


Flutter Apprentice
By Kevin David Moore, Vincent Ngo, Stef Patterson & Alejandro Ulate Fallas

Copyright ©2024 Kodeco Inc.

Notice of Rights
All rights reserved. No part of this book or corresponding materials (such as text, 
images, or source code) may be reproduced or distributed by any means without 
prior written permission of the copyright owner.

Notice of Liability
This book and all corresponding materials (such as source code) are provided on an 
“as is” basis, without warranty of any kind, express of implied, including but not 
limited to the warranties of merchantability, fitness for a particular purpose, and 
noninfringement. In no event shall the authors or copyright holders be liable for any 
claim, damages or other liability, whether in action of contract, tort or otherwise, 
arising from, out of or in connection with the software or the use of other dealing in 
the software.

Trademarks
All trademarks and registered trademarks appearing in this book are the property of 
their own respective owners.

Flutter Apprentice Flutter Apprentice

 2



Table of Contents: Overview
Book License 14.............................................................................................

Before You Begin 15................................................................

What You Need 16........................................................................................

Book Source Code & Forums 18.............................................................

Acknowledgements 22...............................................................................

Introduction 23..............................................................................................

Section I: Build Your First Flutter App 27.........................

Chapter 1: Getting Started 28.....................................................

Chapter 2: Hello, Flutter 48..........................................................

Section II: Everything’s a Widget 83..................................

Chapter 3: Basic Widgets 84........................................................

Chapter 4: Understanding Widgets 124.................................

Chapter 5: Scrollable Widgets 155............................................

Chapter 6: Advanced Scrollable Widgets 187......................

Chapter 7: Interactive Widgets 215..........................................

Section III: Navigating Between Screens 265.................

Chapter 8: Routes & Navigation 266........................................

Chapter 9: Deep Links & Web URLs 299.................................

Section IV: Networking, Persistence & State 327.........

Chapter 10: Handling Shared Preferences 328....................

Chapter 11: Serialization With JSON 348..............................

Flutter Apprentice

 3



Chapter 12: Networking in Flutter 362...................................

Chapter 13: Managing State 392................................................

Chapter 14: Working With Streams 419.................................

Chapter 15: Saving Data Locally 438........................................

Section V: Working With Firebase Cloud 
Firestore 465.............................................................................

Chapter 16: Firebase Cloud Firestore 466.............................

Section VI: Testing Your Flutter App 518.........................

Chapter 17: Introduction to Testing 519.................................

Chapter 18: Widget Testing 540.................................................

Section VII: Deployment 557...............................................

Chapter 19: Platform-Specific App Assets 558....................

Chapter 20: Build & Release an Android App 583...............

Chapter 21: Build & Release an iOS App 615........................

Conclusion 648..............................................................................................

Appendices 649........................................................................

Appendix A: Chapter 5 Solution 1 650.....................................

Appendix B: Chapter 5 Solution 2 653.....................................

Flutter Apprentice

 4



Table of Contents: Extended
Book License 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Before You Begin 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

What You Need 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Book Source Code & Forums 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
About the Authors 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

About the Editors 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Acknowledgements 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Content Development 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Introduction 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
How to Read This Book 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Section I: Build Your First Flutter App 27. . . . . . . . . . . . . . 

Chapter 1: Getting Started 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
What is Flutter? 29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Flutter’s History 34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

The Flutter Architecture 35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

What’s Ahead 37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Getting Started 37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Getting the Flutter SDK 38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Trying It Out 42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Key Points 47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Where to Go From Here? 47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 2: Hello, Flutter 48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Creating a New App 49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Making the App Yours 51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Clearing the App 56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Building a Recipe List 57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Flutter Apprentice

 5



Adding a Recipe Detail Page 68. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Key Points 82. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Where to Go From Here? 82. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Section II: Everything’s a Widget 83. . . . . . . . . . . . . . . . . . . 

Chapter 3: Basic Widgets 84. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Getting Started 85. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Styling Your App 87. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Defining a Theme Class 88. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Switching Themes 91. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Creating Custom Buttons to Switch Color and Mode 93. . . . . . . . . . . . . . . . 

Adding Action Buttons to the App Bar 96. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Understanding App Structure and Navigation 97. . . . . . . . . . . . . . . . . . . . . . . 

Navigating Between Pages 102. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Creating Custom Cards 104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Composing Category Card 105. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Composing Post Card 112. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Key Points 123. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Where to Go From Here? 123. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 4: Understanding Widgets 124. . . . . . . . . . . . . . . . . . . . . . . . 
What Is a Widget? 125. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Unboxing CategoryCard 126. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Rendering Widgets 129. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Getting Started 132. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Learning the Types of Widgets 144. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Key Points 154. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Where to Go From Here? 154. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 5: Scrollable Widgets 155. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Getting Started 157. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Introducing ListView 161. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Setting Up the Explore Screen 162. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Flutter Apprentice

 6



Creating a FutureBuilder 165. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Building Restaurant Section 167. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Nested ListViews 171. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Building Category Section 176. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Building the Post Section 179. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Other Scrollable Widgets 184. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Key Points 186. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Where to Go From Here? 186. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 6: Advanced Scrollable Widgets 187. . . . . . . . . . . . . . . . . . 
Getting Started 188. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Introducing Slivers 190. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Building the Restaurant Page 192. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Building a Sliver for the Restaurant Page 195. . . . . . . . . . . . . . . . . . . . . . . . . . . 

Building a Sliver App Bar 196. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Building the Restaurant Info Section 200. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Introducing GridView 203. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Building the Grid View Section 206. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Implementing a Responsive Menu 210. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Key Points 214. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Where to Go From Here? 214. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 7: Interactive Widgets 215. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Getting Started 218. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Presenting Item Details 219. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Building Item Details 222. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Building the Checkout Page 236. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Creating the Checkout Page 241. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Building the Orders Page 260. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Key Points 264. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Where to Go From here? 264. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Section III: Navigating Between Screens 265. . . . . . . . . 

Flutter Apprentice

 7



Chapter 8: Routes & Navigation 266. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Introducing Navigation 267. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Navigator 1.0 Overview 268. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Navigator 1.0’s Disadvantages 270. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Router API Overview 271. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Navigation and Unidirectional Data Flow 273. . . . . . . . . . . . . . . . . . . . . . . . . . . 

Is Declarative Always Better Than Imperative? 275. . . . . . . . . . . . . . . . . . . . . 

Getting Started 275. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Changes to the Project Files 276. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Looking Over the UI Flow 278. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Introducing go_router 281. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Creating the go_router 282. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Using Your Router 284. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Adding Screens 285. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Setting Up Your Error Handler 285. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Adding the Login Route 287. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Adding the Home Route 288. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Handling Redirects 292. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Adding the Restaurant Route 293. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Key Points 297. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Where to Go From Here? 297. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 9: Deep Links & Web URLs 299. . . . . . . . . . . . . . . . . . . . . . . . 
Understanding Deep Links 301. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Getting Started 303. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Overview of Yummy Paths 305. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Router API Recap 309. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Testing Deep Links 311. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Running the Web App 322. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Key Points 326. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Where to Go From Here? 326. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Flutter Apprentice

 8



Section IV: Networking, Persistence & State 327. . . . . 

Chapter 10: Handling Shared Preferences 328. . . . . . . . . . . . . . . . . 
Getting Started 333. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Saving Data 335. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

The shared_preferences Plugin 335. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Key Points 347. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Where to Go From Here? 347. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 11: Serialization With JSON 348. . . . . . . . . . . . . . . . . . . . . . 
What is JSON? 349. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Automating JSON Serialization 351. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Creating Model Classes 352. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Key Points 361. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Where to Go From Here? 361. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 12: Networking in Flutter 362. . . . . . . . . . . . . . . . . . . . . . . . . 
Signing Up With the Recipe API 363. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Using the HTTP package 368. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Connecting to the Recipe Service 369. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Updating the User Interface 372. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Why Chopper? 374. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Preparing to use Chopper 374. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Preparing the Recipe Service 377. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Converting Request and Response 378. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Encoding and Decoding JSON 380. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Using Interceptors 383. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Generating the Chopper File 385. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Using the Chopper Client 387. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Key Points 391. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Where to Go From Here? 391. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 13: Managing State 392. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Architecture 393. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Flutter Apprentice

 9



Why You Need State Management 394. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Widget State 395. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Application State 396. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Managing State in Your App 396. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Other State Management Libraries 416. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Key Points 418. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Where to Go From Here? 418. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 14: Working With Streams 419. . . . . . . . . . . . . . . . . . . . . . . . 
Types of Streams 420. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Adding Streams to Recipe Finder 423. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Sending Recipes Over the Stream 428. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Exercise 429. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Switching Between Services 430. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Adding Streams to Bookmarks 431. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Adding Streams to Groceries 432. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Key Points 437. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Where to Go From Here? 437. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 15: Saving Data Locally 438. . . . . . . . . . . . . . . . . . . . . . . . . . . 
Databases 439. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Adding a Database to Recipe Finder 441. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Using the Drift Library 443. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Key Points 464. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Where to Go From Here? 464. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Section V: Working With Firebase Cloud 
Firestore 465. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 16: Firebase Cloud Firestore 466. . . . . . . . . . . . . . . . . . . . . . 
Getting Started 467. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

What is Cloud Firestore? 468. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Setting Up a Firebase Project 470. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Adding Firebase 476. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Flutter Apprentice

 10



Adding Authentication 484. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Understanding Firestore Data Storage 487. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Creating Cloud Firestore Database 489. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Modeling Data 494. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Adopting Riverpod 497. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Creating the Login Screen 498. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Adding Message Data Model 505. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Creating New Messages 509. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Reactively Displaying Messages 511. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Key Points 517. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Where to Go From Here? 517. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Section VI: Testing Your Flutter App 518. . . . . . . . . . . . . . 

Chapter 17: Introduction to Testing 519. . . . . . . . . . . . . . . . . . . . . . . . 
Improving Code Quality With Tests 520. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Learning About Tests 521. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Adding Unit Tests 524. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Understanding Mocks 531. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Making Your Code Testable 533. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Mocking With Mockito 534. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Key Points 539. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Where to Go From Here? 539. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 18: Widget Testing 540. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Learning About Widget Tests 541. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Adding Your First Widget Test 542. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Testing IngredientCard’s Behaviors 545. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Understanding Golden Tests 548. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Writing a Golden Test 550. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Challenges 555. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Key Points 556. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Where to Go From Here? 556. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Flutter Apprentice

 11



Section VII: Deployment 557. . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 19: Platform-Specific App Assets 558. . . . . . . . . . . . . . . . . 
Setting the App Icon 559. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Setting up iOS Icon and Launch Assets 560. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Adding an iOS Launch Screen 565. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Setup macOS Icons 568. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Set Up Android App Icon and Launch Assets 571. . . . . . . . . . . . . . . . . . . . . . . . 

Set Up Web App Icon and Title 580. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Key Points 582. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Where to Go From Here? 582. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 20: Build & Release an Android App 583. . . . . . . . . . . . . . 
Set Up for Release 584. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Build an App Bundle 589. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Uploading to The Google Play Store 590. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Uploading a Build 606. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Distribution 609. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Key Points 614. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Where to Go From Here? 614. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 21: Build & Release an iOS App 615. . . . . . . . . . . . . . . . . . . 
Creating the Signing 616. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Setting up the App Store 624. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Uploading to the App Store 628. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Sharing Builds Through TestFlight 636. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Key Points 647. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Where to Go From Here? 647. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Conclusion 648. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Appendices 649. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Appendix A: Chapter 5 Solution 1 650. . . . . . . . . . . . . . . . . . . . . . . . . . 

Flutter Apprentice

 12



Appendix B: Chapter 5 Solution 2 653. . . . . . . . . . . . . . . . . . . . . . . . . . 

Flutter Apprentice

 13



LBook License

By purchasing Flutter Apprentice, you have the following license:

• You are allowed to use and/or modify the source code in Flutter Apprentice in as 
many apps as you want, with no attribution required.

• You are allowed to use and/or modify all art, images and designs that are included 
in Flutter Apprentice in as many apps as you want, but must include this attribution 
line somewhere inside your app: “Artwork/images/designs: from Flutter Apprentice, 
available at www.kodeco.com”.

• The source code included in Flutter Apprentice is for your personal use only. You 
are NOT allowed to distribute or sell the source code in Flutter Apprentice without 
prior authorization.

• This book is for your personal use only. You are NOT allowed to reproduce or 
transmit any part of this book by any means, electronic or mechanical, including 
photocopying, recording, etc. without previous authorization. You may not sell 
digital versions of this book or distribute them to friends, coworkers or students 
without prior authorization. They need to purchase their own copies.

All materials provided with this book are provided on an “as is” basis, without 
warranty of any kind, express or implied, including but not limited to the warranties 
of merchantability, fitness for a particular purpose and noninfringement. In no event 
shall the authors or copyright holders be liable for any claim, damages or other 
liability, whether in an action of contract, tort or otherwise, arising from, out of or in 
connection with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this guide are the properties 
of their respective owners.

 14



Before You Begin

This section tells you a few things you need to know before you get started, such as 
what you’ll need for hardware and software, where to find the project files for this 
book, and more.

 15



iWhat You Need

To follow along with this book, you’ll need the following:

• Xcode 15.0.1 or later. Xcode is iOS’s main development tool, so you need it to 
build your Flutter app for iOS. You can download the latest version of Xcode from 
Apple’s developer site here: apple.co/2asi58y or from the Mac App Store. Xcode 
15.0.1 requires a Mac running macOS Ventura (13) or later.

Note: You also have the option of using Linux or Windows, but you won’t be 
able to install Xcode or build apps for iOS on those platforms.

• Cocoapods 1.14.2 or later. Cocoapods is a dependency manager Flutter uses to 
run code on iOS.

• Flutter SDK 3.16.9 or later. You can download the Flutter SDK from the official 
Flutter site at https://flutter.dev/docs/get-started/install/macos. Installing the 
Flutter SDK will also install the Dart SDK, which you need to compile the Dart 
code in your Flutter apps.

 16



• Android Studio 2023.1.1 or later, available at https://developer.android.com/
studio. This is the IDE in which you’ll develop the sample code in this book. It also 
includes the Android SDK and the build system for running Flutter apps on 
Android.

• Flutter Plugin for Android Studio 77.2.1 or later, installed by going to Android 
Studio Preferences on macOS (or Settings on Windows/Linux) and choosing 
Plugins, then searching for “Flutter”.

You have the option of using Visual Studio Code for your Flutter development 
environment instead of Android Studio. You’ll still need to install Android Studio to 
have access to the Android SDK and an Android emulator. If you choose to use Visual 
Studio Code, follow the instructions on the official Flutter site at https://flutter.dev/
docs/get-started/editor?tab=vscode to get set up.

Chapter 1, “Getting Started“ explains more about Flutter history and architecture. 
You’ll learn how to start using the Flutter SDK, then you’ll see how to use Android 
Studio and Xcode to build and run Flutter apps.

Flutter Apprentice What You Need

 17



iiBook Source Code & 
Forums

Book Source Code
The materials for this book are all available here:

• https://github.com/kodecocodes/flta-materials/archive/refs/heads/editions/4.0.zip

You can download the entire set of materials for the book from that page.

Forum
We’ve also set up an official forum for the book at https://forums.kodeco.com/c/
books/flutter-apprentice/. This is a great place to ask questions about the book or to 
submit any errors you may find.

 18



“To my wife and daughter who support me unconditionally. 
Thank you for the silly nights, profound conversations and 

unmeasurable love.”

— Alejandro Ulate Fallas

“To my wife and family for letting me create and learn new 
things.”

— Kevin David Moore

“To my loving parents and sister. Thank you for your patience, 
love, support and always being there for me.”

— Vincent Ngo

“To Angela Yu for introducing me to Flutter. To Simon 
Lightfoot, the Flutter Whisperer, who never passes judgement 

when I need help. To my Flutter Apprentice team and the 
Flutteristas for all your support and encouragement. Most of 

all, thank you, Sean and Ryan, for your patience and love.”

— Stef Patterson

 19



About the Authors
Alejandro Ulate Fallas is an author of this book. He is a Mobile 
Developer based in Costa Rica and has been developing apps for 
over 6 years. He likes to learn new things and share it with others. 
In his spare time he enjoys handy, watching sports and spending 
time with his family.

Kevin David Moore is an author of this book. He is a Google 
Developer Expert in Flutter and has been developing Android apps 
for over 13 years and Flutter apps for over 3 years. He’s written 
several articles, books and videos at Kodeco. He is a cat lover with 
three cats and he is working towards his black belt in taekwondo.

Vincent Ngo is an author of this book. A software developer by 
day at a growing startup, and an iOS/Flutter enthusiast by night, he 
believes that sharing knowledge is the best way to learn and grow 
as a techie. Vincent starts every morning with a Cà phê sữa đá 
(Vietnamese coffee) to fuel his day. He enjoys playing golf, 
meditating, and watching animated movies. You can find him on 
Twitter: https://twitter.com/vincentngo2.

Stef Patterson is an author and tech editor for this book. Stef is 
passionate about helping others learn, which includes mentoring, 
writing and editing documentation, data wrangling and coding by 
example. Throughout most of her career, she has worked as a 
senior SQL developer and analyst. In 2013, she started creating iOS 
apps using kodeco.com books and articles. Now, thanks to Flutter, 
she is creating natively compiled cross-platform apps. Stef loves 
movies, trivia nights, Sci-Fi and spending time with her husband, 
daughter and their dogs. You can find her on Mastodon at https://
fluttercommunity.social/@GeekMeSpeakStef and Twitter at 
https://twitter.com/GeekMeSpeakStef.

Flutter Apprentice About the Team

 20



About the Editors
Leanna Guzzi is the English language editor of this book. She is a 
Brit who now lives in America with her husband and cat. She loves 
winter, cheese and all things literature. When she isn’t 
empowering young minds and convincing everyone to read, she is 
planning her next snowboarding or adventure holiday.

Shrihriday, one of the technical editors of this book, is also the 
founder of Codeaamy, an app development company. Recognized 
as a Google Developer Expert in Flutter and Dart, he is passionate 
about teaching and sharing his knowledge of Flutter. He has 
mentored many developers and frequently gives talks on Flutter 
and Dart, aiming to inspire and educate others in the developer 
community.

Cesare Rocchi is the final pass editor for this book. Cesare runs 
https://studiomagnolia.com, an interactive studio that creates 
compelling web and mobile applications. He blogs at https://
www.upbeat.it. You can find him on Twitter at https://twitter.com/
_funkyboy.

Flutter Apprentice About the Team

 21



vAcknowledgements

Content Development
We would like to thank Tim Sneath and Chris Sells who are former members of 
Google’s Flutter team. Both provided key insights and constant encouragement 
during the gestation and development of this book.

We would also like to thank Joe Howard for his work as an FPE for the book in its 
early stages. Joe’s path to software development began in the fields of computational 
physics and systems engineering. He started as a web developer and also has been a 
native mobile developer on iOS and Android since 2009. Joe has a passion for system 
and enterprise architecture including building robust, testable, maintainable, and 
scalable systems. He currently focuses on the full stack using web frameworks like 
React and Angular, Node.js microservices, GraphQL, and devops tools like Docker, 
Kubernetes, and Terraform. He lives in Boston and is a Senior Architect at CVS 
Health.

Finally, thanks to Michael Katz and Vincenzo Guzzi for writing previous versions 
of some chapters included in this book.

 22



viIntroduction

Welcome to Flutter Apprentice!

Flutter is an incredible user interface (UI) toolkit that lets you build apps for iOS and 
Android — and even the web and desktop platforms like macOS, Windows and Linux 
— all from a single codebase.

Flutter has all the benefits of other cross-platform tools, especially because you’re 
targeting multiple platforms from one codebase. Furthermore, it improves upon 
most cross-platform tools thanks to a super-fast rendering engine that makes your 
Flutter apps perform as native apps.

In addition, Flutter features are generally independent of native features, since you 
use Flutter’s own type of UI elements, called widgets, to create your UI. And Flutter 
has the ability to work with native code, so you can integrate your Flutter app with 
native features when you need to.

If you’re coming from a platform like iOS or Android, you’ll find the Flutter 
development experience refreshing! Thanks to a feature called “hot reload”, you 
rarely need to rebuild your apps as you develop them. A running app in a simulator 
or emulator will refresh with code changes automatically as you save your source 
files!

In this book, you’ll see how to build full-featured Flutter apps, gain experience with a 
wide range of Flutter widgets and learn how to deploy your apps to mobile app 
stores.

 23



How to Read This Book
In the first section of the book, you’ll learn how to set up a Flutter development 
environment. Once that’s done, you’ll start building your first Flutter app.

The next two sections focus on UI development with Flutter widgets. You’ll see just 
how impressive Flutter user interfaces can be.

The fourth section switches to building a new app. You’ll use it to learn about using 
networking and databases with Flutter, as well as the all-important topic of state 
management.

The fifth section teaches you how to work with Firebase Cloud Firestore. In 
particular you’ll learn how to add an instant messaging feature to the Yummy app.

The sixth section is about testing. You’ll learn how to take advantage of unit and 
widget tests to make sure you app behaves as expected.

The seventh section shows you how to incorporate platform-specific assets into your 
app, then demonstrates how to deploy your apps to the mobile app stores.

Here’s a breakdown of these seven main sections of the book:

Section I: Build Your First Flutter App
The chapters in this section introduce you to Flutter, get you up and running with a 
Flutter development environment and walk you through building your first Flutter 
app.

You’ll learn about where Flutter came from and why it exists, understand the 
structure of Flutter projects and see how to create the UI of a Flutter app.

You’ll also get your first introduction to the key component found in Flutter user 
interfaces: widgets!

Section II: Everything’s a Widget
In this section, you’ll start to build a full-featured recipe app named Yummy. You’ll 
gain an understanding of the wide range of widgets available in Flutter and put them 
to use. Then you’ll learn the theory of how widgets work behind the scenes.

Finally, you’ll dive deeper into layout widgets, scrollable widgets and interactive 
widgets.

Flutter Apprentice Introduction

 24



Section III: Navigating Between Screens
You’ll continue working on the Yummy app in this section, learning about 
navigating between screens and working with deep links.

Topics you’ll learn include Navigator 2.0 and Flutter Web.

Section IV: Networking, Persistence & State
Most apps interact with the network to retrieve data and then persist that data 
locally in some form of cache, such as a database. In this section, you’ll build a new 
app that lets you search the Internet for recipes, bookmark recipes and save their 
ingredients into a shopping list.

You’ll learn about making network requests, parsing the network JSON response and 
saving data in a SQLite database. You’ll also get an introduction to using Dart 
streams.

Finally, this section will dive deeper into the important topic of app state, which 
determines where and how to refresh data in the UI as a user interacts with your app.

Section V: Working With Firebase Cloud 
Firestore
When it comes to storing data in the cloud you can build your own backend system 
or you can leverage an existing system, built exactly for that.

This section will explain how to use Firebase Cloud Firestore to implement a 
messaging feature into your app. You’ll learn how to integrate Firebase into your 
project, how to set up authentication and how to make queries to populate your UI.

Section VI: Testing your Flutter app
Building an app is fun, but along the way you’ll add features, tweak flows and fix 
bugs. How do you make sure that a set of changes doesn’t introduce bugs or issues in 
a previous version of the app? Enter testing. Testing helps you mitigate the risk of 
introducing issues into an existing app and to prevent regressions.

In this section you’ll learn about both unit and widget tests. You’ll see how unit tests 
are a good fit to keep in check your business logic. Finally, you’ll learn how to make 
use of widget tests to verify that your UI widgets are rendered as expected.

Flutter Apprentice Introduction

 25



Section VII: Deployment
Building an app for your own devices is great; sharing your app with the world is 
even better!

In this section, you’ll go over the steps and processes to release your apps to the iOS 
App Store and Google Play Store. You’ll also see how to use platform-specific assets 
in your apps.

Flutter Apprentice Introduction

 26



Section I: Build Your First 
Flutter App

The chapters in this section will introduce you to Flutter, get you up and running 
with a Flutter development environment and walk you through building your first 
Flutter app.

You’ll learn about where Flutter came from and why it exists, understand the 
structure of Flutter projects, and see how to create the user interface of a Flutter app.

You’ll also get your first introduction to the key component found in Flutter user 
interfaces: Widgets!

 27



1Chapter 1: Getting Started

By Michael Katz & Alejandro Ulate

Congratulations. By opening “The Flutter Apprentice”, you’ve taken your first step 
toward becoming a Flutter master. This book will be your guide to learning the 
Flutter UI Toolkit, Google’s platform for building apps for mobile, desktop and web 
from a single codebase.

The eight sections of this book will progressively teach you how to create an app 
using Flutter. You’ll learn all about widgets, which are components that you 
compose to build your apps. You’ll also learn about navigation and transitions, 
handling state and network management. Finally, you’ll learn how to deploy the app 
to testers and users.

This book assumes you’re familiar with development for a native mobile platform, 
such as iOS with Swift or Android with Kotlin… but you don’t need to be an expert by 
any means. These chapters will show you how to build a Flutter app from scratch, so 
if you’re completely new, you’ll catch up just fine.

 28



What is Flutter?
In the simplest terms, Flutter is a software development toolkit from Google for 
building cross-platform apps. Flutter apps consist of a series of packages, plugins 
and widgets — but that’s not all. Flutter is a process, a philosophy and a community 
as well.

It’s also the easiest way to get an app up and running on any one platform, let alone 
multiple. You can be more productive than you thought possible thanks to Flutter’s 
declarative, widget-based UI structure, first-class support for reactive programming, 
cross platform abstractions and its virtual machine that allows for hot reloading of 
code changes.

One thing Flutter is not is a language. Flutter uses Dart as its programming 
language. If you know Kotlin, Swift, Java or TypeScript, you’ll find Dart familiar, since 
it’s an object-oriented C-style language.

You can compile Dart to native code, which makes it fast. It also uses a virtual 
machine (VM) with a special feature: hot reload. This lets you update your code and 
see the changes live without redeploying it.

For years, programmers have been promised the ability to write once and run 
anywhere; Flutter may well be the best attempt yet at achieving that goal.

Seriously?
Yes, Flutter is that awesome. You can build a high-quality app that’s performant and 
looks great, very quickly. This book will show you how.

In the first few chapters, you’ll get your feet under you with the basic UI. By the end 
of the book, you’ll be able to build apps that look great and perform well.

And it truly does work well with both desktop and web.

Flutter Apprentice Chapter 1: Getting Started

 29



Other cross-platform toolkits have tried to abstract the underlying OS by adding a 
layer on top of the native UI layer. This leaves the developer with the lowest common 
set of features available — not to mention, degraded performance.

In contrast, Flutter’s widgets exist parallel to native widgets due to its custom user 
interface rendering engine, Skia (https://skia.org). That means that the toolkit 
controls how the UI looks and behaves, which allows for consistent behavior between 
platforms. From a performance perspective, there’s no penalty from additional layers 
of abstraction.

Who’s Flutter for?

Flutter is for both the new or experienced developer who want to start an app with 
minimal overhead. Flutter is for someone looking to make an app that runs on 
multiple devices, either right away or in the future. It’s for someone who prefers to 
build declarative UIs with the support of a large, open-source community.

Additionally, Flutter is for developers with experience on one platform who want to 
develop an app that works across many. This is doubly true if you’re a web developer 
with deep JavaScript or TypeScript knowledge, but haven’t gotten started on mobile 
or desktop yet. You can learn major platforms at once!

If you don’t have an existing app, Flutter is a great way to develop something quickly 
to validate an idea or to build a full, multi-platform production app.

On the other hand, if you already have a great app on one platform with the native 
toolkits, then you should evaluate your ongoing maintenance costs to see if it makes 
sense to build out for the other platforms by using Flutter or the native toolkits.

Flutter Apprentice Chapter 1: Getting Started

 30



Great Things About Flutter
Here’s just a sample of some of the great things about using Flutter:

• Flutter is open-source. That means you can watch its evolution and know what’s 
coming — and even try out new features in development. You can also create your 
own patches and packages or contribute code. And you can be involved in the 
community to help others or contribute to its future direction.

• Flutter uses the Dart programming language. Dart (https://dart.dev) is a modern, 
UI-focused language that’s compiled to native ARM or x86 code or cross-compiled 
to JavaScript. It supports all the great language features people have come to like 
and expect, such as async/await for concurrency management and type 
inference for clean, type-safe code.

• One of the best features of Flutter is hot reload. Hot reload allows you to make 
updates to the code and the UI that rebuild the widget tree, then deliver them live 
to emulators and devices — without having to reload state or recompile your app.

• Sometimes, you make changes that affect too much of the widget tree or app state 
to hot reload easily. In those cases, you can use hot restart. Hot restart takes a 
little longer than hot reload because it loads the changes, restarts the app and 
resets the state, but it’s still faster than a full restart, which recompiles and 
redeploys. You need to use a full restart when you make certain significant 
changes to the code, including anything changing state management.

• These restart features leverage Dart’s VM to inject the updated code, so they’re 
only available in debug mode and not in a production app.

• Other cross-platform toolkits produce apps with a stock look and feel — boring! 
Flutter is purposely attractive, using Google’s Material Design out of the box. It’s 
also easy to apply Cupertino widgets to get an iOS-like appearance. The UI is fully 
customizable, allowing you to make an app that looks right for your brand.

• Flutter comes with great animations and transitions, and you can build custom 
widgets as well. Because widgets are composable, you can be creative and flexible 
with the UI. For example, you can put videos behind a scroll view or put a toolbar 
on top of a canvas.

• The sheer number of widgets (https://docs.flutter.dev/ui/widgets) and the 
declarative syntax for building UIs lets you be extremely productive, building a 
rich app quickly with minimal overhead and boilerplate. Stateful widgets are 
bound to data and automatically update as the data model changes.

Flutter Apprentice Chapter 1: Getting Started

 31



• If you’ve used SwiftUI or Jetpack Compose recently, you’re already familiar with 
many of Flutter’s concepts. But Flutter is even better — it has fewer limitations on 
the tools and you can build for multiple platforms at once.

• Flutter was designed with accessibility in mind, with out-of-the-box support for 
dynamic font sizes and screen readers and a ton of best practices around language, 
contrast and interaction methods.

• Platform integration is important for accessing libraries written in other languages 
or using platform-specific features that don’t have a Flutter support package yet. 
Flutter supports C and C++ interoperability as well as platform channels for 
connecting to Kotlin and Java on Android and Swift or Objective-C on iOS.

Are You Convinced Yet?
If you’re not yet convinced that there’s a place for Flutter, check out the Flutter 
showcase (https://flutter.dev/showcase) that shows multiple apps built with Flutter.

There, you’ll see the top companies using Flutter and how diverse the apps you can 
make with it are. These aren’t limited to “JSON-in-a-table” apps, but also include 
media-rich dynamic and interactive apps.

These apps help you be more productive, better informed, communicate more easily 
and have more fun. Flutter’s native performance and system integrations make it a 
better choice than a web or hybrid app for most mobile applications.

Popular apps from some of the world’s biggest companies are built with Flutter. 
These include:

• Abbey Road Studios

• BMW

• eBay

• Google Pay

• Hamilton

• Tencent

• Toyota

• US Department of Veterans Affairs

Flutter Apprentice Chapter 1: Getting Started

 32



Take a look at some recent examples:

When Not to Use Flutter
Flutter isn’t the best tool for every application. Here are some areas where Flutter is 
an evolving platform.

Games and Audio

Creating casual games with Flutter is out of the scope of this book, but Kodeco 
(https://www.kodeco.com/) does have Flutter game tutorials, including some 2D 
games built using the Flame Engine (https://flame-engine.org) that is written in 
Flutter. Flutter also has a casual games toolkit (https://flutter.dev/games) to help you 
get started.

For complex 2D and 3D games, you’d probably prefer to base your app on a cross-
platform game engine technology like Unity or Unreal. They have more domain-
specific features like physics, sprite and asset management, game state management, 
multiplayer support and so on.

Flutter doesn’t have a sophisticated audio engine yet, so audio editing or mixing 
apps are at a disadvantage over those that are purpose-built for a specific platform.

Flutter Apprentice Chapter 1: Getting Started

 33



Apps With Specific Native SDK Needs

Flutter supports many, but not all, native features. Fortunately, you can usually 
create bridges to platform-specific code. However, if the app is highly integrated 
with a device’s features and platform SDKs, it might be worth writing the app using 
the platform-specific tools. Flutter also produces app binaries that are bigger in size 
than those built with platform frameworks.

Flutter might not be a practical choice if you are only interested in a single platform 
app and you have deep knowledge of that platform’s tools and languages. For 
example, if you’re working with a highly-customized iOS app based on CloudKit that 
uses all the native hardware, MLKit, StoreKit, extensions and so on, maintaining and 
taking advantage of those features will be easier using SwiftUI. Of course, the same 
goes for a heavily-biased Android app using Jetpack Compose.

Certain Platforms

Flutter doesn’t support every platform. Platforms like watchOS, tvOS and certain iOS 
app extensions have specific needs that Flutter doesn’t yet support.

In these instances, you’ll have to build those components natively and add them to 
your Flutter-based app. Depending on how sophisticated the apps is, it might not be 
worth the hassle to write both native and Flutter code.

Flutter’s History
Flutter comes from a tradition of trying to improve web performance. It’s built on 
top of several open-source technologies developed at Google to bring native 
performance and modern programming to the web through Chrome.

The Flutter team chose the Dart language, which Google also developed, for its 
productivity enhancements. Its object-oriented type system and support for reactive 
and asynchronous programming give it clear advantages over JavaScript. Most 
importantly, Google built the Dart VM into the Chrome browser, allowing web apps 
written in Dart to run at native speeds.

Another piece of the puzzle is the inclusion of Skia as the graphics rendering layer. 
Skia is another Google-based open source project that powers the graphics on 
Android, Chrome browsers, Chrome OS and Firefox. It runs directly on the GPU using 
Vulkan on Android and Metal on iOS, making the graphics layer fast on mobile 
devices. Its API allows Flutter widgets to render quickly and consistently, regardless 
of the host platform.

Flutter Apprentice Chapter 1: Getting Started

 34



Note: Flutter is migrating to a new rendering engine called Impeller that 
brings better performance and consistency. It provides the same benefits as 
Skia and improves upon them. For the most part, you won’t have to interact 
directly with it, but it’s important that you are aware of its existence since 
Impeller is the default rendering engine for all iOS apps developed with 
Flutter 3.10 and above.

You may also see warning message when running your apps, see the Impeller 
documentation (https://docs.flutter.dev/perf/impeller) for more details or to 
report any issues.

The Flutter Architecture
Flutter has a modular, layered architecture. This allows you to write your application 
logic once and have consistent behavior across platforms, even though the 
underlying engine code differs depending on the platform. The layered architecture 
also exposes different points for customization and overriding, as necessary.

The Flutter architecture consists of three main layers:

1. The Framework layer is written in Dart and contains the high-level libraries that 
you’ll use directly to build apps. This includes the UI theme, widgets, layout and 
animations, gestures and foundational building blocks. Alongside the main 
Flutter framework are plugins: high-level features like JSON serialization, 
geolocation, camera access, in-app payments and so on. This plugin-based 
architecture lets you include only the features your app needs.

Flutter Apprentice Chapter 1: Getting Started

 35



2. The Engine layer contains the core C++ libraries that make up the primitives that 
support Flutter apps. The engine implements the low-level primitives of the 
Flutter API, such as I/O, graphics, text layout, accessibility, the plugin 
architecture and the Dart runtime. The engine is also responsible for rasterizing 
Flutter scenes for fast rendering onscreen.

3. The Embedder is different for each target platform and handles packaging the 
code as a stand-alone app or embedded module.

Each of the architecture layers is made up of other sublayers and modules, making 
them almost fractal. Of particular import to general app development is the makeup 
of the framework layer:

The Flutter framework consists of several sublayers:

• At the top is the UI theme, which uses either the Material (Android) or Cupertino 
(iOS) design language. This affects how the controls appear, allowing you to make 
your app look just like a native one.

• The widget layer is where you’ll spend the bulk of your UI programming time. 
This is where you compose design and interactive elements to make up the app.

• Beneath the widgets layer is the rendering layer, which is the abstraction for 
building a layout.

• The foundation layer provides basic building blocks, like animations and 
gestures, that build up the higher layers.

Flutter Apprentice Chapter 1: Getting Started

 36



What’s Ahead
This book is divided into six sections:

• Section 1 is the introduction. You’re here! In this section, you’ll get an overview 
of Flutter, learn how to get started and make sure you have everything set up to 
develop great apps. You’ll build a simple app to get a taste of the Dart language 
and Flutter SDKs.

• Section 2 is all about widgets, the building blocks you use to make your app.

• Section 3 covers navigation and deep links. If you think about widgets as making 
up screens, navigation ties them together to let the user accomplish various tasks 
within the app.

• Section 4 goes over state and data. You’ll learn how to save data and work with 
local persistence and networking.

• Section 5 shows you how to build an instant messaging application using Firebase 
Cloud Firestore.

• Section 6 covers the importance of testing your Flutter apps. You’ll learn how to 
challenge the quality of your apps with unit and widget tests.

• Section 7 takes you in a journey to add proper accessibility support to your apps 
and make it truly available for all users.

By the end of the book, you’ll be able to take an idea, turn it into a great-looking 
multi-platform app and submit it for publication.

Getting Started
Now that you’ve decided Flutter is right for you, your next step is to get the tools 
necessary to build Flutter apps: the Flutter SDK and Dart compiler. You’ll also need 
an IDE with a Flutter plugin along with the tools to build and deploy for the various 
platforms. The latter means Xcode for iOS and Android Studio for Android.

To start, visit https://flutter.dev/. This portal is the source of truth for any 
installation instructions or API changes that occur between this book’s publication 
and the time you read it. If there are any contradictions, the information at 
flutter.dev supersedes.

Flutter Apprentice Chapter 1: Getting Started

 37



What You Need
• A computer. You can develop Flutter apps on Windows, macOS, Linux or 

ChromeOS. However, Xcode only runs on macOS, making a Mac necessary to build 
and deploy apps for iOS.

Note: Because of the Xcode limitation for macOS, this book uses the Flutter 
toolchain on Mac. You can follow along on any platform of your choice — just 
skip any iOS- or Mac-specific steps.

• The Flutter SDK.

• An editor, such as Android Studio or Visual Studio Code.

• At least one device. You can run in an iOS Simulator or Android emulator, but 
running Flutter apps on a physical device will give you the true user experience.

• Developer accounts (optional). To deploy to the Apple App Store or Google Play 
Store, you’ll need a valid account on each.

Getting the Flutter SDK
The first step is to download the SDK. You can follow the steps on flutter.dev or 
jump right into Flutter’s release page (https://docs.flutter.dev/release).

One thing to note is that Flutter organizes its SDK around channels, which are 
different development branches. New features or platform support will be available 
first on a beta channel for developers to try out. This is a great way to get early 
access to certain features like new platforms or native SDK support.

For this book and development in general, use the stable channel. That branch has 
been vetted and tested and has less chance of breaking. Follow the instructions to 
download the SDK (https://docs.flutter.dev/get-started). Installation is as simple as 
unarchiving and putting the bin folder in your path.

Note: Because installation varies based on computer platform, this book will 
not walk through the details installation for all platforms. See Flutter 
documentation (https://docs.flutter.dev) for detailed installation instructions 
if you are using a different platform for app development.

Flutter Apprentice Chapter 1: Getting Started

 38



Once you have Flutter installed, you’ll have access to the Flutter command-line app, 
which is your starting point. To check you’ve set it up correctly, run the following 
command in a terminal:

flutter help

In response, you should see the main help instructions:

Manage your Flutter app development. 
 

Common commands: 
 

  flutter create <output directory> 
    Create a new Flutter project in the specified directory. 

 
  flutter run [options] 
    Run your Flutter application on an attached device or in an 
emulator. 

 
Usage: flutter <command> [arguments] 
...

These flutter subcommands are a gateway to all the tools that come with Flutter. 
You’ll see project management tools, package management tools and tools to run 
and test your apps. You’ll dive into many of these in this and future chapters.

Getting Everything Else
In addition to the Flutter SDKs, you’ll need Java, the Android SDK, the iOS SDKs and 
an IDE with Flutter extensions. To make this process easier, Flutter includes the 
Flutter Doctor, which guides you through installing all the missing tools.

Just run:

flutter doctor

That checks for all the necessary components and provides the links or instructions 
to download ones you’re missing.

Here’s an example:

Doctor summary (to see all details, run flutter doctor -v): 
[✓] Flutter (Channel stable, 3.13.4, on macOS 13.5.2 21G5037d 
darwin-arm, locale en-US) 
[✗] Android toolchain - develop for Android devices 
    ✗ Flutter requires Android SDK 30 and the Android BuildTools 
30.0.2

Flutter Apprentice Chapter 1: Getting Started

 39



      To update using sdkmanager, run: 
        "/Users/michael/Library/Android/sdk/tools/bin/
sdkmanager" 
        "platforms;android-30" "build-tools;30.0.2" 
      or visit https://flutter.dev/docs/get-started/install/
macos 
      for detailed instructions. 
[!] Xcode - develop for iOS and macOS (Xcode 14.3.1) 
    ✗ CocoaPods not installed. 
        CocoaPods is used to retrieve the iOS platform side's 
plugin 
        code that responds to your plugin usage on the Dart 
side. 
        Without CocoaPods, plugins will not work on iOS or 
macOS. 
        For more info, see https://flutter.dev/platform-plugins 
      To install: 
        sudo gem install cocoapods 
[✗] Chrome - develop for the web (Cannot find Chrome executable 
at 
    /Applications/Google Chrome.app/Contents/MacOS/Google 
Chrome) 
    ! Cannot find Chrome. Try setting CHROME_EXECUTABLE to a 
Chrome executable. 
[!] Android Studio (not installed) 

 
[☠] Connected device (the doctor check crashed) 
    ✗ Due to an error, the doctor check did not complete. If the 
error message below is not helpful, please let us know 
      about this issue at https://github.com/flutter/flutter/
issues. 
    ✗ Exception: Unable to run "adb", check your Android SDK 
installation and ANDROID_HOME environment variable: 
      /Users/michael/Library/Android/sdk/platform-tools/adb 

 
! Doctor found issues in 4 categories.

In this example output, Flutter Doctor has identified a series of issues: mainly, no 
Java, an outdated Android toolchain and that CocoaPods, Android Studio and Google 
Chrome are missing.

The tool has helpfully suggested commands and links to get the missing 
dependencies. The tool also terminated before completing, which is common if it 
doesn’t find major dependencies.

For your specific setup, follow the suggestions to install whatever you’re missing. 
Then keep running flutter doctor until you get all green checkmarks. You’ll likely 
have to run it more than a couple of times to clear all the issues.

Flutter Apprentice Chapter 1: Getting Started

 40



Note: If Flutter Doctor’s suggestions don’t work, you may have to manually 
install missing tools, like Java or Android Studio, by following the instructions 
on their respective websites. Just take it one step at a time. Setting up the 
development environment is the hardest part of working with Flutter.

Setting Up an IDE
The Flutter team officially supports three editors: Android Studio, Visual Studio 
Code and Emacs. However, there are many other editors that support the Dart 
language, work with the Flutter command line or have third-party Flutter plugins.

This book’s examples use Android Studio, but the code and examples will all work in 
your editor of choice. Flutter Doctor will have you install this IDE anyway, to get all 
the Android tools, so using Android Studio keeps you from having to install 
additional editors. Additionally, Flutter Doctor will tell you to install the Android 
Studio Flutter plugin, which also triggers an install of the Dart plugin for Android 
Studio.

Once you go through all of the flutter doctor steps, you’ll have everything you 
need to create Flutter apps in Android studio. If you see New Flutter project in the 
Android Studio welcome window, you’re good to go.

Flutter Apprentice Chapter 1: Getting Started

 41



Trying It Out
Downloading all the components is the hardest part of getting a Flutter app up and 
running. Next, you’ll try actually building an app.

There are two recommended ways to create a new project: with the IDE or through 
the flutter command-line tool in a terminal. In this chapter, you’ll use the IDE 
shortcut and in the next chapter, you’ll use the command line.

In Android Studio, click the New Flutter Project option. Leave the default app 
selected and click the Next button to continue to the next screen.

For this example, you can keep the default values or change them to something more 
convenient. Click the Next button to continue.

The options here let you include platform support or change the package name. 
You’ll learn more about these options later. For now, click the Finish button.

Flutter Apprentice Chapter 1: Getting Started

 42



If you use Visual Studio Code, the process is similar. To create a new project, use 
View ▸ Command Palette… ▸ Flutter: New Project. After that, click through the 
project form that comes up.

With either editor, you might see pop-ups or messages to download or update 
various tools and components. Follow the directions until you resolve the messages.

For example, this Android Studio banner shows: ‘Pub get’ has not been run. 
Clicking Get dependencies resolves this.

Flutter Apprentice Chapter 1: Getting Started

 43



The Template Project
The default new project is the same in either editor. It’s a simple Flutter demo. The 
demo app counts the number of times you tap a button.

To give it a try, select a connected device, an iOS simulator or an Android emulator.

Launch the app by clicking the Run icon:

It might take a while to compile and launch the first time. When you’re done, you’ll 
see the following:

Flutter Apprentice Chapter 1: Getting Started

 44



Congratulations, you’ve made your first Flutter app! Click the button and see the 
increment response update the label.

All the code for this app is in lib/main.dart in the default project. Feel free to take a 
look at it.

Throughout the rest of this book, you’ll dive into Flutter apps, widgets, state, themes 
and many other concepts that will help you build beautiful apps.

Bonus: Try Hot Reload
You’ll learn a lot more about hot reload in future chapters, but it’s just too cool of a 
feature to not indulge in a little taste at this point. Before starting, adjust your IDE 
window so you can see both it and the simulator or emulator with your app running 
in it.

In main.dart, find the following Text widget:

Text( 
  'You have pushed the button this many times:', 
),

Next, change the string to: ‘Thou hast pushed the button this many times:’ to 
give it a faux-medieval flair.

Flutter Apprentice Chapter 1: Getting Started

 45



Here’s the not-so-tricky part: Just save the file. Now, look at the running app and 
observe the change.

Et voila! Your changes reload without stopping the app and redeploying.

Sometimes, saving the file does not automatically trigger the hot reload. In that case, 
just press the Hot Reload icon, which looks like a lightning bolt, in the toolbar.

If you’re trying out different simulators/emulators at the same time, you’ll need to 
do hot reload on each Run tab.

Flutter Apprentice Chapter 1: Getting Started

 46



Key Points
• Flutter is a software development toolkit from Google for building cross-

platform apps using the Dart programming language.

• With Flutter, you can build a high-quality app that’s performant and looks great, 
very quickly.

• Flutter is for both new and experienced developers who want to start a mobile 
app with minimal overhead.

• Install the Flutter SDK and associated tools using instructions found at Flutter’s 
documentation (https://flutter.dev).

• The flutter doctor command helps you install and update your Flutter tools.

• This book will use Android Studio as the IDE for Flutter development.

Where to Go From Here?
Your home for all things Flutter is flutter.dev (and dart.dev for the Dart language). If 
you get stuck at any of the installation steps, go there for updated instructions.

flutter.dev contains the official documentation and reference pages (https://
flutter.dev/docs). These will be your source for complete and up-to-date information 
about the SDKs.

Also, there’s the community around Flutter (https://flutter.dev/community), which 
has links to all the official Flutter communities on multiple social media platforms. 
In particular, check out Google Developers’ Flutter YouTube channel (https://
www.youtube.com/c/flutterdev/).

Finally, available on kodeco.com is Dart Apprentice: Fundamentals (https://
www.kodeco.com/books/dart-apprentice-fundamentals), a companion book to learn 
more about Dart. For a quick start, check out this free Dart Basics article (https://
www.kodeco.com/4482551-dart-basics) or the video course Programming in Dart: 
Fundamentals (https://www.kodeco.com/4921688-programming-in-dart-
fundamentals).

Flutter Apprentice Chapter 1: Getting Started

 47



2Chapter 2: Hello, Flutter

By Michael Katz & Alejandro Ulate

Now that you’ve had a short introduction, you’re ready to start your Flutter 
apprenticeship. Your first task is to build a basic app from scratch, giving you the 
chance to get the hang of the tools and the basic Flutter app structure. You’ll 
customize the app and find out how to use a few popular widgets like ListView and 
Slider to update its UI in response to changes.

Creating a simple app will let you see just how quick and easy it is to build cross-
platform apps with Flutter — and it will give you a quick win.

By the end of the chapter, you’ll have built a lightweight recipe app. Since you’re just 
starting to learn Flutter, your app will offer a hard-coded list of recipes and let you 
use a Slider to recalculate quantities based on the number of servings.

 48



Here’s what your finished app will look like:

All you need to start this chapter is to have Flutter set up. If the flutter doctor 
results show no errors, you’re ready to get started. Otherwise, go back to Chapter 1, 
“Getting Started”, to set up your environment.

Creating a New App
There are two simple ways to start a new Flutter app. In the last chapter, you created 
a new app project through the IDE. Alternatively, you can create an app with the 
flutter command. You’ll use the second option here.

Open a terminal window, then navigate to the location where you want to create a 
new folder for the project. For example, you can use this book’s materials and go to 
flta-materials/02-hello-flutter/projects/starter/.

Creating a new project is straightforward. In the terminal, run:

flutter create recipes

This command creates a new app in a new folder, both named recipes. It has the 
demo app code, as you saw in the previous chapter, with support for running on iOS, 
Android, Linux, macOS, web and Windows.

Flutter Apprentice Chapter 2: Hello, Flutter

 49



Using your IDE, open the recipes folder as an existing project.

Build and run and you’ll see the same demo app as in Chapter 1, “Getting Started”.

Tapping the + button increments the counter.

Flutter Apprentice Chapter 2: Hello, Flutter

 50



Making the App Yours
The ready-made app is a good place to start because the flutter create command 
puts all the boilerplate together for you to get up and running. But this is not your 
app. It’s literally MyApp, as you can see near the top of main.dart:

class MyApp extends StatelessWidget {

This defines a new Dart class named MyApp which extends — or inherits from — 
StatelessWidget. In Flutter, almost everything that makes up the user interface is a 
Widget. A StatelessWidget doesn’t change after you build it. You’ll learn a lot 
more about widgets and states in the next section. For now, just think of MyApp as 
the container for the app.

Since you’re building a recipe app, you don’t want your main class to be named 
MyApp — you want it to be RecipesApp.

While you could change it manually in multiple places, you’ll reduce the chance of a 
copy-and-paste error or typo by using the IDE’s rename action instead. This lets you 
rename a symbol at its definition and all its callers at the same time.

In Android Studio, you can use the Refactor ▸ Rename menu item or by using the 
right-click menu.

Click on MyApp in class MyApp... and navigate to either refactor option.

In the popup, rename MyApp to RecipesApp and tap on the Refactor button.

Flutter Apprentice Chapter 2: Hello, Flutter

 51



The result will look like this:

void main() { 
  runApp(const RecipesApp()); 
} 

 
class RecipesApp extends StatelessWidget { 
  const RecipesApp({super.key});

main() is the entry point for the code when the app launches. runApp() tells Flutter 
which is the top-level widget for the app.

A hot reload won’t include the code changes you just made. To run the new code you 
need to perform a hot restart.

Note: As mentioned in Chapter 1, “Getting Started”, when you save your 
changes, hot reload automatically runs and updates the UI. If this doesn’t 
happen, check your IDE settings for Flutter to make sure it’s enabled. If you 
don’t want it to trigger it when you save changes you can run it manually. The 
shortcut for Android Studio is Option-Command-\.

With hot reload you can quickly see the effect of code changes and the app 
state is preserved. For example, if the user was in a “logged in” state before the 
code changed, a hot reload will preserve such a state and you won’t need to log 
in again to test your changes.

If you’ve made significant changes, like adding a new property to a state or 
changing main() like in the case above, then you need to hot restart, so that 
the new change is detected and included in the new build.

For even bigger changes, like adding dependencies or assets, you need to 
perform a full build and run.

Flutter Apprentice Chapter 2: Hello, Flutter

 52



In this specific case you won’t notice any change in the UI.

Styling Your App
To continue making this into a new app, you’ll customize the appearance of your 
widgets next.

Replace RecipesApp’s build() with:

// 1 
@override 
Widget build(BuildContext context) { 
  // 2 
  final ThemeData theme = ThemeData(); 
  // 3 
  return MaterialApp( 
    // 4 
    title: 'Recipe Calculator', 
    // 5 
    theme: theme.copyWith( 
        colorScheme: ColorScheme.fromSeed( 
          seedColor: Colors.greenAccent,

Flutter Apprentice Chapter 2: Hello, Flutter

 53



        ), 
    ), 
    // 6 
    home: const MyHomePage( 
      title: 'Recipe Calculator', 
    ), 
  ); 
}

This code changes the appearance of the app:

1. A widget’s build() method is the entry point for composing together other 
widgets to make a new widget. The @override annotation tells the Dart analyzer 
that this method is supposed to replace the default method from 
StatelessWidget.

2. A theme determines visual aspects like color. The default ThemeData will show 
the standard Material defaults.

3. MaterialApp uses Material Design and is the widget that will be included in 
RecipesApp.

4. The title of the app is a description that the device uses to identify the app. The 
UI won’t display this.

5. By copying the theme and replacing the color scheme with a custom one you are 
changing the app’s colors. Here, by using the special fromSeed constructor, you 
are generating shades and tones that ThemeData uses to style widgets following 
Material Design specifications.

6. This still uses the same MyHomePage widget as before, but now, you’ve updated 
the title and displayed it on the device.

Flutter Apprentice Chapter 2: Hello, Flutter

 54



When you relaunch the app now, you’ll see the same widgets, but they have a more 
sophisticated style.

You’ve taken the first step towards making the app your own by customizing the 
MaterialApp body. You’ll finish cleaning up the app in the next section.

Flutter Apprentice Chapter 2: Hello, Flutter

 55



Clearing the App
You’ve themed the app, but it’s still displaying the counter demo. Clearing the screen 
is your next step. To start, replace the existing _MyHomePageState class with:

class _MyHomePageState extends State<MyHomePage> { 
  @override 
  Widget build(BuildContext context) { 
    // 1 
    return Scaffold( 
      // 2 
      appBar: AppBar( 
        title: Text(widget.title), 
      ), 
      // 3 
      body: SafeArea( 
        // TODO: Replace child: Container() 
        // 4 
        child: Container(), 
      ), 
    ); 
  } 

 
// TODO: Add buildRecipeCard() here 
}

A quick look at what this shows:

1. A Scaffold provides the high-level structure for a screen. In this case, you’re 
using two properties.

2. AppBar gets a title property by using a Text widget that has a title passed in 
from home: MyHomePage(title: 'Recipe Calculator') in the previous step.

3. body has SafeArea, which keeps the app from getting too close to the operating 
system interfaces such as the notch or interactive areas like the Home Indicator 
at the bottom of some iOS screens.

4. SafeArea has a child widget, which is an empty Container widget.

Note: Some widgets like AppBar, can also receive custom appearance 
properties. In the template project generated by Flutter’s toolkit, AppBar has 
backgroundColor set to inversePrimary in _MyHomePageState. In this case, 
you’ve removed any custom appearance to AppBar which causes a change in 
it’s coloring.

Flutter Apprentice Chapter 2: Hello, Flutter

 56



One hot reload later, and you’re left with a clean app:

Building a Recipe List
An empty recipe app isn’t very useful. The app should have a nice list of recipes for 
the user to scroll through. Before you can display these, however, you need the data 
to fill out the UI.

Flutter Apprentice Chapter 2: Hello, Flutter

 57



Adding a Data Model
You’ll use Recipe as the main data structure for recipes in this app.

Create a new Dart file in the lib folder, named recipe.dart.

Add the following class to the file:

class Recipe { 
  String label; 
  String imageUrl; 
  // TODO: Add servings and ingredients here 

 
  Recipe( 
    this.label, 
    this.imageUrl, 
  ); 
  // TODO: Add List<Recipe> here 
} 

 
// TODO: Add Ingredient class here

This is the start of a Recipe model with a label and an image.

You’ll also need to supply some data for the app to display. In a full-featured app, 
you’d load this data either from a local database or a JSON-based API. For the sake of 
simplicity as you get started with Flutter, however, you’ll use hard-coded data in this 
chapter.

Add the following property to Recipe by replacing // TODO: Add List<Recipe> 
here with:

static List<Recipe> samples = [ 
  Recipe( 
    'Spaghetti and Meatballs', 
    'assets/2126711929_ef763de2b3_w.jpg', 
  ), 
  Recipe( 
    'Tomato Soup', 
    'assets/27729023535_a57606c1be.jpg', 
  ), 
  Recipe( 
    'Grilled Cheese', 
    'assets/3187380632_5056654a19_b.jpg', 
  ), 
  Recipe( 
    'Chocolate Chip Cookies', 
    'assets/15992102771_b92f4cc00a_b.jpg', 
  ),

Flutter Apprentice Chapter 2: Hello, Flutter

 58



  Recipe( 
    'Taco Salad', 
    'assets/8533381643_a31a99e8a6_c.jpg', 
  ), 
  Recipe( 
    'Hawaiian Pizza', 
    'assets/15452035777_294cefced5_c.jpg', 
  ), 
];

This is a hard-coded list of recipes. You’ll add more detail later, but right now, it’s 
just a list of names and images.

Note: A List is an ordered collection of items; in some programming 
languages, it’s called an array. List indexes start with 0.

You’ve created a List with images, but you don’t have any images in your project 
yet. To add them, go to Finder and copy the assets folder from the top level of 02-
hello-flutter in the book materials of your project’s folder structure. Then paste it 
into the project. When you’re done, it should live at the same level as the lib folder. 
That way, the app will be able to find the images when you run it.

You’ll notice that by copy-pasting in Finder, the folder and images automatically 
display in the Android Studio project list.

But just adding assets to the project doesn’t display them in the app. To tell the app 
to include those assets, open pubspec.yaml in the recipes project root folder.

Under # To add assets to your application... add the following lines:

assets: 
  - assets/

Flutter Apprentice Chapter 2: Hello, Flutter

 59



These lines specify that assets/ is an assets folder and must be included with the 
app. Make sure that the first line here is aligned with the uses-material-design: 
true  line above it.

After modifying pubspec.yaml your IDE might show a notification to get the 
dependencies for your project again:

This happens because pubspec.yaml works as your app’s manifest. So, when you 
change it, you also need to let Dart’s VM that it changed and it needs to update all 
the bundled code. Keep an eye out since these type of changes require that you fully 
restart your app.

Displaying the List
With the data ready to go, your next step is to create a place for the data to go to.

Back in main.dart, you need to import the data file. Add the following to the top of 
the file, under the other import lines:

import 'recipe.dart';

Next, in _MyHomePageState find and replace // TODO: Replace child: 
Container() and the two lines beneath it with:

// 4 
child: ListView.builder( 
  // 5 
  itemCount: Recipe.samples.length, 
  // 6 
  itemBuilder: (BuildContext context, int index) { 
    // 7 
    // TODO: Update to return Recipe card 
    return Text(Recipe.samples[index].label); 
  }, 
),

This code does the following:

4. Builds a list using ListView.

5. itemCount determines the number of rows the list has.  In this case, length is 
the number of objects in the Recipe.samples list.

Flutter Apprentice Chapter 2: Hello, Flutter

 60



6. itemBuilder builds the widget tree for each row.

7. A Text widget displays the name of the recipe.

Perform a hot reload now and you’ll see the following list:

Data is there, the next step is to display it in a prettier way. :]

Putting the List Into a Card
It’s great that you’re displaying real data now, but this is barely an app. To spice 
things up a notch, you need to add images to go along with the titles.

To do this, you’ll use a Card. In Material Design, Cards define an area of the UI where 
you’ve laid out related information about a specific entity. For example, a Card in a 
music app might have labels for an album’s title, artist and release date along with 
an image for the album cover and maybe a control for rating it with stars.

Flutter Apprentice Chapter 2: Hello, Flutter

 61



Your recipe Card will show the recipe’s label and image. Its widget tree will have the 
following structure:

In main.dart, at the bottom of _MyHomePageState create a custom widget by 
replacing // TODO: Add buildRecipeCard() here with:

Widget buildRecipeCard(Recipe recipe) { 
  // 1 
  return Card( 
    // 2 
      child: Column( 
        // 3 
        children: <Widget>[ 
          // 4 
          Image(image: AssetImage(recipe.imageUrl)), 
          // 5 
          Text(recipe.label), 
        ], 
      ), 
  ); 
}

Here’s how you define your new custom Card widget:

1. You return a Card from buildRecipeCard().

2. The Card’s child property is a Column. A Column is a widget that defines a vertical 
layout.

3. The Column has two children.

4. The first child is an Image widget. AssetImage states that the image is fetched 
from the local asset bundle defined in pubspec.yaml.

5. A Text widget is the second child. It will contain the recipe.label value.

Flutter Apprentice Chapter 2: Hello, Flutter

 62



To use the card, go to _MyHomePageState and replace // TODO: Update to return 
Recipe card and the return line below it with this:

// TODO: Add GestureDetector 
return buildRecipeCard(Recipe.samples[index]);

That instructs the itemBuilder to use the custom Card widget for each recipe in the 
samples list.

Hot restart the app to see the image and text cards.

Notice that Card doesn’t default to a flat square at the bottom of the widget. 
Material Design provides a standard corner radius and drop shadow.

Flutter Apprentice Chapter 2: Hello, Flutter

 63



Looking At the Widget Tree
Now’s a good time to think about the widget tree of the overall app. Do you 
remember that it started with RecipesApp from main()?

RecipesApp built a MaterialApp, which in turn used MyHomePage as its home. That 
builds a Scaffold with an AppBar and a ListView. You then updated the ListView 
builder to make a Card for each item.

Thinking about the widget tree helps explain the app as the layout gets more 
complicated and as you add interactivity. Fortunately, you don’t have to hand-draw a 
diagram each time.

Flutter Apprentice Chapter 2: Hello, Flutter

 64



In Android Studio, open the Flutter Inspector from the View ▸ Tool Windows ▸ 
Flutter Inspector menu while your app is running. This opens a powerful UI 
debugging tool.

This view shows you all the widgets onscreen and how they are composed. As you 
scroll, you can refresh the tree. You might notice the number of cards change. That’s 
because the List doesn’t keep every item in memory at once to improve 
performance. You’ll cover more about how that works in Chapter 4, “Understanding 
Widgets”.

Flutter Apprentice Chapter 2: Hello, Flutter

 65



Making It Look Nice
The default cards look okay, but they’re not as nice as they could be. With a few 
added extras, you can spiffy the card up. These include wrapping widgets in layout 
widgets like Padding or specifying additional styling parameters.

Get started by replacing buildRecipeCard() with:

Widget buildRecipeCard(Recipe recipe) { 
  return Card( 
    // 1 
    elevation: 2.0, 
    // 2 
    shape: RoundedRectangleBorder( 
      borderRadius: BorderRadius.circular(10.0)), 
    // 3 
    child: Padding( 
      padding: const EdgeInsets.all(16.0), 
      // 4 
      child: Column( 
        children: <Widget>[ 
          Image(image: AssetImage(recipe.imageUrl)), 
          // 5 
          const SizedBox( 
            height: 14.0, 
          ), 
          // 6 
          Text( 
            recipe.label, 
            style: const TextStyle( 
              fontSize: 20.0, 
              fontWeight: FontWeight.w700, 
              fontFamily: 'Palatino', 
            ), 
          ) 
        ], 
      ), 
    ), 
  ); 
}

This has a few updates to look at:

1. A card’s elevation determines how high off the screen the card is, affecting its 
shadow.

2. shape handles the shape of the card. This code defines a rounded rectangle with 
a 10.0 corner radius.

3. Padding insets its child’s contents by the specified padding value.

Flutter Apprentice Chapter 2: Hello, Flutter

 66



4. The padding child is still the same vertical Column with the image and text.

5. Between the image and text is a SizedBox. This is a blank view with a fixed size.

6. You can customize Text widgets with a style object. In this case, you’ve 
specified a Palatino font with a size of 20.0 and a bold weight of w700.

Hot reload and you’ll see a more styled list.

You can play around with these values to get the list to look “just right” for you. With 
hot reload, it’s easy to make changes and instantly see their effect on the running 
app.

Using the Widget inspector, you’ll see the added Padding and SizedBox widgets. 
When you select a widget, such as the SizedBox, it shows you all its real-time 
properties in a separate pane, which includes the ones you set explicitly and those 
that were inherited or set by default.

Flutter Apprentice Chapter 2: Hello, Flutter

 67



Selecting a widget also highlights where it was defined in the source.

Note: You may need to click the Refresh Tree button to reload the widget 
structure in the inspector. See Chapter 4, “Understanding Widgets” for more 
details.

Adding a Recipe Detail Page
You now have a pretty list, but the app isn’t interactive yet. What would make it 
great is to show the user details about a recipe when they tap the card. You’ll start 
implementing this by making the card react to a tap.

Flutter Apprentice Chapter 2: Hello, Flutter

 68



Making a Tap Response
Inside _MyHomePageState, locate // TODO: Add GestureDetector and replace the 
return statement beneath it with the following:

// 7 
return GestureDetector( 
  // 8 
  onTap: () { 
    // 9 
    Navigator.push( 
      context, 
      MaterialPageRoute( 
        builder: (context) { 
        // 10 
        // TODO: Replace return with return RecipeDetail() 
        return Text('Detail page'); 
      }, 
    ), 
   ); 
  }, 
  // 11 
  child: buildRecipeCard(Recipe.samples[index]), 
);

This introduces a few new widgets and concepts. Looking at the lines one at a time:

7. Introduces a GestureDetector widget, which, as the name implies, detects 
gestures.

8. Implements an onTap() function, which is the callback called when the widget is 
tapped.

9. The Navigator widget manages a stack of pages. Calling push() with a 
MaterialPageRoute will push a new Material page onto the stack. Section III, 
“Navigating Between Screens”, will cover navigation in a lot more detail.

10. builder creates the destination page widget.

11. GestureDetector’s child widget defines the area where the gesture is active.

Flutter Apprentice Chapter 2: Hello, Flutter

 69



Hot reload the app and now each card is tappable. Tap a recipe and you’ll see a black 
Detail page:

Creating an Actual Target Page
The resulting page is just a placeholder. Not only is it ugly, but because it doesn’t 
have all the normal page trappings, the user is now stuck here, at least on iOS 
devices without a back button. But don’t worry, you can fix that!

In lib, create a new Dart file named recipe_detail.dart.

Now, add this code to the file, and ignore the red squiggles for now:

import 'package:flutter/material.dart'; 
import 'recipe.dart'; 

 
class RecipeDetail extends StatefulWidget { 
  final Recipe recipe; 

 
  const RecipeDetail({ 
    Key? key,

Flutter Apprentice Chapter 2: Hello, Flutter

 70



    required this.recipe, 
  }) : super(key: key); 

 
  @override 
  State<RecipeDetail> createState() { 
    return _RecipeDetailState(); 
  } 
} 

 
// TODO: Add _RecipeDetailState here

This creates a new StatefulWidget which has an initializer that takes the Recipe 
details to display. This is a StatefulWidget because you’ll add some interactive 
state to this page later.

You need _RecipeDetailState to build the widget, replace // TODO: Add 
_RecipeDetailState here with:

class _RecipeDetailState extends State<RecipeDetail> { 
  // TODO: Add _sliderVal here 

 
  @override 
  Widget build(BuildContext context) { 
    // 1 
    return Scaffold( 
      appBar: AppBar( 
        title: Text(widget.recipe.label), 
      ), 
      // 2 
      body: SafeArea( 
        // 3 
        child: Column( 
          children: <Widget>[ 
            // 4 
            SizedBox( 
              height: 300, 
              width: double.infinity, 
              child: Image( 
                image: AssetImage(widget.recipe.imageUrl), 
              ), 
            ), 
            // 5 
            const SizedBox( 
              height: 4, 
            ), 
            // 6 
            Text( 
              widget.recipe.label, 
              style: const TextStyle(fontSize: 18), 
            ), 
            // TODO: Add Expanded

Flutter Apprentice Chapter 2: Hello, Flutter

 71



            // TODO: Add Slider() here 
          ], 
        ), 
      ), 
    ); 
  } 
}

The body of the widget is the same as you’ve already seen. Here are a few things to 
notice:

1. Scaffold defines the page’s general structure.

2. In the body, there’s a SafeArea, a Column with some SizedBox and Text 
children.

3. SafeArea keeps the app from getting too close to the operating system 
interfaces, such as the notch or the interactive area of most iPhones.

4. One new thing is the SizedBox around the Image, which defines resizable bounds 
for the image. Here, the height is fixed at 300 but the width will adjust to fit the 
aspect ratio. The unit of measurement in Flutter is logical pixels.

5. There is a spacer SizedBox.

6. The Text for the label has a style that’s a little different than the main Card, to 
show you how much customizability is available.

Next, go back to main.dart and add the following line to the top of the file:

import 'recipe_detail.dart';

Then find // TODO: Replace return with return RecipeDetail() replace it 
and the existing return statement with:

return RecipeDetail(recipe: Recipe.samples[index]);

Perform a hot restart by choosing Run ▸ Flutter Hot Restart from the menu to set 
the app state back to the original list. Tapping a recipe card will now show the 
RecipeDetail page.

Flutter Apprentice Chapter 2: Hello, Flutter

 72



Note: You need to use hot restart here because hot reload won’t update the UI 
after you update the state.

Because you now have a Scaffold with an appBar, Flutter will automatically include 
a back button to return the user to the main list.

Adding Ingredients
To complete the detail page, you’ll need to add additional details to the Recipe class. 
Before you can do that, you have to add an ingredient list to the recipes.

Flutter Apprentice Chapter 2: Hello, Flutter

 73



Open recipe.dart and replace // TODO: Add Ingredient class here with the 
following class:

class Ingredient { 
  double quantity; 
  String measure; 
  String name; 

 
  Ingredient( 
    this.quantity, 
    this.measure, 
    this.name, 
  ); 
}

This is a simple data container for an ingredient. It has a name, a unit of measure — 
like “cup” or “tablespoon” — and a quantity.

At the top of the Recipe class, replace // TODO: Add servings and ingredients 
here with the following, ignore any red squiggles:

int servings; 
List<Ingredient> ingredients;

This adds properties to specify that serving is how many people the specified 
quantity feeds and ingredients is a simple list.

To use these new properties, go to your samples list inside the Recipe class and 
change the Recipe constructor from:

Recipe( 
  this.label, 
  this.imageUrl, 
);

to:

Recipe( 
  this.label, 
  this.imageUrl, 
  this.servings, 
  this.ingredients, 
);

Flutter Apprentice Chapter 2: Hello, Flutter

 74



You may see red squiggles under part of your code because the values for servings 
and ingredients have not been set. You’ll fix that next.

To include the new servings and ingredients properties, replace the existing 
samples definition with the following:

static List<Recipe> samples = [ 
  Recipe( 
    'Spaghetti and Meatballs', 
    'assets/2126711929_ef763de2b3_w.jpg', 
    4, 
    [ 
      Ingredient(1, 'box', 'Spaghetti',), 
      Ingredient(4, '', 'Frozen Meatballs',), 
      Ingredient(0.5, 'jar', 'sauce',), 
    ], 
  ), 
  Recipe( 
    'Tomato Soup', 
    'assets/27729023535_a57606c1be.jpg', 
    2, 
    [ 
      Ingredient(1, 'can', 'Tomato Soup',), 
    ], 
  ), 
  Recipe( 
    'Grilled Cheese', 
    'assets/3187380632_5056654a19_b.jpg', 
    1, 
    [

Flutter Apprentice Chapter 2: Hello, Flutter

 75



      Ingredient(2, 'slices', 'Cheese',), 
      Ingredient(2, 'slices', 'Bread',), 
    ], 
  ), 
  Recipe( 
    'Chocolate Chip Cookies', 
    'assets/15992102771_b92f4cc00a_b.jpg', 
    24, 
    [ 
      Ingredient(4, 'cups', 'flour',), 
      Ingredient(2, 'cups', 'sugar',), 
      Ingredient(0.5, 'cups', 'chocolate chips',), 
    ], 
  ), 
  Recipe( 
    'Taco Salad', 
    'assets/8533381643_a31a99e8a6_c.jpg', 
    1, 
    [ 
      Ingredient(4, 'oz', 'nachos',), 
      Ingredient(3, 'oz', 'taco meat',), 
      Ingredient(0.5, 'cup', 'cheese',), 
      Ingredient(0.25, 'cup', 'chopped tomatoes',), 
    ], 
  ), 
  Recipe( 
    'Hawaiian Pizza', 
    'assets/15452035777_294cefced5_c.jpg', 
    4, 
    [ 
      Ingredient(1, 'item', 'pizza',), 
      Ingredient(1, 'cup', 'pineapple',), 
      Ingredient(8, 'oz', 'ham',), 
    ], 
  ), 
];

That fills out an ingredient list for these items. Please don’t cook these at home, 
these are just examples. :]

Flutter Apprentice Chapter 2: Hello, Flutter

 76



Hot reload the app now. No changes will be visible, but it should build successfully.

Showing the Ingredients
A recipe doesn’t do much good without the ingredients. Now, you’re ready to add a 
widget to display them.

In recipe_detail.dart, replace // TODO: Add Expanded with:

// 7 
Expanded( 
  // 8 
  child: ListView.builder( 
    padding: const EdgeInsets.all(7.0), 
    itemCount: widget.recipe.ingredients.length, 
    itemBuilder: (BuildContext context, int index) { 
      final ingredient = widget.recipe.ingredients[index]; 
      // 9 
      // TODO: Add ingredient.quantity 
      return Text( 
          '${ingredient.quantity} ${ingredient.measure} $

Flutter Apprentice Chapter 2: Hello, Flutter

 77



{ingredient.name}'); 
    }, 
  ), 
),

This code adds:

7. An Expanded widget, which expands to fill the space in a Column. This way, the 
ingredient list will take up the space not filled by the other widgets.

8. A ListView, with one row per ingredient.

9. A Text that uses string interpolation to populate a string with runtime values. 
You use the ${expression} syntax inside the string literal to denote these.

Hot restart by choosing Run ▸ Flutter Hot Restart and navigate to a detail page to 
see the ingredients.

Nice job, the screen now shows the recipe name and the ingredients. Next, you’ll add 
a feature to make it interactive.

Flutter Apprentice Chapter 2: Hello, Flutter

 78



Adding a Serving Slider
You’re currently showing the ingredients for a suggested serving. Wouldn’t it be 
great if you could change the desired quantity and have the amount of ingredients 
updated automatically?

You’ll do this by adding a Slider widget to allow the user to adjust the number of 
servings.

First, create an instance variable to store the slider value. Still in recipe_detail.dart 
replace // TODO: Add _sliderVal here with:

int _sliderVal = 1;

Now find // TODO: Add Slider() here and replace it with the following:

Slider( 
  // 10 
  min: 1, 
  max: 10, 
  divisions: 9, 
  // 11 
  label: '${_sliderVal * widget.recipe.servings} servings', 
  // 12 
  value: _sliderVal.toDouble(), 
  // 13 
  onChanged: (newValue) { 
    setState(() { 
      _sliderVal = newValue.round(); 
    }); 
  }, 
  // 14 
  activeColor: Colors.green, 
  inactiveColor: Colors.black, 
),

Slider presents a round thumb that can be dragged along a track to change a value. 
Here’s how it works:

10. You use min, max and divisions to define how the slider moves. In this case, it 
moves between the values of 1 and 10, with ten discreet stops. That is, it can only 
have values of 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10.

11. label updates as the _sliderVal changes and displays a scaled number of 
servings.

12. The slider works in double values, so this converts the int variable.

Flutter Apprentice Chapter 2: Hello, Flutter

 79



13. Conversely, when the slider changes, this uses round() to convert the double 
slider value to an int, then saves it in _sliderVal.

14. This sets the slider’s colors to something more “on brand”. The activeColor is 
the section between the minimum value and the thumb, and the inactiveColor 
represents the rest.

Hot reload the app, adjust the slider and see the value reflected in the indicator.

Updating the Recipe
It’s great to see the changed value reflected in the slider, but right now, it doesn’t 
affect the recipe itself.

To do that, you just have to change the Expanded ingredients itemBuilder return 
statement to include the current value of _sliderVal as a factor for each ingredient.

Flutter Apprentice Chapter 2: Hello, Flutter

 80



Replace // TODO: Add ingredient.quantity and the whole return statement 
beneath it with:

return Text('${ingredient.quantity * _sliderVal} ' 
                      '${ingredient.measure} ' 
                      '${ingredient.name}');

After a hot reload, you’ll see that the recipe’s ingredients change when you move the 
slider.

That’s it! You’ve now built a cool, interactive Flutter app that works just the same on 
multiple devices.

In the next few sections, you’ll continue to explore how widgets and state work. 
You’ll also learn about important functionality like networking.

Flutter Apprentice Chapter 2: Hello, Flutter

 81



Key Points
• Build a new app with flutter create.

• Use widgets to compose a screen with controls and layout.

• Use widget parameters for styling.

• A MaterialApp widget specifies the app, and Scaffold specifies the high-level 
structure of a given screen.

• State allows for interactive widgets.

• When state changes, you usually need to hot restart the app instead of hot reload. 
In some cases, you may also need to rebuild and restart the app entirely.

Where to Go From Here?
Congratulations, you’ve written your first app!

To get a sense of all the widget options available, the documentation (https://
api.flutter.dev/) should be your starting point. In particular, the Material library 
(https://api.flutter.dev/flutter/material/material-library.html) and Widgets catalog 
(https://docs.flutter.dev/development/ui/widgets) will cover most of what you can 
put on screen. Those pages list all the parameters, and often have in-browser 
interactive sections where you can experiment.

For more information about the Dart language, annotations, and its constructs, 
check out Dart Apprentice: Fundamentals (https://www.kodeco.com/books/dart-
apprentice-fundamentals) and Dart Apprentice: Beyond the Basics (https://
www.kodeco.com/books/dart-apprentice-beyond-the-basics).

Chapter 3, “Basic Widgets”, is all about using widgets and Chapter 4, “Understanding 
Widgets”, goes into more detail on the theory behind widgets. Future chapters will 
go into more depth about other concepts briefly introduced in this chapter.

Flutter Apprentice Chapter 2: Hello, Flutter

 82



Section II: Everything’s a 
Widget

In this section you’ll start to build a full-featured recipe app named Fooderlich. 
You’ll gain an understanding of and use a wide range of widgets available in Flutter, 
and learn about the theory of how widgets work behind the scenes.

You’ll then dive deeper into layout widgets, scrollable widgets and interactive 
widgets.

 83



3Chapter 3: Basic Widgets

By Vincent Ngo

Dive into the world of Flutter, where everything is a widget! This chapter unveils 
three fundamental widget categories essential for:

• Structure and navigation

• Displaying information

• Positioning widgets

By the end of the chapter, you’ll construct a social food app called Yummy. You’ll 
use various widgets to create three distinct tabs: Category, Post, and Restaurant.

Ready? Dive in by taking a look at the starter project.

 84



Getting Started
Start by downloading this chapter’s project from the book materials repo https://
github.com/kodecocodes/flta-materials.

Locate the projects folder and open starter. Navigate to pubspec.yaml and tap Pub 
get to get all your flutter dependencies.

Run the app, and you’ll see an app bar and a simple text:

Flutter Apprentice Chapter 3: Basic Widgets

 85



lib/main.dart serves as the launchpad of any Flutter application. Open it to see:

import 'package:flutter/material.dart'; 
 

void main() { 
  // 1 
  runApp(const Yummy()); 
} 

 
class Yummy extends StatelessWidget { 
  // TODO: Setup default theme 

 
  // 2 
  const Yummy({super.key}); 

 
  // TODO: Add changeTheme above here 

 
  @override 
  Widget build(BuildContext context) { 
    const appTitle = 'Yummy'; 

 
    // TODO: Setup default theme 

 
    //3 
    return MaterialApp( 
      title: appTitle, 
      //debugShowCheckedModeBanner: false, // Uncomment to 
remove Debug banner 

 
      // TODO: Add theme 

 
      // TODO: Replace Scaffold with Home widget 
      // 4 
      home: Scaffold( 
        appBar: AppBar( 
          // TODO: Add action buttons 
          elevation: 4.0, 
          title: const Text( 
            appTitle, 
            style: TextStyle(fontSize: 24.0), 
          ), 
        ), 
        body: const Center( 
          child: Text( 
            'You Hungry?! ', 
            style: TextStyle(fontSize: 30.0), 
          ), 
        ), 
      ), 
    ); 
  } 
}

Flutter Apprentice Chapter 3: Basic Widgets

 86



Take a moment to explore what the code does:

1. Widget Initialization: Every journey with Flutter commences with a widget. The 
runApp() function initializes the app by accepting the root widget, in this case, 
an instance of Yummy.

2. Every widget must override the build() method.

3. The Yummy widget starts by composing a MaterialApp widget to give it a 
Material Design system look and feel. See https://material.io for more details.

4. Scaffold defines the app’s visual structure, containing an AppBar and a body for 
starts.

Styling Your App
Flutter, being cross-platform, supports Android’s Material Design and iOS’s 
Cupertino design systems.

Android uses the Material Design system, which you’d import like this:

import 'package:flutter/material.dart';

iOS uses the Cupertino system. Here’s how you’d import it:

import 'package:flutter/cupertino.dart';

Throughout this book, you’ll learn to use the Material Design system. You’ll find the 
look and feel quite customizable!

Flutter Apprentice Chapter 3: Basic Widgets

 87



Note: Switching between Material and Cupertino is beyond the scope of this 
book. For more information about what these packages offer in terms of UI 
components, check out:

• Material UI Components: https://flutter.dev/docs/development/ui/widgets/
material

• Cupertino UI Components: https://flutter.dev/docs/development/ui/widgets/
cupertino

Now that you’ve settled on a design, you’ll set a theme for your app in the next 
section.

Defining a Theme Class
Spice up your app with a custom theme! With Material 3, theme management is 
streamlined, focusing on defining color variations.

Open lib/constants.dart and examine the code included in your starter project:

import 'package:flutter/material.dart'; 
 
 

enum ColorSelection { 
  // 1 
  deepPurple('Deep Purple', Colors.deepPurple), 
  purple('Purple', Colors.purple),

Flutter Apprentice Chapter 3: Basic Widgets

 88



  indigo('Indigo', Colors.indigo), 
  blue('Blue', Colors.blue), 
  teal('Teal', Colors.teal), 
  green('Green', Colors.green), 
  yellow('Yellow', Colors.yellow), 
  orange('Orange', Colors.orange), 
  deepOrange('Deep Orange', Colors.deepOrange), 
  pink('Pink', Colors.pink); 

 
  // 2 
  const ColorSelection( 
    this.label, 
    this.color, 
  ); 

 
  final String label; 
  final Color color; 
}

ColorSelection enum enables users to select and customize the app’s appearance 
with:

1. Structured color options. The name listed (e.g. Deep Purple) is what will be 
displayed.

2. Each has a label and a color object.

Now, you’ll learn to apply the color themes to your app.

Applying the Theme
In main.dart, import your predefined color themes:

import 'constants.dart';

Locate // TODO: Setup default theme and replace it with the following code to 
establish your default theme mode and primary color, ignore the red squiggles:

ThemeMode themeMode = ThemeMode.light; // Manual theme toggle 
ColorSelection colorSelected = ColorSelection.pink;

Next, locate the comment // TODO: Add theme and insert the subsequent code to 
apply your theme configurations:

themeMode: themeMode, 
theme: ThemeData( 
  colorSchemeSeed: colorSelected.color, 
  useMaterial3: true,

Flutter Apprentice Chapter 3: Basic Widgets

 89



  brightness: Brightness.light, 
), 
darkTheme: ThemeData( 
  colorSchemeSeed: colorSelected.color, 
  useMaterial3: true, 
  brightness: Brightness.dark, 
),

This code snippet sets the global theme mode. It defines both light and dark themes 
utilizing the color you previously specified, ensuring a cohesive and adaptive visual 
appearance across your app.

Since the theme can change, you need to remove const from the following two 
locations:

runApp(const Yummy()); 
 

... 
 

const Yummy({super.key});

Save your changes and perform a hot restart.

Flutter Apprentice Chapter 3: Basic Widgets

 90



Locate // Manual theme toggle and change light to dark to observe theme 
variations. Make sure you do a hot restart.

The two themes look like this:

Next, you’ll create a way to enable users to toggle between light and dark modes and 
select a custom color theme.

Switching Themes
To enable theme switching within your app, you need to manage state by converting 
the Yummy widget to a StatefulWidget. The good news is that instead of converting 
manually, you can just use a right-click menu shortcut to do it automatically.

Flutter Apprentice Chapter 3: Basic Widgets

 91



Right-click the class name Yummy. Then click Show Context Actions from the menu 
that pops up:

Select Convert to StatefulWidget.

There are now two classes:

class Yummy extends StatefulWidget { 
  ... 

 
  @override 
  State<Yummy> createState() => _YummyState_(); 
} 

 
class _YummyState extends State<Yummy> { 
  ... 
  @override 
  Widget build(BuildContext context) { 
    ... 
  }

A couple of things to notice in the code above:

• The refactor converted Yummy from a StatelessWidget into a StatefulWidget. 
It added a createState() implementation.

• The refactor also created the _YummyState state class. It stores mutable data that 
can change over the lifetime of the widget.

Don’t you love it when there’s an automatic way to save time? Next, you’re going to 
implement the theme state changes.

Flutter Apprentice Chapter 3: Basic Widgets

 92



Implementing Theme State Changes
Within _YummyState class, locate // TODO: Add changeTheme above here and 
replace it with the following functions:

void changeThemeMode(bool useLightMode) { 
  setState(() { 
    // 1 
    themeMode = useLightMode 
      ? ThemeMode.light // 
      : ThemeMode.dark; 
  }); 
} 

 
void changeColor(int value) { 
  setState(() { 
    // 2 
    colorSelected = ColorSelection.values[value]; 
  }); 
}

Here’s how the code works:

1. Update theme mode based on user selection.

2. Update theme color based on user selection.

Calling these functions will update the theme or color of your app.

Now, you need to create custom buttons to update the theme.

Creating Custom Buttons to Switch Color 
and Mode
Now it’s time to create two buttons that will allow your users to:

• Switch between light and dark mode.

• Select the color theme of the entire app.

Flutter Apprentice Chapter 3: Basic Widgets

 93



Creating a Theme Button
You’ll create a button to toggle between light and dark mode. In lib directory, create 
a new folder called components and create a new file called theme_button.dart in 
that directory, add the following code to it:

import 'package:flutter/material.dart'; 
 

class ThemeButton extends StatelessWidget { 
  // 1 
  const ThemeButton({ 
    Key? key, 
    required this.changeThemeMode, 
  }) : super(key: key); 

 
  // 2 
  final Function changeThemeMode; 

 
  @override 
  Widget build(BuildContext context) { 
    // 3 
    final isBright = Theme.of(context).brightness == 
Brightness.light; 
    // 4 
    return IconButton( 
      icon: isBright 
          ? const Icon(Icons.dark_mode_outlined) // 
          : const Icon(Icons.light_mode_outlined), 
      // 5 
      onPressed: () => changeThemeMode(!isBright), 
    ); 
  } 
}

Take a moment to go over the code:

1. The ThemeButton widget is initialized with a constructor requiring a function 
changeThemeMode parameter.

2. changeThemeMode is a callback function passed as a parameter to be called when 
the user presses the button. This function notifies the parent widget about the 
brightness change, enabling it to adjust the theme accordingly.

3. isBright is a Boolean that checks whether the current theme brightness is light.

Flutter Apprentice Chapter 3: Basic Widgets

 94



4. An IconButton widget that will display light or dark mode icon based on the 
isBright Boolean.

5. IconButton, when pressed, toggles the theme brightness by invoking 
changeThemeMode.

Next, you’ll create a button for users to select their favorite color to apply the entire 
app theme.

Creating the Color Button
In lib/components directory, create a new file called color_button.dart and add the 
following code to it:

import 'package:flutter/material.dart'; 
import '../constants.dart'; 

 
class ColorButton extends StatelessWidget { 
  // 1 
  const ColorButton({ 
    super.key, 
    required this.changeColor, 
    required this.colorSelected, 
  }); 

 
  // 2 
  final void Function(int) changeColor; 
  final ColorSelection colorSelected; 

 
  @override 
  Widget build(BuildContext context) { 
    // 3 
    return PopupMenuButton( 
      icon: Icon( 
        Icons.opacity_outlined, 
        color: Theme.of(context).colorScheme.onSurfaceVariant, 
      ), 
      // 4 
      shape: RoundedRectangleBorder( 
        borderRadius: BorderRadius.circular(10), 
      ), 
      // 5 
      itemBuilder: (context) { 
        // 6 
        return List.generate( 
          ColorSelection.values.length, 
          (index) { 
            final currentColor = ColorSelection.values[index]; 
            // 7 
            return PopupMenuItem(

Flutter Apprentice Chapter 3: Basic Widgets

 95



              value: index, 
              enabled: currentColor != colorSelected, 
              child: Wrap( 
                children: [ 
                  Padding( 
                    padding: const EdgeInsets.only(left: 10), 
                    child: Icon( 
                      Icons.opacity_outlined, 
                      color: currentColor.color, 
                    ), 
                  ), 
                  Padding( 
                    padding: const EdgeInsets.only(left: 20), 
                    child: Text(currentColor.label), 
                  ),],),);},);}, 
      // 8 
      onSelected: changeColor, 
    ); 
  } 
}

Take a moment to go over the code:

1. Initializes ColorButton with the required callback and color.

2. Property changeColor is a callback to handle the color selection, and 
colorSelected is the currently selected color.

3. Creates a button that displays a menu.

4. Applies rounded corners to the popup menu.

5. Generates the menu items.

6. Creates a list of color options from ColorSelection.

7. Configures each menu item with an icon and text.

8. Calls changeColor when an item is selected.

Now that you’ve created the buttons, it’s time to add them to your app.

Adding Action Buttons to the App Bar
In main.dart add the following imports:

import 'components/theme_button.dart'; 
import 'components/color_button.dart';

Flutter Apprentice Chapter 3: Basic Widgets

 96



Next, locate // TODO: Add action buttons and replace it with the following code:

actions: [ 
  ThemeButton( 
    changeThemeMode: changeThemeMode, 
  ), 
  ColorButton( 
    changeColor: changeColor, 
    colorSelected: colorSelected, 
  ), 
],

With a hot restart, you should see the two new buttons on the top right. Try to switch 
between light and dark mode and change the color theme.

Next, you’ll learn about an important aspect of building an app — understanding 
which app structure to use.

Understanding App Structure and 
Navigation
Establishing your app’s structure from the beginning is important for the user 
experience. Applying the right navigation structure makes it easy for your users to 
navigate the information in your app.

Flutter Apprentice Chapter 3: Basic Widgets

 97



Yummy uses the Scaffold widget for its starting app structure. Scaffold is one of 
the most commonly used Material widgets in Flutter. Next, you’ll learn how to 
implement it in your app.

Using Scaffold
The Scaffold widget implements all your basic visual layout structure needs. It’s 
composed of the following parts:

• AppBar

• BottomSheet

• BottomNavigationBar

• Drawer

• FloatingActionButton

• SnackBar

Scaffold has a lot of functionality out of the box!

The following diagram represents some of the previously mentioned items as well as 
showing left and right nav options:

For more information, check out Flutter’s documentation on Material Components 
widgets, including app structure and navigation: https://flutter.dev/docs/
development/ui/widgets/material

Now, it’s time to add more functionality.

Flutter Apprentice Chapter 3: Basic Widgets

 98



Setting Up the Home Widget

As you build large-scale apps, you’ll start to compose a staircase of widgets. Widgets 
composed of other widgets can get really long and messy. It’s a good idea to break 
your widgets into separate files for readability.

To avoid making your code overly complicated, you’ll create the first of these 
separate files now.

Your next step is to move code out of main.dart into a new StatefulWidget named 
Home. In the lib directory, create a new file called home.dart and add the following:

import 'package:flutter/material.dart'; 
import 'components/theme_button.dart'; 
import 'components/color_button.dart'; 
import 'constants.dart'; 

 
class Home extends StatefulWidget { 
  const Home({ 
    super.key, 
    required this.changeTheme, 
    required this.changeColor, 
    required this.colorSelected, 
  }); 

 
  final void Function(bool useLightMode) changeTheme; 
  final void Function(int value) changeColor; 
  final ColorSelection colorSelected; 

 
  @override 
  State<Home> createState() => _HomeState(); 
} 

 
class _HomeState extends State<Home> { 
  // TODO: Track current tab 

 
  // TODO: Define tab bar destinations 

 
  @override 
  Widget build(BuildContext context) { 
    // TODO: Define pages 

 
    return Scaffold( 
      appBar: AppBar( 
        elevation: 4.0, 
        backgroundColor: 
Theme.of(context).colorScheme.background, 
        actions: [ 
          ThemeButton( 
            changeThemeMode: widget.changeTheme, 
          ),

Flutter Apprentice Chapter 3: Basic Widgets

 99



          ColorButton( 
            changeColor: widget.changeColor, 
            colorSelected: widget.colorSelected, 
          ), 
        ], 
      ), 
      // TODO: Switch between pages 
      body: Padding( 
        padding: const EdgeInsets.all(16.0), 
        child: Text( 
            'You Hungry?! ', 
            style: Theme.of(context).textTheme.displayLarge, 
          ), 
      ), 
      // TODO: Add bottom navigation bar 
    ); 
  } 
}

You simply copied the main.dart Scaffold into a new widget in home.dart.

Note: Remember if you see your widget tree starting to get too big, it’s a good 
idea to break it apart into separate widgets.

Go back to main.dart to update it so it can use the new Home widget. At the top, add 
the following import statement:

import 'home.dart';

Next, locate TODO: Apply Home widget and replace it and the whole home: 
Scaffold(...), with the following:

home: Home( 
  changeTheme: changeThemeMode, 
  changeColor: changeColor, 
  colorSelected: colorSelected, 
),

Finally, remove the following imports in main.dart:

import 'components/theme_button.dart'; 
import 'components/color_button.dart';

These aren’t used anymore. With that done, you’ll move on to addressing Scaffold’s 
bottom navigation.

Flutter Apprentice Chapter 3: Basic Widgets

 100



Adding a BottomNavigationBar

Open home.dart, locate // TODO: Track current tab and replace it with the 
following:

int tab = 0;

tab property will be used to keep track of the current tab the user is on.

Your next step is to define a list of tabs the user can navigate between. Locate // 
TODO: Define tab bar destinations and replace it with the following code:

List<NavigationDestination> appBarDestinations = const [ 
  NavigationDestination( 
    icon: Icon(Icons.credit_card), 
    label: 'Category', 
    selectedIcon: Icon(Icons.credit_card), 
  ), 
  NavigationDestination( 
    icon: Icon(Icons.credit_card), 
    label: 'Post', 
    selectedIcon: Icon(Icons.credit_card), 
  ), 
  NavigationDestination( 
    icon: Icon(Icons.credit_card), 
    label: 'Restaurant', 
    selectedIcon: Icon(Icons.credit_card), 
  ), 
];

You’ll have a total of three tabs where you’ll create three distinct card widgets.

Finally, locate the comment // TODO: Add bottom navigation bar and replace it 
with the following:

// 1 
bottomNavigationBar: NavigationBar( 
  // 2 
  selectedIndex: tab, 
  // 3 
  onDestinationSelected: (index) { 
    setState(() { 
      tab = index; 
    }); 
  }, 
  // 4 
  destinations: appBarDestinations, 
),

Flutter Apprentice Chapter 3: Basic Widgets

 101



Here’s how the code works:

1. Assigns NavigationBar to bottomNavigationBar.

2. Sets the active tab using selectedIndex.

3. Updates the active tab on user selection.

4. Defines the list of tabs with appBarDestinations.

With that complete, your app should look like this:

Now that you’ve set up the bottom navigation bar, you need to implement the 
navigation between pages.

Navigating Between Pages
To navigate between pages, you first need to define the list of pages the user may 
potentially navigate to. Still in home.dart, locate the comment // TODO: Define 
pages and replace it with the following:

final pages = [ 
  // TODO: Replace with Category Card 
  Container(color: Colors.red), 
  // TODO: Replace with Post Card

Flutter Apprentice Chapter 3: Basic Widgets

 102



  Container(color: Colors.green), 
  // TODO: Replace with Restaurant Landscape Card 
  Container(color: Colors.blue) 
];

This contains a list of containers with different colors. You’ll replace each one with a 
unique card soon.

Next, locate the comment // TODO: Switch between pages and replace it and all 
the body: Padding(...) code with the following:

body: IndexedStack( 
  index: tab, 
  children: pages, 
),

IndexedStack stacks and displays one widget from pages based on the tab index, 
preserving the state of all widgets in the stack.

After restarting, your app will look different for each tab item, like this:

Now that you’ve set up your tab navigation, it’s time to create beautiful cards!

Flutter Apprentice Chapter 3: Basic Widgets

 103



Creating Custom Cards
In this section, you’ll compose three cards by combining a mixture of display and 
layout widgets.

Note: To help construct these cards, the models folder already contains 
models and mock data for each model to use to display in your custom 
widgets. Have a look at food_category.dart, post.dart, and restaurant.dart to 
learn more!

Display widgets handle what the user sees onscreen. Examples of display widgets 
include:

• Text

• Image

• Button

Layout widgets help with the arrangement of widgets. Examples of layout widgets 
include:

• Container

• Padding

• Stack

• Column

• SizedBox

• Row

Note: Flutter has a plethora of layout widgets to choose from, but this chapter 
only covers the most common. For more examples, check out https://
flutter.dev/docs/development/ui/widgets/layout.

Flutter Apprentice Chapter 3: Basic Widgets

 104



Composing Category Card
The first card you’ll compose looks like this:

CategoryCard is composed of the following widgets:

• Card: A material design container that holds content and actions about a single 
subject.

• Column: Vertically arranges its widget children, here, a  StackandListTile.

• ListTile: A widget that contains title and subtitle text.

In the lib/components directory, create a new file called category_card.dart and 
add the following code to it:

import 'package:flutter/material.dart'; 
import '../models/food_category.dart'; 

 
class CategoryCard extends StatelessWidget { 
  // 1 
  final FoodCategory category; 

 
  const CategoryCard({ 
    super.key, 
    required this.category, 
  }); 

 
  @override 
  Widget build(BuildContext context) { 
    // TODO: Get text theme 

Flutter Apprentice Chapter 3: Basic Widgets

 105



    // TODO: Replace with Card widget 
    return Container(); // 2 
  } 
}

Here you set up the basic structure for the CategoryCard widget.

1. It simply takes in a FoodCategory object, which you’ll use later to display data in 
your UI.

2. Returns an empty Container.

Next, open home.dart and add the following import:

import 'components/category_card.dart'; 
import 'models/food_category.dart';

Locate // TODO: Replace with Category Card and replace the first container 
with the following:

// 1 
Center( 
  // 2 
  child: ConstrainedBox( 
    constraints: const BoxConstraints(maxWidth: 300), 
    // 3 
    child: CategoryCard(category: categories[0]),),),

Take a moment to go over how CategoryCard is laid out on the page.

1. Center widget ensures the card widget is centered on the screen.

2. Applies a maximum width of 300 pixels to the card widget.

3. Set CategoryCard widget as the child, and pass the first mock category to be 
displayed.

Flutter Apprentice Chapter 3: Basic Widgets

 106



You’ve now set up CategoryCard. Hot restart and the app will currently look like 
this:

It’s a little bland, isn’t it? For your next step, you’ll spice it up with an image.

Constructing the Widget

Switch to category_card.dart. Locate // TODO: Get text theme and replace it 
with the following:

final textTheme = Theme.of(context) 
    .textTheme 
    .apply(displayColor: 
Theme.of(context).colorScheme.onSurface);

Here, you get the text theme, which you’ll later use to apply to text widgets.

Next, locate // TODO: Replace with Card widget and replace it and the code 
below with the following:

// 1 
return Card( 
  // 2

Flutter Apprentice Chapter 3: Basic Widgets

 107



  child: Column( 
    mainAxisSize: MainAxisSize.min, 
    children: [ 
      // TODO: Add Stack Widget 
      // TODO: Add ListTile widget 
    ], 
  ), 
);

You replace the Container widget with a Card widget, and within the card, you use a 
Column widget to vertically arrange the child widgets.

Adding Stacked Elements to the Card

Adding the first widget to the column. Locate // TODO: Add Stack Widget and 
replace it with the following:

Stack( 
  children: [ 
    // 1 
    ClipRRect( 
      borderRadius: const BorderRadius.vertical( 
        top: Radius.circular(8.0)), 
      child: Image.asset(category.imageUrl), 
    ), 
    // 2 
    Positioned( 
      left: 16.0, 
      top: 16.0, 
      child: Text( 
        'Yummy', 
        style: textTheme.headlineLarge, 
      ), 
    ), 
    // 3 
    Positioned( 
      bottom: 16.0, 
      right: 16.0, 
      child: RotatedBox( 
        quarterTurns: 1, 
        child: Text( 
          'Smoothies', 
          style: textTheme.headlineLarge, 
        ), 
      ), 
    ), 
  ], 
),

Recall that the Stack widget allows you to overlay widgets on top of each other.

Flutter Apprentice Chapter 3: Basic Widgets

 108



Here’s what’s overlayed in the stack:

1. Add a ClipRRect widget, which clips the image with rounded corners at the top.

2. Position the text “Yummy” on the top-left.

3. Rotate the text “Smoothies” 90 degrees and place it at the bottom-right.

After a hot restart, the CategoryCard now look like this:

Adding a Footer to the Card

Adding the second widget to the column. Locate // TODO: Add ListTile widget 
and replace it with the following:

ListTile( 
  // 1 
  title: Text(

Flutter Apprentice Chapter 3: Basic Widgets

 109



      category.name, 
      style: textTheme.titleSmall,), 
  // 2 
  subtitle: Text( 
      '${category.numberOfRestaurants} places', 
      style: textTheme.bodySmall,),),

Take a moment to go over the code:

1. Display the category name with a smaller title style.

2. Display the number of restaurants in a small body text style

After these updates, the final CategoryCard looks like this:

Great, you finished the first card! It’s time to move on to the next!

Flutter Apprentice Chapter 3: Basic Widgets

 110



Tip: Leverage Material 3’s typography text theme for consistent text styles 
across your app, avoiding hardcoded font sizes and colors.

Flutter Apprentice Chapter 3: Basic Widgets

 111



Composing Post Card
It’s time to start composing the next card, the post card. Here’s how it will look by 
the time you’re done:

PostCard is composed of the following widgets:

• Card: Provides a material design card that can hold related pieces of information 
or content.

• Padding: Adds a uniform padding of 16.0 pixels around the content inside it to 
provide some spacing.

This structure ensures a clean, organized layout where the user’s avatar is displayed 
alongside their post content, with the post comment and timestamp neatly 
presented below it.

In the lib/components directory, create a new file called post_card.dart. Add the 
following code:

import 'package:flutter/material.dart'; 
import '../models/post.dart'; 

 
class PostCard extends StatelessWidget { 
  final Post post; 

 
  const PostCard({ 
    super.key, 
    required this.post, 
  }); 

 
  @override 
  Widget build(BuildContext context) { 
    final textTheme = Theme.of(context) 
        .textTheme 
        .apply( 
          displayColor: Theme.of(context).colorScheme.onSurface, 
        ); 

 
    return Card( 
      child: Padding( 
        padding: const EdgeInsets.all(16.0),

Flutter Apprentice Chapter 3: Basic Widgets

 112



        child: Row( 
          crossAxisAlignment: CrossAxisAlignment.start, 
          children: [ 
            // TODO: Add CircleAvatar 
            // TODO: Add spacing 
            // TODO: Add Expanded Widget 
          ], 
        ), 
      ), 
    ); 
  } 
}

Here, you set up the basic structure for the PostCard widget. It simply takes in a 
Post object, which you’ll use later to display data in your UI.

Next, open home.dart and add the following import:

import 'components/post_card.dart'; 
import 'models/post.dart';

Locate // TODO: Replace with Post Card and replace the container beneath it 
with the following:

Center(child: Padding( 
  padding: const EdgeInsets.all(16.0), 
  child: PostCard(post: posts[0]), 
),),

Then, perform a hot restart.

Flutter Apprentice Chapter 3: Basic Widgets

 113



Tap the Post tab bar item. Your app should look like this:

Adding the Child Widgets
Here’s how PostCard’s layout will look after you’ve added the Row’s children widgets:

Flutter Apprentice Chapter 3: Basic Widgets

 114



In post_card.dart locate // TODO: Add CircleAvatar, and replace it with the 
following:

CircleAvatar( 
  radius: 25, 
  backgroundImage: AssetImage(post.profileImageUrl), 
),

CircleAvatar is often used to display a profile image or user’s avatar in a circular 
shape.

Next, locate // TODO: Add spacing and replace it with the following:

const SizedBox( 
  width: 16.0, 
),

Add 16-pixel padding between the two widgets.

Finally, locate // TODO: Add Expanded Widget and replace it with the following:

// 1 
Expanded( 
  // 2 
  child: Column( 
    mainAxisSize: MainAxisSize.min, 
    crossAxisAlignment: CrossAxisAlignment.start, 
    children: [ 
      // 3 
      Text( 
        post.comment, 
        maxLines: 2, 
        overflow: TextOverflow.ellipsis, 
        style: textTheme.titleMedium), 
      Text( 
        '${post.timestamp} mins ago', 
        style: textTheme.bodySmall, 
      ),],),),

Here’s what you’ve added:

1. Expanded widget makes the child occupy all available space.

2. Column widget vertically stacks children. MainAxisSize.min aligns them to 
occupy minimum space. CrossAxisAlignment.start horizontally aligns the 
child widgets to the left side.

3. Display two Text widgets, the post contents followed by the post’s timestamp.

Flutter Apprentice Chapter 3: Basic Widgets

 115



After a hot restart, your PostCard widget should look like this:

And that’s all you need to do for the post card. Next, you’ll move on to the final one.

Composing Restaurant Landscape Card
RestaurantLandscapeCard is the last card you’ll create for this chapter. This card 
lets the user explore popular restaurant trends and order food.

Flutter Apprentice Chapter 3: Basic Widgets

 116



The following widgets compose RestaurantLandscapeCard:

• Card: A material design card that contains related pieces of information.

• Column: Arranges its children widgets in a vertical line.

• ClipRRect: Clips its child with a rounded rectangle border.

• AspectRatio: Constrains the child’s aspect ratio.

• Image: Displays the restaurant’s image, covering the available space.

• ListTile: A widget that contains title and subtitle text.

In the lib/components directory, create a new file called 
restaurant_landscape_card.dart. Add the following code:

import 'package:flutter/material.dart'; 
 

import '../models/restaurant.dart'; 
 

class RestaurantLandscapeCard extends StatelessWidget { 
  final Restaurant restaurant; 

 
  const RestaurantLandscapeCard({ 
    super.key, 
    required this.restaurant, 
  }); 

 
  @override 
  Widget build(BuildContext context) { 
    final textTheme = Theme.of(context) 
        .textTheme 
        .apply( 
          displayColor: Theme.of(context) 
          .colorScheme 
          .onSurface); 
    return Card( 
      child: Column( 
        mainAxisSize: MainAxisSize.min, 
        children: [ 
          // TODO: Add Image 
          // TODO: Add ListTile 
        ],),);}}

Flutter Apprentice Chapter 3: Basic Widgets

 117



Here, you set up the basic structure for the RestaurantLandscapeCard widget. It 
simply takes in an instance of Restaurant, which you’ll use later to display data in 
your UI.

Next, open home.dart and add the following import:

import 'components/restaurant_landscape_card.dart'; 
import 'models/restaurant.dart';

Locate // TODO: Replace with Restaurant Landscape Card and replace the 
container beneath it with the following:

// 1 
Center( 
  //2 
  child: ConstrainedBox( 
    constraints: const BoxConstraints(maxWidth: 400), 
    // 3 
    child: RestaurantLandscapeCard( 
      restaurant: restaurants[0],),),),

Take a moment to go over how RestaurantLandscapeCard is laid out on the page:

1. Center widget ensures the card widget is centered on the screen.

2. Applies a maximum width of 400 pixels to the card widget.

3. Set RestaurantLandscapeCard widget as the child, and pass the first mock 
restaurant to be displayed.

Now you’ve set up RestaurantLandscapeCard, perform a hot restart. Tap the 
Restaurant tab bar item.

Flutter Apprentice Chapter 3: Basic Widgets

 118



Your app should look like this:

Composing Restaurant’s Child Widgets
Open restaurant_landscape_card.dart, locate // TODO: Add Image and replace it 
with the following:

ClipRRect( 
  // 1 
  borderRadius: 
      const BorderRadius.vertical(top: Radius.circular(8.0),), 
  // 2 
  child: AspectRatio( 
      aspectRatio: 2, 
      child: Image.asset(restaurant.imageUrl, fit: 
BoxFit.cover,),),),

Flutter Apprentice Chapter 3: Basic Widgets

 119



Here is how the image is formed:

1. borderRadius rounds the top corners with an 8.0 unit radius.

2. AspectRatio displays an image with a 2:1 width-to-height ratio. The image 
scales to fit its container.

Next, locate // TODO: Add ListTile and replace it with the following:

ListTile( 
  // 1 
  title: Text(restaurant.name, style: textTheme.titleSmall,), 
  // 2 
  subtitle: Text(restaurant.attributes, 
      maxLines: 1, style: textTheme.bodySmall,), 
  // 3 
  onTap: () { 
    // ignore: avoid_print 
    print('Tap on ${restaurant.name}'); 
  },),

The code represents a ListTile in Flutter:

1. title shows the restaurant’s name with a specific style.

2. subtitle displays the restaurant’s attributes, truncated if more than one line.

3. onTap prints the restaurant’s name to the console when tapped.

Flutter Apprentice Chapter 3: Basic Widgets

 120



Save your changes and hot restart. Now, your card looks like this:

Now that Yummy is a StatefulWidget you can add back the const declarations. Open 
main.dart and change:

runApp(Yummy());

to

runApp(const Yummy());

Then change:

Yummy({super.key});

to

const Yummy({super.key});

Flutter Apprentice Chapter 3: Basic Widgets

 121



When you finish your app, there is one last step - remove the Debug label.

Still in main.dart find // Uncomment to remove Debug banner and remove the // 
at the beginning of the line. Hot restart your app, and the banner is gone.

You did it! You’ve finished this chapter. Along the way, you’ve applied three different 
categories of widgets. You learned how to use structural widgets to organize different 
screens, and you created three custom cards and applied different widget layouts to 
each.

Well done!

Flutter Apprentice Chapter 3: Basic Widgets

 122



Key Points
• Three main categories of widgets are: structure and navigation, displaying 

information, and positioning widgets.

• There are two main visual design systems available in Flutter, Material and 
Cupertino. They help you build apps that look native on Android and iOS, 
respectively.

• Using the Material theme, you can build quite varied user interface elements to 
give your app a custom look and feel.

• It’s generally a good idea to establish a common theme object for your app, giving 
you a single source of truth for your app’s style.

• The Scaffold widget implements all your basic visual layout structure needs.

• The Container widget can be used to group other widgets together.

• The Stack widget layers child widgets on top of each other.

Where to Go From Here?
There’s a wealth of Material Design widgets to play with, not to mention other types 
of widgets — too many to cover in a single chapter.

Fortunately, the Flutter team created a Widget UI component library that shows how 
each widget works! Check it out here: https://gallery.flutter.dev/

In this chapter, you got started right off with using widgets to build a nice user 
interface. In the next chapter, you’ll dive into the theory of widgets to help you 
better understand how to use them.

Flutter Apprentice Chapter 3: Basic Widgets

 123



4Chapter 4: Understanding 
Widgets
By Vincent Ngo

You may have heard that everything in Flutter is a widget. While that might not be 
absolutely true, most of the time when you’re building apps, you only see the top 
layer: widgets. In this chapter, you’ll dive into widget theory. You’ll explore:

• Widgets

• Widget rendering

• Flutter Inspector

• Types of widgets

• Widget lifecycle

It’s time to jump in!

Note: This chapter is mostly theoretical. You’ll make just a few code changes 
to the project near the end of the chapter.

 124



What Is a Widget?
A widget is a building block for your user interface. Using widgets is like combining 
Legos. Like Legos, you can mix and match widgets to create something amazing.

Flutter’s declarative nature makes it super easy to build a UI with widgets. A widget 
is a blueprint for displaying the state of your app.

You can think of widgets as a function of UI. Given a state, the build() method of a 
widget constructs the widget UI.

Flutter Apprentice Chapter 4: Understanding Widgets

 125



Unboxing CategoryCard
In the previous chapter, you created three cards. Now, you’ll look at the widgets that 
compose CategoryCard in more detail:

Flutter Apprentice Chapter 4: Understanding Widgets

 126



Do you remember which widgets you used to build this card?

Recall that the card consists of the following:

• Card widget: A material design container that wraps the content.

• Column widget: Organizes content vertically, with a Stack for images and texts 
and a ListTile for category details.

• Stack widget: Overlays multiple widgets, used here to layer the image with two 
pieces of text.

• ClipRRect widget: Provides rounded corners for the image.

• Image widget: Loads the image.

• Positioned widget: Positions “Yummy” and “Smoothies” texts over the image.

Flutter Apprentice Chapter 4: Understanding Widgets

 127



• Text widget: Displays text from category details and static labels.

• RotatedBox widget: Rotates the text by 90°.

• ListTile widget: Displays the category’s name and number of associated 
restaurants.

Widget Trees
Every widget contains a build() method. In this method, you create a UI 
composition by nesting widgets within other widgets. This forms a tree-like data 
structure. Each widget can contain other widgets, commonly called children. Below 
is a visualization of CategoryCard’s widget tree:

The widget tree provides a blueprint that describes how you want to lay out your UI. 
The framework traverses the nodes in the tree and calls each build() method to 
compose your entire UI.

Flutter Apprentice Chapter 4: Understanding Widgets

 128



Rendering Widgets
In Chapter 1, “Getting Started,” you learned that Flutter’s architecture contains three 
layers:

In this chapter, you’ll focus on the framework layer. You can break this layer into 
four parts:

• Material and Cupertino are UI control libraries built on top of the widget layer. 
They make your UI look and feel like Android and iOS apps, respectively.

• The Widgets layer is a composition abstraction on widgets. It contains all the 
primitive classes needed to create UI controls. Check out the official 
documentation here: https://api.flutter.dev/flutter/widgets/widgets-library.html.

• The Rendering layer is a layout abstraction that draws and handles the widget’s 
layout. Imagine having to recompute every widget’s coordinates and frames 
manually. Yuck!

• Foundation, also known as the dart:ui layer, contains core libraries that handle 
animation, painting and gestures.

Flutter Apprentice Chapter 4: Understanding Widgets

 129



Three Trees
Flutter’s framework actually manages not one, but three trees in parallel:

• Widget Tree

• Element Tree

• RenderObject Tree

Here’s how a single widget works under the hood:

• Widget: The public API or blueprint for the framework. Developers usually just 
deal with this layer.

• Element: Manages a widget and a widget’s render object. For every widget 
instance in the tree, there is a corresponding element.

• RenderObject: Responsible for drawing and laying out a specific widget instance. 
Also handles user interactions, like hit-testing and gestures.

Flutter Apprentice Chapter 4: Understanding Widgets

 130



Types of Elements
There are two types of elements:

• ComponentElement: A type of element composed of other elements. This 
corresponds to composing widgets inside other widgets.

• RenderObjectElement: A type of element that holds a render object.

You can think of ComponentElement as a group of elements and 
RenderObjectElement as a single element. Remember that each element contains a 
render object to perform widget painting, layout and hit testing.

Example Trees for CategoryCard

The image below shows an example of the three trees for the CategoryCard widget:

As you saw in previous chapters, Flutter starts to build your app by calling runApp(). 
Every widget’s build() method then composes a subtree of widgets. Flutter creates 
a corresponding element for each widget in the widget tree.

The element tree manages each widget instance and associates a render object to tell 
the framework how to render a particular widget.

Note: For more details on Flutter widget rendering, check out the Flutter 
team’s talk they gave in China on how to render widgets: https://youtu.be/
996ZgFRENMs.

Flutter Apprentice Chapter 4: Understanding Widgets

 131



Getting Started
Open the starter project in Android Studio, run flutter pub get if necessary, and 
then run the app. You’ll see the Yummy app from the previous chapter:

Next, open DevTools by tapping the blue Dart icon, as shown below:

Flutter Apprentice Chapter 4: Understanding Widgets

 132



DevTools will open in your browser.

Note: It works best with the Google Chrome web browser. Click the ⚙ icon to 
switch between dark and light mode.

Select a widget on the left to see its layout on the right.

Flutter Apprentice Chapter 4: Understanding Widgets

 133



DevTools Overview
DevTools provides all kinds of awesome tools to help you debug your Flutter app. 
These include:

• Flutter Inspector: Used to explore and debug the widget tree.

• Performance: Allows you to analyze Flutter frame charts, timeline events and 
CPU profiler.

• CPU Profiler: Allows you to record and profile your Flutter app session.

• Memory: Shows how objects in Dart are allocated, which helps find memory leaks.

• Debugger: Supports breakpoints and variable inspection on the call stack. Also 
allows you to step through code right within DevTools.

• Network: Allows you to inspect HTTP, HTTPS and web socket traffic within your 
Flutter app.

• Logging: Displays events fired on the Dart runtime and app-level log events.

• App Size: Helps you analyze your total app size.

There are many different tools to play with, but in this chapter, you’ll only look at 
the Flutter Inspector. For information about how the other tools work, check 
out:https://flutter.dev/docs/development/tools/devtools/overview.

Flutter Inspector
The Flutter Inspector has four key benefits. It helps you:

• Visualize your widget tree.

• Inspect the properties of a specific widget in the tree.

• Experiment with different layout configurations using the Layout Explorer.

• Enable slow animation to show how your transitions look.

Flutter Apprentice Chapter 4: Understanding Widgets

 134



Flutter Inspector tools

Here are some of the important tools to use with the Flutter Inspector.

• Select Widget Mode: When enabled, this allows you to tap a particular widget on 
a device or simulator to inspect its properties.

Clicking any element in the widget tree also highlights the widget on the device and 
jumps to the exact line of code. How cool is that!

• Refresh Tree: Simply reloads the current widget’s info.

Depending on if your browser is expanded or collapsed, you’ll see one of the 
following toolsets.

Flutter Apprentice Chapter 4: Understanding Widgets

 135



Look at each tool to see how it can help you identify issues.

• Slow Animation: Slows down the animation so you can visually inspect the UI 
transitions.

• Show Guidelines: Shows visual debugging hints. That allows you to check your 
widgets’ borders, paddings and alignment.

Here’s a screenshot of how guidelines look on a device:

Flutter Apprentice Chapter 4: Understanding Widgets

 136



• Show Baselines: When enabled, this tells RenderBox to paint a line under each 
text’s baseline.

Here, you can see the green line under the baseline of each Text widget:

• Highlight Repaints: Adds a random border to a widget every time Flutter repaints 
it. This is useful if you want to find unnecessary repaints.

Flutter Apprentice Chapter 4: Understanding Widgets

 137



If you feel bored, you can spice things up by enabling disco mode, as shown below:

• Highlight Oversized Images: Tells you which images in your app are oversized.

If an image is oversized, it’ll invert the image’s colors and flip it upside down. As 
shown below:

Flutter Apprentice Chapter 4: Understanding Widgets

 138



Inspecting the Widget Tree

In the emulator, select the first tab, then click Refresh Tree in the DevTools. Finally, 
select CategoryCard and click Widget Details Tree tab, as shown below:

Note that:

• In the left panel, there’s a portion of the Flutter widget tree under investigation, 
starting from the root.

• When you tap a specific widget in the tree, you can inspect its sub-tree, as shown 
in the Widget Details Tree tab on the right panel.

• The Details Tree represents the element tree and displays all the important 
properties that make up the widget. Notice that it references renderObject.

The Details Tree is a great way for you to inspect and experiment with how a 
specific widget property works.

Flutter Apprentice Chapter 4: Understanding Widgets

 139



Click a Text widget, and you’ll see all the properties you can configure:

How useful is this? You can examine all the properties, and if something doesn’t 
make sense, you can pull up the Flutter widget documentation to read more about 
that property!

Inspecting Like a Pro

Besides checking the properties in Details Tree, you can evaluate your widgets in 
two other ways:

• Hover over any widget, and it’ll show a pop-up with all the properties.

• Click on a widget to print the widget’s object, properties and state in the console.

Flutter Apprentice Chapter 4: Understanding Widgets

 140



As shown below:

Flutter Apprentice Chapter 4: Understanding Widgets

 141



Layout Explorer

Next, click the Layout Explorer tab, as shown below:

You can use the Layout Explorer to visualize how your Text widget is laid out within 
the Stack.

Flutter Apprentice Chapter 4: Understanding Widgets

 142



Next, follow these instructions:

1. Make sure your device is running, and DevTools is open in your browser.

2. Click Post in the bottom navigation bar.

3. Click the Refresh Tree button.

4. Select the Row element in the tree.

5. Click Layout Explorer.

You’ll see the following:

The Layout Explorer is handy for modifying flex widget layouts in real-time.

The explorer supports modifying:

• mainAxisAlignment

• crossAxisAlignment

• flex

• fit

Flutter Apprentice Chapter 4: Understanding Widgets

 143



Click start within the Cross Axis and change the value to stretch. Notice that the 
PostCard widget stretches the entire screen:

This is useful when you need to inspect and tweak layouts at runtime.

Feel free to experiment and play around with the Layout Explorer. You can create 
simple column or row widgets to mess around with the layout axis.

You now have all the tools you need to debug widgets! In the next section, you’ll 
learn about the types of widgets and when to use them.

Learning the Types of Widgets
There are three major types of widgets: Stateless, Stateful and Inherited. All 
widgets are immutable, but some have a state attached to them using their element. 
You’ll learn more about the differences between these next.

Flutter Apprentice Chapter 4: Understanding Widgets

 144



Stateless Widgets
The state or properties of a stateless widget can’t be altered once it’s built. When 
your properties don’t need to change over time, it’s generally a good idea to start 
with a stateless widget.

The lifecycle of a stateless widget starts with a constructor, which you can pass 
parameters to, and a build() method, which you override. The visual description of 
the widget is determined by the build() method.

The following events trigger this kind of widget to update:

• The widget is inserted into the widget tree for the first time.

• The state of a dependency or inherited widget — ancestor nodes — changes.

Stateful Widgets
Stateful widgets preserve state, which is useful when parts of your UI need to change 
dynamically.

For example, one good time to use a stateful widget is when a user taps a Favorite 
button to toggle a simple Boolean value on and off.

Flutter Apprentice Chapter 4: Understanding Widgets

 145



Stateful widgets store their mutable state in a separate State class. That’s why every 
stateful widget must override and implement createState().

Next, take a look at the stateful widget’s lifecycle.

State Object Lifecycle

Every widget’s build() method takes a BuildContext as an argument. The build 
context tells you where you are in the tree of widgets. You can access the element 
for any widget through the BuildContext. Later, you’ll see why the build context is 
important, especially for accessing state information from parent widgets.

Flutter Apprentice Chapter 4: Understanding Widgets

 146



Now, take a closer look at the lifecycle:

1. When you assign the build context to the widget, an internal flag, mounted, is set 
to true. This lets the framework know that this widget is currently on the widget 
tree.

2. initState() is the first method called after a widget is created. This is similar to 
onCreate() in Android or viewDidLoad() in iOS.

3. The first time the framework builds a widget, it calls didChangeDependencies() 
after initState(). It might call didChangeDependencies() again if your state 
object depends on an inherited widget that has changed. There’s more on 
inherited widgets below.

4. Finally, the framework calls build() after didChangeDependencies(). This 
function is the most important for developers because it’s called every time a 
widget needs rendering. Every widget in the tree triggers a build() method 
recursively, so this operation has to be very fast.

Note: You should always perform heavy computational functions 
asynchronously and store their results as part of the state for later use with 
the build() function.

build() should never do anything that’s computationally demanding. This is 
similar to how you think of the iOS or Android main thread. For example, you 
should never make a network call that stalls the UI rendering.

5. The framework calls didUpdateWidget(_) when a parent widget makes a change 
or needs to redraw the UI. When that happens, you’ll get the oldWidget instance 
as a parameter so you can compare it with your current widget and do any 
additional logic.

6. Whenever you want to modify the state in your widget, you call setState(). The 
framework then marks the widget as dirty and triggers a build() again.

Note: Asynchronous code should always check if the mounted property is true 
before calling setstate(), because the widget may no longer be part of the 
widget tree.

Flutter Apprentice Chapter 4: Understanding Widgets

 147



7. When you remove the object from the tree, the framework calls deactivate(). 
In some cases, the framework can reinsert the state object into another part of 
the tree.

8. The framework calls dispose() when you permanently remove the object and its 
state from the tree. This method is very important because you’ll need it to 
handle memory cleanup, such as unsubscribing streams and disposing of 
animations or controllers.

The rule of thumb for dispose() is to check any properties you define in your state 
and make sure you’ve disposed of them properly.

Adding Stateful Widgets

Wouldn’t it be great if your users could save their list of favorite restaurants to gain 
quick access to reorder again? You’ll add a heart button to 
RestaurantLandscapeCard for users to save a restaurant.

RestaurantLandscapeCard is currently a StatelessWidget, which means the 
widget can’t manage state dynamically. To fix this, you’ll change this card into a 
StatefulWidget.

Flutter Apprentice Chapter 4: Understanding Widgets

 148



Open restaurant_landscape_card.dart and right-click RestaurantLandscapeCard. 
Then click Show Context Actions from the menu that pops up:

Select Convert to StatefulWidget. Instead of converting manually, you can just use 
this menu shortcut to do it automatically:

There are now two classes:

class RestaurantLandscapeCard extends StatefulWidget { 
  ... 

 
  @override 
  State<RestaurantLandscapeCard> createState() => 
    _RestaurantLandscapeCardState(); 
} 

 
class _RestaurantLandscapeCardState extends 
State<RestaurantLandscapeCard> { 
  // TODO: Add _isFavorited property 
  @override 
  Widget build(BuildContext context) { 
    ... 
  }

A couple of things to notice in the code above:

• The refactor converted RestaurantLandscapeCard from a StatelessWidget into 
a StatefulWidget. It added a createState() implementation.

• The refactor also created the _RestaurantLandscapeCardState state class. It 
stores mutable data that can change over the lifetime of the widget.

Flutter Apprentice Chapter 4: Understanding Widgets

 149



Implementing Favorites

In _RestaurantLandscapeCardState, find // TODO: Add _isFavorited 
property and replace it with the following property:

bool _isFavorited = false;

Now that you’ve created a new state, you need to manage it. Locate the comment // 
TODO: Convert to a stack and replace it and the whole child property below it 
with the following:

// 1 
child: Stack( 
  fit: StackFit.expand, 
  children: [ 
    // 2 
    Image.asset( 
      widget.restaurant.imageUrl, 
      fit: BoxFit.cover, 
    ), 
    // 3 
    Positioned( 
      top: 4.0, 
      right: 4.0, 
      child: IconButton( 
        // 4 
        icon: Icon(_isFavorited 
            ? Icons.favorite  // 
            : Icons.favorite_border, 
          ), 
        iconSize: 30.0, 
        color: Colors.red[400], 
        // 5 
        onPressed: () { 
          setState(() { 
            _isFavorited = !_isFavorited; 
          }); 
        }, 
      ), 
    ), 
  ], 
)

Flutter Apprentice Chapter 4: Understanding Widgets

 150



Here’s how the code works:

1. Stack widget overlays multiple elements. Here, it’s used to layer a favorite 
button over a restaurant’s image, ensuring you utilize the full space.

2. The restaurant’s image is displayed, with a scaling set to fill the entire container.

3. The IconButton is positioned at the top-right corner of the image, serving as the 
favorite action.

4. The icon displayed depends on the _isFavorited status. A filled heart 
represents a favorite, while an outlined heart indicates otherwise.

5. Tapping the favorite button toggles the _isFavorited state, effectively 
switching between the two heart icons. This is done via a call to setState().

Save the change to trigger a hot reload, and on the Restaurant card, see the heart 
button. Toggle the heart button on and off when you tap it, as shown below:

Examining the Widget Tree

Now that you’ve turned RestaurantLandscapeCard into a stateful widget, your next 
step is to look at how the element tree manages state changes.

Recall that the framework will construct the widget tree and, for every widget 
instance, create an element object. The element, in this case, is a StatefulElement, 
and it manages the state object, as shown on the next page.

Flutter Apprentice Chapter 4: Understanding Widgets

 151



When the user taps the heart button, setState() runs and toggles _isFavorited to 
true. Internally, the state object marks this element as dirty. That triggers a call to 
build().

This is where the element object shows its strength. It removes the old widget and 
replaces it with a new instance of Icon that contains the filled heart icon.

Rather than reconstructing the whole tree, the framework only updates the widgets 
that need to be changed. It walks down the tree hierarchy and checks for what’s 
changed. It reuses everything else.

Now, what happens when you need to access data from some other widget, located 
elsewhere in the hierarchy? You use inherited widgets.

Flutter Apprentice Chapter 4: Understanding Widgets

 152



Inherited Widgets
Inherited widgets let you access state information from the parent elements in the 
tree hierarchy. Imagine you have a piece of data way up in the widget tree that you 
want to access. One solution is to pass the data down as a parameter on each nested 
widget — but that quickly becomes annoying and cumbersome.

Wouldn’t it be great if there was a centralized way to access such data?

That’s where inherited widgets come in! By adopting an inherited widget in your 
tree, you can reference the data from any of its descendants. This is known as lifting 
state up.

For example, you use an inherited widget when:

• Accessing a Theme object to change the UI’s appearance.

• Calling an API service object to fetch data from the web.

• Subscribing to streams to update the UI according to the data received.

Inherited widgets are an advanced topic. You’ll learn more about them in Section 4, 
“Networking, Persistence and State”, which covers state management and the 
Riverpod package — a framework built on top of InheritedWidget.

Flutter Apprentice Chapter 4: Understanding Widgets

 153



Key Points
• Flutter maintains three trees in parallel: the Widget, Element and RenderObject 

trees.

• A Flutter app is performant because it maintains its structure and only updates the 
widgets that need redrawing.

• The Flutter Inspector is a useful tool to debug, experiment with and inspect a 
widget tree.

• You should always start by creating StatelessWidgets and only use 
StatefulWidgets when you need to manage and maintain the state of your 
widget.

• Inherited widgets are a good solution to access state from the top of the tree.

Where to Go From Here?
If you want to learn more theory about how widgets work, check out the following 
links:

• Detailed architectural overview of Flutter and widgets:https://flutter.dev/docs/
resources/architectural-overview.

• The Flutter team created a YouTube series explaining widgets under the 
hood:https://www.youtube.com/playlist?
list=PLjxrf2q8roU2HdJQDjJzOeO6J3FoFLWr2.

• The Flutter team gave a talk in China on how to render widgets:https://youtu.be/
996ZgFRENMs.

In the next chapter, you’ll get back to more practical concerns and see how to create 
scrollable widgets.

Flutter Apprentice Chapter 4: Understanding Widgets

 154



5Chapter 5: Scrollable 
Widgets
By Vincent Ngo

Building scrollable content is an essential part of UI development. There’s only so 
much information a user can process at a time, let alone fit on an entire screen in the 
palm of your hand!

In this chapter, you’ll learn everything you need to know about scrollable widgets. In 
particular, you’ll learn:

• How to use ListView.

• How to nest scroll views.

 155



You’ll continue to build the Yummy app by adding HomeScreen, a new view that 
enables users to explore different restaurants, food categories, and view friends’ 
posts.

By the end of this chapter, you’ll be a scrollable widget wizard!

Flutter Apprentice Chapter 5: Scrollable Widgets

 156



Getting Started
Open the starter project in Android Studio, then run flutter pub get if necessary 
and run the app.

You’ll see a placeholder for each tab as shown below:

Project Files
There are new files in this starter project to help you out. Before you learn how to 
create scrollable widgets, take a look at them.

Flutter Apprentice Chapter 5: Scrollable Widgets

 157



Assets Folder

The assets directory contains all the images that you’ll use to build your app.

Sample Images

• categories: Contains images for food categories.

• food: Contains sample food items from a restaurant menu.

• profile_pics: Contains Kodeco team member pictures.

• restaurants: Contains restaurant hero images.

Flutter Apprentice Chapter 5: Scrollable Widgets

 158



New Classes
In the lib directory, you’ll also notice the new api folder, as shown below:

Flutter Apprentice Chapter 5: Scrollable Widgets

 159



API Folder

The api folder contains a mock service class.

MockYummyService is a service class that mocks a server response. It has async 
functions that wait to load mock data defined in each model class, FoodCategory, 
Post, and Restaurant.

Pro tip: Sometimes your back-end service is not ready to consume. Creating a 
mock service is a flexible way to build your UI.

In this chapter, you’ll use two API calls:

• getExploreData(): Returns ExploreData. Internally, it makes a batch request and 
returns three lists: restaurants, food categories, and friend posts.

Note: Unfamiliar with how async works in Dart? Check out Chapter 12, 
“Futures” in Dart Apprentice: Beyond the Basics (https://www.kodeco.com/
books/dart-apprentice-beyond-the-basics/v1.0/chapters/12-futures) or read 
this article to learn more:https://dart.dev/codelabs/async-await.

Now that you have a mock service, you can focus on displaying the data with 
scrollable widgets!

Flutter Apprentice Chapter 5: Scrollable Widgets

 160



Introducing ListView
ListView is a very popular Flutter component. It’s a linear scrollable widget that 
arranges its children linearly and supports horizontal and vertical scrolling.

Fun fact: Column and Row widgets are like ListView but without the scroll 
view.

Introducing Constructors
A ListView has four constructors:

• The default constructor takes an explicit list of widgets called children. That will 
construct every single child in the list, even the ones that aren’t visible. You 
should use this if you have a small number of children.

• ListView.builder() takes in an IndexedWidgetBuilder and builds the list on 
demand. It will only construct the children that are visible onscreen. You should 
use this if you need to display a large or infinite number of items.

• ListView.separated() takes two IndexedWidgetBuilders: itemBuilder and 
seperatorBuilder. This is useful if you want to place a separator widget between 
your items.

• ListView.custom() gives you more fine-grain control over your child items.

Flutter Apprentice Chapter 5: Scrollable Widgets

 161



Note: For more details about ListView constructors, check out the official 
documentation: https://api.flutter.dev/flutter/widgets/ListView-class.html

Next, you’ll learn how to use the first three constructors!

Setting Up the Explore Screen
The first screen you’ll create is the ExploreScreen. It contains three sections:

• RestaurantSection: A horizontal scroll view that lets you pan through different 
restaurants.

• CategorySection: A horizontal scroll view that pans through different categories.

• PostSection: A vertical scroll view that shows what your friends are up to.

Flutter Apprentice Chapter 5: Scrollable Widgets

 162



In the lib folder, create a new directory called screens.

Within the new screens directory, create a new file called explore_page.dart and 
add the following code:

import 'package:flutter/material.dart'; 
import '../api/mock_yummy_service.dart'; 

 
 

class ExplorePage extends StatelessWidget { 
  // 1 
  final mockService = MockYummyService(); 

 
  ExplorePage({super.key}); 

 
  @override 
  Widget build(BuildContext context) { 
    // TODO: Add Listview Future Builder 
    // 2 
    return const Center( 
        child: Text('Explore Page Setup', 
        style: TextStyle(fontSize: 32.0),),); 
  } 
}

Here’s how the code works:

1. Create a MockYummyService, to mock server responses.

2. Display a placeholder text. You’ll replace this later.

Leave explore_page.dart open; you’ll soon be making some changes.

Flutter Apprentice Chapter 5: Scrollable Widgets

 163



Updating the Navigation Pages
In lib/home.dart, locate // TODO: Replace with ExplorePage and replace 
Center below it with the following:

ExplorePage(),

This will display the newly created ExplorePage in the first tab.

Make sure the new ExploreScreen has been imported. If your IDE didn’t add it 
automatically, add this import:

import 'screens/explore_page.dart';

Hot restart the app. It will look like this:

You’ll replace the Containers later in this chapter.

Flutter Apprentice Chapter 5: Scrollable Widgets

 164



Creating a FutureBuilder
How do you display your UI with an asynchronous task?

MockYummyService contains asynchronous functions that return a Future object. 
FutureBuilder comes in handy here, as it helps you determine the state of a 
Future. For example, it tells you whether data is still loading or the fetch operation 
has finished.

In explore_page.dart, replace the whole return statement below // TODO: Add 
Listview Future Builder with the following code:

// 1 
  return FutureBuilder( 
    // 2 
    future: mockService.getExploreData(), 
    // 3 
    builder: (context, AsyncSnapshot<ExploreData> snapshot) { 
      // 4 
      if (snapshot.connectionState == ConnectionState.done) { 
        // 5 
        final restaurants = snapshot.data?.restaurants ?? []; 
        final categories = snapshot.data?.categories ?? []; 
        final posts = snapshot.data?.friendPosts ?? []; 
        // TODO: Replace this with Restaurant Section 
        return const Center( 
          child: SizedBox( 
            child: Text('Show RestaurantSection'), 
          ), 
        ); 
      } else { 
        // 6 
        return const Center( 
          child: CircularProgressIndicator(), 
        ); 
      } 
    }, 
  );

Here’s what the code does:

1. FutureBuilder is a widget that works with asynchronous operations, allowing 
you to build UI based on the latest snapshot of a Future.

2. FutureBuilder takes in a future. You’re using getExploreData() to fetch data, 
which returns an instance of ExploreData.

3. builder() is a function that decides what the UI should look like based on the 
current state of the Future. This is provided by the snapshot.

Flutter Apprentice Chapter 5: Scrollable Widgets

 165



4. If snapshot.connectionState is done, it means the data is available to 
consume.

5. Extract the data from snapshot.data, providing default values if the data is null. 
For now, the widgets return a placeholder, you will replace it with actual content 
later.

6. If the data is not ready to consume, show a loading spinner.

Note: For more information, check out Flutter’s FutureBuilder 
documentation: https://api.flutter.dev/flutter/widgets/FutureBuilder-
class.html.

Perform a hot reload. You’ll see the loading spinner first. After the future completes, 
it shows the placeholder text.

Now that you’ve set up the loading UI, it’s time to build the actual list view!

Flutter Apprentice Chapter 5: Scrollable Widgets

 166



Building Restaurant Section
The first scrollable component you’ll build is RestaurantSection. This is the top 
section of the ExplorePage. It will be a horizontal list view.

In lib/components, create a new file called restaurant_section.dart. Add the 
following code:

import 'package:flutter/material.dart'; 
 

// 1 
import '../components/restaurant_landscape_card.dart'; 
import '../models/restaurant.dart'; 

 
class RestaurantSection extends StatelessWidget { 
  // 2 
  final List<Restaurant> restaurants; 

 
  const RestaurantSection({ 
    super.key, 
    required this.restaurants, 
  }); 

 
  @override 
  Widget build(BuildContext context) { 
    // 3 
    return Padding( 
      padding: const EdgeInsets.all(8.0), 
      // 4 
      child: Column( 
        crossAxisAlignment: CrossAxisAlignment.start, 
        children: [ 
          const Padding( 
            padding: EdgeInsets.only(left: 16.0, bottom: 8.0), 
            // 5

Flutter Apprentice Chapter 5: Scrollable Widgets

 167



            child: Text( 
              'Food near me', 
              style: TextStyle( 
                fontSize: 24, 
                fontWeight: FontWeight.bold, 
              ), 
            ), 
          ), 
          // TODO: Add Restaurant List View 
          // 6 
          Container( 
            height: 400, 
            // TODO: Add ListView Here 
            color: Colors.grey, 
          ), 
        ], 
      ), 
    ); 
  } 
}

Here’s how the code works:

1. Import restaurant card component and model.

2. RestaurantSection is a StatelessWidget that requires a list of restaurants.

3. Within build(), start by applying some padding.

4. Add a Column to place widgets in a vertical layout.

5. In the column, add a Text. This is the header for the “Food near me” section.

6. Add a Container, 400 pixels tall, and set the background color to grey. This 
container is a placeholder for your ListView of restaurants.

Adding the Restaurant Section
Open explore_page.dart and add the following import:

import '../components/restaurant_section.dart';

This means you don’t have to call additional imports when you use the new 
component.

Replace  // TODO: Replace this with Restaurant Section and the return 
statement below with the following:

Flutter Apprentice Chapter 5: Scrollable Widgets

 168



// TODO: Wrap in a ListView 
return RestaurantSection(restaurants: restaurants);

If your app is still running, it will now look like this:

Now it’s finally time to add the ListView.

In restaurant_section.dart, replace // TODO: Add Restaurant List View and the 
Container beneath it with the following:

// 1 
SizedBox( 
  height: 230, 
  // 2 
  child: ListView.builder( 
    // 3 
    scrollDirection: Axis.horizontal, 
    // 4

Flutter Apprentice Chapter 5: Scrollable Widgets

 169



    itemCount: restaurants.length, 
    // 5 
    itemBuilder: (context, index) { 
      // 6 
      return SizedBox( 
        width: 300, 
        // 7 
        child: RestaurantLandscapeCard( 
          restaurant: restaurants[index], 
        ), 
      ); 
    }, 
  ), 
),

Here’s how the code works:

1. The ListView will have a fixed height of 230 pixels. It acts as a container to 
constraint the height of the child.

2. ListView.builder widget dynamically creates a list of items based on the 
provided data.

3. Configure the items in the ListView to scroll horizontally.

4. Set the itemCount to be the length of restaurants list. This determines how 
many items the list should render.

5. itemBuilder is a function that returns a widget for a given index of the list. It’s 
invoked for each item in the restaurant list.

6. Set a fixed width of 300 pixels for every restaurant card.

7. Create a RestaurantLandscapeCard widget and pass in the restaurant object 
based on the current index.

Add the following import:

import 'restaurant_landscape_card.dart';

Flutter Apprentice Chapter 5: Scrollable Widgets

 170



Save the changes to trigger a hot restart and Yummy will now look like this; don’t 
forget, you can switch between light and dark mode:

You can scroll through the list of delicious restaurants. Finally!

Next, you’ll continue to add two new sections to ExplorePage.

Nested ListViews
There are two approaches to adding the category and post sections: the Column 
approach and the nested ListView approach. You’ll take a look at each of them now.

Flutter Apprentice Chapter 5: Scrollable Widgets

 171



Column Approach
You could put the list views in a Column, that arranges items in a vertical layout. So 
that makes sense right?

The diagram shows two rectangular boundaries that represent two scrollable areas.

The pros and cons of this approach are:

• RestaurantSection and CategorySection are OK because the scroll direction is 
horizontal. All the cards also fit on the screen and everything looks great!

• PostSection scrolls in the vertical direction, but it only has a small scroll area. So 
as a user, you can’t see many of your friend’s posts at once.

This approach has a bad user experience because the content area is too small! The 
Cards already take up most of the screen. How much room will there be for the 
vertical scroll area on small devices?

Flutter Apprentice Chapter 5: Scrollable Widgets

 172



Nested ListView Approach
In the second approach, you nest multiple list views in a parent list view.

The diagram shows one big rectangular boundary.

ExplorePage holds the parent ListView. Since there are only three children 
ListViews, you can use the default constructor, which returns an explicit list of 
children.

The benefits of this approach are:

1. The scroll area is a lot bigger, using 70–80% of the screen.

2. You can view more of your friends’ posts.

3. You can continue to scroll RestaurantSection or CategorySection in the 
horizontal direction.

4. When you scroll upward, Flutter listens to the scroll event of the parent 
ListView. So it will scroll both RestaurantSection, CategorySection and 
PostSection upwards, giving you more room to view all the content!

Nested ListView sounds like a better approach, doesn’t it?

Flutter Apprentice Chapter 5: Scrollable Widgets

 173



Adding a Nested ListView
First, go back to explore_page.dart locate the comment // TODO: Wrap in a 
ListView and replace it and return RestaurantSection widget with the following:

// 1 
return ListView( 
  // 2 
  shrinkWrap: true, 
  // 3 
  scrollDirection: Axis.vertical, 
  // 4 
  children: [ 
    RestaurantSection(restaurants: restaurants), 
    // TODO: Add CategorySection 
    Container( 
      height: 300, 
      color: Colors.green, 
    ), 
    // TODO: Add PostSection 
    Container( 
      height: 300, 
      color: Colors.orange, 
    ), 
  ], 
);

Here’s how the code works:

1. Initialize a scrollable list of widgets.

2. shrinkWrap sizes the ListView based on its children’s height.

3. The list scrolls vertically.

4. The list contains three child list view widgets. You will replace the two 
placeholder containers later.

Flutter Apprentice Chapter 5: Scrollable Widgets

 174



Your app now looks like this, try scrolling up and down:

Notice that you can still scroll the Cards horizontally. When you scroll up and down, 
you’ll notice the entire area scrolls!

Now that you have the desired scroll behavior, it’s time to build the 
CategorySection.

Flutter Apprentice Chapter 5: Scrollable Widgets

 175



Building Category Section
The second scrollable component you’ll build is CategorySection. Users will be able 
to scroll through a list of food categories horizontally.

In lib/components, create a new file called category_section.dart. Add the 
following code:

import 'package:flutter/material.dart'; 
import '../models/food_category.dart'; 
import 'category_card.dart'; 

 
// 1 
class CategorySection extends StatelessWidget { 
  final List<FoodCategory> categories; 
  const CategorySection({super.key, required this.categories}); 

 
  @override 
  Widget build(BuildContext context) { 
    // 2 
    return Padding( 
      padding: const EdgeInsets.all(8.0), 
      // 3 
      child: Column( 
        crossAxisAlignment: CrossAxisAlignment.start, 
        children: [ 
          // 4 
          const Padding( 
            padding: EdgeInsets.only(left: 16.0, bottom: 8.0), 
            child: Text( 
              'Categories', 
              style: TextStyle( 
                fontSize: 24, 
                fontWeight: FontWeight.bold, 
              ), 
            ), 
          ), 
          // 5

Flutter Apprentice Chapter 5: Scrollable Widgets

 176



          SizedBox( 
            height: 275, 
            child: ListView.builder( 
              scrollDirection: Axis.horizontal, 
              itemCount: categories.length, 
              itemBuilder: (context, index) { 
                // 6 
                return SizedBox( 
                  width: 200, 
                  child: CategoryCard( 
                    category: categories[index], 
                  ), 
                ); 
              }, 
            ), 
          ), 
        ], 
      ), 
    ); 
  } 
}

Here’s how the code works:

1. CategorySection is a StatelessWidget and requires a list of categories. The 
purpose of this widget is to display a list of various food categories.

2. The entire widget is wrapped by Padding widget to ensure 8.0 pixel space all 
around.

3. The Column widget is used to arrange child widgets vertically.

4. At the top of the column there is a title that displays “Categories”.

5. After the title there is a horizontally-scrolling ListView.builder which displays 
a list of CategoryCard widgets, each with a height of 200 pixels.

Now that you have created your category section, it’s time to add it to the list view.

Adding Category Section
Returning to explore_page.dart, locate // TODO: Add CategorySection and 
replace it and the Container below it with the following:

CategorySection(categories: categories),

Flutter Apprentice Chapter 5: Scrollable Widgets

 177



Add the following import at the top:

import '../components/category_section.dart';

Your app now looks like this:

Next, you’ll replace the orange placeholder container with a PostSection.

Flutter Apprentice Chapter 5: Scrollable Widgets

 178



Building the Post Section
The third scrollable component you’ll build is PostSection. Users will be able to 
scroll through a list of friend posts vertically.

In lib/components, create a new file called post_section.dart. Add the following 
code, ignoring any red squiggles:

import 'package:flutter/material.dart'; 
import '../models/post.dart'; 

 
// 1 
class PostSection extends StatelessWidget { 
  final List<Post> posts; 
  const PostSection({ 
    super.key, 
    required this.posts, 
  }); 

 
  @override 
  Widget build(BuildContext context) { 
    // 2 
    return Padding( 
      padding: const EdgeInsets.all(8.0), 
      // 3 
      child: Column( 
        crossAxisAlignment: CrossAxisAlignment.start, 
        children: [ 
          const Padding( 
            padding: EdgeInsets.only(left: 16.0, bottom: 8.0), 
            // 4 
            child: Text( 
              'Friend\'s Activity', 
              style: TextStyle( 
                fontSize: 24,

Flutter Apprentice Chapter 5: Scrollable Widgets

 179



                fontWeight: FontWeight.bold, 
              ), 
            ), 
          ), 
          // 5 
          // TODO: Add Post List View 
        ], 
      ), 
    ); 
  } 
}

Here’s how the code works:

1. PostSection is a stateless widget and requires a list of Posts.

2. Apply overall padding of 8.0 pixels.

3. Create a Column to position the Text followed by the posts in a vertical layout.

4. Create the Text widget header.

5. Use a placeholder comment to add the list of posts.

Next, locate the comment // TODO: Add Post List View and replace it with the 
following code:

// 1 
ListView.separated( 
  // 2 
  primary: false, 
  // 3 
  shrinkWrap: true, 
  // 4 
  scrollDirection: Axis.vertical, 
  // 5 
  physics: const NeverScrollableScrollPhysics(), 
  itemCount: posts.length, 
  // 6 
  itemBuilder: (context, index) { 
    return PostCard(post: posts[index]); 
  }, 
  separatorBuilder: (context, index) { 
    // 7 
    return const SizedBox(height: 16); 
  }, 
),

Flutter Apprentice Chapter 5: Scrollable Widgets

 180



Here’s how you defined the new ListView:

1. Create ListView.separated with two IndexWidgetBuilder callbacks.

2. Since you’re nesting two list views, it’s a good idea to set primary to false. That 
lets Flutter know that this isn’t the primary scroll view.

3. Set shrinkWrap to true to create a fixed-length scrollable list of items. This 
gives it a fixed height. If this were false, you’d get an unbounded height error.

4. Make this list view vertically scrollable.

5. Set the scrolling physics to NeverScrollableScrollPhysics. Even though you 
set primary to false, it’s also a good idea to disable the scrolling for this list view. 
That will propagate up to the parent list view.

6. For every item in the list, create a Post widget.

7. For every item, also create a SizedBox to space each item by 16 pixels.

Note: There are several different types of scroll physics you can play with:

• AlwaysScrollableScrollPhysics

• BouncingScrollPhysics

• ClampingScrollPhysics

• FixedExtentScrollPhysics

• NeverScrollableScrollPhysics

• PageScrollPhysicsRange

• MaintainingScrollPhysics

Find more details at https://api.flutter.dev/flutter/widgets/ScrollPhysics-
class.html.

If it didn’t automatically happen, add the following import at the top:

import 'post_card.dart';

The squiggles should be gone now.  Next, you’ll add the code to show your friends’ 
posts.

Flutter Apprentice Chapter 5: Scrollable Widgets

 181



Adding Post Section
Go back to explore_page.dart and find // TODO: Add PostSection and replace it 
and Container with the following:

PostSection(posts: posts),

If it’s not there, add the following import:

import '../components/post_section.dart';

Restart or hot reload the app. The final Explore page should look like the following 
in light mode:

Flutter Apprentice Chapter 5: Scrollable Widgets

 182



Here’s what it looks like in dark mode:

Aren’t nested scroll views a neat technique? :]

And that’s it, you’re done. Congratulations!

Flutter Apprentice Chapter 5: Scrollable Widgets

 183



Other Scrollable Widgets
There are many more scrollable widgets for various use cases. Here are some not 
covered in this chapter:

• CustomScrollView: A widget that creates custom scroll effects using slivers. Ever 
wonder how to collapse your navigation header on scroll? Use CustomScrollView 
for more fine-grain control over your scrollable area!

• PageView: A scrollable widget that scrolls page by page, making it perfect for an 
onboarding flow. It also supports a vertical scroll direction.

Flutter Apprentice Chapter 5: Scrollable Widgets

 184



• StaggeredGridView: A grid view package that supports columns and rows of 
varying sizes. If you need to support dynamic height and custom layouts, this is 
the most popular package.

Flutter Apprentice Chapter 5: Scrollable Widgets

 185



Key Points
• ListView and GridView support both horizontal and vertical scroll directions.

• The primary property lets Flutter know which scroll view is the primary scroll 
view.

• physics in a scroll view lets you change the user scroll interaction.

• Especially in a nested list view, remember to set shrinkWrap to true so you can 
give the scroll view a fixed height for all the items in the list.

• Use a FutureBuilder to wait for an asynchronous task to complete.

• You can nest scrollable widgets. For example, you can place a grid view within a 
list view. Unleash your wildest imagination!

Where to Go From Here?
At this point, you’ve learned how to create ListViews. They are much easier to use 
than iOS’s UITableView and Android’s RecyclerView, right? Building scrollable 
widgets is an important skill you should master!

Flutter makes it easy to build and use such scrollable widgets. It offers the flexibility 
to scroll in any direction and the power to nest scrollable widgets. With the skills 
you’ve learned, you can build cool scroll interactions.

You’re ready to look like a pro in front of your friends :]

For more examples check out the Flutter Gallery at https://gallery.flutter.dev/#/, 
which showcases some great examples to test out.

In the next chapter, you’ll take a look at some more interactive widgets.

Flutter Apprentice Chapter 5: Scrollable Widgets

 186



6Chapter 6: Advanced 
Scrollable Widgets
By Vincent Ngo

You’ve got the hang of scrollable widgets, but there’s so much more to explore. Don’t 
limit your app to just mobile screens—Flutter excels at adapting to various devices, 
from phones to tablets, desktops and the web. With Flutter, create an app that’s not 
only mobile-friendly but effortlessly scales to any screen size. Embrace versatility 
and go universal.

In this chapter, you’ll delve deeper into the world of scrollable widgets. You’ll learn 
how to:

• Create custom scroll effects with the Sliver widget.

• Make your UI responsive with the GridView widget.

You’ll continue to build out your food app, Yummy, by introducing a new feature: 
the RestaurantPage. Here, users can tap on a restaurant to explore everything from 
today’s menu to a gallery of enticing dishes, all displayed responsively.

Heads up: Grab a snack! The sight of food pictures might just work up an 
appetite

 187



Here is what the mobile view looks like:

And here’s the experience reimagined for the web:

In a bit your app will look and function beautifully on any device, providing a 
seamless and responsive experience from mobile devices to the web.

Getting Started
Open the starter project in Android Studio, then run flutter pub get if necessary 
and run the app.

Flutter Apprentice Chapter 6: Advanced Scrollable Widgets

 188



You’ll see the explore page as shown below:

Note In this chapter you’ll be running the app on mobile and web to test and 
develop responsive a UI. In Android Studio you can run multiple devices by 
clicking the drop-down menu as shown below:

Flutter Apprentice Chapter 6: Advanced Scrollable Widgets

 189



New Files in the Project
There are new files in this starter project to help you out. Before you start take a look 
at them.

Open the new lib/components/restaurant_item.dart file. You’ll find the class 
RestaurantItem.

This widget is designed to showcase individual menu items in a restaurant’s menu.

Here’s a breakdown of its components:

• Title

• Description

• Price

• Popularity indicator

• Image

• Add button, to add an item to the cart

Introducing Slivers
Slivers in Flutter are a fundamental part of creating custom scroll effects in a 
scrollable area. They are a family of widgets that provide various ways to lay out a 
list of children in a scrolling view.

Flutter Apprentice Chapter 6: Advanced Scrollable Widgets

 190



Unlike more straightforward widgets like ListView or GridView, slivers give 
developers fine-grained control over scroll behavior, animation, and the geometry of 
scrolling elements, making them the building blocks for complex scrollable areas.

Types of Slivers
Slivers operate within the CustomScrollView widget, which allows them to combine 
different scrolling behaviors in a single scroll view.

• SliverList and SliverGrid are the sliver equivalents of ListView and 
GridView, respectively. They allow you to lay out items linearly or in a grid 
pattern.

• SliverAppBar is a highly flexible app bar that can expand, collapse, float, and 
snap as you scroll.

• SliverToBoxAdapter allows you to place a single non-sliver widget within a 
CustomScrollView.

• SliverFillRemaining and SliverFillViewport let you size children based on 
the remaining space in the viewport, creating dynamic effects as you scroll.

Note: For a deeper dive into how you can leverage slivers to create various 
scrolling effects, you can review Flutter’s documentation (https://
docs.flutter.dev/ui/layout/scrolling/slivers).

Ready to explore the world of slivers? Let’s get scrolling!

Flutter Apprentice Chapter 6: Advanced Scrollable Widgets

 191



Building the Restaurant Page
First you need to set up the RestaurantPage. When users click on a restaurant in the 
Food Near Me section of your app it will direct them to this page that displays the 
restaurant’s menu.

In lib/screens, create a new file called restaurant_page.dart. Add the following 
code:

// 1 
import 'package:flutter/material.dart'; 
import '../models/restaurant.dart'; 

 
// 2 
class RestaurantPage extends StatefulWidget { 
  final Restaurant restaurant; 

 
  // 3 
  const RestaurantPage({ 
    super.key, 
    required this.restaurant, 
  }); 

 
  @override 
  State<RestaurantPage> createState() => _RestaurantPageState(); 
} 

 
// 4 
class _RestaurantPageState extends State<RestaurantPage> { 
  // TODO: Add Desktop Threshold 
  // TODO: Add Constraint Properties 
  // TODO: Calculate Constrained Width 
  // TODO: Add Calculate Column Count 

 
  // TODO: Build Custom Scroll View 
  // TODO: Build Sliver App Bar 
  // TODO: Build Info Section 
  // TODO: Build Grid Item 
  // TODO: Build Section Title 
  // TODO: Build Grid View 
  // TODO: Build Grid View Section 

 
  // TODO: Replace build method 
  @override 
  Widget build(BuildContext context) { 
    // 5 
    return Scaffold( 
      body: Center( 
        // TODO: Replace with Custom Scroll View 
        child: Text(

Flutter Apprentice Chapter 6: Advanced Scrollable Widgets

 192



          'Restaurant Page', 
          style: TextStyle(fontSize: 16.0),), 
      ), 
    ); 
  } 
}

Here’s how the code works:

1. Import necessary packages and classes.

2. Define a new class RestaurantPage as a StatefulWidget so we can have a 
mutable state.

3. RestaurantPage takes in a restaurant object which contains data such as 
restaurant info and menu to display on the page.

4. _RestaurantPageState is a class that holds the state for RestaurantPage.

5. The build() method currently returns a temporary placeholder text that 
displays Restaurant Page. This is where you’ll add the new elements of this 
view.

Navigating to a Restaurant Page
Let’s first implement a way to display a single restaurant.

Open lib/components/restaurant_landscape_card.dart.

Locate // TODO: Push Restaurant Page and replace it with the following code:

// 1 
Navigator.push( 
  // 2 
  context, 
  // 3 
  MaterialPageRoute( 
    // 4 
    builder: (context) => 
      RestaurantPage(restaurant: widget.restaurant, 
    ) 
  ), 
);

Flutter Apprentice Chapter 6: Advanced Scrollable Widgets

 193



When the user taps on a restaurant it navigates to its RestaurantPage. Here’s how 
the code works:

1. Navigator.push starts the navigation to a new screen.

2. context tells Flutter where the navigation starts from within the widget tree.

3. MaterialPageRoute is used to create a route with a standard transition 
animation.

4. Navigate to RestaurantPage and pass in the current restaurant object to be 
displayed.

Add the following import:

import '../screens/restaurant_page.dart';

Perform a hot reload. In the Foods Near Me section tap on a restaurant and you 
should see the new RestaurantPage as shown below:

Now that your page is set up you’re now ready to construct your sliver.

Flutter Apprentice Chapter 6: Advanced Scrollable Widgets

 194



Building a Sliver for the Restaurant Page
Return to lib/screens/restaurant_page.dart, replace // TODO: Build Custom 
Scroll View with the following:

CustomScrollView _buildCustomScrollView() { 
  return CustomScrollView( 
    slivers: [ 
      // TODO: Add Sliver App Bar 
      SliverToBoxAdapter( 
          child: Container( 
              height: 200.0, 
              color: Colors.red,),), 
      // TODO: Add Restaurant Info Section 
      SliverToBoxAdapter( 
          child: Container( 
              height: 300.0, 
              color: Colors.green,),), 
      // TODO: Add Menu Item Grid View Section 
      SliverFillRemaining( 
          child: Container( 
              color: Colors.blue,),), 
    ], 
  ); 
}

This function returns a CustomScrollView, a versatile widget that coordinates a 
variety of sliver widgets to create a multifaceted scrolling interface. Initially, this 
scroll view is populated with placeholder slivers:

• SliverToBoxAdapter is a handy widget that adapts a standard, non-sliver widget 
for use within a sliver list.

• SliverFillRemaining sizes its children to occupy the available remaining space 
in the viewport, perfect for expanding content areas.

These placeholders will be replaced later with the actual content for the app’s 
scrolling layout.

In the same file, locate the comment // TODO: Replace with Custom Scroll 
View and replace it and child with the following:

child: _buildCustomScrollView(),

Flutter Apprentice Chapter 6: Advanced Scrollable Widgets

 195



Perform a hot reload, and you should see the following screen(s):

Next, you’ll create a SliverAppBar that remains pinned to the top of a scrollable 
area.

Building a Sliver App Bar
A SliverAppBar expands to reveal a large image of a restaurant with a circular icon 
overlayed at the bottom left. As the user scrolls up, the app bar will remain at the 
top, and shrink the regular app bar size.

Flutter Apprentice Chapter 6: Advanced Scrollable Widgets

 196



Locate // TODO: Build Sliver App Bar and replace it with the following code:

SliverAppBar _buildSliverAppBar() { 
  // 1 
  return SliverAppBar( 
    // 2 
    pinned: true, 
    // 3 
    expandedHeight: 300.0, 
    // 4 
    flexibleSpace: FlexibleSpaceBar( 
      // 5 
      background: Center( 
        // 6 
        child: Padding( 
          padding: const EdgeInsets.only( 
            left: 16.0, 
            right: 16.0, 
            top: 64.0, 
          ), 
          // 7 
          child: Stack( 
            children: [ 
              // 8 
              Container( 
                margin: const EdgeInsets.only(bottom: 30.0), 
                decoration: BoxDecoration( 
                  color: Colors.grey, 
                  borderRadius: BorderRadius.circular(16.0), 
                  // 9 
                  image: DecorationImage( 
                    image: 
AssetImage(widget.restaurant.imageUrl), 
                    fit: BoxFit.cover,),), 
                  ), 
              // 10 
              const Positioned( 
                bottom:0.0, 
                left: 16.0, 
                child: CircleAvatar( 
                  radius: 30, 
                  child: Icon(Icons.store, color: 
Colors.white,), 
                ), 
              ), 
            ], 
          ), 
        ), 
      ), 
    ), 
  ); 
}

Flutter Apprentice Chapter 6: Advanced Scrollable Widgets

 197



Here’s how the code works:

1. The function returns a SliverAppBar widget that creates a collapsible app bar.

2. Keep the app bar pinned at the top of the view.

3. Specify expandedHeight of 300.0 pixels for maximum height when fully 
expanded.

4. Use a FlexibleSpaceBar for the collapsible part of the app bar.

5. Within the FlexibleSpaceBar, set a background widget.

6. Apply some padding to create internal spacing for the background.

7. Arrange elements using a Stack.

8. Create a Container for the backdrop with styling.

9. Show the restaurant image as a background using DecorationImage.

10. Place a circular icon at the bottom left using Positioned widget.

Integrate the Sliver App Bar
Now add the app bar to your custom scroll view. Locate // TODO: Add Sliver App 
Bar and replace it and SliverToBoxAdapter with the following:

_buildSliverAppBar(),

Flutter Apprentice Chapter 6: Advanced Scrollable Widgets

 198



Perform a hot reload. Tap on a restaurant, and you should see the app bar as shown 
below:

When you look at a restaurant knowing its details is helpful, but you don’t have that. 
No worries, you’ll add the info section next.

Flutter Apprentice Chapter 6: Advanced Scrollable Widgets

 199



Building the Restaurant Info Section
After adding a sliver containing the restaurant’s information such as the name, 
address, rating, distance and attributes your app bar will look like this:

Locate the comment // TODO: Build Info Section and replace it with the 
following code:

// 1 
SliverToBoxAdapter _buildInfoSection() { 
  // 2 
  final textTheme = Theme.of(context).textTheme; 
  // 3 
  final restaurant = widget.restaurant; 
  // 4 
  return SliverToBoxAdapter( 
    // 5 
    child: Padding( 
      padding: const EdgeInsets.all(16.0), 
      // 6 
      child: Column( 
        crossAxisAlignment: CrossAxisAlignment.start, 
        children: [ 
          // 7 
          Text(restaurant.name, style: 
textTheme.headlineLarge,), 
          Text(restaurant.address, style: textTheme.bodySmall,), 
          Text( 
            restaurant.getRatingAndDistance(),

Flutter Apprentice Chapter 6: Advanced Scrollable Widgets

 200



            style: textTheme.bodySmall,), 
          Text(restaurant.attributes, style: 
textTheme.labelSmall,), 
        ], 
      ), 
    ), 
  ); 
}

Here’s how the code works:

1. Create _buildInfoSection() to construct a UI section for the restaurant’s 
details.

2. Retrieve the application’s text styles for consistent theming.

3. Access the restaurant’s data passed to the widget.

4. Create a SliverToBoxAdapter to enable a column of text widgets in a sliver-
based layout.

5. Apply padding around the column for spacing.

6. Create a column and align text elements to the start of the column.

7. Display the restaurant’s name, address, rating, and attributes with styled text 
widgets.

Replace // TODO: Add Restaurant Info Section and SliverToBoxAdapter 
beneath it with:

_buildInfoSection(),

Flutter Apprentice Chapter 6: Advanced Scrollable Widgets

 201



Perform a hot reload. Tap on a restaurant, and you should see the app bar as shown 
below:

Next, you’ll use a grid view to display the collection of menu items for a restaurant. 
Before you do that, take a moment to get acquainted with the GridView widget.

Flutter Apprentice Chapter 6: Advanced Scrollable Widgets

 202



Introducing GridView
GridView is a 2D array of scrollable widgets. Similar to its linear counterpart, the 
ListView, it supports both horizontal and vertical scrolling, but it arranges its 
children in a grid format, which is perfect for displaying multiple items in a clean, 
organized layout.

Getting used to GridView is easy. Like ListView it inherits from ScrollView, so 
their constructors are very similar.

• The default GridView.count() constructor is great for creating a grid with a fixed 
number of tiles in the cross-axis. You would use this if you know the number of 
columns or rows you want upfront.

• GridView.builder() works similarly to ListView.builder() by lazily 
constructing items as they’re scrolled into the viewport, ideal for displaying a large 
or indeterminate number of items.

• GridView.custom() offers the highest level of customization, letting you use a 
custom SliverGridDelegate for precise control over how your grid is laid out.

• GridView.extent() allows you to specify the maximum extent of the tiles in the 
cross-axis, and it will determine the number of tiles in each row or column 
dynamically based on the available space.

Flutter Apprentice Chapter 6: Advanced Scrollable Widgets

 203



GridView Key Parameters
Here are some parameters you should pay attention to:

• crossAxisSpacing: The spacing between each child in the cross-axis.

• mainAxisSpacing: The spacing between each child on the main axis.

• crossAxisCount: The number of children in the cross-axis. You can also think of 
this as the number of columns you want in a grid.

• shrinkWrap. Controls the fixed scroll area size.

• physics: Controls how the scroll view responds to user input.

• primary: Helps Flutter determine which scroll view is the primary one.

• scrollDirection: Controls the axis along which the view will scroll.

Note GridView has a plethora of parameters to experiment and play with. 
Check out Greg Perry’s article to learn more: https://medium.com/
@greg.perry/decode-gridview-9b123553e604.

Understanding the Cross and Main Axis
What’s the difference between the main and cross axis? Remember that Columns 
and Rows are like ListViews, but without a scroll view.

The main axis always corresponds to the scroll direction!

If your scroll direction is horizontal, you can think of this as a Row. The main axis 
represents the horizontal direction, as shown below:

Flutter Apprentice Chapter 6: Advanced Scrollable Widgets

 204



If your scroll direction is vertical, you can think of it as a Column. The main axis 
represents the vertical direction, as shown below:

Understanding Grid Delegates
Grid delegates help you figure out the spacing and the number of columns to use to 
lay out the children in a GridView.

Aside from customizing your grid delegates, Flutter provides two delegates you can 
use out of the box:

• SliverGridDelegateWithFixedCrossAxisCount

• SliverGridDelegateWithMaxCrossAxisExtent

The first creates a layout that has a fixed number of tiles along the cross-axis. The 
second creates a layout with tiles that have a maximum cross-axis extent.

Flutter Apprentice Chapter 6: Advanced Scrollable Widgets

 205



Building the Grid View Section
You’ll use the GridView widget to display a collection of items on a restaurant’s 
menu. GridView is a great widget to make your app responsive on different screens.

For example, depending on the screen width, you could have the grid view display 
one or two columns to show more information and leverage the real estate of a 
bigger screen, as shown below:

Building the Grid Item
Still within restaurant_page.dart locate // TODO: Build Grid Item and replace it 
with the following:

Widget _buildGridItem(int index) { 
  final item = widget.restaurant.items[index]; 
  return InkWell( 
    onTap: () { 
      // Present Bottom Sheet in the future. 
    }, 
    child: RestaurantItem(item: item), 
  ); 
}

This function takes an index and uses it to access a specific item from the 
restaurant’s menu. It then creates a RestaurantItem widget for that menu item. By 
wrapping the widget in an InkWell, we lay the groundwork for interactive 
functionality, such as opening a detail view in a bottom sheet upon tapping, which 
will be implemented in the next chapter.

Flutter Apprentice Chapter 6: Advanced Scrollable Widgets

 206



Add this import at the top of the file:

import '../components/restaurant_item.dart';

Building the Section Title
Next, locate // TODO: Build Section Title and replace it with the following:

Widget _sectionTitle(String title) { 
  return Padding( 
    padding: const EdgeInsets.all(8.0), 
    child: Text( 
      title, 
      style: const TextStyle( 
        fontSize: 24, 
        fontWeight: FontWeight.bold,), 
    ), 
  ); 
}

Here you simply create a Text with some custom padding.

Building the Grid View
Replace // TODO: Build Grid View with the following:

// 1 
GridView _buildGridView(int columns) { 
  // 2 
  return GridView.builder( 
    padding: const EdgeInsets.all(0), 
    // 3 
    gridDelegate: SliverGridDelegateWithFixedCrossAxisCount( 
      mainAxisSpacing: 16, 
      crossAxisSpacing: 16, 
      childAspectRatio: 3.5, 
      crossAxisCount: columns, 
    ), 
    // 4 
    itemBuilder: (context, index) => _buildGridItem(index), 
    // 5 
    itemCount: widget.restaurant.items.length, 
    // 6 
    shrinkWrap: true, 
    // 7 
    physics: const NeverScrollableScrollPhysics(), 
  ); 
}

Flutter Apprentice Chapter 6: Advanced Scrollable Widgets

 207



Here’s how the code works:

1. The function _buildGridView() accepts the number of columns as a parameter. 
This is used to determine the number of columns to display on different devices.

2. GridView.builder() is used for efficient, on-demand building of grid items.

3. Set up SliverGridDelegateWithFixedCrossAxisCount to define the grid’s 
column count and spacing.

4. Each grid item is built via _buildGridItem(), called within the itemBuilder 
callback.

5. Set the number of items to display in the grid.

6. The shrinkWrap property is enabled, allowing the GridView to size itself 
according to its children vertically.

7. Set the physics to NeverScrollableScrollPhysics, to prevent scrolling within 
the grid itself.

Now that you’ve created your grid view, it is time to wrap it in a sliver.

Building the Grid View Sliver Section
Find // TODO: Add Desktop Threshold and replace it with the following:

static const desktopThreshold = 700;

This constant is used to determine whether to adapt the restaurant menu layout to 
big or small screens.

You need to calculate the number of columns depending on the screen’s width. 
Replace // TODO: Calculate Column Count with:

int calculateColumnCount(double screenWidth) { 
  return screenWidth > desktopThreshold ? 2 : 1; 
}

Depending on the screen width the function will either return 2 or 1.

Flutter Apprentice Chapter 6: Advanced Scrollable Widgets

 208



Find // TODO: Build Grid View Section and replace it with the following code:

// 1 
SliverToBoxAdapter _buildGridViewSection(String title) { 
  // 2 
  final columns = 
calculateColumnCount(MediaQuery.of(context).size.width); 
  // 3 
  return SliverToBoxAdapter( 
    // 4 
    child: Container( 
      padding: const EdgeInsets.all(16.0), 
      // 5 
      child: Column( 
        crossAxisAlignment: CrossAxisAlignment.start, 
        children: [ 
          // 6 
          _sectionTitle(title), 
          // 7 
          _buildGridView(columns), 
        ], 
      ), 
    ), 
  ); 
}

Here’s how the code works:

1. Create a section with a title and grid view.

2. Calculate the number of columns based on the screen’s width.

3. Build a SliverToBoxAdapter to embed a non-sliver widget.

4. Initialize a container for content with some padding.

5. Set up a vertical layout with a Column widget.

6. Add a section title using a custom method.

7. Add a grid view with the specified number of columns.

Finally, locate // TODO: Add Menu Item Grid View Section and replace it and 
the sliver placeholder widget with the following:

_buildGridViewSection('Menu'),

Flutter Apprentice Chapter 6: Advanced Scrollable Widgets

 209



Perform a hot reload, tap on a restaurant, and you should see the following on 
mobile or web:

When building for multiple platforms, it’s important to make sure that your app 
looks great on each platform. A web app has more screen real estate than a mobile 
app, so it’s important to make sure that the menu is responsive and adapts to the 
screen size. That’s what you’ll do in the next section.

Implementing a Responsive Menu
Crafting a responsive restaurant menu for web applications is a pivotal task that 
strikes a balance between optimal use of screen real estate, readability, and visual 
appeal.

Flutter Apprentice Chapter 6: Advanced Scrollable Widgets

 210



When transitioning from mobile to web views, it’s crucial to consider how the 
menu’s layout adapts to larger screens. Let’s explore two primary strategies:

• Option 1: Full-Screen Stretch - This approach extends the menu across the full 
width of the screen. While it maximizes space, it can also make the menu appear 
too large. The vastness can overwhelm users, presenting too much information at 
once and detracting from the ability to focus on individual items.

• Option 2: Fixed Width - The alternative is to constrain the menu within a fixed-
width container. This design is more aligned with standard web browsing 
expectations. It offers a structured layout with ample white space around the 
menu, which enhances visual appeal and improves content legibility.

Flutter Apprentice Chapter 6: Advanced Scrollable Widgets

 211



Implementing Responsive Design
Next, you’ll delve into the technical implementation to achieve a responsive and 
visually pleasant menu for web users.

Still in restaurant_page.dart, locate the comment // TODO: Add Constraint 
Properties and replace it with the following:

static const double largeScreenPercentage = 0.9; 
static const double maxWidth = 1000;

These constants represent the maximum allowable width and the percentage of 
screen width the menu should occupy on larger screens.

Next, locate the comment // TODO: Calculate Constrained Width and replace it 
with the following:

double _calculateConstrainedWidth(double screenWidth) { 
  return (screenWidth > desktopThreshold 
          ? screenWidth * largeScreenPercentage // 
          : screenWidth) 
      .clamp(0.0, maxWidth); 
}

This function ensures that on larger screens the menu width is proportional to the 
screen size, up to a maximum width.

Now find // TODO: Replace build method and replace it and the entire build() 
method with the following:

@override 
Widget build(BuildContext context) { 
  final screenWidth = MediaQuery.of(context).size.width; 
  final constrainedWidth = 
_calculateConstrainedWidth(screenWidth); 

 
  return Scaffold( 
    body: Center( 
      child: SizedBox( 
        width: constrainedWidth, 
        child: _buildCustomScrollView(), 
      ), 
    ), 
  ); 
}

With these changes, your restaurant menu will dynamically adapt to both mobile and 
web screen sizes. The result is a seamless user experience across devices.

Flutter Apprentice Chapter 6: Advanced Scrollable Widgets

 212



Perform a hot reload, build, run your app and look at the restaurant menu on both 
mobile and web.

Try resizing your web browser window. You’ll observe how elegantly your restaurant 
menu adapts to various screen sizes – a testament to responsive design in action!

And there you have it – a responsive, visually appealing, and user-friendly restaurant 
menu for your Flutter application!

Flutter Apprentice Chapter 6: Advanced Scrollable Widgets

 213



Key Points
• Slivers allow building intricate scrolling layouts with CustomScrollView and 

various sliver widgets.

• With GridView you can create grid layouts with customizable columns and 
spacing.

• SliverToBoxAdapter enables the integration of non-sliver widgets into sliver 
lists.

• Manage scroll behavior and direction with properties like physics.

• Embed grid views within sliver lists for complex scrollable structures.

• Use MediaQuery to create responsive grid layouts with GridView, adjusting the 
number of columns based on the screen size.

Where to Go From Here?
Now that you’ve a grasp of slivers and grid views in Flutter, you can create complex 
and custom scrollable layouts that look good and perform well on a wide range of 
devices. Slivers enable you to make scrollable areas in your app that look and behave 
exactly how you want.

In the next chapter, you’ll take a look at some more interactive widgets.

Flutter Apprentice Chapter 6: Advanced Scrollable Widgets

 214



7Chapter 7: Interactive 
Widgets
By Vincent Ngo

In the previous chapter, you learned how to capture lots of data with scrollable 
widgets. But how do you make your app more engaging? How do you collect input 
and feedback from your users?

In this chapter, you’ll explore interactive widgets. In particular, you’ll learn to create:

• Bottom Sheets widgets

• Gesture-based widgets

• Time and date picker widgets

• Input and selection widgets

• Dismissable widgets

You’ll continue to work on Yummy, building a more immersive experience. Users 
will be able to view menu items in detail, adjust quantities, manage and track order 
status.

You’ll start by enhancing the way users can view and select menu items for their cart.

 215



Next, you’ll implement features for managing order details, including options for 
delivery or pickup and setting preferences for the date and time. Users will also be 
able to review their order summary and edit it before submission. Once an order is 
placed, they can track it in the Orders tab.

Flutter Apprentice Chapter 7: Interactive Widgets

 216



Additionally, you’ll ensure your app remains responsive in web mode, providing a 
seamless experience across different devices.

It’s time to get started.

Flutter Apprentice Chapter 7: Interactive Widgets

 217



Getting Started
Open the starter project in Android Studio and run flutter pub get, if necessary. 
Then, run the app. You’ll see the following:

New Project Files
There are new files in this starter project to help you out. Before you learn how to 
utilize interactive widgets, take a look at them.

Flutter Apprentice Chapter 7: Interactive Widgets

 218



New Packages

In pubspec.yaml under dependencies, there are two new packages:

• uuid: Generates unique keys for each menu item. This helps you know which item 
to add, update or remove.

• intl: Provides internationalization and localization utilities. You’ll use this to 
format dates.

Don’t forget to always run flutter pub get after updating pubspec.yaml entries.

New Files in the Models Folder

For your convenience two manager classes have been provided to manage state in 
your app:

• CartManager: Manages the user’s shopping cart. For example number of items in 
the cart, functions to update the cart, the total cost, delivery or self-pickup and 
pickup.

• OrdersManager: Manages all the orders the user has submitted.

Starting from main.dart you will notice the manager objects are initialized and 
passed all the way down to restaurant_page.dart. Feel free to dive into the code to 
see how these objects are passed down the widget tree.

With all these new additions you are now ready to start.

Presenting Item Details
Before you display a specific menu item, you’ll need a way to present its widget.

Building a Bottom Sheet
Within lib/screens/restaurant_page.dart locate the comment // TODO: Show 
Bottom Sheet and replace it with the following:

// 1 
void _showBottomSheet(Item item) { 
  // 2 
  showModalBottomSheet<void>( 
    // 3 
    isScrollControlled: true,

Flutter Apprentice Chapter 7: Interactive Widgets

 219



    // 4 
    context: context, 
    // 5 
    constraints: const BoxConstraints(maxWidth: 480), 
    // 6 
    // TODO: Replace with Item Details Widget 
    builder: (context) => Container( 
      color: Colors.red, 
      height: 400, 
    ), 
  ); 
}

Here’s how it works:

1. Define a function _showBottomSheet() that accepts the selected menu item to 
display in the bottom sheet.

2. When invoked, create a modal bottom sheet that slides up from the bottom.

3. isScrollControlled is true, to allow the bottom sheet to have dynamic height.

4. Pass in the current context to display the bottom sheet.

5. Constraint the bottom sheet to have a max width of 480. This is to support 
responsive UI on mobile or desktop.

6. builder() returns the details to display, but for now it’s just a placeholder 
container.

Next, you’ll present the bottom sheet.

Presenting the Bottom Sheet
Within the same file, find and replace // TODO: Replace _buildGridItem() and 
the whole _buildGridItem() function beneath it with the following:

Widget _buildGridItem(int index) { 
  final item = widget.restaurant.items[index]; 
  return InkWell( 
    onTap: () => _showBottomSheet(item), 
    child: RestaurantItem(item: item), 
  ); 
}

Flutter Apprentice Chapter 7: Interactive Widgets

 220



When the user taps on a menu item you’ll present the item details in a bottom sheet 
as shown below:

Leave restaurant_page.dart open, you’ll be coming back to it.

Flutter Apprentice Chapter 7: Interactive Widgets

 221



Building Item Details
When you tap on a specific menu item it shows a bottom sheet to focus on that 
specific item. Showing the title, popularity, description and enlarged image of the 
item.

Within the lib/components directory, create a new file called item_details.dart and 
add the following code:

import 'package:flutter/material.dart'; 
import '../models/cart_manager.dart'; 
import '../models/restaurant.dart'; 

 
class ItemDetails extends StatefulWidget { 
  final Item item; 
  final CartManager cartManager; 
  final void Function() quantityUpdated; 

Flutter Apprentice Chapter 7: Interactive Widgets

 222



  // 1 
  const ItemDetails({ 
    super.key, 
    required this.item, 
    required this.cartManager, 
    required this.quantityUpdated, 
  }); 

 
  @override 
  State<ItemDetails> createState() => _ItemDetailsState(); 
} 

 
class _ItemDetailsState extends State<ItemDetails> { 
  @override 
  Widget build(BuildContext context) { 
    // 2 
    final textTheme = Theme.of(context) 
        .textTheme 
        .apply(displayColor: 
Theme.of(context).colorScheme.onSurface); 
    // 3 
    final colorTheme = Theme.of(context).colorScheme; 

 
    // 4 
    return Padding( 
      padding: const EdgeInsets.all(16.0), 
      // 5 
      child: Wrap( 
        children: [ 
          // 6 
          Column( 
            crossAxisAlignment: CrossAxisAlignment.start, 
            children: [ 
              Text( 
                widget.item.name, 
                style: textTheme.headlineMedium, 
              ), 
              // TODO: Add Liked Badge 
              Text(widget.item.description), 
              // TODO: Add Item Image 
              // TODO: Add Cart Control 
            ], 
          ), 
        ], 
      ), 
    ); 
  } 

 
  // TODO: Create Most Liked Badge 
  // TODO: Create Item Image 
  // TODO: Create Cart Control 

 
}

Flutter Apprentice Chapter 7: Interactive Widgets

 223



Here’s how the code works:

1. The ItemDetails widget takes in the selected item and a cart manager to 
manage cart operations. quantityUpdated is a callback that notifies the parent 
widget that the user updated the quantity.

2. Retrieve the textTheme and ensure the text color matches the surface color of 
the color scheme.

3. Retrieve the colorTheme, this ensures the app has a consistent color theme 
across all widgets in your app.

4. Add uniform padding of 16.0 all around.

5. The Wrap widget organizes children in horizontal or vertical runs, adjusting the 
layout based on space.

6. Column widget aligns child widgets vertically.

Leave item_details.dart open.

You’ll next replace all the TODOs and add the components to the item details 
widget.

Showing Item Details
Return to restaurant_page.dart and locate the comment // TODO: Replace with 
Item Details Widget and replace it and the builder function with the following:

builder: (context) => 
ItemDetails( 
  item: item, 
  cartManager: widget.cartManager, 
  quantityUpdated: () { 
    setState(() {}); 
  }, 
),

When the bottom sheet is presented, it initializes the ItemDetails widget. When 
the quantityUpdated() callback is invoked, you call setState() to trigger a new 
render of the widget.

Flutter Apprentice Chapter 7: Interactive Widgets

 224



Next, add the following import at the top:

import '../components/item_details.dart';

Close and open the bottom sheet, it should now look like this:

Now you are ready to add more widgets!

Flutter Apprentice Chapter 7: Interactive Widgets

 225



Creating a Most Liked Badge
Back in item_details.dart, locate the comment // TODO: Create Most Liked 
Badge and replace it with the following:

// 1 
Widget _mostLikedBadge(ColorScheme colorTheme) { 
  // 2 
  return Align( 
    // 3 
    alignment: Alignment.centerLeft, 
    // 4 
    child: Container( 
        padding: const EdgeInsets.all(4.0), 
        color: colorTheme.onPrimary, 
        // 5 
        child: const Text('#1 Most Liked'), 
      ), 
  ); 
}

Here’s how the code works:

1. Define a method _mostLikedBadge(), which takes in a ColorScheme. This 
method will create a badge to indicate whether an item is most liked.

2. The Align widget is used to align the badge within the parent widget.

3. Align the widget center-left.

4. A Container is used to apply padding and color.

5. A Text widget is used to display the content of the badge. In this case, it reads #1 
Most Liked.

Next, locate the comment // TODO: Add Liked Badge and replace it with the 
following:

const SizedBox(height: 16.0), 
_mostLikedBadge(colorTheme), 
const SizedBox(height: 16.0),

Here you add 16.0 padding between the liked badge.

Flutter Apprentice Chapter 7: Interactive Widgets

 226



The details view now looks like this:

Showing an Item Image
Locate the comment // TODO: Create Item Image and replace it with the 
following:

// 1 
Widget _itemImage(String imageUrl) { 
  // 2 
  return Container( 
    height: 200, 
    decoration: BoxDecoration( 
      borderRadius: BorderRadius.circular(8.0), 
      // 3 
      image: DecorationImage( 
        image: NetworkImage(imageUrl), 
        fit: BoxFit.cover, 
      ), 
    ), 
  ); 
}

Here’s how it works:

1. _itemImage() takes in an imageUrl.

2. Apply a container to style the image, adding a fixed height and rounded corners.

3. Set the background image.

Now, replace // TODO: Add Item Image with:

const SizedBox(height: 16.0), 
_itemImage(widget.item.imageUrl), 
const SizedBox(height: 16.0),

Flutter Apprentice Chapter 7: Interactive Widgets

 227



Here is what the details view looks like now:

Creating a Widget to Control the Cart
For the final piece of the item details view you’ll create a cart control component to 
update the quantity.

Within the lib/components directory, create a new file called cart_control.dart and 
add the following code:

import 'package:flutter/material.dart'; 
 

// 1 
class CartControl extends StatefulWidget { 
  // 2 
  final void Function(int) addToCart; 

 
  const CartControl({ 
    required this.addToCart, 
    super.key,

Flutter Apprentice Chapter 7: Interactive Widgets

 228



  }); 
 

  // 3 
  @override 
  State<CartControl> createState() => _CartControlState(); 
} 

 
// 4 
class _CartControlState extends State<CartControl> { 
  // 5 
  int _cartNumber = 1; 

 
  @override 
  Widget build(BuildContext context) { 
    // 6 
    final colorScheme = Theme.of(context).colorScheme; 
    // 7 
    return Row( 
      // 8 
      mainAxisAlignment: MainAxisAlignment.spaceBetween, 
      // 9 
      children: [ 
        // TODO: Add Cart Control Components 
        Container( 
          color: Colors.red, 
          height: 44.0, 
        ), 
      ], 
    ); 
  } 

 
  // TODO: Build Minus Button 
  // TODO: Build Cart Number 
  // TODO: Build Plus Button 
  // TODO: Build Add Cart Button 
}

Here’s how it works:

1. Define a stateful widget called CartControl.

2. Define an addToCart() callback function, which returns an integer to specify the 
number of items in the cart.

3. Link this widget to its state _CartControlState().

4. Define the CartControl state class.

5. _cartNumber is a private state variable used to keep track of the quantity of 
items to be added to the cart. The default value is 1.

Flutter Apprentice Chapter 7: Interactive Widgets

 229



6. Within the build() method, retrieve the color scheme for consistency.

7. Return a Row widget to layout children horizontally.

8. Use MainAxisAlignment.spaceBetween to space the children evenly.

9. Add a placeholder container which will eventually be replaced by cart control 
components.

Time to add the components!

Creating the Minus Button

First you’ll create the minus button.

Still in cart_control.dart, locate the comment // TODO: Build Minus Button and 
replace it with the following:

// 1 
Widget _buildMinusButton() { 
  // 2 
  return IconButton( 
    icon: const Icon(Icons.remove), 
    // 3 
    onPressed: () { 
      setState(() { 
        // 4 
        if (_cartNumber > 1) { 
          _cartNumber--; 
        } 
      }); 
    }, 
    // 5 
    tooltip: 'Decrease Cart Count', 
  ); 
}

Here’s how the code works:

1. Create a button to decrease the number of items in the cart.

2. Initialize an IconButton with the remove symbol that renders like a minus sign.

3. Configure the onPressed() callback to trigger a setState() to update the UI

Flutter Apprentice Chapter 7: Interactive Widgets

 230



4. Decrements _cartNumber by 1 if it’s greater than 1 preventing it from going 
below 1.

5. Provides a tooltip for accessibility and user guidance.

Creating Cart Number Container

Next, you’ll add the container to display the quantity.

Locate the comment // TODO: Build Cart Number and replace it with the 
following:

// 1 
Widget _buildCartNumberContainer(ColorScheme colorScheme) { 
  // 2 
    return Container( 
      padding: const EdgeInsets.symmetric(horizontal: 16.0, 
vertical: 8.0), 
      color: colorScheme.onPrimary, 
      // 3 
      child: Text(_cartNumber.toString()), 
    ); 
}

Here’s how the code works:

1. The method takes a ColorScheme to style the widget.

2. It returns a container with spacing and alignment.

3. Displays the cart number as a text.

Creating the Plus Button

The next step is to add the plus button.

Flutter Apprentice Chapter 7: Interactive Widgets

 231



Locate the comment // TODO: Build Plus Button and replace it with the 
following:

Widget _buildPlusButton() { 
  return IconButton( 
    icon: const Icon(Icons.add), 
    onPressed: () { 
      setState(() { 
        _cartNumber++; 
      }); 
    }, 
    tooltip: 'Increase Cart Count', 
  ); 
}

Similar to the minus button you increment the _cartNumber variable.

Creating the Add to Cart Button

The final component you’ll add is the Add to Cart button.

Replace // TODO: Build Add Cart Button with:

Widget _buildAddCartButton() { 
  // 1 
  return FilledButton( 
    // 2 
    onPressed: () { 
      widget.addToCart(_cartNumber); 
    }, 
    // 3 
    child: const Text('Add to Cart'), 
  ); 
}

Here’s how the code works:

1. Initialize a FilledButton which is a button that fills the button’s background.

2. When the user presses the button, trigger the addToCart() callback and pass the 
number of items the user selected.

3. The button displays the text Add to Cart.

Flutter Apprentice Chapter 7: Interactive Widgets

 232



Showing the Cart Control Components

Now that you’ve built all the components, it’s time to put them to use.

Replace // TODO: Add Cart Control Components and the Container beneath it 
with the following:

_buildMinusButton(), 
_buildCartNumberContainer(colorScheme), 
_buildPlusButton(), 
const Spacer(), 
_buildAddCartButton(),

The Spacer widget is used to create space between the surrounding widgets.

Using the Cart Control

You’ll now add the cart control to the item details view.

Go back to item_details.dart, find // TODO: Create Cart Control and replace it 
with:

// 1 
Widget _addToCartControl(Item item) { 
  // 2 
  return CartControl( 
    // 3 
    addToCart: (number) { 
      const uuid = Uuid(); 
      final uniqueId = uuid.v4(); 
      final cartItem = CartItem( 
          id: uniqueId, 
          name: item.name, 
          price: item.price, 
          quantity: number, 
        ); 
      // 4 
      setState(() { 
        widget.cartManager.addItem(cartItem); 
        // 5 
        widget.quantityUpdated(); 
      }); 
      // 6 
      Navigator.pop(context); 
    }, 
  ); 
}

Flutter Apprentice Chapter 7: Interactive Widgets

 233



Here’s how it works:

1. _addToCartControl() takes in the selected Item object.

2. It returns a CartControl widget.

3. The addToCart() callback function will return the item quantity and create a 
new CartItem. A CartItem requires a uniquely generated id, item name, price 
and the quantity selected.

4. Update the state by adding the new cart item managed by CartManager.

5. Invoke the callback to notify the parent widget that the quantity has been 
updated.

6. Close the bottom sheet.

Note: Ensure that setState() is the most appropriate way to manage state in 
this context. If your app scales, you might need a more robust state 
management solution. For more advanced state management techniques 
check out Chapter 13, “Managing State”.

Add the following imports:

import 'package:uuid/uuid.dart'; 
import 'cart_control.dart';

If you’re wondering why the cart control isn’t displaying, stop worrying you’re 
adding it next.

Flutter Apprentice Chapter 7: Interactive Widgets

 234



Applying the Cart Control

Locate the comment // TODO: Add Cart Control and replace it with the 
following:

_addToCartControl(widget.item),

After hot reload runs, your bottom sheet should look like this:

Now the user can add items to their cart!

You still need to create a way to manage the cart and allow users to submit the order. 
Don’t worry, that’s next!

Flutter Apprentice Chapter 7: Interactive Widgets

 235



Building the Checkout Page
In this next section, you’ll learn about how to create drawers and leverage input 
widgets to capture data.

The user will be able to do the following:

• Select whether the order is delivered or picked up

• Name of the recipient

• Select date and time

• Manage the cart items

• Submit their order

Flutter Apprentice Chapter 7: Interactive Widgets

 236



Adding a Drawer
Drawers are commonly used for secondary navigation options.

In restaurant_page.dart, locate // TODO: Define Drawer Max Width and replace 
it with:

static const double drawerWidth = 375.0;

Here you define a constant variable to determine the max width of the drawer.

Replace // TODO: Create Drawer with the following:

Widget _buildEndDrawer() { 
  return SizedBox( 
    width: drawerWidth, 
    // TODO: Replace with Checkout Page 
    child: Container(color: Colors.red), 
  ); 
}

The _buildEndDrawer() function creates a simple drawer with a specific width and 
a placeholder red container.

Next, to apply the drawer locate the comment: // TODO: Apply Drawer and replace 
it with the following:

endDrawer: _buildEndDrawer(),

The scaffold widget is a top-level widget used in Flutter to implement the basic 
visual layout structure of an app. It includes the endDrawer property to define a 
drawer that slides in from the right.

Now you need a way to open such a drawer.

Flutter Apprentice Chapter 7: Interactive Widgets

 237



Adding a Floating Action Button
You’ll use a floating action button when clicked on to present the drawer.

Opening the Drawer

Locate the comment // TODO: Define Scaffold Key and replace it with the 
following:

final GlobalKey<ScaffoldState> scaffoldKey = 
GlobalKey<ScaffoldState>();

Having a GlobalKey for your Scaffold allows you to control the scaffold from 
anywhere in your code. This is particularly useful for opening drawers, snack bars, or 
any other action that requires a reference to the ScaffoldState.

Flutter Apprentice Chapter 7: Interactive Widgets

 238



Next, locate // TODO: Add Scaffold Key and replace it with:

key: scaffoldKey,

Find and replace // TODO: Open Drawer with the following function:

void openDrawer() { 
  scaffoldKey.currentState!.openEndDrawer(); 
}

When openDrawer() is invoked, it will try to access the scaffold’s current state and 
open the drawer. The ! operator asserts that the current state is not null.

Add a Floating Action Button

Now you need to create the floating action button to open the drawer.

Locate the comment // TODO: Create Floating Action Button and replace it 
with the following:

// 1 
Widget _buildFloatingActionButton() { 
  // 2 
  return FloatingActionButton.extended( 
    // 3 
    onPressed: openDrawer, 
    // 4 
    tooltip: 'Cart', 
    // 5 
    icon: const Icon(Icons.shopping_cart), 
    // 6 
    label: Text('${widget.cartManager.items.length} Items in 
cart'), 
  ); 
}

Flutter Apprentice Chapter 7: Interactive Widgets

 239



Here’s how the code works:

1. The function returns a FloatingActionButton widget.

2. Instantiate a FloatingActionButton.extended, which allows the button to 
have both an icon and a label.

3. When the button is pressed, openDrawer() is invoked.

4. Show a tooltip for accessibility.

5. Set the button’s icon.

6. The label displays the number of items in the cart.

Find and replace // TODO: Apply Floating Action Button with this code:

floatingActionButton: _buildFloatingActionButton(),

Here you set the floating action button within the scaffold widget.

Perform a hot reload. Click a restaurant and press the floating cart button, you’ll see 
the red drawer shown below:

Now you are ready to start to build your checkout page!

Flutter Apprentice Chapter 7: Interactive Widgets

 240



Creating the Checkout Page
Within the lib/screens directory, create a new file called checkout_page.dart and 
add the following code:

// 1 
import 'package:flutter/material.dart'; 
import '../models/cart_manager.dart'; 
import '../models/order_manager.dart'; 

 
class CheckoutPage extends StatefulWidget { 
  // 2 
  final CartManager cartManager; 
  // 3 
  final Function() didUpdate; 
  // 4 
  final Function(Order) onSubmit; 

 
  const CheckoutPage( 
      {super.key, 
      required this.cartManager, 
      required this.didUpdate, 
      required this.onSubmit, 
    }); 

 
  @override 
  State<CheckoutPage> createState() => _CheckoutPageState(); 
} 

 
class _CheckoutPageState extends State<CheckoutPage> { 
  // 5 
  // TODO: Add State Properties 
  // TODO: Configure Date Format 
  // TODO: Configure Time of Day 
  // TODO: Set Selected Segment 
  // TODO: Build Segmented Control 
  // TODO: Build Name Textfield 
  // TODO: Select Date Picker 
  // TODO: Select Time Picker 
  // TODO: Build Order Summary 
  // TODO: Build Submit Order Button 

 
  @override 
  Widget build(BuildContext context) { 
    // 6 
    final textTheme = Theme.of(context) 
        .textTheme 
        .apply(displayColor: 
Theme.of(context).colorScheme.onSurface); 

 
    // 7

Flutter Apprentice Chapter 7: Interactive Widgets

 241



    return Scaffold( 
      // 8 
      appBar: AppBar( 
        leading: IconButton( 
          icon: const Icon(Icons.arrow_back), 
          onPressed: () => Navigator.of(context).pop(), 
        ), 
      ), 
      // 9 
      body: Padding( 
        padding: const EdgeInsets.all(16.0), 
        child: Column( 
          crossAxisAlignment: CrossAxisAlignment.stretch, 
          children: [ 
            Text( 
              'Order Details', 
              style: textTheme.headlineSmall, 
            ), 
            // TODO: Add Segmented Control 
            // TODO: Add Name Textfield 
            // TODO: Add Date and Time Picker 
            // TODO: Add Order Summary 
            // TODO: Add Submit Order Button 
          ], 
        ), 
      ), 
    ); 
  } 
}

Here’s how the checkout page is initialized:

1. Import necessary material library and manager models.

2. CheckoutPage is a stateful widget that requires CartManager to manage and 
update cart items.

3. Declare a didUpdate() callback to notify when something changes in the cart.

4. Create an onSubmit() callback to notify that the user tapped on the submit 
button.

5. Spread some TODO comments to add all the interactive widgets to your checkout 
page.

6. Retrieve the current text theme and apply the color theme to be consistent 
throughout the app.

Flutter Apprentice Chapter 7: Interactive Widgets

 242



7. Create a Scaffold widget that sets the app bar and body.

8. AppBar displays a back button that dismisses the drawer when clicked.

9. The body sets up padding and uses a Column widget to layout child widgets 
vertically.

Using the Checkout Page
Back in restaurant_page.dart locate the comment // TODO: Replace with 
Checkout Page and replace it and the child beneath it with the following:

// 1 
child: Drawer( 
  // 2 
  child: CheckoutPage( 
    // 3 
    cartManager: widget.cartManager, 
    // 4 
    didUpdate: () { 
      setState(() {}); 
    }, 
    // 5 
    onSubmit: (order) { 
      widget.ordersManager.addOrder(order); 
      Navigator.popUntil(context, (route) => route.isFirst); 
    }, 
  ), 
),

Here’s how the code works:

1. Initialize the Drawer widget that slides from the side of the screen.

2. Use CheckoutPage as the primary content of the drawer.

3. Pass in cartManager to manage and display cart items.

4. Configure the didUpdate() callback to refresh the state of the parent widget.

5. Set onSubmit() so that, when the user taps on the submit button, it adds a new 
order and closes the drawer.

Add the following import:

import 'checkout_page.dart';

Flutter Apprentice Chapter 7: Interactive Widgets

 243



Open and close the drawer, you should now see the following:

Now you’re ready to add all the input widgets!

Adding Checkout State Properties
Back in checkout_page.dart, locate // TODO: Add State Properties and replace 
it with the following:

// 1 
final Map<int, Widget> myTabs = const <int, Widget>{ 
  0: Text('Delivery'), 
  1: Text('Self Pick-Up'), 
}; 
// 2 
Set<int> selectedSegment = {0}; 
// 3 
TimeOfDay? selectedTime;

Flutter Apprentice Chapter 7: Interactive Widgets

 244



// 4 
DateTime? selectedDate; 
// 5 
final DateTime _firstDate = DateTime(DateTime.now().year - 2); 
final DateTime _lastDate = DateTime(DateTime.now().year + 1); 
// 6 
final TextEditingController _nameController = 
TextEditingController();

Here is what each property is used for:

1. Declare a mapping from integer to delivery type.

2. Determines whether the user selected Delivery or Self Pick-Up.

3. selectedTime stores the selected time.

4. selectedDate stores the selected date.

5. _firstDate and _lastDate determines the date range the user can select from.

6. _nameController refers to the text field used to enter the customer’s name.

Adding a Segmented Control
The first widget you will build is a segmented control. This is a way for users to 
toggle between food delivery or pick-up.

Replace the comment // TODO: Set Selected Segment with:

void onSegmentSelected(Set<int> segmentIndex) { 
  setState(() { 
    selectedSegment = segmentIndex; 
  }); 
}

This function updates the user’s order type.

Next locate // TODO: Build Segmented Control and replace it with the following:

Widget _buildOrderSegmentedType() { 
  // 1 
  return SegmentedButton( 
    // 2 
    showSelectedIcon: false, 
    // 3 
    segments: const [ 
      ButtonSegment( 
          value: 0,

Flutter Apprentice Chapter 7: Interactive Widgets

 245



          label: Text('Delivery'), 
          icon: Icon(Icons.pedal_bike), 
        ), 
      ButtonSegment( 
          value: 1, 
          label: Text('Pickup'), 
          icon: Icon(Icons.local_mall), 
        ), 
    ], 
    // 4 
    selected: selectedSegment, 
    // 5 
    onSelectionChanged: onSegmentSelected, 
  ); 
}

Here’s how the code works:

1. Returns a SegmentedButton widget.

2. Hide the icons in the segmented button.

3. Define two button segments for the user to choose. Delivery or Pickup

4. Set the selected segment.

5. When a user makes a choice update the selected segment.

Find // TODO: Add Segmented Control and replace it with:

const SizedBox(height: 16.0), 
_buildOrderSegmentedType(),

You should now see the segmented control in the drawer:

Flutter Apprentice Chapter 7: Interactive Widgets

 246



Adding a Textfield to Enter the Customer Name
You’ll now need a way to gather the customer’s name. This will help the restaurant 
or the delivery team to know how to address the recipient.

Replace // TODO: Build Name Textfield with:

Widget _buildTextField() { 
  // 1 
  return TextField( 
    // 2 
    controller: _nameController, 
    // 3 
    decoration: const InputDecoration( 
      labelText: 'Contact Name', 
    ), 
  ); 
}

Here’s how the code works:

1. The function returns a TextField widget.

2. Textfield uses the controller to manage the text being edited. It allows you to 
read the current value of the text field, update it, or listen for changes.

3. Add a placeholder text, to give the user some context about what to type.

Next, to apply the text field, locate the comment // TODO: Add Name Textfield 
and replace it with the following:

const SizedBox(height: 16.0), 
_buildTextField(),

You’ll now see the text field in the drawer:

Onwards with date and time!

Flutter Apprentice Chapter 7: Interactive Widgets

 247



Creating a Date Picker
Now you’ll need a way for the user to select the date to pick up or have the food 
delivered.

Locate the comment // TODO: Configure Date Format and replace it with the 
following:

// 1 
String formatDate(DateTime? dateTime) { 
  // 2 
  if (dateTime == null) { 
    return 'Select Date'; 
  } 
  // 3 
  final formatter = DateFormat('yyyy-MM-dd'); 
  return formatter.format(dateTime); 
}

This function determines what text the date button should read. Here’s how the code 
works:

1. The function takes an optional DateTime as a parameter.

2. If the dateTime is null, return the text Select Date, to ask the user to select a 
date.

3. If a dateTime exists, return the formatted date.

Flutter Apprentice Chapter 7: Interactive Widgets

 248



Add the following import:

import 'package:intl/intl.dart';

Here you’ve added the intl package, which provides internationalization helpers 
needed by DateFormat.

Next locate the comment // TODO: Select Date Picker and replace it with the 
following:

// 1 
void _selectDate(BuildContext context) async { 
  // 2 
  final picked = await showDatePicker( 
    // 3 
    context: context, 
    // 4 
    initialDate: selectedDate ?? DateTime.now(), 
    // 5 
    firstDate: _firstDate, 
    lastDate: _lastDate, 
  ); 
  // 6 
  if (picked != null && picked != selectedDate) { 
    setState(() { 
      selectedDate = picked; 
    }); 
  } 
}

Here’s how the date picker works:

1. _selectDate() is an asynchronous function that takes BuildContext as a 
parameter.

2. showDatePicker() opens the date picker dialog. The function waits for the user 
to pick or cancel the date picker and stores it in the picked property.

3. You pass in the context to display the dialog.

4. initialDate sets the selected date or defaults to the current date.

5. Define the date range the user can pick from.

6. If the picked date is not null and is different from the currently selected date, 
update the selectedDate and trigger a rebuild of the widget to reflect the new 
selection.

Next you’ll also need a way to select the time.

Flutter Apprentice Chapter 7: Interactive Widgets

 249



Creating a Time Picker
Here’s how your time picker will look like.

Find // TODO: Configure Time of Day and replace it with the following:

// 1 
String formatTimeOfDay(TimeOfDay? timeOfDay) { 
  // 2 
  if (timeOfDay == null) { 
    return 'Select Time'; 
  } 
  // 3 
  final hour = timeOfDay.hour.toString().padLeft(2, '0'); 
  final minute = timeOfDay.minute.toString().padLeft(2, '0'); 
  return '$hour:$minute'; 
}

1. This function takes in TimeOfDay as a parameter.

2. If the timeOfDay is null, return Select Time to indicate to the user to select a 
time.

3. Otherwise, return the formatted time.

Next, locate // TODO: Select Time Picker and replace it with this code:

// 1 
void _selectTime(BuildContext context) async { 
  // 2 
  final picked = await showTimePicker( 
    // 3 
    context: context,

Flutter Apprentice Chapter 7: Interactive Widgets

 250



    // 4 
    initialEntryMode: TimePickerEntryMode.input, 
    //  5 
    initialTime: selectedTime ?? TimeOfDay.now(), 
    // 6 
    builder: (context, child) { 
      return MediaQuery( 
        data: MediaQuery.of(context).copyWith( 
          alwaysUse24HourFormat: true, 
        ), 
        child: child!, 
      ); 
    }, 
  ); 
  // 7 
  if (picked != null && picked != selectedTime) { 
    setState(() { 
      selectedTime = picked; 
    }); 
  } 
}

Here’s how the time picker works:

1. _selectTime() is an asynchronous function that takes BuildContext as a 
parameter.

2. showTimePicker() opens the time picker dialog. The function waits for the user 
to pick or cancel the time picker and stores it in the picked property.

3. You still pass in the context to display the dialog.

4. initialEntryMode sets the mode to enter the time. input mode allows the user 
to enter values via the keyboard.

5. Set the initialTime to the selectedTime, if null, default to the current time.

6. The builder() function builds the time picker. MediaQuery forces it to always 
show the 24-hour time format, regardless of the device’s default setting.

7. If the picked time is not null and is different from the currently selected time, 
update the selectedTime and trigger a rebuild of the widget to reflect the new 
selection.

Now that you have all your widgets ready, it’s time to show them in the drawer.

Flutter Apprentice Chapter 7: Interactive Widgets

 251



Showing the Date and Time Pickers
Replace // TODO: Add Date and Time Picker with:

// 1 
const SizedBox(height: 16.0), 
// 2 
Row( 
  children: [ 
    TextButton( 
      // 3 
      child: Text(formatDate(selectedDate)), 
      // 4 
      onPressed: () => _selectDate(context), 
    ), 
    TextButton( 
      // 5 
      child: Text(formatTimeOfDay(selectedTime)), 
      // 6 
      onPressed: () => _selectTime(context), 
    ), 
  ], 
), 
// 7 
const SizedBox(height: 16.0),

Here’s how the code works:

1. Add a 16.0 vertical space from the widget on top.

2. Use a Row to display the two buttons horizontally.

3. The first text button displays Select Date or the currently selected date.

4. Tapping the button presents the date picker.

5. The second text button displays Select Time or the currently selected time.

6. Tapping the button presents the time picker.

7. Add 16.0 vertical spacing between the widget below.

Now, perform a hot reload.

Select a restaurant and tap the Items in cart button.

Flutter Apprentice Chapter 7: Interactive Widgets

 252



You should see Select Date and Select Time buttons. Tap each of them to open the 
pickers and select a date and a time.

But wait, where’s the order? Don’t worry, you’ll do that next.

Creating Order Summary
Now you’ll create a way to display the list of items the user selected.

Locate the comment // TODO: Build Order Summary and replace it with the 
following:

// 1 
Widget _buildOrderSummary(BuildContext context) { 
  // 2

Flutter Apprentice Chapter 7: Interactive Widgets

 253



  final colorTheme = Theme.of(context).colorScheme; 
 

  // 3 
  return Expanded( 
    // 4 
    child: ListView.builder( 
      // 5 
      itemCount: widget.cartManager.items.length, 
      itemBuilder: (context, index) { 
        // 6 
        final item = widget.cartManager.itemAt(index); 
        // 7 
        // TODO: Wrap in a Dismissible Widget 
        return ListTile( 
          leading: Container( 
            padding: const EdgeInsets.all(8.0), 
            decoration: BoxDecoration( 
              borderRadius: const BorderRadius.all( 
                Radius.circular(8.0)), 
              border: Border.all( 
                color: colorTheme.primary, 
                width: 2.0, 
              ), 
            ), 
            child: ClipRRect( 
              borderRadius: const BorderRadius.all( 
                Radius.circular(8.0)), 
              child: Text('x${item.quantity}'), 
            ), 
          ), 
          title: Text(item.name), 
          subtitle: Text('Price: \$${item.price}'), 
        ); 
      }, 
    ), 
  ); 
}

Here’s how the code works:

1. _buildOrderSummary() takes BuildContext as a parameter.

2. Retrieve the color theme for consistency throughout your app.

3. Return an Expanded widget that allows ListView to use all available space in its 
parent widget.

4. Use ListView.builder() to create a scrollable list of items.

Flutter Apprentice Chapter 7: Interactive Widgets

 254



5. Set item count.

6. Build each item by retrieving the menu item for a given index.

7. Construct a ListTile to display the menu item selected, display the quantity and 
the total price for each item.

To add order summary and a title, replace // TODO: Add Order Summary with:

const Text('Order Summary'), 
_buildOrderSummary(context),

Hot reload and you’ll see the order summary.

But what if the user wants to remove an item from the order? You’ll add that next.

Deleting an Item From an Order
The user will swipe left to remove a menu item.

Find // TODO: Wrap in a Dismissible Widget. Right-click ListTile widget on 
the line below and select Show Context Actions as shown below:

Flutter Apprentice Chapter 7: Interactive Widgets

 255



Next, select Wrap with widget as shown below:

Rename widget to Dismissible and add the following properties to the widget just 
above the child:

// 1 
key: Key(item.id), 
// 2 
direction: DismissDirection.endToStart, 
// 3 
background: Container(), 
// 4 
secondaryBackground: const SizedBox( 
  child: Row( 
    mainAxisAlignment: MainAxisAlignment.end, 
    children: [ 
      Icon(Icons.delete), 
    ], 
  ), 
), 
// 5 
onDismissed: (direction) { 
  setState(() { 
    widget.cartManager.removeItem(item.id); 
  }); 
  // 6 
  widget.didUpdate(); 
},

Flutter Apprentice Chapter 7: Interactive Widgets

 256



Here’s how the code works:

1. Key is used to uniquely identify each dismissible item in the list.

2. Configure the dismiss direction swiping from right to left.

3. Set an empty background container.

4. Set a secondary background and show a delete (trash) icon aligned to the right 
end.

5. When onDismissed() is triggered, call setState() to remove the item from the 
cart.

6. Invoke didUpdate() to notify the parent to refresh the UI or perform other 
actions.

You have added all the interactive widgets to collect an order.

Now you need a submit button to process the order!

Locate the comment // TODO: Build Submit Order Button and replace it with 
the following:

Widget _buildSubmitButton() { 
  // 1 
  return ElevatedButton( 
    // 2 
    onPressed: widget.cartManager.isEmpty 
        ? null 
        // 3 
        : () { 
            final selectedSegment = this.selectedSegment; 
            final selectedTime = this.selectedTime; 
            final selectedDate = this.selectedDate; 
            final name = _nameController.text; 
            final items = widget.cartManager.items; 
            // 4 
            final order = Order( 
              selectedSegment: selectedSegment, 
              selectedTime: selectedTime, 
              selectedDate: selectedDate, 
              name: name, 
              items: items, 
            );

Flutter Apprentice Chapter 7: Interactive Widgets

 257



            // 5 
            widget.cartManager.resetCart(); 
            // 6 
            widget.onSubmit(order); 
          }, 
    child: Padding( 
      padding: const EdgeInsets.all(16.0), 
      // 7 
      child: Text( 
        '''Submit Order - \$$
{widget.cartManager.totalCost.toStringAsFixed(2)}'''), 
    ), 
  ); 
}

Here’s how the code works:

1. The function returns an ElevatedButton widget.

2. When the cart is empty, onPressed() disables the button by setting it to null.

3. If the cart is not empty, onPressed() retrieves all the user data such as selected 
order type, time, date, name and list of items.

4. Create an order object.

5. Reset the cart.

6. Submit the order.

7. Show the total cost of the order.

To apply the button, locate // TODO: Add Submit Order Button and replace it 
with the following:

_buildSubmitButton(),

Flutter Apprentice Chapter 7: Interactive Widgets

 258



Perform a hot reload if needed and try to add items to your cart. You’ll see the 
Submit Order button enabled or disabled based on the number of items in the cart.

Now that you created a way to capture the order data, why not add a page to display 
the list of orders submitted? That’s up next.

Flutter Apprentice Chapter 7: Interactive Widgets

 259



Building the Orders Page
When someone places an order they likely want to see the list of orders they’ve 
placed. When you’re done with this section the Orders tab will look like this:

Within the lib/screens directory, create a new file called myorders_page.dart and 
add the following code:

import 'package:flutter/material.dart'; 
import '../models/order_manager.dart'; 

 
class MyOrdersPage extends StatelessWidget { 
  final OrderManager orderManager; 

 
  // 1 
  const MyOrdersPage({ 
    super.key, 
    required this.orderManager,

Flutter Apprentice Chapter 7: Interactive Widgets

 260



  }); 
 

  @override 
  Widget build(BuildContext context) { 
    final textTheme = Theme.of(context) 
      .textTheme 
      .apply(displayColor: 
Theme.of(context).colorScheme.onSurface); 
    // 2 
    return Scaffold( 
      appBar: AppBar( 
        centerTitle: false, 
        title: Text('My Orders', style: 
textTheme.headlineMedium), 
      ), 
      // 3 
      body: ListView.builder( 
        // 4 
        itemCount: orderManager.totalOrders, 
        itemBuilder: (context, index) { 
          // 5 
          return OrderTile(order: orderManager.orders[index]); 
        }, 
      ), 
    ); 
  } 
} 

 
// 6 
class OrderTile extends StatelessWidget { 
  final Order order; 

 
  const OrderTile({super.key, required this.order}); 

 
  @override 
  Widget build(BuildContext context) { 
    final textTheme = Theme.of(context) 
      .textTheme 
      .apply(displayColor: 
Theme.of(context).colorScheme.onSurface); 

 
    // 7 
    return ListTile( 
      leading: ClipRRect( 
        borderRadius: BorderRadius.circular(8.0), 
        // 8 
        child: Image.asset( 
          'assets/food/burger.webp', 
          width: 50.0, 
          height: 50.0, 
          fit: BoxFit.cover, 
        ), 
      ),

Flutter Apprentice Chapter 7: Interactive Widgets

 261



      // 9 
      title: Column( 
        crossAxisAlignment: CrossAxisAlignment.start, 
        children: [ 
          // 10 
          Text( 
            'Scheduled', 
            style: textTheme.bodyLarge, 
          ), 
          // 11 
          Text(order.getFormattedOrderInfo()), 
          // 12 
          Text('Items: ${order.items.length}'), 
        ], 
      ), 
    ); 
  } 
}

The MyOrdersPage widget is pretty standard:

1. It takes an orderManager as a parameter. This is used to retrieve the list of 
orders.

2. It defines a Scaffold that has an AppBar

3. Displays a ListView in the body.

4. Sets the list view count.

5. For each order, it creates an OrderTile widget and passes the current order’s 
index.

6. It defines an OrderTile widget to display the order.

7. A tile wraps a ListTile.

8. The ListTile leading widget is an image with rounded corners.

9. The title displays a Column to align the order details vertically.

Next you’ll add the MyOrdersPage to your Orders tab.

Flutter Apprentice Chapter 7: Interactive Widgets

 262



Showing the Orders Page
Open home.dart and locate // TODO: Replace with Order Page and replace it 
and the Center code beneath it with the following:

MyOrdersPage(orderManager: widget.ordersManager),

Add the following import:

import 'screens/myorders_page.dart';

Now add items to the cart and submit the order.

Tap on the Orders tab, you should see the list of orders submitted!

Your app now lets your users look at menus and order items for either delivery or 
pick up. Congratulations!

Flutter Apprentice Chapter 7: Interactive Widgets

 263



Key Points
• You can pass data around with callbacks

• You can use callbacks also to pass data one level up.

• Manager objects help you manage functions and state changes in one place.

• TextEditingController is used to listen for changes in a TextField widget.

• Split your widgets by screen to keep your code modular and organized.

• Gesture widgets recognize and determine the type of touch event. They provide 
callbacks to react to events like onTap() or onDrag().

• You can use dismissible widgets to swipe away items in a list.

Where to Go From here?
There are many ways to engage and collect data from your users. You’ve learned to 
pass data around using callbacks. You learned to create different input widgets. You 
also learned to apply touch events to navigate to parts of your app.

That’s a lot, but you’ve only scratched the surface! There’s a plethora of widgets out 
there. You can explore other packages at https://pub.dev, a place where you can find 
the most popular widgets created by the Flutter community!

In the next section, you’ll dive into navigation.

Flutter Apprentice Chapter 7: Interactive Widgets

 264



Section III: Navigating 
Between Screens

You’ll continue working on the Fooderlich app in this section, learning about 
navigating between screens and working with deep links.

Topics you’ll learn include Navigator 2.0, go_router and Flutter Web.

 265



8Chapter 8: Routes & 
Navigation
By Vincent Ngo

Navigation, or how users switch between screens, is an important concept to master. 
Good navigation keeps your app organized and helps users find their way around 
without getting frustrated.

In the previous chapter, you got a taste of navigation where users tapped on a 
restaurant to view its menu items as shown below:

 266



But this uses the imperative style of navigation, known as Navigator 1.0. In this 
chapter, you’ll learn to navigate between screens the declarative way.

You’ll cover the following topics:

• Overview of Navigator 1.0.

• Overview of Router API.

• How to use go_router to handle routes and navigation.

By the end of this chapter, you’ll have everything you need to navigate to different 
screens!

Note: If you’d like to skip straight to the code, jump to Getting Started. If 
you’d like to learn the theory first, read on!

Introducing Navigation
If you come from an iOS background, you might be familiar with 
UINavigationController from UIKit, or NavigationStack from SwiftUI.

In Android, you use Jetpack Navigation to manage various fragments.

In Flutter, you use a Navigator widget to manage your screens or pages. Think of 
screens and pages as routes.

Note: This chapter uses these terms interchangeably because they all mean 
the same thing.

A stack is a data structure that manages pages. You insert the elements last-in, 
first-out (LIFO), and only the element at the top of the stack is visible to the user.

For example, when a user views a list of restaurants, tapping a restaurant pushes 
RestaurantPage to the top of the stack. Once the user finishes making changes, you 
pop it off the stack.

Flutter Apprentice Chapter 8: Routes & Navigation

 267



Here’s a top-level and a side-level view of the navigation stack:

Now, it’s time for a quick overview of Navigator 1.0.

Navigator 1.0 Overview
Before Flutter 1.22, you could only shift between screens by issuing direct commands 
like “show this now” or “remove the current screen and go back to the previous one”. 
Navigator 1.0 provides a simple set of APIs to navigate between screens. The most 
common ones are:

• push(): Adds a new route on the stack.

• pop(): Removes a route from the stack.

So, how do you add a navigator to your app?

Most Flutter apps start with WidgetsApp as the root widget.

Note: So far, you’ve used MaterialApp, which extends WidgetsApp.

Flutter Apprentice Chapter 8: Routes & Navigation

 268



WidgetsApp wraps many other common widgets that your app requires. Among 
these wrapped widgets there’s a top-level Navigator to manage the pages you push 
and pop.

Pushing and Popping Routes
To show the user another screen, you need to push a Route onto the Navigator 
stack using Navigator.push(context). Here’s an example:

bool result = await Navigator.push<bool>( 
  context, 
  MaterialPageRoute<bool>( 
    builder: (BuildContext context) =>RestaurantPage( 
      restaurant: restaurants[index], 
      cartManager: cartManager, 
      ordersManager: orderManager, 
    ) 
  ), 
);

Here, MaterialPageRoute returns an instance of your new screen widget. 
Navigator returns the result of the push whenever the screen pops off the stack.

Here’s how you pop a route off the stack:

Navigator.pop(context);

This seems easy enough. So why not just use Navigator 1.0? Well, it has a few 
disadvantages.

Flutter Apprentice Chapter 8: Routes & Navigation

 269



Navigator 1.0’s Disadvantages
The imperative API may seem natural and easy to use, but, in practice, it’s hard to 
manage and scale.

There’s no good way to manage your pages without keeping a mental map of where 
you push and pop a screen.

Imagine a new developer joining your team. Where do they even start? They’d surely 
be confused.

Moreover, Navigator 1.0 doesn’t expose the route stack to developers. It’s difficult to 
handle complicated cases, like adding and removing a screen between pages.

Flutter Apprentice Chapter 8: Routes & Navigation

 270



For example, in Yummy, you only want to show the Onboarding screen if the user 
hasn’t completed the onboarding yet. Handling that with Navigator 1.0 is 
complicated.

Another disadvantage is that Navigator 1.0 doesn’t update the web URL path. When 
you go to a new page, you only see the base URL, like this: www.localhost:8000/#/. 
Additionally, the web browser’s forward and backward buttons may not work as 
expected.

Finally, the Back button on Android devices might not work with Navigator 1.0 when 
you have nested navigators or add Flutter to your host Android app.

Wouldn’t it be great to have a declarative API that solves most of these pain points? 
That’s why Router API was designed!

To learn more about Navigator 1.0, check out the Flutter documentation 
(https://flutter.dev/docs/cookbook/navigation).

Router API Overview
Flutter 1.22 introduced the Router API, a new declarative API that lets you control 
your navigation stack completely. Also known as Navigator 2.0, the Router API aims 
to feel more Flutter-like while solving the pain points of Navigator 1.0.

Flutter Apprentice Chapter 8: Routes & Navigation

 271



Its main goals include:

• Exposing the navigator’s page stack: You can now manipulate and manage 
your page routes. More power, more control!

• Backward compatibility with imperative API: You can use imperative and 
declarative styles in the same app.

• Handling operating system events: It works better with events like the Android 
and Web system’s Back button.

• Managing nested navigators: It gives you control over which navigator has 
priority.

• Managing navigation state: You can parse routes and handle web URLs and 
deep linking.

Here are the new abstractions that make up Router’s declarative API:

Flutter Apprentice Chapter 8: Routes & Navigation

 272



The new API includes the following key components:

• Page: An abstract class that describes the configuration for a route.

• Router: Handles configuring the list of pages the Navigator displays.

• RouterDelegate: Defines how the router listens for changes to the app state to 
rebuild the navigator’s configuration.

• RouteInformationProvider: Provides RouteInformation to the router. Route 
information contains the location info and state objects to configure your app.

• RouteInformationParser: Parses route information into a user-defined data 
type.

• BackButtonDispatcher: Reports presses on the platform system’s Back button to 
the router.

• TransitionDelegate: Decides how pages transition into and out of the screen.

Note: This chapter will leverage a routing package, go_router, to make the 
Router API easier to use.

If you want to know how to use the vanilla version of the Router API, check 
out Edition 2.0 (https://www.kodeco.com/books/flutter-apprentice/v2.0/) of 
this book.

Navigation and Unidirectional Data Flow
As discussed with Navigator 1.0, the imperative API is very basic. It forces you to 
place push() and pop() functions all over your widget hierarchy which couples all 
your widgets! To present another screen, you must place callbacks up the widget 
hierarchy.

Flutter Apprentice Chapter 8: Routes & Navigation

 273



With the new declarative API, you can manage your navigation state 
unidirectionally. The widgets are state-driven, as shown below:

Here’s how it works:

1. A user taps a button.

2. The button handler tells the app state to update.

3. The router is a listener of the state, so it receives a notification when the state 
changes.

4. Based on the new state changes, the router reconfigures the list of pages for the 
navigator.

5. The navigator detects if there’s a new page in the list and handles the 
transitions to show the page.

That’s it! Instead of having to build a mental mind map of how every screen presents 
and dismisses, the state drives which pages appear.

Flutter Apprentice Chapter 8: Routes & Navigation

 274



Is Declarative Always Better Than 
Imperative?
You don’t have to migrate or convert your existing code to use the new API if you 
have an existing project.

Here are some tips to help you decide which is more beneficial for you:

• For medium to large apps: Consider using a declarative API and a router widget 
when managing a lot of your navigation state.

• For small apps: The imperative API is suitable for rapid prototyping or creating 
a small app for demos. Sometimes push and pop are all you need!

Next, you’ll get some hands-on experience with declarative navigation.

Note: To learn more about Navigator 1.0, check:

• Flutter’s Dev Cookbook Tutorials (https://flutter.dev/docs/cookbook/
navigation)

• Flutter Navigation: Getting Started (https://www.kodeco.com/4562634-
flutter-navigation-getting-started)

Getting Started
Open the starter project in Android Studio. Run flutter pub get and then run the 
app.

Note: It’s better to start with the starter project rather than continuing with 
the project from the last chapter because it contains some changes specific to 
this chapter.

Flutter Apprentice Chapter 8: Routes & Navigation

 275



You’ll see that Yummy only shows the Login screen. Of course, it also supports 
responsive UI on different devices!

Don’t worry. You’ll connect all the screens soon. You’ll build a simple flow that 
features a login screen and an onboarding widget before showing the existing tab-
based app you’ve made so far. But first, take a look at some changes to the project 
files.

Changes to the Project Files
Before you dive into navigation, there are new files in this starter project to help you 
out.

What’s New in the Screens Folder
There are new changes in lib/ and lib/screens/:

• home.dart: Now includes a Profile button at the top-right for the user to view 
their profile.

• screens.dart: A barrel file that groups all the screens into a single import.

• login_page.dart: Lets the user log in.

• account_page.dart: Lets users check their profile, update settings and log out.

Later, you’ll use these to construct your authentication UI flow.

Flutter Apprentice Chapter 8: Routes & Navigation

 276



What’s New in the Models Folder
There are three new model objects in lib/models/.

• models.dart: A barrel file that groups all the models into a single import.

• auth.dart: Manages user authentication state, whether they are login in or out.

• user.dart: Describes a single user and includes information like the user’s role, 
profile picture, full name and app settings.

What’s New in the Components Folder
There is one change in lib/components/.

• components.dart: A barrel file that groups all the components into a single 
import.

New Packages
There are three new packages in pubspec.yaml:

url_launcher: ^6.2.1 
go_router: ^13.0.1 
shared_preferences: ^2.2.2

Here’s what they do:

• url_launcher: A cross-platform library to help launch a URL.

• go_router: A package built to reduce the complexity of the Router API. It helps 
developers easily implement declarative navigation.

• shared_preferences: Wraps platform-specific persistent storage for simple data. 
AppCache uses this package to store the login state.

Now that you know what’s changed, it’s time for a quick overview of the UI flow 
you’ll build in this chapter.

Flutter Apprentice Chapter 8: Routes & Navigation

 277



Looking Over the UI Flow
Here are the first two screens you show the user:

1. When the user launches the app, he must log in by entering their username and 
password, then tap Login.

2. Once the user logs in, the user goes to the app’s Home. They can now start using 
the app.

Flutter Apprentice Chapter 8: Routes & Navigation

 278



The app presents the user with three tabs with these options:

1. Home: View restaurants, friend posts, and food categories.

2. Orders: Track all orders submitted.

3. Account: View the user’s profile and logout.

Next, the user can tap on a restaurant to view the menu to order food. They can 
select items to add to their cart and submit an order.

Flutter Apprentice Chapter 8: Routes & Navigation

 279



Once the order is submitted, the user is redirected to Orders tab:

On the Account screen, they can:

• View their profile and see how many points they’ve earned.

• Visit the Kodeco website.

• Log out of the app.

Flutter Apprentice Chapter 8: Routes & Navigation

 280



Below you’ll see an example:

Your app is going to be awesome when it’s finished. Now it’s time to learn about 
go_router!

Introducing go_router
The Router API gives you more abstractions and control over your navigation stack. 
However, the API’s complexity and usability hindered a bit the developer experience.

Flutter Apprentice Chapter 8: Routes & Navigation

 281



For example, you must create your RouterDelegate, bundle your app state logic 
with your navigator and configure when to show each route.

To support the web platform or handle deep links, you must implement 
RouteInformationParser to parse route information.

Eventually, developers and even Google realized the same thing: creating these 
components wasn’t straightforward. As a result, developers wrote other routing 
packages to make the process easier.

Interesting Read: Google’s Flutter team came out with a research paper 
evaluating different routing packages. You can check it out here (https://
github.com/flutter/uxr/blob/master/nav2-usability/
Flutter%20routing%20packages%20usability%20research%20report.pdf).

Of the many packages available, you’ll focus on GoRouter. Such a package, created 
by Chris Sells, is now fully maintained by the Flutter team. GoRouter aims to make it 
easier for developers to handle routing, letting them focus on building the best app 
they can.

In this chapter you’ll focus on how to:

• Create routes.

• Handle errors.

• Redirect to another route.

Time to code!

Creating the go_router
Within main.dart, add the following import:

import 'package:go_router/go_router.dart';

Next locate the comment // TODO: Initialize GoRouter and replace it with the 
following:

// 1 
late final _router = GoRouter( 
  // 2

Flutter Apprentice Chapter 8: Routes & Navigation

 282



  initialLocation: '/login', 
  // TODO: Add App Redirect 
  // 3 
  routes: [ 
    // TODO: Add Login Route 
    // TODO: Add Home Route 
  ], 
  // TODO: Add Error Handler 
);

Here’s how it works:

1. Initializes an instance of GoRouter, a declarative router for Flutter.

2. Sets the initial route that the app will navigate to. When the user opens the app 
they will navigate to the login page.

3. routes contains a list of possible routes for the application. Each route will 
typically be defined with a path, builder or redirect function.

There are other configurations you can set such as app redirect, and error 
handling. For example, if the user is logged in it should redirect to home, or if the 
user enters a wrong path it should show an error or a 404 page.

Note on late final in Router Declaration: The late final keyword is 
used for the router to defer its initialization until necessary, such as waiting 
for user authentication. It ensures the router is non-nullable and remains 
constant once initialized, aligning with the needs of dependent states or 
objects in the app.

Flutter Apprentice Chapter 8: Routes & Navigation

 283



Using Your Router
Next, locate // TODO: Replace with Router. Replace it and the entire return 
MaterialApp(); code with:

// 1 
return MaterialApp.router( 
  debugShowCheckedModeBanner: false, 
  // 2 
  routerConfig: _router, 
  // TODO: Add Custom Scroll Behavior 
  title: 'Yummy', 
  scrollBehavior: CustomScrollBehavior(), 
  themeMode: themeMode, 
  theme: ThemeData( 
    colorSchemeSeed: colorSelected.color, 
    useMaterial3: true, 
    brightness: Brightness.light, 
  ), 
  darkTheme: ThemeData( 
    colorSchemeSeed: colorSelected.color, 
    useMaterial3: true, 
    brightness: Brightness.dark, 
  ), 
);

Here’s how it works:

1. MaterialApp.router. This constructor is used for apps with a navigator that 
uses a declarative routing approach. It takes a router configuration rather than 
a set of routes.

2. routeConfig reads _router to know about navigation properties. This will help 
the MaterialApp to set up the essential parts of a router. Under the hood, it will 
configure routerDelegate, routeInformationParser, and 
routeInformationProvider.

Your router is all set!

Flutter Apprentice Chapter 8: Routes & Navigation

 284



Adding Screens
With all the infrastructure in place, it’s time to define which screen to display 
according to the route. But first, check out the current situation.

Build and run on iOS. You’ll notice an error screen exception:

If the route isn’t found, GoRouter provides a Page Not Found screen by default. 
That’s because you haven’t defined any routes yet!

Setting Up Your Error Handler
You can tweak GoRouter to show a custom error page. It’s common for users to enter 
the wrong URL path, especially with web apps. Web apps usually show a 404 error 
screen.

Flutter Apprentice Chapter 8: Routes & Navigation

 285



Next locate // TODO: Add Error Handler and replace it with:

errorPageBuilder: (context, state) { 
  return MaterialPage( 
    key: state.pageKey, 
    child: Scaffold( 
      body: Center( 
        child: Text( 
          state.error.toString(), 
        ), 
      ), 
    ), 
  ); 
},

Here you simply show your error page and the error exception.

Trigger a hot restart. Your custom error page now displays.

Next, you’ll start working on your login page.

Flutter Apprentice Chapter 8: Routes & Navigation

 286



Adding the Login Route
You’ll start by displaying the Login screen.

Locate // TODO: Add Login Route and replace it with:

GoRoute( 
  // 1 
  path: '/login', 
  // 2 
  builder: (context, state) => 
    // 3 
    LoginPage( 
      // 4 
      onLogIn: (Credentials credentials) async { 
        // 5 
        _auth 
          .signIn(credentials.username, credentials.password) 
          // 6 
          .then((_) => context.go('/${YummyTab.home.value}')); 
    })),

Here’s how you define a route:

1. The route is set to /login. When the URL or path matches /login go to the login 
route.

2. The builder() function creates the widget to display when the user hits a route.

3. The function returns a Login widget.

4. The Login widget takes a callback named onLogIn which returns the user 
credentials.

5. Use the credentials to log in.

6. If the login is successful, navigate to the path /0, which is the first tab.

Flutter Apprentice Chapter 8: Routes & Navigation

 287



Trigger a hot restart. You’ll see the Login Page:

You just added your first route!

Adding the Home Route
Once you log in, you need to navigate to the home route. Locate the comment // 
TODO: Add Home Route and replace it with the following:

// 1 
GoRoute( 
  path: '/:tab', 
  builder: (context, state) { 
    // 2 
  return Home( 
    //3 
    auth: _auth, 
    //4 
    cartManager: _cartManager, 
    //5 
    ordersManager: _orderManager, 
    //6 
    changeTheme: changeThemeMode, 
    //7 
    changeColor: changeColor, 
    //8 
    colorSelected: colorSelected, 
    //9 
    tab: int.tryParse(state.pathParameters['tab'] ?? '') ?? 0);

Flutter Apprentice Chapter 8: Routes & Navigation

 288



    }, 
    // 10 
    routes: [ 
    // TODO: Add Restaurant Route 
  ]),

Here’s how it works:

1. The route is set to /. When the URL or path matches / go to the home route. :tab 
is a path parameter used to switch between different tabs.

2. The builder function returns a Home widget.

3. Pass auth for handling authentication

4. Use cartManager to manage the items that the user added to the cart.

5. Use ordersManager to manage all the orders submitted.

6. Set a callback to handle user changes from light to dark mode.

7. Set a callback to handle user app color theme changes.

8. Pass the currently selected color theme.

9. Set the current tab, default to 0 if the path parameter is absent or not an integer.

Flutter Apprentice Chapter 8: Routes & Navigation

 289



Perform a hot reload if needed, click the Login button and now you’ll land on Home.

Flutter Apprentice Chapter 8: Routes & Navigation

 290



Navigate to the Current Tab
Try clicking on the tab bar items and notice that nothing works. You’ll now add a way 
to navigate between tabs.

In lib/home.dart locate // TODO: Navigate to specific tab and replace it with 
the following:

context.go('/$index');

Flutter Apprentice Chapter 8: Routes & Navigation

 291



Don’t forget to import go_router:

import 'package:go_router/go_router.dart';

Now you can navigate to different tabs.

Hot reload again and notice that the app goes back to the login screen. Wouldn’t it 
be great when the user opens Yummy app again to go straight to the home page if 
the user is already logged in?

Handling Redirects
You redirect when you want your app to go to a different location. GoRouter lets you 
do this with its redirect handler.

Most apps require some type of login authentication flow, and redirect is perfect for 
this situation. For example, some of these scenarios may happen to your app:

• The user logs out of the app.

• The user tries to go to a restricted page that requires them to log in.

• The user’s session token expires. In this case, they’re automatically logged out.

It would be nice to redirect the user back to the login screen in all these cases. Open 
lib/main.dart and locate the comment // TODO: Add Redirect Handler and 
replace it with:

// 1 
Future<String?> _appRedirect( 
  BuildContext context, GoRouterState state) async { 
  // 2 
  final loggedIn = await _auth.loggedIn; 
  // 3 
  final isOnLoginPage = state.matchedLocation == '/login'; 

 
  // 4 
  // Go to /login if the user is not signed in 
  if (!loggedIn) { 
    return '/login'; 
  } 
  // 5 
  // Go to root if the user is already signed in 
  else if (loggedIn && isOnLoginPage) { 
    return '/${YummyTab.home.value}'; 
  } 

Flutter Apprentice Chapter 8: Routes & Navigation

 292



  // 6 
  // no redirect 
  return null; 
}

Here’s how it works:

1. _appRedirect() is an asynchronous function that returns a future, optional 
string. It takes in a build context and the go router state.

2. Get the login status.

3. Check if the user is currently on the login page.

4. If the user is not logged in yet, redirect to the login page.

5. If the user is logged in and is on the login page, redirect to the home page.

6. Don’t redirect if no condition is met.

Next to apply the handler, locate  // TODO: Add App Redirect and replace it with:

redirect: _appRedirect,

Hot reload and you will notice that the app now goes to the home page directly.

Adding the Restaurant Route
When the user taps on a restaurant on the Explore page, the app navigates to a 
subroute. Locate // TODO: Add Restaurant Route and replace it with:

GoRoute( 
  // 1 
  path: 'restaurant/:id', 
  builder: (context, state) { 
    // 2 
    final id = 
        int.tryParse(state.pathParameters['id'] ?? '') ?? 0; 
    // 3 
    final restaurant = restaurants[id]; 
    // 4 
    return RestaurantPage( 
      restaurant: restaurant, 
      cartManager: _cartManager, 
      ordersManager: _orderManager, 
    ); 
  }),

Flutter Apprentice Chapter 8: Routes & Navigation

 293



Here’s how it works:

1. The route is defined with the path restaurant/:id. The :id part is a path 
parameter, which allows for dynamic routing based on the restaurant’s ID.

2. Within the builder() function, you extract the id from pathParameters.

3. Get the restaurant based on the `id``.

4. Return the RestaurantPage widget with the specific restaurant, cart and order 
manager.

Now that you have set up the restaurant route, you need to navigate to it.

Navigate to the Restaurant Page
Open lib/components/restaurant_section.dart, locate the comment // TODO: 
Navigate to Restaurant and replace it with the following:

context.go('/${YummyTab.home.value}/restaurant/$
{restaurants[index].id}');

Don’t forget to add the necessary imports:

import 'package:go_router/go_router.dart'; 
import '../constants.dart';

From the home page, based on the selected restaurant, navigate to the specific 
restaurant with the specific restaurant id.

Note: There are two ways to navigate to different routes:

1.) context.go(path)

2.) context.goNamed(name)

You should use goNamed() instead of go() as it’s error-prone, and the actual 
URI format can change over time.

goNamed() performs a case-insensitive lookup by using the name parameter 
you set with each route. It also helps you pass query parameters to your route.

Flutter Apprentice Chapter 8: Routes & Navigation

 294



Navigate to the Order Page
Once a user adds items to the cart and submits an order, it would be nice to navigate 
to the orders tab, so that customers can review the order.

Open restaurant_page.dart and add the following imports:

import 'package:go_router/go_router.dart'; 
import '../constants.dart';

Next locate // TODO: Navigate to Orders Page and replace it with:

context.pop(); 
context.go('/${YummyTab.orders.value}');

Now, when the user taps on the Submit order button, the app navigates to the 
Orders tab.

Flutter Apprentice Chapter 8: Routes & Navigation

 295



Handle Log Out
Lastly you’ll work on the logout functionality.

Open home.dart, locate the // TODO: Logout and go to login and replace it 
with the following:

widget.auth.signOut().then((value) => context.go('/login'));

Here you call signOut(), which resets the entire app state and redirects you back to 
the Login screen.

Save your changes. Now, tap the Log out button on the Account screen. You’ll 
notice it goes back to the Login screen, as shown below:

Congratulations, you’ve now completed the entire UI navigation flow.

Flutter Apprentice Chapter 8: Routes & Navigation

 296



Key Points
• Navigator 1.0 is useful for quick and simple prototypes, presenting alerts and 

dialogs.

• Router API is useful when you need more control when managing the navigation 
stack.

• GoRouter is a wrapper around the Router API that makes it easier for developers 
to build navigation logic.

• With GoRouter, you navigate to other routes using goNamed() instead of go().

• Use a router widget to listen to navigation state changes and configure your 
navigator’s list of pages.

• If you need to navigate to another page after some state change, handle that with 
the redirect() handler.

• You can customize the error page by implementing the errorPageBuilder.

Where to Go From Here?
You’ve now learned how to navigate between screens the declarative way. Instead of 
calling push() and pop() in different widgets, you use multiple managers to manage 
your state.

You also learned how to create a GoRouter widget, which encapsulates and 
configures all the routes for a navigator. Now, you can easily manage your navigation 
flow in a single router object!

To learn about navigation in Flutter, here are some recommendations:

• To understand the motivation behind Navigator 2.0, check out the design 
document (https://docs.google.com/document/d/1Q0jx0l4-
xymph9O6zLaOY4d_f7YFpNWX_eGbzYxr9wY/edit).

• Watch this presentation by Chun-Heng Tai (https://youtu.be/xFFQKvcad3s?
t=3158), who contributed to the new declarative API.

• In this video, Simon Lightfoot walks you through a Navigator 2.0 example (https://
www.youtube.com/watch?v=Y6kh5UonEZ0).

Flutter Apprentice Chapter 8: Routes & Navigation

 297



• Flutter Navigation 2.0 by Dominik Roszkowski goes through the differences 
between Navigator 1.0 and 2.0, including a video example (https://youtu.be/
JmfYeF4gUu0?t=9728).

• For in-depth knowledge about Navigator, check out Flutter’s documentation 
(https://api.flutter.dev/flutter/widgets/Navigator-class.html).

• Finally, here’s the GoRouter documentation (https://pub.dev/documentation/
go_router/latest/).

Other Libraries to Check Out
GoRouter is just one of the many libraries trying to make the Router API easier to 
use. Check them out here:

• Beamer (https://pub.dev/packages/beamer)

• Flow Builder (https://pub.dev/packages/flow_builder)

• Fluro (https://pub.dev/packages/fluro)

• Vrouter (https://pub.dev/packages/vrouter)

• Auto Route (https://pub.dev/packages/auto_route)

There are so many more things you can do with Router API. In the next chapter, 
you’ll look at supporting web URLs and deep linking!

Flutter Apprentice Chapter 8: Routes & Navigation

 298



9Chapter 9: Deep Links & 
Web URLs
By Vincent Ngo

Sometimes, opening your app and working through the navigation to get to a screen 
is just too much trouble for the user. Redirecting to a specific part of your app is a 
powerful marketing tool for user engagement. For example, generating a special QR 
code for a promotion that users can scan to visit that specific product in your app is a 
cool and effective way to build interest in the product.

In the last chapter, you learned how to use GoRouter to move between screens, 
navigating your app in a declarative way. Now you’ll learn how to deep link to 
screens in your app and explore web URLs on the web.

 299



Take a look at how Yummy looks in the Chrome web browser:

By the end of this chapter, you’ll:

• Have a better understanding of the router API.

• Know how to support deep linking on iOS and Android.

• Explore the Yummy app on the web.

You’ll learn how to direct users to any screen of your choice.

Note: You’ll need to install the Chrome web browser to view Yummy on the 
web. If you don’t have Chrome, you can get it here (https://www.google.com/
chrome/). The Flutter web project can run on other browsers, but this chapter 
only covers testing and development with Chrome.

Flutter Apprentice Chapter 9: Deep Links & Web URLs

 300



Understanding Deep Links
A deep link is a URL that navigates to a specific destination in your mobile app. 
Think of deep links like a URL address you enter into a web browser to go to a 
specific page of a website rather than the home page.

Deep links help with user engagement and business marketing. For example, if 
you’re running a sale, you can direct the user to a specific product page in your app 
instead of making them search for it.

Just imagine, your app Yummy is a user-friendly food app that allows customers to 
quickly scan a QR code at restaurants, instantly access menus and seamlessly deep-
link to detailed restaurant pages in for an enhanced dining experience.

Flutter Apprentice Chapter 9: Deep Links & Web URLs

 301



With deep linking, Yummy is more automated. It brings the user directly to the 
restaurant page making it easier to view the menu.Without deep linking, the process 
is more manual. The user has to launch the app, navigate to the Explore tab find the 
correct restaurant, or search the restaurant name, and finally get to the restaurant 
page to view the menu. That takes three steps instead of one and likely some head-
scratching, too!

Types of Deep Links
There are three types of deep links:

• URI schemes: An app’s own URI scheme. yummy://kodeco.com/home is an 
example of Yummy’s URI scheme. This form of deep link only works if the user has 
installed your app.

• iOS Universal Links: In the root of your web domain, you place a file that points 
to a specific app ID to say whether to open your app or to direct the user to the 
App Store. You must register that specific app ID with Apple to handle links from 
that domain.

• Android App Links: Like iOS Universal Links, Android App Links take users to a 
link’s specific content directly in your app. They leverage HTTP URLs and are 
associated with a website. For users that don’t have your app installed, these links 
go directly to the content of your website.

In this chapter, you’ll only look at URI Schemes. For more information on how to set 
up iOS Universal Links and Android App Links, check out these tutorials:

• Universal Links: Make the Connection (https://www.kodeco.com/6080-universal-
links-make-the-connection)

• Deep Links in Android: Getting Started (https://www.kodeco.com/18330247-deep-
links-in-android-getting-started)

Flutter Apprentice Chapter 9: Deep Links & Web URLs

 302



Getting Started

Note: We recommend you use the starter project for this chapter rather than 
continuing with the project from the last chapter.

Open the starter project in Android Studio and run flutter pub get. Then, run the 
app on iOS or Android.

You’ll see that Yummy shows the Login screen.

Soon, you’ll be able to redirect users to different parts of the app. But first, take a 
moment to review what’s changed in the starter project since the last chapter.

Flutter Apprentice Chapter 9: Deep Links & Web URLs

 303



Project Files
Before diving in, you need to be aware of some new files.

New Flutter Web Project

The starter project includes a pre-built Flutter web project.

Note: To speed things up, the web project is pre-built in your starter project. 
To learn how to create a Flutter web app, check out the Flutter documentation 
(https://flutter.dev/docs/get-started/web#add-web-support-to-an-existing-
app).

Setting Up Deep Links
To enable deep linking on iOS and Android, you must add metadata tags on the 
respective platforms. These tags have already been added to the starter project.

Setting Up Deep Links on iOS

Open ios/Runner/Info.plist. You’ll see some new key-value pairs, which enable 
deep linking for iOS:

... 
<key>FlutterDeepLinkingEnabled</key> 
<true/> 
<key>CFBundleURLTypes</key> 
<array> 
  <dict> 
  <key>CFBundleTypeRole</key> 
  <string>Editor</string> 
  <key>CFBundleURLName</key> 
  <string>kodeco.com</string> 
  <key>CFBundleURLSchemes</key>

Flutter Apprentice Chapter 9: Deep Links & Web URLs

 304



  <array> 
  <string>yummy</string> 
  </array> 
  </dict> 
</array> 
...

CFBundleURLName is a unique URL that distinguishes your app from others that use 
the same scheme. yummy is the URL scheme you’ll use later.

Setting Up Deep Links on Android

Open android/app/src/main/AndroidManifest.xml. Here you’ll also find two new 
definitions in the <data> tag:

... 
<!-- Deep linking --> 
<meta-data android:name="flutter_deeplinking_enabled" 
android:value="true" /> 
<intent-filter> 
<action android:name="android.intent.action.VIEW" /> 
<category android:name="android.intent.category.DEFAULT" /> 
<category android:name="android.intent.category.BROWSABLE" /> 
<data 
  android:scheme="yummy" 
  android:host="kodeco.com" /> 
</intent-filter> 
...

Like in iOS, you set the same values for scheme and host.

When you create a deep link for Yummy, the custom URL scheme looks like this:

yummy://kodeco.com/<path>

Now, take a quick look at the URL paths you’ll create.

Overview of Yummy Paths
Yummy has many screens you can deep link to. Here are all the possible paths you 
can direct your users to the following.

Flutter Apprentice Chapter 9: Deep Links & Web URLs

 305



Path: /
The app initializes and checks the app cache to see if the user is logged in.

• /login: Redirects to the Login screen if the user isn’t logged in yet.

Flutter Apprentice Chapter 9: Deep Links & Web URLs

 306



Path: /:tab
Once the user logs in, they’re redirected to /:tab. It contains one parameter, tab, 
which directs to a tab index. The screenshots below show that the tab index is 0, 1 
or 2, respectively.

Flutter Apprentice Chapter 9: Deep Links & Web URLs

 307



Path: /restaurant/:id
The restaurant page is a sub route of the Explore page. You can present a restaurant 
from any tab.

/restaurant/:id contains one parameter, id.

Flutter Apprentice Chapter 9: Deep Links & Web URLs

 308



Note: Keep in mind that these URL paths work similarly for mobile and web 
apps.

When you deep link on mobile, you’ll use the following URI scheme:

yummy://kodeco.com/<path>

On the web, the URI scheme is like any web browser URL:

http://localhost:60738/#/<path>

Before exploring deep links, take a moment for a quick Router API recap.

Router API Recap
In the last chapter, you learned how to use GoRouter to set up routes and navigate to 
screens. GoRouter conveniently manages the Router API for you. How amazing is 
that? :]

However, it’s still good to understand how routing works behind the scenes. Here’s a 
diagram of what makes up the Router API:

Flutter Apprentice Chapter 9: Deep Links & Web URLs

 309



• Router is a widget that extends RouterDelegate. The router ensures that the 
messages get to the RouterDelegate.

• Navigator defines a stack of MaterialPages in a declarative way. It also handles 
any onPopPage() event.

• BackButtonDispatcher handles platform-specific system back button presses. It 
listens to requests by the OS and tells the router delegate to pop a route.

Next, you’ll look at RouteInformationProvider and RouteInformationParser.

• RouteInformationProvider: Provides the route information to the router. It 
informs the router about the initial route and notifies new intents.

• RouteInformationParser: Gets the route string from 
RouteInformationProvider, then parses the URL string to a generic user-
defined data type. This data type is a navigation configuration.

Note: GoRouter implements its own RouteInformationParser called 
GoRouteInformationParser. Based on the routeInformation, it tries to 
search for a route match based on the route’s location. Check out the code in 
this GitHub repository (https://github.com/flutter/packages/blob/main/
packages/go_router/lib/src/parser.dart).

Flutter Apprentice Chapter 9: Deep Links & Web URLs

 310



Since GoRouter provides and manages all of these components, it’s a good idea to 
jump straight into GoRouter’s implementation to learn more and see how they 
configure things.

Enough theory. It’s time to get started!

Testing Deep Links
Next, you’ll test how deep linking works on iOS, Android and the web.

Testing Deep Links on iOS
In Android Studio, select an iOS device and press Run:

Once the simulator is running, log in as shown below:

Flutter Apprentice Chapter 9: Deep Links & Web URLs

 311



Deep Linking to the Orders Page
Enter the following in your terminal:

xcrun simctl openurl booted 'yummy://kodeco.com/1'

Note: You have to be logged into the app. Otherwise, it will just show the 
Login page. Note that the first time you run this command the simulator 
might show a popup. If so, allow it to proceed.

In the simulator, this automatically switches to the second tab, as shown below:

Flutter Apprentice Chapter 9: Deep Links & Web URLs

 312



Deep Linking to the Account Page
Next, run the following command:

xcrun simctl openurl booted 'yummy://kodeco.com/2'

This command directs to the Account page:

Flutter Apprentice Chapter 9: Deep Links & Web URLs

 313



Deep Linking to the Home Page
Next, run the following command:

xcrun simctl openurl booted 'yummy://kodeco.com/0'

This command directs to the home page, named Explore:

Flutter Apprentice Chapter 9: Deep Links & Web URLs

 314



Deep Linking to a Specific Restaurant
Next, run the following command:

xcrun simctl openurl booted 'yummy:/0/restaurant/2'

Observe that the route is structured as /:tab/restaurant/:id. Here, the restaurant 
page acts as a subroute under the home route. To navigate to a specific restaurant, 
you need to identify the active tab, followed by the restaurant’s unique ID. This 
hierarchical routing ensures precise and context-aware navigation within the app.

The restaurant page will now show:

Following this pattern, you can build paths to any location in your app!

Flutter Apprentice Chapter 9: Deep Links & Web URLs

 315



Resetting the Cache in the iOS Simulator
Recall that AppStateManager checks with AppCache to see whether the user is 
logged in. If you want to reset the cache to see the Login screen again, you have two 
options:

1. Go to the Account view and tap Log out to invalidate the app cache.

2. In the iOS simulator menu, you can select Erase All Content and Settings… to 
clear the cache.

Flutter Apprentice Chapter 9: Deep Links & Web URLs

 316



Note: This will delete any other apps you have on the simulator.

Testing Deep Links on Android
Stop running on iOS. In Android Studio, select an Android emulator or device and 
click the Run button:

Flutter Apprentice Chapter 9: Deep Links & Web URLs

 317



Once the emulator or device is running, log in:

Deep Linking to the Orders Page
Enter the following in your terminal:

~/Library/Android/sdk/platform-tools/adb shell am start -a 
android.intent.action.VIEW \ 
    -c android.intent.category.BROWSABLE \ 
    -d 'yummy://kodeco.com/1'

Note: If you receive a message in Terminal like: Warning: Activity not 
started, intent has been delivered to currently running top-most 
instance, ignore it. It just means that the app is already running.

The entire path is listed to ensure that you can still execute this command if 
you don’t have adb in your $PATH. The \ at each line’s end formats the script 
nicely across multiple lines.

Flutter Apprentice Chapter 9: Deep Links & Web URLs

 318



This command directs to the second tab of Yummy, that is Orders:

Deep Linking to the Account Page
Next, run the following command:

~/Library/Android/sdk/platform-tools/adb shell am start -a 
android.intent.action.VIEW \ 
    -c android.intent.category.BROWSABLE \ 
    -d 'yummy://kodeco.com/2'

Flutter Apprentice Chapter 9: Deep Links & Web URLs

 319



This command navigates to the Account screen:

Flutter Apprentice Chapter 9: Deep Links & Web URLs

 320



Deep Linking to Restaurant Page
Next, run the following:

~/Library/Android/sdk/platform-tools/adb shell am start -a 
android.intent.action.VIEW \ 
    -c android.intent.category.BROWSABLE \ 
    -d 'yummy://kodeco.com/2/restaurant/1'

The selected restaurant page appears, as shown below:

Flutter Apprentice Chapter 9: Deep Links & Web URLs

 321



Resetting the Cache in Android
If you need to reset your emulator cache:

In Android Studio go to Tools/Device Manager and you’ll see your list of virtual 
devices. Click the 3 dotted action bar and select Wipe Data

Now, it’s time to test how Yummy handles URLs on the web.

Running the Web App
Stop running on Android. In Android Studio, select Chrome (web) and click Run:

Flutter Apprentice Chapter 9: Deep Links & Web URLs

 322



Note: Your data won’t persist between app launches because Flutter web runs 
the equivalent of incognito mode (https://support.google.com/chrome/
answer/95464) during development.

If you build and release your Flutter web app, it’ll work as expected. For more 
information on how to build for release, check the Flutter documentation 
(https://flutter.dev/docs/deployment/web#building-the-app-for-release).

Go through the Yummy UI flow, and you’ll see that the web browser’s address bar 
changes:

Flutter Apprentice Chapter 9: Deep Links & Web URLs

 323



If you change the tab query parameter’s value to 0, 1 or 2, the app automatically 
switches to that tab.

Next on the Explore tab, tap on a restaurant

Notice that the app stores the entire browser history. Pretty cool!

Flutter Apprentice Chapter 9: Deep Links & Web URLs

 324



Tap the Back and Forward buttons and the app restores that state! How cool is that? 
You can also long-press the Back button to jump to a specific state in the browser 
history.

Congratulations on learning how to work with deep links in your Flutter app!

Flutter Apprentice Chapter 9: Deep Links & Web URLs

 325



Key Points
• The app notifies RouteInformationProvider when there’s a new route to 

navigate to.

• The provider passes the route information to RouteInformationParser to parse 
the URL string.

• The parser converts the route information state to and from a URL string.

• GoRouter converts route information state to and from a RouteMatchList.

• GoRouter supports deep linking and web browser address bar paths out of the box.

• In development mode, the Flutter web app doesn’t persist data between app 
launches. The web app generated in release mode will work on other browsers.

Where to Go From Here?
Flutter renders web apps in two different ways. Explore how that works in the Flutter 
documentation on web renderers (https://flutter.dev/docs/development/tools/web-
renderers).

For more examples of various navigation use-cases with GoRouter, check out these 
examples (https://github.com/flutter/packages/tree/main/packages/go_router/
example).

In this chapter, you continued to learn how the Router API works behind the scenes 
and explore how to test and perform deep links on iOS, Android and the Web.

Deep linking helps bring users to specific destinations within your app, building 
better user engagement!

Flutter’s ability to support routes and navigation for multiple platforms isn’t just 
powerful; it’s magical.

Flutter Apprentice Chapter 9: Deep Links & Web URLs

 326



Section IV: Networking, 
Persistence & State

Most apps interact with the network to retrieve data and then persist that data 
locally in some form of cache, such as a database. In this section, you’ll build a new 
app that lets you search the Internet for recipes, bookmark recipes, and save their 
ingredients into a shopping list.

You’ll learn about making network requests, parsing the network JSON response, and 
saving data in a SQLite database. You’ll also get an introduction to using Dart 
streams.

Finally, this section will also dive deeper into the important topic of app state, which 
determines where and how your user interface stores and refreshes data in the user 
interface as a user interacts with your app.

 327



10Chapter 10: Handling 
Shared Preferences
By Kevin David Moore

Picture this: You’re browsing recipes and find one you like. You’re in a hurry and 
want to bookmark it to check it later. Can you build a Flutter app that does that? You 
sure can! Read on to find out how.

In this chapter, your goal is to learn how to use the shared_preferences plugin to 
save important pieces of information to your device.

You’ll start with a new project showing two tabs at the bottom of the screen for two 
views: Recipes and Groceries.

The first screen is where you’ll search for recipes you want to prepare. Once you find 
a recipe you like, just bookmark it, and the app will add the recipe to your 
Bookmarks page. It will also add all the ingredients you need to your shopping list. 
You’ll use a web API to search for recipes and store the ones you bookmark in a local 
database.

 328



The completed app will look something like this:

This shows the Recipes tab with the results you get when searching for Pasta. It’s as 
easy as typing in the search text field and tapping the Search icon. The app stores 
your search term history in the combo box to the right of the text field.

Flutter Apprentice Chapter 10: Handling Shared Preferences

 329



When you tap a card, you’ll see something like this:

Flutter Apprentice Chapter 10: Handling Shared Preferences

 330



To save a recipe, just tap the Bookmark button. When you tap on the Bookmarks 
selector, you’ll see that the recipe has been saved:

If you don’t want the recipe anymore, swipe left or right, and you’ll see a delete 
button that allows you to remove it from the list of bookmarked recipes.

Flutter Apprentice Chapter 10: Handling Shared Preferences

 331



The Groceries tab shows the ingredients you need to make the recipes you’ve 
bookmarked.

You’ll build this app over the next few chapters. In this chapter, you’ll use 
shared_preferences to save simple data like the selected tab and also to cache the 
searched items in the Recipes tab.

By the end of the chapter, you’ll know:

• What shared preferences are.

• How to use the shared_preferences plugin to save and retrieve objects.

Flutter Apprentice Chapter 10: Handling Shared Preferences

 332



Note: Feel free to explore the entire app. There is a lot there to explore and 
learn that isn’t covered in the book. Copy any code you like for your projects.

Now that you know what your goal is, it’s time to jump in!

Getting Started
Open the starter project for this chapter in Android Studio. Open the pubspec.yaml 
file and click pub get, then run the app.

Notice the two tabs at the bottom — each will show a different screen when you tap 
it. Only the Recipes screen currently shows any UI. It looks like this:

Flutter Apprentice Chapter 10: Handling Shared Preferences

 333



App Libraries
The starter project includes quite a few libraries in pubspec.yaml:

dependencies: 
  ... 
  auto_size_text: 
  flutter_adaptive_scaffold: 
  desktop_window: 
  path: 
  cached_network_image: 
  flutter_slidable: 
  platform: 
  freezed_annotation: 
  flutter_svg: 
  .... 
  flutter_riverpod:

Here’s what they help you do:

• auto_size_text: Useful library for ensuring text fits in the given space.

• flutter_adaptive_scaffold: Library changing your UI based on changing sizes. 
Useful for the desktop, web and folding phones.

• desktop_window: Library for the desktop app for setting the window size.

• path: Library for handling files.

• cached_network_image: Download and cache the images you’ll use in the app.

• flutter_slidable: Build a widget that lets the user slide a card left and right to 
perform different actions, like deleting a saved recipe.

• platform: For accessing platform-specific information.

• freezed_annotation: Part of the freezed library. Generates useful JSON and 
related utility functions.

• flutter_svg: Load SVG images without the need to use a program to convert them 
to vector files.

• flutter_riverpod: State management library. You’ll learn more about this library 
in Chapter 13, “Managing State”.

Now that you’ve looked at the libraries take a moment to think about how you save 
data before you begin coding your app.

Flutter Apprentice Chapter 10: Handling Shared Preferences

 334



Saving Data
There are three primary ways to save data to your device:

1. Write formatted data, like JSON, to a file.

2. Use a library or plugin to write simple data to a shared location.

3. Use a SQLite database.

Writing data to a file is simple, but it requires you to handle reading and writing data 
in the correct format and order.

You can also use a library or plugin to write simple data to a shared location 
managed by the platform, like iOS and Android. This is what you’ll do in this chapter.

You can save the information to a local database for more complex data. You’ll learn 
more about that in Chapter 15, “Saving Data Locally”.

Saving Small Bits of Data
Why would you save small bits of data? Well, there are many reasons to do this. For 
example, you could save the user ID when the user has logged in — or if the user has 
logged in at all. You could also save the onboarding state or data the user has 
bookmarked to consult later.

Note that this simple data saved to a shared location is lost when the user uninstalls 
the app.

The shared_preferences Plugin
shared_preferences is a Flutter plugin that allows you to save data in a key-value 
format so you can easily retrieve it later. Behind the scenes, it uses the aptly named 
SharedPreferences on Android and the similar UserDefaults on iOS.

For this app, you’ll learn to use the plugin by saving the search terms the user 
entered and the tab currently selected.

One of the great things about this plugin is that it doesn’t require any setup or 
configuration. Just create an instance of the plugin, and you’re ready to fetch and 
save data.

Flutter Apprentice Chapter 10: Handling Shared Preferences

 335



Note: The shared_preferences plugin gives you a quick way to persist and 
retrieve data, but it only supports saving simple properties like strings, 
numbers, and Boolean values.

In later chapters, you’ll learn about alternatives you can use when you want to 
save complex data.

Be aware that shared_preferences is not a good fit to store sensitive data. To 
store passwords or access tokens, check out the Android Keystore for Android 
and Keychain Services for iOS, or consider using the flutter_secure_storage 
plugin.

To use shared_preferences, you first need to add it as a dependency. Open 
pubspec.yaml and underneath the flutter_svg library, add the following:

shared_preferences: ^2.2.0

Make sure you indent it the same as the other libraries.

Now, click the Pub Get button to get the shared_preferences library.

Flutter Apprentice Chapter 10: Handling Shared Preferences

 336



You can also run pub get from the command line:

flutter pub get

How Does it Work?

The shared_preferences library uses the system’s API’s to store data into a file. These 
are small bits of information like integers, strings or Booleans. It has three main sets 
of function calls:

1. setXXX: Set methods save the data of that specific data type.

2. getXXX: Get methods retrieve the data of that specific data type.

3. clear(): This method deletes all saved data.

4. remove(): This method removes a specific value.

All of these methods except the clear() method use a key to access an item. By 
giving the library a unique key, you can store, retrieve and delete specific items. 
Here’s an example:

final CURRENT_USER_KEY = 'CURRENT_USER_KEY'; 
final sharedPrefs = await SharedPreferences.getInstance(); 
sharedPrefs.setString(CURRENT_USER_KEY, '1011442433'); 
... 
sharedPrefs.remove(CURRENT_USER_KEY);

In this example, you get an instance of the shared preference library and then set a 
string using that key. Later on, you remove that item if the user logged out, for 
example.

There are several other interesting methods:

1. containsKey(): Returns true if the key exists.

2. getBool(), getDouble(), getInt(): Methods to retrieve specific types.

3. setBool(), setDouble(), setInt(): Methods to store specific types.

There aren’t a lot of methods, but it’s a very useful library.

You’re now ready to store data. You’ll start by saving the searches the user makes so 
they can easily select them again in the future.

Flutter Apprentice Chapter 10: Handling Shared Preferences

 337



Running Code in the Background

To understand the code you’ll be adding next, you need to know a bit about running 
code in the background.

Most modern UI toolkits have a main thread that runs the UI code. Any code that 
takes a long time needs to run on a different thread or process so it doesn’t block the 
UI. Dart uses a technique similar to JavaScript to achieve this. The language includes 
these two keywords:

• async

• await

async marks a method or code section as asynchronous. You then use the await 
keyword inside that method to wait until an asynchronous process finishes in the 
background.

Saving UI States
You’ll use shared_preferences to save a list of saved searches in this section. Later, 
you’ll also save the tab that the user has selected so the app always opens to that tab.

You’ll start by preparing your search to store that information.

Adding Shared Preferences as a Provider

This app uses the Riverpod library to provide resources to other parts of the app. 
Chapter 13, “Managing State” covers Riverpod in more detail. For now, you want to 
create an instance of the SharedPreferences library on startup and provide it to 
other parts of the app. To do so, open up lib/providers.dart and import shared 
preferences library:

import 'package:shared_preferences/shared_preferences.dart';

Then replace // TODO Add Shared Pref Provider with the following:

final sharedPrefProvider = Provider<SharedPreferences>((ref) { 
  throw UnimplementedError(); 
});

This creates a Riverpod Provider for our shared preference. Notice how we throw a 
UnimplementedError. This is because you’ll provide it in the main.dart file.

Flutter Apprentice Chapter 10: Handling Shared Preferences

 338



Open up main.dart. Add the shared preferences library and providers import:

import 'package:shared_preferences/shared_preferences.dart'; 
import 'providers.dart';

Find // TODO Add Shared Preferences. Replace this and the line below it with the 
following:

// 1 
final sharedPrefs = await SharedPreferences.getInstance(); 
// 2 
runApp(ProviderScope(overrides: [ 
  // 3 
  sharedPrefProvider.overrideWithValue(sharedPrefs), 
], child: const MyApp()));

Here’s what that code’s doing:

1. Create an instance of the SharedPreferences library. Notice the await keyword. 
This will wait until the instance is created.

2. Riverpod requires a ProviderScope above the app where you’ll provide 
providers. These allow you to make functionalities like shared_preferences 
available to other parts of the app.

3. Override the sharedPrefProvider value with the shared pref you just created.

Because the main function has the async keyword, you can await getting an 
instance of SharedPreferences. By using overrideWithValue(), you replace the 
unimplemented exception with a real value. ProviderScope will be discussed more 
in Chapter 13, “Managing State” but is required for Riverpod to run.

Next, you’ll add an entry to the search list.

Adding an Entry

First, you’ll change the UI so that when the user presses the search icon, the app will 
add the search entry to the search list.

Open lib/ui/recipes/recipe_list.dart, locate // TODO: Add imports and replace it 
with:

import '../../providers.dart';

That imports the provider’s file.

Flutter Apprentice Chapter 10: Handling Shared Preferences

 339



Next, you’ll give each search term a unique key. Find // TODO Add Search Index 
Key and replace it with the following:

static const String prefSearchKey = 'previousSearches';

All preferences need to use a unique key. Here, you’re simply defining a constant for 
the preference search key.

Saving Previous Searches

Still in recipe_list.dart,  replace // TODO Save Current Index with:

// 1 
final prefs = ref.read(sharedPrefProvider); 
// 2 
prefs.setStringList(prefSearchKey, previousSearches);

1. ref.read extracts the preferences from the provider you set up previously.

2. Saves the list of previous searches using the prefSearchKey key.

The setStringList method is a nice way to save a list of strings. Next, replace // 
TODO: TODO Get Current Index with the following:

// 1 
final prefs = ref.read(sharedPrefProvider); 
// 2 
if (prefs.containsKey(prefSearchKey)) { 
  // 3 
  final searches = prefs.getStringList(prefSearchKey); 
  // 4 
  if (searches != null) { 
    previousSearches = searches; 
  } else { 
    previousSearches = <String>[]; 
  } 
}

Here, you:

1. Extract the preferences object.

2. Check if the preference for your saved list already exists.

3. Get the list of previous searches.

4. If the list is not null, set the previous searches, otherwise initialize an empty list.

This method is called when the recipe list starts loading any previous searches.

Flutter Apprentice Chapter 10: Handling Shared Preferences

 340



Showing the Previous Searches

To perform a search, you first need to clear any of your variables and save the new 
search value. Take a look at startSearch():

void startSearch(String value) { 
  //1 
  if (value.isEmpty) { 
    return; 
  } 
  // 2 
  setState(() { 
    // 3 
    currentSearchList.clear(); 
    currentCount = 0; 
    currentEndPosition = pageCount; 
    currentStartPosition = 0; 
    hasMore = true; 
    value = value.trim(); 

 
    // 4 
    if (!previousSearches.contains(value)) { 
      // 5 
      previousSearches.add(value); 
      // 6 
      savePreviousSearches(); 
    } 
  }); 
}

In this method, you:

1. Checks the input value to make sure it’s not empty.

2. Tell the system to update the widgets by calling setState().

3. Clear the current search list and reset the currentCount, 
currentStartPosition and currentEndPosition.

4. Check to ensure the search text hasn’t already been added to the previous 
search list.

5. Add the search item to the previous search list.

6. Save the new list of previous searches.

You used a text field with a drop-down menu to show the list of previous text 
searches. That’s a row with a TextField and a CustomDropDownMenuItem. The menu 
item shows the search term and an icon on the right. It will look something like this:

Flutter Apprentice Chapter 10: Handling Shared Preferences

 341



Tapping the X will delete the corresponding entry from the list.

Testing the App

It’s time to test the app. You’ll see something like this:

Flutter Apprentice Chapter 10: Handling Shared Preferences

 342



The arrow button displays a menu when tapped and calls the method onSelected() 
when the user selects a menu item.

Enter a food item like pasta and you hit the search button. Then make sure that the 
app adds your search entry to the drop-down list.

Don’t worry about errors — that happens when no data exists. Your app should look 
like this when you tap the drop-down arrow:

Flutter Apprentice Chapter 10: Handling Shared Preferences

 343



Now, stop the app by clicking the red stop button.

Run the app again and tap the drop-down button. The pasta entry is there. It’s time 
to celebrate. :]

The next step is to use the same approach to save the selected tab.

Note: If you’re testing this on the web, you may notice that the drop-down 
menus are empty. This is because Android Studio will use random port 
numbers for the web, and this will cause different values to be shown. To fix 
this, you need to start the web with the same port number each time. You can 
do that by adding the --web-port launch parameter.

This will ensure you’ll see the same list each time.

Flutter Apprentice Chapter 10: Handling Shared Preferences

 344



Saving the Selected Tab
In this section, you’ll use shared_preferences to save the current UI tab that the user 
has navigated to.

Open lib/ui/main_screen.dart and add the following import:

import '../providers.dart';

Next, replace // TODO Add Index Key with:

static const String prefSelectedIndexKey = 'selectedIndex';

You’ll use this constant for the selected index preference key.

Next, add this in the saveCurrentIndex() method by replacing // TODO Save 
Current Index with this:

final prefs = ref.read(sharedPrefProvider); 
prefs.setInt(prefSelectedIndexKey, _selectedIndex);

Here, you:

1. ref.read extracts the shared preferences as usual.

2. Save the selected index as an integer.

Now, find and replace // TODO Get Current Index with this:

  // 1 
final prefs = ref.read(sharedPrefProvider); 
  // 2 
if (prefs.containsKey(prefSelectedIndexKey)) { 
    // 3 
  setState(() { 
    final index = prefs.getInt(prefSelectedIndexKey); 
    if (index != null) { 
      _selectedIndex = index; 
    } 
  }); 
}

With this code, you:

1. Get the shared preferences reference.

2. Check if a preference for your current index already exists.

Flutter Apprentice Chapter 10: Handling Shared Preferences

 345



3. Get the current index and update the state accordingly.

Now, hot reload the app and select either the first or the second tab.

Go to the Groceries tab and quit the app. Run it again to make sure the app uses the 
saved index to go to the Groceries tab when it starts.

At this point, your app should show a list of previously searched items and also take 
you to the last selected tab when you start the app again. Here’s what it will look 
like:

Congratulations! You’ve saved the state for both the current tab and any previous 
searches the user made.

Flutter Apprentice Chapter 10: Handling Shared Preferences

 346



Key Points
• There are multiple ways to save data in an app: to files, in shared preferences 

and to a SQLite database.

• Shared preferences are best used to store simple, key-value pairs of primitive 
types like strings, numbers and Booleans.

• An example of when to use shared preferences is to save the tab a user is 
viewing, so the next time the user starts the app, they’re brought to the same tab.

• The async/await keyword pair lets you run asynchronous code off the main UI 
thread and then wait for the response. An example is getting an instance of 
SharedPreferences.

• The shared_preferences plugin shouldn’t be used to hold sensitive data. Instead, 
consider using the flutter_secure_storage plugin.

Where to Go From Here?
In this chapter, you learned how to persist simple data types in your app using the 
shared_preferences plugin.

If you want to learn more about Android SharedPreferences, go to https://
developer.android.com/reference/kotlin/android/content/SharedPreferences?hl=en.

For iOS, check UserDefaults https://developer.apple.com/documentation/
foundation/userdefaults.

In the next chapter, you’ll continue building the same app and learn how to serialize 
JSON in preparation for getting data from the internet. See you there!

Flutter Apprentice Chapter 10: Handling Shared Preferences

 347



11Chapter 11: Serialization 
With JSON
By Kevin David Moore

In this chapter, you’ll learn how to serialize JSON data into model classes. A model 
class represents data structure and defines attributes and operations for a 
particular object. An example is a recipe model class, which usually has a title, an 
ingredient list and steps to cook it.

You’ll continue with the previous project, which is the starter project for this 
chapter. You’ll add a class that models a recipe, and its properties. Then, you’ll 
integrate that class into the existing project.

By the end of this chapter, you’ll know:

• How to serialize JSON into model classes.

• How to use Dart tools to automate the generation of model classes from JSON.

 348



What is JSON?
JSON, which stands for JavaScript Object Notation, is an open-standard format 
used on the web and in mobile clients. It’s the most widely used format for 
Representational State Transfer (REST)-based APIs that servers provide (https://
en.wikipedia.org/wiki/Representational_state_transfer). If you talk to a server that 
has a REST API, it will most likely return data in a JSON format. An example of a 
JSON response looks something like this:

{ 
  "results": [ 
    { 
      "id": 296687, 
      "title": "Chicken", 
      "image": "https://spoonacular.com/recipeImages/
296687-312x231.jpeg", 
      "imageType": "jpeg" 
    }, 
    ... 
    ] 
  }

That’s an example recipe response containing a list of results with four fields inside 
an object.

While it’s possible to treat the JSON as just a long string and try to parse out the 
data, it’s much easier to use a package that already knows how to do that. Flutter has 
a built-in package for decoding JSON, but in this chapter, you’ll use the 
json_serializable and json_annotation packages to help make the process easier.

Note: JSON parsing is the process of converting a JSON object in String 
format to a Dart object that can be used inside a program.

Flutter’s built-in dart:convert package contains methods like json.decode() and 
json.encode(), which converts a JSON string to a Map<String, dynamic> and 
back. While this is a step ahead of manually parsing JSON, you’d still have to write 
extra code that takes that map and puts the values into a new class.

The json_serializable package is useful because it can generate model classes for 
you according to the annotations you provide via json_annotation. Before taking a 
look at automated serialization, you need to see how to manually serialize JSON.

Flutter Apprentice Chapter 11: Serialization With JSON

 349



Writing the Code Yourself
So, how do you go about writing code to serialize JSON yourself? Typical model 
classes have  toJson() and  fromJson() methods. The toJson() method helps to 
convert objects into JSON strings, and the fromJson() method helps to parse a JSON 
string into an object so you can use it inside the program.

In the next section, you learn how to use automated serialization. For now, you 
don’t need to type this into your project, but you need to understand the methods to 
convert the JSON above to a model class.

First, you’d create a Recipe model class:

class Recipe { 
  final String uri; 
  final String label; 

 
  Recipe({this.uri, this.label}); 
}

Then you’d add a toJson() factory method and a fromJson() method:

factory Recipe.fromJson(Map<String, dynamic> json) { 
  return Recipe(json['uri'] as String, json['label'] as String); 
} 

 
Map<String, dynamic> toJson() { 
  return <String, dynamic>{ 'uri': uri, 'label': label} 
}

In fromJson(), you grab data from the JSON map variable named json and convert 
it to arguments you pass to the Recipe constructor. In toJson(), you construct a 
map using the JSON field names.

While it doesn’t take much effort to do that by hand for two fields, what if you had 
multiple model classes, each with, say, five fields, or more? What if you renamed one 
of the fields? Would you remember to rename all of the occurrences of that field?

The more model classes you have, the more complicated it becomes to maintain the 
code behind them. Fear not, that’s where automated code generation comes to the 
rescue.

Flutter Apprentice Chapter 11: Serialization With JSON

 350



Automating JSON Serialization
In this chapter, you’ll use two packages: json_annotation and json_serializable 
from Google.

You use the first to add annotations to model classes so that json_serializable can 
generate helper classes to convert a JSON string to a model and back.

To do that, you mark a class with the @JsonSerializable() annotation so the 
builder package can generate code for you. Each field in the class should either 
have the same name as the field in the JSON string, or use the @JsonKey() 
annotation to give it a different name.

Most builder packages work by generating a .part file. That will be a file that’s 
automatically created for you. All you need to do is add a few factory methods, which 
will call the generated code.

Note: The freezed package is also used in the project and uses the 
json_serializable package to generate serialization code. You could just use 
the freezed package by itself if you wanted to, as it has additional 
functionality.

Adding Dependencies for JSON Serialization 
and Deserialization
Continue with your current project, or open the starter project in the projects 
folder. Add the following package to pubspec.yaml in the Flutter dependencies 
section underneath and make sure it’s aligned with flutter_riverpod:

json_annotation: ^4.8.1

In the dev_dependencies section replace # TODO: Add new dev_dependencies 
with the following:

json_serializable: ^6.7.1

Make sure these are all indented correctly. build_runner, which is already included, 
is the package that helps generate the code.

Finally, click the Pub get button you should see at the top of the file, or run flutter 
pub get in the terminal. You’re now ready to generate model classes.

Flutter Apprentice Chapter 11: Serialization With JSON

 351



Generating Model Classes From JSON
The JSON that you’re trying to serialize looks something like this:

{ 
  "results": [ 
    { 
      "id": 296687, 
      "title": "Chicken", 
      "image": "https://spoonacular.com/recipeImages/
296687-312x231.jpeg", 
      "imageType": "jpeg" 
    }, 
    { 
      "id": 379523, 
      "title": "Chicken", 
      "image": "https://spoonacular.com/recipeImages/
379523-312x231.jpeg", 
      "imageType": "jpeg" 
    }, 
    ... 
  ], 
  "offset": 0, 
  "number": 10, 
  "totalResults": 51412 
}

• The results list is a list of recipe objects.

• Each recipe has an id, title, image and imageType.

• offset is the starting position for the search. 0 means start at the beginning, 
while a value of 10 would start at the 10th element. This is useful for paging long 
lists.

• number is the total number of results returned in this list.

• totalResults is the total results available for this search query.

Your next step is to generate the classes that model that data.

Creating Model Classes
Start by opening lib/network/spoonacular_model.dart and add the following 
import at the top:

import 'package:json_annotation/json_annotation.dart';

Flutter Apprentice Chapter 11: Serialization With JSON

 352



import '../data/models/models.dart'; 
 

part 'spoonacular_model.g.dart';

The json_annotation library lets you mark a class as serializable. The file 
spoonacular_model.g.dart doesn’t exist yet, you’ll generate it in a later step.

Next, replace // TODO: Add SpoonacularResults class with a class named 
SpoonacularResults with a @JsonSerializable() annotation:

@JsonSerializable() 
class SpoonacularResults { 
  // TODO: Add Fields 
  // TODO: Add Constructor 
  // TODO: Add fromJson 
  // TODO: Add toJson 
} 

 
// TODO: Add SpoonacularResult

That marks the SpoonacularResults class as serializable so the json_serializable 
package can generate the corresponding .g.dart file.

Command-Click on JsonSerializable, scroll down, and you’ll see its definition:

... 
 

/// Creates a new [JsonSerializable] instance. 
const JsonSerializable({ 
  @Deprecated('Has no effect') bool? nullable, 
  this.anyMap, 
  this.checked, 
  this.constructor, 
  this.createFieldMap, 
  this.createFactory, 
  this.createToJson, 
  this.disallowUnrecognizedKeys, 
  this.explicitToJson, 
  this.fieldRename, 
  this.ignoreUnannotated, 
  this.includeIfNull, 
  this.converters, 
  this.genericArgumentFactories, 
  this.createPerFieldToJson, 
}); 

 
...

For example, you can make the class nullable and add extra checks for validating 
JSON properly. Close the json_serialization.dart source file after reviewing it.

Flutter Apprentice Chapter 11: Serialization With JSON

 353



Converting to and From JSON
Now, you need to add JSON conversion methods within the SpoonacularResults 
class. Return to spoonacular_model.dart and replace // TODO: Add Fields with:

List<SpoonacularResult> results; 
int offset; 
int number; 
int totalResults;

This is the list of results, offset, number and total results. The SpoonacularResult 
class doesn’t exist yet. Next, replace // TODO: Add Constructor with:

SpoonacularResults({ 
  required this.results, 
  required this.offset, 
  required this.number, 
  required this.totalResults, 
});

The required annotation says that these fields are mandatory when creating a new 
instance.

Next, replace // TODO: Add fromJson with:

factory SpoonacularResults.fromJson(Map<String, dynamic> json) 
=> 
    _$SpoonacularResultsFromJson(json);

The above method converts the JSON string to a SpoonacularResults object.

Note that the method to the right of the arrow operator doesn’t exist yet and will be 
present in spoonacular_model.g.dart after generating the code, so ignore any red 
squiggles. They’ll be created later by running the build_runner command.

Also note that this is a factory method. That’s because you need a class-level 
method when creating the instance.

Note: To know more about factory methods check Chapter 9 in the Dart 
Apprentice: Fundamentals Book (https://www.kodeco.com/books/dart-
apprentice-fundamentals/v1.0/chapters/9-
constructors#b8d9168fc0febd62f39468aa2163ed3dc1155760373beaad55df117
5605bda58).

Flutter Apprentice Chapter 11: Serialization With JSON

 354



Now, replace // TODO: Add toJson with the following:

Map<String, dynamic> toJson() => 
_$SpoonacularResultsToJson(this);

The above method connects SpoonacularResultsToJson to the toJson() 
method.The _$SpoonacularResultsToJson method will be created for you. This 
method will return a map and is useful for saving its data.

Then, find // TODO: Add SpoonacularResult, and replace it with the following 
new class, continuing to ignore the red squiggles:

// 1 
@JsonSerializable() 
class SpoonacularResult { 
  // 2 
  int id; 
  String title; 
  String image; 
  String imageType; 

 
  // 3 
  SpoonacularResult({ 
    required this.id, 
    required this.title, 
    required this.image, 
    required this.imageType, 
  }); 

 
  // 4 
  factory SpoonacularResult.fromJson(Map<String, dynamic> json) 
=> 
      _$SpoonacularResultFromJson(json); 

 
 

  Map<String, dynamic> toJson() => 
_$SpoonacularResultToJson(this); 
}

Here’s what this code does:

1. Marks the class JsonSerializable.

2. Defines several fields: id, title, image and imageType.

3. Defines a constructor that accepts these fields.

4. Adds the methods for JSON serialization.

Flutter Apprentice Chapter 11: Serialization With JSON

 355



Now, uncomment the rest of the code in lib/network/spoonacular_model.dart. 
This will add two new classes, SpoonacularRecipe and  ExtendedIngredient plus 
some conversion methods. This is to save time, as the detailed recipe information 
from Spoonacular is quite extensive.

For your next step, you’ll generate the code to automatically parse the recipes’ JSON.

Generating the code for JSON Serialization and 
Deserialization
Open the terminal in Android Studio by clicking the Terminal panel in the lower 
left, or by selecting View ▸ Tool Windows ▸ Terminal, and type:

dart run build_runner build

The expected output will look something like this:

[INFO] Generating build script completed, took 155ms 
[INFO] Precompiling build script... completed, took 3.3s 
[INFO] Building new asset graph completed, took 372ms 
[INFO] Checking for unexpected pre-existing outputs. completed, 
took 15.0s 
[INFO] Generating SDK summary completed, took 2.3s 
[INFO] Running build completed, took 11.8s 
[INFO] Caching finalized dependency graph completed, took 44ms 
[INFO] Succeeded after 11.8s with 11 outputs (82 actions) 
➜

Note: If you have problems running the command, ensure you’ve installed 
Flutter on your computer and you have a path set up to point to it. See Flutter 
installation documentation for more details, https://docs.flutter.dev/get-
started/install.

You may encounter a problem that looks like this:

[INFO] Found 6 declared outputs which already exist on disk. 
This is likely because the`.dart_tool/build` folder was deleted, 
or you are submitting generated files to your source repository. 
Delete these files? 
1 - Delete 
2 - Cancel build 
3 - List conflicts 
1

Flutter Apprentice Chapter 11: Serialization With JSON

 356



Choose 1 to delete the files.

This command creates the spoonacular_model.g.dart file, which has all the 
generated code in the network folder. If you don’t see the file, right-click on the 
network folder and choose Reload from disk.

If you still don’t see it, restart Android Studio, so it recognizes the presence of the 
newly generated file when it starts up.

If you want the program to run every time you make a change to your file, you can 
use the watch command like this:

dart run build_runner watch

The command will continue to run and watch for changes to files. To stop the 
process, you can press Ctrl-C. Now, open spoonacular_model.g.dart. Here’s the first 
generated method:

// GENERATED CODE - DO NOT MODIFY BY HAND 
 

part of 'spoonacular_model.dart'; 
// 1 
SpoonacularResults _$SpoonacularResultsFromJson(Map<String, 
dynamic> json) => 
    SpoonacularResults( 
      // 2 
      results: (json['results'] as List<dynamic>) 
          .map((e) => SpoonacularResult.fromJson(e as 
Map<String, dynamic>)) 
          .toList(), 
      // 3 
      offset: json['offset'] as int, 
      // 4 
      number: json['number'] as int, 
      // 5 
      totalResults: json['totalResults'] as int, 
    );

Notice that it takes a map of <String, dynamic>, which is typical of JSON data in 
Flutter. The key is the string, and the value will either be a primitive, a list or another 
map. The method:

1. Returns a new SpoonacularResults class.

2. Maps each element of the results list to an instance of SpoonacularResult.

3. Maps the offset key to a offset field.

Flutter Apprentice Chapter 11: Serialization With JSON

 357



4. Maps the number integer to the number field.

5. Maps the totalResults integer to the totalResults field.

You could’ve written this code yourself, but it can get a bit tedious and is error-
prone. Having a tool generate the code for you saves a lot of time and effort. Look 
through the rest of the file to see how the generated code converts the JSON data to 
all the other model classes.

Hot restart the app to make sure it still compiles and works as before. You won’t see 
any changes in the UI, but the code is now set up to parse recipe data.

Testing the Generated JSON Code
Now that you can parse model objects from JSON, you’ll read one of the JSON files 
included in the starter project and show one card to make sure you can use the 
generated code.

Open ui/recipes/recipe_list.dart and add the following imports at the top:

import 'dart:convert'; 
import '../../network/spoonacular_model.dart'; 
import 'package:flutter/services.dart';

In fetchData(), replace // TODO: Load Recipes with:

// 1 
final jsonString = await rootBundle.loadString('assets/
recipes1.json'); 
// 2 
final spoonacularResults = 
    SpoonacularResults.fromJson(jsonDecode(jsonString)); 
// 3 
final recipes = spoonacularResultsToRecipe(spoonacularResults); 
// 4 
final apiQueryResults = QueryResult( 
    offset: spoonacularResults.offset, 
    number: spoonacularResults.number, 
    totalResults: spoonacularResults.totalResults, 
    recipes: recipes); 
// 5 
currentResponse = Future.value(Success(apiQueryResults));

Flutter Apprentice Chapter 11: Serialization With JSON

 358



This is what that code does:

1. rootBundle is from the services page and allows you to load data from the assets 
directory.

2. Decode the JSON string and convert it to a SpoonacularResults class.

3. Convert that result into a list of recipes.

4. Create a new query result that contains the results. This is the class that will be 
used in Chapter 12, “Networking in Flutter”.

5. Return a Success response.

Perform a hot reload, run a search and the app will show some chicken recipe cards:

Flutter Apprentice Chapter 11: Serialization With JSON

 359



Mock Service

Now that you’ve manually loaded a sample JSON file, it’s time to implement the 
Mock Service. This service class will randomly load one of two recipe files: One for 
chicken and one for pasta.

While in recipe_list.dart, comment out the code you just entered and uncomment 
this code:

final recipeService = ref.watch(serviceProvider); 
currentResponse = recipeService.queryRecipes( 
    searchTextController.text.trim(), currentStartPosition, 
pageCount);

Open mock_service/mock_service.dart and add the following imports:

import 'dart:convert'; 
import 'package:flutter/services.dart'; 
import '../network/spoonacular_model.dart';

Uncomment the code in loadRecipes() This will randomly load recipes either from 
recipes1.json or recipes2.json in the assets folder. Next, open main.dart and add 
the following import:

import 'mock_service/mock_service.dart';

Then replace // TODO: Create Mock service with:

final service = await MockService.create();

Finally replace // TODO: Inject mock service with:

serviceProvider.overrideWithValue(service),

This will inject this service via the Riverpod library. You’ll read more about that 
library in Chapter 13, “Managing State”. Do a hot restart not reload. Type anything in 
the search field and press enter, or click the search icon. You should see a list of 
chicken or pasta recipes.

Now that the data model classes work as expected, you’re ready to load recipes from 
the web. Fasten your seat belt. :]

Flutter Apprentice Chapter 11: Serialization With JSON

 360



Key Points
• JSON is an open-standard format used on the web and in mobile clients, especially 

with REST APIs.

• In mobile apps, JSON code is usually parsed into the model objects that your app 
will work with.

• You can write JSON parsing code yourself, but it’s usually easier to let a JSON 
package generate the parsing code for you.

• json_annotation and json_serializable are packages that will let you generate 
the parsing code.

Where to Go From Here?
In this chapter, you’ve learned how to create models that you can parse from JSON 
and then use when you fetch JSON data from the network. If you want to learn more 
about json_serializable, go to https://pub.dev/packages/json_serializable.

In the next chapter, you’ll build on what you’ve done so far and learn about loading 
recipes from the internet.

Flutter Apprentice Chapter 11: Serialization With JSON

 361



12Chapter 12: Networking in 
Flutter
By Kevin David Moore

Loading data from the network to show it in a UI is a very common task for apps. In 
the previous chapter, you learned how to serialize JSON data. Now, you’ll continue 
the project to learn about retrieving JSON data from the network.

Note: You can also start fresh by opening this chapter’s starter project. If you 
choose to do this, remember to click the pub get button or execute flutter 
pub get from Terminal.

By the end of this chapter, you’ll know how to:

• Sign up for a recipe API service.

• Trigger a search for recipes by name.

• Convert data returned by the API to model classes.

• Display recipes in the current UI.

Without further ado, it’s time to get started!

 362



Signing Up With the Recipe API
For your remote content, you’ll use the Spoonacular Food API. Open this link in 
your browser: https://spoonacular.com/food-api.

Click the Start Now button in the top right to create an account.

Flutter Apprentice Chapter 12: Networking in Flutter

 363



Fill in an email and password, then click the checkbox and sign up. Go through the 
steps to finish the process. You can choose the free tier.

Click Sign Up, and you should see this:

Flutter Apprentice Chapter 12: Networking in Flutter

 364



Once you’ve confirmed your email, visit https://spoonacular.com/food-api/console 
and log in.

You should see your Console. Once you start making requests, you’ll see the graph 
fill up.

Flutter Apprentice Chapter 12: Networking in Flutter

 365



Now go to docs and click Full Documentation:

Here, you can see the docs for searching for recipes:

Flutter Apprentice Chapter 12: Networking in Flutter

 366



If you scroll down, you can see a lot of fields returned. We’re not interested in most 
of these fields.

You’ll see a complete API URL and a list of the parameters available for the GET 
request you’ll make.

There’s much more API information on this page than you’ll need for your app, so 
you might want to bookmark it for the future.

Click My Console, then the Profile section and you’ll end up on this link https://
spoonacular.com/food-api/console#Profile:

Flutter Apprentice Chapter 12: Networking in Flutter

 367



Click Show/Hide API key. Copy the API Key and save it in a secure place.

For your next step, you’ll use your newly created API key to fetch recipes via HTTP 
requests.

Note: The free developer version of the API is rate-limited. If you use the API 
a lot, you’ll probably receive some JSON responses with errors and emails 
warning you about the limit.

Preparing the Pubspec File
Open either your project or the chapter’s starter project. To use the http package for 
this app, you need to add it to pubspec.yaml, so open that file and add the following 
after the json_annotation package:

http: ^1.1.0

Click the Pub get button to install the package, or run flutter pub get from the 
Terminal.

Using the HTTP package
The package contains only a few files and methods that you’ll use in this chapter. 
The REST protocol has methods such as:

• GET: Gets the data.

• POST: Posts/sends new data.

• PUT: Updates data.

• DELETE: Deletes data.

You’ll use GET, specifically the function get() in the http package, to retrieve recipe 
data from the API. This function uses the API’s URL and a list of optional headers to 
retrieve data from the API service. In this case, you’ll send all the information via 
query parameters.

Flutter Apprentice Chapter 12: Networking in Flutter

 368



Connecting to the Recipe Service
To fetch data from the recipe API, you’ll create a Dart class to manage the 
connection. Such a class file will contain your API Key and URL.

In the Project sidebar, right-click lib/network, create a new Dart file and name it 
spoonacular_service.dart. After the file opens, import the HTTP package along with 
the required files:

import 'dart:convert'; 
import 'dart:developer'; 
import 'package:http/http.dart' as http; 

 
import '../data/models/recipe.dart'; 
import '../mock_service/mock_service.dart'; 
import 'model_response.dart'; 
import 'query_result.dart'; 
import 'service_interface.dart'; 
import 'spoonacular_model.dart';

Note: Here, we import the http package as http so that we can append http to 
the get() method and prevent any naming conflicts or confusion.

Now, add the constants that you’ll use when calling the APIs:

const String apiKey = '<Add Your Key Here>'; 
const String apiUrl = 'https://api.spoonacular.com/';

Copy the API key from your Spoonacular account and replace the existing apiKey 
string with your value.

The apiUrl constant holds the base URL for the Spoonacular search API from the 
recipe API documentation. You’ll append the path to this URL to get the data you 
want.

Still in spoonacular_service.dart, add the following class and method to get the 
data from the API:

class SpoonacularService implements ServiceInterface { 
   // 1 
  Future getData(String url) async { 
    // 2 
    final response = await http.get(Uri.parse(url)); 
    // 3

Flutter Apprentice Chapter 12: Networking in Flutter

 369



    if (response.statusCode == 200) { 
      // 4 
      return response.body; 
    } else { 
      // 5 
      log(response.statusCode.toString()); 
    } 
  } 
  // TODO: Add getRecipes 
}

Here’s a breakdown of what’s going on:

1. getData() returns a value in Future, with an upper case “F”, because it takes 
some time to get the data from the Server. An API’s returned data type is 
determined in the future, lower case “f”. async signifies this method performs an 
asynchronous operation.

2. response has to wait until the HTTP gets the data from the server. The await 
keyword tells the function to wait. Response and get() are from the HTTP 
package. get() fetches data from the provided url.

3. A statusCode of 200 means the request was successful.

4. You return the results embedded in response.body.

5. Otherwise, print the statusCode to the console if you have an error.

Note: To learn more about Future and async operations, check out chapters 
11 and 12 of Dart Apprentice: Beyond the Basics book https://
www.kodeco.com/books/dart-apprentice-beyond-the-basics.

Now, replace // TODO: Add getRecipes with:

// 1 
@override 
Future<Result<Recipe>> queryRecipe(String recipeId) { 
  // TODO: implement queryRecipe 
  throw UnimplementedError(); 
} 

 
// 2 
@override 
Future<RecipeResponse> queryRecipes( 
    String query, int offset, int number) async { 
  // 3

Flutter Apprentice Chapter 12: Networking in Flutter

 370



  final recipeData = await getData( 
      '${apiUrl}recipes/complexSearch?
apiKey=$apiKey&query=$query&offset=$offset&number=$number'); 
  // 4 
  final spoonacularResults = 
      SpoonacularResults.fromJson(jsonDecode(recipeData)); 
  // 5 
  final recipes = 
spoonacularResultsToRecipe(spoonacularResults); 
  // 6 
  final apiQueryResults = QueryResult( 
      offset: spoonacularResults.offset, 
      number: spoonacularResults.number, 
      totalResults: spoonacularResults.totalResults, 
      recipes: recipes); 
  // 7 
  return Success(apiQueryResults); 
}

In this code, you:

1. Override an unimplemented method for querying a specific recipe. That will be 
implemented later.

2. Create a new method, queryRecipes(), with the parameters query, offset and 
number. These help you get specific pages from the complete query. offset starts 
at 0, and number is calculated by adding the offset index to your page size. You 
use a return type of Future<RecipeResponse> for this method because the 
response will be a RecipeResponse in the future when it finishes. async signals 
that this method runs asynchronously.

3. final creates a non-changing variable. You use await to tell the app to wait 
until getData() returns its result. Look closely at getData() and note that 
you’re creating the API URL with the variables passed in.

4. Convert the JSON string to a SpoonacularResults class with the help of 
fromJson method.

5. Convert the SpoonacularResults class object into a list of recipes.

6. Create a QueryResult object with those results.

7. Return a Success with the query results.

Flutter Apprentice Chapter 12: Networking in Flutter

 371



Note: This method doesn’t handle errors.

Now that you’ve written the service, it’s time to update the UI code to use it.

Updating the User Interface
Open main.dart and add the following:

import 'network/spoonacular_service.dart';

Then, after the sharedPrefProvider override, replace:

final service = await MockService.create();

with:

final service = SpoonacularService();

This creates a new instance of SpoonacularService. This will be the start of using 
real data taken from the internet instead of mock data.

Now remove the import of mock_service.dart, as it’s not needed anymore.

Retrieving Recipe Data
Great, it’s time to try out the app!

Run the app, type Chicken in the text field, and tap the Search icon. While the app 
gets data from the API, you’ll see the circular progress bar.

Flutter Apprentice Chapter 12: Networking in Flutter

 372



After the app receives the data, you’ll see a list of images with different types of 
chicken recipes.

Well done! You’ve updated your app to receive real data from the internet. Try 
different search queries and go and show your friends what you’ve created. :]

Note: If you make too many queries, you could get an error from the 
Spoonacular site. That’s because the free account limits your number of calls.

The http package is easy to use to handle network calls, but it’s also pretty basic. 
Let’s explore Chopper, a library that simplifies the creation of code that manages 
HTTP calls.

Flutter Apprentice Chapter 12: Networking in Flutter

 373



Why Chopper?
Chopper is a library that streamlines the process of writing code that performs HTTP 
requests. For example:

• It generates code to simplify the development of networking code.

• It allows you to organize that code modularly, making it easier to change.

Note: If you come from the Android side of mobile development, you’re 
probably familiar with the Retrofit library, which is similar. If you have an iOS 
background, AlamoFire is a very similar library.

Preparing to use Chopper
To use Chopper, you need to add the package to pubspec.yaml. To log network calls, 
you also need the logging package, which is already included in the project.

Open pubspec.yaml and add the following after the HTTP package:

chopper: ^6.1.4

You also need chopper_generator, which is a package that generates the boilerplate 
code for you in the form of a part file. In the dev_dependencies section, after 
json_serializable, add the following:

chopper_generator: ^6.0.3

Next, either click Pub get or run flutter pub get in Terminal to get the new 
packages.

Now that the new packages are ready to be used… fasten your seat belt! :]

Handling Recipe Results
In this scenario, creating a generic response class that holds either a successful 
response or an error is good practice. While these classes aren’t required, they make 
it easier to deal with the responses that the server returns.

Flutter Apprentice Chapter 12: Networking in Flutter

 374



Take a look inside the lib/network folder and open model_response.dart.

// 1 
sealed class Result<T> { 
} 

 
// 2 
class Success<T> extends Result<T> { 
  final T value; 

 
  Success(this.value); 
} 

 
// 3 
class Error<T> extends Result<T> { 
  final Exception exception; 

 
  Error(this.exception); 
}

Here’s what that does:

1. Defines a sealed class. It’s a simple blueprint for a result with a generic type T.

2. The Success class extends Result and holds a value when the response is 
successful. This could hold JSON data or a de-serialized class.

3. The Error class extends Result and holds an exception. This will model errors 
that occur during an HTTP call, like using the wrong credentials or trying to fetch 
data without authorization.

Note: The sealed modifier prevents a class from being extended or 
implemented outside its own library. Sealed classes are implicitly abstract. To 
refresh your knowledge of classes in Dart, check out our Dart Apprentice: 
Fundamentals book https://www.kodeco.com/books/dart-apprentice-
fundamentals/.

You’ll use these classes to model the data fetched via HTTP using Chopper. Now that 
Chopper has been added, you need to update the definition of the result types 
defined in lib/network/service_interface.dart. In that file, add the Chooper import:

import 'package:chopper/chopper.dart';

Flutter Apprentice Chapter 12: Networking in Flutter

 375



Then replace:

typedef RecipeResponse = Result<QueryResult>; 
typedef RecipeDetailsResponse = Result<Recipe>;

with:

typedef RecipeResponse = Response<Result<QueryResult>>; 
typedef RecipeDetailsResponse = Response<Result<Recipe>>;

Instead of returning a Result directly, you’ll return a Response that contains a 
Result. This is because Chopper will handle the conversion of the response to a 
Result for you.

This will mess up the existing MockService class as now you have passed Response 
instead of QueryResult. Open up mock_service.dart and add the following imports:

import 'package:http/http.dart' as http; 
import 'package:chopper/chopper.dart';

In the queryRecipes  methods, wrap each Success call with a Response. Like this:

return Future.value( 
          Response( 
            http.Response( 
              'Dummy', 
              200, 
              request: null, 
            ), 
            Success<QueryResult>(_currentRecipes1), 
          ), 
        );

Do this three times. Make sure you keep the correct values. Also, modify 
queryRecipe() like this:

  return Future.value( 
      Response( 
        http.Response( 
          'Dummy', 
          200, 
          request: null, 
        ), 
        Success<Recipe>(recipeDetails), 
      ), 
    );

It’s time to integrate the code that Chopper will generate into the existing service.

Flutter Apprentice Chapter 12: Networking in Flutter

 376



Preparing the Recipe Service
Open spoonacular_service.dart.

Replace the existing imports with the following:

import 'package:chopper/chopper.dart'; 
 

import 'model_response.dart'; 
import 'query_result.dart'; 
import 'service_interface.dart'; 
import '../data/models/models.dart'; 

 
part 'spoonacular_service.chopper.dart';

The .chopper file doesn’t exist yet, but you’ll generate it soon. Change the definition 
of the class to look like this:

// 1 
@ChopperApi() 
// 2 
abstract class SpoonacularService extends ChopperService 
    implements ServiceInterface {

1. @ChopperApi() tells the Chopper generator to build a file. This generated file 
will have the same name as this file but with .chopper added to it. In this case, it 
will be spoonacular_service.chopper.dart. Such a file will hold the boilerplate 
code.

2. Define an abstract class. Chopper will create the real class that extends the 
ChopperService and implements the ServiceInterface.

Now remove the getData() method. It’s now time to set up Chopper!

Setting Up the Chopper Client
Your next step is to update the queries needed to implement the service. Replace the 
definitions of queryRecipes() and queryRecipe() with:

/// Get the details of a specific recipe 
@override 
@Get(path: 'recipes/{id}/information?includeNutrition=false') 
Future<RecipeDetailsResponse> queryRecipe( 
  @Path('id') String id, 
); 

 
/// Get a list of recipes that match the query string

Flutter Apprentice Chapter 12: Networking in Flutter

 377



@override 
@Get(path: 'recipes/complexSearch') 
Future<RecipeResponse> queryRecipes( 
  @Query('query') String query, 
  @Query('offset') int offset, 
  @Query('number') int number, 
); 

 
// TODO: Add create Service

The first method returns the details of a specific recipe. The second method returns a 
list of recipes:

• @Get is an annotation that tells the generator this is a GET request.

• path is the path to the API call. Chopper will append this path to the base URL, 
which you’ve defined as the apiUrl constant in SpoonacularService class.

• In the first method, you’re using a path parameter to get the details of the specific 
recipe by passing a recipe ID as a dynamic parameter. In the second method, 
you’re using a path to get a list of recipes.

• There are other HTTP methods you can use, such as @Post, @Put and @Delete, but 
you won’t use them in this chapter.

• @Query is a query parameter used to define the query name in the URL that’s 
created for this API call. In the second method, you’re using @Query to get the 
query, offset and number of recipes.

• These methods return a Future response.

Note that you have defined a generic interface to make network calls so far. No 
actual code performs tasks like adding the API key to the request or transforming 
the response into data objects. This is a job for converters and interceptors.

Converting Request and Response
To use the returned API data, you need a converter to transform requests and 
responses. To attach a converter to a Chopper client, you need an interceptor. You 
can think of an interceptor as a function that runs every time you send a request or 
receive a response. It’s a sort of hook to which you can attach functionalities, like 
converting or decorating data, before passing such data along.

Flutter Apprentice Chapter 12: Networking in Flutter

 378



Right-click lib/network, create a new file named spoonacular_converter.dart and 
add the following imports:

import 'dart:convert'; 
import 'package:chopper/chopper.dart'; 
import 'model_response.dart'; 
import 'query_result.dart'; 
import 'spoonacular_model.dart';

This adds the built-in Dart convert package, which transforms data to and from 
JSON, plus the Chopper package and your model files.

Next, create SpoonacularConverter by adding the following:

// 1 
class SpoonacularConverter implements Converter { 
  // 2 
  @override 
  Request convertRequest(Request request) { 
    // 3 
    final req = applyHeader( 
      request, 
      contentTypeKey, 
      jsonHeaders, 
      override: false, 
    ); 

 
    // 4 
    return encodeJson(req); 
  } 

 
  // TODO encode JSON 

 
  // TODO Decode Json 

 
  // TODO Convert Response to Model 
}

Here’s what you’re doing with this code:

1. Create SpoonacularConverter class to implement the Chopper Converter 
abstract class.

2. Override convertRequest(), which takes in a request and returns a new request.

3. Add a header to the request that says you have a request type of application/
json using jsonHeaders. These constants are part of Chopper.

4. Call encodeJson() to convert the request to a JSON-encoded one, as required by 
the server API.

Flutter Apprentice Chapter 12: Networking in Flutter

 379



The remaining code consists of placeholders, which you’ll include in the next 
section.

Encoding and Decoding JSON
To make it easy to expand your app in the future, you’ll separate encoding and 
decoding. This gives you flexibility if you need to use them separately later.

Whenever you make network calls, you want to ensure that you encode the request 
before you send it and decode the response string into your model classes, which 
you’ll use to display data in the UI.

Encoding JSON
To encode the request in JSON format, replace  // TODO encode JSON with the 
following:

Request encodeJson(Request request) { 
  // 1 
  final contentType = request.headers[contentTypeKey]; 
  // 2 
  if (contentType != null && contentType.contains(jsonHeaders)) 
{ 
    // 3 
    return request.copyWith(body: json.encode(request.body)); 
  } 
  return request; 
}

In this code, you:

1. Get the content type from the request headers.

2. Check if contentType is not null and contentType is of type application/
json.

3. Return a copy of the request with a JSON-encoded body.

Essentially, this method takes a Request instance and returns an encoded copy ready 
to be sent to the server. What about decoding? Well, I’m glad you asked. :]

Flutter Apprentice Chapter 12: Networking in Flutter

 380



Decoding JSON
Now, it’s time to add the functionality to decode JSON. A server response is usually a 
String, so you’ll have to parse the JSON string and transform it into the 
corresponding model class.

Replace // TODO Decode Json with:

Response<BodyType> decodeJson<BodyType, InnerType>(Response 
response) { 
    final contentType = response.headers[contentTypeKey]; 
    var body = response.body; 
    // 1 
    if (contentType != null && 
contentType.contains(jsonHeaders)) { 
      body = utf8.decode(response.bodyBytes); 
    } 
    try { 
      // 2 
      final mapData = json.decode(body) as Map<String, dynamic>; 

 
      // 3 
      // This is the list of recipes 
      if (mapData.keys.contains('totalResults')) { 
        // 4 
        final spoonacularResults = 
SpoonacularResults.fromJson(mapData); 
        // 5 
        final recipes = 
spoonacularResultsToRecipe(spoonacularResults); 
        // 6 
        final apiQueryResults = QueryResult( 
            offset: spoonacularResults.offset, 
            number: spoonacularResults.number, 
            totalResults: spoonacularResults.totalResults, 
            recipes: recipes); 
        // 7 
        return response.copyWith<BodyType>( 
          body: Success(apiQueryResults) as BodyType, 
        ); 
      } else { 
        // This is the recipe details 
        // 8 
        final spoonacularRecipe = 
SpoonacularRecipe.fromJson(mapData); 
        // 9 
        final recipe = 
spoonacularRecipeToRecipe(spoonacularRecipe); 
        // 10 
        return response.copyWith<BodyType>( 
          body: Success(recipe) as BodyType,

Flutter Apprentice Chapter 12: Networking in Flutter

 381



        ); 
      } 
    } catch (e) { 
      // 11 
      chopperLogger.warning(e); 
      final error = Error<InnerType>(Exception(e.toString())); 
      return Response(response.base, null, 
          error: error); 
    } 
}

There’s a lot to think about here. To break it down, you:

1. Check if the contentType is not null and check if contentType contains the 
jsonHeaders. Later you decode the response and save to body.

2. Use JSON decoding to convert that string into a map representation.

3. Check if the call has the “totalResults” text. This means it’s from the 
queryRecipes call.

4. Convert the JSON to a SpoonacularResults instance using fromJson().

5. Convert SpoonacularResults to a list of recipes.

6. Create a QueryResult with the recipes.

7. Return a copy of Response with Success result.

8. Convert the map to a detailed SpoonacularRecipe.

9. Convert the spoonacularRecipe to the recipe.

10. Return a copy of Response with Success that wraps the result.

11. If you get any kind of error, wrap the response with a generic instance of Error.

You still have to override one more method: convertResponse(). This method 
changes the given response to the one you want.

Replace the existing // TODO Convert Response to Model with the following:

@override 
Response<BodyType> convertResponse<BodyType, InnerType>(Response 
response) { 
  // 1 
  return decodeJson<BodyType, InnerType>(response); 
}

Flutter Apprentice Chapter 12: Networking in Flutter

 382



1. This returns the decoded JSON response by calling decodeJson(), which you 
defined earlier.

Now, it’s time to use the converter in the appropriate spots and to add some 
interceptors.

Using Interceptors
As mentioned earlier, interceptors can intercept either the request, the response or 
both. In a request interceptor, you can add headers or handle authentication. In a 
response interceptor, you can manipulate a response and transform it into another 
type, as you’ll see shortly. You’ll start with decorating the request.

Automatically Including Your API Key
To request any recipes, the API needs your api_key. Instead of adding this field 
manually to each query, you can use an interceptor to add this to each call.

Open spoonacular_service.dart and add the following method outside of the 
SpoonacularService class definition:

Request _addQuery(Request req) { 
  // 1 
  final params = Map<String, dynamic>.from(req.parameters); 
  // 2 
  params['apiKey'] = apiKey; 
  // 3 
  return req.copyWith(parameters: params); 
}

This is a request interceptor that adds the API key to the query parameters. Here’s 
what the code does:

1. Creates a Map, which contains key-value pairs from the existing Request 
parameters.

2. Adds the apiKey parameter to the map.

3. Returns a new copy of the Request with the parameters contained in the map.

The benefit of this method is that once you hook it up, all your calls will use it. While 
you only have one call for now, if you add more, they’ll include those parameters 
automatically. Also, if you want to add a new parameter to every call, you’ll change 
only this method.

Flutter Apprentice Chapter 12: Networking in Flutter

 383



I hope you’re starting to see the advantages of Chopper. :]

You have interceptors to decorate requests, and you have a converter to transform 
responses into model classes. Next, you’ll put them to use!

Wiring Up Interceptors and Converters
It’s time to create an instance of the service that will fetch recipes.

Still in spoonacular_service.dart, add the following import, and make sure it’s 
placed before the part statement:

import 'spoonacular_converter.dart';

Then locate  // TODO: Add create Service and replace it with the following code. 
Don’t worry about the red squiggles; they’re warning you that the boilerplate code is 
missing because you haven’t generated it yet.

static SpoonacularService create() { 
  // 1 
 final client = ChopperClient( 
    // 2 
    baseUrl: Uri.parse(apiUrl), 
    // 3 
    interceptors: [_addQuery, HttpLoggingInterceptor()], 
    // 4 
    converter: SpoonacularConverter(), 
    // 5 
    errorConverter: const JsonConverter(), 
    // 6 
    services: [ 
      _$SpoonacularService(), 
    ], 
  ); 
  // 7 
  return _$SpoonacularService(client); 
}

In this code, you:

1. Create a ChopperClient instance.

2. Pass in a base URL using the apiUrl constant.

3. Pass in two interceptors. _addQuery() adds your API key to the query. 
HttpLoggingInterceptor is part of Chopper and logs all calls. While you’re 
developing, it’s handy to see traffic between the app and the server.

Flutter Apprentice Chapter 12: Networking in Flutter

 384



4. Set the converter as an instance of SpoonacularConverter.

5. Use the built-in JsonConverter to decode any errors.

6. Define the services created when you run the generator script.

7. Return an instance of the generated service.

It’s all set, you’re ready to generate the boilerplate code!

Generating the Chopper File
Your next step is to generate spoonacular_service.chopper.dart, which works with 
the part keyword. Remember from Chapter 11, “Serialization With JSON”, part will 
include the specified file and make it part of one big file.

Note: It might seem weird to import a file before it’s been created, but the 
generator script will fail if it doesn’t know what file to create.

Now, open Terminal in Android Studio. By default, it’ll be in your project folder.

Execute the following:

dart run build_runner build --delete-conflicting-outputs

Note: Using --delete-conflicting-outputs will delete all generated files 
before generating new ones.

Flutter Apprentice Chapter 12: Networking in Flutter

 385



While it’s executing, you’ll see something like this:

Once it finishes, you’ll see the new spoonacular_service.chopper.dart in lib/
network. You may need to refresh the network folder before it appears.

Note: In case you don’t see the file or Android Studio doesn’t detect its 
presence, right-click on the network folder and select “Reload from disk”.

Flutter Apprentice Chapter 12: Networking in Flutter

 386



Open it and check it out. The first thing you’ll see is a comment stating not to 
modify the file by hand. Looking farther down, you’ll see a class called 
_$SpoonacularService. Below that, you’ll notice that queryRecipes() has been 
overridden to build the parameters and the request. It uses the client to send the 
request.

It may not seem like much, but as you add different calls with different paths and 
parameters, you’ll start to appreciate the help of a code generator like the one 
included in Chopper.

Now that you’ve changed SpoonacularService to use Chopper, it’s time to put on 
the finishing touches.

Using the Chopper Client
Open main.dart and after sharedPrefs, replace:

  final service = SpoonacularService();

with:

final service = SpoonacularService.create();

This method will create a new instance of the service with the Chopper client.

Updating the UI
Now open lib/ui/recipe_details.dart. In loadRecipe(), replace:

final result = response; 
if (result is Success<Recipe>) { 
  final body = result.value; 
  recipeDetail = body; 
  if (mounted) { 
    setState(() {}); 
  } 
} else  { 
  logMessage('Problems getting Recipe $result'); 
}

with:

final result = response.body; 
if (result is Success<Recipe>) {

Flutter Apprentice Chapter 12: Networking in Flutter

 387



  final body = result.value; 
  recipeDetail = body; 
  if (mounted) { 
    setState(() {}); 
  } 
} else  { 
  logMessage('Problems getting Recipe $result'); 
}

This will retrieve the recipe detail.

In readRecipe(), replace:

final result = snapshot.data; 
if (result is Success<Recipe>) { 
  final body = result.value; 
  recipeDetail = body; 
}

with:

final result = snapshot.data?.body; 
if (result is Success<Recipe>) { 
  final body = result.value; 
  recipeDetail = body; 
}

Open recipe_list.dart and add:

import 'dart:collection';

In _buildRecipeLoader(), replace:

final result = snapshot.data; 
// Hit an error 
if (result is Error) { 
  const errorMessage = 'Problems getting data'; 
  return const SliverFillRemaining( 
    child: Center( 
      child: Text( 
        errorMessage, 
        textAlign: TextAlign.center, 
        style: TextStyle(fontSize: 18.0), 
      ), 
    ), 
  ); 
}

Flutter Apprentice Chapter 12: Networking in Flutter

 388



with:

if (false == snapshot.data?.isSuccessful) { 
  var errorMessage = 'Problems getting data'; 
  if (snapshot.data?.error != null && 
      snapshot.data?.error is LinkedHashMap) { 
    final map = snapshot.data?.error as LinkedHashMap; 
    errorMessage = map['message']; 
  } 
  return SliverFillRemaining( 
    child: Center( 
      child: Text( 
        errorMessage, 
        textAlign: TextAlign.center, 
        style: const TextStyle(fontSize: 18.0), 
      ), 
    ), 
  ); 
} 
final result = snapshot.data?.body; 
if (result == null || result is Error) { 
  inErrorState = true; 
  return _buildRecipeList(context, currentSearchList); 
}

This uses the new response type that wraps the result of an API call.

Now, replace the existing fetchData() with:

Future<RecipeResponse> fetchData() async { 
  if (!newDataRequired && currentResponse != null) { 
    return currentResponse!; 
  } 
  newDataRequired = false; 
  final recipeService = ref.watch(serviceProvider); 
  currentResponse = recipeService.queryRecipes( 
      searchTextController.text.trim(), currentStartPosition, 
pageCount); 
  return currentResponse!; 
}

This will use the services queryRecipes() instead of the older HTTP call.

Flutter Apprentice Chapter 12: Networking in Flutter

 389



Stop the app, run it again and choose the search value chicken from the drop-down 
button. Verify that you see the recipes displayed in the UI.

Now, look in the Run window of Android Studio, where you’ll see lots of [log] 
INFO messages related to your network calls. This is a great way to see how your 
requests and responses look and figure out what’s causing problems.

You made it! You can now use Chopper to make calls to the server API and retrieve 
recipes.

Flutter Apprentice Chapter 12: Networking in Flutter

 390



Key Points
• The http package is a simple-to-use set of methods for retrieving data from the 

internet.

• The built-in json.decode() transforms JSON strings into a map of objects that 
you can use in your code.

• The Chopper package provides easy ways to retrieve data from the internet.

• You can add headers to each network request.

• Interceptors can intercept both requests and responses and change those values.

• Converters can modify requests and responses.

Where to Go From Here?
You’ve learned how to retrieve data from the internet and parse it into data models. 
If you want to learn more about the HTTP package and get the latest version, go to 
https://pub.dev/packages/http.

If you want to learn more about the Chopper package, go to https://pub.dev/
packages/chopper. For more info on the Logging library, visit https://pub.dev/
packages/logging.

In the next chapter, you’ll learn about the important topic of state management.

Flutter Apprentice Chapter 12: Networking in Flutter

 391



13Chapter 13: Managing 
State
By Kevin David Moore

The main job of a UI is to represent state. Imagine, for example, you’re loading a list 
of recipes from the network. While the recipes are loading, you show a spinning 
widget. When the data loads, you swap the spinner with the list of loaded recipes. In 
this case, you move from a loading to a loaded state. Handling such state changes 
manually, without following a specific pattern, quickly leads to code that’s difficult 
to understand, update and maintain. One solution is to adopt a pattern that 
programmatically establishes how to track changes and broadcast details about 
states to the rest of your app. This is called state management.

To learn about state management and see how it works for yourself, you’ll continue 
working with the previous project.

Note:  You can also start fresh by opening this chapter’s starter project. If you 
choose to do this, remember to click the Get dependencies button or execute 
flutter pub get from Terminal. You’ll also need to add your API Key to lib/
network/spoonacular_service.dart.

By the end of the chapter, you’ll know:

• Why you need state management.

• How to implement state management using Riverpod.

 392



• How to save the current list of bookmarks and ingredients.

• What a repository is.

• Different ways to manage state.

Architecture
When you write apps and the amount of code gets larger and larger over time, you 
learn to appreciate the importance of separating code into manageable pieces. When 
files contain more than one class or when classes combine multiple functionalities, 
it’s harder to fix bugs and add new features.

One way to handle this is to follow Clean Architecture principles by organizing 
your project so it’s easy to change and understand. You do this by separating your 
code into directories and classes, each handling just one task. You also use interfaces 
to define contracts that different classes can implement, allowing you to easily swap 
in different classes or reuse classes in other apps.

You should design your app with some or all of the components below:

Notice that the UI is separate from the business logic. It’s easy to start an app and 
put your database and business logic into your UI code — but what happens when 
you need to change your app’s behavior and that behavior is spread throughout your 
UI code? That makes it difficult to change and causes duplicate code you might 
forget to update.

Communicating between these layers is important as well. How does one layer talk 
to the other? The easy way is just to create those classes when you need them. 
However, this results in multiple instances of the same class, which causes problems 
coordinating calls.

Flutter Apprentice Chapter 13: Managing State

 393



For example, what if two classes each have their own database handler class and 
make conflicting calls to the database? Both Android and iOS use Dependency 
Injection or DI to create instances in one place and inject them into other classes 
that need them. This chapter will cover the Riverpod package for DI and state 
management.

Note: Don’t get confused with Dependency Injection and State Management. 
They are two different things. Dependency Injection is a way to inject or 
provide the dependencies needed inside the app, and State Management is a 
way to manage the app’s state.

Ultimately, the business logic layer should decide how to react to the user’s actions 
and delegate tasks like retrieving and saving data to other classes.

Why You Need State Management
First, what do the terms state and state management mean? State is when a widget 
is active and stores its data in memory. The Flutter framework handles some state, 
but as mentioned earlier, Flutter is declarative. That means it rebuilds the UI from 
memory when the state or data changes or when another part of your app uses it.

State management is, as the name implies, how you manage the state of your 
widgets and app.

There are two types of state to consider - ephemeral state, also known as local 
state, which is limited to the widget, and app state, also known as global state.

• Use ephemeral state when no other component in the widget tree needs to access 
a widget’s data. Examples include whether a TabBarView tab is selected or 
FloatingActionButton is pressed.

• Use app state to manage the entire state of the app and when other parts of your 
app need to access some state data. One example is an image that changes over 
time, like an icon for the current weather. Another example is information that the 
user selects on one screen, which should then display on another screen, like when 
the user adds an item to a shopping cart.

Next, you’ll learn more about the different types of state and how they apply to your 
recipe app.

Flutter Apprentice Chapter 13: Managing State

 394



Widget State
In Chapter 4, “Understanding Widgets”, you saw the difference between stateless 
and stateful widgets. A stateless widget is drawn with the same state it had when it 
was created. A stateful widget preserves its state and uses it to (re)draw itself when 
there’s any change in the widget’s state.

Your current Recipes screen has a card with the list of previous searches and a 
GridView with a list of recipes:

The left side shows some of the RecipeList widgets, while the right side shows the 
state objects that store the information each widget uses. An element tree stores 
both the widgets themselves and the states of all the stateful widgets in RecipeList:

If the state of a widget updates, the state object also updates, and the widget is 
redrawn with that updated state.

Flutter Apprentice Chapter 13: Managing State

 395



Application State
In Flutter, a StatefulWidget can hold state. Its children can access it, and even pass 
(pieces of) it to other screens. However, that complicates your code, and you have to 
remember to pass data objects down the tree. Wouldn’t it be great if child widgets 
could easily access their parent data without having to pass in that data?

There are several different ways to achieve that, both with built-in widgets and with 
third-party packages. You’ll look at built-in widgets first.

Managing State in Your App
The Recipes Finder app needs to save four things: the currently selected screen, 
the list to show in the Recipes screen, the user’s bookmarks and the ingredients. In 
this chapter, you’ll use state management to save this information so other screens 
can use it.

These methods are still relevant for sharing data between screens. Here’s a general 
idea of how your classes will look:

Stateful Widgets
StatefulWidget is one of the most basic ways of saving state. The RecipeList 
widget, for example, saves several fields for later usage, including the current search 
list and the start and end positions of search results for pagination.

Flutter Apprentice Chapter 13: Managing State

 396



When you create a StatefulWidget, the createState() method gets called, which 
creates and stores the state internally in Flutter. The parent needs to rebuild the 
widget when there’s a change in the state of the widget.

You use initstate() to initialize the widget in its starting state. You use it for one-
time work, like initializing text controllers. Then, you use setState() to set the new 
changed state, triggering a rebuild of the widget.

For example, in Chapter 10, “Handling Shared Preferences”, you used setState() to 
set the selected tab. This tells the system to rebuild the UI to select a page. 
StatefulWidget is great for maintaining an internal state, but not for a state 
outside the widget.

One way to achieve an architecture that allows sharing state between widgets is to 
adopt InheritedWidget.

InheritedWidget

InheritedWidget is a built-in class allowing child widgets to access its data. It’s the 
basis for a lot of other state management widgets. If you create a class that extends 
InheritedWidget and gives it some data, any child widget can access it by calling 
context.dependOnInheritedWidgetOfExactType<class>().

Wow, that’s quite a mouthful! As shown below, <class> represents the name of the 
class extending InheritedWidget.

class RecipeWidget extends InheritedWidget { 
  final Recipe recipe; 
  RecipeWidget(Key? key, required this.recipe, required Widget 
child}) : 
      super(key: key, child: child); 

 
  @override 
  bool updateShouldNotify(RecipeWidget oldWidget) => recipe != 
oldWidget.recipe; 

 
  static RecipeWidget of(BuildContext context) => 
context.dependOnInheritedWidgetOfExactType<RecipeWidget>()!; 

 
}

You can then extract data from that widget. Since that’s such a long method name to 
call, the convention is to create an of() method.

Flutter Apprentice Chapter 13: Managing State

 397



Then a child widget, like the text field that displays the recipe title, can just use:

RecipeWidget recipeWidget = RecipeWidget.of(context); 
print(recipeWidget.recipe.label);

Note: updateShouldNotify() compares two recipes, which requires Recipe 
to implement equals. Otherwise, you need to compare each field.

An advantage of using InheritedWidget is it’s a built-in widget so you don’t need to 
worry about using external packages.

A disadvantage of using InheritedWidget is that the value of a recipe can’t change 
unless you rebuild the whole widget tree because InheritedWidget is immutable. 
So, if you want to change the displayed recipe title, you’ll have to rebuild the whole 
RecipeWidget.

Provider
Remi Rousselet designed Provider to build state management functionalities on top 
of InheritedWidget.

Google even includes details about it in their state management docs https://
flutter.dev/docs/development/data-and-backend/state-mgmt/simple#providerof.

RiverPod
Provider’s author, Remi Rousselet, wrote Riverpod to address some of Provider’s 
weaknesses. In fact, Riverpod is an anagram of Provider! Rousselet wanted to solve 
the following problems:

1. Easily access state from anywhere.

2. Allow the  combination of states.

3. Enable override providers for testing.

You’ll use RiverPod to implement state management in your app.

Flutter Apprentice Chapter 13: Managing State

 398



Keypoints of Riverpod

Before you start using Riverpod, you need to understand some of its key points.

• ProviderScope: A provider scope is a widget that provides a scope for providers. 
The AppWidget must be wrapped in ProviderScope to use Riverpod.

• Provider: A provider is a class that provides a value to other classes. It’s the most 
basic class in Riverpod. There are many types of providers. You’ll see them later.

• Consumer: A consumer is a widget that listens to changes in a provider and 
rebuilds itself when the value changes. There are two types of consumers: 
Consumer and ConsumerWidget. You’ll see examples later.

• Ref: A ref is a reference to a provider. You use it to access other providers. You can 
obtain a ref from providers and ConsumerWidgets.

Types of Providers

There are several different types of providers:

• Provider: Returns any value. Useful as DI.

• StateProvider: Returns any type and provides a way to modify it’s state.

• FutureProvider: Returns a Future.

• StreamProvider: Returns a Stream.

• StateNotifierProvider: Returns a subclass of StateProvider and provides a way 
to modify its state through an interface.

• NotifierProvider: Listen to and expose a Notifier.

• AsyncNotifierProvider: Listen to and expose an Asyncotifier, AsyncNotifier is a 
Notifier that can be asynchronously initialized.

• ChangeNotifierProvider: Returns a ChangeNotifier. This is for migrating from 
the old ChangeNotifier.

Note: ChangeNotifierProvider is a mutable provider, and its use is 
discouraged. It’s only for transitioning from provider to Riverpod. It’s 
advisable to use NotifierProvider instead.

Flutter Apprentice Chapter 13: Managing State

 399



Provider

Provider is the most basic class that provides a value to other classes. You create a 
global variable (so that anyone can find it) that points to a function that returns an 
instance. You create a provider like this:

final myProvider = Provider((ref) { 
  return MyValue(); 
});

The variable myProvider is final and doesn’t change. It provides a function that will 
create the state. You can also use the ref variable to access other providers. You can 
also provide multiple providers that return the same type.

StateProvider

StateProvider is a simplified version of StateNotifierProvider. It allows you to 
modify simple variables. This includes strings, Booleans, numbers or lists of items. 
You can also use classes. A simple example looks like this:

class Item { 
  Item({required this.name, required this.title}); 

 
  final String name; 
  final String title; 
} 

 
final itemProvider = StateProvider<Item>((ref) => Item(name: 
'Item1', title: 'Title1'));

The variable itemProvider is final and doesn’t change. You use this variable to 
access the state of the value provided by the provider and can change the value as 
follows:

ref.read(itemProvider.notifier).state = Item(name: 'Item2', 
title: 'Title2');

There is also the update() method:

ref.read(itemProvider.notifier).update((state) => Item(name: 
'Item2', title: 'Title2'));

Flutter Apprentice Chapter 13: Managing State

 400



FutureProvider

FutureProvider works like other providers but for asynchronous code and returns a 
Future. They are generally used in place of FutureBuilder.

final itemProvider = FutureProvider<Item>((ref) async { 
  return someLongRunningFunction(); 
});

A Future is handy when a value is not readily available but will be in the future. 
Examples include calls that request data from the internet or asynchronously read 
data from a database. You can use FutureProvider like this:

AsyncValue<Item> futureItem = ref.watch(itemProvider); 
  return futureItem.when( 
    loading: () => const CircularProgressIndicator(), 
    error: (err, stack) => Text('Error: $err'), 
    data: (item) { 
      return Text(item.name); 
    }, 
  );

StreamProvider

You’ll learn about streams in detail in the next chapter. For now, you just need to 
know that Riverpod also has a provider specifically for streams and works the same 
way as FutureProvider. StreamProviders are handy when data comes in via 
streams and values change over time, like, for example, when you’re monitoring the 
connectivity of a device.

StateNotifierProvider

StateNotifierProvider is used to listen to changes in StateNotifier. A simple 
example looks like this:

class ItemNotifier extends StateNotifier<Item> { 
  ItemNotifier() : super(Item(name: 'Item1', title: 'Title1')); 

 
  void updateItem(Item item) { 
    state = item; 
  } 
} 

 
final itemProvider = StateNotifierProvider<ItemNotifier, 
Item>((ref) => ItemNotifier());

Flutter Apprentice Chapter 13: Managing State

 401



Here the constructor of ItemNotifier sets the initial state for an Item.To change 
the value of the provider, you use its updateItem() method as follows:

ref.read(itemProvider.notifier).updateItem(Item(name: 'Item2', 
title: 'Title2'));

NotifierProvider and AsyncNotifierProvider

NotifierProvider is used to listen to and expose a Notifier. 
AsyncNotifierProvider is a Notifier that you can asynchronously initialize. You 
generally use it to expose the state, which can change over time after reacting to 
custom events, like button taps and data changes.

class ItemNotifier extends Notifier<Item> { 
  @override 
  Item build(){ 
    return Item(name: 'Item1', title: 'Title1'); 
  } 

 
  void updateItem(Item item) { 
    state = item; 
  } 
} 

 
final itemNotifierProvider = NotifierProvider<ItemNotifier, 
Item>(() => ItemNotifier());

The build() function returns the initial state of the Item and is called when the 
provider is first accessed.

To change the value of the provider, you use again its updateItem() method:

ref.read(itemNotifierProvider.notifier).updateItem(Item(name: 
'Item2', title: 'Title2'));

Adopting Riverpod in the Recipe Finder App
You’re now ready to start working on your recipe project. If you’re following along 
with your app from the previous chapters, open it and keep using it with this chapter. 
If not, just locate this chapter’s projects folder and open starter in Android Studio.

Note: If you use the starter app, don’t forget to add your apiKey in network/
spoonacular_service.dart.

Flutter Apprentice Chapter 13: Managing State

 402



Overview of Existing Providers
Open up providers.dart. It should look like this:

// 1 
final sharedPrefProvider = Provider<SharedPreferences>((ref) { 
  throw UnimplementedError(); 
}); 

 
// 2 
final repositoryProvider = 
ChangeNotifierProvider<MemoryRepository>((ref) { 
  return MemoryRepository(); 
}); 

 
// 3 
final serviceProvider = Provider<ServiceInterface>((ref) { 
  throw UnimplementedError(); 
});

This code:

1. Defines a provider for Shared preferences. Note that it throws an 
UnimplementedError. Explanation below.

2. Defines a ChangeNotifierProvider for theMemoryRepository.

3. Defines a provider for  ServiceInterface. This will allow you to substitute any 
ServiceInterface class.

Now open main.dart and look at the following:

// 1 
final sharedPrefs = await SharedPreferences.getInstance(); 
// 2 
final service = SpoonacularService.create(); 
// 3 
runApp(ProviderScope(overrides: [ 
  sharedPrefProvider.overrideWithValue(sharedPrefs), 
  serviceProvider.overrideWithValue(service), 
], child: const MyApp()));

1. Get an instance of the SharedPreferences library.

2. Create a SpoonacularService.

3. Override the definitions above with these newly created instances.

Flutter Apprentice Chapter 13: Managing State

 403



Since getting a shared preference instance is an asynchronous call, we do this in the 
main method that uses the async keyword.

Updating Repositories
Inside the data/repositories directory are two repository files: repository.dart 
contains the abstract definition of a repository, and memory_repository.dart 
defines a memory-based repository. This repository will hold your recipes and 
ingredients while running. Once the app closes, the data goes away. In Chapter 15, 
“Saving Data Locally”, you’ll learn how to store such data locally.

Updating the Memory Repository

Open up data/repositories/memory_repository.dart. Notice that it currently uses 
`ChangeNotifier, which isn’t recommended when using Riverpod. You’ll convert this 
class to the Riverpod Notifier class.

To be a Notifier - a class has to have an object that notifies others about the change. 
This class will be CurrentRecipeData. This will contain the current recipes and 
ingredients list. Create a new file in data/models called current_recipe_data.dart.

Add the following:

import 'package:freezed_annotation/freezed_annotation.dart'; 
import 'models.dart'; 
part 'current_recipe_data.freezed.dart'; 

 
@freezed 
class CurrentRecipeData with _$CurrentRecipeData { 
  const factory CurrentRecipeData({ 
    @Default(<Recipe>[]) List<Recipe> currentRecipes, 
    @Default(<Ingredient>[]) List<Ingredient> 
currentIngredients, 
  }) = _CurrentRecipeData; 
}

This uses the Freezed package to create a few helper methods like copyWith(). The 
@Default annotation helps assign the default value to the variables. From a terminal 
run:

dart run build_runner build

Flutter Apprentice Chapter 13: Managing State

 404



This will create the current_recipe_data.freezed.dart file.

Back in memory_repository.dart, replace the import of foundation.dart with:

import 'package:flutter_riverpod/flutter_riverpod.dart'; 
import '../models/current_recipe_data.dart';

Then change the class definition to:

class MemoryRepository extends Notifier<CurrentRecipeData> 
    implements Repository {

On the next line, add the following method. This will initialize the notifier and set 
the initial state of CurrentRecipeData.

@override 
CurrentRecipeData build() { 
  const currentRecipeData = CurrentRecipeData(); 
  return currentRecipeData; 
}

Now, remove all of the calls to notifyListeners() methods, as they’ll be throwing 
compilation errors. Next, remove the declaration of _currentRecipes and 
_currentIngredients fields. Since those two fields are in CurrentRecipeData and 
we have a state of currentRecipeData, you’ll just use that.

Substitute all the occurrences of _currentRecipes with state.currentRecipes.

For example, findAllRecipes() should turn into this:

@override 
List<Recipe> findAllRecipes() { 
  return state.currentRecipes; 
}

Similarly, change all occurrences of _currentIngredients with 
state.currentIngredients.

Note: State is a getter that returns the current state of the notifier and you 
can access the current state. You can also update the state of the notifier by 
assigning new state. You don’t need to call notifyListeners() as it’s done 
automatically.

Flutter Apprentice Chapter 13: Managing State

 405



If you need help, look at the file in the final project. Hint - find and replace works 
great!

Since CurrentRecipeData is immutable, meaning you can’t modify it, you’ll have to 
create new instances instead of modifying the lists. Where are the lists modified, you 
may wonder? In the methods that insert and delete recipes and ingredients. Find // 
TODO: Update insertRecipe() and replace the line below it with:

if(state.currentRecipes.contains(recipe)) { 
  return 0; 
} 
state = state.copyWith(currentRecipes: [...state.currentRecipes, 
recipe]);

First, you check if the recipe is already on the list. If it is, you return 0. If not, you 
assign the current state with a new instance of state of CurrentRecipeData by 
copying the existing one (copyWith() comes from Freezed) with the current list of 
recipes and a new one. Notice that using [] makes a new list.

Now replace the line below // TODO: Update insertIngredients() with:

state = state.copyWith(currentIngredients: 
[...state.currentIngredients, 
  ...ingredients]);

This does something similar but adds two lists together. Next, replace // TODO: 
Update deleteRecipe() and the subsequent line with the following:

final updatedList = [...state.currentRecipes]; 
updatedList.remove(recipe); 
state = state.copyWith(currentRecipes: updatedList);

This creates a new list using the spread operator: ..., which unfolds the list of 
items.Now replace the whole body of deleteIngredient() with:

final updatedList = [...state.currentIngredients]; 
updatedList.remove(ingredient); 
state = state.copyWith(currentIngredients: updatedList);

Then substitute the whole body of deleteIngredients() with:

final updatedList = [...state.currentIngredients]; 
updatedList.removeWhere((ingredient) => 
ingredients.contains(ingredient)); 
state = state.copyWith(currentIngredients: updatedList);

Flutter Apprentice Chapter 13: Managing State

 406



And finally, change the body of deleteRecipeIngredients() as follows:

final updatedList = [...state.currentIngredients]; 
updatedList.removeWhere((ingredient) => ingredient.recipeId == 
recipeId); 
state = state.copyWith(currentIngredients: updatedList);

Now that MemoryRepository has changed, open lib/providers.dart to adopt 
NotifierProvider.Add the following import:

import 'data/models/current_recipe_data.dart';

and then change repositoryProvider to:

final repositoryProvider = 
    NotifierProvider<MemoryRepository, CurrentRecipeData>(() { 
  return MemoryRepository(); 
});

Rerun your app to make sure it compiles successfully.

It’s now time to use the new repositoryProvider in the UI.

Using the Repository for Recipes

You’ll implement code to add a recipe to the Bookmarks screen and ingredients to 
the Groceries screen. First, open ui/recipes/recipe_details.dart.

Displaying the Recipes’ Details

You need to show the recipe’s image, label and calories on the Details page. The 
repository already stores all of your currently bookmarked recipes.

Note: If your recipe_details.dart file does not have the // TODO comments, 
take a look at the starter project.

Find // TODO: Add Repository and replace it with:

final repository = ref.read(repositoryProvider.notifier);

This reads the repositoryProvider as a class instance so that you can use it to 
access the functions you defined in the repository. You’ll use it to add the bookmark.

Flutter Apprentice Chapter 13: Managing State

 407



Next, replace // TODO: Insert Recipe  with:

repository.insertRecipe(recipeDetail!);

This adds the recipe to your repository’s list of recipes. To delete the recipe, 
replace: // TODO: Delete Recipe with:

repository.deleteRecipe(recipeDetail!);

This just removes it from the memory repository’s list of recipes.

Now, hot reload the app. Enter chicken in the search box and tap the magnifying 
glass to perform the search. You’ll see something like this:

Flutter Apprentice Chapter 13: Managing State

 408



Select a recipe to go to the details page:

Tap the Bookmark button and the details page will disappear.

Now, select the Bookmarks tab. At this point, you’ll see a blank screen — you 
haven’t implemented it yet.

Showing bookmarked recipes in the Bookmarks tab is your next step.

Flutter Apprentice Chapter 13: Managing State

 409



Implementing the Bookmarks Screen

Open ui/bookmarks/bookmarks.dart and add the following imports:

import '../../providers.dart'; 
import '../recipes/recipe_details.dart';

This includes the Riverpod providers to retrieve the repository as well as the 
RecipeDetails class.

Find // TODO: Add Repository and add:

final repository = ref.watch(repositoryProvider); 
recipes = repository.currentRecipes;

This watches the repository for changes and updates the widget. It also gets the 
current list of recipes from the repository.

On the Bookmarks page, the user can delete a bookmarked recipe by swiping left or 
right and selecting the delete icon. To implement this, find and replace // TODO: 
Add Delete Recipe at the bottom of the class with:

  void deleteRecipe(Recipe recipe) { 
    ref.read(repositoryProvider.notifier).deleteRecipe(recipe); 
  }

In this code, you use: ref.read to get the repository and then call deleteRecipe() 
on it.

Go back up in the file and replace the two instances of  // TODO Add Delete with:

deleteRecipe(recipe);

This will call the method you just created and pass the recipe to delete. Replace // 
TODO: Add Push to Recipe Details Page with:

Navigator.push(context, MaterialPageRoute( 
  builder: (context) { 
    return RecipeDetails( 
        recipe: recipe.copyWith(bookmarked: true)); 
  }, 
));

This will take the user to the recipe details page with a copy of the recipe and 
bookmarked set to true.

Flutter Apprentice Chapter 13: Managing State

 410



If you left your app running while making all of the above changes, hot reload the 
app.

If you stopped your app or did a hot restart instead of a hot reload, then return to the 
Recipes tab and bookmark a recipe.

Select the Bookmarks tab, and you should see the recipe you bookmarked. 
Something like this:

You’re almost done, but if you go to the Groceries tab, you’ll see that the view is 
currently blank. Your next step is to add the functionality to show the ingredients of 
bookmarked recipes.

Implementing the Groceries Screen
Open ui/groceries/groceries.dart and add the following:

import '../../providers.dart';

Flutter Apprentice Chapter 13: Managing State

 411



Here, you import your providers.

Find // TODO: Add Repository 1 and replace with:

  final repository = ref.watch(repositoryProvider); 
  currentIngredients = repository.currentIngredients;

Find // TODO: Add Repository 2 and replace with:

  final repository = ref.watch(repositoryProvider); 
  currentIngredients = repository.currentIngredients;

Hot reload and make sure you still have one bookmark saved.

Now, go to the Groceries tab to see the ingredients of the recipe you bookmarked. 
You’ll see something like this:

Congratulations, you made it! You now have an app where you can monitor state 
changes and get notifications across different screens, thanks to the infrastructure of 
Riverpod.

Flutter Apprentice Chapter 13: Managing State

 412



Implementing the Main Screen State
The main screen also has a state, and that is the currently selected bottom 
navigation item. This state will use the StateProvider class from Riverpod.

In the ui directory, create a new file named main_screen_state.dart. Add the 
following:

import 'package:flutter_riverpod/flutter_riverpod.dart'; 
import 'package:freezed_annotation/freezed_annotation.dart'; 

 
part 'main_screen_state.freezed.dart'; 

 
// 1 
@freezed 
class MainScreenState with _$MainScreenState { 
  const factory MainScreenState({ 
    @Default(0) int selectedIndex, 
  }) = _MainScreenState; 
} 

 
// 2 
class MainScreenStateProvider extends 
StateNotifier<MainScreenState> { 
  MainScreenStateProvider() : super(const MainScreenState()); 

 
  // 3 
  void updateSelectedIndex(int index) { 
    state = MainScreenState(selectedIndex: index); 
  } 
}

1. MainScreenState just holds the currently selected index.

2. MainScreenStateProvider is a provider for that state.

3. One method (updateSelectedIndex) is provided to update the index. It creates a 
new state.

This uses the Freezed package to create a few helper methods. From a terminal run:

dart run build_runner build

Flutter Apprentice Chapter 13: Managing State

 413



Now add this provider to providers.dart:

import 'ui/main_screen_state.dart'; 
 

final bottomNavigationProvider = 
    StateNotifierProvider<MainScreenStateProvider, 
MainScreenState>((ref) { 
  return MainScreenStateProvider(); 
});

Open up main_screen.dart and remove int _selectedIndex = 0;. Inside of 
saveCurrentIndex() replace the last line with:

final bottomNavigation = ref.read(bottomNavigationProvider); 
prefs.setInt(prefSelectedIndexKey, 
bottomNavigation.selectedIndex);

Find // TODO: Update getCurrentIndex() and replace the line below it with:

ref 
    .read(bottomNavigationProvider.notifier) 
    .updateSelectedIndex(index);

Change the line below // TODO: Update _onItemTapped() with:

ref.read(bottomNavigationProvider.notifier).updateSelectedIndex(
index);

Then find // TODO: Update largeLayout() 1 and replace the line below it with:

selectedIndex: 
    ref.watch(bottomNavigationProvider).selectedIndex,

Finally find // TODO: Update largeLayout() 2 and replace the subsequent line 
with:

index: ref.watch(bottomNavigationProvider).selectedIndex,

The next step is to update getRailNavigations(). First, replace the line below // 
TODO: Update getRailNavigations() 1 with:

ref.watch(bottomNavigationProvider).selectedIndex == 0 
    ? selectedColor 
    : Colors.black,

Flutter Apprentice Chapter 13: Managing State

 414



And then change the line after // TODO: Update getRailNavigations() 2 with:

ref.watch(bottomNavigationProvider).selectedIndex == 0 
    ? selectedColor 
    : Colors.black,

Now find // TODO: Update mobileLayout() and change the line below it to:

index: ref.watch(bottomNavigationProvider).selectedIndex,

In createBottomNavigationBar() , find // TODO: Add index and replace it with:

final bottomNavigationIndex = 
    ref.read(bottomNavigationProvider).selectedIndex;

Finally, change all of the remaining instances of _selectedIndex to:

bottomNavigationIndex

Now it’s time to get rid of the calls to setState(). Update _onItemTapped() so it 
looks like this:

void _onItemTapped(int index) { 
  
ref.read(bottomNavigationProvider.notifier).updateSelectedIndex(
index); 
  saveCurrentIndex(); 
}

and change getCurrentIndex() as follows:

void getCurrentIndex() async { 
  final prefs = ref.read(sharedPrefProvider); 
  if (prefs.containsKey(prefSelectedIndexKey)) { 
    final index = prefs.getInt(prefSelectedIndexKey); 
    if (index != null) { 
      
ref.read(bottomNavigationProvider.notifier).updateSelectedIndex(
index); 
    } 
  } 
}

Flutter Apprentice Chapter 13: Managing State

 415



Finally, make sure that getCurrentIndex() is called after the build method. To 
achieve that, change the last line of initState() like this.

Future.microtask(() async { 
  getCurrentIndex(); 
});

Stop and restart the app and verify that you can add and delete bookmarks. Check 
also that the Groceries tab shows the ingredients of the bookmarked recipes.

Congrats! Now you know how to manage state across different screens of your app 
using Riverpod. And that’s just the beginning!

Is Riverpod the only option for state management? No. Here’s a quick tour of 
alternative libraries.

Other State Management Libraries
There are other packages that help with state management and provide even more 
flexibility when managing state in your app. While Riverpod features classes for 
widgets lower in the widget tree, other packages provide more generic state 
management solutions for the whole app, often enabling a unidirectional data flow 
architecture.

Such libraries include Redux, BLoC and MobX. Here’s a quick overview of each.

Redux
If you come from web or React development, you might be familiar with Redux, 
which uses concepts such as actions, reducers, views and stores. The flow looks like 
this:

Flutter Apprentice Chapter 13: Managing State

 416



Actions, like clicks on the UI or events from network operations, are sent to reducers, 
which turn them into a state. That state is saved in a store, which notifies listeners, 
like views and components, about changes.

The nice thing about the Redux architecture is that a view can simply send actions 
and wait for updates from the store.

You need two packages to use Redux in Flutter: redux and flutter_redux.

For React developers migrating to Flutter, an advantage of Redux is that it’s already 
familiar. It might take a bit to learn if you aren’t familiar with it.

BLoC
BLoC stands for Business Logic Component. It’s designed to separate UI code from 
the data layer and business logic, helping you create reusable code that’s easy to test. 
Think of it as a stream of events; some widgets submit events, and others respond to 
them. BLoC sits in the middle and directs the conversation, leveraging the power of 
streams.

It’s quite popular in the Flutter Community and very well documented.

MobX
MobX comes to Dart from the web world. It uses the following concepts:

• Observables: Hold the state.

• Actions: Mutate the state.

• Reactions: React to the change in observables.

MobX has annotations that help you write your code and simplify it.

One advantage is that MobX allows you to wrap any data in an observable. It’s 
relatively easy to learn and requires smaller generated code files than BLoC.

Flutter Apprentice Chapter 13: Managing State

 417



Key Points
• State management is key to Flutter development.

• Riverpod is a great package that helps with state management.

• Other packages for handling application state include Redux, Bloc,  and MobX.

• Repositories are a pattern for providing data.

• You can switch between repositories by providing an interface for the repository. 
For example, you can switch between real and mocked repositories.

• Mock services are a way to provide dummy data.

Where to Go From Here?
If you want to learn more about:

• State management, go to https://flutter.dev/docs/development/data-and-backend/
state-mgmt/intro.

• Flutter Redux go to https://pub.dev/packages/flutter_redux.

• Bloc, go to https://bloclibrary.dev/#/.

• MobX, go to https://github.com/mobxjs/mobx.dart.

• Riverpod, go to https://riverpod.dev/.

• Clean Architecture, go to https://pusher.com/tutorials/clean-architecture-
introduction.

In the next chapter, you’ll learn all about streams that handle data that can be sent 
and received continuously. See you there!

Flutter Apprentice Chapter 13: Managing State

 418



14Chapter 14: Working With 
Streams
By Kevin David Moore

Imagine yourself sitting by a creek, having a wonderful time. While watching the 
water flow, you see a piece of wood or a leaf floating down the stream and decide to 
take it out of the water. You could even have someone upstream purposely float 
things down the creek for you to grab.

You can imagine Dart streams in a similar way: as data flowing down a creek, 
waiting for someone to grab it. That’s what a stream does in Dart — it sends data 
events for a listener to grab.

With Dart streams, you can send one data event at a time while other parts of your 
app listen for those events. Such events can be collections, maps or any other type of 
data you’ve created.

Streams can send errors in addition to data; you can also stop the stream if you need 
to.

In this chapter, you’ll update Recipe Finder to use streams in two different locations. 
You’ll use one for bookmarks to let the user mark favorite recipes and automatically 
update the UI to display them. You’ll also use one to update your ingredient and 
grocery lists.

But before you jump into the code, you’ll learn more about how streams work.

 419



Types of Streams
Streams are part of Dart, and Flutter inherits them. There are two types of streams in 
Flutter: single subscription streams and broadcast streams.

Single subscription streams are the default. They work well when you’re only using a 
particular stream on one screen.

A single subscription stream can only be listened to once. It doesn’t start generating 
events until it has a listener, and it stops sending events when the listener stops 
listening, even if the source of events could still provide more data.

Single subscription streams are useful for downloading a file or for any single-use 
operation. For example, a widget can subscribe to a stream to receive updates about 
a value, like the progress of a download, and update its UI accordingly.

If you need multiple parts of your app to access the same stream, use a broadcast 
stream, instead.

A broadcast stream allows any number of listeners. It fires when its events are ready, 
whether there are listeners or not.

To create a broadcast stream, you simply call asBroadcastStream() on an existing 
single subscription stream.

final broadcastStream = singleStream.asBroadcastStream();

You can differentiate a broadcast stream from a single subscription stream by 
inspecting its Boolean property isBroadcast.

In Flutter, some key classes are built on top of Stream that simplify programming 
with streams.

Flutter Apprentice Chapter 14: Working With Streams

 420



The following diagram shows the main classes used with streams:

Next, you’ll take a deeper look at each one.

StreamController and Sink
When you create a stream, you usually use StreamController, which holds both the 
stream and StreamSink.

A sink is a destination for data. When you want to add data to a stream, you’ll add it 
to the sink. Since the StreamController owns the sink, it listens for data on the 
sink and sends the data to its stream listeners.

Here’s an example that uses StreamController:

final _recipeStreamController = 
StreamController<List<Recipe>>(); 
final _stream = _recipeStreamController.stream;

To add data to a stream, you add it to its sink:

_recipeStreamController.sink.add(_recipesList);

This uses the sink field of the controller to “place” a list of recipes on the stream. 
That data will be sent to any current listeners.

When you’re done with the stream, make sure you close it, like this:

_recipeStreamController.close();

Flutter Apprentice Chapter 14: Working With Streams

 421



StreamSubscription
Using listen() on a stream returns a StreamSubscription. You can use this 
subscription class to cancel the stream when you’re done, like this:

StreamSubscription subscription = stream.listen((value) { 
    print('Value from controller: $value'); 
}); 
... 
... 
// You are done with the subscription 
subscription.cancel();

Sometimes, it’s helpful to have an automated mechanism to avoid managing 
subscriptions manually. That’s where StreamBuilder comes in.

StreamBuilder
StreamBuilder is handy when you want to use a stream. It takes two parameters: a 
stream and a builder. As you receive data from the stream, the builder takes care of 
building or updating the UI.

Here’s an example:

final repository = ref.watch(repositoryProvider); 
return StreamBuilder<List<Recipe>>( 
  stream: repository.recipesStream(), 
  builder: (context, AsyncSnapshot<List<Recipe>> snapshot) { 
    // extract recipes from snapshot and build the view 
  } 
) 
...

StreamBuilder is handy because you don’t need to use a subscription directly, and it 
unsubscribes from the stream automatically when the widget is destroyed.

Note: Riverpod has a StreamProvider, which you can use to provide a stream 
to a widget. You can learn more about it at https://riverpod.dev/docs/
providers/stream_provider.

Now that you understand how streams work, you’ll convert your existing project to 
use them.

Flutter Apprentice Chapter 14: Working With Streams

 422



Adding Streams to Recipe Finder
You’re now ready to start working on your recipe project. If you’re following along 
with your app from the previous chapters, open it and keep using it with this chapter. 
If not, just locate the projects folder for this chapter and open starter in Android 
Studio.

Note: If you use the starter app, don’t forget to add your apiKey in network/
spoonacular_service.dart.

To convert your project to use streams, you need to change MemoryRepository to 
add two new methods that return one stream for recipes and another for 
ingredients. Instead of just returning a list of static recipes, you’ll use streams to 
modify that list and refresh the UI to display the change.

This is what the flow of the app looks like:

Here, you can see that the Recipes screen has a list of recipes. Bookmarking a recipe 
adds it to the bookmarked recipe list and updates both the bookmarks and the 
groceries screens.

You’ll start by converting your repository code to return Streams and Futures.

Flutter Apprentice Chapter 14: Working With Streams

 423



Adding Futures and Streams to the Repository
Open data/repositories/repository.dart and change all of the return types to return 
a Future, except for the init and close methods. For example, change the existing 
findAllRecipes() to:

Future<List<Recipe>> findAllRecipes();

Do this for all the methods except init() and close().

Your final class should look like this:

Future<List<Recipe>> findAllRecipes(); 
 

Future<Recipe> findRecipeById(int id); 
 

Future<List<Ingredient>> findAllIngredients(); 
 

Future<List<Ingredient>> findRecipeIngredients(int recipeId); 
 

Future<int> insertRecipe(Recipe recipe); 
 

Future<List<int>> insertIngredients(List<Ingredient> 
ingredients); 

 
Future<void> deleteRecipe(Recipe recipe); 

 
Future<void> deleteIngredient(Ingredient ingredient); 

 
Future<void> deleteIngredients(List<Ingredient> ingredients); 

 
Future<void> deleteRecipeIngredients(int recipeId); 

 
Future init(); 

 
void close();

These updates allow you to have methods that work asynchronously to process data 
from a database or the network.

Next, add two new Streams after findAllRecipes():

// 1 
Stream<List<Recipe>> watchAllRecipes(); 
// 2 
Stream<List<Ingredient>> watchAllIngredients();

Flutter Apprentice Chapter 14: Working With Streams

 424



Here’s what this code does:

1. watchAllRecipes() listens for any changes to the list of recipes. For example, if 
the user does a new search, it updates the list of recipes and notifies listeners 
accordingly.

2. watchAllIngredients() listens for changes in the list of ingredients displayed 
on the Groceries screen.

You’ve now changed the interface, so you need to update the memory repository.

Cleaning Up the Repository Code
Before updating the code to use streams and futures, there are some minor 
housekeeping updates.

Open data/repositories/memory_repository.dart and notice there are some red 
squiggles. We’ll address them step by step in a bit.

First, import the Dart async library:

import 'dart:async';

Next, add these new properties within the class:

//1 
late Stream<List<Recipe>> _recipeStream; 
late Stream<List<Ingredient>> _ingredientStream; 
// 2 
final StreamController _recipeStreamController = 
    StreamController<List<Recipe>>(); 
final StreamController _ingredientStreamController = 
    StreamController<List<Ingredient>>();

Here’s what’s going on:

1. _recipeStream and _ingredientStream are private fields for the streams. These 
will be captured the first time a stream is requested, which prevents new streams 
from being created for each call.

2. Creates StreamControllers for recipes and ingredients.

Next, add a constructor:

MemoryRepository() { 
  // 1 
  _recipeStream = 

Flutter Apprentice Chapter 14: Working With Streams

 425



_recipeStreamController.stream.asBroadcastStream( 
    // 2 
    onListen: (subscription) { 
      // 3 
      // This is to send the current recipes to new subscriber 
      _recipeStreamController.sink.add(state.currentRecipes); 
    }, 
  ) as Stream<List<Recipe>>; 
  _ingredientStream = 
_ingredientStreamController.stream.asBroadcastStream( 
    onListen: (subscription) { 
      // This is to send the current ingredients to new 
subscriber 
      
_ingredientStreamController.sink.add(state.currentIngredients); 
    }, 
  ) as Stream<List<Ingredient>>; 
}

This will initialize the streams.

1. Create a broadcast stream so that multiple listeners are available.

2. Add an onListen method to listen for new subscriptions.

3. Send the existing recipes to the new listener.

Here, you create a broadcast stream, which you need for multiple listeners, and then 
update the listener with the current list of recipes when they subscribe.

And now, add these new methods after findAllRecipes():

// 3 
@override 
Stream<List<Recipe>> watchAllRecipes() { 
  return _recipeStream; 
} 

 
// 4 
@override 
Stream<List<Ingredient>> watchAllIngredients() { 
   return _ingredientStream; 
}

The above functions are self-explanatory, watchAllRecipes() returns the stream of 
recipes as _recipeStream and watchAllIngredients() returns the stream of 
ingredients as _ingredientStream.

Flutter Apprentice Chapter 14: Working With Streams

 426



Updating the Existing Repository
MemoryRepository is full of red squiggles. That’s because all the methods use the 
old signatures, and everything’s now based on Futures.

Still in data/repositories/memory_repository.dart, replace the existing 
findAllRecipes() with this:

@override 
// 1 
Future<List<Recipe>> findAllRecipes() { 
  // 2 
  return Future.value(state.currentRecipes); 
}

These updates:

1. Change the method to return a Future.

2. Wrap the return value with a Future.value().

There are a few more updates you need to make before moving on to the next 
section.

First, in init() remove the null from the return statement so it looks like this:

@override 
Future init() { 
  return Future.value(); 
}

For this repository, there is no initialization needed, so just an empty future is 
returned. Then, update close() so it closes the streams.

@override 
void close() { 
  _recipeStreamController.close(); 
  _ingredientStreamController.close(); 
}

When dealing with streams and their controllers, you need to make sure you close 
them when you are finished. Closing them in the close method makes sure those 
streams are closed. In the next section, you’ll update the remaining methods to 
return futures and add data to the stream using StreamController.

Flutter Apprentice Chapter 14: Working With Streams

 427



Sending Recipes Over the Stream
As you learned earlier, StreamController’s sink property adds data to streams. 
Since this happens in the future, you need to change the return type to Future and 
then update the methods to add data to the stream.

Note: Make sure you add @override above each method.

To start, change insertRecipe() to:

@override 
// 1 
Future<int> insertRecipe(Recipe recipe) { 
  if (state.currentRecipes.contains(recipe)) { 
    return Future.value(0); 
  } 
  // 2 
  state = state.copyWith(currentRecipes: 
[...state.currentRecipes, recipe]); 
  // 3 
  _recipeStreamController.sink.add(state.currentRecipes); 
  // 4 
  final ingredients = <Ingredient>[]; 
  for (final ingredient in recipe.ingredients) { 
    ingredients.add(ingredient.copyWith(recipeId: recipe.id)); 
  } 
  insertIngredients(ingredients); 
  // 5 
  return Future.value(0); 
}

Here’s what you’ve updated:

1. Update the method’s return type to Future<int>.

2. Update the state by adding the new recipe to the existing list.

3. Add the list to the recipe sink. You might wonder why you call add() with the 
same list instead of adding a single ingredient or recipe. The reason is that the 
stream expects a list, not a single value. Doing it this way replaces the previous 
list with the updated one.

Flutter Apprentice Chapter 14: Working With Streams

 428



4. Update all of the ingredients with the recipe ID and then insert the ingredients.

5. Return a Future value. You’ll learn how to return the ID of the new item in a 
later chapter.

This replaces the previous list with the new list and notifies any stream listeners that 
the data has changed.

Now that you know how to convert the first method, it’s time to convert the rest of 
the methods as an exercise. Don’t worry, you can do it! :]

Exercise
Convert the remaining methods like you did with insertRecipe(). You’ll need to do 
the following:

1. Update MemoryRepository methods to return a Future that matches the new 
Repository interface methods.

2. For all methods that change a watched item, add a call to add the item to the 
sink.

3. Remove all the calls to notifyListeners(). Hint - not all methods have this 
statement.

4. Wrap the return values in Futures.

5. Add @override before each method.

What do you think the return will look like for a method that returns a 
Future<void>? Got it? There might be a future for you yet.

return Future.value();

If you get stuck, check out memory_repository.dart in this chapter’s challenge 
folder — but first, give it your best shot!

After you complete the exercise, MemoryRepository shouldn’t have any more red 
squiggles — but you still have a few more tweaks to make before you can run your 
new, stream-powered app.

Flutter Apprentice Chapter 14: Working With Streams

 429



Note: It’s very important that you add recipes to the 
_recipeStreamController.sink method for recipes and 
_ingredientStreamController.sink for ingredients. Check the challenge 
project to ensure you did this correctly. You’ll need to do the same for the 
delete methods as well.

Switching Between Services
In an earlier chapter, you used a MockService to provide local data that never 
changes, but you also have access to SpoonacularService.

An easy way to do that is with an interface, or, as it’s known in Dart, an abstract 
class. Remember that an interface or abstract class is just a contract that 
implementing classes will provide the given methods.

It’ll look like this:

Go to the network folder and open service_interface.dart.

Here’s what it looks like:

abstract class ServiceInterface { 
  /// Query recipes with the given query string 
  /// offset is the starting point 
  /// number is the number of items 
  Future<RecipeResponse> queryRecipes( 
    String query, 
    int offset, 
    int number, 
  ); 

 
  /// Get the details of a specific recipe 
  Future<Response<Result<Recipe>>> queryRecipe( 
    String id, 
  ); 
}

Flutter Apprentice Chapter 14: Working With Streams

 430



This defines a class with two methods. One named queryRecipes(), for a list of 
recipes and queryRecipe for just a single recipe.

It has the same parameters and return values as SpoonacularService and 
MockService. Having each service implement this interface allows you to change the 
providers to provide this interface instead of a specific class.

You’re now ready to integrate the new code based on streams. Fasten your seat 
belt! :]

Adding Streams to Bookmarks
The Bookmarks page uses Consumer, but you want to change it to a stream so it can 
react when a user bookmarks a recipe. To do this, you need to replace the reference 
to MemoryRepository with Repository and use a StreamBuilder widget.

Start by opening ui/bookmarks/bookmarks.dart. Replace // TODO: Add Recipe 
Stream with:

late Stream<List<Recipe>> recipeStream;

Next, replace // TODO: Add initState with:

@override 
void initState() { 
  super.initState(); 
  final repository = ref.read(repositoryProvider.notifier); 
  recipeStream = repository.watchAllRecipes(); 
}

This will initialize the recipe stream.

Replace // TODO: Replace with Stream and the two subsequent lines with:

// 1 
return StreamBuilder<List<Recipe>>( 
  // 2 
  stream: recipeStream, 
  // 3 
  builder: (context, AsyncSnapshot<List<Recipe>> snapshot) { 
    // 4 
    if (snapshot.connectionState == ConnectionState.active) { 
      // 5 
      recipes = snapshot.data ?? []; 
    }

Flutter Apprentice Chapter 14: Working With Streams

 431



Don’t worry about the red squiggles for now. This code:

1. Uses StreamBuilder, which uses a List<Recipe> stream type.

2. Uses the new recipeStream to return a stream of recipes for the builder to use.

3. Uses the builder callback to receive your snapshot.

4. Checks the state of the connection. When the state is active, you have data.

At the bottom of the method, find // TODO: Add closing brackets and replace it 
with:

  }, 
);

At this point, you’ve achieved one of your two goals: you’ve changed the Recipes 
screen to use streams. Next, you’ll do the same for the Groceries tab.

Adding Streams to Groceries
To add streams to the grocery list, you’ll need to watch the ingredient stream.

Open ui/groceries/groceries.dart.

Find the initState() method and replace // TODO: Add Ingredient Stream 
with:

final repository = ref.read(repositoryProvider.notifier); 
final ingredientStream = repository.watchAllIngredients(); 
ingredientStream.listen( 
  (ingredients) { 
    setState(() { 
      currentIngredients = ingredients; 
    }); 
  }, 
);

In the buildIngredientList() method, remove:

final repository = ref.watch(repositoryProvider); 
currentIngredients = repository.currentIngredients;

This is no longer needed as the stream is listened to above.

Flutter Apprentice Chapter 14: Working With Streams

 432



Finally, modify startSearch() as follows:

void startSearch(String searchString) { 
  searching = searchString.isNotEmpty; 
  searchIngredients = currentIngredients 
      .where((element) => true == 
element.name?.contains(searchString)) 
      .toList(); 
  setState(() {}); 
}

Stop and restart your app. Make sure it works as before. Your main screen will look 
something like this after a search:

Flutter Apprentice Chapter 14: Working With Streams

 433



Tap a recipe. The Details page will look like this:

Flutter Apprentice Chapter 14: Working With Streams

 434



Next, tap the Bookmark button to return to the Recipes screen, then tap on the 
Bookmarks switch to see the recipe you just added:

Flutter Apprentice Chapter 14: Working With Streams

 435



Finally, go to the Groceries tab and make sure the recipe ingredients are all showing.

Congratulations! You’re now using streams to control the flow of data. If any of the 
screens change, the other screens will know about that change and will update the 
screen.

You’re also using the Repository interface, so you can go back and forth between a 
memory class and a different class in the future.

Flutter Apprentice Chapter 14: Working With Streams

 436



Key Points
• Streams are a way to asynchronously send data to other parts of your app.

• You usually create streams by using StreamController.

• Use StreamBuilder to add a stream to your UI.

• Abstract classes, or interfaces, are a great way to abstract functionality.

Where to Go From Here?
In this chapter, you learned how to use streams. If you want to learn more about the 
topic, visit the Dart documentation at https://dart.dev/tutorials/language/streams.

In the next chapter, you’ll learn about databases and how to persist your data locally.

Flutter Apprentice Chapter 14: Working With Streams

 437



15Chapter 15: Saving Data 
Locally
By Kevin David Moore

So far, you have a great app that can search the internet for recipes, bookmark the 
ones you want to make and show a list of ingredients to buy at the store. But what 
happens if you close the app, go to the store and try to look up your ingredients? 
They’re gone! As you might have guessed, having an in-memory repository means 
that the data doesn’t persist after your app closes.

One of the best ways to persist data is with a database.  Android, iOS, macOS, 
Windows and the web provide the SQLite database system access. This allows you to 
insert, read, update and remove structured data that are persisted on disk.

In this chapter, you’ll learn about using the Drift and sqlbrite packages.

By the end of the chapter, you’ll know:

• How to insert, fetch and remove recipes or ingredients.

• How to use the sqlbrite library and receive updates via streams.

• How to leverage the features of the Drift library when working with databases.

 438



Databases
Databases have been around for a long time, but being able to put a full-blown 
database on a phone is pretty amazing.

What is a database? Think of it like a file cabinet containing folders with sheets of 
paper. A database has tables, file folders that store data, and sheets of paper.

Database tables have columns defining data, which are then stored in rows. One of 
the most popular database management languages is Structured Query Language, 
commonly known as SQL.

You use SQL commands to get the data in and out of the database.

Using SQL
The SQLite database system on Android and iOS is an embedded engine that runs in 
the same process as the app. SQLite is lightweight, taking up less than 500 KB on 
most systems.

When SQLite creates a database, it stores it in one file inside the app. These files are 
cross-platform, meaning you can pull a file off a phone and read it on a regular 
computer.

Unlike a database server, SQLite needs no server configuration or server process.

While SQLite is small and runs fast, it still requires some knowledge of the SQL 
language and how to create databases, tables and execute SQL commands.

Flutter Apprentice Chapter 15: Saving Data Locally

 439



Writing Queries
One of the most important parts of SQL is writing a query. A query is a question or 
inquiry about a data set.  To make a query, use the SELECT command followed by any 
columns you want the database to return, then the table name. For example:

// 1 
SELECT name, address FROM Customers; 
// 2 
SELECT * FROM Customers; 
// 3 
SELECT name, address FROM Customers WHERE name LIKE 'A%';

Here’s what’s happening in the code above:

1. Returns the name and address columns from the CUSTOMERS table.

2. Using *, returns all columns from the specified table.

3. Uses WHERE to filter the returned data. In this case, it only returns data where 
NAME starts with A.

Adding Data
You can add data using the INSERT statement:

INSERT INTO Customers (NAME, ADDRESS) VALUES (value1, value2);

While you don’t have to list all the columns, if you want to add all the values, the 
values must be in the order you used to define the columns. It’s best practice to list 
the column names whenever you insert data. That makes it easier to update your 
values list if, say, you add a column in the middle.

Deleting Data
To delete data, use the DELETE statement:

DELETE FROM Customers WHERE id = 1;

If you don’t use the WHERE clause, you’ll delete all the data from the table. Here, you 
delete the customer whose id equals 1. You can use broader conditions, of course. 
For example, you might delete all the customers with a given city.

Flutter Apprentice Chapter 15: Saving Data Locally

 440



Updating Data
You use UPDATE to update your data. You won’t need this command for this app, but 
for reference, the syntax is:

UPDATE customers 
SET 
  phone = '555-12345', 
WHERE id = 1;

This updates the customer’s phone number whose id equals 1.

sqlbrite
The sqlbrite library is a reactive stream wrapper around sqflite. It allows you to set 
up streams so you can receive events when there’s a change in your database. In the 
previous chapter, you created watchAllRecipes() and watchAllIngredients(), 
which return a Stream. To create these streams from a database, sqlbrite uses a 
similar approach.

Adding a Database to Recipe Finder
If you’re following along with your app, open it and keep using it with this chapter. If 
not, locate this chapter’s projects folder and open the starter folder.

Note: If you use the starter app, don’t forget to add your apiKey  in network/
spoonacular_service.dart.

Flutter Apprentice Chapter 15: Saving Data Locally

 441



Your app manages two types of data: recipes and ingredients, which you’ll model 
according to this diagram:

In this chapter, you’ll use the Drift package. You’ll then swap the memory repository 
for the new database repository.

Adding Libraries
Open pubspec.yaml and add the following packages after the flutter_riverpod 
package:

synchronized: ^3.1.0 
sqlbrite: ^2.6.0 
sqlite3_flutter_libs: ^0.5.18 
web_ffi: ^0.7.2 
sqlite3: ^2.1.0

These packages provide the following:

1. synchronized: Helps implement lock mechanisms to prevent concurrent 
access.

2. sqlbrite: Reactive wrapper around sqflite that receives changes happening in the 
database via streams.

Flutter Apprentice Chapter 15: Saving Data Locally

 442



3. sqlite3_flutter_libs: Native sqlite3 libraries for mobile.

4. web_ffi: web_ffi is a drop-in solution for using dart:ffi on the web. Used for 
Flutter web databases.

5. sqlite3: Provides Dart bindings to SQLite via dart:ffi

Run Pub Get or flutter pub get.

Now, you’re ready to create your first database.

Using the Drift Library
Drift is a package that’s intentionally similar to Android’s Room library.

You don’t need to write SQL code and the setup is a lot easier. You’ll write specific 
Dart classes, and Drift will take care of the necessary translations to and from SQL 
code.

You need one file for dealing with the database and one for the repository. To start, 
add Drift to pubspec.yaml, after sqlite3:

drift: ^2.13.1

Next, add the Drift generator, which will write code for you, in the 
dev_dependencies section after chopper_generator:

drift_dev: ^2.13.2

Finally, run any of the following:

• flutter pub get from Terminal

• Pub get from the IDE window

• Tools ▸ Flutter ▸ Flutter Pub Get

Flutter Apprentice Chapter 15: Saving Data Locally

 443



Database Classes
For your next step, you need to create a set of classes that will describe and create 
the database, tables and Data Access Objects (DAOs). Below is a diagram showing 
how your database will look.

Database, Table and DatabaseAccessor are from Drift. You’ll create the other 
classes.

Note: A DAO (Data Access Object) is a class that’s in charge of accessing data 
from the database. You use it to separate your business logic code, e.g., the one 
that fetches the ingredients of a recipe, from the details of the persistence 
layer, which is SQLite in this case. A DAO can be a class, an interface or an 
abstract class. In this chapter, you’ll implement DAOs using classes.

Open the following files in the data/database directory and uncomment the code:

1. unsupported.dart

2. native.dart

3. web.dart

These files will be used below.

Flutter Apprentice Chapter 15: Saving Data Locally

 444



Inside database, create a file called recipe_db.dart. This file will define the database 
for recipes and ingredients. Add the following imports:

import 'package:drift/drift.dart'; 
import 'connection.dart' as impl; 
import '../models/models.dart';

This will add Drift and your models. connection.dart allows the code to create a 
connection based on whether the app is running on mobile, desktop or the web.

Now, add a part statement and some TODOs:

part 'recipe_db.g.dart'; 
 

// TODO: Add DbRecipe table definition here 
 

// TODO: Add DbIngredient table definition here 
 

// TODO: Add @DriftDatabase() and RecipeDatabase() here 
 

// TODO: Add RecipeDao here 
 

// TODO: Add IngredientDao 
 

// TODO: Add dbRecipeToModelRecipe here 
 

// TODO: Add recipeToInsertableDbRecipe here 
 

// TODO: Add dbIngredientToIngredient and 
ingredientToInsertableDbIngredient here

Remember that the part statement is a way to combine one file into another to form 
a whole file. The Drift generator will create this file for you later when you run the 
build_runner command. Until then, it’ll display a red squiggle.

Creating Recipe and Ingredient Tables
To create a table in Drift, you need to create a class that extends Table. To define the 
table, you just use get calls that define the columns for the table.

Still in recipe_db.dart, replace // TODO: Add DbRecipe table definition here 
with the following:

// 1 
class DbRecipe extends Table { 
  // 2 
  IntColumn get id => integer().autoIncrement()(); 

Flutter Apprentice Chapter 15: Saving Data Locally

 445



  // 3 
  TextColumn get label => text()(); 

 
  // 4 
  TextColumn get image => text()(); 

 
  // 5 
  TextColumn get description => text()(); 

 
  // 6 
  BoolColumn get bookmarked  => boolean()(); 

 
}

Here’s what you do in this code:

1. Create a class named DbRecipe that extends Table.

2. Create a column named id with type as an integer. autoIncrement() 
automatically creates and increments the IDs for you.

3. Create a label column made up of text.

4. Create an image column for storing the URL of the image.

5. Create a description text column.

6. Create a bookmarked column of type Boolean.

This definition is a bit unusual. You first define the column type with type classes 
that handle different types:

• IntColumn: Integers.

• BoolColumn: Booleans.

• TextColumn: Text.

• DateTimeColumn: Dates.

• RealColumn: Doubles.

• BlobColumn: Arbitrary blobs of data.

It also uses a “double” method call, where each call returns a builder. For example, to 
create IntColumn, you need to make a final call with the extra () to create it.

Flutter Apprentice Chapter 15: Saving Data Locally

 446



Defining the Ingredient Table

Now, find and replace // TODO: Add DbIngredient table definition here with 
the following:

class DbIngredient extends Table { 
  IntColumn get id => integer().autoIncrement()(); 

 
  IntColumn get recipeId => integer()(); 

 
  TextColumn get name => text()(); 

 
  RealColumn get amount => real()(); 

 
}

Now, for the fun part.

Creating the Database Class

Drift uses annotations. The first one you need is @DriftDatabase. This specifies 
the tables and Data Access Objects (DAO) to use.

Still in recipe_db.dart, add this class with the annotation by replacing // TODO: 
Add @DriftDatabase and RecipeDatabase() here with the following:

// 1 
@DriftDatabase( 
  tables: [ 
    DbRecipe, 
    DbIngredient, 
  ], 
  daos: [ 
    RecipeDao, 
    IngredientDao, 
  ] 
) 
// 2 
class RecipeDatabase extends _$RecipeDatabase { 
  // 3 
  RecipeDatabase() : super(impl.connect()); 

 
  // 4 
  @override 
  int get schemaVersion => 1; 
}

Flutter Apprentice Chapter 15: Saving Data Locally

 447



Here’s what the above code does:

1. Describe the tables, which you defined above, and DAOs this database will use. 
You’ll create the DAOs in a bit.

2. Extend _$RecipeDatabase, which the Drift generator will create. This doesn’t 
exist yet, but the part import at the top will include it.

3. To support the web platform, one of the imports is connection.dart. This file 
will import either the native or web files so you get the proper database 
initialization.

4. Set the database or schema version to 1. Increment this when your database 
changes.

There’s still a bit more to do. You need to create DAOs, which are classes that are 
specific to a table and allow you to call methods to access that table.

Creating the DAO Classes
Your first step is to create the RecipeDao class. You’ll see more red squiggles, just 
ignore them for now. With recipe_db.dart still open, replace // TODO: Add 
RecipeDao here with the following:

// 1 
@DriftAccessor(tables: [DbRecipe]) 
// 2 
class RecipeDao extends DatabaseAccessor<RecipeDatabase> with 
_$RecipeDaoMixin { 
  // 3 
  final RecipeDatabase db; 

 
  RecipeDao(this.db) : super(db); 

 
  // 4 
  Future<List<DbRecipeData>> findAllRecipes() => 
select(dbRecipe).get(); 

 
  // 5 
  Stream<List<Recipe>> watchAllRecipes() { 
     // TODO: Add watchAllRecipes code here 
  } 

 
  // 6 
  Future<List<DbRecipeData>> findRecipeById(int id) => 
      (select(dbRecipe)..where((tbl) => 
tbl.id.equals(id))).get(); 

Flutter Apprentice Chapter 15: Saving Data Locally

 448



  // 7 
  Future<int> insertRecipe(Insertable<DbRecipeData> recipe) => 
      into(dbRecipe).insert(recipe); 

 
  // 8 
  Future deleteRecipe(int id) => Future.value( 
      (delete(dbRecipe)..where((tbl) => 
tbl.id.equals(id))).go()); 
}

Here’s what’s going on there:

1. @DriftAccessor annotation that specifies the following class is a DAO class for 
the DbRecipe table.

2. Create the DAO class that extends the Drift DatabaseAccessor with the mixin, 
_$RecipeDaoMixin. This mixin will be created for you.

3. Create a field to hold an instance of your database.

4. Use a simple select() query to find all recipes.

5. Define watchAllRecipes(), but skip the implementation for now.

6. Define a more complex query that uses where to fetch recipes by ID.

7. Use into() and insert() to add a new recipe.

8. Use delete() and where() to delete a specific recipe.

Drift can be a bit more complex to set up in some ways, but it’s easy to use. Most of 
these calls are one-liners and quite easy to read.

Let’s break down the find method:

(select(dbRecipe)..where((tbl) => tbl.id.equals(id))).get();

1. select takes a table name.

2. Use the .. to cascade a where function.

3. This takes a variable name tbl. This can be any name.

4. It returns all rows whose IDs match the one in the table.

5. Call the get method to execute the query.

Flutter Apprentice Chapter 15: Saving Data Locally

 449



Inserting data is pretty simple. Just specify the table and pass in the class. Notice 
that you’re not passing the model recipe, you’re passing Insertable, which is an 
interface that Drift requires. When you generate the part file, you’ll see a new class, 
DbRecipeData, which implements this interface. Let’s break this down:

into(dbRecipe).insert(recipe)

1. This method will insert a record into the recipe table.

2. Execute the insert command with the given recipe.

Deleting requires the table and a where. This function just returns true for those 
rows you want to delete. Instead of get(), you use go().

Now, replace // TODO: Add IngredientDao with the following. Again, ignoring the 
red squiggles. They’ll go away when all the new classes are in place.

// 1 
@DriftAccessor(tables: [DbIngredient]) 
// 2 
class IngredientDao extends DatabaseAccessor<RecipeDatabase> 
    with _$IngredientDaoMixin { 
  final RecipeDatabase db; 

 
  IngredientDao(this.db) : super(db); 

 
  Future<List<DbIngredientData>> findAllIngredients() => 
      select(dbIngredient).get(); 

 
  // 3 
  Stream<List<DbIngredientData>> watchAllIngredients() => 
      select(dbIngredient).watch(); 

 
  // 4 
  Future<List<DbIngredientData>> findRecipeIngredients(int id) 
=> 
      (select(dbIngredient)..where((tbl) => 
tbl.recipeId.equals(id))).get(); 

 
  // 5 
  Future<int> insertIngredient(Insertable<DbIngredientData> 
ingredient) => 
      into(dbIngredient).insert(ingredient); 

 
  // 6 
  Future deleteIngredient(int id) => 
      Future.value((delete(dbIngredient)..where((tbl) => 
          tbl.id.equals(id))).go()); 
}

Flutter Apprentice Chapter 15: Saving Data Locally

 450



Here’s what’s going on above:

1. Similar to RecipeDao, you specify that this class is a DAO for DbIngredient.

2. Extend DatabaseAccessor with _$IngredientDaoMixin.

3. Call watch() to create a stream.

4. Use where() to select all ingredients that match the recipe ID.

5. Use into() and insert() to add a new ingredient.

6. Use delete() plus where() to delete a specific ingredient.

Now it’s time to generate the part file.

Generating the Part File
Now, you need to create the Drift part file. In Terminal, run:

dart run build_runner build --delete-conflicting-outputs

This generates recipe_db.g.dart.

Note: --delete-conflicting-outputs deletes previously generated files 
and then rebuilds them.

After the file has been generated, open recipe_db.g.dart and take a look. It’s a very 
large file. It generated several classes, saving you a lot of work!

Note: If Android Studio doesn’t detect the presence of the newly generated 
recipe_db.g.dart file, right-click the lib folder and select Reload from Disk.

Now that you’ve defined these tables, you need to create methods that convert your 
database classes to your regular model classes and back.

Flutter Apprentice Chapter 15: Saving Data Locally

 451



Converting Your Drift Recipes

At the end of recipe_db.dart, replace // TODO: Add dbRecipeToModelRecipe 
here with:

// Conversion Methods 
Recipe dbRecipeToModelRecipe( 
    DbRecipeData recipe, List<Ingredient> ingredients) { 
  return Recipe( 
    id: recipe.id, 
    label: recipe.label, 
    image: recipe.image, 
    description: recipe.description, 
    bookmarked: recipe.bookmarked, 
    ingredients: ingredients, 
  ); 
}

This converts a Drift recipe to a model recipe.

The next method converts Recipe to a class that you can insert into a Drift 
database. Replace // TODO: Add recipeToInsertableDbRecipe here with this:

Insertable<DbRecipeData> recipeToInsertableDbRecipe(Recipe 
recipe) { 
  return DbRecipeCompanion.insert( 
    id: Value.ofNullable(recipe.id), 
    label: recipe.label ?? '', 
    image: recipe.image ?? '', 
    description: recipe.description ?? '', 
    bookmarked: recipe.bookmarked, 
  ); 
}

Insertable is an interface for objects that can be inserted into the database or 
updated. Use the generated DbRecipeCompanion.insert() to create that class.

Creating Classes for Ingredients

Next, you’ll do the same for the ingredients models. Replace // TODO: Add 
dbIngredientToIngredient and ingredientToInsertableDbIngredient here 
with the following:

Ingredient dbIngredientToIngredient(DbIngredientData ingredient) 
{ 
  return Ingredient( 
    id: ingredient.id, 
    recipeId: ingredient.recipeId, 
    name: ingredient.name,

Flutter Apprentice Chapter 15: Saving Data Locally

 452



    amount: ingredient.amount, 
  ); 
} 

 
DbIngredientCompanion ingredientToInsertableDbIngredient( 
    Ingredient ingredient) { 
  return DbIngredientCompanion.insert( 
    recipeId: ingredient.recipeId ?? 0, 
    name: ingredient.name ?? '', 
    amount: ingredient.amount ?? 0, 
  ); 
}

These methods convert a Drift ingredient into an instance of Ingredient and vice 
versa.

Updating watchAllRecipes()

Now that you’ve written the conversion methods, you can update 
watchAllRecipes().

You’ll notice most of the red squiggles in data/database/recipe_db.dart are now 
gone. But there’s one left.

Note: If you’re having problems, run flutter clean and flutter pub get in 
case your IDE isn’t up to date with the newly generated files.

If you’re still having problems, try deleting pubspec.lock, then run flutter 
clean, and flutter pub get.

Locate // TODO: Add watchAllRecipes code here and replace it with:

// 1 
return select(dbRecipe) 
  // 2 
  .watch() 
  // 3 
  .map((rows) { 
    final recipes = <Recipe>[]; 
    // 4 
    for (final row in rows) { 
      // 5 
      final recipe = dbRecipeToModelRecipe(row, <Ingredient>[]); 
      // 6 
      if (!recipes.contains(recipe)) { 
          recipes.add(recipe); 
      }

Flutter Apprentice Chapter 15: Saving Data Locally

 453



    } 
    return recipes; 
  }, 
);

Here’s the step-by-step:

1. Use select() to start a query.

2. Create a stream.

3. Map each list of rows.

4. For each row, execute the code below.

5. Convert the recipe row to a regular recipe with an empty ingredient list.

6. Add the recipe to your recipes list.

This creates a stream of recipes.

No more red squiggles. :]

Run the app to make sure everything works correctly. You can run it on Android, iOS, 
macOs, the web or Windows. On the web, it should look something like:

Flutter Apprentice Chapter 15: Saving Data Locally

 454



Creating the Drift Repository
Now that you have the Drift database code written, you need to write a repository to 
handle it. You’ll create a class named DBRepository that implements Repository:

In the repositories directory, create a new file named db_repository.dart. Add the 
following imports:

import 'dart:async'; 
import 'package:flutter_riverpod/flutter_riverpod.dart'; 
import '../database/recipe_db.dart'; 
import '../models/current_recipe_data.dart'; 
import '../models/models.dart'; 
import '../repositories/repository.dart';

This imports your models, the repository interface and your newly-created 
recipe_db.dart.

Next, create DBRepository and some fields:

class DBRepository extends Notifier<CurrentRecipeData> 
implements Repository { 
  // 1 
  late RecipeDatabase recipeDatabase; 
  // 2 
  late RecipeDao _recipeDao; 
  // 3 
  late IngredientDao _ingredientDao; 
  // 4 
  Stream<List<Ingredient>>? ingredientStream; 
  // 5 
  Stream<List<Recipe>>? recipeStream; 

 
  @override 
  CurrentRecipeData build() { 
    const currentRecipeData = CurrentRecipeData(); 
    return currentRecipeData; 
  } 

 
  // TODO: Add findAllRecipes()

Flutter Apprentice Chapter 15: Saving Data Locally

 455



  // TODO: Add watchAllRecipes() 
  // TODO: Add watchAllIngredients() 
  // TODO: Add findRecipeById() 
  // TODO: Add findAllIngredients() 
  // TODO: Add findRecipeIngredients() 
  // TODO: Add insertRecipe() 
  // TODO: Add insertIngredients() 
  // TODO: Add Delete methods 

 
  @override 
  Future init() async { 
    // 6 
    recipeDatabase = RecipeDatabase(); 
    // 7 
    _recipeDao = recipeDatabase.recipeDao; 
    _ingredientDao = recipeDatabase.ingredientDao; 
  } 

 
  @override 
  void close() { 
    // 8 
    recipeDatabase.close(); 
  } 
}

Here’s what’s happening in the code above:

1. Stores an instance of the Drift RecipeDatabase.

2. Stores a private RecipeDao to handle recipes.

3. Stores a private IngredientDao that handles ingredients.

4. Stores a stream that watches ingredients.

5. Stores a stream that watches recipes.

6. Creates your database.

7. Gets instances of your DAOs.

8. Closes the database.

Implementing the Repository

As you did in past chapters, you’ll now add all the missing methods following the 
TODO: indications.Replace // TODO: Add findAllRecipes() with:

@override 
Future<List<Recipe>> findAllRecipes() {

Flutter Apprentice Chapter 15: Saving Data Locally

 456



  // 1 
  return _recipeDao.findAllRecipes() 
    // 2 
    .then<List<Recipe>>( 
    (List<DbRecipeData> dbRecipes) async { 
      final recipes = <Recipe>[]; 
      // 3 
      for (final dbRecipe in dbRecipes) { 
        // 4 
        final ingredients = await 
findRecipeIngredients(dbRecipe.id); 
        // 5 
        final recipe = dbRecipeToModelRecipe(dbRecipe, 
ingredients); 
        recipes.add(recipe); 
      } 
      return recipes; 
    }, 
  ); 
}

The code above does the following:

1. Uses RecipeDao to find all recipes.

2. Takes the list of DbRecipeData items, executing then after findAllRecipes() 
finishes.

3. For each recipe:

4. Gets a list of ingredients for the given recipe ID.

5. Converts the Drift recipe to a model recipe, then adds the recipe to the list.

The next step is simple. Find // TODO: Add watchAllRecipes() and substitute it 
with:

@override 
Stream<List<Recipe>> watchAllRecipes() { 
  recipeStream ??= _recipeDao.watchAllRecipes(); 
  return recipeStream!; 
}

This just calls the same method name on the recipe DAO class, then saves an 
instance so you don’t create multiple streams.

Next, replace // TODO: Add watchAllIngredients() with:

@override 
Stream<List<Ingredient>> watchAllIngredients() {

Flutter Apprentice Chapter 15: Saving Data Locally

 457



  if (ingredientStream == null) { 
    // 1 
    final stream = _ingredientDao.watchAllIngredients(); 
    // 2 
    ingredientStream = stream.map((dbIngredients) { 
      final ingredients = <Ingredient>[]; 
      // 3 
      for (final dbIngredient in dbIngredients) { 
        ingredients.add(dbIngredientToIngredient(dbIngredient)); 
      } 
      return ingredients; 
    },); 
  } 
  return ingredientStream!; 
}

This:

1. Gets a stream of ingredients.

2. Maps each ingredient in the stream to a stream of model ingredients

3. Converts each ingredient in the list to a model ingredient.

Finding Recipes and Ingredients
The find methods are a bit easier, but they still need to convert each database class 
to a model class.

Replace // TODO: Add findRecipeById() with:

@override 
Future<Recipe> findRecipeById(int id) async { 
    // 1 
    final ingredients = await findRecipeIngredients(id); 
    // 2 
    return _recipeDao.findRecipeById(id).then((listOfRecipes) => 
        dbRecipeToModelRecipe(listOfRecipes.first, 
ingredients)); 
}

1. Find all of the ingredients for the given recipe.

2. Since findRecipeById() returns a list, just take the first one and convert it.

Look for // TODO: Add findAllIngredients() and replace it with:

@override 
Future<List<Ingredient>> findAllIngredients() {

Flutter Apprentice Chapter 15: Saving Data Locally

 458



  return 
_ingredientDao.findAllIngredients().then<List<Ingredient>>( 
    (List<DbIngredientData> dbIngredients) { 
      final ingredients = <Ingredient>[]; 
      for (final ingredient in dbIngredients) { 
        ingredients.add(dbIngredientToIngredient(ingredient)); 
      } 
      return ingredients; 
    }, 
  ); 
}

This method is almost like watchAllIngredients(), except it doesn’t use a stream.

Finding all the ingredients for a recipe is similar. Replace // TODO: Add 
findRecipeIngredients() with:

@override 
Future<List<Ingredient>> findRecipeIngredients(int recipeId) { 
  return _ingredientDao.findRecipeIngredients(recipeId).then( 
    (listOfIngredients) { 
      final ingredients = <Ingredient>[]; 
      for (final ingredient in listOfIngredients) { 
        ingredients.add(dbIngredientToIngredient(ingredient)); 
      } 
      return ingredients; 
    }, 
  ); 
}

This method finds all the ingredients associated with a single recipe.Now it’s time 
to look at inserting recipes.

Inserting Recipes and Ingredients
To insert a recipe, you first insert the recipe itself and then insert all its ingredients. 
Replace // TODO: Add insertRecipe() with:

@override 
Future<int> insertRecipe(Recipe recipe) { 
  // 1  
  if (state.currentRecipes.contains(recipe)) { 
    return Future.value(0); 
  } 
  return Future( 
    () async { 
      // 2 
      state = 
          state.copyWith(currentRecipes: 

Flutter Apprentice Chapter 15: Saving Data Locally

 459



[...state.currentRecipes, recipe]); 
      // 3 
      final id = 
      await _recipeDao.insertRecipe( 
        recipeToInsertableDbRecipe(recipe), 
      ); 
      final ingredients = <Ingredient>[]; 
      for (final ingredient in recipe.ingredients) { 
        // 4 
        ingredients.add(ingredient.copyWith(recipeId: id)); 
      } 
      // 5 
      insertIngredients(ingredients); 
      return id; 
    }, 
  ); 
}

Here you:

1. Check to see if the recipe already exists.

2. Update the state with the new recipe.

3. Use the recipe DAO to insert a converted model recipe.

4. Add a copy of the ingredient with the recipe ID for each ingredient.

5. Insert all the ingredients. You’ll define these next.

Now, it’s finally time to add methods to insert ingredients. Replace // TODO: Add 
insertIngredients() with:

@override 
Future<List<int>> insertIngredients(List<Ingredient> 
ingredients) { 
  return Future( 
    () { 
      // 1 
      if (ingredients.isEmpty) { 
        return <int>[]; 
      } 
      final resultIds = <int>[]; 
      for (final ingredient in ingredients) { 
        // 2 
        final dbIngredient = 
            ingredientToInsertableDbIngredient(ingredient); 
        // 3 
        _ingredientDao 
            .insertIngredient(dbIngredient) 
            .then((int id) => resultIds.add(id));

Flutter Apprentice Chapter 15: Saving Data Locally

 460



      } 
      // 4 
      state = state.copyWith( 
        currentIngredients: 
[...state.currentIngredients, ...ingredients]); 

 
      return resultIds; 
    }, 
  ); 
}

This code:

1. Checks to make sure you have at least one ingredient.

2. Converts the ingredient.

3. Inserts the ingredient into the database and adds a new ID to the list.

4. Update the state with the new ingredients.

Now, it’s time to add code to delete recipes and ingredients.

Methods for Deleting Recipes and Ingredients
Deleting is much easier. You need to call the DAO methods. Replace // TODO: Add 
Delete methods with:

@override 
Future<void> deleteRecipe(Recipe recipe) { 
  if (recipe.id != null) { 
    // 1 
    final updatedList = [...state.currentRecipes]; 
    updatedList.remove(recipe); 
    state = state.copyWith(currentRecipes: updatedList); 
    // 2 
    _recipeDao.deleteRecipe(recipe.id!); 
    deleteRecipeIngredients(recipe.id!); 
  } 
  return Future.value(); 
} 

 
@override 
Future<void> deleteIngredient(Ingredient ingredient) { 
  if (ingredient.id != null) { 
    // 3 
    return _ingredientDao.deleteIngredient(ingredient.id!); 
  } else { 
    return Future.value(); 
  }

Flutter Apprentice Chapter 15: Saving Data Locally

 461



} 
 

@override 
Future<void> deleteIngredients(List<Ingredient> ingredients) { 
  for (final ingredient in ingredients) { 
    if (ingredient.id != null) { 
      _ingredientDao.deleteIngredient(ingredient.id!); 
    } 
  } 
  return Future.value(); 
} 

 
@override 
Future<void> deleteRecipeIngredients(int recipeId) async { 
  // 4 
  final ingredients = await findRecipeIngredients(recipeId); 
  // 5 
  return deleteIngredients(ingredients); 
}

The last method is the only one that’s different. In the code above, you:

1. Delete the recipe from our state list.

2. Use the RecipeDao to delete the recipe.

3. Use the IngredientDao to delete the ingredient.

4. Find all ingredients for the given recipe ID.

5. Delete the list of ingredients.

Phew! The hard work is over.

Replacing the Repository

Now, you just have to replace your memory repository with your shiny new db 
repository.

Open providers.dart. Add the import:

import 'data/repositories/db_repository.dart';

and remove the memory_repository.dart import.

Flutter Apprentice Chapter 15: Saving Data Locally

 462



Change the repositoryProvider from:

final repositoryProvider = 
    NotifierProvider<MemoryRepository, CurrentRecipeData>(() { 
  return MemoryRepository(); 
});

to:

final repositoryProvider = 
    NotifierProvider<DBRepository, CurrentRecipeData>(() { 
      throw UnimplementedError(); 
});

Open main.dart. Add the import:

import 'data/repositories/db_repository.dart';

Delete the import statement: import 'data/memory_repository.dart’; if 
present.

Add this after the sharedPrefs:

final repository = DBRepository(); 
await repository.init();

Then, add the repository to the overrides:

repositoryProvider.overrideWith(() { return repository; }),

Running the App
Stop the running app, build and run. Try performing searches, adding bookmarks, 
checking the groceries and deleting bookmarks. It will work just the same as with 
MemoryRepository, with the added value that bookmarks are persisted across 
application runs. Try running on Mac, Windows or the web.

Congratulations! Now, your app is using all the power provided by Drift to store data 
in a local database!

Flutter Apprentice Chapter 15: Saving Data Locally

 463



Key Points
• Databases persist data locally to the device.

• Data stored in databases are available after the app restarts.

• The Drift package is more powerful, easier to set up and you interact with the 
database via Dart classes that have clear responsibilities.

Where to Go From Here?
To learn about:

• Databases and SQLite, go to https://flutter.dev/docs/cookbook/persistence/sqlite.

• Drift, go to https://pub.dev/packages/drift.

• sqlbrite go to https://pub.dev/packages/sqlbrite.

• The database that started it all, go to https://www.sqlite.org/index.html.

In the next section, you’ll learn about Firebase and how to use Firestore Database.

Flutter Apprentice Chapter 15: Saving Data Locally

 464



Section V: Working With 
Firebase Cloud Firestore

In this section you will learn how to create and use a Firebase Cloud Firestore. You 
will learn how to use it to add and retrieve data. Then you will learn about 
authentication and how to secure your data.

 465



16Chapter 16: Firebase 
Cloud Firestore
By Vincenzo Guzzi, Kevin David Moore & Stef Patterson

When you want to store information for many people, you can’t realistically store it 
on one person’s phone. It has to be stored in the cloud. You could hire a team of 
developers to design and implement a backend system that connects to a database 
via a set of APIs. But, this could take months. Wouldn’t it be great if you could just 
connect to an existing system?

This is where Firebase Cloud Firestore comes in. You no longer need to write 
complicated apps that use thousands of lines of async tasks and threaded processes 
to simulate reactiveness. With Cloud Firestore, you’ll be up and running in no time.

 466



In this chapter, you’ll add an instant messaging feature to the  Yummy app.

While adding this feature, you’ll learn:

• About Cloud Firestore and when to use it.

• The steps required to set up a Firebase project with the Cloud Firestore.

• How to set up user authentication.

• How to connect to, query and populate the Cloud Firestore.

• How to use the Cloud Firestore to build your own instant messaging app.

Getting Started
First, open the starter project from this chapter’s project materials and run 
flutter pub get.

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 467



Next, build and run your project. You’ll see the Yummy app’s Chat tab.

Right now, your app doesn’t do much, but when you’re done, you’ll know how to use 
Cloud Firestore to send and receive messages.

What is Cloud Firestore?
Google has two NoSQL document databases within the Firebase suite of tools: 
Realtime Database and Cloud Firestore. But what’s the difference?

Google created Firestore to enable large-scale software with deeply layered data. 
You can query data and receive it separately, creating a truly elastic environment 
that copes well as your data set grows.

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 468



Realtime Database, though still a document-driven NoSQL database, returns data 
in JSON format. When you query a tree of JSON data, it includes all of its child nodes. 
To keep your transactions light and nimble, you have to keep your data hierarchy as 
flat as possible.

Both of these solutions are great and have similarities. They each have a free plan, 
and after you’ve reached your limit, you can pay-as-you-go. In both solutions, you 
don’t have to deploy and maintain your own servers, and each has live updates.

There are some differences, and it’s important to know when to use one and not the 
other. Here are some key areas for each database:

Firebase Cloud Firestore

• Has a free plan but charges per transaction and, to a lesser extent, for storage used 
past the limit.

• It’s easy to scale.

• Stores data in document collections.

• Can handle complex, deeply layered data sets and relations.

• Supports indexed queries with compound sorting and filtering.

• Available for mobile and web, including offline support.

Firebase Realtime Database

• Also has a free plan, but charges for storage used, not for queries made, past the 
limit.

• Extremely low latency.

• Data is stored in a single JSON tree.

• Easy to store simple data using JSON.

• You can either sort or filter on a query, but not both.

• Supports Apple and Android apps, including offline support. Doesn’t support 
offline web clients.

In this chapter, you’ll be using Cloud Firestore.

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 469



Note: To see a full comparison, see Google’s Choose a Database: Cloud 
Firestore or Realtime Database (https://firebase.google.com/docs/database/
rtdb-vs-firestore). Google has a lot of other database options (https://
cloud.google.com/products/databases) beyond NoSQL databases.

Setting Up a Firebase Project
Before you can use any of Google’s Cloud services, you have to create a project on 
the Firebase Console.

Note: You’ll create your free tier Cloud Firestore database later.

First, go to https://console.firebase.google.com and click Create a project.

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 470



Name your project KodecoChat, and click Continue. If you’ve never created a 
Firebase project, you’ll be prompted to read and accept the Firebase terms, shown 
below on the left.

Disable Google Analytics since you don’t need it for this chapter, and click Create 
project.

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 471



Give Google a minute to create your project.

When your project’s ready, click Continue.

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 472



You should be returned to the Project Overview page.

Before you can add Firebase to your app, you need to have Firebase Command Line 
Interface (CLI) installed. You can skip the next section if you have it already 
installed. Leave your Firebase Project Overview open.

Installing Firebase CLI
What is Firebase CLI? It’s a Firebase management toolkit that enables running 
commands from command-line. Installation varies depending on your platform and 
preferred installation option — standalone binary or Node Package Manager 
(npm) that uses Node.js.

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 473



Google has great Firebase CLI reference (https://firebase.google.com/docs/cli) 
documentation that will walk you through installation based on your computer’s 
operating system.

Once you’ve installed Firebase CLI, come back to continue adding Firebase to your 
app.

Using the Firebase CLI to Log In
To use Firebase from your IDE, you need to log in and select your project. Open 
Terminal and execute the following:

firebase login

This will ask you to allow Firebase to collect usage and error-reporting information.

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 474



If you don’t want to allow sharing, type n and press enter. Otherwise, press enter or 
accept — the default is Y.

Your browser should automatically open the Google login screen. Log in to the 
account you used to create your Firebase project.

After logging in, a consent message is displayed. Read the details, and assuming you 
agree, click Allow.

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 475



A login confirmation message is displayed. Close the tab/window.

Return to your Flutter IDE. In Terminal, you’ll see a success message.

Well done! You are all set. Now it’s time to add Firebase to your app.

Adding Firebase
The Firebase team has made things a lot easier for Flutter developers. You used to 
have to set up iOS, Android, and web apps separately. Now, you can add a Flutter app, 
and Firebase will do all the work for you.

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 476



Return to your Firebase Console in the browser. Tap the Flutter logo to add your 
app.

Tap Next since the Firebase CLI is ready to use and you already have a Flutter 
project.

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 477



As you can see, the next step includes command-line statements.

Don’t close your browser. Return to your Flutter IDE, and in Terminal, execute the 
following:

dart pub global activate flutterfire_cli

dart pub global gives you command-line access to the specified package from 
anywhere. You’ve just activated flutterfire_cli.

Make sure you’re at the root level of your Flutter project and run this, substituting 
the XXXXX for what your Firebase project reads.

flutterfire configure --project=kodecochat-XXXXX

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 478



Flutterfire connects to Firebase and lets you choose which platforms you wish to 
configure.

Use your arrow keys and spacebar if you wish to deselect a platform and press 
Enter. Wait a few minutes while your Firebase project is configured.

If there’s an update needed, as shown below, press Enter.

A message is displayed when the configuration is complete. It lists the Dart file it 
created as well as the Firebase App ID for each platform you selected.

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 479



Open lib/firebase_options.dart.

As you can see, Flutterfire CLI added all the code, including the new App ID details. 
Don’t edit this file, and ignore the red squiggles.

Close firebase_options.dart and return to your browser and the Firebase Console. 
Click Next.

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 480



Next, Google displays the code used for initializing your app, but you won’t be doing 
that step yet.

Click Continue to console. You’ll see that Firebase now has your Flutter apps listed. 
Refresh your browser if you don’t see them.

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 481



Tap the X apps button, where X is the number of platforms you chose when doing 
the Flutterfire Initialization, to see the automatically set up apps.

Awesome! Flutterfire has set up your Firebase project and has added code to your 
Flutter app. Now it’s time to add functionality to Yummy.

Open pubspec.yaml and after flutter_riverpod add the following, aligning each 
of these with flutter_riverpod:

  firebase_auth: ^4.14.1 
  firebase_core: ^2.23.0 
  cloud_firestore: ^4.13.2

Run flutter pub get or click Pub get.

Open main.dart and look at the top of main(). You’ll notice 
WidgetsFlutterBinding.ensureInitialized(). Whenever you’re working with 
Firebase you need to have this to ensure there’s a platform channel to the device’s 
native code for Firebase initialization.

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 482



Replace // TODO: Add Firebase App Initialization with the following, 
ignoring any red squiggles:

await Firebase.initializeApp( 
  options: DefaultFirebaseOptions.currentPlatform, 
);

Next, replace // TODO: Add Firebase core and options imports with:

import 'package:firebase_core/firebase_core.dart'; 
import 'firebase_options.dart';

initializeApp() initializes a Firebase instance and should be run before using 
any Flutterfire packages.

Note: If you receive an error message about multidex, this is because the 
Firebase package is so big. You need to enable multidex.

From Terminal, run flutter run --debug, and when prompted, choose your 
Android device.

When asked if you want to enable multidex support, enter y and press Enter. 
Your app will continue to run.

When you’re ready to continue with the chapter, return to Terminal and enter 
q to stop your app.

For additional details, see the Flutter docs on enabling multidex support 
(https://docs.flutter.dev/deployment/android#enabling-multidex-support).

Note: While your app will run on macOS, there are currently known macOS 
issues (https://github.com/firebase/flutterfire/labels/platform%3A%20macos) 
when using FlutterFire and Cloud Firestore. Depending on the situation, your 
app will run, but warnings will be printed.

Check the FlutterFire GitHub repo for issues (https://github.com/firebase/
flutterfire/issues). Some known issues are trackingID is deprecated (https://
github.com/firebase/flutterfire/issues/11751) and Cloud Firestore Xcode build 
times can take several minutes to render (https://github.com/firebase/
flutterfire/issues/2751).

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 483



Run your app, and you’ll see that the UI hasn’t changed.

When using the chat feature, users want to keep their messages separate from other 
people’s. This means your app needs a way to keep track of each user and their 
messages. To do this, you need to add authentication to your app.

Adding Authentication
Firebase enables you to add user authentication without having to write and 
maintain your own server-side code. This can save you a lot of time and effort.

Firebase also gives you access to several different providers. For Yummy, you’re 
going to use email and password.

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 484



The FirebaseAuth class allows you to:

• Create a new user.

• Sign in a user.

• Sign out a user.

• Get data from that user.

Setting up Firebase Authentication
Return to the Firebase console in the browser. Click the Authentication card.

The next couple of steps can vary depending on if you’ve used Firebase before or not.

If prompted with another Authentication screen, click Get started. If not, go to the 
next step.

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 485



Next, if you see the Set up sign-in method button, click it. Otherwise, go to the next 
step.

When you see the Authentication section, click Add new provider.

As mentioned before, you’re going to be using Email/Password for Yummy, but 
before you proceed, take a look at all the different authentication options available.

When you’re ready, under Native providers, choose Email/Password.

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 486



Click the Email/Password Enable switch, leaving the email link disabled and click 
Save.

You’ve now enabled authentication. It’s time to talk about how Firebase stores data.

Understanding Firestore Data Storage
Cloud Firestore stores data in Documents that are like JSON dictionaries in key/
value pairs. These pairs are called fields. Documents can also contain nested 
subcollections and arrays.

Fields can have several different types:

• String

• Number

• Boolean

• Map

• Array

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 487



• Null

• Timestamp

• Geopoint

• Reference to another document

This is a very basic document example:

{ 
  "name": "Jane Doe", 
  "department": 250, 
  "occupation": "Flutter Developer" 
}

This document has three fields: name, department and occupation. There are two 
string fields and one number.

A collection of documents is called… wait for it… Collections. Collections can only 
store 1 MB Documents.

[ 
  { 
    "name": "Jane Doe", 
    "department": 250, 
    "occupation": "Flutter Developer" 
  }, 
  { 
    "name": "John Doe", 
    "department": 500, 
    "occupation": "Flutter Developer" 
  } 
]

This collection contains two documents.

You can use Firestore’s console to manually enter data and see the data appear 
almost immediately in your app. If you enter data in your app, you’ll see it appear on 
the web and other apps just as fast.

Now that you know about collections, are you ready to create your app’s database? 
Thought so. :]

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 488



Creating Cloud Firestore Database
Return to the Firebase Project Overview page.

Tap Cloud Firestore. If you don’t see it tap See all Build features.

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 489



Select Create Database.

Next, select your region for your Location and then click Next:

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 490



Select Start in test mode and click Enable.

This ensures you can read and write data easily while developing your app.

You’ll see steps displayed while your database is being created. It can go fast, so 
don’t be worried if you don’t see the same text.

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 491



After your database has been created, you’ll be redirected to your database console.

You can come back to the Data page later to see your app data in real time.

By default, Firestore is set up so that anyone can write to your database if they have 
the connection details. You don’t want that, do you? Next, you’ll set up database 
security and rules for limiting access.

Firebase Security Rules
Firebase database security consists of rules that limit who can read and/or write to 
specific paths. The rules consist of a JSON string in the Rules tab.

When you set up the database, you used the test ruleset. You need to lock down the 
database so that only those who have logged into your app can read and write 
messages.

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 492



From the Cloud Firestore Database screen, select the Rules tab.

Replace the current rules with:

// 1 
rules_version = '2'; 
service cloud.firestore { 
  match /databases/{database}/documents { 
    match /{document=**} { 
      // 2 
      allow read, write: if request.auth != null; 
    } 
  } 
}

1. Rules version 2 changed recursive wildcard behavior and is required when using 
collections. For more details, see the Cloud Firestore Security documentation 
(https://firebase.google.com/docs/firestore/security/get-started)

2. auth is a special variable and contains the current user information. By checking 
to make sure that it’s not null, you ensure a user is logged in.

When you’re ready, click Publish to save the changes.

Now that your database is set up and security is in place, it’s time to connect your 
app to your new Firebase project.

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 493



Modeling Data
Data modeling is an important part of your app development process. By creating a 
data model, you can ensure that the data is organized and stored in a way that is 
efficient, scalable and secure. To keep your data models separate from your UI, you’ll 
use the lib/models folder to store your data models and data access objects (DAO).

Creating User Data Access Object (DAO)
In lib/models, create a new file named user_dao.dart and add the following:

import 'dart:developer'; 
import 'package:firebase_auth/firebase_auth.dart'; 
import 'package:flutter/material.dart'; 

 
// 1 
class UserDao extends ChangeNotifier { 
  String errorMsg = 'An error has occurred.'; 

 
  // 2 
  final auth = FirebaseAuth.instance; 

 
  // TODO: Add helper methods 
}

Here are a few things to highlight in the code above:

1. The UserDao class extends ChangeNotifier so you can notify any listeners 
whenever a user has logged in or logged out.

2. The auth variable is used to hold on to an instance of FirebaseAuth.

Next, replace // TODO: Add helper methods with:

// 1 
bool isLoggedIn() { 
  return auth.currentUser != null; 
} 
// 2 
String? userId() { 
  return auth.currentUser?.uid; 
} 
//3 
String? email() { 
  return auth.currentUser?.email; 
} 

 
// TODO: Add signup

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 494



In this code, you:

1. Return true if the user is logged in. If the current user is null, they’re logged 
out.

2. Return the ID of the current user, which could be null.

3. Return the email of the current user.

Signing Up

The first task for a user is to create an account. Replace // TODO: Add signup with:

// 1 
Future<String?> signup(String email, String password) async { 
  try { 
    // 2 
    await auth.createUserWithEmailAndPassword( 
      email: email, 
      password: password, 
    ); 
    // 3 
    notifyListeners(); 
    return null; 
  } on FirebaseAuthException catch (e) { 
    // 4 
      if (email.isEmpty) { 
        errorMsg = 'Email is blank.'; 
      } else if (password.isEmpty) { 
        errorMsg = 'Password is blank.'; 
      } else if (e.code == 'weak-password') { 
        errorMsg = 'The password provided is too weak.'; 
      } else if (e.code == 'email-already-in-use') { 
        errorMsg = 'The account already exists for that email.'; 
      } 
   return errorMsg; 
  } catch (e) { 
    // 5 
    log(e.toString()); 
    return e.toString(); 
  } 
} 

 
// TODO: Add login

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 495



Here you:

1. Pass in the email and password the user entered. For a real app, you’ll need to 
make sure those Strings meet your requirements. Return an error message if 
needed.

2. Call the Firebase method, which creates a new account with email and password.

3. Notify all listeners so they can then check when a user is logged in.

4. Handle some common errors.

5. Catch any other type of exception.

Logging In

Once a user has created an account, they can log in. Replace // TODO: Add login 
with:

// 1 
Future<String?> login(String email, String password) async { 
  try { 
    // 2 
    await auth.signInWithEmailAndPassword( 
      email: email, 
      password: password, 
    ); 
    // 3 
    notifyListeners(); 
    return null; 
  } on FirebaseAuthException catch (e) { 
    // 4 
    if (email.isEmpty) { 
      errorMsg = 'Email is blank.'; 
    } else if (password.isEmpty) { 
      errorMsg = 'Password is blank.'; 
    } else if (e.code == 'invalid-email') { 
      errorMsg = 'Invalid email.'; 
    } else if (e.code == 'INVALID_LOGIN_CREDENTIALS') { 
      errorMsg = 'Invalid credentials.'; 
    } else if (e.code == 'user-not-found') { 
      errorMsg = 'No user found for that email.'; 
    } else if (e.code == 'wrong-password') { 
      errorMsg = 'Wrong password provided for that user.'; 
    } 
    return errorMsg; 
  } catch (e) { 
    // 5 
    log(e.toString()); 
    return e.toString();

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 496



  } 
} 

 
// TODO: Add logout

Here, you:

1. Pass in the email and password the user entered. Return an error message if 
needed.

2. Call the Firebase method to log in to their account.

3. Notify all listeners.

4. Handle some common errors.

5. Catch any other type of exception.

Logging Out

The final feature is log out. Replace // TODO: Add logout with:

void logout() async { 
  await auth.signOut(); 
  notifyListeners(); 
}

Now that all the logic is in place, you’ll build the UI to log in.

Adopting Riverpod
As you saw in Chapter 13, “Managing State”, Riverpod is a great package for 
providing classes to its children. Your screens need access to these DAO classes. To 
do that, you’ll create two providers: one for user data and the other for messages.

Create a new file, providers.dart, in the lib directory and add the following:

import 'package:flutter_riverpod/flutter_riverpod.dart'; 
 

import 'models/user_dao.dart'; 
 

// 1 
final userDaoProvider = ChangeNotifierProvider<UserDao>((ref) { 
  return UserDao(); 
}); 

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 497



// TODO: Add messageDaoProvider 
 

// TODO: Add messageListProvider

1. UserDao extends ChangeNotifier; use ChangeNotifierProvider to provide an 
instance of UserDao.

Next, you’ll create a login screen.

Creating the Login Screen
To use your app, a user needs to log in. To do that, they need to create an account. 
You’ll create a dual-use login screen that will allow a user to either log in or sign up 
for a new account.

In the components folder, create a new file called login.dart. Add the following, 
ignoring the red squiggles for now:

import 'package:flutter/material.dart'; 
import 'package:flutter_riverpod/flutter_riverpod.dart'; 
import '../providers.dart'; 

 
class Login extends ConsumerStatefulWidget { 
   const Login({ 
    super.key, 
  }); 

 
  @override 
  ConsumerState createState() => _LoginState(); 
} 

 
class _LoginState extends ConsumerState<Login> { 
  // 1 
  final _emailController = TextEditingController(); 
  // 2 
  final _passwordController = TextEditingController(); 
  // 3 
  final GlobalKey<FormState> _formKey = GlobalKey<FormState>(); 

 
  @override 
  void dispose() { 
    // 4 
    _emailController.dispose(); 
    _passwordController.dispose(); 
    super.dispose(); 
  } 

 
// TODO: Add build

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 498



Here, you:

1. Create a text controller for the email field.

2. Create a text controller for the password field.

3. Create a key needed for a form.

4. Dispose of the editing controllers.

Now, you’ll add the UI. Still ignoring the red squiggles, replace // TODO: Add build 
with:

@override 
Widget build(BuildContext context) { 
  // 1 
  final userDao = ref.watch(userDaoProvider); 
  return Scaffold( 
     body: Padding( 
      padding: const EdgeInsets.all(32.0), 
      // 2 
      child: Form( 
        key: _formKey, 

 
        // TODO: Add Column & Email

In this code, you:

1. Use the Riverpod’s ref to watch the changes that take place in UserDao.

2. Create the Form with the global key.

Next, you’ll create a column with four rows for email field, password field, login 
button, and a signup button.

Replace // TODO: Add Column & Email with:

child: Column( 
  children: [ 
    Padding( 
        padding: const EdgeInsets.symmetric(vertical: 10.0), 
        // 1 
        child: TextFormField( 
          decoration: const InputDecoration( 
            border: UnderlineInputBorder(), 
            hintText: 'Email Address', 
          ), 
          autofocus: false, 
          // 2 
          keyboardType: TextInputType.emailAddress,

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 499



          // 3 
          textCapitalization: TextCapitalization.none, 
          autocorrect: false, 
          // 4 
          controller: _emailController, 
          // 5 
          validator: (String? value) { 
            if (value == null || value.isEmpty) { 
              return 'Email Required'; 
            } 
            return null; 
          }, 
        ), 
    ), 
    // TODO: Add Password

Here, you:

1. Create the field for the email address.

2. Use an email address keyboard type.

3. Turn off auto-correction and capitalization.

4. Set the editing controller.

5. Define a validator to check for empty strings. You can use regular expressions or 
any other type of validation if you like.

Next, add the password field. Replace // TODO: Add Password with:

  Padding( 
      padding: const EdgeInsets.symmetric(vertical: 10.0), 
      child: TextFormField( 
        decoration: const InputDecoration( 
          border: UnderlineInputBorder(), 
          hintText: 'Password', 
        ), 
        autofocus: false, 
        obscureText: true, 
        keyboardType: TextInputType.visiblePassword, 
        textCapitalization: TextCapitalization.none, 
        autocorrect: false, 
        controller: _passwordController, 
        validator: (String? value) { 
          if (value == null || value.isEmpty) { 
            return 'Password Required'; 
          } 
          return null; 
        }, 
      ),

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 500



    ), 
    const Spacer(), 
// TODO: Add Buttons

This is almost the same as the email field except for the added password field.

Now replace // TODO: Add Buttons with:

  SizedBox( 
    width: double.infinity, 
    child: ElevatedButton( 
      // 1 
      onPressed: () async { 
        if (_formKey.currentState!.validate()) { 
          final errorMessage = await userDao.login( 
            _emailController.text, 
            _passwordController.text, 
          ); 
          // 2 
          if (errorMessage != null) { 
            if (!mounted) return; 
            ScaffoldMessenger.of(context).showSnackBar( 
              SnackBar( 
                content: Text(errorMessage), 
                duration: const Duration(milliseconds: 700), 
              ), 
            ); 
          } 
        } 
      }, 
      child: const Text('Login'), 
    ), 
  ), 
  Padding( 
    padding: const EdgeInsets.symmetric(vertical: 10.0), 
    child: SizedBox( 
      width: double.infinity, 
      child: ElevatedButton( 
        // 3 
        onPressed: () async { 
          if (_formKey.currentState!.validate()) { 
            final errorMessage = await userDao.signup( 
              _emailController.text, 
              _passwordController.text, 
            ); 
            if (errorMessage != null) { 
              if (!mounted) return; 
              ScaffoldMessenger.of(context).showSnackBar( 
                SnackBar( 
                  content: Text(errorMessage), 
                  duration: const Duration(milliseconds: 700), 
                ),

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 501



              ); 
            } 
          } 
        }, 
        child: const Text('Sign Up'), 
      ), 
    ), 
  ), 
// TODO: Add parentheses

Here, you:

1. Set the first button to call the login() method and show any error messages.

2. If there’s an error message, first check to see if the state object is “mounted” (still 
showing), then show a snackbar.

3. Set the second button to call the signup() method and show any error messages.

Now, replace // TODO: Add parentheses with:

            ], 
          ), 
        ), 
      ), 
    ); 
  } 
}

Reformat the code to clean things up. You now have a screen that accepts an email 
address and password, and can log in or sign up a user.

Open home.dart, and in the build method, replace // TODO: Add 
userDaoProvider with the following, ignoring the red squiggles:

final userDao = ref.watch(userDaoProvider);

Using the watch method, any time the user state changes, you’ll either show the 
login screen or the message screen.

find // TODO: Add Login and replace the below code with:

Center( 
  child: userDao.isLoggedIn() 
      ? const MessageList() 
      : const Login(), 
),

If the user is logged in, then MessageList is shown. Otherwise Login is shown.

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 502



Add the following imports at the top:

import '../components/login.dart'; 
import 'providers.dart';

Stop and restart your app. You should then see the new login screen. Enter an email 
and a password. Remember the password :).

Note: Use at least six characters for the password.

Click Login.

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 503



An error is displayed because the user hasn’t signed up yet. Try again, but this time 
click Sign up.

Back in your browser, check the Firebase Authentication panel on the Users tab. 
You should see the added email address(es):

The user can log in, but how do they log out? Next, you’ll add a logout button.

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 504



Adding a Logout Button
Still in home.dart, replace // TODO: Replace with logout button with:

IconButton( 
  onPressed: () { 
    userDao.logout(); 
  }, 
  icon: const Icon(Icons.logout), 
),

This will add the logout icon to AppBar and call logout() on the instance of 
UserDao.

Hot reload the app, and you’ll see the Messages screen. Then click the Logout 
button:

This will take you back to the login screen. Enter your email and password, and this 
time, click Login. You’ll be logged back in.

It’s time to display the messages list in the correct order and with the correct user 
details.

Adding Message Data Model
Create a new file in the lib/components directory called message.dart. Then, add 
the following class with date, email, text and reference properties:

import 'package:cloud_firestore/cloud_firestore.dart'; 
 

class Message { 
  Message({ 
    required this.date, 
    required this.email, 
    required this.text, 
    this.reference, 
  }); 

 
  final DateTime date; 
  final String email; 
  final String text; 

 
  DocumentReference? reference;

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 505



  // TODO: Add JSON converters 
}

You also need a way to transform your Message model from JSON since that’s how 
it’s stored in your Cloud Firestore. Replace // TODO: Add JSON converters with:

// 1 
factory Message.fromJson(Map<dynamic, dynamic> json) => Message( 
      date: (json['date'] as Timestamp).toDate(), 
      email: json['email'] as String, 
      text: json['text'] as String, 
    ); 

 
// 2 
Map<String, dynamic> toJson() => <String, dynamic>{ 
      'date': date, 
      'email': email, 
      'text': text, 
    }; 

 
// TODO: Add fromSnapshot

1. This transforms the JSON received from Cloud Firestore into a Message.

2. This does the opposite — transforms the Message into JSON for saving.

Replace // TODO: Add fromSnapshot with:

factory Message.fromSnapshot(DocumentSnapshot snapshot) { 
  // 1 
  final message = Message.fromJson( 
    snapshot.data() as Map<String, dynamic>, 
  ); 
  // 2 
  message.reference = snapshot.reference; 
  return message; 
}

1. This takes a Firestore snapshot and converts it to a message using fromJson().

2. Sets the reference property.

Next, you’ll set up the message DAO.

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 506



Adding Message DAO
Create a new file in lib/models called message_dao.dart. This is your DAO for your 
messages.

Add the following:

import 'package:cloud_firestore/cloud_firestore.dart'; 
import '../components/message.dart'; 
import 'user_dao.dart'; 

 
class MessageDao { 
  MessageDao(this.userDao); 

 
  final UserDao userDao; 

 
  // 1 
  final CollectionReference collection = 
      FirebaseFirestore.instance.collection('messages'); 

 
  // TODO: Add saveMessage 
}

This code:

1. Gets an instance of FirebaseFirestore and then gets the root of the messages 
collection by calling collection().

Now, you need MessageDao to perform two functions: saving and retrieving.

Replace // TODO: Add saveMessage with:

void sendMessage(String text) { 
  // 1 
  final message = Message( 
    date: DateTime.now(), 
    email: userDao.email()!, 
    text: text, 
  ); 
  // 3 
  collection.add(message.toJson()); // 2 
} 

 
// TODO: Add getMessageStream

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 507



This function:

1. Creates a Message object using the current DateTime, the users email and their 
message as text.

2. toJson() converts the message to a JSON string.

3. add() Adds the string to the collection. This updates the database immediately.

For the retrieval method, you only need to expose a Stream<QuerySnapshot>, which 
interacts directly with your DatabaseReference.

Replace // TODO: Add getMessageStream with:

Stream<List<Message>> getMessageStream() { 
  return collection 
    .orderBy('date', descending: true) 
    .snapshots() 
    .map((snapshot) { 
      return [...snapshot.docs.map(Message.fromSnapshot)]; 
    }); 
}

This returns a stream of data at the root level, ordering the collection by the date in 
descending order.

Now you have your message DAO. As the name states, the data access object helps 
you access whatever data you have stored at the given Cloud Firestore reference. It 
will also let you store new data as you send messages.

Open lib/providers.dart, and, again ignoring red squiggles, replace // TODO: Add 
messageDaoProvider with the following:

final messageDaoProvider = Provider<MessageDao>((ref) { 
  return MessageDao(ref.watch(userDaoProvider)); 
});

This returns MessageDao. Now, all you have to do is build your UI.

Replace // TODO: Add messageListProvider with the following:

final messageListProvider = StreamProvider<List<Message>>((ref) 
{ 
  final messageDao = ref.watch(messageDaoProvider); 
  return messageDao.getMessageStream(); 
});

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 508



Here you’ve used StreamProvider to get a stream of messages from the 
MessageDao.

Add the following to the top.

import 'components/message.dart'; 
import 'models/message_dao.dart';

Next, you’ll use these providers to build your message list UI.

Creating New Messages
Open components/message_list.dart. Replace // TODO: Replace _sendMessage 
and the line beneath it with your new send message code:

void _sendMessage() { 
  if (_messageController.text.isNotEmpty) { 
    // 1 
    final messageDao = ref.read(messageDaoProvider); 
    // 2 
    messageDao.sendMessage(_messageController.text.trim()); 
    _messageController.clear(); 
  } 
}

Here you’re using:

1. ref.read() to use the MessageDao

2. trim() to then send the message to remove leading and trailing blanks.

Add your new providers import at the top of the file:

import '../providers.dart';

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 509



Stop the app and re-run it on one device. You’ll see the same screen as you did 
before. Type your first message and click the → button.

Now, go back to your Firebase Console and open your project’s Cloud Firestore. 
You’ll see your message as an entry:

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 510



Great job! You’ve implemented a remote database and added an entry with very 
little code.

Note: All of the blurred random letters will be different for each person.

Try adding a few more messages. You can even watch your Cloud Firestore as you 
enter each message to see them appear in real time.

Now, it’s time to display those messages.

Reactively Displaying Messages
Now that you have a stream of messages, you want to display them.

Open lib/components/message_widget.dart.

Find // TODO: Replace MessageWidget and replace the MessageWidget with the 
below code, ignoring those pesky red squiggles:

const MessageWidget( 
  this.message, { 
    super.key, 
  }); 

 
final Message message;

Here, you’ve added a message object to the MessageWidget constructor.

Find // TODO: Add userDao and myMessage and replace it with:

// 1 
final userDao = ref.watch(userDaoProvider); 
//2 
final myMessage = message.email == userDao.email();

This code:

1. Uses ref.watch() to listen to the changes in UserDao.

2. Checks if the message’s email is the same as the user’s email.

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 511



At the top of the file, add the following import:

import 'package:intl/intl.dart'; 
import '../providers.dart'; 
import 'message.dart';

Display the message text by replacing // TODO: Replace Text, and the line under 
it with:

Text( 
  message.text, 
  style: theme.textTheme.bodyLarge!, 
),

Find // TODO: Remove const, and remove the const from the child beneath it.

Next, you need to add a row to display the messages as they come in. Locate // 
TODO: Add Row for message and replace it with:

Row( 
    // TODO: Add mainAxisAlignment 
    children: [ 
      // Display email of others not ones sent from device 
      !myMessage 
        ? Text( 
            message.email, 
            style: TextStyle( 
              color: theme.colorScheme.secondary, 
            ), 
          ) 
          // If message is sent from the device display nothing 
        : const Text(''), 
      // Display date and time message was sent 
      Text( 
        '  ${DateFormat.yMd().format(message.date)} ' 
        '${DateFormat.Hm().format(message.date)}', 
        style: TextStyle( 
          color: theme.colorScheme.secondary, 
        ), 
       ), 
    ], 
),

Here, you’re displaying the message sender’s email address if it’s not from the device 
and the date and time it was sent.

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 512



To prevent the messages from taking up the whole width of the device. Find // 
TODO: Add crossAxisAlignment and replace it with the following:

crossAxisAlignment: myMessage // 
  ? CrossAxisAlignment.end 
  : CrossAxisAlignment.start,

If the message is from the device, then the speech bubble will be on the right. 
Otherwise, it’s on the left.

Right now, the messages would align in the middle of the screen. Find and replace // 
TODO: ADD alignment in FractionallySizedBox.

alignment: myMessage // 
  ? Alignment.topRight 
  : Alignment.topLeft,

To have the email and date/time aligned with their speech bubble, replace // TODO: 
Add mainAxisAlignment with:

mainAxisAlignment: myMessage // 
  ? MainAxisAlignment.end 
  : MainAxisAlignment.start,

If the message is from the device, then it’ll be on the right. Otherwise, it’s on the left.

Since MessageDao has a getMessageStream() method that returns a stream, you’ll 
use a StreamBuilder to display messages.

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 513



Back in message_list.dart, find // TODO: Add Message List and replace it and the 
whole Expanded widget with the following:

Expanded( 
  // 1 
  child: Consumer( 
    builder: (BuildContext context, WidgetRef ref, Widget? 
child) { 
      final data = ref.watch(messageListProvider); 
      return data.when( 
        loading: () => const Center( 
          child: LinearProgressIndicator(), 
        ), 
        data: (List<Message> messages) => ListView( 
        controller: _scrollController, 
        reverse: true, 
        // 2 
        children: [ 
          for (final message in messages) // 
            Padding( 
              padding: 
                const EdgeInsets.fromLTRB(24.0, 12.0, 24.0, 
4.0), 
              child: MessageWidget(message), 
            ), 
          ], 
        ), 
        error: (error, stackTrace) { 
          return Center(child: Text('$error')); 
        }, 
      ); 
    }, 
  ), 
),

Here you:

1. Create a new message from the given snapshot.

2. Pass the message info to the MessageWidget.

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 514



Add the following imports:

import 'message.dart'; 
import 'message_widget.dart';

Trigger a hot reload, and you’ll see your messages in a list.

Load your app on multiple devices or simulators and watch as you communicate in 
real time and see the messages appear on them simultaneously.

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 515



Magic!

Notice how the messages are labeled with the email of the user who sent them, 
except on the device that sent the message. In that case, only the time is shown.

You now have a fully working chat app that can be used by multiple people. Great 
job!

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 516



Key Points
• Cloud Firestore is a good solution for low-latency database storage.

• FlutterFire provides an easy way to use Firebase packages.

• Firebase provides serverless authentication and security through Rules.

• Creating data access object (DAO) files helps to put Firebase functionalities in one 
place.

• Use Firestore to store and retrieve data in real time.

• You can choose many different types of authentication, from email to other 
services.

Where to Go From Here?
There are plenty of other Cloud Firestore features that can supercharge your app and 
give it enterprise-grade features. These include:

• Offline capabilities: Keep your data in sync even when offline. here: https://
firebase.google.com/docs/firestore/manage-data/enable-offline.

• Database Rules: Make your database more secure, here: https://
firebase.google.com/docs/database/security.

• More sign-up methods: Use similar features to Google and Apple sign-in.

There are plenty of other great Firebase products you can integrate with. Check out 
the rest of the Firebase API here: https://firebase.flutter.dev/docs/overview/#next-
steps.

Flutter Apprentice Chapter 16: Firebase Cloud Firestore

 517



Section VI: Testing Your 
Flutter App

Building an app is a great adventure; checking that it works as expected makes it 
even better!

In this section you’ll learn about the importance of testing your code and the 
different types of tests that you can implement. Specifically, you’ll learn about unit 
and widget tests, their differences and how to adopt them in your app.

 518



17Chapter 17: Introduction 
to Testing
Alejandro Ulate

In this chapter, you’ll revisit work on the Recipe Finder app from previous chapters. 
While doing so, you’ll learn:

• About the importance of testing your code.

• The types of tests you can carry out in a Flutter project.

• How to perform unit testing.

• Good practices while testing.

• Mocking dependencies when necessary.

 519



Improving Code Quality With Tests
Ensuring the quality of your Flutter project is essential for its success, that’s where 
testing comes in. It’ll help you identify defects, errors or issues within your project 
and increase your confidence in your code.

With testing, you can ensure that your project functions as expected, meets the 
specified requirements and delivers a reliable and high-quality user experience. Here 
are a few reasons why you should consider adding tests in all your projects:

1. Error Identification: Testing helps identify and locate software errors, defects or 
bugs. These errors can be simple syntax mistakes or more complex logic issues. 
Identifying and fixing these issues is important to prevent them from causing 
problems for your end-users.

2. Risk Mitigation: It helps manage and reduce project risks by detecting issues 
early in the development process. That way, developers can address them quickly, 
minimizing the potential impact on project timelines, budgets and customer 
satisfaction.

3. Requirement Verification: Testing also verifies that the software meets the 
specified requirements and aligns with the project’s goals. It ensures that the 
software does what it’s supposed to do and doesn’t introduce unexpected 
behavior.

4. Continuous Improvement: Testing isn’t a one-time activity. It’s an ongoing 
process. It allows you to gather feedback, make improvements and release 
updates that enhance the software’s performance, reliability and security.

5. Regression Prevention: As your app evolves and you add new features, there’s a 
risk of introducing new defects while fixing existing ones. Testing, especially 
regression testing, helps prevent these regressions by ensuring that changes 
don’t break existing functionality.

6. Security and Compliance: Testing is essential for identifying security 
vulnerabilities and ensuring compliance with industry standards and regulations. 
It helps protect sensitive data, user privacy and the overall integrity of the 
software.

Flutter Apprentice Chapter 17: Introduction to Testing

 520



7. Cost-Efficiency: Early detection and resolution of defects through testing are 
typically more cost-effective than addressing issues that arise after the software 
is in production. Testing reduces the expenses associated with fixing bugs in the 
later stages of development.

8. Confidence and Trust: Thorough testing increases confidence in both the 
development team and end-users. It demonstrates a commitment to quality and 
reliability.

In summary, testing ensures that your Flutter project is high quality, meets user 
expectations and is free from defects.

Learning About Tests
There are three main kinds of tests: unit tests, widget tests and integration tests. 
Each one has a different utility and effort related to them.

• Unit Tests: Focus on testing individual functions, classes or methods in 
isolation. They’re a great place to validate your business logic.

• Widget Tests: Used to test widgets in isolation. They verify that a widget looks 
and behaves as expected. They’re excellent for testing the visual components of 
your app.

• Integration Tests: Evaluate a complete app or a large part of it. They’re useful to 
verify that all the widgets and services they’re testing work together as expected. 
Integration tests run on real devices or an OS emulator, such as an iOS Simulator 
or Android Emulator.

You can think of these types of tests as a pyramid in which the base is unit testing. 
This is because having your business logic working as expected is key to your project 
and business’s goals.

Flutter Apprentice Chapter 17: Introduction to Testing

 521



A well tested app should have a good balance between the different types of tests. 
However, it’s important to note that the effort required to write and the confidence 
in each type of test is different.

The above table is a CMDE table. CMDE stands for Confidence, Maintenance cost, 
Dependencies, and Execution speed.

• Confidence: How confident you can be that the test is actually testing what you 
want it to.

• Maintenance cost: How much effort it takes to maintain the test.

• Dependencies: How many dependencies the test has.

• Execution speed: How fast the test runs.

Now that you’ve taken a closer look at testing, it’s time to dive back into code.

Open pubspec.yml and add the following package to your dev_dependencies 
declaration:

test: ^1.24.3

This package contains most of the utilities needed for testing your app.

Create a new directory in the root of the project called test. Test files should 
generally reside inside a folder located at the root of your Flutter application or 
package.

A good way to organize your tests is to make your file structure in test match the one 
in your lib folder.

Flutter Apprentice Chapter 17: Introduction to Testing

 522



Now, add your first unit test by adding a new file called ingredient_test.dart in the 
same folder structure as lib. Your test file should be located at test/data/models/
ingredient_test.dart.

Test files should always end with _test.dart, this is the convention used by the test 
runner when searching for tests.

Run your tests by running the CLI command below:

flutter test test/data/models/ingredient_test.dart

You should see an error like this:

This happens because the test runner needs a main() function to run the tests in the 
file. The test runner is a Dart program itself and needs to know where to start.

Fix that by adding a main function like the code below:

void main() { 
}

Flutter Apprentice Chapter 17: Introduction to Testing

 523



Run your tests again. You should see the following:

Now that main() exists, the test runner can successfully try to run the tests in the 
file. However, there are no tests yet.

Adding Unit Tests
Now that you’ve created a new test file, it’s time to add some tests.

As previously stated, unit tests are a great place to test your business logic. That’s 
why you’ll start by testing Ingredient.

Testing the Ingredient Class
Add the following imports at the top of ingredient_test.dart to import the model 
and testing libraries:

import 'package:recipes/data/models/ingredient.dart'; 
import 'package:test/test.dart';

Then, add the following code inside main:

// 1. 
group('Ingredient', () { 
  // 2. 
  test('can instantiate', () { 
  }); 
});

Here’s a quick rundown of the code above:

1. group(): is a helper function that allows you to group tests. You can set the 
group’s name via a parameter, and all the tasks within the function will group 
together when you run the tests.

2. test(): is another helper function from the test package. It receives two 
parameters: the description of the test and a function that actually performs the 
test.

Flutter Apprentice Chapter 17: Introduction to Testing

 524



There are multiple ways to organize your test, but an easy one to remember is the 
AAA system: Arrange, Act, Assert.

The basic idea is that you first declare your test requirements, perform the desired 
action, and verify that the output matches the desired result.

Here’s how it looks in practice. Paste the following code inside test:

// Arrange 
late Ingredient ingredient; 

 
// Act 
ingredient = const Ingredient(); 

 
// Assert 
expect(ingredient, isNotNull);

• In Arrange, you’ve declared your requirements for the test. In this case, it’s about 
testing that you can instantiate the class.

• In Act, you’ve instantiated the class, which is the functionality to test.

• In Assert, you’ve verified that you instantiated the object correctly, and it’s no 
longer null.

Run your tests using the Android Studio this time by clicking “Run” like in the 
screenshot below.

Flutter Apprentice Chapter 17: Introduction to Testing

 525



Make sure to enable Show Passed to display the tests that are succeeding:

Now, there are a few more behaviors that you can test here. You could verify that the 
default parameters are correct when instantiated. You could also test that creating 
an Ingredient with parameters works as expected, and you could test that you can 
create Ingredients from JSON maps.

Copy the following code and add it at the bottom of group, after the previous test:

test('can set default properties', () { 
  // Arrange 
  late Ingredient ingredient; 

 
  // Act 
  ingredient = const Ingredient(); 

 
  // Assert 
  expect(ingredient.id, isNull); 
  expect(ingredient.recipeId, isNull); 
  expect(ingredient.name, isNull); 
  expect(ingredient.amount, isNull); 
});

expect is a helper function from the test package that allows you to verify that a 
certain condition is met. It receives two parameters: the actual value and the 
expected value. If the condition is met, the test passes. Otherwise, it fails.

This test ensures that when you create a new Ingredient, all parameters have the 
correct default value, which in this case is null.

Add another test by placing the following code inside group:

test('can receive parameters', () { 
  // Arrange 
  late Ingredient ingredient;

Flutter Apprentice Chapter 17: Introduction to Testing

 526



  const id = 123; 
  const recipeId = 54321; 
  const name = 'Parmesan Cheese'; 
  const amount = 1.0; 

 
  // Act 
  ingredient = const Ingredient( 
    id: id, 
    recipeId: recipeId, 
    name: name, 
    amount: amount, 
  ); 

 
  // Assert 
  expect(ingredient.id, equals(id)); 
  expect(ingredient.recipeId, equals(recipeId)); 
  expect(ingredient.name, equals(name)); 
  expect(ingredient.amount, equals(amount)); 
});

The code above verifies that when Ingredient is created with parameters, said 
parameters are assigned to the right properties of the class.

Finally, test if you can create Ingredients from JSON maps with the following test:

test('can instantiate from JSON', () { 
  late Ingredient ingredient; 
  // 1.  
  final jsonMap = <String, dynamic>{ 
    'id': 123, 
    'recipeId': 54321, 
    'name': 'Parmesan Cheese', 
    'weight': 50.0, 
    'amount': 1, 
  }; 
  const id = 123; 
  const recipeId = 54321; 
  const name = 'Parmesan Cheese'; 
  const amount = 1.0; 

 
  // 2. 
  ingredient = Ingredient.fromJson(jsonMap); 

 
  expect(ingredient.id, equals(id)); 
  expect(ingredient.recipeId, equals(recipeId)); 
  expect(ingredient.name, equals(name)); 
  expect(ingredient.amount, equals(amount)); 
});

Flutter Apprentice Chapter 17: Introduction to Testing

 527



Run your tests again. They should all pass.

Good job! You’ve added your first tests to the project, and Ingredient is now fully 
tested and production-ready!

Testing Recipe Class
Now it’s time to do the same for Recipe.

Create a new file at test/data/models/recipe_test.dart and add the following code 
inside:

import 'package:recipes/data/models/models.dart'; 
import 'package:test/test.dart'; 

 
void main() { 
  group('Recipe', () { 
    test('can instantiate', () { 
      // Arrange 
      late Recipe recipe; 

 
      // Act 
      recipe = const Recipe(); 

 
      // Assert 
      expect(recipe, isNotNull); 
    }); 
  }); 
}

This first test is essentially the same one you did for Ingredient. Which ensures it 
can be instantiated with the default values in the constructor.

Flutter Apprentice Chapter 17: Introduction to Testing

 528



Run your tests and check the results.

If you remember, Recipe is a class that’s a bit more complex since it has a list of 
Ingredients. This means that Recipe is partially dependent on the behavior of 
Ingredient.

This scenario is fairly common when developing software. Testing these sorts of 
relations between classes enables the developers to catch possible errors when 
modifying the code.

This will be your next test. Copy the following code and paste it at the end of 
group():

test('can receive parameters', () { 
  late Recipe recipe; 
  const id = 123; 
  const label = 'Pasta with Garlic, Scallions, Cauliflower & 
Breadcrumbs'; 
  const image = 'https://spoonacular.com/recipeImages/
716429-556x370.jpg'; 
  const description = 
      'Pasta with Garlic, Scallions, Cauliflower & Breadcrumbs 
might be a good recipe to expand your main course repertoire. 
One portion of this dish contains approximately <b>19g of 
protein </b>,  <b>20g of fat </b>, and a total of  <b>584 
calories </b>. For  <b>\$1.63 per serving </b>, this recipe  
<b>covers 23% </b> of your daily requirements of vitamins and 
minerals. This recipe serves 2. It is brought to you by 
fullbellysisters.blogspot.com. 209 people were glad they tried 
this recipe. A mixture of scallions, salt and pepper, white 
wine, and a handful of other ingredients are all it takes to 
make this recipe so scrumptious. From preparation to the plate, 
this recipe takes approximately  <b>45 minutes </b>. All things 
considered, we decided this recipe  <b>deserves a spoonacular 
score of 83% </b>. This score is awesome. If you like this 
recipe, take a look at these similar recipes: <a href="https://
spoonacular.com/recipes/cauliflower-gratin-with-garlic-
breadcrumbs-318375">Cauliflower Gratin with Garlic Breadcrumbs</
a>, < href="https://spoonacular.com/recipes/pasta-with-
cauliflower-sausage-breadcrumbs-30437">Pasta With Cauliflower, 
Sausage, & Breadcrumbs</a>, and <a href="https://
spoonacular.com/recipes/pasta-with-roasted-cauliflower-parsley-
and-breadcrumbs-30738">Pasta With Roasted Cauliflower, Parsley, 

Flutter Apprentice Chapter 17: Introduction to Testing

 529



And Breadcrumbs</a>.'; 
  const bookmarked = true; 
  // 1. 
  const ingredients = [ 
    Ingredient( 
      id: 1123, 
      recipeId: 123, 
      name: 'Pasta', 
      amount: 1.0, 
    ), 
    Ingredient( 
      id: 1124, 
      recipeId: 123, 
      name: 'Garlic', 
      amount: 1.0, 
    ), 
    Ingredient( 
      id: 1125, 
      recipeId: 123, 
      name: 'Breadcrumbs', 
      amount: 5.0, 
    ), 
  ]; 

 
  // 2. 
  recipe = const Recipe( 
    id: id, 
    label: label, 
    image: image, 
    description: description, 
    bookmarked: bookmarked, 
    ingredients: ingredients, 
  ); 

 
  // Assert 
  expect(recipe.id, equals(id)); 
  expect(recipe.label, equals(label)); 
  expect(recipe.image, equals(image)); 
  expect(recipe.description, equals(description)); 
  expect(recipe.bookmarked, equals(bookmarked)); 
  // 3. 
  expect(recipe.ingredients, equals(ingredients)); 
});

Here’s what that code does:

1. Defines the list of Ingredient objects for your recipe. If Ingredient fails 
instantiation, then it would fail while creating this list. This would mean that the 
test failed, and you could catch this error before merging failing code.

Flutter Apprentice Chapter 17: Introduction to Testing

 530



2. Creates a new Recipe object with the predefined parameters. This includes your 
Ingredient list.

3. Verifies that the ingredients in your recipe actually match the predefined 
ingredients you arranged earlier.

Run your tests again and check the result.

Great! You’ve tested Recipe. Now, your business logic models are covered by tests, 
and you can detect bugs early while developing.

Understanding Mocks
If you’ve ever done testing before, you might be familiar with the term mocking. But 
if you aren’t, you’ll understand the basics after this chapter.

Think of mocking like magic in the world of testing! Imagine you have a friendly 
wizard who can create look-alike or “mock” versions of things you need for your 
tests. These mock objects are like stunt doubles for real components such as 
databases, web services or other pieces of code.

Real components might be too slow, expensive or just too big to set up for testing. In 
those cases, you can use your magical mock skills to avoid needing them and make 
your tests more reliable.

Here are a few other reasons why you’d want to mock:

1. Testing in Isolation: When creating unit tests, it’s important to isolate the unit 
of code under test from “external dependencies”. This ensures that you’re testing 
in isolation and not the behavior of other components. Mocking allows you to 
replace real dependencies with simulated objects that behave as you want.

2. Predictable Behavior: Mocking allows you to define the behavior of 
dependencies in a controlled manner. You can specify how mock objects should 
respond to method calls, ensuring that the test focuses on the specific scenario 
you want to evaluate. This predictability helps in reproducing different test cases 
and edge conditions.

Flutter Apprentice Chapter 17: Introduction to Testing

 531



3. Speed and Efficiency: Real dependencies, such as databases, APIs or external 
services, can be slow or have limited availability during testing. Mocks are 
typically lightweight and readily available, allowing tests to execute quickly and 
efficiently without external dependencies.

4. Fault Injection: Mocking enables you to simulate error conditions or 
exceptional situations that are hard to create with real dependencies. You can 
force a mock to throw exceptions, return unexpected values or simulate network 
errors, allowing you to test how your code handles such situations.

5. Development Speed: During test-driven development (TDD), mocking 
dependencies allow you to write tests for code that depends on components that 
have not been fully implemented yet. You can create mock objects to define 
expected interactions and design tests before implementing the actual 
dependencies.

In the context of Flutter and Dart, mocking dependencies is widely used in unit 
testing, particularly when testing the logic of your code. Mocking packages like 
mockito provide developers with the ability to create mocks for classes and 
dependencies, making it easier to write focused and isolated unit tests.

Wizard! It’s time you use the magical mocking skills you’ve read about. Open 
pubspec.yml and add the following package to your dev_dependencies declaration:

mockito: ^5.4.2

Run your tests and ensure that every test is passing.

Now, add a new test file, test/data/repositories/db_repository_test.dart and paste 
in the following code:

import 'package:recipes/data/repositories/db_repository.dart'; 
import 'package:test/test.dart'; 

 
void main() { 
  group('DBRepository', () { 
    test('can instantiate', () { 
      // Arrange 
      late DBRepository dbRepository; 

 
      // Act 
      dbRepository = DBRepository(); 

 
      // Assert 
      expect(dbRepository, isNotNull); 
      expect(dbRepository.recipeDatabase, isNotNull); 
    });

Flutter Apprentice Chapter 17: Introduction to Testing

 532



  }); 
}

Run your tests and check the results below.

Ka-boom! Your tests just failed! But why is that? Keep on reading to find out the 
answer and recover your powers!

Making Your Code Testable
DBRepository has a hidden dependency that is not exposed in the constructor of the 
class. This makes it crash when you try to access recipeDatabase, and it’s not 
initialized. To top it all, this property is key for other class variables and functions to 
work as expected.

recipeDatabase is assigned a value when calling init(), which isn’t called in your 
test. At a simple glance, this doesn’t look like that big of a deal, right? Should you 
just call init in the test to fix the issues? Well, the correct answer is kind of.

Consider the following scenario - A new team member is onboarded to work on the 
same app you’re working on. What happens if they try to use DBRepository in a 
different part of your app? They might not be aware that calling any other method 
before init will result in a crash.

So, what should you do? One solution is to have your code speak for itself by making 
the dependencies of DBRepository explicit in the constructor.

Open lib/data/repositories/db_repository.dart and add the following constructor 
to the class:

DBRepository({RecipeDatabase? recipeDatabase}) 
    : recipeDatabase = recipeDatabase ?? RecipeDatabase();

Flutter Apprentice Chapter 17: Introduction to Testing

 533



Then, change init to the following:

@override 
Future init() async { 
  _recipeDao = recipeDatabase.recipeDao; 
  _ingredientDao = recipeDatabase.ingredientDao; 
}

This makes the dependencies of DBRepository a bit clearer. It maintains the 
behavior, allowing you to run the app without problems. It also makes your code 
testable since you can now mock the dependencies and not require a fully functional 
RecipeDatabase implementation to test DBRepository.

Now, run db_repository_test.dart again. The result should match the image below:

Great, the tests are passing again!

When dependencies aren’t clear, errors can easily creep into your code, and a small 
modification can quickly turn into a headache. Unit testing can help you identify 
such scenarios in your code and fix them early in the development of your Flutter 
app.

Mocking With Mockito
You’ve already read that it’s important to isolate the code under test from external 
dependencies when creating unit tests. In this case, having a fully functional 
RecipeDatabase might not be what you want in the tests for DBRepository. So, it’s 
time to take out your magic wand and use some mocking spells.

mockito is a great toolbox to generate mocks without having to do too much work. 
This enables you to write focused and isolated tests without sacrificing time. To get 
started, still in db_repository_test.dart, add the following import to the test file:

import 'package:mockito/annotations.dart'; 
import 'package:mockito/mockito.dart'; 
import 'package:recipes/data/database/recipe_db.dart'; 
import 'package:recipes/data/models/ingredient.dart';

Flutter Apprentice Chapter 17: Introduction to Testing

 534



mockito.dart includes all mocking functions that you’ll need to test. On the other 
hand, annotations.dart imports a couple of neat annotations for generating mocks 
via build runner.

Next, before the declaration of main, paste the following code:

@GenerateNiceMocks([ 
  MockSpec<RecipeDatabase>(), 
  MockSpec<RecipeDao>(), 
  MockSpec<IngredientDao>(), 
])

This will tell mockito to generate mocks for all the classes listed in the parameter.

In the terminal, navigate to the root of your project and run dart run 
build_runner build --delete-conflicting-outputs to generate the mocked 
classes. After running it, a new file named test/data/repositories/
db_repository_test.mocks.dart will show up. It’ll contain the mocks you requested 
above.

Import the generated file at the top of test/data/repositories/
db_repository_test.dart:

import 'db_repository_test.mocks.dart';

Now, add the following code at the start of main():

// 1. 
final mockDb = MockRecipeDatabase(); 
final mockIngredientDao = MockIngredientDao(); 
final mockRecipeDao = MockRecipeDao(); 

 
// 2. 
final randomIngredients = [ 
  const Ingredient( 
    id: 1123, 
    recipeId: 123, 
    name: 'Pasta', 
    amount: 1.0, 
  ), 
  const Ingredient( 
    id: 1124, 
    recipeId: 123, 
    name: 'Garlic', 
    amount: 1.0, 
  ), 
  const Ingredient( 
    id: 1125, 
    recipeId: 123,

Flutter Apprentice Chapter 17: Introduction to Testing

 535



    name: 'Breadcrumbs', 
    amount: 5.0, 
  ), 
]; 

 
// 3. 
when(mockDb.ingredientDao).thenReturn(mockIngredientDao); 
when(mockDb.recipeDao).thenReturn(mockRecipeDao);

1. MockRecipeDatabase, MockIngredientDao and MockRecipeDao are generated 
by mockito using the build runner. These classes have the same variables and 
method signatures as the real implementations, with the exception that they can 
be controlled.

2. You’re preparing a list of random ingredients that’ll be used later in your tests.

3. when is a special function provided by mockito that allows you to control how a 
mock should behave. It indicates that whenever you try to access 
mockDb.ingredientDao or mockDb.recipeDao, the mocked version should be 
used.

Then, modify the test for instantiation so that when you create a DBRepository, you 
pass mockDb as the parameter like so:

dbRepository = DBRepository( 
  recipeDatabase: mockDb, 
);

This ensures that your test uses the mocked version of RecipeDatabase instead of 
the real one.

Run your tests and verify that they are all still passing.

Now, you’ll add a new test for findAllIngredients() and learn to mock methods.

Flutter Apprentice Chapter 17: Introduction to Testing

 536



Start by copying the following test to your group:

test('can findAllIngredients', () async { 
  // TODO: Arrange 
  // TODO: Act 
  // TODO: Assert 
});

Next, you’ll work on defining the test’s requirements. To call 
findAllIngredients(), you’ll need an instance of DBRepository with the mocked 
database version.

Replace // TODO: Arrange with the following code:

// 1. 
final dbRepository = DBRepository( 
  recipeDatabase: mockDb, 
); 
await dbRepository.init(); 
// 2. 
when(mockIngredientDao.findAllIngredients()).thenAnswer( 
  (_) async => randomIngredients 
      .map((e) => DbIngredientData( 
            id: e.id!, 
            recipeId: e.recipeId!, 
            name: e.name!, 
            amount: e.amount!, 
          )) 
      .toList(), 
);

1. First, you are initializing a new instance of DBRepository using the mocked 
database mockDb.

2. Then, you are mocking the call to mockIngredientDao.findAllIngredients. 
Mocking allows you to mock both variables and methods. This means you can 
also test behaviors that interact directly with the database and check that the 
right methods are called.

Next, replace // TODO: Act with the code below:

final result = await dbRepository.findAllIngredients();

Now that the calls to the database are mocked, you can run findAllIngredients() 
and store the result in a variable for later assertions.

Flutter Apprentice Chapter 17: Introduction to Testing

 537



Finally, replace // TODO: Assert with the code below:

// 3. 
verify(mockIngredientDao.findAllIngredients()).called(1); 
// 4. 
expect(result, equals(randomIngredients));

3. verify() is a special function exported by mockito that allows you to check the 
behavior of a mock and its variables and functions. With this code, you are 
ensuring that mockIngredientDao.findAllIngredients() is called once when 
running your repository’s code to find ingredients.

4. Like in previous tests, you check that the actual result matches the expected 
output you used to mock the call to 
mockIngredientDao.findAllIngredients().

Run your tests again. They should all be passing at this point.

Congrats! You are now mocking parts of the database, to simplify the testing of 
DBRepository. Feel free to go on and add tests for the other methods.

Flutter Apprentice Chapter 17: Introduction to Testing

 538



Key Points
• Testing ensures that your Flutter project is of high quality, meets user 

expectations and is free from defects.

• Testing your code improves confidence when releasing a new version of your app.

• There are multiple types of tests that vary according to different requirements.

• Unit testing is great for building robust and maintainable Flutter apps.

• You can bundle tests together with group().

• To run unit tests, you’ll need to use test().

• The complexity of a class matters when you think about testing them.

• Consider mocking when dealing with external dependencies.

Where to Go From Here?
Unit testing is great for building robust and maintainable Flutter apps. In this 
chapter, you learned the essentials of unit testing a Flutter project, mocking 
dependencies with mockito, organizing and running tests, handling asynchronous 
testing and best practices.

By testing your Flutter projects, you can ensure that your apps are well-tested and 
reliable. Embrace unit testing as an everyday practice, and you’ll be on your way to 
delivering high-quality Flutter applications.

If you want to learn more about testing, check out this video course (https://
www.kodeco.com/35357214-testing-in-flutter). It looks more in-depth at the topic 
of testing Flutter apps and how to make your code easier to test.

If you prefer reading, you can also check this tutorial about unit testing (https://
www.kodeco.com/6926998-unit-testing-with-flutter-getting-started), which looks a 
bit more in-depth at the subject of Unit Testing.

Flutter Apprentice Chapter 17: Introduction to Testing

 539



18Chapter 18: Widget 
Testing
Alejandro Ulate

Widget testing is about making your Flutter widgets dance to your tune. It’s essential 
to ensure your UI components not only look good but also work as you intended. In 
this chapter, you’ll:

• Learn the concept of widget testing.

• Load mock data into the widget tests.

• Ensure that each ingredient displays correctly.

• Understand what golden tests are.

• Add golden tests to verify your widget’s look and feel.

 540



Learning About Widget Tests
Widget testing plays an important role in ensuring your widgets’ reliability and 
proper functioning. Unlike other testing approaches, widget tests are specifically 
designed to concentrate on the interaction and underlying logic of the UI elements.

In essence, they act as “unit” tests for your widgets, providing a targeted 
examination of their behavior, responsiveness and functionality in isolation. This 
focus helps you identify and address issues early in the development process, 
contributing to a more robust and error-resistant Flutter application.

Some common scenarios you might want to use widget tests for are:

• Successful Widget Building: Widget tests are particularly handy for ensuring 
your widgets build successfully under expected conditions.

• User Interaction Verification: These tests enable you to simulate user actions, 
such as tapping or inputting text, ensuring that your widgets respond as expected.

• State Changes and UI Updates: These tests can also help you confirm that state 
changes within your widgets work as intended and that these changes are reflected 
in the user interface.

• Navigation and Routing Logic: By simulating navigation events, you can verify 
that your app transitions between screens correctly and that the UI adapts as 
expected.

Widget tests improve the reliability of your app. They validate critical parts of it, 
such as building widgets, user interaction, state management, and navigation logic.

It’s time you start working on your own widget tests. Start by adding a new test file 
that matches the following path test/ui/widgets/ingredient_card_test.dart. You’ll 
need to create the corresponding directories too.

Then, just so our test suite doesn’t fail, add the following code to your test file:

void main() {}

Use your IDE to run your tests. The result should match the screenshot below:

Flutter Apprentice Chapter 18: Widget Testing

 541



Adding Your First Widget Test
As you recall, a good scenario for you to get your hands on testing is to verify that 
the widget builds successfully. This way, you can ensure that your widget’s structure 
matches your expectations.

Before creating the test, this is a quick reminder of how the widget you’ll test looks:

It’s important to point out that IngredientCard can have multiple variations 
depending on:

• evenRow: changes the border and background color of the card depending on its 
value.

• showCheckbox: hides or shows the checkbox at the right end of the card.

• initiallyChecked: marks the checkbox at the right end of the card on the initial 
build of the widget.

• If it’s checked, the name displays as striked-through, otherwise, it’s just plain 
text.

These differences can all produce different results, and they can even combine, 
ending in more variations. These results are important because they change what 
you can expect of the widget rendering.

If you’ve got widgets like IngredientCard, it’s smart to test them with different 
situations. Testing with various combinations means you’re checking how your 
widget behaves in different situations.

This helps ensure your widget and all its possible versions work the way they should 
and stay safe from unexpected changes that might pop up during development.

So, here’s the scenario you’ll use to verify that IngredientCard builds properly:

Given IngredientCard is in an evenRow, the checkbox is showing as unchecked 
when the widget builds, then it should be displayed without issues.

Flutter Apprentice Chapter 18: Widget Testing

 542



Start by adding the following imports at the top of your file:

import 'package:flutter/material.dart'; 
import 'package:flutter_test/flutter_test.dart'; 
import 'package:recipes/ui/widgets/ingredient_card.dart';

This imports Flutter’s material library along with the testing toolkit. It also imports 
IngredientCard, which you’ll be testing.

Then, copy the following code inside main():

testWidgets('IngredientCard can build', (WidgetTester tester) 
async { 
  // TODO: Arrange 
  // TODO: Act 
  // TODO: Assert 
});

testWidgets() is a special function provided by flutter_test. It allows you to 
build a widget and verify its behaviors. You could build a simple Text or a complex 
widget with a Scaffold or even build a complete MaterialApp.

You can think of testWidgets() as an equivalent for test() in unit testing.

testWidgets() receives a WidgetTesterCallback. This callback gives you access to 
a WidgetTester instance (tester in the code above). It allows you to 
programmatically interact with widgets and the test environment.

Also, you’ll be using the same testing technique as you did for unit testing in the 
previous chapter: Arrange, Act, Assert. This gives you an organized way to test 
behaviors and also a repeatable process for all your tests.

Next, replace // TODO: Arrange with this code:

// 1. 
const mockIngredientName = 'colby jack cheese'; 
await tester.pumpWidget( 
  // 2. 
  MaterialApp( 
    home: Scaffold( 
      body: ListView( 
        children: [ 
          // 3. 
          IngredientCard( 
            name: mockIngredientName, 
            initiallyChecked: false, 
            evenRow: true, 
            onChecked: (isChecked) {}, 
          ),

Flutter Apprentice Chapter 18: Widget Testing

 543



        ], 
      ), 
    ), 
  ), 
);

In detail, here’s what the code above is doing:

1. First, pumpWidget() renders the UI from the given widget.

2. You’ve supplied a MaterialApp and other wrappers around IngredientCard 
since it has some dependencies around theming and context, which is why this is 
necessary.

3. Matches the test scenario you were given. showCheckbox is true by default so 
there’s no need to explicitly declare it when building the widget.

Now, for the Act part of the test, use the following code and replace // TODO: Act:

final cardFinder = find.byType(IngredientCard); 
final titleFinder = find.text(mockIngredientName);

find() is a helper function that allows you to search through the widget tree for 
specific elements and returns all the nodes that match the criteria. cardFinder is an 
example of how to find a certain widget by using the type class. On the other hand, 
titleFinder looks for a certain text anywhere in the current widget tree.

Finally, replace // TODO: Assert with the following:

expect(cardFinder, findsOneWidget); 
expect(titleFinder, findsOneWidget);

With the code above, you are asserting that both finders can find widgets according 
to the criteria set. findsOneWidget looks for exactly one widget in the widget tree 
that matches the criteria.

flutter_test has other assertions already built-in that can help you create finders 
depending on your case. Here’s a quick look at some of them:

• findsNothing, when you want the finder to not find anything.

• findsWidgets, when you want the finder to find one or more widgets.

• findsNWidgets, when you want the finder to find a specific number of widgets.

• findsAtLeastNWidgets, when you want the finder to find at least a specific 
number of widgets.

Flutter Apprentice Chapter 18: Widget Testing

 544



Use the IDE to run your tests for IngredientCard. They should be passing like in the 
image below:

Great job! You’ve just added your first widget test.

Testing IngredientCard’s Behaviors
Widget testing becomes super useful when you want to check how your widgets 
respond to users. You can use these tests to pretend to be a user, clicking buttons or 
entering information. This way, you make sure your widgets react the right way and 
give users a smooth experience.

For example, IngredientCard can be checked or unchecked when the user taps it. 
This is a great scenario to test for since it’ll verify how your widget behaves when the 
user interacts with it.

This is the next test you’ll add:

Given IngredientCard is in an evenRow, unchecked, and the checkbox is showing, 
when the user taps on it, then onChecked() should be called with the new value.

But before diving into the test, you’ll reorganize the test file so that you don’t repeat 
yourself in your tests.

Change the contents of ingredient_card_test.dart for the following:

import 'package:flutter/material.dart'; 
import 'package:flutter_test/flutter_test.dart'; 
import 'package:recipes/ui/widgets/ingredient_card.dart'; 

 
// 1. 
Widget _buildWrappedWidget(Widget child) { 
  return MaterialApp( 
    home: Scaffold( 
      body: ListView( 
        children: [ 
          child, 
        ], 
      ), 
    ),

Flutter Apprentice Chapter 18: Widget Testing

 545



  ); 
} 

 
void main() { 
  // 2. 
  const mockIngredientName = 'colby jack cheese'; 
  group('IngredientCard', () { 
    testWidgets('can build', (tester) async { 
      // 3. 
      await tester.pumpWidget( 
        _buildWrappedWidget(IngredientCard( 
          name: mockIngredientName, 
          initiallyChecked: false, 
          evenRow: true, 
          onChecked: (isChecked) {}, 
        )), 
      ); 

 
      final cardFinder = find.byType(IngredientCard); 
      final titleFinder = find.text(mockIngredientName); 

 
      expect(cardFinder, findsOneWidget); 
      expect(titleFinder, findsOneWidget); 
    }); 
    // 4. 
    testWidgets('can be checked when tapped', (tester) async { 
      // TODO: Arrange 
      // TODO: Act 
      // TODO: Assert 
    }); 
  }); 
}

Here’s a quick rundown of what you just did:

1. You’ve added a reusable function to wrap your widgets with a MaterialApp 
parent tree. This is great because you’re going to need it in all, if not most, of 
your tests.

2. Lifted mockIngredientName to be available for all your tests. You’ve also 
prepared things to group tests together.

3. Updated your previous test to use the wrapper _buildWrappedWidget.

4. Added the base for your next test.

Flutter Apprentice Chapter 18: Widget Testing

 546



Run your tests and ensure that they’re still passing, like in the image below:

Next, replace // TODO: Arrange with this:

var isChecked = false; 
await tester.pumpWidget( 
  _buildWrappedWidget(IngredientCard( 
    name: mockIngredientName, 
    initiallyChecked: isChecked, 
    evenRow: true, 
    onChecked: (newValue) { 
      isChecked = newValue; 
    }, 
  )), 
);

You’re setting up isChecked which’ll be useful to verify the behavior when the card 
is tapped. You’ve also set onChecked() to update isChecked when called. That’s 
about it for the Arrange step.

Now, use the following code to replace // TODO: Act with the code below:

final cardFinder = find.byType(IngredientCard); 
 

await tester.tap(cardFinder); 
await tester.pumpAndSettle(); 

 
final checkboxFinder = find.byType(Checkbox);

tap() simulates the user tapping the screen of a device. It receives a finder to 
perform the action on, which in this case is cardFinder. Then, pumpAndSettle() 
updates the widget tree frame by frame until it settles; hence the name.

Once settled, checkboxFinder is also initialized. You’ll later use it to verify in the 
next step.

Flutter Apprentice Chapter 18: Widget Testing

 547



Finally, replace // TODO: Assert with the following:

expect(checkboxFinder, findsOneWidget); 
expect(isChecked, isTrue);

With this code, you are checking two things:

• First, there’s one Checkbox built and visible inside the widget tree.

• Secondly, that isChecked changed correctly to true after calling 
tester.tap(cardFinder).

Run your tests again. All tests should pass like the image below:

Your tests are working now! Time to try to verify how the widget looks.

Understanding Golden Tests
While widget testing is great for checking how your widgets work, it might not cover 
everything about how they look. Widget tests focus more on how things function, 
not so much on the visual details.

In situations where the exact appearance of a widget is crucial, just relying on widget 
tests might not be enough.

That’s where golden tests come in. They specifically look at how your widgets 
appear. A golden test is a type of test that checks whether the visual output of a 
widget matches an expected ‘golden’ image.

The term ‘golden’ refers to the fact that you have a baseline image (the golden 
image) that represents the correct appearance of the widget under normal 
conditions.

Flutter Apprentice Chapter 18: Widget Testing

 548



If the test suite detects differences between the golden image and the actual widget’s 
UI, then it’ll fail the test.

This makes these types of tests particularly useful when working on UI components 
because they help catch unintended changes in the visual appearance.

If you intentionally change the UI, you might need to update the golden image to 
reflect the new expected output. This helps prevent unintentional visual regressions.

The flutter_test package already has the built-in features to support golden tests. 
However, using them on your own might require a complex setup that is hard to 
replicate from project to project.

This is why golden_toolkit exists. It contains APIs and utilities that build upon 
Flutter’s Golden test functionality in flutter_test to provide powerful UI 
regression tests in a simpler way.

To add golden tests to your Flutter project, start by adding golden_toolkit to your 
pubspec.yml like the following:

golden_toolkit: ^0.15.0

Remember to run flutter pub get afterward to update your dependencies.

Next, create a new file at the root of your project. Name it dart_test.yaml and put 
the following code inside it:

tags: 
  golden:

This indicates that goldens are an expected test tag. All tests that use 
testGoldens() will get this tag automatically. It also allows you to run golden tests 
from the command-line.

Flutter Apprentice Chapter 18: Widget Testing

 549



Open a terminal and run the following command:

flutter test --update-goldens

The output should match something like the following image:

Using --update-goldens updates all the golden images in your tests. You should 
use this flag sparingly, as it’ll take your tests a little longer to run.

You are now ready to start writing your own golden tests. You’ll be working on that 
in the next section.

Writing a Golden Test
It’s time to dive into the process of creating your first golden test. IngredientCard 
supports the light theme very well, and going forward, it’s a good idea to test that it 
always stays that way.

Open ingredient_card_test.dart again and add the following code after your first 
test group:

group('Golden Tests - IngredientCard', () { 
  testGoldens('can support light theme', (tester) async { 
    // TODO: Arrange 
    // TODO: Act 
    // TODO: Assert 
  }); 
});

testGoldens() is a special function provided by golden_toolkit. It allows you to 
build a widget and compare it with the golden image. Import golden_toolkit.

import 'package:golden_toolkit/golden_toolkit.dart';

Next, replace // TODO: Arrange with the code below:

final builder = GoldenBuilder.grid(columns: 2, 
widthToHeightRatio: 1) 
// TODO: Scenario for Light - Unchecked 
// TODO: Other scenarios

Flutter Apprentice Chapter 18: Widget Testing

 550



GoldenBuilder builds a column/grid layout for its children. It’ll output a PNG file 
with a grid layout in the test’s directory.

This builder is needed to compare it to the actual widget you’re testing. For now, 
what’s important is that you know that GoldenBuilder requires scenarios to build.

A scenario is a specific configuration of your widget that you want to save for later 
validation. With IngredientCard, you’ll work on adding four different scenarios:

1. IngredientCard in an even row that displays the checkbox as unchecked in a 
light theme.

2. IngredientCard in an even row that displays the checkbox as checked in a light 
theme.

3. IngredientCard in an odd row that displays the checkbox as unchecked in a 
light theme.

4. IngredientCard in an odd row that displays the checkbox as checked in a light 
theme.

Now it’s time to add such scenarios. Replace // TODO: Scenario for Light - 
Unchecked with the following code:

// Scenario 1 
..addScenario( 
  'Light - Unchecked', 
  IngredientCard( 
    name: mockIngredientName, 
    initiallyChecked: false, 
    evenRow: true, 
    onChecked: (newValue) {}, 
  ), 
)

Calling addScenario() includes the test scenario into the builder that you 
initialized before.

Next, replace // TODO: Other scenarios with the code below:

// Scenario 2 
..addScenario( 
  'Light - Checked', 
  IngredientCard( 
    name: mockIngredientName, 
    initiallyChecked: true, 
    evenRow: true, 
    onChecked: (newValue) {},

Flutter Apprentice Chapter 18: Widget Testing

 551



  ), 
) 
// Scenario 3 
..addScenario( 
  'Light - Odd - Unchecked', 
  IngredientCard( 
    name: mockIngredientName, 
    initiallyChecked: false, 
    evenRow: false, 
    onChecked: (newValue) {}, 
  ), 
) 
// Scenario 4 
..addScenario( 
  'Light - Odd - Checked', 
  IngredientCard( 
    name: mockIngredientName, 
    initiallyChecked: true, 
    evenRow: false, 
    onChecked: (newValue) {}, 
  ), 
);

In the code above, you’re also including the other three scenarios discussed before. 
The main changes are in how you set up the IngredientCard. That’s pretty much it!

Then, for the next step, replace // TODO: Act with the next code:

// 1. 
await tester.pumpWidgetBuilder( 
  // 2. 
  builder.build(), 
  // 3. 
  wrapper: materialAppWrapper( 
    theme: ThemeData.light(), 
  ), 
);

Here’s an explanation of the code you just added:

1. pumpWidgetBuilder() is conveniently included in golden_toolkit to simplify 
building your widget and golden images.

2. builder.build() builds the list of scenarios with the layout you set up during 
the Arrange step.

3. pumpWidgetBuilder() also allows you to provide a custom wrapper for all your 
scenarios. This ensures you don’t repeat yourself while adding each scenario and 
also allows you to customize the configuration for your widget.

Flutter Apprentice Chapter 18: Widget Testing

 552



Finally, replace // TODO: Assert with the code below:

await screenMatchesGolden(tester, 'light_ingredient_card');

screenMatchesGolden() wraps the API of flutter_test with some extra 
functionality. This is where golden_toolkit simplifies a lot of the setup needed to 
compare with golden images.

The second parameter of screenMatchesGolden() is the name of the golden file 
that’ll be generated. This file will be stored in the current directory of the test in a 
new folder called goldens/<name-you-specify>.png.

Run your tests again with the flag to update your golden images using the CLI 
command: flutter test --update-goldens.

The output should match the following image:

Take a look at your test’s directory, too. The test suite generated the golden images 
used for testing.

Flutter Apprentice Chapter 18: Widget Testing

 553



If you open that file, it should look something like the image below:

Just to make sure that your golden tests are working properly, you’ll put it to the test. 
Hypothetically, let’s assume a teammate of yours worked on IngredientCard and 
accidentally introduced a bug while coding.

Open lib/ui/widgets/ingredient_card.dart. Then, change line 62 to the following 
code:

value: true,

Now, run your tests for IngredientCard using your IDE. The result should be like in 
the image below.

Great! Not only did your widget tests catch the behavior, but your golden test also 
indicates that the changes break how the widget looks, and you were able to catch it 
before releasing the app to customers!

Before continuing, return IngredientCard to the bug-free version by undoing the 
change in line 62.

Flutter Apprentice Chapter 18: Widget Testing

 554



Challenges

Challenge 1: Test IngredientCard Can Be 
Unchecked
You’ve already added a test to verify the opposite behavior. Use it as an example to 
test that IngredientCard can be unchecked when tapped and if it was initially 
checked when rendering the widget. Here’s a list of the general steps you’ll need to 
complete this challenge:

1. Initialize isChecked to true.

2. Use pumpWidget() to render the UI for your widget.

3. Set isChecked to the newValue inside IngredientCard’s onChecked() callback.

4. Find and tap the IngredientCard.

5. Find Checkbox.

6. Perform your assertions.

Challenge 2: Test IngredientCard Supports 
Dark Theme
Again, you’ve already tested that IngredientCard supports the light theme. Now it’s 
time to check that it also supports the dark theme.

Here’s an overview of the steps you’ll need to complete this challenge:

1. Use GoldenBuilder to build a grid with two columns.

2. Add two scenarios, one for checked and another one for unchecked states.

3. Call pumpWidgetBuilder() to render your widget’s using materialAppWrapper 
as wrapper.

4. Set materialAppWrapper theme to Theme.dark().

5. Assert that your screen matches the golden file with screenMatchesGolden.

6. Update your golden tests using --update-goldens when testing.

7. Run your tests and verify they all pass.

Flutter Apprentice Chapter 18: Widget Testing

 555



Key Points
• Tools like the flutter_test package provide utilities to make testing easier.

• Widget tests are great for verifying behaviors.

• You can verify that a widget builds correctly with a widget test.

• WidgetTester allows you to perform multiple interactions with your widgets, like 
tap or even text input.

• Golden tests are bound to a ‘golden’ image.

• ‘Golden’ refers to the fact that you have a baseline image that represents the 
correct appearance of a widget under normal conditions.

• You can catch unexpected changes to your UI with golden tests.

Where to Go From Here?
You could do so much more with widget testing, so be sure to take a look at Testing 
in Flutter (https://www.kodeco.com/35357214-testing-in-flutter) if you want to 
learn about testing in much more detail.

There’s also a guided tutorial about Widget Testing in Flutter (https://
www.kodeco.com/36300023-widget-testing-with-flutter-getting-started) that can 
also help you dive further into the great world of testing with Flutter.

Take a look at the guide for Integration Testing (https://docs.flutter.dev/cookbook/
testing/integration/introduction) that the Flutter team compiled and has published 
for all Flutter devs.

Flutter Apprentice Chapter 18: Widget Testing

 556



Section VII: Deployment

Building an app for you own devices is great; sharing your app with the world is even 
better!

In this section you’ll go over the steps and process needed to release your apps to the 
iOS App Store and Google Play Store. You’ll also see how to use platform-specific 
assets in your apps.

 557



19Chapter 19: Platform-
Specific App Assets
By Michael Katz & Stef Patterson

So far, you’ve built Flutter apps using the Dart language and the various Flutter 
idioms. You then built and deployed those apps to iOS and Android devices without 
having to do anything special. You may have even tried running your apps in 
Chrome or as a desktop app. It’s almost magical.

Sometimes you’ll need to add platform-specific code and assets to cater to the 
needs of a particular store or operating system.

For example, you’ll need to change how you specify the app icon, the launch assets 
and the splash screen to suit each platform.

In this chapter, you’ll go through the process of setting up some important parts of 
your app to look great regardless of which platform your users choose.

Open this chapter’s starter project in your Flutter IDE. Remember to click the Get 
dependencies or execute flutter pub get from Terminal.

Note: This chapter is about platform-specific app assets. For your app features 
to function you’ll need to add your API Key that you used in the previous 
section to lib/network/spoonacular_service.dart. If you don’t plan on using 
the app features, you can skip this step.

You’ll need to use native development tools when working with platform-specific 
assets, so you’ll need to have the latest version of Xcode to complete the iOS and 
macOS portions in this chapter.

 558



Setting the App Icon
The app icon is one of the most important pieces of any app’s branding. It’s 
displayed on the store page and the device home screen, as well as in notifications 
and settings. It’s the avatar for your app, so it must look perfect! To do this, you need 
to use constraints.

Android and iOS not only use different constraints, but they also specify them 
differently, which means you need to tweak your icon for each platform.

By default, when you create a new Flutter project it sets the Flutter F logo as the 
project’s icon:

Not only is this not branded to your recipe app, but the app stores aren’t likely to 
approve it.

You can have the same icon for multiple platforms, or you can set it up for each 
platform individually. For this chapter they’re going to look very similar, including 
when run in Chrome.

Your first task will be to say “_Good-bye, dear Flutter icon!_” by updating your app to 
have a custom image that looks great on each platform.

Hello, lovely Chef icon!

Flutter Apprentice Chapter 19: Platform-Specific App Assets

 559



In addition to adding your app icon, you’ll also change the name of your app and 
prepare the launch screen for multiple platforms.

Ready to get started? OK then, you’ll be starting with iOS.

Setting up iOS Icon and Launch Assets
You’ll work on the iOS app icon and name at the same time.

Optimizing the App Icon for iOS
When you create a Flutter project it creates various subfolders for each platform. The 
Flutter framework generated ios and macos subfolders that contain the libraries and 
support files needed to run on iOS and macOS. In those folders there is an Xcode 
workspace, Runner.xcworkspace.

Note: iOS and macOS developers, Flutter apps use Runner.xcworkspace 
instead of the traditional Runner.xcodeproj.

There are a couple of ways to open the Xcode project. You can use Finder or your 
IDE.

In Finder, open the chapter materials files and double-click starter/ios/
Runner.xcworkspace. If you have Xcode open, you can also navigate to the folder 
and open it.

Flutter Apprentice Chapter 19: Platform-Specific App Assets

 560



If you’re using Android Studio/IntelliJ right-click on the ios folder, navigate to the 
Flutter item and you’ll see Open iOS Module in Xcode, like in the picture below.

VSCode is a little different. When you right-click on the ios folder you’ll see Open 
in Xcode.

Flutter uses a workspace to build the app because, under the hood, it uses 
Cocoapods to manage iOS-specific dependencies required to build and deploy iOS 
apps. The workspace contains the main runner project and the Cocoapods project 
as well as all the supporting files to build and deploy an iOS app.

This project contains a lot of boilerplate and helpers to run the app within the iOS 
app context. Don’t worry about building the app from Xcode. Continue to use 
Android Studio or the command line to build and deploy to a simulator.

Viewing the App Icon
To see the app icon, open Runner ▸ Runner ▸ Assets.xcassets. This is an asset 
catalog, a way of organizing assets in an Xcode project.

Flutter Apprentice Chapter 19: Platform-Specific App Assets

 561



Inside, you’ll see AppIcon and LaunchImage.

Click AppIcon to see all the devices and resolutions supported by the default 
Flutter icon.

Flutter Apprentice Chapter 19: Platform-Specific App Assets

 562



In Finder, open assets/icons/ios from the chapter materials. Drag each of the 
images inside into the asset catalog, grabbing the right one for each size. You can 
tell which is which by the name.

Don’t worry if you grab the wrong one: A yellow warning triangle will appear next to 
any image that isn’t the right size.

Note: When creating your own app icons, make sure you save them as PNG 
files, without alpha channels.

Next, you’ll change the name of the app, displayed next to the app icon on the 
device.

Flutter Apprentice Chapter 19: Platform-Specific App Assets

 563



Naming Your App
To set your app’s name for iOS, open Runner ▸ Runner ▸ Info.plist.

Note: Info.plist is similar to the Android AndroidManifest.xml in that it 
contains information about your app for the OS to use.

Under Information Property List, change the Bundle display name to: Recipe 
!"".

Save these changes, leave Xcode open and return to your Flutter IDE.

Flutter Apprentice Chapter 19: Platform-Specific App Assets

 564



Build and run your app for iOS.

That looks better! :]

The last finishing touch is adding a launch screen.

Adding an iOS Launch Screen
It takes a few moments for the Dart VM to spin up when users launch the app, so 
you’ll give them something to look at instead of a white screen.

In following Apple’s Human Interface Guidelines (https://developer.apple.com/
design/human-interface-guidelines/) you should have no text included on your 
launch screen and it should closely resemble your app’s landing page. Setting an iOS 
launch screen is straightforward.

Back in Xcode, select Assets.xcassets and this time select LaunchImage.

You’ll see three boxes to represent the launch image at 1x, 2x and 3x resolution.

In Finder locate assets/launch image/loading.png in the chapter materials and 
drag it onto the 1x square.

This is a high-resolution image, so you need to tell iOS to scale it for high-
resolution screens.

Flutter Apprentice Chapter 19: Platform-Specific App Assets

 565



In the Inspector pane, change the Scales value to Single Scale.

This setting tells the system there’s just one version of the image. This is preferred 
for images like photographs, which have a native high resolution.

You’ll see a yellow triangle displayed in the 2x and 3x boxes. While pressing Shift 
key, select each of these boxes and press Delete.

The two boxes are now gone and your new launch screen image is set up.

The user will see this image while the app launches until the main screen is ready.

Flutter Apprentice Chapter 19: Platform-Specific App Assets

 566



Returning to your Flutter IDE, build and run on iOS. Watch closely as the app launch 
can be fast.

By using the same background as the initial page the result is a smooth transition 
when your app is launched.

Great job! You’ve set up the iOS side, now you’ll set up the macOS version.

Flutter Apprentice Chapter 19: Platform-Specific App Assets

 567



Setup macOS Icons
You’ll find that setting up the macOS icons is very similar to what you did for iOS.

In Finder navigate to starter/macos/Runner.xcworkspace and open it with Xcode.

Next, open Runner ▸ Runner ▸ Resources ▸ Assets.xcassets. This will look familiar 
and is similar to the iOS asset catalog.

For macOS you’ll see only AppIcon, no LaunchImage.

Flutter Apprentice Chapter 19: Platform-Specific App Assets

 568



Click AppIcon to see the different sizes and resolutions supported by the default 
Flutter icon.

In Finder, open the chapter materials assets/icons/macos. Just like you did for iOS 
icons, drag each of the images onto the asset catalog.

That’s it! You’ve set up the macOS app icon. You won’t be renaming the macOS app.

Flutter Apprentice Chapter 19: Platform-Specific App Assets

 569



Return to your Flutter IDE, build and run on macOS.

Looks awesome!

Note: You may see warnings from some of the packages, ignore them.  The app 
will still run.  If it doesn’t run then execute the following from Terminal and 
then re-run your app.

flutter clean && flutter pub get

Now it’s time to set up the Android icons.

Flutter Apprentice Chapter 19: Platform-Specific App Assets

 570



Set Up Android App Icon and Launch 
Assets
When you work with your own custom artwork and Android apps, there are a few 
more steps you need to take, beyond just copying and pasting from a folder.

Optimizing the App Icon for Android
In Android Studio open android/app/src/main/AndroidManifest.xml. This file 
defines many of your app’s Android properties related to launching, permissions, 
Play Store and the Android system.

One of the properties under application defines the launcher screen icon:

The @mipmap means that it resolves to a mipmap-{resolution} folder to load an 
asset fit for the device’s screen scale. ic_launcher is the icon filename.

Under android/app/src/main/res, you’ll find the various mipmap- subfolders.

In Finder, open assets/icons/android from the chapter materials. Copy the res 
folder and replace android/app/src/main/res in Android Studio.

If you receive a pop-up confirming you want to copy the folders to the specified 
directories, click Refactor or OK or Overwrite for all, depending on your Android 
Studio version.

Flutter Apprentice Chapter 19: Platform-Specific App Assets

 571



Expand the android/app/src/main/res folder and verify you’ve pasted the res folder 
in the correct place. It should be at the same level as the java and kotlin folders, not 
inside the existing res folder.

Hot reload and hot restart are not enough to see the updated icon.

For these changes to take effect, you need to stop the app and run it again.

On the home screen, you’ll now see the new launcher icon. Run the app on an 
Android device or emulator to see one of the following:

Great, you’ve just swapped the default assets for your cool custom ones.

If you need to adjust the icon fill size, or if you’re working on your own app later and 
want to import Android images, you’ll need to import and resize the artwork. That’s 
next!

Flutter Apprentice Chapter 19: Platform-Specific App Assets

 572



Personalizing the App Icon for Android
For these next few steps you need to work in the Android portion of your app and not 
within the Flutter project.

Open the Android folder directly from the Android Studio menu, choose File ▸ 
Open and navigate to your project’s android folder.

Finally, click Open.

Wait until the Gradle sync is complete. The time it takes your project to finish might 
vary. You’ll see messages flashing fast in the bottom right corner of the window until 
it’s done.

Flutter Apprentice Chapter 19: Platform-Specific App Assets

 573



Navigate to the app folder, right-click on res and choose New ▸ Image Asset.

The Configure Image Asset pop-up window will display. Click the folder icon to 
open the custom image.

Flutter Apprentice Chapter 19: Platform-Specific App Assets

 574



Locate your master artwork image. In this case, you’ll find it in the project assets/ 
folder. Select the IconArtwork_1024x1024.png image and click on Open.

The loaded image will appear like this.

Flutter Apprentice Chapter 19: Platform-Specific App Assets

 575



If the cook figure is outside the safe zone, use the Resize slider to adjust the size. 
Make sure the cook figure is inside the circle, which is the safe zone, as shown below. 
When done click Next.

The next screen displays the path where you’ll save the assets. Keep in mind this is 
for the Android project, not your Flutter project, so the folder names look different 
from what you’ve worked with so far.

Flutter Apprentice Chapter 19: Platform-Specific App Assets

 576



Leave the defaults and click Finish.

Close this Android project and go back to your Flutter project.

You’ve now seen how to resize custom artwork for your Android app. What’s great is 
that after you finish these updates, your Flutter app updates automatically!

Flutter Apprentice Chapter 19: Platform-Specific App Assets

 577



As before, for these changes to take effect, you need to stop the app and run it again. 
You’ll see the same launcher icon. Run the app on an Android device or emulator to 
see the following:

Next, you’ll change the app name which will help address the names with the ... 
shown on some devices.

Changing the App’s Name for Android
Now that you have a shiny new icon on the device launch screens, you’ll notice that 
the app’s name isn’t always formatted nicely, which detracts from the experience.

Setting the launcher name is an easy fix, but you also have to do it for each platform.

Return to android/app/src/main/AndroidManifest.xml. Find the android:label 
property of the application node.

Change the text to Recipe !"".

Flutter Apprentice Chapter 19: Platform-Specific App Assets

 578



Build and run the app on Android. By choosing a shorter label, the name will fit on 
more Android devices.

Next, you’ll address the Android splash screen. Don’t worry, it’s really easy.

Setting an Android Splash Screen
As of Android 12, there is a default splash screen that animates from the launcher, 
shows the app icon and then fades into your app’s landing page.

Flutter Apprentice Chapter 19: Platform-Specific App Assets

 579



Boom! You get off easy with Android - it’s done for you and is a nice developer 
experience. See, easy, right? ;]

Note: You can customize this animation, but this requires specialized assets 
and additional skills that are out of scope for this book. For more information, 
see the Splash Screen Tutorial for Android (https://www.kodeco.com/
32555180-splash-screen-tutorial-for-android) or the Android Animations by 
Tutorials book (https://www.kodeco.com/books/android-animations-by-
tutorials/v1.0/chapters/3-xml-animations).

Next, you’ll address the web browser tab icon.

Set Up Web App Icon and Title
Have you ever paid attention to the browser tab icon? It’s nice to have those when 
you have a bunch of tabs open on different sites. They can help you quickly identify 
which site each tab represents.

Plus, it’s nice to have a good name for the tab, so you’ll also change the title of the 
tab.

Updating Favicon
The icon displayed on a browser tab is known as the favicon. It’s a square image 
that represents the website. The favicon is either 16x16 pixels or 32x32 pixels and 
can be 8-bit or 24-bit colors.

In Finder open assets/icons/web and drag favicon.png into your projects web 
folder in your Flutter IDE. When prompted make sure to overwrite or refactor the 
file.

Now that you’ve updated the icon, time to update the title.

Flutter Apprentice Chapter 19: Platform-Specific App Assets

 580



Updating Title
There are two ways to set the title of the browser tab. You can either set the title in 
the HTML or in the Dart code. Each is displayed at different times.

To set the title in the HTML, open web/index.html and find the following line:

<title>Recipe Finder</title>

Replace it so it looks like this:

 <title>Recipe " </title>

When your app is loading the title defined in the HTML is displayed.

Next, open lib/main.dart. In MaterialApp Find // TODO: Update title and 
replace the title beneath it with:

'Recipe " '

The title defined in here is displayed after your app is fully loaded.

Build and run on web/Chrome and take a look at the tab. Pretty cool, right?

Great job! You’ve updated your app’s branding for iOS, Android, macOS and web.

The next two chapters will guide you through deploying your app to the App Store 
and Google Play Store. Aren’t you glad you’ve branded your app? ;]

Flutter Apprentice Chapter 19: Platform-Specific App Assets

 581



Key Points
• Flutter generates app projects for iOS, Android, desktop and web, which you can 

customize with your brand.

• These projects contain resources and code related to launching the app and 
preparing to start the Flutter main view.

• Each platform needs specific assets to customize the app launch experience.

Where to Go From Here?
There are some handy packages that can help you generating the icons and spash 
screen for each platform. For app icons you can use flutter launcher icons (https://
pub.dev/packages/flutter_launcher_icons). It will generate and organize the icons 
according to the platform.

Similarly, for splash screen you can use flutter native splash (https://pub.dev/
packages/flutter_native_splash).

You may have seen other apps with more dynamic or animated splash screens. These 
are generally created as a whole-screen stateful widget that is displayed while the 
Flutter VM loads your main screen widget.

Now that you have a new branding for your app, you’re ready to deploy your app to 
the App Store and Google Play Store. That’s the topic of the next two chapters.

Flutter Apprentice Chapter 19: Platform-Specific App Assets

 582



20Chapter 20: Build & 
Release an Android App
By Michael Katz & Stef Patterson

So you’ve finished building your app and you’re ready to let the world try it out. In 
this chapter, you’ll learn how to prepare your app for distribution through the 
Google Play Store, then release it for internal testing. In the next chapter, you’ll do 
the same for Apple’s App Store.

The steps you’ll follow to launch your app are straightforward:

1. Create a signed release build.

2. Prepare the Play Store for upload.

3. Upload the build.

4. Notify testers that the build is ready.

To complete this chapter, you’ll need a Google Play developer account. If you want 
to test the download of the release from the Google Play store you’ll also need a 
physical Android device.

 583



Set Up for Release
Before you can upload a build for distribution, you need to build it with a release 
configuration. When you create a new Flutter project, you automatically create a 
debug build configuration. This is helpful while in development, but it’s not suitable 
for distribution in the store for several reasons:

• App bloat: A debug build is extra large because of the symbols and overhead 
needed for hot reload/restart and for source debugging.

• Resource keys: It’s typical to point your debug app at a sandbox environment 
for services and analytics so you don’t pollute production data or violate user 
privacy.

• Unsigned: Debug builds aren’t signed yet. To upload to the store, you need to sign 
the app to verify you are the one who built it.

• Google says so: The Play Store won’t allow you to upload a debug build.

The app’s configuration spreads across several files. In the next steps, you’ll see how 
to modify some key pieces of your app to prepare your build for submission to the 
Play Store.

If you’re following along with your app from the previous chapter, open it and keep 
using it with this chapter. If not, just locate the projects folder for this chapter, open 
the starter project in Android Studio and remember to get dependencies.

Note: If you use the starter app or didn’t add it in the last chapter, add your 
apiKey in lib/network/spoonacular_service.dart because your app needs to 
run completely to submit it to the store.

Preparing the Manifest
Debug builds have broad permissions, but apps released for distribution need to 
declare which aspects of the user’s hardware or systems they need to access. The 
Android Manifest file is where you declare permissions.

Open android/app/src/main/AndroidManifest.xml. This file describes the app to 
the Android OS.

Flutter Apprentice Chapter 20: Build & Release an Android App

 584



Confirm the file has the following code, if not add it beneath 
package="com.kodeco.recipe_finder">:

<uses-permission android:name="android.permission.INTERNET" />

With this line, you tell Android that your app needs access to the internet to run. The 
Flutter template manifest does not include any permissions, but if you’re continuing 
from a previous chapter, you should have this line.

Note: If your next app requires additional permissions, such as access to the 
camera or location information, add them here.

Updating build.gradle
build.gradle is where you describe different build configurations. You’ll change it 
next. When you set up the app, you used the default debug configuration. Now, 
you’ll add a release configuration to produce a bundle you can upload to the Play 
Store.

Open android/app/build.gradle.

Under android {, you’ll see a definition for defaultConfig. This describes the app 
ID, versioning information and SDK version.

When assigning applicationId, you usually use your name or your company’s 
name.

applicationId "com.kodeco.recipe_finder"

This book uses com.kodeco.recipe_finder, which means you need to use a different 
name when you submit it to the store. To avoid errors because the app already exists 
in the Play Store, use something unique to you or your business name when you 
upload your app. Be sure to use lowercase letters and don’t use spaces or special 
characters.

Locate // TODO: Specify your own unique Application ID. Change 
applicationId beneath it to something unique. For example you could add letters 
to the end of the text inside the quotes. Be creative :]

Your next step is to create a signing key to make your app secure enough to be in 
the Play Store.

Flutter Apprentice Chapter 20: Build & Release an Android App

 585



Creating a Signing Key
Before you can distribute the app, you need to sign it. This ensures that all future 
versions come from the same developer.

To sign the app, you first need to make a signing key by creating a keystore, which 
is a secure repository of certificates and private keys.

During the next step, you’ll see a prompt to enter a password. There are some key 
things to know:

• Use any six-character password you like, but be sure to remember it. You’ll need 
it whenever you access the keystore, that is every time you upload a new version 
of the app.

• In addition to a password, you need to provide information about yourself and 
your organization. This is part of the certificate, so don’t enter anything you don’t 
want someone else to see.

• Once you’ve entered and confirmed that information, the tool will create the .jks 
file and save it in the directory that ran the command.

Open a Terminal window and navigate to the root project directory.

Note: If you started this chapter with the starter project, then the root project 
directory is the starter folder.

On a Mac, run the following command:

keytool -genkey -v -keystore recipes.jks -keyalg RSA -keysize 
2048 -validity 10000 -alias recipes

On Windows, the command is slightly different:

keytool -genkey -v -keystore %userprofile%\upload-keystore.jks ^ 
        -storetype JKS -keyalg RSA -keysize 2048 -validity 10000 
^ 
        -alias upload

keytool is a Java command run from Terminal that generates a keystore. You save it 
in the file, recipes.jks.

The keystore contains one key with the specified -alias recipes. You’ll use this 
key later to sign the bundle that you’ll upload to the Play Store.

Flutter Apprentice Chapter 20: Build & Release an Android App

 586



Note: It’s important to keep the keystore secure and out of any public 
repositories. Adding it to .gitignore will help protect your file. If someone gets 
access to the key, they can distribute potentially malicious apps on your 
behalf, causing all sorts of mayhem.

If you wish to add the files to the .gitignore file, it is located at the project 
root level. Open the file and add the following at the bottom of the # Android 
related section:

 **/android/key.properties 
 ./recipes.jks

Accessing The Signing Key
Now that you’ve created a key, you need to supply the build system with the 
information necessary to access it. To do that, you’ll create a separate file to store 
the password information.

Note: It’s important to keep this file a secret and not to check it into a public 
repository, just like the keystore file. If a malicious actor has this file and your 
keystore, they can easily impersonate you. To help with this, you added this 
file to .gitignore in the previous step.

In the android folder, create a new file: key.properties. Set its contents to:

storePassword={YOUR PASSWORD} 
keyPassword={YOUR PASSWORD} 
keyAlias=recipes 
storeFile=../../recipes.jks

storePassword and keyPassword should be the same password you supplied in the 
keytool command, without any punctuation or the {}.

keyAlias is the same as the -alias listed at the end of the keytool command.

storeFile is the path of the keystore you created. It’s relative to android/app, so be 
sure to change the path, if necessary.

You need these values to unlock the key in the keystore and sign the app. In the next 
step, you’ll read from the file during the build process.

Flutter Apprentice Chapter 20: Build & Release an Android App

 587



Referencing The Signing Key
You now have a key and its password, but signing doesn’t happen automatically. 
During the build, you need to open the keystore and sign the app bundle. To do this, 
you need to modify the build… and when you think about modifying the build 
process, you should think about build.gradle.

Open android/app/build.gradle.

Before the android { section, locate // TODO: Add keystore properties here 
and add the following:

def keystoreProperties = new Properties() 
def keystorePropertiesFile = rootProject.file('key.properties') 
if (keystorePropertiesFile.exists()) { 
    keystoreProperties.load(new 
FileInputStream(keystorePropertiesFile)) 
}

Here, you define a new Properties that reads key.properties and loads the content 
into keystoreProperties. At the top of the file, you’ll see something similar that 
loads the Flutter properties from local.properties.

Next, inside the android section, locate // TODO: Add signing release config 
here just after the defaultConfig block and add:

signingConfigs { 
   release { 
       keyAlias keystoreProperties['keyAlias'] 
       keyPassword keystoreProperties['keyPassword'] 
       storeFile keystoreProperties['storeFile'] ? 
file(keystoreProperties['storeFile']) : null 
       storePassword keystoreProperties['storePassword'] 
   } 
}

This defines a signing configuration, then directly maps the values loaded from the 
properties file to the release configuration.

Finally, replace the existing buildTypes block with:

buildTypes { 
    release { 
        signingConfig signingConfigs.release 
    } 
}

Flutter Apprentice Chapter 20: Build & Release an Android App

 588



This defines the release signingConfig, which is a specific Android build construct, 
created using the previously declared release signing configuration. You’ll use this 
when you create a release build.

Now, you’ve created a release configuration and set it up. The next step is to build 
the app for release.

Build an App Bundle
With build.gradle in place, you can leave the final steps to create a signed Android 
App Bundle up to the Flutter build system. The bundle will contain everything you 
need to upload your app to the Play Store.

Open a terminal window, navigate to the project directory and run:

flutter build appbundle

This will build an Android App Bundle (AAB) for the project. It may take several 
minutes to complete. When it’s done, the command output will tell you where to find 
the .aab file.

Note: If you receive an error message stating the keystore file was not found, 
make sure the path you have in key.properties for the storeFile= line has 
the correct path to the generated recipes.jks.

The bundle is just a .zip file containing the compiled code, assets and metadata. 
You’ll send this to Google in the next section.

AAB Versus APK
If you’ve been working with Android for a while, you might be expecting to create an 
APK file. When you do a debug build from Android Studio, you get an APK file.

You can distribute an Android app as an APK or an AAB. App bundles are preferred 
by the Play Store as AAB generates optimized APKs during installation and are 
tailored according to users’ device configuration, but you can use APKs to distribute 
in other stores or for sideloading to a device.

Flutter Apprentice Chapter 20: Build & Release an Android App

 589



Note: Sideloading means installing an app on an Android device without using 
the official Google Play store. After configuring your device to allow running 
apps from unknown sources, you can install apps that are typically 
distributed as APK files.

If you want to create an APK release, use the following command:

flutter build apk --split-per-abi

This creates release build APKs. The --split-per-abi flag makes separate APKs for 
each supported target, such as  x86, arm64 and so on. This reduces the file size for 
the output. A “fat” APK, which contains support for all targets, could be substantial 
in size. To make a fat APK rather than a split APK, just omit that flag.

Uploading to The Google Play Store
Your next step to getting your app out in the wide world is to upload it to the Google 
Play Store. You’ll need a Google Play Developer account to do that.

Open https://play.google.com/console/. If you see a prompt to sign up, follow the 
onscreen instructions to create a developer account. There is a nominal fee to join 
the Google Developer Program. If you don’t want to sign up, you can continue to 
distribute APK files via sideloading.

This book won’t cover the specific steps for creating an account, as those 
instructions change faster than this book. Just follow along with Google’s guidance 
until you are at the Google Play Console.

Flutter Apprentice Chapter 20: Build & Release an Android App

 590



Creating a New App
Once you’re in the Play Console, the next step is to create an app. This gives you a 
place to upload your build. The big Create app button will do the trick — click it to 
get started. The location of the button depends on whether this is your first app.

Next, you’ll see prompts for some basic information about the app. You’ll also need 
to agree to the Developer Program Policies.

Flutter Apprentice Chapter 20: Build & Release an Android App

 591



Note: You may have additional questions about the Developer Program 
Policies. If so, you can find the answers in the Google Play Developer Program 
Policies (https://play.google.com).

If you’re satisfied with accepting the declarations, click Create app once again.

Creating an app just creates a record in the Play Store. This lets you deal with pre-
release activities, uploading builds and filling out store information. It doesn’t 
publish anything to the store or make anything public yet. You have a lot more 
information to add before you can publish the app.

Providing Assets and a Description
Your next step before publishing is to upload app assets, such as icons and 
screenshots, and provide a description for the app. You’ll do this in the Main store 
listing tab.

On the left, expand Store presence under the Grow section and select Main store 
listing.

Flutter Apprentice Chapter 20: Build & Release an Android App

 592



Here, you’ll enter the customer-facing information about your app, which is 
required for release. The page has two sections: App Details and Graphics.

In the App Details section, enter a Short description and a Full description.

For example, a short description for this app might be:

This is an app to find recipes on the web.

Here’s an example for the full description:

With Recipe Finder, the world’s premier recipe search app, 
you’ll find all sorts of interesting things to cook. Bookmark 
your favorite ones to put together a shopping list.

The Graphics section lets you upload special art and screenshots. You’ll find 
sample versions of these in assets\store graphics at the top of this chapter’s 
materials.

For the App icon, upload app_icon.png. This is a large, 512×512px version of the 
launcher icon.

The Feature graphic is the image you use to promote your app in the Play Store. 
Upload feature_graphic.png for this asset. It’s a 1024×500px stylized image that 
promotes the app branding.

Flutter Apprentice Chapter 20: Build & Release an Android App

 593



Next, you need to add the screenshots. The store asks for phone, 7-inch tablet and 
10-inch tablet image sizes. Fortunately, you don’t have to upload screenshots for 
every possible screen size, just a representative.

For the Phone screenshots, upload phone1.png, phone2.png and phone3.png. 
These all come from screenshots taken on the simulator.

Even though Recipe Finder isn’t designed for a tablet, it will run on one. It’s good 
practice to include screenshots for these cases, as well.

For 7-inch tablet screenshots upload 7in.png.

For 10-inch tablet screenshots upload 10in.png.

Flutter Apprentice Chapter 20: Build & Release an Android App

 594



For this chapter, you won’t upload a video because that requires setting up a 
YouTube account. However, a video that shows off your app’s features is a good idea 
for your production apps.

Click Save to save the images and details you’ve entered so far.

Now, you’ve defined enough of a presence to make an impression.

Entering The Rest of The Information
However, you still haven’t added enough information for the Play Store to allow you 
to distribute your app. Because you can promote an uploaded build for sale in the 
store, the Play Console wants you to fill out a lot of information first.

Click the Dashboard button, which is the top item in the left navigation bar in the 
console, and find the Set up your app section. This shows a checklist of all the items 
you need to fill out before you can distribute your app.

The steps you performed earlier completed the Set up your store listing goal, so it’s 
already checked.

Flutter Apprentice Chapter 20: Build & Release an Android App

 595



Click each of those items to fill out the required information. If you get lost in the 
process, go back to the Dashboard and find the Set up your app section again.

Because this is a simple recipe app without a lot of controversial content — other 
than what counts as a “sandwich” — the answers are straightforward. You also have 
time before your app goes live in the Play Store to modify any of your choices.

The following are sample settings to get you started.

Be sure to click Save after updating each page, then navigate back to the Dashboard 
to choose the next step.

Set Privacy Policy

For privacy policy you must include a link to where you are hosting your app’s 
privacy policy. This is mandatory for apps targeting children under 13. But it’s a good 
idea for all apps, as customers expect it these days.

App Access

For App access, select that all functionality is available since there are no 
restrictions.

Flutter Apprentice Chapter 20: Build & Release an Android App

 596



Ads

For Ads, indicate that the app doesn’t contain ads.

Content Rating

To receive a content rating, you’ll have to answer a questionnaire. Click Start 
questionnaire.

Flutter Apprentice Chapter 20: Build & Release an Android App

 597



The questionnaire has several steps. The first is specifying the Category. Enter your 
email address, select the All Other App Types category and click Next.

You need to answer several questions regarding your app’s content. Be sure to read 
each one before making your selection. Your app just contains recipes without any 
functionality to even buy ingredients, so you can select No for all the content 
questions, except Online Content.

Flutter Apprentice Chapter 20: Build & Release an Android App

 598



Since your app pulls data from an API you need to answer Yes. When you’re finished 
answering all the questions, click Save.

After you’ve saved your choices, click Save and then click Next to review the 
Summary page.

Flutter Apprentice Chapter 20: Build & Release an Android App

 599



If everything looks good, click Save. You’ll then see the Content ratings page.

Click the Back arrow at the top to return to the Dashboard and continue with 
Target audience.

Flutter Apprentice Chapter 20: Build & Release an Android App

 600



Target Audience

This app is not for children, so simply select 18 and up. That way, there’s no 
problem if a user looks up a saucy dish, like a bolognese.

The next question asks about your Store presence. Choose your preferred option 
and click Next.

Flutter Apprentice Chapter 20: Build & Release an Android App

 601



The screen will show you a summary. Note the differences between choosing Yes and 
No.

Click Save and then the Back arrow again to go back to the Dashboard and get 
ready to set details for the News section.

News

This is not a news app, so select No.

Flutter Apprentice Chapter 20: Build & Release an Android App

 602



COVID-19 Contact Tracing and Status Apps

This is not a COVID-19 contact tracing or status app.

Data Safety

The data safety questionnaire needs information about how the app collects user 
data. Fortunately, this app does not collect any data, so your answers will be simple 
and easy.

Click Next on the Overview screen.

Flutter Apprentice Chapter 20: Build & Release an Android App

 603



On the Data collection form, select No and click Next.

On the Store listing preview page, click Submit to continue with the app setup 
process.

Flutter Apprentice Chapter 20: Build & Release an Android App

 604



App Category

Return to the Dashboard and click Select an app category and provide contact 
details.

For the app category, select Books & Reference because this is a reference app. For 
the contact details, you need some real business contact info to publish to the store. 
For testing, however, it’s OK to use bogus values.

Click Save at the bottom right.

App Pricing and Merchant Info

If your Google Play Store account is new and you haven’t set up your financial 
information yet, you need to tell Google where to send money. In this case, though, 
it’s not a big deal because this is a free app.

Flutter Apprentice Chapter 20: Build & Release an Android App

 605



To change the price, find the search field at the top of the Dashboard page, enter 
pricing and click App Pricing.

In this case, you’ll publish a free app, which is the default value.

Now, you’re finally ready to set up a release and upload a build.

Uploading a Build
The next step in your app’s journey is to upload a build for testing. The Play Store 
provides different levels of testing:

• Internal testing: Intended for testing within your organization or with a small 
group of friends or customers, limited to 100 people. You’ll generally use this for 
releases during the development cycle.

• Closed testing: Allows you to send builds to an invite-only list. Use this for beta 
releases or experiments to gather feedback from a wider set of customers.

• Open testing: A public test that anyone can join. Use this to gather feedback on a 
polished release.

Flutter Apprentice Chapter 20: Build & Release an Android App

 606



In any of these tracks, the steps to upload a build are similar. This chapter focuses on 
internal testing.

Go to the Release section in the left menu. Expand Testing ▸ Internal testing and 
click Create new release.

If prompted, read the Terms and Conditions. If you don’t object to them, accept 
them.

Flutter Apprentice Chapter 20: Build & Release an Android App

 607



To use an Android App Bundle, which Google prefers, you must allow Google Play to 
create your app signing. For more information, click Learn more. When you’re 
done, scroll down to App bundles.

When you ran flutter build, it placed app-release.aab in your current project’s 
folder hierarchy. The location isn’t part of your Flutter project and it isn’t visible in 
your IDE.

By default, the directory is: build/app/outputs/bundle/release/. Open Finder or 
Windows Explorer and navigate to such a folder.

Drag and drop the app bundle file to the box in the middle of the Releases page.

After the upload has completed, all that’s left to do is create a Release name and 
Release notes.

Flutter Apprentice Chapter 20: Build & Release an Android App

 608



The release name defaults to the version number, but you can rename it to 
something that you find helpful. For example, First Testing Release.

Use the release notes to notify the users about what’s changed or if you want them to 
look for particular issues. You can provide this message in multiple languages.

For example:

<en-US> 
This release is just to demonstrate uploading and sending out a 
build. 
</en-US>

Click Next to proceed to the Create internal testing release page.

Distribution
On the next screen, if there are any errors listed under Errors, warnings and 
messages, you’ll have to resolve them before you can proceed. It’s OK to roll out 
with warnings, such as a lack of debug symbols.

Flutter Apprentice Chapter 20: Build & Release an Android App

 609



Once you’ve resolved all the issues, click Save.

Note: You may see a message similiar to this: Your temporary app name is 
com.yourcompanyname.recipe_finder (unreviewed).

When the release says Available to internal testers, your app is ready for testing. 
Congratulations!

Note: It will take some time before the app becomes available, from minutes 
to possibly a few days. Be patient.

Flutter Apprentice Chapter 20: Build & Release an Android App

 610



Click the Testers tab, then Create email list to create a new list of testers.

Give the list a name and add the Google account email that you use for the Play 
Store on your phone.

There are a few ways to get the app on your phone. The easiest is to use the web link, 
which you can find under How testers join your test.

Click Copy link and send it to yourself on an Android device. Be sure to click Save.

Flutter Apprentice Chapter 20: Build & Release an Android App

 611



Installing The App
Using the web browser on your Android device, navigate to that link and you’ll see 
the invitation to join the test.

Flutter Apprentice Chapter 20: Build & Release an Android App

 612



Tapping ACCEPT INVITE will give you a link to the Play Store to download the app. 
Once you’re in the Play Store, just tap Install.

After the app loads, you’re ready to go.

Congratulations, you just built a Flutter app on your local machine, uploaded it to 
Google Play and downloaded it to your device! Take a bow, this is a real 
accomplishment.

Flutter Apprentice Chapter 20: Build & Release an Android App

 613



Key Points
• Release builds need a signed release configuration.

• To upload to the Google Play Store, you’ll need to list all necessary permissions.

• To test an app, go to the Google Play Console, create the app with store metadata, 
create a release, upload the build and invite testers.

Where to Go From Here?
For the most part, you don’t need the Flutter tools to prepare the app bundle for 
release. It’s all Android-specific work. To learn more about how Android Studio can 
help prepare and sign release builds and how to use the Google Play Console, check 
out our Android Apprentice book: https://www.kodeco.com/books/android-
apprentice. This covers the Google Play Console more in-depth.

In particular, once you’ve done enough internal testing of your app, you can 
promote the release for closed testing. This means that your app goes through App 
Review and is available in the Play Store, but it’s unlisted. This lets you share it with 
even more testers.

After that, you can promote that release for open testing, which is a public beta that 
anyone can join, or send it out as an official production release.

In the next chapter you’ll release Recipe Finder on Apple’s App Store. Get ready!

Flutter Apprentice Chapter 20: Build & Release an Android App

 614



21Chapter 21: Build & 
Release an iOS App
By Michael Katz & Stef Patterson

In this chapter, you’ll learn how to use Xcode and TestFlight to distribute your 
Flutter app’s iOS version.

Unlike with Android, apps can’t be sideloaded onto iOS devices. To distribute your 
app to users and testers, you have to go through App Store Connect, Apple’s 
developer portal for the App Store. TestFlight allows you to send apps to testers and 
gather feedback from both your internal team and the outside world.

For this chapter, you’ll need to use a Mac with Xcode installed. You’ll also need a 
valid Apple Developer Program account to access the App Store.

If you’re following along with your app, open it and keep using it with this chapter. If 
not, locate the projects folder for this chapter and open the starter folder.

Note: If you use the starter app add your apiKey in lib/network/
spoonacular_service.dart because your app needs to work correctly to 
submit it to the store.

Run flutter pub get and then run your app on an iOS simulator to set up the 
necessary files in the iOS folder.

 615



Creating the Signing
It’s time to leave Android Studio (or VS Code) and move over to Xcode. Open 
starter/ios/Runner.xcworkspace. This workspace includes the main app projects 
and the CocoaPods dependencies you need to build the app. It’s the same workspace 
you used when adding your iOS app icons a couple of chapters ago.

In the Project navigator, check if there’s a folder arrow next to Pods and has a blue 
icon next to it as shown below.

If not, close the Xcode project, return to Android Studio and run your app on an iOS 
simulator. This will pull all the required files. When you’re done, re-open starter/ios/
Runner.xcworkspace.

Select Runner in the Project navigator to open the project editor. Select the Runner 
target and open the General tab.

Flutter Apprentice Chapter 21: Build & Release an iOS App

 616



For app submission, it’s important to check the Bundle Identifier. This has to be 
unique for your app.

If you want to follow along with this tutorial to test out the process — that is, not 
submit — you still have to change the existing value. Try using a random unique 
string if you are out of ideas.

Next you’ll learn about joining the Apple Developer Program. If you already have a 
valid Apple Developer Program account, move on to the following section: Creating 
an App Identifier.

Flutter Apprentice Chapter 21: Build & Release an iOS App

 617



Creating an Apple Developer Program Account
If you want to enroll in the Apple Developer Program, open https://
developer.apple.com/account and sign in with your Apple ID. If you see a page 
prompting you to join the Apple Developer Program, you need to click the link and 
follow the instructions to enroll.

The instructions are ever-evolving, so this chapter won’t explain them. Just follow 
the prompts, enter all your personal or business information and pay the fee. Once 
registered, you’ll be able to access the Apple Developer Portal and the App Store.

Flutter Apprentice Chapter 21: Build & Release an iOS App

 618



Creating an App Identifier
In the developer portal, you’ll tell Apple about your app.

At https://developer.apple.com/account you’ll see the various developer Program 
Resources.

Flutter Apprentice Chapter 21: Build & Release an iOS App

 619



From there, choose Identifiers to get to the identifiers list.

This list displayed contains all the app identifiers associated with your developer 
account. It will include all the IDs you create manually or through Xcode.

Flutter Apprentice Chapter 21: Build & Release an iOS App

 620



Click the + button to create a new identifier.

You’ll see a long list of identifier types. For this task, select App IDs and click 
Continue.

You’ll get a chance to choose between an App and an App Clip. Choose App and 
click Continue.

Note: App Clips are lightweight versions of your app that users can download 
quickly and start using. Later, they can download the full app. At the time of 
writing, these are only experimentally supported with Flutter and are out of 
the scope of this book. See https://flutter.dev/docs/development/platform-
integration/ios-app-clip for more details.

Flutter Apprentice Chapter 21: Build & Release an iOS App

 621



Next, you have the opportunity to set an explicit App ID.

Copy the Bundle Identifier you previously chose for your app from Xcode and paste 
it in the Bundle ID field. Remember, this has to be unique so don’t use 
com.kodeco.recipefinder.

Next, set the description. This is for your use only. It helps you find the app you want 
from a long list in the console as you make more apps.

Flutter Apprentice Chapter 21: Build & Release an iOS App

 622



There’s also a long list of Capabilities, which are special entitlements that let your 
app access parts of the operating system, hardware or Apple’s Cloud services. The 
app for this chapter doesn’t require any special capabilities, so you don’t need to 
worry about setting up any of these.

Click Continue, then Register. After a moment for processing, you’ll see the app ID 
listed in the Identifiers list.

Now that Apple knows the identifier, you need to update Xcode. You’ll bounce back 
and forth between their website and Xcode a few times.

Flutter Apprentice Chapter 21: Build & Release an iOS App

 623



Setting the Team
In Xcode, click the Signing & Capabilities tab. This will allow you to select a team. 
Select your developer team in the drop-down. If you aren’t signed in through Xcode, 
choose Add an Account… to sign in.

Once you’ve set the team and fixed any errors, Xcode will create the signing 
certificates.

Note: Instead of letting Xcode manage your app profile, you can deal with 
those issues manually. You usually do this if you’re working in a continuous 
integration environment. Manual signing is outside the scope of this book, but 
it’s covered in iOS App Distribution & Best Practices: https://www.kodeco.com/
books/ios-app-distribution-best-practices.

Setting up the App Store
When you submit an Android app, you first have to have a Google Play developer 
account and then set up the app in the Play Store. For iOS (and macOS) apps, you 
need to follow the same procedure for Apple.

Flutter Apprentice Chapter 21: Build & Release an iOS App

 624



The first step is to set up a spot for the app in App Store Connect. This is Apple’s 
administrative console for developers in the App Store.

Navigate to the App Store Connect website: https://appstoreconnect.apple.com/

Note: You’ll need a valid Apple Developer Program account to access App 
Store Connect. If you log in and see an Enroll button, then you still have to 
sign up. Use the instructions above to create an account.

Creating a New App
Before you can upload and distribute a build, you first have to create a record for the 
app by adding some basic information.

From the main App Store Connect login menu, select My Apps. This is where you’ll 
create your app’s store listing.

To create a new app record, click the + button and select New App.

Flutter Apprentice Chapter 21: Build & Release an iOS App

 625



You may have to accept the App Store terms and conditions or enter business 
or legal info. This might happen now or at any point in the process. The site 
will let you know when you need to agree and will not let you proceed 
otherwise. Any time you see that request, resolve the issue and come back.

You’ll see a window where you can fill in some basic app information:

Flutter Apprentice Chapter 21: Build & Release an iOS App

 626



Fill in the following information:

1. Select the iOS platform.

2. Name is important here because your customers will see it. As with the Android 
app, you’ll need to use something unique. Recipe Finder is already taken, and 
you’ll get an error message if you pick a name that someone has already used.

3. Primary Language is the default language for the app — in this case, US English.

4. For Bundle ID, select the identifier you used in the developer portal from the 
drop-down. If it doesn’t show up here, go back to the Identifiers list and make 
sure you created an app ID.

5. SKU is a unique identifier used for financial reports. Pick one that you’ll 
recognize when counting the money. :]

6. User Access controls access to your team’s App Store Connect users. This is 
important if you have a large team and don’t want to show the app to everyone in 
your organization.

When you’re done, your responses should look like this:

Flutter Apprentice Chapter 21: Build & Release an iOS App

 627



Click Create and you’ll see a new screen showing your app’s App Store Connect 
entry.

Voilà! Your app is now ready for you to upload.

Uploading to the App Store
On Android, you made an appbundle to distribute to the Play Store. iOS has a 
parallel concept. You’ll need to build an archive to upload to the App Store. You can 
do this from either Xcode or the command line. For this chapter, you’ll use Xcode.

In Xcode, just above the section where you entered the Bundle Identifier, you’ll see 
the tiny app icon with a device.

Flutter Apprentice Chapter 21: Build & Release an iOS App

 628



To the right of the tiny app icon, click the device name and set the device to Any iOS 
Device as the build destination. This is important because you can make deployable 
builds only for actual devices, not the simulator.

When you upload your app to the App Store, you upload an app archive. To create an 
archive from the menu, go to Product ▸ Archive.

Archive builds the app for distribution and packages it for uploading to the App 
Store. You’ll see a progress bar across the top of your Xcode window.

When it completes, the Organizer window will pop up and display the archive.

The archive file contains the app binary along with metadata and symbols. The 
App Store will process this file and get the version that users will finally download 
on their devices.

Flutter Apprentice Chapter 21: Build & Release an iOS App

 629



Uploading the Build
From the organizer window, click Distribute App.

You’ll see a list of distribution methods. Choose App Store Connect and click Next. 
The other options are for custom distributions typically used in enterprise contexts.

Flutter Apprentice Chapter 21: Build & Release an iOS App

 630



In the next dialog, choose Upload to send the build directly to Apple. The Export 
option creates an artifact that you can upload later, through other means. Click 
Next.

The next form covers distribution options. You have the option to strip the Swift 
symbols, which reduces app size. The other option is to upload the debug symbols, 
which makes it possible to symbolicate crash reports that come in from users. Click 
Next.

Note: Starting with Xcode 14 bitcode apps are no longer accepted. Flutter 3.7 
removed support for bitcode.

Flutter Apprentice Chapter 21: Build & Release an iOS App

 631



The next form is about app signing. It’s easier to let Xcode manage your signing, but 
if you have a CI system doing your builds and uploading to the App Store, you’ll have 
more control with manual signing. For now, click Automatically manage signing 
then click Next.

If you have an Apple Distribution certificate, skip to the next step. If you don’t 
know what an Apple Distribution certificate is, then you’re in the right place.

You need a certificate to sign the app that you’ll upload to App Store Connect. Xcode 
can generate one for you. If your account doesn’t have a certificate yet, you’ll see the 
following screen. Select Generate an Apple Distribution certificate and click 
Next.

Flutter Apprentice Chapter 21: Build & Release an iOS App

 632



While the certificate generates, you’ll see a screen with a spinning wheel. It can flash 
by or take a little while to generate. When it’s done, you’ll see the following screen. 
Be sure to read it.

You’ll notice that it warns you that the private key is stored locally and cannot be 
recovered if lost. Apple recommends saving the certificate and key in a safe place.

Click Export Signing Certificate, add a password and save it somewhere you can 
remember. After you’ve exported the certificate, click Next.

Xcode will then sign the app and prepare it for upload.

Flutter Apprentice Chapter 21: Build & Release an iOS App

 633



After Xcode creates the archive, the final form will show you the app contents and 
metadata. This includes any frameworks — such as Flutter — and other 
dependencies, as well as all the signing and entitlement information. Click Upload 
to send it to the App Store.

Now, it’s important that you’ve already set up the record in the App Store so there’s a 
place for this information to go. If there are no issues with App Store Connect, like 
having to accept agreements, then you’re done working in Xcode. Otherwise, resolve 
any errors and try again. Click Done when prompted.

In a few minutes, the app will show up under the iOS builds in App Store Connect. 
Go to https://appstoreconnect.apple.com/apps, click your app and go to the 
TestFlight tab. Select Builds ▸ iOS on the left to see the list of uploaded builds.

Flutter Apprentice Chapter 21: Build & Release an iOS App

 634



You’ll see yours is Processing.

After some time, the status will update to Ready to Submit.

Alternately, you might see an error like Missing Compliance:

If there’s an error, follow the instructions at the link to fix it. If this is the first time 
you uploaded the build, you’ll likely get a compliance issue. Follow your local legal 
advice on how to answer those questions.

Note: If you receive a message stating Missing Push Notification 
Entitlement and your app does not have push notifications see Flutter GitHub 
Issue 9984 (https://github.com/flutter/flutter/issues/9984) and Stack Overflow 
post (https://stackoverflow.com/questions/55167611/flutter-ios-app-
submission-issue-warning-missing-push-notification-entitlement) by 
Kodeco’s Jonathan Sande (https://www.kodeco.com/u/suragch).

Once your app is ready to submit, you can continue with the TestFlight process.

Flutter Apprentice Chapter 21: Build & Release an iOS App

 635



Sharing Builds Through TestFlight
Now, you’re ready to test your build. There are two options for test builds: Internal 
Testing and External Testing.

Internal testing is for sharing within your own company for quality assurance or 
feedback. Typically, this includes other developers, quality engineers, product 
managers, designers and marketing specialists. Your mileage may vary.

External testing is for a limited group of testers. These can include people within 
your organization as well as beta test customers, friends, journalists and anyone you 
want to try your app before you release it.

Select TestFlight tab of the App Store Connect console.

From here you’ll see a list of all the builds you’ve uploaded. You might have 
messages from App Store Connect and this is also where you’ll set up your testing.

Flutter Apprentice Chapter 21: Build & Release an iOS App

 636



Export Compliance
You might see an Export Compliance warning. If so, follow the instructions at the 
link to address it.

Follow your local legal advice on how to answer those questions.

Note: You may see a message stating that you can bypass setting export 
compliance in App Store Connect by doing it in your Xcode project. Due to 
potential local legal issues this is out of scope for this book.

Next, you’ll set up your internal testing.

Flutter Apprentice Chapter 21: Build & Release an iOS App

 637



Internal Testing
You can begin internal testing as soon as the app finishes processing and you’ve 
addressed any outstanding issues.

Click + next to Internal Testing.

A dialog box will be displayed for you to name your internal testing group. This is 
the name that will show up in the App Store Connect console.

In Group Name box, enter Internal Testers or something you’d rather name it and 
click Create.

You’ll get a list of users to add as testers. Internal testing is only open to users who 
have accounts in your App Store Connect.

At a minimum, you’ll be listed as available. To add more people to your account, 
you’ll have to go through the Users and Access link from the top navigation bar.

Flutter Apprentice Chapter 21: Build & Release an iOS App

 638



Check the box next to the names you wish to add and click Add.

Once you add a tester, they’ll appear in the Testers list.

Before testing emails can be sent you need to add a message to your testers 
explaining what they need to test. Click on the build number, shown here as 1.0.0 
(1).

Flutter Apprentice Chapter 21: Build & Release an iOS App

 639



On the Test Details page enter a message for your testers and click Save. Then click 
< iOS Builds to return to the list of builds.

Returning to the Internal Testing page, you’ll notice that after saving the message, 
the status is now Invited. This means emails have been sent to your testers.

As they test, the columns to the right will show the status of the test. Testers have to 
accept the email invite before they can install a build.

Flutter Apprentice Chapter 21: Build & Release an iOS App

 640



The invite will provide instructions or a button to launch TestFlight. From there, the 
user will receive a prompt to install the app.

And that’s all it takes for the user to get your app on their device! From then on, the 
App Store will automatically notify your testers when a new build is available.

From the same Testers list in App Store Connect, you can monitor the app’s usage 
for crashes or feedback submitted through TestFlight.

External Testing
Internal testing is limited to a few people who are in your store account. Obviously, 
you don’t want to give store access to testers who aren’t part of your organization.

To get started with external testing, you first have to make a group. The App Store 
lets you separate testers into groups, so you don’t have to release every build to 
every tester. For example, you might want a test team to get every build, but update 
customer beta builds only once a week.

Flutter Apprentice Chapter 21: Build & Release an iOS App

 641



Click the + next to External Testing in the left navigation bar to create a new group.

You’ll see a window for you to enter the Group Name. Enter a name and click 
Create.

After you create the group, you’ll see it listed in the sidebar.

You can now add testers to your group. One difference from internal testing is that 
you can invite testers right from this panel. You can also create a web link to share, 
letting testers invite themselves to the group.

Flutter Apprentice Chapter 21: Build & Release an iOS App

 642



Before you can create a link or add users, you need to add a build. Click + next to 
Builds.

Apple reviews apps before it releases them to beta testers. The next window allows 
you to choose which build you wish to submit to Apple for Beta App Review.

Flutter Apprentice Chapter 21: Build & Release an iOS App

 643



Select the build that you want for Beta App Review to test. Click Next to go to the 
next screen.

Next, enter your contact information. This lets your readers supply user feedback 
and lets Beta App Review ask any questions they have. If your app has a login, you 
have to create an account that app review can use to log in and check out the app. 
Fortunately, Recipe Finder has no login. :]

Enter the information and click Next to continue.

Your last step is to enter a little message that will be included with the build 
notification.

Flutter Apprentice Chapter 21: Build & Release an iOS App

 644



This is an opportunity to ask people to check out certain things or to notify them 
about changes.

Enter a message and click Submit for Review.

This sends your build to Apple for a quick version of an app review. Within a short 
time — anywhere from a few minutes to a few days — the app will be ready to test, 
assuming there aren’t any issues.

Congratulations, now you can distribute the app for testing.

Flutter Apprentice Chapter 21: Build & Release an iOS App

 645



Submitting Your App to the App Store
To submit your app to the App Store for download or purchase, you need to add all 
the information required under the App Store tab, such as screenshots, marketing, 
privacy policy and age rating.

Once that information is complete, you can submit your TestFlight build to the full 
app review. After approval, you can submit your app for release.

And there you have it: simple Flutter app distribution on iOS.

Flutter Apprentice Chapter 21: Build & Release an iOS App

 646



Key Points
• You have to configure the Apple Developer Portal and App Store Connect before 

you can upload a build.

• Use Xcode to archive the project to easily upload your app to the App Store.

• Use TestFlight for internal and external testing of iOS apps.

Where to Go From Here?
If you want to take this to the next level and learn more about app signing or 
distributing and selling to customers in the App Store, then iOS App Distribution & 
Best Practices https://www.kodeco.com/books/ios-app-distribution-best-practices is 
for you.

Apple’s documentation is also helpful if you have questions about terms not covered 
here: https://developer.apple.com/documentation/xcode/
distributing_your_app_for_beta_testing_and_releases.

Flutter Apprentice Chapter 21: Build & Release an iOS App

 647



22Conclusion

Congratulations! You’ve completed your introduction to building apps with Flutter. 
The skills you’ve honed throughout these chapters will set you up for developing 
production apps with this exciting toolkit.

If you want to further your understanding of Flutter development with Dart after 
working through Flutter Apprentice, we suggest you read the Dart Apprentice: 
Fundamentals, available here https://www.kodeco.com/books/dart-apprentice-
fundamentals.

If you have any questions or comments as you work through this book, please stop by 
our forums at https://forums.kodeco.com/c/books/flutter-apprentice/ and look for 
the particular forum category for this book.

Thank you again for purchasing this book. Your continued support is what makes the 
books, tutorials, videos and other things we do at https://kodeco.com possible. We 
truly appreciate it!

– The Flutter Apprentice team

 648



Appendices

In this section, you’ll find the solutions to the challenges presented in the book 
chapters.

 649



AAppendix A: Chapter 5 
Solution 1
By Vincent Ngo

First, you need to make ExploreScreen a StatefulWidget because you need to 
preserve the state of the scroll controller.

Then, add the following import at the top:

import 'dart:developer';

Next, add a ScrollController property in _ExploreScreenState:

late ScrollController _controller;

Then, add a function called scrollListener(), which is the function callback that 
will listen to the scroll offsets.

void _scrollListener() { 
  // 1 
  if (_controller.offset >= _controller.position.maxScrollExtent 
&& 
      !_controller.position.outOfRange) { 
    log('i am at the bottom!'); 
  } 
  // 2 
  if (_controller.offset <= _controller.position.minScrollExtent 
&& 
      !_controller.position.outOfRange) { 
    log('i am at the top!'); 
  } 
}

Here’s how the code works:

1. Check the scroll offset to see if the position is greater than or equal to the

 650



maxScrollExtent. If so, the user has scrolled to the very bottom.

2. Check if the scroll offset is less than or equal to minScrollExtent. If so, the user 
has scrolled to the very top.

Within _ExploreScreenState, override initState(), as shown below:

@override 
void initState() { 
  super.initState(); 
  // 1 
  _controller = ScrollController(); 
  // 2 
  _controller.addListener(_scrollListener); 
}

Here’s how the code works:

1. You initialize the scroll controller.

2. You add a listener to the controller. Every time the user scrolls, 
scrollListener() will get called.

Within the ExploreScreen’s parent ListView, all you have to do is set the scroll 
controller, as shown below:

return ListView( 
        controller: _controller, 
        ...

That will tell the scroll controller to listen to this particular list view’s scroll events.

Finally, add a function called dispose().

@override 
void dispose() { 
  _controller.removeListener(_scrollListener); 
  super.dispose(); 
}

The framework calls dispose() when you permanently remove the object and its 
state from the tree. It’s important to remember to handle any memory cleanup, such 
as unsubscribing from streams and disposing of animations or controllers. In this 
case, you’re removing the scroll listener.

Hot restart, scroll to the botton and top, and see the printed statements in the Run 
console:

Flutter Apprentice Appendix A: Chapter 5 Solution 1

 651



Performing hot restart... 
Syncing files to device iPhone 8... 
Restarted application in 1,086ms. 
[log] i am at the bottom! 
[log] i am at the top! 
[log] i am at the bottom! 
[log] i am at the top!

Here are some examples of when you might need a scroll controller:

• Detect if you’re at a certain offset.

• Control the scroll movement by animating to a specific index.

• Check to see if the scroll view has started, stopped or ended.

Flutter Apprentice Appendix A: Chapter 5 Solution 1

 652



BAppendix B: Chapter 5 
Solution 2
By Vincent Ngo

In recipes_grid_view.dart, replace the gridDelegate parameter with the following:

const SliverGridDelegateWithMaxCrossAxisExtent( 
  maxCrossAxisExtent: 500.0),

Recall that the GridView is set to scroll in the vertical direction. That means the 
cross axis is horizontal. According to Flutter’s documentation, maxCrossAxisExtent 
sets the maximum extent of tiles in the cross axis. So making maxCrossAxisExtent 
greater than the device’s width would allow for only one column!

 653


	Book License
	What You Need
	Book Source Code & Forums
	About the Authors
	About the Editors

	Acknowledgements
	Content Development

	Introduction
	How to Read This Book

	Chapter 1: Getting Started
	What is Flutter?
	Flutter’s History
	The Flutter Architecture
	What’s Ahead
	Getting Started
	Getting the Flutter SDK
	Trying It Out
	Key Points
	Where to Go From Here?

	Chapter 2: Hello, Flutter
	Creating a New App
	Making the App Yours
	Clearing the App
	Building a Recipe List
	Adding a Recipe Detail Page
	Key Points
	Where to Go From Here?

	Chapter 3: Basic Widgets
	Getting Started
	Styling Your App
	Defining a Theme Class
	Switching Themes
	Creating Custom Buttons to Switch Color and Mode
	Adding Action Buttons to the App Bar
	Understanding App Structure and Navigation
	Navigating Between Pages
	Creating Custom Cards
	Composing Category Card
	Composing Post Card
	Key Points
	Where to Go From Here?

	Chapter 4: Understanding Widgets
	What Is a Widget?
	Unboxing CategoryCard
	Rendering Widgets
	Getting Started
	Learning the Types of Widgets
	Key Points
	Where to Go From Here?

	Chapter 5: Scrollable Widgets
	Getting Started
	Introducing ListView
	Setting Up the Explore Screen
	Creating a FutureBuilder
	Building Restaurant Section
	Nested ListViews
	Building Category Section
	Building the Post Section
	Other Scrollable Widgets
	Key Points
	Where to Go From Here?

	Chapter 6: Advanced Scrollable Widgets
	Getting Started
	Introducing Slivers
	Building the Restaurant Page
	Building a Sliver for the Restaurant Page
	Building a Sliver App Bar
	Building the Restaurant Info Section
	Introducing GridView
	Building the Grid View Section
	Implementing a Responsive Menu
	Key Points
	Where to Go From Here?

	Chapter 7: Interactive Widgets
	Getting Started
	Presenting Item Details
	Building Item Details
	Building the Checkout Page
	Creating the Checkout Page
	Building the Orders Page
	Key Points
	Where to Go From here?

	Chapter 8: Routes & Navigation
	Introducing Navigation
	Navigator 1.0 Overview
	Navigator 1.0’s Disadvantages
	Router API Overview
	Navigation and Unidirectional Data Flow
	Is Declarative Always Better Than Imperative?
	Getting Started
	Changes to the Project Files
	Looking Over the UI Flow
	Introducing go_router
	Creating the go_router
	Using Your Router
	Adding Screens
	Setting Up Your Error Handler
	Adding the Login Route
	Adding the Home Route
	Handling Redirects
	Adding the Restaurant Route
	Key Points
	Where to Go From Here?

	Chapter 9: Deep Links & Web URLs
	Understanding Deep Links
	Getting Started
	Overview of Yummy Paths
	Router API Recap
	Testing Deep Links
	Running the Web App
	Key Points
	Where to Go From Here?

	Chapter 10: Handling Shared Preferences
	Getting Started
	Saving Data
	The shared_preferences Plugin
	Key Points
	Where to Go From Here?

	Chapter 11: Serialization With JSON
	What is JSON?
	Automating JSON Serialization
	Creating Model Classes
	Key Points
	Where to Go From Here?

	Chapter 12: Networking in Flutter
	Signing Up With the Recipe API
	Using the HTTP package
	Connecting to the Recipe Service
	Updating the User Interface
	Why Chopper?
	Preparing to use Chopper
	Preparing the Recipe Service
	Converting Request and Response
	Encoding and Decoding JSON
	Using Interceptors
	Generating the Chopper File
	Using the Chopper Client
	Key Points
	Where to Go From Here?

	Chapter 13: Managing State
	Architecture
	Why You Need State Management
	Widget State
	Application State
	Managing State in Your App
	Other State Management Libraries
	Key Points
	Where to Go From Here?

	Chapter 14: Working With Streams
	Types of Streams
	Adding Streams to Recipe Finder
	Sending Recipes Over the Stream
	Exercise
	Switching Between Services
	Adding Streams to Bookmarks
	Adding Streams to Groceries
	Key Points
	Where to Go From Here?

	Chapter 15: Saving Data Locally
	Databases
	Adding a Database to Recipe Finder
	Using the Drift Library
	Key Points
	Where to Go From Here?

	Chapter 16: Firebase Cloud Firestore
	Getting Started
	What is Cloud Firestore?
	Setting Up a Firebase Project
	Adding Firebase
	Adding Authentication
	Understanding Firestore Data Storage
	Creating Cloud Firestore Database
	Modeling Data
	Adopting Riverpod
	Creating the Login Screen
	Adding Message Data Model
	Creating New Messages
	Reactively Displaying Messages
	Key Points
	Where to Go From Here?

	Chapter 17: Introduction to Testing
	Improving Code Quality With Tests
	Learning About Tests
	Adding Unit Tests
	Understanding Mocks
	Making Your Code Testable
	Mocking With Mockito
	Key Points
	Where to Go From Here?

	Chapter 18: Widget Testing
	Learning About Widget Tests
	Adding Your First Widget Test
	Testing IngredientCard’s Behaviors
	Understanding Golden Tests
	Writing a Golden Test
	Challenges
	Key Points
	Where to Go From Here?

	Chapter 19: Platform-Specific App Assets
	Setting the App Icon
	Setting up iOS Icon and Launch Assets
	Adding an iOS Launch Screen
	Setup macOS Icons
	Set Up Android App Icon and Launch Assets
	Set Up Web App Icon and Title
	Key Points
	Where to Go From Here?

	Chapter 20: Build & Release an Android App
	Set Up for Release
	Build an App Bundle
	Uploading to The Google Play Store
	Uploading a Build
	Distribution
	Key Points
	Where to Go From Here?

	Chapter 21: Build & Release an iOS App
	Creating the Signing
	Setting up the App Store
	Uploading to the App Store
	Sharing Builds Through TestFlight
	Key Points
	Where to Go From Here?

	Conclusion
	Appendix A: Chapter 5 Solution 1
	Appendix B: Chapter 5 Solution 2

