
Hands-On
Modern App Development

(# 8 Net (ore 3

Developing cross-platform mobile apps with Xamarin.Forms, desktop
applications using WPF, building web APIs, and designing user

interfaces with Razor Pages.

Katie Millie

Hands-On Modern App Development C# 8 .Net Core 3

Developing cross-platform mobile apps with Xamarin.Forms, desktop applications using
WPF, building web APIs, and designing user interfaces with Razor Pages.

By

Katie Millie

Copyright notice

Copyright © 2024 Katie Millie. All rights reserved.

The material within, encompassing text, visuals, and graphical elements, is safeguarded under copyright
law. Any reproduction, distribution, transmission, display, or other utilization requires explicit written
consent from the rightful copyright holder, Katie Millie. Unsanctioned usage or replication may lead to
legal repercussions. Your adherence to Katie Millie's intellectual property rights is greatly appreciated.

Table of Contents

INTRODUCTIONChapter 1Why Modern App Development Matters: Meeting the Needs of Today's UsersUnderstanding Cross-Platform Development: Building Apps for Any DeviceThe Power of C# 8 and .NET Core 3: A Perfect Match for Modern DevelopmentEstablishing Your Development Environment: Essential Tools for Getting StartedChapter 2Variables, Data Types, and Operators: The Essentials of Data ManipulationControl Flow Statements: Branching, Looping, and Making DecisionsFunctions in Modern App Development with C# 8 and .NET Core 3: Creating Reusable Code Blocks for EfficiencyPutting it All Together: Building Your First C# Programs with C# 8 and .NET Core 3Chapter 3Unveiling the Power of C# 8 Features: Exploring Pattern Matching for Cleaner Data Comparisons Asynchronous Programming Made Easy: Handling Long-Running Tasks Efficiently with C# 8 and .NET Core 3Null Reference Checks: Avoiding Common Errors and Improving Code Safety in C# 8 and .NET

Core 3 Exploring Additional C# 8 Features for Modern App Development with .NET Core 3Chapter 4Understanding the Architecture of .NET Core 3: Components and WorkflowsProject Structure and Organization: Building Maintainable CodebasesUnderstanding ASP.NET Core MVC: The Model-View-Controller ParadigmCreating Your First ASP.NET Core 3 Web Application: Putting Theory into PracticeChapter 5Introduction to Razor Pages: Simplifying Web DevelopmentCreating Interactive Forms with Razor Pages: Capturing User InputDisplaying Data with Razor Pages: Building User-Friendly InterfacesBuilding Layouts and Partials: Reusing Code for Consistent DesignChapter 6Understanding Forms in ASP.NET Core 3: Capturing User DataProcessing Form Data: Validating and Sanitizing User InputWorking with Models: Representing Your Data in C# ClassesPersisting User Data: Introduction to Entity Framework CoreChapter 7Introduction to Xamarin.Forms: Leveraging C# for Mobile Development

ASP.NET
ASP.NET
ASP.NET

Creating Cross-Platform Mobile UIs with Xamarin.FormsData Binding and User Interaction in Xamarin.Forms ApplicationsConsuming APIs and Integrating Services in Mobile AppsChapter 8Introduction to WPF: Creating Rich Desktop User Interfaces with C#Designing User Interfaces with XAML: A Powerful UI LanguageData Binding and Event Handling in WPF ApplicationsBuilding Interactive and Responsive Desktop Apps with C# 8 and .NET Core 3Chapter 9Introduction to Web APIs: Exposing Data and Functionality for Other ApplicationsCreating RESTful Web APIs with ASP.NET Core 3: Following Best PracticesConsuming Web APIs in Your Applications: Integrating External Data and ServicesChapter 10Understanding Web Security Threats: Protecting Your Applications from VulnerabilitiesImplementing User Authentication and Authorization: Controlling Access to Secure DataInput Validation and Error Handling: Building Robust and Resilient ApplicationsChapter 11Testing Your Applications: Ensuring Quality and ReliabilityIntegration Testing and UI Testing: Building Comprehensive Test Strategies

ASP.NET

Chapter 12Introduction to Deployment: Sharing Your Applications with UsersUnderstanding Hosting Options: Choosing the Right Platform for Your NeedsDeploying Your ASP.NET Core 3 Applications to Different EnvironmentsConclusionAppendix A: Common C# 8 and .NET Core 3 Concepts (Quick Reference)

ASP.NET

INTRODUCTION

Unleash Your Inner App Development Powerhouse: Build Dynamic, Cross-Platform Apps with C# 8 & .NET

Core 3!

The digital landscape is a living, breathing entity, constantly evolving and demanding innovative solu

tions. Are you ready to be at the forefront of this evolution, crafting user experiences that captivate

audiences across devices? Hands-On Modern App Development C# 8 .Net Core 3 is your launchpad to app

development mastery.

This book isn't a dry technical manual - it's your interactive coding adventure. We'll transform you from

a curious learner into a confident app developer, equipped to build powerful applications for mobile, web,

and desktop. Whether you're a complete beginner or an experienced programmer looking to level up your

skills, this book equips you with the in-demand tools and techniques to build performant, cross-platform

apps that are sought after by today's businesses.

Why C# 8 & .NET Core 3? Here's Your Edge:

• Effortless Learning: Forget complex jargon and sleep-inducing lectures. We break down C#

fundamentals and .NET Core concepts into bite-sized, easy-to-understand lessons, com

plete with clear explanations and engaging visuals.

• Hands-On Mastery: This isn't a book you passively read - it's a book you actively code with.

You'll be writing code from day one, building engaging projects that solidify your under

standing and fuel your passion for app development.

• Learn by Doing: We believe in the power of practical application. You won't just learn the

theory - you'll master core concepts like data manipulation, user interaction, and API inte

gration by tackling real-world coding challenges, fostering a deeper understanding that tra

ditional lectures can't match.

• Modern Development for Modern Apps: C# 8 and .NET Core 3 are the cutting-edge tools

powering some of the most innovative applications today. This book ensures you're equipped

with the latest tools and best practices for building performant, scalable, and secure apps

that stand out in the crowded marketplace.

But the Benefits Extend Beyond Code:

• Problem-Solving Prowess: Coding hones your critical thinking and problem-solving skills,

valuable assets in any career path, not just app development.

• Logical Reasoning Mastered: Break down complex problems into smaller, solvable steps - a

skill that applies to all aspects of life, not just code.

• Communication Champion: Clear and concise communication is essential for both writing

code and creating well-documented applications, a benefit that transcends the tech world.

• Exciting Career Opportunities: C# and .NET Core 3 are in-demand skills in the ever-growing

app development industry, opening doors to exciting job prospects.

Here's What Awaits You Inside:

• Master the fundamentals of C# programming, including variables, data types, control flow, and

functions.

• Harness the power Core 3, leveraging its rich set of tools and functionalities for modern

app development.

of.NET

• Build dynamic web applications (with Razor Pages) with user-friendly interfaces, interactive

elements, and database integration.

• Explore advanced topics (optional chapters) like building cross-platform mobile apps with

Xamarin.Forms, creating modern desktop applications with WPF, and building web APIs for

seamless data exchange.

• Unleash your creativity by building engaging projects in various domains that showcase your

newly acquired skills.

Don't just dream of building apps - make it a reality! With Hands-On Modern App Development C#

8 .Net Core 3, you'll have the skills and confidence to transform your app development dreams into daz

of.NET

zling applications. Scroll up, click "Add to Cart", and embark on your coding adventure today! The future

of app development awaits.

Chapter 1

Why Modern App Development Matters: Meeting the Needs of Today's Users

Hands-On Modern App Development C# 8 .Net Core 3 is indispensable in meeting the dynamic demands
of today's users. This approach revolutionizes the development landscape, offering unparalleled perfor
mance, scalability, security, and agility. Let's explore why modern app development matters in the context
of C# 8 and .NET Core 3, with illustrative code examples highlighting its significance.

1. Performance Optimization: Modern app development leverages C# 8 language features and .NET Core
3 runtime improvements to optimize performance. For instance, the introduction of 'Span<T>' en
ables efficient memory management and reduces unnecessary memory allocations. Here's a code snippet
demonstrating the use of ' Span<T> ':

c sharp
Span<int> numbers = stackalloc int[1000]; // Allocate memory on the stack
for (int i = 0; i < numbers.Length; i++)

numbersfi] = i; // Populate the Span with data

2. Responsive User Interfaces: With C# 8 and .NET Core 3, developers can create responsive user interfaces
using the MVVM pattern and XAML. This facilitates seamless interaction across various devices and screen
sizes. Below is an example of a simple ViewModel in an MVVM architecture:

c sharp
public class MainViewModel: ViewModelBase

private string .message;

public string Message

get = > .message;
set

.message = value;
OnPropertyChanged(nameof(Message));

public MainViewModel()

Message = "Hello, World!";

3. Cloud-Native Development: Modern app development embraces cloud-native principles, leveraging the
scalability and reliability of cloud platforms like Microsoft Azure. Integrating Azure services with C# 8
and .NET Core 3 enables seamless deployment and scalability. Here's an example of uploading a file to
Azure Blob Storage:

c sharp
using Azure.Storage.Blobs;

public async Task UploadFileToBlobStorageAsync(Stream filestream, string blobName)

BlobServiceClient blobServiceClient = new BlobServiceClient("connectionString");
BlobContainerClient containerclient = blobServiceClient.GetBlobContainerClient("containerName");

Blobclient blobclient = containerClient.GetBlobClient(blobName);
await blobClient.UploadAsync(fileStream, true);

4. Security Enhancements: Security is paramount in modern app development. C# 8 and .NET Core 3 offer
robust security features such as built-in support for HTTPS, data encryption, and authentication mecha
nisms. Here's an example of implementing JWT authentication in Core:ASP.NET

ASP.NET

c sharp
services.AddAuthentication(JwtBearerDefaults. Authenticationscheme)

.AddJwtBearer(options =>

options.TokenValidationParameters = new TokenValidationParameters

Validatelssuer = true,
ValidateAudience = true,
ValidateLifetime = true,
ValidatelssuerSigningKey = true,
Validlssuer = Configuration["Jwt:Issuer"],
ValidAudience = Configuration["Jwt:Audience"],
IssuerSigningKey = new SymmetricSecurityKey(Encoding.UTF8.GetBytes(Configura-

tion["Jwt:Key"]))

};
});

X \ \

5. Continuous Integration and Deployment (CI/CD): Modern app development embraces CI/CD pipelines
to automate the software delivery process. Tools like Azure DevOps enable seamless integration, testing,
and deployment of applications built with C# 8 and .NET Core 3. Below is an example of a YAML pipeline for
building and deploying a .NET Core application:

'yaml
trigger:

branches:
include:

- main

pool:
vmlmage: 'windows-latest'

steps:
- task: DotNetCoreCLI@2

inputs:
command: 'build'
projects: '**/*.csproj'

- task: DotNetCoreCLI@2
inputs:

command: 'publish'
publishWebProjects: true
arguments: '-configuration Release -output $(Build.ArtifactStagingDirectory)'

In essence, modern app development with C# 8 and .NET Core 3 empowers developers to build high-
performance, user-friendly, and secure applications that cater to the evolving needs of today's users. By

leveraging the latest advancements in technology and adhering to best practices, developers can deliver
exceptional user experiences while maintaining agility and scalability in the ever-changing digital land
scape.

Understanding Cross-Platform Development: Building Apps for Any Device

Cross-platform development has become increasingly important in the modern app development land

scape, allowing developers to build applications that run seamlessly on various devices and platforms.

With C# 8 and .NET Core 3, developers can leverage powerful frameworks and tools to create cross-plat

form applications that cater to a wide audience. Let's explore the concept of cross-platform development

and how it's achieved using C# 8 and .NET Core 3, along with illustrative code examples.

1. Understanding Cross-Platform Development: Cross-platform development refers to the practice of

creating applications that can run on multiple operating systems and devices, such as Windows, macOS,

Linux, iOS, and Android. This approach offers several advantages, including reduced development time,

code reuse, and broader audience reach. With C# 8 and .NET Core 3, developers can target multiple plat

forms while maintaining a single codebase, thanks to frameworks like Xamarin and .NET MAUL

2. Building Apps with Xamarin: Xamarin is a popular cross-platform development framework that allows

developers to build native mobile applications using C# and .NET. With Xamarin, developers can create

applications for iOS, Android, and Windows using a shared C# codebase. Below is an example of a simple

Xamarin.Forms application that displays a basic UI:

c sharp

using Xamarin.Forms;

public class App: Application

public App()

MainPage = new MainPage();

public class MainPage: ContentPage

public MainPage()

Content = new Label

Text = "Hello, Xamarin.Forms!",

HorizontalOptions = LayoutOptions.Center,

Verticaloptions = LayoutOptions.Center

3. Introducing .NET MAUI: .NET Multi-platform App UI (MAUI) is the next evolution of Xamarin.Forms,

offering a unified framework for building cross-platform applications. .NET MAUI simplifies the devel

opment process by providing a single codebase for targeting multiple platforms, including iOS, Android,

macOS, and Windows. Below is an example of a .NET MAUI application:

c sharp

using Microsoft.Maui;

using Microsoft.Maui.Controls;

public class App: Application

public App()

MainPage = new MainPageQ;

public class MainPage: ContentPage

public MainPage()

Content = new Label

Text = "Hello, .NET MAUI!",

HorizontalOptions = LayoutOptions.Center,

Verticaloptions = LayoutOptions.Center

4. Sharing Code with .NET Standard: To maximize code reuse in cross-platform development, developers

can utilize .NET Standard, a formal specification of .NET APIs that are available on all .NET implementa

tions. By targeting .NET Standard, developers can write shared libraries that can be used across different

platforms without modification. Below is an example of a .NET Standard library:

c sharp

public class Calculator

public int Add(int a, int b)

return a + b;

public int Subtract(int a, int b)

return a - b;

5. Leveraging Platform-Specific Features: While cross-platform development offers significant advan

tages, there are times when developers need to leverage platform-specific features to provide the best user

experience. With C# 8 and .NET Core 3, developers can use conditional compilation directives to include

platform-specific code in their applications. Below is an example of platform-specific code in Xamarin.

Forms:

c sharp

#if_ANDROID_

// Android-specific code

#elif_IOS_

// iOS-specific code

#endif

Cross-platform development with C# 8 and .NET Core 3 empowers developers to build applications

that can run on any device, offering unparalleled flexibility, code reuse, and time-to-market advantages.

Whether it's building mobile apps with Xamarin or embracing the future of cross-platform development

with .NET MAUI, C# developers have the tools and frameworks they need to create truly cross-platform ex

periences for their users.

The Power of C# 8 and .NET Core 3: A Perfect Match for Modern Development

The synergy between C# 8 and .NET Core 3 represents a powerful combination that has revolutionized

modern app development. This perfect match offers developers a plethora of tools, features, and capabili

ties to build robust, scalable, and high-performance applications across a variety of platforms. Let's delve

into the power of C# 8 and .NET Core 3, showcasing how they enable modern development practices with

illustrative code examples.

1. Asynchronous Programming with Async/Await: C# 8 introduces enhancements to asynchronous pro

gramming with async/await, making it easier for developers to write asynchronous code that is both effi

cient and readable. Here's an example of asynchronous method invocation using async/await:

c sharp

async Task<string> DownloadDataAsync(string url)

HttpClient client = new HttpClient();

return await client.GetStringAsync(url);

2. Nullable Reference Types: C# 8 introduces nullable reference types, enabling developers to express the

nullability of reference types in their code. This helps reduce the risk of null reference exceptions and im

proves code robustness. Below is an example of using nullable reference types:

c sharp

string? nullableString = null;

3. Pattern Matching: Pattern matching in C# 8 allows developers to write more concise and expressive code

for conditional statements. It enables matching based on the shape of data, making code more readable and

maintainable. Here's an example of pattern matching in a switch statement:

c sharp

object obj = new Rectangle(10, 20);

if (obj is Rectangle rectangle)

Console.WriteLine($"Rectangle area: {rectangle.Width * rectangle.Height}");

4. Immutable Data Structures: C# 8 introduces support for immutable data structures, which can improve

performance and make code easier to reason about in concurrent scenarios. Immutable collections provide

thread safety and facilitate functional programming practices. Below is an example of creating an im

mutable list:

c sharp

using System.Collections.Immutable;

var immutableList = ImmutableList<int>.Empty.Add(l).Add(2).Add(3);

5. Enhanced Performance and Scalability with .NET Core 3: .NET Core 3 brings significant performance

improvements and scalability enhancements, making it an ideal platform for modern app development.

It offers better support for high-throughput scenarios, reduced memory footprint, and improved garbage

collection. Below is an example of configuring Kestrel server for high-performance web applications:

c sharp

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>

WebHost.CreateDefaultBuilder(args)

.UseKestrel(options =>

options.Limits.MaxConcurrentConnections = 100;

options.Limits.MaxConcurrentUpgradedConnections = 100;

options.Limits.MaxRequestBodySize = 10* 1024;

options.Limits.MinRequestBodyDataRate =

new MinDataRate(bytesPerSecond: 100, gracePeriod: TimeSpan.FromSeconds(lO));

options.Limits.MinResponseDataRate =

new MinDataRate(bytesPerSecond: 100, gracePeriod: TimeSpan.FromSeconds(lO));

.UseStartup < Startup > ();

6. Containerization and Microservices Architecture: .NET Core 3 embraces containerization and mi

croservices architecture, allowing developers to build and deploy applications in lightweight, scalable con

tainers. This enables efficient resource utilization, easy deployment, and improved scalability. Below is an

example of Dockerfile for containerizing a .NET Core application:

\ \ \

FROM mcr.microsoft.com/dotnet/core/sdk:3.1 AS build

WORKDIR /app

COPY *.csproj./

RUN dotnet restore

COPY../

RUN dotnet publish -c Release -o out

FROM mcr.microsoft.com/dotnet/core/aspnet:3.1 AS runtime

WORKDIR /app

COPY -from=build /app/out./

ENTRYPOINT ["dotnet", "MyApp.dll"]

The combination of C# 8 and .NET Core 3 empowers developers to build modern, performant, and scalable

applications that meet the demands of today's digital landscape. From asynchronous programming and

nullable reference types to pattern matching and immutable data structures, C# 8 offers a wealth of fea

tures that enhance developer productivity and code quality. Paired with the enhanced performance and

scalability of.NET Core 3, developers have the perfect toolkit to tackle the challenges of modern app devel

opment with confidence.

of.NET

Establishing Your Development Environment: Essential Tools for Getting Started

Setting up a robust development environment is crucial for modern app development with C# 8 and .NET

Core 3. With the right tools and configurations in place, developers can streamline their workflow, enhance

productivity, and ensure seamless deployment of their applications. Let's explore the essential tools you

need to set up your development environment for C# 8 and .NET Core 3, along with code examples and

configurations.

1. Integrated Development Environment (IDE): Choosing the right IDE is essential for a smooth de

velopment experience. Visual Studio and Visual Studio Code are popular choices for C# and .NET Core

development.

• Visual Studio: A comprehensive IDE offering powerful features such as code debugging, Intel-

liSense, and integrated source control. It provides a rich development environment for build

ing C# and .NET Core applications.

• Visual Studio Code: A lightweight, cross-platform code editor with support for extensions. It

offers features like syntax highlighting, debugging, and Git integration, making it suitable

for C# and .NET Core development.

2. .NET Core SDK: The .NET Core SDK is a comprehensive development kit containing all the essentials for

creating and executing .NET Core applications. It provides compilers, libraries, and tools necessary for C#

development.

• Install the .NET Core SDK from the official website: https://dotnet.microsoft.com/download

3. Version Control System (VCS): Utilizing a version control system is essential for managing code

changes, collaborating with team members, and maintaining a history of project revisions. Git is a widely-

used VCS that integrates seamlessly with C# and .NET Core development.

• Install Git from the official website: https://git-scm.com/

4. Package Manager: NuGet is the default package manager for .NET, allowing developers to easily manage

dependencies and libraries for their projects.

• NuGet is included with the .NET Core SDK and Visual Studio. You can also use the NuGet Com

mand Line Interface (CLI) for advanced package management tasks.

5. Containerization Tools (Optional): Containerization enables developers to package their applications

and dependencies into lightweight, portable containers. Docker is a popular containerization platform that

integrates well with .NET Core applications.

https://dotnet.microsoft.com/download
https://git-scm.com/

• Install Docker Desktop from the official website: https://www.docker.com/products/docker-

desktop

6. Continuous Integration and Deployment (CI/CD) Tools (Optional): CI/CD tools automate the process of

building, testing, and deploying applications. Azure DevOps is a comprehensive CI/CD platform that offers

integration with C# and .NET Core projects.

• Sign up for Azure DevOps and set up your CI/CD pipelines: https://azure.microsoft.com/en-us/

services/devops/

Once you have installed the necessary tools, you can configure your development environment to suit your

preferences and project requirements. Here's an example of configuring Visual Studio Code for C# and .NET

Core development:

1. Install the C# extension for Visual Studio Code from the Extensions view.

2. Create a new folder for your project and open it in Visual Studio Code.

3. Open the integrated terminal and run the following command to create a new .NET Core project:

dotnet new console -n MyProject

https://www.docker.com/products/docker-desktop
https://azure.microsoft.com/en-us/

4. Navigate to the newly created project folder and open the file.Program.es

5. Start writing your C# code, and use the terminal to build, run, and debug your application.

With your development environment set up and configured, you're ready to start building modern applica

tions with C# 8 and .NET Core 3. In the dynamic realm of software development, possessing the appropri

ate tools is indispensable for achieving success, regardless of whether you're working on web applications,

microservices, or mobile apps.

Program.es

Chapter 2

Variables, Data Types, and Operators: The Essentials of Data Manipulation

Demystifying C# programming involves understanding its fundamental building blocks, including vari

ables, data types, and operators. These elements form the backbone of any C# application, enabling devel

opers to manipulate data effectively and perform various operations. In the context of modern app devel

opment with C# 8 and .NET Core 3, let's explore these concepts along with illustrative code examples.

1. Variables: Variables are placeholders used to store data values that can be manipulated and referenced

within a program. In C#, variables must be declared with a specific data type before they can be used. Here's

an example of declaring and initializing variables in C#:

c sharp

// Declaring and initializing variables

int age = 30;

string name = "John Doe";

double salary = 50000.50;

bool isEmployed = true;

\ \ \

2. Data Types: C# supports various data types, including numeric, textual, and boolean types, among

others. Choosing the appropriate data type is essential for efficient memory usage and accurate data repre

sentation. Below are several frequently utilized data types in C#:

• Numeric Types: ' int', ' float', ' double', ' decimal'

• Textual Types: ' string', ' char'

• Boolean Type: 'bool'

Below is an example of declaring variables with different data types:

c sharp

int age = 30;

float temperature = 98.6f;

string name = "John Doe";

bool isEmployed = true;

3. Operators: Operators are characters utilized for executing actions on variables and values. C# supports

various types of operators, including arithmetic, comparison, logical, and assignment operators. Here's an

overview of some commonly used operators in C#:

• Arithmetic Operators: ' + ', ' -', ' *', ' /', ' %'

• Comparison Operators:'==', '!=', '<', '<=', >='

• Logical Operators: '&&' (AND), 'll' (OR), '!' (NOT)

• Assignment Operators: ' = ', ' + = ', ' ' *= ', ' /= '

Below is an example of using arithmetic and comparison operators in C#:

c sharp

int a = 10;

intb = 5;

// Arithmetic operators

int sum = a + b;

int difference = a - b;

int product = a * b;

float quotient = (float)a I b; // Explicit cast to float for accurate division

// Comparison operators

bool isEqual = (a = = b);

bool isGreater = (a > b);

Understanding variables, data types, and operators is essential for any C# programmer, as they form the

foundation upon which more complex functionalities are built. By mastering these fundamental concepts,

developers can effectively manipulate data, perform computations, and implement logic within their C#

applications. As such, they serve as the cornerstone of modern app development with C# 8 and .NET Core

3, enabling developers to create efficient, robust, and scalable software solutions.

Control Flow Statements: Branching, Looping, and Making Decisions

Control flow statements are essential in any programming language as they allow developers to control

the flow of execution within their code. In C# 8 and .NET Core 3, developers have access to a variety of

control flow statements, including branching, looping, and decision-making constructs. These statements

enable developers to implement conditional logic, iterate over collections, and execute code blocks based on

specific conditions. Let's explore these concepts further with code examples in the context of modern app

development with C# 8 and .NET Core 3.

1. Branching Statements: Branching statements, such as ' if', ' else if', and ' else', allow developers to

execute different code blocks based on the evaluation of conditional expressions. These statements are fun

damental for implementing decision-making logic within a program.

c sharp

int age = 30;

if (age >=18)

Console.WriteLine("You are an adult.");

else if (age >=13)

Console.WriteLine("You are a teenager.");

else

Console.WriteLine("You are a child.");

2. Looping Statements: Looping statements, such as ' for', ' while', and ' do-while', enable developers

to iterate over collections or execute code repeatedly until a certain condition is met. These statements are

useful for automating repetitive tasks and processing large amounts of data.

c sharp

// Utilizing a for loop for iterating through an array

int[] numbers = {1, 2, 3,4, 5 };

for (int i = 0; i < numbers.Length; i++)

Console.WriteLine(numbers[i]);

// Employing a while loop to iterate until a condition is satisfied.

int count = 0;

while (count < 5)

Console.WriteLine(count);

count++;

// Using a do-while loop to execute code at least once

int value = 5;

do

Console.WriteLine(value);

value-;

} while (value > 0);

3. Switch Statement: The ' switch' statement provides a convenient way to execute different code blocks

based on the value of a variable or expression. It is often used as an alternative to multiple ' if-else if' state

ments when dealing with multiple possible cases.

c sharp

int dayOfWeek = 3;

switch (dayOfWeek)

case 1:

Console.WriteLine("Monday");

break;

case 2:

Console .WriteLine("Tuesday");

break;

case 3:

Console.WriteLine("Wednesday");

break;

11 More cases...

default:

Console.WriteLinef'Invalid day");

break;

\ \ \

4. Ternary Operator: The ternary operator ('?:') provides a concise way to implement conditional expres

sions with a single line of code. It is often used when assigning values to variables based on a condition.

c sharp

int age = 20;

string message = (age >= 18) ? "You are an adult": "You are a minor";

Console.WriteLine(message);

Control flow statements are indispensable tools for developers, allowing them to write expressive and

efficient code that responds dynamically to different scenarios. Whether it's implementing decision-mak

ing logic with branching statements, iterating over collections with looping statements, or handling mul

tiple cases with the ' switch' statement, mastering control flow statements is essential for modern app

development with C# 8 and .NET Core 3. These constructs empower developers to build sophisticated and

responsive applications that meet the diverse needs of users in today's digital landscape.

Functions in Modern App Development with C# 8 and .NET Core

3: Creating Reusable Code Blocks for Efficiency

In modern app development with C# 8 and .NET Core 3, functions play a crucial role in creating efficient

and maintainable code. Functions allow developers to encapsulate logic into reusable code blocks, promot

ing code readability, reusability, and maintainability. In this article, we will explore the importance of func

tions and how they contribute to creating efficient applications.

What are Functions?

In C# 8 and .NET Core 3, a function is a block of code that performs a specific task. Functions have the

ability to accept input parameters, execute actions, and provide an output. They help break down complex

tasks into smaller, manageable units, making code organization easier and promoting code reuse.

Creating Functions in C# 8

Let's start by looking at how to define functions in C# 8. Here's a simple example of a function that calcu

lates the sum of two integers:

csharp

public class Calculator

public int Add(int a, int b)

return a + b;

In this example, the ' Add' function takes two integers (' a' and ' b') as input parameters and returns

their sum.

Reusability and Efficiency

Functions promo code reusability by allowing developers to write code once and use it multiple times. For

example, once we define the ' Add' function in the ' Calculator' class, we can use it wherever we need to

perform addition without rewriting the logic.

csharp

Calculator calculator = new CalculatorQ;

int result = calculator.Add(5, 3); // result is 8

\ \ \

By encapsulating logic into functions, developers can avoid code duplication, leading to more efficient and

maintainable codebases. Additionally, functions improve code readability by providing descriptive names

for specific operations, making it easier for other developers to understand the code.

Parameterized Functions

Functions in C# 8 can accept parameters, allowing for greater flexibility and customization. Let's extend

our ' Calculator' class to include a function for multiplying two numbers:

csharp

public int Multipoint a, int b)

return a * b;

Now, we can use the ' Multiply' function to perform multiplication operations:

csharp

int result = calculator.Multiply(5, 3); // result is 15

Parameterized functions enable developers to write generic code that can handle various inputs, enhanc

ing code versatility and reducing redundancy.

Return Types

Functions can return values of different types, including primitive types, custom objects, or even ' void' if

they don't return any value. For instance, we can modify our ' Add' function to return a ' float' instead of

an 'int':

csharp

public float Add(float a, float b)

return a + b;

This allows for more flexibility in function usage, catering to diverse application requirements.

In modern app development with C# 8 and .NET Core 3, functions are essential building blocks for creating

efficient and maintainable code. By encapsulating logic into reusable code blocks, functions promo code

reusability, readability, and efficiency. With features such as parameterization and return types, developers

can create versatile functions that cater to a wide range of application needs. Embracing the power of func

tions is key to developing robust and scalable applications in the C# ecosystem.

Putting it All Together: Building Your First C# Programs with C# 8 and .NET Core 3

Aspiring developers embarking on their journey in modern app development with C# 8 and .NET Core 3

often face the challenge of translating theoretical knowledge into practical implementation. Building your

first C# programs are an exciting step towards mastering the fundamentals of the language and frame

work. In this article, we'll guide you through the process of creating your first C# programs, covering key

concepts and best practices along the way.

Setting Up Your Development Environment

Before diving into coding, it's essential to set up your development environment. Ensure you have Visual

Studio or Visual Studio Code installed, along with the latest version of the .NET Core SDK. Once your envi

ronment is configured, you're ready to start writing C# code.

Creating a Simple Console Application

Let's begin by creating a simple console application. Open your preferred IDE and create a new C# console

project. In Visual Studio, you can do this by selecting "File" > "New" > "Project," then choosing the "Console

App (.NET Core)" template.

Once your project is created, you'll see a default ' Program.es' file containing the entry point of your appli

cation. Let's write some code to greet the user:

esharp

using System;

class Program

static void Main(string[] args)

Console.WriteLine("Welcome to My First C# Program!");

Console.Writef'Please enter your name:");

string name = Console.ReadLineQ;

Console.WriteLine($"Hello, {name}! Have a great day!");

In this code snippet:

• We use the ' Console WriteLine' method to print a welcome message.

• We prompt the user to enter their name using ' Console.Write' and read the input using

' Console.ReadLine'.

• Finally, we greet the user by interpolating their name into a message.

Compiling and Running Your Program

After writing your code, it's time to compile and run your program. In Visual Studio, you can simply press

' Ctrl + F5 ' to build and run the application. If you're using Visual Studio Code, open a terminal window,

navigate to your project directory, and run the command ' dotnet run'.

Exploring Basic C# Concepts

As you build your first C# programs, you'll encounter several fundamental concepts:

• Variables and Data Types: You've used a string variable (' name') to store user input. C# sup

ports various data types, including integers, floating-point numbers, and more.

• Control Flow: You've seen how to use ' Console.ReadLine' to wait for user input and condi

tional statements like ' Console.WriteLine' to control program execution flow.

• Functions: Although our program only contains the ' Main' method, you'll soon learn to define

and call your own functions to organize code and promote reusability.

Enhancing Your Program

Now that you've built a basic program, challenge yourself to enhance its functionality. You could:

• Add error handling to handle invalid user input.

• Create additional functions to perform calculations or display additional messages.

• Experiment with C# features such as loops, arrays, and object-oriented programming concepts.

Congratulations on building your first C# program! This is just the beginning of your journey into modern

app development with C# 8 and .NET Core 3. As you continue to explore the language and framework, don't

hesitate to experiment, ask questions, and seek out additional resources. By building upon the foundation

you've established, you'll soon be creating more complex and sophisticated applications with confidence.

Happy coding!

Chapter 3

Unveiling the Power of C# 8 Features: Exploring Pattern

Matching for Cleaner Data Comparisons

In modern app development with C# 8 and .NET Core 3, developers have access to a plethora of powerful

features that enhance productivity and code readability. One such feature is pattern matching, which pro

vides a cleaner and more concise way to handle complex data comparisons. In this article, we'll delve into

the concept of pattern matching and demonstrate how it simplifies code while making it more expressive

and maintainable.

Understanding Pattern Matching

Pattern matching is a feature that allows developers to check if a value has a certain shape and, if it does,

extract information from it in a single step. It provides a more flexible alternative to traditional conditional

statements, such as 'if' and ' switch', by enabling pattern-based comparisons against data structures like

types, tuples, and more.

Pattern Matching Syntax

Let's start by exploring the syntax of pattern matching in C# 8. Consider a scenario where we want to clas

sify shapes based on their type. Here's how we can achieve this using pattern matching:

csharp

public static string ClassifyShape(object shape)

switch (shape)

case Circle c:

return "Circle";

case Rectangle r when r.Width == r.Height:

return "Square";

case Rectangle r:

return "Rectangle";

default:

return "Unknown";

In this example:

• We use the 'switch' statement to evaluate different patterns.

• The ' case' statements contain patterns followed by variables (' c' and ' r') used to capture

and deconstruct the matching values.

• We can also apply additional conditions using the ' when' keyword to further refine the

matching criteria.

Handling Different Types of Shapes

Now, let's test our ' ClassifyShape' method with different types of shapes:

c sharp

Circle circle = new Circle(5);

Rectangle rectangle = new Rectangle(4, 6);

Console.WriteLine(ClassifyShape(circle)); // Output: Circle

Console.WriteLine(ClassifyShape(rectangle)); // Output: Rectangle

\ \ \

Benefits of Pattern Matching

Pattern matching offers several advantages over traditional conditional statements:

• Conciseness: With pattern matching, we can express complex conditions in a more concise and

readable manner, reducing code verbosity.

• Clarity: Patterns provide a clear and intuitive way to match against different data structures,

making code easier to understand and maintain.

• Safety: Pattern matching ensures type safety at compile time, reducing the likelihood of run

time errors.

Pattern Matching with Tuple Patterns

In addition to type patterns, C# 8 also introduces tuple patterns, which allow us to match against tuples of

values. Let's illustrate this with an example of categorizing points on a Cartesian plane:

csharp

public static string CategorizePoint((int x, int y) point)

return point switch

(0,0) => "Origin",

(int x, int y) when x > 0 && y > 0 = > "Quadrant 1",

(int x, int y) when x < 0 && y > 0 = > "Quadrant 2",

(int x, int y) when x < 0 && y < 0 = > "Quadrant 3",

(int x, int y) when x > 0 && y < 0 = > "Quadrant 4",

(_, _) => "Border"

Here, we use tuple patterns to categorize points based on their coordinates and their relation to the Carte

sian quadrants.

Pattern matching is a powerful feature introduced in C# 8 that simplifies data comparisons and enhances

code expressiveness. By leveraging pattern matching, developers can write cleaner, more concise code

while improving readability and maintainability. As you continue to explore modern app development

with C# 8 and .NET Core 3, consider incorporating pattern matching into your toolkit to unlock its full po

tential and streamline your coding workflow.

Asynchronous Programming Made Easy: Handling Long-

Running Tasks Efficiently with C# 8 and .NET Core 3

In modern app development with C# 8 and .NET Core 3, handling long-running tasks efficiently is crucial

for building responsive and scalable applications. Asynchronous programming offers a solution by allow

ing tasks to run concurrently, thus improving performance and responsiveness. In this article, we'll explore

the principles of asynchronous programming in C# 8 and demonstrate how to leverage asynchronous

methods to handle long-running tasks seamlessly.

Understanding Asynchronous Programming

Asynchronous programming enables tasks to execute independently of the main application thread,

ensuring that the user interface remains responsive while time-consuming operations are in progress.

Instead of blocking the main thread until a task completes, asynchronous methods return control to the

caller immediately, allowing other operations to continue in the meantime.

Asynchronous Method Signature

In C# 8, asynchronous methods are denoted by the ' async' modifier, and they typically return a ' Task'

or ' Task<T>' representing the asynchronous operation. Let's consider an example of a method that simu

lates a long-running operation, such as fetching data from a remote server:

csharp

using System;

using System.Net.Http;

using System.Threading.Tasks;

public class DataService

private readonly HttpClient _httpClient;

public DataServiceQ

httpClient = new HttpClientQ;

public async Task<string> GetDataAsync(string url)

HttpResponseMessage response = await JhttpClient.GetAsync(url);

return await response.Content.ReadAsStringAsync();

In this example, the ' GetDataAsync' method retrieves data from the specified URL asynchronously using

the ' HttpClient' class. The method is marked as ' async', allowing it to use the ' await' keyword to asyn

chronously wait for the completion of the HTTP request.

Calling Asynchronous Methods

When calling asynchronous methods, it's essential to await the results to ensure that the calling thread

remains responsive. Here's how we can call the ' GetDataAsync' method:

csharp

public class Program

public static async Task Main(string[] args)

DataService dataService = new DataServiceQ;

string data = await dataService.GetDataAsync("https://api.example.com/data");

Console.WriteLine(data);

In the ' Main' method, we use the ' await' keyword to asynchronously wait for the completion of the

' GetDataAsync' method. This allows the main thread to continue executing other tasks while the data is

being fetched asynchronously in the background.

Benefits of Asynchronous Programming

Asynchronous programming offers several benefits for handling long-running tasks efficiently:

• Improved Responsiveness: Asynchronous methods prevent blocking the main thread, ensur

ing that the application remains responsive to user interactions, even during time-consum

ing operations.

• Resource Efficiency: By allowing tasks to run concurrently, asynchronous programming max

imizes resource utilization and minimizes idle time, leading to better overall performance.

https://api.example.com/data

• Scalability: Asynchronous programming enables applications to handle multiple concurrent

requests efficiently, making it well-suited for scalable and high-performance systems.

Error Handling in Asynchronous Code

When working with asynchronous code, it's essential to handle errors gracefully to maintain application

stability. You can use try-catch blocks to catch exceptions thrown by asynchronous operations. Addition

ally, you can propagate exceptions using the ' Task' object returned by asynchronous methods.

Asynchronous programming is a powerful technique for handling long-running tasks efficiently in

modern app development with C# 8 and .NET Core 3. Through the utilization of asynchronous methods,

developers can guarantee that their applications maintain responsiveness and scalability, even when han

dling lengthy operations. Understanding the principles of asynchronous programming and adopting best

practices for error handling are essential for building robust and performant applications. As you continue

to explore asynchronous programming in C#, experiment with different scenarios and use cases to maxi

mize its benefits and enhance the overall user experience of your applications.

Null Reference Checks: Avoiding Common Errors and

Improving Code Safety in C# 8 and .NET Core 3

Null reference errors are a common source of bugs and crashes in software development. In C# 8 and .NET

Core 3, handling null references effectively is crucial for writing robust and reliable code. In this article,

we'll discuss common null reference errors, techniques for avoiding them, and best practices for improving

code safety.

Understanding Null Reference Errors

A null reference error occurs when a program attempts to access or manipulate a reference type variable

that is currently null. This often happens when developers forget to check for null values before accessing

properties or invoking methods on objects. Null reference errors can lead to application crashes, unex

pected behavior, and security vulnerabilities.

Null-Conditional Operator

C# 8 introduces the null-conditional operator ('?.'), which provides a concise and safe way to access mem

bers of an object without risking null reference errors. Let's consider an example:

csharp

public class Person

Name declared as a public string {get; set;}

// Using the null-conditional operator

Person person = null;

string name = person?.Name;

In this example, even if ' person' is null, accessing ' person?.Name' will not throw a null reference excep

tion. Instead, ' name' will be assigned null.

Null Coalescing Operator

The null coalescing operator ('??') is another useful tool for handling null references in C# 8. It allows

developers to provide a default value or alternative expression when encountering null references. Con

sider the following example:

csharp

string name = person?.Name ?? "Unknown";

In this example, if ' person?.Name' evaluates to null, the value "Unknown" will be assigned to ' name'

instead.

Null Check Patterns

C# 8 also introduces pattern matching enhancements, including null check patterns, which provide a more

expressive and concise way to handle null references. Here's an example:

csharp

public static void PrintName(Person person)

if (person is {Name: var name})

Console.WriteLine($"Name: {name}");

else

Console.WriteLine("Name is null.");

In this example, the ' is { Name: var name }' pattern matches non-null ' Person' objects and assigns the

' Name' property to the ' name' variable. If ' person' is null, the ' else' block is executed.

Best Practices for Null Reference Handling

To minimize null reference errors and improve code safety in C# 8 and .NET Core 3, consider the following

best practices:

1. Always Check for Null: Before accessing members of an object, perform null checks to ensure that the

object reference is not null.

2. Use Null-Conditional and Null Coalescing Operators: Take advantage of C# 8 features such as the null

conditional and null coalescing operators to simplify null reference handling and make your code more

concise.

3. Apply Defensive Programming Techniques: Design your code with defensive programming principles

in mind, including input validation, defensive copying, and error handling strategies.

4. Avoid Null References Whenever Possible: Whenever feasible, design your application to avoid using

null references altogether by using alternatives such as nullable value types or default values.

Null reference errors are a common pitfail in software development, but with the features introduced in

C# 8 and .NET Core 3, handling null references has become more straightforward and safer. By leveraging

tools like the null-conditional operator, null coalescing operator, and null check patterns, developers can

write more robust and reliable code that is less prone to null reference errors. Adopting best practices for

null reference handling is essential for improving code safety and enhancing the overall quality of your C#

applications.

Exploring Additional C# 8 Features for Modern App Development with .NET Core 3

C# 8 introduces several exciting features that enhance the language's expressiveness, productivity, and

safety. In this article, we'll explore some of these features and provide examples of how they can be used in

modern app development with .NET Core 3.

1. Default Interface Methods

Default interface methods allow interfaces to provide method implementations, reducing the need for ab

stract classes and facilitating code reuse. Let's see an example:

csharp

public interface ILogger

void Log(string message);

// Default implementation

void LogError(string errorMessage)

Log($"Error: {errorMessage}");

public class ConsoleLogger: ILogger

public void Log(string message)

Console.WriteLine(message);

In this example, ' ILogger' defines a default implementation for the ' LogError' method. Classes imple

menting ' ILogger' can choose to override this method or inherit the default implementation.

2. Readonly Members

Readonly members allow fields to be declared as Readonly directly in constructors or as part of property

declarations. This enhances code clarity and immutability. Example:

csharp

public class Circle

public double Radius {get;}

public double Area = > Math.PI * Radius * Radius;

public Circle(double radius)

Radius = radius;

In this example, ' Radius' is declared as readonly and can only be set once during object initialization in the

constructor.

3. Switch Expressions

Switch expressions offer a succinct syntax for switch statements, enhancing code readability and writabil

ity. For instance:

csharp

public enum DayOfWeek

Monday,

Tuesday,

Wednesday,

Thursday,

Friday,

Saturday,

Sunday

public static string GetWeekendStatus(DayOfWeek day)

return day switch

DayOfWeek.Saturday => "Weekend",

DayOfWeek.Sunday = > "Weekend",

= > "Weekday"

In this example, ' GetWeekendStatus' returns "Weekend" if the day is Saturday or Sunday, and "Weekday"

otherwise, using switch expressions.

4. Using Declarations

The ' using' declaration provides a more concise syntax for resource management, ensuring that dispos

able objects are properly disposed of when they go out of scope. Example:

csharp

using (var filestream = new FileStreamCdata.txt", FileMode.Open))

// Read from filestream

In this example, ' fileStream' is automatically disposed of when the ' using' block is exited, regardless of

whether an exception occurs.

5. Nullable Reference Types

Nullable reference types improve code safety by making reference types non-nullable by default, unless

explicitly annotated as nullable. Example:

csharp

public class Person

public string Name {get; set;} // Non-nullable by default

public string? Address {get; set;} // Nullable annotation

In this example, ' Name' is non-nullable, while ' Address' is nullable. The compiler provides warnings for

potential null reference errors.

C# 8 introduces several features that enhance the language's expressiveness, safety, and productivity. De

fault interface methods, readonly members, switch expressions, using declarations, and nullable reference

types are just a few examples of the improvements made in C# 8. By leveraging these features, developers

can write cleaner, more concise, and safer code, leading to better overall application quality and developer

productivity in modern app development with .NET Core 3.

Chapter 4

Understanding the Architecture of.NET Core 3: Components and Workflows

.NET Core 3 is a powerful and versatile framework for building modern applications across various plat

forms, including Windows, macOS, and Linux. To fully harness the capabilities of .NET Core 3, it's essential

to understand its architecture, including its components and workflows.

Components of .NET Core 3

1. Common Language Runtime (CLR):

• The CLR is the virtual machine that executes .NET Core applications.

• It provides features such as memory management, exception handling, and garbage collection.

• The CLR ensures that .NET Core applications are platform-independent and can run on any

supported operating system.

2. Base Class Library (BCL):

• The Base Class Library (BCL) encompasses a compilation of classes, interfaces, and value types

that establish the groundwork for .NET Core applications.

of.NET

• It includes essential functionality for tasks such as file I/O, networking, threading, and data

access.

• Developers leverage the BCL to build robust and feature-rich applications without reinventing

the wheel.

3. Runtime Components:

• .NET Core 3 includes various runtime components, such as the Just-In-Time (JIT) compiler,

garbage collector, and Common Intermediate Language (CIL) interpreter.

• These components work together to translate CIL code into native machine code, manage mem

ory allocation and deallocation, and execute application logic efficiently.

4. SDK and Tools:

• The .NET Core SDK provides developers with the tools necessary to build, debug, and pub

lish .NET Core applications.

• Tools like the dotnet CLI (Command-Line Interface) enable developers to create projects, com

pile code, run tests, and manage dependencies from the command line.

• Integrated development environments (IDEs) like Visual Studio and Visual Studio Code offer

comprehensive support for .NET Core development, including code editing, debugging, and

project management.

Workflows in .NET Core 3

1. Project Creation and Configuration:

• Developers use tools like the dotnet CLI or Visual Studio to create new .NET Core projects.

• Project configuration files, such as ' Lcsproj' (C# project file) and ' appsettings.json' (applica

tion settings), define project structure, dependencies, and settings.

2. Development and Coding:

• Developers write application code using C# and other supported languages, leveraging features

such as async/await, LINQ, and lambda expressions.

• They use the BCL and third-party libraries to implement application logic, handle data, and

interact with external services.

3. Building and Compilation:

• The dotnet CLI or IDEs like Visual Studio compile source code into executable binaries using

the .NET Core SDK and runtime components.

• Compilation involves translating C# code into CIL, optimizing and generating native machine

code, and bundling dependencies into the final executable or library.

4. Testing and Debugging:

• Developers write unit tests and integration tests to ensure the correctness and reliability of

their code.

• Debugging tools provided by IDEs allow developers to identify and fix issues in their applica

tions during development.

5. Publishing and Deployment:

• Once development and testing are complete, developers publish their applications for deploy

ment to production environments.

• Publishing involves packaging the application, its dependencies, and configuration files into a

distributable format, such as a self-contained executable or a Docker container.

• Deploying .NET Core applications is flexible and can be done using various methods, including

manual deployment, continuous integration/continuous deployment (CI/CD) pipelines, and

cloud platforms like Azure and AWS.

Understanding the architecture of .NET Core 3, including its components and workflows, is essential for

building modern and scalable applications. By leveraging the capabilities of .NET Core 3 and following best

practices in development, testing, and deployment, developers can create robust, performant, and cross

platform applications that meet the demands of today's software landscape. Whether building web appli

cations, microservices, desktop applications, or cloud-native solutions, .NET Core 3 provides the tools and

frameworks necessary to succeed in modern app development.

Project Structure and Organization: Building Maintainable Codebases

In modern app development with C# 8 and .NET Core 3, establishing a well-structured project organiza

tion is crucial for building maintainable and scalable codebases. A clear project structure enhances code

readability, promotes collaboration among team members, and simplifies maintenance tasks. In this arti

cle, we'll discuss best practices for structuring and organizing .NET Core 3 projects, along with examples

demonstrating these principles.

1. Solution Structure

The solution structure serves as the top-level container for organizing related projects within your appli

cation. It typically consists of one or more projects, each representing a distinct component or layer of the

application. For example:

\ \ \

MySolution/

I---- MyApi/

MyWebApp/

MyDataAccess/

1---- MyTests/

\ \ \

2. Project Structure

Within each project, maintain a clear and consistent folder structure to organize source code files, re

sources, and configurations. Here's a recommended structure for a .NET Core project:

\ \ \

MyProject/

|---- src/

| |---- Controllers/

| |---- Models/

I---- Services/

DataAccess/

| |----- Utilities/

| 1----- Views/

|-----tests/

| |----- UnitTests/

| 1----- IntegrationTests/

|---- wwwroot/

1---- appsettings.json

\ \ \

3. Layered Architecture

Adopting a layered architecture, such as the Model-View-Controller (MVC) or Service-Repository pattern,

can help organize code into logical layers, each responsible for specific functionalities. For example, in a

web application:

• Controllers: Handle HTTP requests, orchestrate business logic, and interact with services.

• Models: Define data structures and business entities.

• Services: Implement business logic and perform operations on data.

• DataAccess: Provide access to data storage mechanisms, such as databases or external APIs.

• Views: Render user interfaces and present data to users.

4. Dependency Injection

Utilize dependency injection (DI) to decouple components and promote modularization and testability.

Register services and dependencies in the application's startup configuration, allowing them to be injected

into controllers, services, or other components as needed.

csharp

public void ConfigureServices(IServiceCollection services)

services. AddScoped< ICustomerService, Customerservice > ();

services. AddScoped<ICustomerRepository, CustomerRepository>();

5. Separation of Concerns

Follow the principle of separation of concerns to keep code focused and maintainable. Each class or compo

nent should have a single responsibility, making it easier to understand, test, and modify.

Establishing a well-structured project organization is essential for building maintainable and scalable

codebases in .NET Core 3 applications. By adopting clear solution and project structures, layered archi

tectures, dependency injection, and separation of concerns, developers can create codebases that are easy

to navigate, understand, and maintain. Investing time upfront in organizing your projects will pay off in

the long run, as it enables smoother collaboration, faster development, and fewer maintenance headaches

down the road.

Understanding ASP.NET Core MVC: The Model-View-Controller Paradigm

ASP.NET Core MVC, a robust framework, facilitates the development of web applications using C# and .NET
Core. MVC architecture separates an application into three interconnected components: the Model, the
View, and the Controller. In this article, we'll delve into each component of the MVC pattern and how they
work together to create dynamic and responsive web applications.

Model

The Model embodies both the data and the business logic of the application. It encapsulates the state of the
application and provides methods to manipulate that data. In ASP.NET Core MVC, the Model often consists

ASP.NET
ASP.NET
ASP.NET

of classes that represent entities, such as users, products, or orders, as well as services that interact with
databases or external APIs.

csharp
public class Product

This denotes a public integer identifier {get; set;}
This indicates a public string identifier {get; set;}
This declares a public decimal value for price {get; set;}

View

The View is responsible for presenting data to the user and rendering the user interface. Views are typ
ically HTML templates with embedded C# code (Razor syntax) that generate dynamic content based on
data provided by the Controller. Views can display data, receive user input, and trigger actions within the
application.

' ' ' html
©model List<Product>

< h 1 > Products < /h 1 >

©foreach (var product in Model)

@product.Name - $ ©product.Price

Controller

The Controller serves as a mediator connecting the Model and the View. It receives user requests, processes
them, and determines the appropriate response. Controllers contain action methods that handle HTTP re
quests, interact with the Model to retrieve or modify data, and pass that data to the View for rendering.

csharp
public class Productcontroller: Controller

private readonly Productservice _productService;

public ProductController(ProductService productservice)

_productService = productservice;

public lActionResult IndexQ

var products = _productService.GetAll();
return View(products);

Request Flow in ASP.NET Core MVC

1. Routing: When a user makes a request to a URL, Core MVC's routing system determines which
Controller and action method should handle the request based on the URL route configuration.

ASP.NET

2. Controller Action Execution: Once the Controller and action method are determined, Core MVC
invokes the corresponding action method, passing any necessary parameters.

ASP.NET

3. Model Interaction: Inside the action method, the Controller interacts with the Model to retrieve or ma
nipulate data as needed.

4. View Rendering: After processing the request, the Controller selects a View to render and passes any
necessary data to the View.

5. HTML Generation: The View generates HTML content using Razor syntax, incorporating data provided
by the Controller.

ASP.NET
ASP.NET
ASP.NET

6. Response: Finally, Core MVC sends the generated HTML content back to the client's browser as
the response to the user's request.

ASP.NET

ASP.NET Core MVC follows the Model-View-Controller paradigm to provide a structured and scalable
framework for building web applications. By separating concerns into distinct components (Model, View,
and Controller), MVC architecture promotes code organization, maintainability, and testability. Under
standing how each component of MVC interacts within the ASP.NET Core framework is essential for devel
oping efficient and responsive web applications in C# and .NET Core.

Creating Your First ASP.NET Core 3 Web Application: Putting Theory into Practice

Building your first ASP.NET Core 3 web application is an exciting step towards mastering modern app
development with C# 8 and .NET Core 3. In this article, we'll guide you through the process of creating a
simple web application using ASP.NET Core MVC, putting theory into practice with hands-on examples.

Setting Up Your Development Environment

Before diving into coding, ensure you have the necessary tools installed on your machine. You'll need
Visual Studio or Visual Studio Code with the .NET Core SDK. Once your environment is set up, you're ready
to start building your ASP.NET Core 3 web application.

Creating a New ASP.NET Core Project

1. Open Visual Studio or Visual Studio Code and create a new project.

ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET

2. Choose " Core Web Application" as the project template.ASP.NET
3. Select the "Web Application (Model-View-Controller)" template and click "Create."

Visual Studio will generate a new ASP.NET Core project with the necessary files and folders to get you
started.

Exploring the Project Structure

Let's take a brief look at the project structure generated by Visual Studio:

• Controllers: Contains controller classes that handle HTTP requests and define action methods.

• Views: Contains Razor views that render HTML content and present data to the user.

• Models: Contains model classes that represent data entities and business logic.

• wwwroot: Contains static files such as CSS, JavaScript, and images.

• : Configures the application's services and middleware.Startup.es

Creating a Simple Controller and View

1. Access the 'HomeController.es' file located within the 'Controllers' directory.
2. Replace the content of the ' Index' action method with the following code:

esharp
public lActionResult IndexQ

ASP.NET
ASP.NET
Startup.es

return View();

3. Open the ' Index.cshtml' file in the 'Views/Home' folder.
4. Replace the content of the file with a simple HTML markup:

' ' ' html
<!DOCTYPE html>
<html>
<head>

<title> Welcome to My First ASP.NET Core Web App</title>
</head>
<body>

<hl > Welcome to My First ASP.NET Core Web App!</hl >
</body>
</html>

Running Your Application

Now that you've created a simple controller and view, it's time to run your ASP.NET Core web application:

ASP.NET
ASP.NET
ASP.NET

1. Press ' Ctrl + F5' to build and run your application.
2. Visual Studio will launch a web browser with your application running.

You should see the message "Welcome to My First ASP.NET Core Web App!" displayed in the browser.

Exploring Additional Features

Once you've successfully created your first ASP.NET Core web application, consider exploring additional
features and functionalities:

• Adding Models: Define model classes to represent data entities and interact with databases or
external APIs.

• Implementing CRUD Operations: Create controllers and views to perform CRUD (Create, Read,
Update, Delete) operations on your data.

• Using Dependency Injection: Leverage dependency injection to manage dependencies and
promote modularity and testability.

• Authentication and Authorization: Implement authentication and authorization mechanisms
to secure your application's endpoints and resources.

• Deploying to Production: Publish your application to a hosting provider or cloud platform to
make it accessible to users on the internet.

ASP.NET
ASP.NET

Congratulations! You've created your first ASP.NET Core 3 web application and taken the first step towards
mastering modern app development with C# 8 and .NET Core 3. As you continue to explore ASP.NET Core
MVC and its features, don't hesitate to experiment, ask questions, and seek out additional resources. Build
ing real-world applications is the best way to solidify your understanding and become proficient in web
development with ASP.NET Core. Happy coding!

ASP.NET
ASP.NET
ASP.NET

Chapter 5

Introduction to Razor Pages: Simplifying Web Development

Razor Pages is a feature of ASP.NET Core that simplifies web development by providing a streamlined

approach to building dynamic websites. Introduced in ASP.NET Core, Razor Pages offer a modern and in

tuitive alternative to the traditional Model-View-Controller (MVC) pattern for creating web applications. In

this article, we'll explore what Razor Pages are, how they work, and their benefits for developers.

What are Razor Pages?

Razor Pages are a lightweight web framework within ASP.NET Core that enables developers to build web

pages using a simpler and more focused programming model compared to MVC. With Razor Pages, each

web page (or "Razor Page") consists of an HTML template and an associated code file, making it easier to un

derstand and maintain.

A Modern Approach to Building Dynamic Websites

Unlike MVC, where controllers and views are separate entities, Razor Pages combine the presentation logic

and the UI markup into a single file, promoting a more cohesive and intuitive development experience.

ASP.NET
ASP.NET
ASP.NET

This approach is particularly beneficial for small to medium-sized web applications or when building fea

ture-specific pages.

Anatomy of a Razor Page

A Razor Page typically consists of the following components:

1. HTML Markup: The HTML markup defines the structure and layout of the web page, including elements

such as headings, paragraphs, forms, and buttons.

2. Razor Syntax: Razor syntax allows developers to embed C# code directly within the HTML markup to

dynamically generate content, interact with data, and handle user input.

3. Page Model: The page model is a C# class that contains the logic and behavior for the Razor Page. It

handles HTTP requests, performs data operations, and interacts with services or repositories.

Example: Creating a Simple Razor Page

Let's create a simple Razor Page to display a list of products:

1. Create the Razor Page: In the ' Pages' folder of your Core project, add a new Razor Page named

' Products.cshtml'.

ASP.NET

ASP.NET

2. Define the HTML Markup: In the ' Products.cshtml' file, define the HTML markup for the page:

' ' ' html

©page

©model ProductsModel

<!DOCTYPE html>

<html>

<head>

< title > Products < /title >

</head>

<body>

< h 1 > Products < /h 1 >

©foreach (var product in Model.Products)

@product.Name - $@product.Price

</body>

</html>

\ \ \

3. Implement the Page Model: In the ' Products.cshtml.es' file (the code-behind file), define the page

model class:

esharp

using Microsoft. AspNetCore.Mvc.RazorPages;

using System.Collections.Generic;

public class ProductsModel: PageModel

public List<Product> Products {get; set;}

public void OnGetQ

// Retrieve products from a data source

Products = GetProductsFromDatabaseO;

private List < Product > GetProductsFromDatabaseO

// Logic to retrieve products from the database

// For demonstration purposes, return a hardcoded list

return new List<Product>

A fresh instance of a Product {Name = "Product A", Price = 10.99m],

new Product {Name = "Product B", Price = 20.49m},

new Product {Name = "Product C", Price = 15.99m}

public class Product

This declares a public string identifier for the name {get; set;}

This specifies a public decimal value for the price {get; set;}

Benefits of Razor Pages

• Simplicity: Razor Pages offer a simpler and more focused programming model compared to

MVC, making it easier for developers to build and maintain web pages.

• Productivity: With Razor Pages, developers can create feature-specific pages quickly without

the need to define separate controllers and views.

• Coherence: Combining the presentation logic and UI markup into a single file promotes coher

ence and clarity, leading to cleaner and more maintainable code.

Razor Pages provide a modern and intuitive approach to building dynamic websites in ASP.NET Core. By

combining the presentation logic and UI markup into a single file, Razor Pages simplify web development,

enhance productivity, and promote code coherence. Whether you're building a simple web application or

a complex enterprise solution, Razor Pages offer a versatile and efficient framework for creating dynamic

and responsive web experiences.

ASP.NET

Creating Interactive Forms with Razor Pages: Capturing User Input

Interactive forms play a crucial role in web applications, allowing users to input data, submit requests, and
interact with the application dynamically. With Razor Pages in ASP.NET Core 3, developers can easily create
and handle interactive forms to capture user input efficiently. In this article, we'll explore how to create in
teractive forms with Razor Pages, including capturing user input and processing form submissions.

Creating a Simple Form

Let's start by creating a simple form for capturing user input:

1. Create a Razor Page: In the ' Pages' folder of your Core project, add a new Razor Page named
' Contact.cshtml'.

ASP.NET

2. Define the HTML Form: In the ' Contact.cshtml' file, define the HTML markup for the form:

' ' ' html
©page
©model ContactModel

<form method="post">
<div>

<label for="name" > Name: < /label>
<input type="text" id="name" name-'Name" />

ASP.NET
ASP.NET

</div>
<div>

< label for="email" > Email: < /label>
< input type="email" id="email" name="Email" />

</div>
<button type="submit" > Submit< /button>

</form>
\ \ \

3. Implement the Page Model: In the ' Contact.cshtml.es' file (the code-behind file), define the page model
class:

esharp
using Microsoft. AspNetCore.Mvc;
using Microsoft. AspNetCore.Mvc.RazorPages;

public class ContactModel: PageModel

[BindProperty]
This denotes a public ContactForm object named ContactForm {get; set;}

public void OnGetQ

// Initialize the ContactForm object

ContactForm = new ContactFormQ;

public lActionResult OnPostQ

if (SModelState.IsValid)

// If form validation fails, return the page with validation errors
return Page();

// Process the submitted form data
// Example: Save the data to a database, send an email, etc.

// Redirect to a success page or display a confirmation message
return RedirectToPage("/ContactSuccess");

public class ContactForm

This declares a public string identifier for the name {get; set;}
This declares a public string identifier for the email {get; set;}

Handling Form Submissions

When the user submits the form, the ' OnPost' method of the page model is invoked. Inside this method,
you can perform validation, process the submitted data, and take appropriate actions based on the form
input. In the example above, we validate the form input using the ' Modelstate.IsValid' property and redi
rect to a success page if the validation passes.

Displaying Validation Errors

If form validation fails, ASP.NET Core automatically adds validation errors to the ' Modelstate' dictionary.
These errors can be displayed to the user to indicate which fields require correction. For example, you can
modify the ' Contact.cshtml' file to display validation errors:

' ' ' html
<form method="post">

<div>
<label for="name" > Name: < /label>
<input type="text" id="name" name-'Name" />

</div>
<div>

< label for="email" > Email: < /label>

ASP.NET

< input type="email" id="email" name="Email" />
< span asp-validation-for="ContactForm.Email" > < /span>

</div>
<button type="submit" > Submit< /button>

</form>
\ \ \

Creating interactive forms with Razor Pages in ASP.NET Core 3 is straightforward and efficient. By com
bining HTML markup with C# code in a single Razor Page, developers can capture user input, handle form
submissions, and perform validation seamlessly. Whether you're building a simple contact form or a com
plex data entry form, Razor Pages provide a flexible and intuitive framework for creating interactive web
experiences that meet the needs of your users.

Displaying Data with Razor Pages: Building User-Friendly Interfaces

In modern web development, displaying data in a user-friendly and visually appealing manner is crucial
for enhancing the user experience. With Razor Pages in ASP.NET Core 3, developers have a powerful toolset
for building dynamic and interactive interfaces that effectively present data to users. In this article, we'll
explore how to display data with Razor Pages, including retrieving data from a database, formatting it for
display, and rendering it in the UL

Retrieving Data from a Database

ASP.NET
ASP.NET

To display data in a Razor Page, you first need to retrieve it from a data source, such as a database. ASP.NET
Core provides various options for data access, including Entity Framework Core for relational databases,
MongoDB for NoSQL databases, and HttpClient for accessing external APIs.

Let's assume we have a ' Product' class representing products stored in a database:

csharp
public class Product

This indicates a public integer identifier {get; set;}
This signifies a public string identifier for the name {get; set;}
This represents a public decimal value for the price {get; set;}

We can retrieve a list of products from the database in the page model class:

csharp
using Microsoft. AspNetCore.Mvc.RazorPages;
using System.Collections.Generic;

public class ProductsModel: PageModel

private readonly Productservice _productService;

ASP.NET

public ProductsModel(ProductService productservice)

_productService = productservice;

public List<Product> Products {get; set;}

public void OnGetQ

Products = _productService.GetProducts();

Formatting Data for Display

Once we have retrieved the data, we may need to format it for display in the UI. For example, we may want
to format prices as currency or dates as localized strings. Razor Pages allow us to use C# code within the
HTML markup to dynamically format data.

' ' ' html
©foreach (var product in Model.Products)

<div>

<h2 > ©product.Name < /h2 >
<p>Price: @product.Price.ToString("C")</p>

</div>

In this example, we use the ' ToString("C")' method to format the price as currency.

Rendering Data in the UI

Finally, we render the formatted data in the UI by incorporating it into the HTML markup of the Razor Page.

' ' ' html
©page
©model ProductsModel

<!DOCTYPE html>
<html>
<head>

< title > Products < /title >
</head>
<body>

< h 1 > Products < /h 1 >
©foreach (var product in Model.Products)

<h2>@product.Name</h2>
<p>Price: @product.Price.ToString("C")</p>

</div>

</body>
</html>
\ \ \

When the Razor Page is rendered, the data retrieved from the database is dynamically inserted into the
HTML markup, resulting in a user-friendly interface that displays the products with their names and prices
formatted appropriately.

Displaying data with Razor Pages in ASP.NET Core 3 is a straightforward process that allows developers to
build user-friendly interfaces efficiently. By retrieving data from a database, formatting it for display, and
rendering it in the UI using Razor syntax, developers can create dynamic and interactive web experiences
that effectively present information to users. Whether you're building an e-commerce platform, a content
management system, or a data visualization tool, Razor Pages provide a flexible and powerful framework
for displaying data in ASP.NET Core web applications.

ASP.NET
ASP.NET

Building Layouts and Partials: Reusing Code for Consistent Design

In modern web development, creating consistent and visually appealing layouts is essential for providing
a cohesive user experience across a web application. With ASP.NET Core 3 and Razor Pages, developers can
build reusable layouts and partial views to ensure consistency and efficiency in their web applications. In
this article, well explore how to build layouts and partials with ASP.NET Core 3, allowing for the reuse of
code and the creation of consistent design elements.

What are Layouts and Partials?

Layouts are HTML templates that define the overall structure of a web page, including common elements
such as headers, footers, navigation menus, and sidebars. Layouts provide a consistent design framework
for multiple pages within a web application.

Partials, also known as partial views, are reusable components that represent a portion of a web page.
Partials can be embedded within other views or layouts to encapsulate specific UI elements, such as wid
gets, forms, or lists.

Creating a Layout

Let's create a layout for our ASP.NET Core 3 web application:

1. Define the Layout: In the 'Shared' folder of your ASP.NET Core project, create a new file named
' _Layout.cshtml'.

ASP.NET
ASP.NET
ASP.NET
ASP.NET

2. Define the HTML Structure: In the ' JLayout.cshtml' file, define the HTML structure of the layout, in
cluding common elements such as the ' <head> ', navigation menu, header, footer, and main content area.

' ' ' html
<!DOCTYPE html>
<html>
<head>

<title>@ViewData["Title"] - My Application</title>
</head>
<body>

< header >
<hl > Welcome to My Application</h 1 >
<nav>

<ahref="/">Home
< li > < a href = "/products" > Products < /a> < /li >
<!— Add additional menu items as needed — >

</nav>

</header>

<main>
@RenderBody()

</main>

< footer >
<p>© 2024 My Application</p>

</footer>
</body>
</html>

Creating a Partial View

Let's create a partial view to display a list of products:

1. Define the Partial View: In the ' Shared' folder of your ASP.NET Core project, create a new file named
' JProductList.cshtml'.

2. Define the HTML Markup: In the ' JProductList.cshtml' file, define the HTML markup for the product
list partial view.

' ' ' html
©model List<Product>

<h2>Products</h2>

©foreach (var product in Model)

ASP.NET

@product.Name - $ ©product.Price

\ \ \

Using Layouts and Partials in Razor Pages

Now that we have created a layout and a partial view, let's use them in our Razor Pages:

1. Specify the Layout: In each Razor Page (' Index.cshtml', ' Products.cshtml', etc.), specify the layout by
setting the ' Layout' property.

' ' ' html
©page
©model IndexModel

Layout = "_Layout";

<!— Page content — >

2. Include the Partial View: In any Razor Page or layout where you want to display the product list, include
the partial view using the 'Partial' method.

' ' ' html
©model ProductsModel

<div>
<!-- Other page content ->
©await Html.PartialAsync("_ProductList", Model.Products)

</div>

Building layouts and partials with ASP.NET Core 3 and Razor Pages enables developers to create consistent
design elements and promote code reuse within their web applications. By defining reusable layout tem
plates and partial views, developers can ensure a cohesive user experience across multiple pages and com
ponents, leading to improved maintainability and efficiency in web development projects. Whether you're
building a small business website, an e-commerce platform, or a content management system, layouts and
partials are valuable tools for creating visually appealing and user-friendly web applications.

Chapter 6

Understanding Forms in ASP.NET Core 3: Capturing User Data

Forms play a vital role in web development, allowing users to interact with web applications by submitting
data and triggering actions. In ASP.NET Core 3, forms are a fundamental component for capturing user

ASP.NET
ASP.NET
ASP.NET

data and processing it on the server side. In this article, we'll explore how forms work in ASP.NET Core 3, in
cluding creating forms, capturing user input, and handling form submissions.

Creating a Form

Let's start by creating a simple form in an ASP.NET Core 3 Razor Page:

1. Create a Razor Page: In the ' Pages' folder of your Core project, add a new Razor Page named
' Contact.cshtml'.

ASP.NET

2. Define the Form Markup: In the ' Contact.cshtml' file, define the HTML markup for the form:

' ' ' html
©page
©model ContactModel

<form method="post">
<div>

<label for="name">Name:</label>
<input type="text" id="name" name-'Name" />

</div>
<div>

< label for="email" > Email: < /label>
< input type="email" id="email" name="Email" />

</div>

ASP.NET
ASP.NET
ASP.NET

<button type="submit" > Submit< /button>
</form>
\ \ \

Capturing User Input

When the user submits the form, the data entered into the form fields is sent to the server as an HTTP POST
request. In ASP.NET Core, you can capture the user input in the page model class associated with the Razor
Page.

csharp
using Microsoft. AspNetCore.Mvc;
using Microsoft. AspNetCore.Mvc.RazorPages;

public class ContactModel: PageModel

[BindProperty]
This signifies a public string identifier for the name {get; set;}

[BindProperty]
This declares a public string identifier for the email {get; set;}

public void OnGetQ

// Initialization logic

ASP.NET

public lActionResult OnPostQ

// Process the submitted form data
// Example: Save the data to a database, send an email, etc.

// Redirect to a success page or display a confirmation message
return RedirectToPage("/ContactSuccess");

In the example above, we use the ' [BindProperty]' attribute to bind the form fields (' Name' and ' Email')
to properties in the page model class. When the form is submitted, ASP.NET Core automatically binds the
form data to these properties.

Handling Form Submissions

Inside the ' OnPost' method of the page model class, you can perform validation, process the submitted
data, and take appropriate actions based on the form input. For example, you can save the data to a data
base, send an email, or perform any other business logic required by your application.

Displaying Validation Errors

ASP.NET

If form validation fails, ASP.NET Core automatically adds validation errors to the ' Modelstate' dictionary.
These errors can be displayed to the user to indicate which fields require correction.

csharp
public lActionResult OnPost()

if (SModelState.IsValid)

// If form validation fails, return the page with validation errors
return Page();

// Process the submitted form data

// Redirect to a success page or display a confirmation message
return RedirectToPage("/ContactSuccess");

Understanding how forms work in ASP.NET Core 3 is essential for capturing user data and building interac
tive web applications. By creating forms, capturing user input, and handling form submissions in the page
model class, developers can create dynamic and responsive web experiences that meet the needs of their
users. Whether you're building a contact form, a registration form, or a feedback form, ASP.NET Core pro
vides a flexible and powerful framework for capturing and processing user data in web applications.

ASP.NET
ASP.NET
ASP.NET

Processing Form Data: Validating and Sanitizing User Input

In modern web development, processing form data is a critical task, ensuring that the information sub
mitted by users is valid, secure, and meets the requirements of the application. With ASP.NET Core 3,
developers can implement robust validation and sanitization mechanisms to validate user input and pro
tect against security vulnerabilities. In this article, we'll explore how to process form data in ASP.NET Core
3, including validating and sanitizing user input to ensure the integrity and security of web applications.

Validating User Input

Validating user input is essential for ensuring that the data submitted through forms meets the expected
criteria and is safe for processing. ASP.NET Core provides built-in validation mechanisms to validate form
data, including model validation, data annotations, and custom validation logic.

Model Validation

Model validation in ASP.NET Core automatically validates form data against the validation rules defined
in the model classes. You can annotate model properties with data annotations to specify validation rules
such as required fields, string length, regular expressions, and more.

csharp
public class ContactModel

ASP.NET
ASP.NET
ASP.NET
ASP.NET

[Required(ErrorMessage = "Name is required")]
This signifies a public string identifier for the name {get; set;}

[EmailAddress(ErrorMessage = "Invalid email address")]
This declares a public string identifier for the email {get; set;}

Custom Validation Logic

In addition to data annotations, you can implement custom validation logic in the page model class to
perform more complex validation checks. Inside the ' OnPost' method, you can access the form data and
validate it using custom logic.

csharp
public lActionResult OnPost()

if (IModelState.IsValid)

// If model validation fails, return the page with validation errors
return Page();

// Custom validation logic

if (EmailAlreadyExists(Email))

Modelstate.AddModelError("Email", "Email address already exists");
return Page();

// Process the submitted form data

// Redirect to a success page or display a confirmation message
return RedirectToPage("/ContactSuccess");

Sanitizing User Input

Sanitizing user input is crucial for preventing security vulnerabilities such as cross-site scripting (XSS)
attacks and SQL injection. ASP.NET Core provides mechanisms for sanitizing user input to remove poten
tially malicious content before processing it.

Encoding User Input

One way to sanitize user input is by encoding it before rendering it in HTML to prevent XSS attacks.
ASP.NET Core automatically encodes user input by default, but you can use the ' Html.Raw' method to
render unencoded content when necessary.

ASP.NET
ASP.NET

' ' ' html
<div>

©Html.Raw(Model.Description)
</div>
\ \ \

Parameterized Queries

When interacting with databases, it's essential to use parameterized queries to prevent SQL injection
attacks. Parameterized queries separate SQL code from user input, reducing the risk of malicious input al
tering the query structure.

csharp
public lActionResult OnPostQ

using (var connection = new SqlConnection(connectionString))

var sql = "SELECT * FROM Users WHERE Username = ©Username";
var command = new SqlCommand(sql, connection);
command.Parameters.AddWithValue("@Username", Username);
// Execute the query

Processing form data in ASP.NET Core 3 involves validating and sanitizing user input to ensure the in
tegrity and security of web applications. By implementing model validation, custom validation logic, and
sanitization mechanisms, developers can prevent security vulnerabilities and ensure that the data submit
ted through forms meets the requirements of the application. Whether you're building a simple contact
form or a complex data entry form, ASP.NET Core provides powerful tools for processing form data safely
and securely in web applications.

Working with Models: Representing Your Data in C# Classes

In modern app development with C# 8 and .NET Core 3 models play a crucial role in representing data
entities and defining the structure of your application's data. Models serve as the backbone of your applica
tion, providing a clear and organized representation of the data it manipulates. In this article, we'll explore
the importance of models and how to work with them effectively in C# to represent your data.

What are Models?

Models are C# classes that represent data entities or objects within your application. They encapsulate the
attributes, properties, and behaviors of the data they represent, making it easier to work with and manipu
late data in your application. Models can represent various types of data, including user profiles, products,
orders, and more.

Defining Models in C#

ASP.NET
ASP.NET

Let's create a simple example of a model representing a product entity:

csharp
public class Product

This indicates a public integer identifier {get; set;}
This signifies a public string identifier for the name {get; set;}
This represents a public decimal value for the price {get; set;}
This denotes a public integer value for the quantity {get; set;}

In this example, we define a ' Product' class with properties such as ' Id', ' Name', ' Price', and ' Quan
tity '. Each property represents a specific attribute of a product, such as its unique identifier, name, price,
and quantity in stock.

Working with Models in ASP.NET Core

In ASP.NET Core applications, models are commonly used to represent data entities that are stored in a
database or passed between the client and server. Models are often used in conjunction with Entity Frame
work Core, a popular object-relational mapping (ORM) framework for .NET Core.

Using Models in Razor Pages

ASP.NET
ASP.NET

In Razor Pages, you can define models in the code-behind file of a Razor Page to represent the data associ
ated with that page. For example, if you have a Razor Page for displaying product details, you can define a
model representing a product and use it in the page:

csharp
public class ProductModel: PageModel

This declares a public Product object named Product {get; set;}

public void OnGet(int id)

// Retrieve product data from the database
Product = _productService.GetProductById(id);

Using Models in Controllers

In ASP.NET Core MVC controllers, models are commonly used to represent data passed between the con
troller and views. Controllers retrieve data from the database or other sources, populate model objects with
the retrieved data, and pass the models to views for rendering.

csharp

ASP.NET

public class Productcontroller: Controller

private readonly Productservice _productService;

public ProductController(ProductService productservice)

_productService = productservice;

public lActionResult Details(int id)

var product = _productService.GetProductBy!d(id);
return View(product);

Benefits of Using Models

• Organization: Models provide a structured and organized way to represent data entities within
your application.

• Encapsulation: Models encapsulate data attributes and behaviors, making it easier to manage
and manipulate data.

• Reusability: Models can be reused across different parts of your application, promoting code
reuse and maintainability.

• Type Safety: By defining models in C#, you benefit from strong typing, which helps prevent
errors and improve code reliability.

Models are an essential aspect of modern app development with C# 8 and .NET Core 3, providing a clear
and organized representation of your application's data. By defining models to represent data entities and
working with them effectively in your application, you can build robust, maintainable, and scalable soft
ware solutions. Whether you're building a web application, mobile app, or desktop application, models play
a central role in representing and manipulating data within your application.

Persisting User Data: Introduction to Entity Framework Core

In modern app development with C# 8 and .NET Core 3, persisting user data is a fundamental aspect of
building robust and scalable applications. Entity Framework Core (EF Core) is a powerful object-relational
mapping (ORM) framework that simplifies data access and manipulation in .NET applications. In this arti
cle, we'll introduce Entity Framework Core and explore how it can be used to persist user data effectively.

What is Entity Framework Core?

Entity Framework Core (EF Core) is a lightweight, extensible, and cross-platform ORM framework provided
by Microsoft for .NET applications. It allows developers to utilize C# objects to interact with relational

databases, abstracting the complexities of database interactions and offering a more simplified API for ac
cessing data.

Key Features of Entity Framework Core

1. Modeling: EF Core allows developers to define data models using C# classes, known as entity classes.
These entity classes represent database tables, and their properties represent table columns.

2. Data Access: EF Core provides a set of APIs for querying, inserting, updating, and deleting data from the
database. It supports LINQ queries for querying data using C# syntax.

3. Migrations: EF Core includes a migration feature that allows developers to manage database schema
changes using code-first migrations. Migrations enable developers to evolve the database schema alongside
application changes.

4. Performance: EF Core is designed for performance, with optimizations for query execution, lazy loading,
and efficient data retrieval.

Getting Started with Entity Framework Core

To use Entity Framework Core in your .NET Core application, follow these steps:

1. Install Entity Framework Core: Install the Entity Framework Core package via NuGet Package Manager
or the .NET CLI:

dotnet add package Microsoft.EntityFrameworkCore.SqlServer

This command installs the SQL Server provider for EF Core.

2. Define Entity Classes: Define entity classes to represent your data models. These classes will map to
database tables.

c sharp
public class User

This declares an integer identifier publicly {get; set;}
This publicly declares a string identifier for the username {get; set;}

This declares a public string identifier for the email {get; set;}

3. Create a Database Context: Create a database context class that inherits from ' DbContext' and includes
' DbSet' properties for each entity class.

'csharp
public class AppDbContext: DbContext

public DbSet<User> Users {get; set;}

protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)

optionsBuilder.UseSqlServer("YourConnectionString");

4. Perform Database Operations: Use the database context to perform database operations such as query
ing, inserting, updating, and deleting data.

c sharp
using (var context = new AppDbContextQ)

// Querying data
var users = context.Users.ToListQ;

// Inserting data
var newUser = new User {Username = "johnJKelly", Email = "john@example.com"};
context.Users.Add(newUser);
context. SaveChangesO;

// Updating data
var userToUpdate = context.Users.Find(l);
userToUpdate.Email = "updated_email@example.com";

mailto:updated_email@example.com

context.SaveChanges();

// Deleting data
var userToDelete = context.Users.Find(2);
context.Users.Remove(userToDelete);
context.SaveChanges();

Entity Framework Core is a powerful ORM framework for .NET Core applications, providing a convenient
and efficient way to persist user data in relational databases. By defining entity classes, creating a database
context, and using EF Core's APIs for data access, developers can build robust and scalable applications with
ease. Whether you're building a web application, a desktop application, or a mobile app, Entity Framework
Core simplifies the process of working with databases and enables you to focus on building great software
solutions.

Chapter 7

Introduction to Xamarin.Forms: Leveraging C# for Mobile Development

Building Cross-Platform Mobile Apps with Xamarin.Forms

In the landscape of modern app development, building cross-platform mobile applications has become
increasingly popular. Xamarin.Forms, an integral part of the Xamarin platform, allows developers to create
native user interfaces for iOS, Android, and Windows from a single, shared codebase. Leveraging the power
of C# and .NET Core 3, Xamarin.Forms provides a robust framework for developing mobile apps efficiently.
In this article, we'll introduce Xamarin.Forms and explore how it enables developers to leverage C# for mo
bile development.

What is Xamarin.Forms?

Xamarin.Forms is a framework, available as open-source, for creating mobile applications that run on mul
tiple platforms using C# and .NET. It provides a rich set of APIs and controls that allow developers to create
native user interfaces for iOS, Android, and Windows platforms from a single codebase. Xamarin.Forms
abstracts away the platform-specific details, allowing developers to focus on writing code that targets mul
tiple platforms simultaneously.

Key Features of Xamarin.Forms

1. Cross-Platform UI Development: Xamarin.Forms enables developers to create user interfaces using a
single, shared codebase that runs on multiple platforms. This allows for rapid development and easy main
tenance of mobile applications.

2. Native Performance: Xamarin.Forms applications compile down to native code, providing the perfor
mance and responsiveness users expect from native mobile apps. The platform-specific Tenderers ensure
that the user interface elements look and behave like native controls on each platform.

3. Access to Native APIs: Xamarin.Forms provides access to platform-specific APIs and features through a
unified API surface. Developers can leverage native device capabilities such as geolocation, camera, sensors,
and push notifications without sacrificing platform compatibility.

4. XAML-Based UI Design: Xamarin.Forms uses XAML (Extensible Application Markup Language) for
defining user interfaces, making it familiar to developers who have experience with XAML in WPF, UWP, or
Silverlight applications. XAML allows for a declarative and expressive UI design, separate from the applica
tion logic.

Getting Started with Xamarin.Forms

To get started with Xamarin.Forms, follow these steps:

1. Install Visual Studio with Xamarin: Install Visual Studio with the Xamarin workload, which includes
the necessary tools and SDKs for Xamarin development.

2. Create a New Xamarin.Forms Project: Create a new Xamarin.Forms project in Visual Studio, selecting
the desired project template (such as Blank App, Master-Detail App, or Tabbed App) and target platforms
(iOS, Android, and Windows).

3. Design the User Interface: Define the user interface of your mobile app using XAML in shared code or
platform-specific code. Xamarin.Forms provides a wide range of built-in controls and layouts for creating
rich and responsive UIs.

4. Write Application Logic: Write the application logic in C# to handle user interactions, data processing,
and navigation within the app. Use MVVM (Model-View-ViewModel) pattern for separating concerns and
improving maintainability.

5. Test and Debug: Test your app on emulators, simulators, or physical devices to ensure that it functions
correctly on each platform. Use debugging tools provided by Visual Studio to diagnose and fix any issues.

6. Deploy the App: Deploy your Xamarin.Forms app to the respective app stores (Google Play Store, Apple
App Store, or Microsoft Store) for distribution to users.

Xamarin.Forms is a powerful framework for building cross-platform mobile applications using C#
and .NET Core 3. By leveraging Xamarin.Forms, developers can create native user interfaces for iOS, An
droid, and Windows platforms from a single codebase, saving time and effort in mobile app development.
Whether you're building a consumer app, enterprise app, or game, Xamarin.Forms provides the tools and
capabilities needed to create high-quality mobile experiences that reach a wide audience across multiple
platforms.

Creating Cross-Platform Mobile UIs with Xamarin.Forms

In the realm of modern app development, creating cross-platform mobile user interfaces (UIs) has become
increasingly crucial for reaching a broader audience efficiently. Xamarin.Forms, a framework provided by
Microsoft, offers developers a powerful toolset to build native mobile UIs for iOS, Android, and Windows
platforms using C# and .NET Core 3. In this article, we'll delve into the process of creating cross-platform
mobile UIs with Xamarin.Forms, accompanied by code snippets and insights from "Modern App Develop
ment with C# 8 and .NET Core 3."

Introduction to Xamarin.Forms

Xamarin.Forms allows developers to create mobile user interfaces using a single, shared codebase that can
target multiple platforms. It abstracts away the platform-specific intricacies, enabling developers to focus
on building rich and responsive UIs using familiar C# syntax and XAML markup.

Key Components of Xamarin.Forms UIs

1. Pages: Xamarin.Forms provides various types of pages to represent different types of screens in mobile
applications. These include ContentPage for basic content, NavigationPage for navigation between pages,
TabbedPage for tabbed interfaces, and more.

2. Layouts: Layouts in Xamarin.Forms define the arrangement and positioning of UI elements within a
page. Common layouts include StackLayout for arranging elements in a vertical or horizontal stack, Grid
for arranging elements in rows and columns, and AbsoluteLayout for precise positioning.

3. Controls: Xamarin.Forms offers a rich set of controls to build the user interface, ranging from basic
controls like labels, buttons, and text entry fields to more complex controls like lists, pickers, and sliders.
These controls can be customized and styled to match the design requirements of the application.

Creating a Simple Cross-Platform UI with Xamarin.Forms

Let's create a simple cross-platform mobile UI using Xamarin.Forms to display a list of items:

1. Define the Model: Define a simple model class to represent the items to be displayed in the list.

csharp
public class Item

This signifies a public string identifier for the name {get; set;}
public string Description {get; set;}

2. Create the User Interface: Define the UI using XAML markup in a shared XAML file (' MainPage.xaml').

'xml

<ContentPagexmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
x:Class="YourNamespace.MainPage">

<StackLayout>
<ListView ItemsSource=" {Binding Items}">

< ListView.ItemTemplate >
<DataTemplate>

<ViewCell>
<StackLayout>

<Label Text=" {Binding Name}" />
<Label Text=" {Binding Description}" />

</StackLayout>
</ViewCell>

</DataTemplate>
< /ListView.ItemTemplate >

</ListView>
</StackLayout>

</ContentPage>

http://xamarin.com/schemas/2014/forms
http://schemas.microsoft.com/winfx/2009/xaml

3. Bind Data to the UI: In the code-behind file (' MainPage.xaml.es'), set the ' Bindingcontext' to an in
stance of the view model containing the list of items.

esharp
using Xamarin.Forms;

namespace YourNamespace

public partial class MainPage: ContentPage

public MainPage()

InitializeComponent();
Bindingcontext = new MainViewModelQ;

4. Implement the View Model: Create a view model (' MainViewModel.es') to provide data to the UI.

esharp
using System.Collections.ObjectModel;

namespace YourNamespace

public class MainViewModel

public ObservableCollection<Item> Items {get; set;}

public MainViewModel()

Items = new ObservableCollection<Item>

new Item {Name = "Item 1", Description = "Description for Item 1"},
new Item {Name = "Item 2", Description = "Description for Item 2"},
new Item {Name = "Item 3", Description = "Description for Item 3"}

Xamarin.Forms provides a powerful and efficient way to create cross-platform mobile user interfaces using
C# and .NET Core 3. By abstracting away the platform-specific details and providing a unified development
experience, Xamarin.Forms enables developers to build native-quality mobile apps for iOS, Android, and
Windows platforms with ease. Whether you're building a simple list-based UI or a complex multi-screen

application, Xamarin.Forms offers the flexibility and scalability needed to create compelling mobile expe
riences that delight users across all platforms.

Data Binding and User Interaction in Xamarin.Forms Applications

Data binding and user interaction are crucial aspects of developing Xamarin.Forms applications. With Xa
marin.Forms, developers can create cross-platform applications using C# and .NET Core 3. This allows for
efficient data binding and seamless user interaction across various devices and platforms. In this article,
we'll explore how to effectively utilize data binding and handle user interaction in Xamarin.Forms applica
tions, with code examples based on modern app development principles using C# 8 and .NET Core 3.

Data Binding:

Data binding in Xamarin.Forms enables developers to connect data from a source to a target UI element
effortlessly. This simplifies the process of updating UI elements dynamically based on changes in the un
derlying data. Xamarin.Forms facilitates both unidirectional and bidirectional data binding.

One-Way Data Binding:

In one-way data binding, data flows from the source to the target UI element. Changes in the source auto
matically reflect in the UI element, but changes in the UI element do not affect the source. Let's see how to
implement one-way data binding in Xamarin.Forms:

c sharp

// ViewModel.es
public class ViewModel: INotifyPropertyChanged

private string _name;

public string Name

get {return _name;}
set

if (.name ! = value)

_name = value;
OnPropertyChanged(nameof(Name));

public event PropertyChangedEventHandler PropertyChanged;

protected virtual void OnPropertyChanged(string propertyName)

PropertyChanged?. Invoke(this, new PropertyChangedEventArgs(propertyName));

ViewModel.es

// MainPage.xaml.es
public partial class MainPage: ContentPage

public MainPage()

InitializeComponent();
BindingContext = new ViewModel {Name = "John Doe"};

'xml
< !— MainPage.xaml —>
<ContentPagexmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
x:Class="MyApp.MainPage">

<StackLayout>
<Label Text=" {Binding Name}" />

</StackLayout>

MainPage.xaml.es
http://xamarin.com/schemas/2014/forms
http://schemas.microsoft.com/winfx/2009/xaml

</ContentPage>
\ \ \

In this example, the ' Name' property in the ' ViewModel' class is bound to the ' Text' property of
the ' Label' element in the XAML. Any changes to the ' Name' property will automatically update the
' Label'.

Two-Way Data Binding:

In two-way data binding, changes in both the source and the UI element are synchronized. Let's see how to
implement two-way data binding in Xamarin.Forms:

'xml
< !— TwoWayBindingPage.xaml — >
<ContentPagexmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
x:Class="MyApp.TwoWayBindingPage">

<StackLayout>
<Entry Text=" {Binding Name, Mode=TwoWay}" />
<Label Text=" {Binding Name}" />

</StackLayout>

</ContentPage>

http://xamarin.com/schemas/2014/forms
http://schemas.microsoft.com/winfx/2009/xaml

In this example, the ' Text' property of the ' Entry' element is bound to the ' Name' property of the
'ViewModel' class with ' Mode=Two Way'. Any changes made in the 'Entry' will reflect in the 'Label',
and vice versa.

User Interaction:

Handling user interaction is essential for creating interactive and engaging Xamarin.Forms applications.
Xamarin.Forms provides various ways to capture user input and respond accordingly.

Button Click Event:

'xml
< !— ButtonClickPage.xaml —>
<ContentPagexmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
x:Class="MyApp.ButtonClickPage" >

<StackLayout>
<Button Text="Click Me" Clicked="OnButtonClick" />
< Label Text=" {Binding ClickCount}" />

</StackLayout>

</ContentPage>

http://xamarin.com/schemas/2014/forms
http://schemas.microsoft.com/winfx/2009/xaml

csharp
// ButtonClickPage.xaml.es
public partial class ButtonClickPage: ContentPage

public ButtonClickPage()

InitializeComponent();
Bindingcontext = new ViewModelQ;

private void OnButtonClick(object sender, EventArgs e)

((ViewModel)BindingContext).IncrementClickCount();

In this example, the ' OnButtonClick' method is invoked when the button is clicked. It increments the
' ClickCount' property in the ' ViewModel', which is then reflected in the ' Label'.

Gesture Recognition:

Xamarin.Forms also supports gesture recognition for handling user interactions such as taps, pinches, and
swipes. Let's see how to implement tap gesture recognition:

ButtonClickPage.xaml.es

'xml
<!- TapGesturePage.xaml —>
<ContentPagexmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
x: Clas s="MyApp .TapGe sturePage" >

<StackLayout>
<Image Source="image.png">

< Image.GestureRecognizers >
<TapGestureRecognizer Tapped="OnImageTapped" />

< /Image.GestureRecognizers >
</Image >

</StackLayout>

</ContentPage>

csharp
// TapGesturePage.xaml.es
public partial class TapGesturePage: ContentPage

public TapGesturePage()

http://xamarin.com/schemas/2014/forms
http://schemas.microsoft.com/winfx/2009/xaml
TapGesturePage.xaml.es

InitializeComponent();

private void OnImageTapped(object sender, EventArgs e)

// Handle tap gesture

In this example, the ' OnlmageTapped' method is invoked when the image is tapped by the user.

Data binding and user interaction are fundamental aspects of developing Xamarin.Forms applications. By
effectively utilizing data binding and handling user interaction, developers can create engaging and re
sponsive cross-platform applications using C# 8 and .NET Core 3.

Consuming APIs and Integrating Services in Mobile Apps

Integrating services and consuming APIs are vital for modern mobile app development. With the prolifera
tion of web services and APIs, mobile apps can access a wide range of functionalities, data, and third-party
services. In this article, we'll explore how to effectively consume APIs and integrate services into mobile
apps using C# 8 and .NET Core 3, based on modern app development principles.

Consuming APIs:

Consuming APIs allows mobile apps to interact with external services, retrieve data, and perform various
operations. Xamarin.Forms provides several methods for consuming APIs, including HttpClient for mak
ing HTTP requests. Let's see how to consume a RESTful API in a Xamarin.Forms app:

csharp
using System;
using System.Net.Http;
using System.Threading.Tasks;

public class ApiService

private HttpClient _client;

public ApiServiceQ

_client = new HttpClientQ;
_client.BaseAddress = new Uri("https://api.example.com/");

public async Task<string> GetDataFromApiQ

string endpoint = "data";
HttpResponseMessage response = await _client.GetAsync(endpoint);

https://api.example.com/

if (response.IsSuccessStatusCode)

string data = await response.Content.ReadAsStringAsync();
return data;

else

// Handle error
return null;

In this example, we create an ' ApiService' class with a method ' GetDataFromApi()' that makes a GET
request to an API endpoint. The response is then read as a string and returned to the caller.

Integrating Services:

Integrating services into mobile apps enhances their functionality and provides users with additional
features and capabilities. Xamarin.Forms allows seamless integration of various services, such as authen
tication, push notifications, and analytics. Let's explore how to integrate authentication using OAuth 2.0:

c sharp

using Microsoft.Identity.Client;

public class Authenticationservice

private readonly string _clientld;
private readonly string _redirectUri;
private readonly string .authority;

public AuthenticationService()

_clientld = "your_client_id";
_redirectUri = $"msal{_clientld}://auth";
.authority = "https://login.microsoftonline.com/your_tenant_id";

public async Task<string> Authenticate()

var app = PublicClientApplicationBuilder.Create(_clientId)
.WithRedirectUri(_redirectUri)
.WithAuthority(new Uri(_authority))
.Build();

var scopes = new[] {"user.read"};

https://login.microsoftonline.com/your_tenant_id

var result = await app.AcquireToken!nteractive(scopes).ExecuteAsync();
return result. AccessToken;

In this example, we create an ' Authenticationservice' class responsible for authenticating users using
Azure Active Directory (Azure AD) authentication. The ' Authenticate()' method initiates the authentica
tion flow and returns an access token upon successful authentication.

Integration Example:

Let's see how to integrate API consumption and service authentication into a Xamarin.Forms app:

csharp
using Xamarin.Forms;

public partial class MainPage: ContentPage

private ApiService _apiService;
private Authenticationservice _authService;

public MainPage()

InitializeComponent();

apiService = new ApiServiceQ;
authService = new AuthenticationServiceQ;

private async void Button_Clicked(object sender, EventArgs e)

// Authenticate user
string accessToken = await _authService. Authenticate();

if (!string.IsNullOrEmpty(accessToken))

// Get data from API using access token
string data = await _apiService.GetDataFromApi(accessToken);
DisplayAlert("Data Retrieved", data, "OK");

else

DisplayAlert("The authentication failed with the message "Unable to authenticate user," and

the status is "OK.");

In this example, when a button is clicked on the MainPage, the app initiates the authentication process
using the ' Authenticationservice'. Upon successful authentication, it retrieves data from the API using
the access token and displays it in an alert.

Consuming APIs and integrating services are essential for enhancing the functionality and capabilities of
mobile apps. With Xamarin.Forms and C# 8, developers can seamlessly integrate APIs and services into
their apps, providing users with rich and interactive experiences. By following modern app development
principles, developers can create robust and feature-rich mobile apps that meet the demands of today's
users.

Chapter 8

Introduction to WPF: Creating Rich Desktop User Interfaces with C#

Windows Presentation Foundation (WPF) is a powerful framework for building modern desktop applica
tions with rich user interfaces using C#. With the advent of .NET Core 3, WPF has become even more
compelling, offering developers the ability to create dynamic and visually appealing applications that can
run on Windows platforms.

Getting Started with WPF

To begin building desktop applications with WPF, you'll need to have Visual Studio installed. Once in
stalled, you can create a new WPF project by selecting "WPF App (.NET Core)" from the available project
templates.

csharp
using System;
using System.Windows;

namespace ModernDesktopApp

public partial class MainWindow: Window

public MainWindowQ

InitializeComponent();

private void Button_Click(object sender, RoutedEventArgs e)

MessageBox.Show("Hello, WPF!");

Creating the User Interface

WPF provides a flexible and powerful markup language called XAML (extensible Application Markup Lan
guage) for designing user interfaces. Let's create a simple UI with a button that displays a message when
clicked.

'xaml
< Window x:Class="ModernDesktopApp.MainWindow"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

Title="Modern Desktop App" Height="450" Width="800">
<Grid>

<Button Content="Click Me" Click="Button_Click" HorizontalAlignment="Center" VerticalAlign-
ment="Center"/>

</Grid>
</Window>

Styling and Theming

WPF allows you to customize the look and feel of your application through styles and templates. You can
define styles for controls, create custom themes, and even apply animations to enhance the user experi
ence.

'xaml
<Window.Resources>

< Style TargetType="Button" >
<Setter Property="Background" Value="#2196F3"/>
<Setter Property="Foreground" Value="White"/>
<Setter Property="Fontsize" Value="16"/>
<Setter Property="Padding" Value="10"/>
< Setter Property="Template" >

<Setter.Value>

< ControlTemplate TargetType="Button" >
<Border Background -'{TemplateBinding Background}"

BorderBrush="{TemplateBinding BorderBrush}"
BorderThickness="{TemplateBinding BorderThickness}"
Padding="{TemplateBinding Padding}" >

<Contentpresenter HorizontalAlignment="Center" VerticalAlignment="Cen-
ter"/>

</Border>
< /ControlTemplate >

</Setter.Value>
</Setter>

</Style >
</Window.Resources>

Data Binding and MVVM

WPF supports data binding, allowing you to bind UI elements to data sources such as properties, collec
tions, or even other UI elements. The Model-View-ViewModel (MVVM) pattern is commonly used in WPF
applications to separate concerns and facilitate testability.

csharp
public class MainViewModel: INotifyPropertyChanged

private string .message;

public string Message

get {return .message;}
set

.message = value;
OnPropertyChanged(nameof(Message));

public event PropertyChangedEventHandler PropertyChanged;

protected virtual void OnPropertyChanged(string propertyName)

PropertyChanged?. Invoke(this, new PropertyChangedEventArgs(propertyName));

'xaml
<Window.DataContext>

< local:MainVie wModel/ >
</Window.DataContext>
<Grid>

<TextBlock Text=" {Binding Message}" HorizontalAlignment="Center" VerticalAlignment="Center"/>
<Button Content="Update Message" Command=" {Binding UpdateMessageCommand}" HorizontalAlign-

ment="Center" VerticalAlignment="Bottom"/ >
</Grid>
\ \ \

With its powerful features and flexibility, WPF remains a top choice for building modern desktop applica
tions with C#. By leveraging the capabilities of .NET Core 3 and embracing modern app development prac
tices, developers can create visually stunning and highly functional applications that meet the demands of
today's users. Whether you're creating enterprise software, productivity tools, or consumer applications,
WPF provides the tools you need to succeed in the world of desktop development.

Designing User Interfaces with XAML: A Powerful UI Language

In modern app development with C# 8 and .NET Core 3, XAML (extensible Application Markup Language)
stands out as a powerful tool for designing user interfaces. XAML allows developers to create visually ap
pealing and interactive UIs for various platforms, including desktop, mobile, and web applications. Let's
explore how XAML empowers developers to build elegant user interfaces while leveraging the capabilities
ofC# and.NET Core 3.

and.NET

Getting Started with XAML

XAML is a declarative XML-based language that allows developers to define the structure and appearance of
user interfaces. With its intuitive syntax, XAML enables rapid prototyping and collaboration between de
signers and developers. Let's create a simple XAML file for a login screen:

'xaml
<Grid>

< StackPanel HorizontalAlignment="Center" VerticalAlignment="Center" >
<TextBlockText-'Login"FontSize="24"FontWeight="Bold"Margin="O00 20"/>
<TextBox PlaceholderText="Username" Width="200" Margin="O 0 0 10"/>
<PasswordBox PlaceholderText="Password" Width="200" Margin="O 0 0 10"/>
<Button Content="Login" Width="100"/>

</StackPanel>
</Grid>

Layout and Controls

XAML provides a wide range of layout panels and controls for organizing and presenting content. Develop
ers can use stack panels, grid layouts, and other containers to arrange UI elements effectively. Additionally,
XAML offers various built-in controls such as buttons, text boxes, sliders, and more, allowing developers to
create versatile and interactive user interfaces.

'xaml
<Grid>

< Grid.ColumnDefinitions >
<ColumnDefinition Width="*" />
<ColumnDefinition Width="Auto" />
<ColumnDefinition Width="*" />

< /Grid.ColumnDefinitions >
< Grid.RowDefinitions >

<RowDefinition Height="Auto" />
<RowDefinition Height="*" />
<RowDefinition Height="Auto" />

< /Grid.RowDefinitions >

<TextBlock Text="Header" Grid.Column="l" FontSize="24" Font Weight="Bold" Margin="O 0 0 20"/>

<StackPanel Grid.Column="l" Grid.Row="l">
<TextBlockText="Content l"Margin="0 0 0 10"/>
<TextBlock Text="Content 2" Margin="0 0 0 10"/>
<TextBlock Text="Content 3" Margin="0 0 0 10"/>

</StackPanel>

<Button Content="Footer" Grid.Column="l" Grid.Row="2" Width="100" HorizontalAlignment="Cen
ter"/>

</Grid>

Styling and Theming

XAML allows developers to define styles, templates, and themes to customize the appearance of UI ele
ments. By applying styles and resource dictionaries, developers can create consistent and visually appeal
ing designs across their applications. Let's define a style for buttons:

'xaml
<Window.Resources>

< Style TargetType="Button" >
<Setter Property="Background" Value="#2196F3"/>
<Setter Property="Foreground" Value="White"/>
<Setter Property="Fontsize" Value="16"/>
<Setter Property="Padding" Value="10"/>

</Style >
</Window.Resources>

Data Binding and MVVM

XAML supports data binding, enabling developers to connect UI elements to data sources and update their
properties dynamically. The Model-View-ViewModel (MVVM) pattern is commonly used in XAML-based

applications to separate concerns and improve maintainability. Let's bind a text box to a property in the
view model:

'xaml
<TextBox Text=" {Binding Username}" Width="200" Margin="O 0 0 10"/>

csharp
public class LoginViewModel: INotifyPropertyChanged

private string _username;

public string Username

get {return _username;}
set

_username = value;
OnPropertyChanged(nameof(Username));

// Other properties and methods...

XAML is a powerful UI language that empowers developers to create stunning user interfaces for modern
applications. By combining the capabilities of XAML with C# 8 and .NET Core 3, developers can build re
sponsive, intuitive, and visually appealing applications that meet the demands of today's users. Whether
you're developing desktop, mobile, or web applications, XAML provides the tools and flexibility you need to
bring your ideas to life.

Data Binding and Event Handling in WPF Applications

Data binding and event handling are essential aspects of building modern WPF (Windows Presentation
Foundation) applications with C# 8 and .NET Core 3. These features enable developers to create dynamic
and interactive user interfaces that respond to user input and reflect changes in underlying data sources.
Let's explore how data binding and event handling are implemented in WPF applications through code ex
amples and best practices.

Data Binding in WPF

Data binding in WPF allows developers to establish a connection between UI elements and data sources,
such as properties, collections, or other objects. This enables automatic synchronization between the UI
and the underlying data, eliminating the need for manual updates. Let's create a simple example of data
binding in WPF:

c sharp

public class Person: INotifyPropertyChanged

private string _name;
public string Name

get {return _name;}
set

_name = value;
OnPropertyChanged(nameof(Name));

public event PropertyChangedEventHandler PropertyChanged;
protected virtual void OnPropertyChanged(string propertyName)

PropertyChanged?. Invoke(this, new PropertyChangedEventArgs(propertyName));

'xaml
<Window.DataContext>

<local:Person/>
</Window.DataContext>

<StackPanel>
<TextBlock Text=" {Binding Name}" FontSize="18"/>
<TextBox Text="{Binding Name, UpdateSourceTrigger=PropertyChanged}" Width="200"/>

</StackPanel>
\ \ \

In this example, the ' Person' class represents a data model with a ' Name' property. The ' TextBlock' and
' TextBox' elements in the XAML markup are bound to the ' Name' property, allowing users to edit the
name in the ' TextBox', and the changes are automatically reflected in the ' TextBlock'.

Event Handling in WPF

Event handling in WPF allows developers to respond to user input, such as mouse clicks, keyboard input, or
changes in UI elements. WPF provides a rich set of events that can be handled to create interactive user ex
periences. Let's handle the ' Click' event of a button:

'xaml
<Button Content="Click Me" Click="Button_Click"/>

csharp
private void Button_Click(object sender, RoutedEventArgs e)

MessageBox.Show("Button clicked!");

In this example, the ' Button_Click' method is invoked when the button is clicked. Inside the method, we
display a message box to indicate that the button was clicked. Event handling allows developers to execute
custom logic in response to user actions, enabling the creation of interactive and responsive applications.

Combining Data Binding and Event Handling

In many cases, developers need to combine data binding and event handling to create fully functional
applications. For example, you may want to update a data source when a button is clicked. Let's modify the
previous example to update the ' Name' property of the ' Person' object when the button is clicked:

'xaml
< Button Content="Update Name" Click="UpdateName_Click"/>
\ \ \

csharp
private void UpdateName_Click(object sender, RoutedEventArgs e)

((Person)DataContext).Name = "New Name";

In this updated example, clicking the button triggers the ' UpdateName_Click' event handler, which up
dates the ' Name' property of the ' Person' object to "New Name". This change is automatically reflected
in the UI due to data binding, demonstrating the seamless integration of data and user interaction in WPF
applications.

Data binding and event handling are fundamental techniques in WPF application development, enabling
developers to create dynamic and interactive user interfaces. By leveraging these features, developers can
build modern applications that respond to user input and reflect changes in underlying data sources. With
C# 8 and .NET Core 3, WPF development becomes even more powerful, providing a robust platform for
building desktop applications with rich user experiences.

Building Interactive and Responsive Desktop Apps with C# 8 and .NET Core 3

Creating interactive and responsive desktop applications is essential for providing a seamless user experi
ence. With C# 8 and .NET Core 3, developers have powerful tools at their disposal to build modern desktop
apps that respond to user input in real-time. Let's explore some key techniques and best practices for build
ing interactive and responsive desktop apps with code examples.

User Interface Design

The foundation of an interactive desktop app is a well-designed user interface (UI) that is intuitive and easy
to navigate. Utilizing XAML in combination with WPF allows developers to create visually appealing UIs
with rich interactive elements. Here's a basic example of a XAML file defining a simple UI layout:

'xaml
< Window >

<Grid>
< Button Content="Click Me" Click="Button_Click"/>

</Grid>
</Window>

Event Handling

Event handling is crucial for capturing and responding to user interactions. In C#, event handlers are
methods that are executed when a specific event occurs, such as a button click. Here's how you can handle
the click event of a button in WPF:

csharp
private void Button_Click(object sender, RoutedEventArgs e)

// Add your code here to respond to the button click event

Within the event handler method, you can write code to perform actions based on the user's interaction,
such as updating UI elements, executing logic, or triggering other events.

Asynchronous Programming

In modern desktop applications, responsiveness is key to providing a smooth user experience, especially
when performing time-consuming operations such as network requests or file I/O. Asynchronous pro
gramming allows developers to execute such tasks without blocking the UI thread, ensuring that the appli
cation remains responsive. Here's an example of using async/await in C#:

csharp
private async void Button_Click(object sender, RoutedEventArgs e)

// Perform a time-consuming operation asynchronously
await Task.Delay(lOOO); // Simulate a delay of 1 second

// Update UI or perform other actions after the operation completes

\ \ \

By marking the event handler method with the ' async' keyword and using ' await' to asynchronously
wait for the completion of a task, the UI thread remains responsive while the operation is in progress.

Data Binding

Data binding allows developers to establish a connection between UI elements and data sources, enabling
automatic synchronization between the two. This is useful for displaying dynamic content and ensuring
that the UI reflects changes in the underlying data. Here's a simple example of data binding in XAML:

'xaml
<TextBox Text=" {Binding UserName}" />
\ \ \

In this example, the ' TextBox' element is bound to a property named ' UserName' in the data context.
Any changes made to the 'UserName' property will automatically update the text displayed in the
' TextBox'.

Building interactive and responsive desktop applications with C# 8 and .NET Core 3 requires a combina
tion of effective UI design, event handling, asynchronous programming, and data binding techniques. By
leveraging these tools and best practices, developers can create desktop apps that provide a seamless and
engaging user experience. With the flexibility and power of C# and .NET Core, the possibilities for building
modern desktop applications are endless.

Chapter 9

Introduction to Web APIs: Exposing Data and Functionality for Other Applications

In modern app development with C# 8 and .NET Core 3, creating Web APIs with ASP.NET Core has become
a cornerstone for building scalable and interoperable applications. Web APIs (Application Programming
Interfaces) allow developers to expose data and functionality over the web, enabling communication be
tween different systems, services, and devices. Let's delve into the world of building modern Web APIs with
ASP.NET Core 3, exploring key concepts and techniques with code examples.

Begin with ASP.NET Core Web APIs Tutorial

ASP.NET Core provides a powerful framework for building Web APIs using familiar C# syntax and leverag
ing the flexibility of .NET Core. To create a new Web API project, you can use the ' dotnet' CLI or Visual
Studio. Here's how you can create a new Web API project using the ' dotnet' CLI:

'bash
dotnet new webapi -n MyWebApi
cd MyWebApi
dotnet run
\ \ \

This will create a new ASP.NET Core Web API project and run it locally on your machine.

Creating Endpoints

Endpoints are the entry points for interacting with a Web API. They define the routes and HTTP methods
through which clients can access data and functionality. In ASP.NET Core Web APIs, endpoints are typically

ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET

defined using controller classes. Here's an example of a simple controller with an endpoint that returns a
list of products:

csharp
[ApiController]
[Route("api/[controller]")]
public class ProductsController: ControllerBase

private readonly List < Product > .products = new List < Product >

new Product {Id = 1, Name = "Product 1", Price = 10.99m},
new Product {Id = 2, Name = "Product 2", Price = 19.99m}

}/

[HttpGet]
public lActionResult Get()

return Ok(_products);

In this example, the ' ProductsController' class defines a route prefix of ' /api/products'. The ' Get()'
method is mapped to the HTTP GET verb and returns a list of products as JSON data.

Handling Requests and Responses

ASP.NET Core Web APIs use the ' HttpContext' and ' ActionResult' types to handle incoming requests and
generate responses. The ' HttpContext' provides access to the incoming request, including headers, query
parameters, and request body. The ' ActionResult' type represents the result of an action method and al
lows developers to return different types of responses, such as JSON data, status codes, or custom content.

csharp
[HttpPost]
public lActionResult Create(Product product)

// Incorporate logic to generate a fresh product
.products. Add(product);
return CreatedAtAction(nameof(Get), new {id = product.Id}, product);

In this example, the ' Create()' method is mapped to the HTTP POST verb and accepts a ' Product' object in
the request body. After creating the product, the method returns a 201 Created status code along with the
newly created product in the response body.

ASP.NET

Model Validation

Model validation is essential for ensuring that incoming data meets certain criteria before processing it
further. ASP.NET Core provides built-in support for model validation using data annotations and valida
tion attributes. By applying these attributes to model properties, developers can enforce validation rules
and automatically trigger validation checks during model binding.

csharp
public class Product

public integer Identifier {get; set;}

[Required]
public string Title {get; set;}

[Range(O, double.MaxValue)]
public monetary Cost {get; set;}

In this example, the ' Name' property is marked as ' [Required]', indicating that it must have a value,
while the ' Price' property is constrained to be within a specific range.

Securing Web APIs

ASP.NET

Security is paramount when exposing data and functionality over the web. ASP.NET Core provides robust
mechanisms for securing Web APIs, including authentication, authorization, and HTTPS enforcement. By
configuring authentication schemes, role-based access control, and HTTPS redirection, developers can en
sure that only authorized clients can access protected resources.

csharp
services.AddAuthentication(JwtBearerDefaults. Authenticationscheme)

.AddJwtBearer(options = >

options.TokenValidationParameters = new TokenValidationParameters

Validatelssuer = true,
ValidateAudience = true,
ValidateLifetime = true,
ValidatelssuerSigningKey = true,
Validlssuer = Configuration["Jwt:Issuer"],
ValidAudience = Configuration["Jwt:Audience"],
IssuerSigningKey = new SymmetricSecurityKey(Encoding.UTF8.GetBytes(Configura-

tion["Jwt:SecretKey"]))

ASP.NET

In this example, JWT (JSON Web Token) authentication is configured to validate tokens issued by a trusted
authority using a symmetric key.

Building modern Web APIs with ASP.NET Core 3 allows developers to expose data and functionality over
the web in a secure and efficient manner. By leveraging the powerful features of ASP.NET Core, developers
can create scalable, interoperable, and reliable APIs that meet the demands of today's interconnected world.
With C# 8 and .NET Core 3, building Web APIs has never been easier, empowering developers to create in
novative and impactful applications that drive digital transformation.

Creating RESTful Web APIs with ASP.NET Core 3: Following Best Practices

In modern app development with C# 8 and .NET Core 3, building RESTful Web APIs with ASP.NET Core is a
common requirement for enabling communication between different systems, services, and clients. REST
ful APIs follow a set of architectural principles that prioritize simplicity, scalability, and interoperability.
Let's explore how to create RESTful Web APIs with ASP.NET Core 3 while adhering to best practices and
standards.

Understanding RESTful Principles

REST (Representational State Transfer) is an architectural style that defines a set of constraints for design
ing networked applications. RESTful APIs adhere to these constraints and follow a client-server model,
where clients interact with resources via standardized HTTP methods (GET, POST, PUT, DELETE) and rep
resent resource state through representations, typically in JSON or XML format.

ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET

Establishing an ASP.NET Core Web API Project

To create a new ASP.NET Core Web API project, you can use the ' dotnet' CLI or Visual Studio. Here's how
you can create a new Web API project using the ' dotnet' CLI:

'bash
dotnet new webapi -n MyWebApi
cd MyWebApi
dotnet run
\ \ \

This will create a new ASP.NET Core Web API project and run it locally on your machine.

Creating Resource Controllers

In ASP.NET Core Web APIs, controllers are responsible for handling incoming HTTP requests and generat
ing appropriate responses. Each controller typically corresponds to a specific resource or entity within the
API. Well develop a basic controller for product management.

csharp
[ApiController]
[Route("api/[controller]")]
public class ProductsController: ControllerBase

private readonly List < Product > .products = new List < Product >

ASP.NET
ASP.NET
ASP.NET
ASP.NET

new Product {Id = 1, Name = "Product 1", Price = 10.99m},
new Product {Id = 2, Name = "Product 2", Price = 19.99m}

[HttpGet]
public lActionResult GetAllQ

return Ok(_products);

[HttpGet("{id]")]
public lActionResult GetById(int id)

var product = _products.FirstOrDefault(p => p.Id == id);
if (product = = null)

return NotFoundQ;

return Ok(product);

[HttpPost]

public lActionResult Create(Product product)

// Incorporate logic for generating a fresh product
_products.Add(product);
return CreatedAtAction(nameof(GetById), new {id = product.Id}, product);

// Other CRUD operations (PUT, DELETE) can be implemented similarly

In this example, the ' ProductsController' class defines endpoints for retrieving all products (' GetAll'),
retrieving a specific product by ID (' GetByld'), and creating a new product (' Create'). Additional end
points for updating and deleting products can be added as needed.

Using HTTP Methods Correctly

RESTful APIs leverage standard HTTP methods to perform CRUD (Create, Read, Update, Delete) operations
on resources. It's important to use HTTP methods correctly and adhere to their intended semantics. For
example, use GET for retrieving resources, POST for creating new resources, PUT or PATCH for updating ex
isting resources, and DELETE for deleting resources.

Versioning APIs

As APIs evolve over time, it's crucial to maintain backward compatibility and ensure that existing clients
continue to function as expected. API versioning allows developers to introduce breaking changes without
impacting existing clients. There are various strategies for versioning APIs, including URI-based version
ing, query parameter versioning, and header-based versioning.

Securing APIs

Security is a critical aspect of API development, especially when dealing with sensitive data or performing
privileged operations. ASP.NET Core provides robust mechanisms for securing Web APIs, including au
thentication, authorization, and HTTPS enforcement. By implementing authentication and authorization
mechanisms, developers can control access to API endpoints and protect against unauthorized access or
malicious attacks.

Implementing HATEOAS

HATEOAS (Hypermedia as the Engine of Application State) is a constraint of RESTful APIs that enables
clients to navigate the API dynamically by following hypermedia links embedded within resource repre
sentations. Implementing HATEOAS enhances API discoverability and allows clients to interact with re
sources in a more flexible and intuitive manner.

Building RESTful Web APIs with ASP.NET Core 3 involves following best practices and adhering to standard
RESTful principles. By designing APIs that are simple, scalable, and interoperable, developers can create ro
bust and reliable APIs that meet the needs of modern web applications. With C# 8 and .NET Core 3, building

ASP.NET
ASP.NET

RESTful Web APIs has never been easier, empowering developers to create innovative and impactful APIs
that drive digital transformation.

Consuming Web APIs in Your Applications: Integrating External Data and Services

In modern app development with C# 8 and .NET Core 3, consuming Web APIs is a common requirement
for integrating external data and services into your applications. Web APIs provide a standardized way for
applications to communicate with each other over the web, enabling seamless integration and interoper
ability. Let's explore how to consume Web APIs in your applications using C# and .NET Core, along with
best practices and code examples.

Understanding Web API Consumption

Consuming a Web API involves sending HTTP requests to the API endpoints, receiving responses, and
processing the data returned by the API. This can be done using various HTTP client libraries available
in .NET Core, such as ' HttpClient' or ' RestSharp'. These libraries provide convenient methods for send
ing requests, handling responses, and managing HTTP communication.

Using HttpClient to Consume Web APIs

' HttpClient' is a versatile class in .NET Core for sending HTTP requests and receiving HTTP responses
from a Web API. Let's see how you can use ' HttpClient' to consume a Web API endpoint:

c sharp

using System;
using System.Net.Http;
using System.Threading.Tasks;

class Program

static async Task Main(string[] args)

using var httpClient = new HttpClientQ;
var apiUrl = "https://api.example.com/data";

try

var response = await httpClient.GetAsync(apiUrl);
response.EnsureSuccessStatusCodeQ; // Throws exception if response is not successful

var responseData = await response.Content.ReadAsStringAsyncQ;
Console.WriteLine(responseData);

catch (HttpRequestException ex)

Console.WriteLine($"Error consuming API: {ex.Message}");

https://api.example.com/data

In this example, we create a new instance of ' HttpClient' and use the ' GetAsync' method to send a GET
request to the specified API endpoint (' apiUrl'). We then use the ' ReadAsStringAsync' method to read
the response content as a string and print it to the console.

Deserializing JSON Responses

Most Web APIs return data in JSON format, which can be easily deserialized into C# objects for further
processing. .NET Core provides built-in support for JSON serialization and deserialization using the ' Sys-
tem.Text.Json' namespace. Let's see how you can deserialize JSON responses using ' System.Text.Json':

csharp
using System;
using System.Net.Http;
using System.Text.Json;
using System.Threading.Tasks;

class Program

static async Task Main(string[] args)

using var httpClient = new HttpClientQ;
var apiUrl = "https://api.example.com/data";

try

var response = await httpClient.GetAsync(apiUrl);
response. EnsureSuccessStatusCodeQ;

var responseData = await response.Content.ReadAsStringAsyncQ;
var data = JsonSerializer.Deserialize<DataModel>(responseData);

// Process the deserialized data
Console.WriteLine($"Name: {data.Name}, Age: {data.Age}");

catch (HttpRequestException ex)

Console.WriteLine($"Error consuming API: {ex.Message}");

public class DataModel

public text Title {get; set;}

https://api.example.com/data

public int Age {get; set;}

In this example, we define a 'DataModel' class representing the structure of the JSON data returned by
the API. We then use ' JsonSerializer.Deserialize' to deserialize the JSON response into an instance of the
'DataModel' class.

Handling Errors and Exceptions

When consuming Web APIs, it's important to handle errors and exceptions gracefully to ensure the robust
ness and reliability of your application. You can use try-catch blocks to catch and handle exceptions that
may occur during API consumption, such as network errors, timeouts, or invalid responses. Additionally,
you can inspect the status code of the HTTP response to determine the success or failure of the request.

Consuming Web APIs in your applications is a powerful way to integrate external data and services,
enabling you to leverage the capabilities of other systems and platforms. With C# 8 and .NET Core 3,
consuming Web APIs has become even easier and more efficient, thanks to the versatile ' HttpClient' class
and built-in JSON serialization support. By following best practices and handling errors effectively, you can
build robust and reliable applications that seamlessly integrate with external APIs and services.

Chapter 10

Understanding Web Security Threats: Protecting Your

Applications from Vulnerabilities

In the realm of modern app development with C# 8 and .NET Core 3, securing your applications is
paramount to ensure they remain safe and reliable. Understanding web security threats and implementing
measures to protect your applications from vulnerabilities is crucial for safeguarding sensitive data and
maintaining user trust. In this guide, we'll delve into common web security threats and explore strategies
to mitigate them using C# 8 and .NET Core 3.

1. Understanding Web Security Threats: Web security threats come in various forms, ranging from injec
tion attacks to cross-site scripting (XSS) and cross-site request forgery (CSRF). Each poses unique risks to
your application's integrity and the confidentiality of user data.

2. Protecting Against Injection Attacks: Injection attacks, such as SQL injection and command injection,
occur when untrusted data is sent to an interpreter as part of a command or query, leading to malicious
execution. To mitigate this threat, utilize parameterized queries and stored procedures in your database in
teractions. Here's an example in C# using parameterized queries:

c sharp

using (SqlCommand cmd = new SqlCommand("SELECT * FROM Users WHERE Username = ©Username
AND Password = ©Password", connection))

cmd.Parameters.AddWithValue("@Username", userlnputUsername);
cmd.Parameters.AddWithValue("@Password", userlnputPassword);
// Execute the query

By parameterizing queries, you prevent attackers from injecting malicious SQL code into your database
queries.

3. Preventing Cross-Site Scripting (XSS): XSS attacks involve injecting malicious scripts into web pages
viewed by other users. To prevent XSS, always validate and sanitize user input before rendering it in HTML.
Utilize HTML encoding libraries provided by .NET Core to encode user-generated content. Here's how you
can encode user input in C#:

c sharp
string userinput = "<script>alert('XSS attack');</script>";
string encodedlnput = System.Web.HttpUtility.HtmlEncode(userlnput);
// Output: <script>alert('XSS attack');</script>

By encoding user input, you prevent browsers from interpreting it as executable scripts, thus thwarting
XSS attacks.

4. Mitigating Cross-Site Request Forgery (CSRF): CSRF attacks occur when an attacker tricks a user into
unintentionally performing actions on a web application in which they are authenticated. To prevent CSRF
attacks, utilize anti-CSRF tokens in your application. These tokens are unique per session and must be in
cluded with each request that modifies data. Here's how you can implement anti-CSRF tokens in C#:

c sharp
public ActionResult TransferFunds(decimal amount, string csrfToken)

if (Session["CSRFToken"].ToString() != csrfToken)

11 Invalid CSRF token
return RedirectToAction("Error");

// Process fund transfer

Ensure that the anti-CSRF token is included in each form submission and AJAX request to validate the au
thenticity of the request.

5. Implementing Authentication and Authorization: Proper authentication and authorization mecha
nisms are essential for controlling access to sensitive resources within your application. Utilize built-in
authentication and authorization features provided by .NET Core, such as Identity or JSON Web
Tokens (JWT). Here's an example of implementing JWT authentication in C#:

ASP.NET

c sharp
// Generate JWT token
var tokenHandler = new JwtSecurityTokenHandlerQ;
var key = Encoding.ASCII.GetBytes("your-secret-key");
var tokenDescriptor = new SecurityTokenDescriptor

Subject = new Claimsldentity(new Claimf]

new Claim(ClaimTypes.Name, username)

}),
Expires = DateTime.UtcNow.AddHours(l),
SigningCredentials = new SigningCredentials(new SymmetricSecurityKey(key), SecurityAlgorithm-

s.HmacSha2 5 6 Signature)

var token = tokenHandler.CreateToken(tokenDescriptor);
var tokenstring = tokenHandler.WriteToken(token);

ASP.NET

By implementing robust authentication and authorization mechanisms, you ensure that only authorized
users can access sensitive functionalities and data within your application.

Securing your applications is a critical aspect of modern app development with C# 8 and .NET Core 3. By
understanding common web security threats and implementing appropriate measures, such as param
eterized queries, input validation, anti-CSRF tokens, and authentication/authorization mechanisms, you
can build safe and reliable software that protects sensitive data and maintains user trust. Stay vigilant,
keep abreast of emerging threats, and continuously update your security measures to stay one step ahead
of potential attackers.

Implementing User Authentication and Authorization:

Controlling Access to Secure Data

In modern app development with C# 8 and .NET Core 3, implementing robust user authentication and
authorization mechanisms is crucial for controlling access to secure data and functionalities. By enforcing
proper authentication and authorization, you can ensure that only authorized users can access sensitive
resources within your application. In this guide, we'll explore how to implement user authentication and
authorization using C# 8 and .NET Core 3, along with code examples for better understanding.

1. Setting Up Authentication: Authentication verifies the identity of users accessing your applica
tion. .NET Core provides various authentication options, including cookie-based authentication and JSON
Web Tokens (JWT). Let's focus on implementing JWT authentication, which is widely used for securing
modern web applications.

c sharp
// Startup.es
services.AddAuthentication(JwtBearerDefaults. Authenticationscheme)

.AddJwtBearer(options =>

options.TokenValidationParameters = new TokenValidationParameters

Validatelssuer = true,
ValidateAudience = true,
ValidatelssuerSigningKey = true,
Validlssuer = "your-issuer",
ValidAudience = "your-audience",
IssuerSigningKey = new SymmetricSecurityKey(Encoding.UTF8.GetBytes("your-secret-

key"))

};
});

X \ \

Configure JWT authentication in the ' Startup.es' file by specifying token validation parameters such as
issuer, audience, and signing key.

2. User Registration and Login: Implement user registration and login functionalities to authenticate
users and issue JWT tokens upon successful authentication. Here's a simplified example of user login in C#:

Startup.es

c sharp
[HttpPost("login")]
public async Task<ActionResult> Login(LoginModel model)

var user = await _userManager.FindByNameAsync(model.Username);
if (user != null && await _userManager.CheckPasswordAsync(user, model.Password))

var token = GenerateJwtToken(user);
return Ok(new {Token = token});

return UnauthorizedQ;

private string GenerateJwtToken(User user)

var tokenHandler = new JwtSecurityTokenHandlerQ;
var key = Encoding. ASCII.GetBytes("your-secret-key");
var tokenDescriptor = new SecurityTokenDescriptor

Subject = new Claimsldentity(new Claimf]

new Claim(ClaimTypes.Name, user.UserName),

// Add additional claims as needed

}),
Expires = DateTime.UtcNow.AddDays(7),
SigningCredentials = new SigningCredentials(new SymmetricSecurityKey(key), SecurityAlgo-

rithms.HmacSha2 5 6 Signature)
}/

var token = tokenHandler.CreateToken(tokenDescriptor);
return tokenHandler.WriteToken(token);

Upon successful login, generate a JWT token containing user claims such as username and additional roles
or permissions.

3. Protecting Endpoints with Authorization: Authorization controls what authenticated users can and
cannot do within your application. Use policies to define access control rules and apply them to endpoints
as needed. Here's how you can protect an endpoint using authorization in C#:

c sharp
[Authorize(Roles = "Admin")]
[HttpGet("admin/data")]
public ActionResult<IEnumerable<string>> GetAdminDataQ

return new string!] {"Admin Data 1", "Admin Data 2"};

In this example, the ' GetAdminData' endpoint is restricted to users with the "Admin" role. You can define
custom policies and apply them based on roles, claims, or any other criteria.

4. Role-Based Access Control (RBAC): Role-based access control assigns permissions to users based on
their roles within the application. Utilize role management features provided by .NET Core Identity to as
sign roles to users and authorize actions accordingly. Here's an example of assigning roles to users in C#:

c sharp
var user = new User {UserName = "admin@example.com", Email = "admin@example.com"};
var result = await_userManager.CreateAsync(user, "Admin@123");
if (result.Succeeded)

await _userManager. AddToRoleAsync(user, "Admin");

Assign the "Admin" role to a user upon registration to grant them access to administrative functionalities.

Implementing user authentication and authorization is essential for controlling access to secure data
and functionalities in modern app development with C# 8 and .NET Core 3. By leveraging JWT authen

mailto:admin@example.com

tication, protecting endpoints with authorization attributes, and utilizing role-based access control, you
can enforce stringent security measures and safeguard sensitive resources within your application. Stay
proactive in managing user identities, roles, and permissions to maintain a secure and reliable application
environment.

Input Validation and Error Handling: Building Robust and Resilient Applications

In modern app development with C# 8 and .NET Core 3, ensuring robust input validation and effective
error handling mechanisms are essential for building resilient applications. Proper input validation helps
prevent malicious attacks, data corruption, and application crashes, while effective error handling en
hances user experience and facilitates troubleshooting. In this guide, we'll explore strategies for imple
menting input validation and error handling using C# 8 and .NET Core 3, along with code examples for
better understanding.

1. Input Validation: Input validation is the process of ensuring that data provided by users or external
sources meets specified criteria before processing it further. Failure to validate input can lead to security
vulnerabilities such as injection attacks, as well as data integrity issues. .NET Core provides various mech
anisms for input validation, including data annotations and model validation.

c sharp
public class UserModel

[Required(ErrorMessage = "Username is required")]

[StringLength(20,MinimumLength = 3, ErrorMessage = "Username must be between 3 and 20 charac
ters")]

public text Useridentifier {get; set;}

[Required(ErrorMessage = "Email is required")]
[EmailAddress(ErrorMessage = "Invalid email address")]
public text EmailAddress {get; set;}

// Add additional properties and validation attributes as needed

Define a model class with properties decorated with data annotations such as ' [Required]',
' [StringLength]', and ' [EmailAddress]' to enforce validation rules.

2. Handling Validation Errors: When validation fails, it's essential to provide meaningful error messages
to users and handle validation errors gracefully. .NET Core MVC framework automatically validates models
based on data annotations and populates ' Modelstate' with validation errors.

csharp
[HttpPost]
public lActionResult Register(UserModel model)

if (Modelstate.IsValid)

// Process registration
return RedirectToAction("Success");

return View(model);

In the controller action, check ' ModelState.IsValid' to determine if input validation succeeded. If valida
tion fails, return the view with validation errors displayed to the user.

3. Exception Handling: Exception handling is crucial for dealing with unexpected errors and exceptions
that occur during application execution. .NET Core provides built-in exception handling mechanisms, in
cluding try-catch blocks and global exception filters.

c sharp
public lActionResult GetUserData(int id)

try

var userData = _userService.GetUserData(id);
return Ok(userData);

catch (NotFoundException ex)

return NotFound(ex.Message);

catch (Exception ex)

Jogger.LogError(ex, "There was a problem retrieving user information.");
return StatusCode(500, "An unexpected error occurred.");

Implement try-catch blocks to handle specific exceptions gracefully, providing appropriate responses to
the client. Additionally, log exceptions for troubleshooting purposes using a logging framework such as
Serilog or NLog.

4. Custom Validation Rules: In addition to built-in validation attributes, you can define custom validation
rules to enforce specific business logic requirements. Implement custom validation logic by creating cus
tom validation attributes or using validation methods within model classes.

c sharp
public class CustomValidationAttribute: ValidationAttribute

Override ValidationResult method to validate the input value within the Validationcontext

var userModel = (UserModel)validationContext.Objectlnstance;
if (userModel.Age < 18)

return new ValidationResultf'User must be at least 18 years old.");

return ValidationResult.Success;

Define a custom validation attribute by inheriting from ' ValidationAttribute' and overriding the ' Is-
Valid' method to implement custom validation logic.

Implementing input validation and error handling is crucial for building robust and resilient applications
in modern app development with C# 8 and .NET Core 3. By leveraging built-in validation attributes, han
dling validation errors gracefully, implementing exception handling mechanisms, and defining custom
validation rules, you can enhance the security, reliability, and user experience of your applications. Stay
proactive in validating user input and handling errors to ensure the stability and integrity of your applica
tion environment.

Chapter 11

Testing Your Applications: Ensuring Quality and Reliability

Testing is a critical aspect of modern app development with C# 8 and .NET Core 3. It ensures that your code
behaves as expected, maintains quality, and remains reliable throughout its lifecycle. Among various test
ing methodologies, unit testing stands out as an essential practice for validating individual components or
units of code. In this guide, we'll explore unit testing with C#, writing tests to validate your code, and lever
aging modern app development practices with .NET Core 3.

1. Understanding Unit Testing: Unit testing involves testing individual units or components of code in
isolation to verify their correctness. It focuses on validating the behavior of methods, functions, or classes
without dependencies on external systems or resources. Unit tests provide rapid feedback during develop
ment, enabling early detection of defects and ensuring code maintainability.

2. Setting Up Unit Testing Projects: .NET Core provides robust support for unit testing through frame
works like MSTest, NUnit, and xUnit. Start by adding a unit testing project to your solution using Visual
Studio or the .NET CLI.

'bash

dotnet new xunit -n MyProject.Tests

This command creates a new xUnit test project named "MyProject.Tests" in your solution directory.

3. Writing Unit Tests with xUnit: xUnit is a popular testing framework for .NET Core, known for its
simplicity and extensibility. Write unit tests to validate the behavior of your code by creating test methods
within test classes.

c sharp
using Xunit;
using MyProject;

public class CalculatorTests

[Fact]
public void Add_ReturnsCorrectSum()

// Arrange
var calculator = new CalculatorQ;

// Act
var result = calculator.Add(3, 5);

//Assert

Assert.Equal(8, result);

[Fact]
public void Divide_DenominatorNotZero_ReturnsCorrectResult()

// Arrange
var calculator = new CalculatorQ;

// Act
var result = calculator.Divide(10, 2);

//Assert
Assert.Equal(5, result);

[Fact]
public void Divide_DenominatorZero_ThrowsException()

// Arrange
var calculator = new CalculatorQ;

// Act & Assert
Assert.Throws<DivideByZeroException>(() => calculator.Divide(10,0));

Write test methods annotated with ' [Fact]' attribute to denote test cases. Use assertions such as ' As-
sert.Equal' and ' Assert.Throws' to validate expected outcomes.

4. Running Unit Tests: Execute unit tests using test runners integrated into Visual Studio, or via the .NET
CLI.

'bash
dotnet test
\ \ \

This command runs all tests within the solution, providing detailed output indicating test results and
coverage.

5. Mocking Dependencies with Moq: Frequently, unit tests need to simulate dependencies to separate the
code being tested. Utilize libraries like Moq to create mock objects for dependencies.

c sharp
using Moq;
using Xunit;
using MyProject;

public class UserManagerTests

[Fact]
public void GetUserById_ValidId_ReturnsUser()

// Arrange
var mockRepository = new Mock<IUserRepository>();
var userManager = new UserManager(mockRepository.Object);
var expectedUser = new User {Id = 1, Name = "John"};
mockRepository.Setup(repo = > repo.GetUserById(1)).Returns(expectedUser);

// Act
var result = userManager.GetUserByld(l);

//Assert
Assert.Equal(expectedUser, result);

Mock dependencies using Moq to simulate behavior and responses, allowing thorough testing of code
paths.

6. Continuous Integration and Code Coverage: Integrate unit tests into your continuous integration (CI)
pipeline to automate testing and ensure code quality. Monitor code coverage metrics to assess the effective
ness of your tests and identify areas for improvement.

Unit testing is a fundamental practice for ensuring the quality and reliability of your applications in mod
ern app development with C# 8 and .NET Core 3. By writing comprehensive unit tests using frameworks
like xUnit, mocking dependencies with libraries like Moq, and integrating tests into your CI pipeline, you
can validate your code's behavior, detect defects early, and maintain high-quality software throughout its
lifecycle. Prioritize unit testing as an integral part of your development process to deliver robust and re
silient applications to users.

Integration Testing and UI Testing: Building Comprehensive Test Strategies

In modern app development with C# 8 and .NET Core 3, comprehensive test strategies encompass not only
unit testing but also integration testing and UI testing. Integration testing ensures that different compo
nents of your application work together seamlessly, while UI testing validates the behavior and function
ality of the user interface. Let's explore how to build comprehensive test strategies for integration testing
and UI testing using C# 8 and .NET Core 3.

1. Integration Testing: Integration testing verifies interactions between various components or modules
of your application, ensuring they integrate correctly and function as expected as a whole. In .NET Core,
integration tests are typically performed using testing frameworks such as xUnit or NUnit, alongside tools
like Moq for mocking dependencies.

c sharp
public class IntegrationTests

private readonly TestServer _server;
private readonly HttpClient _client;

public IntegrationTests()

11 Create test server
_server = new TestServer(new WebHostBuilder().UseStartup< Startup >());
11 Create HTTP client
_client = _server.CreateClient();

[Fact]
public async Task GetUserData_ReturnsUserData()

// Arrange
var request = new HttpRequestMessage(HttpMethod.Get, "/api/user/1");

// Act
var response = await _client.SendAsync(request);

//Assert

response.EnsureSuccessStatusCode(); // Status 200-299
Assert.Equal(HttpStatusCode.OK, response.StatusCode);

Integration tests are written to exercise the application as a whole, making real HTTP requests to test API
endpoints, database interactions, and external service integrations.

2. UI Testing: UI testing validates the behavior and functionality of the user interface, ensuring that user
interactions produce the expected outcomes. .NET Core supports UI testing through frameworks like Sele
nium WebDriver, enabling automated testing of web applications across different browsers.

c sharp
public class UITests

private readonly IWebDriver _driver;

public UITests()

// Configure Selenium WebDriver
_driver = new ChromeDriverQ;

[Fact]
public void UserLogin_Successful()

// Navigate to login page
_driver.Navigate().GoToUrl("https://example.com/login");

// Find input fields and submit button
var usernameinput = _driver.FindElement(By.Id("username"));
var passwordinput = _driver.FindElement(By.Id("password"));
var submitButton = _driver.FindElement(By.Id("login-button"));

// Enter credentials
usernamelnput.SendKeysC'testuser");
pass wordinput.SendKeys("pass word 123");

// Click submit button
submitButton.Click();

// Validate login success
Assert.Contains("Welcome, testuser", _driver.PageSource);

https://example.com/login

UI tests simulate user interactions such as clicking buttons, entering text, and navigating pages, validating
the expected behavior of the application's user interface.

3. Continuous Integration with Testing: Integrate integration and UI tests into your continuous integra
tion (CI) pipeline to automate testing and ensure code quality throughout the development process. Use CI
platforms like Jenkins or Azure DevOps to execute tests automatically upon code commits or pull requests.

4. Maintaining Test Suites: Regularly update and maintain your test suites to reflect changes in your
application's functionality and behavior. Refactor tests as needed to accommodate new features or modifi
cations to existing ones.

5. Monitoring and Reporting: Monitor test execution results and generate reports to track test coverage,
identify failing tests, and prioritize fixes. Utilize reporting tools and dashboards to communicate test re
sults effectively within the development team.

Building comprehensive test strategies for integration testing and UI testing is essential for ensuring the
quality and reliability of your applications in modern app development with C# 8 and .NET Core 3. By
incorporating integration tests to confirm component interactions and UI tests to ensure user interface
functionality, along with continuous integration and strong test upkeep strategies, you can provide top-
notch software that satisfies user requirements and endures real-world usage demands. Prioritize testing
as an integral part of your development process to build resilient and dependable applications.

Chapter 12

Introduction to Deployment: Sharing Your Applications with Users

Deploying your applications is a crucial step in modern app development with C# 8 and .NET Core 3. It
involves making your software accessible to users by hosting it on servers, cloud platforms, or app stores.
In this guide, we'll explore the fundamentals of deployment and various methods for sharing your applica
tions with users, leveraging modern app development practices with C# 8 and .NET Core 3.

1. Understanding Deployment: Deployment is the process of packaging and distributing your application
for installation and use by end-users. It involves configuring servers, setting up environments, and ensur
ing that your application runs smoothly in production. Deployment encompasses various aspects, includ
ing infrastructure setup, application configuration, and release management.

2. Choosing Deployment Targets: Before deploying your application, determine the deployment targets
based on your target audience and application requirements. Common deployment targets include:

• On-premises servers: Deploying your application to servers hosted within your organization's
infrastructure.

• Cloud platforms: Hosting your application on cloud services such as Microsoft Azure, Amazon
Web Services (AWS), or Google Cloud Platform (GCP).

• App stores: Distributing your application through app stores like Microsoft Store or Apple App
Store for desktop or mobile platforms.

3. Deployment Methods with .NET Core: .NET Core provides flexible deployment options to accommodate
various scenarios and environments. Choose the appropriate deployment method based on your applica
tion's architecture and requirements:

• Self-contained deployment: Package your application and all its dependencies into a single
directory, allowing it to run on any compatible system without requiring the .NET Core run
time to be installed separately.

• Framework-dependent deployment: Deploy your application along with its source code and
rely on the target system to have the .NET Core runtime installed. This method offers smaller
deployment sizes but requires the target environment to have the appropriate runtime ver
sion installed.

• Docker containers: Containerize your application using Docker to create lightweight, portable
environments that can be deployed consistently across different platforms and environ
ments.

4. Automating Deployment with CI/CD: Implement continuous integration and continuous deployment
(CI/CD) pipelines to automate the deployment process and ensure consistent and reliable releases. Use CI/

CD tools like Azure DevOps, Jenkins, or GitHub Actions to automate building, testing, and deploying your
application to production environments.

'yaml
Example Azure Pipelines YAML configuration for CI/CD
trigger:

branches:
include:

- main

pool:
vmlmage: 'windows-latest'

steps:
- task: DotNetCoreCLI@2

inputs:
command: 'restore'
projects: '**/*.csproj'

- task: DotNetCoreCLI@2
inputs:

command: 'build'
projects: '**/*.csproj'

- task: DotNetCoreCLI@2
inputs:

command: 'publish'
projects: '**/*.csproj'
publishWebProjects: true
arguments: '-o $(Build.ArtifactStagingDirectory)/publish'

- task: PublishPipelineArtifact® 1

inputs:
targetPath: '$(Build.ArtifactStagingDirectory)/publish'
artifact: 'publish'

Add additional tasks for testing, deployment, etc.
\ \ \

Configure CI/CD pipelines to build, test, and deploy your application automatically whenever changes are
pushed to the source code repository.

5. Monitoring and Maintenance: After deploying your application, monitor its performance, reliability,
and security in production environments. Utilize monitoring tools and logging frameworks to track appli
cation metrics, detect errors, and troubleshoot issues promptly. Regularly update and maintain your appli
cation to address bugs, vulnerabilities, and user feedback.

Deploying your applications is a crucial aspect of modern app development with C# 8 and .NET Core 3.
By understanding the fundamentals of deployment, choosing appropriate deployment targets and meth
ods, automating deployment with CI/CD pipelines, and prioritizing monitoring and maintenance, you can
share your applications with users effectively and ensure a seamless user experience in production envi
ronments. Embrace deployment as an integral part of your development process to deliver reliable and
scalable software solutions to users worldwide.

Understanding Hosting Options: Choosing the Right Platform for Your Needs

In modern app development with C# 8 and .NET Core 3, choosing the right hosting platform is crucial
for ensuring the scalability, reliability, and performance of your applications. Various hosting options are
available, ranging from traditional on-premises servers to cloud platforms and serverless architectures. In
this guide, we'll explore different hosting options and help you choose the right platform for your needs,
leveraging modern app development practices with C# 8 and .NET Core 3.

1. On-Premises Servers: On-premises hosting involves deploying and managing your applications on
servers within your organization's infrastructure. While on-premises hosting provides full control over
hardware and software configurations, it requires significant upfront investment in hardware, mainte
nance, and infrastructure management.

c sharp
// Example deployment script for deploying to on-premises servers
dotnet publish -c Release

Copy-Item -Path ./bin/Release/netcoreapp 3.1/publish -Destination \\server\share -Recurse
\ \ \

Deploying to on-premises servers typically involves building and publishing your application locally and
transferring the compiled binaries to the target servers using deployment scripts or tools like PowerShell.

2. Cloud Platforms: Cloud platforms such as Microsoft Azure, Amazon Web Services (AWS), and Google
Cloud Platform (GCP) offer scalable, flexible, and cost-effective hosting solutions for modern applications.
Cloud hosting provides on-demand resources, scalability, and built-in services for deploying and manag
ing applications.

'yaml
Example Azure Resource Manager (ARM) template for deploying resources on Azure
resources:

- type: 'Microsoft.Web/sites'
apiVersion: '2019-08-01'
name: 'myApp'
location: 'West US'
properties:

serverFarmld: 'myAppServicePlan'
\ \ \

Use Infrastructure as Code (laC) tools like Azure Resource Manager (ARM) templates or AWS CloudForma-
tion to define and deploy resources such as virtual machines, containers, and databases on cloud platforms.

3. Serverless Architectures: Serverless hosting, also known as Function as a Service (FaaS), abstracts
infrastructure management and allows developers to focus on writing code without worrying about pro
visioning or scaling servers. Serverless platforms such as Azure Functions, AWS Lambda, and Google Cloud
Functions execute code in response to events or triggers, scaling automatically based on demand.

c sharp
// Example Azure Functions code to handle HTTP requests
public static async Task<IActionResult> Run(

[HttpTrigger(AuthorizationLevel.Function, "get", "post", Route = null)] HttpRequest req,
ILogger log)

The C# HTTP trigger function has processed a request, as noted by the log.

string name = req.Query["name"];

return new OkObjectResult($"Hello, {name}");

\ X \

Write serverless functions using .NET Core and deploy them to serverless platforms to handle specific tasks
or workloads, such as HTTP request processing, data processing, or background tasks.

4. Containerization with Docker: Containerization offers a portable, lightweight, and consistent way to
package and deploy applications along with their dependencies. Docker containers provide isolation and
reproducibility, allowing applications to run consistently across different environments.

dockerfile
Example Dockerfile for containerizing a .NET Core application
FROM mcr.microsoft.com/dotnet/core/runtime:3.1 AS base
WORKDIR /app

FROM mcr.microsoft.com/dotnet/core/sdk:3.1 AS build
WORKDIR /src
COPY ["MyApp.csproj","."]
RUN dotnet restore "./MyApp.csproj"
COPY..
WORKDIR "/src/."
RUN dotnet build "MyApp.csproj" -c Release -o /app/build

FROM build AS publish
RUN dotnet publish "MyApp.csproj" -c Release -o /app/publish

FROM base AS final
WORKDIR /app
COPY -from=publish /app/publish.
ENTRYPOINT ["dotnet", "MyApp.dll"]

Containerize your .NET Core applications using Docker and deploy them to container orchestration plat
forms like Kubernetes, Docker Swarm, or Azure Kubernetes Service (AKS) for automated scaling, manage
ment, and orchestration.

5. Choosing the Right Platform: Consider various factors when choosing the hosting platform for your
applications, including:

• Scalability: Choose a platform that can scale to accommodate fluctuating traffic and workload
demands.

• Cost: Evaluate the cost-effectiveness of different hosting options, considering factors such as
upfront costs, maintenance, and operational expenses.

• Performance: Ensure that the hosting platform provides adequate performance and reliability
to meet your application's requirements.

• Security: Prioritize security considerations and choose platforms that offer robust security fea
tures and compliance certifications.

Understanding different hosting options is essential for deploying modern applications with C# 8
and .NET Core 3. Whether deploying on-premises servers, leveraging cloud platforms, embracing server
less architectures, or containerizing applications with Docker, choose the hosting platform that best aligns
with your application's requirements, scalability needs, and budget constraints. By making informed de

cisions and leveraging modern app development practices, you can deploy and manage your applications
effectively, ensuring optimal performance, scalability, and reliability for your users.

Deploying Your ASP.NET Core 3 Applications to Different Environments

Deploying ASP.NET Core 3 applications to different environments requires careful consideration of con
figuration settings, dependencies, and deployment strategies. In modern app development with C# 8
and .NET Core 3, you'll encounter various environments, such as development, staging, and production,
each with its unique requirements and configurations. In this guide, we'll explore how to deploy ASP.NET
Core 3 applications to different environments, leveraging modern app development practices and configu
ration techniques.

1. Configuration Settings: Core 3 provides robust support for managing configuration settings,
allowing you to tailor your application's behavior based on the environment it's deployed to. Configuration
settings can be stored in JSON files, environment variables, or other configuration providers.

ASP.NET

\ \ • json
// appsettings.json

"Connectionstrings": {
"Defaultconnection": "Server=myServerAddress;Database=myDatabase;User

Id=myUsername;Password=myPassword;"

ASP.NET
ASP.NET
ASP.NET
ASP.NET

Define environment-specific configuration settings in ' appsettings.json' files, such as connection strings,
API keys, or feature toggles, and override them as needed in environment-specific configuration files like
' appsettings.Development.json' or ' appsettings.Production.json'.

2. Environment Variables: Utilize environment variables to inject configuration settings into your AS-
 Core 3 applications dynamically. Environment variables provide a flexible and secure way to config

ure applications across different environments without hardcoding sensitive information.

P.NET

c sharp
// Startup.es
public void ConfigureServices(IServiceCollection services)

var connectionstring = Environment.GetEnvironmentVariable("ConnectionString");
services.AddDbContext<MyDbContext> (options = > options.UseSqlServer(connectionString));

Access environment variables in your ASP.NET Core application's code using ' Environment.GetEnviron-
mentVariable()' method and inject them into services or configurations as needed.

P.NET
Startup.es
ASP.NET

3. Deployment Strategies: Deploy Core 3 applications using various deployment strategies, in
cluding self-contained deployment, framework-dependent deployment, or containerization with Docker.
Choose the appropriate deployment strategy based on your application's requirements, portability needs,
and target environment.

ASP.NET

'bash
Example command for publishing a self-contained deployment
dotnet publish -c Release -r linux-x64 -self-contained
\ \

Use the ' dotnet publish' command with appropriate options to create self-contained deployments that
include the .NET Core runtime and all dependencies, ensuring compatibility across different operating sys
tems and environments.

4. Automated Deployment with CI/CD: Implement continuous integration and continuous deployment
(CI/CD) pipelines to automate the deployment process and ensure consistent and reliable releases across
different environments.

'yaml
Example Azure Pipelines YAML configuration for CI/CD
trigger:

branches:
include:

- main

ASP.NET

pool:
vmlmage: 'windows-latest'

steps:
- task: DotNetCoreCLI@2

inputs:
command: 'publish'
publishWebProjects: true
arguments: '-c Release -o $(Build.ArtifactStagingDirectory)'
zipAfterPublish: true

- task: PublishBuildArtifacts@l
inputs:

artifactName: 'myApp'
pathToPublish:' $ (Build. ArtifactStagingDirectory)'

X \ \

Configure CI/CD pipelines using tools like Azure DevOps, GitHub Actions, or Jenkins to automate building,
testing, and deploying ASP.NET Core 3 applications to different environments based on predefined release
stages.

5. Environment-Specific Configuration Files: Manage environment-specific configuration files for differ
ent deployment environments to customize application behavior and settings as needed.

ASP.NET

\ \ • json
// appsettings.Development.json

"Logging": {
"LogLevel": {

"Default": "Debug"

Create environment-specific configuration files like ' appsettings.Development.json' or ' appsettings.Pro-
duction.json' to override default configuration settings based on the deployment environment.

6. Monitoring and Troubleshooting: Monitor deployed Core 3 applications in production envi
ronments using logging frameworks like Serilog or NLog to track application metrics, diagnose errors, and
troubleshoot issues effectively.

ASP.NET

c sharp
// Startup.es
public void Configure(IApplicationBuilder app, IWebHostEnvironment env, ILogger<Startup> logger)

if (env.IsDevelopment())

ASP.NET
Startup.es

app.UseDeveloperExceptionPageQ;
logger.LogInformation("Running in development environment.");

else

app.UseExceptionHandler("/Error");
app.UseHstsQ;
logger.LogInformation("Running in production environment.");

// Configure other middleware

Implement environment-specific middleware or error handling in your ASP.NET Core application's ' Start-
up.cs' file to customize behavior based on the deployment environment.

Deploying ASP.NET Core 3 applications to different environments requires careful consideration of config
uration settings, deployment strategies, and automation techniques. By leveraging modern app develop
ment practices, you can streamline the deployment process, ensure consistency across environments, and
deliver reliable and scalable applications to users. By utilizing configuration settings, environment vari
ables, deployment strategies, CI/CD pipelines, and environment-specific configuration files, you can deploy

ASP.NET
ASP.NET

ASP.NET Core 3 applications to different environments with ease. Prioritize monitoring and troubleshoot
ing to maintain application health and performance in production environments, ensuring optimal user
experience and satisfaction. With these practices in place, you can confidently deploy your ASP.NET Core 3
applications to various environments, meeting the needs of your users and stakeholders effectively.

ASP.NET
ASP.NET

Conclusion

The Future of App Development: Staying Ahead of the Curve with Modern App Development using C#

8 and .NET Core 3

As technology continues to evolve at a rapid pace, the future of app development holds exciting possibil
ities and opportunities. In contemporary application development, utilizing advancements such as C# 8
and .NET Core 3 empowers developers to remain at the forefront and create inventive, high-efficiency ap
plications that address the changing requirements of both users and businesses.

1. Embracing Emerging Technologies: The future of app development will undoubtedly be shaped by
emerging technologies such as artificial intelligence (Al), machine learning (ML), augmented reality (AR),
and Internet of Things (loT). Integrating these technologies into app development workflows will unlock
new capabilities, enhance user experiences, and drive innovation across various industries.

2. Cross-Platform Development: With the increasing demand for cross-platform compatibility, the future
of app development lies in frameworks and tools that enable developers to build applications that run
seamlessly across multiple platforms and devices. Technologies like Xamarin and .NET MAUI (Multi-plat-
form App UI) empower developers to create native mobile, desktop, and web applications using a single
codebase, streamlining development efforts and reducing time-to-market.

3. Focus on User Experience (UX) and Accessibility: As user expectations continue to rise, prioritizing
user experience (UX) and accessibility will be paramount in app development. The future belongs to ap
plications that deliver intuitive, accessible, and engaging user experiences, catering to diverse user demo
graphics and accessibility needs. Incorporating UX design principles, usability testing, and accessibility
standards into the development process will be crucial for building successful applications.

4. Microservices and Serverless Architectures: In the era of cloud computing and scalable architectures,
microservices and serverless architectures will play a significant role in shaping the future of app devel
opment. Decomposing applications into smaller, independent services allows for greater scalability, flexi
bility, and resilience, while serverless platforms offer cost-effective and auto-scaling solutions for running
application workloads without managing infrastructure.

5. DevOps and Continuous Delivery: The future of app development is deeply intertwined with DevOps
practices and continuous delivery methodologies. Embracing DevOps culture, automation, and collabora
tion between development and operations teams enables faster, more frequent releases, reduced time-to-
market, and improved software quality. Implementing CI/CD pipelines, automated testing, and deploy
ment strategies accelerates the pace of innovation and ensures the reliability of deployed applications.

6. Security and Privacy: With growing concerns around cybersecurity and data privacy, the future of app
development will place a strong emphasis on security best practices and privacy regulations compliance.
Building secure-by-design applications, implementing encryption, authentication, and authorization
mechanisms, and staying abreast of security threats and vulnerabilities will be essential for safeguarding
user data and maintaining trust.

In conclusion, the future of app development holds immense potential for innovation, creativity, and
growth. By embracing emerging technologies, focusing on user experience and accessibility, adopting
modern architectural patterns, and prioritizing DevOps practices and security, developers can stay ahead
of the curve and deliver impactful applications that drive business success and enrich the lives of users
worldwide. With C# 8 and .NET Core 3 as foundational pillars, developers have the tools and capabilities to
shape the future of app development and create transformative experiences for generations to come.

Appendix A: Common C# 8 and .NET Core 3 Concepts (Quick Reference)

As you delve into modern app development with C# 8 and .NET Core 3, understanding common concepts
and features is essential for building robust and efficient applications. This quick reference guide provides
an overview of key concepts and syntax in C# 8 and .NET Core 3, along with code examples to illustrate
their usage.

1. C# Language Features:

Nullable Reference Types:

• C# 8 introduces nullable reference types, allowing developers to express whether a reference
type can be null or not.

• Use the ' ?' suffix to denote nullable reference types, and the '!' operator to declare non-nul-
lable types.

csharp
string? nullable String = null; // Nullable reference type
string nonNullableString = "Hello"; // Non-nullable reference type

// Nullable-aware member access
int length = nullableString?.Length ?? 0;

• Pattern Matching: Pattern matching enables concise and expressive code for conditional state
ments and switch expressions.

csharp
object obj = "Hello";
if (obj is string str && str.Length > 0)

Console.WriteLine($"The string '{str}' has length {str.Length}");

\ \ \

• Async Streams: C# 8 introduces async streams, enabling asynchronous iteration over a se
quence of data.

csharp
async IAsyncEnumerable<int> GenerateSequenceQ

for (inti = 0;i < 10; i++)

await Task.Delay(100);
yield return i;

2. .NET Core 3 Features:

• Core: Core is a modern web framework that is cross-platform and optimized
for high performance, designed to develop contemporary web applications.

ASP.NET ASP.NET

csharp
public class Startup

public void ConfigureServices(IServiceCollection services)

services.AddControllersWithViewsQ;

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)

if (env.IsDevelopmentO)

app.UseDeveloperExceptionPageQ;

else

app.UseExceptionHandler("/Home/Error");

ASP.NET
ASP.NET

app.UseHstsQ;

app.UseHttpsRedirection();
app.UseStaticFiles();

app.UseRoutingO;

app.UseAuthorization();

app.UseEndpoints(endpoints =>

endpoints.MapControllerRoute(
name: "default",
pattern:" {controller=Home} I {action=Index}/ {id?}");

});

\ \ \

• Entity Framework Core: Entity Framework Core (EF Core) is an open-source object-relational
mapping (ORM) framework for .NET Core.

csharp
public class MyDbContext: DbContext

public DbSet<User> Users {get; set;}

protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)

optionsBuilder.UseSqlServer("connection_string");

• Dependency Injection: .NET Core provides built-in support for dependency injection, facilitat
ing loosely coupled and testable applications.

csharp
public class MyService: IMyService

private readonly ILogger<MyService> Jogger;

public MyService(ILogger< MyService > logger)

Jogger = logger;

public void DoWorkQ

logger.LogInformation("Doing some work...");

\ \ \

3. Common Concepts:

SOLID Principles:

• SOLID principles are a set of design principles that promote maintainable, scalable, and testable
code.

• The principles encompassed are the Single Responsibility Principle (SRP), Open/Closed Princi
ple (OCP), Liskov Substitution Principle (LSP), Interface Segregation Principle (ISP), and De
pendency Inversion Principle (DIP).

Design Patterns:

• Design patterns provide solutions that can be reused to address typical challenges encountered
during software design.

• Examples include Singleton, Factory, Builder, Observer, and Strategy patterns.

Unit Testing:

• Unit testing involves testing individual units or components of code in isolation to validate
their behavior.

• Use testing frameworks like MSTest, NUnit, or xUnit for writing and executing unit tests.

4. Best Practices:

• Clean Code: Write clean, readable, and maintainable code by following coding conventions,
meaningful naming, and proper documentation.

• Defensive Programming: Practice defensive programming by validating inputs, handling er
rors gracefully, and anticipating potential failures.

• Continuous Integration/Continuous Deployment (CI/CD): Embrace CI/CD pipelines to auto
mate building, testing, and deploying applications, ensuring rapid and reliable release cycles.

By mastering these common C# 8 and .NET Core 3 concepts, you'll be well-equipped to tackle a wide range
of development challenges and build modern, high-quality applications efficiently. Continuously strive to
deepen your understanding of these concepts and stay updated with the latest advancements in the C#
and .NET ecosystem to remain at the forefront of app development.

	Hands-On

	Modern App Development

	(# 8 Net (ore 3

	Katie Millie

	Hands-On Modern App Development C# 8 .Net Core 3

	By

	Katie Millie

	Copyright notice

	Table of Contents

	INTRODUCTION

	Chapter 1

	Why Modern App Development Matters: Meeting the Needs of Today's Users

	Understanding Cross-Platform Development: Building Apps for Any Device

	The Power of C# 8 and .NET Core 3: A Perfect Match for Modern Development

	Establishing Your Development Environment: Essential Tools for Getting Started

	Chapter 2

	Variables, Data Types, and Operators: The Essentials of Data Manipulation

	Control Flow Statements: Branching, Looping, and Making Decisions

	3: Creating Reusable Code Blocks for Efficiency

	Putting it All Together: Building Your First C# Programs with C# 8 and .NET Core 3

	Chapter 3

	Unveiling the Power of C# 8 Features: Exploring Pattern Matching for Cleaner Data Comparisons

	Asynchronous Programming Made Easy: Handling Long- Running Tasks Efficiently with C# 8 and .NET Core 3

	Null Reference Checks: Avoiding Common Errors and Improving Code Safety in C# 8 and .NET Core 3

	Exploring Additional C# 8 Features for Modern App Development with .NET Core 3

	Chapter 4

	Understanding the Architecture of.NET Core 3: Components and Workflows

	Project Structure and Organization: Building Maintainable Codebases

	Understanding ASP.NET Core MVC: The Model-View-Controller Paradigm

	Creating Your First ASP.NET Core 3 Web Application: Putting Theory into Practice

	Chapter 5

	Introduction to Razor Pages: Simplifying Web Development

	Creating Interactive Forms with Razor Pages: Capturing User Input

	Displaying Data with Razor Pages: Building User-Friendly Interfaces

	Building Layouts and Partials: Reusing Code for Consistent Design

	Chapter 6

	Understanding Forms in ASP.NET Core 3: Capturing User Data

	Processing Form Data: Validating and Sanitizing User Input

	Working with Models: Representing Your Data in C# Classes

	Persisting User Data: Introduction to Entity Framework Core

	Chapter 7

	Creating Cross-Platform Mobile UIs with Xamarin.Forms

	Data Binding and User Interaction in Xamarin.Forms Applications

	Consuming APIs and Integrating Services in Mobile Apps

	Chapter 8

	Introduction to WPF: Creating Rich Desktop User Interfaces with C#

	Designing User Interfaces with XAML: A Powerful UI Language

	Data Binding and Event Handling in WPF Applications

	Building Interactive and Responsive Desktop Apps with C# 8 and .NET Core 3

	Chapter 9

	Creating RESTful Web APIs with ASP.NET Core 3: Following Best Practices

	Consuming Web APIs in Your Applications: Integrating External Data and Services

	Chapter 10

	Understanding Web Security Threats: Protecting Your Applications from Vulnerabilities

	Controlling Access to Secure Data

	Input Validation and Error Handling: Building Robust and Resilient Applications

	Chapter 11

	Testing Your Applications: Ensuring Quality and Reliability

	Integration Testing and UI Testing: Building Comprehensive Test Strategies

	Chapter 12

	Introduction to Deployment: Sharing Your Applications with Users

	Understanding Hosting Options: Choosing the Right Platform for Your Needs

	Deploying Your ASP.NET Core 3 Applications to Different Environments

	Conclusion

	Appendix A: Common C# 8 and .NET Core 3 Concepts (Quick Reference)

