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PREFACE

WHAT IS THE GOAL? 

The goal of this book is to introduce advanced

beginners to C programming fundamentals. Hence, the

material is primarily for people who have some

programming experience, and not really suitable for

“absolute beginners.” This book is suitable as a fast-

paced introduction to various “core” features of C. The

purpose of the material in the chapters is to illustrate

how to solve a variety of tasks using C, after which you

can do further reading to deepen your knowledge.

There is one other point to remember as you read

this book: this book will not make you an expert

programmer in C.

IS THIS BOOK IS FOR ME AND WHAT

WILL I LEARN? 

This book is intended for “beginner to intermediate”

programmers with a year or two of experience in

another language who wish to learn C. You need some

familiarity with working from the command line in a

Unix-like environment. However, there are subjective

prerequisites, such as a strong desire to learn how to

write C programs, along with the motivation and

discipline to read and understand the code samples.



If you are adequately prepared and motivated, you

will learn how to write C programs that involve various

C data types, loops, conditional logic, built-in functions,

custom functions, and recursion.

This book saves you the time required to search for

relevant code samples, adapting them to your specific

needs, which is a potentially time-consuming process.

In any case, if you’re not sure whether or not you can

absorb the material in this book, glance through the

code samples to get a feel for the level of complexity.

WHAT ARE THE STRENGTHS OF THIS

BOOK? 

The top three strengths of this book can be

summarized as follows:

1. This is a modern textbook with up-to-date

information regarding the C11 standard

2. There are detailed explanations of the code samples

because nothing is assumed, which means that

beginners can work through the examples side-by-

side with the explanation

3. No assumptions regarding the level of programming

skills of the readers

One other point to keep in mind: as you might have

noticed, many introductory books are written assuming

a computer science background: this book arguably is

readable without that theoretical foundation.



WHAT ARE THE WEAKNESSES OF THIS

BOOK? 

The weaknesses of this book can be summarized as

follows:

1. A thorough coverage of just the essentials of C in a

book this short is difficult. You need to learn many

details in order to become a good C programmer;

hence, this book serves as a sort of “stepping” stone

in your learning path regarding C.

2. The examples are necessarily simplistic, and cannot

show the best style in a book for beginners because

the best style is too complex to illustrate the simple

concepts.

3. Some readers might find the introductory level of the

material boring and simple. This is not a problem of

the book, but the fact that C is so low-level that the

foundations appear trivial. (They absolutely are not,

but they look that way to a beginner.)

HOW WERE THE CODE SAMPLES

CREATED? 

The code samples in this book were created and

tested using bash on a Macbook Pro with OS X 10.12.6

(macOS Sierra). Regarding their content: the code

samples are derived primarily from the author, and in

some cases there are code samples that incorporate

short sections of code from discussions in online

forums. The key point to remember is that the

overwhelming majority of the code samples follow the



“Four Cs”: they must be Clear, Concise, Complete, and

Correct to the extent that it’s possible to do so, given

the size of this book.

WHY ARE THERE TWO CHAPTERS

ABOUT POINTERS IN C? 

A misunderstanding of pointers is the most common

cause of crashes in C programs. Although C pointers

can be explained quickly, code samples involving

pointers can quickly become difficult to understand

(and also error-prone). This is a difficult subject (even

for advanced beginners) if you are unfamiliar with this

functionality. Hence, one chapter about C pointers

simply isn’t enough to become comfortable with this

topic.

As you will see, Chapter 5 contains basic code

samples involving pointers, which are enough for simple

C programs. If you want a deeper understanding of how

to use pointer, read the code samples in Chapter 6, and

experiment with your own variations of the code. If you

want to become adept in a programming language, you

need to actively practice writing code, which is

especially true for C programs that involve pointers.

WHICH TOPICS ARE EXCLUDED? 

This book does not cover hashing, searching and

sorting, file I/O, data structures, threads, sockets, IPC,

pipes, shared memory, message queues, and other

system-level functionality that are relevant for

advanced and expert-level developers. These topics are



excluded because they are not suitable for an

introductory C book, and there are plenty of other

concepts that you need to learn in order to write C

programs. Note that Chapter 7 briefly covers bit

manipulation and more sophisticated C operators that

you will need to learn if you become a full-time C

developer.

HOW DO I SET UP A COMMAND

SHELL? 

If you are a Mac user, there are three ways to do so.

The first method is to use Finder to navigate to Applications

> Utilities and then double click on the Utilities

application. Next, if you already have a command shell

available, you can launch a new command shell by

typing the following command:

open /Applications/Utilities/Terminal.app

A second method for Mac users is to open a new

command shell on a Macbook from a command shell

that is already visible simply by clicking command+n in

that command shell, and your Mac will launch another

command shell.

If you are a PC user, you can install Cygwin (open

source https://cygwin.com/) that simulates bash

commands, or use another toolkit such as MKS (a

commercial product). Please read the online

documentation that describes the download and

installation process. Note that custom aliases are not

automatically set if they are defined in a file other than

the main start-up file (such as .bash_login).



WHAT ARE THE “NEXT STEPS” AFTER

FINISHING THIS BOOK? 

The answer to this question varies widely, mainly

because the answer depends heavily on your

objectives. The best answer is to try a new tool or

technique from the book on a problem or task you care

about, professionally or personally. Precisely what that

might be depends on who you are, as the needs of a

data scientist, manager, student or developer are all

different. In addition, keep what you learned in mind as

you tackle new data cleaning or manipulation

challenges. Sometimes knowing a technique is possible

makes finding a solution easier, even if you have to re-

read the section to remember exactly how the syntax

works.

If you have reached the limits of what you have

learned here and want to get further technical depth

about regarding C, there are various online resources

and literature describing more complex features of C.

Oswald Campesato

January 2019
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S

CHAPTER   1 

INTRODUCTION TO C

ince this book is for advanced beginners, the first

chapter contains topics that will prepare you to

compile and execute simple C programs.

Consequently, the coverage of the historical details

regarding C is sparse: they rarely help you to learn in C,

and if you are really interested, you can find those

details in various online articles. Moreover, this chapter

does not contain all the minutiae of C because they

simply are not necessary in an introductory C

programming book (besides, you will learn those details

on an as-needed basis if you become a full-time C

programmer).

Stated in simple terms, the goal of this chapter is to

make its contents as useful and relevant as the other

chapters in this book (i.e., no filler material just because

it’s Chapter 1). In particular, this chapter starts with the

rudimentary aspects of C and also shows you how to

create, compile, and execute a C program, all of which

is discussed in the first half of the chapter.

Although this chapter contains a mixture of topics,

the flow of the technical material is essentially

sequential and logically structured. The non-sequential



code samples contain C features before they are

formally introduced. Fortunately, the purpose of those

out-of-sequence features is clear: for example, the printf()

function is obviously for printing things.

So, although the code samples in this book minimize

“forward referencing” technical details, it’s sometimes a

good way to make the code samples more interesting

and useful. For instance, the section about for loops in

Chapter 2 contains conditional logic (even though if/else

statements are discussed later in that chapter) in order

to present more meaningful code samples that are still

easy to understand.

With all the preceding points in mind, let’s quickly go

over the major sections of this chapter. The first part

briefly discusses some of the command-line tools that

are available for C programs, such as gcc (required), make

(optional and discussed in the Appendix), and lint (also

optional), as well as an editor for creating C source

code. This section also discusses the location of other

“standard” files that you will often use in your C

programs.

The second portion of this chapter contains a brief

introduction to the C programming language, along with

some advantages of C, some of the available versions

of C, and an overview of the structure of C programs.

You will also see a “hello world” program in C and how

to compile this program from the command line.

The third portion of this chapter discusses data types

in C, binary and ternary operators, and naming

conventions for variables in C programs. The next

portion contains code samples with alphabetic types

and how to calculate mathematical quantities, such as

ceiling values, floor values, absolute values, and

trigonometric values in C.



The fourth part of this chapter contains a brief

introduction to arrays in C and how to add the numbers

in an array. This section provides a sort of segue into

Chapter 2 (which contains details and code samples

about arrays) as well as Chapter 5 (which contains

examples of C arrays and pointers).

After you complete the smorgasbord of topics in this

chapter, you will be in a good position to absorb the

material in the remaining chapters of this book.

COMMAND LINE TOOLS 

Although the lower-level details of compiling, linking,

and loading a program are important, you can learn

how to compile C programs with just a few details. This

section describes various command line tools, some of

which are optional (at least for now).

The gcc Compiler 

The gcc utility compiles C programs and generates an

executable file that you can launch from the command

line. This utility has many options, and the one that we

need for the code samples in this book is the “-o”

option. Use this option in order to specify the name of

the executable file to create after having compiled the

relevant C program(s).

For example, if you have a C program called MyTest.c,

you can create the executable MyTest with the following

command: (the switch –std=c11 is discussed in Chapter

2):

gcc –std=c11 MyTest.c –o MyTest



If you do not already have gcc on your Mac, you can

register for a free Apple account and, in the Apple

developer page, click the “Developer Tools” checkbox

and download the dmg file in the “Command Line Tools

for Xcode” option. After launching the dmg file to install

gcc, invoke the following command from the command

line:

gcc –v

If gcc is installed correctly, you will see output similar to

the following:

Using built-in specs.

COLLECT_GCC=gcc

COLLECT_LTO_WRAPPER=/opt/local/libexec/gcc/x86_64-apple-

darwin16/7.2.0/lto-wrapper

Target: x86_64-apple-darwin16

Configured with:

/opt/local/var/macports/build/_opt_bblocal_var_buildworker_ports_build_port

s_lang_gcc7/gcc7/work/gcc-7.2.0/configure

--prefix=/opt/local --build=x86_64-apple-darwin16

--enable-languages=c,c++,objc,obj-c++,lto,fortran

--libdir=/opt/local/lib/gcc7

gcc version 7.2.0 (MacPorts gcc7 7.2.0_0)

The code samples in this book use the GNU gcc

compiler, and in case you don’t already have it on your

machine, you can download the compiler for your

platform here:

https://gcc.gnu.org/releases.html

Useful Switches for the gcc Command

(optional) 

Some of these switches might not make sense right

now, but they are presented in one location so that you

can refer to them in case you need them for code

samples in later chapters.

https://gcc.gnu.org/releases.html


Check for C11 compliance with the -std switch:

gcc -std=c11 -o test test.c

Display all warning messages with the -Wall switch:

gcc -std=c11 -Wall -o test test.c

Create an object file with the -o switch:

gcc -std=c11 -o test test.c

Create an assembly file with the -S switch:

gcc -std=c11 -S test.c

Include debugging information with the -g switch:

gcc -std=c11 -g test.c

If you decide later to remove debugging information,

then either recompile without the -g switch or use the

strip command.

Display all options applied at each compilation step

with the -v switch:

gcc -std=c11 -v test.c

Specify the path /usr/lib/ with the -L switch:

gcc -std=c11 -L/usr/lib test.c -o test

Display help information for gcc:

gcc –help

There are also environment variables for the gcc

command, such as TMPDIR, which specifies the location

of a temporary directory. An example of the value for

the TMPDIR variable is here:

/var/folders/3g/4s50gz4d22147815q8jz6gzm0000gn/T/

Perform an online search to find out about other

environment variables for the gcc command.

The lint-related Utilities (optional) 



The original lint utility checked C programs for syntax

irregularities and provides various types of warning

messages. For example, the printf() function has a return

type called int (return types are discussed in Chapter 4).

Thus, lint generates a warning message for the following

code snippet because the return value of the printf()

function is “unused”:

printf("%s\n", "Hello World");

In earlier versions of C, the way to avoid a lint

warning message was to use the following syntax:

(void)printf("%s\n", "Hello World");

However, the lint utility is quite old, and modern

compilers will catch many coding anomalies that were

previously handled by lint. In case you’re interested,

there are lint-like tools available that you can install and

analyze your code (perform an Internet search for such

tools).

One such tool is splint, which supports most of the

C99 standard (discussed in Chapter 2), and it’s

downloadable here:

www.splint.org/

Another tool is cppcheck, which works on C code as

well as C++ code, and you can install this utility on Mac

with this command:

brew install cppcheck

Note that cppcheck does not report a warning even if

the return value of the printf() function is unused. More

details regarding cppcheck are here:

http://cppcheck.sourceforge.net/

Incidentally, if you hear people using the term

“linter,” they are referring to a tool that analyzes source

http://www.splint.org/
http://cppcheck.sourceforge.net/


code to find various anomalies, such as programming

errors, syntax errors, and other irregularities.

Editors and IDEs 

The code samples in this book were written with the

vim editor, which is available on all Unix/Linux machines,

but you can use any text editor that’s convenient for

you.

In addition, there are IDEs available, but they aren’t

necessary for the code samples in this book. If you

prefer an IDE, Code::Block is a reasonable choice, or you

can try Eclipse or NetBeans.

Now that you have an understanding of the tools for

creating and compiling C programs, and also some

optional command-line tools, let’s look at the C

programming language, the topic of the next section.

WHAT IS C? 

C is an imperative programming language with a

static type system. C “maps” efficiently to machine

instructions and is sometimes called “a high level

assembly language.” In fact, C appears in operating

systems and in computers from embedded systems to

supercomputers.

Dennis Ritchie developed C at Bell Labs (between

1969 and 1973), and it forms the foundation of the Unix

operating system. In addition, C was standardized by

the American National Standards Institute (ANSI) in

1989 (ANSI C) and subsequently by the International

Organization for Standardization (ISO).



Compiled C provides low-level access to memory and

required minimal run-time support, and it was intended

to encourage cross-platform programming. Indeed,

portably written C programs can be compiled on a wide

variety of computer platforms and operating systems

with minor changes to the C code.

C is a compact yet intricate low-level language that

requires a non-trivial amount of effort to learn well. For

instance, C supports different sizes of integer variables,

along with an intricate set of low-level operators. As

another example, C supports Unicode (discussed briefly

in Chapter 7), whose rules and exceptions are more

complex than other languages.

What is Special About C? 

C is the language of systems programming, and

various operating systems have been written in C

(albeit with portions of assembly code as well). C is also

the language of small microcontrollers. Moreover, C

provides you with a glimpse into the internal workings

of a computer that’s not possible in other, high-level

languages. You might be surprised to discover that the

Java and Python virtual machines were initially

implemented as C programs, and then they are

compiled from C code to binaries.

Incidentally, the C++ language (which is an

extension of C) is also a low-level structured

programming language. You can create a C struct (a data

type that is discussed in Chapter 7) whose memory

layout matches the physical hardware registers on a

particular device, which is very useful when writing

operating system device drivers (and not possible in the

vast majority of other languages).



Although this book is about C and not C++, here is a

short list of uses for C++, just in case you are

interested:

Web browsers

robotics

games

device drivers

hardware controllers

low level mathematics

office applications

graphics editors

operating systems

Hence, if your intent is to write programs that can

handle lower-level tasks, then it’s definitely worth the

effort to learn how to write C programs.

Major Revisions to C 

This book does not discuss versions of C prior to the

C99 ISO standard, which was released in 1999. Note

that earlier versions of the C language include K&R C,

ANSI C, and C90. The C99 standard incorporates many

new features, such as:

inline functions

new data types (such as long long int and a complex

type)

variable-length arrays and flexible array members

improved support for IEEE 754 floating point



support for variadic macros (macros that take a

variable number of arguments)

support for one-line comments beginning with //

While C99 is mostly backward compatible with C90,

keep in mind that there are some restrictions.

A more recent major revision (starting around 2007)

of the C standard is called C11, which adds numerous

new features, including:

type generic macros

anonymous structures

improved Unicode support

atomic operations

multi-threading

bounds-checked functions

improved compatibility with C++

C11 makes some portions of the existing C99 library

optional.

       Chapter 2 contains information about

checking your source code for

compliance with the rules of the C11

standard.

Yet another revision involved embedded C

programming, which previously required non-standard

extensions to the C language in order to support

features such as fixed-point arithmetic, multiple distinct

memory banks, and basic I/O operations. Then in 2008

the C Standards Committee extended the C language to



provide a common standard for adherence by all

implementations. These additional features include

fixed-point arithmetic, named address spaces, and

basic I/O hardware addressing.

A HIGH-LEVEL VIEW OF C PROGRAMS 

This section briefly discusses the structure of C

programs, coding guidelines, and keywords in C. The

information in the following subsections will become

more meaningful as you gain practice writing C

programs, so it’s worth revisiting this section after you

have read several chapters in this book.

The Structure of C Programs 

As you will see in the code samples in this book, a C

program can contain a combination of the following:

comments (Chapter 2)

statements/expressions (Chapter 2)

variables (Chapter 2)

if-else conditional logic (Chapter 2)

for/while/do loops (Chapter 2)

functions (Chapter 4)

preprocessor commands (Chapter 7)

If you have some coding experience, you might already

be familiar with conditional logic, loops, and functions.

However, preprocessor commands are probably new to

you, and they are discussed in Chapter 7.



Coding Guidelines 

Simple and clear programs, with appropriately

commented code blocks, are preferred because they

will be easier to understand, debug, and enhance (as a

general rule). Some guidelines include:

1. Keep functions (discussed in Chapter 4) short and

meaningful

2. Each function has one primary purpose

3. Avoid complex logic involving multiple nested if-

blocks

4. Avoid comment code blocks that are complex or non-

intuitive

5. Avoid commenting every line of code

Keep in mind that the preceding rules are intended

as general guidelines and they can be broken if it

increases code clarity (but try to do so sparingly).

Keywords in C 

The C language supports a set of keywords that you

cannot use as variables in C programs: if you attempt to

do so, your code will not compile correctly. Some of

these keywords appear in other languages, and some of

them are specific to C.

Here is an extensive (though not necessarily

complete) list of keywords in C (in no particular order):

auto, double, int, struct, break, else, long, switch, case, enum, register,

typedef, char, extern, return, union, const, float, short, unsigned,

continue, for, signed, void, default, goto, sizeof, volatile, do, if, static,

while, inline, restrict, _Bool, _Complex, and _Imaginary.



The C11 keywords include: _Alignas, _Alignof, _Atomic,

_Generic, _Noreturn, _Static_assert, and _Thread_local.

At this point you have just enough background

information about C to create a simple “Hello World”

program. This code sample is the first step toward

creating interesting and useful C programs that involve

data types, variables, conditional logic, and so forth.

Before we proceed, don’t forget to have gcc installed

on your machine (type which gcc from the command line

to see the location of gcc), which you’ll need in order to

compile your C programs. Now let’s proceed to the next

section, which explains how to create, compile, and

launch a simple C program.

A HELLO WORLD PROGRAM IN C 

As mentioned earlier in this chapter, sometimes you

will see C functions (such as the printf() function)

introduced in C programs before they are fully

explained. However, such functions are usually intuitive

and easy to comprehend, and they are also explained in

greater detail later in the chapter.

With the preceding point in mind, Listing 1.1 displays

the contents of HelloWorld.c, which is a minimalistic C

program that illustrates how to use the printf() function to

display the string “Hello World” on the command line.

LISTING 1.1: HelloWorld.c

#include <stdio.h>

 

int main()

{

   printf("Hello World\n");



 

   return 0;

}

The first line in Listing 1.1 is probably obscure: it’s an

“include” statement (which is always preceded by the

“#” symbol), which refers to the file stdio.h (commonly

called a “header” file). Many C programs include this

header file, which contains something called the

“prototype” definition of the printf() function (as well as

many other functions). Let’s defer the lengthy details

regarding header files until the next section; for now we

can gloss over the details and just discuss the rest of

Listing 1.1.

As you can see, the remaining portion of Listing 1.1

is straightforward: there is a function called main() that

takes no arguments and returns a value of type int.

Inside the main() function there are two simple lines of

code. The first line is the printf() function that prints the

string “Hello World.” (we’ll look at the printf() function in

more detail later). The second line is a return statement

that returns the value 0 because that’s the return type

of the main() function. Some people think that it’s

unnecessary to include an explicit “return 0” statement

in the main() function, whereas others think the

additional line of code involves minimal extra effort.

Believe it or not, you have just completed your first C

program! If you’re impatient, you can skip the next

several sections (but make sure you do read them at

some point) and go to the section that explains how to

compile this C program.

C Header Files and Libraries 

By convention, header files in C programs are named

with the suffix “.h” (and .hpp extensions are very



common for header files for C++ programs). The

header file stdio.h that you saw in Listing 1.1 is physically

located in the directory /usr/lib/include, which is the

location of many other standard header files. In addition

to standard header files you can also define your own

custom header files, which is discussed briefly in

Chapter 7.

In addition to header files, there are some binary

files called “library” files that are automatically included

when you compile a C program. The directory /usr/lib is

the standard location for many standard library files

that are available as part of the C programming

environment (and yes, you can also create custom

libraries, but this topic is beyond the scope of this

book).

In case you’re wondering, it is also possible to

specify additional “header” files and libraries from the

command line, as well as inside a so-called “makefile.”

The Appendix contains more information about make

files.

Valid Syntax for the main() Function 

The main() function in Listing 1.1 has the simplest

valid format that complies with C11, and at this point

it’s the easiest format to explain. The following

declarations of the main() function are valid in C11:

• int main(void)

• int main()

• int main(int argc, char **argv)

• int main(int argc, char *argv[])

The third and fourth declarations in the preceding list

involve pointers, which are discussed in Chapter 5 and



Chapter 6. Another point to keep in mind is that the

following format is valid in some operating systems:

int main(int argc, char **argv, char **envp)

The fourth code snippet contains a third parameter envp

that “points” to the environment (i.e., the environment

variables) where a C program is launched. However,

you can access and update environment variables via

getenv() and putenv(), respectively, which are discussed in

Chapter 6.

If you want to specify command line arguments that

are accessible inside a C program, you need to use the

following syntax (which is a commonly used syntax):

int main(int argc, char **argv)

The first argument argc is a number that equals the

number of command line arguments. The second

argument argv in the preceding snippet is a pointer-to-a-

pointer, which we’ll see in a later chapter. Note that you

can use the preceding syntax in Listing 1.1 and the

code compilation is performed in the same manner.

C Program Syntax 

There are several conventions for placing curly

braces in C programs, and the comments in this section

are generally applicable to code blocks in C. We’ll use

the code in Listing 1.1 as a simple illustration for

program syntax. Depending on your preference, you

can place the initial curly brace in Listing 1.1 on the

same line, as shown here:

int main() {

   printf("Hello World\n");

}



In fact, you can even use the following syntax (not

recommended in order to maintain code readability):

int main() { printf("Hello World\n"); }

COMPILING C PROGRAMS 

The compilation process involves converting C

programs into “object” files, which are files that contain

binary code (such files have a “.o” extension). In this

book the code samples involve a single C program

(Chapter 7 discusses how to compile multiple custom C

programs), so the compilation step is straightforward.

After the compilation step, the object file is

automatically “assembled” with other files, such as

library files (discussed earlier in this chapter). The result

of this process is an executable file that you can launch

from the command line.

In case you’re wondering, there are several C

compilers available for Unix, Linux, and OS X. The

original C compiler is cc, and an open source version of

this C compiler is gcc. You can check for the presence of

these compilers as follows:

$ which cc

/usr/bin/cc

$ which gcc

/opt/local/bin/gcc

This book uses gcc to compile C programs, and an

invocation of the gcc compiler that compiles the

program in Listing 1.1 is shown here:

gcc –std=c11 HelloWorld.c –o HelloWorld

Provided that there were no compilation errors, the

preceding command generates the following



executable:

HelloWorld

Now launch the preceding executable with this

command:

./HelloWorld

The output is here:

Hello World

Note that you can also compile the program in Listing

1.1 without the –o switch, as shown here:

gcc HelloWorld.c

The preceding command generates the following

executable:

a.out

You can launch the preceding executable by invoking

a.out from the command line and you will see the same

output. In fact, you can specify any legitimate filename

with the –o switch, but it’s customary to specify the

name of the source file without its suffix (in this case

it’s HelloWorld).

Moreover, C programs can have dependencies on

other C programs (written by you or someone else), and

you can include these C programs on the command

line. For example, if the C program main1.c depends on

the C programs depend1.c and depend2.c, you can use the

make utility (discussed in the Appendix ) to specify these

dependencies and ensure that they are compiled and

linked to create the binary file main1.

VARIABLE NAMES IN C 



Variables in C must be defined in a declaration

statement that contains 1) the name of the variable and

2) the type of the variable. The value of the variable is

optional. Variable declarations in C programs can

appear before the main() code block, inside the main()

function, or inside user-defined functions. Some

developers think it’s better to define variables at the

top of a function or near the block of code where they

are used. Although opinions differ, the latter is common

among object-oriented programming languages such as

C++.

As a simple example, the following code snippet

declares (but does not initialize) one variable of type

integer, followed by a declaration of a second variable

of type integer that is also initialized with an integer

value:

int myInt1;

int myInt2 = 7;

Notice that variable declarations end with a semicolon.

You can also define multiple variables of the same type

in a single statement, as shown here:

int myInt1, myInt2 = 7, myInt3 = 25;

The general form of a variable declaration is:

type name; /* comment */

where type is one of the C variable types ( int, float, etc.)

and name is any valid variable name in C.

Assignment Statements 

Assignment statements are used to give a value to a

variable. The following code snippet is a very simple

example of an assignment statement:

num = (1 + 2) * 4;



The variable num on the left side of the equals operator

(= ) is declared earlier in a C program (not shown here)

and assigned the value of the expression (1 + 2) * 4, so

the variable num is assigned the value 12.

The general form of the assignment statement in C

is:

variable = expression ;

The = sign is used for assignment, and it literally

means: compute the value of expression and assign the

value of expression to the variable on the left side of the

equals sign.

       Chapter 2 discusses global variables,

local variables, and formal parameters.

INDENTATION AND CODE FORMAT 

Use indentation to make programs easier to

understand (for you as well as other people). C

programs indent one level for each new block or

conditional. There are two popular styles of indentation:

one style places the initial curly brace on the same line

as the code and the other style places the initial curly

brace on a separate line.

Although you can probably guess the purpose of an

if/else code block and a while statement, let’s wait until

Chapter 2 to delve into the meaning of the next set of

code blocks and merely view the code from the

standpoint of the indentation style. With that in mind,

here is an example of the first indentation style:

if (total <= 0) {

    printf("You owe nothing\n");

    total = 0;



} else {

    printf("You owe %d dollars\n", total);

    all_totals = all_totals + total;

}

Notice that the initial curly brace in the preceding block

is on the same line as the if and else keywords. The

following code block illustrates the second style of

indentation:

while (! done)

{

    printf("Processing\n");

    next_entry();

}

 

if (total <= 0)

{

    printf("You owe nothing\n");

    total = 0;

}

else

{

    printf("You owe %d dollars \n", total);

    all_totals = all_totals + total;

}

Use the format that you prefer (if you have a choice),

unless you are required to follow a different coding

convention in your organization. Since you will

encounter both formats in C programs, it’s worthwhile

becoming comfortable with both styles.

One more detail: indentation is typically two or four

spaces, and the use of tabs is discouraged because the

way that tabs are treated depends on the text editors.

Consistency is more important than the size of

indentation.



THE PRINTF() FUNCTION 

In Listing 1.1 you saw an example of using the printf()

function in order to print a text string. The values of

other types of variables are also printed using the printf()

function, which uses formats to match different data

types. In particular, the formats %c, %d, and %f specify a

character, an integer, and a floating point number,

respectively. In addition, there is a “family” of functions

whose semantics are similar to the printf() function, such

as the sprintf() function for putting data in a buffer and

fprintf() function for printing data to a file.

C supports the following output formatting:

%d     // print as decimal integer

%6d    // print as decimal integer, at least 6 characters

          wide

%f     // print as floating point

%6f    // print as floating point, at least 6 characters

          wide

%.2f   // print as floating point, 2 characters after

          decimal point

%6.2f  // print as floating point, at least 6 wide and 2

          after decimal point

The printf() function also recognizes %o for octal, %x for

hexadecimal, %c for character, %s for character string,

and %% for % itself (numbers in octal and hexadecimal

are discussed later).

Listing 1.2 displays the contents of IntExample.c that

illustrates how to initialize an integer-valued variable

and then use the printf() function to display arithmetic

operations on that variable.

LISTING 1.2: IntExample.c

#include <stdio.h>



 

int term; /* term used in two expressions */

 

int main()

{

  term = 3 * 5;

 

  printf("Twice %d is %d\n", term, 2*term);

  printf("Three times %d is %d\n", term, 3*term);

 

  return (0);

}

Listing 1.2 contains a main() method that declares and

initializes the variable term with the value 15. The first

printf() statement contains two %d conversions in order to

display the values of term and 2*term, respectively. The

second printf() statement also contains two %d

conversions in order to display the values of term and

3*term, respectively.

Hence, every %d conversion must have a

corresponding value to display, and vice versa. The

same is true for other conversions, such as %f. Also

keep in mind that extraneous expressions are ignored,

and if too few expressions are specified, the results are

unpredictable. Although the GNU gcc compiler checks

printf() arguments, try not to rely on this feature.

DATA TYPES IN C 

We have already seen some of the primitive data

types in C, such as int, double, and float. Later in this

chapter you will see a C program that illustrates how to

print an assortment of primitive numeric data types.



C also supports a character type (but not a string

type), as well as arrays that can contain primitive types.

Later in this chapter you will see code samples that

contain characters, strings, and arrays.

By way of illustration, C supports the following data

types (with examples in parentheses):

int     // integer (ex: 8)

float    // floating point (ex: 5.1234)

char    // character (ex: 'a')

short   // short integer

long    // long integer

double  // double-precision floating point

In addition to the preceding list of primitive data types,

C supports pointers, which is a very powerful feature

that is unavailable in many languages (such as Java). C

pointers are actually a family of pointer data types.

Whenever you declare a pointer, you must also specify

what kind of data it will point to in order to form a

concrete data type.

In fact, a C pointer can point to more complex built-

in data types (such as a C struct) as well as custom data

types. The concept of pointers will become clearer in

Chapter 5 and Chapter 6, which delve into the details

about pointers (along with code samples).

The sizeof() Operator in C 

The built-in sizeof() operator is an easy way to

determine the amount of memory (number of bytes)

that are allocated to a variable or a structure (built-in

structures and custom structures are discussed in

Chapter 7).

Listing 1.3 displays the contents of SizeOfDataType.c that

illustrates how to use the sizeof() function to determine



the storage allocated to various data types in C.

LISTING 1.3: SizeOfDataTypes.c

#include <stdio.h>

 

int main()

{

   char state[] = "California";

 

   printf("Size of char:   %lu\n", sizeof(char));

   printf("Size of int:    %lu\n", sizeof(int));

   printf("Size of float:   %lu\n", sizeof(float));

   printf("Size of double: %lu\n", sizeof(double));

   printf("Size of state:  %lu\n", sizeof(state));

 

  return (0);

}

Listing 1.3 contains a main() function that initializes the

character array state with a hard-coded string. The

remaining portion of code consists of 4 printf()

statements that display the number of bytes for char,

int, float, and double data types in C. The final printf()

statement displays the number of bytes occupied by

the character string state. The output from launching

the C program in Listing 1.3 is here:

Size of char:   1

Size of int:    4

Size of float:   4

Size of double: 8

Size of state:  11

OPERATORS IN C 

The C programming language provides operators

that can be classified into several categories, including



arithmetic operators, increment/decrement operators,

and ternary operators. The following subsections

provide more details about each type of operator.

Arithmetic Operators 

Arithmetic operators are “+”, “-”, “*”, and “/” for

addition, subtraction, multiplication, and division,

respectively. Arithmetic operators have the following

precedence levels in expressions that do not contain

parentheses:

* and / have the same level (left-to-right if both

appear)

+ and – have the same level (left-to-right if both

appear)

Parentheses can override the default precedence

levels (and can also be nested). The main purpose of

parentheses is to alter the default order of execution in

expressions that contain arithmetic operators, as shown

here:

7-5+8 = 2+8 = 10 (left-to-right precedence)

7-(5+8) = 7 – 13 = -6

3*8/4 = 24/4 = 6 (left-to-right precedence)

3*(8/4) = 3*2 = 6

When in doubt, use parentheses in an expression. For

example, the expression 8*x+y*z/10 is the same as (8*x)+

(y*z)/10, but the latter is clearer.

Another arithmetic operator is the modulus %

operator, which provides the integer remainder from

dividing an integer by a non-zero integer:

7 % 4 = 3

10 % 10 = 0



Exponentiation has the highest precedence, except

when overridden by parentheses, as shown here:

2**4-3 = 16-3 = 13

2**(4-3) = 2**1 = 2

Listing 1.4 displays the contents of Arithmetic.c that

illustrates how to perform arithmetic operations.

LISTING 1.4: Arithmetic.c

#include <stdio.h>

 

int main()

{

   int x = 5 + 3;

   int y = 5 - 3;

   int z = 5 * 3;

   int w = 5 / 3;

 

   printf("5 + 3 = %d\n",x);

   printf("5 - 3 = %d\n",y);

   printf("5 * 3 = %d\n",z);

   printf("5 / 3 = %d\n",w);

 

  return (0);

}

Listing 1.4 contains a main() function that initializes 4

integer variables x, y, z, and w, followed by 4 printf()

statements that display the values of those same

variables. The output from launching the C program in

Listing 1.4 is here:

5 + 3 = 8

5 - 3 = 2

5 * 3 = 15

5 / 3 = 1

Increment/Decrement Operators 



In C there are two ways to increment or decrement a

variable by 1. One way is shown in the following code

block:

int a=5, b=9;

a += 1;

b -= 1;

After the preceding code block has executed, a has the

value 6 and b has the value 8. However, the preceding

construct cannot be combined with the == operator:

you must first perform the increment or decrement

operation, and then you can perform the if logic.

The second way is to use the increment and

decrement operators, which are ++ and --, respectively.

When these operators appear on the left side of a

variable, the increment or decrement operation is

performed before any other operations. However, when

these operators appear on the right side of a variable,

the increment or decrement operation is performed

after other arithmetic operations. The following code

block illustrates these points:

int x=0, y=1;

if(++x == 1) { //first add 1 to x and then compare (this is

                 true)

               // do something

}

 

if(y++ == 1) { //first

compare and then add 1 to y (this is

                 true)

               //do something

}

After the preceding code block is executed, x has the

value 1 and y has the value 2, and both if statements

are executed.



Now consider the following code block, where x and

y are initialized with the values 6 and 2, respectively:

int x=6, y=2;

if(--x == 6) {

//subtract 1 from x and then compare (this is false)

               // do something

}

 

if(y++ == 3) { //

first compare then add 1 to y (this is false)

               // do something

}

After the preceding pair of if statements are executed, x

is equal to 5 and y is equal to 3, but neither if statement

is executed (compare this result with the previous pair

of if statements).

Ternary Operator 

A ternary operator is a short-hand way of performing

if/else conditional logic. As a simple example, consider

the following code block:

if (a < b)

{

   x = 1;    

}

else  

{

   x = 2;    

}

The preceding code snippet can be represented in a

more abstract conditional form as follows:

if (expr1)

{

   expr2;    



}

else  

{

   expr3;    

}

Another way to simplify the preceding if/else logic is via

the ternary operator that has the following form:

expr1 ? expr2 : expr3

For example, the code block at the beginning of this

section can be expressed as follows:

x = (a<b ? 1 : 2);

In the preceding code snippet, if the inequality a<b is

true, then x is assigned the value 1; otherwise, x is

assigned the value 2.

The next portion of this chapter contains code

samples that illustrate how to use built-in C functions to

calculate the ceiling and the floor of a number, the

absolute value of a number, and some trigonometric

functions. Chapter 4 provides additional built-in C

functions (and then shows you how to define custom

functions in C).

CALCULATING CEILING AND FLOOR

VALUES 

C provides various built-in functions that perform

arithmetic and mathematical calculations, such as the

ceil() function and the floor() function. Listing 1.5 displays

the contents of MathValues.c that illustrates how to

calculate the ceiling and the floor of decimal values.

LISTING 1.5: MathValues.c



#include <math.h>

#include <stdio.h>

 

int main()

{

   double y, z;

 

   y = ceil(1.05);       // y = 2.0

   z = ceil(-1.05);      // z = -1.0

   printf("y = %.2f ; z = %.2f\n", y, z);

 

   y = floor(2.8);

   z = floor(-2.8);

   printf("y = %.2f ; z = %.2f\n", y, z);

 

   return 0;

}

Listing 1.5 contains a main() function that initializes the

variables y and z with two invocations of the built-in

ceil() function in C. Next, a printf() statement displays the

values of z and y, and then y and z are assigned different

values by invoking the built-in floor() function in C, after

which their values are displayed. The output from

compiling and executing the code in Listing 1.5 is here:

The absolute value of x1 is 4.

fabs( -11.230000 ) = 11.230000

CALCULATING ABSOLUTE VALUES 

C provides built-in functions that perform arithmetic

calculations on floating point numbers, such as the fabs()

function. Listing 1.6 displays the contents of AbsValues.c

that illustrates how to calculate the absolute values of

integers and decimal values.



LISTING 1.6: AbsValues.c

#include <math.h>

#include <stdlib.h>

#include <stdio.h>

 

int main()

{

   int x1 = -4, y1;

   double x2=-11.23,y2;

 

   y1 = abs(x1);

   printf("The absolute value of x1 is %d\n", y1);

 

   y2 = fabs(x2);

   printf("fabs( %lf ) = %lf\n", x2, y2);

 

   return 0;

}

Listing 1.6 contains a main() function that initializes the

variables x1, y1, and y2. The variables y1 and y2 are

initialized via functions calls to the built-in functions abs()

and fabs(), respectively. Two printf() statements display the

values of x1, y1, x2, and y2. The output from compiling

and executing the code in Listing 1.6 is here:

The absolute value of x1 is 4.

fabs( -11.230000 ) = 11.230000

CALCULATING TRIGONOMETRIC

VALUES IN C 

C also provides built-in functions that perform

trigonometric calculations. Listing 1.7 displays the

contents of TrigValues.c that illustrates how to use the sin(),



cos(), and tan() function return the value of the sine,

cosine, and tangent of x, respectively.

LISTING 1.7: TrigValues.c

#include <math.h>

#include <stdio.h>

 

#define PI 3.1415926535

 

int main()

{

   double pi, x, y1, y2, y3;

 

   x = PI/4;

   y1 = sin(x);

   y2 = cos(x);

   y3 = tan(x);

 

   printf("sin( %lf ) = %lf\n", x, y1);

   printf("cos( %lf ) = %lf\n", x, y2);

   printf("tan( %lf ) = %lf\n", x, y3);

 

   return 0;

}

Listing 1.7 contains a main() function that initializes the

variable x to PI/4, and then initializes the variables y1, y2,

and y3 via invocations of the built-in C functions sin(),

cos(), and tan(), respectively. Three printf() statements

display the values of y1, y2, and y3. The output from

compiling and executing the code in Listing 1.7 is here:

sin( 0.785398 ) = 0.707107

cos( 0.785398 ) = 0.707107

tan( 0.785398 ) = 1.000000



WORKING WITH DIFFERENT BASES IN

C 

Integer and decimal numbers are base 10 by default,

but you can work with other bases, such as binary,

octal, and hexadecimal. Listing 1.8 displays the

contents of OtherBases.c that contains an assortment of

code snippets that illustrate how to work with numbers

in binary, octal, and hexadecimal in C.

Please keep the following caveat in mind: binary

integer literals are a feature of C++14, and not in any C

standard. Although binary integers are a non-standard

GCC extension in C, this feature can be useful with you

need to perform bit-level operations (discussed in

Chapter 7).

LISTING 1.8: OtherBases.c

#include <stdio.h>

 

// binary values start with 0b:

int a=0b0101; // decimal value is 5

 

// octal values start with 0:

int b=016;    // decimal value is 14

 

// hex values start with 0x or 0X:

int x1=0x18, x2=0X37, x3=0xAB;

 

int main()

{

   int a1=0b0101, b1=0x16, c1=123;

   int x1=0x18, x2=0X37, x3=0xAB;

 

   printf("a1=%d b2=%d c3=%d\n",a1, b1, c1);

   printf("x1=%d x2=%d x3=%d\n",x1, x2, x3);



 

   return 0;

}

Listing 1.8 first initializes the variables a1 and b1 to

binary and octal values, respectively. The next code

snippet initializes the variables x1, x2, and x3 to

hexadecimal values. Note that all these variables are

global variables.

The next section of code is a main() function that

initializes the local variables a1, b2, and c1 to binary,

hexadecimal, and integer values, respectively. The final

section of code is two printf() statements that display the

values of all these variables. The output from compiling

and executing the code in Listing 1.8 is here:

a1=5 b2=22 c3=123

x1=24 x2=55 x3=171

Now let’s take a brief look at char types and arrays in C

programs, as a prelude to some of the code samples

that you will see in Chapter 2.

WORKING WITH THE CHAR TYPE IN C 

Listing 1.9 displays the contents of ReverseChars.c that

illustrates how to initialize three characters and then

print them in “reverse” order.

LISTING 1.9: ReverseChars.c

#include <stdio.h>

 

char char1; char char2; char char3;

 

int main()

{

   // first character



   char1 = 'A';

 

   // second character

   char2 = 'B';

 

   // third character

   char3 = 'C';

 

   printf("%c%c%c reversed is %c%c%c\n",

           char1, char2, char3,

           char3, char2, char1);

 

   return (0);

}

Compile the code and launch the executable and you

will see the following output:

ABC reversed is CBA

Now that we’ve seen code samples with simple built-in

C functions, let’s learn about arrays and strings in C,

which are the topics in the rest of this chapter.

WHAT ARE C ARRAYS? 

This section provides a very short introduction to C

arrays, as a sort of preview before delving into the

details about arrays in Chapter 2.

An “array” is a set of consecutive memory locations

used to store data. Each item in the array is called an

“element.” The number of elements in an array is called

the “dimension” of the array. A typical array declaration

is shown here:

int mylist[3];



The preceding code snippet declares mylist as an array of

three elements, which you can access via mylist[0],

mylist[1], and mylist[2]. Notice that the first element has an

index value of 0, the second element has an index

value of 1, and so forth. Thus, if you declare an array of

100 elements, then the 100th element has index value

of 99.

   The first position in a C array has index

0.

Now that you have a basic understanding of how to

declare an array, let’s see how to declare and initialize

an array of decimal numbers and compute the sum of

those numbers, as discussed in the next section.

ADDING THE NUMBERS IN AN ARRAY 

Listing 1.10 displays the contents of AddArray.c that

illustrates how to compute the total and the average

value of the numbers in an integer-valued array (and in

Chapter 2 we will use a loop).

LISTING 1.10: AddArray.c

#include <stdio.h>

 

float data[5]; // data to average and total

float total;   // the total of the data items

float average; // average of the items

 

int main()

{

   data[0] = 34.0;

   data= 27.0;



   data= 45.0;

   data= 82.0;

   data[4] = 22.0;

 

   total = data[0] + data[1] + data[2] + data+ data[4];

   average = total / 5.0;

   printf("Total %f Average %f \n", total, average);

 

   return (0);

}

Listing 1.10 starts by declaring the variables data, total,

and average as float variables. The next section is the

main() function that initializes the 5 values of the data

array. The variable total is initialized with the sum of the

values in the data array, followed by the variable average

that is the average of the numbers in the data array. The

last code snippet displays the values of the variables

total and average.

Compile the code in Listing 1.10 as follows:

gcc –std=c11 AddArray.c –o AddArray

Now launch the binary executable and you will see the

following output:

Total 210.000000 Average 42.000000

SUMMARY 

This chapter introduced you to the C programming

language, along with different versions of C. You learned

about the structure of C programs, coding guidelines,

and keywords in C. Then you saw how to create,

compile, and launch a simple C program.

You also learned about data types in C and C

operators (such as arithmetic operators,



increment/decrement operators, and ternary operators).

You also learned about variables in C, indentation/code

format, and assignment statements in C. Finally, you

learned about arrays in C and how to add the numbers

in an array.
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CHAPTER   2 

CONDITIONAL LOGIC AND

SIMPLE TASKS

his chapter is essentially a continuation of the

material in Chapter 1, with code samples that use

conditional logic in C programs, followed by

examples of performing routine tasks in C. Please note

that the code samples in this chapter provide an

assortment of topics whose coverage is limited to basic

functionality. At the same time, these code samples

contain some “building blocks” for more interesting

code samples in subsequent chapters.

The first part starts with examples of comments in C

programs, followed by various examples of conditional

logic for handling tasks such as checking if a given year

is a leap year, finding the largest of three numbers, and

calculating the third angle of a triangle. The second part

of this chapter contains a code sample that shows the

difference between local and global variables, followed

by type casting and integer promotion in C programs.

The third section explains how to handle user input

in C programs, using the C functions gets(), puts(), scanf(),

and printf(). You will see how to read formatted and



unformatted input values, and how to read an entire

line of user input.

The final section briefly discusses stdin, stdout, and

stderr that represent standard input, standard output,

and standard error, respectively, that can be redirected

to accept input from files (for standard input) and also

redirected to output files (for standard output and

standard error).

COMMENTS IN C PROGRAMS 

Although the C programs in this book are very short

and do not benefit much (if at all) from comments,

remember that comments in your code can help other

people understand your code (and perhaps also you, if

you haven’t looked at your code for quite some time).

There are several ways to include comments in C

programs, some of which are shown here:

/* this is a comment */

// this is a second comment

/* this is

a third comment */

The rule of thumb is simple: include a comment (or a

comment block) to explain a section of code whose

purpose might be difficult to understand. Obviously, you

don’t need to include a comment when the code is self-

explanatory, such as the following:

int x = 3;     // an integer

float y = 4.5;  // a decimal

int *ptr;      // a pointer to an integer

return x;      // return the value of x



SIMPLE CONDITIONAL LOGIC 

This section shows you a very simple example of

using if-else statements in C programs. Make note of the

examples of conditional logic in this chapter because

(as you will see in Chapter 3) for loops in C programs

invariably contain some type of conditional logic (with

the possible exception of C programs that provide

report-related functionality).

Listing 2.1 displays the contents of IfElse.c that

illustrates how to use if-else logic in a C program.

LISTING 2.1: IfElse.c

#include <stdio.h>

 

int main()

{

   int z = 10;

 

   if(z % 2 == 0)

   {

      printf("z is even: %d\n", z);

   }

   else

   {

      printf("z is odd: %d\n", z);

   }

 

   return 0;

}

Listing 2.1 is straightforward: the variable z is initialized

as an integer with the value of 10, followed by a

conditional code block that prints one message if z is

even, and a different message if z is odd. The output



from compiling and launching the code in Listing 2.1 is

here:

z is even: 10

CONDITIONAL LOGIC WITH LOGICAL

ERRORS 

Listing 2.2 displays the contents of IfElse2.c that

illustrates how to use slightly more complicated if-else

logic in a C program.

LISTING 2.2: IfElse2.c

#include <stdio.h>

 

int main()

{

   int z=10, y=-123, w=0;

 

   w = (z/2)*2;

   if(z == w)

   {

      printf("z is even: %d\n", z);

   }

   else

   {

      printf("z is odd: %d\n", z);

   }

 

   if(z = y) // do you mean == instead of =?

   {

      printf("z is even: %d\n", z);

   }

   else

   {

      printf("z is odd: %d\n", z);



   }

 

   return 0;

}

Listing 2.2 initializes the integer-valued variables z, y,

and w, followed by an arithmetic expression that is an

alternative to using the % operator to determine

whether an integer is even. If you divide an integer by 2

and then multiply that number by 2, the result equals

the initial integer only if it’s even: this is true because

division by 2 truncates the non-integer portion.

For example, 3 is odd because (3/2)*2 = 1*2 = 2,

which does not equal 3, whereas 4 is even because

(4/2)*2 = 2*2 = 4.

The next section of Listing 2.2 contains conditional

logic that displays one message if z is even and a

different message if z is odd. The second block of code

contain conditional logic that involves a simple logic

error: the use of “=” (which is an assignment operator)

instead of “==” (which is a logical operator). Logical

errors do not cause compilation errors: they produce

results that are often incorrect, but more difficult to

detect (although in this example the output shows the

obvious error).

The output from compiling and launching the code in

Listing 2.2 is here (the second line of output is not what

you might expect):

z is even: 10

z is even: -123

The second line of output is due to the incorrect

syntax in Listing 2.2 that involves a single “=” sign

instead of two “==” signs. The code snippet if(z = y) is

an assignment expression that evaluates to the value



assigned, which is -123. Since -123 is not equal to 0,

the if portion of the code is true. Consequently, the code

inside the if portion is executed, which is why the

following incorrect output is printed:

z is even: -123

Although this specific logical error can be easily

discovered, logical errors can be much more difficult to

detect, especially in long and complex C programs.

ARITHMETIC OPERATORS AND

CONDITIONAL LOGIC 

Listing 2.3 displays the contents of IfElse3.c that

illustrates how to use multiple if-else code blocks in a C

program. Recall the code sample in Chapter 1 that uses

%d for formatting purposes in the printf() function.

LISTING 2.3: IfElse3.c

#include <stdio.h>

 

int main()

{

   int x=8, y=-12, z=10;

 

   printf("x: %d y: %d z: %d\n",x,y,z);

 

   if( x == 3 ) { z = 0; }

   else         { z = 8; }

   printf("x: %d y: %d z: %d\n",x,y,z);

 

   if( y < 0 )  { z *= 3; }

   printf("x: %d y: %d z: %d\n",x,y,z);

 

   if(z % 2 == 0) { x /= 4; }



   else           { y *= -1; }

   printf("x: %d y: %d z: %d\n",x,y,z);

 

   return 0;

}

Listing 2.3 contains three code blocks involving

conditional logic, after which there is a printf() statement

that prints the result. The first code block updates the

value of z based on the value of x. The second code

block updates the value of z based on whether the

value of y is less than 0. The third code block updates

the value of x or y depending on whether the value of z

is even or odd, respectively.

The output from compiling and launching the code in

Listing 2.3 is here:

x: 8 y: -12 z: 10

x: 8 y: -12 z: 8

x: 8 y: -12 z: 24

x: 2 y: -12 z: 24

COMPOUND IF-ELSE STATEMENTS 

C supports the operator && for testing whether two

or more conditions are true (otherwise the result is

false). C also supports the || operator that returns true if

one condition (from a set of multiple conditions) is true,

otherwise the result is false.

Listing 2.4 displays the contents of IfElse4.c that

illustrates how to use compound if-else logic in a C

program.

LISTING 2.4: IfElse4.c

#include <stdio.h>

 



int main()

{

   int x=-8, z=10;

 

   if((z > 5) && (z < 15))

   {

      printf("z between 5 and 15: %d\n", z);

   }

   else

   {

      printf("z NOT between 5 and 15: %d\n", z);

   }

 

   if((x < 0) || (z > 4))

   {

      printf("x negative or z greater than 4: %d\n", z);

   }

   else

   {

      printf("x non-negative or z less than 4: %d\n", z);

   }

 

   return 0;

}

Listing 2.4 contains two code blocks involving

conditional logic. The first code block checks whether

the value of z is between 5 and 15: if true, then the

corresponding message is printed (otherwise the

appropriate message is printed). The second code block

checks if x is negative or z is greater than 4: if either

condition is true, then the appropriate message is

displayed (and if not, the counter-factual statement in

displayed).

The output from compiling and launching the code in

Listing 2.4 is here:

z between 5 and 15: 10



x negative or z greater than 4: 10

What is “Short Circuiting”? 

In general, if an expression contains multiple and

statements, the result is false if any of the and

statements is false, and therefore there is no need to

check the remaining and terms (if any). This behavior is

called “short circuiting,” a simple example is shown

here:

int x = 3;

if( (x < 4 ) && (x > 5)

&& (x < 0))

{

    // do something

}

else

{

   // do something else

}

In the previous compound if expression, (x > 5) is false,

so there is no need to evaluate the other portions of the

if expression, and the else portion is executed.

Short circuiting occurs in other types of conditional

logic. For example, if a compound if expression

succeeds at an intermediate point, then the remaining

portion of the compound if expression is not evaluated.

Here is an example:

int x = 3;

if(x > 5)

{

    // do something

}

else if (x < 4)

{



   // do something else

}

else if (x < 0)

{

   // do yet another thing

}

The preceding code block is true in the first else

statement, so there is no need to check the remaining

portion of the expression.

A third example of short circuiting is a combination

of the previous two examples, as shown here:

int x = 3, y = 7;

if(x > 5)

{

    // print something

}

else if (x < 4)

{

   if (y < 2)

   {

      // print something

   }

   else if (y < 4)

   {

      // print something else

   }

   else if (y < 6)

   {

      // print yet another thing

   }

}

else if (x < 0)

{

   // do yet another thing

}



The preceding code block is true in the first else

statement, so the remaining portions of the compound

if expression involving x are not executed. However, all

the expressions involving y are false, which means that

nothing is executed in the nested if expression involving

the variable y. If necessary, read this example again

until it’s clear to you that nothing is printed.

RANKING NUMBERS WITH IF-ELSE

STATEMENTS 

Listing 2.5 displays the contents of OrderedValues.c that

illustrates how to use if-else logic in a C program to

display three numbers in descending order.

LISTING 2.5: OrderedValues.c

#include <stdio.h>

 

int main()

{

   int a1=3, a2=8, a3=6, temp;

 

   printf("ORIGINAL a1: %d a2: %d a3: %d\n", a1, a2, a3);

 

   if( a1 < a2 )

   {

      temp = a1;

      a1 = a2;

      a2 = temp;

   }

 

   if( a2 < a3 )

   {

      temp = a2;

      a2 = a3;



      a3 = temp;

   }

 

   printf("ORDERED  a1: %d a2: %d a3: %d\n", a1, a2, a3);

 

   return 0;

}

Listing 2.5 initializes the variables a1, a2, and a3, and

prints their initial values. The first code block swaps the

values of a1 and a2 only if a1 is less than a2. Similarly,

the second code block swaps the values of a2 and a3

only if the value of a2 is less than a3. The output from

compiling and launching the code in Listing 2.5 is here:

ORIGINAL a1: 3 a2: 8 a3: 6

ORDERED  a1: 8 a2: 6 a3: 3

SEQUENTIAL IF STATEMENTS 

Listing 2.6 displays the contents of MaxAndMin.c that

illustrates how to use if-else logic in a C program in order

to find the maximum value and the minimum value of

three numbers.

LISTING 2.6: MaxAndMin.c

#include <stdio.h>

 

int main()

{

   int a1=3, a2=8, a3=6,max=0, min=0;

   max = a1;

   min = a1;

 

   if( max < a2 ) { max = a2; }

   if( min > a2 ) { min = a2; }

 



   if( max < a3 ) { max = a3; }

   if( min > a3 ) { min = a3; }

 

   printf("ORIGINAL a1: %d a2: %d a3: %d\n", a1, a2, a3);

   printf("MAXIMUM: %d\n", max);

   printf("MINIMUM: %d\n", min);

 

   return 0;

}

Listing 2.6 starts by setting the value of max and the

value of min equal to a1. The next pair of statements

compares the value of max and min with the value of a2,

and updates them accordingly. Similarly, the second

code block compares the value of max and min with the

value of a3, and updates them accordingly.

The output from compiling and launching the code in

Listing 2.6 is here:

ORIGINAL a1: 3 a2: 8 a3: 6

MAXIMUM: 8

MINIMUM: 3

NESTED IF-ELSE STATEMENTS 

Listing 2.7 displays the contents of AngleSum.c that

illustrates how to use if-else logic in a C program to

determine the third angle of a triangle, based on the

value of the first two angles. Keep in mind that all

angles must be greater than 0 and less than 180, and

that the sum of a pair of angles must be less than 180.

LISTING 2.7: AngleSum.c

#include <stdio.h>

 

int main()



{

   int a1=40, a2=80, a3=0;

   // ensure the following are true:

   // 1) a1>0 and a1 < 180

   // 2) a2>0 and a2 < 180

   // 3) a1+a1 < 180

 

   if( ((a1 <= 0) || (a1 >= 180))  ||

       ((a2 <= 0) || (a2 >= 180)) )

   {

      printf("angles out of range: a1 = %d a2 = %d\n", a1, a2);

   }

   else

   {

      if( a1+a2 >= 180)

      {

         printf("a1 + a2 is too large: %d\n", a1+a2);

      }

      else

      {

         a3 = 180 - (a1+a2);

         printf("a1: %d a2: %d a3: %d\n", a1, a2, a3);

      }

   }

 

   return 0;

}

Listing 2.7 first ensures that a1 and a2 are both between

0 and 180 degrees. If this test succeeds, the next

portion of code checks if a1+a2 is at least 180: if so, the

values are too large to form a triangle. Otherwise, the

value of a3 is set equal to 180-(a1+a2), and the

appropriate message is displayed.

This concludes the portion of the chapter involving

conditional logic. In Chapter 1 you learned about the

scope of variables, and the next several sections



contain examples of variables having different scopes in

C programs.

SCOPE OF VARIABLES IN C 

The scope of a variable is a region of the program

where a defined variable can be accessed. There are

three types of variable scope in C programs:

Inside a function definition or code block (local

variables)

Outside of any function definition (global variables)

As a parameter in a function definition (formal

parameters)

If a variable with the same name is defined globally and

also as a formal parameter or inside a function

definition, then the global variable has lower priority.

Note that a variable cannot be defined twice, either

globally or locally, which means that they must be

defined in different scopes.

Global Variables in C Programs 

The rule regarding global variables is simple: avoid

them as much as possible. One reason for the

popularity of OOP (Object Oriented Programming)

languages is the concept of encapsulation: variables are

kept in the classes where they belong. The value of a

variable is accessed and modified via “getters” and

“setters” (also called “accessors” and “mutators”).

Although OOP languages do not remove the need for

global variables in all cases, they enable you to vastly



reduce the number of global variables in an application.

Later in this chapter you will see code samples with

global variables in C.

GLOBAL VERSUS LOCAL VARIABLES 

Local variables are declared inside a function or a

code block, and they are only accessible inside the

function or block of code where they are declared.

Hence, local variables are unavailable to other functions

or blocks of code that are outside the block where they

are defined. In other words, the values of local variables

are “lost” when the function returns to the caller.

On the other hand, global variables are defined

outside of functions, often in the initial portion of a C

program. Global variables retain their value throughout

the lifetime of a C program (i.e., until the program

exits).

Listing 2.8 displays the contents of LocalVars.c that

illustrates how to define local variables.

LISTING 2.8: LocalVars.c

#include <stdio.h>

 

// global variable declaration

int a=1, b=2, c=3;

 

void printGlobalVariables()

{

  printf ("Inside the printGlobalVariables function\n");

  printf ("GLOBAL value of a = %d, b = %d and c = %d\n",a,b,c);

}

 

int main()



{

  printf ("GLOBAL value of a = %d, b = %d and c = %d\n",a,b,c);

 

  // local variable declaration

  int a, b, c;

 

  // actual initialization

  a = 10;

  b = 20;

  c = a + b;

 

  printf ("LOCAL value of a = %d, b = %d and c = %d\n",a,b,c);

 

  printGlobalVariables();

 

  return 0;

}

Listing 2.8 is very simple: the integer-valued global

variables a, b, and c are declared and initialized, after

which their values are printed immediately inside the

main() function. The next portion of code inside the main()

function declares and initializes local integer-valued

variables a, b, and c and then prints their values. The

final portion of the main() function invokes the

printGlobalVariables() function that simply prints the values

of the global integer-valued variables a, b, and c.

The output from Listing 2.8 is here:

GLOBAL value of a = 1, b = 2 and c = 3

LOCAL value of a = 10, b = 20 and c = 30

Inside the printGlobalVariables function

GLOBAL value of a = 1, b = 2 and c = 3

Recall that if a variable of the same name is defined

globally and locally, the value of the local variable has

priority over the global variable when a function

(containing that local variable) is executed. Outside of a

function, the opposite is true (which must be the case



because a locally defined variable is not accessible

outside the function where it is defined).

TYPE CASTING IN C 

Type casting allows you to convert the data type of a

variable to a different data type. For example, the sum

of a set of integers is an integer, but the average value

is usually a double instead of an integer.

Since every long data type can represent any int value

without losing any precision, an int value can

automatically be converted to a value of type long.

However, if you want to treat a long as an int, there can

be a loss of precision. Similarly, if you cast a double value

as an int value, there will be loss of precision.

Convert values from one type to another via the cast

operator as follows:

(type_name) expression

Listing 2.9 displays the contents of TypeCast.c that

illustrates the difference between an average that is

calculated as an int data type and an average that is

calculated as a double data type.

LISTING 2.9: TypeCast.c

#include <stdio.h>

 

int main()

{

   int x1=11, x2=4, x3=0;

   double x4;

 

   x3 = x1/x2;

   x4 = (double) x1/x2;



   printf("x1: %d\n",x1);

   printf("x2: %d\n",x2);

   printf("x3: %d\n",x3);

   printf("x4: %f\n",x4);

 

   return 0;

}

Listing 2.9 initializes the integer-valued variables x1, x2,

and x3. The next code block updates x3, and then

initializes the value of x4.

The output from compiling and executing the code in

Listing 2.9 is here:

x1: 11

x2: 4

x3: 2

x4: 2.750000

    The cast operator has precedence over

division.

The value of sum is converted to type double, after

which it is divided by count, which in turn results in a

double value. Type conversions can be implicit (and

performed by the compiler automatically), or they can

be made explicitly using the cast operator.

Integer Promotion 

Integer promotion is the process by which values of

integer type “smaller” than int or unsigned int are

converted either to int or unsigned int.

Listing 2.10 displays the contents of PromoteVar.c that

illustrates the result of adding a character to a variable

that has an int data type.



LISTING 2.10: PromoteVar.c

#include <stdio.h>

 

int main()

{

   int x1=11, x2=4, x3=0;

   double x4;

 

   x3 = x1/x2;

   x4 = (double) x1/x2;

 

   printf("x1: %d\n",x1);

   printf("x2: %d\n",x2);

   printf("x3: %d\n",x3);

   printf("x4: %f\n",x4);

 

   return 0;

}

Listing 2.10 initializes the integer-valued variables x1, x2,

and x3. The next code block updates x3, and then

initializes the value of x4. The final code block displays

the double-based values for x1, x2, and x3, followed by

the decimal value of f.

Listing 2.10 initializes the integer-valued variables x1,

x2, and x3. The next code block updates x3, and then

initializes the value of x4. The output from compiling

and executing the code in Listing 2.10 is here:

x:  10

c:  65

s1: 75

s2: K

The next section discusses two useful built-in functions

that enable you to make a copy of a string. In Chapter

4, you will see a list of other useful built-in functions in

C.



THE STRCPY() AND STRNCPY()

FUNCTIONS IN C 

The strcpy(string1, string2) function copies string2,

including the ending null character, to the location that

is specified by string1 (notice that this is a right-to-left

operation) The strcpy() function operates on null-

terminated strings. The string arguments to the strcpy()

function should contain a null character (\0) that marks

the end of the string because no length checking is

performed. Avoid using a literal string for string1, but

string2 can be a literal string.

Listing 2.11 displays the contents of CopyFunction.c that

illustrates how to use the strncpy() function.

LISTING 2.11: CopyFunction.c

#include <stdio.h>

#include <string.h>

 

#define BUFFER_SIZE 80

 

int main()

{

  char source[BUFFER_SIZE] = "The initial string";

  char destination[BUFFER_SIZE] = "The target string";

  char *result;

 

  printf("Before: %s\n", destination);

  result = strcpy(destination, source);

  printf("After:  %s\n", destination);

 

  return 0;

}

Listing 2.11 uses the #define preprocessor (discussed in

more detail in Chapter 7) to set BUFFER_SIZE equal to 10.



Next, a main() function initializes the character arrays

source and destination to hard-coded strings. A printf()

statement displays the contents of destination, followed

by an invocation of the strcpy() method that copies the

contents of source to the variable destination, after which

another printf() statement displays the new contents of

destination. The output from launching Listing 2.11 is

here:

Before: The target string

After:  The initial string

STRINGS AND STRING-RELATED

FUNCTIONS 

A string in C consists of a sequence of characters.

Unlike languages such as Java, C does not provide a

built-in string type. C uses a character array to

represent a string, which is always terminated with '\0'.

Listing 2.12 displays the contents of CharArray.c that

illustrates how to initialize an array of characters.

LISTING 2.12: CharArray.c

#include <stdio.h>

 

char name[4];

 

int main()

{

   name[0] = 'a';

   name= 'b';

   name= 'c';

   name= '\0';

 

   return (0);



}

Listing 2.12 declares a character array name that

contains 4 elements (currently uninitialized). Next, a

main() function initializes each element of the name array

with the characters "a", "b", and "c". The final position is

null-terminated with '\0'.

The strcpy() Function 

String constants consist of text enclosed in double

quotes (“”), as shown here:

char str[] = "abcd";

Although other languages (such as Java) allow you to

assign one string to another string, the following

statement is illegal in C:

str = "another string"; // illegal in C

As you saw in an previous code sample, C provides the

built-in strcpy() function to copy a string into a another

location. Listing 2.13 displays the contents of CopyString.c

that illustrates how to use the strcpy() function.

LISTING 2.13: CopyString.c

#include <string.h>

 

char str[4];

 

int main()

{

   strcpy(str, "abc");

 

   return (0);

}

Listing 2.13 is minimalistic: after declaring the

character string str that consists of 4 elements, the main()



function copies the string "abc" into the variable str.

In addition, you can specify variable-length strings.

As an example, Listing 2.14 displays the contents of

Array50.c that illustrates how to define a variable that can

contain up to 50 characters.

LISTING 2.14: Array50.c

#include <string.h>

#include <stdio.h>

 

char name[50];

 

int main()

{

   strcpy(name, "abcd"); // Initialize the name

   printf("The name is %s\n", name);

 

   return (0);

}

Listing 2.14 declares a character variable name of length

50, followed by the main() function that invokes the

strcpy() command to copy the string abcd to the variable

name.

Although the size of the name array is 50, the length

of the string abcd in the preceding code block is 4. You

can copy any string up to 49 characters in length to the

variable name: one position (typically the rightmost one)

is reserved for '\0' that indicates end-of-string. The

dimension of the string variable is 50 because we

assume that all names are at most 49 characters in

length.

However, if you attempt to assign a string whose

length is greater than 49 to the name variable, this

copy operation requires memory that is not assigned to

the enclosing program. As a result, the program will



perform unexpectedly, or provide incorrect results, or

even crash.

Listing 2.15 displays the contents of Strcpy1.c that

illustrates how to use the strcpy() function to initialize

three character arrays.

LISTING 2.15: Strcpy1.c

#include <stdio.h>

#include <string.h>

 

char first[100];

char last[100];

char fullName[200];

 

int main()

{

   strcpy(first, "John");

   strcpy(last,  "Smith");

   strcpy(fullName, first);

 

   strcat(fullName, " ");

   strcat(fullName, last);

   printf("The full name is %s\n", fullName);

 

   return 0;

}

Listing 2.15 declares the character variables first, last,

and fullName of lengths 100, 100, and 200, respectively.

Next, the main() function invokes the strcpy() function to

copy the strings John, Smith, and the variable first into the

variables first, last, and fullName, respectively.

The final portion of code invokes the strcat() function

to concatenate the variable fullName with a space ( “ “)

and the second invocation of the strcat() function

appends the value of last to the variable fullName. The



final printf()statement displays the value of the variable

fullName. The output of this program is:

The full name is John Smith

HANDLING USER INPUT IN C 

There are three pairs of built-in C functions for

reading user input and then printing the result. The

three input functions read a character, a single line, and

a single line with a specified format. The first input

function is getchar() that reads a single character from

standard input (and returns an int).

The second input function is gets() that returns a

character pointer. The use of this method is deferred

until you learn about C pointers (Chapter 5 and Chapter

6). The third input function is scanf() that reads input

from the standard input stream and scans that input

according to format provided. The scanf() function also

involves a pointer (so it will be deferred until after the

discussion about pointers).

The getchar() & putchar() Functions: Single

Character Functions 

The standard does not specify whether getchar() and

putchar() are macros. However, the reason that their

return value is an int (not a char value) is because they

are stream-oriented and can interact with files. The

point is important if you want to follow safe coding

practices.

Keyboard input provides char values, but file input

can generate int values, such as the EOF or End of File

value, which is an int. And file output can generate int



values on file errors. Safe coding practices dictate that

you consider these conditions.

The getchar(void) function is straightforward: it reads

the next available character (supplied by user input or

redirected from a file) and returns that character as an

integer (this function has a return type of int). Since this

function reads a single character, you can place this

function inside a loop if you need to read multiple input

characters.

On the other hand, the putchar(int c) function renders a

single character as its output. Since this function also

renders one character, you can place this function

inside a loop if you need to render multiple characters.

You will see examples of both these functions later in

the chapter.

The scanf() and printf() Functions: Multiple

Characters 

The scanf(const char *format, ...) function can read multiple

characters from the standard input stream. This

function specifies a format, so the input is scanned

based on the format that is specified.

In fact, the scanf() function returns the number of

variables that it filled with data, and we can inspect this

value by setting some variable of type int equal to this

number, as shown here:

int numfilled;

numfilled = scanf(" %d , %d",&number1,&number2);

Next, inspect the value of numfilled to determine how

many of the variables were populated with data.



The printf()function has the form printf(const char *format,...),

and as you saw in Chapter 1, this function writes output

to the standard output stream according to the format

that is specified in the specific invocation. For example,

Listing 2.16 displays the contents of PrintfSamples.c that

illustrates the use of the printf() function with various

data types and formats.

LISTING 2.16: PrintfSamples.c

#include <stdio.h>

 

int main()

{

   int x1 = 23;

   double x2 = 1234.56789;

 

   printf("Hello World\n");

   printf("%s\n", "Hello World");

   printf("%d\n", 17);

   printf("%s %d %5.2f\n", "Hello World", x1, x2);

 

   return 0;

}

Listing 2.16 contains a main() function that initializes the

variable x1 with 23 and the variable x2 with 1234.56789.

The next section consists of four printf() statements that

display various numbers and strings.

The format of the values that are displayed via the

printf() function can be a simple constant string, but you

can specify %s, %d, %c, %f, and so forth, in order to print

or read strings, integer, character, or float respectively.

There are many other formatting options available that

you can use, based on your requirements. The output

from Listing 2.13 is here:

Hello World



Hello World

17

Hello World 23 1234.57

Now that you understand the purpose of the input-

related functions in this section, let’s delve into some

code samples that obtain user input from the command

line.

C11 COMPLIANCE 

The C11 standard introduced new functions that are

secure alternatives to their predecessors. These

functions have “_s” (for “secure”) appended to their

name. For example, the functions strtok_s, strcat_s, and

strcpy_s are replaced with strtok_s, strcat_s, and strcpy_s,

respectively.

The new functions are safe because they have an

extra size parameter that limits the string operations.

The size parameter prevents a missing null terminator

from overrunning the end of a buffer. However, support

for bounds-checking functions is optional, and they are

only available in implementations that define the macro

__STD_LIB_EXT1__. If the new functions are available, they

are included in the standard “header” files, along with

their older counterparts. In order to “tell” the compiler

to provide these new functions, you need to define a

macro before the relevant header file, an example of

which is here:

#define __STDC_WANT_LIB_EXT1__ 1

#include <stdio.h>

Keep in mind that if you do not define the preceding

macro before the relevant header file, the visibility of

the secure functions depends on your particular



compiler. In addition, if you want to ensure that secure

functions are not visible, set the preceding macro to 0

instead of 1.

In addition to the new bound-checking safe functions

in C11, you also need to use the fgets() function instead

of the gets() function. Avoid the latter function because

you cannot determine how many characters this

function will read (unless you know in advance). Since

you cannot predict how much “room” or space in

memory the gets() will require in order to store the string

inputted by users, there is a chance that the string will

corrupt memory that does not belong to the currently

executing C program. Hence, gets() cannot be used

safely in every situation. Later in this chapter you will

see examples of the behavior of the fgets() function and

the gets() function.

The ANSI/ISO committee for C11 also sought to

standardize well-known working paradigms and

features that already exist in the majority of big

compilers (and not to implement new features). The

N1570 draft of the C11 standard is here:

www.open-

std.org/jtc1/sc22/wg14/www/docs/n1570.pdf

The document that describes the changes from C99

to C11 is here:

https://en.wikipedia.org/wiki/C11_(C_standard_revisio

n)#Changes_from_C99

At this point there don’t seem to be any fully C11-

compliant compiler implementations.

In addition to the new safe functions, C11 provides

additions to the C language, some of which are:

Unicode support

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
https://en.wikipedia.org/wiki/C11_(C_standard_revision)#Changes_from_C99


floating point support for IEC 60559 (optional)

multi-threading support (optional)

anonymous structs and unions

the alignas and alignof keywords

bounds checking functions (string library)

Perform an online search to obtain more information

about the items in this list.

Checking for C11 Compliance 

The first (and simplest) way to check for C11

compliance involves specifying the switch –std=c11

whenever you compile a C program, an example of

which is shown here:

gcc –std=c11 HelloWorld.c –o HelloWorld

However, you will not see a non-compliance warning

message until you launch the executable (i.e., the

compilation step does not generate non-compliance

messages), as shown later in this section.

Second, replace the gets function, deprecated in the

previous C language standard revision, ISO/IEC

9899:1999/Cor.3:2007(E), with a new safe alternative

called gets_s if it’s available, or use the fgets function.

As a simple illustration, here is a code sample called

SafeStrcpy1.c that attempts to use the strcpy_s function:

#define __STDC_WANT_LIB_EXT1__ 1

#include <stdio.h>

#include <string.h>

  

char first[100];

 

int main()



{  

   strcpy_s(first, "John");

   return 0;

}

Here is the output during the compilation of

SafeStrcpy1.c:

SafeStrcpy1.c: In function 'main':

SafeStrcpy1.c:9:4: warning: implicit declaration of function 'strcpy_s'; did

you mean 'strcpy'? [-Wimplicit-function-declaration]

    strcpy_s(first, "John");

    ^˜˜˜˜˜˜˜

    strcpy

Undefined symbols for architecture x86_64:

  "_strcpy_s", referenced from:

      _main in cck3lS8F.o

ld: symbol(s) not found for architecture x86_64

collect2: error: ld returned 1 exit status

The preceding code is on a Macbook Pro with MacOS

Sierra (version 10.12.6), and here is the information

about gcc that was used in the compilation step:

$ gcc --version

gcc (MacPorts gcc7 7.2.0_0) 7.2.0

Copyright (C) 2017 Free Software Foundation, Inc.

What about C17 Compliance? 

There are no new features included in C17. However,

C17 will include all accepted C11 defect reports, but no

new features. According to GCC reference, C17 is a bug-

fix version of the C11 standard with DR (Defect Report)

resolutions integrated. C17 provides the switch -std=c17

(the counterpart to -std=c11 for C11), as well as -std=gnu17

(instead of -std=gnu11).

In case you’re interested, the C17 report is available

for purchase here (USD 116):



https://webstore.ansi.org/RecordDetail.aspx?

sku=INCITS%2fISO%2fIEC+9899%3a2011+(R2017)

THE FGETS() FUNCTION (C11

COMPLIANT) 

This section contains a code sample that shows you

how the behavior of the fgets() function differs from the

gets() function (discussed in the next section). Whether

or not you read the code samples, make sure you

remember to use the fgets() function and never use the

gets() function.

Listing 2.17 displays the contents of the C program

testfgets1.c that illustrates the use of the fgets() function.

LISTING 2.17: testfgets.c

#include <stdio.h>

#define MAX 10

int main()

{

   char buf[MAX];

   fgets(buf, MAX, stdin);

   printf("string is: %s\n", buf);

   return 0;

}

The code is very simple: users are prompted to enter a

string and that string is re-displayed at the command

prompt. Now compile the code in Listing 2.17 as

follows:

gcc –std=c11 testfgets.c –o testfgets

Launch the executable and enter a string:

$ ./testfgets

this is a long string and let's see what happens

https://webstore.ansi.org/RecordDetail.aspx?sku=INCITS%2fISO%2fIEC+9899%3a2011+(R2017)


string is: this is a

Keep in mind that Listing 2.17 allows for 8 characters

of input, the '\0' terminator, and the end-of-line '\n'

character (which is considered part of the input string).

On the other hand, the gets function only appends '\0'

(but not the '\n' character).

However, what if users press <RETURN> after entering

more than 10 characters? In this scenario, the final

carriage return is not read by fgets, which means that we

need to check that there is a carriage return that was

read in the first 9 characters; if it’s not present, then we

need to shift the '\0' to the right one position.

THE GETS() FUNCTION (NOT C11

COMPLIANT) 

Listing 2.18 displays the contents of the C program

testgets1.c that illustrates the use of the gets() function.

LISTING 2.18: testgets.c

#include <stdio.h>

#define MAX 10

int main()

{

   char buf[MAX];

 

   printf("Enter a string: ");

   gets(buf);

   printf("string is: %s\n", buf);

}

The code is very simple: users a prompted to enter a

string and that string is re-displayed at the command



prompt. Now compile the code in Listing 2.18 as

follows:

gcc –std=c11 testgets.c –o testgets

Launch the executable and enter a string:

$ ./testgets

warning: this program uses gets(), which is unsafe.

Enter a string: this is a long string and let’s see what happens

string is: this is a long string and let’s see what happens

Segmentation fault: 11

       The unsafe message is displayed only

when you launch the executable and not

during the compilation/link step.

There is one significant impediment to using the safe

string functions: although safe functions (such as strcpy_s

and strtok_s others) are specified by the C standard since

C11, they are actually optional in C11 because all

standard library implementations are not required to

provide optional features. Hence, in order to get strcpy_s

and strtok_s and all the other safe string functions into

your system, you will need to either 1) find a library

that implements them all, or 2) implement them

yourself.

Finally, the following websites allow you to

copy/paste code snippets into their Web pages in order

to check for C11 compliance:

https://godbolt.org/

https://wandbox.org/

READING A SINGLE CHARACTER FROM

THE COMMAND LINE

https://godbolt.org/
https://wandbox.org/


 

Listing 2.19 displays the contents of ReadSingleChar.c

that illustrates how to use the getchar() function to read a

single character from standard input and then print that

character using the putchar() function in a C program.

LISTING 2.19: ReadSingleChar.c

#include <stdio.h>

 

int main()

{

   int c;

 

   printf( "Enter a value :");

   c = getchar();

 

   printf( "\nYou entered: ");

   putchar( c );

 

   return 0;

}

Listing 2.19 contains a main() function that declares the

integer variable c, followed by a printf() statement that

prompts users for input. After users press a key on the

keyboard, the built-in getchar() C function assigns that

value to the variable c. The next portion of code

displays the value that users entered at the keyboard. A

sample invocation of launching the code in Listing 2.19

is here:

Enter a value :f

You entered: f



READING AN UNFORMATTED LINE

FROM THE COMMAND LINE 

Listing 2.20 displays the contents of ReadLine.c that

illustrates how to read a line of text from the keyboard

and displays its length.

LISTING 2.20: ReadLine.c

#include <string.h>

#include <stdio.h>

 

char line[100];

 

int main()

{

  printf("Enter a line: ");

  fgets(line, sizeof(line), stdin);

  printf("The length of the line is: %d\n", strlen(line));

 

  return (0);

}

Listing 2.20 declares a character variable line of length

100, followed by a main() function with a printf() statement

that prompts users for input. This time users can enter

more than one character (i.e., a complete sentence

whose length is at most 99). After users provide their

input, the built-in fgets() C function assigns that input to

the variable line. The next portion of code displays the

input string that users entered at the keyboard. A

sample invocation of launching the code in Listing 2.20

is here:

Enter a line: this is a simple input line

The length of the line is: 28

Another invocation of launching the code in Listing 2.20 is here:

Enter a line: abcd



The length of the line is: 5

Notice that the string abcd is only four characters: where

does the extra character come from? The function fgets()

also includes the end-of-line '\n' in the string (i.e., the

fifth character).

The sizeof() function also provides a convenient way of

limiting the number of characters read to the maximum

numbers that the variable can hold.

Here’s an interesting question: given an array myarr

of an unknown primitive data type and unknown length,

how can you determine the number of items in the

array?

The simple (elegant?) answer involves the sizeof()

operator, as shown here:

// myarr is defined elsewhere

int len = sizeof(myarr)/sizeof(myarr[0]);

Since the elements of the array myarr have the same

data type, they all have the same size, which means

that the length of the array myarr is a multiple of the size

of the first (or any other) element in the array. This

operator will be discussed in more detail in Chapter 6.

READING A FORMATTED LINE FROM

THE COMMAND LINE 

Listing 2.21 displays the contents of ReadFormattedLine.c

that illustrates how to read a formatted line from

standard input via the scanf() function in a C program.

LISTING 2.21: ReadFormattedLine.c

#include <stdio.h>

 



int main( )

{  

   char str[100];

   int i, numfilled;

 

   printf( "Enter a string and an int :");

   numfilled = scanf("%s %d", str, &i);

 

   printf("\nNumber of filled values: %d\n",numfilled);

   printf("\nYou entered values for the string and the int");

   printf("\nYou entered the string %s and the number %d ", str, i);

 

   return 0;

}

Listing 2.29 contains a main() function that declares a

character variable line of length 100 and also declares

an integer-valued variable i. Next, a printf() statement

prompts users for input. This time users can enter a

string and an integer, after which the built-in scanf() C

function assigns the input string to str and the input

integer to i.

There are two points to keep in mind. First, if you

enter a string and press the <RETURN> key, the program

seems to “hang” as it waits for you to enter a number.

Second, any additional input beyond the number that

you enter is ignored (see examples below).

After users provide their input, the printf() function

displays the values of both of these variables. A sample

invocation of launching the code in Listing 2.21 is here:

Enter a string and an int: abc 3

 

Number of filled values: 2

 

You entered values for the string and the int

You entered the string abc and the number 3



Another sample invocation of launching the code in

Listing 2.21 is here:

Enter a string and an int: abc 3 4 5

 

Number of filled values: 2

 

You entered values for the string and the int

You entered the string abc and the number 3

THE BEHAVIOR OF THE SCANF()

FUNCTION (OPTIONAL) 

The behavior of the scanf() function in Listing 2.21

depends on the type of input that is provided.

Specifically, if the provided input does not match the

format string, the variables are never initialized. The C

specification is very clear: as soon as there is a

character from the input that does not match the

“current part” of the format string that the scanf()

function is trying to match, the matching process stops

immediately without reading any more characters or

assigning values to any more variables. In addition,

anything that happens after the failure of the matching

process is “undefined behavior.”

For example, consider what happens when users

provide the following input values after launching the

code in Listing 2.21:

Enter a string and an int: abc x y z

 

Number of filled values: 1

 

You entered values for the string and the int

You entered the string abc and the number 1



Obviously, there is a mismatch between the input value

x and the reported value 1, which is entirely unrelated.

How do you detect this scenario? One approach is to

assign known values to the variables before calling

scanf(). If the variable has a known value, and then in the

process of failing scanf() sets it to 1, that would be a

severe bug in the implementation of scanf(), which is

highly unlikely.

Trying to reason about “undefined behavior” is

essentially a waste of time because absolutely anything

can happen. However, here’s a synopsis of what might

be happening if you want some sort of intuitive

understanding. Since the variable i (in the previous

invocation) has not been initialized yet, then from the

point of view of the compiler, its “lifetime” has not

begun. The variable shares a register with some other

variable whose lifetime ends before the variable is

initialized. The other variable happens to get the value

1 under some conditions, and since the variable is

uninitialized, it simply gets whatever was left over in

the register. Hence, uninitialized variables must never

be read: the compiler is allowed to assume that

variables are never read before they are initialized and

it can and does make optimizations based on those

assumptions.

Note that not only does undefined behavior have no

meaning, it can occur as soon as a compiler might be

able to determine that it is inevitable. The way the code

in Listing 2.21 is written, as soon as the scanf() function

finishes with a less than complete result you have

“undefined behavior.”

In the case of the example at the beginning of this

section, the “do absolutely anything” happens to be “on

occasion under some specific circumstances, set the



value of the variable i to 1.” This is not a compiler bug

because, by definition, once you have “undefined

behavior” there is no such thing as a compiler bug. At

that point there are no requirements on what code the

compiler generates.

There are some additional interesting scenarios

when you want to read strings and numbers from the

command line, some of which are described here:

https://stackoverflow.com/questions/20867382/c-

programming-scanf-not-working-correctly

READING MULTIPLE STRINGS FROM

THE COMMAND LINE 

Listing 2.22 displays the contents of FirstLastName.c that

illustrates how to prompt users to enter the first name

and the last name of a person.

LISTING 2.22: FirstLastName.c

#include <stdio.h>

#include <string.h>

 

char first[100];

char last[100];

char full[200];

 

int main()

{

   printf("Enter first name: ");

   fgets(first, sizeof(first), stdin);

 

   // see comment below about this snippet:

   // first[strlen(first)-1] = '\0';

 

https://stackoverflow.com/questions/20867382/c-programming-scanf-not-working-correctly


 

   printf("Enter last name: ");

   fgets(last, sizeof(last), stdin);

 

   strcpy(full, first);

   strcat(full, " ");

   strcat(full, last);

 

   printf("The name is %s\n", full);

 

   return (0);

}

Listing 2.22 declares the character variables first, last,

and fullName of lengths 100, 100, and 200, respectively.

Next, the main() function uses 2 different printf()

statements that prompts users for a first name and last

name, using the built-in gets() C function to capture

those input values.

The next part of the code uses the built-in strcpy() C

function to copy first to the variable full. Next, the built-

in strcat() function appends a space (“ “), and then

appends last to the variable full. A sample invocation of

launching the code in Listing 2.22 is here:

Enter first name: john

Enter last name: smith

The name is john

smith

Notice that the full name is displayed on separate

lines, which happens because users must press a

<RETURN> after entering the first name, and the <RETURN>

character is included in the variable full. We can remove

the <RETURN> character simply by uncommenting the

following code snippet:

first[strlen(first)-1] = '\0';



However, enabling the preceding code snippet can

produce undefined behavior if the variable first is an

empty string, which could happen if this program

receives an empty file as input. This aspect of the code

in Listing 2.22 illustrates how easily you can

inadvertently introduce a bug in your code. The solution

is straightforward: test the value of strlen(first) to ensure it

is not 0 before truncating the string in the variable first

via the preceding code snippet.

Recompile the modified code and relaunch at the

command line, and here is a sample invocation:

Enter first name: john

Enter last name: smith

The name is john smith

One more point to keep in mind: the preceding code

snippet that removes the <RETURN> character results in

undefined behavior if the variable first is an empty

string. Hence, you need to modify the code in Listing

2.22 to test the value of strlen(first) to ensure that it is not

0 before you truncate the string.

USER INPUT FOR NUMERIC

CALCULATIONS 

Listing 2.23 displays the contents of SimpleAdder.c that

illustrates how to prompt users for input, and then

retrieve the input with the fgets() and sscanf() functions, all

of which occurs inside a while loop.

LISTING 2.23: SimpleAdder.c

#include <stdio.h>

 

char line[100]; // line of data from the input



int result;     // the result of the calculations

char operator;  // operator the user specified

int value;      // value specified after the operator

 

int main()

{

   result = 0; // initialize the final result

 

   while (1) {

      printf("Result: %d\n", result);

      printf("Enter operator and number: ");

 

      fgets(line, sizeof(line), stdin);

      sscanf(line, "%c %d", &operator, &value);

 

      if (operator == '+') { // why does "=" also work?

        result += value;

      }

      else if (operator == '-') {

        result -= value;

      }

 

      else {

        printf("Exiting loop: unknown operator: %c\n",

                   operator);

        break;

      }  

   }

 

   return 0;

}

Listing 2.23 starts by initializing the variable result to 0.

The main body of the program is a while loop that

repeats until a break statement is reached. The body of

the while loop contains a code block that prompts users

for an operator and a number, as shown here:

printf("Enter operator and number: ");



fgets(line, sizeof(line), stdin);

sscanf(line,"%c %d", &operator, &value);

These values are scanned and stored in the variables

operator and value. The next portion of Listing 2.23

contains conditional logic that adds the two values if

the operator is a plus sign (+); otherwise, an

appropriate message is displayed.

A sample invocation of the code in Listing 2.23 is

here:

Current Sum: 0

Enter operator and number: + 8

Current Sum: 8

Enter operator and number: - 4

Current Sum: 4

Enter operator and number: - 12

Current Sum: -8

Enter operator and number: + 100

Current Sum: 92

Enter operator and number:

Exiting loop: Unknown operator:

 

Final Sum: 92

Modify the code in Listing 2.21 to handle the cases

where operator is '*' or '/', which correspond to multiply

and divide, and make sure that you handle division by

zero correctly.

STDIN, STDOUT, AND STDERR 

The C programming language treats devices as files.

In addition, the following files are automatically opened

when a C program executes:

Standard File (File Pointer): Device



Standard input (stdin): Keyboard

Standard output (stdout): Screen

Standard error (stderr): your screen

If you want a program to take its input from a file

instead of the command line, you can do so by

redirecting standard input, as shown here:

mybinaryfile <inputfile

You can redirect standard output and standard error to

different files. For example, suppose you want to

redirect standard output to the file out1 and standard

error to bad1. Use the following syntax:

mybinaryfile 1>out1 2>bad1

If you want to redirect standard output and standard

error to the same file called both1, use the following

syntax:

mybinaryfile 2>&1 1>both1

Other types of manipulation with file descriptors are

possible. For example, you can close a file descriptor

and open a new file descriptor. However, this topic is

beyond the scope of this chapter.

SUMMARY 

This chapter discussed local and global variables,

followed by type casting and integer promotion. Next

you learned about handling user input in C programs,

along with the gets(), puts(), scanf(), and printf() functions.

You also learned about copying text strings via the

strcpy() and strncpy() functions in C. Next you learned how

to prompt users for single-character input via the fgets()



function as well as formatted input using the scanf()

function.



T

CHAPTER   3 

LOOPS AND ARRAYS

his chapter contains code samples that illustrate

how to use simple loops, nested loops, and arrays

in C. The code samples perform string-related

tasks, as well as an assortment of tasks with arrays of

numbers and strings. In addition, many code samples

contain if/else conditional logic that was introduced in

Chapter 2 (please read that chapter if you have not

already done so).

The first part of this chapter discusses basic loops,

single-dimension and multi-dimensional arrays, and

how to perform a linear search in arrays. The second

part of this chapter calculates the maximum and

minimum in an array of numbers, how to insert an

element in an array, and how to delete an element from

an array.

The third part of this chapter contains while loops,

do-while loops, and string-related example involving

while loops. Code samples in this section also contain

conditional logic, which was introduced in Chapter 2.

The final section contains code samples that determine

the divisors of a positive integer and how to check if a

number is prime.



WORKING WITH FOR LOOPS 

Listing 3.1 displays the contents of ForLoop.c that

shows you how to use a for loop in C.

LISTING 3.1: ForLoop.c

#include <stdio.h>

 

int main()

{

   int max=5;

   for(int i=0; i<max; i++)

   {

      printf("i : %d\n", i);

   }

 

   return 0;

}

Listing 3.1 is straightforward: a main() function that

initializes the integer-valued variable max (its value is 5),

followed by a for loop that prints the integers between 0

and max.

The output from launching the C program in Listing

3.1 is here:

i : 0

i : 1

i : 2

i : 3

i : 4

WORKING WITH BREAK AND

CONTINUE IN FOR LOOPS 



Listing 3.2 displays the contents of BreakContinue.c that

shows you how to use the break and continue statements

in a for loop in C.

LISTING 3.2: BreakContinue.c

#include <stdio.h>

 

int main()

{

   int max=5;

 

   for(int i=0; i<max; i++)

   {

      if( i == 3 ) continue;

      if( i == 4 ) break;

      printf("i : %d\n", i);

   }

 

   return 0;

}

Listing 3.2 contains a for loop with conditional logic that

checks the value of the loop variable i. If the value of i

equals 3, the code “skips” to the top of the loop and

increments the value of i. If the value of i equals 4, the

code exits the loop and effectively ends the execution

of the C program.

Thus, the only time that the printf() statement is

executed is when the variable i equals 0, 1, or 2. The

output from launching the C program in Listing 3.2 is

here:

i : 0

i : 1

i : 2



CHECKING FOR LEAP YEARS 

As a quick reminder, a leap year is a positive

(integer-valued) year that satisfies the following two

conditions:

the year is a multiple of four, and

if the year is a century then the year must be a

multiple of 400

Examples of leap years include: 400, 1492, 1776, 2000,

2012, and 2472 (note that the centuries are multiples of

400). Examples of years that are not leap years include:

100, 1370, 1510, 1900, and 2011 (note that the

centuries are not multiples of 400).

Listing 3.3 displays the contents of LeapYear.c that

illustrates how to use if-else logic in a C program to

determine if a particular year is a leap year.

LISTING 3.3: LeapYear.c

#include <stdio.h>

 

int main()

{

   int years[6] = {1900, 1953, 1958, 2000, 2004, 2006};

   int year=0, leapyear=0;

 

   int len = sizeof(years)/sizeof(years[0]);

 

   for(int i=0; i<len; i++)

   {

      year = years[i];

 

      if( year % 4 == 0)

      {

         leapyear = 1;



 

         // "leap centuries" must be multiples of 400

         if( (year % 100 == 0) && (year % 400 != 0) )

         {

            leapyear = 0;

         }

      }

      else // not a multiple of 4

      {

         leapyear = 0;

      }

 

      if( leapyear == 0)

      {

         printf("%d: not a leap year\n",year);

      }

      else

      {

         printf("%d: leap year\n",year);

      }

   }

 

   return 0;

}

Listing 3.3 defines the “flag” variable leapyear, along with

the integer-valued array years that contains six positive

integers. Next, a for loop iterates through the elements

of the years array in order to determine which year (if

any) is a leap year.

The outer if statement checks if the current year is a

multiple of 4: if so then it's a leap year (and leapyear is

set to 1); if not, then the else clause sets leapyear to 0

(because it's not a leap year).

There is an additional check that must be performed.

The inner if statement checks if the current year is a

multiple of 100 and not a multiple of 400: if this is the



case, then the current year is not a leap year, so the

variable leapyear must be set to 0 (because its value has

already been set to 1 by the outer if statement).

The bottom portion of the for loop contains

conditional logic that displays the appropriate message

based on the value of the variable leapyear.

The output from Listing 3.3 is here:

1900: not a leap year

1953: not a leap year

1958: not a leap year

2000: leap year

2004: leap year

2006: not a leap year

CHECKING ALPHABETIC TYPES 

Letters and numbers have an ASCII value, and it's

possible to check their type. Listing 3.4 displays the

contents of Alphabetic.c that illustrates how to check for

alphabetic characters in C.

LISTING 3.4: Alphabetic.c

#include <stdio.h>

#include <ctype.h>

 

int main()

{

   int ch;

 

   for (ch = 0x7c; ch <= 0x82; ch++) {

      printf("%#04x    ", ch);

 

      if (isascii(ch))

      {



         printf("The character is %c\n", ch);

      }

      else

      {

         printf("Cannot be represented by an ASCII

                   character\n");

      }

   }

 

   return 0;

}

Listing 3.4 contains a for loop whose loop variable ch

iterates from the value 0x7c up to (and including) the

value 0x82. The conditional logic uses the value of the

built-in function isascii(ch) to determine whether the value

of ch is a printable character.

The output from compiling and executing the code in

Listing 3.4 is here:

0x7c    The character is |

0x7d    The character is }

0x7e    The character is ˜

0x7f    The character is

0x80    Cannot be represented by an ASCII character

0x81    Cannot be represented by an ASCII character

0x82    Cannot be represented by an ASCII character

COUNTING UPPERCASE AND

LOWERCASE CHARACTERS 

Listing 3.5 displays the contents of UpperLowerCount.c

that illustrates how to count the number of uppercase

and lowercase letters in a string.

LISTING 3.5: UpperLowerCount.c



#include <stdio.h>

#include <string.h>

 

int main()

{

   char ch, str1[] = "This is a String";

   int lcount=0, ucount=0;

 

   int len1 = strlen(str1);

 

   for(int i=0; i<len1; i++)

   {

      ch = str1[i];

      if( ('a' <= ch) && (ch <= 'z'))

      {

         lcount++;

      }

      else if( ('A' <= ch) && (ch <= 'Z'))

      {

         ucount++;

      }

   }

 

   printf("Original:    %s\n",str1);

   printf("Lower count: %d\n",lcount);

   printf("Upper count: %d\n",ucount);

 

   return 0;

}

Listing 3.5 starts by defining the character string str1,

and then initializing the integer-valued variable len1 with

the length of the string str1. The next section in Listing

3.5 contains a for loop whose loop variable i iterates

between 0 and len1, and initializes the variable ch with

the character that is in the ith position of the str1 array.

Next, conditional logic checks if ch is between the

letters “A” and “Z,” in which case the variable lcount



(which keeps track of the number of lowercase letters)

is incremented.

If ch is between the letters “A” and “Z,” in which case

the variable ucount (which keeps track of the number of

uppercase letters) is incremented.

The final portion of Listing 3.5 contains three printf()

statements that display the original string str1, the

number of lowercase letters, and the number of

uppercase letters.

The output from compiling and executing the code in

Listing 3.5 is here:

Original:    This is a String

Lower count: 11

Upper count: 2

CHECKING CHARACTER TYPES 

Listing 3.6 displays the contents of TestChars.c that

illustrates how to use some built-in functions in order to

check for various character types in C.

LISTING 3.6: TestChars.c

#include <stdio.h>

#include <string.h>

#include <ctype.h>

 

int main()

{

   char ch, line[] = "Abc3 :";

   int i, count;

 

   count = strlen(line);

 

   for(i=0; i<count; i++)



   {

     ch = line[i];

 

     if(isblank(ch))

     {

        printf("%c is a blank\n", ch);

     }

     else if(isdigit(ch))

     {

        printf("%c is a digit\n", ch);

     }

     else if(isupper(ch))

     {

        printf("%c is uppercase\n", ch);

     }

     else if(islower(ch))

     {

        printf("%c is uppercase\n", ch);

     }

     else if(ispunct(ch))

     {

        printf("%c is punctuation\n", ch);

     }

     else

     {

        printf("%c is other type\n", ch);

     }

   }

 

   return 0;

}

Listing 3.6 defines a string variable line, followed by a for

loop that iterates through each character in the string

line. Next, the if/else conditional logic invokes the built-in

C functions isblank(ch), isdigit(ch), isupper(ch), islower(ch), and

ispunct(ch) to check if a character is a blank, a digit, an

uppercase letter, a lowercase letter, or punctuation,



respectively. If the conditional check is true, then the

appropriate text message is printed.

The output from compiling and executing the code in

Listing 3.6 is here:

A is uppercase

b is uppercase

c is uppercase

3 is a digit

  is a blank

: is punctuation

Listing 3.6 contains an assortment of built-in functions

for testing the type of a given character. In addition, C

supports the following useful built-in character-related

functions:

iscntrl()  Tests for control characters.

isgraph()  Tests for printable characters excluding the space.

isprint()  Tests for printable characters including the space.

ispunct()

Tests for punctuation characters as defined in the locale.

isspace()  Tests for white-space characters.

isxdigit()

Tests for wide hexadecimal digits 0 through 9, a through f, or A through F.

WORKING WITH ARRAYS 

As you saw in Chapter 1, an array declaration in C

requires the type of the elements and the number of

elements required by an array:

type arrayName [ arraySize ];

The preceding code snippet is for defining a one-

dimensional array. The value of arraySize must be an

integer constant greater than zero, and the type can be

any valid C data type. For example, to declare a 10-



element array called balance of type double, use this

statement:

double balance[10];

As you can see, the balance array can hold as many as 10

double numbers, and the following subsections contain

examples of working with the balance array.

Initializing Arrays 

C arrays start with an index value of 0, and the index

value of the last element in the array is the array size

minus 1. C allows you to initialize the values in an array

in two ways: either one element at a time or via a single

statement. An example of the latter is here:

double balance[5] = {1.5, 2.0, 3.4, 997.0, 25.0};

Notice that the number of values inside the pair of

braces { } equals the number that is specified inside

the square brackets [ ]. You can also omit the size of the

array, and the compiler will handle the initialization, an

example of which is here:

double balance[] = {1.5, 2.0, 3.4, 997.0, 25.0, -123, 777};

After initializing an array, you can also update the value

of an element, as shown here:

balance[2] = 3000.0;

Array Values 

Access an array element via the index of the

element in the array. For example, suppose the balance

array is initialized as above:

double balance[5] = {1.5, 2.0, 3.4, 997.0, 25.0};

Then the third element has index two, and you can

triple its value with this code snippet:



balance[2] * = 3;

Listing 3.7 displays the contents of ArrayElems.c that

illustrates how to access elements in an array.

LISTING 3.7: ArrayElems.c

#include <stdio.h>

 

int main()

{

   int arr1[10];

 

   // initialize element i with value i+100

   for (int i=0; i<10; i++ )

   {

      arr1[i] = i + 100;

   }

 

   for (int j=0; j<10; j++ )

   {

      printf("Element[%d] = %d\n", j, arr1[j] );

   }

 

   return 0;

}

Listing 3.7 contains a main() function that defines the

integer arr1 with 10 elements, followed by a loop that

initializes each element to its index position plus 100.

The second loop simply displays the values of each

element in the array arr1. Launch the code in Listing 3.7

and you will see the following output:

Element[0] = 100

Element[1] = 101

Element[2] = 102

Element[3] = 103

Element[4] = 104

Element[5] = 105



Element[6] = 106

Element[7] = 107

Element[8] = 108

Element[9] = 109

C Functions and Arrays 

C supports multi-dimensional arrays (discussed in

the next section) that you can pass to functions

(discussed in Chapter 4). You can also initialize a pointer

to an array and pass that pointer to a function.

Moreover, you can define C functions that return an

array or a pointer to an array. As you will see later, you

can initialize a pointer to the first element of an array

simply by specifying the name of the array (without an

index).

MULTI-DIMENSIONAL ARRAYS 

Each of the following code snippets illustrates

several ways to initialize a 2 x 3 array of integers in C:

int arr1[2]= {{1,2,3}, {4,5,6}};

int arr2[][3] = {{1,2,3}, {4,5,6}};

int arr3[2][3] = {1,2,3,4,5,6;

Listing 3.8 displays the contents of MultiDimArray1.c that

shows you how to calculate the sum of the entries in a

multi-dimensional array.

LISTING 3.8: MultiDimArray1.c

#include <stdio.h>

 

int main()

{

   double total=0.0, rowSum=0.0;

   int row=2, col=3;



   int arr1[2]= {{1,2,3}, {4,5,6}};

 

   for(int i=0; i<row; i++)

   {

      rowSum=0.0;

      for(int j=0; j<col; j++)

      {

         total +=  arr1[i][j];

         rowSum += arr1[i][j];

      }

 

      printf("Sum of row %d: %f\n", i, rowSum);

   }

 

   printf("Total Sum: %f\n", total);

 

   return 0;

}

Listing 3.8 contains the variables total and rowSum that

will store the sum of all the elements in an array and

the sum of a row of elements, respectively. Next, the

array arr1 is a 2x3 array (that is, it consists of two rows

and three columns) that is initialized with a set of

values.

The next section in Listing 3.8 contains an outer for

loop that iterates through the rows of arr1. After

initializing rowSum to 0.0, an inner loop iterates through

the columns of the current row. Notice that the total

variable and the rowSum variables are both incremented

by the quantity arr1[i][j]. When the inner loop has

completed, the printf() statement displays the sum of the

elements in the correct row.

Note that (unlike the variable rowSum) the variable total

is not re-initialized to 0 because we want to compute

the sum of all the elements in the array arr1. In fact,

when the outer loop has finished execution, the bottom



of the main() function in Listing 3.8 contains a printf()

statement that prints the sum of all the elements. The

output from Listing 3.8 is here:

Sum of row 0: 6.000000

Sum of row 1: 15.000000

Total Sum:    21.000000

Another point to keep in mind: C11 supports variable-

length arrays but cannot be initialized. For example, if

you use the variables row and col (with values 2 and 3,

respectively) to define the dimensions of arr1, you will

see the following error during compilation:

MultiDimArray1.c:7:13: error: variable-sized object may not be initialized

   int arr1[row][col]={{1,2,3}, {4,5,6}};

            ^˜˜

1 error generated.

CALCULATING THE TRANSPOSE OF A

SQUARE MATRIX 

The transpose of a square matrix is the result of

interchanging the row and column position. In other

words, if the value of the element in the (i,j) position of

matrix A is a(i,j), then the value of the element in the (i,j)

position of the transpose of matrix A is a(j,i).

Listing 3.9 displays the contents of Transpose.c that

illustrates how to calculate the transpose of a square

matrix.

LISTING 3.9: Transpose.c

#include <stdio.h>

 

int main()

{



   int row=3, col=3, temp=0;

   int arr1[3]= {{1,2,3},

                     {4,5,6},

                     {7,8,9}};

 

   // display original matrix

   printf("Original\n");

   for(int i=0; i<row; i++)

   {

      printf("Row %d: ",i);

      for(int j=0; j<col; j++)

      {

         printf("%d ", arr1[i][j]);

      }

      printf("\n");

   }

 

   for(int i=1; i<row; i++)

   {

      for(int j=0; j<i; j++)

      {

         temp = arr1[i][j];

         arr1[i][j] = arr1[j][i];

         arr1[j][i] = temp;

      }

   }

 

   // display transposed matrix

   printf("Transpose\n");

   for(int i=0; i<row; i++)

   {

      printf("Row %d: ",i);

      for(int j=0; j<col; j++)

      {

         printf("%d ", arr1[i][j]);

      }

      printf("\n");

   }



 

   return 0;

}

Listing 3.9 contains a main() function that initializes

several scalar variables, followed by initializing the 3x3

array arr1 with integer values. Next, a nested loop

displays the values in the array arr1.

The second loop contains a nested loop that “swaps”

the entries in position (i,j) with position (j,i) by means of a

temporary storage variable called temp. This code block

is a standard technique that you will see in practically

every programming language, so it's worthwhile

committing the code to memory.

The third loop contains a nested loop that displays

the new values in the array arr1. The output from Listing

3.9 is here:

Original

Row 0: 1 2 3

Row 1: 4 5 6

Row 2: 7 8 9

Transpose

Row 0: 1 4 7

Row 1: 2 5 8

Row 2: 3 6 9

As you can see, Listing 3.9 contains two identical blocks

of code: a better solution is to use a function (discussed

in Chapter 3) that prints the contents of an array.

LINEAR SEARCH IN ARRAYS 

Listing 3.10 displays the contents of LinearSearch.c that

shows you how to use a simple loop to determine



whether or not a given integer is in a C array of

integers.

LISTING 3.10: LinearSearch.c

#include <stdio.h>

 

int main()

{

   int numbers[] = {15, 3, 99, -4, 25, 8};

   int value = 25, pos = -1;

   int count = sizeof(numbers)/sizeof(numbers[0]);

 

   for(int i=0; i<count; i++)

   {

      if(value == numbers[i])

      {

         pos = i;

         break;

      }

   }

 

   printf("Array: ");

   for(int i=0; i<count; i++)

   {

      printf("%d ", numbers[i]);

   }

   printf("\n");

 

   printf("Value: %d\n",value);

   printf("Pos:   %d\n",pos);

 

   return 0;

}

Listing 3.10 contains a main() function that initializes a

numbers array with 6 integers, as well as several scalar

variables. Next, the code snippet (shown in bold)

computes the size of the entire array divided by the size



of the first element, which is assigned to the variable

count. This value equals the number of elements in the

array numbers.

The next section of code is a loop that iterates

through the elements in the array numbers to search for

an element equal to the variable value. If there is a

match, then the index in the array is assigned to the

variable pos. The final section of code displays value and

pos (which is -1 if a match is not found). The output from

Listing 3.10 is here:

Array: 15 3 99 -4 25 8

Value: 25

Pos:   4

REVERSING AN ARRAY OF NUMBERS 

Listing 3.11 displays the contents of ReverseArray1.c

that contains a for loop to reverse an array of numbers

in a C program.

LISTING 3.11: ReverseArray1.c

#include <stdio.h>

 

int main()

{

   int numbers[6] = {15, 3, 99, -4, 25, 8};

   int reverse[6];

   int count=6;

 

   for(int i=0; i<count; i++)

   {

      reverse[count-1-i] = numbers[i];

   }

 

   printf("Array:   ");



   for(int i=0; i<count; i++)

   {

      printf("%d ", numbers[i]);

   }

   printf("\n");

 

   printf("Reverse: ");

   for(int i=0; i<count; i++)

   {

      printf("%d ", reverse[i]);

   }

   printf("\n");

 

   return 0;

}

Listing 3.11 contains a main() function that initializes a

numbers array with 6 integers, then declares an array

reverse for 6 integers, and then the count variable whose

initial value is 6.

The first loop initializes the contents of the array

reverse with the values in the numbers array in reverse

order. For instance, reverse[0] is assigned numbers[5],

reverseis assigned numbers[4], and so forth.

The second loop displays the contents of the numbers

array, and the third loop displays the contents of the

reverse array. The output from launching the C program

in Listing 3.11 is here:

Array:   15 3 99 -4 25 8

Reverse: 8 25 -4 99 3 15

FINDING THE MAXIMUM AND

MINIMUM IN ARRAYS 



Listing 3.12 displays the contents of MaxAndMinValue.c

that shows you how to use a simple loop (with

conditional logic) in C in order to find the maximum and

minimum values in an array.

LISTING 3.12: MaxAndMinValue.c

#include <stdio.h>

 

int main()

{

   int numbers[] = {15, 3, 99, -4, 25, 8};

   int min=numbers[0], max=numbers[0];

   int count=sizeof(numbers)/sizeof(numbers[0]);

 

   for(int i=0; i<count; i++)

   {

      if(min > numbers[i])

      {

         min = numbers[i];

      }

 

      if(max < numbers[i])

      {

         max = numbers[i];

      }

   }

 

   printf("Array: ");

   for(int i=0; i<count; i++)

   {

      printf("%d ", numbers[i]);

   }

   printf("\n");

 

   printf("Max:   %d\n",max);

   printf("Min:   %d\n",min);

 



   return 0;

}

Listing 3.12 contains a main() function that initializes a

numbers array with 6 integers, followed by the integer

variables min and max that are both initialized with the

value numbers[0].

The first loop contains conditional logic that updates

the value of min if the current element is smaller than

min, and updates the value of max if the current element

is larger than max. The second loop displays the values

of the elements in the numbers array, and then displays

the values of min and max. The output from launching the

C program in Listing 3.12 is here:

Array: 15 3 99 -4 25 8

Max:   99

Min:   -4

DELETING AN ELEMENT FROM AN

ARRAY 

Listing 3.13 displays the contents of DeleteArrayElement.c

that shows you how to use a for loop to delete an

element from an array of numbers in a C program.

LISTING 3.13: DeleteArrayElement.c

#include <stdio.h>

 

int main()

{

   int pos = 4;

   int numbers[] = {15, 3, 99, -4, 25, 8};

   int count=sizeof(numbers)/sizeof(numbers[0]);

 



   printf("Initial: ");

   for(int i=0; i<count; i++)

   {

      printf("%d ",numbers[i]);

   }

   printf("\n");

 

   printf("Removed: %d\n",numbers[pos]);

   for(inti=pos; i<count-1; i++)

   {

      numbers[i] = numbers[i+1];

   }

   numbers[count-1] = 0;

 

   printf("Updated: ");

   for(int i=0; i<count; i++)

   {

      printf("%d ",numbers[i]);

   }

   printf("\n");

 

   return 0;

}

Listing 3.13 contains a main() function that initializes a

numbers array with 6 integers, followed by the integer

variable pos that specifies the index position of the

numbers array that will be deleted.

The first loop displays the contents of the numbers

array, followed by the second loop that performs the

deletion. The loop essentially “shifts” the elements

(that are to the right of position pos) one position to the

left. For instance, since pos[4] will be deleted, we can

replace its value by pos[5]. Next, replace pos[5] with the

value of pos[6]. Repeat this process until we reach the

last (right-most) element in the numbers array.



The final loop displays the updated contents of the

numbers array. The output from launching the C

program in Listing 3.13 is here:

Initial: 15 3 99 -4 25 8

Removed: 25

Updated: 15 3 99 25 8 0

STRINGS AND FOR LOOPS 

Listing 3.14 displays the contents of ForLoopStr.c that

shows you how to use a simple for loop to display the

characters in a text string in a C program. This code

sample contains a preview of the use of pointers in C,

which are not discussed in detail until Chapter 5. If need

be, feel free to skip this code sample until after you

have read the material in Chapter 5.

LISTING 3.14: ForLoopStr.c

#include <stdio.h>

#include <string.h>

 

int main()

{

   char *str = "hello";

   char *p = str;

   int len = strlen(str);

 

   printf("First Loop\n");

   printf("----------\n");

   for(int i=0; i<len; i++)

   {

      printf("i : %c\n", str[i]);

   }

 

   printf("\nSecond Loop\n");



   printf("-----------\n");

   for(int i=0; i<len; i++)

   {

      printf("i : %s\n", p);

      ++p;

   }

 

   return 0;

}

Listing 3.14 contains a main() function that initializes the

character pointer str to a hard-coded string, and then

initializes the character pointer p to the address of str.

The first loop displays each character in str, using the

syntax (char)str[i].

The second loop also displays substrings of str, this

time using the syntax (char *)p. The pointer p starts at the

address of str, and during each iteration of the for loop,

the address of pointer p is incremented by the code

snippet ++p (which can also be combined with the

previous code snippet). As the pointer p “advanced”

through each position of str, the output is a shorter

substring. The output from Listing 3.14 is here:

First Loop

----------

i : h

i : e

i : l

i : l

i : o

 

Second Loop

-----------

i : hello

i : ello

i : llo

i : lo



i : o

COUNTING WORDS IN A LINE OF TEXT 

Listing 3.15 displays the contents of CountWords.c that

illustrates how to count the number of words in a line of

text (words are separated by a blank or a tab

character).

LISTING 3.15: CountWords.c

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <ctype.h>

 

int main()

{

   char str1[] = "  This is a   String";

   int i=0, wCount=0;

 

   int len1 = strlen(str1);

 

   // skip over leading whitespace

   for(i=0; i<len1; i++)

   {

     if((str1[i]!=' ')&&(str1[i]!='\t'))

     {

        break;

     }

   }

 

   for(; i<len1; i++)

   {

      // found a whitespace => found a word

      if((str1[i]==' ')||(str1[i]=='\t'))

      {



         wCount++;

      }

 

      // handle the case where there are

      // multiple whitespaces between words

   }

 

   wCount++;

 

   printf("Line of Text:  %s\n",str1);

   printf("Word Count:    %d\n",wCount);

 

   return 0;

}

Listing 3.15 contains a main() function that initializes

the character string str1 to a hard-coded string, and then

initializes some scalar values. The first loop skips any

initial whitespaces (which can be a simple space or a

tab character).

The second loop increments the variable wCount each

time that a whitespace is encountered in str1. The

underlying assumption is that the occurrence of a

whitespace implies the existence of a new word.

However, if there are multiple whitespaces between

words, you need to modify this code to skip those

“extra” whitespaces, in much the same way that the

initial whitespaces are skipped (it's an exercise for you).

The output from launching CountWords is here:

Line of Text:   This is a   String

Word Count:     6

WORKING WITH NESTED FOR LOOPS 



Listing 3.16 displays the contents of NestedForLoop.c

that shows you how to use a nested for loop in a C

program.

LISTING 3.16: NestedForLoop.c

#include <stdio.h>

 

int main()

{

   int max=5;

 

   for(int i=0; i<max; i++)

   {

      printf("(i,j) : ");

      for(int j=0; j<max; j++)

      {

         printf("%d %d ", i, j);

      }

      printf("\n");

   }

 

   return 0;

}

Listing 3.16 contains a main() function with a nested loop

that iterates through the numbers between 0 and 4

inclusive, and uses the printf() function to display the

current (i,j) position (where i is the index of the outer

loop and j is the index of the inner loop). The output

from Listing 3.16 is here:

(i,j) : 0,0 0,1 0,2 0,3 0,4

(i,j) : 1,0 1,1 1,2 1,3 1,4

(i,j) : 2,0 2,1 2,2 2,3 2,4

(i,j) : 3,0 3,1 3,2 3,3 3,4

(i,j) : 4,0 4,1 4,2 4,3 4,4

The next section shows you how to work with while

loops in C programs.



WORKING WITH WHILE LOOPS 

Listing 3.17 displays the contents of WhileLoop.c that

shows you how to use a while loop in order to print a

single column of integers in C.

LISTING 3.17: WhileLoop.c

#include <stdio.h>

 

int main()

{

   int i=0, max=5;

   while(i<max)

   {

      printf("i : %d\n", i);

      ++i;

   }

 

   return 0;

}

Listing 3.17 contains a main() function that initializes the

variables i and max with the values 0 and 5, respectively.

The next section of code is a while loop that executes as

long as the value of i is less than 5. Inside the body of

the loop the printf() function displays the current value of

i, after which the value of i is incremented. The output

from launching Listing 3.17 is here:

i : 0

i : 1

i : 2

i : 3

i : 4



READING AN ENTIRE LINE FROM THE

COMMAND LINE 

Listing 3.18 displays the contents of ReadEntireLine.c

that illustrates how to read an entire input line from

standard input in a C program.

LISTING 3.18: ReadEntireLine.c

#include <stdio.h>

 

#define LINE_SIZE 100

 

int main()

{

   int charCount=0, inputChar;

   char line[LINE_SIZE];

   char lineFeed = '\n';

 

   while( (inputChar = getchar()) != lineFeed )

   {

      if(charCount < LINE_SIZE)

      {

         line[charCount] = inputChar;

      }

 

      charCount++;

   }

 

   printf("Input length = %d\n", charCount);

 

   return 0;

}

Listing 3.18 is similar to a code sample in Chapter 2.

The difference is that this code contains a while loop that

“populates” a character array with users until a linefeed

is detected, at which point the while loop will stop



execution. In addition, a maximum of 100 characters

(the value of LINE_SIZE) will be accepted as input, after

which the while loop stops putting elements in the array.

The next portion of Listing 3.18 displays the number of

characters that users typed. An example of the output

from Listing 3.18 is here:

this is a line

Input length = 14

THE SWITCH STATEMENT 

This section shows you how to use the C switch

statement in order to print a text string that

corresponds to a randomly generated number (that is

generated via the rand() function). Note that you need to

seed the random number generator using srand() in order

to use a value different from 1 (the default value). Each

time that you run this code, a different value is

generated.

Note that if you add a loop to this program and

invoke the rand() function inside the loop, a different

result is generated, even without seeding the random

number generator.

Listing 3.19 displays the contents of Switch.c that

shows you how to use a switch statement in C programs.

LISTING 3.19: Switch.c

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

 

int main()

{



    // seed the random number generator:

    srand(time(NULL));

 

    int rnd = rand() % 6 + 1;

 

    switch(rnd)

    {

        case 1:   printf("ONE\n");

                  break;

        case 2:   printf("TWO\n");

                  break;

        case 3:   printf("THREE\n");

                  break;

        case 4:   printf("FOUR\n");

                  break;

        case 5:   printf("FIVE\n");

                  break;

        case 6:   printf("SIX\n");

                  break;

        default:  printf("Other value\n");

    }

 

    return 0;

}

Listing 3.19 contains a main() function that invokes the

built-in srand() C function to “seed” an initial random

number, which will be different each time you launch

the code in this section.

Next, the integer variable rnd is initialized with a

random integer between 1 and 6 inclusive. The next

portion of code consists of a switch() statement that

displays a message based on the value of the variable

rnd. The output from launching the code in Listing 3.19

several times is here:

Switch

FOUR



Switch

ONE

Switch

TWO

If you “comment out” the code snippet for srand() in

Listing 3.23, the new output will be something like this:

Switch

TWO

Switch

TWO

Switch

TWO

Alternatively you could place the switch() statement

inside a while loop, with the appropriate exit condition, in

order to generate multiple output values (instead of

launching the code multiple times).

WORKING WITH ARRAYS OF NUMBERS 

Listing 3.20 displays the contents of Factorial2.c that

illustrates how to calculate the factorial value of a

positive integer using an iterative solution.

LISTING 3.20: Factorial2.c

#include <stdio.h>

 

int main()

{

   int result=1, num=5;

 

   for(int i=1; i<=num; i++)

   {

      result *= i;

   }

 



   printf("%d factorial = %d\n", num, result);

 

   return 0;

}

Listing 3.20 defines the variable result (which will contain

the calculated factorial value) and num (which is the

number whose factorial value we want to calculate).

The next portion of Listing 3.24 is a for loop whose loop

variable i ranges between 1 and num, and each

iteration through that loop multiplies the value of result

with the value of i, thereby computing the factorial

value of num.

The output from Listing 3.20 is here:

5 factorial = 120

Chapter 4 contains a recursive solution for calculating

the factorial value of a positive integer.

WORKING WITH ARRAYS OF STRINGS 

Listing 3.21 displays the contents of ArrayOfStrings.c

that shows you how to define and populate an array of

strings in a C program.

LISTING 3.21: ArrayOfStrings.c

#include <stdio.h>

#include <string.h>

 

int main()

{

   char names[3][20];

 

   strcpy(names[0], "Jane Smith");

   strcpy(names[1], "John Edwards");

   strcpy(names[2], "Steve Anderson");



 

   for(int i=0; i<3; i++)

   {

      printf("Name: %s\n", names[i]);

   }

 

   return 0;

}

Listing 3.21 contains a main() function that initializes

the 3x20 character array names, followed by three

strcpy() invocations that populate the three rows of the

names array.

The next section of code is a loop that displays the

contents of each row of the names array. The output from

launching Listing 3.21 is here:

Name: Jane Smith

Name: John Edwards

Name: Steve Anderson

USING A WHILE LOOP TO FIND THE

DIVISORS OF A NUMBER 

Listing 3.22 contains a while loop, conditional logic,

and the % (modulus) operator in order to find the

factors of any integer greater than 1.

LISTING 3.22: Divisors.c

#include <stdio.h>

 

int main()

{

   int div=2, num=12;

 

   printf("Number: %d\n", num);



 

   while(num > 1)

   {

      if(num % div == 0)

      {

         printf("divisor: %d\n", div);

         num /= div;

      }

      else

      {

        ++div;

      }

   }

 

   return 0;

}

Listing 3.22 defines an integer num with the value 12

and initializes the variable div with the value 2. The while

loop divides num by div and if the remainder is 0, it prints

the value of div and then it divides num by div; if the

value is not 0, then div is incremented by 1. This while

loop continues as long as num is greater than 1.

The output from Listing 3.22 that finds the divisors of

12 is here:

Number: 12

divisor: 2

divisor: 2

divisor: 3

Why does the code Listing 3.22 find only prime divisors

and not composite divisors? The code works correctly

because of the if statement. For example, 6 will never

be printed as a divisor of 12 because the code initially

determines that 2 is a prime divisor of 12, and then the

if code block reduces the original number from 12 to 6.

Next, the code determines that 2 is a prime divisor of 6,



and then the if code block replaces 6 with 3. Finally, 3 is

a prime divisor of 3, after which 3 is replaced with 1,

whereupon the while loop is terminated.

USING A WHILE LOOP TO FIND PRIME

NUMBERS 

Listing 3.23 contains a while loop, conditional logic,

and the % (modulus) operator in order to count the

number of prime factors of any integer greater than 1. If

there is only one divisor for a number, then that

number is a prime number.

LISTING 3.23: Divisors3.c

#include <stdio.h>

 

int main()

{

   int count=1, div=2, num=12;

 

   while(div < num)

   {

      if(num % div == 0)

      {

         ++count;

      }

 

      ++div;

   }

 

   if(count == 1)

   {

      printf("%d is prime\n", num);

   }

   else



   {

      printf("%d is composite\n", num);

   }

 

   return 0;

}

Listing 3.23 initializes the variables count, div, num with

the values 1, 2, and 12, respectively. The next section

of code is a while loop that iterates as long as the value

of div is less than the value of num.

Inside the while loop the value of count is incremented

if div is a divisor of num (i.e., num % div == 0), after which div

is unconditionally incremented.

After the while loop exits, a printf() statement displays a

message that num is either prime or composite,

depending on whether or not the value of count is 1.

The output from launching Listing 3.17 is here:

12 is composite

SUMMARY 

This chapter introduced you to for loops, single-

dimension and multi-dimensional arrays, and how to

perform a linear search in arrays. Next you learned how

to find the maximum and minimum in an array of

numbers, how to insert an element, and how to delete

an element from an array.

You also saw how to work with while loops, do-while

loops, and string-related examples involving while loops.

In addition, you learned about conditional logic in C

programs, such as if statements and if-else statements.

You then learned how to find the divisors of a number,

as well as how to check if a number is prime.



T

CHAPTER   4 

FUNCTIONS IN C

his chapter introduces you to some built-in C

functions and shows you how to create custom

functions in C programs. You will also learn about

recursion and how to define custom functions in order

to solve various well-known tasks using recursion in C.

The first part of this chapter briefly discusses various

types of built-in functions that are available in C. You

have already seen some built-in functions (such as

isalpha() and ispunct()) in earlier chapters, and this section

contains other useful built-in functions. The second part

of this chapter contains code samples that illustrate

how to create C programs containing custom functions

that use some of the built-in functions in C.

The third part of this chapter shows you how to use

recursion in order to calculate factorial values, Fibonacci

numbers, and the GCD (greatest common divisor) of a

pair of integers using Euclid’s algorithm (which relies on

recursion). Although recursion is often considered an

advanced topic in programming languages, recursion

can be used for solving many problems in a simple and

elegant fashion.



The final portion of this chapter shows you

techniques for sorting an array of numbers and

searching for a number in an array of numbers.

WORKING WITH BUILT-IN FUNCTIONS

IN C 

The built-in functions in C can return any of the

supported C types, such as character, strings, pointers,

pointers to functions, and so forth. All the C programs in

this book contain a main() function that always returns an

int type. What is the significance of this return value?

You need information (i.e., some form of

documentation, even if it’s just a comment block) that

describes the purpose of different values for a given

return type.

However, some C functions do not return any value,

in which case they have a return type of void. Note that

some languages (such as Fortran) make a distinction

between functions that return a value (they’re called

functions) and functions that do not return anything

(they’re called subroutines), but C does not make such

a distinction.

Yet another scenario involves “call by reference”

versus “call by value,” which you will sometimes see in

functions that have return type of void. The idea is

straightforward: the former involves passing a memory

location (i.e., a reference) of an argument to a function,

whereas the latter involves passing a complete copy of

an argument to a function. Both options are in the next

section.

Pass by Reference versus Pass by Value 



A C function that invokes another function by

passing an “updateable” parameter is known as “pass-

by-reference.” This means that any changes to such an

argument in the “called” function are reflected in the

“calling” function. If a function contains a parameter

that is a pointer to a memory location, then updates in

the “called function” to that parameter are available in

the “called function.” For example, passing the address

of a large memory block is more efficient than either 1)

passing the contents of that memory block to a

function, or 2) requiring the “called function” return a

large modified memory block.

On the other hand, passing arguments that cannot

be modified in a “called function” is known as “pass-by-

value.” Regardless of the calculations that are

performed in the “called function,” the parameters that

are passed to that function retain their original values in

the “calling function.”

In general, use pass-by-value for primitive data types

or fairly small memory blocks. If you decide to use pass-

by-value for an argument, that involves a pointer

(discussed in Chapter 5 and Chapter 6); hence, use

extra care when doing so in order to avoid bugs. As

already mentioned in the previous section, if a “called

function” makes various updates to a large block of

memory, then pass-by-reference makes sense because

it’s more efficient than pass-by-value.

Except for some code samples in Chapter 7, the

code samples in the other chapters involve pass-by-

value functions. In the meantime, the following

subsections contain lists of built-in functions according

to their type.

Built-in Character Functions 



C supports a variety of convenient built-in functions

to perform various tests on a character, such as

determining whether a character is alphanumeric,

alphabetic, a control character, a numeric digit, or a

lowercase or uppercase letter. Here is a list of many of

those functions (all of which have a return type of int),

along with a brief description (many functions are

intuitively named functions):

int isalnum(int c): tests if c is alphanumeric

int isalpha(int c): tests if c is alphabetic

int iscntrl(int c): tests if c is a control character

int isdigit(int c): tests if c is a numeric digit

int islower(int c): tests if c is a lowercase character

int isupper(int c): tests if c is an uppercase character

int isgraph(int c): returns nonzero if c is any

character for which either isalnum or ispunct returns

nonzero.

int isprint(int c): returns nonzero if c is space or a

character for which isgraph returns nonzero.

int ispunct(int c): returns nonzero if c is punctuation

int isspace(int c): returns nonzero if c is space

character

int isxdigit(int c): returns nonzero if c is hexa digit

int tolower(int c): returns the corresponding

lowercase letter if one exists and if isupper(c):

otherwise, it returns c.

int toupper(int c): returns the corresponding

uppercase letter if one exists and if islower(c):

otherwise, it returns c.



Since the preceding functions are fairly straightforward,

and you can easily find code samples online, we’ll skip

a code sample for this section and go directly to the

next section, which provides a list of string-oriented

built-in functions in C.

Converting Between Data Types 

In some cases, it’s possible to convert from one data

type to another data type in C. The standard header file

stdlib.h (header files are discussed in Chapter 7) provides

all the string conversion functions in C.

For example, the functions atof(), atoi(), and atol()

convert an ASCII value to a float, integer, and long

value, respectively.

This concludes the section of the chapter pertaining

to string-oriented built-in C functions. The next section

provides a simple introduction to user-defined C

functions.

DEFINING A SIMPLE CUSTOM

FUNCTION 

C functions have the following format: every function

definition has a return type (which can be void), a

name, zero or more arguments, and a function body.

The preceding statement can be expressed via the

following code snippet:

return-type function-name(argument declarations)

{

   declarations and statements

}



If a function does not return anything, then its return-type

is void. Functions that do return something have the

following type of statement in the function (not

necessarily at the end of the function):

return (return-value)

Function Prototypes 

A function prototype specifies the arguments (and

their types) and the return type of a function. Although

older versions of C did not require function prototypes,

it’s a good idea to include them because they allow the

compiler to check that the data types of the passed

parameters are compatible with the data types of the

declared arguments.

An example of a function prototype is here:

void findChar(char str[], char c);

Function prototypes can be placed in a so-called header

file that (by convention) has a .h suffix. The “header”

file is then included (via a #include directive) in the C

program that requires the function prototype. This

technique improves code modularization and code re-

use, which in turn enables to you create libraries for

your projects.

As a simple example of creating a header file and

including that header file in a C program, suppose that

the file FindMain2.h contains the following code:

#include <ctype.h>

#include <stdio.h>

 

void findChar(char str[], char c);

You can reference FindMain2.h in the file FindMain2.c as

follows:



#include "FindChar2.h"

This type of “separation” of files with function

prototypes and implementation code is analogous to an

interface file and an implementation file in Java.

Although you probably won’t use it until you have

progressed beyond the beginner stage, it’s good to be

aware of this functionality.

FUNCTION PARAMETERS IN C

FUNCTIONS 

Function parameters are formal parameters, and

they are treated as local variables within the function

where they appear. In addition, such parameters take

precedence over the global variables.

Listing 4.1 displays the contents of FunctionParams.c that

illustrates the use of local and global variables in a C

program.

LISTING 4.1: FunctionParams.c

#include <stdio.h>

 

// global variable declaration

int a = 20;

 

// function to add two integers

int sum(int a, int b)

{

    printf ("value of a in sum() = %d\n",  a);

    printf ("value of b in sum() = %d\n",  b);

 

    return a + b;

}

 



int main()

{

  // local variable declaration in main function

  int a = 10;

  int b = 20;

  int c = 0;

 

  printf ("value of a in main() = %d\n",  a);

  c = sum( a, b);

  printf ("value of c in main() = %d\n",  c);

 

  return 0;

}

Listing 4.1 starts by initializing the global variable a with

the value 20, followed by the definition of the function

sum() that takes two parameters. This function displays

the values of the parameters and then returns their

sum.

Next, the main() function initializes three local

variables a, b, and c with the values 10, 20, and 0,

respectively. The value of a is displayed, followed by an

invocation of sum()whose return value is assigned to the

variable c. The best way to trace the execution logic is

to launch the code and note the displayed values (did

you predict the same results?)

Launch the code in Listing 4.1 and you will see the

following output:

value of a in main() = 10

value of a in sum() = 10

value of b in sum() = 20

value of c in main() = 30

Notice that the global value of a does not appear in the

preceding output (do you know why?)



C99 SYNTAX FOR USER-DEFINED

FUNCTIONS IN C 

Chapter 1 briefly mentioned the C99 version of the C

programming language. This section contains a code

sample that illustrates one of the requirements of C99

for user-defined functions. If you refer to a function

before the function is defined, you need to specify a

“function prototype” before the location of the function

call. By convention, these declarations appear near the

beginning of the C program, typically before all function

definitions.

Listing 4.2 displays the contents of SimpleC99.c that

illustrates how to specify a function prototype (shown in

bold) for the custom function message().

LISTING 4.2: Simplec99.c

#include <stdio.h>

 

// prevent "Implicit declaration of function is invalid

// in C99"

void message();

 

int main()

{

   message();

 

   return 0;

}

 

void message()

{

   printf("Hello from message\n");

}



Listing 4.2 contains a prototype for the function message()

that has return type void and is defined later in the code.

Next, the main() function invokes the message() function,

which simply displays the text string Hello from message.

Compile and launch the code in Listing 4.2 and you

will see the expected output:

Hello from message

One other point to keep in mind: if you place the

definition of the message() function (and any other

custom functions) before the definition of the main()

function, then you do not need to include function

prototypes.

K&R STYLE FUNCTION DEFINITIONS 

Listing 4.3 displays the contents of OldStyleFunction.c

that illustrates how to define a function using the K&R

style for functions.

LISTING 4.3: OldStyleFunction.c

#include <stdio.h>

 

float perimeter(width, height)

int width;

float height;

{

   return 2 * (width + height);

}

 

int main()

{

   float perim = perimeter(10.0, 5);

   printf("Perimeter = %f\n", perim);

 



   return (0);

}

Listing 4.3 starts with the definition of the perimeter()

function that returns the perimeter of a rectangle of

dimensions width x height. Notice how the width and

height parameters are declared (shown in bold).

Next, the main() function invokes the perimeter()

function and assigns the returns value to the float

variable perim.

The output from launching 4.3 is here:

Perimeter = 50.000000

K&R-style C allows for function prototypes; however,

only the return type can be declared and the parameter

list must be (), as shown here:

extern float atof();

The () in the preceding code snippet indicates that this

function takes an unknown number of parameters of an

unknown type.

CONVERTING STRINGS TO INTEGERS

AND FLOAT VALUES 

Listing 4.4 displays the contents of ConvertDataTypes.c

that illustrates how to use the sprintf() to format and print

various data values.

LISTING 4.4: ConvertDataTypes.c

#include <stdlib.h>

#include <stdio.h>

 

int main()

{



    int i;

    long l;

    double x;

    char *s;

 

    s = " -2309.12E-15";

    x = atof(s); /* x = -2309.12E-15 */

 

    printf("x = %.4e\n",x);

 

 

    s = " -9885";

    i = atoi(s);     /* i = -9885 */

 

    printf("i = %d\n",i);

 

    s = "98854 dollars";

    l = atol(s);     /* l = 98854 */

 

    printf("l = %.ld\n",l);

 

    return (0);

}

Listing 4.4 starts by defining the variables i, l, x, and s

that are of type int, long, double, and char pointer,

respectively. Then the variable s is initialized, and the

built-in atoi() C function is invoked with the argument s

and the result is assigned to the variable x, and then

the value of x is displayed. This sequence of steps is

performed with another value of s, and this time the

output from the atoi() function is assigned to the value of

i (whose value is displayed). The third sequence of

steps is performed with a third value of s, and the result

of invoking the atoi() function is assigned to the value l

(whose value is displayed). The output from executing

the code in Listing 4.5 is here:

x = -2.3091e-12



i = -9885

l = 98854

The following link contains code that enables you to

convert an integer to a different base:

www.strudel.org.uk/itoa/#newest

PRINTING A STRING TO A BUFFER

WITH SPRINTF() 

The sprintf() function enables you to write numbers

and characters to a buffer, with support for formats that

are the same as those for the printf() function. In

addition, every invocation of the sprintf() function returns

the number of bytes that were written in the array

(excluding the final null character), which enables you

to keep track of the number of characters that were

written to a buffer.

Listing 4.5 displays the contents of PrintToBuffer.c that

illustrates how to use the sprintf() to format and print

various data.

LISTING 4.5: PrintToBuffer.c

#include <stdio.h>

 

char buffer[200];

int i, j;

double fp;

char *s = "baltimore";

char c;

 

int main()

{

   c = 'l';

   i = 35;

http://www.strudel.org.uk/itoa/#newest


   fp = 1.7320508;

 

   // Format and print various data

   j  = sprintf(buffer,   "%s\n", s);

   j += sprintf(buffer+j, "%c\n", c);

   j += sprintf(buffer+j, "%d\n", i);

   j += sprintf(buffer+j, "%f\n", fp);

 

   printf("string:\n%s\ncharacter count = %d\n", buffer, j);

 

   return (0);

}

Listing 4.5 defines several variables of different type,

after which the built-in sprintf() C function is invoked to

copy the contents of the string s into buffer. This

process is repeated with the variables c, i, and fp. The

final code snippet displays the contents of buffer and

the value of j. The output from executing the code in

Listing 4.5 is here:

string:

baltimore

l

35

1.732051

 

character count = 24

Buffer Manipulation Functions 

Earlier in the chapter you learned about built-in C

functions, and this section contains additional C

functions. The format is a terse one-sentence

description, followed by the built-in C function (along

with parameters and return value).

For example, you can copy n characters from ct to s

and return s (s may be corrupted if objects overlap) with



the following function:

void* memcpy(void* s, const void* ct, int n);

Compare the first n characters of cs and ct and return

a negative value if cs < ct; return the value if they are

equal; return a positive value if cs > ct:

int memcmp(const void* cs, const void* ct, int n);

Return a pointer to first occurrence of c in first n

characters of cs, or NULL if not found:

void* memchr(const void* cs, int c, int n);

Replace each of the first n characters of s by c and

return s:

void* memset(void* s, int c, int n);

Copy n characters from ct to s and return s (s will not

be corrupted if objects overlap):

void* memmove(void* s, const void* ct, int n);

You won’t necessarily need to use all these built-in C

functions, and you might frequently use a subset of

them (it depends on the type of C programs that you

need to write).

PASSING A ONE-DIMENSIONAL ARRAY

AS AN ARGUMENT 

Listing 4.7 displays the contents of SingleArrayFunction.c

that illustrates how to pass a one-dimensional array to a

function in a C program. Notice that the custom

function addAll() is placed before the definition of the

main() function, which means that a function prototype is

not required for C99 compliance.

LISTING 4.7: SingleArrayFunction.c



#include <stdio.h>

 

int addAll(int arr[], int size)

{

   int sum=0;

 

   for(int i=0; i<size; i++)

   {

      sum += arr[i];

   }

 

   return sum;

}

 

int main()

{

   // int array with 8 elements

   int arr1[8] = {1,2,3,4,5,6,7,8};

   int sum=0;

 

   printf("Values: ");

   for(int i=0; i<8; i++)

   {

      printf("%d ",arr1[i]);

   }

   printf("\n");

 

   sum = addAll(arr1,8);

 

   // output the returned value */

   printf("Sum = %d\n", sum);

 

   return 0;

}

Listing 4.7 defines the function addAll() that takes an

integer array and an integer as parameters and returns

an integer, which is the sum of the elements in the



array. Next, the main() function contains a loop that

displays the elements of the array arr1, followed by an

invocation of the addAll() function whose return value is

assigned to the variable sum. The last section of the

main() method simply prints the value of sum. The output

from Listing 4.7 is here:

Values: 1 2 3 4 5 6 7 8

Sum = 36

FINDING A CHARACTER IN A STRING 

Listing 4.8 displays the contents of FindChar1.c that

shows you how to find the number of occurrences of a

character in a given string in a C program.

LISTING 4.8: FindChar1.c

#include <ctype.h>

#include <stdio.h>

 

void findChar(char str[], char c)

{

   int matchCount = 0;

 

   printf("String: %s\n",str);

   printf("Char:   %c\n",c);

 

   for(int i=0; str[i]; i++)

   {

      if(str[i] == c)

      {

         printf("Match in position: %d\n",i);

         ++matchCount;

      }

   }

 



   printf("Count:  %d\n\n",matchCount);

}

 

int main()

{

   char str1[] = "pasta";

   findChar(str1, 'a');

 

   char str2[] = "New York City";

   findChar(str2, 'k');

 

   char str3[] = "California";

   findChar(str3, 'z');

 

   return (0);

}

Listing 4.8 defines the function findChar() that takes a

character string and a character as parameters and has

a return type of void. This function iterates through the

character string and counts the number of occurrences

of the character c. Each time a match is found a

message is displayed, followed by a message with the

number of occurrences of c in the string.

The main() function defines three character strings

str1, str2, and str3, and invokes the findChar() method with

each of these strings, along with the character a, k, and

z, respectively. The output from Listing 4.9 is here:

String: pasta

Char:   a

Match in position: 1

Match in position: 4

Count:  2

 

String: New York City

Char:   k

Match in position: 7



Count:  1

 

String: California

Char:   z

Count:  0

CONVERTING STRINGS TO DECIMAL

VALUES 

This section contains an example of built-in functions

in C that enable you to test the characters in a string to

determine whether they are digits.

LISTING 4.9: DisplayDigits.c

#include <ctype.h>

#include <stdio.h>

 

void checkDigits(char str[])

{

   printf("Number: %s\n",str);

 

   for(int i=0; str[i]; i++)

   {

      if(isdigit(str[i]))

      {

         printf("Digit: %c\n",str[i]);

      }

      else

      {

         printf("Not Digit: %c\n",str[i]);

      }

   }

 

   printf("\n");

}

 



int main()

{

   char str1[] = "123.456";

   checkDigits(str1);

   char str2[] = "-51.203";

   checkDigits(str2);

 

   return (0);

}

Listing 4.9 defines the function checkDigits() that takes a

character string and has a return type of void. This

function iterates through the character string and uses

conditional logic, with the built-in C function isdigit(), to

determine whether each character is a digit, and print a

suitable message.

The main() function defines two character strings str1

and str2 and invokes the checkDigits() function with each of

these strings. The output from Listing 4.9 is here:

Number: 123.456

Digit: 1

Digit: 2

Digit: 3

Not Digit: .

Digit: 4

Digit: 5

Digit: 6

 

Number: -51.203

Not Digit: -

Digit: 5

Digit: 1

Not Digit: .

Digit: 2

Digit: 0

Digit: 3



DISPLAY A LIST OF PRIME NUMBERS 

Listing 4.10 displays the contents of DisplayPrimes.c that

shows you how to define invoke a custom function

isPrime() that is invoked from a for loop that is inside the

main() function in order to display a list of prime

numbers. Although you can place the code for the

function isPrime() inside a loop in the main() function, the

use of a function enables you to modularize the code.

LISTING 4.10: DisplayPrimes.c

#include <stdio.h>

 

int isPrime(int idx)

{

   int flag=0, div=2;

   while (div <= idx/2)

   {

      if (idx % div == 0) // composite

      {

         flag = 1;

         break;

      }

      div++;

   }

 

   return flag;

}

 

 

int main()

{

   int maxVal=50, idx=0, result=0;

 

   for (idx=1; idx<=maxVal; idx++)

   {

      result = isPrime(idx);



 

      if ( result == 0) // prime

      {

         printf("%d ", idx);

      }

   }

 

   return 0;

}

Listing 4.10 contains the function isPrime() that returns 0

if a number is prime and returns 1 if a number is

composite. The isPrime() function contains a for loop that

starts at 2 and ends at idx /2, and checks whether or not

any of these numbers are divisors of the number idx. If

so, then the flag variable (which is initialized with the

value 0) is set to 1 and the code exits the loop;

otherwise the loop terminates normally. In either case,

the isPrime() function returns the value of flag.

Next, the body of the main() function contains a for

loop whose loop variable idx iterates from 1 to maxVal

(which is initialized as 50). Each iteration through the for

loop invokes the isPrime() function with the current value

of idx. The next portion of the for loop prints the value of

idx only if idx is prime (i.e., isPrime() returns a 0).

The output from Listing 4.10 is here:

1 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

This concludes the discussion of custom functions in C

programs. The next portion of this chapter introduces

you to recursion, along with some code samples that

illustrate how to use recursion in C.

WHAT IS RECURSION? 



Recursion is a powerful technique that can provide

an elegant solution to various problems, such as

factorial values, Fibonacci numbers, and the GCD of two

positive integers via the Euclidean algorithm.

One interesting (and perhaps counterintuitive) fact:

the expressive power of recursion-based algorithms is

the same as that of iterative algorithms (i.e., neither

type of algorithm is more “powerful” than the other

one). However, there is a sort of asymmetry involved

when working with algorithms to solve various tasks.

For instance, the task of calculating Fibonacci numbers

via recursion is straightforward, whereas an interactive

solution is far from obvious. An even more interesting

task is called the Tower of Hanoi, which can be solved in

a very elegant manner via a recursive algorithm. If you

feel sufficiently motivated, try implementing the

solution via an iterative algorithm (and good luck with

that!).

Yet another task that can be solved in an elegant

manner involves the recursive definition of Ackermann

functions, which has a “two-dimensional” recursion that

makes it more complex (more interesting?) than the

typical “one-dimensional” recursion that you will find in

common recursion-based tasks. Ackermann functions

are outside the scope of this book, but details about

Ackermann functions are available through an Internet

search.

However, let’s not dismiss the suitability of iterative

solutions for recursion-based tasks. For example, the

definition of the factorial value of a non-negative

integer is recursive, yet its iterative solution is very

straightforward and elegant in its simplicity (if we

ignore storage requirements). The takeaway point is

simple: use the algorithm that works best for your



requirements, keeping in mind the performance cost,

code maintenance, and feature enhancements.

With the preceding points in mind, let’s look at some

examples of using recursion to calculate some well-

known numbers, which are discussed in detail in the

following subsections.

Calculating Factorial Values 

The factorial value of a positive integer n is the

product of all the integers between 1 and n. The symbol

for factorial is the exclamation point (“!”) and some

sample factorial values are here:

1! = 1

2! = 2

3! = 6

4! = 20

5! = 120

The formula for the factorial value of a number is

succinctly defined as follows:

Factorial(n) = n*Factorial(n-1) for n > 1 and Factorial(1) = 1

Chapter 3 showed you how to use a for loop to calculate

the factorial value of a positive integer. Listing 4.11

displays the contents of Factorial.c that illustrates how to

use recursion in order to calculate the factorial value of

a positive integer.

LISTING 4.11: Factorial.c

#include <stdio.h>

 

int factorial(int num)

{

   if(num > 1)

   {

      return num*factorial(num-1);



   }

   else

   {

      return 1;

   }

}

 

int main()

{

   int result=0, num=5;

   result = factorial(num);

 

   printf("%d factorial = %d\n", num, result);

 

   return (0);

}

Listing 4.11 contains the function factorial that

implements the recursive definition of the factorial

value of a number, as described at the beginning of this

section. The function factorial() recursively “drills down”

by successively invoking itself until its parameter value

is 1, in which case the number 1 is returned. Each “drill

down” also multiplies the recursive function invocation

by successively smaller integers, thereby

“accumulating” the product of the numbers between 1

and num.

The output from Listing 4.11 is here:

5 factorial = 120

CALCULATING FIBONACCI NUMBERS

VIA RECURSION 

The set of Fibonacci numbers represent some

interesting patterns (such as the pattern of a sunflower)



in nature, and its recursive definition is here:

Fib(0) = 0

Fib(1) = 1

Fib(n) = Fib(n-1) + Fib(n-2) for n >= 2

Listing 4.12 displays the contents of Fib.c that illustrates

how to calculate Fibonacci numbers.

LISTING 4.12: Fib.c

#include <stdio.h>

 

int fib(int num)

{

   if((num == 0)|| (num == 1))

   {

      return 1;

   }

   else

   {

      return fib(num-1)+fib(num-2);

   }

}

 

int main()

{

   int result=0, num=10;

   result = fib(num);

 

   printf("%d fibonacci = %d\n", num, result);

 

   return (0);

}

Listing 4.12 defines the fib() function with the parameter

num. If num equals 0 or 1 then fib returns the value of num;

otherwise, fib returns the result of adding fib(num-1) and

fib(num-2). As you can see, the user-defined fib() function



is precisely the implementation of the definition of

Fibonacci numbers. The output from Listing 4.12 is here:

Fibonacci value of 10 = 89

CALCULATING THE POWER OF A

NUMBER VIA RECURSION 

Listing 4.13 displays the contents of ComputePower.c

that uses recursion to calculate a number raised to a

given power.

LISTING 4.13: ComputePower.c

#include <stdio.h>

 

long computePower(int b,int e, int r)

{

    if( e == 0 ) return r;

    computePower(b, e-1, r*b);

}

 

int main()

{

    int base = 4, exp = 5;

    long int result;

 

    result = computePower(base, exp, 1);

    printf("%d to the power of %d = %ld\n",base, exp,

             result);

 

    return 0;

}

Listing 4.13 defines the function computePower() with the

parameters b, e, and r, that correspond to the base,

exponent, and result, respectively. This function uses



“tail recursion:” the intermediate results of the

recursive calculations are passed as the third

parameter. Each time the custom function computePower()

is invoked, the third parameter is updated with a new

intermediate product and the value of the exponent e is

decremented. The terminating condition occurs when

the value of e is 0, whereupon the value of the third

parameter r is returned.

The output from Listing 4.13 is here:

4 to the power of 5 = 1024

CALCULATING THE NUMBER OF DIGITS

OF A NUMBER VIA RECURSION 

Listing 4.14 displays the contents of CountDigits.c that

uses recursion to calculate the number of digits of a

number.

LISTING 4.14: CountDigits.c

#include <stdio.h>

 

int countDigits(int num, int result)

{

    if( num == 0 ) return result;

    countDigits(num/10, result+1);

}

 

int main()

{

   int number = 123, result = 0;

 

   result = countDigits(number, 0);

   printf("Number of digits in %d = %d\n", number, result);

 



   return 0;

}

Listing 4.14 defines the custom function countDigits() that

also uses tail recursion to calculate the number of digits

in an integer. Notice that countDigits() is invoked by

successively dividing the current number by 10, and

simultaneously incrementing the value of the second

parameter. The terminating condition occurs when the

first parameter is 0, in which case the second

parameter result equals the number of digits in the

original number. The output from Listing 4.14 is here:

4 to the power of 5 = 1024

CALCULATING THE SUM OF THE

DIGITS OF A NUMBER VIA RECURSION 

Listing 4.15 displays the contents of AddDigits.c that

uses recursion to calculate the sum of the digits of a

number.

LISTING 4.15: AddDigits.c

#include <stdio.h>

 

int computeSum(int num, int result)

{

    if( num == 0 ) return result;

    computeSum(num/10, result + num % 10);

}

 

int main()

{

   int number = 123, result = 0;

 

   result = computeSum(number, 0);



   printf("Sum of digits in %d = %d\n", number, result);

 

   return 0;

}

Listing 4.15 defines the function computeSum() that uses

tail recursion to calculate the sum of two numbers.

Notice that countDigits() is invoked by successively

dividing the first parameter num by 10, and

simultaneously adding the remainder num % 10 to the

second parameter. The terminating condition occurs

when the first parameter is 0, in which case the second

parameter result equals the sum of the two original

numbers. The output from Listing 4.15 is here:

4 to the power of 5 = 1024

CALCULATING THE GCD OF TWO

NUMBERS VIA RECURSION 

The GCD (greatest common divisor) of two positive

integers is the largest integer that divides both integers

with a remainder of 0. Some values are shown here:

gcd(6,2)   = 2

gcd(10,4)  = 2

gcd(24,16) = 8

Listing 4.16 uses recursion and Euclid’s algorithm in

order to find the GCD of two positive integers. Keep in

mind that although there is a more “compact” version

of Euclid’s algorithm, the code in Listing 4.17 is

probably easier to understand.

LISTING 4.16: GCD.c

#include <stdio.h>

 



int gcd(int num1, int num2)

{

   if(num1 % num2 == 0)

   {

      return num2;

   }

   else if(num1 < num2)

   {

      printf("switching %d and %d\n", num1, num2);

      return gcd(num2, num1);

   }

   else

   {

      printf("reducing %d and %d\n", num1, num2);

      return gcd(num1-num2, num2);

   }

}

 

int main()

{

   int result=0, num1=24, num2=10;

   result = gcd(num1, num2);

 

   printf("GCD of %d and %d = %d\n", num1, num2, result);

 

   return 0;

}

Listing 4.16 defines the function gcd with the

parameters num1 and num2. If num1 is divisible by num2,

the function returns num2. If num1 is less than num2, then

gcd is invoked by switching the order of num1 and num2. In

all other cases, gcd returns the result of computing gcd

with the values num1-num2 and num2.

The output from Listing 4.16 is here:

reducing 24  and  10

reducing 14  and  10

switching 4  and  10



reducing 10  and  4

reducing  6  and  4

switching 2  and  4

GCD of   24  and 10 = 2

CALCULATING THE LCM OF TWO

NUMBERS VIA RECURSION 

The LCM (lowest common multiple) of two positive

integers is the smallest integer that is a multiple of

those two integers. Some values are shown here:

lcm(6,2)   = 2

lcm(10,4)  = 20

lcm(24,16) = 48

In general, if x and y are two positive integers, you can

calculate their LCM as follows:

lcm(x,y) = x/gcd(x,y)*y/gcd(x.y)

Listing 4.17 uses the gcd() function that is defined in

the previous section in order to calculate the LCM of

two positive integers.

LISTING 4.17: LCM.c

#include <stdio.h>

 

int gcd(int num1, int num2)

{

   if(num1 % num2 == 0)

   {

      return num2;

   }

   else if(num1 < num2)

   {

    //printf("switching %d and %d\n", num1, num2);

      return gcd(num2, num1);



   }

   else

   {

    //printf("reducing %d and %d\n", num1, num2);

      return gcd(num1-num2, num2);

   }

}

 

int main()

{

   int gcd1=0, lcm1=0, num1=24, num2=10;

   gcd1 = gcd(num1, num2);

   lcm1 = num1/gcd1*num2/gcd1;

 

   printf("LCM of %d and %d = %d\n", num1, num2, lcm1);

 

   return (0);

}

Listing 4.17 defines the function gcd that was discussed

in the previous section, followed by the main() function.

After initializing gcd1, lcm1, num1, and num2, the main()

function invokes the gcd function that computes the

GCD of num1 and num2. Next, the variable lcm1 is equal to

num1/gcd1 multiplied by num2/gcd1, which is the LCM of

num1 and num2. The output of Listing 4.17 is here:

The LCM of 24 and 10 = 60

SUMMARY 

This chapter introduced you some built-in functions

in C, including string manipulation functions. You saw

how to convert between data types, and how to print to

a buffer. Then you learned how to work with error

handling functions and buffer manipulation functions.

Next you saw how to define custom function, how to



specify function prototypes, and some commonly used

header files.

You also learned how to pass an array as an

argument to a function and how to calculate the

transpose of a square matrix. In addition, you saw how

to find a character in a string, how to pass by reference

versus value. Then you learned about recursion, and

how to calculate factorial values, Fibonacci numbers,

the GCD of two numbers, and the LCM of two numbers.

You also learned how to calculate the number of digits

in an integer and how to calculate the sum of two

numbers using a technique called tail recursion.



T

CHAPTER   5 

WORKING WITH POINTERS IN

C

his chapter introduces pointers, which are often

misunderstood and can be intimidating because of

the conflicting and inaccurate explanation that you

can find on the Internet.

Languages like Java have removed pointers entirely

because of their complexity, and C requires that a block

of code be marked unsafe in order to access pointers.

On the other hand, pointers are used extensively in C,

so a good foundation is required in order to become an

effective C programmer.

The first part of this chapter introduces you to the

concept of a pointer in C, along with examples of

pointers to numbers, arrays, and strings. This section

also contains C programs that use pointers to split a

string and for loops that use pointers to find the divisors

of a number.

The second part of this chapter defines pointers to

arrays of numbers as well as pointers to functions. You

will learn how to use pointers to reverse a string, find



uppercase and lowercase letters, how to remove

whitespaces from a string, and how to count words in a

line of text. The final section of this chapter contains C

programs that illustrate how to define pointers to

functions, function pointers as arguments, and how to

define pointers to pointers.

Now let’s start with a brief introduction about

pointers and pointer declarations, as well as the

address of a variable, dereferencing pointers, and using

pointer arithmetic. As you will see, pointer-based

arithmetic emulates array indexing and the two views

of an array as an indexed data structure or as a buffer

with pointer arithmetic are crucial to the development

and understanding of why C pointers work in the ways

that they do.

WHAT ARE POINTERS? 

A variable declared with a “pointer” data type

contains a memory address indicating where the actual

data is located. With pointer data types it is common to

say that the pointer variable “points to” the actual data

rather than talking about a memory address. Here are

some examples of data that a pointer “points to:”

a variable (such as int x = 5;)

the starting address of a string (such as char *ptr =

"Hello";)

allocated via the built-in C malloc() function (discussed

in Chapter 6)

Variables with a pointer data type are declared by

placing an asterisk (“*”) immediately before the name



of a variable in a declaration. This variable may be used

to point to any value of the appropriate type, or it can

be set to NULL to indicate that it does not currently point

to any value. Pointer can be declared for nearly any

type of data, such as int, long, a user-defined struct

(discussed in Chapter 6), or even a function. There is

also a specific type of pointer: it has the syntax void *

that is used to point to data whose type is not known.

A “pointer to a pointer” is defined with two asterisks

(“**”) and contains a memory address indicating where

another pointer is located. One of the most common

uses for pointer-to-a-pointer data types is simulating

resizeable two-dimensional arrays.

The most important thing to be aware of when using

pointers is that a pointer must always point to data of

the appropriate type before it can used. Attempting to

access a value “through” an invalid pointer is a

common cause of failure and must be avoided.

There is another detail to keep in mind. When you

assign a value to a pointer, the “thing on the right side

of the equals sign” can be a hard-coded character string

such as “Hello” (shown in the earlier list of examples).

Why doesn’t this violate the rule specified in the

preceding paragraph? A quoted string (known as a

“string literal”) has a data type of “pointer to char.”

Since C has no built-in string data type, a string literal is

treated as a pointer to its first character.

If you feel unsure of the meaning of the preceding

paragraphs, the following subsections contain code

examples that will make everything clear.

Simple Examples of Pointers 



This section contains examples that reinforce the

information in the previous section, with expanded

explanations to reinforce the correct way to define

pointers in C.

As you saw in the preceding section, a pointer in C is

declared by putting an asterisk (*) in front of the

variable name in the declaration statement, as shown

here:

int *p;

The “*” operator dereferences a variable: this means

that whenever you have a pointer to a memory

location, use the “*” operator to obtain whatever is

referenced by the pointer variable.

Note that the * character has multiple meanings.

When it appears in a declaration, it acts as part of the

data type to declare a pointer. When it appears in an

expression to the left of a pointer it is the dereference

operator, which accesses the data that the pointer

currently points to. When it appears in an expression

between two numeric values, it acts as the

multiplication operator.

What if you want to access the value of a non-

pointer variable? You can use the “&” operator to obtain

the memory location of a non-pointer variable, after

which you can access the value of that variable. For

example, consider the following code snippet:

int x = 7;

int *p = &x;

As you can see, the variable x in the preceding code

snippet has type int and has the value 7, whereas the

variable p is a pointer to the memory address that is

allocated for the variable x.



Notice the following: the pointer p has been

initialized with the address of the variable x after the

variable x has been declared and initialized with the

value 7.

Another way to achieve the same result is shown in

the following snippet:

int *p;

int x = 7;

p = &x;

In the preceding code snippet, p is declared as an

uninitialized pointer to an integer, and then x is

initialized as an integer whose value is 7, followed by

setting the value of p equal to the address of x (which is

denoted by &x).

Keep in mind that assigning values can only be done

when data types match. For example, assigning int x = 7

is valid because the left and right side data types are

both int.

As another example, declaring and assigning a

pointer with int *p = &x is valid because the left and right

side data types are both int *.

As a third example, the declaration int *p = 1234 is

invalid because the left side has the type “pointer to

int” and the right side has the type “int.” Even if the

types match, you must also ensure the address

assigned to a pointer is a valid address of data in your

program. Based on the preceding statement, we know

that the code snippet int *p=1234 is invalid because of a

type error.

On the other hand, the following code snippet is

valid because the pointer p is initialized with the

address of the variable x that is declared before the

pointer p is declared and initialized:



int x = 7;

int *p = &x;

The reason for the restriction is that pointers may only

be used to access other data in your program. The

compiler is allowed to assume that your program is

correct and pointers always refer to valid data. The

compiler is allowed to optimize your code based on this

assumption; if you violate this rule then your program

may crash.

Another point to keep in mind: using a pointer allows

you to modify the data it points to by altering the

contents of the given memory address. Here is an

example:

// x is initially 7

int x = 7;

 

// p points to the location of x

int *p = &x;

 

// update the contents of x via p

*p = 1234;

 

// x is now equal to 1234!

const Pointers 

A constant pointer, sometimes referred to as

“pointer to const,” is a pointer which cannot be used to

modify the data it points to, an example of which is

here:

const char *name_ptr = "Test";

If we put the const after the *, then the meaning of

the const changes. If the declaration begins with “char *

const” then the pointer can never be modified to point to



a different location, but it can be used to modify the

character it points to.

Finally, put const in both places to create a pointer

that cannot be modified to a data item that cannot be

changed, as shown here:

const char *const title_ptr = "Title";

POINTERS TO INTEGER VARIABLES 

Listing 5.1 displays the contents of SimplePointer1.c that

illustrates how to use a pointer to change the value of a

variable of type int. Make sure that you have read the

previous section in order to make sense of the code in

this section. Although you saw the first portion of Listing

5.1 earlier in this chapter, it’s repeated here to provide

additional reinforcement.

LISTING 5.1: SimplePointer1.c

#include <stdio.h>

 

int main()

{

   int x = 7;

   printf("Value of x:    %d\n", x);

 

   // ptr "points" to location of x:

   int *ptr = &x;

   *ptr = 45;

   printf("Value of x:    %d\n", x);

 

   // update value of x to 1234;

   *(&x) = 1234;

   printf("Value of x:    %d\n", x);

 

  // error: cannot assign x to an explicit address



   // &x = 1234;

 

   return 0;

}

Listing 5.1 contains the same code that you saw earlier

in this chapter, this time in a complete C program. Once

again notice the comment near the end of Listing 5.1

that explains why the assignment statement is invalid.

The output from Listing 5.1 is here:

Value of x:    7

Value of x:    45

Value of x:    1234

Let’s expand the preceding code sample with some

other examples of pointers. Listing 5.2 displays the

contents of SimplePointer2.c that illustrates how to use a

pointer to change the value of a non-pointer variable of

type int.

LISTING 5.2: SimplePointer2.c

#include <stdio.h>

 

int main()

{

   int x = 7;

   printf("Value of x:    %d\n", x);

 

   // ptr "points" to location of x:

   int *ptr = &x;

  

   // ptr2 points to same location as ptr:

   int *ptr2 = ptr;

  

   // update value of x:

   *ptr2  = 5678;

 

   printf("Value of x:    %d\n", x);



   printf("Value of ptr:  %d\n", *ptr2);

   printf("Value of ptr2: %d\n", *ptr2);

  

   return 0;

}

Listing 5.2 contains the variable x whose initial value is

7, followed by the pointer ptr that is the same as the

pointer ptr in Listing 5.2. Next, the pointer ptr2 is

initialized with the location of pointer ptr, after which the

contents of ptr2 are changed to 5678. The result is

probably what you expect: the new value of the

variable is 5678. The output from Listing 5.2 is here:

Value of x:    7

Value of x:    5678

Value of ptr:  5678

Value of ptr2: 5678

Listing 5.3 displays the contents of SimplePointer3.c that

illustrates how to use a pointer to change the value of a

variable of type int.

LISTING 5.3: SimplePointer3.c

#include <stdio.h>

 

int main()

{

   int x = 7;

   printf("Value of x:    %d\n", x);

 

   // ptr "points" to location of x:

   int *ptr = &x;

   printf("Value of ptr:  %d\n", *ptr);

  

   // ptr2 points to same location as ptr:

   int *ptr2 = ptr;

   printf("Value of ptr2: %d\n", *ptr2);

  



   // the address of ptr2 plus one:

   int *ptr3 = ptr2+1;  

   printf("Value of ptr3: %d\n", *ptr3);

  

   // uncomment this block to see the error message:

//int *ptr4 = *ptr2+1;

//printf("Value of ptr4: %d\n", *ptr4);

 

   return 0;

}

The first portion of Listing 5.3 is the same as Listing 5.2,

followed by the pointer ptr3 that is initialized with the

value of the expression ptr2+1. There are two

possibilities: either the preceding expression equals the

contents of ptr2 plus 1 (which equals 8), or the

preceding expression equals the memory address of ptr2

plus 1. If you chose the latter, you chose the correct

answer! The output from Listing 5.3 is here:

Value of x:    7

Value of ptr:  7

Value of ptr2: 7

Value of ptr3: 1406395048

MULTIPLE POINTERS AND INTEGER

VARIABLES 

Listing 5.4 displays the contents of PointersNumbers1.c

that illustrates how to combine integers and pointers in

a C program.

LISTING 5.4: PointersNumbers1.c

#include <stdio.h>

 

int main()

{



   int x=3, y=5;

   int *ptr;

 

   printf("x = %d\n", x);

   printf("y = %d\n", y);

 

   ptr = &x;

   *ptr = 7;

 

   ptr = &y;

   *ptr = 23;

 

   printf("x = %d\n", x);

   printf("y = %d\n", y);

}

Listing 5.4 contains two integer variables x and y whose

values are 3 and 5, respectively. Next, the pointer ptr is

assigned the memory location of the variable x, after

which the value at that location is changed to 7.

Next, the pointer ptr is assigned the memory location

of the variable y, after which the value at that address is

changed to 23. The output from Listing 5.4 is here:

x = 3

y = 5

x = 7

y = 23

POINTERS AND CHARACTER STRINGS 

Until this point in the chapter, you have seen various

examples of pointers and integer-valued variables. You

can also assign pointers to memory locations that are

occupied by character strings (such as “John Smith”).

Examples involving pointers and C structures appear

later in this chapter and in the next chapter.



C pointers to character strings can be expressed in

several ways, all of which achieve the same result.

When you are defining C pointers, remember that you

must specify the data type because there is no

restriction on the contents of a memory location: it can

be the starting address of a standard C data type or a

custom data structure (discussed in Chapter 6). Hence,

a pointer needs information about the type of data at a

memory location (int, char, and so forth).

Listing 5.5 displays the contents of SimpleString.c that

illustrates various ways of assigning pointers to a

character string.

LISTING 5.5: SimpleString.c

#include <stdio.h>

 

int main()

{

   char *str  = "thisisalongstring";

 

   char *ptr1 = (char *)&str;    // incorrect

   char *ptr2 = (char *)&str[0];

   char *ptr3 = &str[0];

   char *ptr4 = str;

//char *ptr5 = &str;            // warning

 

   printf("str:  %s\n", str);

//printf("ptr1: %s\n", ptr1);

   printf("ptr2: %s\n", ptr2);

   printf("ptr3: %s\n", ptr3);

   printf("ptr4: %s\n", ptr4);

//printf("ptr5: %s\n", ptr5);

 

   return 0;

}



Let’s look at each of the pointer declarations in Listing

5.5, one at a time, to see their similarities and their

differences. If you need to read the following

description more than once, that’s perfectly fine (after

all, the concept of pointers in C is new to you).

Listing 5.5 starts by initializing the pointer str to the

location of the hard-coded string thisisalongstring. Next, the

variables ptr1 and ptr5 point to the address of the

variable str, whereas ptr2, ptr3, and ptr4 point to the first

character in the string literal.

The declaration of ptr1 causes it to point to the

variable str, which is invalid because str is not a

character but a character pointer. The type cast on this

line prevents the compiler from warning about the type

mismatch.

The initializer for ptr2 can be read as “get the first

character in the string str points to, then take its

address, and then cast it to “char *” which is valid but a

bit cumbersome. The cast is unnecessary because the

data type already is char *, and the address of the first

character is the same as the value already stored in str.

The declaration for ptr3 has the same effect as ptr2

but omits the unnecessary cast, and the declaration for

ptr4 also omits the address of and indexing operations.

As tempting as it might be, the syntax for ptr5

produces the following compilation warning:

SimpleString.c:10:17: warning: initialization from incompatible pointer type

[-Wincompatible-pointer-types]

    char *ptr5 = &str; // warning

                 ^

The next portion of Listing 5.5 contains six printf()

statements that print the values of the contents of the

six pointers. The output from Listing 5.5 is here:



str:  thisisalongstring

ptr2: thisisalongstring

ptr3: thisisalongstring

ptr4: thisisalongstring

Use the syntax for ptr2, ptr3, or ptr4 (ptr4 has the simplest

syntax) when you define a pointer to a character string,

and be consistent in your coding convention.

DISPLAYING SUBSTRINGS OF A

STRING 

The example in this section is mainly for fun, yet it’s

useful because it shows you how to “walk” a pointer

through a character string and display partial strings, all

of which is performed in a nested loop.

Listing 5.6 displays the contents of Substrings.c that

illustrates how to display substrings of a given string.

LISTING 5.6: Substrings.c

#include <stdio.h>

 

int main()

{

   char *str = "thisisalongstring";

   int len = strlen(str);

 

   for(int i=1; i<=len; i++)

   {

      printf("%2d: ",i);

      for(int j=0; j<i; j++)

      {

         printf("%c", (char)str[j]);

      }

      printf("\n");



   }

}

Listing 5.6 starts with a character-based pointer str that

points to a string of characters. Recall the discussion

about character strings earlier in this chapter: assigning

the dereferenced value of a pointer to a character string

is a legitimate way to initialize a character pointer.

The next part of Listing 5.6 contains a pair of nested

loops. As the outer loop iterates through each of the

characters in the string referenced by str, the inner loop

iterates through all the characters in the string str that

precede (and include) the current character.

Listing 5.6 introduces the C built-in function strlen()

that returns the length of a string. The output from

Listing 5.6 is here:

1: t

2: th

3: thi

4: this

5: thisi

6: thisis

7: thisisa

8: thisisal

9: thisisalo

10: thisisalon

11: thisisalong

12: thisisalongs

13: thisisalongst

14: thisisalongstr

15: thisisalongstri

16: thisisalongstrin

17: thisisalongstring



DISPLAY COMMAND LINE ARGUMENTS

IN C 

You can determine the number of arguments (and

their string-based values) that are specified as

command line arguments to a C program, with the

following modified syntax for the main() function:

int main(int argc, char *argv[])

The argument argc is the number of command

arguments whereas argv is a pointer to an array that

contains the actual arguments that are specified at the

command line. As you can see, there’s a slight “twist”

with the second argument in the main() method: char **

argv, which is actually the same as char *argv[]. We’ll use

the latter syntax because it’s conceptually easier (i.e., a

pointer to an array of strings).

Listing 5.7 displays the contents of PrintCmdLineArgs.c

that illustrates how to print the command line

arguments of a C program.

LISTING 5.7: PrintCmdLineArgs.c

#include <stdio.h>

 

int main(int argc, char *argv[])

{

    int i;

 

    printf("Display Command Line Arguments\n");

    for( i = 0; i < argc; ++i )

    {

        printf("Argument %d = \"%s\"\n", i, argv[i]);

    }

 

    return 0;



}

Listing 5.7 contains a loop that iterates through the

command line arguments and prints them via the printf()

function. After compiling the code, launch the program

in Listing 5.7 as follows (you can use different

arguments):

./PrintCmdLineArguments 1 a 2 b 3 c

The output is here:

Display Command Line Arguments

Argument 0 = "./PrintCmdLineArguments"

Argument 1 = "1"

Argument 2 = "a"

Argument 3 = "2"

Argument 4 = "b"

Argument 5 = "3"

Argument 6 = "c"

You can easily check for the number of arguments

and perform an early exit with the exit() function, as

shown in the following code block:

#include <stdio.h>

#include <stdlib.h> // required for the exit() function

 

int main(int argc, char *argv[])

{

   if( argc < 3 )

   {

      fprintf(stderr, "Not enough Arguments: %d\n", argc);

      exit(-1);

   }

 

   // proceed normally...

}

Although you can perform an early exit with the abort()

function, keep in mind that the latter does not flush



buffers of open files. Moreover, the abort() function on a

Unix system results in a core dump.

INCREMENTING POINTERS: MEMORY

LOCATION VERSUS VALUE 

C supports pointer arithmetic (i.e., addition and

subtraction). You need to understand the difference

between adding (incrementing) a pointer location and

adding (incrementing) the value of a pointer. In fact, we

already saw an example of accessing the location of a

pointer in Listing 5.2.

In other to illustrate this difference, consider the

following code snippet:

char array[5];

char *array_ptr = &array[0];          

In the preceding code snippet, *array_ptr is the same

as array[0], and *(array_ptr+1) is the same as array[1], and *

(array_ptr+2) is the same as array[1], and so on. Note the

use of parentheses.

However, (*array_ptr)+1 is not the same as array[1],

because the +1 is outside the parentheses, which

means that it is added after the dereference.

Consequently, the expression (*array_ptr)+1 is the same as

array[0]+1.

Recall that an array consists of a block of consecutive

memory locations, each of which holds an element of

the array. For example, if the array myarr starts from the

memory location 0xff001320, then myarr[0] has the same

address, whereas myarr occupies the memory location

that—in the case of an integer—is 4 bytes beyond this

location: 0xff001324 (for a double it would be 8 bytes).



When you define a pointer, you specify the data type

for the pointer, and therefore incrementing a pointer

will increment the memory location by the number of

bytes associated with the data type: one byte for a

character, 4 bytes for integers, and 8 bytes for double.

Listing 5.8 displays the contents of ArrayAndPointer1.c

that illustrates how to print the elements (and their

addresses) of a simple character array.

LISTING 5.8: ArrayAndPointer1.c

#include <stdio.h>

 

int main()

{

   int numbers[5] = {2, 3, 5, 7, 11};

   printf("First item in numbers  = %i\n", *numbers);

 

   int *numbers2 = &numbers[1];

   printf("First item in numbers2 = %i\n", numbers2[0]);

 

   return 0;

}

Listing 5.8 defines the array numbers that contains five

integers, followed a printf() statement that displays the

first number in the numbers array. Notice the use of

*numbers2 to point to the first element in the numbers array.

Next, Listing 5.8 defines the pointer numbers2 that is

initialized with the memory location of the second

number in the array numbers.

Compile the code in Listing 5.8 and launch the

executable and you will see the following output:

First item in numbers  = 2

First item in numbers2 = 3



POINTERS AND ARRAYS 

Listing 5.9 displays the contents of PointersToNumbers1.c

that illustrates how to use an index in order to iterate

through the elements of an array, and illustrates a

coding style that is better to avoid in your own code.

LISTING 5.9: PointersToNumbers1.c

#include <stdio.h>

 

int array[] = {4, 5, 8, 9, 8, 1, 0, 1, 9, 3};

 

int main()

{

   int index;

   while (array[index] != 0)

     ++index;

 

   printf("Number of elements before 9: %d\n", index);

 

   return (0);

}

Listing 5.9 starts with the definition of the global

variable array that is initialized with 10 integers. The

main() function contains a while loop that iterates through

the elements of array and also increments the variable

index during each iteration. The while loop exists when

the value 0 is encountered, and then the value of index

is displayed. The output from launching the code is

here:

Number of elements before 9: 6

The point to observe is that the following syntax is

concise and yet can be misread (especially by novices):

while (array[index] != 0)

  ++index;



You might think that the preceding while loop is “stuck”

in an infinite loop because the value of the variable index

is never incremented. In fact, the statement ++index; is

“attached” to the while loop, and eventually the loop will

terminate.

The following code snippet is equivalent to the

preceding code snippet. However, the syntax is explicit

and emphasizes the fact that the variable index is

incremented during each iteration in the while loop:

while (array[index] != 0)

{

  ++index;

}

The preceding code block is 100% unambiguous (even

to a novice). Another advantage of the preceding code

snippet is that you can easily add more code inside the

curly braces without accidentally forgetting to include

the existing ++index; statement.

POINTERS, ARRAYS, AND ADDRESSES 

Listing 5.10 displays the contents of PointersToNumbers2.c

that illustrates how to print the elements (and their

addresses) of a simple character array.

LISTING 5.10: PointersNumbers2.c

#include <stdio.h>

 

#define ARRAY_SIZE 10

char array[ARRAY_SIZE + 1] = "0123456789";

 

int main()

{

  int index;



  printf("&array[index] (array+index) array[index]\n");

 

  for(index=0; index < ARRAY_SIZE; ++index) {

    printf("0x%-10p 0x%-10p 0x%x\n",

           &array[index],(array+index),array[index]);

  }

 

  return 0;

}

Listing 5.10 starts with the #define directive (a

preprocessor directive that performs text substitution)

that sets ARRAY_SIZE to the value 10. The next code

snippet defines the character-based variable array that

is initialized with 10 digits, which are treated as

characters.

Recall that characters occupy one byte, and

therefore consecutive array elements occupy

consecutive memory addresses. Next, a short int

occupies two bytes, which means the memory

addresses of consecutive array elements increase by

two (not by one).

Moreover, C will automatically perform the correct

pointer arithmetic (i.e., increment by the correct

number). Hence, the expression array+1 is interpreted

correctly: it refers to the element with index 1 (i.e., the

second element in the array). In other words, array+1

increments the value of the index by 1 and does not

increment the address value by 1. As a result, the

following code snippets are equivalent:

array_ptr = &array[0];

array_ptr = array;

The output from Listing 5.10 is here:

&array[index] (array+index) array[index]

0x0x1033e3020 0x0x1033e3020 0x30



0x0x1033e3021 0x0x1033e3021 0x31

0x0x1033e3022 0x0x1033e3022 0x32

0x0x1033e3023 0x0x1033e3023 0x33

0x0x1033e3024 0x0x1033e3024 0x34

0x0x1033e3025 0x0x1033e3025 0x35

0x0x1033e3026 0x0x1033e3026 0x36

0x0x1033e3027 0x0x1033e3027 0x37

0x0x1033e3028 0x0x1033e3028 0x38

0x0x1033e3029 0x0x1033e3029 0x39

POINTER ARITHMETIC 

C “blurs” the distinction between pointers and arrays

by treating them in the same manner in many cases

(recall that char **argv and char *argv[] are the same). In this

section the code uses the variable array_ptr as a pointer,

and C automatically does the necessary conversion.

Listing 5.11 displays the contents of PointerArithmetic.c

that illustrates how to perform pointer arithmetic in

order to iterate through the elements of the same array

as Listing 5.10.

LISTING 5.11: PointerArithmetic.c

#include <stdio.h>

 

int arr[] = {4, 5, 8, 9, 8, 1, 0, 1, 9, 3};

 

int main()

{

   int *arr_ptr = arr;

 

   while ((*arr_ptr) != 0) ++arr_ptr;

 

   printf("Number of elements before 9: %d\n", arr_ptr - arr);

 



   return (0);

}

Notice that when we wish to examine the data in the

array, we use the dereference operator (*). This

operator is used in the statement:

while ((*arr_ptr) != 0)

When we wish to change the pointer itself, no other

operator is used. For example, the following code

snippet increments the pointer (not the data):

++arr_ptr;

Once again, we have an example of a coding style that

has a more explicit alternative:

while ((*arr_ptr) != 0) ++arr_ptr;

Consider using the following alternative syntax, which

involves only a few more keystrokes and is potentially

less error-prone:

while ((*arr_ptr) != 0)

{

  ++arr_ptr;

}

CALCULATING THE TRANSPOSE OF A

SQUARE MATRIX 

In Chapter 2, you learned that the transpose of a

square matrix is the result of interchanging the matrix

elements by interchanging the row and column position.

In other words, if the value of the element in the (i,j)

position of matrix A is a(i,j), then the value of the

element in the (i,j) position of the transpose of matrix A

is a(j,i).



Listing 5.12 displays the contents of Transpose.c that

illustrates how to calculate the transpose of a square

matrix, and how to use one function to display the

contents of the matrix before and after calculating its

transpose.

LISTING 5.12: Transpose.c

#include <stdio.h>

 

void ptrArray(int *arr, int row, int col)

{

   for(int i=0; i<row; i++)

   {

      printf("Row %d: ",i);

      for(int j=0; j<col; j++)

      {

         printf("%d ", *(arr+i*row+j));

      }

      printf("\n");

   }

}

 

int main()

{

   int row=3, col=3, temp=0;

   int arr1[3]= {{1,2,3}, {4,5,6}, {7,8,9}};

 

   // display original matrix

   printf("Original\n");

   ptrArray(&arr1[0][0], row, col);

 

   for(int i=1; i<row; i++)

   {

      for(int j=0; j<i; j++)

      {

         temp = arr1[i][j];

         arr1[i][j] = arr1[j][i];



         arr1[j][i] = temp;

      }

   }

 

   // display transposed matrix

   printf("Transpose\n");

   ptrArray(&arr1[0][0], col, row);

 

   return 0;

}

Listing 5.12 starts with the user-defined function

ptrArray() that displays the contents of an array. This

function has three arguments: the first is a pointer to an

array, the second is the number of rows in the array,

and the third is the number of columns in the array. The

function ptrArray() contains a nested loop that iterates

through the rows and columns of the array and displays

the values at each location.

Next, the function main() initializes some scalar

variables as well as the array arr1 that contains integer

values. The next section of main() contains a nested loop

that uses the temporary variable temp in order to “swap”

the array entries arr1[i][j] and arr1[j][i], after which the

entries in arr1 are the transpose of the original values.

The bottom section of main() invokes the function

ptrArray() to display the contents of the transposed

matrix. Notice that the variables row and col are reversed

(as shown in bold): if A is an mxn matrix then the

transpose of A is an nxm matrix. The output from

Listing 5.12 is here:

Original

Row 0: 1 2 3

Row 1: 4 5 6

Row 2: 7 8 9

Transpose



Row 0: 1 4 7

Row 1: 2 5 8

Row 2: 3 6 9

As you can see, Listing 5.12 contains two identical

blocks of code: a better solution is to use a function

(discussed in Chapter 3) that prints the contents of an

array.

POINTERS AND STRINGS 

Listing 5.13 displays the contents of PointersStrings1.c

that illustrates how to initialize strings and pointers.

LISTING 5.13: PointersStrings1.c

#include <stdio.h>

 

int main()

{

   char *ptr1  = "Hello World";

   char str1[] = "Hello World";

   char *ptr2  = str1;

 

   printf("%s\n", ptr1);

   printf("%s\n", str1);

   printf("%s\n", ptr2);

 

   return 0;

}

Listing 5.13 contains a main() function that defines the

three variables ptr1, str1, and ptr2 that consist of a pointer

to a string, a string array of characters, and a pointer to

the string array, respectively.

The second portion of the main() function contains

three printf() statements that display the contents of the



three variables (which are all the same).

Keep in mind that the following causes an error:

char[] str2 = "Hello World";

The output from executing the code in Listing 5.12 is

here:

Hello World

Hello World

Hello World

POINTERS AND BUILT-IN STRING

MANIPULATION FUNCTIONS 

C supports a nice variety of built-in string

manipulation functions. The following list is sort of a

“dump” of C functions that provide such functionality,

along with a terse description of their purpose (which is

fairly evident from their names).

Copy src string into dest string with the strcpy()

function:

char *strcpy (char *dest, char *src);

Copy the first n characters of string2 to string1with the

strncpy() function:

char *strncpy(char *string1, char *string2, int n);

Compare string1 and string2 to determine alphabetic

order with the strcmp() function:

int strcmp(char *string1, char *string2);

Compare first n characters of two strings with the

strncmp() function:

int strncmp(char *string1, char *string2, int n);



Determine the length of a string with the strlen()

function:

int strlen(char *string);

Concatenate string src to the string dest with the strcat()

function:

char *strcat(char *dest, const char *src);

Concatenate n characters from string src to the string

dest with the strncat() function:

char *strncat(char *dest, const char *src, int n);

Find first occurrence of character c in string with the

strchr() function:

char *strchr(char *string, int c);

Find last occurrence of character c in string with the

strrchr() function:

char *strrchr(char *string, int c);

Find first occurrence of string string1 in string2 with the

strstr() function:

char *strstr(char *string2, char *string1);

Parse the string s into tokens using delim as delimiter

with the strtok() function:

char *strtok(char *s, const char *delim) ;

If you need a code sample that uses one of the

preceding functions, but it’s not available in this book,

perform an online search and you will probably find

several examples.

WHILE LOOPS AND POINTERS TO

STRINGS 



Listing 5.14 displays the contents of WhileLoopStr.c that

shows you how to use a while loop in a C program.

LISTING 5.14: ForLoopStr.c

#include <stdio.h>

#include <string.h>

 

int main()

{

   char *str = "hello";

   char *p = str;

   int i=0;

   int len = strlen(str);

 

   printf("First Loop\n");

   printf("----------\n");

   while(i<len)

   {

      printf("str[i] : %c\n", str[i]);

      ++i;

   }

 

   printf("\nSecond Loop\n");

   printf("-----------\n");

   while(*p)

   {

      printf("p : %s\n", p);

      ++p;

   }

 

   return 0;

}

Listing 5.14 contains a main() function that defines the

variables ptr and p that are pointers to a string, and also

the variable len that is the length of the string str.



Next, the main() function contains a loop that iterates

through the characters in the string that is referenced

by the variable str. The main() function contains a second

loop that iterates through the same set of characters,

but this time it’s performed by advancing the location

of the pointer p. The output from Listing 5.14 is here:

First Loop

----------

i : h

i : e

i : l

i : l

i : o

 

Second Loop

-----------

char : hello

char : ello

char : llo

char : lo

char : o

If you replace while(*p) with the statement while(p), what

do you think will happen? If your answer is “infinite

loop” in the second while loop, you are correct. The

reason is simple: while(p) always evaluates to true

because p has a non-null address, whereas while(*p)

evaluates to false when the pointer p reaches the end of

the string str. Keep this detail in mind when you use

pointer arithmetic.

COUNTING VOWELS AND

CONSONANTS IN A TEXT STRING 



The strchr() function locates the first occurrence of a

character in a text string. Listing 5.15 displays the

contents of CountVowelsConsonants.c that illustrates how to

count the number of vowels, consonants, and other

characters in a text string.

LISTING 5.15: CountVowelsConsonants.c

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <ctype.h>

 

int charType(char ch)

{

  char ch2 = tolower(ch);

 

  if(ch2 =='a' || ch2 =='e' || ch2 =='i' || ch2 =='o' || ch2 =='u')

  {

    return 0;

  }

  else if(isalpha(ch2))

  {

    return 1;

  }

  else if(isdigit(ch2))

  {

    return 2;

  }

  else

  {

    return 3;

  }

}

 

int main()

{

   char str[] = "This is a string with some short words 1 2 3 4 that wraps

around and let's see how well the code in this code sample actually



works!";

 

   char *ptr = str;

 

   int result, counts[4];

   counts[0] = counts[1] = counts[2] = counts= 0;

 

   while(*ptr)

   {

      result = charType(*ptr);

      ++counts[result];

      ptr++;

   }

 

   printf("VOWELS:    %d\n",counts[0]);

   printf("CONSONANT: %d\n",counts[1]);

   printf("DIGITS:    %d\n",counts[2]);

   printf("OTHERS:    %d\n",counts[3]);

 

   return 0;

}

Listing 5.15 starts with the definition of the function

charType() that takes a character as a parameter and has

a return type of int. This function contains conditional

logic to determine whether the parameter ch is a vowel

(by checking for the presence of each vowel

individually), an alphabetic character (with the isalpha()

built-in C function), a digit (with the isdigit() built-in C

function), or some other character. The returned value

is an integer between 0 and 3 inclusive, depending on

which portion of the conditional logic is executed. Later

in this section you will see the rationale for specifying

these return values.

The next portion of Listing 5.15 is the main() function

that initializes the character array str with a hard-coded

string, followed by the character pointer ptr that is



initialized with the location of the variable str. The counts

array has four integer values, all of which are initially 0.

The next portion of Listing 5.15 is a loop that uses

the pointer ptr to iterate through each character of the

variable str. During each iteration, the current character

is passed to the charType() function, and the return value

is used to increment the corresponding position in the

counts array. The position of ptr is incremented by one

and the while() executes again, until we reach the end of

the hard-coded string.

The output from Listing 5.15 is here:

First Loop

VOWELS:    33

CONSONANT: 66

DIGITS:    4

OTHERS:    25

FINDING A WORD IN A TEXT STRING

IN C 

The strchr() function locates the first occurrence of a

character in a text string. Listing 5.16 displays the

contents of FindChar1.c that illustrates how to find a

character in a text string.

LISTING 5.16: FindChar1.c

#include <stdio.h>

#include <string.h>

 

#define SIZE 80

 

int main(void)

{

  char line[SIZE] = "New York Pizza";



  char *ptr;

  int ch = 'z';

 

  ptr = strchr(line, ch);

  printf("The first occurrence of %c in '%s' is '%s'\n",

          ch, line, ptr);

 

  return 0;

}

Listing 5.16 starts by initializing the character string line

with a hard-coded string, followed by declaring the

character pointer ptr and initializing the integer-valued

variable ch with “z.”

Next, ptr is assigned the value that is returned from

invoking the built-in C function strchr() with the

arguments line and ch. As you saw earlier in this chapter,

this function returns the first occurrence of the

character assigned to the argument ch.

The output from launching the code in Listing 5.16 is

here:

The first occurrence of z in 'New York Pizza' is 'zza'

SEARCHING A WORD IN A TEXT

STRING IN C 

The strstr() function locates the first occurrence of the

null-terminated string s2 in the null-terminated string s1.

The strcasestr() function is similar to strstr(), but ignores the

case of both strings. The latter function is not part of

standard C; however, it is a common (but not universal)

vendor extension.

Listing 5.17 displays the contents of

SearchForWordInString.c that illustrates how to tokenize a text



string into words.

LISTING 5.17: SearchForWordInString.c

#include <stdio.h>

#include <string.h>

 

int main()

{

   char *str = "One two Three four";

   char *word1 = "our";

   char *word2 = "three";

 

   if((strstr(str, word1)) != NULL)

   {

      printf("Current Line: %s\n", str);

      printf("Exact Match:  %s\n\n", word1);

   }

 

   return 0;

}

Listing 5.17 starts by initializing the character string str

with a hard-coded string, followed by initializing the

character pointers word1 and word2 with the strings our

and three, respectively.

Next, the code contains a conditional block that

invokes the built-in C function strstr() to check for the

presence of word in str1, and if a match is found, an

appropriate message is displayed. The output from

launching the code in Listing 5.17 is here:

Current Line: One two Three four

Exact Match:  our

CONCATENATING TWO STRINGS IN C 



Listing 5.18 displays the contents of ConcatenateStrings.c

that illustrates how to use the strcat() and strncat()

functions in order to concatenate two strings. Keep in

mind the following distinction: the strcat() function

appends the second string to the first string, whereas

the strncat() function appends only the specified number

of characters in the second string to the first string.

LISTING 5.18: ConcatenateStrings.c

#include <stdio.h>

#include <string.h>

 

#define BUFFER_SIZE 80

 

int main()

{

  char line[BUFFER_SIZE] = "New York";

  char *ptr;

 

  // Call strcat with line and " pizza"

  ptr = strcat(line, " pizza" );

  printf("strcat line  = %s\n", line);

 

  // Reset line to contain the original string

  memset(line, '\0', sizeof(line));

  ptr = strcpy(line, "New York");

  strcpy(line, "New York");

 

  // Call strncat with line and two chars of "pizza"

  ptr = strncat(line, " pizza", 3);

  printf("strncat line = %s\n", line);

 

  return 0;

}

Listing 5.18 starts by defining BUFFER_SIZE with the value

90 (you will see more about the #define preprocessor

directive in Chapter 7). Next, the main() function



initializes the character string line with a hard-coded

string, followed by declaring the character pointer ptr.

The next portion of Listing 5.18 initializes ptr with the

value that is returned from invoking the built-in C

function strcat() with the parameters line and the string

“pizza,” after which the new contents of line are

displayed.

The next portion of Listing 5.18 initializes ptr with the

value that is returned from invoking the built-in C

function strncat() with the parameters line and the string

“New York,” after which the new contents of line are

displayed. The final section of code involves a second

invocation of the strncat() function, along with displaying

the result.

The output from Listing 5.18 is here:

strcat line  = New York pizza

strncat line = New York pi

SUMMARY 

This chapter introduced you to the concept of a

pointer in C, along with examples of pointers to

numbers, arrays, and strings. You saw how to use

pointers to split a string, as well as for loops that use

pointers to find the divisors of a number. Next, you

learned how to define pointers to arrays of numbers as

well as pointers to functions.

You also learned how to use pointers to reverse a

string, find uppercase and lowercase letters, and how to

remove whitespaces from a string. Then you saw how to

count words in a line of text, as well as work with words

and strings in while loops. Finally, you saw an example of



counting vowels and consonants in a string, and how to

concatenate two strings.



T

CHAPTER   6 

WORKING WITH POINTERS

his chapter continues the discussion of C pointers

that began in Chapter 5 and contains code samples

that illustrate slightly more complex ways to use

pointers in C programs. After you complete this chapter,

you will be in a good position to understand the section

in Chapter 7 that shows you how to use pointers in

conjunction with C structs.

The first part of this chapter contains code samples

that illustrate how to compare two strings and how to

“tokenize” the words in a text string, and how to check

if a string is a palindrome.

The second part of this chapter introduces you to

some built-in C functions that allocate memory

dynamically, along with a C function that frees that

allocated memory when it is no longer needed (which

avoids memory leaks). This section also contains

pointer-based code samples for iterating through an

array of numbers, converting strings to uppercase or

lowercase letters, and how to find the prime divisors of

a positive integer.



The final section of this chapter contains C programs

that illustrate how to define pointers to functions,

function pointers as arguments, pointers to pointers,

and how to process command line arguments.

Although this chapter will not make you an expert in

C pointers, you will be able to understand many C

programs that contain pointers, how to define your own

pointer-based functions, and be able to recognize many

ways in which pointers can be used in C programs.

COMPARING TWO STRINGS IN C 

The strcmp() function is a built-in C function that

enables you to compare to two strings. Listing 6.1

displays the contents of CompareStrings.c that illustrates

how to use the strcmp() function.

LISTING 6.1: CompareStrings.c

#include <stdio.h>

#include <string.h>

 

int main()

{

   char *str1 = "abc";

   char *str2 = "abcd";

 

   int num = strcmp(str1, str2);

 

   printf("String1: %s\n", str1);

   printf("String2: %s\n", str2);

 

   if(strcmp(str1, str2) == 0 )

   {

      printf("Strings are equal: %s %s\n", str1, str2);

   }



   else if(strcmp(str1, str2) < 0 )

   {

      printf("First < second:    %s %s\n", str1, str2);

   }

   else

   {

      printf("First > second:    %s %s\n", str1, str2);

   }

 

   return 0;

}

Listing 6.1 contains the main() function that initializes the

character pointers str1 and str2. Next, the value of the

integer num is initialized by invoking the strcmp() function

with the arguments str1 and str2.

The next portion of the main() function contains

conditional logic that displays a message based on

whether the value of the strcmp() function is 0, negative,

or positive. The output is here:

String1: abc

String2: abcd

First < second:    abc abcd

In addition, there is also the built-in C function strnicmp()

that performs a case-insensitive comparison of two

strings, as shown here:

result = strnicmp(str1, str2, 8);

The conditional logic for strnicmp() is the same as the

conditional logic for strcmp() in Listing 5.18 in Chapter 5.

      The strnicmp() function is a vendor

extension, not part of the C standard.



USING STRTOK() TO TOKENIZE A

STRING 

Consider the case of a string that has the form

“Last/First”, such as “Smith/John”. The task is to split such a

string into two separate strings: the string on the left

side of the “/” symbol and the string on the right side of

the “/” symbol. We can perform this task via the built-in

C function strtok().

The strtok() function takes a pointer to a string

(string_ptr) and a character to find (such as “/”) as its

arguments. Next, we employ a while loop that finds

subsequent tokens in the remaining string.

Listing 6.2 displays the contents of Tokenize.c that

illustrates how to split a string into tokens (i.e.,

individual words).

LISTING 6.2: Tokenize.c

#include <stdio.h>

#include <string.h>

 

char *delim = "/";

 

void tokenizeString(char *str)

{

   // first token = last name

   char *token = strtok(str, delim);

   char *second = token;

   char *first;

   int count = 0;

 

   // print token after delimiter

   while (token != NULL)

   {

      token = strtok(NULL, delim);



      first = token;

   }

 

   printf("NAME: %s %s\n", first, second);

}

 

int main()

{

   char *str;

   char names[4][20] = {

                        "smith/jane",

                        "edwards/john",

                        "stone/dave",

                        "anderson/kenneth",

                      };

 

   for(int i=0; i<4; i++)

   {

      str = names[i];

      tokenizeString(str);

   }

 

   return 0;

}

Listing 6.2 starts with the function tokenizeString() that

invokes the strtok() function in order to obtain the first

token in the string str. This first token is assigned to the

string second because it’s the last name (not the first

name). The next portion of tokenizeString() contains a loop

that repeatedly invokes the strtok() function until we read

the end of str. Notice that each invocation of the strtok()

function is assigned to the string first. Since there are

only two names in str, it’s correct to make this

assignment; i.e., the while loop will terminate after the

first invocation of the strtok() function.



However, if str contains multiple occurrences of the

given delimiter, we would need to replace the while loop

with the following code block:

// print token after delimiter

while (token != NULL)

{

   token = strtok(NULL, delim);

   first = token;

   if(++count == 1) break;

}

The main() function initializes the array names with four

names that are in reverse order (e.g., “Smith/John”). The

next portion of the main() function contains a loop that

iterates through the elements of the names array and

invokes the function tokenizeString(). The output is here:

NAME: jane smith

NAME: john edwards

NAME: dave stone

NAME: kenneth anderson

POINTERS, STRINGS, AND

PALINDROMES 

A string is a palindrome if the reversed string is the

same as the initial string. Listing 6.3 displays the

contents of StringPalindrome.c that illustrates how to

determine whether or not a string is a palindrome.

LISTING 6.3: StringPalindrome.c

#include <stdio.h>

#include <string.h>

 

int scanString(char str[])

{



   int result = 0;

   char *ptr;

   int len = strlen(str);

 

   for(int i=0; i<len/2; i++)

   {

      if(str[i] != str[len-i-1])

      {

         result = 1;

         break;

      }

   }

 

   return result;

}

 

int main()

{

   int result=0;

   char line1[] = "radar";

   char line2[] = "motion";

   char *results= {"YES", "NO"};

 

   int len1 = strlen(line1);

   int len2 = strlen(line2);

 

   result = scanString(line1);

   printf("Current Word: %s\n", line1);

   printf("Palindrome:   %s\n", results[result]);

 

   result = scanString(line2);

   printf("Current Word: %s\n", line2);

   printf("Palindrome:   %s\n", results[result]);

 

   return 0;

}

Listing 6.3 contains a main() function initializes the

pointers ptr1 and str1 with the same hard-coded



character string "Hello World" and then defines the

character pointer ptr2 that points to location of the

variable str1. The rest of the code consists of three printf()

statements.

The output from compiling and launching the code in

Listing 6.3 is here:

Current Word: radar

Palindrome:   YES

Current Word: motion

Palindrome:   NO

PASS BY REFERENCE VERSUS VALUE 

In Chapter 4, this topic was briefly mentioned, and in

this section you will see an example of using a pointer

to pass a data structure to a function.

In abstract computer science terms, there is a

distinction between “pass by reference” and “pass by

value”. In a pass by value function call, local copies are

made of all the arguments so the function cannot

change any data in the calling scope. Pass by reference

means that only references to the data are passed, so

any changes made by the function affect the actual

data in the caller. There is no “pass by reference”

mechanism in C, so this behavior is typically emulated

by passing a pointer to the actual data. In other

languages which have a pass by reference syntax such

as C++ or C#, pointers are not used for this purpose.

Listing 6.4 displays the contents of PassByPointer.c that

illustrates how to pass by reference and by value.

LISTING 6.4: PassByPointer.c

#include <stdio.h>



 

int  addNumbers1(int a, int b);

void addNumbers2(int a, int b, int * sum);

 

int addNumbers1(int a, int b)

{

   return (a+b);

}

 

void addNumbers2(int a, int b, int *sum)

{

   *sum = a+b;

}

 

int main()

{

   int num1=3, num2=5, sum1, *sum2=&sum1;

 

   sum1 = addNumbers1(num1, num2);

   printf("%d + %d = %d\n", num1, num2, sum1);

 

   addNumbers2(2*num1, 3*num2, sum2);

   printf("%d + %d = %d\n", 2*num1, 3*num2, *sum2);

 

   return 0;

}

Listing 6.4 is straightforward: it initializes two integer-

valued variables, declaring another integer-valued

variable, and then initializes an integer-valued pointer

to the location of the third variable.

Next, the function addNumbers1() is invoked with num1

and num2 and then the function addNumbers2() is invoked

with 2*num1, 3*num2, and sum2. After each method

invocation the values of various variables are printed.

Notice that the function addNumbers1() returns an

integer, whereas the function addNumbers2() updates the



value of the third parameter sum (i.e., it does not return

a value). The integer-valued variable sum2 is highlighted

in bold so that you can easily trace the execution

sequence and observe the results.

The output from Listing 6.4 is here, with the results

that you probably expected:

3 + 5 = 8

6 + 15 = 21

PASS AN ARRAY BY POINTER 

In the context of a function call, an array is treated

as if it were a pointer to the first element. This means

that it is not possible to pass an array by value, only by

reference. Listing 6.5 displays the contents of

PassArrayByPointer.c that illustrates how to pass an array of

integers by reference.

LISTING 6.5: PassArrayByPointer.c

#include <stdio.h>

 

void multiplyArray2(int factor, int a[], int * result)

{

   for(int i=0; a[i] != '\0'; i++)

   {

      *(result+i) = factor*a[i];

   }

}

 

int main()

{

   int arr1[] = {1,2,3,4,5}, factor=3, * result=arr1;

 

   printf( "Initial Values:\n" );

   for(int i=0; arr1[i] != '\0'; i++)



   {

      printf( "%d ", arr1[i]);

   }

   printf( "\n" );

 

   multiplyArray2(factor, arr1, result);

 

   printf( "Updated Values:\n" );

   for(int i=0; arr1[i] != '\0'; i++)

   {

      printf( "%d ", arr1[i]);

   }

   printf( "\n" );

 

   return 0;

}

Listing 6.5 contains the function multiplyArray2() that

multiplies the values of an array a (a parameter of the

function) by a number, both of which are arguments to

the function. The updated contents of the array arr1 are

accessible via the third parameter, which is a pointer to

an integer-based array. The updated contents of the

array are also present in arr1, because the array was not

copied but passed by reference.

Next, the main() function initializes an array arr1 with

values, assigns the value 3 to the variable factor, and

then initializes the pointer-based variable result with the

address of arr1.

The main() function contains two loops, both of which

display the values in the array arr1. However, the first

loop prints the initial values of the array arr1, and the

second loop prints the initial values of the array arr1

after the multiplyArray2() function has been invoked. Notice

that this function doubles the values of every element

of the array arr1.



The output from Listing 6.5 is here:

Initial Values:

1 2 3 4 5

Updated Values:

3 6 9 12 15

A FOR LOOP WITH POINTERS TO

NUMBERS 

Listing 6.6 displays the contents of Palindromes1.c that

illustrates how to determine whether a string is a

palindrome. In case you have forgotten, a palindrome is

a number or string that is a “mirror image” of itself,

such as 12321, “rotor,” and “radar,” whereas 1231 and

“rattan” are not palindromes.

LISTING 6.6: Palindromes1.c

#include <stdio.h>

#include <stdio.h>

#include <string.h>

 

int scanString(char str[])

{

   int result = 0;

   char *ptr;

   int len = strlen(str);

 

   for(int i=0; i<len/2; i++)

   {

      if(str[i] != str[len-i-1])

      {

         result = 1;

         break;

      }

   }



 

   return result;

}

 

int main()

{

   int result=0;

   char line1[] = "radar";

   char line2[] = "motion";

   char *results= {"YES", "NO"};

 

   int len1 = strlen(line1);

   int len2 = strlen(line2);

 

   result = scanString(line1);

   printf("Current Word: %s\n", line1);

   printf("Palindrome:   %s\n", results[result]);

 

   result = scanString(line2);

   printf("Current Word: %s\n", line2);

   printf("Palindrome:   %s\n", results[result]);

 

   return 0;

}

Listing 6.6 contains the C function scanString with a loop

that starts at the value 0 and final value of len /2, which

is half the number of elements in the string str. The loop

progressively moves in a left-to-right fashion,

comparing the contents of the character in the current

position with the corresponding character at the “other

end” of the string line1.

For example, the number 1234321 compares the

left-side digit 1 with the corresponding digit at right-

position of this number (which is also a 1). Next, the

left-side digit 2 matches the right-side digit 2, followed

by comparing the left-side digit 3 with its right-side



counterpart. The middle digit does not have a

counterpart position, which means that we have

verified that the number 1234321 is in fact a

palindrome.

Following the same procedure described in the

preceding paragraph, the strings “rotor” and “radar”

are palindromes, but the number 12345321 is not a

palindrome (it’s missing a corresponding digit 4).

Compile the code in Listing 6.6 and launch the

executable Palindromes1 and you will see the following

output:

Current Word: radar

Palindrome:   YES

Current Word: motion

Palindrome:   NO

POINTERS, LOOPS, AND DIVISORS OF

A NUMBER 

Listing 6.7 contains a while loop, conditional logic, and

the % (modulus) operator in order to find the factors of

any integer greater than 1.

LISTING 6.7: Divisors2.c

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

 

int main()

{

   char *primes, prime[20];

   int div=2, num=12;

 

   printf("Number: %d\n", num);



 

   while(num > 1)

   {

      if(num % div == 0)

      {

         // convert number to string

         sprintf(prime, "%d", div);

 

         // append string to main string

         asprintf(&primes, "%s %s", primes, prime);

 

         num /= div;

      }

      else

      {

        ++div;

      }

   }

 

   printf("Divisors: %s\n", primes);

 

   return 0;

}

The main difference between Listing 6.7 and Listing 6.6

is that the latter constructs the variable divList (which is

a concatenated list of the divisors of a number) in the

while loop, and then returns the value of divList when the

while loop is completed. The output from Listing 6.7 is

here:

Number: 12

Divisors: (null) 2 2 3

Please keep in mind that the asprintf() function was only

standardized recently in the Dynamic Memory Technical

Report and is not in the C standard proper. This function

is only available if __STD_ALLOC_LIB__ is defined by the



compiler, and if the user defines __STDC_WANT_LIB_EXT2__ to

1 before including string.h.

POINTERS AND ARRAYS OF NUMBERS 

Listing 6.8 displays the contents of PointersArrayNums1.c

that illustrates how to initialize strings and pointers.

LISTING 6.8: PointersArrayNums1.c

#include <stdio.h>

 

int main()

{

   int numbers[] = {1,2,3,4,5};

   int *ptr1 = numbers;

   int size1 = sizeof(numbers)/sizeof(int);

 

   for(int i=0; i<size1; i++)

   {

      printf("%d\n", *(ptr1+i));

   }

 

   //see what happens when you use these invalid lines:

   //for(int ptr1=numbers; ptr1 != NULL; ptr1++)

   //for(int *ptr1=&numbers[0]; *ptr1 != '\0'; ptr1++)

   //for(int *ptr1=&numbers[0]; *ptr1; ptr1++)

 

   return 0;

}

Listing 6.8 is straightforward: the main() function

initializes the array numbers with five integer values, and

then initializes the pointer ptr1 to the location of the

numbers array.

The next portion of the main() method contains a loop

that iterates through the values in the numbers array and



prints their values. The output from launching the code

in Listing 6.8 is here:

1

2

3

4

5

ARRAY OF POINTERS 

Listing 6.9 displays the contents of ArrayOfPointers.c that

illustrates how to initialize an array of pointers.

LISTING 6.9: ArrayOfPointers.c

#include <stdio.h>

 

int main()

{

   int a=100, b=-200, c=500;

   int *p[3];

  

   p[0]= &a;

   p[1]= &b;

   p[2]= &c;

  

   printf("Initial a: %d b: %d c: %d\n",*p[0],*p[1],*p[2]);

 

   *p[0] += 100;

   *p+= 200;

   *p+= 300;

 

   printf("Updated a: %d b: %d c: %d\n",*p[0],*p[1],*p[2]);

 

   return 0;

}



Listing 6.9 initializes three integer-valued variables a, b,

and c with the values 100, -200, and 500, respectively.

The next code snippet is the declaration of the pointer

array p of size 3. The elements p[0], p[1], and pare

initialized with the address of the variables a, b, and c,

respectively.

Next, the locations p[0], p[1], and p are incremented

by the values 100, 200, an 300, respectively, and a

printf() statements displays their values. The output from

launching the code in Listing 6.9 is here:

Initial a: 100 b: -200 c: 500

Updated a: 200 b: 0 c: 800

POINTERS AND FUNCTIONS 

This section contains an example of passing a

pointer-based variable to a function to modify the value

of a variable. Note that an example of a pointer to a

function (which is different from the concept in this

section) is displayed later in this chapter.

Listing 6.10 displays the contents of

PointersAndFunctions1.c that illustrates how to initialize

strings and pointers.

LISTING 6.10: PointersAndFunctions1.c

#include <stdio.h>

 

void test(int *num)

{

   *num += 6;

   printf("num inside test: %d\n", *num);

}

 

int main()



{

   int num = 7;

 

   printf("num before test: %d\n", num);

 

   test(&num);

 

   printf("num after  test: %d\n", num);

 

   return 0;

}

Listing 6.10 contains the function test() that increments

its pointer-based parameter with 6 and then displays

the new value. The main() function initializes the variable

num with the value 7, and then displays the value of num

before as well as after invoking the function test(). The

output from launching the code in Listing 6.9 is here:

num before test: 7

num inside test: 13

num after  test: 13

POINTERS AND ARRAYS OF DECIMALS 

Listing 6.11 displays the contents of PointersDecimals1.c

that illustrates how to initialize strings and pointers.

LISTING 6.11: PointersDecimals1.c

#include <stdio.h>

 

int main()

{

   int ints1[] = {1.0,2.0,3.0,4.0,5.0};

   int *ptr1  = ints1;

   int isize1 = sizeof(ints1)/sizeof(int);

 



   int floats1[] = {1.0,2.0,3.0,4.0,5.0};

   int *ptr2  = floats1;

   int fsize1 = sizeof(floats1)/sizeof(float);

 

   double doubles1[] = {1.0,2.0,3.0,4.0,5.0};

   double *ptr3  = doubles1;

   int dsize1 = sizeof(doubles1)/sizeof(double);

 

   printf("The ints1 array:\n");

   for(int i=0; i<isize1; i++)

   {

      printf("%d ", *(ptr1+i));

   }

   printf("\n");

 

   for(int i=0; i<isize1; i++)

   {

      printf("%f ", *(ptr1+i));

   }

   printf("\n");

 

   printf("The floats1 array:\n");

   for(int i=0; i<fsize1; i++)

   {

      printf("%d ", *(ptr2+i));

   }

   printf("\n");

 

   for(int i=0; i<fsize1; i++)

   {

      printf("%f ", *(ptr2+i));

   }

   printf("\n");

 

   printf("The doubles1 array:\n");

   for(int i=0; i<dsize1; i++)

   {

      printf("%d ", *(ptr2+i));



   }

   printf("\n");

 

   for(int i=0; i<dsize1; i++)

   {

      printf("%f ", *(ptr3+i));

   }

   printf("\n");

 

   return 0;

}

Listing 6.11 contains three arrays ints1, floats1, and

doubles1 that contain the same set of decimal values,

along with the pointers ptr1, ptr2, and ptr3 that “point” to

each of these arrays. The next portion of Listing 6.11

contains three “pairs” of for loops, each of which

displays the contents one of the arrays. For instance,

the first pair of loops displays the contents of the ints1

array in two ways: the first loop contains a printf()

statement with the %d format and the second loop uses

a printf() statement with the %f format.

Look closely at the declarations for the three arrays

and the way the values in the arrays are printed: are

the results consistent with your predictions? The output

from launching the code in Listing 6.11 is here:

The ints1 array:

1 2 3 4 5

0.000000 0.000000 0.000000 0.000000 0.000000

The floats1 array:

1 2 3 4 5

0.000000 0.000000 0.000000 0.000000 0.000000

The doubles1 array:

1 2 3 4 5

1.000000 2.000000 3.000000 4.000000 5.000000



“REVERSING” AN ARRAY OF

NUMBERS 

The code sample in this section for “reversing” an

array of numbers does not work because of an

intentional bug (can you find the bug and fix it?). Listing

6.12 displays the contents of ReverseArrayNums1.c that

seems to reverse an array of numbers using a pointer.

LISTING 6.12: ReverseArrayNums1.c

#include <stdio.h>

 

int main()

{

   // int array with 6 elements

   int arr1[6] = {1,2,3,4,5,6};

   int *ptr1, count=6;

 

   printf("Initial:  ");

   for(int i=0; i<count; i++)

   {

      printf("%d ",arr1[i]);

   }

   printf("\n");

 

   for(int i=0; i<count/2; i++)

   {

      ptr1 = &arr1[i];

printf("ptr = %d ", *ptr1);

 

      arr1[i] = arr1[count-i-1];

printf("left = %d ", arr1[i]);

 

      arr1[count-i-1] = *ptr1;

printf("right = %d\n", *ptr1);

   }



 

   printf("Reversed: ");

   for(int i=0; i<count; i++)

   {

      printf("%d ",arr1[i]);

   }

   printf("\n");

 

   return 0;

}

Listing 6.12 contains a main() function that initializes the

array arr1 with a set of integers, and then declares the

integer pointer ptr1 and the integer count (whose initial

value is 6).

The next portion of the main() function contains a loop

that iterates through the elements of the array arr1 and

displays the values of those elements. The second loop

iterates through the first half of the array arr1 and

“swaps” each element with its counterpart in the right

half of the array arr1.

The logic is very similar to the code that checks for

palindromes, with code that uses the pointer ptr1 as a

temporary storage location in order to switch the two

values.

As you can see in the code, the “counterpart” of the

element arr1[i] is arr1[count-i-1]. The final loop iterates

through the elements of the array arr1 (which have been

reversed). The output from launching the code in Listing

6.12 is here:

Initial:  1 2 3 4 5 6

ptr = 1 left = 6 right = 6

ptr = 2 left = 5 right = 5

ptr = 3 left = 4 right = 4

Reversed: 6 5 4 4 5 6



The loop in Listing 6.12 attempts to swap by executing

this code sequence: a = b; b = a; a = b; which obviously

does not perform a swap: it simply assigns b to a. The

solution involves performing a correct swap. The

purpose of this code sample is to show you how easy it

is to write buggy C code that looks correct.

MEMORY ALLOCATION FUNCTIONS IN

C 

The C programming language supports several

functions that enable you to dynamically allocate (and

free) memory in a C program:

malloc()

calloc()

realloc()

free()

The malloc() function allocates a block memory in C

programs, which is very useful when you define custom

structures (as discussed in chapter 6).

The calloc() function allocates a block of memory (just

like the malloc() function) and also initializes the allocated

memory to zero.

The realloc() function resizes a memory block that was

allocated by malloc() or calloc(). If there is sufficient room

after the memory block, or if the block is shrinking, it

may be possible to do the reallocation in place. If the

memory block needs to be reallocated in a new

location, the existing data will be copied to the new

block and the old block will be freed.

The free() function has the opposite purpose: it frees

the memory that was allocated by the functions malloc(),



calloc(), realloc(). Failure to invoke the free() function after

dynamically allocating memory causes memory leaks.

Use the malloc() function to copy strings and the

strncpy() function to specify the number of characters

that you want to copy, or use the strdup() function to

allocated memory and copy an entire string in one

operation.

The next few sections contain code samples that

illustrate how to dynamically allocate memory in C.

THE BUILT-IN MALLOC() C FUNCTION 

Listing 6.13 displays the contents of CopyFunction2.c

that illustrates how to use the malloc() function and the

strncpy() function.

LISTING 6.13: CopyFunction2.c

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

 

int main()

{

   char *src = "This is one line of text";

   char *dest;

   int len;

   len = strlen(src);

 

   dest = (char * )malloc(sizeof(src));

 

   // fill up 'dest'

   strncpy(dest, src, len);

 

   // not required because 'strncpy' adds a null terminator:

   //dest[len-1] = '\0';



 

   printf("len:  %d\n", len);

   printf("src:  %s\n", src);

   printf("dest: %s\n", dest);

}

Listing 6.13 initializes the character pointer src to a

hard-coded string, declares the character pointer dest,

and sets the value of the integer variable len to the

length of the string that is referenced by the variable

src.

As you can see in the code section that is shown in

bold, the code invokes the built-in C function malloc() to

allocate a block of memory whose size is the length of

the hard-coded string. In addition, the result is cast as a

character pointer and assigned to the character pointer

dest.

The next section of code uses the built-in C function

strncpy() to copy the contents of the hard-coded string to

the memory location that starts at the location “pointed

to” by the character pointer dest. The last section

contains three printf() statements to display the values of

len, src, and dest. The output from launching Listing 6.13

is here:

len:  24

src:  This is one line of text

dest: This is one line of text

Earlier in the chapter you learned that the malloc()

function is “paired” with the free() function in order to

deallocate memory that was allocated in a C program.

In Listing 6.1 the code prints several values and then

immediately terminates normally, so you won’t

encounter issues due to the absence of a free()

invocation. However, if your program is “active” for a

period of time and continues to allocate memory



without ever freeing that memory, then you will have

what is commonly called a “memory leak.”

JAGGED ARRAYS 

This section contains a C program that illustrates

how to work with jagged arrays, which are arrays that

contain elements of different lengths. For example, you

can define an array of names, where each name is a

string of a different length.

Listing 6.14 displays the contents of JaggedArray1.c that

shows you how to calculate the sum of the entries in a

multi-dimensional array.

LISTING 6.14: JaggedArrays.c

#include <stdio.h>

#include <stdlib.h>

 

int main()

{

   int rowLengths[] = {6,4,3,5};

   int *jagged[4];

 

   for (int i = 0; i < 4; ++i)

   {

      jagged[i] = (int *)malloc(sizeof(int) * rowLengths[i]);

   }

 

   for (int i=0; i<4; ++i)

   {

      for (int j=0; j<rowLengths[i]; ++j)

      {

         jagged[i][j] = i + j + i*j;

         printf("element (%d,%d) = %d\n", i, j, ja[i][j]);

      }



   }

}

Listing 6.14 initializes the integer array rowLengths with

the lengths of 4 rows. Next, the variable jagged is

declared as a pointer to an array of 4 integer-valued

pointers.

The first loop iterates through the 4 rows of jagged, and

uses the built-in malloc() C function to allocate memory

for the number of integers that are specified in the

rowLengths array. For instance, jagged[0] is initialized as a

pointer to 6 integers, whereas jaggedis initialized as a

pointer to 4 integers.

The second loop is a nested loop that initializes the

value of the “cell” at position (i,j) with the value i + j + i*j,

and then immediately displays that value via the printf()

function. Launch the code in Listing 6.14 and you will

see the following output:

element (0,0) = 0

element (0,1) = 1

element (0,2) = 2

element (0,3) = 3

element (0,4) = 4

element (0,5) = 5

element (1,0) = 1

element (1,1) = 3

element (1,2) = 5

element (1,3) = 7

element (2,0) = 2

element (2,1) = 5

element (2,2) = 8

element (3,0) = 3

element (3,1) = 7

element (3,2) = 11

element (3,3) = 15

element (3,4) = 19



USER INPUT, POINTERS, MALLOC(), AND

FREE() 

Listing 6.15 displays the contents of PointersToNumbers1.c

that illustrates how to print the values (and the

addresses) of the elements in a simple character array.

LISTING 6.15: MallocFree.c

#include <stlib.h>

#include <stdio.h>

 

int main()

{

    int size=-1, i;

    int* array;

  

    do {

        printf("Enter a positive integer: ");

        scanf("%d", &size);

    } while (size <= 0);

  

    array = (int *)malloc(sizeof(int) * size);

 

    if (array == NULL) {

       printf("An error creating the dynamic array has occurred.\n");

       return -1;

    }

  

    for (i = 0; i < size; i++) {

        array[i] = 1;

        printf("array[%d] has been assigned value 1.\n", i);

    }

    

    free(array);

 

    return 0;



}

Listing 6.15 is another straightforward code sample: it

starts by initializing a pointer to an integer array called

array, followed by a do-while loop that prompts users for a

positive integer (and only exits the loop when such a

value is entered).

The next portion of the code invokes the built-in C

function malloc() in order to allocate a block of memory

whose length is equal to the inputted positive integer.

After ensuring that the memory allocation was

successful, a loop initializes all the element values to 1

in the array called array. The last section of code invokes

the built-in C function free() in order to release the

memory that was previously allocated.

An example of the type of output from launching the

code in Listing 6.15 is here:

Enter a positive integer: -3

Enter a positive integer: 5

array[0] has been assigned value 1.

arrayhas been assigned value 1.

arrayhas been assigned value 1.

arrayhas been assigned value 1.

array[4] has been assigned value 1.

Note that if you want to make the code more robust,

you need additional code that disallows non-integer

decimal values, alphabetic letters, and special

characters.

One more point. If the variable size is uninitialized,

the do/while loop has undefined behavior if users enter an

invalid input. If we initialize the variable size with the

value -1 (which is shown in bold in Listing 6.15), this

undefined behavior will be removed.

Heap versus Stack 



The heap and the stack are available for allocating

memory in C programs, and they are handled in slightly

different ways.

The memory allocation for all variables in the code

samples in previous chapters is on the heap. The

operating system performs the memory allocation and

you need not worry about freeing that memory. On the

other hand, memory that is allocated on the heap via

one of the malloc-related functions must be explicitly

deallocated (otherwise you will have a memory leak).

Function parameters and local variables are

allocated memory from the stack; anything that is

allocated on the stack is automatically deallocated

when the associated function completes its execution.

UPPERCASE AND LOWERCASE

STRINGS IN C 

The toupper() and tolower() functions convert letters to

uppercase and lowercase, respectively. Listing 6.16

displays the contents of UpperLowerCase.c that illustrates

how to convert characters to uppercase and lowercase

letters.

LISTING 6.16: UpperLowerCase.c

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <ctype.h>

 

int main()

{

   char *src = "This Is A Line";

   char *lower, *upper, *chr;



   int len;

   len = strlen(src);

 

   lower = (char *)malloc(sizeof(src));

   strncpy(lower, src, len);

   lower[len-1] = '\0';

 

   upper = (char *)malloc(sizeof(src));

   strncpy(upper, src, len);

 

   for(int i=0; i<len; i++)

   {

      *(lower+i) = tolower(src[i]);

      *(upper+i) = toupper(src[i]);

   }

 

   printf("Original: %s\n", src);

   printf("Upper:    %s\n", upper);

   printf("Lower:    %s\n", lower);

}

Listing 6.16 assigns a character string variable src to a

hard-coded string, and declares the character pointers

lower, upper, and chr.

The character pointers lower and upper are assigned a

memory location of a dynamically allocated block of

memory via the malloc() method, after which the hard-

coded character string is copied (via the strncpy()

function) into the location of the variables lower and

upper. As you saw in an earlier example, the strncpy()

function automatically null terminates both pointers.

The next section of code is a loop that iterates from

0 to len and covers the characters in the lower pointer

and upper pointer to lowercase and uppercase, via the

built-in C functions tolower() and toupper(), respectively. The

last portion of code displays the strings pointed to by

src, lower, and upper.



One other detail: many of the code samples in this

chapter use the syntax *(lower+i), but you can also use

the more idiomatic syntax lower[i]. The output from

Listing 6.16 is here:

Original: This Is A Line

Upper:    THIS IS A LINE

Lower:    this is a line

REVERSING A STRING 

Earlier in the chapter you saw an example of

reversing the integer elements of an array, and this

section shows you how to reverse a string. Listing 6.17

displays the contents of ReverseString1.c that illustrates

how to reverse a hard-coded string in a dynamically

allocated block of memory.

LISTING 6.17: ReverseString1.c

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

 

int main()

{

   char *ptr1 = "this is a string";

   char *ptr2;

   int len=strlen(ptr1);

 

   ptr2 = (char *)malloc(len);

 

   for(int i=0; i<len; i++)

   {

      *(ptr2+len-1-i) = *(ptr1+i);

   }

 



   printf("Original: %s\n", ptr1);

   printf("Reverse:  %s\n", ptr2);

}

Listing 6.17 contains a main() function that initializes the

character pointer ptr1 to a hard-coded string, and

declares the character pointer ptr2. The length of the

character string at ptr1 is assigned to the integer

variable len, and ptr2 is assigned the address of a block

of memory that is as long as the string at location ptr1.

The next section of code is a loop that iterates

through the characters of the string at the location of

ptr1. During each left-to-right iteration through the string

ptr1, the positions at the “far end” of ptr2 are assigned

the characters from left-to-right iteration through the

characters in ptr1. If you read the code carefully you can

see that the characters at ptr2 are the reverse order of

the characters at ptr1. The output from Listing 6.17 is

here:

Original: this is a string

Reverse:  gnirts a si siht

FINDING UPPERCASE AND

LOWERCASE LETTERS 

Listing 6.18 displays the contents of

UpperAndLowerCount.c that illustrates how to construct

strings with only uppercase and only lowercase letters

from a text string. This code has a subtle bug (can you

find it?) that is explained in the discussion after the

code listing.

LISTING 6.18: UpperAndLowerCount.c

#include <stdio.h>



#include <stdlib.h>

#include <string.h>

#include <ctype.h>

 

int main()

{

   char str1[] = "This is a String";

   char *lower1, *upper1;

   int lcount=0, ucount=0;

 

   int len1 = strlen(str1);

   lower1 = (char *)malloc(len1);

   upper1 = (char *)malloc(len1);

 

   for(int i=0; i<len1; i++)

   {

      if(str1[i] == tolower(str1[i]))

      {

         *(lower1+lcount) = str1[i];

         lcount++;

      }

      else if(str1[i] == toupper(str1[i]))

      {

         *(upper1+ucount) = str1[i];

         ucount++;

      }

 

/*

      // correct code:

      if(islower(str1[i]))

      {

         *(lower1+lcount) = str1[i];

         lcount++;

      }

      else if(isupper(str1[i]))

      {

         *(upper1+ucount) = str1[i];

         ucount++;



      }

*/

 

   }

 

   *(lower1+lcount) = '\0';

   *(upper1+ucount) = '\0';

 

   printf("Original:  %s\n",str1);

   printf("Lowercase: %s\n",lower1);

   printf("Uppercase: %s\n",upper1);

 

   return 0;

}

Listing 6.18 is similar to the earlier code samples that

use the built-in C function malloc(), which in this case

dynamically allocates memory for the character

pointers lower1 and upper1. A loop iterates through the

letters in the character array str1 and uses conditional

logic to check if the current letter is lowercase or

uppercase (the third case is any other printable

character, which is ignored in this code sample). In the

former case, the current character is “appended” to the

list of lowercase letters; in the latter case, the current

character is “appended” to the list of uppercase letters.

After null-terminating the newly constructed strings,

three printf() statements display the value of str1, lower1,

and upper1. The output from launching UpperAndLower is

here:

Original:  This is a String

Lowercase: his is a tring

Uppercase: TS

The conditional logic in Listing 6.18 appears correct:

however, this logic treats spaces and punctuation as

lowercase or uppercase, neither of which will change



when they are passed to the tolower() or to the toupper()

functions. Fortunately, the solution is simple: use

if(islower(str1[i])) and if(isupper(str1[i])) to determine whether a

letter is lowercase or uppercase, respectively. This

solution is also clearer than the incorrect code.

REMOVING WHITESPACES FROM A

STRING 

Listing 6.19 displays the contents of

RemoveWhiteSpaces.c that illustrates how to remove

whitespaces from a string.

LISTING 6.19: RemoveWhiteSpaces.c

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <ctype.h>

 

int main()

{

   char str1[] = "This is a String";

   char *ptr1;

   int count=0;

 

   int len1 = strlen(str1);

   ptr1= (char *)malloc(len1);

 

   for(int i=0; i<len1; i++)

   {

      if((str1[i] == ' ') || (str1[i] == '\t'))

      {

         continue;

      }

      else



      {

         *(ptr1+count) = str1[i];

         count++;

      }

   }

 

   *(ptr1+count) = '\0';

 

   printf("Original:  %s\n",str1);

   printf("Stripped:  %s\n",ptr1);

 

   return 0;

}

Listing 6.19 starts by initializing the character array str1

and declaring the character pointer ptr1. Next, a loop

iterates through the characters in the character array

str1, and if any character is not whitespace (either blank

or a tab character), then that character is “appended”

to the list of characters that are not whitespaces.

Notice that the variable i is the index variable in the

loop, whereas the variable count keeps track of the

number of characters that are not whitespaces, and

equals the number of such characters at any point

during the loop iteration. The output from compiling and

launching the code in Listing 6.19 is here:

Original:  This is a String

Stripped:  ThisisaString

POINTERS, STRINGS, AND

CHARACTER COUNTS 

C does not provide support for structures such as

hash tables, which means that you have to provide your

own implementation or use a third party



implementation (which is preferable if it is mature and

stable).

A compromise of sorts is to create an array to keep

track of the distinct characters in a given string, and

another array to keep track of the number of times that

each character appears in that string. The first array

would have length 52 if you are keeping track of

uppercase and lowercase letters, and if you want to

accommodate punctuation and special characters, you

would need an array of size 100 (approximately). Keep

in mind that this number will increase for some other

languages, and it’s impractical for writing systems such

as Kanji.

Notice that the preceding scenario does not

comprise a hash table: a hash table has “lookup time”

O(1) for any character, whereas the lookup time for an

array is O(n), where n is the number of elements in the

array. Note that the “lookup time” in the previous

sentence refers to the time required to find an element

in an unsorted array. If you perform a linear search in an

array, the expected number of searches required to find

an element is n/2, and the latter is O(n).

However, if you store the unique characters of larger

documents (100K and above) in an array, and you also

store their frequencies in another array, then the lookup

time is no greater than the number of characters that

exist for the language in which the document is written.

Listing 6.20 displays the contents of CharCounts.c that

illustrates how to initialize strings and pointers.

LISTING 6.20: CharCounts.c

#include <stdio.h>

#include <stdio.h>

#include <stdlib.h>



#include <string.h>

 

int main()

{

   char ch, str1[] = "This is a string with some short words that wraps

around and let's see how well the code in this code sample actually

works!";

 

   int len1 = strlen(str1);

 

   // incorrect:

   // int *chars = malloc (sizeof (char) * len1);

   // correct:

   char *chars = malloc (sizeof (char) * len1);

 

   int *counts = malloc (sizeof (int) * len1);

   int i;

 

   for (i=0; i<len1; i++)

   {

     counts[i] = 0;

     chars[i]  = ' ';

   }

 

   int pos=0, foundchar=0;

   counts[pos] = 1;

   chars[pos]  = str1[0];

   pos = 1;

 

   for(int i=1; i<len1; i++)

   {

      ch = str1[i];

//printf("checking char %c at pos: %d\n",ch, i);

 

      foundchar = 0;

      for(int k=0; k<pos; k++)

      {

         if(ch == chars[k])

         {



            ++counts[k];

//printf("count for %c at pos %d : %d\n",ch, k, counts[k]);

            foundchar = 1;

            break;

         }

      }

 

      if(foundchar == 0)

      {

//printf("inserting char %c at pos: %d\n",ch, pos);

         counts[pos] = 1;

         chars[pos]  = ch;

         ++pos;

      }

   }

 

   printf("Full string: %s\n",str1);

 

   char ch2;

   int count;

   for(int k=0; k<pos; k++)

   {

      printf("char %c count %d at array position: %d\n",

             chars[k], counts[k], k);

   }

 

   return 0;

}

Listing 6.20 has a main() function that initializes the

character string str1 and then uses the built-in C

function malloc() to dynamically allocate memory for the

character pointer chars and the integer pointer counts.

A simple loop then initializes all the entries of chars

with a blank space (' ') and all the entries of counts with

0. The middle portion of the code contains a large for

loop that counts the number of unique characters in the

original string str1. During each loop iteration, an inner



loop checks if the current character has already

detected; if so, the position of that character in the

counts array is incremented. If not, then the current

character is appended to the chars array and its

corresponding value in the counts array is set to 1.

The final block of code in Listing 6.20 iterates

through the chars array and prints each element, along

with its count (which is stored in the counts array). The

output from compiling and launching the code in Listing

6.20 is here:

Full string: This is a string with some short words

that wraps around and let's see how well the code in

this code sample actually works!

char T count 1 at array position: 0

char h count 7 at array position: 1

char i count 6 at array position: 2

char s count 12 at array position: 3

char   count 23 at array position: 4

char a count 8 at array position: 5

char t count 9 at array position: 6

char r count 6 at array position: 7

char n count 4 at array position: 8

char g count 1 at array position: 9

char w count 6 at array position: 10

char o count 8 at array position: 11

char m count 2 at array position: 12

char e count 9 at array position: 13

char d count 5 at array position: 14

char p count 2 at array position: 15

char u count 2 at array position: 16

char l count 6 at array position: 17

char ' count 1 at array position: 18

char c count 3 at array position: 19

char y count 1 at array position: 20

char k count 1 at array position: 21

char ! count 1 at array position: 22



POINTERS TO FUNCTIONS OF TYPE

VOID 

Listing 6.21 displays the contents of PointersNums1.c

that illustrates how to define two simple functions and

also a function pointer in order to “point” to those

functions and execute them.

LISTING 6.21: PointersToVoidFunctions1.c

#include <stdio.h>

 

void one()

{

   printf("Inside function one\n");

}

 

void two()

{

   printf("Inside function two\n");

}

 

int main()

{

   void (*ptr1)();

 

   one();

   ptr1 = &one;

   (*ptr1)();

   //ptr1 = one;

   //ptr1();

 

 

   two();

   ptr1 = &two;

   (*ptr1)();

}



Listing 6.21 starts with the definition of the functions

one() and two(), both of which have return type void. They

contain a single printf() statement that identifies the

current function that has been executed.

The next portion of Listing 6.21 contains a main()

function that declares a function pointer ptr1 whose

return type is void. Next, the function one() is executed,

after which ptr1 is initialized to the address of the

function one(), and the code snippet (*ptr1)() is executed

(which means that the function one() is executed again).

The preceding code block that refers to ptr1 is

followed by a commented out code snippet that uses a

simpler syntax. On the assignment statement, the & is

unnecessary because bare function names used in a

function pointer context decay to a function pointer

without any additional syntax, so the syntax ptr1 = one; is

a simpler alternate syntax. Also, the function call

operation does not require a dereference, so you can

invoke ptr1() without any additional syntax.

So, if there are two acceptable syntaxes, why not

use the simpler one and ignore the more complicated

syntax? The answer is simple: use the simpler syntax,

but keep in mind that you will encounter the other

syntax in other people’s code, so it’s important to

understand both types of syntax.

The next code block performs the same sort of thing,

this type by “pointing” to the function two() instead of

the function one(). The output from launching the code in

Listing 6.21 is here, and as you can see, the message in

function one() is printed twice and then the message

inside two() is printed twice:

Inside function one

Inside function one

Inside function two



Inside function two

POINTERS TO NON-VOID FUNCTIONS 

The previous section showed you how to invoke

function pointers to functions that have a return type of

void. Listing 6.22 displays the contents of the custom

function PointersToNonVoidFunctions.c that illustrates how to

invoke function pointers to functions that have a non-

void return type.

LISTING 6.22: PointersToNonVoidFunctions1.c

#include <stdio.h>

 

int add(int x, int y)

{

   printf("Inside add\n");

   return (x+y);

}

 

int multiply(int x, int y, int z)

{

   printf("Inside multiply\n");

   return (x*y*z);

}

 

int main()

{

   int result, x=3, y=4, z=5;

 

   int (*ptr1)(int, int);

   int (*ptr2)(int, int, int);

 

   result = add(x,y);

   printf("Result1:  %d\n", result);

 



   ptr1 = &add;

   result = (*ptr1)(x,y);

   printf("Result2:  %d\n", result);

   printf("-------------\n");

 

   result = multiply(x,y,z);

   printf("Result3:  %d\n", result);

 

   ptr2 = &multiply;

   result = (*ptr2)(x,y,z);

   printf("Result4:  %d\n", result);

}

Listing 6.22 starts with the definition of the function

add() that returns the sum of two integers, followed by

the definition of the function multiply() that returns the

product of three integers.

The next portion of Listing 6.22 contains a main()

function that contains two prototypes for function

pointers ptr1 and ptr2, as shown here:

int (*ptr1)(int, int);

int (*ptr2)(int, int, int);

Next, the integer-valued variable result is initialized

with the value that is returned by executing the

function add(), and then the result is displayed. Now the

function pointer ptr1 is initialized with the address of the

function add(), and when ptr1 is executed (with the same

arguments), the result is the same as the preceding

output.

The next block of code is similar to the previous

section, but with result and ptr2 “pointing” to the function

multiply(). The output from launching the code in Listing

6.22 is here:

Inside add

Result1:  7

Inside add



Result2:  7

-------------

Inside multiply

Result3:  60

Inside multiply

Result4:  60

FUNCTION POINTERS AS ARGUMENTS 

Another use for function pointers is to specify

function pointers as arguments to a function. Listing

6.23 displays the contents of FunctionPointersAsArgs.c that

illustrates how to define a pointer to a function as an

argument of another function.

LISTING 6.23: FunctionPointersAsArgs.c

#include <stdio.h>

 

void squaredValues(int startValue, int endValue, int (*fp) (int))

{

   printf("Calculating Squared Values\n");

   printf("--------------------------\n");

   for(int x=startValue; x<endValue; x++)

   {

      printf("%2d   %3d\n", x, (*fp)(x));

   }

   printf("\n");

}

 

int square(int x) {

   return x*x;

}

 

void cubedValues(int startValue, int endValue, int (*fp) (int))

{

   printf("Calculating Cubed Values\n");



   printf("------------------------\n");

   for(int x=startValue; x<endValue; x++)

   {

      printf("%2d   %3d\n", x, (*fp)(x));

   }

}

 

int cube(int x) {

   return x*x*x;

}

 

int main()

{

   squaredValues(1, 10, square);

   cubedValues(1, 10, cube);

 

   return 0;

}

Listing 6.23 starts with the definition of the functions

squaredValues() and cubedValues(), both of which have return

type void, two integer-valued parameters, and a third

parameter that is a function pointer whose return type

is void. In addition, the functions squared() and cubed() are

defined, both of which have return type int.

The next portion of Listing 6.23 contains a main()

function where the first line of code invokes the function

squaredValues(), as shown here:

squaredValues(1, 10, square);

The next portion of Listing 6.23 invokes the function

cubedValues(), as shown here:

cubedValues(1, 10, cube);

As you can see, the previous two code snippets specify

the functions square() and cube(), respectively, as their

third argument. Contrast this code with previous code

samples that passed a function pointer instead of the



actual function name. The output from launching the

code in Listing 6.23 is here:

Calculating Squared Values

--------------------------

1     1

2     4

3     9

4    16

5    25

6    36

7    49

8    64

9    81

 

Calculating Cubed Values

------------------------

1     1

2     8

3    27

4    64

5   125

6   216

7   343

8   512

9   729

If you would rather avoid function pointers, define an

array of functions as a function lookup table, or 2) use

case statements inside a switch statement.

POINTERS TO POINTERS 

In Chapter 5, you learned that it’s possible to define

a pointer to a pointer in a C program, and now we’re

going to look at such an example. Listing 6.24 displays



the contents of PointersToPointers.c that illustrates how to

work with pointers to pointers.

LISTING 6.24: PointersToPointers.c

#include <stdio.h>

 

int main()

{

   char *list[] = {"a", "b", "c", "d", NULL};

 

   for (char **ptr=list; *ptr != NULL; ptr++){

      printf("array item: %s\n", ptr[0]);

   }

 

   return 0;

}

Listing 6.24 defines a character pointer list that is

initialized with the first four letters of the alphabet.

Next, a loop iterates through the elements of the

character pointer list, using the character pointer ptr,

with the “double asterisk” syntax, which indicates the

pointer to the pointer of an address. The output from

launching the code in Listing 6.24 is here:

array item: a

array item: b

array item: c

array item: d

SUMMARY 

This chapter introduced more examples of a pointer

in C, along with examples of pointers to numbers,

arrays, and strings. You saw how to use pointers to split

a string, check for palindromes, as well as for loops that



use pointers to find the divisors of a number. Next, you

learned how to define pointers to arrays of numbers.

Then you saw how to use pointers to reverse a

string, how to find uppercase and lowercase letters, and

how to remove whitespaces from a string. Then you saw

how to count words in a line of text, how to define

pointers to functions, and function pointers as

arguments. Finally, you learned how to define pointers

to pointers and how to process command line

arguments.
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CHAPTER   7 

MISCELLANEOUS TOPICS

his chapter contains a mix of topics, some of which

are more complex than the topics covered in the

previous chapters. If you are an absolute beginner,

then it might be better for you to postpone a deep

study of the topics in this chapter (at least for now).

However, it’s worthwhile to perform a cursory overview

of its contents in case there are code samples with

features of C that are relevant for your needs. Either

way, most of the topics in this chapter are discussed in

a high-level fashion; if you become a full-time C

developer you will probably become much more familiar

with these topics.

The first part of this chapter discusses the C

preprocessor #define, how to define C macros, and bit-

level operations in C. If you plan to continue learning

about C, these topics are useful and you will encounter

them in many C programs.

The second part of this chapter discusses C structs

and how to create custom structures that hold various

types of data value. You’ll also see code samples that

show you how to define pointers to C structs, nested C

structs, and arrays of C structs. The third part of this



chapter covers C features such as C unions, unions

combined with structs, and bitfields in C.

The fourth section provides some rudimentary

information about system calls in C, along with two

related code samples. The final section discusses

header files, and how to define and reference local

header files in a C program.

SYMBOLIC CONSTANTS 

Unlike languages such as Java, C supports a #define

keywords that enables you to define a symbolic name

or symbolic constant, which is often a number or a

string, and its format is shown here:

#define   MYNAME   some_text_goes_here

For example, the following snippet assigns a number

to the string PI:

#define PI 3.1415962

The C preprocessor (which is external to the C

language) uses text substitution in order to replace

every occurrence of the string PI in your C program with

the value that is defined in the preceding code snippet.

One convenient use of #define is for constants that

represent escape sequences. For example, it’s

convenient to use the following definitions for a

linefeed, carriage return, and form feed, whose octal

values are 012, 015, and 014, respectively:

#define LF '\012'

#define CR '\015'

#define FF '\014'

Alternatively, the following definitions specify the

hexadecimal values for a linefeed, carriage return, and



form feed, respectively:

#define LF '\x0A'

#define CR '\x0D'

#define FF '\x0B'

As a general rule: use #define statements whenever

they improve the clarity of your C programs.

WORKING WITH MACROS IN C 

Earlier in this chapter you learned how to use the

#define keyword in order to define constants or strings.

You can also use the #define keyword to define so-called

macros, which comprise a block of executable C code.

The C preprocessor uses text substitution to replace the

occurrence of each macro with its corresponding

definition.

Listing 7.1 displays the contents of SimpleMacro.c that

illustrates how to define a macro in C.

LISTING 7.1: SimpleMacro.c

#include <stdio.h>

 

#define add2(num1, num2) { \

    int total=0;           \

    sum = num1 + num2;     \

}

 

int main()

{

    int sum, num1=5, num2=8;

    add2(num1, num2);

    printf("num1 = %i num2 = %i sum = %i\n", num1, num2,

                                                    sum);

    return 0;



}

Listing 7.1 starts with the definition of the macros add2

that adds two numbers and sets the variable sum equal

to that value. Notice that the type of num1 and num2 are

not specified (which differs from functions that have

parameters).

The main() function declares sum, num1 (initial value is

5), and num2 (initial value is 8), and then invokes the

add2 macro. Notice that the add2 macro does not return

the value of sum (which is 15 in this case). The value of

sum is assigned in add2, the value of sum in the main()

function is updated with the correct value. This

functionality is vaguely reminiscent of pass-by-

reference, except that the variable sum is not passed to

the add2 macro. The output from launching the C

program in Listing 7.1 is here:

num1 = 5 num2 = 8 sum = 13

OTHER OPERATORS IN C 

C supports various operators beyond those that you

learned in previous chapters, which include: bitwise,

logic, shift, and comma operators.

The bitwise operators in C are important for tasks

that require working with individual bits in non-trivial

ways. Examples include reading from serial and parallel

ports and writing data to those ports.

The following subsections provide a brief

introduction to bitwise, logical, and comma operators,

along with simple code samples.

Bitwise Operators 



The bitwise operators in C are &, |,    ^, ˜, <<, and >>

that correspond to binary AND, binary OR, binary XOR

(eXclusive OR), binary Ones complement, binary Left

Shift, and binary Right Shift, respectively.

The following example illustrates how to calculate a

logical AND of two binary numbers:

  11001000

& 10111000

  --------

= 10001000

The following example illustrates how to calculate a

logical OR of two binary numbers:

  11001000

| 00001111

  --------

= 11001111

If you need to use any of the other bitwise operators,

perform an online search for code samples that contain

those operators.

Logical Operators 

The logical operators in C are && and || that represent

logical AND and logical OR, respectively. You already saw

one example of logical operators in C: the code sample

in Chapter 2 that involves compound conditional logic.

Comma Operator 

The comma operator combines the two expressions

and evaluates them in a left-to-right order. The value of

the right-hand side is returned as the value of the whole

expression. An example of the comma operator is here:

for (low=0, high=MAXSIZE; low < high; low=newlow, high=newhigh)



{

   // do something with low and high

}    

Cumulative Code Sample 

Listing 7.2 displays the contents of BitOperations.c that

illustrates how to compute various bit operations on

binary numbers.

LISTING 7.2: BitOperations.c

#include <stdio.h>

int main()

{

   // binary literals are a non-standard extension

   int x1 = 0b11001000;

   int x2 = 0b10111000;

   int x3, x4, x5, x6;

 

   x3 = x1 & x2;

   x4 = x1 | x2;

   x5 = x1 ^ x2;

   x6 = (x1 << 2);

 

   printf("x1 = %x %d %o\n", x1, x1, x1);

   printf("x2 = %x %d %o\n", x2, x2, x2);

   printf("x3 = %x %d %o\n", x3, x3, x3);

   printf("x4 = %x %d %d\n", x4, x4, x4);

   printf("x5 = %x %d %o\n", x5, x5, x5);

   printf("x6 = %x %d %o\n", x6, x6, x6);

 

   return 0;

}

Listing 7.2 contains a main() function that declares the

integer variables x3, x4, x5, and x6. The next section of

code uses the operators &, |, ^, and << (discussed

earlier) to initialize values for x3, x4, x5, and x6. The final



block of code consists of six printf() statements the

display the values of the variables x1 through x6 in

hexadecimal, decimal, and octal format. The output

from Listing 7.2 is here:

x1 = c8 200 310

x2 = b8 184 270

x3 = 88 136 210

x4 = f8 248 248

x5 = 70 112 160

x6 = 320 800 1440

Unfortunately, C does not provide a mechanism for

displaying binary numbers in the printf() command.

However, Listing 7.3 displays the contents of ShowBits.c

(borrowed from Wikipedia) that illustrates how to

display the digits of a binary number.

LISTING 7.3: ShowBits.c

#include <stdio.h>

 

void showbits(unsigned int x)

{

   int i;

 

   for(i=(sizeof(int)*8)-1; i>=0; i--)

   {

      (x&(1u<<i)) ? putchar('1'): putchar('0');

   }

 

   printf("\n");

}

 

int main()

{

   int j = 5225, m, n;

   printf("%d in binary \t\t ", j);

   showbits(j);



 

 

   // the loop for right shift operation

   for ( m = 0; m <= 5; m++ )

   {

      n = j >> m;

      printf("%d right shift %d gives ", j, m);

      showbits(n);

   }

 

   return 0;

}

Listing 7.3 starts with the function showbits() with a loop

that performs a logical left-shift of the unsigned integer

1. During each shift operation, the value of x is “anded”

with the current left-shift value: if the result is non-zero

then the integer 1 is displayed, otherwise the digit 0 is

displayed.

The main() function of Listing 7.3 starts by invoking

the showbits() function with the variable j whose value is

initially 5225. The next portion of the main() function is a

for loop that invokes the showbits() function with the

variable n that undergoes a logical right-shift of the

variable j. This loop executes six times, and displays the

output after each invocation of the showbits() function.

The output from Listing 7.3 is here:

5225 in binary          00000000000000000001010001101001

5225 right shift 0 gives 00000000000000000001010001101001

5225 right shift 1 gives 00000000000000000000101000110100

5225 right shift 2 gives 00000000000000000000010100011010

5225 right shift 3 gives 00000000000000000000001010001101

5225 right shift 4 gives 00000000000000000000000101000110

5225 right shift 5 gives 00000000000000000000000010100011

THE BUBBLE SORT ALGORITHM 



The bubble sort is a well-known algorithm for sorting

an array of numbers. This algorithm has O(n^2)

complexity, where n is the number of items in the array.

Although this book is not about algorithms in C, this

section contains the C code for the bubble sort to

familiarize you with the C syntax for such an algorithm.

Listing 7.4 displays the contents of BubbleSort.c that

illustrates how to use the bubble sort in order to sort an

array of integers.

LISTING 7.4: BubbleSort.c

#include <stdio.h>

 

int main()

{

   int numbers[] = {5, 1, 2, 4, 3};

   int count = sizeof(numbers)/sizeof(numbers[0]);

   int temp;

 

   printf("Original: ");

   for(int i=0; i<count; i++)

   {

      printf("%d ",numbers[i]);

   }

   printf("\n");

 

   for(int i=0; i<count-1; i++)

   {

      for(int j=i; j<count; j++)

      {

         if(numbers[i] > numbers[j])

         {

            temp = numbers[i];

            numbers[i] = numbers[j];

            numbers[j] = temp;

         }



      }

   }

 

   printf("Sorted:   ");

   for(int i=0; i<count; i++)

   {

      printf("%d ",numbers[i]);

   }

   printf("\n");

 

   return 0;

}

Listing 7.4 is a “classical” sorting algorithm, and the

code constructs have been covered in previous

chapters. After defining an array of integers, the main()

function contains a nested loop, where the inner loop

has conditional logic to determine when to swap two

elements of the array. The result of this conditional logic

is to “bubble up” the larger elements: i.e., the sorted

array starts with the smallest number and ends with the

largest number. The output from launching 7.4 is here:

Original: 5 1 2 4 3

Sorted:   1 2 3 4 5

WHAT IS A C STRUCT? 

A C struct is essentially a “structure” that defines a

group of logically related items. Simple examples of

logically related items that can be defined via a C struct

include: employee, student, mailing address, and so

forth. Keep in mind that the data values might be

accessed from a file, a database, or retrieved via a Web

service.



In addition, you can perform the following operations

with C structs in your C programs:

Create arrays of C structs

Copy or assign C structs

Use the & operator with C structs

Pass C structs to functions

Return C structs from functions

As you will see in subsequent sections, you can even

define a C struct inside another C struct (such as a

customer with a mailing address and a shipping address

as separate C structs), as well as an array of C structs

(each of which could represent an employee in the form

of a C struct).

However, keep in mind that you cannot compare two

C structs: you must perform an element-by-element

comparison of two C structs via custom code.

The next section shows you an example of creating a

simple C struct that contains employee-related

information.

An Example of a C struct 

Listing 7.5 displays the contents of EmployeeStruct1.c

that illustrates how to create a basic structure for

employee-related data. A complete C struct for an

employee would contain many other fields that you can

add to the C struct in this code sample.

LISTING 7.5: EmployeeStruct1.c

#include <stdio.h>

#include <string.h>



 

typedef struct Employee

{

   char  fname [50];

   char  lname [50];

   char  title [100];

   int   emp_id;

} emp;

 

int main()

{

   struct Employee emp1;

 

   strcpy( emp1.fname, "John");

   strcpy( emp1.lname, "Smith");

   strcpy( emp1.title, "Developer");

   emp1.emp_id = 2000;

 

   printf("First name:  %s\n",emp1.fname);

   printf("Last name:   %s\n",emp1.lname);

   printf("Title:       %s\n",emp1.title);

   printf("Employee id: %d\n",emp1.emp_id);

}

Listing 7.5 is very straightforward, starting with the

definition of the custom C struct called Employee that

contains fields for the first name, last name, title, and

employee ID for each employee. As you probably

expect, the first three fields are character strings and

the fourth field has an integer value (but this field could

also be a character string).

The next portion of the main() function uses the built-

in C function strcpy() to assign values to the first three

character-based fields, and then a simple assignment

statement to initialize the integer-valued emp_id field.

The last portion of the main() function contains printf()

statements to display the values of the fields in the



Employee struct.

Compile the code in Listing 7.5 and launch the

executable and you will see the following output:

First name:  John

Last name:   Smith

Title:       Developer

Employee id: 2000

A POINTER TO A C STRUCT
 

This section assumes that you have read the

relevant pointer-related sections in Chapter 5, and

please read that material if you have not already done

so.

Listing 7.6 displays the contents of PointerStructs.c that

illustrates how to create a structure for employee-

related data as well as a pointer to such a structure (the

new code is shown in bold).

LISTING 7.6: EmployeeStructs.c

#include <stdio.h>

#include <string.h>

 

typedef struct Employee

{

   char  fname [50];

   char  lname [50];

   char  title [100];

   int   emp_id;

} emp;

 

int main()

{

   struct Employee emp1;

 

   strcpy( emp1.fname, "John");



   strcpy( emp1.lname, "Smith");

   strcpy( emp1.title, "Developer");

   emp1.emp_id = 2000;

 

   printf("First name:  %s\n",emp1.fname);

   printf("Last name:   %s\n",emp1.lname);

   printf("Title:       %s\n",emp1.title);

   printf("Employee id: %d\n",emp1.emp_id);

 

   struct Employee * empptr = &emp1;

   printf("\nPointer of Employee:\n");

   printf("First name:  %s\n",empptr->fname);

   printf("Last name:   %s\n",empptr->lname);

   printf("Title:       %s\n",empptr->title);

   printf("Employee id: %d\n",empptr->emp_id);

}

Listing 7.6 starts with the same definition of Employee

struct that you saw in Listing 7.5, and also the first two

sections of the main() function. The third section contains

all the new code, which initializes the variable empptr. As

you can see, empptr is a pointer of type Employee, and it’s

initialized with the address of the previously initialized

variable emp1 (which is also a C struct of type Employee).

Next, a set of printf() statements display the contents of

the Employee structure using the “arrow syntax” for the

variable empptr.

Compile the code in Listing 7.6 and launch the

executable and you will see the following output:

First name:  John

Last name:   Smith

Title:       Developer

Employee id: 2000

 

Pointer of Employee:

First name:  John

Last name:   Smith



Title:       Developer

Employee id: 2000

NESTED C STRUCTS 

Listing 7.7 displays the contents of NestedStructures.c

that illustrates how to define a C struct for employee-

related data that contains another C struct.

LISTING 7.7: NestedStructures.c

#include <stdio.h>

#include <string.h>

 

struct Address

{

   char street[50];

   char city[50];

};

 

struct Employee

{

   int id;

   char name[20];

   char title[20];

   struct Address address;

} emp;

 

int main()

{

   struct Employee emp =

     {1000, "John Smith", "Developer", "123 Main Street", "Chicago"};

 

 

   printf("Emp Id: %d \n",   emp.id);

   printf("Name:   %s \n",   emp.name);

   printf("Title:  %s \n\n", emp.title);



 

   printf("Street: %s\n", emp.address.street);

   printf("City:   %s\n", emp.address.city);

 

   return 0;

}

Listing 7.7 starts by defining a custom Address that is a C

struct (with two character fields), followed by a user-

defined Employee C struct that is similar to previous

examples. This time the Employee C struct contains an

address element that is of type Address.

Next, the code in the main() function initializes the emp

variable with values for the five fields that match the

definition of the Employee element. The five elements in

the emp element are displayed using printf() statements.

One detail in particular to notice is that the fourth

and fifth elements are accessed via emp.address.street and

emp.address.city because they match the corresponding

strings in the initialization of the variable emp.

Compile the code in Listing 7.7 and launch the

executable and you will see the following output:

Emp Id: 1000

Name:   John Smith

Title:  Developer

 

Street: 123 Main Street

City:   Chicago

The next section shows you how to create an array of

user-defined C struct elements, where each element

contains information about an employee.

AN ARRAY OF C STRUCTS 



Listing 7.8 displays the contents of ArrayOfEmployees.c

that illustrates how to populate an array with C structs.

LISTING 7.8: ArrayOfEmployees.c

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

 

typedef struct Employee

{

   char  fname [50];

   char  lname [50];

   char  title [100];

   int   emp_id;

} emp;

 

int main()

{

   int empCount = 5;

   struct Employee emps[empCount];

   struct Employee *empPtr;

 

   char *fnames= {"John", "Jane", "Steve"};

   char *lnames[4] = {"Smith", "Jones",

                      "Edwards", "Anderson"};

   char *titles[4] = {"Sales", "Marketing",

                      "Development", "Support"};

 

   // initialize array of Employees

   for(int i=0; i<empCount; i++)

   {

      strcpy(emps[i].fname, fnames[i%3]);

      strcpy(emps[i].lname, lnames[i%4]);

      strcpy(emps[i].title, titles[i%4]);

      emps[i].emp_id = 1000*(i+1);

   }

 

   // print contents of all Employees



   for(int i=0; i<empCount; i++)

   {

      printf("First name:  %s\n",emps[i].fname);

      printf("Last name:   %s\n",emps[i].lname);

      printf("Title:       %s\n",emps[i].title);

      printf("Employee id: %d\n",emps[i].emp_id);

      printf("\n");

   }

 

   // print contents of all Employees

   for(int i=0; i<empCount; i++)

   {

      empPtr = &emps[i];

 

      printf("First name:  %s\n",empPtr->fname);

      printf("Last name:   %s\n",empPtr->lname);

      printf("Title:       %s\n",empPtr->title);

      printf("Employee id: %d\n",empPtr->emp_id);

      printf("\n");

   }

 

}

Listing 7.8 starts with the definition of the (by now

familiar) Employee C struct, followed by a lengthy main()

function that is not as complicated as you might think.

The first part of the main() function defines an array emps

that contains four Employee elements, followed by the

variable empPtr that is a pointer to a variable of type

Employee. The next section initializes arrays for first

names, last names, and titles.

The next section contains three loops. The first loop

assigns values to all the fields of the elements of the

emps array, using code that you saw in Listing 7.6. The

second loop displays all the values of the Employee

elements using a “dot” syntax, whereas the third loop



performs the same task using the “arrow” syntax

(shown in Listing 7.7).

Compile the code in Listing 7.8 and launch the

executable and you will see the following output:

First name:  John

Last name:   Smith

Title:       Sales

Employee id: 1000

 

First name:  Jane

Last name:   Jones

Title:       Marketing

Employee id: 2000

 

First name:  Steve

Last name:   Edwards

Title:       Development

Employee id: 3000

 

First name:  John

Last name:   Anderson

Title:       Support

Employee id: 4000

// some output omitted for brevity

THE STRFTIME() AND STRPTIME()

FUNCTIONS WITH DATES (OPTIONAL) 

This section contains date-specific functionality that

is significantly more involved the previous code

samples that contain built-in C functions. If you do not

plan to use dates in your C programs, feel free to skip

this section with no loss of continuity (and perhaps

return to this section at another point in time).



In C you can convert a date and time to a string

using the strftime() function, and you can convert a string

to a formatted time using the strptime() function, both of

which are illustrated in Listing 7.9.

LISTING 7.9: DateTimeString.c

#include <stdio.h>

#include <locale.h>

#include <time.h>

 

int main()

{

   char buf[100];

   time_t t;

   struct tm *timeptr, result;

 

   setlocale(LC_ALL,"/QSYS.LIB/EN_US.LOCALE");

   t = time(NULL);

 

   timeptr = localtime(&t);

   strftime(buf,sizeof(buf), "%a %m/%d/%Y %r", timeptr);

 

   if(strptime(buf, "%a %m/%d/%Y %r",&result) == NULL)

   {

      printf("\nstrptime failed\n");

   }

   else

   {

      printf("tm_hour:  %d\n",result.tm_hour);

      printf("tm_min:   %d\n",result.tm_min);

      printf("tm_sec:   %d\n",result.tm_sec);

      printf("tm_mon:   %d\n",result.tm_mon);

      printf("tm_mday:  %d\n",result.tm_mday);

      printf("tm_year:  %d\n",result.tm_year);

      printf("tm_yday:  %d\n",result.tm_yday);

      printf("tm_wday:  %d\n",result.tm_wday);

   }



 

   char s[100];

   int rc;

   time_t temp;

   struct tm *timeptr2;

 

   temp = time(NULL);

   timeptr2 = localtime(&temp);

 

   rc = strftime(s,sizeof(s),

         "Today is %A, %b %d.\nTime:  %r", timeptr2);

   printf("%d characters written.\n%s\n",rc,s);

 

   return 0;

}

Listing 7.9 starts with three #include statements, two of

which are necessary for date-related functionality. The

next section contains the main() function that declares a

character buffer buf of length 100, followed by the

variable t of type time_t, and the variables timeptr and result

that are pointers to a C struct whose data type is tm. The

next code section sets the locale via the function and

initializes t as the current time.

Then the timeptr variable is initialized as the local time

by invoking the C built-in localtime() function, with the

address of the variable t as an argument. The next

statement invokes the built-in strftime() C function in

order to format the local date with via the specified

format string.

The next section of code invokes the built-in strptime C

function to assign a value to the result variable. If this

fails, an error message is displayed; otherwise, the

various attributes (e.g., hour, minute, second, and so

forth) of the local date are displayed. The output from

Listing 7.9 is here:



tm_hour:  13

tm_min:   51

tm_sec:   43

tm_mon:   2

tm_mday:  2

tm_year:  114

tm_yday:  0

tm_wday:  0

43 characters written.

Today is Sunday, Mar 02.

Time:  01:55:07 PM

SINGLY LINKED LISTS IN C (OPTIONAL) 

If you are unfamiliar with linked lists, you can treat

this section as optional, and perhaps return to this

section after you have learned about linked lists.

As you have seen, the preceding section uses an

array of C structs to keep track of employees. However, if

you have an unknown number of employees, you can

replace an array with a linked list in order to

dynamically add each new employee to the linked list.

In order to simplify the code, the only data value in

the C struct is an integer field that represents an

employee id. After you have read the code sample, feel

free to modify the C struct to include other relevant

fields.

Listing 7.10 displays the contents of SLinkedList.c that

illustrates how to create a singly linked list in C, where

each element in the singly linked list is a C struct that

contains an integer field and a forward pointer to an

employee element. The C struct also contains a

“commented out” previous pointer to an employee



field, which is necessary if you want to create a doubly

linked list.

LISTING 7.10: SLinkedList.c

#include <stdio.h>

#include <stdlib.h>

 

struct emp {

  int x;

  struct emp *next;

//struct emp *prev;

};

 

int main()

{

    int empIdValues[] = {2000, 1000, 5000, 8000, 7500};

    int count = sizeof(empIdValues)/sizeof(empIdValues[0]);

 

    // the root emp is the first emp

    struct emp *root;

 

    // current emp and a new emp

    struct emp *currNode, *aNode;

 

    root = malloc( sizeof(struct emp) );

    root->x = empIdValues[0];

    root->next = NULL;

    currNode = root;

 

    for(int i=1; i<count; i++)

    {

       aNode = malloc( sizeof(struct emp) );

       aNode->x = empIdValues[i];

       aNode->next = NULL;

       currNode->next = aNode;

       currNode = aNode;

    }

 



    currNode = root;

    if(currNode != 0)

    {

        int idx = 1;

        while(currNode)

        {

           printf("Employee %d has id: %d\n", idx, currNode->x);

           currNode = currNode->next;

           ++idx;

        }

    }

 

    return 0;

}

Listing 7.10 defines an emp C struct that contains an

integer field, a pointer to an emp struct called prev, and a

pointer to an emp C struct called next. This structure keeps

track of the ID of an employee, and a pointer to the

previous employee as well as the next employee (when

they exist). The data fields in a real application would

be much more extensive, but this example contains

minimal information because it’s easier to understand

the code. The output from launching the C program in

Listing 7.10 is here:

Employee 1 has id: 2000

Employee 2 has id: 1000

Employee 3 has id: 5000

Employee 4 has id: 8000

Employee 5 has id: 7500

As mentioned earlier, the definition of the emp C struct

contains an additional pointer called prev that is a

pointer to the previous employee (except for the root

node). Thus, each node has a previous and a next

pointer, which is a doubly linked list.



If you wish, you can extend the code in Listing 7.9 in

order to implement a doubly linked list. If you are really

ambitious, you can modify the code in Listing 7.9 in

order to create other data structures in C, such as

circular lists, stacks, queues, and trees.

UNIONS IN C 

C provides the union data type that enables you to

store different data types in the same memory location.

Although you can define a C union with multiple

members, only one member “at a time” can contain an

actual value. The member that contains a value can

change repeatedly during the execution of a program,

but there is exactly one—at any given point in time—

that contains a value.

The following example shows you how to use the C

union keyword to define a C union data type:

union MyData

{

   int i;

   float f;

   char str[10];

} myunion;

The memory allocated to a C union equals the size of the

largest member of the union. Thus, the MyData type

requires 10 bytes because the str element occupies 10

bytes.

Listing 7.11 displays the contents of Unions.c that

illustrates how construct a C union that contains an

integer, a float value, and a character string.

LISTING 7.11: Unions.c



#include <stdio.h>

#include <string.h>

 

union MyData

{

   int i;

   float f;

   char str[10];

};

 

int main()

{

   union MyData mydata;

 

   printf("Memory allocated to mydata: %d\n",sizeof(mydata));

 

   return 0;

}

Listing 7.11 defines the variable Data whose datatype is

a C union, followed by the main() function that defines the

variable myData whose data type is MyData and then

displays the size of myData via a printf() statement.

The output from launching the C program in Listing

7.10 is here:

Memory allocated to mydata: 4 4 10

COMBINING A UNION AND A STRUCT IN C 

You can create a custom data type in C that

combines a C union and a C struct. Listing 7.12 displays

the contents of Vector.c that defines a 3D vector (as a

custom C union) that also contains a 2D vector (which is

defined as a C struct).

LISTING 7.12: Vector.c



#include <stdio.h>

#include <math.h>

 

// a 2D vector:

typedef struct {

   double x, y;

} vector2D;

 

// a 3D vector:

typedef struct {

    union {

        struct {

           double x, y;

        };

        vector2D v2;

    };

    double z;

} vector3D;

 

double length2D (vector2D v){

   return sqrt(v.x*v.x + v.y*v.y);

}

 

double length3D (vector3D v){

   return sqrt(v.x*v.x + v.y*v.y + v.z*v.z);

}

 

int main()

{

   vector3D v = {.x=5, .y=8, .z=4};

   printf("Vector v:   (%f,%f,%f)\n", v.x,v.y,v.z);

   printf("Magnitude:  %g\n", length3D(v));

   double projected = length2D(v.v2);

   printf("Projection: length of %g\n", projected);

 

   return 0;

}



Listing 7.12 defines the C struct vector2D that represents a

two-dimensional point, followed by the C struct vector3D

that contains a union data type followed by the variable

z with data type double.

The next section of code defines the function length2D

that computes the length of a 2D vector, which is the

square root of the inner product of a vector with itself.

The next function is length3D that computes the length

of a 3D vector (which is also the square root of the inner

product of a vector with itself).

The final portion of Listing 7.12 is the main() function

that initializes the vector v of type vector3D, followed by

printf() statements to display its components and its

length. The next code block initializes the vector

projected, which is a 2D vector that is derived from v

via the component v.v2, and then the length of the

vector projected is displayed. The output from

launching the code in Listing 7.12 is here:

Vector v:   (5.000000,8.000000,4.000000)

Magnitude:  10.247

Projection: length of 9.43398

BITFIELDS IN C 

Bitfields in C are well-suited to C struct data types that

contain variables with true/false values. For instance,

consider the following C struct definition:

struct

{

  unsigned int validDay;

  unsigned int validMonth;

} dateInfo;



The preceding C struct requires 8 bytes of memory even

though the values are either 0 or 1. Alternatively, the

following C bitfield definition is more compact:

struct

{

  unsigned int validDay: 1;

  unsigned int validMonth: 1;

} dateInfo;

On a typical system where an int is 32 bits, the previous

C struct uses 4 bytes for the dateInfo variable, and 2 bits of

memory for its elements. If you specify up to 32 bit

values, the dateInfo variable requires 4 bytes. However, if

you specify between 33 and 63 bit values, the dateInfo

variable requires 8 bytes (you can no doubt see the

pattern here).

Now let’s look at Listing 7.13 that displays the

contents of Bitfields.c to illustrate how to define bitfields

in C.

LISTING 7.13: Bitfields.c

#include <stdio.h>

#include <string.h>

 

// define simple structure

struct

{

  unsigned int widthValidated;

  unsigned int heightValidated;

} status1;

 

// define a structure with bit fields

struct

{

  unsigned int widthValidated : 1;

  unsigned int heightValidated : 1;

} status2;



int main()

{

   printf("Memory size occupied by status1: %d\n",sizeof(status1));

   printf("Memory size occupied by status2: %d\n",sizeof(status2));

 

   return 0;

}

Listing 7.13 contains two C structs called status1 and

status2, where the former specifies that widthValidated and

heightValidated are of type unsigned int, and the latter

initializes widthValidated and heightValidated with the value 1.

The output from launching the C program in Listing

7.13 is here:

Memory size of status1: 8

Memory size of status2: 4

DISPLAY ENVIRONMENT VARIABLES IN

C 

When you launch a C program, you can determine

the value of variables in the current environment. You

can also assign values to variables in the current

environment. This section and the following section

contain examples of how this can be done using the C

functions getenv() and putenv().

Listing 7.14 displays the contents of PrintEnvVars.c that

illustrates how to use the getenv() method in order to find

the variables (and their values) in the current command

shell where you launched the binary executable

PrintEnvVars.

LISTING 7.14: PrintEnvVars.c

#include <stdlib.h>



#include <stdio.h>

 

int main(int argc, char **argv)

{

   char *pathvar;

 

   pathvar = getenv("PATH");

   printf("pathvar=%s",pathvar);

}

Listing 7.14 is straightforward: the main() function

contains the built-in C function getenv() that is involved

with the string PATH. The result of invoking getenv() is the

value of the PATH environment variable, which is

assigned to the character pointer pathvar. The last line of

code in the main() function is the printf() function that

displays the value of the PATH environment variable. The

output from compiling and executing the code in Listing

7.14 is here:

pathvar=/Users/ocampesato/jython2.5.2:/Users/ocampesato/anaconda/bin:/

opt/local/bin:/Users/ocampesato/android-sdk-mac_86/platform-

tools:/Users/ocampesato/android-sdk-

mac_86/tools:/Users/ocampesato/apache-maven-

3.1.1/bin:/usr/local/bin:/Users/ocampesato/xalan-

j_2_7_1:/Users/ocampesato/lua-

5.1.4/src:/Users/ocampesato/.rvm/bin:/Users/ocampesato/mongoose:/Users/

ocampesato/android-ndk-

r4b:/usr/local/bin:/usr/local/sbin:/usr/local/mysql/bin:/Applications/XAMPP/xa

mppfiles/bin:/Users/ocampesato/phantomjs/bin:.:/Users/ocampesato/anacon

da/bin:/Library/Frameworks/Python.framework/Versions/3.3/bin:/opt/local/bi

n:/opt/local/sbin:/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin:/usr/local/CrossPac

k-

AVR/bin:/usr/local/git/bin:/Users/ocampesato/.rvm/bin:/Users/ocampesato/gr

adle-

1.9/bin:/usr/local/go/bin:/Applications/Xcode.app/Contents/Developer/Toolch

ains/XcodeDefault.xctoolchain/usr/bin:/Users/ocampesato/gyp-read-

only:/Users/ocampesato/depot_tools:/Users/ocampesato/hadoop-

1.1.0/bin:/Users/ocampesato/.local/bin:/Users/ocampesato/PebbleSDK-2.0-

BETA5/binoswald-campesatos-macbook:manuscript



SET ENVIRONMENT VARIABLES IN C 

Listing 7.15 displays the contents of SetEnvVars.c that

illustrates how to use the putenv() function in order to set

(“put”) a variable and its value in the current

environment.

LISTING 7.15: SetEnvVars.c

#include <stdlib.h>

#include <stdio.h>

 

int main(int argc, char **argv)

{

   char *pathvar;

 

   pathvar = getenv("PATH");

   printf("The current path is: %s\n\n", pathvar);

 

   if (-1 == putenv("PATH=/:/home/userid"))

   {

      printf("putenv failed \n");

      return EXIT_FAILURE;

   }

 

   pathvar = getenv("PATH");

   printf("The new path is: %s\n", pathvar);

 

   return 0;

}

Listing 7.15 reads the value of the PATH environment

variable whereas Listing 7.14 sets the value of an

environment variable. In fact, Listing 7.14 starts by

invoking the getenv() function to read the value of the

PATH environment variable and then invokes the built-in

C function putenv() to assign a new value to the PATH



variable. Notice the conditional logic: if the putenv()

command fails, an error message is displayed.

The last portion of the main() function invokes the

getenv() function again and displays the result, just to

confirm that the PATH variable was updated correctly.

The output (truncated for brevity) from compiling and

executing the code in Listing 7.15 is here:

The current path is: /opt/spark/bin:/Users/owner/mongodb-osx-x86_64-

3.4.2/bin:/Users/owner/anaconda2/bin:

The new path is: /:/home/userid

Keep in mind that after the program finishes

execution, the PATH variable will retain its initial value

(i.e., the change is temporary).

STORAGE CLASS SPECIFIERS IN C 

There are 5 storage class specifiers in C:

auto

extern

static

register

_Thread_local

The auto storage specifier indicates a variable has

automatic storage duration. This is rarely used since it

is the default. The extern keyword has to do with external

linkage and is primarily used when declaring global

variables in a header file. The static keyword has

different meanings depending on context. It may

declare a variable with static storage duration, which

means its value persists over multiple invocations of a

function. It may also declare a variable to have internal

linkage.



The _Thread_local storage class is useful in

multithreaded programming and declares a variable

that has a different value for each thread. The register

keyword used to be a hint to the compiler that a

particular variable is used frequently and should be

placed in a processor register for fast access. Compiler

optimization has improved a great deal since the

beginning of C and modern compilers simply ignore the

register hint.

Some examples of using these C specifiers are:

register int i;      // i is an int, register keyword

                     // probably ignored

extern int j;        // declaration for j, j must be defined

                     // elsewhere

static int k = 0;    // variable k only visible in this

                     // translation unit

_Thread_local m = 5; // m has a different instance in each

                     // thread

 

void f() {

   int n = 2;        // initialized to 2 every function

                     // call

   auto int m = 2;   // same as above, auto is the default

   static int o = 3; // set to 3 on the first function call

}

HOW WRITE COMPLEX CODE WITH

POINTERS 

This facetiously titled section is intended to show

you the type of code that is better to avoid because it’s

easy to make a mistake. Listing 7.16 displays the

contents of DontDoThis.c that illustrates how to use the



putenv() function in order to set (“put”) a variable and its

value in the current environment.

LISTING 7.16: DontDoThis.c

#include <stdlib.h>

 

int main()

{

   // a data value and an array

   int value, array[10];

 

   // point to the first element

   int *arrptr = &array[0];

   printf("arrptr: %d\n", arrptr);

 

   // get element #0 from arrptr

   value = *arrptr++;

   printf("value1: %d\n", value);

 

   value = *++arrptr;

   printf("value2: %d\n", value);

 

   // get element #1 from arrptr

   value = ++*arrptr;

   printf("value3: %d\n", value);

}

Although the code in Listing 7.16 is syntactically

correct, even experienced C programmers can

inadvertently reference the memory location of a

pointer instead of the contents of a pointer (a very

common occurrence).

Launch the compiled code from Listing 7.16 and you

will see the following output:

arrptr: 1560138064

value1: 280822976

value2: 0



value3: 1

As another example, consider the following code

block that uses pointers in order to copy a string from

the source (q) to the destination (p):

void copy_string(char *p, char *q) {

    while (*p++ = *q++);

}

Although it’s possible to determine the purpose of the

preceding code block, the following longer—yet

equivalent—code is much easier to understand,

maintain, and debug:

void copy_string(char *dest, char *source)

{

  while (1) {

    *dest = *source;

 

    // Exit if we copied the end of string

    if (*dest == '\0') return;

 

    ++source;

    ++dest;

  }

}

Notice that the if statement and the return statement are

on the same line. In this example, the code is so

straightforward that there’s no possibility of confusion,

which shows you that there can be exceptions to rules

regarding code syntax.

ERROR HANDLING IN C 

Although C does not provide direct support for error

handling, you can determine the results of program

execution via return values. Recall that the main()



function in C programs has a return type of int, which

means that you can return different values to indicate

different results for the program execution.

The errno Global Variable 

Most C function calls return either -1 or NULL in the

event of an error, and set an error code via the global

variable errno. Thus, you can check the value of this

variable to determine how to proceed, based on the

value of this variable. In case you’re interested, various

error codes are defined in <error.h> header file.

The perror() and strerror() Functions 

The C programming language provides perror() and

strerror() functions to display the text message associated

with errno.

The perror() function displays the string you pass to it,

followed by a colon, a space, and then the textual

representation of the current errno value. For example, if

your C program does not find a particular directory, the

following message is displayed:

Error: No such file or directory

The strerror() function returns a pointer to the textual

representation of the current errno value, and the output

is similar to the output of the perror() function.

How to Exit from an Error 

Keep in mind the following behavior: a C program

that attempts a floating point division by zero is a

runtime error, whereas an integer division by zero is

undefined. The solution involves checking the value of



the denominator before performing the division. Listing

7.17 displays the contents of DivByZero.c that illustrates

how to prevent division by zero, along with a suitable

text message.

LISTING 7.17: DivByZero.c

#include <stdio.h>

#include <stdlib.h>

 

int main()

{

   int dividend = 20;

   int divisor = 5;

   int quotient;

 

   if( divisor == 0){

      fprintf(stderr, "Division by zero: exiting program\n");

      exit(EXIT_FAILURE);

   }

 

   quotient = dividend / divisor;

   fprintf(stderr, "Value of quotient : %d\n", quotient );

 

   exit(EXIT_SUCCESS);

}

Listing 7.17 contains a main() function that initializes

three integer-valued variables, followed by conditional

logic that checks the value of the variable divisor.

Notice that the program with a value of EXIT_SUCCESS

in case of success, where EXIT_SUCCESS is a macro, and

exits with a status EXIT_FAILURE in case of an error.

One other detail: The C standard does not require

any particular value for EXIT_SUCCESS and EXIT_FAILURE. The

only requirement is that they must be defined and their

value must be representable in an int.



Launch the compiled code in Listing 7.16 and you

will see the following result:

Value of quotient : 4

The next section briefly discusses system calls in C,

which is definitely an advanced topic. However, there

are two code samples that are within your grasp, and

they provide a gentle introduction to this topic.

SYSTEM CALLS IN C (OPTIONAL) 

This topic is the final topic of this book, and arguably

the most complex. This section provided an extremely

brief description of system calls so that you will be

aware of their existence and their purpose. This section

also contains a very simple example of a C program

that makes a system call.

Removing a File 

Listing 7.18 displays the contents of SystemDeleteFile.c

that illustrates how to invoke the unlink() command to

delete a file.

LISTING 7.18: SystemDeleteFile.c

#include <stdio.h>

#include <unistd.h>

#include <sys/syscall.h>

 

int main()

{

   char *filename = "text.txt";

 

   if (unlink("text.txt") == -1)

   {



      printf("File %s does not exist\n", filename);

   }

   else

   {

      printf("Successfully removed file %s\n", filename);

   }

 

   return 0;

}

Listing 7.18 contains a main() function that initializes the

variable filename with the value text.txt. The next portion

of code is conditional logic that invokes the built-in C

function unlink() in order to delete the file text.txt. If the

command fails, a suitable message is displayed. If the

result is successful, a different message is displayed.

Now create a file called text.txt in the directory that

contains file SystemDeleteFile.c. Compile this code and

invoke the binary executable and you will see the

following output:

Successfully removed file text.txt

Invoke this command again and this time you will see a

different message:

File text.txt does not exist

Listing the Files in a Directory 

Listing 7.19 displays the contents of SystemForkExec.c

that illustrates how to use the fork() and exec() system

calls to create a new process that lists the contents of a

directory. Keep in mind that the fork() and exec() system

calls are not part of the C language, and they are only

available on systems that support the POSIX standard.

LISTING 7.19: SystemForkExec.c

#include <stdio.h>



#include <unistd.h>

#include <sys/wait.h>

 

int main()

{

   char * ls_args[] = { "/bin/ls" , "-l", NULL};

 

   int pid = fork();

 

   if(pid == 0) // the child

   {

      execv(ls_args[0], ls_args);

   }

   else if(pid > 0) // the parent

   {

      // wait for the child to complete

      wait(NULL);

   }

   else

   {

      printf("Error: negative process ID\n");

   }

 

   exit(0);

}

Listing 7.19 starts with several #include statements that

are required in order to execute the fork() and exec()

system calls. The next section contains the main()

function that initializes a character pointer to an array

with three elements: the full path to the Unix ls

command, the option to be used with the ls command,

and the value NULL.

Next, the fork() function is invoked and the result is

used to initialize the value of the integer pid. The key

point to remember: if pid is zero, then we are in the child

process; if pid is positive, then we are in the parent



process; any other value for pid is an error (i.e., the fork()

command failed).

The preceding scenarios are captured via conditional

logic, where appropriate messages are displayed. The

output from launching the code in Listing 7.19 is here:

-rwxr-xr-x  1 owner  staff  8560 Jul 24 19:22 SystemForkExec

-rw-r--r--  1 owner  staff     0 Jul 24 19:22 a

-rw-r--r--  1 owner  staff     0 Jul 24 19:22 b

-rw-r--r--  1 owner  staff     0 Jul 24 19:22 c

The binary executable SystemForkExec was invoked in a

directory that contains the binary executable and the

three files a, b, and c (all of size 0).

DEFINING CUSTOM FUNCTIONS IN

MULTIPLE FILES (OPTIONAL) 

This section shows you how to define custom

functions in two C files and then include them in the

compilation to create a single executable.

Listing 7.20, Listing 7.21, and Listing 7.22 display the

contents of the files FindChar2.h, FindChar2.c, and FindMain2.c,

which are compiled into one binary executable called

FindMain2.

LISTING 7.20: FindChar2.h

#include <ctype.h>

#include <stdio.h>

 

void findChar(char str[], char c);

Listing 7.20 is a very short header file: it contains

two header files and the function prototype for the

function findChar().



LISTING 7.21: FindChar2.c

#include <ctype.h>

#include <stdio.h>

 

void findChar(char str[], char c)

{

   int matchCount = 0;

 

   printf("String: %s\n",str);

   printf("Char:   %c\n",c);

 

   for(int i=0; str[i]; i++)

   {

      if(str[i] == c)

      {

         printf("Match in position: %d\n",i);

         ++matchCount;

      }

   }

 

   printf("Count:  %d\n\n",matchCount);

}

Listing 7.21 contains the implementation details of the

function findChar() that you saw in a code sample in

Chapter 3.

LISTING 7.22: FindMain2.c

#include "FindChar2.h"

 

int main()

{

   char str1[] = "pasta";

   findChar(str1, 'a');

 

   char str2[] = "New York City";

   findChar(str2, 'k');

 



   char str3[] = "California";

   findChar(str3, 'z');

 

   return (0);

}

Listing 7.22 contains a local header file called FindChar2.h

(i.e., it’s not part of the C language), followed by a main()

function. Notice that the main() function defines three

strings and invokes the findChar() function (defined in

FindChar2.c) three times.

The C programs FindChar2.c and FindMain2.c need to be

specified in the compilation step involving gcc, as shown

here:

# do not change the order of the next two lines:

gcc -std=c11 -Wall -c FindChar2.c

gcc -std=c11 FindChar2.o FindMain2.c -o FindMain2

The output of the preceding code snippet is the binary

executable FindMain2, and the output from launching

FindMain2 is here:

String: pasta

Char:   a

Match in position: 1

Match in position: 4

Count:  2

 

String: New York City

Char:   k

Match in position: 7

Count:  1

 

String: California

Char:   z

The preceding example is manageable because there

are only three files involved, which you can specify from

the command line when you invoke gcc. However, a C



program can have multiple dependencies involving

dozens of files, and keeping track of them (along with

dependencies on header files and custom libraries) can

quickly become untenable. One solution involves the

make utility, which is discussed in the Appendix.

STANDARD HEADER FILES AND

LIBRARIES 

As you have seen throughout the code samples in

this book, C programs invariably require standard

header files in order to compile them into object files,

along with standard libraries in order to perform the link

step that creates an executable file.

Note that /usr/include is used on Unix and Unix-like

systems only, whereas Windows compilers have their

“include” files somewhere in the installation directory.

Standard Header Files (Unix-like Systems) 

On Unix-like systems, the directory /usr/include

contains various “header” files, some of which are

displayed below (from a Macbook Pro):

AppleTextureEncoder.h

AssertMacros.h

Availability.h

AvailabilityInternal.h

AvailabilityMacros.h

Block.h

CommonCrypto

ConditionalMacros.h

MacTypes.h

[files omitted for brevity]

wordexp.h



xar

xattr_flags.h

xlocale

xlocale.h

xpc

zconf.h

zlib.h

The /usr/include directory contains the various “header”

files that are included in every C program in this book.

You will see an example in the next section. In addition,

you can create custom header files that you can place

in your projects and then reference them in your C

programs.

You can include a header file in a C program by

placing the following type of statement at the beginning

of a C program:

#include <stdio.h>

If you have a custom header file called mystdio.h that is

located in the same directory as your C program, you

can reference this header file with the following syntax:

#include "mystdio.h"

Commonly Used Header Files 

The following list contains commonly used C header

files, along with a brief explanation of their purpose:

<ctype.h>  defines character manipulation routines

<math.h>   defines mathematical routines

<stdio.h>  defines I/O routines

<stdlib.h> defines number conversion, storage allocation and similar tasks

<stdarg.h> defines libraries to handle routines with variable numbers of

arguments

<string.h> defines string manipulation routines

<time.h>   defines time-manipulation routines

In addition, the following header files exist:



<assert.h> defines diagnostic routines

<float.h>  defines constants of the float type

<limits.h> defines constants of the int type

<setjmp.h> defines non-local function calls

<signal.h> defines signal handlers

If necessary, you can perform an online search to find

more information about these header files.

Standard Libraries 

The directory /usr/lib contains various libraries, some

of which are displayed below:

PN548_API.dylib

PN548_HAL_OSX.dylib

PN548_OSX.dylib

bundle1.o

charset.alias

cron

crt1.10.5.o

crt1.10.6.o

[files omitted for brevity]

rpcsvc

ruby

sasl2

sqlite3

ssh-keychain.dylib

The two main types of libraries are static and dynamic,

both of which are used in this book. The Appendix

shows you how to reference header files and libraries in

a Makefile that specifies various dependencies for

compiling C code and creating binary files.

SUMMARY 



In this chapter you learned about C structs, and saw

examples of creating nested C structs, pointers to C

structs, and arrays of C structs. You also saw how to define

C unions and C bitfields. Then you learned about header

files, and how to define and reference local header files

in a C program. Then you learned basic information

about system calls and how to use the unlink(), fork(), and

exec() system commands. Finally, you learned about the

standard location for commonly used C header files and

C libraries (typically in make files) in C programs.
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APPENDIX 

THE MAKE UTILITY

his Appendix discusses the make utility that can

help you manage C applications that have multiple

dependencies. The make utility excels in managing

projects that involve recompiling C programs (based on

their date of modification), creating object files,

updating libraries, and integrating other artifacts.

Although the examples in this Appendix are for C

programs, the make utility works just as well for C++

projects.

The first part of this Appendix starts by describing

the make utility and a Makefile, and then briefly discusses

Unix commands for managing object files and libraries,

such as the ar command and the ranlib command. You

will also learn how to use the nm command for C

programs that will help you find symbol definitions.

The second part of this Appendix delves into the make

utility, which is the bulk of the material in this

Appendix. You will learn how to use the make utility with

some simple examples, macros in makefiles, and how to

create multiple executable files.

The third part shows you how to specify header files

and library files in a makefile, and how to define nested

makefiles. The remaining portion of this Appendix



contains a miscellaneous assortment of other features

of the make utility.

WHAT IS THE MAKE UTILITY? 

The make utility is a binary executable that reads the

contents of a text-based “makefile” in order to execute

commands. The make utility searches (in the current

directory) for a file named Makefile and if this file does

not exist, it searches for a file named makefile. If neither

file exists, then the make utility fails with this message:

make: *** No targets specified and no makefile found.  Stop.

As you will see later in this Appendix, you can use

the –f switch for the make utility in order to specify a

makefile with a different name. In this Appendix the

term “makefile” will refer to the file Makefile (“big Make”)

as the default file.

What is in Makefile? 

The file Makefile typically contains so-called rules for

executing various commands, such as compiling out-of-

date C programs. Without going into the syntax rules

(we’ll discuss them later), here are the contents of a

Makefile that contains a single rule for creating a binary

executable called hello:

hello: HelloWorld.c

        gcc -Wall HelloWorld.c -o HelloWorld

Note that the second line in the preceding code snippet

starts with a mandatory <tab> character that is not

visible in this page.

You can also specify additional files that are not

included by default during the compilation process. For



instance you can specify custom “header” files (text

files with a .h suffix), other object files (binary files with

a .o suffix), or additional libraries (binary files with a .a or

.so suffix) that are necessary for creating a binary

executable.

The file Makefile can also contain rules that do not

involve compilation, such as shell scripts and Unix

commands. You can also create a “master” Makefile that

contains rules that invoke the make utility using a Makefile

located in a subdirectory. This is very useful, because

you can subdivide a large project into a set of modules,

where the code for each module is in a different

subdirectory that contains a module-specific Makefile.

The next section discusses some useful commands

(such as ar, ranlib, and nm) that you can specify in a

Makefile target in order to operate compilation-related

steps for your C programs.

USEFUL UNIX COMMANDS FOR

LIBRARIES 

Throughout this book you have used the gcc utility to

create binary executable files from C programs.

However, in mid-sized and larger projects, C

applications often involve “assembling” multiple C files

into a single binary file. Those C files are compiled into

so-called object files, which are binary files with a “.o”

extension.

The ar (“archive”) command enables you to combine

multiple “.o” files into a library file, which is a binary file

with a “.a” extension (which are static libraries). In

particular, the ar command enables you to add, remove,

or update “.o” files in a library file.



Another very useful utility is the nm command for

finding symbol definitions in “.o” files or library files.

This utility helps you deal with “undefined symbol”

errors that arise when you have not included the

necessary object file or library that’s required in order

to create a binary executable. Generally you would use

this utility from the command line and less frequently in

a Makefile.

Examples of the ar Command 

The following command creates a static library called

HelloWorld.a that contains the object file HelloWorld.o:

ar -r HelloWorld.a HelloWorld.o

Add all the object files in the current directory to the

library HelloWorld.a with this command:

ar -r HelloWorld.a *.o

The following command updates HelloWorld.a with the

contents of HelloWorld.o:

ar -rcsHelloWorld.aHelloWorld.o

An example of using the ar command in a Makefile is

here:

mylib.a: class.o

    ar -r mylib.a class.o

In the preceding snippet, the “r” switch means insert

the file class.o into the archive mylib.a. Search online for

examples of other switches for the ar command.

The ranlib Command 

Every archive library contains a table of contents

that keeps track of the .o files in the library. The ranlib

utility adds or updates the table of contents of archive



libraries so that the link editor can link the library. In

addition, the table of contents is an archive member at

the beginning of the archive that indicates which

symbols are defined in which library members.

The nm Command 

The nm command displays the symbols that are

defined or referenced in a static library. For example,

suppose that the library HelloWorld.a contains the object

file HelloWorld.o.

If you type the following command:

nm HelloWorld.a

The output will be something like this:

HelloWorld.a(HelloWorld.o):

0000000000000308 s EH_frame0

0000000000000030 s L_.str

0000000000000000 T _main

0000000000000320 S _main.eh

                 U _printf

HelloWorld.a(FindChar2.o):

0000000000000420 s EH_frame0

00000000000000c6 s L_.str

00000000000000d2 s L_.str1

00000000000000de s L_.str2

00000000000000f5 s L_.str3

0000000000000000 T _findChar

0000000000000438 S _findChar.eh

                 U _printf

 

HelloWorld.a(FindMain2.o):

0000000000000440 s EH_frame0

00000000000000c0 s L_main.str1

00000000000000c6 s L_main.str2

00000000000000d4 s L_main.str3



                 U ___stack_chk_fail

                 U ___stack_chk_guard

                 U _findChar

0000000000000000 T _main

0000000000000458 S _main.eh

The letter U in the second column in the preceding

output indicates that the function specified on the right

side of U is referenced in the associated .o file, and that

its definition is located in a different archive library or

object file.

SOME SIMPLE MAKEFILES 

This section contains a makefile that does not

involve any compilation of C programs. They contain

simple rules that execute simple commands. Note that

you must use the –f switch because of the non-standard

filename.

Listing A.1 displays the contents of Simplemake that

contains a top-level “target” called all. This target

specifies three other targets for executing Unix

commands.

LISTING A.1: Simplemake

all: hello now mymakefiles

 

hello:

        echo "hello world"; echo

now:

        @echo "now is 'date'"; echo

mymakefiles:

        @echo "mymakefiles: 'ls *akefile*'"; echo

Listing A.1 defines the target all that specifies the three

targets called hello, now, and mymakefiles. Invoking the make



utility by specifying the file Simplemake will cause all three

targets to be invoked, simply by typing the following

command:

make –f Simplemake

The output from my system is shown here:

echo "hello world"; echo

hello world

 

now is Wed May 23 22:50:28 PDT 2018

 

mymakefiles: Makefile

Makefile-ori

Makefile1

Makefile2

Makefile3

Makefile4

Makefile5

Makefile6

Makefile7

Makefile8

Makefile9

If you only want to invoke the first target, then type the

following command:

make –f Simplemake hello

The output from my system is shown here:

echo "hello world"; echo

hello world

If you only want to invoke the second target, then

type the following command:

make –f Simplemake now

The output from my system is shown here:

now is Wed May 23 22:50:28 PDT 2018



Finally, if you only want to invoke the third target,

then type the following command:

make –f Simplemake mymakefiles

Keep in mind one thing: the preceding target will list

the files containing the string akefile. Hence, this target

will not list makefiles that do not match this pattern,

such as mymake, mymakefile, yourmakefile, and so forth.

With the preceding example in mind, let’s look at an

example of a makefile that involves compiling a C

program, as discussed in the next section.

A MAKEFILE FOR C PROGRAMS 

Recall that Chapter 1 contains the C program

HelloWorld.c that you compiled with the following

command:

gcc HelloWorld.c –o HelloWorld

The equivalent functionality of the preceding

command involves creating a simple target in a

makefile, which is displayed in Listing A.2.

LISTING A.2: Makefile

hello: HelloWorld.c

        gcc HelloWorld.c -o HelloWorld

Listing A.2 defines the target hello, but you can use

whatever name is convenient for you.

Now place the Makefile in Listing A.2 and the C

program HelloWorld.c in the same directory, and then

launch the make utility from the command line, just as

you did in the previous section. Although no output is

displayed, you will see the binary file HelloWorld appear in



the same directory; launch this file and you will see the

following output:

Hello World

A Makefile often contains multiple targets and can

include other constructs such as macro definitions and

also reference other makefiles. Keep in mind that the

files that are specified on the right-side of the colon are

the dependencies, which is HelloWorld.c in this example.

The second line has a tab-based indentation that is

required for any target in a makefile but is not visible in

this example. If you use spaces instead of a tab, you

will see the following type of error message when you

invoke the make utility:

Makefile1:13: *** missing separator (did you mean TAB

instead of 8 spaces?).  Stop.

This is one of the most common errors that developers

make when they create makefiles.

   The first character in a rule line must be

a tab character.

A very simple makefile with the preceding target is

discussed in the next section.

BIG MAKE AND LITTLE MAKE 

As you saw earlier in this Appendix, the file Makefile is

called “big make” and the file makefile is called “little

make.” If you type make on the command line, it will

search for “big make” and execute the first target in

that makefile. If “big make” does not exist, the make

utility searches for “little make” and execute the first

target in that makefile.



For example, if the hello target is defined in either

Makefile (such as the one in Listing A.2) or makefile, you

can invoke that target as follows:

make hello

As a reminder, if Makefile and makefile do not exist and you

invoke the preceding command, the following message

is printed:

make: *** No rule to make target `hello'.  Stop.

A MakeFile with Macros 

Listing A.3 displays the contents of Makefile2 that

contains two macro definitions and three targets, all of

which create the binary executable HelloWorld.

LISTING A.3: Makefile2

CC=gcc

CFLAGS=-g -Wall

 

hello: HelloWorld.c

        gcc HelloWorld.c -o HelloWorld

 

hello2: HelloWorld.c

        gcc -g -Wall HelloWorld.c -o HelloWorld

 

hello3: HelloWorld.c

        $(CC) $(CFLAGS) HelloWorld.c -o HelloWorld

Invoke the first target with the following command:

make hello –f Makefile2

Invoke the second target with the following command:

make hello2 –f Makefile2

Invoke the third target with the following command:

make hello3 –f Makefile2



The result of the three preceding targets is the creation

of the binary executable HelloWorld. However, note that

only the rule for hello3 refers to $(CC), which means that

there will be no change if you alter the value of CC and

run the hello target.

In case you’re wondering, one advantage to using

macros is that you can replace their definitions in a

single location without modifying any of the targets or

their dependencies. For example, Listing A.3 defines the

GCC macro with the value of gcc; however, you can

replace gcc with another utility, such as g++ (if it’s

available on your system). Try making this change and

execute the same command as above:

make hello –f Makefile2

The result is the same, which is the creation of the

binary executable HelloWorld.

There are some standard targets available in

makefiles, some of which are shown in the next section.

A MAKEFILE WITH STANDARD TARGETS 

Listing A.4 displays the contents of Makefile3 that

contains three macro definitions and three targets, all of

which create the binary executable HelloWorld.

LISTING A.4: Makefile3

CC=gcc

CFLAGS=-g -Wall

RM=/bin/rm

 

# only the 'hello' target

all: hello

 



# just the 'hello' target

hello: HelloWorld.c

        $(CC) $(CFLAGS) HelloWorld.c -o HelloWorld

 

# what to remove

clean:

        $(RM) HelloWorld

Listing A.4 contains only the target hello: the targets

hello2 and hello3 have been removed because they do not

serve any useful purpose.

As another illustration, Listing A.5 displays the

contents of Makefile4 that fully “generalizes” the

executables that are referenced.

LISTING A.5: Makefile4

CC=gcc

CFLAGS=-g -Wall

RM=/bin/rm -f

MAKE=/usr/bin/make

ECHO=echo

 

# only the 'hello' target

all: hello

 

# just the 'hello' target

hello: HelloWorld.c

        $(ECHO) "Creating HelloWorld in target hello..."

        $(CC) $(CFLAGS) HelloWorld.c -o HelloWorld

 

# what to remove

clean:

        $(RM) HelloWorld

The initial portion of Listing A.5 contains macros for all

the binary executables that are used in the targets,

such as gcc, rm, make, and echo.



Command Line Switches for Makefiles 

There are various switches that you can specify

when you invoke the make utility. For example, you have

already used the “-f” switch to specify the name of a

makefile:

make –f Makefile1

The preceding command runs the commands from

the first target in Makefile1, provided the dependent files

are more recent than the target.

The “-n” switch displays the outcome of the

execution of the make utility without actually executing a

makefile:

make –f Makefile1

You can combine switches as shown here:

make –n –f Makefile1

As an illustration, suppose that Makefile1 contains the

following target:

hello: HelloWorld.c

        gcc HelloWorld.c -o HelloWorld

The following command invokes the target hello in

Makefile1:

make –f Makefile1 hello

The previous code snippet causes an invocation of

the gcc command in order to compile the C program

HelloWorld.c and to create the executable HelloWorld.

HOW DO MAKEFILES WORK? 

Since every file on the file system has a timestamp

that indicates when the file was last modified, the make



checks the timestamp of a file and its dependencies in

order to determine whether a target must be invoked.

In addition, when dependencies are checked, updates

are performed recursively.

For example, if a C source code file has a timestamp

that is more recent than its corresponding executable,

then the associated target in the makefile is invoked,

and the associated commands are executed.

In many cases the purpose of the makefile is to

create an executable, and the associated target is often

the first target in the makefile. For example, if FindMain2

is the first target in a makefile, then make will execute

the commands for the target FindMain2.

      By default “make” always runs the

commands from the first target in the

makefile, but not any of the commands

in other targets.

If you do not specify the “-o” switch the compiler will

create the default executable whose name is a.out.

In general terms, a makefile contains one or more

entries, where each entry consists of the following:

+a target (usually a file)

+its dependencies (the files that the target depends on)

+the commands to invoke (based on the target and

dependencies)

Keep in mind that dependencies are transitive. For

example, if A depends on B and B depends on C, then A

depends on C. Examine your C programs to determine

the dependencies for each file and then add the

appropriate target to your makefile.



You can also use the makedepend program that

analyzes the header files (“.h”) in your C programs in

order to determine dependencies.

MULTIPLE SOURCE FILES AND THE

MAKE UTILITY 

The C programs in previous chapters do not have

dependencies on other C programs. However, when

dependencies exist on other C programs (written by you

or someone else), you can define targets for those

other C programs.

For example, suppose that the C program main1.c

depends on the C programs depend1.c and depend2.c,

whose contents are displayed in Listing A.6, Listing A.7,

and Listing A.8, respectively.

https://www.thegeekstuff.com/2012/03/linux-nm-

command/

LISTING A.6: main1.c

#include <stdio.h>

#include "depend1.h"

#include "depend2.h"

 

int main()

{

   printf("Hello from main1.c\n");

   depend1();

   depend2();

   return 0;

}

Listing A.6 includes two .h files that are in the same

directory as main1.c: you can determine this fact because

https://www.thegeekstuff.com/2012/03/linux-nm-command/


the include statements use double quotes (“”) instead

of angle (<>) brackets. Next, the main() function starts

with a printf() statement, followed by an invocation of the

functions depend1() and depend2(), neither of which is

defined in this C program.

LISTING A.7: depend1.c

#include <stdio.h>

 

void depend1()

{

   printf("Hello from depend1.c\n");

}

Listing A.7 starts with the main() function that contains a

single printf() statement that displays the name of the

current file depend1.c. The only purpose of this statement

is to help you see the flow of program execution.

LISTING A.8: depend2.c

#include <stdio.h>

 

void depend2()

{

   printf("Hello from depend2.c\n");

}

Listing A.8 starts with the main() function that contains a

single printf() statement that displays the name of the

current file depend2.c. The only purpose of this statement

is to help you see the flow of program execution.

Listing A.9 displays the contents of the file Makefile5

that specifies the required dependencies.

LISTING A.9: Makefile5

CC=gcc

CFLAGS=-g -Wall



RM=/bin/rm -f

 

OBJECTS = depend1.o depend2.o

HEADERS = depend1.h depend2.h

 

main1: $(OBJECTS) $(HEADERS)

        $(CC) $(CFLAGS) $(OBJECTS) HelloWorld.c -o HelloWorld

 

depend1.o: depend1.c

        $(CC) -c depend1.c

 

depend2.o: depend2.c

        $(CC) -c depend2.c

 

clean:

        $(RM) main1 $(OBJECTS) 2>/dev/null

Listing A.9 contains several macros that you have seen

in previous makefiles, along with the macros OBJECTS and

HEADERS that specify a list of object files and header files,

respectively.

The next portion of Listing A.9 defines the target

main1 that depends on the object files and the header

files. The next pair of targets specify how to compile the

source files depend1.c and depend2.c in order to generate

the object files depend1.o and depend2.o, respectively.

The final target is a standard target for “cleaning”

files, which in this case is the object files specified by

$(OBJECTS) and the binary executable main1. Note that if

either depend1.c or depend2.c is modified, then that file is

recompiled in order to create the corresponding object

file, which in turn is included in the step for creating a

new version of the binary executable main1.

Launch the make command with the –f switch as

follows:

make –f Makefile5



Now launch the newly created executable:

./main1

The output is shown here:

Hello from main1.c

Hello from depend1.c

Hello from depend2.c

The next section shows you how to create a makefile

that can handle multiple dependencies in a succinct

manner.

MACROS FOR MULTIPLE C FILES 

In Chapter 7, you used the following command in

order to generate the binary executable FindMain2:

gcc -o FindMain2 FindChar2.c FindMain2.c

Listing A.10 displays the contents of Makefile6 with a

FindMain2 as a target, which is generated when any of its

dependencies are modified.

LISTING A.10: Makefile6

CC=gcc

CFLAGS=-g -Wall

RM=/bin/rm -f

 

EXEC = main1

SRC = $(EXEC).c depend1.c depend2.c

OBJ = $(SRC:.c=.o)

LIB = $(SRC:.c=.h)

 

all: $(EXEC)

 

# this target generates main1

$(EXEC): $(OBJ)

        $(CC) -o $@ $^ $(LDFLAGS) -lm



 

%.o: $.c $(LIB)

        $(CC) -o $@ -c $< $(CFLAGS)

 

clean:

        $(RM) main1 2>/dev/null

Listing A.10 starts with some familiar macro definitions,

followed by the macros EXEC, SRC, OBJ, and LIB that are

specific to the makefile in which these macros are

defined.

The OBJ macro contains a rule that specifies how to

generate object files “.o” from C source files. The LIB

macro contains a rule that specifies how to determine

the header files that are associated with C source files.

OTHER MACROS IN MAKEFILES 

A macro is a simple string that has been assigned a

value, after which you can use the string in a makefile

target. The general syntax involves specifying a name

and then assigning it a value, as shown here:

macroname = macrovalue

A macro bears some resemblance to a #define in C

programs that you have seen in earlier chapters.

Whenever the make command encounters a macro

name, it substitutes the macro name with its defined

value. In fact, an earlier makefile in this Appendix

contains simple macros, as shown here:

CC=gcc

CFLAGS=-g -Wall

RM=/bin/rm

 

hello: HelloWorld.c

        $(CC) $(CFLAGS) HelloWorld.c -o HelloWorld



The preceding target uses parentheses to reference the

value of macros, but you can also use curly braces. For

example, you can use either $(CC) or ${CC}.

By convention a macro name contains a combination

of upper case letters and underscores. In addition, you

can specify more complex macros that involve multiple

files. For example, suppose that the C file BigMain.c

depends on the following object (“dot-oh”) files: Sub1.o,

Sub2.o, Sub3.o, and Sub4.o. You can define a macro that

specifies these object files as follows:

OBJS = Sub1.o Sub2.o Sub3.o Sub4.o

The target in your makefile would look something like

this (obviously there could be other dependencies as

well):

BigMain: $(OBJS)

$(CC) $(LFLAGS) $(OBJS) –o BigMain

A macro can be used as part of the definition of other

macros. You can also place the continuation character

backslash “\” (followed by a newline) in order to define

a macro that spans more than one line.

Although it might not be readily apparent in short

makefiles, macros become very convenient in large

makefiles because they enable you to define

“variables” that are substituted in the targets that

reference them.

Some common macros for C programs are here:

CC is the name of the compiler

DEBUG is the debugging flag, which is typically just –g

LFLAGS specifies the flags required during the link

step:  -Wall instructs the compiler to print all warnings



CFLAGS specifies the flags for compiling and creating

object files

You will notice that once a macro is defined, it can be

used to define subsequent macros.

Since the makefiles in this Appendix are simple and

short, there is limited value to using macros.

Nevertheless, it’s a good idea to develop the habit of

using macros in makefiles, especially if they are likely to

become more complex.

Automatic Variables 

If you want to become really proficient with the make

utility, you need to learn many of the variables that

have a special significance in makefiles. Here is a short

list of some supported variables, along with a short

description of their purpose:

$@ is the file name of the target of a rule

$% is the target member name: if the target is

foo.a(bar.o) then $% is bar.o and $@ is foo.a.

$< is the name of the first prerequisite

$? is the names of all the prerequisites that are

newer than the target

$^ is the names of all the prerequisites

The make utility supports many other built-in variables,

and you can perform an online search to find more

information.

CREATING MULTIPLE EXECUTABLES IN

A MAKEFILE 



Sometimes you need to create multiple binary

executable files, and the make utility enables you to

specify the targets in a straightforward manner.

Suppose that you need to create three executables

called mybin1, mybin2, and mybin3, where each executable

depends on its associated C program as well as the

HelloWorld.c program.

Listing A.11 displays the contents of Makefile7 that

illustrates how to specify the targets.

LISTING A.11: Makefile7

CC=gcc

CFLAGS=-g -Wall

RM=/bin/rm

 

# invokes targets mybin1, mybin2, and mybin3

all: mybin1 mybin2 mybin3

 

# 'mybin1' creates mybin1

mybin1: mybin1.o HelloWorld.o

        $(CC) $(CFLAGS) HelloWorld.c -o mybin1

 

# 'mybin2' creates mybin2

mybin2: mybin2.o HelloWorld.o

        $(CC) $(CFLAGS) HelloWorld.c -o mybin2

 

# 'mybin3' creates mybin3

mybin3: mybin3.o HelloWorld.o

        $(CC) $(CFLAGS) HelloWorld.c -o mybin3

 

# removes mybin1, mybin2, mybin3, and *.o files

clean:

        $(RM) mybin1 mybin2 mybin3 *.o

Listing A.11 starts with several macro definitions,

followed by the all target that specifies the

dependencies mybin1, mybin2, and mybin3, but there are no



command line dependencies. As a result, the make utility

attempts to build the most up-to-date versions of those

files.

OTHER TYPES OF TARGETS IN A

MAKEFILE 

Thus far the targets in the sample makefiles involve

creating object files or binary executables, but you can

define other types of targets. For example, Listing A.12

displays the contents of MakefileTar that illustrates how to

create a tar (tape archive) file and extract the contents

of a tar file.

LISTING A.12: MakefileTar

TAR=/usr/bin/tar

CTFLAGS=-cvf

XTFLAGS=-xvf

TARFILE=mytar.tar

 

ctarfile:

        @echo "### Listing of C Programs:"

        @ls -l *.c

        @echo "### Creating tar file:"

        $(TAR) $(CTFLAGS) $(TARFILE) *.c

 

xtarfile:

        @echo "### Extracting tar file:"

        $(TAR) $(XTFLAGS) $(TARFILE)

Listing A.12 starts with several macro definitions,

followed by two targets. The first target is ctarfile, which

will display a long listing of the C programs in the

current directory, and then create a tar file with those C

programs.



The second target is xtarfile, which will perform the

opposite of the ctarfile target: it extracts the contents of

the tar file mytar.tar that was created in the ctarfile target.

The output from invoking the ctarfile target is here:

### Listing of C Programs:

-rw-r--r--  1 ocampesato  staff  2048 Jan 26 12:40 Hello2.c

-rw-r--r--  1 ocampesato  staff    83 Jan 19 21:30 HelloWorld.c

### Creating tar file:

/usr/bin/tar -cvf mytar.tar *.c

a Hello2.c

a HelloWorld.c

The output from invoking the xtarfile target is here:

### Extracting tar file:

/usr/bin/tar -xvf mytar.tar

x Hello2.c

x HelloWorld.c

SPECIFYING HEADERS AND LIBRARIES

IN A MAKEFILE 

You have seen several makefiles with targets that

specify header files as dependencies. In addition, you

can specify a header file using the “-I” prefix to a path-

qualified directory, as shown here:

-I/usr/include

The preceding line enables the make utility to search

user-specified directories for header files.

The -I option in the preceding line is actually passed

to the compiler by the makefile; i.e., it is not passed on

the command line to the make command. However, the

make utility also supports a -I command which sets up a

search path for makefiles. Note that the directory



/usr/include is included by default, so it’s unnecessary to

specify this directory.

On the other hand, suppose you create the header

file mytime.h that is located in the /usr/local/include directory.

Then the following code snippet will enable the compiler

to find mytime.h in the correct location:

-I/usr/local/include

The advantage of the preceding code snippet is that

you won’t need to explicitly reference the contents of

this directory in your custom header files or custom C

programs.

In addition, you can use the following switch in order

to instruct the compiler to search the current directory

for header files:

-I.

Yet another option involves specifying a directory—

relative to the current directory:

CC=gcc

IDIR =../include

CFLAGS=-I$(IDIR)

Specifying Libraries 

The make utility allows you to specify a library in a

makefile in two ways.

The shorthand way involves 1) removing the “lib”

prefix, 2) removing the suffix, and 3) specifying “-l”

(lowercase l) as the prefix for whatever remains after

performing steps #1 and #2.

For example, if you want to include the library

/usr/lib/libm.a as part of the process of creating an

executable, specify the string “-lm” in order to include

this library.



The longer way of doing the same thing is to specify

the full path to the library as part of the compilation

step (preferably as a macro definition), as shown here:

-L/usr/lib/libm.a

DUMMY TARGETS IN A MAKEFILE 

If you want to execute commands instead of creating

a target, you can define a dummy target, which does

not involve any files.

There are some common dummy targets used in

makefiles:

make clean

make all

The “clean” target is typically used for removing files

(such as object files and executables) from a directory.

The removal of such files forces the makefile to

recompile all the “.o” files.

INCLUDING A MAKEFILE IN ANOTHER

MAKEFILE 

Source code trees often have a separate makefiles in

the main directories of the source code that handle the

dependencies that are local to a given directory. A top-

level makefile acts as the “master” makefile that

contains targets for creating one or more executables.

Listing A.13 displays the contents of BranchMakefile that

contains a target that will execute a target in

BranchMakefile that is located in the branch subdirectory.



LISTING A.13: BranchMakefile

CC=gcc

CFLAGS=-g -Wall

RM=/bin/rm

MAKE=/usr/bin/make

BRANCH=./branch

ECHO=echo

 

# only the 'hello' target

all: hello

 

# 'hello' creates HelloWorld

hello: HelloWorld.c

        $(ECHO) top-level directory...

        $(CC) $(CFLAGS) HelloWorld.c -o HelloWorld

        $(ECHO) going to branch...

        cd $(BRANCH); $(MAKE) -f SubBranchMakefile goodbye

 

# 'Helloworld.o' creates HelloWorld.o

HelloWorld.o: HelloWorld.c

        $(CC) $(CFLAGS) -c HelloWorld.c

 

# removes HelloWorld and HelloWorld.o

clean:

        $(RM) HelloWorld HelloWorld.o

Listing A.13 starts with several macro definitions,

followed by four targets. The first target is all, which

depends on the target hello. The hello target prints a

statement, compiles the file HelloWorld.o to create

HelloWorld, and then prints another statement. The last

step in this target execution involves navigating into a

subdirectory and invoking the make utility with the –f

switch to specify the makefile called BranchMakefile and

the target goodbye.

The third target creates the object file HelloWorld.o, and

the final target is the clean target that removes the files



HelloWorld and HelloWorld.o.

LISTING A.14: SubBranchMakefile

CC=gcc

CFLAGS=-g -Wall

RM=/bin/rm

 

# 'goodbye' creates GoodbyeWorld

goodbye: GoodbyeWorld.c

        $(CC) $(CFLAGS) GoodbyeWorld.c -o GoodbyeWorld

 

# 'GoodbyeWorld.o' creates GoodbyeWorld.o

GoodbyeWorld.o: GoodbyeWorld.c

        $(CC) $(CFLAGS) -c GoodbyeWorld.c

 

# removes GoodbyeWorld and GoodbyeWorld.o

clean:

        $(RM) GoodbyeWorld GoodbyeWorld.o

Listing A.14 starts with several familiar macro

definitions, followed by three targets whose syntax is

also familiar to you. Note that the goodbye target in this

makefile is invoked indirectly via one of the targets in

the makefile in Listing A.13.

Now type the following command from the directory

that contains the BranchMakefile in Listing A.13 (and not

from the subdirectory):

make -f BranchMakefile

The output from the preceding command is here:

echo top-level directory...

top-level directory...

gcc -g -Wall HelloWorld.c -o HelloWorld

echo going to branch...

going to branch...

cd ./branch; /usr/bin/make -f BranchMakefile goodbye

gcc -g -Wall GoodbyeWorld.c -o GoodbyeWorld



Although the preceding example is somewhat artificial,

you can see how to adapt the makefiles to handle

multiple subdirectories containing source code for your

project.

CREATING A LIBRARY ARCHIVE FROM

OBJECT FILES 

Listing A.15 displays the contents of Makefile8 that

illustrates how to create a library containing a set of

object files that are located in the current directory.

LISTING A.15 Makefile8

RM=/bin/rm -f

AR=/usr/bin/ar

MYLIB=mylib.a

 

# only the 'hello' target

all: lib

 

# create a library with .o files

lib: FindChar2.o FindMain2.o HelloWorld.o

        $(AR) r $(MYLIB) $?

 

clean:

        $(RM) $(MYLIB) 2>/dev/null

Listing A.15 contains familiar macro definitions,

followed by the all target that depends on the lib target.

As you can see, the lib target depends on three object

files, and the command that is executed is the ar

command that updates the library mylib.a with the three

object files.

Now type the following command in a command

shell:



make -f Makefile5 lib

The output is displayed here:

/usr/bin/ar r mylib.a FindChar2.o FindMain2.o HelloWorld.o

ar: creating archive mylib.a

Now type the following command:

make -f Makefile5 clean

The output is displayed here:

/bin/rm -f mylib.a 2>/dev/null

CREATING AN ARCHIVE LIBRARY IN A

SHELL SCRIPT 

You can also use a shell script createlib.sh to create a

library that contains all the object files in the current

directory, as shown here:

mylib2="mylib2.a"

 

for f in `ls *.o`

do

  echo "Adding object file $f"

  ar r $mylib2 $f

done

Open a command shell, navigate to the location of

createlib.sh, and enter the following commands:

chmod +x createlib.sh

./createlib.sh

The output is shown here:

Adding object file FindChar2.o

ar: creating archive mylib2.a

Adding object file FindMain2.o

Adding object file HelloWorld.o



SUMMARY 

This Appendix introduced you to the make utility and

how to use this utility to automate compilation-related

steps for your C programs. You saw how to use Unix

commands for managing object files and libraries, such

as the ar command and the ranlib commands. Then you

learned about the nm command to examine the

contents of object files and archive libraries.

Next, you saw how to create simple targets in a

Makefile as well as how to use macros in a Makefile. In

addition, you learned how to specify header files and

library files in a Makefile, as well as how to invoke the

make utility inside a Makefile. Finally, you learned how to

create a shell script for creating an archive library.
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