

Google Gemini
for

Python

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book and companion files (the “Work”), you
agree that this license grants permission to use the contents contained herein,
including the disc, but does not give you the right of ownership to any of the
textual content in the book / disc or ownership to any of the information or
products contained in it. This license does not permit uploading of the Work
onto the Internet or on a network (of any kind) without the written consent
of the Publisher. Duplication or dissemination of any text, code, simulations,
images, etc. contained herein is limited to and subject to licensing terms for
the respective products, and permission must be obtained from the Publisher
or the owner of the content, etc., in order to reproduce or network any portion
of the textual material (in any media) that is contained in the Work.

Mercury Learning and Information  (“MLI” or “the Publisher”) and anyone
involved in the creation, writing, or production of the companion disc, accom-
panying algorithms, code, or computer programs (“the software”), and any
accompanying Web site or software of the Work, cannot and do not warrant
the performance or results that might be obtained by using the contents of the
Work. The author, developers, and the Publisher have used their best efforts
to ensure the accuracy and functionality of the textual material and/or pro-
grams contained in this package; we, however, make no warranty of any kind,
express or implied, regarding the performance of these contents or programs.
The Work is sold “as is” without warranty (except for defective materials used
in manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and
anyone involved in the composition, production, and manufacturing of this
work will not be liable for damages of any kind arising out of the use of (or the
inability to use) the algorithms, source code, computer programs, or textual
material contained in this publication. This includes, but is not limited to, loss
of revenue or profit, or other incidental, physical, or consequential damages
arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to
replacement of the book and/or disc, and only at the discretion of the Publisher.
The use of “implied warranty” and certain “exclusions” varies from state to
state and might not apply to the purchaser of this product.

Companion files for this title are available by writing to the publisher at
info@merclearning.com.

mailto:info@merclearning.com

Google Gemini
for

Python

Coding with Bard

Oswald Campesato

Mercury Learning and Information

Boston, Massachusetts

Copyright ©2024 by Mercury Learning and Information.
An Imprint of DeGruyter Inc. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced
in any way, stored in a retrieval system of any type, or transmitted by any means,
media, electronic display or mechanical display, including, but not limited to,
photocopy, recording, Internet postings, or scanning, without prior permission in
writing from the publisher.

Publisher: David Pallai
Mercury Learning and Information

121 High Street, 3rd Floor
Boston, MA 02110
info@merclearning.com
www.merclearning.com
800-232-0223

O. Campesato. Google® Gemini for Python: Coding with Bard.
ISBN: 978-1-50152-274-1

The publisher recognizes and respects all marks used by companies, manufacturers,
and developers as a means to distinguish their products. All brand names and product
names mentioned in this book are trademarks or service marks of their respective
companies. Any omission or misuse (of any kind) of service marks or trademarks, etc.
is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2024930869
242526321 This book is printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions,
corporations, etc. For additional information, please contact the Customer Service
Dept. at 800-232-0223(toll free).

All of our titles are available in digital format at academiccourseware.com and other
digital vendors. Companion files (figures and code listings) for this title are available
by contacting info@merclearning.com. The sole obligation of Mercury Learning and
Information to the purchaser is to replace the files, based on defective materials or
faulty workmanship, but not based on the operation or functionality of the product.

http://www.merclearning.com
http://academiccourseware.com
mailto:info@merclearning.com
mailto:info@merclearning.com

I’d like to dedicate this book to my parents
– may this bring joy and happiness into their lives.

Contents

Preface� xiii

Chapter 1: Introduction to Python 3� 1
Tools for Python� 1

easy_install and pip� 1
virtualenv� 2
IPython� 2

Python Installation� 3
Setting the PATH Environment Variable (Windows Only)� 3
Launching Python on Your Machine� 3

The Python Interactive Interpreter� 4
Python Identifiers� 5
Lines, Indentation, and Multilines � 5
Quotation and Comments in Python� 6
Saving Your Code in a Module� 7
Some Standard Modules in Python� 8
The help() and dir() Functions� 9
Compile Time and Runtime Code Checking � 10
Simple Data Types in Python� 10
Working With Numbers� 11

Working With Other Bases� 12
The chr() Function� 12
The round() Function in Python� 13
Formatting Numbers in Python� 13

Working With Fractions� 14
Unicode and UTF-8� 14
Working With Unicode� 15
Working With Strings� 15

Comparing Strings� 17
Formatting Strings in Python� 17

viii • Contents

Slicing and Splicing Strings� 18
Testing for Digits and Alphabetic Characters� 18

Search and Replace a String in Other Strings� 19
Remove Leading and Trailing Characters� 20
Printing Text without NewLine Characters� 21
Text Alignment� 22
Working With Dates� 23

Converting Strings to Dates� 24
Exception Handling in Python� 24
Handling User Input� 26
Command-Line Arguments� 27
Summary� 29

Chapter 2: Conditional Logic, Loops, and Functions� 31
Precedence of Operators in Python� 31
Python Reserved Words� 32
Working with Loops in Python� 32

Python for Loops� 32
A for Loop with try/except in Python� 33
Numeric Exponents in Python� 34

Nested Loops� 35
The split() Function With for Loops� 35
Using the split() Function to Compare Words� 36
Using the split() Function to Print Justified Text� 36
Using the split() Function to Print Fixed-Width Text� 37
Using the split() Function to Compare Text Strings� 38
Using the split() Function to Display Characters in a String� 39
The join() Function � 40
Python while Loops� 40
Conditional Logic in Python� 41
The break/continue/pass Statements� 42
Comparison and Boolean Operators� 42

The in/not in/is/is not Comparison Operators� 42
The and, or, and not Boolean Operators� 43

Local and Global Variables� 43
Uninitialized Variables and the Value None� 44

Scope of Variables� 44
Pass by Reference Versus Value� 46
Arguments and Parameters� 46
Using a while loop to Find the Divisors of a Number� 47

Using a while loop to Find Prime Numbers� 48
User-Defined Functions in Python� 49
Specifying Default Values in a Function� 49

Returning Multiple Values From a Function� 50
Functions With a Variable Number of Arguments� 50

Contents • ix

Lambda Expressions� 51
Recursion� 52

Calculating Factorial Values� 52
Calculating Fibonacci Numbers� 53
Calculating the GCD of Two Numbers� 54
Calculating the LCM of Two Numbers� 54

Summary� 55

Chapter 3: Python Data Structures� 57
Working with Lists � 57

Lists and Basic Operations� 57
Reversing and Sorting a List� 59
Lists and Arithmetic Operations� 60
Lists and Filter-Related Operations� 60

Sorting Lists of Numbers and Strings� 61
Expressions in Lists� 62
Concatenating a List of Words� 62
The Bubble Sort in Python� 63
The Python range() Function� 63

Counting Digits and Uppercase and Lowercase Letters� 64
Arrays and the append() Function� 65
Working with Lists and the split() Function� 66
Counting Words in a List� 66
Iterating Through Pairs of Lists� 67
Other List-Related Functions� 68
Using a List as a Stack and a Queue� 69
Working with Vectors� 70
Working with Matrices� 71
The NumPy Library for Matrices� 72
Queues� 73
Tuples (Immutable Lists)� 73
Sets� 74
Dictionaries� 76

Creating a Dictionary� 76
Displaying the Contents of a Dictionary� 76
Checking for Keys in a Dictionary� 77
Deleting Keys from a Dictionary� 77
Iterating Through a Dictionary� 77
Interpolating Data from a Dictionary� 78

Dictionary Functions and Methods� 78
Dictionary Formatting� 78
Ordered Dictionaries� 79

Sorting Dictionaries� 79
Python Multi Dictionaries� 79

Other Sequence Types in Python� 80

Mutable and Immutable Types in Python� 81
The type() Function� 82
Working with Bard� 82

Counting Digits and Uppercase and Lowercase Letters� 82
Bard Python Code for a Queue� 85
Bard Python Code for a Stack� 87

Summary� 89

Chapter 4: Introduction to NumPy and Pandas� 91
What is NumPy? � 92

Useful NumPy Features� 92
What are NumPy arrays?� 92
Working with Loops� 93
Appending Elements to Arrays (1)� 94
Appending Elements to Arrays (2)� 95
Multiply Lists and Arrays� 95
Doubling the Elements in a List� 96
Lists and Exponents� 96
Arrays and Exponents� 97
Math Operations and Arrays� 98
Working with “-1” Subranges with Vectors� 98
Working with “–1” Subranges with Arrays� 99
Other Useful NumPy Methods� 99
Arrays and Vector Operations� 100
NumPy and Dot Products (1)� 101
NumPy and Dot Products (2)� 101
NumPy and the “Norm” of Vectors� 102
NumPy and Other Operations� 103
NumPy and the reshape() Method� 104
Calculating the Mean and Standard Deviation� 105
Calculating Quartiles With Numpy� 105
What is Pandas? � 107

Pandas Data Frames� 107
DataFrames and Data Cleaning Tasks� 107

A Labeled Pandas DataFrame � 108
Pandas Numeric DataFrames� 109
Pandas Boolean DataFrames� 110

Transposing a Pandas DataFrame� 111
Pandas DataFrames and Random Numbers � 111
Combining Pandas DataFrames (1)� 112
Combining Pandas DataFrames (2)� 113
Data Manipulation with Pandas DataFrames (1)� 114
Data Manipulation with Pandas DataFrames (2)� 115
Data Manipulation with Pandas DataFrames (3)� 116
Pandas DataFrames and CSV Files� 117

x • Contents

Pandas DataFrames and Excel Spreadsheets� 119
Select, Add, and Delete Columns in DataFrames� 119
Pandas DataFrames and Scatterplots� 121
Pandas DataFrames and Simple Statistics� 122
Useful One-Line Commands in Pandas � 123
Working with Bard� 124

A Pandas DataFrame with Random Values� 124
Pandas DataFrame and a Bar Chart� 126
Pandas DataFrames and Statistics� 128

Summary� 131

Chapter 5: Generative AI, Bard, and Gemini� 133
What is Generative AI?� 133

Key Features of Generative AI� 133
Popular Techniques in Generative AI� 134
What Makes Generative AI Unique� 134

Conversational AI Versus Generative AI� 135
Primary Objective� 135
Applications� 135
Technologies Used� 136
Training and Interaction� 136
Evaluation� 136
Data Requirements� 136

Is Gemini Part of Generative AI?� 136
DeepMind� 137

DeepMind and Games� 137
Player of Games (PoG)� 138

OpenAI� 138
Cohere� 139
Hugging Face� 139

Hugging Face Libraries� 139
Hugging Face Model Hub� 140

AI21� 140
InflectionAI� 140
Anthropic� 140
What is Prompt Engineering?� 141

Prompts and Completions� 142
Types of Prompts� 142
Instruction Prompts� 142
Reverse Prompts� 143
System Prompts Versus Agent Prompts� 143
Prompt Templates� 144
Poorly-Worded Prompts� 144

What is Gemini?� 146
Gemini Ultra Versus GPT-4� 146

Contents • xi

Gemini Strengths� 146
Gemini’s Weaknesses� 147
Gemini Nano on Mobile Devices� 147

What is Bard?� 147
Sample Queries and Responses from Bard� 148
Alternatives to Bard� 154

YouChat� 154
Pi from Inflection� 154
CoPilot (OpenAI/Microsoft)� 155
Codex (OpenAI)� 156
Apple GPT� 156
Claude 2� 156

Summary� 156

Chapter 6: Bard and Python Code� 157
CSV Files for Bard� 158
Simple Web Scraping� 159
Basic Chatbot� 160
Basic Data Visualization� 161
Basic Pandas� 163
Generating Random Data� 164
Recursion: Fibonacci Numbers� 166
Generating a Python Class� 168
Asynchronous Programming� 169
Working with Requests in Python� 171
Image Processing with PIL� 172
Exception Handling� 174
Generators in Python� 175
Roll 7 or 11 with Two Dice� 176
Roll 7 or 11 with Three Dice � 177
Roll 7 or 11 with Four Dice � 179
Mean and Standard Deviation� 182
Summary� 184

Index� 185

Preface

This book starts with an introduction to fundamental aspects of
Python programming, which include various data types, number format-
ting, Unicode and UTF-8 handling, and text manipulation techniques.
In addition. you will learn about loops, conditional logic, and reserved
words in Python. You will also see how to handle user input, manage
exceptions, and work with command-line arguments.

Next, the text transitions to the realm of Generative AI, discussing
its distinction from Conversational AI. Popular platforms and models,
including Bard and its competitors, are presented to give readers an
understanding of the current AI landscape. The book also sheds light on
the capabilities of Bard, its strengths, weaknesses, and potential applica-
tions. In addition, you will learn how to generate a variety of Python 3
code samples via Bard.

In essence, this book provides a modest bridge between the worlds of
Python programming and AI, aiming to equip readers with the knowl-
edge and skills to navigate both domains confidently.

THE TARGET AUDIENCE

This book is intended primarily for people who want to learn both
Python and how to use Bard with Python. This book is also intended
to reach an international audience of readers with highly diverse back-
grounds in various age groups. In addition, this book uses standard
English rather than colloquial expressions that might be confusing to
those readers. This book provides a comfortable and meaningful learning
experience for the intended readers.

DO I NEED TO LEARN THE THEORY PORTIONS OF THIS BOOK?

The answer depends on the extent to which you plan to become
involved in working with Bard and Python, perhaps involving LLMs

and generative AI. In general, it’s probably worthwhile to learn the more
theoretical aspects of LLMs that are discussed in this book.

WHAT DO I NEED TO KNOW FOR THIS BOOK?

Although this book is introductory in nature, some knowledge of
Python 3.x with certainly be helpful for the code samples. Knowledge of
other programming languages (such as Java) can also be helpful because
of the exposure to programming concepts and constructs.

DOES THIS BOOK CONTAIN PRODUCTION-LEVEL CODE
SAMPLES?

This book contains basic code samples that are written in Python,
and their primary purpose is to familiarize you with basic Python to help
you understand the Python code generated via Bard. Moreover, clarity
has higher priority than writing more compact code that is more difficult
to understand (and possibly more prone to bugs). If you decide to use
any of the code in this book, you ought to subject that code to the same
rigorous analysis as the other parts of your code base.

COMPANION FILES

All the code samples and figures in this book may be obtained by
writing to the publisher at info@merclearning.com.

If you are primarily interested in machine learning, there are some
subfields of machine learning, such as deep learning and reinforcement
learning (and deep reinforcement learning) that might appeal to you.
Fortunately, there are many resources available, and you can perform
an Internet search for those resources. One other point: the aspects of
machine learning for you to learn will depend on your career: the needs
of a machine learning engineer, data scientist, manager, student, or soft-
ware developer are all different.

Oswald Campesato
January 2024

xiv • Preface

mailto:info@merclearning.com

CHAPTER 1
Introduction to Python 3

This chapter contains an introduction to Python, with information about
useful tools for installing Python modules, basic Python constructs,
and how to work with some data types in Python.

The first part of this chapter covers how to install Python, some Python
environment variables, and how to use the Python interpreter. You will see
Python code samples and also how to save Python code in text files that you
can launch from the command line. The second part of this chapter shows you
how to work with simple data types, such as numbers, fractions, and strings.
The final part of this chapter discusses exceptions and how to use them in
Python scripts.

	 The Python files in this book are for Python 3.x.

TOOLS FOR PYTHON

The Anaconda Python distribution is available for Windows, Linux, and
Mac, and it’s downloadable here: http://continuum.io/downloads

Anaconda is well-suited for modules such as numpy and scipy, and if you
are a Windows user, Anaconda appears to be a better alternative than working
from the command line.

easy_install and pip

Both easy_install and pip are very easy to use when you need to install
Python modules. Whenever you need to install a Python module (and there
are many in this book), use either easy_install or pip with the following
syntax:

easy_install <module-name>
pip install <module-name>

NOTE

http://continuum.io/downloads

2  •  Google Gemini for Python: Coding with BARD

	� Python-based modules are easier to install than modules with code written
in C because they are usually faster. However, they are more difficult in
terms of installation.

virtualenv

The virtualenv tool enables you to create isolated Python environ-
ments, and its home page is here: http://www.virtualenv.org/en/latest/virtu-
alenv.html

virtualenv addresses the problem of preserving the correct dependen-
cies and versions (and indirectly permissions) for different applications. If you
are a Python novice, you might not need virtualenv right now, but keep this
tool in mind.

IPython

Another very good tool is IPython (which won a Jolt award), and its home
page is here:

http://ipython.org/install.html

Two very nice features of IPython are tab expansion and “?,” and an exam-
ple of tab expansion is shown here:

$ ipython3
Python 3.9.13 (main, May 24 2022, 21:28:12)
Type 'copyright', 'credits' or 'license' for more information
IPython 8.14.0 -- An enhanced Interactive Python. Type '?' for help.
In [1]:

In [1]: di
%dirs dict dir divmod

In the preceding session, if you type the characters di, iPython responds
with the following line that contains all the functions that start with the
letters di:

%dirs dict dir divmod

If you enter a question mark (“?”), ipython provides textual assistance, the
first part of which is here:

IPython -- An enhanced Interactive Python
===

IPython offers a combination of convenient shell
features, special commands and a history mechanism
for both input (command history) and output (results
caching, similar to Mathematica). It is intended to be
a fully compatible replacement for the standard Python
interpreter, while offering vastly improved functionality
and flexibility.

NOTE

http://www.virtualenv.org/en/latest/virtualenv.html
http://www.virtualenv.org/en/latest/virtualenv.html
http://ipython.org/install.html

Introduction to Python 3  •  3

The next section shows you how to check whether or not Python is installed
on your machine, and also where you can download Python.

PYTHON INSTALLATION

Before you download anything, check if you already have Python installed
on your machine (which is likely if you have a Macbook or a Linux machine) by
typing the following command in a command shell:

python -V

The output for the Macbook used in this book is here:

Python 3.9.1

	� Install Python 3.9 (or as close as possible to this version) on your machine
so that you will have the same version of Python that was used to test the
Python files in this book.

If you need to install Python on your machine, navigate to the Python
home page and select the downloads link or navigate directly to this website:

http://www.python.org/download/

In addition, PythonWin is available for Windows, and its home page is here:

http://www.cgl.ucsf.edu/Outreach/pc204/pythonwin.html

Use any text editor that can create, edit, and save Python scripts and save
them as plain text files (don’t use Microsoft Word).

After you have Python installed and configured on your machine, you are
ready to work with the Python scripts in this book.

SETTING THE PATH ENVIRONMENT VARIABLE (WINDOWS ONLY)

The PATH environment variable specifies a list of directories that are searched
whenever you specify an executable program from the command line. A very
good guide to setting up your environment so that the Python executable is
always available in every command shell is to follow the instructions here:

http://www.blog.pythonlibrary.org/2011/11/24/python-101-setting-up-
python-on-windows/

LAUNCHING PYTHON ON YOUR MACHINE

There are three different ways to launch Python:

•	Use the Python Interactive Interpreter.
•	Launch Python scripts from the command line.
•	Use an IDE.

NOTE

http://www.python.org/download/
http://www.cgl.ucsf.edu/Outreach/pc204/pythonwin.html
http://www.blog.pythonlibrary.org/2011/11/24/python-101-setting-uppython-on-windows/
http://www.blog.pythonlibrary.org/2011/11/24/python-101-setting-uppython-on-windows/

4  •  Google Gemini for Python: Coding with BARD

The next section shows you how to launch the Python interpreter from the
command line, and later in this chapter you will learn how to launch Python
scripts from the command line and also about Python IDEs.

	� The emphasis in this book is to launch Python files from the command
line or to enter code in the Python interpreter.

The Python Interactive Interpreter

Launch the Python interactive interpreter from the command line by
opening a command shell and typing the following command:

python

You will see the following prompt (or something similar):

Python 3.9.1 (v3.9.1:1e5d33e9b9, Dec 7 2020, 12:44:01)
[Clang 12.0.0 (clang-1200.0.32.27)] on darwin
Type "help", "copyright", "credits" or "license" for more
information.
>>>

Now type the expression 2 + 7 at the prompt:

>>> 2 + 7
Python displays the following result:
9
>>>

Press ctrl-d to exit the Python shell.
You can launch any Python script from the command line by preceding it

with the word “python.” For example, if you have a Python script myscript.
py that contains Python commands, launch the script as follows:

python myscript.py

As a simple illustration, suppose that the Python script myscript.py con-
tains the following Python code:

print('Hello World from Python')
print('2 + 7 = ', 2+7)

When you launch the preceding Python script, you will see the following
output:

Hello World from Python
2 + 7 = 9

NOTE

Introduction to Python 3  •  5

PYTHON IDENTIFIERS

A Python identifier is the name of a variable, function, class, module, or
other Python object, and a valid identifier conforms to the following rules:

•	It starts with a letter A to Z or a to z or an underscore (_).
•	It includes zero or more letters, underscores, and digits (0 to 9).

	 Python identifiers cannot contain characters such as @, $, and %.

Python is a case-sensitive language, so Abc and abc different identifiers
in Python.

In addition, Python has the following naming convention:

•	Class names start with an uppercase letter and all other identifiers with a
lowercase letter.

•	An initial underscore is used for private identifiers.
•	Two initial underscores are used for strongly private identifiers.

A Python identifier with two initial underscore and two trailing underscore
characters indicates a language-defined special name.

LINES, INDENTATION, AND MULTILINES

Unlike other programming languages (such as Java or Objective-C),
Python uses indentation instead of curly braces for code blocks. Indentation
must be consistent in a code block, as shown here:

if True:
 print("ABC")
 print("DEF")
else:
 print("ABC")
 print("DEF")

Multiline statements in Python can terminate with a new line or the back-
slash (“\”) character, as shown here:

total = x1 + \
 x2 + \
 x3

Obviously you can place x1, x2, and x3 on the same line, so there is no
reason to use three separate lines; however, this functionality is available in
case you need to add a set of variables that do not fit on a single line.

NOTE

6  •  Google Gemini for Python: Coding with BARD

You can specify multiple statements in one line by using a semicolon (“;”) to
separate each statement, as shown here:

a=10; b=5; print(a); print(a+b)

The output of the preceding code snippet is here:

10
15

	� The use of semi-colons and the continuation character are discouraged in
Python.

QUOTATION AND COMMENTS IN PYTHON

Python allows single ('), double (") and triple ('" or """) quotes for string
literals, provided that they match at the beginning and the end of the string.
You can use triple quotes for strings that span multiple lines. The following
examples are legal Python strings:

word = 'word'
line = "This is a sentence."
para = """This is a paragraph. This paragraph contains
more than one sentence."""

A string literal that begins with the letter “r” (for “raw”) treats every-
thing as a literal character and “escapes” the meaning of meta characters, as
shown here:

a1 = r'\n'
a2 = r'\r'
a3 = r'\t'
print('a1:',a1,'a2:',a2,'a3:',a3)

The output of the preceding code block is here:

a1: \n a2: \r a3: \t

You can embed a single quote in a pair of double quotes (and vice versa) in
order to display a single quote or a double quote. Another way to accomplish
the same result is to precede a single or double quote with a backslash (“\”)
character. The following code block illustrates these techniques:

b1 = "'"
b2 = '"'
b3 = '\''
b4 = "\""
print('b1:',b1,'b2:',b2)
print('b3:',b3,'b4:',b4)

NOTE

Introduction to Python 3  •  7

The output of the preceding code block is here:

b1: ' b2: "
b3: ' b4: "

A hash sign (#) that is not inside a string literal is the character that indi-
cates the beginning of a comment. Moreover, all characters after the # and up
to the physical line end are part of the comment (and ignored by the Python
interpreter). Consider the following code block:

#!/usr/bin/python
First comment
print("Hello, Python!") # second comment

This will produce following result:

Hello, Python!

A comment may be on the same line after a statement or expression:

name = "Tom Jones" # This is also comment

You can comment multiple lines as follows:

This is comment one
This is comment two
This is comment three

A blank line in Python is a line containing only white space, a comment,
or both.

SAVING YOUR CODE IN A MODULE

Earlier you saw how to launch the Python interpreter from the command
line and then enter Python commands. However, that everything that you
type in the Python interpreter is only valid for the current session: if you exit
the interpreter and then launch the interpreter again, your previous definitions
are no longer valid. Fortunately, Python enables you to store code in a text file,
as discussed in the next section.

A module in Python is a text file that contains Python statements. In the
previous section, you saw how the Python interpreter enables you to test code
snippets whose definitions are valid for the current session. If you want to
retain the code snippets and other definitions, place them in a text file so that
you can execute that code outside of the Python interpreter.

The outermost statements in a Python are executed from top to bottom
when the module is imported for the first time, which will then set up its vari-
ables and functions.

8  •  Google Gemini for Python: Coding with BARD

A Python module can be run directly from the command line, as
shown here:

python first.py

As an illustration, place the following two statements in a text file called
first.py:

x = 3
print(x)

Now type the following command:

python first.py

The output from the preceding command is 3, which is the same as execut-
ing the preceding code from the Python interpreter.

When a Python module is run directly, the special variable __name__ is set
to __main__. You will often see the following type of code in a Python module:

if __name__ == '__main__':
 # do something here
 print('Running directly')

The preceding code snippet enables Python to determine if a Python
module was launched from the command line or imported into another Python
module.

SOME STANDARD MODULES IN PYTHON

The Python Standard Library provides many modules that can simplify
your own Python scripts. A list of the Standard Library modules is here:

http://www.python.org/doc/

Some of the most important Python modules include cgi, math, os,
pickle, random, re, socket, sys, time, and urllib.

The code samples in this book use the modules math, os, random, re,
socket, sys, time, and urllib. You need to import these modules in order
to use them in your code. For example, the following code block shows you
how to import four standard Python modules:

import datetime
import re
import sys
import time

The code samples in this book import one or more of the preceding mod-
ules, as well as other Python modules.

http://www.python.org/doc/

Introduction to Python 3  •  9

THE help() AND dir() FUNCTIONS

An internet search for Python-related topics usually returns a number of
links with useful information. Alternatively, you can check the official Python
documentation site: docs.python.org

In addition, Python provides the help() and dir() functions that
are accessible from the Python interpreter. The help() function dis-
plays documentation strings, whereas the dir() function displays defined
symbols.

For example, if you type help(sys) you will see documentation for the
sys module, whereas dir(sys) displays a list of the defined symbols.

Type the following command in the Python interpreter to display the
string-related methods in Python:

>>> dir(str)

The preceding command generates the following output:

['__add__', '__class__', '__contains__', '__delattr__',
'__doc__', '__eq__', '__format__', '__ge__',
'__getattribute__', '__getitem__', '__getnewargs__',
'__getslice__', '__gt__', '__hash__', '__init__', '__le__',
'__len__', '__lt__', '__mod__', '__mul__', '__ne__',
'__new__', '__reduce__', '__reduce_ex__', '__repr__',
'__rmod__', '__rmul__', '__setattr__', '__sizeof__',
'__str__', '__subclasshook__', '_formatter_field_name_
split', '_formatter_parser', 'capitalize', 'center',
'count', 'decode', 'encode', 'endswith', 'expandtabs',
'find', 'format', 'index', 'isalnum', 'isalpha', 'isdigit',
'islower', 'isspace', 'istitle', 'isupper', 'join',
'ljust', 'lower', 'lstrip', 'partition', 'replace',
'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit',
'rstrip', 'split', 'splitlines', 'startswith', 'strip',
'swapcase', 'title', 'translate', 'upper', 'zfill']

The preceding list gives you a consolidated “dump” of built-in functions
(including some that are discussed later in this chapter). Although the max()
function obviously returns the maximum value of its arguments, the purpose of
other functions such as filter() or map() is not immediately apparent (unless
you have used them in other programming languages). In any case, the pre-
ceding list provides a starting point for finding out more about various Python
built-in functions that are not discussed in this chapter.

Note that while dir() does not list the names of built-in functions
and variables, you can obtain this information from the standard module
__builtin__ that is automatically imported under the name __builtins__:

>>> dir(__builtins__)

http://docs.python.org

10  •  Google Gemini for Python: Coding with BARD

The following command shows you how to get more information about a
function:

help(str.lower)

The output from the preceding command is here:

Help on method_descriptor:

lower(...)
 S.lower() -> string

 Return a copy of the string S converted to lowercase.
(END)

Check the online documentation and also experiment with help() and
dir() when you need additional information about a particular function or
module.

COMPILE TIME AND RUNTIME CODE CHECKING

Python performs some compile-time checking, but most checks (including
type, name, and so forth) are deferred until code execution. Consequently, if
your Python code references a user-defined function that that does not exist,
the code will compile successfully. In fact, the code will fail with an exception
only when the code execution path references the nonexistent function.

As a simple example, consider the following Python function myFunc that
references the nonexistent function called DoesNotExist:

def myFunc(x):
 if x == 3:
 print(DoesNotExist(x))
 else:
 print('x: ',x)

The preceding code will only fail when the myFunc function is passed the
value 3: Python raises an error when the first print() statement is executed.

In Chapter 2, you will learn how to define and invoke user-defined func-
tions, along with an explanation of the difference between local versus global
variables in Python.

Now that you understand some basic concepts (such as how to use the
Python interpreter) and how to launch your custom Python modules, the next
section discusses primitive data types in Python.

SIMPLE DATA TYPES IN PYTHON

Python supports primitive data types, such as numbers (integers, float-
ing point numbers, and exponential numbers), strings, and dates. Python
also supports more complex data types, such as lists (or arrays), tuples, and

Introduction to Python 3  •  11

dictionaries, all of which are discussed in Chapter 3. The next several sections
discuss some of the Python primitive data types, along with code snippets that
show you how to perform various operations on those data types.

WORKING WITH NUMBERS

Python provides arithmetic operations for manipulating numbers a
straightforward manner that is similar to other programming languages. The
following examples involve arithmetic operations on integers:

>>> 2+2
4
>>> 4/3
1
>>> 3*8
24

The following example assigns numbers to two variables and computes
their product:

>>> x = 4
>>> y = 7
>>> x * y
28

The following examples demonstrate arithmetic operations involving
integers:

>>> 2+2
4
>>> 4/3
1
>>> 3*8
24

Notice that division (“/”) of two integers is actually truncation in which only
the integer result is retained. The following example converts a floating point
number into exponential form:

>>> fnum = 0.00012345689000007
>>> "%.14e"%fnum
'1.23456890000070e-04'

You can use the int() function and the float() function to convert strings
to numbers:

word1 = "123"
word2 = "456.78"
var1 = int(word1)
var2 = float(word2)
print("var1: ",var1," var2: ",var2)

12  •  Google Gemini for Python: Coding with BARD

The output from the preceding code block is here:

var1: 123 var2: 456.78

Alternatively, you can use the eval() function:

word1 = "123"
word2 = "456.78"
var1 = eval(word1)
var2 = eval(word2)
print("var1: ",var1," var2: ",var2)

If you attempt to convert a string that is not a valid integer or a floating
point number, Python raises an exception, so it’s advisable to place your code
in a try/except block (discussed later in this chapter).

Working With Other Bases

Numbers in Python are in base 10 (the default), but you can easily convert
numbers to other bases. For example, the following code block initializes the
variable x with the value 1234, and then displays that number in base 2, 8,
and 16, respectively:

>>> x = 1234
>>> bin(x) '0b10011010010'
>>> oct(x) '0o2322'
>>> hex(x) '0x4d2' >>>

Use the format() function if you wan to suppress the 0b, 0o, or 0x pre-
fixes, as shown here:

>>> format(x, 'b') '10011010010'
>>> format(x, 'o') '2322'
>>> format(x, 'x') '4d2'

Negative integers are displayed with a negative sign:

>>> x = -1234
>>> format(x, 'b') '-10011010010'
>>> format(x, 'x') '-4d2'

The chr() Function

The Python chr() function takes a positive integer as a parameter and
converts it to its corresponding alphabetic value (if one exists). The letters A
through Z have decimal representation of 65 through 91 (which corresponds
to hexadecimal 41 through 5b), and the lowercase letters a through z have
decimal representation 97 through 122 (hexadecimal 61 through 7a).

Here is an example of using the chr() function to print uppercase A:

>>> x=chr(65)
>>> x
'A'

Introduction to Python 3  •  13

The following code block prints the ASCII values for a range of integers:

result = ""
for x in range(65,91):
 print(x, chr(x))
 result = result+chr(x)+' '
print("result: ",result)

	 Python 2 uses ASCII strings whereas Python 3 uses UTF-8.

You can represent a range of characters with the following line:

for x in range(65,91):

However, the following equivalent code snippet is more intuitive:

for x in range(ord('A'), ord('Z')):

If you want to display the result for lowercase letters, change the preceding
range from (65,91) to either of the following statements:

for x in range(65,91):
for x in range(ord('a'), ord('z')):

The round() Function in Python

The Python round() function enables you to round decimal values to the
nearest precision:

>>> round(1.23, 1)
1.2
>>> round(-3.42,1)
-3.4

Formatting Numbers in Python

Python allows you to specify the number of decimal places of precision to
use when printing decimal numbers, as shown here:

>>> x = 1.23456
>>> format(x, '0.2f')
'1.23'
>>> format(x, '0.3f')
'1.235'
>>> 'value is {:0.3f}'.format(x) 'value is 1.235'
>>> from decimal import Decimal
>>> a = Decimal('4.2')
>>> b = Decimal('2.1')
>>> a + b
Decimal('6.3')
>>> print(a + b)
6.3
>>> (a + b) == Decimal('6.3')
True

NOTE

14  •  Google Gemini for Python: Coding with BARD

>>> x = 1234.56789
>>> # Two decimal places of accuracy
>>> format(x, '0.2f')
'1234.57'
>>> # Right justified in 10 chars, one-digit accuracy
>>> format(x, '>10.1f')
' 1234.6'
>>> # Left justified
>>> format(x, '<10.1f') '1234.6 '
>>> # Centered
>>> format(x, '^10.1f') ' 1234.6 '
>>> # Inclusion of thousands separator
>>> format(x, ',')
'1,234.56789'
>>> format(x, '0,.1f')
'1,234.6'

WORKING WITH FRACTIONS

Python supports the Fraction() function (which is define in the
fractions module) that accepts two integers that represent the numerator
and the denominator (which must be nonzero) of a fraction. Several example
of defining and manipulating fractions in Python are shown here:

>>> from fractions import Fraction
>>> a = Fraction(5, 4)
>>> b = Fraction(7, 16)
>>> print(a + b)
27/16
>>> print(a * b) 35/64
>>> # Getting numerator/denominator
>>> c = a * b
>>> c.numerator
35
>>> c.denominator 64
>>> # Converting to a float >>> float(c)
0.546875
>>> # Limiting the denominator of a value
>>> print(c.limit_denominator(8))
4
>>> # Converting a float to a fraction >>> x = 3.75
>>> y = Fraction(*x.as_integer_ratio())
>>> y
Fraction(15, 4)

Before delving into Python code samples that work with strings, the next sec-
tion briefly discusses Unicode and UTF-8, both of which are character encodings.

UNICODE AND UTF-8

A Unicode string consists of a sequence of numbers that are between 0
and 0x10ffff, where each number represents a group of bytes. An encoding is
the manner in which a Unicode string is translated into a sequence of bytes.

Introduction to Python 3  •  15

Among the various encodings, UTF-8 (“Unicode transformation format”) is
perhaps the most common, and it’s also the default encoding for many systems.
The digit 8 in UTF-8 indicates that the encoding uses 8-bit numbers, whereas
UTF-16 uses 16-bit numbers (but this encoding is less common).

The ASCII character set is a subset of UTF-8, so a valid ASCII string can
be read as a UTF-8 string without any re-encoding required. In addition, a
Unicode string can be converted into a UTF-8 string.

WORKING WITH UNICODE

Python supports Unicode, which means that you can render characters in
different languages. Unicode data can be stored and manipulated in the same way
as strings. Create a Unicode string by prepending the letter 'u', as shown here:

>>> u'Hello from Python!'
u'Hello from Python!'

Special characters can be included in a string by specifying their Unicode
value. For example, the following Unicode string embeds a space (which has
the Unicode value 0x0020) in a string:

>>> u'Hello\u0020from Python!'
u'Hello from Python!'

Listing 1.1 displays the contents of unicode1.py that illustrates how to
display a string of characters in Japanese and another string of characters in
Chinese (Mandarin).

LISTING 1.1: unicode1.py

chinese1 = u'\u5c07\u63a2\u8a0e HTML5 \u53ca\u5176\u4ed6'
hiragana = u'D3 \u306F \u304B\u3063\u3053\u3043\u3043 \u3067\u3059!'

print('Chinese:',chinese1)
print('Hiragana:',hiragana)

The output of Listing 1.2 is here:

Chinese: 將探討 HTML5 及其他
Hiragana: D3 は かっこぃぃ です!

The next portion of this chapter shows you how to “slice and dice” text
strings with built-in Python functions.

WORKING WITH STRINGS

You can concatenate two strings using the ‘+’ operator. The following exam-
ple prints a string and then concatenates two single-letter strings:

>>> 'abc'
'abc'

16  •  Google Gemini for Python: Coding with BARD

>>> 'a' + 'b'
'ab'

You can use “+” or “*” to concatenate identical strings, as shown here:

>>> 'a' + 'a' + 'a'
'aaa'
>>> 'a' * 3
'aaa'

You can assign strings to variables and print them using the print()
command:

>>> print('abc')
abc
>>> x = 'abc'
>>> print(x)
abc
>>> y = 'def'
>>> print(x + y)
abcdef

You can “unpack” the letters of a string and assign them to variables, as
shown here:

>>> str = "World"
>>> x1,x2,x3,x4,x5 = str
>>> x1
'W'
>>> x2
'o'
>>> x3
'r'
>>> x4
'l'
>>> x5
'd'

The preceding code snippets shows you how easy it is to extract the letters
in a text string, and in Chapter 3 you will learn how to “unpack” other Python
data structures.

You can extract substrings of a string as shown in the following examples:

>>> x = "abcdef"
>>> x[0]
'a'
>>> x[-1]
'f'
>>> x[1:3]
'bc'
>>> x[0:2] + x[5:]
'abf'

Introduction to Python 3  •  17

However, you will cause an error if you attempt to “subtract” two strings,
as you probably expect:

>>> 'a' - 'b'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for -: 'str' and 'str'

The try/except construct in Python (discussed later in this chapter) ena-
bles you to handle the preceding type of exception more gracefully.

Comparing Strings

You can use the methods lower() and upper() to convert a string to
lowercase and uppercase, respectively, as shown here:

>>> 'Python'.lower()
'python'
>>> 'Python'.upper()
'PYTHON'
>>>

The methods lower() and upper() are useful for performing a case insen-
sitive comparison of two ASCII strings. Listing 1.2 displays the contents of com-
pare.py that uses the lower() function in order to compare two ASCII strings.

LISTING 1.2: compare.py

x = 'Abc'
y = 'abc'

if(x == y):
 print('x and y: identical')
elif (x.lower() == y.lower()):
 print('x and y: case insensitive match')
else:
 print('x and y: different')

Since x contains mixed case letters and y contains lowercase letters,
Listing 1.2 displays the following output:

x and y: different

Formatting Strings in Python

Python provides the functions string.lstring(), string.rstring(),
and string.center() for positioning a text string so that it is left-justified,
right-justified, and centered, respectively. As you saw in a previous section,
Python also provides the format() method for advanced interpolation features.

18  •  Google Gemini for Python: Coding with BARD

Now enter the following commands in the Python interpreter:

import string

str1 = 'this is a string'
print(string.ljust(str1, 10))
print(string.rjust(str1, 40))
print(string.center(str1,40))

The output is shown here:

this is a string
 this is a string
 this is a string

The next portion of this chapter shows you how to “slice and dice” text
strings with built-in Python functions.

SLICING AND SPLICING STRINGS

Python enables you to extract substrings of a string (called "slicing") using
array notation. Slice notation is start:stop:step, where the start, stop, and
step values are integers that specify the start value, end value, and the incre-
ment value. The interesting part about slicing in Python is that you can use
the value -1, which operates from the right side of a string instead of the left
side of a string.

Some examples of slicing a string are here:

text1 = "this is a string"
print('First 7 characters:',text1[0:7])
print('Characters 2-4:',text1[2:4])
print('Right-most character:',text1[-1])
print('Right-most 2 characters:',text1[-3:-1])

The output from the preceding code block is here:

First 7 characters: this is
Characters 2-4: is
Right-most character: g
Right-most 2 characters: in

Later in this chapter you will see how to insert a string in the middle of
another string.

Testing for Digits and Alphabetic Characters

Python enables you to examine each character in a string and then test
whether that character is a bona fide digit or an alphabetic character. This sec-
tion provides simple examples of regular expressions.

Listing 1.3 displays the contents of char_types.py that illustrates how to
determine if a string contains digits or characters. In case you are unfamiliar

Introduction to Python 3  •  19

with the conditional “if” statement in Listing 1.3, more detailed information is
available in Chapter 2.

LISTING 1.3: char_types.py

str1 = "4"
str2 = "4234"
str3 = "b"
str4 = "abc"
str5 = "a1b2c3"

if(str1.isdigit()):
 print("this is a digit:",str1)

if(str2.isdigit()):
 print("this is a digit:",str2)

if(str3.isalpha()):
 print("this is alphabetic:",str3)

if(str4.isalpha()):
 print("this is alphabetic:",str4)

if(not str5.isalpha()):
 print("this is not pure alphabetic:",str5)

print("capitalized first letter:",str5.title())

Listing 1.3 initializes some variables, followed by 2 conditional tests that
check whether or not str1 and str2 are digits using the isdigit() function.
The next portion of Listing 1.3 checks if str3, str4, and str5 are alphabetic
strings using the isalpha() function. The output of Listing 1.3 is here:

this is a digit: 4
this is a digit: 4234
this is alphabetic: b
this is alphabetic: abc
this is not pure alphabetic: a1b2c3
capitalized first letter: A1B2C3

SEARCH AND REPLACE A STRING IN OTHER STRINGS

Python provides methods for searching and also for replacing a string in
a second text string. Listing 1.4 displays the contents of find_pos1.py that
shows you how to use the find function to search for the occurrence of one
string in another string.

LISTING 1.4: find_pos1.py

item1 = 'abc'
item2 = 'Abc'
text = 'This is a text string with abc'

20  •  Google Gemini for Python: Coding with BARD

pos1 = text.find(item1)
pos2 = text.find(item2)

print('pos1=',pos1)
print('pos2=',pos2)

Listing 1.4 initializes the variables item1, item2, and text, and then searches
for the index of the contents of item1 and item2 in the string text. The Python
find() function returns the column number where the first successful match
occurs; otherwise, the find() function returns a -1 if a match is unsuccessful.

The output from launching Listing 1.4 is here:

pos1= 27
pos2= -1

In addition to the find() method, you can use the in operator when you
want to test for the presence of an element, as shown here:

>>> lst = [1,2,3]
>>> 1 in lst
True

Listing 1.5 displays the contents of replace1.py that shows you how to
replace one string with another string.

LISTING 1.5: replace1.py

text = 'This is a text string with abc'
print('text:',text)
text = text.replace('is a', 'was a')
print('text:',text)

Listing 1.5 starts by initializing the variable text and then printing its con-
tents. The next portion of Listing 1.5 replaces the occurrence of “is a” with
“was a” in the string text, and then prints the modified string. The output from
launching Listing 1.5 is here:

text: This is a text string with abc
text: This was a text string with abc

REMOVE LEADING AND TRAILING CHARACTERS

Python provides the functions strip(), lstrip(), and rstrip() to
remove characters in a text string. Listing 1.6 displays the contents of remove1.
py that shows you how to search for a string.

LISTING 1.6: remove1.py

text = ' leading and trailing white space '
print('text1:','x',text,'y')

Introduction to Python 3  •  21

text = text.lstrip()
print('text2:','x',text,'y')

text = text.rstrip()
print('text3:','x',text,'y')

Listing 1.6 starts by concatenating the letter x and the contents of the vari-
able text, and then printing the result. The second part of Listing 1.6 removes
the leading white spaces in the string text and then appends the result to the
letter x. The third part of Listing 1.6 removes the trailing white spaces in the
string text (note that the leading white spaces have already been removed)
and then appends the result to the letter x.

The output from launching Listing 1.6 is here:

text1: x leading and trailing white space y
text2: x leading and trailing white space y
text3: x leading and trailing white space y

If you want to remove extra white spaces inside a text string, use the
replace() function as discussed in the previous section. The following exam-
ple illustrates how this can be accomplished, which also contains the re module
as an example of regular expressions in Python:

import re
text = 'a b'
a = text.replace(' ', '')
b = re.sub('\s+', ' ', text)

print(a)
print(b)

The result is here:

ab
a b

Chapter 2 shows you how to use the join() function in order to remove
extra white spaces in a text string.

PRINTING TEXT WITHOUT NEWLINE CHARACTERS

If you need to suppress white space and a newline between objects output
with multiple print() statements, you can use concatenation or the write()
function.

The first technique is to concatenate the string representations of each
object using the str() function prior to printing the result. For example, run
the following statement in Python:

x = str(9)+str(0xff)+str(-3.1)
print('x: ',x)

22  •  Google Gemini for Python: Coding with BARD

The output is shown here:

x: 9255-3.1

The preceding line contains the concatenation of the numbers 9 and 255
(which is the decimal value of the hexadecimal number 0xff) and -3.1.

Incidentally, you can use the str() function with modules and user-
defined classes. An example involving the Python built-in module sys is here:

>>> import sys
>>> print(str(sys))
<module 'sys' (built-in)>

The following code snippet illustrates how to use the write() function to
display a string:

import sys
write = sys.stdout.write
write('123')
write('123456789')

The output is here:

123123456789

TEXT ALIGNMENT

Python provides the methods ljust(), rjust(), and center() for
aligning text. The ljust() and rjust() functions left justify and right jus-
tify a text string, respectively, whereas the center() function will center a
string. An example is shown in the following code block:

text = 'Hello World'
text.ljust(20)
'Hello World '
>>> text.rjust(20)
' Hello World'
>>> text.center(20)
' Hello World '

You can use the Python format() function to align text. Use the <, >,
or ^ characters, along with a desired width, in order to right justify, left justify,
and center the text, respectively. The following examples illustrate how you can
specify text justification:

>>> format(text, '>20')
' Hello World'
>>>
>>> format(text, '<20')
'Hello World '

Introduction to Python 3  •  23

>>>
>>> format(text, '^20')
' Hello World '
>>>

WORKING WITH DATES

Python provides a rich set of date-related functions. Listing 1.7 displays
the contents of the Python script date_time2.py that displays various date-
related values, such as the current date and time; the day of the week, month,
and year; and the time in seconds since the epoch.

LISTING 1.7: date_time2.py

import time
import datetime

print("Time in seconds since the epoch: %s" %time.time())
print("Current date and time: " , datetime.datetime.now())
print("Or like this: " ,datetime.datetime.now().
strftime("%y-%m-%d-%H-%M"))

print("Current year: ", datetime.date.today().
strftime("%Y"))
print("Month of year: ", datetime.date.today().
strftime("%B"))
print("Week number of the year: ", datetime.date.today().
strftime("%W"))
print("Weekday of the week: ", datetime.date.today().
strftime("%w"))
print("Day of year: ", datetime.date.today().
strftime("%j"))
print("Day of the month : ", datetime.date.today().
strftime("%d"))
print("Day of week: ", datetime.date.today().
strftime("%A"))

Listing 1.8 displays the output generated by running the code in Listing 1.7.

LISTING 1.8 datetime2.out

Time in seconds since the epoch: 1375144195.66
Current date and time: 2013-07-29 17:29:55.664164
Or like this: 13-07-29-17-29
Current year: 2013
Month of year: July
Week number of the year: 30
Weekday of the week: 1
Day of year: 210
Day of the month : 29
Day of week: Monday

24  •  Google Gemini for Python: Coding with BARD

Python also enables you to perform arithmetic calculates with date-related
values, as shown in the following code block:

>>> from datetime import timedelta
>>> a = timedelta(days=2, hours=6)
>>> b = timedelta(hours=4.5)
>>> c = a + b
>>> c.days
2
>>> c.seconds
37800
>>> c.seconds / 3600
10.5
>>> c.total_seconds() / 3600
58.5

Converting Strings to Dates

Listing 1.9 displays the contents of string2date.py that illustrates how
to convert a string to a date, and also how to calculate the difference between
two dates.

LISTING 1.9: string2date.py

from datetime import datetime

text = '2024-08-13'
y = datetime.strptime(text, '%Y-%m-%d')
z = datetime.now()
diff = z - y
print('Date difference:',diff)

The output from Listing 1.9 is shown here:

Date difference: -210 days, 18:58:40.197130

EXCEPTION HANDLING IN PYTHON

Unlike JavaScript you cannot add a number and a string in Python.
However, you can detect an illegal operation using the try/except construct
in Python, which is similar to the try/catch construct in languages such as
JavaScript and Java.

An example of a try/except block is here:

try:
 x = 4
 y = 'abc'
 z = x + y
except:
 print 'cannot add incompatible types:', x, y

Introduction to Python 3  •  25

When you run the preceding code in Python, the print() statement in
the except code block is executed because the variables x and y have incom-
patible types.

Earlier in the chapter you also saw that subtracting two strings throws an
exception:

>>> 'a' - 'b'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for -: 'str' and 'str'

A simple way to handle this situation is to use a try/except block:

>>> try:
... print('a' - 'b')
... except TypeError:
... print('TypeError exception while trying to subtract two strings')
... except:
... print('Exception while trying to subtract two strings')
...

The output from the preceding code block is here:

TypeError exception while trying to subtract two strings

As you can see, the preceding code block specifies the finer-grained excep-
tion called TypeError, followed by a generic except code block to handle all
other exceptions that might occur during the execution of your Python code.
This style is similar to the exception handling in Java code.

Listing 1.10 displays the contents of exception1.py that illustrates how
to handle various types of exceptions.

LISTING 1.10: exception1.py

import sys

try:
 f = open('myfile.txt')
 s = f.readline()
 i = int(s.strip())
except IOError as err:
 print("I/O error: {0}".format(err))
except ValueError:
 print("Could not convert data to an integer.")
except:
 print("Unexpected error:", sys.exc_info()[0])
 raise

Listing 1.10 contains a try block followed by three except statements. If
an error occurs in the try block, the first except statement is compared with
the type of exception that occurred. If there is a match, then the subsequent

26  •  Google Gemini for Python: Coding with BARD

print() statement is executed, and the program terminates. If not, a similar test
is performed with the second except statement. If neither except statement
matches the exception, the third except statement handles the exception,
which involves printing a message and then “raising” an exception. Note that you
can also specify multiple exception types in a single statement, as shown here:

except (NameError, RuntimeError, TypeError):
 print('One of three error types occurred')

The preceding code block is more compact, but you do not know which
of the three error types occurred. Python allows you to define custom excep-
tions, but this topic is beyond the scope of this book.

HANDLING USER INPUT

Python enables you to read user input from the command line via the
input() function or the raw_input() function. Typically you assign user
input to a variable, which will contain all characters that users enter from the
keyboard. User input terminates when users press the <return> key (which
is included with the input characters). Listing 1.11 displays the contents of
user_input1.py that prompts users for their name and then uses interpola-
tion to display a response.

LISTING 1.11: user_input1.py

userInput = input("Enter your name: ")
print ("Hello %s, my name is Python" % userInput)

The output of Listing 1.11 is here (assume that the user entered the
word “Dave”):

Hello Dave, my name is Python

The print() statement in Listing 1.11 uses string interpolation via %s,
which substitutes the value of the variable after the % symbol. This functional-
ity is obviously useful when you want to specify something that is determined
at run-time.

User input can cause exceptions (depending on the operations that your
code performs), so it’s important to include exception-handling code.

Listing 1.12 displays the contents of user_input2.py that prompts users for
a string and attempts to convert the string to a number in a try/except block.

LISTING 1.12: user_input2.py

userInput = input("Enter something: ")
	

try:
 x = 0 + eval(userInput)

Introduction to Python 3  •  27

 print('you entered the number:',userInput)
except:
 print(userInput,'is a string')

Listing 1.12 adds the number 0 to the result of converting a user’s input to
a number. If the conversion was successful, a message with the user’s input is
displayed. If the conversion failed, the except code block consists of a print
statement that displays a message.

	� This code sample uses the eval() function, which should be avoided so that
your code does not evaluate arbitrary (and possibly destructive) commands.

Listing 1.13 displays the contents of user_input3.py that prompts users
for two numbers and attempts to compute their sum in a pair of try/except
blocks.

LISTING 1.13: user_input3.py

sum = 0

msg = 'Enter a number:'
val1 = input(msg)

	
try:
 sum = sum + eval(val1)
except:
 print(val1,'is a string')

msg = 'Enter a number:'
val2 = input(msg)

try:
 sum = sum + eval(val2)
except:
 print(val2,'is a string')

print('The sum of',val1,'and',val2,'is',sum)

Listing 1.13 contains two try blocks, each of which is followed by an except
statement. The first try block attempts to add the first user-supplied number
to the variable sum, and the second try block attempts to add the second user-
supplied number to the previously entered number. An error message occurs if
either input string is not a valid number; if both are valid numbers, a message
is displayed containing the input numbers and their sum. Be sure to read the
caveat regarding the eval() function that is mentioned earlier in this chapter.

COMMAND-LINE ARGUMENTS

Python provides a getopt module to parse command-line options and
arguments, and the Python sys module provides access to any command-line
arguments via the sys.argv. This serves two purposes:

NOTE

28  •  Google Gemini for Python: Coding with BARD

1.	 sys.argv is the list of command-line arguments.
2.	 len(sys.argv) is the number of command-line arguments.

Here sys.argv[0] is the program name, so if the Python program is
called test.py, it matches the value of sys.argv[0].

Now you can provide input values for a Python program on the command
line instead of providing input values by prompting users for their input.

As an example, consider the script test.py shown here:

#!/usr/bin/python
import sys
print('Number of arguments:',len(sys.argv),'arguments')
print('Argument List:', str(sys.argv))

Now run above script as follows:

python test.py arg1 arg2 arg3

This will produce following result:

Number of arguments: 4 arguments.
Argument List: ['test.py', 'arg1', 'arg2', 'arg3']

The ability to specify input values from the command line provides use-
ful functionality. For example, suppose that you have a custom Python class
that contains the methods add and subtract to add and subtract a pair of
numbers.

You can use command-line arguments in order to specify which method to
execute on a pair of numbers, as shown here:

python MyClass add 3 5
python MyClass subtract 3 5

This functionality is very useful because you can programmatically execute
different methods in a Python class, which means that you can write unit tests
for your code as well. Search online for articles that explain how to create cus-
tom Python classes.

Listing 1.14 displays the contents of hello.py that shows you how to use
sys.argv to check the number of command line parameters.

LISTING 1.14: hello.py

import sys

def main():
 if len(sys.argv) >= 2:
 name = sys.argv[1]
 else:
 name = 'World'
 print('Hello', name)

Introduction to Python 3  •  29

Standard boilerplate to invoke the main() function
if __name__ == '__main__':
 main()

Listing 1.14 defines the main() function that checks the number of
command-line parameters: if this value is at least 2, then the variable name is
assigned the value of the second parameter (the first parameter is hello.py),
otherwise name is assigned the value Hello. The print() statement then
prints the value of the variable name.

The final portion of Listing 1.14 uses conditional logic to determine whether
or not to execute the main() function.

SUMMARY

This chapter showed you how to work with numbers and perform arith-
metic operations on numbers, and then you learned how to work with strings
and use string operations. You also learned how to use the try/except construct
to handle exceptions that might occur in your Python code. The next chapter
shows you how to work with conditional statements, loops, and user-defined
functions in Python.

CHAPTER 2
Conditional Logic, Loops,
and Functions

This chapter introduces you to various ways to perform conditional logic
in Python, as well as control structures and user-defined functions in
Python. Virtually every Python program that performs useful calcula-

tions requires some type of conditional logic or control structure (or both).
Although the syntax for these Python features is slightly different from other
languages, the functionality will be familiar to you.

The first part of this chapter contains code samples that illustrate how to
handle if-else conditional logic in Python, as well as if-elsif-else state-
ments. The second part of this chapter discusses loops and while statements in
Python. This section contains an assortment of examples (comparing strings,
computing numbers raised to different exponents, and so forth) that illustrate
various ways that you can use loops and while statements in Python.

The third part of this chapter contains examples that involve nested loops
and recursion. The final part of this chapter introduces you to user-defined
Python functions.

PRECEDENCE OF OPERATORS IN PYTHON

When you have an expression involving numbers, you might remember
that multiplication (“*”) and division (“/”) have higher precedence than addi-
tion (“+”) or subtraction (“-”). Exponentiation has even higher precedence
than these four arithmetic operators.

However, instead of relying on precedence rules, it’s simpler (as well as
safer) to use parentheses. For example, (x/y)+10 is clearer than x/y+10,
even though they are equivalent expressions.

As another example, the following two arithmetic expressions are equiva-
lent, but the second is less error prone than the first:

32  •  Google Gemini for Python: Coding with BARD

x/y+3*z/8+x*y/z-3*x
(x/y)+(3*z)/8+(x*y)/z-(3*x)

In any case, the following website contains precedence rules for operators
in Python:

http://www.mathcs.emory.edu/~valerie/courses/fall10/155/resources/
op_precedence.html

PYTHON RESERVED WORDS

Every programming language has a set of reserved words, which is a set
of words that cannot be used as identifiers, and Python is no exception. The
Python reserved words are: and, exec, not, assert, finally, or, break,
for, pass, class, from, print, continue, global, raise, def, if,
return, del, import, try, elif, in, while, else, is, with, except,
lambda, and yield.

If you inadvertently use a reserved word as a variable, you will see an “invalid
syntax” error message instead of a “reserved word” error message. For example,
suppose you create a Python script test1.py with the following code:

break = 2
print('break =', break)

If you run the preceding Python code you will see the following output:

 File "test1.py", line 2
 break = 2
 ^
SyntaxError: invalid syntax

However, a quick inspection of the Python code reveals the fact that you
are attempting to use the reserved word break as a variable.

WORKING WITH LOOPS IN PYTHON

Python supports for loops, while loops, and range() statements. The
following subsections illustrate how you can use each of these constructs.

Python for Loops

Python supports the for loop whose syntax is slightly different from other
languages (such as JavaScript and Java). The following code block shows you how
to use a for loop in Python in order to iterate through the elements in a list:

>>> x = ['a', 'b', 'c']
>>> for w in x:
... print(w)
...
a
b
c

http://www.mathcs.emory.edu/~valerie/courses/fall10/155/resources/op_precedence.html
http://www.mathcs.emory.edu/~valerie/courses/fall10/155/resources/op_precedence.html

Conditional Logic, Loops, and Functions  •  33

The preceding code snippet prints three letters on three separate lines. You
can force the output to be displayed on the same line (which will “wrap” if you
specify a large enough number of characters) by appending a comma “,” in the
print statement, as shown here:

>>> x = ['a', 'b', 'c']
>>> for w in x:
... print(w, end=' ')
...
a b c

You can use this type of code when you want to display the contents of a text
file in a single line instead of multiple lines.

Python also provides the built-in reversed() function that reverses the
direction of the loop, as shown here:

>>> a = [1, 2, 3, 4, 5]
>>> for x in reversed(a):
... print(x)
5
4
3
2
1

Note that reversed iteration only works if the size of the current object
can be determined or if the object implements a __reversed__() special
method.

A for Loop with try/except in Python

Listing 2.1 displays the contents of StringToNums.py that illustrates how
to calculate the sum of a set of integers that have been converted from strings.

LISTING 2.1: StringToNums.py

line = '1 2 3 4 10e abc'
sum = 0
invalidStr = ""

print('String of numbers:',line)

for str in line.split(" "):
 try:
 sum = sum + eval(str)
 except:
 invalidStr = invalidStr + str + ' '

print('sum:', sum)
if(invalidStr != ""):
 print('Invalid strings:',invalidStr)
else:
 print('All substrings are valid numbers')

34  •  Google Gemini for Python: Coding with BARD

Listing 2.1 initializes the variables line, sum, and invalidStr, and then
displays the contents of line. The next portion of Listing 2.1 splits the contents
of line into words, and then uses a try block in order to add the numeric
value of each word to the variable sum. If an exception occurs, the contents of
the current str is appended to the variable invalidStr.

When the loop has finished execution, Listing 2.1 displays the sum of the
numeric words, followed by the list of words that are not numbers. The output
from Listing 2.1 is here:

String of numbers: 1 2 3 4 10e abc
sum: 10
Invalid strings: 10e abc

Numeric Exponents in Python

Listing 2.2 displays the contents of Nth_exponent.py that illustrates how
to calculate intermediate powers of a set of integers.

LISTING 2.2: Nth_exponent.py

maxPower = 4
maxCount = 4

def pwr(num):
 prod = 1
 for n in range(1,maxPower+1):
 prod = prod*num
 print(num,'to the power',n, 'equals',prod)
 print('-----------')

for num in range(1,maxCount+1):
 pwr(num)

Listing 2.2 contains a function called pwr() that accepts a numeric value.
This function contains a loop that prints the value of that number raised to the
power n, where n ranges between 1 and maxPower+1.

The second part of Listing 2.2 contains a for loop that invokes the func-
tion pwr() with the numbers between 1 and maxPower+1. The output from
Listing 2.2 is here:

1 to the power 1 equals 1
1 to the power 2 equals 1
1 to the power 3 equals 1
1 to the power 4 equals 1

2 to the power 1 equals 2
2 to the power 2 equals 4
2 to the power 3 equals 8
2 to the power 4 equals 16

Conditional Logic, Loops, and Functions  •  35

3 to the power 1 equals 3
3 to the power 2 equals 9
3 to the power 3 equals 27
3 to the power 4 equals 81

4 to the power 1 equals 4
4 to the power 2 equals 16
4 to the power 3 equals 64
4 to the power 4 equals 256

NESTED LOOPS

Listing 2.3 displays the contents of Triangular1.py that illustrates how
to print a row of consecutive integers (starting from 1), where the length of
each row is one greater than the previous row.

LISTING 2.3: Triangular1.py

max = 8
for x in range(1,max+1):
 for y in range(1,x+1):
 print(y, '', end='')
 print()

Listing 2.3 initializes the variable max with the value 8, followed by an outer
for loop whose loop variable x ranges from 1 to max+1. The inner loop has a
loop variable y that ranges from 1 to x+1, and the inner loop prints the value
of y. The output of Listing 2.4 is here:

1
1 2
1 2 3
1 2 3 4
1 2 3 4 5
1 2 3 4 5 6
1 2 3 4 5 6 7
1 2 3 4 5 6 7 8

THE split() FUNCTION WITH for LOOPS

Python supports various useful string-related functions, including the
split() function and the join() function. The split() function is useful
when you want to tokenize (“split”) a line of text into words and then use a for
loop to iterate through those words and process them accordingly.

The join() function does the opposite of split(): it “joins” two or more
words into a single line. You can easily remove extra spaces in a sentence by
using the split() function and then invoking the join() function, thereby
creating a line of text with one white space between any two words.

36  •  Google Gemini for Python: Coding with BARD

USING THE split() FUNCTION TO COMPARE WORDS

Listing 2.4 displays the contents of Compare2.py that illustrates how to
use the split function to compare each word in a text string with another word.

LISTING 2.4: Compare2.py

x = 'This is a string that contains abc and Abc'
y = 'abc'
identical = 0
casematch = 0

for w in x.split():
 if(w == y):
 identical = identical + 1
 elif (w.lower() == y.lower()):
 casematch = casematch + 1

if(identical > 0):
 print('found identical matches:', identical)

if(casematch > 0):
 print('found case matches:', casematch)

if(casematch == 0 and identical == 0):
 print('no matches found')

Listing 2.4 uses the split() function in order to compare each word in
the string x with the word abc. If there is an exact match, the variable iden-
tical is incremented. If a match does not occur, a case-insensitive match of
the current word is performed with the string abc, and the variable case-
match is incremented if the match is successful.

The output from Listing 2.5 is here:

found identical matches: 1
found case matches: 1

USING THE split() FUNCTION TO PRINT JUSTIFIED TEXT

Listing 2.5 displays the contents of FixedColumnCount.py that illustrates
how to print a set of words from a text string as justified text using a fixed num-
ber of columns.

LISTING 2.5: FixedColumnCount1.py

import string

wordCount = 0
str1 = 'this is a string with a set of words in it'

print('Left-justified strings:')
print('-----------------------')

Conditional Logic, Loops, and Functions  •  37

for w in str1.split():
 print('%-10s' % w)
 wordCount = wordCount + 1
 if(wordCount % 2 == 0):
 print("")
print("\n")

print('Right-justified strings:')
print('------------------------')

wordCount = 0
for w in str1.split():
 print('%10s' % w)
 wordCount = wordCount + 1
 if(wordCount % 2 == 0):
 print()

Listing 2.5 initializes the variables wordCount and str1, followed by two
for loops. The first for loop prints the words in str1 in left-justified format,
and the second for loop prints the words in str1 in right-justified format. In
both loops, a linefeed is printed after a pair of consecutive words is printed,
which occurs whenever the variable wordCount is even. The output from
Listing 2.5 is here:

Left-justified strings:

this is
a string
with a
set of
words in
it

Right-justified strings:

 this is
 a string
 with a
 set of
 words in
 it

USING THE split() FUNCTION TO PRINT FIXED-WIDTH TEXT

Listing 2.6 displays the contents of FixedColumnWidth1.py that illus-
trates how to print a text string in a column of fixed width.

LISTING 2.6: FixedColumnWidth1.py

import string

left = 0
right = 0
columnWidth = 8

38  •  Google Gemini for Python: Coding with BARD

str1 = 'this is a string with a set of words in it and it
will be split into a fixed column width'
strLen = len(str1)

print('Left-justified column:')
print('----------------------')
rowCount = int(strLen/columnWidth)

for i in range(0,rowCount):
 left = i*columnWidth
 right = (i+1)*columnWidth-1
 word = str1[left:right]
 print("%-10s" % word)

check for a 'partial row'
if(rowCount*columnWidth < strLen):
 left = rowCount*columnWidth-1;
 right = strLen
 word = str1[left:right]
 print("%-10s" % word)

Listing 2.6 initializes the integer variable columnWidth and the string
variable str1. The variable strLen is the length of str1, and rowCount is
strLen divided by columnWidth.

The next part of Listing 2.6 contains a loop that prints rowCount rows of
characters, where each row contains columnWidth characters. The final por-
tion of Listing 2.6 prints any “leftover” characters that comprise a partial row.

The newspaper-style output (but without any partial whitespace format-
ting) from Listing 2.6 is here:

Left-justified column:

this is
a strin
 with a
set of
ords in
it and
t will
e split
into a
ixed co
umn wid
th

USING THE split() FUNCTION TO COMPARE TEXT STRINGS

Listing 2.7 displays the contents of CompareStrings1.py that illustrates
how to determine whether or not the words in one text string are also words in
a second text string.

Conditional Logic, Loops, and Functions  •  39

LISTING 2.7: CompareStrings1.py

text1 = 'a b c d'
text2 = 'a b c e d'

if(text2.find(text1) >= 0):
 print('text1 is a substring of text2')
else:
 print('text1 is not a substring of text2')

subStr = True
for w in text1.split():
 if(text2.find(w) == -1):
 subStr = False
 break

if(subStr == True):
 print('Every word in text1 is a word in text2')
else:
 print('Not every word in text1 is a word in text2')

Listing 2.7 initializes the string variables text1 and text2 and uses con-
ditional logic to determine whether or not text1 is a substring of text2 (and
then prints a suitable message).

The next part of Listing 2.7 is a loop that iterates through the words in
the string text1 and checks if each of those words is also a word in the string
text2. If a nonmatch occurs, the variable subStr is set to False, followed by
the break statement that causes an early exit from the loop. The final portion of
Listing 2.7 prints the appropriate message based on the value of subStr. The
output from Listing 2.7 is here:

text1 is not a substring of text2
Every word in text1 is a word in text2

USING THE split() FUNCTION TO DISPLAY CHARACTERS
IN A STRING

Listing 2.8 displays the contents of StringChars1.py that illustrates how
to print the characters in a text string.

LISTING 2.8: StringChars1.py

text = 'abcdef'
for ch in text:
 print('char:',ch,'ord value:',ord(ch))
print

40  •  Google Gemini for Python: Coding with BARD

Listing 2.8 is straightforward: a for loop iterates through the characters
in the string text and then prints the character and its ord value. The output
from Listing 2.8 is here:

('char:', 'a', 'ord value:', 97)
('char:', 'b', 'ord value:', 98)
('char:', 'c', 'ord value:', 99)
('char:', 'd', 'ord value:', 100)
('char:', 'e', 'ord value:', 101)
('char:', 'f', 'ord value:', 102)

THE join() FUNCTION

Another way to remove extraneous spaces is to use the join() function,
as shown here:

text1 = ' there are extra spaces '
print('text1:',text1)

text2 = ' '.join(text1.split())
print('text2:',text2)

text2 = 'XYZ'.join(text1.split())
print('text2:',text2)

The split() function “splits” a text string into a set of words, and also
removes the extraneous white spaces. Next, the join() function “joins”
together the words in the string text1, using a single white space as the delim-
iter. The last code portion of the preceding code block uses the string XYZ as
the delimiter instead of a single white space.

The output of the preceding code block is here:

text1: there are extra spaces
text2: there are extra spaces
text2: thereXYZareXYZextraXYZspaces

PYTHON while LOOPS

You can define a while loop to iterate through a set of numbers, as shown
in the following examples:

>>> x = 0
>>> while x < 5:
... print(x)
... x = x + 1
...
0
1
2
3
4
5

Conditional Logic, Loops, and Functions  •  41

Python uses indentation instead of curly braces that are used in other lan-
guages such as JavaScript and Java. Although Python lists are not discussed
until Chapter 3, you can probably understand the following simple code block
that contains a variant of the preceding loop that you can use when working
with lists:

lst = [1,2,3,4]

while lst:
 print('list:',lst)
 print('item:',lst.pop())

The preceding while loop terminates when the lst variable is empty, and
there is no need to explicitly test for an empty list. The output from the preced-
ing code is here:

list: [1, 2, 3, 4]
item: 4
list: [1, 2, 3]
item: 3
list: [1, 2]
item: 2
list: [1]
item: 1

This concludes the examples that use the split() function in order to pro-
cess words and characters in a text string. The next part of this chapter shows
you examples of using conditional logic in Python code.

CONDITIONAL LOGIC IN PYTHON

If you have written code in other programming languages, you have
undoubtedly seen if/then/else (or if-elseif-else) conditional state-
ments. Although the syntax varies between languages, the logic is essentially
the same. The following example shows you how to use if/elif statements
in Python:

>>> x = 25
>>> if x < 0:
... print('negative')
... elif x < 25:
... print('under 25')
... elif x == 25:
... print('exactly 25')
... else:
... print('over 25')
...
exactly 25

The preceding code block illustrates how to use multiple conditional state-
ments, and the output is exactly what you expected.

42  •  Google Gemini for Python: Coding with BARD

THE break/continue/pass STATEMENTS

The break statement in Python enables you to perform an “early exit”
from a loop, whereas the continue statement essentially returns to the top
of the loop and continues with the next value of the loop variable. The pass
statement is essentially a “do nothing” statement.

Listing 2.9 displays the contents of BreakContinuePass.py that illus-
trates the use of these three statements.

LISTING 2.9: BreakContinuePass.py

print('first loop')
for x in range(1,4):
 if(x == 2):
 break
 print(x)

print('second loop')
for x in range(1,4):
 if(x == 2):
 continue
 print(x)

print('third loop')
for x in range(1,4):
 if(x == 2):
 pass
 print(x)

The output of Listing 2.9 is here:

first loop
1
second loop
1
3
third loop
1
2
3

COMPARISON AND BOOLEAN OPERATORS

Python supports a variety of Boolean operators, such as in, not in, is,
is not, and, or, and not. The next several sections discuss these operators
and provide some examples of how to use them.

The in/not in/is/is not Comparison Operators

The in and not in operators are used with sequences to check whether
a value occurs or does not occur in a sequence. The operators is and is not

Conditional Logic, Loops, and Functions  •  43

determine whether or not two objects are the same object, which is impor-
tant only matters for mutable objects such as lists. All comparison operators
have the same priority, which is lower than that of all numerical operators.
Comparisons can also be chained. For example, a < b == c tests whether a
is less than b and moreover b equals c.

The and, or, and not Boolean Operators

The Boolean operators and, or, and not have lower priority than com-
parison operators. The Boolean and and or are binary operators whereas the
Boolean or operator is a unary operator. Here are some examples:

•	A and B can only be true if both A and B are true
•	A or B is true if either A or B is true
•	not(A) is true if and only if A is false

You can also assign the result of a comparison or other Boolean expression
to a variable, as shown here:

>>> string1, string2, string3 = '', 'b', 'cd'
>>> str4 = string1 or string2 or string3
>>> str4
'b'

The preceding code block initializes the variables string1, string2, and
string3, where string1 is an empty string. Next, str4 is initialized via the
or operator, and since the first nonnull value is string2, the value of str4 is
equal to string2.

LOCAL AND GLOBAL VARIABLES

Python variables can be local or global. A Python variable is local to a
function if the following are true:

•	a parameter of the function
•	on the left-side of a statement in the function
•	bound to a control structure (such as for, with, and except)

A variable that is referenced in a function but is not local (according to the
previous list) is a nonlocal variable. You can specify a variable as nonlocal with
this snippet:

nonlocal z

A variable can be explicitly declared as global with this statement:

global z

44  •  Google Gemini for Python: Coding with BARD

The following code block illustrates the behavior of a global versus a local
variable:

global z
z = 3

def changeVar(z):
 z = 4
 print('z in function:',z)

print('first global z:',z)

if __name__ == '__main__':
 changeVar(z)
 print('second global z:',z)

The output from the preceding code block is here:

first global z: 3
z in function: 4
second global z: 3

Uninitialized Variables and the Value None

Python distinguishes between an uninitialized variable and the value None.
The former is a variable that has not been assigned a value, whereas the value
None is a value that indicates “no value” Collections and methods often return
the value None, and you can test for the value None in conditional logic.

SCOPE OF VARIABLES

The accessibility or scope of a variable depends on where that variable has
been defined. Python provides two scopes: global and local, with the added
“twist” that global is actually module-level scope (i.e., the current file), and
therefore you can have a variable with the same name in different files and
they will be treated differently.

Local variables are straightforward: they are defined inside a function, and
they can only be accessed inside the function where they are defined. Any
variables that are not local variables have global scope, which means that those
variables are “global” only with respect to the file where it has been defined,
and they can be accessed anywhere in a file.

There are two scenarios to consider regarding variables. First, suppose two
files (aka modules) file1.py and file2.py have a variable called x, and file1.
py also imports file2.py. The question now is how to disambiguate between
the x in the two different modules. As an example, suppose that file2.py con-
tains the following two lines of code:

x = 3
print('unscoped x in file2:',x)

Conditional Logic, Loops, and Functions  •  45

Suppose that file1.py contains the following code:

import file2 as file2

x = 5
print('unscoped x in file1:',x)
print('scoped x from file2:',file2.x)

Launch file1.y from the command line, and you will see the following
output:

unscoped x in file2: 3
unscoped x in file1: 5
scoped x from file2: 3

The second scenario involves a program that contains a local variable and
a global variable with the same name. According to the earlier rule, the local
variable is used in the function where it is defined, and the global variable is
used outside of that function.

The following code block illustrates the use of a global and local variable
with the same name:

#!/usr/bin/python
a global variable:
total = 0;

def sum(x1, x2):
 # this total is local:
 total = x1+x2;

 print("Local total : ", total)
 return total

invoke the sum function
sum(2,3);
print("Global total : ", total)

When the above code is executed, it produces following result:

Local total : 5
Global total : 0

What about unscoped variables, such as specifying the variable x without
a module prefix? The answer consists of the following sequence of steps that
Python will perform:

1.	 Check the local scope for the name.
2.	 Ascend the enclosing scopes and check for the name.
3.	 Perform Step 2 until the global scope is found (i.e., module level)
4.	 If x still hasn’t been found, Python checks__builtins__.

46  •  Google Gemini for Python: Coding with BARD

As an illustration, type python at the command line and then enter the
statements that are preceded with three angle brackets (“>>>”):

Python 3.9.1 (v3.9.1:1e5d33e9b9, Dec 7 2020, 12:44:01)
[Clang 12.0.0 (clang-1200.0.32.27)] on darwin
Type "help", "copyright", "credits" or "license" for more
information.
>>> x = 1
>>> g = globals()
>>> g
{'__name__': '__main__', '__doc__': None, '__package__':
None, '__loader__': <class '_frozen_importlib.
BuiltinImporter'>, '__spec__': None, '__annotations__': {},
'__builtins__': <module 'builtins' (built-in)>, 'x': 1,
'g': {...}}
>>> g.pop('x')
1
>>> x
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'x' is not defined

	� You can access the dicts that Python uses to track local and global scope
by invoking locals() and globals() respectively.

PASS BY REFERENCE VERSUS VALUE

All parameters (arguments) in the Python language are passed by refer-
ence. Thus, if you change what a parameter refers to within a function, the
change is reflected in the calling function. For example:

def changeme(mylist):
 #This changes a passed list into this function
 mylist.append([1,2,3,4])
 print("Values inside the function: ", mylist)
 return

Now you can call changeme function
mylist = [10,20,30]
changeme(mylist)
print("Values outside the function: ", mylist)

Here we are maintaining reference of the passed object and appending
values in the same object, and the result is shown here:

Values inside the function: [10, 20, 30, [1, 2, 3, 4]]
Values outside the function: [10, 20, 30, [1, 2, 3, 4]]

The fact that values are passed by reference gives rise to the notion of
mutability versus immutability that is discussed in Chapter 3.

ARGUMENTS AND PARAMETERS

Python differentiates between arguments to functions and parameter dec-
larations in functions: a positional (mandatory) and keyword (optional/default

NOTE

Conditional Logic, Loops, and Functions  •  47

value). This concept is important because Python has operators for packing
and unpacking these kinds of arguments.

Python unpacks positional arguments from an iterable, as shown here:

>>> def foo(x, y):
... return x - y
...
>>> data = 4,5
>>> foo(data) # only passed one arg
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: foo() takes exactly 2 arguments (1 given)
>>> foo(*data) # passed however many args are in tuple
-1

USING A while LOOP TO FIND THE DIVISORS OF A NUMBER

Listing 2.10 contains a while loop, conditional logic, and the % (modulus)
operator in order to find the factors of any integer greater than 1.

LISTING 2.10: Divisors.py

def divisors(num):
 div = 2

 while(num > 1):
 if(num % div == 0):
 print("divisor: ", div)
 num = num / div
 else:
 div = div + 1
 print("** finished **")

divisors(12)

Listing 2.10 defines a function divisors() that takes an integer value num
and then initializes the variable div with the value 2. The while loop divides
num by div and if the remainder is 0, it prints the value of div and then it
divides num by div; if the value is not 0, then div is incremented by 1. This
while loop continues as long as the value of num is greater than 1.

The output from Listing 2.10 passing in the value 12 to the function divi-
sors() is here:

divisor: 2
divisor: 2
divisor: 3
** finished **

Listing 2.11 displays the contents of Divisors2.py that contains a while
loop, conditional logic, and the % (modulus) operator in order to find the fac-
tors of any integer greater than 1.

48  •  Google Gemini for Python: Coding with BARD

LISTING 2.11: Divisors2.py

def divisors(num):
 primes = ""
 div = 2

 while(num > 1):
 if(num % div == 0):
 divList = divList + str(div) + ' '
 num = num / div
 else:
 div = div + 1
 return divList

result = divisors(12)
print('The divisors of',12,'are:',result)

Listing 2.11 is very similar to Listing 2.10: the main difference is that
Listing 2.10 constructs the variable divList (which is a concatenated list of
the divisors of a number) in the while loop, and then returns the value of
divList when the while loop has completed. The output from Listing 2.11
is here:

The divisors of 12 are: 2 2 3

Using a while loop to Find Prime Numbers

Listing 2.12 displays the contents of Divisors3.py that contains a while
loop, conditional logic, and the % (modulus) operator in order to count the
number of prime factors of any integer greater than 1. If there is only one divi-
sor for a number, then that number is a prime number.

LISTING 2.12: Divisors3.py

def divisors(num):
 count = 1
 div = 2
 while(div < num):
 if(num % div == 0):
 count = count + 1
 div = div + 1
 return count

result = divisors(12)

if(result == 1):
 print('12 is prime')
else:
 print('12 is not prime')

Conditional Logic, Loops, and Functions  •  49

USER-DEFINED FUNCTIONS IN PYTHON

Python provides built-in functions and also enables you to define your own
functions. You can define functions to provide the required functionality. Here
are simple rules to define a function in Python:

•	Function blocks begin with the keyword def followed by the function
name and parentheses.

•	Any input arguments should be placed within these parentheses.
•	The first statement of a function can be an optional statement—the docu-

mentation string of the function or docstring.
•	The code block within every function starts with a colon (:) and is in-

dented.
•	The statement return [expression] exits a function, optionally passing

back an expression to the caller. A return statement with no arguments is
the same as return “None.”

•	If a function does not specify a return statement, the function automati-
cally returns “None,” which is a special type of value in Python.

A very simple custom Python function is here:

>>> def func():
... print 3
...
>>> func()
3

The preceding function is trivial, but it does illustrate the syntax for defin-
ing custom functions in Python. The following example is slightly more useful:

>>> def func(x):
... for i in range(0,x):
... print(i)
...
>>> func(5)
0
1
2
3
4

SPECIFYING DEFAULT VALUES IN A FUNCTION

Listing 2.13 displays the contents of DefaultValues.py that illustrates
how to specify default values in a function.

50  •  Google Gemini for Python: Coding with BARD

LISTING 2.13: DefaultValues.py

def numberFunc(a, b=10):
 print (a,b)

def stringFunc(a, b='xyz'):
 print (a,b)

def collectionFunc(a, b=None):
 if(b is None):
 print('No value assigned to b')

numberFunc(3)
stringFunc('one')
collectionFunc([1,2,3])

Listing 2.13 defines three functions, followed by an invocation of each of
those functions. The functions numberFunc() and stringFunc() print a list
containing the values of their two parameters, and collectionFunc() displays
a message if the second parameter is None. The output from Listing 2.13 is here:

(3, 10)
('one', 'xyz')
No value assigned to b

Returning Multiple Values From a Function

This task is accomplished by the code in Listing 2.14, which displays the
contents of MultipleValues.py.

LISTING 2.14: MultipleValues.py

def MultipleValues():
 return 'a', 'b', 'c'

x, y, z = MultipleValues()

print('x:',x)
print('y:',y)
print('z:',z)

The output from Listing 2.14 is here:

x: a
y: b
z: c

FUNCTIONS WITH A VARIABLE NUMBER OF ARGUMENTS

Python enables you to define functions with a variable number of argu-
ments. This functionality is useful in many situations, such as computing the
sum, average, or product of a set of numbers. For example, the following code
block computes the sum of two numbers:

def sum(a, b):
 return a + b

Conditional Logic, Loops, and Functions  •  51

values = (1, 2)
s1 = sum(*values)
print('s1 = ', s1)

The output of the preceding code block is here:

s1 = 3

However, the sum function in the preceding code block can only be used
for two numeric values.

Listing 2.15 displays the contents of VariableSum1.py that illustrates
how to compute the sum of a variable number of numbers.

LISTING 2.15: VariableSum1.py

def sum(*values):
 sum = 0
 for x in values:
 sum = sum + x
 return sum

values1 = (1, 2)
s1 = sum(*values1)
print('s1 = ',s1)

values2 = (1, 2, 3, 4)
s2 = sum(*values2)
print('s2 = ',s2)

Listing 2.15 defines the function sum whose parameter values can be an
arbitrary list of numbers. The next portion of this function initializes sum to 0,
and then a for loop iterates through values and adds each of its elements to
the variable sum. The last line in the function sum() returns the value of the
variable sum. The output from Listing 2.15 is here:

s1 = 3	
s2 = 10

LAMBDA EXPRESSIONS

Listing 2.16 displays the contents of Lambda1.py that illustrates how to
create a simple lambda function in Python.

LISTING 2.16 Lambda1.py

add = lambda x, y: x + y

x1 = add(5,7)
x2 = add('Hello', 'Python')

print(x1)
print(x2)

52  •  Google Gemini for Python: Coding with BARD

Listing 2.16 defines the lambda expression add that accepts two input
parameters and then returns their sum (for numbers) or their concatenation
(for strings).

The output from Listing 2.16 is here:

12
HelloPython

RECURSION

Recursion is a powerful technique that can provide an elegant solution to
various problems. The following subsections contain examples of using recur-
sion to calculate some well-known numbers.

Calculating Factorial Values

The factorial value of a positive integer n is the product of all the integers
between 1 and n. The symbol for factorial is the exclamation point (“!”) and
some sample factorial values are here:

1! = 1
2! = 2
3! = 6
4! = 20
5! = 120

The formula for the factorial value of a number is succinctly defined as
follows:

Factorial(n) = n*Factorial(n-1) for n > 1 and Factorial(1) = 1

Listing 2.17 displays the contents of Factorial.py that illustrates how
to use recursion in order to calculate the factorial value of a positive integer.

LISTING 2.17: Factorial.py

def factorial(num):

 if (num > 1):
 return num * factorial(num-1)
 else:
 return 1

result = factorial(5)
print('The factorial of 5 =', result)

Listing 2.17 contains the function factorial that implements the recur-
sive definition of the factorial value of a number. The output from Listing 2.17
is here:

The factorial of 5 = 120

Conditional Logic, Loops, and Functions  •  53

In addition to a recursive solution, there is also an iterative solution for
calculating the factorial value of a number. Listing 2.18 displays the contents
of Factorial2.py that illustrates how to use the range() function in order
to calculate the factorial value of a positive integer.

LISTING 2.18: Factorial2.py

def factorial2(num):
 prod = 1
 for x in range(1,num+1):
 prod = prod * x
 return prod	

result = factorial2(5)
print 'The factorial of 5 =', result

Listing 2.18 defines the function factorial2() with a parameter num,
followed by the variable prod which has an initial value of 1. The next part
of factorial2() is a for loop whose loop variable x ranges between 1 and
num+1, and each iteration through that loop multiples the value of prod with
the value of x, thereby computing the factorial value of num. The output from
Listing 2.18 is here:

The factorial of 5 = 120

Calculating Fibonacci Numbers

The set of Fibonacci numbers represent some interesting patterns (such as
the pattern of a sunflower) in nature, and its recursive definition is here:

Fib(0) = 0
Fib(1) = 1
Fib(n) = Fib(n-1) + Fib(n-2) for n >= 2

Listing 2.19 displays the contents of fib.py that illustrates how to calculate
Fibonacci numbers.

LISTING 2.19: fib.py

def fib(num):
 if (num == 0):
 return 1
 elif (num == 1):
 return 1
 else:
 return fib(num-1) + fib(num-2)

result = fib(10)
print('Fibonacci value of 5 =', result)

54  •  Google Gemini for Python: Coding with BARD

Listing 2.19 defines the fib() function with the parameter num. If num
equals 0 or 1 then fib() returns num; otherwise, fib() returns the result of add-
ing fib(num-1) and fib(num-2). The output from Listing 2.19 is here:

Fibonacci value of 10 = 89

Calculating the GCD of Two Numbers

The GCD (greatest common divisor) of two positive integers is the larg-
est integer that divides both integers with a remainder of 0. Some values are
shown here:

gcd(6,2) = 2
gcd(10,4) = 2
gcd(24,16) = 8

Listing 2.20 uses recursion and Euclid’s algorithm in order to find the GCD
of two positive integers.

LISTING: 2.20 gcd.py

def gcd(num1, num2):
 if(num1 % num2 == 0):
 return num2
 elif (num1 < num2):
 print("switching ", num1, " and ", num2)
 return gcd(num2, num1)
 else:
 print("reducing", num1, " and ", num2)
 return gcd(num1-num2, num2)

result = gcd(24, 10)
print("GCD of", 24, "and", 10, "=", result)

Listing 2.20 defines the function gcd() with the parameters num1 and
num2. If num1 is divisible by num2, the function returns num2. If num1 is less
than num2, then gcd is invoked by switching the order of num1 and num2. In
all other cases, gcd() returns the result of computing gcd() with the values
num1-num2 and num2. The output from Listing 2.20 is here:

reducing 24 and 10
reducing 14 and 10
switching 4 and 10
reducing 10 and 4
reducing 6 and 4
switching 2 and 4
GCD of 24 and 10 = 2

Calculating the LCM of Two Numbers

The LCM (lowest common multiple) of two positive integers is the smallest
integer that is a multiple of those two integers. Some values are shown here:

Conditional Logic, Loops, and Functions  •  55

lcm(6,2) = 2
lcm(10,4) = 20
lcm(24,16) = 48

In general, if x and y are two positive integers, you can calculate their LCM
as follows:

lcm(x,y) = x/gcd(x,y)*y/gcd(x,y)

Listing 2.21 uses the gcd() function that is defined in the previous section
in order to calculate the LCM of two positive integers.

LISTING 2.21: lcm.py

def gcd(num1, num2):
 if(num1 % num2 == 0):
 return num2
 elif (num1 < num2):
 #print("switching ", num1, " and ", num2)
 return gcd(num2, num1)
 else:
 #print("reducing", num1, " and ", num2)
 return gcd(num1-num2, num2)

def lcm(num1, num2):
 gcd1 = gcd(num1, num2)
 lcm1 = num1*num2/gcd1
 return lcm1

result = lcm(24, 10)
print("The LCM of", 24, "and", 10, "=", result)

Listing 2.21 defines the function gcd() that was discussed in the previ-
ous section, followed by the function lcm that takes the parameters num1 and
num2. The first line in lcm() computes gcd1, which is the gcd() of num1 and
num2. The second line in lcm() computes lcm1, which is num1 divided by
three values. The third line in lcm() returns the value of lcm1. The output of
Listing 2.21 is here:

The LCM of 24 and 10 = 60

SUMMARY

This chapter showed you how to use conditional logic in Python. You also
learned how to work with loops in Python, including for loops and while
loops. You learned how to compute various values, such as the GCD (greatest
common divisor) and LCM (lowest common multiple) of a pair of numbers,
and also how to determine whether or not a positive integer is prime.

CHAPTER 3
Python Data Structures

In Chapters 1 and 2, you learned how to work with numbers and strings,
as well as control structures in Python. This chapter discusses Python col-
lections, such as lists (or arrays), sets, tuples, and dictionaries. You will see

many short code blocks that will help you rapidly learn how to work with these
data structures in Python. After you have finished reading this chapter, you will
be in a better position to create more complex Python modules using one or
more of these data structures.

The first part of this chapter discusses Python lists and shows you code samples
that illustrate various methods that are available for manipulating lists. The second
part of this chapter discusses Python sets and how they differ from Python lists.

The third part of this chapter discusses Python tuples, and the final part of
this chapter discusses Python dictionaries.

WORKING WITH LISTS

Python supports a list data type, along with a rich set of list-related func-
tions. Since lists are not typed, you can create a list of different data types,
as well as multidimensional lists. The next several sections show you how to
manipulate list structures in Python.

Lists and Basic Operations

A Python list consists of comma-separated values enclosed in a pair of
square brackets. The following examples illustrate the syntax for defining a list
in Python, and also how to perform various operations on a Python list:

>>> list = [1, 2, 3, 4, 5]
>>> list
[1, 2, 3, 4, 5]
>>> list[2]
3
>>> list2 = list + [1, 2, 3, 4, 5]
>>> list2
[1, 2, 3, 4, 5, 1, 2, 3, 4, 5]
>>> list2.append(6)

58  •  Google Gemini for Python: Coding with BARD

>>> list2
[1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6]
>>> len(list)
5
>>> x = ['a', 'b', 'c']
>>> y = [1, 2, 3]
>>> z = [x, y]
>>> z[0]
['a', 'b', 'c']
>>> len(x)
3

You can assign multiple variables to a list, provided that the number and
type of the variables match the structure. Here is an example:

>>> point = [7,8]
>>> x,y = point
>>> x
7
>>> y
8

The following example shows you how to assign values to variables from a
more complex data structure:

>>> line = ['a', 10, 20, (2014,01,31)]
>>> x1,x2,x3,date1 = line
>>> x1
'a'
>>> x2
10
>>> x3
20
>>> date1
(2014, 1, 31)

If you want to access the year/month/date components of the date1 ele-
ment in the preceding code block, you can do so with the following code block:

>>> line = ['a', 10, 20, (2014,01,31)]
>>> x1,x2,x3,(year,month,day) = line
>>> x1
'a'
>>> x2
10
>>> x3
20
>>> year
2014
>>> month
1
>>> day
31

If the number and/or structure of the variables do not match the data, an
error message is displayed, as shown here:

>>> point = (1,2)
>>> x,y,z = point
Traceback (most recent call last):

Python Data Structures  •  59

 File "<stdin>", line 1, in <module>
ValueError: need more than 2 values to unpack

If the number of variables that you specify is less than the number of data
items, you will see an error message, as shown here:

>>> line = ['a', 10, 20, (2014,01,31)]
>>> x1,x2 = line
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: too many values to unpack

Reversing and Sorting a List

The Python reverse() method reverses the contents of a list, as shown here:

>>> a = [4, 1, 2, 3]
>>> a.reverse()
[3, 2, 1, 4]

The Python sort() method sorts a list:

>>> a = [4, 1, 2, 3]
>>> a.sort()
[1, 2, 3, 4]

You can sort a list and then reverse its contents, as shown here:

>>> a = [4, 1, 2, 3]
>>> a.reverse(a.sort())
[4, 3, 2, 1]

Another way to reverse a list is as follows:

>>> L = [0,10,20,40]
>>> L[::-1]
[40, 20, 10, 0]

Keep in mind is that reversed(array) is an iterable and not a list.
However, you can convert the reversed array to a list with this code
snippet:

list(reversed(array)) or L[::-1]

Listing 3.1 contains a while loop whose logic is the opposite of the listing
in the previous section: if num is divisible by multiple numbers (each of which
is strictly less than num), then num is not prime.

LISTING 3.1: Uppercase1.py

list1 = ['a', 'list', 'of', 'words']
list2 = [s.upper() for s in list1]
list3 = [s for s in list1 if len(s) <=2]
list4 = [s for s in list1 if 'w' in s]

60  •  Google Gemini for Python: Coding with BARD

print('list1:',list1)
print('list2:',list2)
print('list3:',list3)
print('list4:',list4)

The output from launching the code in Listing 3.1 is here:

list1: ['a', 'list', 'of', 'words']
list2: ['A', 'LIST', 'OF', 'WORDS']
list3: ['a', 'of']
list4: ['words']

Lists and Arithmetic Operations

The minimum value of a list of numbers is the first number of in the sorted
list of numbers. If you reverse the sorted list, the first number is the maxi-
mum value. There are several ways to reverse a list, starting with the technique
shown in the following code:

x = [3,1,2,4]
maxList = x.sort()
minList = x.sort(x.reverse())

min1 = min(x)
max1 = max(x)
print(min1)
print(max1)

The output of the preceding code block is here:

1
4

A second (and better) way to sort a list is shown here:

minList = x.sort(reverse=True)

A third way to sort a list involves the built-in functional version of the
sort() method, as shown here:

sorted(x, reverse=True)

The preceding code snippet is useful when you do not want to modify the
original order of the list or you want to compose multiple list operations on a
single line.

Lists and Filter-Related Operations

Python enables you to filter a list (also called list comprehension), as shown
here:

mylist = [1, -2, 3, -5, 6, -7, 8]
pos = [n for n in mylist if n > 0]
neg = [n for n in mylist if n < 0]

Python Data Structures  •  61

print(pos)
print(neg)

You can also specify if/else logic in a filter, as shown here:

mylist = [1, -2, 3, -5, 6, -7, 8]
negativeList = [n if n < 0 else 0 for n in mylist]
positiveList = [n if n > 0 else 0 for n in mylist]

print(positiveList)
print(negativeList)

The output of the preceding code block is here:

[1, 3, 6, 8]
[-2, -5, -7]
[1, 0, 3, 0, 6, 0, 8]
[0, -2, 0, -5, 0, -7, 0]

SORTING LISTS OF NUMBERS AND STRINGS

Listing 3.2 displays the content of the Python script Sorted1.py that
determines whether two lists are sorted.

LISTING 3.2: Sorted1.py

list1 = [1,2,3,4,5]
list2 = [2,1,3,4,5]

sort1 = sorted(list1)
sort2 = sorted(list2)

if(list1 == sort1):
 print(list1,'is sorted')
else:
 print(list1,'is not sorted')

if(list2 == sort2):
 print(list2,'is sorted')
else:
 print(list2,'is not sorted')

Listing 3.2 initializes the lists list1 and list2, and the sorted lists sort1
and sort2 based on the lists list1 and list2, respectively. If list1 equals
sort1, then list1 is already sorted; similarly, if list2 equals sort2, then
list2 is already sorted.

The output from Listing 3.2 is here:

[1, 2, 3, 4, 5] is sorted
[2, 1, 3, 4, 5] is not sorted

62  •  Google Gemini for Python: Coding with BARD

Note that if you sort a list of character strings, the output is case sensitive,
and that uppercase letters appear before lowercase letters. This is due to the
fact that the collating sequence for ASCII places uppercase letters (decimal
65 through decimal 91) before lowercase letters (decimal 97 through decimal
127). The following example provides an illustration:

>>> list1 = ['a', 'A', 'b', 'B', 'Z']
>>> print(sorted(list1))
['A', 'B', 'Z', 'a', 'b']

You can also specify the reverse option so that the list is sorted in reverse
order:

>>> list1 = ['a', 'A', 'b', 'B', 'Z']
>>> print(sorted(list1, reverse=True))
['b', 'a', 'Z', 'B', 'A']

You can even sort a list based on the length of the items in the list:

>>> list1 = ['a', 'AA', 'bbb', 'BBBBB', 'ZZZZZZZ']
>>> print (sorted(list1, key=len))
['a', 'AA', 'bbb', 'BBBBB', 'ZZZZZZZ']
>>> print(sorted(list1, key=len, reverse=True))
['ZZZZZZZ', 'BBBBB', 'bbb', 'AA', 'a']

You can specify str.lower if you want treat uppercase letters as though
they are lowercase letters during the sorting operation, as shown here:

>>> print(sorted(list1, key=str.lower))
['a', 'AA', 'bbb', 'BBBBB', 'ZZZZZZZ']

EXPRESSIONS IN LISTS

The following construct is similar to a for loop but without the colon “:” char-
acter that appears at the end of a loop construct. Consider the following example:

nums = [1, 2, 3, 4]
cubes = [n*n*n for n in nums]

print('nums: ',nums)
print('cubes:',cubes)

The output from the preceding code block is here:

nums: [1, 2, 3, 4]
cubes: [1, 8, 27, 64]

CONCATENATING A LIST OF WORDS

Python provides the join() method for concatenating text strings, as
shown here:

Python Data Structures  •  63

>>> parts = ['Is', 'SF', 'In', 'California?']
>>> ' '.join(parts)
'Is SF In California?'
>>> ','.join(parts)
'Is,SF,In,California?'
>>> ''.join(parts) 'IsSFInCalifornia?'

There are several ways to concatenate a set of strings and then print the
result. The following is the most inefficient way to do so:

print("This" + "is" + "a" + "sentence")

Either of the following is preferred:

print("%s %s %s %s" % ("This", "is", "a", "sentence"))
print(" ".join(["This","is","a","sentence"]))

THE BUBBLE SORT IN PYTHON

The previous sections contain examples that illustrate how to sort a list of
numbers using the sort() function. However, sometimes you need to imple-
ment different types of sorts in Python. Listing 3.3 displays the content of
BubbleSort.py that illustrates how to implement the bubble sort in Python.

LISTING 3.3: BubbleSort.py

list1 = [1, 5, 3, 4]

print("Initial list:",list1)

for i in range(0,len(list1)-1):
 for j in range(i+1,len(list1)):
 if(list1[i] > list1[j]):
 temp = list1[i]
 list1[i] = list1[j]
 list1[j] = temp

print("Sorted list: ",list1)

The output from Listing 3.3 is here:

Initial list: [1, 5, 3, 4]
Sorted list: [1, 3, 4, 5]

THE PYTHON RANGE() FUNCTION

In this section, you will learn about the Python range() function, which
you can use to iterate through a list, as shown here:

>>> for i in range(0,5):
... print(i)

64  •  Google Gemini for Python: Coding with BARD

...
0
1
2
3
4

You can use a for loop to iterate through a list of strings, as shown here:

>>> x
['a', 'b', 'c']
>>> for w in x:
... print(w)
...
a
b
c

You can use a for loop to iterate through a list of strings and provide
additional details, as shown here:

>>> x
['a', 'b', 'c']
>>> for w in x:
... print(len(w), w)
...
1 a	
1 b
1 c

The preceding output displays the length of each word in the list x, followed
by the word itself.

Counting Digits and Uppercase and Lowercase Letters

Listing 3.4 displays the content of the Python file CountCharTypes.py
that counts the occurrences of digits and letters in a string.

LISTING 3.4: Counter1.py

str1 = "abc4234AFde"
digitCount = 0
alphaCount = 0
upperCount = 0
lowerCount = 0

for i in range(0,len(str1)):
 char = str1[i]
 if(char.isdigit()):
 #print("this is a digit:",char)
 digitCount += 1
 elif(char.isalpha()):
 #print("this is alphabetic:",char)
 alphaCount += 1

Python Data Structures  •  65

 if(char.upper() == char):
 upperCount += 1
 else:
 lowerCount += 1

print('Original String: ',str1)
print('Number of digits: ',digitCount)
print('Total alphanumeric:',alphaCount)
print('Upper Case Count: ',upperCount)
print('Lower Case Count: ',lowerCount)

Listing 3.4 initializes counter-related variables, followed by a loop (with
loop variable i) that iterates from 0 to the length of the string str1. The string
variable char is initialized with the letter at index i of the string str1. The
next portion of the loop uses conditional logic to determine whether char is a
digit or an alphabetic character; in the latter case, the code checks whether the
character is uppercase or lowercase. In all cases, the values of the appropriate
counter-related variables are incremented.

The output of Listing 3.4 is here:

Original String: abc4234AFde
Number of digits: 4
Total alphanumeric: 7
Upper Case Count: 2	
Lower Case Count: 5

ARRAYS AND THE APPEND() FUNCTION

Python does have an array type (import array), which is very good for
numeric calculations, as well as a slight saving in memory use. You can also
define heterogeneous arrays:

a = [10, 'hello', [5, '77']]

You can append a new element to an element inside a list:

>>> a = [10, 'hello', [5, '77']]
>>> a[2].append('abc')
>>> a
[10, 'hello', [5, '77', 'abc']]

You can assign simple variables to the elements of a list, as shown here:

myList = ['a', 'b', 91.1, (2014, 01, 31)]
x1, x2, x3, x4 = myList
print('x1:',x1)
print('x2:',x2)
print('x3:',x3)
print('x4:',x4)

66  •  Google Gemini for Python: Coding with BARD

The output of the preceding code block is here:

x1: a
x2: b
x3: 91.1
x4: (2014, 1, 31)

The Python split() function is more convenient (especially when the
number of elements is unknown or variable) than the preceding sample, and
you will see examples of the split() function in the next section.

WORKING WITH LISTS AND THE SPLIT() FUNCTION

You can use the Python split() function to split the words in a text string
and populate a list with those words. An example is here:

>>> x = "this is a string"
>>> list = x.split()
>>> list
['this', 'is', 'a', 'string']

A simple way to print the list of words in a text string is shown here:

>>> x = "this is a string"
>>> for w in x.split():
... print(w)
...
this
is
a
string

You can search for a word in a string as follows:

>>> x = "this is a string"
>>> for w in x.split():
... if(w == 'this'):
... print("x contains this")
...
x contains this
...

COUNTING WORDS IN A LIST

Python provides the Counter class, which enables you to count the words
in a list. Listing 3.5 shows the content of CountWord2.py that displays the top
three words with the greatest frequency.

LISTING 3.5: CountWord2.py

from collections import Counter

Python Data Structures  •  67

mywords = ['a', 'b', 'a', 'b', 'c', 'a', 'd', 'e', 'f', 'b']

word_counts = Counter(mywords)
topThree = word_counts.most_common(3)
print(topThree)

Listing 3.5 initializes the variable mywords with a set of characters and then
initializes the variable word_counts by passing mywords as an argument to
Counter. The variable topThree is an array containing the three most com-
mon characters (and their frequency) that appear in mywords. The output
from Listing 3.5 is here:

[('a', 3), ('b', 3), ('c', 1)]

ITERATING THROUGH PAIRS OF LISTS

Python supports operations on pairs of lists, which means that you can perform
vector-like operations. The following snippet multiplies every list element by 3:

>>> list1 = [1, 2, 3]
>>> [3*x for x in list1]
[3, 6, 9]

Create a new list with pairs of elements consisting of the original element
and the original element multiplied by 3 with the following code:

>>> list1 = [1, 2, 3]
>>> [[x, 3*x] for x in list1]
[[1, 3], [2, 6], [3, 9]]

Compute the product of every pair of numbers from two lists with the
following code:

>>> list1 = [1, 2, 3]
>>> list2 = [5, 6, 7]
>>> [a*b for a in list1 for b in list2]
[5, 6, 7, 10, 12, 14, 15, 18, 21]

Calculate the sum of every pair of numbers from two lists with the follow-
ing code:

>>> list1 = [1, 2, 3]
>>> list2 = [5, 6, 7]
>>> [a+b for a in list1 for b in list2]
[6, 7, 8, 7, 8, 9, 8, 9, 10]

Calculate the pair-wise product of two lists with the following code:

>>> [list1[i]*list2[i] for i in range(len(list1))]

[5, 12, 21]

68  •  Google Gemini for Python: Coding with BARD

OTHER LIST-RELATED FUNCTIONS

Python provides additional functions that you can use with lists, such as
append(), insert(), delete(), pop(), and extend(). Python also sup-
ports the functions index(), count(), sort(), and reverse(). Examples
of these functions are illustrated in the following code block.

Define a Python list (notice that duplicates are allowed):

>>> a = [1, 2, 3, 2, 4, 2, 5]

Display the number of occurrences of 1 and 2:

>>> print(a.count(1), a.count(2))
1 3

Insert -8 in position 3:

>>> a.insert(3,-8)
>>> a
[1, 2, 3, -8, 2, 4, 2, 5]

Remove occurrences of 3:

>>> a.remove(3)
>>> a
[1, 2, -8, 2, 4, 2, 5]

Remove occurrences of 1:

>>> a.remove(1)
>>> a
[2, -8, 2, 4, 2, 5]

Append 19 to the list:

>>> a.append(19)
>>> a
[2, -8, 2, 4, 2, 5, 19]

Print the index of 19 in the list:

>>> a.index(19)
6

Reverse the list:

>>> a.reverse()
>>> a
[19, 5, 2, 4, 2, -8, 2]

Sort the list:

>>> a.sort()

Python Data Structures  •  69

>>> a
[-8, 2, 2, 2, 4, 5, 19]

Extend list a with list b:

>>> b = [100,200,300]
>>> a.extend(b)
>>> a
[-8, 2, 2, 2, 4, 5, 19, 100, 200, 300]

Remove the first occurrence of 2:

>>> a.pop(2)
2
>>> a
[-8, 2, 2, 4, 5, 19, 100, 200, 300]

Remove the last item of the list:

>>> a.pop()
300
>>> a
[-8, 2, 2, 4, 5, 19, 100, 200]

Now that you understand how to use list-related operations, the next sec-
tion shows you how to use a Python list as a stack.

USING A LIST AS A STACK AND A QUEUE

A stack is a LIFO (“Last In, First Out”) data structure with push() and
pop() functions for adding and removing elements, respectively. The most
recently added element in a stack is in the top position, and therefore the first
element that can be removed from the stack.

The following code block illustrates how to create a stack and also remove
and append items from a stack in Python. Create a Python list (which we will
use as a stack):

>>> s = [1,2,3,4]

Append 5 to the stack:

>>> s.append(5)
>>> s
[1, 2, 3, 4, 5]

Remove the last element from the stack:

>>> s.pop()
5
>>> s
[1, 2, 3, 4]

70  •  Google Gemini for Python: Coding with BARD

A queue is a FIFO (“First In, First Out”) data structure with insert()
and pop() functions for inserting and removing elements, respectively. The
most recently added element in a queue is in the top position, and therefore
the last element that can be removed from the queue.

The following code block illustrates how to create a queue and also insert
and append items to a queue in Python.

Create a Python list (which we will use as a queue):

>>> q = [1,2,3,4]

Insert 5 at the beginning of the queue:

>>> q.insert(0,5)
>>> q
[5, 1, 2, 3, 4]

Remove the last element from the queue:

>>> q.pop(0)
1
>>> q
[5, 2, 3, 4]

The preceding code uses q.insert(0, 5) to insert in the beginning and
q.pop() to remove from the end. However, keep in mind that the insert()
operation is slow in Python: inserting at 0 requires copying all the elements in
the underlying array down one space. Therefore, use collections.deque
with coll.appendleft() and coll.pop(), where coll is an instance of
the Collection class.

The next section shows you how to work with vectors in Python.

WORKING WITH VECTORS

A vector is a one-dimensional array of values, and you can perform vector-
based operations, such as addition, subtraction, and inner product. Listing 3.6
displays the content of MyVectors.py that illustrates how to perform vector-
based operations.

LISTING 3.6: MyVectors.py

v1 = [1,2,3]
v2 = [1,2,3]
v3 = [5,5,5]

s1 = [0,0,0]
d1 = [0,0,0]
p1 = 0

print("Initial Vectors"
print('v1:',v1)

Python Data Structures  •  71

print('v2:',v2)
print('v3:',v3)

for i in range(len(v1)):
 d1[i] = v3[i] - v2[i]
 s1[i] = v3[i] + v2[i]
 p1 = v3[i] * v2[i] + p1

print("After operations")
print('d1:',d1)
print('s1:',s1)
print('p1:',p1)

Listing 3.6 starts with the definition of three lists in Python, each of which
represents a vector. The lists d1 and s1 represent the difference of v2 and
the sum v2, respectively. The number p1 represents the “inner product” (also
called the “dot product”) of v3 and v2. The output from Listing 3.6 is here:

Initial Vectors
v1: [1, 2, 3]
v2: [1, 2, 3]
v3: [5, 5, 5]
After operations
d1: [4, 3, 2]
s1: [6, 7, 8]
p1: 30

WORKING WITH MATRICES

A two-dimensional matrix is a two-dimensional array of values, and you can
easily create such a matrix. For example, the following code block illustrates
how to access different elements in a 2D matrix:

mm = [["a","b","c"],["d","e","f"],["g","h","i"]];
print 'mm: ',mm
print 'mm[0]: ',mm[0]
print 'mm[0][1]:',mm[0][1]

The output from the preceding code block is here:

mm: [['a', 'b', 'c'], ['d', 'e', 'f'], ['g', 'h', 'i']]
mm[0]: ['a', 'b', 'c']
mm[0][1]: b

Listing 3.7 displays the content of My2DMatrix.py that illustrates how to
create and populate 2 two-dimensional matrices.

LISTING 3.7: My2DMatrix.py

rows = 3
cols = 3

72  •  Google Gemini for Python: Coding with BARD

my2DMatrix = [[0 for i in range(rows)] for j in range(rows)]
print('Before:',my2DMatrix)

for row in range(rows):
 for col in range(cols):
 my2DMatrix[row][col] = row*row+col*col
print('After: ',my2DMatrix)

Listing 3.7 initializes the variables rows and cols, and then uses them to
create the rows x cols matrix my2DMatrix, whose values are initially 0. The
next part of Listing 3.7 contains a nested loop that initializes the element of
my2DMatrix, whose position is (row,col) with the value row*row+col*col.
The last line of code in Listing 3.7 prints the contents of my2DArray. The out-
put from Listing 3.7 is here:

Before: [[0, 0, 0], [0, 0, 0], [0, 0, 0]]
After: [[0, 1, 4], [1, 2, 5], [4, 5, 8]]

THE NUMPY LIBRARY FOR MATRICES

The NumPy library (which you can install via pip) has a matrix object for
manipulating matrices in Python. The following examples illustrate some of
the features of NumPy.

Initialize a matrix m, and then display its contents:

>>> import numpy as np
>>> m = np.matrix([[1,-2,3],[0,4,5],[7,8,-9]])
>>> m
matrix([[1, -2, 3],
 [0, 4, 5],
 [7, 8, -9]])

The next snippet returns the transpose of matrix m:

>>> m.T
matrix([[1, 0, 7],
 [-2, 4, 8],
 [3, 5, -9]])

The next snippet returns the inverse of matrix m (if it exists):

>>> m.I
matrix([[0.33043478, -0.02608696, 0.09565217],
 [-0.15217391, 0.13043478, 0.02173913],
 [0.12173913, 0.09565217, -0.0173913]])

The next snippet defines a vector y and then computes the product m*v:

>>> v = np.matrix([[2],[3],[4]])
>>> v
matrix([[2],[3],[4]])

Python Data Structures  •  73

>>> m * v
matrix([[8],[32],[2]])

The next snippet imports the numpy.linalg subpackage and then com-
putes the determinant of the matrix m:

>>> import numpy.linalg
>>> numpy.linalg.det(m)
-229.99999999999983

The next snippet finds the eigenvalues of the matrix m:

>>> numpy.linalg.eigvals(m)
array([-13.11474312, 2.75956154, 6.35518158])

The next snippet finds solutions to the equation m*x = v:

>>> x = numpy.linalg.solve(m, v)
>>> x
matrix([[0.96521739],
 [0.17391304],
 [0.46086957]])

In addition to the preceding samples, the NumPy package provides addi-
tional functionality, which you can find by performing an Internet search for
articles and tutorials.

QUEUES

A queue is a FIFO (“First In, First Out”) data structure. Thus, the oldest
item in a queue is removed when a new item is added to a queue that is already
full.

Earlier in the chapter, you learned how to use a Python list to emulate a
queue. However, there is also a queue object in Python. The following code
snippets illustrate how to use a queue in Python.

>>> from collections import deque
>>> q = deque('',maxlen=10)
>>> for i in range(10,20):
... q.append(i)
...
>>> print(q)
deque([10, 11, 12, 13, 14, 15, 16, 17, 18, 19], maxlen=10)

The next section shows you how to use tuples in Python.

TUPLES (IMMUTABLE LISTS)

Python supports a data type called a tuple that consists of comma-sepa-
rated values without brackets (square brackets are for lists, round brackets are

74  •  Google Gemini for Python: Coding with BARD

for arrays, and curly braces are for dictionaries). Various examples of Python
tuples can be found online:

https://docs.python.org/3.6/tutorial/datastructures.html#tuples-and-
sequences

The following code block illustrates how to create a tuple and create new
tuples from an existing type in Python.

Define a Python tuple t as follows:

>>> t = 1,'a', 2,'hello',3
>>> t
(1, 'a', 2, 'hello', 3)

Display the first element of t:

>>> t[0]
1

Create a tuple v containing 10, 11, and t:

>>> v = 10,11,t
>>> v
(10, 11, (1, 'a', 2, 'hello', 3))

Try modifying an element of t (which is immutable):

>>> t[0] = 1000
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment

Python “deduplication” is useful because you can remove duplicates from a
set and obtain a list, as shown here:

>>> lst = list(set(lst))

	� The “in” operator on a list to search is O(n) whereas the “in” operator on
set is O(1).

The next section discusses Python sets.

SETS

A Python set is an unordered collection that does not contain duplicate
elements. Use curly braces or the set() function to create sets. Set objects
support set-theoretic operations such as union, intersection, and difference.

	� The set() function is required to create an empty set because {} creates
an empty dictionary.

NOTE

NOTE

https://docs.python.org/3.6/tutorial/datastructures.html#tuples-andsequences
https://docs.python.org/3.6/tutorial/datastructures.html#tuples-andsequences

Python Data Structures  •  75

The following code block illustrates how to work with a Python set.
Create a list of elements:

>>> l = ['a', 'b', 'a', 'c']

Create a set from the preceding list:

>>> s = set(l)
>>> s
set(['a', 'c', 'b'])

Test if an element is in the set:

>>> 'a' in s
True
>>> 'd' in s
False
>>>

Create a set from a string:

>>> n = set('abacad')
>>> n
set(['a', 'c', 'b', 'd'])
>>>

Subtract n from s:

>>> s - n
set([])

Subtract s from n:

>>> n - s
set(['d'])
>>>

The union of s and n:

>>> s | n
set(['a', 'c', 'b', 'd'])

The intersection of s and n:

>>> s & n
set(['a', 'c', 'b'])

The exclusive-or of s and n:

>>> s ^ n
set(['d'])

The next section shows you how to work with Python dictionaries.

76  •  Google Gemini for Python: Coding with BARD

DICTIONARIES

Python has a key/value structure called dict, which is a hash table.
A Python dictionary (and hash tables in general) can retrieve the value of a key
in constant time, regardless of the number of entries in the dictionary (and the
same is true for sets). You can think of a set as essentially just the keys (not the
values) of a dict implementation.

The contents of a dict can be written as a series of key:value pairs, as
shown here:

dict1 = {key1:value1, key2:value2, ... }

The “empty dict” is just an empty pair of curly braces {}.

Creating a Dictionary

A Python dictionary (or hash table) contains colon-separated key:value
bindings inside a pair of curly braces, as shown here:

dict1 = {}
dict1 = {'x' : 1, 'y' : 2}

The preceding code snippet defines dict1 as an empty dictionary, and
then adds two key:value bindings.

Displaying the Contents of a Dictionary

You can display the contents of dict1 with the following code:

>>> dict1 = {'x':1,'y':2}
>>> dict1
{'y': 2, 'x': 1}
>>> dict1['x']
1
>>> dict1['y']
2
>>> dict1['z']
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 'z'

	� Key/value bindings for a dict and a set are not necessarily stored in the
same order that you defined them.

Python dictionaries also provide the get method to retrieve key values:

>>> dict1.get('x')
1
>>> dict1.get('y')
2
>>> dict1.get('z')

NOTE

Python Data Structures  •  77

As you can see, the Python get() method returns None (which is dis-
played as an empty string) instead of an error when referencing a key that is
not defined in a dictionary. You can also use dict comprehensions to create
dictionaries from expressions, as shown here:

>>> {x: x**3 for x in (1, 2, 3)}
{1: 1, 2: 8, 3: 37}

Checking for Keys in a Dictionary

You can easily check for the presence of a key in a Python dictionary as
follows:

>>> 'x' in dict1
True
>>> 'z' in dict1
False

Use square brackets for finding or setting a value in a dictionary. For exam-
ple, dict['abc'] finds the value associated with the key 'abc'. You can use
strings, numbers, and tuples work as key values, and you can use any type as
the value.

If you access a value that is not in the dict, Python throws a KeyError.
Consequently, use the in operator to check if the key is in the dict.
Alternatively, use dict.get(key), which returns the value or None if the
key is not present. You can even use the expression get(key, not-found-
string) to specify the value to return if a key is not found.

Deleting Keys from a Dictionary

Launch the Python interpreter and enter the following commands:

>>> MyDict = {'x' : 5, 'y' : 7}
>>> MyDict['z'] = 13
>>> MyDict
{'y': 7, 'x': 5, 'z': 13}
>>> del MyDict['x']
>>> MyDict
{'y': 7, 'z': 13}
>>> MyDict.keys()
['y', 'z']
>>> MyDict.values()
[13, 7]
>>> 'z' in MyDict
True

Iterating Through a Dictionary

The following code snippet shows you how to iterate through a dictionary:

MyDict = {'x' : 5, 'y' : 7, 'z' : 13}

78  •  Google Gemini for Python: Coding with BARD

for key, value in MyDict.items():
 print(key, value)

The output from the preceding code block is here:

y 7
x 5
z 13

Interpolating Data from a Dictionary

The % operator substitutes values from a Python dictionary into a string by
name. Listing 3.8 contains an example of doing so.

LISTING 3.8: InterpolateDict1.py

hash = {}
hash['beverage'] = 'coffee'
hash['count'] = 3

%d for int, %s for string
s = 'Today I drank %(count)d cups of %(beverage)s' % hash
print('s:', s)

The output from the preceding code block is here:

Today I drank 3 cups of coffee

DICTIONARY FUNCTIONS AND METHODS

Python provides various functions and methods for a dictionary, such as
cmp(), len(), and str(), which compare two dictionaries, return the
length of a dictionary, and display a string representation of a dictionary,
respectively.

You can also manipulate the contents of a Python dictionary using the func-
tions clear() to remove all elements, copy() to return a shallow copy, get()
to retrieve the value of a key, items() to display the (key,value) pairs of a
dictionary, keys() to display the keys of a dictionary, and values() to return
the list of values of a dictionary.

DICTIONARY FORMATTING

The % operator substitutes values from a dict into a string by name:

#create a dictionary
>>> h = {}
#add a key/value pair
>>> h['item'] = 'beer'
>>> h['count'] = 4
#interpolate using %d for int, %s for string
>>> s = 'I want %(count)d bottles of %(item)s' % h

Python Data Structures  •  79

>>> s
'I want 4 bottles of beer'

The next section shows you how to create an ordered Python dictionary.

ORDERED DICTIONARIES

Regular Python dictionaries iterate over key/value pairs in arbitrary order.
Python 2.7 introduced a new OrderedDict class in the collections mod-
ule. The OrderedDict API provides the same interface as regular dictionaries
but iterates over keys and values in a guaranteed order, depending on when a
key was first inserted:

>>> from collections import OrderedDict
>>> d = OrderedDict([('first', 1),
... ('second', 2),
... ('third', 3)])
>>> d.items()
[('first', 1), ('second', 2), ('third', 3)]

If a new entry overwrites an existing entry, the original insertion position is
left unchanged:

>>> d['second'] = 4
>>> d.items()
[('first', 1), ('second', 4), ('third', 3)]

Deleting an entry and reinserting it will move it to the end:

>>> del d['second']
>>> d['second'] = 5
>>> d.items()
[('first', 1), ('third', 3), ('second', 5)]

Sorting Dictionaries

Python enables you to support the entries in a dictionary. For example,
you can modify the code in the preceding section to display the alphabetically
sorted words and their associated word count.

Python Multi Dictionaries

You can define entries in a Python dictionary so that they reference
lists or other types of Python structures. Listing 3.9 displays the content of
MultiDictionary1.py that illustrates how to define more complex dictionaries.

LISTING 3.9: MultiDictionary1.py

from collections import defaultdict

d = {'a' : [1, 2, 3], 'b' : [4, 5]}
print('first:',d)

80  •  Google Gemini for Python: Coding with BARD

d = defaultdict(list)
d['a'].append(1)
d['a'].append(2)
d['b'].append(4)
print('second:',d)

d = defaultdict(set)
d['a'].add(1)
d['a'].add(2)
d['b'].add(4)
print('third:',d)

Listing 3.9 starts by defining the dictionary d and printing its contents. The
next portion of Listing 3.9 specifies a list-oriented dictionary, and then modifies
the values for the keys a and b. The final portion of Listing 3.9 specifies a set-
oriented dictionary, and then modifies the values for the keys a and b, as well.

The output from Listing 3.9 is here:

first: {'a': [1, 2, 3], 'b': [4, 5]}
second: defaultdict(<type 'list'>, {'a': [1, 2], 'b': [4]})
third: defaultdict(<type 'set'>, {'a': set([1, 2]), 'b':
set([4])})

The next section discusses other Python sequence types that have not been
discussed in previous sections of this chapter.

OTHER SEQUENCE TYPES IN PYTHON

Python supports 7 sequence types: str, unicode, list, tuple,
bytearray, buffer, and xrange.

You can iterate through a sequence and retrieve the position index and cor-
responding value at the same time using the enumerate() function.

>>> for i, v in enumerate(['x', 'y', 'z']):
... print(i, v)
...
0 x
1 y
2 z

Bytearray objects are created with the built-in function bytearray().
Although buffer objects are not directly supported by Python syntax, you can
create them via the built-in buffer() function.

Objects of type xrange are created with the xrange() function. An
xrange object is similar to a buffer in the sense that there is no specific syntax
to create them. Moreover, xrange objects do not support operations such as
slicing, concatenation, or repetition.

At this point, you have seen all the Python types that you will encounter in
the remaining chapters of this book, so it makes sense to discuss mutable and
immutable types, which is the topic of the next section.

Python Data Structures  •  81

MUTABLE AND IMMUTABLE TYPES IN PYTHON

Python represents its data as objects. Some of these objects (such as lists
and dictionaries) are mutable, which means you can change their content with-
out changing their identity. Objects such as integers, floats, strings, and tuples
cannot be changed. The key point to understand is the difference between
changing the value versus assigning a new value to an object; you cannot
change a string, but you can assign it a different value. This detail can be veri-
fied by checking the id value of an object, as shown in Listing 3.10.

LISTING 3.10: Mutability.py

s = "abc"
print('id #1:', id(s))
print('first char:', s[0])

try:
 s[0] = "o"
except:
 print('Cannot perform reassignment')

s = "xyz"
print('id #2:',id(s))
s += "uvw"
print('id #3:',id(s))

The output of Listing 3.x is here:

id #1: 4297972672
first char: a
Cannot perform reassignment
id #2: 4299809336
id #3: 4299777872

Thus, a Python type is immutable if its value cannot be changed (even
though it is possible to assign a new value to such a type), otherwise a Python
type is mutable. The Python immutable objects are of type bytes, complex,
float, int, str, or tuple. However, dictionaries, lists, and sets are mutable.
The key in a hash table must be an immutable type.

Since strings are immutable in Python, you cannot insert a string in the
“middle” of a given text string unless you construct a second string using con-
catenation. For example, suppose you have the string:

"this is a string"

and you want to create the following string:

"this is a longer string"

The following Python code block illustrates how to perform this task:

82  •  Google Gemini for Python: Coding with BARD

text1 = "this is a string"
text2 = text1[0:10] + "longer" + text1[9:]
print('text1:',text1)
print('text2:',text2)

The output of the preceding code block is here:

text1: this is a string
text2: this is a longer string

THE TYPE() FUNCTION

The type() primitive returns the type of any object, including Python
primitives, functions, and user-defined objects. The following code sample
displays the type of an integer and a string:

var1 = 123
var2 = 456.78
print("type var1: ",type(var1))
print("type var2: ",type(var2))

The output of the preceding code block is here:

type var1: <type 'int'>
type var2: <type 'float'>

WORKING WITH BARD

This section provides a preview of several Bard-generated Python code
samples. A more comprehensive description of generative AI, Gemini, and
Bard is available in Chapter 5. In addition, Chapter 6 is devoted to Bard-
generated Python code samples.

The three Python code samples that you will see in subsequent sections are
listed below:

•	Counting Digits, Uppercase Letters, and Lowercase Letters
•	Queues
•	Stacks

Counting Digits and Uppercase and Lowercase Letters

The code sample that Bard generated in this section is based on the follow-
ing prompt for Bard:

Please generate Python code that counts the number of
digits, uppercase letters, and lowercase letters in a
randomly generated string, and provide an explanation of
the Python code.

Listing 3.11 displays the content of bard_count_types.py that counts
the number of occurrences of digits, uppercase letters, and lowercase letters
in a randomly generated string.

Python Data Structures  •  83

The contents of Listing 3.11 (and subsequent samples in this chapter and
Chapters 4 and 6) are presented “as-is:” the content and the layout are what
you will see in Bard.

LISTING 3.11: bard_count_types.py

import random
import string

def generate_random_string(length):
 """
 Generates a random string of specified length.

 Args:
 length: The length of the string to generate.

 Returns:
 A random string of the specified length.
 """
 letters = string.ascii_letters + string.digits
 return ''.join(random.choice(letters) for _ in
range(length))

def count_digits_uppercase_lowercase(text):
 """
 Counts the number of digits, uppercase letters, and
lowercase letters in a string.

 Args:
 text: The string to analyze.

 Returns:
 A dictionary containing the counts of digits,
uppercase letters, and lowercase letters.
 """
 digit_count = 0
 uppercase_count = 0
 lowercase_count = 0
 for char in text:
 if char.isdigit():
 digit_count += 1
 elif char.isupper():
 uppercase_count += 1
 elif char.islower():
 lowercase_count += 1
 return {
 "digits": digit_count,
 "uppercase": uppercase_count,
 "lowercase": lowercase_count
 }

Generate a random string
random_string = generate_random_string(10)

84  •  Google Gemini for Python: Coding with BARD

Count the digits, uppercase letters, and lowercase
letters
counts = count_digits_uppercase_lowercase(random_string)

Print the results
print("Random string:", random_string)
print("Digits:", counts["digits"])
print("Uppercase letters:", counts["uppercase"])
print("Lowercase letters:", counts["lowercase"])

"""
Explanation:
 Import Libraries:
 random library is used to generate random
characters.
 string library provides access to predefined sets of
characters like alphanumeric characters.

 Functions:
 generate_random_string:
 This function takes a length as input and
generates a random string of that length.
 It uses string.ascii_letters and string.digits
to get all uppercase, lowercase letters, and digits.
 It then uses a loop and random.choice to
randomly select characters and join them into a string.
 count_digits_uppercase_lowercase:
 This function takes a text as input and returns
a dictionary with counts for digits, uppercase, and
lowercase letters.
 It uses three counters initialized to 0: digit_
count, uppercase_count, and lowercase_count.
 It iterates through each character in the text
string.
 For each character, it uses char.isdigit(),
char.isupper(), and char.islower() methods to check its
type and increment the corresponding counter.
 Finally, it returns a dictionary with the
counts for each character type.

 Code Execution:
 generate_random_string is called with a length of
10 to create a random string.
 count_digits_uppercase_lowercase is called with the
generated string to count characters.
 Finally, the results are printed, including the
original string and counts for each character type.
Bard may display inaccurate info, including about people,
so double-check its responses.

Launch the code in Listing 3.11, and you will see output that is similar to

the following output (which depends on the specific string):

Random string: fM7albOKmS
Digits: 1

Python Data Structures  •  85

Uppercase letters: 4
Lowercase letters: 5

Bard Python Code for a Queue

The code sample that Bard generated in this section is based on the follow-
ing prompt:

Please generate Python code for a queue that involves a
random set of numbers, along with an explanation of the
Python code.

Listing 3.12 displays the content of bard_queue.py that contains Python
code for a queue data structure.

LISTING 3.12: bard_queue.py

import random

class RandomNumberQueue:
 def __init__(self, max_size):
 self.queue = []
 self.max_size = max_size

 def enqueue(self, number):
 if len(self.queue) >= self.max_size:
 raise OverflowError("Queue is full!")
 self.queue.append(number)

 def dequeue(self):
 if len(self.queue) == 0:
 raise ValueError("Queue is empty!")
 return self.queue.pop(0)

 def is_empty(self):
 return len(self.queue) == 0

 def size(self):
 return len(self.queue)

 def generate_random_numbers(self, n):
 for _ in range(n):
 self.enqueue(random.randint(1, 100))

 def __str__(self):
 return str(self.queue)

Example usage
queue = RandomNumberQueue(5)

86  •  Google Gemini for Python: Coding with BARD

Generate 3 random numbers and enqueue them
queue.generate_random_numbers(3)

print("Queue after enqueue:", queue)

Dequeue one element and check if the queue is empty
dequeued_element = queue.dequeue()
print("Queue is empty:", queue.is_empty())

print("Queue after dequeue:", queue)
print("Queue size:", queue.size())

"""
Explanation:
 RandomNumberQueue class:
 This class defines a queue data structure that can
hold a random set of numbers.
 The __init__ method initializes the queue with a
specified maximum size.
 The enqueue method adds an element to the back of
the queue, checking for overflow.
 The dequeue method removes and returns the element
from the front of the queue, checking for underflow.
 The is_empty method returns True if the queue is
empty and False otherwise.
 The size method returns the number of elements in
the queue.
 The generate_random_numbers method enqueues a
specified number of random integers to the queue.
 The __str__ method returns a string representation
of the queue.

 Example usage:
 This code creates an instance of the
RandomNumberQueue class with a maximum size of 5.
 It then generates 3 random numbers and enqueues
them to the queue.
 The script dequeues one element and checks if the queue
is empty, demonstrating the dequeue and is_empty methods.
 Finally, it prints the remaining contents of the
queue and checks its size.

Bard may display inaccurate info, including about people,
so double-check its responses.
"""

Launch the code in Listing 3.12, and you will see output that is similar to
the following output (which depends on the randomly generated numbers):

Queue after enqueue: [1, 39, 28]
Dequeued element: 1
Queue is empty: False
Queue after dequeue: [39, 28]
Queue size: 2

Python Data Structures  •  87

Bard Python Code for a Stack

The code sample that Bard generated in this section is based on the follow-
ing prompt for Bard:

Please generate Python code for a stack that involves a
random set of numbers, along with an explanation of the
Python code.

Listing 3.13 displays the content of bard_stack.py that contains Python
code for a queue data structure.

LISTING 3.13: bard_stack.py

import random

class RandomNumberStack:
 def __init__(self, size):
 self.stack = []
 self.size = size

 def push(self, number):
 if len(self.stack) >= self.size:
 raise OverflowError("Stack is full!")
 self.stack.append(number)

 def pop(self):
 if len(self.stack) == 0:
 raise ValueError("Stack is empty!")
 return self.stack.pop()

 def peek(self):
 if len(self.stack) == 0:
 raise ValueError("Stack is empty!")
 return self.stack[-1]

 def is_empty(self):
 return len(self.stack) == 0

 #def size(self):
 def stack_size(self):
 return len(self.stack)

 def generate_random_numbers(self, n):
 for _ in range(n):
 self.push(random.randint(1, 100))

 def __str__(self):
 return str(self.stack)

Example usage
stack = RandomNumberStack(5)

88  •  Google Gemini for Python: Coding with BARD

Generate 3 random numbers and push them to the stack
stack.generate_random_numbers(3)
print("Stack after pushing:", stack)

Pop and peek at the top element
popped_element = stack.pop()
peeked_element = stack.peek()

print("Popped element:", popped_element)
print("Peeked element:", peeked_element)

print("Stack after popping:", stack)
print("Is stack empty:", stack.is_empty())
#print("Stack size:", stack.size())
print("Stack size:", stack.stack_size())

"""
Explanation:
 RandomNumberStack class:
 This class defines a stack data structure that can
hold a random set of numbers.
 The __init__ method initializes the stack with a
specified size.
 The push method adds an element to the top of the
stack, checking for overflow.
 The pop method removes and returns the element from
the top of the stack, checking for underflow.
 The peek method returns the element at the top of
the stack without removing it.
 The is_empty method returns True if the stack is
empty and False otherwise.
 The size method returns the number of elements in
the stack.
 The generate_random_numbers method pushes a
specified number of random integers to the stack.
 The __str__ method returns a string representation
of the stack.

 Example usage:
 This code creates an instance of the
RandomNumberStack class with a size of 5.
 It then generates 3 random numbers and pushes them
to the stack.
 The script pops one element and peeks at the top
element, demonstrating the pop and peek methods.
 Finally, it prints the remaining contents of the
stack, checks if it's empty, and checks its size.
"""

Launch the code in Listing 3.13, and you will see output that is similar to
the following output (which depends on the randomly generated numbers):

Stack after pushing: [34, 30, 70]
Popped element: 70

Python Data Structures  •  89

Peeked element: 30
Stack after popping: [34, 30]
Is stack empty: False
Stack size: 2

 SUMMARY

This chapter showed you how to work with various Python data struc-
tures. In particular, you learned about tuples, sets, and dictionaries. Next, you
learned how to work with lists and how to use list-related operations to extract
sublists. In addition, you learned how to work with Bard to write Python code.

CHAPTER 4
Introduction to NumPy and Pandas

The first half of this chapter starts with an introduction to the Python
NumPy package, followed by a quick introduction to Pandas and some
of its useful features. The Pandas package for Python provides a rich

and powerful set of APIs for managing datasets. These APIs are very useful for
machine learning and deep learning tasks that involve dynamically “slicing and
dicing” subsets of datasets.

The first section contains examples of working arrays in NumPy and con-
trasts some of the APIs for lists with the same APIs for arrays. In addition, you
will see how easy it is to compute the exponent-related values (such as squares
and cubes) of elements in an array.

The second section introduces subranges, which are very useful (and fre-
quently used) for extracting portions of datasets in machine learning tasks. You
will see code samples that handle negative (-1) subranges for vectors as well
as for arrays, because they are interpreted one way for vectors and a different
way for arrays.

The third part of this chapter delves into other NumPy methods, includ-
ing the reshape() method, which is extremely useful (and very common)
when working with image files: some TensorFlow APIs require converting a
2D array of (R,G,B) values into a corresponding one-dimensional vector.

The fourth part of this chapter briefly describes Pandas and some of its use-
ful features. This section contains code samples that illustrate some nice fea-
tures of data frames and a brief discussion of series, which are two of the main
features of Pandas. The second part of this chapter discusses various types of
data frames that you can create, such as numeric and Boolean data frames. In
addition, you will see examples of creating data frames with NumPy functions
and random numbers.

The fifth section of this chapter shows you how to manipulate the contents of
data frames with various operations. In particular, you will see code samples that
illustrate how to create Pandas data frames from CSV files, Excel spreadsheets,
and data that is retrieved from a URL. Finally, this chapter gives you an overview
of important data cleaning tasks that you can perform with Pandas APIs.

92  •  Google Gemini for Python: Coding with BARD

WHAT IS NUMPY?

NumPy is a Python module that encompasses many useful methods and
can improve your code’s performance. NumPy provides a core library for sci-
entific computing in Python, with performant multi-dimensional arrays and
good vectorized math functions, along with support for linear algebra and ran-
dom numbers.

NumPy is modeled after MATLAB, with support for lists, arrays, and so
forth. NumPy is easier to use than MATLAB, and it is common in TensorFlow
code as well as Python code.

Useful NumPy Features

The NumPy package contains the ndarray object that encapsulates multi-
dimensional arrays of homogeneous data types. Many ndarray operations are
performed in compiled code to improve performance.

Keep in mind the following important differences between NumPy arrays
and the standard Python sequences:

•	NumPy arrays have a fixed size, whereas Python lists can expand dynami-
cally. Whenever you modify the size of ndarray, a new array is created,
and the original array is deleted.

•	NumPy arrays are homogeneous, which means that the elements in a
NumPy array must have the same data type. Except for NumPy arrays of
objects, the elements in NumPy arrays of any other data type must be the
same size in memory.

•	NumPy arrays support more efficient execution (and require less code) of
various types of operations on large numbers of data.

•	Many scientific Python-based packages rely on NumPy arrays, and knowl-
edge of NumPy arrays is becoming increasingly important.

Now that you have a general idea about NumPy, let’s delve into some exam-
ples that illustrate how to work with NumPy arrays, which is the topic of the
next section.

WHAT ARE NUMPY ARRAYS?

An array is a set of consecutive memory locations used to store data. Each
item in the array is called an element. The number of elements in an array is
called the dimension of the array. A typical array declaration is shown here:

arr1 = np.array([1,2,3,4,5])

The preceding code snippet declares arr1 as an array of five elements,
which you can access via arr1[0] through arr1[4]. Notice that the first ele-
ment has an index value of 0, the second element has an index value of 1, and
so forth. Thus, if you declare an array of 100 elements, then the 100th element
has an index value of 99.

Introduction to NumPy and Pandas  •  93

	 The first position in a NumPy array has an index of 0.

NumPy treats arrays as vectors: Math operations are performed ele-
ment-by-element. Remember the following difference: “doubling” an array
multiplies each element by 2, whereas “doubling” a list appends a list to
itself.

Listing 4.1 displays the content of nparray1.py that illustrates some
operations on a NumPy array.

LISTING 4.1: nparray1.py

import numpy as np

list1 = [1,2,3,4,5]
print(list1)

arr1 = np.array([1,2,3,4,5])
print(arr1)

list2 = [(1,2,3),(4,5,6)]
print(list2)

arr2 = np.array([(1,2,3),(4,5,6)])
print(arr2)

Listing 4.1 defines the variables list1 and list2 (which are Python
lists), as well as the variables arr1 and arr2 (which are arrays) and prints
their values. The output from launching Listing 4.1 is here:

[1, 2, 3, 4, 5]
[1 2 3 4 5]
[(1, 2, 3), (4, 5, 6)]
[[1 2 3]
 [4 5 6]]

As you can see, Python lists and arrays are easy to define. Now we are ready
to look at some loop operations for lists and arrays.

WORKING WITH LOOPS

Listing 4.2 displays the content of loop1.py that illustrates how to iterate
through the elements of a NumPy array and a Python list.

LISTING 4.2: loop1.py

import numpy as np

list = [1,2,3]
arr1 = np.array([1,2,3])

NOTE

94  •  Google Gemini for Python: Coding with BARD

for e in list:
 print(e)

for e in arr1:
 print(e)

list1 = [1,2,3,4,5]

Listing 4.2 initializes the variable list, which is a Python list, and also the
variable arr1, which is a NumPy array. The next portion of Listing 4.2 contains
two loops, each of which iterates through the elements in list and arr1. As
you can see, the syntax is identical in both loops. The output from launching
Listing 4.2 is here:

1
2
3
1
2
3

APPENDING ELEMENTS TO ARRAYS (1)

Listing 4.3 displays the content of append1.py that illustrates how to
append elements to a NumPy array and a Python list.

LISTING 4.3: append1.py

import numpy as np

arr1 = np.array([1,2,3])

these do not work:
#arr1.append(4)
#arr1 = arr1 + [5]

arr1 = np.append(arr1,4)
arr1 = np.append(arr1,[5])

for e in arr1:
 print(e)

arr2 = arr1 + arr1

for e in arr2:
 print(e)

Listing 4.3 initializes the variable list, which is a Python list, and also the
variable arr1, which is a NumPy array. The output from launching Listing 4.3
is here:

Introduction to NumPy and Pandas  •  95

1
2
3
4
5
2
4
6
8
10

APPENDING ELEMENTS TO ARRAYS (2)

Listing 4.4 displays the content of append2.py that illustrates how to
append elements to a NumPy array and a Python list.

LISTING 4.4: append2.py

import numpy as np

arr1 = np.array([1,2,3])
arr1 = np.append(arr1,4)

for e in arr1:
 print(e)

arr1 = np.array([1,2,3])
arr1 = np.append(arr1,4)

arr2 = arr1 + arr1

for e in arr2:
 print(e)

Listing 4.4 initializes the variable arr1, which is a NumPy array. Notice that
NumPy arrays do not have an “append” method: this method is available through
NumPy itself. Another important difference between Python lists and NumPy
arrays is the “+” operator concatenates Python lists, whereas this operator doubles
the elements in a NumPy array. The output from launching Listing 4.4 is here:

1
2
3
4
2
4
6
8

MULTIPLY LISTS AND ARRAYS

Listing 4.5 displays the content of multiply1.py that illustrates how to
multiply elements in a Python list and a NumPy array.

96  •  Google Gemini for Python: Coding with BARD

LISTING 4.5: multiply1.py

import numpy as np

list1 = [1,2,3]
arr1 = np.array([1,2,3])
print('list: ',list1)
print('arr1: ',arr1)
print('2*list:',2*list)
print('2*arr1:',2*arr1)

Listing 4.5 contains a Python list called list and a NumPy array called
arr1. The print() statements display the contents of list and arr1, as well
as the result of doubling list1 and arr1. Recall that “doubling” a Python list
is different from doubling a Python array, which you can see in the output from
launching Listing 4.5:

('list: ', [1, 2, 3])
('arr1: ', array([1, 2, 3]))
('2*list:', [1, 2, 3, 1, 2, 3])
('2*arr1:', array([2, 4, 6]))

DOUBLING THE ELEMENTS IN A LIST

Listing 4.6 displays the content of double_list1.py that illustrates how
to double the elements in a Python list.

LISTING 4.6: double_list1.py

import numpy as np

list1 = [1,2,3]
list2 = []

for e in list1:
 list2.append(2*e)

print('list1:',list1)
print('list2:',list2)

Listing 4.6 contains a Python list called list1 and an empty NumPy list
called list2. The next code snippet iterates through the elements of list1
and appends them to the variable list2. The pair of print() statements
display the contents of list1 and list2 to show you that they are the same.
The output from launching Listing 4.6 is here:

('list: ', [1, 2, 3])
('list2:', [2, 4, 6])

LISTS AND EXPONENTS

Listing 4.7 displays the content of exponent_list1.py that illustrates
how to compute exponents of the elements in a Python list.

Introduction to NumPy and Pandas  •  97

LISTING 4.7: exponent_list1.py

import numpy as np

list1 = [1,2,3]
list2 = []

for e in list1:
 list2.append(e*e) # e*e = squared

print('list1:',list1)
print('list2:',list2)

Listing 4.7 contains a Python list called list1 and an empty NumPy list
called list2. The next code snippet iterates through the elements of list1
and appends the square of each element to the variable list2. The pair of
print() statements display the contents of list1 and list2. The output
from launching Listing 4.7 is here:

('list1:', [1, 2, 3])
('list2:', [1, 4, 9])

ARRAYS AND EXPONENTS

Listing 4.8 displays the content of exponent_array1.py that illustrates
how to compute exponents of the elements in a NumPy array.

LISTING 4.8: exponent_array1.py

import numpy as np

arr1 = np.array([1,2,3])
arr2 = arr1**2
arr3 = arr1**3

print('arr1:',arr1)
print('arr2:',arr2)
print('arr3:',arr3)

Listing 4.8 contains a NumPy array called arr1, followed by two NumPy
arrays called arr2 and arr3. Notice the compact manner in which arr2 is
initialized with the square of the elements in arr1, followed by the initiali-
zation of the array arr3 with the cube of the elements in arr1. The three
print() statements display the contents of arr1, arr2, and arr3. The out-
put from launching Listing 4.8 is here:

('arr1:', array([1, 2, 3]))
('arr2:', array([1, 4, 9]))
('arr3:', array([1, 8, 27]))

98  •  Google Gemini for Python: Coding with BARD

MATH OPERATIONS AND ARRAYS

Listing 4.9 displays the content of mathops_array1.py that illustrates
how to compute exponents of the elements in a NumPy array.

LISTING 4.9: mathops_array1.py

import numpy as np

arr1 = np.array([1,2,3])
sqrt = np.sqrt(arr1)
log1 = np.log(arr1)
exp1 = np.exp(arr1)

print('sqrt:',sqrt)
print('log1:',log1)
print('exp1:',exp1)

Listing 4.9 contains an array called arr1, followed by three arrays called sqrt,
log1, and exp1 that are initialized with the square root, log, and exponential value
of the elements in arr1, respectively. The three print() statements display the
contents of sqrt, log1, and exp1. The output from launching Listing 4.9 is here:

('sqrt:', array([1. , 1.41421356, 1.73205081]))
('log1:', array([0. , 0.69314718, 1.09861229]))
('exp1:', array([2.71828183, 7.3890561, 20.08553692]))

WORKING WITH “-1” SUBRANGES WITH VECTORS

Listing 4.10 displays the content of npsubarray2.py that illustrates how
to compute exponents of the elements in a NumPy array.

LISTING 4.10: npsubarray2.py

import numpy as np

-1 => "all except the last element in …" (row or col)

arr1 = np.array([1,2,3,4,5])
print('arr1:',arr1)
print('arr1[0:-1]:',arr1[0:-1])
print('arr1[1:-1]:',arr1[1:-1])
print('arr1[::-1]:', arr1[::-1]) # reverse!

Listing 4.10 contains an array called arr1, followed by four print()
statements, each of which displays a different subrange of values in arr1. The
output from launching Listing 4.10 is here:

('arr1:', array([1, 2, 3, 4, 5]))
('arr1[0:-1]:', array([1, 2, 3, 4]))

Introduction to NumPy and Pandas  •  99

('arr1[1:-1]:', array([2, 3, 4]))
('arr1[::-1]:', array([5, 4, 3, 2, 1]))

WORKING WITH “–1” SUBRANGES WITH ARRAYS

Listing 4.11 displays the content of np2darray2.py that illustrates how to
compute exponents of the elements in a NumPy array.

LISTING 4.11: np2darray2.py

import numpy as np

-1 => "the last element in …" (row or col)

arr1 = np.array([(1,2,3),(4,5,6),(7,8,9),(10,11,12)])
print('arr1:', arr1)
print('arr1[-1,:]:', arr1[-1,:])
print('arr1[:,-1]:', arr1[:,-1])
print('arr1[-1:,-1]:',arr1[-1:,-1])

Listing 4.11 contains an array called arr1, followed by four print()
statements, each of which displays a different subrange of values in arr1. The
output from launching Listing 4.11 is here:

(arr1:', array([[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9],
 [10, 11, 12]]))
(arr1[-1,:]]', array([10, 11, 12]))
(arr1[:,-1]:', array([3, 6, 9, 12]))
(arr1[-1:,-1]]', array([12]))

OTHER USEFUL NUMPY METHODS

In addition to the NumPy methods that you saw in the code samples prior
to this section, the following (often intuitively-named) methods are also very
useful.

•	The method np.zeros() initializes an array with 0 values.
•	The method np.ones() initializes an array with 1 value.
•	The method np.empty() initializes an array with 0 values.
•	The method np.arange() provides a range of numbers:
•	The method np.shape() displays the shape of an object:
•	The method np.reshape() <= very useful!
•	The method np.linspace() <= useful in regression
•	The method np.mean() computes the mean of a set of numbers.
•	The method np.std() computes the standard deviation of a set of

numbers.

100  •  Google Gemini for Python: Coding with BARD

Although np.zeros() and np.empty() both initialize a 2D array with 0,
np.zeros() requires less execution time. You could also use np.full(size, 0),
but this method is the slowest of all three methods.

The reshape() and linspace() methods are useful for changing the
dimensions of an array and generating a list of numeric values, respec-
tively. The reshape() method often appears in TensorFlow code, and the
linspace() method is useful for generating a set of numbers in linear
regressions.

The mean() and std() methods are useful for calculating the mean and
the standard deviation of a set of numbers. For example, you can use these two
methods to resize the values in a Gaussian distribution so that their mean is 0
and the standard deviation is 1. This process is called standardizing a Gaussian
distribution.

ARRAYS AND VECTOR OPERATIONS

Listing 4.12 displays the content of array_vector.py that illustrates how
to perform vector operations on the elements in a NumPy array.

LISTING 4.12: array_vector.py

import numpy as np

a = np.array([[1,2], [3, 4]])
b = np.array([[5,6], [7,8]])

print('a: ', a)
print('b: ', b)
print('a + b: ', a+b)
print('a - b: ', a-b)
print('a * b: ', a*b)
print('a / b: ', a/b)
print('b / a: ', b/a)
print('a.dot(b):',a.dot(b))

Listing 4.12 contains two arrays called a and b, followed by eight print()
statements, each of which displays the result of “applying” a different arithme-
tic operation to the arrays a and b. The output from launching Listing 4.12 is
here:

('a : ', array([[1, 2], [3, 4]]))
('b : ', array([[5, 6], [7, 8]]))
('a + b: ', array([[6, 8], [10, 12]]))
('a - b: ', array([[-4, -4], [-4, -4]]))
('a * b: ', array([[5, 12], [21, 32]]))
('a / b: ', array([[0, 0], [0, 0]]))
('b / a: ', array([[5, 3], [2, 2]]))
('a.dot(b):', array([[19, 22], [43, 50]]))

Introduction to NumPy and Pandas  •  101

NUMPY AND DOT PRODUCTS (1)

Listing 4.13 displays the content of dotproduct1.py that illustrates how
to perform the dot product on the elements in a NumPy array.

LISTING 4.13: dotproduct1.py

import numpy as np

a = np.array([1,2])
b = np.array([2,3])

dot2 = 0
for e,f in zip(a,b):
 dot2 += e*f

print('a: ',a)
print('b: ',b)
print('a*b: ',a*b)
print('dot1:',a.dot(b))
print('dot2:',dot2)

Listing 4.13 contains two arrays called a and b, followed by a simple loop
that computes the dot product of a and b. The next section contains five
print() statements that display the contents of a and b, their inner prod-
uct that is calculated in three different ways. The output from launching
Listing 4.13 is here:

('a: ', array([1, 2]))
('b: ', array([2, 3]))
('a*b: ', array([2, 6]))
('dot1:', 8)
('dot2:', 8)

NUMPY AND DOT PRODUCTS (2)

NumPy arrays support a “dot” method for calculating the inner product of
an array of numbers, which uses the same formula that you use for calculat-
ing the inner product of a pair of vectors. Listing 4.14 displays the content
of dotproduct2.py that illustrates how to calculate the dot product of two
NumPy arrays.

LISTING 4.14: dotproduct2.py

import numpy as np

a = np.array([1,2])
b = np.array([2,3])

102  •  Google Gemini for Python: Coding with BARD

print('a: ',a)
print('b: ',b)
print('a.dot(b): ',a.dot(b))
print('b.dot(a): ',b.dot(a))
print('np.dot(a,b):',np.dot(a,b))
print('np.dot(b,a):',np.dot(b,a))

Listing 4.14 contains two arrays called a and b, followed by six print()
statements that display the contents of a and b, as well as their inner prod-
uct that is calculated in three different ways. The output from launching
Listing 4.14 is here:

('a: ', array([1, 2]))
('b: ', array([2, 3]))
('a.dot(b): ', 8)
('b.dot(a): ', 8)
('np.dot(a,b):', 8)
('np.dot(b,a):', 8)

NUMPY AND THE “NORM” OF VECTORS

The “norm” of a vector (or an array of numbers) is the length of a vector,
which is the square root of the dot product of a vector with itself. NumPy also
provides the “sum” and “square” functions that you can use to calculate the
norm of a vector.

Listing 4.15 displays the content of array_norm.py that illustrates how to
calculate the magnitude (“norm”) of a NumPy array of numbers.

LISTING 4.15: array_norm.py

import numpy as np

a = np.array([2,3])
asquare = np.square(a)
asqsum = np.sum(np.square(a))
anorm1 = np.sqrt(np.sum(a*a))
anorm2 = np.sqrt(np.sum(np.square(a)))
anorm3 = np.linalg.norm(a)

print('a: ',a)
print('asquare:',asquare)
print('asqsum: ',asqsum)
print('anorm1: ',anorm1)
print('anorm2: ',anorm2)
print('anorm3: ',anorm3)

Listing 4.15 contains an initial array called a, followed by the array asquare
and the numeric values asqsum, anorm1, anorm2, and anorm3. The array
asquare contains the square of the elements in array a, and the numeric value
asqsum contains the sum of the elements in the array asquare.

Introduction to NumPy and Pandas  •  103

Next, the numeric value anorm1 equals the square root of the sum of the
square of the elements in a. The numeric value anorm2 is the same as anorm1,
computed in a slightly different fashion. Finally, the numeric value anorm3 is
equal to anorm2, but as you can see, anorm3 is calculated via a single NumPy
method, whereas anorm2 requires a succession of NumPy methods.

The last portion of Listing 4.15 consists of six print() statements, each of
which displays the computed values. The output from launching Listing 4.15
is here:

('a: ', array([2, 3]))
('asquare:', array([4, 9]))
('asqsum: ', 13)
('anorm1: ', 3.605551275463989)
('anorm2: ', 3.605551275463989)
('anorm3: ', 3.605551275463989)

NUMPY AND OTHER OPERATIONS

NumPy provides the “*” operator to multiply the components of two vec-
tors to produce a third vector, whose components are the products of the cor-
responding components of the initial pair of vectors. This operation is called a
Hadamard product, which is named after a famous mathematician. If you then
add the components of the third vector, the sum is equal to the inner product
of the initial pair of vectors.

Listing 4.16 displays the content of otherops.py that illustrates how to
perform other operations on a NumPy array.

LISTING 4.16: otherops.py

import numpy as np

a = np.array([1,2])
b = np.array([3,4])

print('a: ',a)
print('b: ',b)
print('a*b: ',a*b)
print('np.sum(a*b): ',np.sum(a*b))
print('(a*b.sum()): ',(a*b).sum())

Listing 4.16 contains two arrays called a and b, followed five print()
statements that display the contents of a and b, their Hadamard product, and
their inner product that is calculated in two different ways. The output from
launching Listing 4.16 is here:

('a: ', array([1, 2]))
('b: ', array([3, 4]))
('a*b: ', array([3, 8]))
('np.sum(a*b): ', 11)
('(a*b.sum()): ', 11)

104  •  Google Gemini for Python: Coding with BARD

NUMPY AND THE RESHAPE() METHOD

NumPy arrays support the reshape() method, which enables you to
restructure the dimensions of an array of numbers. In general, if a NumPy
array contains m elements, where m is a positive integer, then that array can be
restructured as an m1 x m2 array, where m1 and m2 are positive integers such
that m1*m2 = m.

Listing 4.17 displays the content of numpy_reshape.py that illustrates
how to use the reshape() method on a NumPy array.

LISTING 4.17: numpy_reshape.py

import numpy as np

x = np.array([[2, 3], [4, 5], [6, 7]])
print(x.shape) # (3, 2)

x = x.reshape((2, 3))
print(x.shape) # (2, 3)
print('x1:',x)

x = x.reshape((-1))
print(x.shape) # (6,)
print('x2:',x)

x = x.reshape((6, -1))
print(x.shape) # (6, 1)
print('x3:',x)

x = x.reshape((-1, 6))
print(x.shape) # (1, 6)
print('x4:',x)

Listing 4.17 contains an array called x, whose dimensions are 3x2, followed
by a set of invocations of the reshape() method that reshape the contents
of x. The first invocation of the reshape() method changes the shape of x
from 3x2 to 2x3. The second invocation changes the shape of x from 2x3 to 6x1.
The third invocation changes the shape of x from 1x6 to 6x1. The final invoca-
tion changes the shape of x from 6x1 to 1x6 again.

Each invocation of the reshape() method is followed by a print() state-
ment so that you can see the effect of the invocation. The output from launch-
ing Listing 4.17 is here:

(3, 2)
(2, 3)
('x1:', array([[2, 3, 4],
 [5, 6, 7]]))
(6,)
('x2:', array([2, 3, 4, 5, 6, 7]))
(6, 1)

Introduction to NumPy and Pandas  •  105

('x3:', array([[2],
 [3],
 [4],
 [5],
 [6],
 [7]]))
(1, 6)

CALCULATING THE MEAN AND STANDARD DEVIATION

If you need to review these concepts from statistics (and perhaps also the
mean, median, and mode), please read the appropriate on-line tutorials.

NumPy provides various built-in functions that perform statistical calcula-
tions, such as the following list of methods:

np.linspace() <= useful for regression
np.mean()
np.std()

The np.linspace()method generates a set of equally spaced numbers
between a lower bound and an upper bound. The np.mean() and np.std()
methods calculate the mean and standard deviation, respectively, of a set of
numbers. Listing 4.18 displays the content of sample_mean_std.py that
illustrates how to calculate statistical values from a NumPy array.

LISTING 4.18: sample_mean_std.py

import numpy as np

x2 = np.arange(8)
print('mean = ',x2.mean())
print('std = ',x2.std())

x3 = (x2 - x2.mean())/x2.std()
print('x3 mean = ',x3.mean())
print('x3 std = ',x3.std())

Listing 4.18 contains the array x2 that consists of the first eight integers.
Next, mean() and std(), which are “associated” with x2, are invoked to cal-
culate the mean and standard deviation, respectively, of the elements of x2.
The output from launching Listing 4.18 is here:

('a: ', array([1, 2]))
('b: ', array([3, 4]))

CALCULATING QUARTILES WITH NUMPY

The code sample in this section extends the code sample in the previous
section with additional statistical values, and the code in Listing 4.19 can be
used for any data distribution. Keep in mind that the code sample uses random

106  •  Google Gemini for Python: Coding with BARD

numbers simply for the purposes of illustration: after you have launched the
code sample, replace those numbers with values from a CSV file or some other
dataset containing meaningful values.

Moreover, this section does not provide details regarding the meaning of
quartiles, but you can learn about quartiles at https://en.wikipedia.org/wiki/
Quartile.

Listing 4.19 displays the content of stat_summary.py that illustrates
how to display various statistical values from a NumPy array of random
numbers.

LISTING 4.19: stat_values.py

import numpy as np

from numpy import percentile
from numpy.random import rand

generate data sample
data = np.random.rand(1000)

calculate quartiles, min, and max
quartiles = percentile(data, [25, 50, 75])
data_min, data_max = data.min(), data.max()

print summary information
print('Minimum: %.3f' % data_min)
print('Q1 value: %.3f' % quartiles[0])
print('Median: %.3f' % quartiles[1])
print('Mean Val: %.3f' % data.mean())
print('Std Dev: %.3f' % data.std())
print('Q3 value: %.3f' % quartiles[2])
print('Maximum: %.3f' % data_max)

The data sample (shown in bold) in Listing 4.19 is from a uniform dis-
tribution between 0 and 1. The percentile() function calculates a linear
interpolation (average) between observations, which is needed to calculate
the median on a sample with an even number of values. As you can surmise,
the functions min() and max() calculate the smallest and largest values in the
data sample. The output from launching Listing 4.19 is here:

Minimum: 0.000
Q1 value: 0.237
Median: 0.500
Mean Val: 0.495
Std Dev: 0.295
Q3 value: 0.747
Maximum: 0.999

This concludes the portion of the chapter pertaining to NumPy. The sec-
ond half of this chapter discusses some of the features of Pandas.

https://en.wikipedia.org/wiki/

Introduction to NumPy and Pandas  •  107

WHAT IS PANDAS?

Pandas is a Python package that is compatible with other Python packages,
such as NumPy and Matplotlib. Install Pandas by opening a command shell
and invoking this command for Python 3.x:

pip3 install pandas

In many ways the Pandas package has the semantics of a spreadsheet, and it
also works with XSL, XML, HTML, and CSV file types. Pandas has a data type
called DataFrame (similar to a Python dictionary) with an extremely powerful
functionality, which is discussed in the next section.

Pandas DataFrames support a variety of input types, such as ndarrays,
lists, dicts, and Series. Pandas also has another data type called Pandas
Series (not discussed in this chapter); this data structure provides another
mechanism for managing data (search online for more details).

Pandas Data Frames

In simplified terms, a Pandas DataFrame is a two-dimensional data struc-
ture, and it is convenient to think of the data structure in terms of rows and col-
umns. DataFrames can be labeled (rows as well as columns), and the columns
can contain different data types.

By way of analogy, it might be useful to think of a DataFrame as the counter-
part to a spreadsheet, which makes it a very useful data type in Pandas-related
Python scripts. The source of the dataset can be a data file, database tables,
Web service, and so forth. Pandas data frame features include the following:

•	DataFrame Methods
•	DataFrame Statistics
•	Grouping, Pivoting, and Reshaping
•	Dealing with Missing Data
•	Joining DataFrames

DataFrames and Data Cleaning Tasks

The specific tasks that you need to perform depend on the structure and
contents of a dataset. In general, you will perform a workflow with the follow-
ing steps (not necessarily always in this order), all of which can be performed
with a Pandas DataFrame:

•	Read data into a DataFrame
•	Display the top of a DataFrame
•	Display column data types
•	Display non-missing values
•	Replace NA with a value
•	Iterate through the columns
•	Statistics for each column

108  •  Google Gemini for Python: Coding with BARD

•	Find missing values
•	Total missing values
•	Percentage of missing values
•	Sort table values
•	Print summary information
•	Columns with > 50% missing
•	Rename columns

A LABELED PANDAS DATAFRAME

Listing 4.20 displays the content of pandas_labeled_df.py that illus-
trates how to define a DataFrame whose rows and columns are labeled.

LISTING 4.20: pandas_labeled_df.py

import numpy
import pandas

myarray = numpy.array([[10,30,20],
[50,40,60],[1000,2000,3000]])

rownames = ['apples', 'oranges', 'beer']
colnames = ['January', 'February', 'March']

mydf = Pandas.DataFrame(myarray, index=rownames,
columns=colnames)

print(mydf)
print(mydf.describe())

Listing 4.20 contains two important statements followed by the variable
myarray, which is a 3x3 NumPy array of numbers. The variables rownames
and colnames provide names for the rows and columns, respectively, of the
data in myarray. Next, the variable mydf is initialized as a DataFrame with
the specified data source (i.e., myarray).

You might be surprised to see that the first portion of the output below
requires a single print() statement (which simply displays the con-
tents of mydf). The second portion of the output is generated by invoking
the describe() method that is available for any NumPy DataFrame. The
describe() method is very useful: you will see various statistical quantities,
such as the mean, standard deviation minimum, and maximum performed
column_wise (not row_wise), along with values for the 25th, 50th, and 75th

percentiles. The output of Listing 4.20 is here:

 January February March
apples 10 30 20
oranges 50 40 60
beer 1000 2000 3000

Introduction to NumPy and Pandas  •  109

 January February March
count 3.000000 3.000000 3.000000
mean 353.333333 690.000000 1026.666667
std 560.386771 1134.504297 1709.073823
min 10.000000 30.000000 20.000000
25% 30.000000 35.000000 40.000000
50% 50.000000 40.000000 60.000000
75% 525.000000 1020.000000 1530.000000
max 1000.000000 2000.000000 3000.000000

PANDAS NUMERIC DATAFRAMES

Listing 4.21 displays the content of pandas_numeric_df.py that illus-
trates how to define a DataFrame whose rows and columns are numbers (but
the column labels are characters).

LISTING 4.21: pandas_numeric_df.py

import pandas as pd

df1 = pd.DataFrame(np.random.randn(10, 4),columns=['A','B','C','D'])
df2 = pd.DataFrame(np.random.randn(7, 3), columns=['A','B','C'])
df3 = df1 + df2

The essence of Listing 4.21 involves initializing the DataFrames df1 and
df2, and then defining the DataFrame df3 as the sum of df1 and df2. The
output from Listing 4.21 is here:

 A B C D
0 0.0457 -0.0141 1.3809 NaN
1 -0.9554 -1.5010 0.0372 NaN
2 -0.6627 1.5348 -0.8597 NaN
3 -2.4529 1.2373 -0.1337 NaN
4 1.4145 1.9517 -2.3204 NaN
5 -0.4949 -1.6497 -1.0846 NaN
6 -1.0476 -0.7486 -0.8055 NaN
7 NaN NaN NaN NaN
8 NaN NaN NaN NaN
9 NaN NaN NaN NaN

Keep in mind that the default behavior for operations involving a
DataFrame and Series is to align the Series index on the DataFrame col-
umns; this results in a row-wise output. Here is a simple illustration:

names = pd.Series(['SF', 'San Jose', 'Sacramento'])
sizes = pd.Series([852469, 1015785, 485199])

df = pd.DataFrame({ 'Cities': names, 'Size': sizes })
df = pd.DataFrame({ 'City name': names,'sizes': sizes })

print(df)

110  •  Google Gemini for Python: Coding with BARD

The output of the preceding code block is here:

 City name sizes
0 SF 852469
1 San Jose 1015785
2 Sacramento 485199

PANDAS BOOLEAN DATAFRAMES

Pandas supports Boolean operations on DataFrames, such as the logical or,
the logical and, and the logical negation of a pair of DataFrames. Listing 4.22
displays the content of pandas_boolean_df.py that illustrates how to define
a DataFrame whose rows and columns are Boolean values.

LISTING 4.22: pandas_boolean_df.py

import pandas as pd

df1 = pd.DataFrame({'a' : [1, 0, 1], 'b' : [0, 1, 1] }, dtype=bool)
df2 = pd.DataFrame({'a' : [0, 1, 1], 'b' : [1, 1, 0] }, dtype=bool)

print("df1 & df2:")
print(df1 & df2)

print("df1 | df2:")
print(df1 | df2)

print("df1 ^ df2:")
print(df1 ^ df2)

Listing 4.22 initializes the DataFrames df1 and df2, and then computes
df1 & df2, df1 | df2, df1 ^ df2, which represent the logical AND, the logical
OR, and the logical negation, respectively, of df1 and df2. The output from
launching the code in Listing 4.22 is here:

df1 & df2:
 a b
0 False False
1 False True
2 True False
df1 | df2:
 a b
0 True True
1 True True
2 True True
df1 ^ df2:
 a b
0 True True
1 True False
2 False True

Introduction to NumPy and Pandas  •  111

Transposing a Pandas DataFrame

The T attribute (as well as the transpose function) enables you to generate
the transpose of a Pandas DataFrame, similar to a NumPy ndarray.

For example, the following code snippet defines a Pandas DataFrame df1
and then displays the transpose of df1:

df1 = pd.DataFrame({'a' : [1, 0, 1], 'b' : [0, 1, 1] }, dtype=int)

print("df1.T:")
print(df1.T)

The output is here:

df1.T:

 0 1 2

a 1 0 1

b 0 1 1

The following code snippet defines the Pandas DataFrames df1 and df2
and then displays their sum:

df1 = pd.DataFrame({'a' : [1, 0, 1], 'b' : [0, 1, 1] }, dtype=int)
df2 = pd.DataFrame({'a' : [3, 3, 3], 'b' : [5, 5, 5] }, dtype=int)

print("df1 + df2:")
print(df1 + df2)

The output is here:

df1 + df2:

 a b

0 4 5

1 3 6

2 4 6

PANDAS DATAFRAMES AND RANDOM NUMBERS

Listing 4.23 displays the content of pandas_random_df.py that illustrates
how to create a DataFrame with random numbers.

LISTING 4.23: pandas_random_df.py

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randint(1, 5, size=(5, 2)),
columns=['a','b'])
df = df.append(df.agg(['sum', 'mean']))

112  •  Google Gemini for Python: Coding with BARD

print("Contents of dataframe:")
print(df)

Listing 4.23 defines the DataFrame df, which consists of 5 rows and
2 columns of random integers between 1 and 5. Notice that the columns of
df are labeled “a” and “b.” In addition, the next code snippet appends two
rows consisting of the sum and the mean of the numbers in both columns. The
output of Listing 4.23 is here:

a b
0 1.0 2.0
1 1.0 1.0
2 4.0 3.0
3 3.0 1.0
4 1.0 2.0
sum 10.0 9.0
mean 2.0 1.8

COMBINING PANDAS DATAFRAMES (1)

Listing 4.24 displays the content of pandas_combine_df.py that illus-
trates how to combine DataFrames.

LISTING 4.24: pandas_combine_df.py

import pandas as pd
import numpy as np

df = pd.DataFrame({'foo1' : np.random.randn(5),
 'foo2' : np.random.randn(5)})

print("contents of df:")
print(df)

print("contents of foo1:")
print(df.foo1)

print("contents of foo2:")
print(df.foo2)

Listing 4.24 defines the DataFrame df, which consists of 5 rows and
2 columns (labeled “foo1” and “foo2”) of random real numbers between 0
and 5. The next portion of Listing 4.5 displays the content of df and foo1.
The output of Listing 4.24 is here:

contents of df:
 foo1 foo2
0 0.274680 -0.848669
1 -0.399771 -0.814679
2 0.454443 -0.363392

Introduction to NumPy and Pandas  •  113

3 0.473753 0.550849
4 -0.211783 -0.015014
contents of foo1:
0 0.256773
1 1.204322
2 1.040515
3 -0.518414
4 0.634141
Name: foo1, dtype: float64
contents of foo2:
0 -2.506550
1 -0.896516
2 -0.222923
3 0.934574
4 0.527033
Name: foo2, dtype: float64

COMBINING PANDAS DATAFRAMES (2)

Pandas has the concat() method, which is used to concatenate
DataFrames. Listing 4.25 displays the content of concat-frames.py that
illustrates how to combine two DataFrames.

LISTING 4.25: concat_frames.py

import pandas as pd

can_weather = pd.DataFrame({
 "city": ["Vancouver","Toronto","Montreal"],
 "temperature": [72,65,50],
 "humidity": [40, 20, 25]
})

us_weather = pd.DataFrame({
 "city": ["SF","Chicago","LA"],
 "temperature": [60,40,85],
 "humidity": [30, 15, 55]
})

df = pd.concat([can_weather, us_weather])
print(df)

The first line in Listing 4.25 is an import statement, followed by the
definition of the Pandas DataFrames can_weather and us_weather that
contain weather-related information for cities in Canada and the USA, respec-
tively. The Pandas DataFrame df is the concatenation of can_weather and
us_weather. The output from Listing 4.25 is here:

0 Vancouver 40 72
1 Toronto 20 65
2 Montreal 25 50
0 SF 30 60

114  •  Google Gemini for Python: Coding with BARD

1 Chicago 15 40
2 LA 55 85

DATA MANIPULATION WITH PANDAS DATAFRAMES (1)

As a simple example, suppose that we have a two-person company that
keeps track of income and expenses on a quarterly basis. We want to calculate
the profit/loss for each quarter, as well as the overall profit/loss.

Listing 4.26 displays the content of pandas_quarterly_df1.py that
illustrates how to define a Pandas DataFrame consisting of income-related
values.

LISTING 4.26: pandas_quarterly_df1.py

import pandas as pd

summary = {
 'Quarter': ['Q1', 'Q2', 'Q3', 'Q4'],
 'Cost': [23500, 34000, 57000, 32000],
 'Revenue': [40000, 40000, 40000, 40000]
}

df = pd.DataFrame(summary)

print("Entire Dataset:\n",df)
print("Quarter:\n",df.Quarter)
print("Cost:\n",df.Cost)
print("Revenue:\n",df.Revenue)

Listing 4.26 defines the variable summary, which contains hard-coded
quarterly information about cost and revenue for our two-person company.
In general, these hard-coded values would be replaced by data from another
source (such as a CSV file), so think of this code sample as a simple way to
illustrate some of the functionality that is available for Pandas DataFrames.

The variable df is a DataFrame based on the data in the summary variable.
The three print() statements display the quarters, the cost per quarter, and
the revenue per quarter.

The output from Listing 4.26 is here:

Entire Dataset:
 Cost Quarter Revenue
0 23500 Q1 40000
1 34000 Q2 60000
2 57000 Q3 50000
3 32000 Q4 30000
Quarter:
0 Q1
1 Q2
2 Q3
3 Q4

Introduction to NumPy and Pandas  •  115

Name: Quarter, dtype: object
Cost:
 0 23500
1 34000
2 57000
3 32000
Name: Cost, dtype: int64
Revenue:
 0 40000
1 60000
2 50000
3 30000
Name: Revenue, dtype: int64

DATA MANIPULATION WITH PANDAS DATAFRAMES (2)

In this section, let’s suppose that we have a two-person company that keeps
track of income and expenses on a quarterly basis. We want to calculate the
profit/loss for each quarter, as well as the overall profit/loss.

Listing 4.27 displays the content of pandas_quarterly_df1.py that
illustrates how to define a DataFrame consisting of income-related values.

LISTING 4.27: pandas_quarterly_df2.py

import pandas as pd

summary = {
 'Quarter': ['Q1', 'Q2', 'Q3', 'Q4'],
 'Cost': [-23500, -34000, -57000, -32000],
 'Revenue': [40000, 40000, 40000, 40000]
}

df = pd.DataFrame(summary)
print("First Dataset:\n",df)

df['Total'] = df.sum(axis=1)
print("Second Dataset:\n",df)

Listing 4.27 defines the variable summary, which contains quarterly infor-
mation about cost and revenue for our two-person company. The variable df
is a DataFrame based on the data in the summary variable. The three print()
statements display the quarters, cost per quarter, and revenue per quarter. The
output from Listing 4.27 is here:

First Dataset:
 Cost Quarter Revenue
0 -23500 Q1 40000
1 -34000 Q2 60000
2 -57000 Q3 50000
3 -32000 Q4 30000

116  •  Google Gemini for Python: Coding with BARD

Second Dataset:
 Cost Quarter Revenue Total
0 -23500 Q1 40000 16500
1 -34000 Q2 60000 26000
2 -57000 Q3 50000 -7000
3 -32000 Q4 30000 -2000

DATA MANIPULATION WITH PANDAS DATAFRAMES (3)

Let’s start with the same assumption as in the previous section. We have a
two-person company that keeps track of income and expenses on a quarterly
basis. We want to calculate the profit/loss for each quarter, as well as the overall
profit/loss. In addition, we want to compute the column totals and row totals.

Listing 4.28 displays the content of pandas_quarterly_df1.py that
illustrates how to define a DataFrame consisting of income-related values.

LISTING 4.28: pandas_quarterly_df3.py

import pandas as pd

summary = {
 'Quarter': ['Q1', 'Q2', 'Q3', 'Q4'],
 'Cost': [-23500, -34000, -57000, -32000],
 'Revenue': [40000, 40000, 40000, 40000]
}

df = pd.DataFrame(summary)
print("First Dataset:\n",df)

df['Total'] = df.sum(axis=1)
df.loc['Sum'] = df.sum()
print("Second Dataset:\n",df)

or df.loc['avg'] / 3
#df.loc['avg'] = df[:3].mean()
#print("Third Dataset:\n",df)

Listing 4.28 defines the variable summary, which contains quarterly infor-
mation about the cost and revenue for our two-person company. The vari-
able df is a DataFrame based on the data in the summary variable. The three
print() statements display the quarters, cost per quarter, and revenue per
quarter. The output from Listing 4.28 is here:

First Dataset:
 Cost Quarter Revenue
0 -23500 Q1 40000
1 -34000 Q2 60000
2 -57000 Q3 50000
3 -32000 Q4 30000
Second Dataset:
 Cost Quarter Revenue Total
0 -23500 Q1 40000 16500
1 -34000 Q2 60000 26000
2 -57000 Q3 50000 -7000

Introduction to NumPy and Pandas  •  117

3 -32000 Q4 30000 -2000
Sum -146500 Q1Q2Q3Q4 180000 33500

PANDAS DATAFRAMES AND CSV FILES

The code samples in several earlier sections contain hard-coded data inside
the Python scripts. However, it is also common to read data from a CSV file.
You can use the Python csv.reader() function, the NumPy loadtxt()
function, or the Pandas read_csv() function (shown in this section) to read
the contents of CSV files.

Listing 4.29 displays the content of weather_data.py that illustrates how
to read a CSV file, initialize a DataFrame with the contents of that CSV file,
and display various subsets of the data in the DataFrames.

LISTING 4.29: weather_data.py

import pandas as pd

df = pd.read_csv("weather_data.csv")

print(df)
print(df.shape) # rows, columns
print(df.head()) # df.head(3)
print(df.tail())
print(df[1:3])
print(df.columns)
print(type(df['day']))
print(df[['day','temperature']])
print(df['temperature'].max())

Listing 4.29 invokes the Pandas read_csv() function to read the contents
of the CSV file weather_data.csv, followed by a set of Python print()
statements that display various portions of the CSV file. The output from
Listing 4.29 is here:

day,temperature,windspeed,event
7/1/2018,42,16,Rain
7/2/2018,45,3,Sunny
7/3/2018,78,12,Snow
7/4/2018,74,9,Snow
7/5/2018,42,24,Rain
7/6/2018,51,32,Sunny

In some situations, you might need to apply Boolean conditional logic to
“filter out” some rows of data, based on a conditional condition that is applied
to a column value.

Listing 4.30 displays the content of the CSV file people.csv, and
Listing 4.31 displays the content of people_pandas.py that illustrates how
to define a DataFrame that reads the CSV file and manipulates the data.

118  •  Google Gemini for Python: Coding with BARD

LISTING 4.30: people.csv

fname,lname,age,gender,country
john,smith,30,m,usa
jane,smith,31,f,france
jack,jones,32,f,france
dave,stone,33,f,france
sara,stein,34,f,france
eddy,bower,35,f,france

LISTING 4.31: people_pandas.py

import pandas as pd

df = pd.read_csv('people.csv')
df.info()
print('fname:')
print(df['fname'])
print('____________')
print('age over 33:')
print(df['age'] > 33)
print('____________')
print('age over 33:')
myfilter = df['age'] > 33
print(df[myfilter])

Listing 4.31 populates the DataFrame df with the contents of the CSV file
people.csv. The next portion of Listing 4.12 displays the structure of df,
followed by the first names of all the people. The next portion of Listing 4.12
displays a tabular list of six rows containing either True or False depending
on whether a person is over 33 or at most 33, respectively.

The final portion of Listing 4.31 displays a tabular list of two rows contain-
ing all the details of the people who are over 33. The output from Listing 4.31
is here:

myfilter = df['age'] > 33
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6 entries, 0 to 5
Data columns (total 5 columns):
fname 6 non_null object
lname 6 non_null object
age 6 non_null int64
gender 6 non_null object
country 6 non_null object
dtypes: int64(1), object(4)
memory usage: 320.0+ bytes
fname:
0 john
1 jane
2 jack
3 dave
4 sara
5 eddy

Introduction to NumPy and Pandas  •  119

Name: fname, dtype: object

age over 33:
0 False
1 False
2 False
3 False
4 True
5 True
Name: age, dtype: bool

age over 33:
 fname lname age gender country
4 sara stein 34 f france
5 eddy bower 35 m france

PANDAS DATAFRAMES AND EXCEL SPREADSHEETS

Listing 4.32 displays the content of people_xslx.py that illustrates how
to read data from an Excel spreadsheet and create a DataFrame with that data.

LISTING 4.32: people_xslx.py

import pandas as pd

df = pd.read_excel("people.xlsx")
print("Contents of Excel spreadsheet:")
print(df)

Listing 4.32 is straightforward: the DataFrame df is initialized with the
contents of the spreadsheet people.xlsx (whose contents are the same
as people.csv) via the Pandas function read_excel(). The output from
Listing 4.32 is here:

 fname lname age gender country
0 john smith 30 m usa
1 jane smith 31 f france
2 jack jones 32 f france
3 dave stone 33 f france
4 sara stein 34 f france
5 eddy bower 35 f france

SELECT, ADD, AND DELETE COLUMNS IN DATAFRAMES

This section contains short code blocks that illustrate how to perform oper-
ations on a DataFrame that resemble the operations in a Python dictionary.
For example, getting, setting, and deleting columns works with the same syn-
tax as the analogous Python dict operations, as shown here:

df = pd.DataFrame.from_dict(dict([('A',[1,2,3]),('B',[4,5,6])]),

120  •  Google Gemini for Python: Coding with BARD

 orient='index', columns=['one', 'two', 'three'])

print(df)

The output from the preceding code snippet is here:

 one two three
A 1 2 3
B 4 5 6

Now look at the following sequence of operations on the contents of the
DataFrame df:

df['three'] = df['one'] * df['two']
df['flag'] = df['one'] > 2
print(df)

The output from the preceding code block is here:

 one two three flag
a 1.0 1.0 1.0 False
b 2.0 2.0 4.0 False
c 3.0 3.0 9.0 True
d NaN 4.0 NaN False

Columns can be deleted or popped like they are with a Python dict, as
shown in the following code snippet:

del df['two']
three = df.pop('three')
print(df)

The output from the preceding code block is here:

 one flag
a 1.0 False
b 2.0 False
c 3.0 True
d NaN False

When inserting a scalar value, it will naturally be propagated to fill the
column:

df['foo'] = 'bar'
print(df)

The output from the preceding code snippet is here:

 one flag foo
a 1.0 False bar
b 2.0 False bar
c 3.0 True bar
d NaN False bar

Introduction to NumPy and Pandas  •  121

When inserting a Series that does not have the same index as the
DataFrame, it will be “conformed” to the index of the DataFrame:

df['one_trunc'] = df['one'][:2]
print(df)

The output from the preceding code snippet is here:

 one flag foo one_trunc
a 1.0 False bar 1.0
b 2.0 False bar 2.0
c 3.0 True bar NaN
d NaN False bar NaN

You can insert raw ndarrays, but their length must match the length of
the index of the DataFrame.

PANDAS DATAFRAMES AND SCATTERPLOTS

Listing 4.33 displays the content of pandas_scatter_df.py that illus-
trates how to generate a scatterplot from a DataFrame.

LISTING 4.33: pandas_scatter_df.py

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt	
from pandas import read_csv
from pandas.plotting import scatter_matrix

myarray = np.array([[10,30,20], [50,40,60],[1000,2000,3000]])

rownames = ['apples', 'oranges', 'beer']
colnames = ['January', 'February', 'March']

mydf = pd.DataFrame(myarray, index=rownames, columns=colnames)

	
print(mydf)
print(mydf.describe())

scatter_matrix(mydf)
plt.show()

Listing 4.33 starts with various import statements, followed by the defini-
tion of the NumPy array myarray. Next, the variables myarray and col-
names are initialized with values for the rows and columns, respectively. The
next portion of Listing 4.33 initializes the DataFrame mydf so that the rows
and columns are labeled in the output, as shown here:

122  •  Google Gemini for Python: Coding with BARD

January February March
apples 10 30 20
oranges 50 40 60
beer 1000 2000 3000
 January February March
count 3.000000 3.000000 3.000000
mean 353.333333 690.000000 1026.666667
std 560.386771 1134.504297 1709.073823
min 10.000000 30.000000 20.000000
25% 30.000000 35.000000 40.000000
50% 50.000000 40.000000 60.000000
75% 525.000000 1020.000000 1530.000000
max 1000.000000 2000.000000 3000.0000000

PANDAS DATAFRAMES AND SIMPLE STATISTICS

Listing 4.34 displays the content of housing_stats.py that illustrates
how to gather basic statistics from data in a DataFrame.

LISTING 4.34: housing_stats.py

import pandas as pd

df = pd.read_csv("housing.csv")

minimum_bdrms = df["bedrooms"].min()
median_bdrms = df["bedrooms"].median()
maximum_bdrms = df["bedrooms"].max()

print("minimum # of bedrooms:",minimum_bdrms)
print("median # of bedrooms:",median_bdrms)
print("maximum # of bedrooms:",maximum_bdrms)
print("")

print("median values:",df.median().values)
print("")

prices = df["price"]
print("first 5 prices:")
print(prices.head())
print("")

median_price = df["price"].median()
print("median price:",median_price)
print("")

corr_matrix = df.corr()
print("correlation matrix:")
print(corr_matrix["price"].sort_values(ascending=False))

Listing 4.34 initializes the DataFrame df with the contents of the CSV
file housing.csv. The next three variables are initialized with the minimum,

Introduction to NumPy and Pandas  •  123

median, and maximum number of bedrooms, respectively, and then these val-
ues are displayed.

The next portion of Listing 4.34 initializes the variable prices with the
contents of the “prices” column of the DataFrame df. Next, the first five rows
are printed via the prices.head() statement, followed by the median value
of the prices.

The final portion of Listing 4.34 initializes the variable corr_matrix with
the contents of the correlation matrix for the DataFrame df, and then displays
its contents. The output from Listing 4.34 is here:

Apples
10

USEFUL ONE-LINE COMMANDS IN PANDAS

This section contains an eclectic mix of one-line commands in Pandas
(some of which you have already seen in this chapter) that are useful to know.

•	Save a DataFrame to a CSV file (comma separated and without indices):
df.to_csv("data.csv", sep=",", index=False)

•	List the column names of a DataFrame:
df.columns

•	Drop missing data from a DataFrame:
df.dropna(axis=0, how='any')

•	Replace missing data in a DataFrame:
df.replace(to_replace=None, value=None)

•	Check for NANs in a DataFrame:
pd.isnull(object)

•	Drop a feature in a DataFrame:
df.drop('feature_variable_name', axis=1)

•	Convert object type to float in a DataFrame:
pd.to_numeric(df["feature_name"], errors='coerce')

•	Convert data in a DataFrame to NumPy array:
df.as_matrix()

•	Display the first n rows of a DataFrame:
df.head(n)

•	Get data by feature name in a DataFrame:
df.loc[feature_name]

•	Apply a function to a DataFrame. Multiply all values in the “height” col-
umn of the DataFrame by 3:
df["height"].apply(lambda height: 3 * height)

OR:

def multiply(x):
return x * 3
df["height"].apply(multiply)

•	Rename the fourth column of the DataFrame as “height:”
df.rename(columns = {df.columns[3]:'height'},
inplace=True)

124  •  Google Gemini for Python: Coding with BARD

•	Get the unique entries of the column “first” in a DataFrame:
df[""first"].unique()

•	Create a DataFrame with columns “first” and “last” from an existing
DataFrame:
new_df = df[["name", "size"]]

•	Sort the data in a DataFrame:
df.sort_values(ascending = False)

•	Filter the data column named “size” to display only values equal to 7:
df[df["size"] == 7]

•	Select the first row of the “height” column in a DataFrame:
df.loc([0], ['height'])

WORKING WITH BARD

This section provides a preview of several Bard-generated Python code
samples. As you saw in Chapter 3, more comprehensive descriptions of gen-
erative AI, Gemini, and Bard are available in Chapter 5. In addition, Chapter 6
is devoted to Bard-generated Python code samples.

The three Python code samples that you will see in the subsequent sections
are listed below:

•	Pandas DataFrame with Random Values
•	Pandas DataFrame and a Bar Chart
•	Pandas DataFrame and Statistics

A Pandas DataFrame with Random Values

The code sample that Bard generated in this section is based on the follow-
ing prompt for Bard:

Please generate Python code that counts the number of
digits, upper case letters, and lower case Letters in a
randomly generated string, and provide an explanation of
the Python code.

Listing 4.35 shows the content of bard_random_df.py that displays the
sum of the rows and columns in a DataFrame that contains randomly gener-
ated numbers.

Keep in mind that the contents of Listing 4.35 (and subsequent samples in
this chapter and Chapter 6) are presented “as-is:” the content and layout are
what you will see in Bard.

LISTING 4.35: bard_random_df.py

import pandas as pd
import numpy as np

Define number of rows and columns
nrows = 4
ncols = 5

Generate random data
np.random.seed(1)
data = np.random.randint(1, 100, size=(nrows, ncols))

Create Pandas DataFrame
df = pd.DataFrame(data)

Calculate row sums
row_sums = df.sum(axis=1)

Calculate column sums
column_sums = df.sum(axis=0)

Add row and column sums to the DataFrame
df['Row Sum'] = row_sums
df.loc['Column Sum'] = column_sums

Print the DataFrame with row and column sums
print("DataFrame with row and column sums:")
print(df)

"""
Explanation:
 Import libraries:
 We import pandas for data manipulation and numpy
for generating random numbers.
 Define parameters:
 We set the number of rows (nrows) and columns
(ncols) for the DataFrame.
 Generate random data:
 We use np.random.seed(1) to ensure reproducibility
of the random numbers.
 Then, we use np.random.randint(1, 100, size=(nrows,
ncols)) to generate an array of random integers between 1
and 100 with the specified number of rows and columns.
 Create Pandas DataFrame:
 We use pd.DataFrame(data) to convert the generated
NumPy array into a Pandas DataFrame.
 Calculate row and column sums:
 We use df.sum(axis=1) to calculate the sum of each
row and store the results in a Series object named row_sums.
 We use df.sum(axis=0) to calculate the sum of each
column and store the results in another Series object named
column_sums.
 Add row and column sums to the DataFrame:
 We add a new column named 'Row Sum' to the
DataFrame and populate it with the values in row_sums.
 We use df.loc['Column Sum'] = column_sums to add a
new row named 'Column Sum' to the DataFrame and populate it
with the values in column_sums.
 Print the DataFrame:
 We use print(df) to display the DataFrame with the
row and column sums included.

This code generates a Pandas DataFrame with randomly
generated numbers and calculates the sum of each row and
column. You can modify this code to suit your specific
needs, such as changing the range of random numbers, adding
more calculations, or customizing the DataFrame formatting.

Bard may display inaccurate info, including about people,
so double-check its responses.

"""

126  •  Google Gemini for Python: Coding with BARD

Launch the code in Listing 4.35, and you will see output that is similar to
the following output (which depends on the specific string):

DataFrame with row and column sums:
 0 1 2 3 4 Row Sum
0 38.0 13.0 73.0 10.0 76.0 210.0
1 6.0 80.0 65.0 17.0 2.0 170.0
2 77.0 72.0 7.0 26.0 51.0 233.0
3 21.0 19.0 85.0 12.0 29.0 166.0
Column Sum 142.0 184.0 230.0 65.0 158.0 NaN

Pandas DataFrame and a Bar Chart

The code sample that Bard generated in this section is based on the follow-
ing prompt:

Please generate Python code that creates a Pandas dataframe
with 4 rows and 5 columns of randomly generated numbers
and then calculates the sum of each row and the sum of
each column, as well as a bar chart with the data in the
dataframe, along with an explanation of the Python code.

Listing 4.36 shows the content of bard_random_df_barchart.py, which
displays the sum of the rows and columns in a DataFrame that contains ran-
domly generated numbers.

LISTING 4.36: bard_random_df_barchart.py

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

Define number of rows and columns
nrows = 4
ncols = 5

Generate random data
np.random.seed(1)
data = np.random.randint(1, 100, size=(nrows, ncols))

Create Pandas DataFrame
df = pd.DataFrame(data)

Calculate row and column sums
row_sums = df.sum(axis=1)
column_sums = df.sum(axis=0)

Add row and column sums to the DataFrame
df['Row Sum'] = row_sums
df.loc['Column Sum'] = column_sums

Create a bar chart

plt.figure(figsize=(10, 6))

Introduction to NumPy and Pandas  •  127

df.plot(kind='bar', stacked=False)
plt.title("Bar Chart of Random Data")
plt.xlabel("Columns")
plt.ylabel("Values")
plt.xticks(rotation=0)
plt.tight_layout()

Print the DataFrame
print("DataFrame with row and column sums:")
print(df)

Show the bar chart
plt.show()

"""
Explanation:
 Imports:
 pandas is imported to work with DataFrames.
 numpy is imported to generate random numbers.
 matplotlib.pyplot is imported to create the bar
chart.

 Define parameters:
 nrows and ncols define the number of rows and
columns in the DataFrame.

 Generate random data:
 np.random.seed(1) ensures reproducibility of the
random numbers.
 np.random.randint(1, 100, size=(nrows, ncols))
generates a NumPy array with random integers between 1 and
100, with nrows rows and ncols columns.

 Create Pandas DataFrame:
 pd.DataFrame(data) converts the NumPy array to a
Pandas DataFrame.

 Calculate row and column sums:
 df.sum(axis=1) calculates the sum of each row and
stores them in a Series object named row_sums.
 df.sum(axis=0) calculates the sum of each column
and stores them in a Series object named column_sums.

 Add sums to DataFrame:
 A new column 'Row Sum' is added to the DataFrame
with the row_sums values.
 A new row named 'Column Sum' is added to the
DataFrame with the column_sums values, using the loc
method.

 Create a bar chart:
 plt.figure(figsize=(10, 6)) sets the figure size for
the plot.

128  •  Google Gemini for Python: Coding with BARD

 df.plot(kind='bar', stacked=False) creates a bar
chart using the values in the DataFrame.
 plt.title("Bar Chart of Random Data") sets the
title of the chart.
 plt.xlabel("Columns") and plt.ylabel("Values") set
the labels for the x and y axes.
 plt.xticks(rotation=0) ensures all column labels
are visible.
 plt.tight_layout() adjusts the layout to avoid
overlapping elements.

 Print the DataFrame and show the bar chart:
 The DataFrame with row and column sums is printed.
 plt.show() displays the bar chart.
"""

Now launch the code in Listing 4.36, and you will see output that is similar
to the following output (which depends on the randomly generated values):

DataFrame with row and column sums:
 0 1 2 3 4 Row Sum
0 38.0 13.0 73.0 10.0 76.0 210.0
1 6.0 80.0 65.0 17.0 2.0 170.0
2 77.0 72.0 7.0 26.0 51.0 233.0
3 21.0 19.0 85.0 12.0 29.0 166.0
Column Sum 142.0 184.0 230.0 65.0 158.0 NaN

In addition to the preceding output, you will see the bar chart that is dis-
played in Figure 4.1.

FIGURE 4.1:  A bar chart rendered via Matplotlib

Pandas DataFrames and Statistics

The code sample that Bard generated in this section is based on the follow-
ing prompt:

Introduction to NumPy and Pandas  •  129

Please generate Python code that creates a Pandas dataframe
with 4 rows and 5 columns of randomly generated numbers and
then calculates the mean, variance, and standard deviation
of the numbers in each column of the dataframe, along with
an explanation of the Python code.

Listing 4.37 displays the content of bard_random_statistics.py that
shows the sum of the rows and columns in a DataFrame that contains ran-
domly generated numbers.

LISTING 4.37: bard_random_statistics.py

import pandas as pd
import numpy as np

Define number of rows and columns
nrows = 4
ncols = 5

Generate random data
np.random.seed(1)
data = np.random.randint(1, 100, size=(nrows, ncols))

Create Pandas DataFrame
df = pd.DataFrame(data)

Calculate descriptive statistics for each column
for col in df.columns:
 # Calculate mean, variance, and standard deviation
 mean = df[col].mean()
 variance = df[col].var()
 std_dev = df[col].std()

 # Print the results
 print(f"Column {col}:")
 print(f"\tMean: {mean:.2f}")
 print(f"\tVariance: {variance:.2f}")
 print(f"\tStandard Deviation: {std_dev:.2f}")
 print("")

"""
Explanation:
 Import libraries:
 We import pandas for data manipulation and numpy
for generating random numbers.
 Define parameters:
 We set the number of rows (nrows) and columns
(ncols) for the DataFrame.
 Generate random data:
 We use np.random.seed(1) to ensure reproducibility
of the random numbers.

130  •  Google Gemini for Python: Coding with BARD

 Then, we use np.random.randint(1, 100, size=(nrows,
ncols)) to generate an array of random integers between 1
and 100 with the specified number of rows and columns.
 Create Pandas DataFrame:
 We use pd.DataFrame(data) to convert the generated
NumPy array into a Pandas DataFrame.
 Calculate descriptive statistics for each column:
 We iterate through each column of the DataFrame
using a for loop.
 For each column, we calculate the following
descriptive statistics:
 mean: using df[col].mean()
 variance: using df[col].var()
 standard deviation: using df[col].std()
 We format the results to two decimal places and
print them.

This code will generate a Pandas DataFrame with randomly
generated numbers and then calculate the mean, variance,
and standard deviation for each column. You can modify
this code to calculate other descriptive statistics or to
perform different operations on the DataFrame.

Bard may display inaccurate info, including about people,
so double-check its responses.
"""

Now launch the code in Listing 4.37, and you will see output that is similar
to the following output (which depends on the randomly generated values):

Column 0:
	 Mean: 35.50
	 Variance: 936.33
	 Standard Deviation: 30.60

Column 1:
	 Mean: 46.00
	 Variance: 1216.67
	 Standard Deviation: 34.88

Column 2:
	 Mean: 57.50
	 Variance: 1201.00
	 Standard Deviation: 34.66

Column 3:
	 Mean: 16.25
	 Variance: 50.92
	 Standard Deviation: 7.14

Introduction to NumPy and Pandas  •  131

Column 4:
	 Mean: 39.50
	 Variance: 993.67
	 Standard Deviation: 31.52

SUMMARY

This chapter introduced you to Pandas for creating labeled DataFrames
and displaying the metadata of DataFrames. Then you learned how to create
DataFrames from various sources of data, such as random numbers and hard-
coded data values.

You also learned how to read Excel spreadsheets and perform numeric cal-
culations on that data, such as the minimum, mean, and maximum values in
numeric columns. You saw how to create DataFrames from data stored in CSV
files. Then you learned how to invoke a Web service to retrieve data and popu-
late a DataFrame with that data. In addition, you learned how to generate a
scatterplot from data in a DataFrame.

CHAPTER 5
Generative AI, Bard, and Gemini

This chapter contains information (some of which is AI-generated) about
the main features of Bard, as well as some of its competitors.

The first portion of this chapter starts with information (generated
by Bard) regarding the nature of generative AI and conversational AI ver-
sus generative AI. According to Bard, it is true that Bard itself is included in
generative AI.

The second portion of this chapter provides an overview of Gemini,
followed by an introduction to Bard and some of its features, as well as some
alternatives to Bard.

WHAT IS GENERATIVE AI?

Generative AI refers to a subset of artificial intelligence models and
techniques that are designed to generate new data samples that are similar in
nature to a given set of input data. The goal is to produce content or data that
was not part of the original training set, but is coherent, contextually relevant,
and in the same style or structure.

Generative AI is arguably unique in its ability to create and innovate with
information, as opposed to merely analyzing or classifying it. The advance-
ments in this field have led to breakthroughs in creative domains and practical
applications, making it a cutting-edge area of AI research and development.

Key Features of Generative AI

The following list contains key features of generative AI, followed by a brief
description for each item:

•	Data generation
•	Synthesis
•	Learning distributions

134  •  Google Gemini for Python: Coding with BARD

Data generation refers to the ability to create new data points that are not
part of the training data but resemble it. This can include text, images, music,
videos, or any other form of data.

Synthesis means that generative models can blend various inputs to
generate outputs that incorporate features from each input, like merging the
styles of two images.

Learning distributions means that generative AI models learn the
probability distribution of the training data so they can produce new samples
from that distribution.

Popular Techniques in Generative AI

Generative Adversarial Networks (GANs): GANs consist of two networks,
a generator and a discriminator, that are trained simultaneously. The generator
tries to produce fake data, while the discriminator tries to distinguish between
real data and fake data. Over time, the generator gets better at producing
realistic data.

Variational Autoencoders (VAEs): VAEs are probabilistic models that learn
to encode and decode data in a manner so that the encoded representations
can be used to generate new data samples.

Recurrent Neural Networks (RNNs): Used primarily for sequence
generation, such as text or music.

What Makes Generative AI Unique

Creation vs. Classification: While most traditional AI models aim to classify
input data into predefined categories, generative models aim to create new data.

Unsupervised Learning: Many generative models, especially GANs and
VAEs, operate in an unsupervised manner, meaning they do not require
labeled data for training.

Diverse Outputs: Generative models can produce a wide variety of outputs
based on learned distributions, making them ideal for tasks like art generation,
style transfer, and more.

Challenges: Generative AI poses unique challenges, such as mode collapse
in GANs or ensuring the coherence of generated content.

Furthermore, there are numerous areas that involve generative AI applica-
tions, some of which are listed in the following list:

•	Art and music creation
•	Data augmentation
•	Style transfer
•	Text generation
•	Image synthesis
•	Drug discovery

Art and music creation includes generating paintings, music, or other
forms of art.

Generative AI, Bard, and Gemini  •  135

Data augmentation involves creating additional data for training models,
especially when the original dataset is limited.

Style transfer refers to applying the style of one image to the content of another.
Text generation is a popular application of generative AI that involves creat-

ing coherent and contextually relevant text.
Image synthesis is another popular area of generative AI, and it involves

generating realistic images, faces, or even creating scenes for video games.
Drug discovery is an important facet of generative AI that pertains to gen-

erating molecular structures for new potential drugs.

CONVERSATIONAL AI VERSUS GENERATIVE AI

Both conversational AI and generative AI are prominent subfields within
the broader domain of artificial intelligence. However, these subfields have a
different focus regarding their primary objective, the technologies that they
use, and applications. Please read the following article for more information:

https://medium.com/@social_65128/differences-between-conversational-
ai-and-generative-ai-e3adca2a8e9a

The primary differences between the two subfields are in the following
sequence of points:

•	Primary objective
•	Applications
•	Technologies used
•	Training and Interaction
•	Evaluation
•	Data requirements

Primary Objective

The main goal of conversational AI is to facilitate human-like interactions
between machines and humans. This includes chatbots, virtual assistants, and
other systems that engage in dialogues with users.

The primary objective of generative AI is to create new content or data that
was not in the training set but is not necessarily similar in structure and style
to the original data. This can range from generating images, music, and text to
more complex tasks like video synthesis.

Applications

Common applications for conversational AI include customer support
chatbots, voice-operated virtual assistants (like Siri or Alexa), and interactive
voice response (IVR) systems.

There is a broad spectrum of common applications for generative AI, such
as creating art or music, generating realistic video game environments, synthe-
sizing voices, and producing realistic images or even deep fakes.

https://medium.com/@social_65128/differences-between-conversationalai-and-generative-ai-e3adca2a8e9a
https://medium.com/@social_65128/differences-between-conversationalai-and-generative-ai-e3adca2a8e9a

136  •  Google Gemini for Python: Coding with BARD

Technologies Used

Conversational AI often relies on Natural Language Processing (NLP)
techniques to understand and generate human language. This includes intent
recognition, entity extraction, and dialogue management.

Generative AI commonly utilizes Generative Adversarial Networks
(GANs), Variational Autoencoders (VAEs), and other generative models to
produce new content.

Training and Interaction

While training can be supervised, semi-supervised, or unsupervised, the
primary interaction mode for conversational AI is through back-and-forth dia-
logue or conversation.

The training process for generative AI, especially with models like GANs,
involves iterative processes where the model learns to generate data by trying
to fool a discriminator into believing the generated data is real.

Evaluation

Conversational AI evaluation metrics often revolve around understanding
and response accuracy, user satisfaction, and the fluency of generated responses.

Generative AI evaluation metrics for models like GANs can be challeng-
ing and might involve using a combination of quantitative metrics and human
judgment to assess the quality of generated content.

Data Requirements

Data requirements for conversational AI typically involve dialogue data
from conversations between humans or between humans and bots.

Data requirements for generative AI involve large datasets of the kind of
content it is supposed to generate, such as images, text, or music.

Although both conversational AI and generative AI deal with generating
outputs, their primary objectives, applications, and methodologies can differ
significantly. Conversational AI is used for interactive communication with
users, while generative AI focuses on producing new, original content.

IS GEMINI PART OF GENERATIVE AI?

Gemini is an LLM that is considered an example of generative AI. Bard
belongs to a class of models called “transformers,” which are particularly adept
at handling sequences of data, such as text-related tasks.

The following list provides various reasons why Gemini is considered gen-
erative, followed by a brief description of each item:

•	Text generation
•	Learning distributions
•	Broad applications
•	Unsupervised learning

Generative AI, Bard, and Gemini  •  137

Text Generation: These models can produce coherent, contextually relevant,
and often highly sophisticated sequences of text based on given prompts. They
generate responses that were not explicitly present in their training data but are
constructed based on the patterns and structures they learned during training.

Learning Distributions: Gemini (as well as GPT-3, GPT-4, and similar
models) learn the probability distribution of their training data. When generat-
ing text, they are essentially sampling from this learned distribution to produce
sequences that are likely based on their training.

Broad Applications: Beyond just text-based chat or conversation, these
models can be used for a variety of generative tasks like story writing, code
generation, poetry, and even creating content in specific styles or mimicking
certain authors, showcasing their generative capabilities.

Unsupervised Learning: While they can be fine-tuned with specific data-
sets, models like GPT-3 are primarily trained in an unsupervised manner on
vast amounts of text, learning to generate content without requiring explicit
labeled data for every possible response.

In essence, Google Gemini is a quintessential example of generative AI in
the realm of NLP and generation.

The next several sections briefly introduce some of the AI companies that
have a strong presence in the market.

DEEPMIND

DeepMind has made significant contributions to AI, which includes the
creation of various AI systems. DeepMind was established in 2010 and became
a subsidiary of Google 2014, and its home page is at https://deepmind.com/.

DeepMind created the 280 GB language model Gopher, which significantly
outperformed its competitors, including GPT-3, J1-Jumbo, and MT-NLG.
DeepMind also developed AlphaFold, which solved a protein folding task that
had eluded researchers for ten years in only 30 minutes. Moreover, DeepMind
made AlphaFold available for free for everyone in July 2021. DeepMind has
made significant contributions in the development of AI game systems, some
of which are discussed in the next section.

DeepMind and Games

DeepMind powers the AI systems AlphaStar, which plays StarCraft, and
AlphaGo, which defeated the best human players in Go (the game is consider-
ably more difficult than chess). These games provide “perfect information,”
whereas games with “imperfect information” (such as poker) have posed chal-
lenges for ML models.

AlphaGo Zero (the successor of AlphaGo) mastered the game through self-
play in less time and with less computing power than AlphaGo. AlphaGo Zero
exhibited extraordinary performance by defeating AlphaGo 100 - 0. Another pow-
erful system is AlphaZero, which used a self-play technique to learn to play Go,
chess, and shogi, and also achieved SOTA (State Of The Art) performance results.

https://deepmind.com/

138  •  Google Gemini for Python: Coding with BARD

By way of comparison, ML models that use tree search are well-suited for
games with perfect information. Games with imperfect information (such as
poker) involve hidden information that can be leveraged to devise counter strat-
egies to counteract the strategies of opponents. In particular, AlphaStar is capa-
ble of playing against the best players of StarCraft II, and became the first AI
to achieve SOTA results in a game that requires a highly strategic methodology.

Player of Games (PoG)

The DeepMind team at Google devised the general-purpose PoG (Player
of Games) algorithm that is based on the following techniques:

•	CFR (counterfactual regret minimization)
•	CVPN (counterfactual value-and-policy network)
•	GT-CFT (growing tree CFR)
•	CVPN

The counterfactual value-and-policy network (CVPN) is a neural network
that calculates the counterfactuals for each state belief in the game. This is
important for evaluating the different variants of the game at any given time.

Growing tree CFR (GT-CFR) is a variation of CFR that is optimized for
game-trees trees that grow over time. GT-CFR is based on two fundamental
phases, which is discussed in more detail online:

https://medium.com/syncedreview/deepminds-pog-excels-in-perfect-
and-imperfect-information-games-advancing-research-on-general-
9dbad5c04221

OPENAI

OpenAI is an AI research company that has made significant contributions to
AI, including DALL-E and Bard, and its home page is at https://openai.com/api/.

OpenAI was founded in San Francisco by Elon Musk and Sam Altman
(as well as others), and one of its stated goals is to develop AI that benefits
humanity. Given Microsoft’s massive investments in and deep alliance with
the organization, OpenAI might be viewed as an arm of Microsoft. OpenAI is
the creator of the GPT-x series of LLMs (Large Language Models), as well as
Bard, which was made available on November 30, 2022.

In addition, OpenAI developed DALL-E, which generates images from
text. OpenAI initially did not permit users to upload images that contained
realistic faces. Later (in the fourth quarter of 2022), OpenAI changed its policy
to allow users to upload faces into its online system. Check the OpenAI Web
page for more details.

OpenAI has also released a public beta of Embeddings, which is a data
format that is suitable for various types of tasks with machine learning, as
described here:

https://medium.com/syncedreview/deepminds-pog-excels-in-perfectand-imperfect-information-games-advancing-research-on-general-9dbad5c04221
https://medium.com/syncedreview/deepminds-pog-excels-in-perfectand-imperfect-information-games-advancing-research-on-general-9dbad5c04221
https://medium.com/syncedreview/deepminds-pog-excels-in-perfectand-imperfect-information-games-advancing-research-on-general-9dbad5c04221
https://openai.com/api/

Generative AI, Bard, and Gemini  •  139

https://beta.openai.com/docs/guides/embeddings

OpenAI is the creator of Codex, which provides a set of models that
were trained using NLP. The initial release of Codex was in private beta,
and more information is accessible at https://beta.openai.com/docs/engines/
instruct-series-beta.

OpenAI offers four models that are collectively called their “Instruct”
models, which support the ability of GPT-3 to generate natural language.
These models will be deprecated in early January 2024 and replaced with
updated versions of GPT-3, Bard, and GPT-4.

If you want to learn more about the features and services that OpenAI
offers, navigate to the following website: https://platform.openai.com/
overview.

COHERE

Cohere is a start-up and a competitor of OpenAI, and its home page is at
https://cohere.ai/.

Cohere develops cutting-edge NLP technology that is commercially avail-
able for multiple industries. Cohere is focused on models that perform textual
analysis instead of models for text generation (such as GPT-based models).
The founding team of Cohere is impressive: CEO Aidan Gomez is one of the
co-inventors of the transformer architecture, and CTO Nick Frost is a protege
of Geoff Hinton.

HUGGING FACE

Hugging Face is a popular community-based repository for open-source
NLP technology, and its home page is at https://github.com/huggingface.

Unlike OpenAI or Cohere, Hugging Face does not build its own NLP
models. Instead, Hugging Face is a platform that manages a plethora of open-
source NLP models that customers can fine-tune and then deploy those fine-
tuned models. Indeed, Hugging Face has become the eminent location for
people to collaborate on NLP models because of the plethora of LLMs that it
makes available to users.

Hugging Face Libraries

Hugging Face offers three important libraries: datasets, tokenizers, and
transformers. The Accelerate library supports PyTorch models. The datasets
library provides an assortment of libraries for NLP. The tokenizers library ena-
bles you to convert text data to numeric values.

Perhaps the most impressive library is the transformers library, which
provides an enormous set of pre-trained BERT-based models that can per-
form a wide variety of NLP tasks. The Github repository is available at
https://github.com/huggingface/transformers.

https://beta.openai.com/docs/guides/embeddings
https://beta.openai.com/docs/engines/instruct-series-beta
https://beta.openai.com/docs/engines/instruct-series-beta
https://cohere.ai/
https://github.com/huggingface
https://github.com/huggingface/transformers
https://platform.openai.com/overview
https://platform.openai.com/overview

140  •  Google Gemini for Python: Coding with BARD

Hugging Face Model Hub

Hugging Face provides a model hub that offers a plethora of models that
are accessible online. Moreover, the website supports online testing of its
models, which includes the following tasks:

•	Masked word completion with BERT
•	Name Entity Recognition with Electra
•	Natural Language Inference with RoBERTa
•	Question answering with DistilBERT
•	Summarization with BART
•	Text generation with GPT-2
•	Translation with T5

Navigate to the following website and follow the guidelines in order
to see the text generation capabilities of “writing with a transformer:”
https://transformer.huggingface.co.

In a subsequent chapter, you will see Python code samples that show how to
list all the available Hugging Face datasets as well as how to load a specific dataset.

AI21

AI21 is a company that provides proprietary large language models via API
to support the applications of its customers. The current SOTA model of AI21
is called Jurassic-1 (roughly the same size as GPT-3), and AI21 also creates its
own applications on top of Jurassic-1 and other models. The current applica-
tion suite of AI21 involves tools that can augment reading and writing.

Primer is an older competitor in this space, founded two years before the
invention of the transformer. The company primarily serves clients in govern-
ment and defense.

INFLECTIONAI

A newer AI company is InflectionAI, whose highly impressive founding
team includes

•	Reid Hoffman (LinkedIn)
•	DeepMind cofounder Mustafa Suleyman
•	DeepMind researcher Karen Simonyan

InflectionAI is committed to a challenging task: enabling humans to interact
with computers in much the same way that humans communicate with each other.

ANTHROPIC

Anthropic was created in 2021 by former employees of OpenAI, and its
home page is at https://www.anthropic.com/.

https://transformer.huggingface.co
https://www.anthropic.com/

Generative AI, Bard, and Gemini  •  141

Anthropic has significant financial support from an assortment of compa-
nies, including Google and Salesforce. As this book goes to print, Anthropic
released Claude 2 as a competitor to Bard.

Claude 2 has the ability to summarize as much as 75,000 words of text-
based content, whereas Bard currently has a limit of 3,000 words. Moreover,
Claude 2 achieved a score of 76.5% on portions of the bar exam and 71% in a
Python coding test. Claude 2 also has a higher rate than Bard in terms of pro-
viding “clean” responses to queries from users.

This concludes the portion of the chapter regarding the AI companies that
are making important contributions in AI. The next section provides a high-
level introduction to LLMs (large language models).

WHAT IS PROMPT ENGINEERING?

We have already discussed text generators such as GPT-3 and DALL-E 2
from OpenAI, Jurassic from AI21, and Midjourney and Stable Diffusion, which
can perform text-to-image generation. Prompt engineering refers to devising
text-based prompts that enable AI-based systems to improve the output that is
generated, which means that the output more closely matches whatever users
want to produce from AI-systems. By way of analogy, think of prompts as simi-
lar to the role of coaches: they offer advice and suggestions to help people per-
form better in their given tasks.

Since prompts are based on words, the challenge involves learning how
different words can affect the generated output. Moreover, it is difficult to
predict how systems respond to a given prompt. For instance, if you want to
generate a landscape, the difference between a dark landscape and a bright
landscape is intuitive. However, if you want a beautiful landscape, how would
an AI system generate a corresponding image? As you can surmise, concrete
words are easier than abstract or subjective words for AI systems that generate
images from text. Just to add more detail to the previous example, how would
you visualize the following images?

•	A beautiful landscape
•	A beautiful song
•	A beautiful movie

Although prompt engineering started with text-to-image generation,
there are other types of prompt engineering, such as audio-based prompts,
that interpret emphasized text and emotions that are detected in speech, and
sketch-based prompts that generate images from drawings. The most recent
focus of attention involves text-based prompts for generating videos, which
presents exciting opportunities for artists and designers. An example of image-
to-image processing is accessible online at the following site:

https://huggingface.co/spaces/fffiloni/stable-diffusion-color-sketch

https://huggingface.co/spaces/fffiloni/stable-diffusion-color-sketch

142  •  Google Gemini for Python: Coding with BARD

Prompts and Completions

A prompt is a text string that users provide to LLMs, and a completion is
the text that users receive from LLMs. Prompts assist LLMs in completing a
request (task), and they can vary in length. Although prompts can be any text
string, including a random string, the quality and structure of prompts affects
the quality of completions.

Think of prompts as a mechanism for giving “guidance” to LLMs or even
as a way to “coach” LLMs into providing desired answers. Keep in mind that
the number of tokens in a prompt plus the number of tokens in the completion
can be at most 2,048 tokens.

Types of Prompts

The following list contains well-known types prompts for LLMs:

•	zero-shot prompts
•	one-shot prompts
•	few-shot prompts
•	instruction prompts

A zero-shot prompt contains a description of a task, whereas a one-shot
prompt consists of a single example for completing a task. As you can probably
surmise, few-shot prompts consist of multiple examples (typically between 10
and 100). In all cases, a clear description of the task or tasks is recommended:
more tasks provide GPT-3 with more information, which in turn can lead to
more accurate completions.

T0 (for “zero shot”) is an interesting LLM: although T0 is 16 times smaller
(11 GB) than GPT-3 (175 GB), T0 has outperformed GPT-3 on language-
related tasks. T0 can perform well on unseen NLP tasks (i.e., tasks that are
new to T0) because it was trained on a dataset containing multiple tasks.

The following set of links provide the Github repository for T0, a Web page
for training T0 directly in a browser, and a 3 GB version of T0, respectively:

https://github.com/bigscience-workshop/t-zero

As you can probably surmise, T0++ is based on T0, and it was trained with
extra tasks beyond the set of tasks on which T0 was trained.

Here is another detail to keep in mind: the first three prompts in the
preceding list are also called zero-shot learning, one-shot learning, and
few-shot learning.

Instruction Prompts

Instruction prompts are used for fine tuning LLMs, and they specify a
format (determined by you) for the manner in which the LLM is expected to
conform in its responses. You can prepare your own instruction prompts or
you can access prompt template libraries that contain different templates for

https://github.com/bigscience-workshop/t-zero

Generative AI, Bard, and Gemini  •  143

different tasks, along with different data sets. Various prompt instruction tem-
plates are publicly available, such as the following links that provides prompt
templates for Llama:

https://github.com/devbrones/llama-prompts

https://pub.towardsai.net/llama-gpt4all-simplified-local-Bard-ab7d28d34923

Reverse Prompts

Another technique uses a reverse order: input prompts are answers,
and the responses are the questions associated with the answers (similar to
a popular game show). For example, given a French sentence, you might
ask the model, “What English text might have resulted in this French
translation?”

System Prompts Versus Agent Prompts

The distinction between a system prompt and an agent prompt often comes
up in the context of conversational AI systems and chatbot design.

A system prompt is typically an initial message or cue given by the system to
guide the user on what they can do or to set expectations about the interaction.
It often serves as an introduction or a way to guide users on how to proceed.
Here are some examples of system prompts:

•	"Welcome to ChatBotX! You can ask me questions about
weather, news, or sports. How can I assist you today?"

•	"Hello! For account details, press 1. For technical sup-
port, press 2."

•	"Greetings! Type 'order' to track your package or 'help'
for assistance."

By contrast, an agent prompt is a message generated by the AI model or
agent in response to a user’s input during the course of an interaction. It is a
part of the back-and-forth exchange within the conversation. The agent prompt
guides the user to provide more information, clarifies ambiguity, or nudges the
user towards a specific action. Here are some examples of agent prompts:

•	User: "I'm looking for shoes."
�Agent Prompt: "Great! Are you looking for men's or women's
shoes?"

•	User: "I can't log in."
�Agent Prompt: "I'm sorry to hear that. Can you specify if
you're having trouble with your password or username?"

•	User: "Tell me a joke."
	� Agent Prompt: "Why did the chicken join a band? Because
it had the drumsticks!"

https://github.com/devbrones/llama-prompts
https://pub.towardsai.net/llama-gpt4all-simplified-local-Bard-ab7d28d34923

144  •  Google Gemini for Python: Coding with BARD

The fundamental difference between the two is their purpose and place-
ment in the interaction. A system prompt is often at the beginning of an
interaction, setting the stage for the conversation. An agent prompt occurs
during the conversation, steering the direction of the dialogue based on user
input.

Both types of prompts are crucial for creating a fluid and intuitive conver-
sational experience for users. They guide the user and help ensure that the
system understands and addresses the user’s needs effectively.

Prompt Templates

Prompt templates are predefined formats or structures used to instruct a
model or system to perform a specific task. They serve as a foundation for
generating prompts, where certain parts of the template can be filled in or
customized to produce a variety of specific prompts. By way of analogy, prompt
templates are the counterpart to macros that you can define in some text
editors.

Prompt templates are especially useful when working with language mod-
els, as they provide a consistent way to query the model across multiple tasks
or data points. In particular, prompt templates can make it easier to

•	ensure consistency when querying a model multiple times
•	facilitate batch processing or automation
•	reduce errors and variations in how questions are posed to the model

As an example, suppose you’re working with an LLM and you want to
translate English sentences into French. An associated prompt template could
be the following:

“Translate the following English sentence into French: {sentence}”
Note that {sentence} is a placeholder that you can replace with any English

sentence.
You can use the preceding prompt template to generate specific prompts:

•	“Translate the following English sentence into French: ‘Hello,
how are you?’”

•	“Translate the following English sentence into French: ‘I love ice cream.’”

As you can see, prompt templates enable you to easily generate a variety of
prompts for different sentences without having to rewrite the entire instruc-
tion each time. In fact, this concept can be extended to more complex tasks and
can incorporate multiple placeholders or more intricate structures, depending
on the application.

Poorly-Worded Prompts

When crafting prompts, it is crucial to be as clear and specific as possible
to guide the response in the desired direction. Ambiguous or vague prompts

Generative AI, Bard, and Gemini  •  145

can lead to a wide range of responses, many of which might not be useful or
relevant to the user’s actual intent.

Moreover, poorly-worded prompts are often vague, ambiguous, or too
broad, and they can lead to confusion, misunderstanding, or non-specific
responses from AI models. Here is a list of examples of poorly-worded
prompts:

“Tell me about that thing.”
Problem: Too vague. What “thing” is being referred to?

“Why did it happen?”
Problem: No context. What event or situation is being discussed?

“Explain stuff.”
Problem: Too broad. What specific “stuff” should be explained?

“Do what is needful.”
Problem: Ambiguous. What specific action is required?

“I want information.”
Problem: Not specific. What type of information is desired?

“Can you get me the thing from the place?”
Problem: Both “thing” and “place” are unclear.

“Can you tell me about ‘What’s-his-name’s’ book?”
Problem: Ambiguous reference. Who is “his?”

“How do you do the process?”
Problem: Which “process” is being referred to?

“Describe the importance of the topic.”
Problem: The “topic” is not specified.

“Why is it bad or good?”
Problem: No context. What is “it”?

“Help with the issue.”
Problem: Vague. What specific issue is being faced?

“Things to consider for the task.”
Problem: Ambiguous. What “task” is being discussed?

“How does this work?”
Problem: Lack of specificity. What is “this?”

146  •  Google Gemini for Python: Coding with BARD

WHAT IS GEMINI?

Gemini is the most advanced LLM from Google and is the foundation for
Bard. Google plans to integrate Gemini into some of its other products, such
as YouTube and Google Search.

Gemini is available in three sizes: Nano for mobile devices (such as Pixel 8),
Pro for Bard, and Ultra, the most sophisticated of the three models (which will
be available next year).

Gemini is a multimodal LLM that can process various types of input,
including text, code, audio, images, and videos. Gemini generated some of the
Python code samples in Chapters 3 and 4, as well as all the Python code sam-
ples in Chapter 6. However, some of the multimodal features of Gemini will
become available at a later point in time. Gemini also sometimes suffers from
so-called “hallucinations,” which is common for LLMs.

Gemini Ultra Versus GPT-4

Google performed a comparison of Gemini Ultra and GPT-4 from
OpenAI, and Ultra outperformed GPT-4 on seven of eight text-based tests.
Moreover, Ultra outperformed GPT-4 on ten out of ten multimodal tests.
In many cases, Ultra outperformed GPT-4 by a fairly small margin, which
means that both LLMs are competitive in terms of functionality. Note that
thus far Google has not provided a comparison of Gemini Pro or Gemini
Nano with GPT-4.

Gemini Strengths

As you probably expected, Gemini has strengths and weaknesses, just
like any other LLM. This section provides a brief description of the major
strengths of Gemini.

1.	 Accuracy and factuality: Bard was trained on a massive dataset of
text and code, including factual information from Google Search.
This allows it to provide accurate and reliable answers to factual
questions.

2.	 Comprehensiveness: Bard provides more comprehensive and detailed an-
swers than other large language models. It retrieves relevant information
from its database and presents it in a clear and concise manner.

3.	 User-friendly interface: Bard has a user-friendly interface that is easy to
navigate and use. It allows users to edit their questions, upvote and down-
vote responses, and search for information on the Web.

4.	 Multiple response formats: Bard can generate text in various formats,
including poems, code, scripts, musical pieces, emails, and letters. This
makes it versatile and adaptable to different tasks.

5.	 Free to use: Bard is currently free to use, which makes it accessible to a
wide audience.

Generative AI, Bard, and Gemini  •  147

Gemini’s Weaknesses

The previous section discusses the strengths of Gemini, whereas this
section provides a brief description of the major weaknesses of Gemini.

1.	 Creativity: While Bard can generate creative text formats, it sometimes
lacks originality and can be repetitive. It struggles with tasks that require
a high level of imagination and out-of-the-box thinking.

2.	 Conversational flow: Bard can be unnatural in conversations. Its re-
sponses may not always flow smoothly or follow the context of the
conversation.

3.	 Technical knowledge: Although trained on a massive dataset, Bard can
struggle with technical questions or tasks that require specialized knowl-
edge in specific domains.

4.	 Limited integrations: Compared to ChatGPT, Bard has fewer inte-
grations with other apps and services. This limits its functionality
and flexibility.

5.	 Limited customizability: Users currently have limited options to custom-
ize Bard’s behavior or preferences.

Gemini Nano on Mobile Devices

Gemini Nano has features such as grammar correction, proofreading, and
text summarization. Moreover, a software update for the Android Pixel 8 Pro is
available to provide access to Gemini Nano on mobile devices. Other features
will be supported on mobile devices in the coming months.

Google has also created Android AICore, which is a system service that
provides access to Nano on Android devices. This service supports improved
safety and model management in a manner that makes it easier for you to
incorporate AI into Android devices.

WHAT IS BARD?

Bard has been updated with Gemini Pro, which is one of the three
Gemini LLMs that are available from Google. Navigate to the following URL
to access Bard:

https://bard.google.com/chat/2d66dfbbf91ab734

Currently, Bard is not multimodal: it only supports text prompts. Moreover,
Bard is only available in English, which will be expanded at a later date.

Gemini Pro is now available for cloud-based services, such as Google AI
Studio as well as Google Cloud Vertex AI: navigate to their respective home
pages for additional details. Google says it aims to add Gemini Ultra to Bard
in 2024. It will be able to handle different modal types, from images to audio,
and will “think more carefully before answering” tricky questions. This version
will be called Bard Advanced.

https://bard.google.com/chat/2d66dfbbf91ab734

148  •  Google Gemini for Python: Coding with BARD

Gemini Pro in Google Bard is free and does not require any payment
or credit system to use. Likewise, the Gemini Nano came to the Pixel 8 Pro
smartphone in a free update.

It is possible that Google will charge for Gemini Ultra given its more pow-
erful capabilities, in a similar way to how OpenAI charges $20 a month for
access to ChatGPT Plus. Thus far, there has been no official statement about
this from Google: periodically check online for any updates from Google.

In terms of functionality, Bard can perform a multitude of tasks, some of
which are listed below:

•	write poetry
•	write essays
•	write code
•	role play
•	reject inappropriate requests

Bard also provides “prompt replies,” which are examples of what you can
ask Bard.

SAMPLE QUERIES AND RESPONSES FROM BARD

The following section has five examples of various queries submitted to
Bard, followed by the detailed response from Bard.

EXAMPLE 1

User: Many people think that AI is dangerous. What do you think?
Bard: Whether AI is dangerous is a complex question with no easy answer.

There are valid arguments on both sides of the debate.

Potential dangers of AI:

•	Job displacement: As AI becomes more sophisticated, it has the poten-
tial to automate many tasks currently performed by humans, leading to
widespread job losses. This could have significant social and economic
consequences.

•	Bias and discrimination: AI systems can inherit and amplify biases pre-
sent in the data they are trained on. This could lead to discriminatory out-
comes, particularly in areas like law enforcement, credit scoring, and hiring.

•	Autonomous weapons: The development of autonomous weapons sys-
tems that can operate without human intervention raises ethical and se-
curity concerns. These weapons could be used for malicious purposes or
malfunction with devastating consequences.

•	Loss of control: As AI systems become more complex and powerful, it
is possible that we may lose control over them. This could lead to unin-
tended consequences or even catastrophic outcomes.

Generative AI, Bard, and Gemini  •  149

Benefits and potential for good of AI:

•	Solving global challenges: AI can be used to address some of the
world’s most pressing challenges, such as climate change, poverty, and
disease. By automating tasks and analyzing large datasets, AI can help us
to find more efficient and effective solutions.

•	Improving healthcare: AI has the potential to revolutionize health-
care by providing more accurate diagnoses, personalized treatments,
and improved patient care. AI can also be used to develop new drugs
and therapies.

•	Enhancing human capabilities: AI can be used to augment human
intelligence and capabilities in various areas, such as education, research,
and creative endeavors. This can lead to breakthroughs and innovations
that would not be possible without AI.

•	Economic prosperity: AI can drive economic growth and create new
industries and jobs. By automating tasks and improving efficiency, AI can
help businesses to be more productive and competitive.

Ultimately, whether AI is dangerous or beneficial depends on how it is
developed and used. It is important to ensure that AI is developed responsibly
and ethically, with safeguards in place to mitigate potential risks. We must also
be mindful of the potential benefits of AI and work to ensure that it is used for
the betterment of humanity.

It is important to consider the various perspectives on this issue and to
engage in open and informed discussion about the future of AI. By working
together, we can ensure that AI is used for good and not for harm.

EXAMPLE 2

Here is another example of a query submitted to Bard-3, followed by its
detailed response:

User: What are some ways in which you can improve the accuracy of your
responses to queries?

Bard: There are several ways to improve the accuracy of my responses to
queries:

Data:

•	Larger and more diverse datasets: Training on larger and more di-
verse datasets exposes me to a wider variety of language and information,
improving my ability to generalize and generate accurate responses.

•	Higher quality data: Focusing on data that is accurate, consistent, and
relevant to specific tasks can significantly enhance my performance.

•	Domain-specific data: Fine-tuning my training on datasets related to
specific domains allows me to become an expert in those areas and pro-
vide more accurate and relevant responses.

150  •  Google Gemini for Python: Coding with BARD

Model Architecture:

•	More complex models: Utilizing more sophisticated neural network ar-
chitectures with greater depth and capacity can enable me to learn more
complex relationships and generate more accurate outputs.

•	Ensemble models: Combining predictions from multiple models can
help to reduce bias and improve overall accuracy.

•	Model regularization techniques: Techniques like dropout and
weight decay can prevent overfitting and improve the generalizability of
the model.

Training and Optimization:

•	Transfer learning: Leveraging knowledge gained from pre-trained
models on large datasets can significantly accelerate my learning process
and improve performance on new tasks.

•	Multi-task learning: Training me on multiple related tasks simultane-
ously can help me to learn more generalizable representations and im-
prove performance across all tasks.

•	Active learning: Focusing on learning from the most informative exam-
ples can significantly improve the efficiency and accuracy of the training
process.

Evaluation and Feedback:

•	Human evaluation: Regularly evaluating my responses through human
feedback allows me to identify areas for improvement and prioritize the
development of new capabilities.

•	Error analysis: Analyzing common errors I make helps me to under-
stand the causes of those errors and develop strategies to avoid them in
the future.

•	Explainability and interpretability: Developing techniques to explain
my reasoning and the rationale behind my responses can help me to build
trust and gain user confidence in my accuracy.

By continuously incorporating these strategies and advancements in AI and
language modeling, I can strive to provide increasingly accurate and informa-
tive responses to your queries.

EXAMPLE 3

User: Can you give an example of an odd perfect number?
Bard: Unfortunately, it is not known whether odd perfect numbers exist.

While there are infinitely many even perfect numbers, the existence of odd
perfect numbers remains a mathematical problem with no confirmed solution.

Generative AI, Bard, and Gemini  •  151

Despite extensive research, no odd perfect number has been found yet.
Mathematicians have proven several key properties related to odd perfect
numbers, which provide some clues about their potential existence:

•	Odd perfect numbers must be greater than 10^1500. This means
that if an odd perfect number exists, it must be a very large number.

•	Odd perfect numbers are not divisible by 105. This eliminates a
large number of potential candidates from the search.

•	Odd perfect numbers must have the form N ≡ 1 (mod 12) or
N ≡ 117 (mod 468) or N ≡ 81 (mod 324). These congruences provide
further restrictions on the possible forms of an odd perfect number.

While these properties offer valuable information, they haven’t led to a
definitive answer about the existence of odd perfect numbers. The search for
them continues to be an active area of research in mathematics.

If you’re interested in learning more about this fascinating mathematical
problem, I encourage you to explore additional resources on odd perfect num-
bers. Here are some links that might be helpful:

•	Wikipedia article on odd perfect numbers: https://en.wikipedia.org/
wiki/Perfect_number

•	MathWorld article on odd perfect numbers: https://reference.wolf-
ram.com/language/ref/PerfectNumber.html

•	Numberphile video on odd perfect numbers: https://m.youtube.
com/watch?v=0p1QsPRJcAU

I hope this information is helpful!

EXAMPLE 4

User: Can you provide a proof of Goldbach’s conjecture?
Bard: Unfortunately, I cannot provide a complete proof of Goldbach’s
Conjecture at this time. While significant progress has been made towards
proving it, a full and definitive proof remains elusive.

However, I can offer some information about the conjecture itself and the
progress made towards proving it:

Goldbach’s Conjecture: Every even integer greater than 2 can be
expressed as the sum of two prime numbers.

Progress towards a proof:

•	Weak Goldbach’s Conjecture: Every odd integer greater than 5 can be
expressed as the sum of three prime numbers. This was proven by Harald
Helfgott in 2013.

https://en.wikipedia.org/wiki/Perfect_number
https://en.wikipedia.org/wiki/Perfect_number
https://reference.wolfram.com/language/ref/PerfectNumber.html
https://reference.wolfram.com/language/ref/PerfectNumber.html
https://m.youtube.com/watch?v=0p1QsPRJcAU
https://m.youtube.com/watch?v=0p1QsPRJcAU

152  •  Google Gemini for Python: Coding with BARD

•	Vinogradov’s Theorem: This theorem, proven in 1937, provided sig-
nificant insights into the distribution of prime numbers and paved the
way for further advancements in understanding Goldbach’s Conjecture.

•	Chen Jingrun’s Theorem: This theorem, proven in 1966, showed that
every sufficiently large even number can be expressed as the sum of a
prime and the product of two primes.

•	Improvements on Chen’s Theorem: Numerous refinements and
improvements have been made on Chen’s Theorem, pushing the lower
bound for sufficiently large even numbers even further.

Despite these advancements, complete proof for Goldbach’s Conjecture
still remains an open problem in mathematics. The complexity of the conjec-
ture and the vastness of the number system make it an extremely challenging
problem to tackle.

Here are some resources where you can find more information about
Goldbach’s Conjecture and the progress towards a proof:

•	Wikipedia article on Goldbach’s Conjecture: https://simple.wikipe-
dia.org/wiki/Goldbach%27s_conjecture

•	MathWorld article on Goldbach’s Conjecture: https://resources.wolf-
ramcloud.com/FunctionRepository/resources/Goldbach/

•	Numberphile video on Goldbach’s Conjecture: https://m.youtube.
com/watch?v=MxiTG96QOxw

While I cannot offer a complete proof at this time, I hope this information
provides some insight into the fascinating world of Goldbach’s Conjecture and
the ongoing efforts to solve it.

EXAMPLE 5

User: Is there life after death, and how does it compare with life on Earth?
Bard: The question of life after death is a profound one that has been pondered
by humanity for millennia. There is no scientific consensus on the matter, as
it is not something that can be directly observed or measured. However, vari-
ous religions and philosophical perspectives offer different beliefs and theories
about what, if anything, might exist beyond our physical lives.

Here are some of the major perspectives on life after death:

Religious Perspectives:

•	Abrahamic Religions: Christianity, Islam, and Judaism all believe in
some form of afterlife, where individuals are judged based on their ac-
tions in this life and rewarded or punished accordingly. The specific de-
tails of these afterlife realms vary across these religions.

•	Eastern Religions: Hinduism, Buddhism, and Jainism believe in re-
incarnation, where the soul is reborn into another physical body after

https://simple.wikipedia.org/wiki/Goldbach%27s_conjecture
https://simple.wikipedia.org/wiki/Goldbach%27s_conjecture
https://resources.wolframcloud.com/FunctionRepository/resources/Goldbach/
https://resources.wolframcloud.com/FunctionRepository/resources/Goldbach/
https://m.youtube.com/watch?v=MxiTG96QOxw
https://m.youtube.com/watch?v=MxiTG96QOxw

Generative AI, Bard, and Gemini  •  153

death. The karma accumulated in previous lives determines the nature
of the next life.

•	Indigenous Religions: Many indigenous cultures around the world
hold diverse beliefs about the afterlife, often involving the continuation
of the spirit in a spiritual world or the interconnectedness of the living
and the dead.

Philosophical Perspectives:

•	Materialism: This view holds that consciousness is a product of the brain
and ceases to exist after death. Therefore, there is no life after death in
the traditional sense.

•	Dualism: This view suggests that the mind and body are separate enti-
ties, with the mind potentially surviving the death of the body. This opens
the possibility for some form of afterlife.

•	Near-Death Experiences (NDEs): Some people who have had NDEs
report experiencing a sense of peace, out-of-body experiences, and en-
counters with deceased loved ones. These experiences are often cited as
evidence of an afterlife, but they can also be explained by physiological or
psychological factors.

It is important to note that these are just a few of the many perspectives on
life after death. Ultimately, the question of what, if anything, lies beyond our
physical lives remains a mystery.

Comparing life after death with life on Earth is difficult, as we lack con-
crete information about what the afterlife might be like. However, based on
various beliefs and theories, some potential differences include:

•	Immateriality: In some afterlife scenarios, individuals may exist as non-
corporeal beings, free from the limitations of a physical body.

•	Timelessness: Time may not exist in the same way as it does on Earth,
possibly allowing for experiences outside of our linear perception of time.

•	Knowledge and Understanding: The afterlife may provide access to
greater knowledge and understanding of the universe and ourselves.

•	Connections with Deceased Loved Ones: Some beliefs suggest the
possibility of reuniting with deceased loved ones in the afterlife.

Ultimately, the question of life after death is a personal one. Each indi-
vidual must decide for themselves what they believe based on their own values,
experiences, and understanding of the world.

It is important to respect diverse perspectives on this sensitive topic and
avoid making claims of absolute certainty. While we may never have definitive
answers about life after death, the continued exploration of this question can
provide comfort, hope, and a sense of purpose for many.

Bard may display inaccurate info, including about people, so double-check
its responses. Your privacy & Bard.

154  •  Google Gemini for Python: Coding with BARD

	� As you can see from the preceding examples, Bard provides impressive
and accurate responses to queries in a manner that surpasses many
chatbots of recent years. However, it is still possible to confound this Bard
(which is true of other chatbots as well).

ALTERNATIVES TO BARD

There are several alternatives to Bard that offer a similar set of features,
some of which are listed below:

•	Bing Chat
•	ChatGPT/GPT4
•	Jasper
•	PaLM (Google)
•	Pi
•	POE (LinkedIn)
•	Replika
•	WriteSonic
•	YouChat

The following subsections discuss some (but not all) of the Bard alterna-
tives in the preceding list.

YouChat

One alternative to Bard is YouChat, which is part of the search engine you.
com. It is accessible at https://you.com/.

Richard Socher, who is well known in the ML community for his many con-
tributions, is the creator of you.com. According to Socher, YouChat is a search
engine that can provide the usual search-related functionality, as well as the
ability to search the Web to obtain more information and provide responses to
queries from users.

Another competitor is POE from LinkedIn, and you can create a free
account at https://poe.com/login.

Pi from Inflection

Pi is a chatbot developed by Inflection, which is a company that was started
by Mustafa Suleyman, who is also the founder of DeepMind. Pi is accessible at
https://pi.ai/talk. More information about Pi can be found online:

https://medium.com/@ignacio.de.gregorio.noblejas/meet-pi-Bards-newest-
rival-and-the-most-human-ai-in-the-world-367b461c0af1

The development team used Reinforcement Learning from Human
Feedback (RLHF) in order to train this chatbot:

NOTE

https://you.com/
https://poe.com/login
https://pi.ai/talk
https://medium.com/@ignacio.de.gregorio.noblejas/meet-pi-Bards-newestrival-and-the-most-human-ai-in-the-world-367b461c0af1
https://medium.com/@ignacio.de.gregorio.noblejas/meet-pi-Bards-newestrival-and-the-most-human-ai-in-the-world-367b461c0af1
http://you.com
http://you.com
http://you.com

Generative AI, Bard, and Gemini  •  155

https://medium.com/@ignacio.de.gregorio.noblejas/meet-pi-chatgpts-
newest-rival-and-the-most-human-ai-in-the-world-367b461c0af1

Shortly after the release of ChatGPT on November 30, 2022, there was a
flurry of activity among various companies to release a competitor to ChatGPT,
which arguably are also competitors to Bard, some of which are listed below:

•	CoPilot (Microsoft)
•	Codex (OpenAI)
•	Apple GPT (Apple)
•	Claude 2 (Anthropic)
•	Llama-2 (Meta)

The following subsections contain additional details regarding the LLMs in
the preceding list.

CoPilot (OpenAI/Microsoft)

Microsoft CoPilot is a Visual Studio Code extension that is also powered by
GPT-4. GitHub CoPilot is already known for its ability to generate blocks of
code within the context of a program. In addition, Microsoft is also developing
Microsoft 365 CoPilot, whose availability date has not been announced as of
mid-2023.

However, Microsoft has provided early demos that show some of the capa-
bilities of Microsoft 365 CoPilot, which includes automating tasks such as

•	writing emails
•	summarizing meetings
•	making PowerPoint presentations

Microsoft 365 CoPilot can analyze data in Excel spreadsheets, insert
AI-generated images in PowerPoint, and generate drafts of cover letters.
Microsoft has also integrated Microsoft 365 CoPilot into some of its existing
products, such as Loop and OneNote.

According to the following article, Microsoft intends to charge $30 per
month for Office 365 Copilot:

https://www.extremetech.com/extreme/microsoft-to-charge-30-per-month-
for-ai-powered-office-apps

Copilot was reverse engineered in late 2022, which is described online:

https://thakkarparth007.github.io/copilot-explorer/posts/copilot-internals

The following article shows you how to create a GPT-3 application that uses
NextJS, React, and CoPilot:

https://github.blog/2023-07-25-how-to-build-a-gpt-3-app-with-nextjs-
react-and-github-copilot/

https://medium.com/@ignacio.de.gregorio.noblejas/meet-pi-chatgptsnewest-rival-and-the-most-human-ai-in-the-world-367b461c0af1
https://medium.com/@ignacio.de.gregorio.noblejas/meet-pi-chatgptsnewest-rival-and-the-most-human-ai-in-the-world-367b461c0af1
https://www.extremetech.com/extreme/microsoft-to-charge-30-per-monthfor-ai-powered-office-apps
https://www.extremetech.com/extreme/microsoft-to-charge-30-per-monthfor-ai-powered-office-apps
https://thakkarparth007.github.io/copilot-explorer/posts/copilot-internals
https://github.blog/2023-07-25-how-to-build-a-gpt-3-app-with-nextjsreact-and-github-copilot/
https://github.blog/2023-07-25-how-to-build-a-gpt-3-app-with-nextjsreact-and-github-copilot/

156  •  Google Gemini for Python: Coding with BARD

Codex (OpenAI)

OpenAI Codex is a fine-tuned GPT3-based LLM that generates code
from text. Codex powers GitHub Copilot (discussed in the preceding section).
Codex was trained on more than 150 GB of Python code that was obtained
from more than 50 million GitHub repositories.

According to OpenAI, the primary purpose of Codex is to accelerate
human programming, and it can complete almost 40% of requests. Codex
tends to work quite well for generating code for solving simple tasks. Navigate
to the Codex home page to obtain more information: https://openai.com/blog/
openai-codex.

Apple GPT

In mid-2023, Apple announced Apple GPT, which is a competitor to Bard
from OpenAI. The actual release date was projected to be 2024. “Apple GPT”
is the current name for a product that is intended to compete with Google
Bard, OpenAI Bard, and Microsoft Bing AI.

In brief, the LLM PaLM 2 powers Google Bard, and GPT-4 powers Bard
as well as Bing Chat, whereas Ajax is what powers Apple GPT. Ajax is based
on Jax from Google, and the name Ajax is a clever concatenation (“Apple Jax,”
perhaps?).

Claude 2

Anthropic created the LLM Claude 2. Claude 2 can not only answer que-
ries about specific topics, but can also perform searches that involve multiple
documents, summarize documents, create documents, and generate code.

Claude 2 is an improvement on Anthropic’s predecessor Claude 1.3, and it
can ingest entire books as well as generate code based on prompts from users.
Claude 2 appears to be comparable with its rivals Bard and GPT-4 in terms of
competing functionality.

Claude 2 supports a context window of 100,000 tokens. Moreover, Claude 2
was trained on data as recent as early 2023, whereas Bard was trained on data
up until 2021. However, Claude 2 cannot search the Web (unlike its competi-
tor GPT-4). Stay tuned to Anthropic, where you will probably see more good
things in the LLM space.

SUMMARY

This chapter started with a discussion of generative AI, along with some
of the major companies in this arena, such as Google, OpenAI, Cohere, and
Hugging Face.

In addition, you learned about prompt engineering, which addresses the
various ways that you can design the content of the prompts that you provide
to an LLM.

Next, you learned about Google Gemini and some of its features, and read
a brief comparison of Gemini Ultra with GPT-4 from OpenAI.

https://openai.com/blog/openai-codex
https://openai.com/blog/openai-codex

CHAPTER 6
Bard and Python Code

This chapter contains examples of using Bard to perform an eclectic mix
of Python tasks, from generating Python code to scrape Web pages to
generating code to calculate probabilities involved in throwing two or

more dice. Bard generated all the code samples in this chapter. You can also
submit your own prompts for Bard at this Web site:

https://bard.google.com/chat

https://blog.google/products/bard/google-bard-try-gemini-ai/

The first part of this chapter starts with details about uploading CSV files
to Bard, along with Python code for handling text files and scraping Web
sites.

The second part of this chapter contains Python code for creating a basic
chatbot and performing data visualization. In addition, you will learn how to
generate random numbers using Pandas.

The third part of this chapter introduces you to Fibonacci numbers, OOP
(object-oriented programming), asynchronous programming, and how to work
with the requests library in Python.

The fourth part of this chapter shows you how to use PIL for processing
images and handling exceptions and includes an introduction to generators
and decorators in Python. The final section of this chapter shows you how to
calculate the probability of obtaining a certain number when rolling two, three,
or four fair dice.

In general, the prompts that are used to generate the Python code samples
have the following format:

Please generate Python code to render a [specific-graph-
name], along with an explanation of the Python code.

https://bard.google.com/chat
https://blog.google/products/bard/google-bard-try-gemini-ai/

158  •  Google Gemini for Python: Coding with BARD

The prompts are very simple. They are a starting point, after which you can
learn how to create more complex prompts for Bard.

CSV FILES FOR BARD

This section shows you how to make a CSV file available for Bard to gen-
erate Pandas and Python code samples. The following prompt asks Bard for
information regarding how to upload a CSV file:

EXAMPLE 1

User: “How can I upload a CSV file?”
Bard: Unfortunately, I can’t directly upload files or interact with external

systems like websites or databases. However, I can help you with the general
steps on how to upload a CSV file, depending on your specific situation.

To help me provide the most relevant information, please tell me:
Where are you trying to upload the CSV file? Is it a specific website, appli-

cation, or software?
What platform are you using? Are you on a desktop computer, mobile

device, or web browser?
Once I have this information, I can provide you with specific instructions

on how to upload your CSV file.

EXAMPLE 2

User: “I would like to upload a CSV file from my laptop that you can use in
order to generate Pandas code and Python code.”

Bard: I’d be happy to help you with that! To generate Pandas and Python
code from your CSV file, I need access to the data within the file. Here are a
few ways you can share your CSV data with me:

1.	 Copy and paste the data:
		 If your CSV file is small and the data fits comfortably in your clipboard,

you can simply copy and paste the entire contents of the file into the chat
box.

2.	 Upload the CSV file to a cloud storage service:
		 You can upload your CSV file to a cloud storage service like Google Drive

or Dropbox and share the public link with me.
3.	 Provide a link to the CSV file online:

		 If your CSV file is publicly accessible online, you can simply share the
URL with me.

Once you have shared the data with me, I will be able to generate the
requested Pandas and Python code. Please specify any additional infor-
mation you want me to consider when generating the code, such as:

Bard and Python Code  •  159

What kind of analysis are you trying to perform?
Are there any specific columns or rows you want to focus on?
What specific functionalities do you want the code to have?
The more information you provide, the better I can tailor the code to

your specific needs.

The next section contains an example of Python code that Bard generated
to scrape the contents of a Web page.

SIMPLE WEB SCRAPING

The Python code for the code sample in this section was generated via the
following prompt for Bard:

Please generate Python code for scraping a Web page, along
with an explanation of the Python code.

Listing 6.1 displays the content of bard_web_scraping.py that Bard
generated to perform Web scraping.

	� Make sure you have installed the libraries BeautifulSoup and requests,
which you can perform from the command line as follows:

pip3 install bs4
pip3 install requests

LISTING 6.1: bard_web_scraping.py

import requests
from bs4 import BeautifulSoup

def scrape_titles(url):
 response = requests.get(url)
 soup = BeautifulSoup(response.content, 'html.parser')

 titles = []
 for title in soup.find_all('h2', class_='article-
title'):
 titles.append(title.text)

 return titles

Usage
titles = scrape_titles('https://dummywebsite.com/
articles')
print(titles)

Listing 6.1 starts by importing requests and BeautifulSoup, followed
by the function scrap_titles() that scrapes the contents of a given URL.
This function initializes the variable response with the result of invoking the

NOTE

160  •  Google Gemini for Python: Coding with BARD

get() method with a given URL. Next, this function initializes the variable
soup with the parsed contents of response.content.

The second part of this function contains a loop that iterates through all the
<h2> HTML tags that also have a class attribute equal to article-title.
For each such item, the text of the item is appended to the Python variable
titles, which is initialized as an empty Python list. When the loop has com-
pleted, the code returns the variable titles, which consists of titles listed on
the Web site.

The final portion of Listing 6.1 initializes the variable titles with the result
of invoking scrape_titles() with a fictitious URL and then displays the
result. Replace the fictitious URL with a valid URL, uncomment the final code
snippets, and then check the generated output.

BASIC CHATBOT

The Python code for the code sample in this section was generated via the
following prompt for Bard:

Please generate Python code for a basic chatbot, along with
an explanation of the Python code.

Listing 6.2 displays the content of bard_basic_chatbot.py that Bard
generated to perform Web scraping.

LISTING 6.2: bard_basic_chatbot.py

from bs4 import BeautifulSoup

def chatbot_response(text):
 responses = {
 'hello': 'Hi there!',
 'how are you': 'I am fine, thank you!',
 'bye': 'Goodbye!',
 }

 return responses.get(text.lower(), 'I am sorry, I do
not understand that.')

Usage
response = chatbot_response('Hello')
print(response) # Output: Hi there!

Listing 6.2 starts by importing BeautifulSoup, followed by the function
chatbot_responses() that initializes the variable responses as a Python
dictionary. The final portion of this function issues a return statement that
converts the variable text to lowercase, and then the value associated with this
lowercase string in the responses dictionary. If the string is not found, then a
disclaimer type of message is returned.

Bard and Python Code  •  161

The final portion of Listing 6.2 invokes the function chatbot_response()
with the string Hello, which is a key in the responses dictionary. Launch the
code in Listing 6.2, and you will see the output Hi there!., which is the value
associated with the key Hello in the responses dictionary.

BASIC DATA VISUALIZATION

The Python code for the code sample in this section was generated via the
following prompt for Bard:

Please generate Python code for a simple data visualization,
along with an explanation of the Python code.

Listing 6.3 displays the content of bard_basic_visualization.py that
Bard generated to perform simple data visualization.

	� For this task, you will need to have the matplotlib library installed as
follows:

pip3 install matplotlib

LISTING 6.3: bard_basic_visualization.py

Here's Python code for a simple data visualization using
the Matplotlib library:
import matplotlib.pyplot as plt

Sample data
years = [2018, 2019, 2020, 2021, 2022]
temperatures = [14.5, 15.2, 16.1, 17.3, 18.2]

Create the plot
plt.plot(years, temperatures)

Add labels and title
plt.xlabel("Year")
plt.ylabel("Average Temperature (°C)")
plt.title("Average Temperature in a City from 2018 to
2022")

Show the plot
plt.show()

"""
Explanation:
 Import library:
 We import the matplotlib.pyplot library as plt for
convenience.

NOTE

162  •  Google Gemini for Python: Coding with BARD

 Sample data:
 We define two lists:
 years: A list of years from 2018 to 2022.
 temperatures: A list of average annual
temperatures for the corresponding years.

 Create the plot:
 plt.plot(years, temperatures) creates a line plot
with years on the x-axis and temperatures on the y-axis.

 Add labels and title:
 We use plt.xlabel, plt.ylabel, and plt.title to add
descriptive labels and a title to the plot.

 Show the plot:
 Finally, plt.show displays the generated plot on
the screen.

This code creates a basic line plot with minimal
formatting. Matplotlib offers various customization options
for further enhancing visualizations, such as:

 Changing plot styles and colors
 Adding grid lines and legend
 Adjusting axis limits and tick marks
 Creating different types of charts like bar charts,
scatter plots, and pie charts

You can explore the extensive Matplotlib documentation for
more information and tutorials on creating more complex and
visually appealing data visualizations.
"""

Launch the code in Listing 6.3, and you will see the line graph shown in
Figure 6.1.

FIGURE 6.1  A line graph rendered via Matplotlib

Bard and Python Code  •  163

BASIC PANDAS

Pandas is a powerful library for data manipulation. Be sure to install Pandas
via the following command from the command line:

pip3 install pandas

The Python code for the code sample in this section was generated via the
following prompt for Bard:

Please generate Python code to read a CSV file and then use
Pandas in order to compute the mean of a column in the CSV
file, along with an explanation of the Python code.

Listing 6.4 displays the content of bard_basic_pandas.py that Bard
generated to read the contents of a CSV file and then compute the mean of a
column in a subset of the rows of data.

LISTING 6.4: bard_basic_pandas.py

Python Code for Calculating Mean of a CSV Column with
Pandas
import pandas as pd

Define the CSV file path
file_path = "your_file_path.csv"
file_path = "titanic.csv"

Read the CSV file into a Pandas DataFrame
df = pd.read_csv(file_path)

Choose the column to calculate the mean of
column_name = "your_column_name"
column_name = "age"

Calculate the mean of the chosen column
mean = df[column_name].mean()

Print the result
print(f"Mean of '{column_name}': {mean}")

"""
Explanation:

 Import library:
 We import the pandas library as pd for convenience.

 Define file path:
 Replace "your_file_path.csv" with the actual path to
your CSV file.

 Read CSV file:

164  •  Google Gemini for Python: Coding with BARD

 pd.read_csv(file_path) reads the CSV file into a
Pandas DataFrame named df.

 Choose column:
 Replace "your_column_name" with the name of the
column you want to calculate the mean of.

 Calculate mean:
 df[column_name].mean() calculates the mean of the
chosen column.

 Print result:
 The code prints a message showing the mean value
for the chosen column.

This code utilizes Pandas' functionalities to efficiently
read the CSV file, access specific columns, and perform
calculations on the data. It offers a clean and concise way
to analyze and extract insights from CSV files.
"""

Launch the code in Listing 6.4, and you will see the following single output line:

Mean of 'age': 29.8811345124283

GENERATING RANDOM DATA

In this section, we generate a list of random numbers and compute their
mean and standard deviation. The Python code for the code sample in this sec-
tion was generated via the following prompt for Bard:

Please generate Python code to generate a list of random
numbers and then compute their mean and standard deviation,
along with an explanation of the Python code.

Listing 6.5 displays the content of bard_random_numbers.py that
Bard generated to create a set of random numbers and then display the
contents of those numbers, as well as the mean and standard deviation of
those numbers.

LISTING 6.5: bard_random_numbers.py

import random

Define number of samples
num_samples = 100

Generate random numbers
random_numbers = [random.random() for _ in range(num_samples)]

Bard and Python Code  •  165

Calculate mean
mean = sum(random_numbers) / num_samples

Calculate standard deviation
variance = sum([(x - mean)**2 for x in random_numbers]) /
(num_samples - 1)
standard_deviation = variance**0.5

Print results
print(f"Mean: {mean:.4f}")
print(f"Standard deviation: {standard_deviation:.4f}")

"""
Explanation:

 Import library:
 We import the random library to access its random
number generator functions.

 Define number of samples:
 num_samples specifies how many random numbers to
generate.

 Generate random numbers:
 A list comprehension iterates num_samples times and
uses random.random() to generate random numbers between 0
and 1.

 Calculate mean:
 We calculate the mean by summing all random numbers
and dividing by their total count.

 Calculate variance and standard deviation:
 The code iterates over each number, calculates
its squared deviation from the mean, and then sums these
values.
 This sum is divided by num_samples - 1 to obtain
the unbiased sample variance.
 Finally, the square root of the variance is
calculated to get the standard deviation.

 Print results:
 The code prints the mean and standard deviation
with four decimal places for better precision.

This code demonstrates how to generate random numbers and
compute their statistics using basic Python functions and
mathematical formulas. For more sophisticated statistical
analysis, you can explore other libraries like NumPy and
SciPy.
"""

166  •  Google Gemini for Python: Coding with BARD

Launch the code in Listing 6.5, and you will see the following type of out-
put (your output will be slightly different):

Mean: 0.4532
Standard deviation: 0.2980

RECURSION: FIBONACCI NUMBERS

The Fibonacci sequence is a classic example of a problem that can be
solved using recursion. Each Fibonacci number is the sum of the two preced-
ing Fibonacci numbers.

The Python code for the code sample in this section was generated via the
following prompt for Bard:

Please generate Python code to generate Fibonacci numbers,
along with an explanation of the Python code.

Listing 6.6 displays the contents of bard_fibonacci.py that shows you
how to compute the n-th Fibonacci number using recursion.

LISTING 6.6: bard_fibonacci.py

There are two common ways to generate Fibonacci numbers
in Python:
1. Recursive approach:

def fibonacci(n):
 """
 This function calculates the nth Fibonacci number
recursively.
 """
 if n <= 1:
 return n
 else:
 return fibonacci(n-1) + fibonacci(n-2)

Generate the first 10 Fibonacci numbers
for i in range(10):
 print(fibonacci(i))

"""
Explanation:

 This code defines a function fibonacci(n) that takes an
integer n and returns the nth Fibonacci number.
 The base cases are n <= 1, where the nth Fibonacci
number is simply n.
 Otherwise, the function recursively calls itself with
n-1 and n-2 as arguments to calculate the previous two
Fibonacci numbers and sum them.
 The loop iterates from 0 to 9 and calls fibonacci(i) to
generate and print the first 10 Fibonacci numbers.

Bard and Python Code  •  167

This approach is conceptually simple but can be inefficient
for large values of n due to repeated calculations.
"""

#2. Iterative approach:
def fibonacci(n):
 """
 This function calculates the nth Fibonacci number
iteratively.
 """
 a, b = 0, 1
 for i in range(n):
 a, b = b, a + b
 return a

Generate the first 10 Fibonacci numbers
for i in range(10):
 print(fibonacci(i))

"""
Explanation:
 This code also defines a function fibonacci(n).
 It uses two variables, a and b, to store the previous
two Fibonacci numbers.
 The loop iterates n times, updating a and b by adding
them to get the next Fibonacci number.
 Finally, the function returns the value of a, which
represents the nth Fibonacci number.

This approach is more efficient for large values of n as it
avoids unnecessary repeated calculations.

Both approaches have their own advantages and
disadvantages. Choose the one that best suits your needs
and the size of the Fibonacci numbers you need to generate.
"""

Launch the code in Listing 6.6, and you will see the following list of
Fibonacci numbers, where the first list of numbers was produced by the
Python generator in Listing 6.6 and the second list of numbers was generated
via an iterative solution:

0
1
2
3
5
8
13
21
34
0
1
1
2

168  •  Google Gemini for Python: Coding with BARD

3
5
8
13
21
34

GENERATING A PYTHON CLASS

The Python code for the code sample in this section was generated via the
following prompt for Bard:

Please generate Python code to illustrate how to define a
simple Python class, along with an explanation of the code.

Listing 6.7 displays the content of bard_python_oop.py that generates
a rudimentary Python class that simulates two players who can score points.

LISTING 6.7: bard_python_oop.py

class MyClass:
 """
 This is a simple Python class example.
 """

 # Class attributes
 name = "MyClass"
 version = 1.0

 # Constructor
 def __init__(self, attribute1, attribute2):
 self.attribute1 = attribute1
 self.attribute2 = attribute2

 # Method to print class information
 def print_info(self):
 print(f"Class name: {self.name}")
 print(f"Class version: {self.version}")
 print(f"Attribute 1: {self.attribute1}")
 print(f"Attribute 2: {self.attribute2}")

Create an instance of the class
my_object = MyClass("Value 1", "Value 2")

Access class attributes
print(f"Class name (attribute): {my_object.name}")

Call class method
my_object.print_info()

"""
Explanation:
 Class definition:

Bard and Python Code  •  169

 The code starts by defining a class named MyClass
using the class keyword.
 The class is documented with a docstring explaining
its purpose.
 Class attributes:
 Two class attributes are defined: name and
version. These attributes are shared by all instances of
the class.
 Constructor:
 The __init__ method is the constructor of the
class. It takes two arguments (attribute1 and attribute2)
and assigns them to instance attributes.
 Class method:
 A method named print_info is defined within the
class. This method can be used to print information about
the class and its attributes.
 Creating an instance:
 An instance of the MyClass class is created using
the MyClass constructor and assigning values to attribute1
and attribute2.
 Accessing class attributes:
 The name attribute of the my_object instance is
accessed and printed.
 Calling class method:
 The print_info method of the my_object instance
is called to print information about the class and its
attributes.

This example demonstrates the basic structure and
functionalities of a Python class. You can expand this example
by adding additional attributes, methods, and functionalities
to create more complex and sophisticated classes.
"""

Launch the code in Listing 6.7, and you will see the following output:

Class name (attribute): MyClass
Class name: MyClass
Class version: 1.0
Attribute 1: Value 1
Attribute 2: Value 2

ASYNCHRONOUS PROGRAMMING

This code sample demonstrates asynchronous programming by simulating
two tasks running concurrently. The Python code for the code sample in this
section was generated via the following prompt for Bard:

Please generate Python code to simulate two tasks running
simultaneously, along with an explanation of the Python
code.

Listing 6.8 displays the content of bard_async_example.py that Bard
generated based on the preceding prompt.

170  •  Google Gemini for Python: Coding with BARD

LISTING 6.8: bard_async_example.py

Here are two ways to simulate two tasks running
simultaneously in Python:

import time
import threading

def task1():
 """
 Simulates a task that takes 2 seconds to complete.
 """
 print("Task 1 started")
 time.sleep(2)
 print("Task 1 finished")

def task2():
 """
 Simulates a task that takes 3 seconds to complete.
 """
 print("Task 2 started")
 time.sleep(3)
 print("Task 2 finished")

Create and start threads
thread1 = threading.Thread(target=task1)
thread2 = threading.Thread(target=task2)

thread1.start()
thread2.start()

Wait for both threads to finish
thread1.join()
thread2.join()

print("Both tasks finished!")

"""
Explanation:
 Imports:
 time is imported to introduce delays in the tasks.
 threading is imported to create and manage threads.
 Task functions:
 task1 and task2 are defined as functions that
simulate tasks taking 2 and 3 seconds, respectively.
 Creating threads:
 threading.Thread(target=task1) creates a thread
object that will run the task1 function when started.
 threading.Thread(target=task2) creates a thread
object that will run the task2 function when started.
 Starting threads:
 thread1.start() starts the thread object associated
with task1.

Bard and Python Code  •  171

 thread2.start() starts the thread object associated
with task2.
 Joining threads:
 thread1.join() waits for the task1 thread to finish
before continuing.
 thread2.join() waits for the task2 thread to finish
before continuing.
 Finishing message:
 Once both threads have finished, a message is
printed.

This code demonstrates how to simulate two tasks running
simultaneously using Python threads. This allows you to
model concurrent processes and execute independent tasks
without blocking the main program flow.
"""

Launch the code in Listing 6.8, and you will see the following type of
output:

Task 1 started
Task 2 started
Task 1 finished
Task 2 finished
Both tasks finished!

WORKING WITH REQUESTS IN PYTHON

The requests library provides an intuitive way to send HTTP requests.
Here, we fetch data from a given API URL and extract a specific piece of
information using the key.

The Python code for the code sample in this section was generated via the
following prompt for Bard:

Please generate Python code to perform a Web request in
order to fetch the contents of a Web page, along with an
explanation of the Python code.

Listing 6.9 shows you the content of bard_requests_example.py that
demonstrates Web API Interaction using the Python requests library to
fetch data from an API and extract specific information.

LISTING 6.9: bard_requests_example.py

import requests

def fetch_api_data(api_url, key):
 response = requests.get(api_url)
 response.raise_for_status()
 data = response.json()
 return data.get(key, None)

172  •  Google Gemini for Python: Coding with BARD

Usage
replace the fictitious URL with a real URL:
result = fetch_api_data('https://api.sampleendpoint.com/
data', 'desired_key')
print(result)

Listing 6.9 starts with an import statement, and then the fetch_api()
function retrieves the contents of the specified URL. This function invokes the
get() method and then initializes the variable data with the JSON-formatted
return string.

The next portion of Listing 6.9 initializes the variable result with the
return value from invoking the function fetch_api_data(). You must
replace the fictitious URL with a valid URL and a legitimate value for
desired_key before you can launch the code.

IMAGE PROCESSING WITH PIL

The Python Imaging Library (PIL) allows for a vast array of image process-
ing tasks. The code sample in this section performs several transformations on
the file sample3.png.

The Python code for the code sample in this section was generated via the
following prompt for Bard:

Please generate Python code to perform image processing,
along with an explanation of the Python code.

Listing 6.10 displays the content of bard_image_processing.py that
shows you how to open an image, apply a grayscale filter, and save the result.
(If you have not already done so, you need to install the Pillow library, a fork
of PIL.)

LISTING 6.10: bard_image_processing.py

Unfortunately, providing a general Python code for image
processing requires more information about the specific
task you want to achieve. Different image processing tasks
involve different libraries and techniques.

However, I can provide an example of image processing
in Python using the PIL library to demonstrate the basic
workflow:
from PIL import Image

Define the image path
image_path = "sample3.png"

Open the image
image = Image.open(image_path)

Convert the image to grayscale
grayscale_image = image.convert("L")

Bard and Python Code  •  173

Show the original and grayscale images
image.show()
grayscale_image.show()

"""
Explanation:
 Import library:
 We import the Image class from the PIL library for
image manipulation.

 Define image path:
 Replace "your_image_path.jpg" with the actual path
to your image file.

 Open image:
 Image.open(image_path) opens the image specified by
the path.

 Convert to grayscale:
 image.convert("L") converts the image to grayscale
mode.

 Show images:
 image.show() and grayscale_image.show() display the
original and grayscale images, respectively.
This is a simple example of image processing. You can use
PIL and other libraries like OpenCV to perform more complex
tasks such as:
 Applying filters and effects
 Detecting objects and features
 Segmenting images
 Generating new images
 Analyzing image statistics

To generate code for your specific image processing task,
please provide more details about the desired functionality
and the type of image manipulation you want to achieve.
"""

Launch the code in Listing 6.10, which generates the images shown in
Figure 6.2 and Figure 6.3.

FIGURE 6.2  The original image.

174  •  Google Gemini for Python: Coding with BARD

Figure 6.3 displays the image that is generated by the second code block
in Listing 6.13.

FIGURE 6.3  A gray scale image.

EXCEPTION HANDLING

Exception handling is crucial for robust programs. The Python code for the
code sample in this section was generated via the following prompt for Bard:

Please generate Python code to perform exception handling,
along with an explanation of the Python code.

In this example, we define a custom exception and showcase its usage
and handling. Listing 6.11 shows you perform custom exception handling in
Python.

LISTING 6.11: bard_exception_handling.py

Here is Python code demonstrating exception handling with
an explanation:
try:
 # Code that might raise an exception
 number = int(input("Enter a number: "))

 # Perform some operation with the number
 result = 10 / number
 print(f"Result: {result}")

except ValueError:
 # Handle invalid input
 print("Error: Please enter a valid number.")

except ZeroDivisionError:
 # Handle division by zero
 print("Error: Cannot divide by zero.")

finally:
 # Always execute this block, regardless of exceptions
 print("This block is always executed.")

"""

Bard and Python Code  •  175

Explanation:
 try block:
 This block contains the code that might raise an
exception.
 In this case, we read a user input and attempt to
convert it to an integer.

 except blocks:
 These blocks handle specific exceptions that may
occur within the try block.
 The except ValueError block handles cases where the
user input cannot be converted to an integer.
 The except ZeroDivisionError block handles cases where
the user enters 0 as input, resulting in division by zero.
 Each except block can define its own code to handle
the specific exception.

 finally block:
 This block always executes, regardless of whether
an exception occurs or not.
 It is often used to perform cleanup tasks or close
resources opened in the try block.

This code demonstrates basic exception handling in Python.
You can use different exception types and provide more
specific handling logic for each case depending on your
needs. Remember to use appropriate try/except blocks to
handle potential errors and ensure your code runs robustly
under different conditions.
"""

Launch the code in Listing 6.11, and you will see the following output.

Caught an exception: This is a custom exception!

GENERATORS IN PYTHON

Generators allow for lazy evaluation, producing values on-the-fly without
storing the entire sequence in memory. The Python code for the code sample
in this section was generated via the following prompt for Bard:

Please generate Python code that uses a Python generator
in order to generate Fibonacci numbers, along with an
explanation of the Python code.

Listing 6.12 shows you the content of bard_generator_fibonacci.py
that shows you how to define a generator that produces Fibonacci numbers
in Python.

LISTING 6.12: bard_generator_fibonacci.py

def fibonacci_generator(): # see comment below
 """

176  •  Google Gemini for Python: Coding with BARD

 Generates Fibonacci numbers using a generator function.

 This function implements the Fibonacci sequence using a
generator function. It avoids
 storing all the calculated Fibonacci numbers in memory,
making it more efficient
 for large values.

 Yields:
 Each consecutive Fibonacci number.
 """
 a, b = 0, 1
 while True:
 yield a
 a, b = b, a + b

Example usage
fib_numbers = fibonacci_generator()

for _ in range(10):
 print(next(fib_numbers))

Launch the code in Listing 6.12, and you will see the following output:
0
1
1
2
3
5
8
13
21
34

One interesting observation is that the first time that Bard was prompted to
generate the code in Listing 6.12, the first line of code passed a parameter to
the function, as shown here:

def fibonacci_generator(n):

The code with the preceding code snippet returned only the value 0 for
each Fibonacci number. However, when the same prompt was submitted a
second time, the correct code was generated. Although Bard generates correct
code most of the time (in fact, all the other code samples for this book are cor-
rect), you might encounter a similar situation.

ROLL 7 OR 11 WITH TWO DICE

This section contains a dialogue with Bard to determine the probability of
rolling a 7 or an 11 with two balanced dice. The explanation was generated via
the following prompt for Bard:

User: Suppose that I toss two fair dice and I win if the sum of the values
is either 7 or 11. What is the probability that I will win and please provide an
explanation.

Bard and Python Code  •  177

Bard: To solve this problem, we need to calculate the probability of rolling
a 7 or 11 with two fair dice.

There are a total of 36 possible outcomes when rolling two dice, as each die
has 6 sides and any combination of their values can occur.

Calculating the probability of rolling 7:
There are 6 ways to roll a sum of 7:

 1 + 6
 2 + 5
 3 + 4
 4 + 3
 5 + 2
 6 + 1

Therefore, the probability of rolling a 7 is:

P(7) = Number of ways to roll 7 / Total number of outcomes = 6 / 36

Calculating the probability of rolling 11:
There are 2 ways to roll a sum of 11:

 5 + 6
 6 + 5

Therefore, the probability of rolling a 11 is:

P(11) = Number of ways to roll 11 / Total number of outcomes = 2 / 36

Calculating the probability of winning:
As we win if we roll either a 7 or 11, we need to add the probabilities of

those two events.

P(winning) = P(7) + P(11)
P(winning) = 6/36 + 2/36
P(winning) = 8/36

Therefore, the probability of winning is 8/36, which can be simplified
to 2/9.

ROLL 7 OR 11 WITH THREE DICE

This section contains a dialogue with Bard to determine the probability of
rolling a 7 or an 11 with three balanced dice. The explanation was generated
via the following prompt for Bard:

User: Suppose that I toss three fair dice and I win if the sum of the values
is either 7 or 11. What is the probability that I will win and please provide an
explanation.

Bard: To calculate the probability of winning in this scenario, we need to
consider the number of winning outcomes and compare it to the total number
of possible outcomes when rolling three dice.

178  •  Google Gemini for Python: Coding with BARD

Calculating the total number of outcomes: Each die has 6 sides, and when
rolling three dice, each side of one die can be combined with any side of the
other two dice. Therefore, the total number of possible outcomes is:

Total outcomes = 6^3 = 216
Calculating the number of winning outcomes: There are two winning sce-

narios: rolling a sum of 7 or rolling a sum of 11.
Rolling a sum of 7: There are 15 ways to roll a sum of 7:

 1 + 1 + 5
 1 + 2 + 4
 1 + 3 + 3
 1 + 4 + 2
 1 + 5 + 1
 2 + 1 + 4
 2 + 2 + 3
 2 + 3 + 2
 2 + 4 + 1
 3 + 1 + 3
 3 + 2 + 2
 3 + 3 + 1
 4 + 1 + 2
 4 + 2 + 1
 5 + 1 + 1

Rolling a sum of 11: There are 27 ways to roll a sum of 11:

 1 + 5 + 5
 1 + 6 + 4
 2 + 4 + 5
 2 + 5 + 4
 2 + 6 + 3
 3 + 3 + 5
 3 + 4 + 4
 3 + 5 + 3
 3 + 6 + 2
 4 + 2 + 5
 4 + 3 + 4
 4 + 4 + 3
 4 + 5 + 2
 4 + 6 + 1
 5 + 1 + 5
 5 + 2 + 4
 5 + 3 + 3
 5 + 4 + 2

Bard and Python Code  •  179

 5 + 5 + 1
 6 + 1 + 4
 6 + 2 + 3
 6 + 3 + 2
 6 + 4 + 1
 6 + 5 + 5
 6 + 6 + 6

Calculating the probability of winning: We need to determine the total
number of winning outcomes and divide it by the total number of possible
outcomes.

Total winning outcomes = Number of ways to roll 7 + Number of ways to
roll 11 = 15 + 27 = 42
Probability of winning = Total winning outcomes / Total number of
outcomes = 42/216
P(winning) = 7/36

Therefore, the probability of winning in this scenario is 7/36.

ROLL 7 OR 11 WITH FOUR DICE

This section contains a dialogue with Bard to determine the probability of
rolling a 7 or an 11 with four balanced dice. The explanation was generated via
the following prompt for Bard:

User: Suppose that I toss four fair dice and I win if the sum of the values
is either 7 or 11. What is the probability that I will win and please provide an
explanation.

Bard: Solving this problem requires calculating the probability of getting a
sum of 7 or 11 when rolling four dice.

Total Possible Outcomes: Each die has 6 sides and rolling four dice results
in 6 * 6 * 6 * 6 = 1296 possible outcomes.

Winning Outcomes:

1.	 Sum of 7:
There are 21 ways to get a sum of 7:

 1 + 1 + 1 + 4
 1 + 1 + 2 + 3
 1 + 1 + 3 + 2
 1 + 2 + 1 + 3
 1 + 2 + 2 + 2
 1 + 3 + 1 + 2
 1 + 3 + 2 + 1
 2 + 1 + 1 + 3
 2 + 1 + 2 + 2

180  •  Google Gemini for Python: Coding with BARD

 2 + 2 + 1 + 2
 3 + 1 + 1 + 2
 3 + 1 + 2 + 1
 4 + 1 + 1 + 1

2.	 Sum of 11:
There are 39 ways to get a sum of 11:

 1 + 5 + 5 + 5
 1 + 6 + 4 + 4
 1 + 6 + 5 + 3
 2 + 4 + 5 + 5
 2 + 5 + 4 + 5
 2 + 5 + 5 + 4
 2 + 6 + 3 + 4
 2 + 6 + 4 + 3
 3 + 3 + 5 + 5
 3 + 4 + 4 + 5
 3 + 4 + 5 + 4
 3 + 5 + 3 + 5
 3 + 5 + 4 + 4
 3 + 5 + 5 + 3
 3 + 6 + 2 + 4
 3 + 6 + 3 + 3
 3 + 6 + 4 + 2
 4 + 2 + 5 + 5
 4 + 3 + 4 + 5
 4 + 3 + 5 + 4
 4 + 4 + 3 + 5
 4 + 4 + 4 + 4
 4 + 4 + 5 + 3
 4 + 5 + 2 + 5
 4 + 5 + 3 + 4
 4 + 5 + 4 + 3
 5 + 1 + 5 + 5
 5 + 2 + 4 + 5
 5 + 2 + 5 + 4
 5 + 3 + 3 + 5
 5 + 3 + 4 + 4
 5 + 3 + 5 + 3
 5 + 4 + 2 + 5
 5 + 4 + 3 + 4
 5 + 4 + 4 + 3
 5 + 5 + 1 + 5
 5 + 5 + 2 + 4
 5 + 5 + 3 + 3

Bard and Python Code  •  181

Total Winning Outcomes:
Adding the winning outcomes for both sums: 21 + 39 = 60
Probability of Winning:
Divide the total winning outcomes by the total possible outcomes:

P(winning) = 60 / 1296 = 5 / 108

Therefore, the probability of winning in this scenario is 5/108.
Solving this problem requires calculating the probability of getting a sum of

7 or 11 when rolling four dice.
Total Possible Outcomes:
Each die has 6 sides and rolling four dice results in 6 * 6 * 6 * 6 = 1296

possible outcomes.
Winning Outcomes:

1.	 Sum of 7:
There are 21 ways to get a sum of 7:

 1 + 1 + 1 + 4
 1 + 1 + 2 + 3
 1 + 1 + 3 + 2
 1 + 2 + 1 + 3
 1 + 2 + 2 + 2
 1 + 3 + 1 + 2
 1 + 3 + 2 + 1
 2 + 1 + 1 + 3
 2 + 1 + 2 + 2
 2 + 2 + 1 + 2
 3 + 1 + 1 + 2
 3 + 1 + 2 + 1
 4 + 1 + 1 + 1

2.	 Sum of 11:
There are 39 ways to get a sum of 11:

 1 + 5 + 5 + 5
 1 + 6 + 4 + 4
 1 + 6 + 5 + 3
 2 + 4 + 5 + 5
 2 + 5 + 4 + 5
 2 + 5 + 5 + 4
 2 + 6 + 3 + 4
 2 + 6 + 4 + 3
 3 + 3 + 5 + 5
 3 + 4 + 4 + 5

182  •  Google Gemini for Python: Coding with BARD

 3 + 4 + 5 + 4
 3 + 5 + 3 + 5
 3 + 5 + 4 + 4
 3 + 5 + 5 + 3
 3 + 6 + 2 + 4
 3 + 6 + 3 + 3
 3 + 6 + 4 + 2
 4 + 2 + 5 + 5
 4 + 3 + 4 + 5
 4 + 3 + 5 + 4
 4 + 4 + 3 + 5
 4 + 4 + 4 + 4
 4 + 4 + 5 + 3
 4 + 5 + 2 + 5
 4 + 5 + 3 + 4
 4 + 5 + 4 + 3
 5 + 1 + 5 + 5
 5 + 2 + 4 + 5
 5 + 2 + 5 + 4
 5 + 3 + 3 + 5
 5 + 3 + 4 + 4
 5 + 3 + 5 + 3
 5 + 4 + 2 + 5
 5 + 4 + 3 + 4
 5 + 4 + 4 + 3
 5 + 5 + 1 + 5
 5 + 5 + 2 + 4
 5 + 5 + 3 + 3

Total Winning Outcomes:
Adding the winning outcomes for both sums: 21 + 39 = 60
Probability of Winning:
Divide the total winning outcomes by the total possible outcomes:

P(winning) = 60 / 1296 = 5 / 108

Therefore, the probability of winning in this scenario is 5/108.

MEAN AND STANDARD DEVIATION

Please calculate the mean and standard deviation of the numbers in the set
S = {9, 2, -8, 17, 4, 37} and please provide details.

Listing 6.16 shows you the content of bard_mean_std.py that Bard gen-
erated to calculate the mean and standard deviation of a set of numbers.

Bard and Python Code  •  183

LISTING 6.16: bard_mean_std.py

import numpy as np

#Please generate Python code that calculates the mean and
standard deviation of the numbers in the set S = {9,2,
-8,17,4,37} and please provide details.

Define the set S
S = {9, 2, -8, 17, 4, 37}

Import statistics library
import statistics

Calculate the mean
mean = statistics.mean(S)
print(f"Mean: {mean}")

Calculate the standard deviation
std_dev = statistics.stdev(S)
print(f"Standard deviation: {std_dev}")

"""
Explanation:
 Import library:
 We import the statistics library which provides
functions for calculating various statistics.
 Define set:
 We define the set S containing the given numbers.
 Calculate mean:
 We use the statistics.mean(S) function to calculate
the average of all elements in the set.
 Calculate standard deviation:
 We use the statistics.stdev(S) function to
calculate the standard deviation of the elements in the
set.
 Print results:
 We print the calculated mean and standard deviation
with descriptive messages.

This code provides a concise and efficient way to calculate
the mean and standard deviation of a set in Python.
"""

Launch the code in Listing 6.16, and you will see the following output:

Mean: 10.166666666666666
Standard deviation: 15.510211689937268

184  •  Google Gemini for Python: Coding with BARD

SUMMARY

This chapter contains Python-based solutions generated by Bard to a
variety of tasks. The first set of tasks involved tasks such as Web scraping and
file-based operations.

Then you learned about data visualization using a popular open-source
Python-based library called Matplotlib. In addition, you learned how to use
recursion to calculate Fibonacci numbers, followed by an example that uses a
generator to calculate Fibonacci numbers.

You also saw an example of how to interact with Bard to debug a code sam-
ple that was generated by Bard in Listing 6.10 and Listing 6.11.

In addition, you learned how to perform image processing in Python that
involved multiple transformations on a PNG file. You saw how to define cus-
tom exception handlers in Python, as well as how to work with generators in
Python.

You saw how to calculate the mean and the standard deviation of a set
of numbers. Finally, you learned how to calculate probabilities of obtaining a
given number by tossing 2, 3, or 4 well-balanced dice.

A
AI21, 140
Anthropic, 140
Apple GPT, 156

B
Bard Advanced, 147
Boolean operators, 43
break/continue/pass statements, 42

C
chr() function, 12–13
Claude 2, 141, 156
Codex, 156
Cohere, 139
Command-line arguments, 27–29
Comparison operators, 42–43
Compile-time checking, 10
Conditional statements, 41
Conversational AI, 135–136

D
Data types, 10–11
Date-related functions, 23–24
DeepMind, 137–138
Dictionaries

checking for keys, 77
create and display, 76–77
data interpolation, 78
deleting keys, 77
functions and methods, 78
iterate through, 77–78

multi dictionaries, 79–80
% operator, 78–79
OrderedDict, 79
sorting, 79

E
easy_install and pip, 1–2
Exception handling, 24–26

G
Gemini, 146

Nano on mobile devices, 147
strengths of, 146
Ultra vs. GPT-4, 146
weaknesses of, 147

Generative Adversarial Networks (GANs),
134

Generative AI
art and music creation, 134
challenges, 134
Cohere, 139
vs. conversational AI, 135–136
creation vs. classification, 134
data augmentation, 135
DeepMind

and games, 137–138
Player of Games algorithm, 138

diverse outputs, 134
drug discovery, 135
features of, 133–134
GANs, 134
Gemini, 136–137

Index

186  •  Google Gemini for Python: Coding with BARD

image synthesis, 135
OpenAI, 138–139
RNNs, 134
style transfer, 135
text generation, 135
unsupervised learning, 134
VAEs, 134

Google Bard, 147–148
alternatives

Pi, 154–155
YouChat, 154

counting digits, uppercase and lowercase
letters, 82–85

Pandas DataFrame
and Bar Chart, 126–128
with random values, 124–126
and statistics, 128–131

Python code samples
asynchronous programming, 169–171
basic chatbot, 160–161
basic Pandas, 163–164
CSV files, 158–159
data visualization, 161–162
exception handling, 174–175
Fibonacci numbers, recursion, 166–168
generate random numbers, 164–166
generators, 175–176
image processing with PIL, 172–174
mean and standard deviation, 182–183
probability of rolling 7 or 11, 176–182
Python class, 168–169
for queue, 85–86
requests library, 171–172
for stack, 87–89
Web scraping, 159–160

queries and responses, 148–154

H
Hugging Face

libraries, 139
model hub, 140

I
InflectionAI, 140
IPython, 2–3

L
Lists

and arithmetic operations, 60
arrays and append() function, 65–66

and basic operations, 57–59
bubble sort, 63
expressions, 62
filter-related operations, 60–61
iterating through pairs, 67
join() method, 62–63
list-related functions, 68–69
matrices, 71–72

NumPy library, 72–73
NumPy

double the elements in, 96
and exponents, 96–97

range() function, 63–65
reverse() and sort()

method, 59–60
sorting operation, 61–62
split() function, 66
stack and queue, 69–70
vector-based operations, 70–71
word count in, 66–67

M
Microsoft CoPilot, 155

N
NumPy

arrays, 92–93
append elements to, 94–95
and exponents, 97
math operations and, 98
multiply elements, 95–96
and vector operations, 100

and dot products, 101–102
features, 92
lists

double the elements in, 96
and exponents, 96–97

loops, 93–94
methods, 99–100
norm of vectors, 102–103
np.linspace() methods, 105
np.mean() and np.std() methods,

105–106
and other operations, 103
reshape() method, 104–105
“–1” subranges with arrays, 99
“–1” subranges with vectors, 98–99

O
OpenAI, 138–139, 156

Index  •  187

P
Pandas

data frames
Boolean operations, 110
combine, 112–114
and CSV files, 117–119
and data cleaning tasks, 107–108
data manipulation with, 114–117
and Excel spreadsheets, 119
features, 107
labeled, 108–109
numeric, 109–110
and random numbers, 111–112
and scatterplots, 121–122
select, add, and delete columns in,

119–121
and statistics, 122–123
transpose, 111

install, 107
one-line commands in, 123–124

Player of Games (PoG) algorithm, 138
Prompt engineering, 141

and completions, 142
few-shot prompts, 142
instruction prompts, 142–143
one-shot prompts, 142
poorly-worded prompts, 144–145
prompt templates, 144
reverse prompts, 143
system vs. agent prompts, 143–144
zero-shot prompts, 142

Python
arguments and parameters, 46–47
arithmetic operations, 11–12
Bard

counting digits, uppercase and lower-
case letters, 82–85

Python code for queue, 85–86
Python code for stack, 87–89

Boolean operators, 43
break/continue/pass statements, 42
chr() function, 12–13
command-line arguments, 27–29
comparison operators, 42–43
compile-time checking, 10
conditional statements, 41
data types, 10–11
date-related functions, 23–24
dictionaries

checking for keys, 77
create and display, 76–77

data interpolation, 78
deleting keys, 77
functions and methods, 78
iterate through, 77–78
multi dictionaries, 79–80
% operator, 78–79
OrderedDict, 79
sorting, 79

exception handling in, 24–26
format() function, 12
formatting numbers in, 13–14
Fraction() function, 14
functions with variable number of argu-

ments, 50–51
handling user input, 26–27
help() and dir() functions, 9–10
identifiers, 5
installation, 3
join() function, 40
lambda expressions, 51–52
lambda function in, 51–52
launch, 3–4
lines, indentation, and multilines, 5–6
local and global variables, 43–44
for loop, 32–33
split() function, 35
with try/except, 33–34

modules, 8
mutable and immutable types in, 81–82
nested loops, 35
numeric exponents in, 34–35
pass by reference vs. value, 46
PATH environment variable, 3
precedence of operators, 31–32
queues, 73
quotation and comments, 6–7
recursion

calculate Fibonacci numbers, 53–54
factorial values, calculate the, 52–53
GCD of two numbers, 54
LCM of two numbers, 54–55

reserved words, 32
round() function, 13
runtime code checking, 10
scope of variables, 44–46
sequence types, 80
set() function, 74–75
specify default values in a function, 49–50
split() function

to compare text strings, 38–39
to compare words, 36

188  •  Google Gemini for Python: Coding with BARD

to print fixed-width text, 37–38
to print justified text, 36–37
to print the characters in text string,

39–40
store code in a text file, 7–8
strings

concatenate, 15–16
format() method, 17–18
lower() and upper() methods, 17
search and replace, 19–20
slicing and splicing, 18–19
str() function, 21–22
strip(), lstrip(), and
rstrip() function, 20–21

text alignment, 22–23
try/except construct, 17

tools
easy_install and pip, 1–2
IPython, 2–3
virtualenv, 2

tuples, 73–74
type() function, 82
Unicode, 14–15
user-defined functions in, 49
UTF-8, 15
while loop, 40–41
divisors() function, 47–48
to find prime numbers, 48

Python interactive interpreter, 4

R
Recurrent Neural Networks (RNNs), 134

S
Strings

concatenate, 15–16
format() method, 17–18
lower() and upper() methods, 17
search and replace, 19–20
slicing and splicing, 18–19
str() function, 21–22
strip(), lstrip(), and rstrip()

function, 20–21
text alignment, 22–23
try/except construct, 17

T
Tuples, 73–74

U
Unicode, 14–15
User-defined functions, 49
UTF-8, 15

V
Variational Autoencoders (VAEs), 134
virtualenv, 2

	Cover
	Title Page
	Copyright Page
	Dedication
	Contents
	Preface
	Chapter 1: Introduction to Python 3
	Tools for Python
	easy_install and pip
	virtualenv
	IPython

	Python Installation
	Setting the PATH Environment Variable (Windows Only)
	Launching Python on Your Machine
	The Python Interactive Interpreter

	Python Identifiers
	Lines, Indentation, and Multilines
	Quotation and Comments in Python
	Saving Your Code in a Module
	Some Standard Modules in Python
	The help() and dir() Functions
	Compile Time and Runtime Code Checking
	Simple Data Types in Python
	Working With Numbers
	Working With Other Bases
	The chr() Function
	The round() Function in Python
	Formatting Numbers in Python

	Working With Fractions
	Unicode and UTF-8
	Working With Unicode
	Working With Strings
	Comparing Strings
	Formatting Strings in Python

	Slicing and Splicing Strings
	Testing for Digits and Alphabetic Characters

	Search and Replace a String in Other Strings
	Remove Leading and Trailing Characters
	Printing Text without NewLine Characters
	Text Alignment
	Working With Dates
	Converting Strings to Dates

	Exception Handling in Python
	Handling User Input
	Command-Line Arguments
	Summary

	Chapter 2: Conditional Logic, Loops, and Functions
	Precedence of Operators in Python
	Python Reserved Words
	Working with Loops in Python
	Python for Loops
	A for Loop with try/except in Python
	Numeric Exponents in Python

	Nested Loops
	The split() Function With for Loops
	Using the split() Function to Compare Words
	Using the split() Function to Print Justified Text
	Using the split() Function to Print Fixed-Width Text
	Using the split() Function to Compare Text Strings
	Using the split() Function to Display Characters in a String
	The join() Function
	Python while Loops
	Conditional Logic in Python
	The break/continue/pass Statements
	Comparison and Boolean Operators
	The in/not in/is/is not Comparison Operators
	The and, or, and not Boolean Operators

	Local and Global Variables
	Uninitialized Variables and the Value None

	Scope of Variables
	Pass by Reference Versus Value
	Arguments and Parameters
	Using a while loop to Find the Divisors of a Number
	Using a while loop to Find Prime Numbers

	User-Defined Functions in Python
	Specifying Default Values in a Function
	Returning Multiple Values From a Function

	Functions With a Variable Number of Arguments
	Lambda Expressions
	Recursion
	Calculating Factorial Values
	Calculating Fibonacci Numbers
	Calculating the GCD of Two Numbers
	Calculating the LCM of Two Numbers

	Summary

	Chapter 3: Python Data Structures
	Working with Lists
	Lists and Basic Operations
	Reversing and Sorting a List
	Lists and Arithmetic Operations
	Lists and Filter-Related Operations

	Sorting Lists of Numbers and Strings
	Expressions in Lists
	Concatenating a List of Words
	The Bubble Sort in Python
	The Python range() Function
	Counting Digits and Uppercase and Lowercase Letters

	Arrays and the append() Function
	Working with Lists and the split() Function
	Counting Words in a List
	Iterating Through Pairs of Lists
	Other List-Related Functions
	Using a List as a Stack and a Queue
	Working with Vectors
	Working with Matrices
	The NumPy Library for Matrices
	Queues
	Tuples (Immutable Lists)
	Sets
	Dictionaries
	Creating a Dictionary
	Displaying the Contents of a Dictionary
	Checking for Keys in a Dictionary
	Deleting Keys from a Dictionary
	Iterating Through a Dictionary
	Interpolating Data from a Dictionary

	Dictionary Functions and Methods
	Dictionary Formatting
	Ordered Dictionaries
	Sorting Dictionaries
	Python Multi Dictionaries

	Other Sequence Types in Python
	Mutable and Immutable Types in Python
	The type() Function
	Working with Bard
	Counting Digits and Uppercase and Lowercase Letters
	Bard Python Code for a Queue
	Bard Python Code for a Stack

	Summary

	Chapter 4: Introduction to NumPy and Pandas
	What is NumPy?
	Useful NumPy Features

	What are NumPy arrays?
	Working with Loops
	Appending Elements to Arrays (1)
	Appending Elements to Arrays (2)
	Multiply Lists and Arrays
	Doubling the Elements in a List
	Lists and Exponents
	Arrays and Exponents
	Math Operations and Arrays
	Working with “-1” Subranges with Vectors
	Working with “–1” Subranges with Arrays
	Other Useful NumPy Methods
	Arrays and Vector Operations
	NumPy and Dot Products (1)
	NumPy and Dot Products (2)
	NumPy and the “Norm” of Vectors
	NumPy and Other Operations
	NumPy and the reshape() Method
	Calculating the Mean and Standard Deviation
	Calculating Quartiles With Numpy
	What is Pandas?
	Pandas Data Frames
	DataFrames and Data Cleaning Tasks

	A Labeled Pandas DataFrame
	Pandas Numeric DataFrames
	Pandas Boolean DataFrames
	Transposing a Pandas DataFrame

	Pandas DataFrames and Random Numbers
	Combining Pandas DataFrames (1)
	Combining Pandas DataFrames (2)
	Data Manipulation with Pandas DataFrames (1)
	Data Manipulation with Pandas DataFrames (2)
	Data Manipulation with Pandas DataFrames (3)
	Pandas DataFrames and CSV Files
	Pandas DataFrames and Excel Spreadsheets
	Select, Add, and Delete Columns in DataFrames
	Pandas DataFrames and Scatterplots
	Pandas DataFrames and Simple Statistics
	Useful One-Line Commands in Pandas
	Working with Bard
	A Pandas DataFrame with Random Values
	Pandas DataFrame and a Bar Chart
	Pandas DataFrames and Statistics

	Summary

	Chapter 5: Generative AI, Bard, and Gemini
	What is Generative AI?
	Key Features of Generative AI
	Popular Techniques in Generative AI
	What Makes Generative AI Unique

	Conversational AI Versus Generative AI
	Primary Objective
	Applications
	Technologies Used
	Training and Interaction
	Evaluation
	Data Requirements

	Is Gemini Part of Generative AI?
	DeepMind
	DeepMind and Games
	Player of Games (PoG)

	OpenAI
	Cohere
	Hugging Face
	Hugging Face Libraries
	Hugging Face Model Hub

	AI21
	InflectionAI
	Anthropic
	What is Prompt Engineering?
	Prompts and Completions
	Types of Prompts
	Instruction Prompts
	Reverse Prompts
	System Prompts Versus Agent Prompts
	Prompt Templates
	Poorly-Worded Prompts

	What is Gemini?
	Gemini Ultra Versus GPT-4
	Gemini Strengths
	Gemini’s Weaknesses
	Gemini Nano on Mobile Devices

	What is Bard?
	Sample Queries and Responses from Bard
	Alternatives to Bard
	YouChat
	Pi from Inflection
	CoPilot (OpenAI/Microsoft)
	Codex (OpenAI)
	Apple GPT
	Claude 2

	Summary

	Chapter 6: Bard and Python Code
	CSV Files for Bard
	Simple Web Scraping
	Basic Chatbot
	Basic Data Visualization
	Basic Pandas
	Generating Random Data
	Recursion: Fibonacci Numbers
	Generating a Python Class
	Asynchronous Programming
	Working with Requests in Python
	Image Processing with PIL
	Exception Handling
	Generators in Python
	Roll 7 or 11 with Two Dice
	Roll 7 or 11 with Three Dice
	Roll 7 or 11 with Four Dice
	Mean and Standard Deviation
	Summary

	Index

