications in optimal 
control of industrial robots, cf. [ 35].
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(III.1) Nonlinear Model Predictive Control (NMPC)/Stochastic Nonlinear Model 
Predictive Control (SNMPC) 
Optimal open-loop feedback (OLF) control is the basic tool in Nonlinear 
Model Predictive Control (NMPC). Corresponding to the approximation tech-
nique for feedback controls described above, (NMPC) is a method to solve 
complicated feedback control problems by means of stepwise computations 
of open-loop controls. Hence, in (NMPC), see [ 1, 13, 14, 34] optimal open-
loop controls 

.u = u[t,t+Tp](s), t ≤ s ≤ t + Tp, (3.10g) 

cf. (3.8), are determined first on the time interval .[t, t + Tp] with a certain 
so-called prediction time horizon .Tp > 0. In sampled-data MPC, cf. [ 13], 
optimal open-loop controls.u = u[ti ,ti+Tp], are determined at certain sampling 
instants .ti , i = 0, 1, . . ., using the information .Ati about the control process 
and its neighborhood up to time .ti , i = 0, 1, . . ., see also [ 24]. The optimal 
open-loop control at stage “. i” is applied then, 

.u = u[ti ,ti+Tp](t), ti ≤ t ≤ ti+1, (3.10h) 

until the next sampling instant .ti+1. This method is closely related to the 
Adaptive Optimal Stochastic Trajectory Planning and Control (AOSTPC) 
procedure described in [ 23, 24]. 

Corresponding to the extension of (OLF) control to (SOLF) control, (NMPC) 
can be extended to Stochastic Nonlinear Model Predictive Control (SNMPC). For  
control policies of this type, robust (NMPC) with respect to stochastic variations 
of model parameters and initial values are determined in the following way: 

• Use the a posteriori distribution .P(dω|At ) of the basic random element .ω ∈  , 
given the process information .At up to time . t , and 

• apply stochastic optimization methods to incorporate random parameter variations 
into the optimal (NMPC) control design. 

3.3 Convex Approximation by Inner Linearization 

We observe first that (3.7), (. 3.7), resp., is in general a non-convex optimization 
problem, cf. [ 20]. Since for convex (deterministic) optimization problems there is 
a well-established theory, we approximate the original problems (3.7), (. 3.7) by a  
sequence of suitable convex problems. In the following we describe first a single 
step of this procedure. Due to the consideration in Sect. 3.2, we may concentrate 
here to problem (3.7) or  (3.9a)–(3.9d) for deterministic controls .u(·), as needed in 
the computation of optimal (OL), (OLF), (SOLF) as well as (NMP), (SNMP) controls 
being most important for practical problems.
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Fig. 3.2 Convex approximation 

Let .v(·) ∈ D be an arbitrary, but fixed admissible initial or reference control and 
assume, see Lemma 3.1, for the input-output map .z(·) = S(ω, u(·)): 
Assumption 3.1 .S(ω, ·) is .F-differentiable at .v(·) for each .ω ∈  . 

Denote the .F-derivative of .S(ω, ·) at .v(·) by .DS
 
ω, v(·)

 
and replace the cost 

function .F = F
 
u(·)

 
with 

.Fv(·)
 
u(·)

 
:= E f

 
ω, S

 
ω, v(·) + DS

 
ω, v(·)  u(·) − v(·) , u(·)

 
(3.11) 

where.u(·) ∈ U , cf. Fig. 3.2. Assume that.Fv(·)
 
u(·)

 
∈ R for all pairs. 

 
u(·), v(·)

 
∈

D × D. 
Then, replace the optimization problem (3.7), see [ 21], by 

. min Fv(·)
 
u(·)

 
s.t. u(·) ∈ D. (3.7)v(·)

Lemma 3.3 .(3.7)v(·) is a convex optimization problem. 
Proof According to Sect. 3.1, function (3.6c) is convex. The assertion follows now 
from the linearity of the .F-differential of .S(ω, ·).  
Remark 3.5 Note that the approximate .Fv(·) of .F is obtained from (3.6a), (3.6b) 

by means of linearization of the input-output map .S = S
 
ω, u(·)

 
with respect to 

the control .u(·) at .v(·), hence, by inner linearization of the control problem with 
respect to the control .u(·) at .v(·). 
Remark 3.6 (Linear input-output map) In case that . S = S(ω, u(·)) := S(ω)u(·)
is linear with respect to the control .u(·), then .DS(ω, v(·) = S(ω) and we have 

.Fv(·)
 
u(·)

 
= F(u(·)). In this case the problems (3.7) and.(3.7)v(·) coincide for each 

input vector .v(·).
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For a real-valued convex function.φ : X → R on a linear space.X the directional 
derivative .φ +(x; y) exists, see, e.g., [ 16], at each point .x ∈ X and in each direction 
.y ∈ X . According to Lemma 3.3 the objective function .Fv(·) of the approximate 
problem.(3.7)v(·) is convex. Using the theorem of the monotone convergence, [  5], for 
all .u(·), v(·) ∈ D and .h(·) ∈ U the directional derivative of .Fv(·) is given, see [ 22], 
Satz 1.4, by 

. F  
v(·)+

 
u(·); h(·)

 
= E f  

+
 
ω, S

 
ω, v(·)

 
+ DS

 
ω, v(·)

  
u(·) − v(·)

 
,

u(·); DS
 
ω, v(·)

 
h(·), h(·)

 
. (3.12a) 

In the special case .u(·) = v(·) we get 

.F  
v(·)+

 
v(·); h(·)

 
= E f  

+
 
ω, S

 
ω, v(·)

 
, (3.12b) 

v(·); DS
 
ω, v(·)

 
h(·), h(·)

 
. 

A solution.ū(·) ∈ D of the convex problem.(3.7)v(·) is then characterized cf. [ 30], 
by 

.F  
v(·)+

 
ū(·); u(·) − ū(·)

 
≥ 0 for all u(·) ∈ D. (3.13) 

Definition 3.4 For each .v(·) ∈ D, let  .M
 
v(·)

 
be the set of solutions of problem 

.(2.7)v(·), i.e., 

. M
 
v(·)

 
:=
 
u0(·) ∈ D : F  

v(·)+
 
u0(·); u(·) − u0(·)

 
≥ 0, u(·) ∈ D

 
.

Note 3.2 If the input-output operator .S = S(ω, u(·)) := S(ω)u(·) is linear, then 

.M
 
v(·)

 
= M for each input .v(·), where .M denotes the set of solutions of problem 

(3.7). 

In the following we suppose that optimal solutions of .(2.7)v(·) exist for each.v(·). 

Assumption 3.2 .M
 
v(·)

 
 = ∅ for each .v(·) ∈ D. 

A first relation between our original problem (3.7) and the family of its approxi-
mates .(3.7)v(·), v(·) ∈ D, is shown in the following: 

Theorem 3.1 Suppose that the directional derivative .F  + = F  +
 
v(·); h(·)

 
exists 

and 
.F  

+
 
v(·); h(·)

 
= F  

v(·)+
 
v(·); h(·)

 
(3.14) 

for each .v(·) ∈ D and .h(·) ∈ D − D. Then:
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(I) If .ū(·) is an optimal control, then .ū(·) ∈ M
 
ū(·)

 
, i.e., .ū(·) is a solution of 

.(3.7)ū(·). 
(II) If (3.7) is convex, then .ū(·) is an optimal control if and only if .ū(·) ∈ M

 
ū(·)

 
. 

Proof Because of the convexity of the approximate control problem .(3.7)v(·), the  

condition.v(·) ∈ M
 
v(·)

 
holds, cf. (3.13), if and only if. F  

v(·)+
 
v(·); u(·) − v(·)

 
≥

0 for all u(·) ∈ D.Because of (3.14), this is equivalent with. F  +
 
v(·); u(·) − v(·)

 
≥

0 for all u(·) ∈ D. However, since the admissible control domain .D is convex, for 
an optimal solution .v(·) := ū(·) of (3.7) this condition is necessary, and necessary 
as also sufficient in case that (3.7) is convex.  

Assuming that . f = f (ω, ·, ·) is F-differentiable for each . ω, by means of (3.12b) 
and the chain rule we have 

. F  
v(·)+

 
v(·); h(·)

 
= E f  

+
 
ω, S

 
ω, v(·)

 
, v(·); DS

 
ω, v(·)

 
h(·), h(·)

 

= E lim
ε↓0

1

ε

 
f
 
ω, S

 
ω, v(·) + εh(·) , v(·) + εh(·)

 

− f
 
ω, S

 
ω, v(·) , v(·)

  
. (3.15) 

Note 3.3 Because of the properties of the operator .S = S(ω, u(·)), the above equa-
tions holds also for arbitrary convex functions . f such that the expectations under 
consideration exist, see [ 22]. 

Due to the definition (3.6a) of the objective function .F = F(u(·)) for condition 
(3.14) the following criterion holds. 

Lemma 3.4 

(a) Condition (3.14) in Theorem 3.1 holds if and only if the expectation operator 
“. E” and the limit process “.lim

ε↓0” in (3.15) may be interchanged. 

(b) This interchangeability holds, e.g., if. sup
   DS

 
ω, v(·) + εh(·)   : 0 ≤ ε ≤ 1

 

is bounded with probability one, and the convex function . f (ω, ·, ·) satisfies a 
Lipschitz condition 

. 

   f
 
ω, z(·), u(·)

 
− f

 
ω, z̄(·), ū(·)

    ≤ γ (ω)

   
 
z(·), u(·)

 
−
 
z̄(·), ū(·)

    
Z×U

on a set .Q ⊂ Z ×U containing all vectors . 
 
S
 
ω, v(·) + εh(·) , v(·) + εh(·)

 
,

0 ≤ ε ≤ 1, where .Eγ (ω) < +∞, and . · Z×U denotes the norm on .Z ×U. 

Proof The first assertion (a) follows immediately from (3.15) and the definition of 
the objective function . F . Assertion (b) can be obtained by means of the general-
ized mean value theorem for vector functions and Lebesgue’s bounded convergence 
theorem.  
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Remark 3.7 Further conditions are given in [ 22]. 

A second relation between our original problem (3.7) and the family of its approx-
imates .(3.7)v(·), v(·) ∈ D, is shown next. 

Lemma 3.5 

(a) If .ū(·) /∈ M
 
ū(·)

 
for a control .ū(·) ∈ D, then 

. Fū(·)
 
u(·)

 
< Fū(·)

 
ū(·)

 
= F

 
ū(·)

 
for each u(·) ∈ M

 
ū(·)

 

(b) Let the controls .u(·), v(·) ∈ D be related such that 

. Fu(·)
 
v(·)

 
< Fu(·)

 
u(·)

 
.

If (3.14) holds for the pair .
 
u(·), h(·)

 
, h(·) = v(·) − u(·), then .h(·) is an 

admissible direction of decrease for .F at .u(·), i.e., we have . F
 
u(·) + εh(·)

 
<

F
 
u(·)

 
and .u(·) + εh(·) ∈ D on a suitable interval .0 < ε < ε̄. 

Proof According to Definition 3.4, for .u(·) ∈ M
 
ū(·)

 
we have . Fū(·)(u(·)) ≤ Fū(·)

(v(·)) for all.v(·) ∈ D and therefore also.Fū(·)(u(·)) ≤ Fū(·)(ū(·)). a) In case. Fū(·)(u(·))
= Fū(·)(ū(·))we get.Fū(·)(ū(·)) ≤ Fū(·)(v(·)) for all.v(·) ∈ D, hence,.ū(·) ∈ M

 
ū(·)

 
. 

Since this is in contradiction to the assumption, it follows .Fū(·)(u(·)) < Fū(·)(ū(·)). 
b) If controls .u(·), v(·) ∈ D are related .Fu(·)

 
v(·)

 
< Fu(·)

 
u(·)

 
, then due to the 

convexity of .Fu(·) we have .F  
u(·)+

 
u(·); v(·) − u(·)

 
≤ Fu(·(v(·)) − Fu(·)(u(·)) < 0. 

With (3.14) we then get.F  +
 
u(·); v(·) − u(·)

 
= F  

u(·)+
 
u(·); v(·) − u(·)

 
< 0. This  

yields now that .h(·) := v(·) − u(·) is a feasible descent direction for .F at .u(·).  

If.ū(·) ∈ M
 
ū(·)

 
, then the convex approximate.Fū of. F at. ū cannot be decreased 

further on D. Thus, the above results suggest the following definition: 

Definition 3.5 A control .ū(·) ∈ D such that .ū(·) ∈ M
 
ū(·)

 
is called a stationary 

control of the optimal control problem (3.7). 

Under the rather weak assumptions in Theorem 3.1 an optimal control is also 
stationary, and in the case of a convex problem (3.7) the two concepts coincide. 
Hence, stationary controls are candidates for optimal controls. As an appropriate 
substitute/approximate for an optimal control we may determine therefore stationary 
controls. For this purpose algorithms of the following conditional gradient-type may 
be applied:
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Algorithm 3.1 (I) Choose .u1 ∈ D, put . j = 1

(II) If.u j (·) ∈ M
 
u j (·)

 
, then.u j (·) is stationary and the algorithm stops; otherwise 

find a control . v j (·) ∈ M
 
u j (·)

 

(III) Set .u j+1(·) = v j (·) and go to II), putting . j → j + 1. 

Algorithm 3.2 (I) Choose .u1(·) ∈ D, put . j = 1

(II) If.u j (·) ∈ M
 
u j (·)

 
, then.u j (·) is stationary and the algorithm stops; otherwise 

find a .v( j)(·) ∈ M
 
u j (·)

 
, define . h j (·) := v j (·) − u j (·)

(III) Calculate.ū(·) ∈ m
 
u j (·), h j (·)

 
, set.u j+1(·) := ū(·) and go to II), putting. j →

j + 1. 

Here, based on line search, .m
 
u(·), h(·)

 
is defined by 

. m
 
u(·), h(·)

 
=
 
u(·) + ε∗h(·) : F

 
u(·) + ε∗h(·)

 

= min
0≤ε≤1

F
 
u(·) + εh(·)

 
for ε∗ ∈ [0, 1]

 
, u(·), h(·) ∈ U.

Concerning Algorithm 3.1 we have the following result. 

Theorem 3.2 Let the set valued mapping .u(·) → M
 
u(·)

 
be closed at each . ū(·) ∈

D

 
,i.e., the relations .u j (·) → ū(·), v j (·) ∈ M

 
u j (·)

 
, j = 1, 2 . . ., and . v j (·) →

v̄(·) imply that also .v̄(·) ∈ M
 
ū(·)

  
. 

If a sequence .u1(·), u2(·), . . . of controls generated by Algorithm 3.1 converges to 
an element .ū(·) ∈ D, then .ū(·) is a stationary control. 

A sufficient condition for the closedness of the algorithmic map. u(·) → M
 
u(·)

 

is given next: 

Lemma 3.6 Let .D be a closed set of admissible controls, and let 

. 

 
u(·), v(·)

 
→ F  

u(·)+
 
v(·);w(·) − v(·)

 

be continuous on.D × D for each.w(·) ∈ D. Then.u(·) → M
 
u(·)

 
is closed at each 

element of . D. 

While the convergence assumption for a sequence .u1(·), u2(·), . . . generated by 
Algorithm 3.1 is rather strong, only the existence of accumulation points of. u j (·), j =
1, 2, . . ., has to be required in Algorithm 3.2.
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3.4 Computation of Directional Derivatives 

Suppose here again that .U := Ln∞([t0, t f ],B1, λ1) is the Banach space of all essen-
tially bounded measurable functions .u(·) : [t0, t f ] → R

n , normed by the essential 
supremum norm. According to Definitions 3.4, 3.5 of a stationary control and 
characterization (3.13) of an optimal solution of (3.7).v(·), we first have to deter-
mined the directional derivative .F  

v(·)+. Based on the justification in Sect. 3.1, we  

assume again that the solution .z(t, ω) = S
 
ω, u(·)

 
(t) of (3.2b) is measurable in 

.(t, ω) ∈ [t0, t f ] ×  for each.u(·) ∈ D, and.u(·) → S
 
ω, u(·)

 
is continuously dif-

ferentiable on .D for each .ω ∈  . Furthermore, we suppose that the .F-differential 

.ζ(t) = ζ(t, ω) =
 
DuS

 
ω, u(·)

 
h(·)

 
(t), h(·) ∈ U , is measurable and essentially 

bounded in.(t, ω), and is given according to (3.3a)–(3.3f) by the linear integral equa-
tion 

.ζ(t) −
t 

t0

A
 
t, ω, u(·)

 
ζ(s)ds =

t 

t0

B
 
t, ω, u(·)

 
h(s)ds, (3.16a) 

t0 ≤ t ≤ t f , 

with the Jacobians 

.A
 
t, ω, u(·)

 
:= Dzg

 
t, ω, zu(t, ω), u(t)

 
(3.16b) 

.B
 
t, ω, u(·)

 
:= Dug

 
t, ω, zu(t, ω), u(t)

 
(3.16c) 

and .zu = zu(t, ω) defined, cf. (3.3f), by 

.zu(t, ω) := S
 
ω, u(·)

 
(t),

 
t, ω, u(·)

 
∈ [t0, t f ] ×  ×U. (3.16d) 

Here, the random element “. ω” is also used, cf. Sect. 3.1.1, to denote the realization 
of the random inputs .z0 = z0(ω), θ(·) = θ(·, ω). 

. ω :=
 

z0
θ(·)

 

Remark 3.8 Due to the measurability of the functions.zu = zu(t, ω) and.u = u(t)on 
.[t0, t f ] ×  , .[t0, t f ], resp., and the assumptions on the function . g and its Jacobians 
.Dzg, Dug, see Sect. 3.1, also the matrix-valued functions .(t, ω) → A(t, ω, u(·)), 
.(t, ω) → B(t, ω, u(·)) are measurable and essentially bounded on .[t0, t f ] ×  . 
Equation (3.16a) is again a vectorial Volterra integral equation, and the existence
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of a unique measurable solution .ζ(t) = ζ(t, ω) can be shown as for the Volterra 
integral equation (3.2g), 3.2h). 

The differential form of (3.16a) is then the linear perturbation equation 

.ζ̇ (t) = A
 
t, ω, u(·)

 
ζ(t) + B

 
t, ω, u(·)

 
h(t), t0 ≤ t ≤ t f , ω ∈  (3.16e) 

.ζ(t0) = 0. (3.16f) 

The solution.ζ = ζ(t, ω) of (3.16a), (3.16e), (3.16f), resp., is also denoted, cf. (3.3f), 
by 

.ζ(t, ω) = ζu,h(t, ω) :=
 
DuS

 
ω, u(·)

 
h(·)

 
(t), h(·) ∈ U. (3.16g) 

This means that the approximate (3.7).v(·) of (3.7) has the following explicit form: 

. min E

 t f 

t0

L
 
t, ω, zv(t, ω) +ζ(t, ω), u(t)

 
dt

+G
 
t f , ω, zv(t f , ω) + ζ(t f , ω)

  
(3.17a) 

s.t. 

.ζ̇ (t, ω) = A
 
t, ω, v(·)

 
ζ(t, ω) + B

 
t, ω, v(·)

  
u(t) − v(t)

 
a.s. (3.17b) 

.ζ(t0, ω) = 0 a.s. (3.17c) 

.u(·) ∈ D. (3.17d) 

With the convexity assumptions in Sect. 3.1.2, Lemma 3.3 yields that (3.17a)– 
(3.17d) is a convex stochastic control problem, with a linear plant differential equa-
tion. 

For the subsequent analysis of the stochastic control problem we need now a 

representation of the directional derivative .F  
v(·)+

 
u(·); h(·)

 
by a scalar product 

. F  
v(·)+

 
u(·); h(·)

 
=

t f 

t0

q(t)T h(t)dt

with a certain deterministic vector function .q = q(t). From representation (3.12a) 
of the directional derivative .F  

v(·)+ of the convex approximate .Fv(·) of . F , definition 

(3.6b) of  . f = f
 
ω, z(·), u(·)

 
by an integral over .[t0, t f ] and [ 22], Satz 1.4, with 

(3.16g) we obtain



82 3 Optimal Control Under Stochastic Uncertainty

. F  
v(·)+

 
u(·); h(·)

 
= E

 t f 

t0

 
∇z L

 
t, ω, zv(t, ω) + ζv,u−v(t, ω), u(t)

 T
ζv,h(t, ω)

+∇u L
 
t, ω, zv(t, ω) + ζv,u−v(t, ω), u(t)

 T
h(t)

 

+∇zG
 
t f , ω, zv(t f , ω) + ζv,u−v(t f , ω)

 T
ζv,h(t f , ω)

 
. (3.18) 

Defining the gradients 

.a
 
t, ω, v(·), u(·)

 
:= ∇z L

 
t, ω, zv(t, ω) + ζv,u−v(t, ω), u(t)

 
(3.19a) 

.b
 
t, ω, v(·), u(·)

 
:= ∇u L

 
t, ω, zv(t, ω) + ζv,u−v(t, ω), u(t)

 
(3.19b) 

.c
 
t f , ω, v(·), u(·)

 
:= ∇zG

 
t f , ω, zv(t f , ω) + ζv,u−v(t f , ω)

 
, (3.19c) 

measurable with respect to.(t, ω), the directional derivative.F  
v(·)+ can be represented 

by 

. F  
v(·)+

 
u(·); h(·)

 
= E

 t f 

t0

 
a
 
t, ω, v(·), u(·)

 T
ζv,h(t, ω)

+b
 
t, ω, v(·), u(·)

 T
h(t)

 
dt + c

 
t f , ω, v(·), u(·)

 T
ζv,h(t f , ω)

 
. (3.20a) 

According to (3.16a), for .ζv,h = ζv,h(t, ω) we have 

.ζv,h(t f , ω) =
t f 

t0

 
A
 
t, ω, v(·)

 
ζv,h(t, ω) + B

 
t, ω, v(·)

 
h(t)

 
dt. (3.20b) 

Putting (3.20b) into (3.20a), we find 

. F  
v(·)+

 
u(·); h(·)

 
= E

 t f 

t0

ã
 
t, ω, v(·), u(·)

 T
ζv,h(t, ω)dt

+
t f 

t0

b̃
 
t, ω, v(·), u(·)

 T
h(t)dt

 
, (3.20c)
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where 

.ã
 
t, ω, v(·), u(·)

 
:= a

 
t, ω, v(·), u(·)

 
+ A

 
t, ω, v(·)

 T
c
 
t f , ω, v(·), u(·)

 
(3.20d) 

.b̃
 
t, ω, v(·), u(·)

 
:= b

 
t, ω, v(·), u(·)

 
+ B

 
t, ω, v(·)

 T
c
 
t f , ω, v(·), u(·)

 
. (3.20e) 

Remark 3.9 According to Remark 3.8 also the functions . (t, ω) → ã
 
t, ω, v(·),

u(·)
 
, .(t, ω) → b̃

 
t, ω, v(·), u(·)

 
are measurable on .[t0, t f ] ×  . 

In order to transform the first integral in (3.20c) into the form of the second integral 
in (3.20c), we introduce the .m-vector function 

. λ = λv,u(t, ω)

defined by the following integral equation depending on the random parameter . ω: 

.λ(t) − A
 
t, ω, v(·)

 T t f 

t

λ(s)ds = ã
 
t, ω, v(·), u(·)

 
. (3.21) 

Under the present assumptions, this Volterra integral equation has [ 22] a unique 
measurable solution .(t, ω) → λv,u(t, ω), see also Remark 3.8. By means of (3.21) 
we obtain 

. 

t f 

t0

ã
 
t, ω, v(·), u(·)

 T
ζv,h(t, ω)dt

=
t f 

t0

 
λ(t) − A

 
t, ω, v(·)

 T
t f 

t

λ(s)ds

 T
ζv,h(t, ω)dt

=
t f 

t0

λ(t)T ζv,h(t, ω)dt

−
t f 

t0

dt

t f 

t0

ds J (s, t)λ(s)T A
 
t, ω, v(·)

 
ζv,h(t, ω)

=
t f 

t0

λ(s)T ζv,h(s, ω)ds −
t f 

t0

ds

t f 

t0

dt J (s, t)λ(s)T A
 
t, ω, v(·)

 
ζv,h(t, ω)

=
t f 

t0

λ(s)T
 
ζv,h(s, ω) −

s 

t0

A
 
t, ω, v(·)

 
ζv,h(t, ω)dt

 
ds, (3.22a)
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where.J = J (s, t) is defined by 

. J (s, t) :=
 
0, t0 ≤ s ≤ t
1, t < s ≤ t f .

Using now again the perturbation equation (3.16a), (3.16b), from (3.22a) we get 

. 

t f 

t0

ã
 
t, ω, v(·), u(·)

 T
ζv,h(t, ω)dt =

t f 

t0

λ(s)T
 s 

t0

B
 
t, ω, v(·)

 
h(t)dt

 
ds

=
t f 

t0

dsλ(s)T
t f 

t0

dt J (s, t)B
 
t, ω, v(·)

 
h(t) =

t f 

t0

dt

t f 

t0

ds J (s, t)λ(s)T B
 
t, ω, v(·)

 
h(t)

=
t f 

t0

 t f 

t

λ(s)ds
 T

B
 
t, ω, v(·)

 
h(t)dt =

t f 

t0

 
B
 
t, ω, v(·)

 T t f 

t

λ(s)ds

 T

h(t)dt. (3.22b) 

Inserting (3.22b) into (3.20c), we have 

. F  
v(·)+

 
u(·); h(·)

 
= E

 t f 

t0

 
B
 
t, ω, v(·)

 T t f 

t

λ(s)ds

+b̃
 
t, ω, v(·), u(·)

  T

h(t)dt

 
. (3.23) 

By means of (3.20d), the integral equation (3.21) may be written by 

. λ(t) − A
 
t, ω, v(·)

 T 
c
 
t f , ω, v(·), u(·)

 
+

t f 

t

λ(s)ds

 
= a

 
t, ω, v(·), u(·)

 
.

(3.24) 
According to (3.24), defining the .m-vector function 

.y = yv,u(t, ω) := c
 
t f , ω, v(·), u(·)

 
+

t f 

t

λv,u(s, ω)ds, (3.25a) 

we get 

.λ(t) − A
 
t, ω, v(·)

 T
yv,u(t, ω) = a

 
t, ω, v(·), u(·)

 
. (3.25b) 

Replacing in (3.25b) the variable . t by . s and integrating then the equation (3.25b) 
over the time interval .[t, t f ], yields
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.

t f 

t

λ(s)ds =
t f 

t

 
A
 
s, ω, v(·)

 T
yv,u(s, ω) + a

 
s, ω, v(·), u(·)

  
ds. (3.25c) 

Finally, using again (3.25a), from (3.25c) we get 

. yv,u(t, ω) = c
 
t f , ω, v(·), u(·)

 
+

t f 

t

 
A
 
s, ω, v(·)

 T
yv,u(s, ω) + a

 
s, ω, v(·), u(·)

  
ds.

(3.25d) 

Obviously, the differential form of the Volterra integral equation (3.25d) for . y =
yv,u(t, ω) reads 

.ẏ(t) = −A
 
t, ω, v(·)

 T
y(t) − a

 
t, ω, v(·), u(·)

 
, t0 ≤ t ≤ t f , (3.26a) 

.y(t f ) = c
 
t f , ω, v(·), u(·)

 
. (3.26b) 

System (3.25d), (3.26a), (3.26b), resp., is called the adjoint integral, differential 
equation related to the perturbation equation (3.16a), (3.16b). 

By means of (3.25a), from (3.20e) and (3.23) we now obtain 

. F  
v(·)+

 
u(·); h(·)

 
= E

t f 

t0

 
B
 
t, ω, v(·)

 T
t f 

t

λ(s)ds + b
 
t, ω, v(·), u(·)

 

+ B
 
t, ω, v(·)

 T
c
 
t f , ω, v(·), u(·)

  T
h(t)dt

= E

t f 

t0

 
B
 
t, ω, v(·)

 T
yv,u(t, ω) + b

 
t, ω, v(·), u(·)

  T
h(t)dt.

Summarizing the above transformations, we have the following result. 

Theorem 3.3 Let .(ω, t) → yv,u(t, ω) be the unique measurable solution of the 
adjoint integral, differential equation (3.25d), (3.26a), (3.26b), respectively. Then, 

. F  
v(·)+

 
u(·); h(·)

 
= E

t f 

t0

 
B
 
t, ω, v(·)

 T
yv,u(t, ω)

+b
 
t, ω, v(·), u(·)

  T

h(t)dt. (3.27)
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Note that .F  
v(·)+

 
u(·); ·

 
is also the Gâteaux-differential of .Fv(·) at .u(·). 

For a further discussion of formula (3.27) for.F  
v(·)+

 
u(·); h(·)

 
, in generalization 

of the Hamiltonian of a deterministic control problem, see, e.g., [ 18], we introduce 
now the stochastic Hamiltonian related to the partly linearized control problem 
(3.17a)–(3.17d) based on a reference control .v(·): 

. Hv(·)(t, ω, ζ, y, u) := L
 
t, ω, zv(t, ω) + ζ, u

 

+yT
 
A
 
t, ω, v(·)

 
ζ + B

 
t, ω, v(·)

  
u − v(t)

  
, (3.28a) 

.(t, ω, z, y, u) ∈ [t0, t f ] ×  × R
m × R

m × R
n . Using  .Hv(·), for  .F  

v(·)+ we find the 
representation 

. F  
v(·)+

 
u(·); h(·)

 
=

t f 

t0

E∇u Hv(·)
 
t, ω, ζv,u−v(t, ω),

yv,u(t, ω), u(t)

 T

h(t)dt, (3.28b) 

where .ζv,u−v = ζv,u−v(t, ω) is the solution of the perturbation differential, integral 
equation (3.17b), (3.17c), (3.20b), resp., and .yv,u = yv,u(t, ω) denotes the solution 
of the adjoint differential, integral equation (3.26a), (3.26b), (3.25d). 

Let .u0(·) ∈ U denote a given initial control. By means of (3.28a), (3.28b), the 
necessary and sufficient condition for a control .u1(·) to be an element of the set 

.M
 
u0(·)

 
, i.e., a solution of the approximate convex problem (3.7).u0(·), reads, see 

Definition 3.4 and (3.13): 

. 

t f 

t0

E∇u Hu0(·)
 
t, ω, ζu0,u1−u0(t, ω), yu0,u1(t, ω),

u1(t)
 T 

u(t) − u1(t)
 
dt ≥ 0, u(·) ∈ D. (3.29) 

Introducing, for given controls .u0(·), u1(·), the convex mean value function 
.Hu0(·),u1(·) = Hu0(·),u1(·)(u(·)) defined by 

. Hu0(·),u1(·)
 
u(·)

 
:=

t f 

t0

EHu0(·)
 
t, ω, ζu0,u1−u0(t, ω),

yu0,u1(t, ω), u(t)
 
dt, (3.30a)
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corresponding to the representation (3.12a) and (3.18) of the directional derivative 
of . F , it is seen that the left hand side of (3.29) is the directional derivative of the 
function .Hu0(·),u1(·) = Hu0(·),u1(·)(u(·)) at .u1(·) with increment .h(·) := u(·) − u1(·). 
Consequently, (3.29) is equivalent with the condition: 

.H
 
u0(·),u1(·)+

 
u1(·));  u(·) − u1(·)

 
≥ 0, u(·) ∈ D. (3.30b) 

Due to the equivalence of the conditions (3.29) and (3.30b), for a control . u1(·) ∈
M
 
u0(·)

 
, i.e., a solution of (3.7).u0(·) we have the following characterization: 

Theorem 3.4 Let .u0(·) ∈ D be a given initial control. A control .u(1)(·) ∈ U is a 

solution of (3.7).u0(·), i.e.,.u1(·) ∈ M
 
u0(·)

 
, if and only if.u1(·) is an optimal solution 

of the convex stochastic optimization problem 

. min Hu0(·),u1(·)
 
u(·)

 
s.t. u(·) ∈ D. (3.31a) 

In the following we study therefore the convex optimization problem (3.31a), 
where we replace next to the yet unknown functions . ζ = ζu0,u1−u0(t, ω), y = yu0,u1
(t, ω) by arbitrary stochastic functions.ζ = ζ(t, ω), y = y(t, ω). Hence, we consider 
the mean value function.Hu0(·),ζ(·,·),y(·,·) = Hu0(·),ζ(·,·),y(·,·)(u(·)) defined, see (3.30a), 
by 

.Hu0(·),ζ(·,·),y(·,·)
 
u(·)

 
=

t f 

t0

EHu0(·)
 
t, ω, ζ(t, ω), y(t, ω), u(t)

 
dt. (3.31b) 

In practice, the admissible domain .D is often given by 

.D =
 
u(·) ∈ U : u(t) ∈ Dt , t0 ≤ t ≤ t f

 
, (3.32) 

where .Dt ⊂ R
n is a given convex subset of .Rn for each time . t , .t0 ≤ t ≤ t f . Since 

.Hu0(·),ζ(·,·),y(·,·)
 
u(·)

 
has an integral form, the minimum value of . Hu0(·),ζ(·,·),y(·,·) 

u(·)
 
on .D can be obtained—in case (3.32)—by solving the finite-dimensional 

stochastic optimization problem 

. min EHu0(·)
 
t, ω, ζ(t, ω),

y(t, ω), u
 
s.t. u ∈ Dt (P)tu0(·),ζ,y

for each .t ∈ [t0, t f ]. Let denote then
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. u∗ =  u∗
u0(·)
 
t, ζ(t, ·), y(t, ·)

 
, t0 ≤ t ≤ t f , (3.33a) 

a solution of .(P)tu0(·),ζ,y for each .t0 ≤ t ≤ t f . Obviously, if 

.  u∗
u0(·)
 
·, ζ(·, ·), y(·, ·)

 
∈ U

 
and therefore  u∗

u0(·)
 
·, ζ(·, ·), y(·, ·)

 
∈ D

 
,

(3.33b) 
then 

.  u∗
u0(·)
 
·, ζ(·, ·), y(·, ·)

 
∈ argmin Hu0(·),ζ(·,·),y(·,·)

 
u(·)

 
.

u(·) ∈ D (3.33c) 

Because of Theorem 3.4, problems.(P)tu0(·),ζ,y and (3.33a)–(3.33c), we introduce, 
cf. [ 18], the following definition: 

Definition 3.6 Let .u0(·) ∈ D be a given initial control. For measurable functions 
.ζ = ζ(t, ω), y = y(t, ω) on .( ,A, P), let denote 

.  u∗ =  u∗
u0(·)
 
t, ζ(t, ·), y(t, ·)

 
, t0 ≤ t ≤ t f ,

a solution of  .(P)tu0(·),ζ,y, t0 ≤ t ≤ t f . The function .  u∗ =  u∗
u0(·)
 
t, ζ(t, ·), y(t, ·)

 

is called a .Hu0(·)-minimal control of (3.17a)–(3.17d). The stochastic Hamiltonian 
.Hu0(·) is called regular, strictly regular, resp., if a .Hu0(·)-minimal control exists and 
is determined uniquely. 

Remark 3.10 Obviously, by means of Definition 3.6, for an optimal solution . u1(·)
of (3.7).u0(·) we have then the “model control law” .  u∗ =  u∗

u0(·)
 
t, ζ(t, ·), y(t, ·)

 

depending on still unknown state, costate functions .ζ(t, ·), y(·), respectively. 

3.5 Canonical (Hamiltonian) System of Differential 
Equations/Two-Point Boundary Value Problem 

For a given initial control .u0(·) ∈ D, let  . u∗ =  u∗
u0(·)
 
t, ζ(·), η(·)

 
, t0 ≤ t ≤ t f , 

denote a .Hu0(·)-minimal control of (3.17a)–(3.17d) according to Definition 3.6. 
Due to (3.17b), (3.17c) and (3.26a), (3.26b) we consider, cf. [ 18], the following 
so-called canonical or Hamiltonian system of differential equations, hence, a two-
point boundary value problem, with random parameters for the vector functions 

.(ζ, y) =
 
ζ(t, ω), y(t, ω)

 
, t0 ≤ t ≤ t f , ω ∈  :
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. ζ̇ (t, ω) = A
 
t, ω, u0(·)

 
ζ(t, ω)

+ B
 
t, ω, u0(·)

  
 u∗

u0(·)
 
t, ζ(t, ·), y(t, ·)

 
− u0(t)

 
,

t0 ≤ t ≤ t f , (3.34a) 

.ζ(t0, ω) = 0 a.s. (3.34b) 

. ẏ(t, ω) = −A
 
t, ω, u0(·)

 T
y(t, ω)

− ∇z L

 
t, ω, zu0(t, ω) + ζ(t, ω),  u∗

u0(·)
 
t, ζ(t, ·), y(t, ·)

  
,

t0 ≤ t ≤ t f , (3.34c) 

.y(t f , ω) = ∇zG
 
t f , ω, zu0(t f , ω) + ζ(t f , ω)

 
. (3.34d) 

Remark 3.11 Note that the (deterministic) control law.  u∗= u∗
u0(·)
 
t, ζ(t, ·), y(t, ·)

 

depends on the whole random variable .
 
ζ(t, ω), y(t, ω)

 
, ω ∈  , or the occurring 

moments. In the case of a discrete parameter distribution . = {ω1, . . . , ω }, see  
Sect. 3.1, the control law. u∗

u0(·) depends, 

.  u∗
u0(·) =  u∗

u0(·)
 
t, ζ(t, ω1), . . . , ζ(t, ω ), y(t, ω1), . . . , y(t, ω )

 
,

on the .2 unknown functions .ζ(t, ωi ), y(t, ωi ), i = 1, . . . ,  . 

Suppose now that .(ζ 1, y1) =
 
ζ 1(t, ω), y1(t, ω)

 
, t0 ≤ t ≤ t f , ω ∈ ( ,A, P), 

is the unique measurable solution of the canonical stochastic system (3.34a)–(3.34d), 
and define 

.u1(t) :=  u∗
u0(·)
 
t, ζ 1(t, ·), y1(t, ·)

 
, t0 ≤ t ≤ t f . (3.35) 

System (3.34a)–(3.34d) takes then the following form: 

. 

ζ̇ 1(t, ω) = A
 
t, ω, u0(·)

 
ζ 1(t, ω) + B

 
t, ω, u0(·)

  
u1(t) − u0(t)

 
,

t0 ≤ t ≤ t f , (3.34a )
ζ 1(t0, ω) = 0 a.s. (3.34b )

ẏ1(t, ω) = −A
 
t, ω, u0(·)

 T
y(t, ω)

−∇z L
 
t, ω, zu0(t, ω) + ζ 1(t, ω), u1(t)

 
, t0 ≤ t ≤ t f , (3.34c )

y1(t f , ω) = ∇zG
 
t f , ω, zu0(t f , ω) + ζ 1(t f , ω)

 
. (3.34d )

Assuming that 

.u1(·) ∈ U, (3.36a)
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due to the definition of a .Hu0(·)-minimal control we also have 

.u1(·) ∈ D. (3.36b) 

According to the notation introduced in (3.16a)–(3.16g), (3.25a)–(3.25d)/(3.26a), 
(3.26b), resp., and the above-assumed uniqueness of the solution.(ζ 1, y1) of (3.34a)– 
(3.34d) we have  

.ζ 1(t, ω) = ζu0,u1−u0(t, ω) (3.37a) 

.y1(t, ω) = yu0,u1(t, ω) (3.37b) 

with the control .u1(·) given by (3.35). 
Due to the above construction, we know that .u1(t) solves .(P)tu0(·),ζ,η for 

. ζ = ζ(t, ω) := ζ 1(t, ω) = ζu0,u1−u0(t, ω)

η = η(t, ω) := y1(t, ω) = yu0,u1(t, ω)

for each .t0 ≤ t ≤ t f . Hence, control .u1(·), given by (3.35), is a solution of (3.31a). 
Summarizing the above construction, from Theorem 3.4 we obtain this result. 

Theorem 3.5 Suppose that.D is given by (3.32),.M
 
u0(·)

 
 = ∅, and.(P)tu0(·),ζ,y has 

an optimal solution for each .t, t0 ≤ t ≤ t f , and measurable functions .ζ(t, ·), y(t, ·). 
Moreover, suppose that the canonical system (3.34a)–(3.34d) has a unique measur-

able solution .
 
ζ 1(t, ω), y1(t, ω)

 
, t0 ≤ t ≤ t f , ω ∈  , such that .u1(·) ∈ U, where 

.u1(·) is defined by (3.35). Then .u1(·) is a solution of .(3.7)u0(·). 

3.6 Stationary Controls 

Suppose here that condition (3.14) holds for all controls .v(·) under consideration, 
cf. Lemma 3.4. Having a method for the construction of improved approximative 

controls .u1(·) ∈ M
 
u0(·)

 
related to an initial control .u0(·) ∈ D, we consider now 

the construction of stationary controls of the control problem (3.7), i.e., elements 

.ū(·) ∈ D such that .ū(·) ∈ M
 
ū(·)

 
, see Definition 3.5. 

Starting again with formula (3.27), by means of (3.14), for an element . v(·) ∈ D
we have
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. F  
+
 
v(·); h(·)

 
= F  

v(·)+
 
v(·); h(·)

 

=
t f 

t0

E

 
B
 
t, ω, v(·)

 T
yv(t, ω) + b

 
t, ω, v(·), v(·)

  T

h(t)dt, (3.38a) 

where 
.yv(t, ω) := yv,v(t, ω) (3.38b) 

fulfills, cf. (3.26a), (3.26b), the adjoint differential equation 

.ẏ(t, ω) = −A
 
t, ω, v(·)

 T
y(t, ω) − ∇z L

 
t, ω, zv(t, ω), v(t)

 
(3.39a) 

.y(t f , ω) = ∇zG
 
t f , ω, zv(t f , ω)

 
. (3.39b) 

Moreover, cf. (3.16b), (3.16c), 

.A
 
t, ω, v(·)

 
= Dzg

 
t, ω, zv(t, ω), v(t)

 
(3.39c) 

.B
 
t, ω, v(·)

 
= Dug

 
t, ω, zv(t, ω), v(t)

 
(3.39d) 

and, see (3.19b), 

.b
 
t, ω, v(·), v(·)

 
= ∇u L

 
t, ω, zv(t, ω), v(t)

 
, (3.39e) 

where .zv = zv(t, ω) solves the dynamic equation 

.ż(t, ω) = g
 
t, ω, z(t, ω), v(t)

 
, t0 ≤ t ≤ t f , (3.39f) 

.z(t0, ω) = z0(ω). (3.39g) 

Using now the stochastic Hamiltonian, cf. (3.28a), 

.H(t, ω, z, y, u) := L(t, ω, z, u) + yT g(t, ω, z, u) (3.40a) 

related to the basic control problem (3.9a)–(3.9d), from (3.38a), (3.38b), (3.39a)– 
(3.39g) we get the representation, cf. (3.28a), (3.28b), 

.F  
+
 
v(·); h(·)

 
=

t f 

t0

E∇u H
 
t, ω, zv(t, ω), yv(t, ω), v(t)

 T
h(t)dt. (3.40b)
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According to condition (3.13), a stationary control of (3.7), hence, an element 
.ū(·) ∈ D such that.ū(·) is an optimal solution of.(3.7)ū(·) is characterized, see (3.14), 
by 

. F  
+
 
ū(·); u(·) − ū(·)

 
≥ 0 for all u(·) ∈ D.

Thus, for stationary controls.ū(·) ∈ D of problem (3.7) we have the characterization 

.

t f 

t0

E∇u H
 
t, ω, zū(t, ω), yū(t, ω), ū(t)

 T 
u(t) − ū(t)

 
dt ≥ 0, u(·) ∈ D. (3.41) 

Comparing (3.29) and (3.41), corresponding to (3.30a), (3.30b), for given. w(·) ∈ D
we introduce here the function 

.Hw

 
u(·)

 
:=

t f 

t0

EH
 
t, ω, zw(t, ω), yw(t, ω), u(t)

 
dt, (3.42a) 

and we consider the optimization problem 

. min Hw

 
u(·)

 
s.t. u(·) ∈ D. (3.42b) 

Remark 3.12 Because of the assumptions in Sect. 3.1.2, problem (3.42b) is (strictly) 
convex, provided that the process differential equation (3.1a) is affine-linear with 
respect to . u, hence, 

.ż(t, ω) = g(t, ω, z, u) = ĝ(t, ω, z) + B̂(t, ω, z)u (3.43) 

with a given vector-, matrix-valued function .ĝ = ĝ(t, ω, z), B̂ = B̂(t, ω, z). 

If differentiation and integration/expectation in (3.42a) may be interchanged, 
which is assumed in the following, then (3.41) is a necessary condition for 

. ū(·) ∈ argmin Hū

 
u(·)

 
, (3.44) 

u(·) ∈ D 

cf. (3.30a), (3.30b), (3.31a), (3.31b). Corresponding to Theorem 3.4, here we have  
this result: 

Theorem 3.6 (Optimality condition for stationary controls) Suppose that a control 
.ū(·) ∈ D fulfills (3.44). Then .ū(·) is a stationary control of (3.7).
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3.7 Canonical (Hamiltonian) System of Differential 

Assume now again that the feasible domain.D is given by (3.32). In order to solve the 
optimization problem (3.42a), (3.42b), corresponding to.(P)tu0(·),ζ,η, here we consider 
the finite-dimensional optimization problem 

. min EH
 
t, ω, ζ(ω), η(ω), u

 
s.t. u ∈ Dt (P)tζ,η

for each .t, t0 ≤ t ≤ t f . Furthermore, we use again the following definition, cf. Def-
inition 3.6. 

Definition 3.7 For measurable functions .ζ(·), η(·) on .( ,A, P), let denote 

.  u∗ =  u∗
 
t, ζ(·), η(·)

 
, t0 ≤ t ≤ t f ,

a solution of  .(P)tζ,η. The function . u∗ =  u∗
 
t, ζ(·), η(·)

 
, t0 ≤ t ≤ t f , is called a 

.H-minimal control of (3.9a)–(3.9d). The stochastic Hamiltonian .H is called regu-
lar, strictly regular, resp., if a .H -minimal control exists, exists and is determined 
uniquely. 

For a given .H -minimal control .u∗ = u∗
 
t, ζ(·), η(·)

 
we consider now, see 

(3.34a)–(3.34d), the following canonical (Hamiltonian) two-point boundary value 
problem with random parameters: 

.ż(t, ω) = g

 
t, ω, z(t, ω), u∗

 
t, z(t, ·), y(t, ·)

  
, t0 ≤ t ≤ t f (3.45a) 

.z(t0, ω) = z0(ω) (3.45b) 

. ẏ(t, ω) = −Dzg

 
t, ω, z(t, ω), u∗

 
t, z(t, ·), y(t, ·)

  T

y(t, ω)

−∇z L

 
t, ω, z(t, ω), u∗

 
t, z(t, ·), y(t, ·)

  
, t0 ≤ t ≤ t f (3.45c) 

.y(t f , ω) = ∇zG
 
t f , ω, z(t f , ω)

 
. (3.45d) 

Remark 3.13 In case of a discrete distribution.  = {ω1, . . . , ω }, P(ω = ω j ), j =
1, . . . ,  , corresponding to Sect. 3.1, for  the .H -minimal control we have 

.  u∗ =  u∗
 
t, z(t, ω1), . . . , z(t, ω ), y(t, ω1), . . . , y(t, ω )

 
.

Thus, (3.45a)–(3.45d) is then an ordinary two-point boundary value problem for the 
.2 unknown functions .z = z(t, ω j ), y = y(t, ω j ), j = 1, . . . ,  .
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Let denote .(z̄, ȳ) =
 
z̄(t, ω), ȳ(t, ω)

 
, t0 ≤ t ≤ t f , ω ∈ ( ,A, P), the unique 

measurable solution of (3.45a)–(3.45d) and define: 

.ū(t) :=  u∗
 
t, z̄(t, ·), ȳ(t, ·)

 
, t0 ≤ t ≤ t f . (3.46) 

Due to (3.16e) and (3.38b), (3.39a), (3.39b) we have  

.z̄(t, ω) = zū(t, ω), t0 ≤ t ≤ t f , ω ∈ ( ,A, P) (3.47a) 

.ȳ(t, ω) = yū(t, ω), t0 ≤ t ≤ t f , ω ∈ ( ,A, P), (3.47b) 

hence, 
.ū(t) =  u∗

 
t, zū(t, ·), yū(t, ·)

 
, t0 ≤ t ≤ t f . (3.47c) 

Assuming that 
.ū(·) ∈ U (and therefore ū(·) ∈ D), (3.48) 

we get this result: 

Theorem 3.7 Suppose that the Hamiltonian system (3.45a)–(3.45d) has a unique 

measurable solution .(z̄, ȳ) =
 
z̄(t, ω), ȳ(t, ω)

 
, and define .ū(·) by (3.46) with a 

.H-minimal control . u∗ =  u∗(t, ζ, η). If .ū(·) ∈ U, then .ū(·) is a stationary control. 
Proof According to the construction of .(z̄, ȳ, ū), the control .ū(·) ∈ D minimizes 

.Hū

 
u(·)

 
on . D. Hence, 

. ū(·) ∈ argmin Hū

 
u(·)

 
.

u(·) ∈ D

Theorem 3.6 yields then that .ū(·) is a stationary control.  

3.8 Computation of Expectations by Means of Taylor 
Expansions 

Corresponding to the assumptions in Sect. 3.1, based on a parametric representa-
tion of the random differential equation with a finite-dimensional random parameter 
vector .θ = θ(ω), we suppose that
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.g(t, w, z, u) = g̃(t, θ, z, u) (3.49a) 

.z0(ω) = z̃0(θ) (3.49b) 

.L(t, ω, z, u) = L̃(t, θ, z, u) (3.49c) 

.G(t, ω, z) = G̃(t, θ, z). (3.49d) 

Here, 
.θ = θ(ω), ω ∈ ( ,A, P) (3.49e) 

denotes the time-independent.r -vector of random model parameters and random ini-
tial values, and.g̃, z̃0, L̃, G̃ are sufficiently smooth functions of the variables indicated 
in (3.49a)–(3.49d). For simplification of notation we omit symbol “. ∼” and write 

. 

g(t, w, z, u) := g
 
t, θ(ω), z, u

 
(3.49a )

z0(ω) := z0
 
θ(ω)

 
(3.49b )

L(t, ω, z, u) := L
 
t, θ(ω), z, u

 
(3.49c )

G(t, ω, z, u) := G
 
t, θ(ω), z

 
. (3.49d )

Since the approximate problem (3.17a)–(3.17d), obtained by the above described 
inner linearization, has the same basic structure as the original problem (3.9a)– 
(3.9d), it is sufficient to describe the procedure for problem (3.9a)–(3.9d). Again, 
for simplification, the conditional expectation .E(. . . |At0) given the information . At0
up to the considered starting time . t0 is denoted by “. E”. Thus, let denote 

.θ = θ
t0 := Eθ(ω) = E

 
θ(ω)|At0

 
(3.50a) 

the conditional expectation of the random vector .θ(ω) given the information .At0 at 
time point . t0. Taking into account the properties of the solution 

.z = z(t, θ) = S
 
z0(θ), θ, u(·)

 
(t), t ≥ t0, (3.50b) 

of the dynamic equation (3.3a)–(3.3d), see Lemma 3.1, the expectations arising in 
the objective function (3.9a) can be computed approximatively by means of Taylor 
expansion with respect to . θ at . θ .
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3.8.1 Complete Taylor Expansion 

Considering first the costs . L along the trajectory we obtain, cf. [ 26], 

. L
 
t, θ, z(t, θ), u(t)

 
= L

 
t, θ, z(t, θ), u(t)

 

+
 

∇θ L
 
t, θ, z(t, θ), u(t)

 
+ Dθ z(t, θ)

T∇z L
 
t, θ, z(t, θ), u(t)

  T

(θ − θ)

+1

2
(θ − θ)T QL

 
t, θ, z(t, θ), Dθ z(t, θ), u(t)

 
(θ − θ) + . . . . (3.51a) 

Retaining only first-order derivatives of .z = z(t, θ) with respect to . θ , the approxi-

mative Hessian .QL of .θ → L
 
t, θ, z(t, θ), u

 
at .θ = θ is given by 

. QL

 
t, θ, z(t, θ), Dθ z(t, θ), u(t)

 
:= ∇2

θ L
 
t, θ, z(t, θ), u(t)

 

+Dθ z(t, θ)
T∇2

θ z L
 
t, θ, z(t, θ), u(t)

 
+ ∇2

θ z L
 
t, θ, z(t, θ), u(t)

 T
Dθ z(t, θ)

+Dθ z(t, θ)
T∇2

z L
 
t, θ, z(t, θ), u(t)

 
Dθ z(t, θ). (3.51b) 

Here, .∇θ L ,∇z L denotes the gradient of .L with respect to .θ, z, resp., .Dθ z is the 
Jacobian of.z = z(t, θ)with respect to. θ , and.∇2

θ L ,∇2
z L , resp., denotes the Hessian 

of . L with respect to .θ, z. Moreover, .∇2
θ z L is the .r × m matrix of partial derivatives 

of . L with respect to . θi and . zk , in this order. 
Taking expectations in (3.51a), from (3.51b) we obtain the expansion 

. EL

 
t, θ(ω), z

 
t, θ(ω)

 
, u(t)

 
= L

 
t, θ, z(t, θ), u(t)

 

+1

2
E
 
θ(ω) − θ

 T
QL

 
t, θ, z(t, θ), Dθ z(t, θ), u(t)

  
θ(ω) − θ

 
+ . . .

= L
 
t, θ, z(t, θ), u(t)

 
+ 1

2
tr QL

 
t, θ, z(t, θ), Dθ z(t, θ), u(t)

 
cov
 
θ(·)

 
+ . . . .(3.52) 

For the terminal costs . G, corresponding to the above expansion we find 

. G
 
t f , θ, z(t f , θ)

 
= G

 
t f , θ, z(t f , θ)

 

+
 

∇θG
 
t f , θ, z(t f , θ)

 
+ Dθ z(t f , θ)

T∇zG
 
t f , θ, z(t f , θ)

  T

(θ − θ)

+1

2
(θ − θ)T QG

 
t f , θ, z(t f , θ), Dθ z(t f , θ)

 
(θ − θ) + . . . , (3.53a)
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where .QG is defined in the same way as .QL , see  (3.51a). Taking expectations with 
respect to .θ(ω), we get 

. EG

 
t f , θ(ω), z

 
t f , θ(ω)

  
= G

 
t f , θ, z(t f , θ)

 

+1

2
tr QG

 
t f , θ, z(t f , θ), Dθ z(t f , θ)

 
cov
 
θ(·)

 
+ . . . . (3.53b) 

Note 3.4 Corresponding to Definition 3.1 and (3.50a), for the mean and covariance 
matrix of the random parameter vector .θ = θ(ω) we have 

. θ = θ
(t0) := E

 
θ(ω)|At0

 

cov
 
θ(·)

 
= cov(t0)

 
θ(·)

 
:= E

  
θ(ω) − θ

(t0)
  

θ(ω) − θ
(t0)
 T    At0

 
.

3.8.2 Inner or Partial Taylor Expansion 

Instead of a complete expansion of .L ,G with respect to . θ , appropriate approxima-
tions of the expected costs .EL ,.EG, resp., may be obtained by the inner first-order 
approximation of the trajectory, hence, 

.L
 
t, θ, z(t, θ), u(t)

 
≈ L

 
t, θ, z(t, θ) + Dθ z(t, θ)(θ − θ), u(t)

 
. (3.54a) 

Taking expectations in (3.54a), for the expected cost function we get the approx-
imation 

. EL
 
t, θ, z(t, θ), u(t)

 

≈ EL
 
t, θ(ω), z(t, θ) + Dθ z(t, θ)(θ(ω) − θ), u(t)

 
. (3.54b) 

In many important cases, as, e.g., for cost functions. L being quadratic with respect to 
the state variable . z, the above expectation can be computed analytically. Moreover, 
if the cost function .L is convex with respect to . z, then the expected cost function 
.EL is convex with respect to both, the state vector .z(t, θ) and the Jacobian matrix 
of sensitivities .Dθ z(t, θ) evaluated at the mean parameter vector . θ . 

Having the approximate representations (3.52), (3.53b), (3.54b), resp., of the 
expectations occurring in the objective function (3.9a), we still have to compute the 
trajectory .t → z(t, θ), t ≥ t0, related to the mean parameter vector .θ = θ and the 
sensitivities .t → ∂z

∂θi
(t, θ), i = 1, . . . , r, t ≥ t0, of the state .z = z(t, θ) with respect
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to the parameters .θi , i = 1, . . . , r , at  .θ = θ . According to (3.3a), (3.3b) or (3.9b), 
(3.9c), for .z = z(t, θ) we have the system of differential equations 

.ż(t, θ) = g
 
t, θ, z(t, θ), u(t)

 
, t ≥ t0, (3.55a) 

.z(t0, θ) = z0(θ). (3.55b) 

Moreover, assuming that differentiation with respect to .θi , i = 1, . . . , r , and inte-
gration with respect to time . t can be interchanged, see Lemma 3.1, from (3.3c) we  
obtain the following system of linear perturbation the differential equation for the 

Jacobian .Dθ z(t, θ) =
 

∂z
∂θ1

(t, θ), ∂z
∂θ2

(t, θ), . . . , ∂z
∂θr

(t, θ)
 
, t ≥ t0: 

. 
d

dt

 
Dθ z(t, θ)

 
= Dzg

 
t, θ, z(t, θ), u(t)

 
Dθ z(t, θ)

+Dθg
 
t, θ, z(t, θ), u(t)

 
, t ≥ t0, (3.56a) 

.Dθ z(t0, θ) = Dθ z0(θ). (3.56b) 

Note 3.5 Equations (3.56a), (3.56b) is closely related to the perturbation equation 
(3.16a), (3.16b) for representing the derivative .Duz of . z with respect to the control 
. u. Moreover, the matrix differential equation (3.56a) can be decomposed into the 
following . r differential equations for the columns . ∂z

∂θ j
(t, θ), j = 1, . . . , r : 

. 
d

dt

 ∂z

∂θ j
(t, θ)

 
= ∂g

∂θ j

 
t, θ, z(t, θ), u(t)

 ∂z

∂θ j
(t, θ)

+ ∂g

∂θ j

 
t, θ, z(t, θ), u(t)

 
, t ≥ t0, j = 1, . . . , r. (3.56c) 

Denoting by 

.L̃ = L̃
 
t, θ, z(t, θ), Dθ z(t, θ), u(t)

 
, (3.57a) 

.G̃ = G̃
 
t f , θ, z(t f , θ), Dθ z(t f , θ)

 
, (3.57b) 

the approximation of the cost functions. L , .G by complete, partial Taylor expansion, 
for the optimal control problem under stochastic uncertainty (3.9a)–(3.9d) we now  
obtain the following approximation: 

Theorem 3.8 Suppose that differentiation with respect to the parameters . θi , i =
1, . . . , r , and integration with respect to time. t can be interchanged in (3.3c). Retain-
ing only first-order derivatives of .z = z(t, θ) with respect to . θ , the optimal control
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problem under stochastic uncertainty (3.9a)–(3.9d) can be approximated by the ordi-
nary deterministic control problem: 

. min

t f 

t0

E L̃
 
t, θ(ω), z(t, θ), Dθ z(t, θ), u(t)

 
dt

+EG̃
 
t f , θ(ω), z(t f , θ, Dθ z(t, θ)

 
(3.58a) 

subject to 

.ż(t, θ) = g
 
t, θ, z(t, θ), u(t)

 
, t ≥ t0, (3.58b) 

.z(t0, θ) = z0(θ) (3.58c) 

. 
d

dt

 
Dθ z(t, θ)

 
= Dzg

 
t, θ, z(t, θ), u(t)

 
Dθ z(t, θ)

+Dθg
 
t, θ, z(t, θ), u(t)

 
, t ≥ t0, (3.58d) 

.Dθ z(t0, θ) = Dθ z0(θ) (3.58e) 

.u(·) ∈ D. (3.58f) 

Remark 3.14 Obviously, the trajectory of the above deterministic substitute control 
problem (3.58a)–(3.58f) of the original optimal control problem under stochastic 
uncertainty (3.9a)–(3.9d) can be represented by the .m(r + 1)− vector function: 

.t → ξ(t) :=

⎛
⎜⎜⎜⎝

z(t, θ)
∂z
∂θ1

(t, θ)
...

∂z
∂θr

(t, θ)

⎞
⎟⎟⎟⎠ , t0 ≤ t ≤ t f . (3.59) 

Remark 3.15 Constraints of the expectation type (3.9f), i.e., 

. EhI I

 
t, θ(ω), z

 
t, θ(ω)

  
≤ (=)0

can be evaluated as in (3.52) and (3.53b). This yields then deterministic constraints 
for the unknown functions .t → z(t, θ) and .t → Dθ z(t, θ), t ≥ t0. 

Remark 3.16 The expectations .EHu◦(·), EH arising in .(P)tu◦(·),ζ,η, (P)
t
ζ,η, resp., 

can be determined approximatively as described above.
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Chapter 4 
Random Search Methods for Global 
Optimization—Basics 

Abstract Random Search Methods for solving deterministic optimization prob-
lems, as arising in the deterministic substitute problems of stochastic optimiza-
tion and stochastic optimal control problems, are considered in this chapter and 
Chaps. 5–7. Besides mathematical optimization techniques, one of the major meth-
ods for solving deterministic parameter optimization problems is random search 
methods (RSM), for the following reason: Solving optimization problems from engi-
neering and economics, one meets often the following situation: One should find the 
global optimum, hence, most of the deterministic programming procedures, which 
are based on local improvements of the performance index.F(x), will fail: Concern-
ing the objective function. F one has a black-box—situation, i.e., there is only few a 
priori information about the structure of. F , especially there is no knowledge about the 
direct functional relationship between the control or input vector.x ∈ D and its index 
of performance.F(x); hence—besides the more or less detailed a priori information 
about . F—the only way of getting objective information about the structure of .F is 
via evaluations of its values .F(x) by experiments or by means of a numerical pro-
cedure simulating the technical plant. After explaining the basic (RSM)-algorithm, 
conditions are presented guaranteeing the convergence, in some stochastic sense, of 
the search method to a global optimum. As an example, the random search method 
bis applied to discrete optimization problems. Since, especially toward the optimum, 
the speed of convergence may become rather low, possibilities for acceleration of 
(RSM) are considered. A basic method, which will be further developed in the next 
chapters, is to control the distribution of the search variates. 

4.1 Introduction 

Solving optimization problems from engineering, as, e.g., parameter—or process— 
optimization problems 

. min F(x) s.t. x ∈ D, (4.1) 

where .D is a subset of .Rn , one meets often the following situation: 
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(a) One should find the global optimum in (4.1), hence most of the deterministic 
programming procedures, which are based on local improvements of the perfor-
mance index .F(x), will fail. 

(b) Concerning the objective function.F one has a black-box—situation, i.e., there 
is only few a priori information about the structure of . F , especially there is no 
knowledge about the direct functional relationship between the control or input 
vector .x ∈ D and its index of performance .F(x); hence—besides the more or 
less detailed a priori information about . F—the only way of getting objective 
information about the structure of .F is via evaluations of its values .F(x) by 
experiments or by means of a numerical procedure simulating the technical 
plant. 

Consequently, engineers use in these situations often a certain search procedure 
for finding an optimal vector . x , see, e.g., Box’ EVOP method in [ 2] and the random 
search methods as first proposed by Anderson [ 1], Brooks [ 3] and Karnopp [ 5]. 
Obviously, deterministic search methods can be considered as special stochastic 
ones. 

In the basic random search routine considered in this section—allowing not only 
local improvements as in mathematical programming—a sequence of.n-random vec-
tors .X0, X1, . . . , Xt , . . . in .D is constructed according to the following recurrence 
relation: 

.Xt+1 :=
 
zt+1, zt+1 ∈ D and F(zt+1) < F(Xt )

Xt , if zt+1 /∈ D or F(zt+1) ≥ F(Xt ),
(4.2a) 

.t = 0, 1, 2, . . ., where the starting point .X0 := x0 is a realization .x0 of the random 
vector .X0 having the given distribution .PX0 := πstart concentrated on the domain 
.Dstart. In many cases we have .Dstart ⊂ D. If the search process starts at a given, 
fixed point . x0, then .πstart = εx0 , where .εx0 denotes the one-point measure at the 
point . x0. Moreover, .z1 = Z1(ω), z2 = Z2(ω), . . . are realizations of .n-random vec-
tors .Z1, Z2, . . . such that 

. P
(
Zt+1 ∈ B|X0 = x0, X1 = x1, . . . , Xt = xt , Z1 = z1, Z2 = z2, . . . , Zt = zt

)
= P

(
Zt+1 ∈ B|X0 = x0, X1 = x1, . . . , Xt = xt

) = πt (x
t , B), (4.2b) 

where .xt := (x0, x1, . . . , xt ) and .πt (xt , ·) is a given transition probability distribu-
tion, as, e.g., a joint normal distribution with mean. xt and covariance matrix.Q = Qt . 

According to Definition (4.2a), given the states .Xt = xt , first an .n-vector .zt+1 is 
generated randomly according to the distribution .πt (xt , ·). Then, if .zt+1 drops into 
the area of success .GF (xt ), where 

.GF (x) := {
y ∈ D : F(y) < F(x)

}
, (4.3) 

we move to .Xt+1 = zt+1, otherwise we stay at .Xt+1 = Xt . Thus, the whole search 
process .Xt ) stays within the union .D0 := Dstart ∪ D of the domain of the starting
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points and the feasible domain of the basic optimization problem (4.1). If the set of 
starting points .Dstart ⊂ D is contained in the feasible domain . D, then .D0 = D. 

Moreover, we observe that if.Xt+1 ∈ GF (xt ), then also.Xs ∈ GF (xt ) for all.s > t . 
Furthermore, if.F∗ = inf

{
F(x) : x ∈ D

}
and, for given levels.ε > 0,M < 0, resp., 

the set of .ε−,M−optimal solutions of (4.1) is defined by 

. Bε,M := {
y ∈ D : F(y) ≤ F∗ + ε, if F∗ ∈ R, F(y) ≤ M, if F∗ = −∞, resp.

}
,

(4.4a) 
then 

.Xs ∈ Bε,M ⇒ Xs+1 ∈ Bε,M , s = 0, 1, 2, . . . . (4.4b) 

Hence, 
.P(Xs ∈ Bε,M) ≤ P(Xs+1 ∈ Bε,M), s = 0, 1, 2, . . . . (4.4c) 

In the following we assume that the objective function. F of (4.1) is a measurable 
function on .R

n . 

4.2 The Convergence of the Basic Random Search 
Procedure 

For considering the convergence behavior of the search method (4.2a), we examine 
the probability 

. P(Xt ∈ Bε,M), t = 0, 1, 2, . . . ,

that the .t-th iterate .Xt is an .ε-, .M−optimal solution, resp., of (4.1), where . ε >
0,M < 0 are given numbers. According to the considerations at the end of Sect. 4.1 
these probabilities form a nondecreasing, convergent sequence, and due to (4.4b) we  
have that 

.Xt /∈ Bε,M ⇔ X0 /∈ Bε,M , X1 /∈ Bε,M , . . . , Xt /∈ Bε,M , (4.5a) 

hence, 

.P(Xt ∈ Bε,M) = 1 − P(X0 /∈ Bε,M , X1 /∈ Bε,M , . . . , Xt /∈ Bε,M) (4.5b) 

= 1 −
 

x0 /∈Bε,M 

P(X1 /∈ Bε,M , . . . ,  Xt /∈ Bε,M |X0 = x0)π(dx0). 

Denoting by .Kt (xt , · · · ) the conditional distribution of .Xt+1 given . X0 = x0, X1 =
x1, . . . , Xt = xt , we have  

.Kt (x
t , B) = πt

(
xt , B ∩ GF (xt )

)+
(
1 − πt (

(
xt ,GF (xt )

))
εxt (B), (4.6a)
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where .εx is the one-point-measure at . x . Thus, with .Bε,M := D0\Bε,M , we get 

. P(X1 /∈ Bε,M , . . . , Xt /∈ Bε,M |X0 = x0) =
 

x1∈Bε,M

K0(x0, dx1) . . .

 

xt−1∈Bε,M

Kt−2(x
t−2, dxt−1) ·

 

xt∈Bε,M

Kt−1(x
t−1, dxt ). (4.6b) 

Considering first the .t-th integral in the above equation, we obtain 

.

 

xt∈Bε,M

Kt−1(x
t−1, dxt ) = Kt−1(x

t−1, D0\Bε,M) (4.6c) 

= Kt−1(x
t−1 , D0) − Kt−1(x

t−1 , Bε,M ) 
= 1 − Kt−1(x

t−1 , Bε,M ). 

Having .xt−1 /∈ Bε,M we get .εxt−1(Bε,M) = 0 and .Bε,M ⊂ GF (xt−1), see the defi-
nitions (4.3), (4.4a). Hence, (4.6a)–(4.6c) yield 

..

 

xt∈Bε,M

Kt−1(x
t−1, dxt ) ≤ 1 − πt−1(x

t−1, Bε,M) (4.7) 

≤ 1 − inf
{
πt−1(x

t−1 , Bε,M ) : xs ∈ D0\Bε,M , 0 ≤ s ≤ t − 1
}

for all .xs ∈ D0\Bε,M , s = 0.1, . . . , t − 1. 
Defining now.αt , t = 0, 1, ..., by 

.αt := αt (Bε,M) = inf
{
πt (x

t , Bε,M) : xs ∈ D0\Bε,M , 0 ≤ s ≤ t
}
, (4.8) 

from (4.6a), (4.6b) we now obtain 

..P(X1 /∈ Bε,M , . . . , Xt /∈ Bε,M |X0 = x0) ≤
t−1| |
s=0

(1 − αs(Bε,M)) (4.9a) 

Hence, by (4.5b) and (4.9a) it is  

. P(Xt ∈ Bε,M) ≥
1 −  

x0 /∈Bε,M
P(X1 /∈ Bε,M , . . . , Xt /∈ Bε,M |X0 = x0)πstart(dx0)

≥ 1 − (1 − πstart(Bε,M))
t−1| |
s=0

(1 − αs(Bε,M)). (4.9b)
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Since log .u ≤ u − 1, for .u > 0 we have 

.(1 − πstart(Bε,M))

t−1| |
s=0

(1 − αt ) ≤ exp
(− πstart(Bε,M) −

t−1∑
s=0

αs
)

(4.9c) 

and therefore also 

.P(Xt ∈ Bε,M) ≥ 1 − exp
(− πstart(Bε,M) −

t−1∑
s=0

αs
)
. (4.9d) 

Thus, from (4.9d) we get the following convergence result. 

Theorem 4.1 The search process (4.2a) has the following convergence properties: 

(a) If for an .ε > 0,M < 0, resp., 

.

∞∑
s=0

αs(Bε,M) = +∞, (4.10) 

then . lim
t→∞ P(Xt ∈ Bε,M) = 1 . 

(b) Suppose that .F∗ ∈ R and 

. lim
n→∞ P(Xn ∈ Bε) = 1 for every ε > 0. (4.11) 

Then . lim
n→∞ F(Xn) = F∗ a.s. (with probability one), 

(c) Assume that.F∗ ∈ R and. F is continuous and that the level sets.Dε are nonempty 
and compact for each .ε > 0. Then . lim

t→∞ F(Xt ) = F∗ implies that also . lim
t→∞ dist 

.(Xt , D∗) = 0, where dist .(Xt , D∗) denotes the distance between .Xt and the set 

.D∗ of global minimum points of (4.1). 

Proof For a proof of assertions (b) and (c), see [ 8]. ◻
Note 4.1 

(a) For the case that the distribution .πt of .Zt+1 does not depend on the states . xt , 
preliminary versions of the decisive inequality (4.9a) may already be found in 
the early Random Search literature, see, e.g., [ 3]. 

(b) Comparing the above theorem with the 0-1-laws of probability theory we observe 
that this result is essentially a consequence from the Borel-Cantelli-type laws, 
see, e.g., [ 9, p. 400] and [ 4, pp. 1–6, 51–52]. 

Working with random search procedures, one observes that the rate of 
convergence—especially near to the optimum—may be very poor. Hence, in the 
following we consider modified random search procedures with an improved con-
vergence behavior.
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4.2.1 Discrete Optimization Problems 

Consider now the case that .D contains a finite number . r of elements .di ∈ R
n , thus, 

.D = {d1, d2, . . . , dr }. (4.12a) 

Furthermore, assume that .Dstart ⊂ D, hence .D0 = D, and let 

.P
(
Zt+1 ∈ B|X0, X1, . . . , Xt

) = P
(
Zt+1 ∈ B|Xt

)
. (4.12b) 

Hence, .(Zt ) and .(Xt ) are discrete-time stochastic processes. Therefore .(Zt ) is 
described by a transition matrix.(π t

i j ) from.Xt = i to.Zt+1 = j , and the iterates. (Xt )

are described by the transition matrix.(pti j ) from.Xt = i to .Xt+1 = j , .t = 0, 1, . . . . 
For .Xt = di we have .GF (di ) = GF (i) = {

j : F(d j ) < F(di )
}
. The relationship 

between .(π t
i j ) and .(pti j ) reads then: 

.pti j = p(t,t+1)
i j =

⎧⎪⎨
⎪⎩
0, if j /∈ GF (i) and j /= i
1 − ∑

l∈GF (i)
π t
il , if j = i

π t
i j , if j ∈ GF (i).

(4.12c) 

Assuming now stationary search variables .Zt (ω), i.e., in case .π t
i j = πi j for all 

.t = 0, 1, . . ., then also.(Xt ) is stationary and by searching for stationary distributions 
of .(pi j ) we get this result. 

Theorem 4.2 Let .πi j > 0 for all .i, j = 1, ..., r or suppose that .
∑

j∈GF (i)
πi j > 0 for 

all .1 ≤ i ≤ r such that .di is not a solution of the optimization problem (4.1). Then 
.
(
Xt (ω)

)
converges with probability one to a solution of problem (4.1). 

Proof Without limitation we may assume here that.0 < ε < Fmax − F∗. According 
to (4.8) and the above assumptions, for the minimum probabilities .αt = αt (ε) we 
have 

. αt (ε) = inf
{
πt (xt , Bε) : xs ∈ D\Bε, 0 ≤ s ≤ t

} = inf
{
π(xt , Bε) : xt ∈ D\Bε

}
= inf

{ ∑
d j∈Bε

πi j : di /∈ Bε

} =: α0 > 0, (4.12d) 

provided that .πi j > 0 for all indices .i, j . Since .αt (ε) = α0 > 0 for all . t = 0, 1, ...,
and each.ε, 0 < ε < Fmax − F∗, the assertion follows now from Theorem 4.1. Since 
in the present case there are a finite number elements of feasible points.di , i..., r , and 
the sets .GF (i), Bε are contained in each other for corresponding values of .ε, F(di ), 
resp., the proof for the second case follows then also from (4.12d). ◻

Example 4.1 For illustration we may assume—without limitation—that the ele-
ments .d1, d2, . . . , dr of the feasible domain .D are arranged such that
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.F(d1) < F(d2) < . . . < Fdr ). (4.13a) 

Hence, .d1 is the unique minimum point, and the remaining points .d j are arranged in 
strictly increasing order of the function values .F(d j ). With the stationary transition 
probabilities .π(t,t+1)

i j = πi j from .Xt to .Zt+1, the stationary transition matrix . Pt =
P := (pi j ) from.Xt to .Xt+1 reads 

.P =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0
π t
21 1 − π t

21 0 . . . 0
π t
31 π t

32 1 − (π t
31 + π t

32) . . . 0
...

...
...

. . .
...

π t
r1 π t

r2 π t
r3 . . . π t

rr

⎞
⎟⎟⎟⎟⎟⎠
. (4.13b) 

Corresponding to Theorem 4.2 we find that .qT := (1, 0, . . . , 0) is a left fixed 
point of .P and . lim

t→∞ Xt = q with probability . 1. 

4.3 Adaptive Random Search Methods 

In this section we describe a general method how to find search variables .(Zt ) such 
that the convergence of .(Xt ) toward a solution of our basic problem (4.1) is acceler-
ated. This can be achieved by an adaptive selection of the probability distribution of 
the search variates .Z1, Z2, . . .. In order to control the sequence.(Zt ) we assume that 
the probability distribution 

.πt (x0, x1, . . . xt , ·) = πt (at , x0, x1, . . . , xt , ·) (4.14a) 

of .Zt+1 depends on a control parameter vector .at ∈ At (x0, x1, . . . , xt ), where 
.At ⊂ A is the set of admissible controls at time . t and given state-history . xt :=
(x0, x1, . . . , xt ). Moreover .At is assumed to be contained in a fixed set . A. By  

.δ = (δt )t≥0, δt : Rn(1+t) → A, t = 0, 1, . . . (4.14b) 

we denote a decision rule, composed of the control functions or strategies . δt , t =
0, 1, . . ., such that the control parameter vectors .at are given by 

.at := δt (x
t ) ∈ At (x

t ) for xs ∈ D, 0 ≤ s ≤ t, t = 0, 1, . . . . (4.14c) 

The set .∆ of admissible decision rules . δ is defined then by 

. ∆ := {
δ : δ = (δt )t≥0, δt (x0, x1, . . . , xt ) ∈ At (x0, x1, . . . , xt )

for xs ∈ D, 0 ≤ s ≤ t, t = 0, 1, . . .
}
. (4.14d)



110 4 Random Search Methods for Global Optimization—Basics

Note 4.2 Since the transition probabilities .πt (at , x0, x1, . . . , xt , ·) depend on the 
controls . at , the expectation operator .E = Eδ depends on the decision rule . δ. 

Looking for an optimal decision rule . δ∗, clearly we have to guarantee that the 
process .(Xt ) generated by .δ∗ converges actually to a solution of (4.1). 

Note that the reachability property in Theorem 4.1 holds, e.g., if the decision rules 
satisfies the condition, see (4.8), 

. 

∞∑
t=0

inf
{
πt
(
δt (x

t ), xt , BF
ε ) : xt = (x0, x1, . . . , xt ), xs ∈ D\Bε, 0 ≤ s ≤ t

}
= +∞,

(4.15a) 
where, cf. (4.4a) 

.Bε := {
y ∈ D : F(y) ≤ F∗ + ε

}
. (4.15b) 

In the stationary case .πt (at , xt , ·) = π(at , xt , ·) and . δt (xt ) = δ(xt ), t = 0, 1, . . .
(4.14a) is reduced to the much simpler condition 

. inf
{
π
(
δ(x), x, BF

ε

) : x ∈ D\Bε

}
> 0. (4.15c) 

Appropriate utility- or reward-criterion for the evaluation of the individual steps 
.(Xt ) → Xt+1 of the search process .(Xt ) are, e.g., 

(a) Probability of success 

.ut (xt , xt+1) =
 
1, xt+1 ∈ GF (xt )
0, otherwise,

(4.16a) 

hence .Eδ
(
ut (at , Xt , Xt+1)|Xt

) = P
(
Xt+1 ∈ G(Xt )|Xt

)
is the (conditional) 

probability of a success in the state . St . 
(b) Step length 

.ut (Xt , Xt+1) =
 ||Xt+1 − Xt||p , Xt+1 ∈ GF (Xt )

0 , otherwise,
(4.16b) 

where .p ≥ 1 is a fixed number. Here .E
(
ut (at , Xt , Xt+1|Xt

)
is the average step 

length of .Xt+1 into the area of success .G(Xt ). 
A modification of the above case is 

(c) Relative step length 

.ut (Xt , Xt+1) =
⎧⎨
⎩
(||Xt+1 − Xt||

||Xt||
)p

, Xt+1 ∈ GF (Xt )

0 , otherwise.
(4.16c) 

Obviously, any linear combination of the above three criteria yields criterion. In 
the following we suppose
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. F∗ = inf{F(x) : x ∈ D} > −∞.

Search procedures with an improved performance can be constructed now by maxi-
mizing [ 7] the expected (total) reward function 

.U∞(x0, δ) := Eδ

∞∑
s=0

 sus(δs(x
s), xs, xs+1), (4.17a) 

with respect to the decision rule.δ = (δs) involving the control functions. δs satisfying 
the constraints (4.14c). Here, . , 0 <  < 1, denotes still a certain discount factor. 

For the maximization of the expectation of .U∞(x0, δ) next to we consider the 
.(T − t)-stage search processes .(Xs) starting at time . t and running then up to time 
.T > t . Hence, with .Xs = (X0, X1, . . . , Xs), X0 := x0, and . as = δ(Xs), s = t, t +
1, . . . , T − 1, let  

. UT (t, x
t ; δt , . . . , δT−1)

:= Eδ
( T−1∑

s=t

 (s−t)us(δs(X
s), Xs, Xs+1)|X0 = x0, X1 = x1, . . . , Xt = xt

)
(4.17b) 

denote the conditional expected reward of this.(T − t)−stage process, given the time 
history .Xs = xs, s = 0, 1, . . . , t , and the control functions .δt , . . . , δT−1. 

Denote by .Kt (at , xt , ·) the transition probabilities for . Xt → Xt+1

.Kt (at , x
t , B) = P(Xt+1 ∈ B|Xt = xt ) (4.18a) 

of the process.(Xt ) based on search variates.(Zt ) controlled by control inputs. at , t =
0, 1, . . . , where.Xt = (X0, X1, . . . , Xt ) and. B is any Borel subset of.Rn . According 
to the basic definition (4.2a), (4.2b) of .Xt and (4.14a)–(4.14d) it holds 

. Kt (at , x
t , B) = Kt (at , x

t , B) = πt
(
at , x

t , B ∩ G(xt )
)

+
(
1 − πt

(
at , x

t ,G(xt )
))
εxt (B), (4.18b) 

cf. (4.6b), where.at = δt (xt ), and.εx denotes again the one-point measure at the point 
.x ∈ R

n . 
Due to the above definitions, the reward functions .UT (t, xt ; δt , . . . , δT−1), . t =

0, 1 . . . , T − 2, T − 1, see  (4.17b), satisfy the recurrence rations 

. UT (t, xt ; δt , . . . , δT−1) =  (
ut
(
δt (xt ), xt , xt+1

)

+ UT
(
t + 1, (xt , xt+1); δt+1, . . . , δT−1)

))
Kt (δ(xt ), dxt+1) = ūt (δt (xt ), xt )

+ 
 
UT

(
t + 1, (xt , y); δt+1, . . . , δT−1)

)
Kt (δ(xt ), xt , dy), (4.19a)
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where 

. ūt (at , x
t ) = E

(
ut (at , Xt , Xt+1)|Xt = xt

) =
 

ut (at , xt , y)Kt (at , x
t , dy).

(4.19b) 
With the set .∆ of admissible decision rules . δ, cf.  (4.14d), the value function of the 
.(T − t)-stage process .Xt , . . . , XT with given state-history .xt is now defined by 

. V T
t (x

t ) := sup
δt ,...,δT−1

{
UT (t, x

t ; δt , . . . , δT−1) :

δs(x
s) ∈ As(x

s), xs ∈ D(s+1), t ≤ s ≤ T − 1
}
, (4.20) 

where .D(s+1) denotes the .(s + 1)-fold Carthesian product of . D. 
As mentioned already above, the set of restrictions in (4.20) should also include a 

condition guaranteeing that the whole search process.(Xt ) controlled by the decision 
rule .δ = (δt ) satisfies a reachability condition according to Theorem 4.1. However, 
in many practical problems this condition may be deleted since the optimal decision 
functions .δ∗

t defined by the optimization problem (4.20) can be shown to generate a 
search process .(X∗

t ) fulfilling a sufficient reachability condition. 
From (4.19a), (4.19b), for the value functions .V T

t (x
t ) we get then the following 

recurrence relation: 

Theorem 4.3 Let .V T
T (x

T ) = 0 for all .xT ∈ R
(T+1)n. If for all steps . t under consid-

eration the maximum is attained in (4.20), then the following backwards recurrence 
relation holds 

.V T
t (x

t ) = sup
a∈At (xt )

 (
ut (a, xt , y) + V T

t+1

(
(xt , y)

))
Kt (a, x

t , dy) (4.21) 

= sup 
a∈At (xt )

(
ūt (a, xt ) +

 
V T t+1(x

t , y)Kt (a, xt , dy)
)
, 

.t = T − 1, T − 2, . . . , 1, 0, where .a = δt (xt ). 

Proof Omitting for simplification the constraint set in (4.20), from (4.19a), (4.19b) 
we get 

. V T
t (xt ) := sup

δt ,...,δT−1

UT (t, x
t ; δt , . . . , δT−1) = sup

δt

sup
δt+1,...,δT−1

UT (t, x
t ; δt , . . . , δT−1)

= sup
δt

sup
δt+1,...,δT−1

(
ūt (δt (x

t ), xt )

+ 

 
UT

(
t + 1, (xt , y); δt+1, . . . , δT−1)

)
Kt (δ(x

t ), xt , dy)
)

= sup
at∈At (xt )

(
ūt (at (, x

t )

+  sup
δt+1,...,δT−1

 
UT

(
t + 1, (xt , y); δt+1, . . . , δT−1)

)
Kt (δ(x

t ), xt , dy)
)
. (4.22a)



4.3 Adaptive Random Search Methods 113

Now, according to (4.17b) we have  

. UT (t + 1, (xt , y); δt+1, . . . , δT−1) = Ext ,yuT (t + 1, (xt , y), δt+1(x
t , y),

δt+2(x
t , y, Xt+2), . . . , δT−1(x

t , y, Xt+2, . . . , XT−1)), (4.22b) 

where .Ext ,y denotes the conditional expectation given .Xt+1 = (xt , y) and .X j are 
random vectors defined by (4.2a), (4.2b) and .uT is the sum in (4.17b). Taking 
now, cf. (4.22a), the integral in (4.22b) with respect to .y and then the supre-
mum with respect to .δt+1, . . . , δT−1 under the constraints . δs(xs) ∈ As(xs), xs ∈
D(s+1), t + 1 ≤ s ≤ T − 1, see  (4.20), the question is whether the integral and the 
supremum can be interchanged. Assuming that the suprema in (4.22b) are attained 
at .a∗

s = δ∗
s (x

s), xs ∈ D(s+1), t + 1 ≤ s ≤ T − 1, with the conditional expectation 
operator .Ext with respect to .Xt = xt , from (4.22b) we get 

. ExtUT
(
t + 1, (xt , y); δ∗

t+1, . . . , δ
∗
T−1

)
≤ sup

δt+1,...,δT−1

ExtUT
(
t + 1, (xt , y); δt+1, . . . , δT−1)

)

≤ Ext sup
δt+1,...,δT−1

UT
(
t + 1, (xt , y); δt+1, . . . , δT−1)

)

= ExtUT
(
t + 1, (xt , y); δ∗

t+1, . . . , δ
∗
T−1)

)
. (4.22c) 

Thus, (4.22c) yields 

. sup
δt+1,...,δT−1

ExtUT
(
t + 1, (xt , y); δt+1, . . . , δT−1)

)

= Ext sup
δt+1,...,δT−1

UT
(
t + 1, (xt , y); δt+1, . . . , δT−1)

) = V T
t+1(x

t , y). (4.22d) 

The assertion follows now from equation (4.22a) and (4.22d). ◻

Remark 4.1 According to the definition (4.18b) of .Kt (at , xt , ·) we have 

. 
 
V T
t+1(x

t , y)Kt (a, xt , dy) =  
y∈G(xt )

V T
t+1(x

t , y)πt (a, xt , dy)

+V T
t+1(x

t , xt )
(
1 − πt

(
a, xt ,G(xt )

))
. (4.23a) 

Furthermore, assuming.ut (a, x, x) = 0 for all.t = 0, 1, . . ., and.x ∈ R
n , we have,  

cf. (4.19b), 

.ūt (a, x
t ) =

 
y∈G(xt )

ut (a, xt , y)πt (a, x
t , dy). (4.23b) 

In the important Markovian case, i.e., if 

.πt (a, x
t , ·) = πt (a, xt , ·) and At (x

t ) = At (xt ), (4.23c)
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the value function .V T
t depends only on . xt , see  (4.14a)–(4.14d), (4.17b), (4.18a), 

(4.18b), and (4.21) has the form 

.V T
t (xt ) = sup

a∈At (xt )

(
ūt (a, xt ) +

 
V T
t+1(y)Kt (a, xt , dy)

)
. (4.23d) 

In the one-stage case .t = T − 1 equation (4.21) has the simple form 

.V T
T−1(x

T−1) = sup
{
ūT−1(a, x

T−1) : a ∈ AT−1(x
T−1)

}
. (4.23e) 

4.3.1 Infinite-Stage Search Processes 

The decision process defined by (4.21) is called the sequential stochastic decision 
process associated with the random search procedure (4.2a), (4.2b). An important 
variant of this decision process results in the infinite-stage stationary Markovian case. 

Let.πt (at , xt , ·) = π(at , xt , ·),.At (xt ) = A(xt ) ,.ut (at , xt , xt+1) = u(at , xt , xt+1), 
.δt (xt ) = δ(xt ), t = 0, 1, . . . . Moreover, let .0 <  < 1 be a certain discount factor. 
According to Theorem 4.3, the value function.V T

t = V T
t (x) of the (T-t)-stage process 

depends only on the state .xt = x and fulfills the recurrence relation: 

.V T
t (x) = sup

a∈A(x)

(
ū(a, x) +

 
V T
t+1(y)K (a, x, dy)

)
, (4.24a) 

.t = T − 1, T − 2, . . . , 1, 0, where .a = δ(xt ). Introducing the stage transformation 

.(T − t) → t , the transformed value function 

.Wt (x) := V T
T−t (x), t = 0, 1, . . . (4.24b) 

satisfies (insert .s := T − t and replace then again .s → t) the forward recurrence 
relations 

.Wt (x) = sup
a∈A(x)

(
ū(a, x) +  

 
Wt−1(y)K (a, x, dy)

)
, t = 0, 1, . . . , (4.24c) 

where the functional equation (4.24c) holds for each integer . T , and we have, cf. 
Theorem 4.3, .W0(x) = 0. 

Under certain conditions the sequence .
(
Wt (x)

)
is convergent to the function 

.W ∗(x) satisfying the asymptotic functional equation 

.W ∗(x) = sup
a∈A(x)

(
ū(a, x) +  

 
W ∗(y)K (a, x, dy)

)
. (4.24d)
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Moreover, an optimal decision rule .δ∗ is then given by .δ∗(x) = a∗ ∈ A(x), where 
.a∗ is a solution of the maximization problem in (4.24d). 

4.4 Convex Problems 

For simplicity, here we only consider here the minimization of a real-valued convex 
function .F : R → R with respect to .D = R. Assuming the second derivative . F ''
exists and .F ''(x) > 0 for all .x ∈ R, the interval . G(x) = {

y ∈ R : F(y) < F(x)
}

may be approximated by the interval 

.H(x) =
 
y ∈ K : F '(x)(y − x) + F ''(x)

2
(y − x)2 < 0

 
. (4.25a) 

It is easy to see that 

.H(x) =
 
y ∈ R : x < y < x − 2

F '(x)
F ''(x)

 
, if F '(x) < 0, (4.25b) 

.H(x) = G(x) = ∅, if F '(x) = 0, (4.25c) 

.H(x) =
 
y ∈ R : x − 2

F '(x)
F ''(x)

< y < x

 
, if F '(x) > 0. (4.25d) 

For the conditional distribution .π(a, x, ·) of the search variables .(Zt ) given . Xt = x
we choose now a normal distribution with mean.μ = x and variance.σ 2 = a2. Hence, 
in this case our decision parameter . a is then the standard deviation . σ . Furthermore, 
according to the above approximation of .G(x) by .H(x), we approximate the utility 
function .u(a, x, y) of Sect. 4.3, by  

.ũ(a, x, y) =
 |y − x | , y ∈ H(x)

0 , otherwise.
(4.26a) 

Obviously, the stochastic decision process associated with the random search 
procedure (4.2a), (4.2b) is stationary and .ū(a, x) may be approximated by 

. ¯̃u(a, x) :=
 

y∈H(x)

ũ(a, x, y)π(a, x, dy)

= σ√
2π

(
1 − exp

(
−1

2

(
2F '(x)
σ F ''(x)

)2
))

. (4.26b)
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Starting from .W̃0(x) = W0(x) = 0, the approximate .W̃1(x) = sup
σ>0

¯̃u(σ, x) to the 

value function .W1(x), see  (4.24c) and the approximative decision function . σ̃1 =
σ̃1(x), defined by .W̃1(x) = ¯̃u(σ̃1, x), are given by the following theorem. 

Theorem 4.4 Let . g be the function .g(t) = 1√
2π t

(
1 − exp(− 1

2 t
2)
)
, and let denote 

.t∗ > 0 the number where . g attains its maximum . g∗. Then, 

.W̃1(x) = g∗
||||2F

'(x)
F ''(x)

|||| and σ̃1(x) = 1

t∗

||||2F
'(x)

F ''(x)

|||| . (4.27) 

Proof Using the transformation .σ → t := 1
σ

||| 2F '(x)
F ''(x)

|||, according to (4.26b) and the 
above definition of the function.g = g(t), we have. ¯̃u(σ, x) =

||| 2F '(x)
F ''(x)

||| g(t). This yields 
the assertion. ◻

Obviously, according to (4.26a), .W̃1(x) = g∗
||| 2F '(x)
F ''(x)

||| is an approximate to the 

average step length .s1(x) of the first step .X0 → X1 of the search process .(Xt ). 
Comparing this result with Newton’s method . x → y = x − α(x) F '(x)

F ''(x) , α(x) > 0
for the minimization of . F , we observe that in Newton’s method the step length 

.sN (x) = |y − x | = α(x)
||| F '(x)
F ''(x)

||| has—up to a normalizing factor—the same form as 

.s1(x). 
Similar results are obtained from comparisons of Theorem 4.4 with deterministic 

and stochastic gradient procedures. 
In general, the computation of the further iterates .W̃t and .δ̃t , t = 2, 3, . . . will 

be in general hardly carried out in practice, because of its difficulty and because 

.σ̃ (x) = τ(x)
||| 2F '(x)
F ''(x)

|||with a normalizing factor.τ(x) > 0 is a reasonable approximate 

to the optimal decision rule. This is also confirmed by numerical experiments. On 
the other hand, for the quadratic case 

. F(x) = x2

we can obtain the exact results. In fact, then we have that .H(x) = G(x) and 
.W1(x) = W̃1(x) = 2g∗|x | as also.σ1(x) = σ̃1(x) = 2

t∗ |x |. For solving now the func-
tional equation (4.24b) we work therefore with the assumptions 

.W ∗(x) = C |x | and σ ∗(x) = c|x |, (4.28) 

where .C, c are positive constants. 

Theorem 4.5 The optimal value.W ∗ and the optimal decision rule.δ∗(x) = σ ∗(x) of 
the infinite-stage stationary stochastic decision process associated with the random 
search procedure for the minimization of .F(x) = x2 has the form (4.28), where 

.c ≈ 8
√
π

4
√
π −  

√
2
and .C ≈ 1√

2π
−  

4π
.
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Proof See [ 6]. ◻

Note 4.3 As was mentioned in Sect. 4.1, often an analytic expression for .F is not 
known and only the function values .F(x) may be obtained. Hence the derivatives 

.F '(x), F ''(x) in the “optimal” decision rule .σ̃ (x) = τ(x)
||| 2F '(x)
F ''(x)

||| must be estimated 

from observations of . F . 
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Chapter 5 
Controlled Random Search Methods 
as a Stochastic Decision Process 

Abstract As already discussed in the preceding chapter, in order to develop proce-
dures for increasing the rate of convergence of the basic search method, the stochas-
tic search procedure is equipped with a mechanism for controlling the conditional 
probability distributions of the search variates at the iteration points, generating the 
new trial points for improving the current iteration point. In an attendant control or 
stochastic decision process, the parameters of the search variables can be selected to 
maximize criteria for measuring the progress of the search, such as the probability 
of a step into the area of success, or the mean step length into the area of success 
at a certain iteration point. Due to the black-box situation concerning the objective 
function . F , we have a stochastic control or decision process under uncertainty con-
cerning the objective function. Based on a Bayesian approach, with the obtained 
information from the search algorithm, the conditional distribution of . F , given  the  
information obtained during the search, can be determined. 

5.1 The Controlled (or Adaptive) Random Search Method 

In order to increase the rate of convergence of the basic search method (4.2a), accord-
ing to Sect. 4.3 we consider the following procedure, cf. [ 2, 3]. Based on the basic 
random search method (4.2a), by means of the definitions (I)–(III) we describe first 
an (infinite-stage) sequential stochastic decision process associated to (4.2a). 

(I) We use next to the fact that the transition probabilities .πt (xt , ·) depend 

. πt (x
t , ·) = πt (a, x

t , ·)

usually on certain parameters .a = (a j ) jεJ ∈ A, as, e.g., on certain (mixed) 
moments of the random vector .Zt+1. Let  

. ĥt = (x0, x1, . . . , xt , z1, . . . , zt−1)
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be the process history of .Xt , Zt up to time . t . The idea, developed first in [ 2, 
3], is now to run the random search not with a fixed parameter . a, but to use an 
“optimal” control 

. a = a∗
t (x

t ) or a = a∗
t (ĥ

t )

of the parameter . a such that a certain criterion measuring the progress of the 
search, as, e.g., the probability of a search success or the mean step length 
into the area of success at each step .Xt → Xt+1 is as large as possible. In the 
following, 

. ht = (x0, x1, . . . , xt , z1, z2, . . . , zt , a0, a1, . . . , at−1)

denotes the total process history up to time . t . 
(II) To each step .xt → Xt+1 there is associated a conditional mean (search-) gain 

.E
(
ut (at , xt , Xt+1)|ht

)
E
(
ut (at , xt , Zt+1)|ht

)
. (5.1a) 

Working, e.g., with the probability of a search success resp. the mean improve-
ment of .F resp. the mean (relative) step length into the area of success, .ut is 
given by 

. ut (at , xt , zt+1) = 1,= F(xt )− F(zt+1),= ||xt − zt+1||
= ||xt − zt+1||

||xt|| , resp., if zt+1 ∈ GF (xt )

ut = 0 ifzt+1 /∈ GF (xt ). (5.1b) 

Calculating the conditional mean again in (5.1a) we have to solve next to inte-
grals of the type 

.J (xt , F) =
 

F(zt+1)<F(xt )
zt+1∈D

ut (at , xt , zt+1)πt (at , x
t , dzt+1). (5.2) 

However, because of the black-box-situation concerning the objective func-
tion .F of (4.1), i.e., having available at stage . t only the discrete .F-values 
.F(x0), F(z1), . . . , F(zt ) as also the given some a priori information on . F , the  
inequality .F(zt+1) < F(xt ) in (5.2) can not be evaluated in general. Conse-
quently, the integral .J (xt , F) can not be computed in general because of the 
missing knowledge about . F . 

(III) In order to cope with this uncertainty, we may proceed in the following two 
different ways: 

III.1 Approximation of the area of success .GF (xt ), see  (4.3),  by a set  .  GF (xt )
which may be described by the information available on. F up to the current 
time . t .
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As an example we mention here the following Random-Search-Newton-
Method [ 3]: Similar to the (deterministic) Newton method in optimization, 
at state. xt we approximate first the value.F(zt+1) by the second-order Taylor 
polynomial 

. F(zt+1)

≈F(xt )+ ∇F(xt )
T (zt+1 − xt )+ 1

2
(zt+1 − xt )

T∇2F(xt )(zt+1 − xt )

(5.3a) 

at . xt , where the derivatives .∇F,∇2F of .F may be obtained approximately 
by a numerical differentiation procedure using the process history . ht . 
Then, .GF (xt ) can be approximated by the set 

.  GF (xt ; ĥt ) := {
y ∈ D :  ∇F(xt ; ĥt )T (y − xt )

+1

2
(y − xt )

T
 ∇2F(xt ; ĥt )(y − xt ) < 0

}
, (5.3b) 

where. ∇F(xt ; ĥt ), ∇2F(xt ; ĥt ) are approximations to the gradient, Hessian, 
resp., .∇F(xt ),∇2F(xt ) of .F at .xt based on the process history . ht . The  
conditional mean gain (5.1a), (5.1b) be approximated now by 

. E
(
ut (at , xt , Zt+1)|ht

) ≈ E
(
ũt (at , xt , Zt+1)|ĥt

)

:=
 

zt+1ε GF (xt ;ĥt )

ut (at , xt , zt+1)πt (at , x
t , dzt+1). (5.3c) 

By (I), (II), (III.1) we have now an infinite-stage sequential stochastic deci-
sion process for the definition of an optimal parameter control . a∗

t = a∗
t (h

t )

speeding up the random search according to the chosen searching-gain crite-
ria. ut . Since in practice our aim is to speed up to some extent the convergence 
of the basic random search procedure (4.2a) for solving (4.1), the compu-
tational effort for finding an optimal decision rule .a∗

t , t = 0, 1, . . ., should 
remain in realistic bounds. Hence, for practical purposes we are not inter-
ested in the exact solution .a∗

t = a∗
t (h

t ) of the associated decision process, 
but we are looking for a sub-optimal control .a∗

t obtainable by a reasonable 
computational effort. Approximating therefore the infinite-stage decision 
process by the family of 1-stage decision processes, .a∗

t may be defined by 

.a∗
t = a∗

t (ĥ
t ) ∈ arg max

a∈At (xt )
E
(
ũt (a, xt , Zt+1)|ĥt

)
, (5.4) 

where .At = At (xt ) denotes still the set of parameters available at .(t, xt ). 
Having by the application of .a∗

t a local improvement of the convergence



122 5 Controlled Random Search Methods as a Stochastic Decision Process

behavior of the random search, we will show later on also the convergence 
of the controlled process .X∗

t toward .Bε,M . 
Now the second method for handling the uncertainty concerning .F is 
described. 

III.2 Because of the missing information about the objective function . F , actu-
ally we have a sequential stochastic decision process under uncertainty. 
Hence, the conditional mean search gain (5.1a), (5.1b) must be defined by 

.E
(
ut (at , xt , Xt+1)|ht

) =
 

J (xt , F)μht (dF), (5.5) 

where .J (xt , F) is given by (5.2), and .μht is the conditional distribution 
of the unknown . F, given the process history . ht. For the proper definition 
of .μht we need first a mathematical representation of the given a priori 
information about. F , as, e.g., . “.F is an unknown polynomial in . n variables” 
or . “.a(x) ≤ F(x) ≤ b(x) for all .x ∈ D with given functions .a(·), b(·)”. 
We use a Bayesian model for the unknown . F : We assume that there is 
a measurable space .(θ, A) of parameters . θ and an a priori distribution . μ0

of the parameters . θ on .A such that the objective function .F of (4.1) is a  
realization 

.F(x) = f (x, θ0), x ∈ Rn, (5.6a) 

a. of a stochastic function.y = f (x, θ), x ∈ Rn, θ ∈  , on.R
n , where.θ0 is the 

true, but unknown parameter. We assume that each realization . f (·, θ) of . f
is a measurable function on .R

n . 

Note 5.1 We observe that similar models for unknown functions in engineering have 
been used also in [ 1, 4]. 

In the next Sect. 5.2 we will show that 

. μht = μĥt ,

i.e., the posterior distribution .μt
h of .F depends only on . ĥt = (x0, x1, . . . , xt , z1,

.. . . , zt ), but not on .a0, a1, . . . , at−1. Hence, due to (5.5) it is  

. E
(
ut (at , xt , Xt+1)|ht

) =
 

J (xt , F)μht (dF)

=
 

J (xt , F)μĥt (dF) = E
(
ut (at , xt , Xt+1)|ĥt

)
. (5.7a)
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Approximating as in approach III.1 the associated infinite-stage stochastic decision 
process by the family of 1-stage decision processes, a (sub-) optimal control .a∗

t may 
be defined by 

.a∗
t = a∗

t (ĥ
t ) = a∗

t (xt , μĥt ) ∈ arg max
a∈At (xt )

E
(
ut (at , xt , Xt+1)|ĥt

)
. (5.7b) 

Hence in both cases (5.4), (5.7b), the.πt -parameter control.a∗
t depends on the.(Xt , Zt )-

history .ĥt only. 

5.1.1 The Convergence of the Controlled Random Search 
Procedure 

As mentioned at the end of III.1 we have now to consider the convergence of the 
process .X∗

0, X
∗
1, . . . controlled by .a

∗
t , t = 0, 1, . . ., toward the set .Bε,M of .(ε,M)-

optimal solutions of (4.1), cf. (4.4a). 
For this controlled procedure, denoted by .Z∗

t , X
∗
t , we consider similar to Sect. 

4.3 first the conditional distribution. Kt (ĥt , ·) of the tuple .(Z∗
t+1, X

∗
t+1), given. Z∗t =

zt , X∗t = xt as also given the unknown. F . Denoting by .TF,x the mapping 

.TF,x (y) =
 
y, if y ∈ GF (x),
x, else

, (5.8) 

obviously we have that .Xt+1 = TF,xt (Zt+1) and therefore 

.  Kt (ĥ
t , A × B) := P(Z∗

t+1 ∈ A, X∗
t+1 ∈ B|Z∗t = zt , X∗t = xt )

= P
(
Z∗
t+1 ∈ A, TF,xt (Z

∗
t+1) ∈ B|Z∗t = zt , X∗t = xt

)

=
 

zt+1∈ 
TF,xt (zt+1)∈B

πt
(
a∗
t (ĥ

t ), xt , dzt+1
)

=
 

zt+1∈A∩B
zt+1∈GF (xt )

πt (a
∗
t , x

t , dzt+1)+

⎛

⎜
⎜
⎝

 

zt+1∈A
zt+1 /∈GF (xt )

πt (a
∗
t , x

t , dzt+1)

⎞

⎟
⎟
⎠ εxt (B), (5.9) 

where the last equality follows from.zt+1 ∈ GF (xt ) ⇒ TF,xt (zt+1) = zt+1 and. zt+1 /∈
GF (xt ) ⇒ TF,xt (zt+1) = xt . 

Corresponding to (4.5a), (4.5b), (4.6a), and (4.6b), for the unknown, but fixed 
objective function .F it holds then that 

. P(X∗
t ∈ Bε,M |F) = 1 − (

1 − 1Bε,M (x0)
)
P(X∗

1 /∈ Bε,M , . . . , X
∗
t /∈ Bε,M |F).

(5.10)
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Putting .Bε,M := D\Bε,M , we get 

. P(X∗
1 /∈ Bε,M , . . . , X

∗
t /∈ Bε,M |F) =

= P
(
(Z∗

1 , X
∗
1) ∈ Rn × Bε,M , (Z

∗
2 , X

∗
2) ∈ Rn × Bε,M , . . . , (Z

∗
t , X

∗
t )

∈ Rn × Bε,M |F)

=
 

z1∈Rn
x1∈Bε,M

 K0(x0, dz1, dx1) . . .
 

zt−1∈Rn
xt−1∈Bε,M

 Kt−2(ĥ
t−2, dzt−1, dxt−1),

·
 

zt ∈Rn
xt ∈Bε,M

 Kt−1(ĥ
t−1, dzt , dxt ). (5.11) 

Proceeding now as in (4.7)–(4.9d), we obtain next to by means of .xt−1 /∈ Bε,M and 
(5.8) 

. 

 

zt∈Rn
xt∈Bε,M

 Kt−1(ĥ
t−1, dzt , dxt ) =  Kt−1

(
ĥt−1,Rn × (D\Bε,M )

)

= 1 −  Kt−1(ĥ
t−1,Rn × Bε,M )

= 1 −
 

TF,xt−1 (zt )∈Bε,M
πt−1(a

∗
t−1, x

t−1, dzt ) = 1 − πt−1
(
a∗
t−1, x

t−1, Bε,M ∩ GF (xt−1)
)

= 1 − πt−1(a
∗
t−1, x

t−1, Bε,M ), (5.12a) 

where the last two equalities hold because of.xt−1 /∈ Bε,M . Denoting by.U a subset of 
.R

n containing all supports of the conditional distributions. πt (at , xt , ·), t = 0, 1, . . . ,
corresponding to .αt in Sect. 4.2.1 

. α∗
t = α∗

t (ε,M, F)

= inf
{
πt
(
α∗
t (ĥ

t ), xt , Bε,M
) : zs ∈ U, xs ∈ D\Bε,M , 1 ≤ s ≤ t

}
(5.12b) 

is the minimal probability for finding an .(ε,M)-optimal solution of (4.1) at stage 
.t = 1, 2, . . .. Because of 

.

 

zt ∈Rn
xt ∈Bε,M

 Kt−1(ĥ
t−1, dzt , dxt ) ≤ 1 − α∗

t−1, t = 1, 2, . . . , (5.12c) 

from (5.11) we obtain with .α∗
0 = π0

(
a∗
0(x0), x0, Bε,M

)
that
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. P(X∗
1 /∈ Bε,M , . . . , X

∗
t /∈ Bε,M |F)

≤
(
1 − π0

(
a∗
0(x0), x0, Bε,M

)) t−1∑

s=1

(1 − α∗
s ) =

t−1| |

s=0

(1 − α∗
s ). (5.13) 

Thus, by (5.10) and (5.13) yield, cf. (4.9a)–(4.9d), 

.P(X∗
t ∈ Bε,M |F) ≥ 1 −

t−1| |

s=0

(1 − α∗
s ) ≥ 1 − exp

(

−
t−1∑

s=0

α∗
s

)

. (5.14) 

Hence, we proved the following result, see Theorem 4.1. 

Theorem 5.1 (Convergence of the controlled Random Search Method) 

If .
∞∑

s=1

α∗
s (ε,M, F) = +∞, then . lim

t→∞ P(X∗
t ∈ Bε,M |F) = 1. 

Example 5.1 Let.πt (at , xt , ·) be a normal distribution with mean.xt and covariance 
matrix .Q = (σ 2

i δik), where 

. at = at (ĥ
t ) = (

σ1(ĥ
1), σ2(ĥ

t ), . . . , σn(ĥ
t )
)T

and.δi j = 1 if.i = j, δi j = 0 if.i /= j . If we know about. F at least that.Bε,M is bounded 
and has non-zero measure, then from the above theorem we get immediately this 
consequence. 

Corollary 5.1 Let .Bε,M be bounded and have non-zero Lebesgue-measure. 

If the variance control.a∗
t = (

σ ∗
1 (ĥ

t ), . . . σ ∗
n (ĥ

t )
)T

fulfills.σ ∗
t (ĥ

t ) ≥ σ0 > 0 for all. t =
1, 2, . . . and all values of . ĥt , then .

∞∑

s=1
α∗
s = ∞ and therefore . lim

t→∞ P(X∗
t ∈ Bε,M |F)

= 1. 

For practical purposes—besides the convergence of.X∗
t toward an.(ε,M)-optimal 

solution of (4.1)—of great importance is a stopping criterion for the searching 
procedure. 

5.1.2 A Stopping Rule 

A suitable criterion for terminating the search at stage .t = T would be 

.P(X∗
1 /∈ Bε,M) ≤ P, (5.15) 

i.e., the probability that .X∗
T is not an .(ε,M)-optimal solution of (4.1) is not greater 

than a prescribed small value . p. By (5.11) and (5.13) for this probability we have 
the estimate
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.P(X∗
T /∈ Bε,M) = P(X∗

T /∈ Bε,M |F) ≤
T−1| |

s=0

(
1 − α∗

s (ε,M, F)
)
. (5.16) 

If the minimal probabilities.α∗
s (ε,M, F) have a lower bound.α̃ > 0, then from (5.15) 

we get obviously this next result. 

Lemma 5.1 Let .α∗
t (ε,M, F) > α̃ > 0 for all .t = 0, 1, 2, . . .. 

Then, the stopping criterion (5.15) is satisfied if 

.T ≥ log p

log(1 − α̃)
. (5.17) 

Due to the uncertainty concerning. F we can not work in general with the expression 
in (5.15) and (5.16) directly. However, replacing the unknown function .F by its 
conditional distribution.μhT −1 known at stage.T − 1, we may approximate (5.15) by  
the stopping rules 

.

 
P
(
X∗
T /∈ Bε,M( )|F

)
μhT−1(dF) ≤ p, (5.18a) 

.

 T−1| |

s=0

(
1 − α∗

s (ε,M, F)
)
μhT−1(dF) ≤ p, (5.18b) 

5.2 Computation of the Conditional Distribution of . F
Given the Process History: Information Processing 

According to the uncertainty-model for the unknown objective function .F of (5.6a) 
described in Sect. 5.1, (III.2), we assume that .F is a realization . F(x) = f (x, θ0)
of a stochastic function .y = f (x, θ), θ ∈  . Moreover, .μ0 denotes the a priori dis-
tribution (on a .σ -algebra . A on .  ) of the stochastic parameter . θ , and by . f = f (x)
we denote any realization . f (·, θ) of the stochastic function .y = f (x, θ). Instead 
of .μ0(dθ), μht (dθ), we also write .μ0(d f ), μht (d f ), resp., interpreting then . μ0, μht

as conditional probability distributions on a certain.σ -algebra.AF on an appropriate 
space.F of possible objective functions. f defined (at least) on the admissible domain 
.D, D ⊂ Rn . 

Given the process history . ht = (x0, x1, . . . , xt , z1, z2, . . . , zt , a0, a1, . . . , at−1)

obtained from the search process .(Zt , Xt , t = 1, 2, ..., to find the minimum of the 
function .F = F(x), according to the definition of the random search process we 
have the following relations: 

.TF,xs (zs+1) = xs+1, t0, 1, . . . , t − 1, (5.19) 

where .TF,xs (zs+1) is defined by (4.3), (5.8).
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At each stage .s = 0, 1, . . . , t − 1, there are then three different possibilities: 

(i) .zs+1 /∈ D (search failure I). 
In this case it is .zs+1 /∈ GF (xs) and therefore 

. xs+1 = TF,xs (zs+1) = xs .

But in the same way, for each realization. f of. f (x, θ) because of .zs+1 /∈ D we 
find that 

. T f,xs (zs+1) = xs .

Hence, because of .xs+1 = xs , in this case (i) the constraint 

. T f,xs (zs+1) = xs+1

is satisfied automatically and can therefore be omitted. 
(ii) .zs+1 ∈ D and .F(zs+1) ≥ F(xs) (search failure II). 

In this case we again have that 

. xs+1 = TF,xs (zs+1) = xs .

Now for . f we have the constraint 

. T f,xs (zs+1) = xs+1 = xs

which holds if and only if 
. f (zs+1) ≥ f (xs).

Indeed, assume that . f (zs+1) < f (xs). But this implies that .zs+1 /= xs and 
.xs+1 = T f,xs (zs+1) = zs+1 /= xs which is a contradiction to the constraint 
.T f,xs (zs+1) = xs+1 = xs . 

(iii) .zs+1 ∈ D and .F(zs+1) < F(xs) (search success). 
Here it is 

. xs+1 = FF,xs (zs+1) = zs+1 /= xs,

hence for . f we have the constraint 

. T f,xs (zs+1) = xs+1 = zs+1 /= xs

which is possible if and only if 

. f (zs+1) < f (xs).

Indeed, assume that . f (zs+1) ≥ f (xs). This implies .T f,xs (zs+1) = xs , which is 
a contradiction.
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Based on the segment .xs, zs+1, zs+1 of the time history .ĥt and the observed 
values of the true, but unknown function .F(x) = f (x, θ0), we find that the 
following constraints for the parameter . θ of the unknown model function . f =
f (x, θ): 

.T f,xs (zs+1) = xs+1 is equivalent to

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

no constraint, if zs+1 /∈ D
f (zs+1) ≥ f (xs), if zs+1 ∈ D
and F(zs+1) ≥ F(xs)
f (zs+1) < f (xs), if zs+1 ∈ D
and F(zs+1) < F(xs).

(5.20a) 

Consequently, given the time history. (ht ), . ĥt , the  set. ht =  (ĥt ) of admis-
sible parameters . θ up to stage . t is defined recursively by 

. (h0) =  (h0) :=  (5.20b) 

. (ĥt+1) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

 (ĥt ), if zt+1 /∈ D{
θ ∈  (ĥt ) : f (zt+1, θ) ≥ f (xt , θ)

}
, if zt ∈ D

and F(zt+1) ≥ F(xt ){
θ ∈  (ĥt ) : f (zt+1, θ) < f (xt , θ)

}
, if zt ∈ D

and F(zt+1 < F(xt ).

(5.20c) 

Note 5.2 Obviously we have 

. θ0 ∈  (ht ) ⊂  (ht−1), t = 0, 1, . . . .

From the above consideration we get the following result: 

Theorem 5.2 (Representation of the admissible set of parameters) 

(a) Given the time history . ht , the recursion for the admissible parameter domains 
. (ĥt) can be given by 

. (h0) =  (h0) :=  , (5.21a) 

. (ĥt+1) = {
θ ∈  (ĥt ) : T f (·,θ),xt (zt+1) = xt+1

}
, t = 0, 1, ... (5.21b) 

(b) Let then the index sets .I1(ĥt ), .I2(ĥt ) be defined by 

.I1(ĥ
t ) = {

s : 0 ≤ s ≤ t − 1, zs+1 ∈ D and F(zs+1) ≥  (xs)
}
, (5.21c) 

.I2(ĥ
t ) = {

s : 0 ≤ s ≤ t − 1, zs+1 ∈ D and F(zs+1) < F(xs)
}
. (5.21d) 

By these definitions the set . (ĥt ) of admissible parameters at stage . t can be 
represented in the following form:
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. (ĥt ) = {
θ ∈  : f (zs+1, θ) ≥ f (xs, θ) for s ∈ I1(ĥ

t ), (5.21e) 

f (zs+1, θ  )  <  f (xs, θ  )  for s ∈ I2( ̂ht )
}
. 

Having the set . (ĥt) of admissible parameters . θ of the model . f = f (x, θ) for 
the analytically not given objective function . F , given the process history . ĥt , we get 
this result: 

Theorem 5.3 (Conditional probability of . F) With the a priori distribution.μ0 of the 
model parameters. θ of the unknown objective function. F, the conditional probability 
of . F, given the process history . ĥt , reads 

.μĥt (W ) = μ0
(
W ∩ (ĥt )

)

μ0
(
 (ĥt)

) , (5.22) 

for each measurable set .W ⊂  . 

Example 5.2 

. f (x, θ) =
r∑

i=1

fi (x)θi (5.23a) 

for . F , where . f1, f2, . . . , fr are known functions and .θi , i = 1, . . . , r , are unknown 
real parameters with an a priori distribution .μ0 on .( ,A) = (.Rr ,.Br ), then . (ĥt ) is 
described by a finite number .(≤ t) of linear inequalities. 

Here, the conditional distribution .μĥt of . F , given the search history . ĥ
t , is the  

restriction of the a priori distribution .μ0 to set . (ĥt). Thus, if .μ0 has a probability 
density .φ0 = φ0(θ), then the probability density .φĥt = φĥt (θ) of .μĥt reads 

.φĥt (θ) = 1 (ĥt )(θ)
φ0(θ)

μ0( (ĥt))
. (5.23b) 
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Chapter 6 
Applications to Random Search Methods 
with Joint Normal Search Variates 

Abstract As an application of the previous description of a general method to accel-
erate random search algorithms, in the following we consider search variates . Zn+1

at an iteration point .Xn = xn having a joint normal conditional distribution with 
mean and covariance matrix .(μ,∆) = (μ(xn),∆(xn)). The mean search gain for 
a step  .Xn → Xn+1 is determined by means of the mean decrease of the objective 
function. For simplification, instead of the infinite-stage optimal decision process 
for the selection of the parameters of the joint normal distribution, only the optimal 
one-step, .Xn → Xn+1, gains are taken into account, where the convergence rate of 
the fixed parameter and the optimized search method is evaluated. Since the optimal 
parameters of the normal distribution depend on the gradient and Hesse matrix of the 
objective function. F , in a numerical realization of the optimal RSM, Quasi-Newton 
methods can be applied. 

6.1 Introduction 

Solving optimization problems arising from engineering and economics, as, e.g., 
parameter- or process-optimization problems, 

. min F(x) s.t. x ∈ D, (6.1) 

where .D is a measurable subset of .Rd and .F is a measurable real function defined 
(at least) on . D, one meets often the following situation: 

(I) One should find the global minimum .F∗ and/or a global minimum point . x∗
of (6.1). Hence, most of the deterministic programming procedures, which are 
based on local improvements of the objective function .F(x), will fail. 

(II) Concerning the objective function.F(x) one has a black-box-situation, i.e., there 
is only few a priori information about. F especially there is no (complete) knowl-
edge about the direct functional relationship between the control or input vector 
.x ∈ D and its function value.y = F(x). Hence, besides the limited a priori infor-
mation about . F , only by evaluating .F numerically or by experiments at certain 
points .z1, z2, . . . of .Rd one gets further information on . F . 
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Consequently, engineers use in these situations usually a certain search procedure 
for finding the global minimum. F and an optimal solution.x∗ of (6.1), see, e.g., Box’ 
EVOP method [ 2] and the random search methods as first proposed by Anderson [ 1], 
Brooks [ 3] and Karnopp [ 5]. More recent descriptions of random search procedures 
were given by [ 6– 8, 10, 12– 14]. 

In the random search method considered here the sequence .X0(ω), .X1(ω), .. . ., 
.Xn(ω), . . . of random iterates is constructed according to the following recurrence 
schema: 

.Xn+1(ω) =
 
zn+1, if zn+1 ∈ D and F(zn+1) < F

 
Xn(ω)

 
Xn(ω), else ,

(6.2) 

.n = 0, 1, . . . , where .x0(ω) = x0 ∈ D is a given starting point in .D and . z1, z2, . . . ,
zn, . . . are realizations of a sequence of random.d-vectors 

. Z1(ω), Z2(ω), . . . , Zn(ω), . . .

having conditional distributions 

. P
 
Zn+1(ω) ∈ B|X0 = x0, X1 = x1, . . . , Xn = xn, Z1 = z1, . . . , Zn = zn

 
= P

 
Zn+1(ω) ∈ B|Xn = xn

 = πn(xn, B) (6.3a) 

for each Borel subset . B of.Rd . Here, .πn(xn, ·), n = 0, 1, ..., is a sequence of transi-
tion probability measures to be selected by the user of the search procedure. In many 
concrete cases .Zn+1 has a .d−dimensional normal distribution with mean vector . μn

and covariance matrix .∆n , i.e., 

.πn(xn, ·) = N (μn,∆n), n = 0, 1, . . . , (6.3b) 

where .μn = μn(xn) and .∆n = ∆n(xn) are certain functions of the last state .(n, xn). 
Let the area of success .GF (x) at a point .x ∈ R

d be defined by 

.GF (x) = {
y ∈ D : F(y) < F(x)

}
. (6.4) 

At an iteration point .xn by the random search procedure (6.2) a  .d-vector .zn+1 is 
generated randomly according to the transition probability distribution.πn(xn, ·) and 
from .xn we move to .xn+1 = zn+1 provided that .zn+1 ≤ GF (xn). Otherwise we stay 
at .xn+1 = xn and generate a new random point .zn+2 according to the distribution 
.πn+1(xn+1, ·) = πn+1(xn, ·). 

We observe that .Xn+1 ∈ GF (xn) implies .Xt ∈ GF (xn) for all .t > n. Let the set 
.Dε of .ε-optimal solutions of our global minimization problem (6.1) be defined by 

.Dε = {
y ≤ D : F(y) ≤  ∗ + c

}
, (6.5) 

where .c > 0 and .F∗ is given by
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. F∗ = inf
{
F(x) : x ∈ D

};
let .F∗ > −∞. Note that .Sn ∈ Dε implies .Xt ≤ Dε for all .t > n. Hence, 

. P(Xn ∈ Dε), n = 1, 2, . . .

is a non-increasing sequence for each fixed .ε > 0. 

6.2 Convergence of the Random Search Procedure (6.2) 

Let.αn(Dε) denote the minimal probability that at the.n-th iteration step. Xn → Sn+1

we reach the set .Dε from any point .Xn = xn outside this set, i.e., 

.αn(Dε) = inf
{
πn(xn, Dε) : xn ∈ D\Dε

}
. (6.6) 

According to [ 6] we have  

Theorem 6.1 (a) If for an . ε > 0

.

∞∑
n=0

αn(Dε) = +∞, (6.7) 

then . lim
n→∞ P(Xn ∈ Dε) = 1 for every .ε > 0. 

(b) Suppose that 
. lim
n→∞ P(Xn ∈ Dε) = 1 for every ε > 0. (6.8) 

Then . lim
n→∞ F(Xn) = F∗ a.s. (with probability one) for every starting point . x0 ∈

n. 
(c) Assume that. F is continuous and that the level sets.Dε are nonempty and compact 

for each.ε > 0. Then. lim
n→∞ F(Xn) = F∗ implies that also. lim

n→∞ dist.(Xn, D∗) = 0, 

where dist .(Xn, D∗) denotes the distance between .Xn and the set .D∗ = D0 of 
global minimum points .x∗ of (6.1). 

Example 6.1 If.πn(xn, ·) = π(·) is a fixed probability measure, then. lim
n→∞ F(Xn) =

F∗ a.s. holds, provided that 

. π
({

y ∈ D : F(y) ≤ Fx + ε
})

> 0 for each ε > 0.

This is true, e.g., is .Dε has a non-zero Lebesque measure for all .ε > 0 and . π has a 
probability density . φ with .φ(x) > 0 almost everywhere.
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Note 6.1 Further convergence results of this type were given by [ 11, 13]. 

Knowing several (weak) conditions which guarantee the convergence a.s. of. (Xn)

to the global minimum.F∗, to the set of global minimum points.D∗, resp., one should 
also have some information concerning the rate of convergence of .F(Xn), (Xn) to 
.F∗, D∗, respectively. 

By [ 13] we have now the following result. Of course, as in the deterministic opti-
mization, in order to prove theorems about the speed of convergence, the optimization 
problem (6.1) must fulfill some additional regularity conditions. 

Theorem 6.2 Suppose that .D∗ /= ∅ and the transition probability measure . π(xn, ·)
is a .d-dimensional normal distribution .N

 
μ(xn),∆

 
with a fixed covariance 

matrix . ∆. 

(a) Let .Dε be bonded for some .ε = ε0 > 0 and assume that . F is convex in a certain 
neighborhood of .D∗. Then 

. lim
n→∞ nγ

 
F(Xn)− F∗ = 0 a.s. (6.9) 

for each constant . γ such that .0 < γ < 1
d and every starting point . x0. 

(b) Let .Dε be compact, .D∗ = {x∗}, where .s∗ ∈ int(D) ( = interior of . D), and sup-
pose that .F is continuous and twice continuously differentiable in a certain 
neighborhood of . x∗. Moreover, assume that .F has a positive definite Hessian 
matrix at . x∗. Then for each starting point .x0 ∈ D it is 

. lim
n→∞ nγ

 
F(Xn)− F∗ = 0 a.s. for each 0 < γ <

2

d
,

(6.10a) 

. lim
n→∞ nγ ||Xn − x∗|| = 0 a.s. for each 0 < γ <

1

d
, (6.10b) 

. lim sup
n→∞

n
2
d E
 
F(Xn)− F∗ ≤ τ(x0) < ∞, (6.10c) 

where .τ(x0) is a nonnegative finite constant depending on the starting point 
.x0 ∈ D and .E denotes the expectation operator. 

(c) Under the same assumptions as in (b) we also have for each starting point 
.x0 ∈ D, x0 /= x∗, 

. lim inf
n→∞ n

2
d L
 
F(Xn)− F∗ ≥ h(x0), (6.11) 

where .h(x0) is a nonnegative constant depending on the starting point . x0. Fur-
thermore for each .x0 ∈ D, x0 /= x∗, it is  

. lim inf
n→∞ nγ ||Xn − x∗|| = +∞ for each γ >

2

d
. (6.12)
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Note 6.2 (a) Theorem 6.2 holds also for many non-normal classes of transition 
probability measures .πn(xn, ·)), see  [  13]. 

(b) It turns out that under the assumptions of Theorem 6.2b the speed of convergence 
of (6.2) to the global minimum of (6.1) is  exactly given by 

.E
 
F(Xn)− F∗ = O(n− 2

d ). (6.13) 

(c) The above convergence rates reflect the fact that in practice one observes that the 
speed of convergence may be very poor—especially near to the optimum of (6.1). 

Hence, using random search procedures, a main problem is the control of the 
basic random search algorithm (6.2) such that the speed of convergence of . (Xn)

of .F∗, D∗, resp., is increased. 

6.3 Controlled Random Search Methods 

A general procedure how to speed up the search routine (6.2) is described in [ 6– 
8]. The idea is to associated with the random search routine (6.2) a sequential 
stochastic decision process defined by the following items (I)–(III): 

(I) We observe that the conditional probability distribution.πn(xn, ·) of.Zn+1 given 
.Xn = xn depends in general on a certain (vector valued) parameter . a, i.e., 

.πn(xn, ·) = πn(a, xn, ·), a ∈ A, (6.14) 

where . A is the set of admissible parameters . a. The method, developed first in 
[ 6– 8], is now to run the algorithm (6.2) not with a fixed parameter. a, but to use 
an optimal control 

.a = a∗
n(xn) (6.15) 

of . a such that a certain criterion—to be explained in (II)—is maximized. 
Exemplary,.πn(xn, ·) is  assumed to be a.d-dimensional normal distribution with 
mean .μn and covariance matrix .∆n . Hence, in this case we have 

.a = (μ,∆) ∈ A := M × Q, (6.16) 

where .M ⊂ R
d and .Q is the set containing all symmetric, positive definite 

.d × d matrices and the zero matrix. 
(II) To search step .Xn → Xn+1 there is associated a mean search gain 

.Un(an, xn) = E
 
u(xn, Xn+1)|Xn = xn

 
, (6.17) 

where the gain function .u(xn, xn+1) is defined, e.g., by
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.u(xn, xn+1 =
 
1, if xn+1 ∈ GF (xn)
0, else

(6.18a) 

.u(xn, xn+1) =
 
F(xn)− F(xn+1), if xn+1 ∈ GF (xn)
0, else

(6.18b) 

.u(xn, xn+1) =
 ||xn − xn+1||, if xn+1 ∈ GF (xn)
0, else

(6.18c) 

Hence, in the first case .Un(an, xn) is the probability of a search success, in the 
second case .Un(an, xn) is the mean improvement of the value of the objective 
function and in case (6.18c) .Un(an, xn) is the mean step length of a successful 
iteration step .Xn → Xn+1. 

(III) Obviously, the convergence behavior of the random search process.(Sn) can be 
improved now by maximizing the mean total search gain 

. U∞ = U∞(a0, a1, . . .) := E
∞∑
n=0

ρnu(Xn, Xn+1)

subject to the controls.an = an(xn) ∈ A, n = 0, 1, . . ., where.ρ > 0 is a certain 
discount factor. This maximization can be done in principle by the methods of 
stochastic dynamic programming, see, e.g., [ 9]. 

6.4 Computation of Optimal Controls 

In order to weaken the computational complexity, the infinite-stage stochastic deci-
sion process defined in Sect. 6.3 is replaced by the sequence of 1-stage decision 
problems 

. max Un(an, xn) s.t. an ∈ A,

.n = 0, 1, 2, . . .. Hence the optimal control .a∗
n = a∗(xn) is defined as a solution of 

. max
a∈A

 
y∈GF (x)

u(x, y)π(a, x, dy). (6.19) 

In the following we consider the gain function (6.18b), i.e., 

. u(x, y) = F(x)− F(y).

Since an exact analytical solution of (6.19) is not possible in general, we have to apply 
some approximations. Firstly, the area of success .GF (x) is approximated according 
to
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. GF (x) ≈
(
y ∈ R

d : ∇F(x)T (y − x)+ 1

2
(y − x)T∇2F(x)(y − x) < 0

)
,

(6.20) 
where.∇F(x) denotes the gradient of. F and.∇2F is the Hessian matrix of. F at. x . We  
assume that.∇2F(x) is regular and.∇F(x) /= 0. Defining then the vector.w ∈ R

d by 

.y − x = w − ∇2F(x)−1∇F(x), (6.21) 

the quadratic inequality contained in (6.20) has the form 

. wT ∇2F(x)

r
w < 1,

where .r > 0 is defined by 

. r = ∇F(x)T∇2F(x)−1∇F(x).

By the Cholesky-decomposition of .
∇2 (x)

r
we can determine a matrix .  such that 

.
∇2F(x)

r
=   T . (6.22) 

Defining 
.v =  Tw, (6.23) 

the approximation (6.20) of.GF (x) can be represented according to (6.21) and (6.22) 
by 

.GF (x) ≈  
xN +  −1T v : ||v|| < 1

 
, (6.24) 

where .|| · || is the Euclidean norm and .xN is given by 

. xN = x − ∇2F(x)−1∇F(x).

It is then easy to verify that by the same transformation 

. v = v(ω) :=  T (y(ω)− xN )

the search gain .u(x, y) =  (x)− F(y) can be approximated by 

.u(x, y) ≈ r

2

 
1 − ||v||2 . (6.25) 

By means of (6.24) and (6.25) the objective function.U (a, x), a = (μ,∆), of (6.19) 
can be approximated by
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. U (a, Q) = r

2

 
||v||<1

 
1 − ||v||2 f (q, Q, v)dv, (6.26) 

where the probability density . f = f (q, Q, v) of the transformation .v = v(ω) of 
.y = y(ω) is given by 

. f (q, Q, v) = 1

(2π)d/2(det Q)1/2
exp

(
−1

2
(v − q)T Q−1(v − q)

)
.

Here the .d-vector . q and the positive definite .d × d matrix .Q are given by 

.q = Ev(ω) =  T (μ− xn), (6.27) 

.Q = cov(v(·)) =  T∆ . (6.28) 

By the 1-1-transformations (6.27) and (6.28), the maximization problem (6.19) can 
be approximated by 

. max
q∈K ,Q∈Q

 U (q, Q), (6.29) 

where .K and .Q are defined by 

. K = K (M) = {
 T (μ− xN ) : μ ∈ M

}
,

Q = {0} ∪ {∆ : ∆ positive definite d × d matrix}

and .M is a certain subset of .Rd . 
By the preceding considerations we obtain the following result: 

Theorem 6.3 Let .q∗, Q∗ be an optimal solution of (6.29) and define .μ∗,∆∗ by 

. μ∗ = xN +  T −1
q∗,

∆∗ = ( Q∗−1 T )−1. (6.30) 

Then the 1-stage optimal control.a∗(x) = (μ∗,∆∗) is given approximately by (6.30). 

In order to determine .q∗ and .Q∗, we suppose now that the feasible set .M for the 
mean value . μ is defined by 

.M = {
μ ∈ R

d : γ 2
1 r < (μ− xN )

T∇2F(x)(μ− xN ) ≤ γ 2
2 r
 
, (6.31) 

where.0 < γ1 ≤ γ2 are arbitrary, but fixed constants. In this case.K = K (M) is given 
by 

. K = {
q ∈ R

d : γ1 ≤ ||q|| ≤ γ2
}
,

where .|| · || denotes the Euclidean norm. Note that the important case .M = {x}, i.e., 
.μ = x(= last iteration point), corresponds to the case .γ1 = γ2 = 1.
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Assume now that .M is given by (6.31). Since each .Q has the form.Q = T∆T T , 
where. T is an orthogonal matrix and. ∆ is a diagonal matrix, the minimization problem 
(6.29) is equivalent to 

. max  U (q,∆) (6.32) 

s.t. γ1 ≤ ||q|| ≤  γ2,
∆ ∈ Q,∆ diagonal. 

By a further approximation, we find then that an optimal solution .q∗, Q∗ of (6.32) 
is given approximately by this equations 

.q∗ = k∗1, 1 = (1, . . . , 1)T , k∗ ∈ R (6.33) 

Q∗ = c∗ I, I = identity matrix, c∗ > 0. 

Now (6.30), (6.33) and (6.22) yield 

. μ∗ = xN + k∗ T −1
1,

∆∗ =
(
 
1

c∗ 
T

)−1

= c∗(  T )−1 = c∗
(
v2(F(x)

r

)−1

= c∗r∇2F(x)−1.

Hence, we have this result. 

Theorem 6.4 The 1-stage optimal control .a∗(x) = (μ∗,∆∗) of the random search 
procedure (6.2) is given approximately by 

.μ∗ = xN + k∗ T −1
, (6.34)

∆∗ = c∗
(
∇ F(x)T∇2 F(x)−1∇ F(x)

)
∇2 F(x)−1 , 

where .k∗ ∈ R, c∗ > 0 are certain fixed parameters. 

6.5 Convergence Rates of Controlled Random Search 
Procedures 

Assume that the random search procedure (6.2) has normal distributed search variates 
.Z1(ω), Z2(ω), . . . , Zn(ω), . . . controlled by means of the following control law 

. μ0(x) = x

∆0(x) = c
(
∇F(x)T∇2F(x)−1∇F(x)

)
∇2F(x)−1, (6.35)
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where .c > 0 is a fixed parameter. For control (6.35) we obtain, see the later consid-
erations, this result: 

Theorem 6.5 Suppose that .D is a compact, convex subset of .Rd and let .x∗ be the 
unique optimal solution of (6.1). Let .x∗ ∈ int (D) (= interior of . D) and assume that 
.F is twice continuously differentiable in a certain neighborhood of . x∗. Moreover, 
suppose that .∇2F is positive definite at . x∗. Then there is a constant .κ > 1 such that 

. κn E
 
F(Xn)− F∗ → 0 as n → ∞

and 
.κn
 
F(Xn)− F∗ → 0 as n → ∞, a.s. (6.36) 

for all starting points contained in a certain neighborhood of . x∗. 

Note 6.3 (a) Comparing Theorem 6.2 and Theorem 6.5, we find that—at least 
locally—the convergence rate of (6.2) is increased very much by applying a 
suitable control, as, e.g., the control (6.35). 

(b) However, the high convergence rate (6.36) holds only if the starting point .x0 is 
sufficiently close to . x∗, while the low convergence rate found in Theorem 6.2 
holds for arbitrary starting points .x0 ∈ D. 

Hence, the question arises whether by a certain combination of a controlled ran-
dom search procedure we also can guarantee a linear convergence rate for all starting 
points .x0 ∈ D. 

Given an increasing sequence .N of integers 

. n1 < n2 < . . . < nk < nk+1 < . . . ,

let the controls.an − (μn,∆n) of the normal distributed search variates. Zn+1(ω), n =
0, 1, 2, . . ., be defined by 

. μn = xn

and 

.∆n =
 
∆0(xn) , if n ∈ N
R , if n /∈ N ,

(6.37) 

where .∆0(x) is defined by (6.35) and . R is a fixed positive definite .d × d matrix. 
Hence, according to (6.37), the search procedure is controlled only at the times 

.n1, n2, . . . . 
Now, we have this result. 

Theorem 6.6 Suppose that .D is a compact, convex subset o .R
d and let . x∗ ∈ int (D)

be the unique optimal solution of (6.1). Assume that .F is twice continuously differ-
entiable in a certain neighborhood of .x∗ and let .∇2F(x∗) be positive definite. Define 
then 

.hn = max{k : nk < n}.
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Then for every starting point .x0 ∈ D there is a constant .β > 1 such that 

. βhn E
 
F(Xn)−  ∗ → 0 as n → ∞

and 
.βhn

 
F(Xn)− F∗ → 0 as n → ∞, a.s., (6.38) 

provided that .lim sup
n→∞

hn
n
< 1. 

Note 6.4 (a) Hence, the linear convergence rate (6.38) can be obtained by a suitable 
control of the type (6.37) for each starting points .x0 ∈ D. 

(b) If .nk = k

p
for some .p ∈ N, then .βhn = ( p

√
β)n . 

6.6 Numerical Realizations of Optimal Control Laws 

In order to realize the control laws obtained in (6.34), (6.35), (6.37), one has to 
compute the gradient .∇F(x) and the inverse Hessian Matrix .∇2F(x)−1 of .F at 
. x . However, since the derivatives .∇F and .∇2F of .F are not given in analytical 
form in practice, the gradient and the Hessian matrix of . must be approximated 
by means of the information obtained about .  during the search process. Hence, for 
an approximate computation of .vF and .∇2F we may use the sequence of sample 
points, iteration points and function values 

. x0, F(x0), z1, F(z1), x1, z2, F(z2), x2, . . . .

In order to define a recursive approximation procedure, for.n = 0, 1, 2, . . . let denote 

. gn the approximation of ∇F(xn),

Bn the approximation of ∇2F(xn),

Hn the approximation of ∇2F(xn)
−1.

Proceeding recursively, we suppose at the .n-th stage of the search process we 
know the approximations .gn, Bn and .Hn of .∇F(xn),∇2F(xn) and .∇2F(xn)−1, 
respectively. Hence, we may compute—approximately—the control . an = (μn,∆n)

according to one of the formulas (6.34), (6.35) or (6.37) by replacing .∇F(xn) and 
.∇2F(xn)−1 by.gn, Hn , respectively. The search process (6.2) yields then the sample 
point.zn+1, its function value.F(zn+1) and the next iteration point.xn+1. Now  we  have  
to perform the update 

.gn → gn+1, Bn → Bn+1 and Hn → Hn+1 (6.39) 

by using the information .sn, F(xn), zn+1, F(zn+1), xn+1 about . F .
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(a) Search failure at . xn
If .zn+1 /∈ D or .F(zn+1) ≥ F(xn), then .xn+1 = xn . Since in this case we stay at 
. xn , we may define the update (6.39) by  

. gn+1 = gn,

Bn+1 = Bn,

Hn+1 = Hn.

(b) Search success at . xn
In this case it is .zn+1 ∈ D and .F(zn+1) < F(xn), hence .xn+1 = zn+1 /= xn . By  
a quadratic approximation of .F at .xn+1 we find then 

. F(xn) ≈ F(xn+1)+ ∇F(xn+1)
T (xn − xn+1)

+ 1
2 (xn − xn+1)

T∇2F(xn+1)(xn − xn+1)

and therefore 

.∇F(xTn+1sn − 1

2
sTn ∇2F(xn+1)sn ≈ ∆Fn, (6.40) 

where 

. sn = xn+1 − xn = zn+1 − xn,

∆Fn = F(xn+1)− F(xn) = F(zn+1)− F(xn).

Now we have to define the new approximations.gn+1 and.Bn+1 of. ∇F(xnn + 1)
and .∇2F(xn+1), respectively. 
Because of (6.40), in order to define the update (6.39), we demand next to the 
following 

Modified Quasi-Newton Condition 

.gTn+1sn − 1

2
sTn Bn+1sn = ∆Fn (6.41) 

or 

.gTn+1sn − 1

2
sTn Bn+1sn < 0. (6.42) 

Note 6.5 (i) In contrary to (6.41), the modified Quasi-Newton condition (6.42) 
uses only the information that the function value of .F at .xn+1 is less than that 
at . xn . 

(ii) If .∆Fn = F(xn+1) · F(xn) < 0, then .−sn = xn − xn+1 is an ascent direction of 
. F at .xn+1. Hence, since.∇F(xn+1) is the best ascent direction of . F at . xn+1,−sn
may be used to define the approximation .gn+1 of .∇F(xn+1).
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Since .gn+1 is not completely determined by the modified Quasi-Newton condi-
tion (6.41) or (6.42), resp., there are still many possibilities to define the update 
formulas (6.39). Clearly, since .Bn is an approximation to a symmetric matrix, 
we suppose that .Bn is a symmetric matrix. 

(A) Additive rank-one-updates 
In order to select a particular tuple.(gn+1, Bn+1)we may require that. (gn+1, Bn+1)

is an optimal solution .(g, B) of the distance-minimization problem 

. min d1(B, B)+ d2(g, g) (6.43) 

s.t. gT s − 1 2 s
T Bs  = ∆F, 

where .B = Bn, g = gn,∆F = ∆Fn and .d1, d2 are certain distance measures. 
We suppose here that .d1, d2 are defined by 

. d1(B, B) = 1
2

d∑
i, j−1

(bi j − bi j )2,

d2(g, g) = 1
2

d∑
j−1
(g j − g j )

2, (6.44) 

where.bi j , bi j are the elements of . B and. B, resp., and.g j , g j denote the compo-
nents of .g, g, respectively. 

Note 6.6 The minimization (6.43) is a generalization of the minimality principles 
characterizing some of the well-known Quasi-Newton update formulas, see, e.g., [ 4]. 

Solving (6.43), (6.44), we find that .g, B are given by 

.g = g − λs (6.45) 

.B = B + λ
2 ss

T , (6.46) 

where the Lagrange multiplier . λ is given by 

.λ = gT s − 1
2 s

T Bs −∆ 

sT s
 
1 + 1

4 s
T s
 . (6.47) 

If the distance functions .d1, d2 are changed, then other update formulas may 

be generated. If, e.g., .d2 is replaced by .d2(g, g) = 1

2
(g − g)B−1(g − g), then . g =

g − λBs. 
Supposing now that .B is positive definite, it is known that the matrix .B defined 

by (6.46) is positive definite if and only if 

.1 + λ

2
sT Hs > 0, (6.48)
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where .H = B−1 is our approximation to the inverse Hessian matrix .∇2F(x)−1 of 

.F at .x = xn . Hence, if .H = B
−1

denotes the approximation of the inverse Hessian 
matrix of. F at.xn+1, then by (6.46) and (6.48) the following update formula. H → H
for the inverse Hessian matrix of .  may be established: 

.H =
 
H − 1

2
λ

1+ λ
2 s

T Hs
HssT H, if (6.48) holds

H, else,
(6.49) 

Updates in the Case of a Search Failure 
If .zn+1 /∈ D or .F(zn+1) ≥ F(xn), then we stay at .xn+1 = xn and we may define 
therefore.g = g, B = B and.H = H . However, also in the case of a search failure the 
tuple.

 
zn+1, F(zn+1)

 
yields new information about. F , provided only that.zn+1 /= xn . 

Hence, replacing the modified Quasi-Newton condition (6.41) by  

. gT s + 1

2
sT Bs = ∆F,

where now .s = zn+1 − xn,∆F = F(zn+1)− F(xn), we may derive by the above 
procedure also update formulas .g → g, B → B, H → H for defining improved 
approximation .g, B, H of .∇F,∇2 and .∇2F−1, respectively, at .xn+1 = xn . 

(B) Multiplicative rank-one-updates 
By (6.45)–(6.49) we have given a first concrete procedure for the realization of 
the optimal control laws (6.34), (6.35) and (6.37), respectively. Indeed, having, 
e.g., the mean .μn = xn and the covariance matrix 

.∆n = c∗(gTn Hngn)Hn, (6.50) 

the random variable .Zn+1 may be defined by 

. Zn+1 = μn +  n Z
0
n+1

where.Z0
n+1 is a normal distributed with mean zero and covariance matrix equal 

to the identity matrix, and . n is a .d × d matrix such that 

. n 
T
n = ∆n. (6.51) 

Hence, at each iteration point .xn the (Cholesky-)decomposition (6.51) of  . ∆n

have to be computed. 
In order to omit this time consuming step, we still ask whether update formulas 
. n →  n+1 for the Cholesky-factors . n may be obtained. 
Since .Hn = B−1

n we suppose that .Bn may be represented by 

.TnT
T
n = Bn.
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Then .∆n is given by 

. ∆n = c∗ (T−1
n gn)

T T−1
n gn

 
T−1
n

T
T−1
n

and the factor . n may be defined, cf. (6.50) by  

. n = √
c∗||T−1

n gn||T−1
n . (6.52) 

In order to define the update .T → T , where .T = Tn and .T = Tn+1 with 
.Tn+1T T

n+1 = Bn+1, we require that .T is changed only in the direction of . s =
xn+1 − xn . Hence, we assume that 

. T = (I + γ − 1

sT s
, ssT )T,

where .γ is real parameter to be determined. Furthermore, the distance-
minimization problem (6.43) is then replaced by 

. min d1(T , T )+ d2(g, g) (6.53) 

s.t. gT s = 1 2 s
T Bs  = ∆F, 

where now 

.B =
(
I + γ − 1

sT s
ssT

)
B

(
I + γ − 1

sT s
ssT

)
, with B = T T T . (6.54) 

If the distance functions .d1, d2 are again defined corresponding to (6.44), then 

d1(T , T ) = 
1 

2

(
γ − 1 
s 's

)2

||ssT T ||2 E , (6.55) 

where .||T ||E denotes the Euclidian norm of . T . Hence, by (6.53) a particular 
tuple.(g, γ ) is selected. Because of (6.54) and (6.55), the minimization problem 
(6.53) has the form 

min ||ssT T ||2 E 
2

(
γ −1 
s 's

)2 + 1 2||g − g||2 E (6.56) 

s.t. gT s − γ 
2 

2 s
T Bs  −∆F, 

hence, the tuple .(g, γ ) is projected onto the parabola in .Rd+1 defined by the 
constraint in (6.56).



146 6 Applications to Random Search Methods with Joint Normal Search Variates

Note 6.7 

(a) Other update formulas may be gained by changing the objective function of 
(6.56). 

(b) Also in the case of a search failure, a similar method updates formulas may be 
derived. 
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Chapter 7 
Random Search Methods with Multiple 
Search Points 

Abstract Similar to the multi-start procedures in mathematical programming, here 
we consider random search methods working with multiple search variates (points) at 
an iteration point. The probability of failure, success, resp., and their properties at an 
iteration point are then evaluated for conditional independent, i.i.d., resp, stochastic 
search points. Furthermore, reachability results are given, i.e., results on the proba-
bility to reach an.∈-optimal point with increasing stage or time. Finally, an optimized 
search process is studied based on the search point with minimum function value 
among all successful search points at the current iteration point. 

7.1 Standard RSM 

Given the optimization problem 

. min F(x) subject to x ∈ D (7.1) 

with the objective function .F = F(x) on .Rn and the feasible domain .D ⊂ R
n , the  

Random Search Method (RSM) for solving (7.1) generates a (minimizing) random 
sequence .(Xt ) by the algorithm 

.Xt+1 := TF,xt (Zt ), for Xt = xt , t = 0, 1, 2, . . . , (7.2a) 

where .x0 ∈ D is a given starting point, 

.TF,x(z) :=
{
z, for z ∈ GF (x)
x, else

(7.2b) 

and 
.GF (x) := {z ∈ D : F(z) < F(x)} . (7.2c) 
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The sequence .(Xt ) can also be represented by 

.Xt+1 = Zt1GF (Xt )(Zt ) + Xt1GF (Xt )C(Zt ), t = 0, 1, 2, . . . , (7.3) 

where .1M = 1M(x), 1MC = 1MC(x), resp. denote the characteristic functions of the 
set .M ⊂ R

n and its complement .MC. 

7.2 Multiple RSM 

In contrast to standard RSM, in multiple RSM for each iteration stage. t = 0, 1, 2, . . . ,
we have a number .r ∈ N of stochastic search variables at point .Xt : 

.Yt,1,Yt,2, . . . ,Yt, j , . . . ,Yt,r , t ≥ 0. (7.4) 

The random search process .(Xt ) is then defined as follows: 

.Xt+1 :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yt,1 if Yt,1 ∈ GF (Xt ),

Yt,2 if Yt,1 /∈ GF (Xt ), Yt,2 ∈ GF (Xt ),
...

Yt,i if Yt, j /∈ GF (Xt ) for 1 ≤ j ≤ i − 1, Yt,i ∈ GF (Xt ),
...

Yt,r if Yt, j /∈ GF (Xt ) for 1 ≤ j ≤ r − 1, Yt,r ∈ GF (Xt ),

Xt if Yt, j /∈ GF (Xt ) for 1 ≤ j ≤ r.

(7.5) 

For each stage .t = 0, 1, 2, . . . the algorithm (7.5) is based on the events 

.St,i := [
Yt, j /∈ GF (Xt ), 1 ≤ j ≤ i − 1, Yt,i ∈ GF (Xt )

]
, i = 1, 2, . . . r, (7.6a) 

of a search success after .i − 1 search failures. Moreover, 

.St, f := [
Yt, j /∈ GF (Xt ), j = 1, 2, . . . r

]
(7.6b) 

denotes the complete failure event that no search variable drops into the domain of 
success .GF (Xt ) at stage . t . 

According to the definitions (7.6a), (7.6b), the following properties hold:
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Lemma 7.1 

. (a) For each given stage t, t ≥ 0, St,i , i = 1, 2, . . . , r are disjoint events.

(b) St :=
rU

i=1

St,i denotes the event of a search success at stage t. (7.6c) 

. (c) The event being represented by the complement of St ,

SC
t =

r∩
i=i

SC
t,i = St, f (7.6d) 

represents the complete search failure at stage t. 

Proof Properties in (a) and (b) follow directly from the definitions (7.6a) and (7.6c). 
From (7.6c) we get, with . GF = GF (x)

. SC
t =

r∩
i=1

SC
t,i

= [
Yt,1 /∈ GF

] ∩ ([
Yt,1 /∈ GF

] ∩ [
Yt,2 ∈ GF

])C

∩ ([
Yt,1 /∈ GF

] ∩ [
Yt,2 /∈ GF

] ∩ [
Yt,3 ∈ GF

])C

∩ . . . ∩ ([
Yt,1 /∈ GF

] ∩ · · · ∩ [
Yt,i−1 /∈ GF

] ∩ [
Yt,i ∈ GF

])C

∩ . . . ∩ ([
Yt,1 /∈ GF

] ∩ · · · ∩ [
Yt,r−1 /∈ GF

] ∩ [
Yt,r ∈ GF

])C
,

hence, 

. SC
t = [

Yt,1 /∈ GF
] ∩ ([

Yt,1 ∈ GF
] ∪ [

Yt,2 /∈ GF
])

∩ ([
Yt,1 ∈ GF

] ∪ [
Yt,2 ∈ GF

] ∪ [
Yt,3 /∈ GF

])
∩ . . .

= [
Yt,1 /∈ GF ,Yt,2 /∈ GF

] ∩ ([
Yt,1 ∈ GF

] ∪ [
Yt,2 ∈ GF

] ∪ [
Yt,3 /∈ GF

])
∩ . . .

= [
Yt,1 /∈ GF ,Yt,2 /∈ GF ,Yt,3 /∈ GF

] ∩ . . . .

Proceeding this way, we find (7.6d). □

7.3 Probability of Failure, Probability of Success 

According to (7.6b) and Lemma 7.1, the probability of failure .p f at point . Xt = xt
is given by 

.p f = p f (t, Xt ) := P
(
Yt, j /∈ GF (xt ), j = 1, 2, . . . , r

)
. (7.7a)
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If, as assumed in many (practical) cases, the search variables .Yt, j , . j = 1, . . . r , are  
stochastically independent for given .Xt = xt , then 

. p f (t, xt ) =
r∏
j=1

P
(
Yt, j /∈ GF (xt )

)

=
r∏
j=1

(
1 − P(Yt, j ∈ GF (xt ))

)
. (7.7b) 

Consequently, the probability of success at point .Xt = xt reads 

. ps(t, xt ) =1 − p f (t, xt )

=1 − P
(
Yt, j /∈ GF (xt ), j = 1, 2, . . . , r

)
, (7.8a) 

and for stochastically independent search variables.Yt, j , j = 1, 2, . . . , r , at. Xt = xt
we have 

.ps(t, xt ) = 1 −
r∏
j=1

(
1 − P

(
Yt, j ∈ GF (xt )

))
. (7.8b) 

For the important special case 

.P
(
Yt, j ∈ GF (xt )

) = αF (t, xt ), j = 1, 2, . . . , r, (7.9) 

e.g., for i.i.d. search variables at .Xt = xt , with a probability .αF (xt ) independent of 
index . j , according to (7.7b), (7.8b) and (7.9), we have the following result. 

Lemma 7.2 In case of independent search variables .Yt, j , j = 1, 2, . . . , r , having 
probability of success .αF = αF (t, xt ) at point .Xt = xt , the probability functions . p f

and .ps are given by 

.p f (t, xt ) =(1 − αF )r (7.10a) 

.ps(t, xt ) =1 − (1 − αF )r , (7.10b) 

with . αF = αF (t, xt )

According to the above lemma, the probability functions.p f , ps can be represented 
by means of the binomial formula. Hence, for .ps we get 

. ps(t, xt ) = p̃s(r, αF )

=
r∑
j=1

(
r

j

)
(−1) j+1α

j
F = rαF −

(
r

2

)
α2
F +

(
r

3

)
α3
F ± · · · + (−1)r+1αr .

(7.11)
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For a search success with probability 1 at an index . j = j0, special values of . p f , ps
result, cf. (7.7b), (7.8b). 

Remark 7.1 Let .Yt, j , j = 1, 2, . . . , r be stochastically independent. 
If .P

(
Yt, j ∈ GF (xt )

) = 1 for . j = j0, 1 ≤ j0 ≤ r , then 

. p f (t, xt ) = 0 and ps(t, xt ) = 1.

7.3.1 Monotonicity of the Probability Functions . p f , ps

We now examine the dependence of.ps, p f on. r , the number of the used search vari-
ables .Yt, j , j = 1, . . . , r , for a given stage . t . According to (7.7a) for the probability 
of failure we get 

. p f (r + 1, t, xt ) =P
([
Yt, j /∈ GF (xt ), j = 1, . . . , r

] ∩ [
Yt,r+1 /∈ GF (xt )

])
≤P

(
Yt, j /∈ GF (xt ), j = 1, . . . , r

) = p f (r, t, xt ). (7.12a) 

For stochastically independent search variables .Yt, j , j = 1, 2, . . . , r , this decrease 
of .p f = p f (r, t, xt ) with respect to . r can be seen directly from (7.7b). In this case 
we have 

.p f (r + 1, t, xt ) < p f (r, t, xt ) (7.12b) 

if .p f (r, t, xt ) > 0 and .0 ≤ P
(
Yt,r+1 /∈ GF (xt )

)
< 1. 

Consequently, from (7.12a), (7.12b) we have  

.p f (r, t, xt ) ≤ (<) p f (ρ, t, xt ), r > ρ. (7.12c) 

Comparing the multiple search .
(
Yt, j , 1 ≤ j ≤ r

)
with the single search .Yt = Yt,1, 

we get 

.P (Yt /∈ GF (xt )) ≥ (>) p f (r, t, xt ), r > 1. (7.12d) 

Hence, with increasing number of search variables .Yt, j , j = 1, . . . , r the search 
failure is decreasing. According to (7.8a), (7.8b) for the probability of a search 
success .ps = ps(r, t, xt ) at stage . t we have 

.ps(r, t, xt ) ≥ (>) ps(ρ, t, xt ) ≥ (>) P (Yt ∈ GF (xt )) , r > ρ. (7.12e) 

Thus, the probability of success can be increased by this method.
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7.3.2 Asymptotic Behavior in Case of i.i.d. Search Variables 

Suppose here that .Yt, j , 1 ≤ j ≤ r , are i.i.d. stochastic search variables such that 
(7.9) holds. According to Lemma 7.2, we then have 

. p f (t, xt ) = p̃ f (r, αF ) = (1 − αF )r

ps(t, xt ) = p̃s(r, αF ) = 1 − (1 − αF )r ,

with.αF = αF (t, xt ) > 0. In order to consider the asymptotic behavior of .p f , ps for 
.r → ∞, we use the inequality 

.(1 − xy)n ≤ 1 − x + e−yn, 0 ≤ x, y ≤ 1, n > 0. (7.13) 

see [ 1], Lemma 10.5.3, p. 320. Applying (7.13) to . p̃F = pF (r, α), we get 

. p̃ f (t, xt ) = (1 − αF )r ≤ e−rαF , r = 1, 2, . . . . (7.14) 

Inequality (7.14) yields the following result. 

Lemma 7.3 Suppose .αF = αF (t, xt ) > 0. Then 

.p f (t, xt ) = p̃ f (r, αF ) → 0, r → ∞ (7.15a) 

.ps(t, xt ) = p̃s(r, αF ) → 1, r → ∞. (7.15b) 

7.3.3 Estimation of . p f and . ps in Case of Arbitrary 
Stochastically Independent Search Variables . Yt, j = Y j

In general we have 

. p f (r, xt ) =
r∏
j=1

(1 − α j ), α j := P
(
Y j ∈ GF

)
.

In the following we assume that 

.α ≤ α j ≤ α, j = 1, 2, . . . , r (7.16a) 

with given, fixed probability bounds.α, α, 0 ≤ α < α ≤ 1 for all values of. α j , 1 ≤
j ≤ r . The above inequalities for .α j , 1 ≤ j ≤ r then yield 

.0 ≤ 1 − α ≤ 1 − α j ≤ 1 − α ≤ 1, 1 ≤ j ≤ r.
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Multiplying these inequalities by nonnegative values we get 

.(1 − α)r ≤
r∏
j=1

(1 − α j ) ≤ (1 − α)r (7.16b) 

and therefore 

.(1 − α)r ≤ p f (r, xt ) ≤ (1 − α)r . (7.16c) 

Moreover, for .ps = 1 − p f we get 

.1 − (1 − α)r ≤ ps ≤ 1 − (1 − α)r . (7.16d) 

7.3.3.1 Error Estimation 

Considering .p f = p f (r, xt ), we have the errors 

. e(r, α) : = p f − (1 − α)r (left error)

e(r, α) : = (1 − α)r − p f (right error)

from using the lower, upper, resp. , approximation of .p f . 
Thus 

.e(r, xt ) := e(r, α) + e(r, α) = (1 − α)r − (1 − α)r (7.17a) 

denotes the maximum error for approximating .p f by a value of the interval . [(1 −
α)r , (1 − α)r ]. 

Estimation of the maximum error .e(r, xt ) by the mean value theorem 

. e(r, xt ) = (1 − α)r − (1 − α)r

= −r
(
1 − (

α + ϑ(α − α)
))r−1

(α − α)

= r
(
1 − (

α + ϑ(α − α)
))r−1

(α − α)

≤ r(1 − α)r−1(α − α), 0 < ϑ < 1. (7.17b) 

Using (7.13) in Sect. 7.3.2, we finally have 

. e(r, xt ) = (1 − α)r − (1 − α)r

≤ re−(r−1)α(α − α)

= r(α − α)

e−(r−1)α
. (7.17c)
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Since the exponential function increases much faster than any power of . r , for . α > 0
we have 

.e(r, xt ) = (1 − α)r − (1 − α)r → 0, r → ∞. (7.17d) 

7.4 Reachability Results Multiple RSM 

According to Chap. 4, here we have to study the sequence of probabilities 

.P (Xt ∈ B∈) , t = 1, 2, . . . (7.18a) 

for 

.B∈ := {
x ∈ D : F(x) ≤ F∗ + ∈

}
, ∈ > 0, (7.18b) 

where the iterates .Xt , t = 1, 2, . . . are given by (7.5). We have 

. P(Xt ∈ B∈) = 1 − P(Xt /∈ B∈)

= 1 − P(X1 /∈ B∈, X2 /∈ B∈, . . . , Bt /∈ B∈), (7.19a) 

with 

. P(X1 /∈ B∈, X2 /∈ B∈, . . . , Bt /∈ B∈)

=
{

x1 /∈B∈

K0(x0, dx1) . . .

{
xt−1 /∈B∈

Kt−2(xt−2, dxt−1)

{
xt /∈B∈

Kt−1(xt−1, dxt ), (7.19b) 

where.Ks(xs, ·) denotes the probability distribution of.Xs+1, given.Xs = xs . The par-
tial integrals on .[xs /∈ B∈], s = 1, 2, . . . , t , are now estimated from above stepwise 
.s = t, t − 1, . . . , 1. For .s = t we get 

. 

{
xt /∈B∈

Kt−1(xt−1, dxt ) = Kt−1(xt−1, D \ B∈)

= Kt−1(xt−1, D) − Kt−1(xt−1, B∈) = 1 − Kt−1(xt−1, B∈), xt−1 /∈ B∈, (7.20) 

since .⊂ D, x0 ∈ D and .Xs ∈ D, s = 1, 2, . . . . 
Because of .xt−1 /∈ B∈ , hence, 

.F(x) ≤ F∗ + ∈ < F(xt−1) for all x ∈ B∈,
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we have 

.B∈ ⊂ GF (xt−1). (7.21a) 

Consequently, for .xt−1 /∈ B∈ we get 

. Kt−1(xt−1, B∈) = P(Xt ∈ B∈ | xt−1)

= P (Xt ∈ GF (xt−1), Xt ∈ B∈ | xt−1) . (7.21b) 

According to the definition of .(Xt )t≥1, since .Xt ∈ GF (xt−1) in this case we get 
.Xt = Yt, j for one index .1 ≤ j ≤ r , and 

.Kt−1(xt−1, B∈) = P(SB∈
| xt−1), xt−1 /∈ B∈, (7.21c) 

where .SB∈
, the set of elementary events having search variables reaching the set . B∈

of .∈-optimal points, is given by 

. SB∈
= [Yt−1,1 ∈ B∈] ∪ [Yt−1,1 /∈ B∈,Yt−1,2 ∈ B∈] ∪ . . .

∪ [Yt−1,1 /∈ B∈, . . . ,Yt−1,r−1 /∈ B∈,Yt−1,r ∈ B∈]. (7.21d) 

Corresponding to the domain of success.GF (xs), in case of stochastically independent 
search variables .Yt−1, j , 1 ≤ j ≤ r , we have, cf. (7.8a), (7.8b), 

. Kt−1(xt−1, B∈) = 1 −
r∏
j=1

(
1 − P(Yt−1, j ∈ B∈ | xt−1)

)

= 1 −
r∏
j=1

(
1 − ∏t−1, j (xt−1, B∈)

)
, (7.22a) 

where .∏t−1, j (xt−1, ·) denotes the probability distribution of .Yt−1, j , given  . Xt−1 =
xt−1. 

Thus, for .xt−1 /∈ B∈ we have 

.

{
xt /∈B∈

Kt−1(xt−1, dxt ) =
r∏
j=1

(
1 − ∏t−1, j (xt−1, B∈)

)
. (7.22b) 

For the probability that .Xt does not reach the set .B∈ , provided that the realization 
.Xt−1 = xt−1 is also outside of .B∈ , we get the upper bound 

.

{
xt /∈B∈

Kt−1(xt−1, dxt ) ≤
r∏
j=1

(
1 − inf

{
∏t−1, j (xt−1, B∈) : xt−1 /∈ B∈

})
. (7.23a)
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In the special case 

.∏t−1, j (xt−1, B∈) = ∏t−1(xt−1, B∈), j = 1, . . . , r, (7.23b) 

we get 

.

{
xt /∈B∈

Kt−1(xt−1, dxt ) ≤ (1 − inf {∏t−1(xt−1, B∈) : xt−1 /∈ B∈})r . (7.23c) 

After estimating the last integral, i.e., the probability that .Xt does not reach .B∈ , 
given .Xt−1 = xt−1 /∈ B∈ , we get 

. P (X1 /∈ B∈, X2 /∈ B∈, . . . , Xt /∈ B∈)

≤
{

x1 /∈B∈

K0(x0, dx1) . . .

{
x−1 /∈B∈

Kt−2(xt−2, dxt−1)

r∏
j=1

(1 − αt−1, j ), (7.24a) 

where 

.αt−1, j := inf
{
∏t−1, j (xt−1, B∈) : xt−1 /∈ B∈

}
. (7.24b) 

Proceeding this way, we obtain 

.P (X1 /∈ B∈, X2 /∈ B∈, . . . , Xt /∈ B∈) ≤
t−1∏
s=0

r∏
j=1

(1 − αs, j ) (7.25a) 

with 

.αs, j := inf
{
∏s, j (xs, B∈) : xs /∈ B∈

}
s = 0, 1, . . . , t − 1. (7.25b) 

Since .ln u ≤ u − 1, for .u > 0, we have  

. ln

⎛
⎝t−1∏

s=0

r∏
j=1

(1 − αs, j )

⎞
⎠ =

t−1∑
s=0

r∑
j=1

ln(1 − αs, j )

≤
t−1∑
s=0

r∑
j=1

(−αs, j ) = −
t−1∑
s=0

r∑
j=1

αs, j (7.26a)
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and therefore 

.

t−1∏
s=0

r∏
j=1

(1 − αs, j ) ≤ exp

⎛
⎝−

t−1∑
s=0

r∑
j=1

αs, j

⎞
⎠ . (7.26b) 

With the above inequalities, for .P(Xt ∈ B∈) we now find 

. P(Xt ∈ B∈) = 1 − P(X1 /∈ B∈, . . . , Xt /∈ B∈)

≥ 1 −
t−1∏
s=0

r∏
j=1

(1 − αs, j ) ≥ 1 − exp

⎛
⎝−

t−1∑
s=0

r∑
j=1

αs, j

⎞
⎠ . (7.27) 

Consequently, we now get the following result. 

Theorem 7.1 Suppose that 

.(i)
t−1∑
s=0

r∑
j=1

αs, j → ∞, t → ∞, for a given integer r ≥ 1, or (7.28a) 

. (ii)
t−1∑
s=0

r∑
j=1

αs, j =
r∑
j=1

t−1∑
s=0

αs, j → ∞, r → ∞, for a given stage t ≥ 1,

(7.28b) 

then, with .Xt = Xt,r we have 

.P(Xt,r ∈ B∈) → 1, t → ∞, r → ∞, respectively, (7.28c) 

In the special case 

.αs, j = αs, j = 1, . . . , r (7.29a) 

with a fixed probability .αs > 0, we get  

.P(Xt,r ∈ B∈) ≥ 1 − exp

(
−r

t−1∑
s=0

αs

)
. (7.29b) 

In this case we have .P(Xt,r ∈ B∈) > 1 − δ with a given .δ > 0, provided that 

.r
t−1∑
s=0

αs > ln
1

δ
. (7.29c)
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7.5 Optimal Search Point Among Multiple Search 
Variables 

Among the search variables.Yt, j = Yt, j (ω), j = 1, . . . , r, ω ∈ Ω, at time. t , see  (7.4), 
the best search variable is given at a point .xt by 

.Y ∗
t = Yt, j∗ := argmin

Yt, j∈GF (xt ),1≤ j≤r
F(Yt, j ). (7.30) 

If the minimum is attained at several indices . j , . j∗ = j∗(t, ω) denotes the smallest 
index. 

7.5.1 The Optimized Search Process 

Corresponding to the search process .(Xt ) with multiple search variables . Yt, j , j =
1, . . . , r , see  (7.4), (7.5), using the best search variable .Y ∗

t = Yt, j∗ , j∗ = j∗(t, ω), 
defined by (7.30), we now consider the optimized search process .(X∗

t ) with the 
realizations .X∗

t (ω) = x∗
t , defined, cf. Fig. 7.1, by  

.X∗
0 := x∗

0 = x0 (7.31a) 

.x∗
t+1 :=

⎧⎪⎪⎨
⎪⎪⎩

Yt, j∗(t,ω), if there exists at least one variable
Yt, j ∈ G f (x∗

t ), 1 ≤ j ≤ r

x∗
t , else.

(7.31b) 

Fig. 7.1 Feasible points, .∈-optimal points
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Remark 7.2 (Multi-Start Methods) Instead of the iteration process (7.31a), (7.31a) 
and corresponding to multi-start methods, cf. [ 2], we may use the 1-step iterations 

.X∗
0 = x∗

0 := x0,k → X∗
1 = X∗

1,k, k = 1, 2, . . . , K , (7.31c) 

based on a random variation of the initial point .x0 = x0,k, k = 1, 2, . . . , K , accord-
ing to a certain probability distribution on the feasible domain . D. 

7.5.2 Probability of Reaching .B∈ from the Outside 

Having a point .X∗
t = x∗

t /∈ B∈ outside the set .B∈ of .∈-optimal points, we consider 
the probability that the next iteration point .X∗

t+1 is in .B∈ . 
Assuming .F∗ + ∈ < F(x∗) and therefore .B∈ ⊂ GF (x∗

t ), we have  

.Y ∗
t ∈ B∈ ⇐⇒ Yt, j ∈ B∈ ⊂ GF (x∗

t ) for at least one index j, 1 ≤ j ≤ r. (7.32a) 

Thus, 

. P(Y ∗
t /∈ B∈ | x∗

t ) = P(Yt,1 /∈ B∈, . . . ,Yt,r /∈ B∈ | x∗
t )

and therefore 

.P(Y ∗
t ∈ B∈ | x∗

t ) = 1 − P(Yt,1 /∈ B∈, . . . ,Yt,r /∈ B∈ | x∗
t ). (7.32b) 

According to the definition (7.31a), (7.31b) of .X∗
t+1, we then get 

. P(X∗
t+1 ∈ B∈ | x∗

t ) = P(Y ∗
t ∈ B∈ | x∗

t )

= 1 − P(Yt, j /∈ B∈, 1 ≤ j ≤ r | x∗
t ), x∗

t /∈ B∈ . (7.32c) 

Hence, from (7.32c) and inequality (7.13) we get the following result. 

Lemma 7.4 Let .x∗
t /∈ B∈ be a realization of an iteration point .X∗

t outside the set of 
.∈-optimal points .B∈ . 

(a) If.Yt, j , 1 ≤ j ≤ r , are stochastically independent search points, given.X∗
t = x∗

t , 
then 

.P(X∗
t+1 ∈ B∈ | x∗

t ) = 1 −
r∏
j=1

P(Yt, j /∈ B∈ | x∗
t ). (7.32d)
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(b) In case of i.i.d. (independent, identically distributed) variables .Yt, j = Yt , . j =
1, . . . , r , it is  

.P(X∗
t+1 ∈ B∈ | x∗

t ) = 1 − (
P(Yt /∈ B∈ | x∗

t )
)r

. (7.32e) 

(c) For i.i.d. variables .Yt, j = Yt , j = 1, . . . , r we also have 

.P(X∗
t+1 ∈ B∈) = 1 − (

1 − P(Yt ∈ B∈ | x∗
t )

)r ≥ 1 − er P(Yt∈B∈ | x∗
t ) (7.32f) 

and therefore 

.P(X∗
t+1 ∈ B∈ | x∗

t ) → 1, r → ∞. (7.32g) 
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Chapter 8 
Approximation of Feedback Control 
Systems 

Abstract Optimal feedback controls under stochastic uncertainty can be obtained in 
general by approximate methods only. In this chapter approximate feedback controls 
are obtained by Taylor expansion of the state function with respect to the gain matrix 
or the gain parameters. Since the state function is the solution of the state equation, 
hence, a first-order system of differential equations, corresponding systems of dif-
ferential equations for the partial derivatives of the state function with respect to the 
gain matrix, the gain parameters, resp., can be obtained by partial differentiation of 
the state equation with respect to the gain matrix, the gain parameters. Corresponding 
approximate optimal stochastic feedback control problems are then derived. 

8.1 Introduction 

In addition to the approximation method based on open-loop feedback control, pre-
sented in Sect. 3.2, an approximation procedure for feedback control systems is 
proposed by using Taylor expansion methods. 

Here, we consider nonlinear and linear control systems: 

.ż(t) = f (t, a, z(t), u(t)), t ≥ t0 (8.1a) 

.z(t0) = z0(a), (8.1b) 

and 

.ż(t) = A(t, a)z(t) + B(t, a)u(t) + c(t, a), t ≥ t0 (8.2a) 

.z(t0) = z0(a). (8.2b) 

In (8.1a)–(8.2b), . t denotes the continuous time, . t0 the initial time. .z = z(t) and. u =
u(t) are the state.n-vector and the control.m-vector, resp... a denotes a possibly random 
parameter.r -vector on a probability space.(Ω,A,P). Moreover,. f = f (t, a, z, u) is 
a sufficiently smooth function of .(t, a, z, u). 

For the linear case .A = A(t, a), B = B(t, a) are .n × n, m × m matrices and 
.c = c(t, a) is an .n-vector. They all may depend on time . t and parameter vector . a. 
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Furthermore, we assume that the systems of differential equations (8.1a)–(8.1b) 
and (8.2a)–(8.2b) have a unique solution 

.z = z(t, t0, z0, a, u(·)), t0 ≤ t ≤ t f , (8.3) 

on the time intervals .[t0; t f ] under consideration and that this solution is sufficiently 
differentiable with respect to the parameters arising, e.g., in the feedback control 
function. 

Optimizing the underlying control system (8.1a)–(8.1b) or  (8.2a)–(8.2b), one has 
an objective function . f = F(u(·)) defined by the total costs 

.F(u(·)) :=
t f∮

t0

L(t, a, z(t), u(t)) dt + L f (t f , a, z(t f )) (8.4a) 

along the trajectory .z = z(t) and the terminal point .z f = z(t f ). In case of optimal 
control systems under stochastic uncertainty, the objective function is defined by the 
expected total costs 

. F(u(·)) := E

⎛
⎝

t f∮

t0

L(t, a(ω), z(t, ω), u(t, ω)) dt + L f (t f , a(ω), z(t f , ω))

⎞
⎠ .

(8.4b) 

8.2 Control Laws 

There are three main types of control functions, see Sect. 3.2: 

(i) open-loop control . u = u(t), t ≥ t0
Here, the control is a.m-vector valued function on the time interval.[t0; t f ] with 
a certain initial and terminal time .t0, t f . 

(ii) closed-loop or (state-) feedback control . u = u(t, z(t)), t ≥ t0
The (state-) feedback control is a function depending on time . t and the state 
.z = z(t) arising at time . t . More general, the feedback control can be defined 
by a function of time . t and the information .At available up to time . t . In many  
cases linear feedback functions 

.u(t) = u0(t) + G(t)z(t), t ≥ t0 (8.5) 

are taken, where .G = G(t) is the so-called .n × m gain matrix which may 
depend on time . t . Furthermore, .u0 = u0(t) is a certain function on time . t .
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(iii) open-loop feedback control 
This is an approximate feedback control obtained by means of repeated open-
loop control: 
Based on the time interval.[t0; t f ], consider an intermediate time point, selected 
continuously 

.tb = t, t0 ≤ t < t f , (8.6a) 

or selected stepwise with a time step .Δt > 0, 

.tb = tk := t0 + kΔt < t f , k = 0, 1, 2, . . . , (8.6b) 

and the information.Atb , known up to time. tb, as, e.g., the state vector. zb = z(tb)
at time . tb. Then, determine the open-loop control 

.u = u[tb;t f ](s; tb;Atb), tb ≤ s ≤ t f , (8.6c) 

for the remaining time interval .[tb; t f ]. Taking then only the control value at 
time .s = tb, the open-loop feedback control is defined by 

.uOLF(tb) := u[tb;t f ](tb; t f ;Atb) (8.6d) 

continuously, stepwise, resp., for.tb = t, t0 ≤ t < t f , or. tb = tk := t0 + kΔt <

t f , k = 0, 1, 2, . . . . 

8.3 Linear State-Feedback Control Systems 

We start our feedback control approximation method with the linear control system 
(8.2a)–(8.2b) and the state-feedback control (8.5). 

Hence, for the state.n-vector.z = z(t)we have the system of first-order differential 
equations 

.ż(t) = A(t)z(t) + B(t) (u0(t) + Gz(t)) + c(t), t ≥ t0. (8.7) 

The .m × n gain matrix .G is represented by 

.G =
m∑
i=1

n∑
j=1

gi j Ei j (8.8a) 

with the elements .gi j of the matrix .G and the .m × n matrices 

.Ei j =
(
e(i j)
lk

)
l,k=1,...m,n

(8.8b)
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with 

.e(i j)
lk = 1, (l, k) = (i, j), e(i j)

lk = 0, (l, k) /= (i, j). (8.8c) 

Inserting (8.8a) into (8.7), we get 

.ż = A(t)z + B(t)

⎛
⎝u0(t) +

m∑
i=1

n∑
j=1

gi j Ei j z

⎞
⎠ + c(t), t ≥ t0. (8.9a) 

Now it holds 

.Ei j z = z j e j , i = 1, . . .m, j = 1, . . . , n (8.9b) 

and with the .i-th column. ei of the .m × m unit matrix . I and the .i-th column.bi of . B, 

.B(t)Ei j z = B(t)z j ei = z jbi , i = 1, . . . ,m, j = 1, . . . , n. (8.9c) 

Because of (8.9b)–(8.9c), system (8.9a) can be represented by 

.ż = A(t)z + B(t)u0(t) +
m∑
i=1

n∑
j=1

gi j z j bi (t) + c(t), t ≥ t0. (8.10) 

8.3.1 Taylor Expansion of the Feedback Control System with 
Respect to the Gain Matrix . G = (gi j )

Based on calculus, see, e.g., [ 1, 2], we assume that for the initial state . z0, the prior 
control function.u0 = u0(t) and the elements .gi j of the gain matrix.G under consid-
eration there exists a unique solution 

.z = z(t, t0, z0, u0(·), gi j , i = 1, . . .m, j = 1, . . . n), t ≥ t0 (8.11) 

of (8.10) on the time interval .[t0; t f ]. 
Moreover, we assume that the state function (8.11) is sufficiently often differen-

tiable with respect to the gain elements.gi j , 1 = 1, . . . ,m j = 1, . . . , n and that the 
time derivative .

d
dt and the partial derivatives .

∂
∂gi j

can be interchanged. 
Starting now the expansion of the solution (8.11) of the state equation (8.10) with 

respect to the elements .gi j of .G at .G = 0, for .G = 0 we get the open-loop system: 

.ż = A(t)z(t) + B(t)u0(t) + c(t), t ≥ t0 (8.12a) 

.z(t0) = z0. (8.12b)
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If .ϕ = ϕ(t, s) denotes the fundamental matrix of the system matrix .A = A(t), 
(8.12a)–(8.12b) has the solution 

. z(t) = z(t, z0, u0(·), 0)

= ϕ(t, t0)z0 +
t∮

t0

ϕ(t, s) (B(s)u0(s) + c(s)) ds, t ≥ t0. (8.12c) 

According to the above assumptions, for the partial derivatives 

. 
∂z

∂glk
(t) = ∂z

∂glk
(t, t0, z0, u0(·),G), l = 1, . . . ,m j = 1, . . . , n

we get the following systems of differential equations (variational or perturbation 
equations): 

.
d

dt

∂z

∂glk
(t) = A(t)

∂z

∂glk
+ zkbl +

m∑
i=1

n∑
j=1

gi j
∂z j
∂glk

bi , t ≥ t0 (8.13a) 

.
∂z

∂glk
(t0) = 0, l = 1, . . .m, k = 1, . . . n . (8.13b) 

Taking .G = 0 in (8.13a)–(8.13b), for the partial derivatives 

. 
∂z

∂glk
(t) = ∂z

∂glk
(t, t0, z0, u0(·),G), l = 1, . . .m, j = 1, . . . n,

we have the system of linear differential equations 

.
d

dt

∂z

∂glk
(t) = A(t)

∂z

∂glk
(t) + zk(t, t0, z0, u0(t), 0)bl(t), t ≥ t0 (8.14a) 

.
∂z

∂glk
(t0) = 0, (8.14b) 

where function .zk(t) = zk(t, t0, z0, u0(t), 0) is determined by (8.12c). Correspond-
ing to (8.12c), the solution of (8.14a)–(8.14b) reads 

.
∂z

∂glk
(t, t0.z0, u0(·), 0) =

t∮

t0

ϕ(t, s)zk(s, t0, z0, u0(·), 0)bl(s) ds, t ≥ t0. (8.15) 

By further partial differentiation of (8.13a)–(8.13b), for the second-order partial 
derivatives we get
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. 
d

dt

∂2z

∂g2lk
(t) = A(t)

∂2z

∂g2lk
(t) + ∂zk

∂glk
bl(t)

+
m∑
i=1

n∑
j=1

gi j
∂2z j
g2lk

bi
∂zk
∂glk

bl(t), t ≥ t0 (8.16a) 

.
∂2z

∂g2lk
(t0) = 0, (8.16b) 

and for . (u, v) /= (l, k)

. 
d

dt

∂z2

∂guv∂glk
(t) = A(t)

∂2z

∂guv∂glk
(t) + ∂zk

∂guv

bl(t)

+
m∑
i=1

n∑
j=1

gi j
∂2z j

∂guv∂glk
(t)bi + ∂zv

∂glk
bu(t), t ≥ t0 (8.16c) 

.
∂2z

∂guv∂glk
(t0) = 0. (8.16d) 

Taking .G = 0 in (8.16a)–(8.16d) for the derivatives 

. 
∂2z

∂g2lk
(t, t0, z0, u0(·), 0), ∂2z

∂guv∂glk
(t, t0, z0, u0(·), 0)

we have the following systems of linear differential equations: 

.
d

dt

∂2z

∂g2lk
(t) = A(t)

∂z2

∂g2lk
+ 2

∂zk
∂glk

(t, t0, z0, u0(·), 0)bl(t), t ≥ t0 (8.17a) 

.
∂2z

∂g2lk
(t0) = 0 (8.17b) 

. 
d

dt

∂z2

∂guv∂glk
(t) = A(t)

∂2z

∂guv∂glk
(t) + ∂zk

∂guv

(t, t0, z0, u0(·), 0)bl(t)

+ ∂zv

∂glk
(t, t0, z0, u0(·), 0)bu(t), t ≥ t0 (8.17c) 

.
∂2z

∂guv∂glk
(t0) = 0. (8.17d) 

Consequently, corresponding to the first-order derivatives of. z = z(t, t0, z0, u0(·),G)

at .G = 0 and according to (8.17a)–(8.17d), the second-order derivatives can be rep-
resented by
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. 
∂2z

∂guv∂glk
(t, t0, z0, u0(·), 0)

=
t∮

t0

ϕ(t, s)

(
∂zk
∂guv

(s, t0, z0, u0(·), 0)bl(s)

+ ∂zv

∂glk
(s, t0, z0, u0(·), 0)bu(s)

(
ds, t ≥ t0. (8.18) 

According to (8.12c), (8.15), (8.18) with further partial differentiation of (8.17a)– 
(8.17d) and stepwise setting .G = 0, we get the following result: 

Theorem 8.1 For each order .p = 1, 2, . . . the partial derivatives with respect to 
the gain elements .gi j at .G = 0 of the state function .z = z(t, t0, z0, u0(·),G) of the 
feedback control system (8.7), (8.10) resp., have an integral representation involving 
the .p − 1th order partial derivatives of .z = z(t, t0, z0, u0(·),G) with respect to . gi j
at .G = 0. 

8.3.2 Time-Dependent Gain Matrices 

Considering now time-dependent gain matrices.G = G(t), we suppose that.G(t) can 
be represented by 

.G(t) =
s∑

s=0

τs(t)Gs = G0 +
s∑

s=1

τs(t)Gs (8.19a) 

with time functions.τs = τs(t), s = 0, 1, . . . , s̄, and.τ0(t) := 1 as, e.g., for the pow-
ers.τs(t) = t s, s = 0, 1, . . . , s.Moreover,.Gs, s,= 0, . . . , s, are fixed.m × nmatri-
ces, represented, cf. (8.8a)–(8.8c), by their elements .gsi j , hence 

.Gs =
m∑
i=1

n∑
j=1

gsi j Ei j . (8.19b) 

Thus, we have 

.G(t) =
m∑
i=1

n∑
j=1

(
s∑

s=0

τs(t)gsi j

)
Ei j . (8.19c) 

Inserting (8.19c) into the feedback control system (8.7), due to (8.9b)–(8.9c) and 
corresponding to case (8.10) with fixed matrices .Gs , we get
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. ż = A(t)z(t) + B(t)u0(t) +
m∑
i=1

n∑
j=1

(
s∑

s=0

τs(t)gsi j

)
z j (t)bi (t) + c(t), t ≥ t0,

(8.20a) 

.z(t0) = z0. (8.20b) 

Corresponding to (8.10) and (8.11), we also assume, that for the initial state . z0, the  
prior control .u0 = u0(t) and the time-dependent gain matrix .G = G(t), (8.20a)– 
(8.20b) has a unique solution 

.z = z(t, t0, z0, uo(·), gsi j , 0 ≤ s ≤ s, 1 ≤ i ≤ m, 1 ≤ j ≤ n) (8.21) 

on the time interval .[t0; t f ] under consideration. Moreover, we suppose, see [ 1, 2], 
that the state function (8.21) is sufficiently often differentiable with respect to the 
gain parameters .gsi j . 

According to the above remarks, also in the time-dependent case, the partial 
derivatives with respect to the gain parameters. gs i j , s = 0, . . . , s, i = 1, . . . ,m, j =
1, . . . , n of the state function (8.21) can be obtained by the same method as for 
constant gain matrices. 

We show this for the first-order derivatives of (8.21) with respect to a gain param-
eter .gr lk with .0 ≤ r ≤ s, 1 ≤ l ≤ m, 1 ≤ k ≤ n. 

By partial differentiation of (8.20a)–(8.20b) with respect to .gr lk we get 

. 
d

dt

∂z

∂gr lk
(t) = A(t)

∂z

∂gr lk
+ ∂

∂gr lk

s∑
s=0

m∑
i=1

n∑
j=1

gsi j
(
τs(t)z j (t)bi (t)

)

= A(t)
∂z

∂gr lk
+ τr (t)zk(t)bl(t)

+
s∑

s=0

m∑
i=1

n∑
j=1

gsi j
∂

∂gr lk

(
τs(t)z j (t)bi (t)

)
, (8.22a) 

.
∂z

∂gr lk
(t0) = 0. (8.22b) 

Setting now.gsi j = 0 for all indices .s, i, j for the partial derivative 

.
∂z

∂gr lk
(t) = ∂z

∂gr lk
(t, t0.z0.u0(·), gsi j = 0 for all s, i, j), (8.22c)
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we have the ordinary linear system of differential equations 

.
d

dt

∂z

∂gr lk
(t) = A(t)

∂z

∂gr lk
+ τr (t)zk(t)bl(t), (8.23a) 

.
∂z

∂gr lk
(t0) = 0, (8.23b) 

with .zk(t) = zk(t, t0, u0(·), gs i j = 0 for all s, i, j). 

Remark 8.1 In the time-dependent case (8.19a)–(8.19b), the partial derivatives of 
the state function.z(·) at.G = 0 have the same properties as stated in theorem 8.1 for 
the time-independent case treated in Sect. 8.3.1. 

8.4 Optimal Feedback Control Problem 

Based on the Taylor expansion of the state function (8.11), we now present an approx-
imate optimal feedback control problem for the case of a time-independent gain 
matrix .G = (gi j ) , including a first-order approximation of the state function . z(·)
with respect to .G at .G = 0. Hence, let 

. z(1) = z(1)(t, t0, z0, uo(·),G)

:= z(t, t0, z0, u0(·), 0) +
m∑
i=1

n∑
j=1

∂z

∂gi j
(t, t0, z0, u0(·), 0)gi j (8.24a) 

denote the first-order approximation of the state function (8.11), where the zero-
and first-order derivatives at .(t, t0, z0, u0(·), 0) are determined by the systems of 
linear differential equations (8.12a)–(8.12b) and (8.14a)–(8.14b). Moreover, using 
here the approximate state function (8.24a), the feedback control function (8.5) can 
be approximated by 

.u(1) = u(1)(t, t0, z0, u0(·),G) := u0(t) + Gz(1)(t, t0, z0, u0(·),G). (8.24b) 

In the optimal feedback control problem with an objective function (8.4b) we now  
apply the state and feedback control functions (8.24a)–(8.24b). This yields the fol-
lowing approximate optimal feedback control problem under stochastic uncertainty
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. min E

⎛
⎝

t f∮

t0

L
(
t, a(ω), z(1)(t, t0, z0(ω), u0(·),G), u(1)(t, t0, z0(ω), u0(·),G)

)
dt

+L f
(
t f , a(ω), z(1)(t f , t0, z0(ω), a(ω), u0(·),G)

))
(8.25a) 

. s.t.

conditions (8.12a) − (8.12b), (8.14a) − (8.14b) for z(1), u(1) (8.25b) 

.u0(·) ∈ U, G ∈ ⎡, (8.25c) 

where .U, ⎡ resp., denote feasible domains for .u0(·),G. 

8.4.1 Stepwise Optimization of . u0(·),G

Solving (8.25a)–(8.25c) approximately, we may first optimize the open-loop control 
.u0(·) with the corresponding zero-state function 

.z(0) = z(0)(t, t0, z0, a, u0(·)) := z(t, t0, z0, s, u0(·), 0) (8.26) 

by 
Step 1: Optimization of the open-loop control .u0(·) only. 
Solve (8.25a)–(8.25c) with the following changes: 

(i) In (8.25a), replace .z(1) → z(0), u(1) → u0(·), 
(ii) in (8.25b), only use (8.12a)–(8.12b), 
(iii) in (8.25c), only use “.u0(·) ∈ U”. 

Let then.u∗
0(·) denote the optimal solution of the resulting simplified control problem 

(8.24a)–(8.25c).u0(·). 
Step 2: Optimization of the gain matrix.G Solve (8.25a)–(8.25c) with these changes: 

(i) In (8.25a), replace .u0(·) by .u∗
0(·), 

(ii) in (8.25b), replace .u0(·) by .u∗
0(·), 

(iii) in (8.25c), only use “.G ∈ ⎡”. 

Denote then.G∗ = (g∗
i j ) the optimal solution of the resulting simplified control prob-

lem (8.25a)–(8.25c). G . 
Having an optimal solution .(u∗

0(·),G∗) of (8.25a)–(8.25c), or an approximate 
stepwise solution of (8.25a)–(8.25c) as described above, the optimal control of the 
original problem of minimizing (8.4b) subject to (8.1a)–(8.1b), (8.2a)–(8.2b), resp. 
and possible constraints for the control .u0(·) and the gain matrix .G can be approxi-
mated, cf. (8.5), by 

.u∗(t) ≈ u∗
0(t) + G∗z(t), (8.27a) 

where .z = z(t) denotes the state vector observed/measured at time .t, t0 ≤ t ≤ t f .
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Improvements of this method can be obtained by updating .(u∗
0(·),G∗) at certain 

intermediate initial data 

.(tb, zb), zb = z(tb), t0 < tb < t f , (8.27b) 

where .zb denotes the actual state vector at an intermediate time . tb. 

8.5 Approximation of Nonlinear Feedback Control Systems 

We now consider nonlinear control systems represented, see (8.1a)–(8.1b), by 

.ż(t) = f (t, a, z(z), u(t)), t0 ≤ t ≤ t f , (8.28a) 

.z(t0) = z0, (8.28b) 

where the control function .u = u(t) is given, cf. (8.5), by 

.u(t) = u0(t) + Gz(t), t0 ≤ t ≤ t f , (8.28c) 

with an open-loop control .u0 = u0(t). 
Since time-dependent gain matrices.G = G(t) can be treated similar to stationary 

ones, we only consider here time-independent gain matrices represented, see (8.8a), 
by 

.G =
m∑
i=1

n∑
j=1

gi j Ei j . (8.28d) 

Thus, corresponding to (8.10), in the present case, for the state function 

.z = (t, t0, z0, a, u0(·), gi j , i = 1, . . . ,m, j = 1, . . . , n), t0 ≤ t ≤ t f , (8.28e) 

we have, see (8.9b), the following system of differential equations 

. ż(t) = f (t, a, z(t), u0(t) + Gz(t))

= f

⎛
⎝t, a, z(t), u0(t) +

m∑
i=1

n∑
j=1

gi j z j (t)ei

⎞
⎠ , t0 ≤ t ≤ t f , (8.29a) 

.z(t0) = z0, (8.29b) 

where . ei denotes again the .i-th column of the .m × m unit matrix.
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Corresponding to (8.13a)–(8.13b), by differentiation of (8.29a)–(8.29b) with 
respect to a gain parameter.glk , for the partial derivative of the state function (8.28e) 
with respect to .glk we get the system of linear differential equations 

. 
d

dt

∂z

∂glk
(t) = ∂ f

∂z
(t, a, z(t), u(t))

∂z

∂glk
(t)

+ ∂ f

∂u
(t, a, z(t), u(t))

(
zk(t)el + G

∂z

∂glk
(t)

(
(8.30a) 

.
∂z

∂glk
(t0) = 0, l = 1, . . . ,m, k = 1, . . . , n. (8.30b) 

Taking .G = 0, for the derivative 

. 
∂z

∂glk
= ∂z

∂glk
(t, t0, z0, a, u0(·), 0)

we get the system of linear differential equations 

. 
d

dt

∂z

∂glk
(t) = ∂ f

∂z
(t, a, z(t), u0(t))

∂z

∂glk
(t)

+ ∂ f

∂u
(t, a, z(t), u0(t))zk(t)el, t0 ≤ t ≤ t f (8.31a) 

.
∂z

∂glk
(t0) = 0, (8.31b) 

where .z(t) = z1(t), . . . , zn(t))T = z(t, t0, z0, a, u0(·), 0) is determined by the sys-
tems of differential equations 

.ż(t) = f (t, a, z(t), u0(t)), t0 ≤ t ≤ t f , (8.31c) 

.z(t0) = z0. (8.31d) 

Remark 8.2 Second and higher order derivatives of .z = z(t), see  (8.28a)–(8.28e), 
with respect to .gi j , i = 1, . . . ,m j = 1, . . . , n can be obtained as shown in case of 
state linear differential equations. 

8.6 Approximation Error 

According to the properties of parameter-dependent systems of differential equations, 
see [ 1, 2], under weak assumptions, the unique solution 

.z = (
zk(t, t0, z0, u0(·), gi j , i = 1, . . . ,m, j = 1, . . . , n)

)
1≤k≤n (8.32a)
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of (8.1a)–(8.1b), (8.2a)–(8.2b), (8.28a)–(8.28b), (8.29a)–(8.29b), resp., is a suffi-
ciently differentiable .n-vector function of, among other variables, the gain parame-
ters 

.g = (g1, g2, . . . , gm·n)T := (g11, . . . , g1n, . . . , gm1, . . . , gmn)
T . (8.32b) 

Hence, the accuracy of a linear or higher order approximation of the state variables 
.zk = zk(t), k = 1, . . . , n by the Taylor polynomials with respect to . g, 

. Tp(t) = Tp(t, t0, z0, u0(·), g)

:= z(t, t0, z0, u0(·), 0) +
m·n∑
l=1

∂z

∂gl
(t, t0, z0, u0(·), 0)gl + · · ·

+ 1

p!
m·n∑

l1,l2,...,ln=1

∂ pz

∂gl1∂gl2 . . . ∂gln
(t, t0, z0, u0(·), 0)

m·n∏
l=1

gl (8.32c) 

can be evaluated by means of the Taylor formula. The corresponding Lagrange 
remainder term reads 

. Rp(t, g, 0) := 1

(p + 1)!
m·n∑

l1,l2,...,ln+1

∂ p+1z

∂gl1∂gl2 . . . ∂gln+1

(t, t0, z0, u0(·), ϑg)

p+1∏
i=1

gli

(8.32d) 

with .0 < ϑ < 1. 

Remark 8.3 

(a) The sums and products in (8.32c)–(8.32d) can be represented component-wise 
for the components .zk, k = 1, 2, . . . , n of the state vector function .z = z(t). 

(b) The derivatives. ∂ pz
∂gl1 ...∂glp

are build, see Theorem 8.1, in nested way by the corre-

sponding lower order, .p − 1, p − 2, . . . , 0, derivatives up to the state function 
.z = z(t, t0, z0, u0(·), g). 

8.7 Extensions 

In this Section, first special representations of the open-loop or prior control function 
.u0 = u0(t) are presented. Moreover, generalizations of the approximation method 
for feedback control systems with linear to nonlinear feedback functions of the state 
.z = z(t) are presented.
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8.7.1 Special Representations of the Open-Loop (Prior) 
Control Function . u0(·)

Solving optimal (feedback) control problems as considered in Sect. 8.6, advantages 
can be obtained if the open-loop control.m-vector function.u0 = u0(t) is represented 
by 

.u0(t) =
L∑

l=1

Tl(t)ul, (8.33a) 

where 

.Tl(t) =
⎛
⎜⎝

τl11(t) τl12(t) . . . τl1m(t)
...

...
...

τlm1(t) τlm2(t) . . . τlmm(t)

⎞
⎟⎠ , t ≥ t0, l = 1, . . . , L , (8.33b) 

are .(m,m)-matrix functions involving given time functions . τl i j = τl i j (t), i, j =
1, . . . ,m, l = 1, . . . , L , as, e.g., certain powers of time . t . 

Furthermore, .ul, l = 1, . . . , L , are unknown .m-vectors to be determined opti-
mally. 

8.7.1.1 Linear State Equations 

In case of optimal open-loop control problems with linear state equations, cf. (8.12a), 
(8.12b) and Sect. 8.4, the state function .z(t) = z(t, t0, z0, u0(·)) is given by 

. z(t, t0, z0, u0(·)) = ϕ(t, t0)z0 +
∮ t

t0

ϕ(t, s) (B(s)u0(s) + c(s)) ds,

where, with the fundamental matrix .Y = Y (t) of the system matrix .A = A(t), it  
holds .ϕ(t, s) = Y (t)Y (s)−1. 

Using now definition (8.33a), (8.33b) of .u0(·), we find 

. z(t, t0, z0, u0(·)) = ϕ(t, t0)z0 +
L∑

l=1

(∮ t

t0
ϕ(t, s)B(s)Tl(s) ds

(
ul +

∮ t

t0
ϕ(t, s)c(s) ds.

(8.34a) 

Thus, the state function.z = z(t) can be represented as an affine-linear function 

.z(t) = z(t, t0, z0, u1, . . . , uL ) (8.34b) 

of the parameter .m-vectors .ul, l = 1, . . . , L .
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This yields considerable simplifications, e.g., in endpoint control problems and 
trajectory optimization problems, see Chapters 9 and 10. 

8.7.2 Nonlinear Feedback Function 

Generalizing the control function (8.5) with a linear feedback term.uF (t, z) = G(t)z, 
we consider here control functions with nonlinear feedback laws 

.u(t, z) = u0(t) + G(t, z). (8.35a) 

Here, .G = G(t, z) is defined by 

.G(t, z) :=
L∑

l=1

glGl(t, z) (8.35b) 

with given .m-vector functions .Gl = Gl(t, z), l = 1, . . . , L , being nonlinear in . z, 
and scalar parameters .gl, l = 1, . . . , L . A further representation is 

.G(t, z) :=
L∑

l=1

Gl(t, z)gl (8.35c) 

with matrix functions .Gl = Gl(t, z), being nonlinear in state . z, and corresponding 
vectorial parameters.gl, l = 1, . . . , L . Using the feedback representation defined by 
(8.35a)–(8.35c), the state function .z(t) = z(t, t0, z0, u(·, ·)) is reduced to 

.z = z(t, t0, z0, u0(·), g1, . . . , gL) (8.36a) 

involving the open-loop control .u0(·) and the parameter vector 

.g := (g1, g2, . . . , gL)
T , g = (gT1 , gT2 , . . . , gTL )T resp.. (8.36b) 

For simplicity, consider only linear systems of differential equations for the state 
function (8.36a), (8.36b). In case of scalar feedback parameters.g1, . . . , gL , we have  
the differential equation 

.
dz

dt
(t) = At)z(t) + B(t)

(
u0(t) +

L∑
l=1

glGl(t, z(t))

)
+ c(t) (8.37a) 

.z(t0) = z0. (8.37b)
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Using the method suggested above for linear feedback, under corresponding assump-
tions, Taylor expansions of the state function (8.36a), (8.36b) with respect to . g at 
.g = 0 can be derived. 

For .g = 0 we start again with the solution 

.z(t) = z(t, t0, z0, u0(·), 0) (8.38) 

of the open-loop state equation (8.12a), (8.12b). Corresponding to (8.13a), (8.13b), 
for the partial derivatives of the state function (8.36a) with respect to.gl , l = 1, . . . , L , 
by partial differentiation of system (8.37a), (8.37b) with respect to.gl, l = 1, . . . , L , 
we get the systems 

. 
d

dt

∂z

∂gl
(t) = A(t)

∂z

∂gl
(t)

+ B(t)

(
Gl(t, z(t)) +

L∑
λ=1

gλ

∂Gλ

∂z
(t, z(t))

∂z

∂gl
(t),

)
(8.39a) 

.
∂z

∂gl
(t0) = 0. (8.39b) 

Taking now.g = 0, for the partial derivatives 

. 
∂z

∂gl
= ∂z

∂gl
(t, t0, z0, u0(·), 0), l = 1, . . . L ,

we get the linear differential equations 

.
d

dt

∂z

∂gl
(t) = A(t)

∂z

∂gl
(t) + B(t)Gl(t, z(t, t0, z0, u(·), 0)), t ≥ 0 (8.40a) 

.
∂z

∂gl
(t0) = 0. (8.40b) 

Remark 8.4 

(a) Obviously, similar systems of differential equations for higher order partial 
derivatives of (8.36a) with respect to the parameters .gl, l = 1, . . . , L at . g = 0
can be obtained. 

(b) Furthermore, comparing the above system of differential equations for the case 
of nonlinear feedback with the related systems (8.7), (8.13a), (8.13b), (8.14a), 
(8.14b) for linear feedback, we find that they have the same structures concerning 
the sequence of higher partial derivatives, cf. Theorem 8.1.
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Chapter 9 
Stochastic Optimal Open-Loop Feedback 
Control 

Abstract In this chapter a second procedure for an approximate determination of 
stochastic optimal feedback controls is based on the stochastic open-loop feedback 
method. This very efficient approximation method is also the basis of the model 
predictive control procedures. Using the methods mentioned in Chap. 3, stochastic 
optimal open-loop feedback controls are constructed by computing next to stochastic 
optimal open-loop controls on the remaining time intervals .tb ≤ t ≤ t f with . t0 ≤
tb ≤ t f . Having stochastic optimal open-loop feedback controls on each remaining 
time interval .tb ≤ t ≤ t f with.t0 ≤ tb ≤ t f , a stochastic optimal open-loop feedback 
control law follows then immediately by evaluating each of the stochastic optimal 
open-loop controls on.tb ≤ t ≤ t f at the corresponding initial time point.t = tb. The  
efficiency of this method has been proved already by applications to the stochastic 
optimization of regulators for robots. 

9.1 Dynamic Structural Systems Under Stochastic 
Uncertainty 

9.1.1 Stochastic Optimal Structural Control: Active Control 

In order to omit structural damages and therefore high compensation (recourse) costs, 
active control techniques are used in structural engineering. The structures usually 
are stationary, safe, and stable without considerable external dynamic disturbances. 
Thus, in case of heavy dynamic external loads, such as earthquakes, wind turbulences, 
water waves, etc., which cause large vibrations with possible damages, additional 
control elements can be installed in order to counteract applied dynamic loads, see 
[ 3, 18, 19]. 

The structural dynamics is modeled mathematically by means of a linear system 
of second-order differential equations for the .m−vector .q = q(t) of displacements. 
The system of differential equations involves random dynamic parameters, random 
initial values, the random dynamic load vector, and a control force vector depending 
on an input control function .u = u(t). Robust, i.e., parameter-insensitive optimal 
feedback controls .u∗ are determined in order to cope with the stochastic uncertainty 
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involved in the dynamic parameters, the initial values, and the applied loadings. In 
practice, the design of controls is directed often to reduce the mean square response 
(displacements and their time derivatives) of the system to a desired level within a 
reasonable span of time. 

The performance of the resulting structural control problem under stochastic 
uncertainty is evaluated therefore by means of a convex quadratic cost function 
.L = L(t, z, u) of the state vector .z = z(t) and the control input vector .u = u(t). 
While the actual time path of the random external load is not known at the planning 
stage, we may assume that the probability distribution or at least the moments under 
consideration of the applied load and other random parameters are known. The prob-
lem is then to determine a robust, i.e., parameter-insensitive (open-loop) feedback 
control law by minimization of the expected total costs, hence, a stochastic optimal 
control law. 

As mentioned above, in active control of dynamic structures, cf. [ 3, 14, 18– 22], 
the behavior of the .m-vector .q = q(t) of displacements with respect to time . t is 
described by a system of second-order linear differential equations for.q(t) having a 
right-hand side being the sum of the stochastic applied load process and the control 
force depending on a control .n-vector function .u(t): 

.Mq̈ + Dq̇ + K q(t) = f
(

t, ω, u(t)
)
, t0 ≤ t ≤ t f . (9.1a) 

Hence, the force vector . f = f
(

t, ω, u(t)
)
on the right-hand side of the dynamic 

equation (9.1a) is given by the sum 

. f (t, ω, u) = f0(t, ω) + fa(t, ω, u) (9.1b) 

of the applied load. f0 = f0(t, ω) being a vector valued stochastic process describing, 
e.g., external loads or excitation of the structure caused by earthquakes, wind turbu-
lences, water waves, etc., and the actuator or control force vector . fa = fa(t, ω, u)

depending on an input or control .n-vector function .u = u(t), t0 ≤ t ≤ t f . Here, . ω
denotes the random element, lying in a certain probability space .(Ω, A, P), used to  
represent random variations. Furthermore,.M, D, K , resp., denotes the.m × m mass, 
damping and stiffness matrix. In many cases the actuator or control force. fa is linear, 
i.e., 

. fa = [uu (9.1c) 

with a certain .m × n matrix .[u . 
By introducing appropriate matrices, the linear system of second-order differential 

equations (9.1a), (9.1b) can be represented by a system of first-order differential 
equations as follows: 

.ż = g(t, ω, z(t, ω), u) := Az(t, ω) + Bu + b(t, ω) (9.2a)
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with 

.A :=
(

0 I
−M−1K −M−1D

)
, B :=

(
0

M−1[u

)
, (9.2b) 

.b(t, ω) :=
(

0
M−1 f0(t, ω).

)
(9.2c) 

Moreover, .z = z(t) is the .2m-state vector defined by 

.z =
(

q
q̇

)
(9.2d) 

fulfilling a certain initial condition 

.z(t0) =
(

q(t0)
q̇(t0)

)
:=
(

q0

q̇0

)
(9.2e) 

with given or stochastic initial values .q0 = q0(ω), q̇0 = q̇0(ω). 

9.1.2 Stochastic Optimal Design of Regulators 

In the optimal design of regulators for dynamic systems, see also Chap. 10, the  
(.m-) vector .q = q(t) of tracking errors is described by a system of .2nd order linear 
differential equations: 

.M(t)q̈ + D(t)q̇ + K (t)q(t) = −Y (t)ΔpD(ω) + Δu(t, ω), t0 ≤ t ≤ t f . (9.3) 

Here, .M(t), D(t), K (t), Y (t) denote certain time-dependent Jacobians arising 
from the linearization of the dynamic equation around the stochastic optimal refer-
ence trajectory and the conditional expectation .pD of the vector of dynamic param-
eters .pD(ω). The deviation between the vector of dynamic parameters .pD(ω) and 
its conditional expectation.pD is denoted by.ΔpD(ω) := pD(ω) − pD . Furthermore, 
.Δu(t) denotes the correction of the feedforward control .u0 = u0(t). 

By introducing appropriate matrices, system (9.3) can be represented by the . 1st
order system of linear differential equations: 

.ż = A(t)z(t, ω) + BΔu + b(t, ω) (9.4a) 

with
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.A(t) :=
(

0 I
−M(t)−1K −M(t)−1D(t)

)
, B :=

(
0

M(t)−1

)
, (9.4b) 

.b(t, ω) :=
(

0
−M(t)−1Y (t)ΔpD(ω)

)
. (9.4c) 

Again, the (.2m-) state vector .z = z(t) is defined by 

.z =
(

q
q̇

)
. (9.4d) 

9.1.3 Robust (Optimal) Open-Loop Feedback Control 

According to the description in Sect. 3.2, a feedback control is defined, cf. (3.10b), 
by 

.u(t) := ϕ(t,It ), t ≥ t0, (9.5a) 

where .It denotes again the total information about the control system up to time . t
and .ϕ(·, ·) designates the feedback control law. If the state .zt := z(t) is available at 
each time point . t , the control input .n-vector function .u = u(t), .Δu = Δu(t), resp., 
can be generated by means of a .P D -controller, hence, 

.u(t)(Δu(t)) := ϕ
(

t, z(t)
)
, t ≥ t0, (9.5b) 

with a feedback control law.ϕ = ϕ(t, q, q̇) = ϕ(t, z(t)). Efficient approximate feed-
back control laws are constructed here by using the concept of open-loop feedback 
control. Open-loop feedback control is the main tool in model predictive control, cf.  
[ 1, 8, 16], which is very often used to solve optimal control problems in practice. 
The idea of open-loop feedback control is to construct a feedback control law quasi 
argument-wise, see cf. [ 2, 5]. 

A major issue in optimal control is the robustness, cf.  [  4], i.e., the insensitivity of 
the optimal control with respect to parameter variations. In case of random parameter 
variations, robust optimal controls can be obtained by means of stochastic optimiza-
tion methods, cf. [ 10]. Thus, we introduce the following concept of an stochastic 
optimal (open-loop) feedback control. 

Definition 9.1 In case of stochastic parameter variations, robust, hence, parameter-
insensitive optimal (open-loop) feedback controls obtained by stochastic optimiza-
tion methods are also called stochastic optimal (open-loop) feedback controls.
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9.1.4 Stochastic Optimal Open-Loop Feedback Control 

Finding a stochastic optimal open-loop feedback control, hence, an optimal (open-
loop) feedback control law, see Sect. 3.2, being insensitive as far as possible with 
respect to random parameter variations, means that besides optimality of the control 
law also its insensitivity with respect to stochastic parameter variations should be 
guaranteed. Hence, in the following sections we develop now a stochastic version of 
the (optimal) open-loop feedback control method, cf. [ 9, 11– 13]. A short overview 
on this novel stochastic optimal open-loop feedback control concept is given below. 

At each intermediate time point.tb ∈ [t0, t f ], based on the information.Itb available 
at time. tb, a stochastic optimal open-loop control .u∗ = u∗(t; tb,Itb

)
, tb ≤ t ≤ t f , is  

determined first on the remaining time interval .[tb, t f ], see Fig. 9.1, by stochastic 
optimization methods, cf. [ 10]. 

Having a stochastic optimal open-loop control.u∗ = u∗(t; tb,Itb

)
, tb ≤ t ≤ t f , on  

each remaining time interval .[tb, t f ] with an arbitrary starting time . tb, . t0 ≤ tb ≤ t f , 
a stochastic optimal open-loop feedback control law is then defined, see Definition 
3.2, as follows: 

Definition 9.2 

.ϕ∗ = ϕ
(
tb,Itb

) := u∗(tb) = u∗(tb; tb,Itb

)
, t0 ≤ tb ≤ t f . (9.5c) 

Hence, at time .t = tb just the “first” control value .u∗(tb) = u∗(tb; tb,Itb

)
of 

.u∗(·; tb,Itb

)
is used only. For each other argument .

(
t,It
)
the same construction 

is applied. 

For finding stochastic optimal open-loop controls, based on the methods devel-
oped in Chap. 3, on the remaining time intervals .tb ≤ t ≤ t f with .t0 ≤ tb ≤ t f , the  
stochastic Hamilton function of the control problem is introduced. Then, the class 
of .H− minimal controls, cf. Definitions 3.6 and 3.7, can be determined in case of 
stochastic uncertainty by solving a finite-dimensional stochastic optimization prob-
lem for minimizing the conditional expectation of the stochastic Hamiltonian sub-
ject to the remaining deterministic control constraints at each time point . t . Having  
a .H− minimal control, the related two-point boundary value problem with random 
parameters can be formulated for the computation of a stochastic optimal state- and 
costate trajectory. Due to the linear-quadratic structure of the underlying control 
problem, the state and costate trajectory can be determined analytically to a large 
extent. Inserting then these trajectories into the H-minimal control, stochastic optimal 
open-loop controls are found on an arbitrary remaining time interval. According to 

Fig. 9.1 Remaining time interval
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Definition 9.2, these controls yield then immediately a stochastic optimal open-loop 
feedback control law. Moreover, the obtained controls can be realized in real-time, 
which is already shown for applications in optimal control of industrial robots, cf. 
[ 17]. 

Summarizing, we get optimal (open-loop) feedback controls under stochastic 
uncertainty minimizing the effects of external influences on system behavior, subject 
to the constraints of not having a complete representation of the system, cf. [ 4]. 
Hence, robust or stochastic optimal active controls are obtained by new techniques 
from Stochastic Optimization, see  [  10]. Of course, the construction can be applied 
also to .P D− and .P I D−controllers. 

9.2 Expected Total Cost Function 

The performance function .F for active structural control systems is defined, cf. 
[ 6– 8], by the conditional expectation of the total costs being the sum of costs . L
along the trajectory, arising from the displacements.z = z(t, ω) and the control input 
.u = u(t, ω) , and possible terminal costs. G arising at the final state. z f . Hence, on the 
remaining time interval .tb ≤ t ≤ t f we have the following conditional expectation 
of the total cost function with respect to the information.Atb available up to time. tb: 

.F := E

⎛
⎝

t f{

tb

L
(

t, ω, z(t, ω), u(t, ω)
)

dt + G(t f , ω, z(t f , ω))
|| Atb

⎞
⎠ . (9.6a) 

Supposing quadratic costs along the trajectory, the function . L is given by 

.L(t, ω, z, u) := 1

2
zT Q(t, ω)z + 1

2
uT R(t, ω)u (9.6b) 

with positive (semi) definite.2m × 2m, n × n, resp., matrix functions. Q = Q(t, ω),

R = R(t, ω). In the simplest case the weight matrices .Q, R are fixed. A special 
selection for .Q reads 

.Q =
(

Qq 0
0 Qq̇

)
(9.6c) 

with positive (semi) definite weight matrices .Qq , Qq̇ , resp., for .q, q̇ . Furthermore, 
.G = G(t f , ω, z(t f , ω)) describes possible terminal costs. In case of endpoint control 
.G is defined by 

.G(t f , ω, z(t f , ω)) := 1

2
(z(t f , ω) − z f (ω))T G f (z(t f , ω) − z f (ω)), (9.6d) 

where .G f = G f (ω) is a positive (semi) definite, possible random weight matrix, 
and .z f = z f (ω) denotes the (possible random) final state.
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Remark 9.1 Instead of.
1

2
uT Ru, in the following we also use a more general convex 

control cost function .C = C(u). 

9.3 Open-Loop Control Problem on the Remaining Time 
Interval . [tb, t f ]

In the following we suppose next to that the .2m × 2m matrix .A and the . 2m × n
matrix . B are given, fixed matrices. 

Having the differential equation with random coefficients derived above, describ-
ing the behavior of the dynamic mechanical structure/system under stochastic 
uncertainty, and the costs arising from displacements and at the terminal state, 
on a given remaining time interval .[tb, t f ] a stochastic optimal open-loop control 
.u∗ = u∗(t; tb,Itb

)
, tb ≤ t ≤ t f , is a solution of the following optimal control prob-

lem under stochastic uncertainty: 

. min E

⎛
⎝

t f{

tb

1

2

(
z(t, ω)T Qz(t, ω) + u(t)T Ru(t)

)
dt + G(t f , ω, z(t f , ω))

|||Atb

⎞
⎠

(9.7a) 

.s.t. ż(t, ω) = Az(t, ω) + Bu(t) + b(t, ω), a.s., tb ≤ t ≤ t f (9.7b) 

.z(tb, ω) = zb
(b) (estimated state at time tb) (9.7c) 

.u(t) ∈ Dt , tb ≤ t ≤ t f . (9.7d) 

An important property of (9.7a)–(9.7d) is stated next: 

Lemma 9.1 If the terminal cost function .G = G(t f , ω, z) is convex in . z, and the 
feasible domain . Dt is convex for each time point . t , .t0 ≤ t ≤ t f , then the stochastic 
optimal control problem (9.7a)–(9.7d) is a convex optimization problem. 

9.4 The Stochastic Hamiltonian of (9.7a)–(9.7d) 

According to (3.28a), (3.40a),  see also [  8], the stochastic Hamiltonian .H related to 
the stochastic optimal control problem (9.7a)–(9.7d) reads 

. H(t, ω, z, y, u) := L(t, ω, z, u) + yT g(t, ω, z, u)

= 1

2
zT Qz + C(u) + yT (Az + Bu + b(t, ω)) . (9.8a)
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9.4.1 Expected Hamiltonian (with Respect to the Time 
Interval .[tb, t f ] and Information .Atb) 

For the definition of a.H−minimal control the conditional expectation of the stochas-
tic Hamiltonian is needed: 

. H
(b) := E

(
H(t, ω, z, y, u)

||Atb

) = E

(
1

2
zT Qz + yT (Az + b(t, ω))

||Atb

)

+C(u) + E
(
yT Bu
||Atb

)

= C(u) + E
(
BT y(t, ω)

||Atb

)T
u + · · · = C(u) + h(t)T u + . . .

(9.8b) 

with 

.h(t) = h
(
t; tb,Itb

) := E
(
B(ω)T y(t, ω)

||Atb

)
, t ≥ tb . (9.8c) 

9.4.2 .H-Minimal Control on . [tb, t f ]

In order to formulate the two-point boundary value problem for a stochastic opti-
mal open-loop control .u∗ = u∗(t; tb,Itb

)
, tb ≤ t ≤ t f , we need first an .H -minimal 

control 
. ~u∗ = ~u∗

(
t, z(t, ·), y(t, ·); tb,Itb

)
, tb ≤ t ≤ t f ,

defined, see Definitions 3.6 and 3.7 and cf. also [ 8], for .tb ≤ t ≤ t f as a solution of 
the following convex stochastic optimization problem, cf. [ 10]: 

. min E
(
H(t, ω, z(t, ω), y(t, ω), u)

||Atb

)
(9.9a) 

s.t. 
.u ∈ Dt , (9.9b) 

where .z = z(t, ω), y = y(t, ω) are certain trajectories.
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According to (9.9a), (9.9b) the H-minimal control 

.~u∗ = ~u∗
(

t, z(t, ·), y(t, ·); tb,Itb

)
= ~u∗(t, h

(·; tb,Itb

)
) (9.10a) 

is defined by 

.~u∗(t, h
(·; tb,Itb

)
) := argmin

u∈Dt

C(u) + h
(
t; tb,Itb

)T
u for t ≥ tb . (9.10b) 

9.4.2.1 Strictly Convex Cost Function, no Control Constraints 

For strictly convex, differentiable cost functions.C = C(u), as, e.g.,. C(u) = 1
2uT Ru

with positive definite matrix . R, the necessary and sufficient condition for .~u∗ reads 
in case .Dt = R

n: 

.∇C(u) + h
(
t; tb,Itb

) = 0 . (9.11a) 

If .u |→ ∇C(u) is a 1-1-operator, then the solution of (9.11a) reads 

.u = v(h
(
t; tb,Itb

)
) := ∇C−1(−h

(
t; tb,Itb

)
) . (9.11b) 

With (9.8c) and (9.10b) we then have 

.~u∗(t, h) = ~u∗(h
(
t; tb,Itb

)
)) := ∇C−1

(−E
(
B(ω)T y(t, ω)

||Atb

))
. (9.11c) 

9.5 Canonical (Hamiltonian) System 

We suppose here that a .H -minimal control .~u∗ = ~u∗(t, z(t, ·), y(t, ·); tb,Itb

)
, . tb ≤

t ≤ t f , i.e., a solution.~u∗ = ~u∗(t, h) = v(h(t))) of the stochastic optimization prob-
lem (9.9a), (9.9b) is available. Moreover, the conditional expectation .E

(
ξ
||Atb

)
of a 

random variable . ξ is also denoted by .ξ
(b)
, cf. (9.8b). According to (3.46), Theorem 

3.7, a stochastic optimal open-loop control .u∗ = u∗(t; tb,Itb), tb ≤ t ≤ t f , 

.u∗(t; tb,Itb) = ~u∗
(

t, z∗(t, ·), y∗(t, ·); tb,Itb

)
, tb ≤ t ≤ t f , (9.12) 

of the stochastic optimal control problem (9.7a)–(9.7d), can be obtained, see also 
[ 8], by solving the following stochastic two-point boundary value problem related 
to (9.7a)–(9.7d).
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Theorem 9.1 If .z∗ = z∗(t, ω), y∗ = y∗(t, ω), t0 ≤ t ≤ t f , is a solution of 

.ż(t, ω) = Az(t, ω) + B∇C−1
(
−BT y(t)

(b)
)

+ b(t, ω), tb ≤ t ≤ t f (9.13a) 

.z(tb, ω) = zb
(b) (9.13b) 

.ẏ(t, ω) = −AT y(t, ω) − Qz(t, ω) (9.13c) 

.y(t f , ω) = ∇G(t f , ω, z(t f , ω)), (9.13d) 

then the function .u∗ = u∗(t; tb,Itb), tb ≤ t ≤ t f , defined by (9.12) is a stochastic 
optimal open-loop control for the remaining time interval .tb ≤ t ≤ t f . 

9.6 Minimum-Energy Control 

In this case we have.Q = 0, i.e., there are no costs for the displacements .z =
(

q
q̇

)
. 

In this case the solution of (9.13c), (9.13d) reads 

..y(t, ω) = eAT (t f −t)∇zG(t f , ω, z(t f , ω)), tb ≤ t ≤ t f . (9.14a) 

This yields for fixed Matrix . B

.. ~u∗(t, h(t)) = v(h(t)) = ∇C−1
(
−BT eAT (t f −t)∇zG(t f , z(t f ))

(b)
)

,

tb ≤ t ≤ t f . (9.14b) 

Having (9.14a), (9.14b), for the state trajectory .z = z(t, ω) we get, see (9.13a), 
(9.13b), the following system of ordinary differential equations 

. ż(t, ω) = Az(t, ω) + B∇C−1
(− BT eAT (t f −t)∇zG(t f , z(t f ))

(b))

+ b(t, ω), tb ≤ t ≤ t f , (9.15a) 

.z(tb, ω) = zb
(b). (9.15b) 

The solution of system (9.15a), (9.15b) reads 

. z(t, ω) = eA(t−tb)zb
(b) +

t{

tb

eA(t−s)

(
b(s, ω)

+ B∇C−1
(
−BT eAT (t f −s)∇zG(t f , z(t f ))

(b)
))

ds,

tb ≤ t ≤ t f . (9.16)



9.6 Minimum-Energy Control 189

For the final state .z = z(t f , ω) we get the relation: 

. z(t f , ω) = eA(t f −tb)zb
(b) +

t f{

tb

eA(t f −s)

(
b(s, ω)

+B∇C−1
(
−BT eAT (t f −s)∇zG(t f , z(t f ))

(b)
))

ds . (9.17) 

9.6.1 Endpoint Control 

In the case of endpoint control, the terminal cost function is given by the following 
definition (9.18a), where .z f = z f (ω) denotes the desired—possible random—final 
state: 

.G(t f , ω, z(t f , ω)) := 1

2
||z(t f , ω) − z f (ω)||2 . (9.18a) 

Hence, 

.∇G(t f , ω, z(t f , ω)) = z(t f , ω) − z f (ω) (9.18b) 

and therefore 

.∇G(t f , z(t f ))
(b) = z(t f )

(b) − z f
(b) (9.18c) 

= E
(
z(t f , ω)

||Atb

)− E
(
z f (ω)
||Atb

)
. 

Thus 

. z(t f , ω) = eA(t f −tb)zb
(b) +

t f{

tb

eA(t f −s)

(
b(s, ω)

+B∇C−1
(
−BT eAT (t f −s)

(
z(t f )

(b) − z f
(b)
)))

ds . (9.19a) 

Taking expectations.E(. . . |Atb) in (9.19a), we get the following condition for.z(t f )
(b)
: 

. z(t f )
(b) =eA(t f −tb)zb

(b) +
t f{

tb

eA(t f −s)b(s)
(b)

ds

+
t f{

tb

eA(t f −s) B∇C−1
(
−BT eAT (t f −s)

(
z(t f )

(b) − z f
(b)
))

ds . (9.19b)
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9.6.1.1 Quadratic Control Costs 

Here, the control cost function .C = C(u) reads 

.C(u) = 1

2
uT Ru , (9.20a) 

hence, 

.∇C = Ru (9.20b) 

and therefore 

.∇C−1(w) = R−1w . (9.20c) 

Consequently, (9.19b) reads 

. z(t f )
(b) = eA(t f −tb)zb

(b) +
t f{

tb

eA(t f −s)b(s)
(b)

ds

−
t f{

tb

eA(t f −s) B R−1BT eAT (t f −s) dsz(t f )
(b)

+
t f{

tb

eA(t f −s) B R−1BT eAT (t f −s) dsz f
(b) . (9.21) 

Define now 

.U :=
t f{

tb

eA(t f −s) B R−1BT eAT (t f −s) ds . (9.22) 

Lemma 9.2 .I + U is regular. 

Proof Due to the previous considerations, .U is a positive semidefinite . 2m × 2m
matrix. Hence, .U has only nonnegative eigenvalues. 

Assuming that the matrix.I + U is singular, there is a .2m-vector.w /= 0 such that 

. (I + U ) w = 0.

However, this yields 

.Uw = −Iw = −w = (−1)w,
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which means that .λ = −1 is an eigenvalue of . U . Since this contradicts to the above 
mentioned property of . U , the matrix .I + U must be regular. ⬜

From (9.21) we get 

. (I + U ) z(t f )
(b) = eA(t f −tb)zb

(b) +
tb{

tb

eA(t f −s)b(s)
(b)

ds + U z f
(b), (9.23a) 

hence, 

. z(t f )
(b) = (I + U )−1 eA(t f −tb)zb + (I + U )−1

tb{

tb

eA(t f −s)b(s)
(b)

ds

+ (I + U )−1 U z f
(b) . (9.23b) 

Now, (9.23b) and (9.18b) yield 

. ∇zG(t f , z(t f )) = z(t f ) − z f
(b) = z(t f )

(b) − z f
(b)

= (I + U )−1 eA(t f −tb)zb
(b)

+ (I + U )−1

t f{

tb

eA(t f −s)b(s)
(b)

ds

+ ((I + U )−1 U − I
)

z f
(b) . (9.24) 

Thus, a stochastic optimal open-loop control .u∗ = u∗(t; tb,Itb), .tb ≤ t ≤ t f , on  
.[tb, t f ] is given by, cf. (9.11b), 

. u∗(t; tb,Itb) = −R−1BT eAT (t f −t)

(
(I + U )−1 eA(t f −tb)zb

(b)

+ (I + U )−1

t f{

tb

eA(t f −s)b(s)
(b)

ds

+ ((I + U )−1 U − I
)

z f
(b)

)
, tb ≤ t ≤ t f .

(9.25) 

Finally, the stochastic optimal open-loop feedback control law .ϕ = ϕ(t,It ) is then 
given by
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. ϕ(tb,Itb) := u∗(tb; tb,Itb)

= −R−1BT eAT (t f −tb) (I + U )−1 eA(t f −tb)zb
(b)

− R−1BT eAT (t f −tb) (I + U )−1

t f{

tb

eA(t f −s)b(s)
(b)

ds

− R−1BT eAT (t f −tb)
(
(I + U )−1U − I

)
z f

(b) (9.26) 

with .Itb :=
(

zb
(b) := z(tb)

(b)
, b(·)(b)

, z f
(b)
)
. 

Replacing .tb → t , we find this result: 

Theorem 9.2 The stochastic optimal open-loop feedback control law . ϕ = ϕ(t,It )

is given by 

. ϕ(t,It ) = −R−1BT eAT (t f −t) (I + U )−1 eA(t f −t)

~ ~~ ~
ψ0(t)

z(t)
(t)

−R−1BT eAT (t f −t) (I + U )−1

t f{

t

eA(t f −s)b(s)
(t)

ds

~ ~~ ~
ψ1(t,b(·)(t))

−R−1BT eAT (t f −t)
(
(I + U )−1U − I

)
~ ~~ ~

ψ2(t)

z f
(t) , (9.27a) 

hence, 

. ϕ(t,It ) = ψ0(t)z(t)
(t) + ψ1(t, b(·)(t)) + ψ2(t)z f

(t) ,

It :=
(

z(t)
(t)

, b(·)(t), z f
(t)
)
. (9.27b) 

Remark 9.2 Note that the stochastic optimal open-loop feedback law . z(t)
(t) |→

ϕ(t,It ) is not linear in general, but affine linear. 

9.6.2 Endpoint Control with Different Cost Functions 

In this section we consider more general terminal cost functions. G. Hence, suppose 

.G(t f , ω, z(t f , ω)) : = κ(z(t f , ω) − z f (ω)) , (9.28a) 

.∇G(t f , ω, z(t f , ω)) = ∇κ(z(t f , ω) − z f (ω)) . (9.28b)
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Consequently, 

.~u∗(t, h(t)) = v∗(h(t)) = ∇C−1
(

BT eAT (t f −t)∇κ(z(t f ) − z f
(b)
)

(9.29a) 

and therefore, see (9.17) 

. z(t f , ω) = eA(t f −tb)zb +
t f{

tb

eA(t f −s)b(s, ω) ds

+
t f{

tb

eA(t f −s) B∇C−1
(
−BT eAT (t f −s)∇κ(z(t f ) − z f

(b)
)

ds ,

tb ≤ t ≤ t f . (9.29b) 

Special case: 

Now a special terminal cost function is considered in more detail: 

.κ(z − z f ) : =
2m∑
i=1

(zi − z f i )
4 (9.30a) 

.∇κ(z − z f ) = 4
(
(z1 − z f 1)

3, . . . , (z2m − z f 2m)3
)T

. (9.30b) 

Here, 

. ∇κ(z − z f )
(b) = 4

(
E
(
(z1 − z f 1)

3|Atb

)
, . . . , E

(
(z2m − z f 2m)3|Atb

))T

= 4
(

m(b)
3 (z1(t f , ·); z f 1(·)), . . . , m(b)

3 (z2m(t f , ·); z f 2m(·))
)T

=: 4m(b)
3 (z(t f , ·); z f (·)) . (9.31) 

Thus, 

. z(t f , ω) = eA(t f −tb)zb +
t f{

tb

eA(t f −s)b(s, ω) ds

+
t f{

tb

eA(t f −s) B∇C−1
(
−BT eAT (t f −s)4m(b)

3 (z(t f , ·); z f (·))
)

ds

~ ~~ ~
J
(

m(b)
3 (z(t f ,·);z f (·))

)

. (9.32) 

Equation (9.32) yields then



194 9 Stochastic Optimal Open-Loop Feedback Control

. 
(
z(t f , ω) − z f (ω)

)3 ||||
c−by−c

=
⎛
⎝eA(t f −tb)zb − z f +

t f{

tb

eA(t f −s)b(s, ω) ds + J
(

m(b)
3 (z(t f , ·); z f (·))

)⎞⎠
3 ||||

c−by−c

,

(9.33a) 

where “c-by-c” means “component-by-component”. Taking expectations in (9.33a), 
we get the following relation for the moment vector .m(b)

3 : 

.m(b)
3 (z(t f , ·); z f (·)) = ψ

(
m(b)

3 (z(t f , ·); z f (·))
)

. (9.33b) 

Remark 9.3 

. E
((

z(t f , ω) − z f (ω)
)3 ||Atb

)||||
c−by−c

= E (b)
(
z(t f , ω) − z(b)(t f ) + z(b)(t f ) − z f (ω)

)3

= E (b)

( (
z(t f , ω) − z(b)(t f )

)3 + 3
(
z(t f , ω) − z(b)(t f )

)2 (
z(b)(t f ) − z f (ω)

)

+ 3
(
z(t f , ω) − z(b)(t f )

) (
z(b)(t f ) − z f (ω)

)2 + (z(b)(t f ) − z f (ω)
)3 )

. (9.33c) 

Assuming that .z(t f , ω) and .z f (ω) are stochastic independent, then 

. E
(
(z(t f , ω) − z f (ω))3

||Atb

)

= m(b)
3 (z(t f , ·)) + 3σ 2(b)(z(t f , ·))(z(b)(t f ) − z f

(b)) + (z(b)(t f ) − z f
)3(b)

,

(9.33d) 

where .σ 2(b)(z(t f , ·) denotes the conditional variance of the state reached at the final 
time point . t f , given the information at time . tb. 

9.6.3 Weighted Quadratic Terminal Costs 

With a certain (possibly random) weight matrix.[ = [(ω), we consider the following 
terminal cost function: 

.G(t f , ω, z(t f , ω)) := f rac12
||||[(ω)

(
z(t f , ω) − z f (ω)

)||||2 . (9.34a) 

This yields
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.∇G(t f , ω, z(t f , ω)) = [(ω)T [(ω)(z(t f , ω) − z f (ω)) , (9.34b) 

and from (9.14a) we get 

. y(t, ω) = eAT (t f −t)∇zG(t f , ω, z(t f , ω))

= eAT (t f −t)[(ω)T [(ω)(z(t f , ω) − z f (ω)) , (9.35a) 

hence, 

. y(b)(t) = eAT (t f −t)[T
(
[z(t f ) − [z f

)(b)

= eAT (t f −t)
(
[T [z(t f )

(b) − [T [z f
(b)
)

. (9.35b) 

Thus, for the .H− minimal control we find 

. ~u∗(t, h) = v(h(t))

= ∇C−1
(−BT y(b)(t)

)

= ∇C−1

(
− BT eAT (t f −t)

(
[T [z(t f )

(b)

− [T [z f
(b)
))

. (9.36) 

We obtain therefore, see (9.16), 

. z(t, ω) = eA(t−tb)zb +
t{

tb

eA(t−s)

(
b(s, ω)

+ B∇C−1

(
− BT eAT (t f −s)

(
[T [z(t f )

(b) − [T [z f
(b)
)))

ds. (9.37a) 

9.6.3.1 Quadratic Control Costs 

Assume that the control costs and their gradient are given by 

.C(u) = 1

2
uT Ru, ∇C(u) = Ru . (9.37b) 

Here, (9.37a) yields
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. z(t f , ω) = eA(t f −tb)zb +
t f{

tb

eA(t f −s)

(
b(s, ω)

− B R−1BT eAT (t f −s)
(
[T [z(t f

(b) − [T [z f
(b)
))

ds . (9.37c) 

Multiplying with .[(ω)T [(ω) and taking expectations, from (9.37c) we get 

. [T [z(t f )
(b) = [T [

(b)
eA(t f −tb)zb

(b) +
t f{

tb

[T [eA(t f −s)b(s
(b)

ds

− [T [
(b)

t f{

tb

eA(t f −s) B R−1BT eAT (t f −s) ds

×
(
[T [z(t f )

(b) − [T [z f
(b)
)

. (9.38a) 

According to a former lemma, we define the matrix 

. U =
t f{

tb

eA(t f −s) B R−1BT eAT (t f −s) ds .

From (9.38a) we get then 

. 

(
I + [T [

(b)
U
)

[T [z(t f )
(b)

= [T [
(b)

eA(t f −tb)zb
(b) +

t f{

tb

[T [eA(t f −s)b(s)
(b)

ds

+ [T [
(b)

U[T [z f
(b)

. (9.38b) 

Lemma 9.3 .I + [T [
(b)

U is regular. 

Proof First notice that not only . U , but also .[T [
(b)

is positive semidefinite: 

.vT [T [
(b)

v = vT [T [v = ([v)T [v
(b) = ||[v||22

(b) ≥ 0 .
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Then their product .[T [
(b)

U is positive semidefinite as well. This follows immedi-
ately from [ 15] as .[(ω)T [(ω) is symmetric. ⬜

Since the matrix .I + [T [
(b)

U is regular, we get cf. (9.23a), (9.23b), 

. [T [z(t f )
(b) =
(

I + [T [
(b)

U
)−1

[T [
(b)

eA(t f −tb)zb
(b)

+
(

I + [T [
(b)

U
)−1

t f{

tb

[T [eA(t f −s)b(s)
(b)

ds

+
(

I + [T [
(b)

U
)−1

[T [
(b)

U[z f
(b)

. (9.38c) 

Putting (9.38c) into (9.36), corresponding to (9.25) we get the stochastic optimal 
open-loop control 

. u∗(t; tb,Itb) = −R−1BT eAT (t f −t)
(
[T [z(t f )

(b) − [T [z f
(b)
)

= . . . , tb ≤ t ≤ t f , (9.39) 

which yields then the related stochastic optimal open-loop feedback control . ϕ =
ϕ(t,It ) law corresponding to Theorem 9.2. 

9.7 Nonzero Costs for Displacements 

Suppose here that .Q /= 0. According to (9.13a)–(9.13d), for the adjoint trajectory 
.y = y(t, ω) we have the system of differential equations 

. ẏ(t, ω) = −AT y(t, ω) − Qz(t, ω)

y(t f , ω) = ∇G(t f , ω, z(t f , ω)) ,

which has the following solution for given .z(t, ω) and .∇G(t f , ω, z(t f , ω)): 

.y(t, ω) =
t f{

t

eAT (s−t) Qz(s, ω) ds + eAT (t f −t)∇G(t f , ω, z(t f , ω)). (9.40) 

Indeed, we get
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. y(t f , ω) = 0 + I∇zG(t f , ω, z(t f , ω)) = ∇zG(t f , ω, z(t f , ω))

ẏ(t, ω) = − eAT ·0Qz(t, ω)

−
t f{

t

AT eAT (s−t) Qz(s, ω) ds − AT eAT (t f −t)∇G(t f , ω, z(t f , ω))

= −eAT ·0Qz(t, ω)

− AT

⎛
⎝

t f{

t

eAT (s−t) Qz(s, ω) ds + eAT (t f −t)∇G(t f , ω, z(t f , ω))

⎞
⎠

= −AT y(t, ω) − Qz(t, ω) .

From (9.40) we then get 

. y(b)(t) = E (b)(y(t, ω)) = E
(
y(t, ω)|Atb

)

=
t f{

t

eAT (s−t) Qz(b)(s) ds + eAT (t f −t)∇G(t f , z(t f ))
(b)

. (9.41) 

The unknown function .z(t)
(b)

and the vector .z(t f , ω) in this equation are both 

given, based on .y(t)
(b)
, by the initial value problem, see (9.13a), (9.13b), 

.ż(t, ω) = Az(t, ω) + B∇C−1
(−BT y(b)(t)

)+ b(t, ω) (9.42a) 

.z(tb, ω) = zb . (9.42b) 

Taking expectations, considering the state vector at the final time point . t f , resp., 
yields the expressions: 

. z(b)(t) = eA(t−tb)zb
(b) +

t{

tb

eA(t−s)
(

b(s)
(b) + B∇C−1

(−BT y(b)(s)
))

ds,

(9.43a) 

. z(t f , ω) = eA(t f −tb)zb +
t f{

tb

eA(t f −s)
(
b(s, ω) + B∇C−1

(−BT y(b)(s)
))

ds.

(9.43b)
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9.7.1 Quadratic Control and Terminal Costs 

Corresponding to (9.18a), (9.18b) and (9.20a), (9.20b), suppose 

. ∇G(t f , ω, z(t f , ω)) = z(t f , ω) − z f (ω) ,

∇C−1(w) = R−1w .

According to (9.12) and (9.11c), in the present case the stochastic optimal open-
loop control is given by 

. u∗(t; tb,Itb) = ~u∗(t, h(t)) = R−1
(−E
(
BT y(t, ω)

||Atb

)) = −R−1BT y(t)
(b)

.

(9.44a) 

Hence, we need the function .y(b) = y(t)
(b)
. From (9.41) and (9.18a), (9.18b) we  

have 

.y(t)
(b) = eAT (t f −t)

(
z(t f )

(b) − z f
(b)
)

+
t f{

t

eAT (s−t) Qz(s)
(b)

ds . (9.44b) 

Inserting (9.43a), (9.43b) into (9.44b), we have 

. y(t)
(b) = eAT (t f −t)

(
eA(t f −tb)zb

(b) − z f
(b)

+
t f{

tb

eA(t f −s)
(

b(s)
(b) − B R−1BT y(s)

(b)
)

ds

)

+
t f{

t

eAT (s−t) Q

(
eA(s−tb)zb

(b)

+
s{

tb

eA(s−τ)
(

b(τ )
(b) − B R−1BT y(τ )

(b)
)

dτ

)
ds . (9.44c) 

In the following we develop a condition that guarantees the existence and unique-

ness of a solution .yb = y(t)
(b)

of equation (9.44c). 

Theorem 9.3 In the space of continuous functions, the above Eq. (9.44c) has a 
unique solution if 

.cB <
1

cA

/
cR−1(t f − t0)

(
1 + (t f −t0)cQ

2

) . (9.45)
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Here, 

. cA := sup
tb≤t≤s≤t f

||eA(t−s)||F cB := ||B||F cR−1 := ||R−1||F cQ := ||Q||F ,

and the index . F denotes the Frobenius-Norm. 

Proof The proof of the existence and uniqueness of such a solution is based on 
the Banach fixed point theorem. For applying this theorem, we consider the Banach 
space 

.X = { f : [tb; t f ] → R
2m : f continuous

}
(9.46a) 

equipped with the supremum norm 

.|| f ||L := sup
tb≤t≤t f

|| f (t)||2 , (9.46b) 

where .|| · ||2 denotes the Euclidean norm on .R
2m . 

Now we study the operator .T : X → X defined by 

. (T f )(t) =eAT (t f −t)

(
eA(t f −tb)zb

(b) − z f
(b)

+
t f{

tb

eA(t f −s)
(

b(s)
(b) − B R−1BT f (s)

)
ds

)

+
t f{

t

eAT (s−t) Q

(
eA(s−tb)zb

(b)

+
s{

tb

eA(s−τ)
(

b(τ )
(b) − B R−1BT f (τ )

)
dτ

)
ds . (9.47) 

The norm of the difference.T f − T g of the images of two different elements. f, g ∈
X with respect to .T may be estimated as follows: 

. ||T f − T g||

= sup
tb≤t≤t f

{||||||||||||
eAT (t f −t)

t f{

tb

eA(t f −s) B R−1BT (g(s) − f (s)) ds

+
t f{

t

eAT (s−t) Q

s{

tb

eA(s−τ) B R−1BT (g(τ ) − f (τ )) dτ ds

||||||||||||
2

⎫⎬
⎭ . (9.48a)
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Note that the Frobenius norm is submultiplicative and compatible with the Euclidian 
norm. Using these properties, we get 

. ||T f − T g||

≤ sup
tb≤t≤t f

{
cA

t f{

tb

cAcBcR−1cB|| f (s) − g(s)||2 ds

+ cAcQ

t f{

t

s{

tb

cAcBcR−1cB|| f (τ ) − g(τ )||2 dτ ds

}

≤ sup
tb≤t≤t f

{
cA

t f{

tb

cAcBcR−1cB sup
tb≤t≤t f

|| f (s) − g(s)||2 ds

+ cAcQ

t f{

t

s{

tb

cAcBcR−1cB sup
tb≤t≤t f

|| f (τ ) − g(τ )||2 dτ ds

}

= || f − g||c2Ac2BcR−1sup
tb≤t≤t f

{
(t f − tb) + cQ

2

(
(t f − tb)

2 − (t − tb)
2
)}

≤|| f − g||c2Ac2BcR−1(t f − tb)(1 + cQ

2
(t f − tb)) . (9.48b) 

Thus, .T is a contraction if 

.c2B <
1

c2AcR−1(t f − tb)
(
1 + cQ

2 (t f − tb)
) (9.48c) 

and therefore 

.cB <
1

cA

/
cR−1(t f − tb)

(
1 + cQ

2 (t f − tb)
) . (9.48d) 

In order to get a condition that is independent of . tb, we take the worst case .tb = t0, 
hence, 

.cB <
1

cA

/
cR−1(t f − t0)

(
1 + (t f −t0)cQ

2

) . (9.48e)

⬜

Remark 9.4 Condition (9.48e) holds if the matrix. [ in (9.1c) has a sufficiently small 
Frobenius norm. Indeed, according to (9.2b) we have
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. B =
(

0
M−1[

)

and therefore 

. cB = ||B||F = ||M−1[||F ≤ ||M−1||F · ||[||F .

Having .y(b)(t), according to (9.44a) a stochastic optimal open-loop control 
.u∗(t) = u∗(t; tb,Itb), .tb ≤ t ≤ t f , reads 

.u∗(t; tb,Itb) = −R−1BT y(t)
(b)

. (9.49a) 

Moreover, 

.ϕ(tb,Itb) := u∗(tb), t0 ≤ tb ≤ t f (9.49b) 

is then a stochastic optimal open-loop feedback control law. 

Remark 9.5 Putting.Q = 0 in (9.40), we again obtain the stochastic optimal open-
loop feedback control law (9.26) in Sect. 9.6.1.1. 

9.8 Stochastic Weight Matrix . Q = Q(t, ω)

In the following we consider the case that, cf. (3.6h,i), the weight matrix for the 
evaluation of the displacements .z = z(t, ω) is stochastic and may depend also on 
time .t, t0 ≤ t ≤ t f . In order to take into account especially the size of the additive 
disturbance term.b = b(t, ω), cf.  (9.7b), in the following we consider the stochastic 
weight matrix 

.Q(t, ω) := ||b(t, ω)||2Q, (9.50a) 

where .Q is again a positive (semi) definite .2m × 2m matrix, and .|| · || denotes the 
Euclidian norm. 

According to (9.13c), (9.13d), for the adjoint variable .y = y(t, ω) we then have 
the system of differential equations 

. ẏ(t, ω) = −AT y(t, ω) − β(t, ω)Qz(t, ω)

y(t f , ω) = ∇G(t f , ω, z(t f , ω)),

where the stochastic function .β = β(t, ω) is defined by 

.β(t, ω) := ||b(t, ω)||2. (9.50b) 

Assuming that we have also the weighted terminal costs,
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.G(t f , ω, z(t f , ω)) := 1

2
β(t f , ω)||z(t f , ω) − z f (ω)||2, (9.50c) 

for the adjoint variable .y = y(t, ω), we have the boundary value problem 

.ẏ(t, ω) = −AT y(t, ω) − β(t, ω)Qz(t, ω) (9.51a) 

. y(t f , ω) = β(t f , ω)
(
z(t f , ω) − z f (ω)

)

= β(t f , ω)z(t f , ω) − β(t f , ω)z f (ω). (9.51b) 

Corresponding to (9.40), from (9.51a), (9.51b) we then get the solution 

. y(t, ω) =
t f{

t

eAT (s−t) Qβ(s, ω)z(s, ω) ds

+ eAT (t f −t)
(
β(t f , ω)z(t f , ω) − β(t f , ω)z f (ω)

)
, tb ≤ t ≤ t f . (9.52a) 

Taking conditional expectations of (9.52a) with respect to .Atb , corresponding to 
(9.41) we obtain 

. y(b)(t) = eAT (t f −t)
(
β(t f )z(t f )

(b) − β(t f )z f
(b)
)

+
t f{

t

eAT (s−t) Qβ(s)z(s)
(b)

ds, t ≥ tb. (9.52b) 

Since the matrices.A, B are assumed to be fixed,  see (9.7b), from (9.8c) and (9.52b) 
we get 

.h(t) = E
(
BT y(t, ω)|Atb

) = BT y(b)(t), t ≥ tb. (9.53a) 

Consequently, corresponding to (9.11c) and (9.12), with (9.53a) the optimal open-
loop control .u∗ = u∗(t) is given then by 

.u∗(t;Itb) = R−1 (−h(t)) . (9.53b) 

Moreover, the weighted conditional mean trajectory 

.t → β(t)z(t)
(b) = E

(
β(t, ω)z(t, ω)|Atb

)
, t ≥ tb (9.54a) 

is determined in the present open-loop feedback approach as follows. We first remem-
ber that the optimal trajectory is defined by the initial value problem (9.13a), (9.13b). 
Approximating the weighted conditional mean trajectory (9.54a) by
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.t → E
(
β(tb, ω)z(t, ω)|Atb

)
, tb ≤ t ≤ t f , (9.54b) 

we multiply (9.13a), (9.13b) by  .β(tb, ω). Thus, the trajectory .t → β(tb, ω)z(t, ω), 
.t ≥ tb, is the solution of the initial value problem 

. 
d

dt
β(tb, ω)z(t, ω) = Aβ(tb, ω)z(t, ω) − B R−1Bβ(tb, ω)y(b)(t)

+ β(tb, ω)b(t, ω) (9.55a) 

.β(tb, ω)z(tb, ω) = β(tb, ω)zb . (9.55b) 

Taking conditional expectations of (9.55a), (9.55b) with respect to.Atb , for the approx-
imate weighted conditional mean trajectory (9.54b) we obtain the initial value prob-
lem 

. 
d

dt
β(tb)z(t)

(b) = Aβ(tb)z(t)
(b) − B R−1Bβ

(b)
(tb)y(b)(t)

+ β(tb)b(t)
(b)

(9.56a) 

.β(tb)z(tb)
(b) = β(tb)zb

(b)
, (9.56b) 

where .β
(b)

(t) := E
(
β(t, ω)|Atb

)
, . t ≥ tb. Consequently, the approximate weighted 

conditional mean trajectory (9.54b) can be represented, cf. (9.43a), (9.43b), by 

. β(tb)z(t)
(b) = eA(t−tb)β(tb)zb

(b)

+
t{

tb

eA(t−s)
(
β(tb)b(s)

(b) − B R−1BT β
(b)

(tb)y(b)(s)
)

ds,

tb ≤ t ≤ t f . (9.57) 

Obviously, a corresponding approximate representation for 

. t → β(t f )z(t f )
(b)

can be obtained, cf. (9.43b), by using (9.57) for .t = t f . 
Inserting now (9.57) into (9.52b), corresponding to (9.44c) we find the following 

approximate fixed point condition for the conditional mean adjoint trajectory . t |→
y(b)(t), tb ≤ t ≤ t f , needed in the representation (9.53b) of the stochastic optimal 
open-loop control .u∗ = u∗(t), tb ≤ t ≤ t f :
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. y(b)(t) = eAT (t f −t)
(
β(t f )z(t f )

(b) − β(t f )z f
(b)
)

+
t f{

tb

eAT (s−t) Qβ(s)z(s)
(b)

ds

≈eAT (t f −t)

(
eA(t f −tb)β(tb)zb

(b) − β(t f )z f
(b)

+
t f{

tb

eA(t f −s)
(
β(tb)b(s)

(b) − B R−1BT β
(b)

(tb)y(b)(s)
)

ds

)

+
t f{

t

eAT (s−t) Q

(
eA(s−tb)β(tb)zb

(b)

+
s{

tb

eA(s−τ)
(
β(tb)b(τ )

(b) − B R−1BT β
(b)

(tb)y(b)(τ )
)

dτ

)
ds.

(9.58) 

Corresponding to Theorem 9.3 we can also develop a condition that guarantees 
the existence and uniqueness of a solution .yb = y(b)(t) of equation (9.58). 

Theorem 9.4 In the space of continuous functions, Eq. (9.58) has a unique solution 
if 

.cB <
1

cA

/
cR−1η(b)(tb)(t f − t0)

(
1 + (t f −t0)cQ

2

) . (9.59) 

Here again, 

. cA := sup
tb≤t≤s≤t f

||eA(t−s)||F cB := ||B||F cR−1 := ||R−1||F cQ := ||Q||F ,

and the index . F denotes the Frobenius-Norm. 

According to (9.53a), (9.53b), the stochastic optimal open-loop control .u∗(t), 
.tb ≤ t ≤ t f , can be obtained as follows: 

Theorem 9.5 With a solution.y(b)(t)of the fixed point condition (9.58), the stochastic 
optimal open-loop control .u∗(t), .tb ≤ t ≤ t f , reads 

.u∗(t;Itb) = −R−1BT y(b)(t). (9.60a) 

Moreover, 

.ϕ(tb,Itb) := u∗(tb;Itb), t0 ≤ tb ≤ t f (9.60b) 

is then the stochastic optimal open-loop feedback control law.
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9.9 Uniformly Bounded Sets of Controls . Dt, t0 ≤ t ≤ t f

The above-shown Theorem 9.4 guaranteeing the existence of a solution of the fixed 
point condition (9.58) can be generalized considerably if we suppose that the sets 
.Dt of feasible controls .u = u(t) are uniformly bounded with respect to the time 
.t, t0 ≤ t ≤ t f . Hence, in the following we suppose again: 

• time-independent and deterministic matrices of coefficients, hence 

.A(t, ω) = A B(t, ω) = B (9.61a) 

• quadratic cost functions, 

. C(u) = 1

2
uT Ru Q(z) = 1

2
zT Qz

G(t f , ω, z(t f , ω) = 1

2

||||z(t f , ω) − z f (ω)
||||2
2 (9.61b) 

• uniformly bounded sets of feasible controls, hence, we assume that there exists a 
constant .CD ≥ 0 such that 

.||u||2 ≤ cD for all u ∈
U
t∈T

Dt . (9.61c) 

According to the above assumed deterministic coefficient matrices .A, b, the  .H -
minimal control depends only on the conditional expectation of the adjoint trajectory, 
hence, 

.~u∗(t) = ~u∗(t, y(t)
(b)

). (9.62) 

Thus, the integral form of the related 2-point boundary value problem reads 

.z(ω, t) = zb +
t{

tb

(
Az(ω, s) + b(s, ω) + B~u∗(s, y(s)

(b)
)

ds (9.63a) 

.y(ω, t) = (z(t f , ω) − z f (ω)
)+

t f{

t

(
AT y(ω, s) + Qz(s, ω)

)
ds. (9.63b) 

Consequently, for the conditional expectations of the trajectories we get
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.z(t)
(b) = zb

(b) +
t{

tb

(
Az(s)

(b) + b(s)
(b) + B~u∗(s, y(s)

(b)
)

ds (9.64a) 

.y(t)
(b) =
(

z(t f )
(b) − z f

(b)
)

+
t f{

t

(
AT y(s)

(b) + Qz(s)
(b)
)

ds. (9.64b) 

Using the matrix exponential function with respect to . A, we have  

.z(t)
(b) = eA(t−tb)zb

(b) +
t{

tb

eA(t−s)
(

b(s)
(b) + B~u∗(s, y(s)

(b)
)

ds (9.65a) 

.y(t)
(b) = eAT (t f −t)

(
z(t f )

(b) − z f
(b)
)

+
t f{

t

eAT (s−t) Qz(s)
(b)

ds. (9.65b) 

Putting (9.65a) into (9.65b), for .y(t)
(b)

we get then the following fixed point 
condition 

. y(t)
(b) = eAT (t f −t)

(
z(t f )

(b) − z f
(b)
)

+
t f{

t

eAT (s−t) Q

⎛
⎝eA(s−tb)zb

(b) +
s{

tb

eA(s−τ)
(

b(τ )
(b) + B~u∗(τ, y(τ )

(b)
)

dτ

⎞
⎠ ds

(9.66) 

For the consideration of the existence of a solution of the above fixed point equa-
tion (9.66) we need several auxiliary tools. According to the assumption (9.61c), 
next we have the following lemma: 

Lemma 9.4 There exist constants .cz, cG > 0 such that 

.||z( f (·), t)
(b)|| ≤ cz and ||∇zG(z( f (·), t)

(b)|| ≤ cG (9.67a) 

for each time .t, tb ≤ t ≤ t f , and all . f ∈ C(T ;Rm), where 

.z( f (·), t)
(b) := eA(t−tb)zb

(b) +
t{

tb

eA(t−s)
(

b(s)
(b) + B~u∗( f (s), s)

)
ds (9.67b)
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Proof With .cA := e||A||F (t f −tb), cB := ||B||F and .c
b

(b) := ||b(·)(b)||∞ the following 
inequalities hold: 

.||z( f (·), t)
(b)||2 ≤ cA

(
||zb

(b)||2 +
(

c
b

(b) + cBcD

)
(t f − tb)

)
≤ cz (9.68a) 

.||∇zG(z( f (·), t)
(b)||2 = ||z( f (·), t f )

(b) − z f
(b)|| ≤ cz + ||z f

(b)||2 ≤ cG, (9.68b) 

where .cz, cG are arbitrary upper bounds of the corresponding left quantities. ⬜

In the next lemma the operator defined by the right-hand side of (9.66) is studied: 

Lemma 9.5 Let denote again .X := C(T ;Rm) the space of continuous functions . f
on . T equipped with the supremum norm. If .T̃ : X → X denotes the operator defined 
by 

. (T̃ f )(t) := eAT (t f −t)
(

z(t f )
(b) − z f

(b)
)

+
t f{

t

eAT (s−t) Q

⎛
⎝eA(s−tb)zb

(b) +
s{

tb

eA(s−τ)
(

b(τ )
(b) + B~u∗(τ, f (τ ))

)
dτ

⎞
⎠ ds,

(9.69) 

then the image of . T̃ is relative compact. 

Proof Let.cQ := ||Q||F .We have to show that.T̃ (X) is bounded and equicontinuous. 

• .T̃ (X) is bounded: 

. 

||||||||eAT (t f −t)
(

z(t f )
(b) − z f

(b)
)

+
t f{

t

eAT (s−t)Q

⎛
⎜⎝eA(s−tb)zb

(b) +
s{

tb

eA(s−τ)
(

b(τ )
(b) + B~u∗(τ, f (τ ))

)
dτ

⎞
⎟⎠ ds

||||||||

≤cAcG + cAcQ

(
cA||zb

(b)||2(t f − tb) + (cAc
b
(b) + cBcD)

t2f − t2b
2

)
(9.70) 

• .T̃ (X) is equicontinuous. 
We have to show that for each .∈ > 0 there exists a .δ > 0 such that, independent 
of the mapped function . f , the following inequality holds: 

. |t − s| < δ ⇒ ||T̃ f (t) − T̃ f (s)||2 ≤ ∈.

Defining the function
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.o(t) = eA(t−tb)zb +
t{

tb

eA(t−μ)b(μ)
(b)

dμ, (9.71) 

the following inequalities hold: 

.. 

||||||T̃ f (t) − T̃ f (s)
||||||
2

=
||||||||eAT (t f −t)

(
z(t f )

(b) − z f
(b)
)

− eAT (t f −s)
(

z(t f )
(b) − z f

(b)
)

+
t f{

t

eAT (τ−t) Q

⎛
⎝eA(τ−tb)zb +

τ{

tb

eA(τ−μ)
(

b(μ)
(b) + B~u∗(μ, f (μ))

)
dμ

⎞
⎠ dτ

−
t f{

s

eAT (τ−s) Q

⎛
⎝eA(τ−tb)zb +

τ{

tb

eA(τ−μ)
(

b(μ)
(b) + B~u∗(μ, f (μ))

)
dμ

⎞
⎠ dτ

||||||||. (9.72a) 

From Eq. (9.72a) we get then 

. 

||||||T̃ f (t) − T̃ f (s)
||||||
2

=
||||||||
(

eAT (t f −t) − eAT (t f −s)
) (

z(t f )
(b) − z f

(b)
)

+
t f{

t

eAT (τ−t) Q

⎛
⎝o(τ) +

τ{

tb

B~u∗(μ, f (μ)) dμ

⎞
⎠ dτ

−
t f{

s

eAT (τ−s) Q

⎛
⎝o(τ) +

τ{

tb

B~u∗(μ, f (μ)) dμ

⎞
⎠ dτ

||||||||
2

≤
||||||eAT (t f −t) − eAT (t f −s)

||||||
2

cG

+

||||||||||||||

(
eAT (−t) − eAT (−s)

) t f{

t

eAT τ Q

⎛
⎝o(τ) +

τ{

tb

B~u∗(μ, f (μ)) dμ

⎞
⎠ dτ

− eAT (−s)

t{

s

eAT τ Q

⎛
⎝o(τ) +

τ{

tb

B~u∗(μ, f (μ)) dμ

⎞
⎠ dτ

||||||||||||
2

≤
||||||eAT (t f −t) − eAT (t f −s)

||||||
2

cG

+
||||||eAT (−t) − eAT (−s)

|||||| e||A||F t f cQ(co + cBcD(t f − tb))(t f − tb)

+ cAcQ(co + cBcD(t f − tb))|t − s|. (9.72b)
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Obviously, the final expression in (9.72b) is independent of . f (·). Hence, due to 
the continuity of the matrix exponential function and the function.o(·), the assertion 
follows. ⬜

From the above Lemma 9.5 we now obtain this result: 

Theorem 9.6 The fixed point Eq. (9.66) has a continuous, bounded solution. 

Proof Define again.X := C(T ;Rm) and consider the set . M ⊂ X

.M :=
{

f (·) ∈ X | sup
t∈T

|| f (t)||2 ≤ C

}
, (9.73a) 

where 

.C := cAcG + cAcQ

(
cA||zb||2(t f − tb) + (cAc

b
(b) + cBcD)

t2f − t2b
2

)
. (9.73b) 

Moreover, let .T denote the restriction of .T̃ to .M, hence, 

.T : M → M, f |→ T̃ f. (9.74) 

Obviously, the operator .T is continuous and, according to Lemma 9.5, the image of 
.T is relative compact. Moreover, the set .M is closed and convex. Hence, according 
to the fixed point theorem of Schauder, .T has a fixed point in .M. ⬜

9.10 Approximate Solution of the Two-Point Boundary 
Value Problem (BVP) 

According to the previous sections, the remaining problem is then to solve the fixed 
point Eq. (9.44c) or (9.58). In the first case, the corresponding equation reads 

. y(b)(t) = eAT (t f −t)G f

(
eA(t f −tb)zb

(b) − z f
(b)

+
t f{

tb

eA(t f −s)
(

b(s)
(b) − B R−1BT y(b)(s)

)
ds

)

+
t f{

t

eAT (s−t) Q

(
eA(s−tb)zb

(b)

+
s{

tb

eA(s−τ)
(

b(τ )
(b) − B R−1BT y(b)(τ )

)
dτ

)
ds . (9.75)
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Based on the present stochastic open-loop feedback control approach, we present 
the following approximation method: 

9.10.1 Approximate Solution of the Fixed Point Eq. (9.75) 

Step I According to the equations (9.12) and (9.44a) of the stochastic optimal 
.O L FC , for each remaining time interval.[tb, t f ] the value of the stochastic optimal 
open-loop control .u∗ = u∗(t; tb,Itb), t ≤ tb, is needed at the left time point . tb
only. 
Thus, putting first .t = tb in (9.75), we get 

. y(b)(tb) = eAT (t f −tb)G f eA(t f −tb)zb
(b) − eAT (t f −tb)G f z f

(b)

+ eAT (t f −tb)G f

t f{

tb

eA(t f −s)b(s)
(b)

ds

− eAT (t f −tb)G f

t f{

tb

eA(t f −s) B R−1BT y(b)(s) ds

+
t f{

tb

eAT (s−tb) QeA(s−tb) dszb
(b)

+
t f{

tb

eAT (s−tb) Q
( s{

tb

eA(s−τ)b(τ )
(b)

dτ
)

ds

−
t f{

tb

eAT (s−tb) Q
( s{

tb

eA(s−τ) B R−1BT y(b)(τ ) dτ
)

ds . (9.76a) 

Step II Due to the representation (9.44a) of the stochastic optimal open-loop con-
trol .u∗ and the stochastic OLF construction principle (3.10d,e), the value of the 
conditional mean adjoint variable .y(b)(t) is needed at the left boundary point 
.t = tb only. Consequently, .yb = y(b)(s) is approximated on .[tb, t f ] by the con-
stant function 

.y(b)(s) ≈ y(b)(tb), tb ≤ s ≤ t f . (9.76b) 

In addition, the related matrix exponential function.s → eA(t f −s) is approximated 
on .[tb, t f ] in the same way. 
This approach is justified especially if one works with a receding time horizon or 
moving time horizon 

..t f := tb + Δ.
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with a short  prediction time horizon . Δ. 

. y(b)(tb) ≈eAT (t f −tb)G f eA(t f −tb)zb
(b) − eAT (t f −tb)G f z f

(b)

+ eAT (t f −tb)G f

t f{

tb

eA(t f −s)b(s)
(b)

ds

− (t f − tb)e
AT (t f −tb)G f eA(t f −tb) B R−1BT y(b)(tb)

+
t f{

tb

eAT (s−tb) QeA(s−tb)dszb
(b)

+
t f{

tb

eAT (s−tb) Q
( s{

tb

eA(s−τ)b(τ )
(b)

dτ
)

ds

−
t f{

tb

(s − tb)e
AT (s−tb) QeA(s−tb) ds B R−1BT y(b)(tb). (9.76c) 

Step III Rearranging terms, (9.76c) yields a system of linear equations for.y(b)(tb): 

. y(b)(tb) ≈A0((tb, t f , G f , Q)zb
(b) − eAT (t f −tb)G f z f

(b)

+ A1(tb, t f , G f , Q) · b
(b)

[tb,t f ](·)
− A23(tb, t f , G f , Q)B R−1BT y(b)(tb), (9.76d) 

where the matrices, linear operator and function, resp.,.A0, A1, A23, b
(b)

[tb,t f ] can be 
easily read from relation (9.76c). Consequently, (9.76d) yields 

. 

(
I + A23(tb, t f , G f , Q)B R−1BT

)
y(b)(tb) ≈ A0((tb, t f , G f , Q)zb

(b)

−eAT (t f −tb)G f z f
(b) + A1(tb, t f , G f , Q) · b

(b)

[tb,t f ](·). (9.76e) 

For the matrix occurring in (9.76e) we have this result:
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Lemma 9.6 The matrix .I + A23(tb, t f , G f , Q)B R−1BT is regular. 

Proof According to (9.76c), (9.76d) we have  

. A23(tb, t f , G f , Q) = (t f − tb)e
AT (t f −tb)G f eA(t f −tb)

+
t f{

tb

(s − tb)e
AT (s−tb) QeA(s−tb) ds .

Hence, .A23 = A23(tb, t f , G f , Q) is a positive definite matrix. Moreover, . U :=
B R−1BT is at least positive semidefinite. Consider now the equation. (I + A23U )w =
0. We get .A23Uw = −w and therefore .Uw = −A−1

23 w, hence, .(U + A−1
23 )w = 0. 

However, since the matrix .U + A−1
23 is positive definite, we have .w = 0, which 

proves now the assertion. ⬜

The above lemma and (9.76e) yields now 

. y(b)(tb) ≈
(

I + A23(tb, t f , G f , Q)B R−1BT
)−1(

A0((tb, t f , G f , Q)zb
(b)

−eAT (t f −tb)G f z f
(b) + A1(tb, t f , G f , Q) · b

(b)

[tb,t f ](·)
)
. (9.76f) 

According to (9.75) and (3.10d,e), the stochastic optimal open-loop feedback control 
.ϕ∗ = ϕ∗(tb,Itb) at .t = tb is obtained as follows: 

Theorem 9.7 With the approximative solution .y(b)(tb) of the fixed point condition 
(9.75) at .t = tb, represented by (9.76f), the stochastic optimal open-loop feedback 
control law at .t = tb is given by 

.ϕ∗(tb,Itb) := −R−1BT y(b)(tb). (9.76g) 

Moreover, the whole approximate stochastic optimal open-loop feedback control law 
.ϕ∗ = ϕ∗(t,It ) is obtained from (9.76g) by replacing.tb → t for arbitrary. t, t0 ≤ t ≤
t f . 

9.11 Example 

We consider the structure according to Fig.9.2, see  [  3], where we want to control 
the supplementary active system while minimizing the expected total costs for the 
control and the terminal costs. 

The behavior of the vector of displacements.q(t, ω) can be described by a system 
of differential equations of second order:
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Fig. 9.2 Principle of active 
structural control 

.M

(
q̈0(t, ω)

q̈z(t, ω)

)
+ D

(
q̇0(t, ω, t
q̇z(t, ω)

)
+ K

(
q0(t, ω)

qz(t, ω)

)
= f0(t, ω) + fa(t) (9.77) 

with 

.M =
(

m0 0
0 mz

)
mass matrix (9.78a) 

.D =
(

d0 + dz −dz

−dz dz

)
damping matrix (9.78b) 

.K =
(

k0 + kz −kz

−kz kz

)
stiffness matrix (9.78c) 

. fa(t) =
(−1

+1

)
u(t) actuator force (9.78d) 

. f0(t, ω) =
(

f01(t, ω)

0

)
applied load . (9.78e) 

Here we have.n = 1, i.e.,.u(·) ∈ C(T,R), and the weight matrix. R becomes a positive 
real number. 

To represent the equation of motion (9.77) as a first-order differential equation 
we set 

.z(t, ω) := (q(t, ω), q̇(t, ω))T =

⎛
⎜⎜⎝

q0(t, ω)

qz(t, ω)

q̇0(t, ω)

q̇z(t, ω)

⎞
⎟⎟⎠ .
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This yields the dynamical equation 

. ż(t, ω) =
(

0 I2
−M−1K −M−1D

)
z(t, ω) +

(
0

M−1 fa(s)

)
+
(

0
M−1 f0(s, ω)

)
=

=

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

− k0+kz

m0

kz

m0
− d0+dz

m0

dz

m0
kz

mz
− kz

mz

dz

mz
− dz

mz

⎞
⎟⎟⎠

~ ~~ ~
:=A

z(t, ω) +

⎛
⎜⎜⎝

0
0

− 1
m0
1

mz

⎞
⎟⎟⎠

~ ~~ ~
:=B

u(s) +

⎛
⎜⎜⎝

0
0

f0(s,ω)

m0

0

⎞
⎟⎟⎠

~ ~~ ~
:=b(t,ω)

,

(9.79) 

where.Ip denotes the.p × p identity matrix. Furthermore, we have the optimal control 
problem under stochastic uncertainty: 

. min F(u(·)) := E
1

2

⎛
⎝

t f{

tb

R (u(s))2 ds + z(t f , ω)T Gz(t f , ω)
|| Atb

⎞
⎠ (9.80a) 

.s.t. z(t, ω) = zb +
t{

tb

(
Az(s, ω) + Bu(s) + b(s, ω)

)
ds (9.80b) 

. u(·) ∈ C(T,R). (9.80c) 

Note that this problem is of the “Minimum-Energy Control”-type, if we apply no 
extra costs for the displacements, i.e., .Q ≡ 0. 

The two-point-boundary problem to be solved reads then, cf. (9.13a)–(9.13d), 

.ż(t, ω) = Az(t, ω) − 1

R
B BT y(t)

(b) + b(ω, t) (9.81a) 

.ẏ(t, ω) = −AT y(t, ω) (9.81b) 

.z(tb, ω) = zb (9.81c) 

.y(t f , ω) = Gz(t f , ω). (9.81d) 

Hence, the solution of (9.81a)–(9.81d), i.e., the optimal trajectories, reads, cf. (9.14a), 
(9.37a), 

.y(t, ω) = eAT (t f −t)Gz(t f , ω) (9.82a) 

. z(t, ω) = eA(t−tb)zb +
t{

tb

eA(t−s)

(
b(s, ω)

− 1

R
B BT eAT (t f −s)Gz(t f )

(b)
)

ds. (9.82b)
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Finally, we get the optimal control, see (9.38c) and (9.39) :  

. u∗(t) = − 1

R
BT eAT (t f −t) (I4 + GU )−1 GeAt f

⎛
⎝e−Atb zb +

t f{

tb

e−Asb(s)
(b)

ds

⎞
⎠

(9.83) 

with 

.U = 1

R

t f{

tb

eA(t f −s) B BT eAT (t f −s) ds. (9.84) 
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Chapter 10 
Adaptive Optimal Stochastic Trajectory 
Planning and Control (AOSTPC) 

Abstract Adaptive Optimal Stochastic Trajectory Planning and Control. (AOSTPC)

are considered in this chapter: In optimal control of dynamic systems the standard 
procedure is to determine first offline an optimal open-loop control, using some nom-
inal or estimated values of the model parameters, and to correct then the resulting 
deviation of the actual trajectory or system performance from the prescribed trajec-
tory (prescribed system performance) by online measurement and control actions. 
However, online measurement and control actions are very expensive and time con-
suming. By adaptive optimal stochastic trajectory planning and control (AOSTPC), 
based on stochastic optimization methods, the available a priori and statistical infor-
mation about the unknown model parameters is incorporating into the optimal control 
design. Consequently, the mean absolute deviation between the actual and prescribed 
trajectory can be reduced considerably, and robust controls are obtained. Using only 
some necessary stability conditions, by means of stochastic optimization methods 
also sufficient stability properties of the corresponding feedforward, feedback (PD-
, PID-) controls, resp., are obtained. Moreover, analytical estimates are given for 
the reduction of the tracking error, hence, for the reduction of the online correction 
expenses by applying (AOSTPC). 

10.1 Introduction 

An industrial, service, or field robot is modeled mathematically by its dynamic 
equation, being a system of second-order differential equations for the robot or con-
figuration coordinates .q = (q1, . . . , qn)T (rotation angles in case of revolute links, 
length of translations in case of prismatic links), and the kinematic equation, relat-
ing the space .{q} of robot coordinates to the work space .{x} of the robot. Thereby 
one meets [ 4, 34, 42, 45, 47, 49] several model parameters, such as length of links, 
.li (m), location of center of gravity of links, .lci (m), mass of links, .mi (kg), payload 
.(N ), moments of inertia about centroid, .Ii (kgm2), (Coulomb-) friction coefficients, 
.Ri j0(N ), etc. Let  .pD, pK denote the vector of model parameters contained in the 
dynamic, kinematic equation, respectively. A further vector .pC of model parame-
ters occurs in the formulation of several constraints, especially initial and terminal 
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conditions, control and state constraints of the robot, as, e.g., maximum, minimum 
torques or forces in the links, bounds for the position, maximum joint, path velocities. 
Moreover, certain parameters .pJ , e.g., cost factors, may occur also in the objective 
(performance, goal) functional J. 

Due to stochastic variations of the material, manufacturing errors, measurement 
(identification) errors, stochastic variations of the workspace environment, as, e.g., 
stochastic uncertainty of the payload, randomly changing obstacles, errors in the 
selection of appropriate bounds for the moments, forces, resp., in the links, for the 
position and path velocities, errors in the selection of random cost factors, modeling 
errors, disturbances, etc., the total vector 

.p =

⎛
⎜⎜⎝

pD
pK
pC
pJ

⎞
⎟⎟⎠ (10.1a) 

of model parameters is not a given fixed quantity. The vector . p must be represented 
therefore by a random vector 

.p = p(ω), ω ∈ (Ω,A, P) (10.1b) 

on a certain probability space .(Ω,A, P), see  [  3, 14, 32, 45, 50]. 
Having to control a robotic or more general dynamical system, the control law 

.u = u(t), is represented usually by the sum 

.u(t) := u(0)(t) + Δu(t), t0 ≤ t ≤ t f , (10.2) 

of a feedforward control (open-loop-control) .u0(t), t0 ≤ t ≤ t f , and an online local 
control correction (feedback control) .Δu(t). 

In actual engineering practice [ 19, 33, 35, 51], the feedforward control . u(0)(t)
is determined offline based on a certain reference trajectory .q(0)(t), t0 ≤ t ≤ t f , 
in configuration space, where the unknown parameter vector .p is replaced by a 
certain vector .p(0) of nominal parameter values, as, e.g., the expectation . p(0) :=
p = Ep(ω). The increasing deviation of the actual position and velocity of the robot 
from the prescribed values, caused by the deviation of the actual parameter values 
.p(ω) from the chosen nominal values .p(0), must be compensated by online control 
corrections .Δu(t), t > t0. This requires usually extensive online state observations 
(measurements) and feedback control actions. 

In order to determine a more reliable reference path .q = q(t), t0 ≤ t ≤ t f , in  
configuration space, being robust with respect to stochastic parameter variations, the a 
priori information (e.g., certain moments or parameters of the probability distribution 
of .p(·)) about the random variations of the vector .p(ω) of model parameters of the 
robot and its working environment is taken into account already at the planning 
phase. Thus, instead of solving a deterministic trajectory planning problem with 
a fixed nominal parameter vector .p(0), here, an optimal velocity profile .β(0), s0 ≤
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s ≤ s f , and—in case of point-to-point control problems—also an optimal geometric 
path.q(0)

e (s), s0 ≤ s ≤ s f , in configuration space is determined by using a stochastic 
optimization approach [ 25, 28– 30, 36]. By means of.β(0)(s) and.q(0)

e (s), s0 ≤ s ≤ s f , 
we then find a more reliable, robust reference trajectory .q(0)(t), t0 ≤ t ≤ t (0)f , in  
configuration space. Applying now the so-called “inverse dynamics approach” [ 1, 
4, 15], more reliable, robust open-loop controls .u(0)(t), t0 ≤ t ≤ t (0)f , are obtained. 
Moreover, by linearization of the dynamic equation of the robot in a neighborhood 

of .
(
u(0)(t), q(0)(t), E

(
pM(ω)|At0

))
, t ≥ t0, where .At0 denotes the .σ -algebra of 

informations up to the initial time point . t0, a control correction .Δu(0)(t), t ≥ t0, is  
obtained which is related to the so-called feedback linearization of a system [ 4, 15, 
37, 47]. 

At later moments (main correction time points) . t j , 

.t0 < t1 < t2 < · · · < t j−1 < t j < . . . , (10.3) 

further information on the parameters of the control system and its environment 
are available, e.g., by process observation, identification, calibration procedures, 
etc. Improvements .q( j)(t), u( j)(t),Δu( j)(t), t ≥ t j , j = 1, 2, . . . , of the preced-
ing reference trajectory .q( j−1)(t), open-loop control .u( j−1)(t), and local control 
correction (feedback control) .Δu( j−1)(t) can be determined by replanning, i.e., 
by optimal stochastic trajectory planning (OSTP) for the remaining time interval 
.t ≥ t j , j = 1, 2, . . . , and by using the information .At j on the robot and its working 
environment available up to the time point .t j > t0, j = 1, 2, . . . , see  [  16, 40, 41]. 

10.2 Optimal Trajectory Planning for Robots 

According to [ 4, 34, 45], the dynamic equation for a robot is given by the following 
system of second-order differential equations 

.M
(
pD, q(t)

)
q̈(t) + h

(
pD, q(t), q̇(t)

)
= u(t), t ≥ t0, (10.4a) 

for the .n-vector .q = q(t) of the robot or configuration coordinates .q1, q2, . . . , qn . 
Here, .M = M(pD, q) denotes the .n × n inertia (or mass) matrix, and the vector 
function .h = h(pD, q, q̇) is given by 

.h(pD, q, q̇) := C(pD, q, q̇)q̇ + FR(pD, q, q̇) + G(pD, q), (10.4b) 

where.C(pD, q, q̇) = C(pD, q)q̇ , and.C(pD, q) =
(
Ci jk(pD, q)

)
1≤i, j,k≤n

is the ten-

sor of Coriolis and centrifugal terms, .FR = FR(pD, q, q̇) denotes the vector of fric-
tional forces and .G = G(pD, q) is the vector of gravitational forces. Moreover,
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.u = u(t) is the vector of controls, i.e., the vector of torques/forces in the joints of 
the robot. Standard representations of the friction term.FR are given [ 4, 19, 45] by  

.FR(pD, q, q̇) := Rv(pD, q)q̇, (10.4c) 

.FR(pD, q, q̇) := R(pD, q)sgn(q̇), (10.4d) 

where .sgn(q̇) :=
(
sgn(q̇1), . . . , sgn(q̇n)

)T
. In the first case (10.4c), . Rv =

Rv(pD, q) is the viscous friction matrix, and in the Coulomb approach (10.4d), 

.R = R(pD, q) =
(
Ri (p, q)δi j

)
is a diagonal matrix. 

Remark 10.1 (Inverse dynamics) Reading the dynamic equation (10.4a) from the  
left to the right-hand side, hence, by inverse dynamics [ 1, 4, 15], the control function 
.u = u(t)may be described in terms of the trajectory.q = q(t) in configuration space. 

The relationship between the so-called configuration space .{q} of robot coordi-
nates .q = (q1, . . . , qn)' and the work space .{x} of world coordinates (position and 
orientation of the end-effector) .x = (x1, . . . , xn)' is represented by the kinematic 
equation 

.x = T (pK , q). (10.5) 

As mentioned already in the introduction, .pD, pK , denote the vectors of dynamic, 
kinematic parameters arising in the dynamic and kinematic equation (10.4a)–(10.4d), 
(10.5). 

Remark 10.2 (Linear parameterization of robots) Note that the parameterization 
of a robot can be chosen, cf. [ 1, 4, 15], so that the dynamic and kinematic equation 
depend linearly on the parameter vectors .pD, pK . 

The objective of optimal trajectory planning is to determine [ 7, 8, 19, 35, 46] a  
control function .u = u(t), t ≥ t0, so that the cost functional 

.J
(
u(·)

)
:=

t f{

t0

L
(
t, pJ , q(t), q̇(t), u(t)

)
dt + φ

(
t f , pJ , q(t f ), q̇(t f )

)
(10.6) 

is minimized, where the terminal time .t f may be given explicitly or implicitly, as, 
e.g., in minimum-time problems. Standard examples are, see, e.g., [ 34]: 

(a) .φ = 0, L = 1 (minimum time), 
(b) .φ = 0, L = sum of potential, translatory, and rotational energy of the robot 

(minimum energy), 

(c) .φ = 0, L =
n∑

i=1

(
q̇i (t)ui (t)

)2
(minimum fuel consumption), 

(d) .φ = 0, L =
n∑

i=1

(
ui (t)

)2
(minimum force and moment).
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Furthermore, an optimal control function .u∗ = u∗(t) and the related optimal trajec-
tory .q∗ = q∗(t), t ≥ t0, in configuration space must satisfy the dynamic equation 
(10.4a)–(10.4d) and the following constraints [ 7, 8, 10]: 

(i) The initial conditions 

.q(t0) = q0(ω), q̇(t0) = q̇0(ω) (10.7) 

Note that by means of the kinematic equation (10.5), the initial state . (q0(ω),

q̇0(ω)) in configuration space can be represented by the initial state . 
(
x0(ω),

ẋ0(ω)
)
in work space. 

(ii) The terminal conditions 

.ψ
(
t f , p, q(t f ), q̇(t f )

)
= 0, (10.8a) 

e.g., 
.q(t f ) = q f (ω), q̇(t f ) = q̇ f (ω). (10.8b) 

Again, by means of (10.5),.(q f , q̇ f ) may be described in terms of the final state 
.(x f , ẋ f ) in work space. Note that more general boundary conditions of this type 
may occur at some intermediate time points .t0 < τ1 < τ2 < · · · < τr < t f . 

(iii) Control constraints 

.umin(t, p) ≤ u(t) ≤ umax(t, p), t0 ≤ t ≤ t f (10.9a) 

.gI
(
t, p, q(t), q̇(t), u(t)

)
≤ 0, t0 ≤ t ≤ t f (10.9b) 

.gI I
(
t, p, q(t), q̇(t), u(t)

)
= 0, t0 ≤ t ≤ t f . (10.9c) 

(iv) State constraints 

.SI
(
t, p, q(t), q̇(t)

)
≤ 0, t0 ≤ t ≤ t f (10.10a) 

.SI I
(
t, p, q(t), q̇(t)

)
= 0, t0 ≤ t ≤ t f . (10.10b) 

Using the kinematic equation (10.5), different types of obstacles in the work 
space can be described by (time-invariant) state constraints of the type (10.10a), 
(10.10b). 
In robotics [ 35] often the following state constraints are used: 

.qmin(pC) ≤ q(t) ≤ qmax(pC), t0 ≤ t ≤ t f (10.10c) 

.q̇min(pC) ≤ q̇(t) ≤ q̇max(pC), t0 ≤ t ≤ t f , (10.10d) 

with certain vectors .qmin, qmax, q̇min, q̇max of (random) bounds.
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A special constraint of the type (10.10b) occurs if the trajectory in work space 

.x(t) := T
(
pK , q(t)

)
(10.11) 

should follow as precise as possible a geometric path in work space 

.xe = xe(px , s), s0 ≤ s ≤ s f (10.12) 

being known up to a certain random parameter vector .px = px (ω), which then is 
added to the total vector . p of model parameters, cf. (10.4a), (10.4b). 

Remark 10.3 In the following we suppose that the functions .M, h, L , φ and . T
arising in (10.4a)–(10.4d), (10.5), (10.6) as well as the functions . ψ, gI , gI I , SI , SI I
arising in the constraints (10.8a)–(10.10b) are sufficiently smooth. 

10.3 Problem Transformation 

Since the terminal time .t f may be given explicitly or implicitly, the trajectory . q(·)
in configuration space may have a varying domain .[t0, t f ]. Hence, in order to work 
with a given fixed domain of the unknown functions, the reference trajectory . q =
q(t), t ≥ t0, in configuration space is represented, cf. [ 19], by 

.q(t) := qe
(
s(t)

)
, t ≥ t0. (10.13a) 

Here, 
.s = s(t), t0 ≤ t ≤ t f (10.13b) 

is a strictly monotonous increasing transformation from the possibly varying time 
domain.[t0, t f ] into a given fixed parameter interval.[s0, s f ]. For example,. s ∈ [s0, s f ]
may be the path parameter of a given path in work space, cf. (10.12). Moreover, 

.qe = qe(s), s0 ≤ s ≤ s f (10.13c) 

denotes the so-called geometric path in configuration space. 

Remark 10.4 In many more complicated industrial robot tasks such as grinding, 
welding, driving around difficult obstacles, complex assembly, etc., the geometric 
path .qe(·) in configuration space is predetermined offline [ 9, 16, 17] by a separate 
path planning procedure for .qe = qe(s), s0 ≤ s ≤ s f , only. Hence, the trajectory 
planning/replanning is reduced then to the computation/adaptation of the transfor-
mation .s = s(t) along a given fixed path .qe(·) = q(0)

e (·). 
Assuming that the transformation .s = s(t) is differentiable on .[t0, t f ] with the 

exception of at most a finite number of points, we introduce now the so-called velocity
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profile.β = β(s), s0 ≤ s ≤ s f , along the geometric path.qe(·) in configuration space 
by 

.β(s) := ṡ2
(
t (s)

)
=
(
ds

dt

)2 (
t (s)

)
, (10.14) 

where .t = t (s), s0 ≤ s ≤ s f , is the  inverse of .s = s(t), t0 ≤ t ≤ t f . Thus, we have 
that 

.dt = 1√
β(s)

ds, (10.15a) 

and the time .t ≥ t0 can be represented by the integral 

.t = t (s) := t0 +
s{

s0

dσ√
β(σ)

. (10.15b) 

Using the integral transformation . σ := s0 + (s − s0)ρ, 0 ≤ ρ ≤ 1, t = t (s)
may be also represented by 

.t (s) = t0 + (s − s0)

1{

0

dρ/
β
(
s0 + (s − s0)ρ

) , s ≥ s0. (10.16a) 

By numerical quadrature, i.e., by applying a certain numerical integration formula 
of order . ν and having weights .a0, a1, a2, . . . , aν to the integral in (10.16a), the time 
function .t = t (s) can be represented approximatively (with an .ε0 > 0) by  

.t̃(s) := t0 + (s − s0)
ν∑

k=0

ak/
β
(
s0 + ε0 + (s − s0 − 2ε0) kν

) , s ≥ s0. (10.16b) 

In case of Simpson’s rule .(ν = 2) we have that 

.t̃(s) := t0 + s − s0
6

⎛
⎝ 1√

β(s0 + ε0)
+ 4/

β
( s+s0

2

) + 1√
β(s − ε0)

⎞
⎠ . (10.16c) 

As long as the basic mechanical equations, the cost and constraint functions do not 
depend explicitly on time. t , the transformation of the robot control problem from the 
time onto the.s-parameter domain causes no difficulties. In the more general case one 
has to use the time representation (10.15b), (10.16a) or its approximates (10.16b), 
(10.16c).
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Obviously, the terminal time .t f is given, cf. (10.15b), (10.16a), by 

.t f = t (s f ) = t0 +
s f{

s0

dσ√
β(σ)

(10.17) 

= t0 + (s f − s0) 
1{

0 

dρ/
β
(
s0 + (s f − s0)ρ

) . 

10.3.1 Transformation of the Dynamic Equation 

Because of (10.13a), (10.13b), we find 

.q̇(t) = q '
e(s)ṡ

(
ṡ := ds

dt
, q '

e(s) := dqe
ds

)
(10.18a) 

.q̈(t) = q '
e(s)s̈ + q ''

e (s)ṡ
2. (10.18b) 

Moreover, according to (10.14) we have that 

.ṡ2 = β(s), ṡ = √
β(s), (10.18c) 

and the differentiation of (10.18c) with respect to time . t yields 

.s̈ = 1

2
β '(s). (10.18d) 

Hence, (10.18a)–(10.18d) yields the following representation 

.q̇(t) = q '
e(s)

√
β(s) (10.19a) 

.q̈(t) = q '
e(s)

1

2
β '(s) + q ''

e (s)β(s) (10.19b) 

of .q̇(t), q̈(t) in terms of the new unknown functions .qe(·), β(·). 
Inserting now (10.19a), (10.19b) into the dynamic equation (10.4a), we find the 

equivalent relation 

.ue (pD, s; qe(·), β(·)) = u(t) with s = s(t), t = t (s), (10.20a) 

where the function .ue is defined by



10.3 Problem Transformation 227

. ue
(
pD, s; qe(·), β(·)

)
:= M

(
pD, qe(s)

)(1

2
q '
e(s)β

'(s) + q ''
e (s)β(s)

)

+ h
(
pD, qe(s), q

'
e(s)

√
β(s)

)
. (10.20b) 

The initial and terminal conditions (10.7)–(10.8b) are transformed, see (10.13a), 
(10.13b) and (10.19a), as follows 

.qe(s0) = q0(ω), q '
e(s0)

√
β(so) = q̇0(ω) (10.21a) 

.ψ
(
t (s f ), p, qe(s f ), q

'
e(s f )

√
β(s f )

)
= 0 (10.21b) 

or 
.qe(s f ) = q f (ω), q '

e(s f )
√

β(s f ) = q̇ f (ω). (10.21c) 

Remark 10.5 In most cases we have the robot resting at time.t = t0 and.t = t f , i.e., 
.q̇(t0) = q̇(t f ) = 0, hence, 

.β(s0) = β(s f ) = 0. (10.21d) 

10.3.2 Transformation of the Control Constraints 

Using (10.13a), (10.13b), the control constraints (10.9a)–(10.9c) read in .s-form as 
follows: 

. umin
(
t (s), pC

)
≤ ue

(
pD, s; qe(·), β(·)

)
≤ umax

(
t (s), pC

)
, s0 ≤ s ≤ s f

(10.22a) 

. gI
(
t (s), pC , qe(s), q

'
e(s)

√
β(s), ue

(
pD, s; qe(·), β(·)

))
≤ 0, s0 ≤ s ≤ s f

(10.22b) 

. gI I
(
t (s), pC , qe(s), q

'
e(s)

√
β(s), ue

(
pD, s; qe(·), β(·)

))
= 0, s0 ≤ s ≤ s f ,

(10.22c) 

where .t = t (s) = t
(
s;β(·)

)
or its approximation .t = t̃(s) = t̃

(
s;β(·)

)
is defined 

by (10.15b), (10.16a)–(10.16c).
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Remark 10.6 

(I) In the important case that the bounds for .u = u(t) depend on the system state 

.

(
q(t), q̇(t)

)
in configuration space,i.e., 

. umin(t, pC) := umin
(
pC , q(t), q̇(t)

)
,

umax(t, pC) := umax
(
pC , q(t), q̇(t)

)
(10.23a) 

condition (10.22a) is reduced to 

. umin
(
pC , qe(s), q

'
e(s)

√
β(s)

)
≤ ue

(
pD, s; qe(·), β(·)

)

≤ umax
(
pC , qe(s), q

'
e(s)

√
β(s)

)
, s0 ≤ s ≤ s f . (10.23b) 

(II) If the bounds for.u(t) in (10.23a) do not depend on the velocity.q̇(t) in configura-
tion space, and the geometric path.qe(s) = qe(s), s0 ≤ s ≤ s f , in configuration 
space is known in advance, then the bounds 

. umin
(
pC , qe(s)

)
= ũmin(pC , s)

umax
(
pC , qe(s)

)
= ũmax(pC , s), s0 ≤ s ≤ s f (10.23c) 

depend on .(pC , s) only. 
Bounds of the type (10.23c) for the control function .u(t) may be taken  into  
account as an approximation of the more general bounds in (10.22a). 

10.3.3 Transformation of the State Constraints 

Applying the transformations (10.13a), (10.13b), (10.18a) and (10.15b) to the state 
constraints (10.10a), (10.10b), we find the following.s-form of the state constraints: 

.SI
(
t (s), pC , qe(s), q

'
e(s)

√
β(s)

)
≤ 0, s0 ≤ s ≤ s f (10.24a) 

.SI I
(
t (s), pC , qe(s), q

'
e(s)

√
β(s)

)
= 0, s0 ≤ s ≤ s f . (10.24b) 

Obviously, the .s-form of the special state constraints (10.10c), (10.10d) read 

.qmin(pC) ≤ qe(s) ≤ qmax(pC), s0 ≤ s ≤ s f , (10.24c) 

.q̇min(pC) ≤ q '
e(s)

√
β(s) ≤ q̇max(pC), s0 ≤ s ≤ s f . (10.24d)
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In the case that the end-effector of the robot has to follow a given path (10.12) in  
work space, Eq. (10.24b) reads 

.T
(
pK , qe(s)

)
− xe(px , s) = 0, s0 ≤ s ≤ s f , (10.24e) 

with the parameter vector.px describing possible uncertainties in the selection of the 
path to be followed by the roboter in work space. 

10.3.4 Transformation of the Objective Function 

Applying the integral transformation .t = t (s), dt = ds√
β(s)

to the integral in the 

representation (10.6) of the objective function .J = J
(
u(·)

)
, and transforming also 

the terminal costs, we find the following .s-form of the objective function: 

. J
(
u(·)

)
=

s f{

s0

L (t (s), pJ , qe(s), q
'
e(s)

√
β(s), ue

(
pD, s; qe(·), β(·)

)) ds√
β(s)

+ φ
(
t (s f ), pJ , qe(s f ), q

'
e(s f )

/
β(s f )

)
. (10.25a) 

Note that .β(s f ) = 0 holds in many practical situations. 
For the class of time-minimum problems we have that 

.J
(
u(·)

)
:= t f − t0 =

t f{

t0

dt =
s f{

s0

ds√
β(s)

. (10.25b) 

Optimal deterministic trajectory planning (OSTP). By means of the .t − s-
transformation onto the fixed. s–parameter domain.[s0, s f ], the optimal control prob-
lem (10.4a)–(10.4d), (10.6)–(10.12) is transformed into a variational problem for 
finding, see (10.13a)–(10.13c) and (10.14), an optimal velocity profile .β(s) and 
an optimal geometric path .qe(s), s0 ≤ s ≤ s f . In the deterministic case, i.e., if the 
parameter vector . p is assumed to be known, then for the numerical solution of the 
resulting optimal deterministic trajectory planning problem several efficient solution 
techniques are available, cf. [ 7, 8, 10, 19, 25, 30, 46].
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10.4 OSTP—Optimal Stochastic Trajectory Planning 

In the following we suppose that the initial and terminal conditions (10.21d) hold, 
i.e., 

. β0 = β(s0) = β f = β(s f ) = 0 or q̇(t0) = q̇(t f ) = 0.

Based on the  .(t − s)–transformation described in Sect. 10.3, and relying on 
the inverse dynamics approach, the robot control problem (10.6), (10.7)–(10.8b), 
(10.9a)–(10.9c), (10.10a)–(10.10c) can be represented now by a variational prob-

lem for .
(
qe(·), β(·)

)
, β(·), resp., given in the following. Having .

(
qe(·), β(·)

)
, β(·), 

resp., a reference trajectory and a feedforward control can then be constructed. 

(A) Time-invariant case (autonomous systems) 
If the objective function and the constraint functions do not depend explicitly on 
time. t , then the optimal control problem takes the following equivalent.s-forms: 

. min

s f{

s0

L J
(
pJ , qe(s), q

'
e(s), q

''
e (s), β(s), β '(s)

)
ds + φ J

(
pJ , qe(s f )

)

(10.26a) 
s.t. 

. f uI
(
p, qe(s), q

'
e(s), q

''
e (s), β(s), β '(s)

)
≤ 0, s0 ≤ s ≤ s f (10.26b) 

. f uI I
(
p, qe(s), q

'
e(s), q

''
e (s), β(s), β '(s)

)
= 0, s0 ≤ s ≤ s f (10.26c) 

. f SI
(
p, qe(s), q

'
e(s), β(s)

)
≤ 0, s0 ≤ s ≤ s f (10.26d) 

. f SI I
(
p, qe(s), q

'
e(s), β(s)

)
= 0, s0 ≤ s ≤ s f (10.26e) 

.β(s) ≥ 0, s0 ≤ s ≤ s f (10.26f) 

.qe(s0) = q0(ω), q '
e(s0)

√
β(s0) = q̇0(ω) (10.26g) 

.qe(s f ) = q f (ω), β(s f ) = β f . (10.26h) 

Under condition (10.21d), a more general version of the terminal condition 
(10.26h) reads, cf. (10.21b), 

. ψ
(
p, qe(s f )

)
= 0, β(s f ) = β f := 0. (10.26h’)

Here,
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.L J = L J
(
pJ , qe, q

'
e, q

''
e , β, β '

)
, φ J = φ J (pJ , qe) (10.27a) 

. f uI = f uI (p, qe, q
'
e, q

''
e , β, β '), f uI I = f uI I (p, qe, q

'
e, q

''
e , β, β ') (10.27b) 

. f SI = f SI (p, qe, q
'
e, β), f SI I = f SI I (p, qe, q

'
e, β) (10.27c) 

are the functions representing the .s-form of the objective function (10.25a), 
the constraint functions in the control constraints (10.22a)–(10.22c), and in the 
state constraints (10.24a)–(10.24e), respectively. Define then . f u and . f S by 

. f u :=
(

f uI
f uI I

)
, f S :=

(
f SI
f SI I

)
. (10.27d) 

(B) Time-varying case (non autonomous systems) 
If the time . t occurs explicitly in the objective and/or in some of the constraints 
of the robot control problem, then, using (10.15a), (10.15b), (10.16a)–(10.16c), 

we have that .t = t
(
s; t0, s0, β(·)

)
, and the functions (10.27a)–(10.27d) and . ψ

may depend then also on .

(
s, t0, s0, β(·)

)
,
(
s f , t0, s0, β(·)

)
, resp., hence, 

. 

L J = L J
(
s, t0, s0, β(·), pJ , qe, q '

e, q
''
e , β, β '

)

φ J = φ J
(
s f , t0, s0, β(·), pJ , qe

)

f u = f u
(
s, t0, s0, β(·), p, qe, q '

e, q
''
e , β, β '

)

f S = f S
(
s, t0, s0, β(·), p, qe, q '

e, β
)

ψ = ψ
(
s f , t0, s0, β(·), p, qe

)
.

In order to get a reliable optimal geometric path .q∗
e = q∗

e (s) in configuration 
space and a reliable optimal velocity profile .β∗ = β∗(s), s0 ≤ s ≤ s f , being robust 
with respect to random parameter variations of .p = p(ω), the variational problem 
(10.26a)–(10.26h) under stochastic uncertainty must be replaced by an appropriate 
deterministic substitute problem which is defined according to the following princi-
ples [ 21– 24, 30], cf. also [ 20, 21, 24, 26, 27]. 

Assume first that the a priori information about the robot and its environment up 
to time . t0 is described by means of a . σ–algebra .At0 , and let then 

.P (0)
p(·) = Pp(·)

(
·|At0

)
(10.28) 

denote the a priori distribution of the random vector .p = p(ω) given .At0 . 
Depending on the decision theoretical point of view, different approaches are 

possible, e.g., reliability-based substitute problems, belonging essentially to one of 
the following two basic classes of substitute problems:
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(I) Risk(recourse)-constrained minimum expected cost problems 
(II) Expected total cost-minimum problems. 

Substitute problems are constructed by selecting certain scalar or vectorial loss 
or cost functions 

.γ u
I , γ u

I I , γ
S
I , γ S

I I , γ
ψ, . . . (10.29a) 

evaluating the violation of the random constraints (10.26b), (10.26c), (10.26d), 
(10.26e), (10.26h’), respectively. 

In the following all expectations are conditional expectations with respect to 
the a priori distribution .P (0)

p(·) of the random parameter vector .p(ω). Moreover, the 
following compositions are introduced: 

. f uγ :=
(

γ u
I ◦ f uI

γ u
I I ◦ f uI I

)
, f Sγ :=

(
γ S
I ◦ f SI

γ S
I I ◦ f SI I

)
(10.29b) 

.ψγ := γ ψ ◦ ψ. (10.29c) 

Now the two basic types of substitute problems are described. 

(I) Risk(recourse)-based minimum expected cost problems 

Minimizing the expected (primal) costs.E
(
J (u(·))|At0

)
, and demanding that the 

risk, i.e., the expected (recourse) costs arising from the violation of the constraints 
of the variational problem (10.26a)–(10.26h) do not exceed given upper bounds, 
in the time-invariant case we find the following substitute problem: 

. min

s f{

s0

E
(
L J

(
pJ , qe(s), q

'
e(s), q

''
e (s), β(s), β '(s)

)
|At0

)
ds (10.30a) 

+ E
(
φ J

(
pJ , qe(s f )

)
|At0

)

s.t. 

. E
(
f uγ
(
p, qe(s), q

'
e(s), q

''
e (s), β(s), β '(s)

)
|At0

)
≤ [u, s0 ≤ s ≤ s f

(10.30b) 

.E
(
f Sγ
(
p, qe(s), q

'
e(s), β(s)

)
|At0

)
≤ [S, s0 ≤ s ≤ s f (10.30c) 

.β(s) ≥ 0, s0 ≤ s ≤ s f (10.30d) 

.qe(s0) = q0, q '
e(s0)

√
β(s0) = q̇0 (10.30e) 

.qe(s f ) = q f (if φ J = 0), β(s f ) = β f , (10.30f)
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and the more general terminal condition (10.26h’) is replaced by 

. β(s f ) = β f := 0, E
(
ψγ

(
p, qe(s f )

)
|At0

)
≤ [ψ. (10.30f’)

Here, 
.[u = [u(s), [S = [S(s), [ψ = [ψ(s) (10.30g) 

denote scalar or vectorial upper risk bounds which may depend on the path 
parameter .s ∈ [s0, s f ]. Furthermore, the initial, terminal values .q0, q̇0, q f in 
(10.30e), (10.30f) are determined according to one of the following relations: 

a. 
.q0 := q̂(t0), q̇0 := ˆ̇q(t0), q f := q̂(t f ), (10.30h) 

where .
(
q̂(t), ˆ̇q(t)

)
denotes an estimate, observation, etc., of the state in 

configuration space at time . t ; 
b. 

. q0 := E
(
q0(ω)|At0

)
, q̇0 := E

(
q̇0(ω)|At0

)
,

q f = q f
(0) := E

(
q f (ω)|At0

)
, (10.30i) 

where .q0(ω), q̇0(ω) is a random initial position, and .q f (ω) is a random 
terminal position. 

Having corresponding information about initial and terminal values .x0, ẋ0, . x f

in work space, related equations for .q0, q̇0, q f may be obtained by means of the 
kinematic equation (10.5). 

Remark 10.7 (Average constraints) Taking the average of the pointwise constraints 
(10.30b), (10.30c) with respect to the path parameter .s, s0 ≤ s ≤ s f , we get the 
simplified integrated constraints 

. 

s f{

s0

E
(
f uγ
(
p, qe, (s), q

'
e(s), q

''
e (s), β(s), β '(s)

)
|At0

)
ds ≤ [̃u (10.30b’)

s f{

s0

E
(
f Sγ
(
p, qe(s), q

'
e(s), β(s)

)
|At0

)
ds ≤ [̃S. (10.30c’)

Remark 10.8 (Generalized area of admissible motion) In generalization of the 
admissible area of motion [ 19, 25, 33] for path planning problems with a prescribed 
geometrical path.qe(·) = qe(·) in configuration space, for point-to-point problems the 
constraints (10.30b)–(10.30i) define for each path point.s, s0 ≤ s ≤ s f , a generalized 
admissible area of motion for the vector



234 10 Adaptive Optimal Stochastic Trajectory Planning and Control (AOSTPC)

.χ(s) :=
(
qe(s), q

'
e(s), q

''
e (s), β(s), β '(s)

)
, s0 ≤ s ≤ s f , (10.30j) 

including information about the magnitude .
(
β(s), β '(s)

)
of the motion as well as 

information about the direction .

(
qe(s), q '

e(s), q
''
e (s)

)
of the motion. 

Remark 10.9 (Problems with Chance Constraints) Substitute problems having 
chance constraints are obtained if the loss functions .γ u, γ S for evaluating the viola-
tion of the inequality constraints in (10.26a)–(10.26h), (10.26h’) are 0–1 functions, 
cf. [ 25]. 

To give a characteristic example, we demand that the control, state constraints 
(10.22a), (10.24c), (10.24d), resp., have to be fulfilled at least with probability 
.αu, αq , αq̇ for .s0 ≤ s ≤ s f , hence, 

.P
(
umin(pC) ≤ ue

(
pD, s; qe(·), β(·)

)
≤ umax(pC)|At0

) ≥ αu, (10.31a) 

.P
(
qmin(pC) ≤ qe(s) ≤ qmax(pC)|At0

) ≥ αq , (10.31b) 

.P
(
q̇min(pC) ≤ q '

e(s)
√

β(s) ≤ q̇max(pC)|At0

)
≥ αq̇ . (10.31c) 

Sufficient conditions for the chance constraints (10.31a)–(10.31c) can be obtained 
by applying certain probability inequalities, see [ 25]. Defining 

. uc(pC) := umax(pC) + umin(pC)

2
,

ρu(pC) := umax(pC) − umin(pC)

2
, (10.31d) 

then a sufficient conditions for (10.31a) reads, cf. [ 25], 

. E

(
tr Bρu(pC)−1

d

(
ue − uc(pC)

)(
ue − uc(pC)

)T
ρu(pC)−1

d |At0

)

≤ 1 − αu, s0 ≤ s ≤ s f , (10.31e) 

where.ue = ue
(
pD, s; qe(·), β(·)

)
and.ρu(pC)d denotes the diagonal matrix contain-

ing the elements of .ρu(pC) on its diagonal. Moreover, .B denotes a positive definite 
matrix such that.zT Bz ≥ 1 for all vectors. z such that.||z||∞ ≥ 1. Taking, e.g.,.B = I , 
(10.31e) reads 

. E
(
||ρu(pC)−1

d

(
ue
(
pD, s; qe(·), β(·)

)
− uc(pC)

)
||2|At0

)

≤ 1 − αu, s0 ≤ s ≤ s f . (10.31f) 

Obviously, similar sufficient conditions may be derived for (10.31b), (10.31c).
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We observe that the above class of risk-based minimum expected cost problems 

for the computation of .
(
qe(·), β(·)

)
, β(·), resp., is represented completely by the 

following set of 

.ini tial parameters ζ0 : t0, s0, q0, q̇0, P
(0)
p(·) or ν0 (10.32a) 

and 
.terminal parameters ζ f : t f , s f , β f , q f . (10.32b) 

In case of problems with a given geometric path.qe = qe(s) in configuration space, the 
values.q0, q f may be deleted. Moreover, approximating the expectations in (10.30a)– 
(10.30f), (10.30f’) by means of Taylor expansions with respect to the parameter 
vector . p at the conditional mean 

.p(0) := E
(
p(ω)|At0

)
, (10.32c) 

the a priori distribution .P (0)
p(·) may be replaced by a certain vector 

.ν0 :=
(
E
( r∏
k=1

pl(ω)|At0

)
(l1,...,lr )∈⌃

)
(10.32d) 

of a priori moments of .p(ω) with respect to .At0 . 
Here, .⌃ denotes a certain finite set of multiple indices .(l1, . . . , lτ ), r ≤ 1. 
Of course, in the time-variant case the functions .L J , φ J , f u, f S, ψ as described 

in item (B) have to be used. Thus, .t0, t f occur then explicitly in the parameter list 
(10.32a), (10.32b). 

(II) Expected total cost-minimum problem 
Here, the total costs arising from violations of the constraints in the variational 
problem (10.30a)–(10.30f), (10.30f’) are added to the (primary) costs arising 
along the trajectory, to the terminal costs, respectively. Of course, correspond-
ing weight factors may be included in the cost functions (10.29a). Taking expec-
tations with respect to .At0 , in the  time-invariant case the following substitute 
problem is obtained: 

. min

s f{

s0

E
(
L J

γ

(
p, qe(s), q

'
e(s), q

''
e (s), β(s), β '(s)

)
|At0

)
ds

+E
(
φ J

γ

(
p, qe(s f )

)
|At0

)
(10.33a) 

s.t.
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.β(s) ≥ 0, s0 ≤ s ≤ s f (10.33b) 

.qe(s0) = q0, q '
e(s0)

√
β(s0) = q̇0 (10.33c) 

.qe(s f ) = q f (if φ J
γ = 0), β(s f ) = β f , (10.33d) 

where .L J
γ , φ J

γ are defined by 

.L J
γ := L J + νuT f uγ + νST f sγ (10.33e) 

.φ J
γ := φ J or φ J

γ := φ J + νT
ψψγ , (10.33f) 

and .νu
I , ν

u
I I , ν

S
I , ν

S
I I , νψ ≥ 0 are certain nonnegative (vectorial) scale factors 

which may depend on the path parameter . s. 

We observe that also in this case the initial/terminal parameters characterizing the 
second class of substitute problems (10.33a)–(10.33f) are given again by (10.32a), 
(10.32b). 

In the time-varying case the present substitute problems of class II reads 

. min

s f{

s0

E
(
L J

γ

(
s, t0, s0, β(·), pJ , qe(s), q

'
e(s, q

''
e (s), β(s), β '(s)

)
|At0

)
ds

+ E
(
φ J

γ

(
s f , t0, s0, β(·), pJ , qe(s f )

)
|At0

)
(10.34a) 

s.t. 

.β(s) ≥ 0, s0 ≤ s ≤ s f (10.34b) 

.qe(s0) = q0, q '
e(s0)

√
β(s0) = q̇0 (10.34c) 

.qe(s f ) = q f ( if φ J
γ = 0), β(s f ) = β f . (10.34d) 

Remark 10.10 (Mixtures of (I), (II)) Several mixtures of the classes (I) and (II) of 
substitute problems are possible. 

10.4.1 Computational Aspects 

The following techniques are available for solving substitutes problems of type (I), 
(II): 

(a) Reduction to a finite-dimensional parameter optimization problem 

Here, the unknown functions .
(
qe(·), β(·)

)
or .β(·) are approximated by a linear 

combination
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.qe(s) :=
lq∑
l=1

q̂l B
q
l (s), s0 ≤ s ≤ s f (10.35a) 

.β(s) :=
lβ∑
l=1

β̂l B
β

l (s), s0 ≤ s ≤ s f , (10.35b) 

where.Bq
l = Bq

l (s), Bβ

l = Bβ

l (s), s0 ≤ s ≤ s f , l = 1, . . . , lq(lβ), are given basis 
functions, e.g., B-splines, and.q̂l , β̂l , l = 1, . . . , lq(lβ), are vectorial, scalar coef-
ficients. Putting (10.35a), (10.35b) into (10.30a)–(10.30f), (10.30f’), (10.33a)– 
(10.33f), resp., a semiinfinite optimization problem is obtained. If the inequal-
ities involving explicitly the path parameter .s, s0 ≤ s ≤ s f , are required for a 
finite number .N of parameter values .s1, s2, . . . , sN only, then this problem is 
reduced finally to a finite-dimensional parameter optimization problem which 
can be solved now numerically by standard mathematical programming routines 
or search techniques. Of course, a major problem is the approximative computa-
tion of the conditional expectations which is done essentially by means of Taylor 
expansion with respect to the parameter vector . p at .p(0). Consequently, several 
conditional moments have to be determined (online, for stage. j ≥ 1). For details, 
see [ 28– 30, 36] and the program package “OSTP” [ 3]. 

(b) Variational techniques 
Using methods from calculus of variations, necessary and—in some cases—also 
sufficient conditions in terms of certain differential equations may be derived 

for the optimal solutions .
(
q(0)
e , β(0)

)
, β(0), resp., of the variational problems 

(10.30a)–(10.30f), (10.30f’), (10.33a)–(10.33f). For more details, see [ 36]. 
(c) Linearization methods 

Here, we assume that we already have an approximative optimal solution 

.

(
qe(s), β(s)

)
, s0 ≤ s ≤ s f , of the substitute problem (10.30a)–(10.30f), 

(10.30f’) or (10.33a)–(10.33f) under consideration. For example, an approxi-

mative optimal solution.

(
qe(·), β(·)

)
can be obtained by starting from the deter-

ministic substitute problem obtained by replacing the random parameter vector 

.p(ω) just by its conditional mean .p(0) := E
(
p(ω)|At0

)
. 

Given an approximate optimal solution .
(
qe(·), β(·)

)
of substitute problem (I) 

or (II), the unknown optimal solution .

(
q(0)
e (·), β(0)(·)

)
to be determined is rep-

resented by 

.q(0)
e (s) := qe(s) + Δqe(s), s0 ≤ s ≤ s f (10.36a) 

.β(0)(s) := β(s) + Δβ(s), s0 ≤ s ≤ s f , (10.36b)
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where .
(
Δqe(s),Δβ(s)

)
, s0 ≤ s ≤ s f , are certain (small) correction terms. In 

the following we assume that the changes .Δqe(s),Δβ(s) and their first and 
resp. second order derivatives .Δq '

e(s),Δq ''
e (s),Δβ '(s) are small. 

We observe that the function arising in the constraints and in the objective of 
(10.30a)–(10.30f), (10.30f’), (10.33a)–(10.33f), resp., are of the following type: 

. g(0)
(
qe(s), q

'
e(s), q

''
e (s), β(s), β '(s)

)

:= E
(
g
(
p(ω), qe(s), q

'
e(s), q ''

e (s), β(s), β '(s)
)
|At0

)
, (10.37a) 

.φ
(0)
(
qe(s f )

)
:= E

(
φ
(
p(ω), qe(s f )

)
|At0

)
(10.37b) 

and 

.F
(0)
(
qe(·), β(·)

)
:=

s f{

s0

g(0)
(
qe(s), q

'
e(s), q

''
e (s), β(s), β '(s)

)
ds (10.37c) 

with certain functions.g, φ. Moreover, if for simplification the pointwise (cost-) 
constraints (10.30b), (10.30c) are averaged with respect to the path parameter 
.s, s0 ≤ s f , then also constraint functions of the type (10.37c) arise, see (10.30b’), 
(10.30c’). 
By means of first-order Taylor expansion of .g, φ with respect to . (Δqe(s),

Δq '
e(s),Δq ''

e (s),Δβ(s),Δβ '(s)
)
at.
(
qe(s), q

'
e(s), q

''
e (s), β(s), β

'
(s)

)
,. s0 ≤ s ≤

s f , we find then the following approximations 

. g(0)
(
qe(s), q

'
e(s), q

''
e (s), β(s), β '(s)

)
≈ g(0)

(
qe(s), q

'
e(s), q

''
e (s), β(s), β

'
(s)

)

+ A
(0)
g,qe,β

(s)TΔqe(s) + B
(0)
g,qe,β

(s)TΔq '
e(s) + C

(0)
g,qe,β

(s)TΔq ''
e (s)

+ D
(0)
g,qe,β

(s)Δβ(s) + E
(0)
g,qe,β

(s)Δβ '(s) (10.38a) 

and 

.φ
(0)
(
qe(s f )

)
≈ φ

(0)
(
qe(s f )

)
+ a(0)

φ,qe
(s f )

TΔqe(s f ), (10.38b) 

where the expected sensitivities of .g, φ with respect to .q, q ', q '', β and .β ' are 
given by



10.4 OSTP—Optimal Stochastic Trajectory Planning 239

. A
(0)
g,qe,β

(s) := E
(
∇qg

(
p(ω), qe(s), q

'
e(s), q

''
e (s), β(s), β

'
(s)

)
|At0

)

(10.38c) 

. B
(0)
g,qe,β

(s) := E
(
∇q 'g

(
p(ω), qe(s), q

'
e(s), q

''
e (s), β(s), β

'
(s)

)
|At0

)

(10.38d) 

. C
(0)
g,qe,β

(s) := E
(
∇q ''g

(
p(ω), qe(s), q

'
e(s), q

''
e (s), β(s), β

'
(s)

)
|At0

)

(10.38e) 

.D
(0)
g,qe,β

(s) := E

(
∂g

∂β

(
p(ω), qe(s), q

'
e(s), q

''
e (s), β(s), β

'
(s)

)
|At0

)
(10.38f) 

. E
(0)
g,qe,β

(s) := E

(
∂g

∂β '
(
p(ω), qe(s), q

'
e(s), q

''
e (s), β(s), β

'
(s)

)
|At0

)

(10.38g) 

.a(0)
φ,qe

(s f ) := E
(
∇qφ

(
p(ω), qe(s)

)
|At0

)
, s0 ≤ s ≤ s f . (10.38h) 

As mentioned before, cf. (10.32c), (10.32d), the expected values .g(0), φ
(0)

in 
(10.38a), (10.38b) and the expected sensitivities defined by (10.38c)–(10.38h) 
can be computed approximatively by means of Taylor expansion with respect to 

. p at .p(0) = E
(
p(ω)|At0

)
. 

According to (10.38a), and using partial integration, for the total costs.F
(0)

along 
the path we get the following approximation: 

.F
(0) ≈

s f{

s0

g(0)
(
qe(s), q

'
e(s), q

''
e (s), β(s), β

'
(s)

)
ds (10.39a) 

+ 
s f{

s0 

G 
(0) 
g,qe,β (s)

TΔqe(s) ds  + 
s f{

s0 

H 
(0) 
g,qe,β (s)Δβ(s) ds  

+
(
B 

(0) 
g,qe,β (s f ) − C (0)

'

g,qe,β (s f )
)T

Δqe(s f ) 

+
(
−B 

(0) 
g,qe,β (s0) + C (0)

'

g,qe,β (s0)
)T

Δqe(s0) 

+C 
(0) 
g,qe,β (s f )

TΔq '
e(s f ) − C (0) g,qe,β (s0)

TΔq '
e(s0) 

+E 
(0) 
g,qe,β (s f )Δβ(s f ) − E (0) g,qe,β (s0)Δβ(s0), 

where
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.G
(0)
g,qe,β

(s) := A
(0)
g,qe,β

(s) − B
(0)'

g,qe,β
(s) + C

(0)''

g,qe,β
(s) (10.39b) 

.H
(0)
g,qe,β

(s) := D
(0)
g,qe,β

(s) − E
(0)'

g,qe,β
(s). (10.39c) 

Conditions (10.30e)–(10.30f), (10.30f’), (10.33c), (10.33d), resp., yield the fol-
lowing initial and terminal conditions for the changes . Δqe(s),Δβ(s) :

.Δβ(s0) = 0,Δqe(s0) = q0 − qe(s0) (10.39d) 

.Δβ(s f ) = 0,Δqe(s f ) = q f − qe(s f ), if φ J = 0. (10.39e) 

Moreover, if .q̇0 /= 0 (as in later correction stages, cf. Sect. 10.5), according to 
(10.30e) or (10.33c), condition.Δβ(s0) = 0must be replaced by the more general 
one 

.

(
q '
e(s0) + Δq '

e(s0)
)/

β(s0) + Δβ(s0) = q̇0 (10.39f) 

which can be approximated by 

.

/
β(s0)Δq '

e(s0) + 1

2

Δβ(s0)√
β(s0)

q '
e(s0) ≈ q̇0 −

/
β(s0)q

'
e(s0). (10.39f’) 

Applying the above-described linearization (10.38a)–(10.38h) to (10.30a)– 
(10.30e) or to the constraints (10.30b), (10.30c) only, problem (10.30a)–(10.30f), 
(10.30f’) is approximated by a linear variational problem or a variational prob-
lem having linear constraints for the changes .Δqe(·),Δβ(·). On the other hand, 
using linearizations of the type (10.38a)–(10.38h) in the variational problem 
(10.33a)–(10.33f), in the average constraints (10.30b’), (10.30c’), resp., an opti-
mization problem for.Δqe(·),Δβ(·) is obtained which is linear, which has linear 
constraints, respectively. 

(d) Separated computation of .qe(·) and . β(·)
In order to reduce the computational complexity, the given trajectory planning 
problem is often split up [ 16] into the following two separated problems for. qe(·)
and .β(·): 
(i) Optimal path planning: find the shortest collision-free geometric path. q(0)

e =
q(0)
e (s), s0 ≤ s ≤ s f , in configuration space from a given initial point .q0 to 
a prescribed terminal point .q f . Alternatively, with a given initial velocity 
profile .β(·) = β(·), see  (10.36b), the substitute problem (10.30a)–(10.30f), 
(10.30f’), (10.33a)–(10.33f), resp., may be solved for an approximate geo-
metric path .qe(·) = q(0)

e (·) only. 
(ii) Velocity planning: Determine then an optimal velocity profile. β(0) = β(0)(s),

s0 ≤ s ≤ s f , along the predetermined path .q(0)
e (·). 

Having a certain collection.
{
qe,λ(·) : λ ∈ ⌃

}
of admissible paths in configuration 

space, a variant of the above procedure (i), (ii) is to determine—in an inner
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optimization loop—the optimal velocity profile .βλ(·) with respect to a given 
path.qe,λ(·), and to optimize then the parameter . λ in an outer optimization loop, 
see [ 19]. 

10.4.2 Optimal Reference Trajectory, Optimal Feedforward 
Control 

Having, at least approximatively, the optimal geometric path .q(0)
e = q(0)

e (s) and 
the optimal velocity profile .β(0) = β(0)(s), s0 ≤ s ≤ s f , i.e., the optimal solution 
.
(
q(0)
e , β(0)

) = (
q(0)
e (s), β(0)(s)

)
, s0 ≤ s ≤ s f , of one of the stochastic path planning 

problems (10.30a)–(10.30f), (10.30f’), (10.33a)–(10.33f), (10.34a)–(10.34d), resp., 
then, according to (10.13a), (10.13b), (10.14), the optimal reference trajectory in 
configuration space .q(0) = q(0)(t), t ≥ t0, is defined by 

.q(0)(t) := q(0)
e

(
s(0)(t)

)
, t ≥ t0. (10.40a) 

Here, the optimal.(t ↔ s)-transformation.s(0) = s(0)(t), t ≥ t0, is determined by the 
initial value problem 

.ṡ(t) =
√

β(0)(s), t ≥ t0, s(t0) := s0. (10.40b) 

By means of the kinematic equation (10.5), the corresponding reference trajectory 
.x (0) = x (0)(t), t ≥ t0, in workspace may be defined by 

.x (0)(t) := E
(
T
(
pK (ω), q(0)(t)

)
|At0

)
= T

(
p(0)
K , q(0)(t)

)
, t ≥ t0, (10.40c) 

where 
.p(0)

K := E
(
pK (ω)|At0

)
. (10.40d) 

Based on the inverse dynamics approach, see  Remark  10.1, the optimal reference 
trajectory.q(0) = q(0)(t), t ≥ t0, is inserted now into the left-hand side of the dynamic 
equation (10.4a). This yields next to the random optimal control function 

. v(0)
(
t, pD(ω)

)
:= M

(
pD(ω), q(0)(t)

)
q̈(0)(t)

+ h
(
pD(ω), q(0)(t), q̇(0)(t)

)
, t ≥ t0. (10.41) 

Starting at the initial state .(q0, q̇0) := (
q(0)(t0), q̇(0)(t0)

)
, this control obviously 

keeps the robot exactly on the optimal trajectory.q(0)(t), t ≥ t0, provided that. pD(ω)

is the true vector of dynamic parameters.
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An optimal feedforward control law .u(0) = u(0)(t), t ≥ t0, related to the optimal 
reference trajectory.q(0) = q(0)(t), t ≥ t0, can be obtained then by applying a certain 

averaging or estimating operator .ψ = ψ
(
·|At0

)
to (10.41), hence, 

.u(0) := ψ
(
v(0)

(
t, pD(·)

)
|At0

)
, t ≥ t0. (10.42) 

If .ψ(·|At0) is the conditional expectation, then we find the optimal feedforward 
control law 

. u(0) := E
(
M
(
pD(ω), q(0)(t)

)
q̈(0)(t) + h

(
pD(ω), q(0)(t), q̇(0)(t)

)
|At0

)
,

= M
(
p(0)
D , q(0)(t)

)
q̈(0)(t) + h

(
p(0)
D , q(0)(t), q̇(0)(t)

)
, t ≥ t0, (10.43a) 

where .p(0)
D denotes the conditional mean of .pD(ω) defined by (10.32c), and the 

second equation in formula (10.43a) holds since the dynamic equation of a robot 
depends linearly on the parameter vector .pD , see  Remark  10.2. 

Inserting into the dynamic equation (10.4a), instead of the conditional mean. p(0)
D

of .pD(ω) given .At0 , another estimator .p(0)
D of the true parameter vector .pD or a 

certain realization .p(0)
D of .pD(ω) at the time instant . t0, then we obtain the optimal 

feedforward control law 

.u(0)(t) := M
(
p(0)
D , q(0)(t)

)
q̈(0)(t) + h

(
p(0)
D , q(0)(t), q̇(0)(t)

)
, t ≥ t0. (10.43b) 

10.5 AOSTP—Adaptive Optimal Stochastic Trajectory 
Planning 

As already mentioned in the introduction, by means of direct or indirect measure-
ments, observations of the robot and its environment, as, e.g., by observations of the 
state .(x, ẋ), (q, q̇), resp., of the mechanical system in work or configuration space, 
further information about the unknown parameter vector .p = p(ω) is available at 
each moment .t > t0. Let denote, cf. [ 5], 

.At (⊂ A), t ≥ t0, (10.44a) 

the .σ -algebra of all information about the random parameter vector .p = p(ω) up 
to time . t . Hence, .(At ) is an increasing family of .σ -algebras. Note that the flow of 
information in this control process can be described also by means of the stochastic 
process 

.pt (ω) := E
(
p(ω)|At

)
, t ≥ t0, (10.44b) 

see [ 5].
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By parameter identification [ 18, 43] or robot calibration techniques [ 6, 44] we  
may then determine the conditional distribution 

.P (t)
p(·) = Pp(·)|At (10.44c) 

of.p(ω)given.At . Alternatively, we may determine the vector of conditional moments 

.ν(t) :=
(
E
( r∏
k=1

plk (ω)|At

))

(l1,...,lr )∈⌃

(10.44d) 

arising in the approximate computation of conditional expectations in (OSTP) with 
respect to .At , cf.  (10.32c), (10.32d). 

The increase of information about the unknown parameter vector .p(ω) from one 
moment. t to the next .t + dt may be rather low, and the determination of .P (t)

p(·) or. ν
(t)

at each time point . t may be very expensive, though identification methods in real-
time exist [ 43]. Hence, as already mentioned briefly in Sect. 10.1, the conditional 
distribution.P (t)

p(·) or the vector of conditional moments .ν(t) is determined/updated at 
discrete moments .(t j ): 

.t0 < t1 < t2 < · · · < t j < t j+1 < . . . . (10.45a) 

The optimal functions .q(0)
e (s), β(0)(s), s0 ≤ s ≤ s f , based on the a priori infor-

mation .At0 , loose in course of time more or less their qualification to provide a 
satisfactory pair of guiding functions .

(
q(0)(t), u(0)(t)

)
, t ≥ t0. 

However, having at the main correction time points .t j , j = 1, 2, . . . , the updated 

information .σ -algebras .At j and then the a posteriori probability distributions . P
(t j )
p(·)

or the updated conditional moments .ν(t j ) of .p(ω), j = 1, 2, . . . , the pair of guid-
ing functions .

(
q(0)(t), u(0)(t)

)
, t ≥ t0, is replaced by a sequence of renewed pairs 

.
(
q( j)(t), u( j)(t)

)
, t ≥ t j , j = 1, 2, . . . , of guiding functions determined by replan-

ning, i.e., by repeated (OSTP) for the remaining time intervals.[t j , t ( j)f ] and by using 
the new information given by .At j . Since replanning at a later main correction time 
point .t j , j ≥ 1, hence on-line, may be very time consuming, in order to maintain 
the real-time capability of the method, we may start the replanning procedure for 
an update of the guiding functions at time .t j already at some earlier time .t̃ j with 
.t j−1 < t̃ j < t j , j ≥ 1. Of course, in this case 

.At j := At̃ j (10.45b) 

is defined to contain only the information about the control process up to time . t̃ j in 
which replanning, cf. Fig. 10.1, for time . t j starts.
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Fig. 10.1 Start of replanning 

The resulting substitute problem at a stage. j ≥ 1 follows from the corresponding 
substitute problem for the previous stage. j − 1 just by updating. ζ j−1 → ζ j , ζ

( j−1)
f →

ζ
( j)
f , the initial and terminal parameters, see (10.32a), (10.32b). The renewed 

.initial parameters ζ j : t j , s j , q j , q̇ j , P
( j)
p(·) or ν j (10.46a) 

for the . j-th stage, . j ≥ 1, are determined recursively as follows: 

.s j := s( j−1)(t j ) (1 − 1 − transformation s = s(t)) (10.46b) 

.q j := q̂(t j ), q j := q( j−1)(t j ) or q j := E
(
q(t j )|At j

)
(10.46c) 

.q̇ j := ˆ̇q(t j ), q j := q̇( j−1)(t j ) or q̇ j := E
(
q̇(t j )|At j

)
(10.46d) 

. (observation or estimate of q(t j ), q̇(t j ))

P ( j)
p(·) := P

(t j )
p(·) = Pp(·)|At j

(10.46e) 

.ν j := ν(t j ). (10.46f) 

The renewed 

.terminal parameters ζ
( j)
f : t ( j)f , s f , q

( j)
f , β f (10.47a) 

for the . j-th stage, . j ≥ 1, are defined by 

.s f (given) (10.47b) 

.q( j)
f := q̂(t f ) or q

( j)
f := E

(
q f (ω)|At j

)
(10.47c) 

.β f = 0 (10.47d) 

.s( j)
(
t ( j)f

)
= s f . (10.47e)
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As already mentioned above, the (OSTP) for the. j-th stage,. j ≥ 1, is obtained from 
the substitute problems (10.30a)–(10.30f), (10.30f’), (10.33a)–(10.33f), (10.34a)– 
(10.34d), resp., formulated for the .0-th stage, . j = 0, just by substituting 

.ζ0 → ζ j and ζ f → ζ
( j)
f . (10.48) 

Let then denote 

.
(
q( j)
e , β( j)

) = (
q( j)
e (s), β( j)(s)

)
, s j ≤ s ≤ s f , (10.49) 

the corresponding pair of optimal solutions of the resulting substitute problem for 
the . j-th stage, . j ≥ 1. 

The pair of guiding functions.
(
q( j)(t), u( j)(t)

)
, t ≥ t j , for  the. j-th stage,. j ≥ 1, is  

then defined as described in Sect. 10.4.2 for the.0-th stage. Hence, for the. j-th stage, 
the reference trajectory in configuration space .q( j)(t), t ≥ t j , reads cf. (10.40a), 

.q( j)(t) := q( j)
e

(
s( j)(t)

)
, t ≥ t j , (10.50a) 

where the transformation .s( j) :
[
t j , t

( j)
f

]
→ [s j , s f ] is defined by the initial value 

problem 
.ṡ(t) =

√
β( j)(s), t ≥ t j , s(t j ) = s j . (10.50b) 

The terminal time .t ( j)f for the . j-th stage is defined by the equation 

.s( j)
(
t ( j)f

)
= s f . (10.50c) 

Moreover, again by the inverse dynamics approach, the feedforward control. u( j) =
u( j)(t), t ≥ t j , for  the . j-th stage is defined, see (10.41), (10.42), (10.43a), (10.43b), 
by 

.u( j)(t) := ψ
(
v( j)

(
t, pD(ω)

)
|At j

)
, (10.51a) 

where 

. v( j)(t, pD) := M
(
pD, q( j)(t)

)
q̈( j)(t) + h

(
pD, q( j)(t), q̇( j)(t)

)
, t ≥ t j .

(10.51b) 
Using the conditional expectation.ψ(·|At j ) := E(·|At j ), we find the feedforward 

control 

.u( j)(t) := M
(
p( j)
D , q( j)(t)

)
q̈( j)(t) + h

(
p( j)
D , q( j), q̇( j)(t)

)
, t ≥ t j , (10.51c) 

where, cf. (10.32c), 
.p( j)

D := E
(
pD(ω)|At j

)
. (10.51d)
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Corresponding to (10.40c), (10.40d), the reference trajectory in work space. x ( j) =
x ( j)(t), t ≥ t j , for the remaining time interval .t j ≤ t ≤ t ( j)f , is defined by 

. x ( j)(t) := E
(
T
(
pK (ω), q( j)(t)

)
|At j

)
= T

(
p( j)
K , q( j)(t)

)
,

t j ≤ t ≤ t ( j)f , (10.52a) 

where 
.p( j)

K := E
(
pK (ω)|At j

)
. (10.52b) 

10.5.1 (OSTP)-Transformation 

The variational problems (OSTP) at the different stages . j = 0, 1, 2 . . . are deter-
mined uniquely by the set of initial and terminal parameters .(ζ j , ζ

( j)
f ), cf. (10.46a)– 

(10.46f), (10.47a)–(10.47e). Thus, these problems can be transformed to a reference 

problem depending on .

(
ζ j , ζ

( j)
f

)
and having a certain fixed reference .s-interval. 

Theorem 10.1 Let .[s̃0, s̃ f ], s̃0 < s̃ f := s f , be a given, fixed reference .s-interval, 
and consider for a certain stage . j, j = 0, 1, . . . , the transformation 

.s̃ = s̃(s) := s̃0 + s̃ f − s̃0
s f − s j

(s − s j ), s j ≤ s ≤ s f , (10.53a) 

from .[s j , s f ] onto .[s̃0, s f ] having the inverse 

.s = s(s̃) = s j + s f − s j
s̃ f − s̃0

(s̃ − s̃0), s̃0 ≤ s̃ ≤ s̃ f . (10.53b) 

Represent then the geometric path in work space.qe = qe(s) and the velocity profile 
.β = β(s), s j ≤ s ≤ s f , for  the . j-th stage by 

.qe(s) := q̃e
(
s̃(s)

)
, s j ≤ s ≤ s f (10.54a) 

.β(s) := β̃
(
s̃(s)

)
, s j ≤ s ≤ s f , (10.54b) 

where .q̃e = q̃e(s̃), β̃ = β̃(s̃), s̃0 ≤ s̃ ≤ s̃ f , denote the corresponding functions on 
.[s̃0, s̃ f ]. Then the (OSTP) for the. j-th stage is transformed into a reference variational 
problem (stated in the following) for .(q̃e, β̃) depending on the parameters 

.(ζ, ζ f ) = (ζ j , ζ
( j)
f ) ∈ Z × Z f (10.55)
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and having the fixed reference .s-interval .[s̃0, s̃ f ]. Moreover, the optimal solution 

.

(
q( j)
e , β( j)

)
=
(
q( j)
e (s), β( j)(s)

)
, s j ≤ s ≤ s f , may be represented by the optimal 

adaptive law 

.q( j)
e (s) = q̃∗

e

(
s̃(s); ζ j , ζ

( j)
f

)
, s j ≤ s ≤ s f , (10.56a) 

.β( j)(s) = β̃∗
(
s̃(s); ζ j , ζ

( j)
f

)
, s j ≤ s ≤ s f , (10.56b) 

where 

.q̃∗
e = q̃∗

e (s̃; ζ, ζ f ), β̃∗ = β̃∗(s̃; ζ, ζ f ), s̃0 ≤ s̃ ≤ s̃ f (10.56c) 

denotes the optimal solution of the above-mentioned reference variational problem. 

Proof According to (10.54a), (10.54b) and (10.53a), (10.53b), the derivatives of the 
functions .qe(s), β(s), s j ≤ s ≤ s f , are  given by  

.q '
e(s) = q̃ '

e

(
s̃(s)

) s̃ f − s̃0
s f − s j

, s j ≤ s ≤ s f , (10.57a) 

.q ''
e (s) = q̃ ''

e

(
s̃(s)

)( s̃ f − s̃0
s f − s j

)2

, s j ≤ s ≤ s f , (10.57b) 

.β '(s) = β̃ '
(
s̃(s)

) s̃ f − s̃0
s f − s j

, s j ≤ s ≤ s f . (10.57c) 

Now putting the transformation (10.53a), (10.53b) and the representation (10.54a), 
(10.54b), (10.57a)–(10.57c) of  .qe(x), β(s), s j ≤ s ≤ s f , and their derivatives into 
one of the substitute problems (10.30a)–(10.30f), (10.30f’), (10.33a)–(10.33f) or  
their time-variant versions, the chosen substitute problem is transformed into a 
corresponding reference variational problem (stated in the following Sect. 10.5.2) 
having the fixed reference interval .[s̃0, s̃ f ] and depending on the parameter vectors 

.ζ j , ζ
( j)
f . Moreover, according to (10.54a), (10.54b), the optimal solution. 

(
q( j)
e , β( j)

)

of the substitute problem for the . j-th stage may be represented then by 
(10.56a)–(10.56c). ⬜
Remark 10.11 Based on the above theorem, the stage-independent functions. q̃∗

e , β̃
∗

can be determined now offline by using an appropriate numerical procedure. 

10.5.2 The Reference Variational Problem 

After the (OSTP)-transformation described in Sect. 10.5.1, in the  time- invariant 
case for the problems of type (10.30a)–(10.30f), (10.30f’) we find
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. min

s̃ f{

s̃0

E

(
L J

(
pJ , q̃e(s̃), q̃

'
e(s̃)

s̃ f − s̃0
s f − s j

, q̃ ''
e (s̃)

(
s̃ f − s̃0
s f − s j

)2

, β̃(s̃),

β̃ '(s̃)
s̃ f − s̃0
s f − s j

)
|At j

)
s f − s j
s̃ f − s̃0

ds̃ + E
(
φ J

(
pJ , q̃e(s̃ f

)
|At j

)
(10.58a) 

s.t. 

. E

(
fγ
(
p, q̃e(s̃), q̃

'
e(s̃)

s̃ f − s̃0
s f − s j

, q̃ ''
e (s̃)

(
s̃ f − s̃0
s f − s j

)2

, β̃(s̃), β̃ '(s̃)
s̃ f − s̃0
s f − s j

)
|At j

)

≤ [ f , (10.58b) 

.β̃(s̃) ≥ 0, s̃0 ≤ s̃ ≤ s̃ f (10.58c) 

.q̃e(s̃0) = q j , q̃ '
e(s̃0)

s̃ f − s̃0
s f − s j

/
β̃(s̃0) = q̇ j (10.58d) 

.q̃e(s̃ f ) = q( j)
f (if φ J = 0), β̃(s̃ f ) = 0 (10.58e) 

β̃(s̃ f ) = 0, E
(
ψ
(
p, q̃e(s̃ f )

)
|At j

)
≤ [ψ , (10.58e’) 

where . fγ , [ f are defined by 

. fγ :=
(
f uγ
f Sγ

)
, [ f :=

(
[u

f

[S
f

)
. (10.58f) 

Moreover, for the problem type (10.33a)–(10.33f) we get 

. min

s̃ f{

s̃0

E

(
L J

γ

(
p, q̃e(s̃), q̃

'
e(s̃)

s̃ f − s̃0
s f − s j

, q̃ ''
e (s̃)

(
s̃ f − s̃0
s f − s j

)2

, β̃(s̃),

β̃ '(s̃)
s̃ f − s̃0
s f − s j

)
|At j

)
s f − s j
s̃ f − s̃0

ds̃ + E
(
φ J

γ

(
p, q̃e(s̃ f )

)
|At j

)
(10.59a) 

s.t. 

.β̃(s̃) ≥ 0, s̃0 ≤ s̃ ≤ s̃ f (10.59b) 

.q̃e(s̃0) = q j , q̃ '
e(s̃0)

s̃ f − s̃0
s f − s j

/
β̃(s̃0) = q̇ j (10.59c) 

.q̃e(s̃ f ) = q( j)
f ( if φ J

γ = 0), β̃(s̃ f ) = 0. (10.59d) 

For the consideration of the time-variant case we note first that by using the 
transformation (10.53a), (10.53b) and (10.54b) the time .t ≥ t j can be represented, 
cf. (10.15a), (10.15b) and (10.16a), also by
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.t = t
(
s̃, t j , s j , β̃(·)

)
:= t j + s f − s j

s̃ f − s̃0

s̃{

s̃0

dσ̃/
β̃(σ̃ )

. (10.60a) 

Hence, if the variational problems (10.58a)–(10.58f) and (10.59)–(10.59d) for  the  
. j-th stage depend explicitly on time .t ≥ t j , then, corresponding to Sect. 10.4, item 
(B), for the constituting functions .L J , φ J , L J

γ , φ J
γ of the variational problems we 

have that 

.L J = L J
(
s̃, t j , s j , β̃(·), pJ , qe, q

'
e, q

''
e , β, β '

)
, s̃0 ≤ s̃ ≤ s̃ f (10.60b) 

.φ J = φ J
(
s̃ f , t j , s j , β̃(·), pJ , qe

)
(10.60c) 

. fγ = fγ
(
s̃, t j , s j , β̃(·), p, qe, q '

e, q
''
e , β, β '

)
, s̃0 ≤ s̃ ≤ s̃ f (10.60d) 

.L J
γ = L J

γ

(
s̃, t j , s j , β̃(·), p, qe, q ''

e , β, β '
)
, s̃0 ≤ s̃ ≤ s̃ f (10.60e) 

.φ J
γ = φ J

γ

(
s̃ f , t j , s j , β̃(·), p, qe

)
. (10.60f) 

10.5.2.1 Transformation of the Initial State Values 

Suppose here that .φ J /= 0, φ J
γ /= 0, resp., and the terminal state condition (10.58e), 

(10.58e’), (10.59d), resp., is reduced to 

.β̃(s̃ f ) = 0. (10.61a) 

Representing then the unknown functions .β̃(·), q̃e(·) on .[s̃0, s̃ f ] by 

.β̃(s̃) := β j β̃a(s̃), s̃0 ≤ s̃ ≤ s̃ f (10.61b) 

.q̃e(s̃) := q jd q̃ea(s̃), s̃0 ≤ s̃ ≤ s̃ f , (10.61c) 

where .q jd denotes the diagonal matrix with the components of .q j on its main diag-

onal, then in terms of the new unknowns .
(
β̃a(·), q̃ea(·)

)
on .[s̃0, s̃ f ] we have the 

nonnegativity and fixed initial/terminal conditions 

.β̃a(s̃) ≥ 0, s̃0 ≤ s̃ ≤ s̃ f (10.62a) 

.β̃a(s̃0) = 1, q̃ea(s̃0) = 1 (10.62b) 

.β̃a(s̃ f ) = 0, (10.62c) 

where 1 .:= (1, . . . , 1)'.
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10.5.3 Numerical Solutions of (OSTP) in Real-Time 

With the exception of field robots (e.g., Mars rover) and service robots [ 16], becoming 
increasingly important, the standard industrial robots move very fast. Hence, for 

industrial robots the optimal solution.

(
q( j)
e (s), β( j)(s)

)
, β( j)(s), resp.,.s j ≤ s ≤ s f , 

generating the renewed pair of guiding functions .
(
q( j)(t), u( j)(t)

)
, t ≥ t j , on each 

stage . j = 1, 2, . . . should be provided in real-time. This means that the optimal 

solutions .
(
q( j)
e , β( j)

)
, β( j), resp., must be prepared offline as far as possible such 

that only relatively simple numerical operations are left online. 
Numerical methods capable to generate approximate optimal solutions in real-

time are based mostly on discretization techniques, neural network (NN) approxi-
mation [ 3, 30, 31, 38], linearization techniques (sensitivity analysis) [ 48]. 

10.5.3.1 Discretization Techniques 

Partitioning the space .Z × Z f of initial/terminal parameters .(ζ, ζ f ) into a certain 
(small) number . l0 of subdomains 

.Z × Z f =
l0U
l=1

Zl × Zl
f , (10.63a) 

and selecting then a reference parameter vector 

.(ζ l, ζ l
f ) ∈ Zl × Zl

f , l = 1, . . . , l0, (10.63b) 

in each subdomain.Zl × Zl
f , the optimal adaptive law (10.56c) can be approximated, 

cf. [ 47], by 

.

ˆ̃q∗
e (s̃; ζ, ζ f ) := q̃∗(s̃; ζ l , ζ l

f ), s̃0 ≤ s̃ ≤ s̃ f
ˆ̃
β∗(s̃; ζ, ζ f ) := β̃∗(s̃; ζ l , ζ l

f ), s̃0 ≤ s̃ ≤ s̃ f

}
for (ζ, ζ f ) ∈ Zl × Zl

f . (10.63c) 

10.5.3.2 NN-Approximation 

For the determination of the optimal adaptive law (10.56a)–(10.56c) in real-time, 
according to (10.35a), (10.35b), the reference variational problem (10.58a)–(10.58f) 
or (10.59)–(10.59d) is reduced first to a finite-dimensional parameter optimization 
problem by 

(i) representing the unknown functions .q̃e = q̃e(s̃), β̃ = β̃(s̃), s̃0 ≤ s̃ ≤ s̃ f , as lin-
ear combinations
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.q̃e(s̃) :=
lq∑
l=1

q̂e B
q
l (s̃), s̃0 ≤ s̃ ≤ s̃ f , (10.64a) 

.β̃(s̃ :=
lβ∑
l=1

β̂l B
β

l (s̃), s̃0 ≤ s̃ ≤ s̃ f , (10.64b) 

of certain basis functions, e.g., cubic B-splines,. Bq
l = Bq

l (s̃), Bβ

l = Bβ

l (s̃), s̃0 ≤
s̃ ≤ s̃ f , l = 1, . . . , lq(lβ), with unknown vectorial (scalar) coefficients. q̂l , β̂l , l =
1, . . . , lq(lβ), and 

(ii) demanding the inequalities in (10.58b), (10.58c), (10.59b), resp., only for a finite 
set of .s̃-parameter values .s̃0 < s̃1 < · · · < s̃k < s̃k+1 < · · · < s̃κ = s̃ f . 

By means of the above-described procedure (i), (ii), the optimal coefficients 

.q̂∗
l = q̂∗

l (ζ, ζ f ), l = 1, . . . , lq (10.64c) 

.β̂∗
l = β̂∗

l (ζ, ζ f ), l = 1, . . . , lβ (10.64d) 

become functions of the initial/terminal parameters .ζ, ζ f , cf.  (10.56c). Now, for the 
numerical realization of the optimal parameter functions (10.64c), (10.64d), a Neural 
Network (NN) is employed generating an approximative representation 

.q̂∗
e (ζ, ζ f ) ≈ q̂ N N

e (ζ, ζ f ;wq), l = 1, . . . , lq (10.65a) 

.β̂∗
l (ζ, ζ f ) ≈ β̂NN

l (ζ, ζ f ;wβ), l = 1, . . . , lβ, (10.65b) 

where the vectors .wq , wβ of NN-weights are determined optimally 

.wq = w∗
q (data), wβ = w∗

β (data) (10.65c) 

in an offline training procedure [ 3, 30, 38]. Here, the model (10.65a), (10.65b) is  
fitted in the LSQ-sense to given data 

.

(
ζ τ , ζ τ

f

q̂∗τ
l , l = 1, . . . , lq

)
,

(
ζ τ , ζ τ

f

β̂∗τ
l , l = 1, . . . , lβ

)
, τ = 1, . . . , τ0, (10.65d) 

where 
.(ζ τ , ζ τ

f ), τ = 1, . . . , τ0 (10.65e) 

is a certain collection of initial/terminal parameter vectors, and 

.q̂∗τ
l := q̂∗τ

l (ζ τ , ζ τ
f ), l = 1, . . . , lq , τ = 1, . . . , τ0 (10.65f) 

.β̂∗τ
l := β̂∗τ

l (ζ τ , ζ τ
f ), l = 1, . . . , lβ, τ = 1, . . . , τ0 (10.65g)
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are the related optimal coefficients in (10.64a), (10.64b) which are determined offline 
by an appropriate parameter optimization procedure. 

Having the vectors .w∗
q , w

∗
β of optimal NN-weights, by means of (10.65a)– 

(10.65c), for given actual initial/terminal parameters .(ζ, ζ f ) = (ζ j , ζ
( j)
f ) at stage 

. j ≥ 0, the NN yields then the optimal parameters 

. q̂∗
l (ζ j , ζ

( j)
f ), β̂∗

l (ζ j , ζ
( j)
f ), l = 1, . . . , lq(lβ)

in real-time; consequently, by means of (10.64a), (10.64b), also the optimal functions 
.q̃∗
e (s̃), β̃

∗(s̃), s̃0 ≤ s̃ ≤ s̃ f , are then available very fast. For more details, see [ 3, 30]. 

10.5.3.3 Linearization Methods 

(I) Linearization of the optimal feedforward control law 
Expanding the optimal control laws (10.56c) with respect to the initial/terminal 
parameter vector.ζ̂ = (ζ, ζ f ) at its value.ζ̂0 = (ζ0, ζ

(0)
f ) for stage. j = 0, approx-

imatively we have that 

. q̃∗
e (s̃, ζ, ζ f ) = q̃∗

e (s̃; ζ0, ζ
(0)
f ) + ∂q̃∗

e

∂ζ̂
(s̃; ζ0, ζ

(0)
f )(ζ − ζ0, ζ f − ζ

(0)
f ) + . . .

(10.66a) 

. β̃∗(s̃; ζ, ζ f ) = β̃∗(s̃; ζ0, ζ
(0)
f ) + ∂β̃∗

∂ζ̂
(s̃; ζ0, ζ

(0)
f )(ζ − ζ0, ζ f − ζ

(0)
f ) + . . . ,

(10.66b) 

where the optimal starting functions .q̃∗
e (s̃; ζ0, ζ

(0)
f ), β̃∗(s̃; ζ0, ζ

(0)
f ) and the 

derivatives.
∂q̃∗

e

∂ζ̂
(s̃; ζ0, ζ

(0)
f ),

∂β̃∗

∂ζ̂
(s̃; ζ0, ζ

(0)
f ), . . . can be determined—on a cer-

tain grid of.[s̃0, s̃ f ]—offline by using sensitivity analysis [ 48]. The actual values 
of .q̃∗

e , β̃
∗ at later stages can then be obtained very rapidly by means of simple 

matrix operations. If necessary, the derivatives can be updated later on by a 
numerical procedure running in parallel to the control process. 

(II) Sequential linearization of the (AOSTP) process 
Given the optimal guiding functions. q( j)

e = q( j)
e (s), β( j) = β( j)(s), s j ≤ s ≤ s f

for the . j-th stage, corresponding to the representation (10.36a), (10.36b), the 
optimal guiding functions.q( j+1)

e (s), β( j+1)(s), s j+1 ≤ s ≤ s f , are represented, 
cf. Fig. 10.2, by  

.q( j+1)
e (s) := q( j)

e (s) + Δqe(s), s j+1 ≤ s ≤ s f , (10.67a) 

.β( j+1)(s) := β( j)(s) + Δβ(s), s j+1 ≤ s ≤ s f , (10.67b)
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Fig. 10.2 Sequential linearization of (AOSTP) 

where.s j < s j+1 < s f , and.
(
Δqe(s),Δβ(s)

)
, s j+1 ≤ s ≤ s f , are certain (small) 

changes of the . j-th stage optimal guiding functions .
(
q( j)
e (·), β( j)(·)

)
. 

Obviously, the linearization technique described in Sect. 10.5.3.3 can be 
applied now also to the approximate computation of the optimal changes 
.Δqe(s),Δβ(s), s j+1 ≤ s ≤ s f , if the following replacements are made in the 
formulas (10.36a), (10.36b), (10.37a)–(10.37c), (10.38a)–(10.38h) and 
(10.39a)–(10.39f): 

. 

s0 ≤ s ≤ s f → s j+1 ≤ s ≤ s f
qe, β → q( j)

e , β( j)

At0 → At j+1

g(0), φ
(0)

, F
(0) → g( j+1), φ

( j+1)
, F

( j+1)

A
(0)
g,qe,β

, . . . , H
(0)
g,qe,β

→ A
( j+1)

g,q( j)
e ,β( j) , . . . , H

( j+1)

g,q( j)
e ,β( j)

Δβ(s0) = 0 → Δβ(s j+1) = β j+1 − β( j)(s j+1)

Δqe(s0) = q0 − qe(s0) → Δqe(s j+1) = q j+1 − q( j)
e (s j+1)

Δβ(s f ) = 0 → Δβ(s f ) = 0
Δqe(s f ) = q(0)

f − qe(s f ) → Δqe(s f ) = q( j+1)
f − q( j)

f , if φ J = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10.67c) 
where .X

( j+1)
denotes the conditional expectation of a random variable .X with 

respect to .At j+1 , cf.  (10.51d), (10.52b). Furthermore, (10.38f) yields 

.

(
q( j)'
e (s j+1) + Δq '

e(s j+1)
)

· √β j+1 = q̇ j+1 (10.67d) 

which can be approximated, cf. (10.39f’), by 

. 

√
β( j)(s j+1)Δq '

e(s j+1) + 1
2

Δβ(s j+1)√
β( j)(s j+1)

q( j)'
e (s j+1)

≈ q̇ j+1 − √
β( j)(s j+1)q

( j)'
e (s j+1). (10.67d’)

Depending on the chosen substitute problem, by this linearization method we 
obtain then a variational problem, an optimization problem, resp., for the changes 

.

(
Δqe(s),Δβ(s)

)
, s j+1 ≤ s ≤ s f , having a linear objective function and/or linear 

constraints. 
To give a typical example, we consider now (AOSTP) on the .( j + 1)th stage 

with substitute problem (10.33a)–(10.33f). Hence, the functions .g, φ in (10.40a)– 
(10.40c), (10.38a)–(10.38h), and (10.39a)–(10.39f) are  given by
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. g := L J
γ , φ := φ J

γ .

Applying the linearization techniques developed in Sect. 10.4.1c now  to  (10.33a)– 
(10.33f), according to (10.39a)–(10.39c), (10.38b) and (10.67d’), for the correction 
terms.Δqe(s),Δβ(s), s j+1 ≤ s ≤ s f , we find the following linear optimization prob-
lem: 

. min

s f{

s j+1

G
( j+1)

g,q( j)
e ,β( j) (s)

TΔqe(s)ds +
s f{

s j+1

H
( j+1)

g,q( j)
e ,β( j) (s)Δ(s)ds (10.68a) 

+RT 
j Δqe(s f ) + ST j Δq '

e(s f ) + TjΔβ(s j+1) 

s.t. 

.Δqe(s j+1) = q j+1 − q( j)
e (s j+1) (10.68b) 

.Δqe(s f ) = q( j+1)
f − q( j)

f , if φ J = 0 (10.68c)

Δβ(s f ) = 0 
.Δβ(s) ≥ −β( j)(s), s j+1 ≤ s ≤ s f , (10.68d) 

where 

.R j := B
( j+1)

g,q( j)
e ,β( j) (s f ) − C

( j+1)

g,q( j)
e ,β( j) (s f ) + a( j+1)

φ,q( j)
e

(s f ) (10.68e) 

.Sj := C
( j+1)

g,q( j)
e ,β( j) (s f ) (10.68f) 

.Tj := 1

2
C

( j+1)

g,q( j)
e ,β( j) (s j+1)

T q
( j)'
e (s j+1)

β( j)(s j+1)
− E

( j+1)

g,q( j)
e ,β( j) (s j+1). (10.68g) 

The linear optimization problem (10.68a)–(10.68g) can be solved now by the 
methods developed, e.g., in [ 13], where for the correction terms . Δqe(s),Δβ(s),
s j+1 ≤ s ≤ s f , some box constraints or norm bounds have to be added to (10.68a)– 
(10.68g). In case of .Δβ(·) we may replace, e.g., (10.68d) by the condition 

. − β( j)(s) ≤ Δβ(s) ≤ Δβmax, s j+1 ≤ s ≤ s f , (10.68d’)

with some upper bound .Δβmax. 
It is easy to see that (10.68a)–(10.68g) can be split up into two separated lin-

ear optimization problems for .Δqe(·),Δβ(·), respectively. Hence, according to the 
simple structure of the objective function (10.68a), we observe that 

.sign
(
H

( j+1)

g,q( j)
e ,β( j) (s)

)
, s j+1 ≤ s ≤ s f , and sign (Tj )
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indicates the points. s in the interval.[s j+1, s f ]with.Δβ(s) < 0 or.Δβ(s) > 0, hence, 
the points.s, s j+1 ≤ s ≤ s f , where the velocity profile should be decreased/increased. 
Moreover, using (10.68d’), the optimal correction.Δβ(s) is equal to the lower/upper 
bound in (10.68d’) depending on the above-mentioned signs. 

Obviously, the correction vectors .Δqe(s), s j+1 ≤ s ≤ s f , for the geometric path 
in configuration space can be determined in the same way. Similar results are obtained 
also if we use .L2-norm bounds for the correction terms. 

If the pointwise constraints (10.29b), (10.29c) in (10.30a)–(10.30f), (10.30f’) are  
averaged with respect to .s, s j+1 ≤ s ≤ s f , then functions of the type (10.37c) arise, 
cf. (10.30b’), (10.30c’), which can be linearized again by the same techniques as dis-
cussed above. In this case, linear constraints are obtained for. Δβ(s),Δqe(s), s j+1 ≤
s ≤ s f , with constraint functions of the type (10.39a)–(10.39c), cf. also (10.68a). 

10.5.3.4 Combination of Discretization and Linearization 

Obviously, the methods described briefly in Sects. 10.5.3.1 and 10.5.3.2 can be 
combined in the following way, cf. Fig. 10.4. 

First, by means of discretization (Finite Element Methods), an approximate opti-
mal control law .(q̃∗

e , β
∗) is searched in a class of finitely generated functions of 

the type (10.64a), (10.64b). Corresponding to (10.66a), (10.66b), by means of Tay-
lor expansion here the optimal coefficients .q̂∗

l , β̂
∗
l , l = 1, . . . , lq(lβ), in the corre-

sponding linear combination of type (10.64a), (10.64b) are represented, cf. (10.64c), 
(10.64d), by 

.q̂∗
l (ζ, ζ f ) = q̂∗

l

(
ζ0, ζ

(0)
f

)
+ ∂q̂∗

l

∂ζ̂
(ζ0, ζ

(0)
f )

(
ζ − ζ0, ζ f − ζ

(0)
f

)
+ . . . , (10.69a) 

.β̂∗
l (ζ, ζ f ) = β̂∗

l

(
ζ0, ζ

(0)
f

)
+ ∂β̂∗

l

∂ζ̂

(
ζ0, ζ

(0)
f

) (
ζ − ζ0, ζ f − ζ

(0)
f

)
+ . . . , (10.69b) 

.l = 1, . . . , lq(lβ). Here, the derivatives 

.
∂q̂∗

l

∂ζ̂

(
ζ0, ζ

(0)
f

)
,
∂β̂∗

l

∂ζ̂

(
ζ0, ζ

(0)
f

)
, . . . , l = 1, . . . , lq(lβ) (10.69c) 

can be determined again by sensitivity analysis [48] of a finite dimensional parameter-
dependent optimization problem which may be much simpler than the sensitiv-
ity analysis of the parameter-dependent variational problem (10.58a)–(10.58f) or  
(10.59)–(10.59d). 

Stating the necessary (and under additional conditions also sufficient) Kuhn-
Tucker conditions for the optimal coefficients .q̂∗

l , β̂
∗
l , l = 1, . . . , lq(lβ), formulas  

for the derivatives (10.69c) may be obtained by partial differentiation with respect 
to the complete vector .z = (ζ, ζ f ) of initial/terminal parameters.



256 10 Adaptive Optimal Stochastic Trajectory Planning and Control (AOSTPC)

10.6 Online Control Corrections: PD-Controller 

We now consider the control of the robot at the. j-th stage, i.e., for time.t ≥ t j , see  [  1, 
2, 4, 7, 14, 15]. In practice we have random variations of the vector . p of the model 
parameters of the robot and its environment, moreover, there are possible deviations 

of the true initial state .(q j , q̇ j ) :=
(
q(t j ), q̇(t j )

)
in configuration space from the 

corresponding initial values .(q j , q̇ j ) =
(
q j , q

( j)'
e (s j )

√
β j

)
of the (OSTP) at stage 

. j . Thus, the actual trajectory 

.q(t) = q
(
t, pD, q j , q̇ j , u(·)

)
, t ≥ t j (10.70a) 

in configuration space of the robot will deviate more or less from the optimal reference 
trajectory 

.q( j)(t) = q( j)
e

(
s( j)(t)

)
= q

(
t, p( j)

D , q j , q̇ j , u
( j)(·)

)
, (10.70b) 

see (10.45a), (10.45b), (10.46a)–(10.46f), (10.50a), (10.50b) and (10.51c). In the fol-

lowing we assume that the state.
(
q(t), q̇(t)

)
in configuration space may be observed 

for.t > t j . Now, in order to define an appropriate control correction (feedback control 
law), see (10.2) and Fig. 10.3, 

.Δu( j)(t) = u(t) − u( j)(t) := ϕ( j)
(
t,Δz( j)(t)

)
, t ≥ t j , (10.71a) 

for the compensation of the tracking error 

.Δz( j)(t) := z(t) − z( j)(t), z(t) :=
(
q(t)
q̇(t)

)
, z( j)(t) :=

(
q( j)(t)
q̇( j)(t)

)
, (10.71b) 

where .ϕ( j) = ϕ( j)(t,Δq, Δ̇q) is such a function that 

.ϕ( j)(t, 0, 0) = 0 for all t ≥ t j , (10.71c) 

the trajectories.q(t) and.q( j)(t), t ≥ t j , are embedded into a one-parameter family of 
trajectories.q = q(t, ∈), t ≥ t j , 0 ≤ ∈ ≤ 1, in configuration space which are defined 
as follows: 

Consider first the following initial data for stage . j : 

.q j (∈) := q j + ∈Δq j , Δq j := q j − q j (10.72a) 

.q̇ j (∈) := q̇ j + ∈Δ̇q j , Δ̇q j := q̇ j − q̇ j (10.72b) 

.pD(∈) := p( j)
D + ∈ΔpD, ΔpD := pD − p( j)

D , 0 ≤ ∈ ≤ 1. (10.72c)
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Fig. 10.3 Control of dynamic systems (robots). Here, .z(t) :=
(
q(t), q̇(t)

)
, . z(0)(t) :=(

q(0)(t), q̇(0)(t)
)

Fig. 10.4 Adaptive optimal stochastic trajectore planning and control (AOSTPC)
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Moreover, define the control input .u(t), t ≥ t j , by (10.71a), hence, 

. u(t) = u( j)(t) + Δu( j)(t)

= u( j)(t) + ϕ( j)
(
t, q(t) − q( j)(t), q̇(t) − q̇( j)(t)

)
, t ≥ t j . (10.72d) 

Let then denote 

.q(t, ∈) = q
(
t, pD(∈), q j (∈), q̇ j (∈), u(·)) , 0 ≤ ∈ ≤ 1, t ≥ t j , (10.73) 

the solution of the following initial value problem consisting of the dynamic equation 
(10.4a) with the initial values, the vector of dynamic parameters and the total control 
input .u(t) given by (10.72a)–(10.72d) (Fig. 10.4): 

.F (pD(∈), q(t, ∈), q̇(t, ∈), q̈(t, ∈)) = u(t, ∈), 0 ≤ ∈ ≤ 1, t ≥ t j , (10.74a) 

where 

.q(t j , ∈) = q j (∈), q̇(t j , ∈) = q̇ j (∈), (10.74b) 

.u(t, ∈) := u( j)(t) + ϕ( j)
(
t, q(t, ∈) − q( j)(t), q̇(t, ∈) − q̇( j)(t)

)
, (10.74c) 

and .F = F(pD, q, q̇, q̈) is defined, cf. (10.4a), by 

.F(pD, q, q̇, q̈) := M(pD, q)q̈ + h(pD, q, q̇). (10.74d) 

In the following we suppose [ 22] that the initial value problem (10.74a)–(10.74d) 
has a unique solution .q = q(t, ∈), t ≥ t j , for each parameter value .∈, 0 ≤ ∈ ≤ 1. 

10.6.1 Basic Properties of the Embedding . q(t, ∈)

10.6.1.1 . ∈ = ∈0 := 0

Because of condition (10.71c) of the feedback control law .ϕ( j) to be determined, 
and due to the unique solvability assumption of the initial value problem (10.74a)– 
(10.74d) at the . j-th stage, for .∈ = 0 we have that 

.q(t, 0) = q( j)(t), t ≥ t j . (10.75a) 

. ∈ = ∈1 := 1
According to (10.70a), (10.71a)–(10.71c) and (10.72a)–(10.72d), 

.q(t, 1) = q(t) = q
(
t, pD, q j , q̇ j , u(·)

)
, t ≥ t j , (10.75b)
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is the actual trajectory in configuration space under the total control input . u(t) =
u( j)(t) + Δu( j)(t), t ≥ t j , given by (10.72d). 

Taylor expansion with respect to . ∈. 
Let .Δ∈ = ∈1 − ∈0 = 1, and suppose that the following property known from 

parameter-dependent differential equations, cf. [ 22], holds. 

Assumption 10.1 The solution .q = q(t, ∈), t ≥ t j , 0 ≤ ∈ ≤ 1, of the initial value 
problem (10.72a)–(10.72d) has continuous derivatives with respect to . ∈ up to order 
.ν > 1 for all .t j ≤ t ≤ t j + Δt j , 0 ≤ ∈ ≤ 1, with a certain .Δt j > 0. 

Note that .(t, ∈) → q(t, ∈), t ≥ t j , 0 ≤ ∈ ≤ 1, can be interpreted as a homotopy 
from the reference trajectory .q( j)(t) to the actual trajectory .q(t), t ≥ t j , cf.  [  39]. 

Based on the above assumption and (10.75a), (10.75b), by Taylor expansion with 
respect to . ∈ at .∈ = ∈0 = 0, the actual trajectory of the robot can be represented by 

. q(t) = q
(
t, pD, q j , q̇ j , u(·)

)
= q(t, 1) = q(t, ∈0 + Δ∈)

= q(t, 0) + Δq(t) = q( j)(t) + Δq(t), (10.76a) 

where the expansion of the tracking error .Δq(t), t ≥ t j , is given by 

. Δq(t) =
ν−1∑
l=1

1

l!d
lq(t)(Δ∈)l + 1

ν!
∂νq

∂∈ν
(t, ϑ)(Δ∈)ν

=
ν−1∑
l=1

1

l!d
lq(t) + 1

ν!
∂νq

∂∈ν
(t, ϑ), t ≥ t j . (10.76b) 

Here, .ϑ = ϑ(t, ν), 0 < ϑ < 1, and 

.dlq(t) := ∂ lq

∂∈l
(t, 0), t ≥ t j , l = 1, 2, . . . (10.76c) 

denote the .l-th order differentials of .q = q(t, ∈) with respect to . ∈ at .∈ = ∈0 = 0. 
Obviously, differential equations for the differentials .dlq(t), l = 1, 2, . . . , may be 
obtained, cf. [ 22], by successive differentiation of the initial value problem (10.74a)– 
(10.74d) with respect to . ∈ at .∈0 = 0. 

Furthermore, based on the Taylor expansion of the tracking error . Δq(t), t ≥
t j , using some stability requirements, the tensorial coefficients . Dl

zϕ
( j)(t, 0), l =

1, 2, . . . , of the Taylor expansion 

.ϕ( j)(t,Δz) =
∞∑
l=1

Dl
zϕ

( j)(t, 0) · (Δz)l (10.76d) 

of the feedback control law.ϕ( j) = ϕ( j)(t,Δz) can be determined at the same time.
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10.6.2 The First-Order Differential . dq

Next we have to introduce some definitions. Corresponding to (10.71b) and (10.73) 
we put 

.z(t, ∈) :=
(
q(t, ∈)
q̇(t, ∈)

)
, t ≥ t j , 0 ≤ ∈ ≤ 1; (10.77a) 

then, we define the following Jacobians of the function .F given by (10.74d): 

.K (pD, q, q̇, q̈) := Fq(pD, q, q̇, q̈) = Dq F(pD, q, q̇, q̈) (10.77b) 

.D(pD, q, q̇) := Fq̇(pD, q, q̇, q̈) = hq̇(pD, q, q̇). (10.77c) 

Moreover, it is 
.M(pD, q) = Fq̈(pD, q, q̇, q̈), (10.77d) 

and due to the linear parameterization property of robots, see Remark 10.2, .F may 
be represented by 

.F(pD, q, q̇, q̈) = Y (q, q̇, q̈)pD (10.77e) 

with a certain matrix function .Y = Y (q, q̇, q̈). 
By differentiation of (10.74a)–(10.77d) with respect to. ∈, for the partial derivative 

.
∂q

∂∈
(t, ∈) of .q = q(t, ∈) with respect to . ∈ we find, cf. (10.71b), the following linear 

initial value problem (error differential equation) 

. Y
(
q(t, ∈), q̇(t, ∈), q̈(t, ∈)

)
ΔpD + K

(
pD(∈), q(t, ∈), q̇(t, ∈), q̈(t, ∈)

)∂q

∂∈
(t, ∈)

+D
(
pD(∈), q(t, ∈), q̇(t, ∈)

) d

dt

∂q

∂∈
(t, ∈) + M

(
pD(∈), q(t, ∈)

) d2

dt2
∂q

∂∈
(t, ∈)

= ∂u

∂∈
(t, ∈) = ∂ϕ( j)

∂z

(
t,Δz( j)(t)

)∂z

∂∈
(t, ∈) (10.78a) 

with the initial values, see (10.72a), (10.72b), 

.
∂q

∂∈
(t j , ∈) = Δq j ,

d

dt

∂q

∂∈
(t j , ∈) = Δ̇q j . (10.78b) 

Putting now .∈ = ∈0 = 0, because of (10.71a), (10.71b) and (10.75a), system 
(10.78a), (10.78b) yields then this system of second-order differential equations 
for the first-order differential . dq(t) = ∂q

∂∈
(t, 0) :

. Y ( j)(t)ΔpD + K ( j)(t)dq(t) + D( j)(t)ḋq(t) + M( j)(t)d̈q(t)

= du(t) = ϕ
( j)
z (t, 0)dz(t) = ϕ

( j)
q (t, 0)dq(t) + ϕ

( j)
q̇ (t, 0)ḋq(t), t ≥ t j , (10.79a)
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with the initial values 
.dq(t j ) = Δq j , ḋq(t j ) = Δ̇q j . (10.79b) 

Here, 

.du(t) := ∂u

∂∈
(t, 0), (10.79c) 

.dz(t) :=
(
dq(t)
ḋq(t),

)
, ḋq := d

dt
dq, d̈q := d2

dt2
dq, (10.79d) 

and the matrices .Y ( j)(t), K ( j)(t), D( j)(t) and .M ( j)(t) are defined, cf. (10.77b)– 
(10.77e), by 

.Y ( j)(t) := Y
(
q( j)(t), q̇( j)(t), q̈( j)(t)

)
(10.79e) 

.K ( j)(t) := K
(
p( j)
D , q( j)(t), q̇( j)(t), q̈( j)(t)

)
(10.79f) 

.D( j)(t) := D
(
p( j)
D , q( j)(t), q̇( j)(t)

)
, M ( j)(t) := M

(
p( j)
D , q( j)(t)

)
. (10.79g) 

Local (PD-) control corrections.du = du(t) stabilizing system (10.79a), (10.79b) 
can now be obtained by the following definition of the Jacobian of .ϕ( j)(t, z) with 
respect to . z at .z = 0: 

. ϕ( j)
z (t, 0) := Fz

(
p( j)
D , q( j)(t), q̇( j)(t), q̈( j)(t)

)
− M ( j)(t)(Kp, Kd)

= (
K ( j)(t) − M ( j)(t)Kp, D

( j)(t) − M ( j)(t)Kd
)
, (10.80) 

where .Kp = (γpkδkν), Kd = (γdkδkν) are positive definite diagonal matrices with 
positive diagonal elements .γpk, γdk > 0, k = 1, . . . , n. 

Inserting (10.80) into (10.79a), and assuming that .M ( j) = M ( j)(t) is regular [ 4] 
for.t ≥ t j , we find the following linear system of second-order differential equations 
for .dq = dq(t): 

.d̈q(t) + Kdḋq(t) + Kpdq(t) = −M ( j)(t)−1Y ( j)(t)ΔpD, t ≥ t j , (10.81a) 

.dq(t j ) = Δq j , ḋq(t j ) = Δ̇q j . (10.81b) 

Considering the right-hand side of (10.81a), according to (10.79e), (10.77e) and 
(10.74d) we have that 

. Y ( j)(t)ΔpD = Y
(
q( j)(t), q̇( j)(t), q̈( j)(t)

)
ΔpD = F

(
ΔpD, q( j)(t), q̇( j)(t), q̈( j)(t)

)

= M
(
ΔpD, q( j)(t)

)
q̈( j)(t) + h

(
ΔpD, q( j)(t), q̇( j)(t)

)
. (10.82a) 

Using the definition (10.50a), (10.50b) of.q( j)(t) and the representation (10.19a), 
(10.19b) of .q̇( j)(t), q̈( j)(t), we get
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. Y ( j)(t)ΔpD

= M
(
ΔpD, q( j)

e

(
s( j)(t)

))(
q( j)'
e

(
s( j)(t)

)1
2
β( j)'

(
s( j)(t)

)

+q( j)''
e

(
s( j)(t)

)
β( j)

(
s( j)(t)

))

+ h

(
ΔpD, q( j)

e

(
s( j)(t)

)
, q( j)'

e

(
s( j)(t)

)/
β( j)

(
s( j)(t)

))
. (10.82b) 

From (10.20b) we now obtain the following important representations, where we 
suppose that the feedforward control .u( j)(t), t ≥ t j , is given by (10.51c), (10.51d). 

Lemma 10.1 The following representations hold: 

(a) 
.Y ( j)(t)ΔpD = ue

(
ΔpD, s( j)(t); q( j)

e (·), β( j)(·)) , t ≥ t j ; (10.83a) 

(b) 

.u( j)(t) = ue
(
p( j)
D , s( j)(t); q( j)

e (·), β( j)(·)
)

, t ≥ t j ; (10.83b) 

(c) 

.u( j)(t) + Y ( j)(t)ΔpD = ue
(
pD, s( j)(t); q( j)

e (·), β( j)(·)) , t ≥ t j . (10.83c) 

Proof The first equation follows from (10.82b) and (10.20b). Equations (10.51c), 
(10.19a), (10.19b) and (10.20b) yield (10.83b). Finally, (10.83c) follows from 
(10.83a), (10.83b) and the linear parameterization of robots, cf. Remark 10.2. ⬜

Remark 10.12 Note that according to the transformation (10.20a) of the dynamic 
equation onto the .s-domain, for the control input .u(t) we have the representation 

. u(t) = ue (pD, s; qe(·), β(·))
= ue

(
p( j)
D , s; qe(·), β(·)

)
+ ue (ΔpD, s; qe(·), β(·)) (10.83d) 

with .s = s(t). 

Using (10.79d), it is easy to see that (10.81a), (10.81b) can be described also by the 
first-order initial value problem 

.ḋz(t) = Adz(t) +
(
0
ψ( j,1)(t)

)
, t ≥ t j (10.84a) 

.dz(t j ) = Δz j =
(
q j − q j

q̇ j − q̇ j

)
, (10.84b)



10.6 Online Control Corrections: PD-Controller 263

where . A is the stability or Hurwitz matrix 

.A :=
(

0 I
−Kp −Kd

)
, (10.84c) 

and .ψ( j,1)(t) is defined, cf. (10.83a), by 

. ψ( j,1)(t) := −M ( j)(t)−1Y ( j)(t)ΔpD

= −M ( j)(t)−1ue
(
ΔpD, s( j)(t); q( j)

e (·), β( j)(·)) . (10.84d) 

Consequently, for the first-order expansion term .dz(t) of the deviation . Δz( j)(t)

between the actual state .z(t) =
(
q(t)
q̇(t)

)
and the prescribed state . z( j)(t) =

(
q( j)(t)
q̇( j)(t)

)
, t ≥ t j , we have the representation [ 11, 22] 

.dz(t) = dz( j)(t) = eA(t−t j )Δz j +
t{

t j

eA(t−τ)

(
0
ψ( j,1)(τ )

)
dτ. (10.85a) 

Because of .E
(
ΔpD(ω)|At j

)
= 0, we have that 

.E
(
ψ( j,1)(t)|At j

) = 0, (10.85b) 

.E
(
dz(t)|At j

) = eA(t−t j )E
(
Δz j |At j

)
, t ≥ t j , (10.85c) 

where, see (10.84a), (10.84b), 

.E
(
Δz j |At j

)
= E

(
z(t j )|At j

)
− z j . (10.85d) 

It is easy to see that the diagonal elements.γdk, γpk > 0, k = 1, . . . , n, of the pos-
itive definite diagonal matrices .Kd , Kp, rep., can be chosen so that the fundamental 
matrix .ϕ(t, τ ) = eA(t−τ), t ≥ τ , is exponentially stable, i.e., 

.||ϕ(t, τ )|| ≤ a0e
−λ0(t−τ), t ≥ τ, (10.86a) 

with positive constants .a0, λ0. A sufficient condition for (10.86a) reads 

. γdk, γpk > 0, k = 1, . . . , n, and γdk > 2 in case of double eigenvalues of A.

(10.86b)
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Define the generalized variance var.(Z |At j ) of a random vector.Z = Z(ω) given. At j

by var.(Z |At j ) := E
(
||Z − E(Z |At j )||2|At j

)
, and let .σ ( j)

Z := √
var (Z |At j ). Then, 

for the behavior of the first-order error term .dz(t), t ≥ t j , we have the following 
result: 

Theorem 10.2 Suppose that the diagonal matrices .Kd , Kp are selected such that 
(10.86a) holds. Moreover, apply the local (i.e., first order) control correction (PD-
controller) 

.du(t) := ϕ( j)
z (t, 0)dz(t), (10.87a) 

where .ϕ
( j)
z (t, 0) is defined by (10.80). Then, the following relations hold: 

(a) Asymptotic local stability in the mean: 

.E
(
dz(t)|At j

)
→ 0, t → ∞; (10.87b) 

(b) Mean absolute first-order tracking error: 

. E
(
||dz|||At j

)
≤ a0e

−λ0(t−t j )

/
σ

( j)2

z(t j )
+ ||E

(
z(t j )|At j

)
− z j||2

+ a0

t{

t j

e−λ0(t−τ)

/
E
(||ψ( j,1)(τ )||2|At j

)
dτ, t ≥ t j , (10.87c) 

where 

.E
(||ψ( j,1)(t)||2|At j

) ≤ ||M ( j)(t)−1||2σ ( j)2
ue

(
s( j)(t)

)
, (10.87d) 

.σ ( j)2
ue

(
s( j)(t)

)
≤ ||Y ( j)(t)||2 var

(
pD(·)|At j

)
(10.87e) 

with 

.σ ( j)
ue (s) :=

/
var

(
ue
(
pD(·), s; q( j)

e (·), β( j)(·)
)
|At j

)
, s j ≤ s ≤ s f . (10.87f) 

Proof Follows from (10.85a), (10.83a)–(10.83d) and the fact that by Jensen’s 
inequality .E

√
X (ω) ≤ √

EX (ω) for a nonnegative random variable .X = X (ω). ⬜

Note that .σ ( j)2
ue

(
s( j)(t)

)
can be interpreted as the risk of the feedforward con-

trol .u( j)(t), t ≥ t j . Using  (10.70b), (10.79g), (10.87d), (10.87e) and then changing 
variables .τ → s in the integral in (10.87c), we obtain the following result:
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Theorem 10.3 Let denote .t ( j) = t ( j)(s), s ≥ s j , the inverse of the parameter trans-
formation .s( j) = s( j)(t), t ≥ t j . Under the assumptions of Theorem 10.2, the follow-

ing inequality holds for .t j ≤ t ≤ t ( j)f : 

. E
(
||dz(t)|||At j

)
≤ a0e

−λ0(t−t j )

/
σ

( j)2

z(t j )
+ ||E(z(t j )|At j

)
− z j||2

+
s( j)(t){

s j

a0e
−λ0

(
t−t ( j)(s)

)
||M

(
p( j)
D , q( j)

e (s)
)−1||

√
β( j)(s)

σ ( j)
ue (s) ds. (10.88a) 

The minimality or boundedness of the right-hand side of (10.88a), hence, the robust-
ness [ 12] of the present control scheme, is shown next: 

Corollary 10.1 The meaning of the above inequality (10.88a) follows from the 
following important minimality/boundedness properties depending on the chosen 
substitute problem in (OSTP) for the trajectory planning problem under stochastic 
uncertainty: 

(i) The error contribution of the initial value .z j takes a minimum for . z j :=
E
(
z(t j )|At j

)
, cf. (10.45a), (10.45b). 

(ii) The factor .λ0 can be increased by an appropriate selection of the matrices 
.Kp, Kd; 

(iii) 

.cM ≤ ||M
(
p( j)
D , q( j)

e (s)
)−1|| ≤ cM , s j ≤ s ≤ s f , (10.88b) 

with positive constants .cM , cM > 0. This follows from the fact that the mass 
matrix is always positive definite [ 4]. 

(iv) 

.

s( j)(t){

s j

ds√
β( j)(s)

≤
s f{

s j

ds√
β( j)(s)

= t ( j)f − t j , (10.88c) 

where according to (OSTP), for minimum-time and related substitute problems, 
the right-hand side is a minimum. 

(v) Depending on the chosen substitute problem in (OSTP), the generalized vari-
ance .σ

( j)
ue (s), s f ≤ s ≤ s f , is bounded pointwise by an appropriate upper risk 

level, or .σ ( j)
ue (·) minimized in a certain weighted mean sense. 

For the minimality or boundedness of the generalized variance. σ
( j)2
ue (s), s j ≤ s ≤

s f , mentioned above, we give the following examples:
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Working with the probabilistic control constraints (10.31a) and assuming that the 
vectors.uc and.ρu are fixed, see (10.31d), according to (10.31f) we find that (10.31a) 
can be guaranteed by 

.σ ( j)2
ue (s) + ||u( j)

e (s) − uc||2 ≤ (1 − αu) min
1≤k≤n

ρ2
uk, s j ≤ s ≤ s f , (10.88d) 

where.u( j)
e (s) := ue

(
p( j)
D , s; q( j)

e (·), β( j)(·)
)
. Hence, with (10.88d) we have then the 

condition 

. σ ( j)2
ue (s) ≤ (1 − αu) min

1≤k≤n
ρ2
ue , s j ≤ s ≤ s f , (10.88d’)

cf. (10.88a). Under special distribution assumptions for .pD(ω) more exact explicit 
deterministic conditions for (10.31a) may be derived, see Remark 10.2. 

If minimum force and moment should be achieved along the trajectory, hence, if 
.φ = 0 and.L = ||u(t)||2, see  (10.6), then, according to substitute problem (10.30a)– 
(10.30f), (10.30f’) we have the following minimality property: 

.

s f{

s j

(
σ ( j)2
ue (s) + ||||u( j)

e (s)
||||2) ds√

β( j)(s)
= min

qe(·),β(·)
E
( t f{

t j

||u(t)||2 dt |At j

)
. (10.88e) 

Mean/variance condition for. ue: Condition (10.30b) in substitute problem (10.30a)– 
(10.30f), (10.30f’) may read in case of fixed bounds .umin, umax for the control . u(t)
as follows: 

.umin ≤ ue
(
p( j)
D , s; qe(·), β(·)

)
≤ umax, s j ≤ s ≤ s f (10.88f) 

.σ ( j)
ue (s) ≤ σmax

ue , s f ≤ s ≤ s f (10.88g) 

with a given upper bound .σmax
ue , cf. (10.88d’). 

According to Theorem 10.3, further stability results, especially the convergence 

.E
(
||dz(t)|||At j

)
→ 0 for j → ∞, t → ∞ (10.89a) 

of the mean absolute first-order tracking error can be obtained if, by using a suitable 
update law [ 1, 2, 4, 11] for the parameter estimates, hence, for the a posteriori 
distribution .P(·|At j ), we have that, see (10.87f), 

.var
(
pD(·)|At j

)
= var

(
pD(·)|At j

)
→ 0 for j → ∞. (10.89b)
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10.6.3 The Second-Order Differential . d2q

In order to derive a representation of the second-order differential .d2q, Eq. (10.78a) 

for .
∂q

∂∈
(t, ∈) is represented as follows: 

.FpDΔpD + Fz
∂z

∂∈
+ Fq̈

∂q̈

∂∈
= ∂u

∂∈
= ϕ( j)

z

∂z

∂∈
, (10.90a) 

where .F = F(pD, z, q̈), z = (q
q̇

)
, is given by (10.74d),  see also (10.77e), and there-

fore 

.FpD = FpD (q, q̇, q̈) = Y (q, q̇, q̈), Fq̈ = Fq̈(pD, q) = M(pD, q) (10.90b) 

.Fz = Fz(pD, q, q̇, q̈) = (
Fq , Fq̇

) =
(
K (pD, q, q̇, q̈), D(pD, q, q̇)

)
. (10.90c) 

Moreover, we have that 

.ϕ( j) = ϕ( j)
(
t, z − z( j)(t)

)
, z =

(
q(t, ∈)
q̇(t, ∈)

)
, pD = pD(∈). (10.90d) 

By differentiation of (10.90a) with respect to . ∈, we obtain 

. 2FpDz ·
(

ΔpD,
∂z

∂∈

)
+ 2FpDq̈ ·

(
ΔpD,

∂q̈

∂∈

)
+ Fzz ·

(
∂z

∂∈
,
∂z

∂∈

)

+2Fzq̈ ·
(

∂z

∂∈
,
∂q̈

∂∈

)
+ Fz

∂2z

∂∈2
+ Fq̈

∂2q̈

∂∈2

= ϕ( j)
zz ·

(
∂z

∂∈
,
∂z

∂∈

)
+ ϕ( j)

z

∂2z

∂∈2
, (10.91a) 

with the second-order partial derivatives 

.FpDz = FpDz(z, q̈), FpDq̈ = FpDq̈(q) = MpD (q) (10.91b) 

.Fzz = Fzz(pD, z, q̈), Fzq̈ = Fzq̈(pD, z) =
(
Mq(pD, q), 0

)
. (10.91c) 

Moreover, differentiation of (10.78b) with respect to . ∈ yields the initial values 

.
∂2q

∂∈2
(t j , ∈) = 0,

d

dt

∂2q

∂∈2
(t j , ∈) = ∂2q̇

∂∈2
(t j , ∈) = 0 (10.91d) 

for .
∂2z

∂∈2
= ∂2z

∂∈2
(t, ∈) =

(
∂2q

∂∈2
(t, ∈),

∂2q̇

∂∈2
(t, ∈)

)
, t ≥ t j , 0 ≤ ∈ ≤ 1.
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Putting now .∈ = 0, from (10.91a) we obtain the following differential equation 
for the second-order differential .d2q(t) = ∂2q

∂∈2
(t, 0) of .q = q(t, ∈): 

. K ( j)(t)d2q(t) + D( j)(t)
d

dt
d2q(t) + M ( j)(t)

d2

dt2
d2q(t)

+
(
Fzz

(
p( j)
D , q( j)(t), q̇( j)(t), q̈( j)(t)

)
− ϕ( j)

zz (t, 0)
)

·
(
dz(t), dz(t)

)

−ϕ( j)
z (t, 0)d2z(t) = −2F ( j)

pDz(t) ·
(
ΔpD, dz(t)

)

+2F ( j)
pDq̈

(t) ·
(
ΔpD, d̈q(t)

)
+ 2F ( j)

zq̈ (t) ·
(
dz(t), d̈q(t)

)
. (10.92a) 

Here, we set 

.d2z(t) :=
(

d2q(t)
d
dt d

2q(t)

)
, (10.92b) 

and the vectorial Hessians .F ( j)
pDz(t), F

( j)
pDq̈

(t), F ( j)
zq̈ (t) follow from (10.91b) by insert-

ing there the argument.(pD, q, q̇, q̈) :=
(
p( j)
D , q( j)(t), q̇( j)(t), q̈( j)(t)

)
. Furthermore, 

(10.91d) yields the following initial condition for . d2q(t)

.d2q(t j ) = 0,
d

dt
d2q(t j ) = 0. (10.92c) 

According to (10.92a) we define now, cf. (10.80), the second-order derivative of 
.ϕ( j) with respect to . z at .Δz = 0 by 

.ϕ( j)
zz (t, 0) := Fzz

(
p( j)
D , q( j)(t), q̇( j)(t), q̈( j)(t)

)
, t ≥ t j . (10.93) 

Using the definition (10.80) of the Jacobian of .ϕ( j) with respect to . z at .Δz = 0, 
for .d2q = d2q(t), t ≥ t j , we find the following the initial value problem 

. 
d2

dt2
d2q(t) + Kd

d

dt
d2q(t) + Kpd

2q(t)

= −M ( j)(t)−1
~D2F

( j)
(t) ·

(
ΔpD, dz(t), d̈q(t)

)2
, t ≥ t j , (10.94a) 

.d2q(t j ) = 0,
d

dt
d2q(t j ) = 0, (10.94b) 

where the sub-Hessian 

.~D2F
( j)

(t) := ~D2F
(
p( j)
D , q( j)(t), q̇( j)(t), q̈( j)(t)

)
, (10.94c) 

of .F results from the Hessian of .F by replacing the diagonal block .Fzz by zero. Of 
course, we have that, cf. (10.92a),
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. ~∇2F
( j) ·

(
ΔpD , dz(t), d̈q(t)

)2 = 2
(
F ( j)
pDz(t) ·

(
ΔpD, dz(t)

)

+F ( j)
pDq̈

(t) ·
(
ΔpD, d̈q(t)

)
+ F ( j)

zq̈ (t) ·
(
d̈q(t), dz(t)

))
. (10.94d) 

Comparing now the initial value problems (10.81a), (10.81b) and (10.94a), 
(10.94b) for the first and second-order differential of .q = q(t, ∈), we recognize that 
the linear second-order differential equations have—up to the right-hand side— 
exactly the same form. 

According to (10.84a)–(10.84d) and (10.85a) we know that the first-order expan-
sion terms 

. 

(
dz(t), d̈q(t)

)
=
(
dq(t), ḋq(t), d̈q(t)

)
, t ≥ t j ,

in the tracking error depend linearly on the error term 

.Δθ( j) = Δθ( j)(t) :=
(
eA(t−t j )Δz j

ΔpD

)(
→

(
0

ΔpD

)
, t → ∞

)
(10.95) 

corresponding to the variations/disturbances of the initial values.(q j , q̇ j ) and dynamic 
parameters .pD . Consequently, we have this observation: 

Lemma 10.2 The right-hand side 

.ψ( j,2)(t) := −M ( j)(t)−1
~D2F

( j)
(t) ·

(
ΔpD, dz(t), d̈q(t)

)2
, t ≥ t j , (10.96) 

of the error differential equation (10.94a) for  .d2q(t) is quadratic in the error term 
.Δθ( j)(·). 

According to (10.94a)–(10.94c), the second-order expansion term 

. d2z(t) =
(
d2q(t),

d

dt
d2q(t)

)
, t ≥ t j ,

of the Taylor expansion of the tracking error can be represented again by the solu-
tion of the system of linear differential equations (10.84a)–(10.84c), where now 
.ψ( j,1)(t) is replaced by .ψ( j,2)(t) defined by (10.96), and the initial values are given 
by .d2z(t j ) = 0. Thus, applying again solution formula (10.85a), we find 

.d2z(t) =
t{

t j

eA(t−τ)

(
0

ψ( j,2)(τ )

)
dτ. (10.97) 

From (10.95)–(10.97) and Lemma 10.2 we get now the following result. 

Theorem 10.4 The second-order tracking error expansion terms 

.

(
d2z(t),

d2

dt2
d2q(t)

)
=
(
d2q(t),

d

dt
d2q(t),

d2

dt2
d2q(t)

)
, t ≥ t j , depend
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(i) quadratically on the first-order error terms .
(
ΔpD, dz(t), d̈q(t)

)
and 

(ii) quadratically on the error term .Δθ( j)(·) corresponding to the variations/ 
disturbances of the initial values and dynamics parameters. 

Because of (10.97), the stability properties of the second-order tracking error expan-
sion term .d2q(t), t ≥ t j , are determined again by the matrix exponential function 
.ϕ(t, τ ) = eA(t−τ) and the remainder .ψ( j,2)(t) given by (10.96). 

According to Theorem 10.3 and Corollary 10.1 we know that the disturbance 
term.ψ( j,1)(t) of (10.81a), (10.84a) is reduced directly by control constraints (for. ue) 
present in (OSTP). Concerning the next disturbance term .ψ( j,2)(t) of (10.94a), by 

(10.96) we note first that a reduction of the 1st order error terms. 
(
ΔpD, dz(·), d̈q(·)

)

yields a reduction of.ψ( j,2) and by (10.97) also a reduction of. d2z(t),
d2

dt2
d2q(t), t ≥

t j . Comparing then definitions (10.84d) and (10.96) of the disturbances.ψ( j,1), ψ( j,2), 
we observe that, corresponding to .ψ( j,1), certain terms in .ψ( j,2) depend only on the 
reference trajectory .q( j)(t), t ≥ t j , of stage . j . Hence, this observation yields the 
following result. 

Theorem 10.5 The disturbance.ψ( j,2) of (10.94a), and consequently also the second-

order tracking error expansion terms .d2q(t),
d

dt
d2q(t),

d2

dt2
d2q(t), t ≥ t j , can be 

diminished by 

(i) reducing the first-order error terms .
(
ΔpD, dz(·), q̈(·)

)
, and by 

(ii) taking into (OSTP) additional conditions for the unknown functions . qe(s), β(s),

s j ≤ s ≤ s f , guaranteeing that (the norm of) the sub-Hessian.~D2F
( j)

(t), t ≥ t j , 
fulfills a certain minimality or boundedness condition. 

Proof Follows from definition (10.96) of  .ψ( j,2) and representation (10.97) of the  
second-order tracking error expansion term.d2z. ⬜

10.6.4 Third and Higher Order Differentials 

By further differentiation of equations (10.91a), (10.91d) with respect to . ∈ and by 
putting.∈ = 0, also the third and higher order differentials.dlq(t), t ≥ t j , l ≥ 3, can 
be obtained. We observe that the basic structure of the differential equations for the 
differentials .dlq, l ≥ 1, remains the same. Hence, by induction for the differentials 
.dl z, l ≥ 1, we have the following representation: 

Theorem 10.6 Defining the tensorial coefficients of the Taylor expansion (10.76d) 
for the feedback control law .ϕ( j) = ϕ( j)(t,Δz) by 

.Dl
zϕ

( j)(t, 0) := Dl
z F

(
p( j)
D , q( j)(t), q̇( j)(t), q̈( j)(t)

)
, (10.98) 

t ≥ t j , l = 1, 2, . . .,
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the differentials .dl z(t) =
(
dlq(t),

d

dt
dlq(t)

)
, t ≥ t j , may be represented by the 

systems of linear differential equations 

.
d

dt
dl z(t) = Adl z(t) +

(
0

ψ( j,l)(t)

)
, t ≥ t j , l = 1, 2, . . . , (10.99a) 

with the same system matrix . A and the disturbance terms .ψ( j,l)(t), t ≥ t j , given by 

. ψ( j,l)(t) = −M ( j)(t)−1π
(
~DλF

( j)
(t), 2 ≤ λ ≤ l;ΔpD, d j z(t),

d2

dt2
dkq(t), 1 ≤ j, k ≤ l − 1

)
, l ≥ 2, (10.99b) 

where .π is a polynomial in the variables .ΔpD and . d j z(t),
d2

dt2
dkq(t), 1 ≤ j, k ≤

l − 1, having coefficients from the sub-operators .~DλF
( j)

(t) of .DλF ( j)(t) containing 
mixed partial derivatives of . F with respect to .ΔpD, z, q̈ of order . λ = 2, 3, . . . , l − 1
at .(pD, q, q̇, q̈) = (

pD
( j), q( j)(t), q̇( j)(t), q̈( j)(t)

)
such that the disturbance .ψ( j,l) is 

a polynomial of order . l with respect to the error term .Δθ( j)(·). 
According to (10.74d), (10.4a)–(10.4d) and Remark 10.2 we know that the vector 

function.F = F(pD, q, q̇, q̈) is linear in.pD , linear in. q̈ and quadratic in. q̇ (supposing 
case 10.4c)) and analytical with respect to . q. Hence, working with a polynomial 
approximation with respect to . q, we may assume that 

.Dl F ( j)(t) = Dl F
(
pD

( j), q( j)(t), q̇( j)(t), q̈( j)(t)
) ≈ 0, t ≥ t j , l ≥ l0 (10.100) 

for some index . l0. 
According to the expansion (10.76d) of the feedback control law . ϕ( j) =

ϕ( j)(t,Δz), definition (10.98) of the corresponding coefficients and Theorem 10.5 
we have now this robustness [ 12] result. 

Theorem 10.7 The Taylor expansion (10.76d) of the feedback control law . ϕ( j) =
ϕ( j)(t,Δz) stops after a finite number .(≤ l0) of terms. Besides the conditions for . ue
contained automatically in (OSTP) via the control constraints, the mean absolute 

tracking error .E
(
||Δz(t)|| |At j

)
can be diminished further by including additional 

conditions for the functions.
(
qe(s), β(s)

)
, s j ≤ s ≤ s f , in (OSTP) which guarantee 

a minimality or boundedness condition for (the norm of) the sub-operators of mixed 

partial derivatives .~D2F
( j)

(t), t ≥ t j , λ = 2, 3, . . . , l0.
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10.7 Online Control Corrections: PID Controllers 

Corresponding to Sect. 10.5, Eqs. (10.71a)–(10.71c), at stage . j we consider here 
control corrections, hence, feedback control laws, of the type 

.Δu( j)(t) := u(t) − u( j)(t) = ϕ( j)
(
t,Δz( j)(t)

)
, t ≥ t j , (10.101a) 

where 
. Δz( j)(t) := z(t) − z( j)(t), t ≥ t j ,

is the tracking error related now to the state vector 

.z(t) :=
⎛
⎝
z1(t)
z2(t)
z3(t)

⎞
⎠ =

⎛
⎜⎜⎝

q(t)
t{
t j

q(s)ds

q̇(t)

⎞
⎟⎟⎠ , t ≥ t j (10.101b) 

.z( j)(t) :=
⎛
⎜⎝
z( j)
1 (t)
z( j)
2 (t)
z( j)
3 (t)

⎞
⎟⎠ =

⎛
⎜⎜⎝

q( j)(t)
t{
t j

q( j)(s)ds

q̇( j)(t)

⎞
⎟⎟⎠ , t ≥ t j . (10.101c) 

Furthermore, 

. ϕ( j) = ϕ( j)
(
t,Δz(t)

)

= ϕ( j)
(
t,Δz1(t),Δz2(t),Δz3(t)

)
, t ≥ t j , (10.101d) 

is a feedback control law such that 

.ϕ( j)(t, 0, 0, 0) = 0, t ≥ t j . (10.101e) 

Of course, we have 

.Δz(t) = Δz( j)(t) =

⎛
⎜⎜⎝

q(t) − q( j)(t)
t{
t j

(
q(s) − q( j)(s)

)
ds

q̇(t) − q̇( j)(t)

⎞
⎟⎟⎠ , t ≥ t j . (10.102) 

Corresponding to Sect. 10.5, the trajectories.q = q(t) and.q( j) = q( j)(t), t ≥ t j , are  
embedded into a one-parameter family of trajectories.q = q(t, ε), t ≥ t j , 0 ≤ ε ≤ 1, 
in configuration space which is defined as follows.
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At stage . j , here we have the following initial data: 

.q j (ε) := q j + εΔq j , Δq j := q j − q j (10.103a) 

.q̇ j (ε) := q̇ j + εΔ̇q j , Δ̇q j := q̇ j − q̇ j (10.103b) 

.pD(ε) := p( j)
D + εΔpD, ΔpD := pD − p( j)

D , (10.103c) 

.0 ≤ ε ≤ 1. Moreover, the control input .u = u(t), t ≥ t j , is defined by 

. u(t) = u( j)(t) + Δu( j)(t)

= u( j)(t) + ϕ( j)
(
t, q(t) − q( j)(t),

t{

t j

(
q(s) − q( j)(s)

)
ds,

q̇(t) − q̇( j)(t)
)
, t ≥ t j . (10.103d) 

Let denote now 

.q(t, ε) = q
(
t, pD(ε), q j (ε), q̇ j (ε), u(·)), t ≥ t j , 0 ≤ ε ≤ 1, (10.104) 

the solution of the following initial value problem based on the dynamic equation 
(10.4a) having the initial values and total control input .u(t) given by (10.103a)– 
(10.103d): 

.F
(
pD(ε), q(t, ε), q̇(t, ε), q̈(t, ε)

) = u(t, ε), t ≥ t j , 0 ≤ ε ≤ 1, (10.105a) 

where 

.q(t j , ε) := q j (ε), q̇(t j , ε) = q̇ j (ε) (10.105b) 

u(t, ε)  := u( j ) (t) + ϕ( j)
(
t, q(t, ε)  − q( j) (t), 

t{

t j

(
q(s, ε)  − q( j) (s)

)
ds, 

.q̇(t, ε) − q̇( j)(t)
)
, (10.105c) 

and the vector function .F = F(pD, q, q̇, q̈) is again defined by 

.F(pD, q, q̇, q̈) = M(pD, q)q̈ + h(pD, q, q̇), (10.105d) 

cf. (10.105a). 
In the following we assume that problem (10.105a)–(10.105d) has a unique solu-

tion .q = q(t, ε), t ≥ t j , for each parameter .ε, 0 ≤ ε ≤ 1.
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10.7.1 Basic Properties of the Embedding . q(t, ε)

According to (10.103a)–(10.103c), for .ε = 0 system (10.105a)–(10.105d) reads 

. F
(
p( j)
D , q(t, 0), q̇(t, 0), q̈(t, 0)

)

= u( j)(t)+ϕ( j)
(
t, q(t, 0) − q( j)(t),

t{

t j

(
q(s, 0) − q( j)(s)

)
ds,

q̇(t, 0) − q̇( j)(t)
)
, t ≥ t j , (10.106a) 

where 
.q(t j , 0) = q j , q̇(t j , 0) = q̇ j . (10.106b) 

Since, due to (OSTP), 
. q( j)(t j ) = q j , q̇( j)(t j ) = q̇ j

and 
. F
(
p( j)
D , q( j)(t), q̇( j)(t), q̈( j)(t)

) = u( j)(t), t ≥ t j ,

according to the unique solvability assumption for (10.105a)–(10.105d) and condi-
tion (10.101e) we have  

.q(t, 0) = q( j)(t), t ≥ t j . (10.107) 

For.ε = 1, from (10.103a)–(10.103c) and (10.105a)–(10.105d) we obtain the system 

. F
(
pD, q(t, 1), q̇(t, 1), q̈(t, 1)

) = u( j)(t)

+ ϕ( j)
(
t, q(t, 1) − q( j)(t),

t{

t j

(
q(s, 1) − q( j)(s)

)
ds, q̇(t, 1) − q̇( j)(t)

)
,

t ≥ t1 (10.108a) 

with 
.q(t j , 1) = q j , q̇(t j , 1) = q̇ j . (10.108b) 

However, since the control input is defined by (10.103d), again due to the unique 
solvability property of (10.105a)–(10.105d), (10.108a), (10.108b) yields 

.q(t, 1) = q(t), t ≥ t j , (10.109) 

where .q = q(t) denotes the actual trajectory.
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Remark 10.13 The integro-differential equation (10.105a)–(10.105d) can be easily 
converted into an ordinary initial value problem. Indeed, using the state variables 

. z(t, ε) =
⎛
⎝

q(t; ε)

qI (t, ε)
q̇(t, ε)

⎞
⎠ , t ≥ t j ,

where .qI = qI (t, ε), t ≥ t j , is defined, see (10.101b), by 

.qI (t, ε) :=
t{

t j

q(s, ε)ds, (10.110) 

problem (10.105a)–(10.105d) can be represented by the equivalent second-order 
initial value problem: 

. F
(
pD(ε), q(t, ε), q̇(t, ε), q̈(t, ε)

)

= u( j)(t) + ϕ( j)
(
t, q(t, ε) − q( j)(t), qI (t, ε) − q( j)

I (t),

q̇(t, ε) − q̇( j)(t)
)

(10.111a) 

.q̇I (t, ε) := q(t, ε) (10.111b) 

with 

.q(t j , ε) = q j (ε) (10.111c) 

.q̇(t j , ε) = q̇ j (ε) (10.111d) 

.qI (t j , ε) = 0. (10.111e) 

and 

.q( j)
I (t) :=

t{

t j

q( j)(s)ds. (10.112) 

10.7.2 Taylor Expansion with Respect to . ε

Based on representation (10.111a)–(10.111e) of problem (10.105a)–(10.105d), we 
may again assume, cf. Assumption 10.1, that the solution . q = q(t, ε), t ≥ t j , 0 ≤
ε ≤ 1, has continuous derivatives with respect to. ε up to a certain order.ν ≥ 1 for all 
.t ∈ [t j , t j + Δt j ], 0 ≤ ε ≤ 1, with a certain .Δt j > 0. 

Corresponding to (10.76a)–(10.76c), the actual trajectory of the robot can be 
represented then, see (10.109), (10.107), (10.104), by
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. q(t) = q
(
t, pD, q j , q̇ j , u(·)) = q(t, 1) = q(t, ε0 + Δε)

= q(t, ε0) + Δq(t) = q( j)(t) + Δq(t), (10.113a) 

with .ε0 = 0,Δε = 1. Moreover, the expansion on the tracking error . Δq = Δq(t),
t ≥ t j , is given by 

. Δq(t) =
ν−1∑
l=1

1

l!d
lq(t)(Δε)l + 1

ν!
∂ν

∂εν
q(t, ϑ)(Δε)ν

=
ν−1∑
l=1

1

l!d
lq(t) + 1

ν!
∂νq

∂εν
(t, ϑ), t ≥ t j . (10.113b) 

Here, .ϑ = ϑ(t, ν), 0 < ϑ < 1, and 

.dlq(t) := ∂ lq

∂εl
(t, 0), t ≥ t j , l = 1, 2, . . . (10.113c) 

denote the.l-th order differentials of.q = q(t, ε)with respect to. ε at.ε = ε0 = 0. Dif-
ferential equations for the differentials.dlq(t), l = 1, 2, . . ., may be obtained by suc-
cessive differentiation of the initial value problem (10.105a)–(10.105d) with respect 
to . ε at .ε = 0. 

10.7.3 The First-Order Differential . dq

Corresponding to Sect. 10.6.2, we consider now the partial derivative in the Eqs. 
(10.111a)–(10.111e) with respect to . ε. Let  

.K (pD, q, q̇, q̈) := Fq(pD, q, q̇, q̈) (10.114a) 

.D(pD, q, q̇) := Fq̇(pD, q, q̇, q̈) = hq̇(pD, q, q̇) (10.114b) 

.Y (q, q̇, q̈) := FpD (pD, q, q̇, q̈) (10.114c) 

.M(pD, q) := Fq̈(pD, q, q̇, q̈) (10.114d) 

denote again the Jacobians of the vector function.F = F(pD, q, q̇, q̈)with respect to 
.q, q̇, q̈ and.pD . According to the linear parametrization property of robots we have, 
see (10.77e) 

.F(pD, q, q̇, q̈) = Y (q, q̇, q̈)pD. (10.114e) 

Taking the partial derivative with respect to. ε, from (10.111a)–(10.111e) we obtain 
the following equations, cf. (10.78a), (10.78b),
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. Y
(
q(t, ε), q̇(t, ε), q̈(t, ε)

)
ΔpD + K

(
pD(ε), q̇(t, ε), q̈(t, ε)

)∂q
∂ε

(t, ε)

+ D
(
pD(ε), q(t, ε), q̇(t, ε), q̈(t, ε)

) d
dt

∂q

∂ε
(t, ε) + M

(
pD(ε), q(t, ε)

) d2

dt2
∂q

∂ε
(t, ε)

= ϕ( j)
q

(
t, q(t, ε) − q( j)(t), qI (t, ε) − q( j)

I (t), q̇(t, ε) − q̇( j)(t)
)∂q
∂ε

(t, ε)

+ ϕ( j)
qI

(
t, q(t, ε) − q( j)(t), qI (t, ε) − q( j)

I (t), q̇(t, ε) − q̇( j)(t)
)∂qI

∂ε
(t, ε)

+ ϕ
( j)
q̇

(
t, q(t, ε) − q( j)(t), qI (t, ε) − q( j)

I (t), q̇(t, ε) − q̇( j)(t)
) d
dt

∂q

∂ε
(t, ε).

(10.115a) 

.
d

dt

∂qI
∂ε

(t, ε) = ∂q

∂ε
(t, ε) (10.115b) 

.
∂q

∂ε
(t j , ε) = Δq j (10.115c) 

.
d

dt

∂q

∂ε
(t j , ε) = Δ̇q j (10.115d) 

.
∂qI
∂ε

(t, ε) = 0. (10.115e) 

Putting now.ε = ε0 = 0, due to (10.107), (10.110), 10.113c) we obtain 

. Y ( j)(t)ΔpD + K ( j)(t)dq(t) + D( j)(t)ḋq(t) + M ( j)(t)d̈q(t)

=ϕ( j)
q (t, 0, 0, 0)dq(t) + ϕ( j)

qI (t, 0, 0, 0)

t{

t j

dq(s)ds + ϕ
( j)
q̇ (t, 0, 0, 0)ḋq(t), t ≥ t j

(10.116a) 

.dq(t j ) = Δq j (10.116b) 

.ḋq(t j ) = Δ̇q j , (10.116c) 

where 

.ḋq := d

dt
dq, d̈q := d2

dt2
dq. (10.117a) 

From (10.115b), (10.115e) we obtain 

.
∂qI
∂ε

(t, 0) =
t{

t j

dq(s)ds, (10.117b) 

which is already used in (10.116a). Moreover, the matrices.Y ( j), K ( j), D( j) and. M ( j)

are defined as in Eqs. (10.79e)–(10.79g) of Sect. 10.6.2, hence,
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.Y ( j)(t) := Y
(
q( j)(t), q̇( j)(t)q̈( j)(t)

)
(10.118a) 

.K ( j)(t) := K
(
p( j)
D , q( j)(t), q̇( j)(t), q̈( j)(t)

)
(10.118b) 

.D( j)(t) := D
(
p( j)
D , q( j)(t), q̇( j)(t)

)
(10.118c) 

.M ( j)(t) := M
(
p( j)
D , q( j)(t)

)
, t ≥ t j , (10.118d) 

see also (10.114a)–(10.114d). 
Multiplying now (10.116a) with the inverse.M ( j)(t)−1 of.M ( j)(t) and rearranging 

terms, we get 

. d̈q(t) + M ( j)(t)−1(D( j)(t) − ϕ
( j)
q̇ (t, 0, 0, 0)

)
ḋq(t)

+ M ( j)(t)−1(K ( j)(t) − ϕ( j)
q (t, 0, 0, 0)

)
dq(t)

− M ( j)(t)−1ϕ( j)
qI (t, 0, 0, 0)

t{

t j

dq(s)ds = −M ( j)(t)−1Y ( j)ΔpD, t ≥ t j

(10.119) 

with the initial conditions (10.116b), (10.116b). 
For given matrices .Kd , Kp, Ki to be selected later on, the unknown Jacobians 

.ϕ
( j)
q̇ , ϕ

( j)
q and .ϕ

( j)
qI are defined now by the equations 

.M ( j)(t)−1
(
D( j)(t) − ϕ

( j)
q̇ (t, 0, 0, 0)

) = Kd (10.120a) 

.M ( j)(t)−1(K ( j)(t) − ϕ( j)
q (t, 0, 0, 0)

) = Kp (10.120b) 

.M ( j)(t)−1
( − ϕ( j)

qI (t, 0, 0, 0)
) = Ki . (10.120c) 

Thus, we have 

.ϕ( j)
q (t, 0, 0, 0) = K ( j)(t) − M ( j)(t)Kp (10.121a) 

.ϕ( j)
qI (t, 0, 0, 0) = −M ( j)(t)Ki (10.121b) 

.ϕ
( j)
q̇ (t, 0, 0, 0) = D( j)(t) − M ( j)(t)Kd . (10.121c) 

Putting (10.120a)–(10.120c) into system (10.119), we find 

.d̈q(t) + Kdḋq(t) + Kpdq(t) + Ki

t{

t j

dq(s)ds = ψ( j,1)(t), t ≥ t j , (10.122a) 

with 

.dq(t j ) = Δq j (10.122b) 

.ḋq(t j ) = Δ̇q j , (10.122c)
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where .ψ( j,i1(t) is given, cf. (10.84d), by 

.ψ( j,1)(t) := −M ( j)(t)−1Y ( j)(t)ΔpD. (10.122d) 

If.Kp, Kd and.Ki are fixed matrices, then by differentiation of the integro-differential 
equation (10.122a) with respect to time. t we obtain the following third-order system 
of linear differential equations 

.
...
d q(t) + Kdd̈q(t) + Kpḋq(t) + Kidq(t) = ψ̇( j,1)(t), t ≥ t j , (10.123a) 

for the first-order tracking error term.dq = dq(t), t = t j . Moreover, the initial con-
ditions read, see (10.122b), (10.122c), 

.dq(t j ) = Δq j (10.123b) 

.ḋq(t j ) = Δ̇q j (10.123c) 

.d̈q(t j ) = Δ̈q j := q̈ j − q̈( j), (10.123d) 

where .q̈ j := q̈(t j ), see  (10.103a)–(10.103c). 
Corresponding to (10.84a)–(10.84c), the system (10.122a) of third-order linear 

differential equations can be converted easily into the following system of first-order 
differential equations 

.ḋz(t) = Adz(t) +
⎛
⎝
0
0
ψ̇( j,1)(t)

⎞
⎠ , t ≥ t j , (10.124a) 

where 

.A :=
⎛
⎝

0 I 0
0 0 I

−Ki −Kp −Kd

⎞
⎠ , (10.124b) 

.dz(t j ) :=
⎛
⎝

Δq j

Δ̇q j

Δ̈q j

⎞
⎠ = Δz j (10.124c) 

and 

.dz(t) :=
⎛
⎝
dq(t)
ḋq(t)
d̈q(t)

⎞
⎠ . (10.124d) 

With the fundamental matrix .ϕ(t, τ ) := eA(t−τ), t ≥ τ , the solution of (10.124a)– 
(10.124d) reads
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.dz(t) = eA(t−t j )Δz j +
t{

t j

eA(t−τ)

⎛
⎝

0
0

ψ̇( j,1)(τ )

⎞
⎠ dτ, t ≥ t j , (10.125a) 

where, see (10.122d), 

.ψ̇( j,1)(t) = − d

dt

(
M ( j)(t)−1Y ( j)(t)

)
ΔpD. (10.125b) 

Because of 
. ΔpD = pD(ω) − p( j)

D = pD(ω) − E
(
pD(ω)|At j

)
,

see (10.103c), for the conditional mean first-order error term .E
(
dz(t)|At j

)
from 

(10.125a), (10.125b) we get 

.E
(
dz(t)|At j

)
= eA(t−t j )E(Δz j |At j ), t ≥ t j . (10.125c) 

Obviously, the properties of the first-order error terms .dz(t), E(dz(t)|At j ), resp., 
.t ≥ t j , or the stability properties of the 1st order system (10.124a)–(10.124d) depend 
on the eigenvalues of the matrix . A. 

10.7.3.1 Diagonalmatrices . Kp, Kd, Ki

Supposing here, cf. Sect. 10.5, that .Kp, Kd , Ki are diagonal matrices 

.Kp = (γpkδkκ), Kd = (γdkδkκ), Ki = (γikδkκ) (10.126) 

with diagonal elements.γpk, γdk, γik , resp.,.k = 1, . . . , n, system (10.123a) is divided 
into the separated ordinary differential equations 

.
...
d qk(t) + γdk d̈qk(t) + γpk ḋqk(t) + γikdqk(t) = ψ̇

( j,1)
k (t), t ≥ t j , (10.127a) 

.k = 1, 2, . . . , n. The related homogeneous differential equations read 

.
...
d qk + γdk d̈qk + γpk ḋqk + γikdqk = 0, (10.127b) 

.k = 1, . . . , n, which have the characteristic equations 

.λ3 + γdkλ
2 + γpkλ + γik =: pk(λ) = 0, k = 1, . . . , n, (10.127c) 

with the polynomials .pk = pk(λ), k = 1, . . . , n, of degree .= 3.
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A system described by the homogeneous differential equation (10.127b) is called 
uniformly (asymptotic) stable if 

. lim
t→∞ dqk(t) = 0 (10.128a) 

for arbitrary initial values (10.123b)–(10.123d). It is well known that property 
(10.128a) holds if 

.Re(λkl) < 0, l = 1, 2, 3, (10.128b) 

where .Re(λkl) denotes the real part of the zeros .λk1, λk2, λk3 of the characteristic 
equation (10.127c). According to the Hurwitz criterion, a necessary and sufficient 
condition for (10.128b) is the set of inequalities 

. det(γdk) > 0 (10.129a) 

. det

(
γdk 1
γik γpk

)
= γdkγpk − γik > 0 (10.129b) 

. det

⎛
⎝

γdk 1 0
γik γpk γdk
0 0 γik

⎞
⎠ = γik(γdkγpk − γik) > 0. (10.129c) 

Note that 

.H3k :=
⎛
⎝

γdk 1 0
γik γpk γdk
0 0 γik

⎞
⎠ (10.129d) 

is the so-called Hurwitz matrix of (10.127b). 
Obviously, from (10.129a)–(10.129c) we now obtain this result: 

Theorem 10.8 The system represented by the homogeneous third-order linear dif-
ferential equation (10.127b) is uniformly (asymptotic) stable if the (feedback) coef-
ficients .γpk, γdk, γik are selected such that 

.γpk > 0, γdk > 0, γik > 0 (10.130a) 

.γdkγpk > γik . (10.130b) 

10.7.3.2 Mean Absolute First-Order Tracking Error 

Because of .E
(
ΔpD(ω)|At j

)
= 0 and the representation (10.125b) of  . ψ̇( j,1) =

ψ̇( j,1)(t), corresponding to (10.85b) we have  

.E
(
ψ̇( j,1)(t)|At j

)
= 0, t ≥ t j . (10.131a)
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Hence, (10.125a) yields 

.E
(
dz(t)|At j

)
= eA(t−t j )E

(
Δz j |At j

)
, (10.131b) 

where 
.E
(
Δz j |At j

)
= E

(
z(t j )|At j

)
− z̄ j (10.131c) 

with, cf. (10.106a), (10.123d), 

.z̄ j =
⎛
⎝

q j

q̇ j

q̈( j)

⎞
⎠ , z(t j ) =

⎛
⎝
q j

q̇ j

q̈ j

⎞
⎠ . (10.131d) 

The matrices .Kp, Ki , Kd in the definition (10.120a)–(10.120c) or (10.121a)– 
(10.121c) of the Jacobians.ϕ( j)

q (t, 0, 0, 0), ϕ( j)
qI (t, 0, 0, 0), ϕ( j)

q̇ (t, 0, 0, 0) of the feed-
back control law.Δu( j)(t) = ϕ( j)(t,Δq,ΔqI , Δ̇q) can be chosen now, see Theorem 
10.8, such that the fundamental matrix .ϕ(t, τ ) = eA(t−τ), t ≥ τ , is exponentially 
stable, hence, 

.||ϕ(t, τ )|| ≤ a0e
−λ0(t−τ), t ≥ τ, (10.132) 

with constants .a0 > 0, λ0 > 0, see also (10.86a). 
Considering the Euclidean norm.||dz(t)|| of the first-order error term.dz(t), from  

(10.125a), (10.125b) and with (10.132) we obtain 

. ||dz(t)|| ≤ ||eA(t−t j )Δz j|| +

||||||||||||||

t{

t j

eA(t−τ)

⎛
⎝
0
0
ψ̇( j,1)(τ )

⎞
⎠ dτ

||||||||||||||

≤ a0e
−λ0(t−t j )||Δz j|| +

t{

t j

||||||||||||
eA(t−τ)

⎛
⎝
0
0
ψ̇( j,1)(τ )

⎞
⎠
||||||||||||
dτ

≤ a0e
−λ0(t−t j )||Δz j|| +

t{

t j

a0e
−λ0(t−τ)||ψ̇( j,1)(τ )||dτ. (10.133) 

Taking the conditional expectation in (10.133), we find 

. E
(
||dz(t)||

|||At j

)
≤a0e

−λ0(t−t j )E
(
||Δz j||

|||At j

)

+ a0

t{

t j

e−λ0(t−τ)E
(
||ψ̇( j,1)(τ )||

|||At j

)
dτ. (10.134)
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Applying Jensen’s inequality 

. 

√
EX (ω) ≥ E

√
X (ω),

where .X = X (ω) is a nonnegative random variable, with (10.125b) we get, cf. 
(10.87d), (10.87e), 

. E
(
||ψ̇( j,1)(τ )||

|||At j

)
= E

(/
||ψ̇( j,1)(τ )||2

|||At j

)

≤
/
E
(
||ψ̇( j,1)(τ )||2

|||At j

)
(10.135a) 

≤
||||||||||||
d
(
M ( j) (t)−1Y ( j ) (t)

)

dt  
(τ )

||||||||||||

/
var

(
pD(·)

|||At j

)
, 

where 
.var

(
pD(·)||At j

)
:= E

(
||ΔpD(ω)||2||At j

)
. (10.135b) 

In the following we study the inhomogeneous term .ψ̇( j,1)(t) of the third-order 
linear differential equation (10.123a) in more detail. According to (10.122d) we  
have 

. ψ̇( j,1)(t) = − d

dt

(
M ( j)(t)−1Y ( j)(t)

)
ΔpD

= −
(
d

dt
M ( j)(t)−1

)
Y ( j)(t)ΔpD

− M ( j)(t)−1

(
d

dt
Y ( j)(t)

)
ΔpD. (10.136a) 

and therefore 

. ||ψ̇( j,1)(t)|| ≤
||||||||
d

dt
M ( j)(t)−1

|||||||| · ||Y ( j)(t)ΔpD||
+ ||M ( j)(t)−1|| · ||||(Ẏ ( j)(t)

)
ΔpD

|||| . (10.136b) 

Now, according to (10.20a), (10.20b), (10.83a)–(10.83c) it holds 

. u( j)(t;ΔpD) := Y ( j)(t)ΔpD = ue
(
ΔpD, s( j)(t); q( j)

e (·), β( j)(·)
)
, t ≥ t j .

(10.137a) 
Thus, we find
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. u̇( j)(t;ΔpD) = (
Ẏ ( j)(t)

)
ΔpD

= d

dt
ue
(
ΔpD, s( j)(t); q( j)

e (·), β( j)(·)
)

= ∂ue
∂s

(
ΔpD, s( j)(t); q( j)

e (·), β( j)(·)
)

· d

dt
s( j)(t)

= ∂ue
∂s

(
ΔpD, s( j)(t); q( j)

e (·), β( j)(·)
)

·
/

β( j)
(
s( j)(t)

)
, (10.137b) 

see (10.18c), (10.50b). Note that 

. u( j)(t;ΔpD), u̇( j)(t;ΔpD)

are linear with respect to .ΔpD = pD − E
(
pD(ω)|At j

)
. 

From (10.136a), (10.136b) and (10.137a), (10.137b) we get 

. E
(
||ψ̇( j,1)(t)||

|||At j

)
≤
||||||||
d

dt
M ( j)(t)−1

|||||||| E
(
||Y ( j)(t)ΔpD||

|||At j

)

+ ||M ( j)(t)−1||E
(||||(Ẏ ( j)(t)

)
ΔpD

|||| |||At j

)

=
||||||||||||
d
(
M ( j)(t)−1

)

dt

||||||||||||
· E

(
||u( j)(t;ΔpD)||

|||At j

)

+ ||M ( j)(t)−1|| · E
(
||u̇( j)(t;ΔpD||

|||At j

)

=
||||||||||||
d
(
M ( j)(t)−1

)

dt

||||||||||||
· E

(||||ue
(
ΔpD, s( j)(t); q( j)

e (·), β( j)(·))||||
|||At j

)

+ ||M ( j)(t)−1|| · E
(||||||||

∂ue
∂s

(
ΔpD, s( j)(t); q( j)

e (·), β( j)(·)
)/

β( j)
(
s( j)(t)

)||||||||
||||At j

)
.

(10.138a) 

Using again Jensen’s inequality, from (10.138a) we obtain 

. E
(
||ψ̇( j,1)(t)||||At j

)

≤
||||||||||||
d
(
M ( j)(t)−1

)

dt

||||||||||||

/
var

(
ue
(
pD(·), s( j)(t); q( j)

e (·), β( j)(·))
|||At j

)

+ ||M ( j)(t)−1||
/
var

(
∂ue
∂s

(
pD(·), s( j)(t); q( j)

e (·), β( j)(·)
)|||At j

)
β( j)

(
s( j)(t)

)
,

(10.138b)
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where 

. var
(
ue
(
pD(·), s( j)(t); q( j)

0 (·), β( j)(·))
|||At j

)

:= E
(||||||ue

(
ΔpD(ω), s( j)(t); q( j)

e (·), β( j)(·))
||||||
2|||At j

)
, (10.138c) 

. var

(
∂ue
∂s

(
pD(·), s( j)(t); q( j)

e (·), β( j)(·)
)/

β( j)
(
s( j)(t)

)||||At j

)

= E

(||||||||
∂ue
∂s

(
ΔpD(ω), s( j)(t); q( j)

e (·), β( j)(·)
)||||||||

2 |||At j

)
β( j)

(
s( j)(t)

)
. (10.138d) 

According to the representation (10.125a), (10.125b) of the first-order tracking 
error form .dz = dz(t), t ≥ t j , the behavior of .dz(t) is determined mainly by the 
system matrix .A and the “inhomogeneous term” .ψ̇( j,1)(t), t ≥ t j . Obviously, this 
term plays the same role as the expression .ψ( j,1)(t), t ≥ t j , in the representation 
(10.85a) for the first-order error term in case of PD-controllers. 

However, in the present case of PID-control the error estimates (10.138a)– 
(10.138d) show that for a satisfactory behavior of the first-order error term . dz =
dz(t), t ≥ t j , besides the control constraints (10.9a)–(10.9c), (10.22a)–(10.22c), 
(10.31a)–(10.31f) for  

.u(t) = ue
(
pD, s; qe(.), β(.)

)
with s = s(t), (10.139a) 

here, also corresponding constraints for the input rate, i.e., the time derivative of the 
control 

.u̇(t) = ∂ue
∂s

(
pD, s; qe(.), β(.)

)√
β(s) with s = s(t) (10.139b) 

are needed! 
The above results can be summarized by the following theorem: 

Theorem 10.9 Suppose that the matrices .Kp, Ki , Kd are selected such that the 
fundamental matrix .ϕ(t, τ ) = eA(t−τ), t ≥ τ , is exponentially stable (cf. Theorem 
10.8). Then, based on the definition (10.121a)–(10.121c) of the linear approximation 
of the PID-controller, the following properties hold: 

(a) Asymptotic local stability in the mean 

.E
(
dz(t)

||At j

) → 0, t → ∞ (10.140a)
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(b) Mean absolute first-order tracking error 

. E
(||dz(t)||||At j

) ≤ a0e
−λ0(t−t j )E

(||Δz j||
||At j

)

+ a0

t{

t j

e−λ0(t−τ)

||||||||||||
d
(
M ( j)(t)−1

)

dt
(τ )

||||||||||||
σ ( j)
ue

(
s( j)(τ )

)
dτ

+ a0

t{

t j

e−λ0(t−τ)
||||||M ( j)(τ )−1

||||||σ ( j)
∂ue
∂s

(
s( j)(τ )

)/
β( j)

(
s( j)(τ )

)
dτ, t ≥ t j

(10.140b) 

with 

.σ ( j)
ue (s) :=

/
var

(
ue
(
pD(.), s; q( j)

e (·), β( j)(·))
|||At j

)
, (10.140c) 

.σ
( j)
∂ue
∂s

(s) :=
/
var

(∂ue
∂s

(
pD(·), s; q( j)

e (·), β( j)(·))
|||At j

)
, (10.140d) 

.s ≥ s j . Moreover, 

. E
(||dz(t)||||At j

) ≤ a0e
−λ0(t−t j )E

(||Δz j||
||At j

)

+ a0

( t{

t j

e−λ0(t−τ)

||||||||||||
d
(
M ( j)(t)−1Y ( j)(t)

)

dt
(τ )

||||||||||||
dτ

)
σ ( j)
pD , t ≥ t j ,

(10.140e) 

where 

.σ ( j)
pD :=

/
var

(
pD(.)

||At j

)
. (10.140f) 

Using the t-s-transformation .s = s( j)(τ ), τ ≥ t j , the time-integrals in (10.140b) 
can be represented also in the following form: 

. 

t{

t j

e−λ0(t−τ)

||||||||||||
d
(
M ( j)(t)−1

)

dt
(τ )

||||||||||||
σ ( j)
ue

(
s( j)(τ )

)
dτ

=
s( j)(t){

s j

e−λ0

(
t−t ( j)(s)

) ||||||||||||
d
(
M ( j)(t)−1

)

dt

(
t ( j)(s)

)
||||||||||||

σ
( j)
ue (s)√
β( j)(s)

ds, (10.141a)



10.7 Online Control Corrections: PID Controllers 287

. 

t{

t j

e−λ0(t−τ)
||||||M ( j)(τ )−1

||||||σ ( j)
∂ue
∂s

(
s( j)(τ )

)/
β( j)

(
s( j)(τ )

)
dτ

=
s( j)(t){

s j

e−λ0

(
t−t ( j)(s)

)||||||M ( j)
(
t ( j)(s)

)−1
||||||σ ( j)

∂ue
∂s

(s)ds, (10.141b) 

where .τ = t ( j)(s), s ≥ s j , denotes the inverse of .s = s( j)(τ ), τ ≥ t j . 

10.7.3.3 Minimality or Boundedness Properties 

Several terms in the above estimates of the first-order tracking error. dz = dz(t), t ≥
t j , are influenced by means of (OSTP) as shown in the following: 

(i) Optimal velocity profile . β( j)

For minimum-time and related substitute problems the total runtime 

.

s( j)(t){

s j

1√
β( j)(s)

ds ≤
s f{

s j

1√
β( j)(s)

ds = t ( j)f − t j (10.142) 

is minimized by (OSTP). 
(ii) Properties of the coefficient . λ0

According to Theorems 10.8 and 10.9 the matrices.Kp, Ki , Kd can be selected 

such that real parts .Re
(
λkl

)
, k = 1, . . . , n, l = 1, 2, 3, of the eigenvalues 

.λkl, k = 1, . . . , n, l = 1, 2, 3, of the matrix . A, cf. (10.124b), are negative, 
see (10.128b), (10.129a)–(10.129d). Then, the decisive coefficient .λ0 > 0 in 
the norm estimate (10.132) of the fundamental matrix .ϕ(t, τ ), t ≥ τ, can be 
selected such that 

.0 < λ0 < − max
1≤k≤n
l=1,2,3

Re(λkl). (10.143) 

(iii) Chance constraints for the input 
With certain lower and upper vector bounds .umin ≤ umax one usually has the 
input or control constraints, cf. (10.9a), 

. umin ≤ u(t) ≤ umax, t ≥ t j .

In the following we suppose that the bounds .umin, umax are given deterministic 
vectors. After the transformation 

.s = s( j)(t), t ≥ t j ,
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from the time domain .[t j , t ( j)f ] to the s-domain .[s j , s f ], see  (10.50b), due to 
(10.22a) we have the stochastic constraint for .

(
qe(·), β(·)): 

. umin ≤ ue
(
pD(ω), s; qe(·), β(·)) ≤ umax, s j ≤ s ≤ s f .

Demanding that the above constraint holds at least with the probability .αu , we  
get, cf. (10.31a), the probabilistic constraint 

. P
(
umin ≤ ue

(
pD(ω), s; qe(·), β(·)) ≤ umax

|||At j

)
≥ αu, s j ≤ s ≤ s f .

(10.144a) 
Defining again, see (10.31d), 

. uc := umin + umax

2
, ρu := umax − umin

2
,

by means of Tschebyscheff-type inequalities, the chance constraint (10.144a) 
can be guaranteed, see (10.31e), (10.31f), (10.88d), by the condition 

. E
(||||ue

(
pD(ω), s; qe(.), β(.)

) − uc
||||2|||At j

)
≤ (1 − αu) min

1≤k≤n
ρ2
uk , s j ≤ s ≤ s f .

(10.144b) 
According to the definition (10.140c) of.σ ( j)

ue (s), inequality (10.144b) is equiv-
alent to 

.σ ( j)
ue (s)2 + ||||u( j)

e (s) − uc
||||2 ≤ (1 − αu) min

1≤k≤n
ρ2
uk , s j ≤ s ≤ s f , (10.145a) 

where 

. u( j)
e := E

(
ue
(
pD(ω), s; q( j)

e (·), β( j)(·))
|||At j

)

= ue
(
p( j)
D , s; q( j)

e (·), β( j)(·)
)
. (10.145b) 

Hence, the sufficient condition (10.145a) for the reliability constraint (10.144a) 
yields the variance constraint 

.σ ( j)
ue (s)2 ≤ (1 − αu) min

1≤k≤n
ρ2
uk , s j ≤ s ≤ s f . (10.145c) 

(iv) Minimum force and moment 
According to the different performance functions .J

(
u(.)

)
mentioned after the 

definition (10.6), in case of minimum expected force and moment we have, 
using transformation formula (10.20a),
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. E
(
J
(
u(·))

|||At j

)
= E

( t ( j)f{

t j

||||u(t)
||||2dt

|||At j

)

=
s f{

s j

E
(||||ue

(
pD(ω), s; qe(·), β(·)||||2

|||At j

) ds√
β(s)

=
s f{

s j

(
E
(||||ue

(
pD(ω), s; qe(·), β(·) − ue

(
p( j)
D , s; qe(·), β(·)||||2

|||At j

)

+ ||||ue
(
p( j)
D , s; qe(·), β(·))||||2

)
ds√
β(s)

=
s f{

s j

(
σ 2
ue (s) + ||||ue

(
p( j)
D , s; qe(·), β(·)||||2

)
ds√
β(s)

, (10.146a) 

where 

. σ 2
ue(s) : = E

(||||||ue
(
pD(ω), s; qe(·), β(·) − ue

(
p( j)
D , s; qe(·), β(·)

)||||||
2
||||At j

)

= E

(||||||ue
(
ΔpD(ω), s; qe(·), β(·)

||||||
2
||||At j

)
. (10.146b) 

Hence, (OSTP) yields the following minimum property: 

. 

s f{

s j

(
σ ( j)
ue (s)2 + ||||u( j)

e (s)
||||2) ds√

β( j)(s)
= min

qe(·),β(·)
s.t.(10a−c),

(10a−d)

E

( t ( j)f{

t j

||u(t)||2dt||At j

)
,

(10.147) 

where .u( j)
e (s) is defined by (10.145b). 

(v) Decreasing stochastic uncertainty 
According to (10.133), (10.134) and (10.135a), (10.135b) we have  

. E
(
||dz(t)||At j

)
≤ α0e

−λ0(t−t j )E
(
||Δz j||

|||At j

)

+
(
ao

t{

t j

e−λ0(t−τ)

||||||||||||
d
(
M ( j)(t)−1Y ( j)(t)

)

dt
(τ )

||||||||||||
dτ

)/
var

(
pD(.)

||At j

)
.

(10.148) 

Thus, the mean absolute first-order tracking error can be decreased further by 
removing step by step the uncertainty about the vector.pD = pD(ω) of dynamic
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parameter. This is done in practice by a parameter identification procedure 
running parallel to control process of the robot. 

(vi) Chance constraints for the input rate 
According to the representation (10.139b) of the input or control rate we have 

. u̇(t) = ∂ue
∂s

(
pD, s; qe(·), β(·)

)√
β(s), s = s(t).

From the input rate condition 

.u̇min ≤ u̇(t) ≤ u̇max, t ≥ t j , (10.149a) 

with given, fixed vector bounds.u̇min ≤ u̇max, for the input rate.
∂ue
∂s with respect 

to the path parameter .s ≥ s j we obtain the constraint 

.
u̇min

√
β(s)

≤ ∂ue
∂s

(
pD(ω), s; qe(·), β(·)) ≤ u̇max

√
β(s)

, s j ≤ s ≤ s f . (10.149b) 

If we require that the input rate condition (10.149a) holds at least with proba-
bility .αu̇ , then corresponding to (10.144a) we get the chance constraint 

.P

(
u̇min

√
β(s)

≤ ∂ue
∂s

(
pD(ω), s; qe(·), β(·)) ≤ u̇max

√
β(s)

||||At j

)
≥ αu̇ . (10.150) 

In the same way as in (iii), condition (10.150) can be guaranteed, cf. (10.140d), 
by 

. σ
( j)
∂u
∂s

(s)2 +
||||||||

∂ue
∂s

( j)

(s) − u̇c√
β( j)(s)

||||||||
2

≤
(
1 − αu̇

) 1

β( j)(s)
min
1≤k≤n

ρ2
u̇k , s j ≤ s ≤ s f ,

(10.151a) 
where 

.u̇c := u̇min + u̇max

2
, ρu̇ := u̇max − u̇min

2
, (10.151b) 

.
∂ue
∂s

( j)

:= ∂ue
∂s

(
p( j)
D , s; q( j)

e (·), β( j)(·)
)
, s ≥ s j . (10.151c) 

Hence, corresponding to (10.145c), here we get the following variance con-
straint: 

.σ
( j)
∂u
∂s

(s)2 ≤
(
1 − αu̇

) 1

β( j)(s)
min
1≤k≤n

ρ2
u̇k , s j ≤ s ≤ s f . (10.151d)
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(vii) Minimum force and moment rate 

Corresponding to (10.146a) we may consider the integral 

.E
(
J
(
u̇(·)||At j

)
:= E

( t f{

t j

||||u̇(t)
||||2dt

|||At j

)
. (10.152a) 

Again with (10.139b) we find 

. E
(
J
(
u̇(·)||At j

)
= E

( t f{

t j

||||||||
∂ue
∂s

(
pD(ω), s; qe(·), β(·))√β(s)

||||||||
2 ds√

β(s)

||||At j

)

=
s f{

s j

E

(||||||∂ue
∂s

(
pD(ω), s; qe(·), β(·))

||||||
2
||||At j

)√
β(s)ds

=
s f{

s j

(
var

(∂ue
∂s

(
pD(ω), s; qe(·), β(·))

|||At j

)

+
||||||∂ue

∂s

(
p( j)
D , s; qe(·), β(·))

||||||
2
)√

β(s)ds. (10.152b) 

If we consider 

.E
(
J̃
(
u̇(·))

|||At j

)
:= E

( t f{

t j

||||u̇(t)
||||dt

|||At j

)
, (10.153a) 

then we get 

.E
(
J̃
(
u̇(·))

|||At j

)
=

s f{

s j

E

(||||||∂ue
∂s

(
pD(ω), s; qe(·), β(·))

||||||
||||At j

)
ds. (10.153b) 
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Chapter 11 
Machine Learning Under Stochastic 
Uncertainty 

Abstract New methods for machine learning under stochastic uncertainty, espe-
cially for regression problems under uncertainty are described in this chapter. Given 
a set of input-output data, a certain, often parametric set of functions is adapted by 
evaluating and then minimizing the approximation error by quadratic cost functions. 
Here, instead of quadratic cost functions, sublinear cost functions, involving, e.g., the 
maximum absolute error, are taken into account. In this case the regression problem 
under stochastic uncertainty yields a stochastic linear program with a dual decom-
position data structure which enables the use of very efficient linear programming 
algorithms. Two and multi-group classification problems are considered in the sec-
ond part of this chapter. Here, the separation of the data points in a certain space 
.R

n and the representation of the groups or classes of data points is described by 
means of hyperplanes in .Rn . Instead of the often used discrete data points, for the 
classification process convex or stochastic convex hulls of the given data points are 
taken into account. 

11.1 Foundations 

In machine meaning [ 2] one has the problem to determine an unknown or partly 
known functional relation, cf. Fig. 11.1, 

.y = h(x) (11.1a) 

between a stochastic input .n-vector . x , called regressor in regression analysis and a 
stochastic output .m-vector . y, also called regressand. 

For the estimation of the function .h : Rn → R
m , called response function in 

response surface methods (RSM) [ 12], besides eventually some a priori information 
on . h, one has some data, as observations, measurements or scenarios of a discrete 
distribution, etc., 

.(xi , yi ), yi = h(xi ) + ∈i (error), i = 1, 2, . . . r, (11.1b) 

of the input-output pair .(x, y), y = h(x). 
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Fig. 11.1 Response function. h, data. (xi , yi )

For the estimation of the response function.y = h(x), usually parametric models 

.h = h(x;β) (11.2a) 

are used, which are linear in the parameter vector or matrix.β, B and linear, quadratic 
or, more general, nonlinear in . x : 

.h(x;β) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

β0 + βT
I x,

β0 + βT
I x + 1

2 x
T Bx,

β0 +
p∑

k=1
βkϕk(x)

(11.2b) 

with parameters .β0, βk, k = 1, 2, . . . , p and/or vectorial, matrix parameters . βI =
(β1, β2, . . . , βn)

T , B = (bk,l)1≤k,l≤n and certain, linear/nonlinear functions . ϕk =
ϕk(x), k = 1, . . . , p in . x . 

For a vectorial response function 

.y = y(x;β) = (y1(x, β), y2(x, β), . . . , ym(x, β))T (11.3)
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with components as defined in (11.2b), having a joint parameter vector/matrix . β, in  
the general case we may write 

.y = y(x;β0, βI ) = β0 + ϕ(x)βI = (I, ϕ(x))

(
β0

βI

)

, (11.4a) 

where .β0 = (β01, β02, . . . , β0,m)T is the initial parameter vector, . βI = (β1, β2, . . . ,

βp)
T , . I is the unit matrix and .ϕ = ϕ(x) is the .(m, p)-matrix 

.ϕ(x) =

⎛

⎜
⎜
⎜
⎝

ϕ1(x)
ϕ2(x)

...

ϕm(x)

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

ϕ11(x) . . . ϕ1p(x)
ϕ21(x) . . . ϕ2p(x)

...
...

ϕm1(x) . . . ϕmp(x)

⎞

⎟
⎟
⎟
⎠

(11.4b) 

with given functions .ϕlk = ϕlk(x), l = 1, . . . ,m, k = 1, . . . , p. According to the 
stochastic data (11.1b), including measurements, observational and modeling errors, 
for the unknown or partly known parameter vectors .β0, βI with (11.4a) and (11.4b) 
we have the following relations: 

.yi ≈ β0 + ϕ(xi )βI , i = 1, 2, . . . r. (11.5a) 

with the .rn-, .rm-vectors and the .(rm,m + p)-matrix 

.X :=
⎛

⎜
⎝

x1
...

xr

⎞

⎟
⎠ , Y :=

⎛

⎜
⎝

y1
...

yr

⎞

⎟
⎠ , H(X) :=

⎛

⎜
⎝

Iϕ(x1)
...

Iϕ(xr )

⎞

⎟
⎠ , (11.5b) 

the above relations (11.5a) can be represented by 

.Y ≈ H(X)

(
β0

βI

)

. (11.5c) 

Considering standard regression techniques, the deviation between the vector. Y of 

all observed outputs .yi , i = 1, . . . , r , and the vector .H(X)

(
β0

βI

)

of the predicted 

outputs by the model (11.5a)–(11.5c) with respect to the vector .X of all inputs 
.xi , i = 1, . . . , r is evaluated by means of a loss function .q = q(z), as, e.g., the 

squared Euclidean norm.q(z) = ||z||E =
r∑

i=1
||zi||2E . 

This leads to the optimization problem 

. min
(β0,βI )∈D

q(Y − H(X)

(
β0

βI

)

). (11.5d)
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11.2 Stochastic Optimization Methods in Machine 
Learning 

The data.(xi , yi ), i = 1, . . . , r , as stated in (11.1b), can be interpreted as realizations 
of a pair 

.(X,Y ) = (X (ω),Y (ω)), ω ∈ (Ω,A,P), (11.6a) 

of stochastic scalar or vectorial input-output variables on a probability space 
.(Ω,A,P). 

Taking possible constraints.β ∈ D and/or costs.c(β) = c(β0, βI ) into account for 
the parameter vector 

.β =
(

β0

βI

)

(11.6b) 

with a loss function .q = q(z), the machine learning or regression problem can be 
formulated by the stochastic optimization problem 

. min
β∈D c(β) + Eq (Y (ω) − H(X (ω)β) , (11.6c) 

where 

.H(X (ω))β = β0 + ϕ(X (ω))βI , (11.6d) 

.E denotes the expectation operator and .X = X (ω) ∈ R
n , .Y = Y (ω) ∈ R

m denotes 
the underlying input-output pair. 

11.2.1 Least Squares Estimation of the Parameter Vector 

One of the most frequently used loss functions is the squared Euclidean norm. q(z) =
||z||2E = zT z. Assuming zero parameter costs .c(β) = 0 and no constraints for . β =
(β0, βI )

T , the estimation problem (11.6c), (11.6d) reads 

. min
β0,βI

E

||
||
||
||Y (ω) − H(X (ω))

(
β0

βI

)||
||
||
||

2

E

. (11.7a) 

Due to the strict convexity of the loss function .q(z) = ||z||2E , the necessary and 
sufficient optimality condition reads
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. EH(X (ω))T H(X (ω))

(
β0

βI

)

= EH(X (ω))T Y (ω).

This yields the following result: 

Lemma 11.1 If the loss function . q is defined by the squared Euclidean norm and 
the matrix .EH(X (ω))T H(X (ω)) is regular, then the optimal parameter vector is 
given by 

.

(
β∗
0

β∗
I

)

= (
EH(X (ω))T H(X (ω))

)−1
EH(X (ω))T Y (ω). (11.7b) 

11.3 Estimation with Sublinear Loss Function . q = q(z)

In addition to the stochastic optimization problem (11.6c)–(11.6d), we now con-
sider the parameter optimization problem in the following form, where. Z = Z(ω) ∈
R

m, ω ∈ (Ω,A,P), denotes the approximated and realized output 

. min c(β0, βI ) + Eq(Z(ω)) (11.8a) 

.s.t. H(X (ω))

(
β0

βI

)

+ Z(ω) = Y (ω) (11.8b) 

. (β0, βI )
T ∈ D. (11.8c) 

Here, .q = q(z) is a sublinear function [ 7, 9] having the following properties: 

. q(λz) = λq(z), λ ≥ 0, z ∈ R
m

q(z + w) ≤ q(z) + q(w), z, w ∈ R
m .

Sublinear functionals can be represented in the following way [ 8]: 

(a) Maximum (supremum) of linear functions 
Let .c j , j ∈ J be a finite or infinite number of vectors .c j ∈ R

m . Then 

.q(z) := max
j∈J

(sup)cTj z, z ∈ R
m (11.9a) 

is a sublinear function on .R
m , assuming that for an infinite index set the supre-

mum is finite. 
(b) Distance or Minkowski functional 

For a given closed, convex set.K ∈ R
m containing the origin as an interior point, 

the distance or Minkowski functional .q(z) = qK (z) is defined by 

.q(z) := inf{λ > 0 : z

λ
∈ K }, z ∈ R

m . (11.9b)
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(c) Sublinear functions generated by linear programs 
Let .M an .(m, s)-matrix such that 

.
{
w ∈ R

m : Mw = z, w ≥ 0
} /= ∅ for all z ∈ R

m (11.9c) 

and .γ ≥ 0, γ ∈ R
s . Then 

.q(z) := min
{
γ Tw : Mw = z, w ≥ 0

}
, z ∈ R

m (11.9d) 

i.e., the solution of the linear program 

.

min γ Tw

s.t. Mw = z
w ≥ 0

(11.9e) 

is a sublinear function on .R
m . 

Remark 11.1 For the interrelation of the three representations of sublinear func-
tions, see [ 7, 8]. 

Some sublinear functions.q = q(z), as the maximum norm, also called Chebyshev 
norm, i.e.,.q(z) = ||z||∞ = sup |z j |, evaluate the components.z j , j ∈ J of a deviation 
vector .z = (z j ) j∈J in a uniform way. 

Remark 11.2 The matrix .M is called recourse matrix in cases where (11.9c)– 
(11.9d) models a correction step, see later. 

Using the LP version (11.9d) for the representation of the sublinear function, 
the estimation problem (11.8a)–(11.8c) can be represented, using a possibly random 
matrix .M = M(ω) and a random cost vector .γ = γ (ω), by  

. min c(β0, βI ) + Eγ (ω)Tw(ω) (11.10a) 

.s.t. H(X (ω))

(
β0

βI

)

+ M(ω)w(ω) = Y (ω) a.s. (11.10b) 

.

(
β0

βI

)

∈ D, w(ω) ≥ 0, a.s. (11.10c) 

11.3.1 Representation by a Stochastic Linear Optimization 
Problem (SLOP) 

Under weak assumptions (11.10a)–(11.10c) can be represented by an (LP): 

• Suppose that the cost function .c = c(β0, βI ) is defined by the sublinear function, 
c.f. (11.9a),
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.c(β0, βI ) := max
1≤l≤L

cTl

(
β0

βI

)

, (11.11a) 

where .cl , l = 1, . . . , L , are  given .(m + p)-vectors. 
• Moreover, assume.(β0, βI )

T ∈ D is given by 

.G

(
β0

βI

)

≤ g. (11.11b) 

• Defining the .(L ,m + p)-matrix . C and the .L-vector .eL by 

.C :=
⎛

⎜
⎝

cT1
...

cTL

⎞

⎟
⎠ , eL :=

⎛

⎜
⎝

1
...

1

⎞

⎟
⎠ , (11.11c) 

and selecting auxiliary vectorial variables .∈, η, 

for problem (11.8a)–(11.8c) we have the following representation [ 9] 

Lemma 11.2 Using (11.11a)–(11.11c), problem (11.8a)–(11.8c) can be represented 
in the form of a stochastic linear optimization problem (SLOP) 

. min c + Eγ (ω)Tw(ω) (11.12a) 

.s.t. H(X (ω))

(
β0

βI

)

+ M(ω)w(ω) = Y (ω) a.s. (11.12b) 

. C

(
β0

βI

)

− ceL + δ = 0 (11.12c) 

. G

(
β0

βI

)

+ η = g (11.12d) 

. δ, η ≥ 0, w(ω) ≥ 0 a.s. (11.12e) 

Remark 11.3 (SLOP) Condition (11.12a) and (11.12c) mean that the objective func-
tion of the SLOP (11.12a)–(11.12e), 

. f

(
β0

βI

)

:= max
1≤l≤L

cTl

(
β0

βI

)

+ Eγ (ω)Tw(ω), (11.13) 

i.e., the sum of the costs (11.11a) for the parameters.β = (β0, βI )
T and the expected 

costs (11.9d) for the deviation between the actual realization .Y (ω) of the output . Y

and the approximated output .H(Y (ω))

(
β0

βI

)

have to be minimized.
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11.3.2 Numerical Solution of the (SLOP) 

A main procedure for the numerical solution of problems of the type (11.12a)– 
(11.12e) is based on the discretization of the probability measure . P, see, e.g., 
[ 10, Chap. 2]. 

Here, . P is approximated by discrete distributions 

.Pd :=
r∑

j=1

α j∈ω j ,

r∑

j=1

α j = 1, α j ≥ 0, 1 ≤ j ≤ r, (11.14a) 

where.∈ω j denotes the one-point measure at point .ω j , and.α j = P(Ω j ) are the prob-

abilities of a certain partition .

rU

j=1
Ω j = Ω of .Ω with .w j ∈ Ω j , j = 1, . . . , r . 

Defining then .x j , y j , w j , Mj , j = 1, . . . , r by 

. x j := X (ω j ), y j := Y (ω j ), w j := w(ω j ),

Mj := Mj (ω j ), γ j := γ (ω j ), (11.14b) 

problem (11.12a)–(11.12e) can be approximated by 

. min c +
r∑

j=1

x jγ
T
j w j (11.15a) 

.s.t. H(x j )β + Mjw j = y j , j = 1, . . . , r (11.15b) 

. cβ − ceL + δ = 0 (11.15c) 

. Gβ + η = g (11.15d) 

. w j ≥ 0, j = 1, . . . r, δ ≥ 0, η ≥ 0, (11.15e) 

with .β :=
(

β0

βI

)

. 

Next, basic properties of problem (11.15a)–(11.15e) are given: 

Theorem 11.1 (Stochastic Linear Program (SLP)) 

(a) The discretized problem (11.15a)–(11.15e) is a linear program (LP). 
(b) Increasing the refinement of the discretization of the probability space.(Ω,A,P), 

the optimal solution.β∗
d and the related optimal value of (11.15a)–(11.15e) con-

verge to the optimal solution, the optimal value, resp., of (11.12a)–(11.12e). 

Proof The first assertion can be seen directly in (11.15a)–(11.15e). The second one 
can be found in the literature on stochastic linear programming (SLP), see, e.g., 
[ 4, 5]. ⬜
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Table 11.1 Data structure of the (SLP) (11.15a)–(11.15e) 

.β c .δ .η .w1 .w2 .w3 .. . . .wr 1 

0 1 0 0 .α1γ1 .α2γ2 .α3γ3 .. . . .αrγr 0 

.H(x1) 0 0 0 .M1 . y1

.H(x2) 0 0 0 .M2 . y2

.H(x3) 0 0 0 .M3 . y3

.
.
.
. .

.

.

. .
.
.
. .

.

.

. .
. . . . 

.

.

.

.H(xr ) 0 0 0 .Mr . yr
C .−eL I 0 0 

G 0 0 I g 

Another important property for the solution (11.15a)–(11.15e) follows from its 
special data structure, see Table 11.1 The following variables and data occur: 

(i) In the first line all variables .β, c, δ, η,w1, . . . , wr are shown. 
(ii) In the second line the coefficients of the objective function appear. 
(iii) In the following large block the discretized input-output equation involving the 

unknown parameters to be determined occurs. 
(iv) In the next to last line the coefficients for the representation of the objective 

function . C as a maximum of linear functions of . β are shown. 
(v) The last line shows the coefficients of possible inequality constraints of the 

parameter vector . β. 

According to Table 11.1, (SLP) (11.15a)–(11.15e) has the following data structure 
which guarantees considerable advantages in the numerical solution of this LP, see 
[ 5, 11]. 

Theorem 11.2 The LP (11.15a)–(11.15e) has a dual decomposition or dual block 
angular data structure. 

Proof See the consideration of (SLOP), e.g., in [ 4, 5, 11]. ⬜

11.3.3 Two-Stage Stochastic Linear Programs (SLP) 

In problem (11.12a)–(11.12e), (11.15a)–(11.15e), the system of linear equations 
(11.12b), (11.15b), resp. , together with the second cost term in (11.12a), (11.15a), 
can be interpreted as a cost-based evaluation of the accuracy of the approximation of 
the output .Y (ω) by .H(X (ω))β, ω ∈ Ω, .yi by .H(xi )β, i = 1, . . . , r , respectively. 

Assume now, that after taking the coefficient vector . β at an initial time . t0, the  
random data input-output vector .(X (ω),Y (ω)) is realized at a later time . t1. This  
enables then an improvement of the initial function approximation
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.h(x) ≈ h(x;β) = H(x)β = β0 + ϕ(x)βI , (11.16a) 

see (11.1a)–(11.1b) and (11.2a)–(11.2b), (11.3), (11.4a)–(11.4b), by adding the 
extended correction term 

.M̃w̃ := ψ(x)b + Mw =
L∑

l=1

ψ(x)βl + Mw, (11.16b) 

where the first term is used to improve the analytical approximation of the input-
output function .y = h(x), hence 

.ĥ(x) = ϕ(x)β → ĥ = ϕ(x)β + ψ(x)b, (11.16c) 

adding, e.g., quadratic terms to an initially linear approximation of . h. Moreover, 
the second term in (11.16b) is devoted to measure, minimize, resp. , the remaining 
analytical and measurement/observational errors. 

Using the extended correction term (11.16b) and taking, for simplification, linear 
cost functions for the evaluation of the coefficient vectors . β and. b, corresponding to 
(11.12a)–(11.12e) the (SLOP) reads 

. min
β+,β−,b+,b−,w

cT+β+ + cT−β− + E
(
dT

+(ω)b+(ω) + dT
−(ω)b−(ω)

+ γ (ω)Tw(ω)
)

(11.17a) 

. s.t. H(X (ω))(β+ − β−) + ψ(X (ω))(b+(ω) − b−(ω))

+ M(ω)w(ω) = Y (ω) a.s. (11.17b) 

. G(β+ − β−) + η = g (11.17c) 

. β+, β−, η ≥ 0, b+(ω), b−(ω),w(ω) ≥ 0 a.s. (11.17d) 

Remark 11.4 The vectors.β, b(ω) of coefficients in the approximation of the input-
output function .y = h(x), sf.  (11.1a)–(11.1b) are represented by 

.β = β+ − β−, b(ω) = b+(ω) − b−(ω) (11.18a) 

with nonnegative vectors.β+, β−, b+(ω), b−(ω) ≥ 0. Note, that in the present 2-stage 
setting of the (SLOP) the vectors.b(ω), b+(ω) and.b−(ω)may be random. Moreover, 
.c+, c−, .d+ = d+(ω), d− = d−(ω), resp., are deterministic, stochastic, resp., cost 
vectors. 

Approximating, corresponding to (11.12a)–(11.12e), the 2-stage (SLOP) 
(11.17a)–(11.17d) by means of discretization of the probability distribution . P, see  
(11.14a)–(11.14b), we set 

. b+ j := b+(ω j ), b− j := b−(ω j ), Mj := M(ω j ), w j := w(ω j ),

d+ j := d+(ω j ), d− j := d−(ω j ), γ j := γ (ω j ), j = 1, . . . , r. (11.18b)
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Corresponding to (SLP) (11.15a)–(11.15e) the 2-stage (SLOP) (11.17a)–(11.17d) 
is approximated, cf. (11.14a)–(11.14b), by discretization of the probability distribu-
tion . P, by the 2-stage stochastic linear program 

. min
β+ ,β− ,η

b+ j ,b− j ,w j

cT+β+ + cT−β− +
r∑

j=1

α j
(
dT

+ j b+ j + dT
− j b− j

+γ T
j w j

)
(11.19a) 

. s.t. H(α j )(β+ − β−) + ψ(x j )(b+ j − b− j ) + Mjw j = y j j = 1, . . . r
(11.19b) 

. G(β+ − β−) + η = g (11.19c) 

. β+, β−, η ≥ 0, b+ j , b− j , w j ≥ 0, j = 1, . . . r (11.19d) 

Since the (SLP) (11.19a)–(11.19d) and (11.15a)–(11.15e) have the same LP structure, 
all properties which are valid for (11.15a)–(11.15e), see Theorem 11.2, hold for 
(11.19a)–(11.19d), too. 

Especially, we mention the following property which is important for the numer-
ical solution of (11.19a)–(11.19d). 

Theorem 11.3 The LP (11.19a)–(11.19d) has a dual decomposition or dual block 
angular data structure. 

Proof See, e.g., the consideration of the stochastic linear programs in [ 4, 5, 11]. ⬜

11.4 Two and Multiple Group Classification Under 
Stochastic Uncertainty 

Consider a set of data points . xi , 

.M = {xi : i = 1, . . . , I } ⊂ R
n, (11.20a) 

which are realizations of a random .n-vector .ζ = ζ(ω) on a probability space 
.(Ω,A, P). Assume that a certain grouping, cf. Fig. 11.2, 

.M =
JU

j=1

Mj , MJ := {
xi : i ∈ I j

}
, j = 1, · · · J (11.20b) 

into disjoint sets of points.Mj , j = 1, . . . , J, can be observed, where also the further 
realizations belong to one of the observed classes. 

The problem now is to give a suitable mathematical description of the observed 
classification such that the class of a new data point can be predicted.



306 11 Machine Learning Under Stochastic Uncertainty

Fig. 11.2 Observed grouping of the data set. M

As indicated in Fig. 11.2, the observed classes of data points can be represented 
in many cases [ 1– 3, 6] by means of a certain number of straight lines (in .R2) or  
hyperplanes in .R

n : 

.Hv := {
x ∈ R

n : wT x = b
}
, v =

(
w

b

)

∈ R
n+1, (11.21a) 

.v = vl =
(

w

bl

)

, l = 1, . . . , L . (11.21b) 

The parameter vectors.vl, l = 1, . . . L are chosen in a way that point sets, represent-
ing the . J classes, can be subdivided by the hyperplanes and their sides in a certain 
optimal sense, described as follows: 

11.4.1 Two Classes . (J = 2, L = 1)

Separating in case of two classes, cf. Fig. 11.3, the corresponding data sets . M1, M2

with a hyperplane .Hv, v =
(

w

b

)

, for the parameter .(n + 1)-vector . v, we have the  

basic condition 

.wT x − b ≥ 0, x ∈ M1, (11.22a) 

.wT x − b ≤ 0, x ∈ M2. (11.22b)
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Fig. 11.3 Separation of data sets.M1, M2, related to two classes, by the hyperplane. Hv

Obviously, there are many possible separating hyperplanes .Hv in general. Hence, 
in order to get a unique, sharp separation of the data sets .M1, M2, we consider the 
minimum distance .d∗

1 , d
∗
2 , resp., between a separating hyperplane .Hv and a point . x

of .M1, M2, respectively. 

The distances .d1 = d1(x), d2 = d2(x̃) between a point .x ∈ M1, x̃ ∈ M2, resp., 
and the hyperplane .Hv are given by, cf. Fig. 11.4 

.d1(x) = ||x − u|| = wT x − b

||x|| , x ∈ M1, (11.23a) 

.d2(X) = ||x̃ − ũ|| = b − wT x̃

||w|| , x̃ ∈ M2, (11.23b) 

where .u, ũ, resp., denotes the projection of a point .x ∈ M1, x̃ ∈ M2, resp., onto 
.Hv . The minimum distances .d∗

1 , d∗
2 , resp., between .M1, M2, resp., and a separating 

hyperplane .Hv then read 

.d∗
1 = d∗

1 (M1) = min
x∈M1

wT x − b

||x|| , (11.24a) 

.d∗
2 = d∗

2 (M2) = min
x̃∈M2

b − wT x̃

||x̃|| . (11.24b) 

Consequently, the optimal separating hyperplane .H∗ = Hv∗ is achieved for equal 
and maximum distances .d∗

1 , d
∗
2 . Hence, we have the following conditions:
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Fig. 11.4 Distances between a separating hyperplane.Hv and a point. x in.M1 or. M2

Theorem 11.4 (Optimal separating hyperplane .H∗ = Hv∗ ) The parameter vector 

.v =
(

w∗
b∗

)

of the optimal separating hyperplane .H∗ = Hv∗ is an optimal solution 

of the optimization problem 

.maximize min
x∈M1

wT x − b

||w|| (11.25a) 

. s.t.

wT x − b ≥ 0, x ∈ M1, (11.25b) 

.wT x − b ≤ 0, x ∈ M2, (11.25c) 

. min
x∈M1

wT x − b

||w|| = min
x∈M2

b − wT x

||w|| , (11.25d) 

.

(
w

b

)

∈ R
n+1. (11.25e)
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Remark 11.5 Because of Eqs. (11.24a), (11.24b), the equality condition. d∗
1 (M1) =

d∗
2 (M2) is stated in the form (11.25d). Of course, it can also be given by 

. min
x∈M1

wT x − b = min
x∈M2

b − wT x . (11.25f) 

Corollary 11.1 Simplified versions of the optimization problem (11.25a)–(11.25f) 
can be obtained if the variable . b is replaced 

.b := b0 (11.25g) 

by a preselected fixed parameter value .b0 ∈ R. 

In the following we denote, cf. Fig. 11.5, by  

.x∗
1 = x∗

1 (w, b) ∈ M1, (11.26a) 

.x∗
2 = x∗

2 (w, b) ∈ M2, (11.26b) 

an optimal solution (observed data point in.M1, M2, resp.) of the internal optimization 
problems in condition (11.25d) or  (11.25f). 

Due to the uncertainties of stochastic variations of the observed data sets . M1 =
{xi : i ∈ I1}, M2 = {xi : i ∈ I2}, see  (11.20a), (11.20b), we may replace (approxi-
mate) .M1, M2, resp., by their convex hull 

.Mconv
1 = conv(M1), Mconv

2 = conv(M2) (11.26c) 

In this case the equations, see Fig. 11.5, 

.wT x = b∗
1 := wT x∗

1 , (11.27a) 

.wT x = b∗
2 := wT x∗

2 (11.27b) 

denote the tangent hyperplanes to.Mconv
1 , Mconv

2 , resp., at .x∗
1 , x

∗
2 , resp., parallel to the 

hyperplane.Hv, v =
(

w

b

)

lying in th middle of the area between the two hyperplanes 

(11.27a), (11.27b), cf. Fig. 11.5. 
According to the construction, with the hyperplanes (11.27a), (11.27b) we now  

obtain the following classification method for two class problems. 

Theorem 11.5 (Classification rule for two class problems) Let .v∗ =
(

w∗
b∗

)

be an 

optimal solution of the optimization problem (11.25a)–(11.25f) and .x∗
1 = x∗

1 (v
∗), 

.x∗
2 = x∗

2 (v
∗) the optimal solutions resulting from (11.25d) or (11.25f). 

To classify a new data point . x, we may proceed as follows: 

.(I ) If w∗T x > b∗
1 := w∗T x∗

1 (v
∗), then x belongs to Class 1. (11.28a) 

.(I I ) If w∗T x < b∗
2 := w∗T x∗

2 (v
∗), then x belongs to Class 2. (11.28b)
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Fig. 11.5 Equal minimum distances.d∗
1 (M1) = d∗

2 (M2) between and. M1, M2

11.5 Multi-classification 

In case of data sets .M =
JU

j=1
Mj , cf. (11.20a), (11.20b), containing elements of a 

larger number, .J > 2, of different properties, the structure of data set . M , especially 
the configuration of the appearing data classes, plays an important role for the design 
of appropriate classifiers. 

An important basic data structure depends on the property that the data set . Mj ⊂
R

n of each class . j, j = 1, . . . , J , can be separated by a hyperplane .Hj from the 
data points of the other classes .l /= j .
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11.5.1 Reduction of a Multi-classifier to Several Two-Class 
Classifiers 

As indicated by Fig. 11.6 , in certain cases for each class . j = 1, . . . , J, the data set 
.M can be separated into the two subsets 

..Mj and
U

l /= j

M j , j = 1, . . . , J (11.29a) 

by a hyperplane. This allows the application of the described two-class classifier to 
the reduced two-class problem: 

.class j and not class j. (11.29b) 

Thus, we have the following result. 

Theorem 11.6 (Classification rule for the reduction method of multi-classification 
problems to two-class classifiers) Suppose that the data set.M of a multi-classification 
problem has the structure described in Sect. 11.5.1. Then, for a given new data point 
. x, by the .J -th two-class classification, the class of . x is known. 

Fig. 11.6 Reduction of a four-class problem to four two-class problems
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Chapter 12 
Stochastic Structural Optimization 
with Quadratic Loss Functions 

Abstract Structural Analysis and Optimal Structural Design under Stochastic 
Uncertainty using Quadratic Cost Functions are treated in this chapter: Problems 
from plastic analysis and optimal plastic design are based on the convex, linear or 
linearized yield/strength condition and the linear equilibrium equation for the stress 
(state) vector. In practice one has to take into account stochastic variations of the 
vector .a = a(ω) of model parameters (e.g., yield stresses, plastic capacities, exter-
nal load factors, cost factors, etc.). Hence, in order to get robust optimal load factors 
. x , robust optimal designs. x , resp., the basic plastic analysis or optimal plastic design 
problem with random parameters has to be replaced by an appropriate deterministic 
substitute problem. As a basic tool in the analysis and optimal design of mechanical 
structures under uncertainty, a state function .s∗ = s∗(a, x) of the underlying struc-
ture is introduced. The survival of the structure can be described then by the condition 
.s∗ ≤ 0. Interpreting the state function .s∗ as a cost function, several relations .s∗ to 
other cost functions, especially quadratic cost functions, are derived. Bounds for the 
probability of survival.ps are obtained then by means of the Tschebyscheff inequality. 
In order to obtain robust optimal decisions . x∗, i.e., maximum load factors, optimal 
designs insensitive with respect to variations of the model parameters .a = a(ω), a  
direct approach is presented then based on the primary costs (weight, volume, costs 
of construction, costs for missing carrying capacity, etc.) and the recourse costs (e.g., 
costs for repair, compensation for weakness within the structure, damage, failure, 
etc.), where the above-mentioned quadratic cost criterion is used. The minimum 
recourse costs can be determined then by solving an optimization problem having 
a quadratic objective function and linear constraints. For each vector .a = a(ω) of 
model parameters and each design vector. x one obtains then an explicit representation 
of the best internal load distribution .F∗. Moreover, also the expected recourse costs 
can be determined explicitly. The expected recourse function may be represented 
by means of a “generalized stiffness matrix”. Hence, corresponding to an elastic 
approach, the expected recourse function can be interpreted here as a generalized 
expected compliance function, which depends on a generalized “stiffness matrix”. 
Based on the minimization of the generalized compliance or the minimization of the 
expected total primary and recourse costs, explicit finite-dimensional parameter opti-
mization problems are achieved for finding robust optimal design .x∗ or a maximal 
load factor . x∗. The analytical properties of the resulting programming problem are 
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discussed, and applications, such as limit load/shakedown analysis, are considered. 
Furthermore, based on the expected “compliance function”, explicit upper and lower 
bounds for the probability .ps of survival. 

12.1 Introduction 

Problems from plastic analysis and optimal plastic design are based on the convex, 
linear, or linearized yield/strength condition and the linear equilibrium equation for 
the stress (state) vector. In practice one has to take into account stochastic variations 
of several model parameters. Hence, in order to get robust optimal decisions, the 
structural optimization problem with random parameters must be replaced by an 
appropriate deterministic substitute problem. A direct approach is proposed based 
on the primary costs (weight, volume, costs of construction, costs for missing car-
rying capacity, etc.) and the recourse costs (e.g., costs for repair, compensation for 
weakness within the structure, damage, failure, etc.). Based on the mechanical sur-
vival conditions of plasticity theory, a quadratic error/loss criterion is developed. The 
minimum recourse costs can be determined then by solving an optimization problem 
having a quadratic objective function and linear constraints. For each vector . a(·)
of model parameters and each design vector . x , one obtains then an explicit repre-
sentation of the “best” internal load distribution .F∗. Moreover, also the expected 
recourse costs can be determined explicitly. It turns out that this function plays the 
role of a generalized expected compliance function involving a generalized stiff-
ness matrix. For the solution of the resulting deterministic substitute problems, i.e., 
the minimization of the expected primary cost (e.g., volume, weight) subject to 
expected recourse cost constraints or the minimization of the expected total primary 
and recourse costs, explicit finite-dimensional parameter optimization problems are 
obtained. Furthermore, based on the quadratic cost approach, lower and upper bounds 
for the probability of survival can be derived. 

In optimal plastic design of mechanical structure [ 2] one has to minimize a weight, 
volume or more general cost function . c, while in limit load analysis [ 5] of plastic 
mechanical structures the problem is to maximize the load factor. μ—in both cases— 
subject to the survival or safety conditions, consisting of the equilibrium equation 
and the so-called yield (feasibility) condition of the structure. 

Thus, the objective function .G0 to be minimized is defined by 

.G0(x) =
B∑

i=1

γi0(ω)Li Ai (x) (12.1a) 

in the case of optimal plastic design, and by 

.G0 = G0(a, x) := −μ (12.1b) 

in the second case of limit load analysis.
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Here, .x = (x1, x2, . . . , xr )T , x := (x1) = (μ) is the decision vector, hence, the 
.r -vector . x of design variables .x1, . . . , xr , such as sizing variables, in the first case 
and the load factor.x1 = μ in the second case. For the decision vector. x one has mostly 
simple feasibility conditions represented by.x ∈ D, where.D ⊂ R

r is a given closed 
convex set such as .D = R+ in the second case. Moreover, .a = a(ω) is the .ν-vector 
of all random model parameters arising in the underlying mechanical model, such as 
weight or cost factors .γi0 = γi0(ω), yield stresses in compression and tension. σ L

yi =
σ L
yi (ω), σ

U
yi = σU

yi (ω), i = 1, . . . , B, load factors contained in the external loading 

.P = P
(
a(ω), x

)
, etc. Furthermore, in the general cost function defined by (12.1a), 

.Ai = Ai (x), i = 1, . . . , B, denote the cross-sectional areas of the bars having length 

.Li , i = 1, . . . , B. 
As already mentioned above, the optimization of the function . G0 = G0(a, x)

is done under the safety or survival conditions of plasticity theory which can be 
described [ 6, 10] for plane frames as follows: 

(I) Equilibrium condition 
After taking into account the boundary conditions, the equilibrium between the 

.m-vector of external loads.P = P
(
a(ω), x

)
and the.3B-vector of internal loads 

.F = (FT
1 , F

T
2 , . . . , F

T
B )

T can be described by 

.CF = P
(
a(ω), x

)
, (12.2) 

where . C is the .m × 3B equilibrium matrix having rank .C = m. 
(II) Yield condition (feasibility condition) 

If no interactions between normal (axial) forces. ti and bending moments.ml
i ,m

r
i , 

resp., at the left, right end of the oriented .i-th bar of the structure are taken into 
account, then the feasibility condition for the generalized forces of the bar 

.Fi =
⎛

⎝
ti
ml

i
mr

i

⎞

⎠ , i = 1, . . . , B (12.3) 

reads 

. FL
i

(
a(ω), x

)
≤ Fi ≤  FU

i

(
a(ω, x

)
, i = 1, . . . , B, (12.4a) 

where the bounds. FL
i ,

 FU
i containing the plastic capacities with respect to axial 

forces and moments are given by
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. FL
i

(
a(ω), x

)
:=

⎛

⎜⎜⎜⎝

−NL
ipl

(
a(ω), x

)

−Mipl

(
a(ω), x

)

−Mipl

(
a(ω), x

)

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

σ L
yi

(
a(ω)

)
Ai (x)

−σU
yi

(
a(ω)

)
Wipl(x)

−σU
yi

(
a(ω)

)
Wipl(x)

⎞

⎟⎟⎟⎠ (12.4b) 

. FU
i

(
a(ω), x

)
=

⎛

⎜⎜⎜⎝

NU
ipl

(
a(ω), x

)

Mipl

(
a(ω), x

)

Mipl
(
a(ω), x

)

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

σU
yi

(
a(ω)

)
Ai (x)

σU
yi

(
a(ω)

)
Wipl(x)

σU
yi

(
a(ω)

)
Wipl(x)

⎞

⎟⎟⎟⎠ . (12.4c) 

Here, 
.Wipl = Ai ȳic (12.4d) 

denotes the plastic section modulus with the arithmetic mean 

.yic = 1

2
(yi1 + yi2) (12.4e) 

of the centroids .yi1, yi2 of the two half areas of the cross-sectional areas .Ai of 
the bars .i = 1, . . . , B. 
Taking into account also interactions between normal forces . ti and moments 
.ml

i ,m
r
i , besides (12.4a) we have additional feasibility conditions of the type 

. − hlη
L
i

(
a(ω), x

)
≤ H (i)

l Fi ≤ hlη
U
i

(
a(ω), x

)
, (12.4f) 

where .
(
H (i)
l (Ni0,Mi0), hl

)
, l = 4, . . . , l0 + 3, are given row vectors depending 

on the yield domains of the bars, and .ηLi , η
U
i are defined by 

.ηLi

(
a(ω), x

)
= min

⎧
⎨

⎩
NL
ipl

(
a(ω), x

)

Ni0
,
Mipl

(
a(ω), x

)

Mi0

⎫
⎬

⎭ (12.4g) 

.ηUi

(
a(ω), x

)
= min

⎧
⎨

⎩
NU
ipl

(
a(ω), x

)

Nio
,
Mipl

(
a(ω), x

)

Mi0

⎫
⎬

⎭ (12.4h) 

with certain chosen reference values .Ni0,Mi0, i = 1, . . . , B, for the plastic 
capacities. 

According to (12.4a), (12.4f), the feasibility condition for the vector. F of interior 
loads (member forces and moments) can be represented uniformly by the conditions
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. FL
il

(
a(ω), x

)
≤ H (i)

l Fi ≤ FU
il

(
a(ω), x

)
, i = 1, . . . , B, l = 1, 2, . . . , l0 + 3,

(12.5a) 

where the row 3-vectors.H (i)
l and the bounds. FL

il , F
U
il , i = 1, . . . , B, l = 1, . . . , l0 +

3, are defined by (12.4a)–(12.4c) and (12.4f)–(12.4h). Let. e1 =: HT
1 , e2 =: HT

2 , e3 =:
HT

3 denote the unit vectors of .R3. 
Defining the .(l0 + 3)× 3 matrix .H (i) by 

.H (i) :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

eT1
eT2
eT3

H4(Ni0,Mi0)
...

Hl0+3(Ni0,Mi0)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(12.5b) 

and the .(l0 + 3)-vectors .FL
i = FL

i

(
a(ω), x

)
, FU

i = FU
i

(
a(ω), x

)
by 

.FL
i :=

⎛

⎜⎜⎜⎝

 FL
i−h1ηLi
...

−hl0η
L
i

⎞

⎟⎟⎟⎠ , FU
i :=

⎛

⎜⎜⎜⎝

 FU
i

h1ηUi
...

hl0η
U
i

⎞

⎟⎟⎟⎠ , (12.5c) 

the feasibility condition can also be represented by 

.FL
i

(
a(ω), x

)
≤ H (i)Fi ≤ FU

i

(
a(ω), x

)
, i = 1, . . . , B. (12.6) 

12.2 State and Cost Functions 

Defining the quantities 

.Fc
il = Fc

il

(
a(ω), x

)
:= FL

il + FU
il

2
(12.7a) 

. il =  il

(
a(ω), x

)
:= FU

il − FL
il

2
, (12.7b) 

.i = 1, . . . , B, l = 1, . . . , l0 + 3, the feasibility condition (12.5a) or (12.6) can be 
described by 

.|zil | ≤ 1, i = 1, . . . , B, l = 1, . . . , l0 + 3, (12.8a)
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with the quotients 

. zil = zil
(
Fi ; a(ω), x

) = H (i)
l Fi − Fc

il

 il
, i = 1, . . . , B, l = 1, . . . , l0 + 3.

(12.8b) 
The quotient .zil, i = 1, . . . , B, l = 1, . . . , l0 + 3, denotes the relative deviation 

of the load component .H (i)
l Fi from its “ideal” value .Fc

il with respect to the radius 
. il of the feasible interval .[FL

il , F
U
il ]. According to (12.8a), (12.8b), the absolute 

values .|zil | of the quotients .zil should not exceed the value 1. The absolute value 
.|zil | of the quotient.zil denotes the percentage of use of the available plastic capacity 
by the corresponding load component. Obviously, .|zil | = 1, |zil | > 1, resp., means 
maximal use, overcharge of the available resources. 

Consider now the .(l0 + 3)-vectors 

. zi := (zi1, zi2, . . . , zil0+3)
T =

(
H (i)

1 Fi − Fc
i1

 i1
,
H (i)

2 Fi − Fc
i2

 i2
, · · · ,

H (i)
l0+3Fi − Fc

il0+3

 il0+3

)T

. (12.8c) 

With 

. i :=

⎛

⎜⎜⎜⎝

 i1
 i2
...

 il0+3

⎞

⎟⎟⎟⎠ ,  id :=

⎛

⎜⎜⎜⎝

 i1 0 . . . 0
0  i2 . . . 0
...

. . .
...

0 0 . . .  il0+3

⎞

⎟⎟⎟⎠ , Fc
i :=

⎛

⎜⎜⎜⎝

Fc
i1

Fc
i2
...

Fc
il0+3

⎞

⎟⎟⎟⎠ (12.8d) 

we get 
.zi =  −1

id (H
(i)Fi − Fc

i ). (12.8e) 

Using (12.4b)–(12.4d), we find 

.Fc
i =

(
Ai

σ L
yi + σU

yi

2
, 0, 0, h4

ηUi − ηLi

2
, . . . , hl0+3

ηUi − ηLi

2

)T

(12.8f) 

.  i =
(
Ai

σU
yi − σ L

yi

2
, Aiσ

U
yi ȳic, Aiσ

U
yi ȳic, h4

ηUi + ηLi

2
, . . . , hl0+3

ηUi + ηLi

2

)T

.

(12.8g) 

The vector .zi can be represented then, cf. (12.3), by
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. zi =

⎛

⎜⎜⎝
ti − Ai

σ L
yi + σU

yi

2

Ai

σU
yi − σ L

yi

2

,
ml

i

Aiσ
U
yi ȳic

,
mr

i

Aiσ
U
yi ȳic

,
H (i)

4 Fi − h4
ηUi −ηLi

2

h4
ηUi +ηLi

2

, . . . ,

H (i)
l0+3Fi − hl0+3

ηUi −ηLi
2

hl0+3
ηUi +ηLi

2

⎞

⎠
T

. (12.9a) 

In case of symmetry .σ L
yi = −σU

yi we get 

.zi =
(

ti
AiσU

yi

,
ml

i

AiσU
yi ȳic

,
mr

i

AiσU
yi ȳic

,
H (i)

4 Fi ,

h4ηUi
, . . . ,

H (i)
l0+3Fi

hl0+3η
U
i

)T

. (12.9b) 

According to the methods introduced in [ 6– 8], the fulfillment of the survival 
condition for elastoplastic frame structures, hence, the equilibrium condition (12.2) 
and the feasibility condition (12.6) or (12.8a), (12.8b), can be described by means 

of the state function .s∗ = s∗
(
a(ω), x

)
defined, in the present case, by 

. s∗ = s∗
(
a(ω), x

)
:= min

{
s :

|||zil
(
Fi ; a(ω), x

)|||− 1 ≤ s, i = 1, . . . , B,

l = 1, 2, . . . , l0 + 3,CF = P
(
a(ω), x

)}
. (12.10) 

Hence, the state function .s∗ is the minimum value function of the linear program 
(LP) 

. min s (12.11a) 

s.t. 

.

||||zil
(
Fi ; a(ω), x

)||||− 1 ≤ s, i = 1, . . . , B, l = 1, . . . , l0 + 3 (12.11b) 

.CF = P
(
a(ω), x

)
. (12.11c) 

Since the objective function . s is bounded from below and a feasible solution 
.(s, F) always exists, LP (12.11a)–(12.11c) has an optimal solution . (s∗, F∗) =(
s∗
(
a(ω), x

)
, .F∗

(
a(ω), x

))
for each configuration .

(
a(ω), x

)
of the structure. 

Consequently, for the survival of the structure we have the following criterion, 
cf. [ 7]. 

Theorem 12.1 The elastoplastic frame structure having configuration.(a, x) carries 
the exterior load .P = P(a, x) safely if and only if
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.s∗(a, x) ≤ 0. (12.12) 

Obviously, the constraint (12.11b) in the  LP  (12.11a)–(12.11c) can also be repre-
sented by 

.

||||||||z
(
F; a(ω), x

)||||||||
∞

− 1 ≤ s, (12.13a) 

where .z = z
(
F; a(ω), x

)
denotes the .B(l0 + 3)-vector 

.z
(
F; a(ω), x

)
:=

(
z1
(
F; a(ω), x

)T
, . . . , zB

(
F; a(ω), x

)T)T

, (12.13b) 

and .||z||∞ is the maximum norm 

.||z||∞ := max
1≤i≤B

1≤l≤l0+3

|zil |. (12.13c) 

If we put 
.ŝ = 1 + s or s = ŝ − 1, (12.14) 

from (12.10) we obtain 
.s∗(a, x) = ŝ∗(a, x)− 1, (12.15a) 

where the transformed state function .ŝ∗ = ŝ∗(a, x) reads 

.ŝ∗(a, x) := min
{||||||z(F; a, x)

||||||∞
: CF = P(a, x)

}
. (12.15b) 

Remark 12.1 According to (12.15a), (12.15b) and (12.12), the safety or survival 
condition of the plane frame with plastic material can be represented also by 

. ŝ∗(a, x) ≤ 1.

The state function .ŝ∗ = ŝ∗(a, x) describes the maximum percentage of use of the 
available plastic capacity within the plane frame for the best internal load distribution 
with respect to the configuration .(a, x). 

Obviously, .ŝ∗ = ŝ∗(a, x) is the minimum value function of the LP 

. min
CF=P(a,x)

||||||z(F; a, x)
||||||∞

. (12.16) 

The following inequalities for norms or power/Hölder means.||z|| in.R
B(l0+3) are well 

known [ 1, 4]:
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. 
1

B(l0 + 3)
||z||∞ ≤ 1

B(l0 + 3)
||z||1

≤ 1√
B(l0 + 3)

||z||2 ≤ ||z||∞ ≤ ||z||2, (12.17a) 

where 

.||z||1 :=
B∑

i=1

l0+3∑

l=1

|zil |, ||z||2 :=
 |||

B∑

i=1

l0+3∑

l=1

z2il . (12.17b) 

Using (12.17a), we find 

.
1

B(l0 + 3)
ŝ∗(a, x) ≤ 1√

B(l0 + 3)
ŝ∗
2 (a, x) ≤ ŝ∗(a, x) ≤ ŝ∗

2 (a, x), (12.18a) 

where .ŝ∗
2 = ŝ∗

2 (a, x) is the modified state function defined by 

.ŝ∗
2 (a, x) := min

{||||z(F; a, x)||||2 : CF = P(a, x)
}
. (12.18b) 

Obviously, we have 
.ŝ∗
2 (a, x) = √

G∗
1(a, x), (12.18c) 

where .G∗
1(a, x) is the minimum value function of the quadratic program 

. min
CF=P

(
a(ω),x

)
B∑

i=1

l0+3∑

l=1

zil(Fi ; a, x)2. (12.19) 

12.2.1 Cost Functions 

The inequalities in (12.18a) show that for structural analysis and optimal design 
purposes we may work also with the state function .ŝ∗

2 = ŝ∗
2 (a, x) which can be 

defined easily by means of the quadratic program (12.19). 
According to the definition (12.8b) and the corresponding technical interpretation 

of the quotients . zil , the transformed state function .ŝ∗ = ŝ∗(a, x) represents—for 
the best internal load distribution—the maximum percentage of use of the plastic 
capacities relative to the available plastic capacities in the members (bars) of the 
plane frame with configuration .(a, x). While the definition (12.15b) of  .ŝ∗ is based 
on the absolute value function 

.c1(zil) = |zil |, (12.20a)
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Fig. 12.1 Cost functions. cp

in definition (12.18b) of .ŝ∗
2 occur quadratic functions 

.c2(zil) = z2il , i = 1, . . . , B, l = 1, . . . , l0 + 3. (12.20b) 

Obviously, 
. cp(zil) = |zil |p with p = 1, 2 (or also p ≥ 1)

are possible convex functions, cf. Fig. 12.1, measuring the costs resulting from the 
position.zil of a load component . H (i)

l Fi relative to the corresponding safety interval 
(plastic capacity) .[ FL

il ,
 FU
il ]. 

If different weights are used in the objective function (12.19), then for the bars 
we obtain, cf. (12.8c), the cost functions 

.qi (zi ) = ||Wi0zi||2, (12.20c) 

with .(l0 + 3)× (l0 + 3) weight matrices .Wi0, .i = 1, . . . , B. 
The total weighted quadratic costs resulting from a load distribution .F acting on 

the plastic plane frame having configuration .(a, x) are given, cf. (12.18c), (12.19), 
(12.20c), by 

.G1 :=
B∑

i=1

||Wi0zi||2 =
B∑

i=1

zTi W
T
i0Wi0zi . (12.21a) 

Defining 

.W0 :=

⎛

⎜⎜⎜⎝

W10 0 . . . 0
0 W20 . . . 0
...

...
. . .

...

0 0 . . . WB0

⎞

⎟⎟⎟⎠ , z :=

⎛

⎜⎜⎜⎝

z1
z2
...

zB

⎞

⎟⎟⎟⎠ , (12.21b) 

we also have
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. G1 = G1(a, x; F) = zTWT
0 W0z

= ||W0z||22 = ||z||22,W0
, (12.21c) 

where .|| · ||2,W0 denotes the weighted Euclidean norm 

.||z||2,W0 := ||W0z||2. (12.21d) 

Using the weighted quadratic cost function (12.20c), the state function. ŝ∗
2 = ŝ∗

2 (a, x)
is replaced by 

. ŝ∗
2,W0

(a, x) := min
{||||z(F; a, x)||||2,W0

: CF = P(a, x)
}

= min
{√

G1(a, x; F) : CF = P(a, x)
}
. (12.21e) 

Since 
. ||z||2,W0 = ||W0z||2 ≤ ||W0|| · ||z||

with the norm.||W0|| of the matrix .W0, we find 

.ŝ∗
2,W0

(a, x) ≤ ||W0||ŝ∗
2 (a, x). (12.21f) 

On the other hand, in case 
. ||W0z||2 ≥ W 0||z||2

with a positive constant .W 0 > 0, we have  

.ŝ∗
2,W0

(a, x) ≥ W 0ŝ
∗
2 (a, x) or ŝ

∗
2 (a, x) ≤ 1

W 0

ŝ∗
2,W0

(a, x). (12.21g) 

12.3 Minimum Expected Quadratic Costs 

Putting 

.H :=

⎛

⎜⎜⎜⎝

H (1)

H (2)

. . .

H (B)

⎞

⎟⎟⎟⎠ , Fc :=

⎛

⎜⎜⎜⎝

Fc
1

Fc
2
...

Fc
B

⎞

⎟⎟⎟⎠ ,  :=

⎛

⎜⎜⎜⎝

 1
 2
...

 B

⎞

⎟⎟⎟⎠ , (12.21h) 

with (12.8e) we find 

.G1 = G1

(
a(ω), x; F

)
= (HF − Fc)T −1

d WT
0 W0 

−1
d (HF − Fc). (12.22a)
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If 

.Fc = HFc with Fc :=
(
FL
i + FU

i

2

)

i=1,...,B

(12.22b) 

as in the case of no interaction between normal forces and moments, see (12.4a)– 
(12.4c), and in the case of symmetric yield stresses 

.σ L
yi = −σU

yi , i = 1, . . . , B, (12.22c) 

we also have 

.G1

(
a(ω), x; F

)
= (F − Fc)T HT −1

d WT
0 W0 

−1
d H(F − Fc). (12.22d) 

Moreover, if (12.22c) holds, then .Fc = 0 and therefore 

.G1

(
a(ω), x; F

)
= FT HT −1

d WT
0 W0 

−1
d H F. (12.22e) 

For simplification, we assume first in this section that the total cost representation 
(12.22d) or (12.22e) holds. 

According to the equilibrium condition (12.2), the total vector .F of generalized 
forces of the members fulfills 

. CF = P(a(ω), x).

Let .x ∈ D denote a given vector of decision variables, and let be .a = a(ω) a real-
ization of vector .a(·) of model parameters. Based on (12.22d) or (12.22e), a cost 
minimum or “best” internal distribution of the generalized forces 

. F∗ = F∗(a(ω), x)

of the structure can be obtained by solving the following optimization problem with 
quadratic objective function and linear constraints 

. min
CF=P(a(ω),x)

G1(a(ω), x; F). (12.23) 

Solving the related stochastic optimization problem [ 8] 

. min
CF=P(a(ω),x)a.s.

EG1(a(ω), x; F), (12.24) 

for the random configuration .
(
a(ω), x

)
we get the minimum expected (total) 

quadratic costs 
.G

∗
1 = G

∗
1(x), x ∈ D, (12.25a)
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where .G
∗
1(x) may be obtained by interchanging expectation and minimization 

.G
∗
1(x) = G∗

1(x) := E min{G1(a(ω), x; F) : CF = P(a(ω), x)}. (12.25b) 

The internal minimization problem (12.23) 

. min G1(a(ω), x; F) s.t. CF = P(a(ω), x),

hence, 
. min
CF=P(a(ω),x)

(F − Fc)T HT −1
d WT

0 W0 
−1
d H(F − Fc), (12.26) 

with quadratic objective function and linear constraints with respect to .F can be 
solved by means of Lagrange techniques. We put 

.W = W (a, x) := HT −1
d WT

0 W0 
−1
d H (12.27) 

and define the Lagrangian of (12.26): 

.L = L(F, λ) := (F − Fc)TW (F − Fc)+ λT (CF − P(a(ω), x)). (12.28a) 

Based on the corresponding piecewise linearized yield domain, .W describes the 
plastic capacity of the plane frame with respect to axial forces and bending moments. 

The necessary and sufficient optimality conditions for a minimum point . (F∗, λ∗)
read 

.0 = ∇F L = 2W (F − Fc)+ CTλ, (12.28b) 

.0 = ∇λL = CF − P. (12.28c) 

Supposing that .W is regular, we get 

.F = Fc − 1

2
W−1CTλ (12.28d) 

and 

.P = CF = CFc − 1

2
CW−1CTλ, (12.28e) 

hence, 

.F∗ = Fc − 1

2
W−1CTλ∗ = Fc − W−1CT (CW−1CT )−1(CFc − P). (12.28f) 

Inserting (12.28f) into the objective function .G1(a(ω), x; F), according to 
(12.22a) and (12.27) we find
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. G∗
1 = G∗

1(a(ω), x)

= (F∗ − Fc)T W (F∗ − Fc)

=
(
(CFc − P)T (CW−1CT )−1CW−1

)
W
(
W−1CT (CW−1CT )−1(CFc − P)

)

= (CFc − P)T (CW−1CT )−1(CFc − P)

= tr(CW−1CT )−1(CFc − P)(CFc − P)T , (12.28g) 

where “tr” denotes the trace of a matrix. The minimal expected value .G∗
1 is then 

given by 

. G∗
1(x) = EG∗

1

(
a(ω), x

)

= E
(
CFc(a(ω), x

)− P
(
a(ω), x)

)T(
CW

(
a(ω), x

)−1
CT

)−1

×
(
CFc

(
a(ω), x

)− P
(
a(ω), x

))

= E tr
(
CW

(
a(ω), x

)−1
CT

)−1(
CFc

(
a(ω), x

)− P
(
a(ω), x

))

×
(
CFc

(
a(ω), x

)− P
(
a(ω), x

))T
. (12.29a) 

If .σ L
yi = −σU

yi , i = 1, . . . , B, then .Fc = 0 and 

. G∗
1(x) = EP(a(ω), x))T (CW (a(ω), x)−1CT )−1P(a(ω), x)

= tr E
(
CW

(
a(ω), x

)−1
CT

)−1
P
(
a(ω), x

)
P
(
a(ω), x

)T
. (12.29b) 

Since the vector.P = P(a(ω), x) of external generalized forces and the vector of 
yield stresses .σU = σU (a(ω), x) are stochastically independent, then in case . σ L

yi =
−σU

yi , i = 1, . . . , B, we have  

. G∗
1(x) = EP(a(ω), x))TU (x)P(a(ω), x)

= trU (x)EP(a(ω), x)P(a(ω), x)T , (12.29c) 

where 
.U (x) := EK (a(ω), x)−1 (12.29d) 

with the matrices 
.K (a, x) := CK0(a, x)C

T (12.30a) 

and 
.K0(a, x) := W (a, x)−1 = (HT −1

d WT
0 W0 

−1
d H)−1. (12.30b)
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We compare now, especially in case .Fc = 0, formula  (12.28g) for the costs . G∗
1 =

G∗
1(a, x) with formula 

.  := uT P

for the compliance of an elastic structure, where 

. u := K−1
el P

is the vector of displacements, and .Kel denotes the stiffness matrix in case of an 
elastic structure. Obviously, the cost function .G∗

1 = G∗
1(a, x) may be interpreted 

as a generalized compliance function, and the .m × m matrix .K = K (a, x) can be 
interpreted as the “generalized stiffness matrix” of the underlying plastic mechanical 
structure. If we suppose that 

.Wi0 := (
w0

ilδlλ
)
l,λ=1,...,l0+3 , i = 1, . . . , B (12.30c) 

are diagonal weight matrices, then, cf. (12.8g), 

. −1
d WT

0 W0 
−1
d = diag

((
w0

il

 il

)2
)
. (12.30d) 

If condition (12.22b) and therefore representation (12.22d) or (12.22e) does not 

hold, then the minimum total costs .G∗
1 = G∗

1

(
a(ω), x

)
are determined by the more 

general quadratic program, cf. (12.22a), (12.23), (12.26), 

. min
CF=P

(
a(ω),x

)(HF − Fc)TW 

(
a(ω), x

)
(HF − Fc), (12.31a) 

where 
.W (a, x) :=  −1

d (a, x)WT
0 W0 

−1
d (a, x). (12.31b) 

Though also in this case problem (12.31a) can be solved explicitly, the resulting 
total cost function has a difficult form. In order to apply the previous technique, 
the vector .Fc is approximated—in the least squares sense—by vectors .HF with 
.F ∈ R

3B . Hence, we write 
.Fc ≈ HFc∗, (12.32a) 

where the .(3B)-vector .Fc∗ is the optimal solution of the optimization problem 

. min
F

||HF − Fc||2. (12.32b) 

We obtain 
.Fc∗ = Fc∗(Fc) := (HT H)−1HT Fc. (12.32c)
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The error .e(Fc∗) of this approximation reads 

. e(Fc) := ||HFc∗ − Fc||
=
||||||
(
H(HT H)−1HT − I

)
Fc
||||||. (12.32d) 

With the vector .Fc∗ = Fc∗(Fc) the total costs .Ga
1 = Ga

1

(
a(ω), x; F

)
can be 

approximated now, see (12.22a), by 

. Ga
1

(
a(ω), x; F

)
:= (HF − HFc∗)TW 

(
a(ω), x

)
(HF − HFc∗)

= (F − Fc∗)T HTW 

(
a(ω), x

)
H(F − Fc∗)

= (F − Fc∗)TW
(
a(ω), x

)
(F − Fc∗), (12.33a) 

where, cf. (12.27), 

.W = W (a, x) := HTW (a, x)H. (12.33b) 

Obviously, the approximate cost function .Ga
1 = Ga

1(a, x; F) has the same form 
as the cost function.G1 = G1(a, x; F) under the assumption (12.22b), see (12.22d). 
Hence, the minimum cost function .Ga∗

1 = Ga∗
1 (a, x) can be determined by solving, 

cf. (12.23), 
. min
CF=P(a,x)

Ga
1(a, x; F). (12.34a) 

We get, see (12.28g), 

.Ga∗
1 (a, x) := tr

(
CW (a, x)−1CT

)−1
(CFc∗ − P)(CFc∗ − P)T , (12.34b) 

where .Fc∗ = Fc∗(a, x) is given here by (12.32c). Taking expectations in (12.34b), 
we obtain the approximate minimum expected total cost function 

.Ga∗
1 = Ga∗

1 (x) = EGa∗
1

(
a(ω), x

)
. (12.34c) 

12.4 Deterministic Substitute Problems 

In order to determine robust optimal designs. x∗, appropriate deterministic substitute 
problems, cf. [ 8], must be formulated.
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12.4.1 Weight (Volume)-Minimization Subject to Expected 
Cost Constraints 

With the expected primary cost function, see (12.1a), (12.1b), 

. G0(x) = EG0(a(ω), x)

and the expected cost function.G∗
1 = G∗

1(x) representing the expected total weighted 
quadratic costs resulting from a violation of the feasibility condition (12.4a), (12.4f), 
we get [ 3, 9] the optimization problem 

. min G0(x) (12.35a) 

.s.t. G∗
1(x) ≤  1 (12.35b) 

.x ∈ D, (12.35c) 

where . 1 is a certain upper cost bound. In case (12.1a) we have  

.G0(x) :=
B∑

i=1

γi0Li Ai (x) (12.35d) 

with .γi0 := Eγi0(ω), and .G∗
1 = G∗

1(x) is defined by (12.29a) or (12.29b). 
Due to (12.20c) and (12.21a)–(12.21c), the upper cost bound . 1 can be defined 

by 
. 1 := g1G

max
1 , (12.35e) 

where.g1 > 0 is a certain reliability factor, and.Gmax
1 denotes the maximum of the total 

cost function .G1 = G1(z) on the total admissible .z-domain .[−1, 1](l0+3)B . Hence, 

. Gmax
1 := max

z∈[−1,1](l0+3)B

B∑

i=1

||Wi0zi||2

=
B∑

i=1

max
zi∈[−1,1](l0+3)

||Wi0zi||2

=
B∑

i=1

max
1≤ j≤2l0+3

||Wi0e
( j)||2, (12.35f) 

where.e( j), j = 1, . . . , 2l0+3, denote the extreme points of the hypercube.[−1, 1]l0+3. 
As shown in the following, for .W0 = I (identity matrix) the expected cost con-

straint (12.35b) can also be interpreted as a reliability constraint. 
According to Theorem 12.1, (12.12) and (12.15a), (12.15b), for the probability of 

survival .ps = ps(x) of the elastoplastic structure represented by the design vector . x
we have
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. ps(x) := P
(
s∗(a(ω), x

) ≤ 0
)

= P
(
ŝ∗(a(ω), x

)− 1 ≤ 0
)

= P
(
ŝ∗(a(ω), x

) ≤ 1
)
. (12.36) 

Knowing from (12.18a), (12.18b) that, in case .W0 = I , 

. 
1√

B(l0 + 3)
ŝ∗
2 (a, x) ≤ ŝ∗(a, x) ≤ ŝ∗

2 (a, x),

we obtain the probability inequalities 

.P
(
ŝ∗
2

(
a(ω), x

) ≤ 1
)

≤ ps(x) ≤ P
(
ŝ∗
2 (a, x) ≤ √

B(l0 + 3)
)
. (12.37a) 

Due to the first definition of .G∗
1 = G∗

1(a, x) by (12.18c) and (12.19), related to the 
case .W0 = I , we also have  

.P
(
G∗

1

(
a(ω), x

) ≤ 1
)

≤ ps(x) ≤ P
(
G∗

1

(
a(ω), x

) ≤ B(l0 + 3)
)
. (12.37b) 

Using now a nonnegative, nondecreasing, measurable function . h on .R+, for any 
.g1 > 0 we find [ 8] 

.P
(
G∗

1

(
a(ω), x

) ≤ g1
)

≥ 1 −
Eh

(
G∗

1

(
a(ω), x

))

h(g1)
. (12.38a) 

In the case .h(t) = t we get the inequality 

.P
(
G∗

1

(
a(ω), x

) ≤ g1
)

≥ 1 − G∗
1(x)

g1
, (12.38b) 

where the expectation.G∗
1(x) = EG∗

1

(
a(ω), x

)
is given by (12.29a) or (12.29b). The 

probabilistic constraint 

.P
(
G∗

1

(
a(ω), x

) ≤ g1
)

≥ αmin (12.39a) 

for the quadratic mean rate .ŝ∗
2 = √

G∗
1(a, x) of minimum possible use of plastic 

capacity within the plane frame with configuration .(a, x) implies . ps(x) ≥ αmin

for .g1 = 1, cf.  (12.37b). Hence, due to (12.38b), constraint (12.39a) and therefore 
.ps(x) ≥ αmin can be guaranteed then by the condition 

.G∗
1(x) ≤ g1(1 − α), (12.39b) 

see (12.35b).



12.4 Deterministic Substitute Problems 331

12.4.2 Minimum Expected Total Costs 

For a vector .x ∈ D of decision variables and a vector .F of internal generalized 
forces fulfilling the equilibrium condition (12.2), from (12.1a), (12.1b) and (12.22a), 
(12.22b) we have the total costs 

.G(a(ω), x; F) := G0(a(ω), x)+ G1(a(ω), x; F). (12.40a) 

Here, the weight or scale matrices .Wi0 and the weight or cost factors . γi0, i =
1, . . . , B, must be selected such that the dimensions of .G0 and .G1 coincide. For 
example, if .Wi0 = I, i = 1, . . . , B, and .

√
G1(a, x) is then the quadratic mean rate 

of use of plastic capacity for a given distribution of generalized forces . F , then we 
may replace .γi0 by the relative weight/cost coefficients 

. γ rel
i0 := γi0

Gref
0

, i = 1, . . . , B,

with a certain weight or cost reference value .Gref
0 . 

Minimizing now the expected total costs 

. G = G(x) = EG(a(ω), x; F(ω))
= E(G0(a(ω), x)+ G1(a(ω), x; F(ω)))
= EG0(a(ω), x)+ EG1(a(ω), x; F(ω))
= G0(x)+ EG1(a(ω), x; F(ω)) (12.40b) 

subject to the equilibrium conditions (12.2) and the remaining condition for the 
decision variables 

.x ∈ D, (12.40c) 

we obtain the stochastic optimization problem 

. min
CF(ω)=P

(
a(ω),x

)
a.s.

x∈D

E(G0(a(ω), x)+ G1(a(ω), x; F(ω)). (12.41) 

Obviously, (12.41) has the following two-stage structure: 

Step 1: Select .x ∈ D without knowledge of the actual realization .a = a(ω) of 
the model parameters, but knowing the probability distribution or certain 
moments of .a(·); 

Step 2: Determine the best internal distribution of generalized forces . F = F∗(ω)
after realization of .a = a(ω).
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Therefore, problem (12.41) is equivalent to 

. min
x∈D E

(
G0(a(ω), x)+ min

CF=P(a(ω),x)
G1(a(ω), x; F)

)
. (12.42) 

According to the definitions (12.35d) of .G0 and (12.25b) of .G∗
1, problem (12.42) 

can be represented also by 

. min
x∈D

(
G0(x)+ G∗

1(x)
)
. (12.43) 

12.5 Stochastic Nonlinear Programming 

We first suppose that the structure consists of a uniform material with a symmetric 
random yield stress in compression and tension. Hence, we assume next to 

.σU
yi = −σ L

yi = σU
y = σU

y (ω), i = 1, . . . , B, (12.44) 

with a random yield stress .σU
y (ω). Due  to  (12.8e) we have  

.  i
(
a(ω), x

) = Ai (σ
U
yi , σ

U
yi yic, σ

U
yi yic, σ

U
yi h4ηi , . . . , σ

U
yi hl0+3ηi )

T

= σU
y Ai (1, yic, yic, h4ηi , . . . , hl0+3ηi )

T := σU
y  ̊i (x) (12.45a) 

and therefore, see (12.8d), 

. 
(
a(ω), x

) = σU
y (ω) ̊(x) (12.45b) 

with . ̊i (x) := Ai (1, yic, yic, h4ηi , . . . , hl0+3ηi )
T , ηi := min

 
1

Ni0
,
yic
Mi0

 
and 

. ̊(x) =
⎛

⎜⎝
 ̊1(x)
...

 ̊B(x)

⎞

⎟⎠ . (12.45c) 

According to (12.30a), (12.30b), for fixed weight matrices .Wi0, i = 1, . . . , B, we  
obtain 

.K
(
a(ω), x

) = CK0
(
a(ω), x

)
CT (12.46a) 

with
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. K0
(
a(ω), x

) = (HT −1
d WT

0 W0 
−1
d H)−1

= σU
y (ω)

2 K̊0(x), (12.46b) 

where 
.K̊0(x) := (

HT  ̊(x)−1
d WT

0 W0 ̊(x)
−1
d H

)−1
. (12.46c) 

Now, (12.30a), (12.30b), and (12.46a)–(12.46c) yield 

.K
(
a(ω), x

) = σU
y (ω)

2 CK̊0(x)C
T = σU

y (ω)
2 K̊ (x) (12.47a) 

with the deterministic matrix 

.K̊ (x) := CK̊0(x)C
T . (12.47b) 

Moreover, we get 

. U
(
a(ω), x

) := K
(
a(ω), x

)−1 = (
σU
y (ω)

2 K̊ (x)
)−1

= 1

σU
y (ω)

2
K̊ (x)−1. (12.47c) 

Hence, see (12.29d), 

.U (x) = EU
(
a(ω), x

) =
(
E

1

σU
y (ω)

2

)
K̊ (x)−1. (12.47d) 

In case of a random weight matrix .W0 = W0

(
a(ω)

)
, for  .U (x) we also obtain a 

representation of the type (12.47d), provided that i) the random variables. W0

(
a(ω)

)

and .σU
y (ω) are stochastically independent and ii) .K̊ (x) is defined by 

. K̊ (x) :=
(
E

(
CK̊0

(
W
(
a(ω)

)
, x
)
CT

)−1
)−1

.

From (12.29c) we obtain 

. G∗
1(x) = EG∗

1

(
a(ω), x

)

= trU (x)EP
(
a(ω), x

)
P
(
a(ω), x

)T

=
(
E

1

σU
y (ω)

2

)
tr K̊ (x)−1EP

(
a(ω), x

)
P
(
a(ω), x

)T
. (12.48) 

Representing the .m × m matrix
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. B(x) := EP
(
a(ω), x

)
P
(
a(ω)x

)T

= P(x)P(x)T + cov
(
P
(
a(·), x)

)

= (
b1(x), b2(x), . . . , bm(x)

)
(12.49a) 

by its columns .b j (x), j = 1, . . . ,m, where we still set 

.P(x) := EP
(
a(ω), x

)
(12.49b) 

.cov
(
P
(
a(·), x)

)
:= E

(
P
(
a(ω), x

)− P(x)
)(

P
(
a(ω), x

)− P(x)
)T
, (12.49c) 

we find 

. Z(x) = (z1, z2, . . . , zm) := E

(
1

σU
y (ω)

2

)
K̊ (x)−1B(x)

= E

(
1

σU
y (ω)

2

)
(
K̊ (x)−1b1(x), K̊ (x)

−1b2(x), . . . , K̊ (x)
−1bm(x)

)
. (12.49d) 

However, (12.49d) is equivalent to the following equations for the columns . z j , j =
1, . . . , B, 

.K̊ (x)z j = E

(
1

σU
y (ω)

2

)
b j (x), j = 1, . . . ,m. (12.50) 

With equations (12.50) for  .z j , j = 1, . . . ,m, the expected cost function .G∗
1(x) can 

be represented now by 
.G∗

1(x) = tr(z1, z2, . . . , zm). (12.51) 

Having (12.50), (12.51), the deterministic substitute problems (12.35a)–(12.35d) 
and (12.43) can be represented as follows: 

Theorem 12.2 (Expected cost-based optimization (ECBO)) Suppose that . Wi0, i =
1, . . . , B, are given fixed weight matrices. Then the expected cost-based optimization 
problem (12.35a)–(12.35c) can be represented by 

. min G0(x) (12.52a) 

. s.t.

tr(z1, z2, . . . , zm) ≤  1 (12.52b) 

.K̊ (x)z j = E

(
1

σU
y (ω)

2

)
b j (x), j = 1, . . . ,m (12.52c) 

.x ∈ D, (12.52d) 

where the vectors .b j = b j (x), j = 1, . . . ,m, are given by (12.49a).
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Obviously, (12.52a)–(12.52d) is an ordinary deterministic parameter optimization 
problem having the additional auxiliary variables .z j ∈ R

m, j = 1, . . . ,m. In many  
important cases the external generalized forces .P = P

(
a(ω)

)
does not depend on 

the design vector . x . In this case .b1, b2, . . . , bm are the fixed columns of the matrix 
.B = EP

(
a(ω)

)
P
(
a(ω)

)T
of second-order moments of the random vector of external 

generalized forces .P = P
(
a(ω)

)
, see  (12.49a)–(12.49c). 

For the second substitute problem we get this result: 

Theorem 12.3 (Minimum expected costs (MEC)) Suppose that .W0i , i = 1, . . . , B, 
are given fixed weight matrices. Then the minimum expected cost problem (12.43) 
can be represented by 

. min G0(x)+ tr(z1, z2, . . . , zm) (12.53a) 

. s.t.

K̊ (x)z j = E

(
1

σU
y (ω)

2

)
b j (x), j = 1, . . . ,m (12.53b) 

.x ∈ D. (12.53c) 

Remark 12.2 According to (12.47b) and (12.46c), the matrix.K̃ = K̃ (x) is a simple 
function of the design vector . x . 

12.5.1 Symmetric, Non-uniform Yield Stresses 

If a representation of 

. U (x) = EU
(
a(ω), x

) = EK
(
a(ω), x

)−1 = β(ω)K̊ (x)−1,

see (12.29d), (12.30a), (12.30b), of the type (12.47d) does not hold, then we may 
apply the approximative procedure described in the following. 

First, the probability distribution .Pa(·) of the random vector .a = a(ω) of model 
parameters is approximated, as far it concerns the subvector.aI = aI (ω) of. a = a(ω)
of model parameters arising in the matrix 

. K = K
(
a(ω), x

) = K
(
aI (ω), x

)
,

by a discrete distribution 

.P̂aI (·) :=
N∑

s=1

αsεa(s)I
(12.54) 

having realizations .a(s)I taken with probabilities .αs, s = 1, . . . , N .
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Then, the matrix function .U = U (x) can be approximated by 

.Û (x) :=
N∑

s=1

αs K
(s)(x)−1, (12.55a) 

where 
.K (s)(x) := K (a(s)I , x) = CK0(a

(s)
I , x)C

T , (12.55b) 

see (12.30b). Consequently, the expected cost function.G∗
1 = G∗

1(x) is approximated 
by 

. Ĝ∗
1(x) := trÛ (x)EP

(
a(ω), x

)
P
(
a(ω), x

)T

=
N∑

s=1

αs tr K
(s)(x)−1EP

(
a(ω), x

)
P
(
a(ω), x

)T
. (12.56) 

Corresponding to (12.49d), we now define the auxiliary matrix variables 

. z(s) = (z(s)1 , z(s)2 , . . . , z(s)m ) := K (s)(x)−1B(x)

= (
K (s)(x)−1b1(x), K

(s)(x)−1b2(x) . . . , K
(s)(x)−1bm(x)

)
, (12.57) 

where .B = B(x) is defined again by (12.49a). Thus, for the columns . z(s)j , j =
1, . . . ,m, we obtain the conditions 

.K (s)(x)z(s)j = b j (x), j = 1, . . . ,m, (12.58) 

for each.s = 1, . . . , N . According to (12.56) and (12.60), the approximate expected 

cost function .Ĝ∗
1 = Ĝ∗

1 reads 

.Ĝ∗
1(x) =

N∑

s=1

αs tr(z
(s)
1 , z(s)2 , . . . , z(s)m ), (12.59) 

where .z(s)j , j = 1, . . . ,m, s = 1, . . . , N , are  given by (12.58). 
Because of the close relationship between the representations (12.59) and (12.51) 

for .Ĝ∗
1,G

∗
1, approximate mathematical optimization problems result from (12.59) 

which are similar to (12.52a)–(12.52d), (12.53a)–(12.53c), respectively.
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12.5.2 Non Symmetric Yield Stresses 

In generalization of (12.44), here we suppose 

.σU
yi (ω) = γU

i σy(ω), σ
L
yi (ω) = γ L

i σy(ω), (12.60) 

where.σy = σy(ω) > 0 is a nonnegative random variable with a given probability dis-
tribution, and .γU

i > 0, γ L
i < 0, i = 1, . . . B, denote given, fixed yield coefficients. 

However, if (12.60) holds, then 

.

σU
yi ± σ L

yi

2
= σy

γU
i ± γ L

i

2
(12.61a) 

and 

.
ηUi ± ηLi

2
= σy

 ηUi (x)± ηLi (x)
2

, (12.61b) 

where, cf (12.4b, (12.4c), (12.4g), (12.4h), 

. η∆i (x) := min

 |γ ∆i |Ai (x)

Ni0
,
γU
i Wipl(x)

Mi0

 
,∆ = L ,U. (12.61c) 

Corresponding to (12.45a), (12.45b), from (12.8f), (12.8g) we obtain 

.Fc
i

(
a(ω), x

)
= σy(ω)F̊

c
i (x) (12.62a) 

. ci

(
a(ω), x

)
= σy(ω) ̊i (x), (12.62b) 

where the deterministic functions 

.F̊i = F̊c
i (x),  ̊i =  ̊i (x) (12.62c) 

follow from (12.8f), (12.8g), resp., by inserting formula (12.60) and extracting then 
the random variable .σ(ω). Because of (12.62a)–(12.62c), the generalized stiffness 
matrix .K = K (a, x) can be represented again in the form (12.47a), hence, 

.K
(
a(ω), x

)
= σ 2

y (ω)K̊ (x), (12.63a) 

where the deterministic matrix function .K̊ = K̊ (x) is defined corresponding to 

(12.47b). Furthermore, according to (12.21h) and (12.62a), for .Fc
(
a(ω), x

)
we 

have 
.Fc

(
a(ω), x

)
= σ(ω)F̊c(x), (12.63b)
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where 

.F̊c(x) :=
(
F̊c
1 (x)

T , . . . , F̊c
B(x)

T
)T
. (12.63c) 

Thus, due to (12.32b), (12.32c), for the vector .Fc∗ = Fc∗
(
a(ω), x

)
defined by 

(12.32a)–(12.32c) we find 

.Fc∗
(
a(ω), x

)
= σ(ω)Fc∗∗(x) (12.63d) 

with 
.Fc∗∗(x) := (HT H)−1HT F̊c(x). (12.63e) 

Inserting now (12.63a), (12.63d) into formula (12.34b), for the (approximate) mini-
mum total costs we finally have, cf. (12.47c), (12.48), 

. Ga∗
1

(
a(ω), x

)
= 1

σ(ω)2
tr K̊ (x)−1

(
σ(ω)CFc∗∗(x)− P

(
a(ω), x

))

×
(
σ(ω)CFc∗∗(x)− P

(
a(ω), x

))T

= 1

σ(ω)2
tr K̊ (x)−1P

(
a(ω), x

)
P
(
a(ω), x

)T

− 1

σ(ω)
tr K̊ (x)−1

(
CFc∗∗(x)P

(
a(ω), x

)T

+P
(
a(ω), x

)
Fc∗∗(x)TCT

)
+ tr K̊ (x)−1CFc∗∗(x)Fc∗∗(x)TCT .

(12.64) 

The minimum expected cost function .Ga∗
1 (x) is then given, cf. (12.48), by 

. Ga∗
1 (x) = E

(
1

σ(ω)2

)
tr K̊ (x)−1B(x)

− E

(
1

σ(ω)

)
tr K̊ (x)−1

(
CFc∗∗(x)P(x)T + P(x)Fc∗∗(x)TCT

)

+ tr K̊ (x)−1CFc∗∗(x)Fc∗∗(x)TCT , (12.65) 

where .P = P(x), B = B(x) are again given by (12.49a), (12.49b). Obviously, also 
in the present more general case .Ga∗

1 can be represented by 

.Ga∗
1 (x) = tr Z(x), (12.66a) 

where the matrix .Z = Z(x) is given by
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. Z(x) := K̊ (x)−1

(
E

(
1

σy(ω)2

)
B(x)− E

(
1

σy(ω)

)

×
(
CFc∗∗(x)P(x)T + P(x)Fc∗∗(x)TCT

)
+ CFc∗∗(x)Fc∗∗(x)TCT

)
,

(12.66b) 

see (12.51). Hence, due to the close relationship between (12.49d), (12.51) and 
(12.66a), (12.66b), the deterministic substitute problems stated in Sect. 12.4 can be 
treated as described in Sect. 12.5.1. 

12.6 Reliability Analysis 

For the approximate computation of the probability of survival .ps = ps(x) in 
Sect. 12.4.1 a first method was presented based on certain probability inequalities. 
In the following subsection we suppose that .x = x0 is a fixed design vector, and the 
vector of yield stresses 

. σy =
(
(σ L

yi )i=1,...,B

(σU
yi )i=1,...,B

)
= σy0

is a given deterministic vector of material strength parameters. Moreover, we assume 
that the weight matrix .W0, cf.  (12.20c), (12.21a)–(12.21c), is fixed. According to 
(12.8f), (12.8g), (12.21h) and (12.30a), (12.30b), the vectors . Fc,  and the general-
ized stiffness matrix .K = K (σy0, x0) are given, fixed quantities. Hence, in this case 
the cost function 

.G∗
1(a, x) = g∗

1(P) := (C Fc − P)T K−1(C Fc − P), (12.67) 

see (12.28g), is a quadratic, strictly convex function of the .m-vector .P of external 
generalized forces. Hence, the condition .G∗

1(a, x0) ≤ g1, see  (12.37a), (12.37b), or 

.g∗
1(P) ≤ g1 (12.68a) 

describes an ellipsoid in the space .R
m of generalized forces. 

In case of normal distributed external generalized forces .P = P(ω), the  
probability 

. ps(x0; g1) := P

(
G∗

1

(
σy0, P(ω), x0

)
≤ g1

)

= P

(
g∗
1

(
P(ω)

)
≤ g1

)
(12.68b)
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can be determined approximatively by means of linearization 

.g∗
1(P) = g∗

1(P
∗)+ ∇Pg

∗
1(P

∗)T (P − P∗)+ · · · (12.69) 

at a so-called design point .P∗, see  [  2, 3, 9]. Since .g∗
1 = g∗

1(P) is convex, we have 

.g∗
1(P) ≥ g∗

1(P
∗)+ ∇Pg

∗
1(P

∗)T (P − P∗), P ∈ R
m, (12.70a) 

and .ps(x0; g1) can be approximated from above by 

. p̃s(x0; g1) := P

(
g∗
1(P

∗)+ ∇Pg
∗
1(P

∗)T
(
P(ω)− P∗

)
≤ g1

)
(12.70b) 

. = P
(
∇Pg

∗
1(P

∗)T P(ω) ≤ g1 − g∗
1(P

∗)+ ∇Pg
∗
1(P

∗)T P∗
)

= Φ

⎛

⎜⎜⎝
g1 − g∗

1(P
∗)+ ∇Pg∗

1(P
∗)T (P∗ − P)

/
∇Pg∗

1(P
∗)T cov

(
P(·)

)
∇Pg∗

1(P
∗)

⎞

⎟⎟⎠ , (12.70c) 

where .Φ denotes the distribution function of the .N (0, 1)-normal distribution, 

cov.
(
P(·)

)
denotes the covariance matrix of .P = P(ω), and the gradient. ∇Pg∗

1(P
∗)

reads 
.∇Pg

∗
1(P

∗) = −2K−1(C Fc − P∗). (12.70d) 

Moreover, 
.P := EP(ω) (12.70e) 

denotes the mean of the external vector of generalized forces.P = P(ω). In practice, 
the following two cases are taken into account [ 2, 3, 9]: 

Case 1: Linearization at . P∗ := P
Under the above assumptions in this case we have 

. p̃s(x0; g1) = Φ

⎛

⎜⎜⎝
g1 − g∗

1(P)/
∇Pg∗

1(P)
T cov

(
P(·)

)
∇Pg∗

1(P)

⎞

⎟⎟⎠ ≥ ps(x0; g1). (12.71) 

Case 2: Linearization at a boundary point .P∗ of . [g∗
1(P) ≤ g1]

Here it is .g1(P∗) = g1 and therefore
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. p̃s(x0; g1) = Φ

⎛

⎜⎜⎝
∇Pg∗

1(P
∗)T (P∗ − P)

/
∇Pg∗

1(P
∗)T cov

(
P(·)

)
∇Pg∗

1(P
∗)

⎞

⎟⎟⎠ . (12.72) 

Because of (12.70a), for each boundary point .P∗ we have again 

.ps(x0; g1) ≤ p̃s(x0; g1). (12.73) 

Boundary points.P∗ of the ellipsoid.

[
g∗
1(P) ≤ g1

]
can be determined by minimizing 

a linear form.cT P on.

[
g∗
1(P) ≤ g1

]
. Thus, we consider [ 7] the convex minimization 

problem 
. min
(C Fc−P)T K−1(C Fc−P)≤g1

cT P, (12.74) 

where . c is a given, fixed .m-vector. 
By means of Lagrange techniques we obtain this result. 

Theorem 12.4 For each vector .c /= 0 the unique minimum point of (12.74) reads 

.P∗ = C Fc −
/

g1
cT Kc

Kc. (12.75a) 

The gradient of .g∗
1 = g∗

1(P) at .P
∗ is then given by 

.∇Pg
∗
1(P

∗) = −2

/
g1

cT Kc
c. (12.75b) 

Consequently, for the quotient . q arising in formula (12.72) we get 

.q = q(c) :=
√
g1

√
cT Kc − cT (C Fc − P)
/
cT cov

(
P(·)

)
c

. (12.76a) 

Obviously, this function fulfills the equation 

.q(λc) = q(c), λ > 0, (12.76b) 

for each .m-vector . c such that .cT cov
(
P(·)

)
c /= 0. 

Since 
. p̃s(x0; g1) = Φ(q(c)) ≥ ps(x0; g1), c /= 0, (12.77a)
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see (12.72), (12.73), the best upper bound. p̃s(x0, g1) can be obtained by solving the 
minimization problem 

. min
c /=0

q(c). (12.77b) 

Because of (12.76b), problem (12.77b) is equivalent to the convex optimization 
problem 

. min
cT cov

(
P(·)
)
c=1

√
g1

√
cT Kc − cT (C FC − P), (12.78) 

provided that cov.(P(·)) is regular. Representing the covariance matrix of. P = P(ω)
by 

. cov
(
P(·)

)
= QT Q

with a regular matrix . Q, problem (12.78) can be represented also by 

. min||w||=1

√
g1
√
wT Q−1T K Q−1w − wT Q−1T (C Fc − P). (12.79) 

12.7 Numerical Example: 12-Bar Truss 

The new approach for the optimal design of elastoplastic mechanical structures under 
stochastic uncertainty is illustrated now by means of the 12-bar truss according to 
Fig. 12.2. 

Suppose that .L = 1000mm, E = 7200
N

mm2
is the elasticity modulus, and the 

yield stresses with respect to tension and compression are given by . σU
y = −σ L

y =
σy = 216

N

mm2
. Furthermore, assume that the structure is loaded by the deterministic 

force components 
. P1x = P3y = 105 N

Fig. 12.2 12-bar truss
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and the random force component 

. P1y ∼= N (μ, σ 2)

having a normal distribution with mean . μ and variance .σ 2. The standard deviation 
. σ is always 10% of the mean . μ. 

The numerical results presented in this section have been obtained by 
Dipl.Math.oec. Simone Zier, Institute for Mathematics and Computer Applications, 
Federal Armed Forces University, Munich. 

The equilibrium matrix . C of the 12-bar truss is given by 

. C =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1.0 0 0 0 0 0.894427 0 0 0.707107
0 0 0 0 1.0 0 0 0 0.447214 0 0 0.707107
0 1.0 0 0 0 0 0 0 0 0.894427 0.707107 0
0 0 0 0 −1.0 0 0 0 0 −0.447214 −0.707107 0
0 0 1.0 −1.0 0 0 0.707107 0 0 0 −0.707107 0
0 0 0 0 0 1.0 0.707107 0 0 0 0.707107 0
1.0 −1.0 0 0 0 0 0 0.707107 0 0 0 −0.707107
0 0 0 0 0 −1.0 0 −0.707107 0 0 0 −0.707107

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(12.80) 

Note that under the above assumptions, condition (12.22b) holds. 
Since in the present case of a truss we have .H = I (.B × B identity matrix), 

cf. (12.5b) and (12.21h), the matrix .K0 = K0(a, x) = K0(σy, x), see  (12.30b) and 
(12.46b), is a diagonal matrix represented by 

.K0(σ,x) = diag

((
 i (x)

w0
i

)2
)
, (12.81a) 

cf. (12.30d). Here,.w0
i is the element of the.1 × 1 weight matrix.Wi0, and.  i =  i (x)

is defined, cf. (12.7b), by 

. i (x) = FU
i − FL

i

2
= σy Ai (x), i = 1, . . . , B. (12.81b) 

Defining 

.w̃i = w̃i (x) :=
(
 i (x)

w0
i

)2

, i = 1, . . . , B, (12.81c) 

the generalized stiffness matrix .K = K (σy, x), see  (12.30a), reads
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. K (σy , x) = CK0(σy , x)C
T

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w̃4 + 0.8w̃9 + 0.5w̃12 0.4w̃9 + 0.5w̃12 0 0
0.4w̃9 + 0.5w̃12 w̃5 + 0.2w̃9 + 0.5w̃12 0 −w̃5

0 0 w̃2 + 0.8w̃10 + 0.5w̃11 0.4w̃10 − 0.5w̃11

0 −w̃5 −0.4w̃10 − 0.5w̃11 w̃5 + 0.2w̃10 + 0.5w̃11

−w̃4 0 −0.5w̃11 0.5w̃11

0 0 0.5w̃11 −0.5w̃11

−0.5w̃12 −0.5w̃12 −w̃2 0
−0.5w̃12 −0.5w̃12 0 0

−w̃4 0 −0.5w̃12 −0.5w̃12

0 0 −0.5w̃12 −0.5w̃5

−0.5w̃11 0.5w̃11 −w̃2 0
0.5w̃11 −0.5w̃11 0 0

w̃3 + w̃4 + 0.5w̃7 + 0.5w̃11 0.5w̃7 − 0.5w̃11 0 0
0.5w̃7 − 0.5w̃11 w̃6 + 0.5w̃7 + 0.5w̃11 0 −w̃6

0 0 w̃1 + w̃2 + 0.5w̃8 + 0.5w̃12 −0.5w̃8 + 0.5w̃12

0 −w̃6 −0.5w̃8 + 0.5w̃12 w̃6 + 0.5w̃8 + 0.5w̃12

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(12.82) 

12.7.1 Numerical Results: MEC 

In the present case the cost factors .γi0 in the primary cost function .G0(x) = G0(x), 
cf. (12.1a), are defined by 

. γi0 := 1

V0
= 6, 4 · 10−4

[
1

mm3

]

corresponding to the chosen reference volume .V0 = 1562, 5mm3. Thus, the cost 
function .G0(x) and the recourse cost function .G∗

1(x) are dimensionless, 
cf. Sect. 4.2. Furthermore, the weight factors in the recourse costs.G1(x) are defined 
by 

. w0
i = 100.

In Fig. 12.3a, b the optimal cross-sectional areas .A∗
i , i = 1, . . . , 12, and the total 

volume are shown as functions fo the expectation .P1y = EP1y(ω) of the random 
force component .P1y = P1y(ω). With increasing expected force .P1y , the cross-
sectional areas of bar 1,3,4,8,12 are increasing too, while the other remain constant 
or are near zero. The resulting optimal design of the truss can be seen in Fig. 12.4. 
Here, bars with cross-sectional areas below.Amin = 100mm2 have been deleted. 

In Figs. 12.3a and 12.5a by the symbol “. ∗” the almost equal optimal cross-sectional 
areas of bar 8 and 12 are marked.
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Fig. 12.3 Optimal design using (MEC) 

Fig. 12.4 Optimal 6-bar truss using MEC 

The probability of failure of an (MEC)-optimal truss is always zero showing also 
the robustness of the optimal 6-bar truss according to Fig. 12.4. 

12.7.2 Numerical Results: ECBO 

The related numerical results obtained for the expected cost-based optimization prob-
lem (ECBO) are presented in Fig. 12.5a–c. Here, the optimal cross-sectional areas, 
the expected minimum volume, and the related probability of failure are represented 
again as functions of the expected form.P1y . The resulting optimal design is the same
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Fig. 12.5 Optimal design using (ECBO) 

as in (MEC), where in this case the probability of failure is also zero, which confirms 
again the robustness of this optimal design. 
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Chapter 13 
Maximum Entropy Techniques 

Abstract Finally, in this chapter the inference and decision strategies applied in 
stochastic optimization methods are considered in more detail: A large number 
of optimization problems arising in engineering, control, and economics can be 
described by the minimization of a certain (cost) function.v = v(a, x) depending on 
a random parameter vector .a = a(ω) and a decision vector .x ∈ D lying in a given 
set .D of feasible decision, design or control variables. Hence, in order to get robust 
optimal decisions, i.e., optimal decisions being most insensitive with respect to varia-
tions of the random parameter vector.a = a(ω), the original optimization problem is 
replaced by the deterministic substitute problem which consists in the minimization 
of the expected objective function .Ev = Ev(a(ω), x) subject to .x ∈ D. Since the 
true probability distribution. λ of.a = a(ω) is not exactly known in practice, one has 
to replace . λ by a certain estimate or guess . β. Consequently, one has the following 
inference and decision problem: 

• inference/estimation step 
Determine an estimation . β of the true probability distribution . λ of .a = a(ω), 

• decision step 
Determine an optimal solution .x∗ of .min

{
v(a(ω), x)β(dω) s.t. x ∈ D. 

Computing approximation, estimation . β of . λ, the criterion for judging an approxi-
mation. β of. λ should be based on its utility for the decision-making process, i.e., one 
should weight the approximation error according to its influence on decision errors, 
and the decision errors should be weighted in turn according to the loss caused by 
an incorrect decision. 
Based on inferential ideas developed among others by Kerridge, Kullback, in this 
chapter generalized decision-oriented inaccuracy and divergence functions for prob-
ability distributions. λ,. β are developed, taking into account that the outcome. β of the 
inferential stage is used in a subsequent (ultimate) decision-making problem mod-
eled by the above-mentioned stochastic optimization problem. In addition, stability 
properties of the inference and decision process 
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. λ −→ β −→ x ∈ D∈(β)

are studied, where .D∈(β) denotes the set of .∈−optimal decisions with respect to 
probability distribution .Pa(·) = β of the random parameter vector .a = a(ω). 

13.1 Uncertainty Functions Based on Decision Problems 

13.1.1 Optimal Decisions Based on the Two-Stage Hypothesis 
Finding (Estimation) and Decision-Making Procedure 

According to the considerations in the former chapters, in the following we suppose 
that.v = v(ω, x) denotes the costs or the loss arising in a decision or design problem 
if the action or design .x ∈ D is taken, and the elementary event .ω̃ = ω has been 
realized. Note that .v = v(ω, x) is an abbreviation for .v = v(a(ω), x), where . a(ω)

denotes the vector of all random parameters under consideration. As a deterministic 
substitute for the optimal decision/design problem under stochastic uncertainty 

.minimize v(ω, x) s.t. x ∈ D (13.1) 

we consider, cf. Chap. 1, the expectation or mean value minimization problem 

.minimize v(λ, x) s.t. x ∈ D, (13.2a) 

where 

.v(λ, x) = v(Pω̃, x) := Ev(ω̃, x) =
{

v(ω, x)λ(dω). (13.2b) 

Here, “. E” denotes the expectation operator, and the probability distribution . λ on 
the measurable space.(Ω,A) denotes the true probability distribution.Pω̃ := λ of the 
random element. ω. We may assume that. λ lies in a certain given set.Ʌ of probability 
measures on . A (a priori information about . λ). In the following we suppose that all 
integrals, expectations, probabilities, resp., under consideration exist and are finite. 

Because in practice also the true probability distribution . “.Pω̃ = λ” of .ω is not 
known in general, one works mostly with the following two-step Inference and Deci-
sion Procedure (IDP), according to Fig. 13.1: 

Step I: Accept the hypothesis . “.Pω̃ = β”. Hence, work with the hypothesis that 
.ω̃ has the distribution . β, where . β results from a certain estimation or 
hypothesis-finding procedure (suitable to .(Ʌ, D, v)); 

Step II: Instead of .(1), solve the approximate optimization problem: 

.minimize v(β, x) s.t. x ∈ D (13.3)
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Fig. 13.1 Inference and Decision Procedure (IDP) 

and take an .ε−optimal decision .x ∈ Dε(β) with an appropriate bound 
.ε > 0. Here, the set .Dε(β) of .ε−optimal decisions is defined by 

.Dε(β) := {x ∈ D : v(β, x) ≤ v∗(β) + ε}. (13.4a) 

Of course, 
.D0(β) := {x ∈ D : v(β, x) = v∗(β)} (13.4b) 

denotes the set of optimal solutions of (13.3). Note that in (13.4a), (13.4b) 
we use the minimum value of (13.3): 

.v∗(β) := inf{v(β, x) : x ∈ D}. (13.5) 

Remark 13.1 Hypothesis-finding in case that there is some a priori information, but 
no sample information .ωN = (ω1, ..., ωN ) of . ω̃.
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In the above case a so-called.e−estimate. β of.Pω̃ can be applied which is defined 
as follows: 

Definition 13.1 Let.e : Ʌ × Ʌ → R denote a function on the product.Ʌ × Ʌ of the 
given set .Ʌ of probability measures—containing the true distribution . λ of . ω̃—such 
that .e(λ, π) can be considered as a measure for the error selecting the distribution 
. π , while .Pω̃ = λ is the true distribution. An .e−estimate of .Pω̃ is then a distribution 
.β ∈ Ʌ such that 

. sup
λ∈Ʌ

e(λ, β) = inf
π∈Ʌ

( sup
λ∈Ʌ

e(λ, π) ). (13.6) 

If .e(·, ·) is  a metric on. Ʌ, then the.e−estimate. β of.Pω̃ is also called a “Tchebychev-
center” of . Ʌ. 

Though in many cases the approximation, estimation .β of . λ is computed by 
standard statistical estimation procedures, the criterion for judging an approximation 
. β of. λ should be based on its utility for the decision-making process, i.e., one should 
weight the approximation error according to its influence on decision errors, and 
the decision errors should be weighted in turn according to the loss caused by an 
incorrect decision, cf. [ 12, 15]. A detailed consideration of this concept is given in 
the following. 

In order to study first the properties of the above defined 2-step procedure 
(I, II), resulting from using an estimation/approximation of the unknown or only 
partly known parameter distribution, we suppose that the set .D0(β) of optimal deci-
sions with respect to . β, see  (13.4b), is non empty. Because.Pω̃ = λ is the true distri-
bution, according to the 2-step procedure.(I, I I )we (I), replacing. λ by its estimate. β, 
and (II) applying then a certain.β-optimal decision.xβ ∈ D0(β), we have the expected 
loss .v(λ, xβ). Consequently, 

.H0(λ, β) = sup{v(λ, x) : x ∈ D0(β)} (13.7) 

denotes therefore the maximum expected loss if .Pω̃ = λ is the true distribution of 
. ω̃, and the decision maker uses a certain .β-optimal decision. Because of . v(λ, x) ≥
v∗(λ), x ∈ D, cf.  (13.5), we have 

.H0(λ, β) ≥ v∗(λ) (13.8a) 

and 
.v∗(λ) = H0(λ, λ) (13.8b) 

provided that also .D0(λ) /= ∅. If .D0(β) = {x∗
β}, then 

.H0(λ, β) = v(λ, x∗
β). (13.9)
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In case .D0(λ) /= ∅, the difference 

.I0(λ, β) := H0(λ, β) − v∗(λ) = H0(λ, β) − H0(λ, λ) (13.10) 

is the maximum error relative to the decision-making problem .(Ω, D, v), if any  
.β-optimal decision is applied, while.Pω̃ = λ is the true distribution of. ω̃. Obviously, 

.I0(λ, β) ≥ 0 and I0(λ, β) = 0 if β = λ. (13.11) 

Though, according to the above assumption, problem (13.3) is solvable in principle, 
due to the complexity of mean value minimization problems, we have to confine in 
general with a certain .ε−optimal solution, hence, with an element of . Dε(β), ε >

0. However, applying any decision .xε
β of .Dε(β), cf.  (13.4a), we have to face the 

maximum expected loss 

.Hε(λ, β) = sup{v(λ, x) : x ∈ Dε(β)}. (13.12) 

In order to study the function 

. ε → Hε(λ, β), ε > (=)0,

we introduce still the following notation: 

Definition 13.2 Let .V denote the loss set defined by 

.V := {v(·, x) : x ∈ D}. (13.13a) 

Moreover, corresponding to .Dε(β), the subset .Vε(β) of .V is defined by 

.Vε(β) := {v(·, x) : x ∈ Dε(β)}. (13.13b) 

Based on the loss set. V , the functions.H = Hε(λ, β) and.v∗(λ) can be represented 
also as follows: 

.Hε(λ, β) = sup

{{
v(ω)λ(dω) : v ∈ Vε(β)

}

, (13.13c) 

.v∗(λ) := inf

{{
v(ω)λ(dω) : v ∈ V

}

. (13.13d) 

Remark 13.2 According to the above assumptions, the loss set .V lies in the space 
.L1(Ω,A, π) of all.π−integrable functions. f = f (ω for each probability distribution 
.π = λ, π = β under consideration. 

Remark 13.3 Identifying the decision vector .x ∈ D with the related loss function 
.v = v(ω, x), the  set  .D of decisions can be identified with the related loss set . V . 
Hence, we can consider the loss set .V as the generalized admissible set of decision
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or design vectors. On the other hand, the optimal decision problem under stochastic 
uncertainty can also be described by the set . Ω of elementary events and a certain set 
.V of measurable real functions . f = f (ω) on .Ω playing the role of loss functions 
related to the decision vector .x ≡ f (·). 

We have then the following properties: 

Lemma 13.1 Suppose that .Dε(β) /= ∅ for all . ε > 0.

(I) .ε → Hε(λ, β) is monotonous increasing on . (0,+∞);
(II) . Hε(λ, β) ≥ v∗(λ), ε > 0;
(III) If the loss set .V is convex, then .ε → Hε(λ, β) is concave; 
(IV) If .v(β, x) ≤ v∗(β) + ε̄ for all .x ∈ D and a fixed .ε̄ > 0, then . Hε(λ, β) =

sup{v(λ, x) : x ∈ D}, ε ≥ ε̄

(V) The assertions (1)–(4) hold also for .ε ≥ 0, provided that .D0(β) /= ∅. 
Proof Because of .Dε(β) /= ∅, ε > 0, the maximum expected loss .Hε(λ, β) is 
defined for all.ε > 0 . (I) The monotonicity of.ε → Hε(λ, β) follows from. Dε(β) ⊂
Dδ(β), if  .ε < δ. (II) The inequality .v(λ, x) ≥ v∗(λ), x ∈ D, yields . Hε(λ, β) =
sup{(λ, x) : x ∈ Dε(β)} ≥ v∗(λ). (III) Let be .∈1 > 0, ∈2 > 0, 0 ≤ α ≤ 1 and . x1 ∈
Dε1(β), x2 ∈ Dε2(β). Because of the convexity of the loss set . V , there exists 
.x3 ∈ D, such that.v(·, x3) = αv(·, x1) + (1 − α)v(·, x2). This yields then. v(β, x3) =
αv(β, x1) + (1 − α)v(β, x2) ≤ α(v∗(β) + ε1) + (1 − α)(v∗(β) + ε2) = v∗(β) + ε̄

with.ε̄ = αε1 + (1 − α)ε2. Hence,.x3 ∈ Dε̄(β) and therefore. Hε̄(λ, β) ≥ v(λ, x3) =
αv(λ, x1) + (1 − α)v(λ, x2). Since .x1, x2 were chosen arbitrarily, we get now 
.Hε̄(λ, β) ≥ αHε1(λ, β) + (1 − α)Hε2(λ, β). The rest of the assertion is clear. ⬜
Remark 13.4 According to Lemma 13.1(V) we have.Hε(λ, β) ≥ H0(λ, β), ε ≥ 0, 
provided that . D0(β) /= ∅.

By the above result the limit . “.lim
ε↓0 ” exists, and we have 

.H(λ, β) := lim
ε↓0 Hε(λ, β) = inf

ε>0
Hε(λ, β). (13.14a) 

.H(λ, β) ≥ v∗(λ) (13.14b) 

and 

.H(λ, β) ≥ H0(λ, β) ≥ v∗(λ) if D0(β) /= ∅. (13.14c) 

A detailed study of .H(λ, β) and.I (λ, β) := H(λ, β) − v∗(λ) follows in Sects. 13.1 
and 13.2, where we find a close relationship of . H , . I , resp., with the inaccuracy 
function of Kerridge [ 8], the divergence of Kullback [ 9]. Thus, we use the following 
notation: 

Definition 13.3 The function .H = H(λ, β) is called the generalized inaccuracy 
function, and .I = I (λ, β) := H(λ, β) − v∗(λ) is called the generalized divergence 
function.
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13.1.2 Stability/Instability Properties 

As shown by the following examples, there are families .(xε
β)ε>0 of .ε-optimal deci-

sions .xε
β with respect to .β, hence, .xε

β ∈ Dε(β), ε > 0, such that 

.v(λ, xε
β) ≥ H0(λ, β) + δ for all 0 < ε < ε0, (13.15) 

with a fixed constant .δ > 0 and for a positive . ε0. 
Thus, with a certain distance .δ > 0, the expected loss remains—also for arbi-

trarily small accuracy value .ε > 0 − outside the error interval .[v∗(λ), H0(λ, β)], 
which must be taken into account in any case due to the estimation of (13.2a) by  
the approximate optimization problem (13.3). However, this indicates a possible 
instability of the 2-step procedure .(I, II). 

Example 13.1 Let .Ω := {ω1, ω2} with discrete probability distributions . λ, β ∈
R

2+,1 := {λ ∈ R
2+ : λ1 + λ2 = 1}. Moreover, define the set of decisions, the loss set, 

resp., by .D ≡ V , where 

. V = conv{(1, 0)T , (2, 0)T , (0, 2)T , (0, 1)T }\conv{(1
2
,
1

2
)T , (0, 1)T },

where “conv” denotes the convex hull of a set. Selecting.λ = (0, 1)T and.β = ( 12 ,
1
2 )

T , 
we get 

. v∗(β) = 1

2
, Hε(λ, β) = v(λ, xε

β) = 2(v∗(β) + ε) = 1 + 2ε

with.xε
β = (0, 2(v∗(β) + ε))T = (0, 1 + 2ε)T ∈ Dε(β) for.0 < ε < 1

2 . On the other 
hand, .D0(β) = conv{( 12 , 1

2 )
T , (1, 0)T }\{( 12 , 1

2 )
T }, and therefore . H0(λ, β) = 1

2 .

Hence, (13.15) holds, i.e., . Hε(λ, β) = (λ, xε
β) = 1 + 2ε > 1 = H0(λ, β) + δ, ε >

0, with .δ = 1
2 . 

Remark 13.5 As it turns out later, the instability (13.15) follows from the fact that 
.V is not closed. 

Example 13.2 Let.Ω = {ω1, ω2}, and suppose that.D ≡ V is given by. V = {(0, 0)T }
∪ {z ∈ R

2+ : z1z2 ≥ 1}. Moreover, .β = (1, 0)T and .λ ∈ R
2+,1 with .λ2 > 0. Then, 

.v∗(β) = 0 and .D0(β) = {(0, 0)T }. Furthermore, .Hε(λ, β) = +∞, and . xε
β =

(ε, 1
ε
)T ∈ Dε(β), where.v(λ, xε

β) = λ1ε + λ2
1
ε
, ε > 0. Thus,.H0(λ, β) = 0, and also 

(13.15) holds 

. v(λ, xε
β) = λ1ε + λ2

1

ε
> H0(λ, β) + δ = δ

for all .0 < ε < λ2
δ
and each (fixed) . δ > 0.

Remark 13.6 Here, .V is closed, but it is not convex, which is the reason for the 
instability (13.15) in the present case.
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A necessary and sufficient condition excluding the instability (13.15) of the two-
step procedure .(I, I I ) procedure: 

. (13.1) ≡ (13.2a) → (13.1) → select anxε
β ∈ Dε(β)

is given in the following result. 

Lemma 13.2 The instability (13.15) of the two-step procedure .(I, I I ) is excluded 
if and only if .Hε(λ, β) ↓ H0(λ, β), .ε ↓ 0, hence, .H(λ, β) = H0(λ, β). 

Proof 

(I) Suppose that .H(λ, β) = H0(λ, β). Assuming that (13.15) holds, then 
.H0(λ, β) < +∞ and therefore.H(λ, β) ∈ R as well as. H0(λ, β) < H0(λ, β) +
δ ≤ v(λ, xε

β) ≤ Hε(λ, β), ε > 0. However, this is a contradiction to. Hε(λ, β) ↓
H0(λ, β) for .ε ↓ 0. Consequently, (13.15) is excluded in this case. 

(II) Suppose now that the instability (13.15) is excluded. Assuming that . H(λ, β) >

H0(λ, β), then .H0(λ, β) ∈ R, and there is .c ∈ R, such that . H(λ, β) > c >

H0(λ, β). Because of .Hε(λ, β) ≥ H(λ, β) > c, ε > 0, to each .ε > 0 there 
exists an .xε

β ∈ Dε(β) such that .v(λ, xε
β) > c. Hence, (13.15) holds with . δ :=

c − H0(λ, β), which is in contradiction to the assumption. Consequently, we 
have .H(λ, β) = H0(λ, β) . ⬜

In the following we give now sufficient conditions for the stability condition 
.H(λ, β) = H0(λ, β) or .Hε(λ, β) ↓ H0(λ, β) for .ε ↓ 0. 

Theorem 13.1 

(I) Let .Dε(β) /= ∅, ε > 0, and suppose that there is .ε̄ > 0 such that .Dε̄(β) is com-
pact und .x → v(λ, x), x → v(β, x), x ∈ Dε̄(β) are real valued, continuous 
functions on .Dε̄(β). Then, .v∗(β) ∈ R, D0(β) /= ∅, and . H(λ, β) = H0(λ, β).

(II) Replacing .x → v(λ, x), x ∈ Dε̄(β), by an arbitrary continuous function . F :
Dε̄(β) → R and assuming that the remaining assumptions of the first part are 
unchanged, then .sup{F(x) : x ∈ Dε(β)} ↓ sup{F(x) : x ∈ D0(β)} for . ε ↓ 0.

Proof Obviously, with .F(x) := v(λ, x) the first assertion follows from the second 
one. Thus, we have to prove only the second part of Theorem 13.1. We therefore 
set .Fε := sup{F(x) : x ∈ Dε(β)} for .ε ≥ 0. Corresponding to Lemma 13.1, one 
can prove that .Fε1 ≤ Fε2 , provided that .ε1 < ε2. In the first part of the proof we 
show that .D0(β) /= ∅, hence, the expression .H0(λ, β) is defined therefore. Since 
.Dε̄(β) /= ∅ and .v(β, x) ∈ R for all .x ∈ Dε̄(β), we get . v∗(β) ≥ −ε̄ + v(β, x) >

−∞ with some.x ∈ Dε̄(β). Thus,.v∗(β) ∈ R. Assuming that .D0(β) = ∅, we would 
have .∩0<ε≤ε̄Dε(β) = D0(β) = ∅. However, according to our assumptions, the set 
.Dε(β) = {x ∈ Dε̄(β) : v(β, x) ≤ v∗(β) ≤ v∗(β) + ε}, 0 < ε ≤ ε̄ is closed for each 
.0 < ε ≤ ε̄. Due to the compactness of .Dε̄(β), this yields then.∩n

i=1Dεi (β) = ∅ for a 
finite number of.0 < εi ≤ ε̄, i = 1, 2, ..., n. Defining.ε0 = min

1≤i≤n
εi , then.ε0 > 0 and 

.Dε0(β) = ∩n
i=1Dεi (β) = ∅,which contradicts to.Dε /= ∅, ε > 0. Thus,wemust have
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.D0(β) /= ∅. Since the sets .Dε(β), 0 ≤ ε ≤ ε̄ are closed and therefore also compact, 
we have 

.Fε = sup{F(x) : x ∈ Dε(β)} = max{F(x) : x ∈ Dε(β)}, 0 ≤ ε ≤ ε̄, (13.16) 

where, because of the continuity of F, the maximum is taken. In the second part we 
show that.Fε ↓ F0 for.ε ↓ 0.Due to the monotonicity of.ε → Fε and.Fε ≥ F0, ε > 0, 
we have.lim

ε↓0 Fε ≥ F0.Moreover, with (13.16), for.0 ≤ ε ≤ ε̄ and each.c ∈ R it holds 

. Δc := {ε : 0 ≤ ε ≤ ε̄, Fε ≥ c} = {ε : 0 ≤ ε ≤ ε̄,max{F(x) : x ∈ Dε(β)} ≥ c}
(13.17a) 

and therefore 

. Δc = {ε : 0 ≤ ε ≤ ε̄, there is x ∈ Dε̄(β) with v(β, x) ≤ v∗(β) + ε and F(x) ≥ c}.
(13.17b) 

If.εk → ε0, k → ∞ is a convergent sequence in.Δc for a fixed.c ∈ R, then, according 
to (13.17a), (13.17b), there are elements .xk ∈ Dε̄(β), such that 

.v(β, xk) ≤ v∗(β) + εk and F(xk) ≥ c, k = 1, 2, . . . . (13.18) 

Since .Dε̄(β) is compact, sequence .(xk) has an accumulation point .x0 ∈ Dε̄(β), and 
the continuity of.x → F(x) and.x → v(β, x) on.Dε̄(β) yield the existence of a sub-
sequence.(xk j ) of.(xk), such that .F(Xk j ) → F(x0) and. v(β, xk j ) → v(β, x0), j →
∞. From (13.18) we get then.v(β, x0) ≤ v∗(β) + ε0 and.F(x0) ≥ c.Hence,. Fε0 ≥ c
and therefore .ε0 ∈ Δc, because we have .0 ≤ ε ≤ ε̄, since .0 ≤ εk j ≤ ε̄. The above 
considerations yield that .Δc is closed for all .c ∈ R. Assuming that there is . c̃ ∈ R,

such that.lim
ε↓0 Fε ≥ c̃ > F0,, we have.Fε ≥ c̃ > F0 for all.ε > 0. However, this yields 

then.Δc̃ = {0 ≤ ε ≤ ε̄ : Fε ≥ c̃ :} = (0, ε̄], which contradicts to the closedness of. Δc

for each .c ∈ R shown above. 
Thus, .lim

ε↓0 Fε = F0. ⬜

Remark 13.7 According to (13.1)–(13.3), the second part of Theorem 13.1 is used 
mainly for .F(x) = −v(λ, x). In this case we have 

. inf{v(λ, x) : x ∈ Dε(β)} ↑ inf{v(λ, x) : x ∈ D0(β)} for ε ↓ 0. (13.19) 

Obviously, the above result can be formulated also with the loss set .V in the 
following way: 

Corollary 13.1 

(I) Let.Vε(β) /= ∅, ε > 0 and suppose that there is.ε̄ > 0 such that.Vε̄(β) is compact 
and . f → λ f, f → β f, f ∈ Vε̄(β) are real valued and continuous functions on 
.Vε̄(β). Then .v∗(β) ∈ R, V0(β) /= ∅, and .H(λ, β) = H0(λ, β);
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(II) Replacing . f → λ f, f ∈ Vε̄(β) by an arbitrary continuous function 
.F : Vε̄(β) → R, and keeping the remaining assumptions in (I), then. sup{F( f ) :
f ∈ Vε(β)} ↓ sup{F( f ) : f ∈ V0(β)} for . ε ↓ 0.

Proof The assertion follows immediately from.Vε(β) = {v(., x) : x ∈ Dε(β)}. ⬜

13.2 The Generalized Inaccuracy Function . H(λ, β)

Let denote.Pω̃ = λ the true distribution of. ω̃, and suppose that the hypothesis “. Pω̃ =
β” has been accepted. Moreover, assume that .Dε(β) /= ∅ for all .ε > 0; This holds 
if and only if .v∗(β) > −∞ or .v∗(β) = −∞ and then .v(β, x) = −∞ for an .x ∈ D. 
Using a decision .x ∈ Dε(β), then we have a loss from.{v(λ, x) : x ∈ Dε(β)}, and 

. Hε(λ, β) = sup{v(λ, x) : x ∈ Dε(β)},
hε(λ, β) = inf{v(λ, x) : x ∈ Dε(β)}

denotes the maximum, minimum, resp., expected loss, if the computation of an .ε-
optimal decision is based on the hypothesis ..“Pω̃ = β”, while .Pω̃ = λ is the true 
probability distribution of . ω̃. Corresponding to Lemma 13.1 on .Hε(λ, β), we can 
show this result: 

Lemma 13.3 Suppose that .Dε(β) /= ∅, ε > 0. Then, 

(I) .ε → hε(λ, β), with .hε(λ, β) = inf{v(λ, x) : x ∈ Dε(β)}, is monotonous 
decreasing on .(0,+∞); 

(II) .hε(λ, β) ≥ v∗(λ) for all .ε > 0; 
(III) .ε → hε(λ, β), ε > 0 is convex, provided that the loss set .V is convex; 
(IV) If.v(β, x) ≤ v∗(β) + ε̄ for all.x ∈ D and a fixed.ε̄ > 0, then. hε(λ, β) = v∗(λ),

ε > ε̄; 
(V) The assertions (a)–(c) hold also for .ε ≥ 0, in case that . Do(β) /= ∅.

Lemmas 13.1 and 13.3 yield then this corollary: 

Corollary 13.2 For two numbers .ε1, ε2 > 0 (.≥ 0, if .Do(β) /= ∅, resp.) we have 

.hε1(λ, β) ≤ Hε2(λ, β). (13.20) 

Proof If .ε1 ≤ ε2, then .Hε2(λ, β) ≥ Hε1(λ, β) ≥ hε1(λ, β), and in case .ε1 > ε2 it is 
.hε1(λ, β) ≤ hε2(λ, β) ≤ Hε2(λ, β) according to (a) of Lemmas 13.1, 13.3. ⬜

Hence, the limit .lim
ε↓0 hε(λ, β) = sup

ε>0
hε(λ, β), exists, and corresponding to 

(13.14a) we define 

.h(λ, β) = lim
ε↓0 hε(λ, β) = sup

ε>0
hε(λ, β). (13.21)
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For the functions.h(λ, β), H(λ, β) defined by (13.14a) and (13.21) the following 
result holds: 

Theorem 13.2 

(I) Let .Dε(β) /= ∅ for .ε > 0. Then 

. v∗(λ) ≤ h(λ, β) ≤ H(λ, β);

(II) Let .Dε(λ) /= ∅ for .ε > 0. Then 

. v∗(λ) = h(λ, λ) = H(λ, λ).

Proof 

(I) Lemma 13.3 yields .h(λ, β) = sup
ε>0

hε(λ, β) ≥ v∗(λ). Because of (13.20) we  

have .hε(λ, β) ≤ Hε̄(λ, β), ε > 0 for each fixed .ε̄ > 0. From this we obtain 
.h(λ, β) = sup

ε>0
hε(λ, β) ≤ Hε̄(λ, β), ε̄ > 0, hence, . h(λ, β) ≤ inf

ε>0
Hε(λ, β) =

H(λ, β).

(II) According to Theorem 13.2 (I) and the Definition of .H(λ, λ), we get 
. v∗(λ) ≤ H(λ, λ) ≤ Hε(λ, λ) = sup{v(λ, x) : x ∈ Dε(λ)} = sup{v(λ, x) :
v(λ, x) ≤ v∗(λ) + ε} ≤ v∗(λ) + ε for each .ε > 0. Thus, .H(λ, λ) = v∗(λ), and 
due to the first part we also have .v∗(λ) = h(λ, λ). ⬜

For the geometrical interpretation of the values .h(λ, β), H(λ, β) consider now 
the transformed loss set 

.Vλ,β = {(λ f, β f )T : f ∈ V }(⊂ R
2) . (13.22) 

If the loss set .V is convex, then the linear transformation .Vλ,β = Tλ,β(V ) of .V with 
respect to .Tλ,β : f → (λ f, β f )T is again a convex set. Hence, . v0(β) = inf{z2 : z ∈
Vλ,β}, which means that .v∗(β) can be interpreted as the second coordinate of one of 
the deepest points of .Vλ,β . In the  same  way,  .v∗(λ) is the first coordinate one of the 
points lying on the left boundary of .Vλ,β . 

According to Fig. 13.2, the values .h(λ, β), .H(λ, β) and also the divergences 
.I (λ, β) := H(λ, β) − H(λ, λ), .J (λ, β) := h(λ, β) − h(λ, λ) can be interpreted 
corresponding to .Vλ,β in this way: 

. h(λ, β) := first coordinate of the deepest point of Vλ,β being most left

H(λ, β) := first coordinate of the deepest point of Vλ,β being most right.

The remaining .H, h- and .I, J -functions can be interpreted in .Vλ,β in the same way.
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Fig. 13.2 The.H, h- and.I, J -functions 

13.2.1 Special Loss Sets . V

In the following we give a justification for the notation “generalized inaccu-
racy function” for  .H(λ, β) and .h(λ, β). For this aim, assume next to that . Ω =
{ω1, ω2, ..., ωn} contains a finite number of realizations or scenarios. Moreover, 
suppose that . f : R+ → R ∪ {+∞} is a convex, monotonous decreasing function 
such that . f (t) ∈ R for .t > 0 and . f (0) = lim

t→0
f (t) = sup

t>0
f (t). Putting . f (α) ≡

( f (α1), f (α2), ..., f (αn))
T and .riRn

+,1 = {α ∈ R
n
+,1 : αk > 0, k = 1, 2, ..., n}, let  

then the loss set 
. V := C f ,

be defined by 

.C f = clconv{ f (α) : α ∈ riRn
+,1}; . (13.23) 

Here, . “.clconv” denotes the closed, convex hull of a set. We still put 

. v∗
f (β) = inf{βT z : z ∈ C f }, β ∈ R

n
+,1.

Some properties of .C f are stated in the following: 

Lemma 13.4 

(I) .C f is closed and convex; 
(II) From .z ∈ C f we also have .(zτ(1), ..., zτ(n))

T ∈ C f for each permutation . τ of 
the index set .{1, 2, ..., n};
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(III) If . f (t) ≥ 0, 0 ≤ t ≤ 1, then .C f ⊂ R
n+, 0 ≤ v∗

f (β) < +∞, and for .βk > 0 we 

get . 0 ≤ zk ≤ (
1/β
k )(v∗

f (β) + ε), z ∈ Vε(β);
(IV) If . f (0) ∈ R, then .C f is a compact, convex subset of .Rn, it also holds . C f =

conv{ f (α) : α ∈ R
n
+,1}, and to each .z ∈ C f there is an .α ∈ R

n
+,1 with . z ≥

f (α);
(V) If . f (0) = +∞, then for each .z ∈ C f there exists an .α ∈ riRn

+,1 such that 
.z ≥ f (α). 

Proof 

(I) The first part follows from the definition of .C f . 

(II) Each.z ∈ C f has the representation.z = lim
ν→∞ zν with. zν =

n∑

i=1
ννi

γ · f (ανi ), ανi ∈

ri Rn
+,1, γ

νi ≥ 0, i = 1, 2, ..., nν,
n∑

i=1
ννi

γ = 1. Consequently, with a permuta-

tion . τ of .1, 2, ..., n, also  .(xτ(1), ..., xτ(n))
T has a representation of this type. 

Thus, . (xτ(1), ..., xτ(n))
T ∈ C f .

(III) From. f (t) ≥, 0 ≤ t ≤ 1 and.0 < αk < 1 for.α ∈ riRn
+,1, we get. f (α) ∈ R

n+ for 
.α ∈ riRn

+,1 and therefore .C f ⊂ R
n+. Hence, . v∗

f (β) = inf{βT z : z ∈ C f } ≥ 0
and .z ≥ 0. Because of .( f (1/n), ..., f (1/n))T ∈ C f and . f (1/n) ∈ R, we find 

.v∗
f (β) ≤

n∑

k=1
βk f (1/n) < +∞. In addition, because of . zk ≥ 0, k = 1, 2, ..., n

for.z ∈ C f and with.β ≥ 0we get.zkβk ≤ βT z ≤ v∗(β) + ε for each. z ∈ Vε(β),

hence, .0 ≤ zk ≤ (1/βk)(v
∗
f (β) + ε), provided that . βk > 0.

(IV) Since.{ f (α) : α ∈ riRn
+,1} ⊂ { f (α) : α ∈ R

n
+,1} and. α → f (α) = ( f (α1), ...,

f (αn))
T , α ≥ 0 is a continuous mapping for real . f (0) , we find that . { f (α) :

α ∈ riRn
+,1} is bounded as a subset of the compact set .{ f (α) : α ∈ riRn

+,1}. 
Due to [ 14], Theorem 17.2 we obtain then. C f = clconv{ f (α) : α ∈ riRn

+,1} =
conv(cl{ f (α) : α ∈ riRn

+,1}) = conv{ f (α);α ∈ R
n
+,1}; indeed, if . f (αν) →

z, ν → ∞ with .αν ∈ riRn
+,1, then, due to the compactness of .Rn

+,1 we have 
a subsequence .(αν j ) of .(αν), such that .αν j → α ∈ R

n
+,1, j → ∞. Because of 

. f (αν j ) → z, j → ∞ and the continuity of. f , we get then. f (α) = z, hence,. z ∈
{ f (α) : α ∈ R

n
+,1} and therefore, as asserted,. cl{ f (α) : α ∈ riRn

+,1} = { f (α) :
α ∈ R

n
+,1}.Being the convex hull of a compact set,.C f is also a compact set. For 

.z ∈ C f we have.z =
ν∑

i=1
γ i f (αi ), γ i ≥ 0, αi ∈ R

n
+,1, i = 1, 2, ..., and. 

ν∑

i=1
γ i =

1. Thus, .zk =
ν∑

i=1
γ i f (αi

k) ≥ f (
ν∑

i=1
γ iαi

k) = f (αk) with . α =
ν∑

i=1
γ iαi ∈ R

n
+,1.

Hence, we have therefore found an .α ∈ R
n
+,1 such that . z ≥ f (α).

(V) Due to the representation of an element.z ∈ C f stated in part (II), we have. zk =
lim

ν→∞ zν
k , where .z

ν
k =

nν∑

i=1
γ νi f (ανi

k ) with .ανi ∈ riRn
+,1 and . γ νi ≥ 0,

nν∑

i=1
γ νi =

1. As above, for each .ν = 1, 2, ... we have the relation .zν ≥ f (αν), with 

.αν =
n∑

i=1
γ νiανi . However, the sequence .(αν) has an accumulation point . α in
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.R
n
+,1; We show now that .α ∈ riRn

+,1. Assuming that .αk = 0 for an index . 1 ≤
k ≤ n, with a sequence .αν j → α, j → ∞ we get the relation . α

ν j

k → αk = 0
and therefore . f (α

ν j

k ) → f(0).= +∞, j → ∞. However, this is not possible, 
since .z

ν j

k ≥ f (α
ν j

k ) and .(zν) is a convergent sequence. Thus, .αk > 0. Fur-
thermore, from .z

ν j

k ≥ f (α
ν j

k ), j = 1, 2, ..., z
ν j

k → zk, α
ν j

k → αk, j → ∞ we 
finally obtain .zk ≥ f (αk), hence, .z ≥ f (α) with an .α ∈ riRn

+,1. ⬜
The above lemma yields now several consequences on . Hε(λ, β), hε(λ, β).

Corollary 13.3 For each .λ ∈ R
n
+,1 the value .v∗

f (λ) has the representation 

.v∗
f (λ) = inf{λT f (α) : α ∈ ri Rn

+,1} (13.24) 

and for . f (0) ∈ R we may replace .riRn
+,1 also by .R

n
+,1. 

For .H(λ, β) = H ( f )(λ, β) and .h(λ, β) = h( f )(λ, β), with .V = C f , from  
Lemma 13.4 we get this result: 

Corollary 13.4 

(I) If . f (0) ∈ R, then .H ( f )(λ, β) = H ( f )
0 (λ, β) and . h( f )(λ, β) = h( f )

0 (λ, β) =
inf{λT f (α) : βT f (α) = v∗

f (β)} for all .λ, β ∈ R
n
+,1. Furthermore, 

.H ( f )
0 (λ, β) = sup{λT f (α) : βT f (α) = v∗

f (β)} for all .λ ∈ R
n
+,1 and 

. β ∈ riRn
+,1.

(II) If . f (0) = +∞ and . f (t) ≥ 0, 0 ≤ t ≤ 1, then .H ( f )(λ, β) = H ( f )
0 (λ, β), . h( f )

(λ, β) = h( f )
0 (λ, β), provided that .λ ∈ R

n
+,1 and .β ∈ riRn

+,1. If . λ, β ∈ R
n
+,1

are selected such that .λk > 0, βk = 0 for an .1 ≤ k ≤ n, then . H(λ, β) = +∞.

For the case .β ∈ R
n
+,1\riRn

+,1 we obtain this result: 

Corollary 13.5 If .βκ = 0 for an index .l ≤ κ ≤ n, then 

.v∗
f (β) = inf{

n∑

k=κ

βk f (αk) : αk > 0, k /= κ,

n∑

k /=κ

αk = 1}, (13.25) 

and in the case. f (0) ∈ R the inequality..“αk > 0” may be replaced also by..“αk ≥ 0”. 
If . f (0) = +∞ and in addition . f is strictly monotonous decreasing on .[0, 1], then 
.V0(β) = ∅. 

Indicating the dependence of the set .C f , cf.  (13.23), as well as the values . v∗
f (β)

on the index . n (= number of elements of . Ω) by means of .C (n)
f , .v(n)∗

f (β), resp., then 

.v
(n)∗
f (β) = inf{βT z : z ∈ C (n)

f }. Moreover, for a .β ∈ R
n
+,1 with .βk = 0, .1 ≤ k ≤ n, 

and using the notation .β̂ = (β1, ..., βk−1, βk+1, ..., βn)
T , the equations (13.24) and 

(13.25) yield 

.v
(n)∗
f (β) = v

(n−1)∗
f (β̂). (13.26)
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Extending (13.26), we find the following corollary: 

Corollary 13.6 Suppose that.λ, β ∈ R
n
+,1 with.λk = βk = 0 for an index.1 ≤ k ≤ n. 

Moreover, the notation .h(n)
ε (λ, β), h(n)(λ, β) indicates the dependence of the func-

tions .hε(λ, β), h(λ, β) on the dimension . n. Then, .h(n)
ε (λ, β) = h(n−1)

ε (λ̂, β̂) for . ε >

0, as well as  .h(n)(λ, β) = h(n−1)(λ̂, β̂), provided that . λ̂ = (λ1, ..., λk−1, λk+1, ...,

λn)
', and . β̂ is defined in the same way. 

A corresponding result for .H(λ, β) is stated below: 

Corollary 13.7 Consider .λ, β ∈ R
n
+,1 with .λk = βk = 0 for a certain .l ≤ k ≤ n, 

and let indicate .H (n)(λ, β) the dependence of .H(λ, β) on . n. Then, . H (n)(λ, β) =
H (n−1)(λ, β), provided that .λ, β are defined as above, and the implication . β j =
0 ⇒ λ j = 0 holds for . j /= k. 

A relationship between .v∗
f (λ) and .v∗

f (e), e = (1/n, ..., 1/n)T is shown in the 
following. 

Corollary 13.8 For all .λ ∈ Rn
+,1 we have . v∗

f (λ) ≤ f (1/n) ≤ v∗
f (1/n, ..., 1/n).

Proof Equation (13.24) in Corollary 13.3 yields.v∗
f (λ) ≤ λT f (e) = f (1/n). Select 

then an arbitrary.ε > 0. According to (13.24) there exists an.αε ∈ riRn
+,1, such that 

.v∗(e) + ε ≥ eT f (αε). Hence, . v∗(e) ≥ −ε +
n∑

k=1
f (αε

k ) ≥ −ε + f (
n∑

k=1
(1/n)αε

k ) =
−ε + f (1/n). Since .ε > 0 was chosen arbitrarily, we have .v∗

f (e) ≥ f (1/n) and 
therefore .v∗

f (e) ≥ f (1/n) ≥ v∗
f (λ). ⬜

Note that the assertion in this corollary can also be found in [ 1]. Having some 
properties of .H (n) and .h(n), we determine now these functions for some important 

Fig. 13.3 Functions. fb
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Fig. 13.4 Convex sets. C fb

special cases of. f . Next to we consider, see Fig. 13.3, the family.( fb)b≥0, defined by 
(cf. [ 1]) 

. fb(t) =
{ 1

1−b (1 − t1−b) , t ≥ 0 for b > 0, b /= 1
− log t , t ≥ 0 for b = 1.

The corresponding sets .C fb are shown in the next Fig. 13.4. 
It is easy to see that each . fb is a strictly monotonous decreasing, convex and for 

.b > 0 strictly convex function on .[0,+∞], such that . −∞ < fb(t) < +∞, t > 0
and 

. lim
t→0

fb(t) = sup
t>0

fb(t) = fb(0) =
{ 1

1−b for 0 ≤ b ≤ 1
+∞ for b ≥ 1.

Moreover, . fb(t) ≥ 0 = f (1) for .0 ≤ t ≤ 1. Hence, . f = fb fulfills all needed con-
ditions. Next to we want to determine .v∗

f (λ) and .Vo(λ), where the dependence on 
.b ≥ is denoted by the notations .v∗

(b)(λ), V(b)o(λ) and .C(b) .
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Theorem 13.3 

(I) For each .λ ∈ R
n
+,1 we have 

.v∗
(o)(λ) = 1 − max

1≤k≤n
λk (13.27a) 

. v∗
(b)(λ) = 1

1 − b

n∑

k=1

λk(1 − (
λk1/b
n∑

k=1
λk

1/b
)
1−b

) for b > 0, b /= 1

(13.27b) 

.v∗
(1)(λ) =

n∑

k=1

λk log(1/λk) (13.27c) 

(II) If .λ1 > 0, ..., λm > 0, λm+1 = ... = λn = 0, then for .b > 0 we also have 

.v∗
(b)(λ) = λ̂T fb(α̂

(b)) (13.27d) 

with .λ = (λ1, ..., λm)T , .α̂(b) = (α
(b)
1 , ...., α(b)

m )T and 

. α
(b)
k =

⎧
⎨

⎩
λ
1/b
k /

n∑

k=1
λ
1/b
k for b > 0, b /= 1

λk for b = 1
and k = 1, ...,m,

where .α̂(b) is determined uniquely. 

(III) We have 

.V(o)o(λ) = { fo(α) : α ∈ Rn
+,1,

n∑

k=1

λkαk = max
1≤k≤n

λk}, λ ∈ R
n
+,1, (13.27e) 

.V(b)o(λ) = { fb(α(b))} with α(b) = (α
(b)
1 )T , λ ∈ riRn

+,1, b > 0 (13.27f) 

. V(b)o(λ) = {z : zk = fb(α
(b)
k ), λk > 0 and zk = 1

1 − b
, λk = 0}

= { fb(α̃(b))}, λ ∈ R
n
+,1\riRn

+,1, 0 < b < 1, and certain α̃(b)

(13.27g) 

.V(b)o(λ) = ∅, λ ∈ Rn
+,1\ri Rn

+,1 and b ≥ 1. (13.27h) 

Proof Consider first the case .b = 0. From (13.23) we easily find that . C(o) =
clconv{ f0(α) : α ∈ riRn

+,1} = {(1 − αk)k=1,...,n : α ∈ R
n
+,1}.Because of (13.24) we  

further have . v∗
(o)(λ) = inf{1 − λTα : α ∈ R

n
+,1} = 1 − sup{λTα : α ∈ R

n
+,1} = 1 −

max
1≤k≤n

λk .Hence,.V(o)o(λ) = {z ∈ C(o) : λTα = max
l≤k≤n

λk, α ∈ R
n
+,1},which shows the
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assertion for .b = 0. Thus, let now .b > 0 and . λk > 0, k = 1, ...,m, λm+1 = ... =
λn = 0. From (13.24) and (13.26) we get then . v

(n)∗
(b) (λ) = v

(m)∗
(b) (λ̂) = inf{λ̂T fb(α̂) :

α̂ ∈ riRm
+,1} with .λ̂ = (λ1, ..., λm)T and .α̂ = (α1, ..., αm)T . The Lagrangian of the 

convex optimization problem 

. min λ̂T fb(α̂) (13.28a) 

.s.t. α̂ ∈ riRm
+,1 (13.28b) 

is then given by .L(α̂, u) = λ̂T fb(α̂) + u(
m∑

k=1
αk − 1). Moreover, the optimality 

conditions—without considering the constraints .αk > 0, k = 1, ...,m—read 

.0 = ∂L

∂u
=

m∑

k=1

αk − 1 (13.29a) 

.0 = ∂L

∂αk
= λk D fb(αk) + u (13.29b) 

Inserting.Dfb(t) = −t−b, t > 0 for.b > 0, b /= 1 and.Df1(t) = −1/t, t > 0 for. b =
1 into (13.29a), yields 

. αk = α
(b)
k =

⎧
⎨

⎩
λ
1/b
k /

m∑

k=1
λ
1/b
k for b > 0, b /= 1

λk for b = 1
and k = 1, . . . ,m.

Since .α(b)
k > 0, k = 1, ...,m, also the conditions .αk > 0, k = 1, ...,m, hold. More-

over, .α̂(b) = (α
(b)
1 , ..., α(b)

m )T is the unique solution of (13.28a), (13.28b), since 
.α → λT f (α) is strictly convex on.riRm

+,1. Hence,. v
(n)∗
(b) (λ) = v

(m)∗
(b) (λ) = λ̂T fb(α̂(b)).

Using the convention .0 · (+∞) = 0, yields the rest of (13.27b). In addition, this 
proves also part (II). For showing (III) and therefore also (I), let .λ ∈ riRn

+,1 and 
.z ∈ V(b)o(λ), b > 0. We remember that . fb(0) = +∞ for .b ≥ 1 and . fb(0) ∈ R for 
.0 ≤ b < 1. Part (II) yields then .α(b) = (α

(b)
1 , ..., α(b)

n )T ∈ ri Rn
+,1 and . v(n)∗

(b) (λ) =
λT fb(α(b)), hence, . fb(α(b)) ∈ V(b)o(λ)( /= ∅).

According to Lemma 13.4, for  .0 < b < 1, .b ≥ 1, resp., there is .α ∈ R
n
+,1, 

.α ∈ riRn
+,1,, resp., such that .z ≥ fb(α) (to each .z ∈ V(b)o(λ)). This immediately 

yields .v(n)∗
(b) (λ) = λT z = λT fb(α), since. fb(α) ∈ C(b). Thus, .z = fb(α), because of 

.λk > 0, k = 1, ..., n.Assuming.α /= α(b), for.α̃ = 1
2α + 1

2α
(b) we get on the one hand 

.α̃ ∈ riRn
+,1, hence, . fb(α̃) ∈ C(b), b > 0, and on the other hand we have . v(n)∗

(b) (λ) ≤
λT fb(α̃) < 1

2λ
T fb(α) + 1

2λ
T fb(α(b)) = v

(n)∗
(b) (λ), since. fb is strictly convex for. b >

0. Consequently, .α = α(b) and therefore . V(b)o(λ) = { fb(α(b))}, b > 0, λ ∈ riRn
+,1.

Now consider .λ1 > 0, ..., λm > 0, λm+1 = ... = λn = 0. Again from part (II) we 
get .v(n)∗

(b) (λ) = v
(m)∗
(b) (λ̂) = λT fb(α̂(b)). We put .α̃(b) = (α

(b)
1 , ..., α(b)

m , 0, ..., 0)T . Let 
.0 < b < 1. Because of . f (0) = 1/(1 − b) ∈ R, due to Lemma 13.4 we obtain
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.C(b) = conv{ fb(α) : α ∈ R
n
+,1}, hence, . fb(α̃(b)) ∈ V(b)o(λ), since .α̃(b) ∈ R

n
+,1 and 

. λT fb(α̃(b)) = λ̂T fb(α̂(b)) = v
(n)∗
(b) (λ).

Consider now.z ∈ V(b)o(λ). According to Lemma 13.4, part . V , there is . α ∈ R
n
+,1

with .z ≥ fb(α). Because of .λ̂T ẑ = λT z = v
(n)∗
(b) (λ) = λT fb(α) = λ̂T fb(α̂) we have 

. fb(α) ∈ V(b)o(λ) and .ẑ = fb(α̂), since .λk > 0, k = 1, 2, ...,m. Assuming . α̂ /= α̂(b)

and considering then under this assumption .γ = 1
2α + 1

2 α̃
(b), we get . fb(γ ) ∈ C(b),

since .γ ∈ R
n
+,1 and . v

(n)∗
(b) (λ) ≤ λT fb(γ ) = λ̂T fb(γ̂ ) < 1

2 λ̂
T fb(α̂) + 1

2 λ̂
T fb(α̂(b)) =

v
(n)∗
(b) (λ). However, this yields a contradiction, hence, it holds .α̂(b) = α̂. Obviously, 
each .α ∈ R

n
+,1 fulfilling this equation is contained in .V(b)o(λ). 

Thus, . V(b)o(λ) = { fb(α) : α ∈ R
n
+,1, α̂ = α̂(b)} = { fb(α(b))} = {( fb(α(b))T ,

1/(1 − b), ..., 1/(1 − b))T }, since .
m∑

k=1
α

(b)
k = 1 and therefore . αk = 0, k = m +

1, ..., n. Finally, let .b ≥ 1. Due to . fb(α̂(b)) = ( fb(α̂(b))T ,+∞, ...,+∞)T and 
.C(b) ⊂ R

n , we find . fb(α̂(b)) /∈ C(b). Suppose that . z lies in .V(b)o(λ). According to 
Lemma 13.4 .( f (0) = +∞) there is then an .α ∈ riRn

+,1 with .z ≥ f (α) and there-

fore .v(n)∗
(b) (λ) = λT z = λ̂T ẑ = λT fb(α) = λ̂T fb(α̂). Because of .α ∈ riRn

+,1, it is  

.

m∑

k=1
αk < 1 and therefore .α̂ /= α̂(b). On the other hand we have . γ = 1

2α + 1
2 α̃

(b) ∈
riRn

+,1. This yields . v
(n)∗
(b) (λ) ≤ λT fb(γ ) = λ̂T fb(γ̂ ) < 1

2 λ̂
' fb(α̂) + 1

2 λ̂
T fb(α̂)(b)) =

v
(n)∗
(b) (λ), which is 
again a contradiction. Consequently, .V(b)o(λ) = ∅ for .b ≥ 1 and .λ /∈ riRn

+,1. ⬜

Remark 13.8 

(I) Obviously, .v∗
(1)(λ) =

n∑

k=1
λk log 1

λk
is the (Shannon-) entropy of the discrete 

distribution . λ. 
(II) Assume that.λ1 > 0, ..., λm > 0, λm+1 = ... = λn = 0.For.b > 0, b /= 1, from  

(13.27b) we get 

. v∗
(b)(λ) = 1

1 − b

m∑

k=1

λk(1 − (λk
1/b/

m∑

k=1

λk
1/b)1−b)

= 1

1 − b
(1 −

m∑

k=1

λk
1/b/(

m∑

k=1

λk
1/b)1−b)

= 1

1 − b
(1 −

m∑

k=1

λk
1/b)b) = 1

1 − b
(1 − (

n∑

k=1

λk
1/b)b). (13.30) 

Hence, 

.v∗
(b)(λ) = 1

1 − b
(1 − M(1/b)(λ)),



366 13 Maximum Entropy Techniques

provided that—see [ 6]—the mean.Mr (z), z ∈ R
n+ is defined by.Mr (z) = (

n∑

k=1
zkr )1/r . 

According to [ 6], where one finds also other properties of.Mr ,.Mr is convex for. r > 1
and concave for .r < 1, which follows from the concavity of .v∗(·). 

Having .V(b)o(λ), b ≥ 0, also the functions .H (b) = H fb and .h(b) = h( fb) can be 
determined. 

Corollary 13.9 

(I) For .b = 0 we have 

. H (o)(λ, β) = sup{1 − λTα : α ∈ Rn
+,1, β

Tα = max
1≤k≤n

βk} for all λ, β ∈ R
n
+,1,

. h(o)(λ, β) = inf{1 − λTα : α ∈ Rn
+,1, β

Tα = max
1≤k≤n

βk} for all λ, β ∈ R
n
+,1,

(II) If .0 < b < 1, then with .α(b) = (αk
1/b/

n∑

k=1
αk

1/b)k=1,...,n, we get  

. H (b)(λ, β) = h(b)(λ, β) =
n∑

k=1
λk fb(αk

(b))

= 1
1−b (1 −

n∑

k=1
λk(βk

1/b/
n∑

k=1
βk

1/b)1−b) for all λ, β ∈ R
n
+,1.

(III) If .b = 1, then 

. H (1)(λ, β) = h(1)(λ, β) =
n∑

k=1

λk log(1/βk), λ, β ∈ R
n
+,1(with log

1

0
= +∞).

(IV) If .b > 1, then 

. H (b)(λ, β) = h(b)(λ, β) = λT fb(α(b))

=
n∑

k=1
λk

1
1−b (1 − (βk

1/b/
n∑

k=1
βk

1/b)1−b), for all λ, β ∈ R
n
+,1.

Remark 13.9 Corresponding to Theorem 13.3, we observe that 

. H (1)(λ, β) = h(1)(λ, β) =
n∑

k=1

λk log(1/βk), λ, β ∈ R
n
+,1

is the Kerridge-Inaccuracy for the hypothesis ..“Pω = β”, while .Pω = λ is the true 
distribution. However, this justifies the notation generalized inaccuracy function for 
.H(λ, β) and .h(λ, β).
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13.2.2 Representation of .Hε(λ, β) and .H(λ, β) by Means 
of Lagrange Duality 

In the following we derive a representation of .Hε(λ, β) and .H(λ, β) which can be 
used also to find sufficient conditions for .H(λ, β) = H0(λ, β). For this we make 
the following assumptions on the loss set . V , cf.  (13.13a), (13.13b), of the decision 
problem .(Ω, D, v) and the probability measure .λ, β on . A: .V is a convex subset 
of.L1(Ω,A, λ) ∩ L1(Ω,A, β), where.−∞ < v∗(β) < +∞.Defining the mappings 
. F : .V → R and .gε : L1(Ω,A, β) → R, ε ≥ 0 by 

. F( f ) =
{

f (ω)λ(dω), f ∈ V

and 

. gε( f ) =
{

f (ω)β(dω) − (v∗(β) + ε), f ∈ L1(Ω,A, β), ε ≥ 0,

.F is an affine, real-valued functional on .V and .gε an affine, real valued functional 
on the linear space .X = L1(Ω,A, β). Moreover, it holds 

. Hε(λ, β) = sup{F( f ) : gε( f ) ≤ 0, f ∈ V }, ε ≥ 0.

Thus, we have to consider the following convex program in space . X : 

. min −F( f ) s.t gε( f ) ≤ 0, f ∈ V . (13.31) 

According to Luenberger [ 10], Sect. .8.6, Theorem. 1, concerning programs of the 
type (13.31), we get immediately this result: 

Theorem 13.4 If .Hε(λ, β) ∈ R for .ε > 0, then 

.Hε(λ, β) = min
a≥0

(sup
x∈D

(v(λ, x) − av(β, x)) + a(v∗(β) + ε) (13.32) 

= min 
a≥0 

(sup 
x∈D 

(v(λ, x) − a(v(β, x) − v∗(β))) + aε), 

where the minimum in (13.32) is taken in a point .aε ≥ 0 . 

Proof The dual functional related to (13.31) is defined here by 

.φε(a) = inf
f ∈V(−F( f ) + agε( f )) = inf f ∈ V (−

{
f (ω)λ(dω)

+ a(

{
f (ω)β(dω) − v∗(β) − ε))

= −(sup
x∈D

(v(λ, x) − av(β, x) + a(v∗(β) + ε)).
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Due to .v∗(β) > −∞, we also have .Dε/2(β) /= ∅. Hence, there is . f1 ∈ V such that 
.β f1 ≤ v∗(β) + ε

2 < v∗(β) + ε and therefore .gε( f1) < 0 for all .ε > 0. According 
to our assumptions, (13.31) has a finite infimum, hence, all assumptions in the 
above-mentioned theorem of Luenberger are fulfilled. Consequently, . inf (13.31) =
max
a>0

φε(a),, where the maximum is taken in a point .aε ≥ 0. Thus, 

. Hε(λ, β) = − inf (13.32) = −max
a≥0

φε(a) = min
a≥0

(−φε(a))

= min
a≥0

(sup
x∈D

(v(λ, x) − av(β, x) + a(v∗(β) + ε))

and the maximum is taken in point .aε ≥ 0. ⬜
Remark 13.10 Note that for the derivation of (13.32) only the convexity of . V =
{v(·, x) : x ∈ D} ⊂ L1(Ω,A, λ) ∩ L1(Ω,A, β), Dε(β) /= ∅ and the condition 
.Hε(λ, β) ∈ R was needed. 

For a comparison between .H(λ, β) and .H0(λ, β) we show the following result: 

Theorem 13.5 Suppose that .Hε̄(λ, β) < +∞ for an .ε̄ > 0. Then .H(λ, β) has the 
representation 

.H(λ, β) = inf
a∈R

(sup
x∈D

(v(λ, x) − av(β, x)) + av∗(β)). (13.33) 

Proof Let . h denote the right-hand side of (13.33). Then, .h ≤ H(λ, β). Put now 

. δ(a) = sup
x∈D

(v(λ, x) − a(v(β, x) − v∗(β))), a ∈ R.

If.a1 < a2, then.a1(v(β, x) − v∗(β) ≤ a2(v(β, x) − v∗(β)), x ∈ D, since. v(β, x) ≥
v∗(β), x ∈ D. Hence, . −a1(v(β, x) − v∗(β)) ≥ −a2(v(β, x) − v∗(β)), v(λ, x) −
a1(v(β, x) − v∗(β)) ≥ v(λ, x) − a2(v(β, x) − v∗(β)) and therefore. δ(a1) ≥ δ(a2).
Thus, .δ is monotonous decreasing. However, this yields .h = infa∈R δ(a) =
inf
a≥0

δ(a) = H(λ, β). ⬜

Suppose now that.D0(β) /= ∅ and.Hε̄(λ, β) < +∞ for an.ε̄ > 0, hence,. Hε(λ, β)

∈ R for .0 < ε < ε̄. Because of .H0(λ, β) = sup{F( f ) : g0( f ) = 0, f ∈ V }, for  the  
consideration of.H0(λ, β), in stead of (13.31), we have to consider the optimization 
problem 

. min − F( f ) (13.34a) 

.s.t. g0( f ) = 0, f ∈ V . (13.34b) 

The dual functional related to this program reads 

. φ0(a) = inf
f ∈V (−F( f ) + ag0( f )) = − sup

∈D
((v(λ, x) − av(β, x)) + av∗(β)) = −δ(a).

(13.35)
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A Kuhn-Tucker-coefficient related to (13.34a) is, cf. e.g., [ 14], Sect. 28, a value . a0,
such that 

. inf(13.34a) = φ0(a0) or H0(λ, β) = −φ0(a0). (13.36) 

In case that such an .a0 exists, then 

. H0(λ, β) = inf(13.34a) = −φ0(a0) = sup
x∈D

(v(λ, x) − a0(v(β, x) − v∗(β))),

due to .H0(λ, β) ≤ H(λ, β) and (13.33), we have 

. H0(λ, β) ≤ H(λ, β) = inf
a∈R

(sup
x∈D

(v(λ, x) − a(v(β, x) − v∗(β))))

. ≤ sup
x∈D

(v(λ, x) − a0(v(β, x) − v∗(β))) = H0(λ, β),

hence, 
. H(λ, β) = H0(λ, β) = min

a∈R
(sup
x∈D

(v(λ, x) − a(v(β, x) − v∗(β)))).

Thus, we have this result. 

Theorem 13.6 Let .D0(β) /= ∅, and assume .Hε̄(λ, β) < +∞ for a certain . ε̄ > 0.
If the program 

. max λ f

s.t. β f = v∗(β), f ∈ V

admits a Kuhn-Tucker coefficient, i.e., an .a0 ∈ R, such that 

. sup{λ f : β f = v∗(β), f ∈ V } = sup{ f ∈ V }(λ f − a0(β f − v∗(β))),

then 

.H(λ;β) = H0(λ, β) = min
a∈R

(sup
x∈D

(v(λ, x) − a(v(β, x) − v∗(β)))), (13.37) 

and the minimum in (13.37) is taken at a point .a0 ∈ R.
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13.3 Generalized Divergence and Generalized Minimum 
Discrimination Information 

13.3.1 Generalized Divergence 

As in the preceding section, assume that .Pω̃ = λ is the true probability distribution 
of . ω̃ and let denote .Pω̃ = β a certain hypothesis on the true distribution .λ; For all 
.ε > 0 suppose that .Dε /= ∅. Selecting a decision .x ∈ Dε, then with respect to the 
true distribution . λ, with respect to the hypothesis . β, resp., we have the error 

.. e1 = e1(λ, x) = v(λ, x) − v∗(λ),

. e2 = e2(λ, x) = v(λ, x) − v∗(β),

resp., where .e1(λ, x), .e2(λ, x), are defined only if .v∗(λ) ∈ R, .v∗(β) ∈ R, respec-
tively. 

Evaluating this error still by means of a function . γ , then 

. I eγ,ε(λ, β) = sup{γ (e(λ, x)) : x ∈ Dε(β)}, e = e1, e2,

. J e
γ,ε(λ, β) = inf{γ (e(λ, x)) : x ∈ Dε(β)}, e = e1, e2

denotes the maximum, minimum error relative to .γ, for the computation of an . ε— 
optimal decision based on the hypothesis . β, while .Pω̃ = λ is the true distribution. 
Hence, as far as the limits under consideration exist, we define the class of generalized 
divergences by 

. I eγ (λ, β) = lim
ε↓0 I

e
γ,ε(λ, β) = lim

ε↓0 ( sup
x∈Dε(β)

γ (e(λ, x))), e = e1, e2

and 
. J e

γ (λ, β) = lim
ε↓0 J e

γ,ε(λ, β) = lim
ε↓0 ( inf

x∈Dε(β)
γ (e(λ, x))), e = e1, e2.

We consider now.I e, J e, e2 for some special cases of the cost function.γ. For this 
purpose we set 

.I (λ, β) = H(λ, β) − H(λ, λ) = H(λ, β) − v∗(λ), (13.38a) 

.J (λ, β) = h(λ, β) − h(λ, λ) = h(λ, β) − v∗(λ). (13.38b) 

(I) If .γ (t) = t, t ∈ R, then 

.I e1γ,ε(λ, β) = sup
x∈Dε(β)

e1(λ, x) = sup
x∈Dε(β)

(v(λ, x) − v∗(λ)) = Hε(λ, β) − v∗(λ)
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. I e2γ,ε(λ, β) = sup
x∈Dε(β)

e2(λ, x) = sup
x∈Dε(β)

(v(λ, x) − v∗(β)) = Hε(λ, β) − v∗(λ)

. J e1
γ,ε(λ, β) = inf

x∈Dε(β)
e1(λ, x) = inf

x∈Dε(β)
(v(λ, x) − v∗(λ)) = hε(λ, β) − v∗(λ)

. J e2
γ,ε(λ, β) = inf

x∈Dε(β)
e2(λ, x) = inf

x∈Dε(β)
(v(λ, x) − v∗(β)) = hε(λ, β) − v∗(λ).

Taking the limit .ε ↓ 0, we obtain then 

. I e1γ (λ, β) = H(λ, β) − v∗(λ) = I (λ, β),

. I e2γ (λ, β) = H(λ, β) − v∗(β) = I (λ, β) + (H(λ, λ) − H(β, β)),

. J e1
γ (λ, β) = h(λ, β) − v∗(λ) = J (λ, β),

. J e2
γ (λ, β) = h(λ, β) − v∗(β) = J (λ, β) + (h(λ, λ) − h(β, β)).

Remark 13.11 Estimations of the variation . H(λ, λ) − H(β, β) = h(λ, λ) −
h(β, β) = v∗(λ) − v∗(β) of the inaccuracy function.λ → v∗(λ) in the transfer from 
. λ to . β can be found, e.g., in [ 13]. 

(II) Let now..γ (t) = | t |. Because of .v(λ, x) ≥ v∗(λ) for all .x ∈ D we have 

. I e1γ,ε(λ, β) = sup
x∈Dε(β)

| e1(λ, x) |= sup
x∈Dε(β)

(v(λ, x) − v∗(λ)) = Hε(λ, β) − v∗(λ),

. Je1γ,ε(λ, β) = inf
x∈Dε(β)

| e1(λ, x) |= sup
x∈Dε(β)

(v(λ, x) − v∗(λ)) = hε(λ, β) − v∗(λ).

Thus, also here we get 

. I e1γ (λ, β) = H(λ, β) − v∗(λ) = I (λ, β),

. J e1
γ (λ, β) = h(λ, β) − v∗(λ) = J (λ, β).

Furthermore, we have 

. I e2γ,ε(λ, β) = sup
x∈Dε(β)

| e2(λ, x) |= max{| inf
x∈Dε(β)

e2(λ, x) |, | sup
x∈Dε(β)

e2(λ, x) |}

= max{| inf
x∈Dε(β)

(v(λ, x) − v∗(β) |, | sup
x∈Dε(β)

(v(λ, x) − v∗(β)) |}

= max{| hε(λ, β) − v∗(β) |, | Hε(λ, β) − v∗(β) |}.
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Because of the continuity of .(x, y) → max{x, y}, x, y ∈ R, by means of the 
limit .ε ↓ 0 we find 

. I e2γ (λ, β) = max{| h(λ, β) − v∗(β) |, | H(λ, β) − v∗(β) |} =
= max{| h(λ, β) − h(β, β) |, | H(λ, β) − H(β, β) |}.

In the special case .H(λ, β) = h(λ, β), we get 

. I e2γ (λ, β) =| H(λ, β) − H(β, β) | .

Especially important are the generalized divergences defined by (13.38a) and 
(13.38b), hence, .I (λ, β) = H(λ, β) − H(λ, λ) and . J (λ, β) = h(λ, β) − h(λ, λ).

We study now.I, J , where—as above—.Dε(β) /= ∅, ε > 0 and. H(λ, λ) = h(λ, λ) =
v∗(λ) ∈ R.

Corollary 13.10 We have .I (λ, β) ≥ 0, J (λ, β) ≥ 0 and . I (λ, β) = J (λ, β) = 0
for .β = λ. Moreover, .I (λ, β) ≥ J (λ, β) und .I (λ, β) = J (λ, β) if and only if 
. H(λ, β) = h(λ, β).

Proof According to Theorem 13.2 we have . H(λ, β) ≥ h(λ, β) ≥ v∗(λ) =
h(λ, λ) = H(λ, λ), which yields all assertions in the above corollary. ⬜

In order to justify the notation generalized divergence for the class of functions 
.I eγ (λ, β), J e

γ (λ, β), e = e1, e2 , we consider now the case.Ω = {ω1, ω2, ..., ωn} with 
the loss set, cf. (13.23), 

. V = C f , f = fb, b ≥ 0

treated in detail in the former section. 
Denoting the dependence of the divergences.I, J on. b by.I (b), J (b), then Corollary 

13.9 yields immediately this result: 

Corollary 13.11 For all .λ, β ∈ R
n
+,1 we have 

(I) 
. I (0)(λ, β) = max

1≤k≤n
λk − in f {λTα : α ∈ R

n
+,1, β

Tα = max
1≤k≤n

βk},

. J (0)(λ, β) = max
1≤k≤n

λk − sup{λTα : α ∈ R
n
+,1, β

Tα = max
1≤k≤n

βk};

(II) 

. I (b)(λ, β) = J (b)(λ, β) = 1

1 − b

n∑

k=1

λk((λ
1/b
k )−b − (β

1/b
k /

n∑

k=1

βk)
1−b)

for .b > 0, b /= 1;
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(III) 

. I (1)(λ, β) = J (1)(λ, β) =
n∑

k=1

λklog(λk/βk).

Remark 13.12 Obviously, we see now that.I (1)(λ, β) = J (1)(λ, β) is the Kullback-
divergence between. λ and. β, which justifies now the notation generalized divergence 
for .I eγ , J e

γ . 

According to Corollary 13.10 we have .I (λ, β) = 0 =⇒ J (λ, β) = 0, and 
.I (λ, β) = J (λ, β) = 0 for .β = λ. However, .I (λ, β) = 0 or .J (λ, β) = 0 does not 
imply .β = λ in general. 

Example 13.3 Putting .λ = (1/n, ..., 1/n)T in the above Corollary 13.11, then for 
all .β ∈ R

n
+,1 we get 

. I (0)(λ, β) = 1

n
− inf{

n∑

k=1

1

n
αk : α ∈ R

n
+,1, β

Tα = max
1≤k≤n

βk} = 1

n
− 1

n
= 0,

. J (0)(λ, β) = 1

n
− sup{

n∑

k=1

1

n
αk : α ∈ R

n
+,1, β

Tα = max
1≤k≤n

βk} = 1

n
− 1

n
= 0.

In this case we have therefore . {β : I (0)(λ, β) = 0} = {β : J (0)(λ, β) = 0} = R
n
+,1.

Theorem 13.7 

(I) Suppose again .D0(β) /= ∅. If .I (λ, β) = 0, then . D0(λ) /= ∅,

D0(β) ⊂ D0(λ), and .H(λ, β) = H0(λ, β) = h0(λ, β). If in addition . D0(λ) =
{xλ}, then .D0(β) = {xβ} with . xβ = xλ.

(II) In the case .D0(β) = {xβ}, H(λ, β) = v(λ, xβ) for all .λ, β ∈ Ʌ with a subset 
. Ʌ of.ca+,1(Ω,A), then.I (λ, β) = λ(v(., xβ) − v(., xλ)) and. I (λ, β) = 0 ⇐⇒
xλ = xβ, provided that . λ, β ∈ Ʌ.

(III) Let .D0(β) = {xβ} and .H(λ, β) = v(λ, xβ) for all .λ, β ∈ Ʌ. If .x̂ ∈ D denotes 
then a least element of D with respect to the order “.≪Ʌ”, then . xβ = x̂, β ∈
Ʌ, H(λ, β) = v(λ, x̂) and . I (λ, β) = 0, λ, β ∈ Ʌ.

The representations of.H(λ, β) and.h(λ, β) given in the Theorems 13.4 and 13.5 
yield the following representation of I, J: 

Corollary 13.12 

(I) If .Hε̄(λ, β) < +∞ for an .ε̄ > 0 and .v∗(λ) ∈ R, then 

.I (λ, β) = inf
a≥0

(sup
x∈D

((v(λ, x) − v∗(λ)) − a(v(β, x) − v∗(β))));
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(II) If .v∗(λ) ∈ R and .v∗(β) ∈ R, then 

. J (λ, β) = sup
a≥0

(sup
x∈D

((v(λ, x) − v∗(λ)) − a(v(β, x) − v∗(β)))).

Remark 13.13 Equation .I (λ, β) = 0, .J (λ, β) = 0. Having . I (λ, β) = v(λ, xβ) −
v(λ, xλ) ,.J (λ, β) = v(λ, xβ) − v(λ, xλ), resp., with two elements.xλ, xβ ∈ D, such 
that .D0(λ) = {xλ}, D0(β) = {xβ}, then .I (λ, β) = 0, .J (λ, β) = 0, resp., provided 
that .xλ = xβ ≡ x0, hence, if the true distribution. λ as well as the hypothesis . β yield 
the same (unique) optimal decision.x0 ∈ D. See also the following interpretation of 
.I, J . 

As can be seen from Corollaries 13.10, 13.11 and Theorem 13.7 the general-
ized divergences .I (λ, β), J (λ, β) can be considered as measures for the deviation 
between the probability measures. λ and. β relative to the decision problem. (Ω, D, v)

or to the loss set . V . 
Based on the meaning of . I and . J , we introduce the following definition: 

Definition 13.4 

(I) The right-I-.ρ-, right-J-.ρ-neighborhood of a distribution .λ ∈ ca+,1(Ω,A) with 
.v∗(λ) ∈ R is the set defined by 

. U I,r
ρ (λ)(U J,r

ρ (λ), resp.) = {β ∈ ca+,1(Ω,A) : Dε(β) /= ∅, ε > 0, I (λ, β) < ρ

resp.J (λ, β) < ρ}

(II) The left-.I -.ρ-, left-.J -.ρ-neighborhood of a distribution .β ∈ ca+,1(Ω,A) with 
.Dε(β) /= ∅, ε > 0 is the set defined by 

. U I,l
ρ (β)(U J,l

ρ (β), resp.) = {λ ∈ ca+,1(Ω,A) : v∗(λ) ∈ R, I (λ, β) < ρ

resp.J (λ, β) < ρ}.

Of course, the divergences I, J, yield also the notion of a “convergence”: 

Definition 13.5 

(I) A sequence .(β j ) in .ca+,1(Ω,A) is called right-I-, right-J-convergent, resp., 
toward an element .λ ∈ ca+,1(Ω,A), β j →I,r λ, .β j →J,r λ, j → ∞, resp., 
provided that .Dε(β

j ) /= ∅, ε > 0, j = 1, 2, ..., v∗(λ) ∈ R and . I (λ, β j ) → 0
, .J (λ, β j ) → 0, j → ∞, respectively. 

(II) A sequence .(λk) in .ca+,1(Ω,A) is called left-I- , left-J-convergent, resp., 
toward an element .β ∈ ca+,1(Ω,A), λk →I,l β , .λk →J,l β, j → ∞, resp, 
provided that .Dε(β) /= ∅, ε > 0, v∗(λk) ∈ R, k = 1, 2, ..., and .I (λk, β) → 0, 
.J (λk, β) → 0, k → ∞, respectively.
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Remark 13.14 The distinction between the left- and right-convergence, see the 
above definitions, is necessary, since.I (λ, β) /= I (λ, β), J (λ, β) /= J (λ, β) in gen-
eral, see the following example. 

Example 13.4 Consider .Ω = ω1, ..., ωn) and .V = C(1/2). According to Corollary 

13.11b we have  .I (1/2)(λ, β) = J (1/2)(λ, β) = 2(|| λ || − λT β

||β|| ), λ, β ∈ R
n
+,1, where 

.|| · || denotes the Euclidean norm. Then, .I (1/2)(β, λ) = 2(|| β || − βT λ

||λ|| ), and for . λ =
(1, 0, ..., 0)T , β = (1/n, ..., 1/n)T we get .I (1/2)(λ, β) = 2(1 − 1/n1/2) and 
.I (1/2)(β, λ) = 2(1/n1/2 − 1/n) = (1/n1/2)I (λ, β) . Hence, we have . I (1/2)(β, λ) /=
I (1/2)(λ, β) for .n > 1. We still mention that .H (1/2)(λ, β) = 2(1 − λT β

||β|| ), hence, 

.H (1/2)(β, λ) = 2(1 − β 'λ
||λ|| ). Consequently, .H

(1/2)(λ, β) = H (1/2)(β, λ) holds if and 
only if .|| β ||=|| λ || . However, this holds not for all .λ, β ∈ R

n . 

For the class of inaccuracy functions .H (b)(λ, β), h(b)(λ, β), b ≥ 0 with 
.H (b)(λ, β) = h(b)(λ, β) for .b > 0, given in Corollary 13.9, we have this result: 

Corollary 13.13 Let.I (λ, β) = H (b)(λ, β) − H (b)(λ, λ), λ, β ∈ R
n
+,1, b > 0.Then 

.U I,l
ρ (β) is convex for all .ρ > 0, β ∈ R

n
+,1 and each .b > 0; .U I,r

ρ (λ) is convex for all 
.ρ > 0, λ ∈ R

n
+,1 and each . 1/2 ≤ b ≤ 1.

Remark 13.15 Generalizations of the Kullback-Divergence. 
Pure mathematical generalizations of the Kullback-divergence 

. I (l)(λ, β) =
{

pλ(ω) log(pλ(ω)/pβ(ω))m(dω)

as well as of the related Kerridge-inaccuracy 

. H (l)(λ, β) =
{

pλ(ω) log(1/pβ(ω))m(dω),

where .pλ = dλ
dm , pβ = dβ

dm and .m denotes a measure on .(Ω,A), are suggested by 
several authors, see, e.g., [ 2, 3, 5]. We mention here, cf. [ 2], the f-divergence 

. J f (λ, β) =
{

pβ(ω) f (pλ(ω)/pβ(ω))m(dω),

where f: .R+ → R is a convex function. 
In these papers information can be found about the type of geometry induced by 

an f-divergence, i.e., by the related system of.J f -neighborhoods, see Definition 13.4 
on (subsets of).ca+,1. For example, in [ 4] is shown that certain topological properties 
of .J f (λ, β) with . f (t) = t log(t), hence, .J f (λ, β) = I (l)(λ, β)), are related to the 
squared distance .d2(λ, β) of the Euclidean distance . d(λ, β) =|| λ − β ||, λ, β ∈ H
in a Hilbert space.
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In the following we show now that also the generalized divergences .I, J defined 
by (13.38a), (13.38b) have similar properties as the squared Euclidean distance in a 
Hilbert space. 

13.3.2 .I-, .J-Projections 

As was shown in the literature, see, e.g., [ 5, 7, 9], in the information-theoretical 
foundation of statistics, the following minimization problem plays a major role: 

. min I (1)(λ, β) (13.39) 

s.t. λ ∈ C. 

Here, .I (1)(λ, β) denotes the die Kullback-divergence between a given probability 
measure .β ≪ m(measure on .A) and .λ ∈ C, where .C is a certain subset of . {λ ∈
ca+,1(Ω,A) : λ ≪ m}.

In order to find a further relation between the divergences .I, J and the squared 
Euclidean distance in a Hilbert space . H , we replace the divergence .I (l)(λ, β) in 
(13.39) by .|| λ − β ||2, where .λ, β, . C , resp., are considered as elements, a subset of 
a Hilbert space . H , then we obtain the optimization problem 

. min || λ − β ||2 (13.40) 

s.t. λ ∈ C. 

However, this problem represents the projection of.β ∈ H onto the subset.C ⊂ H.As 
is well known, in case of a convex set. C , a solution.β0 of (13.40) is then characterized 
by the condition 

. < β0 − β, λ − β0 > ≥ 0 for all λ ∈ C, (13.41) 

where .< λ, β > denotes the scalar product in the Hilbert space . H . Putting 
.d2(λ, β) =|| λ − β ||2, then (13.41) is equivalent with 

.d2(λ, β) ≥ d2(λ, β0) + d2(β0, β) for all λ ∈ C, (13.42) 

where in (13.41) and in (13.42) the equality sign (and therefore, of course, the theorem 
of Pythagoras) holds, if .β0 lies in the relative algebraic interior of . C . As was  shown  
in [ 4], the optimization problem (13.39) can also be interpreted as a (generalized) 
projection problem, sind a solution.β0 (13.39) can be characterized by the condition 

.I (1)(λ, β) ≥ I (1)(λ, β0) + I (1)(β0, β) for all λ ∈ C (13.43) 

analogous to (13.42).
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We now show that a corresponding result can also be obtained for the minimization 
problems 

. min I (λ, β) (13.44) 

s.t. λ ∈ C 

and 

. min J (λ, β) (13.45) 

s.t. λ ∈ C, 

where .I (λ, β), J (λ, β) denote the divergences according to (13.38a), (13.38b). 
Let denote. Ʌ a convex subset of.ca+,1, such that.H(λ, β), h(λ, β) are defined and 

.H(λ, β) ∈ R, h(λ, β) ∈ R, v∗(λ) ∈ R for all .λ, β ∈ Ʌ. Moreover, let be . β a fixed  
element of .Ʌ and .C a subset of .Ʌ. Now, a “projection” of . β onto .C is defined as 
follows: 

Definition 13.6 A solution .β0 of (13.44), (13.45), resp., is called an .I -, an .J -
projection, resp., of . β onto . C . 

Some properties of .I -, .J -projections are given in the following: 

Theorem 13.8 Suppose that .C is convex, and .λ → H(λ, λ0), .λ → h(λ, λ0), resp., 
is affine linear on .Ʌ for .λ0 = β and all .λ0 ∈ C. Moreover, assume that for all 
.λ, λ0 ∈ C the continuity condition .H(λ, λ0 + t (λ − λ0)) → H(λ, λ0), . h(λ, λ0 +
t (λ − λ0)) → h(λ, λ0) holds for . t ↓ 0.

(I) A necessary condition for an .I -, .J -projection . β0, resp., of . β onto .C is then the 
condition (analogous to (13.42), (13.43)) 

.I (λ, β) ≥ I (λ, β0) + I (β0, β) for allλ ∈ C, (13.46) 

.J (λ, β) ≥ J (λ, β0) + I (β0, β) for all λ ∈ C, (13.47) 

resp., where the sign “. =” holds, provided that .β0 lies in the relative algebraic 
interior of . C. 

(II) If . limt↓0 1
t I (β0, β0 + t (λ − β0)) = limt↓0 1

t (H(β0, β0 + t (λ − β0)) − H(β0,

β0)) = 0, . limt↓0 1
t J (β0, β0 + t (λ − β0)) = limt↓0 1

t (h(β0, β0 + t (λ − β0)) −
h(β0, β0)) = 0, resp., for all .x ∈ C and a .βo ∈ C, then (13.46), (13.47) is also  
sufficient for an .I -, .J -projection .β0 of . β onto . C.
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13.3.3 Minimum Discrimination Information 

An important reason for the consideration of the .I -, .J -projections according to 
Definition 13.6 is the following generalization of the minimum discrimination infor-
mation, a concept that was introduced in [ 9] for the foundation of methods of statistics. 
We suppose here the unknown (partly known) probability distribution .Pω̃ = λ of . ω̃
lies in a subset .Ʌ of .ca+,1(Ω,A) and satisfies an equation of the type 

.

{
T (ω)λ(dω) = θ(≡ ET (ω)), (13.48) 

where.T : Ω → θ is a measurable mapping from.(Ω,A) into a further measurable set 
.(Θ,B), and. θ is an element of. Θ. The element. θ is interpreted as a certain parameter 
of the distribution.Pω; moreover, it is assumed that estimates.θ̃ = θ̃N (ω1, ..., ωn) are 
available for . θ , where .ωk is a realization of . ω̃. 

For a known parameter . θ the set 

. C = C(θ) = {λ ∈ ca+,1(Ω,A) : λ ∈ Ʌ,

{
T (ω)λ(dω) = θ}

describes the information available on .Pω̃ = λ. For a given hypothesis .Pω̃ = β the 
I-projection of . β onto .C(θ) describes then the nearest element of .C = C(θ) to . β, 
and 

. I (★, β) = I (★, β; θ) = inf
{
I (λ, β) : λ ∈ C(θ)

}

= inf
{
I (λ, β) : λ ∈ Ʌ,

{
T (ω)λ(dω) = θ

}
(13.49) 

denotes the distance between. β and.C(θ) (often identified with. θ ). Hence, an increas-
ing distance.I (★, β) between. β and.C(θ)means a decreasing quality of the hypothesis 
. Pω̃ = β.

Corresponding to [ 9] we introduce therefore the following notion. 

Definition 13.7 The value .I (★, β) = I (★, β; θ) is called the minimum useful dis-
crimination information—relative to the decision problem .(Ω, D, v)—against the 
(zero-) hypothesis .Pω̃ = β. 

Remark 13.16 Useful Discrimination Information. 
The notion useful discrimination information emphasizes the fact that the gener-

alized divergence .I (λ, β) measures the difference between the distributions . λ and 
. β relative to a (subsequent) decision problem .(Ω, D, v); see also the definition of 
economic information measures used in [ 5, 11]. 

We show now some properties of the function .θ → I (★, β; θ).
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Lemma 13.5 Let. Ʌ be convex,. Θ a linear parameter space and.λ → I (λ, β) convex 
on.Ʌ. Furthermore, let.Θ0 = {θ ∈ Θ : there is.λ ∈ Ʌ, such that. 

{
T (ω)λ(dω) = θ}.

Then .Θ0 is convex, and .θ → I (★, β; θ) is convex on . Θ0.

Proof Let.θ1, θ2 ∈ Θ0 and.0 < α < 1.Then there are elements.λ1, λ2 ∈ Ʌ, such that 
.θi = {

T (ω)λi (dω), i = 1, 2. This yields . 
{
T (ω)(αλ1 + (1 − α)λ2)(dω) =

α
{
T (ω)λ1(dω) + (1 − α)

{
T (ω)λ2(dω) and.αλ1 + (1 − α)λ2 ∈ Ʌ, hence,. αθ1 +

(1 − α)θ2 ∈ Θ0. Furthermore, 

. I (★, β; αθ1 + (1 − α)θ2 ≤ I (αλ1 + (1 − α)λ2, β) ≤ α I (λ1, β) + (1 − α)I (λ2, β),

which yields the rest of the assertion, since, up to the above conditions, .λ1, λ2 were 
arbitrary. ⬜
Remark 13.17 Convexity of .I (., β). Because of the concavity of . λ → v∗(λ) =
H(λ, λ), the function.λ → I (λ, β) is convex, provided that . H(λ, β) = H0(λ, β) =
sup{λ f : f ∈ V0(β)}.

If .Θ is a finite-dimensional space, then the convexity of .θ → I (★, β; θ) on . Θ0

yields the continuity of this function—at least—on the relative interior.riΘ0 of.Θ0. If 
the function.λ → I (★, β; λ) is continuous on a sufficiently large range of definition, 
then 

. I (★, β; θ̂N ) → I (★, β; θ) = I (★, β) a.s.,

provided that .θ̂N → θ a.s., where.θ̂1, θ̂2, ... is a sequence of estimation functions for 
. θ . In this case we interpret then 

. Î (★, β) = I (★, β; θ̂N (ω1, ..., ωN )) (N = 1, 2, ...)

as an estimate of .I (★, β). For the testing of hypotheses we have then, cf. [ 9] the  
following procedure: 

Definition 13.8 Reject the (null-) hypothesis .Pω̃ = β, if . Î (★, β) is significantly 
large. 

For illustration of this test procedure we give still the following example: 

Example 13.5 Let .Ω = Θ = D = R and .v(ω, x) = (a(ω)x − b(ω))2, where . x ∈
R and .a(·), b(·) are square integrable random variables. Then, 

. I (λ, β) = a2
λ
(
ab

λ
/a2

λ − ab
β
/a2

β
)2

,

where .a2
λ = {

a(ω)2λ(dω), etc. If now  .T (ω) = a(ω)b(ω), then . I (★, β) =
in f

{
a2

λ(
ab

λ
/a2

λ − ab
β
/a2

β)2 : {
a(ω)b(ω)λ(dω) = θ

}
= inf

u>0
u(θ/u − ab

β
/

a2
β
)2, hence, .I (★, β) = 0, provided that .signθ = sign(ab

β
) and . I (★, β) = 4 |

θab
β |, if .signθ = −sign(ab

β
).
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total ... costs, 12 
total cost minimization, 15 
total weighted ... costs, 6 
weighted total costs, 6 

External load parameters, 2 
Extreme points, 10 

F 
Factor 
cost, 2 
demand, 2 
noise, 2 
of production, 2, 9 
weight, 7 

Failure, 8 

approximate expected ... or recourse cost 
constraints, 20 

costs, 10, 13 
domain, 10 
expected costs of, 12 
mode, 10 
of the structure, 21 
probability of, 13, 14 

Failure/survival domains, 28 
Function(s) 
approximation of expected loss, 24 
approximation of performance, 20 
approximation of state, 20 
bilinear, 24 
concave, 19 
constraint, 2 
cost, 14 
cost/loss, 10 
limit state, 8, 10 
loss, 14, 18 
mean value, 25, 27 
objective, 2 
output, 30 
performance, 8, 14, 30 
primary cost, 8 
recourse cost, 14 
response, 8, 30 
state, 8, 9, 14, 15, 23 

Functional-efficient, 5 

G 
Gradient 
bounded, 18 

H 
Hölder mean, 22 

I 
Inequality 
Jensen’s, 18 
Markov-type, 33 
Tschebyscheff-type, 31 

Input vector, 2, 9, 16 
Inverse dynamics, 222 

J 
Jensen’s inequality, 18
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L 
Lagrangian, 13 
Least squares estimation, 24 
Limited sensitivity, 20 
Limit state function, 8, 10 
Linear programming, 9 
Lipschitz-continuous, 27 
Loss function, 18 

M 
Manufacturing, 3 
Manufacturing errors, 2 
Markov-type inequality, 33 
Material parameters, 2 
Maximum costs, 7 
Mean value function, 25, 27 
Mean value theorem, 18, 27 
Measurement and correction actions, 4 
Mechanical structure, 8, 9 
Minimum reliability, 31 
Modeling errors, 2 
Model parameters, 2, 9 
Model uncertainty, 11 
Multiple integral, 11 

N 
Noise factors, 2 
Nominal vector, 3 
Normal distributed random variable, 34 

O 
Objective function, 2 
Operating conditions, 3, 8, 10 
Optimal 
control, 2 
decision, 2 
design of economic systems, 3 
design of mechanical structures, 3 

Optimal decision, 8 
Optimal design, 8, 12 
Optimal structural design, 9 
Outcome map, 4 
Outcomes, 5 

P 
Parameter identification, 4 
Parameters 
distribution, 11 
external load, 2 
material, 2 

model, 2, 3, 9 
technological, 2 

Pareto 
optimal, 5 
optimal solution, 7 
weak ... optimal solution, 6, 7 
weak Pareto optimal, 6 

Partial derivatives, 25 
Performance function, 5, 14 
Physical uncertainty, 11 
Power mean, 22 
Primary cost constraints, 10 
Primary cost function, 8 
Primary goal, 6 
Probability 
continuous ... distributions, 11 
density function, 11 
discrete ... distributions, 11 
distribution, 4 
of failure, 13, 14 
of safety, 13 
space, 4 
subjective or personal, 4 

Probability density function, 11 
Production planning, 3 
Production planning problems, 9 

R 
Random parameter vector, 5, 7 
Random variability, 10 
Random vector, 12 
Realizations, 11 
Recourse cost functions, 14 
Recourse costs, 10, 13 
Reference points, 24 
Regression techniques, 4, 23 
Reliability analysis, 28 
Reliability based optimization, 13 
Response, output or performance functions, 

30 
Response Surface Methods, 23 
Response Surface Model, 24 
Robust optimal design, 20 

S 
Safe structure, 3 
Safety, 8 
Safety conditions, 10 
Safety margins, 8 
Sample information, 4 
Scalarization, 6, 8 
Scenarios, 11
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Secondary goals, 6 
Second order expansions, 19 
Sensitivities, 25 
Sequential decision processes, 3 
Sizing variables, 9 
State function, 8, 9, 14, 15, 23 
Statistical uncertainty, 11 
Stochastic uncertainty, 4 
Structural dimensions, 9 
Structural optimization, 2 
Structural systems, 3, 9 
Structural systems weakness, 14 
Structure 
mechanical, 8 
safe, 3 

Subjective or personal probability, 4 

T 
Taylor expansion, 25, 33 
inner, partial, 26 

Technological coefficients, 9 
Technological parameters, 2 
Thickness, 9 
Total weight, 8 
Tschebyscheff-type inequality, 31 
Two-step procedure, 3 

U 
Uncertainty, 3 
economic, 11 
model, 11 
physical, 11 
probabilistic, 4 
statistical, 11 
stochastic, 4 

Useful discrimination information, 378 

V 
Variable 
design, 2 

Vector 
nominal, 3 
optimization problem, 5 

Vector 
input, 2 

Volume, 8 

W 
Weak functional-efficient, 6 
Weight factors, 7 
Worst case, 7
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