

DATA WRANGLING

Using Pandas, SQL, and Java

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED

WARRANTY

By purchasing or using this book and its companion files

(the “Work”), you agree that this license grants permission

to use the contents contained herein, but does not give you

the right of ownership to any of the textual content in the

book or ownership to any of the information, files, or

products contained in it. This license does not permit

uploading of the Work onto the Internet or on a network (of

any kind) without the written consent of the Publisher.

Duplication or dissemination of any text, code, simulations,

images, etc. contained herein is limited to and subject to

licensing terms for the respective products, and permission

must be obtained from the Publisher or the owner of the

content, etc., in order to reproduce or network any portion

of the textual material (in any media) that is contained in

the Work.

MERCURY LEARNING AND INFORMATION (“MLI” or “the Publisher”)

and anyone involved in the creation, writing, production,

accompanying algorithms, code, or computer programs

(“the software”), and any accompanying Web site or

software of the Work, cannot and do not warrant the

performance or results that might be obtained by using the

contents of the Work. The author, developers, and the

Publisher have used their best efforts to insure the accuracy

and functionality of the textual material and/or programs

contained in this package; we, however, make no warranty

of any kind, express or implied, regarding the performance

of these contents or programs. The Work is sold “as is”

without warranty (except for defective materials used in

manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any

accompanying content, and anyone involved in the

composition, production, and manufacturing of this work will

not be liable for damages of any kind arising out of the use

of (or the inability to use) the algorithms, source code,

computer programs, or textual material contained in this

publication. This includes, but is not limited to, loss of

revenue or profit, or other incidental, physical, or

consequential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is

expressly limited to replacement of the book and only at the

discretion of the Publisher. The use of “implied warranty”

and certain “exclusions” vary from state to state, and might

not apply to the purchaser of this product.

Companion files also available for downloading from the

publisher by writing to info@merclearning.com.

mailto:info@merclearning.com

DATA WRANGLING

Using Pandas, SQL, and Java

Oswald Campesato

MERCURY LEARNING AND INFORMATION

Dulles, Virginia

Boston, Massachusetts

New Delhi

Copyright ©2023 by MERCURY LEARNING AND INFORMATION LLC. All rights

reserved.

This publication, portions of it, or any accompanying software may not be

reproduced in any way, stored in a retrieval system of any type, or transmitted

by any means, media, electronic display or mechanical display, including, but

not limited to, photocopy, recording, Internet postings, or scanning, without prior

permission in writing from the publisher.

Publisher: David Pallai

MERCURY LEARNING AND INFORMATION

22841 Quicksilver Drive

Dulles, VA 20166

info@merclearning.com

www.merclearning.com

1-800-232-0223

O. Campesato. Data Wrangling Using Pandas, SQL, and Java.

ISBN: 978-1-68392-904-8

The publisher recognizes and respects all marks used by companies,

manufacturers, and developers as a means to distinguish their products. All

brand names and product names mentioned in this book are trademarks or

service marks of their respective companies. Any omission or misuse (of any

kind) of service marks or trademarks, etc. is not an attempt to infringe on the

property of others.

Library of Congress Control Number: 2022945211

222324321 Printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions,

corporations, etc. For additional information, please contact the Customer

Service Dept. at 800-232-0223(toll free).

All of our titles are available in digital format at academiccourseware.com and

other digital vendors. Companion files for this title are available by writing to the

publisher at info@merclearning.com. The sole obligation of MERCURY LEARNING

AND INFORMATION to the purchaser is to replace the book, based on defective

materials or faulty workmanship, but not based on the operation or functionality

of the product.

mailto:info@merclearning.com
http://www.merclearning.com/
http://academiccourseware.com/
mailto:info@merclearning.com

I’d like to dedicate this book to my parents

—

may this bring joy and happiness into their

lives.

CONTENTS

Preface

Chapter 1: Introduction to Python

Tools for Python

easy_install and pip

virtualenv

IPython

Python Installation

Setting the PATH Environment Variable (Windows Only)

Launching Python on Your Machine

The Python Interactive Interpreter

Python Identifiers

Lines, Indentation, and Multi-Lines

Quotation and Comments

Saving Your Code in a Module

Some Standard Modules

The help() and dir() Functions

Compile Time and Runtime Code Checking

Simple Data Types

Working with Numbers

Working with Other Bases

The chr() Function

The round() Function in Python

Formatting Numbers in Python

Working with Fractions

Unicode and UTF-8

Working with Unicode

Working with Strings

Comparing Strings

Formatting Strings in Python

Uninitialized Variables and the Value None

Slicing and Splicing Strings

Testing for Digits and Alphabetic Characters

Search and Replace a String in Other Strings

Remove Leading and Trailing Characters

Printing Text Without NewLine Characters

Text Alignment

Working with Dates

Converting Strings to Dates

Exception Handling

Handling User Input

Command-Line Arguments

Summary

Chapter 2: Working with Data

Dealing with Data: What Can Go Wrong?

What is Data Drift?

What are Datasets?

Data Preprocessing

Data Types

Preparing Datasets

Discrete Data vs. Continuous Data

“Binning” Continuous Data

Scaling Numeric Data via Normalization

Scaling Numeric Data via Standardization

Scaling Numeric Data via Robust Standardization

What to Look for in Categorical Data

Mapping Categorical Data to Numeric Values

Working with Dates

Working with Currency

Working with Outliers and Anomalies

Outlier Detection/Removal

Finding Outliers with NumPy

Finding Outliers with Pandas

Calculating Z-Scores to Find Outliers

Finding Outliers with SkLearn (Optional)

Working with Missing Data

Imputing Values: When is Zero a Valid Value?

Dealing with Imbalanced Datasets

What is SMOTE?

SMOTE Extensions

The Bias-Variance Tradeoff

Types of Bias in Data

Analyzing Classifiers (Optional)

What is LIME?

What is ANOVA?

Summary

Chapter 3: Introduction to Pandas

What is Pandas?

Pandas Data Frames

Data Frames and Data Cleaning Tasks

A Pandas Data Frame Example

Describing a Pandas Data Frame

Pandas Boolean Data Frames

Transposing a Pandas Data Frame

Pandas Data Frames and Random Numbers

Converting Categorical Data to Numeric Data

Merging and Splitting Columns in Pandas

Combining Pandas Data Frames

Data Manipulation with Pandas Data Frames

Pandas Data Frames and CSV Files

Useful Options for the Pandas read_csv() Function

Reading Selected Rows from CSV Files

Pandas Data Frames and Excel Spreadsheets

Useful Options for Reading Excel Spreadsheets

Select, Add, and Delete Columns in Data Frames

Handling Outliers in Pandas

Pandas Data Frames and Simple Statistics

Finding Duplicate Rows in Pandas

Finding Missing Values in Pandas

Missing Values in an Iris-Based Dataset

Sorting Data Frames in Pandas

Working with groupby() in Pandas

Aggregate Operations with the titanic.csv Dataset

Working with apply() and mapapply() in Pandas

Useful One-line Commands in Pandas

Working with JSON-based Data

Python Dictionary and JSON

Python, Pandas, and JSON

Summary

Chapter 4: RDBMS and SQL

What is an RDBMS?

What Relationships Do Tables Have in an RDBMS?

Features of an RDBMS

What is ACID?

When Do We Need an RDBMS?

The Importance of Normalization

A Four-Table RDBMS

Detailed Table Descriptions

The customers Table

The purchase_orders Table

The line_items Table

The item_desc Table

What is SQL?

DCL, DDL, DQL, DML, and TCL

SQL Privileges

Properties of SQL Statements

The CREATE Keyword

What is MySQL?

What about MariaDB?

Installing MySQL

Data Types in MySQL

The CHAR and VARCHAR Data Types

String-based Data Types

FLOAT and DOUBLE Data Types

BLOB and TEXT Data Types

MySQL Database Operations

Creating a Database

Display a List of Databases

Display a List of Database Users

Dropping a Database

Exporting a Database

Renaming a Database

The INFORMATION_SCHEMA Table

The PROCESSLIST Table

SQL Formatting Tools

Summary

Chapter 5: Java, JSON, and XML

Working with Java and MySQL

Performing the Set-up Steps

Creating a MySQL Database in Java

Creating a MySQL Table in Java

Inserting Data into a MySQL Table in Java

Deleting Data and Dropping MySQL Tables in Java

Selecting Data from a MySQL Table in Java

Updating Data in a MySQL Table in Java

Working with JSON, MySQL, and Java

Select JSON-based Data from a MySQL Table in Java

Working with XML, MySQL, and Java

What is XML?

What is an XML Schema?

When are XML Schemas Useful?

Create a MySQL Table for XML Data in Java

Read an XML Document in Java

Read an XML Document as a String in Java

Insert XML-based Data into a MySQL Table in Java

Select XML-based Data from a MySQL Table in Java

Parse XML-based String Data from a MySQL Table in Java

Working with XML Schemas

Summary

Chapter 6: Data Cleaning Tasks

What is Data Cleaning?

Data Cleaning for Personal Titles

Data Cleaning in SQL

Replace NULL with 0

Replace NULL Values with Average Value

Replace Multiple Values with a Single Value

Handle Mismatched Attribute Values

Convert Strings to Date Values

Data Cleaning from the Command Line (Optional)

Working with the sed Utility

Working with Variable Column Counts

Truncating Rows in CSV Files

Generating Rows with Fixed Columns with the awk Utility

Converting Phone Numbers

Converting Numeric Date Formats

Converting Alphabetic Date Formats

Working with Date and Time Date Formats

Working with Codes, Countries, and Cities

Data Cleaning on a Kaggle Dataset

Summary

Chapter 7: Data Wrangling

What is Data Wrangling?

Data Transformation: What Does This Mean?

CSV Files with Multi-Row Records

Pandas Solution (1)

Pandas Solution (2)

CSV Solution

CSV Files, Multi-row Records, and the awk Command

Quoted Fields Split on Two Lines (Optional)

Overview of the Events Project

Why This Project?

Project Tasks

Generate Country Codes

Prepare a List of Cities in Countries

Generating City Codes from Country Codes: awk

Generating City Codes from Country Codes: Python

Generating SQL Statements for the city_codes Table

Generating a CSV File for Band Members (Java)

Generating a CSV File for Band Members (Python)

Generating a Calendar of Events (COE)

Project Automation Script

Project Follow-up Comments

Summary

Appendix A: Working with awk

The awk Command

Built-in Variables That Control awk

How Does the awk Command Work?

Aligning Text with the printf() Statement

Conditional Logic and Control Statements

The while Statement

A for Loop in awk

A for Loop with a break Statement

The next and continue Statements

Deleting Alternate Lines in Datasets

Merging Lines in Datasets

Printing File Contents as a Single Line

Joining Groups of Lines in a Text File

Joining Alternate Lines in a Text File

Matching with Meta Characters and Character Sets

Printing Lines Using Conditional Logic

Splitting Filenames with awk

Working with Postfix Arithmetic Operators

Numeric Functions in awk

One-line awk Commands

Useful Short awk Scripts

Printing the Words in a Text String in awk

Count Occurrences of a String in Specific Rows

Printing a String in a Fixed Number of Columns

Printing a Dataset in a Fixed Number of Columns

Aligning Columns in Datasets

Aligning Columns and Multiple Rows in Datasets

Removing a Column from a Text File

Subsets of Column-aligned Rows in Datasets

Counting Word Frequency in Datasets

Displaying Only “Pure” Words in a Dataset

Working with Multi-line Records in awk

A Simple Use Case

Another Use Case

Summary

Index

PREFACE

WHAT IS THE VALUE PROPOSITION FOR THIS BOOK?

This book contains a fast-paced introduction to as much

relevant information about managing data that can be

reasonably included in a book of this size. However, you will

be exposed to a variety of features of NumPy and Pandas,

how to create databases and tables in MySQL, and how to

perform many data cleaning tasks and data wrangling.

Some topics are presented in a cursory manner, which is

for two main reasons. First, it’s important that you be

exposed to these concepts. In some cases, you will find

topics that might pique your interest, and hence motivate

you to learn more about them through self-study; in other

cases, you will probably be satisfied with a brief

introduction. In other words, you decide whether to delve

into more detail regarding the topics in this book.

Second, a full treatment of all the topics that are covered

in this book would significantly increase its size, and few

people have the time to read technical tomes.

THE TARGET AUDIENCE

This book is intended primarily for people who plan to

become data scientists as well as anyone who needs to

perform data cleaning tasks. This book is also intended to

reach an international audience of readers with highly

diverse backgrounds in various age groups. Hence, this

book uses standard English rather than colloquial

expressions that might be confusing to those readers.

People learn by different types of imitation, which includes

reading, writing, or hearing new material. This book takes

these points into consideration to provide a comfortable and

meaningful learning experience for the intended readers.

WHAT WILL I LEARN FROM THIS BOOK?

The first chapter briefly introduces Python, followed by

Chapter 2, which delves into processing different data types

in a dataset, along with normalization, standardization, and

handling missing data. You will learn about outliers and how

to detect them via z-scores and quantile transformation.

Then you will learn about SMOTE for handling imbalanced

datasets.

Chapter 3 introduces Pandas, which is a powerful Python

library that enables you to read the contents of CSV files

(and other text files) into data frames (somewhat analogous

to Excel spreadsheets), where you can programmatically

slice-and-dice the data to conform to your requirements.

Since large quantities of data are stored in the form

structured data in relational databases, Chapter 4

introduces you to SQL concepts and how to perform basic

operations in MySQL, such as working with databases.

Chapter 5 contains Java-based code samples for creating

and accessing data in a MySQL database. Chapter 6

introduces you to data cleaning, along with various

techniques for handling different scenarios, such as missing

data and outliers.

The seventh chapter of this book explains data

wrangling, and contains Python scripts and awk-based shell

scripts to solve various tasks. Finally, there is an appendix

for awk, which will assist you in understanding the awk-based

scripts in Chapter 7.

WHY ARE THE CODE SAMPLES PRIMARILY IN PYTHON?

Most of the code samples are short (usually less than one

page and sometimes less than half a page), and if need be,

you can easily and quickly copy/paste the code into a new

Jupyter notebook. For the Python code samples that

reference a CSV file, you need an additional code snippet in

the corresponding Jupyter notebook to access the CSV file.

Moreover, the code samples execute quickly, so you won’t

need to avail yourself of the free GPU that is provided in

Google Colaboratory.

If you do decide to use Google Colaboratory, you can

easily copy/paste the Python code into a notebook, and use

the upload feature to upload existing Jupyter notebooks.

Keep in mind the following point: if the Python code

references a CSV file, make sure that you include the

appropriate code snippet (as explained in Chapter 1) to

access the CSV file in the corresponding Jupyter notebook in

Google Colaboratory.

DO I NEED TO LEARN THE THEORY PORTIONS OF THIS

BOOK?

Once again, the answer depends on the extent to which

you plan to become involved in data analytics. For example,

if you plan to study machine learning, then you will probably

learn how to create and train a model, which is a task that is

performed after data cleaning tasks. In general, you will

probably need to learn everything that you encounter in this

book if you are planning to become a machine learning

engineer.

GETTING THE MOST FROM THIS BOOK

Some programmers learn well from prose, others learn

well from sample code (and lots of it), which means that

there’s no single style that can be used for everyone.

Moreover, some programmers want to run the code first,

see what it does, and then return to the code to delve into

the details (and others use the opposite approach).

Consequently, there are various types of code samples in

this book: some are short, some are long, and other code

samples “build” from earlier code samples.

WHAT DO I NEED TO KNOW FOR THIS BOOK?

Current knowledge of Python 3.x is the most helpful skill.

Knowledge of other programming languages (such as Java)

can also be helpful because of the exposure to programming

concepts and constructs. The less technical knowledge that

you have, the more diligence will be required to understand

the various topics that are covered.

If you want to be sure that you can grasp the material in

this book, glance through some of the code samples to get

an idea of how much is familiar to you and how much is new

for you.

DOES THIS BOOK CONTAIN PRODUCTION-LEVEL CODE

SAMPLES?

The primary purpose of the code samples in this book is

to show you Python-based libraries for solving a variety of

data-related tasks in conjunction with acquiring a

rudimentary understanding of statistical concepts. Clarity

has a higher priority than writing more compact code that is

more difficult to understand (and possibly more prone to

bugs). If you decide to use any of the code in this book in a

production website, you should subject that code to the

same rigorous analysis as the other parts of your code base.

WHAT ARE THE NON-TECHNICAL PREREQUISITES FOR

THIS BOOK?

Although the answer to this question is more difficult to

quantify, it’s very important to have strong desire to learn

about data cleaning and wrangling, along with the

motivation and discipline to read and understand the code

samples.

HOW DO I SET UP A COMMAND SHELL?

If you are a Mac user, there are three ways to do so. The

first method is to use Finder to navigate to Applications >

Utilities and then double click on the Utilities application.

Next, if you already have a command shell available, you

can launch a new command shell by typing the following

command:

open /Applications/Utilities/Terminal.app

A second method for Mac users is to open a new

command shell on a MacBook from a command shell that is

already visible simply by clicking command+n in that command

shell, and your Mac will launch another command shell.

If you are a PC user, you can install Cygwin (open source:

https://cygwin.com/), which simulates bash commands, or

use another toolkit such as MKS (a commercial product).

Please read the online documentation that describes the

download and installation process. Note that custom aliases

are not automatically set if they are defined in a file other

than the main start-up file (such as .bash_login).

COMPANION FILES

https://cygwin.com/

All the code samples and figures in this book may be

obtained by writing to the publisher at

info@merclearning.com.

WHAT ARE THE “NEXT STEPS” AFTER FINISHING THIS

BOOK?

The answer to this question varies widely, mainly

because the answer depends heavily on your objectives. If

you are interested primarily in NLP, then you can learn more

advanced concepts, such as attention, transformers, and

the BERT-related models.

If you are primarily interested in machine learning, there

are some subfields of machine learning, such as deep

learning and reinforcement learning (and deep

reinforcement learning) that might appeal to you.

Fortunately, there are many resources available, and you

can perform an Internet search for those resources. One

other point: the aspects of machine learning for you to learn

depend on who you are. The needs of a machine learning

engineer, data scientist, manager, student, or software

developer are all different.

mailto:info@merclearning.com

T

CHAPTER 1

INTRODUCTION TO PYTHON

his chapter contains an introduction to Python, with

information about useful tools for installing Python

modules, basic Python constructs, and how to work

with some data types in Python.

The first part of this chapter covers how to install Python,

some Python environment variables, and how to use the

Python interpreter. You will see Python code samples and

how to save Python code in text files that you can launch

from the command line. The second part of this chapter

shows you how to work with simple data types, such as

numbers, fractions, and strings. The final part of this

chapter discusses exceptions and how to use them in

Python scripts.

NOTE The Python scripts in this book are for Python 3.

TOOLS FOR PYTHON

The Anaconda Python distribution is available for

Windows, Linux, and Mac:

http://continuum.io/downloads

http://continuum.io/downloads

Anaconda is well-suited for modules such as NumPy

(discussed in Chapter 3) and SciPy (not discussed in this

book). If you are a Windows user, Anaconda appears to be a

better alternative (and also works well for Mac and Linux).

easy_install and pip

Both easy_install and pip are easy to use when you need

to install Python modules. Whenever you need to install a

Python module (and there are many in this book), use either

easy_install or pip with the following syntax:

easy_install <module-name>

pip install <module-name>

NOTE Python-based modules are easier to install, whereas

modules with code written in C are usually faster but more

difficult in terms of installation.

virtualenv

The virtualenv tool enables you to create isolated Python

environments, and its home page is available online:

http://www.virtualenv.org/en/latest/virtualenv.html

virtualenv addresses the problem of preserving the correct

dependencies and versions (and indirectly permissions) for

different applications. If you are a Python novice you might

not need virtualenv right now, but keep this tool in mind.

IPython

Another useful tool is IPython (which won a Jolt award),

and its home page is available online:

http://ipython.org/install.html

http://www.virtualenv.org/en/latest/virtualenv.html
http://ipython.org/install.html

Type ipython to invoke IPython from the command line:

ipython

The preceding command displays the following output:

Python 3.8.6 (default, Oct 8 2020, 14:06:32)

Type 'copyright', 'credits' or 'license' for more information

IPython 7.18.1 -- An enhanced Interactive Python. Type '?' for
help.

In [1]:

Type a question mark (“?”) at the prompt and you will

see some useful information, a portion of which is here:

IPython -- An enhanced Interactive Python

===

IPython offers a fully compatible replacement for the standard
Python interpreter, with convenient shell features, special
commands, command history mechanism and output results caching.

At your system command line, type 'ipython -h' to see the command
line options available. This document only describes interactive
features.

GETTING HELP

Within IPython you have various way to access help:

 ? -> Introduction and overview of IPython's features
(this screen).

 object? -> Details about 'object'.

 object?? -> More detailed, verbose information about 'object'.

 %quickref -> Quick reference of all IPython specific syntax and
magics.

 help -> Access Python's own help system.

If you are in terminal IPython you can quit this screen by pressing
'q'.

Finally, type quit at the command prompt and you will

exit the ipython shell.

The next section shows you how to check whether

Python is installed on your machine and where you can

download Python.

PYTHON INSTALLATION

Before you download anything, check if you have Python

already installed on your machine (which is likely if you

have a Macbook or a Linux machine) by typing the following

command in a command shell:

python -V

The output for the Macbook used in this book is here:

Python 3.8.6

NOTE Install Python 3.8.6 (or as close as possible to this

version) on your machine so that you will have the same

version of Python that was used to test the Python scripts in

this book.

If you need to install Python on your machine, navigate

to the Python home page and select the “Downloads” link or

navigate directly to this website:

http://www.python.org/download/

In addition, PythonWin is available for Windows, and its

home page is as follows:

http://www.cgl.ucsf.edu/Outreach/pc204/pythonwin.ht

ml

Use any text editor that can create, edit, and save

Python scripts and save them as plain text files (don’t use

Microsoft Word).

After you have Python installed and configured on your

machine, you are ready to work with the Python scripts in

http://www.python.org/download/
http://www.cgl.ucsf.edu/Outreach/pc204/pythonwin.html

this book.

SETTING THE PATH ENVIRONMENT VARIABLE

(WINDOWS ONLY)

The PATH environment variable specifies a list of

directories that are searched whenever you specify an

executable program from the command line. A good guide

to setting up your environment so that the Python

executable is always available in every command shell is to

follow the instructions here:

http://www.blog.pythonlibrary.org/2011/11/24/python-

101-setting-up-python-on-windows/

LAUNCHING PYTHON ON YOUR MACHINE

There are three different ways to launch Python:

• Use the Python Interactive Interpreter.

• Launch Python scripts from the command line.

• Use an IDE.

The next section shows you how to launch the Python

interpreter from the command line. Later in this chapter,

you will learn how to launch Python scripts from the

command line and also about Python IDEs.

The emphasis in this book is to launch Python scripts

from the command line or to enter code in the Python

interpreter.

The Python Interactive Interpreter

Launch the Python interactive interpreter from the

command line by opening a command shell and typing the

following command:

http://www.blog.pythonlibrary.org/2011/11/24/python-101-setting-up-python-on-windows/

python

You will see the following prompt (or something similar):

Python 3.8.6 (default, Oct 8 2020, 14:06:32)

[Clang 12.0.0 (clang-1200.0.32.2)] on darwin

Type "help", "copyright", "credits" or "license" for more
information.

>>>

Now type the expression 2 + 7 at the prompt:

>>> 2 + 7

Python displays the following result:

9

>>>

Press ctrl-d to exit the Python shell.

You can launch any Python script from the command line

by preceding it with the word “python.” For example, if you

have a Python script myscript.py that contains Python

commands, launch the script as follows:

python myscript.py

As a simple illustration, suppose that the Python script

myscript.py contains the following Python code:

print('Hello World from Python')

print('2 + 7 = ', 2+7)

When you launch the preceding Python script you will see

the following output:

Hello World from Python

2 + 7 = 9

PYTHON IDENTIFIERS

A Python identifier is the name of a variable, function,

class, module, or other Python object, and a valid identifier

conforms to the following rules:

• starts with a letter A to Z or a to z or an underscore (_)

• zero or more letters, underscores, and digits (0 to 9)

NOTE Python identifiers cannot contain characters such as

@, $, and %.

Python is a case-sensitive language, so Abc and abc are

different identifiers in Python.

In addition, Python has the following naming

conventions:

• Class names start with an uppercase letter and all

other identifiers with a lowercase letter.

• An initial underscore is used for private identifiers.

• Two initial underscores are used for strongly private

identifiers.

A Python identifier with two initial underscore and two

trailing underscore characters indicates a language-defined

special name.

LINES, INDENTATION, AND MULTI-LINES

Unlike other programming languages (such as Java or

Objective-C), Python uses indentation instead of curly

braces for code blocks. Indentation must be consistent in a

code block, as shown here:

if True:

 print("ABC")

 print("DEF")

else:

 print("ABC")

 print("DEF")

Multi-line statements in Python can terminate with a new

line or the backslash (“\”) character, as shown here:

total = x1 + \

 x2 + \

 x3

Obviously, you can place x1, x2, and x3 on the same line,

so there is no reason to use three separate lines; however,

this functionality is available in case you need to add a set

of variables that do not fit on a single line.

You can specify multiple statements in one line by using

a semicolon (“;”) to separate each statement, as shown

here:

a=10; b=5; print(a); print(a+b)

The output of the preceding code snippet is here:

10

15

NOTE The use of semi-colons and the continuation character

are discouraged in Python.

QUOTATION AND COMMENTS

Python allows single ('), double ("), and triple ('" or """)

quotes for string literals, provided that they match at the

beginning and the end of the string. You can use triple

quotes for strings that span multiple lines. The following

examples are legal Python strings:

word = 'word'

line = "This is a sentence."

para = """This is a paragraph. This paragraph contains

more than one sentence."""

A string literal that begins with the letter “r” (for “raw”)

treats everything as a literal character and “escapes” the

meaning of meta characters, as shown here:

a1 = r'\n'

a2 = r'\r'

a3 = r'\t'

print('a1:',a1,'a2:',a2,'a3:',a3)

The output of the preceding code block is here:

a1: \n a2: \r a3: \t

You can embed a single quote in a pair of double quotes

(and vice versa) to display a single quote or a double quote.

Another way to accomplish the same result is to precede a

single or double quote with a backslash (\) character. The

following code block illustrates these techniques:

b1 = "'"

b2 = '"'

b3 = '\''

b4 = "\""

print('b1:',b1,'b2:',b2)

print('b3:',b3,'b4:',b4)

The output of the preceding code block is here:

b1: ' b2: "

b3: ' b4: "

A hash sign (#) that is not inside a string literal is the

character that indicates the beginning of a comment.

Moreover, all characters after the # and up to the physical

line end are part of the comment (and ignored by the

Python interpreter). Consider the following code block:

#!/usr/bin/python

First comment

print("Hello, Python!") # second comment

This will produce following result:

Hello, Python!

A comment may be on the same line after a statement or

expression:

name = "Tom Jones" # This is also comment

You can comment multiple lines as follows:

This is comment one

This is comment two

This is comment three

A blank line in Python is a line containing only

whitespace, a comment, or both.

SAVING YOUR CODE IN A MODULE

Earlier you saw how to launch the Python interpreter

from the command line and then enter Python commands.

However, everything that you type in the Python interpreter

is only valid for the current session: if you exit the

interpreter and then launch the interpreter again, your

previous definitions are no longer valid. Fortunately, Python

enables you to store code in a text file, as discussed in the

next section.

A module in Python is a text file that contains Python

statements. In the previous section, you saw how the

Python interpreter enables you to test code snippets whose

definitions are valid for the current session. If you want to

retain the code snippets and other definitions, place them in

a text file so that you can execute that code outside of the

Python interpreter.

The outermost statements in a Python are executed from

top to bottom when the module is imported for the first

time, which will then set up its variables and functions.

A Python module can be run directly from the command

line, as shown here:

python first.py

As an illustration, place the following two statements in a

text file called first.py:

x = 3

print(x)

Type the following command:

Python first.py

The output from the preceding command is 3, which is

the same as executing the preceding code from the Python

interpreter.

When a Python module is run directly, the special

variable __name__ is set to __main__. You will often see the

following type of code in a Python module:

if __name__ == '__main__':

 # do something here

 print('Running directly')

The preceding code snippet enables Python to determine

if a module was launched from the command line or

imported into another Python module.

SOME STANDARD MODULES

The Python Standard Library provides many modules that

can simplify your own Python scripts. A list of the Standard

Library modules is available online:

http://www.python.org/doc/

Some of the most important Python modules include cgi,

math, os, pickle, random, re, socket, sys, time, and urllib.

The code samples in this book use the modules math, os,

random, re, socket, sys, time, and urllib. You need to import

these modules to use them in your code. For example, the

following code block shows you how to import four standard

Python modules:

import datetime

import re

import sys

import time

The code samples in this book import one or more of the

preceding modules, as well as other Python modules.

THE HELP() AND DIR() FUNCTIONS

An Internet search for Python-related topics usually

returns a number of links with useful information.

Alternatively, you can check the official Python

documentation site: docs.python.org.

In addition, Python provides the help() and dir() functions,

which are accessible from the Python interpreter. The help()

function displays documentation strings, whereas the dir()

function displays defined symbols. For example, if you type

help(sys), you will see documentation for the sys module,

whereas dir(sys) displays a list of the defined symbols.

Type the following command in the Python interpreter to

display the string-related methods in Python:

>>> dir(str)

The preceding command generates the following output:

['__add__', '__class__', '__contains__', '__delattr__', '__doc__',

http://www.python.org/doc/
http://docs.python.org/

'__eq__', '__format__', '__ge__', '__getattribute__',
'__getitem__',

'__getnewargs__', '__getslice__', '__gt__', '__hash__', '__init__',

'__le__', '__len__', '__lt__', '__mod__', '__mul__', '__ne__',
'__new__',

'__reduce__', '__reduce_ex__', '__repr__', '__rmod__', '__rmul__',
'__

setattr__', '__sizeof__', '__str__', '__subclasshook__',
'_formatter_

field_name_split', '_formatter_parser', 'capitalize', 'center',
'count',

'decode', 'encode', 'endswith', 'expandtabs', 'find', 'format',
'index',

'isalnum', 'isalpha', 'isdigit', 'islower', 'isspace', 'istitle',

'isupper', 'join', 'ljust', 'lower', 'lstrip', 'partition',
'replace',

'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit', 'rstrip',
'split',

'splitlines', 'startswith', 'strip', 'swapcase', 'title',
'translate',

'upper', 'zfill']

The preceding list gives you a consolidated “dump” of

built-in functions (including some that are discussed later in

this chapter). Although the max() function obviously returns

the maximum value of its arguments, the purpose of other

functions, such as filter() or map(), is not immediately

apparent (unless you have used them in other programming

languages). The preceding list provides a starting point for

finding out more about various Python built-in functions that

are not discussed in this chapter.

Note that while dir() does not list the names of built-in

functions and variables, you can obtain this information

from the standard module __builtin__ that is automatically

imported under the name __builtins__:

>>> dir(__builtins__)

The following command shows you how to get more

information about a function:

help(str.lower)

The output from the preceding command is here:

Help on method_descriptor:

lower(...)

 S.lower() -> string

 Return a copy of the string S converted to lowercase.

(END)

Check the online documentation and experiment with

help() and dir() when you need additional information about

a particular function or module.

COMPILE TIME AND RUNTIME CODE CHECKING

Python performs some compile-time checking, but most

checks are deferred until code execution. Consequently, if

your Python code references a user-defined function that

does not exist, the code will compile successfully. In fact,

the code will fail with an exception only when the code

execution path references the non-existent function.

As a simple example, consider the following Python

function myFunc that references the non-existent function

called DoesNotExist:

def myFunc(x):

 if x == 3:

 print(DoesNotExist(x))

 else:

 print('x: ',x)

The preceding code will only fail when the myFunc function

is passed the value 3, after which Python raises an error.

Now that you understand some basic concepts (such as

how to use the Python interpreter) and how to launch your

custom Python modules, the next section discusses

primitive data types.

SIMPLE DATA TYPES

Python supports primitive data types, such as numbers

(integers, floating point numbers, and exponential

numbers), strings, and dates. Python also supports more

complex data types, such as lists (or arrays), tuples, and

dictionaries. The next several sections discuss some of the

Python primitive data types, along with code snippets that

show you how to perform various operations on those data

types.

WORKING WITH NUMBERS

Python provides arithmetic operations for manipulating

numbers a straightforward manner that is similar to other

programming languages. The following examples involve

arithmetic operations on integers:

>>> 2+2

4

>>> 4/3

1

>>> 3*8

24

The following example assigns numbers to two variables

and computes their product:

>>> x = 4

>>> y = 7

>>> x * y

28

The following examples demonstrate arithmetic

operations involving integers:

>>> 2+2

4

>>> 4/3

1

>>> 3*8

24

Notice that division (/) of two integers is actually

truncation in which only the integer result is retained. The

following example converts a floating point number into

exponential form:

>>> fnum = 0.00012345689000007

>>> "%.14e"%fnum

'1.23456890000070e-04'

You can use the int() function and the float() function to

convert strings to numbers:

word1 = "123"

word2 = "456.78"

var1 = int(word1)

var2 = float(word2)

print("var1: ",var1," var2: ",var2)

The output from the preceding code block is here:

var1: 123 var2: 456.78

Alternatively, you can use the eval() function:

word1 = "123"

word2 = "456.78"

var1 = eval(word1)

var2 = eval(word2)

print("var1: ",var1," var2: ",var2)

If you attempt to convert a string that is not a valid

integer or a floating point number, Python raises an

exception, so it’s advisable to place your code in a try/except

block (discussed later in this chapter).

Working with Other Bases

Numbers in Python are in base 10 (the default), but you

can easily convert numbers to other bases. For example, the

following code block initializes the variable x with the value

1234, and then displays that number in base 2, 8, and 16,

respectively:

>>> x = 1234

>>> bin(x) '0b10011010010'

>>> oct(x) '0o2322'

>>> hex(x) '0x4d2'

Use the format() function if you want to suppress the 0b,

0o, or 0x prefixes, as shown here:

>>> format(x, 'b') '10011010010'

>>> format(x, 'o') '2322'

>>> format(x, 'x') '4d2'

Negative integers are displayed with a negative sign:

>>> x = -1234

>>> format(x, 'b') '-10011010010'

>>> format(x, 'x') '-4d2'

The chr() Function

The Python chr() function takes a positive integer as a

parameter and converts it to its corresponding alphabetic

value (if one exists). The letters A through Z have decimal

representations of 65 through 91 (which correspond to

hexadecimals 41 through 5b), and the lowercase letters a

through z have decimal representations of 97 through 122

(hexadecimals 61 through 7b). Here is an example of using

the chr() function to print an uppercase A:

>>> x=chr(65)

>>> x

'A'

The following code block prints the ASCII values for a

range of integers:

result = ""

for x in range(65,90):

 print(x, chr(x))

 result = result+chr(x)+' '

print("result: ",result)

You can represent a range of characters with the

following line:

for x in range(65,90):

However, the following equivalent code snippet is more

intuitive:

for x in range(ord('A'), ord('Z')):

If you want to display the result for lowercase letters,

change the preceding range from (65,91) to either of the

following statements:

for x in range(65,90):

for x in range(ord('a'), ord('z')):

The round() Function in Python

The Python round() function enables you to round decimal

values to the nearest precision:

>>> round(1.23, 1)

1.2

>>> round(-3.42,1)

-3.4

Formatting Numbers in Python

Python allows you to specify the number of decimal

places of precision to use when printing decimal numbers,

as shown here:

>>> x = 1.23456

>>> format(x, '0.2f')

'1.23'

>>> format(x, '0.3f')

'1.235'

>>> 'value is {:0.3f}'.format(x) 'value is 1.235'

>>> from decimal import Decimal

>>> a = Decimal('4.2')

>>> b = Decimal('2.1')

>>> a + b

Decimal('6.3')

>>> print(a + b)

6.3

>>> (a + b) == Decimal('6.3')

True

>>> x = 1234.56789

>>> # Two decimal places of accuracy

>>> format(x, '0.2f')

'1234.57'

>>> # Right justified in 10 chars, one-digit accuracy

>>> format(x, '>10.1f')

' 1234.6'

>>> # Left justified

>>> format(x, '<10.1f') '1234.6 '

>>> # Centered

>>> format(x, '^10.1f') ' 1234.6 '

>>> # Inclusion of thousands separator

>>> format(x, ',')

'1,234.56789'

>>> format(x, '0,.1f')

'1,234.6'

WORKING WITH FRACTIONS

Python supports the Fraction() function (defined in the

fractions module), which accepts two integers that represent

the numerator and the denominator (which must be

nonzero) of a fraction. Several example of defining and

manipulating fractions in Python are shown here:

>>> from fractions import Fraction

>>> a = Fraction(5, 4)

>>> b = Fraction(7, 16)

>>> print(a + b)

27/16

>>> print(a * b) 35/64

>>> # Getting numerator/denominator

>>> c = a * b

>>> c.numerator

35

>>> c.denominator 64

>>> # Converting to a float >>> float(c)

0.546875

>>> # Limiting the denominator of a value

>>> print(c.limit_denominator(8))

4

>>> # Converting a float to a fraction >>> x = 3.75

>>> y = Fraction(*x.as_integer_ratio())

>>> y

Fraction(15, 4)

Before delving into Python code samples that work with

strings, the next section briefly discusses Unicode and UTF-

8, both of which are character encodings.

UNICODE AND UTF-8

A Unicode string consists of a sequence of numbers that

are between 0 and 0x10ffff, where each number represents

a group of bytes. An encoding is the manner in which a

Unicode string is translated into a sequence of bytes.

Among the various encodings, UTF-8 (“Unicode

Transformation Format”) is perhaps the most common, and

it’s also the default encoding for many systems. The digit 8

in UTF-8 indicates that the encoding uses 8-bit numbers,

whereas UTF-16 uses 16-bit numbers (but this encoding is

less common).

The ASCII character set is a subset of UTF-8, so a valid

ASCII string can be read as a UTF-8 string without any re-

encoding required. In addition, a Unicode string can be

converted into a UTF-8 string.

WORKING WITH UNICODE

Python supports Unicode, which means that you can

render characters in different languages. Unicode data can

be stored and manipulated in the same way as strings.

Create a Unicode string by prepending the letter “u,” as

shown here:

>>> u'Hello from Python!'

u'Hello from Python!'

Special characters can be included in a string by

specifying their Unicode value. For example, the following

Unicode string embeds a space (which has the Unicode

value 0x0020) in a string:

>>> u'Hello\u0020from Python!'

u'Hello from Python!'

Listing 1.1 displays the content of Unicode1.py that

illustrates how to display a string of characters in Japanese

(Hiragana) and another string of characters in Chinese

(Mandarin).

LISTING 1.1: Unicode1.py

chinese1 = u'\u5c07\u63a2\u8a0e HTML5 \u53ca\u5176\u4ed6'

hiragana = u'D3 \u306F \u304B\u3063\u3053\u3043\u3043
\u3067\u3059!'

print('Chinese:',chinese1)

print('Hiragana:',hiragana)

The output of Listing 1.2 is here:

Chinese: 將探討 HTML5 及其他

Hiragana: D3 は かっこぃぃ です!

The next portion of this chapter shows you how to “slice

and dice” text strings with built-in Python functions.

WORKING WITH STRINGS

A string in Python 3 is based on Unicode, whereas a

string in Python 2 is a sequence of ASCII-encoded bytes. You

can concatenate two strings using the + operator. The

following example prints a string and then concatenates two

single-letter strings:

>>> 'abc'

'abc'

>>> 'a' + 'b'

'ab'

You can use + or * to concatenate identical strings, as

shown here:

>>> 'a' + 'a' + 'a'

'aaa'

>>> 'a' * 3

'aaa'

You can assign strings to variables and print them using

the print command:

>>> print('abc')

abc

>>> x = 'abc'

>>> print(x)

abc

>>> y = 'def'

>>> print(x + y)

Abcdef

You can “unpack” the letters of a string and assign them

to variables, as shown here:

>>> str = "World"

>>> x1,x2,x3,x4,x5 = str

>>> x1

'W'

>>> x2

'o'

>>> x3

'r'

>>> x4

'l'

>>> x5

'd'

The preceding code snippets shows you how easy it is to

extract the letters in a text string. You can extract substrings

of a string, as shown in the following examples:

>>> x = "abcdef"

>>> x[0]

'a'

>>> x[-1]

'f'

>>> x[1:3]

'bc'

>>> x[0:2] + x[5:]

'abf'

However, you will cause an error if you attempt to

“subtract” two strings, as you probably expect:

>>> 'a' - 'b'

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for -: 'str' and 'str'

The try/except construct in Python (discussed later in this

chapter) enables you to handle the preceding type of

exception more gracefully.

Comparing Strings

You can use the methods lower() and upper() to convert a

string to lowercase and uppercase, respectively, as shown

here:

>>> 'Python'.lower()

'python'

>>> 'Python'.upper()

'PYTHON'

>>>

The methods lower() and upper() are useful for performing

a case insensitive comparison of two ASCII strings. Listing

1.2 displays the content of Compare.py that uses the lower()

function to compare two ASCII strings.

LISTING 1.2: Compare.py

x = 'Abc'

y = 'abc'

if(x == y):

 print('x and y: identical')

elif (x.lower() == y.lower()):

 print('x and y: case insensitive match')

else:

 print('x and y: different')

Since x contains mixed case letters and y contains

lowercase letters, Listing 1.2 displays the following output:

x and y: different

Formatting Strings in Python

Python provides the functions string.lstring(),

string.rstring(), and string.center() for positioning a text

string so that it is left-justified, right-justified, and centered,

respectively. As you saw in a previous section, Python also

provides the format() method for advanced interpolation

features. Now enter the following commands in the Python

interpreter:

import string

str1 = 'this is a string'

print(string.ljust(str1, 10))

print(string.rjust(str1, 40))

print(string.center(str1,40))

The output is shown here:

this is a string

 this is a string

 this is a string

UNINITIALIZED VARIABLES AND THE VALUE NONE

Python distinguishes between an uninitialized variable

and the value None. The former is a variable that has not

been assigned a value, whereas the value None is a value

that indicates “no value.” Collections and methods often

return the value None, and you can test for the value None in

conditional logic.

The next portion of this chapter shows you how to “slice

and dice” text strings with built-in Python functions.

SLICING AND SPLICING STRINGS

Python enables you to extract substrings of a string

(called “slicing”) using array notation. Slice notation is

start:stop:step, where the start, stop, and step values are

integers that specify the start value, end value, and the

increment value. The interesting part about slicing in Python

is that you can use the value -1, which operates from the

right-side instead of the left-side of a string. Some examples

of slicing a string are here:

text1 = "this is a string"

print('First 7 characters:',text1[0:7])

print('Characters 2-4:',text1[2:4])

print('Right-most character:',text1[-1])

print('Right-most 2 characters:',text1[-3:-1])

The output from the preceding code block is here:

First 7 characters: this is

Characters 2-4: is

Right-most character: g

Right-most 2 characters: in

Later in this chapter, you will see how to insert a string in

the middle of another string.

Testing for Digits and Alphabetic Characters

Python enables you to examine each character in a string

and then test whether that character is a digit or an

alphabetic character. This section provides a simple

introduction to regular expressions.

Listing 1.3 displays the content of CharTypes.py that

illustrates how to determine if a string contains digits or

characters. Although we have not discussed if statements

in Python, the examples in Listing 1.3 are straightforward.

LISTING 1.3: CharTypes.py

str1 = "4"

str2 = "4234"

str3 = "b"

str4 = "abc"

str5 = "a1b2c3"

if(str1.isdigit()):

 print("this is a digit:",str1)

if(str2.isdigit()):

 print("this is a digit:",str2)

if(str3.isalpha()):

 print("this is alphabetic:",str3)

if(str4.isalpha()):

 print("this is alphabetic:",str4)

if(not str5.isalpha()):

 print("this is not pure alphabetic:",str5)

print("capitalized first letter:",str5.title())

Listing 1.3 initializes some variables, followed by two

conditional tests that check whether str1 and str2 are digits

using the isdigit() function. The next portion of Listing 1.3

checks if str3, str4, and str5 are alphabetic strings using the

isalpha() function. The output of Listing 1.3 is here:

this is a digit: 4

this is a digit: 4234

this is alphabetic: b

this is alphabetic: abc

this is not pure alphabetic: a1b2c3

capitalized first letter: A1B2C3

SEARCH AND REPLACE A STRING IN OTHER STRINGS

Python provides methods for searching and replacing a

string in a second text string. Listing 1.4 displays the

content of FindPos1.py that shows you how to use the find()

function to search for the occurrence of one string in

another string.

LISTING 1.4: FindPos1.py

item1 = 'abc'

item2 = 'Abc'

text = 'This is a text string with abc'

pos1 = text.find(item1)

pos2 = text.find(item2)

print('pos1=',pos1)

print('pos2=',pos2)

Listing 1.4 initializes the variables item1, item2, and text,

and then searches for the index of the contents of item1 and

item2 in the string text. The Python find() function returns the

column number where the first successful match occurs;

otherwise, the find() function returns a -1 if a match is

unsuccessful.

The output from launching Listing 1.4 is here:

pos1 = 27

pos2 = -1

In addition to the find() method, you can use the in

operator when you want to test for the presence of an

element, as shown here:

>>> lst = [1,2,3]

>>> 1 in lst

True

Listing 1.5 displays the content of Replace1.py that shows

you how to replace one string with another string.

LISTING 1.5: Replace1.py

text = 'This is a text string with abc'

print('text:',text)

text = text.replace('is a', 'was a')

print('text:',text)

Listing 1.5 starts by initializing the variable text and then

printing its contents. The next portion of Listing 1.5 replaces

the occurrence of “is a” with “was a” in the string text, and

then prints the modified string. The output from launching

Listing 1.5 is here:

text: This is a text string with abc

text: This was a text string with abc

REMOVE LEADING AND TRAILING CHARACTERS

Python provides the functions strip(), lstrip(), and

rstrip() to remove characters in a text string. Listing 1.6

displays the content of Remove1.py that shows you how to

search for a string.

LISTING 1.6: Remove1.py

text = ' leading and trailing white space '

print('text1:','x',text,'y')

text = text.lstrip()

print('text2:','x',text,'y')

text = text.rstrip()

print('text3:','x',text,'y')

Listing 1.6 starts by concatenating the letter x and the

contents of the variable text, and then printing the result.

The second part of Listing 1.6 removes the leading white

spaces in the string text and then appends the result to the

letter x. The third part of Listing 1.6 removes the trailing

white spaces in the string text (note that the leading white

spaces have already been removed) and then appends the

result to the letter x.

The output from launching Listing 1.6 is here:

text1: x leading and trailing white space y

text2: x leading and trailing white space y

text3: x leading and trailing white space y

If you want to remove extra white spaces inside a text

string, use the replace() function as discussed in the previous

section. The following example illustrates how this can be

accomplished, which also contains the re module for regular

expressions:

import re

text = 'a b'

a = text.replace(' ', '')

b = re.sub('\s+', ' ', text)

print(a)

print(b)

The result is here:

ab

a b

PRINTING TEXT WITHOUT NEWLINE CHARACTERS

If you need to suppress white space and a newline

between objects output with multiple print statements, you

can use concatenation or the write() function.

The first technique is to concatenate the string

representations of each object using the str() function prior

to printing the result. For example, execute the following

statements in Python:

x = str(9)+str(0xff)+str(-3.1)

print('x: ',x)

The output is shown here:

x: 9255-3.1

The preceding line contains the concatenation of the

numbers 9 and 255 (which is the decimal value of the

hexadecimal number 0xff) and -3.1.

Incidentally, you can use the str() function with modules

and user-defined classes. An example involving the Python

built-in module sys is here:

>>> import sys

>>> print(str(sys))

<module 'sys' (built-in)>

The following code snippet illustrates how to use the

write() function to display a string:

import sys

write = sys.stdout.write

write('123')

write('123456789')

The output is here:

1233

1234567899

TEXT ALIGNMENT

Python provides the methods ljust(), rjust(), and center()

for aligning text. The ljust() and rjust() functions left justify

and right justify a text string, respectively, whereas the

center() function will center a string. An example is shown in

the following code block:

text = 'Hello World'

text.ljust(20)

'Hello World '

>>> text.rjust(20)

' Hello World'

>>> text.center(20)

' Hello World '

You can use the Python format() function to align text. Use

the <, >, or ^ characters, along with a desired width, to right

justify, left justify, and center the text, respectively. The

following examples illustrate how you can specify text

justification:

>>> format(text, '>20')

' Hello World'

>>>

>>> format(text, '<20')

'Hello World '

>>>

>>> format(text, '^20')

' Hello World '

>>>

WORKING WITH DATES

Python provides a rich set of date-related functions that

are documented online:

http://docs.python.org/2/library/datetime.html

Listing 1.7 displays the content of the Python script

Datetime2.py that displays various date-related values, such

as the current date and time; the day of the week, month,

and year; and the time in seconds since the epoch.

http://docs.python.org/2/library/datetime.html

LISTING 1.7: Datetime2.py

import time

import datetime

print("Time in seconds since the epoch: %s" %time.time())

print("Current date and time: " , datetime.datetime.now())

print("Or like this: " ,datetime.datetime.now().strftime("%y-%m-%d-
%H-%M"))

print("Current year: ", datetime.date.today().strftime("%Y"))

print("Month of year: ", datetime.date.today().strftime("%B"))

print("Week number of the year: ",
datetime.date.today().strftime("%W"))

print("Weekday of the week: ",
datetime.date.today().strftime("%w"))

print("Day of year: ", datetime.date.today().strftime("%j"))

print("Day of the month : ", datetime.date.today().strftime("%d"))

print("Day of week: ", datetime.date.today().strftime("%A"))

Listing 1.8 displays the output generated by executing

the code in Listing 1.7.

LISTING 1.8: datetime2.out

Time in seconds since the epoch: 1375144195.66

Current date and time: 2013-07-29 17:29:55.664164

Or like this: 13-07-29-17-29

Current year: 2013

Month of year: July

Week number of the year: 30

Weekday of the week: 1

Day of year: 210

Day of the month : 29

Day of week: Monday

Python also enables you to perform arithmetic

calculations with date-related values, as shown in the

following code block:

>>> from datetime import timedelta

>>> a = timedelta(days=2, hours=6)

>>> b = timedelta(hours=4.5)

>>> c = a + b

>>> c.days

2

>>> c.seconds

37800

>>> c.seconds / 3600

10.5

>>> c.total_seconds() / 3600

58.5

Converting Strings to Dates

Listing 1.9 displays the content of String2Date.py that

illustrates how to convert a string to a date and how to

calculate the difference between two dates.

LISTING 1.9: String2Date.py

from datetime import datetime

text = '2014-08-13'

y = datetime.strptime(text, '%Y-%m-%d')

z = datetime.now()

diff = z - y

print('Date difference:',diff)

The output from Listing 1.9 is shown here:

Date difference: -210 days, 18:58:40.197130

EXCEPTION HANDLING

Unlike JavaScript, you cannot add a number and a string

in Python. Fortunately, you can detect an illegal operation

using the try/except construct in Python, which is similar to

the try/catch construct in languages such as JavaScript and

Java.

An example of a try/except block is here:

try:

 x = 4

 y = 'abc'

 z = x + y

except:

 print 'cannot add incompatible types:', x, y

When you run the preceding code in Python, the print

statement in the except code block is executed because the

variables x and y have incompatible types.

Earlier in the chapter, you also saw that subtracting two

strings throws an exception:

>>> 'a' - 'b'

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for -: 'str' and 'str'

A simple way to handle this situation is to use a try/except

block:

>>> try:

... print('a' - 'b')

... except TypeError:

... print('TypeError exception while trying to subtract two
strings')

... except:

... print('Exception while trying to subtract two strings')

...

The output from the preceding code block is here:

TypeError exception while trying to subtract two strings

As you can see, the preceding code block specifies the

finer-grained exception called TypeError, followed by a

“generic” except code block to handle all other exceptions

that might occur during the execution of your Python code.

This style resembles the exception handling in Java code.

Listing 1.10 displays the content of Exception1.py that

illustrates how to handle various types of exceptions, which

includes an exception due to a missing file.

LISTING 1.10: Exception1.py

import sys

try:

 f = open('myfile.txt')

 s = f.readline()

 i = int(s.strip())

except IOError as err:

 print("I/O error: {0}".format(err))

except ValueError:

 print("Could not convert data to an integer.")

except:

 print("Unexpected error:", sys.exc_info()[0])

 raise

Listing 1.10 contains a try block followed by three except

statements. If an error occurs in the try block, the first except

statement is compared with the type of exception that

occurred. If there is a match, then the subsequent print()

statement is executed, and the program terminates. If not, a

similar test is performed with the second except statement. If

neither except statement matches the exception, the third

except statement handles the exception, which involves

printing a message and then “raising” an exception.

Note that you can also specify multiple exception types

in a single statement, as shown here:

except (NameError, RuntimeError, TypeError):

 print('One of three error types occurred')

The preceding code block is more compact, but you do

not know which of the three error types occurred. Python

allows you to define custom exceptions, but this topic is

beyond the scope of this book.

HANDLING USER INPUT

Python enables you to read user input from the

command line via the input() function (raw_input() for

Python2.x). Typically, you assign user input to a variable,

which will contain all characters that users enter from the

keyboard. User input terminates when users press the

<return> key (which is included with the input characters).

Listing 1.11 displays the content of UserInput1.py that

prompts users for their name and then uses interpolation to

display a response.

LISTING 1.11: UserInput1.py

userInput = input("Enter your name: ")

print ("Hello %s, my name is Python" % userInput)

The output of Listing 1.11 is here (assume that the user

entered the word Dave):

Hello Dave, my name is Python

The print() statement in Listing 1.11 uses string

interpolation via %s, which substitutes the value of the

variable after the % symbol. This functionality is obviously

useful when you want to specify something that is

determined at run-time. User input can cause exceptions

(depending on the operations that your code performs), so

it’s important to include exception-handling code.

Listing 1.12 displays the content of UserInput2.py that

prompts users for a string and attempts to convert the

string to a number in a try/except block.

LISTING 1.12: UserInput2.py

userInput = input("Enter something: ")

try:

 x = 0 + eval(userInput)

 print('you entered the number:',userInput)

except:

 print(userInput,'is a string')

Listing 1.12 adds the number 0 to the result of converting

a user’s input to a number. If the conversion was successful,

a message with the user’s input is displayed. If the

conversion failed, the except code block consists of a print()

statement that displays a message.

This code sample uses the eval() function, which

should be avoided so that your code does not

evaluate arbitrary (and possibly destructive)

commands.

Listing 1.13 displays the content of UserInput3.py that

prompts users for two numbers and attempts to compute

their sum in a pair of try/except blocks.

LISTING 1.13: UserInput3.py

sum = 0

msg = 'Enter a number:'

val1 = input(msg)

try:

 sum = sum + eval(val1)

except:

 print(val1,'is a string')

msg = 'Enter a number:'

val2 = input(msg)

try:

 sum = sum + eval(val2)

except:

 print(val2,'is a string')

print('The sum of',val1,'and',val2,'is',sum)

Listing 1.13 contains two try blocks, each of which is

followed by an except statement. The first try block attempts

to add the first user-supplied number to the variable sum, and

the second try block attempts to add the second user-

supplied number to the previously entered number. An error

message occurs if either input string is not a valid number;

if both are valid numbers, a message is displayed containing

the input numbers and their sum. Be sure to read the caveat

regarding the eval() function that is mentioned earlier in this

chapter.

COMMAND-LINE ARGUMENTS

Python provides a getopt module to parse command-line

options and arguments, and the sys module provides access

to any command-line arguments via the sys.argv. This serves

two purposes:

• sys.argv is the list of command-line arguments.

• len(sys.argv) is the number of command-line

arguments.

Here, sys.argv[0] is the program name, so if the Python

program is called test.py, it matches the value of sys.argv[0].

Now you can provide input values for a Python program

on the command line instead of providing input values by

prompting users for their input. As an example, consider the

script test.py shown here:

#!/usr/bin/python

import sys

print('Number of arguments:',len(sys.argv),'arguments')

print('Argument List:', str(sys.argv))

Run above script as follows:

python test.py arg1 arg2 arg3

This will produce following result:

Number of arguments: 4 arguments.

Argument List: ['test.py', 'arg1', 'arg2', 'arg3']

The ability to specify input values from the command line

provides useful functionality. For example, suppose that you

have a custom Python class that contains the methods add

and subtract to add and subtract a pair of numbers.

You can use command-line arguments to specify which

method to execute on a pair of numbers, as shown here:

python MyClass add 3 5

python MyClass subtract 3 5

This functionality is useful because you can

programmatically execute different methods in a Python

class, which means that you can write unit tests for your

code as well.

Listing 1.14 displays the content of Hello.py that shows

you how to use sys.argv to check the number of command

line parameters.

LISTING 1.14: Hello.py

import sys

def main():

 if len(sys.argv) >= 2:

 name = sys.argv[1]

 else:

 name = 'World'

 print('Hello', name)

Standard boilerplate to invoke the main() function

if __name__ == '__main__':

 main()

Listing 1.14 defines the main() function that checks the

number of command-line parameters: if this value is at least

2, then the variable name is assigned the value of the second

parameter (the first parameter is Hello.py), otherwise name is

assigned the value Hello. The print() statement then prints

the value of the variable name. The final portion of Listing

1.14 uses conditional logic to determine whether to execute

the main() function.

SUMMARY

This chapter showed you how to execute Python

programs, as well as how to work with numbers and perform

arithmetic operations on numbers in Python. Next, you

learned how to work with strings and use string operations.

In addition, you learned about the difference between

Unicode and ASCII in Python 3 and Python 2, respectively.

Then you saw how to slice and splice strings, how to replace

a string with another string, and also how to remove leading

and trailing characters in a string.

Finally, you learned how to work with dates in Python,

and then how to handle exceptions that can arise from user

input.

T

CHAPTER 2

WORKING WITH DATA

his chapter introduces you to various data types that

you will encounter in datasets, how to scale data

values, techniques for detecting outliers, and several

ways for handling missing data values.

The first part of this chapter contains an overview of

different types of data, and an explanation of how to

normalize and standardize a set of numeric values by

calculating the mean and standard deviation of a set of

numbers. You will see how to map categorical data to a set

of integers and how to perform a one-hot encoding.

The second part of this chapter discusses outliers,

anomalies, and missing data, as well as various techniques

for handling these scenarios. The third section discusses

imbalanced data and several techniques, such as SMOTE, to

deal with imbalanced classes in a dataset.

The fourth section contains details regarding the bias-

variance tradeoff and various types of statistical bias; it also

discusses ways to evaluate classifiers, such as LIME and

ANOVA.

This chapter provides a high-level view of concepts that

will help you work with datasets that require preprocessing

before using them to train machine learning models. While

the code samples reference APIs from Python libraries (such

as NumPy and Pandas), the APIs are intuitive, such as mean()

for calculating the mean of a set of numbers and std() for

calculating the standard deviation of a set of numbers.

However, the code sample that involves Sklearn is

marked “optional” because it uses the EllipticEnvelope class

in sklearn.covariance, whose functionality is not intuitive (yet

good to be aware of for future study).

DEALING WITH DATA: WHAT CAN GO WRONG?

In a perfect world, all datasets are in pristine condition,

with no extreme values, no missing values, and no

erroneous values. Every feature value is captured correctly,

with no chance for any confusion. Moreover, no conversion

is required between date formats, currency values, or

languages because of the “One Universal Standard” that

defines the correct formats and acceptable values for every

possible set of data values.

Of course, all the scenarios mentioned in the previous

paragraph can and do occur, which is the reason for the

techniques that are discussed in this chapter. Even after you

manage to create a wonderfully clean and robust dataset,

other issues can arise, such as data drift, which is described

in the next section.

In fact, the task of cleaning data is not necessarily

complete even after a machine learning model is deployed

to a production environment. For instance, an online system

that gathers terabytes or petabytes of data on a daily basis

can contain skewed values that adversely affect the

performance of the model. Such adverse effects can be

revealed through the changes in the metrics that are

associated with the production model.

What is Data Drift?

The value of data is based on its accuracy, its relevance,

and its age. Data drift refers to data that has become less

relevant: in some cases, this happens over a period of time,

and in other cases, it’s because some data is no longer

relevant because of feature-related changes in an

application.

For example, online purchasing patterns in 2010 are

probably not as relevant as data from 2020 because of

various factors (such as the profile of different types of

customers). Another example involves an inventory of cell

phones: discontinued models have a diminished value in

such a system. There might be multiple factors that can

influence data drift in a specific dataset.

Two techniques for handling data drift are the domain

classifier and black-box shift detector, both of which are

discussed online:

https://blog.dataiku.com/towards-reliable-mlops-with-

drift-detectors

Data drift is one of three types of drift, and all three

types are listed here:

• Concept Drift

• Data Drift

• Upstream Data Changes

Perform an online search to find more information about

these types of drift.

WHAT ARE DATASETS?

In simple terms, a dataset is a source of data (such as a

text file) that contains rows and columns of data. Each row

is typically called a data point, and each column is called a

feature. A dataset can be in a variety of forms: CSV (comma

https://blog.dataiku.com/towards-reliable-mlops-with-drift-detectors

separated values), TSV (tab separated values), Excel

spreadsheet, a table in an RDMBS, a document in a NoSQL

database, the output from a Web service, and so forth. As

you will see, someone needs to analyze the dataset to

determine which features are the most important and which

features can be safely ignored in order to train a model with

the given dataset.

A dataset can vary from very small (a couple of features

and 100 rows) to very large (more than 1,000 features and

more than one million rows). If you are unfamiliar with the

problem domain, then you might struggle to determine the

most important features in a large dataset. In this situation,

you might need a domain expert who understands the

importance of the features, their inter-dependencies (if any),

and whether the data values for the features are valid.

In addition, there are algorithms (called dimensionality

reduction algorithms) that can help you determine the most

important features, such as PCA (Principal Component

Analysis), which is outside the scope of this book.

Data Preprocessing

Data preprocessing is the initial step that involves

validating the contents of a dataset, which involves making

decisions about missing and incorrect data values:

• dealing with missing data values

• cleaning “noisy” text-based data

• removing HTML tags

• removing emoticons

• dealing with emojis/emoticons

• filtering data

• grouping data

• handling currency and date formats

Cleaning data is a subset of data wrangling that involves

removing unwanted data and handling missing data. In the

case of text-based data, you might need to remove HTML

tags, punctuation, and so forth. In the case of numeric data,

it’s possible that alphabetic characters are mixed together

with numeric data. However, a dataset with numeric

features might have incorrect values or missing values

(discussed later). In addition, calculating the minimum,

maximum, mean, median, and standard deviation of the

values of a feature obviously pertain only to numeric values.

After the preprocessing step is completed, data

wrangling is performed, which refers to transforming data

into a new format. For example, you might have to combine

data from multiple sources into a single dataset. In this

case, you might need to convert between different units of

measurement (such as date formats and currency values) so

that the data values can be represented in a consistent

manner in a dataset.

Currency and date values are part of i18n

(internationalization); L10n (localization) targets a specific

nationality, language, or region. Hard-coded values (such as

text strings) can be stored as resource strings in a file that’s

often called a resource bundle, where each string is

referenced via a code. Each language has its own resource

bundle.

DATA TYPES

If you have written computer programs, then you know

that explicit data types exist in many programming

languages, such as C, C++, Java, and TypeScript. Some

programming languages, such as JavaScript and awk, do not

require initializing variables with an explicit type: the type of

a variable is inferred dynamically via an implicit type system

(i.e., one that is not directly exposed to a developer).

In machine learning, datasets can contain features that

have different types of data, such as a combination of one

or more of the following:

• numeric data (integer/floating point and

discrete/continuous)

• character/categorical data (different languages)

• date-related data (different formats)

• currency data (different formats)

• binary data (yes/no, 0/1, and so forth)

• nominal data (multiple unrelated values)

• ordinal data (multiple and related values)

Consider a dataset that contains real estate data, which

can have as many as 30 columns (or even more), often with

the following features:

• the number of bedrooms in a house: numeric value

and a discrete value

• the number of square feet: a numeric value and

(probably) a continuous value

• the name of the city: character data

• the construction date: a date value

• the selling price: a currency value and probably a

continuous value

• the “for sale” status: binary data (either “yes” or “no”)

An example of nominal data is the seasons in a year:

although many countries have four distinct seasons, some

countries only have two distinct seasons. However, seasons

can be associated with different temperature ranges

(summer versus winter). An example of ordinal data is an

employee’s pay grade: 1=entry level, 2=one year of

experience, and so forth. Another example of nominal data

is a set of colors, such as {Red, Green, Blue}.

An example of binary data is the pair {Male, Female},

and some datasets contain a feature with these two values.

If such a feature is required for training a model, first

convert {Male, Female} to a numeric counterpart, such as

{0,1}. Similarly, if you need to include a feature whose

values are the previous set of colors, you can replace {Red,

Green, Blue} with the values {0,1,2}. Categorical data is

discussed in more detail later in this chapter.

PREPARING DATASETS

If you have the good fortune to inherit a dataset that is in

pristine condition, then data cleaning tasks (discussed later)

are vastly simplified: in fact, it might not be necessary to

perform any data cleaning for the dataset. However, if you

need to create a dataset that combines data from multiple

datasets that contain different formats for dates and

currency, then you need to perform a conversion to a

common format.

If you need to train a model that includes features that

have categorical data, then you need to convert that

categorical data to numeric data. For instance, the Titanic

dataset contains a feature called “gender,” which is either

male or female. As you will see later in this chapter, Pandas

makes it extremely simple to “map” male to 0 and female to

1.

Discrete Data vs. Continuous Data

Discrete data is a set of values that can be counted,

whereas continuous data must be measured. Discrete data

can reasonably fit in a drop-down list of values, but there is

no exact value for making such a determination. One person

might think that a list of 500 values is discrete, whereas

another person might think it’s continuous. For example, the

list of provinces of Canada and the list of states of the USA

are discrete data values, but is the same true for the

number of countries in the world (roughly 200) or for the

number of languages in the world (more than 7,000)?

Values for temperature, humidity, and barometric

pressure are considered continuous. Currency is also treated

as continuous, even though there is a measurable difference

between two consecutive values. The smallest unit of

currency for US currency is one penny, which is 1/100th of a

dollar (accounting-based measurements use the “mil,”

which is 1/1,000th of a dollar).

Continuous data types can have subtle differences. For

example, someone who is 200 centimeters tall is twice as

tall as someone who is 100 centimeters tall (similarly for

someone who is 100 kilograms versus a person who weighs

50 kilograms). However, temperature is different: 80

degrees Fahrenheit is not twice as hot as 40 degrees

Fahrenheit.

Furthermore, the word “continuous” has a meaning in

mathematics that is not necessarily the same as

“continuous” in machine learning. In the former, a

continuous variable (let’s say in the 2D Euclidean plane) can

have an uncountably infinite number of values. However, a

feature in a dataset that can have more values that can be

“reasonably” displayed in a drop-down list is treated as

though it’s a continuous variable.

For instance, values for stock prices are discrete: they

must differ by at least a penny (or some other minimal unit

of currency), which is to say, it’s meaningless to say that the

stock price changes by one-millionth of a penny. However,

since there are so many possible stock values, it’s treated

as a continuous variable. The same comments apply to car

mileage, ambient temperature, and barometric pressure.

“Binning” Continuous Data

The concept of binning refers to subdividing a set of

values into multiple intervals, and then treating all the

numbers in the same interval as though they had the same

value.

As a simple example, suppose that a feature in a dataset

contains the age of people in a dataset. The range of values

is approximately between 0 and 120, and we could “bin”

them into 12 equal intervals, where each consists of 10

values: 0 through 9, 10 through 19, 20 through 29, and so

forth.

However, partitioning the values of people’s age as

described in the preceding paragraph can be problematic.

Suppose that person A, person B, and person C are 29, 30,

and 39, respectively. Then person A and person B are

probably more similar to each other than person B and

person C, but because of the way in which the ages are

partitioned, B is classified as closer to C than to A. In fact,

binning can increase Type I errors (false positive) and Type II

errors (false negative), as discussed in the following blog

post (along with some alternatives to binning):

https://medium.com/@peterflom/why-binning-

continuous-data-is-almost-always-a-mistake-

ad0b3a1d141f.

As another example, using quartiles is even more coarse-

grained than the earlier age-related binning example. The

issue with binning pertains to the consequences of

classifying people in different bins, even though they are in

close proximity to each other. For instance, some people

struggle financially because they earn a meager wage, and

they are disqualified from financial assistance because their

salary is higher than the cut-off point for receiving any

assistance.

Scaling Numeric Data via Normalization

https://medium.com/@peterflom/why-binning-continuous-data-is-almost-always-a-mistake-ad0b3a1d141f

A range of values can vary significantly and it’s

important to note that they often need to be scaled to a

smaller range, such as values in the range [–1,1] or [0,1],

which you can do via the tanh function or the sigmoid function,

respectively.

For example, measuring a person’s height in terms of

meters involves a range of values between 0.50 meters and

2.5 meters (in the vast majority of cases), whereas

measuring height in terms of centimeters ranges between

50 centimeters and 250 centimeters: these two units differ

by a factor of 100. A person’s weight in kilograms generally

varies between 5 kilograms and 200 kilograms, whereas

measuring weight in grams differs by a factor of 1,000.

Distances between objects can be measured in meters or in

kilometers, which also differ by a factor of 1,000.

In general, use units of measure so that the data values

in multiple features are belong to a similar range of values.

In fact, some machine learning algorithms require scaled

data, often in the range of [0,1] or [–1,1]. In addition to the

tanh and sigmoid functions, there are other techniques for

scaling data, such as “standardizing” data (think Gaussian

distribution) and “normalizing” data (linearly scaled so that

the new range of values is in (0,1)).

The following examples involve a floating point variable X

with different ranges of values that will be scaled so that the

new values are in the interval [0,1].

• Example 1: If the values of X are in the range [0,2],

then X/2 is in the range [0,1].

• Example 2: If the values of X are in the range [3,6],

then X-3 is in the range [0,3], and (X-3)/3 is in the

range [0,1].

• Example 3: If the values of X are in the range [–10,20],

then X +10 is in the range [0,30], and (X +10)/30 is in

the range of [0,1].

In general, suppose that X is a random variable whose

values are in the range [a,b], where a < b. You can scale the

data values by performing two steps:

Step 1: X-a is in the range [0,b-a]

Step 2: (X-1)/(b-a) is in the range [0,1]

If X is a random variable that has the values {x1, x2, x3, .

. ., xn}, then the formula for normalization involves

mapping each xi value to (xi – min)/(max – min), where min is

the minimum value of X and max is the maximum value of X.

As a simple example, suppose that the random variable X

has the values {-1, 0, 1}. Then min and max are 1 and –1,

respectively, and the normalization of {-1, 0, 1} is the set of

values {(-1-(-1))/2, (0-(-1))/2, (1-(-1))/2}, which equals {0,

1/2, 1}.

Scaling Numeric Data via Standardization

The standardization technique involves finding the mean

mu and the standard deviation sigma, and then mapping each

xi value to (xi – mu)/sigma. Recall the following formulas:

mu = [SUM (x)]/n

variance(x) = [SUM (x – xbar)*(x-xbar)]/n

sigma = sqrt(variance)

As a simple illustration of standardization, suppose that

the random variable X has the values {–1, 0, 1}. Then mu and

sigma are calculated as follows:

mu = (SUM xi)/n = (-1 + 0 + 1)/3 = 0

variance = [SUM (xi- mu)^2]/n

 = [(-1-0)^2 + (0-0)^2 + (1-0)^2]/3

 = 2/3

sigma = sqrt(2/3) = 0.816 (approximate value)

Hence, the standardization of {-1, 0, 1} is {-1/0.816,

0/0.816, 1/0.816}, which in turn equals the set of values

{-1.2254, 0, 1.2254}.

As another example, suppose that the random variable X

has the values {-6, 0, 6}. Then mu and sigma are calculated as

follows:

mu = (SUM xi)/n = (-6 + 0 + 6)/3 = 0

variance = [SUM (xi- mu)^2]/n

 = [(-6-0)^2 + (0-0)^2 + (6-0)^2]/3

 = 72/3

 = 24

sigma = sqrt(24) = 4.899 (approximate value)

Hence, the standardization of {-6, 0, 6} is {-6/4.899,

0/4.899, 6/4.899}, which in turn equals the set of values

{-1.2247, 0, 1.2247}.

In the preceding two examples, the mean equals 0 in

both cases but the variance and standard deviation are

significantly different. One other point: the normalization of

a set of values always produces a set of numbers between 0

and 1.

However, the standardization of a set of values can

generate numbers that are less than -1 and greater than 1:

this will occur when sigma is less than the minimum value of

every term |mu – xi|, where the latter is the absolute value

of the difference between mu and each xi value. In the

preceding example, the minimum difference equals 1,

whereas sigma is 0.816, and therefore the largest

standardized value is greater than 1.

Scaling Numeric Data via Robust Standardization

The robust standardization technique is a variant of

standardization that computes the mean mu and the

standard deviation sigma based on a subset of values.

Specifically, use only the values that are between the 25th

percentile and 75th percentile, which ignores the first and

fourth quartiles that might contain outliers. Let’s define the

following variables:

X25 = 25th percentile

X75 = 75th percentile

XM = mean of {Xi} values

XR = robust standardization

Then XR is computed according to the following formula:

XR = (Xi - XM)/(X75 - X25)

The preceding technique is also called IQR, which is an

acronym for interquartile range, and you can see a sample

calculation here:

https://en.wikipedia.org/wiki/Interquartile_range

What to Look for in Categorical Data

This section contains various suggestions for handling

inconsistent data values, and you can determine which ones

to adopt based on any additional factors that are relevant to

your particular task. For example, consider dropping

columns that have very low cardinality (equal to or close to

1), as well as numeric columns with zero or very low

variance.

Next, check the contents of categorical columns for

inconsistent spellings or errors. A good example pertains to

the gender category, which can consist of a combination of

the following values:

male

Male

female

Female

m

f

M

F

https://en.wikipedia.org/wiki/Interquartile_range

The preceding categorical values for gender can be

replaced with two categorical values (unless you have a

valid reason to retain some of the other values). Moreover, if

you are training a model whose analysis involves a single

gender, then you need to determine which rows (if any) of a

dataset must be excluded. Also check categorical data

columns for redundant or missing whitespaces.

Check for data values that have multiple data types,

such as a numerical column with numbers as numerals and

some numbers as strings or objects. Also ensure there are

consistent data formats (such as numbers as integers or

floating numbers) and that dates have the same format (for

example, do not mix mm/dd/yyyy date formats with another

date format, such as dd/mm/yyyy).

Mapping Categorical Data to Numeric Values

Character data is often called categorical data, examples

of which include people’s names, home or work addresses,

and email addresses. Many types of categorical data involve

short lists of values. For example, the days of the week and

the months in a year involve seven and twelve distinct

values, respectively. Notice that the days of the week have a

relationship: each day has a previous day and a next day,

and this is similar for the months of a year.

However, the colors of an automobile are independent of

each other: the color red is not better or worse than the

color blue. However, cars of a certain color can have a

statistically higher number of accidents, but we won’t

address this case here.

There are several well-known techniques for mapping

categorical values to a set of numeric values. A simple

example where you need to perform this conversion

involves the gender feature in the Titanic dataset. This

feature is one of the relevant features for training a machine

learning model. The gender feature has {M,F} as its set of

values. As you will see later in this chapter, Pandas makes it

very easy to convert the set of values {M,F} to the set of

values {0,1}.

Another mapping technique involves mapping a set of

categorical values to a set of consecutive integer values. For

example, the set {Red, Green, Blue} can be mapped to the

set of integers {0,1,2}. The set {Male, Female} can be

mapped to the set of integers {0,1}. The days of the week

can be mapped to {0,1,2,3,4,5,6}. Note that the first day of

the week depends on the country: in some cases, it’s

Sunday, and in other cases, it’s Monday.

Another technique is called one-hot encoding, which

converts each value to a vector (check Wikipedia if you

need a refresher regarding vectors). Thus, {Male, Female}

can be represented by the vectors [1,0] and [0,1].

If you vertically “line up” the two vectors for gender, they

form a 2x2 identity matrix, and doing the same for the

colors {R,G,B} will form a 3x3 identity matrix, as shown

here:

[1,0,0]

[0,1,0]

[0,0,1]

If you are familiar with matrices, you noticed that the

preceding set of vectors looks like the 3x3 identity matrix. In

fact, this technique generalizes in a straightforward manner.

Specifically, if you have n distinct categorical values, you

can map each of those values to one of the vectors in an

nxn identity matrix.

As another example, the set of titles {"Intern", "Junior",

"Mid-Range", "Senior", "Project Leader", "Dev Manager"} have a

hierarchical relationship in terms of their salaries (which can

also overlap, but we’ll skip that detail for now).

Another set of categorical data involves the seasons of

the year: {"Spring", "Summer", "Autumn", "Winter"} and while

these values are generally independent of each other, there

are cases in which the season is significant. For example,

the values for the monthly rainfall, average temperature,

crime rate, foreclosure rate can depend on the season,

month, week, or even the day of the year.

If a feature has a large number of categorical values,

then a one-hot encoding will produce many additional

columns for each datapoint. Since the majority of the values

in the new columns equal 0, this can increase the sparsity of

the dataset, which in turn can result in more overfitting and

hence adversely affect the accuracy of machine learning

algorithms that you adopt during the training process.

Another solution is to use a sequence-based solution in

which N categories are mapped to the integers 1, 2, . . ., N.

Another solution involves examining the row frequency of

each categorical value. For example, suppose that N equals

20, and there are 3 categorical values that occur in 95% of

the values for a given feature. You can try the following:

1. Assign the values 1, 2, and 3 to those three categorical

values.

2. Assign numeric values that reflect the relative

frequency of those categorical values.

3. Assign the category “OTHER” to the remaining

categorical values.

4. Delete the rows that whose categorical values belong to

the 5%.

Working with Dates

The format for a calendar dates varies among different

countries, and this belongs to something called localization

of data (not to be confused with i18n, which is data

internationalization). Some examples of date formats are

shown below (and the first four are probably the most

common):

MM/DD/YY

MM/DD/YYYY

DD/MM/YY

DD/MM/YYYY

YY/MM/DD

M/D/YY

D/M/YY

YY/M/D

MMDDYY

DDMMYY

YYMMDD

If you need to combine data from datasets that contain

different date formats, then converting the disparate date

formats to a single common date format will ensure

consistency.

Working with Currency

The format for currency depends on the country, which

includes different interpretations for a “,” and “.” in currency

(and decimal values in general). For example, 1,124.78 equals

“one thousand one hundred twenty-four point seven eight”

in the US, whereas 1.124,78 has the same meaning in Europe

(i.e., the “.” symbol and the “,” symbol are interchanged).

If you need to combine data from datasets that contain

different currency formats, then you probably need to

convert all the disparate currency formats to a single

common currency format. There is another detail to

consider: currency exchange rates can fluctuate on a daily

basis, which in turn can affect the calculation of taxes, late

fees, and so forth. Although you might be fortunate enough

where you won’t have to deal with these issues, it’s still

worth being aware of them.

WORKING WITH OUTLIERS AND ANOMALIES

In simplified terms, an outlier is an abnormal data value

that is outside the range of “normal” values. For example, a

person’s height in centimeters is typically between 30

centimeters and 250 centimeters. Hence, a datapoint (e.g.,

a row of data in a spreadsheet) with a height of 5

centimeters or a height of 500 centimeters is an outlier. The

consequences of these outlier values are unlikely to involve

a significant financial or physical loss (though they could

adversely affect the accuracy of a trained model).

Anomalies are also outside the “normal” range of values

(just like outliers), and they are typically more problematic

than outliers: anomalies can have more “severe”

consequences than outliers. For example, consider the

scenario in which someone who lives in California suddenly

makes a credit card purchase in New York. If the person is

on vacation (or a business trip), then the purchase is an

outlier (it’s “outside” the typical purchasing pattern), but it’s

not an issue. However, if that person was in California when

the credit card purchase was made, then it’s most likely to

be credit card fraud, as well as an anomaly.

Unfortunately, there is no simple way to decide how to

deal with anomalies and outliers in a dataset. Although you

can drop rows that contain outliers, doing so might deprive

the dataset (and therefore the trained model) of valuable

information. You can try modifying the data values

(described below), but again, this might lead to erroneous

inferences in the trained model. Another possibility is to

train a model with the dataset that contains anomalies and

outliers, and then train a model with a dataset from which

the anomalies and outliers have been removed. Compare

the two results and see if you can infer anything meaningful

regarding the anomalies and outliers.

Outlier Detection/Removal

Although the decision to keep or drop outliers is your

decision to make, there are some techniques available that

help you detect outliers in a dataset. Here is a short list of

techniques, along with a very brief description and links for

additional information:

• trimming

• winsorizing

• minimum covariance determinant

• local outlier factor

• Huber and Ridge regressions

• isolation forest (tree-based algorithm)

• one-class SVM

Perhaps trimming is the simplest technique (apart from

dropping outliers), which involves removing rows whose

feature value is in the upper 5% range or the lower 5%

range. Winsorizing the data is an improvement over

trimming: set the values in the top 5% range equal to the

maximum value in the 95th percentile, and set the values in

the bottom 5% range equal to the minimum in the 5th

percentile.

The Minimum Covariance Determinant is a covariance-

based technique, and a Python-based code sample that

uses this technique is downloadable from the following site:

https://scikit-

learn.org/stable/modules/outlier_detection.html

The Local Outlier Factor (LOF) technique is an

unsupervised technique that calculates a local anomaly

score via the kNN (k Nearest Neighbor) algorithm.

Documentation and short code samples that use LOF are

available online:

https://scikit-

learn.org/stable/modules/generated/sklearn.neighbors

.LocalOutlierFactor.html

https://scikit-learn.org/stable/modules/outlier_detection.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlierFactor.html

Two other techniques involve the Huber and the Ridge

classes, both of which are included as part of Sklearn. The

Huber error is less sensitive to outliers because it’s

calculated via linear loss, similar to the MAE (Mean Absolute

Error). A code sample that compares the Huber and Ridge

regression algorithms is downloadable from the following

site:

https://scikit-

learn.org/stable/auto_examples/linear_model/plot_hub

er_vs_ridge.html

You can also explore the Theil-Sen estimator and

RANSAC, which are “robust” against outliers:

https://scikit-

learn.org/stable/auto_examples/linear_model/plot_thei

lsen.html

https://en.wikipedia.org/wiki/Random_sample_consens

us

Four algorithms for outlier detection are discussed at the

following site:

https://www.kdnuggets.com/2018/12/four-techniques-

outlier-detection.html

One other scenario involves “local” outliers. For example,

suppose that you use kMeans (or some other clustering

algorithm) and determine that a value that is an outlier with

respect to one of the clusters. While this value is not

necessarily an “absolute” outlier, detecting such a value

might be important for your use case.

FINDING OUTLIERS WITH NUMPY

https://scikit-learn.org/stable/auto_examples/linear_model/plot_huber_vs_ridge.html
https://scikit-learn.org/stable/auto_examples/linear_model/plot_theilsen.html
https://en.wikipedia.org/wiki/Random_sample_consensus
https://www.kdnuggets.com/2018/12/four-techniques-outlier-detection.html

Although we have not discussed the NumPy library, we

will only use the NumPy array(), mean(), and std() methods in

this section, all of which have intuitive functionality.

Listing 2.1 displays the content of numpy_outliers1.py that

illustrates how to use NumPy methods to find outliers in an

array of numbers.

LISTING 2.1: numpy_outliers1.py

import numpy as np

arr1 = np.array([2,5,7,9,9,40])

print("values:",arr1)

data_mean = np.mean(arr1)

data_std = np.std(arr1)

print("data_mean:",data_mean)

print("data_std:" ,data_std)

print()

multiplier = 1.5

cut_off = data_std * multiplier

lower = data_mean - cut_off

upper = data_mean + cut_off

print("lower cutoff:",lower)

print("upper cutoff:",upper)

print()

outliers = [x for x in arr1 if x < lower or x > upper]

print('Identified outliers: %d' % len(outliers))

print("outliers:",outliers)

Listing 2.1 starts by defining a NumPy array of numbers

and then calculates the mean and standard deviation of

those numbers. The next block of code initializes two

numbers that represent the upper and lower values that are

based on the value of the cut_off variable. Any numbers in

the array arr1 that lie to the left of the lower value or to the

right of the upper value are treated as outliers.

The final section of code in Listing 2.1 initializes the

variable outliers with the numbers that are determined to be

outliers, and those values are printed. Launch the code in

Listing 2.1 and you will see the following output:

values: [2 5 7 9 9 40]

data_mean: 12.0

data_std: 12.754084313139327

lower cutoff: -7.131126469708988

upper cutoff: 31.13112646970899

Identified outliers: 1

outliers: [40]

The preceding code sample specifies a hard-coded value

in order to calculate the upper and lower range values.

Listing 2.2 is an improvement in that you can specify a

set of values from which to calculate the upper and lower

range values, and the new block of code is shown in bold.

LISTING 2.2: numpy_outliers2.py

import numpy as np

arr1 = np.array([2,5,7,9,9,40])

print("values:",arr1)

data_mean = np.mean(arr1)

data_std = np.std(arr1)

print("data_mean:",data_mean)

print("data_std:" ,data_std)

print()

multipliers = np.array([0.5,1.0,1.5,2.0,2.5,3.0])

for multiplier in multipliers:

 cut_off = data_std * multiplier

 lower, upper = data_mean - cut_off, data_mean + cut_off

 print("=> multiplier: ",multiplier)

 print("lower cutoff:",lower)

 print("upper cutoff:",upper)

 outliers = [x for x in df['data'] if x < lower or x > upper]

 print('Identified outliers: %d' % len(outliers))

 print("outliers:",outliers)

 print()

Listing 2.2 contains a block of new code that initializes

the variable multipliers as an array of numeric values that

are used for finding outliers. Although you will probably use

a value of 2.0 or larger on a real dataset, this range of

numbers can give you a better sense of detecting outliers.

Launch the code in Listing 2.2 and you will see the following

output:

values: [2 5 7 9 9 40]

data_mean: 12.0

data_std: 12.754084313139327

lower cutoff: -7.131126469708988

upper cutoff: 31.13112646970899

Identified outliers: 1

outliers: [40]

=> multiplier: 0.5

lower cutoff: 5.622957843430337

upper cutoff: 18.377042156569665

Identified outliers: 3

outliers: [2, 5, 40]

=> multiplier: 1.0

lower cutoff: -0.7540843131393267

upper cutoff: 24.754084313139327

Identified outliers: 1

outliers: [40]

=> multiplier: 1.5

lower cutoff: -7.131126469708988

upper cutoff: 31.13112646970899

Identified outliers: 1

outliers: [40]

=> multiplier: 2.0

lower cutoff: -13.508168626278653

upper cutoff: 37.50816862627865

Identified outliers: 1

outliers: [40]

=> multiplier: 2.5

lower cutoff: -19.88521078284832

upper cutoff: 43.88521078284832

Identified outliers: 0

outliers: []

=> multiplier: 3.0

lower cutoff: -26.262252939417976

upper cutoff: 50.26225293941798

Identified outliers: 0

outliers: []

FINDING OUTLIERS WITH PANDAS

Although we discuss Pandas in Chapter three, the code in

this section only involves a very simple Pandas data frame,

the mean() method, and the std() method.

Listing 2.3 displays the content of pandas_outliers1.py that

illustrates how to use Pandas to find outliers in an array of

numbers.

LISTING 2.3: pandas_outliers1.py

import pandas as pd

df = pd.DataFrame([2,5,7,9,9,40])

df.columns = ["data"]

data_mean = df['data'].mean()

data_std = df['data'].std()

print("data_mean:",data_mean)

print("data_std:" ,data_std)

print()

multiplier = 1.5

cut_off = data_std * multiplier

lower, upper = data_mean - cut_off, data_mean + cut_off

print("lower cutoff:",lower)

print("upper cutoff:",upper)

print()

outliers = [x for x in df['data'] if x < lower or x > upper]

print('Identified outliers: %d' % len(outliers))

print("outliers:",outliers)

Listing 2.3 starts by defining a Pandas data frame and

then calculates the mean and standard deviation of those

numbers. The next block of code initializes two numbers

that represent the upper and lower values that are based on

the value of the cut_off variable. Any numbers in the data

frame that lie to the left of the lower value or to the right of

the upper value are treated as outliers.

The final section of code in Listing 2.3 initializes the

variable outliers with the numbers that are determined to be

outliers, and those values are printed. Launch the code in

Listing 2.3 and you will see the following output:

values: [2 5 7 9 9 40]

data_mean: 12.0

data_std: 12.754084313139327

lower cutoff: -7.131126469708988

upper cutoff: 31.13112646970899

Identified outliers: 1

outliers: [40]

The preceding code sample specifies a hard-coded value

in order to calculate the upper and lower range values.

Listing 2.4 is an improvement in that you can specify a

set of values from which to calculate the upper and lower

range values, and the new block of code is shown in bold.

LISTING 2.4: pandas_outliers2.py

import pandas as pd

#df = pd.DataFrame([2,5,7,9,9,40])

#df = pd.DataFrame([2,5,7,8,42,44])

df = pd.DataFrame([2,5,7,8,42,492])

df.columns = ["data"]

print("=> data values:")

print(df['data'])

data_mean = df['data'].mean()

data_std = df['data'].std()

print("=> data_mean:",data_mean)

print("=> data_std:" ,data_std)

print()

multipliers = [0.5,1.0,1.5,2.0,2.5,3.0]

for multiplier in multipliers:

 cut_off = data_std * multiplier

 lower, upper = data_mean - cut_off, data_mean + cut_off

 print("=> multiplier: ",multiplier)

 print("lower cutoff:",lower)

 print("upper cutoff:",upper)

 outliers = [x for x in df['data'] if x < lower or x > upper]

 print('Identified outliers: %d' % len(outliers))

 print("outliers:",outliers)

 print()

Listing 2.4 contains a block of new code that initializes

the variable multipliers as an array of numeric values that

are used for finding outliers. Although you will probably use

a value of 2.0 or larger on a real dataset, this range of

numbers can give you a better sense of detecting outliers.

Launch the code in Listing 2.4 and you will see the following

output:

=> data values:

0 2

1 5

2 7

3 8

4 42

5 492

Name: data, dtype: int64

=> data_mean: 92.66666666666667

=> data_std: 196.187325448579

=> multiplier: 0.5

lower cutoff: -5.42699605762283

upper cutoff: 190.76032939095617

Identified outliers: 1

outliers: [492]

=> multiplier: 1.0

lower cutoff: -103.52065878191233

upper cutoff: 288.85399211524566

Identified outliers: 1

outliers: [492]

=> multiplier: 1.5

lower cutoff: -201.6143215062018

upper cutoff: 386.9476548395352

Identified outliers: 1

outliers: [492]

=> multiplier: 2.0

lower cutoff: -299.7079842304913

upper cutoff: 485.0413175638247

Identified outliers: 1

outliers: [492]

=> multiplier: 2.5

lower cutoff: -397.80164695478084

upper cutoff: 583.1349802881142

Identified outliers: 0

outliers: []

=> multiplier: 3.0

lower cutoff: -495.8953096790703

upper cutoff: 681.2286430124036

Identified outliers: 0

outliers: []

Calculating Z-Scores to Find Outliers

The z-score of a set of numbers is calculated by

standardizing those numbers, which involves subtracting

their mean from each number and then dividing by their

standard deviation. Although you can perform these steps

manually, the Python SciPy library simplifies the steps

involved. If need be, you can install this package with the

following command:

pip3 install scipy

Listing 2.5 displays the content of outliers_zscores.py that

illustrates how to find outliers in an array of numbers. As

you will see, this code sample relies on convenience

methods from NumPy, Pandas, and SciPy.

LISTING 2.5: outliers_zscores.py

import numpy as np

import pandas as pd

from scipy import stats

arr1 = np.array([2,5,7,9,9,40])

print("values:",arr1)

df = pd.DataFrame(arr1)

zscores = np.abs(stats.zscore(df))

print("z scores:")

print(zscores)

print()

upper = 2.0

lower = 0.5

print("=> upper outliers:")

print(zscores[np.where(zscores > upper)])

print()

print("=> lower outliers:")

print(zscores[np.where(zscores < lower)])

print()

Listing 2.5 starts with several import statements, followed

by initializing the variable arr1 as a NumPy array of

numbers, and then displaying the values in arr1. The next

code snippet initializes the variable df as a data frame that

contains the values in the variable arr1.

Next, the variable zscores is initialized with the z-scores of

the elements of the df data frame, as shown here:

zscores = np.abs(stats.zscore(df))

The next section of code initializes the variables upper and

lower, and the z-scores whose values are less than the value

of lower or greater than the value upper are treated as

outliers, and those values are displayed. Launch the code in

Listing 2.3 and you will see the following output:

values: [2 5 7 9 9 40]

z scores:

[[0.78406256]

 [0.54884379]

 [0.39203128]

 [0.23521877]

 [0.23521877]

 [2.19537517]]

=> upper outliers:

[2.19537517]

=> lower outliers:

[0.39203128 0.23521877 0.23521877]

FINDING OUTLIERS WITH SKLEARN (OPTIONAL)

This section is optional because the code involves the

EllipticEnvelope class in sklearn.covariance, which we do not

cover in this book. However, it’s still worthwhile to peruse

the code and compare this code with earlier code samples

for finding outliers.

Listing 2.6 displays the content of

elliptic_envelope_outliers.py that illustrates how to use Pandas

to find outliers in an array of numbers.

LISTING 2.6: elliptic_envelope_outliers.py

pip3 install scikit-learn as sklearn

from sklearn.covariance import EllipticEnvelope

import numpy as np

Create a sample normal distribution:

Xdata = np.random.normal(loc=5, scale=2, size=10).reshape(-1, 1)

print("Xdata values:")

print(Xdata)

print()

instantiate and fit the estimator:

envelope = EllipticEnvelope(random_state=0)

envelope.fit(Xdata)

create a test set:

test = np.array([0, 2, 4, 6, 8, 10, 15, 20, 25, 30]).reshape(-1, 1)

print("test values:")

print(test)

print()

predict() returns 1 for inliers and -1 for outliers:

print("envelope.predict(test):")

print(envelope.predict(test))

Listing 2.6 starts with several import statements and then

initializes the variable Xdata as a column vector of random

numbers from a Gaussian distribution. The next code

snippet initializes the variable envelope as an instance of

the EllipticEnvelope from Sklearn (which will determine if there

are any outliers in Xdata), and then trains on the data values

in Xdata.

The next portion of Listing 2.6 initializes the variable test

as a column vector, much like the initialization of Xdata. The

final portion of Listing 2.6 makes a prediction on the values

in the variable test and also displays the results: the value –

1 indicates an outlet. Launch the code in Listing 2.6 and you

will see the following output:

Xdata values:

[[5.21730452]

 [5.49182377]

 [2.87553776]

 [4.20297013]

 [8.29562026]

 [5.78097977]

 [4.86631006]

 [5.47184212]

 [4.77954946]

 [8.66184028]]

test values:

[[0]

 [2]

 [4]

 [6]

 [8]

 [10]

 [15]

 [20]

 [25]

 [30]]

envelope.predict(test):

[-1 1 1 1 1 -1 -1 -1 -1 -1]

See the following site for more information regarding

data cleaning and preprocessing:

https://www.kdnuggets.com/2019/11/data-cleaning-

preprocessing-beginners.html

https://www.kdnuggets.com/2019/11/data-cleaning-preprocessing-beginners.html

WORKING WITH MISSING DATA

There are various reasons for missing values in a dataset,

some of which are listed here:

• values are unavailable

• values were improperly collected

• inaccurate data entry

Although you might be tempted to always replace

missing values with concrete values, there are situations in

which you cannot determine a value. As a simple example, a

survey that contains questions for people under 30 will have

a missing value for respondents who are over 30, and in this

case, specifying a value for the missing value would be

incorrect. With these details in mind, there are various ways

to fill missing values, some of which are listed here:

• Remove the lines with the data if the dataset is large

enough and there is a high percentage of missing

values (50% or larger).

• Fill null variables with 0 for numeric features.

• Use the Imputerclass from the scikit-learn library.

• Fill missing values with the value in an adjacent row.

• Replace missing data with the mean/median/mode

value.

• Infer (“impute”) the value for missing data.

• Delete rows with missing data.

Once again, the technique that you select for filling

missing values is influenced by various factors, such as

• how you want to process the data

• the type of data involved

• the cause of missing values

Although the most common technique involves the mean

value for numeric features, someone needs to determine

which technique is appropriate for a given feature.

However, if you are not confident that you can impute a

reasonable value, consider deleting the row with a missing

value, and then train a model with the imputed value and

also with the deleted row.

One problem that can arise after removing rows with

missing values is that the resulting dataset is too small. In

this case, consider using SMOTE (Synthetic Minority

Oversampling Technique) to generate synthetic data.

Additional information for handling missing values

through imputation can be found here:

https://www.kdnuggets.com/2020/09/missing-value-

imputation-review.html

Imputing Values: When is Zero a Valid Value?

In general, replace a missing numeric value with zero is a

risky choice: this value is obviously incorrect if the values of

a feature are positive numbers between 1,000 and 5,000 (or

some other range of positive numbers). For a feature that

has numeric values, replacing a missing value with the

mean of existing values can be better than the value zero

(unless the average equals zero); also consider using the

median value. For categorical data, consider using the mode

to replace a missing value.

There are situations where you can use the mean of

existing values to impute missing values but not the value

zero, and vice versa. As a first example, suppose that an

attribute contains the height in centimeters of a set of

persons. In this case, the mean could be a reasonable

imputation, whereas 0 suffers from the following issues:

1. It’s an invalid value (nobody has height 0).

https://www.kdnuggets.com/2020/09/missing-value-imputation-review.html

2. It will skew statistical quantities, such as the mean and

variance.

You might be tempted to use the mean instead of 0 when

the minimum allowable value is a positive number, but use

caution when working with highly imbalanced datasets. As a

second example, consider a small community of 50

residents with the following attributes:

1. 45 people have an average annual income of USD

50,000

2. 4 other residents have an annual income of 10,000,000

3. 1 resident has an unknown annual income

Although the preceding example might seem contrived,

it’s likely that the median income is preferable to the mean

income, and certainly better than imputing a value of 0.

As a third example, suppose that a company generates

weekly sales reports for multiple office branches, and a new

office has been opened but has yet to make any sales. In

this case, the use of the mean to impute missing values for

this branch would produce fictitious results. Hence, it makes

sense to use 0 for any missing sales-related quantities,

which will accurately reflect the sales-related status of the

new branch.

DEALING WITH IMBALANCED DATASETS

Imbalanced datasets contain at least once class that has

many more values than another class in the dataset. For

example, if class A has 99% of the data and class B has 1%,

which classification algorithm would you use? Unfortunately,

classification algorithms don’t work well with this type of

imbalanced dataset.

Imbalanced classification involves dealing with

imbalanced datasets. The following list contains several

well-known techniques for addressing an imbalance:

• Random resampling rebalances the class distribution.

• Random undersampling deletes examples from the

majority class.

• Random oversampling duplicates data in the minority

class.

• SMOTE (Synthetic Minority Oversampling Technique)

Random resampling rebalances the class distribution by

resampling the data space. The random undersampling

technique removes samples that belong to the majority

class from the dataset, and involves the following:

• randomly removing samples from the majority class

• can be performed with or without replacement

• alleviating an imbalance in the dataset

• may increase the variance of the classifier

• may discard useful or important samples

However, random undersampling does not work well with

extremely unbalanced datasets, such as a 99% and 1% split

into two classes. Moreover, undersampling can result in

losing information that is useful for a model.

Random oversampling generates new samples from a

minority class: this technique duplicates examples from the

minority class.

Another option to consider is the Python package

imbalanced-learn in the scikit-learn-contrib project. This project

provides various re-sampling techniques for datasets that

exhibit class imbalance. More details are available online:

https://github.com/scikit-learn-contrib/imbalanced-

learn

Another well-known technique is called SMOTE, which

involves data augmentation (i.e., synthesizing new data

https://github.com/scikit-learn-contrib/imbalanced-learn

samples). SMOTE was initially developed by means of the

kNN algorithm (other options are available), and it can be an

effective technique for handling imbalanced classes. SMOTE

is discussed in more detail in the next section.

WHAT IS SMOTE?

SMOTE (Synthetic Minority Oversampling Technique) is a

technique for synthesizing new samples for a dataset. This

technique is based on linear interpolation:

• Step 1: Select samples that are close in the feature

space.

• Step 2: Draw a line between the samples in the

feature space.

• Step 3: Draw a new sample at a point along that line.

A more detailed explanation of the SMOTE algorithm is as

follows:

• Select a random sample “a” from the minority class.

• Find k nearest neighbors for that example.

• Select a random neighbor “b” from the nearest

neighbors.

• Create a line L that connects “a” and “b.”

• Randomly select one or more points “c” on line L.

If need be, you can repeat this process for the other (k–1)

nearest neighbors to distribute the synthetic values more

evenly among the nearest neighbors.

SMOTE Extensions

The initial SMOTE algorithm is based on the kNN

classification algorithm, which has been extended in various

ways, such as replacing kNN with SVM. A list of SMOTE

extensions is as follows:

• selective synthetic sample generation

• Borderline-SMOTE (kNN)

• Borderline-SMOTE (SVM)

• Adaptive Synthetic Sampling (ADASYN)

Perform an Internet search for more details about these

algorithms, and also navigate to the following URL:

https://en.wikipedia.org/wiki/Oversampling_and_under

sampling_in_data_analysis

THE BIAS-VARIANCE TRADEOFF

This section is presented from the viewpoint of machine

learning, but the concepts of bias and variance are highly

relevant outside of machine learning, so it’s probably still

worthwhile to read this section as well as the previous

section.

Bias in machine learning can be due to an error from

wrong assumptions in a learning algorithm. High bias might

cause an algorithm to miss relevant relations between

features and target outputs (underfitting). Prediction bias

can occur because of “noisy” data, an incomplete feature

set, or a biased training sample.

Error due to bias is the difference between the expected

(or average) prediction of your model and the correct value

that you want to predict. Repeat the model building process

multiple times, gather new data each time, and perform an

analysis to produce a new model. The resulting models have

a range of predictions because the underlying data sets

have a degree of randomness. Bias measures the extent to

the predictions for these models are from the correct value.

Variance in machine learning is the expected value of the

squared deviation from the mean. High variance can cause

an algorithm to model the random noise in the training

data, rather than the intended outputs (overfitting).

https://en.wikipedia.org/wiki/Oversampling_and_undersampling_in_data_analysis

Moreover, adding parameters to a model increases its

complexity, increases the variance, and decreases the bias.

The point to remember: dealing with bias and variance

involves dealing with underfitting and overfitting.

Error due to variance is the variability of a model

prediction for a given data point. As before, repeat the

entire model building process, and the variance is the

extent to which predictions for a given point vary among

different instances of the model.

If you have worked with datasets and performed data

analysis, you already know that finding well-balanced

samples can be difficult or highly impractical. Moreover,

performing an analysis of the data in a dataset is vitally

important, yet there is no guarantee that you can produce a

dataset that is 100% “clean.”

A biased statistic is a statistic that is systematically

different from the entity in the population that is being

estimated. In more casual terminology, if a data sample

“favors” or “leans” toward one aspect of the population,

then the sample has bias. For example, if you prefer movies

that are comedies more so than any other type of movie,

then clearly you are more likely to select a comedy instead

of a dramatic movie or a science fiction movie. Thus, a

frequency graph of the movie types in a sample of your

movie selections will be more closely clustered around

comedies.

However, if you have a wide-ranging set of preferences

for movies, then the corresponding frequency graph will be

more varied, and therefore have a larger spread of values.

As a simple example, suppose you are given an

assignment that involves writing a term paper on a

controversial subject that has many opposing viewpoints.

Since you want a bibliography that supports your well-

balanced term paper that takes into account multiple

viewpoints, your bibliography will contain a wide variety of

sources.

In other words, your bibliography will have a larger

variance and a smaller bias. If most (or all) the references in

your bibliography espouse the same point of view, then you

will have a smaller variance and a larger bias (it’s just an

analogy, so it’s not a perfect counterpart to bias-versus-

variance).

The bias-variance trade-off can be stated in simple

terms: in general, reducing the bias in samples can increase

the variance, whereas reducing the variance tends to

increase the bias.

Types of Bias in Data

In addition to the bias-variance trade-off that is discussed

in the previous section, there are several types of bias:

• availability bias

• confirmation bias

• false causality

• sunk cost fallacy

• survivorship bias

Availability bias is akin to making a “rule” based on an

exception. For example, there is a known link between

smoking cigarettes and cancer, but there are exceptions. If

you find someone who has smoked three packs of cigarettes

on a daily basis for four decades and is still healthy, can you

assert that smoking does not lead to cancer?

Confirmation bias refers to the tendency to focus on data

that confirms their beliefs and simultaneously ignore data

that contradicts a belief.

False causality occurs when you incorrectly assert that

the occurrence of a particular event causes another event to

occur as well. One of the most well-known examples

involves ice cream consumption and violent crime in New

York during the summer. Since more people eat ice cream in

the summer, that “causes” more violent crime, which is a

false causality. Other factors, such as the increase in

temperature, may be linked to the increase in crime.

However, it’s important to distinguish between correlation

and causality: the latter is a much stronger link than the

former, and it’s also more difficult to establish causality

instead of correlation.

Sunk cost refers to something (often money) that has

been spent or incurred that cannot be recouped. A common

example pertains to gambling at a casino: people fall into

the pattern of spending more money to recoup a substantial

amount of money that has already been lost. While there

are cases in which people do recover their money, in many

(most?) cases, people simply incur an even greater loss

because they continue to spend their money. (Hence, we

have the expression, “it’s time to cut your losses and walk

away.”)

Survivorship bias refers to analyzing a particular subset

of “positive” data while ignoring the “negative” data. This

bias occurs in various situations, such as being influenced

by individuals who recount their rags-to-riches success story

(“positive” data) while ignoring the fate of the people (which

is often a very high percentage) who did not succeed (the

“negative” data) in a similar quest. So, while it’s certainly

possible for an individual to overcome many difficult

obstacles to succeed, is the success rate one in one

thousand (or even lower)?

ANALYZING CLASSIFIERS (OPTIONAL)

This section is marked “optional” because its contents

pertain to machine learning classifiers, which is not the

focus of this book. However, it’s still worthwhile to glance

through the material, or perhaps return to this section after

you have a basic understanding of machine learning

classifiers.

Several well-known techniques are available for

analyzing the quality of machine learning classifiers. Two

techniques are LIME and ANOVA, both of which are

discussed in the following subsections.

What is LIME?

LIME is an acronym for Local Interpretable Model-

Agnostic Explanations. LIME is a model-agnostic technique

that can be used with machine learning models. The

intuition for this technique is straightforward: make small

random changes to data samples and then observe the

manner in which predictions change (or not). The intuition

involves changing the output (slightly) and then observe

what happens to the output.

By way of analogy, consider food inspectors who test for

bacteria in truckloads of perishable food. Clearly, it’s

infeasible to test every food item in a truck (or a train car),

so inspectors perform “spot checks” that involve testing

randomly selected items. In an analogous fashion, LIME

makes small changes to input data in random locations and

then analyzes the changes in the associated output values.

However, there are two caveats to keep in mind when

you use LIME with input data for a given model:

1. The actual changes to input values are model-specific.

2. This technique works on input that is interpretable.

Examples of interpretable input include machine learning

classifiers (such as trees and random forests) and NLP

techniques such as BoW. Non-interpretable input involves

“dense” data, such as a word embedding (which is a vector

of floating point numbers).

You could also substitute your model with another model

that involves interpretable data, but then you need to

evaluate how accurate the approximation is to the original

model.

What is ANOVA?

ANOVA is an acronym for analysis of variance, which

attempts to analyze the differences among the mean values

of a sample that’s taken from a population. ANOVA enables

you to test if multiple mean values are equal. More

importantly, ANOVA can assist in reducing Type I (false

positive) errors and Type II errors (false negative) errors. For

example, suppose that person A is diagnosed with cancer

and person B is diagnosed as healthy, and that both

diagnoses are incorrect. Then the result for person A is a

false positive whereas the result for person B is a false

negative. In general, a test result of false positive is much

preferable to a test result of false negative.

ANOVA pertains to the design of experiments and

hypothesis testing, which can produce meaningful results in

various situations. For example, suppose that a dataset

contains a feature that can be partitioned into several

reasonably homogenous groups. Next, analyze the variance

in each group and perform comparisons with the goal of

determining different sources of variance for the values of a

given feature. For more information about ANOVA, navigate

to the following link:

https://en.wikipedia.org/wiki/Analysis_of_variance

SUMMARY

This chapter started with an explanation of datasets, a

description of data wrangling, and details regarding various

types of data. Then you learned about techniques for

scaling numeric data, such as normalization and

https://en.wikipedia.org/wiki/Analysis_of_variance

standardization. You saw how to convert categorical data to

numeric values, and how to handle dates and currency.

Then you learned how to work with outliers, anomalies,

and missing data, along with various techniques for

handling these scenarios. You also learned about

imbalanced data and evaluating the use of SMOTE to deal

with imbalanced classes in a dataset. In addition, you

learned about the bias-variance tradeoff and various types

of statistical bias. Finally, you learned about classifiers using

two techniques, LIME and ANOVA.

T

CHAPTER 3

INTRODUCTION TO PANDAS

his chapter introduces the Pandas library and

contains various code samples that illustrate some

useful Pandas features. The title of each section

clearly indicates its contents, so you can easily scan

this chapter for those sections that contain material that is

new to you. This approach will help you make efficient use

of your time when you read the contents of this chapter.

The first part of this chapter contains a brief introduction

to Pandas, followed by code samples that illustrate how to

define Pandas data frames and also display their attributes.

Please keep in mind that this chapter is devoted to Pandas

data frames. There is one code block that illustrates how to

define a Pandas Series, and if you want to learn more about

this Pandas Series, you can search online for more

information.

The second part of this chapter discusses various types

of data frames that you can create, such as numeric and

Boolean data frames. In addition, you will see examples of

creating data frames with NumPy functions and random

numbers. You will also see examples of converting between

Python dictionaries and JSON-based data, and how to create

a Pandas data frame from JSON-based data.

WHAT IS PANDAS?

Pandas is a Python library that is compatible with other

Python libraries, such as NumPy and Matplotlib. Install

Pandas by opening a command shell and invoking the

following command for Python 3.x:

pip3 install pandas

In many ways, the Pandas library has the semantics of a

spreadsheet, and it also works with various file types, such

as XSL, XML, HTML, and CSV. Pandas provides a data type

called a data frame (similar to a Python dictionary) with

extremely powerful functionality (similar to the functionality

of a spreadsheet).

Pandas Data Frames

In simplified terms, a Pandas data frame is a two-

dimensional data structure, and it’s convenient to think of

the data structure in terms of rows and columns. Data

frames can be labeled (rows as well as columns), and the

columns can contain different data types. The source of the

dataset can be a data file, database tables, or Web service.

Pandas data frame features include the following:

• Data Frame Methods

• Data Frame Statistics

• Grouping, Pivoting, and Reshaping

• Handle Missing Data

• Join Data Frames

Data Frames and Data Cleaning Tasks

The specific tasks that you need to perform depend on

the structure and contents of a dataset. In general, you will

perform a workflow with the following steps (not necessarily

always in this order), all of which can be performed with a

Pandas data frame:

• Read data into a data frame

• Display top of data frame

• Display column data types

• Display non_missing values

• Replace NA with a value

• Iterate through the columns

• Statistics for each column

• Find missing values

• Total missing values

• Percentage of missing values

• Sort table values

• Print summary information

• Find columns with > 50% missing values

• Rename columns

A PANDAS DATA FRAME EXAMPLE

Listing 3.1 displays the content of pandas_df.py that

illustrates how to define several Pandas data frames and

display their contents.

LISTING 3.1: pandas_df.py

import pandas as pd

import numpy as np

myvector1 = np.array([1,2,3,4,5])

print("myvector1:")

print(myvector1)

print()

mydf1 = pd.DataFrame(myvector1)

print("mydf1:")

print(mydf1)

print()

myvector2 = np.array([i for i in range(1,6)])

print("myvector2:")

print(myvector2)

print()

mydf2 = pd.DataFrame(myvector2)

print("mydf2:")

print(mydf2)

print()

myarray = np.array([[10,30,20], [50,40,60],[1000,2000,3000]])

print("myarray:")

print(myarray)

print()

mydf3 = pd.Data frame(myarray)

print("mydf3:")

print(mydf3)

print()

Listing 3.1 starts with a standard import statement for

Pandas and NumPy, followed by the definition of two one-

dimensional NumPy arrays and a two-dimensional NumPy

array. The NumPy syntax should be familiar to you (many

basic tutorials are available online). Each NumPy variable is

followed by a corresponding Pandas data frame mydf1, mydf2,

and mydf3. Launch the code in Listing 3.1. You will see the

following output, and you can compare the NumPy arrays

with the Pandas data frames:

myvector1:

[1 2 3 4 5]

mydf1:

 0

0 1

1 2

2 3

3 4

4 5

myvector2:

[1 2 3 4 5]

mydf2:

 0

0 1

1 2

2 3

3 4

4 5

myarray:

[[10 30 20]

 [50 40 60]

 [1000 2000 3000]]

mydf3:

 0 1 2

0 10 30 20

1 50 40 60

2 1000 2000 3000

By contrast, the following code block illustrates how to

define a Pandas Series:

names = pd.Series(['SF', 'San Jose', 'Sacramento'])

sizes = pd.Series([852469, 1015785, 485199])

df = pd.DataFrame({ 'Cities': names, 'Size': sizes })

print(df)

Create a Python file with the preceding code (along with

the required import statement). When you launch that code,

you will see the following output:

 City name sizes

0 SF 852469

1 San Jose 1015785

2 Sacramento 485199

DESCRIBING A PANDAS DATA FRAME

Listing 3.2 displays the content of pandas_df_describe.py

that illustrates how to define a Pandas data frame that

contains a 3×3 NumPy array of integer values, where the rows

and columns of the data frame are labeled. Various other

aspects of the data frame are also displayed.

LISTING 3.2: pandas_df_describe.py

import numpy as np

import pandas as pd

myarray = np.array([[10,30,20], [50,40,60],[1000,2000,3000]])

rownames = ['apples', 'oranges', 'beer']

colnames = ['January', 'February', 'March']

mydf = pd.Data frame(myarray, index=rownames, columns=colnames)

print("contents of df:")

print(mydf)

print()

print("contents of January:")

print(mydf['January'])

print()

print("Number of Rows:")

print(mydf.shape[0])

print()

print("Number of Columns:")

print(mydf.shape[1])

print()

print("Number of Rows and Columns:")

print(mydf.shape)

print()

print("Column Names:")

print(mydf.columns)

print()

print("Column types:")

print(mydf.dtypes)

print()

print("Description:")

print(mydf.describe())

print()

Listing 3.2 starts with two standard import statements

followed by the variable myarray, which is a 3x3 NumPy array of

numbers. The variables rownames and colnames provide names

for the rows and columns, respectively, of the Pandas data

frame mydf, which is initialized as a Pandas data frame with

the specified data source (i.e., myarray).

The first portion of the output below requires a single

print() statement (which simply displays the contents of

mydf). The second portion of the output is generated by

invoking the describe() method that is available for any

NumPy data frame. The describe() method is useful: you will

see various statistical quantities, such as the mean,

standard deviation minimum, and maximum performed

column_wise (not row_wise), along with values for the 25th,

50th, and 75th percentiles. The output of Listing 3.2 is here:

contents of df:

 January February March

apples 10 30 20

oranges 50 40 60

beer 1000 2000 3000

contents of January:

apples 10

oranges 50

beer 1000

Name: January, dtype: int64

Number of Rows:

3

Number of Columns:

3

Number of Rows and Columns:

(3, 3)

Column Names:

Index(['January', 'February', 'March'], dtype='object')

Column types:

January int64

February int64

March int64

dtype: object

Description:

 January February March

count 3.000000 3.000000 3.000000

mean 353.333333 690.000000 1026.666667

std 560.386771 1134.504297 1709.073823

min 10.000000 30.000000 20.000000

25% 30.000000 35.000000 40.000000

50% 50.000000 40.000000 60.000000

75% 525.000000 1020.000000 1530.000000

max 1000.000000 2000.000000 3000.000000

PANDAS BOOLEAN DATA FRAMES

Pandas supports Boolean operations on data frames,

such as the logical or, the logical and, and the logical

negation of a pair of data frames. Listing 3.3 displays the

content of pandas_boolean_df.py that illustrates how to define a

Pandas data frame whose rows and columns are Boolean

values.

LISTING 3.3: pandas_boolean_df.py

import pandas as pd

df1 = pd.Data frame({'a': [1, 0, 1], 'b': [0, 1, 1] }, dtype=bool)

df2 = pd.Data frame({'a': [0, 1, 1], 'b': [1, 1, 0] }, dtype=bool)

print("df1 & df2:")

print(df1 & df2)

print("df1 | df2:")

print(df1 | df2)

print("df1 ^ df2:")

print(df1 ^ df2)

Listing 3.3 initializes the data frames df1 and df2, and then

computes df1 & df2, df1 | df2, df1 ^ df2, which represent the

logical AND, the logical OR, and the logical negation,

respectively, of df1 and df2. The output from launching the

code in Listing 3.3 is here:

df1 & df2:

 a b

0 False False

1 False True

2 True False

df1 | df2:

 a b

0 True True

1 True True

2 True True

df1 ^ df2:

 a b

0 True True

1 True False

2 False True

Transposing a Pandas Data Frame

The T attribute (as well as the transpose function)

enables you to generate the transpose of a Pandas data

frame, similar to a NumPy ndarray.

For example, the following code snippet defines a Pandas

data frame df1 and then displays the transpose of df1:

df1 = pd.DataFrame({'a': [1, 0, 1], 'b': [0, 1, 1] }, dtype=int)

print("df1.T:")

print(df1.T)

The output is here:

df1.T:

 0 1 2

a 1 0 1

b 0 1 1

The following code snippet defines Pandas data frames

df1 and df2 and then displays their sum:

df1 = pd.DataFrame({'a' : [1, 0, 1], 'b' : [0, 1, 1] }, dtype=int)

df2 = pd.DataFrame({'a' : [3, 3, 3], 'b' : [5, 5, 5] }, dtype=int)

print("df1 + df2:")

print(df1 + df2)

The output is here:

df1 + df2:

 a b

0 4 5

1 3 6

2 4 6

PANDAS DATA FRAMES AND RANDOM NUMBERS

Listing 3.4 displays the content of pandas_random_df.py that

illustrates how to create a Pandas data frame with random

numbers.

LISTING 3.4: pandas_random_df.py

import pandas as pd

import numpy as np

df = pd.DataFrame(np.random.randint(1, 5, size=(5, 2)), columns=
['a','b'])

df = df.append(df.agg(['sum', 'mean']))

print("Contents of data frame:")

print(df)

Listing 3.4 defines the Pandas data frame df that consists

of 5 rows and 2 columns that contain random integers

between 1 and 5. Notice that the columns of df are labeled

“a” and “b.” In addition, the next code snippet appends two

rows consisting of the sum and the mean of the numbers in

both columns. The output of Listing 3.4 is here:

a b

0 1.0 2.0

1 1.0 1.0

2 4.0 3.0

3 3.0 1.0

4 1.0 2.0

sum 10.0 9.0

mean 2.0 1.8

Listing 3.5 displays the content of pandas_combine_df.py that

illustrates how to define a Pandas data frame that is based

on two NumPy arrays of numbers.

LISTING 3.5: pandas_combine_df.py

import pandas as pd

import numpy as np

df = pd.DataFrame({'foo1' : np.random.randn(5),

 'foo2' : np.random.randn(5)})

print("contents of df:")

print(df)

print("contents of foo1:")

print(df.foo1)

print("contents of foo2:")

print(df.foo2)

Listing 3.5 defines the Pandas data frame df that consists

of 5 rows and 2 columns (labeled foo1 and foo2) of random

real numbers between 0 and 5. The next portion of Listing

3.5 displays the contents of df and foo1. The output of Listing

3.5 is here:

contents of df:

 foo1 foo2

0 0.274680 _0.848669

1 _0.399771 _0.814679

2 0.454443 _0.363392

3 0.473753 0.550849

4 _0.211783 _0.015014

contents of foo1:

0 0.256773

1 1.204322

2 1.040515

3 _0.518414

4 0.634141

Name: foo1, dtype: float64

contents of foo2:

0 _2.506550

1 _0.896516

2 _0.222923

3 0.934574

4 0.527033

Name: foo2, dtype: float64

CONVERTING CATEGORICAL DATA TO NUMERIC DATA

One common task in machine learning involves

converting a feature containing character data into a

feature that contains numeric data.

Listing 3.6 displays the content of sometext.tsv that

contains labeled data (spam or ham), which is used in the code

sample displayed in Listing 3.7.

LISTING 3.6: sometext.tsv

type text

ham I'm telling the truth

spam What a deal such a deal!

spam Free vacation for your family

ham Thank you for your help

spam Spring break next week!

ham I received the documents

spam One million dollars for you

ham My wife got covid19

spam You might have won the prize

ham Everyone is in good health

Listing 3.7 displays the content of cat2numeric.py that

illustrates how to replace a text field with a corresponding

numeric field.

LISTING 3.7: cat2numeric.py

import pandas as pd

import numpy as np

df = pd.read_csv('sometext.tsv', delimiter='\t')

print("=> First five rows (before):")

print(df.head(5))

print("-------------------------")

map ham/spam to 0/1 values:

df['type'] = df['type'].map({'ham':0 , 'spam':1})

print("=> First five rows (after):")

print(df.head(5))

print("-------------------------")

Listing 3.7 initializes the data frame df with the contents

of the CSV file sometext.tsv, and then displays the contents of

the first five rows by invoking df.head(5), which is also the

default number of rows to display. The next code snippet in

Listing 3.7 invokes the map() method to replace occurrences

of ham with 0 and replace occurrences of spam with 1 in the

column labeled type, as shown here:

df['type'] = df['type'].map({'ham':0 , 'spam':1})

The last portion of Listing 3.7 invokes the head() method

again to display the first five rows of the dataset after

having renamed the contents of the column type. Launch

the code in Listing 3.7 and you will see the following output:

=> First five rows (before):

 type text

0 ham I'm telling the truth

1 spam What a deal such a deal!

2 spam Free vacation for your family

3 ham Thank you for your help

4 spam Spring break next week!

=> First five rows (after):

 type text

0 0 I'm telling the truth

1 1 What a deal such a deal!

2 1 Free vacation for your family

3 0 Thank you for your help

4 1 Spring break next week!

As another example, Listing 3.8 displays the content of

shirts.csv and Listing 3.9 displays the content of shirts.py

that illustrates four techniques for converting categorical

data to numeric data.

LISTING 3.8: shirts.csv

type,ssize

shirt,xxlarge

shirt,xxlarge

shirt,xlarge

shirt,xlarge

shirt,xlarge

shirt,large

shirt,medium

shirt,small

shirt,small

shirt,xsmall

shirt,xsmall

shirt,xsmall

LISTING 3.9: shirts.py

import pandas as pd

shirts = pd.read_csv("shirts.csv")

print("shirts before:")

print(shirts)

print()

TECHNIQUE #1:

#shirts.loc[shirts['ssize']=='xxlarge','size'] = 4

#shirts.loc[shirts['ssize']=='xlarge', 'size'] = 4

#shirts.loc[shirts['ssize']=='large', 'size'] = 3

#shirts.loc[shirts['ssize']=='medium', 'size'] = 2

#shirts.loc[shirts['ssize']=='small', 'size'] = 1

#shirts.loc[shirts['ssize']=='xsmall', 'size'] = 1

TECHNIQUE #2:

#shirts['ssize'].replace('xxlarge', 4, inplace=True)

#shirts['ssize'].replace('xlarge', 4, inplace=True)

#shirts['ssize'].replace('large', 3, inplace=True)

#shirts['ssize'].replace('medium', 2, inplace=True)

#shirts['ssize'].replace('small', 1, inplace=True)

#shirts['ssize'].replace('xsmall', 1, inplace=True)

TECHNIQUE #3:

#shirts['ssize'] = shirts['ssize'].apply({'xxlarge':4, 'xlarge':4,
'large':3, 'medium':2, 'small':1, 'xsmall':1}.get)

TECHNIQUE #4:

shirts['ssize'] = shirts['ssize'].replace(regex='xlarge', value=4)

shirts['ssize'] = shirts['ssize'].replace(regex='large', value=3)

shirts['ssize'] = shirts['ssize'].replace(regex='medium', value=2)

shirts['ssize'] = shirts['ssize'].replace(regex='small', value=1)

print("shirts after:")

print(shirts)

Listing 3.9 starts with a code block of six statements that

uses direct comparison with strings to make numeric

replacements. For example, the following code snippet

replaces all occurrences of the string xxlarge with the value

4:

shirts.loc[shirts['ssize']=='xxlarge','size'] = 4

The second code block consists of six statements that

use the replace() method to perform the same updates, an

example of which is shown here:

shirts['ssize'].replace('xxlarge', 4, inplace=True)

The third code block consists of a single statement that

uses the apply() method to perform the same updates, as

shown here:

shirts['ssize'] = shirts['ssize'].apply({'xxlarge':4, 'xlarge':4,
'large':3, 'medium':2, 'small':1, 'xsmall':1}.get)

The fourth code block consists of four statements that

use regular expressions to perform the same updates, an

example of which is shown here:

shirts['ssize'] = shirts['ssize'].replace(regex='xlarge', value=4)

Since the preceding code snippet matches xxlarge as well

as xlarge, we only need four statements instead of six

statements. If you are unfamiliar with regular expressions,

you can read online tutorials regarding this topic. Launch

the code in Listing 3.9 and you will see the following output:

shirts before

 type size

0 shirt xxlarge

1 shirt xxlarge

2 shirt xlarge

3 shirt xlarge

4 shirt xlarge

5 shirt large

6 shirt medium

7 shirt small

8 shirt small

9 shirt xsmall

10 shirt xsmall

11 shirt xsmall

shirts after:

 type size

0 shirt 4

1 shirt 4

2 shirt 4

3 shirt 4

4 shirt 4

5 shirt 3

6 shirt 2

7 shirt 1

8 shirt 1

9 shirt 1

10 shirt 1

11 shirt 1

MERGING AND SPLITTING COLUMNS IN PANDAS

Listing 3.10 displays the content of employees.csv and

Listing 3.11 displays the content of emp_merge_split.py that

illustrates how to merge columns and split columns of a CSV

file.

LISTING 3.10: employees.csv

name,year,month

Jane-Smith,2015,Aug

Dave-Smith,2020,Jan

Jane-Jones,2018,Dec

Jane-Stone,2017,Feb

Dave-Stone,2014,Apr

Mark-Aster,,Oct

Jane-Jones,NaN,Jun

LISTING 3.11: emp_merge_split.py

import pandas as pd

emps = pd.read_csv("employees.csv")

print("emps:")

print(emps)

print()

emps['year'] = emps['year'].astype(str)

emps['month'] = emps['month'].astype(str)

separate column for first name and for last name:

emps['fname'],emps['lname'] = emps['name'].str.split("-",1).str

concatenate year and month with a "#" symbol:

emps['hdate1'] =
emps['year'].astype(str)+"#"+emps['month'].astype(str)

concatenate year and month with a "-" symbol:

emps['hdate2'] = emps[['year','month']].agg('-'.join, axis=1)

print(emps)

print()

Listing 3.11 initializes the data frame df with the contents

of the CSV file employees.csv, and then displays the contents

of the data frame. The next pair of code snippets invoke the

astype() method to convert the contents of the year and month

columns to strings.

The next code snippet in Listing 3.11 uses the split()

method to split the name column into the columns fname and

lname, which contain the first name and last name,

respectively, of each employee’s name:

emps['fname'],emps['lname'] = emps['name'].str.split("-",1).str

The next code snippet concatenates the contents of the

year and month string with a “#” character to create a new

column called hdate1, as shown here:

emps['hdate1'] =
emps['year'].astype(str)+"#"+emps['month'].astype(str)

The final code snippet concatenates the contents of the

year and month string with a “-” to create a new column called

hdate2, as shown here:

emps['hdate2'] = emps[['year','month']].agg('-'.join, axis=1)

Launch the code in Listing 3.11 and you will see the

following output:

emps:

 name year month

0 Jane-Smith 2015.0 Aug

1 Dave-Smith 2020.0 Jan

2 Jane-Jones 2018.0 Dec

3 Jane-Stone 2017.0 Feb

4 Dave-Stone 2014.0 Apr

5 Mark-Aster NaN Oct

6 Jane-Jones NaN Jun

 name year month fname lname hdate1 hdate2

0 Jane-Smith 2015.0 Aug Jane Smith 2015.0#Aug 2015.0-Aug

1 Dave-Smith 2020.0 Jan Dave Smith 2020.0#Jan 2020.0-Jan

2 Jane-Jones 2018.0 Dec Jane Jones 2018.0#Dec 2018.0-Dec

3 Jane-Stone 2017.0 Feb Jane Stone 2017.0#Feb 2017.0-Feb

4 Dave-Stone 2014.0 Apr Dave Stone 2014.0#Apr 2014.0-Apr

5 Mark-Aster nan Oct Mark Aster nan#Oct nan-Oct

6 Jane-Jones nan Jun Jane Jones nan#Jun nan-Jun

There is one other detail regarding the following code

snippet:

#emps['fname'],emps['lname'] = emps['name'].str.split("-",1).str

The following deprecation message is displayed:

#FutureWarning: Columnar iteration over characters

#will be deprecated in future releases.

COMBINING PANDAS DATA FRAMES

Pandas supports the concat() method to concatenate data

frames. Listing 3.12 displays the content of concat_frames.py

that illustrates how to combine two Pandas data frames.

LISTING 3.12: concat_frames.py

import pandas as pd

can_weather = pd.Data frame({

 "city": ["Vancouver","Toronto","Montreal"],

 "temperature": [72,65,50],

 "humidity": [40, 20, 25]

})

us_weather = pd.Data frame({

 "city": ["SF","Chicago","LA"],

 "temperature": [60,40,85],

 "humidity": [30, 15, 55]

})

df = pd.concat([can_weather, us_weather])

print(df)

The first line in Listing 3.12 is an import statement,

followed by the definition of the Pandas data frames

can_weather and us_weather that contain weather-related

information for cities in Canada and the USA, respectively.

The Pandas data frame df is the concatenation of can_weather

and us_weather. The output from Listing 3.12 is here:

0 Vancouver 40 72

1 Toronto 20 65

2 Montreal 25 50

0 SF 30 60

1 Chicago 15 40

2 LA 55 85

DATA MANIPULATION WITH PANDAS DATA FRAMES

As a simple example, suppose that we have a two-person

company that keeps track of income and expenses on a

quarterly basis. We want to calculate the profit/loss for each

quarter, as well as the overall profit/loss.

Listing 3.13 displays the content of pandas_quarterly_df1.py

that illustrates how to define a Pandas data frame consisting

of income-related values.

LISTING 3.13: pandas_quarterly_df1.py

import pandas as pd

summary = {

 'Quarter': ['Q1', 'Q2', 'Q3', 'Q4'],

 'Cost': [23500, 34000, 57000, 32000],

 'Revenue': [40000, 40000, 40000, 40000]

}

df = pd.DataFrame(summary)

print("Entire Dataset:\n",df)

print("Quarter:\n",df.Quarter)

print("Cost:\n",df.Cost)

print("Revenue:\n",df.Revenue)

Listing 3.13 defines the variable summary that contains

hard-coded quarterly information about cost and revenue

for our two-person company. In general, these hard-coded

values would be replaced by data from another source (such

as a CSV file), so think of this code sample as a simple way

to illustrate some of the functionality that is available in

Pandas data frames.

The variable df is a Pandas data frame based on the data

in the summary variable. The three print() statements display

the quarters, the cost per quarter, and the revenue per

quarter. The output from Listing 3.13 is here:

Entire Dataset:

 Cost Quarter Revenue

0 23500 Q1 40000

1 34000 Q2 60000

2 57000 Q3 50000

3 32000 Q4 30000

Quarter:

 0 Q1

1 Q2

2 Q3

3 Q4

Name: Quarter, dtype: object

Cost:

 0 23500

1 34000

2 57000

3 32000

Name: Cost, dtype: int64

Revenue:

 0 40000

1 60000

2 50000

3 30000

Name: Revenue, dtype: int64

PANDAS DATA FRAMES AND CSV FILES

The code samples in several earlier sections contain

hard-coded data inside the Python scripts. However, it’s also

very common to read data from a CSV file. You can use the

Python csv.reader() function, the NumPy loadtxt() function, or

the Pandas function read_csv() function (shown in this

section) to read the contents of CSV files.

Listing 3.14 displays the content of the CSV file

weather_data.csv and Listing 3.15 displays the content of

weather_data.py that illustrates how to read the file

weather_data.csv.

LISTING 3.14: weather_data.py

day,temperature,windspeed,event

7/1/2018,42,16,Rain

7/2/2018,45,3,Sunny

7/3/2018,78,12,Snow

7/4/2018,74,9,Snow

7/5/2018,42,24,Rain

7/6/2018,51,32,Sunny

LISTING 3.15: weather_data.py

import pandas as pd

df = pd.read_csv("weather_data.csv")

print(df)

print(df.shape) # rows, columns

print(df.head()) # df.head(3)

print(df.tail())

print(df[1:3])

print(df.columns)

print(type(df['day']))

print(df[['day','temperature']])

print(df['temperature'].max())

Listing 3.15 invokes the Pandas read_csv() function to read

the contents of the CSV file weather_data.csv, followed by a set

of Python print() statements that display various portions of

the CSV file. The output from Listing 3.15 is here:

 day temperature windspeed event

0 7/1/2018 42 16 Rain

1 7/2/2018 45 3 Sunny

2 7/3/2018 78 12 Snow

3 7/4/2018 74 9 Snow

4 7/5/2018 42 24 Rain

5 7/6/2018 51 32 Sunny

(6, 4)

 day temperature windspeed event

0 7/1/2018 42 16 Rain

1 7/2/2018 45 3 Sunny

2 7/3/2018 78 12 Snow

3 7/4/2018 74 9 Snow

4 7/5/2018 42 24 Rain

 day temperature windspeed event

1 7/2/2018 45 3 Sunny

2 7/3/2018 78 12 Snow

3 7/4/2018 74 9 Snow

4 7/5/2018 42 24 Rain

5 7/6/2018 51 32 Sunny

 day temperature windspeed event

1 7/2/2018 45 3 Sunny

2 7/3/2018 78 12 Snow

Index(['day', 'temperature', 'windspeed', 'event'], dtype='object')

<class 'pandas.core.series.Series'>

 day temperature

0 7/1/2018 42

1 7/2/2018 45

2 7/3/2018 78

3 7/4/2018 74

4 7/5/2018 42

5 7/6/2018 51

78

In some situations, you might need to apply Boolean

conditional logic to “filter out” some rows of data, based on

a conditional condition that’s applied to a column value.

Listing 3.16 displays the content of the CSV file people.csv

and Listing 3.17 displays the content of people_pandas.py that

illustrates how to define a Pandas data frame that reads the

CSV file and manipulates the data.

LISTING 3.16: people.csv

fname,lname,age,gender,country

john,smith,30,m,usa

jane,smith,31,f,france

jack,jones,32,m,france

dave,stone,33,m,italy

sara,stein,34,f,germany

eddy,bower,35,m,spain

LISTING 3.17: people_pandas.py

import pandas as pd

df = pd.read_csv('people.csv')

df.info()

print('fname:')

print(df['fname'])

print('____________')

print('age over 33:')

print(df['age'] > 33)

print('____________')

print('age over 33:')

myfilter = df['age'] > 33

print(df[myfilter])

Listing 3.17 populates the Pandas data frame df with the

contents of the CSV file people.csv. The next portion of Listing

3.17 displays the structure of df, followed by the first names

of all the people. The next portion of Listing 3.17 displays a

tabular list of six rows containing either True or False

depending on whether a person is over 33 or at most 33,

respectively. The final portion of Listing 3.17 displays a

tabular list of two rows containing all the details of the

people who are over 33. The output from Listing 3.17 is

here:

myfilter = df['age'] > 33

<class 'pandas.core.frame.Data frame'>

RangeIndex: 6 entries, 0 to 5

Data columns (total 5 columns):

fname 6 non_null object

lname 6 non_null object

age 6 non_null int64

gender 6 non_null object

country 6 non_null object

dtypes: int64(1), object(4)

memory usage: 320.0+ bytes

fname:

0 john

1 jane

2 jack

3 dave

4 sara

5 eddy

Name: fname, dtype: object

age over 33:

0 False

1 False

2 False

3 False

4 True

5 True

Name: age, dtype: bool

age over 33:

 fname lname age gender country

4 sara stein 34 f france

5 eddy bower 35 m france

Useful Options for the Pandas read_csv() Function

Skip the initial header information contained in the first

row with this code snippet:

df = pd.read_csv("data.csv", header=None)

The following code snippet shows you how to save a

Pandas data frame to a CSV file without including the

indices:

df.to_csv("data.csv", sep=",", index=False)

If need be, you can remove the first line immediately

following the header row with this code snippet:

my_dataset = pd.read_csv("dataset.csv", skiprows=1,
low_memory=False)

Skip the first three rows of a CSV file:

df = pd.read_csv("data.csv", skiprows=3, header=None)

Skip a range of rows that are specified by index:

df = pd.read_csv("data.csv", skiprows=[0,2])

Reading Selected Rows from CSV Files

You have seen Pandas-based examples of reading the

entire contents of CSV files into a Pandas data frame and

then selecting subsets of those rows for additional

processing. In this section, you will see how to read portions

of CSV files, which eliminates the need to drop redundant

rows from Pandas data frames.

This technique involves reading portions of CSV files by

specifying the chunksize parameter, that is useful for large

datasets: Pandas will process the dataset in sequential

chunks without reading the entire file into memory. Although

the CSV dataset in this example is very small, you now know

how to specify this parameter.

Listing 3.18 displays the content of fruits.csv that is

referenced in Listing 3.19 that retrieves a subset of rows

from fruits.csv.

LISTING 3.18: fruits.csv

name,month,day

avocado,Aug,13

persimmon,Jul,28

apples,Sept,25

oranges,Aug,30

bananas,Dec,20

cantelope,Nov,18

Listing 3.19 displays the content of pandas_csv1.py that

illustrates how to read a subset of rows from a CSV file

based on some conditional logic.

LISTING 3.19: pandas_csv1.py

import pandas as pd

csv_file="fruits.csv"

df1 = pd.read_csv(csv_file)

print("df1 set of rows:")

print(df1)

print()

df1 = pd.read_csv(csv_file, chunksize=10000000)

df2 = pd.concat((item.query("name == 'oranges'") for item in df1),
ignore_index=True)

print("df2:")

print(df2)

print()

Listing 3.19 initialized the string variable csv_file with the

value of fruits.csv, populates the Pandas data frame df1 with

the contents of fruits.csv, and then displays the contents of

df1.

The next portion of Listing 3.19 initializes the Pandas

data frame df2 with the subset of rows in df1 whose name

attribute equals oranges. Launch the code in Listing 3.19 and

you will see the following output:

df1 set of rows:

 name month day

0 avocado Aug 13

1 persimmon Jul 28

2 apples Sept 25

3 oranges Aug 30

4 bananas Dec 20

5 cantelope Nov 18

df2 rows with oranges:

 name month day

0 oranges Aug 30

Listing 3.20 displays the content of pandas_schema1.py that

illustrates how to read a subset of rows from a CSV file

based on some conditional logic.

LISTING 3.20: pandas_schema1.py

import pandas as pd

csv_file="emp_ages.csv"

schema = { "age": int }

df1 = pd.read_csv(csv_file, dtype=schema, chunksize=10000000)

df2 = pd.concat((item.query("'age' >= 45") for item in df1),
ignore_index=True)

print("df2 ages at least 45:")

print(df2)

Listing 3.20 initializes the string variable csv_file with the

value emp_ages.csv and then initializes the string variable

schema with a JSON-based string. The next code snippet

initializes the Pandas data frame df1 with the contents of the

CSV file emp_ages.csv.

Next, the Pandas data frame df2 is initialized with the

subset of rows in df1 whose age attribute is at least 45. The

backquotes in this code snippet are required when you

specify an attribute that has an embedded whitespace.

Launch the code in Listing 3.20 and you will see the

following output:

df2 ages at least 45:

 fname lname age

0 Jane Jones 65

1 Jane Jones 65

2 Dave Stone 45

3 Mark Aster 53

4 Jane Jones 58

Listing 3.21 displays the content of pandas_schema2.py that

illustrates how to read a subset of rows from a CSV file

based on some conditional logic.

LISTING 3.21: pandas_schema2.py

import pandas as pd

csv_file="emp_ages.csv"

schema = { "age": int, "fname":str}

df1 = pd.read_csv(csv_file, dtype=schema, chunksize=10000000)

df2 = pd.concat((item.query("age >= 45 | age < 20") for item in
df1), ignore_index=True)

print("df2 ages at least 45 or less than 20:")

print(df2)

Listing 3.21 extends the code in Listing 3.20 by

specifying a compound condition for the rows in the Pandas

data frame df2, which involves the rows in df1 whose age

attribute is at least 45 or the rows in df1 whose age attribute

is less than 20. Launch the code in Listing 3.21 and you will

see the following output:

df2 ages at least 45 or less than 20:

 fname lname age

0 Dave Smith 10

1 Jane Jones 65

2 Jane Jones 65

3 Dave Stone 45

4 Mark Aster 53

5 Jane Jones 58

PANDAS DATA FRAMES AND EXCEL SPREADSHEETS

Listing 3.22 displays the content of write_people_xlsx.py

that illustrates how to read data from a CSV file and then

create an Excel spreadsheet with that data.

LISTING 3.22: write_people_xlsx.py

import pandas as pd

df1 = pd.read_csv("people.csv")

df1.to_excel("people.xlsx")

#optionally specify the sheet name:

#df1.to_excel("people.xlsx", sheet_name='Sheet_name_1')

Listing 3.22 initializes the Pandas data frame df1 with the

contents of the CSV file people.csv and then invokes the

to_excel() method to save the contents of the data frame to

the Excel spreadsheet people.xlsx.

Listing 3.23 displays the content of read_people_xlsx.py that

illustrates how to read data from the Excel spreadsheet

people.xlsx and create a Pandas data frame with that data.

LISTING 3.23: read_people_xlsx.py

import pandas as pd

df = pd.read_excel("people.xlsx")

print("Contents of Excel spreadsheet:")

print(df)

Listing 3.23 is straightforward: the Pandas data frame df

is initialized with the contents of the spreadsheet people.xlsx

(whose contents are the same as people.csv) via the Pandas

function read_excel(). The output from Listing 3.23 is here:

df1:

 Unnamed: 0 fname lname age gender country

0 0 john smith 30 m usa

1 1 jane smith 31 f france

2 2 jack jones 32 m france

3 3 dave stone 33 m italy

4 4 sara stein 34 f germany

5 5 eddy bower 35 m spain

Useful Options for Reading Excel Spreadsheets

Sometimes you need extra control over the values that

you read from an Excel spreadsheet into a Pandas data

frame, just as you do with CSV files.

Skip the header and the footer in an Excel spreadsheet

with this code snippet:

df = pd.read_excel("myfile.xls",header=15,skipfooter=_Y_)

SELECT, ADD, AND DELETE COLUMNS IN DATA

FRAMES

This section contains short code blocks that illustrate

how to perform operations on a data frame that resemble

the operations on a Python dictionary. For example, getting,

setting, and deleting columns works with the same syntax

as the analogous Python dict operations, as shown here:

df = pd.DataFrame.from_dict(dict([('A',[1,2,3]),('B',[4,5,6])]),

 orient='index', columns=['one', 'two', 'three'])

print(df)

The output from the preceding code snippet is here:

 one two three

A 1 2 3

B 4 5 6

Look at the following operation that appends a new

column to the contents of the data frame df:

df['four'] = df['one'] * df['two']

print(df)

The output from the preceding code block is here:

 one two three four

A 1 2 3 2

B 4 5 6 20

The following operation squares the contents of a column

in the data frame df:

df['three'] = df['two'] * df['two']

print(df)

The output from the preceding code block is here:

 one two three four

A 1 2 4 2

B 4 5 25 20

The following operation inserts a column of random

numbers in index position 1 (which is the second column) in

the data frame df:

import numpy as np

rand = np.random.randn(2)

df.insert(1, 'random', rand)

print(df)

The output from the preceding code block is here:

 one random two three four

A 1 -1.703111 2 4 2

B 4 1.139189 5 25 20

The following operation appends a new column called

flag that contains True or False, based on whether the

numeric value in the “one” column is greater than 2:

import numpy as np

rand = np.random.randn(2)

df.insert(1, 'random', rand)

print(df)

The output from the preceding code block is here:

 one random two three four flag

A 1 -1.703111 2 4 2 False

B 4 1.139189 5 25 20 True

Columns can be deleted, as shown in following code

snippet that deletes the “two” column:

del df['two']

print(df)

The output from the preceding code block is here:

one random three four flag

A 1 -0.460401 4 2 False

B 4 1.211468 25 20 True

Columns can be deleted via the pop() method, as shown

in following code snippet that deletes the “three” column:

three = df.pop('three')

print(df)

 one random four flag

A 1 -0.544829 2 False

B 4 0.581476 20 True

When inserting a scalar value, it will naturally be

propagated to fill the column:

df['foo'] = 'bar'

print(df)

The output from the preceding code snippet is here:

 one random four flag foo

A 1 -0.187331 2 False bar

B 4 -0.169672 20 True bar

HANDLING OUTLIERS IN PANDAS

If you are unfamiliar with outliers and anomalies, please

read the sections in the appendix that discuss these two

concepts because this section uses Pandas to find outliers in

a dataset. The key idea involves finding the “z-score” of the

values in the dataset, which involves calculating the mean

sigma and standard deviation std, and then mapping each

value x in the dataset to the value (x-sigma)/std.

Next, you specify a value of z (such as 3) and find the

rows whose z-score is greater than 3. These are the rows

that contain values that are considered outliers. Note that a

suitable value for the z-score is your decision (not some

other external factor).

Listing 3.24 displays the content of outliers_zscores.py

that illustrates how to find rows of a dataset whose z-score

greater than (or less than) a specified value.

LISTING 3.24: outliers_zscores.py

import numpy as np

import pandas as pd

from scipy import stats

from scikit-learn import datasets

df = datasets.load_iris()

columns = df.feature_names

iris_df = pd.DataFrame(df.data)

iris_df.columns = columns

print("=> iris_df.shape:",iris_df.shape)

print(iris_df.head())

print()

z = np.abs(stats.zscore(iris_df))

print("z scores for iris:")

print("z.shape:",z.shape)

upper = 2.5

lower = 0.01

print("=> upper outliers:")

print(z[np.where(z > upper)])

print()

outliers = iris_df[z < lower]

print("=> lower outliers:")

print(outliers)

print()

Listing 3.24 initializes the variable df with the contents of

the built-in Iris dataset. Next, the variable columns is

initialized with the column names, and the data frame iris_df

is initialized from the content of df.data that contains the

actual data for the Iris dataset. In addition, iris_df.columns is

initialized with the contents of the variable columns.

The next portion of Listing 3.24 displays the shape of the

data frame iris_df, followed by the zscore of the iris_df data

frame, which is computed by subtracting the mean and then

dividing by the standard deviation (performed for each row).

The last two portions of Listing 3.24 display the outliers

(if any) whose zscore is outside the interval [0.01, 2.5].

Launch the code in Listing 3.24 and you will see the

following output:

=> iris_df.shape: (150, 4)

 sepal length (cm) sepal width (cm) petal length (cm) petal
width (cm)

 0 5.1 3.5 1.4 0.2

 1 4.9 3.0 1.4 0.2

 2 4.7 3.2 1.3 0.2

 3 4.6 3.1 1.5 0.2

 4 5.0 3.6 1.4 0.2

z scores for iris:

z.shape: (150, 4)

=> upper outliers:

[3.09077525 2.63038172]

=> lower outliers:

 sepal length (cm) sepal width (cm) petal length (cm) petal
width (cm)

 73 6.1 2.8 4.7 1.2

 82 5.8 2.7 3.9 1.2

 90 5.5 2.6 4.4 1.2

 92 5.8 2.6 4.0 1.2

 95 5.7 3.0 4.2 1.2

PANDAS DATA FRAMES AND SIMPLE STATISTICS

Listing 3.25 displays the content of housing_stats.py that

illustrates how to gather basic statistics from data in a

Pandas data frame.

LISTING 3.25: housing_stats.py

import pandas as pd

df = pd.read_csv("Housing.csv")

minimum_bdrms = df["bedrooms"].min()

median_bdrms = df["bedrooms"].median()

maximum_bdrms = df["bedrooms"].max()

print("minimum # of bedrooms:",minimum_bdrms)

print("median # of bedrooms:",median_bdrms)

print("maximum # of bedrooms:",maximum_bdrms)

print("")

print("median values:",df.median().values)

print("")

prices = df["price"]

print("first 5 prices:")

print(prices.head())

print("")

median_price = df["price"].median()

print("median price:",median_price)

print("")

corr_matrix = df.corr()

print("correlation matrix:")

print(corr_matrix["price"].sort_values(ascending=False))

Listing 3.25 initializes the Pandas data frame df with the

contents of the CSV file housing.csv. The next three variables

are initialized with the minimum, median, and maximum

number of bedrooms, respectively, and then these values

are displayed.

The next portion of Listing 3.25 initializes the variable

prices with the contents of the prices column of the Pandas

data frame df. Next, the first five rows are printed via the

prices.head() statement, followed by the median value of the

prices.

The final portion of Listing 3.25 initializes the variable

corr_matrix with the contents of the correlation matrix for the

Pandas data frame df, and then displays its contents. The

output from Listing 3.25 is here:

Apples

10

FINDING DUPLICATE ROWS IN PANDAS

Listing 3.26 displays the content of duplicates.csv and

Listing 3.27 displays the content of duplicates.py that

illustrates how to find duplicate rows in a Pandas data

frame.

LISTING 3.26: duplicates.csv

fname,lname,level,dept,state

Jane,Smith,Senior,Sales,California

Dave,Smith,Senior,Devel,California

Jane,Jones,Year1,Mrktg,Illinois

Jane,Jones,Year1,Mrktg,Illinois

Jane,Stone,Senior,Mrktg,Arizona

Dave,Stone,Year2,Devel,Arizona

Mark,Aster,Year3,BizDev,Florida

Jane,Jones,Year1,Mrktg,Illinois

LISTING 3.27: duplicates.py

import pandas as pd

df = pd.read_csv("duplicates.csv")

print("Contents of data frame:")

print(df)

print()

print("Duplicate rows:")

#df2 = df.duplicated(subset=None)

df2 = df.duplicated(subset=None, keep='first')

print(df2)

print()

print("Duplicate first names:")

df3 = df[df.duplicated(['fname'])]

print(df3)

print()

print("Duplicate first name and level:")

df3 = df[df.duplicated(['fname','level'])]

print(df3)

print()

Listing 3.27 initializes the data frame df with the contents

of the CSV file duplicates.csv, and then displays the contents

of the data frame. The next portion of Listing 3.27 displays

the duplicate rows by invoking the duplicated() method,

whereas the next portion of Listing 3.27 displays only the

first name fname of the duplicate rows. The final portion of

Listing 3.27 displays the first name fname as well as the level

of the duplicate rows. Launch the code in Listing 3.27 and

you will see the following output:

Contents of data frame:

 fname lname level dept state

0 Jane Smith Senior Sales California

1 Dave Smith Senior Devel California

2 Jane Jones Year1 Mrktg Illinois

3 Jane Jones Year1 Mrktg Illinois

4 Jane Stone Senior Mrktg Arizona

5 Dave Stone Year2 Devel Arizona

6 Mark Aster Year3 BizDev Florida

7 Jane Jones Year1 Mrktg Illinois

Duplicate rows:

0 False

1 False

2 False

3 True

4 False

5 False

6 False

7 True

dtype: bool

Duplicate first names:

 fname lname level dept state

2 Jane Jones Year1 Mrktg Illinois

3 Jane Jones Year1 Mrktg Illinois

4 Jane Stone Senior Mrktg Arizona

5 Dave Stone Year2 Devel Arizona

7 Jane Jones Year1 Mrktg Illinois

Duplicate first name and level:

 fname lname level dept state

3 Jane Jones Year1 Mrktg Illinois

4 Jane Stone Senior Mrktg Arizona

7 Jane Jones Year1 Mrktg Illinois

Listing 3.28 displays the content of drop_duplicates.py that

illustrates how to drop duplicate rows in a Pandas data

frame.

LISTING 3.28: drop_duplicates.py

import pandas as pd

df = pd.read_csv("duplicates.csv")

print("Contents of data frame:")

print(df)

print()

fname_filtered = df.drop_duplicates(['fname'])

print("Drop duplicate first names:")

print(fname_filtered)

print()

fname_lname_filtered = df.drop_duplicates(['fname','lname'])

print("Drop duplicate first and last names:")

print(fname_lname_filtered)

print()

Listing 3.28 initializes the data frame df with the contents

of the CSV file duplicates.csv, and then displays the contents

of the data frame. The next portion of Listing 3.28 deletes

the rows that have duplicate fname values, followed by a

code block that drops rows with duplicate fname and lname

values. Launch the code in Listing 3.28 and you will see the

following output:

Contents of data frame:

 fname lname level dept state

0 Jane Smith Senior Sales California

1 Dave Smith Senior Devel California

2 Jane Jones Year1 Mrktg Illinois

3 Jane Jones Year1 Mrktg Illinois

4 Jane Stone Senior Mrktg Arizona

5 Dave Stone Year2 Devel Arizona

6 Mark Aster Year3 BizDev Florida

7 Jane Jones Year1 Mrktg Illinois

Drop duplicate first names:

 fname lname level dept state

0 Jane Smith Senior Sales California

1 Dave Smith Senior Devel California

6 Mark Aster Year3 BizDev Florida

Drop duplicate first and last names:

 fname lname level dept state

0 Jane Smith Senior Sales California

1 Dave Smith Senior Devel California

2 Jane Jones Year1 Mrktg Illinois

4 Jane Stone Senior Mrktg Arizona

5 Dave Stone Year2 Devel Arizona

6 Mark Aster Year3 BizDev Florida

FINDING MISSING VALUES IN PANDAS

Listing 3.29 displays the content of employees2.csv and

Listing 3.30 displays the content of missing_values.py that

illustrates how to display rows of a data frame that have

missing values in a Pandas data frame.

LISTING 3.29: employees2.csv

name,year,month

Jane-Smith,2015,Aug

Jane-Smith,2015,Aug

Dave-Smith,2020,

Dave-Stone,,Apr

Jane-Jones,2018,Dec

Jane-Stone,2017,Feb

Jane-Stone,2017,Feb

Mark-Aster,,Oct

Jane-Jones,NaN,Jun

LISTING 3.30: missing_values.py

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

df = pd.read_csv("employees2.csv")

print("=> contents of CSV file:")

print(df)

print()

#NA: Not Available (Pandas)

#NaN: Not a Number (Pandas)

#NB: NumPy uses np.nan() to check for NaN values

df = pd.read_csv("employees2.csv")

print("=> contents of CSV file:")

print(df)

print()

print("=> any NULL values per column?")

print(df.isnull().any())

print()

print("=> count of NAN/MISSING values in each column:")

print(df.isnull().sum())

print()

print("=> count of NAN/MISSING values in each column:")

print(pd.isna(df).sum())

print()

print("=> count of NAN/MISSING values in each column (sorted):")

print(df.isnull().sum().sort_values(ascending=False))

print()

nan_null = df.isnull().sum().sum()

miss_values = df.isnull().any().sum()

print("=> count of NaN/MISSING values:",nan_null)

print("=> count of MISSING values:",miss_values)

print("=> count of NaN values:",nan_null-miss_values)

Listing 3.30 initializes the data frame df with the contents

of the CSV file employees2.csv, and then displays the contents

of the data frame. The next portion of Listing 3.30 displays

the number of null values that appear in any row or column.

The next portion of Listing 3.30 displays the fields and the

names of the fields that have null values.

The next portion of Listing 3.30 displays the number of

duplicate rows, followed by the row numbers that are

duplicates. Launch the code in Listing 3.30 and you will see

the following output:

=> contents of CSV file:

 name year month

0 Jane-Smith 2015.0 Aug

1 Jane-Smith 2015.0 Aug

2 Dave-Smith 2020.0 NaN

3 Dave-Stone NaN Apr

4 Jane-Jones 2018.0 Dec

5 Jane-Stone 2017.0 Feb

6 Jane-Stone 2017.0 Feb

7 Mark-Aster NaN Oct

8 Jane-Jones NaN Jun

=> any NULL values per column?

name False

year True

month True

dtype: bool

=> count of NAN/MISSING values in each column:

name 0

year 3

month 1

dtype: int64

=> count of NAN/MISSING values in each column:

name 0

year 3

month 1

dtype: int64

=> count of NAN/MISSING values in each column (sorted):

year 3

month 1

name 0

dtype: int64

=> count of NaN/MISSING values: 4

=> count of MISSING values: 2

=> count of NaN values: 2

MISSING VALUES IN AN IRIS-BASED DATASET

This section shows you how to replace missing values in

the dataset nan_iris.csv that was created as follows:

• copy the header and the first 50 data rows of the Iris

dataset

• substitute NaN in randomly selected rows and columns

For your convenience, the iris.csv dataset and the

nan_iris.csv dataset are included in the companion files for

this book (see the Preface for details).

Listing 3.32 displays an initial portion of the contents of

nan_iris.csv, whereas Listing 3.33 displays the content of

missingdatairis.py that illustrates how to replace the NaN

values with meaningful values.

LISTING 3.32: nan_iris.csv

SepalLength,SepalWidth,PetalLength,PetalWidth,Name

5.1,3.5,1.4,0.2,Iris-setosa

4.9,3,1.4,0.2,Iris-setosa

NaN,3.2,NaN,0.2,Iris-setosa

4.6,3.1,1.5,0.2,Iris-setosa

5,3.6,1.4,0.2,Iris-setosa

NaN,3.9,1.7,0.4,Iris-setosa

4.6,3.4,1.4,0.3,Iris-setosa

NaN,3.4,1.5,0.2,Iris-setosa

4.4,2.9,1.4,0.2,Iris-setosa

4.9,3.1,NaN,0.1,NaN

// details omitted for brevity

4.5,2.3,1.3,0.3,Iris-setosa

4.4,NaN,NaN,NaN,NaN

5,3.5,NaN,NaN,Iris-setosa

5.1,3.8,1.9,0.4,Iris-setosa

4.8,3,1.4,0.3,Iris-setosa

5.1,3.8,1.6,0.2,Iris-setosa

4.6,3.2,1.4,0.2,Iris-setosa

5.3,3.7,1.5,0.2,Iris-setosa

5,3.3,1.4,0.2,Iris-setosa

LISTING 3.33: missingdatairis.py

import numpy as np

import pandas as pd

Step 1:

data = pd.read_csv('nan_iris.csv')

Step 2:

print("=> Details of dataset columns:")

print(data.info())

print()

Step 3:

print("=> Missing values per column:")

print(data.isnull().sum())

print()

Step 4:

print("=> First range from 40 to 45:")

print(data[40:45])

print()

Step 5:

print("=> List of Mean Values:")

print(data.mean())

print()

list of column labels:

SepalLength SepalWidth PetalLength PetalWidth Name

Step 6:

fill numeric columns with the mean (per column):

data.fillna(data.mean(), inplace=True)

Step 7:

print("=> Second range from 40 to 45:")

print(data[40:45])

print()

Step 8:

create a new category for categorical data:

data['Name'] = data['Name'].fillna('UNKNOWN')

Step 9:

print("=> Third range from 40 to 45:")

print(data[40:45])

Listing 3.33 contains various blocks of code with self-

explanatory comments that explain the purpose of the code,

starting with the first step that reads the contents of

nan_iris.csv into the data frame data, followed by the block of

code that displays the details of the dataset.

Next, the third block of code displays the number of

missing values in each column of the dataset, followed by a

block of code that display the contents of rows 40 through

45.

The fifth block of code displays the mean values for each

column in the dataset, followed by a block of code that

replaces the missing numeric values with the mean value,

on a column-by-column basis, via the following code

snippet:

data.fillna(data.mean(), inplace=True)

The seventh block of code displays the updated contents

of the dataset, followed by a block of code that replaces the

NaN values with UNKNOWN in the Name column.

The final block of code displays the data in rows 40

through 45, and at this point, all the NaN values in the data

frame have been replaced with a numeric value or the string

UNKNOWN. Launch the code in Listing 3.33 and you will see the

following output:

=> Details of dataset columns:

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 50 entries, 0 to 49

Data columns (total 5 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 SepalLength 39 non-null float64

 1 SepalWidth 49 non-null float64

 2 PetalLength 46 non-null float64

 3 PetalWidth 48 non-null float64

 4 Name 46 non-null object

dtypes: float64(4), object(1)

memory usage: 2.1+ KB

None

=> Missing values per column:

SepalLength 11

SepalWidth 1

PetalLength 4

PetalWidth 2

Name 4

dtype: int64

=> First range from 40 to 45:

 SepalLength SepalWidth PetalLength PetalWidth Name

40 NaN 3.5 1.3 0.3 Iris-setosa

41 4.5 2.3 1.3 0.3 Iris-setosa

42 4.4 NaN NaN NaN NaN

43 5.0 3.5 NaN NaN Iris-setosa

44 5.1 3.8 1.9 0.4 Iris-setosa

=> List of Mean Values:

SepalLength 5.002564

SepalWidth 3.422449

PetalLength 1.467391

PetalWidth 0.237500

dtype: float64

=> Second range from 40 to 45:

 SepalLength SepalWidth PetalLength PetalWidth Name

40 5.002564 3.500000 1.300000 0.3000 Iris-setosa

41 4.500000 2.300000 1.300000 0.3000 Iris-setosa

42 4.400000 3.422449 1.467391 0.2375 NaN

43 5.000000 3.500000 1.467391 0.2375 Iris-setosa

44 5.100000 3.800000 1.900000 0.4000 Iris-setosa

=> Third range from 40 to 45:

 SepalLength SepalWidth PetalLength PetalWidth Name

40 5.002564 3.500000 1.300000 0.3000 Iris-setosa

41 4.500000 2.300000 1.300000 0.3000 Iris-setosa

42 4.400000 3.422449 1.467391 0.2375 UNKNOWN

43 5.000000 3.500000 1.467391 0.2375 Iris-setosa

44 5.100000 3.800000 1.900000 0.4000 Iris-setosa

SORTING DATA FRAMES IN PANDAS

Listing 3.34 displays the content of sort_df.py that

illustrates how to sort the rows in a Pandas data frame.

LISTING 3.34: sort_df.py

import pandas as pd

df = pd.read_csv("duplicates.csv")

print("Contents of data frame:")

print(df)

print()

df.sort_values(by=['fname'], inplace=True)

print("Sorted (ascending) by first name:")

print(df)

print()

df.sort_values(by=['fname'], inplace=True,ascending=False)

print("Sorted (descending) by first name:")

print(df)

print()

df.sort_values(by=['fname','lname'], inplace=True)

print("Sorted (ascending) by first name and last name:")

print(df)

print()

Listing 3.34 initializes the data frame df with the contents

of the CSV file duplicates.csv, and then displays the contents

of the data frame. The next portion of Listing 3.34 displays

the rows in ascending order based on the first name, and

the next code block displays the rows in descending order

based on the first name. The final code block in Listing 3.34

displays the rows in ascending order based on the first

name as well as the last name. Launch the code in Listing

3.34 and you will see the following output:

Contents of data frame:

 fname lname level dept state

0 Jane Smith Senior Sales California

1 Dave Smith Senior Devel California

2 Jane Jones Year1 Mrktg Illinois

3 Jane Jones Year1 Mrktg Illinois

4 Jane Stone Senior Mrktg Arizona

5 Dave Stone Year2 Devel Arizona

6 Mark Aster Year3 BizDev Florida

7 Jane Jones Year1 Mrktg Illinois

Sorted (ascending) by first name:

 fname lname level dept state

1 Dave Smith Senior Devel California

5 Dave Stone Year2 Devel Arizona

0 Jane Smith Senior Sales California

2 Jane Jones Year1 Mrktg Illinois

3 Jane Jones Year1 Mrktg Illinois

4 Jane Stone Senior Mrktg Arizona

7 Jane Jones Year1 Mrktg Illinois

6 Mark Aster Year3 BizDev Florida

Sorted (descending) by first name:

 fname lname level dept state

6 Mark Aster Year3 BizDev Florida

0 Jane Smith Senior Sales California

2 Jane Jones Year1 Mrktg Illinois

3 Jane Jones Year1 Mrktg Illinois

4 Jane Stone Senior Mrktg Arizona

7 Jane Jones Year1 Mrktg Illinois

1 Dave Smith Senior Devel California

5 Dave Stone Year2 Devel Arizona

Sorted (ascending) by first name and last name:

 fname lname level dept state

1 Dave Smith Senior Devel California

5 Dave Stone Year2 Devel Arizona

2 Jane Jones Year1 Mrktg Illinois

3 Jane Jones Year1 Mrktg Illinois

7 Jane Jones Year1 Mrktg Illinois

0 Jane Smith Senior Sales California

4 Jane Stone Senior Mrktg Arizona

6 Mark Aster Year3 BizDev Florida

WORKING WITH GROUPBY() IN PANDAS

Listing 3.35 displays the content of groupby1.py that

illustrates how to invoke the Pandas groupby() method to

compute the subtotals of feature values.

LISTING 3.35: groupby1.py

import pandas as pd

colors and weights of balls:

data = {'color':['red','blue','blue','red','blue'],

 'weight':[40,50,20,30,90]}

df1 = pd.DataFrame(data)

print("df1:")

print(df1)

print()

print(df1.groupby('color').mean())

print()

red_filter = df1['color']=='red'

print(df1[red_filter])

print()

blue_filter = df1['color']=='blue'

print(df1[blue_filter])

print()

red_avg = df1[red_filter]['weight'].mean()

blue_avg = df1[blue_filter]['weight'].mean()

print("red_avg,blue_avg:")

print(red_avg,blue_avg)

print()

df2 = pd.DataFrame({'color':['blue','red'],'weight':[red_avg,blue_
avg]})

print("df2:")

print(df2)

print()

Listing 3.35 defines the variable data containing color and

weight values, and then initializes the data frame df with the

contents of the variable data. The next two code blocks

define red_filter and blue_filter that match the rows whose

colors are red and blue, respectively, and then prints the

matching rows.

The next portion of Listing 3.35 defines the two filters

red_avg and blue_avg that calculate the average weight of the

red value and the blue values, respectively. The last code

block in Listing 3.35 defines the data frame df2 with a color

column and a weight column, where the latter contains the

average weight of the red values and the blue values.

Launch the code in Listing 3.35 and you will see the

following output:

initial data frame:

df1:

 color weight

0 red 40

1 blue 50

2 blue 20

3 red 30

4 blue 90

 weight

color

blue 53.333333

red 35.000000

 color weight

0 red 40

3 red 30

 color weight

1 blue 50

2 blue 20

4 blue 90

red_avg,blue_avg:

35.0 53.333333333333336

df2:

 color weight

0 blue 35.000000

1 red 53.333333

AGGREGATE OPERATIONS WITH THE TITANIC.CSV

DATASET

Listing 3.36 displays the content of aggregate2.py that

illustrates how to perform aggregate operations with

columns in the CSV file titanic.csv.

LISTING 3.36: aggregate2.py

import pandas as pd

#Loading titanic.csv in Seaborn:

#df = sns.load_dataset('titanic')

df = pd.read_csv("titanic.csv")

convert floating point values to integers:

df['survived'] = df['survived'].astype(int)

specify column and aggregate functions:

aggregates1 = {'embark_town': ['count', 'nunique', 'size']}

group by 'deck' value and apply aggregate functions:

result = df.groupby(['deck']).agg(aggregates1)

print("=> Grouped by deck:")

print(result)

print()

some details regarding count() and nunique():

count() excludes NaN values whereas size() includes them

nunique() excludes NaN values in the unique counts

group by 'age' value and apply aggregate functions:

result2 = df.groupby(['age']).agg(aggregates1)

print("=> Grouped by age (before):")

print(result2)

print()

some "age" values are missing (so drop them):

df = df.dropna()

convert floating point values to integers:

df['age'] = df['age'].astype(int)

group by 'age' value and apply aggregate functions:

result3 = df.groupby(['age']).agg(aggregates1)

print("=> Grouped by age (after):")

print(result3)

print()

Listing 3.36 initializes the data frame df with the contents

of the CSV file titanic.csv. The next code snippet converts

floating point values to integers, followed by defining the

variable aggregates1 that specifies the functions count(),

nunique(), and size() that will be invoked on the embark_town

field.

The next code snippet initializes the variable result after

invoking the groupby() method on the deck field, followed by

invoking the agg() method.

The next code block performs the same computation to

initialize the variable result2, except that the groupby()

function is invoked on the age field instead of the embark_town

field. Notice the comment section regarding the count() and

nunique() functions: let’s drop the rows with missing values

via df.dropna() and investigate how that affects the

calculations.

After dropping the rows with missing values, the final

code block initializes the variable result3 in exactly the same

way that result2 was initialized. Launch the code in Listing

3.36. The output is shown here:

=> Grouped by deck:

 embark_town

 count nunique size

deck

A 15 2 15

B 45 2 47

C 59 3 59

D 33 2 33

E 32 3 32

F 13 3 13

G 4 1 4

=> Grouped by age (before):

 age

 count nunique size

age

0.42 1 1 1

0.67 1 1 1

0.75 2 1 2

0.83 2 1 2

0.92 1 1 1

...

70.00 2 1 2

70.50 1 1 1

71.00 2 1 2

74.00 1 1 1

80.00 1 1 1

[88 rows x 3 columns]

=> Grouped by age (after):

 age

 count nunique size

age

0 1 1 1

1 1 1 1

2 3 1 3

3 1 1 1

4 3 1 3

6 1 1 1

11 1 1 1

14 1 1 1

15 1 1 1

// details omitted for brevity

60 2 1 2

61 2 1 2

62 1 1 1

63 1 1 1

64 1 1 1

65 2 1 2

70 1 1 1

71 1 1 1

80 1 1 1

WORKING WITH APPLY() AND MAPAPPLY() IN PANDAS

Earlier in this chapter, you saw an example of the Pandas

apply() method for modifying the categorical values of a

feature in the CSV file shirts.csv. This section contains more

examples of the apply() method, along with examples of the

mapappy() method.

Listing 3.37 displays the content of apply1.py that

illustrates how to invoke the Pandas apply() method to

compute the sum of a set of values.

LISTING 3.37: apply1.py

import pandas as pd

df = pd.DataFrame({'X1': [1,2,3], 'X2': [10,20,30]})

def cube(x):

 return x * x * x

df1 = df.apply(cube)

same result:

df1 = df.apply(lambda x: x * x * x)

print("initial data frame:")

print(df)

print("cubed values:")

print(df1)

Listing 3.37 initializes the data frame df with columns X1

and X2, where the values for X2 are 10 times the

corresponding values in X1. Next, the Python function cube()

returns the cube of its argument. Listing 3.36 then defines

the variable df1 by invoking the apply() function, which

specifies the user-defined Python function cube(), and then

prints the values of df as well as df1. Launch the code in

Listing 3.37 and you will see the following output:

initial data frame:

 X1 X2

0 1 10

1 2 20

2 3 30

cubed values:

 X1 X2

0 1 1000

1 8 8000

2 27 27000

Listing 3.38 displays the content of apply2.py that

illustrates how to invoke the Pandas apply() method to

compute the sum of a set of values.

LISTING 3.38: apply2.py

import pandas as pd

import numpy as np

df = pd.DataFrame({'X1': [10,20,30], 'X2': [50,60,70]})

df1 = df.apply(np.sum, axis=0)

df2 = df.apply(np.sum, axis=1)

print("initial data frame:")

print(df)

print("add values (axis=0):")

print(df1)

print("add values (axis=1):")

print(df2)

Listing 3.38 is a variation of Listing 3.37: the variables df1

and df2 contain the column-wise sum and the row-wise sum,

respectively, of the data frame df. Launch the code in Listing

3.38 and you will see the following output:

 X1 X2

0 10 50

1 20 60

2 30 70

add values (axis=0):

X1 60

X2 180

dtype: int64

add values (axis=1):

0 60

1 80

2 100

dtype: int64

Listing 3.39 displays the content of mapapply1.py that

illustrates how to invoke the Pandas mapapply() method to

compute the sum of a set of values.

LISTING 3.39: mapapply1.py

import pandas as pd

import math

df = pd.DataFrame({'X1': [1,2,3], 'X2': [10,20,30]})

df1 = df.applymap(math.sqrt)

print("initial data frame:")

print(df)

print("square root values:")

print(df1)

Listing 3.39 is yet another variant of Listing 3.37: in this

case, the variable df1 is defined by invoking the applymap()

function on the variable df, which in turn references (but

does not execute) the math.sqrt() function. Next, a

print()statement displays the contents of df, followed by a

print() statement that displays the contents of df1: it is at

this point that the built-in math.sqrt() function is invoked to

calculate the square root of the values in df. Launch the

code in Listing 3.39 and you will see the following output:

initial data frame:

 X1 X2

0 1 10

1 2 20

2 3 30

square root values:

 X1 X2

0 1.000000 3.162278

1 1.414214 4.472136

2 1.732051 5.477226

Listing 3.40 displays the content of mapapply2.py that

illustrates how to invoke the Pandas mapapply() method to

convert strings to lowercase and uppercase.

LISTING 3.40: mapapply2.py

import pandas as pd

df = pd.DataFrame({'fname': ['Jane'], 'lname': ['Smith']},

 {'fname': ['Dave'], 'lname': ['Jones']})

df1 = df.applymap(str.lower)

df2 = df.applymap(str.upper)

print("initial data frame:")

print(df)

print()

print("lowercase:")

print(df1)

print()

print("uppercase:")

print(df2)

print()

Listing 3.40 initializes the variable df with two first and

last name pairs, and then defines the variables df1 and df2

by invoking the applymap() method to the variable df. The

variable df1 converts its input values to lowercase, whereas

the variable df2 converts its input values to uppercase.

Launch the code in Listing 3.40 and you will see the

following output:

initial data frame:

 fname lname

fname Jane Smith

lname Jane Smith

lowercase:

 fname lname

fname jane smith

lname jane smith

uppercase:

 fname lname

fname JANE SMITH

lname JANE SMITH

USEFUL ONE-LINE COMMANDS IN PANDAS

This section contains an eclectic mix of one-line

commands in Pandas (some of which you have already seen

in this chapter) that are useful to know:

List the column names of a data frame:

df.columns

Drop missing data from a data frame:

df.dropna(axis=0, how='any')

Remove an unnecessary column:

my_dataset = my_dataset.drop(["url"],axis=1)

Remove columns with a single value, or columns that are

missing more than 50% of their values:

dataset = dataset.dropna(thresh=half_count,axis=1)

Replace missing data in a data frame:

df.replace(to_replace=None, value=None)

Check for NANs in a data frame:

pd.isnull(object)

Drop a feature in a data frame:

df.drop('feature_variable_name', axis=1)

Convert the object type to float in a data frame:

pd.to_numeric(df["feature_name"], errors='coerce')

Convert data in a data frame to a NumPy array:

df.as_matrix()

Display the first n rows of a data frame:

df.head(n)

Get data by feature name in a data frame:

df.loc[feature_name]

Apply a function to a data frame, such as multiplying all

values in the “height” column of the data frame by 3:

df["height"].apply(lambda height: 3 * height)

OR

def multiply(x):

 return x * 3

df["height"].apply(multiply)

Rename the fourth column of the data frame as height:

df.rename(columns = {df.columns[3]:'height'}, inplace=True)

Get the unique entries of the column first in a data

frame:

df["first"].unique()

Create a data frame with columns first and last from an

existing data frame:

new_df = df[["first", "last"]]

Sort the data in a data frame:

df.sort_values(ascending = False)

Filter the data column named size to display only values

equal to 7:

df[df["size"] == 7]

Select the first row of the height column in a data frame:

df.loc([0], ['height'])

WORKING WITH JSON-BASED DATA

A JSON object consists of data represented as colon-

separated name/value pairs and data objects that are

separated by commas. An object is specified inside curly

braces {}, and an array of objects is indicated by square

brackets []. Note that character-valued data elements are

inside a pair of double quotes “” (but no quotes for numeric

data).

Here is a simple example of a JSON object:

{ "fname":"Jane", "lname":"Smith", "age":33, "city":"SF" }

Here is a simple example of an array of JSON objects

(note the outer enclosing square brackets):

[

{ "fname":"Jane", "lname":"Smith", "age":33, "city":"SF" },

{ "fname":"John", "lname":"Jones", "age":34, "city":"LA" },

{ "fname":"Dave", "lname":"Stone", "age":35, "city":"NY" },

]

Python Dictionary and JSON

The json library enables you to work with JSON-based

data in Python.

Listing 3.41 displays the content of dict2json.py that

illustrates how to convert a Python dictionary to a JSON

string.

LISTING 3.41: dict2json.py

import json

dict1 = {}

dict1["fname"] = "Jane"

dict1["lname"] = "Smith"

dict1["age"] = 33

dict1["city"] = "SF"

print("Python dictionary to JSON data:")

print("dict1:",dict1)

json1 = json.dumps(dict1, ensure_ascii=False)

print("json1:",json1)

print("")

convert JSON string to Python dictionary:

json2 = '{"fname":"Dave", "lname":"Stone", "age":35, "city":"NY"}'

dict2 = json.loads(json2)

print("JSON data to Python dictionary:")

print("json2:",json2)

print("dict2:",dict2)

Listing 3.41 invokes the json.dumps() function to perform

the conversion from a Python dictionary to a JSON string.

Launch the code in Listing 3.41 and you will see the

following output:

Python dictionary to JSON data:

dict1: {'fname': 'Jane', 'lname': 'Smith', 'age': 33, 'city': 'SF'}

json1: {"fname": "Jane", "lname": "Smith", "age": 33, "city": "SF"}

JSON data to Python dictionary:

json2: {"fname":"Dave", "lname":"Stone", "age":35, "city":"NY"}

dict2: {'fname': 'Dave', 'lname': 'Stone', 'age': 35, 'city': 'NY'}

Python, Pandas, and JSON

Listing 3.42 displays the content of pd_python_json.py

that illustrates how to convert a Python dictionary to a

Pandas data frame and then convert the data frame to a

JSON string.

LISTING 3.42: pd_python_json.py

import json

import pandas as pd

dict1 = {}

dict1["fname"] = "Jane"

dict1["lname"] = "Smith"

dict1["age"] = 33

dict1["city"] = "SF"

df1 = pd.Data frame.from_dict(dict1, orient='index')

print("Pandas df1:")

print(df1)

print()

json1 = json.dumps(dict1, ensure_ascii=False)

print("Serialized to JSON1:")

print(json1)

print()

print("Data frame to JSON2:")

json2 = df1.to_json(orient='split')

print(json2)

Listing 3.42 initializes a Python dictionary dict1 with

multiple attributes for a user (first name, last name, and so

forth). Next, the data frame df1 is created from the Python

dictionary dict1, and its contents are displayed.

The next portion of Listing 3.42 initializes the variable

json1 by serializing the contents of dict1, and its contents

are displayed. The last code block in Listing 3.42 initializes

the variable json2 to the result of converting the data frame

df1 to a JSON string. Launch the code in Listing 3.42 and you

will see the following output:

dict1: {'fname': 'Jane', 'lname': 'Smith', 'age': 33, 'city': 'SF'}

Pandas df1:

 0

fname Jane

lname Smith

age 33

city SF

Serialized to JSON1:

{"fname": "Jane", "lname": "Smith", "age": 33, "city": "SF"}

Data frame to JSON2:

{"columns":[0],"index":["fname","lname","age","city"],"data":
[["Jane"],["Smith"],[33],["SF"]]}

json1: {"fname": "Jane", "lname": "Smith", "age": 33, "city": "SF"}

SUMMARY

This chapter introduced you to Pandas for creating

labeled data frames and displaying metadata of Pandas

data frames. Then you learned how to create Pandas data

frames from various sources of data, such as random

numbers and hard-coded data values.

You also learned how to read Excel spreadsheets and

perform numeric calculations on that data, such as the

minimum, mean, and maximum values in numeric columns.

Then you saw how to create Pandas data frames from data

stored in CSV files. In addition, you learned how to generate

a scatterplot from data in a Pandas data frame.

Finally, you had a brief introduction to JSON, along with

an example of converting a Python dictionary to JSON-based

data (and vice versa).

T

CHAPTER 4

RDBMS AND SQL

his chapter introduces you to RDBMSs, various SQL

concepts, and a quick introduction to MySQL. MySQL

is a robust RDBMS, and it’s available as a free

download from the Oracle website. Moreover, virtually

everything that you learn about MySQL in this chapter

transfers to other RDBMSs, such as PostgreSQL and Oracle.

This chapter describes a hypothetical website that

enables users to register themselves for the purpose of

purchasing various tools (such as hammers and wrenches).

Although there is no code in this section, you will learn

about the tables that are required, their relationships, and

the structure of those tables.

WHAT IS AN RDBMS?

A Relational DataBase Management System (RDBMS)

stores data in tables that contain labeled attributes

(informally sometimes called columns) that have a specific

data type. Examples of an RDBMS include MySQL, Oracle,

and IBM DB2. Although relational databases usually provide

a decent solution for storing data, speed and scalability

might be an issue in some cases. NoSQL databases (such as

MongoDB) might be more suitable for scalability.

What Relationships Do Tables Have in an RDBMS?

While an RDBMS can consist of a single table, it often

comprises multiple tables that can have various types of

associations with each other. For example, when you buy

various items at a food store, your receipt consists of one

purchase order that contains one or more “line items,”

where each line item indicates the details of a particular

item that you purchased. This is called a one-to-many

relationship between a purchase order (which is stored in a

purchase_orders table) and the line items (stored in a line_items

table) for each item that you purchased.

Another example involves students and courses: each

student is enrolled in one or more courses, which is a one-

to-many relationship from students to courses. Moreover,

each course contains one or more students, so there is a

one-to-many relationship from courses to students. Hence,

the students and courses tables have a many-to-many

relationship.

A third example is an employees table, where each row

contains information about one employee. If each row

includes the id of the manager of the given employee, then

the employees table is a self-referential table because finding

the manager of the employee involves searching the

employees table with the manager’s id that is stored in the

given employee record. However, if the rows in an employees

table do not contain information about an employee’s

manager, then the table is not self-referential.

In addition to table definitions, a database frequently

contains indexes, primary keys, and foreign keys that

facilitate searching for data in tables and also “connecting”

a row in a given table with its logically related row (or rows)

in another table. For example, if we have the id value for a

particular purchase order in a purchase_orders table, we can

find all the line items (i.e., the items that were purchased) in

a line_items table that contain the same purchase order id.

Features of an RDBMS

An RDBMS provides a convenient way to store data, often

associated with some type of application. For example, later

you will see the details of a four-table RDBMS that keeps

track of tools that are purchased via a Web-based

application. From a high-level perspective, an RDBMS

provides the following characteristics:

• a database contains one or more tables

• data is stored in tables

• data records have the same structure

• well-suited for vertical scaling

• support for ACID (explained below)

Another useful concept is a logical schema, which

consists of the collection of tables and their relationships

(along with indexes, views, triggers, and so forth) in an

RDBMS. The schema is used for generating a physical

schema, which consists of all the SQL statements that are

required to create the specified tables and their

relationships.

What is ACID?

ACID is an acronym for Atomicity, Consistency, Isolation,

and Durability, which refers to the properties of RDBMS

transactions.

• Atomicity means that each transaction is all-or-

nothing, so if a transaction fails, the system is rolled

back to its previous state.

• Consistency means that successful transactions

always result in a valid database state.

• Isolation means that executing transactions

concurrently or serially will result in the state.

• Durability means that a committed transaction will

remain in the same state.

RDBMSs support ACID, whereas NoSQL databases

generally do not support ACID.

WHEN DO WE NEED AN RDBMS?

The short answer is that an RDBMS is useful when we

need to store one or more records of events that have

occurred, which can be involve simple item purchases as

well as complex multi-table financial transactions.

An RDBMS allows you to define a collection of tables that

contain rows of data, where a row contains one or more

attributes (informally called fields). A row of data is a record

of an event that occurred at a specific point in time, which

can involve more than one table, and can also involve some

type of “transaction.”

For example, consider a database that contains a single

table called events in which a single row contains information

about a single event that you created by some process

(such as a Web page registration form). Although this is

conceptually simple, notice that the following attributes are

relevant for each row in the events table: event_id, event_time,

event_title, event_duration, and event_location, and possibly

additional attributes.

Now consider a money transfer scenario between two

bank accounts: you need to transfer $100 from a savings

account to a checking account. The process involves two

steps:

1. Debiting (subtracting) the savings account by $100

2. Crediting (adding) the savings account with $100

However, if there is a system failure after Step 1 and

before Step 2 can be completed, you have lost $100.

Obviously, Steps 1 and 2 must be treated as an atomic

transaction, which means that the transaction is successful

only when both steps have completed successfully. If the

transaction is unsuccessful, the transaction is “rolled back”

so the system is returned to the state prior to transferring

money between the two accounts.

As you learned earlier in this chapter, RDBMSs support

ACID, which ensures that the previous transaction (i.e.,

transferring money between accounts) is treated as an

atomic transaction.

Although atomic transactions are fundamental to

financial systems, they might not be as critical for other

systems. For example, the previous example involved

inserting a new row in an events table whenever a new event

is created. If this process fails, the solution might involve

registering the event again when the system is online again

(perhaps the database crashed).

As another example, displaying a set of pictures in a Web

page might not display the pictures in the correct order

(e.g., based on their creation time). However, a failure in the

event creation is not as critical as a failure in a financial

system, and displaying images in the wrong sequence will

probably be rectified when the Web page is refreshed.

THE IMPORTANCE OF NORMALIZATION

This section contains an introduction to the concept of

normalization; online articles provide more detailed

information regarding normal forms. Splitting this topic into

two sections in two chapters will facilitate an understanding

of normalization in an RDBMS.

As a starting point, consider an RDBMS that stores

records for the temperature of a room during a time interval

(such as a day, a week, or some other time interval). We

just need one device_temperature table where each row

contains the temperature of a room at a specific time. In the

case of the IoT (Internet of Things), the temperature is

recorded during regular time intervals (such as minute-by-

minute or hourly).

If you need to track only one room, the device_temperature

table is probably sufficient. However, if you need to track

multiple devices in a room, then it’s convenient to create a

second table called device_details that contains attributes for

each device, such as device_id, device_name, device_year,

device_price, and device_warranty.

However, we need to connect information from a row in

the table device_temperature to its associated row in the

device_details table. The two-table connection is simple: each

row in the device_details table contains a device_id that

uniquely identifies the given row. Moreover, the same

device_id appears in any row of the device_temperature table

that refers to the given device.

The preceding two-table structure is a minimalistic

example of database normalization, which reduces data

redundancy in database tables, sometimes at the expense

of slower performance during the execution of some types

of SQL statements (e.g., those that contain a JOIN keyword).

If you are new to the concept of database normalization,

you might be thinking that normalization increases

complexity and reduces performance without providing

tangible benefits. While this is a valid consideration, the

trade-off is worthwhile.

To convince you of the value of normalization, suppose

that every record in the purchase_orders table contains all the

details of the customer who made the associated purchase.

As a result, we can eliminate the customers table. However, if

we ever need to update the address of a particular

customer, we need to update all the rows in the

purchase_orders table that contain that customer. By contrast,

if we maintain a customers table, then updating a customer’s

address involves changing a single row in the customers

table.

Normalization enables us to avoid data duplication so

that there is a single “source of truth” in the event that

information (such as a customer’s address) must be

updated. From another perspective, data duplication means

that the same data appears in two (or possibly more)

locations, and if an update is not applied to all those

locations, the database data is in an inconsistent state.

Depending on the nature of the application, the

consequences of inconsistent data can range from minor to

catastrophic.

Always remember the following point: whenever you

need to update the same data that resides in two different

locations, you increase the risk of data inconsistency that

adversely affects data integrity.

As another example, suppose that a website sells

widgets online: at a minimum, the associated database

needs the following four tables:

• customer_details

• purchase_orders

• po_line_items

• item_desc

The preceding scenario is explored in greater detail in

the next section that specifies the attributes of each of the

preceding tables.

A FOUR-TABLE RDBMS

As an introductory example, suppose that

www.mytools.com sells tools for home use or construction

http://www.mytools.com/

(the details of which are not important). For simplicity, let’s

pretend that an actual Web page is available at the

preceding URL, and the Web page contains the following

sections:

• new user register registration

• existing user log in

• input fields for selecting items for purchase (and the

quantities)

For example, the registered user John Smith wants to

purchase one hammer, two screwdrivers, and three

wrenches. The Web page needs to provide users with the

ability to search for products by their type (e.g., hammer,

screwdriver, and wrench) and then display a list of matching

products. Each product in that list would also contain an

SKU, which is an industry-standard labeling mechanism for

products (just like ISBNs for identifying books).

The preceding functionality is necessary to develop a

Web page that enables users to purchase products.

However, the purpose of this section is to describe a set of

tables (and their relationships to each other) in an RDBMS,

so we will assume that the necessary Web-based features

are available at our URL.

Let’s describe a “use case” that contains the sequence of

steps that will be performed on behalf of an existing

customer John Smith (whose customer id is 1000), who

wants to purchase 1 hammer, 2 screwdrivers, and 3

wrenches:

Step 1: Customer John Smith (with cust_id 1000)

initiates a new purchase.

Step 2: A new purchase order is created with the

value 12500 for po_id.

Step 3: John Smith selects 1 hammer, 2 screwdrivers,

and 3 wrenches.

Step 4: The associated prices of 20.00, 16.00, and

30.00 are displayed on the screen.

Step 5: The subtotal is displayed, which is 66.00.

Step 6: The tax of 6.60 is displayed (a tax rate of

10%).

Step 7: The total cost of 72.60 displayed.

Step 8 would allow John Smith to remove an item,

increase/decrease the quantity for each selected item,

delete items, or cancel the purchase order. Step 9 would

enable John Smith to make a payment. Once again, for the

sake of simplicity, we will assume that Steps 8 and 9 are

available.

Note that Step 8 involves updating several of our tables

with the details of the purchase order. Step 9 creates a time

stamp for the date when the purchase order was created, as

well as the status of the purchase order (“paid” versus

“pending”). The status of a purchase order is used to

generated reports to display the customers whose payment

is overdue (and perhaps also send them friendly reminders).

Sometimes companies have a reward-based system

whereby customers who have paid on time can collect

credits that can be applied to other purchases (in other

words, a discount mechanism).

DETAILED TABLE DESCRIPTIONS

If you visualize the use case described in the previous

section, you can probably see that we need a table for

storing customer-specific information, another table to store

purchase orders (which is somehow linked to the associated

customer), a table that contains the details of the items and

quantity that are purchased (which are commonly called

“line items”), and a table that contains information about

each tool (which includes the name, the description, and the

price of the tool). Hence, the RDBMS for our website

requires the following tables:

customers

purchase_orders

line_items

item_desc

The following subsections describe the contents of the

preceding tables, along with the relationships among these

tables.

The customers Table

Although there are different ways to specify the

attributes of the customers table, you need enough

information to uniquely identify each customer in the table.

By analogy, the following information (except for cust_id) is

required to mail an envelope to a person:

cust_id

first_name

last_name

home_address

city

state

zip_code

We will create the customers table with the attributes in

the preceding list. Note that the cust_id attribute is called a

key because it uniquely identifies every customer. Although

we won’t discuss the topic of the role of keys in an RDBMS,

it’s obvious that we need a mechanism for uniquely

identifying every customer.

Whenever we need to refer to the details of a particular

customer, we will use the associated value of cust_id to

retrieve those details from the row in the customers table that

has the associated cust_id.

The preceding paragraph describes the essence of

linking related tables T1 and T2 in an RDBMS: the key in T1 is

stored as an attribute value in T2. If we need to access

related information in table T3, then we store the key in T2 as

an attribute value in T3.

Note that a customers table in a production system would

contain other attributes, such as the following:

title (Mr, Mrs, Ms, and so forth)

shipping_address

cell_phone

For the sake of simplicity, we’ll use the initial set of

attributes to define the customers table. Later on, you can add

the new attributes to the three table schema to make the

system more like a real life system.

To make this table more concrete, suppose that the

following information pertains to customer John Smith, who

has been assigned a cust_id of 1000:

cust_id: 1000

first_name: John

last_name: Smith

home_address: 1000 Appian Way

city: Sunnyvale

state: California

zip_code:95959

Whenever John Smith makes a new purchase, we will use

the cust_id value of 1000 to create a new row for this

customer in the purchase_order table.

The purchase_orders Table

When customers visit the website, we need to create a

purchase order that will be inserted as a new row in the

purchase_orders table. While you might be tempted to place all

the customers’ details in the new row, we will identify the

customer by the associated cust_id and use this value

instead.

Note that we create a new row in the customers table

whenever new users register at the website, whereas repeat

customers are identified by an existing cust_id that must be

determined by searching the customers table with the

information that the customer types into the input fields of

the main Web page.

We saw that the customers table contains a key attribute;

similarly, the purchase_orders table requires an attribute that

we will call po_id (you are free to use a different string) to

identify a purchase order for a given customer.

Keep in mind the following detail: the row with a given

po_id requires a cust_id attribute to also identify the customer

(in the customers table) who is making the current purchase.

Although there are multiple ways to define a set of

suitable attributes, let’s use the following set of attributes

for the purchase_orders table:

po_id

cust_id

purchase_date

For example, suppose that customer John Smith, whose

cust_id is 1000, purchases some tools on December 15,

2021. There are dozens of different date formats that are

supported in RDBMSs: for simplicity, we will use the MM-DD-

YYYY format (which you can change to suit your particular

needs).

Then the new row for John Smith in the purchase_orders

would look something like the following:

po_id: 12500

cust_id: 1000

purchase_date: 12-01-2021

The line_items Table

As an example, suppose that customer John Smith

requested 1 hammer, 2 screwdrivers, and 3 wrenches in his

most recent purchase order. Each of these purchased items

requires a row in the line_items table that

• is identified by a line_id value

• specifies the quantity of each purchased item

• contains the value for the associated po_id in the

purchase_orders table

• contains the value for the associated item_id in the

item_desc table

For simplicity, let’s assign the values 5001, 5002, and

5003 to the line_id attribute for the three new rows in the

line_items table that represent the hammer, screwdriver, and

wrench items in the current purchase order. A line_item row

might look something like this:

po_id: 12500

line_id: 5001

item_id: 100 <= we'll discuss this soon

item_count: 1

item_price: 20.00

item_tax: 2.00

item_subtotal: 22.00

Notice there is no cust_id in the preceding line_item: that’s

because of the top-down approach for retrieving data.

Specifically, we start with a particular cust_id that we use to

find a list of purchase orders in the purchase_orders table that

belong to the given cust_id, and for each purchase order in

the purchase_orders table, we perform a search for the

associated line items in the line_items table. Moreover, we

can repeat the preceding sequence of steps for each

customer in a list of cust_id values.

Returning to the earlier line_item details: we need to

reference each purchased item by its associated identifier in

the item_desc table. Once again, we will arbitrarily assign

item_id values of 100, 200, and 300, respectively, for the

hammer, screwdriver, and wrench items. The actual values

will undoubtedly be different in your application, so there is

no special significance to the numbers 100, 200, and 300.

The three rows in the line_items table (that belong to the

same purchase order) would look like this (we’ll look at the

corresponding SQL statements later):

po_id: 12500

line_id: 5001

item_id: 100

item_count: 1

item_price: 20.00

item_tax: 2.00

item_subtotal: 22.00

po_id: 12500

line_id: 5002

item_id: 200

item_count: 2

item_price: 8.00

item_tax: 1.60

item_subtotal: 17.60

po_id: 12500

line_id: 5003

item_id: 300

item_count: 3

item_price: 10.00

item_tax: 3.00

item_subtotal: 33.00

The item_desc Table

Recall that the customers table contains information about

each customer, and a new row is created each time that a

new customer creates an account for our Web application.

In a somewhat analogous fashion, the item_desc table

contains information about each item (product) that can be

purchased from our website. If our website becomes

popular, the contents of the item_desc table are updated

more frequently than the customers table, typically in the

following situations:

• A new tool (product) is available for purchase

• An existing tool is no longer available for purchase

Thus, the item_desc table contains all the details for every

tool that is available for sale, and it’s the “source of truth”

for the tools that customers can purchase from the website.

At a minimum, this table contains three fields (we’ll discuss

the SQL statement for creating and populating this table

later):

SELECT *

FROM item_desc;

+---------+-------------+------------+

| item_id | item_desc | item_price |

+---------+-------------+------------+

| 100 | hammer | 20.00 |

| 200 | screwdriver | 8.00 |

| 300 | wrench | 10.00 |

+---------+-------------+------------+

3 rows in set (0.001 sec)

There is one more important detail to discuss: if an item

is no longer for sale, can we simply drop its row from the

item_desc table? The answer is “no” because we need this row

to generate reports that contain information about the items

that customers purchased.

Hence, it would be a good idea to add another attribute

called AVAILABLE (or something similar) that contains either 1

or 0 to indicate whether the product is available for

purchase. As a result, some of the SQL queries that involve

this table will also need to take into account this new

attribute. Implementation of this functionality is not central

to the purpose of this book, and therefore it is left as an

enhancement to the reader.

WHAT IS SQL?

Structured Query Language (SQL) is used for managing

data in tables in a relational database (RDBMS). In fact, SQL

is a standard language for retrieving and manipulating

structured databases.

In high-level terms, a SQL statement to retrieve data

generally involves the following:

• what data you want (SELECT)

• the table(s) where the data resides (FROM)

• constraints (if any) on the data (WHERE)

For example, suppose that a friends table contains the

attributes (database parlance for fields) lname and fname for

the last name and first name, respectively, of a set of

friends, and each row in this table contains details about

one friend.

In Chapter 2, we discussed how to create database tables

and how to populate those tables with data, but for now

let’s just pretend that those tasks have already been

performed. Then the SQL statement for retrieving the first

and last names of the people in the friends table looks like

this:

SELECT lname, fname

FROM friends;

Suppose that the friends table also contains a height

attribute, which is a number (in centimeters) for each

person in the friends table. We can extend the preceding

SQL statement to specify that we want the people (rows)

whose height attribute is less than 180 as follows:

SELECT lname, fname

FROM friends

WHERE height < 180;

SQL provides a plethora of keywords that enable you to

specify sophisticated queries for retrieving data from

multiple tables. Both of the preceding SQL statements are

called DML statements, which is one of the four categories

of SQL statements:

• DCL (Data Control Language

• DDL (Data Definition Language)

• DQL (Data Query Language)

• DML (Data Manipulation Language)

The following subsections provide additional information

for each item in the preceding list.

DCL, DDL, DQL, DML, and TCL

Data Control Language (DCL) refers to any SQL

statement that contains the keywords GRANT or REVOKE. Both of

these keywords affect the permissions that are either

granted or revoked for a particular user.

Data Definition Language (DDL) includes any SQL

statements that specify the following: CREATE, ALTER, DROP,

RENAME, TRUNCATE, or COMMENT. These SQL keywords are used in

conjunction with database tables and, in many cases, with

database views (discussed later).

Data Query Language (DQL) refers to any SQL statement

that contains the keyword SELECT.

Data Manipulation Language (DML) refers to SQL

statements that execute queries against one or more tables

in a database. The SQL statements contain any of the

keywords INSERT, UPDATE, DELETE, MERGE, CALL, EXPLAIN PLAN, or LOCK

TABLE. In most cases, these keywords modify the existing

values of data in one or more tables.

Transaction Control Language (TCL) includes the

keywords COMMIT, ROLLBACK, SAVEPOINT, or SET TRANSACTION, all of

which are advanced concepts that are not discussed in this

book.

SQL Privileges

There are two types of privileges available in SQL, both of

which are described briefly in this section. These privileges

refer to database objects, such as database tables and

indexes, that are discussed in greater detail in subsequent

chapters.

System privileges involve an object of a particular type

and specifies the right to perform one or more actions on

the object. Such actions include the administrator giving

users permission to perform tasks such as ALTER ANY INDEX,

ALTER ANY CACHE GROUP, CREATE/ALTER/DELETE TABLE, or

CREATE/ALTER/DELETE VIEW.

Object privileges allow users to perform actions on an

object or object of another user, such as tables, views, and

indexes. Additional object privileges are EXECUTE, INSERT,

UPDATE, DELETE, SELECT, FLUSH, LOAD, INDEX, and REFERENCES.

PROPERTIES OF SQL STATEMENTS

SQL statements and functions are not case sensitive, but

quoted text is case sensitive. Here are some examples:

select VERSION();

+-----------+

| VERSION() |

+-----------+

| 8.0.21 |

+-----------+

1 row in set (0.000 sec)

MySQL [mytools]> SeLeCt Version();

+-----------+

| Version() |

+-----------+

| 8.0.21 |

+-----------+

1 row in set (0.000 sec)

Keep in mind the following useful details regarding SQL

statements:

• SQL statements are not case sensitive.

• SQL statements can be on one or more lines.

• Keywords cannot be abbreviated or split across lines.

• Clauses are usually placed on separate lines.

• Indentation is for enhancing readability.

The CREATE Keyword

In general, you will sometimes use the CREATE keyword to

create a database, but more often use it to create tables,

views, and indexes. However, the following list contains all

the objects that you can create via the CREATE statement:

DATABASE

EVENT

FUNCTION

INDEX

PROCEDURE

TABLE

TRIGGER

USER

VIEW

Only database-specific examples are discussed, whereas

online articles delve into the other topics in the preceding

list.

WHAT IS MYSQL?

MySQL is an open source database that is portable and

provides many features that are available in commercial

databases. Oracle is the steward of the MySQL database,

which you can download at the following site:

https://www.mysql.com/downloads/

MySQL also provides a GUI interface for performing

database-related operations. MySQL 8 provides the

following new features:

https://www.mysql.com/downloads/

• A transactional data dictionary

• Improved support for the BLOB, TEXT, GEOMETRY, and JSON

data types

As you will see in Chapter 7, MySQL supports pluggable

storage engines, such as InnoDB (the most commonly used

MySQL storage engine). In addition, Facebook developed an

open source storage engine called MyRocks that has better

compression and performance, so it might be worthwhile to

explore the advantage of MyRocks over the other storage

engines for MySQL.

What about MariaDB?

MySQL began as an open source project, and retained its

name after the Oracle acquisition. Shortly thereafter, the

MariaDB database was created, which is a “fork” of the

MySQL database. Although MariaDB supports all the

features of MySQL, there are important differences between

MySQL and MariaDB that you can read about online:

https://mariadb.com/kb/en/mariadb-vs-mysql-

compatibility/

Installing MySQL

Download the MySQL distribution for your machine and

perform the installation procedure.

https://towardsdatascience.com/pandas-and-sql-

together-a-premier-league-and-player-scouting-

example-b41713a5dd3e

You can log into MySQL as root with the following

command, which will prompt you for the root password:

$ m ysql -u root -p

https://mariadb.com/kb/en/mariadb-vs-mysql-compatibility/
https://towardsdatascience.com/pandas-and-sql-together-a-premier-league-and-player-scouting-example-b41713a5dd3e

If you installed MySQL via a DMG file, then the root

password is the same as the password for your machine.

DATA TYPES IN MYSQL

This section starts with a lengthy list of data types that

MySQL supports, followed by some comments about several

of the data types, all of which you can use in table

definitions:

• The BIT datatype is for storing bit values in MySQL.

• The BOOLEAN datatype stores True/False values.

• The CHAR data type is for storing fixed length strings.

• The DATE datatype is for storing date values.

• The DATETIME datatype is for storing combined date and

time values.

• The DECIMAL datatype is for storing exact values in

decimal format.

• The ENUM datatype is a compact way to store string

values.

• The INT datatype is for storing an integer data type.

• The JSON data type is for storing JSON documents.

• The TEXT datatype is for storing text values.

• The TIME datatype is for storing time values.

• The TIMESTAMP datatype is for a wider range of date and

time values.

• The TO_SECONDS datatype is for converting time to

seconds.

• The VARCHAR datatype is for variable length strings.

• The XML data type provides support for XML

documents.

The CHAR and VARCHAR Data Types

The CHAR type has a fixed column length, declared while

creating tables, whose length can range from 1 to 255. CHAR

values are right padded with spaces to the specified length,

and trailing spaces are removed when CHAR values are

retrieved.

By contrast, the VARCHAR type indicates variable length CHAR

values whose length can be between 1 and 2000, and it

occupies the space for NULL values.

By contrast, the VARCHAR2 type indicates variable length

CHAR values whose length can be between 1 and 4000, but

cannot occupy the space for NULL values. Hence, VARCHAR2 has

better performance that VARCHAR.

String-based Data Types

The previous bullet list contains various string types, and

the latter have been extracted and placed in a separate list

below for your convenience:

BLOB

CHAR

ENUM

SET

TEXT

VARCHAR

The ENUM datatype is string object that specifies a set of

predefined values, which can be used during table creation,

as shown here:

CREATE TABLE PIZZA(name ENUM('Small', 'Medium','Large'));

Query OK, 0 rows affected (0.021 sec)

DESC pizza;

+-------+--------------------------------+------+-----+---------+--
-----+

| Field | Type | Null | Key | Default |
Extra |

+-------+--------------------------------+------+-----+---------+--
-----+

| name | enum('Small','Medium','Large') | YES | | NULL |
|

+-------+--------------------------------+------+-----+---------+--

-----+

1 row in set (0.004 sec)

FLOAT and DOUBLE Data Types

Numbers in the FLOAT format are stored in four bytes and

have eight decimal places of accuracy. Numbers in the DOUBLE

format are stored in eight bytes and have eighteen decimal

places of accuracy.

BLOB and TEXT Data Types

A binary large object (BLOB) can hold a variable amount of

data. There are four BLOB types whose only difference is their

maximum length:

TINYBLOB

BLOB

MEDIUMBLOB

LONGBLOB

A TEXT data type is a case-insensitive BLOB, and there are

four TEXT types whose difference pertains to their maximum

length (all of which are non-standard data types):

TINYTEXT

TEXT

MEDIUMTEXT

LONGTEXT

Keep in mind the following difference between BLOB types

and TEXT types: BLOB types involve case-sensitive sorting and

comparisons, whereas these operations are case-insensitive

for TEXT types.

MYSQL DATABASE OPERATIONS

There are several operations that you can perform with a

MySQL database, as shown here:

• Create a database

• Export a database

• Drop a database

• Rename a database

You will see examples of how to perform each of the

preceding bullet items in the following subsections.

Creating a Database

Log into MySQL and invoke the following command to

create the mytools database:

MySQL [mysql]> create database mytools;

Query OK, 1 row affected (0.004 sec)

Select the mytools database with the following command:

MySQL [(none)]> use mytools;

Reading table information for completion of table and column names

You can turn off this feature to get a quicker startup with -A

Database changed

Display a List of Databases

Display the existing databases by invoking the following

SQL statement:

mysql> SHOW DATABASES;

The preceding command displays the following output

(the output will be different for your machine):

+--------------------+

| Database |

+--------------------+

| beans |

| information_schema |

| minimal |

| mysql |

| mytools |

| performance_schema |

| sys |

+--------------------+

9 rows in set (0.002 sec)

Display a List of Database Users

Display the existing users by invoking the following SQL

statement:

mysql> select user from mysql.user;

The preceding command displays the following output:

+------------------+

| user |

+------------------+

| mysql.infoschema |

| mysql.session |

| mysql.sys |

| root |

+------------------+

4 rows in set (0.001 sec)

Dropping a Database

Log into MySQL and invoke the following command to

create, select, and then drop the pizza database:

MySQL [(none)]> create database pizza;

Query OK, 1 row affected (0.004 sec)

MySQL [(none)]> use pizza;

Database changed

MySQL [pizza]> drop database pizza;

Query OK, 0 rows affected (0.007 sec)

Although performing this task with a database that does

not contain any data might seem pointless, it’s simple and

you will already know how to perform this task if it becomes

necessary to do so in the future.

EXPORTING A DATABASE

Although you currently have an empty database, it’s still

good to know how the steps for exporting a database, which

is handy as a backup and also provides a simple way to

create a copy of an existing database on another machine.

By way of illustration, let’s first create the database

called minimal in MySQL, as shown here:

MySQL [mytools]> create database minimal;

Query OK, 1 row affected (0.006 sec)

Next, invoke the mysqldump command to export the

minimal database, as shown here:

mysqldump -u username -p"password" -R minimal > minimal.sql

Notice the following details at the preceding command.

First, there are no intervening spaces between the -p flag

and the password in order to bypass a command line

prompt to enter the password. Second, make sure that you

omit the quotation marks. Third, the -R flag instructs

mysqldump to copy stored procedures and functions in addition

to the database data.

At this point, you can create tables in the minimal

database, and periodically export its contents. Listing 4.1

displays the content of minimal.sql, which is the complete

description of the minimal database.

LISTING 4.1: minimal.sql

-- MariaDB dump 10.18 Distrib 10.5.8-MariaDB, for osx10.15
(x86_64)

--

-- Host: localhost Database: minimal

-- --

-- Server version 8.0.21

/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;

/*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */;

/*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */;

/*!40101 SET NAMES utf8mb4 */;

/*!40103 SET @OLD_TIME_ZONE=@@TIME_ZONE */;

/*!40103 SET TIME_ZONE='+00:00' */;

/*!40014 SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0
*/;

/*!40014 SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS,
FOREIGN_KEY_CHECKS=0 */;

/*!40101 SET @OLD_SQL_MODE=@@SQL_MODE,
SQL_MODE='NO_AUTO_VALUE_ON_ZERO' */;

/*!40111 SET @OLD_SQL_NOTES=@@SQL_NOTES, SQL_NOTES=0 */;

--

-- Dumping routines for database 'minimal'

--

/*!40103 SET TIME_ZONE=@OLD_TIME_ZONE */;

/*!40101 SET SQL_MODE=@OLD_SQL_MODE */;

/*!40014 SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS */;

/*!40014 SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS */;

/*!40101 SET CHARACTER_SET_CLIENT=@OLD_CHARACTER_SET_CLIENT */;

/*!40101 SET CHARACTER_SET_RESULTS=@OLD_CHARACTER_SET_RESULTS */;

/*!40101 SET COLLATION_CONNECTION=@OLD_COLLATION_CONNECTION */;

/*!40111 SET SQL_NOTES=@OLD_SQL_NOTES */;

-- Dump completed on 2022-02-03 22:44:54

RENAMING A DATABASE

Although you currently have an empty database, it’s still

good to know how to rename a database (and besides, it’s

faster to do so with an empty database).

Older versions of MySQL provided the RENAME DATABASE

command to rename a database; however, newer versions

of MySQL have removed this functionality to avoid security

risks.

Fortunately, you can perform a three-step process

involving several MySQL command line utilities to rename a

MySQL database OLD_DB (which you need to replace with the

name of the database that you want to rename) to a new

database NEW_DB (replaced with the actual new database

name):

Step 1: Create an exported copy of database OLD_DB.

Step 2: Create a new database called NEW_DB.

Step 3: Import data from OLD_DB into NEW_DB.

Perform Step 1 by invoking the following command (see

previous section):

mysqldump -u username -p"password" -R OLD_DB > OLD_DB.sql

Perform Step 2 by invoking the following command:

mysqladmin -u username -p"password" create NEW_DB

Perform Step 3 by invoking the following command:

mysql -u username -p"password" newDbName < OLD_DB.sql

Verify that everything worked correctly by logging into

MySQL and selecting the new database:

MySQL [mysql]> use NEW_DB;

Database changed

THE INFORMATION_SCHEMA TABLE

The INFORMATION_SCHEMA table enables you to retrieve

information about the columns in a given table.

TABLE_SCHEMA

TABLE_NAME

COLUMN_NAME

ORDINAL_POSITION

COLUMN_DEFAULT

IS_NULLABLE

DATA_TYPE

CHARACTER_MAXIMUM_LENGTH

NUMERIC_PRECISION

NUMERIC_SCALE

DATETIME_PRECISION

For example, let’s look at the structure of the weather

table that is available with the companion files (see the

Preface for details):

MySQL [mytools]> desc weather;

+----------+----------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+----------+----------+------+-----+---------+-------+

| day | date | YES | | NULL | |

| temper | int | YES | | NULL | |

| wind | int | YES | | NULL | |

| forecast | char(20) | YES | | NULL | |

| city | char(20) | YES | | NULL | |

| state | char(20) | YES | | NULL | |

+----------+----------+------+-----+---------+-------+

6 rows in set (0.001 sec)

We can obtain additional information about the columns

in the weather table with the following SQL query:

SELECT COLUMN_NAME, DATA_TYPE, IS_NULLABLE, COLUMN_DEFAULT

FROM INFORMATION_SCHEMA.COLUMNS

WHERE TABLE_NAME = 'weather'

AND table_schema = 'mytools';

The preceding SQL query generates the following output:

+-------------+-----------+-------------+----------------+

| COLUMN_NAME | DATA_TYPE | IS_NULLABLE | COLUMN_DEFAULT |

+-------------+-----------+-------------+----------------+

| city | char | YES | NULL |

| day | date | YES | NULL |

| forecast | char | YES | NULL |

| state | char | YES | NULL |

| temper | int | YES | NULL |

| wind | int | YES | NULL |

+-------------+-----------+-------------+----------------+

6 rows in set (0.001 sec)

THE PROCESSLIST TABLE

The PROCESSLIST table contains information about the

status of SQL statements. This information is useful when

you want to see the status of table-level or row-level locks

on a table. The following SQL statement shows you an

example of the contents of this table:

MySQL [mytools]> show processlist;

+----+-----------------+-----------+---------+---------+--------+--
----------------------+------------------+

| Id | User | Host | db | Command | Time |
State | Info |

+----+-----------------+-----------+---------+---------+--------+--
----------------------+------------------+

| 5 | event_scheduler | localhost | NULL | Daemon | 138765 |
Waiting on empty queue | NULL |

| 9 | root | localhost | mytools | Query | 0 |
starting | show processlist |

+----+-----------------+-----------+---------+---------+--------+--
----------------------+------------------+

2 rows in set (0.000 sec)

SQL FORMATTING TOOLS

As you might expect, there are various formatting styles

for SQL statements, and you can peruse them to determine

which style is most appealing to you. The following link is for

an online SQL formatter:

https://codebeautify.org/sqlformatter

The following link contains 18 SQL formatters, some of

which are commercial and some are free:

https://www.sqlshack.com/sql-formatter-tools/

The following link contains a list of SQL formatting

conventions (i.e., it’s not about formatting tools):

https://opendatascience.com/best-practices-sql-

formatting

If you work in an environment where the SQL formatting

rules have already been established, it might be interesting

to compare that style with those of the SQL formatting tools

in the preceding links.

https://codebeautify.org/sqlformatter
https://www.sqlshack.com/sql-formatter-tools/
https://opendatascience.com/best-practices-sql-formatting

If you are a SQL beginner working on your own, it’s also

worth exploring these links as you learn more about SQL

statements throughout this book. As you gain more

knowledge about writing SQL statements, you will encounter

various styles in blog posts, which means you will also

notice which conventions those blog posts adopt for

formatting SQL statements.

SUMMARY

This chapter started with an introduction to the concept

of an RDBMS, and the rationale for using an RDBMS. In

particular, you saw an example of an RDBMS with a single

table, two tables, and four tables (and much larger RDBMSs

abound).

Then you obtained a brief introduction to the notion of

database normalization, and how doing so will help you

maintain data integrity (“single source of truth”) in an

RDBMS.

Next, you learned about the structure of the tables in a

four-table database that keeps track of customer purchases

of tools through a Web page. You also saw which tables have

a one-to-many relationship so that you can find all the line

items that belong to a given purchase order.

In addition, you had a brief introduction to SQL and some

basic examples of SQL queries. You also learned about

various types of SQL statements that can be classified as

DCL, DDL, DQL, or DML.

T

CHAPTER 5

JAVA, JSON, AND XML

his chapter is for anyone who needs to work with Java

to access data that is stored in MySQL tables. Although

this chapter is probably optional for all other users, it’s

worthwhile to peruse its contents if you anticipate

working with Java and MySQL at some point in the future, or

even if you are merely curious about Java code for managing

data in a MySQL database.

Please keep in mind that this chapter does not contain a

technical introduction to Java, XML, or JSON. However, the

Java code samples perform basic functionality, such as

creating database tables via Java, followed by code samples

for inserting, selecting, and deleting data from a MySQL

database. Consequently, a short tutorial regarding the

preceding technologies might be sufficient for you to

understand the Java code samples.

In condensed terms, this chapter will help you learn how

to use Java to perform CRUD (Create, Replace, Update, and

Delete) operations in a MySQL database via Java. The first

section shows you how to use Java to create a relational

database as well as a relational table. You will learn where

you can download the JAR (Java ARchive) file that is needed

for JDBC (Java Database Connectivity). Moreover, you will see

how to compile Java classes and launch the compiled Java

code. This section also contains an example of inserting data

into such a table and then how to retrieve that data using

Java.

The first section contains Java code samples for creating a

MySQL database through Java code. You will also learn how to

create a MySQL table and then populate that table with data

in Java code. In addition, you will see how to drop a MySQL

table (also in Java).

The second section contains Java code samples that

enable you to work with JSON-based data. You will learn how

to create a table for JSON data, how to insert JSON data into

that table, and then how to retrieve that JSON data, all of

which is performed by Java code.

The third section contains Java code samples that enable

you to work with XML-based data. You will learn how to create

a table for XML data, how to insert XML data into that table,

and then how to retrieve that XML data, all of which is

performed by Java code.

A few more details to keep in mind. First, the Java code

samples show you how to create the mytools database and

how to create tables in this database. However, if you have

already imported the mytools database, it would be better to

specify a different database, such as mytools2 to avoid

collisions with the mytools database. The new database name

must be specified as the value of the URL variable.

Second, you need to specify the password for the root user

in the PASS variable, which is the same as the password for

your laptop if you installed MySQL from a DMG on a MacBook

(the latter is a file type that is specific to Mac).

WORKING WITH JAVA AND MYSQL

Java code for working with MySQL (and other databases)

requires a JAR file that contains the relevant classes to make

a database connection and execute a SQL statement. The

set-up steps involve downloading Java for your laptop,

downloading a JDBC driver file, and updating the CLASSPATH

environment variable.

Performing the Set-up Steps

The JAR file for communicating with a database through

Java is called a JDBC driver, and the JAR file that works for

MySQL is downloadable here:

https://dev.mysql.com/downloads/connector/j/

Step 1: Download, uncompress the driver file for your

platform, and place the JAR file mysql-connector-java-8.0.24.jar in

a convenient location. Note that this JAR file is contained in a

subdirectory of the uncompressed driver file.

Step 2: Update the CLASSPATH environment variable, as

shown here:

export CLASSPATH=$CLASSPATH:.:mysql-connector-java-8.0.24.jar:

The preceding code snippet works correctly if the JAR file

and the compiled Java classes are in the same directory.

Suggestion: If you are comfortable with basic shell scripts,

place the preceding export code snippet in a shell script that

you can source (“dot”) whenever you need to set the CLASSPATH

environment variable.

CREATING A MYSQL DATABASE IN JAVA

This section contains a Java code sample for creating the

mytools database. If you have already imported the mytools

database, then modify the value of the URL variable in Listing

5.1 to specify a different database. The variables to update

are confined to URL, USER, and PASS in the Java code samples

that access a MySQL database.

Listing 5.1 displays the content of the Java file

CreateDataBase.java that illustrates how to create a MySQL

database in Java.

https://dev.mysql.com/downloads/connector/j/

LISTING 5.1: CreateDataBase.java

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

import java.sql.Statement;

public class CreateDataBase

{

 // specify the URL and username/password to access MySQL

 // the URL specifies the mytools database that already exists:

 static final String URL = "jdbc:mysql://localhost/mytools";

 static final String USER = "root";

 static final String PASS = "yourpassword";

 public static void main(String[] args)

 {

 // Open a connection

 try(Connection conn =

 DriverManager.getConnection(URL, USER, PASS);

 Statement stmt = conn.createStatement();

) {

 String sql = "CREATE DATABASE mytools";

 stmt.executeUpdate(sql);

 System.out.println("Database created");

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

}

Listing 5.1 starts with several import statements that

specify Java classes that are located in the JDBC JAR file,

which is also included in the CLASSPATH environment variable

(otherwise, the code will not compile successfully).

The next section of code initializes the string variables URL,

USER, and PASS. Replace mytools with your own database (either

an existing database or a new database) and also specify the

correct value for PASS.

The next portion of Listing 5.1 is the main() method that

contains a try/catch block in which a database connection is

established, and the string variable sql is initialized to a SQL

statement for creating the mytools database. If the database is

successfully created, a message is printed; if an error occurs,

then the catch() block displays a stack trace that describes

the error that was encountered. Launch the code in Listing

5.1 and you will see the following output:

Database created

If the database mytools already exists, or you launch Listing

5.1 more than once, then you will see the following output:

java.sql.SQLException: Can't create database 'mytools'; database
exists

In this situation you have two options:

1. Drop the database manually.

2. Execute a SQL statement in Java to drop the database.

You can perform option #2 by inserting the following Java

code snippet in Listing 5.1 before the code block that creates

a database:

String drop1 = "DROP DATABASE IF EXISTS mytools";

stmt.executeUpdate(drop1);

NOTE Make sure you export the mytools database to a SQL file

before you drop this database.

CREATING A MYSQL TABLE IN JAVA

Listing 5.2 displays the content of the file CreateTable.java

that illustrates how to create a MySQL table in Java code.

LISTING 5.2: CreateTable.java

// the downloaded JAR file contains the following Java classes:

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

import java.sql.Statement;

public class CreateTable

{

 // specify the URL and username/password to access MySQL

 // the URL specifies the mytools database that already exists:

 static final String URL = "jdbc:mysql://localhost/mytools";

 static final String USER = "root";

 static final String PASS = "yourpassword";

 public static void main(String[] args)

 {

 // Step 1: open a database connection:

 try(Connection conn =

 DriverManager.getConnection(URL,USER, PASS);

 Statement stmt = conn.createStatement();

) {

 // drop the table if it already exists: otherwise the

 // code will fail during subsequent invocations with

 // an error message that table 'friends' already exists

 // Step 2: SQL to drop the table if it exists:

 String sql1 = "DROP TABLE IF EXISTS FRIENDS ";

 // Step 3: SQL to create the table FRIENDS:

 String sql2 = "CREATE TABLE FRIENDS " +

 "(id INTEGER not NULL, " +

 " fname VARCHAR(100), " +

 " lname VARCHAR(100), " +

 " height INTEGER, " +

 " PRIMARY KEY (id))";

 // Step 4: execute both SQL statements:

 stmt.executeUpdate(sql1);

 stmt.executeUpdate(sql2);

 System.out.println("Created table FRIENDS in database");

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

}

Listing 5.2 starts with several import statements that

specify Java classes that are located in the JDBC JAR file,

which is also included in the CLASSPATH environment variable

(otherwise, the code will not compile successfully).

The next section of code initializes the string variables URL,

USER, and PASS. You must replace mytools with your own

database (either an existing database or a new database)

and specify the correct value for PASS.

The next portion of Listing 5.2 is the main() method that

contains a try/catch block in which a database connection is

established, and the string variable sql1 is initialized to a SQL

statement for dropping the friends table if it already exists.

The third step initializes the string variable sql2 with a SQL

statement for creating the friends table.

The fourth step executes the SQL code in the string

variables sql1 and sql2. If an error occurs, then the catch()

block displays a stack trace that describes the error that was

encountered. Launch the code in Listing 5.2 and you will see

the following output:

Created table FRIENDS in database

Note that older versions of code in the JDBC JAR file

require explicitly closing the database connection, whereas

this step is now performed automatically.

INSERTING DATA INTO A MYSQL TABLE IN JAVA

Listing 5.3 displays the content of the file InsertData.java

that illustrates how insert data into the friends table that you

created in the previous section.

LISTING 5.3: InsertData.java

// the downloaded JAR file contains the following Java classes:

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

import java.sql.Statement;

public class InsertData

{

 // specify the URL and username/password to access MySQL

 // the URL specifies the mytools database that already exists:

 static final String URL = "jdbc:mysql://localhost/mytools";

 static final String USER = "root";

 static final String PASS = "yourpassword";

 public static void main(String[] args)

 {

 String sql = "";

 // Step 1: open a database connection:

 try(Connection conn =

 DriverManager.getConnection(URL, USER, PASS);

 Statement stmt = conn.createStatement();

) {

 // Step 2: Execute SQL statements for inserting data

 // and you must make sure the ID values are distinct

 // otherwise you will see the following type of error:

 // Duplicate entry '100' for key 'friends.PRIMARY'

 // One solution involves deleting all the rows from

 // the FRIENDS table but you must exercise caution

 // Step 2: SQL to delete rows from FRIENDS:

 String del1 = "DELETE FROM FRIENDS";

 stmt.executeUpdate(del1);

 sql = "INSERT INTO FRIENDS VALUES(100,'Jane','Jones',170)";

 stmt.executeUpdate(sql);

 sql = "INSERT INTO FRIENDS VALUES(200,'Dave','Smith',160)";

 stmt.executeUpdate(sql);

 sql = "INSERT INTO FRIENDS VALUES(300,'Jack','Stone',180)";

 stmt.executeUpdate(sql);

 System.out.println("Inserted 3 records into FRIENDS table");

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

}

Listing 5.3 starts with several import statements that

specify Java classes that are located in the JAR file containing

the java.sql classes, which is also included in the CLASSPATH

environment variable (otherwise, the code will not compile

successfully).

The next section of code initializes the string variables URL,

USER, and PASS. You must replace mytools with your own

database (either an existing database or a new database)

and specify the correct value for PASS.

The next portion of Listing 5.2 is the main() method that

contains a try/catch block in which a database connection is

established, and the string variable del1 is initialized to a SQL

statement for deleting the rows in the friends table.

The next step initializes the string variable sql with a SQL

statement for inserting a row of data into the friends table.

This step is executed twice more with different data values.

Launch the code in Listing 5.3 and you will see the following

output (the Java code is executed three times):

java InsertData

Inserted 3 records into FRIENDS table...

java InsertData

Inserted 3 records into FRIENDS table...

java InsertData

Inserted 3 records into FRIENDS table...

DELETING DATA AND DROPPING MYSQL TABLES IN JAVA

Listing 5.4 displays the content of the file DeleteData.java

that illustrates how delete data from a table and how to drop

a table via Java.

LISTING 5.4: DeleteDataDrop.java

// the downloaded JAR file contains the following Java classes:

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

import java.sql.Statement;

public class DeleteDataDrop

{

 // specify the URL and username/password to access MySQL

 // the URL specifies the mytools database that already exists:

 static final String URL = "jdbc:mysql://localhost/mytools";

 static final String USER = "root";

 static final String PASS = "yourpassword";

 public static void main(String[] args)

 {

 String sql = "";

 // Step 1: open a database connection:

 try(Connection conn =

 DriverManager.getConnection(URL, USER, PASS);

 Statement stmt = conn.createStatement();

) {

 // Step 2: delete a subset of the rows in FRIENDS:

 System.out.println("Deleting one row from FRIENDS");

 String del1 = "DELETE FROM FRIENDS WHERE id = 100";

 stmt.executeUpdate(del1);

 // Step 3: delete all the rows in FRIENDS:

 System.out.println("Deleting all rows from FRIENDS");

 String del2 = "DELETE FROM FRIENDS";

 stmt.executeUpdate(del2);

 // Step 3: truncate the table FRIENDS:

 System.out.println("Truncating table FRIENDS");

 String del3 = "TRUNCATE FRIENDS";

 stmt.executeUpdate(del3);

 // Step 4: drop the table FRIENDS:

 System.out.println("Dropping table FRIENDS");

 String del4 = "DROP TABLE FRIENDS";

 stmt.executeUpdate(del4);

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

}

Listing 5.4 starts with several import statements that

specify Java classes that are located in the JDBC JAR file,

which is also included in the CLASSPATH environment variable

(otherwise, the code will not compile successfully).

The next section of code initializes the string variables URL,

USER, and PASS. You must replace mytools with your own

database (either an existing database or a new database)

and also specify the correct value for PASS.

The next portion of Listing 5.4 is the main() method that

contains a try/catch block in which a database connection is

established, and the string variable del1 is initialized to a SQL

statement for deleting the row in the friends table whose id

value equals 100. The next block of code initializes the string

variable del2 with a SQL statement for deleting all the rows in

the friends table.

The next block of code initializes the string variable del3

with a SQL statement for truncating the friends table. Finally,

the last block of code initializes the string variable del4 with a

SQL statement for dropping the friends table. Launch the code

in Listing 5.4 and you will see the following output:

Deleting one row from FRIENDS

Deleting all rows from FRIENDS

Truncating table FRIENDS

Dropping table FRIENDS

SELECTING DATA FROM A MYSQL TABLE IN JAVA

Listing 5.5 displays the content of the file SelectData.java

that illustrates how select data from the friends table via Java.

LISTING 5.5: SelectData.java

// the downloaded JAR file contains the following Java classes:

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.sql.Statement;

public class SelectData

{

 // specify the URL and username/password to access MySQL

 // the URL specifies the mytools database that already exists:

 static final String URL = "jdbc:mysql://localhost/mytools";

 static final String USER = "root";

 static final String PASS = "yourpassword";

 public static void main(String[] args)

 {

 String sql1,sql2 = "";

 // Step 1: open a database connection:

 try(Connection conn =

 DriverManager.getConnection(URL, USER, PASS);

 Statement stmt = conn.createStatement();

) {

 // Step 2: Execute SQL statement to select data:

 System.out.println("Selecting one row from FRIENDS table");

 sql1 = "SELECT * FROM FRIENDS WHERE id = 100";

 ResultSet rs1 = stmt.executeQuery(sql1);

 while(rs1.next()){

 //Display values

 System.out.print("id: " + rs1.getInt("id"));

 System.out.print(", fname: " + rs1.getString("fname"));

 System.out.print(", lname: " + rs1.getString("lname"));

 System.out.println(", height: " + rs1.getInt("height"));

 }

 // Step 3: Execute SQL statement to select data:

 System.out.print("\n");

 System.out.println("Selecting all rows from FRIENDS table");

 sql2 = "SELECT * FROM FRIENDS";

 ResultSet rs2 = stmt.executeQuery(sql2);

 while(rs2.next()){

 //Display values

 System.out.print("id: " + rs2.getInt("id"));

 System.out.print(", fname: " + rs2.getString("fname"));

 System.out.print(", lname: " + rs2.getString("lname"));

 System.out.println(", height: " + rs2.getInt("height"));

 }

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

}

Listing 5.5 starts with several import statements that

specify Java classes that are located in the JDBC JAR file,

which is also included in the CLASSPATH environment variable

(otherwise the code will not compile successfully).

The next section of code initializes the string variables URL,

USER, and PASS. You must replace mytools with your own

database (either an existing database or a new database)

and also specify the correct value for PASS.

The next portion of Listing 5.2 is the main() method that

contains a try/catch block in which a database connection is

established, and the string variable del1 is initialized to a SQL

statement for deleting the rows in the friends table. The next

step initializes the string variable sql with a SQL statement for

inserting a row of data into the friends table. This step is

executed twice more with different data values.

Launch the code in Listing 5.5 and you will see the

following output (the Java code is executed three times):

Selecting one row from FRIENDS table

id: 100, fname: Jane, lname: Jones, height: 170

Selecting all rows from FRIENDS table

id: 100, fname: Jane, lname: Jones, height: 170

id: 200, fname: Dave, lname: Smith, height: 160

id: 300, fname: Jack, lname: Stone, height: 180

UPDATING DATA IN A MYSQL TABLE IN JAVA

Listing 5.6 displays the content of the file UpdateData.java

that illustrates how to update data in the friends table via

Java.

LISTING 5.6: UpdateData.java

// the downloaded JAR file contains the following Java classes:

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

import java.sql.Statement;

public class InsertData

{

 // specify the URL and username/password to access MySQL

 // the URL specifies the mytools database that already exists:

 static final String URL = "jdbc:mysql://localhost/mytools";

 static final String USER = "root";

 static final String PASS = "yourpassword";

 public static void main(String[] args)

 {

 // Step 1: open a database connection:

 try(Connection conn =

 DriverManager.getConnection(URL, USER, PASS);

 Statement stmt = conn.createStatement();

) {

 // Step 2: Execute SQL statements to update data

 String upd1 = "UPDATE FRIENDS SET lname = 'Anderson' WHERE
id = 100";

 stmt.executeUpdate(upd1);

 System.out.println("Updated last name for row with id =
100");

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

}

Listing 5.6 starts with several import statements that

specify Java classes that are located in the JDBC JAR file,

which is also included in the CLASSPATH environment variable

(otherwise, the code will not compile successfully).

The next section of code initializes the string variables URL,

USER, and PASS. You must replace mytools with your own

database (either an existing database or a new database)

and also specify the correct value for PASS.

The next portion of Listing 5.2 is the main() method

contains a try/catch block in which a database connection is

established, and the string variable del1 is initialized to a SQL

statement for deleting the rows in the friends table. The next

step initializes the string variable sql with a SQL statement for

inserting a row of data into the friends table. This step is

executed twice more with different data values. Launch the

code in Listing 5.6 and you will see the following output:

Updated last name for row with id = 100

Launch the SelectData code to confirm the updated data:

Selecting one row from FRIENDS table

id: 100, fname: Jane, lname: Anderson, height: 170

Selecting all rows from FRIENDS table

id: 100, fname: Jane, lname: Anderson, height: 170

id: 200, fname: Dave, lname: Smith, height: 160

id: 300, fname: Jack, lname: Stone, height: 180

WORKING WITH JSON, MYSQL, AND JAVA

This section contains a Java code sample to insert JSON-

based data into a MySQL table, and how to retrieve JSON-

based data from such a table. MySQL supports the JSON data

type that we’ll use to define one of the attributes in a MySQL

table.

In simplified terms, JSON-based data consists of

name/value pairs, an example of which is shown here:

{"fname":"Dave", "lname":"Stone", "age":35, "city":"NY"}

Use an array (i.e., square brackets) to specify a set of

JSON-based strings, an example of which is shown here:

[

{"fname":"Jane", "lname":"Smith", "age":30, "city":"NY"}

{"fname":"Dave", "lname":"Stone", "age":35, "city":"NY"}

]

Listing 5.7 displays the content of the file json_table.sql

that illustrates how to create a JSON-based MySQL table

directly in SQL.

LISTING 5.7: json_table.sql

drop table if exists json1;

CREATE TABLE json1 (id integer, data json);

INSERT INTO json1 VALUES(100,'{"fname": "Jane", "lname": "Jones"}');

INSERT INTO json1 VALUES(200,'{"fname": "Dave", "lname": "Smith"}');

INSERT INTO json1 VALUES(300,'{"fname": "Jack", "lname": "Stone"}');

SELECT JSON-BASED DATA FROM A MYSQL TABLE IN

JAVA

This section contains a Java code sample that selects data

from a MySQL table that contains JSON-based data. In case

you have not already done so, make sure that you create the

MySQL table json1 in Listing 5.7 and populate that table with

JSON-based data.

Listing 5.8 displays the content of the file

SelectJSONTable.java that illustrates how to select data from a

MySQL table that contains JSON-based data.

LISTING 5.8: SelectJSONData.java

// the downloaded JAR file contains the following Java classes:

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

import java.sql.Statement;

public class SelectSONData

{

 // specify the URL and username/password to access MySQL

 // the URL specifies the mytools database that already exists:

 static final String URL = "jdbc:mysql://localhost/mytools";

 static final String USER = "root";

 static final String PASS = "yourpassword";

 public SelectJSONData() {}

 public static void checkJSon()

 {

 // CREATE TABLE json1 (id integer, data json);

 try{Connection conn =

 DriverManager.getConnection(URL, USER, PASS);

 String query = "SELECT * FROM json1";

 PreparedStatement preparedStatement =

 conn.prepareStatement(query);

 preparedStatement.execute();

 ResultSet rs = preparedStatement.executeQuery();

 while (rs.next()) {

 System.out.println(rs.getString("data"));

 }

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

 public static void main(String[] args)

 {

 checkJSon();

 }

}

Listing 5.8 starts with several import statements that

specify Java classes that are located in the JDBC JAR file,

which is also included in the CLASSPATH environment variable

(otherwise, the code will not compile successfully).

The next section of code initializes the string variables URL,

USER, and PASS. You must replace mytools with your own

database (either an existing database or a new database)

and specify the correct value for PASS.

The next portion of Listing 5.8 is the main() method that

contains a try/catch block in which a database connection is

established. The string variable query is initialized to a SQL

statement for selecting the rows in the json1 table that is

defined in Listing 5.7 (and make sure you run that code first).

The next step initializes the variable preparedStatement whose

execute() method is invoked in the following code snippet as

an initialization step. Next, the variable rs is initialized with

the result set that is returned from invoking the executeQuery()

method of the variable preparedStatement. Next, a loop is

executed that retrieves the contents of the data attribute and

prints its value, as shown here:

while (rs.next()) {

 System.out.println(rs.getString("data"));

}

Launch the code in Listing 5.8 and you will see the

following output:

{"fname": "Jane", "lname": "Jones"}

{"fname": "Dave", "lname": "Smith"}

{"fname": "Jack", "lname": "Stone"}

WORKING WITH XML, MYSQL, AND JAVA

There several approaches to working with XML in a

database, some of which are listed here (only the first option

is explored in this chapter):

• Read XML as a string and parse it via SAX or DOM.

• Use a CLOB data type for XML documents.

• Use JAXB (Java and XML Binding).

• Use an ORM (Object-Relational Mapper).

• Use a native XML database.

The next portion of this chapter contains Java code

samples that create a string from the contents of XML

documents that are stored as files and then inserts those

strings in a character column of a MySQL table. Another Java

code sample retrieves each XML-based string and then

parses those strings to create XML documents.

In general, the typical operations involving MySQL, XML

documents, and Java are as follows:

• Inserting XML documents into a MySQL table

• Reading XML documents in a MySQL table

• Deleting XML documents from a MySQL table

• Updating XML documents in a MySQL table

However, the preceding CRUD operations in Java require a

deeper understanding of the Document Object Model (DOM),

which is a tree-based structure that contains all the data (and

metadata) in the XML document. By way of analogy,

whenever you navigate to an HTML Web page in a browser

session, the contents of that HTML Web page are also

represented as a DOM structure in memory. If you really want

to delve into the details of a DOM structure, perform an

online search for additional information.

What is XML?

In simplified terms, XML-based data consists of text inside

angle brackets that specify tag names. Here is a simple

example:

<fname>Dave</fname>

The following code snippets shows you how to specify an

XML tag that contains multiple tags (indentation is optional

and for ease of reading):

<person>

 <fname>Dave</fname>

 <fname>Smith</fname>

</person>

Although you can specify nested XML tags that are nested

arbitrarily deep, the XML documents in this chapter are only

nested one level. In fact, Listing 5.9 displays the contents of

the XML document friends.xml.

LISTING 5.9: friends.xml

<?xml version="1.0"?>

<friends>

 <friend>

 <fname>Jane</fname>

 <lname>Jones</lname>

 <height>170</height>

 </friend>

 <friend>

 <fname>Dave</fname>

 <lname>Smith</lname>

 <height>160</height>

 </friend>

 <friend>

 <fname>Jack</fname>

 <lname>Stone</lname>

 <height>180</height>

 </friend>

</friends>

One point to keep in mind is that XML treats everything as

text, which means that XML is a text markup language,

whereas JSON (discussed later) is a data markup format.

Although a significant percentage of the contents of XML

documents involves tags, one important advantage of XML is

the existence of XML Schemas for validating XML documents,

which is briefly discussed in the next section.

WHAT IS AN XML SCHEMA?

An XML Schema is an XML-based document that specifies

the structure of XML documents that “conform” to the

schema. For example, let’s create an XML Schema that

constrains valid “friend” XML documents to have the

following structure:

• One first name (<fname> tag)

• Zero or more middle names (<mname> tag)

• One last name (<lname> tag)

• One height value (<height> tag)

As you can clearly see, the following XML-based fragment

conforms to the preceding structure (one first name, zero

middle names, one last name, and one height value):

<friend>

 <fname>Jane</fname>

 <lname>Jones</lname>

 <height>170</height>

</friend>

The following XML-based fragment conforms to the earlier

structure (one first name, two middle names, one last name,

and one height value):

<friend>

 <fname>Billy</fname>

 <mname>Bob</mname>

 <mname>James</mname>

 <lname>Callaway</lname>

 <height>170</height>

</friend>

However, the following XML-based fragment does not

conform to the earlier structure because of the tag shown in

bold:

<friend>

 <title>Mr</title>

 <fname>Billy</fname>

 <lname>Callaway</lname>

 <height>170</height>

</friend>

When are XML Schemas Useful?

An XML Schema is extremely valuable in situations that

require transmitting a character string between applications.

For example, an application that keeps track of leased

equipment can contain very complex interdependencies that

are tedious to perform in JavaScript in a Web-based

application. However, one solution involves constructing a

string by concatenating all the fields in a Web page and then

passing the string to an application that converts the string

into an XML document.

The next step involves validating that the dynamically

constructed XML document conforms to an XML schema,

after which the XML document can be sent to yet another

application for additional processing steps. If necessary, it’s

possible to create an execution pipeline that performs the

preceding sequence of steps multiple times. If an error occurs

during a validation step, then the XML document in that step

can be analyzed to find the cause of the error, and then

resolve the error.

XML documents can be massive, and their associated XML

Schema can have a very complex structure. As an example,

XBRL defines an XML-based schema for business reporting

documents. Moreover, XML is a vast topic, with entire books

dedicated to XML. Perform an online search if you want to

familiarize yourself with the rich functionality of XML.

Now that you have a cursory understanding of XML, let’s

see how to create a MySQL table for storing XML data, which

is explained in the next section.

CREATE A MYSQL TABLE FOR XML DATA IN JAVA

This section contains a Java code sample that creates a

MySQL table that will contain XML-based data. It’s also

possible to specify the XML data type in a MySQL table;

however, the database table in this section uses attributes

that you have seen in SQL statements in previous chapters.

Listing 5.10 displays the content of CreateTableForXMLData.java

that creates a MySQL table that will be populated with data

from an XML document.

LISTING 5.10: CreateTableForXMLData.java

import java.io.File;

import java.io.IOException;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

import java.sql.Statement;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.ParserConfigurationException;

import org.w3c.dom.Document;

import org.xml.sax.SAXException;

// deprecated: try { Class.forName("com.mysql.jdbc.Driver"); }

public class CreateTableForXMLData

{

 static {

 try {

 Class.forName("com.mysql.cj.jdbc.Driver");

 } catch(ClassNotFoundException ex) {

 System.err.println("Driver not found: "+ex.getMessage());

 }

 };

 // specify the URL and username/password to access MySQL

 // the URL specifies the mytools database that already exists:

 static final String URL = "jdbc:mysql://localhost/mytools";

 static final String USER = "root";

 static final String PASS = "yourpassword";

 public CreateTableForXMLData() {}

 public static void createXMLTable()

 {

 try(Connection conn =

 DriverManager.getConnection(URL, USER, PASS);

 Statement stmt = conn.createStatement();

) {

 // Step 1: drop the friends table if it exists:

 conn.createStatement()

 .execute("DROP TABLE IF EXISTS friends");

 System.out.println("DROPPED TABLE friends\n");

 // Step 2: drop the friends table if it exists:

 conn.createStatement()

 .execute("CREATE TABLE friends (\n" +

 " id INTEGER PRIMARY KEY auto_increment,\n" +

 " fname VARCHAR(25) NOT NULL,\n" +

 " lname VARCHAR(25) NOT NULL,\n" +

 " height INTEGER)\n");

 System.out.println("CREATED TABLE friends\n");

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

 public static void main(String[] args)

 {

 createXMLTable();

 }

}

Listing 5.10 starts with several import statements that

specify Java classes that are located in the JDBC JAR file,

which is also included in the CLASSPATH environment variable

(otherwise, the code will not compile successfully).

The next section of code initializes the string variables URL,

USER, and PASS. You must replace mytools with your own

database (either an existing database or a new database)

and specify the correct value for PASS.

The next portion of Listing 5.10 is the main() method that

contains a try/catch block in which the variable conn is

initialized via a database connection. The next code snippet

performs something called “method chaining.” This technique

eliminates the need for an intermediate variable. In this case,

two methods are invoked sequentially to drop the friends

table, as shown here:

conn.createStatement()

 .execute("DROP TABLE IF EXISTS friends");

The next code snippet also uses method chaining to define

the structure of the friends table and then execute the SQL

statement to actually create this table. Launch the code in

Listing 5.10 and you will see the following output (the code

has been launched twice):

DROPPED TABLE friends

CREATED TABLE friends

READ AN XML DOCUMENT IN JAVA

This section shows you how to read the contents of an

XML document without performing any database connectivity.

Listing 5.11 displays the content of the file ReadXMLDocument.java

that illustrates how to read the contents of the XML

document friends.xml.

LISTING 5.11: ReadXMLDocument.java

import java.io.File;

import java.io.IOException;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.ParserConfigurationException;

import org.w3c.dom.Document;

import org.xml.sax.SAXException;

public class ReadXMLDocument

{

 public ReadXMLDocument() {}

 public static void readXMLFile()

 {

 String fileName = "friends.xml";

 File file = new File(fileName);

 System.out.println("Reading XML file "+fileName);

 try {

 DocumentBuilderFactory factory =

 DocumentBuilderFactory.newInstance();

 DocumentBuilder builder = factory.newDocumentBuilder();

 Document xmlDoc = builder.parse(fileName);

 } catch (SAXException e) {

 e.printStackTrace();

 } catch (ParserConfigurationException pce) {

 pce.printStackTrace();

 } catch (IOException ioe) {

 ioe.printStackTrace();

 }

 }

 public static void main(String[] args)

 {

 readXMLFile();

 }

}

Listing 5.11 starts with several import statements that

specify Java classes that are necessary for manipulating XML

documents. The next portion of Listing 5.11 is the main()

method, which initializes the string variable fileName and then

initializes the variable file with the contents of the friends.xml

document.

The next step contains a try/catch block that involves a

three-step process: instantiate a factory object, which is used

to create a builder object, and the latter is used to initialize

the variable xmlDoc as a tree-based structure that contains the

contents of friends.xml.

Note that the code does not display the contents of the

XML document: its purpose is merely to illustrate how to

create an in-memory structure with the contents of an XML

document. Launch the code in Listing 5.11 and you will see

the following output:

Reading XML file friends.xml

READ AN XML DOCUMENT AS A STRING IN JAVA

Listing 5.12 displays the content of the file

ReadXMLAsString.java that illustrates how to read an XML

document into a string in Java.

LISTING 5.12: ReadXMLAsString.java

import java.io.File;

import java.lang.Exception;

import java.util.Scanner;

public class ReadXMLAsString

{

 public ReadXMLAsString() {}

 public static String readXMLFile(String fileName)

 {

 String contents = "";

 try {

 File file = new File(fileName);

 System.out.println("Reading XML file "+fileName);

 Scanner scanner = new Scanner(file).useDelimiter("\\n");

 while(scanner.hasNext()) {

 contents += scanner.next();

 }

 } catch (Exception ioe) {

 ioe.printStackTrace();

 }

 return contents;

 }

 public static void main(String[] args)

 {

 String fileName = "friends.xml";

 String xmlString = readXMLFile(fileName);

 System.out.println("File contains: "+xmlString);

 }

}

Listing 5.12 starts with several import statements to read

the contents of an XML document as a simple file: no DOM-

related structure is required. The next portion of Listing 5.12

defines the method readXMLFile() that contains a try/catch block

for reading a file from the file system. The key idea involves

initializing the variable scanner with the contents of the file

friends.xml. The next portion of code is a loop that iterates

through the file, one line at a time, and appends each line to

the string variable contents (initialized earlier in the code), as

shown here:

while(scanner.hasNext()) {

 contents += scanner.next();

}

The final portion of Listing 5.12 is the main() method that

initializes the variable filename as friends.xml, and then

initializes the variable xmlString with the string that is returned

by the method readXMLFile(). Launch the code in Listing 5.12

and you will see the following output:

Reading XML file friends.xml

File contains: <?xml version="1.0"?><friends> <friend>
<fname>Jane</

fname> <lname>Jones</lname> <height>170</height> </friend>

<friend> <fname>Dave</fname> <lname>Smith</lname>
<height>160</

height> </friend> <friend> <fname>Jack</fname> <lname>Stone</

lname> <height>180</height> </friend></friends>

INSERT XML-BASED DATA INTO A MYSQL TABLE IN JAVA

This section contains a Java code sample that reads an

XML document into a string and then inserts that string into a

MySQL table. In case you have not already done so, make

sure that you create the MySQL table friends2 in Listing 5.13.

LISTING 5.13: create_xml_string_table.sql

DROP TABLE IF EXISTS FRIENDS2;

CREATE TABLE FRIENDS2(id INTEGER not NULL, xml_str VARCHAR(1000),

PRIMARY KEY (id))

Listing 5.14 displays the content of the file

InsertXMLString.java that illustrates how to insert XML-based

data into a MySQL table.

LISTING 5.14: InsertXMLString.java

// the downloaded JAR file contains the following Java classes:

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

import java.sql.Statement;

import java.util.Scanner;

// deprecated: try { Class.forName("com.mysql.jdbc.Driver"); }

public class InsertXMLString

{

 static {

 try {

 Class.forName("com.mysql.cj.jdbc.Driver");

 } catch(ClassNotFoundException ex) {

 System.err.println("Driver not found: "+ex.getMessage());

 }

 };

 // specify the URL and username/password to access MySQL

 // the URL specifies the mytools database that already exists:

 static final String URL = "jdbc:mysql://localhost/mytools";

 static final String USER = "root";

 static final String PASS = "yourpassword";

 public InsertXMLString() {}

 public static String readXMLFile(String fileName)

 {

 String contents = "";

 try {

 File file = new File(fileName);

 System.out.println("Reading XML file "+fileName);

 Scanner scanner = new Scanner(file).useDelimiter("\\n");

 while(scanner.hasNext()) {

 contents += scanner.next();

 }

 } catch (Exception ioe) {

 ioe.printStackTrace();

 }

 System.out.println("File contains: "+contents);

 return contents;

 }

 public static void insertString(String xmlString)

 {

 // Step 1: open a database connection:

 try(Connection conn =

 DriverManager.getConnection(URL, USER, PASS);

 Statement stmt = conn.createStatement();

) {

 // Step 2: Execute SQL statements for inserting data

 // and you must make sure the ID values are distinct

 // otherwise you will see the following type of error:

 // Duplicate entry '100' for key 'friends2.PRIMARY'

 // One solution involves deleting all the rows from

 // the FRIENDS table but you must exercise caution

 // Step 2: SQL to delete rows from FRIENDS:

 String del1 = "DELETE FROM FRIENDS2 ";

 stmt.executeUpdate(del1);

 String sql = "INSERT INTO FRIENDS2
VALUES(100,"+"'"+xmlString+"')";

// System.out.println("--------------\n");

// System.out.println("===> sql:"+sql);

// System.out.println("--------------\n");

 stmt.executeUpdate(sql);

 System.out.println("Inserted XML string into FRIENDS2
table");

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

 public static void main(String[] args)

 {

 String fileName = "friends.xml";

 String xmlString = readXMLFile(fileName);

 insertString(xmlString);

 }

}

Listing 5.14 starts with several import statements that

specify Java classes that are located in the JDBC JAR file,

which is also included in the CLASSPATH environment variable

(otherwise, the code will not compile successfully).

The next section of code initializes the string variables URL,

USER, and PASS. You must replace mytools with your own

database (either an existing database or a new database)

and specify the correct value for PASS.

The next portion of Listing 5.14 consists of the three

methods readXMLFile(), insertString(), and main(). The method

readXMLFile() is explained in the previous section, so there’s no

need to repeat those details here.

The method insertString() is mostly database-related code

that you have seen in several code samples earlier in this

chapter, and you can read the details in any of those code

samples. The new code in insertString() initializes the variable

del1 as a SQL statement that deletes all the rows from the

friends2 table, after which one row is inserted into this table,

as shown here:

String sql = "INSERT INTO FRIENDS2 VALUES(100,"+"'"+xmlString+"')";

As always, exercise caution whenever you delete data or

drop tables in Java code, just as you would when working

directly from SQL statements. Launch the code in Listing 5.14

and you will see the following output:

File contains: <?xml version="1.0"?><friends> <friend>
<fname>Jane</

fname> <lname>Jones</lname> <height>170</height> </friend>

<friend> <fname>Dave</fname> <lname>Smith</lname>
<height>160</

height> </friend> <friend> <fname>Jack</fname> <lname>Stone</

lname> <height>180</height> </friend></friends>

Inserted XML string into FRIENDS2 table

SELECT XML-BASED DATA FROM A MYSQL TABLE IN

JAVA

This section contains a Java code sample that selects data

from a MySQL table that contains XML-based data. In case

you have not already done so, make sure that you create the

MySQL table friends2 in Listing 5.13 and populate this table

with data.

Listing 5.15 displays the content of the file

SelectXMLData.java that illustrates how to select data from a

MySQL table that contains XML-based data.

LISTING 5.15: SelectXMLData.java

// the downloaded JAR file contains the following Java classes:

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

import java.sql.Statement;

public class SelectXMLData

{

 // specify the URL and username/password to access MySQL

 // the URL specifies the mytools database that already exists:

 static final String URL = "jdbc:mysql://localhost/mytools";

 static final String USER = "root";

 static final String PASS = "yourpassword";

 public SelectXMLData() {}

 public static void selectXML()

 {

 int rowCount = 0;

 // CREATE TABLE json1 (id integer, data json);

 try{Connection conn = DriverManager.getConnection(URL, USER,
PASS);

 String query = "SELECT * FROM FRIENDS2";

 PreparedStatement preparedStatement =
conn.prepareStatement(query);

 preparedStatement.execute();

 ResultSet rs = preparedStatement.executeQuery();

 while (rs.next()) {

 System.out.println("XML String:");

 System.out.println(rs.getString("xml_str"));

 System.out.println("\n");

 ++rowCount;

 }

 System.out.println("=> ROW COUNT:"+rowCount+"\n");

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

 public static void main(String[] args)

 {

 selectXML();

 }

}

Listing 5.15 starts with several import statements that

specify Java classes that are located in the JDBC JAR file,

which is also included in the CLASSPATH environment variable

(otherwise, the code will not compile successfully).

The next section of code initializes the string variables URL,

USER, and PASS. You must replace mytools with your own

database (either an existing database or a new database)

and specify the correct value for PASS.

The next portion of Listing 5.15 is the main() method that

contains a try/catch block in which a database connection is

established, and the string variable query is initialized to a SQL

statement for selecting the rows in the friends2 table. The

next portion of code is essentially the same as the code in

Listing 5.5 for iterating through a result set and then

displaying the contents of the xml_str attribute. Launch the

code in Listing 5.15 and you will see the following output:

XML String:

<?xml version="1.0"?><friends> <friend> <fname>Jane</fname>

<lname>Jones</lname> <height>170</height> </friend> <friend>

<fname>Dave</fname> <lname>Smith</lname> <height>160</height>

</friend> <friend> <fname>Jack</fname> <lname>Stone</lname>

<height>180</height> </friend></friends>

=> ROW COUNT:1

PARSE XML-BASED STRING DATA FROM A MYSQL TABLE

IN JAVA

This section contains a Java code sample that selects data

from a MySQL table that contains XML-based data. In case

you have not already done so, make sure that you create the

MySQL table friends2 in Listing 5.13 and populate this table

with data.

Listing 5.16 displays the content of ParseXMLStringInTable.java

that illustrates how to select strings of XML-based data from

a MySQL table and then create an XML document based on

the contents of each string.

LISTING 5.16: ParseXMLStringInTable.java

import java.io.StringReader;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.PreparedStatement;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.sql.Statement;

import java.util.ArrayList;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.ParserConfigurationException;

import org.w3c.dom.Document;

import org.xml.sax.SAXException;

import org.xml.sax.InputSource;

public class ParseXMLStringInTable

{

 // specify the URL and username/password to access MySQL

 // the URL specifies the mytools database that already exists:

 static final String URL = "jdbc:mysql://localhost/mytools";

 static final String USER = "root";

 static final String PASS = "yourpassword";

 public ParseXMLStringInTable() {}

 public static void parseXMLString(ArrayList arrList)

 {

 System.out.println("=> Parsing Strings as XML");

 try {

 DocumentBuilderFactory factory =

 DocumentBuilderFactory.newInstance();

 DocumentBuilder builder = factory.newDocumentBuilder();

 // Document xmlDoc = builder.parse(xmlString);

 // this parse(String) tries to open the URI that is specified
as

 // the first line in the XML document, which causes this
error:

 // java.net.MalformedURLException: no protocol: <?xml
version="1.0"?>

 // Instead, use an InputStream or Reader with the string like
this:

 for (int row=0; row<arrList.size(); row++)

 {

 String xml = (String)arrList.get(row);

 Document xmlDoc =

 builder.parse(new InputSource(new StringReader(xml)));

 System.out.println("Do something with this XML
document...");

 }

 } catch (SAXException e) {

 e.printStackTrace();

 } catch (ParserConfigurationException pce) {

 pce.printStackTrace();

 } catch (Exception ex) {

 ex.printStackTrace();

 }

 }

 public static void selectXML()

 {

 int rowCount = 0;

 ArrayList arrList = new ArrayList();

 try{Connection conn = DriverManager.getConnection(URL, USER,
PASS);

 String query = "SELECT * FROM FRIENDS2";

 PreparedStatement preparedStatement =
conn.prepareStatement(query);

 preparedStatement.execute();

 ResultSet rs = preparedStatement.executeQuery();

 while (rs.next()) {

 String xmlString = rs.getString("xml_str");

 arrList.add(xmlString);

 ++rowCount;

 }

 // reconstruct each string as an XML document:

 parseXMLString(arrList);

 System.out.println("=> ROW COUNT:"+rowCount+"\n");

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

 public static void main(String[] args)

 {

 selectXML();

 }

}

Listing 5.16 starts with several import statements that

specify Java classes that are located in the JDBC JAR file,

which is also included in the CLASSPATH environment variable.

The next section of code initializes the string variables URL,

USER, and PASS. You must replace mytools with your own

database (either an existing database or a new database)

and specify the correct value for PASS.

The rest of Listing 5.16 consists of three methods:

parseXMLString(), selectXML(), and the main() method. The

parseXMLString() method iterates through the contents of the

variable arrList (which will contain data from the friends2

table) to construct an XML document.

The selectXML() method establishes a database connection

and reads the contents of the friends2 table using familiar

code. In addition, the last portion of code in the selectXML()

method appends data to the arrList variable (an instance of

the Java ArrayList class) in a while loop that iterates over the

contents of a result set. The final code snippet invokes the

method parseXMLString() with the variable arrList. Launch the

code in Listing 5.16 and you will see the following output:

=> Parsing Strings as XML

Do something with this XML document...

=> ROW COUNT:1

WORKING WITH XML SCHEMAS

Earlier in this chapter, you saw some Java-based code

samples that manage XML-based documents in conjunction

with MySQL. Although we specified an XML document that

contained multiple <friend> elements, we did not constrain the

contents of the XML elements.

However, XML Schemas provide strict control over the

permissible structure of the elements in XML documents,

such as specifying not only their type, but their frequency

and the order in which they appear in an XML element.

For example, we can define the element firstname whose

type is a string with the following code snippet:

<xs:element name="firstname" type="xs:string"/>

We can define the element friend that contains two string-

based elements fname and lname, as well as a numeric element

called height, as shown here:

<?xml version="1.0"?>

<xs:element name="friend">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="fname" type="xs:string"/>

 <xs:element name="lname" type="xs:string"/>

 <xs:element name="height" type="xs:decimal"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

We can modify the preceding code block to specify an

optional middle name, which can occur a maximum of three

times:

<?xml version="1.0"?>

<xs:element name="friend">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="fname" type="xs:string"/>

 <xs:element name="mname" type="xs:string" minOccurs="0"
maxOccurs="3"/>

 <xs:element name="lname" type="xs:string"/>

 <xs:element name="height" type="xs:decimal"/>

 </xs:sequence>

 </xs:complexType>

If you want to specify an optional middle name element

that can occur an arbitrary number of times, use the

following code snippet:

<xs:element name="mname" type="xs:string" minOccurs="0"
maxOccurs="3"/>

There are many features available in XML Schemas,

including the ability of an XML element to reference other

XML elements, and you can even specify an XML element as

abstract (in the OOP sense of the word). Perform an online

search for more information regarding XML Schemas.

SUMMARY

This chapter started by showing you how to write Java-

based code for managing relational databases and the

content of relational tables. You saw how to perform the

necessary set-up steps for your laptop so that the Java code

will execute correctly.

Next, you learned how to write Java code for managing

JSON-based data in a MySQL database. You saw how to create

a table for JSON data, how to insert data into that table, and

how to retrieve that data using Java-based code.

You also learned about several Java-based technologies for

working with XML documents, such as SAX-based parsers and

DOM-based parsers. Finally, you saw how to write Java code

for managing XML-based data in a MySQL database.

T

CHAPTER 6

DATA CLEANING TASKS

his chapter discusses data cleaning tasks involving

datasets that contain various types of data, such as

dates, telephone numbers, and currency, all of which

can have different formats. In addition, many of the

code samples in this chapter reference techniques that are

discussed in previous chapters of this book. This chapter

provides a natural segue into Chapter 7, which discusses

data wrangling in various code samples.

The first part of this chapter briefly describes data

cleaning, followed by examples of data cleaning tasks for

data in MySQL database table. Specifically, you will see how

to replace NULL values with 0, how to replace NULL values with

an average value, how to replace multiple values with a

single value, how to handle mismatched attribute values,

and how to convert strings to date values.

The second part of this chapter shows you how to use the

sed command line utility to replace multiple delimiters in a

CSV file with a single delimiter. You will also see how to use

the awk command line utility to restructure a CSV file to

create a file whose rows have the same number of fields.

The third part of this chapter shows you how to use the

awk command line utility to process CSV files that have a

variable number of columns. The awk command is a self-

contained programming language, with a truly impressive

capability for processing text files. If you are unfamiliar with

the awk command, please read the appendix that contains an

assortment of code samples that use the awk utility.

The fourth part of this chapter contains awk-based shell

scripts that show you how to convert a list of phone

numbers to the same format as well as a list of date formats

to the same format.

This chapter assumes that you have read the data

cleaning examples that are in previous chapters. Moreover,

Chapter 7 also contains a section with additional code

samples involving data cleaning tasks.

WHAT IS DATA CLEANING?

Data cleaning, also called data cleansing, is the task of

ensuring that the contents of a dataset are complete,

correct, and typically without duplicates. Hence, the focus of

data cleaning is on individual files instead of combining or

transforming data from two or more files. Data cleaning is

often performed before any data transformation is

performed. In some cases, data cleaning must also be

performed after a data transformation.

For example, suppose that a CSV file contains employee-

related data and a MySQL table also contains employee-

related data, both of which have been cleansed of

inconsistencies and duplicates have been removed.

However, after exporting the table data to a CSV file that is

merged with the first CSV file, it’s possible that there are

duplicates that must then be removed.

Incidentally, there are several techniques for determining

the values to replace empty fields, and the choice of

techniques can range from obvious choices to more subtle

factors. Sometimes you can specify the mean or the median

for missing values, but in other cases you need a more

sophisticated technique. For example, suppose that a

dataset with 1,000 rows consists of two types of patients:

those who are healthy (the majority) as well as patients who

have cancer. Obviously, you want the number of sick

patients to be as low as possible, which means that the

dataset is fundamentally imbalanced.

Unfortunately, machine learning algorithms can produce

inaccurate results with imbalanced datasets. Moreover,

generating synthetic data whose feature values are based

on the mean or the median is probably risky. A better

technique is called SMOTE, which generates data values

that are close to values that appear in rows of the original

dataset.

As another example, the format for dates, currency, and

decimal numbers varies among different countries.

Examples of date formats include YYYY/MM/DD,

MM/DD/YYYY, and DD/MM/YYYY (as well as other possible

date formats). Incidentally, YYYY/MM/DD is an ISO standard

for numeric dates.

Number formats involve a comma “,” for the thousands

position and decimal “.” for decimal values in the US (ex:

$1,234.56), whereas Europe uses the opposite order for

numbers (ex: 1.234,56). Depending on the dataset in

question, data cleaning can also involve working with an

assortment of dates, currencies, and decimal numbers to

ensure that all values have the same format.

Moreover, if two CSV files contain different date formats

and you need to create a single CSV file that is based on the

date columns, then there will be some type of conversion

process that could be one of the following:

• Convert the first date format to the second date

format

• Convert the second date format to the first date

format

• Convert both date formats to a third date format

In the case of financial data, you are likely to also

encounter different currencies, which involves a conversion

rate between a pair of currencies. Since currency conversion

rates fluctuate, you need to decide the exchange rate to use

for the data, which can be one of the following:

• The exchange rate during the date that the CSV files

were generated

• The current currency exchange rate

• Some other mechanism

Data Cleaning for Personal Titles

Sometimes a “brute force” solution is also the simplest

solution, particular when strings are involved. For example,

a person’s title can be misspelled in myriad ways that

involves many pesky little variations, so it’s good to know

how to perform this task in a manner that’s simple, intuitive,

and easy to extend with additional cases. For example,

consider how you would replace each string in the following

list with the prefixes “Mr,”, “Ms,” or “Mrs” before you look at

the solution that follows:

Titles = ['mr.','MR','MR.','mister','Mister','Ms','Ms.', 'Mr',
'Mr.','mr',

'MS','MS.','ms','ms.','Mis','miss','miss.','Mrs','Mrs.','mrs','mrs.
',

'Madam','madam','ma"am']

While it’s possible to solve this task with conditional logic

that uses if/else code blocks, such an approach involves a

lengthy code block. A simpler and easier solution involves

the in keyword, as shown here:

mr_dict={}

ms_dict={}

mrs_dict={}

titles = ['mr.','MR','MR.','mister','Mister','Ms','Ms.', 'Mr',

'Mr.',

'mr','MS','MS.','ms','ms.','Mis','miss','miss.','Mrs','Mrs.','mrs',
'mrs.',

'Madam','madam','ma"am']

for title in ['Mr','Mr.','mr','mr.','MR','MR.','mister','Mister']:

 mr_dict[title] = "Mr"

for title in
['Ms','Ms.','MS','MS.','ms','ms.','Mis','miss','miss.']:

 ms_dict[title] = "Ms"

for title in ['Mrs','Mrs.','mrs','mrs.','Madam','madam','ma"am']:

 mrs_dict[title] = "Mrs"

print("Mr dictionary: ",mr_dict)

print()

print("Ms dictionary: ",ms_dict)

print()

print("Mrs dictionary:",mrs_dict)

Launch the preceding code block and you will see the

following output:

Mr dictionary: {'Mr': 'Mr', 'Mr.': 'Mr', 'mr': 'Mr', 'mr.': 'Mr',
'MR': 'Mr', 'MR.': 'Mr', 'mister': 'Mr', 'Mister': 'Mr'}

Ms dictionary: {'Ms': 'Ms', 'Ms.': 'Ms', 'MS': 'Ms', 'MS.': 'Ms',
'ms': 'Ms', 'ms.': 'Ms', 'Mis': 'Ms', 'miss': 'Ms', 'miss.': 'Ms'}

Mrs dictionary: {'Mrs': 'Mrs', 'Mrs.': 'Mrs', 'mrs': 'Mrs', 'mrs.':
'Mrs', 'Madam': 'Mrs', 'madam': 'Mrs', 'ma"am': 'Mrs'}

The solution given here makes it very easy to maintain,

debug, and extend because the only change that’s required

is adding a new string in the appropriate location. Moreover,

the given solution does not require any additional loops or

regular expressions. In the event that you need a new

category, such as “Sir,” define the Python dictionary sir_dict

and then add a new code snippet, as shown here:

if title in ['Sir','sir','Sire','sire','Yessir','yessir']:

sir_dict[title] = "Sir"

DATA CLEANING IN SQL

This section contains several subsections that perform

data cleaning tasks in SQL. Note that it’s not mandatory to

perform these tasks in SQL: another option is to read the

contents of a database table into a Pandas data frame and

then use Pandas methods to achieve the same result.

However, this section illustrates how to perform the

following data cleaning tasks that affect an attribute of a

database table:

• replace NULL with 0

• replace NULL with the average value

• replace multiple values into a single value

• handle data type mismatch

• convert a string date to a date format

Replace NULL with 0

This task is very straightforward, which you can perform

with either of the following SQL statements:

SELECT ISNULL(column_name, 0) FROM table_name

OR

SELECT COALESCE(column_name, 0) FROM table_name

Replace NULL Values with Average Value

This task involves two steps: first find the average of the

non-NULL values of a column in a database table, and then

update the NULL values in that column with the value that

you found in the first step. Listing 6.1 displays the content

of the SQL file replace_null_values.sql that performs this pair

of steps.

LISTING 6.1: replace_null_values.sql

USE mytools;

DROP TABLE IF EXISTS temperatures;

CREATE TABLE temperatures (temper INT, city CHAR(20));

INSERT INTO temperatures VALUES(78,'sf');

INSERT INTO temperatures VALUES(NULL,'sf');

INSERT INTO temperatures VALUES(42,NULL);

INSERT INTO temperatures VALUES(NULL,'ny');

SELECT * FROM temperatures;

SELECT @avg1 := AVG(temper) FROM temperatures;

update temperatures

set temper = @avg1

where ISNULL(temper);

SELECT * FROM temperatures;

-- initialize city1 with the most frequent city value:

SELECT @city1 := (SELECT city FROM temperatures GROUP BY city ORDER
BY COUNT(*) DESC LIMIT 1);

-- update NULL city values with the value of city1:

update temperatures

set city = @city1

where ISNULL(city);

SELECT * FROM temperatures;

Listing 6.1 creates and populates the table temperatures

with several rows, and then initializes the variable avg1 with

the average temperature in the temper attribute of the

temperatures table. Launch the code in Listing 6.1 and you will

see the following output:

+--------+------+

| temper | city |

+--------+------+

| 78 | sf |

| NULL | sf |

| 42 | NULL |

| NULL | ny |

+--------+------+

4 rows in set (0.000 sec)

+----------------------+

| @avg1 := AVG(temper) |

+----------------------+

| 60.000000000 |

+----------------------+

1 row in set, 1 warning (0.000 sec)

Query OK, 2 rows affected (0.001 sec)

Rows matched: 2 Changed: 2 Warnings: 0

+--------+------+

| temper | city |

+--------+------+

| 78 | sf |

| 60 | sf |

| 42 | NULL |

| 60 | ny |

+--------+------+

4 rows in set (0.000 sec)

+--
--+

| @city1 := (SELECT city FROM temperatures GROUP BY city ORDER BY

COUNT(*) DESC LIMIT 1) |

+--
--+

| sf
|

+--
--+

1 row in set, 1 warning (0.000 sec)

Query OK, 1 row affected (0.000 sec)

Rows matched: 1 Changed: 1 Warnings: 0

+--------+------+

| temper | city |

+--------+------+

| 78 | sf |

| 60 | sf |

| 42 | sf |

| 60 | ny |

+--------+------+

4 rows in set (0.000 sec)

REPLACE MULTIPLE VALUES WITH A SINGLE VALUE

An example of coalescing multiple values in an attribute

involves replacing multiple strings for the state of New York

(such as new_york, NewYork, NY, and New_York) with NY. Listing 6.2

displays the content of the SQL file reduce_values.sql that

performs this pair of steps.

LISTING 6.2: reduce_values.sql

use mytools;

DROP TABLE IF EXISTS mytable;

CREATE TABLE mytable (str_date CHAR(15), state CHAR(20), reply
CHAR(10));

INSERT INTO mytable VALUES('20210915','New York','Yes');

INSERT INTO mytable VALUES('20211016','New York','no');

INSERT INTO mytable VALUES('20220117','Illinois','yes');

INSERT INTO mytable VALUES('20220218','New York','No');

SELECT * FROM mytable;

-- replace yes, Yes, y, Ys with Y:

update mytable

set reply = 'Y'

where upper(substr(reply,1,1)) = 'Y';

SELECT * FROM mytable;

-- replace all other values with

update mytable

set reply = 'N' where substr(reply,1,1) != 'Y';

SELECT * FROM mytable;

Listing 6.2 creates and populates the table mytable, and

then replaces the variants of the word yes with the letter Y in

the reply attribute. The final portion of Listing 6.2 replaces

any string that does not start with the letter Y with the letter

N. Launch the code in Listing 6.2 and you will see the

following output:

+----------+----------+-------+

| str_date | state | reply |

+----------+----------+-------+

| 20210915 | New York | Yes |

| 20211016 | New York | no |

| 20220117 | Illinois | yes |

| 20220218 | New York | No |

+----------+----------+-------+

4 rows in set (0.000 sec)

Query OK, 2 rows affected (0.001 sec)

Rows matched: 2 Changed: 2 Warnings: 0

+----------+----------+-------+

| str_date | state | reply |

+----------+----------+-------+

| 20210915 | New York | Y |

| 20211016 | New York | no |

| 20220117 | Illinois | Y |

| 20220218 | New York | No |

+----------+----------+-------+

4 rows in set (0.000 sec)

Query OK, 2 rows affected (0.001 sec)

Rows matched: 2 Changed: 2 Warnings: 0

+----------+----------+-------+

| str_date | state | reply |

+----------+----------+-------+

| 20210915 | New York | Y |

| 20211016 | New York | N |

| 20220117 | Illinois | Y |

| 20220218 | New York | N |

+----------+----------+-------+

4 rows in set (0.001 sec)

HANDLE MISMATCHED ATTRIBUTE VALUES

This task involves two steps: first find the average of the

non-NULL values of a column in a database table, and then

update the NULL values in that column with the value that

you found in the first step. Listing 6.3 displays the content

of the SQL file type_mismatch.sql that performs this pair of

steps.

LISTING 6.3: type_mismatch.sql

USE mytools;

DROP TABLE IF EXISTS emp_details;

CREATE TABLE emp_details (emp_id CHAR(15), city CHAR(20), state
CHAR(20));

INSERT INTO emp_details VALUES('1000','Chicago','Illinois');

INSERT INTO emp_details VALUES('2000','Seattle','Washington');

INSERT INTO emp_details VALUES('3000','Santa Cruz','California');

INSERT INTO emp_details VALUES('4000','Boston','Massachusetts');

SELECT * FROM emp_details;

select emp.emp_id, emp.title, det.city, det.state

from employees emp join emp_details det

WHERE emp.emp_id = det.emp_id;

--required for earlier versions of MySQL:

--WHERE emp.emp_id = cast(det.emp_id as INT);

Listing 6.3 creates and populates the table emp_details,

followed by a SQL JOIN statement involving the tables emp

and emp_details. Although the emp_id table is defined as an INT

type and a CHAR type, respectively, in the tables emp and

emp_details, the code works as desired. However, in earlier

versions of MySQL, you need to use the built-in CAST()

function to convert a CHAR value to an INT value (or vice

versa), as shown in the commented-out code snippet:

--WHERE emp.emp_id = cast(det.emp_id as INT);

Launch the code in Listing 6.3 and you will see the

following output:

+--------+------------+---------------+

| emp_id | city | state |

+--------+------------+---------------+

| 1000 | Chicago | Illinois |

| 2000 | Seattle | Washington |

| 3000 | Santa Cruz | California |

| 4000 | Boston | Massachusetts |

+--------+------------+---------------+

4 rows in set (0.000 sec)

+--------+--------------------+------------+---------------+

| emp_id | title | city | state |

+--------+--------------------+------------+---------------+

| 1000 | Developer | Chicago | Illinois |

| 2000 | Project Lead | Seattle | Washington |

| 3000 | Dev Manager | Santa Cruz | California |

| 4000 | Senior Dev Manager | Boston | Massachusetts |

+--------+--------------------+------------+---------------+

4 rows in set (0.002 sec)

CONVERT STRINGS TO DATE VALUES

Listing 6.4 displays the content of str_to_date.sql that

illustrates how to populate a date attribute with date values

that are determined from another string-based attribute

that contains strings for dates.

LISTING 6.4: str_to_date.sql

use mytools;

DROP TABLE IF EXISTS mytable;

CREATE TABLE mytable (str_date CHAR(15), state CHAR(20), reply
CHAR(10));

INSERT INTO mytable VALUES('20210915','New York','Yes');

INSERT INTO mytable VALUES('20211016','New York','no'););

INSERT INTO mytable VALUES('20220117','Illinois','yes'););

INSERT INTO mytable VALUES('20220218','New York','No'););

SELECT * FROM mytable;

-- 1) insert date-based feature:

ALTER TABLE mytable

ADD COLUMN (real_date DATE);

SELECT * FROM mytable;

-- 2) populate real_date from str_date:

UPDATE mytable t1

 INNER JOIN mytable t2

 ON t1.str_date = t2.str_date

SET t1.real_date = DATE(t2.str_date);

SELECT * FROM mytable;

-- 3) Remove unwanted features:

ALTER TABLE mytable

DROP COLUMN str_date;

SELECT * FROM mytable;

Listing 6.4 creates and populates the table mytable and

displays the contents of this table. The remainder of Listing

6.4 consists of three SQL statements, each of which starts

with a comment statement that explains its purpose.

The first SQL statement inserts a new column real_date of

type DATE. The second SQL statement populates the real_date

column with the values in the str_date column that have

been converted to a date value via the DATE() function. The

third SQL statement is optional: it drops the str_date column

if you wish to do so. Launch the code in Listing 6.4 and you

will see the following output:

+----------+----------+-------+

| str_date | state | reply |

+----------+----------+-------+

| 20210915 | New York | Yes |

| 20211016 | New York | no |

| 20220117 | Illinois | yes |

| 20220218 | New York | No |

+----------+----------+-------+

4 rows in set (0.000 sec)

Query OK, 0 rows affected (0.007 sec)

Records: 0 Duplicates: 0 Warnings: 0

+----------+----------+-------+-----------+

| str_date | state | reply | real_date |

+----------+----------+-------+-----------+

| 20210915 | New York | Yes | NULL |

| 20211016 | New York | no | NULL |

| 20220117 | Illinois | yes | NULL |

| 20220218 | New York | No | NULL |

+----------+----------+-------+-----------+

4 rows in set (0.002 sec)

Query OK, 4 rows affected (0.002 sec)

Rows matched: 4 Changed: 4 Warnings: 0

+----------+----------+-------+------------+

| str_date | state | reply | real_date |

+----------+----------+-------+------------+

| 20210915 | New York | Yes | 2021-09-15 |

| 20211016 | New York | no | 2021-10-16 |

| 20220117 | Illinois | yes | 2022-01-17 |

| 20220218 | New York | No | 2022-02-18 |

+----------+----------+-------+------------+

4 rows in set (0.000 sec)

Query OK, 0 rows affected (0.018 sec)

Records: 0 Duplicates: 0 Warnings: 0

+----------+-------+------------+

| state | reply | real_date |

+----------+-------+------------+

| New York | Yes | 2021-09-15 |

| New York | no | 2021-10-16 |

| Illinois | yes | 2022-01-17 |

| New York | No | 2022-02-18 |

+----------+-------+------------+

4 rows in set (0.000 sec)

DATA CLEANING FROM THE COMMAND LINE

(OPTIONAL)

This section is marked “optional” because the solutions

to tasks involve an understanding of some Unix-based

utilities. If need be, you can read the appendix regarding awk

and online tutorials regarding the sed utility.

This section contains several subsections that perform

data cleaning tasks that involve the sed and awk utilities:

• replace multiple delimiters with a single delimiter (sed)

• restructure a dataset so all rows have the same

column count (awk)

Keep in mind the following point about these examples:

they must be performed from the command line before they

can be processed in a Pandas data frame.

Working with the sed Utility

This section contains an example of how to use the sed

command line utility to replace different delimiters with a

single delimiter for the fields in a text file. You can use the

same code for other file formats, such as CSV files and TSV

files.

This section does not provide any details about sed

beyond the code sample in this section. However, after you

read the code (it’s a one-liner), you will probably understand

how to adapt that code snippet to your own requirements

(i.e., how to specify different delimiters).

Listing 6.5 displays the content of delimiter1.txt and

Listing 6.6 displays the content of delimiter1.sh that replaces

all delimiters with a comma (“,”).

LISTING 6.5: delimiter1.txt

1000|Jane:Edwards^Sales

2000|Tom:Smith^Development

3000|Dave:Del Ray^Marketing

LISTING 6.6: delimiter1.sh

cat delimiter1.txt | sed -e 's/:/,/' -e 's/|/,/' -e 's/\^/,/'

Listing 6.6 starts with the cat command line utility, which

sends the contents of the file delimiter1.txt “standard

output,” which is on the screen (by default). However, in

this example, the output of this command becomes the

input to the sed command because of the pipe (“|”) symbol.

The sed command consists of three parts, all of which are

connected by the -e switch. You can think of -e as indicating

“there is more processing to be done” by the sed command.

In this example, there are three occurrences of -e, which

means that three operations will be performed by sed.

The first code snippet is 's/:/,/', which translates into

“replace each semi-colon with a comma.” The result of this

operation is passed to the next code snippet, which is

's/|/,/'. This code snippet translates into “replace each pipe

symbol with a comma.” The result of this operation is

passed to the next code snippet, which is 's/\^/,/'. This

code snippet translates into “replace each caret symbol

(“^”) with a comma.” The result of this operation is sent to

standard output, which can be redirected to another text

file. Launch the code in Listing 6.6 and you will see the

following output:

1000,Jane,Edwards,Sales

2000,Tom,Smith,Development

3000,Dave,Del Ray,Marketing

Three comments to keep in mind. First, the third snippet

contains a backslash because the caret symbol (“^”) is a

meta character, so we need to “escape” this character. The

same is true for other meta characters (such as “$” and “.”).

Second, you can easily extend the sed command for each

new delimiter that you encounter as a field separator in a

text file: simply follow the pattern that you see in Listing 6.6

for each new delimiter.

Third, redirect the output of delimiter1.sh to the text file

delimiter2.txt by launching the following command:

./delimiter1.sh > delimiter2.txt

If an error occurs in the preceding code snippet, make

sure that delimiter1.sh is executable by invoking the following

command:

chmod 755 delimiter1.sh

This concludes the example involving the sed command

line utility, which is a very powerful utility for processing

text files.

WORKING WITH VARIABLE COLUMN COUNTS

This section shows you how to use the awk command line

utility in order to “pad” rows in a CSV file with NaN values so

that all records have the same number of columns.

Listing 6.7 displays the content variable_columns.csv and

Listing 6.8 displays the content of variable_columns.sh that

uses the awk utility to pad the number of columns in a CSV

file.

LISTING 6.7: variable_columns.csv

10,20,30

10,20,30,40

10,20,30,40,50,60

LISTING 6.8: variable_columns.sh

filename="variable_columns.csv"

cat $filename | awk -F"," '

BEGIN { colCount = 6 }

{

 printf("%s", $0)

 for(i=NF; i<colCount; i++) {

 printf(",NaN")

 }

 print ""

}

'

Listing 6.8 initializes the variable filename with the name

of the CSV file for this code sample. The next snippet is an

awk script that initializes colCount with the value 6 in the

BEGIN block: this value is the largest number of columns in

any row of the CSV file.

The next block of code displays the contents of the

current line, followed by a loop that prints a comma-

separated list of NaN values to ensure that the output line

contains 6 columns. For instance, if a row has four columns,

then NaN, will be printed twice. The print() statement after

the loop ensures that the next line from the input file starts

on a new line instead of the current output line. Launch the

code in Listing 6.8 and you will see the following output:

10,20,30,NaN,NaN,NaN

10,20,30,40,NaN,NaN

10,20,30,40,50,60

10,20,NaN,NaN,NaN,NaN

10,20,30,40,NaN,NaN

One limitation of Listing 6.8 is that the maximum number

of columns must be specified in the BEGIN block. Listing 6.9

removes this constraint by scanning the entire file to

determine the maximum number of columns in the CSV file.

LISTING 6.9: variable_columns2.sh

filename="variable_columns.csv"

cat $filename | awk -F"," '

BEGIN {

 maxColCount = 0;

 ##

 # maxColCount = # of fields in the longest row

 ##

 while(getline line < ARGV[1]) {

 colCount = split(line,data)

 if(maxColCount < length(data)) {

 maxColCount = length(data)

 }

 }

}

{

 # print current input line:

 printf("%s", $0)

 # pad with NaN (if necessary):

 for(j=NF; j<maxColCount; j++) {

 printf(",NaN")

 }

 print ""

}

' $filename

Listing 6.9 initializes the variable filename with the name

of the CSV file for this code sample. The next portion of

Listing 6.9 is an awk script that contains a while loop to

process the input lines from the CSV file. The variable

maxColCount is initialized with 0 in the BEGIN block, and when

this loop has completed, its value will be the maximum

number of columns of the lines in the input file.

The next portion of Listing 6.9 is the same as the loop in

Listing 6.8, which prints the lines of text and pads them with

NaN, whenever it’s necessary to do so. Launch the code in

Listing 6.9 and you will see the following output:

10,20,30,NaN,NaN,NaN

10,20,30,40,NaN,NaN

10,20,30,40,50,60

10,20,NaN,NaN,NaN,NaN

10,20,30,40,NaN,NaN

TRUNCATING ROWS IN CSV FILES

The previous section showed you how to use the awk

command line utility to “pad” rows from a CSV file with the

string NaN so that all records have the same number of

columns, whereas this section shows you how to truncate

the rows in a CSV file to display only the number of columns

that are in the row with the fewest number of columns.

Listing 6.10 displays the content of variable_columns3.sh

that uses the awk utility to display a subset of columns in a

CSV file.

LISTING 6.10: variable_columns3.sh

filename="variable_columns.csv"

cat $filename | awk -F"," '

BEGIN {

 colCount = 0; minColCount = 9999

 ###

 # minColCount = # of fields in the shortest row

 ###

 while(getline line < ARGV[1]) {

 colCount = split(line,data)

 if(minColCount > length(data)) {

 minColCount = length(data)

 }

 }

}

{

 # perform for each input line:

 for(j=1; j<=minColCount; j++) {

 printf("%s,",$j)

 }

 print ""

}

' $filename

Listing 6.10 is very similar to Listing 6.9. After initializing

the variable filename with the name of the CSV file for this

code sample, the awk script finds the number of columns in

the row with the fewest columns from the CSV file.

The variable minColCount is initialized with 9999 in the BEGIN

block, and when this loop has completed, its value will be

the minimum number of columns of the lines in the input

file.

The next portion of Listing 6.9 is a loop that prints the

first minColCount columns in each line of the input file. Launch

the code in Listing 6.10 and you will see the following

output:

10,20,

10,20,

10,20,

10,20,

10,20,

GENERATING ROWS WITH FIXED COLUMNS WITH THE

AWK UTILITY

The code sample in this section contains an awk script

that processes a space-delimited input string CSV file and

generates output in which all rows have the same number

of columns (with the possible exception of the final output

row). Listing 6.11 displays the content FixedFieldCount1.sh that

illustrates how to use the awk utility to split a string into rows

that contain three strings.

LISTING 6.11: FixedFieldCount1.sh

echo "=> pairs of letters:"

echo "aa bb cc dd ee ff gg hh"

echo

echo "=> split on multiple lines:"

echo "aa bb cc dd ee ff gg hh"| awk '

BEGIN { colCount = 3 }

{

 for(i=1; i<=NF; i++) {

 printf("%s ", $i)

 if(i % colCount == 0) { print "" }

 }

 print ""

}

'

Listing 6.11 displays the contents of a string, and then

provides this string as input to the awk command. The main

body of Listing 6.11 is a loop that iterates from 1 to NF,

where NF is the number of fields in the input line, which in

this example equals 8. The value of each field is

represented by $i: $1 is the first field, $2 is the second field,

and so forth. Note that $0 is the content of the entire input

line (which is used in the next code sample).

Next, if the value of i (which is the field position, not the

contents of the field) is a multiple of 3, then the code prints

a linefeed. Launch the code in Listing 6.11 and you will see

the following output:

=> pairs of letters:

aa bb cc dd ee ff gg hh

=> split on multiple lines:

aa bb cc

dd ee ff

gg hh

Listing 6.12 displays the content of employees.txt and

Listing 6.13 displays the content of FixedFieldCount2.sh that

illustrates how to ensure that all the rows have the same

number of columns.

LISTING 6.12: employees.txt

jane:jones:SF:

john:smith:LA:

dave:smith:NY:

sara:white:CHI:

>>>none:none:none<<<:

jane:jones:SF:john:

smith:LA:

dave:smith:NY:sara:white:

CHI:

LISTING 6.13: FixedFieldCount2.sh

cat employees.txt | awk -F":" '{printf("%s", $0)}' | awk -F':' '

BEGIN { colCount = 3 }

{

 for(i=1; i<=NF; i++) {

 printf("%s#", $i)

 if(i % colCount == 0) { print "" }

 }

}

'

Notice that the code in Listing 6.13 is almost identical to

the code in Listing 6.11. The code snippet that is shown in

bold removes the \n character from its input that consists of

the contents of employees.txt. In case you need to be

convinced, launch the following code snippet from the

command line:

cat employees.txt | awk -F":" '{printf("%s", $0)}'

The output of the preceding code snippet is shown here:

jane:jones:SF:john:smith:LA:dave:smith:NY:sara:white:CHI:>>>none:no
ne:none<<<:jane:jones:SF:john:smith:LA:dave:smith:NY:sara:white:CHI
:

The reason that the \n has been removed in the

preceding output is because of this code snippet:

printf("%s", $0)

If you want to retain the \n linefeed character after each

input line, then replace the preceding code snippet with this

snippet:

printf("%s\n", $0)

We have now reduced the task in Listing 6.9 to the same

task as Listing 6.7, which is why we have the same awk-

based code block.

Launch the code in Listing 6.9 and you will see the

following output:

1000,Jane,Edwards,Sales

jane#jones#SF#

john#smith#LA#

dave#smith#NY#

sara#white#CHI#

>>>none#none#none<<<#

jane#jones#SF#

john#smith#LA#

dave#smith#NY#

Sara#white#CHI#

CONVERTING PHONE NUMBERS

Listing 6.14 displays the content of phone_numbers.txt that

contains (mostly fictitious) phone numbers with different

formats.

LISTING 6.14: phone_numbers.txt

1234567890

234 4560987

234 456 0987

212 555-1212

212-555-1212

(123)5551212

(456)555-1212

(789)555 1212

1-1234567890

1 234 4560987

1-234 456 0987

1 212 555-1212

1-212-555-1212

1 (123)5551212

1-(456)555-1212

1 (789)555 1212

011-1234567890

033 234 4560987

039-234 456 0987

034 212 555-1212

081-212-555-1212

044 (123)5551212

049-(456)555-1212

052 (789)555 1212

Listing 6.15 displays the content of phone_numbers.sh that

illustrates how to remove non-digit characters from the

phone numbers in Listing 6.10 so that they have the same

format.

LISTING 6.15: phone_numbers.sh

FILE="country_codes.csv"

#cat phone_numbers.txt |tr -d '()' | sed -e 's/ //g' -e 's/-//g' |
awk -F" " '

cat phone_numbers.txt |sed -e 's/[()]//g' -e 's/ //g' -e 's/-//g'|
awk -F" " '

{

 line_len = length($0)

 if(line_len == 10) {

 inter = ""

 area = substr($0,0,3)

 xchng = substr($0,3,3)

 subsc = substr($0,7,4)

 printf("%s,%s,%s\n",area,xchng,subsc)

 } else if(line_len == 11) {

 inter = substr($0,0,1)

 area = substr($0,1,3)

 xchng = substr($0,4,3)

 subsc = substr($0,8,4)

 printf("%s,%s,%s,%s\n",inter, area,xchng,subsc)

 } else if(line_len == 13) {

 inter = substr($0,0,3)

 area = substr($0,3,3)

 xchng = substr($0,6,3)

 subsc = substr($0,10,4)

 printf("%s,%s,%s,%s\n",inter, area,xchng,subsc)

 } else {

 print "invalid format: ",$0

 }

}

'

Listing 6.15 initializes the variable FILE with the name of

the CSV file that contains the three-digit international codes

for a set of countries. The next code snippet is a pipe-

delimited sequence of commands that starts by redirecting

the contents of the file phone_numbers.txt to the sed command

that removes all left parentheses, right parentheses,

hyphens (-), and multiple occurrences of a white space.

The output from the sed command is redirected to an awk

script that processes input lines of length 10, 11, and 13

that contain phone numbers that lack an international code,

contain a single digit international code, and a three-digit

international code, respectively. Any input line that has a

different length is considered invalid. Now launch the code

in Listing 6.15 and you will see the following output:

123,345,7890

234,445,0987

234,445,0987

212,255,1212

212,255,1212

123,355,1212

456,655,1212

789,955,1212

1,112,345,7890

1,123,445,0987

1,123,445,0987

1,121,255,1212

1,121,255,1212

1,112,355,1212

1,145,655,1212

1,178,955,1212

011,112,345,7890

033,323,445,0987

039,923,445,0987

034,421,255,1212

081,121,255,1212

044,412,355,1212

049,945,655,1212

052,278,955,1212

CONVERTING NUMERIC DATE FORMATS

This section shows you how to convert date formats to a

common format of the form MM-DD-YYYY. Before delving

into the code, the following list contains sample formats for

the month, day, and year of a date:

• yy: two-digit year (ex: 22)

• yyyy: four-digit year (ex: 2022)

• m: one-digit month (ex: 4)

• mm: two-digit month (ex: 04)

• mmm: three letters for month (ex: Apr)

• mmmm: month spelled in full (ex: April)

• d: one-digit day of the month (ex: 2)

• dd: two-digit day of the month (ex: 02)

• ddd: three letter day of week (ex: Sat)

• dddd: day spelled in full (ex: Saturday)

Listing 6.16 displays the content of dates.txt that contains

fictitious dates in various formats, and the strings in bold

have invalid formats.

LISTING 6.16: dates.txt

03/15/2021

3/15/2021

3/15/21

03/5/2021

3/5/2021

3/5/21

3/5/212

3/5/21Z

Listing 6.17 displays the content of dates.sh that shows

how to remove non-digit characters from the dates in Listing

6.16 so that they have the same format.

LISTING 6.17: dates.sh

cat dates.txt | awk -F"/" '

{

 DATE_FORMAT="valid"

 # step 1: extract the month

 if($0 ~ /^[0-9]{2}/) {

 month = substr($0,1,2)

 #print "normal month: ",month

 } else if($0 ~ /^[0-9]\//) {

 month = "0" substr($0,1,1)

 #print "short month: ",month

 } else {

 DATE_FORMAT="invalid"

 }

 if(DATE_FORMAT="valid") {

 # step 2: extract the day

 if($0 ~ /^[0-9][0-9]\/[0-9][0-9]/) {

 day = substr($0,4,2)

 #print "normal day: ",day

 } else if ($0 ~ /^[0-9][0-9]\/[0-9]\//) {

 day = "0" substr($0,4,1)

 #print "short day: ",day

 } else {

 DATE_FORMAT="invalid"

 }

 }

 if(DATE_FORMAT="valid") {

 # step 3: extract the year

 if($0 ~ /^[0-9][0-9]\/[0-9][0-9]\/[0-9][0-9][0-9][0-9]$/) {

 year = substr($0,7,4)

 #print "normal year: ",year

 } else if ($0 ~ /^[0-9][0-9]\/[0-9]\/[0-9][0-9]\/$/) {

 year = "20" substr($0,7,2)

 #print "short year: ",year

 }

 } else {

 DATE_FORMAT="invalid"

 }

 if(DATE_FORMAT="valid") {

 printf("=> $0: %s MM/DD/YYYY: %s-%s-%s\n",$0,month,day,year)

 } else {

 print "invalid format: ",$0

 }

}

'

Listing 6.17 contains code that might seem daunting if

you are unfamiliar with regular expressions. Let’s try to

demystify the code, starting with the regular expression [0-

9] that represents any single digit. The initial caret symbol in

^[0-9]\/ indicates that a digit must appear in the left-most

(i.e., first) position. In addition, the regular expression ^[0-

9]\/ indicates that a “/” must follow the single digit. The

backslash “\” is required to “escape” the meta character “/.”

This means that it will be treated as a regular character

instead of a metacharacter. For instance, the string 3/

matches the regular expression, but the strings 03/, B3/, and

AB/ do not match the regular expression.

Now let’s examine the regular expression ^[0-9][0-9]\/,

which represents any string that starts with two digits and

then a “/” character. Thus, the string 03/ matches the

regular expression, but the strings 3/, B3/, and AB/ do not

match the regular expression.

Next, the regular expression ^[0-9][0-9]\/[0-9][0-9]

represents any string that starts with two digits, followed by

a “/” character, and then two more digits. Thus, the string

03/15 matches the regular expression, but the strings 3/5,

03/5, and 3/15 do not match the regular expression.

Finally, the regular expression ^[0-9][0-9]\/[0-9][0-9]\/[0-9]

[0-9][0-9][0-9]$ matches a string that

• starts with two digits

• is followed by a “/”

• has another two digits

• that are followed by “/”

• with four more digits

• and no additional characters

Listing 6.17 contains regular expressions that match

strings containing “short” months, days, and years. Launch

the code in Listing 6.17 and you will see the following

output:

=> $0: 03/15/2021 MM/DD/YYYY: 03-15-2021

=> $0: 3/15/2021 MM/DD/YYYY: 03-15-2021

=> $0: 3/15/21 MM/DD/YYYY: 03-15-2021

=> $0: 03/5/2021 MM/DD/YYYY: 03-05-2021

=> $0: 3/5/2021 MM/DD/YYYY: 03-05-2021

=> $0: 3/5/21 MM/DD/YYYY: 03-05-2021

=> $0: 3/5/212 MM/DD/YYYY: 03-05-2021

=> $0: 3/5/21Z MM/DD/YYYY: 03-05-2021

Why are the preceding pair of lines (that are shown in

bold) displayed as valid dates, even though the anchor meta

character “$” appears in the two regular expressions for

extracting the year? Unfortunately, the latter two regular

expressions appear after the initial regular expressions that

extract the day value, and those two regular expressions do

not check for invalid year formats.

Listing 6.18 displays the content of dates2.sh that detects

invalid dates, uses a short-hand notation for multiple digits,

and removes extraneous print-related statements.

LISTING 6.18: dates2.sh

cat dates.txt | awk -F"/" '

{

 DATE_FORMAT="valid"

 # step 1: check for invalid formats

 if($0 ~ /[A-Za-z]/) {

 print "invalid characters: ",$0

 DATE_FORMAT="invalid"

 } else if($0 ~ /\/[0-9]{3}$/) {

 print "invalid format: ",$0

 DATE_FORMAT="invalid"

 }

 if(DATE_FORMAT="valid") {

 # step 2: extract the month

 if($0 ~ /^[0-9][0-9]/) {

 month = substr($0,1,2)

 } else if($0 ~ /^[0-9]\//) {

 month = "0" substr($0,1,1)

 } else {

 DATE_FORMAT="invalid"

 }

 }

 if(DATE_FORMAT="valid") {

 # step 3: extract the day

 if($0 ~ /^[0-9]{2}\/[0-9]{2}/) {

 day = substr($0,4,2)

 } else if ($0 ~ /^[0-9]{2}\/[0-9]{2}\//) {

 day = "0" substr($0,4,1)

 } else {

 DATE_FORMAT="invalid"

 }

 }

 if(DATE_FORMAT="valid") {

 # step 4: extract the year

 if($0 ~ /^[0-9]{2}\/[0-9]{2}\/[0-9]{4}$/) {

 year = substr($0,7,4)

 } else if ($0 ~ /^[0-9]{2}\/[0-9]\/[0-9]{2}\/$/) {

 year = "20" substr($0,7,2)

 }

 }

 if(DATE_FORMAT="valid") {

 printf("$0: %10s => %s-%s-%s\n",$0,month,day,year)

 } else {

 print "Date format invalid:",$0

 }

}

'

Listing 6.18 is very similar to contents of Listing 6.17 with

some differences. The first difference is that Listing 6.18

checks for phone numbers that have alphabetic characters

and reports them as having an invalid format. The second

difference is the conditional code block that identifies any

phone numbers that have three digits in the right-most

position.

The third difference is a short-hand way to specify

multiple consecutive digits: [0-9]{2} matches any pair of

consecutive digits, [0-9]{3} matches any occurrence of three

consecutive digits, and so forth. Launch the code in Listing

6.18 and you will see the following output:

$0: 03/15/2021 => 03-15-2021

$0: 3/15/2021 => 03-15-2021

$0: 3/15/21 => 03-15-2021

$0: 03/5/2021 => 03-15-2021

$0: 3/5/2021 => 03-15-2021

$0: 3/5/21 => 03-15-2021

invalid format: 3/5/212

$0: 3/5/212 => 03-15-2021

invalid characters: 3/5/21Z

$0: 3/5/21Z => 03-15-2021

CONVERTING ALPHABETIC DATE FORMATS

This section shows you how to convert date formats to a

common format of the form DD-MON-YYYY. Listing 6.19

displays the content of dates2.txt that contains dates in

various formats, and the strings in bold have invalid

formats.

LISTING 6.19: dates2.txt

03/15/2021

04-SEP-2022

04-sep- 2022

04-sep- 22

05-OCT 2022

05-oct 2022

05-oct 22

06 JAN 2022

06 jan 2022

06 jnn 22

Listing 6.20 displays the content of dates3.sh that

illustrates how to remove non-digit characters from the

dates in Listing 6.10 so that they have the same format.

LISTING 6.20: dates3.sh

cat dates2.txt | tr -s ' ' |sed -e 's/- /-/g' -e 's/ /-/g' |awk -
F"-" '

BEGIN {

 months["JAN"] = "JAN"

 months["FEB"] = "FEB"

 months["MAR"] = "MAR"

 months["APR"] = "APR"

 months["MAY"] = "MAY"

 months["JUN"] = "JUN"

 months["JUL"] = "JUL"

 months["AUG"] = "AUG"

 months["SEP"] = "SEP"

 months["OCT"] = "OCT"

 months["NOV"] = "NOV"

 months["DEC"] = "DEC"

}

{

 #Valid date formats (Oracle):

 #DD-MON-YY: 04-SEP-2022

 #DD-MON-YYYY: 05-OCT-22

 $0 = toupper($0)

 DATE_FORMAT="valid"

 # step 1: extract the day:

 if($0 ~ /^[0-9]\-/) {

 day = "0" substr($0,1,1)

 } else if($0 ~ /^[0-9][0-9]\-/) {

 day = substr($0,1,2)

 } else {

 DATE_FORMAT="invalid"

 }

 if(DATE_FORMAT="valid") {

 # step 2: extract the month:

 if($0 ~ /^[0-9]{2}\-[A-Z]{3}/) {

 month = substr($0,4,3)

 } else {

 DATE_FORMAT="invalid"

 }

 }

 if(DATE_FORMAT="valid") {

 # step 3: extract the year:

 if($0 ~ /^[0-9]{2}\-[A-Z]{3}\-[0-9]{2}/) {

 year = "20" substr($0,8,2)

 } else if($0 ~ /^[0-9]{2}\-[A-Z]{3}\-[0-9]{4}/) {

 year = substr($0,8,4)

 } else {

 DATE_FORMAT="invalid"

 }

 }

 if(DATE_FORMAT="valid") {

 if(months[month] == month) {

 printf("%12s => %s-%s-%s\n",$0,month,day,year)

 } else {

 printf("Invalid month: %s-%s-%s\n",month,day,year)

 } else {

 print "Date format invalid:",$0

 }

}

'

Listing 6.20 starts with a pipe-delimited sequence of

commands that redirects the contents of the file dates2.txt to

the tr command that removes multiple consecutive

occurrences of white spaces.

Next, the output from the tr command is redirected to

the sed command that removes any white spaces that follow

the hyphen (-) character, and then replaces any white

spaces with a hyphen (-).

The output from the sed command is redirected to an awk

script that initializes an array with the three letter

abbreviations of the months of the year. This array is

referenced later in the code to detect any invalid month

formats.

The main portion of the awk script is similar to the

contents of Listing 6.27 for detecting various date formats

to initialize the day, month (as a three-letter value), and

year for each input line. Launch the code in Listing 6.20 and

you will see the following output:

 04-SEP-2022 => SEP-04-2020

 04-SEP-2022 => SEP-04-2020

 04-SEP-22 => SEP-04-2022

 05-OCT-2022 => OCT-05-2020

 05-OCT-2022 => OCT-05-2020

 05-OCT-22 => OCT-05-2022

 06-JAN-2022 => JAN-06-2020

 06-JAN-2022 => JAN-06-2020

Invalid month: JNN-06-2022

WORKING WITH DATE AND TIME DATE FORMATS

Now that you have seen code samples with dates of the

form MM:DD:YYYY, this section handles dates of the form

YYYY:MM:DD:HH:MM:SS. Although the awk-based code

sample in this section is much longer than all other code

samples in this book, it’s based on techniques that you have

already seen in previous date-related code samples. If you

do not need to delve into the details of this code sample at

this time, feel free to skip this section.

Single digit values for all fields (except the year) are

considered valid, and handling all the possible combinations

becomes quite tedious. However, the code sample in this

section shows you a shortcut that involves dynamically

modifying the input line so that it’s progressively padded as

the input string is processed in a left-to-right fashion.

To make sure this is clear, the string 3/15/22 5:5:44 is a

valid date, and as the code checks for the validity of the

individual date-related fields, the preceding string is

successively modified as follows:

3/15/22 5:5:44

03/15/22 5:5:44

03/15/2022 5:5:44

03/15/2022 5:5:44

03/15/2022 05:5:44

03/15/2022 05:05:44

As you can see, the final row in the preceding list of

dates is a “fully padded” date. This approach significantly

reduces the number of patterns that need to be checked in

order to determine whether or not a date has a valid format.

Listing 6.21 displays the content of dates-times.txt that

contains dates, and Listing 6.22 shows you the content of

date-times-padded.sh, which is an awk-based shell script that

processes the dates in Listing 6.21.

LISTING 6.21: date-times.txt

2/30/2020 15:05:44

2/30/2020 15:05:44

3/15/22 15:5:44

4/29/23 15:5:4

5/16/24 5:05:44

6/17/25 5:5:44

7/18/26 5:5:4

8/19/24 115:05:44

Notice that the first and last lines in Listing 6.21 are

invalid: the first row contains a value of 30 for February,

which is invalid for any year, and the last row contains an

invalid value for the hour.

Listing 6.22 displays the content of date-times-padded.sh

that determines which dates in Listing 6.21 have the format

YYYY:MM:DD:HH:MM:SS.

LISTING 6.22: date-times-padded.sh

cat date-times.txt | awk -F"/" '

function check_leap_year(year) {

 ###

 # A year is a leap year if the following:

 # 1) it is a multiple of 4 AND

 # 2) a century must be a multiple of 400

 # => 2000 is a leap year but 1900 is not.

 ###

 result = 0 # 0: non-leap year 1: leap year

 if((year % 4) == 0) {

 if((year % 100) == 0) {

 if((year % 400) == 0) {

 return 1 # leap year

 } else {

 return 0 # non-leap year

 }

 } else {

 return 1 # leap year

 }

 } else {

 return 0 # non-leap year

 }

}

BEGIN {

 count = 1

 for(i=0;i<12;i++) {

 months[i] = 31

 }

 # 30 days: april,june,september,november

 months[1] = 28;

 months[3] = 30;

 months[5] = 30;

 months[8] = 30;

 months[10] = 30;

 #for(i=0;i<12;i++) {

 # print "months[",i,"]:",months[i]

 #}

}

{

 ####################################

 # valid month format:

 # [0-9], [1][0-2]

 #

 # valid day format:

 # [0-9], [1][0-9], [3][0-1]

 #

 # valid year format:

 # [0-9]{2}, [2][0-9][0-9][0-9]

 #

 # Additional comments:

 # 1) 30 versus 31 days in a month

 # 2) check february: 28 vs 29 days

 ####################################

 # sample format:

 # MM/DD/YYYY HH:MM:SS

 print "=> #" count " PROCESSING:",$0

 VALID_DATE="true"

 split($0,day_time," ")

 date_part = day_time[1]

 time_part = day_time[2]

 # step 1: extract the month

 if(date_part ~ /^[0-9]\//) {

 month = "0" substr(date_part,1,1)

 #print "short month: ",month

 # insert a "0" in the date part:

 date_part = "0" substr(date_part,1,1) substr(date_part,2)

 #print "*** new date_part:",date_part

 } else if(date_part ~ /^[0-9]{2}/) {

 month = substr(date_part,1,2)

 #print "normal month: ",month

 } else {

 print "Cannot find month"

 VALID_DATE="false"

 }

 if(VALID_DATE == "true") {

 # step 2: extract the day: #03/15/2021 15:05:44

 #print "checking for day:",date_part

 if(date_part ~ /^[0-9]{2}\/[0-9]{2}/) {

 day = substr(date_part,4,2)

 #print "1normal day: ",day

 } else if (date_part ~ /^[0-9]{2}\/[0-9]/) {

 day = "0" substr(date_part,4,1)

 #print "1short day: ",day

 date_part = substr(date_part,1,3) "0" substr(date_part,4)

 #print "*** 2new date_part:",date_part

 } else if (date_part ~ /^[0-9]{1}\/[0-9]{2}/) {

 day = substr(date_part,3,2)

 #print "2normal day: ",day

 } else if (date_part ~ /^[0-9]{1}\/[0-9]/) {

 day = "0" substr(date_part,2,1)

 #print "2short day: ",day

 } else {

 print "Cannot find day"

 VALID_DATE="false"

 }

 }

 if(VALID_DATE == "true") {

 # step 3: extract the year: #03/15/2021 15:05:44

 #print "date part:",date_part # 03/15/2021

 #print "time part:",time_part # 15:05:44

 if(date_part ~ /^[0-9]{2}\/[0-9]{2}\/[0-9]{4}/) {

 year = substr(date_part,7,4)

 #print "normal year: ",year

 } else if (date_part ~ /^[0-9]{2}\/[0-9]{2}\/[0-9]{2}/) {

 year = "20" substr(date_part,7,2)

 #print "1short year: ",year

 date_part = substr(date_part,1,6) "20" substr(date_part,7)

 #print "*** 3new date_part:",date_part

 } else {

 print "Cannot find year"

 VALID_DATE="false"

 }

 }

 if(VALID_DATE == "true") {

 #print "step 4 time_part:",time_part

 # step 4: extract the hours: #15:05:44

 if(time_part ~ /^[0-9]{2}:/) {

 hours = substr(time_part,1,2)

 #print "normal hours: ",hours

 } else if(time_part ~ /^[0-9]:/) {

 hours = "0" substr(time_part,1,1)

 #print "short hours: ",hours

 time_part = "0" substr(time_part,1)

 #print "*** 3new time_part:",time_part

 } else {

 print "no matching hours"

 VALID_DATE = "false"

 }

 }

 if(VALID_DATE == "true") {

 # step 5: extract the minutes: #15:5:44

 if(time_part ~ /^[0-9]{2}:[0-9]{2}/) {

 minutes = substr(time_part,4,2)

 #print "normal minutes: ",minutes

 } else if (time_part ~ /^[0-9]{2}:[0-9]:/) {

 minutes = "0" substr(time_part,4,1)

 #print "short minutes: ",minutes

 time_part = substr(time_part,1,3) "0" substr(time_part,4)

 #print "*** 4new time_part:",time_part

 } else {

 print "no matching minutes"

 VALID_DATE = "false"

 }

 }

 if(VALID_DATE == "true") {

 # step 6: extract the seconds: #15:05:44

 if(time_part ~ /^[0-9]{2}:[0-9]{2}:[0-9]{2}/) {

 seconds = substr(time_part,7,2)

 #print "normal seconds: ",seconds

 } else if(time_part ~ /^[0-9]{2}:[0-9]{2}:[0-9]{1}/) {

 seconds = "0" substr($0,7,1)

 #print "short seconds: ",seconds

 time_part = substr(time_part,1,6) "0" substr(time_part,7)

 #print "*** 5new time_part:",time_part

 } else {

 print "no matching seconds"

 VALID_DATE = "false"

 }

 }

 if(VALID_DATE == "true") {

 result = check_leap_year(year)

 if(result == 1) {

 #print "found leap year:",year

 # is day <= 29?

 if(day <= 29) {

 print "=> VALID DAY/TIME FORMAT: ",$0

 } else {

 print "*** Leap year day out of bounds:",$0

 }

 } else {

 #print "found non-leap year:",year

 # is day <= 28?

 if(day <= 28) {

 print "=> VALID DAY/TIME FORMAT: ",$0

 } else {

 print "*** Non-leap year day out of bounds:",$0

 }

 }

 } else {

 print "invalid day/time format: ",$0

 }

 print "----------------\n"

 count += 1

}

'

Launch the code in Listing 6.22 and you will see the

following output:

=> #1 PROCESSING: 2/30/2020 15:05:44

*** Leap year day out of bounds: 2/30/2020 15:05:44

=> #2 PROCESSING: 3/15/22 15:5:44

=> VALID DAY/TIME FORMAT: 3/15/22 15:5:44

=> #3 PROCESSING: 4/29/23 15:5:4

*** Non-leap year day out of bounds: 4/29/23 15:5:4

=> #4 PROCESSING: 5/16/24 5:05:44

=> VALID DAY/TIME FORMAT: 5/16/24 5:05:44

=> #5 PROCESSING: 6/17/25 5:5:44

=> VALID DAY/TIME FORMAT: 6/17/25 5:5:44

=> #6 PROCESSING: 7/18/26 5:5:4

=> VALID DAY/TIME FORMAT: 7/18/26 5:5:4

=> #7 PROCESSING: 8/19/24 115:05:44

no matching hours

invalid day/time format: 8/19/24 115:05:44

The companion files contain date-times-padded2.sh, which

enhances date-times-padded.sh to provide addition information,

as shown here:

INVALID DATES:

8/19/24 115:05:44

2/30/2020 15:05:44

4/29/23 15:5:4

VALID DATES:

6/17/25 5:5:44

5/16/24 5:05:44

7/18/26 5:5:4

3/15/22 15:5:44

YEARS IN VALID DATES:

2022

2024

2025

2026

MONTHS IN VALID DATES:

03

05

06

07

DAYS IN VALID DATES:

15

16

17

18

WORKING WITH CODES, COUNTRIES, AND CITIES

This section shows you how to use the awk utility to

manage CSV files that contain information about countries,

cities, and telephone codes. The international telephone

codes are available online:

https://www.internationalcitizens.com/international-

calling-codes/

Listing 6.21 displays the content of country_codes.csv that

contains the international prefix for several countries. For

simplicity, the three-digit prefix has been left-padded with 0,

because some countries have a two-digit prefix and other

countries have a three-digit prefix.

LISTING 6.21: country_codes.csv

001,usa

033,france

034,spain

039,italy

044,uk

049,germany

052,mexico

081,japan

Listing 6.22 displays the content of add_country_codes.sh

that illustrates how to increment the three-digit

international prefix for a set of countries. Note that you

won’t need this code sample beyond this section. It’s

included here to show you how easily you can manipulate

the numeric values in a CSV file with the awk utility. If need

be, you can easily adapt this code to work with other CSV

files.

LISTING 6.22: add_country_codes.sh

FILE="country_codes.csv"

echo "=> display code and country:"

awk -F"," '

https://www.internationalcitizens.com/international-calling-codes/

BEGIN { code = 10000; incr = 10000 }

{

 printf("%s,%s,%d\n", $1, $2, code)

 code += incr

}

' < $FILE

echo "-----------------"

echo

echo "=> increment country code:"

awk -F"," '

BEGIN { code = 1000; incr = 1000 }

{

 printf("%d,%s\n", $1 + code, $2)

 code += incr

}

' < $FILE

Listing 6.22 initializes the variable FILE with the name of

the CSV file that contains country codes and abbreviations

for several countries. Next, an awk script contains a BEGIN

section with a loop that adds 10000 to each country code.

For example, the following two code snippets display the

“before” and “after” contains of an input line:

001,usa,10000

1001,usa

Launch the code in Listing 6.22 and you will see the

following output:

=> display code and country:

001,usa,10000

033,france,20000

034,spain,30000

039,italy,40000

044,uk,50000

049,germany,60000

052,mexico,70000

081,japan,80000

=> increment country code:

1001,usa

2033,france

3034,spain

4039,italy

5044,uk

6049,germany

7052,mexico

8081,japan

Listing 6.23 displays the content of countries_cities.csv in

which each row consists of a country and a list of cities in

that country.

LISTING 6.23: countries_cities.csv

italy,firenze,milano,roma,venezia

france,antibe,nice,paris,st_jeannet

germany,berlin,frankfurt

spain,barcelona,madrid

england,liverpool,london,manchester

mexico,mexico_city,tijuana

Listing 6.24 displays the content of

split_countries_cities.sh that illustrates how to display a list of

cities that belong to each country in countries_cities.csv.

LISTING 6.24: split_countries_codes.sh

FILE="countries_cities.csv"

awk -F"," '

{

 printf("=> CITIES in %s:\n",$1)

 for(i=2; i<=NF; i++) {

 printf("%s\n", $i)

 }

}

' < $FILE

Listing 6.24 initializes the variable FILE with the name of

the CSV file that contains country codes and abbreviations

for several countries. Next, an awk script contains a loop that

adds displays the abbreviation of each city that is listed in

the CSV file countries_cities.csv. Launch the code in Listing

6.24 and you will see the following output:

=> display code and country:

=> CITIES in italy:

firenze

milano

roma

venezia

=> CITIES in france:

antibe

nice

paris

st_jeannet

=> CITIES in germany:

berlin

frankfurt

=> CITIES in spain:

barcelona

madrid

=> CITIES in england:

liverpool

london

manchester

=> CITIES in mexico:

mexico_city

tijuana

Listing 6.25 displays the content of countries_cities2.csv in

which each row consists of a country and a list of cities in

that country.

LISTING 6.25: countries_cities2.csv

italy,firenze,milano,roma,venezia

france,antibe,nice,paris,st_jeannet

germany,berlin,frankfurt

spain,barcelona,madrid

england,liverpool,london,manchester

mexico,mexico_city,tijuana

usa,chicago,illinois,denver,colorado,seattle,washington,vancouver,w
ashington

can,vancouver,bc,edmonton,calgary,hamilton,ontario

Listing 6.26 displays the content of

split_countries_cities2.sh that illustrates how to display a list

of cities that belong to each country in countries_cities2.csv.

LISTING 6.26: split_countries_codes2.sh

FILE="countries_cities2.csv"

awk -F"," '

BEGIN { incr = 1000 }

{

 if($1 !~ /#/) {

 printf("=> CITIES in %s:\n",$1)

 for(i=2; i<=NF; i++) {

 printf("%s\n", $i)

 }

 print("------------\n")

 } else {

 #printf("=> CITIES in %s:\n",$1)

 printf("=> CITIES in %s:\n",substr($1,2))

 for(i=2; i<=NF; i+=2) {

 printf("%s,%s\n", $i,$(i+1))

 }

 print("------------\n")

 }

}

' < $FILE

Listing 6.26 initializes the variable FILE with the name of

the CSV file that contains country codes and abbreviations

for several countries. Note that this CSV file differs from a

similar CSV file with countries and country codes.

Specifically, this CSV file contains rows that have either

city/province pairs (Canada) or city/state pairs (USA).

Next, an awk script contains a BEGIN section with

conditional logic and two blocks of code. The first block of

code is for rows that start with a # symbol, which indicates

that the row contains either city/province pairs (Canada) or

city/state pairs (USA). An example of such a row is here:

#usa,chicago,illinois,denver,colorado,seattle,washington,vancouver,

washington

Note that the use of a # symbol is simply a convenient

way to differentiate these rows from the rows in the second

code block. One alternative is to specify one CSV file for the

rows that are processed in this code block and a different

CSV file for the rows that are processed in the second code

block.

As you can see in Listing 6.25, the first field $1 of such

rows contains the abbreviation of a country, and subsequent

pairs contain the location of a city in the associated country.

For example, $2 and $3 consist of a city/province pair or a

city/state pair, and this is similar for $4 and $5, for $6 and $7,

and so forth.

The second block of code processes rows whose

countries do not have a province or state designation for

each city. An example of such a row is here:

italy,firenze,milano,roma,venezia

The code in this block processes each column

sequentially and displays all of them on separate output

lines. Launch the code in Listing 6.26 and you will see the

following output:

=> CITIES in italy:

firenze

milano

roma

venezia

=> CITIES in france:

antibe

nice

paris

st_jeannet

=> CITIES in germany:

berlin

frankfurt

=> CITIES in spain:

barcelona

madrid

=> CITIES in england:

liverpool

london

manchester

=> CITIES in mexico:

mexico_city

tijuana

=> CITIES in usa:

chicago,illinois

denver,colorado

seattle,washington

vancouver,washington

=> CITIES in canada:

vancouver,bc

edmonton,calgary

hamilton,ontario

At this point, let’s summarize the files that we have

examined thus far and what we have accomplished:

• country_codes.csv

• add_country_codes.sh

• countries_cities.csv

• split_country_cities.sh

• countries_cities2.csv

• split_country_cities2.sh

We have a CSV file whose rows are country code +

country name combinations. We have CSV files with

countries and cities that belong to those countries, one of

which contains a list of cities for each country. The other

CSV file contains three types of rows:

• country and list of cities

• country and a list of city/province pairs

• country and a list of city/state pairs

DATA CLEANING ON A KAGGLE DATASET

If you want to see data cleaning performed on a “real”

dataset, you’re in luck because this section contains an awk

script that performs data cleaning on the following dataset:

https://www.kaggle.com/fehmifratpolat/marketing-

report

The awk script follows most of the data cleaning steps that

are performed in R that are discussed in this article:

https://towardsdatascience.com/cleaning-and-

preparing-marketing-data-in-r-prior-to-machine-

learning-or-analysis-ec1a12079f1

Listing 6.27 displays the content of convert_marketing.sh

that shows you how to perform various data cleaning steps,

as indicated in the comments in the code.

LISTING 6.27: convert_marketing.sh

Kaggle dataset: https://www.kaggle.com/fehmifratpolat/marketing-
report

step 1: extract the 1st, 3rd, 4th, and 7th fields:

cat mark1.csv |awk -F";" '{print $1 ":" $3 ":" $4 ":" $7}'
>mark2.csv

step 2: replace Not tracked" with "direct":

peri-Co-od;salesChannel;platformcode;marketingInvestment

date;channel;platformcode;;spend

cat mark2.csv |awk -F":" '

{

 $3 = tolower($3)

https://www.kaggle.com/fehmifratpolat/marketing-report
https://towardsdatascience.com/cleaning-and-preparing-marketing-data-in-r-prior-to-machine-learning-or-analysis-ec1a12079f1
https://www.kaggle.com/fehmifratpolat/marketing-report

 if($3 ~ /Not tracked/) {

 $3 = "direct"

 } else if($3 ~ /unpaid/) {

 $3 = "organic"

 } else if($3 ~ /Silverpop/) {

 $3 = "email"

 }

 if($4 ~ /,/) {

 split($4,arr1,",")

 $4 = arr1[1] "." arr1[2]

 }

 print $1 ":" $2 ":" $3 ":" $4

}

' >mark3.csv

step 3: replace YYYYDDMM with YYYY-MM-YY format:

cat mark3.csv |awk -F":" '

{

 year = substr($1,1,4)

 day = substr($1,5,2)

 month = substr($1,7,2)

 printf("%s-%s-%s:%s:%s:%s\n",year,month,day,$2,$3,$4)

}

' >mark4.csv

step 4: calculate subtotals based on $1+$2+$3:

cat mark4.csv |awk -F":" '

{

 fields=$1FS$2FS$3;subtotals[fields] += $4

}

step 5: display values of subtotals:

END{

 total = 0

 for (i in subtotals) {

 printf("Subtotal for %44s => %-8d\n", i, subtotals[i])

 total += subtotals[i]

 }

 printf("TOTAL REVENUE: => %44d\n",total)

}

' >mark5.csv

Although it’s not necessary to split the code into five awk

scripts, it’s easier to follow the code, and besides, you will

also have access to the intermediate files so you can

inspect their contents.

Listing 6.27 starts with Step 1 that extracts the 1st, 3rd,

4th, and 7th fields from the CSV file mark1.csv and redirects

the output to the CSV file mark2.csv, as shown here:

cat mark1.csv |awk -F";" '{print $1 ":" $3 ":" $4 ":" $7}'
>mark2.csv

Step 2 in Listing 6.27 replaces occurrences of the string

“Not tracked” with “direct,” the string “unpaid” with

“organic,” and the string “Silverpop” with the string email in

$3. In addition, the “,” that appears in $4 is replaced by a “.”

after which a new string is printed that contains the

modifications to $3 and $4. Each output line is redirected to

the CSV file mark3.csv.

Step 3 in Listing 6.27 replaces YYYYDDMM dates with a YYYY-

MM-YY format, as shown here, after which the output is

redirected to the CSV file mark4.csv:

year = substr($1,1,4)

day = substr($1,5,2)

month = substr($1,7,2)

printf("%s-%s-%s:%s:%s:%s\n",year,month,day,$2,$3,$4)

Step 4 in Listing 6.27 is probably the most interesting

code snippet in this code sample. The concatenation of the

first three fields, separated by the default field separator,

form an index for the array subtotals. Each time this

combination appears in mark4.csv, the corresponding entry in

the subtotals array is incremented with the value in $4, as

shown here:

fields=$1FS$2FS$3;subtotals[fields] += $4

After the body of this awk script has completed execution,

an END block (which is labeled Step 5) displays the values in

the subtotals array, along with the grand total, as shown

here:

total = 0

for (i in subtotals) {

 printf("Subtotal for %44s => %-8d\n", i, subtotals[i])

 total += subtotals[i]

}

After the preceding code has completed execution, the

output is redirected to the CSV file mark5.csv.

Launch the code in Listing 6.27 that generates a set of

intermediate CSV files and a final CSV file named mark5.csv. If

you want to see the first five lines from each of the

intermediate files mark1.csv, . . . , and mark5.csv that are

generated in Listing 6.27, execute a shell script that

contains the following code:

for f in 'ls mark*csv'

do

 echo "file: $f"

 head -5 $f

done

The output of the preceding code block is shown here:

file: mark1.csv

periodCode;reportGranularity;salesChannel;platformCode;channelCode;
tagCodes;marketingInvestment;impressions;clicks;visits;conversions;
deliveries;currencyCode;appliedAttributionModel;periodStartDate

20200102;Daily;online;Not
tracked;notset;;0;0;0;0;16;14;CZK;lastTouch;2020-01-
02T00:00:00.0000000

20200103;Daily;online;Not
tracked;notset;;0;0;0;0;13;13;CZK;lastTouch;2020-01-
03T00:00:00.0000000

20200104;Daily;online;Not
tracked;notset;;0;0;0;0;6;6;CZK;lastTouch;2020-01-
04T00:00:00.0000000

20200105;Daily;online;Not
tracked;notset;;0;0;0;0;1;1;CZK;lastTouch;2020-01-
05T00:00:00.0000000

file: mark2.csv

periodCode:salesChannel:platformCode:marketingInvestment

20200102:online:Not tracked:0

20200103:online:Not tracked:0

20200104:online:Not tracked:0

20200105:online:Not tracked:0

file: mark3.csv

periodCode:salesChannel:platformcode:marketingInvestment

20200102:online:not tracked:0

20200103:online:not tracked:0

20200104:online:not tracked:0

20200105:online:not tracked:0

file: mark4.csv

peri-Co-od:salesChannel:platformcode:marketingInvestment

2020-02-01:online:not tracked:0

2020-03-01:online:not tracked:0

2020-04-01:online:not tracked:0

2020-05-01:online:not tracked:0

file: mark5.csv

Subtotal for 2020-12-02:online:organic => 0

Subtotal for 2020-31-01:online:not tracked => 0

Subtotal for 2020-10-01:online:facebookbusinessadsmanager => 130

Subtotal for 2020-06-01:online:sklik => 914

Subtotal for 2020-24-03:online:rtbhouse => 0

TOTAL REVENUE: => 1227857

SUMMARY

This chapter started with a brief description of data

cleaning, followed by examples of replacing NULL values with

numeric values, replacing multiple values with a single

value, and converting strings to date values.

Next, you saw how to use the sed command line utility to

replace multiple delimiters in a CSV file with a single

delimiter. You also learned how to use the awk command line

utility to restructure a CSV file to create a file whose rows

have the same number of fields.

In addition, you saw how to perform various tasks in SQL,

and then how to perform these tasks in a Pandas data

frame.

T

CHAPTER 7

DATA WRANGLING

his chapter is primarily about data wrangling, along

with code samples that leverage technical concepts

that you learned in previous chapters in this book.

The first part of this chapter briefly discusses the

term “data wrangling,” which means different things to

different people, so it’s worthwhile establishing some

context for this term. Although the terminology regarding

data wrangling is specific to this book and not necessarily

standard terminology, the distinction can be helpful when

you are involved in discussions that necessitate finer

grained terminology.

The second part of this chapter contains examples of

data cleaning with CSV files that contain fields that are split

on two separate lines. There are several such variants that

you will see, whose solutions involve Pandas or the csv

command line utility. In this section, you will learn how to

convert an ill-formatted CSV file (containing a quoted field

that is split on two lines) into a proper CSV file. However,

this code sample is marked as “optional” because the

solution involves a rather lengthy awk-based shell script.

The third part of this chapter introduces a project that

involves creating a CSV file that contains an event schedule

for musical bands and their future concert performances.

This project emulates a scenario that consists of multiple

files in various formats, such as XML documents, text data,

CSV files, and data in a MySQL database table. The goal is

to transform the files and combine them to create a single

CSV file.

WHAT IS DATA WRANGLING?

Data wrangling means different things to different

people. Some online articles suggest that data wrangling

involves a set of steps, and other articles suggest that data

wrangling involves converting datasets from one format to a

different format. The following Web page describes data

wrangling as a six-step process:

https://en.wikipedia.org/wiki/Data_wrangling

In addition to the steps outlined in the preceding link,

data wrangling can also involve the following tasks

(performed in the code samples in Chapter 7):

• transforming datasets from one format into another

format (convert)

• creating new datasets from subsets of columns in

existing datasets (extract)

As you can see, the preceding steps differentiate

between converting data to a different format versus

extracting data from multiple datasets to create new

datasets. The conversion process can be considered a data

cleaning task if only the first step is performed (i.e., there is

no extraction step).

In the previous chapter, you learned about data cleaning,

along with a collection of Python-based code samples and

Unix shell scripts to perform data cleaning tasks. By

https://en.wikipedia.org/wiki/Data_wrangling

contrast, data wrangling involves multiple steps that can

include transforming one or more files. The following

subsection provides a more detailed distinction between

data cleaning and data transformation.

Data Transformation: What Does This Mean?

In general, data cleaning involves a single data source

(not necessarily in a CSV format), with some type of

modification to the content of the data source (e.g., filling in

missing values and changing date formats) without creating

a second data source.

For example, suppose that the data source is a MySQL

table called employees that contains employee-related

information. After data cleaning tasks on the employees table

are completed, the result will still be named the employees

table. In database terminology, data cleaning is somewhat

analogous to executing a SQL statement that involves a

SELECT on a single table.

However, if two CSV files contain different date formats

and you need to create a single CSV file that is based on the

date columns, then there will be some type of conversion

process that could be one of the following:

• convert the first date format to the second date

format

• convert the second date format to the first date

format

• convert both date formats to a third date format

In the case of financial data, you are likely to also

encounter different currencies, which involves a conversion

rate between a pair of currencies. Since currency conversion

rates fluctuate, you need to decide the exchange rate to use

for the data, which can be

• the exchange rate during the date that the CSV files

were generated

• the current currency exchange rate

• some other mechanism

In addition, you might also need to convert the CSV files

to XML documents, where the latter might be required to

conform to an XML Schema, and perhaps also conform to

XBRL, which is a requirement for business reporting

purposes:

https://en.wikipedia.org/wiki/XBRL

As mentioned earlier, data transformation can involve

two or more data sources to create yet another data source

whose attributes are in the required format. Here are four

scenarios of data transformation with just two data sources

A and B, where data from A and from B are combined to

create data source C, where A, B, and C can have different

file formats:

• all attributes in A and all attributes in B

• all attributes in A and all attributes in B

• a subset of the attributes in A and all attributes in B

• a subset of the attributes in A and a subset of

attributes in B

In database terminology, data transformation is

somewhat analogous to executing a SQL statement that

involves a SELECT on two or more database tables with a JOIN

clause. Such SQL statements typically involve a subset of

columns from each database table, which would correspond

to selecting a subset of the features in the data sources.

There is also the scenario involving the concatenation of

two or more data sources. If all data sources have the same

attributes, then their concatenation is straightforward, but

https://en.wikipedia.org/wiki/XBRL

you might need to check for duplicate values. For example,

if you want to load multiple CSV files into a database table

that does not allow duplicates, then one solution involves

concatenating the CSV files from the command line and

then excluding the duplicate rows.

The preceding concatenation task can be easily

performed. Suppose that you have the following set of CSV

files (all of which have the same attributes) emp1.csv, emp2.csv

. . . emp100.csv. Concatenate these files and exclude duplicate

rows by creating a shell script called concat.sh with the

following contents:

for f in `ls emp*csv`

do

 cat $f

done

Now make sure that the shell script is executable:

chmod +x concat.sh

Launch the shell script concat.sh that redirects its output

to the sort command and then redirects its output to the uniq

command, with the final output redirected to the CSV file

all_emps.csv:

./concat.sh | sort | uniq > all_emps.csv

At this point you might be able to load the CSV file

all_emps.csv into a MySQL table, provided that that table is

not a “child” table of another table, with a CONSTRAINT

condition on the rows of the child table. For example, a

customers table typically has a one-to-many relationship with

a purchase_orders table, which means that you cannot insert

rows in the latter table if they do not have an associated

customer row in the customers table.

When in doubt, try loading the CSV file into an

appropriate table. If you encounter any errors, make the

necessary corrections until the loading process is successful.

This concludes the discussion regarding the first section

for data wrangling, and the next several sections contain

additional data cleaning code samples, after which you will

see data wrangling code samples.

CSV FILES WITH MULTI-ROW RECORDS

This section shows you how to work with CSV files that

contain records that are split across two lines.

Listing 7.1 displays the content of multi_line.csv that will

be reformatted so that each record occupies a single line:

one solution involves Pandas and another solution involves

the CSV library.

LISTING 7.1: multi_line.csv

id,fname,lname

1,donna,rhymes?

2,dave,"jones$"

3,john,van jones.#

4,stevie,"ray

vaughn#"

Pandas Solution (1)

Listing 7.2 displays the content of pandas_multi_line.py that

reformats the contents of multi_line.csv so that each record

occupies a single row.

LISTING 7.2: pandas_multi_line.py

import pandas as pd

filename = 'multi_line.csv'

data = pd.read_csv(filename)

print("data:")

print(data)

Listing 7.2 starts with an import statement and then

initializes the variable filename with the name of the CSV file

for this code sample. The next snippet populates the Pandas

data frame data and then displays its contents. Launch the

code in Listing 7.2 and you will see the following output:

data:

 id fname lname

0 1 donna rhymes?

1 2 dave jones$

2 3 john van jones.#

3 4 stevie ray\nvaughn#

4 5 ralph emerson#

As you can see, the preceding output contains multiple

metacharacters. If need be, you can create a one-line sed

command to replace the metacharacters with one

metacharacter of your choice. Check Chapter 6 for a similar

task that involves the sed command.

Notice that the output from Listing 7.2 is not a true CSV

file. However, we can generate a CSV file, as shown in the

next section.

Pandas Solution (2)

Listing 7.3 displays the content of pandas_multi_line2.py

that reformats the contents of multi_line.csv so that each

record occupies a single row and saves the data as a CSV

file.

LISTING 7.3: pandas_multi_line2.py

import sys

import pandas as pd

filename = 'multi_line.csv'

data = pd.read_csv(filename)

remove the "\n" character from the data:

columns=["id","fname","lname"]

data2 = data[columns].replace('\\n',' ', regex=True)

save to a CSV file:

data2.to_csv("multi_line2.csv",index=False)

Listing 7.3 starts with an import statement and then

initializes the variable filename with the name of the CSV file

for this code sample. The next snippet populates the Pandas

data frame data and then initializes the Pandas data frame

data2 with the contents of data without the linefeed

characters. The final code snippet saves data2 to the CSV file

multi_line2.csv. Launch the code in Listing 7.3 and you will

see a new file multi_line2.csv, whose contents are displayed

here:

id,fname,lname

1,donna,rhymes?

2,dave,jones$

3,john,van jones.#

4,stevie,ray vaughn#

5,ralph,emerson#

As you can see, the preceding output contains multiple

meta characters that can be replaced with the same column

delimiter using the same technique in the sed-based

delimiters1.sh shell script.

CSV Solution

In case you have not already done so, install the CSV

Python library with this command:

pip3 install csv

Listing 7.4 displays the content of csv_multi_line.py that

reformats the contents of multi_line.csv so that each record

occupies a single row.

LISTING 7.4: csv_multi_line.py

import csv

filename = 'multi_line.csv'

with open(filename, newline='', encoding='utf-8') as f:

 data = csv.reader(f, delimiter=',', quotechar='"',

 quoting=csv.QUOTE_MINIMAL)

 for line in data:

 print("line:",line)

Listing 7.4 starts with an import statement and then

initializes the variable filename with the name of the CSV file

for this code sample. The next snippet opens the CSV file

and initializes the Pandas data frame data with its contents.

The final code block contains a loop that iterates through

the rows of the data frame and prints their contents. Launch

the code in Listing 7.4 and you will see the following output:

line: ['id', 'fname', 'lname']

line: ['1', 'donna', 'rhymes?']

line: ['2', 'dave', 'jones$']

line: ['3', 'john', 'van jones.#']

line: ['4', 'stevie', 'ray\nvaughn#']

line: ['5', 'ralph', 'emerson#']

CSV FILES, MULTI-ROW RECORDS, AND THE AWK

COMMAND

This section shows you how to work with CSV files that

contain records that are defined in multiple lines and

records are separated by a blank line.

Listing 7.5 displays the content of multi_line.csv that will

be reformatted so the each record occupies a single line:

one solution involves Pandas and another solution involves

the CSV library.

LISTING 7.5: multi_line_records.csv

nancy jones

marketing dept

san francisco

dave smith

sales dept

chicago

steve anderson

marketing dept

seattle

Listing 7.6 displays the content of multi_line_records.sh

that reformats the contents of multi_line.csv so that each

record occupies a single row.

LISTING 7.6: multi_line_records.sh

Records are separated by blank lines.

input_file="multi_line_records.csv"

awk '

BEGIN { RS = "" ; FS = "\n" }

{

 printf("%s,%s,%s\n", $1, $2, $3)

}

' < $input_file

Listing 7.6 starts by initializing the variable input_file with

the name of the CSV file with this code sample. The next

portion of Listing 7.6 contains an awk script that prints the

contents of each input line as a comma-separated line,

which can be redirected to a CSV file. Launch the code in

Listing 7.6 and you will the following output:

nancy jones,marketing dept,san francisco

dave smith,sales dept,chicago

steve anderson,marketing dept,seattle

QUOTED FIELDS SPLIT ON TWO LINES (OPTIONAL)

This section is marked “optional” primarily because it

involves a custom CSV file that you might not encounter in

your daily routine. Specifically, the CSV file contains multiple

rows with a single field as well as a quoted field that is split

on two lines. Moreover, the shell script in this section is an

awk-based solution that is also the most complex awk example

in this book. If you are new to the awk command, please read

at least a portion of the appendix that contains awk-based

code samples, which will facilitate your understanding of the

code in this section.

The awk utility is a very powerful utility for processing text

files through intricate and precise conditional logic. In

particular, you can easily extract substrings of fields,

perform compound conditional logic that involves adjacent

fields, and also remove linefeed characters from the rows in

text files.

By now you probably realize that the awk utility is

extremely useful for data cleaning as well as wrangling that

involves transforming CSV files (or general text files) with

irregular structures into formats that are then easily handled

through Pandas. Consider the ease with which awk calculated

subtotals in the final example in Chapter 6: this was

accomplished with a single line of code. For some people,

awk is a “go to” command line utility that performs

preprocessing steps on practically any type of text file or

CSV file.

Portions of Listing 7.7 are quite complex and even non-

intuitive, which tends to occur when you need a character-

by-character analysis as well as a context dependency that

involves maintaining and checking “state” information

about previous characters as well as the current character,

both of which occur in this code sample.

Listing 7.7 displays the content of multi_line3.csv and

Listing 7.8 displays the content of split_quotes.sh that

reformats the contents of multi_line3.csv so that each record

contains exactly three fields.

LISTING 7.7: multi_line3.csv

id,fname,lname

1,

donna,

rhymes?

2,dave,"jones$"

3,john,van jones.#

4,stevie,"ray

vaughn#"

5,ralph,emerson#

LISTING 7.8: split_quotes.sh

Records are separated by blank lines

PART 1: create a single string

interfile1="temp_single_line1.csv"

interfile2="temp_single_line2.csv"

interfile3="temp_single_line3.csv"

csv_file="multi_line3.csv"

cat $csv_file | awk -F"," '

BEGIN { count = 1; colCount = 3 }

{

 printf("%s", $0)

 if($0 !~ /,$/) {

 printf(",")

 } else {

 if($0 !~ /^[0-9]/) {

 if(count % colCount == 0) {

 printf(",")

 }

 count += 1

 }

 }

}' > $interfile1

id,fname,lname,1,donna,rhymes?,2,dave,"jones$",3,john,van
jones.#,4,stevie,"ray,vaughn#",5,ralph,emerson#,

PART 2: replace patterns like "abc,def" with "abcZdef"

cat $interfile1 | awk -F"," '

{

 for(i=1; i<=NF; i++) {

 if($i ~ /^"/ && $(i+1) ~ /"$/) {

 printf("%sZ",$i)

 } else {

 printf("%s,",$i)

 }

 }

}

' > $interfile2

PART 3: ensure that each line contains three fields

cat $interfile2 | awk -F',' '

BEGIN { start_quote = 0; end_quote = 0; quote = 0; colCount = 3 }

{

 for(i=1; i<=NF; i++) {

 if($i ~ /^"/ && $i ~ /"$/) {

 printf("%s",$i)

 }

 else if($i !~ /^"/ && $i !~ /"$/) {

 printf("%s,", $i)

 }

 else {

 if($i ~ /^"/) {

 printf("%s,",$i)

 quote = 1

 start_quote = 1

 } else {

 if($i ~ /"$/) {

 printf("%s",$i)

 quote = 1

 end_quote = 1

 }

 }

 }

 if(quote == 0) {

 if(i % colCount == 0) {

 print ""

 }

 } else {

 if(start_quote == 1 && end_quote == 1) {

 quote = 0

 start_quote = 0

 end_quote = 0

 }

 }

 }

}

' > $interfile3

cat $interfile3 | sed -e 's/Z/,/' -e '/^,,/d' -e 's/,$//'

Listing 7.8 initializes three variables with the names of

three CSV files of the form temp_single_linex.csv, where x is

replaced with 1, 2, and 3, as well as initializing the variable

csv_file with the CSV file multi_line3.csv.

Next, Listing 7.8 contains (“PART 1”) an awk script with a

BEGIN block that prints each input line, and then performs the

following conditional logic. If the input line does not

terminate with a “,” then a “,” is printed. Otherwise, if the

input line does not start with a digit and the value of count

is a multiple of 3, then a “,” is printed, as shown here:

if($0 !~ /^[0-9]/) {

 if(count % colCount == 0) {

 printf(",")

 }

 count += 1

}

As you can see, the preceding code block is reminiscent

of the logic in the shell script delimiter1.sh in Chapter 6.

The next portion of Listing 7.8 (“PART 2”) is another awk

script whose purpose is to replace a nested “,” with the

letter Z. The choice of the letter Z is arbitrary, and you can

replace it with another character or string that does not

appear in the CSV file.

The preceding logic detects a nested “,” by setting the

variables start_quote and end_quote to the value 1 whenever a

field contains a start quote and end quote, respectively. The

code for making the preceding determination involves

checking the contents of the current field with the contents

of the next field, as shown here:

if($i ~ /^"/ && $(i+1) ~ /"$/) {

As you can see, the preceding code snippet checks if

field i starts with a quote (“) and also if field (i+1) ends with

a quote (“), in which case the letter Z is printed.

The next portion of Listing 7.8 (“PART 3”) is an awk script

whose purpose is to print output lines that contain three

fields. Fields that contain no quotes or fields that contain

balanced quotes are printed as-is. Other fields are checked

for start quotes and end quotes. Whenever the loop variable

i is a multiple of 3, a linefeed is printed to start the next

output line on a separate line. Additional conditional logic

determines when to reset the variables start_quote and

end_quote to 0.

The last portion of Listing 7.8 replaces the character Z

with a comma (“,”), removes initial occurrences of “,,” in

each row, and removes any trailing “,” characters, as shown

here:

cat $interfile3 | sed -e 's/Z/,/' -e '/^,,/d' -e 's/,$//'

Launch the code in Listing 7.8 and you will the following

output:

id,fname,lname

1,donna,rhymes?

2,dave,"jones$"

3,john,van jones.#

4,stevie,"ray,vaughn#"

5,ralph,emerson#

OVERVIEW OF THE EVENTS PROJECT

As you saw in the introduction for this chapter, this

section contains a project to generate a CSV file that

contains the details of the concerts (including the dates and

locations) pertaining to various music bands that are

scheduled to perform in different countries.

Although this project might appear to be straightforward,

there are some tedious details, such as which programming

language (Unix shell programming, Python, Java, or perhaps

other languages) to adopt for transforming each data source

into a CSV file.

Why This Project?

Before delving into the details, you might be pondering

this legitimate question: why create a project that involves

“excessive” complexity? The intent is to simulate a scenario

in which you will be required to work with text files that are

in different formats, which might be file formats that are

unfamiliar to you, and perhaps even file formats that you

wish could be avoided.

From another perspective, this project is intended to take

you out of your comfort zone, for the purpose of enhancing

your technical skills. As such, the nature of the project is of

secondary importance. If you prefer, you could easily

replace music bands with soccer clubs from countries

throughout the world or chess tournaments involving chess

players from various countries.

Returning to the project: the transformation from the

source files to CSV files is performed via a mixture of shell

scripts, Python scripts, and Java code. As you learn how to

convert each source file into a CSV-based file using different

technologies, you can assess their suitability for future

tasks. For example, the Python code and the shell script

code that solve the same task have approximately the same

length, but you need to take into account the readability

and maintainability of the code.

By way of comparison, the Python code for converting an

XML document to a CSV file is much shorter than the

corresponding Java code, which is one of several factors

involved in deciding which technology to use for converting

the various files to a common CSV format.

Indeed, there are multiple solutions that are possible for

this project, and the “best” implementation is the one that

works best for your requirements. Perhaps the central idea

of this project is to illustrate a key aspect of data wrangling:

how to transform data sources to create a new data source

that is derived from the initial set of data sources.

For your convenience, this book contains an appendix

that discusses the awk command line utility, which contains

short code samples that illustrate how to leverage the

functionality of awk.

Project Tasks

This project requires several CSV files to maintain

information such as countries, cities, venues, and dates for

concert events. Some of the tasks are

• Step 1: Populate CSV file with countries and

international codes

• Step 2: Populate CSV file with list of cities per country

• Step 3: Generate city codes based on country codes

• Step 4: Generate SQL file to populate city_code table in

MySQL

• Step 5: Convert band-related information to a CSV file

• Step 6: Convert band-related information to a CSV file

• Step 7: Generate COE (calendar of events) as a CSV

file

The code samples that perform each of the preceding

tasks are listed here:

• Step 1: manual process

• Step 2: manual process

• Step 3: construct_city_codes.py (Python)

• Step 4: city_codes_sql.sh (awk script)

• Step 5: BandsToCSV.java (Java program)

• Step 6: generate_coe.py (Python)

• Step 7: generate_project.sh (shell script)

In some cases, there is more than one code sample to

perform a given task. For example, Step 5 can also be

performed with the Python file bands_to_csv.py.

Sample data or code fragments are generated in each of

the preceding steps, as well as the steps that are performed

manually:

• 001,usa

• 039,100,firenze

• france,antibe,nice,paris,st_jeannet

• INSERT INTO city_codes VALUES (039,100,firenze);

• 100,The Data Wranglers,Dave Pallai

Just to be sure it’s clear: most of the steps in this project

must be performed in the order that they are shown in the

preceding list. The exception is Step 4, which can be at any

point after Step 3.

Generate Country Codes

Among the various ways to generate a unique id for a

country, a simple way to do so involves identifying each

country by its international prefix for telephone numbers,

which will be unique. In this project, the country_codes.csv is

created manually by performing an online lookup for links

that contain this information. For example, Listing 7.9

displays the contents of country_codes.csv with the country

names and their corresponding international codes for this

project.

LISTING 7.9: country_codes.csv

001,usa

033,france

034,spain

039,italy

044,uk

049,germany

052,mexico

081,japan

Prepare a List of Cities in Countries

Listing 7.10 displays the contents of countries_cities.csv

with country names and a list of cities that belong to those

countries.

LISTING 7.10: countries_cities.csv

italy,firenze,milano,roma,venezia

france,antibe,nice,paris,st_jeannet

germany,berlin,frankfurt

spain,barcelona,madrid

uk,liverpool,london,manchester

mexico,mexico_city,tijuana

GENERATING CITY CODES FROM COUNTRY CODES:

AWK

Listing 7.11 displays the content of construct_city_codes.sh

that illustrates how to generate a unique code for every city

that belongs to a given country.

LISTING 7.11: construct_city_codes.sh

FILE1="country_codes.csv"

FILE2="countries_cities.csv"

rm -f city_codes.csv

awk -F"," '

BEGIN {

 FS=","; OUT_FILE="city_codes.csv";

 prev_name = ""; city_name = "";

 start_code=100; curr_code = 100;

 city_code = ""; incr_code = 100

 printf("=> BEGIN-PROCESSING: %s\n",ARGV[1])

 while(getline line < ARGV[1]){

 #format: country-code,country-name

 split(line,data)

 code = data[1]

 country = data[2]

 #printf("code: %s country: %s\n",code,country)

 country_code[country] = code

 code_country[code] = country

 }

 close(ARGV[1])

}

##

read each line from countries_cities.csv

split each line into a list of cities

generate a city code that contains:

country_code, curr_code, city_name

sample line in countries_cities.csv:

italy,firenze,milano,roma,venezia

##

{

 #sample: italy,firenze,milano,roma,venezia

 split($0,data)

 code = data[1]

 country = data[2]

 #printf(" code = %s country = %s\n", code, country)

 #printf("=> CHECK CODE FOR: x %s x\n", country_code[code])

 if(country_code[country] == "") {

 printf("=> MAIN-CITIES in %s:\n",$0)

 curr_code = start_code

 for(i=2; i<=NF; i++) {

 city_code = country_code[$1] "_" curr_code "_" $i

 printf("=> constructed city_code:%s\n",city_code)

 print city_code >> OUT_FILE

 curr_code += incr_code

 }

 if(curr_name == "") {

 curr_name = $1

 } else {

 if(curr_name != $1) {

 # processing a different country:

 prev_name = curr_name

 curr_name = $1

 curr_code = start_code

 }

 }

 if(city_code == 0) city_code = start_code

 } else {

 #printf("=> SKIPPING INVALID LINE: %s\n",$0)

 }

}

' $FILE1 $FILE2

Listing 7.11 initializes the variables IN_FILE1 and IN_FILE2

with the names of two CSV files country_codes.csv and

countries_cities.csv, followed by an awk script that initializes

several string variables and numeric variables that are

explained later.

Next, Listing 7.11 contains an awk script with a BEGIN block

that contains a loop that reads the contents of the file

country_codes.csv whose rows contain a country name and the

associated three-digit code for the country. These pairs of

values are used to populate the dictionaries country_code and

code_country. The keys for the country_code dictionary are the

names of the countries, and the values are the three-code

numeric codes, whereas the keys and values for the

code_country dictionary are reversed.

The next block of code is the main execution block of the

awk script, which involves conditional logic and a large block

of code. The reason for the conditional logic is that awk will

process both input files that are specified at the end of the

script regardless of whether they are processed in the BEGIN

block:

}

' $IN_FILE1 $IN_FILE2

Due to the nature of awk, Listing 7.11 processes IN_FILE1

twice: once in the BEGIN block and again in the main

execution block (is this a quirk of awk or just a normal

feature?).

Hence, the code in the main block must skip the rows in

IN_FILE1 and process only the rows in IN_FILE2. The way to

skip IN_FILE1 is very simple: the rows in IN_FILE1 are of the

form country_code,country_abbreviation (such as 001,usa), and the

code 001 does not have an entry in the country_code dictionary.

Consequently, only the rows in the CSV file IN_FILE2 satisfy

this condition:

if(country_code[country] == "") {

The code inside this if statement contains a loop that

constructs a city code for each city that is listed in each row

of IN_FILE2. The key idea is that a city code for each city is

constructed by concatenating its country code, a generated

number that’s based on the value of curr_code, and the name

of the city itself. For example, the following line specifies

Italy (whose country code is 039) as well as four cities:

italy,firenze,milano,roma,venezia

Consequently, the city code for each of the cities in Italy

in the preceding row are as follows:

039_100_firenze

039_200_milano

039_300_roma

039_400_venezia

Launch the code in Listing 7.11 and you will see the

following output:

=> BEGIN-PROCESSING: country_codes.csv

=> MAIN-CITIES in italy,firenze,milano,roma,venezia:

=> constructed city_code:039_100_firenze

=> constructed city_code:039_200_milano

=> constructed city_code:039_300_roma

=> constructed city_code:039_400_venezia

=> MAIN-CITIES in france,antibe,nice,paris,st_jeannet:

=> constructed city_code:033_100_antibe

=> constructed city_code:033_200_nice

=> constructed city_code:033_300_paris

=> constructed city_code:033_400_st_jeannet

=> MAIN-CITIES in germany,berlin,frankfurt:

=> constructed city_code:049_100_berlin

=> constructed city_code:049_200_frankfurt

=> MAIN-CITIES in spain,barcelona,madrid:

=> constructed city_code:034_100_barcelona

=> constructed city_code:034_200_madrid

=> MAIN-CITIES in uk,liverpool,london,manchester:

=> constructed city_code:044_100_liverpool

=> constructed city_code:044_200_london

=> constructed city_code:044_300_manchester

=> MAIN-CITIES in mexico,mexico_city,tijuana:

=> constructed city_code:052_100_mexico_city

=> constructed city_code:052_200_tijuana

Listing 7.12 displays the content of city_codes.csv that is

generated from the code in Listing 7.11.

LISTING 7.12: city_codes.csv

039_100_firenze

039_200_milano

039_300_roma

039_400_venezia

033_100_antibe

033_200_nice

033_300_paris

033_400_st_jeannet

049_100_berlin

049_200_frankfurt

034_100_barcelona

034_200_madrid

044_100_liverpool

044_200_london

044_300_manchester

052_100_mexico_city

052_200_tijuana

GENERATING CITY CODES FROM COUNTRY CODES:

PYTHON

Listing 7.13 displays the content of construct_city_codes2.py

that illustrates how to generate a unique code for every city

that belongs to a given country.

LISTING 7.13: construct_city_codes2.py

import csv

FILE1="country_codes.csv"

FILE2="countries_cities.csv"

OUTFILE1="python_city_codes.txt"

OUTFILE2="python_city_codes.csv"

OUTFILE3="python_city_codes.sql"

prev_name = ""

city_name = ""

curr_name = ""

start_code = 100

curr_code = 100

city_code1 = ""

city_code2 = ""

incr_code = 100

code_country = {}

country_code = {}

STEP 1: read file with code and country values:

print("=> BEGIN-PROCESSING:",FILE1)

with open(FILE1, mode ='r')as file:

 # reading the CSV file

 csvFile = csv.reader(file)

 # displaying the contents of the CSV file

 for line in csvFile:

 code = line[0]

 country = line[1]

 country_code[country] = code

 code_country[code] = country

STEP 2: read file countries and cities:

##

read each line from countries_cities.csv

split each line into a list of cities

generate a city code that contains:

country_code, curr_code, city_name

sample line in countries_cities.csv:

italy,firenze,milano,roma,venezia

##

print("=> BEGIN-PROCESSING:",FILE2)

#sample: italy,firenze,milano,roma,venezia

with open(FILE2, mode ='r')as file:

 # reading the CSV file

 csvFile = csv.reader(file)

 # open two output files:

 # create txt_writer1:

 txt_writer1 = open(OUTFILE1,'w')

 # create csv_writer2:

 csv_writer2 = open(OUTFILE2,'w')

 # create sql_writer3:

 sql_writer3 = open(OUTFILE3,'w')

 for line in csvFile:

 country = line[0]

 code = country_code[country]

 #print("full line:",line)

 #print(" code = ",code," country = ",country)

 #print("=> MAIN-CITIES in:",line)

 curr_code = start_code

 column_count = len(line)

 for i in range(2,column_count):

 city_code1 = str(code) + "_" +

 str(curr_code) + "_" + str(line[i])

 city_code2 = str(code) + "," +

 str(curr_code) + "," + str(line[i])

 print("=> constructed city_code1:",city_code1)

 # generate SQL statement from city code:

 sql_stmt = 'INSERT INTO city_codes VALUES ('

 sql_stmt += str(code)+','+str(curr_code)+',"'+line[i]+'");\n'

 # print SQL statement to SQL file:

 sql_writer3.write(sql_stmt)

 # write city code to CSV file:

 txt_writer1.write(city_code1+"\n")

 #curr_code += incr_code

 # write city code to TXT file:

 csv_writer2.write(city_code2+"\n")

 curr_code += incr_code

 if(curr_name == None):

 curr_name = line[1]

 else:

 if(curr_name != line[1]):

 # processing a different country:

 prev_name = curr_name

 curr_name = line[1]

 curr_code = start_code

 if(city_code1 == ""): city_code1 = start_code

 if(city_code2 == ""): city_code2 = start_code

STEP 3: close the city_code file:

#city_code_file.close()

Listing 7.13 contains the Python-based counterpart to

Listing 7.11 that contains an awk-based shell script for

generating city codes. Since you are probably less familiar

with shell programming than Python, Listing 7.11 contains a

detailed explanation of the code, whereas a detailed

explanation is omitted for the Python code. Since the flow of

logic is identical, the main difference is the language-

specific syntax, which you can compare in a line-by-line

fashion. If you launch the code in Listing 7.13 you will see

essentially the same output as Listing 7.12.

There is one significant difference between Listing 7.13

and Listing 7.12. The code snippets shown in bold in Listing

7.13 generate SQL statements for inserting a row into the

city_codes table, which is not created in this listing (but you

could add that code if you want to do so). Each SQL

statement is appended to the file python_city_codes.sql, a

portion of which is as follows:

INSERT INTO city_codes VALUES (039,100,"milano");

INSERT INTO city_codes VALUES (039,200,"roma");

INSERT INTO city_codes VALUES (039,300,"venezia");

INSERT INTO city_codes VALUES (033,100,"nice");

INSERT INTO city_codes VALUES (033,200,"paris");

Now that you have seen two solutions for generating city

codes, you can use your preferred solution as a guide to

help you navigate through the other solution.

GENERATING SQL STATEMENTS FOR THE CITY_CODES

TABLE

Listing 7.14 displays the content of city_codes_sql.sh that

creates the file city_codes.sql, which contains SQL statements

for creating the table city_codes with values from the CSV file

city_codes.csv.

LISTING 7.14: city_codes_sql.sh

OUTFILE="city_codes.sql"

rm -f OUTFILE

echo "USE mytools;" > $OUTFILE

echo "DROP TABLE IF EXISTS city_code;" >> $OUTFILE

echo "CREATE TABLE city_codes (city_code CHAR(30));" >> $OUTFILE

for line in 'cat city_codes.csv'

do

 echo "INSERT INTO city_codes VALUES ($line);" >> $OUTFILE

done

Listing 7.15 displays the content of city_codes.sql that is

generated by the shell script city_codes_sql.sh.

LISTING 7.15: city_codes.sql

OUTFILE="city_codes.sql"

USE mytools;

DROP TABLE IF EXISTS city_code;

CREATE TABLE city_codes (city_code CHAR(30));

INSERT INTO city_codes VALUES (039_100_firenze);

INSERT INTO city_codes VALUES (039_200_milano);

INSERT INTO city_codes VALUES (039_300_roma);

INSERT INTO city_codes VALUES (039_400_venezia);

INSERT INTO city_codes VALUES (033_100_antibe);

INSERT INTO city_codes VALUES (033_200_nice);

INSERT INTO city_codes VALUES (033_300_paris);

INSERT INTO city_codes VALUES (033_400_st_jeannet);

INSERT INTO city_codes VALUES (049_100_berlin);

INSERT INTO city_codes VALUES (049_200_frankfurt);

INSERT INTO city_codes VALUES (034_100_barcelona);

INSERT INTO city_codes VALUES (034_200_madrid);

INSERT INTO city_codes VALUES (044_100_liverpool);

INSERT INTO city_codes VALUES (044_200_london);

INSERT INTO city_codes VALUES (044_300_manchester);

INSERT INTO city_codes VALUES (052_100_mexico_city);

INSERT INTO city_codes VALUES (052_200_tijuana);

GENERATING A CSV FILE FOR BAND MEMBERS (JAVA)

Listing 7.16 displays the content of bands.xml and Listing

7.17 displays the content of BandsToCSV.java that illustrates

how to convert the XML file to a CSV file.

LISTING 7.16: bands.xml

<bands>

 <band>

 <band_id>

 100

 </band_id>

 <band_name>

 The Data Wranglers

 </band_name>

 <band_member>

 Dave Pallai

 </band_member>

 <band_member>

 Jennifer Blaney

 </band_member>

 </band>

 <band>

 <band_id>

 200

 </band_id>

 <band_name>

 The Data Cleaners

 </band_name>

 <band_member>

 Raymond Reddington

 </band_member>

 <band_member>

 Scary Joe

 </band_member>

 <band_member>

 The Smoother

 </band_member>

 </band>

</bands>

LISTING 7.17: BandsToCSV.java

import csv

import org.w3c.dom.Document;

import org.w3c.dom.Element;

import org.w3c.dom.Node;

import org.w3c.dom.NodeList;

import org.xml.sax.SAXException;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.ParserConfigurationException;

import java.io.File;

import java.io.FileWriter;

import java.io.IOException;

import java.io.InputStream;

public class BandsToCSV

{

 private static final String FILENAME = "bands.xml";

 public static void main(String[] args) {

 String filename = "bandmembers.csv";

 File outfile = null;

 FileWriter csvWriter = null;

 // 1) create a file object:

 outfile = new File(filename);

 // 2) create a FileWriter object:

 try {

 csvWriter = new FileWriter("bandmembers.csv");

 } catch (IOException e) {

 System.out.println("An error occurred:");

 e.printStackTrace();

 }

 // 3) process the XML file:

 DocumentBuilderFactory dbf =

 DocumentBuilderFactory.newInstance();

 try {

 DocumentBuilder db = dbf.newDocumentBuilder();

 Document doc = db.parse(new File(FILENAME));

 doc.getDocumentElement().normalize();

 System.out.println("ROOT: " +

 doc.getDocumentElement().getNodeName());

 NodeList bandList = doc.getElementsByTagName("band");

 for (int idx = 0; idx < bandList.getLength(); idx++) {

 Node node = bandList.item(idx);

 if (node.getNodeType() == Node.ELEMENT_NODE) {

 Element element = (Element) node;

 // 4) the id of the band:

 String band_id =
element.getElementsByTagName("band_id")

 .item(0).getTextContent();

 band_id = band_id.replaceAll("\\s", "");

 band_id = band_id.replaceAll("\\n", "");

 System.out.println("band_id = "+band_id);

 // 5) the name of the band:

 String band_name =

 element.getElementsByTagName("band_name")

 .item(0).getTextContent();

 band_name = band_name.trim();

 band_name = band_name.replaceAll("\\n", "");

 System.out.println("band_name = "+band_name);

 // 6) the band members:

 NodeList memberList =

element.getElementsByTagName("band_member");

 for (int idx2=0; idx2<memberList.getLength();
idx2++)

 {

 Node memberNode = memberList.item(idx2);

 if (memberNode.getNodeType() ==
Node.ELEMENT_NODE)

 {

 Element element2 = (Element) memberNode;

 System.out.println("Current Element: " +

 memberNode.getNodeName());

 String band_member =

 memberList.item(idx2).getTextContent();

 //band_member = band_member.replaceAll("\\s",
"");

 band_member = band_member.trim();

 band_member = band_member.replaceAll("\\n",
"");

 System.out.println("band_member =
"+band_member);

 // 7) write a string to the CSV file:

 csvWriter.write(band_id+","+

 band_name+","+

 band_member+"\n");

 }

 }

 }

 }

 csvWriter.close();

 } catch (ParserConfigurationException | SAXException |
IOException e) {

 e.printStackTrace();

 }

 }

}

Listing 7.17 starts with multiple import statements, and

then defines the Java class BandsToCSV that contains a main()

method that is divided into six sections. The first section

creates the file object outfile and the second section creates

the FileWriter object csvWriter.

The third section is the longest section and also contains

the fourth and fifth sections. The first portion of the third

section contains a try/catch block in which a Document object

doc is constructed, which is the root node of the XML

document that contains information about the music bands.

Next, the variable bandList is initialized, which represents

a list of nodes, and each node in the list is information about

one band. The next portion of section 3 is a for list that

iterates through the items in the variable bandList. If each

item is of ELEMENT_NODE, then section 4 is executed, which

involves extracting the value of the band_id from the current

node.

At this point section 5 is executed, which extracts the

value of the band_name in the current node, followed by

section 6, which consists of a for loop that extracts all the

other band-related information from the current node. Note

that the loop in section 6 contains conditional logic: if the

current element is of type ELEMENT_NODE, the contents of the

variable band_member are trimmed to remove white spaces.

We have now reached section 7, which is the final section

in Listing 7.17, and the location of the following code

snippet that writes band-related information in CSV format:

csvWriter.write(band_id+","+band_name+","+band_member+"\n");

Launch the code in Listing 7.17 and you will see the

following output:

ROOT: bands

band_id = 100

band_name = The Data Wranglers

Current Element: band_member

band_member = Dave Pallai

Current Element: band_member

band_member = Jennifer Jones

Current Element: band_member

band_member = Raymond Reddington

band_id = 200

band_name = The Data Cleaners

Current Element: band_member

band_member = Scary Joe

Current Element: band_member

band_member = The Smoother

Listing 7.18 displays the content of the CSV file

bandmembers.csv that is generated by the Java code in Listing

7.17.

LISTING 7.18: bandmembers.csv

100,The Data Wranglers,Dave Pallai

100,The Data Wranglers,Jennifer Blaney

100,The Data Wranglers,Raymond Reddington

200,The Data Cleaners,Scary Joe

200,The Data Cleaners,The Smoother

GENERATING A CSV FILE FOR BAND MEMBERS

(PYTHON)

Listing 7.19 displays the content of BandsToCSV.java that

illustrates how to generate a text file as well as a CSV file

from the XML document bandmembers.csv.

LISTING 7.19: bands_to_csv.py

from xml.etree import cElementTree as ET

INFILE1="bands.xml"

OUTFILE1="python_bandmembers.txt"

OUTFILE2="python_bandmembers.csv"

create txt_writer1:

txt_writer1 = open(OUTFILE1,'w')

create csv_writer2:

csv_writer2 = open(OUTFILE2,'w')

band_id = ""

band_name = ""

band_member = ""

xml_data = ET.parse(INFILE1).getroot()

for band in xml_data.iter('band'):

 for child in band:

 #print("child: ",child)

 print("name: ",child.tag)

 name = child.tag

 if(name == "band_id"):

 band_id = child.text

 band_id = band_id.strip()

 print("band_id = ", band_id)

 elif(name == "band_name"):

 band_name = child.text

 band_name = band_name.strip()

 print("band_name = ", band_name)

 elif(name == "band_member"):

 band_member = child.text

 band_member = band_member.strip()

 print("band_member = ", band_member)

 #the_member = child.text

 #the_member = the_member.strip()

 #print("the_member = ",the_member)

 if(band_id != "" and band_name != "" and band_member != ""):

 line1 = str(band_id) + "_" + band_name + "_" + band_member

 line2 = str(band_id) + "," + band_name + "," + band_member

 print("=> constructed line1:",line1)

 print("=> constructed line2:",line2)

 # write line to CSV file:

 txt_writer1.write(line1+"\n")

 # write line to TXT file:

 csv_writer2.write(line2+"\n")

 #band_id = ""

 #band_name = ""

 band_member = ""

Listing 7.19 starts by initializing some variables for

existing files and variables for output files, followed by

initializing the variable xml_data as the root node of the

bands.xml file that contains band-related information, as

shown here:

xml_data = ET.parse(INFILE1).getroot()

The next portion of Listing 7.19 is a nested loop that

iterates through the band elements, and for each band

there is another loop that iterates through the elements of

the current band. Next, conditional logic checks for the

presence of any band_id, band_name, and band_member nodes, and

initializes the values of corresponding variables.

The final if statement checks if the three variables are

populated with values, and if so, constructs a CSV-based

output row that written to the CSV file; similarly, another

text-based output row is constructed and written to the

associated text file. Launch the code in Listing 7.19 and you

will see the following output:

name: band_id

band_id = 100

name: band_name

band_name = The Data Wranglers

name: band_member

band_member = Dave Pallai

=> constructed line1: 100_The Data Wranglers_Dave Pallai

=> constructed line2: 100,The Data Wranglers,Dave Pallai

name: band_member

band_member = Jennifer Blaney

=> constructed line1: 100_The Data Wranglers_Jennifer Blaney

=> constructed line2: 100,The Data Wranglers,Jennifer Blaney

name: band_id

band_id = 200

name: band_name

band_name = The Data Cleaners

name: band_member

band_member = Raymond Reddington

=> constructed line1: 200_The Data Cleaners_Raymond Reddington

=> constructed line2: 200,The Data Cleaners,Raymond Reddington

name: band_member

band_member = Scary Joe

=> constructed line1: 200_The Data Cleaners_Scary Joe

=> constructed line2: 200,The Data Cleaners,Scary Joe

name: band_member

band_member = The Smoother

=> constructed line1: 200_The Data Cleaners_The Smoother

=> constructed line2: 200,The Data Cleaners,The Smoother

Also check the directory that contains Listing 7.19 and

you will see two new files:

python_bandmembers.txt

python_bandmembers.csv

GENERATING A CALENDAR OF EVENTS (COE)

Listing 7.20 displays the content of the CSV file

concert_dates.csv that contains a short calendar of events:

additional relevant details are stored in other CSV files that

are created in this project.

LISTING 7.20: concert_dates.csv

100,039,vicenza,01/05/2022

100,039,vicenza,01/05/2022,50

100,033,paris,01/15/2022,80

100,044,london,02/02/2022,70

100,049,berlin,02/09/2022,75

100,081,tokyo,02/19/2022,100

200,039,vicenza,01/08/2022,50

200,033,paris,01/18/2022,70

200,044,london,02/05/2022,60

200,049,berlin,02/13/2022,80

200,081,tokyo,02/27/2022,100

Each row in Listing 7.20 contains details that have the

following format:

band_code,country_code,city,date,price

The target CSV file concert_coe.csv will enhance the

contents of concert_dates.csv so that each row will contain

information with the following format:

band_code,band_name,country_code,country_name,city,date,price

Notice that the date format is dd/mm/yyyy and the price

column is in USD (but not necessarily realistic ticket prices).

The only new columns that we need to provide are the

band_name and the country_name columns.

Listing 7.21 displays the content of generate_coe.py that

show how to generate the CSV file concert_coe.csv by

enhancing the CSV file concert_dates.csv with the two

additional columns.

LISTING 7.21: generate_coe.py

import pandas as pd

import numpy as np

1) read the input file concert_dates.csv

header line: band_code,country_code,city,date,price

sample row: 100,039,vicenza,01/05/2022,50

concert_dates_file="concert_dates.csv"

2) read python_bandmembers.csv (band names and members)

sample row:100_The Data Wranglers_Dave Pallai

band_members_file="python_bandmembers.csv"

3) read country_codes.csv (country and code)

sample row: 039,italy

cc_codes_file="country_codes.csv"

4) create the output file calendar_coe.csv:

header line:
band_code,band_name,country_code,country_name,city,date,price

sample row: The Data Wranglers,italy,vicenza,01/05/2022,50

outfile1="calendar_coe.csv"

5) populate three data frames:

concert1_df = pd.read_csv(concert_dates_file)

band2_df = pd.read_csv(band_members_file)

cc3_df = pd.read_csv(cc_codes_file)

6) add column labels:

#existing row: 100,039,vicenza,01/05/2022,50

concert1_df.columns = ['band_code','country_code','City','Concert
Date','Tickets (USD)']

band2_df.columns = ['band_code','band_name','band_members']

cc3_df.columns = ['country_code','country_name']

7) extract array of unique band codes and band names:

bands_unique_codes = band2_df.band_code.unique()

bands_unique_names = band2_df.band_name.unique()

8) create dictionary from unique band codes and band names:

bands_codes_names_dict = {}

for code, name in zip(bands_unique_codes,bands_unique_names):

 bands_codes_names_dict[code] = name

9) insert a column for "Band Name":

concert1_df['Band Name'] =
concert1_df['band_code'].map(bands_codes_names_dict)

10) create dictionary from unique country codes and names:

country_code_to_name_dict = {}

for index, row in cc3_df.iterrows():

 country_code = row['country_code']

 country_name = row['country_name']

 country_code_to_name_dict[country_code] = country_name

11) insert a column for country names:

concert1_df['Country'] =
concert1_df['country_code'].map(country_code_to_name_dict)

12) remove band codes and country codes:

del concert1_df['band_code']

del concert1_df['country_code']

print("*** Concert Details ***")

print(concert1_df)

print()

13) save concert details to CSV file:

concert1_df.to_csv(outfile1, index=False)

The first three sections of Listing 7.21 specify the names

of the three input files concert_dates,csv, python_bandmembers.csv,

and country_codes.csv that we need to generate the full

calendar for the concerts.

The next portion specifies calendar-coe.csv as the name of

the output file, along with the header and sample rows in

this file.

The next portion of Listing 7.21 populates three data

frames with the data from the files listed in the first portion

of this code sample. The next three sections add column

names to the data frames, which not be necessary if the

input files had a header line.

The next portion of Listing 7.21 extracts the unique band

codes and their corresponding band names to create a

Python dictionary with code/name pairs, which we will use

later in this code sample.

In a similar fashion, the next portion of Listing 7.21

extracts the unique country codes and their corresponding

names in order to create a Python dictionary with

country_code/country_name pairs, which we will also use later in

this code sample.

The next code block inserts a column into concert1_df with

the name of the band that corresponds to the band code, for

each row in concert1_df. Another code block inserts a column

into concert1_df with the name of the country that

corresponds to the country code, for each row in concert1_df.

The next pair of del statements drops the band_code and

country_code columns from the concert1_df data frame (an

optional step).

Finally, the contents the data frame concert1_df are

displayed and then the contents of the data frame are

saved as a CSV file. Launch the code in Listing 7.21 and you

will see the following output:

*** Concert Details ***

 City Concert Date Tickets (USD) Band Name Country

0 paris 01/15/2022 80 The Data Wranglers france

1 london 02/02/2022 70 The Data Wranglers uk

2 berlin 02/09/2022 75 The Data Wranglers germany

3 tokyo 02/19/2022 100 The Data Wranglers japan

4 vicenza 01/08/2022 50 The Data Cleaners italy

5 paris 01/18/2022 70 The Data Cleaners france

6 london 02/05/2022 60 The Data Cleaners uk

7 berlin 02/13/2022 80 The Data Cleaners germany

8 tokyo 02/27/2022 100 The Data Cleaners japan

PROJECT AUTOMATION SCRIPT

Listing 7.22 displays the content of generate_project.sh that

automates the project creation steps that are discussed

earlier in this chapter.

LISTING 7.22: generate_project.sh

echo "Assigning code to countries..."

#=> manual process

echo "Assigning code to cities..."

python3 construct_city_codes.py

#=> generates city_codes.csv

echo "Generate SQL for city codes..."

./city_codes_sql.sh

#=> generates city_codes.sql

echo "Converting personnel (XLSX) to CSV..."

python3 save_xlsx_to_csv.py

#=> generates personnel.csv

echo "Converting bands_list (XML) to CSV..."

via Java:

java BandsToCSV

via Python:

#python3 bands_to_csv.py

#=> generates bandmembers.csv

echo "Generating CSV calendar of events (COE)..."

python3 generate_coe.py

#=> generates complete calendar

#echo "Generating SQL script for COE..."

#exercise

#echo "Inserting COE into MySQL..."

#exercise

Listing 7.22 contains various executable files that were

discussed earlier in this chapter, and they are invoked

sequentially to automate the execution of the required tasks

in the correct sequence. Launch the code in Listing 7.22 and

you will see the following output:

Assigning code to countries...

Assigning code to cities...

=> BEGIN-PROCESSING: country_codes.csv

=> BEGIN-PROCESSING: countries_cities.csv

=> constructed city_code1: 039_100_milano

=> constructed city_code1: 039_200_roma

=> constructed city_code1: 039_300_venezia

=> constructed city_code1: 033_100_nice

=> constructed city_code1: 033_200_paris

=> constructed city_code1: 033_300_st_jeannet

=> constructed city_code1: 049_100_frankfurt

=> constructed city_code1: 034_100_madrid

=> constructed city_code1: 044_100_london

=> constructed city_code1: 044_200_manchester

=> constructed city_code1: 052_100_tijuana

Generate SQL for city codes...

Contents of df1:

 Unnamed: 0 fname lname Role gender
country

0 0 john smith VP Marketing m
usa

1 1 jane smith VP Sales f
france

2 2 jack jones Event Coordinator m
france

3 3 dave stone Event Planner m
italy

4 4 sara stein Director Public Relations f
germany

5 5 eddy bower Directory of Security m
spain

Contents of df1 after drop:

 fname lname Role gender country

0 john smith VP Marketing m usa

1 jane smith VP Sales f france

2 jack jones Event Coordinator m france

3 dave stone Event Planner m italy

4 sara stein Director Public Relations f germany

5 eddy bower Directory of Security m spain

Saving data frame to CSV file personnel.csv

Converting bands_list (XML) to CSV...

ROOT: bands

band_id = 100

band_name = The Data Wranglers

Current Element: band_member

band_member = Dave Pallai

Current Element: band_member

band_member = Jennifer Blaney

band_id = 200

band_name = The Data Cleaners

Current Element: band_member

band_member = Raymond Reddington

Current Element: band_member

band_member = Scary Joe

Current Element: band_member

band_member = The Smoother

Generating CSV calendar of events (COE)...

*** Concert Details ***

 City Concert Date Tickets (USD) Band Name Country

0 paris 01/15/2022 80 The Data Wranglers france

1 london 02/02/2022 70 The Data Wranglers uk

2 berlin 02/09/2022 75 The Data Wranglers germany

3 tokyo 02/19/2022 100 The Data Wranglers japan

4 vicenza 01/08/2022 50 The Data Cleaners italy

5 paris 01/18/2022 70 The Data Cleaners france

6 london 02/05/2022 60 The Data Cleaners uk

7 berlin 02/13/2022 80 The Data Cleaners germany

8 tokyo 02/27/2022 100 The Data Cleaners japan

Project Follow-up Comments

If you read the entire project up to this point in the

chapter, consider it a job well done. Of course, there are

variations in which you can assemble the files in this project

to create the final CSV file that contains the calendar of

events.

First, a general comment: the high-level description of a

project is often much easier to understand than the

implementation details. The latter can be tedious, and is

also influenced by the technologies that you use to solve

the tasks of a project. However, it’s important to understand

the project goals because they will assist you in maintaining

a clear understanding of the purpose of the code that you

write: you’ll understand what needs to be done and why it

needs to be done.

Second, this project attempts to strike a balance between

code complexity and readability of the code (i.e., avoiding

unnecessary complexity). Keep in mind that this project

involves (albeit somewhat contrived) a small dataset with

virtually no data cleaning requirements. In contrast, real-

world projects can involve time consuming and much more

tedious data cleaning tasks that will make this project seem

almost trivial. Nevertheless, hopefully you can avail yourself

of the data cleaning code samples in this chapter as well as

the previous chapter for other tasks.

Third, this project showed you how to convert files to

different formats using awk-based shell scripts, Python,

Pandas, and Java. In addition, you learned how to generate

new files from existing files using these same technologies.

Indeed, performing the transformations with the small

datasets has probably given you a sense of the complexity

to expect when you work with datasets that are hundreds or

thousands of times larger than those in this project.

Fourth, you probably noticed that Listing 7.21 did not use

all the CSV files that were created earlier in this chapter,

such as the CSV file python_city_codes.csv that is created by

the Python script construct_city_codes.py. The reason is two-

fold: this ensures that Listing 7.21 is only one page of code

and it enables you to modify the structure of some of the

CSV files that will necessitate the inclusion of the CSV file

python_city_codes.csv in your modified solution, in case you

wish to do so.

Finally, there are commented-out print() statements in

the various files for this project. Those statements can be

very helpful for debugging purposes and understanding the

purpose of the code block that contain those statements.

However, too many print() statements can result in an

overload of details, so after you understand a particular

block of code, consider commenting out those statements

again when you analyze different code blocks. Moreover,

you can copy/paste some of the output, as a comment

block, into the files that generated the output, near the

relevant code block.

SUMMARY

This chapter started with an introduction to the term data

wrangling and compared it with the term data cleaning. You

also saw several examples of Python scripts that performed

data cleaning on malformed CSV files.

Next, you learned how to convert existing files into CSV-

based files, and how to generate new CSV files based on

existing files. In particular, you learned how to perform the

conversion process using different tools, such as shell

scripts, Python code, Java code, and Pandas-based code.

Congratulations! Whether you are a beginner or more

experienced data scientist, you have probably learned some

new techniques that ideally will serve you well in other

projects, along with code samples to solve tasks that you

might encounter in your future work.

T

APPENDIX A

WORKING WITH AWK

his appendix introduces you to the awk command,

which is a highly versatile utility for manipulating

data and restructuring datasets. In fact, this utility is

so versatile that entire books have been written

about the awk utility. Awk is essentially an entire

programming language in a single command, which accepts

standard input, gives standard output and uses regular

expressions and metacharacters in the same way other Unix

commands do. This lets you plug it into other expressions

and do almost anything, at the cost of adding complexity to

a command string that may already be doing quite a lot

already. It is almost always worthwhile to add a comment

when using awk. It is so versatile that it won’t be clear

which of the many features you are using at a glance.

The first part of this appendix provides a very brief

introduction of the awk command. You will learn about some

built-in variables for awk, and also how to manipulate string

variables using awk. Note that some of these string-related

examples can also be handled using other bash commands.

The second part of this appendix shows you conditional

logic, while loops, and for loops in awk to manipulate the rows

and columns in datasets. This section also shows you how to

delete lines and merge lines in datasets, and also how to

print the contents of a file as a single line of text. You will

see how to “join” lines and groups of lines in datasets.

The third section contains code samples that involve

metacharacters and character sets in awk commands. You

will also see how to use conditional logic in awk commands to

determine whether to print a line of text.

The fourth section illustrates how to “split” a text string

that contains multiple “.” characters as a delimiter, followed

by examples of awk to perform numeric calculations (such as

addition, subtraction, multiplication, and division) in files

containing numeric data. This section shows you various

numeric functions that are available in awk, and how to

print text in a fixed set of columns.

The fifth section explains how to align columns in a

dataset and how to align and merge columns in a dataset.

You will see how to delete columns, select a subset of

columns from a dataset, and work with multi-line records in

datasets. This section contains some one-line awk commands

that can be useful for manipulating the contents of datasets.

The final section of this appendix has a pair of use cases

involving nested quotes and date formats in structured data

sets.

THE AWK COMMAND

The awk (Aho, Weinberger, and Kernighan) command has

a C-like syntax and you can use this utility to perform

complex operations on numbers and text strings.

As a side comment, there is also the gawk command that

is GNU awk, as well as the nawk command is “new” awk (neither

command is discussed in this book). One advantage of nawk

is that it allows you to set externally the value of an internal

variable.

Built-in Variables That Control awk

The awk command provides variables that you can change

from their default values to control how awk performs

operations. Examples of such variables (and their default

values) include FS (" "), RS ("\n"), OFS (" "), ORS ("\n") , SUBSEP,

and IGNORECASE. The variables FS and RS specify the field

separator and record separator, whereas the variables OFS

and ORS specify the output field separator and the output

record separator, respectively.

You can think of the field separators as delimiters/IFS we

used in other commands earlier. The record separators

behave in a way similar to how sed treats individual lines; for

example, sed can match or delete a range of lines instead of

matching or deleting something that matches a regular

expression (and the default awk record separator is the

newline character, so by default awk and sed have a similar

ability to manipulate and reference lines in a text file).

As a simple example, you can print a blank line after

each line of a file by changing the ORS, from default of one

newline to two newlines, as shown here:

cat columns.txt | awk 'BEGIN { ORS ="\n\n" } ; { print $0 }'

Other built-in variables include FILENAME (the name of the

file that awk is currently reading), FNR (the current record

number in the current file), NF (the number of fields in the

current input record), and NR (the number of input records

awk has processed since the beginning of the program’s

execution).

Consult the online documentation for additional

information regarding these (and other) arguments for the

awk command.

How Does the awk Command Work?

The awk command reads the input files one record at a

time (by default, one record is one line). If a record matches

a pattern, then an action is performed (otherwise no action

is performed). If the search pattern is not given, then awk

performs the given actions for each record of the input. The

default behavior if no action is given is to print all the

records that match the given pattern. Finally, empty braces

without any action do nothing (i.e., the program will not

perform the default printing operation). Note that each

statement in actions should be delimited by a semicolon.

To make the preceding paragraph more understandable,

here are some simple examples involving text strings and

the awk command (the results are displayed after each code

snippet). The -F switch sets the field separator to whatever

follows it, in this case, a space. Switches will often provide a

shortcut to an action that normally needs a command inside

a ‘BEGIN{} block):

x="a b c d e"

echo $x |awk -F" " '{print $1}'

a

echo $x |awk -F" " 'a{print NF}'

5

echo $x |awk -F" " '{print $0}'

a b c d e

echo $x |awk -F" " '{print $3, $1}'

c a

Let’s change the FS (record separator) to an empty string

to calculate the length of a string, this time using the BEGIN{}

syntax:

echo "abc" | awk 'BEGIN { FS = "" } ; { print NF }'

3

The following example illustrates several equivalent ways

to specify test.txt as the input file for an awk command:

awk < test.txt '{ print $1 }'

awk '{ print $1 }' < test.txt

awk '{ print $1 }' test.txt

Yet another way is shown here (but as we’ve discussed

earlier, it can be inefficient, so only do it if the cat is adding

value in some way):

cat test.txt | awk '{ print $1 }'

This simple example of four ways to do the same task

should illustrate why commenting awk calls of any complexity

is almost always a good idea. The next person to look at

your code may not know/remember the syntax you are

using.

ALIGNING TEXT WITH THE printf() STATEMENT

Since awk is a programming language inside a single

command, it also has its own way of producing formatted

output via the printf() statement.

Listing A.1 displays the content of columns2.txt and Listing

A.2 displays the content of the shell script AlignColumns1.sh

that shows you how to align the columns in a text file.

LISTING A.1: columns2.txt

one two

three four

one two three four

five six

one two three

four five

LISTING A.2: AlignColumns1.sh

awk '

{

 # left-align $1 on a 10-char column

 # right-align $2 on a 10-char column

 # right-align $3 on a 10-char column

 # right-align $4 on a 10-char column

 printf("%-10s*%10s*%10s*%10s*\n", $1, $2, $3, $4)

}

' columns2.txt

Listing A.2 contains a printf() statement that displays the

first four fields of each row in the file columns2.txt, where

each field is 10 characters wide.

The output from launching the code in Listing A.2 is here:

one * two* * *

three * four* * *

one * two* three* four*

five * six* * *

one * two* three* *

four * five* * *

Keep in mind that printf is reasonably powerful and as

such has its own syntax, which is beyond the scope of this

appendix. A search online can find the manual pages and

also discussions of “how to do X with printf().”

CONDITIONAL LOGIC AND CONTROL STATEMENTS

Like other programming languages, awk provides support

for conditional logic (if/else) and control statements

(for/while loops). awk is the only way to put conditional logic

inside a piped command stream without creating, installing,

and adding to the path a custom executable shell script. The

following code block shows you how to use if/else logic:

echo "" | awk '

BEGIN { x = 10 }

{

 if (x % 2 == 0) }

 print "x is even"

 }

 else }

 print "x is odd"

 }

}

'

The preceding code block initializes the variable x with

the value 10 and prints “x is even” if x is divisible by 2,

otherwise it prints “x is odd.”

The while Statement

The following code block illustrates how to use a while

loop in awk:

echo "" | awk '

{

 x = 0

 while(x < 4) {

 print "x:",x

 x = x + 1

 }

}

'

The preceding code block generates the following output:

x:0

x:1

x:2

x:3

The following code block illustrates how to use a do while

loop in awk:

echo "" | awk '

{

 x = 0

 do {

 print "x:",x

 x = x + 1

 } while(x < 4)

}

'

The preceding code block generates the following output:

x:0

x:1

x:2

x:3

A for Loop in awk

Listing A.3 displays the content of Loop.sh that illustrates

how to print a list of numbers in a loop. Note that i++ is

another way of writing “I=I+1” in awk (and most C-derived

languages).

LISTING A.3: Loop.sh

awk '

BEGIN {}

{

 for(i=0; i<5; i++) {

 printf("%3d", i)

 }

}

END { print "\n" }

'

Listing A.3 contains a for loop that prints numbers on the

same line via the printf() statement. Notice that a new line

is printed only in the END block of the code. The output from

Listing A.3 is here:

0 1 2 3 4

A for Loop with a break Statement

The following code block illustrates how to use a break

statement in a for loop in awk:

echo "" | awk '

{

 for(x=1; x<4; x++) {

 print "x:",x

 if(x == 2) {

 break;

 }

 }

}

'

The preceding code block prints output only until the

variable x has the value 2, after which the loop exits

(because of the break inside the conditional logic). The

following output is displayed:

x:1

The next and continue Statements

The following code snippet illustrates how to use next and

continue in a for loop in awk:

awk '

{

 /expression1/ { var1 = 5; next }

 /expression2/ { var2 = 7; next }

 /expression3/ { continue }

 // some other code block here

' somefile

When the current line matches expression1, then var1 is

assigned the value 5 and awk reads the next input line:

hence, expression2 and expression3 will not be tested. If

expression1 does not match and expression2 does match, then

var2 is assigned the value 7 and awk will read the next input

line. If only expression3 results in a positive match, then awk

skips the remaining block of code and processes the next

input line.

DELETING ALTERNATE LINES IN DATASETS

Listing A.4 displays the content of linepairs.csv and Listing

A.5 displays the content of deletelines.sh that illustrates how

to print alternating lines from the dataset linepairs.csv that

have exactly two columns.

LISTING A.4: linepairs.csv

a,b,c,d

e,f,g,h

1,2,3,4

5,6,7,8

LISTING A.5: deletelines.sh

inputfile="linepairs.csv"

outputfile="linepairsdeleted.csv"

awk ' NR%2 {printf "%s", $0; print ""; next}' < $inputfile >
$outputfile

Listing A.5 checks if the current record number NR is

divisible by 2, in which case it prints the current line and

skips the next line in the dataset. The output is redirected to

the specified output file, the contents of which are here:

a,b,c,d

1,2,3,4

A slightly more common task involves merging

consecutive lines, which is the topic of the next section.

MERGING LINES IN DATASETS

Listing A.6 displays the content of columns.txt and Listing

A.7 displays the content of ColumnCount1.sh that illustrates how

to print the lines from the text file columns.txt that have

exactly two columns.

LISTING A.6: columns.txt

one two three

one two

one two three four

one

one three

one four

LISTING A.7: ColumnCount1.sh

awk '

{

 if(NF == 2) { print $0 }

}

' columns.txt

Listing A.7 is straightforward: if the current record

number is even, then the current line is printed (i.e., odd-

numbered rows are skipped). The output from launching the

code in Listing A.7 is here:

one two

one three

one four

If you want to display the lines that do not contain 2

columns, use the following code snippet:

if(NF != 2) { print $0 }

Printing File Contents as a Single Line

The contents of test4.txt are here (note the blank lines):

abc

def

abc

abc

The following code snippet illustrates how to print the

contents of test4.txt as a single line:

awk '{printf("%s", $0)}' test4.txt

The output of the preceding code snippet is here. See if

you can tell what is happening before reading the

explanation in the next paragraph:

Abcdefabcabc

Explanation: %s here is the record separator syntax for

printf(), and the end quote after it means the record

separator is the empty field “”. Our default record separator

for awk is /n (newline), so the printf() statement strips out all

the new lines. The blank rows will vanish entirely, as all they

have is the new lines, so the result is that any actual text

will be merged together with nothing between them.

Had we added a space between the %s and the ending

quote, there would be a space between each character

block, plus an extra space for each newline. Notice how the

following comment improves the comprehension of the code

snippet:

Merging all text into a single line by removing the newlines

awk '{printf("%s", $0)}' test4.txt

Joining Groups of Lines in a Text File

Listing A.8 displays the content of digits.txt and Listing

A.9 displays the content of digits.sh that “joins” three

consecutive lines of text in the file digits.txt.

LISTING A.8: digits.txt

1

2

3

4

5

6

7

8

9

LISTING A.9: digits.sh

awk -F" " '{

 printf("%d",$0)

 if(NR % 3 == 0) { printf("\n") }

}' digits.txt

Listing A.9 prints three consecutive lines of text on the

same line, after which a linefeed is printed. This has the

effect of “joining” every three consecutive lines of text. The

output from launching digits.sh is here:

123

456

789

Joining Alternate Lines in a Text File

Listing A.10 displays the content of columns2.txt and

Listing A.11 displays the content of JoinLines.sh that “joins”

two consecutive lines of text in the file columns2.txt.

LISTING A.10: columns2.txt

one two

three four

one two three four

five six

one two three

four five

LISTING A.11: JoinLines.sh

awk '

{

 printf("%s",$0)

 if($1 !~ /one/) { print " " }

}

' columns2.txt

The output from launching Listing A.11 is here:

one two three four

one two three four five six

one two three four five

Notice that the code in Listing A.11 depends on the

presence of the string “one” as the first field in alternating

lines of text. We are merging based on matching a simple

pattern, instead of tying it to record combinations.

To merge each pair of lines instead of merging based on

matching a pattern, use the modified code in Listing A.12.

LISTING A.12: JoinLines2.sh

awk '

BEGIN { count = 0 }

{

 printf("%s",$0)

 if(++count % 2 == 0) { print " " }

} columns2.txt

Yet another way to “join” consecutive lines is shown in

Listing A.13, where the input file and output file refer to files

that you can populate with data. This is another example of

an awk command that might be a puzzle if encountered in a

program without a comment. It is doing exactly the same

thing as Listing A.12, but its purpose is less obvious because

of the more compact syntax.

LISTING A.13: JoinLines2.sh

inputfile="linepairs.csv"

outputfile="linepairsjoined.csv"

awk ' NR%2 {printf "%s,", $0; next;}1' < $inputfile > $outputfile

MATCHING WITH META CHARACTERS AND CHARACTER

SETS

If we can match a simple pattern, we can also match a

regular expression. Listing A.14 displays the content of

Patterns1.sh that uses metacharacters to match the

beginning and the end of a line of text in the file columns2.txt.

LISTING A.14: Patterns1.sh

awk '

 /^f/ { print $1 }

 /two $/ { print $1 }

' columns2.txt

The output from launching Listing A.14 is here:

one

five

four

Listing A.15 displays the content of RemoveColumns.txt with

lines that contain a different number of columns.

LISTING A.15: columns3.txt

123 one two

456 three four

one two three four

five 123 six

one two three

four five

Listing A.16 displays the content of MatchAlpha1.sh that

matches text lines that start with alphabetic characters as

well as lines that contain numeric strings in the second

column.

LISTING A.16: MatchAlpha1.sh

awk '

{

 if($0 ~ /^[0-9]/) { print $0 }

 if($0 ~ /^[a-z]+ [0-9]/) { print $0 }

}

' columns3.txt

The output from Listing A.16 is here:

123 one two

456 three four

five 123 six

PRINTING LINES USING CONDITIONAL LOGIC

Listing A.17 displays the content of products.txt that

contains three columns of information.

LISTING A.17: products.txt

MobilePhone 400 new

Tablet 300 new

Tablet 300 used

MobilePhone 200 used

MobilePhone 100 used

The following code snippet prints the lines of text in

products.txt whose second column is greater than 300:

awk '$2 > 300' products.txt

The output of the preceding code snippet is here:

MobilePhone 400 new

The following code snippet prints the lines of text in

products.txt whose product is new:

awk '($3 == "new")' products.txt

The output of the preceding code snippet is here:

MobilePhone 400 new

Tablet 300 new

The following code snippet prints the first and third

columns of the lines of text in products.txt whose cost equals

300:

awk ' $2 == 300 { print $1, $3 }' products.txt

The output of the preceding code snippet is here:

Tablet new

Tablet used

The following code snippet prints the first and third

columns of the lines of text in products.txt that start with the

string Tablet:

awk '/^Tablet/ { print $1, $3 }' products.txt

The output of the preceding code snippet is here:

Tablet new

Tablet used

SPLITTING FILENAMES WITH AWK

Listing A.18 displays the content of SplitFilename2.sh that

illustrates how to split a filename containing the “.”

character to increment the numeric value of one of the

components of the filename. Note that this code only works

for a file name with exactly the expected syntax.

LISTING A.18: SplitFilename2.sh

echo "05.20.144q.az.1.zip" | awk -F"." '

{

 f5=$5 + 1

 printf("%s.%s.%s.%s.%s.%s",$1,$2,$3,$4,f5,$6)

}'

The output from Listing A.18 is here:

05.20.144q.az.2.zip

WORKING WITH POSTFIX ARITHMETIC OPERATORS

Listing A.19 displays the content of mixednumbers.txt that

contains postfix operators, which refer to numbers where

the negative (and/or positive) sign appears at the end of a

column value instead of the beginning of the number.

LISTING A.19: mixednumbers.txt

324.000-|10|983.000-

453.000-|30|298.000-

783.000-|20|347.000-

Listing A.20 displays the content of AddSubtract1.sh that

illustrates how to add the rows of numbers in Listing A.19.

LISTING A.20: AddSubtract1.sh

myFile="mixednumbers.txt"

awk -F"|" '

BEGIN { line = 0; total = 0 }

{

 split($1, arr, "-")

 f1 = arr[1]

 if($1 ~ /-/) { f1 = -f1 }

 line += f1

 split($2, arr, "-")

 f2 = arr[1]

 if($2 ~ /-/) { f2 = -f2 }

 line += f2

 split($3, arr, "-")

 f3 = arr[1]

 if($3 ~ /-/) { f3 = -f3 }

 line += f3

 printf("f1: %d f2: %d f3: %d line: %d\n",f1,f2,f3, line)

 total += line

 line = 0

}

END { print "Total: ",total }

' $myfile

The output from Listing A.20 is here. See if you can work

out what the code is doing before reading the explanation

that follows:

f1: -324 f2: 10 f3: -983 line: -1297

f1: -453 f2: 30 f3: -298 line: -721

f1: -783 f2: 20 f3: -347 line: -1110

Total: -3128

The code assumes we know the format of the file. The

split() function turns each field record into a length two

vector: the first position is a number and second position

either an empty value or a dash, and then it captures the

first position number into a variable. The if statement

checks if the original field contains a hyphen (-). If it is

present, then the numeric variable is made negative, after

which the sum of the values in the line is computed.

NUMERIC FUNCTIONS IN AWK

The int(x) function returns the integer portion of a

number. If the number is not already an integer, it falls

between two integers. Of the two possible integers, the

function will return the one closest to zero. This is different

from a rounding function, which chooses the closer integer.

For example, int(3) is 3, int(3.9) is 3, int(-3.9) is -3, and

int(-3) is -3, as well. An example of the int(x) function in an

awk command is here:

awk 'BEGIN {

 print int(3.534);

 print int(4);

 print int(-5.223);

 print int(-5);

}'

The output is here:

3

4

-5

-5

The exp(x) function gives you the exponential of x, or

reports an error if x is out of range. The range of values x

can have depends on your machine’s floating point

representation.

awk 'BEGIN{

 print exp(123434346);

 print exp(0);

 print exp(-12);

}'

The output is here:

inf

1

6.14421e-06

The log(x) function gives you the natural logarithm of x, if

x is positive; otherwise, it reports an error (inf means infinity

and nan in output means “not a number”).

awk 'BEGIN{

 print log(12);

 print log(0);

 print log(1);

 print log(-1);

}'

The output is here:

2.48491

-inf

0

nan

The sin(x) function gives you the sine of x and cos(x) gives

you the cosine of x, with x in radians:

awk 'BEGIN {

 print cos(90);

 print cos(45);

}'

The output is here:

-0.448074

0.525322

The rand() function gives you a random number. The

values of rand() are uniformly-distributed between 0 and 1:

the value is never 0 and never 1.

Often, you want random integers instead. Here is a user-

defined function you can use to obtain a random

nonnegative integer less than n:

function randint(n) {

 return int(n * rand())

}

The product generates a random real number greater

than 0 and less than n. We then make it an integer (using

int) between 0 and n - 1.

Here is an example where a similar function is used to

produce random integers between 1 and n:

awk '

Function to roll a simulated die.

function roll(n) { return 1 + int(rand() * n) }

Roll 3 six-sided dice and print total number of points.

{

 printf("%d points\n", roll(6)+roll(6)+roll(6))

}'

Note that rand() starts generating numbers from the

same point (or “seed”) each time awk is invoked. Hence, a

program will produce the same results each time it is

launched. If you want a program to do different things each

time it is used, you must change the seed to a value that

will be different in each run.

Use the srand(x) function to set the starting point, or seed,

for generating random numbers to the value x. Each seed

value leads to a particular sequence of “random” numbers.

Thus, if you set the seed to the same value a second time,

you will get the same sequence of “random” numbers again.

If you omit the argument x, as in srand(), then the current

date and time of day are used for a seed. This is how to

obtain random numbers that are truly unpredictable. The

return value of srand()is the previous seed. This makes it

easy to keep track of the seeds for use in consistently

reproducing sequences of random numbers.

The time() function (not in all versions of awk) returns the

current time in seconds since January 1, 1970. The function

ctime() (not in all versions of awk) takes a numeric argument

in seconds and returns a string representing the

corresponding date, suitable for printing or further

processing.

The sqrt(x) function gives you the positive square root of

x. It reports an error if x is negative. Thus, sqrt(4) is 2.

awk 'BEGIN{

 print sqrt(16);

 print sqrt(0);

 print sqrt(-12);

}'

The output is here:

4

0

nan

ONE-LINE AWK COMMANDS

The code snippets in this section reference the text file

short1.txt, which you can populate with any data of your

choice.

The following code snippet prints each line preceded by

the number of fields in each line:

awk '{print NF ":" $0}' short1.txt

Print the right-most field in each line:

awk '{print $NF}' short1.txt

Print the lines that contain more than 2 fields:

awk '{if(NF > 2) print }' short1.txt

Print the value of the right-most field if the current line

contains more than 2 fields:

awk '{if(NF > 2) print $NF }' short1.txt

Remove leading and trailing whitespaces:

echo " a b c " | awk '{gsub(/^[\t]+|[\t]+$/,"");print}'

Print the first and third fields in reverse order for the lines

that contain at least 3 fields:

awk '{if(NF > 2) print $3, $1}' short1.txt

Print the lines that contain the string one:

awk '{if(/one/) print }' *txt

As you can see from the preceding code snippets, it’s

easy to extract information or subsets of rows and columns

from text files using simple conditional logic and built-in

variables in the awk command.

USEFUL SHORT AWK SCRIPTS

This section contains a set of short awk-based scripts for

performing various operations. Some of these scripts can

also be used in other shell scripts to perform more complex

operations. Listing A.21 displays the content of the file

data.txt that is used in various code samples in this section.

LISTING A.21: data.txt

this is line one that contains more than 40 characters

this is line two

this is line three that also contains more than 40 characters

four

this is line six and the preceding line is empty

line eight and the preceding line is also empty

The following code snippet prints every line that is longer

than 40 characters:

awk 'length($0) > 40' data.txt

Now print the length of the longest line in data.txt:

awk '{ if (x < length()) x = length() }

END { print "maximum line length is " x }' < data.txt

The input is processed by the expand utility to change

tabs into spaces, so the widths compared are actually the

right-margin columns.

Print every line that has at least one field:

awk 'NF > 0' data.txt

The preceding code snippet illustrates an easy way to

delete blank lines from a file (or rather, to create a new file

similar to the old file but from which the blank lines have

been removed).

Print seven random numbers from 0 to 100, inclusive:

awk 'BEGIN { for (i = 1; i <= 7; i++)

print int(101 * rand()) }'

Count the lines in a file:

awk 'END { print NR }' < data.txt

Print the even-numbered lines in the data file:

awk 'NR % 2 == 0' data.txt

If you use the expression 'NR % 2 == 1' in the previous

code snippet, the program would print the odd-numbered

lines.

Insert a duplicate of every line in a text file:

awk '{print $0, '\n', $0}' < data.txt

Insert a duplicate of every line in a text file and remove

blank lines:

awk '{print $0, "\n", $0}' < data.txt | awk 'NF > 0'

Insert a blank line after every line in a text file:

awk '{print $0, "\n"}' < data.txt

PRINTING THE WORDS IN A TEXT STRING IN AWK

Listing A.22 displays the content of Fields2.sh that

illustrates how to print the words in a text string using the

awk command.

LISTING A.22: Fields2.sh

echo "a b c d e"| awk '

{

 for(i=1; i<=NF; i++) {

 print "Field ",i,":",$i

 }

}

'

The output from Listing A.22 is here:

Field 1 : a

Field 2 : b

Field 3 : c

Field 4 : d

Field 5 : e

COUNT OCCURRENCES OF A STRING IN SPECIFIC

ROWS

Listing A.23 and Listing A.24 display the contents

data1.csv and data2.csv, respectively, and Listing A.25 displays

the content of checkrows.sh that illustrates how to count the

number of occurrences of the string “past” in column 3 in

rows 2, 5, and 7.

LISTING A.23: data1.csv

in,the,past,or,the,present

for,the,past,or,the,present

in,the,past,or,the,present

for,the,paste,or,the,future

in,the,past,or,the,present

completely,unrelated,line1

in,the,past,or,the,present

completely,unrelated,line2

LISTING A.24: data2.csv

in,the,past,or,the,present

completely,unrelated,line1

for,the,past,or,the,present

completely,unrelated,line2

for,the,paste,or,the,future

in,the,past,or,the,present

in,the,past,or,the,present

completely,unrelated,line3

LISTING A.25: checkrows.sh

files="'ls data*.csv| tr '\n' ' ''"

echo "List of files: $files"

awk -F"," '

(FNR==2 || FNR==5 || FNR==7) {

 if ($3 ~ "past") { count++ }

}

END {

 printf "past: matched %d times (INEXACT) ", count

 printf "in field 3 in lines 2/5/7\n"

}' data*.csv

Listing A.25 looks for occurrences in the string past in

columns 2, 5, and 7 because of the following code snippet:

(FNR==2 || FNR==5 || FNR==7) {

 if ($3 ~ "past") { count++ }

}

If a match occurs, then the value of count is incremented.

The END block reports the number of times that the string

past was found in columns 2, 5, and 7. Note that strings such

as paste and pasted will match the string past. The output from

Listing A.25 is here:

List of files: data1.csv data2.csv

past: matched 5 times (INEXACT) in field 3 in lines 2/5/7

The shell script checkrows2.sh replaces the term $3 ~ "past"

with the term $3 == "past" in checkrows.sh in order to check for

exact matches, which produces the following output:

List of files: data1.csv data2.csv

past: matched 4 times (EXACT) in field 3 in lines 2/5/7

PRINTING A STRING IN A FIXED NUMBER OF COLUMNS

Listing A.26 displays the content of FixedFieldCount1.sh that

illustrates how to print the words in a text string using the

awk command.

LISTING A.26: FixedFieldCount1.sh

echo "aa bb cc dd ee ff gg hh"| awk '

BEGIN { colCount = 3 }

{

 for(i=1; i<=NF; i++) {

 printf("%s ", $i)

 if(i % colCount == 0) {

 print " "

 }

 }

}

'

The output from Listing A.26 is here:

aa bb cc

dd ee ff

gg hh

PRINTING A DATASET IN A FIXED NUMBER OF

COLUMNS

Listing A.27 displays the content of VariableColumns.txt with

lines of text that contain a different number of columns.

LISTING A.27: VariableColumns.txt

this is line one

this is line number one

this is the third and final line

Listing A.28 displays the content of Fields3.sh that

illustrates how to print the words in a text string using the

awk command.

LISTING A.28: Fields3.sh

awk '{printf("%s ", $0)}' | awk '

BEGIN { columnCount = 3 }

{

 for(i=1; i<=NF; i++) {

 printf("%s ", $i)

 if(i % columnCount == 0)

 print " "

 }

}

' VariableColumns.txt

The output from Listing A.28 is here:

this is line

one this is

line number one

this is the

third and final

line

ALIGNING COLUMNS IN DATASETS

If you have read the preceding two examples, the code

sample in this section is easy to understand: you will see

how to realign columns of data that are correct in terms of

their content, but have been placed in different rows (and

therefore are misaligned). Listing A.29 displays the content

of mixed-data.csv with misaligned data values. In addition, the

first line and final line in Listing A.28 are empty lines, which

will be removed by the shell script in this section.

LISTING A.29: mixed-data.csv

Sara, Jones, 1000, CA, Sally, Smith, 2000, IL,

Dave, Jones, 3000, FL, John, Jones,

4000, CA,

Dave, Jones, 5000, NY, Mike,

Jones, 6000, NY, Tony, Jones, 7000, WA

Listing A.30 displays the content of mixed-data.sh that

illustrates how to realign the dataset in Listing A.29.

LISTING A.30: mixed-data.sh

#---

1) remove blank lines

2) remove line feeds

3) print a LF after every fourth field

4) remove trailing ',' from each row

#---

inputfile="mixed-data.csv"

grep -v "^$" $inputfile |awk -F"," '{printf("%s",$0)}' | awk '

BEGIN { columnCount = 4 }

{

 for(i=1; i<=NF; i++) {

 printf("%s ", $i)

 if(i % columnCount == 0) { print "" }

 }

}' > temp-columns

4) remove trailing ',' from output:

cat temp-columns | sed 's/, $//' | sed 's/ $//' > $outputfile

Listing A.30 starts with a grep command (online tutorials

about grep are available) that removes blank lines, followed

by an awk command that prints the rows of the dataset as a

single line of text. The second awk command initializes the

columnCount variable with the value 4 in the BEGIN block,

followed by a loop that iterates through the input fields.

After four fields are printed on the same output line, a

linefeed is printed, which has the effect of realigning the

input dataset as an output dataset consisting of rows that

have four fields. The output from Listing A.30 is here:

Sara, Jones, 1000, CA

Sally, Smith, 2000, IL

Dave, Jones, 3000, FL

John, Jones, 4000, CA

Dave, Jones, 5000, NY

Mike, Jones, 6000, NY

Tony, Jones, 7000, WA

ALIGNING COLUMNS AND MULTIPLE ROWS IN

DATASETS

The preceding section showed you how to re-align a

dataset so that each row contains the same number of

columns and also represents a single data record. The code

sample in this section illustrates how to realign columns of

data that are correct in terms of their content and place two

records in each line of the new dataset. Listing A.31 displays

the content of mixed-data2.csv with misaligned data values,

followed by Listing A.32, which displays the content of

aligned-data2.csv with the correctly formatted dataset.

LISTING A.31: mixed-data2.csv

Sara, Jones, 1000, CA, Sally, Smith, 2000, IL,

Dave, Jones, 3000, FL, John, Jones,

4000, CA,

Dave, Jones, 5000, NY, Mike,

Jones, 6000, NY, Tony, Jones, 7000, WA

LISTING A.32: aligned-data2.csv

Sara, Jones, 1000, CA, Sally, Smith, 2000, IL

Dave, Jones, 3000, FL, John, Jones, 4000, CA

Dave, Jones, 5000, NY, Mike, Jones, 6000, NY

Tony, Jones, 7000, WA

Listing A.33 displays the content of mixed-data2.sh that

illustrates how to realign the dataset in Listing A.31.

LISTING A.33: mixed-data2.sh

#---

1) remove blank lines

2) remove line feeds

3) print a LF after every 8 fields

4) remove trailing ',' from each row

#---

inputfile="mixed-data2.txt"

outputfile="aligned-data2.txt"

grep -v "^$" $inputfile |awk -F"," '{printf("%s",$0)}' | awk '

BEGIN { columnCount = 4; rowCount = 2; currRow = 0 }

{

 for(i=1; i<=NF; i++) {

 printf("%s ", $i)

 if(i % columnCount == 0) { ++currRow }

 if(currRow > 0 && currRow % rowCount == 0) {currRow = 0; print
""}

 }

}' > temp-columns

4) remove trailing ',' from output:

cat temp-columns | sed 's/, $//' | sed 's/ $//' > $outputfile

Listing A.33 is very similar to Listing A.30. The key idea is

to print a linefeed character after a pair of “normal” records

has been processed, which is implemented via the code that

is shown in bold in Listing A.33.

Now you can generalize Listing A.33 very easily by

changing the initial value of the rowCount variable to any

other positive integer, and the code will work correctly

without any further modification. For example, if you

initialize rowCount to the value 5, then every row in the new

dataset (with the possible exception of the final output row)

will contain 5 “normal” data records.

REMOVING A COLUMN FROM A TEXT FILE

Listing A.34 displays the content of VariableColumns.txt with

lines of text that contain a different number of columns.

LISTING A.34: VariableColumns.txt

this is line one

this is line number one

this is the third and final line

Listing A.35 displays the content of RemoveColumn.sh that

removes the first column from a text file.

LISTING A.35: RemoveColumn.sh

awk '{ for (i=2; i<=NF; i++) printf "%s ", $i; printf "\n"; }'
VariableColumns.txt

The loop is between 2 and NF, which iterates over all the

fields except for the first field. In addition, printf explicitly

adds newlines. The output of the preceding code snippet is

here:

is line one

is line number one

is the third and final line

SUBSETS OF COLUMN-ALIGNED ROWS IN DATASETS

Listing A.35 shows you how to align the rows of a

dataset, and the code sample in this section illustrates how

to extract a subset of the existing columns and a subset of

the rows. Listing A.36 displays the content of sub-rows-

cols.txt of the desired dataset that contains two columns

from every even row of the file aligned-data.txt.

LISTING A.36: sub-rows-cols.txt

Sara, 1000

Dave, 3000

Dave, 5000

Tony, 7000

Listing A.37 displays the content of sub-rows-cols.sh that

illustrates how to generate the dataset in Listing A.36. Most

of the code is the same as Listing A.33, with the new code

shown in bold.

LISTING A.37: sub-rows-cols.sh

#---

1) remove blank lines

2) remove line feeds

3) print a LF after every fourth field

4) remove trailing ',' from each row

#---

inputfile="mixed-data.txt"

grep -v "^$" $inputfile |awk -F"," '{printf("%s",$0)}' | awk '

BEGIN { columnCount = 4 }

{

 for(i=1; i<=NF; i++) {

 printf("%s ", $i)

 if(i % columnCount == 0) { print "" }

 }

}' > temp-columns

4) remove trailing ',' from output:

cat temp-columns | sed 's/, $//' | sed 's/$//' > temp-columns2

cat temp-columns2 | awk '

BEGIN { rowCount = 2; currRow = 0 }

{

 if(currRow % rowCount == 0) { print $1, $3 }

 ++currRow

}' > temp-columns3

cat temp-columns3 | sed 's/,$//' | sed 's/ $//' > $outputfile

Listing A.37 contains a new block of code that redirects

the output of Step #4 to a temporary file temp-columns2 whose

contents are processed by another awk command in the last

section of Listing A.37. Notice that that awk command

contains a BEGIN block that initializes the variables rowCount

and currRow with the values 2 and 0, respectively.

The main block prints columns 1 and 3 of the current line

if the current row number is even, and then the value of

currRow is then incremented. The output of this awk command

is redirected to yet another temporary file that is the input

to the final code snippet, which uses the cat command and

two occurrences of the sed command to remove a trailing “,”

and a trailing space, as shown here:

cat temp-columns3 | sed 's/,$//' | sed 's/ $//' > $outputfile

There are other ways to perform the functionality in

Listing A.37, and the main purpose is to show you different

techniques for combining various bash commands.

COUNTING WORD FREQUENCY IN DATASETS

Listing A.38 displays the content of WordCounts1.sh that

illustrates how to count the frequency of words in a file.

LISTING A.38: WordCounts1.sh

awk '

Print list of word frequencies

{

 for (i = 1; i <= NF; i++)

 freq[$i]++

}

END {

 for (word in freq)

 printf "%s\t%d\n", word, freq[word]

}

' columns2.txt

Listing A.38 contains a block of code that processes the

lines in columns2.txt. Each time that a word (of a line) is

encountered, the code increments the number of

occurrences of that word in the hash table freq. The END block

contains a for loop that displays the number of occurrences

of each word in columns2.txt.

The output from Listing A.38 is here:

two 3

one 3

three 3

six 1

four 3

five 2

Listing A.39 displays the content of WordCounts2.sh that

performs a case insensitive word count.

LISTING A.39: WordCounts2.sh

awk '

{

 # convert everything to lower case

 $0 = tolower($0)

 # remove punctuation

 #gsub(/[^[:alnum:]_[:blank:]]/, "", $0)

 for(i=1; i<=NF; i++) {

 freq[$i]++

 }

}

END {

 for(word in freq) {

 printf "%s\t%d\n", word, freq[word]

 }

}

' columns4.txt

Listing A.39 contains almost identical code to that in

Listing A.38, with the addition of the following code snippet

that converts the text in each input line to lowercase letters,

as shown here:

$0 = tolower($0)

Listing A.40 displays the contents of columns4.txt.

LISTING A.40: columns4.txt

123 ONE TWO

456 three four

ONE TWO THREE FOUR

five 123 six

one two three

four five

The output from launching Listing A.39 with columns4.txt is

here:

456	 1

two	 3

one	 3

three	 3

six	 1

123	 2

four	 3

five	 2

DISPLAYING ONLY “PURE” WORDS IN A DATASET

For simplicity, let’s work with a text string and that way

we can see the intermediate results as we work toward the

solution.

Listing A.41 displays the content of onlywords.sh that

contains three awk commands for displaying the words,

integers, and alphanumeric strings, respectively, in a text

string.

LISTING A.41: onlywords.sh

x="ghi abc Ghi 123 #def5 123z"

echo "Only words:"

echo $x |tr -s ' ' '\n' | awk -F" " '

{

 if($0 ~ /^[a-zA-Z]+$/) { print $0 }

}

' | sort | uniq

echo

echo "Only integers:"

echo $x |tr -s ' ' '\n' | awk -F" " '

{

 if($0 ~ /^[0-9]+$/) { print $0 }

}

' | sort | uniq

echo

echo "Only alphanumeric words:"

echo $x |tr -s ' ' '\n' | awk -F" " '

{

 if($0 ~ /^[0-9a-zA-Z]+$/) { print $0 }

}

' | sort | uniq

echo

Listing A.41 starts by initializing the variable x:

x="ghi abc Ghi 123 #def5 123z"

The next step is to split x into words:

echo $x |tr -s ' ' '\n'

The output is here:

ghi

abc

Ghi

123

#def5

123z

The third step is to invoke awk and check for words that

match the regular expression ^[a-zA-Z]+, which matches any

string consisting of one or more uppercase and/or lowercase

letters (and nothing else):

if($0 ~ /^[a-zA-Z]+$/) { print $0 }

The output is here:

ghi

abc

Ghi

Finally, if you also want to sort the output and print only

the unique words, redirect the output from the awk command

to the sort command and the uniq command.

The second awk command uses the regular expression ^[0-

9]+ to check for integers and the third awk command uses the

regular expression ^[0-9a-zA-Z]+ to check for alphanumeric

words. The output from launching Listing A.37 is here:

Only words:

Ghi

abc

ghi

Only integers:

123

Only alphanumeric words:

123

123z

Ghi

abc

ghi

You can replace the variable x with a dataset to retrieve

only alphabetic strings from that dataset.

WORKING WITH MULTI-LINE RECORDS IN AWK

Listing A.42 displays the content of employee.txt and

Listing A.43 displays the content of Employees.sh that

illustrates how to concatenate text lines in a file.

LISTING A.42: employees.txt

Name: Jane Edwards

EmpId: 12345

Address: 123 Main Street Chicago Illinois

Name: John Smith

EmpId: 23456

Address: 432 Lombard Avenue SF California

LISTING A.43: employees.sh

inputfile="employees.txt"

outputfile="employees2.txt"

awk '

{

 if($0 ~ /^Name:/) {

 x = substr($0,8) ","

 next

 }

 if($0 ~ /^Empid:/) {

 #skip the Empid data row

 #x = x substr($0,7) ","

 next

 }

 if($0 ~ /^Address:/) {

 x = x substr($0,9)

 print x

 }

}

' < $inputfile > $outputfile

The output from launching the code in Listing A.43 is

here:

Jane Edwards, 123 Main Street Chicago Illinois

John Smith, 432 Lombard Avenue SF California

Now that you have seen a plethora of awk code snippets

and shell scripts containing the awk command that illustrate

various type of tasks that you can perform on files and

datasets, you are ready for some uses cases. The next

section (which is the first use case) shows you how to

replace multiple field delimiters with a single delimiter, and

the second use case shows you how to manipulate date

strings.

A SIMPLE USE CASE

The code sample in this section shows you how to use

the awk command to split the comma-separated fields in the

rows of a dataset, where fields can contain nested quotes of

arbitrary depth.

Listing A.44 displays the content of the file quotes3.csv

that contains a “,” delimiter and multiple quoted fields.

LISTING A.44: quotes3.csv

field5,field4,field3,"field2,foo,bar",field1,field6,field7,"fieldZ"

fname1,"fname2,other,stuff",fname3,"fname4,foo,bar",fname5

"lname1,a,b","lname2,c,d","lname3,e,f","lname4,foo,bar",lname5

Listing A.45 displays the contents of the file delim1.sh that

illustrates how to replace the delimiters in delim1.csv with a

“,” character.

LISTING A.45 delim1.sh

#inputfile="quotes1.csv"

#inputfile="quotes2.csv"

inputfile="quotes3.csv"

grep -v "^$" $inputfile | awk '

{

 print "LINE #" NR ": " $0

 printf ("-------------------------\n")

 for (i = 0; ++i <= NF;)

 printf "field #%d : %s\n", i, $i

 printf ("\n")

}' FPAT='([^,]+)|("[^"]+")' < $inputfile

The output from launching the shell script in Listing A.44

is here:

LINE #1:
field5,field4,field3,"field2,foo,bar",field1,field6,field7,

"fieldZ"

field #1 : field5

field #2 : field4

field #3 : field3

field #4 : "field2,foo,bar"

field #5 : field1

field #6 : field6

field #7 : field7

field #8 : "fieldZ"

LINE #2: fname1,"fname2,other,stuff",fname3,"fname4,foo,bar",fname5

field #1 : fname1

field #2 : "fname2,other,stuff"

field #3 : fname3

field #4 : "fname4,foo,bar"

field #5 : fname5

LINE #3:
"lname1,a,b","lname2,c,d","lname3,e,f","lname4,foo,bar",lname5

field #1 : "lname1,a,b"

field #2 : "lname2,c,d"

field #3 : "lname3,e,f"

field #4 : "lname4,foo,bar"

field #5 : lname5

LINE #4: "Outer1 "Inner "Inner "Inner C" B" A"
Outer1","XYZ1,c,d","XYZ2lname3,e,f"

field #1 : "Outer1 "Inner "Inner "Inner C" B" A" Outer1"

field #2 : "XYZ1,c,d"

field #3 : "XYZ2lname3,e,f"

LINE #5:

As you can see, the task in this section is very easily

solved via the awk command.

ANOTHER USE CASE

The code sample in this section shows you how to use

the awk command to reformat the date field in a dataset and

change the order of the fields in the new dataset. For

example, given the following input line in the original

dataset:

Jane,Smith,20140805234658

The reformatted line in the output dataset has this

format:

2014-08-05 23:46:58,Jane,Smith

Listing A.46 displays the content of the file dates2.csv that

contains a “,” delimiter and three fields.

LISTING A.46 dates2.csv

Jane,Smith,20140805234658

Jack,Jones,20170805234652

Dave,Stone,20160805234655

John,Smith,20130805234646

Jean,Davis,20140805234649

Thad,Smith,20150805234637

Jack,Pruit,20160805234638

Listing A.47 displays the content of string2date2.sh that

converts the date field to a new format and shifts the new

date to the first field.

LISTING A.47: string2date2.sh

inputfile="dates2.csv"

outputfile="formatteddates2.csv"

rm -f $outputfile; touch $outputfile

for line in 'cat $inputfile'

do

 fname='echo $line |cut -d"," -f1'

 lname='echo $line |cut -d"," -f2'

 date1='echo $line |cut -d"," -f3'

 # convert to new date format

 newdate='echo $date1 | awk '{ print substr($0,1,4)"-
"substr($0,5,2)"-"substr($0,7,2)"
"substr($0,9,2)":"substr($0,11,2)":"substr($0,13,2)}''

 # append newly formatted row to output file

 echo "${newdate},${fname},${lname}" >> $outputfile

done

The contents of the new dataset are here:

2014-08-05 23:46:58,Jane,Smith

2017-08-05 23:46:52,Jack,Jones

2016-08-05 23:46:55,Dave,Stone

2013-08-05 23:46:46,John,Smith

2014-08-05 23:46:49,Jean,Davis

2015-08-05 23:46:37,Thad,Smith

2016-08-05 23:46:38,Jack,Pruit

SUMMARY

This appendix introduced the awk command, which is

essentially an entire programming language packaged into

a single Unix command.

We explored some of its built-in variables as well as

conditional logic, while loops, and for loops in awk in order to

manipulate the rows and columns in datasets. You then saw

how to delete lines and merge lines in datasets, and also

how to print the contents of a file as a single line of text.

Next you learned how to use meta characters and

character sets in awk commands. You learned how to perform

numeric calculations (such as addition, subtraction,

multiplication, and division) in files containing numeric data,

and also some numeric functions that are available in awk.

In addition, you saw how to align columns in a dataset,

delete columns, select a subset of columns from a dataset,

and work with multi-line records in datasets. Finally, you saw

a couple of simple use cases involving nested quotes and

date formats in a structured dataset.

At this point, you have all the tools necessary to do quite

sophisticated data cleansing and processing, and you are

strongly encouraged to apply them to some task or problem

of interest. The final step of the learning process is doing

something real.

INDEX

A

Aho, Weinberger, and Kernighan (awk) command

built-in variables, 224

conditional logic and control statements

if/else logic, 226

for loop, 227–228

while loop, 227

conditional logic, printing lines, 233–234

count occurrences of a string, 240–241

dataset

aligning columns and multiple rows in, 244–245

aligning columns in, 243–244

counting word frequency, 247–248

delete alternate lines, 229

displaying the pure words, 248–250

merge lines, 229–232

subsets of column-aligned rows, 246–247

fixed number of columns

printing a dataset, 242–243

printing a string, 242

meta characters and character sets, 232–233

multi-line records, 250–251

numeric functions, 236–238

one-line commands, 238

postfix operators, 234–235

printf() statement, 225–226

print the words in a text string, 240

remove column from a text file, 245

short awk-based scripts, 239–240

split filenames, 234

use case, 251–254

working principle, 224–225

Analysis of variance (ANOVA), 53–54

Anomalies, 38–39

Atomicity, Consistency, Isolation, and Durability (ACID), 104

Availability bias, 52

B

Black-box shift detector, 30

C

Confirmation bias, 52

Continuous data types, 33

binning, concept of, 33

D

Database operations, MySQL

create, 117–118

drop, 118

export, 118–119

rename, 119–120

Data cleaning

awk command line utility, 162–163

converting alphabetic date formats, 173–175

converting numeric date formats, 169–172

convert phone numbers, 167–168

countries, cities, and telephone codes, 181–186

date and time date formats, 175–180

description, 151–152

on a Kaggle dataset, 186–189

for personal titles, 152–154

row generation with fixed columns, 164–166

sed command line utility, 160–161

in SQL

convert strings to date values, 158–160

handle data type mismatch, 157–158

replace multiple values into a single value, 156–157

replace NULL with 0, 154

replace NULL with average value, 154–156

truncate rows in CSV file, 163–164

Data Control Language (DCL), 112

Data Definition Language (DDL), 112

Data drift, 30

Data frames, 56

boolean operations, 60–61

concat() method, 68–69

data cleaning tasks, 56

data manipulation, 69–70

drop duplicate rows, 83–84

find duplicate rows, 81–83

find missing values, 84–86

housing_stats.py, 80–81

missingdatairis.py, 87–89

nan_iris.csv, 86–87

pandas_df_describe.py, 58–60

pandas_df.py, 56–58

with random numbers, 62–63

read_csv() function, 70–76

read from Excel spreadsheets, 76–77

select, add, and delete columns, 77–79

sort_df.py, 89–90

transpose function, 61–62

Data Manipulation Language (DML), 113

Data Query Language (DQL), 112

Datasets, 30

anomalies, 38–39

awk command

aligning columns and multiple rows in, 244–245

aligning columns in, 243–244

counting word frequency, 247–248

delete alternate lines, 229

displaying the pure words, 248–250

merge lines, 229–232

subsets of column-aligned rows, 246–247

bias-variance trade-off

biased statistic, 51

bias types, 52–53

categorical data

handling inconsistent data values, 36

to numeric values, mapping, 36–37

classifiers

ANOVA, 53–54

LIME, 53

with currency, 38

data preprocessing, 31

with dates, 38

discrete data vs. continuous data, 32–33

imbalanced datasets, 49–50

missing values in, 48–49

outliers, 38

detection/removal, 39–40

with NumPy, 40–42

with Pandas, 42–45

with Sklearn, 46–48

z-score, calculation of, 45–46

scaling numeric data

via normalization, 34

via robust standardization, 35–36

via standardization, 34–35

Data types

data drift, 30

discrete, 32–33

Python, 10

MySQL, 115

BLOB and TEXT, 116

CHAR and VARCHAR, 115

FLOAT and DOUBLE, 116

string-based, 116

Data wrangling, 31

calendar of events, 215–218

construct_city_codes2.py, 206–208

construct_city_codes.sh, 202–205

CSV file for bandmembers

Java, 209–213

Python, 213–215

CSV files with multi-row records

and awk command, 196–197

csv_multi_line.py, 195–196

multi_line.csv, 194

pandas_multi_line.py, 194–195

pandas_multi_line2.py, 195

data transformation, 192–193

description, 191–192

events project

countries_cities.csv, 202

country_codes.csv, 202

project tasks, 201–202

project automation script

follow-up comments, 220

generate_project.sh, 218–220

quoted fields split on two lines, 197–200

SQL statements for city_codes table, 208–209

Discrete data types, 32–33

Domain classifier, 30

F

False causality, 52

I

Interquartile range (IQR), 36

L

Local Interpretable Model-Agnostic Explanations (LIME), 53

Local Outlier Factor (LOF) technique, 39

M

Minimum Covariance Determinant, 39

MySQL

database operations

create, 117–118

drop, 118

export, 118–119

rename, 119–120

data types, 115

BLOB and TEXT, 116

CHAR and VARCHAR, 115

FLOAT and DOUBLE, 116

string-based, 116

features, 114

INFORMATION_SCHEMA table, 120–121

installation procedure, 115

Java

CreateDataBase.java, 124–126

CreateTableForXMLData.java, 138–140

CreateTable.java, 126–127

delete data, 129–130

insert data, 127–129

InsertXMLString.java, 142–144

JSON-based data, 133–135

ParseXMLStringInTable.java, 146–148

ReadXMLAsString.java, 141–142

ReadXMLDocument.java, 140–141

select data, 130–132

SelectXMLData.jav, 145–146

set-up steps, 124

update data, 132–133

XML documents, 135–136

MariaDB database, 114

PROCESSLIST table, 121

N

Normalization, 34

O

One-hot encoding technique, 37

Outliers, 38

detection/removal, 39–40

with NumPy, 40–42

with Pandas, 42–45, 79–80

with Sklearn, 46–48

z-score, calculation of, 45–46

P

Pandas

aggregate operations with titanic.csv, 92–94

apply() and mapappy() method, 94–97

categorical to numeric data conversion, 63–67

data frames, 56

boolean operations, 60–61

concat() method, 68–69

data cleaning tasks, 56

data manipulation, 69–70

drop duplicate rows, 83–84

find duplicate rows, 81–83

find missing values, 84–86

housing_stats.py, 80–81

missingdatairis.py, 87–89

nan_iris.csv, 86–87

pandas_df_describe.py, 58–60

pandas_df.py, 56–58

with random numbers, 62–63

read_csv() function, 70–76

read from Excel spreadsheets, 76–77

select, add, and delete columns, 77–79

sort_df.py, 89–90

transpose function, 61–62

groupby() method, 90–92

installation, 55

JSON object

dict2json.py, 99–100

pd_python_json.py, 100–101

merge and split columns, 67–68

one-line commands, 97–99

outliers, 79–80

Python

arithmetic operations on integers, 10–13

command-line arguments, 26–27

compile-time checking, 9–10

date-related functions, 22–23

easy_install and pip, 1

exception handling, 23–24

Fraction() function, 13–14

handling user input, 24–26

help() and dir() functions, 8–9

identifiers, 5

installation, 3

interactive interpreter, 4

IPython, 2

lines and indentation, 5–6

multi-line statements, 5

PATH environment variable, 3

primitive data types, 10

quotation and comments, 6–7

runtime code checking, 9–10

Standard Library modules, 8

store code in a text file, 7–8

strings, 15–17

replace() function, 20

search and replace, 18–19

slicing and splicing strings, 17–18

strip(), lstrip(), and rstrip(), 19–20

text alignment, 21

write() function, 20–21

Unicode and UTF-8, 14

uninitialized variable and value None, 17

virtualenv, 2

R

Random oversampling, 50

Random resampling, 50

Random undersampling, 50

Relational DataBase Management System (RDBMS)

ACID, 104

atomic transactions, 105

characteristics, 104

description, 103

logical schema, 104

money transfer scenario, 105

needs, 105

normalization, 105–106

one-to-many relationship, 103–104

self-referential table, 104

SQL, 111–114

use case scenario

customers table, 108–109

item_desc table, 111

line_items table, 109–111

purchase_orders table, 109

Web page, 107

Resource bundle, 31

Robust standardization technique, 35–36

S

SMOTE (Synthetic Minority Oversampling Technique) algorithm, 48, 50–51, 152

extensions, 51

imbalanced datasets, 49–50

Standardization technique, 34–35

Structured Query Language (SQL), 111–112

CREATE keyword, 114

DCL and DDL, 112

DQL, DML, and TCL, 112–113

formatting styles, 122

object privileges, 113

statements, 113

system privileges, 113

Sunk cost, 52–53

Survivorship bias, 53

T

Transaction Control Language (TCL), 113

Trimming technique, 39

W

Winsorizing, 39

X

XML

description, 136

Schema, 137–138, 148–149

	Cover
	Title Page
	Copyright Page
	Dedication
	Contents
	Preface
	Chapter 1: Introduction to Python
	Tools for Python
	easy_install and pip
	virtualenv
	IPython

	Python Installation
	Setting the PATH Environment Variable (Windows Only)
	Launching Python on Your Machine
	The Python Interactive Interpreter

	Python Identifiers
	Lines, Indentation, and Multi-Lines
	Quotation and Comments
	Saving Your Code in a Module
	Some Standard Modules
	The help() and dir() Functions
	Compile Time and Runtime Code Checking
	Simple Data Types
	Working with Numbers
	Working with Other Bases
	The chr() Function
	The round() Function in Python
	Formatting Numbers in Python

	Working with Fractions
	Unicode and UTF-8
	Working with Unicode
	Working with Strings
	Comparing Strings
	Formatting Strings in Python

	Uninitialized Variables and the Value None
	Slicing and Splicing Strings
	Testing for Digits and Alphabetic Characters

	Search and Replace a String in Other Strings
	Remove Leading and Trailing Characters
	Printing Text Without NewLine Characters
	Text Alignment
	Working with Dates
	Converting Strings to Dates

	Exception Handling
	Handling User Input
	Command-Line Arguments
	Summary

	Chapter 2: Working with Data
	Dealing with Data: What Can Go Wrong?
	What is Data Drift?

	What are Datasets?
	Data Preprocessing

	Data Types
	Preparing Datasets
	Discrete Data vs. Continuous Data
	“Binning” Continuous Data
	Scaling Numeric Data via Normalization
	Scaling Numeric Data via Standardization
	Scaling Numeric Data via Robust Standardization
	What to Look for in Categorical Data
	Mapping Categorical Data to Numeric Values
	Working with Dates
	Working with Currency

	Working with Outliers and Anomalies
	Outlier Detection/Removal

	Finding Outliers with NumPy
	Finding Outliers with Pandas
	Calculating Z-Scores to Find Outliers

	Finding Outliers with SkLearn (Optional)
	Working with Missing Data
	Imputing Values: When is Zero a Valid Value?

	Dealing with Imbalanced Datasets
	What is SMOTE?
	SMOTE Extensions

	The Bias-Variance Tradeoff
	Types of Bias in Data

	Analyzing Classifiers (Optional)
	What is LIME?
	What is ANOVA?

	Summary

	Chapter 3: Introduction to Pandas
	What is Pandas?
	Pandas Data Frames
	Data Frames and Data Cleaning Tasks

	A Pandas Data Frame Example
	Describing a Pandas Data Frame
	Pandas Boolean Data Frames
	Transposing a Pandas Data Frame

	Pandas Data Frames and Random Numbers
	Converting Categorical Data to Numeric Data
	Merging and Splitting Columns in Pandas
	Combining Pandas Data Frames
	Data Manipulation with Pandas Data Frames
	Pandas Data Frames and CSV Files
	Useful Options for the Pandas read_csv() Function
	Reading Selected Rows from CSV Files

	Pandas Data Frames and Excel Spreadsheets
	Useful Options for Reading Excel Spreadsheets

	Select, Add, and Delete Columns in Data Frames
	Handling Outliers in Pandas
	Pandas Data Frames and Simple Statistics
	Finding Duplicate Rows in Pandas
	Finding Missing Values in Pandas
	Missing Values in an Iris-Based Dataset
	Sorting Data Frames in Pandas
	Working with groupby() in Pandas
	Aggregate Operations with the titanic.csv Dataset
	Working with apply() and mapapply() in Pandas
	Useful One-line Commands in Pandas
	Working with JSON-based Data
	Python Dictionary and JSON
	Python, Pandas, and JSON

	Summary

	Chapter 4: RDBMS and SQL
	What is an RDBMS?
	What Relationships Do Tables Have in an RDBMS?
	Features of an RDBMS
	What is ACID?

	When Do We Need an RDBMS?
	The Importance of Normalization
	A Four-Table RDBMS
	Detailed Table Descriptions
	The customers Table
	The purchase_orders Table
	The line_items Table
	The item_desc Table

	What is SQL?
	DCL, DDL, DQL, DML, and TCL
	SQL Privileges

	Properties of SQL Statements
	The CREATE Keyword

	What is MySQL?
	What about MariaDB?
	Installing MySQL

	Data Types in MySQL
	The CHAR and VARCHAR Data Types
	String-based Data Types
	FLOAT and DOUBLE Data Types
	BLOB and TEXT Data Types

	MySQL Database Operations
	Creating a Database
	Display a List of Databases
	Display a List of Database Users
	Dropping a Database

	Exporting a Database
	Renaming a Database
	The INFORMATION_SCHEMA Table
	The PROCESSLIST Table
	SQL Formatting Tools
	Summary

	Chapter 5: Java, JSON, and XML
	Working with Java and MySQL
	Performing the Set-up Steps

	Creating a MySQL Database in Java
	Creating a MySQL Table in Java
	Inserting Data into a MySQL Table in Java
	Deleting Data and Dropping MySQL Tables in Java
	Selecting Data from a MySQL Table in Java
	Updating Data in a MySQL Table in Java
	Working with JSON, MySQL, and Java
	Select JSON-based Data from a MySQL Table in Java
	Working with XML, MySQL, and Java
	What is XML?

	What is an XML Schema?
	When are XML Schemas Useful?

	Create a MySQL Table for XML Data in Java
	Read an XML Document in Java
	Read an XML Document as a String in Java
	Insert XML-based Data into a MySQL Table in Java
	Select XML-based Data from a MySQL Table in Java
	Parse XML-based String Data from a MySQL Table in Java
	Working with XML Schemas
	Summary

	Chapter 6: Data Cleaning Tasks
	What is Data Cleaning?
	Data Cleaning for Personal Titles

	Data Cleaning in SQL
	Replace NULL with 0
	Replace NULL Values with Average Value

	Replace Multiple Values with a Single Value
	Handle Mismatched Attribute Values
	Convert Strings to Date Values
	Data Cleaning from the Command Line (Optional)
	Working with the sed Utility

	Working with Variable Column Counts
	Truncating Rows in CSV Files
	Generating Rows with Fixed Columns with the awk Utility
	Converting Phone Numbers
	Converting Numeric Date Formats
	Converting Alphabetic Date Formats
	Working with Date and Time Date Formats
	Working with Codes, Countries, and Cities
	Data Cleaning on a Kaggle Dataset
	Summary

	Chapter 7: Data Wrangling
	What is Data Wrangling?
	Data Transformation: What Does This Mean?

	CSV Files with Multi-Row Records
	Pandas Solution (1)
	Pandas Solution (2)
	CSV Solution

	CSV Files, Multi-row Records, and the awk Command
	Quoted Fields Split on Two Lines (Optional)
	Overview of the Events Project
	Why This Project?
	Project Tasks
	Generate Country Codes
	Prepare a List of Cities in Countries

	Generating City Codes from Country Codes: awk
	Generating City Codes from Country Codes: Python
	Generating SQL Statements for the city_codes Table
	Generating a CSV File for Band Members (Java)
	Generating a CSV File for Band Members (Python)
	Generating a Calendar of Events (COE)
	Project Automation Script
	Project Follow-up Comments

	Summary

	Appendix A: Working with awk
	The awk Command
	Built-in Variables That Control awk
	How Does the awk Command Work?

	Aligning Text with the printf() Statement
	Conditional Logic and Control Statements
	The while Statement
	A for Loop in awk
	A for Loop with a break Statement
	The next and continue Statements

	Deleting Alternate Lines in Datasets
	Merging Lines in Datasets
	Printing File Contents as a Single Line
	Joining Groups of Lines in a Text File
	Joining Alternate Lines in a Text File

	Matching with Meta Characters and Character Sets
	Printing Lines Using Conditional Logic
	Splitting Filenames with awk
	Working with Postfix Arithmetic Operators
	Numeric Functions in awk
	One-line awk Commands
	Useful Short awk Scripts
	Printing the Words in a Text String in awk
	Count Occurrences of a String in Specific Rows
	Printing a String in a Fixed Number of Columns
	Printing a Dataset in a Fixed Number of Columns
	Aligning Columns in Datasets
	Aligning Columns and Multiple Rows in Datasets
	Removing a Column from a Text File
	Subsets of Column-aligned Rows in Datasets
	Counting Word Frequency in Datasets
	Displaying Only “Pure” Words in a Dataset
	Working with Multi-line Records in awk
	A Simple Use Case
	Another Use Case
	Summary

	Index

