

Hands-On Unity Game
Development
Fourth Edition

Unlock the power of Unity 2023 and build your dream game

Nicolas Alejandro Borromeo
Juan Gabriel Gomila Salas

BIRMINGHAM—MUMBAI

Hands-On Unity Game Development
Fourth Edition
Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Senior Publishing Product Manager: Larissa Pinto
Acquisition Editor – Peer Reviews: Gaurav Gavas, Jane D'Souza
Project Editor: Namrata Katare
Content Development Editor: Ruksar Malik
Copy Editor: Safis Editing
Technical Editor: Kushal Sharma
Proofreader: Safis Editing
Indexer: Subalakshmi Govindhan
Presentation Designer: Pranit Padwal
Developer Relations Marketing Executive: Sohini Ghosh

First published: July 2020
Second edition: August 2021
Third edition: October 2022
Fourth edition: January 2024

Production reference: 1250124

Published by Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB, UK.

ISBN 978-1-83508-571-4

www.packt.com

http://www.packt.com

I would like to offer my heartfelt thanks to my father, who always encouraged my love for computers
and games; I miss you dearly. To my wife, Edith, thank you for always reminding me what I’m
capable of and also supporting me every step of the way of my career. We also want to thank our
family and students that encouraged us and helped us become better instructors and teachers to help
you learn easily.

– Nicolas Alejandro Borromeo

I want to thank our family and students that encouraged us and helped us become better instructors
and teachers to help you learn easily.

– Juan Gabriel Gomila Salas

Contributors

About the authors
Nicolas Alejandro Borromeo is a game developer currently working for Unity Technologies as
a Senior Software Development Consultant and Unity Certified Instructor in London. He is helping
Unity clients with their projects all over the world. He started using Unity in 2008 and teaching it in
2012 in Universities and Education Institutes.

Juan Gabriel is the CEO of Frogames Formación, a Spanish e-learning platform. He has reached
over half a million students worldwide, publishing around 200 courses.

About the reviewer
Jerry Medeiros is a seasoned professional with over a decade of hands-on experience in Immersive
Technology, specializing in Games and Extended Reality. With a robust background in artificial intelli-
gence, Jerry brings a unique perspective to the intersection of technology and interactive experiences.
He holds a degree in Game Development, focusing on Interaction Design, and a Master of Computer
Science with research expertise in artificial intelligence. Jerry is well-versed in cutting-edge technol-
ogies and their applications. Additionally, an MBA in Innovation further highlights his commitment
to driving creative and forward-thinking solutions in the tech industry.

Learn more on Discord
Read this book alongside other users, Unity game development experts, and the author himself. Ask
questions, provide solutions to other readers, chat with the author via Ask Me Anything sessions, and
much more. Scan the QR code or visit the link to join the community:

https://packt.link/unitydev

https://packt.link/unitydev

Table of Contents

Preface xvii

Section 1: Getting Started with Unity 1

Chapter 1: Embark on Your Unity Journey 3

Installing Unity �� 3
Unity’s technical requirements • 3
Unity versions • 4
Installing Unity with Unity Hub • 5

Creating projects �� 13
Creating a project • 13
Project structure • 16

Summary ��� 18

Chapter 2: Crafting Scenes and Game Elements 21

Manipulating scenes ��� 21
The purpose of a scene • 22
The Scene view • 22
Adding our first GameObject to the scene • 24
Navigating the Scene view • 25
Manipulating GameObjects • 26

GameObjects and components �� 31
Understanding components • 31
Manipulating components • 33

Understanding object Hierarchies ��� 38
Parenting of objects • 39

Table of Contentsviii

Possible uses • 40
Managing GameObjects using Prefabs ��� 41

Creating Prefabs • 41
Prefab-instance relationship • 43
Prefab variants • 46

Saving scenes and projects ��� 47
Summary ��� 48

Chapter 3: From Blueprint to Reality: Building with Terrain and ProBuilder 51

Defining our game concept ��� 51
Creating a landscape with Terrain ��� 52

Discussing Height Maps • 53
Creating and configuring Height Maps • 54
Authoring Height Maps • 57
Adding Height Map details • 60
Creating shapes with ProBuilder • 64
Installing ProBuilder • 64
Creating a shape • 67
Manipulating the mesh • 69
Adding details • 76

Summary ��� 80

Chapter 4: Seamless Integration: Importing and Integrating Assets 83

Importing assets �� 83
Importing assets from the internet • 84
Importing assets from the Asset Store • 85
Importing assets from Unity packages • 92

Integrating assets ��� 92
Integrating terrain textures • 93
Integrating meshes • 96
Integrating textures • 97

Configuring assets �� 100
Configuring meshes • 101
Configuring textures • 103
Assembling the scene • 104

Summary ��� 107

Table of Contents ix

Section 2: Mastering Programming and Gameplay Mechanics 109

Chapter 5: Unleashing the Power of C# and Visual Scripting 111

Introducing scripting ��� 111
Creating scripts �� 112

Initial setup • 113
Creating a C# script • 116
Adding fields • 120
Creating a visual script • 123

Using events and instructions ��� 125
Events and instructions in C# • 125
Events and instructions in visual scripting • 130
Using fields in instructions • 133

Common beginner C# script errors ��� 135
Summary ��� 138

Chapter 6: Dynamic Motion: Implementing Movement and Spawning 139

Implementing movement ��� 139
Moving objects through Transform • 140
Using Input • 143
Understanding Delta Time • 149

Implementing spawning ��� 152
Spawning objects • 152
Timing actions • 160
Destroying objects • 165

Using the new Input System �� 167
Installing the new Input System • 167
Creating Input Mappings • 169
Using Mappings in our scripts • 173

Summary ��� 178

Chapter 7: Collisions and Health: Detecting Collisions Accurately 179

Configuring physics �� 179
Setting shapes • 180
Physics object types • 182
Filtering collisions • 187

Table of Contentsx

Detecting collisions �� 190
Detecting Trigger events • 191
Modifying the other object • 193

Moving with physics ��� 197
Applying forces • 197
Tweaking physics • 200

Summary ��� 203

Chapter 8: Victory or Defeat: Win and Lose Conditions 205

Creating object managers ��� 205
Sharing variables with the Singleton design pattern • 206
Sharing variables with Visual Scripting • 210
Creating managers • 213
Creating Game Modes • 220
Improving our code with events • 227

Summary ��� 237

Chapter 9: Starting Your AI Journey: Building Intelligent Enemies for
Your Game 239

Gathering information with sensors �� 239
Creating three-filter sensors with C# • 240
Creating Three-Filters sensors with Visual Scripting • 246
Debugging with gizmos • 251
Making decisions with FSMs • 260
Creating the FSM in C# • 260

Creating transitions �� 263
Creating the FSM in Visual Scripting • 268
Executing FSM actions • 278

Calculating our scene’s NavMesh ��� 278
Using Pathfinding • 280
Adding the final details • 286

Summary ��� 292

Table of Contents xi

Section 3: Elevating Visuals, Effects, and Audio 293

Chapter 10: Material Alchemy: Using URP and Shader Graph for Stunning Visuals
295

Introducing shaders and URP ��� 295
Shader pipeline • 296
Render pipeline and URP • 299
URP built-in shaders • 302

Creating shaders with Shader Graph ��� 307
Creating our first Shader Graph • 308
Using textures • 312
Combining textures • 322
Applying transparency • 325
Creating vertex effects • 329

Summary ��� 331

Chapter 11: Captivating Visual Effects: Harnessing Particle Systems and
Visual Effect Graph 333

Introduction to particle systems ��� 333
Creating a basic particle system • 334
Using advanced modules • 340

Creating fluid simulations ��� 341
Creating a waterfall effect • 342
Creating a bonfire effect • 344

Creating complex simulations with Visual Effect Graph �� 346
Installing Visual Effect Graph • 347
Creating and analyzing Visual Effect Graph • 350
Creating a rain effect • 355
Scripting Visual Effects • 364

Summary ��� 369

Table of Contentsxii

Chapter 12: Enlightening Worlds: Illuminating Scenes with
the Universal Render Pipeline 371

Applying lighting �� 371
Discussing lighting methods • 372
Configuring ambient lighting with skyboxes • 378
Configuring lighting in URP • 383

Applying shadows ��� 386
Understanding shadow calculations • 387
Configuring performant shadows • 391

Optimizing lighting �� 395
Understanding static lighting • 395
Baking lightmaps • 396
Applying static lighting to static objects • 403

Summary ��� 407

Chapter 13: Immersive Realism: Achieving Fullscreen Effects with
Post-Processing 409

Using post-processing �� 409
Setting up a profile • 410
Using basic effects • 412

Using advanced effects ��� 417
High Dynamic Range (HDR) and depth map • 417
Applying advanced effects • 420

Summary ��� 426

Chapter 14: Harmonious Soundscapes: Integrating Audio and Music 429

Importing audio ��� 429
Audio types • 430
Configuring import settings • 431

Integrating and mixing audio �� 435
Using 2D and 3D AudioSources • 435
Using an Audio Mixer • 440
Scripting audio feedback • 444

Summary ��� 447

Table of Contents xiii

Section 4: Designing User Interfaces, Animations and
Advanced Concepts 449

Chapter 15: Interface Brilliance: Designing User-Friendly UI 451

Understanding the Canvas and RectTransform �� 452
Creating a UI with the Canvas • 452
Positioning elements with RectTransform • 453

Canvas object types �� 455
Integrating assets for the UI • 456
Creating UI controls • 464

Creating a responsive UI ��� 472
Adapting object positions • 472
Adapting object sizes • 476

Scripting the UI �� 479
Showing information in the UI • 479
Programming the Pause menu • 493

Summary ��� 501

Chapter 16: Next-Gen UI: Creating Dynamic Interfaces with UI Toolkit 503

Why learn how to use UI Toolkit? �� 503
Creating a UI with UI Toolkit ��� 504

Creating UI Documents • 504
Editing UI Documents • 506
Creating UI Stylesheets • 514

Making a responsive UI �� 518
Dynamic positioning and sizing • 518
Dynamic scaling • 522
Using relative positions • 524

Summary ��� 529

Chapter 17: Animated Realities: Creating Animations with Animator,
Cinemachine, and Timeline 531

Using skinning animation with Animator �� 531
Understanding skinning • 532
Importing skeletal animations • 534

Table of Contentsxiv

Integration using Animation Controllers • 538
Applying the Controller to your character • 541
Using Avatar Masks • 544

Scripting animations �� 550
Scripting player shooting animations • 551
Scripting movement animations • 559

Creating dynamic cameras with Cinemachine ��� 562
Creating camera behaviors • 563
Creating dolly tracks • 567

Creating cutscenes with Timeline ��� 571
Creating animation clips • 571
Sequencing our intro cutscene • 574

Summary ��� 579

Chapter 18: Performance Wizardry: Optimizing Your Game with Profiler Tools 581

Optimizing graphics ��� 581
Introduction to graphics engines • 582
Using Frame Debugger • 583
Using batching • 585
Other optimizations • 589

Optimizing processing �� 593
Detecting CPU- and GPU-bound • 594
Using the CPU Usage Profiler • 596
General CPU optimization techniques • 600

Optimizing memory ��� 602
Memory allocation and the garbage collector • 603
Using the Memory Profiler • 608

Summary ��� 613

Chapter 19: From Prototype to Executable: Generating and Debugging
Your Game 615

Building a project ��� 615
Debugging the build ��� 620

Debugging code • 621
Profiling performance • 623

Summary ��� 625

Table of Contents xv

Chapter 20: AR/VR 627

Using AR Foundation �� 627
Creating an AR Foundation project • 628
Using tracking features • 631

Building for mobile devices �� 640
Building for Android • 640
Building for iOS • 647

Creating a simple AR game ��� 651
Spawning the player and enemies • 651
Coding the player and enemy behavior • 653

Summary ��� 660

Chapter 21: Massive Worlds: Introduction to DOTS 661

Understanding what DOTS is �� 661
Creating our first DOTS game �� 663

Creating a DOTS project • 663
Creating entities with subscenes • 665
Creating components and bakers • 667
Creating systems using Jobs and Burst • 671
Debugging system jobs and queries • 676

Creating gameplay in DOTS �� 679
Moving using input and tag components • 680
Creating seeking missiles using component lookups • 682
Destroying the character with entity command buffers • 688
Dealing with errors in bursted code • 691
Instantiating missiles with entity Prefabs • 693
Making the camera follow our character • 696
Exploring other DOTS features • 696

Summary ��� 697

Other Books You May Enjoy 701

Index 707

Preface

I can vividly remember the trepidation I felt about telling my parents that I was going to study game
development. At that time, in my region, this ambition was dismissed as juvenile and lacking in future
prospects. However, my tenacity and determination led me to chase this dream relentlessly. Today,
the game industry has grown exponentially, surpassing even the film industry in revenue.

Of course, following my dream was more difficult than I anticipated. Anyone with the same dream as
me sooner or later realizes the complexity and depth of knowledge required in this field. Sadly, this
steep learning curve leads many to give up, but I strongly believe that with the proper guidance and
tools, you can make your career path easier. For me, mastering Unity was pivotal in streamlining my
learning process. And this book is a culmination of that experience, aimed at easing your journey
into the world of game development.

Welcome to this book about Unity 2023. This book will introduce you to the latest Unity features so that
you can create your first video game in the simplest way possible. Unity offers an array of user-friendly
yet powerful tools to address common game development challenges, such as rendering, animation,
physics, sound, and effects. We will utilize all these features to create a simple but complete game,
delving into all the intricacies of Unity.

By the end of this book, you will have all the skills necessary to use Unity effectively, allowing you to
explore in depth various areas of game development that interest you, whether for building a pro-
fessional career or simply for the joy of creating games as a hobby. Unity is a versatile tool for both
professional and amateur projects, and it is being used every day by more and more people.

Unity’s utility extends beyond game creation; it’s a powerful platform for all kinds of interactive ap-
plications, from straightforward mobile apps to complex educational and training programs, often
referred to as Serious Gaming. These applications harness cutting-edge technologies like Augmented
and Virtual Reality. Therefore, while our primary focus here is game development, you are embarking
on a learning journey that offers a spectrum of potential specializations.

Who this book is for
This book has been thoughtfully structured to cater to people from various backgrounds. If you have
a basic understanding of Object-Oriented Programming (OOP) but are new to game development or
have never used Unity, you’ll find this book a good introduction to both game development and Unity’s
fundamental to advanced concepts. Even seasoned Unity developers looking to master the platform’s
latest features will discover valuable insights in many sections of this book.

Prefacexviii

On the other hand, if you’re starting without any programming experience, this book is still high-
ly accessible. Many chapters have been designed to be informative without requiring prior coding
knowledge. These sections will equip you with a solid foundation for starting to learn how to code in
Unity, making the learning curve much smoother than it would be otherwise. Once you’ve grasped
the basics of coding, the scripting-focused chapters of this book will become increasingly beneficial.
Additionally, with the introduction of Visual Scripting in Unity, those who prefer node-based scripting
have an appealing alternative available.

What this book covers
Chapter 1, Embark on Your Unity Journey, teaches you how to install and set up Unity on your computer,
as well as how to create your first project.

Chapter 2, Crafting Scenes and Game Elements, teaches you the concepts of Scenes and GameObjects,
the Unity way to describe what your game world is composed of.

Chapter 3, From Blueprint to Reality: Building with Terrain and ProBuilder, is where we will be creating
our first level layout, prototyping it with the Terrain and ProBuilder Unity features.

Chapter 4, Seamless Integration: Importing and Integrating Assets, is where we will be creating our first
level layout, prototyping it with the Terrain and ProBuilder Unity features.

Chapter 5, Unleashing the Power of C# and Visual Scripting, is the first programming chapter of the book.
We will learn how to create our first script using C# in the Unity way, and then we will explore how to
do the same with Visual Scripting, the new node-based coding language of Unity.

Chapter 6, Dynamic Motion: Implementing Movement and Spawning, teaches you how to program the
movement of your objects and how to spawn them. This chapter introduces the new Unity Input Sys-
tem. General programming knowledge is assumed from this point on.

Chapter 7, Collisions and Health: Detecting Collisions Accurately, teaches you how to configure the Phys-
ics settings of objects to detect when two of them collide and react to the collision, creating a health
system, in this case.

Chapter 8, Victory or Defeat: Win and Lose Conditions, covers how to detect when the game should end,
both when the player wins and loses.

Chapter 9, Starting your AI Journey: Building Intelligent Enemies for Your Game, covers creating a basic
AI using several Unity features for creating challenging enemies in our game.

Chapter 10, Material Alchemy: Using URP and Shader Graph for Stunning Visuals, shows how to use one
of the latest Unity render systems (Universal Render Pipeline, or URP) and how to create effects with
the Shader Graph feature.

Chapter 11, Captivating Visual Effects: Harnessing Particle Systems and Visual Effect Graph, teaches you
how to create visual effects such as water and fire using the two main Unity tools for doing so, Particle
Systems and VFX Graph, and how to make scripts that control them according to what’s happening
in the game.

Preface xix

Chapter 12, Enlightening Worlds: Illuminating Scenes with the Universal Render Pipeline, looks at lighting,
which is a concept big enough to have its own chapter. Here, we will deepen our knowledge of the
Universal Render Pipeline, specifically its lighting capabilities.

Chapter 13, Immersive Realism: Achieving Fullscreen Effects with Post-Processing, teaches you how to add a
layer of effects on top of your scene graphics using the postprocessing feature of the Universal Render
Pipeline to get that film effect most modern games have today.

Chapter 14, Harmonious Soundscapes: Integrating Audio and Music, covers a topic that is underestimated
by most beginner developers; here we will learn how to properly add sound and music to our game,
taking into consideration its impact on performance. This also covers how to script the sound.

Chapter 15, Interface Brilliance: Designing User-Friendly UI, looks at the User Interface (UI). Of all the
graphical ways to communicate information to the user, the UI is the most direct one. We will learn
how to display information in the form of text, images, and life bars using the Unity UI system, and
also how to script the UI.

Chapter 16, Next-Gen UI: Creating Dynamic Interfaces with UI Toolkit, looks at UI Toolkit, which is the
successor of Canvas, the UI system we learned about in the previous chapter. We will explore it to get
ahead and be prepared for Unity’s use of this HTML-based toolkit in the future.

Chapter 17, Animated Realities: Creating Animations with Animator, Cinemachine, and Timeline, takes us
further than the static scene we have created so far. In this chapter, we will start moving our characters
and creating cutscenes with the latest Unity features to do so, and how to script them.

Chapter 18, Performance Wizardry: Optimizing Your Game with Profiler Tools, discusses how making our
game perform well is no easy task, but is certainly needed to release it. Here, we will be learning how
to profile our game’s performance and tackle the most common performance issues.

Chapter 19, From Prototype to Executable: Generating and Debugging Your Game, teaches you how to
convert your Unity project into an executable format to distribute it to other people and run it without
Unity installed.

Chapter 20, AR/VR, teaches you how to create an AR application with Unity’s AR Foundation package,
one of the most recent ways to create AR applications with Unity.

Chapter 21, Massive Worlds: Introduction to DOTS, teaches you how to start creating projects with DOTS,
the new Unity technology that allows the creation of highly performant games to create complex
gameplay involving thousands of objects on scene.

To get the most out of this book
You will be developing a full project through the chapters of this book, and while you can just read
the chapters, I highly recommend you practice all the steps in this project as you advance through the
book so you can get the experience needed to properly learn the concepts demonstrated here. The
chapters have been designed so you can customize the game and not create the exact game shown in
the book. However, I recommend not deviating too much from the main idea.

Prefacexx

The project files have been split into a folder per chapter and have been designed in a cumulative way,
each folder having just the new files introduced by the chapter or the changed ones. This means, for
example, that if a file hasn’t changed since Chapter 1, you won’t find it in Chapter 2 onward; those chap-
ters will just use the file introduced in Chapter 1. This allows you to see just what we changed in each
chapter, easily identifying the needed changes, and if for some reason you can’t finish, for example,
Chapter 3, you can just continue with Chapter 4’s steps on top of Chapter 3. Also note that Chapters 15
to 19 will have two versions of the files: the C# ones and the Visual Scripting ones.

Software/hardware covered in the book OS requirements

Unity 2023.2 Windows, macOS X or Linux (any)

Visual Studio 2023 Community Windows or macOS X (any)

XCode 15 macOS X

While we will see how to use XCode 15, it is not required for most of the chapters. Also, there are
alternatives to Visual Studio in Linux, like Visual Studio Code.

If you are using the digital version of this book, we advise you to type the code yourself or access the
code via the GitHub repository (link available in the next section). Doing so will help you avoid any
potential errors related to the copying and pasting of code.

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/Hands-
On-Unity-2023-Game-Development-Fourth-Edition. We also have other code bundles from our rich
catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You
can download it here: https://packt.link/gbp/9781835085714.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file exten-
sions, pathnames, dummy URLs, user input, and Twitter handles. For example: “Mount the downloaded
WebStorm-10*.dmg disk image file as another disk in your system.”

A block of code is set as follows:

<ui:Scroller high-value="100"
 direction="Horizontal"
 value="42" />

https://github.com/PacktPublishing/Hands-On-Unity-2023-Game-Development-Fourth-Edition
https://github.com/PacktPublishing/Hands-On-Unity-2023-Game-Development-Fourth-Edition
https://github.com/PacktPublishing/
https://packt.link/gbp/9781835085714

Preface xxi

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

<ui:Scroller high-value="100"
 direction="Horizontal"
 value="42" />

Bold: Indicates a new term, an important word, or words that you see on the screen. For instance,
words in menus or dialog boxes appear in the text like this. For example: “Select System info from
the Administration panel.”

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of your
message. If you have questions about any aspect of this book, please email us at questions@packtpub.
com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you reported this to us. Please visit
http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are
interested in either writing or contributing to a book, please visit http://authors.packtpub.com.

Warnings or important notes appear like this.

Tips and tricks appear like this.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com

Prefacexxii

Share your thoughts
Once you’ve read Hands-On Unity Game Development, we’d love to hear your thoughts! Please click
here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

https://packt.link/r/1835085717
https://packt.link/r/1835085717

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free
content in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781835085714

2. Submit your proof of purchase
3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781835085714

Section 1
Getting Started with Unity

Master the basics of the Unity editor, from creating a blank project to crafting scenes with both pro-
totype and final graphics.

This section comprises the following chapters:

• Chapter 1, Embark on Your Unity Journey
• Chapter 2, Crafting Scenes and Game Elements
• Chapter 3, From Blueprint to Reality: Building with Terrain and ProBuilder
• Chapter 4, Seamless Integration: Importing and Integrating Assets

1
Embark on Your Unity Journey

In this chapter, we will learn how to install Unity and create a project with Unity Hub, a tool that
manages different Unity versions and projects, among other tasks. Unity Hub gives easy access to
community blogs, forums, resources, and learning portals; it also manages your licenses and allows
managing different installs and projects.

Specifically, we will examine the following topics in this chapter:

• Installing Unity
• Creating projects

Let’s start by talking about how to get Unity up and running. If you already know how to install Unity,
feel free to skip ahead to Chapter 2, Crafting Scenes and Game Elements. If you are already familiar with
Unity’s editor, you can jump to Chapter 3, From Blueprint to Reality: Building with Terrain and ProBuilder,
where we start creating the book’s project.

Installing Unity
We’ll begin with a simple but necessary first step: installing Unity. It seems like a straightforward first
step, but we can discuss the proper ways to do this. In this section, we will be looking at the following
concepts:

• Unity’s technical requirements
• Unity versioning
• Installing Unity with Unity Hub

First, we will discuss what is necessary to run Unity on our computers.

Unity’s technical requirements
To run the Unity 2023 editor, your computer will need to meet the requirements specified here: https://
docs.unity3d.com/2023.2/Documentation/Manual/system-requirements.html

https://docs.unity3d.com/2023.2/Documentation/Manual/system-requirements.html
https://docs.unity3d.com/2023.2/Documentation/Manual/system-requirements.html

Embark on Your Unity Journey4

Here is a summary of what’s specified in the link:

• If you use Windows, you need Windows 10.7 version 21H1 (19043) or higher. Unity will run
only on 64-bit versions of those systems; there is no 32-bit support unless you are willing to
work with Unity versions before 2017.x, but that’s outside the scope of this book.

• For Mac, you need Big Sur 11.0.
• For Linux, you need exactly Ubuntu 20.04 or 22.04.

Regarding the CPU, these are the requirements:

• Your CPU needs to support 64 bits
• Your CPU needs to support SSE2 (most CPUs support it)
• In the case of Macs with Apple silicon, M1 or above is needed. For Intel Macs, any with x64

and SSE2 support will work.

Finally, regarding graphics cards, these are the supported ones:

• On Windows, we need a graphics card with DirectX 10, 11, or 12 support (most modern GPUs
support it)

• On Mac, any Metal-capable Intel or AMD GPU will be enough
• On Linux, OpenGL 3.2 or any superior version, or a Vulkan-compatible card from Nvidia and

AMD is supported

Now that we know the requirements, let’s discuss the Unity installation management system.

Unity versions
At this book is being written, Unity announced a shift in their versioning system. The current release,
Unity 2023.2, will be the final iteration of the 2023 series. The next version, which was supposed to be
2023.3 LTS, will instead be launched as Unity 6. This transition marks the end of the LTS (Long-Term
Support) release cycle, which forced Unity to undertake several releases each year. Moving forward,
we anticipate the sequential roll-out of Unity versions 6.1, 6.2, 6.3, and so forth, each offering a stable
platform enriched with new features.

Note that these are not the requirements for a user to play your game, but for you to use
the editor. For the requirements for a user to play your game, please read the following
documentation: https://docs.unity.cn/ru/2021.1/Manual/system-requirements.
html#player

https://docs.unity.cn/ru/2021.1/Manual/system-requirements.html#player
https://docs.unity.cn/ru/2021.1/Manual/system-requirements.html#player

Chapter 1 5

LTS versions have the benefit that they are planned to be updated bi-weekly with bug fixes for 2 years,
while new major versions of Unity release. That’s the reason most companies stick to LTS versions
of the engine: because of its stability and long-term support. In this book, we will be using 2023.1
just to explore the new features of the engine, but consider sticking to LTS versions when developing
commercial game titles.

Considering this, you may need to have several versions of Unity installed in case you work on different
projects made with different versions. You may be wondering why you can’t just use the latest version
of Unity for every project, but there are some problems with that.

In newer versions of Unity, there are usually lots of changes to how the engine works, so you may need
to rework lots of pieces of the game to upgrade it, including third-party plugins. It can take lots of
time to upgrade the whole project, and that can push the release date back. Maybe you need a specific
feature that comes with an update that will help you. In such a case, the cost of upgrading may be
worthwhile. In projects that require maintenance and updates over several years, developers typically
adhere to the existing version, opting to upgrade only when a new update includes a necessary feature.

Managing different projects made with different Unity versions, and installing and updating new
Unity releases, all used to be a huge hassle. Thus, Unity Hub was created to help us with this, and it
has become the default way to install Unity. Despite this, it is not necessary for installing Unity, but
we will keep things simple for now and use it. Let’s look closer into it.

Installing Unity with Unity Hub
Unity Hub is a small piece of software that we will install before installing Unity. It centralizes the
management of all your Unity projects and installations. You can get it from the official Unity website.
The steps to download it change frequently, but at the time of writing this book, you need to do the
following:

1. Go to unity.com.
2. Click on the PLANS AND PRICING button, as shown in the following screenshot:

Figure 1.1: The PLANS AND PRICING button on Unity’s website

http://unity.com

Embark on Your Unity Journey6

3. Click on the Student and hobbyist tab; then, under the Personal section, click on the Get
started button, as illustrated in the following screenshot:

Figure 1.2: Choosing an individual/free license

4. Scroll down to the section saying 1� Download the Unity Hub and click on the Download button
according to your operating system. For Windows, click Download for Windows, and for Mac,
click on Download for Mac. For Linux, there is an Instructions for Linux button with further
info about how to install on that platform, but we won’t be covering Unity in Linux in this book:

Figure 1.3: Starting the download

5. Execute the downloaded installer.
6. Follow the instructions of the installer, which will mostly involve clicking Next all the way to

the end.

Now that we have Unity Hub installed, we must use it to install a specific Unity version. You can do
this with the following steps:

Chapter 1 7

1. Start Unity Hub.
2. If prompted to install a Unity version and/or create a license, please skip these steps with the

corresponding Skip buttons (which may vary according to the Unity Hub version). This way to
install Unity and licenses is only available the first time you run Unity Hub, but we are going
to learn an alternative approach that works after the initial setup.

3. Log in to your account by clicking on the Sign in button:

Figure 1.4: Signing in to Unity Hub

4. Here, you also have the option to create a Unity account if you haven’t already, as illustrated, in
the link labeled create one that appears in the Unity login prompt in the following screenshot:

Figure 1.5: Logging in to Unity Hub

5. Follow the steps on the installer and then you should see a screen like the one in the next
Screenshot. If it is not the same, try clicking the Learn button in the top-left part of the screen:

Embark on Your Unity Journey8

Figure 1.6: The Unity Hub window

6. Click on the Installs button and check if you have Unity 2023 listed there.
7. If not, click the Install Editor button in the top-right corner. This will show a list of Unity ver-

sions that can be installed from here:

Figure 1.7: Unity versions available to install

Chapter 1 9

8. You will see three tabs here. Official releases contains the latest versions of each major release
already released. Pre-releases contains alpha and beta releases of Unity, so you can participate
in these programs and test new features before they are officially released. Archive contains a
link to the Unity Download Archive, which contains every single Unity version released. For
example, the official release at the time of writing this is 2023.2.4f1, but if you see a newer
version instead, you can install the correct version from the archive.

9. Locate Unity 2023.2 in the Official releases tab (or, if you can’t find it, in the Archives tab).
10. Click on the Install button at the right of Unity 2023.2.XXf1, where XX will vary according to

the latest available version. The Archive contains a link to the Unity Download Archive, which
houses every version of Unity ever released. As of the writing of this text, the official release
is 2023.2.4f1, but should you encounter a newer version, you can install the correct version
from the archive.

11. A modules selection window will show up. Make sure the Visual Studio feature is checked.
While this program is not needed to work in Unity, we will be using it later in the book. If you
already have a C# IDE installed, feel free to skip it.

12. Now, click the Continue button:

Figure 1.8: Selecting Visual Studio

Embark on Your Unity Journey10

13. Accept Visual Studio’s terms and conditions and then click Install:

Figure 1.9: Accepting Visual Studio’s terms and conditions

14. You will see the selected Unity version downloading and installing. Wait for this to finish. If
you don’t see it, click the Downloads button to reopen it:

Figure 1.10: Currently active Unity Hub downloads

15. If you decided to install Visual Studio, after Unity has finished installing, the Visual Studio In-
staller will automatically execute. It will download an installer that will download and install
Visual Studio Community:

It is important to note that Visual Studio is the program we will use in Chapter 5,
Unleashing the Power of C# and Visual Scripting, to create our code. We do not need
the other Unity features right now, but you can go back later and install them if
you need them.

Chapter 1 11

Figure 1.11: Installing Visual Studio

16. To confirm everything worked, you must see the selected Unity version in the list of Installs
of Unity Hub:

Figure 1.12: Available Unity versions

Embark on Your Unity Journey12

Now that we have installed Unity and Visual Studio through Unity Hub on our computer, before using
Unity, we need to acquire and install a free license to make it work by doing the following:

1. Click the Manage licenses button in the top-right corner of the Unity Hub. If you don’t see it,
click your account icon in the top-left corner and click Add licenses there:

Figure 1.13: The Add licenses button to click in order to acquire a free license

2. Click the Add button in the Licenses list window:

Figure 1.14: The Licenses list window’s Add button

3. Click the Get a free personal license button:

Figure 1.15: Option to get a free personal license

Chapter 1 13

4. Read and accept the terms and conditions if you agree with them by clicking the Agree and
get personal edition license button:

Figure 1.16: The button to accept the terms and conditions

With that, we now have a valid license to use Unity in our account. Remember that the preceding steps
may be different in new Unity Hub versions, so just try to follow the flow that Unity designed—most
of the time, it is intuitive.

Now it is time to create a project using Unity.

Creating projects
Now that we have Unity installed, we can start creating our game. To do so, we first need to create a
project, which is basically a folder containing all the files that your game will be composed of. These
files are called assets and there are different types of them, such as images, audio, 3D models, script
files, and so on. In this section, we will see how to manage a project, addressing the following concepts:

• Creating a project
• Project structure

Let’s first learn how to create a blank project to start developing our first project within the book.

Creating a project
As with Unity installations, we will use Unity Hub to manage projects. We need to follow these next
steps to create one:

1. Open Unity Hub and click on the Projects button, and then click on New project:

Figure 1.17: Creating a new project in Unity Hub

Embark on Your Unity Journey14

2. Note that if you have more than one version of Unity installed through Unity Hub, you may
need to select the appropriate version from the drop-down menu at the top of the UI to make
sure you use the 2023.1 version you installed before.

Figure 1.18: Picking the proper Unity version

3. Pick the 3D (URP) template as we will be creating a 3D game with simple graphics, prepared
to run on every device Unity can be executed on, so the URP (or Universal Render Pipeline)
is the better choice for that. In Chapter 10, Material Alchemy: Using URP and Shader Graph for
Stunning Visuals, we will be discussing exactly why.

4. If you see a Download template button, click it; if not, that means you already have the template:

Figure 1.19: Downloading the 3D URP template

Chapter 1 15

5. Choose a project name and a location, and click Create project:

Figure 1.20: Selecting the Universal Render Pipeline template

6. Unity will create and automatically open the project. This can take a while, but after that you
will see a window similar to the one in the following screenshot. You might see the dark-themed
editor instead, but for better clarity, we will use the light theme throughout the book. Feel free
to keep the dark theme:

Figure 1.21: The Unity Editor window

I still remember the first template project I saw in Unity 2.6 back in 2009, before the
Unity version numbers matched the release year. It was an island that showcased
the Terrain and Water systems. It had flamingos that avoided you when you were
close, and it was a lot of fun to walk around. Sadly, the template project we chose
won’t be as memorable as that one, but it’s still a good one to start.

Embark on Your Unity Journey16

7. Close the window, then go back to Unity Hub and pick the project from the list to open it again:

Figure 1.22: Reopening the project

Now that we have created the project, let’s explore its structure.

Project structure
We have just opened Unity, but we won’t start using it until the next chapter. Now, it’s time to see how
the project folder structure is composed. To do so, we need to open the folder in which we created
the project. If you don’t remember where this is, you can do the following:

1. Right-click the Assets folder in the Project panel, located at the bottom part of the editor.
2. Click the Show in Explorer option (if you are using a Mac, the option is called Reveal in Finder).

The following screenshot illustrates this:

Chapter 1 17

Figure 1.23: Opening the project folder in Explorer

Embark on Your Unity Journey18

3. Then, you will see a folder structure similar to this one (some files or folders may vary):

Figure 1.24: Unity project folder structure

Now that we have created and opened our first URP project using Unity Hub, we can find it again in
the future in the Projects tab of Unity Hub. From there, we can open it again at any time.

If you want to move this project to another PC or send it to a colleague, you can just compress all those
files and send them as a ZIP file, but not all the folders are necessary all of the time. The important
folders are Assets, Packages, and ProjectSettings. Assets will hold all the files we will create and
use for our game, so this is a must. We will also configure different Unity systems to tailor the engine
to our game; all the settings related to this are in the ProjectSettings and UserSettings folders. Fi-
nally, we will install different Unity modules or packages to expand its functionality, so the Packages
folder will hold the ones we are using.

It’s not necessary to copy the rest of the folders if you need to move the project elsewhere or add it
to a versioning system, but let’s at least discuss what the Library folder is, especially considering it’s
usually a huge size. Unity needs to convert the files we will use to its own format in order to operate; an
example is audio and graphics. Unity supports MPEG Audio Layer 3 (MP3), Waveform Audio File Format
(WAV), Portable Network Graphics (PNG), and Joint Photographic Experts Group (JPG) files (and much
more), but prior to using them, they need to be converted to Unity’s internal formats, a process called
Importing Assets. Those converted files will be in the Library folder. If you copy the project without
that folder, Unity will simply take the original files in the Assets folder and recreate the Library folder
entirely. This process can take time, and the bigger the project, the more time is involved.

Keep in mind that you want to have all the folders Unity created while you are working on the project,
so don’t delete any of them while you work on it, but if you need to move an entire project, you now
know exactly what you need to take with you.

Summary
In this chapter, we reviewed how the Unity versioning system works. We also saw how to install and
manage different Unity versions using Unity Hub. Finally, we created and managed multiple projects
with the same tool. We will use Unity Hub a lot, so it is important to know how to use it initially. Now,
we are prepared to dive into the Unity Editor.

In the next chapter, we will begin exploring basic Unity tools, laying the groundwork for authoring
our first level prototype.

Chapter 1 19

Learn more on Discord
Read this book alongside other users, Unity game development experts, and the author himself. Ask
questions, provide solutions to other readers, chat with the author via Ask Me Anything sessions, and
much more. Scan the QR code or visit the link to join the community:

https://packt.link/unitydev

https://packt.link/unitydev

2
Crafting Scenes and Game
Elements

In this chapter, we will develop some base knowledge of Unity in order to edit a project, and we will
learn how to use several Unity Editor windows to manipulate our first scene and its objects. We will
also learn how an object, or GameObject, is created and composed and how to manage complex scenes
with multiple objects, using Hierarchies and Prefabs. Finally, we will review how we can properly save
all our work to continue working on it later.

Specifically, we will examine the following concepts in this chapter:

• Manipulating scenes
• GameObjects and components
• Understanding object Hierarchies
• Managing GameObjects using Prefabs
• Saving scenes and projects

Manipulating scenes
A scene is one of the several types of files (also known as assets) in our project. Other types of files
include scripts for code, audio files, 3D models, and textures, among others. A “scene” can be used
for different things according to the type of project, but the most common use case is to separate your
game into whole sections, with the most common ones being the following:

• The main menu
• Level 1, Level 2, Level 3, etc.
• A victory screen and a lose screen
• A splash screen and a loading screen

Crafting Scenes and Game Elements22

In this section, we will cover the following concepts related to scenes:

• The purpose of a scene
• The Scene view
• Adding our first GameObject to a scene
• Navigating the Scene view
• Manipulating GameObjects

So, let’s take a look at each of these concepts.

The purpose of a scene
The idea of separating your game into scenes is so that Unity can process and load just the data need-
ed for the scene. Let’s say you are in the main menu; in such a case, you will have only the textures,
music, and objects that the main menu needs to be loaded in random-access memory (RAM), the
device’s main memory. In that case, there’s no need for your game to have loaded the Level 10 boss if
you don’t need it right now. That’s why loading screens exist, just to fill the time between unloading
the assets needed in one scene and loading the assets needed in another. Maybe you are thinking that
open-world games such as Grand Theft Auto don’t have loading screens while you roam around in the
world, but they are actually loading and unloading chunks of the world in the background as you move,
and those chunks are different scenes that are designed to be connected to each other.

The difference between the main menu and a regular level scene is the objects (also known as GameO-
bjects in Unity lingo) they have. In a menu, you will find objects such as backgrounds, music, buttons,
and logos, and in a level, you will have the player, enemies, platforms, health boxes, and so on. So, the
meaning of your scene depends on what GameObjects are put into it. But how can we create a scene?
Let’s start with the Scene view.

The Scene view
When you open a Unity project, you will see the Unity Editor. It will be composed of several windows
or panels, each one helping you to change different aspects of your game. In this chapter, we will look
at the windows that help you create scenes. The Unity Editor is shown in the following screenshot:

Chapter 2 23

Figure 2.1: The Unity Editor

If you have ever programmed any kind of application before, you are probably used to having a starting
function such as Main, where you start writing code to create several objects needed for your app. If
you were developing a game, you would probably create all the objects for the scene there. The prob-
lem with this approach is that in order to ensure all objects are created properly, you will need to run
the program to see the results, and if something is misplaced, you will need to manually change the
coordinates of the object, which is a slow and painful process. Luckily, in Unity, we have the Scene
view, an example of which is shown in the following screenshot:

Figure 2.2: The Scene view

Crafting Scenes and Game Elements24

This window is an implementation of the classic WYSIWYG (What You See Is What You Get) concept.
Here, you can create objects and place them all over the scene, all through a scene previsualization
where you can see how the scene will look when players play the game. However, before learning how
to use this scene, we need to have an object in the scene, so let’s create our first object.

Adding our first GameObject to the scene
The project template we choose when creating the project comes with a blank scene ready to work
with, but let’s create our own empty scene to see how to do it ourselves. To do that, you can simply use
the File | New Scene menu to create an empty new scene, as illustrated in the following screenshot:

Figure 2.3: Creating a new scene

After clicking New Scene, you will see a window to pick a scene template; here, select the Basic (URP)
template. A template defines which objects the new scene will have, and in this case, our template
will come with a basic light and a camera, which will be useful for the scene we want to create. Once
selected, just click the Create button:

Figure 2.4: Selecting the scene template

Chapter 2 25

Now that we have our empty scene, let’s add GameObjects to it. We will learn several ways of creating
GameObjects throughout the book, but for now, let’s start using some basic templates Unity provides
for us. In order to create them, we will need to open the GameObject menu at the top of the Unity
window, and it will show us several template categories, such as 3D Object, 2D Object, Effects, and
so on, as illustrated in the following screenshot:

Figure 2.5: Creating a cube

Under the 3D Object category, we will see several 3D primitives such as Cube, Sphere, Cylinder, and
so on, and while using them is not as exciting as using beautiful, downloaded 3D models, remember
that we are only prototyping our level at the moment. This is called gray-boxing, which means that we
will use lots of prototyping primitive shapes to model our level so that we can quickly test it, seeing if
our idea is good enough to start the complex work of converting it to a final version.

I recommend you pick the Cube object to start because it is a versatile shape that can represent lots
of objects. So, now that we have a scene with an object to edit, the first thing we need to learn to do
with the Scene view is to navigate through the scene.

Navigating the Scene view
In order to manipulate a scene, we need to learn how to move through it to view the results from dif-
ferent perspectives. There are several ways to navigate the scene, so let’s start with the most common
one, the first-person view. This view allows you to move through a scene using first-person-shooter-
like navigation, using the mouse and the WASD keys. To navigate like this, you will need to press and
hold the right mouse button, and while doing so, you can:

• Move the mouse to rotate the camera around its current position
• Press the WASD keys to move the position of the camera, always holding the right click
• You can also press Shift to move faster
• Press the Q and E keys to move up and down

Another common way of moving is to click an object to select it (the selected object will have an orange
outline), and then press the F key to focus on it, making the Scene view camera immediately move to
a position where we can look at that object more closely.

Crafting Scenes and Game Elements26

After that, we can press and hold the left Alt key on Windows, or Option on a Mac, along with the left
mouse click, to finally start moving the mouse and “orbit” around the object. This will allow you to
see the focused object from different angles to check if every part of it is properly placed, as demon-
strated in the following screenshot:

Figure 2.6: Selecting an object

Now that we can move freely through the scene, we can start using the Scene view to manipulate
GameObjects.

Manipulating GameObjects
Another use of the Scene view is to manipulate the locations of the objects. In order to do so, we first
need to select an object, and then press the Transform tool in the top-left corner of the Scene view. You
can also press the Y key on the keyboard once an object is selected to activate the same Transform tool:

Figure 2.7: The transformation tool

This will show what is called the Transform Gizmo over the selected object. A gizmo is a visual tool
overlaid on top of the selected object, used to modify different aspects of it. In the case of the Trans-
form Gizmo, it allows us to change the position, rotation, and scale of the object, as illustrated in
Figure 2.8. Don’t worry if you don’t see the cube-shaped arrows outside the sphere—we will enable
them in a moment:

Chapter 2 27

Figure 2.8: The Transform Gizmo

Let’s start translating the object, which is accomplished by dragging the red, green, and blue arrows
inside the gizmo’s sphere. While you do this, the object will move along the selected axis. An interest-
ing concept to explore here is the meaning of the colors of these arrows. If you pay attention to the
top-right area of the Scene view, you will see an axis Gizmo that serves as a reminder of those colors’
meaning, as illustrated in the following screenshot:

Figure 2.9: The axis Gizmo

Computer graphics use the classic 3D Cartesian coordinate system to represent objects’ locations.
The red color is associated with the x axis of the object, green with the y axis, and blue with the z axis.

But what does each axis mean? If you are used to another 3D authoring program like Maya, Blender,
or 3DS Max, this can be different, but in Unity, the z axis represents the forward vector, which means
that the arrow points along the front of the object; the x axis is the right vector, and the y axis rep-
resents the up vector.

Crafting Scenes and Game Elements28

These directions are known as local coordinates, and that’s because every object can be rotated dif-
ferently, meaning each object can point its forward, up, and right vectors elsewhere according to its
orientation. The local coordinates will make more sense when used later in the Understanding object
hierarchies section of the chapter, so bear with me on that, but it’s worth discussing global coordinates
now. The idea is to have a single origin point (the zero point) with a single set of forward, right, and up
axes that are common across the scene. This way, when we say an object has a global position of 5,0,0,
we know that we are referring to a position 5 meters along the global x-axis, starting from the global
zero position. The global axes are the ones you see in the top-right axis gizmos previously mentioned.

In order to be sure that we work with local coordinates, meaning we will move the object along its local
axes, make sure the Local mode is activated in the Scene view, as shown in the following screenshot:

Figure 2.10: Switching pivot and local coordinates

If the right button says Global instead of Local, just click it and select Local from the drop-down options.
By the way, try to keep the left button as Pivot. If it says Center, click and select Pivot. The pivot of the
object is not necessarily its center, and that depends entirely on the 3D model we use, and where the
author of it specifies the object rotation center is located. For example, a car could have its pivot in
the middle of its back wheels, so when we rotate, it will respect the real car’s rotation center. Editing
based on the object’s pivot will simplify our understanding of how rotating via C# scripts will work
later in Chapter 6. Also, now that we have enabled Local coordinates, you should see the cube-shaped
arrows seen in Figure 2.8; we will use them in a moment to scale the cube.

I know—we are editing a cube, so there is no clear front or right side, but when you work with real 3D
models such as cars and characters, they will certainly have those sides, and they must be properly
aligned with those axes. If, by any chance in the future, you import a car into Unity and the front of
the car points along the x-axis, you will need to align that model along the z axis because the code we
will create to move our object will rely on that convention.

We just mentioned that a position (5,0,0) would mean 5 meters along the x-axis, which
implies that the Unity unit system is the meter. While several Unity systems like Physics
and Audio follow this assumption (1 unit = 1 meter), it is not necessarily the mandatory
unit system. There are several ways to change this and scale the world for convenience,
but given that it is only necessary in specific scenarios, in this book, we will stick to the
meter measuring system.

Chapter 2 29

Now, let’s use this Transform Gizmo to rotate the object, using the three colored circles around it. If
you click and drag, for example, the red circle, you will rotate the object along the x-axis. If you want
to rotate the object horizontally, based on the color coding we previously discussed, you will probably
pick the x-axis—the one that is used to move horizontally—but, sadly, that’s wrong. A good way to look
at the rotation is like the accelerator of a motorcycle: you need to take it and roll it. If you rotate the
x-axis like this, you will rotate the object up and down. So, in order to rotate horizontally, you would
need to use the green circle or the y axis. The process is illustrated in the following screenshot:

Figure 2.11: Rotating an object

Finally, we have scaling, and we have two ways to accomplish that, one of them being through the
gray cube at the center of the Transform Gizmo shown in Figure 2.8. This allows us to change the size
of the object by clicking and dragging that cube. Now, as we want to prototype a simple level, some-
times we want to stretch the cube to create, for example, a column or a flat floor, and here’s where
the second way comes in.

If you click and drag the colored cubes in front of the translation arrows instead of the gray one in the
center, you will see how our cube stretches over those axes, allowing you to change the shape of the
object. If you don’t see those cube-shaped arrows, remember to enable Local coordinates, as stated
earlier in this section.

The process of stretching is illustrated in the following screenshot:

Figure 2.12: Scaling an object

Crafting Scenes and Game Elements30

 Remember that you can also use the the same gray cube we had in the Transform Gizmo in the middle
to scale all axes at the same time if desired. This is known as uniform scaling

Finally, something to consider here is that several objects can have the same scale values but different
sizes, given how they were originally designed. Scale is a multiplier we can apply to the original size of
an object, so a building and a car both with scale 1 make perfect sense; the relative size of one against
the other seems correct. The main takeaway here is that scale is not size but a way to multiply it.

Consider that scaling objects is usually a bad practice in many cases. In the final versions of your scene,
you will use models with the proper size and scale, and they will be designed in a modular way so that
you can plug them into each other. If you scale them, several bad things can happen, such as textures
being stretched and becoming pixelated, and modules that no longer plug properly. There are some
exceptions to this rule, such as placing lots of instances of the same tree in a forest and changing its
scale slightly to simulate variation. Also, in the case of gray-boxing, it is perfectly fine to take cubes
and change the scale to create floors, walls, ceilings, columns, and so on because, ultimately, those
cubes will be replaced with real 3D models.

Here’s a challenge! Create a room composed of a floor, three regular walls, and the fourth wall with a
hole for a door (three cubes), and no need for a roof. In the next image, you can see how it should look:

Figure 2.13: Room task finished

Chapter 2 31

Now that we can edit an object’s location, let’s see how we can edit all its other aspects.

GameObjects and components
We talked about our project being composed of assets (the project’s files) and that a scene (which
is a specific type of asset) is composed of GameObjects; so, how can we create an object? Through a
composition of components.

In this section, we will cover the following concepts related to components:

• Understanding components
• Manipulating components

Let’s start by discussing what a component is.

Understanding components
A component is one of several pieces that make up a GameObject; each one is in charge of different
features of the object. There are several components that Unity already includes that solve different
tasks, such as playing a sound, rendering a mesh, applying physics, and so on; however, even though
Unity has a large number of components, we will eventually need to create custom components
sooner or later.

Memory

I remember when I started making games, I did most of my scenes with just boxes. While
we will certainly do better in this book, there are still incredibly clever ways to use just
that simple shape. Take, for example, the game Thomas Was Alone, which uses just boxes
with clever lighting effects and looks beautiful.

Crafting Scenes and Game Elements32

In the next image, you can see what Unity shows us when we select a GameObject:

Figure 2.14: The Inspector panel

If we needed to guess what the Inspector panel in the preceding screenshot does right now, we could
say it shows all the properties of objects selected, either via the Hierarchy, the menu where you can
see all the objects that have already been placed within the current scene, or the Scene view, and al-
lows us to configure those options to change the behavior of the object (i.e., the position and rotation,
whether it will project shadows or not, and so on).

Chapter 2 33

That is true, but we are missing a key element: those properties don’t belong to the object; they belong
to the components of the object. We can see some titles in bold before a group of properties, such as
Transform and Box Collider, and so on. Those are the components of the object.

In this case, our object has a Transform, a Mesh Filter, a Mesh Renderer, and a Box Collider compo-
nent, so let’s review each one of those.

Transform just holds the position, rotation, and scale of the object, and by itself it does nothing—it’s
just a point in our game—but as we add components to the object, that position starts to have more
meaning. That’s because some components will interact with Transform and other components, each
one affecting the other.

An example of these different components interacting with each other would be the case of Mesh
Filter and Mesh Renderer, both of those being in charge of rendering a 3D model. Mesh Renderer
will render the 3D model, also known as mesh, specified by the Mesh Filter in the position specified
in the Transform component, so Mesh Renderer needs to get data from those other components and
can’t work without them.

Another example would be the Box Collider. This represents the physics shape of the object, so when
the physics calculates collisions between objects, it checks if that shape collides with other shapes,
based on the position specified in the Transform component.

We will explore rendering and physics later in the book, but the takeaway from this section is that a
GameObject is a collection of components, each component adding a specific behavior to our object,
and each one interacting with the others to accomplish the desired task. To further reinforce this, let’s
see how we can convert a cube into a sphere that will fall, due to gravity applied via physics.

Manipulating components
The tool to edit an object’s components is the Inspector. It not only allows us to change the properties
of our components but also lets us add and remove components. In this case, we want to convert a
cube to a sphere, so we need to change several aspects of those components.

We can start by changing the visual shape of the object, so we need to change the rendered model or
mesh. The component that specifies the mesh to be rendered is the Mesh Filter component. If we
look at it in the following figure, we can see a Mesh property that says Cube, with a little circle and
a dot on its right:

Figure 2.15: The Mesh Filter component

If you don’t see a particular property, such as the Mesh we just mentioned, try to click the triangle at
the left of the component’s name. Doing this will expand and collapse all the component’s properties.

Crafting Scenes and Game Elements34

If we click the button with a circle and a dot inside, the one at the right of the Mesh property, the Select
Mesh window will pop up, allowing us to pick several mesh options. In this case, select the Sphere mesh.
In the future, we will add more 3D models to our project so that the window will have more options.

The mesh selector is shown in the following screenshot:

Figure 2.16: The mesh selector

Okay—the object now looks like a sphere, but will it behave like a sphere? Let’s find out. In order to
do so, we can add a component named Rigidbody to our sphere, which will add physics to it. We will
talk more about Rigidbody and physics later in Chapter 7, Collisions and Health: Detecting Collisions
Accurately, but for now, let’s stick to the basics.

To add Rigidbody to our sphere, we need to click the Add Component button at the bottom of the
Inspector. It will show a Component Selector window with lots of categories; in this case, we need to
click on the Physics category. The window will show all the Physics components, and there we can
find Rigidbody. Another option would be to type Rigidbody in the search box at the top of the window.
The following screenshot illustrates how to add a component:

Figure 2.17: Adding components

Chapter 2 35

If you hit the Play button in the top-middle part of the editor, you can test your sphere physics using
the Game panel. That panel will be automatically focused when you hit Play and will show you how
the player will see the game. The playback controls are shown in the following screenshot:

Figure 2.18: Playback controls

Here, you can just use the Transform Gizmo to rotate and position your camera in such a way that it
looks at our sphere. This is important, as one problem that can happen is that you might not see any-
thing during Play mode, which can happen if the game camera does not point to where our sphere is
located. While you are moving, you can check the little preview in the bottom-right part of the Scene
window to check out the new camera perspective. That is the expected behavior if you have selected a
camera. Another alternative would be to select the camera in the Hierarchy and use the shortcut Ctrl +
Shift + F (or Command + Shift + F on a Mac). The camera preview is shown in the following screenshot:

Figure 2.19: The camera preview

Crafting Scenes and Game Elements36

Now, to test if physics collisions are executing properly, let’s create a cube, scale it until it has the
shape of a ramp, and put that ramp below our sphere, as shown here:

Figure 2.20: Ball and ramp objects

If you hit Play now, you will see the sphere colliding with our ramp, but in a strange way. It looks like
it’s bouncing, but that’s not the case. If you expand the Box Collider component of our sphere, you
will see that even if our object looks like a sphere, the green box gizmo shows us that our sphere is
actually a box in the physics world, as illustrated in the following screenshot:

Figure 2.21: Object with a sphere graphic and box collider

Chapter 2 37

Nowadays, video cards (GPUs) can handle rendering highly detailed models (models with a high
polygon count), but the physics system is executed in the central processing unit (CPU), and it needs
to do complex calculations in order to detect collisions. To get a decent performance in our game, it
needs to run at least 30 frames per second (FPS), the minimum accepted by the industry to provide
a smooth experience. The physics system considers that and, hence, works using simplified collision
shapes that may differ from the actual shape a player sees on the screen.

That’s why we have Mesh Filter and the different types of Collider components separated—one handles
the visual shape and the other the physics shape.

Again, the idea of this section is not to deep-dive into those Unity systems, so let’s just move on for now.
How can we solve the issue of our sphere appearing as a box? Simple: by modifying our components!
In this case, the Box Collider component already present in our cube GameObject can just represent
a box physics shape, unlike Mesh Filter, which supports any rendering shape. So, first, we need to
remove it by right-clicking the component’s title and selecting the Remove Component option, as
illustrated in the following screenshot:

Figure 2.22: Removing components

Now, we can again use the Add Component menu to select a Physics component, this time selecting
the Sphere Collider component. If you look at the Physics components, you will see other types of
colliders that can be used to represent other shapes, but we will look at them later in Chapter 7.

Crafting Scenes and Game Elements38

The Sphere Collider component can be seen in the following screenshot:

Figure 2.23: Adding a Sphere Collider component

So, if you hit Play now, you will see that our sphere not only looks like a sphere but also behaves like
one. Remember: the main idea of this section of the book is understanding that, in Unity, you can
create whatever object you want just by adding, removing, and modifying components, and we will
be doing a lot of this throughout the book.

Now, components are not the only thing needed in order to create objects. Complex objects may be
composed of several sub-objects, so let’s see how that works.

Understanding object Hierarchies
Some complex objects may need to be separated into sub-objects, each one with its own components.
Those sub-objects need to be somehow attached to the main object and work together to create the
necessary object behavior.

In this section, we will cover the following concepts related to objects:

• Parenting of objects
• Possible uses

Let’s start by discovering how to create a parent-child relationship between objects.

Chapter 2 39

Parenting of objects
Parenting consists of making an object the child of another, meaning that those objects will be related
to each other. One type of relationship that happens is a Transform relationship, meaning that a child
object will be affected by the parent’s Transform. In simple terms, the child object will follow the
parent, as if it is attached to it. For example, imagine a player with a hat on their head. The hat can be
a child of the player’s head, making the hat follow the head while they are attached.

In order to try this, let’s create a capsule that represents an enemy and a cube that represents the
weapon of the enemy. Remember that in order to do so, you can use the GameObject | 3D Object |
Capsule and Cube options and then use the Transform tool to modify them. An example of a capsule
and a cube can be seen in the following screenshot:

Figure 2.24: A capsule and a cube representing an enemy and a weapon

If you move the enemy object (the capsule), the weapon (the cube) will keep its position, not following
our enemy. So, to prevent that, we can simply drag the weapon to the enemy object in the Hierarchy
window, as illustrated in the following screenshot:

Figure 2.25: Parenting the cube weapon to the capsule character

Crafting Scenes and Game Elements40

Now, if you move the enemy, you will see the gun moving, rotating, and being scaled along with it. So,
basically, the gun Transform also has the effects of the enemy Transform component.

Now that we have done some basic parenting, let’s explore other possible uses.

Possible uses
There are some other uses of parenting aside from creating complex objects. Another common usage
for it is to organize the project Hierarchy. Right now, our scene is simple, but in time it will grow, so
keeping track of all the objects will become difficult. To prevent this, we can create empty GameOb-
jects (in GameObject | Create Empty) that only have the Transform component to act as containers,
with objects put into them just to organize our scene. Try to use this with caution because this has a
performance cost if you abuse it. Generally, having one or two levels of parenting when organizing a
scene is fine, but more than that can have a performance hit. Consider that you can—and will—have
deeper parenting for the creation of complex objects; the proposed limit is just for scene organization.

To keep improving on our previous example, duplicate the enemy a couple of times all around the
scene, create an empty GameObject, name it Enemies, and drag all the enemies into it so that it will
act as a container. This is illustrated in the following screenshot:

Figure 2.26: Grouping enemies in a parent object

Another common usage of parenting is to change the pivot (or center) of an object. Right now, if we
try to rotate our gun with the Transform Gizmo, it will rotate around its center because the creator
of that cube decided to put the center there. Normally, that’s okay, but let’s consider a case where we
need to make the weapon aim at the point where our enemy is looking. In this case, we need to rotate
the weapon around the weapon handle; so, in the case of this cube weapon, it would be the part of
the handle that is closest to the enemy. The problem here is that we cannot change the center of an
object, so one solution would be to create another “weapon” 3D model or mesh with another center,
which will lead to lots of duplicated versions of the weapon if we consider other possible gameplay
requirements such as a rotating weapon pickup. We can fix this easily using parenting.

The idea is to create an empty GameObject and place it where we want the new pivot of our object
to be. After that, we can simply drag our weapon inside this empty GameObject, and, from now on,
consider the empty object as the actual weapon.

Chapter 2 41

If you rotate or scale this weapon container, you will see that the weapon mesh will apply those trans-
formations around this container, so we can say the pivot of the weapon has changed (actually, it
hasn’t, but our container simulates the change). The process is illustrated in the following screenshot:

Figure 2.27: Changing the Weapon pivot

Now, let’s continue seeing different ways of managing GameObjects, using Prefabs this time.

Managing GameObjects using Prefabs
In the previous example, we created lots of copies of our enemy around the scene, but in doing so, we
created a new problem. Let’s imagine we need to change our enemy and add a Rigidbody component
to it, but because we have several copies of the same object, we need to take them one by one and
add the same component to all of them. Maybe later, we will need to change the mass of each enemy,
so again, we need to go over each one of the enemies and make the change, and here we can start to
see a pattern. One solution could be to select all the enemies using the Ctrl key (Command on a Mac)
and modify all of them at once, but that solution won’t be of any use if we have enemy copies in other
scenes. So, here is where Prefabs come in.

In this section, we will cover the following concepts related to Prefabs:

• Creating Prefabs
• Prefab-instance relationship
• Prefab variants

Let’s start by discussing how to create and use Prefabs.

Creating Prefabs
Prefabs are a Unity tool that allows us to convert custom-made objects, such as our enemy, into an
asset that defines how they can be created. We can use them to create new copies of our custom object
easily, without needing to create its components and sub-objects all over again.

In order to create a Prefab, you can simply drag your custom object from the Hierarchy window to
the project window, and after doing that, you will see a new asset in your project files. The project
window is where you can navigate and explore all your project files; so, in this case, your Prefab is
the first asset you ever created.

Crafting Scenes and Game Elements42

Now, you can simply drag the Prefab from the project window into the scene to easily create new
Prefab copies, as illustrated in the following screenshot:

Figure 2.28: Creating a Prefab

Now, we have a little problem here. If you pay attention to the Hierarchy window, you will see the
original Prefab objects and all the new copies with their names in the color blue, while the enemies
created before the Prefab will have their names in black. The blue color in a name means that the
object is an instance of a Prefab, meaning that the object was created based on a Prefab. We can select
those blue-named objects and click the Select button in the Inspector, selecting the original Prefab
that created that object. This is illustrated in the following screenshot:

Figure 2.29: Detecting Prefabs in the Hierarchy

The problem here is that the non-blue copies of the enemy are not instances of the Prefab we just
created. We can fix this by selecting all enemies, by clicking them in the Hierarchy window while
pressing the Ctrl key (Command on a Mac), and then right-clicking on them to select the Prefab | Re-
place��� option. Finally, select the Enemy Prefab in the Select GameObject window that appeared to
convert them to Prefab instances. This is a new feature available in the latest Unity versions.

Figure 2.30: Converting regular GameObjects to Prefab instances

Chapter 2 43

Not having all enemy copies as Prefab instances didn’t seem to be a problem, but we will see why it
was an issue in the next section of this chapter, where we will explore the relationship between the
Prefabs and their instances.

Prefab-instance relationship
An instance of a Prefab, the GameObject that was created when dragging the Prefab to the scene, has
a binding to it that helps to revert and apply changes easily between the Prefab and the instance. If
you take a Prefab and make some modifications to it, those changes will be automatically applied to
all instances across all the scenes in the project, so we can easily create a first version of the Prefab,
use it all around the project, and then experiment with changes.

To practice this, let’s say we want to add a Rigidbody component to the enemies so that they can fall.
In order to do so, we can simply double-click the Prefab file in the Project panel and enter the Prefab
Edit Mode, where we can edit the Prefab isolated from the rest of the scene.

Here, we can simply take the Prefab root object (Enemy, in our case) and add the Rigidbody component
to it. After that, we can simply click on the Scenes button in the top-left part of the Scene window to
get back to the scene we were editing, and now, we can see that all the Prefab instances of the enemy
have a Rigidbody component, as illustrated in the following screenshot:

Figure 2.31: Prefab Edit Mode

You can also replace the original Prefab used by its instances with a different Prefab and
convert a Prefab instance back to a regular GameObject. For more details, see the video at
https://youtu.be/WOJzHz4sRyU and the Unity documentation: https://docs.unity3d.
com/Manual/UnpackingPrefabInstances.html.

https://youtu.be/WOJzHz4sRyU
https://docs.unity3d.com/Manual/UnpackingPrefabInstances.html
https://docs.unity3d.com/Manual/UnpackingPrefabInstances.html

Crafting Scenes and Game Elements44

Now, what happens if we change a Prefab instance (the one in the scene) instead? Let’s say we want
one specific enemy to fly, so they won’t suffer the effect of gravity. We can do that by simply selecting
the specific Prefab and unchecking the Use Gravity checkbox in the Rigidbody component. After doing
that, if we play the game, we will see that only that specific instance will float. That’s because changes
to an instance of a Prefab become an override, a set of differences the instance has compared to the
original Prefab. We can see how the Use Gravity property is bold in the Inspector, and also has a blue
bar displayed to its left, meaning it’s an override of the original Prefab value. Let’s take another object
and change its Scale property to make it bigger. Again, we will see how the Scale property becomes bold,
and a blue bar will appear to its left. The Use Gravity checkbox can be seen in the following screenshot:

Figure 2.32: Use Gravity being highlighted as an override

The overrides have precedence over the Prefab, so if we change the scale of the original Prefab, the
one that has a scale override won’t change, keeping its own version of the scale, as illustrated in the
following screenshot:

Figure 2.33: One Prefab instance with a scale override

Chapter 2 45

We can easily locate all overrides of an instance using the Overrides dropdown in the Inspector after
selecting the Prefab instance (the one in the scene, outside Prefab Edit Mode) in the Hierarchy, locating
all the changes our object has. It not only allows us to see all the overrides but also reverts any override
we don’t want, applying the ones we do want. Let’s say we regretted the lack of gravity of that specific
Prefab—no problem! We can just locate the override and revert it using the Revert All button after
clicking on the component with the override. The process is illustrated in the following screenshot:

Figure 2.34: Reverting a single override

Also, let’s imagine that we really liked the new scale of that instance, so we want all instances to have
that scale—great! We can simply select the specific override, hit the Apply button, and then the Apply
All option; now, all instances will have that scale (except the ones with an override), as illustrated in
the following screenshot:

Figure 2.35: The Apply button

Also, we have the Revert All and Apply All buttons, but use them with caution, because you can easily
revert and apply changes that you are not aware of.

Crafting Scenes and Game Elements46

So, as you can see, Prefabs are a really useful Unity tool to keep track of all similar objects and apply
changes to all of them, and they also have specific instances with few variations. Talking about vari-
ations, there are other cases where you will want to have several instances of a Prefab with the same
set of variations—for example, flying enemies and grounded enemies—but if you think about that, we
will have the same problem we had when we didn’t use Prefabs, so we need to manually update those
varied versions one by one.

Here, we have two options: one is to create a brand new Prefab just to have another version with that
variation. This leads to the problem that if we want all types of enemies to undergo changes, we need
to manually apply the changes to each possible Prefab. The second option is to create a Prefab variant.
Let’s review the latter.

Prefab variants
A Prefab variant is a new Prefab that is created based on an existing one, so the new one inherits the
features of the base Prefab. This means that our new Prefab can have differences from the base one,
but the features that they have in common are still connected.

To illustrate this, let’s create a variation of the enemy Prefab that can fly: the flying enemy Prefab. In
order to do that, we can select an existing enemy Prefab instance in the Hierarchy window, name it
Flying Enemy, and drag it again to the project window, and this time we will see a prompt, asking
which kind of Prefab we want to create. This time, we need to choose Prefab variant, as illustrated
in the following screenshot:

Figure 2.36: Creating Prefab variants

Chapter 2 47

Now, we can enter the Prefab Edit Mode of the variant by double-clicking the new Prefab file created
in the project panel. Then, add a cube as the jetpack of our enemy, and also uncheck the Use Gravity
property for the enemy. If we return to the scene, we will see that the variant instance has changed,
and the base enemies haven’t changed. You can see this in the following screenshot:

Figure 2.37: A Prefab variant instance

Now, imagine you want to add a hat to all our types of enemies. We can simply enter the Prefab Edit
Mode of the base enemy Prefab by double-clicking it and adding a cube as a hat. Now, we will see
that change applied to all the enemies, because remember: the Flying Enemy Prefab is a variant of
the base enemy Prefab, meaning that it will inherit all the changes of that one.

We have created lots of content so far, but if our PC turns off for some reason, we will certainly lose
it all, so let’s see how we can save our progress.

Saving scenes and projects
As in any other program, we need to save our progress. The difference here is that we don’t have just
one giant file with all the project assets but also several files for each asset.

Let’s start saving our progress by saving the scene, which is pretty straightforward. We can simply go
to File | Save or press Ctrl + S (Command + S on a Mac). The first time we save our scene, a window will
ask us where we want to save our file, and you can save it wherever you want inside the Assets folder
of our project, but never outside that folder; otherwise, Unity will not be capable of finding it as an
asset in the project. That will generate a new asset in the project window: a scene file.

There’s also the concept of Nested Prefabs, which allows you to use prefabs inside pre-
fabs to cleverly reuse prefabs’ pieces. For more info, see the Unity documentation here:
https://docs.unity3d.com/Manual/NestedPrefabs.html

https://docs.unity3d.com/Manual/NestedPrefabs.html

Crafting Scenes and Game Elements48

In the following screenshot, you can see how I saved the scene, naming it test, and now it shows up
in the Project panel:

Figure 2.38: Scene files

We can create a folder to save our scene in the Save dialog, or, if you already saved the scene, you can
create a folder using the plus (+) icon in the Project window, and then click the Folder option. Finally,
drag the created scene to that folder. Now, if you create another scene with the File | New Scene menu
option, you can get back to the previous scene just by double-clicking the scene asset in the project
window. Try it!

This only saved the scene, but any change in Prefabs and other kinds of assets are not saved with that
option. Instead, if you want to save every change of the assets except scenes, you can use the File |
Save Project option. It can be a little confusing, but if you want to save all your changes, you need to
both save the scenes and the project, as saving just the project won’t save the changes to the scenes.

Sometimes, the best way to be sure everything is saved is just by closing Unity, which is recommended
when you try to move your project between computers or folders. This will show you a prompt to save
the changes in the scene, and it will automatically save any change made to other assets, like Prefabs.

Summary
In this chapter, we had a quick introduction to essential Unity concepts. We reviewed the basic Unity
windows and how we can use all of them to edit a full scene, from navigating it and creating premade
objects (Prefabs) to manipulating them to create our own types of objects, using GameObjects and
components. We also discussed how to use the Hierarchy window to parent GameObjects to create
complex object Hierarchies, as well as how to create Prefabs to reutilize and manipulate large amounts
of the same type of objects. Finally, we discussed how we can save our progress.

In the next chapter, we will learn about different tools like the Terrain system and ProBuilder to create
the first prototype of our game’s level. This prototype will serve as a preview of where our scene will
head, testing some ideas before going into full production.

Chapter 2 49

Learn more on Discord
Read this book alongside other users, Unity game development experts, and the author himself. Ask
questions, provide solutions to other readers, chat with the author via Ask Me Anything sessions, and
much more. Scan the QR code or visit the link to join the community:

https://packt.link/unitydev

https://packt.link/unitydev

3
From Blueprint to Reality:
Building with Terrain and
ProBuilder

Now that we’ve grasped all the necessary concepts to use Unity, let’s start designing our first level of
the game. The idea in this chapter is to learn how to use Terrain tools to create the landscape of our
game and then use ProBuilder to create the 3D mesh of the base with greater detail than using cubes.
By the end of the chapter, you will be able to create a prototype of any kind of scene and try out your
idea before actually implementing it with the final graphics.

Specifically, we will examine the following concepts in this chapter:

• Defining our game concept
• Creating a landscape with Terrain Tools
• Creating shapes with ProBuilder

Let’s start by talking about our game concept, which will help us draft the first-level environment.

Defining our game concept
Before even adding the first cube to our scene, it is good to have an idea of what we are going to
create, as we will need to understand the basic concept of our game to start designing the first level.
Throughout this book, we will be creating a shooter game, in which the player will be fighting against
waves of enemies trying to destroy the player’s base.

From Blueprint to Reality: Building with Terrain and ProBuilder52

This base will be a complex in a (not so) secret location bordered by mountains:

Figure 3.1: Our finished game

We will be defining the mechanics of our game as we progress through the book, but with this basic
high-level concept of the game, we can start thinking about how to create a mountainous landscape
and a placeholder player’s base.

With that in mind, in the next section of this chapter, we will learn how to use Unity’s Terrain Tools
to create our scene’s landscape.

Creating a landscape with Terrain
So far, we have used cubes to generate our level prototype, but we also learned that cubes sometimes
cannot represent all possible objects we could need. Imagine something irregular, such as a full terrain
with hills, canyons, and rivers. This would be a nightmare to create using cubes, given the irregular
shapes you find in the terrain.

Another option would be to use 3D modeling software, but the problem with that is that the generated
model will be so big and so detailed that it won’t perform well, even on high-end PCs. In this scenario,
we need to learn how to use Unity’s Terrain system, which we will do in this first section of the chapter.

In this section, we will cover the following concepts related to terrains:

• Discussing Height Maps
• Creating and configuring Height Maps
• Authoring Height Maps
• Adding Height Map details

Chapter 3 53

Let’s start by talking about Height Maps, whose textures help us define the heights of our terrain.

Discussing Height Maps
If we create a giant area of the game with hills, canyons, craters, valleys, and rivers using regular
3D modeling tools, we will have a problem in that we will use fully detailed models for objects at all
possible distances, thus wasting resources on rendering details that we won’t see when the object is
far away. In several instances in a game, players will need to view various parts of the terrain from
considerable distances, making efficient resource management a serious issue. Unity Terrain Tools
uses a technique called Height Maps to generate the terrain in a performant and dynamic way. Instead
of generating large 3D models for the whole terrain, it uses an image called a Height Map, which looks
like a top-down black-and-white photo of the terrain.

In the following image, you can see a black-and-white top-down view of a region of Scotland, with
white being higher and black being lower:

Figure 3.2: Scotland’s Height Map

In the preceding image, you can easily spot the peaks of the mountains by looking for the whitest
areas of the image. Everything below sea level is black, while anything in the middle uses gradients
of gray, representing different heights between the minimum and maximum heights. The idea is that
each pixel of the image determines the height of that specific area of the terrain.

Unity Terrain Tools can automatically generate a 3D mesh from that image, saving us the hard drive
space of having full 3D models of that terrain. Also, Unity will create the terrain as we move, generating
high-detail models for nearby areas and low-detail models for faraway areas, making it a performant
solution.

A texture is an image that is applied to different parts of 3D models to give them details.
The concept is analogous to the sticker sheet in the toys of Kinder eggs, where you paste
them on different parts of the toys to give them eyes or smiles. We will talk more about
textures in Chapter 4, Seamless Integration: Importing and Integrating Assets.

From Blueprint to Reality: Building with Terrain and ProBuilder54

In the following image, you can see the mesh that was generated for the terrain. You can appreciate
that the nearer parts of the terrain have more polygons than the parts further away:

Figure 3.3: Height Map generated mesh

Take into account that this technology has its cons, such as the time it takes for Unity to generate those
3D models while we play and the inability to create caves. For now, however, that’s not a problem for us.

Now that we know what a Height Map is, let’s see how we can use Unity Terrain Tools to create our
own Height Maps.

Creating and configuring Height Maps
If you click on GameObject | 3D Object | Terrain, you will see a giant plane appear on your scene, and a
Terrain object appears in your Hierarchy window. That’s our terrain, and it is plain because its Height
Map starts all black, so no height whatsoever is in its initial state.

In the following image, you can see what a brand-new Terrain object looks like:

Figure 3.4: Terrain with no heights painted yet

Chapter 3 55

Before you start editing this Terrain, you must configure different settings such as the size and res-
olution of the Terrain’s Height Map, and that depends on what you are going to do with it. This is
not the same as generating a whole world. Our game will feature the player’s base, which they will
defend, so the terrain will be small. In this case, an area that’s 200 x 200 meters in size surrounded
by mountains will be enough.

In order to configure our terrain for those requirements, we need to do the following:

1. Select Terrain from the Hierarchy or Scene window.
2. Look at the Inspector for the Terrain component and expand it if it is collapsed.
3. Click on the mountain and gear icon (the furthest-right option) to switch to configuration mode.

In the following screenshot, you can see where that button is located:

Figure 3.5: Terrain Settings button

4. Look for the Mesh Resolution (On Terrain Data) section.
5. Change Terrain Width and Terrain Length to 200 in both settings. This will say that the size

of our terrain is going to be 200 x 200 meters.
6. Terrain Height determines the maximum height possible. The white areas of our Height Map are

going to be that size. We can reduce it to 500 just to limit the maximum peak of our mountains:

Figure 3.6: Terrain resolution settings

From Blueprint to Reality: Building with Terrain and ProBuilder56

7. Look for the Texture Resolutions (On Terrain Data) section.
8. Change Heightmap Resolution to 257 x 257:

Figure 3.7: Heightmap Resolution settings

Heightmap Resolution is the size of the Height Map image that will hold the heights of the different
parts of the terrain. Using a resolution of 257 x 257 in our 200 x 200-meter terrain means that each
square meter of the terrain will be covered by a little bit more than 1 pixel of the Height Map. The
higher the resolution per square meter, the greater detail you can draw in that area size. Usually, ter-
rain features are big, so having more than 1 pixel per square meter is generally a waste of resources.
Find the smallest resolution you can have that allows you to create the details you need.

Another initial setting you will want to set is the initial terrain height. By default, this is 0, so you can
start painting heights from the bottom part, but this way, you can’t make holes in the terrain because
it’s already at its lowest point. Setting up a small initial height allows you to paint river paths and pits
in case you need them.

In order to do so, do the following:

1. Select Terrain in the Hierarchy panel.
2. Click on the Paint Terrain button (the second button).
3. Set the dropdown to Set Height if it’s not already there.
4. Set the Height property to 50. This will indicate that we want all the terrain to start at 50 meters

in height, allowing us to make holes with a maximum depth of 50 meters:

Figure 3.8: Set Height Terrain tool location

Chapter 3 57

5. Click the Flatten All button. You will see all the terrain has been raised to the 50 meters we
specified. This leaves us with 450 more meters to go up, based on the maximum of 500 meters
we specified earlier.

Now that we have properly configured our Height Map, let’s start editing it.

Authoring Height Maps
Remember that the Height Map is just an image of the heights, so in order to edit it, we need to paint
the heights in that image. Luckily, Unity has tools that allow us to edit the terrain directly in the editor
and see the results of the modified heights directly. In order to do this, we must follow these steps:

1. Select Terrain in the Hierarchy panel.
2. Click the Paint Terrain button (the second button, the same as in the previous section).
3. Set the dropdown to Raise or Lower Terrain:

Figure 3.9: Raise or Lower Terrain tool location

4. Select the second brush in the Brushes selector. This brush has blurred borders to allow us
to create softer heights.

5. Set Brush Size to 30 so that we can create heights that span 30-meter areas. If you want to
create subtler details, you can reduce this number.

6. Set Opacity to 10 to reduce the amount of height we paint per second, or click:

Figure 3.10: Smooth edges brush

From Blueprint to Reality: Building with Terrain and ProBuilder58

7. Now, if you move the mouse in the Scene view, you will see a little preview of the height you will
paint if you click on that area. You may need to navigate closer to the terrain to see it in detail:

Figure 3.11: Previsualization of the area to raise the terrain

That checked pattern you can see allows you to see the actual size of the objects you are editing. Each
cell represents a square meter. Remember that having a reference to see the actual size of the objects
you are editing helps to prevent you from creating terrain features that are too big or too small. You
could also put in other kinds of references, such as a big cube with accurate sizes representing a build-
ing to get a notion of the size of the mountain or lake you are creating. Remember that the cube has a
default size of 1 x 1 x 1 meters, so scaling to 10,10,10 will give you a cube of 10 x 10 x 10 meters:

1. Hold, left-click, and drag the cursor over the terrain to start painting your terrain heights.
Remember that you can press Ctrl + Z (Command + Z on Mac) to reverse any undesired change.

2. Try to paint the mountains all around the borders of our area, which will represent the back-
ground hills of our base:

Chapter 3 59

Figure 3.12: Painted mountains around the edges of the terrain

We now have decent starter hills around our future base. We can also draw a moat around our future
base. To do so, follow these steps:

1. Place a cube with a scale of 50,10,50 in the middle of the terrain. This will act as a placeholder
for the base we are going to create:

Figure 3.13: Placeholder cube for the base area

From Blueprint to Reality: Building with Terrain and ProBuilder60

2. Select Terrain and the Brush button once more.
3. Reduce Brush Size to 10.
4. Holding the Shift key, left-click and drag the mouse over the terrain to paint the basin around

our base placeholder. Doing this will lower the terrain instead of raising it:

Figure 3.14: Moat around our placeholder base

Now, we have a simple but good starter terrain that gives us a basic idea of how our base and its sur-
roundings will look. Before moving on, we will apply some finer details to make our terrain look a
little bit better. In the next section, we will discuss how to simulate terrain erosion with different tools.

Adding Height Map details
In the previous section, we created a rough outline of the terrain. If you want to make it look a little bit
more realistic, then you need to start painting lots of tiny details here and there. Usually, this is done
later in the level design process, but let’s take a look now since we are exploring Terrain Tools. Right
now, our mountains look very smooth. In real life, they are generally sharper, so let’s improve that:

1. Select Terrain and click the Brush button as in the previous sections.
2. Set the dropdown to Raise or Lower Terrain if it’s not already set.
3. Pick the fifth brush, as shown in Figure 3.15. This brush has an irregular shape so that we can

paint a little bit of noise here and there.

Before learning Unity, I was making games using DirectX, a low-level graphics library.
While it was a challenge, I really enjoyed learning the algorithms needed to generate my
own terrain system. While an engine provides a practical way to make games, making
your own tools can also be a great way to better understand how those engines work, learn
their capabilities and limits, and how to sort them.

Chapter 3 61

4. Set Brush Size to 50 so that we can cover a greater area:

Figure 3.15: Cloud pattern brush for randomness

5. Hold Shift and do small clicks over the hills of the terrain without dragging the mouse. Re-
member to zoom into the areas you are applying finer details to because they can’t be seen at
great distances:

Figure 3.16: Erosion generated with the aforementioned brush

This has added some irregularity to our hills. Now, let’s imagine we want to have a flat area on the hills
to put a decorative observatory or antenna. Follow these steps to do so:

1. Select Terrain, Brush Tool, and Set Height from the dropdown.
2. Set Height to 60.
3. Select the full-circle brush (the first one).

From Blueprint to Reality: Building with Terrain and ProBuilder62

4. Paint an area over the hills. You will see that the terrain will rise if it’s lower than 60 meters
and drops in areas higher than 60 meters:

Figure 3.17: Flattened hill

5. You can see that the borders have some rough corners that need to be smoothed:

Figure 3.18: Non-smoothed terrain edges

6. Change the dropdown to Smooth Height.

Chapter 3 63

7. Select the second brush, as shown in Figure 3.19, with a size of 5 and an opacity of 10:

Figure 3.19: Smooth Height brush selected

8. Click and drag over the borders of our flat area to make them smoother:

Figure 3.20: Smoothed terrain edges

From Blueprint to Reality: Building with Terrain and ProBuilder64

We could keep adding details here and there, but we can settle with this for now. The next step is to
create our player’s base, but first, let’s explore ProBuilder in order to generate our geometry.

Creating shapes with ProBuilder
So far, we have created simple scenes using cubes and primitive shapes, and that’s enough for most
of the prototypes you will create, but sometimes, you will have tricky areas of the game that would be
difficult to model with regular cubes, or maybe you want to have some deeper details in certain parts
of your game to get an idea of how the player will experience that area.

In this case, we can use any 3D modeling tool for this, such as 3D Studio Max, Maya, or Blender, but
they can be difficult to learn, and you probably won’t need all your power at this stage in your devel-
opment. Luckily, Unity has a simple 3D model creator called ProBuilder, so let’s explore it.

In this section, we will cover the following concepts related to ProBuilder:

• Installing ProBuilder
• Creating a shape
• Manipulating the mesh
• Adding details

ProBuilder is not included by default in our Unity project, so let’s start by learning how to install it.

Installing ProBuilder
Unity is a powerful engine full of features, but adding all those tools to our project if we are not using
all of them can make the engine run more slowly, so we need to manually specify which Unity tools
we are using. To do so, we will use Package Manager, a tool that we can use to select which Unity
packages we are going to need. As you may recall, earlier, we talked about the Packages folder. This
is basically what Package Manager modifies.

In order to install ProBuilder in our project with this tool, we need to do the following:

1. Click the Window | Package Manager option:

If you want to dive deep into Terrain, there’s the Terrain Tools extension package, which
adds more tools to sculpt it with finer details. Check this documentation: https://docs.
unity3d.com/Packages/com.unity.terrain-tools@5.1 and also this video: https://
www.youtube.com/watch?v=smnLYvF40s4 for more info.

mailto:https://docs.unity3d.com/Packages/com.unity.terrain-tools@5.1
mailto:https://docs.unity3d.com/Packages/com.unity.terrain-tools@5.1
https://www.youtube.com/watch?v=smnLYvF40s4
https://www.youtube.com/watch?v=smnLYvF40s4

Chapter 3 65

Figure 3.21: Package Manager option

2. In the window that just opened, ensure the Packages mode is in Unity Registry mode by clicking
on the button saying Unity Registry in the top-left part of the window. Unlike the In Project
option, which will show only the packages our project already has, Unity Registry will show
all the official Unity packages you can install:

Figure 3.22: Showing all packages

From Blueprint to Reality: Building with Terrain and ProBuilder66

3. Wait a moment for the list of packages left to fill. Make sure you are connected to the Internet
to download and install the packages.

4. Look at the ProBuilder package in that list and select it. You can also use the search box in the
top of the packages list:

Figure 3.23: ProBuilder in the packages list

I’m using ProBuilder version 5.2.2, the newest version available at the time of writing this book.
While you can use a newer version, the process of using it may differ. You can look at older
versions using the arrow to the left of the title.

5. Click on the Install button in the top right-hand corner of Package Manager:

Figure 3.24: Install button

6. Wait for the package to install; this can take a while. You can tell that the process has ended
when the Install button has been replaced with the Remove label after the Importing popup
finishes. If, for some reason, Unity freezes or takes more than 10 minutes, feel free to restart it.

7. Go to Edit | Preferences on Windows (Unity | Preferences on Mac).
8. Select the ProBuilder option from the left list.
9. Set Vertex Size to 2 and Line Size to 1. This will help you to better visualize the 3D model we

are going to create while editing its different parts:

Chapter 3 67

Figure 3.25: Configuring ProBuilder

The Vertex Size and Line Size values are big (2 meters and 1 meter, respectively) due to the fact that
we are not going to edit little details of a model but big features like walls. You might want to modify
it later, depending on what you are editing.

Now that we have installed ProBuilder in our project, let’s use it!

Creating a shape
We will start the player’s base by creating a plane for our floor. We will do this by doing the following:

1. Delete the cube we placed as the base placeholder. You can do that by right-clicking on the
cube in the Hierarchy and then clicking Delete.

Although this is all we need to know about Package Manager to install ProBuilder, if you
want to know more about it, you can review its documentation here: https://docs.
unity3d.com/Manual/upm-ui.html

https://docs.unity3d.com/Manual/upm-ui.html
https://docs.unity3d.com/Manual/upm-ui.html

From Blueprint to Reality: Building with Terrain and ProBuilder68

2. Open ProBuilder and go to Tools | ProBuilder | ProBuilder Window:

Figure 3.26: ProBuilder Window option

3. In the window that has opened, click the New Shape button:

Figure 3.27: New Shape option

4. In the Create Shape panel that appears in the bottom-right corner of the Scene view, select
the Plane icon (the second icon on the first row).

Figure 3.28: New shape created

5. Expand Shape Properties and Plane Settings.
6. Set Width Cuts and Height Cuts to 2. We will need those subdivisions later.

Chapter 3 69

7. Click and drag over the terrain to draw the plane. While you do that, check how the Size value
in the Create Shape panel changes, and adjust the values X and Z to 50.

8. Release the mouse button and see the resulting plane.
9. Select the newly created Plane object in the Hierarchy and drag it slightly upward using the

Transform tool.

We needed to move the plane upward because it was created at exactly the same height as the terrain.
That caused an effect called Z-Fighting, where the pixels that are positioned in the same position are
fighting to determine which one will be rendered and which won’t.

Now that we have created the floor, let’s learn how we can manipulate its vertices to change its shape.

Manipulating the mesh
If you select the plane, you will see that it is subdivided into a 3 x 3 grid because we set up the width
and height cuts to 2. We did that because we will use the outer cells to create our walls, thus raising
them. The idea is to modify the size of those cells to outline the wall length and width before creating
the walls. In order to do so, we will do the following:

1. Select the plane in the Hierarchy.
2. Open ProBuilder if it’s not already open, and go to the Tools | ProBuilder | ProBuilder Window

option.
3. Select the second button (vertex) from the four new buttons that appear in the Scene View:

Figure 3.29: Select the vertices tool

4. Click the Select Hidden option until it says On, as shown in the following screenshot. This will
make selecting vertices easier:

Figure 3.30: Enabling Select Hidden

From Blueprint to Reality: Building with Terrain and ProBuilder70

5. Click and drag the mouse to create a selection box that picks the four vertices on the second
row of vertices:

Figure 3.31: Vertex selection

6. Click on the second button Click the 4-arrows button in the top-left part of the scene view to
enable to enable the Move Tool, which will allow us to move vertices. Like the Transform Tool,
this can be used to move any object, but to move vertices, this is our only option. Remember to
do this once you have selected the vertices. You can also press the W key to enable the Move Tool.

Figure 3.32: Move Tool

Chapter 3 71

7. Move the row of vertices to make the subdivision of the plane thinner. You can use the checker
pattern on the terrain to get a notion of the size of the wall in meters (remember, each square
is one square meter):

Figure 3.33: Moved vertices

8. Repeat steps 3 to 5 for each row of vertices until you get wall outlines with similar sizes:

Figure 3.34: Moved vertices to reduce edges’ cell width

Now that we have created the outline for our walls, let’s add new faces to our mesh to create them. In
order to use the subdivisions or faces, we have created to make our walls, we must pick and extrude
them. Follow these steps to do so:

1. Select the plane.

From Blueprint to Reality: Building with Terrain and ProBuilder72

2. Select the fourth button of the ProBuilder buttons in the Scene View:

Figure 3.35: Select the Face tool

3. While holding Ctrl (Command on Mac), click on each of the faces of the wall outlines:

Figure 3.36: Edge faces being selected

4. In the ProBuilder window, look for the plus (+) icon to the right of the Extrude Faces button.
It is located in the red section of the window:

Figure 3.37: Extrude Faces option

5. Set Distance to 5 in the window that appears after we click the + button.

Chapter 3 73

6. Click the Extrude Faces button in that window:

Figure 3.38: Extrude distance option

7. Now, you should see that the outline of the walls has just raised from the ground:

Figure 3.39: Extruded grid edges

Now, if you pay attention to how the base floor and walls touch the terrain, there’s a little gap. We can
try to move the base downward, but the floor will probably disappear because it will be buried under
the terrain. A little trick we can do here is to push the walls downward, without moving the floor, so
that the walls will be buried in the terrain, but our floor will stay a little distance from it.

From Blueprint to Reality: Building with Terrain and ProBuilder74

You can see an example of how it would look in the following figure:

Figure 3.40: Slice of the expected result

In order to do this, we need to do the following:

1. Select the third ProBuilder button in the Scene View to enable edge selection:

Figure 3.41: Select edges tool

2. While holding Ctrl (Command on Mac), select all the bottom edges of the walls.
3. If you selected undesired edges, just click them again while holding Ctrl (Command on Mac)

to deselect them while keeping the current selection:

Figure 3.42: Selecting floor edges

Chapter 3 75

If you want to use Wireframe mode in the sphere icon, go to the left of the 2D button in the top-right
corner of the Scene View and select the Wireframe option from the drop-down menu, as shown in
the following screenshot. You can get back to normal by selecting Shaded.

Figure 3.43: Enabling Wireframe mode

1. Enable the Move tool by pressing the second button (or the W key on the keyboard) in the
top-left corner of the Scene panel:

Figure 3.44: Object Move tool

From Blueprint to Reality: Building with Terrain and ProBuilder76

2. Move the edges down until they are fully buried in the terrain:

Figure 3.45: Overlapping faces

Now that we have a base mesh, we can start adding details to it using several other ProBuilder tools.

Adding details
Let’s start adding details to the base by applying a little bevel to the walls and a little cut in the corners
so they are not so sharp. To do so, follow these steps:

1. Using the Edge Selection Tool (the third of the ProBuilder buttons), select the top edges of
our model:

Memory

This section reminds me of the time I learned how to use my first 3D authoring software,
Maya. I was using a version before Autodesk acquired it, so imagine how old it was. I en-
joyed learning the techniques to sculpt solids based on actual blueprints of the objects. I
remember creating a Stargate and the F302 Tau’ri vessel between my first models. I’m in
my third run of the entire series (including Atlantis and Universe) as I write this.

Chapter 3 77

Figure 3.46: Top wall edges being selected

2. In the ProBuilder window, click the + icon to the right of the Bevel button.
3. Set a distance of 0.5:

Figure 3.47: Bevel distance to generate

4. Click on Bevel Edges. Now you can see the top parts of our walls have a little bevel:

Figure 3.48: Result of the bevel process

From Blueprint to Reality: Building with Terrain and ProBuilder78

5. Optionally, you can do that with the bottom part of the inner walls:

Figure 3.49: Bevel being applied to floor-wall edges

Another detail to add could be a pit in the middle of the ground as a hazard we need to avoid falling
into and to make the enemies avoid it using AI. In order to do that, follow these steps:

1. Enable the Face selection mode by clicking the fourth ProBuilder Scene View button.
2. Select the floor.
3. Click the Subdivide Faces option in the ProBuilder window. You will end up with the floor

split into four.
4. Click that button again to end up with a 4 x 4 grid:

Figure 3.50: Subdividing the floor

5. Select the four inner floor tiles while holding Ctrl (Command on Mac) using the Select Face
tool (the third of the ProBuilder buttons in the top part of the Scene View).

Chapter 3 79

6. Enable the Scale tool by clicking the fourth button in the top-left part of the Scene View or
pressing the R key on the keyboard. Make sure that the tool handle position is set to Center
(and not to Pivot), so the object is scaled from the center of the object itself. As with the Move
tool, this can be used to scale any object, not only vertices:

Figure 3.51: Scale tool

7. Using the gray cube at the center of the gizmo, scale down the center tiles:

Figure 3.52: Inner cells being scaled down

8. Click the Extrude Faces button in the ProBuilder window.
9. Push the extruded faces downward with the Move Tool.

From Blueprint to Reality: Building with Terrain and ProBuilder80

10. Right-click on the ProBuilder window tab and select Close Tab. We need to get back to terrain
editing, and having ProBuilder open won’t allow us to do that comfortably:

Figure 3.53: Close Tab option

11. Select the terrain and lower it so that we can see the pit:

Figure 3.54: Terrain being lowered for the pit to be visible

With this, we have seen how to use different ProBuilder tools like Extrude and Bevel to create simple
meshes to prototype the layout of our level. Sometimes, doing so is not easy with plain cubes.

Summary
In this chapter, we learned how to create large terrain meshes using Height Maps and Unity Terrain
Tools such as Paint Height and Set Height to create hills and rivers. Also, we saw how to create our own
3D meshes using ProBuilder, as well as how to manipulate the vertices, edges, and faces of a model
to create a prototype base model for our game. We didn’t discuss any performance optimizations we
can apply to our meshes or advanced 3D modeling concepts as that would require entire chapters
and is beyond the scope of this book. Right now, our main focus is prototyping, so we are fine with
our level’s current status.

In the next chapter, we will learn how to download and replace these prototyping models with final
art by integrating assets (files) we have created with external tools. This is the first step to improving
the graphics quality of our game, which we will finish by the end of Part 3, Improving Graphics.

Chapter 3 81

Learn more on Discord
Read this book alongside other users, Unity game development experts, and the author himself. Ask
questions, provide solutions to other readers, chat with the author via Ask Me Anything sessions, and
much more. Scan the QR code or visit the link to join the community:

https://packt.link/unitydev

https://packt.link/unitydev

4
Seamless Integration: Importing
and Integrating Assets

In the previous chapter, we created a prototype of our level. Now, let’s suppose that we have coded
the game and tested it, confirming the game idea is fun. With that, it’s time to replace the prototype
art with the real finished art. We are going to actually code the game in the next chapter, Chapter 5,
Unleashing the Power of C# and Visual Scripting, but for learning purposes, let’s just skip that part for
now. In order to use the final assets, we need to learn how to get them (images, 3D models, and so on),
how to import them into Unity, and how to integrate them into our scene.

In this chapter, we will examine the following topics:

• Importing assets
• Integrating assets
• Configuring assets

Let’s start by learning how to get assets in Unity, such as 3D models and textures.

Importing assets
We have different sources of assets we can use in our project. We can simply receive a file from our
artist, download them from different free and paid asset sites or use the Asset Store, Unity’s official
asset virtual store, where we can get free and paid assets ready to use with Unity. We will use a mix
of downloading assets from the internet and from the Asset Store, just to use all possible resources.

In this section, we will cover the following concepts related to importing assets:

• Importing assets from the internet
• Importing assets from the Asset Store
• Importing assets from Unity packages

Let’s start by exploring the first source of assets, the internet.

Seamless Integration: Importing and Integrating Assets84

Importing assets from the internet
In terms of getting art assets for our project, let’s start with our terrain textures. Remember that we
have our terrain painted with a grid pattern, so the idea is to replace that with grass, mud, rock, and
other kinds of textures. To do that, we need images. In this case, these kinds of images are usually top-
down views of different terrain patterns, and they have the requirement of being “tileable,” meaning
you can repeat them with no noticeable pattern in their connections. You can see an example of this
in the following image:

Figure 4.1: Left – grass patch; Right – the same grass patch separated to highlight the texture tiling

The grass on the left seems to be one single big image, but if you pay attention, you should be able to
see some patterns repeating themselves. In this case, this grass is just a single image repeated four
times in a grid, like the one on the right. This way, you can cover large areas by repeating a single
small image, saving lots of RAM on the user’s computer.

The idea is to get these kinds of images to paint our terrain. You can get them from several places, but
the easiest way is to use Google Images or any image search engine. Always check for copyright per-
missions before using something from these sources. Use the keywords “PATTERN seamless tileable
texture” when searching for the texture, replacing “PATTERN” with the kind of terrain you are looking
for, such as “grass seamless tileable texture” or “mud seamless tileable texture.” In this case, I typed

“grass seamless tileable texture.” Once you have downloaded the image, you can add it to your project
in several ways. The simplest one would be doing the following:

1. Locate your image using File Explorer (Finder on Mac).
2. Locate or create the Textures folder in the Project window in Unity.
3. Put File Explorer and the Unity Project window next to each other.
4. Drag the file from File Explorer to the Textures folder in the Unity Project window:

Chapter 4 85

Figure 4.2: Texture being dragged from Windows File Explorer to Unity’s Project view

For simple textures like the ones in the previous figure, any search engine can be helpful, but if you
want to replace the player’s base geometry with detailed walls and doors or place enemies in your
scene, you need to get 3D models. If you search for those in any search engine using keywords such
as “free zombie 3D model,” you will find endless free and paid 3D model sites such as TurboSquid and
Mixamo, but those sites can be problematic because those meshes are usually not prepared for being
used in Unity, or even games. You will find models with very high polygon counts, incorrect sizes or
orientations, unoptimized textures, and so on. To prevent those problems, we’ll want to use a better
source, and in this case, we will use Unity’s Asset Store, so let’s explore it.

Importing assets from the Asset Store
The Asset Store is Unity’s official asset marketplace where you can find lots of models, textures, sounds,
and even entire Unity plugins to extend the capabilities of the engine. In this case, we will limit our-
selves to downloading 3D models to replace the player’s base prototype. You will want to get 3D models
with a modular design, meaning that you will get several pieces, such as walls, floors, corners, and so
on. You can connect them to create any kind of scenario.

In order to do that, you must follow these steps:

1. Click on Window | Asset Store in Unity, which will open your web browser on the site https://
assetstore.unity.com. In previous versions of Unity, you could see the Asset Store directly
inside the editor, but now, it is mandatory to open it in a regular web browser, so just click
the Search Online button, which will open the site https://assetstore.unity.com/ in your
preferred browser. Also, you can check Always open in browser from menu to directly open
the page whenever you click on Window | Asset Store:

https://assetstore.unity.com
https://assetstore.unity.com
https://assetstore.unity.com/

Seamless Integration: Importing and Integrating Assets86

Figure 4.3: Asset Store moved message

2. In the top menu, click on the 3D category to browse 3D assets:

Figure 4.4: 3D assets menu

3. On the recently opened page, click the arrow to the right of the 3D category in the All Cate-
gories panel on the right, and then open Environments and check the Sci-Fi box, as we will
make a future-themed game:

Figure 4.5: 3D assets menu

Chapter 4 87

As you can see, there are several categories for finding different types of assets, and you can
pick another one if you want to. In Environments, you will find 3D models that can be used to
generate the scenery for your game.

4. If you need to, you can pay for an asset, but let’s hide the paid ones for now. You can do that
by checking the Free Assets checkbox from the Pricing dropdown on the right side:

Figure 4.6: Free Assets option

5. In the search area, find any asset that seems to have the aesthetic you are looking for and click
it. Remember to look out for outdoor assets, because most environment packs are usually
interiors only. In my case, I have picked one called Sci-Fi Styled Modular Pack, which serves
both interiors and exteriors. Take into account that that package might not exist by the time
you are reading this, so you might need to choose another one. If you don’t find a suitable pack-
age, you can download and pick the asset files we used in the GitHub repository at https://
github.com/PacktPublishing/Hands-On-Unity-2023-Game-Development-Fourth-Edition.

Figure 4.7: Preview of Asset Store searched packages

https://github.com/PacktPublishing/Hands-On-Unity-2023-Game-Development-Fourth-Edition
https://github.com/PacktPublishing/Hands-On-Unity-2023-Game-Development-Fourth-Edition

Seamless Integration: Importing and Integrating Assets88

6. Now, you will see the package details in the Asset Store window. Here, you can find informa-
tion regarding the package’s description, videos/images, the package’s contents, and the most
important part – the reviews, where you can see whether the package is worth getting:

Figure 4.8: Asset Store package details

7. If you are OK with this package, click the Add To My Assets button, log in to Unity if requested,
and then click the Open In Unity button. You might be prompted to accept the browser to open
Unity; if so, just accept:

Chapter 4 89

Figure 4.9: Switching apps

8. This will open the Package Manager again, but this time in the My Assets mode, you should
see a list of all assets you have ever downloaded from the Asset Store, and the one you just
selected in the list:

Figure 4.10: Package Manager showing assets

9. Click on Download in the bottom-right part of the window and wait for it to finish. Then hit
Import.

Seamless Integration: Importing and Integrating Assets90

10. After a while, the Package Contents window will show up, allowing you to select exactly which
assets of the package you want in your project. For now, leave it as is and click Import:

Figure 4.11: Assets to import selection

After some importing time, you will see all the package files in your Project window.

Take into account that importing lots of full packages will increase your project’s size considerably,
and that, later, you will probably want to remove the assets that you didn’t use. Also, if you import
assets that generate errors that prevent you from playing the scene, just delete all the .cs files that
come with the package. They are usually in folders called Scripts. Those are code files that might
not be compatible with your Unity version:

Having something like the Asset Store is really a great help. When I worked on other en-
gines or lesser-known game development frameworks, getting content for the game was a
challenge. There are tons of pages to get 3D models and textures, but they were not always
optimized for video games, or even compatible with Unity. Of course, it is still a great skill
to know what to do if the Asset Store doesn’t have what you need, so I recommend you
also explore other possible sources of assets and see the kind of challenges you will face
working with those.

Chapter 4 91

Figure 4.12: Code error warning when hitting play

Before you continue with this chapter, try to download a character 3D model using the Asset Store,
following the previous steps. In order to do this, you must complete the same steps as we did with the
level environment pack but look in the 3D | Characters | Humanoid category of the Asset Store. In my
case, I picked the Robot Hero: PBR HP Polyart package:

Figure 4.13: Character package used in our game

Now, let’s explore yet another source of Unity Assets: Unity packages.

Seamless Integration: Importing and Integrating Assets92

Importing assets from Unity packages
The Asset Store is not the only source of asset packages; you can get .unitypackage files from the
internet, or maybe from a coworker who wants to share assets with you.

In order to import a .unitypackage file, you need to do the following:

1. Go to the Assets | Import Package | Custom Package��� option:

Figure 4.14: Importing custom packages

2. Search for the .unitypackage file in the displayed dialog.
3. Click the Import option in the Import Unity Package window that appears – the one we saw

earlier, in the Importing assets from the Asset Store section.

Now that we have imported lots of art assets, let’s learn how to use them in our scene.

Integrating assets
We have just imported lots of files that can be used in several ways, so the idea of this section is to see
how Unity integrates those assets with the GameObjects and components that need them.

If you want to create your own asset packages to share your assets with other developers, check
the documentation at https://docs.unity3d.com/Manual/AssetPackagesCreate.
html.

https://docs.unity3d.com/Manual/AssetPackagesCreate.html
https://docs.unity3d.com/Manual/AssetPackagesCreate.html

Chapter 4 93

In this section, we will cover the following concepts related to importing assets:

• Integrating terrain textures
• Integrating meshes
• Integrating materials

Let’s start by using tileable textures to cover the terrain.

Integrating terrain textures
In order to apply textures to our terrain, do the following:

1. Select the Terrain object.
2. In the Inspector, click the brush icon of the Terrain component (second button).
3. From the drop-down menu, select Paint Texture:

Figure 4.15: Terrain Paint Texture option

4. Click the Edit Terrain Layers… | Create Layer option.

Seamless Integration: Importing and Integrating Assets94

5. Find and double-click the terrain texture you downloaded previously in the Texture Picker
window that appears:

Figure 4.16: Texture picker window

You will see how the texture will be immediately applied to the whole terrain.

6. Repeat steps 4 and 5 to add other textures. This time, you will see that that texture is not im-
mediately applied.

7. In the Terrain Layers section, select the new texture you have created to start painting with
that. I used a mud texture in my case.

8. Just like when you edited the terrain, in the Brushes section, you can select and configure a
brush to paint the terrain.

9. In the Scene view, paint the areas you want to have that texture applied to.
10. If your texture patterns are too obvious, open the New Layer N section at the top of the Brushes

section, where N is a number that depends on the layer you have created. Each time you add a
texture to the terrain, you will see that a new asset called New Layer N is created in the Project
view. It holds data on the terrain layer you have created, and you can use it on other terrains if
you need to. You can also rename that asset to give it a meaningful name or reorganize those
assets in their own folder for organization purposes.

11. Open the section using the triangle to its left and increase the Size property in the Tiling Set-
tings section until you find a suitable size where the pattern is not that obvious:

Chapter 4 95

Figure 4.17: Painting texture options

12. Repeat steps 4 to 11 until you have applied all the textures you wanted to add to your terrain.
In my case, I’ve applied the mud texture to the river basin and used a rock texture for the hills.
For the texture of the rocks, I reduced the opacity property of the brush to blend it better with
the grass in the mountains. You can try to add a layer of snow at the top just for fun:

Figure 4.18: Results of painting our terrain with three different textures

Seamless Integration: Importing and Integrating Assets96

Of course, we can improve this significantly using several of the advanced tools of the system, but
let’s just keep things simple for now. Next, let’s see how we can integrate the 3D models into our game.

Integrating meshes
If you select one of the 3D assets we downloaded previously and click the arrow to its right, one or
more sub-assets will appear in the Project window. This means that the 3D model files we downloaded
from the Asset Store (the FBX files) are containers of assets that define the 3D model:

Figure 4.19: Mesh picker

Some of those sub-assets are meshes, which are a collection of triangles that define the geometry of
your model. You can find at least one of these mesh sub-assets inside the file, but you can also find
several, and that can happen if your model is composed of lots of pieces. For example, a car can be
a single rigid mesh, but that won’t allow you to rotate its wheels or open its doors; it will be just a
static car, and that can be enough if the car is only a prop in the scene, but if the player will be able
to control it, you will probably need to modify it. The idea is that all pieces of your car are different
GameObjects parented to one another in such a way that if you move one, all of them will move, but
you can still rotate its pieces independently.

When you drag the 3D model file to the scene (not the sub-asset), Unity will automatically create all
the objects for each piece and its proper parenting based on how the artist created those. You can
select the object in the Hierarchy and explore all its children to see this:

Chapter 4 97

Figure 4.20: Sub-object selection

Also, you will find that each of those objects may have its own Mesh Filter and Mesh Renderer
components, each one rendering just that piece of the model. Remember that the Mesh Filter is
a component that has a reference to the mesh asset to render, so the Mesh Filter is the one using
those mesh sub-assets we talked about previously. In the case of animated characters, you will find
the Skinned Mesh Renderer component instead, but we will discuss that component later, in Section
3, Elevating Visuals, Effects, and Audio.

Now, when you drag the 3D model file into the scene, you will get a similar result as if the model were
a Prefab and you were instancing it, but 3D model files are more limited than Prefabs because you
can’t apply changes to the model. If you’ve dragged the object onto the scene and edited it to have the
behavior you want, I suggest that you create a Prefab to get all the benefits we discussed in Chapter 2,
Crafting Scenes and Game Elements, such as applying changes to all the instances of the Prefab and so
on. Never create lots of instances of a model from its model file—always create them from the Prefab
you created based on that file to allow you to add extra behavior to it.

That’s the basic usage of 3D meshes. Now, let’s explore the texture integration process, which will
give our 3D models more detail.

Integrating textures
Maybe your model already has the texture applied but has a magenta color applied to all of it. If this
is the case, that means the asset wasn’t prepared to work with the Universal Render Pipeline (URP)
template you selected when creating the project.

Seamless Integration: Importing and Integrating Assets98

Some assets in the Asset Store are created by third-party editors and could be meant to be used in
older versions of Unity:

Figure 4.21: Mesh being rendered with erroneous material or no material at all

One option to fix magenta assets is using the Render Pipeline Converter, a tool that will find them
and reconfigure them (if possible) to work with URP. To do so, perform the following steps every time
you import an asset that looks magenta:

1. Go to Window | Rendering | Render Pipeline Converter.
2. Select the Built-in to URP option from the dropdown:

Figure 4.22: Upgrading older assets to URP

Chapter 4 99

3. Scroll until you see the Material Upgrade checkbox and check it.
4. Click the Initialize Converters button in the bottom-left corner. This will display a list of all

the materials that need to be upgraded. We will discuss materials more later:

Figure 4.23: Fixing material to work with URP

5. Click the Convert Assets button and see if the model was fixed.

You will need to close the window for it to detect new magenta assets that weren’t there before opening
it. The con of this method is that, sometimes, it won’t upgrade the material properly. Luckily, we can
fix this by reapplying the textures of the objects manually. Even if your assets work just fine, I suggest
that you reapply your textures anyway, just to learn more about the concept of materials.

A texture is not applied directly to the object. That’s because the texture is just one single configu-
ration of all the ones that control the aspect of your model. In order to change the appearance of a
model, you must create a material. A material is a separate asset that contains lots of settings about
how Unity should render your object. You can apply that asset to several objects that share the same
graphics settings, and if you change the settings of the material, it will affect all the objects that are
using it. It works like a graphics profile.

In order to create a material to apply the textures of your object, you need to follow these steps:

1. In the Project window, click the plus (+) button in the top-left part of the window.
2. Click the Material option in that menu.
3. Name your material. This is usually the name of the asset we will be applying the material to

(for example, Car, Ship, Character, and so on).
4. Drag the created material to the model instance on your scene. If you move the mouse with

the dragged asset over the object, you will be able to see a preview of how it will look with
that material, which would be white in the case of a new material. We will change that in the
following steps.

5. Apply the material by releasing the mouse.

Seamless Integration: Importing and Integrating Assets100

6. If your object has several parts, you will need to drag the material to each part. Dragging the
material will change the material’s property of the MeshRenderer component of the object
you have dragged.

7. Select the material and click the circle to the left of the Base Map property (see Figure 4.23).
8. In the Texture Selector, click on the texture of your model. It can be complicated to locate the

texture just by looking at it. Usually, the name of the texture will match the model’s name. If not,
you will need to try different textures until you see one that fits your object. Also, you may find
several textures with the same name as your model. Just pick the one that seems to have the
proper colors instead of the ones that look black and white or light blue; we will use those later:

Figure 4.24: Base Map property of URP materials

With this, you have successfully applied the texture to the object through a material. For each object
that uses the same texture, just drag the same material.

Now that we have a basic understanding of how to apply the model textures, let’s learn how to properly
configure the import settings before spreading models all over the scene.

Configuring assets
As we mentioned earlier, artists are used to creating art assets outside Unity, and that can cause dif-
ferences between how an asset is seen from that tool and how Unity will import it. As an example,
3D Studio Max can work in centimeters, inches, and so on, while Unity works in meters. We have
just downloaded and used lots of assets, but we have skipped the configuration step to solve those
discrepancies, so let’s take a look at this now.

Materials have a concept like Prefab Variants, called Material Variants. It consists of the
same idea of creating a base material and then alternative versions of it with small chang-
es. For more information check the following documentation: https://docs.unity3d.
com/2022.2/Documentation/Manual/materialvariant-landingpage.html, and the
following blog post: https://blog.unity.com/engine-platform/material-variants-
the-solution-for-managing-complex-material-libraries.

https://docs.unity3d.com/2022.2/Documentation/Manual/materialvariant-landingpage.html
https://docs.unity3d.com/2022.2/Documentation/Manual/materialvariant-landingpage.html
https://blog.unity.com/engine-platform/material-variants-the-solution-for-managing-complex-material-libraries
https://blog.unity.com/engine-platform/material-variants-the-solution-for-managing-complex-material-libraries

Chapter 4 101

In this section, we will cover the following concepts related to importing assets:

• Configuring meshes
• Configuring textures

Let’s start by discussing how to configure 3D meshes.

Configuring meshes
In order to change the model’s import settings, you need to locate the model file you have download-
ed. There are several file extensions that contain 3D models, with the most common one being the
.fbx file, but you can encounter others such as .obj,.3ds, .blender, .mb, and so on. You can identify
whether the file is a 3D mesh via its extension:

Figure 4.25: Selected asset path extension

Also, you can click the asset and check in the Inspector for the tabs you can see in the following
screenshot:

Figure 4.26: Mesh materials settings

Now that you have located the 3D mesh files, you can configure them properly. Right now, the only
thing we should take into account is the proper scale of the model. Artists are used to working with
different software with different setups; maybe one artist created the model using meters as its metric
unit, while other artists used inches, feet, and so on. When importing assets that have been created
in different units, they will probably be unproportioned, which means we will get results such as
humans being bigger than buildings and so on.

Seamless Integration: Importing and Integrating Assets102

The best solution is to just ask the artist to fix that. If all the assets were authored in your company, or
if you used an external asset, you could ask the artist to fix it to the way your company works, but right
now, you are probably a single developer learning Unity by yourself. Luckily, Unity has a setting that
allows you to rescale the original asset before using it in Unity. In order to change the Scale Factor of
an object, you must do the following:

1. Locate the 3D mesh in your Project window.
2. Drag it to the scene. You will see that an object will appear in your scene.
3. Create a capsule using the GameObject | 3D Object | Capsule option.
4. Put the capsule next to the model you dragged into the editor. See if the scale makes sense. The

idea is that the capsule represents a human being (2 meters tall) so that you have a reference
for the scale:

Figure 4.27: Using a capsule as reference for scale

5. If the model is bigger or smaller than expected, select the mesh again in the Project window
(not the GameObject instance you dragged to the editor) and you will see some import settings
in the Inspector. In the image, we can see that the model has a good relative size, but just for
learning purposes, I recommend proceeding with the next steps.

6. Look for the Scale Factor property and modify it, increasing it if your model is smaller than
expected, or reducing it in the opposite case:

Figure 4.28: Model mesh options

7. Click the Apply button at the bottom of the Inspector.
8. Repeat steps 6 and 7 until you get the desired result.

Chapter 4 103

There are plenty of other options to configure, but let’s stop here for now. Next, let’s discuss how to
properly configure the textures of our models.

Configuring textures
Again, there are several settings to configure here, but let’s focus on Texture Size for now. The idea is
to use the size that best fits the usage of that texture, and that depends on lots of factors.

The first factor to take into account is the distance from the object to the camera. If you are creating
a first-person game, you will probably encounter many objects up close – enough to justify the use of
a big texture. However, if you have several distant objects, such as billboards at the top of buildings,
which you will never be near enough to see the details of, you can use smaller textures for that.

Another thing to take into account is the importance of the object. If you are creating a racing game,
you will probably have lots of 3D models that will be onscreen for a few seconds and the player will
never focus on them; they will be paying attention to the road and other cars. In this case, an object
such as a trash can on the street could have little texture and a low-polygon model and the user will
never notice that (unless they stop to appreciate the scenery), but that’s acceptable.

Finally, you can have a game with a top-down view that will never zoom in on the scene, so the same
object that has a big texture in first-person games will have a less detailed texture here. In the following
images, you can see that the smaller ship could use a smaller texture:

Figure 4.29: The same model seen at different distances

The ideal size of the texture is relative. The usual way to determine the right size is by changing the
dimensions until you find the smallest possible size exhibiting decent quality when the object is seen
from the nearest possible position in the game. This is a trial-and-error method and you can do the
following:

1. Locate the 3D model and put it into the scene.
2. Put the Scene view camera in a position that shows the object at its largest possible in-game

size. As an example, in a first-person-shooter (FPS) game, the camera can be almost right next
to the object, while in a top-down game, it would be a few meters above the object. Again, that
depends on your game. Remember our game is a third-person shooter.

Seamless Integration: Importing and Integrating Assets104

3. Find and select the texture that the object is using in the folders that were imported with the
package or from the material you created previously. They usually have .png, .jpg, or .tif
extensions.

4. In the Inspector, look at the Max Size property and reduce it, trying the next smaller value.
For example, if the texture is 2048, try 1024.

5. Click Apply and check the Scene view to see if the quality has decreased dramatically or if the
change is unnoticeable. You will be surprised.

6. Repeat Steps 4 to 5 until you get a bad-quality result. Once you do, just increase the previous
resolution to get an acceptable quality. Of course, if you are targeting PC games, you can expect
higher resolutions than mobile games.

Now that you have imported, integrated, and configured your objects, let’s create our player’s base
with those assets.

Assembling the scene
Let’s start replacing our prototype base using the environment pack we have downloaded. To do that,
you must do the following:

1. In the Environment pack we imported before, locate the folder that contains all the models
for the different pieces of the scene and try to find a corner. You can use the search bar in the
Project window to search for the corner keyword:

Figure 4.30: Mesh picker

2. In my specific case, I have the outer and inner sides of the corner as separate models, so I
need to put them together.

Chapter 4 105

3. Place it in the same position as any corner of your prototype base:

Figure 4.31: Positioning the mesh on a placeholder for replacement

4. Find the proper model that will connect with that corner to create walls. Again, you can try
searching for the wall keyword in the Project window.

5. Instance it and position it so that it’s connected to the corner. Don’t worry if it doesn’t fit per-
fectly; you will go over the scene when necessary later.

You can select an object and press the V key to select a vertex of the selected object. Then you
can drag it, click on the rectangle in the middle of the translate gizmo, and direct it to a vertex
of another object. This is called vertex snapping. It allows you to connect two pieces of the
scene exactly as intended.

Figure 4.32: Connecting two modules

Seamless Integration: Importing and Integrating Assets106

6. Repeat the walls until you reach the other end of the player base and position another corner.
You might get a wall that’s a little bit larger or smaller than the original prototype, but that’s fine:

Figure 4.33: Chain of connected modules

You can move an object while pressing the Ctrl key (Command on Mac) to snap the object’s
position so that the clones of the wall can be easily located right next to the others. Another
option is to manually set the Position property of the Transform component in the Inspector.

7. Complete the rest of the walls and destroy the prototype cube we made in ProBuilder. Remem-
ber that this process is slow and you will need to be patient.

8. Add floors by looking for floor tiles and repeating them all over the surface:

Figure 4.34: Floor modules with a hole for the pit

9. Add whatever details you want to add with other modular pieces in the package.
10. Put all those pieces in a container object called Base. Remember to create an empty object

and drag the base pieces into it:

Chapter 4 107

Figure 4.35: Mesh sub-assets

With this, we learned how to create a scene easily by using a module approach, assembling the dif-
ferent pieces by using Unity’s snapping features. After a lot of practice doing this, you will slowly gain
experience with the common pitfalls and good practices of modular scene design. All the packages
have a different modular design in mind, so you will need to adapt to them.

Summary
In this chapter, we learned how to import models and textures and integrate them into our scene.
We discussed how to apply textures to the terrain, how to replace our prototype mesh with modular
models, how to apply textures to those, and how to properly configure the assets, all while taking
several criteria into account according to the usage of the object.

With this, we have finished Section 1, Getting Started with Unity of this book and discussed several basic
Unity concepts we will use throughout the book. In Section 2, Mastering Programming and Gameplay
Mechanics, we will start coding the gameplay of our game, like the player’s movement and the health
system. We will start learning how to create our own components to add behavior to our objects and
the basic anatomy of a script.

Learn more on Discord
Read this book alongside other users, Unity game development experts, and the author himself. Ask
questions, provide solutions to other readers, chat with the author via Ask Me Anything sessions, and
much more. Scan the QR code or visit the link to join the community:

https://packt.link/unitydev

https://packt.link/unitydev

Section 2
Mastering Programming

and Gameplay Mechanics
Discover how to enhance your project with gameplay scripts using C# and Visual Scripting. Use player
input for character movement and object collision detection for gameplay elements like weapons and
health systems, establish win/lose conditions, and develop simple yet challenging AI to elevate your
game’s appeal.

This section comprises the following chapters:

• Chapter 5, Unleashing the Power of C# and Visual Scripting
• Chapter 6, Dynamic Motion: Implementing Movement and Spawning
• Chapter 7, Collisions and Health: Detecting Collisions Accurately
• Chapter 8, Victory or Defeat: Win and Lose Conditions
• Chapter 9, Starting your AI Journey: Building Intelligent Enemies for Your Game

5
Unleashing the Power of C# and
Visual Scripting

Unity has a lot of great built-in tools to solve the most common problems in game development, such
as the ones we have seen so far. Even two games of the same genre have their own little differences
that make each game unique, and Unity cannot foresee that, so that’s why we have scripting. In this
chapter, we will introduce the two main Unity scripting options: C# and visual scripting. We will discuss
their pros and cons and the base knowledge required to start creating gameplay with them. From now
on, we will see how to achieve all our scripts using both options.

In this chapter, we will examine the following topics:

• Introducing scripting
• Creating scripts
• Using events and instructions
• Common beginner C# script errors

We are going to create our own Unity components, learning the basic structure of a script and the way
that we can execute actions and expose properties to be configured, both with C# and visual scripting.
We are not going to create any of our actual game code in this chapter, just some example scripts to
set the groundwork to do so in the next one. Let’s start by discussing Unity’s scripting options.

Introducing scripting
Through coding, we can extend Unity’s capabilities in several ways to achieve the exact behavior we
need, all through a well-known programming language—C#. However, aside from C#, Unity also has
visual scripting, a way to generate code through a node graph tool.

Unleashing the Power of C# and Visual Scripting112

This means you can create scripts without writing code but by dragging nodes, boxes that represent
actions that can be chained:

Figure 5.1: Example of a visual scripting graph

While essentially both ways can achieve the same result, we can use them for different things. Usually,
the core logic of a game is written in C# due to it usually being huge and very performance-sensitive.
However, sometimes using visual scripts instead allows non-programmer team members, like artists
or game designers, to have more freedom to edit minor changes in the game, especially regarding
balancing or visual effects.

Another example would be game designers prototyping ideas through visual scripts that programmers
would later convert to C# scripts when the idea is approved. Also, C# programmers can create nodes
for Visual Script programmers to use.

The way to mix these tools varies widely between teams, so while, in the next chapters, we are going
to focus mainly on C#, we are also going to see the visual scripting equivalent version of the scripts
we are going to create. This way, you will have the opportunity to experiment when convenient to use
one or the other, according to your team structure.

Now, let’s continue by discussing the basics of script creation.

Creating scripts
The first step to creating behavior is to create script assets; these are files that will contain the logic
behind the behavior of our components. Both C# and visual scripting have their own type of asset to
achieve that, so let’s explore how to do that in both tools.

Chapter 5 113

Having some programming knowledge is required in this book. However, in this first section, we are
going to discuss a basic script structure to make sure you have a strong foundation to follow when we
code the behaviors of our game in the following chapters. Even if you are familiar with C#, try not to
skip this section because we will cover Unity-specific structures of code.

In this section, we will examine the following script creation concepts:

• Initial setup
• Creating a C# script
• Adding fields
• Creating a visual script graph

We are going to create our first script, which will serve to create our component, discussing the tools
needed to do so and exploring how to expose our class fields to the editor. Let’s start with the basics
of script creation.

Initial setup
Support for visual scripting is added by installing the Visual Scripting package in the Package Manager
as we did with other packages in previous chapters, but as Unity does that automatically for us when
we create the project, we don’t need any further setup. That means the rest of this section will take
care of setting up the tools needed to work with C#.

One thing to consider before creating our first C# script is how Unity compiles the code. While coding,
we are used to having an Integrated Development Environment (IDE), which is a program to create
our code and compile or execute it. In Unity, we will just use an IDE as a tool to create the scripts eas-
ily with coloring and auto-completion because Unity doesn’t have a custom code editor (if you have
never coded before, these are valuable tools for beginners). The scripts will be created inside the Unity
project and Unity will detect and compile them if any changes are made, so you won’t compile them
in the IDE. Don’t worry, even if not compiling and running the code in the IDE, it is possible to debug,
add breakpoints, and check the data on the variables and structures using the IDE and Unity together.

We can use Visual Studio, Visual Studio Code, Rider, or whatever C# IDE you’d like to use, but when
you install Unity, you will probably see an option to install Visual Studio automatically, which allows
you to have a default IDE. This installs the free version of Visual Studio, so don’t worry about the
licenses here. If you don’t have an IDE on your computer and didn’t check the Visual Studio option
while installing Unity, you can do the following:

1. Open Unity Hub and go to the Installs section.

Unleashing the Power of C# and Visual Scripting114

2. Click on the wheel button in the top-right area of the Unity version you are using and click on
Add modules:

Figure 5.2: Adding a module to the Unity installation

3. Check the option that says Visual Studio; the description of the option will vary, depending on
the version of Unity and the platform you are using.

4. Hit the Continue button at the bottom right:

Figure 5.3: Installing Visual Studio

Chapter 5 115

5. Check that you accept the terms and conditions, and click Install:

Figure 5.4: Accepting the terms and conditions

6. Wait for the operation to end. This might take a few minutes. There may be additional Visual
Studio steps that vary between platforms and versions; if so, just follow them.

If you have a preferred IDE, you can install it yourself and configure Unity to use it. If you can afford
it or you are a teacher or a student (as it is free in these cases), I recommend Rider. It is a great IDE
with lots of C# and Unity features that you will love; however, it is not vital for this book. In order to
set up Unity to use a custom IDE, do the following:

1. Open the project and go to Edit | Preferences in the top menu of the editor (Unity | Preferences
on a Mac).

2. Select the External Tools menu from the left panel.
3. From the external script editor, select your preferred IDE; Unity will automatically detect the

supported IDEs:

Figure 5.5: Selecting a custom IDE

4. If you don’t find your IDE in the list, you can use the Browse… option. Note that, usually, IDEs
that require you to use this option are not very well supported—but it’s worth a shot.

5. Click Regenerate project files after selecting your IDE. That will recompile all the necessary
files of the project so you don’t run into any issues if some of the project files don’t exist.

Finally, some IDEs, such as Visual Studio, Visual Studio Code, and Rider, have Unity integration tools
that you need to install in your project, which is optional but can be useful. Usually, Unity installs
these automatically, but if you want to be sure that they are installed, follow these steps:

1. Open Package Manager (Window|Package Manager).

Unleashing the Power of C# and Visual Scripting116

2. Set the Packages dropdown toUnity Registry mode:

Figure 5.6: Enabling Unity Registry mode

3. Search the list for your IDE or filter the list by using the search bar. In my case, I used Rider,
and I can find a package called JetBrains Rider Editor:

Figure 5.7: Custom IDE editor extension installation—in this case, the Rider one

4. Check whether your IDE integration package is installed by looking at the buttons in the bot-
tom-right part of the Package Manager. If you see an Install or Update button, click on it; but
if it says Installed, everything is set up.

Now that we have an IDE configured, let’s create our first script.

Creating a C# script
C# is an object-oriented language. Any time we want to extend Unity, we need to create our own
class—a script with the instructions we want to add to Unity. If we want to create custom components,
we need to create a class that inherits from MonoBehaviour, the base class of every custom component.

Chapter 5 117

We can create C# script files directly within the Unity project using the Editor, and you can arrange
them in folders right next to other assets folders. The easiest way to create a script is by following
these steps:

1. Select any GameObject that you want to have the component we are going to create. As we are
just testing this out, select any object.

2. Click on the Add Component button at the bottom of the Inspector, and look for the New script
option at the bottom of the list, displayed after clicking on Add Component:

Figure 5.8: The New script option

3. In the Name field, enter the desired script name, and then click Create and Add. In my case,
I will call it MyFirstScript, but for the scripts that you will use for your game, try to enter
descriptive names, regardless of the length:

Figure 5.9: Naming the script

It is recommended that you use Pascal case for script naming. In Pascal case, a script for the
player’s shooting functionality would be called PlayerShoot. The first letter of each word of
the name is in uppercase, and you can’t use spaces.

Unleashing the Power of C# and Visual Scripting118

4. You can check how a new asset with the same name as your script is created in Project View.
Remember that each component has its own asset, and I suggest you put each component in
a Scripts folder:

Figure 5.10: Script asset

5. Now, you will also see that your GameObject has a new component in the Inspector window,
which has the same name as your script. So you have now created your first component class:

Figure 5.11: Our script added to a GameObject

Now that we have created a component class, remember that a class is not the component itself. It is
a description of what the component should be—a blueprint of how a component should work. To
actually use the component, we need to instantiate it by creating a component based on the class.
Each time we add a component to an object using the editor, Unity is instantiating it for us. If you are
familiar with object-oriented programming languages, you may recall that when we use a programming
language like C#, we need to code the instantiation of the object using one specific keyword inside
a script: new. In Unity, there is no need to do that; generally, we don’t instantiate components using
the new C# keyword but, instead, by using the editor or specialized functions.

Now, you can add your new empty component to other objects as you would any other component, by
using the Add Component button in the Inspector window. Then, you can look for the component in
the Scripts category or search for it by name:

Chapter 5 119

Figure 5.12: Adding a custom component in the Scripts category

Something that you need to consider here is that we can add the same component to several Game-
Objects. We don’t need to create a class for each GameObject that uses the component. I know this is
basic programmers’ knowledge, but remember that we are trying to recap the basics here.

Now that we have our component, let’s explore how it looks and carry out a class structure recap by
following these steps:

1. Locate the script asset in Project View and double-click on it. Remember that it should be in
the Scripts folder you created previously.

2. Wait for the IDE to open; this can take a while. You will know that the IDE has finished the
initialization when you see your script code and its keywords properly colored like in the fol-
lowing figure, which varies according to the desired IDE. In Rider, it looks like what is shown in
Figure 5.13. In my case, I knew that Rider had finished initializing because the MonoBehaviour
type and the script name are colored the same:

Figure 5.13: A new script opened in the Rider IDE

Unleashing the Power of C# and Visual Scripting120

3. The first three lines in the preceding screenshot—the ones that start with the using keyword—
include common namespaces. Namespaces are like code containers, which are, in this case,
code created by others (such as Unity, C# creators, and so on). We will be using namespaces
quite often to simplify our tasks; they already contain solved algorithms that we will use. We
will add and remove the using components as we need; in my case, Rider suggests that the
first two using components are not necessary because I am not using any code inside them,
and so they are grayed out. But keep them for now, as you will use them in later chapters of
this book. Remember, they should always be at the beginning of a file:

Figure 5.14: The using sections

4. The next line, the one that starts with public class, is where we declare that we are creating
a new class that inherits from MonoBehaviour, the base class of every custom component.
We know this because it ends with : MonoBehaviour. You can see how the rest of the code is
located inside brackets right below that line, meaning that the code inside them belongs to
the component:

Figure 5.15: The MyFirstScript class definition inherits from MonoBehaviour

Now that we have our C# script, let’s add fields to configure it.

Adding fields
In previous chapters, when we added components such as Rigidbody or different kinds of colliders,
adding the components wasn’t enough. We needed to properly configure them to achieve the exact
behavior that we needed. For example, Rigidbody has the Mass property to control an object’s weight,
and the colliders have the Size property to control their shape. This way, we can reuse the same com-
ponent for different scenarios, preventing the duplication of similar components. With a Box collider,
we can represent a cube or rectangular box just by changing the size properties. Our components
are no exception; if we have a component that moves an object and we want two objects to move at
different speeds, we can use the same component with different configurations.

Each configuration is a field or variable where we can hold a parameter’s value. We can create class
fields that can be edited in the editor in two ways:

• By marking the field as public, but breaking the encapsulation principle
• By making a private field and exposing it with an attribute

Chapter 5 121

Now, we are going to cover both methods, but if you are not familiar with Object-Oriented Program-
ming (OOP) concepts, such as encapsulation, I recommend you use the first method.

Suppose we are creating a movement script. We will add an editable number field representing the
velocity using the first method—that is, by adding the public field. We will do this by following these
steps:

1. Open the script by double-clicking on it, as we did before.
2. Inside the class brackets, but outside any brackets within them, add the following code:

Figure 5.16: Creating a speed field in our component

The public keyword specifies that the variable can be seen and edited beyond the scope of
the class. The float part of the code says that the variable uses the decimal number type, and
speed is the name we chose for our field—although this can be whatever you want. You can
use other value types to represent other kinds of data, such as bool to represent checkboxes
or Booleans and string to represent text.

3. To apply the changes, just save the file in the IDE (usually by pressing Ctrl + S or Command + S)
and return to Unity. When you do this, you will notice a little loading wheel in the bottom-right
part of the editor, indicating that Unity is compiling the code. You can’t test the changes until
the wheel stops turning:

Figure 5.17: The loading wheel

Remember that Unity will compile the code; don’t compile it in the IDE.

Unleashing the Power of C# and Visual Scripting122

4. After the compilation is finished, you can see your component in the Inspector window and the
Speed variable should be there, allowing you to set the speed you want. Of course, right now,
the variables do nothing. Unity doesn’t recognize your intention by the name of the variable;
we need to set it for use in some way, but we will do that later:

Figure 5.18: A public field to edit data that the component will use later

If you don’t see the speed variable, please check the section at the end of this chapter called
Common beginner C# script errors, which will give you tips about how to troubleshoot compi-
lation errors.

5. Try adding the same component to other objects, and set a different speed. This will show you
how components in different GameObjects are independent, allowing you to change some of
their behaviors via different settings.

6. Instead of using the public keyword as we did in the previous steps to define available prop-
erties in the Inspector, we create a private field, encouraging encapsulation and exposing it
using the SerializeField attribute, as shown in the following screenshot.

Figure 5.19: Exposing private attributes in the Inspector window

If you are not familiar with the OOP concept of encapsulation, just use the first approach, using the
public keyword, to expose the variable in the Inspector, which is more flexible for beginners. If you
create a private field, it won’t be accessible to other scripts because the SerializeField attribute
only exposes the variable to the editor. Remember that Unity won’t allow you to use constructors, so
the only way to set initial data and inject dependencies is via serialized private fields or public fields
and setting them in the editor (or using a dependency injection framework, but that is beyond the
scope of this book). For simplicity, we will use the first method in most of the exercises in this book.

If you want, try to create other types of variables, and check how they look in the Inspector. Try re-
placing float with bool or string, as previously suggested. Remember that not every possible C# type
is recognized by Unity; through this book, we will learn about the most commonly supported ones.

Now that we know how to configure our components through data, let’s use that data to create some
behavior.

Chapter 5 123

Now that we have our C# script, let’s see how to do the same in visual scripting.

Creating a visual script
As we need to create a script asset for C# scripts, we need to create the visual scripting equivalent of
it called a script graph and also attach it to our GameObject, although using a different approach this
time. Before continuing, it is worth noticing that our objects must only have C# or the visual scripting
version, but not both, or the behavior will be applied twice, once per version.

Essentially, only do the steps for the version you want to try or do both steps in different objects if
you want to experiment.

Let’s create a visual script by doing the following:

1. Create a new GameObject to which we will add the visual script.
2. Add the Script Machine component to it. This component will execute the visual script graph

we will be creating shortly:

Figure 5.20: Adding a Script Machine component

3. In the Script Machine component, click the New button, and select a folder and a name to
save the visual script graph asset. This asset will contain the instructions of our script, and the
Script Machine component will execute those:

Figure 5.21: Using the New button to create a visual scripting graph asset

Even if we are using C#, which is still a very fast language, Unity has a feature called IL2CPP,
which automatically converts our scripts to optimized C++ code. Check this documen-
tation to get more info: https://docs.unity3d.com/Manual/IL2CPP.html. However,
IL2CPP is not always necessary, as the code you will write while reading this book will
still be fast enough. We won’t do a massive simulation with thousands of GameObjects,
but I still recommend experimenting with IL2CPP, especially on mobile devices, where
the performance boost is going to be significant.

https://docs.unity3d.com/Manual/IL2CPP.html

Unleashing the Power of C# and Visual Scripting124

4. If a warning appears, click the Change now option. This will prevent those changes on the
script from affecting the game while it’s running because, as the warning says, it can cause
instability in code. Always stop the game, change the code, and then play again.

5. Click the Edit Graph Button to open the visual script editor window. You can drag the Script
Graph tab to any part of the editor to merge that window:

Figure 5.22: Visual scripting asset editor

6. Put the mouse in an empty area in the grid of the visual script editor, and while holding the
middle mouse button, move the mouse to scroll through the graph. On MacBooks and Apple
Magic Mouses, you can scroll using two fingers on the trackpad.

What we did is create the visual graph asset that will contain the code of our script, and attach it to
a GameObject through the Script Machine component. Unlike C# scripts, we can’t attach the graph
asset directly; that’s why we need Script Machine to run the component for us.

Regarding fields, the ones we created in the C# scripts are contained in the script itself, but for visual
graphs, they work a little bit differently. When we added the Script Machine component, another one
was added: the Variables component. This will hold all the variables for all the visual script graphs that
a GameObject can contain. That means that all graphs we add to our object will share those variables.
You can create graph-specific variables if you want, but they won’t be exposed in the Inspector, and
this way also simplifies the access of variables from other objects’ scripts. Also remember, you will
want to add several graphs to the object, given that each graph will take care of different behaviors,
in a way in which we can mix and match them according to our needs.

In order to add a variable to our GameObject that can be used by our graph, let’s do the following:

1. Select a GameObject with a visual script added (with the Script Machine component) and look
at the Variables component.

2. Click the input field that says (New Variable Name) and type the name of the variable. In my
case, this is speed. If you don’t see that option, click the triangle at the left of the Variables
component name.

3. Click the Plus (+) button of the Variables component.
4. In the Type dropdown, select Float.

Chapter 5 125

5. Optionally, you can set an initial value in the Value field:

Figure 5.23: Creating variables for the visual graph

We created a speed variable that we can configure in the GameObject to alter the way all visual script
graphs attached to our GameObject will work, or at least the ones that use that variable value. Consider
that maybe you will have different kinds of speed, like movement and rotational speed, so in real cases
you might want to be a bit more specific with the variable name.

In visual scripting, the Variables component is used to manage data, similar to how a Blackboard is
used in some programming systems to share and access data across different components or agents.
This Blackboard is a container of several values of our object, like a memory or database, that several
other components of our object will then query and use. C# scripts usually contain their own vari-
ables inside instead. With our scripts created and ready to be configured, let’s see how to make both
of them do something.

Using events and instructions
Now that we have a script, we are ready to do something with it. We won’t implement anything useful
in this chapter, but we will settle the base concepts to add interesting behavior to the scripts we are
going to create in the next chapters.

In this section, we are going to cover the following concepts:

• Events and instructions in C#
• Events and instructions in visual scripting
• Using fields in instructions

We are going to explore the Unity Event System, which will allow us to respond to different situations
by executing instructions. These instructions will also be affected by the value of the editor. Finally,
we are going to discuss common scripting errors and how to solve them. Let’s start by introducing
the concept of UnityEvents in C#.

Events and instructions in C#
Unity allows us to create behavior in a cause-effect fashion, which is usually called an event system.
An event is a situation that Unity is monitoring—for example, when two objects collide or are destroyed,
Unity tells us about this situation, allowing us to react according to our needs. As an example, we can
reduce the life of a player when it collides with a bullet. Here, we will explore how to listen to these
events and test them using some simple actions.

Unleashing the Power of C# and Visual Scripting126

If you are used to event systems, you will know that they usually require us to subscribe to some kind
of listener or delegate, but in Unity, there is a simpler method available. For C# scripts, we just need
to write a function with the exact same name as the event we want to use—and I mean exact. If a letter
of the name doesn’t have the correct casing, it won’t execute, and no warning will be raised. This is
the most common beginner’s error that is made, so pay attention. For visual scripting, we will add a
special kind of node, but we will discuss that after the C# version.

There are lots of events or messages to listen to in Unity, so let’s start with the most common one—
Update. This event will tell you when Unity wants you to update your object, However, depending on
the purpose of your behavior, not all objects or scripts require the use of the Update event. The Update
logic is usually something that needs to be executed constantly—to be more precise, in every frame.
Remember that every game is like a movie—a sequence of images that your screen switches through
fast enough to look like we have continuous motion. A common action to perform in the Update event
is to move objects a little bit, and by doing this, every frame will make your object constantly move.

We will learn about the sorts of things we can do with Update and other events or messages later. Now,
let’s focus on how to make our component at least listen to this event. Actually, the base script already
comes with two event functions that are ready to use, one being Update and the other one Start. If
you are not familiar with the concept of methods in C#, we are referring to the snippet of code in the
following screenshot, which is already included in our script. Try to find it in yours:

Figure 5.24: A function called Update, which will be executed with every frame

You will notice a (usually) green line of text (depending on the IDE) above the void Update() line—this
is called a comment. These are basically ignored by the compiler. They are just notes that you can
leave to yourself and must always begin with //, preventing Unity from trying to execute them and
failing. We will use this to temporarily disable lines of code later.

Now, to test whether the Update method actually works, let’s add an instruction to be executed all the
time. There’s no better test function than print. This is a simple instruction that tells Unity to print a
message to the console, where all kinds of messages can be seen by the developers to check whether
everything is properly working. The user will never see these messages. They are similar to the classic
log files that developers sometimes ask you for when something goes wrong in a game and you are
reporting an issue.

Chapter 5 127

In order to test events in C# using functions, follow these steps:

1. Open the script by double-clicking on it.
2. To test, add print(“test”); within the event function. In the following screenshot, you can see

an example of how to do that in the Update event. Remember to write the instruction exactly,
including the correct casing, spaces, and quote symbols:

Figure 5.25: Printing a message in all the frames

3. Save the file, go to Unity, and play the game.

4. Look for the Console tab and select it. This is usually found next to the Project View tab. If
you can’t find it, go to Window | General | Console, or press Ctrl + Shift + C (Command + Shift
+ C on macOS).

5. You will see a new printed message, saying “test”, in every frame on the Console tab. If you
don’t see this, remember to save the script file before playing the game.

6. You might see a single message but with a number increasing to its right; that means the same
message appears several times. Try clicking the Collapse button of the console tab to change
that behavior.

Remember to save the file before switching back to Unity from the IDE. This is the
only way that Unity knows your file has changed. Some IDEs, such as Rider, save
the file automatically for you, but I don’t recommend you use auto-save, at least
in big projects. You don’t want accidental recompilations of unfinished work—that
takes too long in projects with lots of scripts.

Unleashing the Power of C# and Visual Scripting128

7. Let’s also test the Start function. Add print(“test Start”); to it, save the file, and play the
game. The full script should look as follows:

Figure 5.26: The script that tests the Start and Update functions

If you check the console now and scroll all the way up, you will see a single “test Start” message
and lots of “test” messages following it. As you can guess, the Start event tells you that the Game-
Object is created and allows you to execute the code that needs to execute just once at the beginning
of its lifetime.

For the void Update() syntax, we will say to Unity that whatever is contained within the brackets
below this line is a function that will be executed in all the frames. It is important to put the print
instruction inside the Update brackets (the ones inside the brackets of the class). Also, the print func-
tion expects to receive a value to print inside its parenthesis, called an argument or parameter. In our
example, we want to print simple text, and in C#, it must be enclosed with quotation marks. Finally,
all instructions inside functions such as Update or Start must end with a semicolon.

Chapter 5 129

Here, I challenge you to try to add another event called OnDestroy, using print to discover when it
executes. A small suggestion is to play and stop the game and look at the bottom of the console to
test this one.

For advanced users, you can also use breakpoints if your IDE allows you to do that. Breakpoints allow
you to freeze Unity completely before executing a specific code line to see how our field’s data changes
over time and to detect errors. Here, I will show you the steps to use breakpoints in Rider, but the
Visual Studio version should be similar:

1. Install the Unity package belonging to your IDE if not already installed. Check the Package
Manager for the JetBrains Rider Editor package. In the case of Visual Studio, install the Visual
Studio Editor package.

2. Click on the vertical bar at the left of the line where you want to add the breakpoint:

Figure 5.27: A breakpoint in the print instruction

3. Go to Run | Attach to Unity Process. If you are using Visual Studio, go to Debug | Attach Unity
Debugger:

Figure 5.28: Attacking our IDE with a Unity process

4. From the list, look for the specific Unity instance you want to test. The list will show other
opened editors or running debugging builds if there are any.

Unleashing the Power of C# and Visual Scripting130

5. If this doesn’t work, check if the editor is in debug mode by looking at the bug icon in the bot-
tom-right part of the editor. If the bug looks blue with a checkbox, then it is OK, but if it looks
gray and crossed out, click it and click Switch to debug mode:

Figure 5.29: Changing from release mode to debug mode

Stopping the debugging process won’t close Unity. It will just detach the IDE from the editor. Remember
you can click the Continue button in Visual Studio (and the equivalent in other IDEs) to continue the
game execution without detaching the debugger.

Now, let’s explore the visual scripting equivalent of using events and instructions.

Events and instructions in visual scripting
The same concept of events and instructions remains in visual scripting, but of course, this will be
done with nodes in the graph. Remember that a node represents an instruction of the graph, and
we can connect them to chain the effects of each instruction. In order to add events and the print
instruction on our graph, do the following:

1. Open the visual script graph (double-click the visual script asset).
2. Right-click the On Start and On Update nodes that are created by default, and then click Delete.

Even if those events are the ones we need, I want you to see how to create them from scratch:

Figure 5.30: Deleting nodes

Chapter 5 131

3. Right-click in any empty space of the graph and type start inside the Search box. It can take
a while the first time.

4. Select the On Start element in the list with the green checkbox to its left. In this case, I knew
this was an event because I was aware of it, but usually, you will recognize it as an event be-
cause it won’t have input pins (more on that in the next steps):

Figure 5.31: Searching the On Start event node

5. Drag the white arrow at the right of the event node, also known as the output flow pin, and
release the mouse button in any empty space.

6. In the Search box, search for the print node, and select the one that says Mono Behaviour:Print.
This means that when the On Start event happens, the connected node will be executed—in
this case, print. This is how we start to chain instructions to events:

Figure 5.32: Creating a print node connected to the event

7. Drag the empty circle at the left of the Message input pin of the print node, and release it in
any empty space. This pin is marked with a circle, indicating that it is a parameter pin, con-
taining data that will be used when executing the pin. The flow pins, the ones with a green
arrow, represent the order in which the nodes will be executed.

Unleashing the Power of C# and Visual Scripting132

8. Select the String Literal option, which will create a node to allow us to specify the message
to print:

Figure 5.33: Creating a String literal node

9. In the empty white box, write the message to be printed:

Figure 5.34: Specifying the message to print

Chapter 5 133

10. Play the game, and see the message printed in the console. Be sure you have only the visual
scripting version in the scene to avoid confusing the message in the console with the C# ver-
sion. You can also use different message text in the visual scripts to be sure which ones are
really executing.

Now we have the same behavior we previously coded using C#, but now using the visual scripting
tool in Unity. You can chain more actions to On Start by dragging the pin to the right (Output Flow
Pin) of the Print node and chaining new nodes, but we will do that later. Now that we have our scripts
doing something, let’s make the instructions use the fields we created so that the scripts use their
configurations.

Using fields in instructions
We have created fields to configure our components’ behavior, but we have not used them so far. We
will create meaningful components in the next chapter, but one thing we will often need is to use the
fields we have created to change the behavior of the object. So far, we have no real use of the speed
field that we created. However, following the idea of testing whether our code is working (also known
as debugging), we can learn how to use the data inside a field with a function to test whether the value
is the expected one, changing the output of print in the console according to the field’s value.

In our current C# script, our speed value doesn’t change during runtime. However, as an example, if
you are creating a life system with shield damage absorption and you want to test whether the reduced
damage calculation is working properly, you might want to print the calculation values to the console
and check whether they are correct.

The idea here is to replace the fixed message inside the print functions with a field. When you do that,
print will show the field’s value in the console. So if you set a value of 5 in speed and you print it, you
will see lots of messages saying 5 in the console, and the output of the print function is governed by
the field. To test this, your print message within the Update function should look as follows:

Figure 5.35: Using a field as a print function parameter

Unleashing the Power of C# and Visual Scripting134

As you can see, we just put the name of the field without quotation marks. If you use quotation marks,
you will print a “speed” message. In other scenarios, you can use this speed value within some moving
functions to control how fast the movement will be, or you can perhaps create a field called “fireRate”
(fields use camel case instead of Pascal case, with the first letter being in lowercase) to control the
cooldown time between one bullet and the next:

Figure 5.36: Printing the current speed

Now, to make the visual script graph print the value of the speed variable we created in the Variables
component, let’s do the following:

1. Open the visual scripting graph asset (double-click it).
2. In the panel on the left, select the Object tab to display all the variables our object has—essen-

tially the ones we defined in the Variables component previously.
3. Drag the speed variable, using the two lines to the left of the variable box, to any empty area

of the graph. This will create a Get Variable node in the graph to represent the variable.

Figure 5.37: Dragging variables to the graph to be used in the nodes

4. Drag the empty circle at the right of the Get Variable node to the circle at the left of the Mes-
sage input pin of the Print node. This will replace the previous connection to the String Literal
node. This node doesn’t have Input or Output flow nodes (the green arrow ones), as they are
data-only nodes that provide data to other nodes. In this case, when Print needs to execute,
it will execute Get Variable to get the text to read:

Chapter 5 135

Figure 5.38: Connecting the speed variable to the Print node

5. Right-click on the String Literal node and delete it.
6. Play the game and observe.

With all this, we now have the necessary tools to start creating actual components. Before moving on,
let’s recap some of the common errors that you will likely encounter if this is your first time creating
scripts in C#.

Common beginner C# script errors
Visual scripting scripts are prepared in a way in which you make fewer errors, not allowing you to
write incorrect syntax like C# script does. If you are an experienced programmer, I bet you are quite
familiar with them, but let’s recap the common errors that will make you lose lots of time when you
start out with C# scripting. Most of them are caused by not copying the shown code exactly. If you
have an error in the code, Unity will show a red message in the console and won’t allow you to run
the game, even if you are not using the script. So never leave anything unfinished.

Let’s start with a classic error, a missing semicolon, which has resulted in many programmer memes
and jokes. All fields and most instructions inside functions (such as print), when called, need to have
a semicolon at the end. If you don’t add a semicolon, Unity will show an error, such as the one in the
screenshot in Figure 5.39, in the console.

Unleashing the Power of C# and Visual Scripting136

You will also notice that this also has an example of bad code, where the IDE shows a red icon, sug-
gesting something is wrong in that place:

Figure 5.39: An error in the print line Flagged by the IDE and the Unity console

You will notice that the error shows the exact script (MyFirstScript.cs), the exact line of code (14,
in this case), and usually, a descriptive message—in this case, ;expected—as a way to specify that the
instruction ends there, so the compiler can process the next instruction as a separate one. You can
simply double-click the error and Unity will open the IDE, highlighting the problematic line. You can
even click on the links in the stack to jump to the line of the stack that you want.

I already mentioned why it is important to use the exact case for every letter of the instruction. However,
based on my experience of teaching beginners, I need to stress this particular aspect more.

The first scenario where this can happen is in instructions. In the following screenshots, you can see
how a badly written print function looks—that is, the error that the console will display and how the
IDE will suggest that there is something wrong. First, in the case of Rider, the instruction is colored red,
saying that the instruction is not recognized (in Visual Studio, it will show a red line instead). Then, the
error message says that Print does not exist in the current context, meaning that Unity (or C#, actually)
does not recognize any instruction named Print. In another type of script, Print in uppercase may
be valid, but not in regular components, which is why the “in the current context” clarification exists:

Figure 5.40: Error message when writing an instruction incorrectly

Now, if you write an event with the wrong casing, the situation is worse. You can create functions such
as Start and Update with whatever name you want for other purposes. Writing update or start is
perfectly valid, as C# will think that you are going to use those functions not as events but as regular
functions. So, no error will be shown, and your code will just not work. Try to write update instead
of Update and see what happens:

Chapter 5 137

Figure 5.41: The wrong casing in the Update function will compile the function but won’t execute it

Another error is to put instructions outside the function brackets, such as inside the brackets of the
class or outside them. Doing this will give no hint to the function as to when it needs to execute. So a
print function outside an Event function makes no sense, and it will show an error such as the ones
in Figures 5.42 and 5.43.

This time, the error is not super-descriptive. C# expects you to create a function or a field—the kind
of structure that can be put directly inside a class:

Figure 5.42: Misplaced instruction or function call

Finally, another classic mistake is to forget to close open brackets. If you don’t close a bracket, C#
won’t know where a function finishes and another starts or where the class function ends. This may
sound redundant, but C# needs that to be perfectly defined. In the following screenshots, you can
see how this would look:

Figure 5.43: Missing closed brackets

So much time is lost looking for that missing semicolon at the end of the line. At first,
it was extremely frustrating trying to figure out what was wrong in my code but, at the
same time, very satisfying to find the solution and have it all working again. That frustra-
tion-satisfaction loop still happens to me, maybe with more complex issues, but it’s all
part of being a developer. The sooner you embrace it, the faster you will see improvement.

Unleashing the Power of C# and Visual Scripting138

This one is a little bit difficult to catch because the error in the code is shown way after the actual
error. This is caused by the fact that C# allows you to put functions inside functions (not used often),
and so C# will detect the error later, asking you to add a closing bracket. However, as we don’t want to
put Update inside Start, we need to fix the error beforehand, at the end of Start. The error message
will be descriptive in the console, but again, don’t put the closing bracket where the message suggests
you do unless you are 100% sure that position is correct.

You will likely face lots of errors aside from these ones, but they all work the same. The IDE will show
you a hint, and the console will display a message; you will learn how to resolve them with time. Just
have patience, as every programmer experiences this. There are other kinds of errors, such as runtime
errors, code that compiles but fails when being executed due to some misconfiguration, or the worst,
logic errors, where your code compiles and executes with no error but doesn’t do what you intended.

Summary
In this chapter, we explored the basic concepts that you will use while creating scripts. We discussed
the concept of a script’s assets and how the C# ones must inherit from MonoBehaviour to be accepted
by Unity to create our own scripts. We also saw how to mix events and instructions to add behavior to
an object and how to use fields in instructions to customize what they do. All of this was done using
both C# and visual scripting.

We just explored the basics of scripting to ensure that everyone is on the same page. However, from
now on, we will assume that you have basic coding experience in some programming language, and
you know how to use structures such as if, for, array, and so on. If not, you can still read through this
book and try to complement the areas you don’t understand with a C# introduction book, as you need.

In the next chapter, we are going to start seeing how we can use what we have learned to create move-
ment and spawning scripts.

Learn more on Discord
Read this book alongside other users, Unity game development experts, and the author himself. Ask
questions, provide solutions to other readers, chat with the author via Ask Me Anything sessions, and
much more. Scan the QR code or visit the link to join the community:

https://packt.link/unitydev

https://packt.link/unitydev

6
Dynamic Motion: Implementing
Movement and Spawning

In the previous chapter, we learned about the basics of scripting, so now, let’s create the first script
for our game. We will see the basics of how to move objects through scripting using the Transform
component, which will be applied to the movement of our player with the keyboard keys, the constant
movement of bullets, and other object movements. Also, we will see how to create and destroy objects
during the game, such as the bullets our player and enemy shoot and the enemy waves that will be
generated during the game (also called enemy spawners). These actions can be used in several other
scenarios, so we will explore a few in this chapter.

In this chapter, we will examine the following scripting concepts:

• Implementing movement
• Implementing spawning
• Using the new Input System

We will start by scripting components to move our character with the keyboard, and then we will
make our player shoot bullets. Something to consider is that we are going to first see the C# version
and then show the Visual Scripting equivalent in each section.

Implementing movement
Almost every object in a game moves one way or another: the player character with the keyboard,
enemies through AI, bullets that simply move forward, and so on. There are several ways of moving
objects in Unity, so we will start with the simplest one— that is, using the Transform component.

In this section, we will examine the following movement concepts:

• Moving objects through Transform
• Using input
• Understanding Delta Time

Dynamic Motion: Implementing Movement and Spawning140

First, we will explore how to access the Transform component in our script to drive player movement,
later applying movement based on the player’s keyboard input. Finally, we will explore the concept of
deltatime to make sure that movement speeds are consistent on every computer. We will start learning
about the Transform API to make a simple movement script.

Moving objects through Transform
Transform is the component that holds the translation, rotation, and scale of an object, so every move-
ment system such as physics or pathfinding will affect this component. Sometimes, we want to move
the object in a specific way according to our game by creating our own script, which will handle the
movement calculations we need and modify Transform to apply them.

One concept applicable here is that components can alter other components. The main way of coding
in Unity is to create components that interact with other components. Here, the idea is to create one
that accesses another and tells it to do something—in this case, to move. To create a script that tells
Transform to move, do the following:

1. Create and add a script called PlayerMovement to our character, as we did in the previous
chapter. In this case, it will be the animated 3D model we downloaded previously, named
Polyart_Mesh (drag the 3D asset from the Project view to the scene). Remember to move the
script to the Scripts folder after creation:

Figure 6.1: Creating a PlayerMovement script in the character

2. Double-click the created script asset to open an IDE to edit the code.
3. The character is moving, and the movement is applied to every frame. So this script will use

only the Update function or method, and we can remove Start (it is a good practice to remove
unused functions):

Chapter 6 141

Figure 6.2: A component with just the Update event function

4. To move our object along its local forward axis (the z axis), add the transform.Translate(0,0,1);
line to the Update function, as shown in Figure 6.3:

Every component has access to a Transform field (to be specific, a getter) that is a reference
to the Transform of the GameObject the component is placed in. Through this field, we can
access the Translate function of the Transform, which will receive the offset to apply to the
x, y, and z local coordinates.

Figure 6.3: A simple Move Forward script

5. Save the file, and play the game to see the movement. Ensure that the camera points at the
character to properly see the effect of the script. To do that, remember that you can select the
camera in the hierarchy and move and rotate it until the character falls inside the frustum.

Dynamic Motion: Implementing Movement and Spawning142

Now that we have implemented a simple movement for the player, you will notice that they are mov-
ing too fast. That’s because we are using a fixed speed of 1 meter, and because Update is executing all
frames, we are moving 1 meter per frame. In a standard 30 Frames Per Second (FPS) game, the player
would move 30 meters per second, which is too much, but our computer is perhaps running the game
with way more FPS than that. We can control the player’s speed by adding a speed field and using the
value set in the editor instead of the fixed value of 1. You can see one way to do this in Figure 6.4, but
remember the other options we discussed in Chapter 5, Unleashing the Power of C# and Visual Scripting:

Figure 6.4: Creating a speed field and using it as the z speed of the movement script

Now, if you save the script to apply the changes and set the Speed of the player in the Editor, you can
play the game and see the results. In my case, I used 0.1, but you might need another value (there’s
more on this in the Understanding Delta Time section):

Figure 6.5: Setting a speed of 0.1 meters per frame

Now, for the Visual Scripting version, remember not to mix the C# and Visual Scripting versions of
our scripts; this is not because it is impossible but because we want to keep things simple for now. So
you can either delete the script from the player object and add the Visual Scripting version, or you
can create two player objects and enable and disable them to try both versions. I recommend creating
one project for the C# version of the scripts and then creating a second project to experiment with
the Visual Script version.

Chapter 6 143

The Visual Scripting Graph of this script will look like the following image:

Figure 6.6: Setting a speed of 0.1 meters per frame

As you can see, we added a Script Machine component to our Player GameObject. Then, we pressed
the New button in the Script Machine component to create a new Graph called PlayerMovement. We
also created a Float variable called speed with the value of 0.1. In the Graph, we added the On Up-
date event node and attached it to the Translate (X,Y,Z) node of the Transform, which, similar to the
C# version, will move along the local axes of the object. Finally, we connected the Z parameter pin
of Translate to the GetVariable node, representing the speed we created in the GameObject. If you
compare this Graph with the code we used in the C# version, they are essentially the same Update
method and Translate function. If you don’t remember how to create this Graph, you can go back to
Chapter 5, Unleashing the Power of C# and Visual Scripting, to recap the process.

You will notice that the player will move automatically. Now, let’s see how to execute the movement
based on player input such as the keyboard and mouse.

Using Input
Unlike NPCs (non-playable characters) in a videogame, we want the player’s movement to be driven
by the user’s input, based on which keys they press when they play, the mouse movement, and so
on. To know whether a certain key has been pressed, such as the Up arrow, we can use the Input.
GetKey(KeyCode.W) line, which will return a Boolean, indicating whether the key specified in the
KeyCode enum is pressed, which is W in this case. This is usually the main setup for keyboard con-
trollers in 3D video games. We can combine the GetKey function with an If statement to make the
translation execute when the key is pressed.

Dynamic Motion: Implementing Movement and Spawning144

Let’s start by implementing the keyboard movement by following these steps:

1. Make the forward movement execute only when the W key is pressed using the code, as shown
in the next screenshot:

Figure 6.7: Conditioning the movement until the W key is pressed

2. We can add other movement directions, using more If statements to move backward and A and
D to move left and right, as shown in the following screenshot. Notice how we use the minus
sign to inverse the speed when we need to move in the opposite axis direction:

Figure 6.8: Checking the W, S, A, and D key pressure

3. If you also want to consider the arrow keys, you can use an OR inside if, as shown in the fol-
lowing screenshot:

Figure 6.9: Checking the W, S, A, D, and arrow key pressure

4. Save the changes, and test the movement in Play mode.

With these lines of code, we have implemented basic movement using the WASD keys. Something to
take into account is that, first, we have another way to map several keys to a single action by configur-
ing the Input Manager—a place where action mappings can be created. Second, at the time of writing,
Unity has released a new Input System that is more extensible than this one.

For now, we will use this one because it is simple enough to make our introduction to scripting with
Unity easier, but in games with complex input, it is recommended that we look for more advanced tools.

Chapter 6 145

Now, for the Visual Scripting version, the Graph will look like this:

Figure 6.10: Input movement in Visual Scripting

As you can see, the graph has grown in size considerably compared to the C# version, which serves as
an example of why developers prefer to code instead of using visual tools. Of course, we have several
ways to split this graph into smaller chunks and make it more readable. Also, I needed to squeeze the
nodes together for them to be in the same image.

In the preceding screenshot, we can only see an example graph to move forward and backward, but
you can easily extrapolate the necessary steps for lateral movement based on this graph. As usual, you
can also check the GitHub repository of the project to see the completed files.

Notice all the similarities to the C# version; we chained If nodes to the On Update event node in a way
that if the first If node condition is true, it will execute the Translate in the player’s forward direction.
If that condition is false, we chain the False output node to another If that checks the pressure of the
other keys, and then, we move backward using the Multiply (Scalar) node to inverse the speed. You
can see nodes like If that have more than one Flow Output pin to branch the execution of the code.

Dynamic Motion: Implementing Movement and Spawning146

Also note the usage of the GetKey (Key) node, the Visual Scripting version of the same GetKey function
we used previously. When looking at this node in the Search box, you will see all the versions of the
function, and in this case, we selected the GetKey(Key) version; the one that receives a name (string)
works differently, so we are not covering that one:

Figure 6.11: All versions of Input GetKey

We also used the Or node to combine the two GetKey (Key) functions into one condition to give to the
If. These conditional operators can be found in the Logic category of the Search box:

Figure 6.12: The Boolean Logic operators

One thing to highlight is the usage of the Multiply node to multiply the value of the speed variable by
–1. We needed to create a Float Literal node to represent the –1 value. Then, surely, all programmers
will notice some limitations regarding how we used the If node’s True and False output pins, but we
will address that in a moment. Finally, consider that this implementation has the problem of blocking
the second input read if the first is successful; we will discuss a way to fix this when we add rotation
to our character later in this section.

Now, let’s implement the mouse controls. In this section, we will only cover rotation with mouse
movement; we will shoot bullets in the next section, Implementing spawning. In the case of mouse
movement, we can get a value saying how much the mouse has moved both horizontally and vertically.
This value isn’t a Boolean but a number: a type of input usually known as an axis. The value of an axis
will indicate the intensity of the movement, and the sign of that number will indicate the direction.
For example, if Unity’s “Mouse X” axis says 0.5, it means that the mouse moved to the right with a
moderate speed, but if it says -1, it moved quickly to the left, and if there is no movement, it will say
0. The same goes for sticks on gamepads; the axis named Horizontal represents the horizontal move-
ment of the left stick in common joysticks, so if the player pulls the stick fully to the left, it will say -1.

Chapter 6 147

We can create our own axes to map other common joystick pressure-based controls, but for our game,
the default ones are enough. To detect mouse movement, follow these steps:

1. Use the Input.GetAxis function inside Update, next to the movement if statements, as shown
in the following screenshot, to store the value of this frame’s mouse movement in a variable:

Figure 6.13: Getting the horizontal movement of the mouse

2. Use the transform.Rotate function to rotate the character. This function receives the degrees
to rotate in the x, y, and z axes. In this case, we need to rotate horizontally, so we will use the
mouse movement value as the y-axis rotation, as shown in the next screenshot:

Figure 6.14: Rotating the object horizontally based on mouse movement

3. If you save and test this, you will notice that the character will rotate but very quickly or slowly,
depending on your computer. Remember, this kind of value needs to be configurable, so let’s
create a rotationSpeed field to configure the speed of the player in the Editor:

Figure 6.15: The speed and rotation speed fields

4. Now, we need to multiply the mouse movement value by the speed, so, depending on the
rotationSpeed, we can increase or reduce the rotation amount. As an example, if we set a
value of 0.5 in the rotation speed, multiplying that value by the mouse movement will make
the object rotate at half the previous speed, as shown in the following screenshot:

Figure 6.16: Multiplying the mouse movement by the rotation speed

5. Save the code, and go back to the editor to set the rotation speed value. If you don’t do this, the
object won’t rotate because the default value of the float type fields is 0:

Figure 6.17: Setting the rotation speed

Dynamic Motion: Implementing Movement and Spawning148

The Visual Scripting additions to achieve rotation will look like this:

Figure 6.18: Rotating in Visual Scripting

The first thing to note here is the usage of the Sequence node. An output pin can only be attached to
one other node, but in this case, On Update needs to do two different things: rotate and move, each
one being independent of the other. Sequence is a node that will execute all its output pins one after
the other, regardless of the results of each one. You can specify the number of output pins in the Steps
input box; in this example, two is enough.

In the output pin 0, the first one, we added the rotation code, which is pretty self-explanatory, given
that it is essentially the same as the movement code with slightly different nodes (Rotate (X, Y, Z) and
GetAxis). Then, to output pin 1, we attached the If that checks the movement input—the one we did at
the beginning of this section. This will cause the rotation to be executed first and the movement second.

Regarding the limitation we mentioned before, it’s basically the fact that we cannot execute both
forward and backward movements, given that if the forward movement keys are pressed, the first If
will be true. Because the backward key movement is checked in the false output pin, they won’t be
checked in such cases. Of course, as our first movement script, it might be enough, but consider the
lateral movement. If we continue the If chaining using True and False output pins, we will have a
scenario where we can only move in one direction. So we cannot combine, for example, Forward and
Right to move diagonally.

A simple solution to this issue is to put the If nodes in the sequence instead of chaining them, so all the
If nodes are checked, which we did in the original C#. You can see an example of this in the next image:

Chapter 6 149

Figure 6.19: Sequencing Ifs

Something to consider here is that the connection of the If nodes and any kind of node can be removed
by right-clicking the circle pins on both ends of the line that connects them.

Now that we have completed our movement script, we need to refine it to work on every machine by
exploring the concept of Delta Time.

Understanding Delta Time
Unity’s Update loop executes as fast as the computer can. While you can set in Unity the desired frame
rate, achieving it depends exclusively on your computer’s capabilities, which are influenced by various
factors, not just hardware. This means you can’t always guarantee a consistent FPS. You must code
your scripts to handle every possible scenario. Our current script moves at a certain speed per frame,
and the per frame part is important here.

Making basic input scripting tends to be easy, but the most difficult thing to do is to make
intuitive and engaging input. Aside from adhering to the standards for the user to quickly
adapt to your game, like jumping with the Space key or the A button in a gamepad, I rec-
ommend experimenting with the full expressivity of controls. That will allow us to better
understand when it feels natural to use things like drag-and-drop, charging a punch when
holding the key and executing the punch when releasing it, or using the triggers to control
progressive things like the acceleration/braking of a car. This is even more interesting
when talking about AR/VR experiences, where the possibilities are endless.

Dynamic Motion: Implementing Movement and Spawning150

We have set the movement speed to 0.1, so if my computer runs the game at 120 FPS, the player will
move 12 meters per second. Now, what happens on a computer where the game runs at 60 FPS? As
you can guess, it will move only 6 meters per second, making our game have inconsistent behavior
across different computers. This is where Delta Time saves the day.

Delta Time is a value that tells us how much time has passed since the previous frame. This time de-
pends a lot on our game’s graphics, number of entities, physics bodies, audio, and countless aspects
that will dictate how fast your computer can process a frame. As an example, if your game runs at 10
FPS, it means that, in a second, your computer can process the Update loop 10 times, meaning that
each loop takes approximately 0.1 seconds; in the frame, Delta Time will provide that value.

In the following diagram, you can see an example of four frames taking different times to process,
which can happen in real-life cases:

Figure 6.20: Delta Time values varying in different frames of the game

Here, we need to code in such a way as to change the per frame part of the movement to per second;
we need to have consistent movement per second across different computers. One way to do that is
to move proportionally to the Delta Time; the higher the Delta Time value, the longer that frame is,
and the further the movement should be to match the real time that has passed since the last update.
We can think about our speed field’s current value in terms of 0.1 meters per second; our Delta Time
saying 0.5 means that half a second has passed, so we should move half the speed, 0.05.

After two frames a second have passed, the sum of the movements of the frames (2 x 0.05) matches
the target speed, 0.1. Delta Time can be interpreted as the percentage of a second that has passed.

To make the Delta Time affect our movement, we should simply multiply our speed by Delta Time
every frame because it can be different every frame. So let’s do that:

1. We access Delta Time using Time.deltaTime. We can start affecting the movement by multi-
plying the Delta Time in every Translate:

Chapter 6 151

2. We can do the same with the rotation speed by chaining the mouse and speed multiplications:

Figure 6.22: Applying Delta Time to the rotation code

If you save and play the game, you will notice that the movement will be slower than before. That’s
because now 0.1 is the movement per second, meaning 10 centimeters per second, which is pretty
slow; try raising those values. In my case, 10 for speed and 180 for rotation speed were enough, but
the rotation speed depends on the player’s preferred sensibility, which can be configurable, but let’s
keep that for another time.

The Visual Scripting change for the rotation will look like this:

Figure 6.23: Applying Delta Time to the Rotate Visual Script

For movement, you can easily extrapolate from this example or check the project on GitHub. We
simply chained another Multiply node with Get Delta Time.

We just learned how to mix the Input System of Unity, which tells us about the state of the keyboard,
mouse, and other input devices, with the basic Transform movement functions. This way, we can start
making our game feel more dynamic.

Now that we have finished the player’s movement, let’s discuss how to make the player shoot bullets
using Instantiate functions.

Dynamic Motion: Implementing Movement and Spawning152

Implementing spawning
We have created lots of objects in the editor that define our level, but once the game begins, and ac-
cording to the player’s actions, new objects must be created to better fit the scenarios generated by
player interaction. Enemies might need to appear after a while, or bullets must be created according
to the player’s input; even when enemies die, there’s a chance of spawning a power-up. This means
that we cannot create all the necessary objects beforehand but should create them dynamically, and
that’s done through scripting.

In this section, we will examine the following spawning concepts:

• Spawning objects
• Timing actions
• Destroying objects

We will start seeing the Unity Instantiate function, which allows us to create instances of Prefabs at
runtime, such as when pressing a key, or in a time-based fashion, such as making our enemy spawn
bullets once every so often. Also, we will learn how to destroy these objects to prevent our scene from
starting to perform badly due to too many objects being processed.

Let’s start with how to shoot bullets according to the player’s input.

Spawning objects
To spawn an object in runtime or Play mode, we need a description of the object, which components
it has, its settings, and its possible sub-objects. You might be thinking about Prefabs here, and you
are right; we will use an instruction that will tell Unity to create an instance of a Prefab via scripting.
Remember that an instance of a Prefab is an object created based on the Prefab—basically a clone of
the original one.

We will start by shooting the player’s bullets, so first, let’s create the bullet Prefab by following these
steps:

1. Create a sphere in GameObject | 3D Object | Sphere. You can replace the sphere mesh with
another bullet model if you want, but we will keep the sphere in this example for now.

2. Rename the sphere Bullet.
3. Create a material by clicking on the + button of the Project window, choosing the option Ma-

terial, and calling it Bullet. Remember to place it inside the Materials folder.
4. Check the Emission checkbox in the material, and set the Emission Map and Base Map colors

to red:

Chapter 6 153

Figure 6.24: Creating a red bullet material with an emission color

5. Apply the Material to the Sphere by dragging the material to it.
6. Set the Scale to a smaller value—0.3, 0.3, 0.3 worked in my case.
7. Create a script called ForwardMovement to make the bullet constantly move forward at a fixed

speed. You can create it both with C# and Visual Scripting, but for simplicity, we are only going
to use C# in this case.

I suggest you try to solve this by yourself first and look at the screenshot in the
next step with the solution later as a little challenge, recapping the movement
concepts we saw previously. If you don’t recall how to create a script, please refer
to Chapter 5, Unleashing the Power of C# and Visual Scripting, and check the previous
section to see how to move objects.

Dynamic Motion: Implementing Movement and Spawning154

8. The next screenshot shows you what the script should look like:

Figure 6.25: A simple ForwardMovement script

9. Add the script (if not already there) to the bullet, and set the speed to a value you see fit. Usually,
bullets are faster than the player, but that depends on the game experience you want to get.
In my case, 20 worked fine. Test it by placing the bullet near the player and playing the game:

Figure 6.26: A ForwardMovement script in the bullet

10. Drag the bullet GameObject instance to the Prefabs folder to create a Bullet Prefab. Remember
that the Prefab is an asset that has a description of the created bullet, like a blueprint of how
to create a bullet:

Figure 6.27: Creating a Prefab

Chapter 6 155

11. Remove the original bullet from the scene; we will use the Prefab to create bullets when the
player presses a key (if ever).

Now that we have our bullet Prefab, it is time to instantiate it (clone it) when the player presses a key.
To do that, follow these steps:

1. Create and add a script to the player’s GameObject called PlayerShooting, and open it.
2. We need a way for the script to have access to the Prefab to know which Prefab to use from

probably the dozens we will have in our project. All of the data that our script needs, which
depends on the desired game experience, is in the form of a field, such as the speed field used
previously. So, in this case, we need a field of the GameObject type—a field that can reference
or point to a specific Prefab, which can be set using the editor.

3. Adding the field code would look like this:

Figure 6.28: The Prefab reference field

As you might have guessed, we can use the GameObject type to reference not only Prefabs but
also other objects. Imagine an enemy AI needing a reference to the player object to get its
position, using GameObject to link the two objects. The trick here is considering that Prefabs
are just regular GameObjects that live outside the scene; you cannot see them, but they are in
memory, ready to be copied or instantiated. You will only see them through copies or instances
that are placed in the scene with scripting or via the editor, as we have done so far.

4. In the editor, click on the circle toward the right of the property and select the Bullet Prefab.
Another option is to just drag the Bullet Prefab to the property. This way, we tell our script
that the bullet to shoot will be that particular one. Remember to drag the Prefab and not the
bullet in the scene (the one in the scene should have been deleted by now):

Figure 6.29: Setting the Prefab reference to point the bullet

Dynamic Motion: Implementing Movement and Spawning156

5. We will shoot the bullet when the player presses the left mouse button, so place the appropri-
ate if statement to handle that in the Update event function, like the one shown in the next
screenshot:

Figure 6.30: Detecting the pressure of the left mouse button

6. You will notice that this time, we used GetKeyDown instead of GetKey, the former being a way
to detect the exact frame the pressure of the key started; this if statement executes its code
only in that frame and until the key is released and re-pressed, it won’t enter again. This is
one way to prevent bullets from spawning in every frame, but just for fun, you can try using
GetKey instead to check how it would behave. Also, KeyCode.Mouse0 is the mouse button
number that belongs to the left-click, KeyCode.Mouse1 is the right-click, and KeyCode.Mouse2
is the middle click.

7. Use the Instantiate function to clone the Prefab, passing the reference to it as the first pa-
rameter. This will create a clone of the aforementioned Prefab that will be placed in the scene:

Figure 6.31: Instantiating the Prefab

If you save the script and play the game, you will notice that when you press the mouse, a bullet will
spawn, but probably not in the place you expect. If you don’t see it, check the Hierarchy for new ob-
jects; it will be there. The problem here is that we didn’t specify the desired spawn position, and we
have two ways of setting that, which we will see in the next steps:

1. The first way is to use the transform.position and transform.rotation inherited fields from
MonoBehaviour, which will tell us our current position and rotation, respectively. We can pass
them as the second and third parameters of the Instantiate function, which will understand
that this is the place we want our bullet to appear. Remember that it is important to set the
rotation to make the bullet face the same direction as the player so that it will move that way:

Figure 6.32: Instantiating the Prefab in our position and rotation

Chapter 6 157

2. The second way is by using the previous version of Instantiate but saving the reference
returned by the function, which will point to the clone of the Prefab. This allows us to change
whatever we want from it. In this case, we will need the following three lines: the first will
instantiate and capture the clone reference, the second will set the position, and the third will
set the rotation. We will also use the transform.position field of the clone, but this time to
change its value by using the = (assignment) operator:

Figure 6.33: The longer version of instantiating a Prefab in a specific position

Remember that you can check the project’s GitHub repository linked in the Preface to see the full script
finished. Now, you can save the file with one of the versions and try to shoot.

If you try the script so far, you should see the bullet spawn in the player’s position, but in our case, it
will probably be the floor. The problem here is that the player’s character pivot is there, and usually,
every humanoid character has the pivot in their feet. We have several ways to fix that. The most flexible
method is to create a Shoot Point, an empty GameObject child of the player, placed in the position
we want the bullet to spawn. We can use the position of that object instead of the player’s position by
following these steps:

1. Create an empty GameObject in GameObject | Create Empty. Name it ShootPoint.
2. Make it a child of the player’s GameObject, and place it where you want the bullet to appear,

probably a little higher and further forward:

Figure 6.34: An empty ShootPoint object placed inside the character

Dynamic Motion: Implementing Movement and Spawning158

3. As usual, to access the data of another object, we need a reference to it, such as the Prefab
reference, but this time, it needs to point to our ShootPoint. We can create another GameObject
type field, but this time, drag ShootPoint instead of the Prefab. The script and the object set
would look as follows:

Figure 6.35: The Prefab and Shoot Point fields and how they are set in the editor

4. We can access the position of the ShootPoint by using its transform.position field again, as
shown in the following screenshot:

Figure 6.36: Positioning the bullet clone in the shooting spawn point

The Visual Scripting version of ForwardMovement will look like this:

Figure 6.37: ForwardMovement with Visual Scripting

Chapter 6 159

And PlayerShooting will look like this:

Figure 6.38: Instantiating in the PlayerShooting Visual Script

As you can see, we added a second Script Machine component with a new graph called Player Shoot-
ing. We also added a new variable, bulletPrefab, of type GameObject and dragged the Bullet Prefab
to it, and a second GameObject type variable called shootPoint, to have a reference to the bullet’s
spawn position. The rest of the script is essentially the counterpart of the C# version without any
major differences.

Something to highlight here is how we connected the Transform GetPosition and Transform
GetRotation nodes to the GetVariable node belonging to the shootPoint; this way, we access the
position and rotation of the shooting point. If you don’t specify that, it will use the player’s position
and rotation, which, in the case of our model, is in the player’s character’s feet.

You will notice that, now, shooting and rotating with the mouse has a problem; when moving the
mouse to rotate, the pointer will fall outside the Game view, and when clicking, you will accidentally
click the editor, losing the focus on the Game view, so you will need to click the Game View again to
regain focus and use input again. A way to prevent this is to disable the cursor while playing. To do
this, follow these steps:

1. Add a Start event function to our Player Movement script.

Dynamic Motion: Implementing Movement and Spawning160

2. Add the two lines you can see in the following screenshot to your script. The first one will make
the cursor visible, and the second one will lock it in the middle of the screen so that it will never
abandon the Game View. Consider the latter; you will need to reenable the cursor when you
switch back to the main menu or the pause menu, allowing the mouse to click the UI buttons:

Figure 6.39: Disabling the mouse cursor

3. Save and test this. If you want to stop the game, you could press either Ctrl + Shift + P (Com-
mand + Shift + P on a Mac) or the Esc key to reenable the mouse. Both options only work in the
editor; in the real game, you will need to reset Cursor.visible to true and Cursor.lockState
to CursorLockMode.None.

4. The Visual Scripting equivalent will look like this:

Figure 6.40: Disabling the mouse cursor in Visual Scripting

Now that we have covered the basics of object spawning, let’s see an advanced example by combining
it with timers.

Timing actions
Not entirely related to spawning but usually used together, timing actions are common tasks in video
games. The idea is to schedule something to happen later; maybe we want a bullet to be destroyed
after a while to prevent memory overflow, or we want to control the spawn rate of enemies or when
they should spawn. That’s exactly what we are going to do in this section, starting with implementing
enemy waves.

The idea is that we want to spawn enemies at a certain rate in different moments of the game; maybe
we want to spawn enemies from the beggining during 5 seconds at a rate of 2 per second, getting 10
enemies and giving the player up to 20 seconds to finish them, programming another wave, starting
at 25 seconds. Of course, this depends a lot on the exact game you want, and you can start with an
idea like this one and modify it after some testing to find the exact way you want the wave system to
work. In our case, we will apply timing by implementing a simple wave system.

Chapter 6 161

First of all, we need an enemy, and for now, we will simply use the same 3D model we used for the
player but add a Forward Movement script to simply make it move forward; later in this book, we will
add AI behavior to our enemies. I suggest you try creating this Prefab on your own first. After you
have done so, refer to the following steps to compare your work with the recommended approach
and confirm if you’ve done it correctly:

Drag the downloaded Character FBX model to the scene to create another instance of it, but name it
Enemy this time:

1. Add the ForwardMovement script created for the bullets, but this time as Enemy, and set it at a
speed of 10 for now.

2. Drag the Enemy GameObject to the Project panel to create its Prefab; we will need to spawn it
later. Remember to select Prefab Variant to keep this Prefab linked with the original model,
allowing any changes to the model to automatically update the Prefab.

3. Remember also to destroy the original Enemy from the scene.

Now, to schedule actions, we will use the Invoke functions to create timers. They are basic but
enough for our requirements. Let’s use them by following these steps:

4. Create an empty GameObject at one end of the base and call it Wave1a.
5. Create and add a script called WaveSpawner to it.
6. Our spawner will need four fields: the Enemy Prefab to spawn, the startTime of the wave, the

endTime, and the spawn rate of the enemies (how much time should be between each spawn).
The script and the settings will look like the following screenshot:

Figure 6.41: The fields of the wave spawner script

We will use the InvokeRepeating function to schedule a custom function to repeat periodi-
cally. You will need to schedule the repetition just once; Unity will remember that, so don’t
do it for every frame. This is a good reason to use the Start event function instead. The first
argument of the function is a string (text between the quotation marks) with the name of the
other function to execute periodically, and unlike Start or Update, you can name the function
whatever you want. The second argument is the time to start repeating—our startTime field,
in this case. Finally, the third argument is the repetition rate of the function—how much time
needs to pass between each repetition—this being the spawnRate field.

Dynamic Motion: Implementing Movement and Spawning162

You can find how to call that function in the next screenshot, along with the custom Spawn
function:

Figure 6.42: Scheduling a Spawn function to repeat

7. Inside the Spawn function, we can add the spawning code using the Instantiate function. The
idea is to call this function at a certain rate to spawn one enemy per call. This time, the spawn
position will be in the same position as the spawner, so place it carefully:

Figure 6.43: Instantiating in the Spawn function

If you test this script by setting the Prefab startTime and spawnRate fields to some values
greater than 0, you will notice that the enemies will start spawning but never stop, and you can
see that we haven’t used the endTime field so far. The idea is to call the CancelInvoke function,
the one function that will cancel all the InvokeRepeating calls we made, but after a while. We
will delay the execution of CancelInvoke using the Invoke function, which works similarly
to InvokeRepeating, but this one executes just once. In the next screenshot, you can see how
we added an Invoke call to the CancelInvoke function in Start, using the endTime field as the
time to execute CancelInvoke. This will execute CancelInvoke after a while, canceling the first
InvokeRepeating call that spawns the Prefab:

Figure 6.44: Scheduling a Spawn repetition but canceling after a while with CancelInvoke

This time, we used Invoke to delay the call to CancelInvoke. We didn’t create a custom func-
tion because CancelInvoke doesn’t receive arguments. If you need to schedule a function
with arguments, you will need to create a wrapper function; this function should have no
parameters itself but is used to call your target function (the one you originally intend to use)
with the necessary arguments. This approach is similar to what we did with the Spawn function,
where the wrapper’s sole purpose is to call the Instantiate

Chapter 6 163

8. Now, you can save and set some real values to your spawner. In my case, I used the ones shown
in the following screenshot:

Figure 6.45: Spawning enemies from the beggining during 5 seconds of the gameplay every
0.5 seconds, and 2 per second

You should see the enemies being spawned next to each other, and because they move forward, they
will form a row. This behavior will change later when we make use of the AI features of Unity in a
future chapter. Now, the Visual Scripting version will look like this:

Figure 6.46: Spawning enemies in Visual Scripting

Dynamic Motion: Implementing Movement and Spawning164

While we could use the InvokeRepeating approach in Visual Scripting, here we can see some bene-
fits of the visual approach, given that it sometimes has more flexibility than coding. In this case, we
used the Wait For Seconds node at the beginning of the Start, a node that basically will hold the
execution of the flow for a couple of seconds. This will create the initial delay we had in the original
script; that’s why we used the startTime as the amount of Delay.

Now, after the wait, we used a For loop; for this example, we changed the concept of the script, as we
want to spawn a specific number of enemies instead of spawning during a set time. The For loop is
essentially a classic For that will repeat whatever is connected to the Body output pin the number of
times specified by the Last input pin.

We connected that pin to a variable to control the number of enemies we wanted to spawn. Then, we
connected an Instantiate to the Body output pin of the For loop to instantiate our enemies and then a
Wait For Seconds node to stop the flow for a set time before the loop can continue spawning enemies.

What is interesting is that if you play the game now, you will receive an error in the console that looks
like this:

Figure 6.47: Error when using Wait nodes

You can even go back to the Graph Editor and see that the conflicting node will be highlighted in red:

Figure 6.48: Node causing the error

The issue here is that in order for the Wait For Seconds nodes to work, you need to mark the Start
event as a Coroutine. This will basically allow the event to be paused for an amount of time and be
resumed later.

The concept of coroutines exists in C#, but as it is simpler to implement here in Visual
Scripting than in C#, we decided to go with this approach here. If you want more info
about them, please check out this documentation: https://docs.unity3d.com/Manual/
Coroutines.html

https://docs.unity3d.com/Manual/Coroutines.html
https://docs.unity3d.com/Manual/Coroutines.html

Chapter 6 165

To solve this error, just select the On Start event node and check the Coroutine checkbox in the Graph
Inspector pane on the left of the Script Graph Editor. If you don’t see it, try clicking the Info button
(the circle with i) in the top-left part of the editor.

A coroutine is a function that can be paused and resumed later, and that’s exactly what the Wait node
does. Coroutines also exist in MonoBehaviours, but let’s keep things simple for now.

Figure 6.49: Marking Start as a coroutine

Now that we have discussed timing and spawn, let’s discuss timing and Destroy to prevent our bullets
from living forever in the memory.

Destroying objects
We can use the Destroy function to destroy object instances. The idea is to make bullets have a script
that schedules their own auto-destruction after a while to prevent them from living forever. We will
create the script by following these steps:

1. Select the Prefab of Bullet, and add a script called Autodestroy to it, as you did with other
objects using the Add Component | New Script option. This time, the script will be added to
the Prefab, and each instance of the Prefab you spawn will have it.

2. You can use the Destroy function, as shown in the next screenshot, to destroy the object just
once in Start:

Figure 6.50: Destroying an object when it starts

The Destroy function expects the object to destroy as the first argument, and here, we use the
gameObject reference—a way to point to the GameObject that our script is placed into to destroy
it. If you use the this pointer instead of GameObject, we will destroy only the Autodestroy
component we are creating.

Dynamic Motion: Implementing Movement and Spawning166

Of course, we don’t want the bullet to be destroyed as soon as it is spawned, so we need to delay
the destruction. You may be thinking about using Invoke, but unlike most functions in Unity,
Destroy can receive a second argument, which is the time to wait until destruction.

3. Create a delay field to use as the second argument of Destroy, as shown in the next screenshot:

Figure 6.51: Using a field to configure the delay to destroy the object

4. Set the delay field to a proper value; in my case, 5 was enough. Now, check how the bullets
despawn (i.e., are removed) after a while by looking at them being removed from the Hierarchy.

5. The Visual Scripting equivalent will look like this:

Figure 6.52: Destroying in Visual Scripting

Chapter 6 167

Regarding this version, note how we use the Component Destroy (Obj and T) version of the Destroy
node, which includes the delay time. Additionally, look for the Object Pool concept, which is a way
to recycle objects instead of creating them constantly; you will learn that sometimes creating and
destroying objects is not that performant.

Now, we can create and destroy objects at will, which is something very common in Unity scripting.
In the next section, we will discuss how to modify the scripts we have created so far to support the
new Unity Input System.

Using the new Input System
We have been using the Input class to detect the buttons and axes being pressed, and for our simple
usage, that is more than enough. However, the default Unity Input System has its limitations regarding
extensibility to support new input hardware and mappings.

In this section, we will explore the following concepts:

• Installing the new Input System
• Creating Input Mappings
• Using mappings in scripts

Let’s start exploring how to install the new Input System.

Installing the new Input System
To start using the new Input System, it needs to be installed like any other package we have installed
so far, using the Package Manager. The package is just called Input System, so go ahead and install
it as usual. In this case, we are using version 1.7.0, but a newer one may be available by the time you
read this chapter.

Figure 6.53: Installing the new Input System package

Dynamic Motion: Implementing Movement and Spawning168

By default, when you install the Input System, it will prompt you to enable the new Input System, with
a window like the one in the following image. If that appears, just click Yes and wait for Unity to restart:

Figure 6.54: Switching the active Input System

If, for some reason, that doesn’t appear, the alternative is going to Edit | Project Settings and then
Player | Other Settings | Configuration, and setting the Active Input Handling property to Input Sys-
tem Package (New).

There’s an option called Both to keep both the old input system and the new one enabled, but let’s
stick with just one.

Chapter 6 169

Figure 6.55: Switching the active Input System

Now that we have the system installed and set up, let’s explore how to create the Input Mappings needed.

Creating Input Mappings
The new system has a way to directly request the current state of a button or thumbstick to the gamepad,
mouse, keyboard, or whatever other device we have, like what we have done so far with the previous
Input System. However, using this method would prevent us from using one of the best features of
the system, Input Mappings.

The idea of an Input Mapping is to abstract input actions from the physical input. Instead of thinking
about the space bar, the left thumbstick of a gamepad, or the right click of a mouse, you think in terms
of actions, like moving, shooting, or jumping. In code, you ask if the Shoot button has been pressed,
or the current value of the Move axes, as we did with the mouse axes rotation. While the previous
system supported a certain degree of Input Mapping, the one in the new Input System is way more
powerful and easier to configure.

Action Mappings

Shoot Left mouse button, Left Control, and the X button of the gamepad

Jump Space, Y button of gamepad

Horizontal movement A and D keys, Left and Right arrows, and the gamepad Left Stick

Table 6.01: Example of the Input Mapping table

Dynamic Motion: Implementing Movement and Spawning170

The power of this idea is that the actual keys or buttons that will trigger these actions are configurable
in the Unity editor, allowing any game designed to alter the exact keys to control the entire game
without changing the code.

We can even map more than one button to the same action, even from different devices, so we can
make the mouse, keyboard, and gamepad trigger the same action, greatly simplifying our code. An-
other benefit is that the user can also rebind the keys with some custom UI that we can add to our
game, which is very common in PC games.

The easiest way to start creating an Input Mapping is through the Player Input component. This com-
ponent, as the name suggests, represents the input of a particular player, allowing us to have one of
those on each player in our game to support split-screen multiplayer, but let’s focus on single-player.
Adding this script to our player will allow us to use the Create Actions button to create a default Input
Mapping asset. This asset, as a material, can be used by several players, so we will modify it so that it
will affect all of them (for example, by the addition of the Jump Input Mapping):

Figure 6.56: Creating input action assets using the Player Input component

After clicking the Create Actions button and saving the asset location in the save prompt, you will see
the following screen:

Figure 6.57: The default Input Mapping file

Chapter 6 171

The first part to understand from this asset is the Action Maps section (the left panel). This allows us
to create separate Action Maps for different situations, for example, for driving and on-foot controls
in games like Grand Theft Auto (GTA). By default, Player and UI mappings are created to separate
the mappings for the player controlling and navigating through the UI. If you check the Player Input
component again, you will see that the Default Map property is set to Player, which means that we
will only concern ourselves with the player controlling the Input Mappings in this GameObject; any
UI action pressed won’t be considered. We can switch the active map in runtime at will, for example,
to disable the character controller input when we are in the pause menu or switch to the driving
mappings while in a car, using the same buttons but for other purposes.

If you select an Action Map in the left panel, you will see all the actions it contains in the Actions list
in the middle panel. In the case of the Player, we have the Move, Look, and Fire mappings, which
are exactly the inputs we will use in our game. Bear in mind you can add more if you need to use the
+ button, but for now, let’s stick with the default ones. When you select any action from the list, you
will see their configurations in the Action Properties panel shown on the right:

Figure 6.59: The Move (left) and Fire (right) action configurations

As you can see, there’s a property called Action Type that will dictate which kind of input we are
talking about. If you select Move in the middle panel, you can see that it’s a Value action type, with
Control Type being Vector2, meaning it will return the x and y axis values, the horizontal and vertical
values—the kind we expect from any thumbstick in a gamepad. In the previous system, we got those
values from separate 1D axes, like the Mouse X and Mouse Y axes, but here, they are combined into a
single variable for convenience. On the other hand, the Fire action is of type Button, which has the
capacity not only to check its current state (pressed or released) but also do checks for things such as
whether it has just been pressed or just released, the equivalents to GetKey, GetKeyDown, and GetKeyUp
from the previous system.

Now that we understand which actions we have and of which type each one is, let’s discuss how the
physical input will trigger them. You can click the arrow on the left of each action in the middle panel
to see its physical mappings. Let’s start exploring the Move action mappings.

In this case, we have four mappings:

• Left Stick [Gamepad]: The left stick of the gamepad
• Primary 2D Axis [XR Controller]: The main stick of the VR controllers
• Stick [Joystick]: The main stick for arcade-like joysticks or even flight sticks
• WASD: A composite input simulating a stick through the W, A, S, and D keys

Dynamic Motion: Implementing Movement and Spawning172

If you select any of them, you can check their configurations; let’s compare the left stick and WASD
as an example:

Figure 6.59: The left stick mapping (left) and the WASD key mapping (right)

In the case of the Left Stick, you can see the Path property that allows you to pick all the possible
hardware physical controls that provide Vector2 values (the x and y axes). In the case of the WASD
key mapping, you can see it is a composite binding of type 2D Vector, which, as stated previously,
allows us to simulate a 2D axis with other inputs—keys in this case. If you expand the WASD Input
Mappings in the middle panel, you can see all inputs that are composited for this 2D axis and their
configurations by selecting them:

Figure 6.60: The inputs considered for the WASD composite 2D axis

In the preceding case, it maps not only the W, A, S, and D buttons but also the four keyboard arrows.
Each one of those mappings has not only a path to select the physical button but also the Composite
Part setting, allowing us to specify which direction this input will pull the simulated stick.

Chapter 6 173

And with this, we have just scratched the surface of what this system is capable of, but for now, let’s
keep things simple and use these settings as they are. Remember that a new asset was created with the
same name as our game (SuperShooter, in our case) in the root folder of the project. You can reopen
this Action Mapping window by double-clicking it whenever you want. Now let’s see how we can use
these inputs in our code.

Using Mappings in our scripts
This Input System provides several ways to detect the input state. The Player Input component has a
Behavior property to switch between some of the available modes. The simplest one is the one called
Send Messages, which is the one that we will use to execute methods in our code when the keys are
pressed. In this mode, each action in the mappings will have its own event, and you can see all of them
in the tooltip at the bottom of the component. As you add mappings, more will appear.

Figure 6.61: All the input events for the default mapping

There’s much more this system can do for us. One example is Interactions, which allow
us to do things like making the input trigger the action if it’s pressed for X amount of
time. Another is Composite, which triggers the action if a combination of keys is pressed.
Check the Input System package documentation here for more information: https://
docs.unity3d.com/Packages/com.unity.inputsystem@1.6

For more information about the other PlayerInput behavior modes, check out its docu-
mentation here: https://docs.unity3d.com/Packages/com.unity.inputsystem@1.8/
manual/PlayerInput.html#notification-behaviors

mailto:https://docs.unity3d.com/Packages/com.unity.inputsystem@1.6
mailto:https://docs.unity3d.com/Packages/com.unity.inputsystem@1.6
mailto:https://docs.unity3d.com/Packages/com.unity.inputsystem@1.8/manual/PlayerInput.html#notification-behaviors
mailto:https://docs.unity3d.com/Packages/com.unity.inputsystem@1.8/manual/PlayerInput.html#notification-behaviors

Dynamic Motion: Implementing Movement and Spawning174

From the list, we will need OnMove, OnLook, and OnFire. We can modify our PlayerMovement script to
use them, like in the following screenshot:

Figure 6.62: PlayerMovement with the new Input System

Chapter 6 175

The first difference you will notice is that we don’t request the status of the input in the Update method as
we did before. Instead, we listen to the OnMove and OnLook events, which provide us with an InputValue
parameter containing the current state of those axes. The idea is that every time these axes change
value, these events will execute, and if the values don’t change, like when the player keeps pushing the
stick all the way to the right, they won’t be executed. That’s why we need to store the current value in
the movementValue and lookValue variables—to use the latest value of the axis later in the Update and
apply the movement in every frame. Consider those as private, meaning they won’t appear in the editor,
but that’s fine for our purposes. Also, observe that we added the using UnityEngine.InputSystem
line at the top of the file to enable the usage of the new Input System in our script.

In this version of the PlayerMovement script, we used the axis input type like we did with the mouse
before but also for movement, unlike the previous version that used buttons. This is the preferred
option most of the time, so we will stick with that version. Observe how we use a single transform.
Translate to move; we need to use the x axis of movementValue to move the x axis of our player, but
we use the y axis of movementValue to move the z axis of our player. We don’t want to move our player
vertically, so that’s why we needed to split the axis this way.

The InputValue parameter has the Get<Vector2>() method, which will give us the current value of
both axes, given that Vector2 is a variable that contains the x and y properties. Then, we multiply the
vector by the movement or rotation speed according to the case. You will notice that we don’t multiply
by Time.deltaTime in the axis events, but we do that in the Update. That’s because Time.deltaTime
can change between frames, so storing the movement value while considering the Time.deltaTime of
the last time we moved the stick won’t be useful for us. Also, notice how movementValue is a Vector2,
just a combination of the x and y axes, while lookValue is a simple float. We did it this way because
we will rotate our character only by following the lateral movement of the mouse; we don’t want to
rotate it up and down. Check that we extract value.Get<Vector2>().x, with emphasis on the .x part,
where we extract just the horizontal part of the axis for our calculations.

Regarding the PlayerShooting component, we need to change it to this:

Figure 6.63: PlayerShooting script using the new Input System

Dynamic Motion: Implementing Movement and Spawning176

This case is simpler, as we don’t need to execute the shooting behavior for each frame; we only need
to execute something at the very same moment the input is pressed, which is exactly when the OnFire
event will be executed. If you also need to detect when the key was released, you can add the InputValue
parameter, as we did with OnMove and OnLook, and consult the isPressed property:

Figure 6.64: Getting the state of the button

Regarding the Visual Script Machine version of our scripts, first, you will need to refresh the Visual
Script Node Library by going to Edit | Project Settings | Visual Scripting and clicking the Regenerate
Nodes button. If you don’t do this, you won’t see the new Input System nodes:

Figure 6.65: Regenerating Visual Scripting nodes to support the new Input System

Chapter 6 177

Now, the PlayerShooting visual script should look like this:

Figure 6.66: Instantiating bullets with the new Input System

The new On Input System Event Button node allows us to detect when an action button has been
pressed and react accordingly. You can pick the specific action in the Input Action parameter, and
you can even make the node react to the pressure, release, or hold states of the button with the op-
tion right below the node’s title. There is a bug where the Input Action property might not show any
option; in such cases, try removing and adding the node again in the graph and check that you added
the ScriptMachine component to the same GameObject that has the PlayerInput component. Also,
ensure that you selected the Player GameObject in the Hierarchy.

Regarding movement, it can be achieved this way:

Figure 6.67: Moving with the new Input System

Dynamic Motion: Implementing Movement and Spawning178

In this case, we used the On Input System Event Vector2 node. This time, we used the OnHold mode,
which means that, unlike the C# version, it won’t execute just when the axis changes, but all the frames
when the axis is pressed act like an Update; that, however, will only execute when the user presses
the stick. The output pin of the node is the Vector2 value, so we multiply it by the speed variable
(declared in the Variables component of our player) and by DeltaTime. Finally, we use the Vector2
GetX and Vector2 GetY nodes to translate over the x and z axes. You may have trouble when rewiring
the Multiply nodes with the new Input System node, given that the return type is different compared
to the previously used node (a Vector2 instead of a single float). I recommend just deleting all nodes
in this graph and redoing them to make sure everything is fine. This way, we make our scripts react
to the input messages from Unity’s new Input System.

Summary
We created our first real scripts in this chapter, which provide useful behavior. We discussed how
to move a GameObject based on input and instantiate Prefabs via scripting, creating objects at will
according to the game situation. Also, we saw how to schedule actions—in this case, spawning—but
this can be used to schedule anything. We saw how to destroy created objects to avoid increasing the
number of objects to an unmanageable level. Finally, we explored the new Input System to provide
maximum flexibility to customize our game’s input. We will use these actions to create other kinds of
objects, such as sounds and effects, later in this book.

Now, you are able to create any type of movement or spawning logic that your objects will need, and
you can make sure those objects are destroyed when needed. You might think that all games move
and create shooting systems in the same way, and while they are similar, being able to create your
own movement and shooting scripts allows you to customize those aspects of the game to behave as
you intend, creating the exact experience you are looking for.

In the next chapter, we will discuss how to detect collisions to prevent the player and bullets from
passing through walls and much more.

Learn more on Discord
Read this book alongside other users, Unity game development experts, and the author himself. Ask
questions, provide solutions to other readers, chat with the author via Ask Me Anything sessions, and
much more. Scan the QR code or visit the link to join the community:

https://packt.link/unitydev

https://packt.link/unitydev

7
Collisions and Health: Detecting
Collisions Accurately

As games try to simulate real-world behaviors, one important aspect of simulating is physics, which
dictates how objects move and how they collide with each other, such as the collision of players and
walls or bullets and enemies. Physics can be difficult to control due to the myriad of reactions that
can happen after a collision, so we will learn how to properly configure our game to create physics
as accurately as we can. This will generate the desired arcade movement feeling based on realistic
collisions—after all, sometimes, real life is not as interesting as video games!

In this chapter, we will examine the following collision concepts:

• Configuring physics
• Detecting collisions
• Moving with physics

First, we will learn how to properly configure physics, a step needed for the collisions between objects
to be detected by our scripts, using new Unity events that we will learn. All of this is needed in order to
detect when our bullets reach our enemies and damage them. Then, we are going to discuss the difference
between moving with Transform, as we have done so far, and moving with Rigidbody, as well as the pros
and cons of each of these two methods. We will use these to experiment with different ways of moving
our player and let you decide which one you want to use. Let’s start by discussing the physics settings.

Configuring physics
Unity’s physics system is prepared to cover a great range of possible gameplay applications, so properly
configuring it is important to get the desired result. In this section, we will examine the following
physics settings concepts:

• Setting shapes
• Physics object types
• Filtering collisions

Collisions and Health: Detecting Collisions Accurately180

We are going to start by learning about the different kinds of colliders that Unity offers and then learn
about different ways to configure those to detect different kinds of physics reactions (collisions and
triggers). Finally, we will discuss how to ignore collisions between specific objects to prevent situations
such as the player’s bullets damaging the player.

Setting shapes
At the beginning of this book, we learned that objects usually have two shapes: the visual shape (which
is basically the 3D mesh) and the physical one (the collider—the one that the physics system will use
to calculate collisions). Remember that the idea of this is to allow you to have a highly detailed visual
model surrounding a simplified physics shape to increase performance.

Unity has several types of colliders, so here, we will recap the common ones, starting with the primi-
tive types—that is, Box, Sphere, and Capsule. These shapes are the cheapest ones (in terms of perfor-
mance) to detect collisions due to the fact that the collisions between them are done via mathematical
formulae, unlike other colliders such as the Mesh Collider, which allows you to use any mesh as the
physics body of the object, but with a higher performance cost and some limitations. The idea is that
you should use a primitive type to represent your objects or a combination of them; for example, an
airplane could be made with two Box colliders, one for the body and the other one for the wings. You
can find an example of this in the following screenshot, where you can see a weapons collider made
from primitives:

Figure 7.1: Compound colliders

Anyway, this is not always necessary; if we want a weapon to just fall to the ground, maybe a Box
collider covering the entire weapon can be enough, considering those kinds of collisions don’t need
to be accurate, thereby increasing performance. Also, some shapes cannot be represented even with
a combination of primitive shapes, such as ramps or pyramids, where your only solution is to use
a Mesh Collider, which asks for a 3D mesh to use for collisions. However, we won’t use them in this
book, given their high-performance impact; we will solve all of our physics colliders with primitives.

Chapter 7 181

Now, let’s add the necessary colliders to our scene to prepare it to calculate collisions properly. If you
used an Asset Store environment package other than mine, you might already have the scene modules
with colliders; I will show the work I needed to do in my case but try to extrapolate the main ideas
here into your scene.

To add the colliders, follow these steps:

1. Select a wall in the base, and check the object and possible child objects for collider compo-
nents; in my case, I have no colliders. If you detect any Mesh Collider, you can leave it if you
want, but I would suggest you remove it and replace it with another option in the next step.
The idea is to add the collider to it, but the problem I detected here is that, due to the fact my
wall is not an instance of a Prefab, I need to add a collider to every wall in the scene.

2. One option is to create a Prefab and replace all of the walls with instances of it (the recommend-
ed solution); alternatively, you can just select all walls in the Hierarchy (by clicking them while
pressing Ctrl or command on a Mac) and with them selected, use the Add Component button
to add a collider to all of them. In my case, I will use the Box Collider component, which will
adapt the size of the collider to the mesh. If it doesn’t adapt, you can just change the Size and
Center properties of the Box Collider components to cover the entire wall:

Figure 7.2: A Box Collider added to a wall

3. Repeat steps 1 and 2 for the corners, floor tiles, and any other obstacle that will block player
and enemy movement.

Now that we have added the needed colliders to the walls and floor, we can continue with the player
and enemy. We will be adding the Capsule Collider to them, the usual collider to use in movable
characters, due to the fact that the rounded bottom will allow the object to smoothly climb ramps.
Being horizontally rounded allows the object to easily rotate in corners without getting stuck, along
with other conveniences of that shape.

Collisions and Health: Detecting Collisions Accurately182

You might want to create an enemy Prefab based on one of the characters we downloaded before, so
you can add the collider to that Prefab. Our player is a simple GameObject in the scene, so you will
need to add the collider to that one but do consider creating a Prefab for the player for convenience.

You may be tempted to add several Box colliders to the bones of the character to create a realistic shape
of the object. While we can use this approach to vary the damage based on where enemies were shot
on their bodies, note that we are primarily creating movement colliders, and using a Capsule collid-
er is sufficient for this purpose. In advanced damage systems, both capsule and Bone colliders will
coexist, one for movement and the other for damage detection, but we will simplify this in our game.

Also, sometimes, the collider won’t adapt well to the visual shape of the object, and in my case, the
Capsule collider didn’t fit the character very well. I needed to fix its shape to match the character by
setting its values as shown in the following screenshot: Center to 0,1,0, Radius to 0.5, and Height to 2:

Figure 7.3: Character collider

The bullet we created with the Sphere already had a Sphere collider, but if you replaced the mesh
of the bullet with another one, you might want to change the collider. For the time being, we don’t
need other objects in our game, so now that everything has its proper collider, let’s see how to set the
different physics settings to each object to enable proper collision detection.

If you check the Terrain’s components, you will see that it has its own kind of collider, the Terrain
collider. For Terrains, that’s the only collider to use.

Physics object types
Now that we have added colliders to every object by making the objects have a presence in the phys-
ics simulation, it is time to configure them to have the exact physics behavior we want. We have a
myriad of possible combinations of settings, but we will discuss a set of common profiles that cover
most situations. Remember, besides colliders, we saw the Rigidbody component at the beginning of
this book, which is the one that applies physics to the object. The following profiles are created with
a combination of colliders and Rigidbody settings:

Chapter 7 183

• Static Collider: As the name suggests, this kind of collider is not supposed to move, aside from
some specific exceptions. Most of the environment objects fall into this category, such as walls,
floors, obstacles, and terrain. These kinds of colliders are just colliders with no Rigidbody
component, so they have a presence in the physics simulation but don’t have any physics
applied to them; they cannot be moved by other objects’ collisions, they won’t have physics,
and they will be fixed in their position no matter what. Take into account that this has noth-
ing to do with the Static checkbox at the top-right part of the editor; that is for systems that
we will explore later in several chapters (such as Chapter 12, Enlightening Worlds: Illuminating
Scenes with the Universal Render Pipeline), so you can have a Static Collider with that checkbox
unchecked if needed.

• Physics Collider: These are colliders with a Rigidbody component, like the example of the
falling ball we created in the first part of this book. These are fully physics-driven objects that
have gravity and can be moved through forces; other objects can push them, and they perform
every other physics reaction you can expect. You can use this for the player, grenade movement,
falling crates, or all objects in heavily physics-based games, such as The Incredible Machine.

• Kinematic Collider: These are colliders that have a Rigidbody component but have the Is
Kinematic checkbox checked. These don’t have physics reactions to collisions and forces like
Static Colliders, but they are expected to move, allowing Physics Colliders to handle collisions
against them properly when moving. These can be used in objects that need to move using
animations or custom scripting movements, such as moving platforms.

• Trigger Static Collider: This is a regular Static Collider but with the Is Trigger checkbox of the
collider checked. The difference is that when kinematic and physics objects pass through it,
a Trigger event is automatically generated; this can be captured via scripting, which allows
us to detect when something is inside the collider. This event can be used to create buttons
or trigger objects in areas of the game when the player passes through something happening,
such as a wave of enemies being spawned, a door being opened, or winning the game if that
area is the goal of the player. Note that regular Static Colliders won’t generate a trigger event
when passing through this type because those aren’t supposed to move.

• Trigger Kinematic Collider: Kinematic Colliders don’t generate collisions, so they will pass
through any other object, but they will generate Trigger events, so we can react via scripting.
This can be used to create moveable power-ups that, when touched, disappear and give us
points, or bullets that move with custom scripting movements and no physics, just straight
like our bullets, but damage other objects when they touch them.

Of course, other profiles can exist aside from the specified ones to use in some games with specific
gameplay requirements, but it’s down to you to experiment with all possible combinations of physics
settings to see whether they are useful for your case; the described profiles will cover 99% of cases.

Collisions and Health: Detecting Collisions Accurately184

To recap the previous scenarios, check out the following table showing the reaction of contact be-
tween all the types of colliders. You will find a row per each profile that can move; remember that
static profiles aren’t supposed to move. Each column represents the reaction when they collide with
the other types: Nothing means the object will pass through with no effect, Trigger means the object
will pass through but raise Trigger events, and Collision means the first object won’t be able to pass
through the second object:

Collides
with Static

Collides with
Dynamic

Collides with
Kinematic

Collides with
Trigger Static

Collides with
Trigger Kinematic

Dynamic Collision Collision Collision Trigger Trigger

Kinematic Nothing Collision Nothing Trigger Trigger

Trigger
Kinematic

Trigger Trigger Trigger Trigger Trigger

Table 7.01: Collision Reaction Matrix

Considering this, let’s start configuring the physics of our scene’s objects.

The walls, corners, floor tiles, and obstacles should use the Static Collider profile, so there is no
Rigidbody component on them, and their colliders will have the Is Trigger checkbox unchecked:

Figure 7.4: Configuration for floor tiles; remember that the Static checkbox is for lighting only

Chapter 7 185

The player should move and generate collisions against objects, so we need the player to have a Dy-
namic profile. This profile will generate funny behavior with our current movement script (which I
encourage you to test), especially when colliding against walls, so it won’t behave as you expected. We
will deal with this later in this chapter:

Figure 7.5: Dynamic settings on the player

The Enemy Prefab we suggested you create previously will use the Kinematic profile because we will
move this object with Unity’s AI systems later in the book, so we don’t need physics here. Also, as we
want the player to collide with the Enemy Prefab objects, we need a collision reaction here, so there’s
no Trigger:

Collisions and Health: Detecting Collisions Accurately186

Figure 7.6: Kinematic settings for the enemy

The Bullet Prefab moves with simplistic movement via scripting (it just moves forward) and not
physics. We don’t need collisions here; we will code the bullet to destroy itself as soon as it touches
something and will damage the collided object (if possible), so a Kinematic Trigger profile is enough
for this one. We will use the Trigger event to script the contact reactions:

Chapter 7 187

Figure 7.7: The Kinematic Trigger settings for our bullet, Is Trigger and Is Kinematic, are checked

Now that we have properly configured the objects let’s check how to filter undesired collisions between
certain object types.

Filtering collisions
Sometimes, we want certain objects to ignore each other, like the bullets shot by the player, which
shouldn’t collide with the player itself. We can always filter that with an if statement in the C# script,
checking whether the hit object is from the opposite team or whatever filtering logic you want, but by
then, it is too late; the physics system wasted resources by checking a collision between objects that
were never meant to collide. Here is where the Layer Collision Matrix can help us.

Collisions and Health: Detecting Collisions Accurately188

The Layer Collision Matrix sounds scary, but it is a simple setting of the physics system that allows us
to specify which groups of objects should collide with other groups. For example, the player’s bullets
should collide with enemies, and enemy bullets should collide with the player. In this case, the ene-
mies’ bullets will pass through enemies, but this is desirable in our case. The idea is to create groups
and put our objects inside them; in Unity, these groups are called layers. We can create layers and set
the layer property of the GameObject (the top part of the Inspector) to assign the object to that group
or layer. Note that you have a limited number of layers, so try to use them wisely.

We can achieve this by doing the following:

1. Go to Edit | Project Settings, and inside it, look for the Tags and Layers option from the left pane:

Figure 7.8: The Tags and Layers settings

2. From the Layers section, fill the empty spaces to create layers. We will use this for the bullet
scenario, so we need four layers: Player, Enemy, PlayerBullet, and EnemyBullet:

Figure 7.9: Creating layers

3. Select the Player GameObject in the Hierarchy, and from the top part of the Inspector, change
the Layer property to Player. Also, change the Enemy Prefab to have the Enemy layer. A window
will appear, asking you whether you want to also change the child objects; select Yes:

Chapter 7 189

Figure 7.10: Changing the layers of the player and the enemy Prefab

4. In the case of the bullet, we have a problem; we have one Prefab but two layers, and a Prefab
can only have one layer. We have two options: changing the layer according to the shooter via
scripting or creating two bullet Prefabs with different layers. For simplicity, I will choose the
latter, also taking the chance to apply another material to the enemy bullet to make it look
different.

5. We will create a Prefab Variant of the player bullet. Remember that a Variant is a Prefab that is
based on an original one, like class inheritance. When the original Prefab changes, the Variant
will change, but the Variant can have differences, which will make it unique.

6. Drop a bullet Prefab into the scene to create an instance.
7. Drag the instance again to the Prefabs folder, this time selecting the Prefab Variant option in

the window that will appear.
8. Rename it Enemy Bullet.
9. Destroy the Prefab instance in the scene.
10. Create a second material similar to the player bullet with a different color, and put it on the

enemy bullet Prefab Variant.
11. Select the enemy bullet Prefab, set its layer to EnemyBullet, and do the same for the original

Prefab (PlayerBullet). Even if you changed the original Prefab layer, as the Variant modified
it, the modified version (or override) will prevail, allowing each Prefab to have its own layer.

Now that we have configured the layers, let’s configure the physics system to use them:

1. Go to Edit | Project Settings and look for the Physics settings (not Physics 2D).
2. Scroll down until you see the Layer Collision Matrix, a half grid of checkboxes. You will no-

tice that each column and row is labeled with the names of the layers, so each checkbox in
the cross of a row and column will allow us to specify whether these two should collide. In
our case, we configured the Layer Collision Matrix as shown in the following screenshot so
that player bullets do not hit the player or other player bullets, and enemy bullets do not hit
enemies or other enemy bullets:

Collisions and Health: Detecting Collisions Accurately190

Figure 7.11: Making player bullets collide with enemies and enemy bullets collide with the
player

It is worth noting that, sometimes, filtering logic won’t be that rigid or predictable. For example, it
might involve only hit objects that have a certain amount of life, objects that don’t have an invisibil-
ity temporal buff or conditions that can change during the game and are difficult to generate for all
possible layers for all possible groups. So, in these cases, we should rely on manual filtering after the
Trigger or Collision event.

Now that we have filtered collisions, let’s check whether our settings are working properly by reacting
to collisions in the next section.

Detecting collisions
As you can see, proper physics settings can be complicated and very important, but now that we have
tackled that, let’s perform some tasks with those settings by reacting to the contact in different ways,
creating a health system in the process.

In this section, we will examine the following collision concepts:

• Detecting Trigger events
• Modifying the other object

First, we are going to explore the different collision and trigger events Unity offers us to react to con-
tact between two objects, through Unity collision events. This allows us to execute any reaction code
we want to place, but here, we are going to explore how to modify the contacted object components
using the GetComponent function.

Chapter 7 191

Detecting Trigger events
If objects are properly configured, as previously discussed, we can get two reactions: collisions or
triggers. The Collision reaction has a default effect that blocks the movement of the objects, but
we can add custom behavior on top of that using scripting; however, with a Trigger, unless we add
custom behavior, it won’t produce any noticeable effect. Either way, we can script reactions to both
possible scenarios, such as adding a score, reducing health, and losing the game. To do so, we can
use the suite of Physics events.

These events are split into two groups, Collision events and Trigger events, so according to your object
setting, you will need to pick the appropriate group. Both groups have three main events, Enter, Stay,
and Exit, telling us when a collision or trigger began (Enter), whether it is still happening or still in
contact (Stay), and when it stopped contacting (Exit). For example, we can script a behavior such as
playing a sound when two objects first make contact in the Enter event, such as a friction sound, and
stop it when the contact ends in the Exit event.

Let’s test this by creating our first contact behavior: the bullet being destroyed when coming into con-
tact with something. Remember that the bullets are configured to be triggers, so they will generate
Trigger events on contact with anything. You can do this with the following steps:

1. Create and add a script called ContactDestroyer on the Player Bullet Prefab; as the Enemy
Bullet Prefab is a Variant of it, it will also have the same script.

2. To detect when a trigger happens, such as with Start and Update, create an event function
named OnTriggerEnter.

3. Inside the event, use the Destroy(gameObject); line to make the bullet destroy itself when
touching something:

Figure 7.12: Auto-destroying on contact with something

4. Save the script, and shoot the bullets against the walls to see how they disappear instead of
passing through them. Here, we don’t have a collision but a trigger that destroys the bullet on
contact. This way, we are sure that the bullet will never pass through anything, but we are still
not implementing a physics-based movement.

Collisions and Health: Detecting Collisions Accurately192

After enabling these components, for now, we won’t need the other Collision events, but if you need
them, they will work similarly; just create a function called OnCollisionEnter instead.

Now, let’s explore another version of the same function. We’ll configure it to not only tell us that we hit
something but also what we came into contact with. We will use this to make our Contact Destroyer
also destroy the other object. To do this, follow these steps:

1. Replace the OnTriggerEnter method signature with the one in the following screenshot. This
one receives a parameter of the Collider type, indicating the exact collider that hit us:

Figure 7.14: Version of the trigger event that tells us which object we collided with

2. We can access the GameObject of that collider using the gameObject property. We can use
this to destroy the other one as well, as shown in the following screenshot. If we just use the
Destroy function by passing the other variable, it will only destroy the Collider component:

Figure 7.14: Destroying both objects

3. Save and test the script. You will notice that the bullet will destroy everything it touches. Remem-
ber to verify that your enemy has a Capsule collider for the bullet to detect collisions against it.

The equivalent version in visual scripting would be like the following figure:

Figure 7.15: Destroying both objects with Visual Scripting

Chapter 7 193

As you can see, we created an On Trigger Enter node and chained it to two Destroy nodes. To specify
which object each Destroy node will destroy, we used the Component: Get GameObject node twice.
The right one was created with no node connected to its left input pin, which means it will return
the GameObject that currently executes this script (hence, the This label in the node left pin), in this
case, the bullet. For the second one, we needed to connect the Collider output pin at the right of the
OnTriggerEnter node to the Get GameObject node; this way, we specify that we want to obtain the
GameObject that contains the collider our bullet collided with.

Now, in our game, we don’t want the bullet to destroy everything on contact; instead, we will make
the enemies and the player have a life amount; the bullets will reduce that life amount until it reaches
0, so let’s find out how to do that.

Modifying the other object
For the bullet to damage the collided object, we will need to access a Life component to change its
amount, so we will need to create this Life component to hold a float field with the amount of life.
Every object with this component will be considered a damageable object. To access the Life com-
ponent from our bullet scripts, we will need the GetComponent function.

If you have a reference to a GameObject or component, you can use GetComponent to access a specific
component if the object contains it (if not, it will return null). Let’s see how to use that function to
make the bullet lower the amount of life of the other object:

1. Create and add a Life component with a public float field, called amount, to both the player
and enemy Prefabs. Remember to set the value as 100 (or whatever life amount you want to
give them) in the Amount field for both in the Inspector:

Figure 7.17: The Life component

2. Remove the ContactDestroyer component from the player bullet, which will also remove it
from the Enemy Bullet Variant.

3. Add a new script called ContactDamager to both the enemy and the player.
4. Add an OnTriggerEnter event that receives the other collider as a parameter, and just add the

Destroy function call that auto-destroys itself, not the one that destroys the other object; our
script won’t be responsible for destroying it, just reducing its life.

5. Add a float field called damage so that we can configure the amount of damage to inflict on the
other object. Remember to save the file and set a value before continuing.

Collisions and Health: Detecting Collisions Accurately194

6. Use GetComponent on the reference to the other collider to get a reference to its Life compo-
nent and save it in a variable:

Figure 7.18: Accessing the collided object’s Life component

7. Before reducing the life of the object, we must check that the Life reference isn’t null, which
would happen if the other object didn’t have the Life component, as in the case of walls and
obstacles. The idea is that the bullet will destroy itself when anything collides with it and re-
duce the life of the other object if it is a damageable object that contains the Life component.

In the following screenshot, you will find the full script:

Figure 7.18: Reducing the life of the collided object

8. Place an enemy in the scene and set its speed to 0 to prevent it from moving.
9. Select it in the Hierarchy before hitting Play, and start shooting at it.

You can see how the life value reduces in the Inspector. You can also press the Esc key to regain control
of the mouse and select the object while in Play mode, seeing the life field change during the runtime
in the editor.

Now, you will notice that life is decreasing, but it will become negative; we want the object to destroy
itself when life is below 0 instead. We can do this in two ways: one is to add an Update to the Life
component, which will check all of the frames to see whether life is below 0, destroying itself when
that happens.

Chapter 7 195

The second way is by encapsulating the life field and checking its value inside the setter to prevent
all frames from being checked. I would prefer the second way, but we will implement the first one to
make our scripts as simple as possible for beginners.

To do this, follow these steps:

1. Add Update to the Life component.
2. Add If to check whether the amount field is below or equals 0.
3. Add Destroy in case the if condition is true.
4. The full Life script will look like the following screenshot:

Figure 7.19: The Life component

5. Save and see how the object is destroyed once Life becomes 0.

The Visual Scripting version for the Life component would look like this:

Figure 7.20: The Life component in Visual Scripting

Collisions and Health: Detecting Collisions Accurately196

The script is pretty straightforward—we check if our Life variable is less than 0 and then destroy
ourselves, as we did previously. Now, let’s check the Damager script:

Figure 7.21: The Damager component in Visual Scripting

This version is a little bit different from our C# counterpart. At first glance, it looks the same: we use
the Get Variable as before to read the life, and then we use the Subtract node to subtract damage from
life, and the result of that calculation becomes the new value of life, with the Set Variable node used
to alter the current value of that variable.

The first difference we can see here is the absence of any GetComponent node. In C#, we used that
instruction to get the Life component on the collided object in order to read and alter its amount
variable, reducing the remaining life. But as in Visual Scripting, our node graphs don’t have variables,
so we don’t need to access the component to read them. Instead, knowing that the enemy has a Life
variable in its Variables component, we use the Get Variable node, connecting it to the collider we
hit (the Collider output pin of On Trigger Enter), so essentially, we are reading the value of the Life
variable of the collided object.

The same goes for changing its value: we use the Set Value node, connecting it to the collider, spec-
ifying that we want to alter the value of the Life variable of the collider object, not ours (as bullets
don’t have a Life variable). Note that this can raise an error if the collided object doesn’t have the Life
variable, which is why we added the Object Has Variable node, which checks if the object has a vari-
able called Life. If it doesn’t, we just do nothing, which is useful when we collide with walls or other
non-destructible objects. Finally, we make the Damager (the bullet in this case) auto-destroy itself.

Chapter 7 197

Now that we have explored how to detect collisions and react to them, let’s explore how to fix the
player falling when hitting a wall.

Moving with physics
So far, the player, the only object that moves with the Dynamic Collider Profile and the one that will
move with physics, actually moves through custom scripting using the Transform API. Instead, every
dynamic object should move using the Rigidbody API functions in a way the physics system understands
better. As such, here, we will explore how to move objects, this time through the Rigidbody component.

In this section, we will examine the following physics movement concepts:

• Applying forces
• Tweaking physics

We will start by seeing how to move objects the correct physical way through forces, and we will apply
this concept to the movement of our player. Then, we will explore why real physics is not always fun
and how we can tweak the physics properties of our objects to have a more responsive and appealing
behavior.

Applying forces
The physically accurate way of moving an object is through forces, which affect the object’s velocity. To
apply force, we need to access Rigidbody instead of Transform and use the AddForce and AddTorque
functions to move and rotate, respectively. These are functions where you can specify the amount of
force to apply to each axis of position and rotation. This method of movement will have full physics
reactions; the forces will accumulate on the velocity to start moving and will suffer drag effects that
will make the speed slowly decrease, and the most important aspect here is that they will collide
against walls, blocking the object’s way.

To get this kind of movement, we can do the following:

1. Create a Rigidbody field in the PlayerMovement script, but this time, make it private—that is,
do not write the public keyword in the field, which will make it disappear in the editor; we
will get the reference another way:

Figure 7.22: The private Rigidbody reference field

You can instantiate an object when this happens, such as a sound, a particle, or maybe a
power-up. I will leave this as a challenge for you. By using a similar script, you can imple-
ment a life power-up that increases the life value or a speed power-up that accesses the
PlayerMovement script and increases the Speed field; from now on, use your imagination
to create exciting behaviors using the previously acquired knowledge.

Collisions and Health: Detecting Collisions Accurately198

2. Note that we named this variable rb just to prevent our scripts from being too wide, making
the screenshots of the code in the book too small. It’s recommended to name the variable
properly in your scripts—in this case, it would be named rigidbody.

3. Using GetComponent in the Start event function, get our Rigidbody and save it in the field.
We will use this field to cache the result of the GetComponent function; calling that function
every frame to access the Rigidbody is not performant. Also, note here that the GetComponent
function can be used to retrieve not only components from other objects (like the collision
example) but also your own:

Figure 7.23: Caching the Rigidbody reference for future usage

4. Replace the transform.Translate calls with rb.AddRelativeForce. This will call the add
force functions of the Rigidbody, specifically the relative ones, which will consider the current
rotation of the object. For example, if you specify a force in the z-axis (the third parameter),
the object will apply its force along with its forward vector.

5. Replace the transform.Rotate calls with rb.AddRelativeTorque, which will apply rotation
forces:

Figure 7.24: Using the Rigidbody forces API

6. Check that the player GameObject Capsule collider does not intersect with the floor and is
just a little bit over it. If the player intersects, the movement won’t work properly. If this is the
case, move it upward.

Chapter 7 199

If you have used Unity before, you might find it odd to use Update instead of FixedUpdate to apply
physics forces. FixedUpdate is a special update that runs at a fixed rate, regardless of the actual game’s
Frames per Second (FPS), and here is where the Physics system executes. It is configured by default
to run 50 times per frame. This means that if the game runs at 200 FPS, the FixedUpdate will execute
every 4 frames, but if the game runs at 25 FPS, the fixed update will execute twice per frame. This is
done this way to enhance the stability of the physics calculations, given their complexity.

While it would be correct to call any Rigidbody method that applies forces and torque in the FixedUp-
date, it is not necessarily wrong to do that in the Update method. For simplicity, we kept our code in the
Update method, given that FixedUpdate can be tricky to use for beginners, as it can execute more than
once per frame or even skip some frames. One example is checking if a key is pressed using methods
like Input.GetKeyDown, given the key pressure happens in specific frames. If you call that method in
the FixedUpdate and FixedUpdate skips the frame where the key was pressed, the key pressure won’t
be detected, making the game feel unresponsive. A classic fix would be to detect key presses in the
Update method and store them if they were pressed in boolean variables to check them later in the
FixedUpdate. But again, due to simplicity, we decided to leave it as is.

In the Visual Scripting version, the change is the same: replace the Transform and Rotate nodes with
the Add Relative Force and Add Relative Torque nodes, respectively. An example of Add Relative
Force would be the following one:

Figure 7.25: Using the Rigidbody Forces API

Collisions and Health: Detecting Collisions Accurately200

And for rotation like this:

Figure 7.26: Using the Rigidbody torque API

You can see that we don’t need to use the GetComponent nodes here either, given that just using the
Add Relative Force or Torque nodes makes Visual Scripting understand that we want to apply those
actions on our own Rigidbody component (explaining the use of the This label again). If, in any other
case, we needed to call those functions on a Rigidbody other than ours, we would need the GetCom-
ponent node there, but let’s explore that later.

Now, if you save and test the results, you will probably find the player falling, and that’s because now
we are using real physics, which contains floor friction, and due to the force being applied at the cen-
ter of gravity, it will make the object fall. Remember that, in terms of physics, you are a capsule; you
don’t have legs to move, and here is where standard physics is not suitable for our game. The solution
is to tweak physics to emulate the kind of behavior we need.

Tweaking physics
To make our player move like in a regular platformer game, we will need to freeze certain axes to
prevent an object from falling. Remove the friction to the ground and increase the air friction (drag)
to make the player reduce its speed automatically when releasing the keys.

Chapter 7 201

To do this, follow these steps:

1. In the Rigidbody component, look at the Constraints section at the bottom and check the X
and Z axes of the Freeze Rotation property:

Figure 7.27: Freezing the rotation axes

2. This will prevent the object from falling sideways but will allow it to rotate horizontally. You
might also freeze the y-axis of the Freeze Position property if you don’t want the player to jump,
preventing some undesired vertical movement on collisions.

3. You will probably need to change the speed values because you changed from a meters-per-sec-
ond value to newtons-per-second, the expected value of the Add Force and Add Torque func-
tions. Using 1,000 in speed and 160 in rotation speed was enough for me.

4. Now, you will probably notice that the speed will increase a lot over time, as will the rotation.
Remember that you are using forces, which affect your velocity. When you stop applying
forces, the velocity is preserved, and that’s why the player keeps rotating even if you are not
moving the mouse. The fix to this is to increase the Drag and Angular Drag, which emulates
air friction and will reduce the movement and rotation, respectively, when no force is applied.
Experiment with values that you find suitable; in my case, I used 2 for Drag and 10 for Angular
Drag, needing to increase Rotation Speed to 150 to compensate for the drag increase:

Figure 7.28: Setting air friction for rotation and movement

5. Now, if you move while touching the wall, instead of sliding, like in most games, your player
will stick to the obstacles due to contact friction. We can remove this by creating a Physics
Material, an asset that can be assigned to the colliders to control how they react in those
scenarios.

6. Start creating one by clicking on the + button in the Project window and selecting Physics
Material (not the 2D version). Call it Player, and remember to put it in a folder for those kinds
of assets.

Collisions and Health: Detecting Collisions Accurately202

7. Select it, and set Static Friction and Dynamic Friction to 0 and Friction Combine to Minimum,
which will make the Physics system pick the minimum friction of the two colliding objects,
which is always the minimum—in our case, zero:

Figure 7.29: Creating a physics material

8. Select the player, and drag this asset to the Material property of the Capsule Collider:

Figure 7.30: Setting the physics material of the player

9. If you play the game now, you may notice that the player will move faster than before because
we don’t have any kind of friction on the floor, so you may need to reduce the movement force.

As you can see, we needed to bend the physics rules to allow a responsive player movement. You can
get more responsiveness by increasing drags and forces so that speeds are applied faster and reduced
faster, but that depends, again, on the experience you want your game to have.

Some games want an immediate response with no velocity interpolation, going from 0 to
full speed and vice versa, from one frame to the other. In these cases, you can override the
velocity and rotation vectors of the player directly at your will or even use other systems
instead of physics, such as the Character Controller component, which has special physics
for platform characters. You can read more about it here: https://docs.unity3d.com/
Manual/CharacterControllers.html.

https://docs.unity3d.com/Manual/CharacterControllers.html
https://docs.unity3d.com/Manual/CharacterControllers.html

Chapter 7 203

Summary
Every game has physics, in some way or another, for movement, collision detection, or both. In this
chapter, we learned how to use the physics system for both being aware of proper settings to make the
system work properly, reacting to collisions to generate gameplay systems, and moving the player in
such a way that it collides with obstacles, keeping its physically inaccurate movement. We used these
concepts to create our player and bullet movement and make our bullets damage the enemies, but
we can reuse this knowledge to create a myriad of other possible gameplay requirements, so I suggest
you play around a little bit with the physics concepts seen here; you can discover a lot of interesting
use cases.

In the next chapter, we will discuss how to program the visual aspects of the game, such as effects,
and make the UI react to the input.

Learn more on Discord
Read this book alongside other users, Unity game development experts, and the author himself. Ask
questions, provide solutions to other readers, chat with the author via Ask Me Anything sessions, and
much more. Scan the QR code or visit the link to join the community:

https://packt.link/unitydev

https://packt.link/unitydev

8
Victory or Defeat: Win and Lose
Conditions

Now that we have a basic gameplay experience, it’s time to make the game end with the outcomes of
winning or losing. One common way to implement this is through separated components with the
responsibility of overseeing a set of objects to detect certain situations that need to happen, such as
the player’s life becoming 0 or all of the waves being cleared. We will implement this through the
concept of managers, components that will manage and monitor several objects.

In this chapter, we will examine the following manager concepts:

• Creating object managers
• Creating game modes
• Improving our code with events

With this knowledge, you will be able to not only create the victory and loss conditions of the game but
also do this in a properly structured way using design patterns such as Singleton and Event Listeners.
These skills are not only useful for creating the winning and losing code of the game but any code
in general. First, let’s begin by creating managers to represent concepts such as score or game rules.

Creating object managers
Not every object in your Scene should be something that can be seen, heard, or collided with. Some
objects can also exist with a conceptual meaning, not something tangible. For example, imagine you
need to keep a count of the number of enemie s: where do you save that? You also need some place to
save the current score of the player, and you may be thinking it could be on the player itself, but what
happens if the player dies and respawns?

The data would be lost! In such scenarios, the concept of a manager can be a useful way of solving
this in our first games, so let’s explore it.

Victory or Defeat: Win and Lose Conditions206

In this section, we are going to see the following object manager concepts:

• Sharing variables with the Singleton design pattern
• Sharing variables in Visual Scripting
• Creating managers

We will start by discussing what the Singleton design pattern is and how it helps us simplify the com-
munication of objects. With it, we will create manager objects that allow us to centralize information
about a group of objects, among other things. Let’s start by discussing the Singleton design pattern.

Sharing variables with the Singleton design pattern
Design patterns are usually described as common solutions to common problems. There are several
coding design decisions you will have to make while you code your game, but luckily, the ways to tackle
the most common situations are well known and documented. In this section, we are going to discuss
one of the most common design patterns, Singleton, a convenient one to implement in simple projects.

The Singleton pattern is used when we need a single instance of an object, meaning that there shouldn’t
be more than one instance of a class and that we want it to be easily accessible (not necessary, but
useful in our scenario). We have plenty of cases in our game where this can be applied, for example,
ScoreManager, a component that will hold the current score. In this case, we will never have more
than one score, so we can take advantage of the benefits of the Singleton manager here.

One benefit is being sure that we won’t have duplicated scores, which makes our code less error-prone.
Also, so far, we have needed to create public references and drag objects via the editor to connect two
objects, or look for them using GetComponent; with this pattern, however, we will have global access
to our Singleton component, meaning you can just write the name of the component in your script
and you will access it. In the end, there’s just one ScoreManager component, so specifying one via the
editor is redundant. This is similar to Time.deltaTime, the class responsible for managing time—we
have just one time.

If you are an advanced programmer, you may be thinking about code testing and dependency injec-
tion now, and you are right, but remember, we are trying to write simple code so far, so we will stick
to this simple solution.

Let’s create a Score Manager object, responsible for handling the score, to show an example of a
Singleton by doing the following:

1. Create an empty GameObject (GameObject | Create Empty) and call it ScoreManager; usually,
managers are put in empty objects, separated from the rest of the Scene’s objects.

2. Add a script called ScoreManager to this object with an int field called amount that will hold
the current score.

3. Add a field of the ScoreManager type called instance, but add the static keyword to it; this
will make the variable global, meaning it can be accessed anywhere by just writing its name:

Chapter 8 207

Figure 8.1: A static field that can be accessed anywhere in the code

4. In Awake, check whether the instance field is not null, and in that case, set this ScoreManager
instance as the instance reference using the this reference.

5. In the else clause of the null checking if statement, print a message indicating that there’s
a second ScoreManager instance that must be destroyed:

Figure 8.2: Checking whether there’s only one Singleton instance

The idea is to save the reference to the only ScoreManager instance in the instance static
field, but if by mistake the user creates two objects with the ScoreManager component, this
if statement will detect it and inform the user of the error, asking them to take action. In this
scenario, the first ScoreManager instance to execute Awake will find that there’s no instance
set (the field is null) so it will set itself as the current instance, while the second ScoreManager
instance will find the instance is already set and will print the message.

Remember that instance is a static field, shared between all classes, unlike regular refer-
ence fields, where each component will have its own reference, so in this case, we have two
ScoreManager instances added to the scene, and they will share the same instance field.

To improve the example a little bit, it would be ideal to have a simple way to find the second
ScoreManager in the game. It will be hidden somewhere in the Hierarchy and it may be difficult
to find, but we fix this by doing the following:

Victory or Defeat: Win and Lose Conditions208

6. Replace print with Debug.Log. Debug.Log is similar to print but has a second argument that
expects an object to be highlighted when the message is clicked in the console. In this case,
we will pass the gameObject reference to allow the console to highlight the duplicated object:

Figure 8.3: Printing messages in the console with Debug.Log

After clicking the log message, the GameObject containing the duplicated ScoreManager will
be highlighted in the Hierarchy:

Figure 8.4: The highlighted object after clicking the message

7. Finally, a little improvement can be made here by replacing Debug.Log with Debug.LogError,
which will also print the message but with an error icon. In a real game, you will have lots of
messages in the console, and highlighting the errors over the information messages will help
us to identify them quickly:

Figure 8.5: Using LogError to print an error message

8. Try the code and observe the error message in the console:

Figure 8.6: An error message in the console

The next step would be to use this Singleton object somewhere, so in this case, we will make
the enemies give points when they are killed by doing the following:

9. Add a script to the Enemy Prefab called ScoreOnDeath with an int field called amount, which
will indicate the number of points the enemy will give when killed. Remember to set the value
to something other than 0 in the editor for the Prefab.

Chapter 8 209

10. Create the OnDestroy event function, which will be automatically called by Unity when this
object is destroyed – in our case, the enemy:

Figure 8.7: The OnDestroy event function

Consider that the OnDestroy function is also called when we change scenes or the game is
quitting, so in this scenario, we might get points when changing scenes, which is not correct. So
far, this is not a problem in our case, but later in this chapter, we will see a way to prevent this.

11. Access the Singleton reference in the OnDestroy function by writing ScoreManager.instance,
and add the amount field of our script to the amount field of the Singleton to increase the score
when an enemy is killed:

Figure 8.8: Full ScoreOnDeath component class contents

12. Select ScoreManager in the Hierarchy, hit Play, and kill some enemies to see the score rise with
every kill. Remember to set the amount field of the ScoreOnDeath component of the Prefab.

As you can see, the Singleton pattern has simplified the way we access ScoreManager and have se-
curity measures to prevent duplicates of itself a lot, which will help us to reduce errors in our code.
Something to take into account is that now you will be tempted to just make everything a Singleton,
such as the player’s life or player’s bullets, and just to make your life easier when creating gameplay
mechanics such as power-ups.

While that will totally work, remember that your game will change, and I mean change a lot; any real
project will experience constant change. Maybe today, the game has just one player, but in the future,
you may want to add a second player or an AI companion, and you’ll want the power-ups to affect
them too. If you abuse the Singleton pattern, you will have trouble handling those scenarios and many
more. Maybe a future player companion will try to get the health pickup but the main player will be
healed instead!

Victory or Defeat: Win and Lose Conditions210

The point here is to try to use the pattern as few times as you can, in case you don’t have any other
way to solve the problem. To be honest, there are always ways to solve problems without Singleton,
but they are a little bit more difficult to implement for beginners, so I prefer to simplify your life a
little bit to keep you motivated. With enough practice, you will reach a point where you will be ready
to improve your coding standards.

Now, let’s discuss how to achieve this in Visual Scripting, which deserves its own section given that it
will be a little bit different. You may consider skipping the following section if you are not interested
in the Visual Scripting side of these scripts.

Sharing variables with Visual Scripting
Visual Scripting has a mechanism that replaces Singleton as a holder of variables to be shared between
objects: scene variables. If you check the left panel in the Script Graph editor (the window where
we edit the nodes of a script) under the Blackboard panel (the panel that shows the variables of our
object), you will notice it will have many tabs: Graph, Object, Scene, App, and Saved. If you don’t see
the Blackboard panel, click the third button from left to right in the top-left part of the window – the
button at the right of the i (information) button:

Figure 8.9: Blackboard (variables) editor in Script Graph

So far, when we created a variable in the Variables component of any object, we were actually creating
Object Variables: variables that belong to an object and are shared between all Visual Scripts in that
object, but that’s not the only scope a variable can have. Here’s a list of the remaining scopes:

• Graph: Variables that can only be accessed by our current graph. No other script can read or
write that variable. This is useful to save internal state, like private variables in C#.

There are lots of design patterns out there to help you design your game. Once you get
comfortable with Unity scripting, we recommend reading the following Unity official
game programming patterns book: https://resources.unity.com/games/level-up-
your-code-with-game-programming-patterns. This book also includes an advanced
implementation of Singleton.

https://resources.unity.com/games/level-up-your-code-with-game-programming-patterns
https://resources.unity.com/games/level-up-your-code-with-game-programming-patterns

Chapter 8 211

• Scene: Variables that can be accessed by all objects in the current scene. When we change the
scene, those variables are lost.

• App: Variables that can be accessed in any part of the game at any time. This is useful to move
values from one scene to another. For example, you can increase the score in one level and
keep increasing it in the next, instead of restarting the score from 0.

• Saved: Variables whose values are kept between game runs. You can save persistent data such
as the Player Level or Inventory to continue the quest, or simpler things such as the sound
volume as set by the user in the Options menu (if you created one).

In this case, the Scene scope is the one we want, as the score we intend to increase will be accessed
by several objects in the scene (more on that later) and we don’t want it to persist if we reset the level
to play again; it will need to be set again to 0 in each run of the level and game.

To create scene variables, you can simply select the Scene tab in the Blackboard pane of the Script
Graph editor while you are editing any script graph, or you can also use the Scene Variables Game-
Object that was created automatically when you started editing any graph. That object is the one
that really holds the variables and must not be deleted. You will notice that it will have a Variables
component as we have used before, but it will also have the Scene Variables component, indicating
those variables are scene variables.

In the following screenshot, you can see how we have simply added the score variable to the Scene
Variables tab to make it accessible in any of our script graphs.

Figure 8.10: Adding scene variables to our game

Finally, for the score-increasing behavior, we can add the following graph to our enemy. Remember,
as usual, to have the C# or the Visual Scripting version of the scripts, not both.

Victory or Defeat: Win and Lose Conditions212

Figure 8.11: Adding score when this object is destroyed

At first, this script seems pretty similar to our C# version; we add the scoreToAdd variable of our
object (Object scope) and then we add it to the whole scene’s score variable, as specified in the node.
The main difference you can see is that here we are using the On Disable event instead of OnDestroy�
Actually, OnDestroy is the correct one, but in the current version of Visual Scripting, there is a bug
that prevents it from working properly, so I replaced it for now. The problem with On Disable is that it
executes whenever the object is disabled, and while the object is disabled before it is destroyed, it can
also be disabled in other circumstances (for example, using Object Pooling, a way to recycle objects
instead of destroying and instancing them constantly), but so far it is enough for us. Please consider
trying with OnDestroy first when you try this graph to see if it runs properly in your Unity or Visual
Scripting package version.

Something to highlight is the usage of the Has Variable node to check if the score variable exists. This
is done because OnDisable can be executed either at the moment the enemy is destroyed or when the
scene changes, which we will do later in this chapter with the lose/win screen. If we try to get a Scene
variable at that moment, we risk getting an error if the Scene Variables object is destroyed before
the GameMode object, given the change of Scene involves destroying every object in the Scene first.

As you may have noticed by now, even though Visual Scripting is mostly extremely similar to C#, one
has concepts to solve certain scenarios that the other doesn’t. Now that we know how to share variables,
let’s finish some other managers that we will need later in the game.

Chapter 8 213

Creating managers
Sometimes, we need a place to put together information about a group of similar objects, for example,
EnemyManager, to check the number of enemies and potentially access an array of them to iterate over
them and do any extra gameplay implementation we want, for instance making our MissionManager,
to have access to all of the active missions in our game. Again, these cases can be considered Single-
tons, single objects that won’t be repeated (in our current game design), so let’s create the ones we
will need in our game, that is, EnemyManager and WaveManager.

In our game, EnemyManager and WaveManager will just be used as places to save an array of references
to the existing enemies and waves in our game, just as a way to know their current amount. There are
ways to search all objects of a certain type to calculate their count, but those functions are expensive
and not recommended for use unless you really know what you are doing. So, having a manager
implemented as a Singleton, with a separate updated list of references to the target object type will
require more code but will perform better. Also, as the game features increase, these managers will
have more functionality and helper functions to interact with those objects.

Let’s start with the enemies manager by doing the following:

1. Add a script called Enemy to the Enemy Prefab; this will be the script that will connect this
object with EnemyManager in a moment.

2. Create an empty GameObject called EnemyManager and add a script to it called EnemiesManager.
3. Create a public static field of the EnemiesManager type called instance inside the script and

add the Singleton repetition check in Awake as we did in ScoreManager.
4. Create a public field of the List<Enemy> type called enemies:

Figure 8.12: List of Enemy components

A list in C# represents a dynamic array, an array capable of adding and removing objects. You
will see that you can add and remove elements to and from this list in the editor, but keep
the list empty; we will add enemies another way. Take into account that List is in the System.
Collections.Generic namespace; you will find the using sentence at the beginning of our
script. Also, consider that you can make the list private and expose it to the code via a getter
instead of making it a public field; but as usual, we will make our code as simple as possible
for now:

Figure 8.13: Using needed to use the List class, inside System.Collections.Generic

Victory or Defeat: Win and Lose Conditions214

Consider that List is a class type, so it must be instantiated, but as this type has exposing
support in the editor, Unity will automatically instantiate it. You must use the new keyword to
instantiate it in cases where you want a non-editor-exposed list, such as a private one or a list
in a regular non-component C# class.

The C# list internally is implemented as an array. If you need a linked list, use the LinkedList
collection type instead.

5. In the Start function of the Enemy script, access the EnemyManager Singleton and, using the
Add function of the enemies list, add this object to the list. This will “register” this enemy as
active in the manager, so other objects can access the manager and check for the current en-
emies. The Start function is called after all of the Awake function calls, and this is important
because we need to be sure that the Awake function of the manager is executed prior to the
Start function of the enemy to ensure that there is a manager set as the instance.

The problem we solved with the Start function is called a race condition, that is, when two
pieces of code are not guaranteed to be executed in the same order, whereas the Awake execu-
tion order can change due to different reasons. There are plenty of situations in code where
this will happen, so pay attention to the possible race conditions in your code. Also, you might
consider using more advanced solutions such as lazy initialization here, which can give you
better stability, but again, for the sake of simplicity and exploring the Unity API, we will use
the Start function approach for now.

6. In the OnDestroy function, remove the enemy from the list to keep the list updated with just
the active ones:

Figure 8.14: The enemy script to register ourselves as an active enemy

Chapter 8 215

With this, now we have a centralized place to access all of the active enemies in a simple but efficient
way. I challenge you to do the same with the waves, using WaveManager, which will have the collection
of all active waves to later check whether all waves finished their work to consider the game as won.

Take some time to solve this; you will find the solution in the following screenshots, starting with
WavesManager:

Figure 8.15: The full WavesManager script

Victory or Defeat: Win and Lose Conditions216

You will also need the WaveSpawner script:

Figure 8.16: The modified WaveSpawner script to support WavesManager

As you can see, WavesManager is created the same way EnemyManager was – just a Singleton with a list
of WaveSpawner references, but WaveSpawner is different. We execute the Add function of the list in
the Start event of WaveSpawner to register the wave as an active one, but the Remove function needs
more work.

Chapter 8 217

The idea is to deregister the wave from the active waves list when the spawner finishes its work. Before
this modification, we used Invoke to call the CancelInvoke function after a while to stop the spawning,
but now we need to do more after the end time.

Instead of calling CancelInvoke after the specified wave end time, we will call a custom function
called EndSpawner, which will call CancelInvoke to stop the spawner, Invoke Repeating, but also will
call the remove-from-WavesManager-list function to make sure the removing-from-the-list function is
called exactly when WaveSpawner finishes its work.

Regarding the Visual Scripting version, we can add two lists of the GameObject type to the Scene
variables to hold the references to the existing waves and enemies so we can keep track of them. Just
search List of GameObject in the search bar of the variable type selector and you will find it. In this
case, the lists contain only GameObjects given that the Visual Scripting versions of WaveSpawner and
enemy scripts are not types we can reference like C# ones. If you did both C# and Visual Scripting
versions of these, you will see you can reference the C# versions, but we are not going to mix C# and
Visual Scripting as it is out of the scope of the book, so ignore them. Anyway, given how the Variables
system of Visual Scripting works, we can still access variables inside if needed using the GetVariable
node—remember the variables are not in the Visual Scripts but in the Variables node:

Figure 8.17: Adding lists to the Scene variables

Victory or Defeat: Win and Lose Conditions218

Then, we can add the following to the WaveSpawner graph:

Figure 8.18: Adding elements to List

We used the Add List Item node to add our GameObject to the waves variable. We did this as the first
thing to do in the On Start event node before anything. And to remove that wave from the active ones,
you will need to make the following change:

Figure 8.19: Removing elements from List

We remove this spawner from the list using the Exit flow output pin of For Loop, which is executed
when the for loop finishes iterating.

Chapter 8 219

Finally, regarding Enemy, you will need to create a new Enemy Script graph, which will look similar:

Figure 8.20: Enemy adding and removing itself from the lists

As you can see, we simply add the enemy on On Start and remove it in OnDisable. Remember to first
try using OnDestroy instead of OnDisable due to the bug we mentioned previously. You can check these
changes by playing the game while having the Scene Variables GameObject selected and seeing how its
value changes. Also, remember the need to use the Has Variable node in case we are changing scenes.

Victory or Defeat: Win and Lose Conditions220

Using object managers, we now have centralized information about a group of objects, and we can add
all sorts of object group logic here. We created the EnemiesManager, WavesManager, and ScoreManager
as centralized places to store several game systems’ information, such as the enemies and waves
present in the scene, and the score as well. We also saw the Visual Scripting version, centralizing that
data in the Scene Variables object, so all Visual Scripts can read that data. But aside from having this
information for updating the UI (which we will do in the next chapter), we can use this information
to detect whether the victory and loss conditions of our game are met, creating a Game Mode object
to detect that.

Creating Game Modes
We have created objects to simulate lots of gameplay aspects of our game, but the game needs to end
sometime, whether we win or lose. As always, the question is where to put this logic, and that leads us
to further questions. The main questions would be, will we always win or lose the game the same way?
Will we have a special level with different criteria than “kill all of the waves,” such as timed survival?
Only you know the answer to those questions, but if right now the answer is no, it doesn’t mean that
it won’t change later, so it is advisable to prepare our code to adapt seamlessly to changes.

To do this, we will separate the victory and loss conditions’ logic in its own object, which I like to call
the “GameMode” (not necessarily an industry standard). This will be a component that will oversee
the game, checking conditions that need to be met in order to consider the game over. It will be like
the referee of our game. The Game Mode will constantly check the information in the object man-
agers, and maybe other sources of information, to detect the needed conditions. Having this object
separated from other objects allows us to create different levels with different Game Modes; just use
another Game Mode script in that level and that’s all.

In our case, we will have a single Game Mode for now, which will check whether the number of waves
and enemies becomes 0, meaning that we have killed all of the possible enemies and the game is won.
Also, it will check whether the life of the player reaches 0, considering the game lost in that situation.
Let’s create it by doing the following:

1. Create an empty GameMode object and add a WavesGameMode script to it. As you can see, we gave
the script a descriptive name considering that we can add other Game Modes.

2. In its Update function, check whether the number of enemies and waves has reached 0 by
using the Enemy and Wave managers; in that case, just print a message in the console for now.
All lists have a Count property, which will tell you the number of elements stored inside.

To be honest, preparing code to adapt seamlessly to changes is almost impossible; there’s
no way to have code that considers every possible case, and we will always need to rewrite
some code sooner or later. We will try to make the code as generic as possible to adapt to
changes, but we need to find a balance between necessary and unnecessary adaptability.
Creating generic code tends to generate complex codebases and takes more time, and
while a certain degree of complexity is certainly necessary, many times, I have seen pro-
grammers go beyond what’s needed, taking a huge amount of time to solve simple cases,
creating tools that ended up being under-utilized.

Chapter 8 221

3. Add a public field of the Life type called PlayerLife and drag the player to that one; the idea
is to also detect the loss condition here.

4. In Update, add another check to detect whether the life amount of the playerLife reference
reached 0, and in that case, print a lose message in the console:

Figure 8.21: Win and lose condition checks in WavesGameMode

5. Play the game and test both cases – whether the player’s life reaches 0 or whether you have
killed all enemies and waves.

Now, it is time to replace the messages with something more interesting. For now, we will just
change the current scene to a Win Scene or Lose Scene, which will only have a UI with a win
or lose message and a button to play again. In the future, you could add a Main Menu Scene
and have an option to get back to it. Let’s implement this by doing the following:

6. Create a new scene (File | New Scene) and save it, calling it WinScreen.
7. Add something to indicate that this is the win screen, such as simply a sphere with the camera

pointing to it. This way, we know when we change to the win screen.
8. Select the scene in the Project view and press Ctrl + D (Cmd + D on Mac) to duplicate the scene.

Rename it LoseScreen.
9. Double-click the LoseScreen scene to open it and change the sphere to something different,

maybe a cube.
10. Go to File | Build Settings to open the Scenes In Build list inside this window.

Victory or Defeat: Win and Lose Conditions222

The idea is that Unity needs you to explicitly declare all Scenes that must be included in the game. You
might have test Scenes or Scenes that you don’t want to release yet, so that’s why we need to do this. In
our case, our game will have WinScreen, LoseScreen, and the Scene we have created so far with the
game scenario, which I called Game, so just drag those Scenes from the Project view to the list of the
Build Settings window; we will need this to make the Game Mode script change between Scenes prop-
erly. Also, consider that the first Scene in this list will be the first Scene to be opened when we play the
game in its final version (known as the build), so you may want to rearrange the list according to that:

Figure 8.22: Registering the Scenes to be included in the build of the game

• In WavesGameMode, add a using statement for the UnityEngine.SceneManagement namespace
to enable the scene-changing functions in this script.

• Replace the console print messages with calls to the SceneManager.LoadScene function, which
will receive a string with the name of the Scene to load; in this case, it would be WinScreen and
LoseScreen. You just need the Scene name, not the entire path to the file.

If you want to chain different levels, you can create a public string field to allow you to specify
via editor which Scenes to load. Remember to have the Scenes added to Build Settings. If you
don’t, you will receive an error message in the console when you try to change the Scenes:

Chapter 8 223

Figure 8.23: Changing Scenes with SceneManager

• Play the game and check whether the Scenes change properly.

Right now, we picked the simplest way to show whether we lost or won, but in the future, you may
want something gentler than a sudden change of Scene, such as maybe waiting a few moments with
Invoke to delay that change or directly show the winning message inside the game without changing
Scenes. Bear this in mind when testing the game with people and checking whether they understood
what happened when they were playing—game feedback is important to keep the player aware of what
is happening and is not an easy task to tackle.

Victory or Defeat: Win and Lose Conditions224

Regarding the Visual Scripting version, we added a new script graph to a separate object. Let’s examine
it piece by piece to see it clearly. Let’s start with the win condition:

Figure 8.24: Win condition in Visual Scripting

Here, we are getting the enemies list from the scene context (Get Variable node), and knowing that
it contains a List, we are using the Count Items node to check how many enemies remain in this list.
Remember we have a script that adds the enemy to the list when it’s spawned and removes it when it
is destroyed. We do the same for the waves, so combine the conditions with an And node and connect
it with an If to then do something (more on that in a moment).

Chapter 8 225

Now let’s examine the lose condition:

Figure 8.25: Lose condition in Visual Scripting

As the player’s life is not in the Scene context (and shouldn’t be), and the player is a different GameO-
bject from the one called GameMode (the one we created specifically for this script), we need a variable
of type Game Object called Player to reference it.

As you can see, we dragged our player to it in the Variables component. Finally, we used GetVariable
to access our player reference in the graph, and then another GetVariable to extract the life from it.
We accomplished that by connecting the player reference to the GetVariable node of the life variable.
Then we repeated this for the player’s base.

Victory or Defeat: Win and Lose Conditions226

Finally, we load the scenes by doing the following:

Figure 8.26: Loading scenes in Visual Scripting

As you can see, we use the Scene Manager Load Scene (SceneName) node to load the Scenes. Notice
how we load both Scenes we created before (WinScene and LoseScene). Remember that these two
Scenes need to be added to the Scenes In Build section inside Build Settings as we did before, in order
to be available to be loaded by the Scene Manager here.

Now we have a fully functional simple game, with mechanics and win and lose conditions, and while
this is enough to start developing other aspects of our game, I want to discuss some issues with our
current manager approach and how to solve them with events.

Chapter 8 227

Improving our code with events
So far, we have used Unity event functions to detect situations that can happen in the game such as
Awake and Update. There are other similar functions that Unity uses to allow components to communi-
cate with each other, as in the case of OnTriggerEnter, which is a way for the Rigidbody component to
inform other components in the GameObject that a collision has happened. In our case, we are using
if statements inside the Update method to detect changes on other components, such as GameMode
checking whether the number of enemies has reached 0. But we can improve this if we are informed
by the Enemy manager when something has changed, and just do the check at that moment, such
as with the Rigidbody component telling us when collisions occur instead of checking for collisions
every frame.

Also, sometimes, we rely on Unity events to execute logic, such as the score being given in the OnDestroy
event, which informs us when the object is destroyed, but due to the nature of the event, it can be
called in situations we don’t want to add to the score, such as when the Scene is changed, or the game
is closed. Objects are destroyed in those cases, but not because the player killed the enemy, leading
to the score increasing when it shouldn’t. In this case, it would be great to have an event that tells us
that life reached 0 to execute this logic, instead of relying on the general-purpose OnDestroy event.

The idea of events is to improve the model of communication between our objects, with the assurance
that at the exact moment something happens, the relevant parts in that situation are notified to react
accordingly. Unity has lots of events, but we can create ones specific to our gameplay logic. Let’s start by
applying this in the score scenario we discussed earlier; the idea is to make the Life component have
an event to communicate to the other components that the object was destroyed because life reached 0.

There are several ways to implement this, and we will use a little bit of a different approach than
the Awake and Update methods; we will use the UnityEvent field type. This is a field type capable
of holding references to functions to be executed when we want to, like C# delegates, but with other
benefits, such as better Unity editor integration.

To implement this, do the following:

1. In the Life component, create a public field of the UnityEvent type called onDeath. This
field will represent an event where other classes can subscribe to it to be made aware when
Life reaches 0:

Figure 8.27: Creating a custom event field

Victory or Defeat: Win and Lose Conditions228

2. If you save the script and go to the editor, you can see the event in the Inspector. Unity events
support being subscribed to methods in the editor so we can connect two objects together. We
will use this in the UI scripting chapter, so let’s just ignore this for now:

Figure 8.28: UnityEvents showing up in the Inspector

You can use the generic delegate action or a custom delegate to create events instead of using
UnityEvent, and aside from certain performance aspects, the only noticeable difference is
that UnityEvent will show up in the editor, as demonstrated in step 2.

3. When life reaches 0, call the Invoke function of the event. This way, we will be telling any
script interested in the event that it has happened:

Figure 8.29: Executing the event

Chapter 8 229

4. In ScoreOnDeath, rename the OnDestroy function to GivePoints or whatever name you prefer;
the idea here is to stop giving points in the OnDestroy event.

5. In the Awake function of the ScoreOnDeath script, get the Life component using GetComponent
and save it in a local variable.

6. Call the AddListener function of the onDeath field of the Life reference and pass the GivePoints
function as the first argument. This is known as subscribing our listener method, GivePoints,
to the onDeath event. The idea is to tell Life to execute GivePoints when the onDeath event
is invoked. This way, Life informs us about that situation. Remember that you don’t need to
call GivePoints, but just pass the function as a field:

Figure 8.30: Subscribing to the OnDeath event to give points in that scenario

Consider calling RemoveListener in OnDestroy; as usual, it is convenient to unsubscribe lis-
teners when possible to prevent any memory leak (when a reference is preventing the GC from
deallocating memory). In this scenario, it is not entirely necessary because both the Life and
ScoreOnDeath components will be destroyed at the same time, but try to get used to this as a
good practice.

7. Save, select ScoreManager in the editor, and hit Play to test this. Try deleting an enemy from
the Hierarchy while in Play mode to check that the score doesn’t rise because the enemy was
destroyed for a reason other than their life becoming 0; you must destroy an enemy by shooting
at them to see the score increase.

Now that Life has an onDeath event, we can also replace the player’s Life check from the
WavesGameMode to use the event by doing the following:

8. Create an OnPlayerDied function on the WavesGameMode script and move the loading of the
LoseScreen scene from Update to this function. You will be removing the if that checks the
life from the Update method, given that the event version will replace it.

Victory or Defeat: Win and Lose Conditions230

9. In Awake, add this new function to the onDeath event of the player’s Life component reference,
called playerLife in our script:

Figure 8.31: Checking the lose condition with events

As you can see, creating custom events allows you to detect more specific situations other than the
defaults in Unity, and keeps your code clean, without needing to constantly check several conditions
in the Update function, which is not necessarily bad, but the event approach generates clearer code.

Remember that we can also lose our game by the player’s base Life reaching 0, so let’s create a cube
that represents the object that enemies will attack to reduce the base Life. Taking this into account,
I challenge you to add this second lose condition (player’s base life reaching 0) to our script. When
you finish, you can check the solution in the following screenshot:

Figure 8.32: Complete WavesGameMode lose condition

Chapter 8 231

As you can see, we just repeat the life event subscription, remember to create an object to represent
the player’s base damage point, add a Life script to it, and drag that one as the player base Life ref-
erence of the WavesGameMode. Something interesting here is that we subscribed the same function
called OnPlayerOrBaseDied to both player Life and base Life onDeath events, given that we want the
same result in both situations.

Now, let’s keep illustrating this concept by applying it to the managers to prevent the Game Mode from
checking conditions every frame:

1. Add a UnityEvent field to EnemyManager called onChanged. This event will be executed whenever
an enemy is added or removed from the list.

2. Create two functions, AddEnemy and RemoveEnemy, both receiving a parameter of the Enemy type.
The idea is that instead of Enemy adding and removing itself from the list directly, it should
use these functions.

3. Inside these two functions, invoke the onChanged event to inform others that the enemies list
has been updated. The idea is that anyone who wants to add or remove enemies from the list
needs to use these functions:

Figure 8.33: Calling events when enemies are added or removed

Here, we have the problem that nothing stops us from bypassing those two functions and
using the list directly. You can solve that by making the list private and exposing it using the
IReadOnlyList interface. Remember that, this way, the list won’t be visible in the editor for
debugging purposes.

Victory or Defeat: Win and Lose Conditions232

4. Change the Enemy script to use these functions:

Figure 8.34: Making the Enemy use the add and remove functions

5. Repeat the same process for WaveManager and WaveSpawner, create an onChanged event, and
create the AddWave and RemoveWave functions and call them in WaveSpawner instead of direct-
ly accessing the list. This way, we are sure the event is called when necessary as we did with
EnemyManager.

Chapter 8 233

Try to solve this step by yourself and then check the solution in the following screenshot,
starting with WavesManager:

Figure 8.35: WavesManager OnChanged event implementation

Victory or Defeat: Win and Lose Conditions234

6. Also, WaveSpawner needed the following changes:

Figure 8.36: Implementing the AddWave and RemoveWave functions

7. In WavesGameMode, rename Update to CheckWinCondition and subscribe this function to the
onChanged event of EnemyManager and the onChanged event of WavesManager. The idea is to
check for the number of enemies and waves being changed only when necessary. Remember
to do the subscription to the events in the Start function due to the Singletons being initial-
ized in Awake:

Chapter 8 235

Figure 8.37: Checking the win condition when the enemies or waves amount is changed

Regarding the Visual Scripting version, let’s start checking the lose condition with events, first checking
some changes needed in the Life Script Graph:

Figure 8.38: Triggering a Custom Event in our Life script graph

Victory or Defeat: Win and Lose Conditions236

First, after destroying the object when life reaches 0, we use the Trigger Custom Event node, speci-
fying the name of our event is OnDeath. This will tell anyone waiting for the execution of the OnDeath
event that it has been executed. Remember, this is our Life Script Graph. Be sure to call destroy after
triggering the event—while most of the time the order doesn’t matter, given that the destroy action
doesn’t actually happen until the end of the frame, sometimes it can cause issues, so better be safe
here. In this case, Game Mode should listen to the player’s OnDeath event, so let’s make the following
change in our Game Mode Graph:

Figure 8.39: Listening to the OnDeath event of Player in Visual Scripting

We used the Custom Event node, connecting it to the player reference of our GameMode. This way, we
are specifying that if that player executes that event, we will execute the Load Scene node. Remember
that the player reference is crucial to specify from whom we want to execute the OnDeath event, and
remember that the Life Visual Graph will also be present in the enemies and we are not interested
in them here. Also, remember to remove the If node and the condition nodes we used previously to
detect this – the only If our Game Mode will have is the one for the win condition.

Essentially, we made any object with the Life script have an OnDeath event, and we made the Game-
Mode listen to the OnDeath event of the player specifically.

We could also create events for enemies and waves, but that would complicate our graphs somewhat,
given that we don’t have WaveManager or EnemyManager in the Visual Scripting versions. We could cer-
tainly create those to accomplish this, but sometimes the point of using Visual Scripting is to create
simple logic, and these kinds of changes tend to make a graph grow quite a bit.

Another possible solution is to make the enemy and wave directly inform the Game Mode. We could
use Trigger Custom Event in the enemies and waves, connecting that node to the Game Mode, to fi-
nally let the Game Mode have a Custom Event node from which to listen. The issue is that that would
violate the correct dependencies between our objects; lower-level objects such as enemies and waves
shouldn’t communicate with higher-level objects such as Game Mode.

Chapter 8 237

Essentially, Game Mode was supposed to be an overseer. If we apply the solution described in the
previous paragraph, we won’t be able to have an enemy in another scene or game without having a
Game Mode. So, for simplicity and code decoupling purposes, let’s keep the other conditions as they
are—more complex logic such as this would probably be handled in C# in full-production projects.

Yes, using events means that we have to write more code than before, and in terms of functionality, we
didn’t obtain anything new, but in bigger projects, managing conditions through Update checks will
lead to different kinds of problems, as previously discussed, such as race conditions and performance
issues. Having a scalable code base sometimes requires more code, and this is one of those cases.

Before we finish, something to consider is that Unity events are not the only way to create this kind of
event communication in Unity; you will find a similar approach called Action, the native C# version
of events, which I recommend you look into if you want to see all of the options out there.

Summary
In this chapter, we finished an important part of the game: the ending, both by victory and by defeat.
We discussed a simple but powerful way to separate the different layers of responsibilities by using
managers created through Singletons, to guarantee that there isn’t more than one instance of every
kind of manager and simplifying the connections between them through static access. Also, we visited
the concept of events to streamline communication between objects to prevent problems and create
more meaningful communication between objects.

With this knowledge, you are now able not only to detect the victory and loss conditions of the game
but you can also do it in a better-structured way. These patterns can be useful to improve our game
code in general, and I recommend you try to apply them in other relevant scenarios.

In the next chapter, we are going to start Section 3, Elevating Visuals, Effects, and Audio of the book,
where we are going to see different Unity systems to improve the graphics and audio aspects of our
game, starting by seeing how we can create materials to modify aspects of our objects and create
shaders with Shader Graph.

We explored some programming patterns in this chapter, but there are plenty. You can
learn more about them here: https://gameprogrammingpatterns.com/

https://gameprogrammingpatterns.com/

Victory or Defeat: Win and Lose Conditions238

Learn more on Discord
Read this book alongside other users, Unity game development experts, and the author himself. Ask
questions, provide solutions to other readers, chat with the author via Ask Me Anything sessions, and
much more. Scan the QR code or visit the link to join the community:

https://packt.link/unitydev

https://packt.link/unitydev

9
Starting Your AI Journey: Building
Intelligent Enemies for Your Game

What is a game if not a great challenge to the player, who needs to use their character’s abilities to
tackle different scenarios? Each game imposes different kinds of obstacles for the player, but in our
game, the primary challenge comes from the enemies. Imagine an enemy that can sense your pres-
ence and strategically plan its attack – this is what we aim to achieve through these AI techniques.
Creating challenging and believable enemies can be complex; they must behave like real characters,
smart enough to present challenges yet not so formidable as to be invincible. We are going to use ba-
sic but sufficient AI techniques to make an AI capable of sensing its surroundings and, based on that
information, making decisions on what to do, using Finite State Machines (FSMs), along with other
techniques. Those decisions will be executed using intelligent pathfinding.

In this chapter, we will examine the following AI concepts:

• Gathering information with sensors
• Making decisions with FSMs
• Executing FSM actions

These components are crucial in creating enemies that are not only reactive but also exhibit a sem-
blance of intelligence and strategy. By the end of the chapter, you will have a fully functional enemy
capable of detecting the player and attacking them, so let’s start by seeing first how to make the sensor
systems.

Gathering information with sensors
AI in games works in a three-step process: gathering information, analyzing it, and executing actions
based on such analysis. This is important as it reflects a simple version of how the human mind works,
making the resulting AI more realistic. As you can see, we cannot do anything without information,
so let’s start with that part.

Starting Your AI Journey: Building Intelligent Enemies for Your Game240

There are several sources of information our AI can use, such as data about itself (life and bullets) or
maybe some game state (winning condition or remaining enemies), which can easily be found with
the code we’ve seen so far. One important source of information, however, is sensors such as sight
and hearing. In our case, sight will be enough, so let’s learn how to code that.

In this section, we will examine the following sensor concepts:

• Creating three-filter sensors with C#
• Creating three-filter sensors with Visual Scripting
• Debugging with gizmos

Let’s start by seeing how to create a sensor with the three-filter approach.

Creating three-filter sensors with C#
The common way to code senses is through a three-filter approach to discard enemies out of sight.
Each filter will discard objects that fall outside our sensors. The first filter is a distance filter, which
will discard enemies too far away to be seen, then the second filter is the angle check, which will check
enemies inside our viewing cone, and finally, the third filter is a raycast check, which will discard
enemies that are being occluded by obstacles such as walls.

Before starting, a word of advice: we will be using vector mathematics here, and covering those topics
in-depth is outside the scope of this book. If you don’t understand something, feel free to just search
online for the code in the screenshots.

Let’s code sensors in the following way:

1. Create an empty GameObject called AI as a child of the Enemy Prefab. You need to first open
the Prefab to modify its children (double-click the Prefab). Remember to set the transform of
this GameObject to Position (0, 1�75, 0), Rotation (0, 0, 0), and Scale (1, 1, 1) so it will be aligned
with the enemy’s eyes. This is done this way for the future sight sensors we will do. Consider
your Enemy Prefab might have a different height for the eyes. While we can certainly just put
all AI scripts directly in the Enemy Prefab root GameObject, we did this just for separation
and organization:

Chapter 9 241

Figure 9.1: AI scripts container

2. Create a script called Sight and add it to the AI child GameObject.
3. Create two fields of the float type called distance and angle, and another two of the LayerMask

type called obstaclesLayers and objectsLayers. The distance field will be used as the vision
distance, angle will determine the amplitude of the view cone, obstacleLayers will be used by
our obstacle check to determine which objects are considered obstacles, and objectsLayers
will be used to determine what types of objects we want the Sight component to detect.

We just want the sight to see enemies; we are not interested in objects such as
walls or power-ups. LayerMask is a property type that allows us to select one or
more layers to use inside code, so we will be filtering objects by layer.

Starting Your AI Journey: Building Intelligent Enemies for Your Game242

Figure 9.2: Fields to parametrize our Sight check

4. In Update, call Physics.OverlapSphere, as in Figure 9.3.

This function creates an imaginary sphere in the place specified by the first parameter (in our case,
our position) and with a radius specified in the second parameter (the distance property) to detect
objects with the layers specified in the third parameter (ObjectsLayers). It will return an array with
all the colliders found inside the sphere; these functions use physics to carry out the check, so the
objects must have at least one collider.

This is the method we will be using to find all enemies inside our view distance, and we will be further
filtering them in the next steps. Note that we are passing our position to the first parameter, which is
not actually the position of the enemy but the position of the AI child object, given our script is located
there. This highlights the importance of the position of the AI object.

Another way of accomplishing the first check is to just check the distance from the objects we want to
see to the player, or if looking for other kinds of objects, to a Manager component containing a list of
them. However, the method we chose is more versatile and can be used for any kind of object.

Also, you might want to check the Physics.OverlapSphereNonAlloc version of this function, which
does the same but is more performant by not allocating an array to return the results.

1. Iterate over the array of objects returned by the function using a for loop:

Figure 9.3: Getting all GameObjects at a certain distance

Chapter 9 243

To detect whether the object falls inside the vision cone, we need to calculate the angle be-
tween our viewing direction and the direction from ourselves toward the object itself. If the
angle between those two directions is less than our cone angle, we consider that the object
falls inside our vision. We will do that in the following steps:

2. Start calculating the direction toward the object, which can be done by normalizing the differ-
ence between the object’s position and ours, as in Figure 9.4. You might notice we used bounds.
center instead of transform.position; this way, we check the direction to the center of the
object instead of its pivot. Remember that the player’s pivot is in the ground and the ray check
might collide against it before the player:

Figure 9.4: Calculating direction from our position toward the collider

3. We can use the Vector3.Angle function to calculate the angle between two directions. In our
case, we can calculate the angle between the direction toward the enemy and our forward
vector to see the angle:

Figure 9.5: Calculating the angle between two directions

If you want, you can instead use Vector3.Dot, which will execute a dot product – a mathematics
function to calculate the length of a vector projected to another (search online for more info).
Vector3.Angle actually uses that one but converts the result of the dot product into an angle,
which needs to use trigonometry, and that can be time-consuming to calculate. Our Vector3.
Angle approach is simpler and faster to code, and, given that we don’t require many sensors
because we won’t have many enemies, optimizing the sensor using dot products is not neces-
sary now, but do consider that for games with a larger scale.

4. Now check whether the calculated angle is less than the one specified in the angle field. Note
that if we set an angle of 90, it will actually be 180, because if the Vector3.Angle function
returns, as an example, 30, it could be 30 to the left or to the right. If our angle says 90, it could
be both 90 to the left and to the right, so it will detect objects in a 180-degree arc.

5. Use the Physics.Linecast function to create an imaginary line between the first and the second
parameter (our position and the collider position) to detect objects with the layers specified
in the third parameter (the obstacle layers) and return a Boolean indicating whether that ray
hit something or not.

Starting Your AI Journey: Building Intelligent Enemies for Your Game244

The idea is to use the line to detect whether there are any obstacles between ourselves and
the detected collider, and if there is no obstacle, this means that we have a direct line of sight
toward the object. Observe how we use the ! or not operator in Figure 9.6 to check that Physics.
Linecast didn’t detect any objects. Again, note that this function depends on the obstacle
objects having colliders, which, in our case, we have (walls, floor, and so on):

Figure 9.6: Using Linecast to check obstacles between the sensor and the target object

6. If the object passes the three checks, that means that this is the object we are currently see-
ing, so we can save it inside a field of the Collider type called detectedObject, to save that
information for later use by the rest of the AI scripts.

Consider using break to stop the for loop that is iterating the colliders to prevent wasting re-
sources by checking the other objects, and to set detectedObject to null before for to clear
the result from the previous frame. If, in this frame, we don’t detect anything, it will keep the
null value so we notice that there is nothing in the sensor:

Chapter 9 245

Figure 9.7: Full sensor script

In our case, we are using the sensor just to look for the player (the only object the sensor is in
charge of looking for), but if you want to make the sensor more advanced, you can just keep a
list of detected objects, placing inside it every object that passes the three tests instead of just
the first one. In our case, it’s not necessary as we have only one player in the game.

Starting Your AI Journey: Building Intelligent Enemies for Your Game246

7. In the editor, configure the sensor at your will. In this case, we will set Objects Layer to Player
so our sensor will focus its search on objects with that layer, and Obstacles Layer to Default,
the layer we used for walls and floors. Remember the Sight script is in the AI GameObject,
which is a child of the Enemy Prefab:

Figure 9.8: Sensor settings

8. To test this, just place an enemy with a movement speed of 0 in front of the player, select its
AI child object, and then play the game to see how the property is set in the Inspector. Also,
try putting an obstacle between the two and check that the property says None (null). If you
don’t get the expected result, double-check your script, its configuration, and whether the
player has the Player layer, and the obstacles have the Default layer. Also, you might need to
raise the AI object a little bit to prevent the ray from starting below the ground and hitting it.
Feel free to make further tests to really understand your code.

Now that we understand how the sensors work in C#, let’s see the Visual Scripting version.

Creating Three-Filters sensors with Visual Scripting
Regarding the Visual Scripting version, let’s check it part by part, starting with the Overlap Sphere:

Chapter 9 247

Figure 9.9: Overlap Sphere in Visual Scripting

So far, we just called Overlap Sphere after setting the sensedObject variable to null. The previous
image contains not only the variables we need so far but also the ones that we will use later, so remem-
ber to create all of them. Something to consider is how the sensedObject variable in the Variables
component in the Inspector might instead have a Null type in your case, which means no type in
Visual Scripting. This isn’t possible in C# – all variables must have a type – and while we could set the
sensedObject variable to the proper type (Collider), we will keep the variable type to be set later via
a script. Even if we set the type now, Visual Scripting tends to forget the type if no value is set, and we
cannot set it until we detect something.

Starting Your AI Journey: Building Intelligent Enemies for Your Game248

Don’t worry about that for the moment; when we set the variable through our script, it will acquire the
proper type. Actually, all variables in Visual Scripting can switch types at runtime according to what
we set them to, given how the Variables component works. I don’t recommend changing a variable’s
type in runtime, as it will give a different meaning to it. Try to stick with the intended variable type.

We just said that all variables in C# must have a type, but that’s not entirely true. There are ways to
create dynamically typed variables, but it’s not a good practice that I’d recommend using unless no
other option is present.

Another thing to observe is how we set the sensedObject variable to null at the beginning using the
Null node, which effectively represents the null value.

Now, let’s explore the Foreach part:

Figure 9.10: Iterating collections in Visual Scripting

We can see that one of the output pins of Overlap Sphere has a list icon, which essentially represents
the collider array returned by Overlap Sphere. We connect that pin to the For Each Loop node, which,
as you might imagine, iterates over the elements of the provided collection (array, list, dictionary, etc.).
The Body pin represents the nodes to execute in each iteration of the loop, and the Item output pin
represents the item currently being iterated – in our case, one of the colliders detected in Overlap
Sphere. Finally, we save that item in a Flow potentialDetection variable (Flow variables being the
equivalent to local variables in C# functions).

Chapter 9 249

To maintain clarity in our Visual Scripting graph and avoid clutter, we assign the currently iterated col-
lider to a Flow variable named potentialDetection. This approach eliminates the need for extensive
connections across the graph, simplifying the visual layout and subsequent referencing of this collider.

Now let’s explore the Angle check:

Figure 9.11: Angle check in Visual Scripting

Here, you can see a direct translation of what we did in C# to detect the angle, so it should be pretty
self-explanatory.

Starting Your AI Journey: Building Intelligent Enemies for Your Game250

Now, let’s explore the Linecast part:

Figure 9.12: Linecast check in Visual Scripting

Again, this is essentially the same as we did before in C#. The only thing to highlight here is the fact
we used the Flow variable potentialDetection to again get the position of the current item being
iterated, instead of connecting the Get Position node all the way to the For Each Item output pin.

Chapter 9 251

Now, let’s explore the final part:

Figure 9.13: Setting the sensedObject

Again, this is pretty much self-explanatory; if the Linecast returns False, we set the potentialDetection
variable (the currently iterated item) as the sensedObject variable (the one that will be accessed by
other scripts later to query which is the object our AI can see right now). Something to consider here
is the usage of the Break Loop node, which is equivalent to the C# break keyword; essentially, we are
stopping the Foreach loop we are currently in.

Now, even if we have our sensor working, sometimes, checking whether it’s working or configured
properly requires some visual aids that we can create using gizmos.

Debugging with gizmos
As we create our AI, we will start to detect certain errors in edge cases, usually related to misconfigu-
rations. You may think that the player falls within the sight range of the enemy, but maybe you cannot
see that the line of sight is occluded by an object, especially as the enemies move constantly. A good
way to debug those scenarios is through Editor-only visual aids known as gizmos, which allow you
to visualize invisible data such as the sight distance or the Linecasts executed to detect obstacles.

Let’s start seeing how to create gizmos drawing a sphere representing the sight distance by doing the
following:

1. In the Sight script, create an event function called OnDrawGizmos. This event is only executed
in the Editor (not in builds) and is the place to draw any gizmos in Unity.

Starting Your AI Journey: Building Intelligent Enemies for Your Game252

2. Use the Gizmos.DrawWireSphere function, passing our position as the first parameter and
the distance as the second parameter to draw a sphere in our position with the radius of our
distance. You can check how the size of the gizmo changes as you change the distance field:

Figure 9.14: Sphere gizmo

Chapter 9 253

3. Optionally, you can change the color of the gizmo, setting Gizmos.color before calling the
drawing functions:

Figure 9.15: Gizmos drawing code

Now you are drawing gizmos constantly, and if you have lots of enemies, they can pollute the
Scene view with too many gizmos. In that case, try the OnDrawGizmosSelected event function
instead, which draws gizmos only if the object is selected.

4. We can draw the lines representing the cone using Gizmos.DrawRay, which receives the origin
of the line to draw and the direction of the line, which can be multiplied by a certain value to
specify the length of the line, as in the following screenshot:

Figure 9.16: Drawing rotated lines

5. In the screenshot, we used Quaternion.Euler to generate a quaternion based on the angles we
want to rotate. A quaternion is a mathematical construct to represent rotations; please search
for this term for more info on it. If we multiply this quaternion by a direction, we will get the
rotated direction. We are taking our forward vector and rotating it according to the angle field
to generate our cone vision lines.

Starting Your AI Journey: Building Intelligent Enemies for Your Game254

Also, we multiply this direction by the sight distance to draw the line as far as our sight can
see; you will see how the line matches the end of the sphere this way:

Figure 9.17: Vision angle lines

We can also draw the linecasts, which check the obstacles, but as they depend on the current situ-
ation of the game, such as the objects that pass the first two checks and their positions, we can use
Debug.DrawLine instead, which can be executed in the Update method. This version of DrawLine is
designed to be used in runtime only. The gizmos we saw also execute in the Editor. Let’s try them in
the following way:

1. First, let’s debug the scenario where Linecast didn’t detect any obstacles, so we need to draw
a line between our sensor and the object. We can call Debug.DrawLine in the if statement that
calls Linecast, as in the following screenshot:

Chapter 9 255

Figure 9.18: Drawing a line in Update

2. In the next screenshot, you can see DrawLine in action:

Figure 9.19: Line toward the detected object

Starting Your AI Journey: Building Intelligent Enemies for Your Game256

3. We also want to draw a line in red when the sight is occluded by an object. In this case, we
need to know where the linecast hit, so we can use an overload of the function, which provides
an out parameter that gives us more information about what the line collided with, such as
the position of the hit and the normal and the collided object, as in the following screenshot:

Figure 9.20: Getting information about Linecast

Note that Linecast doesn’t always collide with the nearest obstacle but with the first object it
detects in the line, which can vary in order. If you need to detect the nearest obstacle, look for
the Physics.Raycast version of the function.

4. We can use that information to draw the line from our position to the hit point in the else part
of the if sentence when the line collides with something:

Figure 9.21: Drawing a line if we have an obstacle

Parameters using the out keyword allow the method to return data also via param-
eters. For more info on this, check the following link: https://learn.microsoft.
com/en-us/dotnet/csharp/language-reference/keywords/out.

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/out
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/out

Chapter 9 257

5. In the next screenshot, you can see the results. Ensure the Gizmos option is on in the Scene
view toolbars (the rightmost sphere-shaped icon):

Figure 9.22: Line when an obstacle occludes vision

Regarding the Visual Scripting version, the first part will look like this:

Figure 9.23: Drawing gizmos with Visual Scripting

Starting Your AI Journey: Building Intelligent Enemies for Your Game258

Then, the angle lines will look like this:

Figure 9.24: Drawing angle lines of sight in Visual Scripting

Note that, here, we are showing just one; the other is essentially the same but multiplying the angle
by -1. Finally, the red lines toward the detected object and obstacles will look like this:

Chapter 9 259

Figure 9.25: Drawing lines toward obstacles or detected objects in Visual Scripting

Note that to accomplish this last one, we needed to change the previous Linecast node for the version
that returns Raycast Hit info at the end.

In this section, we created the sensor system that will give sight to our AI and plenty of info about
what to do next. Now that we have completed our sensors, let’s use the information provided by them
to make decisions with FSMs.

Starting Your AI Journey: Building Intelligent Enemies for Your Game260

Making decisions with FSMs
We explored the concept of FSMs in the past when we used them in the Animator component. To
recap, we recommend reviewing Chapter 17, Animated Realities: Creating Animations with Animator,
Cinemachine, and Timeline. We learned that an FSM is a collection of states, each one representing an
action that an object can be executing at a time and a set of transitions that dictates how the states
are switched. This concept is not only used in animation but in a myriad of programming scenarios,
and one of the common ones is AI. For AI, each state will represent a different possible AI behavior
to be active at a time, and transitions will represent the conditions that need to be met for other AI
behaviors to be active. For example, in a shooter game, the enemies can have states like Idle, Patrolling,
Attacking, Fleeing, Taking Cover, and so on.

In this section, we will examine the following AI FSM concepts:

• Creating the FSM in C#
• Creating transitions
• Creating the FSM in Visual Scripting

Let’s start implementing this FSM theory by creating an FSM in C#.

Creating the FSM in C#
To create our own FSM, we need to recap some basic concepts. Remember that an FSM can have a
state for each possible action it can execute and that only one can be executed at a time.

In terms of AI, for example, we can be patrolling, attacking, fleeing, and so on. Also, remember that
there are transitions between states that determine conditions to be met to change from one state to
another, and in terms of AI, this can be the user being near the enemy to start attacking or life being
low to start fleeing. In the next figure, you can find a simple reminder example of the two possible
states of a door:

To further reinforce the FSM concept, we recommend reviewing this link: https://
gameprogrammingpatterns.com/state.html.

https://gameprogrammingpatterns.com/state.html
https://gameprogrammingpatterns.com/state.html

Chapter 9 261

Figure 9.26: FSM skeleton

There are several ways to implement FSMs for AI; you can even use the Animator component if you
want to or download an FSM system from the Asset Store. In our case, we are going to take the simplest
approach possible – a single script with a set of if sentences, which can be basic but is still a good
start to understanding the concept. Let’s implement it by doing the following:

1. Create a script called EnemyFSM in the AI child object of the enemy.
2. Create an enum called EnemyState with the GoToBase, AttackBase, ChasePlayer, and

AttackPlayer values. We are going to have those states in our AI.
3. Create a field of the EnemyState type called currentState, which will hold the current state

of our enemy:

Figure 9.27: EnemyFSM state definition

Starting Your AI Journey: Building Intelligent Enemies for Your Game262

4. Create three functions named after the states we defined.
5. Call those functions in Update depending on the current state:

Figure 9.28: An if-based FSM

Yes, you can totally use a switch here, but I just prefer the regular if syntax for this example.

6. Test in the Editor how changing the currentState field will change which state is active, seeing
the messages being printed in the Console window:

Figure 9.29: State testing

For more information about how enums work, we recommend checking the follow-
ing link: https://learn.microsoft.com/en-us/dotnet/csharp/language-
reference/builtin-types/enum.

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/enum
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/enum

Chapter 9 263

As you can see, it is a pretty simple but totally functional approach. In the future, you could face having
to code enemies with many more states, and this approach will start to scale badly. In such a case, you
could use any FSM plugin from the Asset Store you prefer to have more powerful and scalable tools,
or even consider advanced techniques like behavior trees, but that’s outside the scope of this book.
Now let’s continue with this FSM, by creating its transitions.

Creating transitions
If you remember the transitions created in the Animator Controller, those were basically a collection
of conditions that checked whether the state the transition belongs to is active. In our FSM approach,
this translates simply as if sentences that detect conditions inside the states. Let’s create the transi-
tions between our proposed states as follows:

1. Add a field of the Sight type called sightSensor in our FSM script, and drag the AI GameObject
to that field to connect it to the Sight component there. As the FSM component is in the same
object as Sight, we can also use GetComponent instead, but in advanced AIs, you might have
different sensors that detect different objects, so I prefer to prepare my script for that scenario.
You should pick the approach you like the most.

2. In the GoToBase function, check whether the detected object of the Sight component is not
null, meaning that something is inside our line of vision. If our AI is going toward the base
but detects an object in the way, we must switch to the Chase state to pursue the player, so we
change the state, as in the following screenshot:

Figure 9.30: Creating transitions

Starting Your AI Journey: Building Intelligent Enemies for Your Game264

3. Also, we must change to AttackBase if we are near enough to the object that must be damaged
to decrease the base life. We can create a field of the Transform type called baseTransform
and drag the player’s base life object we created previously there so we can check the distance.
Remember to add a float field called baseAttackDistance to make that distance configurable:

Figure 9.31: GoToBase transitions

4. In the case of ChasePlayer, we need to check whether the player is out of sight to switch back
to the GoToBase state or whether we are near enough to the player to start attacking it. We will
need another distance field called PlayerAttackDistance, which determines the distance to
attack the player, and we might want different attack distances for those two targets. Consider
an early return in the transition to prevent getting null reference exceptions if we try to access
the position of the sensor-detected object when there are not any:

Chapter 9 265

Figure 9.32: ChasePlayer transitions

5. For AttackPlayer, we need to check whether the player is out of sight to get back to GoToBase
or whether it is far enough to go back to chasing it. You will notice how we multiplied
playerAttackDistance to make the stop-attacking distance a little bit greater than the start-at-
tacking distance; this will prevent switching back and forth rapidly between attacking and
chasing when the player is near that distance.

Starting Your AI Journey: Building Intelligent Enemies for Your Game266

6. You can make it configurable instead of hardcoding 1.1:

Figure 9.33: AttackPlayer transitions

7. In our case, AttackBase won’t have any transition. Once the enemy is near enough to the base
to attack it, it will stay like that, even if the player starts shooting at it. Its only objective once
there is to destroy the base.

8. Remember you can use Gizmos to draw the distances:

Figure 9.34: FSM Gizmos

Chapter 9 267

9. Test the script by selecting the AI object prior to clicking Play and then moving the player
around, checking how the states change in the Inspector pane. You can also keep the original
print messages in each state to see them changing in the Console window. Remember to
set the attack distances and the references to the objects. In the screenshot, you can see the
settings we use:

Figure 9.35: Enemy FSM settings

A little problem that we will have now is that the spawned enemies won’t have the needed references
to make the distance calculations to the player’s base transform. You will notice that if you try to apply
the changes on the enemy of the scene to the Prefab (Overrides | Apply All), the Base Transform vari-
able will say None. Remember that Prefabs cannot contain references to objects in the scene, which
complicates our work here. One alternative would be to create BaseManager, a singleton that holds
the reference to the damage position, so our EnemyFSM can access it. Another one could be to make
use of functions such as GameObject.Find to find our object.

In this case, we will use the latter. Even though it can be less performant than the Manager version, I
want to show you how to use it to expand your Unity toolset. In this case, just set the baseTransform
field in Awake to the return of GameObject.Find, using BaseDamagePoint as the first parameter, which
will look for an object with the same name, as in the following screenshot.

Starting Your AI Journey: Building Intelligent Enemies for Your Game268

You will see that now our wave-spawned enemies will change states:

Figure 9.36: Searching for an object in the scene by name

In this section, we made our FSM properly switch states according to the data provided by sensors and
other sources, laying the foundation to start scripting the actual behavior of each state. Now that our
FSM states are coded and execute transitions properly, let’s see how to do the same in Visual Scripting.
Feel free to skip the following section if you are only interested in the C# version.

Creating the FSM in Visual Scripting
So far, most scripts in Visual Scripting were almost a mirror of the C# version with some differences
in some nodes. Regarding state machines, we could do the same; instead, we are going to use the
State Machine system of Visual Scripting. The concept is the same – you have states and can switch
them – but how the states are organized and when the transitions trigger is managed visually, in a
similar way as the Animator system does. So, let’s see how we can use the system by creating our first
State Machine Graph and some states. Follow these steps:

1. Add the State Machine component to our enemy. Remember it is called State Machine and not
Script Machine, the latter being the component for regular Visual Scripts.

2. Click the New button in the component and select a place to save the fixed asset in a similar
way to what we have done so far for regular Visual Scripts. In my case, I called it EnemyFSM.

When I started learning about AI for games, I thought I was going to create Skynet using
complex algorithms like deep learning. As you can see, we are far away from that, and the
reason is that AI for games doesn’t need to be intelligent; it needs to be fun. Making it so
requires careful design to generate the exact desired experience, which could be difficult
to achieve with cutting-edge AI technology.

Having said that, there are other AI techniques, like behavior trees, which you can learn
about it in this Halo developers’ article: https://www.gamedeveloper.com/programming/
gdc-2005-proceeding-handling-complexity-in-the-i-halo-2-i-ai

Other alternative is called GOAP, and I recommend reading this paper from the F.E.A.R.
developers: https://www.gamedevs.org/uploads/three-states-plan-ai-of-fear.
pdf Finally, there’s the Game AI Pro book series, which collects several game AI-related
papers, and you can learn more about it here: http://www.gameaipro.com/

https://www.gamedeveloper.com/programming/gdc-2005-proceeding-handling-complexity-in-the-i-halo-2-i-ai
https://www.gamedeveloper.com/programming/gdc-2005-proceeding-handling-complexity-in-the-i-halo-2-i-ai
https://www.gamedevs.org/uploads/three-states-plan-ai-of-fear.pdf
https://www.gamedevs.org/uploads/three-states-plan-ai-of-fear.pdf
http://www.gameaipro.com/

Chapter 9 269

Figure 9.37: Creating a Visual Scripting State Machine

3. Double-click State Machine Graph to edit it as usual.
4. Right-click in any empty area of the Graph editor and select Create Script State in order to

create a new state:

Figure 9.38: Creating our first Visual Scripting State Machine state

5. Repeat step 4 until you end up having four states:

Figure 9.39: Visual Scripting states

Starting Your AI Journey: Building Intelligent Enemies for Your Game270

6. Select any of them and, in the Info panel on the left, fill the Title field (the first one) with
the name of any of the states we created before (GoToBase, AttackBase, ChasePlayer, and
AttackPlayer). If you don’t see the Info panel, click the button with the i in the middle to
display it:

Figure 9.40: Renaming a Visual Scripting state

7. Repeat that for the rest of the state nodes until you have each node named after each state
created in the Creating the FSM in C# section of this chapter:

Figure 9.41: All the needed states

8. You can see one of the states has a green bar at the top, which represents which node is sup-
posed to be the first one. I renamed that initial state GoToBase as that’s the one I prefer to be
first. If you don’t have that one as the starting one, right-click the node that currently has the
green bar in your state machine, select Toggle Start to remove the green bar from it, and then
repeat for the node that you want to be the first one (GoToBase in our scenario), adding the
green bar to that one.

Chapter 9 271

9. Something to consider is that you can have more than one start state in Visual Scripting, mean-
ing you can have multiple states running at the same time and transitioning. If possible, I
recommend avoiding having more than one state active at a time to make things simple.

10. Double-click GoToBase to enter the edit mode for these states. Connect a String node to the
Print Message input pin in the OnUpdate event node to print a message saying GoToBase:

Figure 9.42: Our first state machine logic

11. In the top bar, click the EnemyFSM label at the left of GoToBase in order to return to the whole
State Machine view. If you don’t see it, click any text label to the right of the third button (the
one that looks like <x>):

Figure 9.43: Returning to the State Machine editor mode

12. Feel free to delete the other event nodes if you are not planning to use them.
13. Repeat steps 9 to 11 for each state until all of them print their names.

With this, we have created the nodes representing the possible states of our AI. In the next section, we
will be adding logic for them to something meaningful, but before that, we need to create the transi-
tions between the states and the conditions that need to be met to trigger them by doing the following:

1. Create variables in the Variables component of the enemy called baseTransform,
baseAttackDistance, and playerAttackDistance, as we are going to need them to do the
transitions.

Starting Your AI Journey: Building Intelligent Enemies for Your Game272

2. Don’t set any type to baseTransform as we will fill it later via code, but regarding
baseAttackDistance, make it using the Float type and put a value of 2, and finally, for
playerAttackDistance, also use Float and a value of 3. Feel free to change those values if
you prefer:

Figure 9.44: Variables needed for our transitions

3. Right-click the GoToBase node, select the Make Transition option, and then click the ChasePlayer
node. This will create a transition between the two states:

Figure 9.45: A transition between two states

4. Repeat step 3 for each transition we created in the C# version. The State Machine graph will
need to look like the following screenshot:

Chapter 9 273

Figure 9.46: All the needed transitions

5. Double-click the yellow shape in the middle of the transition between GoToBase and Chase-
Player to enter the Transition mode. Here, you will be able to specify the condition that will
trigger that transition (instead of using an If node during the state logic). Remember, you
have two yellow shapes, one for each transition direction, so check you are double-clicking
the correct one based on the white arrows connecting them.

6. Modify the graph to check whether the sensedObject variable is not null. It should look like
this:

Figure 9.47: Adding a transition condition

Starting Your AI Journey: Building Intelligent Enemies for Your Game274

7. The transition between GoToBase and AttackBase should look like this:

Figure 9.48: The GoToBase to AttackBase transition condition

8. Now, ChasePlayer to GoToBase should be as follows:

Figure 9.49: The ChasePlayer to GoToBase transition condition

Chapter 9 275

9. For the ChasePlayer to AttackPlayer transition, do as in Figure 9.50. This is essentially the same
as GoToBase and AttackBase (a distance check) but with different targets:

Figure 9.50: The ChasePlayer to AttackPlayer transition condition

10. For the AttackPlayer to ChasePlayer transition, do as in Figure 9.51. This is another distance
check but is now checking whether the distance is greater and multiplying the distance by 1.1
(to prevent transition jittering, as we explained in the C# version):

Starting Your AI Journey: Building Intelligent Enemies for Your Game276

Figure 9.51: The AttackPlayer to ChasePlayer transition condition

11. Finally, for AttackPlayer to GoToBase, this is the expected graph:

Figure 9.52: The AttackPlayer to GoToBase transition condition

Chapter 9 277

A little detail we need to tackle before moving on is the fact that we still don’t have any value set in the
baseTransform variable. The idea is to fill it via code as we did in the C# version. But something to con-
sider here is that we cannot add an Awake event node to the whole state machine, but just to the states.

In this scenario, we could use the OnEnterState event, which is an exclusive event node for state
machines. It will execute as soon as the state becomes active, which is useful for state initializations.
We could add the logic to initialize the baseTransform variable in the OnEnterState event node of the
GoToBase state, given it is the first state we execute.

This way, the GoToBase logic will look as in Figure 9.53. Remember to double-click the state node to
edit it:

Figure 9.53: The GoToBase initialization logic

Notice how, here, we set the result of the Find node into the variable only on the Null pin of Null Check.
What Null Check does is check if our baseTransform variable is set, going through the Not Null pin
if it is, and Null if it isn’t. This way, we avoid executing GameObject.Find every time we enter the Go-
ToBase state, but only the first time. Also note that, in this case, we will be executing the Set Variable
node not only when the object initializes but also each time GoToBase becomes the current state. If,
in any case, that results in unexpected behavior, other options could be to create a new initial state
that initializes everything and then transitions to the rest of the states, or maybe do a classic Visual
Scripting graph that initializes those variables in the On Start event node.

Starting Your AI Journey: Building Intelligent Enemies for Your Game278

With all this, we learned how to create a decision-making system for our AI through FSMs. It will
make decisions based on the info gathered via sensors and other systems. Now that our FSM states
are coded and transition properly, let’s make them do something.

Executing FSM actions
Now we need to complete the last step – make the FSM do something interesting. Here, we can do a
lot of things such as shoot the base or the player and move the enemy toward its target (the base or
the player). We will be handling movement with the Unity Pathfinding system called NavMesh, a tool
that allows our AI to calculate and traverse paths between two points while avoiding obstacles, which
needs some preparation to work properly.

In this section, we will examine the following FSM action concepts:

• Calculating our scene’s NavMesh
• Using Pathfinding
• Adding final details

Let’s start by preparing our scene for movement with Pathfinding.

Calculating our scene’s NavMesh
Pathfinding algorithms rely on simplified versions of the scene. Analyzing the full geometry of a com-
plex scene is almost impossible to do in real time. There are several ways to represent Pathfinding
information extracted from a scene, such as graphs and NavMesh geometries. Unity uses the latter

– a simplified mesh similar to a 3D model that spans all areas that Unity determines are walkable. In
the next screenshot, you can find an example of NavMesh generated in a scene – that is, the light blue
geometry:

Chapter 9 279

Generating NavMesh can take from seconds to minutes depending on the size of the scene. That’s why
Unity’s Pathfinding system calculates the NavMesh once in the Editor, so when we distribute our game,
the user will use the pre-generated NavMesh. In previous Unity versions, like lightmapping, NavMesh
used to be baked into a file for later use. That meant that GameObjects that contributed to the NavMesh
surface used to be static, and that they couldn’t suffer any modifications of the scene during runtime.
The main advantage of the new AI navigation system in Unity is that NavMesh objects can now change
during runtime. If you destroy or move a floor tile, the AI will still adapt its behavior to walk, stay, or
fall over that area. This means if a floor tile is destroyed during gameplay, the NavMesh dynamically
updates to reflect this change, showing the AI where it can no longer walk. We will install and use the
AI Navigation package to add this behavior to our game.

To generate NavMesh for our scene, do the following:

1. Open Package Manager (Window | Package Manager).
2. Set the Packages dropdown to Unity Registry mode.
3. Search the list for a package called AI Navigation. This package will allow us to have access to

new components that will help us define which surfaces are walkable and which agents can
walk on top of them. At the time of writing the book, the current version of this package is 1.1.4:

Figure 9.55: Installing the AI Navigation package

4. Add a NavMeshSurface component to the walkable surface.

Starting Your AI Journey: Building Intelligent Enemies for Your Game280

5. From the recently added component, click on the Bake button at the bottom of the window,
and check the generated NavMesh:

Figure 9.56: Generating a NavMesh

And that’s pretty much everything you need to do. Of course, there are lots of settings you can fiddle
around with in this component, such as Max Slope, which indicates the maximum angle of slopes
the AI will be able to climb, or Step Height, which will determine whether the AI can climb stairs,
connecting the floors between the steps in NavMesh, but as we have a plain and simple scene, the
default settings will suffice.

If you want to play around with them, you can go to the menu bar and select Window | AI | Navigation.
From there, you will be able to adjust all these parameters and re-bake the NavMeshSurface to adjust
the walkable areas depending on the size of the AI agents.

 With our scene’s NavMesh set up, we’ve laid the groundwork for sophisticated AI movement. Let’s see
this in action as we program our AI to navigate the game world.

Using Pathfinding
For making an AI object that moves with NavMesh, Unity provides the NavMeshAgent component, which
will make our AI stick to NavMesh, preventing the object from going outside it. It will not only calculate
the path to a specified destination automatically but will also move the object through the path with
the use of Steering behavior algorithms that mimic the way a human would move through the path,
slowing down on corners and turning with interpolations instead of instantaneously. This component
also ensures AI characters avoid each other. It prevents crowding by steering each character away
from others, maintaining a natural flow in the game.

Chapter 9 281

Let’s use this powerful component by doing the following:

1. Select the Enemy Prefab and add the NavMeshAgent component to it. Add it to the root object,
the one called Enemy, not the AI child – we want the whole object to move. You will see a cylin-
der around the object representing the area the object will occupy in NavMesh. Note that this
isn’t a collider, so it won’t be used for physical collisions:

Figure 9.57: The NavMeshAgent component

2. Remove the ForwardMovement component; from now on, we will drive the movement of our
enemy with NavMeshAgent.

3. In the Awake event function of the EnemyFSM script, use the GetComponentInParent function
to cache the reference of NavMeshAgent into a new private variable. This will work similarly
to GetComponent – it will look for a component in our GameObject, but if the component is
not there, this version will try to look for that component in all parents. Remember to add the
using UnityEngine.AI line to use the NavMeshAgent class in this script:

Figure 9.58: Caching a parent component reference

As you can imagine, there is also the GetComponentInChildren method, which searches com-
ponents in GameObject first and then in all its children if necessary.

Starting Your AI Journey: Building Intelligent Enemies for Your Game282

4. In the GoToBase state function, call the SetDestination function of the NavMeshAgent reference,
passing the position of the base object as the target:

Figure 9.59: Setting a destination for our AI

5. Save the script and test this with a few enemies in the scene or with the enemies spawned
by the waves. You will see the problem where the enemies will never stop going toward the
target position, entering inside the object, if necessary, even if the current state of their FSMs
changes when they are near enough. That’s because we never tell NavMeshAgent to stop, which
we can do by setting the isStopped field of the agent to true.

6. You might want to tweak the base attack distance to make the enemy stop a little bit closer or
further away:

Figure 9.60: Stopping agent movement

7. We can do the same for ChasePlayer and AttackPlayer. In ChasePlayer, we can set the des-
tination of the agent to the player’s position, and in AttackPlayer, we can stop the movement.
In this scenario, AttackPlayer can go back again to GoToBase or ChasePlayer, so you need to
set the isStopped agent field to false in those states or before doing the transition. We will
pick the former, as that version will cover other states that also stop the agent without extra
code. We will start with the GoToBase state:

Figure 9.61: Reactivating the agent

Chapter 9 283

8. Then, continue with ChasePlayer:

Figure 9.62: Reactivating the agent and chasing the player

9. And finally, continue with AttackPlayer:

Figure 9.63: Stopping the movement

10. You can tweak the Acceleration, Speed, and Angular Speed properties of NavMeshAgent to
control how fast the enemy will move. Balance these settings to make sure the AI moves in
a way that makes sense in your game. Also, remember to apply the changes to the Prefab for
the spawned enemies to be affected.

Starting Your AI Journey: Building Intelligent Enemies for Your Game284

11. Regarding the Visual Scripting versions, GoToBase will look like the following screenshot:

Figure 9.64: Making our agent move

12. We deleted the OnUpdate event node printing a message as we don’t need it anymore. Also,
we called the Set Destination node after setting the variable if if was null, and also when
the variable wasn’t null (Not Null pin of Null Check). Note that all of this happens in the On
Enter State event, so we just need to do it once. We do it for every frame in the C# version for
simplicity but that’s actually not necessary, so we will take advantage of the On Enter State
event. We can emulate that behavior in the C# version if we want, executing these actions at
the moment we change the state (inside the if statements that check the transition conditions),
instead of using the Update function. Finally, notice how we needed to use the Get Parent node
in order to access the NavMeshAgent component in the enemy’s root object? This is needed
because we are currently in the AI child object instead.

13. Now, the AttackBase state will look like this:

Figure 9.65: Making our agent stop

Chapter 9 285

14. The ChasePlayer state will look like this:

Figure 9.66: The ChasePlayer logic

15. And finally, AttackPlayer will look like this:

Figure 9.67: The AttackPlayer logic

While Unity has its own pathfinding system, it is not the only one, and it might not suit more
advanced games. I recommend learning the basics of pathfinding, like learning about the
BFS, Dijkstra, and A* algorithms. If you want to deep dive, you can learn more advanced
techniques, like the tactical pathfinding explained in this Killzone developers’ paper:
http://cse.unl.edu/~choueiry/Documents/straatman_remco_killzone_ai.pdf,
or this presentation of Left 4 Dead AI systems: https://steamcdn-a.akamaihd.net/
apps/valve/2009/ai_systems_of_l4d_mike_booth.pdf.

http://cse.unl.edu/~choueiry/Documents/straatman_remco_killzone_ai.pdf
https://steamcdn-a.akamaihd.net/apps/valve/2009/ai_systems_of_l4d_mike_booth.pdf
https://steamcdn-a.akamaihd.net/apps/valve/2009/ai_systems_of_l4d_mike_booth.pdf

Starting Your AI Journey: Building Intelligent Enemies for Your Game286

 With our AI now capable of navigating the game world, we’re close to having a fully functional enemy.
Next, we’ll add the finishing touches, including shooting mechanics and animations, to complete our
AI’s behavior.

Adding the final details
We have two things missing here: the enemy is not shooting any bullets, and it doesn’t have animations.
Let’s start with fixing the shooting by doing the following:

1. Add a bulletPrefab field of the GameObject type to our EnemyFSM script and a float field
called fireRate.

2. Create a function called Shoot and call it inside AttackBase and AttackPlayer:

Figure 9.68: Shooting function calls

Chapter 9 287

3. In the Shoot function, put a similar code as that used in the PlayerShooting script to shoot
bullets at a specific fire rate, as in Figure 9.68. Remember to set the Enemy layer in your Enemy
Prefab, if you didn’t before, to prevent the bullet from damaging the enemy itself. You might
also want to raise the AI GameObject position a little bit to shoot bullets from a position other
than the ground or, better, add a shootPoint transform field and create an empty object in
the enemy to use as a spawn position. If you do that, consider making the empty object not be
rotated so the enemy rotation affects the direction of the bullet properly:

Figure 9.69: Shoot function code

Here, you find some duplicated shooting behavior between PlayerShooting and EnemyFSM.
You can fix that by creating a Weapon behavior with a function called Shoot that instantiates
bullets and takes into account the fire rate, and call it inside both components to re-utilize it.

Starting Your AI Journey: Building Intelligent Enemies for Your Game288

4. When the agent is stopped, not only does the movement stop but also the rotation. If the player
moves while the enemy is being attacked, we still need the enemy to face the player to shoot
bullets in its direction. We can create a LookTo function that receives the target position to look
at and then call it in AttackPlayer and AttackBase, passing the target to shoot at:

Figure 9.70: LookTo function calls

5. Complete the LookTo function by calculating the direction of our parent to the target position.
We access our parent with transform.parent because, remember, we are the child AI object

– the object that will move is our parent. Then, we set the Y component of the direction to 0 to
prevent the direction from pointing upward or downward – we don’t want our enemy to rotate
vertically. Finally, we set the forward vector of our parent to that direction so it will face the
target position immediately. You can replace that with interpolation through quaternions to
have a smoother rotation if you want to, but let’s keep things as simple as possible for now:

Chapter 9 289

Figure 9.71: Looking toward a target

6. Regarding the Visual Scripting version, AttackBase actions look like this:

Figure 9.72: AttackBase state

In this state, we have some things to highlight. First, we are using the Look At node in the On Enter
State event node after the Set Stopped node. As you might imagine, this does the same as we did with
math in C#. We specify a target to look at (our base transform) and then we specify that the World Up
parameter is a vector pointing upward 0,1,0. This will make our object look at the base but maintain its
up vector pointing to the sky, meaning our object will not look at the floor if the target is lower than it.

Starting Your AI Journey: Building Intelligent Enemies for Your Game290

We can use this exact function in C# if we want to (transform.LookAt); the idea was just to show you
all the options. Also, note that we execute LookAt only when the state becomes active; as the base
doesn’t move, we don’t need to constantly update our orientation.

The second thing to highlight is that we used coroutines to shoot, the same idea we used in the Enemy
Spawner to constantly spawn enemies. Essentially, we make an infinite loop between Wait For Sec-
onds and Instantiate. We took this approach here because it was convenient as it takes fewer nodes
in Visual Scripting.

Remember to select the On Enter State node and check the Coroutine checkbox as we did before. Also,
we need a new Float type variable called fireRate in the Enemy AI child object:

Figure 9.73: Coroutines

Chapter 9 291

Then, AttackPlayer will look like this:

Figure 9.74: AttackPlayer state

Essentially it is the same as AttackBase, but that looks toward the sensedObject instead of toward
the player’s base, and we also made the Look At node part of the infinite loop, to correct the enemy’s
heading before shooting to target the player.

With that, we have finished all AI behaviors. Of course, these scripts/graphs are big enough to deserve
some rework and splitting in the future, but with this, we have prototyped our AI, and we can test it
until we are happy with it, and then we can improve this code.

Starting Your AI Journey: Building Intelligent Enemies for Your Game292

Summary
I’m pretty sure AI is not what you imagined; you are not creating Skynet here, but we have accomplished
a simple but interesting AI to challenge our players, which we can iterate and tweak to tailor to our
game’s expected behavior. We saw how to gather our surrounding information through sensors to
make decisions on what action to execute using FSMs and different Unity systems such as Pathfinding
to make the AI execute those actions. We used those systems to diagram a state machine capable of
detecting the player, running to them, and attacking them, and if the player is not there, just going to
the base to accomplish its task to destroy it.

As we move on to the next chapter, we’ll shift our focus to another vital aspect of game development:
enhancing the graphics and audio. Get ready to dive into creating materials and shaders that will
bring your game world to life.

Learn more on Discord
Read this book alongside other users, Unity game development experts, and the author himself. Ask
questions, provide solutions to other readers, chat with the author via Ask Me Anything sessions, and
much more. Scan the QR code or visit the link to join the community:

https://packt.link/unitydev

https://packt.link/unitydev

Section 3
Elevating Visuals, Effects,

and Audio
Enhance your existing levels with striking visual effects by using particle systems, bespoke shaders,
sophisticated lighting, post-processing, animations, user interfaces, and sound design.

This section comprises the following chapters:

• Chapter 10, Material Alchemy: Using URP and Shader Graph for Stunning Visuals
• Chapter 11, Captivating Visual Effects: Harnessing Particle Systems and Visual Effect Graph
• Chapter 12, Enlightening Worlds: Illuminating Scenes with the Universal Render Pipeline
• Chapter 13, Immersive Realism: Achieving Fullscreen Effects with Post-Processing
• Chapter 14, Harmonious Soundscapes: Integrating Audio and Music

10
Material Alchemy: Using URP
and Shader Graph for Stunning
Visuals

Welcome to the first chapter of Section 3, Elevating Visuals, Effects, and Audio Here, we will dive deep
into the different graphics and audio systems of Unity to dramatically improve the look and feel of
the game. Let’s begin our journey into the world of shaders, the artists behind the scenes in every
Unity game, and learn how to craft our own from scratch. We will start by discussing what a shader
is and how to create our own to achieve several custom effects that couldn’t be accomplished using
the default Unity shaders. We will be creating a simple water animation effect using Shader Graph, a
visual shader editor included in the Universal Render Pipeline (URP), the preferred option for creators
to launch their games on a wide variety of devices, including web and mobile. Also known as URP,
this is one of the different rendering pipelines available in Unity, which provides rendering features
oriented toward performance. We will be discussing some of its capabilities in this chapter.

In this chapter, we will examine the following shader concepts:

• Introducing shaders and URP
• Creating shaders with Shader Graph

Introducing shaders and URP
Remember the glowing orb material we created in Section 1, Getting Started with Unity? Let’s explore
how its shader property manipulates light to create that glow effect. In this first section, we will be
exploring the concept of a shader as a way to program the video card to achieve custom visual effects.
We will also be discussing how URP works with those shaders, and the default shaders it provides.

Material Alchemy: Using URP and Shader Graph for Stunning Visuals296

In this section, we will cover the following concepts related to shaders:

• Shader pipeline
• Render pipeline and URP
• URP built-in shaders

Let’s start by discussing how a shader modifies the shader pipeline to achieve effects.

Shader pipeline
Whenever a video card renders a 3D model, it needs different information to process, such as a mesh,
textures, the transformation of the object (position, rotation, and scale), and lights that affect the object.
With that data, the video card must output the pixels of the object into the back buffer, an image where
the video card will be drawing our objects, but the user won’t see this yet. This is done to prevent the
user from seeing unfinished results, given we can still be drawing at the time the monitor refreshes.
That image will be shown when Unity finishes rendering all objects (and some effects) to display the
finished scene, swapping the back buffer with the front buffer, the image that the user actually sees.
You can imagine this as having a page with an image that is being shown to the user while you draw
a new image, and when you finish the new drawing, you just swap the pages and start drawing again
on the page the user does not see, repeating this with every frame.

That’s the usual way to render an object, but what happens between the input of the data and the
output of the pixels can be handled in a myriad of different ways and techniques that depend on how
you want your object to look; maybe you want it to be realistic or look like a hologram, or maybe the
object needs a disintegration effect or a toon effect—there are endless possibilities. The way to specify
how our video card will handle the rendering of the object is through a shader.

A shader is a program coded in specific video card languages, such as:

• HLSL: The DirectX shading language, DirectX being a graphics library.
• GLSL: The OpenGL shading language, OpenGL also being a graphics library.
• CG: A language that can output either HLSL or GLSL, depending on which graphics library

we use in our game.
• Shader Graph: A visual language that will be automatically converted into one of the previ-

ously mentioned languages according to our needs. This is the one we will be using given its
simplicity (more on that later).

Any of those languages can be used to configure different stages of the render process necessary to
render a given object, sometimes not only configuring them but also replacing them with completely
custom code to achieve the exact effect we want. All of the stages to render an object make up what
we call the shader pipeline, a chain of modifications applied to the input data until it is transformed
into pixels.

Chapter 10 297

Each stage of the pipeline is in charge of different modifications, and depending on the video card
shader model, this pipeline can vary a lot. In the next diagram, you can find a simplified shader pipe-
line, skipping advanced/optional stages that are not important right now:

Figure 10.1: Common shader pipeline

Think of the shader pipeline as an assembly line in a factory, where each stage represents a different
worker specializing in a specific task, collectively contributing to the final product.

Let’s discuss each of the stages:

• Input Assembler: Here is where all of the mesh data, such as vertex position, UVs, and normals,
is assembled to be prepared for the next stage.

• Vertex Shader: This stage used to be limited to applying the transformation of the object, the
position and perspective of the camera, and simple lighting calculations. In modern GPUs,
you are in charge of doing whatever you want. This stage receives each of the vertices of the
object to render and outputs a modified one. You have the chance to modify the geometry
of the object here. The usual code here applies the transform of the object, but you can also
apply several effects, such as inflating the object along its normals to apply the old toon effect
technique or apply distortion, adding random offsets to each vertex to recreate a hologram.
There’s also the opportunity to calculate data for the next stages.

• Primitive Culling: Most of the models you are going to render have the particularity that you
will never see the back side of a model face. With a cube, there’s no way to look at its inner
sides. Given that, rendering both sides of each face of the cube makes no sense, and this stage
takes care of that. Primitive culling will determine whether the face needs to be rendered
based on the orientation of the face, saving lots of pixel calculation of occluded faces. You can
change this to behave differently for specific cases; as an example, we can create a glass box
that needs to be transparent to see all sides of the box. Don’t confuse this with other types of
culling, like frustum culling. This other type of culling filters objects outside the camera view
area before they are even sent to the shader pipeline.

Material Alchemy: Using URP and Shader Graph for Stunning Visuals298

• Rasterizer: Now that we have the modified and visible geometry of our model calculated, it’s
time to convert it into pixels. The rasterizer creates all pixels for the triangles of our mesh.
Lots of things happen here, but again, we have very little control over that; the usual way to
rasterize is just to create all pixels inside the edges of the mesh triangles. We have other modes
that just render the pixels on the edges to see a wireframe effect, but this is usually used for
debugging purposes:

Figure 10.2: Example of figures being rasterized

• Fragment Shader: This is one of the most customizable stages of all. Its purpose is simple:
just determine the color of each of the fragments (pixels) that the rasterizer has generated.
Here, lots of things can happen, from simply outputting a plain color or sampling a texture to
applying complex lighting calculations such as normal mapping and PBR. Also, you can use
this stage to create special effects such as water animations, holograms, distortions, disinte-
grations, and any special effects that require you to modify what the pixels look like. We will
explore how we can use this stage in the next sections of this chapter.

• Depth Testing: Before showing a pixel on the screen, we need to check whether it can be seen.
This stage checks whether the pixel’s depth is behind or in front of the previous pixel rendered
in the same position, guaranteeing that, regardless of the rendering order of the objects, the
nearest pixels to the camera are always drawn on top of others. Again, usually, this stage is left
in its default state, prioritizing pixels that are nearer to the camera, but some effects require
different behavior. Also, nowadays we have early-Z testing, which does this same test but before
the Fragment Shader stage. But let’s keep things simple for now. As an example, in the next
screenshot, you can see an effect that allows you to see objects that are behind other objects,
like the one used in Age of Empires when a unit is behind a building:

Chapter 10 299

Figure 10.3: Rendering the occluded parts of the character

• Blending: Once the color of the pixel is determined and we are sure the pixel is not occluded
by a previous pixel, the final step is to put it in the back buffer (the frame or image you are
drawing). Usually, we just override whatever pixel was in that position (because our pixel is
nearer to the camera), but if you think about transparent objects, we need to combine our pixel
with the previous one to make the transparent effect. Transparencies have other things to take
into account aside from the blending, but the main idea is that blending controls exactly how
the pixel will be combined with the previously rendered pixel in the back buffer.

Shader pipelines would require an entire book to cover, but for the scope of this book, the previous
description will give you a good idea of what a shader does, and the possible effects that it can achieve.
Now that we have discussed how a shader renders a single object, it is worth discussing how Unity
renders all of the objects using the render pipeline.

Render pipeline and URP
We have covered how the video card renders an object, but Unity is in charge of asking the video card to
execute a shader pipeline per object. To do so, Unity needs to do lots of preparations and calculations
to determine exactly how and when each shader needs to be executed. The responsibility of doing
this is with what Unity calls the render pipeline.

For more information about shaders, you can use the following link: https://docs.
unity3d.com/Manual/shader-writing.html

https://docs.unity3d.com/Manual/shader-writing.html
https://docs.unity3d.com/Manual/shader-writing.html

Material Alchemy: Using URP and Shader Graph for Stunning Visuals300

Think of Unity’s render pipeline like a film director orchestrating how each scene (object) is presented,
with URP as one of its advanced cameras, optimizing how each shot is captured. Also, think of the
render pipeline as the stage crew of a theater, setting the scene and lighting for each object (actor) to
ensure they look the best under the spotlight.

A render pipeline is a way to draw the objects of the scene. At first, it sounds like there should be just
one simple way of doing this, for example, iterating over all objects in the scene and executing the
shader pipeline with the shader specified in each object’s material, but it can be more complex than that.

Usually, the main difference between one render pipeline and another is the way in which lighting
and some advanced effects are calculated, but they can differ in other ways.

In previous Unity versions, there was just one single render pipeline, which is now called the built-in
renderer pipeline (also known as BIRP). It was a pipeline that had all of the possible features you would
need for all kinds of projects, from mobile 2D graphics and simple 3D to cutting-edge 3D graphics like
the ones you can find in consoles or high-end PCs. This sounds ideal, but actually, it isn’t. Having one
single giant renderer that needs to be highly customizable to adapt to all possible scenarios generates
lots of overhead and limitations that cause more headaches than creating a custom render pipeline.
Luckily, the last versions of Unity introduced the Scriptable Render Pipeline (SRP), a way to create a
render pipeline adapted to your project.

Luckily, Unity doesn’t want you to create your own render pipeline for each project (which is a complex
task), so it has created two custom pipelines for you that are ready to use: URP (formerly called LWRP,
or Lightweight Render Pipeline), which stands for Universal Render Pipeline, and HDRP, which stands
for High Definition Render Pipeline. The idea is that you must choose one or the other based on your
project’s requirements (unless you really need to create your own).

URP, the one we selected when creating the project for our game, is a render pipeline suitable for
most games that don’t require lots of advanced graphics features, such as mobile games or simple PC
games, while HDRP is packed with lots of advanced rendering features for high-quality games. The
latter requires high-end hardware to run, while URP runs on almost every relevant target device. It is
worth mentioning that you can swap between BIRP, HDRP, and URP whenever you want, including
after creating the project (but this is not recommended):

Chapter 10 301

Figure 10.4: Project wizard showing HDRP and URP templates

We could discuss how each one is implemented and the differences between each, but again, this
could fill entire chapters. Right now, the idea of this section is for you to know why we picked URP
when we created our project; it has some restrictions we will encounter throughout this book that we
will need to take into account, so it is good to know why we accepted those limitations. One reason
we chose it was that it allows us to run our game on all relevant hardware.

Another reason why we have chosen URP is that it has support for Shader Graph, the Unity tool that we
will be using in this chapter to create custom effects. Previous Unity built-in pipelines didn’t provide
us with such a tool (aside from third-party plugins). Finally, another reason to introduce the concept
of URP is that it comes with lots of built-in shaders that we will need to know about before creating
our own to prevent reinventing the wheel. This will allow us to get used to those shaders, because if
you came from previous versions of Unity, the shaders you already know won’t work here; actually,
this is exactly what we are going to discuss in the next section of this chapter: the difference between
the different URP built-in shaders.

Material Alchemy: Using URP and Shader Graph for Stunning Visuals302

URP built-in shaders
Now that we know the difference between URP and other pipelines, let’s discuss which shaders are
integrated into URP. Let’s briefly describe the three most important shaders in this pipeline:

• Lit: This is the replacement of the old Standard Shader. This shader is useful for creating all
kinds of realistic physics materials, such as wood, rubber, metal, skin, and combinations of
them (such as a character with skin and metal armor). It supports features like normal map-
ping, occlusion, different lighting workflows like Metallic and Specular, and transparencies.

• Simple Lit: This is the replacement of the old Mobile/Diffuse Shader. As the name suggests,
this shader is a simpler version of Lit, meaning that its lighting calculations are simpler ap-
proximations of how light works, with fewer features than its counterpart. Basically, when you
have simple graphics without realistic lighting effects, this is the best choice.

• Unlit: This is the replacement of the old Unlit/Texture Shader. Sometimes, you need objects with
no lighting whatsoever, and in that case, this is the shader for you. No lighting doesn’t mean an
absence of light or complete darkness; it actually means that the object has no shadows at all,
and it’s fully visible without any shade. Some simplistic graphics can work with this, relying
on shadowing being baked in the texture, meaning that the texture comes with the shadow.

This is extremely performant, especially for low-end devices such as mobile phones. Also, you have
other cases such as light tubes or screens, objects that can’t receive shadows because they emit light,
so they will be seen at their full color even in complete darkness. In the following screenshot, you can
see a 3D model using an Unlit Shader. It looks like it’s being lit, but it’s just the texture of the model
that applied lighter and darker colors in different parts of the object:

Figure 10.5: Pod using an Unlit effect to simulate cheap lighting

Chapter 10 303

Let’s do an interesting disintegration effect with the Simple Lit Shader to demonstrate its capabilities.
You must do the following:

1. Begin by sourcing a Cloud Noise texture. You can find suitable textures on various free asset
websites. Ensure the texture’s resolution and format are compatible with Unity for optimal
results:

Figure 10.6: Noise texture

2. Select the recently imported texture in the Project panel.
3. In the Inspector, set the Alpha Source property to From Gray Scale. This will make the alpha

channel of the texture be calculated based on the grayscale of the image. We will use the calcu-
lated alpha value to determine which pixels need to be deintegrated first (the darker ones first):

Figure 10.7: Applying the Alpha Source From Gray Scale texture setting

The alpha channel of a color is often associated with transparency, but you will notice that
our object won’t be transparent. The alpha channel is extra color data that can be used for
several purposes when creating effects. In this case, we will use it to determine which pixels
are being disintegrated first.

Material Alchemy: Using URP and Shader Graph for Stunning Visuals304

4. Click the + icon in the Project view and select Material� You can rename it, giving it a name
that makes it easier to find later:

Figure 10.8: Material creation button

5. Create a cube by going to the top menu and selecting GameObject | 3D Object | Cube:

Figure 10.9: Cube primitive creation

6. Drag the material from the Project window to the cube in the Scene window.
7. Click in the drop-down menu at the right of the Shader property in the Inspector and look for

the Universal Render Pipeline | Simple Lit option. We could also work with the default shader
(Lit), but Simple Lit is going to be easier on performance, and we don’t need the advanced
features of Lit:

Chapter 10 305

Figure 10.10: Simple Lit Shader selection

8. Next, select the newly created material in your project. Drag and drop the downloaded Cloud
Noise texture into the Base Map section. This step visually binds your texture to the shader,
enabling the disintegration effect.

9. Enable the Alpha Clipping option and adjust the Threshold slider to 0.5. Alpha Clipping plays
a critical role in how the shader interprets texture transparency, influencing the disintegration
effect’s appearance.

Figure 10.11: Alpha Clipping Threshold material slider

Material Alchemy: Using URP and Shader Graph for Stunning Visuals306

10. As you move the Threshold slider, the object will start to disintegrate. Alpha Clipping discards
pixels that have less alpha intensity than the Threshold value:

Figure 10.12: Disintegration effect with Alpha Clipping

11. Finally, set Render Face to Both to see both sides of the cube’s faces:

Figure 10.13: Double-sided render face

12. Take into account that the artist that creates the texture can configure the Alpha channel man-
ually instead of calculating it from the grayscale, just to control exactly how the disintegration
effect must look regardless of the texture’s color distribution:

Chapter 10 307

Figure 10.14: Double-sided Alpha Clipping

The idea of this section is not to give a comprehensive guide of all of the properties of all URP shaders
but to give you an idea of what a shader can do when properly configured and when to use each of
the integrated shaders. Sometimes, you can achieve the effect you need just by using existing shaders,
probably in 99% of cases in simple games, so try to stick to them as much as you can. But if you really
need to create a custom shader to create a very specific effect, the next section will teach you how to
use the URP tool called Shader Graph.

Creating shaders with Shader Graph
Now that we know how shaders work and the existing shaders in URP, we have a basic notion of
when it is necessary to create a custom shader and when it is not necessary. In case you really need
to create one, this section will cover the basics of effects creation with Shader Graph, a tool to create
effects using a visual node-based editor. This is an easy tool to use when you are not used to coding.

In this section, we will discuss the following concepts of Shader Graph:

• Creating our first Shader Graph
• Using textures
• Combining textures
• Applying transparency
• Creating vertex effects

Let’s start by seeing how we can create and use a Shader Graph.

Material Alchemy: Using URP and Shader Graph for Stunning Visuals308

Creating our first Shader Graph
Shader Graph is a tool that allows us to create custom effects using a node-based system. An effect in
Shader Graph can look like in the following screenshot:

Figure 10.15: Shader Graph with nodes to create a custom effect

We will discuss later what those nodes do and we will be creating an example effect step by step, but
in the screenshot, you can see how we created and connected several nodes—the interconnected
boxes—with each one executing a specific process to achieve the effect. The idea of creating effects
with Shader Graph is to learn which specific nodes you need and how to connect them properly. This
is similar to the way we code the gameplay of the game, but this Shader Graph is adapted and simpli-
fied just for effect purposes.

To create and edit our first Shader Graph, do the following:

1. In the Project window, click the + icon and find the Shader Graph | URP | Lit Shader Graph
option. This will create a Shader Graph using the PBR mode, meaning that this shader will
support lighting effects (unlike Unlit graphs):

Figure 10.16: PBR Shader Graph creation

Chapter 10 309

2. Name it Water. If you want the opportunity to rename the asset, remember that you can select
the asset, right-click, and select Rename:

Figure 10.17: Shader Graph asset

3. Create a new material called WaterMaterial and set Shader to Shader Graphs/Water. If for some
reason Unity doesn’t allow you to do that, try right-clicking on the Water graph and clicking
Reimport. As you can see, the created Shader Graph now appears as a shader in the material:

Figure 10.18: Setting a Shader Graph as a material shader

4. Create a plane with the GameObject | 3D Object | Plane option by right-clicking from the
Hierarchy window.

5. Drag the material to the plane to apply it.

Now, you have created your first custom shader and applied it to a material. So far, it doesn’t look inter-
esting at all—it’s just a gray effect—but now it’s time to edit the graph to unlock its full potential. As the
name of the graph suggests, we will be creating a water effect in this chapter to illustrate several nodes
of the Shader Graph toolset and how to connect them. So, let’s start by discussing the Master Node.

Material Alchemy: Using URP and Shader Graph for Stunning Visuals310

When you open the graph by double-clicking the shader asset, you will see the following:

Figure 10.19: Master Node with all of the properties needed to calculate the object’s appearance

All nodes will have input pins, the data needed to work, and output pins, the results of their process.
As an example, in a sum operation, we will have two input numbers and an output number, the result
of the sum. In this case, you can see that the Master Node only contains inputs, and that’s because all
data that enters the Master Node will be used by Unity to calculate the rendering and lighting of the
object, things such as the desired object color or texture (the Base Color input pin), how smooth it is
(the Smoothness input pin), or how much metal it contains (the Metallic input pin), properties that
will affect how the lighting will be applied to the object.

Chapter 10 311

You can see that the Master Node is split between a Vertex section and a Fragment section. The first
is capable of changing the mesh of the object we are modifying to deform it, animate it, etc., while
the latter will change how it will look, which textures to use, how it will be illuminated, etc. Let’s start
exploring how we can change that data in the Fragment section by doing the following:

1. Double-click the Shader Graph asset in the Project view to open its editor.
2. Click in the gray rectangle at the left of the Base Color input pin:

Figure 10.20: Base Color node input pin

3. In the color picker, select a light blue color, like water. Select the bluish part of the circle and
then a shade of that color in the middle rectangle:

Figure 10.21: Color picker

4. Set Smoothness to 0.9, which will make the object almost completely smooth (90% of the total
smoothness possible). This will make our water reflect the sky almost completely:

Figure 10.22: Smoothness PBR Master Node input pin

Material Alchemy: Using URP and Shader Graph for Stunning Visuals312

5. Click the Save Asset button at the top left of the window:

Figure 10.23: Shader Graph saving options

6. Go back to the Scene view and check that the plane is light blue with the sun reflected on it:

Figure 10.24: Initial Shader Graph results

As you can see, the behavior of the shader varies according to the properties you set in the Master
Node, but so far, doing this is no different than creating an Unlit Shader and setting up its properties;
the real power of Shader Graph is when you use nodes that do specific calculations as inputs of the
Master Node. We will start looking at the texture nodes, which allow us to apply textures to our model.

Using textures
The idea of using textures is to have an image applied to the model in a way that we can paint different
parts of the models with different colors. Remember that the model has a UV map, which allows Unity
to know which part of the texture will be applied to which part of the model:

Chapter 10 313

Figure 10.25: On the left, a face texture; on the right, the same texture applied to a face mesh

Like in visual scripting, we will use interconnected nodes in our shader graph that will execute spe-
cific shader operations. We have several nodes to do this task, one of them being Sample Texture 2D,
a node that has two main inputs. First, it asks us for the texture to sample or apply to the model, and
then for the UV. You can see it in the following screenshot:

Figure 10.26: Sample Texture 2D node

Material Alchemy: Using URP and Shader Graph for Stunning Visuals314

As you can see, the default value of the Texture input node is None, so there’s no texture by default,
and we need to manually specify that. For UV, the default value is UV0, meaning that, by default, the
node will use the main UV channel of the model; and yes, a model can have several UVs set. For now,
we will stick with the main one. If you are not sure what that means, UV0 is the safest option. Let’s
try this node, by doing the following:

1. Download and import a tileable water texture from the internet:

Figure 10.27: Tileable water texture

2. Select the texture and be sure that the Wrap Mode property of the texture is set to Repeat,
which will allow us to repeat the texture as we did in the terrain because the idea is to use this
shader to cover large water areas:

Figure 10.28: Texture Repeat mode

3. In the Water Shader Graph, right-click in an empty area of the Shader Graph and select Create
Node:

Figure 10.29: Shader Graph Create Node option

4. In the Search box, write Sample texture and all of the sampler nodes will show up. Double-click
SampleTexture2D. If for some reason you can’t double-click the option, right-click on it first
and then try again. There is a known bug in this tool and this is the workaround:

Chapter 10 315

Figure 10.30: Sample texture node search

5. Click in the circle to the left of the Texture input pin of the Sample Texture 2D node. It will
allow us to pick a texture to sample—just select the water one. You can see that the texture
can be previewed in the bottom part of the node:

Figure 10.31: Sample texture node with a texture in its input pin

Material Alchemy: Using URP and Shader Graph for Stunning Visuals316

6. Drag the RGBA output pin from the Sample Texture 2D node to the Base Color input pin of
the Master Node:

Figure 10.32: Connecting the results of texture sampling with the Base Color pin of the
Master Node

7. Click the Save Asset button in the top-left part of the Shader Graph editor and see the changes
in the Scene view:

Figure 10.33: Results of applying a texture in our Shader Graph

As you can see, the texture is properly applied to the model, but if you take into account that the de-
fault plane has a size of 10x10 meters, the ripples of the water seem too big. So, let’s tile the texture!

To do this, we need to change the UVs of the model, making them bigger. You may imagine that bigger
UVs mean the texture should also get bigger, but take into account that we are not making the object
bigger; we are just modifying the UV.

Chapter 10 317

In the same object area, we will display more of the texture area, meaning that in the bigger texture
sample area (achieved by bigger UVs), repetitions of the texture may appear. To do so, follow the next
steps:

1. Right-click in any empty space and click New Node to search for the UV node:

Figure 10.34: Searching for the UV node

2. Using the same method, create a Multiply node.
3. Drag the Out pin of the UV node to the A pin of the Multiply node to connect them.
4. Set the B pin input value of Multiply to 4,4,4,4:

Figure 10.35: Multiplying the UVs by 4

Material Alchemy: Using URP and Shader Graph for Stunning Visuals318

5. Drag the Out pin of the Multiply node to UV of the Sample Texture 2D node to connect them:

Figure 10.36: Using the multiplied UVs to sample the texture

6. If you save the graph and go back to the Scene view, you can see that now the ripples are
smaller, because we have tiled the UVs of our model. You can also see that in the preview of
the Sampler Texture 2D node:

Figure 10.37: Results of the model’s UV multiplication

Another interesting effect we can do now is to apply an offset to the texture to move it. The idea is that
even if the plane is not actually moving, we will simulate the flow of the water through it, moving just
the texture. Remember, the responsibility of determining the part of the texture to apply to each part
of the model belongs to the UV, so if we add values to the UV coordinates, we will be moving them,
generating a texture sliding effect. To do so, let’s do the following:

1. Create an Add node to the right of the UV node.

Chapter 10 319

2. Connect the Out pin of UV to the A pin of the Add node:

Figure 10.38: Adding values to the UVs

3. Create a Time node at the left of the Add node.
4. Connect the Time node to the B pin of the Add node:

Figure 10.39: Adding Time to the UVs

Material Alchemy: Using URP and Shader Graph for Stunning Visuals320

5. Connect the Out pin of the Add node to the A input pin of the Multiply node:

Figure 10.40: Added and multiplied UVs as an input of the sample texture

6. Save and see the water moving in the Scene view. If you don’t see it moving, click the layers
icon in the top bar of the scene and check Always Refresh:

Figure 10.41: Enabling Always Refresh to preview the effect

Chapter 10 321

7. If you feel the water is moving too fast, try using the multiplication node to make the time a
smaller value. I recommend you try it by yourself before looking at the next screenshot, which
has the answer:

Material Alchemy: Using URP and Shader Graph for Stunning Visuals322

So, to recap, first we added the time to the UV to move it and then multiplied the result of the moved
UV to make it bigger to tile the texture. It is worth mentioning that there’s a Tiling and Offset node
that does all of this process for us, but I wanted to show you how a simple multiplication to scale
the UV and an add operation to move it generates a nice effect; you can’t imagine all of the possible
effects you can achieve with other simple mathematical nodes! Actually, let’s explore other usages of
mathematical nodes to combine textures in the next section.

Combining textures
Even though we have used nodes, we haven’t created anything that can’t be created using regular
shaders, but that’s about to change. So far, we can see the water moving, but it still looks static, and
that’s because the ripples are always the same. We have several techniques to generate ripples; the
simplest one would be to combine two water textures moving in different directions to mix their
ripples. Actually, we can simply use the same texture, just flipped to save some memory. To combine
the textures, we will sum them and then divide them by 2, so basically, we are calculating the average
of the textures! Let’s do that by doing the following:

1. Select all of the nodes between Time and Sampler 2D (including them) by creating a selection
rectangle by clicking in any empty space in the graph, holding and dragging the click, and then
releasing when all target nodes are covered:

Figure 10.45: Selecting several nodes

2. Right-click and select Copy, and then again right-click and select Paste, or use the classic Ctrl
+ C, Ctrl + V commands (Command + C, Command + V on Mac).

When learning DirectX, making shaders was harder given you needed to learn a less
user-friendly language called HLSL. While for most cases Shader Graph is all you need, I
don’t regret at all learning such shader languages, as they have access to more advanced
features that node-based shading languages usually don’t, and they give you a deeper
understanding of the internals of the GPU. For more info about how to create code-based
shaders in URP, you can check this: https://docs.unity3d.com/Packages/com.unity.
render-pipelines.universal@15.0/manual/writing-custom-shaders-urp.html

mailto:https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@15.0/manual/writing-custom-shaders-urp.html
mailto:https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@15.0/manual/writing-custom-shaders-urp.html

Chapter 10 323

3. Move the copied nodes below the original ones:

Figure 10.46: Duplication of nodes

4. For the copied nodes, set the B pin of the Multiply node connected to Sample Texture 2D to
-4,-4,-4,-4. You can see that that flipped the texture.

5. Also, set the B pin of the Multiply node connected to the Time node to -0.1:

Figure 10.47: Multiplication of values

Material Alchemy: Using URP and Shader Graph for Stunning Visuals324

6. Create an Add node at the right of both Sampler Texture 2D nodes and connect the outputs of
those nodes to the A and B input pins of the Add node:

Figure 10.48: Adding two textures

7. You can see that the resulting combination is too bright because we have summed up the inten-
sity of both textures, so let’s fix that by multiplying the Out of the Add node by 0.5,0.5,0.5,0.5,
which will divide each resulting color channel by 2, averaging the color. You can also exper-
iment with what happens when you set different values for each channel if you want, but for
our purposes, 0.5 is the proper value for each channel:

Figure 10.49: Dividing the sum of two textures to get the average

8. Connect the Out pin of the Multiply node to the Base Color pin of the Master Node to apply
all of those calculations to the color of the object.

Chapter 10 325

9. Save the asset and see the results in the Scene view:

Figure 10.50: Results of texture blending

You can keep adding nodes to make the effect more diverse, such as using Sine nodes (which will
execute the trigonometry sine function) to apply non-linear movements, but I will let you learn that
by experimenting with it by yourself. For now, we will stop here. As always, this topic deserves a full
book, and the intention of this chapter is to give you a small taste of this powerful Unity tool. I rec-
ommend you look for other Shader Graph examples on the internet to learn other usages of the same
nodes and, of course, new nodes. One thing to consider here is that everything we have done so far is
basically applied to the Fragment Shader stage of the shader pipeline we discussed earlier. Now, let’s
use the Blending shader pipeline stage to apply some transparency to the water.

Applying transparency
Before declaring our effect finished, a little addition we can do is to make the water a little bit transpar-
ent. Remember that the shader pipeline has a blending stage, which has the responsibility of blending
each pixel of our model into the image being rendered in this frame. The idea is to make our Shader
Graph modify that stage to apply Alpha Blending, a blending mode that combines our model and the
previously rendered models based on the Alpha value of our model.

For more examples of shader graphs, I recommend checking out the following link:
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/
ShaderGraph-Samples.html

mailto:https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/ShaderGraph-Samples.html
mailto:https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/ShaderGraph-Samples.html

Material Alchemy: Using URP and Shader Graph for Stunning Visuals326

To get that effect, take the following steps:

1. Look for the Graph Inspector window floating around. If you don’t see it, click the Graph In-
spector button in the top-right part of the Shader Graph editor. Try also expanding the Shader
Graph window to display it in case it’s hidden behind the right bound of the window.

2. Click the Graph Settings tab.
3. Set the Surface Type property to Transparent.
4. Set the Blending Mode property to Alpha if it isn’t already at that value:

Figure 10.51: Graph Inspector transparency settings

5. Set the Alpha input pin of the Master Node to 0.5.

Figure 10.52: Setting Alpha of the Master Node

Chapter 10 327

6. Save the Shader Graph and see the transparency applied in the Scene view. If you can’t see the
effect, just put a cube into the water to make the effect more evident:

Figure 10.53: Shadows from the water being applied to a cube

7. You can see the shadows that the water is casting on our cube because Unity doesn’t know
the object is transparent and hence casts shadows. Click on the water plane and look for the
Mesh Renderer component in the Inspector. If you don’t see the shadow, click the lightbulb
at the top of the Scene view.

Figure 10.54: Enabling lights in the Scene view

8. In the Lighting section, set Cast Shadows to Off; this will disable shadow casting from the
plane on the parts of the cube that are underwater:

Figure 10.55: Disabling shadow casting

Material Alchemy: Using URP and Shader Graph for Stunning Visuals328

Adding transparency is a simple process but it has its caveats, like the shadow problem, and in more
complex scenarios, it can have other problems, like increasing overdraw, meaning the same pixel
needs to be drawn several times (the pixel belonging to the transparent object, and one of the objects
behind). I would suggest you avoid using transparency unless it is necessary. Actually, our water can
live without transparency, especially when we apply this water to the river basin around the base, be-
cause we don’t need to see the part under the water; but the idea is for you to know all of your options.
In the next screenshot, you can see how we have put a giant plane with this effect below our base, big
enough to cover the entire basin:

Figure 10.56: Using our water in the main scene

From now on, we can do plenty of things with our shader. We can think about simulating water foam
for the pixels that are higher than a certain height, leveraging the vertex animation we added. We
could also change the water scrolling direction via scripting or using sine nodes. The sky is the limit!

Now that we have modified how the object looks through the Fragment node section, let’s discuss how
to use the Vertex section to apply a mesh animation to our water.

I have a friend who always jokes about me, saying that everything can be solved with a
shader, but jokes aside, it is an extremely useful tool if used cleverly. In the past, devel-
opers used shaders to do non-graphics-related processing, like mathematics simulations,
reading the generated pixels as the needed results. That led to what today is known as
compute shaders, which essentially refers to running custom programs on a GPU to do
calculations, leveraging the power of the GPU. Of course, Unity supports compute shad-
ers; you can learn more about them here: https://docs.unity3d.com/Manual/class-
ComputeShader.html

https://docs.unity3d.com/Manual/class-ComputeShader.html
https://docs.unity3d.com/Manual/class-ComputeShader.html

Chapter 10 329

Creating vertex effects
So far, we have applied water textures to our water, but it’s still a flat plane. We can go further than
that and make the ripples not only via textures but also by animating the mesh. To do so, we will
apply the noise texture we used at the beginning of the chapter in the shader, but instead of using it
as another color to add to the Base Color of the shader, we will instead use it to offset the Y position
of the vertexes of our plane.

Due to the chaotic nature of the noise texture, the idea is that we will apply a vertical offset to different
parts of the model, so we can emulate the ripples:

Figure 10.57: Default plane mesh subdivided into a grid of 10x10 with no offset

To accomplish something like this, you can modify the Vertex section of your shader to look like the
following:

Figure 10.58: Ripples vertex effect

Material Alchemy: Using URP and Shader Graph for Stunning Visuals330

In the graph, you can see how we are creating a vector whose y axis depends on the noise texture
we downloaded at the beginning of the chapter. The idea behind that is to create a vector pointing
upward whose length is proportional to the grayscale factor of the texture; the whiter the pixel of the
texture, the longer the offset. This texture has an irregular yet smooth pattern so it can emulate the
behavior of the tide.

Please notice that, here, we used Sample Texture 2D LOD instead of Sample Texture 2D; the latter
does not work in the Vertex section, so keep that in mind.

Then we multiply the result by 0.3 to reduce the height of the offset to add, and then we add the result
to the Position node. See that the Space property of the Position node is set to Object mode. We need
that mode to work with the Vertex section of the Shader Graph (we discussed World and Local spaces
before in Chapter 2, Crafting Scenes and Game Elements, but you can also search Object vs World
Space on the internet for more info about this). Finally, the result is connected to the Position node
of the Vertex section.

If you save, you will see something like the following image:

Figure 10.59: Ripples vertex effect applied

Of course, in this case, the ripples are static because we didn’t add any time offset to the UV as we did
before. In the following screenshot, you can see how to add that, but before looking at it, I recommend
you try to resolve it first by yourself as a personal challenge:

Chapter 10 331

Figure 10.60: Animated ripples vertex effect graph

As you can see, we are again taking the original UV and adding the time multiplied by any factor so it
will slowly move, the same as we did previously with our water texture. You can keep playing around
with this, changing how this looks with different textures, multiplying the offset to increase or reduce
the height of the ripples, applying interesting math functions like sine, and so much more; but for
now, let’s finish with this.

Summary
In this chapter, we discussed how a shader works in the GPU and how to create our first simple shader
to achieve a nice water effect. Working with shaders is a complex and interesting job, and in a team,
there is usually one or more people in charge of creating all of these effects, in a position called
technical artist; so, as you can see, this topic can expand to a whole career. Remember, the intention
of this book is to give you a small taste of all the possible roles you can take in the industry, so if you
really liked this role, I suggest you start reading shader-exclusive books. You have a long but super
interesting road in front of you.

Enough shaders for now! In the next chapter, we will look at how to improve our graphics and create
visual effects with particle systems!

Material Alchemy: Using URP and Shader Graph for Stunning Visuals332

Learn more on Discord
Read this book alongside other users, Unity game development experts, and the author himself. Ask
questions, provide solutions to other readers, chat with the author via Ask Me Anything sessions, and
much more. Scan the QR code or visit the link to join the community:

https://packt.link/unitydev

https://packt.link/unitydev

11
Captivating Visual Effects:
Harnessing Particle Systems and
Visual Effect Graph

In this chapter, we will continue learning about visual effects for our game. We will be discussing
particle systems, which are a way to simulate fire, waterfalls, smoke, and all kinds of fluids. We will
see two Unity particle systems to create these kinds of effects, Shuriken and Visual Effect (VFX) Graph,
the latter being more powerful than the first but requiring more hardware. These technologies are
used widely in different games to simulate all kinds of effects, like explosions and gun muzzles in war
games such as Battlefield or magic effects, as in Hogwarts Legacy.

In this chapter, we will cover the following particle system topics:

• Introduction to particle systems
• Creating fluid simulations
• Creating complex simulations with Visual Effect Graph

Introduction to particle systems
All graphics and effects we have created so far use static meshes—3D models that can’t be skewed, bent,
or deformed in any way other than by using shaders. Fluids such as fire and smoke can’t always be
represented using this kind of mesh, but we can simulate these effects with a combination of static
meshes, and this is where particle systems are useful.

Particle systems are objects that emit and animate lots of particles or billboards, which are simple
quad meshes that face the camera. Each particle is a static mesh, but rendering, animating, and
combining lots of them can generate the illusion of a fluid.

Captivating Visual Effects: Harnessing Particle Systems and Visual Effect Graph334

In Figure 11.1, you can see a smoke effect using particle systems on the left, and on the right, the
Wireframe view of the same particles. There, you can see the quads that create the illusion of smoke,
which is done by applying a smoke texture to each of the particles and animating them, so they spawn
at the bottom and move up in random directions:

Figure 11.1: On the left side, a smoke particle system; on the right side, the wireframe of the same
system

In this section, we will cover the following topics related to particles:

• Creating a basic particle system
• Using advanced modules

Let’s start by discussing how to create our very first particle system.

Creating a basic particle system
To illustrate the creation of a particle system, let’s create an explosion effect. The idea is to spawn lots
of particles at once and spread them in all directions. Let’s start with creating the particle system and
configuring the basic settings it provides to change its default behavior. To do so, follow these steps:

1. Select the GameObject | Effects | Particle System option:

Chapter 11 335

Figure 11.2: The Particle System option

2. You can see the effect in the following screenshot. The default behavior is a column of particles
going up, like the smoke effect shown previously. Let’s change that.

Figure 11.3: Default particle system appearance

3. Click the created object in the scene and look at the Inspector.
4. Open the Shape section by clicking on the title. Here you will be able to specify the particle

emitter shape from where the particles are going to be spawned.

Captivating Visual Effects: Harnessing Particle Systems and Visual Effect Graph336

5. Change the Shape property to Sphere. Now the particles should move in all possible directions
instead of following the default one:

Figure 11.4: Shape properties

6. In the Particle System module (usually known as Main), set Start Speed to 10. This will make
the particles move faster.

7. In the same module, set Start Lifetime to 0�5. This specifies how long a particle will live. In
this case, we have given a lifetime of half a second. In combination with the speed (10 meters
per second), this makes the particles disappear after moving 5 meters:

Figure 11.5: Main Particle System module

8. Open the Emission module and set Rate over Time to 0. This property specifies how many
particles will be emitted per second, but for an explosion, we actually need a burst of particles,
so we won’t emit particles constantly over time in this case.

9. In the Bursts list, click the + button at the bottom, and in the created item in the list, set the
Count column to 100:

Figure 11.6: The Emission module

Chapter 11 337

10. In the Main module (the one titled Particle System) set Duration to 1 and uncheck Looping.
In our case, the explosion won’t repeat constantly; we just need one explosion:

Figure 11.7: The Looping checkbox

11. Now that we already have the particle in the scene, we notice that it isn’t looping. In order to
achieve this effect, you need to manually hit the Play button that is shown in the Particle Effect
window in the bottom-right part of the Scene view to see the system. If you don’t see that window,
remember to first select the GameObject with the particle system in the Hierarchy window.

Figure 11.8: Particle system playback controls

12. Set Stop Action to Destroy. This will destroy the object when the Duration time has passed.
This will just work when you are running the game, so you can safely use this configuration
while editing your scene:

Figure 11.9: Stop Action set to Destroy

13. Set Start Size of the Main module to 3. This will make the particles bigger so they seem denser:

Figure 11.10: Particle system Start Size

14. Click on the down-pointing arrow to the right of the Start Rotation property of the Main module
and select Random Between Two Constants.

Captivating Visual Effects: Harnessing Particle Systems and Visual Effect Graph338

15. Set Start Rotation to 0 and 360 in the two input values that appeared after step 14. This allows us
to give the particles a random rotation when they spawn to make them look slightly different
from each other:

Figure 11.11: Random Start Rotation

16. Now the particles behave as expected, but they don’t look as expected. Let’s change that. Create
a new material by clicking on the + icon in the Project view and selecting Material. Let’s call
it Explosion.

17. Set its shader to Universal Render Pipeline/Particles/Unlit. This is a special shader that is used
to apply a texture to the particle system:

Figure 11.12: Particle system Material shader

18. Download a smoke particle texture from the internet or the Asset Store. In this case, it is im-
portant to download one with a black background; ignore the others:

Figure 11.13: Smoke particle texture

19. Set this texture as the Base Map of the material.
20. Set Surface Type to Transparent and Blending Mode to Additive. Doing this will make the

particles blend with each other, instead of being drawn on each other, to simulate a big mass of
smoke instead of individual smoke puffs. We use the Additive mode because our texture has a
black background and we want to create a lighting effect (the explosion will brighten the scene):

Chapter 11 339

Figure 11.14: Surface options for particles

21. Drag your material to the Material property of the Renderer module:

Figure 11.15: Particle Material settings

22. Now your system should look like the following figure:

Figure 11.16: Result of the previous settings

With those steps, we have changed how the particles or billboards will spawn (using the Emission
module), in which direction they will move (using the Shape module), how fast they will move, how
long they will last, how big they will be (using the Main module), and what they will look like (using
the Renderer module). Creating particle systems is a simple case of properly configuring their differ-
ent settings. Of course, doing it properly is an art on its own; it requires creativity and knowledge of
how to use all the settings and configurations they provide. So, to increase our skillset, let’s discuss
some advanced modules.

Captivating Visual Effects: Harnessing Particle Systems and Visual Effect Graph340

Using advanced modules
Our system looks nice, but we can improve it a lot, so let’s enable some new modules to increase its
quality:

1. Check the checkbox to the left of Color over Lifetime to enable it:

Figure 11.17: Enabling the Color over Lifetime module

2. Open the module by clicking on the title and then click the white bar to the right of the Color
property. This will open the Gradient Editor.

3. Click slightly to the right of the top-left white marker in the bar to create a new marker. Also,
click slightly to the left of the top-right white marker to create the fourth marker. These markers
will allow us to specify the transparency of the particles during their lifetime:

Figure 11.18: Color over Lifetime gradient editor

4. If you accidentally created unwanted markers, just drag them outside the window to remove
them. Make sure that Mode is set to Blend (Classic).

5. Click on the top-left marker (not the one we created, the one that was already there) and set
the Alpha slider at the bottom to 0. Do the same with the top-right marker, as shown in the
following screenshot. Now you should see the particles fading away instead of popping out of
existence when the explosion is finishing:

Figure 11.19: Fade-in and fade-out gradient

Chapter 11 341

6. Enable the Limit Velocity over Lifetime module by clicking on its checkbox.
7. Set the Dampen setting to 0.1. This will make the particles slowly stop instead of continuing

to move:

Figure 11.20: Dampen the velocity to make the particles stop

8. Enable Rotation over Lifetime and set Angular Velocity between -90 and 90. Remember that
you should set the value to Random Between Two Constants by clicking on the down-pointing
arrow to the right of the property. Now the particles should rotate during their lives to simulate
more motion:

Figure 11.21: Random rotation velocity

Some of these effects will be very subtle given the short lifetime we set in the Main module when we
just created the particle. Feel free to increase the Lifetime value to see those effects in more detail, but
consider that this could lead to an excessive number of particles if you spawn them frequently, reduc-
ing performance. Just be wary about how they impact your performance when tweaking those values.

As you can see, there are lots of extra modules that can be enabled and disabled to add layers of behav-
ior on top of the existing ones, so again, use them creatively to create all kinds of effects. Remember
that you can create Prefabs of these systems to replicate them all over your scene. I also recommend
searching for and downloading particle effects from the Asset Store to see how other people have
used the same system to create amazing effects. Seeing a variety of different systems is the best way to
learn how to create them, and that is what we are going to do in the next section: create more systems!

Creating fluid simulations
As we said, the best way to learn how to create particle systems is to keep looking for already-created
particle systems and explore how people have used the various system settings to create completely
different simulations.

In this section, we will learn how to create the following effects using particle systems:

• A waterfall effect
• A bonfire effect

Let’s start with the simplest one, the waterfall effect.

Captivating Visual Effects: Harnessing Particle Systems and Visual Effect Graph342

Creating a waterfall effect
In order to do this, follow these steps:

1. Create a new particle system (GameObject | Effects | Particle System).
2. Set Shape to Edge and Radius to 5 in the Shape module. This will make the particles spawn

along a line of emission:

Figure 11.22: Edge shape

3. Set the Rate over Lifetime value of the Emission module to 50.
4. Set the Start Size of the Main module to 3 and Start Lifetime to 3:

Figure 11.23: Main module settings

5. Set Gravity Modifier of the Main module to 0.5. This will make the particles fall down:

Figure 11.24: Gravity Modifier in the Main module

6. Use the same Explosion material we created previously for this system:

Figure 11.25: Explosion particle material

7. Enable Color over Lifetime and open the Gradient Editor. Make sure that Mode is set to Blend
(Classic), given that it’s the simplest and most performant one.

8. Click the bottom-right marker and, this time, you should see a color picker instead of an alpha
slider. The top markers allow you to change the transparency over time, while the bottom ones
change the color of the particles over time. Set a light blue color in this marker (you can also
use any other color):

Chapter 11 343

Figure 11.26: White to light blue gradient

As a challenge, I suggest you add a little particle system where this one ends to create some water
splashes, simulating the water colliding with a lake at the bottom. Now we can add this particle system
to one of the hills of our scene to decorate it, as in the following screenshot. I have adjusted the system
a little bit to look better in this scenario. I challenge you to tweak it by yourself to make it look like this:

Figure 11.27: The waterfall particle system being applied to our current scene

Now, let’s create another effect: a bonfire.

Captivating Visual Effects: Harnessing Particle Systems and Visual Effect Graph344

Creating a bonfire effect
In order to create a bonfire, do the following:

1. Create a particle system as we did in the Creating a basic particle system section in GameObject
| Effects | Particle System.

2. Look for a Fire Particle Texture Sheet texture on the internet or in the Asset Store. This kind
of texture should look like a grid of different flame textures. The idea is to apply a flame ani-
mation to our particles, swapping all those mini textures:

Figure 11.28: Particles texture sprite sheet

3. Create a particle material that uses the Universal Render Pipeline/Particles/Unlit shader.
4. Set the flames sprite sheet texture as the Base Map.
5. Set the color to the right of Base Map to white.
6. Set this material as the particle material. Remember to set Surface Type to Transparent and

Blending Mode to Additive:

Chapter 11 345

Figure 11.29: A material with a particle sprite sheet

7. Enable the Texture Sheet Animation module and set the Tiles property according to your Fire
sheet. In my case, I have a grid of 4x4 sprites, so I put 4 in X and 4 in Y. After this, you should
see the particles swapping textures:

Figure 11.30: Enabling Texture Sheet Animation

8. Set Start Speed to 0 and Start Size to 1.5 in the Main module.
9. Set Radius to 0.5 in the Shape module.
10. Create a second particle system and make it a child of Fire System:

Figure 11.31: Parenting particle systems

11. Apply the Explosion material from the explosion example.
12. Set Angle to 0 and Radius to 0.5 in the Shape module.

Captivating Visual Effects: Harnessing Particle Systems and Visual Effect Graph346

The system should look like this:

Figure 11.32: Result of combining fire and smoke particle systems

As you can see, you can combine several particle systems to create a single effect. Take care when
doing this because it’s easy to emit too many particles and affect the game’s performance. Particles are
not cheap and may cause a reduction in the game’s Frames Per Second (FPS) if you are not cautious
with them.

So far, we have explored one of the Unity systems that you can use to create these kinds of effects, and
while this system is enough for most situations, Unity recently released a new one that can generate
more complex effects, called Visual Effect Graph. Let’s see how to use it and see how both systems differ.

Creating complex simulations with Visual Effect Graph
The particle system we have used so far handles all calculations in the CPU. This has both pros and
cons. A pro is that it can run on all possible devices that Unity supports, regardless of their capabilities
(all of them have CPUs), but a con is that we can exceed CPU capabilities easily if we are not cautious
with the number of particles we emit.

One of the reasons why particles are expensive is called overdraw, or the scenario where
you have multiple overlapping objects. Remember, particles are just a lot of quads ren-
dered on top of each other to simulate a single fluid. This means some screen pixels get
drawn several times to achieve the effect, which can be very heavy on the GPU. You can
analyze this and other GPU problems using tools like RenderDoc. Learn more about it
here: https://docs.unity3d.com/Manual/RenderDocIntegration.html

https://docs.unity3d.com/Manual/RenderDocIntegration.html

Chapter 11 347

Modern games require more complex particle systems to generate believable effects, and this kind
of CPU-based particle system solution has started to reach its limit. This is where Visual Effect Graph
comes in:

Figure 11.33: On the left is a massive particle system, and on the right, an example of a Visual Effect
Graph

Visual Effect Graph is a GPU-based particle system solution, meaning that the system is executed in
the video card instead of the CPU. That’s because video cards are far more efficient at executing lots
and lots of little simulations, like the ones each particle of a system needs, so we can reach far higher
orders of magnitude in the number of particles with the GPU than we can with the CPU. The con here
is that we need a fairly modern GPU that has compute shader capabilities to support this system, so
we will exclude certain target platforms using this system (forget about most mobile phones), so use
it if your target platform supports it (mid- to high-end PCs, consoles, and some high-end phones).

In this section, we will discuss the following topics regarding Visual Effect Graph:

• Installing Visual Effect Graph
• Creating and analyzing a Visual Effect Graph
• Creating a rain effect

Let’s start by seeing how we can add support for Visual Effect Graph in our project.

Installing Visual Effect Graph
So far, we have used lots of Unity features that were already installed in our project, but Unity can be
extended with a myriad of plugins, both official and third-party. Visual Effect Graph is one of those
features that needs to be independently installed if you are using Universal Render Pipeline (URP).
We can do that using Package Manager, a Unity window dedicated to managing official Unity plugins.

Something to think about when you are installing those packages is that each package or plugin has its
own version, independent of the Unity version. That means that you can have Unity 2022.1 installed,
but Visual Effect Graph 13.1.8 or whatever version you want, and you can actually update the package
to a newer version without upgrading Unity.

Captivating Visual Effects: Harnessing Particle Systems and Visual Effect Graph348

This is important because some versions of these packages require a minimum version of Unity—for
example, Visual Effect Graph 13.1.8 requires Unity 2022.1 as a minimum. Moreover, some packages
depend on other packages and specific versions of those packages, so we need to ensure we have the
correct versions of every package to ensure compatibility. To be clear, the dependencies of a package
are installed automatically, but sometimes we can have them installed separately, so in that scenario,
we need to check the required version. It sounds complicated, but it is simpler than it sounds.

At the time of writing this book, in order to get Visual Effect Graph working properly, we need version
15.0.6, and we also need the same version of Universal RP. Yes, Universal RP is another feature you
can install using the Package Manager, but as we created the project using the Universal RP template,
it was already installed for us with the proper version. With that in mind, let’s install the Visual Effect
Graph as follows:

1. In the top menu of Unity, go to Window | Package Manager:

Figure 11.34: Package Manager location

Chapter 11 349

2. Remember to be sure the Packages dropdown is in Unity Registry mode, to see the Unity
official packages list:

Figure 11.35: Package Manager Unity Registry mode

3. In the left column, locate Universal RP and check whether it says 15.0.6 or higher to the right.
If it does, jump to step 6. Remember, though, that a higher version may look different or have
different steps for use than the ones displayed in this chapter.

4. If you don’t have version 15.0.6 or higher, click on the Version History tab to the right of the
panel to display a list of all possible versions to install. Locate 15�0�6 and click it. In my case,
it says installed as I have that version already installed in the project, and there’s no other one
available for Unity 2022:

Figure 11.36: Package version selector

5. Click on the Update to 15�0�6 button in the bottom-right part of the window and wait for the
package to update.

Captivating Visual Effects: Harnessing Particle Systems and Visual Effect Graph350

6. Look for the Visual Effect Graph package on the left side of the window. As you did with Uni-
versal RP, make sure you select version 15�0�6 or the closest higher available version:

Figure 11.37: Visual Effect Graph package

7. Click the Install button at the bottom right of the window and wait for the package to install.
Sometimes it is recommended to restart Unity after installing packages, so save your changes
and restart Unity.

Now that we have installed Visual Effect Graph, let’s create our first particle system using it.

Creating and analyzing Visual Effect Graph
The method to create a particle system using Visual Effect Graph is similar to a regular particle system.
We will chain and configure modules as parts of the behavior of the particles, each module adding
some specific behavior. First, we need to create Visual Effect Graph, an asset that will contain all the
modules and configurations, and then make a GameObject that will execute the graph asset to spawn
particles. Let’s do that with the following steps:

1. In the Project window, click on the + button and look for Visual Effects | Visual Effect Graph:

Figure 11.38: Visual Effect Graph

2. From the new pop up, select the option Simple Loop from the available templates. You can
rename the file as Rain:

Chapter 11 351

Figure 11.39: Simple Loop template

3. Create an empty GameObject using the GameObject | Create Empty option:

Figure 11.40: Empty GameObject creation

4. Select the created object and look at the Inspector.

Captivating Visual Effects: Harnessing Particle Systems and Visual Effect Graph352

5. Using the Add Component search bar, look for the Visual Effect component and click on it to
add it to the object:

Figure 11.41: Adding a component to the Visual Effect Graph

6. Drag the Visual Effect asset we created to the Asset Template property of the Visual Effect
component in our GameObject:

Figure 11.42: Visual Effect using the previously created Visual Effect asset

7. You should see the gizmo of a Magic Lamp representing our object, which is the default state
of the new Visual Effect asset, meaning it’s being created correctly:

Figure 11.43 Default Visual Effect asset results

Chapter 11 353

After creating the basic visual effect, and now that we have a base effect, let’s create something that
requires a lot of particles, such as dense rain. Before doing so, we will explore some core concepts
of Visual Effect Graph. If you double-click the Visual Effect asset, you will see the following editor:

Figure 11.44: Visual Effect Graph Editor window

Captivating Visual Effects: Harnessing Particle Systems and Visual Effect Graph354

This window is composed of several interconnected nodes, generating a flow of actions to be executed.
As with Shader Graph, you can navigate this window by keeping the Alt key (Option on Mac) pressed
and dragging with the mouse the empty areas of the graph. At first, it seems similar to Shader Graph,
but it works a little bit differently, so let’s study each section of the default graph.

The first area to explore is the dotted one that contains three nodes. This is what Unity calls a system.
A System is a set of nodes that defines how a particle will behave, and you can have as many as you
want, which is the equivalent of having several particle system objects. Each System is composed of
contexts, the nodes inside the dotted area, and in this case, we have Initialize Particle, Update Particle,
and Output Particle Quad. Each Context represents a different stage of the particle system logic flow,
so let’s define what each Context in our graph does:

• Initialize Particle: This defines the initial data of each emitted particle, such as position, color,
speed, and size. It is similar to the Start properties in the Main module of the particle system
we saw at the beginning of this chapter. The logic in this node will only execute when a new
particle is emitted.

• Update Particle: Here, we can apply modifications to the data of the living particles. We can
change particle data such as the current velocity or particle size of all the frames. This is similar
to the Overtime nodes of the particle systems seen at the beginning of the chapter.

• Output Particle Quad: This Context will be executed when the particle needs to be rendered.
It will read the particle data to see where to render, how to render, which texture and color to
use, and the different visual settings. This is similar to the Renderer module of the previous
particle system.

Inside each Context, apart from some base configurations, we can add blocks. Each block is an action
that will be executed in the Context. We have actions that can be executed in any Context and then
some specific Context actions. As an example, we can use an Add Position block in the Initialize Par-
ticle Context to move the initial particle position, but if we use the same block in the Update Particle
Context, it will move the particle constantly. So basically, Contexts are different situations that happen
in the life of the particle, and blocks are actions that are executed in those situations:

Figure 11.45: A Set Velocity Random block inside the Initialize Particle Context. This sets the initial
velocity of a particle

Chapter 11 355

Also, we can have standalone contexts, Contexts outside Systems, such as Spawn. This Context is
responsible for telling the System that a new particle needs to be created. We can add blocks to
specify when the context will tell the system to create the particle, such as at a fixed rate over time,
bursts, and so on. The idea is that Spawn will create particles according to its blocks, while a System
is responsible for initializing, updating, and rendering each of them, again, according to the blocks
we set up inside each one of those Contexts.

So, we can see that there are lots of similarities with regular particle systems, but the way to create a
system here is quite different. Let’s reinforce this by creating a rain effect, which will require lots of
particles—a nice use case for Visual Effect Graph.

Creating a rain effect
In order to create this effect, do the following:

1. Set the Capacity property of the Initialize Particle Context to 10000:

Figure 11.46 Initialize Particle Context

2. Set the Constant SPawn Rate at the beginning of the graph to 10000:

Figure 11.47: Constant Spawn Rate block

Before adding new nodes on the graph, we will delete the ones we won’t need to create our
rain effect.

Captivating Visual Effects: Harnessing Particle Systems and Visual Effect Graph356

3. Right click over the node Set Position (Shape: Arc Sphere) inside the Initialize Particle Block
and select Delete to remove this node:

Figure 11.48: Deleting the Set Position block

4. Repeat the process with the node Set Velocity from Direction & Speed (New Direction) to
remove it as well

Figure 11.49: Deleting the Set Velocity block

5. Right-click the Initialize Particle title, and select Create Block
6. Search for the Set Velocity Random (Per-component) block and click on it to add it:

Chapter 11 357

Figure 11.50: Adding the Set Velocity Random block

7. Set the A and B properties to (0, -50, 0) and (0, -75, 0), respectively, in the Set Velocity Random
block in the Initialize Particle Context. This will set a random velocity pointing downward for
our particles:

Figure 11.51: Set Velocity Random block

8. Right click over the node Gravity inside the Update Particles Block and select Delete to remove
this node:

Figure 11.52: Deleting the Gravity block

Captivating Visual Effects: Harnessing Particle Systems and Visual Effect Graph358

9. Repeat the process with the Linear Drag Block:

Figure 11.53: Deleting the Linear Drag block

10. After this two deletions, the Update Particle Block will be empty:

Figure 11.54: Empty Update Particles block

11. Right-click the Initialize Particle title, and select Create Block.
12. Search for the Set Position Random (Per-component) block and click on it:

Chapter 11 359

Figure 11.55: Adding blocks

13. Set the A and B properties of the Set Position Random block to (-50, 0, -50) and (50, 0, 50),
respectively. This will define an initial area in which to randomly spawn the particle.

14. Click the arrow at the left of the Bounds property of the Initialize Particle block to display its
properties, and set Center and Size to (0, -12.5, 0) and (100, 25, 100), respectively. This will
define the area where the particles should be visible. Particles can actually move outside this
area, but it is important to render the particles only in the areas we are interested in them
being visible.

Search for Frustum culling on the internet for more information about bounds.

Figure 11.56: Configuring blocks

Captivating Visual Effects: Harnessing Particle Systems and Visual Effect Graph360

15. Select the GameObject that is executing the system, and in the bottom-right window in the
Scene view, check the Show Bounds checkbox to see the previously defined bounds:

Figure 11.57: Visual Effect playback controls

16. If you don’t see the window at the bottom right, click the VE (Visual Effect) button at the top
left of the screen to display it. This button will be shown only if you have selected the Rain
visual effect GameObject in the Hierarchy:

Figure 11.58: Another way to display the Visual Effect playback controls

17. If you can’t see the changes being applied, click the Compile button at the top left of the window,
the one that looks like a paper bin beneath a downward-pointing arrow. Also, you can save
your changes using Ctrl + S (Command + S on a Mac):

Figure 11.59: VFX asset saving controls

Chapter 11 361

18. Set the object position to cover the whole base area. In my case, Position is 100, 37, and 100.
Remember that you need to change Position of the Transform component for this:

Figure 11.60: Setting a Transform position

19. Set the A and B properties of the Set Lifetime Random block in Initialize Particle to 0.5. This
will make the particles have a shorter life, ensuring that they are always inside the bounds:

Figure 11.61: Set Lifetime Random block

20. Change the Main Texture property of the Output Particle Quad Context to another texture. In
this case, the previously downloaded smoke texture can work here, even though it’s not water,
because we will modify its appearance in a moment. Also, you can try to download a water
droplet texture if you want to:

Figure 11.62: VFX Graph Main Texture

21. Set Blend Mode of the Output Particle Quad Context to Additive:

Figure 11.63: Additive mode of VFX graph

Captivating Visual Effects: Harnessing Particle Systems and Visual Effect Graph362

22. We need to stretch our particles a little bit to look like actual raindrops instead of falling balls.
Before accomplishing that, first, we need to change the orientation of our particles so they
don’t point at the camera all the time. In order to do this, right-click on the Orient block in
the Output Particle Quad Context and select Delete (or press Delete on a PC or Command +
Backspace on a Mac):

Figure 11.64: Deleting a block

23. We want to stretch our particles according to their velocity direction. Another preparation
step before actually doing that is to select the title of the Output Particle Quad context and
hit the spacebar to look for a block to add. In this case, we need to search and add the Orient
Along Velocity block.

24. Add a Set Scale block to the Initialize Particle Context and set the Scale property to 0.25, 1.5,
and 0.25. This will stretch the particles to look like falling drops:

Figure 11.65: Set Scale block

Chapter 11 363

25. Click the Compile button in the top-left window again to see the changes. Your system should
look like this:

Figure 11.66: Rain results

26. You can adjust the rest of the node values to change size and color of the particles over lifetime
using both nodes inside Output Particle Quad Block.

We have just modified lots of different properties of Visual Effect Graph, but if you want to have two
instances of the same Visual Effect Graph, but with slight differences, I recommend you look at the
Blackboard feature, which will allow you to expose properties in the Inspector. For example, you can
make less dense rain in another scene, make the spawn rate lower, or change the particle color to
make acid rain, all using the same graph, but let’s keep things simple for now.

The Blackboard feature is also present in Shader Graph.

From here, you can experiment by adding and removing blocks from the Contexts as you wish, and
again, I recommend you look for an already-created Visual Effect Graph to find ideas for other sys-
tems. Actually, you can get ideas for Visual Effect Graph by looking at effects made in regular particle
systems and using the analogous blocks.

Captivating Visual Effects: Harnessing Particle Systems and Visual Effect Graph364

Also, I recommend you search for the Visual Effect Graph documentation online or at: https://
docs.unity3d.com/Packages/com.unity.visualeffectgraph@15.0/manual/index.html to learn
more about this system. You can also access the documentation of any Unity package by clicking the
Documentation button in the Package Manager while the package is selected.

Figure 11.67: Package Manager documentation link

Now that we have learned how to create different visual effects, let’s see how to use them via scripting
to achieve effects that react to what’s happening in the game.

Scripting Visual Effects
Visual feedback is the concept of using different VFX, such as particles and VFX Graph, to reinforce
what is happening. For example, say right now we are shooting our weapon; we know that this is
happening because we can see the bullets. However, it doesn’t feel like a real shooting effect because
a proper shooting effect should have a muzzle effect on the tip of our gun. Another example would be
the enemy dying—it just disappears with no animation! That doesn’t feel as satisfying as it could be.
We can instead add a little explosion (considering they are robots).

Let’s start making our enemies spawn an explosion when they are destroyed by doing the following:

1. Create an explosion effect or download one from the Asset Store. It shouldn’t loop, and it
needs to be destroyed automatically when the explosion is over (ensure Looping is unchecked
and Stop Action is set to Destroy in the Main module). Feel free to use the same one we did
previously in this chapter.

2. Some explosions in the Asset Store might use non-URP-compatible shaders. The Asset Store
page of the package specifies if the package supports URP. You can also fix them by using
Window | Rendering | Render Pipeline Converter, as we saw in Chapter 4, Seamless Integration:
Importing and Integrating Assets.

3. Manually upgrade the materials that didn’t upgrade automatically.

mailto:https://docs.unity3d.com/Packages/com.unity.visualeffectgraph@15.0/manual/index.html
mailto:https://docs.unity3d.com/Packages/com.unity.visualeffectgraph@15.0/manual/index.html

Chapter 11 365

4. Add a script to the Enemy Prefab called ExplosionOnDeath. This will be responsible for spawning
the particles Prefab when the enemy dies.

5. Add a field of the GameObject type called particlePrefab and drag the explosion Prefab to it.

You may be expecting to add the explosion spawning to the Life component. In that case, you
are assuming that anything to do with life will spawn a particle when dying, but consider
scenarios where characters die with a falling animation instead, or maybe an object that just
despawns with no effect whatsoever. If a certain behavior is not used in most scenarios, it is
better to code it in a separate optional script to allow us to mix and match different components
and get the exact behavior we want.

6. Make the script access the Life component we created in Chapter 8, Victory or Defeat: Win and
Lose Conditions, of this book and subscribe to its OnDeath event.

7. In the listener function, let’s instantiate the particle system in the same location:

Figure 11.68: The explosion spawner script

Captivating Visual Effects: Harnessing Particle Systems and Visual Effect Graph366

The visual scripting version would look like this:

Figure 11.69: The explosion spawner visual script

As you can see, we are just using the same concepts we learned about in previous chapters but com-
bining them in new ways. This is what programming is all about.

Let’s continue with the muzzle effect, which makes our gun feel more realistic and provides feedback
about the player’s avatar shooting. It could also be a particle system, but we will take another approach
this time:

1. If you don’t have one already, download a weapon model from the Asset Store. The character
in the package we used in the book already comes with one, so we will use that one.

2. If it’s not already on your character, instantiate the weapon so that it is the parent of the hand
of the player. Remember that our character is rigged and has a hand bone, so you should put
the weapon there.

The weapon that comes with the character we downloaded in this book is a special scenario
where the weapon has a SkinnedMeshRenderer component. This component uses the Skinning
Animation system that we will learn to use in Chapter 17, Animated Realities: Creating Animations
with Animator, Cinemachine, and Timeline. In this case, the movement of the weapon will be
affected by the animations we will use in that chapter, so for now, let’s keep the weapon where
it is located now, even if it looks odd.

3. Create or get a muzzle particle system. In this case, my muzzle particle system was created
as a short particle system that has a burst of particles and then automatically stops. Try to get
one with that behavior because there are others out there that will loop instead, and the script
to handle that scenario would be different.

Chapter 11 367

4. Create an instance of the particle system Prefab in the Editor and parent it inside the weapon,
locating it in front of the weapon, aligned with the cannon of the gun. Make sure the Play On
Awake property of the Main module of the particle system is unchecked; we don’t want the
muzzle to fire until we press the Fire key:

Figure 11.70: The muzzle parented to the weapon

5. Create a field of the ParticleSystem type called muzzleEffect in PlayerShooting.
6. Drag the muzzle effect GameObject that is parented in the gun to it in the Inspector. Now, we

have a reference to the ParticleSystem component of the muzzle to manage it.
7. Inside the if statement that checks whether we are shooting, execute muzzleEffect.Play();

to play the particle system. It will automatically stop and is short enough to finish between
key presses:

Figure 11.71: The muzzle parented to the weapon

Captivating Visual Effects: Harnessing Particle Systems and Visual Effect Graph368

The visual scripting version’s additional nodes and variables would be the following:

Figure 11.72: The muzzle playing visual script

Finally, we also need to play the muzzle effect on the AI while shooting by doing the following:

1. As we did with PlayerShooting, create a field of the ParticleSystem type called muzzleEffect
in EnemyFSM.

2. Inside the Shoot method, add the line muzzleEffect.Play(); at the end of the method to play
the particle system:

Figure 11.73: The muzzle playing C# script

Chapter 11 369

The visual scripting version’s additional nodes for Attack State and Attack Base will be as follows:

Figure 11.74: The muzzle playing script for Attack State

Remember to add those nodes to both attack states and to add the muzzleEffect variable to the AI
Variables component.

Summary
In this chapter, we discussed two different ways to create particle systems: using regular particle sys-
tems and VFX Graph. We used them to simulate different fluid phenomena, such as fire, a waterfall,
smoke, and rain. The idea is to combine particle systems with meshes to generate all the possible
props needed for your scene. Also, as you can imagine, creating these kinds of effects professionally
requires you to go deeper.

Captivating Visual Effects: Harnessing Particle Systems and Visual Effect Graph370

If you want to dedicate yourself to this (another part of the job of a technical artist), you will need to
learn how to create your own particle textures to get the exact look and feel you want, code scripts
that control certain aspects of the systems, and several other aspects of particle creation. However,
that is outside the scope of the book.

Now that we have some rain in our scene, we can see that the sky and the lighting in the scene don’t
really reflect a rainy day, so let’s fix that in the next chapter!

Learn more on Discord
Read this book alongside other users, Unity game development experts, and the author himself. Ask
questions, provide solutions to other readers, chat with the author via Ask Me Anything sessions, and
much more. Scan the QR code or visit the link to join the community:

https://packt.link/unitydev

https://packt.link/unitydev

12
Enlightening Worlds: Illuminating
Scenes with the Universal Render
Pipeline

Lighting is a complex topic and there are several possible ways to handle it, with each one having its
pros and cons. In order to get the best possible quality and performance, you need to know exactly
how your renderer handles lighting, and that is exactly what we are going to work on in this chapter.
We will discuss how lighting is handled in Unity’s Universal Render Pipeline (URP), as well as how to
properly configure it to adapt our scene’s mood with proper lighting effects.

In this chapter, we will examine the following lighting concepts:

• Applying lighting
• Applying shadows
• Optimizing lighting

At the end of the chapter, we will have properly used the different Unity illumination systems like
direct lights and lightmapping to reflect a cloudy and rainy night.

Applying lighting
When discussing ways to process lighting in a game, there are two main ways we can do so, known
as Forward rendering and Deferred rendering, each having some variants. Both handle lighting in a
different order, with different techniques, requirements, pros, and cons. Forward rendering is usually
recommended for performance, while Deferred rendering is usually recommended for quality.

Also, in Unity, the Forward Renderer comes with three modes: Multi-Pass Forward, which is used in
the Built-In Renderer (the old Unity renderer), Single-Pass Forward, which is used by default in URP,
and Single-Pass Forward+, the only form of Forward that HDRP (High Definition Render Pipeline)
supports, as well as an option for URP. We have several modes because each one has different char-
acteristics and limitations, making them ideal for different types of games.

Enlightening Worlds: Illuminating Scenes with the Universal Render Pipeline372

Choosing between them depends on the kind of game you are creating and the platform you need to
run the game on. Your chosen option will change a lot due to the way you apply lighting to your scene,
so it’s crucial you understand which system you are dealing with.

In the next section, we will discuss the following real-time lighting concepts:

• Discussing lighting methods
• Configuring ambient lighting with skyboxes
• Configuring lighting in URP

Let’s start by comparing the previously mentioned lighting methods.

Discussing lighting methods
To recap, we’ve mentioned three main ways of processing lighting:

• Forward rendering (Single Pass)
• Forward rendering (Multi-Pass)
• Forward+ rendering (Single Pass)
• Deferred rendering

Before we look at the differences between each, let’s talk about the things they have in common. Those
three renderers start drawing the scene by determining which objects can be seen by the camera—
that is, the ones that fall inside the camera’s frustum (the area the camera sees)—and provide a giant
pyramid that can be seen when you select the camera:

Refer to the documentation to see how to enable each of these modes for testing. For
example, to enable Deferred rendering in URP, use this link: https://docs.unity3d.
com/Packages/com.unity.render-pipelines.universal@15.0/manual/rendering/
deferred-rendering-path.html#how-to-enable

mailto:https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@15.0/manual/rendering/deferred-rendering-path.html#how-to-enable
mailto:https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@15.0/manual/rendering/deferred-rendering-path.html#how-to-enable
mailto:https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@15.0/manual/rendering/deferred-rendering-path.html#how-to-enable

Chapter 12 373

Figure 12.1: Camera rendering only the objects that fall inside its viewing area (frustum), culling (or
hiding) the ones that are out

After that, Unity will order them from the nearest to the camera to the farthest (transparent objects
are handled a little bit differently, but let’s ignore that for now). It’s done like this because it’s more
probable that objects nearer to the camera will cover most of the camera, so they will occlude others
(will block other objects from being seen), preventing us from wasting resources calculating pixels
for the occluded ones.

Finally, Unity will try to render the objects in that order. This is where differences start to arise be-
tween lighting methods, so let’s start comparing the two Forward rendering variants. For each object,
Single-Pass Forward rendering will calculate the object’s appearance, including all the lights that are
affecting the object, in one shot, or what we call a draw call.

Enlightening Worlds: Illuminating Scenes with the Universal Render Pipeline374

A draw call is the exact moment when Unity asks the video card to actually render the specified object.
All the previous work executed by Unity (like, for example, setting which shader is going to be used)
was just preparation for this moment. In the case of the Multi-Pass Forward Renderer, by simplifying
a little bit of the actual logic, Unity will render the object once per light that affects the object; so, if
the object is being lit by three lights, Unity will render the object three times, meaning that three
draw calls will be issued, and three calls to the GPU will be made to execute the rendering process:

Figure 12.2: Left image, first draw call of a sphere affected by two lights in Multi-Pass; middle image,
second draw call of the sphere; and right image, the combination of both draw calls

Now is when you are probably thinking, “Why should I use Multi-Pass? Single Pass is more performant!”
And yes, you are right! Single Pass is much more performant than Multi-Pass, meaning our game will
run at higher frames per second, though here comes the great but. A draw call in a GPU has a limited
amount of operations that can be executed, so you have a limit to the complexity of the draw call. Calcu-
lating the appearance of an object and all the lights that affect it is very complex, and in order to make
it fit in just one draw call, Single Pass executes simplified versions of lighting calculations, meaning
less lighting quality and fewer features. They also have a limit on how many lights can be handled in
one shot, which, at the time of writing this book, is eight per object; you can configure fewer if you
want, but the default value is good for us. This sounds like a small number, but it’s usually just enough.

On the other side, Multi-Pass can apply any number of lights you want and can execute different
logic for each light. Let’s say our object has four lights that are affecting it, but there are two lights
that are affecting it drastically because they are nearer or have higher intensity, while the remaining
ones affecting the object are just enough to be noticeable. In this scenario, we can render the first
two lights with higher quality and the remaining ones with cheap calculations—no one will be able
to tell the difference.

Chapter 12 375

In this case, Multi-Pass can calculate the first two lights using pixel lighting and the remaining ones
using vertex lighting. The difference is in their names; pixel calculates light per object pixel, while
vertex calculates lighting per object vertex and fills the pixels between these vertexes, thereby inter-
polating information between vertexes. You can clearly see the difference in the following images:

Figure 12.3: Left image, a sphere being rendered with vertex lighting; right image, a sphere being
rendered with pixel lighting

In Single Pass, calculating everything in a single draw call forces you to use vertex lighting or pixel
lighting; you cannot combine them.

Finally, we also have Forward+, which is a variant of Single-Pass Forward but with an optimization to
render a higher number of lights, at the expense of some extra processing to allow that. You should
choose this if you plan to use Forward but you want to support more lights than the limit.

So, to summarize the differences between Single Pass and Multi-Pass, in Single Pass, you have better
performance because each object is just drawn once, but you are limited in the number of lights that
can be applied, while in Multi-Pass, you need to render the object several times, but with no limits on
the number of lights, and you can specify the exact quality you want for each light. There are other
things to consider, such as the actual cost of a draw call (one draw call can be more expensive than
two simple ones), and special lighting effects such as toon shading, but let’s keep things simple.

Finally, let’s briefly discuss Deferred rendering. Even though we are not going to use it, it’s interesting
to know why we are not doing that. After determining which objects fall inside the frustum and order-
ing them, Deferred will render the objects without any lighting, generating what is called a G-Buffer.
A G-Buffer is a set of several images that contain different information about the objects of the scene,
such as the colors of their pixels (without lighting), the direction of each pixel (known as normals),
and how far from the camera the pixels are.

Enlightening Worlds: Illuminating Scenes with the Universal Render Pipeline376

You can see a typical example of a G-Buffer in the following image:

Figure 12.4: Left image, plain colors of the objects; middle image, depths of each pixel; and right
image, normals of the pixels

Normals are directions, and the x, y, and z components of the directions are encoded in the RGB
components of the colors.

After rendering all the objects in the scene, Unity will iterate over all lights that can be seen in the
camera, thus applying a layer of lighting over the G-Buffer, taking information from it to calculate that
specific light. After all the lights have been processed, you will get the following result:

Figure 12.5: Combination of the three lights that were applied to the G-Buffer shown in the previous
image

Chapter 12 377

As you can see, the Deferred part of this method comes from the idea of calculating lighting as the last
stage of the rendering process. This is better because you won’t waste resources calculating lighting
from objects that can potentially be occluded. If the floor of the image is being rendered first in Forward
mode, the pixels that the rest of the objects are going to occlude were calculated in vain. Also, there’s
the pro that Deferred just calculates lighting in the exact pixels that the light can reach. As an example,
if you are using a flashlight, Unity will calculate lighting only in the pixels that fall inside the cone of
the flashlight. The con here is that Deferred is not supported by some relatively old video cards and
that you can’t calculate lighting with vertex lighting quality, so you will need to pay the price of pixel
lighting, which is not recommended on low-end devices (or even necessary in simple graphics games).

So, why are we using URP with Single-Pass Forward (the default value)? Because it offers the best bal-
ance between performance, quality, and simplicity. In this game, we won’t be using too many lights,
so we won’t worry about the light number limitations of Single Pass. If you need more lights, you can
use Deferred or Forward+, but consider the extra hardware requirements and the performance cost
of not having per-vertex lighting options.

So, to recap what we have seen so far, let’s compare the systems:

• Forward rendering (Single Pass): Renders objects in a single GPU draw call with a limited
number of lights applied per object (9 at the time of writing this). Allows to render lights with
either vertex or pixel lighting (the latter being more taxing on the GPU). Is the preferred option
if your game works with the light count limit.

• Forward rendering (Multi-Pass): Renders objects with an unlimited number of lights but
using one additional draw call per per-pixel light. Is not available on URP, so we can’t use it
in this project.

• Forward+ rendering (Single Pass): Bypasses the limitation of Single-Pass Foward, allowing the
rendering of an unlimited number of lights per object; but it doesn’t support vertex lighting.
It’s recommended when there’s a need for more lights than regular Forward.

• Deferred rendering: It renders all objects first, then applies lighting on the pixels that each
light touches. It’s recommended when using an extensive number of lights. Test on the lowest
target device whether Forward+ or Deferred works better under your device hardware, game’s
configuration, and light count.

Now that we have a very basic notion of how URP handles lighting, let’s start using it!

If you want to know more about the different rendering paths and how to activate
them, check this link: https://docs.unity3d.com/Packages/com.unity.render-
pipelines.universal@15.0/manual/urp-universal-renderer.html#rendering-
path-comparison

Enlightening Worlds: Illuminating Scenes with the Universal Render Pipeline378

Configuring ambient lighting with skyboxes
There are different light sources that can affect a scene, such as the sun, flashlights, and light bulbs.
Those are known as direct lights—that is, objects that emit light rays. Then, we have indirect light,
which represents how the direct light bounces on other objects, like walls. However, calculating all
the bounces of all the rays emitted by all the lights is extremely costly in terms of performance and
requires special hardware that supports ray tracing. The problem is that not having indirect light will
generate unrealistic results, where you can observe places where the sunlight doesn’t reach being
completely dark because no light is bouncing from other places where light hits.

In the next image you can see an example of how this could look in a wrongly configured scene:

Figure 12.6: Shadows projected on a mountain without ambient lighting

If you ever experience this problem, the way to solve it performantly is by using approximations of
those bounces. These are what we call ambient light. This represents a base layer of lighting that usually
applies a little bit of light based on the color of the sky, but you can choose whatever color you want.
As an example, on a clear night, we can pick a dark blue color to represent the tint from the moonlight.

If you create a new scene in Unity 2023, usually this is done automatically, but in cases where it isn’t,
or the scene was created through other methods, it is convenient to know how to manually trigger
this process by doing the following:

1. Click on Window | Rendering | Lighting. This will open the Scene Lighting Settings window:

Figure 12.7: Lighting Settings location

Chapter 12 379

2. Click the Generate Lighting button at the bottom of the window. If you haven’t saved the scene
so far, a prompt will ask you to save it, which is necessary:

Figure 12.8: Generate Lighting button

3. See the bottom-right part of the Unity window to check the progress calculation bar to check
when the process has finished:

Figure 12.9: Lighting generation progress bar

4. You can now see how completely dark areas are lit by the light being emitted by the sky:

Figure 12.10: Shadows with ambient lighting

Now, by doing this, we have better lighting, but it still looks like a sunny day. Remember, we want to
have rainy weather. In order to do that, we need to change the default sky too so that it’s cloudy. You
can do that by downloading a skybox. The current sky you can see around the scene is just a big cube
containing textures on each side, and those textures have a special projection to prevent us from
detecting the edges of the cube.

Enlightening Worlds: Illuminating Scenes with the Universal Render Pipeline380

We can download six images for each side of the cube and apply them to have whatever sky we want,
so let’s do that:

1. You can download skybox textures from wherever you want, but here, I will choose the Asset
Store. Open it by going to Window | Asset Store and going to the Asset Store website.

2. Look for Categories | 2D | Textures & Materials | Sky in the category list on the right. Remember
that you need to make that window wider if you can’t see the category list:

Figure 12.11: Textures & Materials

Chapter 12 381

3. Remember to check the Free Assets checkbox in the Price options.

Pick any skybox you like for a rainy day. Take into account that there are different formats for
skyboxes. We are using the six-image format, so check that before downloading one. There’s
another format called Cubemap, which is essentially the same, but we will stick with the
six-image format as it is the simplest one to use and modify. In my case, I have chosen the
skybox pack shown in Figure 12.12. Download and import it, as we did in Chapter 4, Seamless
Integration: Importing and Integrating Assets.

Figure 12.12: Selected skybox set for this book

4. Create a new material by using the + icon in the Project window and selecting Material.
5. Set the Shader option of that material to Skybox/6 sided. Remember that the skybox is just

a cube, so we can apply a material to change how it looks. The skybox shader is prepared to
apply the six textures.

Enlightening Worlds: Illuminating Scenes with the Universal Render Pipeline382

6. Drag the six textures to the Front, Back, Left, Right, Up, and Down properties of the material.
The six downloaded textures will have descriptive names so that you know which textures go
where:

Figure 12.13: Skybox material settings

7. Drag the material directly into the sky in the Scene view. Be sure you don’t drag the material
into an object because the material will be applied to it.

8. Repeat steps 1 to 4 of the ambient light calculation steps (Lighting Settings | Generate Lighting)
to recalculate it based on the new skybox. In the following image, you can see the result of
my project so far:

Chapter 12 383

Figure 12.14: Applied skybox

Now that we have a good base layer of lighting, we can start adding light objects.

Configuring lighting in URP
We have three main types of dynamic lights we can add to our scene:

• Directional light: This is a light that represents the sun. This object emits light rays in the
direction it is facing, regardless of its position. As an example, if you slowly rotate this object,
you can generate a day/night cycle:

Figure 12.15: Directional light results

Enlightening Worlds: Illuminating Scenes with the Universal Render Pipeline384

• Point light: This light represents a light bulb, which emits rays in an omnidirectional way. The
difference it has compared to directional lights is that its position matters because it’s closer
to our objects. Also, because it’s a weaker light, the intensity of this light varies according to
the distance, so its effect has a range—the further the object from the light, the weaker the
received intensity:

Figure 12.16: Point light results. The yellow circles represent the range of the light

• Spotlight: This kind of light represents a light cone, such as the one emitted by a flashlight.
It behaves similarly to point lights in that its position matters and the light intensity decays
over a certain distance. But here the direction it points to (hence its rotation) is also important,
given it will specify where to project the light:

Figure 12.17: Spotlight results. The yellow cone represents the light area

So far, we have nice, rainy, ambient lighting, but the only direct light we have in the scene, the direc-
tional light, isn’t correctly set up; it looks like this is the actual weather in our scene, so let’s change that:

1. Select the Directional Light object in the Hierarchy window and then look at the Inspector
window.

Chapter 12 385

2. Click the Color property in the Emission section to open the Color Picker.
3. Select a dark gray color to achieve a state in which the sun rays have been partially occluded

by clouds.
4. Set Shadow Type to No Shadows. Now that we have a cloudy day, the sun does not project clear

shadows, but we will talk more about shadows in a moment:

Figure 12.18: Soft directional light with no shadows

Now that the scene is darker, we can add some lights to light up the scene, as follows:

1. Create a spotlight by going to GameObject | Light | Spotlight.
2. Select it. Then, in the Inspector window, set Inner / Output Spot Angle in the Shape section

to 90 and 120, which will increase the angle of the cone.
3. Set Range in the Emission section to 50, meaning that the light can reach up to 50 meters,

decaying along the way.
4. Set Intensity in the Emission section to 1000:

Figure 12.19: Spotlight settings

Enlightening Worlds: Illuminating Scenes with the Universal Render Pipeline386

5. Position the light at one corner of your game’s base, pointing it at the center:

Figure 12.20: Spotlight placement

1. Duplicate that light by selecting it and pressing Ctrl+D (Command+D on a Mac).
2. Put it in the opposite corner of the base:

Figure 12.21: Two spotlight results

You can keep adding lights to the scene but take care that you don’t go too far—remember the light
limits. Also, you can download some light posts to put in where the lights are located to visually justify
the origin of the light. Now that we have achieved proper lighting, we can talk about shadows.

Applying shadows
Maybe you are thinking that we already have shadows in the scene, but actually, we don’t. The darker
areas of the object, the ones that are not facing the lights, don’t have shadows—they are not being lit,
and that’s quite different from a shadow. In this case, we are referring to the shadows that are projected
from one object to another—for example, the shadow of the player being projected on the floor, or
from the mountains to other objects.

Chapter 12 387

Shadows can increase the quality of our scene, but they also cost a lot to calculate, so we have two
options: not using shadows (recommended for low-end devices such as mobiles) or finding a balance
between performance and quality according to our game and the target device.

Figure 12.22: Area 1: an area not being lit because it doesn’t face the light. Area 2: an area not being
lit because it is shadowed by the other cube

In this section, we are going to discuss the following topics about shadows:

• Understanding shadow calculations
• Configuring performant shadows

Let’s start by discussing how Unity calculates shadows.

Understanding shadow calculations
In game development, it is well-known that shadows are costly in terms of performance, but why? An
object has a shadow when a light ray hits another object before reaching it. In that case, no lighting is
applied to that pixel from that light. The problem here is the same problem we have with the light that
ambient lighting simulates—it would be too costly to calculate all possible rays and their collisions.
So, again, we need an approximation, and here is where shadow maps kick in.

A shadow map is an image that’s rendered from the point of view of the light, but instead of drawing
the full scene with all the color and lighting calculations, it will render all the objects in grayscale,
where black means that the pixel is very far from the light and whiter means that the pixel is nearer
to the light. If you think about it, each pixel contains information about where a ray of light hits. By
knowing the position and orientation of the light, you can calculate the position that each “ray” hits
using the shadow map.

Enlightening Worlds: Illuminating Scenes with the Universal Render Pipeline388

In the following image, you can see the shadow map of our directional light:

Figure 12.23: Shadow map generated by the directional light of our scene

Each type of light calculates shadow maps slightly differently, especially the point light. Since it’s
omnidirectional, it needs to render the scene several times in all its directions (front, back, left, right,
up, and down) in order to gather information about all the rays it emits. We won’t talk about this in
detail here, though, as we could talk about it all day.

Now, something important to highlight here is that shadow maps are textures, and as such, they have
a resolution. The higher the resolution, the more “rays” our shadow map calculates. You are probably
wondering what a low-resolution shadow map looks like when it has only a few rays in it. Take a look
at the following image to see one:

Figure 12.24: Hard shadows rendered with a low-resolution shadow map

In Chapter 18, Performance Wizardry: Optimizing Your Game with Profiler Tools, we will
see how to use the Frame Debugger to analyze all draw calls. This allows you to see the
generation of the shadow maps.

Chapter 12 389

The problem here is that having fewer rays generates bigger shadow pixels, resulting in a pixelated
shadow. Here, we have our first configuration to consider: what is the ideal resolution for our shadows?
You will be tempted to just increase it until the shadows look smooth, but of course, that will increase
how long it will take to calculate it, so it will impact the performance considerably unless your target
platform can handle it (mobiles definitely can’t). Here, we can use the Soft Shadows trick, where we can
apply a blurring effect over the shadows to hide the pixelated edges, as shown in the following image:

Figure 12.25: Soft Shadows rendered with a low-resolution shadow map

Of course, the blurry effect is not free, but combining it with low-resolution shadow maps, if you accept
its blurry result, can generate a nice balance between quality and performance.

Now, low-resolution shadow maps have another problem, which is called shadow acne. This is the
lighting error you can see in the following image:

Figure 12.26: Shadow acne from a low-resolution shadow map

A low-resolution shadow map generates false positives because it has fewer “rays” calculated. The
pixels to be shaded between the rays need to interpolate information from the nearest ones. The
lower the shadow map’s resolution, the larger the gap between the rays, which means less precision
and more false positives. One solution would be to increase the resolution, but again, there will be
performance issues (as always).

Enlightening Worlds: Illuminating Scenes with the Universal Render Pipeline390

We have some clever solutions to this, such as using depth bias. An example of this can be seen in
the following image:

Figure 12.27: A false positive between two far “rays.” The highlighted area thinks the ray hit an object
before reaching it

The concept of depth bias is simple—so simple that it seems like a big cheat, and actually, it is, but
game development is full of them! To prevent false positives, we “push” the rays a little bit further,
just enough to make the interpolated rays reach the surface being lit:

Figure 12.28: Rays with a depth bias to eliminate false positives

Of course, as you are probably expecting, this problem isn’t solved easily without having a caveat.
Pushing depth generates false negatives in other areas, as shown in the following image. It looks like
the cube is floating, but actually, it is touching the ground—the false negatives generate the illusion
that it is floating:

Figure 12.29: False negatives due to a high depth bias

Chapter 12 391

Of course, we have a counter trick to this situation known as normal bias; this method specifically
adjusts the object’s mesh by shifting it in the direction the object is facing, rather than following the
path of the rays. This one is a little bit tricky, so we won’t go into too much detail here, but the idea is
that combining a little bit of depth bias and another bit of normal bias will reduce the false positives,
but not completely eliminate them. Therefore, we need to learn how to live with that and hide these
shadow discrepancies by cleverly positioning objects:

Figure 12.30: Reduced false positives, which is the result of combining depth and normal bias

There are several other aspects that affect how shadow maps work, with one of them being the light
range. The smaller the light range, the less area the shadows will cover. The same shadow map res-
olution can add more detail to that area, so try to reduce the light ranges as much as you can, as we
will do in the next section.

I can imagine your expression right now; yes, lighting is complicated, and we’ve only just scratched
the surface! But keep your spirits up! After a little trial and error fiddling with the settings, you will
understand it better. We’ll do that in the next section.

If you are really interested in learning more about the internals of the shadow system, I recommend
that you look at the concept of shadow cascades, an advanced topic about directional lights and
shadow map generation.

Configuring performant shadows
Because we are targeting mid-end devices, we will try to achieve a good balance of quality and perfor-
mance here, so let’s start enabling shadows just for the spotlights. The directional light shadow won’t
be that noticeable, and actually, a rainy sky doesn’t generate clear shadows, so we will use that as an
excuse to not calculate those shadows. In order to do this, do the following:

Enlightening Worlds: Illuminating Scenes with the Universal Render Pipeline392

1. Select both spotlights by clicking them in the Hierarchy while pressing Ctrl (Command on
Mac). This will ensure that any changes made in the Inspector window will be applied to both:

Figure 12.31: Selecting multiple objects

2. In the Inspector window, set Shadow Type in the Shadows section to Soft Shadows. We will
be using low-resolution shadow maps here and the soft mode can help to hide the pixelated
resolution:

Figure 12.32: Soft Shadows setting

3. Select Directional light and set Shadow Type to No Shadows to prevent it from casting shadows:

Figure 12.33: No Shadows setting

4. Create a cube (GameObject | 3D Object | Cube) and place it near one of the lights, just to have
an object that we can cast shadows on for testing purposes.

Now that we have a base test scenario, let’s fiddle with the shadow map resolution settings, preventing
shadow acne in the process:

1. Go to Edit | Project Settings.

Chapter 12 393

2. In the left-hand side list, look for Graphics and click it:

Figure 12.34: Graphics settings

3. In the properties that appear after selecting this option, click in the box below Scriptable
Render Pipeline Settings—the one that contains a name. In my case, this is URP-HighFidelity,
but yours may be different if you have a different version of Unity:

Figure 12.35: Current Render Pipeline setting

4. Doing that will highlight an asset in the Project window, so be sure that the window is visible
before selecting it. Select the highlighted asset:

Figure 12.36: Current pipeline highlighted

Enlightening Worlds: Illuminating Scenes with the Universal Render Pipeline394

5. This asset has several graphics settings related to how URP will handle its rendering, including
lighting and shadows. Expand the Lighting section to reveal its settings:

Figure 12.37: Pipeline Lighting Settings

6. The Shadow Atlas Resolution setting under the Additional Lights subsection represents the
shadow map resolution for all the lights that aren’t the directional light (since it’s the main
light). Set it to 1024 if it’s not already at that value.

7. Under the Shadows section, you can see the Depth and Normal bias settings, but those will
affect all lights. Even if right now our directional light doesn’t have shadows, we want only
to affect additional lights bias values as they have a different Shadow Atlas Resolution value
compared to the main one (directional light). So, instead, select spotlights and set Bias to
Custom and Depth and Normal Bias to 0.25 in order to reduce them as much as we can before
we remove the shadow acne:

Figure 12.38: Bias settings

8. This isn’t entirely related to shadows, but in the Univeral Rendering Pipeline settings asset,
you can change the Per Object Light limit to increase or reduce the number of lights that can
affect the object (no more than eight). For now, the default is good as is.

Chapter 12 395

9. If you followed the shadow cascades tip presented earlier, you can play with the Cascades val-
ue a little bit to enable shadows for directional light to note the effect. Remember that those
shadow settings only work for directional light.

10. We don’t have shadows in directional light, but in any other case, consider reducing the Max
Distance value in the Shadows section, which will affect the directional light shadows range.

11. Select both spotlights in the Hierarchy and set them so that they have a 50-meter Range. See
how the shadows improve in quality before and after this change.

Remember that those values only work in my case, so try to fiddle with the values a little bit to see
how that changes the result—you may find a better setup for your scene if it was designed differently
from mine. Also, remember that not having shadows is always an option, so consider that if your
game is running low on frames per second, also known as FPS (and there isn’t another performance
problem lurking).

You’re probably thinking that that is all we can manage for performance in terms of lighting, but luckily,
that’s not the case! We have another resource we can use to improve it further, known as static lighting.

Optimizing lighting
We mentioned previously that not calculating lighting is good for performance, but what about not
calculating lights, but still having them? Yes, it sounds too good to be true, but it is actually possible
(and, of course, tricky). We can use a technique called static lighting or baking, which allows us to
calculate lighting once and use the cached result.

In this section, we will cover the following concepts related to static lighting:

• Understanding static lighting
• Baking lightmaps
• Applying static lighting to dynamic objects

Understanding static lighting
The idea is pretty simple: just do the lighting calculations once, save the results, and then use those
instead of calculating lighting all the time.

You may be wondering why this isn’t the default technique to use. This is because it has some limita-
tions, with the big one being dynamic objects. Precalculating shadows means that they can’t change
once they’ve been calculated, but if an object that is casting a shadow is moved, the shadow will still
be there. So, the main thing to take into account here is that you can’t use this technique with moving
objects. Instead, you will need to mix static or baked lighting for static objects and real-time lighting
for dynamic (moving) objects. Also, consider that aside from this technique being only valid for static
objects, it is also only valid for static lights. Again, if a light moves, the precalculated data becomes
invalid.

Enlightening Worlds: Illuminating Scenes with the Universal Render Pipeline396

Another limitation you need to take into account is that precalculated data can have a huge impact
on memory. That data occupies space in RAM, maybe hundreds of MB, so you need to consider if
your target platform has enough space. Of course, you can reduce the precalculated lighting quality
to reduce the size of that data, but you need to consider if the loss of quality deteriorates the look
and feel of your game too much. As with all options regarding optimization, you need to balance two
factors: performance and quality.

We have several kinds of precalculated data in our process, but the most important one is what we
call lightmaps. A lightmap is a texture that contains all the shadows and lighting for all the objects in
the scene, so when Unity applies the precalculated or baked data, it will look at this texture to know
which parts of the static objects are lit and which aren’t.

You can see an example of a lightmap in the following image:

Figure 12.39: Left, a scene with no lighting; middle, a lightmap holding precalculated data from that
scene; and right, the lightmap being applied to the scene

Having lightmaps has its own benefits. The baking process is executed in Unity, before the game is
shipped to users, so you can spend plenty of time calculating stuff that you can’t do at runtime, such as
improved accuracy, light bounces, light occlusion in corners, and light from emissive objects. However,
that can also be a problem. Remember, dynamic objects still need to rely on real-time lighting, and
that lighting will look very different compared to static lighting, so we need to tweak them a lot so the
user does not notice the difference.

Now that we have a basic notion of what static lighting is, let’s dive into how to use it.

Baking lightmaps
To use lightmaps, we need to make some preparations regarding the 3D models. Remember that
meshes have UVs, which contain information about which part of the texture needs to be applied to
each part of the model. Sometimes, to save texture memory, you can apply the same piece of texture
to different parts. For example, in a car’s texture, you wouldn’t have four wheels; you’d just have one,
and you can apply that same piece of texture to all the wheels. The problem here is that static lighting
uses textures in the same way, but here, it will apply the lightmaps to light the object.

Chapter 12 397

In the wheel scenario, the problem would be that if one wheel receives shadows, all of them will have
it, because all the wheels share the same texture space. The usual solution is to have a second set of
UVs in the model with no texture space being shared, just for use with lightmapping.

Sometimes, downloaded models are already prepared for lightmapping, and sometimes they aren’t,
but luckily, Unity has us covered in those scenarios. To be sure a model will calculate lightmapping
properly, let’s make Unity automatically generate the Lightmapping UVs by doing the following:

1. Select the mesh asset (FBX) in the Project window.
2. In the Model tab, look for the Generate Lightmap UVs checkbox at the bottom and check it.
3. Click the Apply button at the bottom:

Figure 12.40: Generate Lightmap UVs setting

4. Repeat this process for every model. Technically, you can only do this in the models where
you get artifacts and weird results after baking lightmaps, but for now, let’s do this in all the
models just in case.

After preparing the models for being lightmapped, the next step is to tell Unity which objects are not
going to move. To do so, do the following:

1. Select the object that won’t move.
2. Check the Static checkbox at the top right of the Inspector window:

Figure 12.41: Static checkbox

3. Repeat this for every static object (this isn’t necessary for lights; we will deal with those later).
4. You can also select a container of several objects, check the Static checkbox, and click the Yes,

All Children button in the prompt to apply the checkbox to all child objects.

Consider that you may not want every object, even if it’s static, to be lightmapped, because the more
objects you lightmap, the more texture size you will require. As an example, the terrain could be too
large and would consume most of the lightmapping’s size. Usually, this is necessary, but in our case,
the spotlights are barely touching the terrain. Here, we have two options: leave the terrain as dynamic,
or better, directly tell the spotlights to not affect the terrain since one is only lit by ambient lighting
and the directional light (which is not casting shadows).

Enlightening Worlds: Illuminating Scenes with the Universal Render Pipeline398

Remember that this is something we can do because of our type of scene; however, you may need to
use other settings in other scenarios. You can exclude an object from both real-time and static lighting
calculations by doing the following:

1. Select the object to exclude.
2. In the Inspector window, click the Layer dropdown and click on Add Layer…:

Figure 12.42: Layer creation button

3. Here, you can create a layer, which is a group of objects that are used to identify which objects
are not going to be affected by lighting. In the Layers list, look for an empty space and type
in any name for those kinds of objects. In my case, I will only exclude the terrain, so I have
just named it Terrain:

Figure 12.43: Layers list

Chapter 12 399

4. Once again, select the terrain, go to the Layer dropdown, and select the layer you created in
the previous step. This way, you can specify that this object belongs to that group of objects:

Figure 12.44: Changing a GameObject’s layer

5. Select all the spotlights, look for the Culling Mask in the Rendering section in the Inspector
window, click it, and uncheck the layer you created previously. This way, you can specify that
those lights won’t affect that group of objects:

Figure 12.45: Light Culling Mask

6. Now, you can see how those selected lights are not illuminating or applying shadows to the
terrain.

Now, it’s time for the lights since the Static checkbox won’t work for them. For them, we have the
following three modes:

• Realtime: A light in Realtime mode will affect all objects, both static and dynamic, using re-
al-time lighting, meaning there’s no pre-calculation. This is useful for lights that are not static,
such as the player’s flashlight, a lamp that is moving due to the wind, and so on.

Enlightening Worlds: Illuminating Scenes with the Universal Render Pipeline400

• Baked: The opposite of Realtime, this kind of light will only affect static objects with lightmaps.
This means that if the player (dynamic) moves under a baked light on the street (static), the
street will look lit, but the player will still be dark and won’t cast any shadows on the street.
The idea is to use this on lights that won’t affect any dynamic object, or on lights that are barely
noticeable on them, so that we can increase performance by not calculating them.

• Mixed: This is the preferred mode in case you are not sure which one to use. This kind of light
will calculate lightmaps for static objects, but will also affect dynamic objects, combining its
Realtime lighting with the baked one (like Realtime lights also do).

In our case, our directional light will only affect the terrain, and because we don’t have shadows, ap-
plying lighting to it is relatively cheap in URP, so we can leave the directional light as Realtime so that
it won’t take up any lightmap texture area.

Our spotlights are affecting the base, but actually, they are only applying lighting to them—we have
no shadows because our base is empty. In this case, it is preferable to not calculate lightmapping
whatsoever. However, for learning purposes, I will add a few objects as obstacles to the base to cast
some shadows and justify the use of lightmapping, as shown in the following image:

Figure 12.46: Adding objects to project light

Here, you can see how the original design of our level changes constantly during the development of
the game, and that’s something you can’t avoid—bigger parts of the game will change over time. Now,
we are ready to set up the light modes and execute the baking process, as follows:

1. Select the Directional Light in the Hierarchy.
2. Set the Mode property in the General section in the Inspector window to Realtime (if it’s not

already in that mode).
3. Select both spotlights.

Chapter 12 401

4. Set their render Mode to Mixed:

Figure 12.47: Mixed lighting setting for spotlights; the mode will be Realtime for the direc-
tional light

5. Open the Lighting Settings window (Window | Rendering | Lighting).
6. We want to change some of the settings of the baking process. In order to enable the controls

for this, click the New button. This will create an asset with lightmapping settings that can be
applied to several scenes in case we want to share the same settings multiple times:

Figure 12.48: Creating lighting settings

7. Reduce the quality of lightmapping, just to make the process go faster. Just to reiterate, the
lighting can easily be reduced by using settings such as Lightmap Resolution, Direct Samples,
Indirect Samples, and Environment Samples, all of them located under the Lightmapping
Settings category. In my case, I have those settings applied as shown in the following image.
Note that even reducing those will take time; we have too many objects in the scene due to
the modular level design:

Figure 12.49: Scene lighting settings

Enlightening Worlds: Illuminating Scenes with the Universal Render Pipeline402

8. Click Generate Lighting, which is the same button we used previously to generate ambient
lighting.

9. Wait for the process to complete. You can do this by checking the progress bar at the bottom
right of the Unity Editor. Note that this process could take even hours in large scenes, so be
patient:

Figure 12.50: Baking progress bar

10. After the process has completed, you can check the bottom part of the Lighting Settings window,
where you can see how many lightmaps need to be generated. We have a maximum lightmap
resolution, so we probably need several of them to cover the entire scene. Also, it informs us
of their size so that we can consider their impact in terms of RAM. Finally, you can check out
the Baked Lightmaps section to see them:

Figure 12.51: Generated lightmaps

11. Now, based on the results, you can move objects, modify light intensities, or make whatever
correction you would need in order to make the scene look the way you want and recalculate
the lighting every time you need to. In my case, those settings gave me good enough results,
which you can see in the following image:

Chapter 12 403

Figure 12.52: Lightmap result

We still have plenty of small settings to touch on, but I will leave you to discover those through trial and
error or by reading the Unity documentation about lightmapping over at https://docs.unity3d.com/
Manual/Lightmappers.html. Reading the Unity manual is a good source of knowledge and I recom-
mend that you start using it—any good developer, no matter how experienced, should read the manual.

Applying static lighting to static objects
When marking objects as static in your scene, you probably figured out that all the objects in the scene
won’t move, so you probably checked the static checkbox for everyone. That’s OK, but you should
always put a dynamic object into the scene to really be sure that everything works OK—no game has
totally static scenes. Try adding a capsule and moving it around to simulate our player, as shown in
the following image. If you pay attention to it, you will notice something odd—the shadows being
generated by the lightmapping process are not being applied to our dynamic object:

Figure 12.53: Dynamic object under a lightmap’s precalculated shadow

https://docs.unity3d.com/Manual/Lightmappers.html
https://docs.unity3d.com/Manual/Lightmappers.html

Enlightening Worlds: Illuminating Scenes with the Universal Render Pipeline404

You may be thinking that Mixed Light Mode was supposed to affect both dynamic and static objects,
and that is exactly what it’s doing. The problem here is that everything related to static objects is pre-
calculated into those lightmap textures, including the shadows they cast, and because our capsule is
dynamic, it wasn’t there when the pre-calculation process was executed. So, in this case, because the
object that cast the shadow was static, its shadow won’t affect any dynamic object.

Here, we have several solutions. The first would be to change the Static and Realtime mixing algorithm
to make everything near the camera use Realtime lighting and prevent this problem (at least near the
focus of attention of the player), which will have a big impact on performance. The alternative is to
use Light Probes. When we baked information, we only did that on lightmaps, meaning that we have
information on lighting just over surfaces, not in empty spaces. Because our player is traversing the
empty spaces between those surfaces, we don’t know exactly how the lighting would look in those
spaces, such as the middle of a corridor. Light Probes are a set of points in those empty spaces where
Unity also pre-calculates information, so when some dynamic object passes through the Light Probes,
it will sample information from them. In the following image, you can see some Light Probes that
have been applied to our scene. You will notice that the ones that are inside shadows are going to be
dark, while the ones exposed to light will have a greater intensity.

This effect will be applied to our dynamic objects:

Figure 12.54: Spheres representing Light Probes

If you move your object through the scene now, it will react to the shadows, as shown in the following
two images, where you can see a dynamic object being lit outside a baked shadow and being dark inside:

Chapter 12 405

Figure 12.55: Dynamic object receiving baked lighting from Light Probes

In order to create Light Probes, do the following:

1. Create a group of Light Probes by going to GameObject | Light | Light Probe Group.
2. Fortunately, we have some guidelines on how to place them. It is recommended to place

them where the lighting changes, such as inside and outside shadow borders. However, that
is complicated. The simplest and recommended approach is to just drop a grid of Light Probes
all over your playable area. To do that, you can simply copy and paste the Light Grid Group
several times to cover the entire base:

Figure 12.56: Light Probe grid

Enlightening Worlds: Illuminating Scenes with the Universal Render Pipeline406

3. Another approach would be to select one group and click the Edit Light Probes button to enter
Light Probe edit mode. This is the last button that appears in the button bar at the top-left corner
of the scene view after selecting a light probe (the one that looks like three connected dots):

Figure 12.57: Light Probe Group edit button

4. Click the Select All button and then Duplicate Selected to duplicate all the previously existing
probes.

5. Using the translate gizmo, move them next to the previous ones, extending the grid in the
process. Consider that the nearer the probes are, you more you will need to cover the terrain,
which will generate more data. However, Light Probes data is relatively cheap in terms of
performance, so you can have lots of them, as seen in Figure 12.55.

6. Repeat steps 4 and 5 until you’ve covered the entire area.
7. Regenerate lighting with the Generate Lighting button in Lighting Settings.

With that, you have precalculated lighting on the Light Probes affecting our dynamic objects, com-
bining both worlds to get cohesive lighting.

Lighting is a complex topic; there are even people who work exclusively on getting it right
and performant for your game. If you want to learn more, there are plenty of resources,
like the following link: https://blog.unity.com/engine-platform/shedding-light-
on-universal-render-pipeline-for-unity-2021-lts

Chapter 12 407

Summary
In this chapter, we discussed several lighting topics, such as how Unity calculates lights and shadows,
how to deal with different light sources such as direct and indirect lighting, how to configure shadows,
how to bake lighting to optimize performance, and how to combine dynamic and static lighting so
that the lights aren’t disconnected from the world they affect. This was a long chapter, but lighting
deserves that. It is a complex subject that can improve the look and feel of your scene drastically, as
well as reduce your performance dramatically. It requires a lot of practice, and here, we tried to sum-
marize all the important knowledge you will need to start experimenting with it. Be patient with this
topic; it is easy to get incorrect results, but you are probably just one checkbox away from solving it.

Now that we have improved all we can in the scene settings, in the next chapter, we will apply a final
layer of graphic effects using the Unity post-processing stack, which will apply full-screen image ef-
fects—the ones that will give us that cinematic look and feel that all games have nowadays.

Learn more on Discord
Read this book alongside other users, Unity game development experts, and the author himself. Ask
questions, provide solutions to other readers, chat with the author via Ask Me Anything sessions, and
much more. Scan the QR code or visit the link to join the community:

https://packt.link/unitydev

https://packt.link/unitydev

13
Immersive Realism: Achieving
Fullscreen Effects with Post-
Processing

So far, we have created different objects, such as meshes, particles, and lights, to alter the visuals of
our scene. But if we really want to get that slick, modern game look, it’s time to try our hand at some
post-processing magic. We can tweak the settings of our objects here and there to improve our scene
quality, but you will always feel that something is missing when comparing it with modern game
scenes, and the thing that is missing is post-processing effects, that is, any effects applied after all
the processing of the scene has been completed to enhance its visual results. In this chapter, you will
learn how to apply effects to the final rendered frame, which will alter the look of the overall scene
we have been creating in previous chapters.

In this chapter, we will examine the following image effect concepts:

• Using post-processing
• Using advanced effects

Let’s start by seeing how we can apply post-processing to our scene.

Using post-processing
Post-processing is a Unity feature that allows us to apply a stack of effects (several effects) one on top
of the other to alter the final look of an image. Each one will affect the finished frame, changing the
final image the user sees. In Figure 13.1, you can see a scene before and after applying image effects.
You will notice a dramatic difference, but that scene doesn’t have any changes in its objects, including
lights, particles, and meshes.

Immersive Realism: Achieving Fullscreen Effects with Post-Processing410

The effects applied are based on a per-pixel level. Have a look at both the scenes here:

Figure 13.1: A scene without image effects (left) and the same scene with effects (right)

In this section, we will discuss the following URP post-processing concepts:

• Setting up a profile
• Using basic effects

By mastering these URP post-processing concepts, you’ll be able to transform your scenes from the
ordinary to the extraordinary. Let’s start preparing our scene to apply effects, for which we need to
set up a profile.

Setting up a profile
To start applying effects, we need to create a profile, which is an asset containing all the effects and
settings we want to apply. This is a separate asset because we can share the same post-processing pro-
file across different scenes and parts of scenes, as we do for the materials. When we refer to parts of
scenes, we are referring to volumes, which are zones, regions, or areas of the game that have certain
effects applied. We can define a global area that applies effects regardless of the position of the player,
or we can apply different effects—for example, when we are outdoors or indoors.

In this case, we will use a global volume, one that we will use to apply a profile with our first effect,
by doing the following:

1. Create a new empty GameObject (GameObject | Create Empty) named PP Volume (Post-Pro-
cessing Volume).

2. Add the Volume component to it and make sure Mode is set to Global.
3. Click on the New button at the right of the Profile setting, which will generate a new Profile

asset with the same name as the GameObject that was selected when clicking the button (PP
Volume Profile). Move that asset to its own folder, which is recommended for asset organization
purposes. The final settings are illustrated in the following figure:

Chapter 13 411

Figure 13.2: Volume component

4. To test whether the volume is working, let’s add an effect. To do so, click the Add Override
button and select the Post-Processing | Chromatic Aberration option.

5. Check the Intensity checkbox in the Chromatic Aberration effect and set the intensity to 0.25,
as illustrated in the following figure:

Figure 13.3: Chromatic aberration effect

6. Now, watch as the aberration effect subtly tweaks the corners of your image, adding a dynamic
edge to the scene. Remember to look at this in the Scene panel; we will make the effect applied
to the Game view in the next step. This is illustrated in the following figure:

Figure 13.4: Chromatic aberration applied to the scene

If you don’t see the effect, make sure that the toggle effects button is on, as seen in the follow-
ing image.

Figure 13.5: Scene view effects toggle

Immersive Realism: Achieving Fullscreen Effects with Post-Processing412

7. Now, if you hit Play and see the game from the view of the Main Camera, you will see that the
effect is not being applied, and that’s because we need to check the Post Processing checkbox
in the Rendering section of our Main Camera, as illustrated in the following figure:

Figure 13.6: Enabling post-processing

With our global volume set up, we’ve just unlocked the ability to consistently apply effects across the
entire scene, no matter where our player roams.

Now that we have prepared our scene to use post-processing, we can start experimenting with different
effects. Let’s start with the simplest ones in the next section.

Using basic effects
Now that we have post-processing in our scene, the only thing needed is to start adding effects and
set them up until we have the desired look and feel. In order to do that, let’s explore several simple
effects included in the system.

Let’s start with Chromatic Aberration, the one we just used, which, as with most image effects, tries
to replicate a particular real-life effect. All game engine rendering systems use a simple mathematical
approximation of how human vision really works, and because of that, we don’t have some effects that
occur in the human eye or camera lenses. A real camera lens works by bending light rays to point them
toward the camera sensors, but that bending is not perfect in some lenses (sometimes intentionally),
and, hence, you can see distortion, as shown in the following screenshot:

Chapter 13 413

Figure 13.7: Image without chromatic aberration (top) and the same image with chromatic aber-
ration (bottom)

This effect will be one of several that we will add to generate a cinematic feeling in our game, simulat-
ing the usage of real-life cameras. Of course, this effect won’t look nice in every kind of game; maybe
a simplistic cartoonish style won’t benefit from this one, but you never know: art is subjective, so it’s
a matter of trial and error.

Also, we have exaggerated the intensity a little bit in the previous example to make the effect more
noticeable, but I would recommend using an intensity of 0.25 in this scenario. It is usually recom-
mended to be gentle with the intensity of the effects; it’s tempting to have intense effects, but as you
will be adding lots of them, after a while, the image will become bloated with too many distortions. So,
try to add several subtle effects instead of a few intense ones. But, again, this depends on the target
style you are looking for; there are no absolute truths here (but common sense still applies).

Finally, before moving on to discuss other effects, if you are used to using other kinds of post-processing
effects frameworks, you will notice that this version of Chromatic Aberration has fewer settings, and
that’s because the URP version seeks performance, so it will be as simple as possible.

The next effect we are going to discuss is Vignette. This is another camera lens imperfection where
the image intensity is lost at the edges of the lens. This can be applied not only to simulate older cam-
eras but also to draw the attention of the user toward the center of the camera—for example, during
cinematics.

Immersive Realism: Achieving Fullscreen Effects with Post-Processing414

Also, if you are developing virtual reality (VR) applications, this can be used to reduce motion sickness
by reducing the peripheral vision of the player. In the following screenshot, you can see an example
of vignetting on an old camera:

Figure 13.8: Photo taken with an old camera, with vignetting over the edges

Just to try it, let’s apply some vignetting to our scene by doing the following:

1. Select the PP Volume GameObject.
2. Add the Postprocessing | Vignette effect by clicking on the Add Override button.
3. Check the Intensity checkbox and set it to 0.3, increasing the effect.
4. Check the Smoothness checkbox and set it to 0.5; this will increase the spread of the effect.

You can see the result in the following figure:

Chapter 13 415

Figure 13.9: Vignette effect

If you want, you can change the color by checking the Color checkbox and setting it to another value;
in our case, black is okay to reinforce the rainy-day environment. Here, I invite you to check other
properties, such as Center and Rounded. You can create nice effects just by playing with the values.

Another effect we are going to see is Motion Blur, and again, it simulates the way the cameras work. A
real camera has an exposure time: the time it needs to capture photons in an image. When an object
moves fast enough, the same object is placed in different positions during that brief exposure time,
so it will appear blurred. In the following screenshot, you can see the effect applied to our scene.

Immersive Realism: Achieving Fullscreen Effects with Post-Processing416

In the case of this image, we are moving the camera up and down fast, with the following result:

Figure 13.10: Motion Blur being applied to our scene

One thing to consider is that this blur will only be applied to the camera movement and not the
movement of the objects (still camera, moving objects), due to the fact that this URP doesn’t support
motion vectors yet.

In order to use this effect, follow these next steps:

1. Add the Post-processing | Motion Blur override with the Add override button.
2. Check the Intensity checkbox and set it to 0.25.
3. Rotate the camera while looking at the Game view (not the Scene view). You can click and

drag the X property of Transform of the camera (not the value—the X label), as illustrated in
the following screenshot:

Figure 13.11: Changing rotation

As you can see, this effect cannot be seen in the Scene view, as well as other effects, so take that into
account before concluding the effect is not working. Unity does this because it would be very annoying
to have that effect while working in the scene.

Finally, we are going to briefly discuss two simple effects, Film Grain and White Balance:

1. The first is pretty simple: add it, set the intensity to 1, and you will get the famous grain effect
from old movies. You can set Type with a different number of sizes to make it more subtle or
harsh.

Chapter 13 417

2. The second one, White Balance allows you to change the color temperature, making colors
warmer or cooler depending on how you configure it. In our case, we are working in a cold,
dark scene, so you can add it and set the temperature to -20 to adjust the appearance just
slightly and improve the look and feel in this kind of scene.

Now that we have seen a few of the simple effects, let’s check out a few of the remaining ones that are
affected by some advanced rendering features.

Using advanced effects
Now we’re stepping up our game with some advanced effects. They’re a notch above what we’ve seen
before, and a bit trickier, but don’t worry—we’ll guide you through them. In this section, we are going
to see the following advanced effect concepts:

• High Dynamic Range (HDR) and Depth Map
• Applying advanced effects

Let’s start by discussing some requirements for some of these effects to work properly.

High Dynamic Range (HDR) and depth map
Remember the Depth Map from our last chapter? Some effects need more than just the rendered
image; they require extra data like this to really shine. Some effects not only work with the rendered
image but also need additional data. We can first discuss the Depth Map, a concept we discussed in
previous chapters.

A Depth Map is an image rendered from the point of view of the camera, but instead of generating a
final image of the scene, it renders the scene objects’ depth, rendering the objects in shades of gray.
In a Depth Map, the rule is simple: the darker the shade, the further away the pixel is from the camera,
and the lighter it is, the closer it is.

When I was learning how to make my own post-processing effects, I remember experiment-
ing with a dream-like transition distortion effect. To do so, I used the sine mathematical
function to calculate the amount of horizontal distortion to apply based on the vertical
position of the pixels. After doing so, I saw my framerate drop heavily, and that was the
moment I realized post-processing can be expensive. To be fair, it was an old PC, but still,
the point holds. Be careful about the number of postprocessing effects you add, and learn
about each one to see how to configure it properly. You can analyze the cost of the GPU
with tools like PIX, which analyzes the GPU performance of your application: https://
devblogs.microsoft.com/pix/download/

https://devblogs.microsoft.com/pix/download/
https://devblogs.microsoft.com/pix/download/

Immersive Realism: Achieving Fullscreen Effects with Post-Processing418

In the following screenshot, you can see an example of a Depth Map:

Figure 13.12: Notice how the varying shades of gray depict the distance from the camera

We will see some effects such as Depth of Field, which will blur some parts of the image based on
the distance of the camera, but it can be used for several purposes on custom effects (not in the base
URP package).

Another concept to discuss here that will alter how colors are treated and, hence, how some effects
work is High Dynamic Range (HDR). In older hardware, color channels (red, green, and blue) were
encoded in a 0 to 1 range, 0 representing no intensity and 1 representing full intensity (per channel),
so all lighting and color calculations were done in that range. That seems okay but doesn’t reflect
how light actually works. You can see full white (all channels set to 1) in a piece of paper being lit by
sunlight, and you can see full white when you look directly at a light bulb, but even if both light and
paper are of the same color, the latter will, firstly, irritate the eye after a while and, secondly, have
some overglow due to an excess of light. The problem here is that the maximum value (1) is not enough
to represent the most intense color, so if you have a high-intensity light and another with even more
intensity, both will generate the same color (1 in each channel) because calculations cannot go further
than 1. To overcome these limitations and capture light more realistically, HDR Rendering was created.

HDR is a way for colors to exceed the 0 to 1 range, so lighting and effects that work based on color
intensity have better accuracy in this mode. Unity will do the calculations in HDR but the final image
will still work using the previous color space (0 to 1, or Low Dynamic Range (LDR)), so don’t confuse
Unity’s hdr rendering with the display’s hdr.

For more information about HDR, check this link: https://docs.unity3d.com/Manual/
HDR.html

https://docs.unity3d.com/Manual/HDR.html
https://docs.unity3d.com/Manual/HDR.html

Chapter 13 419

To convert the HDR calculations back to LDR, Unity (and also TVs) uses a concept called tonemapping.
You can see an example of an LDR-rendered scene and tonemapping being used in an HDR scene in
the following screenshots:

Figure 13.13: An LDR-rendered scene (left) and an HDR scene with corrected overbrights using tone-
mapping (right)

Tonemapping is a way to convert colors outside the 0-1 light intensity range back inside this range to
render them on LDR screens. It basically uses curves to determine how each color channel should
be mapped back.

Picture this: you’re stepping out from a dimly lit room into the glaring afternoon sun. That momentary
blinding effect and gradual adjustment is HDR at work. It’s like stepping out into bright sunlight from
a dark room; at first, everything is too bright, but gradually, your eyes adjust—that’s tonemapping in
action. The idea here is that calculations are not different when you are inside or outside the building;
a white wall inside the building will have a color close to 1 intensity, while the same white wall outside
will have a higher value (due to sunlight). The difference is that tonemapping will take the higher-than-1
color back to 1 when you are outside the building, and maybe it will increase the lighting of the wall
inside if the whole scene is darker, depending on how you set it. That feature is called auto-exposure.

Even if HDR is enabled by default, let’s just see how we can verify if it is by doing the following:

1. Go to Edit | Project Settings.
2. Click on the Graphics section in the left panel.
3. Click the asset referenced under the Scriptable Render Pipeline Settings property.
4. Click on the highlighted asset in the Project panel. Ensure that this panel is visible before

clicking the property in the Graphics settings. Alternatively, you can double-click the asset
reference in the Graphics settings to select it.

Immersive Realism: Achieving Fullscreen Effects with Post-Processing420

5. Under the Quality section, ensure that HDR is checked, as illustrated in the following screen-
shot:

Figure 13.14: Enabling HDR

6. Ensure that the HDR Rendering property of the Camera component in the Main Camera
GameObject is set to Use settings from Render Pipeline to ensure the change in the previous
steps is respected.

Of course, the fact that HDR is togglable means that there are scenarios where you don’t want to use
it. As you can guess, not all hardware supports HDR, and using it incurs a performance overhead, so
take that into account. Luckily, most effects work with both HDR and LDR color ranges, so if you have
HDR enabled but the user device doesn’t support it, you won’t get any errors, just different results
depending on the effect, such as brighter or darker images, or exaggerated effects, as we will see in
the next section, Applying advanced effects.

Now that we are sure we have HDR enabled, let’s explore some advanced effects that use this and
depth mapping.

Applying advanced effects
Let’s see certain effects that use the previously described techniques, starting with the commonly
used Bloom. This effect emulates the overglow that happens around a heavily lit object on a camera
lens or even the human eye. In Figure 13.15, you can see the difference between the default version
of our scene and an exaggerated Bloom version.

You can observe how the effect is only applied to the brightest areas of our scene. Have a look at both
effects here:

Figure 13.15: The default scene (left) and the same scene with a high-intensity Bloom (right)

Chapter 13 421

This effect is actually very common and simple, but I consider it advanced because the results are
drastically affected by HDR. This effect relies on calculating the intensity of each pixel’s color to detect
areas where it can be applied. In LDR, we can have a white object that isn’t overbright, but due to the
limitations in this color range, Bloom may cause an overglow over it. In HDR, due to its increased
color range, we can detect if an object is white or if the object is maybe light blue but just overbright,
generating the illusion that it is white (such as objects near a high-intensity lamp). In Figure 13.16,
you can see the difference between our scene with HDR and without it. You will notice that the LDR
version will have overglow in areas that are not necessarily overbright. The difference may be very
subtle, but pay attention to the little details to note the difference. And remember, I exaggerated the
effect here. Have a look at both scenes here:

Figure 13.16: Bloom in an LDR scene (left) and Bloom in an HDR scene (right). Notice that the Bloom
settings were changed to try to approximate them as much as possible

For now, let’s stick with the HDR version of the scene. In order to enable Bloom, do the following:

1. Add the Bloom override to the profile, as usual.
2. Enable the Intensity checkbox by checking it, and set the value to 0.2. This controls how much

overglow will be applied.
3. Enable Threshold and set it to 0.7. This value indicates the minimum intensity a color needs

to have to be considered for overglow. In our case, our scene is somewhat dark, so we need
to reduce this value in the Bloom effect settings to have more pixels included. As usual, those
values need to be adjusted to your specific scenario.

Immersive Realism: Achieving Fullscreen Effects with Post-Processing422

You will notice that the difference is very subtle, but again, remember that you will have several ef-
fects, so all those little differences will add up. You can see both effects in the following screenshots:

Figure 13.17: Bloom effect

As usual, it is recommended that you fiddle with other values. Some interesting settings I recommend
you test are the Dirt Texture and Dirt Intensity values, which will simulate dirty lenses in the overglow
area.

Building on our understanding of Depth Maps, let’s explore another popular effect, Depth of Field.
This one relies on the Depth Map we discussed earlier. It is not that obvious to the naked eye, but when
you focus on an object within your sight, the surrounding objects become blurred because they are
out of focus. We can use this to focus the attention of the player in key moments of gameplay. Think
of this effect like a camera’s autofocus – it samples the Depth Map to decide what should be crisp and
what should be blurred, much like focusing on an object in photography.

In order to use it, do the following:

1. Put the camera near a column to try to focus on a specific object, as illustrated in the following
screenshot:

Chapter 13 423

Figure 13.18: Camera positioning

2. Add the Depth of Field override.
3. Enable and set the Mode setting to Gaussian: the cheapest one in terms of performance used.
4. In my case, I have set Start to 10 and End to 20, which will make the effect start at a distance

behind the target object. The End setting will control how the blur’s intensity will increase,
reaching its maximum at a distance of 20 meters. Remember to tweak these values to your case.

5. If you want to exaggerate the effect a little bit, set Max Radius to 1.5. The result is shown in
the following screenshot:

Figure 13.19: Exaggerated effect

Immersive Realism: Achieving Fullscreen Effects with Post-Processing424

Something to consider here is that our game will have a top-down perspective, and unlike the first-per-
son camera where you can see distant objects, here, we will have objects near enough to not notice
the effect, so we can limit the use of this effect just for cutscenes in our scenario.

Now, most of the remaining effects are different ways to alter the actual colors of the scene. The idea
is that the real color sometimes doesn’t give you the exact look and feel you are seeking. You may need
the dark zones to be darker to reinforce the sensation of a horror ambiance, or you may want to do
the opposite: increase the dark areas to represent an open scene. It could also be that you want to tint
the highlights a little bit to get a neon effect if you are creating a futuristic game, or perhaps you want
a sepia effect temporarily to do a flashback. We have a myriad of ways to do this, and in this case, I
will use a simple but powerful effect called Shadows Midtones Highlights.

This effect will apply different color corrections to—well—shadows, midtones, and highlights, meaning
that we can modify darker, lighter, and medium areas separately. Let’s try it by doing the following:

1. Add the Shadow Midtones Highlights override.
2. Let’s start doing some testing. Check the three Shadows, Midtones, and Highlights checkboxes.
3. Move the Shadows and Midtones sliders all the way to the left and the one for Highlights to

the right. This will reduce the intensity of shadows and midtones and increase the intensity
of highlights. We did this so that you can see the areas that Highlights will alter, based on the
intensity. You can do the same with the other sliders to check the other two areas. You can see
the result in the following screenshot:

Figure 13.20: Isolating highlights

4. Also, test moving the white circle at the center of the colored circle to apply a little bit of tinting
to those areas. Reduce the intensity of the highlights by moving the slider a little bit to the
left to make the tinting more noticeable. You can see the result in the following screenshot:

Chapter 13 425

Figure 13.21: Tinting highlights

5. By doing this, you can explore how those controls work, but of course, those extreme values
are useful for some edge cases. In our scene, the settings you can see in the following screen-
shot worked best for me. As always, it is better to use subtler values to not distort the original
result too much, as illustrated here:

Figure 13.22: Subtle changes

Immersive Realism: Achieving Fullscreen Effects with Post-Processing426

You can see the before-and-after effects in the following screenshots:

Figure 13.23: Before-and-after effects

If you’re looking for something less complex than HDR, Split Toning offers a simpler yet effective way
to play with shadows and highlights, or Color Curves, which give you advanced control of how each
color channel of the scene will be mapped, but the idea is the same: to alter the actual color of the
resulting scene to apply a specific color ambiance to your scene. If you remember the movie series
The Matrix, when the characters were in the Matrix, everything had subtle green tinting, and while
outside it, the tinting was blue.

Remember that the results of using HDR and not using it regarding these effects are important, so it
is better to decide sooner rather than later whether to use HDR, excluding certain target platforms
(which may not be important to your target audience), or not to use it (using LDR) and have less control
over your scene lighting levels.

Also, take into account that maybe you will need to tweak some objects’ settings, such as light intensities
and material properties, because sometimes we use post-processing to fix graphics errors that may be
caused by wrongly set objects, and that’s not okay. For example, increasing the ambient lighting in
our scene will drastically change the output of the effects, and we can use that to increase the overall
brightness instead of using an effect if we find the scene too dark.

We’ve now covered a range of image effects. Remember, the idea is not to use every single one but to
use the ones that you feel are contributing to your scene; they are not free in terms of performance
(although not that resource-intensive), so use them wisely. Also, you can check for the already created
profiles to apply them to your game and see how little changes can make a huge difference.

Summary
In this chapter, we discussed basic and advanced full screen effects to apply in our scene, making it
look more realistic in terms of camera lens effects and more stylish in terms of color distortions. We
also discussed the internals of HDR and Depth Maps and how they are important when using those
effects, which can immediately increase your game’s graphic quality with minimal effort.

Now that we have covered most of the common graphics found in Unity systems, let’s start looking at
how to increase the immersion of our scene by using sounds in the next chapter.

Chapter 13 427

Learn more on Discord
Read this book alongside other users, Unity game development experts, and the author himself. Ask
questions, provide solutions to other readers, chat with the author via Ask Me Anything sessions, and
much more. Scan the QR code or visit the link to join the community:

https://packt.link/unitydev

https://packt.link/unitydev

14
Harmonious Soundscapes:
Integrating Audio and Music

We have now achieved good enough graphics quality, but we are missing an important part of the
game aesthetics: the sound. Often relegated to being the last step in game development, sound is one
of those things that, if it’s there, you won’t notice its presence, but if you don’t have it, you will feel
that something is missing. It will help you to reinforce the ambiance you want in your game and must
match the graphical setting. To do so, we will use Unity’s capabilities to import audio assets, play them
in 2D and 3D positioning, and mix the audio using its mixer.

In this chapter, we will examine the following sound concepts:

• Importing audio
• Integrating and mixing audio

We will apply those concepts in our game to import the audio to play in different scenarios—such as
when the player shoots—and music. Later in the programming chapters, we will play sounds, but for
now, let’s focus on how to import them into our project.

Importing audio
As with graphic assets, it is important to properly set up the import settings for your audio assets, as
imports can be resource-intensive if not done properly.

In this section, we will examine the following audio-importing concepts:

• Audio types
• Configuring import settings

Let’s start by discussing the different kinds of audio we can use.

Harmonious Soundscapes: Integrating Audio and Music430

Audio types
There are different types of audio present in video games, which are the following:

• Music: Music is used to enhance the player’s experience according to the situation.
• Sound effects (SFX): Sounds that happen as a reaction to player or NPC actions, such as clicking

a button, walking, opening a door, shooting a gun, and so on.
• Ambient sound: A game that uses sounds only in response to events would feel empty. If you

are recreating an apartment in the middle of the city, even if the player is just idle in the middle
of the room doing nothing, lots of sounds should be heard, and the sources of most of them
will be outside the room, such as an airplane flying overhead, a construction site two blocks
away, cars in the street, and so on. Creating objects like the ones mentioned before that won’t
be seen by the player is a waste of resources. Instead, we can place individual sounds all over
the scene to recreate the desired ambiance, but that would be resource-intensive, requiring
lots of CPU and RAM to achieve believable results. Considering that these sounds usually
occupy the second plane of the user’s attention, we can just combine them all into a single
looping track and play one audio file, and that’s exactly what ambient sound is. If you want to
create a café scene, you can simply go to a real café and record a few minutes of audio, using
that as your ambient sound.

For almost all games, we will need at least one music track, one ambient track, and several SFX to
start the production of the audio. As always, we have different sources of audio assets, but we will use
the Asset Store. It has three audio categories to search for the assets we need:

Figure 14.1: Audio categories in the Asset Store

In my case, I also used the search bar to further filter the categories, searching for weather to find a
rain effect. Sometimes, you can’t find the exact audio separately; in such cases, you will need to dig
into Packs and Libraries, so have patience here. In my case, I picked the three packages you can see
in Figure 14.2 but imported just some of the sounds included, as all of them would weigh a lot in the
project in terms of size. For ambiance, I picked a rain sound file called Ambience_Rain_Moderate_01_
LOOP in the case of this package, but the name of the rain sound we are looking for could be different
if you downloaded another package. Then, I picked Music – Sad Hope for music, and for SFX, I picked
one gun sound effect package for our future player’s hero character. Of course, you can pick other
packages to better suit your game’s needs:

Chapter 14 431

Figure 14.2: The packages for our game

Now that we have the necessary audio packages, let’s discuss how to import them.

Configuring import settings
We have several import settings we can tweak, but the problem is that we need to consider the usage
of the audio to properly set it up, so let’s see the ideal settings for each case. In order to see the import
settings, as always, you can select the asset and see it in the Inspector panel, as in the following figure:

Figure 14.3: Audio import settings

Let’s discuss the most important ones, starting with Force To Mono. Some audio may come with
stereo channels, meaning that we have one sound playing in the left ear and another one in the right
ear. This means that one piece of audio can actually contain two different audio tracks. Stereo sound
is useful for different effects and instrument spatialization in the case of music, so we want that in
those scenarios, but there are other scenarios where mono audio is preferred.

Harmonious Soundscapes: Integrating Audio and Music432

Consider 3D sound effects such as a shooting gun or some walking-pace steps. In those cases, we need
the sound to be heard in the direction of the source—if the shooting of a gun happened to my left, I
need to hear it coming from my left. In these cases, we can convert stereo audio to mono audio by
checking the Force To Mono checkbox in the audio import settings. This will make Unity combine
the two channels into a single one, usually reducing the audio to almost half its size (sometimes more,
sometimes less, depending on various aspects).

You can verify the impact of that and other settings at the bottom of the audio asset Inspector, where
you can see the imported audio size:

Figure 14.4: Top: audio imported without Force To Mono. Bottom: same audio with Force To Mono

The next setting to discuss, and an important one at that, is Load Type. In order to play some audio,
Unity needs to read the audio from the disk, decompress it, and then play it. Load Type changes the
way those three processes are handled. We have the following three options here:

• Decompress On Load: The most memory-intensive option. This mode will make Unity load
the audio uncompressed in memory when the scene is loaded. That means that the audio will
take up lots of space in RAM because we have the uncompressed version loaded. The advan-
tage of using this mode is that playing the audio is easier because we have the raw audio data
ready to play in RAM.

• Streaming: The total opposite of Decompress On Load. This mode never loads audio in RAM.
Instead, while the audio is playing, Unity reads a piece of the audio asset from the disk, de-
compresses it, plays it, and repeats, running this process once for each piece of audio playing
in Streaming. This means that this mode will be CPU-intensive but will consume almost zero
bytes of RAM.

• Compressed in Memory: The middle ground. This mode will load the audio from the disk
when the scene is loaded but will keep it compressed in memory. When Unity needs to play
the audio, it will just take a piece from the RAM, decompress it, and play it. Remember that
reading pieces of the audio asset from RAM is considerably faster than reading from disk.

Maybe, if you are an experienced developer, you can easily determine which mode is better suited for
which kind of audio, but if this is your first encounter with video games, it may sound confusing. So,
let’s discuss the best modes for different cases:

Chapter 14 433

• Frequent short audio: This could be a shooting gun or the sound of footsteps, which are sounds
that last less than one second but can occur in several instances and play at the same time. In
such cases, we can use Decompress On Load. Uncompressed short audio won’t have a huge
size difference from its compressed version. Also, since this is the most performant CPU option,
having several instances won’t have a huge impact on performance.

• Infrequent large audio: This includes music, ambient sound, and dialog. These kinds of audio
usually have just one instance playing, and they are usually big. Those cases are better suited
for Streaming mode because having them compressed or decompressed in RAM can have a
huge impact on RAM consumption in low-end devices such as mobile devices (on PCs, we can
use Compressed in Memory sometimes). A CPU can handle having two or three bits of audio
playing in Streaming mode but try to have no more than that.

• Frequent medium audio: This includes pre-made voice chat dialog in multiplayer games, char-
acter emotes, long explosions, or any audio that is more than 500 KB (that is not a strict rule—
this number depends a lot on the target device). Having this kind of audio decompressed in
RAM can have a noticeable impact on performance, but due to the fact that this audio is fairly
frequently used, we can have it compressed in memory. Their relatively small size means they
usually won’t make a huge difference in our game’s overall size, and we will avoid wasting CPU
resources on reading from disk.

There are other cases to consider, but those can be extrapolated based on the previous ones. Remember
that the previous analysis was made by taking into account the requirements of the standard game,
but this can vary a lot according to your game and your target device. Maybe you are making a game
that won’t consume lots of RAM but is pretty intensive in terms of CPU resources, in which case you
can just put everything in Decompress On Load. It’s important to consider all aspects of your game
and to balance your resources accordingly.

Finally, another thing to consider is the compression format, which will change the way Unity will
encode the audio in the published game. Different compression formats will give different compression
ratios in exchange for less fidelity with the original audio or higher decompression times, and all this
varies a lot based on the audio patterns and length. We have three compression formats:

• PCM: The uncompressed format will give you the highest audio quality, with no noise artifacts,
but will result in a bigger asset file size.

• ADPCM: Compressing audio this way reduces file size and yields a fast, uncompressing process,
but this can introduce noise artifacts that can be noticeable in certain types of audio.

• Vorbis: A high-quality compression format that will yield almost zero artifacts but takes longer
to decompress, so playing Vorbis audio will be slightly more intensive than for other formats.
It also provides a quality slider to select the exact amount of compression aggressiveness.

Which one should you use? Again, that depends on the features of your audio. Short, smooth audio
can use PCM, while long, noisy audio can use ADPCM; the artifacts introduced by this format will
be hidden in the audio itself. Maybe long, smooth audio where compression artifacts are noticeable
could benefit from using Vorbis. Sometimes, it’s just a matter of trial and error.

Harmonious Soundscapes: Integrating Audio and Music434

Maybe use Vorbis by default, and when performance is reduced, try to switch to ADPCM. If that caus-
es glitches, just switch to PCM. Of course, the problem here is being sure that the audio processing
is really what’s responsible for the performance issues—maybe switching all audio to ADPCM and
checking whether that made a difference is a good way to detect that, but a better approach would be
to use the Profiler, a performance measurement tool that we will see later in this book.

We have other settings, such as Sample Rate Setting, that, again with a little trial and error, you can
use to detect the best setting.

I have set up the audio that I downloaded from the Asset Store, as you can see in Figures 14.5 and 14.6.
The first one shows how I set up the music and ambient audio files (large files):

Figure 14.5: Music and ambient settings

The music files, which are large in size, should be configured as stereo (with Force To Mono left un-
checked) and set to use Streaming as the Load Type since only one instance of them will be playing
at a time. For the Compression Format, choose ADPCM, as using Vorbis did not significantly reduce
the file size in this case.

This second screenshot shows how I set up the SFX files (small files):

Figure 14.6: Shooting SFX settings

Chapter 14 435

The sounds we downloaded will be 3D, so Force To Mono should be checked. They will also be short,
so the Load Type named Decompress On Load works better. Finally, choosing Vorbis for Compression
Format reduced the ADPCM size by more than half, which is why we picked it.

Now that we have our pieces of audio properly configured, we can start to use them in our scene.

Integrating and mixing audio
We can just drag our bits of audio into our scene to start using them, but we can dig a little bit further
to explore the best ways to configure them to each possible scenario.

In this section, we will examine the following audio integration concepts:

• Using 2D and 3D AudioSources
• Using audio mixers

Let’s start exploring AudioSources, objects that are in charge of audio playback.

Using 2D and 3D AudioSources
AudioSources are components that can be attached to GameObjects. They are responsible for emit-
ting sound in our game based on AudioClips, which are the audio assets we downloaded previously.

It’s important to differentiate an AudioClip from an AudioSource; we can have a single explosion
AudioClip but lots of AudioSources playing it, simulating several explosions. An AudioSource can be
seen as a CD player that can play AudioClips (our CDs in this analogy), only with the exception that
we can have several CD players or AudioSources playing the same CD at the same time (for example,
two explosion sounds playing at the same time).

The simplest way to create an AudioSource is to pick an AudioClip (an audio asset) and drag it to the
Hierarchy window. Try to avoid dragging the audio into an existing object; instead, drag it between
objects so Unity will create a new object with the AudioSource instead of adding it to an existing object
(sometimes, you want an existing object to have the AudioSource, but let’s keep things simple for now):

Once, I was hired by a team that needed to deliver a project the next day but had constant
issues with certain audio clips not playing on an iPad 1 (yes, this happened a long time ago).
They had long, heavy dialogs that were configured to use Load Type in Decompress On
Load mode. I just switched to streaming mode, as those dialogs were played one at a time,
fixed the issue, and managed to go home early that day. On another occasion, a similar fix
applied to the main music audio clip of a game reduced loading times from 12 seconds to 5
seconds on slow mobile devices. Never underestimate the cost of badly configured audio.

Harmonious Soundscapes: Integrating Audio and Music436

Figure 14.7: Dragging an AudioClip to the Hierarchy window between objects

The following screenshot shows the AudioSource generated by dragging the music asset to the scene.
You can see that the AudioClip field has a reference to the dragged audio:

Figure 14.8: AudioSource configured to play our music asset

As you can see, the AudioSource has several settings, so let’s review the common ones in the following
list:

• Play on Awake: Determines whether the audio starts playing automatically when the game
starts. We can uncheck that and play the audio via scripting, perhaps when the player shoots
or jumps (more on that in Section 3, Elevating Visuals, Effects, and Audio of the book).

• Loop: This will make the audio repeat automatically when it finishes playing. Remember to
always check this setting on the music and ambient audio clips. It is easy to forget this because
those tracks are long, and we may never reach the end of them in our tests.

Chapter 14 437

• Volume: Controls the audio intensity.
• Pitch: Controls the audio velocity. This is useful for simulating effects such as slow motion or

the increasing revolutions of an engine.
• Spatial Blend: Controls whether our audio is 2D or 3D. In 2D mode, the audio will be heard at

the same volume at all distances, while 3D will make the audio volume decrease as the distance
from the Camera (or whichever GameObject is holding the AudioListener component) increases.

In the case of our music track, I have configured it as shown in the following screenshot. You can drag
the ambient rain sound to add it to the scene and use the same settings as these because we want the
same ambient effect in all our scenes. In complex scenes, though, you can have different 3D ambient
sounds scattered all over the scene to change the sound according to the current environment:

Figure 14.9: Music and ambient settings. This will loop, is set to Play on Awake, and is 2D

Now, you can drag the shooting effect and configure it, as shown in Figure 14.10. As you can see, the
audio, in this case, won’t loop because we want the shooting effect to play once per bullet. Remember
that, for our game, the bullet will be a Prefab that will spawn each time we press the shoot key, so each
bullet will have its own AudioSource that will play when the bullet is created.

Harmonious Soundscapes: Integrating Audio and Music438

Also, the bullet has Spatial Blend set to 3D, meaning that the effect will be transmitted through different
speakers based on the position of the AudioSource against the camera position:

Figure 14.10: Sound effect setting. This won’t loop and is a 3D sound

Something to consider in the case of 3D sounds is the Volume Rolloff setting, which is inside the 3D
Sound Settings section. This setting controls how the volume decays as the distance from the camera
increases. By default, you can see that this setting is set to Logarithmic Rolloff, the way real-life sound
works, but sometimes you don’t want real-life sound decay because sounds in real life are usually
heard slightly, even if the source is very far away.

One option is to switch to Linear Rolloff and configure the exact maximum distance with the Max
Distance setting:

Chapter 14 439

Figure 14.11: A 3D sound with a maximum distance of 10 meters, using Linear Rolloff

Considering we just discussed 3D sounds, it is worth mentioning the AudioListener component, one
that is created by default in the MainCamera, and 99% of the time, this component will be placed in
the MainCamera. It serves as a way to identify which object represents the ears of the player in the
world, with which we can calculate audio directionality. The camera is the logical place to put it, given
it represents the eyes of the user, and having the eyes and the ears of the player in different places
would be confusing. There are no properties to configure in the AudioListener component, but it is
important to mention that in order for audio to work, we need one and no more than one; we have
just one pair of ears:

Figure 14.12: AudioListener component in the MainCamera

Now that we can configure individual pieces of audio, let’s see how to apply effects to groups of audio
instances using an Audio Mixer.

Harmonious Soundscapes: Integrating Audio and Music440

Using an Audio Mixer
We will have several audio instances playing all over our game: the footsteps of characters, shooting,
bonfires, explosions, rain, and so on. Controlling exactly which sounds are supposed to sound louder
or quieter depending on the context and applying effects to reinforce certain situations, such as be-
ing stunned due to a nearby explosion, is called audio mixing—the process of mixing several sounds
together in a cohesive and controlled way.

In Unity, we can create an Audio Mixer, an asset that we can use to define groups of sounds. All changes
to a group will affect all sounds inside it by raising or lowering the volume, perhaps, or by applying an
effect. You can have SFX and music groups control sounds separately. For example, you could lower
the SFX volume in the Pause menu but not the music volume. Also, groups are organized in a hierar-
chy, where a group can also contain other groups, so a change in a group will also apply changes to
its sub-groups. As a matter of fact, every group you create will always be a child group of the master
group, the group that controls every single sound in the game (that uses that mixer).

Let’s create a mixer with SFX and music groups:

1. In the Project window, using the + button, select the Audio Mixer option. Name the asset as
you wish; in my case, I chose Main Mixer.

2. Double-click the created asset to open the Audio Mixer window:

Figure 14.13: Audio Mixer window

Chapter 14 441

3. Click the + button at the right of the Groups label to create a child group of the master node.
Name it SFX:

Figure 14.14: Group creation

4. Click on the Master group and click again on the + button to create another master node
child group called Music. Remember to select the Master group before clicking the + button
because if another group is selected, the new group will be a child of that one. Anyway, you
can rearrange a group child-parent relationship by dragging the group in the Groups panel in
the AudioMixer window:

Figure 14.15: The Master, SFX, and Music groups

5. Select the Music GameObject of our scene back in the Hierarchy window and look for the
AudioSource component in the Inspector window.

6. Click the circle to the right of the Output property to open the AudioMixerGroup selector
window and select the Music group. This will make that AudioSource affected by the settings
on the specified Mixer group:

Figure 14.16: Making an AudioSource belong to an Audio Mixer group

Harmonious Soundscapes: Integrating Audio and Music442

7. If you play the game now, you can see how the volume meters in the Audio Mixer window
start to move, indicating that the music is going through the Music group. You will also see
that the Master group volume meter is also moving, indicating that the sound that is passing
through the Music group is also passing through the Master group (the parent of the Music
group) before going to the sound card of your computer:

Figure 14.17: Group volume levels

8. Repeat steps 5 and 6 for the ambient and shooting sounds to make them belong to the SFX group.

Now that we have separated our sounds into groups, we can start adjusting the groups’ settings. But
before doing that, we need to take into account the fact that we won’t want the same settings all the
time, as in the previously mentioned pause menu case, where the SFX volume should be lower. To
handle those scenarios, we can create snapshots, which are presets of our mixer that can be activat-
ed via scripting during our game. We will deal with the scripting steps in Section 3, Elevating Visuals,
Effects, and Audio of this book, but we can create a normal snapshot for the in-game settings and a
pause snapshot for the pause menu settings.

If you check the Snapshots list, you will see that a single snapshot has already been created—that can
be our normal snapshot. So, let’s create a pause snapshot by doing the following:

1. Click on the + button to the right of the Snapshots label and call the snapshot Pause. Remember
to stop the game to edit the mixer or click the Edit in Playmode option to allow Unity to change
the mixer during play. If you do the latter, remember that the changes will persist when you
stop the game, unlike changes to GameObjects. Actually, if you change other assets during Play
mode, those changes will also persist—only GameObject changes are reverted.

Figure 14.18: Snapshot creation

Chapter 14 443

2. Select the Pause snapshot and lower the volume slider of the SFX group:

Figure 14.19: Lowering the volume of the Pause snapshot

3. Play the game and hear how the sound is still at its normal volume. That’s because the origi-
nal snapshot is the default one—you can see that by checking for the star to its right. You can
right-click any snapshot and make it the default one using the Set as Start Snapshot option.

4. Click on Edit in Playmode to enable Audio Mixer modification during runtime.
5. Click on the Pause snapshot to enable it and hear how the Shooting and Ambient sound vol-

umes have decreased.

As you can see, one of the main uses of the mixer is to control group volume, especially when you see
that the intensity of a group’s volume is going higher than the 0 mark, indicating that the group is too
loud. Anyway, there are other uses for the mixer, such as applying effects. If you’ve played any war
game, you will have noticed that whenever a bomb explodes nearby, you hear the sound differently
for a moment, as if the sound were located in another room. That can be accomplished using an effect
called Low Pass, which blocks high-frequency sounds, and that’s exactly what happens with our ears
in those scenarios: the stress of the high-volume sound generated by an explosion irritates our ears,
making them less sensitive to high frequencies for a while.

We can add effects to any channel and configure them according to the current snapshot, just as we
did for the volume, by doing the following:

1. Click on the Add button at the bottom of the Master group and select Lowpass Simple:

Figure 14.20: The effects list of a channel

Harmonious Soundscapes: Integrating Audio and Music444

2. Select the normal snapshot (the one called Snapshot) to modify it.
3. Select the Master group and look at the Inspector panel, where you will see settings for the

group and its effects.
4. Set the Cutoff freq property of the Lowpass Simple settings to the highest value (22000), and

this will disable the effect.
5. Repeat steps 3 and 4 for the Pause snapshot; we don’t want this effect in that snapshot.
6. Create a new snapshot called Bomb Stun and select it to edit it.
7. Set Cutoff freq to 1000:

Figure 14.21: Setting the cutoff frequency of the Lowpass Simple effect

8. Play the game and change between snapshots to check the difference.

As you can see, Low Pass makes the audio sound like there’s a wall between the sources and the
listener. Aside from the Low Pass filter, you can apply several other filters, such as Echo, to create
an almost dreamy effect, or a combination of Send, Receive, and Duck to make a group lower its vol-
ume based on the intensity of another group (for instance, you may want to lower SFX volume when
dialogue is happening). I invite you to try those and other effects and check the results to identify
potential uses by reading the following documentation: https://docs.unity3d.com/Manual/class-
AudioEffectMixer.html.

Now that we have integrated the audio, let’s see how we can script our audio.

Scripting audio feedback
As with the VFX, audio also needs to react to what is happening in the game to give a better sense of
immersion. Let’s start adding sound to the explosion effect that enemies spawn when they die, which
doesn’t necessarily need scripting itself but is a result of the script that spawned the explosion in the
first place:

1. Download an explosion sound effect from the internet or the Asset Store.

https://docs.unity3d.com/Manual/class-AudioEffectMixer.html
https://docs.unity3d.com/Manual/class-AudioEffectMixer.html

Chapter 14 445

2. Select the Explosion prefab we spawn when the enemies die and add an AudioSource to it.
3. Set the downloaded explosion’s audio clip as the AudioClip property of the Audio Source.
4. Make sure Play On Awake is checked and Loop is unchecked under Audio Source� That will

make the sound be played when the explosion begins, and prevent the sound from looping
again and again once it finishes:

Figure 14.22: Adding sounds to our explosion effect

As you can see here, we didn’t need to use any script because we activated Play On Awake on the Audio
Source. As the sound is added to the Prefab, it will be played automatically at the very moment the
Prefab is instantiated. Now, let’s integrate the shooting sound by doing the following:

1. Download a shooting sound and add it through an Audio Source to the player’s weapon muzzle
effect (not the weapon), this time unchecking the Play On Awake checkbox.

2. In the PlayerShooting script, create a field of the AudioSource type called shootSound. This
way our script has access to the component and can manipulate when it plays sounds and
when it doesn’t.

3. Select Player in the Hierarchy and drag the weapon muzzle effect GameObject to the Shoot
Sound property in the Inspector to connect the script with the AudioSource variable in the
weapon muzzle effect.

Harmonious Soundscapes: Integrating Audio and Music446

4. In the if statement that checks whether we can shoot, add the shootSound.Play(); line to
execute the sound when shooting:

Figure 14.23: Adding sound when shooting

The Visual Scripting additional nodes would look like this:

Figure 14.24: Adding sound when shooting in Visual Scripting

Chapter 14 447

As we did with the muzzle effect, we added a GameObject variable called shootSound to reference
the weapon GameObject that contains the Audio Source, and then we called the Play method of the
shootSound variable.

I challenge you to try adding shooting sounds to the enemy AI in both C# and Visual Scripting versions
of the scripts. Take as a guide what we did in Chapter 11, Captivating Visual Effects: Harnessing Particle
Systems and VFX Graph, for the muzzle effect, and in any case, you can always check the Git repository
of the book (the link can be found in the Preface) for the solution.

Another approach to this would be the same as the one we did with the explosion; just add the shooting
sound to the bullet, but if the bullet collides with a wall, soon enough, the sound will be cut off. Or, if
in the future we want an automatic weapon sound, it will need to be implemented as a single looping
sound that starts when we press the relevant key and stops when we release it. This way, we prevent
too many sound instances from overlapping when we shoot too many bullets. Take into account those
kinds of scenarios when choosing the approach to script your feedback.

Summary
In this chapter, we discussed how to import and integrate sounds, considering their impact on memory
usage, and we considered how to apply effects to generate different scenarios. Sound is a big part of
achieving the desired game experience, so take the proper amount of time to get it right.

Now that we have covered almost all of the vital aesthetic aspects of our game, let’s create another
form of visual communication, the user interface or UI. We will create the necessary UI to display the
player’s current score, bullets, life, and lots more info in the next chapter.

Another way to boost your audio immersion is through audio spatialization. It’s an ad-
vanced topic, but you can learn more about it here: https://docs.unity3d.com/Manual/
AudioSpatializerSDK.html

This is especially useful in VR and AR applications for fully immersing users in the virtual
world.

https://docs.unity3d.com/Manual/AudioSpatializerSDK.html
https://docs.unity3d.com/Manual/AudioSpatializerSDK.html

Harmonious Soundscapes: Integrating Audio and Music448

Learn more on Discord
Read this book alongside other users, Unity game development experts, and the author himself. Ask
questions, provide solutions to other readers, chat with the author via Ask Me Anything sessions, and
much more. Scan the QR code or visit the link to join the community:

https://packt.link/unitydev

https://packt.link/unitydev

Section 4
Designing User Interfaces,
Animations and Advanced

Concepts
Complete your project by generating distributable executable files and profiling to assess its perfor-
mance. Also, learn the basics to start your next project using AR Foundation and DOTS.

This section comprises the following chapters:

• Chapter 15, Interface Brilliance: Designing User-Friendly UI
• Chapter 16, Next-Gen UI: Creating Dynamic Interfaces with the UI Toolkit
• Chapter 17, Animated Realities: Creating Animations with Animator, Cinemachine, and Timeline
• Chapter 18, Performance Wizardry: Optimizing Your Game with Profiler Tools
• Chapter 19, From Prototype to Executable: Generating and Debugging Your Game
• Chapter 20, AR/VR
• Chapter 21, Massive Worlds: Introduction to DOTS

15
Interface Brilliance: Designing
User-Friendly UI

Everything that is shown on the screen and transmitted through the speakers of a computer is a form
of communication. In previous chapters, we used 3D models to let the user know that they are in a
base in the middle of the mountains, and we reinforced that idea with the appropriate sound and
music. But for our game, we need to communicate other information, such as the amount of life the
player has left and the current score, and sometimes, it is difficult to express these things using the
in-game graphics (there are some successful cases that manage to do this, such as Dead Space, but
let’s keep things simple).

In order to transmit this information, we need to add another layer of graphics on top of our scene,
which is usually called the User Interface (UI). This will contain different visual elements, such as text
fields, bars, and buttons, to prepare the user to make an informed decision, based on things such as
fleeing to a safe place when their life is low.

In this chapter, we will explore the following topics:

• Understanding the Canvas and RectTransform
• Canvas object types
• Creating a responsive UI

Right now, these terms may mean nothing to you, but to simplify, think of the Canvas and RectTrans-
form as the respective stage and actors of your UI drama. They’re crucial, and we’ll dive deep into
how they work and play together.

By the end of this chapter, you will be able to use the Unity UI system to create interfaces capable
of informing the user about the state of the game, allowing them to take action by pressing buttons.

We’re about to unravel how the Canvas and RectTransform work in unison to bring your game’s inter-
face to life. It’s a bit like choreographing a dance – every element has its place and movement.

Interface Brilliance: Designing a User-Friendly UI452

Understanding the Canvas and RectTransform
We are only going to focus on the in-game UI to communicate different information to the player
using the Unity GUI system (or uGUI). At the time of writing, a new GUI system called UI Toolkit has
been released. Even though we will introduce UI Toolkit, remember that uGUI isn’t going anywhere
anytime soon. It’s crucial to grasp both to be versatile in your UI design approach. We will explore UI
Toolkit in the next chapter.

If you are going to work with Unity UI, you first need to understand its two main concepts—the Can-
vas and RectTransform. The Canvas is the master object that will contain and render our UI, and
RectTransform is the feature in charge of positioning and adapting each UI element on our screen.

In this section, we will be:

• Creating a UI with the Canvas
• Positioning elements with RectTransform

Let’s start by using the Canvas component to create our UI.

Creating a UI with the Canvas
Let’s put theory into practice by creating a Canvas-based UI. We’ll start with something simple to get
the ball rolling.

In Unity UI, each image, text, and element you see in the UI is a GameObject with a set of proper com-
ponents, but in order for them to work, they must be a child of a master GameObject with the Canvas
component. This component is responsible for triggering the UI generation and drawing iterations
over each child object. We can configure this component to specify exactly how that process works
and adapt it to different possible requirements.

To start, you can simply create a canvas with the GameObject | UI | Canvas option. After doing that,
you will see a rectangle in the scene, which represents the user’s screen, so you can put elements
inside it and preview where they will be located relative to the user’s monitor.

You are probably wondering two things here. First, “Why is the rectangle in the middle of the scene? I want
it to always be on the screen!” Don’t worry, because that will be exactly the case. When you edit the UI,
you will see it as part of the level, as an object inside it, but when you play the game, it will always be
projected over the screen, on top of every object. Also, you may be wondering why the rectangle is
huge, and that’s because one pixel of the screen map corresponds to one meter on the scene when
using the default Canvas Render Mode, the one called Screen Space - Overlay. There are other modes,
but discussing them is outside of the scope of this chapter.

Chapter 15 453

Again, don’t worry about that; you will see all your UI elements with their proper size and position
on the user’s screen when you see the game in the Game view. Consider setting the Game view size
prior to editing it in the Scene view, given that the Scene view will follow the Game view dimensions.
You can do that by clicking the dropdown saying Free Aspect at the top part of the Game panel and
selecting the desired resolution or aspect ratio, 16:9 Aspect being the most used option:

Figure 15.1: A default image UI element—a white box

Before adding elements to our UI, it’s worth noting that when you created the UI, a second object was
created alongside the Canvas, called EventSystem. This object is not necessary to render a UI but is
necessary if you want the UI to be interactable, which means including actions such as clicking but-
tons, introducing text in fields, or navigating the UI with the joystick. The EventSystem component
is responsible for sampling the user input, such as with a keyboard, mouse, or joystick, and sending
that data to the UI to react accordingly. We can change the exact buttons to interact with the UI, but
the defaults are OK for now, so just know that you need this object if you want to interact with the UI.
If for some reason you delete the object, you can recreate it again in GameObject | UI | Event System.

You’re building a great foundation. Keep this momentum going, as the principles you’re learning now
will be vital as you advance.

Positioning elements with RectTransform
In Unity UI, each image, text, and element you see in the UI is a GameObject with a set of proper
components according to its usage, but you will see that most of them have one component in com-
mon—RectTransform. Each piece of the UI is essentially a rectangle filled with text or images and
has different behavior, so it is important to understand how the RectTransform component works
and how to edit it.

In order to experiment with this component, let’s create and edit the position of a simple white box
element for the UI as follows:

1. Go to GameObject | UI | Image. After that, you will see that a new GameObject is created within
the Canvas element. Unity will take care of setting any new UI element as a child of the Canvas;
outside it, the element will not be visible:

Interface Brilliance: Designing a User-Friendly UI454

Figure 15.2: A default image UI element—a white box

2. Click on the 2D button in the top bar of the Scene view. This will just change the perspective
of the Scene view to one that is better suited to edit the UI (and also 2D games):

Figure 15.3: The 2D button location

3. Double-click on the Canvas in the Hierarchy window to make the UI fit entirely in the Scene
view. This will allow us to edit the UI clearly. You can also navigate the UI using the mouse
scroll wheel to zoom, and click and drag the scroll wheel to pan the camera.

4. Enable the RectTransform tool, which is the fifth button in the top-left part of the Unity Editor
(or press the T key). This will enable the rectangle gizmo, which allows you to move, rotate,
and scale 2D elements. While the transform tools we have used so far work with the UI, they
are not ideal. One example is that changing the size of a UI element is not the same as scaling
the element; we want to modify the width and height of the element but keep its scale for an-
imations, preventing distortion in 9-sliced images (there’s more on this later in this chapter).

Figure 15.4: The rectangle gizmo button

Chapter 15 455

5. Using the rectangle gizmo, drag the object to move it, use the blue dots to change its size, or
locate the mouse in a position near the blue dots until the cursor becomes a curved arrow to
rotate it. Consider that resizing the object using this gizmo is not the same as scaling the object
(there’ll be more on that shortly):

Figure 15.5: The rectangle gizmo for editing 2D elements

6. In the Inspector window, notice that after changing the size of the UI element, the Rect Trans-
form settings’ Scale property is still at 1, 1, 1, but you can see how the Width and Height prop-
erties changed. RectTransform is essentially a classic transform but with Width and Height
added (among other properties that we’ll explore later). You can set the exact values you want
here, expressed in pixels:

Figure 15.6: The Rect Transform properties

Now that we know the very basics of how to position any UI object, let’s explore the different types of
elements you can add to the Canvas.

Canvas object types
So far, we have used the simplest Canvas object type—a white box—but there are plenty of other object
types we can use, such as images, buttons, and text. All of them use RectTransform to define their
display area, but each one has its own concepts and configurations to understand.

Interface Brilliance: Designing a User-Friendly UI456

In this section, we will explore the following Canvas object concepts:

• Integrating assets for the UI
• Creating UI controls

Let’s first start exploring how we can integrate images and fonts to use in our Canvas so that we can
integrate them in our UI, using the Images and Text UI object types.

Integrating assets for the UI
Before making our UI use nice graphics assets, we need to integrate them properly into Unity to use
them in our UI. In the following screenshot, you will find the UI design we propose for our game:

Figure 15.7: UI design

On top of that, we will add a Pause menu, which will be activated when the user presses Esc. It will
look like the following screenshot:

Chapter 15 457

Figure 15.8: The Pause menu design

Based on these designs, we can determine that we will need the following assets:

• The hero’s avatar image
• A health bar image
• A Pause menu background image
• A Pause menu button image
• Font for the text

As always, we can find the required assets on the internet or in the Asset Store. In my case, I will use
a mixture of both. Let’s start with the simplest one—the avatar. Follow the following steps:

1. Download the avatar you want from the internet, such as an image with the face of a character.
2. Add it to your project, either by dragging it to the Project window or by using the Assets |

Import New Asset option. Add it to the Sprites folder.
3. Select the texture, and in the Inspector window, set the Texture Type setting to Sprite (2D and

UI). All textures are prepared for use in 3D by default. This option prepares our texture to be
used in 2D contexts, like the UI and also 2D games.

For the bars, buttons, and the window background, I’ll show you how to pick the right assets from
the Asset Store. It’s a goldmine for UI elements, and I’ll point out a few gems. In my case, I found the
package in the following screenshot a good one to use with my UI. As usual, remember that this exact
package might not be available right now.

Interface Brilliance: Designing a User-Friendly UI458

If so, remember to look for another similar package, or pick the sprites from the GitHub repo:

Figure 15.9: Selected UI pack

At first, the package contains lots of images configured the same way, as sprites, but we can further
modify the import settings to achieve advanced behavior, which we will need for the buttons. The
button asset comes with a fixed size, but what happens if you need a bigger button? One option is to
use other button assets with different sizes, but this will lead to a lot of repetitions of the buttons and
other assets, such as different-sized backgrounds for different windows, which will unnecessarily
consume RAM.

Another option is to use the 9-slicing method, which consists of splitting an image so that the corners
are separated from the other parts. This allows Unity to stretch the middle parts of the image to fit
different sizes, keeping the corners at their original size, which, when combined with an image pre-
pared for the 9-slices technique, can be used to create almost any size you need.

In Figure 15.10, you can see a shape with nine slices in the bottom-left corner, and in the bottom-right
corner of the same diagram, you can see the shape is stretched but keeps its corners at their original
size. The top-right corner shows the shape stretched without slices. You can see how the non-sliced
version is distorted:

Chapter 15 459

Figure 15.10: Sliced versus non-sliced image stretching

In this case, we can apply the nine slices to the button and the panel background images to use them
in different parts of our game. In order to do this, do the following:

1. Open Package Manager using the Window | Package Manager option.
2. Verify that Package Manager shows all the packages, by setting the dropdown to the right of

the + button in the top-left part of the window to Unity Registry.
3. Install the 2D Sprite package to enable the sprite editing tools (if it is not already installed).
4. Select the button sprite in the Project window, and click on the Sprite Editor button in the

Inspector window:

Figure 15.11: The Sprite Editor button in the Inspector window

Interface Brilliance: Designing a User-Friendly UI460

5. In the Sprite Editor window, locate and drag the green dots at the edges of the image to move
the slice rulers. Try to ensure that the slices are not located in the middle of the edges of the
button. One thing to notice is that, in our case, we will work with three slices instead of nine
because our button won’t be stretched vertically. If you don’t see the dots, try clicking the
image to make them appear.

6. Note that after dragging the green dots, the Border properties (L, T, R, and B, which are left,
top, right, and bottom, respectively) in the bottom-right corner changed. Those are the exact
values you set by moving the green dots. Feel free to change them to more round numbers
to allow the nine slices to work evenly. In our case, left and right became a round 60, and top
and bottom 50.

7. Click on the Apply button in the top-right corner of the window and close it:

Figure 15.12: Nine slices in the Sprite Editor window

8. Repeat steps 4 to 6 for the Background panel image. In my case, you can see in Figure 15.13 that
this background is not completely prepared with nine slices in mind because all the middle
areas of the image can be made smaller to save memory.

Chapter 15 461

When displaying this image with a smaller width, the 9-slicing method will stretch the middle part
and will look the same, so essentially, this is wasted memory:

Figure 15.13: Nine slices in the Sprite Editor window

By removing the middle parts, the image will look almost the same, but a big part of the memory was
saved, as seen in the following image.

Figure 15.14: Optimized 9-slices background. The middle part will be a 1px strip of pixels that will
expand

Interface Brilliance: Designing a User-Friendly UI462

Now that we have prepared our sprites, we can find a font to customize the text of our UI. Before dis-
cussing how to import fonts, it is worth mentioning that we will use TextMesh Pro, a Unity package
(already included in the project) that provides a text rendering solution much better than the old text
component. If you have never used that component before, you shouldn’t worry about this detail.

You must get fonts in the .ttf or .otf formats and import them into Unity. You can find lots of good,
free font websites on the internet. I am used to working with the classic DaFont.com site, but there
are plenty of other sites that you can use. In my case, I will work with the Militech font:

Figure 15.15: My chosen font from DaFont.com to use in the project

If the font download comes with more than one file, you can just drag them all into Unity and then
use the one that you like the most. Also, as usual, try to put the font inside a folder called Fonts. Now,
these files’ format is not compatible with TextMesh Pro, our text rendering solution, so we must con-
vert it using the Font Asset Creator window, as illustrated in the following steps:

1. Go to Window | TextMesh Pro | Font Asset Creator.
2. If this is the first time you have used TextMesh Pro in your project, a window will appear. You

must click the Import TMP Essentials option and wait for the import process to finish:

Figure 15.16: TextMesh Pro first-run initialization

Chapter 15 463

3. Close the TMP Importer window.
4. In Font Asset Creator, drag your font from the Project view to Source Font File, or select it by

clicking the Target button on the right (the circle with the point at the center).
5. Click the Generate Font Atlas button and wait a moment:

Figure 15.17: Converting font assets to TextMesh Pro

Interface Brilliance: Designing a User-Friendly UI464

6. Click the Save button, and save the converted font in the Assets | TextMesh Pro | Fonts folder.
Saving here is important, so don’t forget to pick the correct folder:

Figure 15.18: Saving the converted font in the correct folder (Mac)

You’ve got the groundwork set up. Let’s add more elements and see our UI come to life. The skills
you’re learning here will be invaluable as you progress to the later chapters.

Creating UI controls
Each UI component, a blend of images and text, needs thoughtful configuration. Let’s dive into how
these elements come together to form an intuitive interface. We already have an image in our UI—the
white rectangle we created previously. If you select it and look at the Inspector window, you will notice
that it has an Image component, like the one in the following screenshot:

Figure 15.19: The Image component’s Inspector window

Understanding these settings is crucial for optimal UI display. We’ll begin with the hero’s avatar, fo-
cusing on how to best represent it within our UI:

1. Using the rectangle gizmo, move the white rectangle to the top-left part of the UI:

Chapter 15 465

Figure 15.20: The white rectangle located in the top-left part of the UI

2. In the Inspector window, click on the circle to the right of the Source Image property and pick
the downloaded hero avatar sprite:

Figure 15.21: Setting the sprite of our Image component

3. Keeping the right aspect ratio ensures the image looks consistent on different screen sizes,
avoiding any visual distortion. One way to do this is to click the Set Native Size button at the
bottom of the Image component to make the image use the same size as the original sprite.
However, by doing this, the image can become too big, so you can reduce the image size by
pressing Shift to modify both the Width and Height values. Another option is to check the
Preserve Aspect checkbox to make sure the image fits the rectangle without stretching. In
my case, I will use both:

Figure 15.22: The Preserve Aspect and Set Native Size image options

Creating an intuitive life bar is crucial for the player experience. Let’s create the life bars by doing
the following:

1. Create another Image component using the GameObject | UI | Image option.

Interface Brilliance: Designing a User-Friendly UI466

2. Set the Source Image property to the life bar image you downloaded:

Figure 15.23: The avatar and life bar

3. Set the Image Type property to Filled.
4. Set the Fill Method property to Horizontal.
5. Drag the Fill Amount slider to see how the bar is cut according to the value of the slider. We

will change that value via scripting later in Chapter 18, Performance Wizardry: Optimizing Your
Game with Profiler Tools:

Figure 15.24: The Fill Amount slider, cutting the image width to 73% of its size

6. In my case, the bar image also comes with a bar frame, which lets you create another image,
set the sprite, and position it on top of the life bar to frame it. The order in the hierarchy here
impacts the visual stacking of these elements. This positioning is key for achieving the desired
visual effect. So, in my case, I need to be sure the frame GameObject is below the health bar
image in the hierarchy. Also, note that the bar frame image is not sliced, so there’s no need to
use the Sliced Image Type in this case. Feel free to try slicing it and see the results:

Figure 15.25: Putting one image on top of the other to create a frame effect

7. Repeat steps 1 to 6 to create the base bar at the bottom, or just copy and paste the bar and the
frame and place it at the bottom of the screen:

Chapter 15 467

Figure 15.26: The player’s and player’s base health bars

8. Click on the + button in the Project window and select the Sprites | Square option. This will
create a simple squared sprite with a 4x4 resolution.

9. Set the sprite as the base bar of the player’s base health bar instead of the downloaded bar
sprite. This time, we will use a plain-white image for the bar because, in my case, the original
one is red, and tinting the color of a red image to green is not possible. However, a white image
can be easily tinted. Take into account the details of the original bar—for example, the little
shadow in my original bar won’t be present here.

10. Select the base health bar and set the Color property to green:

Figure 15.27: A bar with a squared sprite and green tint

11. One optional step would be to convert the bar frame image into a 9-sliced image to allow us
to change the original width to fit the screen.

Interface Brilliance: Designing a User-Friendly UI468

Now, let’s add the text fields for the Score, Bullets, Remaining Waves, and Remaining Enemies labels
by doing the following:

1. Create a text label using the GameObject | UI | Text - TextMesh Pro option (avoid the option
that only says Text). This will be the Score label.

2. Position the label in the top-right part of the screen.
3. In the Inspector window, set the content of the Text Input property to Score: 0.
4. Set the Font Size property to 20.
5. Apply the converted font by clicking on the circle to the right of the Font Asset property and

selecting the desired font.
6. In the Alignment property, select the Horizontal Right Align icon (the third button in the first

row) and the Vertical Center Align icon (the second button in the second row):

Figure 15.28: The settings for a text label

Chapter 15 469

7. Repeat steps 1 to 6 to create the other three labels (or just copy and paste the score three times).
For the Remaining Waves label, you can use the left alignment option to better match the
original design:

Figure 15.29: All the labels for our UI

8. Set the color of all the labels to white, as our scene will be mainly dark.

Now that we have completed the original UI design, we can create the Pause menu:

1. Create an Image component for the menu’s background (GameObject | UI | Image).
2. Set the Background panel sprite with the nine slices we made earlier.
3. Set the Image Type property to Sliced if it is not already. This mode will apply the 9-slice scaling

method to prevent the corners from stretching.
4. There’s a chance that the image will stretch the corners anyway, which happens because some-

times the corners are quite big compared to the RectTransform settings’ Size property that you
are using, so Unity has no option other than to do that. In this scenario, the correct solution
is to have an artist who creates assets tailored to your game, but sometimes we don’t have that
option. This time, we can just increase the Pixels Per Unit value of the sprite file, which will
reduce the scale of the original image while preserving its resolution. In the following two
screenshots, you can see the background image with a Pixels Per Unit value of 100, and then
again with 700.

Interface Brilliance: Designing a User-Friendly UI470

Remember to only do this for the 9-sliced or tiled-image types, or if you don’t have an artist
to adjust it for you:

Figure 15.30: On top, a large 9-sliced image in a small RectTransform component, which
is small enough to shrink the corners, and at the bottom, the same image with Pixels Per

Unit set to 700

5. Create a TextMesh Pro text field, position it where you want the Pause label to be in your
diagram, set it to display the Pause text, and set the font. Remember that you can change the
text color with the Color property.

6. Drag the text field onto the background image. The parenting system in Canvas works the
same—if you move the parent, the children will move with it. The idea is that if we disable the
panel, it will also disable the buttons and all its content:

Figure 15.31: The Pause label

7. Create two buttons by going to GameObject | UI | Button - TextMesh Pro (avoid using the one
that only says Button). Position them where you want them on the background image.

Chapter 15 471

8. Set them as children of the Pause background image by dragging them into the Hierarchy
window.

9. Select the buttons, and set the Source Image property of their Image components to use the
button sprite that we downloaded earlier. Remember our Pixels Per Unit fix from step 4 in this
list if you have the same problem as before.

10. You will see that the button is essentially an image with a child TextMesh Pro text object. Change
the font of each button and the text in each one to Resume and Quit:

Figure 15.32: The Pause menu implementation

11. Remember that you can hide the panel, by unchecking the checkbox to the right of the object
name in the top part of the Inspector window:

Figure 15.33: Disabling a GameObject

Today, I still remember my first sessions of playtesting, where I handed my game over to
unknown people with the dream of amazing them with my great game, just to discover
it wasn’t quite the case. Among lots of things you will discover that are missing in your
game is User Experience (also known as UX). The key to it is to understand how the game
flow feels and improve it. While the UX is not restricted to the UI only, I recommend
researching this concept before designing UIs for your game, as it will help your user to
better understand your game and the information the UI tries to give.

Interface Brilliance: Designing a User-Friendly UI472

In this section, we discussed how to import images and fonts to be integrated through the Image, Text,
and Button components to create a rich and informative UI. Having done that, let’s discuss how to
make them responsive.

Creating a responsive UI
Nowadays, it is almost impossible to design a UI in a single resolution, and our target audience dis-
play devices can vary a lot. A PC has a variety of different kinds of monitors with different resolutions
(such as 1080p and 4K) and aspect ratios (such as 16:9, 16:10, and ultra-wide), and the same goes for
mobile devices. We need to prepare our UI to adapt to the most common displays, and Unity UI has
the tools needed to do so.

In this section, we will explore the following UI responsiveness concepts:

• Adapting object positions
• Adapting object sizes

We are going to explore how the UI elements can adapt their position and size to different screen
sizes using the advanced features of the Canvas and RectTransform components, such as Anchors
and Scalers.

Adapting object positions
To ensure our UI adjusts correctly across different devices, let’s focus on adapting object positions
using anchors.

Right now, if we play our game, we will see how the UI fits nicely onto our screen. However, if for some
reason we change the Game view size, we will see how objects start to disappear from the screen. In
the following screenshots, you can see different-sized game windows and how the UI looks nice in
one but bad in the others:

Chapter 15 473

Figure 15.34: The same UI but on different-sized screens

The problem is that we created the UI using whatever resolution we had in the editor, but as soon as
we changed it slightly, the UI kept its design for the previous resolution. Also, if you look closely, you
will see that the UI is always centered, such as in the second image, where the UI is cropped at its sides,
or in the third image, where extra space is visible along the borders of the screen.

Interface Brilliance: Designing a User-Friendly UI474

This happens because every single element in the UI has its own anchor, a little cross you can see
when you select an object, such as the one in the following screenshot:

Figure 15.35: An anchor cross in the bottom-right part of the screen belonging to the hero avatar in
the top-left part of the screen

The x and y position of the object is measured as a distance to that anchor, and the anchor has a
position relative to the screen, with its default position being at the center of the screen. This means
that on an 800 x 600 screen, the anchor will be placed at the 400 x 300 position, and on a 1920 x 1080
screen, the anchor will be located at the 960 x 540 position. If the x and y position of the element (the
one in RectTransform) is 0, the object will always be at a distance of 0 from the center. In the second
screenshot of the previous three examples, the hero avatar falls outside of the screen because its dis-
tance from the center is greater than half the screen, and the current distance was calculated based
on the previous bigger screen size. So, what we can do about that? Move the anchor!

By setting a relative position, we can position the anchor at different parts of our screen and make that
part of the screen our reference position. In the case of our hero avatar, we can place the anchor in the
top-left corner of the screen to guarantee that our avatar will be at a fixed distance from that corner.

We can do that by following these steps:

1. Select your player avatar.
2. Expand the RectTranform component in Inspector, if not expanded yet, in a way that you can

see its properties. This will reveal the anchors in the Scene view.

Chapter 15 475

3. Drag the anchor cross with your mouse to the top-left part of the screen. If, for some reason,
the anchor breaks into pieces when you drag it, undo the change (press Ctrl + Z, or Command
+ Z on Mac) and try to drag it by clicking in the center. We will break the anchor later. Check
the avatar image RectTransform component to verify that the Anchors property’s Min and
Max sub-properties have the same values as in Figure 15.36, meaning the object has correctly
configured the anchors to be in the top-left part of the screen:

Figure 15.36: An image with an anchor in the top-left part of the screen

4. Put the anchor of the Health Bar object and its frame in the same position. We want the bar to
always be at the same distance from that corner so that it will move alongside the hero avatar
if the screen size changes.

5. Place the anchor in the bottom-center part of the screen for the Boss Bar object so that it will
always be centered. Later, we will deal with adjusting its size.

6. Put the Remaining Waves label in the bottom-left corner, and Remaining Enemies in the
bottom-right corner:

Figure 15.37: The anchors for the life bar and the labels

7. Put the Score and Bullets anchors in the top-right corner:

Figure 15.38: The anchors for the Score and Bullets labels

Interface Brilliance: Designing a User-Friendly UI476

8. Select any element, and drag the sides of the Canvas rectangle with your mouse to preview
how the elements will adapt to their positions. Take into account that you must select any
object that is a direct child of the Canvas; the text within the buttons won’t have that option:

Figure 15.39: Previewing the Canvas resizing

Now that our UI elements have adapted to their positions, let’s consider scenarios where the object
size must adapt as well.

Adapting object sizes
The first thing to consider when dealing with different aspect ratios is that our screen elements may
not only move from their original design position (which we fixed in the previous section) but also
may not fit into the original design. In our UI, we have the case of the health bar, where the bar clearly
doesn’t adapt to the screen width when we preview it on a wider screen. We can fix this by breaking
our anchors.

When we break our anchors, the position and size of our object are calculated as a distance relative to
the different anchor parts. If we split the anchor horizontally, instead of having X and Width properties
we will have Left and Right properties, representing the distance between the left and right anchor.
We can use this in the following way:

1. Select the health bar, and drag the left part of the anchor all the way to the left part of the
screen and the right part to the right part of the screen.

2. Do the same for the health bar frame:

Chapter 15 477

Figure 15.40: The splitter anchor in the health bar

3. Check the Rect Transform settings’ Left and Right properties in the Inspector window, which
represent the current distance to their respective anchors. If you want, you can add a specific
value, especially if your health bars are displayed outside the screen:

Figure 15.41: The Left and Right properties of a split anchor

Using the Canvas Scaler effectively helps maintain UI element proportions across various resolutions,
a crucial aspect of modern game design.

This way, the object will always be at a fixed distance of a relative position to the screen—in this case,
the sides of the screen. If you are working with a child object, as is the case with the Text and Image
components of the buttons, the anchors are relative to the parent. If you pay attention to the anchors
of the text, they are not only split horizontally but also vertically. This allows the text to adapt its po-
sition to the size of the button, so you won’t have to change it manually:

Figure 15.42: The split anchors of the text of the button

Now, this solution is not suitable for all scenarios. Let’s consider a case where the hero avatar is dis-
played in a higher resolution than what it was designed for. Even if the avatar is correctly placed, it will
be displayed smaller because the screen has more pixels per inch than screens with lower resolutions
and the same physical size. You could consider using split anchors, but the width and height anchors
could be scaled differently on different aspect ratio screens, so the original image becomes distorted.
Instead, we can use the Canvas Scaler component.

Interface Brilliance: Designing a User-Friendly UI478

The Canvas Scaler component defines what one pixel means in our scenario. If our UI design reso-
lution is 1080p but we see it on a 4K display (which is twice the horizontal and vertical resolution of
1080p, meaning four times the number of pixels), we can scale the UI so that a pixel becomes two
pixels, adapting its size to keep the same proportional size as the original design. Basically, the idea
is that if the screen is bigger, our elements should also be bigger.

We can use this component by doing the following:

1. Select the Canvas object, and locate the Canvas Scaler component in the Inspector window.
2. Set the UI Scale Mode property to Scale With Screen Size.
3. If working with an artist, set the reference resolution to the resolution in which the artist

created the UI, keeping in mind that it must be the highest target device resolution (this isn’t
the case for us). In our case, we are not sure which resolution the artist of the downloaded
assets had in mind, so we can select 1920 x 1080, which is the full HD resolution size and is
very common nowadays.

4. Set the Match property to Height. The idea of this property is that it sets which side of the
resolution will be considered when carrying out the scaling calculation. In our case, if we are
playing the game in 1080p resolution, 1 UI pixel equals 1 real screen pixel. However, if we are
playing in 720p resolution, 1 UI pixel will be 0.6 real pixels, so the elements will be smaller on
smaller-resolution screens, keeping the correct size. We didn’t choose a Width value in this
case because we can have extreme widths of screens, such as ultra-wide, and if we picked that
option, those screens would scale the UI unnecessarily. Another option is to set this value to
0.5 to consider the two values, but on a PC, this doesn’t make too much sense. On a mobile
device, you should choose this based on the orientation of the game, setting the height for
landscape mode and the width for portrait mode.

5. Try previewing a wider and higher screen to see how this setting works:

Figure 15.43: Canvas Scaler with the correct settings for standard PC games

Chapter 15 479

You will find that your UI will be smaller than your original design, which is because we should have
set these properties before. Right now, the only fix is to resize everything again. Take this into account
the next time you try this exercise; we only followed this order for learning purposes.

With this knowledge, you are now ready to start scripting the UI to reflect what’s happening in the game.

Scripting the UI
We previously created a UI layout with elements such as bars, text, and buttons, but so far, they are
static. We need to make them adapt to the game’s actual state. In this section, we are going to discuss
the following UI scripting concepts:

• Showing information in the UI
• Programming the Pause menu

We will start by seeing how to display and update dynamic information in our UI, using scripts that
modify the text and images that are displayed with Canvas elements. After that, we will create the pause
functionality, which will be used throughout the UI. Developing the pause functionality is more than
just adding a feature; it’s about enhancing user control and game interaction, a key aspect of the UX.

Armed with this understanding, you’re set to bring your game’s UI to an interactive level. It’s time to
make your UI not just a visual element but also an integral part of your game’s storytelling.

Showing information in the UI
We’ve touched on using the UI to convey critical game data. Now, let’s dive into the practical aspect:
scripting the UI to dynamically reflect the player’s health status in real time, using the Life script we
created earlier:

1. Add a new script called Life Bar to the HealthBar Canvas child object, which is the UI Image
component we created earlier to represent the life bar:

Another way to make your UI adapt to its contents is by using layout components, like
Horizonal Layout. These components will automatically adapt the size and position of
their child elements to follow certain rules, like making sure all elements are next to
each other. This is especially useful in things like item lists, where you add and remove
elements, and you can expect the list to adapt to these changes. For more info, check out
this documentation: https://docs.unity3d.com/Packages/com.unity.ugui@2.0/
manual/comp-UIAutoLayout.html

mailto:https://docs.unity3d.com/Packages/com.unity.ugui@2.0/manual/comp-UIAutoLayout.html
mailto:https://docs.unity3d.com/Packages/com.unity.ugui@2.0/manual/comp-UIAutoLayout.html

Interface Brilliance: Designing a User-Friendly UI480

Figure 15.44: The Life Bar component in the player’s HealthBar Canvas

2. In LifeBar, the script adds a Life type field. This way, our script will ask the editor which Life
component we will be monitoring. Save the script:

Figure 15.45: Editor-configurable reference to a Life component

3. In the editor, drag the Player GameObject from the Hierarchy window to the Target Life prop-
erty to make the life bar reference the player’s life, and remember to have the HealthBar object
selected before dragging Player. This way, we tell our LifeBar script which Life component to
check to see how much life the player has remaining. Something interesting here is that the
enemies have the same Life component, so we can easily use this component to create life
bars for every other object that has a life in our game:

Figure 15.46: Dragging Player to reference its Life component

4. Add the using UnityEngine.UI; line right after the using statements in the first few lines of
the script. This will tell C# that we will interact with the UI scripts:

Chapter 15 481

Figure 15.47: All the using statements in our script. We are not going to use them all, but
let’s keep them for now

5. Create a private field (without the public keyword) of the Image type. We will save the refer-
ence to the component here shortly:

Figure 15.48: Private reference to an image

6. Using GetComponent in Awake, access the reference to the Image component in our GameObject
(HealthBar) and save it in the image field. As usual, the idea is to get this reference just once
and save it for later use in the Update function. Of course, this will always work when you put
this component in an object with an Image component. If not, the other option would be to
create a public field of the Image type and drag the image component into it:

Figure 15.49: Saving the reference to the Image component in this object

7. Let’s set up an Update event function in the LifeBar script. This function will be the heart of
our UI update logic, keeping the health bar in sync with the player’s health.

8. In the Update event, divide the amount of life by 100 to have our current life percentage
expressed in the 0 to 1 range (assuming our maximum life is 100), and set the result in the
fillAmount field of the Image component, as shown in the following screenshot. Remember
that fillAmount expects a value between 0 and 1, with 0 signaling that the bar is empty and 1
signaling that the bar is at its full capacity:

Figure 15.50: Updating the fill amount of the LifeBar script’s Image component according
to the Life component

Interface Brilliance: Designing a User-Friendly UI482

Using a specific number like 100 directly in the code is a classic example of hardcoding. To
maintain flexibility, consider referencing a Maximum Life field or using a constant.

9. Save the script, and in the editor, select the player and play the game. During Play mode, press
Esc to regain access to the mouse, and change the player’s health in the Inspector window to
see how the life bar updates accordingly. You can also test this by making the player receive
damage somehow, such as by making enemies spawn bullets (there’ll be more on enemies later):

Figure 15.51: Full LifeBar script

In the previous chapter, we explored the concept of events to detect changes in the state of other
objects. The life bar is another example of using an event, as we can change the fill amount of the
image when the life actually changes. I challenge you to try to create an event when the life changes
and implement this script using the one we looked at in the previous chapter.

You may be thinking that this UI behavior could be directly coded within the Life component, and
that’s completely possible, but the idea here is to create simple scripts with little pressure to keep our
code separated. Each script should have just one reason to be modified, and mixing UI behavior and
gameplay behavior in a single script would give the script two responsibilities, which results in two
possible reasons to change our script. With this approach, we can also set the player’s base life bar at
the bottom by just adding the same script to its life bar but dragging the Base Damage object, which
we created in the previous chapter, as the target life this time.

Chapter 15 483

For those using visual scripting, here’s a breakdown of what you’ll need to integrate. It’s about trans-
lating our C# logic into a more visual, node-based format:

Figure 15.52: Full LifeBar visual graph

First, we added a targetLife variable of type GameObject to the Variables component of our life bar
image. Then, we dragged our Player GameObject (called Robot so far) to this variable; the life bar now
has a reference to the object from which we want to display its life. Then, we added a LifeBar visual
graph; in the Update node, it calls the Set Fill Amount node in order to update the fill amount of the
image. Remember that, in this case, just calling the Set Fill Amount node will show that we refer to
the image component where this visual graph is located, so there’s no need to use GetComponent
here. In order to calculate the fill amount, we get the targetLife GameObject reference, and, using a
second Get Variable node, we extract the life variable of that object. Finally, we divide that by 100 (we
needed to create a Float Literal node in order to represent the value 100) and pass that to the Set Fill
Amount node. As usual, you can check the complete version on the GitHub repository.

The principle we applied here – single object responsibility – is part of the broader SOLID principles
in object-oriented programming. These principles are foundational for robust and scalable code ar-
chitecture. If you don’t know what SOLID is, I strongly recommend you search for SOLID programming
principles on the internet to improve your programming best practices.

Interface Brilliance: Designing a User-Friendly UI484

Now that we have sorted out the player’s life bar, let’s make the Bullets label update according to the
player’s remaining bullets. Something to consider here is that our current PlayerShooting script has
unlimited bullets, so let’s change that by following these steps:

1. Add a public int type field to the PlayerShooting script, called bulletsAmount.
2. In the if statement that checks the pressure of the left mouse button, add a condition to check

whether the number of bullets is greater than 0.
3. Inside the if statement, reduce the number of bullets by 1:

Figure 15.53: Limiting the number of bullets to shoot

Chapter 15 485

In the visual scripting version, the modified shooting condition of the PlayerShooting visual graph
will look like this:

Figure 15.54: Shooting only if bullets are available and reducing the number of bullets after shooting

Interface Brilliance: Designing a User-Friendly UI486

As you can see, we simply check if the new bullets variable we added is greater than zero and then use
an If node condition for the execution of the Instantiate node. The bullet decrement will look like this:

Figure 15.55: Decrementing the bullet count in the visual graph

We simply subtract one from the bullets variable and set the bullets again with this value.

With a dedicated counter for bullets in place, our next step is to bring this element to life in the UI.
Visualizing the bullet count is not just a feature – it’s an essential aspect of gameplay that keeps players
tactically aware:

1. Add a PlayerBulletsUI script to the bullet’s Text GameObject. In my case, I called it Bullets
Label.

2. Add the using TMPro; statement at the beginning of the file, given that we will modify the
TextMesh Pro component of our label.

3. Add a private field of the TMP_Text type, saving it in the reference to the Text component in
Awake:

Chapter 15 487

Figure 15.56: Caching the reference to the Text component

4. Create a public field of the PlayerShooting type called targetShooting, and drag Player to
this property in the Editor. As was the case for the LifeBar component, the idea is that our UI
script will access the script that has the remaining bullets to update the text, bridging the two
scripts (Text and PlayerShooting) to keep their responsibilities separated.

5. Create an Update statement, and inside it, set the text field of the text reference (I know, confus-
ing) with a concatenation of "Bullets: " and the bulletsAmount field of the targetShooting
reference. This way, we will replace the text of the label according to the current amount of
bullets:

Figure 15.57: Updating the Bullets text label

A key coding principle to remember is that string concatenation allocates memory. To maintain op-
timal performance, it’s prudent to concatenate strings only when it’s essential – a strategic approach
to memory management in game development.

Interface Brilliance: Designing a User-Friendly UI488

Regarding visual scripting, before actually setting the text, we need to add support for TextMesh Pro
in visual scripting. Visual scripting requires manually specifying which Unity systems and packages
we are going to use, and as TextMesh Pro is not strictly a core Unity feature, it might not be included
by default. We can add support for TextMesh Pro in visual scripting by doing the following:

1. Go to Edit | Project Settings and select the Visual Scripting category.
2. Expand the Node Library option using the arrow to its left.
3. Check if you have Unity�TextMesh Pro in that list. If you do, feel free to skip the rest of these steps.
4. Use the + button at the bottom of the list to add a new library.
5. Click where it says (No Assembly), and search for Unity�TextMesh Pro.
6. Click the Regenerate Nodes button, and wait until the regeneration process is done:

Figure 15.58: Adding TextMesh Pro support to visual scripting

After making those settings, this is what the visual graph to add to the Bullets text GameObject will
look like:

Chapter 15 489

Figure 15.59: Updating the Bullets text label in visual scripting

As usual, we need a reference to the player to check its bullets, so we created a targetBullets variable
of type GameObject and dragged the Player there. Then, we use a Get Variable node to extract the
bullets amount from that reference and concatenate the string "Bullets: ", using the String Literal
node, with the amount of bullets using the Concat node. That node will do the same as when we added
two strings together using the + operator in C#. Finally, we use the Set Text (Source Text, Sync Text
InputBox) node to update the text of our text field.

If you look at the two scripts, you will find a pattern. You can access the UI and Gameplay components
and update the UI component accordingly, and most UI scripts will behave in the same way. Keeping
this in mind, I challenge you to create the necessary scripts to make the Score, Enemies, and Waves
counters work. Remember to add using TMPro; to use the TMP_Text component.

Interface Brilliance: Designing a User-Friendly UI490

After finishing this, you can compare your solution with the one in the following screenshot, starting
with ScoreUI:

Figure 15.60: The ScoreUI script

Also, we need the WavesUI component:

Figure 15.61: The WavesUI script

Chapter 15 491

Finally, we need EnemiesUI:

Figure 15.62: The EnemiesUI script

Note how we took advantage of the existence of the onChanged events in the WavesManager and
EnemyManager scripts to only update the text fields when needed. Also, note how we didn’t need to
drag a reference to get the values to display, as all these scripts use managers to get that info.

Regarding visual scripting, we have the ScoreUI script:

Figure 15.63: The ScoreUI visual script

Interface Brilliance: Designing a User-Friendly UI492

Then, the WavesUI script:

Figure 15.64: The WavesUI visual script

And finally, the EnemiesUI script:

Figure 15.65: The EnemiesUI visual script

Chapter 15 493

As you can see, we have used the events already coded in the managers to change the UI only when
necessary. Also, note how we used Scene variables to get the info to display. With our UI labels and
bars in place, our next step is to bring the Pause menu to life. This involves scripting interactions that
enhance the game’s interactivity.

Programming the Pause menu
Let’s revisit our previously designed Pause menu, which is ready to be brought to life. Coding a pause
feature might seem intricate, but with a strategic approach, we can simplify the process. So again, we
will use a simple approach to pause most behaviors, which is stopping time! Remember that most of
our movement scripts use time functionality, such as Delta Time (which we discussed in Chapter 2,
Crafting Scenes and Game Elements), as a way to calculate the amount of movement to apply. There is
also a way to simulate time going slower or faster, which is by setting timeScale. This field will affect
Unity’s time system’s speed, and we can set it to 0 to simulate that time has stopped, which will pause
animations, stop particles, and reduce Delta Time to 0, making our movements stop. So let’s do it:

1. Create a script called Pause, and add it to a new GameObject called Pause.
2. Add the using UnityEngine.InputSystem; statement at the beginning of the script file to be

able to read input.
3. In Update, detect when the Esc key is pressed. We can add a mapping to our Player Input asset

file and read the input, as we did in Chapter 2, Crafting Scenes and Game Elements, but to learn a
new way of using the input system, we will use the Keyboard.current variable to directly read
the state of a key in the Update method, instead of using mapping. Consider that it is always
recommended to use input mapping, but let’s do this for learning purposes. You can set the
Time.timeScale variable to 0 when the Esc key is pressed, as you can see in the following image:

Figure 15.66: Stopping time to simulate a pause

Interface Brilliance: Designing a User-Friendly UI494

4. Save and test this by playing the game and pressing the Esc key. You will notice that almost
everything will stop, like animations of characters’ movement, but you can see how the shoot
functionality still works. That’s because the PlayerShooting script is not time-dependent. One
solution here could be to simply check whether Time.timeScale is greater than 0 to prevent this:

Figure 15.67: Checking Pause in the player shooting script

5. The same needs to be done in our EnemyFSM Shoot method.

As usual, we have pursued the simplest way here, but there is a better approach. I challenge you to try
to create PauseManager with a Boolean, indicating whether the game is paused or not and changing
timeScale in the process.

Now that we have a simple but effective way to pause the game, let’s make the Pause menu visible to
resume the game by doing the following:

1. Add a field of the GameObject type, called pauseMenu, in the Pause script. The idea is to drag
the Pause menu here so that we have a reference to enable and disable it.

2. In Awake, add pauseMenu.SetActive(false); to disable the Pause menu at the beginning of the
game. Even if we disabled the Pause menu in the Editor, we add this just in case we re-enable
it by mistake. It must always start as disabled.

3. Using the same function but passing true as the first parameter, enable the Pause menu in
the Esc key pressure check:

Chapter 15 495

Figure 15.68: Enabling the Pause menu when pressing the Esc key

Now, we need to make the Pause menu buttons work. If you recall, we explored the concept of events,
implementing them with UnityEvents in the different managers. Our Pause menu buttons use the
same class to implement the onClick event, which is an event that informs us that a specific button
has been pressed. Let’s resume the game when pressing those buttons by doing the following:

1. Create a field of the Button type in our Pause script called resumeButton, and drag resumeButton
to it; this way, our Pause script has a reference to the button.

2. In Awake, add a listener function called OnResumePressed to the onClick event of resumeButton.

Interface Brilliance: Designing a User-Friendly UI496

3. Make the OnResumePressed function set timeScale to 1 and disable the Pause menu, as we
did in Awake:

Figure 15.69: Unpausing the game

If you save and test this, you will notice that you cannot click the Resume button because we disabled
the cursor at the beginning of the game, so make sure you re-enable it while in Pause mode and dis-
able it when you resume:

Figure 15.70: Showing and hiding the cursor while in pause mode

Chapter 15 497

One final thing to consider is that we want to set the time scale to 1 again on the OnDestroy method.
This method gets executed when the Pause object is destroyed, which will happen when we manually
destroy the object via scripting or, most importantly in this case, if we change scenes. The idea is to
make sure to resume the time system if we change scenes while in the Pause menu so that the next
scene can play the game properly:

Figure 15.71: Resetting the time scale when leaving the scene

Regarding the visual scripting version of the Pause script, note that we don’t have an equivalent to
Keyboard.current, so we will need to replace using the input mappings. In order to add an input
mapping for the Esc key, do the following:

1. Double-click the Player Input asset to edit it. You can find it by selecting the Player GameObject,
and then clicking the box at the right of the Actions property of the PlayerInput component
in the Inspector.

2. Using the + button in the top-right corner of the Actions list (the middle list), create a new
action called Pause:

Figure 15.72: Creating a new input mapping

3. Click the <No Binding> item inside the Pause action we just created (below it).

Interface Brilliance: Designing a User-Friendly UI498

4. In the Path property in the Binding Properties section (on the right side of the screen), click
the empty rectangle at its left, and search and select the Escape [Keyboard] button:

Figure 15.73: Adding a key to the mapping

5. Click the Save Asset button in the top-middle part of the screen.

Now, you can add the following graph, this time to the Player GameObject, as we need to read input
from it:

Figure 15.74: Pausing when Esc is pressed

Chapter 15 499

So far, nothing new; we detect that Esc is pressed, when it happens, we call Set Time Scale and specify
the 0 value. Then, we activate the Pause menu (having a reference via a variable, pauseMenu, in the
Variables component), and we enable the cursor. Finally, we set the time scale to 1 when the object
is destroyed.

Regarding the Resume behavior, the nodes to add to the same Pause graph will look like this:

Figure 15.75: Unpausing when the Resume button is clicked

The only new element on this graph is the usage of the On Button Click node. As you might expect,
that node is an event, and anything connected to it will execute under the pressure of a button. The
way to specify which button we refer to is by connecting the Button reference variable to the input
pin of On Button Click. You can see how we created a variable of type Button called resumeButton in
the Variables component to do this.

Now that you know how to code buttons, I challenge you to code the Exit button’s behavior. Again,
remember to add using UnityEngine.UI. Also, you will need to call Application.Quit(); to exit the
game, but take into account that this will do nothing in the editor; we don’t want to close the editor
while creating the game. This function only works when you build the game.

Interface Brilliance: Designing a User-Friendly UI500

So, for now, just call it, and if you want to print a message to be sure that the button works properly,
you can; a solution is provided in the following screenshot:

Figure 15.76: The Quit button script

This solution proposes that you add this script directly to the Quit button GameObject itself so that the
script listens to the onClick event on its Button sibling component and, when receiving the event, it
executes the Quit function. You could also add this behavior to the Pause script, and while that will
work, remember that if a script can be split into two because it does two unrelated tasks, it is always
best to split it so that separate behavior is unrelated. Here, the pause behavior is not related to the
quit behavior.

Chapter 15 501

Regarding the visual scripting version, the graph to add to the Quit button would look like this:

Figure 15.77: The Quit button visual script

Simple, right? As we put this in the button itself, we don’t even need to specify which button it is, as
it automatically detects that we refer to ourselves.

Now that we have our pause system set up using the UI and buttons, we are ready for the next chapter,
where we will continue to look at other visual and auditive ways to make our player aware of what
has happened.

Summary
In this chapter, we introduced the basics of the UI, understanding the Canvas and RectTransform
components to locate objects onscreen and create a UI layout. We also covered different kinds of UI
elements, mainly Image and Text, to give life to our UI layout and make it appealing to the user. Finally,
we discussed how to adapt UI objects to different resolutions and aspect ratios to make our UI adapt
to different screen sizes, even though we cannot predict the exact monitor our user will play the game
on. All of this allows us to create any UI we will need in our game using the Canvas.

In the next chapter, we will explore how to create UIs using UI Toolkit instead, another Unity system
to create UIs, and compare both the Canvas and UI Toolkit to see when to use which.

Learn more on Discord
Read this book alongside other users, Unity game development experts, and the author himself. Ask
questions, provide solutions to other readers, chat with the author via Ask Me Anything sessions, and
much more. Scan the QR code or visit the link to join the community:

https://packt.link/unitydev

https://packt.link/unitydev

16
Next-Gen UI: Creating Dynamic
Interfaces with UI Toolkit

In the previous chapter, we discussed how to create user interfaces using uGUI (also known as Canvas),
one of the most common Unity UI systems, but as we already mentioned, this is not the only one. While,
so far, uGUI has been the most preferred option, Unity is working on a replacement called UI Toolkit,
and even if it doesn’t have feature parity with uGUI yet, we thought it is worth covering it in this book.

The idea of this chapter is to create the same UI we created previously but with UI Toolkit, so you can
get an idea of how creating a UI in Unity will look soon.

In this chapter, we will examine the following UI concepts:

• Why learn how to use UI Toolkit?
• Creating a UI with UI Toolkit
• Making a responsive UI with UI Toolkit

By the end of the chapter, you will learn how to use UI Toolkit to create basic UIs for our game, redo-
ing the UI we did in the last chapter as a point of reference. So, let’s start by answering the following
question first: why learn how to use UI Toolkit?

Why learn how to use UI Toolkit?
I know the topic of this chapter might sound a little bit confusing; we just learned how to use a whole
Unity system to create our UI, and now we are learning how to use another one! Why do we have to
learn about this new one?

One reason for learning both systems is that UI Toolkit, while promising, doesn’t yet match uGUI in
feature completeness, which is crucial for real-world production. Another thing to take into account
is that even if UI Toolkit is stable enough, it’s still a relatively new system, and there are still lots of
games in development that were created on older Unity versions that don’t support it. This means
that in order to land a job in this industry, we need to get a decent amount of exposure to uGUI, due
to most games being created with this technology.

Next-Gen UI: Creating Dynamic Interfaces with UI Toolkit504

This happens because it’s not safe or practical to update an already-tested and working game with new
technologies; such changes could lead to a major rework of the game to make it compatible with the
new versions. Also, this could potentially introduce tons of bugs that could delay the release of new
versions—not to mention the time it would take to remake a full app with a new system.

That being said, we believe it’s still worth learning the basic concepts of UI Toolkit to be prepared to
use it in newer Unity versions, so let’s dive into it now.

Creating a UI with UI Toolkit
In this section, we are going to learn about UI documents, a cornerstone of UI Toolkit. These assets
are crucial for defining your UI’s structure and components, and we’ll learn how to create and utilize
them effectively. To do this, we are going to discuss the following concepts:

• Creating UI Documents
• Editing UI Documents
• Creating UI Stylesheets

Let’s start by seeing how we can create our first UI Document.

Creating UI Documents
When creating a UI with uGUI, we need to create GameObjects and attach components like Button,
Image, or Text, but with UI Toolkit, we need to create a UI Document instead. A UI Document is a
special kind of asset that will contain the definition of the elements our UI will have and its hierarchy.
We will have a GameObject with a UI Document component (yes, it’s called the same, so pay attention
here) that will reference this UI Document asset and render its contents. It’s like a mesh asset that
contains information about the mesh and the MeshRenderer component that will render it. In this
case, the elements to render are contained in an asset, and we have a component that reads the asset
and renders its content (the UI in this case).

Interestingly, UI Documents are plain text files at their core. This means you can open and inspect
them with any standard text editor, offering a straightforward way to understand their structure. If
you do that and you are familiar with HTML, you will recognize the XML-like format used to define
the elements our UI will be composed of; Unity calls this format UXML. With UI Toolkit, Unity is at-
tempting to make it easy for web developers to jump into Unity and create UIs. In the following code,
you can see the typical look of a UXML document’s file contents:

<ui:UXML>
 xmlns:ui="UnityEngine.UIElements"
 xsi="http://www.w3.org/2001/XMLSchema-instance"
 engine="UnityEngine.UIElements"
 editor="UnityEditor.UIElements"
 noNamespaceSchemaLocation="../../UIElementsSchema/UIElements.xsd"
 editor-extension-mode="False">
 <ui:Button tabindex="-1" text="Button"

Chapter 16 505

 display-tooltip-when-elided="true" />
 <ui:Scroller high-value="100"
 direction="Horizontal"
 value="42" />
 <ui:VisualElement>
 <ui:Label tabindex="-1"
 text="Label"
 display-tooltip-when-elided="true" />
 <ui:Label tabindex="-1"
 text="Label"
 display-tooltip-when-elided="true" />
 </ui:VisualElement>
</ui:UXML>

Don’t worry if you don’t know XML; we will explain the core concepts in this chapter. Also, don’t worry
about the UXML format; later in this chapter, we will use a visual editor called UI Builder to edit our
UI without writing UXML at all, but it is worth knowing how it actually works.

In order to create a UI Document and add it to the scene, we need to do the following:

1. Click the + | UI Toolkit | UI Document option in the Project view to create a UI Document asset,
and name it GameHUD:

Figure 16.1: Creating the UI Document asset

2. Click the Game Object | UI Toolkit | UI Document option to create a GameObject in your scene
with the UI Document component, which is capable of rendering the UI Document.

3. Select it, and drag the GameHUD UI Document asset (the one created in Step 1) to the Source
Asset property of the UI Document GameObject (the one created in Step 2):

Figure 16.2: Making the UI Document component to render our UI Document asset

Next-Gen UI: Creating Dynamic Interfaces with UI Toolkit506

And that’s it! Of course, we won’t see anything yet on our screen as the UI Document is blank, so let’s
start adding elements to it.

Editing UI Documents
As our goal is to recreate the same UI we created in the last chapter, let’s start with the simplest part:
adding the player avatar to the top-left corner. One option would be to open the UI Document asset
with any text editor and start writing the UXML code, but luckily, we have an easier way, which is
using the UI Builder editor. This editor allows us to generate the UXML code visually by dragging and
dropping elements.

Before we jump in, let’s take a quick tour of the UI Builder window to see what we’re working with:

1. Double-click the GameHUD asset in the Project view to make UI Builder open it:

Figure 16.3: The UI Builder editor

2. In the Hierarchy panel inside UI Builder (not the Hierarchy panel we’ve used so far in previous
chapters), select GameHUD.uxml, which is the container element of the UI.

Chapter 16 507

Figure 16.4: Selecting the asset name in Hierarchy to edit the general UI settings

3. Look at the Inspector panel at the right of the UI Builder window (not the Inspector we’ve
used so far to modify GameObjects). Set the Size property to a Width of 1920 and a Height of
1080. This will allow us to view how our UI will look in this resolution. You can later change
this value to see how it adapts to different sizes, but more on that later:

Figure 16.5: Setting the preview UI resolution

4. You can pan the viewport to navigate the UI by pressing the mouse wheel button (also known
as the middle button) and moving the mouse. On a Mac, you can also press Option + Command
and click and drag any free area of the viewport (places without our UI) to do the same.

5. You can also use the mouse scroll wheel to zoom in and out. Finally, you can use the zoom per-
centage selection at the top-left part of the viewport and the Fit Canvas button to automatically
fit the entire UI in your viewport:

Figure 16.6: Setting the preview zoom

Next-Gen UI: Creating Dynamic Interfaces with UI Toolkit508

Now that we know the basics of UI Builder, let’s add our image to the UI:

1. Drag the VisualElement icon from Library at the bottom left to the Hierarchy section on the
left. This will create a basic UI element capable of rendering an image and much more:

Figure 16.7: Creating a visual element

2. Select VisualElement in Hierarchy (under GameHUD.uxml) and look at the Inspector at the right
part of the UI Builder window (again, not the regular Unity Inspector panel) in the Position
section. Expand it if not already expanded (using the arrow on the left).

3. Set Position to Absolute in order to allow us to move our element freely around the UI. Later in
this chapter, in the Using relative positions section, we will explain how the Relative mode works:

Figure 16.8: Setting our UI element to be freely moved around

4. Open the Size section, and set Width and Height to 100 to make our UI element have a non-zero
size. This way, we can see its area in the viewport:

Figure 16.9: Setting our UI element size

Chapter 16 509

5. In the Viewport pane, you can drag your element around and use the blue rectangles in the
corners to change its size. Position your element at the top-left corner of the UI. If you don’t
see your element in the viewport, select it in Hierarchy (the one for UI Builder):

Figure 16.10: Moving VisualElement

6. In order to set an exact position, you can set the Left and Top values of the Position section
in the Inspector to specify the exact x and y coordinates, respectively, expressed in pixels:

Figure 16.11: Setting the position

Next-Gen UI: Creating Dynamic Interfaces with UI Toolkit510

7. In the Background section of the Inspector, set the Image mode to Sprite using the combo
box at the right of the Image property. This allows us to apply a sprite as the background of
our element.

8. Drag the sprite asset (the image) of our player avatar we imported in Chapter 15, Interface
Brilliance: Designing a User-Friendly UI, from the Project panel to the Image property in order
to set it. Also, you can use the target button (the circle button with the dot in the middle) to
select the sprite asset from the picker window:

Figure 16.12: Setting the Background image of the element

9. Return to the regular Game panel to see the results. If you don’t see a change, you can turn
off and on the GameObject that renders our UI (the one we created with the UI Document).

Now that we have created the player avatar, we can create the player health bar by doing the following:

1. Repeat the previous steps 1 to 6 to create a new element that will serve as the player health bar
container. It won’t have an image, as it will just be the container for the rest of the elements
that will compose the health bar.

2. Position it right next to the player avatar, and set a width and height to resemble a classic health
bar. Remember that you can do this by dragging the image and the squares at the corners or
through the Size and Position properties as we did before.

3. Drag a new VisualElement to the Hierarchy, as we did in step 1, but this time, drop it over the
element created in step 1. This will make this new element a child of it, which will make that
element’s position and size depend on its parent, the same as what happened when we parented
Canvas objects in Chapter 15, Interface Brilliance: Designing a User-Friendly UI.

4. Select the parent VisualElement, and in the Inspector, set the Name property to PlayerHealth
to easily identify it. Do the same with the child element, calling it Filling:

Figure 16.13: Parenting and naming visual elements

Chapter 16 511

5. Select the Filling element in the Hierarchy and look at the Inspector.
6. In the Background section, set the Color property to red, clicking on the color box and using the

Color Picker. This will fill our UI element background with plain red instead of using an image:

Figure 16.14: Setting a pure red background for our element

7. As usual, set Position to Absolute, and also the Left and Top properties to 0. As this is a child
of another element, the position will be relative to its parent position, so by specifying a Left
and Top value of 0, we are saying that we will be at 0 pixels from the left and top sides of our
parent. This means that if our parent moves, this child element will move along with it.

8. Set the Size Width and Height to 100, and change the unit of measurement from px (pixels)
to % (percentage) by clicking on the px button and selecting %. This will make the Filling
element size the same as its parent (100 percent of the parent size):

Figure 16.15: Setting our size as the same size as our parent element

9. Add a new VisualElement as a child of PlayerHealth (a sibling of Filling) and call it Border.
10. Set Position and Size as we did in steps 7 and 8 for the Filling element, but don’t set the back-

ground color.
11. Set the Background section’s Image property to be the same border image we used in the

previous chapter. Remember to set the Image mode to Sprite instead of Texture.
12. Set the Slice property in the Background section to 15. This applies the nine-slices technique

we used in Chapter 15, Interface Brilliance: Designing a User-Friendly UI, to expand an object
without stretching it. In this case, we are giving the slice a size of 15 pixels from the outer
borders of the UI element.

Next-Gen UI: Creating Dynamic Interfaces with UI Toolkit512

Figure 16.16: Setting the nine-slice sizes in the element directly

13. Select the Filling visual element in the Hierarchy and set its Size section’s Width property
to simulate the Fill Amount property of the images we used in Chapter 11, Captivating Visual
Effects: Harnessing Particle Systems and VFX Graph. Later, we will change the size to be directly
proportional to the player’s health number via code:

Figure 16.17: Health bar result

14. Repeat steps 1 to 12 to create the bottom of the Base Health bar. Remember that the filling must
be green this time. Alternatively, you can just copy and paste the PlayerHealth container, but
I recommend you repeat the steps for learning purposes.

In previous steps, we basically saw how to compose several UI elements to create a complex object. We
needed a parent container element to drive the size of our children so that the inner elements adapt
to it, especially the filling, which requires a percentage value to represent the current player’s health.

Now, we have our life bar! Well, not quite yet; those red corners from the filling that our border doesn’t
cover are pretty rough! We will improve that later in this chapter when discussing how to make our
UI responsive, so for now, let’s keep it as is.

Finally, let’s add text elements to the UI. But first, we will need to think about fonts. If you download
a TTF font, you will need to create a font asset, as we did in Chapter 15, Interface Brilliance: Designing
a User-Friendly UI, for it to be used in UI Toolkit. However, with the current release of UI Toolkit, the
font asset we created in the last chapter is not compatible.

Chapter 16 513

We will need to create a font asset using the UI Toolkit Font Asset Creator instead of the TextMesh Pro
one. The reason behind the existence of duplicated tools is that Unity is integrating the Text Mesh Pro
package into a new, improved one called TextCore, one of those improvements being compatibility
with UI Toolkit and other Unity systems.

Considering this, in order to convert the TTF to a font asset compatible with UI Toolkit, you can just
right-click the TTF asset in the Project panel and select Create | Text | Font Asset. This will create a
new asset that will be the one we will use to define the font of our UI Toolkit text.

Having solved this, let’s create the UI element for text, that is, Label:

1. Drag the Label icon from the Library pane of the UI Builder window to its Hierarchy panel.
This will add a UI element capable of rendering not only an image in its background but also
text (yes, you can add a background to the text if you want to).

2. As usual, set its Position and Size, this time putting it in the top-right corner of the screen.
Remember, you can simply drag the element; you don’t need to set the specific coordinates
by hand (although you can if you want to).

3. Change the Text property in the Label section of the Inspector to the needed text; in our case,
this will be Score: 0:

Figure 16.18: Setting the text to display

4. Drag the Font asset created just before these steps to the Font Asset property in the Text section
of the Inspector. Don’t confuse it with the Font property (the one above Font Asset). That one
allows you to drag TTF assets directly, but that will be deprecated soon, so let’s stick with the
Unity-recommended approach.

5. If you notice that your Font asset doesn’t work, try putting it in the UI Toolkit | Resources |
Fonts & Materials folder in the Project panel. While this shouldn’t be necessary in the latest
Unity versions, I’ve noticed that this has solved these sorts of issues in the past. Also, there’s
a bug that makes the font not recognized sometimes, which can be fixed by deleting and rec-
reating the Label.

Next-Gen UI: Creating Dynamic Interfaces with UI Toolkit514

6. Set the Size property of the Text section to any size that seems appropriate:

Figure 16.19: Setting the Text Font and Size of a label

7. Repeat steps 1 to 6 to add all the remaining labels to the UI.
8. One last thing we need to do is save, which can be simply done by pressing Ctrl + S (Command

+ S on a Mac) or using the File | Save menu in the top-left part of the Viewport section in the
UI Builder window. Note that previous versions of UI Toolkit had a bug where this could make
the viewport corrupt. Please close it and reopen UI Builder again if this happens.

Now that we have created our UI, you probably noticed the need to repeat several settings to make
several objects look the same, like our health bars and labels. While this is perfectly viable, we could
improve our workflow greatly by reusing styles, and Stylesheets are the exact feature we need to
accomplish that, so let’s see them.

Creating UI Stylesheets
 Imagine you’re designing various game elements, like buttons and menus, that all share a common
look – the same background, font, size, and borders. This is a common scenario in UI design, where
consistency is key. When creating the UI with uGUI, one way to avoid repeat configurations for each
element would be to create a Prefab for the button and create instances (and Prefab variants where
necessary). Unlike uGUI, UI Toolkit doesn’t use GameObjects, so we can’t rely on Prefabs for styling.
But no worries, we have a powerful alternative: Stylesheets.

Stylesheets are separate assets that contain a series of styling presets for our UI elements. We can
define a set of styles (for example, background, borders, font, size, etc.) and apply those to several
elements across different UI elements. This way, if we change a style in a Stylesheet asset, all UI ele-
ments using that style will change in a similar way to how materials work.

There are several ways to create styles in a Stylesheet. The selector system in Stylesheets works a bit
like filters – you set rules to decide which UI elements get certain styles, much like CSS in web design.
A class is basically a style we can apply to any element via its name. For example, we can create a
class called Button and add that class to every button in the UI that we want to have that style. Please
note that, here, the concept of class doesn’t refer to a programming class. A class is a way to label UI
elements that must have specific styling.

Chapter 16 515

So, in this case, let’s create a class for all the labels in our UI so that the appearance of all of them can
be modified by simply changing the style:

1. In the StyleSheets panel of UI Builder, click Add (+) button and click Create New USS (Unity
StyleSheet). If that doesn’t work, try restarting Unity; there’s a bug in the current version of UI
Toolkit that could cause this:

Figure 16.20: Creating a Unity StyleSheet

2. Name the USS as you like (GameUSS in my case) and save the file.
3. Select one of the label elements we have in our UI Document and look at the Inspector.
4. In the StyleSheet pane of the Inspector, type HUDText in the Style Class List input field, but

don’t press Enter yet.
5. Click the Extract Inlined Styles to New Class button. This will take all the style modifications

we applied to our label (position, size, font, etc.) and save them into a new style class called
HUDText. You can observe that it was added to the list of classes applied to the element (those
labels at the bottom of the StyleSheet section in the Inspector):

Figure 16.21: Extracting settings into a style class

For advanced tips on USS, please check out this link: https://docs.unity3d.com/2023.1/
Documentation/Manual/UIE-USS.html

https://docs.unity3d.com/2023.1/Documentation/Manual/UIE-USS.html
https://docs.unity3d.com/2023.1/Documentation/Manual/UIE-USS.html

Next-Gen UI: Creating Dynamic Interfaces with UI Toolkit516

With these steps, we have taken a label with the style we need to apply to others and extracted it into
a class named HUDText. This way, we can simply add the HUDText class to other elements in our UI,
and we can even add the same USS asset to other UI Documents (click the + button on the StyleSheets
pane | Add Existing USS) to add this class to the elements in it.

Also, if you select the label again, you will notice how properties that previously were in bold have now
become normal again; that’s because properties in bold represent changed properties, and we have
extracted them, so the default values became whatever the style classes define. Luckily, not everything
is extracted to the new USS class; for example, the Text field still has our specific desired text, as it is
highly unlikely you would want to put the same text in other objects.

Figure 16.22: The Text property is bold, indicating it is different from the default values. On the other
hand, Enable Rich Text is not bold, meaning it follows the default values and the class’s ones

If you miss a style detail while extracting the class, don’t worry. You can easily adjust it afterward by
selecting the class in the StyleSheets section and making your edits. Then, select the HUDText class
in the list. If you don’t see it, try expanding the GameUSS�uss section.

Once selected, you can change it in the Inspector panel, similar to when we change the properties
of a UI element:

Figure 16.23: Selecting a style class for modification

This way, we have edited our HUDText class. If other elements had this class applied, they would also
have these changes applied. Consider that another option would be to create the class first, typing the
name in the StyleSheets input field, pressing Enter, and then applying it to UI elements. This way, you
will avoid needing to revert to unwanted changes, but if you created the element first, it’s convenient
to have the option to revert:

Figure 16.24: Creating a style class from scratch

Chapter 16 517

Now that we have our style class, let’s apply it to other elements by doing the following:

1. Select another label of our UI.
2. Drag the HUDText style from the Stylesheet pane at the top-left part of the UI Builder window

all the way to our element in the viewport. You can also drag it to the Hierarchy element if
you prefer:

Figure 16.25: Applying a class to an element

3. Select the Label, and check how the HUDText class has been added to the StyleSheet section
of the Inspector.

Now, note that even if the element now has the class applied, the element itself has the changes to
the text we made in the previous steps, overriding the style in our class. You can easily check this
by selecting the class again (in the StyleSheets section at the top-left part of the UI Builder window),
changing any setting, like the size, and seeing how not all the elements have changed. This shows
how the override system works; the changes on the element take precedence over the ones in the
classes it has applied.

If you want to remove these overrides, you can simply select the element (not the class), right-click
on the overridden properties, and unset the changes by right-clicking and then selecting Unset. In
the case of our label, we can unset the entire Text section and probably the Absolute position (as the
desired values are already contained in the class).

Next-Gen UI: Creating Dynamic Interfaces with UI Toolkit518

Figure 16.26: Reverting an override to use the default values of the classes applied to the element

So, with these steps, we created a new StyleSheet asset and added it to the UI Document for it to use.
We have created a new style class in it, extracting the changes of an existing UI element from it, and
then adjusted which changes we wanted to keep. Finally, we applied that style to another element.
With this, we just scratched the surface of the real power of StyleSheets. We can start doing things
like combining different classes from different StyleSheets or using selectors to dynamically set styles,
but that’s outside the scope of this chapter.

While UI Toolkit’s documentation is still evolving, you can get a jump start on these advanced concepts
by delving into CSS literature. The fundamentals and best practices of CSS offer valuable insights
applicable to UI Toolkit. It won’t be exactly the same, but the basic idea and best practices still apply.

Now, the UI looks almost exactly the same as it does in Chapter 15, Interface Brilliance: Designing a
User-Friendly UI, but it won’t behave in the same way. If you try changing the size of the viewport (by
selecting GameHUD�uxml in the Hierarchy and changing Width and Height as we did at the beginning
of the chapter), you will see that the UI won’t adapt properly, so let’s fix this.

Making a responsive UI
In this section, we are going to learn how to make the UI we created previously adapt to different
screen sizes. We are going to discuss the following concepts:

• Dynamic positioning and sizing
• Dynamic scaling
• Using relative positions

Let’s start by discussing how we can make the position and size of our objects adapt to the screen size.

Dynamic positioning and sizing
So far, we have used the Left and Top position attributes in order to specify the x and y positions of
our elements, with respect to the top-left corner of the screen, and then Width and Height to define
the size. While, essentially, that’s all that’s needed to define an object’s position and size, it is not very
useful in all cases, especially when we need to adapt to different screen sizes.

Chapter 16 519

For example, if you need to place an object in the top-right corner of the screen, knowing its size is
100x100 pixels and the screen size is 1920x1080 pixels, we can put the Left and Right position attributes
as 1820x980 pixels, and this will work, but only for that specific resolution.

So, what happens if the user runs the game at 1280x720 pixels? The object will be outside the screen.
In uGUI, we used anchors to solve this issue, but we don’t have them here. Luckily, we have Right and
Bottom to help.

Like the Left and Top attributes, Right and Bottom define distances from the parent element’s sides
(if there is no parent, then just from the entire screen). Right now, we have both set to auto, meaning
that the position will be driven by Left and Right exclusively, but interesting things can happen by
changing those values, so let’s use them to make our Score and Bullet labels stick to the top-right
corner of the screen instead by doing the following:

1. Put the cursor in the bottom part of the UI in the viewport until a white bar appears.
2. Drag that bar to resize the screen, and see how our UI adapts (or not) to the different size.
3. Do the same on the laterals to also see how it adapts to different screen widths:

Figure 16.27: UI not adapting to different screen sizes

4. Select the score label on the viewport and look at the Inspector.
5. Set the Top and Right values in the Position section to 30.

Next-Gen UI: Creating Dynamic Interfaces with UI Toolkit520

6. Set the Left and Bottom values to auto by clicking the px button at the right of each attribute
and selecting auto:

Figure 16.28: Changing the unit type of the Position attributes to auto mode

7. Notice the Right and Top golden-colored squares at the sides of the label became filled, while
the Left and Bottom squares are hollow. This means that the Left and Bottom squares are in
auto mode. You can also toggle auto mode by clicking those boxes if needed:

Figure 16.29: Toggling auto mode of our element position attributes

Chapter 16 521

8. Try changing the size of the UI container again, as we did in steps 1 and 2, to see how our Score
label is always aligned to the top-right corner.

9. Repeat steps 4 to 6 for the Bullets label, this time setting the Top property to 140.

What we did with these steps was essentially make the position of the object expressed as a distance
in pixels against the Top and Right sides of the UI or the top-right corner of the screen. We needed to
set the other sides to auto mode so that they wouldn’t participate in the position calculations.

Now, we can use the Position attributes in other ways as well. As you might imagine by now, we can
start combining Left and Right and Top and Bottom if we wish. In such cases, Left and Top will take
precedence in defining the position, but then, what do Right and Bottom do? They define the size of
the element.

For example, if we have an element with Left and Right attributes set to 100px each and we see our UI
on a screen with a width of 1920 pixels, the final width of our element will be 1720 (1920 minus 100
from Left and minus 100 from Right). This way, the Position attributes represent the distances of the
sides of our element from the sides of the screen (or the parent element).

Let’s see this in action by making the bottom health bar adapt to the screen width while preserving
its position relative to the bottom of the screen by doing the following:

1. Select the bottom health bar parent in the Hierarchy. Don’t select it in the viewport, as you
will only be selecting its filling or border.

2. Set Left, Right, and Bottom to 50px.
3. Set Top to auto (click on the px button at the right and select auto).
4. In the Size section, set Width to auto also.
5. Set Height to 35px:

Figure 16.30: Making the player’s base health bar adapt to the screen width

6. Change the size of the UI to see how it adapts.

With these steps, we defined the bar distance from the sides of the screen as 50 pixels for it to adapt to
any screen width while keeping the distance from the border and height fixed. We basically achieved
the same behavior as split anchors in uGUI! Note that we needed to set Size Width attributes to auto to
let the Left and Right attributes drive the position; if you don’t do that, the Width attributes take prece-
dence, and Right won’t have any effect. I invite you to experiment with other combinations of px/auto.

Next-Gen UI: Creating Dynamic Interfaces with UI Toolkit522

One last trick we can do here is to use negative values in the Left, Top, Right, and Bottom Position
attributes of the health bar borders to make the borders slightly bigger than the container and cover
the filling borders. Just set Left, Top, Right, and Bottom to -15px in this case, and remember to set
both the Size Width and Height attributes to auto. You might want to reduce the height of the bar
container (not the border) a little bit, as now it will look thicker due to this change:

Figure 16.31: Using negative Position attributes to cover the filling

Another mode aside from px (pixels) or auto mode is the percentual (%) mode, which allows us to
represent values as percentages relative to the screen (or parent element if present) size. For exam-
ple, if we set Top and Bottom to 25%, this means that our element will be vertically centered with a
size of 50% of the screen height (remember to set Height to auto here). We could achieve the same
result if we set Top to 25%, Bottom to Auto, and Height to 50%; as you can see, we can achieve a clever
combination of those values.

In our case, we will use percentual values in our Life Bar fillings so that we can express their size in
percentages. We need this so, later in the code, we can specify the width of the bar as a percentage of
the player’s life (for example, a player with 25 life points and a max of 100 points has 25% life).

Now, while we solved adapting positioning to the screen size with the usage of the Left, Top, Right,
and Bottom properties, we still didn’t solve the dynamic sizing of the elements. With sizing this time,
we refer to screens with a different number of DPI (dots per inch), so let’s discuss how we can achieve
that with the Panel Settings asset.

Dynamic scaling
We used 1920x1080 as the UI base resolution to position and size our elements so that they look nice
in that resolution. While resizing the UI helped us understand how elements adapt their position, you
might have observed a notable change in the size of the elements, appearing larger or smaller. This
is an important aspect to consider in dynamic UI scaling.

While having a base reference resolution is good for designing our UI, we should consider the sizing
of elements on different resolutions, especially on screens with high DPI. Sometimes, you can have
screens with higher resolution but the same physical size in centimeters.

Chapter 16 523

This means pixels are smaller in the ones with higher resolution; hence, they have a larger DPI, so
elements can seem smaller if not scaled properly.

Scaling in UI design ensures that your interface looks great on any screen size. Previously, in traditional
Unity UI, we relied on the Canvas Scaler for this. Now, in UI Toolkit, we use a similar approach but
through the Panel Settings asset. Let’s see how this is configured to maintain consistent UI elements
across different resolutions:

1. Look for the Panel Settings asset in the Project panel and select it. Another option would be
to select the UI Document GameObject in the Main Editor Hierarchy and click the asset refer-
enced in the Panel Settings property:

Figure 16.32: Panel Settings being referenced in the UI Document component

2. Set Scale Mode to Scale With Screen Size.
3. Set Screen Match Mode to Match Width Or Height.
4. Set the Reference Resolution X value to 1920 and the Y value to 1080.
5. Move the Match slider all the way to the right, toward the end labeled Height:

Figure 16.33: Setting the scaling of our UI

6. Observe how changing the height of the Game panel of the Unity Editor will make the UI adapt
its element sizes accordingly (i.e., change the whole Unity Editor window height).

What we did with those changes was first set Reference Resolution to whatever resolution we designed
our UI for – in our case, 1920x1080. Then, we set Screen Match Mode to allow us to scale our elements
according to one of the sides, Width, Height, or a combination of the two if we prefer. We’re focusing
on Height for scaling, as PCs typically have wider screens. This choice ensures that our UI elements
maintain their visual consistency across various screen heights. This means that on different screen
widths, the elements will look the same size, but on different heights, the elements will be bigger or
smaller.

Next-Gen UI: Creating Dynamic Interfaces with UI Toolkit524

With these settings, we can do some math to understand the values. If our screen is the same as the
reference resolution (1920x1080), the element sizes will be the same as we specified in the size of our
elements in pixels, so for the case of our player avatar, it will be 150x150 pixels. Remember that the
physical size in centimeters depends on the DPI of the screen.

With this understanding of how UI elements scale on a 4K screen, let’s put this knowledge into practice.
We’ll now adjust our UI settings to effectively accommodate such high-resolution displays. Follow along
with these steps to see how our UI elements respond and adapt to a 4K resolution setup.

Now, imagine that we have a 4K screen, meaning a resolution of 3840x2160. As we specified that our
UI matches via Height, we can determine that our elements will double in size because our screen has
a height that is double the reference resolution (2160 divided by 1080). Our player avatar, at 300x300
pixels, will maintain its physical size on a 4K screen; this is achieved by the screen’s double size cou-
pled with its double pixel density. Finally, consider an ultra-wide standard resolution of 2560×1080
(yes, very wide screens), in which case the elements will be the same size, as the only change is the
width; the only difference is that the elements will have more horizontal separation due to the screen
size. I know these calculations can be confusing, but keep experimenting with the values of the Panel
Settings and Game view sizes to understand them better.

Great, now we really have the same HUD. We could start applying the concepts seen so far to the
Options menu, but let’s take the opportunity to do it in a different way, using relative positions, a way
to create a flow of elements where the elements’ positions depend on each other.

Using relative positions
In the HUD of our game, each element requires its own Position and Size, and the different elements’
positions can be resized and repositioned without affecting others. We might observe the case of the
player health bar and the avatar, but the changes would be trivial in this case. There are other cases
where this is not that trivial, as in the case of a list of elements (for example, a list of matches to join
in a multiplayer game) that needs to adapt vertically or horizontally, and here is where relative posi-
tions help us.

Relative positions allow us to make the positions of the elements relative to each other; in a way, the
position of one element will depend on the position of the previous one, and that one to its previous,
and so on, forming a chain or flow. This works like vertical and horizontal layouts on uGUI. In our
case, we will make the Pause label and the Options and Exit buttons of our options menu vertically
aligned and centered along their parent using those.

Let’s start creating the menu by doing the following:

1. Create a new UI Document (click the + button after going to Project View | UI Toolkit | UI Docu-
ment) and call it OptionsMenu. We can work on the previous UI Document, but let’s keep those
pieces of UI separated for easy activation and deactivation as well as general asset organization.

2. Double-click the asset to set it as the current UI being edited by the UI Builder.
3. Select the root object (OptionsMenu�uxml in the Hierarchy) and set the Width and Height

Inspector properties to 1920x1080 pixels.

Chapter 16 525

4. Create a new GameObject with the UI Document component (GameObject | UI Toolkit | UI
Document) and drag the asset for this object to render it (as we did with the HUD created
earlier in the chapter).

5. Double-click the UI Document asset to open the UI Builder window to edit it, and in that win-
dow, drag a new VisualElement to the Hierarchy or viewport and call it Container (the Name
property in the Inspector in UI Builder).

6. Set the Left, Right, Top, and Right Position attributes to 0px.
7. Set Position to Absolute.
8. Set Width and Height in the Size section to auto. This will make the container fit the entire

screen.
9. Drag a new VisualElement to be a child of the container and call it Background.
10. Leave Position as Relative this time.
11. Set Size Width and Height to 500px.
12. Set Background Image of the Background object to use the same background sprite used in

the previous chapter.
13. Select the Container parent object (not Background).
14. In the Inspector, set the Align Items property of the Align section to center, which is the

third button. If you hover the mouse over the icons, they will show their names in a tooltip.
15. Set Justify Content to Center (second button):

Figure 16.34: Preparing the UI background to host elements inside

Next-Gen UI: Creating Dynamic Interfaces with UI Toolkit526

16. Change the size of the UI using the white bars at the sides to see how the background is always
centered.

With just a single element in place, this is a great chance to observe how relative positioning functions
in a practical setting. First, we created an empty object that will always adapt to the screen size, al-
lowing us to make the children’s elements depend on the full-screen size. Then, we created an image
element with a fixed size but with a relative position, meaning its position will be calculated by the
parent container. Finally, we told the container to make its child objects aligned to its horizontal and
vertical center, so the background immediately became centered, regardless of the screen size. When
working with absolute positions, the Align properties didn’t work, so this is one of the first benefits
of relative positioning.

But relative positioning becomes more powerful with multiple elements, so let’s add the Label and
buttons to our Background element to explore this concept further by doing the following:

1. From the Library pane at the bottom left of UI Builder, drag a Label and two Button elements
inside Background in Hierarchy. Note that there’s a bug where, sometimes, even if you drag
and drop a new element inside the desired object, it won’t be its child. Just drag the one created
in the Hierarchy this time:

Figure 16.35: Adding elements inside the menu background

2. Observe how, by default, the elements became vertically aligned, one on top of the other, due
to the relative position’s default settings:

Figure 16.36: Automatic relative vertical positioning

3. Select the Background element and set Justify Content to space-around (the fifth button). This
will spread the elements along the background.

Chapter 16 527

4. Set Align Items to center (the third option) to center elements horizontally:

Figure 16.37: Automatic relative vertical positioning

There is a similar mode for Justify Content called space-between (the fourth button in Justify
Content) that will also spread the elements along the vertical axis, but it won’t leave space on
top of the first element or at the bottom of the last one. Also, Align Items has an option called
Stretch (the fifth option) that, like center, will not only center elements horizontally but also
stretch them instead of respecting each element’s width. I recommend experimenting with
the different aligning modes to discover all opportunities.

Next-Gen UI: Creating Dynamic Interfaces with UI Toolkit528

5. Set the Label Text’s Font and Size attributes to whatever seems fit. In my case, I used the im-
ported font and a size of 60px. Remember to also set Text to Pause.

6. Set the Button Background Image to use the same as was used for the button in the last chapter.
7. Set the Color property of the Background section to a color with no alpha. You can achieve

this by clicking the color rectangle and reducing the A channel in the color picker to 0. The
idea of this color is to act as a background for our image, but we don’t need it, so we made it
completely transparent.

8. Set the Button Text Font, Size, and Color to whatever seems fit to you. In my case, I’m using
50 and a gray color.

9. In the Margin and Padding section, set Padding to have some spacing between the text and
the borders of the button. In my case, 30px did the trick:

Figure 16.38: Adding inner padding to the button contents (the text in this case)

10. Also, set the Top and Bottom Padding of Background to allow some space between the borders
of the window and its elements. In my case, it is 40px each.

As you can see, we changed different settings to set the size of the elements dynamically, like font sizes
and paddings, and the relative system, along with the align settings, took the role of determining the
position of the elements automatically. We can rearrange the order of the elements by dragging them
in the Hierarchy, and they will be accommodated automatically. We could have also set the size of
the elements with the Size property, and we can also apply some offsets if desired using the Position
properties, but I encourage you to see how these properties behave in Relative mode on your own.

One last setting I want you to explore is the Direction attribute of the Flex section, which, as you can
imagine, will determine the orientation the elements will follow, vertically from top to bottom or
bottom to top and horizontally from left to right or right to left. For example, you could set Direction
to distribute the elements from left to right using the Row mode (the third button) and make the
background wider to have a horizontal options menu if you wish.

Chapter 16 529

Figure 16.39: Changing to a vertical orientation of elements

As a side note, you might have noticed that the images for the background and buttons will look bigger
than the options menu created in the last chapter. That’s because the Pixels per Unit setting that we
changed on the Texture assets to control the scaling of the textures won’t take effect in UI Toolkit; you
will need to manually change the texture file size in any image editor to give it its proper size. The
best practice here would be to always create the images with a size that will look fine in our maximum
supported resolution. Usually, this is 1920x1080 on a PC, but note that 4K resolutions are becoming
more popular every day.

Summary
In this chapter, we were introduced to the key concepts of UI Toolkit and how to create UI Documents
and Stylesheets. Regarding UI Documents, we learned how to create different elements like images,
text, and buttons and how to position and size them using different methods, like absolute and relative
positioning and pixel or percentual units. Also, we saw how to make the UI adapt to different sizes
using different combinations of Position attributes. Finally, we learned how to use USS Stylesheets to
share styles between different elements to easily manage our whole UI skinning.

Essentially, we learned again how to make UIs with a different system. Again, please note that this
system is still in the experimental phase and is not recommended for real production projects. We
used all these concepts to recreate the same UI created in Chapter 15, Interface Brilliance: Designing a
User-Friendly UI.

In the next chapter, we are going to see how to add animations to our game to make our characters
move. We will also see how to create cut-scenes and dynamic cameras.

Next-Gen UI: Creating Dynamic Interfaces with UI Toolkit530

Learn more on Discord
Read this book alongside other users, Unity game development experts, and the author himself. Ask
questions, provide solutions to other readers, chat with the author via Ask Me Anything sessions, and
much more. Scan the QR code or visit the link to join the community:

https://packt.link/unitydev

https://packt.link/unitydev

17
Animated Realities: Creating
Animations with Animator,
Cinemachine, and Timeline

Sometimes, we need to move objects in a predetermined way, such as with cutscenes, or specific
character animations, such as jumping, running, and so on. In this chapter, we will go over several
Unity animation systems to create all the possible movements of objects we can get without scripting.

In this chapter, we will examine the following animation concepts:

• Using skinning animation with Animator
• Scripting animations
• Creating dynamic cameras with Cinemachine
• Creating cutscenes with Timeline

By the end of this chapter, you will be able to create cutscenes to tell the history of your game or
highlight specific areas of your level, as well as create dynamic cameras that are capable of giving an
accurate look to your game, regardless of the situation.

Using skinning animation with Animator
So far, we have used what are called static meshes, which are solid three-dimensional models that are
not supposed to bend or animate in any way (aside from moving separately, like the doors of a car).

We also have another kind of mesh, called skinned meshes, which are meshes that have the ability to
deform based on a skeleton so they can emulate the muscle movements of the human body. We are
going to explore how to integrate animated humanoid characters into our project to create enemy
and player movements.

Animated Realities: Creating Animations with Animator, Cinemachine, and Timeline532

In this section, we will examine the following skeletal mesh concepts:

• Understanding skinning
• Importing skinned meshes
• Integration using Animator Controllers
• Using avatar masks

Now that we’ve introduced skinned meshes, let’s delve deeper into how skinning functions and its
pivotal role in character animation. Then, we are going to bring animated meshes into our project
to finally apply animations to them. Let’s start by discussing how to bring skeletal animations into
our project.

Understanding skinning
In order to get an animated mesh, we need to have four pieces, starting with the mesh that will be
animated, which is created the same way as any other mesh. Then, we need the skeleton, which is a
set of bones that will match the desired mesh topology, such as the arms, fingers, feet, and so on. In
Figure 17.1, you can see an example of a set of bones aligned with our target mesh:

Figure 17.1: A ninja mesh with a skeleton matching its default pose

Once the artist has created the model and its bones, the next step is to do skinning, which is the act
of associating every vertex of the model to one or more bones. This way, when you move a bone, the
associated vertices will move with it.

Chapter 17 533

In Figure 17.2, you can see the triangles of a mesh being painted according to the color of the bone,
which affects it as a way to visualize the influence of the bones. You will notice blending between colors,
meaning that those vertexes are affected differently by different bones to allow the vertexes near an
articulation to bend nicely. Also, Figure 17.2 illustrates an example of a two-dimensional mesh used
for two-dimensional games, but the concept is the same:

Figure 17.2: Mesh skinning weights visually represented as colors

Finally, the last piece you need is the actual animation, which will simply consist of a blending of
different poses of the mesh bones. The artist will create keyframes in an animation, determining
which pose the model needs to have at different moments, and then the animation system will simply
interpolate between them. Basically, the artist will animate the bones, and the skinning system will
apply this animation to the whole mesh.

In order to get the four parts, we need to get the proper assets containing them. The usual format
in this scenario is Filmbox (FBX), which we used previously to import 3D models. This format can
contain every piece we need—the model, the skeleton with the skinning, and the animations—but
usually, those pieces will come split into several files to be re-utilized.

Imagine a city simulator game where we have several citizen meshes with different aspects, and all of
them must be animated. If we have a single FBX per citizen containing the mesh, the skinning, and
the animation, it will cause each model to have its own animation, or at least a clone of the same one,
repeating them. When we need to change that animation, we will need to update all the mesh citizens,
which is a time-consuming process.

Animated Realities: Creating Animations with Animator, Cinemachine, and Timeline534

Instead of this, we can have one FBX per citizen, containing the mesh and the bones with the proper
skinning based on that mesh, as well as a separate FBX for each animation, containing the same bones
that all the citizens have with the proper animation, but without the mesh. This will allow us to mix
and match the citizen FBX with the animation’s FBX files. You may be wondering why both the model
FBX and the animation FBX must have the mesh. This is because they need to match in order to make
both files compatible. In Figure 17.3, you can see how the files should look:

Figure 17.3: The animation and model FBX files of the package we will use in our project

Also, it is worth mentioning a concept called retargeting. As we said before, in order to mix a model
and an animation file, we need them to have the same bone structure, which means the same number
of bones, hierarchy, and names.

Sometimes, this is not possible, especially when we mix custom models created by our artist with
external animation files that you can record from an actor using motion-capture techniques or just by
buying a mocap (motion-capture) library, a set of animations captured on real humans using specific
mocap hardware. In such cases, it is highly likely that you will encounter different bone structures
between the one in the mocap library and your character model, so this is where retargeting kicks
in. This technique allows Unity to create a generic mapping between two different humanoid-only
bone structures to make them compatible. In the next section, Importing skeletal animations, we will
see how to enable this feature.

Now that we understand the basics behind skinned meshes, let’s see how we can get the model’s assets
with bones and animations.

Importing skeletal animations
We can download a character model by searching for it in the Asset Store in the 3D | Characters |
Humanoids section. You can also use external sites, such as the website called Mixamo, to download
them. Note that sometimes you will need to download several packages because some packages come
only with the skinned model, and others with animation only. Luckily, the models we downloaded in
Chapter 4, Seamless Integration: Importing and Integrating Assets, already contain the skinned meshes
and the animations.

Chapter 17 535

In my package content, I can find the animation’s FBX files in the Animations folder and the FBX file
of my model called Polyart_Mesh in the Mesh folder. Remember that sometimes you won’t have them
separated like this, and the animations may be located in the same FBX as the model if any animations
are present at all. Now that we have the required files, let’s discuss how to properly configure them.

Let’s start by selecting the Model file and checking the Rig tab. Within this tab, you will find a setting
called Animation Type, as shown in Figure 17.4:

Figure 17.4: The Rig properties

This property contains the following options:

• None: Mode for non-animated models; every static mesh in your game will use this mode.
• Legacy: The mode to be used in old Unity projects and models; do not use this in new projects.
• Generic: A new animation system that can be used in all kinds of models but is commonly used

in non-humanoid models, such as horses, octopuses, and so on. If you use this mode, both the
model and animation FBX files must have the exact same bone names and structure, thereby
reducing the possibility of combining animation from external sources.

• Humanoid: New animation systems designed to be used in humanoid models. It enables
features such as retargeting and Inverse Kinematics (IK). These allow you to use models with
different bone structures than the animation bones. To do so, Unity converts the bone struc-
ture of the models and animations using this mode into a standard humanoid bone structure,
making them compatible with each other. This structure is called an Avatar. Take into account
that sometimes the automatic mapping can fail, and you will need to correct it manually; so,
if your generic model has everything you need, I recommend you stick to Generic if that’s the
default configuration of the FBX.

In my case, the FBX files in my package have the modes set to Humanoid, so that’s good, but remember,
only switch to other modes if it is absolutely necessary (for example, if you need to combine different
models and animations). Now that we have discussed the Rig settings, let’s talk about the Animation
settings.

Animated Realities: Creating Animations with Animator, Cinemachine, and Timeline536

To do this, select any animation FBX file and look for the Animation tab in the Inspector window. You
will find several settings, such as the Import Animation checkbox, which must be marked if the file
has an animation (not the model files), and the Clips list, where you will find all the animations in the
file. In the following screenshot, you can see the Clips list for one of our animation files:

Figure 17.5: The Clips list in the Animation settings

An FBX file with animations usually contains a single large animation track, which can contain one
or several animations. Either way, by default, Unity will create a single animation based on that track,
but if that track contains several animations, you will need to split them manually. In our case, our
FBX contains a single animation, but in order to learn how to split it in other cases, do the following:

1. From the Clips list, select any animation that you want to recreate; in my case, I will choose
Run_guard_AR.

2. Take a look at the Start and End values below the animation timeline and remember them;
we will use them to recreate this clip:

Figure 17.6: The clip settings

3. Use the + button to create a new clip and select it.
4. Rename it to something similar to the original using the input field that currently says some-

thing like Take 001. In my case, I will name it Run.
5. Set the End and Start properties with the values we needed to remember in step 2. In my case,

I have 20 for End and 0 for Start. This information usually comes from the artist who made the
animation, but you can just try the number that works best or simply drag the blue markers
in the timeline on top of these properties.

Chapter 17 537

6. If an animation needs to loop, check the Loop Time checkbox to guarantee that. This will make
the animation repeat constantly, which is required in most animations like Walk or Run. If
not, the animation will play once and never repeat:

Figure 17.7: Looping the animation

7. Preview the clip by clicking on the bar titled for your animation (Run, in my case) at the very
bottom of the Inspector window and click on the Play button. You can see the default Unity
model in some cases, but you can see your own by dragging the model file to the preview
window because it is important to check whether our models are properly configured. If the
animation does not play, you will need to check whether the Animation Type setting matches
the animation file:

Figure 17.8: Animation preview

Animated Realities: Creating Animations with Animator, Cinemachine, and Timeline538

8. Open the animation asset (the FBX) by clicking the arrow on its left, and check the sub-assets.
You will see that there is an asset with the same title as your animation:

Figure 17.9: Generated animation clips

9. Remember that there are plenty of other settings aside from the Init frame, End frame, and
Loop Time. The character I downloaded required other settings like Root Transform Rota-
tion, Root Transform Position, and Mask to make it work, and the mileage may vary between
character packages. If you are recreating an existing animation, consider copying all settings
as they were or just use the default one. These mentioned settings are beyond the scope of the
book, but you can always consult them in the Unity documentation at https://docs.unity3d.
com/Manual/class-AnimationClip.html.

Now that we have covered the basic configuration, let’s learn how to integrate animations.

Integration using Animation Controllers
When adding animations to our characters, we need to think about the flow of the animations, which
means thinking about which animations must be played, when each animation must be active, and
how transitions between animations should happen. In previous Unity versions, you needed to code
that manually, generating complicated scripts of C# code to handle complex scenarios, but now, we
have Animation Controllers.

Animation Controllers are a state machine-based asset where we can diagram the transition logic be-
tween animations with a visual editor called Animator. The idea is that each animation is a separate
state, and our model will have several of them. Only one state can be active at a time, so we need to
create transitions in order to change them, which will have conditions that must be met in order to
trigger the transition process. Conditions are comparisons of data about the character to be animated,
such as its velocity, whether it’s shooting or crouched, and so on.

https://docs.unity3d.com/Manual/class-AnimationClip.html
https://docs.unity3d.com/Manual/class-AnimationClip.html

Chapter 17 539

So, basically, an Animation Controller or state machine is a set of animations with transition rules
that will dictate which animation should be active. Let’s start creating a simple Animation Controller
by doing the following:

1. Click the + button under the Project view, click on Animator Controller, and call it Player. Re-
member to locate your asset within a folder for proper organization; I will call mine Animations.

2. Double-click on the asset to open the Animator window. Don’t confuse this window with the
Animation window; the Animation window serves to create new animations, but for now, we
will stick with the downloaded ones. The Animator window is in charge of creating and editing
the animation state machines in a visual way, similar to Visual Scripting.

3. Search for the Idle animation clip of your character in the Animations folder of your charac-
ters package and drag it into the Animator window. In my case, it was called Idle_guard_ar.
Remember to drag the sub-asset, not the entire file. This will create a box in the Animator
Controller representing the animation that will be connected to the entry point of the Con-
troller, indicating that the animation will be the default one because it is the first one that we
dragged. If you don’t have an Idle animation, I encourage you to download one from the Asset
Store, maybe searching in other characters’ packages. We will need at least one idle and one
walking/running animation clip:

Figure 17.10: Dragging an animation clip from an FBX asset into an Animator Controller

4. Drag the running animation in the same way, which is Run_guard_AR in my case.
5. Right-click on the Idle animation box in the Animator window, select Make Transition, and

left-click on the Run animation. This will create a transition between Idle and Run.

Animated Realities: Creating Animations with Animator, Cinemachine, and Timeline540

6. Create another transition from Run to Idle in the same way:

Figure 17.11: Transitions between two animations

Transitions must have conditions in order to prevent animations from swapping constantly, but in
order to create conditions, we need data to make comparisons. We will add properties to our Con-
troller, which will represent data used by the transitions. Later, in the Scripting animations section of
this chapter, we will set that data to match the current state of our object. But for now, let’s create
the data and test how the Controller reacts to different values. In order to create conditions based on
properties, do the following:

1. Click on the Parameters tab in the top-left part of the Animator window. If you don’t see it,
click on the button that looks like an eye crossed by a line to display the tabs. The icon will
change to an uncrossed eye.

2. Click on the + button and select Float to create a number that will represent the velocity of our
character, naming it Velocity. If you missed the renaming part, just left-click on the variable
and rename it:

Figure 17.12: The Parameters tab with a float Velocity property

3. Click on the Idle to Run transition (the white line with an arrow in the middle) and look at the
Conditions property in the Inspector window.

4. Click on the + button at the bottom of the list, which will create a condition that will rule the
transition. The default setting will take the first parameter of our animator (in this case, it is
Velocity) and will set the default comparer, in this case, Greater, to a value of 0. This tells us
that the transition will execute from Idle to Run if Idle is the current animation and the velocity
of the Player is greater than 0. I recommend you set a slightly higher value, such as 0.01, to
prevent any float rounding errors (a common CPU issue). Also, remember that the actual value
of Velocity needs to be set manually via scripting, which we will do in this chapter’s Scripting
animations section:

Chapter 17 541

Figure 17.13: Condition to check whether the velocity is greater than 0.01

5. Do the same to the Run to Idle transition, but this time, change Greater to Less and again set
the value to 0.01:

Figure 17.14: Condition to check whether a value is less than 0.01

Applying the Controller to your character
Now that we have set up our first Animator Controller, it’s time to apply it to an object. In order to do
that, we will need a series of components. First, when we have an animated character, rather than
a regular Mesh Renderer, we use the Skinned Mesh Renderer. If you select your player or enemy
characters and view their children GameObjects, you will see the Skinned Mesh Renderer in one or
more of them:

Figure 17.15: A Skinned Mesh Renderer component

This component will be in charge of applying the bones’ movements to the mesh. If you search the
children of the model, you will find some bones; you can try rotating, moving, and scaling them to
see the effect, as shown in the following screenshot.

Animated Realities: Creating Animations with Animator, Cinemachine, and Timeline542

Bear in mind that your bone hierarchy might be different from mine if you downloaded another
package from the Asset Store:

Figure 17.16: Rotating the neckbone

The other component that we need is Animator, which is automatically added to the skinned meshes
at its root GameObject. This component will be in charge of applying the state machine that we cre-
ated in the Animator Controller if the animation FBX files are properly configured, as we mentioned
earlier. In order to apply the Animator Controller, do the following:

1. Select the player in the Hierarchy and locate the Animator component in the root GameObject.
2. Click on the circle to the right of the Controller property and select the Player controller we

created earlier. You can also just drag it from the Project window.
3. Make sure that the Avatar property is set to the avatar inside the FBX model of the character

(Polyart_Mesh being the FBX model in our example project); this will tell the animator that
we will use that skeleton. You can identify the avatar asset by its icon of a person, as shown in
the following screenshot. Usually, this property is correctly set automatically when you drag
the FBX model to the scene:

Figure 17.17: Animator using the Player controller and the robot avatar

4. Without stopping the game, open the Animator Controller asset again by double-clicking it
and selecting the character in the Hierarchy pane. By doing this, you should see the current
state of the animation being played by that character, using a bar to represent the current
part of the animation:

Chapter 17 543

Figure 17.18: The Animator Controller in Play mode while an object is selected, showing the
current animation and its progress

5. Using the Animator window, change the value of Velocity to 1.0 and see how the transition
will execute. Feel free to disable the WaveSpawners to test this, given they will probably kill
the player before we can safely do so:

Figure 17.19: Setting the velocity of the Controller to trigger a transition

6. Depending on how the Run animation was set, your character might start to move instead of
executing the animation in place. This is caused by root motion, a feature that will move the
character based on the animation movement. Sometimes, this is useful, but due to the fact
that we will fully move our character using scripting, we want that feature to be turned off.
You can do that by unchecking the Apply Root Motion checkbox in the Animator component
of the Character object, as seen in Figure 17.17.

Animated Realities: Creating Animations with Animator, Cinemachine, and Timeline544

7. You will also notice a delay between changing the Velocity value and the start of the animation
transition. That’s because, by default, Unity will wait for the original animation to end before
executing a transition, but in this scenario, we don’t want that. We need the transition to start
immediately. In order to do this, select each transition of the Controller, and in the Inspector
window, uncheck the Has Exit Time checkbox. When this property is checked, a hidden con-
dition for the transition to execute is waiting for the animation to end. But with this unchecked,
the transition can execute at any moment during the animation, which we want, given that we
don’t want any delay between the player being idle and running:

Figure 17.20: Disabling the Has Exit Time checkbox to execute the transition immediately

You can start dragging other animations into the Controller and create complex animation logic, such
as adding jump, fall, or crouched animations. I invite you to try other parameter types, such as a Bool-
ean, that use checkboxes instead of numbers. Also, as you develop your game further, your Controller
will grow in the number of animations it can handle. To manage that, there are other features worth
researching, such as Blend Trees and sub-state machines, but that’s beyond the scope of this book.

In this section, we learned how to integrate animation clips into our characters through Animator
Controllers. We added all the required animations and created the necessary transitions between
them to react to the game circumstances, like the character velocity changes.

Now that we have integrated the idle and run animations, let’s integrate the shoot animation, which
requires us to use Avatar Masks.

Using Avatar Masks
Unity offers a powerful feature known as Avatar Masks, which allows for selective animation of char-
acter parts. This feature is particularly useful in complex scenarios like the one we’re about to explore.

Chapter 17 545

At first, this case seems as simple as dragging a shoot animation and making transitions that use the
Shooting Boolean parameter as a condition. Consider, however, that we can shoot while walking and
while running, so that leads to two shooting animations: Walking Shooting and Idle Shooting. If you
follow this logic, you can think of shooting while falling, jumping, etc., which leads to a greater num-
ber of animation combinations. Imagine having different shooting animations for different weapons!
Luckily, we have a better solution: a way to combine several animations using Avatar Masks. Avatar
Masks in Unity are tools that allow selective animation of specific parts of a character’s body, enabling
precise control over complex animations within the Animator Controller.

The animation state machine we created in the Animator Controller is what is called a layer, and an
Animator Controller can have several layers. This means that we can have more than one state machine
in an Animator Controller. There are several reasons to use this, but the common one is to combine
layers with Avatar Masks, an asset that allows us to make a specific Animator Controller layer or state
machine to affect certain bones, so we can set different state machines for different parts of the body.

We can use this to solve the shooting scenario we discussed previously, splitting our player animation
logic into two parts: the upper part of the body and the lower part. The idea is that the lower part will
switch between idle and running animations, while the upper part can switch between idle, running,
and shooting. This allows us to have scenarios where the lower part is running while the upper part
is shooting or the lower part is idle and the upper part is as well, or any combination we can imagine.

Let’s start by creating the second layer by doing the following:

1. Download a shooting animation from the internet or the Asset Store if you don’t have one
already. In our case, we already have several shooting animations, and we are going to pick
the one called Idle_Shoot_ar.

2. In the Animator Controller, do a single click in Base Layer and rename it LowerBody for or-
ganization purposes. If you don’t see the layers list, click the Layers button at the top-left part
of the Animator window:

Figure 17.21: Renaming the base layer

3. Add a second layer to the Controller using the + button and rename it UpperBody. This one will
handle the upper body animations.

Animated Realities: Creating Animations with Animator, Cinemachine, and Timeline546

4. Select the layer and add the Idle, Run, and Shoot animations to it, connecting the states with
transitions. Remember to uncheck Has Exit Time in each transition. With this, the upper body
has the same animations as the lower one, but also the shooting one.

Figure 17.22: UpperBody state machine

5. Add the same transition logic between Idle and Run used before, using Velocity as the param-
eter for the conditions, as before.

6. For the shooting transitions, create a Boolean parameter called Shooting:

Figure 17.23: Shooting Boolean

7. Make both transitions to shooting (Idle to Shoot and Run to Shoot) execute when the Shooting
Boolean is true.

8. Make the return transition from Shoot to Idle when the Shooting Boolean is false, and Velocity
is less than 0.01, and the return from Shoot to Run when Shooting is true, and Velocity is
greater than 0.01:

Chapter 17 547

Figure 17.24: The Shoot to Idle transition at the top, the Shoot to Run transition in the middle,
and both the Idle to Shoot and Run to Shoot transitions at the bottom

Now that we have the layers created, let’s apply the Avatar Masks to them:

1. Create an Avatar Mask using the + button in the Project View, and name the first one
UpperBodyMask.

2. Select the UpperBodyMask asset in the Inspector and click the arrow on the left where it says
Humanoid to expand this section.

Animated Realities: Creating Animations with Animator, Cinemachine, and Timeline548

3. Click the lower parts of the body displayed in the Inspector until they become red:

Figure 17.25: UpperBodyMask asset configs

4. In the Animator Controller, select the UpperBody layer and click on the gear icon to its right
to display some options.

5. Click on the circle at the right of the Mask property and select the UpperBodyMask asset in
the window that appears.

6. Click again at the wheel of the UpperBody layer and set its Weight to 1. Since the two layers
affect different parts of the body, both of them have the same priority. In scenarios where two
layers affect the same bones, the weight is used to calculate which one has more influence:

Chapter 17 549

Figure 17.26: Setting the Weight and the Mask of a layer

7. Click again on the wheel and observe how the Blending parameter is set to Override, mean-
ing that the bones that this layer affects (driven by the Avatar Mask) will override whatever
animation the base layer has—the base layer, in this case, being LowerBody. That’s how this
layer takes ownership of the upper part of the body.

8. Test this again, changing the values of the parameters while in Play mode. For example, try
checking Shooting and then setting Velocity to 1 and then to 0 to finally uncheck Shooting
and see how the transitions execute.

9. You might notice that our character might not be pointing in the right direction when shooting.
This is because the orientation of the character is modified for this Shoot animation compared
to Idle and Run, but the Base Layer still has ownership of that. We can make the UpperBody-
Mask control the orientation by clicking the circle at the bottom of the human figure in the
Humanoid section of the Avatar Mask until it becomes green:

Figure 17.27: Giving the mask authority over the player orientation

The issue here is that you will now see the character moving the feet sideways when running and
shooting. There’s no easy solution here other than to modify the original animations. In this case, this
character has Idle, Idle Shooting, Run, and Run Shooting animations, so it clearly has been created
without having Avatar Masks in mind instead of just having all possible animation combinations. An
alternative is to find another package that works better with Avatar Masks. For learning purposes, we
will stick with this, but note that Avatar Masks are not a must; you might be good to go just using all
possible animation permutations in a single Animator Controller state machine with all the needed
transitions.

Animated Realities: Creating Animations with Animator, Cinemachine, and Timeline550

Another issue you might notice when firing when the Shoot animation is playing is that the muzzle
effect will stay in the original position of the weapon. Since the weapon mesh is affected by the skinning
animation but not its Transform position, the muzzle cannot follow it. In order to solve this, you can
reparent the Muzzle Effect to one of the bones of the weapons—in this case, the GameObject called
Trigger_Right, one of the children of the Hips GameObject. Not all animations will have bones for
the weapons, so this is one of the possible scenarios you could face:

Figure 17.28: Reparenting the Muzzle Effect to one of the weapon’s bones

Remember to apply the same changes we made to our player to the enemy, which means adding and
setting the Player Animator Controller to its Animator component and changing the Muzzle effect
parent.

With our Animator Controller now set up with Avatar Masks, the next step is to bring these animations
to life in our game environment through scripting.

Scripting animations
Scripting is crucial in bringing our animations in sync with gameplay. Here, we’ll script our animations
to respond dynamically to player actions, making our game more immersive and responsive.

Chapter 17 551

With our player’s Animator Controller ready, it is time to do some scripting to make these parameters
be affected by the actual behavior of the player and match the player’s. In this section, we will do the
following to achieve this:

• Script shooting animations
• Script movement animations

Let’s start making our characters execute the Shoot animation when necessary.

Scripting player shooting animations
So far, we have created a behavior to shoot each time we press a key, but the animation is prepared
for sustained fire. We can make our PlayerShooting script shoot a bullet every X number of seconds
while we keep the Fire key pressed to match the animation instead of having to press the key repeatedly.

By adding a fireRate variable, we control the shooting speed, ensuring it aligns with our animation
timing. Let’s see how to do this:

1. In the PlayerShooting script, add a public float field called fireRate, which will measure the
seconds between bullet spawns. Remember to set this value in the Inspector of the player.

2. Change the OnFire method to the code seen in Figure 17.29. The idea is to start a repeating ac-
tion when we press the key and stop it when we release the key. We are using InvokeRepeating
to repeatedly execute a function called Shoot, which we will be creating in the next step. The
rate of execution will be controlled by the fireRate field we created in step 1:

Figure 17.29: OnFire changes needed for sustained fire

Animated Realities: Creating Animations with Animator, Cinemachine, and Timeline552

3. Add the Shoot method, as seen in Figure 17.30 , to our PlayerShooting script. This is essentially
the same code we had before in the OnFire method but separated into a function, so we can
execute it several times with the InvokeRepeating function:

Figure 17.30: OnFire changes needed for sustained fire

If you try these changes now, you will notice the bullets will never stop shooting once we click the Fire
button. Even worse, as we press repeatedly, more and more bullets will be shot. With some debugging
or educated guessing, you might figure out that the CancelInvoke method is not being executed. The
reason behind this is that the Fire input mapping is not configured by default to inform us about the
release of keys, just when they were pressed. Luckily, the solution is pretty simple:

1. Double-click the SuperShooter inputs asset, the one we created in Chapter 6, Dynamic Motion:
Implementing Movement and Spawning, that contains all the inputs our game supports.

2. Select the Fire action in the Actions list (the middle column).
3. Click the + button at the right of the Interactions section and click Press.
4. Set the Trigger Behavior of the Press section to Press And Release:

Chapter 17 553

Figure 17.31: OnFire changes needed for sustained fire

5. With this, we have configured the input to tell us not only when the key was pressed but also
when it was released, making our CancelInvoke method execute now.

Now that we have our constant fire behavior, we can do the following to make the animation reflect this:

1. Add a reference to Animator using GetComponent in Awake and cache it in a field, as seen in
Figure 17.32:

Figure 17.32: Caching the Animator reference

2. Add the line animator.SetBool(“Shooting”, value.isPressed); at the beginning of the
OnFire method:

Figure 17.33: Setting the Shooting animation parameter to reflect input

3. The idea behind this change is to make sure the Shooting animation parameter reflects the
state of the fire key, meaning that the Shoot animation will play as long as the Fire button is
pressed and will stop when we release it.

Animated Realities: Creating Animations with Animator, Cinemachine, and Timeline554

One thing you will notice is that the bullets are still being shot from the player’s chest because our
ShootPoint GameObject, the one that defines the shooting position, is not positioned in front of the
weapon. Just re-parent the ShootPoint to the weapon bone (Trigger_Right in our case) and position
it to be in front of the weapon. Remember to make the forward vector (the blue arrow in the Scene
view) point along the weapon:

Figure 17.34: Adapting the ShootPoint to follow the animation

For the Visual Scripting version, in order to get the bullet to be shot constantly, you should change the
Input nodes of PlayerShooting like in Figure 17.35:

Figure 17.35: Creating a shoot loop

Chapter 17 555

As you can see, we used a new node called Timer. The idea of a Timer is similar to the Wait For Sec-
onds node we used before because it allows us to delay the execution of one action. One of the main
differences is that it allows us to cancel the timer before it executes again, meaning we can start the
timer when we press the Fire key and stop it when we release it. We did that by connecting the In-
putSystemEventButton node that has the OnPressed mode to the Start pin of the Timer and the one
with the OnReleased mode to the Pause pin. Also, we created a new variable called fireRate and con-
nected it to the Duration pin of the Timer, so we need to specify how much time the Timer will wait
before instantiating our bullets. See how we connected the Completed pin of the Timer to the If node
that checks if we have enough bullets to instantiate; we used to connect to the input node here before.

One little missing detail here is that when we press a key, time will pass (fireRate), and then a bullet
will be instantiated, but then nothing else. We need to connect the end of the Bullet shoot sequence
(the AudioSource: Play node in this case) of nodes again to the Start pin of the Timer to create a spawn
loop. That loop will be interrupted when we release the key to prevent it from being executed forever:

Figure 17.36: Completing the shoot loop

Animated Realities: Creating Animations with Animator, Cinemachine, and Timeline556

Finally, we need to add the proper Animator: SetBool(Name, Value) node to the Input nodes to turn
on and off the Boolean and trigger the animation:

Figure 17.37: Executing the Shoot animation

Now that we have configured the player’s shooting animations, let’s apply similar principles to script
the enemy’s animations for consistency in gameplay mechanics:

1. Cache a reference to the parent animator in the EnemyFSM script using GetComponentIn-
Parent as we did with the NavMeshAgent:

Figure 17.38: Accessing the parent’s Animator reference

Chapter 17 557

2. Turn on the Shooting animator parameter inside the Shoot function to make sure that every
time we shoot, that parameter is set to true (checked):

Figure 17.39: Turning on the shooting animation

3. Turn off the Shooting parameter in all non-shooting states, such as GoToBase and ChasePlayer:

Figure 17.40: Turning off the shooting animation

Animated Realities: Creating Animations with Animator, Cinemachine, and Timeline558

4. Regarding the Visual Scripting version, the GoToBase state in the EnemyFSM will look like this:

Figure 17.41: GoToBase state

5. Note that we needed the GetParent node again to access the enemy’s parent Transform (the
root), which we connected to the Animator: SetBool node in order to access the Animator in
the enemy’s root. Then, the ChasePlayer state actions will look like this:

Figure 17.42: ChasePlayer state

Chapter 17 559

6. Then, both the AttackBase and AttackPlayer initial actions will look like this:

Figure 17.43: AttackBase state

With this, both our player and enemies have a constant shooting behavior and a Shoot animation to
reflect this. Now, let’s handle the movement animations for both.

Scripting movement animations
Scripting movement animations is essential to translating the physical movement of game characters
into visual animations. Let’s see how we can dynamically adjust our character’s velocity in the game.

For the Animator Controller’s Velocity parameter, we can detect the magnitude of the velocity vector
of the Rigidbody, the velocity in meters per second, and set that as the current value. Separating this
script enhances modularity and allows for easier reuse in different game scenarios.

Animated Realities: Creating Animations with Animator, Cinemachine, and Timeline560

So, we need to create a script such as the one in the following image, which just connects the Rigidbody
component’s velocity with the animator’s Velocity parameter and adds it to the Player GameObject:

Figure 17.44: Setting VelocityAnimator variables

And regarding the Visual Scripting version, this is what it would look like:

Figure 17.45: Setting Velocity Animator variables in Visual Scripting

Chapter 17 561

You may need to increase the 0.01 transitions threshold used so far in the conditions of the transitions
of the Animator Controller because Rigidbody keeps moving after releasing the keys. Using 1 worked
perfectly for me. Another option would be to increase the drag and the velocity of the player to make
the character stop faster. Pick whatever method works best for you. Remember the transitions of both
layers (UpperBody and LowerBody).

Now, we can add the movement animations to the enemy. Create and add a script to the enemy prefab
called NavMeshAnimator, which will take the current velocity of its NavMeshAgent and set it to the
Animator Controller. This will work similarly to the VelocityAnimator script, but this time, checking
the velocity of the NavMeshAgent. We didn’t use VelocityAnimator here because our AI doesn’t use
Rigidbody to move, so it won’t work:

Figure 17.46: Connecting the NavMeshAgent to our Animator Controller

Animated Realities: Creating Animations with Animator, Cinemachine, and Timeline562

The Visual Scripting version will look like this:

Figure 17.47: Setting the animator’s velocity parameter the same as our NavMeshAgent

Notice that we don’t need the GetParent node here, given that this graph is located at the enemy’s
root object alongside the Animator and the NavMeshAgent. With that, we have scripted our Player
and enemy animations.

Now, we are ready to keep learning about animations using Cinemachine to create cutscene cameras
and much more.

Creating dynamic cameras with Cinemachine
Cameras are a very important subject in video games. They allow the player to see their surroundings
and make decisions based on what they see. The game designer usually defines how they behave to get
the exact gameplay experience they want, and that’s no easy task. A lot of behaviors must be layered
to get the exact feeling. Also, for cutscenes, it is important to control the path that the camera will be
traversing and where the camera is looking to focus the action during those constantly moving scenes.

Cinemachine is Unity’s advanced suite for camera control, enabling developers to craft dynamic and
responsive camera behaviors that enhance the gaming experience. In this chapter, we will use the
Cinemachine package to create both the dynamic cameras that will follow the player’s movements,
which we will code in Section 3, Elevating Visuals, Effects, and Audio and also the cameras to be used
during cutscenes.

Sometimes, animation clips are not enough to create a believable animation, given they
are pre-defined and they don’t adapt to the player’s surroundings. One example is the case
of a player standing on a staircase, where the player’s feet should be placed at different
heights, but the idle animation was probably designed for standing on flat ground. While
you could play around blending animations with feet at different heights, that would be
difficult to manage. Instead, you can mix static animations (the regular Animation pack-
age) with procedural animations, animations that modify the character rig via scripting.
You can achieve this using the following Unity package: https://docs.unity3d.com/
Packages/com.unity.animation.rigging@1.0/manual/index.html.

mailto:https://docs.unity3d.com/Packages/com.unity.animation.rigging@1.0/manual/index.html
mailto:https://docs.unity3d.com/Packages/com.unity.animation.rigging@1.0/manual/index.html

Chapter 17 563

In this section, we will examine the following Cinemachine concepts:

• Creating camera behaviors
• Creating dolly tracks

Let’s start by discussing how to create a Cinemachine-controlled camera and configure behaviors in it.

Creating camera behaviors
Cinemachine revolutionizes camera control by offering a suite of flexible and intuitive behaviors,
significantly simplifying the complex camera setups commonly seen in video games.

Cinemachine is a Unity package containing a collection of different behaviors that can be used in a
camera, which, when properly combined, can generate all kinds of common camera types in video
games, including following the player from behind, first-person cameras, top-down cameras, and so
on. In order to use these behaviors, we need to understand the concept of brains and virtual cameras.

In Cinemachine, we will only keep one main camera, as we have done so far, and that camera will be
controlled by virtual cameras, separated by GameObjects that have the aforementioned behaviors. We
can have several virtual cameras and swap between them at will, but the active virtual camera will be
the only one that will control our main camera. This is useful for switching cameras at different points
of the game, such as switching between our player’s third-person camera and a cutscene camera. In
order to control the main camera with the virtual cameras, it must have a Brain component, which
will monitor all active virtual cameras and pick the proper position to use them.

To start using Cinemachine, first, we need to check if it is installed in the Package Manager, as we did
previously with other packages. If you don’t remember how to do this, just do the following:

1. Go to Window | Package Manager.
2. Ensure that the Packages option in the top-left part of the window is set to Unity Registry:

Figure 17.48: The Packages filter mode

3. Wait a moment for the left panel to populate all packages from the servers (an internet con-
nection is required).

4. Look for the Cinemachine package from the list and select it. At the moment of writing this
book, the latest available version is 2.9.7, but you can use newer versions if you prefer, always
ensuring that the following steps work as expected; if not, you can always install the closest
version to ours.

Animated Realities: Creating Animations with Animator, Cinemachine, and Timeline564

5. If you see the Install button in the bottom-right corner of the screen, it means it is not installed.
Just click that button.

Now that we have it installed, we can start creating a virtual camera to follow the player. So far, we just
simply parented the camera to the player for it to follow them, but now we will unparent the camera
and let Cinemachine handle it to learn how to use this tool:

1. Select the MainCamera inside the player and unparent it (drag it outside the player) in such a
way that it becomes a root object of our scene, having no parent at all.

2. Click GameObject | Cinemachine | Virtual Camera. This will create a new object called CM vcam1:

Figure 17.49: Virtual camera creation

Chapter 17 565

3. If you select the MainCamera from the Hierarchy pane, you will also notice that a
CinemachineBrain component has been automatically added to it, making our main camera
follow the virtual camera. Try to move the created virtual camera, and you will see how the
main camera follows it:

Figure 17.50: The CinemachineBrain component

4. Select the virtual camera (CM vcam1) and drag the character to the Follow and Look At proper-
ties of the CinemachineVirtualCamera component. This will make the movement and looking
behaviors use that object to do their jobs:

Figure 17.51: Setting the target of our camera

Animated Realities: Creating Animations with Animator, Cinemachine, and Timeline566

5. You can see how the Body property of the virtual camera is set to Transposer, which will move
the camera relative to the target set at the Follow property—in our case, the character. You
can open the Body options (the arrow to its left), change the Follow Offset property, and set
it to the desired distance you want the camera to have from the target. In my case, I used the
0, 3, and -3 values:

Figure 17.52: The camera following the character from behind

6. Figure 17.52 shows the Game view; you can see a small, yellow rectangle indicating the target
position to look at the character, and it’s currently pointing at the pivot of the character—its
feet. If you don’t see it, open the Aim section of the virtual camera in the Inspector by clicking
the arrow to its left.

7. We can apply an offset in the Tracked Object Offset property of the Aim section of the virtual
camera. In my case, values of 0, 1.8, and 0 worked well to make the camera look at the head
instead:

Figure 17.53: Changing the Aim offset

As you can see, using Cinemachine is pretty simple, and, in our case, the default settings were mostly
enough for the kind of behavior we needed. However, if you explore the other Body and Aim modes,
you will find that you can create any type of camera for any type of game.

Chapter 17 567

We won’t cover the other modes in this book, but I strongly recommend you look at the documentation
for Cinemachine to check what the other modes do. To open the documentation, follow these steps:

1. Open the Package Manager by going to Window | Package Manager.
2. Find Cinemachine in the left-hand side list. Wait a moment if it doesn’t show up. Remember

that you need an internet connection for it to work.
3. Once Cinemachine is selected, scroll down in the right panel until you see the Documentation

link in blue. Click on it:

Figure 17.54: The Cinemachine documentation link

4. You can explore the documentation using the navigation menu on the left:

Figure 17.55: The Cinemachine documentation

As you did with Cinemachine, you can find other packages’ documentation in the same way. Now that
we have achieved the basic camera behavior that we need, let’s explore how we can use Cinemachine
to create a camera for our intro cutscene.

Creating dolly tracks
When the player starts the level, we want a little cutscene with a pan over our scene and the base
before entering the battle. This will require the camera to follow a fixed path, and that’s exactly what
Cinemachine’s dolly camera does. It creates a path where we can attach a virtual camera so that it
will follow it. We can set Cinemachine to move automatically through the track or follow a target to
the closest point to the track; in our case, we will use the first option.

Animated Realities: Creating Animations with Animator, Cinemachine, and Timeline568

In order to create a dolly camera, follow these steps:

1. Let’s start creating the track with a cart, which is a little object that will move along the track,
which will be the target to follow the camera. To do this, click on GameObject | Cinemachine
| Dolly Track with Cart:

Figure 17.56: A dolly camera with a default straight path

2. If you select the DollyTrack1 object, you can see two circles with the numbers 0 and 1 in the
Scene view. These are the control points of the track. Select one of them and move it as you
move other objects, using the arrows of the translation gizmo. If you don’t see them, press the
W key to enable the Translation gizmo.

3. You can create more control points by clicking the + button at the bottom of the Waypoints list
of the CinemachineSmoothPath component of the DollyTrack1 object:

Figure 17.57: Adding a path control point

Chapter 17 569

4. Create as many waypoints as you need to create a path that will traverse the areas you want the
camera to oversee in the intro cutscene. Remember, you can move the waypoints by clicking
on them and using the translation gizmo:

Figure 17.58: A dolly track for our scene. It ends right behind the character

5. Create a new virtual camera. If you go to the Game view after creating it, you will notice that
the character camera will be active. In order to test how the new camera looks, select the
previous one (CM vcam1) and temporarily disable it by clicking the checkbox to the left of the
GameObject’s name in the Inspector.

6. Set the Follow target this time to the DollyCart1 object that we previously created with the track.
7. Set the Follow Offset of the Body section to 0, 0, and 0 to keep the camera in the same position

as the cart.

Animated Realities: Creating Animations with Animator, Cinemachine, and Timeline570

8. Set Aim to Same As Follow Target to make the camera look in the same direction as the cart,
which will follow the track’s curves:

Figure 17.59: Configuration to make the virtual camera follow the dolly track

9. Select the DollyCart1 object and change the Position value to see how the cart moves along
the track. Do this while the game window is focused and CM vcam2 is in solo mode to see how
the camera will look:

Figure 17.60: The dolly cart component

10. Re-enable CM vcam1.

With the dolly track properly set, we can create our cutscene using Timeline to sequence it.

Chapter 17 571

Creating cutscenes with Timeline
We have our intro camera, but that’s not enough to create a cutscene. A proper cutscene is a sequence
of actions happening at the exact moment that they should happen, coordinating several objects to act
as intended. We can have actions such as enabling and disabling objects, switching cameras, playing
sounds, moving objects, and so on. To do this, Unity offers Timeline, which is a sequencer of actions
to coordinate those kinds of cutscenes. We will use Timeline to create an intro cutscene for our scene,
showing the level before starting the game.

In this section, we will examine the following Timeline concepts:

• Creating animation clips
• Sequencing our intro cutscene

We are going to see how to create our own animation clips in Unity to animate our GameObjects and
then place them inside a cutscene to coordinate their activation using the Timeline sequencer tool.
Let’s start by creating a camera animation to use later in Timeline.

Creating animation clips
This is actually not a Timeline-specific feature but rather a Unity feature that works great with Timeline.
When we downloaded the character, it came with animation clips that were created using external
software, but you can create custom animation clips using Unity’s Animation window. Don’t confuse
it with the Animator window, which allows us to create animation transitions that react to the game
situation. This is useful to create small object-specific animations that you will coordinate later in
Timeline with other objects’ animations.

These animations can control any value of an object’s component properties, such as the positions,
colors, and so on. In our case, we want to animate the dolly track’s Position property to make it go
from start to finish in a given time. In order to do this, do the following:

1. Select the DollyCart1 object.
2. Open the Animation (not Animator) window by going to Window | Animation | Animation.
3. Click on the Create button at the center of the Animation window. Remember to do this while

the dolly cart (not track) is selected:

Figure 17.61: Creating a custom animation clip

4. After doing this, you will be prompted to save the animation clip somewhere. I recommend you
create an Animations folder in the project (inside the Assets folder) and call it IntroDollyTrack.

Animated Realities: Creating Animations with Animator, Cinemachine, and Timeline572

If you pay attention, the dolly cart now has an Animator component with an Animator Controller
created, which contains the animation we just created. As with any animation clip, you need to apply
it to your object with an Animator Controller; custom animations are no exception. So, the Animation
window created them for you.

Animating in this window consists of specifying the value of its properties at given moments. In our
case, we want Position to have a value of 0 at the beginning of the animation, at 0 seconds on the
timeline, and have a value of 254 at the end of the animation, at 5 seconds. I chose 254 because that’s
the last possible position in my cart, but that depends on the length of your dolly track. Just test which
is the last possible position in yours. Also, I chose 5 seconds because that’s what I feel is the correct
length for the animation, but feel free to change it as you wish. Now, whatever happens between the
animation’s 0 and 5 seconds is an interpolation of the 0 and 254 values, meaning that in 2.5 seconds,
the value of Position will be 127. Animating always consists of interpolating different states of our
object at different moments.

In order to do this, follow these steps:

1. In the Animation window, click on the record button (the red circle in the top-left section). This
will make Unity detect any changes in our object and save them to the animation. Remember
to do this while you have selected the dolly cart.

2. Set the Position setting of the dolly cart to 1 and then 0. Changing this to any value and then to
0 again will create a keyframe, which is a point in the animation that says that at 0 seconds, we
want the Position value to be 0. We need to set it first to any other value if the value is already at 0.

You will notice that the Position property has been added to the animation:

Figure 17.62: The animation in Record mode after changing the Position value to 0

3. Using the mouse scroll wheel, zoom out the timeline to the right of the Animation window
until you see 5:00 seconds in the top bar:

Figure 17.63: The timeline of the Animation window seeing 5 seconds

4. Click on the 5:00-second label in the top bar of the timeline to position the playback header at
that moment. This will locate the next change we make at that moment.

Chapter 17 573

5. Set the Position value of the dolly track to the highest value you can get; in my case, this is 240.
Remember to have the Animation window in Record mode:

Figure 17.64: Creating a keyframe with the 240 value 5 seconds into the animation

6. Hit the play button in the top-left section of the Animation window to see the animation playing.
Remember to view it in the Game view while CM vcam1 is disabled.

Now, if we hit Play, the animation will start playing, but that’s something we don’t want. In this scenario,
the idea is to give control of the cutscene to the cutscene system, Timeline, because this animation
won’t be the only thing that needs to be sequenced in our cutscene. One way to prevent the Animator
component from automatically playing the animation we created is to create an empty animation
state in the Controller and set it as the default state by following these steps:

1. Search the Animator Controller that we created at the same time as the animation and open
it. If you can’t find it, just select the dolly cart and double-click on the Controller property of
the Animator component on our GameObject to open the asset.

2. Right-click on an empty state in the Controller and select Create State | Empty. This will create
a new state in the state machine as if we created a new animation, but it is empty this time:

Figure 17.65: Creating an empty state in the Animator Controller

Sometimes, you will need to synchronize gameplay code with animations. One classic
example is an attack animation, where you want the player to damage the attacked ob-
ject when the sword hits the ground instead of as soon as the animation starts. To do
this, you can use animation events: https://docs.unity3d.com/Manual/script-
AnimationWindowEvent.html. You can also add animation events to imported animations:
https://docs.unity3d.com/Manual/class-AnimationClip.html.

https://docs.unity3d.com/Manual/script-AnimationWindowEvent.html
https://docs.unity3d.com/Manual/script-AnimationWindowEvent.html
https://docs.unity3d.com/Manual/class-AnimationClip.html

Animated Realities: Creating Animations with Animator, Cinemachine, and Timeline574

3. Right-click on New State and click on Set as Layer Default State. The state should become
orange:

Figure 17.66: Changing the default animation of the Controller to an empty state

4. Now, if you hit Play, no animation will play as the default state of our dolly cart is empty. No
transition will be required in this case.

Now that we have created our camera animation, let’s start creating a cutscene that switches from the
intro cutscene camera to the player camera by using Timeline.

Sequencing our intro cutscene
Timeline is already installed in your project, but if you go to the Package Manager of Timeline, you
may see an Update button to get the latest version if you need some of the new features. In our case,
we will keep the default version included in our project (1.5.2, at the time of writing this book).

The first thing we will do is create a cutscene asset and an object in the scene responsible for playing
it. To do this, follow these steps:

1. Create an empty GameObject using the GameObject | Create Empty option.
2. Select the empty object and call it Director.
3. Go to Window | Sequencing | Timeline to open the Timeline editor.
4. Click the Create button in the middle of the Timeline window while the Director object is

selected to convert that object into the cutscene player (or director).
5. After doing this, a window will pop up asking you to save a file. This file will be the cutscene

or timeline; each cutscene will be saved in its own file. Save it in a Cutscenes folder in your
project (the Assets folder).

6. Now, you can see that the Director object has a Playable Director component with the Intro
cutscene asset saved in the previous step set for the Playable property, meaning this cutscene
will be played by the Director:

Figure 17.67: Playable Director prepared to play the Intro Timeline asset

Chapter 17 575

Now that we have the Timeline asset ready to work with, let’s make it sequence actions. To start, we
need to sequence two things—first, the cart position animation we did in the last step and then the
camera swap between the dolly track camera (CM vcam2) and the player cameras (CM vcam1). As we
said before, a cutscene is a sequence of actions executing at given moments, and in order to schedule
actions, you will need tracks. In Timeline, we have different kinds of tracks, each one allowing you to
execute certain actions on certain objects. We will start with the animation track.

The animation track will control which animation a specific object will play; we need one track per
object to animate. In our case, we want the dolly track to play the Intro animation that we created, so
let’s do that by following these steps:

1. Add an Animation track by clicking the plus button (+) and then Animation Track:

Figure 17.68: Creating an animation track

2. Select the Director object and check the Bindings list of the Playable Director component in
the Inspector window.

3. Drag the Cart object to specify that we want the animation track to control its animation:

Figure 17.69: Making the animation track control the dolly cart animation in this Director

Timeline is a generic asset that can be applied to any scene, but as the tracks control specific
objects, you need to manually bind them in every scene. In our case, we have an animation track
that expects to control a single animator, so in every scene, if we want to apply this cutscene,
we need to drag the specific animator to control it in the Bindings list.

4. Drag the Intro animation asset that we created to the animation track in the Timeline window.
This will create a clip in the track showing when and for how long the animation will play.
You can drag as many animations as possible that the cart can play into the track to sequence
different animations at different moments, but right now, we want just that one:

Figure 17.70: Making the animator track play the intro clip

Animated Realities: Creating Animations with Animator, Cinemachine, and Timeline576

5. You can drag the animation to change the exact moment you want it to play. Drag it to the
beginning of the track.

6. Hit the Play button in the top-left part of the Timeline window to see it in action. You can
also manually drag the white arrow in the Timeline window to view the cutscene at different
moments. If that doesn’t work, try playing the game and then stopping:

Figure 17.71: Playing a timeline and dragging the playback header

Now, we will make our Intro timeline asset tell the CinemachineBrain component (the main camera)
which camera will be active during each part of the cutscene, switching to the player camera once
the camera animation is over. We will create a second track—a Cinemachine track—which specializes
in making a specific CinemachineBrain component to switch between different virtual cameras. To
do this, follow these steps:

1. Click the + button again and click on Cinemachine Track. Note that you can install Timeline
without Cinemachine, but this kind of track won’t appear in that case:

Figure 17.72: Creating a new Cinemachine track

Chapter 17 577

2. In the Playable Director component’s Bindings list, drag the main camera to Cinemachine
Track to make it track control which virtual camera will control the main camera at different
moments of the cutscene:

Figure 17.73: Binding the main camera to the Cinemachine track

3. The next step indicates which virtual camera will be active during specific moments of the
timeline. To do so, our Cinemachine track allows us to drag virtual cameras to it, which will
create virtual camera clips. Drag both CM vcam2 and CM vcam1, in that order, to the Cine-
machine track:

Figure 17.74: Dragging virtual cameras to the Cinemachine track

4. If you hit the Play button or just drag the Timeline Playback header, you can see how the
active virtual camera changes when the playback header reaches the second virtual camera
clip. Remember to view this in the Game view.

5. If you place the mouse near the ends of the clips, a resize cursor will appear. If you drag them,
you can resize the clips to specify their duration. In our case, we will need to match the length of
the CM vcam2 clip to the Cart animation clip and then put CM vcam1 at the end of it by dragging
it so that the camera will be active when the dolly cart animation ends. In my case, they were
already the same length, but just try to change it anyway to practice. Also, you can make the
CM vcam1 clip shorter; we just need to play it for a few moments to execute the camera swap.

Animated Realities: Creating Animations with Animator, Cinemachine, and Timeline578

6. You can also overlap the clips a little bit to make a smooth transition between the two cameras,
instead of a hard switch, which will look odd:

Figure 17.75: Resizing and overlapping clips to interpolate them

7. Increase the Start Time property of the WaveSpawners to prevent the enemies from being
spawned before the cutscene begins.

If you wait for the full cutscene to end, you will notice how, at the very end, CM vcam2 becomes active
again. You can configure how Timeline will deal with the end of the cutscene, as, by default, it does
nothing. This can cause different behavior according to the type of track—in our case, again giving
control to pick the virtual camera to the CinemachineBrain component, which will pick the virtual
camera with the highest Priority value. We can change the Priority property of the virtual cameras to
be sure that CM vcam1 (the player camera) is always the more important one or set the Wrap Mode of
the Playable Director component to Hold, which will keep everything as the last frame of the timeline
specifies. In our case, we will use the latter option to test the Timeline-specific features:

Figure 17.76: Wrap Mode set to Hold mode

Most of the different kinds of tracks work under the same logic; each one will control a specific aspect
of a specific object using clips that will execute during a set time. I encourage you to test different
tracks to see what they do, such as Activation, which enables and disables objects during the cutscene.
Remember, you can check out the documentation of the Timeline package in the Package Manager.

Chapter 17 579

Summary
In this chapter, we introduced the different animation systems that Unity provides for different re-
quirements. We discussed importing character animations and controlling them with Animation
Controllers. We also saw how to make cameras that can react to the game’s current situation, such
as the player’s position, or that can be used during cutscenes. Finally, we looked at Timeline and the
animation system to create an intro cutscene for our game. These tools are useful for making the ani-
mators in our team work directly in Unity without the hassle of integrating external assets (except for
character animations) and also preventing the programmer from creating repetitive scripts to create
animations, wasting time in the process.

Now, you are able to import and create animation clips in Unity, as well as apply them to GameObjects
to make them move according to the clips. Also, you can place them in the Timeline sequencer to
coordinate them and create cutscenes for your game. Finally, you can create dynamic cameras to use
in-game or in cutscenes.

With this, we end Section 2, Mastering Programming and Gameplay Mechanics where we learned about
different Unity systems to improve several artistic aspects of our game. In the next chapter, the first
chapter of Section 3, Elevating Visuals, Effects, and Audio we will wrap up the development of our game
and see how to build and optimize it, and we will also provide a quick intro to augmented reality
applications.

Learn more on Discord
Read this book alongside other users, Unity game development experts, and the author himself. Ask
questions, provide solutions to other readers, chat with the author via Ask Me Anything sessions, and
much more. Scan the QR code or visit the link to join the community:

https://packt.link/unitydev

https://packt.link/unitydev

18
Performance Wizardry:
Optimizing Your Game with
Profiler Tools

Welcome to the fourth part of this book—I am glad you have reached this part as it means that you
have almost completed a full game! So far, we have developed a game while focusing on implement-
ing different gameplay features and effects, but we didn’t consider how well they were performing in
terms of our game’s frames per second (FPS). In this chapter, we are going to discuss optimization
techniques to review your game’s performance and improve it, as having a good and constant frame
rate is vital to any game.

Performance is a broad topic that requires a deep understanding of several Unity systems and could
span several books. We are going to look at how to measure performance and explore the effects of
our changes to systems to learn how they work through testing.

In this chapter, we will examine the following performance concepts:

• Optimizing graphics
• Optimizing processing
• Optimizing memory

By the end of this chapter, you will be able to gather performance data on the three main pieces of
hardware that run your game—the GPU, CPU, and RAM. You will be able to analyze that data to detect
possible performance issues and understand how to solve the most common ones.

We will start by learning how to optimize the graphics side of our game.

Optimizing graphics
The most common cause of performance issues is related to the misuse of assets, especially on the
graphics side, due to not having enough knowledge of how Unity’s graphics engines work. We are

Performance Wizardry: Optimizing Your Game with Profiling Tools582

In this section, we will examine the following graphics optimization concepts:

• Introduction to graphics engines
• Using Frame Debugger
• Using batching
• Other optimizations

We will start by looking at a high-level overview of how graphics are rendered to better understand
the performance data that we will gather later in Frame Debugger. Based on the debugger’s results,
we are going to identify the areas where we can apply batching (which is a technique to combine the
rendering process of several objects, reducing its cost), along with other common optimizations to
keep in mind.

Introduction to graphics engines
Nowadays, every gaming device, whether it is a computer, a mobile device, or a console, has a video
card—a set of hardware that specializes in graphics processing. It differs from a CPU in a subtle but
important way. Graphics processing involves the processing of thousands of mesh vertices and the
rendering of millions of pixels in a single frame. This is in charge of calculating the color and lighting
of your objects’ pixels and moving and animating your objects’ geometry. The GPU is designed to run
short programs a massive number of times, while the CPU can handle programs of any length but
with limited parallelization capabilities. The reason for having those processing units (CPU and GPU)
is so that our program can use each one when needed.

The problem here is that graphics don’t just rely on the GPU. The CPU is also involved in the process,
making calculations and issuing commands to the GPU, so they must work together. For that to happen,
both processing units need to communicate, and because they are (usually) physically separated, they
need another piece of hardware to allow this: a bus, with the most common type being the Peripheral
Component Interconnect Express (PCI Express) bus.

PCI Express is a type of connection that allows massive amounts of data to be moved between the GPU
and CPU, but the problem is that even if it’s very fast, the communication time can be noticeable if you
issue a lot of commands between both units. So, the key concept here is that graphics performance is
improved mainly by reducing the communications between the GPU and CPU:

Figure 18.1: CPU/GPU communication through a PCI Express bus

Chapter 18 583

Nowadays, new hardware architecture allows the CPU and GPU to coexist in the same chipset, reducing
communication time and even sharing memory. Sadly, that architecture doesn’t allow the processing
power needed for video games, as having those two pieces separated allows them to have enough
space for a large number of cores.

The basic responsibility of a graphics engine is to determine which objects are visible using culling
algorithms, sorting and grouping them according to their similarities, and then issuing drawing
commands to the GPU to render those groups of objects, sometimes more than once. The main form
of communication between the CPU and GPU is the drawing commands, usually called draw calls,
and our main task when optimizing graphics is to reduce them as much as we can. The problem is
that there are several sources of draw calls that need to be considered, such as the lighting or certain
special effects. Studying every single one of them will take a long time, and even so, new versions of
Unity can introduce new graphics features with their own draw calls. Instead, we will explore a way
to discover these draw calls using Frame Debugger.

Using Frame Debugger
Frame Debugger is a tool that allows us to see a list of all the draw calls that the Unity rendering engine
sends to the GPU. It not only lists them but also provides information about each draw call, including
the data needed to detect optimization opportunities. By using Frame Debugger, we can see how our
changes modify the number of draw calls, giving us immediate feedback on our efforts.

Note that reducing draw calls is sometimes not enough to improve performance, as each draw call
can have different processing times, but usually, that difference is not big enough to consider. Also, in
certain special rendering techniques, such as ray tracing or ray marching, a single draw call can drain
all of our GPU power. This won’t be the case in our game, so we won’t take that into account right now.

Let’s use Frame Debugger to analyze the rendering process of our game by doing the following:

1. Open Frame Debugger (Window | Analysis | Frame Debugger).
2. Play the game, and when you want to analyze the performance, click the Enable button in the

top-left corner of Frame Debugger (press Esc to regain control of the mouse while playing):

Figure 18.2: Enabling Frame Debugger

3. Click on the Game tab to open the Game view.

Performance Wizardry: Optimizing Your Game with Profiling Tools584

4. Drag the slider to the right of the Disable button slowly from left to right to see how the scene
is rendered. Each step is a draw call that is being executed in the CPU for that given game
frame. You can also observe how the list in the left part of the window highlights the name of
the executed draw call at that moment:

Figure 18.3: Analyzing our frame’s draw calls

5. If some of the draw calls in the list output a gray image in the Game panel, alongside a warning
in the console, a temporary fix for this is selecting your scene’s main camera and setting the
MSAA property in the Output section of its Camera component to Off. Remember to revert
this change afterward using Frame Debugger.

6. Click on any draw call from the list and observe the details in the right part of the window.

Most of them can be confusing to you if you are not used to coding engines or shaders, but
you can see that some of them have a human-readable part that says why this draw call can’t
be batched with the previous one, which tells you why two objects weren’t drawn together in
a single draw call. We will examine those reasons later:

Figure 18.4: The batching break reasons in Frame Debugger

7. With the window open in Play mode, disable the terrain and see how the amount of draw calls
changes immediately. Sometimes, just turning objects on and off can be enough to detect what
is causing performance issues. Also, try disabling post-processing and other graphics-related
objects, such as particles.

Chapter 18 585

Even if we are not fully aware of where each one of these draw calls came from, we can at least start
by modifying the settings throughout Unity to see the impact of those changes. There’s no better way
of discovering how something as massive as Unity works than going through every toggle and seeing
the impact of those changes through a measuring tool. Of course, sometimes we just need to pay the
price of certain draw calls to achieve certain effects, like in the case of the terrain, although you can
always wonder whether it’s worth it or not; that would require a case-by-case analysis.

Even if Frame Debugger gives us lots of info, sometimes you can take an extra step and use more
advanced tools, like RenderDoc or NVIDIA Nsight, some of which work similarly to Frame Debugger
in the sense that they show all the draw calls but also show info like the timings of each draw call,
meshes, shaders, textures being used by each one of them, and much more.

Now, let’s discuss the basic techniques for reducing draw calls and see their effects in Frame Debugger.

Using batching
We discussed several optimization techniques in previous chapters, with lighting being the most im-
portant one. If you measure the draw calls as you implement the techniques, you will notice the impact
of those actions on the draw call count. However, in this section, we will focus on another graphics
optimization technique known as batching. Batching is the process of grouping several objects to
draw them together in a single draw call.

You may be wondering why we can’t just draw everything in a single draw call, and while that is tech-
nically possible, there is a set of conditions that need to be met in order to combine two objects, with
the usual case being combining materials.

Remember that materials act as graphic presets, specifying a Material mode or shader and a set of
parameters to customize the aspect of our objects, like the object’s color and texture. If Unity has to
draw an object with a different material than the previous one, a SetPass call needs to be called be-
fore issuing its draw call, which is another form of CPU/GPU communication used to set the Material
properties in the GPU, such as its textures and colors. If two objects use the same materials, this step
can be skipped. The SetPass call from the first object is reused by the second, and that opens the
opportunity to batch the objects. If they share the same settings, Unity can combine the meshes into
a single one in the CPU, and then send the combined mesh in a single draw call to the GPU.

There are several ways to reduce the number of materials, such as removing duplicates, but the most
effective way is through a concept called texture atlasing. This means merging textures from different
objects into a single one. This way, several objects can use the same material due to the fact that the
texture used there can be applied to several objects and an object that has its own texture requires its
own material. Sadly, there’s no automatic system in Unity to combine the textures of three-dimensional
objects, such as the Texture Atlas object we used in 2D. There are probably some systems in the Asset
Store, but automatic systems can have several side effects.

Performance Wizardry: Optimizing Your Game with Profiling Tools586

This work is usually done by an artist, so just keep this technique in mind when working with a ded-
icated 3D artist (or if you are your own artist):

Figure 18.5: Pieces of different metallic objects

Let’s explore batching with Frame Debugger by doing the following:

1. Go to Edit | Preferences | Core Render Pipeline and set Visibility to All Visible. This will allow
us to see both basic and advanced graphics settings:

Figure 18.6: Enabling the display of all available graphics settings

2. Search for the Scriptable Render Pipeline Settings asset that we currently want to use (Edit |
Project Settings | Graphics | Scriptable Render Pipeline Settings):

Figure 18.7: Scriptable Render Pipeline Settings

Chapter 18 587

3. For now, uncheck SRP Batcher in the Rendering section and check Dynamic Batching. We will
re-enable this later in this chapter to better understand why we should always use SRP Batcher:

Figure 18.8: Disabling SRP Batcher

4. Create a new empty scene for testing (File | New Scene).
5. Create two materials of different colors.
6. Create two cubes and put one material into the first and the other into the second.
7. Open Frame Debugger and click Enable to see the call list for the draw calls of our cubes:

Figure 18.9: The draw calls for the cubes

8. Select the second Draw Mesh Cube call and look at the batch-breaking reason. It should say
that the objects have different materials.

9. Use one of the materials on both cubes and look at the list again. You will notice that now we
just have one Draw Mesh Cube call. You might need to disable and enable Frame Debugger
again for it to refresh properly if you are not playing the game.

Now, I challenge you to try the same steps but create spheres instead of cubes. While performing this
challenge, note your observations and hypotheses about why the results differ between cubes and
spheres. If you do that, you will probably notice that even with the same materials, the spheres are
not batched! Here is where we need to introduce the concept of dynamic batching.

Remember that GameObjects have a Static checkbox, which serves to notify several Unity systems
that the object won’t move so that they can apply several optimizations. Objects that don’t have this
checkbox checked are considered dynamic. So far, the cubes and spheres we used for our tests have
been dynamic, so Unity needed to combine them in every frame because they can move, and com-
bining is not “free.” Its cost is associated directly with the number of vertices in the model.

Performance Wizardry: Optimizing Your Game with Profiling Tools588

You can get the exact numbers and all the required considerations from the Unity manual, which will
appear if you search for Unity Batching on the internet, or they can be accessed with this link: https://
docs.unity3d.com/Manual/DrawCallBatching.html. However, it is enough to say that if the number
of vertices of an object is big enough, that object won’t be batched, and doing so would require more
than issuing two draw calls. That’s why our spheres weren’t batched; a sphere has too many vertices.

Now, things are different if we have static objects because they use a second batching system—the
static batcher. The concept of this is the same. Merge objects to render them in one draw call, and
again, these objects need to share the same material. The main difference is that this batcher will
batch more objects than the dynamic batcher because the merging is done once at the time that the
scene loads and is then saved in memory to use in the next frames, costing memory but saving lots
of processing time with each frame. You can use the same approach as we used to test the dynamic
batcher to test the static version just by checking the Static checkbox of the spheres this time and
seeing the result in Play mode; in Edition mode (when it is not playing), the static batcher won’t work:

Figure 18.10: A static sphere and its static batch

Before moving on, let’s discuss why we disabled SRP Batcher and how that changes what we just dis-
cussed. In its 2020 edition, Unity introduced the Universal Render Pipeline (URP), a new render pipeline.

Along with several improvements, one that is relevant right now is SRP Batcher, a new batcher that
works on dynamic objects with no vertex or material limits (but with other limits). Instead of relying on
sharing the same material with batch objects, SRP Batcher can have a batch of objects with materials
that use the same shader, meaning we can have, for example, 100 objects with 100 different materials
for each one, and they will be batched regardless of the number of vertices, as long as the material
uses the same shader and variant:

https://docs.unity3d.com/Manual/DrawCallBatching.html
https://docs.unity3d.com/Manual/DrawCallBatching.html

Chapter 18 589

Figure 18.11: GPU data persistence for materials, which allows SRP Batcher to exist

One shader can have several versions or variants, and the selected variant is chosen based on the
settings. We can have a shader that doesn’t use normal mapping and a variant that doesn’t calculate
normals will be used, so that can affect SRP Batcher. So, there’s basically no drawback to using SRP
Batcher, so go ahead and turn it on again. Try creating lots of spheres with as many materials as you
can and check the number of batches it will generate in Frame Debugger. Just consider that if you
need to work on a project done in a pre-URP era, this won’t be available, so you will need to know the
proper batching strategy to use.

Other optimizations
As mentioned before, there are lots of possible graphics optimizations, so let’s discuss briefly the
basic ones, starting with Level of Detail (LOD). LOD is the process of changing the mesh of an object
based on its distance to the camera. This can reduce draw calls if you replace, for example, a house
with several parts and pieces with a single combined mesh with reduced detail when the house is far
away. Another benefit of using LOD is that you reduce the cost of a draw call because of the reduction
in the vertex count.

To use this feature, do the following:

1. Create an empty object and parent the two versions of the model. You need to use models that
have several versions with different levels of detail, but for now, we are just going to test this
feature using a cube and a sphere:

Figure 18.12: A single object with two LOD meshes

Performance Wizardry: Optimizing Your Game with Profiling Tools590

2. Add a LOD Group component to the parent.
3. The default LOD group is prepared to support three LOD meshe groups, but as we only have two,

right-click on one and click Delete. You can also select Insert Before to add more LOD groups:

Figure 18.13: Removing a LOD group

4. Select LOD 0, the highest-detail LOD group, and click on the Add button in the Renderers list
below this to add the sphere to that group. You can add as many mesh renderers as you want.

Figure 18.14: Adding renderers to LOD groups

5. Select LOD 1 and add the cube.
6. Drag the line between the two groups to control the distance range that each group will occu-

py. As you drag it, you will see a preview of how far the camera needs to be to switch groups.
Also, you have the Culled group, which is the distance from where the camera will not render
any group.

Chapter 18 591

7. Just move around the scene in the Scene panel to see how the meshes are swapped.
8. Something to consider here is that the colliders of the objects won’t be disabled, so just have

the renderers in the LOD sub-objects. Put the collider with the shape of LOD 0 in the parent
object, or just remove the colliders from the LOD group objects, except group 0.

Another optimization to consider is frustum culling. By default, Unity will render any object that
falls into the view area or frustum of the camera, skipping the ones that don’t. The algorithm is cheap
enough to always use, and there’s no way to disable it. However, it does have a flaw. If we have a wall
hiding all the objects behind it, even if they are occluded, they fall inside the frustum, so they will be
rendered anyway. Detecting whether every pixel of a mesh occludes every pixel of the other mesh is
almost impossible to do in real time, but luckily, we have a workaround: occlusion culling.

Occlusion culling is a process that analyzes a scene and determines which objects can be seen in dif-
ferent parts of the scene, dividing them into sectors and analyzing each one. As this process can take
quite a long time, it is done in the editor, similar to lightmapping. As you can imagine, it only works
on static objects given that it’s calculated in editor time. To use it, do the following:

1. Mark the objects that shouldn’t move as static, or if you only want this object to be considered
static for the occlusion culling system, check the Occluder Static and Occludee Static check-
boxes of the arrow to the right of the Static checkbox. Occluder means that the object can
occlude other objects, and occludee means that this object can be occluded by other occluder
objects. We are setting out objects to occlude and be occluded likewise.

2. Open the Occlusion Culling window (Window | Rendering | Occlusion Culling).
3. Save the scene, hit the Bake button at the bottom of the window, and then wait for the baking

process. If you don’t save the scene before the baking process, it won’t be executed.
4. Select the Visualization tab in the Occlusion Culling window.

For extra performance, you might want to think about which objects are occluders
and which ones occludees. Small objects are unlikely to occlude other objects, so
it might be worth not checking the occluder flag on those. Likewise, big objects
that might not get occluded at all depending on your scene’s setup might be good
candidates to not be occludees.

Performance Wizardry: Optimizing Your Game with Profiling Tools592

5. With the Occlusion Culling window visible, select the camera (or virtual camera in the case
of a Cinemachine-controlled camera) and drag it around, seeing how objects are occluded as
the camera moves:

Figure 18.15: On the left is the normal scene and on the right is the scene with occlusion culling

Chapter 18 593

Take into account that if you move the camera outside the calculated area, the process won’t take
place, and Unity will only calculate areas near the static objects. You can extend the calculation area
by creating an empty object and adding an Occlusion Area component, setting its position and size
to cover the area that the camera will reach, and, finally, rebaking the culling. Try to be sensible with
the size of the cube. The larger the area to calculate, the larger the space needed in your disk to store
the generated data.

You can use several of these areas to be more precise—for example, in an L-shaped scene, you can
use two of them:

Figure 18.16: Occlusion Area

If you see that the objects are not being occluded, it can be that the occluder object (the wall in this
case) is not big enough to be considered. You can increase the size of the object or reduce the Smallest
Occluder setting in the Bake tab of the window. Doing that will subdivide the scene further to detect
small occluders, but that will take more space in the disk to store more data. So again, be sensible
with this setting.

There are still some more techniques that we can apply to our game, but the ones we have discussed
are enough for our game. So, in this section, we learned about the process of rendering graphics in a
video card, the concept of batches, how to profile them to know exactly how many of them we have
and what they are doing, and finally, how to reduce them as much as we can. Now, let’s start discussing
other optimization areas, such as the processing area.

Optimizing processing
While graphics usually take up most of the time that a frame needs to be generated, we should never
underestimate the cost of badly optimized code and scenes. There are several parts of the game that
are still calculated in the CPU, including part of the graphics process (such as the batching calcula-
tions), physics, audio, and our code. Here, we have a lot more causes of performance issues than on
the graphics side, so again, instead of discussing every optimization, let’s learn how to discover them.

In this section, we will examine the following CPU optimization concepts:

• Detecting CPU- and GPU-bound
• Using the CPU Usage Profiler
• General CPU optimization techniques

Performance Wizardry: Optimizing Your Game with Profiling Tools594

We will start by discussing the concepts of CPU- and GPU-bound, which focus on the optimization
process, determining whether the problem is GPU- or CPU-related. Later, as with the GPU optimiza-
tion process, we will look at how to gather the performance data of the CPU and interpret it to detect
possible optimization techniques to be applied.

Detecting CPU- and GPU-bound
As with Frame Debugger, the Unity Profiler allows us to gather data about the performance of our game
through a series of Profiler modules, each one designed to gather data about different Unity systems
per frame, such as physics, audio, and, most importantly, CPU usage. This last module allows us to
see the most important operations that Unity executed to process the frame—which range from our
scripts to systems such as physics and graphics (the CPU part).

Before exploring the CPU usage, one important bit of data that we can gather in this module is whether
we are CPU- or GPU-bound. As explained before, a frame is processed using both the CPU and GPU,
and those pieces of hardware can work in parallel. While the GPU is executing a frame’s drawing com-
mands, the CPU can execute the next frame physics, our scripts, and other non-graphic processes in a
very efficient way. But now, let’s say that the CPU finishes that work while the GPU is still working on
the previous frame. Can the CPU start to work on the next frame graphics processing? The answer is
no. This would lead to a de-synchronization, so in this scenario, the CPU will need to wait. This wait
is not necessarily bad if your game is already running at the desired frame rate (usually 60 fps), but if
it isn’t, your game’s performance is limited or bound. The case we described about the CPU waiting
for the GPU is known as GPU-bound, and we also have the opposite case, CPU-bound, when the GPU
finishes earlier than the CPU. While the CPU and the GPU work in parallel, there’s a moment where
the CPU needs the GPU but it is busy, and vice versa, leading to waiting times that are just a waste of
the hardware capabilities.

It is important to concentrate our optimization efforts, so if we detect that our game is GPU-bound,
we will focus on GPU graphics optimization (like reduction of mesh and shader complexity), and if it
is CPU-bound, then we will focus on the rest of the systems and the CPU side of graphics processing.
To detect whether our game is one or the other, do the following:

1. Open Profiler (Window | Analysis | Profiler).
2. In the Profiler Modules dropdown in the top-left corner, tick GPU Usage to enable the GPU

Profiler:

Figure 18.17: Enabling the GPU profiler

Chapter 18 595

3. Play the game and select the CPU Usage profiler, clicking on its name in the left part of the
Profiler window.

4. Click the Last Frame button, the one with the double arrow pointing to the right, to always
display info on the last frame being rendered:

Figure 18.18: Last frame button (double arrow to the right)

5. Also click the Live button to enable Live mode, which allows you to see the results of profiling
in real time. This can have an impact on performance, so you can disable it later:

Figure 18.19: Enabling Live mode

6. Observe the bar with the CPU and GPU labels in the middle of the window. It should say how
many milliseconds are being consumed by the CPU and GPU. The one with the higher num-
ber will be the one that is limiting our frame rate and will determine whether we are GPU- or
CPU-bound:

Figure 18.20: Determining whether we are CPU- or GPU-bound

7. There is a chance that when you try to open the GPU profiler, you will see a not supported
message, and this can happen in certain cases (such as on Mac devices that use the Metal
graphics API). In that scenario, another way to see whether we are GPU-bound is by searching
for waitforpresent in the search bar right next to the CPU/GPU labels while selecting the CPU
Usage profiler. If you don’t see the search bar, click the drop-down menu at the left of Live
(which should say Timeline) and select Hierarchy:

Figure 18.21: Searching for waitforpresent

Performance Wizardry: Optimizing Your Game with Profiling Tools596

8. Here, you can see how long the CPU has been waiting for the GPU. Check the Time ms column
to get the number. If you see 0�00, it is because the CPU is not waiting for the GPU, meaning
we are CPU-bound. In the preceding screenshot, you can see that my screen displays 0�00,
while the CPU is taking 6�42ms and the GPU is taking 2�17ms. So, my device is CPU-bound,
but consider your device and project can bring different results.

Now that we can detect whether we are CPU- or GPU-bound, we can focus our optimization efforts,
either on CPU-side optimizations or GPU-side. So far, we have discussed how to profile and optimize
part of the GPU process in the Optimizing graphics section. Now, if we detect that we are CPU-bound,
let’s see how to profile the CPU.

Using the CPU Usage Profiler
Profiling the CPU is done in a similar way to profiling the GPU. We need to get a list of actions the CPU
executes and try to reduce the number of them, or at least reduce their cost. Here is where the CPU
Usage Profiler module comes in—a tool that allows us to see all the instructions that the CPU executed
in one frame. The main difference is that the GPU mostly executes draw calls, and we have a few types
of them, while the CPU can have hundreds of different instructions to execute, and sometimes some
of them cannot be deleted, such as physics or audio processing. In these scenarios, we are looking to
reduce the cost of these functions so that they do not consume too much time. So, again, an important
note here is to detect which function is taking too much time and then reduce its cost or remove it,
which requires a deeper understanding of the underlying system. Let’s start detecting the function first.

When you play the game with the Profiler tab open, you will see a series of graphics showing the
performance of your game, and in the CPU Usage profiler, you will see that the graphic is split into
different colors, each one referring to different parts of frame processing. You can check the informa-
tion to the left of the Profiler to see what each color means, but let’s discuss the most important ones.

In the following screenshot, you can see how the graphic should look:

Check the following Unity manual page to see how to enable color blind modes for the pro-
filer: https://docs.unity3d.com/2023.1/Documentation/Manual/ProfilerWindow.
html

https://docs.unity3d.com/2023.1/Documentation/Manual/ProfilerWindow.html
https://docs.unity3d.com/2023.1/Documentation/Manual/ProfilerWindow.html

Chapter 18 597

Figure 18.22: Analyzing the CPU Usage graph

If you see the graphic, you will probably assume that the dark green part of the graph is taking up most
of the performance time, and while that is true, you can also see from the legend that dark green means
Others, and that’s because we are profiling the game in the Editor. The editor won’t behave exactly
like the final game. In order for it to run, it has to do lots of extra processing that won’t be executed
in the game, so the best you can do is profile directly in the build of the game. There, you will gather
more accurate data. We are going to discuss how to do builds in the next chapter, so for now, we can
ignore that area. What we can do now is simply click on the colored square to the left of the Others
label to disable that measurement from the graph in order to clean it up a little bit. If you also see a
large section of yellow, it refers to VSync, which is basically the time spent waiting for our processing
to match the monitor’s refresh rate. This is also something that we can ignore, so you should also
disable it. In the next screenshot, you can check the graphic color categories and how to disable them:

Figure 18.23: Disabling VSync and Others from the Profiler

Performance Wizardry: Optimizing Your Game with Profiling Tools598

Now that we have cleaned up the graph, we can get a good idea of our game’s potential frame rate by
looking at the line with the ms label (in our case, 5ms (200FPS)), which indicates that frames below
that line have more than 200 FPS, and frames above that line have less.

In my case, I have excellent performance, but remember, I am testing this on a powerful machine. The
best way to profile is not only in the build of the game (as an executable) but also in the target device,
which should be the lowest-spec hardware we intend our game to run on. Our target device depends
a lot on the target audience of the game. If we are making a casual game, we are probably targeting
mobile devices, so we should test the game on the lowest-spec phone we can, but if we are targeting
hardcore gamers, they will probably have a powerful machine to run our game on.

If you are targeting hardcore gamers, of course, this doesn’t mean that we can just make a very unop-
timized game because of that, but it will give us enough processing space to add more detail. Anyway,
I strongly recommend you avoid those kinds of games if you are a beginner as they are more difficult
to develop, which you will probably realize. Stick to simple games to begin with.

Looking at the graphics colors, you can observe the cost on the CPU side of rendering in light green,
which the graph shows is taking up a significant portion of the processing time, which is actually
normal. Then, in blue, we can see the cost of our scripts’ and other systems’ execution, which is also
taking up a significant portion, but again, this is quite normal. Also, we can observe a little bit of or-
ange, which is physics, and also a little bit of light blue, which is animations. Remember to check the
colored labels in the Profiler to remember which color refers to what.

Now, those colored bars represent a group of operations, so if we consider the Rendering bar to be
representing 10 operations, how do we know which operations that includes? Also, how do we know
which of these operations is taking up the most performance time? Out of those 10 operations, a single
one could be causing these issues. Here is where the bottom part of the profiler is useful. It shows a
list of all the functions being called in the frame. To use it, do the following:

1. Click any part of the CPU Usage section in the Profiler and check that the button at the top-left
part of the bottom bar of the Profiler says Hierarchy. If not (for example, if it says Timeline),
click it and select Hierarchy.

2. Clear the search bar we used earlier. It will filter function calls by name, and we want to see
them all.

3. Click on the Time ms column until you see an arrow pointing downward. This will order the
calls by cost in descending order.

Figure 18.24: The profiler Time ms column

4. Click on a frame that catches your attention in the graph—probably one of the ones with the
biggest height that consumes more processing time. This will make the Profiler stop the game
straight away and show you information about that frame.

Chapter 18 599

There are two things to consider when looking at the graph. If you see peaks that are signifi-
cantly higher than the rest of the frames, that can cause a hiccup in your game—a very brief
moment where the game is frozen—which can break the performance. Also, you can look for
a long series of frames with higher time consumption. Try to reduce them as well. Even if
this is only temporary, the impact of it will be easily perceived by the player, especially in VR
games, as that could induce nausea.

5. PlayerLoop will probably appear as the most time-consuming frame, but that’s not very infor-
mative. You can explore it further by expanding it by clicking on the arrow to its left.

6. Click on each function to highlight it in the graph. Functions with higher processing times will
be highlighted with thicker bars, and those are the ones we will focus on:

Figure 18.25: The Render Camera function highlighted in the graph

7. You can keep clicking on the arrows to further explore the functions until you hit a limit. If you
want to go deeper, enable the Deep Profile mode in the top bar of the Profiler. This will give you
more details, but take into account that this process is expensive and will make the game go
slower, altering the time shown in the graph, and making it appear much higher than the real
time. Here, ignore the numbers and look at how much of the process a function is taking up
based on the graph. You will need to stop, enable Deep Profile, and play it again to make it work:

Figure 18.26: Enabling Deep Profile

With this knowledge, we can start improving our game performance (if it’s below the target frame
rate), but each function is called by the CPU and is improved in its own unique way, which requires
greater knowledge about Unity’s internal workings. That could span several books, and anyway, the
internals change on a version-to-version basis. Instead, you could study how each function works by
looking up data about that specific system on the internet and official documentation, or again, by
just disabling and enabling objects or parts of our code to explore the impact of our actions, as we
did with Frame Debugger.

Performance Wizardry: Optimizing Your Game with Profiling Tools600

Profiling requires creativity and inference to interpret and react accordingly to the data obtained, so
you will need some patience here.

Now that we have discussed how to get the profiling data relating to the CPU, let’s discuss some com-
mon ways to reduce CPU usage.

General CPU optimization techniques
In terms of CPU optimization, there are lots of possible causes of high performance, including the abuse
of Unity’s features, a large number of physics or audio objects, improper asset/object configurations,
and so on. Our scripts can also be coded in an unoptimized way, abusing or misusing expensive Unity
API functions. So far, we have discussed several good practices of using Unity systems, such as audio
configurations, texture sizes, batching, and finding functions such as GameObject.Find and replacing
them with managers. So, let’s discuss some specific details about common cases.

Let’s start by seeing how a large amount of objects impacts our performance. Here, you can just create
lots of objects with Rigidbody (at least 200) configured in Dynamic Profile, and observe the results
in the Profiler.

You will notice, in the following screenshot, how the orange part of the profiler just got bigger and
that the Physics.RunSimulationStage function is responsible for this increase:

Figure 18.27: The Physics processing of several objects

Remember that the Profiler has other modules that you can activate by clicking the Profiler Modules
button, and there’s one for physics. Consider enabling it and checking the info it gives you. Also check
the official documentation for the profiler for more info on those modules.

Another test to see the impact of several objects could be creating lots of audio sources. In the following
screenshot, you can see that we needed to re-enable Others because part of the audio processing comes
under that category. We mentioned earlier that Others belongs to the editor, but it can encompass
other processes as well, so keep that in mind:

Chapter 18 601

Figure 18.28: The audio processing of several audio sources

So, to discover these kinds of problems, you can just start disabling and enabling objects and see
whether they increase the time or not. A final test is on particles. Create a system that spawns a big
enough number of particles to affect our frame rate and check the Profiler.

In the following screenshot, you can check how the particle processing function is highlighted in the
graph, showing that it takes a large amount of time:

Figure 18.29: Particle processing

Then, on the scripting side, we have other kinds of things to consider, some of which are common to
all programming languages and platforms, such as iterating long lists of objects, the misuse of data
structures, and deep recursion. However, in this section, I will mainly be discussing Unity-specific
APIs, starting with print or Debug.Log.

Performance Wizardry: Optimizing Your Game with Profiling Tools602

This function is useful to get debugging information in the console, but it can also be costly because
all logs are written onto the disk immediately to avoid losing valuable information if our game crash-
es. Disk writes are a very slow operation, even if using SSDs, so we want to avoid them as much as
possible. Of course, we also want to keep those valuable logs in the game but we don’t want it to affect
the performance, so what can we do?

One possible approach is to keep those messages but disable the non-essential ones in the final build,
such as informative messages, keeping the error-reporting function active. One way to do this is through
compiler directives, such as the ones used in the following screenshot. Remember that this kind of
if statement is executed by the compiler and can exclude entire portions of code when compiling if
its conditions are not met:

Figure 18.30: Disabling code

In the preceding screenshot, you can see how we are asking whether this code is being compiled by
the editor or for a development build, which is a special kind of build intended to be used for testing
(more on that in the next chapter). You can also create your own kind of logging system with functions
with the compiler directives, so you don’t need to use them in every log that you want to exclude.

In this section, we learned about the tasks a CPU faces when processing a video game, how to profile
them to see which ones are not necessary, and how to reduce the impact of those processes. There
are a few other script aspects that can affect performance not only on the processing side but also on
the memory side, so let’s discuss them in the next section.

Optimizing memory
We discussed how to profile and optimize two pieces of hardware—the CPU and GPU—but there is
another piece of hardware that plays a key role in our game—RAM. This is the place where we put all
of our game’s data. Games can be memory-intensive applications, and unlike several other applications,
they are constantly executing code, so we need to be especially careful about that. The problem is that
if we consume too much memory, we risk slowing down our game performance due to more costly
memory accesses, or even making our game crash on non-PC platforms, like mobile or even consoles.

In this section, we will examine the following memory optimization concepts:

• Memory allocation and the garbage collector
• Using the Memory Profiler

Let’s start discussing how memory allocation works and what role garbage collection plays here.

Chapter 18 603

Memory allocation and the garbage collector
Each time we instantiate an object, we are allocating memory in RAM, and in a game, we will be allo-
cating memory constantly. In other programming languages, aside from allocating the memory, you
need to manually deallocate it, but C# has a garbage collector, which is a system that tracks unused
memory and cleans it. This system works with a reference counter, which tracks how many references
to an object exist, and when that counter reaches 0, it means all references have become null and
the object can be deallocated. This deallocation process can be triggered in several situations, the
most common situation being when we reach the maximum assigned memory and want to allocate a
new object. In that scenario, we can release enough memory to allocate our object, and if that is not
possible, the memory is expanded.

In any game, you will probably be allocating and deallocating memory constantly, which can lead to
memory fragmentation, meaning there are small spaces between alive object memory blocks that are
mostly useless because they aren’t big enough to allocate an object, or maybe the sum of the spaces
is big enough, but we need continuous memory space to allocate our objects.

In the following diagram, you can see a classic example of trying to fit a big chunk of memory into
the little gaps generated by fragmentation:

Figure 18.31: Trying to instantiate an object in a fragmented memory space

Some types of garbage collection systems, such as the one in regular C#, are generational, meaning
memory is split into generation buckets according to the “age” of its memory. Newer memory will be
placed in the first bucket, and this memory tends to be allocated and deallocated frequently. Because
this bucket is small, working within it is fast. The second bucket has the memory that survived a pre-
vious deallocation sweep process in the first bucket. That memory is moved to the second bucket to
prevent it from being checked constantly for whether it survived the process, and it is possible that
that memory will last the length of our program’s lifetime. The third bucket is just another layer of
bucket 2. The idea is that most of the time, the allocation and deallocation system will be working
in bucket 1, and as it is small enough, it is quick to allocate, deallocate, and compact memory in a
continuous fashion.

For more detailed information about how Unity manages memory and what memory
fragmentation is, please refer to the following link: https://docs.unity3d.com/Manual/
performance-managed-memory.html

https://docs.unity3d.com/Manual/performance-managed-memory.html
https://docs.unity3d.com/Manual/performance-managed-memory.html

Performance Wizardry: Optimizing Your Game with Profiling Tools604

The problem here is that Unity uses its own version of the garbage collection system, and that version
is non-generational and non-compacting, meaning memory is not split into buckets and memory
won’t be moved to fill the gaps. This suggests that allocating and deallocating memory in Unity will
still result in the fragmentation problem, and if you don’t regulate your memory allocation, you might
end up with an expensive garbage collection system being executed very often, producing hiccups in
our game, which you can see in the Profiler CPU Usage module as a pale-yellow color.

One way to deal with this is by preventing memory allocation as much as you can, avoiding it when it
is not necessary. There are a few tweaks here and there that you can make to prevent memory alloca-
tion, but before looking at those, again, it is important to first get data about the problem before you
start fixing things that may not be an issue. This advice applies to any type of optimization process.
Here, we can still use the CPU Usage profiler to see how much memory is allocated to each function
call that the CPU executes in each frame, and that is simply done by looking at the GC Alloc column,
which indicates the amount of memory that the function allocated:

Figure 18.32: The memory allocation of the Update event function of Sight

In the preceding screenshot, we can see how our function is allocating too much memory, which is
produced because there are many enemies in the scene. But that’s no excuse; we are allocating that
much RAM at every frame, so we need to improve this. There are several things that can contribute
to our memory being claimed by allocations, so let’s discuss the basic ones, starting with array-re-
turning functions.

If we review the Sight script code, we can see that the only moment where we are allocating memory
is in the call to Physics.OverlapSphere, and that is evident because it is an array-returning function,
which is a function that returns a varying amount of data. To do this, it needs to allocate an array and
return that array to us. This needs to be done on the side that created the function, Unity, but in this
case, Unity gives us two versions of the function—the one that we are using and the NonAlloc version.
It is usually recommended to use the second version, but Unity uses the other one to make coding
simpler for beginners.

Chapter 18 605

The NonAlloc version looks as in the following screenshot:

Figure 18.33: Memory allocation of the Update event function of Sight

This version requires us to allocate an array with enough space to save the largest amount of colliders
our OverlapSphere variable can find and pass it as the third parameter. This allows us to allocate the
array just once and reuse it on every occasion that we need it. In the preceding screenshot, you can
see how the array is static, which means it is shared between all the Sight variables as they won’t
execute in parallel (no Update function will). This will work fine. Keep in mind that the function will
return the number of objects that were detected, so we just iterate on that count. The array can have
previous results stored within it.

Now, check your Profiler and notice how the amount of memory allocated has been reduced greatly.
There might be some remaining memory allocation within our function, but sometimes there is no
way to keep it at 0. However, you can try to look at the reasons for this using deep profiling or by com-
menting some code and seeing which comment removes the allocation. I challenge you to try this
and observe which changes lead to reduced memory allocation values. Also, OverlapSphere is not the
only case where this could occur. You have others, such as the GetComponents functions family, which,
unlike GetComponent, finds all the components of a given type, not just the first one, so pay attention to
any array-returning function of Unity and try to replace it with a non-allocating version, if there is one.

Performance Wizardry: Optimizing Your Game with Profiling Tools606

Another common source of memory allocation is string concatenation. Remember that strings are
immutable, meaning they cannot change if you concatenate two strings. A third one needs to be gen-
erated with enough space to hold the first ones. If you need to concatenate a large number of times,
consider using string.Format if you are just replacing placeholders in a template string, such as
putting the name of the player and the score they got in a message or using StringBuilder, a class
that just holds all the strings to be concatenated in a list and, when necessary, concatenates them
together, instead of concatenating them one by one as the + operator does. Also, consider using the
new string interpolation functionality of C#. You can see some examples in the following screenshot:

Figure 18.34: String management in C#

Finally, a classic technique to consider is object pooling, which is suitable in cases where you need to
instantiate and destroy objects constantly, such as with bullets or effects. In that scenario, the use of
regular Instantiate and Destroy functions will lead to memory fragmentation, but object pooling
fixes that by allocating the maximum amount of required objects possible. It replaces Instantiate by
taking one of the preallocated functions and it replaces Destroy by returning the object to the pool.

A simple pool can be seen in the following screenshot:

Chapter 18 607

Figure 18.35: A simple object pool

There are several ways to improve this pool, but it is fine as it is for now. Note that objects need to be
reinitialized when they are taken out of the pool, and you can do that with the OnEnable event function
or by creating a custom function to inform the object to do so.

Performance Wizardry: Optimizing Your Game with Profiling Tools608

Now that we have explored some basic memory allocation reduction techniques, let’s look at the
new Memory Profiler tool, introduced in the previous version of Unity but now finally not a preview
package anymore but available as a 1.0.0 version, to explore memory in greater detail.

Using the Memory Profiler
With this Profiler, we can detect memory allocated on a frame-per-frame basis, but it won’t show the
total memory allocated so far, which would be useful to study how we are using our memory. This is
where the Memory Profiler can help us. This relatively new Unity package allows us to take memory
snapshots of every single object allocated both on the native and managed side—native meaning the
internal C++ Unity code and managed meaning anything that belongs to the C# side (that is, both our
code and Unity’s C# engine code). We can explore snapshots with a visual tool and rapidly see which
type of object is consuming the most RAM and how they are referenced by other objects.

To start using the Memory Profiler, do the following:

1. Open the Package Manager (Window | Package Manager) and look for the Memory Profiler
package. At the time of writing this book, you can see that the latest stable version available
is 1.1.0:

Figure 18.36: Enabling preview packages

2. Once installed, open the Memory Profiler in Window | Analysis | Memory Profiler.

Please note that Unity has recently added an Object Pool class that you can investi-
gate at the following link: https://docs.unity3d.com/2023.1/Documentation/
ScriptReference/Pool.ObjectPool_1.html, but I still recommend making your own
first to grasp the idea of pools.

https://docs.unity3d.com/2023.1/Documentation/ScriptReference/Pool.ObjectPool_1.html
https://docs.unity3d.com/2023.1/Documentation/ScriptReference/Pool.ObjectPool_1.html

Chapter 18 609

3. Play the game and click on the Capture button in the Memory Profiler window:

Figure 18.37: Capturing a snapshot

Performance Wizardry: Optimizing Your Game with Profiling Tools610

4. Click on the snapshot that appeared in the list (the one below the Session 1 label) to see a
summary of the memory consumption at the moment of taking a snapshot:

Figure 18.38: Memory summary

5. In our case, we can see that we are consuming 2.76 GB of memory, split between Managed
(C# code variables), Executables & Mapped (built code of the application), Native (Unity’s C++
memory), Graphics (Graphics Driver and GPU memory usage to render our scene), Profiler
(because we are profiling our session), Audio, and Unknown (memory that can’t be catego-
rized, like allocations made by third-party native plugins). There are different things that are
accounted for in these categories, but for now, we are good. Open the package documentation
in the Package Manager to get more info about them.

6. Click the Unity Objects tab at the top part of the middle section of the Memory Profiler window.
This will open the Unity Objects View, which allows you to visually see which types of assets
are the more demanding in terms of memory in a table format:

Chapter 18 611

Figure 18.39: Memory tree view

7. In our case, we can see that RenderTexture uses up the most memory, which belongs to the
image that is displayed in the scene, as well as some textures used by post-processing effects.
Try to disable the PPVolume object and take another snapshot to detect the difference.

8. In my case, that dropped off 56 MB. There are other textures needed for other effects, such
as HDR. If you want to explore where those remaining MB came from, click on the arrow at
the left of RenderTexture to see a list of its objects and take your own guesses based on the
names of the textures:

Figure 18.40: Memory blocks in detail

Performance Wizardry: Optimizing Your Game with Profiling Tools612

9. You can repeat the same process in the Texture2D list, which belongs to the textures used in
the materials of our models. You can look at the biggest one and detect its usage—maybe it
is a big texture that is never seen close enough to justify its size. Then, we can reduce its size
using the Max Size of the Texture import settings.

10. You can also use the two checkboxes at the bottom of the Unity Objects View to flatten all
the objects appearing in the Hierarchy without any group or category and find any possible
duplicate object (i.e., by mistakenly duplicating the same asset in the project).

Figure 18.41: Filter the Unity Object groups’ appearances

As with any profiler, it is always useful to carry out the profiling directly in the build (more on that
in the next chapter) because taking snapshots in the editor will capture lots of memory that is used
by the editor and will not be used in the build. An example of this is the loading of unnecessary tex-
tures because the editor probably loaded them when you clicked them to see their previews in the
Inspector window.

Consider that due to the Memory Profiler being a package, its UI can change often, but its basic idea
will remain. You can use this tool to detect whether you are using the memory in unexpected ways.
Something useful to consider here is how Unity loads assets when loading a scene, which consists of
loading all assets referenced in the scene at load time. This means that you can have, as an example,
an array of prefabs that have references to materials that have references to textures, and even if you
don’t instantiate a single instance of them, the prefabs must be loaded in memory, causing them to
occupy space. In this scenario, I recommend that you explore the use of Addressables, which provide
a way to load assets dynamically. But let’s keep things simple for now.

The Memory Profiler also has a feature to compare two snapshots. This is useful for de-
tecting memory leaks (which, in C#, can be caused by non-nullified references) and un-
released assets between two specific moments in the game (such as before starting a
level and after starting the next one). See this documentation for more details: https://
docs.unity3d.com/Packages/com.unity.memoryprofiler@1.0/manual/snapshots-
comparison.html

mailto:https://docs.unity3d.com/Packages/com.unity.memoryprofiler@1.0/manual/snapshots-comparison.html
mailto:https://docs.unity3d.com/Packages/com.unity.memoryprofiler@1.0/manual/snapshots-comparison.html
mailto:https://docs.unity3d.com/Packages/com.unity.memoryprofiler@1.0/manual/snapshots-comparison.html

Chapter 18 613

Summary
Optimizing a game is not an easy task, especially if you are not familiar with the internals of how each
Unity system works. Sadly, this is a titanic task, and no one knows every single system down to its
finest details, but with the tools learned about in this chapter, we have a way to explore how changes
affect systems through exploration. We learned how to profile the CPU, GPU, and RAM and what the
key hardware in any game is. We also covered some common good practices to avoid abusing them.

Now, you can diagnose performance issues in your game, gathering data about the performance of
the three main pieces of hardware—the CPU, GPU, and RAM—and then using that data to focus your
optimization efforts on applying the correct optimization technique. Performance is important as
your game needs to run smoothly to give your users a pleasant experience.

In the next chapter, we are going to see how to create a build of our game to share with other people,
without needing to install Unity. This is also very useful for profiling, given that profiling builds are
going to give us more accurate data than profiling in the editor.

Learn more on Discord
Read this book alongside other users, Unity game development experts, and the author himself. Ask
questions, provide solutions to other readers, chat with the author via Ask Me Anything sessions, and
much more. Scan the QR code or visit the link to join the community:

https://packt.link/unitydev

https://packt.link/unitydev

19
From Prototype to Executable:
Generating and Debugging Your
Game

So, we have reached a point where the game is in good enough shape to test it with real people, a point
where theoretical design meets practical application. The problem is that we can’t pretend people will
install Unity, open a project, and hit Play. They want to receive a nice executable file to double-click
and play right away. In this chapter, in the first section, we are going to discuss how we can convert
our project into an easy-to-share executable format, and then in the second section, we will see how
to apply the profiling and debugging techniques learned in the previous chapter, but this time, on the
build. After reading this chapter, you will be able to detect potential performance bottlenecks and
tackle the most common ones, leading to an increase in your game’s frame rate.

In this chapter, we will examine the following build concepts:

• Building a project
• Debugging the build

Let’s start by seeing how we can build the project to get a shareable executable.

Building a project
In software development (including video games), the process of taking the source files of our project
and converting them into an executable format is called a build. The generated executable files are
optimized to achieve the maximum performance possible given the configuration of the project. We
can’t judge performance while editing the game due to the changing nature of a project. It would be
time-consuming to prepare the assets in their final form while editing the game.

From Prototype to Executable: Generating and Debugging Your Game616

Also, the generated files are in a difficult-to-read format. They won’t have the textures, audio, and
source code files just there for the user to look at. They will be formatted in custom file structures, so
in a way, they’re protected from users stealing them.

Actually, there are several tools to extract source files from video games, especially from a widely
used engine such as Unity. You can extract assets such as textures and 3D models, and there are even
programs that extract those assets directly from the VRAM, so we cannot guarantee that the assets
won’t be used outside the game. In the end, users have the data of those assets on their disks.

The build process is pretty simple when you target desktop platforms such as Windows, Mac, or Linux,
but there are a few settings we need to keep in mind before building. The first configuration we are
going to see is the scenes list. We have already discussed this, but it’s a good moment to remember
that it is important to set the first element of this list to the scene that will be loaded first. Remember,
you can do this by going to File | Build Settings and dragging your desired starter scene to the top of
the list. In our case, we defined the game scene as the first scene, but in a real game, it would be ideal
to create a Main Menu scene using the UI and some graphics:

Figure 19.1: The Scenes In Build list order

Another setting you can change here is the target platform, which is the target operating system that
the build will be created for. Usually, this is set as the same operating system you are developing on, but
in case you are, as an example, developing on a Mac, and you want to build for Windows, just set the
Target Platform setting to Windows. That way, the result will be an .exe file (a Windows executable file)
instead of an .app file (the Mac executable file). You may see Android and iOS as other target platforms,
but making mobile games requires other considerations that we are not going to discuss in this book:

Figure 19.2: Target Platform

Chapter 19 617

In the same window, you can click the Player Settings button at the bottom left, or just open the Edit |
Project Settings window and click on the Player category to access the rest of the Build Settings. Unity
calls the generated executable the Player. Here, we have a set of configurations that will affect how
the build or player behaves, and here is a list of the basic ones:

• Company Name: This is the name of the company that developed the game, which is used by
Unity to create certain file paths and will be included in the executable information.

• Product Name: This is the name of the game in the window title bar and executable file.
• Default Icon: Here, you can select a texture to act as the executable icon.
• Default Cursor: You can set a texture to replace the regular system cursor. If you do that, remem-

ber to set the Cursor Hotspot property to the pixel of the image you want the cursor to click on.
• Resolution and Presentation: These are settings for how our game’s resolution is going to be

handled.
• Resolution and Presentation | Fullscreen Mode: You can select whether your game will start

Windowed or in different modes of Fullscreen. You can change that later via scripting if nec-
essary.

• Resolution and Presentation | Default is Native Resolution: When this option is checked and
Fullscreen Mode is set to use any Fullscreen option, the resolution currently used by the
system will be the one used by Unity. You can uncheck this and set your desired resolution.

• Splash Image: These are the settings for the splash image that the game will show after loading
for the first time.

• Splash Image | Show Splash Screen: This will enable a Unity splash screen that will display
logos as an introduction to the game. If you have the Unity Pro license, you can uncheck this
to create your custom splash screen, if you want. Also, when Unity 6 is released, the splash
screen will be able to be disabled even when using the Free license.

• Splash Image | Logos List: Here, you can add a set of images that Unity will display when
launching the game. If you are using a free version of Unity, you are forced to have the Unity
logo displayed in this list.

From Prototype to Executable: Generating and Debugging Your Game618

• Splash Image | Draw Mode: You can set this to All Sequential to show each logo, one after the
other, or to Unity Logo Below to show your custom introductory logos with the Unity logo
always present below yours:

Figure 19.3: Player settings

After configuring these settings as you wish, the next step is to do the actual build, which can be accom-
plished by hitting the Build button in the File | Build Settings window. This will ask you to set where
you want the build files to be created. I recommend you create an empty folder on your desktop to have
easy access to the result. Be patient—this process can take a while depending on the size of the project:

For more information on the player settings, check the following link: https://docs.
unity3d.com/2023.1/Documentation/Manual/class-PlayerSettings.html

https://docs.unity3d.com/2023.1/Documentation/Manual/class-PlayerSettings.html
https://docs.unity3d.com/2023.1/Documentation/Manual/class-PlayerSettings.html

Chapter 19 619

Figure 19.4: Building the game

Something that can fail here is having non-build-compatible scripts—scripts that are intended to be
executed only in the Editor (mostly Editor extensions). We haven’t created any of those, so if you have
an error message in the console after building, similar to the following screenshot, that can happen
because of some script in an Asset Store package. In that case, just delete the files that are shown in
the console before the Build Error message. If, by any chance, there is one of your scripts there, be
sure you don’t have any using UnityEditor; lines in any of your scripts.

From Prototype to Executable: Generating and Debugging Your Game620

That would try to use the Editor namespace, the one that is not included in the build compilation to
save space on the disk:

Figure 19.5: Build errors

And that’s the minimum you need to know in order to configure the build. You have generated your
game! Remember to test your builds on different devices, especially when working on mobile platforms;
sometimes the game might work differently on different platforms, and sometimes even not run at all
on some hardware due to incompatibilities. These incompatibilities can be highly dependent on the
specific hardware and must be researched on a case-by-case basis. Something to take into account is
that every file that was created in the folder that you specified when building must be shared, not only
the executable file. The data folder contains all assets and is important to include when sharing the
game in the case of Windows builds. For Linux and Mac builds, there is just one file generated (x86/
x86_64 for Linux and app packages for Mac):

Figure 19.6: A Windows-generated folder

Now that we have the build, you can test it by double-clicking the executable file. We can now discuss
how we use the same debugging and profiling tools we used in the Editor to debug our build.

Debugging the build
In an ideal world, the Editor and the build would behave the same, but sadly, that isn’t true. The Editor
is prepared to work in a fast-iteration mode. Code and assets have minimum processing prior to being
used to make changes often and fast, so we can test our game easily. When the game is built, a series of
optimizations and differences from the Editor project will be applied to ensure the best performance
we can get, but those differences can cause certain parts of the game to behave differently, making
the profiling data of the player differ from the Editor. That’s why we are going to explore how we can
debug and profile the game we have built.

Chapter 19 621

In this section, we will examine the following build debugging concepts:

• Debugging code
• Profiling performance

Let’s start by discussing how to debug the code of a build.

Debugging code
As player code is compiled differently, we can get errors in the build that didn’t happen in the Editor,
and we need to debug it somehow. We have two main ways to debug—by printing messages and through
breakpoints. So, let’s start with the first one, messages. If you ran your executable file, you may have
noticed that there’s no console available. It’s just the Game View in fullscreen, which makes sense; we
don’t want to distract the user with annoying testing messages. Luckily, the messages are still being
printed, but in a file, so we can just go to that file and look for them.

The location varies according to the operating system. In this list, you can find the possible locations:

• Linux: ~/.config/unity3d/CompanyName/ProductName/Player.log
• Mac: ~/Library/Logs/Company Name/Product Name/Player.log
• Windows: C:\Users\username\AppData\LocalLow\CompanyName\ProductName\Player.log

In these paths, you must change CompanyName and ProductName to the values of the properties in
the Player settings we set before, which are called the same, Company Name and Product Name,
respectively. In Windows, you must replace username with the name of the Windows account you
are executing the game in. Consider that the folders might be hidden, so enable the option to show
hidden files in your operating system. Inside that folder, you will find a file called Player; you can
open it with any text editor and look at the messages.

Aside from downloading any custom package from the Asset Store, there is a way to see the messages
of the console directly in the game, at least the error messages: by creating a development build. This
is a special build that allows extended debugging and profiling capabilities in exchange for not fully
optimizing the code as the final build does, but it will be enough for general debugging.

You can create this kind of build just by checking the Development Build checkbox in the File | Build
Settings window:

Figure 19.7: The Development Build checkbox

From Prototype to Executable: Generating and Debugging Your Game622

Remember that just the error messages will be displayed here, so a little trick you can do is replace
print and Debug.Log function calls with Debug.LogError, which will also print the message in the
console but with a red icon. Consider that using Debug.LogError to show non-error messages is not
a good practice, so limit the usage of this kind of message for temporal debugging. For permanent
logging, use the log file or find a custom debugging console for runtime in the Asset Store.

Figure 19.8: Debugging error messages

Something interesting regarding development builds is that, unlike regular builds, the error mes-
sages are displayed directly in the build, allowing you to properly debug your project. Remember
that development builds can be slower due to these capabilities as they are intended for debugging
and allowing profilers to work, but the final performance will be better on release builds. In the next
screenshot, you can see the error displayed in the runtime:

Figure 19.9: Error messages in a development build

You will notice that, aside from showing the error message, there’s an Open Log File button on the right,
allowing you to see the log file. This is a text file containing detailed info regarding all the messages
and logs that happened in this run of the game to pinpoint the issue. Essentially, it is the same info
the Console panel shows in the Editor.

Remember that for development builds to work, you need to build the game again; luckily, the first
build is the one that takes the most time, and the next will be faster. This time, you can just click the
Build and Run button to do the build in the folder in which you did the previous build.

Also, you can use regular breakpoints in the same way as we explained in Chapter 5, Unleashing the
Power of C# and Visual Scripting. By attaching the IDE to the player, it will show up in the list of targets.
But for that to work, you must not only check Development Build in the Build window but also Script
Debugging.

Chapter 19 623

Here, you have an additional option shown when that is checked that allows you to pause the entire
game until a debugger is attached, the one called Wait For Managed Debugger. This is useful in case
you want to test something that happens immediately at the beginning that doesn’t allow you enough
time to attach the debugger:

Figure 19.10: Enabling script debugging

We have another way to see the messages, but that will require the Profiler to work, so let’s use this
as an excuse to also discuss how to profile the editor.

Profiling performance
We are going to use the same tools as we saw in the previous chapter, but to profile the player this time.
Luckily, the difference is minimal. As we did in the previous section, you need to build the player in
Development mode, checking the Development Build checkbox in the Build window, and then the
Profiler should automatically detect it.

Let’s start using the Profiler on the build by doing the following:

1. Play the game through the build.
2. Switch to Unity using Alt + Tab (Cmd + Tab on Mac).
3. Open the Profiler.
4. Click the menu that says Play Mode and select the item that contains Player in it. Because I

have used Mac, it says OSXPlayer; and the name will vary according to the build platform (for
example, a Windows build will say WindowsPlayer):

Figure 19.11: Profiling the player

From Prototype to Executable: Generating and Debugging Your Game624

Notice that when you click a frame, the game won’t stop like in the Editor. If you want to focus your
attention on the frames at a specific moment, you can click the record button (the red circle) to make
the Profiler stop capturing data, so you can analyze the frames captured so far.

Also, you can see that when the Profiler is attached to the player, the console will also be attached, so
you can see the logs directly in Unity. Consider that this version requires Unity to be opened, and we
cannot expect our friends who are testing our game to have it. You might need to click on the Player
button that appears on the Console and check Player Logging for this to work:

Figure 19.12: Enabling Player Logging after attaching the Profiler

The Frame Debugger is also enabled to work with the player. You need to click the Editor button in
the Frame Debugger and again, you will see the player in the list of possible debugging targets; after
selecting it, hit Enable as usual. Consider that the preview of the Draw Calls won’t be seen in the Game
View but in the build itself. If you are running the game in fullscreen mode, you might need to switch
back and forth between Unity and the build:

Figure 19.13: Debugging the frames of our game’s Player

Chapter 19 625

You may also run the game in Windowed mode, setting the Fullscreen Mode property in the player
settings to Windowed, and establishing a default resolution that is smaller than your desktop resolution.
This allows both Unity and the player to be visible to see the profilers and the game at the same time:

Figure 19.14: Enabling Windowed mode

Finally, the Memory Profiler also supports profiling the player, and as you might guess, you can just
select the player in the list that is displayed when you click the Editor button in the top bar of the
window and then click Capture:

Figure 19.15: Taking memory snapshots of the player

And that is it. As you can see, Unity Profilers are designed to be easily integrated with the player. If
you start to take data from them, you will see the difference compared to editor profiling, especially
in the Memory Profiler.

Summary
In this chapter, we learned how to create an executable version of the game and properly configure it
so we can share it with not only our friends but potentially the world! We also discussed how to profile
our build; remember that doing that will give us more accurate data than profiling the editor, so we
can better improve the performance of our game.

Now that we have finished our game, let’s get a glimpse of how your next project could easily be an
augmented reality application in Unity by exploring the AR Foundation package in the next chapter.

From Prototype to Executable: Generating and Debugging Your Game626

Learn more on Discord
Read this book alongside other users, Unity game development experts, and the author himself. Ask
questions, provide solutions to other readers, chat with the author via Ask Me Anything sessions, and
much more. Scan the QR code or visit the link to join the community:

https://packt.link/unitydev

https://packt.link/unitydev

20
AR/VR

Unity has expanded beyond gaming into various fields, such as simulations, training, and app develop-
ment. In its latest versions, notable improvements in augmented reality (AR) technologies have been
introduced. In the latest versions of Unity, we have seen lots of improvements in the field of augment-
ed reality, which allows us to add a layer of virtuality on top of our reality, thereby augmenting what
our device can perceive to create games that rely on real-world data, such as the camera’s image, our
real-world position, and the current weather. This can also be applied to work environments, such as
when viewing the building map or checking the electrical ducts inside a wall. Welcome to the extra
section of this book, where we are going to discuss how to create Augmented Reality (AR) applications
using Unity’s AR Foundation package.

In this chapter, we will examine the following AR Foundation concepts:

• Using AR Foundation
• Building for mobile devices
• Creating a simple AR game

By the end of this chapter, you will be able to create AR apps using AR Foundation and will have a fully
functional game that uses its framework so that you can test the framework’s capabilities.

Let’s start by exploring the AR Foundation framework.

Using AR Foundation
In this section, we will examine the following AR Foundation concepts:

• Creating an AR Foundation project
• Using tracking features

Let’s start by discussing how to prepare our project so that it can run AR Foundation apps.

AR/VR628

Creating an AR Foundation project
Transitioning to AR development not only changes coding practices but also the game design approach.
For instance, in AR, user interaction and camera control are significantly different.

Something to consider when creating AR projects is that we will change not only the way we code
our game but also the game design aspect. AR apps have differences, especially in the way the user
interacts, and also limitations, such as the user being in control of the camera all the time. We cannot
simply port an existing game to AR without changing the very core experience of the game. That’s
why, in this chapter, we are going to work on a brand-new project; it would be too difficult to change
the game we’ve created so far so that it works well in AR.

In our case, we are going to create a game where the user controls a player moving a “marker,” a
physical image you can print that will allow our app to recognize where the player is in the real world.
We will be able to move the player while moving that image, and this virtual player will automatically
shoot at the nearest enemy. Those enemies will spawn from certain spawn points that the user will
need to place in different parts of the home. As an example, we can put two spawn points on the walls
and place our player marker on a table in the middle of the room so that the enemies will go toward
them. In the following image, you can see a preview of what the game will look like:

Figure 20.1: Finished game. The Cylinder is an enemy spawner, the Capsule is the enemy, and the
Cube is the player. These are positioned in a marker image displayed by the cellphone

We’ll start creating a new URP-based project in the same way we created our previous game. Some-
thing to consider is that AR Foundation works with other pipelines, including built-in ones, in case
you want to use it in already existing projects. If you don’t remember how to create a project or use
the Package Manager, please refer to Chapter 1, Embark on Your Unity Journey.

Once you’re in your new blank project, install the AR Foundation package from the Package Manager,
just like we’ve installed other packages previously—that is, from Window | Package Manager.

Chapter 20 629

Remember to set the Package Manager so that it shows all packages, not only the ones in the project
(the Packages button at the top-left part of the window needs to be set to Unity Registry) and also
the preview versions (click on the wheel icon, then Project Settings, and check Enable Pre-release
Packages on the window that appears).

At the time of writing this book, the latest stable release is 5.1.0 version. While we use version 5.1.0
of AR Foundation for this example, always check for the most current stable version for your project.

As usual, if a warning prompting you to enable the new input system appears, click Yes:

Figure 20.2: Installing AR Foundation

Before we install any other needed packages, now is a good moment to discuss some core ideas of
the AR Foundation framework. This package, by itself, does nothing; it defines a series of AR features
that mobile devices offer, such as image tracking, cloud points, and object tracking, but the actual
implementation of how to do that is contained in the Provider packages, such as the Apple ARKit XR
Plugin and Google ARCore XR plugin packages. This is designed like this because, depending on the
target device you want to work with, the way those features are implemented changes. As an exam-
ple, in iOS, Unity implements those features using ARKit, while in Android, it uses ARCore; they are
platform-specific frameworks. Remember to install the same version of these platform packages as
the AR Foundation one (5.0.0 preview 13 in this case).

Something to consider here is that not all iOS or Android devices support AR Foundation apps. You
might find an updated list of supported devices when searching for ARCore- and ARKit-supported
devices on the internet. At the time of writing, the following links provide the supported devices lists:

• iOS: https://www.apple.com/lae/augmented-reality (at the bottom of the page)
• Android: https://developers.google.com/ar/devices

Also, there isn’t a PC provider package, so the only way to test AR Foundation apps so far is directly
on the device, but testing tools are going to be released soon. In my case, I will be creating an app for
iOS, so aside from the AR Foundation package, I need to install the ARKit XR plugin.

However, if you want to develop for Android, install the ARCore XR plugin instead (or both if you’re
targeting both platforms). Also, I will be using the 5.1.1 version of these packages. Usually, the versions
of the AR Foundation and Provider packages match but apply the same logic as when you picked the
AR Foundation version.

https://www.apple.com/lae/augmented-reality
https://developers.google.com/ar/devices

AR/VR630

Now that we have the needed plugins, we need to prepare a scene for AR as follows:

1. Create a new Scene in File | New Scene and select the Basic (URP) template.
2. Delete the Main Camera; we are going to use a different one.
3. In the GameObject | XR menu, create an AR Session GameObject.
4. In the same menu, create an XR Origin (Mobile AR) object that has a Camera inside it.
5. Select Main Camera inside XR Origin.
6. Set the Render Mode property of the AR Camera Manager component to After Opaques.
7. Your hierarchy should look as follows:

Figure 20.3: Starter AR Scene

The AR Session object will be responsible for initializing the AR framework and will handle all the
update logic for the AR systems. The XR Origin object will allow the framework to locate tracked
objects, such as images and point clouds, in a relative position to the scene. The devices inform the
positions of tracked objects relative to what the device considers “the origin.” This is usually the first
area of your house you were pointing at when the app started detecting objects, so the XR Origin object
will represent that point in your physical space. Finally, you can check the camera inside the origin,
which contains some extra components, the most important being the Tracked Pose Driver, which
will make your Camera object move along with your device. Since the device’s position is relative to
the Session Origin object’s point, the camera needs to be inside the origin object.

One extra step in case you are working on a URP project (our case) is that you need to set up the ren-
der pipeline so that it supports rendering the camera image in the app. To do that, go to the Settings
folder that was generated when we created the project, look for the URP-HighFidelity-Renderer
file, and select it. In the Renderer Features list, click the Add Renderer Feature button and select AR
Background Renderer Feature. In the following screenshot, you can see what the Forward Renderer
asset should look like:

Chapter 20 631

Figure 20.4: Adding support for URP

And that’s all! We are ready to start exploring the AR Foundation components so that we can imple-
ment tracking features.

Using tracking features
For our project, we are going to need two of the most common tracking features in AR (but not the
only ones): image recognition and plane detection. The first one consists of detecting the position in
the real world of a specific image so that we can place digital objects on top of it, such as the player.
The second one, plane detection, consists of recognizing real-life surfaces, such as floors, tables, and
walls, so that we have a reference of where we can put objects, such as the enemy’s spawn points. Only
horizontal and vertical surfaces are recognized (just vertical surfaces on some devices).

AR/VR632

The first thing we need to do is tell our app which images it needs to detect, as follows:

1. Add an image to the project that you can print or display on a mobile device. Having a way to
display the image in the real world is necessary to test this. In this case, I will use the following
image:

Figure 20.5: Image to track

Try to get an image that contains as many features as you can. This means an image with lots
of little details, such as contrasts, sharp corners, and so on. Those are what our AR systems
use to detect it; the more detail, the better the recognition. If your device has trouble detecting
our current image, try other images (the classic QR code might help).

2. Consider that some devices might have trouble with certain images, such as the image suggested
in this book. If this generates issues when testing, please try using another one. You will be
testing this on your device in the upcoming sections of this chapter, so just keep this in mind.

3. Create a Reference Image Library, an asset containing all the images we wish our app to rec-
ognize, by clicking the + button in Project Panel and selecting XR | Reference Image Library:

Figure 20.6: Creating a Reference Image Library

Chapter 20 633

4. Select the Reference Image Library asset we created and click the Add Image button to add
a new image to the library.

5. Drag the texture to the texture slot (the one that says None).
6. Turn Specify Size on and set Physical Size to the size that your image will be printed in, in

real life, in meters. Try to be accurate here; on some devices, not having this value right might
result in the image not being tracked:

Figure 20.7: Adding an image to be recognized

Now that we’ve specified the images to be detected, let’s test this by placing a cube on top of the re-
al-life image:

1. Create a Prefab of a cube and add the AR Tracked Image component to it.
2. Remember to set a small scale, like 0.1, on each axis, given that the default cube will be 1

meter by 1 meter, which will be huge in AR.
3. Add the AR Tracked Image Manager component to the XR Origin object. This will be respon-

sible for detecting images and creating objects in their position.
4. Drag the Image Library asset created in the previous steps to the Serialized Library property

of the component to specify the images to recognize.

AR/VR634

5. Drag the Cube Prefab to the Tracked Image Prefab property of the component:

Figure 20.8: Setting up Tracked Image Manager

And that’s all! Later, in the Building for mobile section in this chapter, when we create an iOS or Android
build, we will see a cube spawning in the same position that the image is located in in the real world.
Remember that you need to test this on the device, which we will do in the next section, so for now,
let’s keep coding our test app:

Figure 20.9: Cube located on top of the image being displayed by the cellphone

Chapter 20 635

Let’s also prepare our app so that it can detect and display the plane surfaces the camera has recognized.
This is simply done by adding the AR Plane Manager component to the XR Origin object.

Figure 20.10: Adding the AR Plane Manager component

This component will detect surface planes over our house as we move the camera over it. It can take
a while to detect them, so it’s important to visualize the detected areas to get feedback about this to
ensure it’s working properly. We can manually get information about the plane from a component
reference to AR Plane Manager, but luckily, Unity allows us to visualize planes easily. Let’s take a look:

1. Create a Prefab of a plane, first by creating the plane in GameObject | 3D Object | Plane.
2. Add a Line Renderer to it. This will allow us to draw a line over the edges of the detected areas.

For more information about what a Line Renderer is, check this link: https://
docs.unity3d.com/Manual/class-LineRenderer.html

https://docs.unity3d.com/Manual/class-LineRenderer.html
https://docs.unity3d.com/Manual/class-LineRenderer.html

AR/VR636

3. Set the Width property of the Line Renderer to a small value such as 0.01, the Color gradient
property to black, and uncheck Use World Space:

Figure 20.11: Setting the Line Renderer

4. Remember to create a material with the appropriate shader (Universal Render Pipeline/Unlit)
and set it as the material of the Line Renderer component under the Materials list property:

Chapter 20 637

Figure 20.12: Creating the Line Renderer material

5. Also, create a transparent material and use it in the MeshRenderer plane. We want to be able
to see through it so that we can easily see the real surface beneath:

Figure 20.13: Material for the detected plane

AR/VR638

6. Add the AR Plane and AR Plane Mesh Visualizer components to the Plane Prefab.
7. Drag the Prefab to the Plane Prefab property of the AR Plane Manager component of the XR

Origin object:

Figure 20.14: Setting the plane visualization Prefab

Now, we have a way to see the planes, but seeing them is not the only thing we can do (sometimes, we
don’t even want them to be visible). The real power of planes resides in placing virtual objects on top
of real-life surfaces, tapping into a specific plane area, and getting its real-life position. We can access
the plane data using AR Plane Manager or by accessing the AR Plane component of our visualization
planes, but something easier is to use the AR Raycast Manager component.

The AR Raycast Manager component provides us with the equivalent of the Physics.Raycast function
of the Unity Physics system, which, as you may recall, is used to create imaginary rays that start from
one position and go in a specified direction in order to make them hit surfaces and detect the exact
hit point. The version provided by AR Raycast Manager, instead of colliding with physics colliders,
collides with tracked objects, mostly point clouds (we are not using them) and the “planes” we are
tracking. We can test this feature by following these steps:

1. Add the AR Raycast Manager component to the XR Origin object.
2. Create a custom script called SpawnerPlacer in the XR Origin object.
3. In the Awake cache, add the reference to ARRaycastManager. You will need to add the using

UnityEngine.XR.ARFoundation; line to the top of the script for this class to be usable in our
script.

4. Create a private field of the List<ARRaycastHit> type and instantiate it; the Raycast function
is going to detect every plane our ray hit, not just the first one:

Figure 20.15: List to store hits

5. Under Update, check if the touch screen is pressed (Touchscreen.current.primaryTouch.
press.isPressed). You will need using UnityEngine.InputSystem; using is at the top of the
file to use the new input system.

6. Inside the if statement from the previous step, add another condition for calling the Raycast
function of AR Raycast Manager, passing the position of the touch as the first parameter and
the list of hits as the second (Touchscreen.current.primaryTouch.position.ReadValue()).

7. This will throw a Raycast in the direction in which the player touches the screen and stores the
hits inside the list we provided. This will return true if something has been hit and false if not.

Chapter 20 639

8. Add a public field to specify the Prefab to instantiate in the place we touched. You can just
create a Sphere Prefab and assign it to this field to test this; there’s no need to add any special
component to the Prefab here. Remember to set a small scale.

9. Instantiate the Prefab in the Position and Rotation fields of the Pose property of the first hit
stored in the list. The hits are sorted by distance, so the first hit is the closest one. Your final
script should look as follows:

Figure 20.16: Raycaster component

In this section, we learned how to create a new AR project using AR Foundation. We discussed how to
install and set up the framework, as well as how to detect real-life image positions and surfaces and
then how to place objects on top of them.

AR/VR640

As you may have noticed, we never hit Play to test this, and sadly, at the time of writing this book, we
cannot test this in the Editor. Instead, we need to test this directly on the device. Due to this, in the
next section, we are going to learn how to do builds for mobile devices such as Android and iOS.

Building for mobile devices
Unity is a very powerful tool that solves the most common problems in game development very easily,
and one of them is building the game for several target platforms. Now, the Unity part of building
our project for such devices is easy to do, but each device has its non-Unity-related nuances when
installing development builds. In order to test our AR app, we need to test it directly on the device. So,
let’s explore how we can make our app run on Android and iOS, the most common mobile platforms.

In this section, we will examine the following mobile building concepts:

• Building for Android
• Building for iOS

Let’s start by discussing how to build our app so that it runs on Android phones.

Building for Android
1. Close Unity and open Unity Hub.
2. Go to the Installs section and locate the Unity version you are working on.
3. Click the wheel icon button in the top-right corner of the Unity version you are using and click

Add modules:

Figure 20.17: Adding modules to the Unity version

4. Make sure Android Build Support and the sub-options that are displayed when you click the
arrow on its left are checked. If not, check them and click the Continue button at the bottom
right to install them:

Before diving into this topic, it is worth mentioning that the following procedures change a
lot over time, so you will need to find the latest instructions on the internet. The Unity Learn
portal site (https://learn.unity.com/tutorial/how-to-publish-to-android-2)
may be a good alternative in case the instructions in this book fail, but try the steps here
first.

https://learn.unity.com/tutorial/how-to-publish-to-android-2

Chapter 20 641

Figure 20.18: Adding Android support to Unity

5. Accept all the terms and conditions prompts by checking the Accept Terms checkbox and
clicking the Continue button.

6. Open the AR project we created in this chapter.
7. Go to Build Settings (File | Build Settings).
8. Select the Android platform from the list and click the Switch Platform button in the bot-

tom-right part of the window:

Figure 20.19: Switching to Android builds

To build an app on Android, there are some requirements we need to meet, such as having the Java SDK
(not the regular Java runtime) and Android SDK installed, but luckily, the new versions of Unity take
care of that. Just to double-check that we have installed the needed dependencies, follow these steps:

1. Go to Unity Preferences (Edit | Preferences on Windows or Unity | Preferences on Mac).
2. Click External Tools.

AR/VR642

3. Check that all the options that say …Installed with Unity in the Android section are checked.
This means we will be using all the dependencies installed by Unity:

Figure 20.20: Using installed dependencies

There are some additional Android ARCore-specific related settings to check, which you can find at
https://developers.google.com/ar/develop/unity-arf/quickstart-android. These can change
if you are using newer versions of ARCore. You can apply them by following these steps:

1. Go to Player Settings (Edit | Project Settings | Player).
2. Uncheck Multithreaded Rendering and Auto Graphics API from the Other Settings section.
3. Remove Vulkan from the Graphics APIs list if it’s there.

https://developers.google.com/ar/develop/unity-arf/quickstart-android

Chapter 20 643

4. Set Minimum API Level to Android 7�0:

Figure 20.21: ARCore settings

AR/VR644

5. Set the Scripting Backend to IL2CPP.
6. Check the ARM64 checkbox to give support to Android 64-bit devices.
7. Check Override Default Bundle Identifier and set something custom, like com.MyCompany.

MyARApp.
8. Go to Edit | Project Settings and select the XR Plug-in Management option.
9. Check Google ARCore under Plug-in Providers to make sure it will be enabled in our build; if

not, we won’t see anything:

Figure 20.22: ARCore plugin enabled

Now, you can finally build the app from File | Build Settings, as usual, by using the Build button. This
time, the output will be a single APK file that you can install by copying the file to your device and
opening it. Remember that in order to install APKs that weren’t downloaded from the Play Store, you
need to set your device to Install Unknown Apps. The location for that option varies a lot, depending
on the Android version and the device you are using, but this option is usually located in the Security
settings. Some Android versions prompt you to view these settings when installing the APK.

Now, we can copy and install the generated APK build file every time we want to create a build. How-
ever, we can let Unity do that for us using the Build and Run button. This option, after building the
app, will look for the first Android device connected to your computer via USB and will automatically
install the app. For this to work, we need to prepare our device and PC as follows:

Chapter 20 645

1. On your device, find the build number in the Settings section of the device, whose location,
again, can change depending on the device. On my device, it is located in the About Phone |
Software Information section:

Figure 20.23: Locating the build number

AR/VR646

2. Tap it a few times until the device says you are now a programmer. This procedure enables the
hidden developer option in the device, which you can now find in the settings.

3. Open the developer options and turn on USB Debugging, which allows your PC to have special
permissions on your device. In this case, it allows you to install apps.

4. Install the USB drivers from your phone manufacturer’s site onto your computer if using Win-
dows. For example, if you have a Samsung device, search for Samsung USB Driver. Also, if you
can’t find that, you can look for Android USB Driver to get the generic drivers, but that might
not work if your device manufacturer has their own. On Mac, this step is usually not necessary.

5. Connect your device (or reconnect it if it’s already connected). The Allow USB Debugging
option for your computer will appear on the device. Check Always allow from this computer
and click OK:

Figure 20.24: Allowing USB debugging

6. Accept the Allow Data prompt that appears.
7. If these options don’t appear, check that the USB Mode of your device is set to Debugging and

not any other.
8. In Unity, build with the Build and Run button, and save the apk into a folder. Be patient because

this will take a while the first time.

Please remember to try another image if you have trouble detecting the image where we instantiate
the player (the Unity logo, in my case). This might vary a lot, according to your device’s capabilities.

And that’s all! Now that you have your app running on your device, let’s learn how to do the same for
the iOS platform.

Chapter 20 647

Building for iOS
Developing for iOS involves certain costs and requirements. This includes using Xcode, which is
available only on macOS, and potentially acquiring a Mac device and an iOS device. Also, while an
Apple Developer account, costing 99 USD per year, is necessary for releasing games, it’s optional for
testing purposes.

To create an AR Foundation iOS build, you should do the following:

1. Get a Mac computer and an iOS device.
2. Create an Apple Developer account (at the time of writing this book, you can create one at

https://developer.apple.com/).
3. Install the latest version of Xcode from the App Store onto your Mac.
4. Check if you have iOS build support in your Unity installation on Unity Hub. Please refer to

the Building for Android section for more information about this step.
5. Switch to the iOS platform under Build Settings, by selecting iOS and clicking the Switch

Platform button:

Figure 20.25: Switching to iOS build

6. Go to Edit | Project Settings and select the Player option.
7. In Other Settings, set the Camera Usage Description property if not already set. This will be

a message shown to the user to tell them why we need access to their camera:

Figure 20.26: Message regarding camera usage

8. Go to Edit | Project Settings and select the XR Plug-in Management option.

https://developer.apple.com/

AR/VR648

9. Check ARKit under Plug-in Providers to make sure it will be enabled in our build; if not, we
won’t see anything:

Figure 20.27: ARKit plugin enabled

10. Click the Build button in the Build Settings window, create a folder for the build, and wait for
the build to finish. A folder containing the generated files should open when finished.

You will notice that the result of the build process will be a folder containing an Xcode project. Unity
cannot create the build directly, so it generates a project you can open with the Xcode software we
mentioned previously. The steps you need to follow to create a build with the Xcode version being
used in this book (13.4.1) are as follows:

1. Double-click the .xcodeproj file inside the generated folder:

Figure 20.28: Xcode project file

2. Go to Xcode | Preferences.
3. In the Accounts tab, hit the + button in the bottom-left part of the window and log in with the

Apple account you registered as an Apple developer:

Chapter 20 649

Figure 20.29: Account settings

4. Connect your device and select it from the top-left part of the window, which should now say
Any iOS device. You might need to unblock your device first, click on the Trust button, and
wait for Xcode to finish setting up your device to see your device in the list:

Figure 20.30: Selecting the device

5. Xcode might ask you to install certain updates to support your device; please install them if
needed.

6. In the left panel, click the folder icon and then the Unity-iPhone settings to display the project
settings.

7. From the TARGETS list, select Unity-iPhone and click on the Signing & Capabilities tab.
8. Check Automatically manage signing and click on the Enable Automatic button on the prompt.
9. In the Team settings, select the option that says Personal Team.
10. If you see a Failed to register bundle identifier error, just change the Bundle Identifier setting

for another one, always respecting the format (com.XXXX.XXXX), and then click on Try Again
until it is solved.

AR/VR650

Once you find one that works, set it in Unity (Bundle Identifier under Player Settings) to avoid
needing to change it in every build:

Figure 20.31: Setting up your iOS project

1. Hit the Play button in the top-left part of the window and wait for the build to complete. You
might be prompted to enter your password a couple of times in the process, so please do so.

2. When the build is complete, remember to unlock the device. A prompt will ask you to do that.
Note that the process won’t continue unless you unlock the phone. If that fails, click Cancel
Running and try again, this time with the device unlocked; remember to select your device
in the list again. Also, try to use the latest Xcode version available to support the latest iOS
versions installed on your device.

3. If you see a Fetching Debug Symbols prompt that never ends, restart your device.
4. After completion, you may see an error saying that the app couldn’t be launched but that it

was installed anyway. If you try to open it, it will say you need to trust the developer of the app,
which you can do by going to your device settings.

5. From there, go to General | VPN & Device Management and select the first developer in the list.
6. Click the blue Trust… button and then Trust.
7. Try to open the app again.
8. Please remember to try another image if you’re having trouble detecting the image where we

instantiate the player (the pebbles image, in my case). This might vary a lot, depending on
your device’s capabilities.

In this section, we discussed how to build a Unity project that can run on iOS and Android, thus allow-
ing us to create mobile apps—AR mobile apps, specifically. Like any build, there are methods we can
follow to profile and debug, as we saw when we looked at PC builds, but we are not going to discuss
that here. Now that we have discussed the building process for iOS, let’s shift our focus to the exciting
task of creating a simple AR game. We’ll start by developing the core gameplay mechanics, including
spawning players and enemies.

Chapter 20 651

Creating a simple AR game
As we discussed previously, the idea is to create a simple game where we can move our player while
moving a real-life image and also put in some enemy spawners by just tapping where we want them
to be, such as a wall, the floor, a table, and so on. Our player will automatically shoot at the nearest

AR/VR652

The enemies will require a little bit more work, as shown here:

1. Create a Prefab called Spawner with the graphic you want your spawner to have (in my case, a
cylinder) and its real-life size (small scale).

2. Add a custom script that spawns a Prefab every few seconds, such as the one shown in the
following screenshot.

3. You will notice the usage of Physics.IgnoreCollision to prevent the Spawner GameObject
from colliding with the spawned GameObject, getting the colliders of both objects and passing
them to the function. You can also use the Layer Collision Matrix to prevent collisions, just
like we did in this book’s main project, if you prefer to:

Figure 20.33: Spawner script

Chapter 20 653

4. Create an Enemy Prefab with the desired graphic (a capsule, in my case) and a Rigidbody com-
ponent with the Is Kinematic checkbox checked. This way, the enemy will move, but not with
physics. Remember to consider the real-life size of the enemy.

5. Set the Prefab property of Spawner so that it spawns our enemy at our desired time frequency:

Figure 20.34: Configuring Spawner

6. Set the Prefab of SpawnerPlacer in the XR Origin object so that it spawns the Spawner Prefab
we created earlier.

And that’s all for the first part. If you test the game now, you will be able to tap on the detected planes
in the app and see how the spawner starts creating enemies. You can also look at the target image
and see our cube player appear.

Now that we have the objects in the scene, let’s make them do something more interesting, starting
with the enemies.

Coding the player and enemy behavior
The enemy must move toward the player in order to shoot at them, so it will need to have access to the
player’s position. Since the enemy is instantiated, we cannot drag the player reference to the Prefab.
However, the player has also been instantiated, so we can add a PlayerManager script to the player that
uses the Singleton pattern. Remember, the Singleton pattern ensures that only one instance of a script
exists within a game, a concept we covered in Chapter 8, Victory or Defeat: Win and Lose Conditions).

AR/VR654

To do that, follow these steps:

1. Create a PlayerManager script similar to the one shown in the following screenshot and add
it to the player:

Figure 20.35: Creating the PlayerManager script

2. Now that the enemy has a reference to the player, let’s make them look at the player by adding
a LookAtPlayer script, as shown here:

Figure 20.36: Creating the LookAtPlayer script

3. Also, add a simple MoveForward script like the one shown in the following screenshot to make
the enemy not only look at the player but also move toward them. Since the LookAtPlayer
script is making the enemy face the player, this script moving along the Z axis is just enough:

Chapter 20 655

Figure 20.37: Creating the MoveForward script

Now, we will take care of the player movement. Remember that our player is controlled by moving
the image, so here, we are actually referring to the rotation since the player will need to automatically
look and shoot at the nearest enemy. To do this, follow these steps:

1. Create an Enemy script and add it to the Enemy Prefab.
2. Create an EnemyManager script like the one shown in the following screenshot and add it to an

empty EnemyManager object in the scene:

Figure 20.38: Creating the EnemyManager script

AR/VR656

3. In the Enemy script, make sure to register the object in the all list of EnemyManager, as we did
previously with WavesManager in this book’s main project:

Figure 20.39: Creating the Enemy script

Chapter 20 657

4. Create a LookAtNearestEnemy script like the one shown in the following screenshot and add
it to the Player Prefab to make it look at the nearest enemy:

Figure 20.40: Looking at the nearest enemy

AR/VR658

Now that our objects are rotating and moving as expected, the only thing missing is shooting and
damaging:

1. Create a Life script like the one shown in the following screenshot and add it to both the Player
and Enemy components. Remember to set a value for the amount of life field. You will see this
version of Life instead of needing to check whether the life reached zero every frame. We have
created a Damage function to check that damage is dealt (the Damage function is executed), but
the other version of this book’s project also works:

Figure 20.41: Creating a Life component

2. Create a Bullet Prefab with the desired graphics, the collider with the Is Trigger checkbox on
the collider checked, a Rigidbody component with Is Kinematic checked (a kinematic trigger
collider), and the proper real-life size.

3. Add the MoveForward script to the Bullet Prefab to make it move. Remember to set the speed.
4. Add a Spawner script to both the Player and the Enemy components and set the Bullet Prefab

as the Prefab to spawn, as well as the desired spawn frequency.

Chapter 20 659

5. Add a Damager script to the Bullet Prefab like the one shown in the following screenshot to
make bullets inflict damage on the objects they touch. Remember to set the damage:

Figure 20.42: Creating a Damager script – part 1

6. Add an AutoDestroy script like the one shown in the following screenshot to the Bullet Prefab
to make it despawn after a while. Remember to set the destroy time:

Figure 20.43: Creating a Damager script – part 2

AR/VR660

And that’s all! As you can see, we basically created a new game using almost the same scripts we used
in the main game, mostly because we designed them to be generic (and the game genres are almost
the same). Of course, this project could be improved a lot, but we have a nice base project to create
amazing AR apps.

Summary
In this chapter, we introduced the AR Foundation Unity framework, explored how to set it up, and
how to implement several tracking features so that we can position virtual objects on top of real-life
objects. We also discussed how to build our project so that it can run on both iOS and Android platforms,
which is the only way we can test our AR apps at the time of writing. Finally, we created a simple AR
game based on the game we created in the main project but modified it so that it’s suitable for use in
AR scenarios.

With this new knowledge, you will be able to start your path as an AR app developer, creating apps
that augment real objects with virtual objects by detecting the positions of the real objects. This can
be applied to games, training apps, and simulations. You may even be able to find new fields of usage,
so take advantage of this new technology and its new possibilities!

Well, this is the end of this journey through Unity 2023. We are really glad you reached this point in
the book. We hope this knowledge will help you to improve or start your game development career
with one of the most versatile and powerful tools on the market: Unity. We hope to see your creations
someday! See you on the road!

Learn more on Discord
Read this book alongside other users, Unity game development experts, and the author himself. Ask
questions, provide solutions to other readers, chat with the author via Ask Me Anything sessions, and
much more. Scan the QR code or visit the link to join the community:

https://packt.link/unitydev

https://packt.link/unitydev

21
Massive Worlds: Introduction to
DOTS

While Unity is a powerful and performant engine (when used properly), there’s a limit on how many
GameObjects you can have without reaching performance limits. While the Object-Oriented Program-
ming (OOP) paradigm provides a convenient way to code a game, due to its internal works, it won’t
always take advantage of all the modern CPU features, like caching, Single Instruction Multiple Data
(SIMD) operations, and multi-threading. While it isn’t impossible to use such features in OOP, doing
so is not a trivial task and can lead to difficult-to-track bugs. Unity’s response to that issue was releas-
ing the first production-ready version of the DOTS packages, which will help us with these problems.

In this chapter, we will examine the following build concepts:

• Understanding what DOTS is
• Creating our first DOTS game
• Creating gameplay in DOTS

Let’s start by getting an idea of what DOTS is and why we should use it.

Understanding what DOTS is
The Unity Data-Oriented Technology Stack (DOTS) is a set of Unity packages that allows us to write
data-oriented code easily. While there are plenty of packages in the DOTS stack, let’s focus on the
three key ones that serve as pillars for the rest:

• Entities: Unity takes on the ECS pattern. It replaces GameObjects and MonoBehaviours with
Entities, Components, and Systems (ECS, a paradigm in Unity that separates data (compo-
nents) from logic (systems), enhancing performance and scalability), a cache-friendly way to
store and update our scene objects. It provides considerable performance boosts, especially
in games with lots of objects.

Massive Worlds: Introduction to DOTS662

• Jobs: The Unity way to create multi-threaded code. It groups data and code that processes
jobs. They are executed in parallel thanks to the job scheduler, which guarantees that explicit
dependencies between jobs are respected. This avoids classic multi-threading issues like dead-
locks and race conditions. Unity uses Jobs to boost the performance of its different systems,
like rendering or physics. It cannot be applied to regular MonoBehaviour methods like Update
without significant modifications, but entities are highly compatible with jobs.

• Burst: A code compiler capable of converting C# scripts to highly optimized native code. It
uses LLVM, which applies advanced optimizations when compiling. The code to convert needs
to use a subset of C#, called High Performant C# (HPC#), so it cannot be applied to any script
without (sometimes) considerable modification.

While these packages can be used separately (especially the Jobs and Burst packages), the idea is to
mix them to parallelize our game logic written in ECS using Jobs, while Burst makes it run as fast
as possible. The other DOTS packages provide different features like rendering (Entities Graphics),
physics (Unity Physics and Havok), and networking (Netcode for Entities).

All of this sounds great and exciting, but there are some caveats when using this technology. Here’s a
list of the most important ones:

• It’s a fundamental change from the GameObject approach. This means that you must re-
learn how to do the same things you are already comfortable doing with GameObjects and
MonoBehaviours.

• The learning curve can be steep, depending on your programming experience. This is caused
by the limited C# features available due to HPC#, custom APIs to learn, and the multi-threaded
nature of its code. Even if the Jobs package is easy to use, it adds challenges that aren’t present
in single-thread code.

• It’s in its early stages. It’s likely that its API will change considerably in the short term (for the
better!). Luckily, the data-oriented principles won’t change, meaning that we won’t need to
relearn them again, just the APIs involved.

• Some GameObjects features aren’t available in DOTS yet, like UI, audio, terrain, or animations.
For now, you need to implement such features in GameObjects and synchronize them with
their respective entities. It is a hard endeavor that requires several custom solutions.

Regardless, these obstacles didn’t stop ambitious games from being made with DOTS, like V-Rising and
Cities Skylines 2. The idea of discussing DOTS’ caveats is not to intimidate but to understand when it
is justified to use it. The games I just mentioned are great examples of where DOTS shines, given that
those games simulate huge worlds with lots of objects. Here’s a non-comprehensive list of games that
could benefit from using DOTS:

• Big worlds with several objects that require complex simulation logic to run in a performant
way. Some examples of this are massively multiplayer online games (MMOs), city-builder games,
or big RPGs that simulate vast worlds like Cyberpunk 2077 or Assassin’s Creed.

• Complex simulations require real-life behavior, like wind-tunnel simulations, architecture
visualization, or even galaxy star simulations.

Chapter 21 663

• Specific features of a GameObjects-based game can use DOTS, like a crowd in a football stadium
or complex particle systems. DOTS and GameObjects can coexist in the same game.

On the other hand, simple games that run properly with GameObjects don’t need the difficulties and
current limitations of DOTS. For example, fighting games that require two main objects (the fighters)
and a minimal environment are not good candidates. Other examples are casual open-world exploration
games like Firewatch, which, even if they feature big landscapes to explore, have a simple enough logic
to get away with some clever tricks using GameObjects. In the end, Firewatch was made without DOTS.

These limitations will be sorted in the future, making all types of games using DOTS viable, but for
now, let’s avoid starting a project in a way that might risk its development. I’m not saying that DOTS
is risky, but I want to be clear that not every game is worth the effort and pitfalls of relearning a new
tech from scratch.

If, after careful consideration and research, you think your future project might benefit from using
DOTS, then stick with us; in the next section, we are going to learn how DOTS works by doing a simple
introductory project.

Creating our first DOTS game
There is plenty to learn in order to create performant games with DOTS, so let’s start by creating a
simple project featuring cubes moving forward. Emphasis on cubes – we are going to have thousands
of them! I know it is not the most exciting project, but bear with me, as in the Creating Gameplay in the
DOTS section in this chapter, we will convert it into an actual (but simple) game.

In this section, we will examine the following DOTS concepts:

• Creating a DOTS project
• Creating entities with subscenes
• Creating components and bakers
• Creating systems using Jobs and Burst
• Debugging systems jobs and queries

Let’s start by discussing how to set up a project to be compatible with DOTS.

Creating a DOTS project
The first step for creating a DOTS project is the one you should already know by this point in the book:
creating a brand-new URP project. If you are not sure how to do it, please refer to Chapter 1, Embark
on Your Unity Journey. Make sure you are using the 3D (URP) template, as DOTS is only compatible
with URP and HDRP, and we didn’t cover HDRP in this book. You can also add DOTS to an existing
project if needed.

Now, it’s time to install the needed DOTS packages. We mentioned that there are three key packages:
Entities, Jobs, and Burst, and we also mentioned that the rest of the packages are built on top of them.
Aside from those packages, we need Entities Graphics to render our entities. Given that this package
has dependencies on the core DOTS packages, just installing it will bring the holy three packages.

Massive Worlds: Introduction to DOTS664

If you don’t remember how to install packages, please refer to the Installing ProBuilder section from
Chapter 3, From Blueprint to Reality: Building with Terrain and ProBuilder. Those instructions install
the ProBuilder package, but the steps can be extrapolated to install this one. At the time of writing
this chapter, Entities Graphics is in version 1.0.16.

Figure 21.1: Installing Entities Graphics and also the Entities package as a dependency

You might receive a message about the Burst package being updated, which might cause Unity to be
unstable. As usual, restart Unity when installing a new package to fix the issue.

The next thing to do is to change the URP settings to use Forward+, a new URP rendering path that is
utilized by DOTS for rendering. Do the following:

1. Select the currently used SRP asset as explained in the Configuring performant shadows section of
Chapter 12, Enlightening Worlds: Illuminating Scenes with the Universal Render Pipeline. In my case,
the asset is called URP-HighFidelity, so you can also search for it by name in the Project panel.

Figure 21.2: Seeing the current SRP asset in use.

2. In the Renderer List of the SRP asset, double-click its first element to select the renderer
asset. In my case, it is called URP-HighFidelity-Renderer, so again, you can just search it in
the Project panel.

Figure 21.3: Selecting the Renderer asset used by the SRP asset

Chapter 21 665

3. In the renderer asset, set the Rendering Path option to Forward+.

Figure 21.4: Activating Forward+ as the current rendering path

4. Press the Play button in the editor to make sure everything works fine. If you see a warning
message in the console like the one in Figure 21.5, make sure you are modifying the proper
asset. The console message will tell you the name of the asset to change.

Figure 21.5: Warning message when playing a DOTS project and not using Forward+

Consider that the other URP renderer assets might be used if the game allows changing the quality set-
tings if the game features an options menu. In such a case, change all renderer assets to use Forward+.

There is an extra step that is not necessary for DOTS to work, but that will make the editor experience
faster. Just go to Edit | Project Settings | Editor and check the Enter Play Mode Options checkbox. This
will avoid the costly domain reload process that happens whenever we play a game in the editor. While
this might be necessary in GameObject-based projects, pure DOTS projects can avoid it. Enable this
option when doing a hybrid DOTS game.

Now that we have our project properly set up, let’s create our first entity.

Creating entities with subscenes
While entities work differently from GameObjects, you are still going to use GameObjects to create
entities in the editor. The idea is to use the familiar Unity tools you are used to working with, like
the Scene, Hierarchy, and Inspector panels, and even Prefabs. This works by converting specific
GameObjects and their components into their entity equivalents. We will also instantiate entities via
scripting later in this chapter.

A discussion about Forward+ is beyond the scope of this chapter. For more info, check the
following link: https://docs.unity3d.com/Packages/com.unity.render-pipelines.
universal@14.0/manual/rendering/forward-plus-rendering-path.html

There are ways to use the Play Mode Options in GameObject projects. Check the fol-
lowing documentation link for more info: https://docs.unity3d.com/Manual/
ConfigurableEnterPlayMode.html

mailto:https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@14.0/manual/rendering/forward-plus-rendering-path.html
mailto:https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@14.0/manual/rendering/forward-plus-rendering-path.html
https://docs.unity3d.com/Manual/ConfigurableEnterPlayMode.html
https://docs.unity3d.com/Manual/ConfigurableEnterPlayMode.html

Massive Worlds: Introduction to DOTS666

To convert GameObjects to entities in the editor, we are going to use the baking system. It uses bak-
ers – scripts responsible for converting specific components to their entities’ equivalents. Some DOTS
packages come with bakers to convert specific Unity components; for example, Entities Graphics has
bakers to convert the MeshFilter and the MeshRenderer components to their entities’ versions. The
converted versions might differ considerably from the original ones, and usually, one component can
be converted to several ECS components. If you don’t install the Entities Graphics package, MeshFilter
and MeshRenderer will be discarded when converting them, as there’s no baker in the project for them,
making your entity not be rendered. Later in this chapter, we will create our own bakers.

The way to tell Unity which GameObjects should be converted is via a subscene, which is another
scene that will contain just the GameObjects to convert. The idea is for a main scene to load the enti-
ties subscene by using the SubScene component, which is responsible for converting and loading the
entities in the subscene. Note that the conversion happens in the editor, meaning that no conversion
happens when playing the game from a build. This allows loading subscenes extremely fast, thanks
to the way scenes are serialized.

To create a subscene, do the following:

1. In an existing scene, right-click in any empty space of the Hierarchy and select the New Sub
Scene | Empty Scene option. If you see the option grayed out, make sure to save the main
scene first.

Figure 21.6: Creating a subscene

2. In the save-file prompt, save the subscene like you save a regular scene.
3. This will create a GameObject with the SubScene component in the main scene. It will have

the Scene Asset property set to reference the subscene file we created. If the New Sub Scene
option is not available, create the subscene asset and GameObject manually until it looks like
Figure 21.7.

Figure 21.7: A subscene component that loads the subscene asset we just created

4. Make sure the checkbox of the subscene GameObject in the Hierarchy is checked, as it allows
you to edit the subscene and add objects to it.

Chapter 21 667

5. Create a cube using GameObject | 3D Object | Cube and drag it inside the subscene in the
Hierarchy. Make sure you create it inside the subscene by noting the indentation seen in Fig-
ure 21.8. If it is created outside the subscene, the cube will look right, but because it is still a
regular GameObject.

Figure 21.8: Indentation that shows that the Cube is inside the subscene

6. To confirm the cube was converted, select it and check if the Entity Baking Preview is at the
bottom of the Inspector. Click it to show a list of ECS components converted from the cube’s
original components.

Figure 21.9: Entity Baking Preview showing the ECS components created from your original
Cube

7. Make sure the scene camera is pointing to the cube, and then play the game. You must see the
cube being rendered in the Game panel. Make sure that the camera is not inside the subscene;
we need it to be a classic GameObject.

And that’s it! You created your very first entity! Of course, it doesn’t do anything fancy, but now we are
ready to add custom behavior to it, starting by adding ECS components.

Creating components and bakers
Before creating ECS components, let’s discuss how they differ from GameObject components. Think
of GameObject components as individual tools in a toolbox – each one is designed for a specific task,
like rendering shapes or detecting collisions. They work independently but together create the func-
tionality of an object in your game. On the other hand, ECS components are more like raw materials
in a factory line; they don’t do anything on their own. Instead, they are efficiently processed and
assembled by systems to create the desired behavior. This shift from using individual tools (Game-
Object components) to processing raw materials (ECS components) enables Unity to optimize game
performance, especially in complex scenes with many objects.

While we still want to add components to entities to add behavior to them, the responsibilities of ECS
components are limited to holding only data. This means they won’t have Updates or other events
like OnTriggerEnter; it’s just pure data. They can have methods to facilitate operating on that data
but not the core gameplay logic.

Massive Worlds: Introduction to DOTS668

You might be wondering where our logic will be placed then, and the answer is systems. We will create
them later in this chapter, but first, let’s add the entity data required for our gameplay logic to work.

With data, I am referring to variables like our character’s bullets, the score, health points, position,
and so on. We usually create fields in MonoBehaviours for such purposes, and here’s no different, but
this time, we won’t use classes that inherit from MonoBehaviour. Instead, we are going to use structs
that implement IComponentData. Structs allow the Entities package to manage the memory of our
components differently from how the Garbage Collector works by organizing it in a way that leverages
the CPU cache. Structs are also compatible with HPC#, the subset of C# compatible with Burst. More
about Burst and CPU caching will be discussed later in this chapter.

You can create a component by creating a script using the plus button in the Project panel, selecting
the C# script option, and naming the script like the component you want to create. Don’t create the
script using the Add Component button in the Inspector, as we need some extra steps before adding
components to the to-be-converted GameObjects. We recommend putting all your ECS components’
scripts inside a Scripts/ECS/Components folder to easily distinguish between your regular Unity
scripts and the ECS scripts.

As we want our cube to move forward, we need a velocity value. Components with transform data like
position and rotation were added by Transform bakers included in the Entities package. To create our
velocity ECS component, start by creating a script called Velocity and put the following code inside it.

Figure 21.10: An ECS component that holds the velocity of the entity

Remember that we shouldn’t use classes; use structs instead. While you can use classes, they will be
a different type of component (managed component) that is considerably less performant, and we
don’t need them now. Also, notice how we included the Unity.Entities namespace. And that’s it!
We have our first ECS component! But we are not finished yet. If you try to add this component to our
cube in the subscene, it won’t work. Our component won’t be listed in the Add Component button
in the Inspector, and you can’t even drag and drop the script file as usual. Remember that the baker
system needs a baker for our ECS component and a MonoBehaviour to convert.

The difference between structs and classes in C# is outside the scope of this book. You can
learn more about this here: https://learn.microsoft.com/en-us/dotnet/standard/
design-guidelines/choosing-between-class-and-struct

https://learn.microsoft.com/en-us/dotnet/standard/design-guidelines/choosing-between-class-and-struct
https://learn.microsoft.com/en-us/dotnet/standard/design-guidelines/choosing-between-class-and-struct

Chapter 21 669

The idea is to use GameObjects and MonoBehaviours to use the existing Unity tools to create scenes and
convert them to entities through bakers. So far, we created the ECS component, but we still need the
MonoBehaviour version of that component to add it to the subscene GameObjects. The MonoBehaviour
version of our component is called the Authoring Component, and the ECS component is the Runtime
Component. To create the authoring component, create a regular component with the fields we want
to configure from the editor. In the following image, you can see the VelocityAuthoring component:

Figure 21.11: The authoring component for our Velocity runtime component

It’s just the classic MonoBehaviour component we are used to creating, with the same fields our
runtime component will have. Now that we have a component that we can add to our authoring
GameObjects in the subscene, just add it to the cube. If you check the Entity Baking Preview pane at
the bottom of the Inspector, no new ECS component was added. We still need to create the baker to
convert VelocityAuthoring into Velocity. A baker is a class that inherits from the Baker class and
converts authoring components into runtime components. In the next image, you can see the baker
for our VelocityAuthoring component.

Figure 21.12: The baker that converts the VelocityAuthoring component to the runtime component

Massive Worlds: Introduction to DOTS670

As you can see, we created a class that inherits from Baker<VelocityAuthoring>, meaning that this
will be the baker for VelocityAuthoring when the baking system does the conversion. In the Bake
method, we receive the instance of the authoring component to convert, accessing its data to create
the runtime component.

First, we get the entity created for the converted GameObject by using the GetEntity method. Its
only parameter highlights that we want this object to move during play mode. Hence, it’s dynamic.
Then, we create the instance of the runtime component, and we set its velocity value to be the same
as the authoring component. This way, we make sure that the value set in the Inspector is the one
that the runtime component will have. Finally, we use the AddComponent method to add the runtime
component to the converted entity.

If you save your scripts and make sure the authoring component is added to the cube, the Entity Bak-
ing Preview pane should show the Velocity runtime component. You can click it and confirm that its
value is the same as the authoring component.

Figure 21.13: The Entity Baking Preview shows how our runtime component reflects the authoring
component value

While this seems like a lot to create a component, in real projects, this becomes a powerful tool. Au-
thoring components might add several runtime components, sometimes conditionally. For example,
the Rigidbody baker in the Unity Physics package will add different components depending on whether
Is Kinematic is checked or unchecked.

Now that we have the needed data, let’s create the system to move our cube.

For more information about the different transform usage flags used in GetEntity, check
this link: https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/
transforms-usage-flags.html

mailto:https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/transforms-usage-flags.html
mailto:https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/transforms-usage-flags.html

Chapter 21 671

Creating systems using Jobs and Burst
Regular MonoBehaviours not only have data but also the logic to create the behavior they represent.
Sometimes, they need data from other components, like the position in Transform, so they use methods
like GetComponent to access other components’ data. In ECS, this works quite differently.

Given ECS components have just data, the logic goes into a different place called Systems. They apply
the game logic, such as moving or rotating objects, to the entities that require such logic. The way for
systems to identify which entities must have their logic applied is via their data. Systems will query
all entities that have specific sets of components for their logic to work and will iterate the resulting
entities to apply that logic. In this case, we want to move entities, but not all entities, just the entities
that have the Velocity component and position data.

To make our movement system, first, we need to create a script, as seen in the following image:

Figure 21.14: An empty ECS system that serves as the base to create our movement system

A system consists of a partial struct that implements the ISystem interface. It needs to be partial given
that DOTS relies on code generators, meaning that lots of boilerplate code to make a system work will
be in another MovementSystem partial struct created automatically for us. We also added an OnUpdate
method, the equivalent to the MonoBehaviour’s Update method, but with a very important difference.

The clarification that our system requires to have position data might be confusing, giv-
en that all GameObjects have a Transform component. This is not necessarily true in
DOTS, and it’s explained in more detail in the TransformUsageFlags property info box
we mentioned before. In this project, we will always use TransformUsageFlag.Dynamic,
so for this case, we can assume all entities will have transformation data such as position,
rotation, and scale.

Again, the partial keyword is outside the scope of the book. Check the following link
for more info: https://learn.microsoft.com/en-us/dotnet/csharp/programming-
guide/classes-and-structs/partial-classes-and-methods

https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/partial-classes-and-methods
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/partial-classes-and-methods

Massive Worlds: Introduction to DOTS672

The regular Update method belongs to specific components, meaning that the Update will be executed
once per component instance. If we have 100 GameObjects with a MonoBehaviour that has an Update
method, that method will be executed 100 times per frame, once for each GameObject. But in this case,
by default, there’s always a single instance of our system in the game, which is created automatically
by the Entities package, regardless of the entities present in the scene. This means that our movement
systems OnUpdate method will be executed once per frame as soon as we play the game, just because
the system script exists. There are ways to prevent the automatic system creation, to have more than
one instance of a system, and to prevent the OnUpdate execution, but let’s keep things simple.

After saving your system script, to make sure it is working, play the game and, during play mode, open
the Systems panel in Window | Entities | System. This window will list all the systems that are running
and their performance metrics.

Figure 21.15: The Systems window showing our Movement System.

The next step is to iterate all entities that have the Velocity and the LocalTransform component.
The latter is one of the several Transform ECS equivalents added by the Transform bakers. There
are several ways to iterate entities, but let’s first see the most common and performant way, using
jobs. Jobs are structs that contain the logic we want to apply in multiple threads, and the data needed
to apply it, such as delta time or the positions of the objects to move. In our case, the data will be
the entity components and some extra data, like delta time. To iterate entities, we have a type of job
called IJobEntity. There are plenty of job types for different purposes, but for ECS, we will be using
IJobEntity most of the time.

Chapter 21 673

In the following figure, you can see a job script that moves all entities with Velocity and LocalTransform:

Figure 21.16: A job to move entities that have LocalTransform and Velocity components

There are a lot of things happening here, so let’s analyze this script piece by piece:

1. We created a partial struct that implements IJobEntity in a script that uses the Unity.Entities
and Unity.Transforms namespaces.

2. This struct has an execute method with two parameters, one of type LocalTransform and the
other of Velocity type. It’s no coincidence that these parameters match the exact components
we need to move entities. The parameters defined in the Execute method of an IJobEntity
serve to tell ECS that we want to iterate entities with such components, ignoring the ones
without them.

3. The LocalTransform parameter is prefixed by a ref keyword, while Velocity is prefixed by
an in keyword. Those are ways to tell ECS the privileges we want over those components. Ref
means that we will modify LocalTransform, while in means we will only read the data of
Velocity. For the job system to make sure any job is safe to execute in parallel with others,
it needs to know how the data in them will be treated. Two jobs that write the same data (for
example, two jobs that move objects in different ways) cannot be executed in parallel to pre-
vent race conditions and using locks. However, two jobs that read the same data can execute
in parallel, given that read-only operations are thread-safe. Always define parameters as in
(read-only) whenever possible, using re only when necessary.

Massive Worlds: Introduction to DOTS674

4. We calculate the number of meters to move as usual by multiplying the velocity with delta
time. We didn’t access delta time, as usual, using Time.deltaTime. To allow for safe job paral-
lelization, they are designed to deal only with the data inside the job, avoiding accessing static
variables whenever possible. That’s why delta time is a field in the struct so that later when we
instantiate the job in our system, we will fill this data.

5. In MonoBehaviours, modifying the axes returned by transform.position directly (not storing
it in a variable) is not possible; given that transform.position returns a copy of the position,
modifying it will throw an error. The same applies to any other getter. But in ECS, it’s perfect-
ly valid, given that we are manipulating the data by reference, not just a copy. We accessed
LocalTransform via a ref keyword, meaning that we are accessing the position memory di-
rectly. In regular MonoBehaviours, this is not possible, given the position of our GameObjects
is stored in the C++ side of a Transform, so copies are necessary.

Now, the only responsibility of MovementSystem is to instantiate the job, fill in its data, and schedule
it. By scheduling it, the job system will take care of checking when it is safe to execute our job, con-
sidering how other systems’ jobs might read and write the same data our job needs. Remember that
the idea of defining read-write or read-only access for our components when using the ref and in
keywords is to allow the job scheduler to take such considerations.

Our system’s OnUpdate method will look like the following figure:

Figure 21.17: The movement system instancing MoveJob and scheduling it

As you can see, we simply instantiate the job, filling the DeltaTime field with this frame’s delta time, and
then we schedule the job using ScheduleParallel. The first thing to notice is that we used SystemAPI.
Time.DeltaTime is the ECS way to get the frame’s delta time.

Jobs can access mutable static data if they are not Burst-compiled (more on this later). But
even if that is possible, it is highly dangerous as the ECS safety systems cannot prevent
two jobs from modifying such static data. That’s why it is safer to copy the data to the job
as we did with Time.deltaTime.

Chapter 21 675

ECS has its own timing mechanism, and while we can still use Time.DeltaTime, we should stick to the
ECS version to work properly with the rest of the systems. Also, we didn’t specify the entities the job
will iterate. Systems code generators know the entities we want to iterate based on the system job’s
Execute method parameters, so we don’t need to worry about providing this data to the job.

Finally, we used the ScheduleParallel method to not only tell the job scheduler to schedule our job
but also to tell it that we want to iterate the entities in parallel. This means that the job worker threads
(usually one for each CPU core) will be processing different entities, reducing the time it takes to execute
our logic by spreading the work. You can also use Schedule instead, which processes all our entities
in a single core but still in parallel with other jobs. For now, we will stick with ScheduleParallel for
most cases.

Now we need the final piece of the DOTS tri-force, Burst. Remember, Burst will take HPC# compliant
code and convert it into performant native code. Here’s a non-comprehensive list of requirements
of HPC#:

• Using managed references (objects) is not possible. This includes strings, arrays, lists, dictio-
naries, and most of the C# libraries, like System.Collections.

• Exceptions (try/catch) work in the editor, but they will abort execution in builds.
• Debug.Log support is limited to constant strings, string interpolation, and string.Format.
• Static read-only data and constants are safe. Mutable static data isn’t unless the SharedStatic

struct is used: https://docs.unity3d.com/Packages/com.unity.burst@1.8/manual/csharp-
shared-static.html

We have used HPC# in the code so far, so we just need to tag the code to Burst-compile using the
BurstCompile attribute. In systems, you can add this attribute to the OnUpdate method, and for jobs,
add the attribute to the job struct to Burst-compile its Execute method.

Figure 21.18: Burst-compiling our systems and jobs

mailto:https://docs.unity3d.com/Packages/com.unity.burst@1.8/manual/csharp-shared-static.html
mailto:https://docs.unity3d.com/Packages/com.unity.burst@1.8/manual/csharp-shared-static.html

Massive Worlds: Introduction to DOTS676

Now, you can play the game and observe how our cube will move forward. Feel free to copy the cube
several times over the scene until you have hundreds or even thousands of them. See how the game
performance doesn’t suffer!

It is easy for the systems to not work as expected when entities are misconfigured, like forgetting to
add the Velocity component. This can cause systems to not find the entities they need. Let’s see how
to debug systems to see the entities they found, which jobs they are scheduling, and check if their
code is Burst-compiled.

Debugging system jobs and queries
Systems apply logic by iterating entities that have specific components, using jobs and other methods.
To debug a non-working system, we should check if it is finding entities. To do so, the system code
generator creates instances of EntityQuery, a type responsible for finding entities with specific com-
ponents. Our MoveJob job requires entities with LocalTransform and Velocity, so an entity query is
generated automatically in the MovementSystem for it to schedule its job. Systems could iterate different
groups of entities (for example, when scheduling more than one job), so systems can have several
queries. Entity queries can also be created manually for other purposes, but we don’t need them now.

We can use the Systems window (Window | Entities | Systems) during play mode to see how many
entities our system is finding and all the queries that find them. Check the Entity Count column of
a system. Also, after selecting the system in the list, the Inspector will show the system queries, in-
forming each query component.

Figure 21.19: Checking system’s queries using the Systems window and the Inspector

There are some considerations to follow in your code to make Burst work even faster. Check
this link for more information: https://docs.unity3d.com/Packages/com.unity.
burst@1.8/manual/optimization-overview.html

Entity queries are fast due to them caching archetype chunks. These memory chunks
store entities that have the same set of components, so it’s easy to track where the required
entities are located. For more info on archetypes, see the following link: https://docs.
unity3d.com/Packages/com.unity.entities@1.1/manual/concepts-archetypes.
html

mailto:https://docs.unity3d.com/Packages/com.unity.burst@1.8/manual/optimization-overview.html
mailto:https://docs.unity3d.com/Packages/com.unity.burst@1.8/manual/optimization-overview.html
mailto:https://docs.unity3d.com/Packages/com.unity.entities@1.1/manual/concepts-archetypes.html
mailto:https://docs.unity3d.com/Packages/com.unity.entities@1.1/manual/concepts-archetypes.html
mailto:https://docs.unity3d.com/Packages/com.unity.entities@1.1/manual/concepts-archetypes.html

Chapter 21 677

Use the Relationships tab to see which entities match the query. In the following image, you can see
that our query is finding our cube.

Figure 21.20: Checking the entities matching the system’s queries.

If your queries don’t match the expected entities, check if such entities have the required components.
It’s easy to forget to add the authoring components into our entities or even forget to put the authoring
GameObjects inside the subscene, mistakenly leaving them in the main scene.

Another thing to check is if our system is scheduling the job and to see if the system and the jobs are
Burst-compiled. To do so, we can do the following:

1. Open the Unity Profiler as we saw in Chapter 18, Performance Wizardry: Optimizing Your Game
with Profiler Tools.

2. Capture profiling data during play mode and select any frame.
3. Enable the Timeline view if you are not already there by clicking any place in the CPU usage

module, clicking the Hierarchy button to display the selection box, and clicking Timeline.

Figure 21.21: Enabling Timeline mode in the Profiler’s CPU module

Massive Worlds: Introduction to DOTS678

4. Search for your job in the timeline by using the mouse wheel to zoom in. Your system should
be inside the SimulationSystemGroup profiler marker. Note that even if we have thousands of
entities, our system is only scheduling a job to iterate them, so its marker will be very small.

Figure 21.22: Finding our systems in the profiler

5. Check the marker color. If it’s light green, it means it is burst compiled. If it is light blue, it is
not, meaning we didn’t add the BurstCompile attribute to the OnUpdate method, or we tried
to Burst-compile non-HPC# code. Notice how the non-Burst-compiled version is significantly
slower than the Burst-compiled one in the following image.

Figure 21.23: Non-Burst compiled system code

6. In the profiler, click the three dots button in the top-right part of the timeline (not the similar
button in the top-right corner of the window) and enable Show Flow Events. This will enable
us to see the jobs our system schedules.

Figure 21.24: Enabling flow events

7. Select our system in the timeline and follow the lines to the jobs. You should see several in-
stances of it in different threads, as each instance deals with different groups of entities (if
there are enough). Remember to expand the job thread group using the gray triangle at its
left to see the job’s details.

Chapter 21 679

Figure 21.25: Checking the jobs scheduled by our system.

8. Check if the job’s marker color is light green. If it’s not, remember to add the BurstCompile
method to the job struct (not the Execute method).

In this section, we discussed how to create and configure a DOTS project and how to create a subscene
where we placed GameObjects to convert them to entities. We also created a runtime component
(Velocity), added to our converted entities by a baker (VelocityBaker), which converted the authoring
component (VelocityAuthoring) to the runtime component. We used the velocity value to create a
system that scheduled a job that applied that velocity to each entity’s LocalTransform position, moving
the entities. Finally, we saw how to debug our systems, check the queries they created to iterate entities
in jobs, and see the system-job relationship and performance using the Unity Profiler.

Of course, we have just scratched the DOTS surface. In the next section, we will see how to create
more interesting gameplay, like moving and spawning enemies.

Creating gameplay in DOTS
Lots of things we do in MonoBehaviours, like instantiating objects or getting other object data (for
example, their position), are quite differently implemented in DOTS. In this section, we will examine
how to achieve these things in DOTS:

• Moving using input and tag components
• Creating seeking missiles using component lookups
• Destroying the character with entity command buffers
• Dealing with errors in bursted code
• Instantiating missiles with entity Prefabs
• Making the camera follow our character
• Exploring other DOTS features

Let’s start by discussing how to modify our movement code to respond to input.

Massive Worlds: Introduction to DOTS680

Moving using input and tag components
Let’s start creating gameplay by using input to move the cube. We need to change our movement job
to provide it with the input values. We will do this the same way as we provided delta time by passing
the input values to the job. In the next image, you can see the needed changes:

Figure 21.26: Moving our character based on our input

While LocalTransform has a Translate method, it doesn’t move in relative coordinates. That’s why we
needed to construct the movement vectors by using the Right and Forward methods, which provide
such directions relative to our object. We apply a similar update to our position for forward movement
by adding a vector along the forward direction, multiplied by the current input’s Vertical value and
DeltaTime.

Finally, we modified our system to provide the input values like this:

Figure 21.27: Providing input values to the move job

We used the legacy input system here for simplicity. Feel free to use the new one. Now, you can play
the game and control the cubes with input. We deleted all the extra cubes, leaving just one to repre-
sent our player.

Chapter 21 681

Something to consider is that while our movement system will move anything with the Velocity
component, there can be other objects with velocity that could move in different ways (for example,
via AI). We need to differentiate the objects that will apply velocity via input and the ones that apply it
differently. One way would be to rename our velocity component to something like “PlayerVelocity”
and then create other velocity components for the other future movement methods. While that will
work, it might not be the best approach, depending on your game requirements. Let’s say we have a
velocity area that speeds up any entity in an area. If we use the multi-component approach, our area
will need to consider all the different velocity components we have, complicating our code.

Another approach could be adding a unique component to our player entity to differentiate it from
other entities, requesting such a component in our job. But such a component doesn’t need any data.
Can we add a component with no data? Yes! We call them tag components. As the name suggests, they
serve as a way to mark entities for systems to find them easily.

First, let’s create the runtime component, authoring component, and baker for our Player tag. Re-
member to add the PlayerAuthoring component to our player entity (the cube).

Figure 21.28: Scripts needed to create a player tag component

If you read the archetypes link provided before, you should be aware that adding tag
components will split entities into different chunks. Avoid adding too many unique tag
components to individual entities to prevent having too many chunks with just a few
entities inside. This phenomenon is called archetype fragmentation.

Massive Worlds: Introduction to DOTS682

We didn’t create a new Player component to add. Instead, we used the AddComponent<Player> API
specifying Player as the component to add. Once added to the player entity, let’s use this tag component
in our job to make it only move entities with it. While we can add Player as a job’s execute method
parameter, as we did with the previous components, we won’t read or write data on it – it doesn’t have
data after all. Instead, another way to tell our job to iterate entities with specific components is by
using the WithAll attribute, as seen in the next image:

Figure 21.29: Making the job’s autogenerated query to look for entities with the Player tag.

This way, we can reuse the Velocity component with the guarantee that each entity receives the
required logic. Now, let’s add an enemy to our game.

Creating seeking missiles using component lookups
In this example project, we will make the player evade seeking missiles that will constantly spawn.
To do so, we will need a missile entity with the following data:

• Position and rotation: represented by LocalTransform.
• Movement velocity: the same Velocity we already have.
• Steering velocity: a new Steering component we will create.
• A target entity to follow: a new Target component we will create.

Chapter 21 683

Steering velocity should be a straightforward component to create. Just do the same as we did to create
the movement velocity component, but name it differently. Regarding the Target component, it will
look like the following figure:

Figure 21.30: Creating the Target component

The first thing to notice is that we are using the Entity type as the Target component value. This is the
ECS equivalent of having a reference to a target GameObject. We use the entity reference to get data
from it, like its position. Notice that the authoring component references a GameObject because, while
editing, we still use GameObjects, so we are referencing the Player GameObject that will be converted
to an entity. Finally, the baker not only needs to call GetEntity to get the entity we are converting to
add components but also to get the converted entity of the target GameObject.

Massive Worlds: Introduction to DOTS684

Now, you can create a sphere called Missile in the subscene and add the Velocity, SteeringVelocity,
and Target authoring components. Remember to configure the Target component by dragging the
player GameObject in the subscene to the Value property.

Figure 21.31: Creating the missile authoring GameObject

Now, we can create a system to move the missiles towards the player. While we could create a Missile
tag component as we did with the player, we have enough components to make the steering system find
the missiles. We will make this system iterate entities with Velocity, SteeringVelocity, and Target,
given that non-steering entities are unlikely to have this specific set of entities in our game so far.

Chapter 21 685

This is how the steering job will look:

Figure 21.32: Steering job

Massive Worlds: Introduction to DOTS686

The first thing to notice is the TransformLookup field of type ComponentLookup. So far, for the data we
read from the entities we are iterating, we used the ref and in parameters as ways to access them,
but this time, we need access to data from entities other than the ones the job iterates, so we can’t use
the parameters. As the name suggests, a lookup allows us to get data from other entities, meaning we
can retrieve components from entities using them. We are using it to get the target’s transform into
the targetTransform variable, providing the target entity in brackets.

Another thing to notice is that we have the LocalToWorld lookup. The ECS transform systems use
this other component to store the local-to-world matrices. This means that this component has the
world position, rotation, and scale of the target entity, unlike LocalTransform, which provides the
local ones. This component allows us to get the world space entity position, regardless of where the
parent transforms are.

We also used this component due to a tricky issue. Our job is to modify the position of entities in
relation to other entities’ positions. We also use ScheduleParallel to schedule jobs, creating several
jobs that handle different entities. This can lead to one job instance reading the position of an entity
that another job instance is writing, which can cause several issues. Unity can detect such cases and
warn us, but in this case, it is not needed, given we are reading the LocalToWorld component to get the
target’s position while we are modifying the missile entities’ positions via LocalTransform. This way,
we don’t risk reading and writing the same component simultaneously. Actually, LocalToWorld’s data
is derived from the LocalTransform value by one of the several ECS transform systems. Also, notice
how the lookup is declared as ReadOnly, given we won’t modify other entities’ LocalToWorld; we just
read them. Modifying LocalToWorld won’t make sense because, as we mentioned before, its value is
calculated from LocalTransform before rendering the entities.

Finally, we also check if the target entity is null, although we are not using the regular null, but Entity.
Null. Structs cannot be null, given they are not reference types; they always have a value. Entity.Null
is a special value that entity variables have when not referencing entities. The rest of the steering job
uses regular vector math to apply steering.

We tried to explain the transform system as briefly as possible, but for more info about
how it works, check this link: https://docs.unity3d.com/Packages/com.unity.
entities@1.0/manual/transforms-concepts.html

mailto:https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/transforms-concepts.html
mailto:https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/transforms-concepts.html

Chapter 21 687

Finally, the system that schedules this job looks like this:

Figure 21.33: Steering system scheduling the steering job

We used the GetComponentLookupmethod to provide the component lookup to our job. We used true
as the first parameter to let it know that we needed a read-only lookup. Component lookups are ex-
pensive to use, given they introduce indirection, causing cache misses. It is always preferred to use
jobs to get entity data, but in this case, they are the only way to get other entity data.

Now, just play the game and observe the missile following the player. Consider setting a small velocity
but a high steering velocity (like 2.0) to let the missile rotate fast enough to approach the player.

Now that we have the missile, let’s make it destroy the player when it is close enough.

For more information about what a cache miss is and how DOTS deals with them, check
the following blog post: https://blog.innogames.com/unitys-performance-by-
default-under-the-hood/

https://blog.innogames.com/unitys-performance-by-default-under-the-hood/
https://blog.innogames.com/unitys-performance-by-default-under-the-hood/

Massive Worlds: Introduction to DOTS688

Destroying the character with entity command buffers
To let the missile destroy the player, we need to detect when it’s close enough. In regular GameObjects,
we can implement this via triggers (OnTriggerEnter), but discussing the DOTS physics package is out
of the scope of this chapter. Instead, we are going to create a job with simple distance checks, as seen
in the following image:

Figure 21.34: Distance checks in ECS

This job works similarly to the steering job but does squared distance checks. Now, the tricky part is
destroying the entity. Given there could be several jobs running in parallel iterating entities, it’s not
safe to delete an entity right away. The only safe place to delete, create, or modify entities’ components,
operations also known as structural changes, is on the main thread, and jobs run in job worker threads.
When a system makes structural changes on the main thread, a sync point is generated, meaning that
the main thread will be blocked until all jobs iterating entities finish, which can cause severe delays.
Another issue is that, given we can have several systems that require structural changes, we run the
risk of introducing several sync points. The best approach is to accumulate several structural chang-
es and let specific systems execute them – ideally, just one. This way, we reduce the number of sync
points, and that’s the exact purpose of Entity Command Buffer (ECB) systems.

Chapter 21 689

ECB systems have APIs to create Entity Command Buffers (ECBs), allowing systems and jobs to en-
queue commands in them, such as to instantiate or destroy entities. Our destroy system will use them
to enqueue the player destruction when the missile is near enough. Let’s start by modifying our job
to receive an ECB and use it.

Figure 21.35: Using ECBs to destroy the target entity

We added a variable to pass the ECB to our job, which will be provided by the system when creating it.
Then, we used the ECB’s DestroyEntity method, specifying that we want to destroy the target entity.
The zero we provide is a way to sort the commands before executing them, but in this case, we don’t
need any specific order.

Structural changes can be costly in terms of performance. For more details on them, check
this link: https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/
concepts-structural-changes.html

To better understand the need for a sorting key in ECBs, check this link: https://docs.
unity3d.com/Packages/com.unity.entities@1.0/manual/systems-entity-
command-buffer-playback.html

mailto:https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/concepts-structural-changes.html
mailto:https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/concepts-structural-changes.html
mailto:https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/systems-entity-command-buffer-playback.html
mailto:https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/systems-entity-command-buffer-playback.html
mailto:https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/systems-entity-command-buffer-playback.html

Massive Worlds: Introduction to DOTS690

Then, we need to create a system like the following image:

Figure 21.36: Destroy close target system

We accessed the Singleton component from an ECB system called EndSimulationEntityCommandB
ufferSystem, using the GetSingleton API. This method allows us to get the unique instance of an
ECS component, provided we are sure there’s only one. You might be wondering: can systems have
components? And yes, they can. In data-driven games, all data sharing happens through components.
Every system has an entity to which they can add components and share data with other systems and
jobs. Given there’s only one instance of this ECB system, we know we have just one instance of the
Singleton component. It has the CreateCommandBuffer method, which creates an ECB whose com-
mands will be executed when the ECB system updates. The EndSimulationEntityCommandBufferSyst
em system will execute its ECB commands at the end of the simulation system before the presentation
of the ones that render our entities’ graphics. This way, our jobs can enable structural changes (like
destroy) to be executed safely in the main thread later, along with commands from other systems that
use the same ECB system.

We need to provide the world our system lives in as the first parameter of this method. A world is a
set of entities and systems that can run in parallel to other worlds. For example, in the Netcode for
Entities package, we can run the server and client worlds in parallel when the player acts as the
game’s host. We have just one world in this case.

We also called the AsParallelWriter method, which returns an ECB version that allows it to be used
in several threads. Remember that our job executes multiple instances in parallel, so the parallel
writer version makes sure it’s safe to use in our job’s instances. Finally, we provided the ECB to the job.

Read more about worlds here: https://docs.unity3d.com/Packages/com.unity.
entities@1.0/manual/concepts-worlds.html

mailto:https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/concepts-worlds.html
mailto:https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/concepts-worlds.html

Chapter 21 691

If you press play now and let the missile catch the player, you will see how it disappears! But wait!
Now the console is spamming errors. While familiar, these errors are not quite the same as the ones
we are used to receiving in GameObject-based projects; these are more cryptic. That’s because the
error happened in bursted code (short for Burst-compiled code), and errors here behave a little bit
differently. Let’s explore how to debug them.

Dealing with errors in bursted code
In the next image, you can see the error we received in the previous step.

Figure 21.37: Burst error logs

First is a familiar C# error, but the stack trace is very verbose. After carefully reading it, you can see that
each stack trace line is prefixed by a “#” symbol, showing the name of the called method. Following
these symbols, we can find our job in line 5, but not much more info. We can infer where our code
failed by checking the next line – in this case, the ComponentLookup call. Given our job uses lookups
just once, we can infer that we are trying to get the transform of the target entity, but that it doesn’t
exist anymore.

Figure 21.38: Burst error stack trace

To make stack traces clearer, you can disable Burst in the editor. That will make the error logs look like
usual, indicating the line where the error happened. Disable it by unchecking the Jobs | Burst | Enable
Compilation option. Play again to see that now the logs indicate the line of the job where the error
happens (line 21). I recommend getting familiar with the Burst errors log, as in builds, we cannot fall
back into non-bursted code without recompiling our player after removing the BurstCompile attributes.
Moreover, disabling Burst while developing can help iteration times, given that compiling Burst code
takes longer than regular code, and while developing, we don’t need peak performance all the time.

Massive Worlds: Introduction to DOTS692

Regarding the error, it happened because the entity the missile was steering to (the player) was de-
stroyed when we got close to it. To solve this, we can modify the SteeringJob job’s Execute method,
like in the following image:

Figure 21.39: Checking if the entity has LocalToWorld components

We also need to do the same for the DestroyCloseTargetJob job’s Execute method:

Figure 21.40: Checking if the entity has LocalToWorld components

Now, we not only check if the target entity is null but also if it has a transform using the TryGetComponent
lookup method. This method returns a boolean indicating whether the requested entity has the re-
quested component, returning it in the out parameter. If the entity doesn’t have the component or
the entity doesn’t exist, the method will return false. This way, we are quitting the job early if the
target entity doesn’t have the component or was destroyed. In MonoBehaviours, a null check would be
enough, but in DOTS, it isn’t. Leaving aside the specifics that allow that in MonoBehaviours, an Entity
variable like target, internally, is just an integer ID. ECS uses it in a lookup table to determine where
the entity data is stored (which chunk). Entity.Null is just an invalid ID, and given Unity won’t set all
the entity references to have an invalid ID when it is destroyed, the null check is still successful. This
way, even if the target entity is destroyed, the entity referenced in our Target component still has a
valid ID. Also, observe how we removed the line where we used the lookup, given the TryGetMethod
already gives us the target’s LocalToWorld component in the out parameter, so there’s no need to get
the component twice.

You can go the extra mile and set the target to Entity.Null if the TryGetComponent
method fails. Given using lookups is performance-heavy, early-quitting the method before
we use it would be better.

Chapter 21 693

Now, let’s instantiate more missiles to make the game more interesting.

Instantiating missiles with entity Prefabs
We can approach the missile spawner by creating spawner entities – entities with a Spawner compo-
nent that references the Prefab to instantiate and has the amount to instantiate and the frequency of
instantiation. You might think, shouldn’t we create separate components for each piece of spawner
data? We can do that, but there’s a performance overhead for each component used in a job and entity
queries. We don’t have any reason to think that, in this example, any of our spawner data will be used
in a different way, so this time we will use a single component. Try to mix data into a single component
whenever you know all of it will be accessed at the same time.

The Spawner component will look like the following image:

Figure 21.41: The Spawner component and baker

Massive Worlds: Introduction to DOTS694

Notice that our Spawner runtime component has a Prefab entity field. Before, we used such a field to
reference the missile’s target, but now we are using it to reference the Prefab to instantiate. We will
create the missile Prefab and reference it in the spawner authoring component using a GameObject
field. The Prefab reference can be converted using the GetEntity method again. We also have a target
reference, given we want the spawned missiles to follow the player. The spawner needs to provide
the target reference to the missiles. Remember to create the spawner GameObject with the spawner
components in the subscene and configure it, dragging the player to the target property and the
missile Prefab to the Prefab property.

Now, we need a system and a job to iterate all spawner entities, using an ECB to instantiate missiles:

Figure 21.42: The missile spawner job

The Prefabs referenced by an ECS component will also be converted as an entity in our
subscene, but they will have the special Prefab tag component. This allows the Prefab
entity to exist in the subscene but will make ECS ignore it to prevent rendering or updating
it. For more information about Prefab baking, check this: https://docs.unity3d.com/
Packages/com.unity.entities@1.0/manual/baking-prefabs.html

mailto:https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/baking-prefabs.html
mailto:https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/baking-prefabs.html

Chapter 21 695

While we can instantiate our Prefabs one by one, it is better to instantiate several in one shot, so we
instead created an array of entities and provided it to the Instantiate method. This Instantiate method
overload creates as many instances as elements in the provided array, filling it with references to the
soon-to-be-created instances (we are using ECBs). Then, we iterate that array and set the position of
the missiles in a way that they spawn one separated from the others by 5 units. We also make them
target the player by setting their target component. It might be confusing to change the value of a
component by replacing it with a new component instance, but it’s a common practice in ECS. It is
also very cheap, as components are structs.

Finally, we need the system to schedule the job:

Figure 21.43: The spawner system

In the OnUpdate method, the only new thing is the usage of Time.ElapsedTime to get the current
game time. But then you can see the addition of an OnCreate method, the equivalent of Awake for a
system. Here, we use the RequireForUpdate method to specify that we need the existence of at least
one entity with the Player component for this system to execute. This way, we prevent the system
from instantiating missiles when the Player is destroyed.

Now that we have our spawner system, let’s make the camera follow our character.

Massive Worlds: Introduction to DOTS696

Making the camera follow our character
Our camera is still a regular GameObject, but our player is an entity. Systems can access GameObjects
in their OnUpdate method, provided that the method has not been compiled with the Burst compiler.
The system to make the camera follow our character will look like this:

Figure 21.44: The system for the camera to follow the player

As stated before, OnUpdate is not burst (it doesn’t have the BurstCompile attribute) and won’t use jobs,
given it needs to access the main camera and its transform, which are non-HPC#-compatible reference
types. Then, we used the TryGetSingletonEntity API to retrieve the reference to the only entity we
expect to have the Player tag. Given missiles can destroy the player, we also use this API to check if
the player entity still exists. Then, we use the GetComponent method to get the position of the existing
player entity. While we could have used component lookups as we did before, given we are writing
code directly in the system, we can use this method as a short way to do the same.

You have created your first DOTS game! Remember, you can get access to the full project made in this
chapter in the book’s Git repository. Finally, as always, there is way more to learn about DOTS, so let’s
do a brief exploration of some of the most important remaining APIs.

Exploring other DOTS features
Several topics in this book deserve their own books, and ECS is no exception. Picking the most essen-
tial APIs to explain in this chapter and keeping the chapter as short as possible was quite difficult, as
there is so much to explore. Because of that, aside from all the useful additional info we left in the
info boxes, here I leave you a list of other DOTS concepts worth checking:

• SystemAPI�Query: A way to iterate entities in a system without jobs. Useful for entity-iterating
code that uses managed references or static variables. Also, for simple things that are fast
to execute, avoiding job scheduling costs. Link: https://docs.unity3d.com/Packages/com.
unity.entities@1.0/manual/systems-systemapi-query.html

• Entity Queries: As explained before, the way jobs and other ECS APIs (like SystemAPI.Query) it-
erate entities. Link: https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/
systems-entityquery-intro.html

mailto:https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/systems-systemapi-query.html
mailto:https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/systems-systemapi-query.html
mailto:https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/systems-entityquery-intro.html
mailto:https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/systems-entityquery-intro.html

Chapter 21 697

• Enableable Components: Components that can be disabled. Entity queries will ignore entities
that have their required components disabled. Useful for toggling on and off entity behaviors
without adding/removing tag components, which is expensive because they need structural
changes. Link: https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/
components-enableable.html

• Cleanup Components: The ECS equivalent to the OnDestroy event. Link: https://docs.
unity3d.com/Packages/com.unity.entities@1.0/manual/components-cleanup.html

• Dynamic Buffers: The ECS way to have array-like data in components. Link: https://docs.
unity3d.com/Packages/com.unity.entities@1.0/manual/components-buffer.html

• Blob Assets: The ECS equivalent of scriptable objects. Link: https://docs.unity3d.com/
Packages/com.unity.entities@1.0/manual/blob-assets-intro.html

• Content Management: The ECS version of Addressables. Link: https://docs.unity3d.com/
Packages/com.unity.entities@1.0/manual/content-management-intro.html

• Scene Loading: The ECS way of loading subscenes. Link: https://docs.unity3d.com/
Packages/com.unity.entities@1.0/manual/conversion-scene-overview.html

• Physics and Collisions: The ECS version of the physics system. Link: https://docs.unity3d.
com/Packages/com.unity.physics@1.0/manual/index.html

• Netcode for Entities: The ECS version of the networking system. Link: https://docs.unity3d.
com/Packages/com.unity.netcode@1.0/manual/index.html

• DOTS Best Practices: An extensive guide about DOTS best practices to maximize your game’s
performance and understand DOTS internals: https://learn.unity.com/course/dots-best-
practices

• ECS Samples: A Git repository containing several ECS samples and tutorials: https://github.
com/Unity-Technologies/EntityComponentSystemSamples

Most of the links provided point to the ECS documentation. It’s recommended to read it entirely to
know about all the tools you have for creating ECS applications.

In this section, we have used input and tag components to move our player and component lookups
to get info about other entities, and looked at diverse usages of entity command buffers to instantiate
and destroy entities, and how to make our GameObject camera follow our ECS character. We also
discussed different extra topics to deepen your DOTS knowledge.

Summary
In this chapter, we learned how to start using DOTS by creating our own components and systems to
add gameplay to a simple game. We saw how to use input, and the DOTS transform API to move and
rotate objects, and we also saw how to spawn and destroy objects.

DOTS is a new engine on its own, running inside Unity. The way it works is vastly different, and except
for a few systems like the rendering pipelines, almost all DOTS features work very differently from
their GameObject counterparts. Also, DOTS is still quite new, meaning it still has missing features
and could be subjected to substantial changes in the next versions.

mailto:https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/components-enableable.html
mailto:https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/components-enableable.html
mailto:https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/components-cleanup.html
mailto:https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/components-cleanup.html
mailto:https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/components-buffer.html
mailto:https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/components-buffer.html
mailto:https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/blob-assets-intro.html
mailto:https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/blob-assets-intro.html
mailto:https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/content-management-intro.html
mailto:https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/content-management-intro.html
mailto:https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/conversion-scene-overview.html
mailto:https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/conversion-scene-overview.html
mailto:https://docs.unity3d.com/Packages/com.unity.physics@1.0/manual/index.html
mailto:https://docs.unity3d.com/Packages/com.unity.physics@1.0/manual/index.html
mailto:https://docs.unity3d.com/Packages/com.unity.netcode@1.0/manual/index.html
mailto:https://docs.unity3d.com/Packages/com.unity.netcode@1.0/manual/index.html
https://learn.unity.com/course/dots-best-practices
https://learn.unity.com/course/dots-best-practices
https://github.com/Unity-Technologies/EntityComponentSystemSamples
https://github.com/Unity-Technologies/EntityComponentSystemSamples

Massive Worlds: Introduction to DOTS698

This makes it a possible risk for creating new projects, but on the other hand, the performance it can
achieve could be decisive for big and ambitious projects. It is an interesting piece of technology that
can revolutionize game development, and every day, it is getting more powerful and stable. It’s a good
time to start learning about it and be prepared for the future.

Learn more on Discord
Read this book alongside other users, Unity game development experts, and the author himself. Ask
questions, provide solutions to other readers, chat with the author via Ask Me Anything sessions, and
much more. Scan the QR code or visit the link to join the community:

https://packt.link/unitydev

https://packt.link/unitydev

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as in-
dustry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals
• Improve your learning with Skill Plans built especially for you
• Get a free eBook or video every month
• Fully searchable for easy access to vital information
• Copy and paste, print, and bookmark content

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of free
newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://packt.com
http://www.packt.com

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Unity Cookbook - Fifth Edition

Matt Smith, Shaun Ferns, Sinéad Murphy

ISBN: 9781805123026

• Craft stylish user interfaces, from power bars to radars, and implement button-driven scene
changes effortlessly

• Enhance your games with AI controlled characters, harnessing Unity’s navigation meshes,
surfaces, and agents

• Discover the power of Cinemachine in Unity for intelligent camera movements
• Elevate games with immersive audio, including background music and dynamic sound effects
• Bring your games to life with captivating visual effects, from smoke and explosions to custom-

izable particle systems
• Build your own shaders using Unity’s Shader Graph tool
•

Other Books You May Enjoy702

Learning C# by Developing Games with Unity - Seventh Edition

Harrison Ferrone

ISBN: 9781837636877

• Understanding programming fundamentals by breaking them down into their basic parts
• Comprehensive explanations with sample codes of object-oriented programming and how it

applies to C#
• Follow simple steps and examples to create and implement C# scripts in Unity
• Divide your code into pluggable building blocks using interfaces, abstract classes, and class

extensions
• Grasp the basics of a game design document and then move on to blocking out your level

geometry, adding lighting and a simple object animation
• Create basic game mechanics such as player controllers and shooting projectiles using C#
• Become familiar with stacks, queues, exceptions, error handling, and other core C# concepts
• Learn how to handle text, XML, and JSON data to save and load your game data
•

Other Books You May Enjoy 703

Multiplayer Game Development with Unreal Engine 5

Marco Secchi

ISBN: 9781803232874

• Get to grips with the basics of multiplayer game development
• Understand the main elements of a networked level
• Explore Unreal multiplayer features such as replication, RPCs, relevancy, and roles
• Debug and optimize code for improved game performance
• Deploy the game on LAN or online platforms
• Use Epic Online Services to elevate the player experience

Other Books You May Enjoy704

Godot 4 Game Development Cookbook

Jeff Johnson

ISBN: 9781838826079

• Speed up 2D game development with new TileSet and TileMap updates
• Improve 2D and 3D rendering with the Vulkan Renderer
• Master the new animation editor in Godot 4 for advanced game development
• Enhance visuals and performance with visual shaders and the updated shader language
• Import Blender blend files into Godot to optimize your workflow
• Explore new physics system additions for improved realism and behavior of game objects
• Experience innovative features by building multiplayer games in Godot 4

Other Books You May Enjoy 705

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and apply
today. We have worked with thousands of developers and tech professionals, just like you, to help
them share their insight with the global tech community. You can make a general application, apply
for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you’ve finished Hands-On Unity Game Development, we’d love to hear your thoughts! If you purchased
the book from Amazon, please click here to go straight to the Amazon review page for this
book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1835085717

Index

Symbols
3D Cartesian coordinate system 27
9-slicing method 458

A
ADPCM 434
advanced effects

applying 420-426
Depth Map 417-420
High Dynamic Range (HDR) 417-420
using 417

ambient lighting 378
configuring, with skyboxes 378-383

Android
app, building to run on 640-646

animation clips
creating 571-574

Animation Controllers 538
applying, to character 541-544
using 539-541

animations
scripting 550

Animation window 571
Animator 538, 542, 562

skinning animation, using with 531
Apple Developer

URL 647

archetype fragmentation 681
archetypes concepts

reference link 676
ARCore supported devices

reference link 629
AR experiences on Apple

reference link 629
AR Foundation

reference link 642
tracking features 631-640

AR Foundation project
creating 628-631

AR game
creating 651
enemies, spawning 652, 653
enemy behavior, coding 653-660
player behavior, coding 653-660
player, spawning 651-653

assets 21
configuring 100
importing 83
importing, from Asset Store 85-91
importing, from internet 84, 85
importing, from Unity packages 92
integrating 92
integrating, for UI 456-464
meshes, configuring 101, 102
meshes, integrating 96, 97
scene, assembling 104-107

Index708

terrain textures, integrating 93-96
textures, configuring 103, 104
textures, integrating 97-100

AudioClips 435
audio importing 429

audio types 430, 431
import settings, configuring 431-435

audio integration 435
2D and 3D AudioSources, using 435-439
audio feedback, scripting 444-447
Audio Mixer, using 440-444

AudioListener component 439
AudioSources 435

Loop 436
Pitch 437
Play on Awake 436
Spatial Blend 437
Volume 437

audio types
ambient sound 430
music 430
sound effects (SFX) 430

auto-exposure 419
Avatar Masks 544

using 544-550

B
baked lighting 400
Base Damage object 482
batching

using 585-588
Blend Trees 544
Blob Assets

reference link 697
Bloom effect 420
bonfire effect

creating 344-346

build 615, 616
code, debugging 621, 622
debugging 620
performance, profiling 623-625

built-in renderer pipeline (BIRP) 300
Burst 662

used, for creating systems 671-676
Burst-compiled code optimization

reference link 676
bursted code

dealing, with errors 691, 692

C
C# 116

common beginner script errors 136-138
Finite State Machines (FSMs), creating 260-263
script, creating 117-120
used, for creating three-filter sensors 240-246

camera behaviors
creating 563-567

cameras 562
making, to follow character 696

Canvas 452
used, for creating UI 452, 453

Canvas object types 455
Canvas Scaler component 478
Capsule Collider 181
character

Animation Controllers, applying to 541-544
Chromatic Aberration effect 412
Cinemachine 562, 563

dynamic cameras, creating with 562
Class and Struct, selecting between

reference link 668
Cleanup Components

reference link 697

Index 709

code
improving, with events 227-237

colliders 180
Box 180
Capsule 180, 181
Kinematic Collider 183
Mesh Collider 180
Physics Collider 183
Sphere 180
Static Collider 183
Terrain Collider 182
Trigger Kinematic Collider 183
Trigger Static Collider 183

collision detection 190
object, modifying 193-197
Trigger events, detecting 191-193

Collision events 191
complex simulations

creating, with Visual Effect Graph 346
component lookups

used, for creating seeking missiles 682-687
components 31-33

manipulating 33-38
Concat node 489
Configurable Enter Play Mode

reference link 665
Contact Destroyer 192
Content Management

reference link 697
CPU- and GPU-bound

detecting 594-596
CPU optimization 593

techniques 600-602
CPU Usage Profiler

using 596-599
Cubemap 381
cutscenes

creating, with Timeline 571

D
Data-Oriented Technology Stack (DOTS) 661,

662
Burst 662
Entities 661
games, benefitting from 662, 663
Jobs 662
limitations 663
using, precautions 662

Deferred rendering 371
Delta Time 149-151
depth bias 390
Depth of Field effect 418
directional light 383
direct lights 378
dolly tracks

creating 567-570
DOTS Best Practices

reference link 697
DOTS features

exploring 696, 697
DOTS game

bakers, creating 667-670
components, creating 667-670
creating 663
entities, creating with subscenes 665-667
system jobs, debugging 676-679
system queries, debugging 676-679
systems, creating with Burst 671-676
systems, creating with Jobs 671-676

DOTS, gameplay
camera, making to follow character 696
character, destroying with Entity Command

Buffers (ECBs) 688-691
creating 679
dealing, with errors in bursted code 691, 692
input, using to move cube 680, 681

Index710

missiles, instantiating with entity
Prefabs 693-695

seeking missiles, creating with component
lookups 682-687

tag components 681, 682
DOTS project

creating 663-665
draw calls 374, 583
Dynamic Buffers

reference link 697
dynamic cameras

creating, with Cinemachine 562
Dynamic Collider Profile 197
dynamic positioning 518-522
dynamic scaling 522-524
dynamic sizing 518-522

E
early-Z testing 298
ECS Samples

reference link 697
Enableable Components

reference link 697
EnemiesUI script 492
EnemyManager script 491
entities 661

creating, with subscenes 665-667
entity command buffer playback

reference link 689
Entity Command Buffers (ECBs)

used, for destroying character 688-691
entity Prefabs

used, for instantiating missiles 693-695
Entity Queries

reference link 696
enumeration types

reference link 262

events
code, improving with 227-237

events and instructions
fields, using 133, 134
in C# 125-130
in visual scripting 130-133
using 125

EventSystem 453

F
faces 71
Filmbox (FBX) 533
Film Grain effect 416
Finite State Machines (FSMs)

creating, in C# 260-263
creating, in Visual Scripting 268-278
decisions, making with 260
transitions, creating 263-268

first-person-shooter (FPS) game 103
Float Literal node 483
fluid simulations

bonfire effect, creating 344-346
creating 341
waterfall effect, creating 342, 343

Forward+ Rendering Path
reference link 665

Forward Renderer modes
Multi-Pass Forward 371
Single-Pass Forward 371
Single-Pass Forward+ 371

Forward rendering 371
Forward Vector 27
Frame Debugger

using 583-585
frustum culling 591
FSM actions

executing 278

Index 711

final details, adding 286-291
Pathfinding, using 280-286
scene's NavMesh, calculating 278-280

G
Game AI Pro

reference link 268
game concept

designing 51, 52
game modes

creating 220-226
GameObjects 22

adding, to scene 24, 25
components 31
managing, with Prefabs 41
manipulating 26-31

garbage collector 603, 604
G-Buffer 375, 376
GetComponent 483
Get Variable node 483, 489
gizmo 26

debugging with 251-259
global coordinates 28
GOAP 268
graphics engines 582, 583
graphics optimization 581, 589-593
gray-boxing 25

H
Halo developer

reference link 268
HDR Rendering 418
Height Maps 53, 54

authoring 57-60
configuring 54-57
creating 54-57
details, adding 60-64

Hierarchy window 435
High Definition Render Pipeline (HDRP) 300
High Dynamic Range (HDR) effect 418
High Performant C# (HPC#) 662

I
Idle Shooting 545
Importing Assets process 18
indirect light 378
information

obtaining, with sensors 239
Initialize Particle 354
Input Mapping 169, 170
Instantiate node 486
intro cutscene

sequencing 574-578
Inverse Kinematics (IK) 535
iOS

app, building to run on 647-650

J
Jobs 662

used, for creating systems 671-676
Joint Photographic Experts Group (JPG) 18
Justify Content 527

K
Kinematic Collider 183

L
landscape, creating with Terrain 52

details, adding 76-80
Height Maps 53, 54
mesh, manipulating 69-76
shapes, creating 67-69
shapes, creating with ProBuilder 64

Index712

Layer Collision Matrix 188
layers 188, 545
Level of Detail (LOD) 589, 590
LifeBar visual graph 483
lighting 371

ambient lighting, configuring with skyboxes
378-383

applying 371
configuring, in URP 383-386
deferred rendering 377
forward+ rendering (Single Pass) 377
forward rendering (Multi-Pass) 377
forward rendering (Single Pass) 377
methods 372-377

lighting optimization 395
lightmaps, baking 396-403
static lighting 395, 396
static lighting, applying to static objects 403-

406
Lightmapping UVs 397
lightmaps 396
Light Probes 404
Line Renderer component

reference link 635
local coordinates 28
Low Pass 443

M
MainCamera component 439
managers

creating 213
enemies manager, creating 213-219

memory allocation 603-606
memory fragmentation 603
memory optimization 602
Memory Profiler 625

using 608-612

mesh 33
Mesh Collider 180
mixed lighting 400
mobile devices

app, building to run on Android 640-646
app, building to run on iOS 647-650
building for 640

Motion Blur effect 415
movement animations

scripting 559-562
movement, implementing 139, 140

Delta Time 149-151
input movement 143-149
keyboard movement 144-146
mouse movement 146-149
objects, moving through Transform 140-143

MPEG Audio Layer 3 (MP3) 18
Multi-Pass 374

N
NavMeshAgent 561, 562
NavMeshAnimator 561
Nested Prefabs

reference link 47
Netcode for Entities

reference link 697
new Input System

Input Mappings, creating 169-173
installing 167-169
mappings, using in scripts 173-178
using 167

nodes 112
normal bias 391

O
object Hierarchies 38

parenting of objects 39, 40

Index 713

object managers
creating 205
variables, sharing with Singleton design

pattern 206-210
variables, sharing with Visual Scripting 210-212

object pooling 606, 607
occlusion culling 591
On Button Click node 499
onChanged events 491
OnDestroy method 497
out (C# Reference)

reference link 256
Output Particle Quad 354
overdraw 346

P
Partial Classes and Methods

reference link 671
particle systems 333, 334

advanced modules, using 340, 341
basic particle system, creating 334-339

Pathfinding
using 280-286

PCM 433
performant shadows

configuring 391-395
Peripheral Component Interconnect Express

(PCI Express) bus 582
Physics and Collisions

reference link 697
Physics Collider 183
Physics Colliders 183
Physics events 191
physics movement 197

forces, applying 197-200
physics, tweaking 200-202

physics system
collisions, filtering 187-190
configuring 179
object types 182-187
shapes, setting 180-182

pixel lighting 375
Player settings

reference link 618
player shooting animations

scripting 551-559
PlayerShooting visual graph 485
point light 384
Portable Network Graphics (PNG) 18
post-processing 409

basic effects, using 412-416
profile, setting up 410-412
using 409, 410

precalculating shadows 395
Prefab baking

reference link 694
Prefab Edit Mode 43, 47
Prefab-instance relationship 43-46
Prefab instances

reference link 43
Prefabs

creating 41-43
used, for managing GameObjects 41

Prefab Variant 46, 47
ProBuilder

installing 64-66
shapes, creating with 64

projects
building 615-620
creating 13-16
saving 47, 48
structure 16-18

publishing, for Android
reference link 640

Index714

R
rain effect

creating 355-364
random-access memory (RAM) 22
realtime lighting 399
RectTransform 452

used, for positioning elements in UI 453-455
Reference Resolution 523
relative positions

using 524-529
RenderDoc Integration

reference link 346
render pipeline 299

URP 300, 301
responsive UI

creating 472, 518
dynamic positioning 518-522
dynamic scaling 522-524
dynamic sizing 518-522
object positions, adapting 472-476
object sizes, adapting 476-478
relative positions, using 524-529

Right Vector 27
Rigidbody 561

S
Scene Loading

reference link 697
scenes

GameObject, adding to 24, 25
manipulating 21
purpose 22
saving 47, 48

scene's NavMesh
calculating 278-280

Scene view 22-24
navigating 25, 26

ScoreUI script 491
Scriptable Render Pipeline (SRP) 300
script creation 112

C# script, creating 116-120
fields, adding 120-122
initial setup 113-116
visual script, creating 123-125

scripting 111
sensors

used, for obtaining information 239
Set Fill Amount node 483
shader pipeline 296

blending 299
Depth Testing 298
Fragment Shader 298
Input Assembler 297
Primitive Culling 297
Rasterizer 298
Vertex Shader 297

shaders 295
video card languages 296

shaders creation, with Shader Graph 307
Shader Graph, creating 308-312
textures, combining 322-325
textures, using 312-321
transparency, applying 325-328
vertex effects, creating 329-331

shadow acne 389
shadow cascades 391
shadow map 387
shadows

applying 386
calculations 387-391
performant shadows, configuring 391-394

Shadows Midtones Highlights 424
SharedStatic struct

reference link 675

Index 715

Simple Lit Shader
demonstrating 303-307

Single Pass 374
Singleton design pattern 206

variables, sharing with 206-209
skeletal animations

importing 534-538
skinned meshes 531
Skinned Mesh Renderer 541
SkinnedMeshRenderer component 366
skinning 532-534
skinning animation

using, with Animator 531
Skinning Animation system 366
skybox 379
Soft Shadows trick

using 389
SOLID principles 483
spawning, implementing 152

actions, timing 160-165
objects, destroying 165, 166
objects, spawning 152-160

Split Toning 426
spotlight 384
static batcher 588
Static Collider 183
static meshes 531
stretch 527
String Literal node 489
structural changes 688

reference link 689
Stylesheets 514
Style UI

reference link 515
SystemAPI.Query 696

reference link 696

system jobs and queries
debugging 676-679

T
tag components 681, 682
Terrain

landscape, creating with 52
Terrain Collider 182
Text Core 513
TextMesh Pro 462, 488
three-filter sensors

creating, with C# 240-246
creating, with Visual Scripting 248-251

Timeline
cutscenes, creating 571

tonemapping 419
tracking features

using 631-640
transform

reference link 686
Transform gizmo 26, 29, 30
Transform tool 26
transform usage flags

reference link 670
transitions

creating 263-268
Trigger events 191
Trigger Kinematic Collider 183
Trigger Static Collider 183

U
UI Builder editor 506
UI Documents

creating 504-506
editing 506-514

Index716

UI Stylesheets
creating 514-518

UI Toolkit
need, for learning 503
used, for creating UI 504

uniform scaling 30
Unity

installing 3
installing, with Unity Hub 5-13
technical requirements 3

Unity Hub 3
Update node 483
Update Particle 354
Up Vector 27
URP 300, 301
URP built-in shaders

Lit 302
Simple Lit 302
Unlit 302

User Interface (UI) 451
assets, integrating for 456-464
controls, creating 464-472
creating, with Canvas 452, 453
elements, positioning with RectTransform 453-

455
information, displaying 479-493
Pause menu, programming 493-501
responsive UI, creating 472
scripting 479

V
VelocityAnimator script 561
vertex lighting 375
Vertex Snapping 105

video card languages, shaders
CG 296
GLSL 296
HLSL 296
Shader Graph 296

Vignette effect 413
virtual reality (VR) applications 414
Visual Effect Graph

analyzing 350-355
creating 350-355
installing 347-350
rain effect, creating 355-364
reference link 364
used, for creating complex simulations 346

Visual Effects
scripting 364-369

visual script
creating 123-125

visual scripting 111
Finite State Machines (FSMs), creating 268-278
used, for creating three-filter sensors 248-251
variables, sharing with 210-212

Vorbis 433

W
Walking Shooting 545
waterfall effect

creating 342, 343
Waveform Audio File Format (WAV) 18
WavesManager script 491
WavesUI script 491
White Balance effect 416
windows/panels 22
world concepts 690
WYSIWYG (What You See Is What You Get) 24

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free
content in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781835085714

2. Submit your proof of purchase
3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781835085714

	Cover
	Copyright
	Contributors
	Table of Contents
	Preface
	Section 1: Getting Started with Unity
	Chapter 1: Embark on Your Unity Journey
	Installing Unity
	Unity’s technical requirements
	Unity versions
	Installing Unity with Unity Hub

	Creating projects
	Creating a project
	Project structure

	Summary

	Chapter 2: Crafting Scenes and Game Elements
	Manipulating scenes
	The purpose of a scene
	The Scene view
	Adding our first GameObject to the scene
	Navigating the Scene view
	Manipulating GameObjects

	GameObjects and components
	Understanding components
	Manipulating components

	Understanding object Hierarchies
	Parenting of objects
	Possible uses

	Managing GameObjects using Prefabs
	Creating Prefabs
	Prefab-instance relationship
	Prefab variants

	Saving scenes and projects
	Summary

	Chapter 3: From Blueprint to Reality: Building with Terrain and ProBuilder
	Defining our game concept
	Creating a landscape with Terrain
	Discussing Height Maps
	Creating and configuring Height Maps
	Authoring Height Maps
	Adding Height Map details
	Creating shapes with ProBuilder
	Installing ProBuilder
	Creating a shape
	Manipulating the mesh
	Adding details

	Summary

	Chapter 4: Seamless Integration: Importing and Integrating Assets
	Importing assets
	Importing assets from the internet
	Importing assets from the Asset Store
	Importing assets from Unity packages

	Integrating assets
	Integrating terrain textures
	Integrating meshes
	Integrating textures

	Configuring assets
	Configuring meshes
	Configuring textures
	Assembling the scene

	Summary

	Section 2: Mastering Programming and Gameplay Mechanics
	Chapter 5: Unleashing the Power of C# and Visual Scripting
	Introducing scripting
	Creating scripts
	Initial setup
	Creating a C# script
	Adding fields
	Creating a visual script

	Using events and instructions
	Events and instructions in C#
	Events and instructions in visual scripting
	Using fields in instructions

	Common beginner C# script errors
	Summary

	Chapter 6: Dynamic Motion: Implementing Movement and Spawning
	Implementing movement
	Moving objects through Transform
	Using Input
	Understanding Delta Time

	Implementing spawning
	Spawning objects
	Timing actions
	Destroying objects

	Using the new Input System
	Installing the new Input System
	Creating Input Mappings
	Using Mappings in our scripts

	Summary

	Chapter 7: Collisions and Health: Detecting Collisions Accurately
	Configuring physics
	Setting shapes
	Physics object types
	Filtering collisions

	Detecting collisions
	Detecting Trigger events
	Modifying the other object

	Moving with physics
	Applying forces
	Tweaking physics

	Summary

	Chapter 8: Victory or Defeat: Win and Lose Conditions
	Creating object managers
	Sharing variables with the Singleton design pattern
	Sharing variables with Visual Scripting
	Creating managers
	Creating Game Modes
	Improving our code with events

	Summary

	Chapter 9: Starting Your AI Journey: Building Intelligent Enemies for Your Game
	Gathering information with sensors
	Creating three-filter sensors with C#
	Creating Three-Filters sensors with Visual Scripting
	Debugging with gizmos
	Making decisions with FSMs
	Creating the FSM in C#

	Creating transitions
	Creating the FSM in Visual Scripting
	Executing FSM actions

	Calculating our scene’s NavMesh
	Using Pathfinding
	Adding the final details

	Summary

	Section 3: Elevating Visuals, Effects, and Audio
	Chapter 10: Material Alchemy: Using URP and Shader Graph for Stunning Visuals
	Introducing shaders and URP
	Shader pipeline
	Render pipeline and URP
	URP built-in shaders

	Creating shaders with Shader Graph
	Creating our first Shader Graph
	Using textures
	Combining textures
	Applying transparency
	Creating vertex effects

	Summary

	Chapter 11: Captivating Visual Effects: Harnessing Particle Systems and Visual Effect Graph
	Introduction to particle systems
	Creating a basic particle system
	Using advanced modules

	Creating fluid simulations
	Creating a waterfall effect
	Creating a bonfire effect

	Creating complex simulations with Visual Effect Graph
	Installing Visual Effect Graph
	Creating and analyzing Visual Effect Graph
	Creating a rain effect
	Scripting Visual Effects

	Summary

	Chapter 12: Enlightening Worlds: Illuminating Scenes with the Universal Render Pipeline
	Applying lighting
	Discussing lighting methods
	Configuring ambient lighting with skyboxes
	Configuring lighting in URP

	Applying shadows
	Understanding shadow calculations
	Configuring performant shadows

	Optimizing lighting
	Understanding static lighting
	Baking lightmaps
	Applying static lighting to static objects

	Summary

	Chapter 13: Immersive Realism: Achieving Fullscreen Effects with Post-Processing
	Using post-processing
	Setting up a profile
	Using basic effects

	Using advanced effects
	High Dynamic Range (HDR) and depth map
	Applying advanced effects

	Summary

	Chapter 14: Harmonious Soundscapes: Integrating Audio and Music
	Importing audio
	Audio types
	Configuring import settings

	Integrating and mixing audio
	Using 2D and 3D AudioSources
	Using an Audio Mixer
	Scripting audio feedback

	Summary

	Section 4: Designing User Interfaces, Animations and Advanced Concepts
	Chapter 15: Interface Brilliance: Designing a User-Friendly UI
	Understanding the Canvas and RectTransform
	Creating a UI with the Canvas
	Positioning elements with RectTransform

	Canvas object types
	Integrating assets for the UI
	Creating UI controls

	Creating a responsive UI
	Adapting object positions
	Adapting object sizes

	Scripting the UI
	Showing information in the UI
	Programming the Pause menu

	Summary

	Chapter 16: Next-Gen UI: Creating Dynamic Interfaces with UI Toolkit
	Why learn how to use UI Toolkit?
	Creating a UI with UI Toolkit
	Creating UI Documents
	Editing UI Documents
	Creating UI Stylesheets

	Making a responsive UI
	Dynamic positioning and sizing
	Dynamic scaling
	Using relative positions

	Summary

	Chapter 17: Animated Realities: Creating Animations with Animator, Cinemachine, and Timeline
	Using skinning animation with Animator
	Understanding skinning
	Importing skeletal animations
	Integration using Animation Controllers
	Applying the Controller to your character
	Using Avatar Masks

	Scripting animations
	Scripting player shooting animations
	Scripting movement animations

	Creating dynamic cameras with Cinemachine
	Creating camera behaviors
	Creating dolly tracks

	Creating cutscenes with Timeline
	Creating animation clips
	Sequencing our intro cutscene

	Summary

	Chapter 18: Performance Wizardry: Optimizing Your Game with Profiling Tools
	Optimizing graphics
	Introduction to graphics engines
	Using Frame Debugger
	Using batching
	Other optimizations

	Optimizing processing
	Detecting CPU- and GPU-bound
	Using the CPU Usage Profiler
	General CPU optimization techniques

	Optimizing memory
	Memory allocation and the garbage collector
	Using the Memory Profiler

	Summary

	Chapter 19: From Prototype to Executable: Generating and Debugging Your Game
	Building a project
	Debugging the build
	Debugging code
	Profiling performance

	Summary

	Chapter 20: AR/VR
	Using AR Foundation
	Creating an AR Foundation project
	Using tracking features

	Building for mobile devices
	Building for Android
	Building for iOS

	Creating a simple AR game
	Spawning the player and enemies
	Coding the player and enemy behavior

	Summary

	Chapter 21: Massive Worlds: Introduction to DOTS
	Understanding what DOTS is
	Creating our first DOTS game
	Creating a DOTS project
	Creating entities with subscenes
	Creating components and bakers
	Creating systems using Jobs and Burst
	Debugging system jobs and queries

	Creating gameplay in DOTS
	Moving using input and tag components
	Creating seeking missiles using component lookups
	Destroying the character with entity command buffers
	Dealing with errors in bursted code
	Instantiating missiles with entity Prefabs
	Making the camera follow our character
	Exploring other DOTS features

	Summary

	Packt Page
	Other Books You May Enjoy
	Index

