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Preface
Convex analysis, convex optimization, and algorithms are important topics in modem applied 
mathematics. In this text, we provide an introduction to a selection of these topics accessible at 
the advanced undergraduate or beginning graduate level. The only background required is some 
core knowledge of calculus, linear algebra, and analysis.

This book is the core of a one-semester course (12 weeks with 3 lecture hours/week) that the 
authors taught at University of British Columbia Okanagan and at University of Waterloo. The 
material is complementary to existing books aimed at this level — we single out in particular the 
books by Beck [4] and by Mordukhovich and Nam [34]. This book is also immensely suitable 
for self-study.

In a lifetime, a mathematician typically reads only a few books cover-to-cover. This book 
aims to be an exception: you should be able to completely read this in a relatively short — and 
also enjoyable — period of time. The material is largely self-contained; however, when we rely 
on external results that we do not fully prove, we flag them as Facts. After you’ve read this book, 
you are ready to tackle more advanced texts we comment upon in the last section of the book; 
in particular, you will be able to dive into [3], Beck’s [5], and Rockafellar’s seminal book [39], 
which served as main motivations for the selection of the material presented.

We thank the following colleagues for their encouragement and support: Fran Aragon Arta- 
cho, Sedi Bartz, Amir Beck, Radu BoJ, Yunier Bello-Cruz, Minh Dao, Warren Hare, Mau Nam 
Nguyen, Hung Phan, Nghia Tran, Levent Tunnel, Jon Vanderwerff, Stephen Vavasis, Shawn 
Wang, Henry Wolkowicz, Yaoliang Yu, and Jim Zhu. Specials thanks go to Paula Callaghan, 
Cheryl Hufnagle, Rose Kolassiba, and Louis Primus for all their kind and encouraging help 
shepherding this book to production! Last but not least, we thank our students and teaching 
assistants for valuable comments and feedback, in particular Alvaro Carbonero, Woosuk Jung, 
Tanmaya Karmarkar, Hongda Li, Joao Paulo Pinto Galdino Marques, Heejun Song, and Samuel 
Street. We welcome you contacting us with suggestions and corrections!

August 2023 Heinz Bauschke and Walaa Moursi
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R_|_ 
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R_
R__
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Chapter 1

Setting the Stage

1.1 " Reminders from Analysis and Linear Algebra
Recall that if S' is a subset of R, then inf S and sup S denote the infimum and supremum of S. 
These numbers may lie in [—oo, +oo]. If inf S e R and the infimum is attained, i.e., a minimum, 
then we will also write min S. A similar comment applies to the supremum and the maximum, 
written max S.

If (zn)neN is a sequence in R, then limngN xn denotes its limit inferior while limnen^n 
denotes its limit superior. If (yn)neN is another sequence in R, then

lim xn + lim yn lim(a;n + yn). (1.1)
nCN nCN neN

The famous Bolzano-Weierstrass Theorem states that every bounded sequence (residing in 
Rn) has a convergent subsequence.

Recall that a subset S of Rn is compact if it is both bounded and closed.
The famous Weierstrass Theorem states that if f: S —> R is continuous, where S is compact, 

then f attains its minimum and maximum on S: There exist and s? in S such that

/(si) = min/(S) and /(s2) = max/(S). (1.2)

If a symmetric matrix A e Rnxn is positive semidefinite, i.e., (f/x e Rn) x^Ax 0, then 
we write A > 0. If (Vx E Rn \ {0}) x1 Ax > 0, then A is positive definite, written A >- 0.

Given a subset S of X, its distance function ds is defined by

ds(x) •= inf ||& — 5|| = inf ||x — s||, (1.3)sES

where || • || denotes a norm (usually the Euclidean norm) on X.

Proposition 1.1 Let A, B e Rnxn be symmetric and positive semidefinite. Suppose that there 
exists 0 such that A fiB. Denote the nonnegative eigenvectors of B by fi^ fiz
fid > fid+i = • • • = fin = 0. If d = 0, then set y = 0. If d 1, then proceed as follows: Obtain 
orthonormal eigenvectors ui,... ,Ud of B with corresponding eigenvalues fii,..., fid- Build 
the matrix U := [tzi |tz21 • • • \ud\ € Rnxd, the diagonal matrix D e Rdxd with diagonal entries 
y/fii,..., y/fid, and finally the matrix C := AU D-1. Denote its largest eigenvalue by y. 
No matter which case we are in (d = 0 or d 1), the y constructed is the smallest nonnegative 
real number such that A yB.

1



2 Chapter 1. Setting the Stage

1.2 - Euclidean Spaces
Throughout this book,

X is a Euclidean space,

with inner product {x, y) and induced Euclidean norm

Ikll ■=

Sometimes, a second Euclidean space is present, usually denoted by Y.
We will occasionally employ other norms; however, if we don’t mention anything, it will be 

the Euclidean norm.
We recall here that an inner product is a mapping

(•,•) : X x X R

satisfying

(i) {x,y) = {y,xf,

(ii) {ax + /3y, z) = a {x, z) + ft {y, z);

(iii) {x, x) 0, with equality if and only if x = 0.

Proposition 1.2 (classical Cauchy-Schwarz) For vectors x. y in X, we have 

{x,y) IHIIMI, with equality if and only if \\y\\x =

Proof This is clearly true if x = 0 or y = 0. So assume that x 0 and y 0. Then

1 + 1 - 2 1 lx v} - 2 (1 -
V MIMA

Now rearrange and we are done.

Example 1. 3 (standard Euclidean space) Suppose X = Rn. Then X is a Euclidean space 
with the inner product

(x,y) := x^y

being equal to the dot product; thus,

IM = ^l+^ + ’-’+^n-

Example 1. 4 If X = Rn and Q e Rnxn is positive definite, i.e., Q = QT and {x, Qx) > 0 if 
x 0, then

M y)Q := xJQy
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is the Q-inner product and

II^IIq := \J{x,x)Q

is the Q-norm.

Example 1. 5 (matrix spaces) Suppose X = Rmxn. Then X is a Euclidean space with the 
inner product

(A,B) := tra ATB =

where tra denotes the trace function. Thus 

which is also known as the Frobenius norm and also written as ||A||f. If m = n, then an 
important subspace is

Sn := {A e Rnxn I AT = A},

the space of symmetric matrices of size n x n.

Example 1. 6 (product space) Let X and Y be Euclidean spaces, with inner products (•, -)x 
and (•, respectively. Then the Cartesian product

XxY = {(x,y)\xeX,y&Y}

is a real vector space with

(xi,yi) + (x2,?/2) := M +z2,yi +y2), 
a(x, y) := (ax, ay).

X x Y is also an inner product space with

{(xi,yi),(x2,y2)} := (x1,x2)x + (yi,y2)Y

which gives rise to the corresponding Euclidean norm

II(x,y)|| := x/((a;,y),(^y)) = fx,x)x + (y,y)Y = v^NI2 + IMI2-

We can also deal with 3 or more Euclidean spaces in a similar fashion.

Next are some identities and inequalities that will be useful later.

Lemma 1.7 (Euclidean norm identity) Let u^v be in X and let A e R. Then

||(1 - X)u + Au||2 + A(1 - A)\\u - < = (1 - A)||u||2 + AR2. (1.4)

Proof. Exercise 1.2. □

Lemma 1.8 Let u, v be in X, and let a e ]0,1[. Then

a(IM|2 - 11(1 - a-1)u + a-1v||2) = ||u||2 - (1 - a)a-1||u - v||2 - ||v||2. (1.5)
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Proof. Exercise 1.3. □

Proposition 1.9 Let u, v be in X. Then

(u,v)^0 <=> (VA e [0,1]) ||u|| ||u - Av||. (1.6)

Proof Let A e ]0,1]. Then

||w|| < \\u - Av|| O |M|2 < \\u - A^||2 = ||u||2 - 2A(u,u) + A2||u||2 (1.7a)

&2{u,v) X\\v\\2. (1.7b)

We now prove the equivalence (1.6). If (u, v) 0, then 2 (u, v) 0 A||u||2 and so (1.7)
yields ||u|| \\u - Xv||. If (VA e ]0,1]) ||u|| \\u - Xv||, then (1.7) yields (VA e ]0,1]) 
2 (u, v) A||u||2 and taking A —> 0+ yields 2 (u, v) 0. □

Proposition 1.10 Let u.v be in X. Then

u = v <=> (-,u) . (1.8)

Proof Exercise 1.4. □

1.3 > General Norms
Recall that || • || is a norm on X if the following hold:

(i) ||#|| > 0, and ||rr|| = 0 <=> x = 0;

(ii) ||az|| = |a|||x||;

(iii) (triangleinequality) ||a; + y||^||a;|| + ||y||.

In this course, if we don’t say anything, the norm will be the Euclidean norm; however, 
sometimes results hold true for general norms, and these are worth pointing out.

Associated with any norm is the closed ball centered at c of radius p 0,

B[c;p] := {x € X | ||x - c|| p},

and the open ball B(c, p) := {& e X | ||a; — c|| < p}.

Example 1.11 [25, Example 1.2-3] If X = Rn and 1 C p < oo, then 
/ n \ -

IK:=(£WP J

is the p-norm, and

Halloo :=max{|xi|,...,|a:n|}

is the max or infinity norm.

Example 1.12 (spectral norm) If A e Rmxn, then the operator/spectral norm of A is given by

||A||2 := max ||Ar|| = <rmax(-4) = \A max G4TA), 
||z||O v

where amax(-4) is the largest singular value of A, which is also equal to the square root of
Amax(>lT^4), the largest eigenvalue of ATA. Note that m||2 ||A|| = ^/tra(ATA) =

Ai(ATA), the Frobenius norm of A.
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Example 1.13 (dual norm) Let || • || denote any norm on X. Then the dual norm on X is defined 
by

IMI*  := max

1 These norms are not necessarily the p-norms from Example 1.17.

IkllO

it is also equal to max||x||=1 (x, y), provided that X {0}.

Example 1.14 (Euclidean norm is self-dual) Suppose that || • || is the Euclidean norm. Then its 
dual norm is the same as the original norm.

Proof. Exercise 1.5. □

Proposition 1.15 (generalized Cauchy-Schwarz) If || • || is any norm on X, with dual norm 
|| • ||*,  and x, y are in X, then

I &,y) I INIIMI*-

Proof. Assume without loss of generality that x 0 and set z := z/||rr||. Then ||z|| = 1, 
II -^11 = 1. IM*  > {z,y) = (z,y)/||a;||, and ||y||, {~z,y) = - (x, y) /||a:||. Hence
llz/ll*  > max{(r, y) /||x||, - (x, y) /||tr||} = | (x,y) |/||x|| and we are done. □

Example 1.16 Suppose that X = Rn with the standard Euclidean norm. Then the dual norm of 
the Q-norm y/(x, Qx) (see also Example 1.4) is \/(y1Q~1y), where Q is positive definite.

Example 1.17 [25, Example 2.10-7] The dual norm of the || • ||p norm is || • ||Q, where ± 1 = 1.

Example 1.18 The dual norm of

2 = 1

where cui > 0,..., cum > 0 and where (x1?..., xm) e x • • • x Xm is a Cartesian product of 
Euclidean spaces, is

Remark 1.19 The three previous examples all show that the Euclidean norm is self-dual: || ||*  = 
|| • ||. (Use Q = Id; p = 2; or uji = 1.)

We conclude this chapter with two well-known facts which we state for future reference.

Fact 1.20 (automatic continuity) [25, Theorems 2.7-8 and 2.7-9] Let A : X —> Y be a linear 
map. Then A is continuous.

Fact 1.21 (all norms are equivalent) [25, Theorem 2.4-5] Suppose that || • ||i and || • ||2 are two 
norms1 on X. Then there exist positive constants a, ft such that

(VieX) a||a;||i ||x||2
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Exercises
Exercise 1.1 Provide the details for Proposition 1.1.

Exercise 1.2 Prove (1.4).

Exercise 1.3 Prove (1.5).

Exercise 1.4 Prove Proposition 1.10.

Exercise 1.5 Prove Example 1.14.

Exercise 1.6 (parallelogram law) Let x,y be in X. Show that ||z+?/||2 +||z-?/||2 = 2(||z||2 + 
IMI2)-

Exercise 1.7 Consider X = R2 with the norms || • ||i: X —> R+: (^1,^2) |€iI + I£21 and
|| • ||oo : X —> R+: (^1,^2) max{|£i|, |£2|}- Show that neither norm satisfies the parallelo­
gram law (see Exercise 1.6).

Exercise 1.8 Let x, y be in X. Show that the following are equivalent:

(i) IM  + l|z-y||  = M -2 2 2

(ii) llyll  = &,y).2

(iii) {y, x-y) =0.

(iv) ||2y — ar|| = ||a:||.

(v) (Va e [-1,1]) Hj/II ||aa: + (1 - a)y||.

(vi) (Va e R) ||y|| ||<xc + (1 - a)y\\.

Exercise 1.9 Let x and y be nonzero vectors. Define the angle a between x and y, where 0 is 
thought of as the vertex, by

/ x ,=
Wil

and also set

IMIIMI
-V'lkll2M2-k,s/>2

IkllM

if cos(ct) 0;

if cos(ct) 0.
(1.10)

Show that cos2 (a) + sin2 (a) = 1.

Exercise 1.10 Let x and y be linearly independent. Then 6 := ||^||2||?/||2 — (x,y)2 > Oby 
Cauchy-Schwarz; thus, the point

z ,= IMI2 (x-y,x}x + ||a;||2 (y,y-x)y 
2(INI2IMI2 - (x,y)2)

is well defined. Note that 6 = ||a;||2||?/ — rr||2 — (x, y — x)2 = ||?/||2||a; —t/||2 — {y,x — y) . Show 
that

||0 - ^|| = ||x - ^|| = ||y - ^|| = HIMII^-yll =: 7?. (1.12)



Exercises

The point z is called the circumcenter of the triangle conv{0, x, y}, and R is the circumradius. 
Note that in the acute case,

I-------------------------- ' ( \ \1*13)
\Zll®ll2lly||2 - (x,y}2 sin(a)

where a is the angle between x and y, with 0 as the vertex. This yields the Law of Sines. The 
area of a triangle is

r a/iKIM2 -
alkllyll sin(a) = 2^ =------------- 2------------- ’ (L14)





Chapter 2

Affine and Convex Sets

2.1 > Convex Sets
Definition 2.1 (affine subspace) Let S' be a nonempty subset of X. Then S is an affine subspace 
if

fix G S)fiy G S)(VA G R) (1 - X)x + XyeS.

The smallest affine subspace containing S is the affine hull of S, written aff S.

Example 2.2 Let Y be a linear subspace of X. Then clearly Y is also an affine subspace of X.
More generally, if s G X, then

5 + r :={$ + ?/|?/Gy} 

is affine.

Example 2.3 Suppose A: X —> Y is linear and b G Y. If A-1 (6) := {t g X | Ax = b} 0, 
then A-1 (b) is an affine subspace.

Definition 2.4 (convex set) Let C be a (possibly empty) subset of X. Then C is convex if

fix G C)fiy G C)(VA G [0,1]) (1 - X)x + XyeC.

Note that this is equivalent to requiring that fix G C) fiy G C) fiX G ]0,1 [) (1 — X)x + Xy G C. 
The convex hull of C, written conv C, is the smallest convex superset containing C (this is well 
defined in view of Theorem 2.13 below!).

Figure 2.1. The green set on the left is convex, while the red set on the right is not convex.

9
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Example 2. 5 (line segment) If a and b are in X, then the line segment 

[a,6] := {(1 — A)a + A6 | 0 A 1} 

is convex.

Example 2. 6 0 and X are convex. If S is an affine subspace, then S is convex.

Example 2. 7 (closed ball) If c e X, p 0, and || • || denotes any norm, then the closed ball 
B[c; p] = {# G X | ||a; — c|| p} is convex.

Example 2. 8 (closed halfspace) Let a e X \ {0} and let /3 G R. Then the half space

{x G X | (x,a) /3}

is convex.

Example 2. 9 (nonnegative orthant) The nonnegative orthant

R” = {z G Rn | each Xi 0}

is convex but not affine. The positive orthant R™ + := {z G Rn | each Xi > 0} is convex but not 
affine.

Example 2.1 0 (probability simplex) The probability simplex

Pn := {# G Rn | xi — 1 and each Xi 0}

is convex but not affine (unless n = 1).

Proof Take x, y in Pn, and let A G [0,1]. Then each Xi 0, each yi 0, and Xk = 1 = 
En 

yk-
Now set z := (1 - X)x + Xy. Note that A 0 and 1 - A 0; thus, 

Zi = (1 - A) + > 0.

Moreover, 
n n n n

52Zk = 52 (t1 - ^Xk + Xyk>= (i- A) 52Xk+A 52yk 
fc=l k=l fc=l fc=l

= (1 — A) • 1 + A • 1 = 1.

Hence z G Pn and we are done. □

Example 2.11 (box) Suppose that I G [—oo, +oo]n and r G [—oo, +oo]n. Then the (possibly 
empty or unbounded) box

{& G Rn | each h xz ri}

is convex.
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Example 2.12 (positive (semi)definite matrices) In Sn, the set of real symmetric n x n matri­
ces, the sets

S" := {>1 e Sn | A 0} and S™+ := {>1 G Sn | A > 0}

are convex. Here we recall that A G Sn is positive definite if (Vx G \ {0}) (x, Ax) > 0, 
while A G Sn is positive semidefinite if (V# G Rn) (x, Ax) 0.

Theorem 2.13 The intersection of any collection of convex sets is convex.

Proof Suppose (Vz G I) Ci is convex, and set

C:=QG.
iei

If C = 0, then C is trivially convex. So suppose that C 0. Let (x, y) G C x C and A G [0,1]. 
Because each Ci is convex, we learn that

(VzGl) (l-X)x + XyeCi,

which implies that (1 — X)x + Xy G C and we are done. □

Corollary 2.14 Let I be an index set (finite or infinite), let (ai)iei be a family of vectors in X, 
and let (fii) be a family of real numbers. Then

{.rex I (Vi el) (x,ai)

is convex.

Proof. Combine Example 2.8 with Theorem 2.13. □

2.2 ■ Convex Combinations
Definition 2.15 (convex combination) The linear combination of vectors

Al 271 + • • • + Xnxn

is called a convex combination if n G {1,2,3,...}, each Xi belongs to X, each Xi G [0,1], and 
Ai + • • • + Xn = 1.

Theorem 2.16 Let C be a nonempty subset of X. Then C is convex <=> C contains all of its 
convex combinations of vectors in C.

Proof. Let x G C, y G C, and A G [0,1]. Then (1 — X)x + Xy is a convex combination of 
two vectors in C; hence, it lies in C.

Suppose that C is convex. We show that each convex combination of n vectors in C 
lies in C, where n 1. This is trivial for n = 1, and clear for n = 2 by convexity. Now 
assume we have all convex combinations of n vectors lying in C, where n 2. Consider 
n + 1 points xllx2l..., xn, xn+i drawn from C, and let Ai 0, A2 0, ..., An+1 0 with 
Ai H-----+ An+i = 1. Our goal is to show that

n+i ? 
z := XiXi G C.

2=1
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We may and do assume without loss of generality that all Xi > 0. Because n + 1 3, it follows
that all Xi < 1. Then

n A
= XiXi^ + An+1Xn+1 = (1 An-|-1) H” ^n+l#n+l*

Now observe that ^=1 Xi = A*)  - An+i = 1 - An+i. Hence

n \V—— = 1;1 - An_|-i

in turn this and the inductive hypothesis imply that

It follows from the convexity of C and the definition of z that

z — (1 An+i)?/ + An+1xn+1 G C,

which completes the proof.

Theorem 2.17 Let S be a nonempty subset of X. Then conv S is equal to the set of all convex 
combinations of elements of S.

Proof Let D be the set containing all convex combinations of the form 

where I is a nonempty finite index set, each Xi e S, each Xi 0, and Xi = 1.
“conv S C Z>”: Clearly, S C D. We now show that D is convex — this implies that 

conv S C D. To this end, let d and e be in D, and let 7 e [0,1]. Then there exist x±,..., xm in 
S and Ai 2^ 0,... 7 A777, 0 such that A—Xi — 1 and d — XiXi. Similarly, there exist 
yi,..., yn in S and 0,..., pn 0 such that 1 and e = 52j=i Then

m n m n
(1 - 7)d + 7e = (1 - 7) 52 Xixi + 7 52 MH = 12 (t1 “ 7)Ai)^i + 52^')%;

2=1 j — 1 2 = 1 j — 1

moreover all coefficients in the last linear combination are nonnegative, and the coefficients 
sum up to 1. Put differently, we have revealed (1 — 7)d + 7c to be a convex combination of 
xi,...,xmi y±,..., yn. By hypothesis, (1 — y)d + ye e D. We have shown that conv S C D.

“conv S D Z>”: It is clear that S C conv S. By Theorem 2.16, D C conv S. □

Figure 2.2. The red set on the left is not convex — its convex hull is the green set on the right.
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2.3 > Relative Interior and the Accessibility Lemma
Recall that the interior of C is given by

intC = (xeX | (3p>0) B[x;p] C C}. (2.1)

We have the following refinement, the so-called relative interior

riC:= {.rGC| (2p>0) aff(C) D B\x-,p] C C}. (2.2)

Clearly, int C C ri C; however, the converse is false.

Example 2.18 Consider C = R x {0} in R2. Then int C = 0 but ri C = C.

Fact 2.19 [39, Theorem 6.2] Let C be a nonempty convex subset ofX. Then ri C 0.

Proposition 2.20 Let C be a convex subset of X such that int C 0. Then aff (C) = X.

Proof Let x G X. It suffices to show that x G aff(C). If x G C, then x G aff(C), as claimed. 
So assume that x C. Because int C 0, there exists x$ G int C, say B [#o; £] C C, where 
6 > 0. Then

X — Xq 
C°'-Xo+5W^\\

But then

. = - Io) = (i - + fepdco
G aff{rro,co} C aff(C)

and we are done. □

Corollary 2.21 Suppose C is a convex subset of X such that int C 0. Then ri C = int C.

Lemma 2.22 (Accessibility Lemma) Let C be a convex subset of X. Suppose that x$ G int C 
and x\ e C. Then

(VA G [0,1[) x\ := (1 — A)&o + A#i G int C.

Proof It will be convenient to work with B := B[0; 1]. Let A G [0,1[. Because x$ G int C, 
there exists e > 0 such that

x0 + C c.

Because x± G C, we have x± G C + eB. Therefore,

xx + eB = (1 — A)#o + A#i + eB
C (1 — A)j?o + A(C7 + sB) + sB
= (1 — A)#o H” (1 H” A)sB + AC
= (1- A)(x0 + |^£B) + AC

C (1 - A)C + AC
c C;

hence, xx C int C and we are done. □

Remark 2.23 Similarly to Lemma 2.22, one can prove that if x0 G ri C and x± G C, then 
(1 — A)rro + A#i G ri C for 0 A < 1.
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Exercises
Exercise 2.1 Provide the details for Example 2.2.

Exercise 2.2 Suppose that Y is an affine subspace of X and that s e Y. Show that L := Y — s 
is a linear subspace of X.

Exercise 2.3 Suppose that Y is an affine subspace of X and let ?/]. 7/2,2/3 be in Y, and let 
Ai, A2, A3 be in R such that Ai + A2 + A3 = 1. Show that A^ + A2?/2 + A3t/3 e Y and 
further deduce that Y + Y — Y = Y.

Exercise 2.4 Suppose that Y is an affine subspace of X. We saw in Exercise 2.2 that Y — s is a 
linear subspace whenever s e Y. Show that this linear subspace does not depend on the choice 
of s, and deduce that

(Vsi e y)(Vs2 G Y) Y - $1 = Y - s2 = Y - Y.

The set Y — Y is also called the parallel space of Y.

Exercise 2.5 Verify Example 2.3.

Exercise 2.6 Verify Example 2.5 and also characterize when [a, b] is affine.

Exercise 2.7 Verify Example 2.7.

Exercise 2.8 (open ball) If c e X, p 0, and || • || denotes any norm, then the open ball 
B(c; p) = {& G X | ||37 — c|| < p} is convex.

Exercise 2.9 Provide the details for Example 2.8.

Exercise 2.10 (open halfspace) Let a G X \ {0} and let /3 G R. Show that the open halfspace 
{& G X | (x, a) < /?} is convex.

Exercise 2.11 (complement of a hyperplane) Suppose that a G X \ {0} and let /3 G R. When 
is {& G X | (x,a) ft] convex?

Exercise 2.12 Verify Example 2.9.

Exercise 2.13 Verify Example 2.11.

Exercise 2.14 Verify Example 2.12.

Exercise 2.15 Show that when X / {0}, then the union of two convex sets may fail to be 
convex.

Exercise 2.16 What is the relative interior of the subset {0,1} of R? Comment on Fact 2.19.

Exercise 2.17 Suppose that C and D are convex subsets of X. Show that their sum C + D = 
{c + d | c G C, d G D} is also convex.

Exercise 2.18 Suppose that C and D are closed subsets of X. Show that if D is compact, then 
their sum C + D = {c + d | c G C, d G D} is closed.

Exercise 2.19 Find two closed convex subsets C, D of X such that C + D is not closed.
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Exercise 2.20 Let C be nonempty and convex and let a > 0. Suppose that (Vz e C) ||a;|| = a. 
Prove that C is singleton.

Exercise 2.21 Suppose that C and D are convex subsets of X. Let <x /3 be in R. Show that the 
sum aC + f3D = [ac + fdd | c e C, d e D} is also convex.

Exercise 2.22 Suppose that C and D are subsets of X and that 0 / C C D. Prove that 
aff C C affD.

Exercise 2.23 Suppose that C and D are subsets of X and that CCD. Prove that conv C C 
conv D.

Exercise 2.24 Suppose that C and D are subsets of X and that C C D. Is it true that ri C C 
ri DI Justify your answer.





Chapter 3

Convex and Lower
Semicontinuous Functions

3.1 > Convex Functions
Definition 3.1 (epigraph) Let f: X —> [—oo, +oo]. Then the epigraph is defined by 

* ' 

epi / := {(x,p) e X x R | f(x) p}.

The (effective) domain of f is

dom/ {& e X | f(x) < +oo}; 
-

f is called proper if dom f 0 and every x e X satisfies —oo < f(x).

Example 3.2 Any function f: X —> R is proper.

Remark 3.3 If a function f is defined only on a subset D of X, then we can and often do identify 
f with its extension

f f(x) if x e D; 
1+oo if x D.

Example 3.4 (indicator function) Let C be a subset of X. The indicator function of C is de­
fined by

Note that dom lc = C, and that lc is proper <=> C 0.

Definition 3.5 (convex function) Let f: X —> [—oo, +oo]. Then f is convex if epi f is a convex 
set (in the Cartesian product space X x R).

17
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Figure 3.1. The green function on the left is convex, while the red one is not. On the right, parts 
of their respective epigraphs are shown.

While the modem epigraph-based definition of convexity is very elegant, one often works 
with the following classical description:

Theorem 3.6 (Jensen’s inequality) Let f: X —> [—oo, +oo]. Then f is convex <=>

(Vx e dom/)(V?/ e dom/)(VA e ]0,1[)
/((I - X)x + Xy) (1 - A)/(x) + A/(y). (3.1)

Proof. If dom f = 0, then f = +oo, epi f = 0, and (3.1) holds.
We now assume that dom f 0.

Let x, y be in dom /, let A e ]0,1[, and take (x, £), (?/, rj) e epi f. By convexity of 
epi f, we have

((1 - A)a; + Xy, (1 - A)£ + Az?) = (1 - A)(x,C) + X(y,y) e epi/;

thus,

/((l-A^ + Ay) ^(l-AX + Az?.

Letting £ —> f(x) and rj —> f(y), we obtain (3.1).
Let (x,a) e epi/, (y,/3) e epi/, and A e ]0,1[. Then f(x) a, f(y) /?, and 

1 — A > 0. Hence

7 X 0-1)
f((l — X)x + Xy) (1 — A)/(x) + A/(j/) (3.2a)

(1 - A)a + X/3 (3.2b)

and thus
(3.2)

(1 - X)(x,a) + X(y,ff) = ((1 - X)x + Xy, (1 - A)a + Xf3) e epi/.

Therefore, epi / is convex. □

Corollary 3.7 Let f: X —> [—00, +00] be convex, and let a e R Then dom / and {rr e X | 
f(x) 0} are convex.
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Figure 3.2. Jensen’s inequality says that the line segment connecting any two points on the graph 
is always on or above the graph. Illustrated here is the case when A = |.

Proof. We may and do assume without loss of generality that dom f 0. Take x. y in dom /, 
and let A e ]0,1[. By Theorem 3.6,

/((I - X)x + Xy) (1 - X)f(x) + Xf(y) < +oo;

hence, (1 — X)x + Xy e dom/.
Now set C := {rr e X | f(x) o} and note that C C dom f. Arguing as before for x, y in 

C and A e ]0,1[, /((I — X)x + Xy) (1 — X)f(x) + Xf(y) (1 — A)o + Xa = a, and thus 
(1 — X)x + Xy e C. □

Example 3.8 The functions || • || and || • ||2 are convex. Indeed, the former function is a norm, 
and the latter is convex by (1.4).

Remark 3.9 We know from calculus that a twice differentiable function f is convex if and only 
if f" 0; this quickly leads to additional examples. For more details, see the upcoming Theo­
rem 11.10.

3.2 ■ Strictly Convex Functions
Definition 3.10 Let f: X —> ] — oo, +oo] be proper. Then f is strictly convex if

x G dom f 
y e dom f 

x^y 
Ae]0,l[

=> /((1-A)x + Aj/) <(l-A)/(x) + A/(j/).

Example 3.11 The Euclidean norm || • ||2 is strictly convex by (1.4).

Example 3.12 If X / {0}, then no norm on X is strictly convex.
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Proposition 3.13 Let f: X —> ]—oo, +oo] be strictly convex and proper. Then f has either no 
or a unique minimizer.

Proof. Suppose that x0 and xi are two distinct minimizers: x0 ± x±. Then /(a?o) = /(^i) = 
min/(X) =: p. However, by strict convexity, we obtain p /(|z0 + |^i) < |/(#o) + 
|/(&i) = p, which is absurd! Hence f has at most one minimizes □

3.3 > Lower Semicontinuous Functions
Definition 3.14 Let f: X —> [—oo, +oo]. Then f is lower semicontinuous (Isc) at x e X if, for 
every sequence (^n)neN in X, we have

* '

lim£n = x => f(x) lim f(xn).
nCN nGN

Moreover, f is simply Isc if f is Isc at every point x e X.

Remark 3.15 Clearly, if f is continuous at x, then f is Isc at x. The converse is false in general.

Recall that a subset S of X is closed if
(sn)neN lies in S 1 Q

s^i x £ X. J

Example 3.16 Consider f: X —> [—oo, +oo] defined by

+oo if x 0;

- if x > 0. 
x

Then f is lower semicontinuous yet dom f = ]0, +oo[ is not closed.

(3.3)

Definition 3.17 (lower level set) Let f: X —> [—oo, +oo], and let a e R. The lower level set 
of f at height a is

leva f := {x G X | f(x) < a}.

Theorem 3.18 Let f: X —> [—oo, +oo]. Then the following are equivalent:

(i) f is lower semicontinuous.

(ii) f is closed, i.e., epi f is closed.

(iii) (Va e R) leva f is closed.

Proof. “(i)=>(ii)”: Suppose that f is Isc, and suppose that (^n,«n)neN is a sequence in epi/ 
such that (xn, an) —> (x, q) e X x R. Because xn —> x,otn^ q, and / is Isc at x, we have

f(x) lim f(xn) lim an = a. 
neN neN

(3.4)

Hence (x, a) e epi / and thus epi / is closed.
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“(ii)=>(iii)”: Suppose epi f is closed, and let a e R. Suppose that (#n)neN lies in leva f 
such that xn —> x e X. Then (Vn e N) f(xn) i.e., (xn,a) e epi/. Clearly (xn,a) —> 
(rr, q). Because epi / is closed, we deduce that (x, a) e epi /, i.e., f(x) a, i.e., x e leva /. 
Hence levQ / is closed.

“(iii)=>(i)”: Suppose that (iii) holds. We argue by contradiction and assume that (i) fails. 
Then there exist x e X and a sequence (#n)neN in X such that

xn^x yet f(x) > lim/(a;n). (3.5)
neN

Pick q E 1 such that

f(x) > a > lim/(zn). (3.6)

Hence there exists a subsequence (xkn)ne^ of (^n)neN such that

(VneN) a>f(xkn). (3.7)

Hence (xkn)ne^ lies in leva /, which is a closed set by assumption. Therefore xkn x e 
leva /, i.e., f(x) a and this contradicts (3.6). Thus / is indeed Isc. □

Proposition 3.19 Let f: X —> ]—oo, +oo], suppose that C := dom / is closed, and that f\c is 
continuous. Then f is lower semicontinuous.

Proof. Suppose that (xn, Pn)ne^ is a sequence in epi / such that (xn, pn) —> (x, p) e X x R. 
Then (Vn e N) f(xn) pn. Note that (rrn)neN lies in C. Because C is closed, x e C. And 
because f\c is continuous, we have f(xn) —> f(x). Therefore, f(x) <— f(xn) pn —> p and 
so f(x) p, i.e., (x, p) e epi /. Thus epi / is closed and we are done by Theorem 3.18. □

Example 3.20 Let C be a subset of X. Then the following hold:

(i) lc is proper <=> C 0.

(ii) Lc is convex <=> C is convex.

(iii) lc is lower semicontinuous O C is closed.

Proof. Note that

epkc = C x R+. (3.8)

(i)&(ii): Exercise 3.5.
(iii): In view of (3.8) and Theorem 3.18, it suffices to show that C x R+ is closed O C is 

closed. But this equivalence follows easily because R+ is already closed: indeed, suppose first 
that C x R+ is closed. Take a sequence (cn)neN in C such that cn —> x e X. Then (cn, 0)ne^ 
lies in C x R+ and (cn, 0) —> (x, 0). Hence (x, 0) e C x R+ and thus x e C. The converse is 
proved similarly. □

Remark 3.21 The indicator function is of fundamental importance because it allows us to model 
constraints with ease. To illustrate, suppose our problem is to

minimize f(x) subject to x e C. (3.9)

But this is the same as

minimize (/ + lc)(x) subject to x e X. (3.10)

Note that (3.9) is a constrained minimization problem, while (3.10) is unconstrained; however, 
the constraint is absorbed in the objective function f+Lc, which is nonsmooth even if the original 
function / is smooth.
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Exercises
Exercise 3.1 Consider Corollary 3.7. Is the converse also true, i.e., if dom f is convex, must f 
be convex?

Exercise 3.2 Verify Example 3.12.

Exercise 3.3 This problem is related to Proposition 3.13. Provide (i) a strictly convex function 
with no minimizer, and (ii) a function that is not strictly convex with a unique minimizer.

Exercise 3.4 Consider Remark 3.15. Provide a function f: R —> R that is Isc everywhere, but 
not continuous everywhere.

Exercise 3.5 Provide the details for the proof of Example 3.20(i)&(ii).



Chapter 4

More on Convex and Lower 
Semicontinuous Functions

4.1 > Preservation
Proposition 4.1 (sum) Let I be a nonempty finite index set, and let fa be proper functions from 
X to]—oo, +oo]/or each i e I. Then the following hold:

(i) If each fa is convex, then so is fa-

(ii) If each fa is lower semicontinuous, then so is ieI fa.

Proof The proof is relatively straightforward. For (i), work with Theorem 3.6 (Jensen). For (ii), 
work with the definition of lower semicontinuity. □

Remark 4.2 Taking the difference generally preserves neither convexity nor lower semiconti­
nuity: (i) 0 and |rc| are convex functions, but 0 — |rr| = — |a?| is not; (ii) 0 and q0} are lower 
semicontinuous, but 0 — q0} = — q0} is not.

Proposition 4.3 (separable sum) Let Xi,..., Xm be finite-dimensional Euclidean spaces and 
let fa,..., fm be lower semicontinuous on X^..., Xm, respectively. Then

m

2=1
is also lower semicontinuous.

Proof. Suppose that (x-^n,..., £m,n)neN converges to (&i,..., #m). Then
m

(/1 ® • • • ® . ,,Xm) =
2=1 
m 

m 
lim 

i=i
= Hill (fl ® * ' * ® fm) (*£l,n)  * • • j *£m,n)?

and we are done. □
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Example 4.4 On Rm, set f(x) := card {z | Xi 0}, where card denotes the cardinality of a 
set. Then f = © • • • © fm, where each fi defined by /;(£) = 0 if £ = 0; /*(£)  = 1 if £ 0 is
lower semicontinuous. Then f is lower semicontinuous by Proposition 4.3.

Proposition 4.5 (positive multiple) Let ft X —> [—oo,+oo], and let a > 0. Then the follow­
ing hold:

(i) If f is convex, then so is af.

(ii) If f is lower semicontinuous, then so is af.

Proof The proof is relatively straightforward. For the convexity part, work with Theorem 3.6 
(Jensen). □

Proposition 4.6 Let A: X Y be linear, and let g: Y —> ]—oo, +oo]. Set f := g o A. Then 
the following hold:

(i) If g is convex, then so is f.

(ii) If g is lower semicontinuous, then so is f.

Proof (i): Suppose x, y belong to dom f and let A e ]0,1[. Then Ax, Ay belong to domg. By 
Jensen’s inequality (see Theorem 3.6), we get

/((I - X)x + Xy) = #(^((1 - X)x + Xy)) = #((1 - X)Ax + AAj/)

(1 - X)g(Ax) + Xg(Ay) = (1 - X)f(x) + Xf(y).

(ii): Suppose (#n)neN is a sequence in X such that xn —> x. Because X and Y are finite­
dimensional, the linear operator A is continuous (see Fact 1.20). Hence Axn —> Ax. Using the 
lower semicontinuity of g at Ax, we obtain

f(x) = g(Ax) limg(Arn) = lim f(xn) 
nCN nCN

and we are done. □

Lemma 4.7 Let I be a nonempty index set, and let {fi)iei be a family of functions from X to 
[—oo,+oo]. Then

epi (sup/Q = Qepi fi. 
ieI iei

Proof. Let (x,p) E X x R. Then

(z, p) e epi ( sup fi) O sup fi(x) p (Vz e I) fi(x) p
v iei ' iei

o (Vi e /) (x,p) e epi/i <=> (x,p) e Qepi/,
iei

and we are done. □
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Corollary 4.8 Let I be a nonempty index set, and let (fi)iei be a family of functions from X to 
[—oo, -Foo]. Then the following hold:

(i) If each fi is convex, then so is supieJ fi.

(ii) If each fi is lower semicontinuous, then so is supie j fi.

(iii) If each fi is convex and lower semicontinuous, then so is supie j fi.

Proof Recall from Lemma 4.7 that

(i): Combine (4.1) with Theorem 2.13.
(ii): Combine (4.1) with Theorem 3.18.
(iii): Combine (i) and (ii). □

Proposition 4.9 Let (fn)neN be a sequence of convex function such that fn~>f pointwise, i.e., 
(f/x e X) /n(rr) —> /(#)• Then f is convex.

Proof. This follows using Theorem 3.6 (Jensen). □

4.2 > Examples
The following is a great example to show the power of Corollary 4.8:

Example 4.10 (Asplund function) Let S be a nonempty subset of X. Then the function f 
defined by

f(x) := IIMI2 - yUx)

is convex and lower semicontinuous with dom f = X. Indeed, we note that for every s e S, the 
function x i-> 2 {x, s) — ||s||2 is (linear =>) convex and (continuous =>) lower semicontinuous. 
Using Corollary 4.8(iii), the function

sup (2 (x, s} - ||s||2) = ||z||2 + sup ( - ||z||2 + 2 (x, s) - ||s||2) 
ses ses

= INI2 - inf (INI2 - 2 (x, s} + ||s||2)

= INI2 - inf ||z-s||2
sEo

= INI2-rf2s(N

is convex and Isc. It follows that |||^||2 — ^d2s(x) is convex and Isc by Proposition 4.5. The 
domain statement is clear because S is nonempty and so dom ds = X.

Even the minimum of just two convex functions may fail to be convex.

Example 4.11 The functions x and —x are linear and hence convex on R; however, min{a;, —#} 
= — |z| is not convex.

On the positive side, we have the following:

Theorem 4.12 (marginal function) Suppose F: X x Y —> ]—oo,+oo] is convex. Then the 
marginal function

f: X —> [—oo, -Foo] : x inf F(x, Y) = inf F(x, y)

is convex.
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Proof. Take rr0 and in dom /, and let A e ] 0,1[. Pick p0, Pi in R such that each pi > f(xi). 
Then obtain yQ, in Y such that each > F(xi,yt). The convexity of F and Theorem 3.6 
yield

/((l - A)z0 + Axi) F((l - X)x0 + Azi, (1 - A)y0 + Ayi)

= F((l - A)(aro,yo) + A(xi,yi))
(1 - A)F(x0, yo) + XF(xi, yj

< (1 — A)po + Api.

Letting pi tend to f(xi) from the right, we now deduce that f((l — X)xo+Xxi) (1—A)/(xo) + 
Xf (x.!), which completes the proof. □

Exercises
Exercise 4.1 Provide the details of the proof for Proposition 4.1.

Exercise 4.2 Provide the details of the proof for Proposition 4.5.

Exercise 4.3 Verify Proposition 4.9.

Exercise 4.4 Show that the minimum of two Isc functions is again Isc.

Exercise 4.5 Provide an example of a family (fi)iei of Isc functions on R such that inf* ej fi is 
not Isc.

Exercise 4.6 Provide a sequence of continuous convex functions (/n)neN from R to R which 
converge pointwise to some function f that is not Isc.
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Global and Local Minimizers

5.1 > Coercivity and the Existence of Minimizers
Definition 5.1 ((super) coercivity) Let f: X —> [—oo,+oo]. We say that f is coercive if 
lim|!x(H+oo f (x) = +oo; equivalently,

And f is supercoercive if lim||x||^+oo /(a;)/||a;|| = +oo; equivalently,

Remark 5.2 It is clear that every supercoercive function is coercive. We also note that the 
definition of coercivity and supercoercivity remains unchanged if we replace the Euclidean norm 
by another other norm because all norms on X are equivalent (Fact 1.21).

Example 5.3 Suppose that X = R. Then

(i) x2 is supercoercive;

(ii) | x | is coercive but not supercoercive;

(iii) exp(&) is not coercive.

Theorem 5.4 (Key Existence Theorem) Let f: X —> ]— oo, +oo] be coercive, lower semicon- 
tinuous, and proper. Then f has a (global) minimize r, i.e., there exists x E X such that

/(x) = min/(X).

Proof. Because f is proper, we note that

inf/(X) < +oo. (5.1)

Now take a sequence (^n)neN in X such that

f(xn)—>inff(X). (5.2)

27
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We claim that limneN ||xn|| < +oo, i.e.,

WneN has a bounded subsequence. (5.3)

Suppose to the contrary that (5.3) fails. Then ||xn|| —> +oo. By coercivity of f, we have 
f(xn) —> +oo. By (5.2), inf/(X) = +oo; however, this contradicts (5.1). We have thus 
verified (5.3).

After passing to subsequences if necessary, we may and do assume that (a7n)neN itself is 
bounded and also (Bolzano-Weierstrass!) convergent, say

xn -> x.

Using the assumption that f is Isc at x and (5.2), we deduce that

inf /(X) f(x) C lim f(xn) = inf f(X).

Hence all inequalities are actually equalities, and we see that f(x) = inf /(X), which completes 
the proof. □

Corollary 5.5 Let f: X —> ]—oo, +oo] be coercive and lower semicontinuous, let C be a closed 
subset of X, and assume that C Cl dom f 0. Then f\e has a minimizer

Proof First, observe that f + lq is still coercive because

f(x) + bC(x) f(x) -> +oo as ||3;|| -> +oo.

Second, be is Isc by Example 3.20(iii). Proposition 4.l(ii) yields the lower semicontinuity of 
f + Lc- Third, f + be is proper because C Cl dom f 0. Therefore, the conclusion follows by 
applying Theorem 5.4 to f + be- □

Corollary 5.6 ((one-sided!) Weierstrass) Let f: X —> ]— oo,+oo] be lower semicontinuous, 
let C be a bounded closed (i.e., compact) subset of X, and assume that C Cl dom / 0. Then
f\c has a minimizer.

Proof. If (zn)neN is a sequence such that ||a;n|| —> +oo, then eventually xn C (because C 
is bounded!) and thus f(xn) + bc(xn) = +oo. Hence f + be is coercive, f + be is lower 
semicontinuous because of Example 3.20(iii) and Proposition 4. l(ii). And f + be is proper since 
C Cl dom f 0. The conclusion thus follows from Theorem 5.4 applied to f + be- □

5.2 > Global and Local Minimizers, and Role of Convexity
Definition 5.7 Let f be proper on X, and let x e X. Then

(i) x is a (global) minimizer off if (Vrr e X) f(x) C f(x);

(ii) x is a local minimizer off if (3 e > 0)(Vrr e B[x; e]) f(x) C f(x).

The (possibly empty) set of global minimizers is Argmin f. If Argmin f is a singleton, we may 
identify Argmin f with its unique element. Global and local maximizers and Argmax f are 
defined similarly.

It is obvious that every global minimizer is a local minimizer, but the converse may fail, as 
the next example shows.

Example 5.8 Set f(x) = ^x4 + ±x3 — x2 — 1. Then ff(x) = x3 + x2 — 2x = x(x — l)(a? + 2). 
Then f has two local minimizers, at 1 and at —2; the global minimizer is x = —2. And f has a 
local maximizer at x = 0 but no global maximizer (f is coercive!).
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Figure 5.1. Minimizers and maximizers for the function f(x) from Example 5.8.

Magic happens in the presence of convexity.

Proposition 5.9 Let f: X —> ]—oo, +oo] be convex and proper. Then every local minimize r is 
also a global minimizer.

Proof. Suppose that z is a local minimizer of f. Then there exists p > 0 such that

/(ar) = min/(B[x;p]). (5.4)

We will show that

(Vy e X) f(x) f(y). (5.5)

Let y e X. Then (5.5) clearly holds if y dom/ and if y e B[x; p\. So assume y e 
(dom/) \ B[x; p]. Then ||a; — y\\ > p. Set

In view of the convexity of dom f (see Corollary 3.7), we obtain that

z := (1 — X)x + Ay e dom f.

Moreover,

z — x = (1 — X)x + Xy — x = X(y — x)

and hence

Ik - *11  = IIA(y - a:)|| = A||y - a:|| = P ||y - a:|| = p.
Ik-y||

Thus, z e B[x; p] and so

/(*)  f(z) 
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by (5.4). Combining this with the definition of z, the convexity of / and Jensen’s inequality 
(Theorem 3.6) yields

/(*)  /(z) = /((l - A)x + Ay) (1 - A)/(x) + A/(y).

Therefore, /(#) /(?/) and we are done. □

Corollary 5.10 Let f: X ]—oo, +oo] be convex and proper, and let C be a subset of X. 
Suppose that x e int C is a minimizer of f\c- Then x is a global minimizer off.

Proof Because x e int C, there exists 6 > 0 such that B[&; J] C C. The assumption implies 
that f(x) = min f(B[x; 5]) = min f(C). Now apply Proposition 5.9. □

Exercises
Exercise 5.1 Consider Theorem 5.4. Show that neither coercivity nor lower semicontinuity can 
be dropped as an assumption: (i) Find f: R R such that f is coercive, but without minimizers. 
(ii) Find f: R R such that f is lower semicontinuous, but without minimizers.

Exercise 5.2 Construct f and C as in Corollary 5.6 such that f\c has no maximizer.

Exercise 5.3 Let f be convex and proper on X. Show that Argmin /, the set of minimizers of 
/, is convex.

Exercise 5.4 Provide details for Example 5.8.

Exercise 5.5 Let f be convex and proper on X, and let C be a convex subset of dom f. Show 
that if y e int C is a maximizer of f\c, then f\c is constant. (Consequently, if f is not constant 
and/| c has maximizers, then there is a maximizer in bdry C.)
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Even More on Convex 
Functions

6.1 > General Jensen Inequality
Proposition 6.1 Let f: X [—oo, +oo]. Then the following are equivalent:

(i) f is convex.

(ii) (Vx e dom/)(V?/ e dom/)(VA e ]0,1[) 
/((I - X)x + Xy) (1 - AW) + Xf(y).

(iii) (V^i e dom xn E dom/)(VAi > 0,..., An > 0 : EXi = x) 
/(Ai^i H-I- Xnxn) Ai/(^i) H------- I- Xnf(xn).

Proof. “(i)<=>(ii)”: Theorem 3.6. “(ii)<^=(iii)”: This follows when n = 2. “(ii)=>(iii)”: We show 
this by induction on n. The case n = 1 is trivial, and n = 2 is (ii). Now assume that n 2 and 
the result is true for n. Let x± e dom . £n+i € dom /, and Ai > 0,..., An+i > 0 such that 

= 1- Using the base case and the inductive hypothesis, we estimate

f(XiXi + • • • + Xnxn + An+1 xn+1)
= /((! “ ^n+l)(1-A^+1 371 H I" 1-aZ+i Xn) + ^n+l^n+l)

(1 — An_|_i)/( i-A^+1 + * ’ * + i-a”+1 Xn) ^n+l/(^n+l)

(1 — An_|_i) ( 1_^+1 f (^1) + ’ * ’ + f (^n)) “I" ^n+l/(^n+l)

= Ai/(#i) + • • • + Xnf(xn) + An+i/(a;n_|_i),

which completes the proof. □

6.2 - Recognizing Convexity via Calculus
The following result, which will be proven in Theorem 11.10 below, is very useful:

Fact 6.2 Let C be an open convex subset of X, and let f: C 'R be differentiable. Then the 
following are equivalent:

(i) f is convex.

(ii) (Vx e C)(\/y EC) {x- y. Xf(y)) + f(y) f(x).

(iii) (V^ e C)^y E C) (x - y, Xf(x) - Xf(y)) 0.

31
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f(x) =

If f is twice differentiable, then we can add to this list

(iv) ^x e C) V2/Qr) 0.

Remark 6.3 Fact 6.2(ii) reveals the nonnegativity of the Bregman distance, i.e.,

Df(x, y) ■= - f(.V) - (x-y, Xf(y)) > 0.

Fact 6.2(iii) means that the operator V/ is monotone. When X = R, the condition Fact 6.2(iv) 
turns into f" 0, which is known from Calculus I as a way to check that a function is “concave 
up” (as convexity is referred to in those texts).

Example 6.4 Let A e Rnxn be symmetric, and set f(x) := | (x, Ax}. Then V2/(rr) = A; 
consequently, f is convex if and only if A is positive semidefinite.

Example 6.5 The function f defined by

— ln(rr) if x > 0;
+oo otherwise

is convex because fff(x} = 1/x2 > 0 when x > 0.

Regarding Fact 6.2, if we can extend f continuously to C, then the extension is convex. This 
allows us to deal with the next example.

Example 6.6 The function — y/x is convex by Fact 6.2 on R++; hence, so is its extension to the 
closure of its domain, i.e., to R+.

Example 6.7 If a e X and (3 e R, then f(x} = (x, a} + /3 is convex. Indeed, this can be seen 
by noting that the Hessian X2f(x} = 0 is positive semidefinite. In fact, f is an affine function, 
i.e., both f and — f are convex.

6.3 > Infimal Convolution
Definition 6.8 (infimal convolution) Let g and h be functions from X to ]—oo, +oo]. Then 
their infimal convolution is defined by

(sn/i)(x) = mf (g(y) + h(x - y)).

-

Proposition 6.9 Let g,h be proper convex functions from X to ] — oo, +oo]. Then g\Jh = h\Jg 
is convex, with dom(g □ h} = dom g + dom h.

Proof. The symmetry follows readily by a change of variables. It is not hard to see that

F: X x X -> ]-oo, +oo] : (x, y) g(y) + h(x - y)

is convex and proper. By Theorem 4.12, the function

x infF(x,X) = inf (g(y) + h(x - y)) = (gDh)(x) yex

is convex. The domain statement is clear from the definition of the infimal convolution. □

Example 6.10 Let C be a nonempty convex subset of X. Then de and are convex and 
proper.
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Proof. Because C is convex (as a set), the function lc is convex (as a function) by Exam­
ple 3.20(ii). Now || • || is a norm, hence convex, while 11| • ||2 is convex because X711 • 112 = Id >— 0 
or by using (1.4). In view of Proposition 6.9, we see that both

de = ten II -|| and ±d?c = lc □ ||| • ||2

are convex. □

6.4 > Convexity and Continuity
Proposition 6.11 Let f:X—> ]—oo,+oo] be convex, lower semicontinuous, and proper. Let 
Xq e X, Xx e dom/, and set (VA e ]0,1[) X\ := (1 — A)a70 + A#i. Then limA_>0+ f(x\) = 
fM

Proof. Using the lower semicontinuity of f at xq and then the convexity in the form of Theo­
rem 3.6 (Jensen), we have

f(x0) lim f(xx) lim f(xx) 
A—>0+ A—>0+

lim (1 - A)/(x0) + Xf(xi)A—>0+
= fM

and we are done. □

Corollary 6.12 Let f: R ]—oo,+oo] be convex, lower semicontinuous, and proper. Then 
/|dom/ is continuous.

We also have the following strong continuity property of convex functions.

Fact 6.13 [39, Theorem 10.4] Let f:X—> ]—oo,+oo] be convex, and assume that xq e 
ridom/. Then /|dom/ is locally Lipschitz around xQ: There exists L 0 and e > 0 such that 
for all x, y in B[#o; £] A dom/, we have |/(a?) — f(y)\ L\\x — y\\.

Exercises
Exercise 6.1 Provide the details for Example 6.6.

Exercise 6.2 Consider the function f(x) = x ln(rr) — x with domain R++. Determine whether 
or not f is convex.

Exercise 6.3 Consider the function f(x,y) := x/y with domain R++ x R++. Determine 
whether or not f is convex.

Exercise 6.4 Consider the function f(x,y) := x2/y with domain R x R++. Determine whether 
or not f is convex.

Exercise 6.5 Consider the function f(x, y) := ln(ex + ey) with domain R x R. Show that f is 
convex.

Exercise 6.6 (log-sum-exp) Consider the full-domain function f(x) := ln(^=1 eXi) on Rn. 
Show that f is convex. Aside: V/ is a famous function in machine learning and known there as 
the softmax or softargmax function.
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Exercise 6.7 Consider the function f(x, y) := exp(ln(rr) — ln(?/)) with domain R++ x R++. 
Determine whether or not f is convex.

Exercise 6.8 Consider the function f(x, y) := xy with domain R++ x R++. Determine whether 
or not f is convex.

Exercise 6.9 Consider the function f(x,y) := —yjxy with domain R+ x R+. Determine 
whether or not f is convex.

Exercise 6.10 Consider the function f(x, y) := x ln(x/y) — x + y with domain R++ x R++. 
Determine whether or not f is convex.

Exercise 6.11 In Example 6.10 we saw that de is convex, provided that C is convex and non­
empty. Does the conclusion remain true when we drop the assumption on convexity of C?

Exercise 6.12 By providing an example, show that Fact 6.13 fails when xq is merely assumed 
to lie in dom f.
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Support Functions and 
Polar Cones

7.1 > Support Functions
Definition 7.1 (support function) Let C be a subset of X. The corresponding support function 
ac is defined by

oc: X [—oo, +oo] : x i-> sup (C, x) — sup (c, x). 
cec

Proposition 7.2 Let C be a nonempty subset of X. Then oc is convex, lower semicontinuous, 
and proper.

Proof Set (Vc e C) fc: X R: x i-> (c,x}, which is linear (=> convex) and continuous (=> 
Isc). By Corollary 4.8(iii),

crC = sup fc 
cec

is convex and lower semicontinuous. Fix c0 E C. On the one hand, (\/x E X) — oo < (c0, x) 
crc(^). On the other hand, crc(O) = sup (C, 0) = supO = 0 < +oo. Altogether, oc is 
proper. □

Example 7.3 If || • || is any norm on X and we set C := B[0; 1], then we recover the dual norm 
via

vc(y) = sup {x,y} = ||y||*.
IMssi

Example 7.4 Suppose that 0 C a b and set C := [a, b\. Then

f bx if x 0;

Example 7. 5 Set C := R+ C R, and let x E R. If x 0, then (7c(x) = supR+ • x = 0, 
whereas if x > 0, then cc(x) = supR+ • x = +oo. Altogether,

% = •

35



36 Chapter 7. Support Functions and Polar Cones

Example 7. 6 In X = Rn, set C := {±ei,..., ±en}, where denotes the standard zth unit 
vector. Then

crc(^) = sup{±a?i,... ,±zn} = max{|a?i|,..., |zn|} = H^Hoo

and we recover the max-norm as a support function!

Recall that for subsets A, B of X, and 7 G R, we write

A + B := {a + 6 | a e A, be B} and 7A := {7a | a e A}.

Known properties of the supremum thus yield to the following calculus rules for the support 
function:

Proposition 7.7 Let A, B, C be nonempty subsets of X, let p > 0, and let x, y be in X. Then 
the following hold:

(i) ac{px) = pacW) = <7pc(x).

(ii) ac(x + y) s? <tc(x) + <rc(?/)-

(iii) ac(x) = a^(x).

(iv) ac(x') = CTconvcW.

(v) ac(x') = (TconvcW-

(vi) <ta+b(x) = aA(x) + aB(x).

(vii) vAub(x) = max{aA(x),<TB(x)}.

(viii) aAns(x) min^fx), aB(x)}.

Example 7.8 It is clear that the probability simplex Pn in Rn is the convex hull of the set of unit 
vectors C := {ei,..., en}. Hence for every x = (&i,..., xn), we have crpn(x) = ac(x) = 
max{a;i,..., xn}.

7.2" Cones and Polar Cones
A cone K is a nonempty subset of X such that R+K C K. The polar cone of K is 

* *

KQ := {y e X | (Vx € K) {x, y) s? 0} = lev0 aK. (7.1)
-

The conical hull of K, written cone K, is the smallest cone containing K.

Figure 7.1. The green closed convex cone K and its red polar cone Ke. A rectangular clip is 
shown because the cones are unbounded.
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Proposition 7.9 Let K be a cone in X. Then Ke is a closed convex cone and

^k=^kq- (7.2)

Proof. We omit the proof that KQ is a closed convex cone — see Exercise 7.3 for a more general 
result. To prove (7.2), let’s fix y e X.

Case 1: y e Ke. Then

(JK^y) = sup (x, y) < 0 = (0, y) sup (K, y) = aK(y)- 
xeK

Hence equalities hold throughout and we deduce that crj<(?/) = 0 = LKe (y).
Case 2: y Ke. Then there exists x e K such that (x, y) > 0. Because ax e K for every 

a > 0, we deduce that

+oo > &K(y) = sup (K, y) sup (ax, y) = (x, y) sup a = +oo. 
a>0 a>0

Hence equalities hold throughout; thus, crK(y) = +oo = lks (y). □

Example 7.5 quickly leads to the following.

Example 7.10 •

The idea of the polar cone is a generalization of the orthogonal complement due to the fol­
lowing.

Example 7.11 Let Y be a linear subspace of X. Then Fe = y-1.

The following examples are more complicated but recorded for future use.

Fact 7.12 [5, Example 2.29] Suppose A e Rmxn and set K = {x e Rn | Ax 0}. Then K is 
a closed convex cone and

Ke = AT(R™);

consequently, (Jk =

Fact 7.13 [5, Example 2.30] Suppose A e Rmxn, let b e Rm, and set C := {x e Rn | Ax = b}.
Assume that C/0, say c e C. Then

(JC(x) = (x,c) + trarMT(4

Fact 7.14 [39, page 115] In R2, set

C := {(^1,^2) E R2 | 0}-

Then C is convex, closed, and nonempty, and 

°c(yi,yz) = <
2yi
0

k+oo

ifyi > 0;
ifyi = yz = 0; 
otherwise

is — being a support function — convex and lower semicontinuous. Note that crc(0, 0) = 0. 
On the other hand, if a > 0 and t > 0, then ac(t2/(2a), t) = t2 / (2t2 / (2a)) = a, yet 
(t2/(2a), t) (0,0) as t 0+. Hence <7c is not continuous at (0,0). (Contrast this with 
continuity along line segments in Proposition 6.11.)
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Exercises
Exercise 7.1 Provide the details for Example 7.4.

Exercise 7.2 Verify Proposition 7.7.

Exercise 7.3 Let C be a nonempty subset of X. Show that Ce is a closed convex cone.

Exercise 7.4 Provide the details for Example 7.10.

Exercise 7.5 Provide the details for Example 7.11.

Exercise 7.6 Show that the set C of Fact 7.14 is convex, closed, and nonempty. Moreover, show 
that C = conv {(^1,^2) E R2 | + ^x^ = 0}.

Exercise 7.7 Verify the formula for ac from Fact 7.14.



Chapter 8

Projection and Separation

8.1 > Projections
Definition 8.1 (projection) Let C be a nonempty closed subset of X, and let z e X. Suppose 
x e C satisfies

Ik - *11  =dc{z) = inf ||c-2||.cec

Then the point x is called a projection of z onto C, written x e Pc(z). If we know that Pc(^) is 
a singleton, we will also write (abusing notation slightly) x = Pc(^)«

Remark 8.2 (projections exist) Let C be a nonempty closed subset of X, and let z e X. The 
function

||z - z||

is continuous, hence lower semicontinuous. Moreover, since

Ik-*11  > |k|| - ||z|| -> +<x>

as ||a;|| +oo, we see that / is coercive. Finally C Pl dom / = CnX = Cis nonempty. By 
Corollary 5.5, f\ c has a minimizer, i.e., Pc(^) 0. Note that we didn’t employ any special
properties of the Euclidean norm — nearest points exist for any norm!

Proposition 8.3 Let C be a nonempty closed convex subset ofX and let z e X. Then Pc(^) is 
a singleton.

Proof. Take x$, x± in Pc(^), and set

x\ := (1 - A)z0 + Arri,

where 0 < A < 1. Using that x\ e C and (1.4), we have

dc(z) IkA - ^||2 = 11(1 - A)(xo - z) + A(xi - z)||2

= (1 - A)|ko - ^ll2 + A|ki - z||2 - A(1 - A)||z0 - zi||2

= (1 - A)dc(z) + Adc(z) - A(1 - A)||x0 - zi||2

= dc(z) ~ A(1 - A)||x0 - zi||2

d2c(z).

So all inequalities are actually equalities and we deduce that A(1 — A) 11xr0 — ||2 = 0, which in
turn yields x0 = Xi. □
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Theorem 8.4 (Projection Theorem) Let C be a nonempty closed convex subset of X, and let 
z G X. Then there exists a unique point Pc(^) € C such that dc(z) = ||Pc(z) — z||. Moreover, 
let p G X. Then Pc(^) Is characterized by the obtuse angle condition

p = Pc(z) <=> p G C and (Vc G C) (c — p,z—p)^0. (8.1)

Proof We already observed the uniqueness in Proposition 8.3. Now (1.6) yields

p = Pc(z) opeCa (Vc e C) ||p- z\\ ||c- z||
opeCA(VceC)(VAe [0,1]) ||p- z\\ s? ||(1 - A)p + Ac-^||
o p e C a (Vc e C)(VA e [0,1]) ||p - z\\ ||(p - z) - A(p - c)||
<=> p G C A (Vc € C) {p — z,p — c) 0,

and this proves (8.1). □

Corollary 8.5 Let C be a nonempty closed convex subset of X. Then the operator Pc satisfies

(VxeX)(VyeX) ||Pc(a:)-Pc(?;)||2 s? (Pc(.r)-Pc(y),x-y); (8.2)

consequently,

(Vz € X)(Vy e X) ||Pc(x) - Pc(y)|| s? ||x - y\\. (8.3)

Proof. Let x,y be in X. The obtuse angle characterization (see (8.1)) gives (Pc(y) — Pc(x), 
X - Pc(x)) s? 0 and (Pc(x) - Pc(y),y - Pc(y)) 0. Adding these yields (Pc(x) - Pc(y), 
(Pc(z)-pc(y)) - (®-y)) 0, i.e., ||Pc(z) -Pc(y)||2- (Pc(z) -Pc(y),x - y) s? 0, from 
which (8.2) follows. In turn, (8.2) and Cauchy-Schwarz yield (8.3). □
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8.2 ■ Examples
Example 8.6 Let —oo a (3 +oo, set C := [a, /?] A R = {x € R | a x /3}, and
suppose that C/0. Then C is convex and closed, and

a
(Vz e R) Pc(^) = x

if x < a;
if a x /3; = min { max{;r, a}, /3).
if /3 < x

(8.4)

Example 8.7 Pr+ (x) = max{a;, 0}.

Proposition 8.8 Let Ci,..., Cm be nonempty closed convex subsets of X^..., Xm, respec­
tively. Then

Pc1X-xcm(zi,...,zm) = (PC1(xi),...,PCm(xm)).

Example 8.9 P>™ (a71?...,xn) = (x+,... ,x+), where £+ = max{£,0} is the positive part 
of£.

Proposition 8.10 Let A e Rmxn be such that AA1 is invertible, let b e Rm, and suppose that 
the preimage C := A-1 (b) is nonempty. Then

Pc(z) = x - Ar(AAr)~1(Ax - bf

Proof. Let z e X, and setp := z—Ar(AAT)~1(Az—b). Thenylp = Az—(AAT)(AAT)~1(Az— 
b) = Az — (Az — b) = b; thus, p e C.

Now let c e C, i.e., Ac = b. Then

(c — p, z — p) = (c — p, z — (z — AT(yL4T)_1(>lz — 6)))

= (c-p,AT(AAT)~1(Az-b))

= (Ac - Ap, (AA^-^Az - b))

= (b-b, (AAT)~\Az-b))
= 0

and we are done by the Projection Theorem (Theorem 8.4). □

Example 8.11 Suppose that X = Rn, let a E ln \ {0}, and let ft e R. Then C = {z e Rn | 
(x, a) = /?} / 0, and

Pc(a;) = x- < ’|^|2 13a.

Proof. Set A = aT G Rlxn. Then AAT = ||a||2 > 0 so AAT is invertible. Now apply
Proposition 8.10. □

The following extension of Proposition 8.10 holds.

Fact 8.12 [3, Example 29.17(ii)J Let A G Rmxn, letb G Rm, and suppose that C := ^4-1(^) 
0. Then

Pc(^) = x — A^(Ax — b),

where denotes the Moore-Penrose (a.k.a. pseudo) inverse of A.
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Example 8.13 (unit ball projection) Set C := B[0; 1]. Then

x
Pc(x)= X

if INI ^1;

if INI >1
X

max{||rr||, 1} ’

Proof. Let z G X. The formula is clear if z G C, i.e., ||z|| 1. So assume that ||z|| > 1 and
setp := z/||z||. Then ||p|| = 1 and so p G C. Now let c G C, i.e., ||c|| 1. Then, using also
Cauchy-Schwarz,

(c - p, z - p) = (c - p, z - z/\\z\\)

= (i- Fir)
= (!- fit)(M-INI)

= (H _ i)(||c|| _ i)
s? 0

and we are done by the Projection Theorem (Theorem 8.4).

8.3 > Separation
Corollary 8.14 (Separation Theorem) Let C be a nonempty closed convex subset ofX, and let 
zEX\C. Then there exists u G X \ {0} and a G R such that

(z, u) > a > sup (C, u);

in other words, z and C are separated by the hyperplane {x E X \ (x^u) = a}.

Proof Set

u := z - Pc(z) 0 and P := (Pc(z), z - PcC?)) •

Let c G C. Then(8.1)yields (c — Pc(^), z — Pc(z)) 0 <=> (c, z — Pc{z)) (Pc(z), z — Pc(z)}
<=> (c, u) p. Hence sup (C, u) p. On the other hand,

(z,u) = {z,Z- Pc(^))
= {z- Pc(zf z - Pc(zf) + (PcW, Z - PcW)
= dc(z) + P

>p
because z £ C. Altogether, (z,u) > P sup (C, u). Finally, any a in ]/?, does the 
job. □

Lemma 8.15 Let A, B be nonempty closed convex subsets of X. Then

A = B <=> aA = °b-

Proof This is clear. “<$=”: By symmetry, it suffices to show that A C B. Suppose to the 
contrary that A B. Then there exists z G A x B. By Corollary 8.14, there exists u G X such 
that (z,u) > sup(B,u). But then cr^(u) (z,u) > sup(B,u) = ctb(^) = which is 
absurd. □
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Exercises
Exercise 8.1 Provide an example of a nonempty set C that is not closed and for which Pc(^) = 
0 for some x G X.

Exercise 8.2 Show that the conclusion of Proposition 8.3 fails if the set C is not convex.

Exercise 8.3 Show that the conclusion of Proposition 8.3 fails if the implicit Euclidean norm is 
replaced by an arbitrary norm.

Exercise 8.4 Consider (8.3) from Corollary 8.5. Is it possible that there exists a nonempty closed 
convex subset C of X such that ||Pc(^) — Pc(?/)|| < ||# — y 11 whenever x yl

Exercise 8.5 Let a G X x {0} and (3 G R, and set C := {x G X | (x, a) = (3}. Show that 
Pc(*)  = z — ({z, a) — /3)/1|a||2a by using only Theorem 8.4.

Exercise 8.6 Prove Proposition 8.8.

Exercise 8.7 (projection onto a translated set) Let C be a nonempty closed convex subset of 
X, let a G X, and let z G X. Show that Pa+cW = « + PC(z - &)•

Exercise 8.8 (projection onto a scaled set) Let C be a nonempty closed convex subset of X, 
let a G R \ {0}, and let z G X. Show that Pac(z) = oiPc(z/a).

Exercise 8.9 (projection onto a general ball) Let c G X, let p > 0, and consider the closed 
ball centered at c of radius p, i.e., C := B[c; p] = {x G X | ||x — c|| p}. Let z G X. Show that

Pc (?) = C +-----^~c) . (8.5)
max{||z — c||, p}

Exercise 8.10 Show that the assumption on convexity in Corollary 8.14 is critical, i.e., find a 
nonempty closed set C that is not convex and a point z G X \ C such that the conclusion of 
Corollary 8.14 fails.
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Subgradients

9.1 > Optimization and Examples
Definition 9.1 (subgradients and subdifferential) Let/: X ]-oo,+oo] be proper. Then 
the subdifferential of f at x e X is

df(x) := {u e X | (Vy € X) /(x) + {y - x,u) f(y)}.

The elements of df (x) are called subgradients of / at x. Moreover,

domd/ df(x) / 0} C dom/.

Easy but powerful is the following result, which makes the importance of the subdifferential 
in optimization clear:

Lemma 9.2 (Fermat’s rule) Let f: X ]—oo, +oo] be proper, and let x e X. Then

0 G df(x) x is a global minimizer off.

Proof Indeed,

0 e df(x) o (Vy € X) /(x) + {y - x, 0) s? /(y) 
o (Vy € X) /(x) f(y) 
<=> x is a global minimizer of /,

as claimed.

Note that u e df (x) is the slope of the affine function h: y i-> f(x) + (y — x, u), also called 
an affine minorant of /: the graph of this affine function h never cuts above the graph of / and 
its value at x is hfx) = f(x).
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Example 9.3 Let ft R —> R: x i-> |x|. Then

OfW =
if x < 0;
if x = 0;
if x > 0.

Figure 9.1. For the red function f(x) = |t|, we have drawn four affine minorants whose slopes 
correspond to sub gradients taken from df(ff) = [—1,1].

Proposition 9.4 Let f = || • || be any norm on X. Then

W) = {« e XI ||U||, 1}

is the dual unit ball.

Proof. We have u € 3/(0) o (Vy € X) {y,u) = /(0) + (y - 0, u) /(y) = ||y|| o ||u||, s? 1 
for u G X. □

Example 9.5 3|| • ||i(0) = [-1, l]n on Rn.

Proof. Indeed, because the dual norm of the 1-norm is the max-norm, this follows from Proposi­
tion 9.4. □

Example 9.6 Suppose that X = Sn and that f maps A e X to its largest eigenvalue. Given 
A e X, let v be a normalized eigenvector of A corresponding to the eigenvalue f(A). Then 
vvT e df(A).
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9.2 ■ Further Properties
Proposition 9.7 Let f: X —> ]—oo, +oo] be proper, and let x e X. Then df(x) is convex and 
closed.

Proof. The conclusion is clear if df(x) = 0, so let us assume that df(x) / 0. Take uq, u± in 
df(x), and let 0 < A < 1. Let y e X. Then

f(x) + [y - x, u0) f(y) and f(x) + (y - x, uf) f(y).

Multiplying the first and second inequality by (1 — A) and A, respectively, and then adding and 
simplifying yields

f(x) + {y - x, (1 - A)u0 + Awi) < f(y).

Hence (1 — X)uq + Atti e df (x) and thus df(x) is convex.
Now let ('Un)neN be a sequence in df(x) such that un -> u e X. Let y e X. Then (Vn e N) 

f(x) + (y — x, un) f(y). Taking the limit as n +oo yields f(x) + (y — x,u) f(y)- 
Therefore u e df(x) and hence df(x) is closed. □

Proposition 9.8 (monotonicity) Let f: X ]—oo, +oo] be proper. Then df is a monotone
operator: (Vu e df(x)Yf/v e df(yf) (x — y,u — v) 0.

Proposition 9.9 Let f: X ]—oo,+oo] be proper, and let x e dom 3/. Then f is lower 
semicontinuous at x.

Proposition 9.10 Let f: X ]—oo, +oo] be proper. Suppose that dom/ is convex and that
dom f = dom df. Then f is convex.

Proof. Take x®, x± in dom /, and let A e ]0,1[. Set x = (1 — A)#o + A^i. Then x e dom f = 
dom df, so let u e df(x). Then

(Vy € X) fix) + {y-x,u) f(y).

Specializing to y = x0 and x±, and recalling the definition of x, we have

f(x) + (x0 - ((1 - A)x0 + Axi),u) f(x0),
fix) + ixi - ((1 - A)x0 + Axi),u) fixi),

which simplifies to

f(x) + X{x0-x1,u) fix0), (9.1a)
/(x) - (1 - A) ix0 -xi,u) f(xi). (9.1b)

Finally, (1 — A)(9.1a) + A(9.1b) simplifies to

/((I - A)x0 + Axx) = fix) (1 - A)/(x0) + A/(xi)

and we are done. □

The domain of the subdifferential operator df may be a proper subset of dom f, as the next 
example illustrates:

Example 9.11 Consider the proper lower semicontinuous convex function

f: R —> ]—oo, +oo] : x i->
if x < 0;
if x 0.

Then 3/(0) = 0.
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Proof. Suppose to the contrary that <9/(0) 0, say u e 9/(0). Then (Vt/ > 0) uy = /(0) +
(y — 0)u f(y) = — y/y and therefore

. Vy 1 v v n+—oo < u — -— =---- — —> —oo as y 0 ,
y Vy

which is absurd!

Fact 9.12 [39, Theorem 23.4] Let f: X —> ]—oo, +oo] be convex and proper. Then ri dom / C 
dom 9/ C dom/. Moreover, ifxE ridom/, then df(x) is bounded <=> x e intdom/.

Corollary 9.13 Let f: X W be convex. Then f is subdifferentiable everywhere, i.e., (V# e 
X) df(x) * 0.

Fact 9.14 [39, Theorem 24.7] Let f:X—> ]—oo, +oo] be convex, lower semicontinuous, and 
proper. Suppose that C is a nonempty compact subset of int dom /. Then df(C) is compact and 
nonempty.

Exercises
Exercise 9.1 Provide the details for Example 9.3.

Exercise 9.2 Verify Example 9.6.

Exercise 9.3 Verify Proposition 9.8.

Exercise 9.4 Verify Proposition 9.9.

Exercise 9.5 Let f: X ]—oo, +oo] be convex and proper, and let x e dom df. Set V :=
(aff dom/) — x = span((dom/) — x). Show that + df(x) C df(x).

Exercise 9.6 Let /: X ]—oo,+oo] be convex and proper, set p := inf/(X) and S := 
Argmin /, and let x e X. Show that if 5 / 0, then

f(x) - n d9/(x)(0) • ds(x).
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Normal Cones

10.1 " Normal Cone
Definition 10.1 (normal cone) The normal cone of a nonempty subset C of X at x e X is

J {u e X I (Vc e C) 
Nc(x) := < k0

(c — x,u) 0} if x G C; 
if rr i C.

Proposition 10.2 Let C be a nonempty subset of X. Then Nc = 3lc- Moreover, if x G C, then 
Nc(x) is a closed convex cone.

Proof Let x G X. If x C, then Nc(x) = 0 = 3lc(x). Now assume that x G C, and let 
u G X. Then

u G Nc(x) <=> (Vc G C) (c — x, u) 0
O (f/y (E X) Lc(x) + {y-x,u) lc(v)
<=> u G 3lc(x).

This and Proposition 9.7 imply that Nc(x) is closed and convex. Clearly 0 G Nc(x). Now 
let u G Nc(x) and suppose that a > 0. Then (Vc G C) (c — x, u) 0 and hence (Vc G C) 
(c — x, au} 0, i.e., au G Nc(x). Hence Nc(x) is also a cone. □

Remark 10.3 Suppose C is a nonempty closed convex subset of X, and let x G C. Then 
Definition 10.1 yields Nc(x) = (C - x)e.

Remark 10.4 Let C be a nonempty closed convex subset of X, and let x G C. It can be shown 
(see [3, Proposition 6.44(i)]) that

Tc(^) := cone (C — x) = Nc(x)e (10.1)

is the tangent cone of C at x.
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10.2 ■ Examples
Example 10.5 Let —oo a ft +oo, and set C := {x e R | a x /3}. Assume that
C ± 0, and let x E C. Then 

Nc{x) = <

'R
{0}
R_

if a = x = /3; 
if a < x < /?; 
if a = x < /?; 
if a < x = ft.

Example 10.6 Let C be the closed unit ball B[0; 1] in X, and let x e C. Then

I R+x if ||a;|| = 1.
Moreover, Tc(x) = X if ||a;|| < 1, while Tc(x) = {y E X | (y, x) 0}.

Proposition 10.7 Let C be a convex subset of X, and let x E int C. Then Nc(x) = {0}.

Proof Get <5 > 0 such that B[x\ 5] C C. Now let u E Nc(x). Then 0 sup (B[a;; 5] — x, u) = 
sup (B[0; 5],u) = 6sup (B[0; l],u) = <5||u|| > 0. Hence ||u|| = 0 and so u = 0. □

Example 10.8 Suppose that X = R2, and set C := R2 . Then the following hold:

(i)

(ii)

(iii)

(iv)

NcM = {M}.

NcO-,®) = {0} x R_.
ATc(0,2) =R_ x {0}.

ATc(0,0) =R?..
Example 10.9 Set C := R x {1} in X = R2. Then int C = 0 while ri C = C = C. Moreover, 
if x E O', then Nc(x) = {0} x R.
Example 10.10 Let C be the probability simplex in X = Rn:

C := Pn = {a; E R™ | xi + • • • + xn = 1}.

Let x E C and u E X. Then

u E Nc(x) R)(Vz E {l,...,n}) (10.2a)
either (Xi > 0 and uz = y) (10.2b)
or (xi = 0 and ui y). (10.2c)

Proof Set I := {1,..., n}, I+ := {i E I | xi > 0}, and Io := {z E I | a;*  = 0}. Note that
I+ 0 because x E C.

Suppose the right side of (10.2) holds, and let c E C. Then

(c - x, u) = J2(cz - Xi)ui = y (Ci- Xi) + CiUi

52 _ xi)+= 52Ci _ ^52Xi 
iEl

= ^52^ -^52^
iei iei

= y — y = 0;

thus, u E Nc(xf as claimed.
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Suppose the left side of (10.2) holds. Suppose that i e I+ and that j G I x {«}. 
Cleverly set

Cfc :=
Xk
Xi - ±Xi

Xj + Xi

if Ar i {i, j}; 
if k = v, 
if k = j.

Then Cfc = 1 and ce because x € C. Hence c € C. Because u € Nc(x), we obtain

0 > (c - X, u) = ^(Cfc - Xk)Uk 

kei

= {Xi - ^Xi - Xi)Ui + {xj + ±Xi - Xj)uj 

= ^Xi(Uj - Ui).

We have thus shown the implication

Xi > 0 1
)

Ui Uj. (10.3)

(Note that this implication is trivially true if n = 1.) Consequently,

Xi > 0 
j ± i >

Xj >0
—/■ Ui — Uj (10.4)

and we now well define

p := Ui, where iel+.

In view of (10.3) and (10.4), we see that the right side of (10.2) holds. □

10.3 - Further Properties
Proposition 10.11 Let C be a nonempty closed convex subset of X, let x e C, and let u E X. 
Then u e Nc(x) <=> Pc+ u) = x.

Proof Using Theorem 8.4, we have u e Nc(x) <=> (Vc e C) (c — x, u) 0 <=> (Vc e C) 
(c — x, (x + u) — x) C 0 <=> x = Pc(rr + u). □

Proposition 10.12 Let f be convex and proper on X, and let x,u be in X. Then

u e df(x) (u, -1) e TVepi/^, /(z)). (10.5)

Remark 10.13 (relevance in optimization) Suppose we wish to

minimize f(x) subject to x e C.

This is the same as to

minimize f + tc-

In view of Fermat’s rule (Lemma 9.2), every solution x to this problem must satisfy 0 €3(/ + 
tc)(^)« In many cases, we actually have d(f + ^c)(^) = df(x) + = df(x) + Nc(x)
so that the minimizer x satisfies

(3u e <9/(#)) - u e Nc(x).
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Moreover, if f is differentiable at x, then this turns into

-Vf(x) e Nc(x).

We will study this in more detail in Section 15.1 below.

Exercises
Exercise 10.1 Let C be a nonempty closed convex subset of X, let x e X, and let a e X. Show 
that Nc(x) = Na+c(a + ^)-

Exercise 10.2 Verify the formula for Nc(x) in Example 10.5.

Exercise 10.3 Verify the formula for Nc(x) in Example 10.6.

Exercise 10.4 Let Ci,..., Cm be nonempty closed convex subsets of Euclidean spaces Xi,..., 
Xm, respectively. Show that NC1X -xcm = NC1 x • • • x NCm-

Exercise 10.5 Verify Example 10.8.

Exercise 10.6 Suppose that C = c0 + Y, where c0 E X and Y is a linear subspace of X. Show 
that Nc(x) = y-1 for every x e C.

Exercise 10.7 Verify Proposition 10.12.
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Directional and Classical 
Derivatives

11.1 > Directional Derivative
Definition 11.1 (directional derivative) Let f be proper on X, suppose that x e dom /, and 
let d e X. Then the directional derivative of f at x in direction d is

/W):= lim + 

a—>0+ a

provided this limit exists in [—oo, +oo].

Remark 11.2 Let / be proper on X, suppose that x e int dom f, let d e X, and suppose that 
/'(#; d) € R. Then

lim f(x + ad) = f(x) 
a—>0+

because f(x + ad) = a(J(x + ad) — f (x)) / a + f (x) 0-/'(#; d) + f(x) = f(x) as a —> 0+.

Theorem 11.3 Let f be convex and proper on X, suppose that x e int dom /, and let d e X. 
Then

<f> (n\ ■ f(x + ad) ~ 9d(a) :=-----------------------
a

is increasing on R++; consequently, f'fx; d) exists and

f'(x;d) = inf <f>d(a) = infV 7 a>0 V 7 a>0 a

Moreover, —oo < — f'(x; —d) ff(x;d) < +oo.

Proof. Let 0 < a < f3, and set A := a/(3. Then 0 < A < 1 and the convexity of f gives

f(x + ad) = /((l - X)x + A(x + /3d))
^(l-A)/(rr) + A/(rr + /3d)

= f{x) + X(f(x + /3d) - f(x))
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and thus

f(x + ad) - f(x) sj (/(x + /3d) - /(x)).

Now divide by a > 0 to learn that $d(a) $d(/3).
Now let us assume additionally that /3 > 0 is so small that [x — fid, x + fdd] C dom / (which 

is possible because x e int dom /). The convexity of / yields

/(x) |/(x-ad)4- \f(x + ad). (11.1)

Then we obtain using (11.1) that

« -«-,(«) = ~ ~ °rf) « +
a a

= ^d(a)
W).

Hence -oo < -£_d(/3) -d) C /'(x; d) C #d(/3) < oo and we are done. □

Corollary 11.4 Let /i, /2 be convex and proper on X, and suppose that x e int dom Cl 
int dom/2. Then

Corollary 11.5 Let f be convex and proper on X, suppose that x e int dom /, let d e X, let 
7^0, and let y e X. Then the following hold:

(i) ffx'd)^f(x + d)-f(x).

(ii) /'(#; •) is convex.

(iii) f'(x;yd) = yf(x\d)

(iv) ff(x; y - x) /(?/) - f(x).

Proof. Consider Theorem 11.3 and its notation.
(i): This is a restatement of f(x\ d) $d(l), which we know to be true.
(ii): For each a > 0, the function d i-> (/(x + ad) — f(x))/a is convex, and hence so is the 

limit (see Proposition 4.9) as a —> 0+, which is /'(z; d).
(iii): This is clear from the definition when 7 = 0, so assume 7 > 0. We have ffx; yd) 4- 

Q'yd(a) = 7$d(«7) -> 7/'(^5 d) as a -> 0+.
(iv): Clear by setting d = y — x and applying (i). □

Fact 11.6 [5, Theorem 3.24] Let be proper convex functions on X. Set I :=
{1,..., m} and f := max{/i,..., /m}, suppose that x e int dom fif and set I(x) := 
{i e 11 fi(x) = /(x)}. Then

f'(x;d) = maxf'(x;d).
iei(x)

Theorem 11.7 (Max Formula) Let f be convex and proper on X, suppose that x E int dom /, 
and let d E X. Then

f'(x;d) = max(d,df(x)) = adf(x){d). (H-2)
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Proof. Let u € df(x). Then (Va > 0) f(x) + {ad, u) f(x + ad). It follows that

<d, u) < /(£±^W(£) ^x. as a o+
a

Thus,

ff(x;cT) sup{d,df(x)). (11.3)

We now tackle the converse inequality as well as attainment. To this end, set h := /'(#;•). 
By Corollary 11.5(ii) and Theorem 11.3, the function h is convex and full domain. Let v e X. 
By Corollary 9.13, dh(d) 0, say g e dh(d). This implies the inequality in

(Va > 0) ff(x', d) + (av — d,g) = h(d) + (av — d, g)
h(av) = f'(x;av) = af'(x,vf

while the last equality stems from Corollary 11.5(iii). Rearranging gives

(Va>0) f'(x;d) - {d,g) ^a(f'(x;v) - {v,g)). (11.4)

This implies

(y,g) f'(x;v) (11.5)

because if (v,g) > then letting a +oo in (11.4) gives a contradiction. In turn,
(11.5), setting v = y — x, and Corollary 11.5(iv) yield

(Vt/ e X) f(x) + (y-x,g) f(x) + f'(x; y - x) f(yf

Thus, g e df(x). This, combined with setting a = 0 in (11.4), gives

f'&d) (d.g) swp(d,df(x)). (11.6)

Combining (11.3) and (11.6) results in f(x\ d) = (d,g) = sup (d, df(x)) = (^^(d). Be­
cause g e df(x), the supremum is actually a maximum. □

11.2 ■ Classical Derivative
Recall that f is differentiable at x e int dom f if there exists g e X such that 

]. f{x + h)- f{x)- {h,g)

if this is the case, then g is unique and one writes g = Xf(x).

Proposition 11.8 Let f be proper on X, and suppose that f is differentiable at x e int dom f. 
Then f'(x; •) = (•, V/(x)).

Proof. The identity holds at 0. Now pick d e X \ {0}, a > 0 and set h = ad. Then the 
definition yields 0 = limQ,_>0+ (f(x+ad) — /(#))/(a||d||) — (d, V/(x)) /||d|| and the conclusion 
follows. □

Fact 11.9 [3, Proposition 17.31] Let f be convex and proper on X, and suppose that x e 
intdom/. Then 

f is differentiable at x <=> df(x) is a singleton, 

in which case df(x) = {Vf(x)}.
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Proof. Because f is convex and proper, and x e intdom/, by Fact 9.12, df(x) / 0. Let us 
show at least Let u e df (x). Fix h e X and t > 0. Then

f(x) + t (h, u) = f(x) + {(x + th) — x, u)
f(x + th).

Rearranging and recalling Proposition 11.8 gives (ft, u) (f(x + th) — f{x))/t (ft, X f(x)).
By Proposition 1.10, u = V/(x). □

Theorem 11.10 Let f be proper on X, suppose that D := dom f is convex and open, and that 
f is differentiable on D. Then the following are equivalent:

(i) f is convex.

(ii) (Vx € Z>)(Vj/ € D) /(x) + (y - x, V/(x)) s? f(y).

(iii) (Vx e £>)(Vy e £>) (x - y, Vf(x) - Vf(y)) > 0.

If f is twice differentiable on D, then we may add another item to this list, namely:

(iv) (fix e D) X2f(x) 0.

Proof. Let x, y be in D.
“(i)=>(ii)”: Corollary 11.5(iv) yields ff(x;y-x) f(y)-f(x). On the other hand, f'(x;y— 

x) = (y — x, Xf(x)) by Proposition 11.8.
“(ii)=>(iii)”: We have f(x) + (y — x, Xf(x)) f(y) and also (switching x and y) f(y) + 

(x — y, Xf(y)) f(x). Now add and simplify.
“(iii)=>(i)”: Because D is open, there exists 6 > 0 such that {t+5 (x—y),y+S (y—#)} C D. 

Set I := ]-5,1 + J[ and

0(°O := Lj(a) + f(y + a(x - y))

for which

(Va e I) 0'(a) = {x - y,Xf(y + a(x - y))). (11.7)

Now let a < (3 in C and set za := y + a(x — y) and z@ := y + (3(x — y). Then

</>'(£) - </>'(«) = (x-y, Xf(zp) - Xf(za))

>0.

Hence 0' is increasing on I. It is known from calculus that 0 is therefore convex. Hence,

/(ax + (1 -a)y) = 0(a)
a0(l) + (1 - a)0(O) = af(x) + (1 - a)f(y)

and we are done.
Now assume that f is twice differentiable.
“(iii)=>(iv)”: Let d e X. Then for all a > 0 sufficiently small, we have x + ad e D and

W v/(£ + O(i) - v/(«)> = «» + ^)-^W(» + ».i)-v/W) 
a

>0.

Dividing by a and taking the limit as a -> 0+ yields (d, X2f(x)d') 0.
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“(iv)=>(i)”: Taking the derivative of equation (11.7) another time yields = (x — ?/, 
(V2/(?/ + ot(x — y)))(x — y)) 0. Hence 0' is increasing and we complete the proof as in
“(iii)=>(i)”. □

Corollary 11.11 Let fi,.. .,fm be convex and proper on X. Suppose that each fi is differ­
entiable at x e int dom/1 Pl • • • Cl int dom/m. Set f := max{/i,..., fm}, and let d e X. 
Then

= max {{d, | fi(x) =

Fact 11.12 [3, Corollary 17.42(h)] Let f be convex and proper on X, and suppose that f is dif­
ferentiable on C := int dom f / 0. Then f is continuously differentiable, i.e., V f is continuous 
on C.

Exercises
Exercise 11.1 Consider the function f(x) = xln(z) — x if x > 0; /(0) := 0; f(x) = +00 if 
x < 0. Compute f'(ff •).

Exercise 11.2 Prove Corollary 11.4.

Exercise 11.3 Let f be convex and proper on X, suppose that x e int dom /, and let 7 > 0. 
Show that (7/)'^; •) = 7 fix; •).

Exercise 11.4 Verify Corollary 11.11. Hint: See Proposition 11.8 and Fact 11.6.

Exercise 11.5 Consider the ReLU function f(x) := max{x, 0} defined on R. Show that for 
every d e R,

0
f'(x; d) = < max{d, 0} 

d

if x < 0;
if x = 0;
if x > 0.

Exercise 11.6 Consider the function f(x) := |x|, defined on R. Show that for every d e R,

ffM = { \d\

d

if x < 0;
if x = 0;
if x > 0.





Chapter 12

Subgradients, Derivatives, 
and the Bregman Distance

12.1 > Computing Subgradients and Derivatives
Fact 12.1 [3, Proposition 17.16] Suppose that X = R and f is convex and proper on R, and let 
x e dom f. Then f'_ (x) C (x) and

W) = [4(^),4(^)]nR, (12.1)

where

f-(x) = lim =_//(;c;_1);
h—>-0 h

f'+& = lim + = f{x. i).
h^0+ Fl

Moreover, f'_, f'+ are increasing on dom/ and ifx<yE dom/, then f+(x) C

The above facts allow an often painless computation of subdifferentials:

Example 12.2 Let f(x) = |x| on X = R. If x > 0, then clearly /'(#) = 1 and so df(x) = {1}. 
Similarly, if x < 0, then df(x) = {-1}. If x = 0, then 4(0) = 1 and 4(0) = -1 and so 
9/(0) = [-1,1] Cl R = [-1,1], as seen earlier in Example 9.3.

Example 12.3 (negative entropy) The subdifferential operator of the negative entropy function 

+oo
/(a;) := 0

£ln(rr) — x

if x < 0;
if x = 0;
if x > 0

is

n pz x J 0 if X 0; 
d/O) = 5ri / u n

I {ln(a?)} ifx>0.

Example 12.4 Consider f(x) = —yjx with dom/ = R+, which is convex, lower semicon- 
tinuous, and proper. If x > 0, then f(x) = —1/(2^). If x < 0, then x dom / and so

59



60 Chapter 12. Subgradients, Derivatives, and the Bregman Distance

df(x) = 0. Now let’s focus on x = 0. Then

t, /(0 + h) - /(0) -Vh/l(0) = lim f—LL_L = iim = -oc.
7 h^o+ h h^o+ h

But f'_ (0) = —oo as well and so 3/(0) = [—oo, —oo] A R = 0. To sum up,

0
3/(x) = <

Example 12.5 Suppose that f(x) = ||z||, the Euclidean norm. Then 

B[0;l] ifx = 0; 

if x 0.
3/(x) = <

Proof. We have seen the case when x = 0 in Proposition 9.4. 
V||#||2 = 2x. Hence the change rule gives V||x ll=VvW = 

are done.

So assume that x 0. Now 
^=^(23;) = a;/||a;|| and we 

□

Example 12.6 Let C be a nonempty closed convex subset of X. Then

= Id - Pc.

Proof Let z E X. Define

f(x) := ^dc(z + x) - |dc(^) ~ (x,z~ pcz} ■ (12.2)

We have seen in Example 6.10 that f is convex. To complete the proof, we must show that 

limW=0. (12.3)

Clearly, we have

\\z 4-x - Pc(z +x)|| = dc(z + z) ||z + a; - Pc(z)||.

Also note that (Vy G X)

(12.4)

(12.5)

Then (12.2), (12.4) (with y = z - Pc(*)),  and (12.5) yield

/(*)  ||k + x - PcWII2 - > - PcWII2 -
Hence

The definition of /, (12.2), gives /(0) = 0. Because f is convex, Jensen (Theorem 3.6) now 
gives

0 = /(0) = /(|z + |(-x)) |/(z) + |/(-z);

thus, —/(—#) f(x). Combining all of the above, we deduce
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which, upon dividing by ||a;||, yields

Applying the squeeze theorem as x 0, we obtain (12.3).

12.2 > The Bregman Distance
Definition 12.7 (Bregman distance) Let / be proper on X, and assume that f is differentiable 
on int dom f. Then

Df(x,y) ■=
/(x) - f(y) - (x — y, Vf(yf) if y 6 int dom/; 
+oo if y int dom f 

is called the Bregman distance between x and y.

Definition 12.7 and Theorem 11.10 imply the following:

Proposition 12.8 Let f: X ] —oo, +oo] be convex and proper, and assume that f is differen­
tiable on int dom f. Let x G X and let y e int dom f. Then

Df(y,y) = 0 and Df(x,y)^0;

hence, y is a minimizer of the convex function Df(-,y). If x G int dom/, then \7Dff,y')(xy) = 
V/(x) - V/(y).

Figure 12.1. The Bregman distance Df(x^y) is the length of the red line segment.

Example 12.9 Suppose that f = 11| • ||2. Then Df(x,y) = | ||a; — ?/||2.

Proposition 12.10 Let f, g be proper on X, and let /3 > 0. Assume that f, g are differentiable 
on intdom / Pl intdomg. Then Df+pgfay) = Df(x,y) + fiDg(x,y) when x G X and 
y e int dom / Pl int dom g.

Example 12.11 Let / be convex, proper, and differentiable on int dom f on X, let v e X, and 
let /3 G R. Then D= Df.

Proof. Set g := (-,17) + /3. Then Xg = v, which implies Dg(x,y) = (x,v) + /3 — (y, v) — 
/3 — (x — y,v) = 0. Now assume that y G int dom / = int dom(/ + g). By Proposition 12.10, 
Df+M+P = Df+g = Df + Dg = Df- 1=1
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Example 12.12 (Kullback-Leibler) Set f(x) := Tln(x)— zifa; > 0; /(0) := 0; f(x) := +oo 
if x < 0. Then the associated Bregman distance of / is

x\n(x/y) - x + y
Df(x,y) = ly

if x > 0 and y > 0;
if x = 0 and y > 0; 
otherwise,

(12.6)

which is also known as the Kullback-Leibler Information Divergence.

Proposition 12.13 (4-point and 3-point identities) Let f be convex and proper on X, and as­
sume that f is differentiable on intdom f. Let afb be in dom f and let x^y be in intdom f. 
Then the Bregman distance Df satisfies the 4-point identity

(a - b, V/(x) - V/(y)) = Df(b,x) + Df(a,y) - Df(a,x) - Df(b,y) (12.7) 

and consequently the 3-point identity

{x - b, Vf(x) - = Df(b, x) + Df(x, y) - Df(b, y). (12.8)

Proof. Indeed, we have

(6, x) + Df(a, y) - Df(a, x) - Df(b, y)
= f(b) - /(x) - {b - x, \7f(x)) + /(a) - f(y) -{a-y, Vf(y))

- f(a) + /(x) + {a - x, V/(x)) - /(6) + /(y) + {b-y, Vf(y))
= {-b + x + a - x, V/(x)) + {-a + y + b-y, \7f(y))
= (a-b,\7f(x)-Vf(yy),

which is (12.7). Note that (12.8) follows from (12.7) by setting a = x. □

Exercises
Exercise 12.1 Provide the details for Example 12.3 using (12.1).

Exercise 12.2 (ball pen function) Set f(x) := —\/l — x2 if |rr| C 1; f(x) := +oo if |rr| > 1.
Determine df(x) using (12.1).

Exercise 12.3 Provide the details for Example 12.9

Exercise 12.4 Provide the details for Proposition 12.10.

Exercise 12.5 Verify (12.6).

Exercise 12.6 Compute the Bregman distance of the exponential function and determine whether 
or not it is convex on R2.

Exercise 12.7 (lusem’s characterization) Let f be a twice differentiable convex function on X 
with full domain. Show that f is a quadratic function Df is symmetric.

Exercise 12.8 Let /, g be convex, lower semicontinuous, and proper on R. Suppose that dom f = 
domg = R+, /, g are differentiable on R++, /(0) = #(0) = 0, and /^(0) = — oo. Let x > 0. 
Show that f(h) + g(x — h) < f (0) + g(x) for all h > 0 sufficiently small.
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Subgradient Calculus

13.1 - Positive Multiples and Sums
Proposition 13.1 Let f be proper on X, and let a > 0. Then

d(a/)W) = adf(x}. (13.1)

Proof. Let u, y be in X. Then we have

u G d(af}(x) otf(x) + (y - x,u) af(y)

& / W + (y - u/a} f(y)
<=> u/a e df(x) 
O u G adf(x), 

and we are done. □

Proposition 13.2 Let fa, f2 be proper on X. Then

dfa(x) + dfa(x) C a(/i + fa)(x). (13.2)

Proof Suppose that Ui G dfifx). Let y G X. Then

AW + {y-x,U!} /i(y), 
/2(x) + {y-x,u2} /2(y).

Adding these inequalities yields (/1 + /2 )(£) + (?/ — + ^2) (/1+/2 )(?/)• Thus ui +u2 G
a(/i + /2)(^). □

Equality in (13.2) may fail:

Example 13.3 (failure of the sum rule) In X = R2, consider the balls C[ := B[(—1,0); 1] 
and C2 := B[(l, 0); 1]. (—1,0) and (1,0), respectively. Set fi := aci and /2 '•= lc?- Then the 
following hold:

(i) fi + /2 = ^{(0,0)}-
(ii) 3(/i+/2)(0,0) =R2.

(iii) 3/1 (0,0) = R+ x {0} and d/2(0,0) = R_ x {0}.

(iv) 3/i(0,0) + 3/2(0,0) = R x {0}.
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If the domains “overlap sufficiently,” then (13.2) turns into an equality.

Theorem 13.4 Let f±, f2 be convex and proper on X. Suppose that x e int (dom fa Pldom f2) = 
int dom fa Pl int dom f2. Then

dfa (x) + df2(x) = d(fa + /2)(z). (13.3)

Proof. Set / := /i + /2, and let d e X. On the one hand, by Theorem 11.7, 

f (x^d) =

On the other hand, by Corollary 11.4, again Theorem 11.7, and Proposition 7.7(vi), 

f (x\d) = fa(x\d) + fz(x:,d) = + cr^/2(^)(^) = <79/i(x)+9/2(^)(^)-

Altogether,

<79/(x)(c^) = ^9/1 (x)+5/2(^) (13.4)

Next, df (x) is compact and convex. Each dfa(x) is compact and convex, hence so is dfa(x) + 
df2(x) by Exercise 2.18. With the help of Lemma 8.15, we deduce from (13.4) that df(x) = 
dfafx) + df2(x). □

Note that by induction, one may easily obtain a formula for more than 2 summands.

Example 13.5 (the median) Let a\ < a2 < • • • < an be real numbers where n = 2m — 1 
is an odd integer. Then the middle index is m := (n + l)/2 and am, the median, is the unique 
minimizer of the function

n
:= 52 I® - Oil- 

2 = 1

Proof. Set fi(x) := |rr — uj. Then fa is continuous, convex, with full domain, and

{-1}

Un
dfi(x) = [-1,1]

if x <
if x = ai\ 
if ai < x.

Set A := {tti,..., an}, and denote the cardinality of a set S by card (5). Because / = /i + 
-----I- /n, the sum rule gives

df(x) = ^df^x)

2=1

if x < ai\ 
if x = ai\ 
if a* < x

= — card (An]a:,+oo[) + card (An]-oo,x[) + {0}
[-1,1]

if x A; 
if x e A.

Because n is odd, we see that 0 e df(x) <=> x = am. Now recall Fermat’s rule (Lemma 9.2). □

Remark 13.6 (median vs. mean) Example 13.5 is very nice: we have recognized the median as 
the minimizer of the nonsmooth function

n

52
2=1
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In contrast, the mean is the minimizer of the smooth function 

^2\x-ai\2. 

2=1
Sum rules like the one we just proved are hard. Better ones are available. We list a popular 

one next.

Fact 13.7 (a strong sum rule) [3, Corollary 16.48(ii)] [39, Theorem 23.9] Let fa, fa be convex 
and proper on X. Suppose that ri dom /i Pl ri dom fa 0, that dom /i Pl int dom fa 0, or 
that (ri dom fa Pl dom fa 0 and fa is polyhedral1). Then

d(fa + fa) = dfa + dfa

everywhere.

As is often the case, separable sums are much easier:

Proposition 13.8 (separable sum) Let fa be convex and proper on Xi for i G {1,..., m}, and 
set

:=/i(xi)H----+
Then

df(X!, . . .,Xm) = 0/1 (^l) X • • • X dfm(Xm).

Example 13.9 Suppose that f(x) = ||a:||i = lx»l on Then

d/(z) = Sign(xi) x • • • x Sign(arm), 

where Sign(£) := d| • |(£). In particular (signal),..., sign(zm)) G df(x).

13.2 > The Sum Rule and Optimization
Proposition 13.10 Let f be convex, lower semicontinuous, and proper on X, and let C be a 
nonempty closed convex subset ofX. Suppose that ri CPlri dom / 7^ 0, that int CPIdom / 7^ 0, 
that C Pl int dom f 0, or that (C is polyhedral and C Pl ri dom f 0). Consider the problem 
(F), which asks to

minimize fax) subject to x eC.

Let x G C. Then the following are equivalent:

(i) x solves (F).

(ii) 0 G d(/ + bC)(x).

(iii) 0 G dfax) + Nc(x).
(iv) — Nc(x) Pl dfax) 7^ 0.
(v) (3 g G df(x))(\/c G C) (c-x,g)^0.

Proof. “(i)<=>(ii)”: Clear from Fermat’s rule (Lemma 9.2). “(ii)<=>(iii)”: Clear from the sum 
rule (Fact 13.7). “(iii)<=>(iv)”: Obvious. “(iv)O(v)”: Clear from the definition of the normal 
cone. □

2 A function is polyhedral if it is the sum of two functions: one is the finite maximum of affine (i.e., linear + constant) 
functions and the other is the indicator function of a set that is the nonempty intersection of finitely many halfspaces. 
Note that this allows for the intersection to be X by considering the intersection over an empty index set.
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Corollary 13.11 Suppose that f is convex and proper on X = Rn, and that C = Pn is the 
probability simplex in Rn. Suppose that C Pl ri dom f 0, and let x G C. Then x minimizes f 
over C O

(3p e df(x))(3/j, e R) gi | M >

I > p if Xi = 0.

Proof. Note that C is polyhedral. Hence the result follows by combining Proposition 13.10 with
Example 10.10. □

Example 13.12 Let y G X := Rn be fixed, set I := {1,..., n}, and consider the problem (P) 
of minimizing

f(x) := Xi ln(zi) - Xiyi 
iei

over the probability simplex C := Pn in X, and where 01n(0) = 0. Then (P) has a unique 
solution x which is given by

(V.e/) ..= ,,
E>eiexPw)

i.e., x is the softmax of y.

Proof Note that f is convex, lower semicontinuous, and proper on X (see also Example 18.12 
below). Moreover, C is compact and convex. By Corollary 5.6, f\c has a minimizes It follows 
from Exercise 12.8 that x G + and so x G ri C. Note that then

Vf(x) = (ln(xi) + 1 - yi)iei-

By Corollary 13.11, there exists /i e R such that

(Vz G I) p = In(^) + 1 - yi.

Hence (Vz G I) ln(#a) = p — 1 + yi, i.e.,

Xi = exp(/z — 1 + y^ = aexp(z^), where a := exp(/z — 1). (13.5)

On the other hand, x G C and so EieiXi = w^ich means a exp^yf) = 1, i.e.,

a = ™ (13.6)

Combining (13.5) and (13.6), we obtain the result. □

13.3 > Minimizers of the Sum vs. Zeros of the Sum of the 
Subdifferentials

We now discuss the subtle interplay between minimizers of the sum of two functions and zeros 
of the sum of the corresponding subdifferential operators.

Theorem 13.13 Let f, g be convex and lower semicontinuous on X such that dom f n dom g
0. Set

S := Argmin (/ + g) and Z := zer(d/ + dg).

Then the following hold:

(i) Z C S.

(ii) If Z 0, then Z = S.



Exercises 67

Proof, (i): Suppose that z e Z. Then 0 e df(z) + dg(z). By (13.2), 0 e d(J + g)(z). Hence, 
Fermat’s rule (Lemma 9.2) yields z e S.

(ii): Suppose that Z 0, say z e Z. By (i), z e S 0. Let s e S. Now s and z are both 
minimizers of f + g; thus,

f(z)=g(z)-g(s). (13.7)

Because z e Z, there exists w e df(z) such that — w e dg(z). Thus,

(\/x e X) f(x) f(z) + (x — z, w) and g(x) g(z) + {x — z, —w). (13.8)

In particular, f(s) f(z) + (s — z, w) and g(s) g(z) + {s — z, —w}; in turn, this implies

/(«) - /(*)  > {s-z,w)^ g(z) - g(s). (13.9)

Combining (13.7) and (13.9) yields

/(«) - /(*)  = {s-z,w} = g(z) - g(s). (13.10)

Finally, let x e X. Then

f(x) f(z) + (x- z,w) (by (13.8))
= (f(z) + {s — z, w) ) + (x — s, w)
= f (s) + (x — s,w), (by (13.10))

which yields w e df(s). Similarly, — w e dg(sf Therefore, 0 = w + (—w) e <9/(<$) + dg(s) 
and thus s e Z. □

Remark 13.14 Consider Theorem 13.13 and its notation.
A way to guarantee that Z = S is that a constraint qualification such as ri dom /Ari dom g 

0 holds (see Fact 13.7).
Theorem 13.13 yields the following trichotomy, i.e., exactly one of the following holds:

(i) z = S = 0.
(ii) Z = 0 and S 0.

(iii) Z = S 0.

Exercises
Exercise 13.1 Provide the details for Example 13.3.

Exercise 13.2 Prove the statement regarding the mean in Remark 13.6

Exercise 13.3 Provide the details for Proposition 13.8.

Exercise 13.4 Consider the proof of Example 13.12. Provide more details for the step that shows 
that every solution of (F) must lie in R™+.

Exercise 13.5 Provide examples for each of the three cases considered in the trichotomy of
Remark 13.14.





Chapter 14

Composition and Maximum

14.1 - Composition
Fact 14.1 [3, Corollary 16.72] Let f be convex on X, and let g be convex and increasing on R 
Suppose that g is differentiable at f(x). Then

0(g o f)(x) = g'U(xf)df(x).

Example 14.2 Let C be a nonempty closed convex subset of X. Then

if a: e C; 

ifx i C.
(14.1)

Proof. Because C is convex, the functions de and f := are convex by Example 6.10; 
moreover, V/ = Id — Pc (see Example 12.6). Furthermore, set g(x) := | max2{0, a;}, which 
is convex, increasing, with g'(x) = max{0, x}. Then the chain rule (Fact 14.1) yields

X- Pc(x) = Vf(x) = X{godc\x)

= 0(g ° dc)(x) = g'(dc(xf)ddc(x)
= max{0, dctxf^ddc^x)
= dc(x)ddc(x).

If x C, then dc(x) > 0 and (14.1) follows. We thus assume that x e C. Let u e X. 
Assume first that u e ddc(x). Then

(Vy e X) (y- X, u) = dc(x) + {y-x,u) dc(y); (14.2)

in particular, (Vc G C) (c — x, u) 0 and so u e Nc(x). Setting y = x + u in (14.2) yields 
||u||2 = {u, (x + u) — x) dc(x + u) ||(a: + u) — x|| = ||u|| and hence ||u|| 1, i.e.,
u e B[0; 1].

Now assume that u e Nc(x) f~l B [0; 1]. Then for every y e X, we have

{y -x,u} = {y- Pc(y),u) + (Pc(y) - x, u)
(y-Pc(.y),u) ||y - Pc(y)||||u||

lly - Pc(y)ll =dc(y)
= dc(y) - dc(x)-, 

thus, u e ddc(x) and we are done. □
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Remark 14.3 Specializing Example 14.2 to X = R and C = {0} yields another way to obtain 
dl-l.

Proposition 14.4 Let A : X Y be linear, and let g be proper on Y. Then

A*dg(Ax)  C d(g o A)(x).

Fact 14.5 [39, Theorem 23.9] Let A : X Y be linear, and let g be convex and proper on Y. 
Suppose that ran A Pl ri dom g 0. Then

A*dg(Ax)  = d(g o A)(x).

Corollary 14.6 Let A : X Y be linear, and let g be convex and proper on Y. Suppose that A 
is surjective. Then A*dg(Ax)  = d(g o A)(x).

Example 14.7 Suppose that X = R2. Set C := B[(—1,0); 1], V := {0} x R, and A := Py.
Then A*̂cG4(0, 0)) g d(zc ° A)(0,0).

14.2 > Maximum
Fact 14.8 [3, Theorem 18.5] Let fa,..., fmbe convex and proper on X, and set I := {1,..., m} 
and f := maxie/ fa. Suppose that x e int dom fa and set I (x) := {z e 11 fa(x) =
Then

df(x) = conv [J dfi(x). (14.3)

Remark 14.9 Because |a;| = max{a;, —we can use Fact 14.8 to obtain once again d| • |.

Exercises
Exercise 14.1 Provide the details for Remark 14.3.

Exercise 14.2 Verify Proposition 14.4.

Exercise 14.3 Verify Corollary 14.6.

Exercise 14.4 Provide the details for Example 14.7.

Exercise 14.5 Verify the inclusion “D” from (14.3).

Exercise 14.6 Provide the details for Remark 14.9.



Chapter 15

Minimizing a Sum and the 
Fritz John Necessary Conditions

15.1 > Minimizing a Sum
Theorem 15.1 Let f be proper on X, and let g be convex, lower semicontinuous, and proper 
Assume that dom f Pl dom g 0. Consider the problem (F) of minimizing f + g.

(i) Ifx*  is local minimizer of(P) and f is differentiable at x*,  then —Xf(x*)  e dg(x*).

(ii) Iff is convex and differentiable at x*  e domg, then x*  is a global minimizer of (P) <P> 
-V/(z*)  e dg(x*).

Proof (i): Let y e domg. Because g is convex, so is domg. Set (VA e ]0,1[) x\ := 
(1 — X)x*  + Xy e domg. Because x*  is a local minimizer of (F), we have for A sufficiently 
small

/O*)  +pO*)  f(xx) + g(xx)
= fix’ + A(y - x*))  + p((l - X)x*  + Xy)

f(x*  + X(y - x*))  + (1 - X)g(x*)  + Xg(y),

which, after rearranging, yields

/ /x + A(v — x*))  — f(x*)  „ P/
g^) -g(y) -- --------- x f ^x ;y ~ x } = {y~ x ’

as A 0+. Thus, g(x*)  + (y — x*,  —Xf(x*))  g(y) and hence — V/(z*)  e dg(x*f
(ii): The direction “=>” is clear from (i). To prove assume that —V/(x*)  e dg(x*).  

Then, using (13.2), 0 e Xf(x*)  + dg(x*)  = df(x*)  + dg(x*)  C d(J + g)[x*);  hence, by
Fermat’s rule (Lemma 9.2), x*  is a (global) minimizer of f + g. □

Example 15.2 Consider the setting of Theorem 15.1. Let C be a nonempty closed convex subset 
of X such that C Pl dom/ 0. Consider the problem (F) of minimizing / over C. If z is a 
local minimizer of (F) and x is differentiable at x, then —Xf(x) e Nc(x).

Example 15.3 Consider the setting of Theorem 15.1 with ^ = A||-||i.Ifrr minimizes f + A11 • 111 
and / is differentiable at x, then

x (= A ifaJi < 0; 
^Ue[-A,A] if^ = 0;

oXi
—A if Xi > 0.

71



72 Chapter 15. Minimizing a Sum and the Fritz John Necessary Conditions

15.2 ■ Fritz John Necessary Conditions
For the remainder of this chapter, we assume that

/, g±,..., gm are functions from X to R,

that I := {1,..., m}, and we consider the problem (F), which asks to

minimize f(x) subject to g^x) 0 for every i e I.

We refer to / as the objective function, while the functions gi give rise to the constraints. The 
optimal value of (F) is defined by

p. := inf {/(ar) | (Vi e /) gi(x) 0}.

If x e X and gi(x) 0 for all i e I, then x is & feasible point. If x e X is a feasible point and 
f(x) = p, then t is a solution of the constrained problem (F). Now define the function

F(x) := max {f(x) - n,gi(x),... ,gm(x)}. (15.1)

Proposition 15.4 If (P) has solutions, then minF(X) = 0 and the minimize rs of F are exactly 
the solutions of(P).

Theorem 15.5 (Fritz John) Suppose that f,g±,... ,gm are all convex and that x solves (F).
Then there exist Qo 0,..., ctm 0, not all oti are equal to 0, such that

0 e aodf(x) + ^2 aid9i(x),
iei

and we have complementary slackness, i.e.,

(Vz e I) OLigi(x) = 0.

Proof. It is convenient to set gof) := /(•) — p. By Proposition 15.4, F(x) = 0 = minF(X).
Hence, by Fermat’s rule (Lemma 9.2) and the max rule (Fact 14.8),

0 e dF(x) = conv [J dgz(xf
ielo(x)

where I0(x) := {0} U {i G I | gi(x) = 0}. Hence (Vi G I0(j)) (3«i > 0) ai =
which implies that some aj > 0, and

0 e £ aidg^x) = aodf(x) + 5? aidg^x).
2€/oO)\{0}

Finally, we simply set 0^ = 0 for i e I x Iq(x). With that choice, the conclusion holds. □

Exercises
Exercise 15.1 Provide an example that shows that Theorem 15.1 (ii) fails if f is not convex.

Exercise 15.2 Illustrate that F in (15.1) may fail to be differentiable even when f and all gi are.

Exercise 15.3 Verify Proposition 15.4.
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Exercise 15.4 Suppose X = R, m = 1, f(x) = x, and gi(x) = ±x2. Find all solutions of (F) 
and also find ct0 and Qi as in Theorem 15.5.

Exercise 15.5 Suppose X = R2, m = 1, f(x) = — #2, and gi(x) = |rc2|-
Discuss this in the context of Theorem 15.5.

Exercise 15.6 Suppose X = R2, m = 1, f(x) = and gi(x) = ^x^.
Discuss this in the context of Theorem 15.5.





Chapter 16

Karush-Kuhn-Tucker 
Conditions

In this chapter, we assume that

,. . gm are functions from X to R,

that I := {1,..., m}, and we consider the problem (F), which asks to

minimize f(x) subject to gi(x) 0 for every i e I.

The optimal value of (F) is defined by

H := inf {/(x) | (Vi e I) &(x) 0}.

16.1 > KKT Necessary Conditions
Theorem 16.1 Suppose that all functions f,gi, - - - ,gm are convex, and that x solves (F). As­
sume that Slater’s condition holds, i.e.,

(3s e x)(Vi e/) &(s)<o.

Then there exist Lagrange multipliers Ai 0,..., Am 0 such that the KKT conditions

0 e df(x) + Xidgi(x), (stationarity)
iei

(Vi e I) Xigi(x) = 0 (complementary slackness)

hold.

Proof By Theorem 15.5,

(3ct0 > 0)(3ai > 0) • • • (3am > 0) notallc^ = 0, (16.1)

such that

0 e a03/(x) + aidgi{x) (16.2)
iei
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and

(Vi el) ai9i(x) = 0. (16.3)

Claim: c^o > 0.
Assume to the contrary that ce0 = 0. By (16.1) and (16.2), we obtain (Vi e I)(3 Vi e d9i{x)) 

such that

= 0 (16.4)
iei

as well as

(Vi e I) 9i(x) + (s - x,Vi) gi(s\ (16.5)

Recalling complementary slackness (16.3) and multiplying (16.5) by cq 0, we learn that

(Vi el) (s - x, otiVi} = ai9i(x) + (s - x, otiVi} a^(s). (16.6)

Recalling (16.4) and summing (16.6) yields

o = (5 - x, o) = y^ («- x, &iVi) y^ &igi(s), 
iei iei

which is absurd because oti9i{s) < 0 by (16.1) and the assumption that s is a Slater point. 
We have thus verified the claim.

Therefore, we can and do divide (16.2) by Qq > 0, and the conclusion now follows after 
setting each Az : = /a0 • □

16.2 > KKT Sufficient Conditions
Theorem 16.2 Suppose that all functions f,gi,---,gm are convex and that x e X and A e 
satisfy the following:

(f/i e I) gi(x) 0, (primal feasibility)
(Vi e I) Xi 0, (dual feasibility)

0 e df(x) + y^Xidgi(xf (stationary)
iei

(Vi e I) Xigi(x) = 0. (complementary slackness)

Then x solves (F).

Proof (primal feasibility) guarantees that x is feasible for (F). Now define the function

h := f + ^2 Xt9i-
iei

Because /, #i,..., 9rn are convex, so is h by (dual feasibility) and Propositions 4.1 and 4.5. (sta­
tionary), the weak sum rule (13.2), the scalar multiple rule (13.1), and again (dual feasibility) 
yield

0 e dh(x).

By Fermat’s rule (Lemma 9.2), we deduce that

x is a (global) minimizer of h.

Now let y e X be feasible for (F), i.e.,

(Vi e 1) gi(y) 0.
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Then

f(x) = f(x) +Xigi(x) 
iei

= h(x) 

h(y)
= f(v) + J2 *»&(?/)

iei
f(y),

which shows that x solves (F).

(using (complementary slackness))

(using the definition of h) 
(x minimizes h)

(using the definition of h)

(using Xi 0 and gi(y) 0)

□
Corollary 163 Suppose that all functions f^gi^-^gm are convex, and Slater's condition holds: 

(3seX)(Viel) &(s)<0.

Let x e X. Then x solves (F) if and only if there exists A e Rm such that the following hold:

(f/i e I) gi(x) 0, (primal feasibility)
(Vi e I) Xi 0, (dual feasibility)

0 e df(x) + Xidgi(xf (stationary)
iei

(Vi e I) Xigi(x) = 0. (complementary slackness)

Proof Theorem 16.1. Theorem 16.2.

Exercises
Exercise 16.1 (no Lagrange multiplier) Suppose that X = R, m = 1, f(x) = x, and #i(x) = 
^x2. Discuss this situation in the context of Theorems 16.1 and 16.2.

Exercise 16.2 Suppose that X = R2, m = 1, f(x) = t2) = ^x2 — X2, and gi(x) = |#21•
Discuss this situation in the context of Theorems 16.1 and 16.2.

Exercise 163 Suppose that X = R2, m = 1, f(x) = t2) = ^x2 — x2, and gi(x) = ^x^.
Discuss this situation in the context of Theorems 16.1 and 16.2.





Chapter 17

A Worked-Out KKT Example

We specialize the setting in the last chapter to X = R2 and m = 2 so that I := {1,2}. Instead 
of writing (xi, x2) e R2, we shall write (x, y) e R2.

We start by introducing and analyzing the objective function: Set

f: R2 —> R: (x, y) i-> x2 — 4x + 4?/2 — 2y.

Proposition 17.1 The objective function f is convex, and

X f(x,y) = (2x — 4,8y — 2).

Proof The formula for V/ is clear. The Hessian turns into

V2/(x,y) = o 8 >0

because the diagonal elements as well as the determinant are positive. Hence f is convex, even
strictly. □

Next, we introduce the two constraint functions

51 (a:, y) :=x + y- 1 and g2(x, y) := x + 5y - 3.

Proposition 17.2 The constraint functions , g2 are convex, with

Vgi(x,y) = (1,1) and Vg2(x, y) = (1,5).

Proof The gradient formulas are clear; convexity follows because both functions are even 
affine. □

Proposition 17.3 The objective function f is continuous and coercive.

Proof Clearly, f is continuous (even continuously differentiable). As to coercivity, observe that 

f(x, y) = x2 — 4x + 4y2 - 2y

= (a? — 2)2 — 4 + (2y — |)2 — |
—> +oo

as || (x,y) || —> +oo. □
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We investigate the problem (P), which asks to 

minimize f(x,y) subject to g^x^y) 0 and g2(x,y) 0. (17.1)

The optimal value of (P) is defined by 

n := inf {f(x,y) | gi(x,y) 0, 52(z,y) 0}. (17.2)

Proposition 17.4 The problem (F) has a Slater point, i.e., there exists (s, t) € R2 such that 
gi(s, f) < 0 andg2(s, t) < 0.

Proof. Many solutions are possible; perhaps the easiest is (s, t) = (0,0). □

Given (x, y) e R2 and (Ai, A2) E R2, the KKT conditions for (P) are — in their abstract 
form — the following:

(Vi e {1,2}) gi(x,y) 0, (primal feasibility)
(Vi e {1,2}) Xi 0, (dual feasibility)

(0,0) e df(x, y) + 57 ^i9gi(,x,y), (stationarity)
*e{i,2}

(Vi e {1,2}) Xigi(x, y) = 0. (complementary slackness)

In view of our work above, we obtain the following concrete version:

Proposition 17.5 The KKT conditions for (P) are

x + y — 1 0 and x + 5y — 3 0, (pf)
Ai >0 and A2 JsO, (df)

0 = 2a? — 4 + Ai + A2 and 0 = 8y — 2 + Ai + 5A2, (st)
Ai(x + ?/- 1) =0 and A2(a? + 5y - 3) = 0. (cs)

Proof (pf), (df), and (cs) are clear from the definition of /, #i, g2. (stationarity) turns into

(0,0) = (2^-4,8t/-2) + Ai(1,1) + A2(1,5),

which yields (st). □

The KKT conditions are powerful — they transform the optimization problem (P) into a 
feasibility problem. The latter is easier but still not easy to solve analytically. Especially (cs) is 
nasty and requires us to discuss cases, which we will do in the following.

Before we do so, we point out the following:

Proposition 17.6 The problem (P) has a solution.

Proof. Indeed, f is coercive so Corollary 5.5 applies. □

Proposition 17.7 When Ai = 0 and A2 = 0, then the KKT conditions have no solution.

Proof. Suppose that Ai = 0 and A2 = 0. Then (pf) is unchanged, (df) and (cs) are trivially true, 
and (st) simplifies to

(0,0) = (2x - 4, Sy - 2), i.e., (x, y) = (2, |).

Unfortunately, the vector (2, |) fails both conditions in (pf). Hence this KKT system has no 
solution. □

Remark 17.8 The vector (2, |) found in the proof of Proposition 17.7 is the unique solution to 
the problem of minimizing f without any constraints.
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Proposition 17.9 When Ai > 0 and A2 > 0, then the KKT conditions have no solution.

Proof. Suppose that Ai > 0 and A2 > 0. Then (pf) is unchanged, (df) is true by assumption, (st) 
stays

0 = 2x — 4 -F Ai -F A2 and 0 = Sy — 2-1- Ai -F 5A2, (st)

while (cs) simplifies to

x -F y — 1 = 0 and x -F by — 3 = 0. (cs)

We solve (cs) for x and get x = — y -F 1 and x = —by -F 3. Equating gives — y -F 1 = —by -F 3,
i.e., ky = 2, i.e., y = | and thus x = Plugging (x, y) = (|, |) into (st) gives

0 = —3 -F Ai -F A2 and 0 = 2-1- Ai -F 5A2. (st)

Solving this for Ai gives 3 — A2 = Ai = —2 — 5A2; hence, 4A2 = —5, i.e., A2 = —5/4 < 0. But 
this contradicts (df)! □

Proposition 17.10 When Ai = 0 and A2 > 0, then the KKT conditions have no solution.

Proof. Suppose that Ai = 0 and A2 > 0. Of course, (pf) is unchanged, (df) is trivially true, and 
(st) turns into

0 = 2x — 4 -F A2 and 0 = Sy — 2 -F 5A2, (st)

while we learn from (cs) that

x -F by — 3 = 0. (cs)

Solving (cs) for x and also the left side of (st) for x yields —by + 3 = x = 2 — ^A2. So 
by = 1 -F |A2, i.e.,

y = I +

Plugging this into the right side of (st) gives 0 = I -F |A2 - 2 -F 5A2 <=> | = 2 - | =
(f+ 5)A2 = ^A2 = fA2o

= 29*

This is consistent with (df). Thus

= 2 — 2^2 = 2 — 29 = 29

and also
7/ _ 1 I J_ \ _ I i 1 _ 30 _ _6_ 
y ~ 5 ' 10^2“ 5 ' 5-29 — 5-29 — 29*

Finally, (pf) does not hold because x -F y - 1 = ^(57 -F 6 — 29) = || > 0. □

Proposition 17.11 When Ai > 0 and A2 = 0, then the KKT conditions have a unique solution, 
namely, (x,y) = (1,0).

Proof. Suppose that Ai > 0 and A2 = 0. Again, (pf) stays unchanged, while (df) trivially holds. 
Next, (st) turns into

0 = 2x — 4 -F Ai and 0 = Sy — 2 -F Ai, (st)

while (cs) yields

x -F y — 1 = 0. (cs)
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Solving (cs) for x and the left side of (st) for x gives — y+1 = x = 2—|Ai. Hence y = —l+|Ai. 
Plugging this into the right side of (st) yields 0 = —8 + 4Ai — 2 + Ai = —10 + 5Ai and so

A1 = ^ = 2.

This is consistent with (df)! Also, it yields y = — 1 + |Ai = 0 and x = — y + 1 = 1, i.e.,

(x,y) = (1,0).

Thankfully, (pf) holds! □
Corollary 17.12 The unique solution of(P) is (x, y) = (1,0), and the optimal value is p = —3.

Proof. The above and Corollary 16.3 show that (rr, y) = (1,0) is the unique solution of (P). The 
optimal value is p = /(l, 0) = l2 - 4(1) + 4(0)2 - 2(0) = -3. □

Remark 17.13 (WolframAlpha) We can do this computation with WolframAlpha as follows:

WolframAlpha intelligence.

minimize xA2-4x+4yA2-2y subject to x+y-1 <=0 and x+5y-3<=0 □

domain -1+x+y <0A-3+x+5y <0

* NATURAL LANGUAGE MATH INPUT g EXTENDED KEYBOARD jj; EXAMPLES ♦ UPLOAD X RANDOM

Input interpretation

hmcrinn x2-4x + 4y2-2y 
minimize

Global minimum

minjx2 -4x + 4y2-2y|x + y- l<0Ax + 5y-3<0) = -3at(x, y) = (l,0)

Remark 17.14 (Julia) Here is a numerical optimizer in Julia:

In [1]: using JuMP; using Ipopt;

In [2]: m = Model(optimizer_with_attributes(Ipopt.Optimizer,"print_leveV' => 0));
@variable(m,x);
@variable(m,y);
@NLobjective(m,Min,xA2-4*x+4*y*2-2*y);
@constraint(m,x+y-l<=0);
@constraint(m,x+5*y-3<=0);

In [31: optimize!(m);
optimalvalue = objective_value(m); 
minimizer value.([x,y]);

Out[3]:

This program contains Ipopt, a library for large-scale nonlinear optimization. 
Ipopt is released as open source code under the Eclipse Public License (EPL). 

For more information visit https://github.com/coin-or/Ipopt

In [4]: printlnC'The minimizer is: ",minimizer); 
printlnfThe optimal value is: ",optimalvalue);

0ut[4]: The minimizer is: [1.0000000074994715, 1.2476711517184339e-9]
The optimal value is: -3.000000017494285

https://github.com/coin-or/Ipopt
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Exercises
Exercise 17.1 For the problem considered in this chapter, find a point that is feasible, though 
not a Slater point, as well as a point that is not feasible.

Exercise 17.2 Do the steps of the analysis in this chapter when f(x,y) = x2 — 14x+y2 — 6y — 7, 
gi(x,y) = x + y-2, and £2(z,?/) = x + 2y - 3:

(i) Show that f is convex and compute V/.

(ii) Show that g± and g2 are convex, and compute their gradients.

(iii) Provide a Slater point for (F).

(iv) Write down and simplify the KKT conditions for (F).

(v) Discuss the KKT conditions when Ai = 0 and A2 = 0.

(vi) Discuss the KKT conditions when Ai > 0 and A2 = 0.

(vii) Discuss the KKT conditions when Ai = 0 and A2 > 0.

(viii) Discuss the KKT conditions when Ai > 0 and A2 > 0.

(ix) Provide the minimizers and the optimal value for (F).

(x) Solve (F) using two different solvers.





Chapter 18

Fenchel Conjugates

18.1 > Definition and Examples
Definition 18.1 Let f: X [—oo, +oo]. Then

f* : X -> [-oo, +oo] : y H- sup ( (x, y) - /(a;)) 
xex

is the Fenchel conjugate of f. The Fenchel biconjugate is /**  := (/*)*.

Proposition 18.2 Let f: X [—oo, H-oo]. Then f*  is convex and lower semicontinuous.

Proof. Indeed, /*  is the supremum of the family ((a;, •) — /(a?))xex, whose members are all 
affine and continuous. The result thus follows from Corollary 4.8(iii). □

Example 18 .3 Let C be a subset of X. Then

bc = °c

because rc(y) = supxeX((x,y} - = supxgC (x,y) = ac(y)-

Example 18 .4 Let a > 0. Then

(al • |) =
because

(ct| • I)* (2/) = sup (xy ~ ^1^1) = max{ SUP ~ «)),sup (x(y + «))} 
zER x$C0

= max {^] —oo,ok] (?/), ^[—a,+oo} (Z/) } = ^[—ok, ok] •

Example 18 .5 Set K := R™. By Examples 18.3 and 7.10, b K = &k = t-tw and 
thus,

*

* _
— ^R2 •

Example 18.6 Suppose that f(x) = (x, a) + (3, where a e X and (3 e R. Then

r (y) = sup ((x, y) - (x, a) - P) = ~/3 + sup {x,y - a) = t{a} (y) - fi.
xEX xEX
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Example 18.7 Suppose that g(x) = b{a}(x) — ft, where a e X and /? G R. Then

g*  (y) = sup ((x, y) - t{a} (x) + (3) = (a, y) + /3.
xEX

Combining Example 18.6 with Example 18.7, we see that /**  = f and g**  = g; indeed, this 
is not a coincidence (peek at Theorem 19.2 if you are curious).

Remark 18.8 We saw earlier (see Example 4.10) that the Asplund function Ac(y) = j ||p||2 — 
dc(y) is convex for any nonempty subset C of X. An inspection of the proof reveals that we 
actually proved

Ac = (||| • ||2 + bC)* •

Remark 18.9 (calculus approach) Suppose f is convex and differentiable, and our job is to 
determine /*.  Let y e X and observe that

f*(y)  = - inf (/(x) - {x,y}) (18.1)
xEX

is the negative minimum value of an optimization problem featuring the sum of two differentiable 
convex functions, one of which even has full domain. We tackle this minimization problem via 
Fermat’s rule (Lemma 9.2) and the sum rule: x is a minimizer in (18.1) 0 = X f(x) — y O
Xf(x) = y. Now suppose that y e ran V f and X f is so nice that we can invert: we obtain the 
minimizer x = xy such that

V/(^) = y.

Then we can substitute this minimizer xy back into the definition of /*  to determine

= (xy,y) - f(xy). (18.2)

In particular, if we start with any x such that Xf(x) exists, then we can do this with y = X f(x) 
and obtain xy = x. Put differently,

/*(V/(x))  = {x, Xf(x)) - f(x) when Xf(x) exists. (18.3)

For this reason, the Fenchel conjugate is sometimes known as the Legendre transform.

Let us see the calculus approach in action:

Example 18.10 Suppose that f = ||| • ||2. Then f*  = f.

Proof. We have Xf = Id, so the equation Xf(x) = y turns into x = y. Hence /*(p)  = 
(y,y> - IIM2 = IIMI2 = f(y). □

Example 18.11 Letp > 1 and set q := p/(p — 1) and hence ± | = 1. Let fp(x) := f(x) :=
i|ar|p. Then f*(y)  = i|y|« and so f*  = fq.

Proof. Note that f is differentiable with f'(x) = sign(x)|z|p_ 1. Let y e R. Luckily, we can 
invert ff(x) = y and find

x = sign(y)|y|1/(p-1).

It follows that

f*(y)  = sign(y)|y|1/(p-1)y - ||sign(y)|y|1/(p-1)|p

= Ij/p+VfP-D _ X^ip/Cp-D = (i _ 1) |y|P/(P-D

= M

as announced. □
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Example 18.12 We have

exp*(?/)  = 0
if V < 0;
if V = 0;

— y if y > 0.

Proof. Since exp' = exp, it is possible to invert exp (a;) = y whenever y > 0 and in which 
case x = ln(?/) and so exp*(?/)  = ln(?/)?/ — exp(ln(?/)) = ?/ln(?/) — y. When y 0, we work 
directly with the definition of the Fenchel conjugate: exp*(0)  = supxeR(rr • 0 — exp(z)) = 
— infxE>exp(x) = —0 = 0. Finally, suppose that y < 0. Then f*(y)  lim^-o^T?/ — 
exp(a;)) = +oo. □

Example 18.13 If f(x) := <
I — ln(x)

if r < (T
’ then f*(y)  =-1 + /(-</). 

if x > 0

Example 18.14 If f(x) :=
if x < 0;
if x 0

then/*(y)  =
-1

< y
+oo

if y < 0;

if y > o.

18.2 ■ Properness of /*  and Fenchel-Young Inequality
Theorem 18.15 Let f'-X ]— oo,+oo] be convex and proper. Then f*  is convex, lower
semicontinuous, and proper; in fact, ran <9/ C dom/*.

Proof. We know already (see Proposition 18.2) that /*  is convex and lower semicontinuous. 
Because f is convex and proper, we have dom df 0 (see Fact 9.12), say z e dom df C 
dom f and then take w e df(z). Then

(Vrr e X) f(z) + (x — z,w) /(rr). (18.4)

Then (\/y e X) f*(y)  (z, y) — f(z) > —oo. Finally, recalling (18.4), we get {x, w) — f(x)
(z,w) — f(z) and so /* (w) (z, w) — /(z) < +oo. □

Remark 18.16 With more work one may show that rmdf = dom/*  (see, e.g., [3, Theo­
rem 16.58]). More precisely, /*  is the lower semicontinuous hull/extension of /*| randf •

Theorem 18.17 (Fenchel-Young inequality) Let f: X ]-oo,+oo] be proper. Then for all 
x,y in X, we have

/(rr) + r(7/)^(x,7/). (18.5)

Proof. Because f is proper, f +oo and so f*  > — oo. Clearly, f*(y)  (x,y) — f(x) and
now the result follows. □

Remark 18.18 (Cauchy-Schwarz revisited) Suppose that f = ||| • ||2. By Example 18.10, 
/*  = f. Hence Fenchel-Young (Theorem 18.17) yields

+ (18-6)

which is also equivalent to |||a; — t/||2 > 0. Now suppose that u,v are nonzero vectors in X 
and that x = u/||u|| and y = v/IMI- Then ||a;|| = \\y\\ = 1 and (18.6) yields 1 > (x,y) = 
<7z/||zz||,v/||v||) and we recover Cauchy-Schwarz.

Similarly, one may recover the Holder inequality (which in turn gives rise to Minkowski’s 
inequality) from Example 18.11.
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Exercises
Exercise 18.1 Compute /*  when f(x) = -|#|.

Exercise 18.2 Compute /*  when f is not proper.

Exercise 18.3 Compute i} and a*_ 1

Exercise 18.4 Provide the details for Example 18.13.

Exercise 18.5 Provide the details for Example 18.14.

Exercise 18.6 Let f(x) := q|||x||2, where a > 0. Show that f*(y)  = ||t/||2.

Exercise 18.7 (hinge loss) Let f(x) := max{l — x, 0} be the hinge loss function. Show that 
/*(y)  = y + t[-i,o](y)-

Exercise 18.8 Let A >- 0 and set f(x) := | (x, Ax). Show that f*(y)  = | (y, A-1(y)).

Exercise 18.9 Suppose that f = || • || is any norm on X. Show that f*  = cc, where C is the 
unit ball of the dual norm.

Exercise 18.10 (Holder’s inequality) Suppose that 1 < p, q < +oo such that j + | = 1. Let 
x, y be in Rn. Show that (x, y) ||#||p||p||g by following the steps in Remark 18.18.

Exercise 18.11 (log-sum-exp) For x e Rn, set f(x) := ln(22Xi exp(^)). Show that f*(y)  = 
22^=1 yi when y e + and y e Pn. In fact, more work with Remark 18.16 shows that

22™= i yi ln(pj if y is in the probability simplex Pn;
+oo otherwise, 

where as usual 0 ln(0) = 0.

/*(y)  =



Chapter 19

Biconjugates and 
Fenchel Calculus

19.1 > The Biconjugate Theorem
Lemma 19.1 Let f: X ]—oo, +oo] be proper. Then f** f.

Proof. By Fenchel-Young (Theorem 18.17), we have f(x) (x,y) — f*(y)-  Hence f(x) 
- /*(?/))  = 1=1

Theorem 19.2 (Biconjugate Theorem) Let f: X —> ]—oo, +oo] be proper. Then
f**  _ f j -s convex anc[ iOwer semicontinuous.

Proof. This is clear from Proposition 18.2. “^=”: Assume that f is convex and lower 
semicontinuous. Then epi(/) is convex, closed, and nonempty by Theorem 3.18. Applying 
Theorem 18.15 twice, we see that /*  is proper and then so is f**.  We show the desired conclusion 
by contradiction. In view of Lemma 19.1, we thus assume that there exists w e X such that 
f**(w)  < f(w). Then /(w) f**(w)  and so (w,/**(w))  epi(/). Applying the separation
theorem (Corollary 8.14), we obtain a e X, (3 e R, 71 e R, and 72 e R such that

(V(x,r) e epi/) {x, a) + (3r 71 < 72 < (w,a) + (3f**(w).

Rearranging gives

(V(a;,r) e epi/) (x — w,a) + (3(r — f**(w))  71 — 72 =: 7 < 0. (19.1)

If (3 > 0, then letting r +00 in (19.1) gives a contradiction. Thus, (3 0. We discuss two
cases.

Case 1: (3 = - \(3\ < 0. Dividing (19.1) by \(3\ = -(3 > 0 and using r = f(x) gives

(Vrr e X) (x,a/\/3\) - /(z) - (w,«/|/3|) + /**(w)  7/1/31 < 0.

Taking now the supremum over x e X results in /* (a/\/3\) + f**(w)  — (w, a/|/3|) < 0, which 
contradicts the Fenchel-Young inequality!

Case 2: (3 = 0. Let y e dom /*.  Let e > 0, set a£ := a + ey, and let z e dom /. Then, for 
e sufficiently small and using (19.1) with (x, r) = (2, /(z)) as well as the definition of f*(y)  in 
the inequality below, we obtain

(z - w,as} - e(f(z) -

= {z-w,a)+e( {z, y) - (w, y) - f(z) + /**  (w))

7 + e(/*(y)  - (w, y) + /**(w))  =: 7e < 0.
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Dividing by e > 0 gives

(z,a£/e) - f(z) - (w,a£/e) + /**(w)  < y£/e < 0.

Now taking the supremum over z G dom / yields

/*(a £/e) + f’M - (w,ae/e) < 0.

Once again, this contradicts the Fenchel-Young inequality. □

Example 19.3 Let C be a nonempty subset of X. We saw earlier that /f: = ac (Example 18.3) 
and also that &c = &c = ^convC = crconvC (Proposition 7.7). By Example 3.20, LconvC is 
convex, lower semicontinuous, and proper. Hence Theorem 19.2 yields

.___ _ ,** __ * _ * _  .**
^conv C ^conv C ^conv C &C '

We can further specialize this to the following:

Example 19.4 Set f(x) := max{xi,... ,xn} on Rn. Then f = (T{ei,...,en}, where e*  denotes 
the zth standard unit vector. Then f*  = a^ei e^| = tconv {ei,...,en} is the indicator function of 
the probability simplex Pn, and its conjugate is again f.

Theorem 19.5 Let f:X—> ]—oo,+oo] be convex and proper. Let x,y be in X. Then the 
following are equivalent:

(i) f(x) + f(y)  = (x,y).*

(ii) y e df(x).

Iff is also lower semicontinuous, then we can add another item to this list:

(iii) x e df(y).*

Proof. Indeed, using Fermat’s rule (Lemma 9.2) and the sum rule (Fact 13.7), we get

(i) <=>/(y)  = {x,y} - f(x)*

< => sup ({z, y} - /(z)) = {x, y) - f(x) 
zEX

< => x maximizes z (z, y) — f(z)
< => x minimizes z (z, —y) + f(z)

< => 0 e —y + df(x)

(ii) .

Now assume that f is also lower semicontinuous. Then the Biconjugate Theorem (Theorem 19.2) 
yields /**  = f. Now applying the just-proved equivalence to /*  instead of f (with x and y 
interchanged) yields (i) <=> /*(?/)  + (/*)*(#)  = (y, x) <=> x e df*(y)  <=> (iii). □

Corollary 19.6 Let f: X ]— oo, +oo] be convex, lower semicontinuous, and proper. Then



19.2. Basic Conjugate Calculus 91

19.2 - Basic Conjugate Calculus
Proposition 19.7 Let /i,..., fm be proper functions on Euclidean spaces X±,..., Xm, respec­
tively. Define the separable sum

f: Xi x • • • x Xm -> ]-oo,+oo] : (xi,... ,xm) >-» Ji(xi) H----- 1- fm(xm).

Then

/*:  Xi x •• • x Xm ]-oo,+oo] : (3/1,. .. ,ym) A*  Q/i) H----- H
Proposition 19.8 Let f: X ]— oo, +oo] be proper, let b e X, and let 7 e R. Set g(x) :=
f(x) + {x, b) + 7. Then g*(y)  = f*(y-b)-  y.

Example 19.9 Suppose that g(x) = ar™ (x) + (x, c), where c e X. Then g*(y)  = ar™ (y ~ c) 
by Example 18.5 and Proposition 19.8.

Proposition 19.10 Let f: X ]—00, +00] be proper, and let A : X X be linear and bijec­
tive. Then (/ o Ay = f*  o A~*,  where A~*  := (A-1)*  = (A*) -1.

Proof. Indeed,

(/ o A)*  (y) = sup ((x, y) - f(Ax)) = sup ( (A-1 Ax, y) - f(Ax))
xEX xEX

= sup ((Ax, A~*y)  - f(Ax)) = sup ((z, A~*y)  - f(z)) 
xex zex

= F(A~*y),

as claimed. □

Proposition 19.11 Let f: X ]— 00, +00] be proper, and let a > 0. Then (af)*  = «/*(•/«)  
and = af*.

Exercises
Exercise 19.1 Provide a function f that is convex and lower semicontinuous such that /**  y f.

Exercise 19.2 (negative entropy) Consider the function

+00 if x < 0;
g(x) := < 0 if x = 0;

x ln(&) — x if x > 0.

Determine g* . (This is easy if you recall Theorem 19.2 and Example 18.12!)

Exercise 19.3 Provide an example of a proper convex function f such that x e df*  (y) but 
y df(x) — thus illustrating the importance of lower semicontinuity in Theorem 19.5.

Exercise 19.4 Provide the details of the proof for Proposition 19.7.

Exercise 19.5 Provide the details of the proof for Proposition 19.8.

Exercise 19.6 Provide the details of the proof for Proposition 19.11.

Exercise 19.7 Let A e Rnxn be positive definite, let b e Rn, and let 7 e R. Set g(x) := 
| (x, Ax) + (x, b) + 7. Determine g*.

Exercise 19.8 (energy is the only self-conjugate function) Show that f = f*  if and only if 
/ = lll-ll2-





Chapter 20

Fenchel-Rockafellar Duality

In this chapter, we assume the following:
Y is a Euclidean space; A: X Y is linear; f is convex, lower semicontinuous, and proper 

on X; and g is convex, lower semicontinuous, and proper on Y.

20.1 > Primal and Dual Problems, and Weak Duality
Consider the triple (/, A, g). The associated primal problem asks to

minimize /(#) + g(Ax) 
xEX

(20.1)

and the associated optimal primal value is

:= +g(Ax\)- (20.2)

A point x G X is a primal solution if f(x) + g(Ax) = p. 
Rockafellar) dual problem asks to

The associated (Fenchel-

minimize /*( —A*y)  + g*(y),  
y£Y

(20.3)

while the associated optimal dual value is

:= mf (r(-A*y)+ 5*(y)). (20.4)

A point y G Y is a dual solution if /*( —A*y)  + g*(y)  = p*.
We note that the dual problem is the same as the primal problem for the triple (<j* , — A* , /*),  

thus we define the dual triple by (/, A, g)*  := (#*,  —A*,  /*).  Note that if f and g are convex, 
lower semicontinuous, and proper, then the Biconjugate Theorem (Theorem 19.2) and Proposi­
tion 19.10 yield/**  = / and#**  = g. Because—(—A*)*  = A, we have (/, A,p)**  = (/, A,#), 
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i.e., the dual of the dual problem is the primal problem! If X = Y and A = Id, then one obtains 
Fenchel Duality. The primal and dual problems are always related by the following result:

Proposition 20.1 (weak duality) For allx e X and y eY, we have

f(x)+g(Ax) >p>-p*>  -f*(- A*y)-g*(y).  (20.5)

Proof Let (x, y)eXxY. The left and right inequalities in (20.5) are clear. Next, by Fenchel- 
Young, f(x) + f*(-A*y)  (x,-A*y)  = - (x,A*y)  and g(Ax) + g*(y)  (Ax,y). Adding
and recalling that (Ax,y) = (x, A*y)  yields f(x) + /*( —A*y)  + g(Ax) + g*(y)  0. Now
rearrange to learn that

/(ar) + g(Ax) > -f(-A*y)  - g*(y).

Taking the infimum and supremum now yields

M = inf (f(x) + 9(.Ax)) sup ( - f*(-A*y)  - g*(y))  
yEY

= — inf (/*( —>!*?/)  +<7*  (y)) =—/z*  
yeY

and we are done! □

Definition 20.2 (duality gap) Consider Proposition 20.1. If p = —p*  e [—oo,+oo], then we 
say there is no duality gap; if p > — p*,  then we have a positive duality gap p + p*.

Example 20.3 (linear programming revisited) Suppose that X = Rn, Y = Rm, A e Rmxn, 
c e Rn, and b e Rm. Set K := R™ and suppose that f(x) = (x, c) + lk(x) and g(y) = L{by (y). 
Then the primal problem turns into

minimize {x, c) subject to x 0 and Ax = b. (20.6)

We have f*(x)  = l-k(x — c) = lk(c — x) (see Example 19.9) and g*(y)  = (y,b) (see 
Example 18.7). The dual problem thus is

minimize {y, b) subject to c + A*y  0. (20.7)

Then weak duality (Proposition 20.1) turns this into

inf {(#, c) | x 0, Ax = b] = p

> ~H*  = -inf {{y,b} | c + A*y  0}

= sup{(—y, 6) | A*( —y) c},

which is—up to a minus sign in the variable y—the well-known weak duality from linear pro­
gramming!

20.2 > Fenchel-Rockafellar Duality
The simultaneous existence of primal/dual solutions can be very nicely characterized:

Theorem 20.4 Let x e dom f and y e dom g. Then the following are equivalent:

(i) x is a primal solution, y is a dual solution, and p = — p.*

(ii) /(x) + g(Ax) = -f(-Ay)  - g(y).** *

(iii) —Ay  e df(x) and Ax e dg(y).* *

(iv) x e Of  (—Ay)  andy e dg(Ax).* *

(v) x e (3/)-1(—Ay)  andy e dg(Ax).*
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Proof. “(i)=>(ii)”: Suppose that (i) holds. Then f(x) + g{Ax) = y = — y*  = —f*( —A*y)  —

“(i)<=(ii)”: Suppose that (ii) holds. Then the chain of inequalities in (20.5) turns into one 
of equalities and we deduce that f(x) + g(Ax) = p, i.e., t is a primal solution; p = —//*;  
—/i*  = — /*( —A*y)  — g*(y},  i.e., y is a dual solution.

“(ii)=>(iii)”: Suppose that (ii) holds. Then this and the Fenchel-Young inequality applied 
twice give

o = (/(x) +f*(-A*y))  + (g*(y)  + g(Ax)) > {x,-A*y}  + (y,Ax) = 0.

We have equality throughout and therefore/(#)+/*( —A*y)  = (x, —A*y)  and g*(y)+g(Ax)  = 
(y, Ax}. Now Theorem 19.5 gives —A*y  e df(x) and Ax e dg*(y).

“(ii)<=(iii)”: Suppose that (iii) holds. By Theorem 19.5, f(x) + /*( —A*y)  = (x, —A*y}  
and g*(y)  + g(Ax) = (?/, Ax}. The conclusion follows because {x, A*y}  = (y, Ax}.

“(iii)<=>(iv)<=>(v)”: This follows from Corollary 19.6. □

Corollary 20.5 (primal solutions via one dual solution) Suppose that the dual problem has a 
solution, say y, and that p = — p*.  Then the (possibly empty)

set of all primal solutions — df*( —A*y)  nA1 (dg*  (?/)).

Example 20.6 Assume that f(x) = exp(rr) = g(x). Then p = 0 and the primal has no solution. 
The dual problem asks to minimize f*( —y} + f*(y}-  This problem has a unique dual solution: 
y = 0. We have p*  = 0 as well. Hence Corollary 20.5 yields that the set of primal solutions is 
empty, which we already observed directly. The duality gap p + p*  is equal to 0.

Corollary 20.5 illustrates the need to derive conditions sufficient to guarantee lack of a duality 
gap and the existence of dual solutions. The next result provides these.

Fact 20.7 [3, Section 5.3] Suppose that one of the following holds:

(i) (ridomg) Pl A(ridom/) / 0.

(ii) (int dom g) A A(dom f) / 0.
(iii) g is polyhedral and (dom g) A ri A(dom /) / 0.
(iv) f and g are polyhedral and (domg) A A(dom /) / 0.

Then the Fenchel-Rockafellar dual problem has solutions and p = — p*.

Example 20.8 (decomposition with respect to a cone) Let z e X, and let K be a nonempty 
closed convex cone in X. Consider the problem (P), which asks to

minimize | || a? — z||2 subject to x e K.

We model this as a Fenchel primal problem with f = |1| • — z||2 and g = lK- Then the primal 
optimal value is p = ^d2K(z) and we know from the Projection Theorem that the unique primal 
solution is x = Pk(^)- Using Exercise 18.8, Example 18.3, and (7.2), we compute g*  = =
cKe and/*(?;)  = (y, z) + |||y||2 = |||£+ y||2 - |||z||2 with V/*(y)  = y + z. Thus f*(-y)  = 
III?/ — z||2 — |IHI2 and V/*( —y) = z — y. The Fenchel dual problem asks to minimize 

+ y*(y),i.e.,to

minimize |||y — z||2 — | ||z||2 subject to y G Ke.
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We find that the unique dual solution is y = P/<e (z) and that the dual optimal value is p*  = 
\d2KQ(z) — |||z||2. By Fact 20.7(i), p = —/i*.  It now follows from Corollary 20.5 that x = 
Xf*( —y) = z — y, i.e., z = x + y and we recover the Moreau decomposition

z = Pk{z) + PKe(z).

Moreover, our knowledge that p = — p*  turns into p + p*  = 0 <=> 0 = d2K(z) + d2KQ (z) —1V1U1CUVC1, UU1 AJlUWlCUgC llldl p — p LUlllo 1111AJ p [ p — U W U — J [ J

IK = ||z - PkWII2 + ||*  - PtfeWII2 - ll^ll2 = ||PKe(*)|| 2 + ||P/c(z)||2 - ||Pk(z) + 
pKe(z)||2 = —2 (PK(z),PKe(zy) and so

PK(z) ±PKe(z).

Exercises
Exercise 20.1 Provide details for Example 20.6.

Exercise 20.2 Find two functions /, g which are convex, lower semicontinuous, and proper on 
R such that the Fenchel primal problem has a unique solution, the Fenchel dual problem has no 
solution, and the duality gap is 0.

Exercise 20.3 Consider the closed convex cone

C := {(^1,^2,^3) E R3 | Xi - Jxl + x% 373}.

Show that Lq = ld, where D is the closed convex cone

D ■= {(yi, 3/2,3/3) G R3 I yi + 2yiy3 + yl 0 A y3 0}.

(Hence D = Ce.)

Exercise 20.4 (finite positive duality gap) Suppose that X = R3, f = be, where C is as in
Exercise 20.3, and g(x) = exp(z2) + ^{o}(^a)- Set up the Fenchel dual, find p and p*,  and 
enjoy checking the fact that the duality gap p + /i*  is equal to 1.

Exercise 20.5 (infinite duality gap) Suppose that X = R, set f(x) = — x + ar+, g = , and
A = 0. Compute p and p*  in this case.



Chapter 21

Infimal Convolution and
Conjugacy

Recall that the infimal convolution (Definition 6.8) of two proper functions /, g on X is given by 

(/ □ 9}(?/) = inf (/(x) + g(y - x)).

21.1 > Fenchel Conjugate of the Infimal Convolution
Proposition 21.1 Let f, g be proper on X. Then

(fugy=r+g*.

Proof. Let y e X. We obtain (using the change of variable z = x — u in the penultimate equality)

(/□g)*(y)  = sup ({x,y} - 
xex

= sup ((x, y) - inf (f(u) + g(x - u))) 
x€X

= sup sup ({x, y) - f(u) - g(x - u)) 
xex uex

= sup sup ({u, y) - f(u) + (x-u,y) - g(x - u)) 
u^X xEX

= sup ((u, y} - f(u)) + sup ((z, y) - g(z)) 
uEX zEX

= f*(y)  + g*(y),  

as announced. □

Corollary 21.2 Let f, g be convex and proper on X, and assume that f\Jg is lower semicontin- 
uous and proper. Then f\Jg = (/*  + g*)*.

Proof. By Proposition 21.1, we have f*+g*  = (/□#)*.  Taking the conjugate again gives 
(/*  + #*)*  = (/ □ <?)**.  But f Dg is convex (Proposition 6.9), lower semicontinuous, and proper 
(by assumption); hence, f □ g = (/□#)**  by the Biconjugate Theorem (Theorem 19.2). □
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98 Chapter 21. Intimal Convolution and Conjugacy

21.2 ■ Fenchel Conjugate of the Sum
The following result is “dual” to Proposition 21.1:

Fact 21.3 [3, Proposition 15.5 and Theorem 15.3] Let f,g be convex, lower semicontinuous, 
and proper on X. Assume that (ri dom /) D (ri dom g) / 0. Then

(f + g)*  = f*ug*

and the infimum in the definition of the infimal convolution is attained, i.e., a minimum.

Remark 21.4 (Fenchel vs. Fourier) In harmonic analysis, the Fourier transform of a function, 

f(y)= [ /(z)exp(-27riy)dar, 
Jr

is of central importance. The Fenchel conjugate is the Fourier transform of convex analysis. The
Biconjugate Theorem discusses when /**  = /, while in harmonic analysis we have f(x) = 

The counterpart to the infimal convolution is the classical convolution

(/*5)(y)=  [ f(x)g(y-x)dx.
Jr

The classical convolution is important because f ★ g = f • g and f • g = f ★ g; these results have 
counterparts in (/□#)*  = /*+#*  and (/ + g)*  = f*  IJg*.

Exercises
Exercise 21.1 Let C and D be subsets of X. Show that lc □ ld = £c+£>-

Exercise 21.2 Let f be a proper function on X, and let b e X. Simplify f □ L{by.

Exercise 21.3 Compute f □ g when f(x) = x and g(x) = —x, where x e R.

Exercise 21.4 Let /, g be functions from X to ] — oo, +oo]. Show that epi /+epi g C epi(/ □ g).

Exercise 21.5 Let /, g be functions from X to ] — oo, +oo]. Assume that the infimal convolution 
is everywhere exact, i.e., if y e X, then there exists x e X such that (f\Jg)(y) = f(x) + 
g(y — x). Show that epi f + epi g = epi(/ □ g). (For this reason, the infimal convolution is also 
referred to as the episum.)

Exercise 21.6 Suppose that X = R2 and consider the proper lower semicontinuous function 
f(x) = —^1^2 with dom f = R^_. Show that

if yi < 0;

otherwise.

Exercise 21.7 (Attouch-Brezis) Suppose that X = R2 and consider the two proper lower semi­
continuous convex functions f(x) = —y/xfx^ with dom / = R^_ and g = q0}XR. Show that 
(/ + <?)*  = ^RxR_ /= iRxR__= /*  □</*.



Chapter 22

Nonexpansive Mappings

A mapping T from a subset D of X to Y is Lipschitz continuous with constant L 0, or simply 
L-Lipschitz, if ||T(x) — T(y) ||y L\\x — y\\x for all x, y in D, where || • ||x denotes a norm on 
X and || • ||y denotes a norm on Y and L 0. We will often write Tx instead of T(x), etc. If 
L = 1, we say that T is nonexpansive, while if L < 1, we say that T is a (Banach) contraction. 
If Y = R, we use || • ||y = | • |. If we don’t single the norm out, the Euclidean norm is used.

In this chapter, we focus on nonexpansive mappings, while the next one will consider Lip­
schitz operators.

22.1 > Firmly Nonexpansive Mappings
Definition 22.1 Let D be a subset of X, and let T: D X. Then T is firmly nonexpansive if 

(Vx G r>)(Vy G D) ||Tx - Ty||2 + ||(Id - T)x - (Id - T)y||2 ||x - y||2.
It is clear that every firmly nonexpansive map is also nonexpansive. The converse fails, 

however:

Example 22.2 Clearly, Id is firmly nonexpansive. However, —Id is nonexpansive but not firmly 
nonexpansive: Indeed, \\Tx — Ty\\2 + ||(Id — T)x — (Id — T)?/||2 = 5||xr — ?/||2 > ||rc — t/||2 
whenever x y.

Theorem 22.3 Let T: D X. Then the following are equivalent:

(i) T is firmly nonexpansive.

(ii) Id — T is firmly nonexpansive.

(iii) fix e D)fiy e D) \\Tx - Ty\\2 ^{x-y.Tx- Ty).

(iv) 2T — Id is nonexpansive.

Proof. Life is easier if we write a := x — y and b :=Tx — Ty.
“(i)^(ii)”: Clear since Id - (Id - T) = T.
“(i)^(iii)”: Note that

HI2 - (IK + ll« - 6||2) = 2( {a,b} - ||<), 

which implies (i) o ||6||2 + ||a - 6||2 ||a||2 o 0 ||a||2 - (||6||2 + ||a - 6||2) o 0
2({a,b) - ||6||2) o |K (a,b) o (iii).
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100 Chapter 22. Nonexpansive Mappings

“(iii)o(iv)”: Note that

||a||2 - ||26-a||2 = 4(<a,6> - ||6||2), 

which implies (iv) <=> ||2b — a|| ||a|| <=> 0 ||a||2 — ||26 — a||2 <=> 0 4((a, b) — ||6||2) <=>
||6||2 < (a,b) O (iii). □

Example 22.4 Let C be a nonempty closed convex subset of X. Then both Pc and Id — Pc are 
firmly nonexpansive (and hence nonexpansive). Moreover, 2Pc — Id is nonexpansive.

Proof. Combine Theorem 22.3 with Corollary 8.5. □

Proposition 22.5 Let g: R R be a differentiable function. Then the following hold:

(i) g is nonexpansive (f/x e R) |p'(a;)| 1.

(ii) g is firmly nonexpansive (f/x G R) 0 1-

Proposition 22.6 Let A : X X be linear. Then the following hold:

(i) A is nonexpansive Id — A*  A is positive semidefinite.

(ii) A is firmly nonexpansive A + A*  — 2 A*  A is positive semidefinite.

It is clear that the composition of nonexpansive mappings is nonexpansive; however, this nice 
property fails for firmly nonexpansive mappings:

Example 22.7 Consider

A T1 D if11'A ■ |o o] and B ■ 2 [1 1 ■

Then both A and B are firmly nonexpansive but BA is not.

On the positive side, we have the following:

Proposition 22.8 Let and T2 be firmly nonexpansive on X, and let x^y be in X. Then

|||(Id - T2TY)x - (Id - T2Ti)y||2 ||x - y||2 - ||T2Tiz - T2Tiy||2.

Proof. Set a := x — y, b := T±x — T±y, and c := TfTxX — TfL^y. Using the definition twice, 
we have

||T2Tia; - T2Tiy||2 \\T\x - Tiy\\2 - ||(Id - T2)T1X - (Id - T2)Tiy||2

||a; — y||2 - IKM-TJx- (Id —Ti)y||2

- || (Id - T2)T1X - (Id -T2)Tiy||2;

equivalently, in terms of a, 6, c: ||c||2 ||a||2 — ||a — 6||2 — \\b — c||2, i.e.,

||a — 6||2 + ||6 — c||2 ||a||2 — ||c||2.

On the other hand, 2||a — 6||2 + 21|6 — c||2 = ||a — c||2 + ||a + c — 26||2 > ||a — c||2 and thus

l\\a-c\\2^\\a-b\\2^\\b-c\\2.

Altogether,

|||a — c||2 ||a||2 — ||c||2,

which is precisely the desired conclusion. □
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Proposition 22.9 (fixed point set) Let T: X X be nonexpansive. Then the set of fixed points 
FixT := {xEX | a; = Ta;} Z5 closed and convex.

Proof The result is trivial if FixT is empty; thus, we assume that £0, belong to FixT and 
that A e [0,1]. Set x\ := (1 — A)z0 + A#i. Then, using (1.4) twice, we obtain

II^a-^aII2

= 11(1 - A)(x0 - Txx) + ACn - Txx)II2
= (1 - A)||a?o - Txx||2 + A||on - Txx||2 - (1 - A)A||a;o - zi||2

= (1 - A)||Tx0 - Txx||2 + A||Txi - Txx||2 - (1 - A)A||a;o - zi||2

(1 - A)||x0 - xx||2 + A||an - xx||2 - (1 - A)A||z0 - ®i||2

= ||(1 - A)(x0 - x\) + A(a?i - oja)||2
= 0,

which yields x\ = Tx\ and hence the convexity of Fix T. Closedness follows easily from the 
continuity of T. □

22.2 ■ Averaged Mappings
We saw in Example 22.7 that the class of firmly nonexpansive operators is not closed under com­
position. A useful larger class does have this property: averaged mappings, which we introduce 
next!

Definition 22.10 Let T: X -y X, and let a e ]0,1[. Then T is a-averaged if there exists 
N: X X such that N is nonexpansive and T = (1 — a) Id + aN.

Theorem 22.11 Let T: X X be nonexpansive, and let a e ]0,1[. Then T is a-averaged if 
and only if for all x,y, we have

||Ta; - Ty||2 ||x - y||2 - —1|(Id - T)x - (Id - T)y||2. (22.1)
a

Proof. Write T = (1 - a)Id + aN for N: X -> X. Then N = (1 - a'^Id + a^T. Write 
u = x — y and v = Tx — Ty. Using a(1.5), we obtain

a2(lk-y||2- ||AIx- Afy||2)
= a2(||o; - y||2 - ||(1 - a~x){x - y) + a~\Tx - Ty)\\2)

= a2(IM|2 - 11(1 - «-1)w + o^vII2)

= a(l|w||2 - ^11“ - vll2 - INI2)
= a(||x - y||2 - 1^||(Id - T)x - (Id - T)y||2 - ||Tx - Ty||2).

This identity shows that (22.1) N is nonexpansive and we are done. □

Remark 22.12 Note that an operator is |-averaged if and only if it is firmly nonexpansive.
If T is a-averaged and a < (3 < 1, then T is also /3-averaged. Loosely speaking, a is a 

measure of distance to the identity. Notice that the smaller the a, the better, as then the inequality 
(22.1) becomes tighter.

Corollary 22.13 Let Ti and T2 be firmly nonexpansive on X. Then T2Ty is ^-averaged.

Proof Combine Proposition 22.8 with Theorem 22.11. □
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Proposition 22.14 Let p: R R be a differentiable function, and let a e ]0,1[. Then g is 
a-averaged (V# E R) 1 — 2a g'(x) 1. Consequently, g is averaged — 1 < p := 
inf </(R) sup </(R) 1, in which case g is (1 — ff)/2-averaged.

Proposition 22.15 Let A : X X be linear, and let a E ]0,1[. Then A is a-averaged <=> 
(2a — l)Id — (A*  A — (1 — a) (A + >1*))  is positive semidefinite.

Remark 22.16 Let M E Rnxn. Assume that M is nonexpansive; equivalently, MTM Id. 
Then T is a-averaged if a E ]0,1[ and

0 (Id - M)T(Id - M) = Id + MtM - (M + MT) a(2Id - (M + MT)) (22.2)

by Proposition 22.15. Note that (22.2) holds with a = 1. To decide whether or not M is averaged 
and also find the best possible constant in the affirmative case, we set

A := (Id - M)T(Id - M) and B := 2Id - (M + MT).

The problem is to find the smallest possible 7 > 0 such that

A 7B.

To find the optimal 7, we can employ the procedure outlined in Proposition 1.1. If 7 = 1, then 
M is not averaged. If 7 < 1, then M is 7-averaged and the constant is the smallest possible. (If 
7 = 0, then M was the identity.)

Fact 22.17 [3, Proposition 4.46] Let Ti be a-averagedfor i E I := {1,..., m}. Then

T := TmTm_i ■■■Tl is ^-averaged with /3 := —-7 1-7~~.
1 + i-ai

22.3 > Sequential Results
Definition 22.18 (Fejer monotonicity) A sequence (xk)keN in X is Fejer-monotone with re­
spect to a nonempty subset C of X if

(Vc E C)(Vfc E N) ||a;fc+i - c|| < \\xk - c||.

Theorem 22.19 Let (xk)ke^ be Fejer-monotone with respect to a nonempty subset C of X. 
Then (xk)keN Is bounded; moreover, (xk)ke^ converges to some point in C (^fc)fceN has a 
cluster point in C.

Proof Note that ||z/c+i — c|| \\xk — c|| ||xr0 — c||, so limfceN \\xk — c|| exists
for every c E C and hence (xk)keN is bounded. We now prove the “moreover” part. The 
implication “=>” is clear. Now assume that c E C is some cluster point, say xnk c. Then 
limfceN \\xk ~ c|| = lim^N ||xnjb — c|| = 0, and hence the entire sequence (xk)keN converges to 
c as well. □

Corollary 22.20 Let T : X X be a-averaged with FixT / 0. Then (Tkxo)keN is Fejer- 
monotone with respect to FixT, and it converges to some point in FixT.

Proof Set (V& E N) xk = Tkx$. Let y E FixT. Then Ty = y and hence Theorem 22.11 yields

1—-||xfe - Xk+1 II2 < IliCfc - y||2 - ||xfc+i - y||2. 
a

Hence (xk)keN is Fejer-monotone with respect to Fix T and \\xk — xk+\ ||2 < +00. Thus,
Xk — Xk+i = xk— Txk 0. By Theorem 22.19, (xk)ke^ is bounded. Let x be a cluster point 
of (xk)keN> say xnk x. Then the continuity of T yields 0 <— xnk — Txnk x — Tx, i.e., 
x E FixT. By Theorem 22.19, the entire sequence (xk)keN converges to x E FixT. □
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Exercises
Exercise 22.1 Let T: X X, and let x and y be in D. Show that the following are equivalent:

(i) \\Tx - Ty\\2 + ||(Id - T)x - (Id - TM2 = \\x - y\\2.

(ii) \\Tx — Ty\\2 = {x — y,Tx — Ty).

(iii) (Tx - Ty, (Id - T)x - (Id - T)y} = 0.

(iv) (Va e R) \\Tx - Ty\\ ||a(z - y) + (1 - a)(Tx - Ty)\\.

(v) ||(2T - Id)z - (2T - Id)2/|| = ||z - y\\.

Exercise 22.2 Provide the details for Proposition 22.5.

Exercise 22.3 Provide the details for Proposition 22.6.

Exercise 22.4 Provide the details for Example 22.7.

Exercise 22.5 Suppose T: X X is firmly nonexpansive and ToT = T. Show that T = Pc, 
where C = ran T.

Exercise 22.6 Let , T2 be firmly nonexpansive on X, let Ai, A2 be in [0,1] such that Ai + A2 = 
1, and set T := AiTt + A2T2. Show that T is firmly nonexpansive.

Exercise 22.7 Provide the details for Remark 22.12.

Exercise 22.8 Provide the details for Proposition 22.14.

Exercise 22.9 Provide the details for Proposition 22.15.

Exercise 22.10 Show that g(x) := (2x arctan(z) — ln(z2 + 1))/tt is nonexpansive but not 
averaged.

Exercise 22.11 Show that g(x) := \Ar2 + 1 is nonexpansive but not averaged.

Exercise 22.12 Show that g(x) := 2 ln(l + ex) — x is nonexpansive but not averaged.

Exercise 22.13 Show that A : R2 R2: (x,y) i-> (—y,x) is nonexpansive but not averaged
by using Proposition 22.15.

Exercise 22.14 Show that M: R2 R2: (x, y) (—y, x) is nonexpansive but not averaged
by using the strategy outlined in Remark 22.16.

Exercise 22.15 Show that M: R2 R2: (x, y) | (x, x) is nonexpansive but not averaged 
by using the strategy outlined in Remark 22.16.

Exercise 22.16 Provide a sequence that is Fejer-monotone with respect to a nonempty subset C 
of X but that does not converge to a point in C.

Exercise 22.17 Provide a nonexpansive operator T with Fix T / 0 and a point xq e X such 
that (Tkxo)keN does not converge to a fixed point of T.





Chapter 23

Lipschitz Continuity and 
Smoothness

We recall from the last chapter the following: A mapping T from a subset D of X to Y is 
Lipschitz continuous with constant L 0, or simply L-Lipschitz, if ||T(rr) — T(?/)||y L\\x — 
y\\x for all x, y in D, where || • ||x denotes a norm on X and || • 11y denotes a norm on Y and 
L 0. We will often write Tx instead of T(x), etc. If L = 1, we say that T is nonexpansive, 
while if L < 1, we say that T is a (Banach) contraction. If Y = R, we use || • ||y = | • |, and if 
Y = X, we often use the Euclidean norm.

While we discussed nonexpansiveness in the last chapter, we now focus on Lipschitz proper­
ties.

23.1 > Lipschitz Functions
Theorem 23.1 Let f be convex and proper on X. Suppose that C is a nonempty subset of 
int dom f. Then the following hold:

(i) If L := sup ||d/(C')|| < +oo, then f is L-Lipschitz on C.

(ii) If C is open and f is L-Lipschitz on C for some constant L, then sup ||3/(C) || L.

Proof Note that C C dom df by Fact 9.12.
(i): Take x, y in C and u e df(x) and v e df(y). Then

/(^) - /(?/) (x - y,u} ||x - y||||u|| s? L||z - y||,
/(y) - /(*)  (y - X, v} ||y - x||||v|| S? Z/||a: - y||.

Hence |/(a;) - /(y)| = max{/(a:) - /(y), /(y) - f(x)} L\\x - y\\.
(ii): Let x e C and u*  e df(x). Pick u e X such that ||u|| 1 and (u, u*)  = \\u*  ||.

Because C is open, there exists 6 > 0 such that C C. Hence

f(x) + 6 (u, u*)  = f(x) + ((x + Su) — x, u*)  
f(x + 6u).

Thus 5||u*  || =5(tz,tz*)  f(x + Su) — f(x) L||(rr + (5u) — a?|| = L5||u|| LS, which implies 
MI^L. □

Corollary 23.2 Let f be convex and proper on X, and suppose that C is a nonempty compact 
subset of int dom f. Then there exists L 0 such that f\c is L-Lipschitz.

Proof By Fact 9.14, df(C) is bounded. Now apply Theorem 23.l(i). □
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Corollary 23.3 Let ft X —> R be convex, and let L 0. Then f is globally L-Lipschitz, i.e., 

(fix e X)(Vy e X) \f(x) - f(y)\ L\\x - y\\

if and only if rand f C B[0; L],

23.2 ■ Smoothness and the Descent Lemma
We now turn to functions whose gradients are Lipschitz continuous.

Definition 23.4 (Lipschitz smoothness) Let f: X ] —oo, +oc] be proper and assume that D 
is a nonempty open subset of dom f and that f is differentiable on D. Let L 0. Then f is 
L-smooth on D if V/ is L-Lipschitz on D, i.e.,

(Vx e D^y e D) ||V/(x) - V/(y)|| L\\x - y\\.

Example 23.5 Let C be a nonempty closed convex subset of X. Then the functions f(x) := 
jll^ll2 — and := are both l-smooth.

The next result is known as the “Descent Lemma”:

Lemma 23.6 (Descent Lemma) Let f: X ]—oo, +oo] be proper and assume that D is a 
nonempty open convex subset of dom f and that f is differentiable on D. Suppose that f is 
L-smooth on D. Then

(Vx e £>)(Vy e £>) /(y) s? /(x) + (y - x, V/(x)) + 1 ||x - y||2;

put differently (and switching x and y),

(Vx e r>)(Vy e £>) Df(x,y) s? |||x-y||2.

Proof Let#, ?/beinD, and set h(t) := f(x+t(y—xf). Then h'(t) = (y — x, Xf(x + t(y — xf)}. 
Hence the Fundamental Theorem of Calculus yields

f(y)-f(x) = h(l)-h(0) = [ h'(t)dt = [ (y-x,Xf(x + t(y-xf))dt. 
JO JO

Using this, (y — x, Xf(xf) = (y — x, X f(x)} dt, the Cauchy-Schwarz inequality, and L- 
smoothness of /, we thus obtain

f(y) - ZOO - {y - x, Xf(x)) s? |/(y) - /(x) - (y - x, V/(x)) |

= |y (y-x,V/(x + t(y-x))-V/(x)) dt|

[ lly-®IIIIW(x + f(y-x))- V/(x)||dt
JO

s? [ L||y — x||2idf = L||y — x||2|i2|
JO 10

as announced. □
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Remark 23.7 Suppose that f is as in Lemma 23.6, and let 0 a < 2/L. If x e D and 
x — cXf(x) e D, then

f(x - /(x) + - 1) ||V/0)||2 f(x),

which is why we refer to Lemma 23.6 as the Descent Lemma.

23.3 > Characterizations of Smoothness
Fact 23.8 [5, Theorem 5.8] Let f: X Rbe convex and differentiable and let L > 0. Then 
the following are equivalent:

(i) / is L-smooth, i.e., (Vx e X)(Vy e X) ||V/0) “ WOII ~ 3/11-

(ii) (Vx e X)(Vy e X) f(y) /(x) + (y - x, Xf(x)) + f ||x - y ||2.

(iii) (Vx e X)(Vy e X) f(y) > /(x) + (y - x, V/(x)) + ^||V/(x) - V/(y)||2.

(iv) (Vx e X)(Vy e X) (x - y, V/(x) - V/(y)) > £||V/(x) - V/(y) ||2.

(v) (Vx e X)(Vy e X)(VA e [0,1])
(1 - A)/(x) + A/(y) /((I - A)x + Ay) + j(l - A)A||x - y\\2.

If X = Rn and f is twice continuously differentiable, then we may add the following items to 
this list:

(vi) (ffx e Rn) X2f(x) Lid.

(vii) (Vx e R”) Amax(V2/(x)) L.

(viii) (Vx e Rn) || V2/(x) || s? L.

Proof. “(i)=>(ii)”: Lemma 23.6.
“(ii)=>(iii)”: The hypothesis (ii) states that £>/ ^ ^ || • — • ||2.
Now fix x G X. Set

h := y Df (y, x) = /(y) - /(x) - (y - x, V/(x)).

Because h = f + (•, —V/(x)) + ((x, V/(x)) — /(x)) is an affine perturbation of f, it follows 
from Example 12.11 that Dh = Df. Hence

o e X)(Vy e X) h(z) - h(y) - (z-y, Xh(yf) = Dh(z, y) s? | ||z - y||2.

Next, by Proposition 12.8, the function h = Df(-,x) has x as a minimizer with h(x) = 0, and 
also Xhfy) = Xf(y) — Xf(x). Hence

(ffz e X) h(x) h(zf

Now fix also y e X. If Xf(y) = Vf(x), i.e., Xh(y) = 0, then the desired conclusion follows 
from Theorem 11.10(ii). So we assume that Xh(y) = Xf(y) — Xf(x) 0. Next, obtain a 
vector w e X such that ||w|| = 1 and (w, Xhfy)) = ||Xhfy) ||. Set

L
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= h(y) -

= h(y) -

= Ky) -

Then 

0 = h(x) h(z)

E«llw)ll + «

IlVftfrill2
2L

= /(y) - /(x) - {y - x, Vf(x)) - ±r\\Vf(y) - V/(z)||2 
Zi-LJ 

and we obtain (iii).
“(iv)=>(i)”: We have, using the Cauchy-Schwarz inequality,

|||V/(x) - V/(y)||2 ^{x-y, Vf(x) - Vf(y))

||a: -y||||V/(x) - V/(y)||, 

from which the result follows.
“(ii)=>(v)”: Let x0, Xi be in X, and set x^ := (1 - A)z0 + A^i for A e ]0,1[. By (ii),

f(xo) f(xx) + (x0 -xx,Vf(xxY) + - za||2,

f(xi) f(xx) + (xi - xx,^f(xx)} + ^llxi - XX II2,

which is the same as

f(x0) f(xx) + A (x0 - Xi, Vf(xx)) + A2||a?o - xi||2, (23.1a)

/(a?i) f(xx) + (1 - A) (xi - x0,^f(xx)} + (1 - A)2^||x0 - zi||2. (23.1b)

Now (1 — A)(23.1a) + A(23.1b) turns into

(1 - A)/(x0) + A/(xi) s? f(xx) + (1 - A)a| ||x0 - zi||2, 

which yields (v).
“(v)=>(ii)”: Let x,y be in X and A e ]0,1[. By assumption, we have Xf(y) Xf(x) +

(/((I - X)x + At/) - f(x)) + ^(1 - A)A||xr - y\\2; thus, dividing by A > 0 yields

/(y) f(x) + A*+  A0/-*))-/(*)  +1(1 _ A)||X _ y||2 
f(x) +f'(x;y-x) + |||2:-y||2

= f(x) + {y-x, Vf(x)) + - yll2

as A —> 0+ and by Proposition 11.8.

From now on, we assume that X = Rn and that f is twice continuously differentiable.
“(vi)<=>(vii)<=>(viii)”: Clear because for a positive semidefinite matrix A, we have Amax (A) = 

mil =max{(a;m^) | ll^ll 1} by, e.g., [8, Theorem4.21].
Let x, y be in X.
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“(i)=>(viii)”: Let a > 0. Then || V/(a? + ay) - V/(x)|| aL||?/||. Dividing by a and then
letting a —> 0+ yields ||(V2/(#))?/1| L||?/||. Hence ||V2/(a;)|| L.

“(viii)=>(i)”: The derivative of G(t) := V/(a; + t(y - xf) is VG(f) = V2/(z + t(y - 
x))(y — x). The Fundamental Theorem of Calculus now yields

V/(y) - V/(x) = G(l) - G(0) = f V2f(x + f(y - x^y - x) dt;

Jo
thus

l|V/(y)-V/(x)|| = V2/(ar + t(y - x\)(y - x) dt [ Ldt\\y-x\\ = L\\y - a;||, 
Jo

and so f is L-smooth. □
Corollary 23.9 (Baillon-Haddad Theorem) Let f: X —> R be convex and differentiable. Then 
Xf is nonexpansive if and only ifXf is firmly nonexpansive.

Corollary 23.10 Let f be convex and L-smooth on X with respect to the Euclidean norm. Then 
both j;Xf and Id — V/ are firmly nonexpansive.

Proof. j^Xf is clearly nonexpansive. By Corollary 23.9, is firmly nonexpansive. Now 
apply Theorem 22.3 to obtain firm nonexpansiveness of Id — jfXf. □

Example 23.11 (log-sum-exp is l-smooth) On X = Rn, recall that the log-sum-exp function 
is defined by

f(x) = f(x1,...,xn) = ln(exp(a?i) H------- |-exp(zn)).

Setting u := u(x) := [ui,..., un]T with u2 := exp(^)/ exp(#j) e ]0,1[, we have

V2/(x) =

U1
0

0
«2

0 •
0 •

•• 0‘
•• 0

— wT -< Id, (23.2)

_0

and so f is l-smooth.

Exercises
Use Corollary 23.3 to find LExercise 23.1

L-Lipschitz.

Exercise 23.2
L-smooth.

0 such that the function f(x) = y/1 + x2 is

Use Fact 23.8 to show that there is no L 0 such that the exponential function is

Let f be proper on X, and assume that D is a nonempty open convex subset ofExercise 23.3
dom f and that f is differentiable on D. Additionally assume that f is concave. Show that
Df(x,y)

Exercise 23.4

Exercise 23.5

H# — ?/||2 for every L 0 and for all x, y in D.

Provide the details for Example 23.5.

Provide the details for Remark 23.7.

Consider f(x) = -|||z||2 on X = Rn. Show that for L = 1, Fact 23.8(i) holdsExercise 23.6
but Fact 23.8(iv) fails.

Exercise 23.7 Show that (iii)=>(iv) in Fact 23.8.

Exercise 23.8 Provide the details for Example 23.11.





Chapter 24

Strong Convexity

A long time ago, we discussed strict convexity (see Definition 3.10). Now we present a stronger, 
more quantitative version: strong convexity.

Throughout this chapter, || • || denotes the Euclidean norm.

24.1 > Characterizations of Strong Convexity
Definition 24.1 (strong convexity) Let f be proper on X, and let fl > 0. Then f is fl-strongly 
convex if (Vx e X)(¥y e X)(VA e ]0,1[) we have

/((l - X)x + Ay) (1 - A)/(x) + A/(y) - /3^-^\\x - y||2.

If we don’t care about the specific value of the parameter fl, then we simply say that f is strongly 
convex.

Proposition 24.2 Let f be proper and fl-strongly convex for some fl > 0. Then f is strictly 
convex.

Proposition 24.3 Let f be proper and fl-strongly convex for some fl > 0, let g be convex, and 
let a > 0. Suppose that dom f Pl dom g 0. Then af + g is a fl-strongly convex.

Proof. Let x, y be in X, and let A e ]0,1[. The assumptions imply

/((l - X)x + Ay) (1 - X)f(x) + A/(y) - ||a: - y||2, (24.1a)

y((i - X)x + Ay) s? (1 - A)y(x) + Ay(y). (24.1b)

Considering a(24.1a) + (24.1b) yields the result. □

Fact 24.4 [5, Theorem 5.24] Let f be convex, lower semicontinuous, and proper on X, and let 
fl > 0. Then the following are equivalent:

(i) f is fl-strongly convex.

(ii) (V(x,u) e grad/)(Vy G dom/) f(x) + (u,y -x) /(y) - f ||x- y||2.

111
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(iii) (V(x,u) e grad/)(V(?/,v) e grad/) {x -y,u-v) /3\\x - y\\2.

(iv) f — /3||| • ||2 is convex.

Proof. “(i)<=>(iv)”: Let x,y be in X, and let A e ]0,1[. Then, using (1.4), we see that the 
inequality

/((l - A)x + Ay) (1 - + A/(y) - ||x - y||2

= (1 - A)/(x) + A/(y) - f ((1 - A)||.r||2 + A||y ||2 - ||(1 - X)x + Ay||2) 

is equivalent to

/((l - X)x + Ay) - f ||(1 - X)x + Ay||2 (1 - A)(/(x) - f ||x||2) + A(/(y) - f ||y||2),

and this yields the equivalence. □

Example 24.5 Suppose that X = Rn and let f(x) = | (x. Ax) + {x, b) + 7, where A e Sn, 
b e Rn, and 7 e R. Then / is strongly convex <=> A >- 0, in which case Amin(A) is the largest 
possible constant of strong convexity of /.

Example 24.6 The function /3||| • ||2, where (3 > 0, is /3-strongly convex.

24.2 ■ Strong Convexity and Optimization
Minimizing a strongly convex function is a joyous task because of the following result:

Theorem 24.7 Let f be /3-strongly convex and lower semicontinuous, where (3 > 0. Then the 
following hold:

(i) / is supercoercive and hence coercive.

(ii) / has a unique minimizer, say x.

(iii) (\/x e AT) f(x) — f(x) ||x — t||2, where x is as in (ii).

Proof. Set

Then dom g = dom f 0 and so g is proper. Because / is lower semicontinuous and — (3\\• ||2 is 
continuous, the function g is lower semicontinuous. By Fact 24.4(iv), g is convex. By Fact 9.12, 
grad# 0, say u e dg(xf). Then

(Vz e X) g(x) ^g(x0) + (x-x0,u) 70 - |M|||u||, (24.2)

where we used Cauchy-Schwarz and set 70 := #(^0) — (^0, u).
(i): Adding back ||z||2 in (24.2) yields

(Vx G X) /(x) > ft||x||2 - ||x||||u|| + 70. (24.3)

Hence

lim lim (^|||x|| - ||u|| + 7^) = +oo.
||z||—>+oo Ill'll ||z||—>+00 ' ll^lr

It follows that / is supercoercive and hence coercive.
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(ii): By Theorem 5.4 and Proposition 3.13, f has exactly one minimizer, which we call x.
(iii): By (ii) and Fermat’s rule (Lemma 9.2), we have 0 e df(x). Let x e dom/. Then

Fact 24.4(ii) yields f(x) = f(x) + (0, x - x) f(x) - ||z - z||2. The proof is complete. □

Corollary 24.8 Let f be f3-strongly convex and lower semicontinuous, where /3 > 0. Then 
dom /*  = X, f*  is differentiable on X, and the supremum in the definition of f*  is always a 
maximum.

Proof. Let y E X. Then

f*  (y) = sup ((x, y)-f(x)) = - inf (/(x) + (x, -y)). 
xex xeX

Now f is strongly convex, hence so is f + (•, —y) by Proposition 24.3. Next, Theorem 24.7(ii) 
shows that the infimum above is uniquely attained, and therefore so is the supremum, say, at xy. 
By Theorem 19.5, f*(y)  = (xy,y) — f(xy); hence, df*(y)  = {a;^} is a singleton. Now apply 
Fact 11.9. □

24.3 > Duality between Smoothness and Strong Convexity
Theorem 24.9 Let f: X -4 R be convex and L-smooth where L > 0. Then f*  is (1 / L)-strongly 
convex.

Proof. First, /*  is convex, lower semicontinuous, and proper by Theorem 18.15. Let (u, x), (y,y) 
be in gra df* . The differentiability assumption, Fact 11.9, and Corollary 19.6 give {(x, u), (y, v)} 
C gra df = gra V/. The equivalence (i)<=>(iv) of Fact 23.8 yields (x — y,u — v) ^||u —u||2. 
In turn, the equivalence (iii)<^>(i) in Fact 24.4 now yields the (1/L)-strong convexity of f*.  □

Theorem 24.10 Let f be (3-strongly convex and lower semicontinuous where (3 > 0. Then f*  is 
(1/ -smooth.

Proof. By Corollary 24.8, /*  is differentiable everywhere. Let u, v be in X and set x := 
V/*(u)  and y := V/*(u).  Then u E df(x) and v E df(y). The /3-strong convexity of f 
coupled with the equivalence (i)<=>(iii) of Fact 24.4 yields (x — y,u — v) /3||z — ?/||2. Put 
differently, (u - u,Vf*(u)  -Xf*(y))  /3||V/*(u)  - V/*(u)|| 2. On the other hand, the
Cauchy-Schwarz inequality yields (u - v,Xf*(u)  - Xf*(v\)  ||u-u||||V/*(u)  - V/*(u)||.
Altogether, /3|| V/*(u)  - V/*(u)|| 2 ||w-u||||V/*(u)-V/*(u)||,  and this implies ||V/*(u)-  
V/*(u)||  (l//3)||u-u||. □

Example 24.11 Consider the continuous convex function f(x) = y/1 + ||rr||2 on Rn, which has 
gradient Xf(x) = x/f(x) and Hessian

°^2/(I> = 74d~wF“T-ld-
and whose Fenchel conjugate is

ifllyKi;
(+oo if|MI>i,

i.e., the ball pen function. Then f is l-smooth and /*  is 1-strongly convex.

(24.4)

24.4 > Smoothness of Infimal Convolutions
Fact 24.12 [5, Theorem 5.30] Let f be convex, lower semicontinuous, and proper on X. Let g 
be L-smooth where L > 0. Suppose that ran(/ □ g) C R. Then fug is L-smooth. Let y E X. 
If x minimizes f+g(y--), i.e., (jDg)(y) = /(x) + g(y - x), then\7(fOg)(y) = Vg(x - y).
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Proof. By Corollary 21.2, we have f\Jg = (/*+#*)*.  Hence /*  + g*  is proper (for otherwise 
(/*  + g*)*  = — oo, which is absurd). Note that g*  is (1/L)-strongly convex by Theorem 24.9. 
Hence f*  + g*  also is (1/L)-strongly convex by Proposition 24.3. Next, by Theorem 24.10, 
(/*  + g*)*  is L-smooth. Altogether, f Dg is L-smooth. □

Corollary 24.13 Let f be convex, lower semicontinuous, and proper on X, let L > 0, and set 
9 ■= |ll • II2- Then

fD(Lq)

is L-smooth. Let y G X. Then there exists a unique vector xy G X such that (fu(Lq')')(y') = 
mmxex(f(x) + Lq(y - x)) = f(xy) + Lq(y - xy); moreover,

V (/□(£<?)» = 1,0/-^) (24.5)

and
(VareX) fix') + Lq(y-x) ^ (fu(Lq')')(y) + ^\\x-Xyf. (24.6)

Proof. Because V(Lq) = Lid, this follows from Fact 24.12 except for the existence and unique­
ness of xy, which we establish now:

First, Lq is L-strongly convex by Example 24.6. Next, h: x i-^ f(x)+Lq(y — x) = Lq(x) + 
(/(#) + L -y} + Lq(yf) is L-Strongly convex by Proposition 24.3. By Theorem 24.7(ii), h 
has a unique minimizer xy for which

(VieX)

which gives (24.6). □

Example 24.14 Let C be a nonempty closed convex subset of X, and let y e X. Then 
l^c(y) = Ucn III • n2)(y) = tc(Pc(y)) + |l|Pc(y)-?/||2,andsoif/ = tc.thenxj, = Pc(y) 
in Corollary 24.13, and so V|d^(?/) = y — Pc(?/), as we saw directly in Example 12.6.

Exercises
Exercise 24.1 Provide the details for Proposition 24.2.

Exercise 24.2 Suppose that each fi is /^-strongly convex with respect to the Euclidean norm, 
and that f := fi H-------1- fm is proper. Then f is /3-strongly convex, where /3 = /3± H------- 1- /3m.

Exercise 24.3 Provide the details for Example 24.5.

Exercise 24.4 Provide the details for Example 24.6.

Exercise 24.5 Provide the details for Example 24.11.

Exercise 24.6 Suppose that p e ]1, +oo[ x {2} and set f(x) = which is a convex func­
tion. Show that f is neither strongly convex nor L-smooth for any L > 0.



Chapter 25

Proximal Mappings

Proximal mappings are generalizations of projection mappings, which we studied earlier in 
Chapter 8.

Throughout this chapter, || • || denotes the Euclidean norm.

25.1 > Characterizations and Examples
Corollary 24.13 makes the following definition well defined.

Definition 25.1 (proximal mapping) Let f be convex, lower semicontinuous, and proper on X.
Then the proximal mapping (a.k.a. prox operator) is

P/: X X: y Argmin (/(a:) + 11|a: - y||2), 
xex

where Argmin denotes the set of minimizers. In the literature, one also finds the more common 
notation Proxy or proxy.

Theorem 8.4 yields the following:

Example 25.2 Let C be a nonempty closed convex subset of X. Then

Pc = Ptc-

Useful for finding the proximal mapping is the following characterization which generalizes
Theorem 8.4:

Theorem 25.3 Let f be convex, lower semicontinuous, and proper on X. Let x e dom f and 
y E X. Then the following are equivalent:

(i) x =

(ii) y - x e df (a;).

(iii) (Yz e X) (z - x,y - x} f(z) - f(x).

115
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In particular, ran Py C dom df and

p/ = (id + a/)-1. (25.1)

Proof. We have (i) <=> x minimizes /+ ||| • — ?/||2 ^>0 E d(J + ||| • — t/|| 2) (a?) = df(x) + x — y
(ii). The equivalence (ii)<^>(iii) is clear from the definition of the subdifferential. The “in 

particular” part follows from (ii). □

Corollary 25.4 Let C be a nonempty closed convex subset of X. Let x G C = dom lc and 
y G X. Because Ptc = Pc and = Nc(x), we learn from Theorem 25.3 that x = Pc(?/) 

y — x G Nc(x) (Vc G C) (c — x,y — x) 0. This sheds further light on the Projection
Theorem (Theorem 8.4).

Remark 25.5 Consider Theorem 25.3 and its notation. If one has a guess x for what Pf(y) is, 
then one can justify that guess by simply checking that y — x G df(x).

Example 25.6 (convex quadratic) Suppose that X = Rn, let A G Sn be positive semidefinite, 
let b G Rn, and let 7 G R. Set

f(x) = | (x, Ax) + (x, b) + 7.

Then

P/(y) = (Id + >l)-1(y-6),

where the inverse is taken in the sense of linear algebra.

Proof We have Xf(x) = Ax + b. Soy — x = Xf(x) ^y-x = Ax -\-b^y — b= (Id + A)x 
and we are done by Theorem 25.3. □

Example 25.7 Suppose that X = R, let A > 0, and let y G R. Then

'y + A
Pa|-| {y) = sign(?/)max{|?/| - A,0} = 0

j/-A

if y < -A; 
if \y\ A; 
if y > A.

(25.2)

Proof Set f := A| • |, and let x G R. From Theorem 25.3, Example 9.3, and (13.1), it follows 
that

if x < 0;
if x = 0;
if x > 0.

We now the employ the strategy outlined in Remark 25.5 for proving (25.2).
Case 1\ y < —A. If x = y + A, then x < 0 and so y — x = —A G df(x).
Case 2: \y\ A. If x = 0, then y — x = y G df(x).
Case 3: y > A. If x = y — A, then x > 0 and so y — x = A G df(x). □

Example 25.8 Suppose that X = R, let a > 0, and set

fix) :=
if x > 0;
if x 0.

Then

p/(y) =
V + y/?;2 + 4a

2
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25.2 ■ The Proximal Mapping and Optimization
The importance of the prox operator in optimization becomes clear from the following result:

Theorem 25.9 Let f be convex, lower semicontinuous, and proper on X, and let y G X. Then

/(P/(y)) O(y)-|lly-P/(y)ll2 (25.3)

and

y = Pf(y) y is a minimizer of f. (25.4)

Proof. Indeed,/(P/(y)) + |||y — P/(y)||2 = minxex(/(x) + |||x-y||2) /(y) + |l|y-y||2 =
f(y), which gives (25.3). In view of Theorem 25.3 and Fermat’s rule, we have y = Pf(y) 
0 = y — y G df(y) O y is a minimizer of f. □

In fact, more can be said:

Fact 25.10 [3, Proposition 12.33] Let f be convex, lower semicontinuous, and proper on X, let 
0 < p < v, and let y G X. Then the following hold:

(i) inf/(X) /(P,/(y)) /(PM/(y)) /(y).

(ii) limM^+oo /(PM/(y)) = inf /(X).

(iii) limM_>0+ /(PM/(y)) = /(y).

(iv) Ify e dom/, then lim^o  ^lly - Pm^II2 = °-*

25.3 > Prox Calculus
Proposition 25.11 (separability) Let Xi,..., Xrn be finite-dimensional Euclidean spaces. Sup­
pose each fi is convex, lower semicontinuous, and proper on Xi, where i e {1,..., m}. Set

f: Xi x • • • x Xm ]-oo,+oo] : (xX)... ,xm) >-» /i(xi) H----- 1- fm(xm).

Let {yr,..., ym) e Xx x • • • x Xm. Then

P/(yi,-.-,ym) = (P/i (yi), •••,?/„ (ym))-

Proof. We have (xx,..., xm) = P/(yx,..., ym) o (xx,..., xm) minimizes (zlt..., zm) t-> 
+ lll^i - ydl2) o each xi minimizes zt i-> fi(zi) + ±\\zi - yi||2 <=> each Xi = 

□
Combining Proposition 25.11 and (25.2) yields the following:

Example 25.12 (soft thresholder) On X = Rn, define the function f by f(x) := /(^i,... ,xn) 
= A||x||i = A\xi |, where A > 0. Then we obtain the soft thresholder

Pf(yi,---,yn) = (sign(yj)max{|yj| - A,0})"=r

Other calculus rules are somewhat nonintuitive:

Proposition 25.13 Let g be convex, lower semicontinuous, and proper on X. Suppose A : X
X is linear and A*  = a A-1 for some a > 0. Let b G X, and set f(x) := g(Ax + b). Then

A*(P ag{Ay + b)-b)
a
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Proof. Note that A A*  = A*  A = aid. We have t = Pf (y) <=> y e x + df (x) = x + A*dg(Ax  + 
b) <=> Ay + b e Ax + b + AA*dg(Ax  + 6) = (Id + d(ag))(Ax + &)<=> Ax + 6 = Pag(Ay + b) 
<=> ax + A*b  = A*  Ax + A*b  = A*P ag(Ay + 6), which yields the result. □

Proposition 25.14 Let g be convex, lower semicontinuous, and proper on X. Set f(x) := 
g(ax + b), where q E 1 \ {0} and b E X. Then

Pf^ = P^g(,ay + b)-b

Proof. We have x = Pf(y) <=> y G x + df(x) = x + adg(ax + 6) <=> ay + 6 G (ax + b) + 
a2dg(ax + b) = (Id + d(a2g))(ax + b) <=> ax + b = PQ25(a?/ + b) and this concludes the 
proof. □

Example 25.15 Let C be a nonempty closed convex subset of X, and let u G X. Then 
= u + Pc(y - u).

Proposition 25.16 Let g be convex, lower semicontinuous, and proper on X. Set f(x) := 
ag(x/a), where a > 0. Then

Pf(y) = aPQ-i9(a-1y).

Proof. We have x = Pf(y) <=> y G x + df(x) = x + dg(a~rx) <=> a~ry G a~rx + 
a-1dg(a-1£) = (Id + d(a-1g))(a-1£) <=> a~rx = Pct-ig(a~1y), yielding the result. □

Proposition 25.17 Let g be convex, lower semicontinuous, and proper on X. Set f(x) := g(x)+ 
a| ||rr||2 + (x, b) + 7, where a 0, b G X, and 7 E R. Then

p/(y) = P(i+Q)-iff((i + a)-1(y - &))•

Proof. We have x = Pf(y) <=> y G x + df(x) = x + dg(x) + ax + b = (1 + a)x + b + dg(x)
<=> (1 + a)-1(?/ — &) G (Id + d((l + a)-1g))(z), which yields the result. □

Example 25.18 Suppose that X = R, let P 0, b G R, and set

P/ x (bx if 0 x /3; 
j(x) := <

I +00 otherwise.

Then Pf(y) = min{max{?/ — 6,0}, /3}.

Proof. Set C := [0,/3]. Then PLC(y) = Pc(y) = min{max{?/,0},/3} by (8.4). Note that 
f(x) = lc(x) + bx. Using Proposition 25.17, we obtain Pf(y) = Pc(y — b), which gives the 
result. □

Fact 25.19 Let C be a nonempty closed convex subset of X, and let (/>: R —> R be convex, even, 
and differentiable on R x {0}. Set f := (j) o de- Then

Pf(y) = <
Pc(y) ifdc(y) </>'+(°)>’

ifdc(y) >

Proof. This follows by combining [3, Proposition 24.27] with (12.1). □

For more proximal calculus rules, see [3] and [5]. Unfortunately, no general rules are avail­
able for Py+p, PQy, and PfoA-
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Exercises

f(x) :=

Exercise 25.1 Explain why the matrix Id + A in Example 25.6 is invertible in the sense of linear 
algebra.

Exercise 25.2 Provide the details for Example 25.8.

Exercise 25.3 Suppose that X = Rn, let a > 0, and set 

-ct In(^) if x e 
+oo otherwise.

Determine P/.

Exercise 25.4 Use Proposition 25.14 to show Example 25.15.

Exercise 25.5 Suppose that X = R, let (3 0, b e R, and set

bx if |x| (3;
+oo otherwise.

Show that Pf(y) = min{max{?/ — 6, —/?}, (3}.

Exercise 25.6 Let g: R —> ]—oo, +oo] be convex, lower semicontinuous, and proper such that 
domg C R+, and set f(x) := g(||rr||). Show that

PjAllyllWIlyll if y t^O;
{Mex| H| = ||Pfl(0)||} ify = 0.

Exercise 25.7 Suppose that X = R, let (3 0, b 0, and set

b\x\ if |&| < /?; 
+oo otherwise.

Show that Pf(y) = sign(?/) min{max{?/ — 6,0}, /3}.

/W :=

p/(y) =

/W :=

Exercise 25.8 Suppose that X = R, let A > 0, and set

Determine Pf.

Exercise 25.9 Suppose that X = R, let A > 0, and set

Determine Pf.

Exercise 25.10 Suppose that C is a nonempty closed convex subset of X, and let A > 0. Use
Fact 25.19 to show that

Pc(y) if dc(y) A;

# + ifrfc.(3,)>A.



120 Chapter 25. Proximal Mappings

Exercise 25.11 Let C be a nonempty closed convex subset of X, let A > 0, and let /i > 0. Set 
f := Xdc + /i|||-||2. Use Exercise 25.10 and Proposition 25.17 to show that

p/(y) = *

Exercise 25.12 Let c e X and A > 0. 
show that

Set f(x) := A||xr — c|| + |||rr||2. Use Exercise 25.11 to

p/(y) = < y + A 2c~y
2 2||y-2c||

if ||y - 2c|| < A;

if ||y - 2c|| > A.
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Prox Decomposition

Throughout this chapter, || • || again denotes the Euclidean norm.

26.1 > Decomposition and the Proximal Point Algorithm
Theorem 26.1 (prox decomposition) Let f be convex, lower semicontinuous, and proper on X. 
Then both Pf and Id — P/ are firmly nonexpansive, and

P/ + Pr =Id. (26.1)

Proof. Let x,y be in X, and set p := Pf(x),q := P/(p). By Theorem 25.3, x — p G df(p) 
and y — q G df(q). On the other hand, df is monotone (see Proposition 9.8). Altogether, 
(p — q, (x — p) — (p — q)) 0. Thus ||p — q||2 (x — y,p — q). By Theorem 22.3, both Pf
and Id — Pf are firmly nonexpansive.

Using Theorem 25.3 and Corollary 19.6, we have

p = Pf(x) (26.2a)
< => x — p G df(p) (26.2b)

o p € -p) (26.2c)
o pe a/*(.r-p)  (26.2d)
< => x — (x — p) G df  (x — p) (26.2e)*
< => x — p = Pf(x).  (26.2f)*

Adding (26.2a) and (26.2f) yields x = Pf(x) + Py*  (xf i.e., (26.1). □

We will study algorithms in greater detail later; however, we can quickly derive convergence 
of the famous Proximal Point Algorithm:

Corollary 26.2 (Proximal Point Algorithm) Let f be convex, lower semicontinuous, and proper 
on X. Suppose that the set ofminimizers of f is nonempty, and let Xq G X. Then the sequence 
generated by

(Vfc € N) xk+1 := P/(xfe)

converges to a minimizer off.
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Proof. Denote by C the set of minimizers of f. By (25.4), C = FixPy. By Theorem 26.1, Py 
is firmly nonexpansive, hence |-averaged. Therefore, by Corollary 22.20, (xk)keN converges to 
some point in C. □

Less memorable but more general is the following refinement of Theorem 26.1.

Corollary 26.3 Let g be convex, lower semicontinuous, and proper on X, and let a > 0. Then 

Id = PQp + aP(i/Q)p* (-)•

Proof. Set f := ag. Note that f*  = ag*(-/a)  by Proposition 19.11. By Proposition 25.16, 
Py*  = aP(i/a)5* (7«). The result now follows from Theorem 26.1. □

26.2 ■ Examples
Corollary 26.3 has very nice consequences.

Example 26.4 Let C be a nonempty closed convex subset of X, and let a > 0. Then

pa<7C(y) = y-aPc(y/a).

Example 26.5 Let 11 • 11 be any norm on X, with dual norm 11 • 11 *,  let C be the unit ball with respect 
to || • ||, and let a > 0. Because (?c = || • ||*  (see Example 7.3), it follows from Example 26.4 
that

Pa II • ||. (y) = y-aPc(y/a).

Example 26 .6 Let || • || denote the Euclidean norm, and let a > 0. Then

Pall• || (Z/) (1 77j il
"" \ max{||2/||, of/

Example 26 .7 (conical decomposition) Let K be a nonempty closed convex cone in X. Then 
specializing Example 26.4 (with a = 1) yields

Id = PK + PKe (26.3)

because aK = lkq by (7.2). If K = Y, where Y is a linear subspace of X, then Ye = F1- (see 
Example 7.11), and thus we obtain the Pythagorean decomposition

Id = Py +Pyi. (26.4)

Example 26 .8 We have Id = Pr- + Pr- •

Exercises
Exercise 26.1 Provide the details for Example 26.4.

Exercise 26.2 Provide the details for Example 26.6.

Exercise 26.3 Specialize Example 26.5 when the norm considered is the max-norm || • on 
Rn.

Exercise 26.4 Provide the details for Example 26.8.

Exercise 26.5 Discuss and compare the behavior of the Proximal Point Algorithm when (i) 
f(x) = Lc and (ii) f(x) = de, where C is the closed unit ball with respect to the Euclidean 
norm.
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Envelopes

Throughout this chapter, || • || again denotes the Euclidean norm.

27.1 > Basic Properties and Examples
Using Proposition 6.9 and Fact 6.13, we see that the following definition is well defined.

Definition 27.1 (envelope) Let f be convex, lower semicontinuous, and proper on X. Then 
the (Moreau) envelope, with smoothing parameter p > 0, is the full-domain continuous convex 
function defined by

envM/(y) :=min(/(x) + ^||a:-y||2) = (/□^||| • ||2)(y)-

If p = 1, we will also simply write env/ instead of envi/.

Theorem 27.2 Let f be convex, lower semicontinuous, and proper on X, and let p > 0. Then 
the following hold:

(i) For every y e X, we have

env^y) = /(PM/(y)) + L||y _ PM/(y)||2. (27.1)

(ii) The envelope is (1/p)-smooth and its gradient

V envM/(y) = V- - (27.2)

is therefore (f / p)-Lipschitz.

Proof (i): This is clear from the definition of the envelope and the proximal mapping, (ii):
Corollary 24.13. □

We now turn to approximation properties of the envelope.
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Fact 27.3 [3, Chapter 12] Let f be convex, lower semicontinuous, and proper on X, let 0 < 
p < v, and let y G X. Then the following hold:

(i) inf /(X) envp/(y) envM/(y) /(y).

(ii) inf /(X) = inf envM/(X).

(iii) lim^^+oo envM/(y) = inf /(X).

(iv) limM_>0+ envM/(y) = /(y).

Example 27.4 Let C be a nonempty closed convex subset of X, and let y > 0. Then yz-c = tc 
and so P^c = Ptc = Pc. By (27.1),

envM4C(y) = 4c(Pc(y)) + y-||y - Pc(y)II2 = fd2c(yf 
£ LL Zt LL

and by (27.2),

is (f/p)-Lipschitz, which we also can deduce directly from Example 22.4.

Example 27.5 (Huber loss) Let p > 0. We saw earlier (Example 26.6) that

ill'll(y)= C1 ■ max{yi,y})y’

where we reiterate that || • || denotes the Euclidean norm. Then

envM|| • ||(y) = ||PMy(y)|| + ^-||ar — PMy(y)||2

11(1 max{||y||,y})HI 2y 11^ (^ max{||y||,y})HI

= ^p
>11 ~ if||y||>M-

The function p envM || • || is known as the Huber loss function.

27.2 > Envelope Calculus
Proposition 27.6 Let f be convex, lower semicontinuous, and proper on X, let p > 0, and let 
a > 0. Then the following hold:

(i) (envM/)*  = /*  +yi|| • ||2.

(ii) aenvM/= envQ-iM(a/).

Proof, (i): Indeed, using Proposition 21.1 and Exercise 18.6, we have (envM/)*  = (/ □ 11| • 
II2))*  = /*  + (£|ll • II2)*  = /*  +m|II • II2- (“): Indeed, (aenvM/)(y) = aminrt.Y(/(r) + 
^11® - y||2) = nrinxex((af)(x) + - = (eiav<x-1^afy)(y)- 1=1
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As always, separability yields a pleasant result:

Proposition 27.7 Let each fi be convex, lower semicontinuous, and proper on Xi, where i G
I := {1,..., m}, and let p > 0. Set ..., xm) := fi(xi). Then

envM/(yi,... ,ym) = ^env^fityi).
iei

Example 27.8 Let f(x) = ||a;||i be the 1-norm on X = Rn, and let p > 0. Combining
Proposition 27.7 with Example 27.5, we obtain

n 
env^fty!,...^) = ^Hfrji), 

2 = 1

where
1 2

Hpfr) := <
if W K

if l?l >

Theorem 27.9 Let f be convex, lower semicontinuous, and proper on X, let p > 0, and let 
a > 0. Then

PaenvM/ = ~ Id H — (27.3)M p + a p + a 7

Proof. Let y e X. Assume first that

a = 1.

Set g := envM/, q := P(M+i)Z(y) and x := -fry + Then 

(g + l)x - gy = q

and x - q = fry + frq - = fr(y - q) and so

x — q=y—q 
p p + 1

By the characterization of the prox operator (Theorem 25.3), we have

q = P(M+i)/(y) o y - q e d(fr +1)/)(?)

« e a/(«)

o X e q + d(nf)(q)

o Pp/C*)  = + /iy

o yy - /j,x = x - Pp,f(x)

x — Puf(x) „ / x 
O y - X =-------- — = ^g(x)

(XIA)

(27.5)

(using (27.5))

(using (27.4))

(using (27.2))

This verifies (27.3) when a = 1.
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Now assume the general case, i.e.,

a > 0.

Using Proposition 27.6(ii) and the formula just established when a = 1, we have

Pouenv^y Pl-env _i (otf) i j —Id H - • -Pra-1

u T n a
— —T—IdH----T—p + a /i + a JJ

and we are done! □

Example 27.10 Let C be a nonempty closed convex subset of X, let /i > 0, and let a > 0. Then 
(jj. + o)lc = i-c, P^+a^c = pc, and envMz.c = Consequently, (27.3) yields

PQ_Ld2 = —Id + ——Pc. 
c p + Ot p + Cl

Let us summarize various prox operators associated with a convex set:

Theorem 27.11 Let C be a nonempty closed convex subset of X, let a > 0, and let y G X. 
Then the following hold:

(i) PmC(y) = Pc(y)-

(ii) Padc(&)
pc(y)

* dc(y) - a
, dc(y) y

ifdc(y) a; 

ifdcty) > ot.4^’

<iii>

Proof, (i): Clear because ate = Lc and Ptc = Pc-
(ii): Set 0 := a|• |, which is an even convex function, differentiable on I\{0}, with </>+ (0) = 

a and </>*  = (see Example 18.4). Note that P^>*  = P[_Q}Q]. Because adc = 0 o de, the 
result follows from Fact 25.19.

(iii): This follows from Example 27.10 with p = 1. □

We conclude by stating a result that sharpens the Moreau decomposition (Theorem 26.1):

Fact 27.12 [3, Theorem 14.3 and Remark 14.4] Let f be convex, lower semicontinuous, and 
proper on X, and let p > 0. Then

envf + env/*  = ||| • ||2; (27.6)

more generally,

envM/(y) + envM-i/*(y///)  = ^||y||2.

Remark 27.13 We know that Pf + Pp = Id ((26.1)). On the other hand, V env/ = Id — Pf = 
Py*  and V env/*  = Pf ((27.2)). Thus, (27.6) may be viewed as the integrated version of (26.1).
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Exercises
Exercise 27.1 Compute envM/ when f is defined as in Example 25.6.

Exercise 27.2 Provide the details for Fact 27.3(i)&(ii).

Exercise 27.3 Provide the details for Fact 27.3(iii).

Exercise 27.4 Suppose that f = 11| • ||2. What does (27.6) turn into in this case?

Exercise 27.5 Suppose that /, g are convex, lower semicontinuous, and proper on X. Show that 
f = env/ = envp.





Chapter 28

Subgradient Methods

In this chapter, we discuss algorithms for minimizing a function using gradient or subgradient 
information.

28.1 - Descent Direction and Classical Steepest Descent
Definition 28.1 (descent direction) Let f: X ] — oo, +oo] be proper, let x e dom f, and let 
d e X \ {0}. Then d is a descent direction of f at x if the directional derivative of f at x in 
direction d not only exists but is also negative:

f\x;d) = lim + < 0
J v ’ t->o+ t

Remark 28.2 Consider Definition 28.1.

(i) If d is a descent direction of f at x, then there exists 6 > 0 such that if 0 < t < 6, then 
f(x + td) < f(x). This is why d is called a descent direction — the function value has 
decreased!

(ii) If f is differentiable at x and Xf(x) 0, then —V/(t) is a descent direction because 

= -iiv/wn2 < o.

In fact, we obtained 6 from (i) in the smooth case explicitly in Remark 23.7.

(iii) In contrast to (ii), a negative subgradient need not be a descent direction; see Exer­
cise 28.1.

The literature on using descent directions for finding minimizers is vast. We record a proto­
typical result.

Fact 28.3 (classical steepest descent) [37, Corollary 3.2.7] Suppose that f: X -> R is strictly 
convex, coercive, and differentiable. Let Xq e X and update

(ffk G N) xk+! := xk - tkXf(xkf

where tk minimizes R: t i-> f(xk — tXf(xk)). Then {xk)k^ converges to the unique 
minimizer off.

Somewhat shockingly, if one drops the differentiability assumption, then Fact 28.3 may fail 
— this is a classical example due to Wolfe, which is detailed in [5, Section 8.1.2].
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In the next section, we turn to the more challenging case where a constraint set is present and 
the function is not necessarily differentiable.

28.2 - Projected Subgradient Method
In this section, we assume that

f is convex, lower semicontinuous, and proper on X, (28. la)
C is a nonempty closed convex subset of dom df, (28.1b)
sup \\df(C)|| < L < +oo. (28.1c)

We also assume and set

S := Argmin/(z) / 0, (28.Id)
xEC

// := min/(#). (28.le)
xEC

Our aim is to find a point in S directly or approximately. To this end, let x e C and evaluate 
f(x). If f(x) = /i, then x e S and we are done. So we assume that f(x) > /i. We now take

f'(x) € df(x), (28.2)

which is possible because of (28.1b). Note that by Fermat’s rule we have that

f'W + 0. (28.3)

Let us consider, for t 0, the update

x+:=Pc(x-t/'(x)). (28.4)

Let s € S. Then s € C; so, Pc(s) = s and

(s - x, f'(x)) < /(s) - f(x) = fi- f(x). (28.5)

We now estimate

||x+ - s||2 = ||Pc(x - tf(x)) - Pc(s) ||2 (28.6a)

||(x-t//(x))-s||2 (28.6b)

= ||Gr - s) - */'O)H 2 (28.6c)

= ||x - s||2 - 2t (x - s, f(x)} +121| f’(x)||2 (28.6d)

||x - s||2 - 2t(/(x) - +t2\\f\x)||2, (28.6e)

where (28.6b) follows from the (firm) nonexpansiveness of Pc (see Example 22.4), while (28.6e) 
follows from (28.5).

Ideally, we want to have the update x± as close as possible to s. While it is not clear what 
the best choice for t is to achieve this, we can and do instead minimize the quadratic expression 
in (28.6e) over t 0. The derivative of this expression with respect to t is — 2(/(x) — /i) + 
2f|| ff(x) ||2, which upon setting this derivative equal to 0 yields
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The choice for t presented in (28.7) is known as Polyak's rule; however, it does require a priori 
knowledge of // for its implementation. Taking this choice of t from (28.7) and plugging it into 
(28.6) yields the very powerful estimate

||z+— s||2 ||z — s||2— (/(a:) - n)2 
umi2 (28.8)

Having carefully analyzed the update from x to x+, we now record two convergence results. 
The first one assumes that we know p so we can work with Polyak’s rule, while the second one 
is applicable even when // is not known.

Theorem 28.4 (Polyak’s projected subgradient method) Suppose that (28.1) holds, and let 
Xq G C. Given k G N and Xk € C, evaluate f(xk)- If f(xk) = p, then Xk G S and we 
are done. Otherwise, pick f'(xk) £ df(xk) and generate the next iterate via

fM - Mxk+i := Pc(xk ~ tkf'(xk)), where tk ■= (28.9)

If we haven't terminated after finitely many steps, then we also set pk •= min{/(x$),..., f(xk)} 
and the following hold:

(i) (Fejer monotonicity) (Vs G S)(\/k G N) ||#fc+i - s|| \\%k - $||.

(ii) (convergence of the function values) f(xk) p.

(iii) Pk p
Lds(xp')
Vk+T *

(iv) Ife > 0 and k L — 1, then pk p + £•

(v) (convergence of the iterates) Xk x g S.

Proof Observe that (28.8) yields

||xfe+1 s|| ^||zfc s|| ||//(Xfc)||2 ’ (28.10)

which yields not only (i) but also

m—0
(28.11a)

< A (/(*m)  ~ M)2
H/'MI2

k

(28.11b)

52 - sii2 - H^+i - sii2)

- Q
(28.11c)

= ||x0 - s||2 - I|.rfc+1 - ,s||2 (28. lid)
^||xo-s||2- (28.1 le)

It follows that —Z2)2 < and thus f(xm) —p 0 and so (ii) holds. Moreover,
(28.11) with s = Ps(£o) also yields (k + l)(pk — p)2/L2 d2s(xo), which rearranges to (iii). 
Note that (iv) is a consequence of (iii).

We finally turn to (v). It is clear from (i) that (xk)k&$ is bounded. Let x be a cluster point of 
say xnk x. Because (xk)kew lies in C, which is a closed set, we deduce that x G C.
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From the lower semicontinuity of f and (ii), we obtain

fi = min/(C) f(x) lim/(znJ = p.
fceN

Therefore, f(x) = p and so x G S. Finally, combining this with (i) and Theorem 22.19, we 
deduce that Xk x. □

Theorem 28.5 Suppose that (28.1) holds, and pick a sequence (ffc)fceN ^++ suc^ ^at

< +°° and = +°°- (28.12)
fceN fceN

Let Xq G C. Given k G N and Xk E C, pick ff(xk) E df(xk). If f'(xk) = 0, then Xk E S and 
we are done. Otherwise, generate the next iterate via

Xk+1 := Pc^fc - tkf'ixk)). (28.13)

If we haven't terminated after finitely many steps, then

Pk := min{/(x0), f(xk)} -» p.

Proof. Set s = Pg(xo). Then ||a?0 — s||2 = dg(xo). It follows from (28.6) that for every 
m e {0,1,..., k} we have

‘ftmi.Pk p) 2tfn(/(xfn) jf)
=C||.rm-.s||2-||a;m+1-S||2+e||/'(^)||2

Ik™ - < - ||zm+i - < + L2t2m.

Summing and telescoping yields the estimate 2(/zfc - /r) I2m=o Iko - «112 + L2ELo tm- 
Therefore,

Pk-I^ 5112 + L2 , (28.14)

and the conclusion now follows from (28.12). □

We note that a standard choice for the sequence (ffc)fceN in (28.12) is tk = l/(k + 1).

28.3 - Remotest-Set and Alternating Projections
Let m G {2,3,...}, set I := {1,2,..., m}, and let (Sfpei be a family of nonempty closed 
convex subsets of X. Our goal is to solve the convex feasibility problem

find x G S := Si Cl • • • Pl Sm, where we assume that 5^0. (28.15)

To this end, we set

f(x) := max{dS1 (x), ...,dSm (x)}. (28.16)

Note that / is convex and continuous on X by Example 6.10 and Fact 6.13. Moreover, dom df = 
X by Corollary 9.13. Hence (28.1a) holds and so does (28.1b) with C := X. Clearly, (Vz E X) 
f(x) 0 and f(x) = 0 <=> (Vz E I) ds^x) = 0 <=> (Vz E I) x G Si <=> x G S. Thus 
S = Argmin^x f(x) and

g := min/(X) = 0. (28.17)

This takes care of (28.Id) and (28.le). Next, it follows from Example 14.2 and Fact 14.8 that

(Vx € S) df(x) = conv (J (B[0; 1] A NSi(x)) (28.18)
iei
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and

(Vx€l\S) 9f(x) = conv P ~ ‘(x) I dSi (z) = /(x)) . (28.19)
I dSi {X) I J

In either case, df(x) C B[0; 1] so (28.1c) holds with L := 1.
Assume that x G X x S, and pick a remotest-set index i G I such that

/(*)  = dSi (x) > 0, and set f'(x) := * € 9f (x), (28.20)
dSi (x)

where the inclusion follows from (28.19). Hence, in view of (28.17), Polyak’s stepsize simplifies 
to

t=.S;,£= <fe,W~Oi=<fc,W. (28.21)
11/Wil2 ||x-ps.(x) II2

II ||
Consequently, the update x± from (28.4) turns simply into

x+ = Px(x - tf'(x)) = x- dSi(x)X (28.22a)
dst (x)

= PSiW- (28.22b)

Specializing now Theorem 28.4 to the setting of this section, we obtain the following:

Theorem 28.6 (remotest-set projections) Let xq G S. Given k e N and Xk G X, evaluate 
f(xk). If f(xk) = 0, then Xk G S and we are done. Otherwise, pick a remotest-set index ik G I 
such that f(x) = d$ik (xk) > 0 and update via

xk+i := Psik(xkf (28.23)

If we haven't terminated after finitely many steps, then f(xk) 0 and x E S.

Specializing further to m = 2 yields the following (see also Figure 28.1):

Corollary 28.7 (method of alternating projections (MAP)) Given a starting point x$ G X, 
the sequence of alternating projections

W)fc6N = (2)0, PSi^O, PSsPSi^O, PSiPSsPSi^O, • • •)

converges to some point in S± Cl

Example 28.8 Let A G Rmxn, let b G Rm, and assume that

S:= WfnA~\b)^0.

Let x0 = [#1,0,..., £n,o]T C Rn. Given k G N, update via

Xk+i = (xk - A\Axk - 6)) + ,

where y+ = [max{?/i, 0},..., max{?/n, 0}]T G Rn and A^ denotes the Moore-Penrose inverse 
(see Fact 8.12) of A. Then (xk)ke^ converges to some point in S. See Figure 28.2 for an 
implementation in Julia.
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Figure 28. 1. Illustrating the first few iterates and the limit of the MAP (see Corollary 28.7).

In [1]: using LinearAlgebra; import Random; Random.seed!(1234);

We implement the method of alternating projections (MAP) to find a solution to Ax — b and x > 
0 (coordinatewise). Here A e R15x20, Si = and S2 = R^°. We start by generating the 

data.

In [2]: n=20; m=15; A = randn(m,n); sol = abs.(randn(n)); b = A*sol;

We now define the projections w.r.t. Si and S2, which we denote by pi and P2 , respectively.

In [3]: pi(x) = x - pinv(A)*(A*x-b) ; # pinv gives the Moore-Penrose/pseudo 
inverse
P2(x) = max.(x,0);

Let's run MAP until the error measure maxl^ (a?), d$2 (#)} is less than e := 10-8.

In [4]: errormeasure(x) = max.(norm(x-Pl(x)),norm(x-P2(x))); epsilon = 1/10A8;

In [5]: x = zeros(n,l); println("The starting vector of all zeros has error 
measure: ",errormeasure(x))

Out[5]: The starting vector of all zeros has error measure: 3.8164960360560993

In [6]: k=0;
while errormeasure(x) > epsilon 

k = k+1; x = P2(Pl(x));
end;

In [7]: println("We needed $k iterations after which the error measure is: 
",errormeasure(x));

0ut[7] : we needed 67 iterations after which the error measure is:
8.029976779957408e-9

Figure 28. 2. Employing MAP to find a nonnegative solution of Ax = b.
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Exercises
Exercise 28.1 (Vandenberghe) Consider the continuous convex function f^x-^xz) := |rri| + 
2|xr21 on R2. Show that (1, 2) e 9/(1,0) yet —(1,2) is not a descent direction of / at (1,0).

Exercise 28.2 Consider the function f(x) = ||M|2 and C := B[0; 1]. Compute the sequence 
generated by Polyak’s projected subgradient method when xq e C x {0}.

Exercise 28.3 Consider the function f(x) = ||M|2 and C := B[0; 1]. Compute the sequence 
generated in Theorem 28.5 when tk = 1/(A; + 2).

Exercise 28.4 Provide the details for Example 28.8.

Exercise 28.5 In Section 28.3, suppose that X = R, m = 2, S± = {—1}, and Sz = {1}. Note 
that S' = 0 in this case. What will the sequence (jik)keN from Theorem 28.5 with / given by 
(28.16) converge to?





Chapter 29

The Proximal Gradient Method

In this chapter, || • || denotes the Euclidean norm and we assume the following:

f: X —> R is convex and L-smooth, where L G R++, (29.1a)
g: X —> ]—oo, -Foo] is convex and lower semicontinuous, (29.1b)

F-.= f + g, (29.1c)
S ArgminF / 0, /i:=minF(X), (29. Id)
T:=Pi3o(ld-lV/). (29. le)

We will study the proximal gradient algorithm, which uses V f and P±7 combined as in 
(29. le) to find a minimizer of F.

29.1 > The Proximal Gradient Operator
The operator T from (29. le) is known as the proximal gradient operator, its relevance to finding 
points in S becomes clear in the following result:

Proposition 29.1 We have

S = FixT is convex, closed, and nonempty, (29.2)

and T is ^-averaged, i.e.,for all x, y in X, we have

|||(Id - T)x - (Id - T)y||2 < Hx - y||2 - ||Tx - Ty||2. (29.3)

Proof. Let x G X. Then

x € S o 0 € d(f + c?)(ar) 
o o € V/(x) + dg(x) 
o 0 € £Vf(x) + £dg(x)

e (id + a(^))(x)

^x = Pi3(Id - iVf)(x)

&x = Tx
<=> x G Fix T,

(Fermat’s rule (Lemma 9.2))
(sum rule (Fact 13.7))

(positive-multiple rule (13.1))

(by (25.1))
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which proves S = FixT. Note that S is nonempty by (29.Id), while closedness and convexity 
follow from Proposition 22.9. We’ve verified (29.2).

Next, on the one hand, Id — is firmly nonexpansive by Corollary 23.10. On the other 
hand, Theorem 26.1 (applied with f replaced by j^g) implies that Prox±5 is firmly nonexpan­
sive. Altogether, (29.3) now follows from Proposition 22.8 and Corollary 22.13. □

Lemma 29.2 Let x,y be in X, and set y+ := Ty. Then

F(x)-F(y+) > ||a; - y+||2 - |||ar - y||2 + Df(x,y) (29.4a)

^fll^-y+lp-fllz-yll2, (29.4b)

where Df(x,y) is the B regman distance between x and y (see Definition 12.7).

Proof. Define an auxiliary function h by

■= + (z-y, + g(z) + |\\z - y||2, (29.5)

and observe that h is L-strongly convex. If z e X, then

z minimizes h <=> 0 G dh(z) = Xf(y) + dg(z) + L(z — y)

o z = Plff(Id - £V/)(y) = Ty = y+.

Thus

Argmin/z = {y+},

and now Theorem 24.7(iii), implies that

/i(a;) - h(y+) > | ||a; - y+1|2. (29.6)

On the other hand, it follows from the descent lemma (Lemma 23.6) that

/(y+) /(y) + (y+ - y, vf(.y)) + |lly+ - yll2- (29.7)

Next, (29.5) and (29.7) yield

h(y+) = f(y) + {y+ - y, vf(y)} + g(y+) + f ll?/+ - yll2 (29.8a)
>f(.y+)+3(.y+) = F(y+). (29.8b)

Using (29.6) and (29.8), we get

|ll®-y+ll2 M*)  - h(y+)

= f(y) + {x-y, Vf(y)) + g(x) + ^\\x - y||2 - h(y+)

/(?/) + {x-y, Vf(y)) + g(x) + | ||z - y||2 - F(y+)

= f(x) + g(x) - (f(x)-f(y) - {x-y,Vf(y))) + |||ar - y||2 - F(y+)

= F(x) - Df(x,y) + | ||x - y||2 - F(y+).
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Rearranging yields (29.4a), and (29.4b) follows from Proposition 12.8. □

Corollary 29.3 Let y € X, and set y+ :=Ty. Then

F(y+)^F(y)-|||y-y+||2. (29.9)

Proof. Apply Lemma 29.2 with x replaced by y. □

29.2 ■ The Proximal Gradient Method
Iterating the proximal gradient operator yields a sequence with very nice properties:

Theorem 29.4 (Proximal Gradient Method (PGM)) Recall our assumptions (29.1) and let e
X. Generate the sequence via

xk+1 :=T(xk). (29.10)

Then the following hold:

(i) (Fejer monotonicity) (Vs e e N) ||z/c+i — s|| \\xk — s||.

(ii) (convergence of the iterates) (xk)ke^ converges to a point in S.

(iii) (monotone function value convergence) For k 1, we have

0 F{xk+l) - M F(xfc) - M = o(^). (29.11)

(iv) (asymptotic regularity) For k 1, we have

(29.12)

Proof (i)&(ii): By Proposition 29.1, the operator T is |-averaged with FixT = S. Now apply 
Corollary 22.20.

(iii): Corollary 29.3 (applied with y replaced by xk) yields

F(^fc+1) < F(xk) (29.13)

and we have a monotonically decreasing sequence of function values.
Now let s e S. Then (29.4) (applied with x replaced by s and y replaced by xm) yields

2 2
0 S? - (F(xm+i) - y) = - (F(xm+1) - F(s)) ||a:m - s||2 - ||zm+i - s||2.

Summing the above inequalities from m = 0 to m = k — 1 and telescoping yields
fc—i

0 | 52 (F(xm+1) - m) C ||a?o - s||2 - llzfc - s||2 s? Haro - s||2. (29.14)

m—Q

Recall from (29.2) that S is convex, closed, and nonempty. Hence, with the choice s = Ps(ar0), 
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we learn from (29.13) and (29.14) that

2 2
yfc(F(a;fc) - m) 7 52 (F(*m+i)  “ M) ll*o  - Ps(xo)||2 = d2s(x0),

m—0

and this yields (iii).
(iv): Let k 1. Applying (29.3) with x replaced by Xk and y replaced by s := Ps(£o) € 

S = FixT (see (29.2)) yields

|Ikfc - ajfe+i II2 \\xk - s||2 - ||xfc+i - s||2.

On the other hand, the nonexpansiveness of T (see Proposition 29.1) results in

||a:fc - zfc+i|| llxfc-1 - Xfcll s? • • ||x0 - X1||.

Altogether,

7 1

-||xfc-l - Xk II2 X 52 “ ^m+lll2 llX0 - s||2 - ||xfe - s||2
m—0

ll*o  - s||2 = d2s(xo),

and this completes the proof. □

Corollary 29.5 (Proximal Point Algorithm revisited) Assume that C := Argmin# / 0, let 
p > 0, let Xq G X, and generate the sequence (xk)kew via

— ^pg*£k'

Then (xk)keN converges to a point in C and g(xk) — min g(X) C ^c(*o)/(2pfc).

Corollary 29.6 Assume that C := Argmin/ / 0, let x0 G X, and generate the sequence 
via

Xk+l := xk - j;Vf(xk).

Then (xfc)keN converges to a point in C and f(xk) — min/(A') Ld^(a;o)/(2A:).

29.3 > Regularized Least Squares
In this section, we discuss an application of the PGM that is known as “ISTA” (which stands for 
“Iterative Shrinkage Thresholding Algorithm”).

Let A G Rmxn, b G Rm, and A > 0. The problem of interest is to

minimize | II Ar — 6||2 + A||a;||i. (29.15)

The problem (29.15) fits the framework considered (see (29.1)) perfectly: Set f(x) := 
1|| Ar — 6||2 and g(x) := A||rr||i. Because g is coercive and f is bounded below, it is clear 
that F := f + g has at least one minimizer by Corollary 5.5: S := Argmina.eRTl F(x) 0. 
Moreover,

V/(x) = At(Ax - 6) and V2f(x) = ATA. (29.16)

By Fact 23.8, V/ is Lipschitz continuous with (optimal) constant

Amax^). (29.17)
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If the computation of Amax(ATA) is too costly, one may use

IK = £ (29.18)

instead — note that this constant is also equal to tr(ATA) = Ai(ATA) but it completely 
avoids the computation of eigenvalues.

Thus picking L e {Amax(ATA), || A||p}, we see that all assumptions (29.1) are in place. The 
gradient step is

x — f{x) = x — j;AT(Ax — b),

while the proximal step is, thanks to Example 25.12,

Prox±5(a;) = (sign(^)max{|^| - A/L,0})™=1

(29.19)

(29.20)

Thus T can be computed and we are then able to apply either the PGM considered in this chapter 
(or “FISTA” from Chapter 30 below).

Here is an implementation in Julia:

In [1]: using Plots; using LinearAlgebra; import Random:seed!; seed!(1357);

We start with the setup: We have A € R100xll° and b € R100.
We set up the problem so that it is consistent, with one solution at least being sparse.
Note that the problem is underdetermined. We choose A = 1.

In [2]: m=100; d=110; A=randn(m,d);
xtrue=zeros(d,1);
xtrue[l]=l; xtrue[2]=l; xtrue[3]=l; xtrue[4]=-l; xtrue[5]=-l; 
xtrue[6]=-l;
b=A*xtrue;
Lsmallest=eigmax(A'*A) ;
println("Smallest Lipschitz constant (our L) is ",Lsmallest); 
L=Lsmallest; lambda = 1;

0ut[2]: Smallest Lipschitz constant (our L) is 403.1089636391968

The prox-grad operator T is the composition T = T2 o Tlf 
where T\(x) = x — V/(a?) = x — ±AT(Ax — b) 
and T2 is the prox operator of X/L times the norm.

In [3]: Tl(x)=x-(l/L)*A'*(A*x-b);
T2(x)=sign.(x).*max.(0,abs.(x).-lambda/L) ;
T(x)=T2(T1(x));

We also record the Moore-Penrose and a generic solution.

In [4]: allones = ones(d,l); # the vector of all ones:
xdagger = allones - pinv(A)*( A*allones-b) ; # the closest solution to 
allones of Ax=b
xgeneric = A\b; # the generic solution = the closest to the origin

We now start the Prox Gradient Method (PGM) with a starting point of all ones.



142 Chapter 29. The Proximal Gradient Method

In [5]: # now we run PGM

x = allones;
lambda = 1.0;
kcounter = 250; # number of iterations

k=0; # counter 
while k < kcounter

x = T(x) 
k = k + 1; 

end;

# plotting
xx=1:d;yy=[xtrue,x,xdagger,xgeneric];
plot(xx,yy,title="PGM (with lambda = $lambda after k= $k 
iterations)", xlabel="Component index",

ylabel="Component entry",
label=["true" "PGM" "dagger" "generic"],color=["lightgreen" "blue" 
"orange" "red"],
linestyle=[:solid :solid :solid :solid], lw=[6 3 0.5 2])

Out[5]: PGM (with lambda = 1.0 after k= 250 iterations)

100
Component index

Let's see how the various answers differ with respect to the objective function.

In [6]: F(x) = l/2*norm(A*x-b)  's2+lambda*norm(x,  1); # set up F 
[F(xtrue) F(x) F(xdagger) F(xgeneric)]

0ut[6]: 1x4 Matrix{Float64}:
6.0 6.09182 38.3453 11.1815

Exercises
Exercise 29.1 Explain why the function h defined in (29.5) is L-strongly convex.

Exercise 29.2 Provide the details for Corollary 29.5.
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Exercise 29.3 Provide the details for Corollary 29.6.

Exercise 29.4 Consider Corollary 28.7 and its notation. One key operator of MAP is T := 
Ps2P<Si • Explain how T can be interpreted as a proximal gradient operator.

Exercise 29.5 Let be nonempty closed convex subsets of X. It turns out that T := 
P$2 (Id — PS1) is a proximal gradient operator. Determine an optimization problem that gives 
rise to T as its proximal gradient operator.

Exercise 29.6 Define the function f: R R by f(x) := ||rr|3, and let 0 < L < +oo. Define 
the gradient operator by

T(x) := x — ±f'(x).

(i) Compute /" and deduce that f is convex but not L-smooth.

(ii) Show that |T(a;)| = |x| • |1 — ^-| and deduce that if |x| 3L, then |T(z)| > 2|z|.

(iii) Deduce that the gradient method of Corollary 29.6 may produce an unbounded sequence 
illustrating that the assumption on L-smoothness of f is important.





Chapter 30

The Fast Iterative Soft 
Thresholding Algorithm 
(FISTA)

As in the previous chapter, || • || denotes the Euclidean norm and we assume the following:

f: X —> R is convex and L-smooth, where L e R++, (30.1a)
g: X —> ]—oo, +oo] is convex and lower semicontinuous, (30.1b)

F-=f + 9, (30.1c)
S ArgminF / 0, /i minF(X), (30. Id)
T:=Pis(Id-£V/). (30. le)

We will study a modern variant of the proximal gradient algorithm, which uses the proximal 
gradient operator defined in (30. le) to find a minimizer of F “more quickly” than the PGM.

30.1 > Parameter Sequences for FISTA
Definition 30.1 We say a sequence (^)fceN in R++ is a parameter sequence for the Fast Iterative 
Soft Thresholding Algorithm (FISTA) if the following hold for every k e N:

u _i_ 9
tk 1 = *o,  (30.2a)

t2k^t2k+1-tk+1. (30.2b)

Example 30.2 The sequence defined by

to := 1 and (Vfc G N) tfc+i := 1 + + 4—

is a parameter sequence for FISTA.

Example 30.3 The sequence defined by

(VA; € N) tk :=

is a parameter sequence for FISTA.

145
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30.2 - FISTA
Theorem 30.4 (FISTA) Recall our assumptions (30.1), and let (tk)ke^ be a parameter se­
quence for FISTA, i.e., (30.2) holds. Let x$ G X, and set yo := &o- Given k G N, update 
via

xk+r := Tyk = Vig(yk - £Vf(yk)), (30.3a)

yk+1:=xk+1+ (xk+i xk). (30.3b)
Zfc+l

Then

/‘«2("+n°)=0(^)- <30-4)

Proof Set s := Ps(£o) € S and

6k := F(xk) — y = F(xk) — F(s) 0 for k 0, (30.5a)
zk :=s + (ffc_i - l)xfc_i -tk-ixk forfc^l. (30.5b)

Let k 1. Then (30.3b) and (30.5b) yield

S + (ffc - l)xfe - tkyk = s + (tk- l)xfe - tkxk - (tk-i - l)(xfe - Xk_\
— S + (ffc—1 l)^fc—1 tk—l%k
= zk;

therefore,

||s + (tk - l)xk - tkyk\\2 = IMI2- (30.6)

Next,

t'k—l^k ~ ^k^k+l
> (ifc - tk)6k - tk6k+i (by (30.2b))

-t2— zk
( (1 —
\V zk7 /

-t2— zk
((1 - (F(xk) - F(s)) - (F(xk+i) - F(s^ (by (30.5a))

-12— zk
ft1 - ~r}F(xk) + - F(xm)\
\v zk' zk J

> t2 zk \f(—s+ fl—— F(#fc+i) ] ((30.2a) and F is convex)
\ \tk V tk I I )

‘‘I(Hr+ (' - --ir - Hr+G - kh -»ll2
_ L 
~ 2 
_ L 
~ 2

(by Lemma 29.2 and Xk+\ = Tyk)

(||s + (tk - IM - tkxk+iII2 - ||s + (tfc - l)xfc - fmll2) 

(||2fc+1||2-|M2)- (by (30.5b) and (30.6))
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Hence f^fc+i + (L/2)||zfc+i||2 C tl-^k + (L/2)||zfc||2 and thus

2 27C1<^ 7*L14  + IM2
Lj

2
7*L 24-i + ll^-ill2 

(30.7a)

(30.7b)

2
7^1 + ll^iII2 (30.7c)
2

= 7(F(xi) - m) + ||xi - s112 (30.7d)

because z± = s + (to — l)#o — = s + (1 — 1)tq — (l)#i = s — x±.
On the other hand, using Lemma 29.2 again and recalling that Txq = Ty0 = x±, we estimate 

y — F(xi) = F(s) — F(zi) > (L/2) ||s — xr ||2 — (L/2) ||s — xq||2; equivalently,

2
-(F(xi)-m) ||s - icoll2 - ||s - ;ri||2. (30.8)

Altogether, recalling (30.7) and (30.8), we get (2/L)f|_16k ||x0 — s||2 = d$(xo). Finally,
combining this with (30.2a), we obtain

A r / L .2/ 2 \22/ x 2L4(^o)F(xfc) m-4 2f2_^s(^o) 2U + 1) ds^~ (fe + l)2

and we’re done. □

30.3 - Regularized Least Squares Revisited
Recall the setup from Section 29.3. With FISTA now at our disposal, we illustrate and compare 
using the following Julia implementation:

In [1]: using Plots; using LinearAlgebra; using Random;
import Random:seed!; seed!(1357);

We start with the setup. We have A € R100x110 and b G R100.
We set up the problem so that it is consistent, with one solution at least being sparse.
Note that the problem is underdetermined. We choose A = 1.

In [2]: m=100; d=110; A=randn(m,d);
xtrue=zeros(d,1);
xtrue[l]=l; xtrue[2]=l; xtrue[3]=l; xtrue[4]=-l;
xtrue[5]=-1;xtrue[6]=-1;
b=A*xtrue ; Lsmallest=eigmax(A'*A );
printin("Smallest Lipschitz constant (our L) is ",Lsmallest);
L=Lsmallest; lambda = 1;

F(x)=l/2*norm(A*x-b) A2+lambda*norm(x, 1); # set up F
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Out[2]

In [3]:

In [4]:

In [5]:

Chapter 30. The Fast Iterative Soft Thresholding Algorithm (FISTA)

Smallest Lipschitz constant (our L) is 403.1089636391968
F (generic function with 1 method)

The prox-grad operator T is the composition T = T2 o Tlf
where T^x) = x — f(x) = x — ±AT(Ax — b)
and T2 is the prox operator of X/L times the norm.

T1(x)=x-(1/L)*A' *(A*x-b) ;
T2(x)=sign.(x).*max.(0,abs.(x).-lambda/L) ;
T(x)=T2(T1(x));

allones = ones(d,l); # the vector of all ones will be our starting 
point:

We now start the Prox Gradient Method (PGM) and FISTA with the starting point of all ones.

# now we run PGM and Fast PGM (FISTA)

xpgm = allones; # xpgm will be PGM iterate

x = allones; # x_0. x will be the FISTA iterate 
t = 1; # t_0 = 1;
y = x; # y_0 = x_0;
lambda = 1.0;

kcounter = 60; # 25, 50, 100, 250 are good choices

# container for function values
Fpgm = ones(kcounter,1);
Ffista = ones(kcounter,1);

k=0; # counter
while k < kcounter

# update iterates
xpgm = T(xpgm); # PGM update 
xold = x; # temporary variable 
told = t; # temporary variable 
x = T(y); # x_{n+l} update 
t = (1+sqrt(1+4*told~ 2))/2; # t_{n+l} update 
y = x + (told-1)Zt*(x-xold) ; # y_{n+l} update 
k = k + 1;

# record function values
Fpgm[k]=F(xpgm);
Ffista[k] = F(x);

end;

# plotting last iterate 
xx=1:d;yy=[xtrue,x,xpgm]; 
plot(xx,yy,title="PGM and FISTA (after $k iterations)", 

xlabel="Component index", ylabel="Component entry", 
label=["true" "FISTA" "PGM"],color=["lightgreen" "blue" "red"], 
linestyle=[:solid :solid :solid], lw=[6 3 2])
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out[5js PGM and FISTA (after 60 iterations)

In [6]: # now plotting progression of function values

iFfista = log.(Ffista);
iFpgm = log.(Fpgm);

xx=l:kcounter;yy=[IFfista,IFpgm];
plot(xx,yy,title="FISTA and PGM progress (after $k iterations)", 

xlabel="iteration index", ylabel="log(objective function)",
label=["FISTA" "PGM"],color=["blue" "red"], 
linestyle=[:solid :solid], lw=[3 2])

FISTA and PGM progress (after 60 iterations)

It is clear that FISTA is indeed faster than PGM; note also that (F(£fc))fceN is no longer 
decreasing for FISTA.
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Exercises
Exercise 30.1 Provide the details for Example 30.2.

Exercise 30.2 Provide the details for Example 30.3.

Exercise 30.3 Suppose that (tk)ke® is given either by Example 30.2 or by Example 30.3. Show 
that in either case, we have (Vfc e N) tk k + 1.

Exercise 30.4 The quotient (tk — l)/ffc+i plays a key role in the update step of FISTA (see 
(30.3b)). What is this quotient when we employ the parameter sequence from Example 30.3? 
And does it converge when k —> +oo?

Exercise 30.5 The quotient (tk — l)/tfc+i plays a key role in the update step of FISTA (see 
(30.3b)). Does this quotient have a limit as when k —> +oo when we employ the parameter 
sequence from Example 30.2?

Exercise 30.6 We have seen in Exercise 29.4 that MAP can be interpreted as the PGM. Design 
a numerical experiment that relies on the setting of Example 28.8 and compare this to the FISTA 
variant.

Exercise 30.7 Let T be the proximal gradient operator from (30.le), let y0 := xq e X and 
consider the sequences generated by := Tyk and yk+\ := 2rrfc+1— xk- Show the following: 
(i) If Xk —> x, then x e Fix T and yk —> x. (ii) If yk —> y, then y e Fix T and Xk —> y.



Chapter 31

Douglas-Rachford Algorithm

In this chapter,

f and g are convex, lower semicontinuous, and proper on X, (31.1a)
S := Argminf/ + g), /z := inf(/ + g)(X). (31.1b)

31.1 > Alternating Proximal Mappings
We have seen that iterating forward gradient steps (see Corollary 29.6) or proximal steps (see 
Corollary 29.5) leads to minimizers of a single function; moreover, the PGM (see Theorem 29.4) 
combines these operators to find a minimizer of the sum of a convex and a smooth function.

It is thus natural to expect that iterating proximal operators could lead to minimizers of the 
sum of two general convex functions. Unfortunately, this is not true, as we show now:

Suppose that X = R and consider the two nonsmooth convex functions defined by

f(x) + g(x) = 4|x + 1| + 4|x — 1| + x2 is unique and equal to 0:

/(a;) := 4|x + 1| + |x2 and g(x) := 4|ar — 1| + |x2

which have proximal mappings

'-1 if|y + 2| ^4;
P/(y) = y o 1/ + 2

1 1 if|y + 2|>4 <3L2a)
k 2 |y + 2|

and

fl if|y-2| ^4;
Pfl(y) = y 

k2
y — 2

- 2—------
|y-2|

if|,-2|>4. <31^

The minimizers of the function 4|a? + 1| + 4|.x — 1| are [—1,1]; thus, the minimizer of

S = Argmin(/ + g) = {0}. (31.3)

Let us now employ alternating proximal mappings, starting at the minimizer 0: Because 
|0 + 2| = 2 < 4, it follows from (31.2a) that P/(0) = -1. In turn, because | - 1 - 2| = 3 < 4, 
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it follows from (31.2b) that P3(—1) = 1. Next, because |1 + 2| = 3 < 4, (31.2a) yields 
P/(l) = — 1. To sum up, the alternating proximal mappings sequence is

(0, Pz(0), P5Pz(0), PzPsPz(0),...) = (0, -1,1, -1,1,...).

Thus,

(P3P#(0) 1 and (PzPs)fc(Pz(0)) -1.

This clearly illustrates that iterating the proximal mappings Py and P9 does not yield a minimizer 
of/+ 5!

In fact, the behavior of this iteration is explained by the following result:

Proposition 31.1 Suppose that the function g + env/ has a minimizer, and let Xq E X. Then 
the sequence ((P5Py)fc(;ro))fceN converges to a minimizer of g + env/.

31.2 > Reflected Proximal Mappings
Definition 31.2 The reflected proximal mapping or reflectant of / is defined by

Ry := 2Py - Id. (31.4)

From now on, we also set

Z := zer(d/ + dg) = {a; E X | 0 E df(x) + dg(x)}. (31.5)

Reflectants are intimately connected to Z, as the next result illustrates:

Proposition 31.3 We have

Z = Pz(Fix(RffRz)). (31.6)

Proof. “C”: Suppose that z E Z. Then 0 E df(z) + dg(z) and so there exists w E df(z) such 
that — w E dg(z). In turn, z + w E (Id + df)(z) and z — w E (Id + dg)(z); equivalently,

z = Py(z + w) and z = Pg(z — w). (31.7)

It now suffices to show that z + w E Fix(R^Ry). Indeed, Ry(z + w) = 2Py(z + w) — (z + w) = 
2z — (z + w) = z — w and then Pg(z — w) = 2Pp(^ — w) — (z — w) = 2z — (z — w) = z + w 
and we are done.

The inclusion “D” is proved similarly. □

Proposition 31.4 The reflectants Ry, R9 are nonexpansive, and so is their composition R5Ry.

Proof By Theorem 26.1, Py and P9 are firmly nonexpansive. Now Theorem 22.3 yields the 
nonexpansiveness of Ry and Rry. Finally, the composition of nonexpansive mappings is nonex­
pansive; in particular, R^Ry is nonexpansive. □
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31.3 - The Douglas-Rachford Operator
Definition 31.5 The Douglas-Rachford operator of (/, g) is defined by

T := TDR(/> p) := Id - Py + P5Rz. (31.8)

Lemma 31.6 The following hold:

(i) T = i(Id + R<zR/).

(ii) T is firmly nonexpansive.

(iii) FixT = FixR^Ry.

(iv) P/(FixT) = Z.

Proof (i): Indeed, we have

|(Id + RsRy) = |(Id + (2Pg - Id)(2Py - Id))

= |(Id + (2Pff(2Py — Id) — 2Py + Id)
= |(2Id + 2P5(2Py — Id) — 2Py)
= Id-Py + Ps(2Py-Id)
= Id — Py + Pg Ry,

as claimed, (ii): By Proposition 31.4, the operator R5R/ is nonexpansive. It now follows from 
Theorem 22.3 that | (Id + R^R/) is firmly nonexpansive. However, by (i), this is precisely the 
Douglas-Rachford operator T.

(iii): This is an easy consequence of (i).
(iv): Combine (iii) with (31.6). □

31.4 > The Douglas-Rachford Algorithm
We are now ready for the main result of this chapter.

Theorem 31.7 (Douglas-Rachford Algorithm) Suppose that Z / 0. Let xq e X and gener­
ate the governing sequence (xk)ke^ via

*= TXk = Xk PfXk “F Pgi^Pf-Ek ^k)’ (31.9)

Then there exists x E X such that the following hold:

(i) Xk —> x e FixT.

(ii) PfXk —> PfX e Z = S, i.e., the shadow sequence (PfXk)keN finds a minimizes

(iii) Pg(2PfXk - Xk) PfX.

Proof By Lemma 31.6(iv),

Py(FixT) = Z.

The assumption that Z 0 yields FixT 0.
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(i): Lemma 31.6(ii) states that T is firmly nonexpansive; hence, T is |-averaged (Re­
mark 22.12). By Corollary 22.20, (xk)keN converges to some point in FixT, say x.

(ii): On the one hand, Xk —> x e Fix T by (i). On the other hand, Pf is firmly nonexpansive 
and hence continuous. Altogether, Pf(xk) —> Pf(x) e Py(FixT). Finally, Py(FixT) = Z (see 
Lemma 31.6(iv)) and Z = S (see Theorem 13.13(ii)).

(iii): By (i), Xk — xk+i = PfXk — Pg(2PfXk — Xk) —> 0. On the other hand, PfXk —> PfX 
and the result follows. □

Remark 31.8 Consider Theorem 31.7 and its notation. The assumption that Z / 0 is implied 
by requiring that f + g have minimizers, i.e., S 0, and that a constraint qualification such as 
ri dom f Pl ri domg 0 hold — see also Remark 13.14.

Example 31.9 Let us revisit and adopt the scenario considered in Section 31.1. Set xq := 0. 
Then P/(ar0) = -1 and

(Vk > 1) xk = 4 - and Pf(xk) = (31.10)

By Theorem 31.7, xk —> 4 e FixT and P/(a;fe) —> 0 e S.

Example 31.10 (convex feasibility revisited) As in Example 28.8, we let A e Rmxn, b e Rm, 
and we assume that S' := R^nA-1(6) 0. We model this feasibility problem with f = t'A~1(b)
and g = . Then Pf(x) = P.a-i (&)(#) = x — A^(Ax — b) and = Pr™ (x) = x+. With the
Douglas-Rachford operator

T(x) = x — Pf(x) + Ps(2P/(a;) - x),

we generate the sequence (xfc)k6N = (Tkxo)k&i for which Pf(xk) -> some point in S. In 
the following Julia code, we implemented this and compare its performance to MAP from 
Example 28.8.

In [1]: using Plots;
using LinearAlgebra;
using Random;
import Random:seed!; seed!(1357);

In [2]: Porthant(x) « max.(x,0); # projection on orthant 
dorthant(x) = norm(x-Porthant(x)); # distance to orthant

m = 400;
d = 402;
A « rand(m,d).-0.5; xsol « rand(d); b « A*xsol;
Adagger = pinv(A);
Pset(x) = x - Adagger* (A*x-b );
dset(x) = norm(x-Pset(x));

F(x) = max(dorthant(x),dset(x));
MAP(x) « Porthant(Pset(x));
DR(x) « x - Pset(x) + Porthant(2*Pset(x)-x) ;
allzeros = zeros(d,l); # starting point for DR and MAP
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In [3]: kcounter = 200;

xMAP = allzeros;
xDR = allzeros;
FMAP = ones(kcounter,1);
FDR = ones(kcounter,1);

k=0;
while k < kcounter

xMAP = MAP(xMAP); # Method of Alt Proj update 
xDR « DR(xDR); # DR governing sequence 
k = k + 1;
FMAP[k]=F(xMAP);
FDR[k] = F(Porthant(xDR)); # we monitor shadow sequence! 

end;

1FMAP = log.(FMAP);
1FDR = log.(FDR);

xx=1:kcounter;yy=[1FDR,1FMAP];
plot(xx,yy,title=”DR vs MAP: progress for k= $k iterations”, 

xlabel=”iteration index”, 
ylabel='In(objective function)”, 
label=[”DR” ”MAP”],color=[ "blue” ’’red”], 
linestyle=[:solid :solid], lw=[3 3])

DR vs MAP: progress for k= 200 iterations

(In passing, we note that the convergence of Douglas-Rachford is finite if R”+ f~l A 1(b) 
0-)
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Remark 31.11 (ADMM) A related algorithm is the so-called Alternating Direction Method of 
Multipliers (ADMM), which aims to solve the problem

minimize f(x) + g(y), (31.11)
xEX,yEY, 
Ax-\-By—c

where A: X —> Z and B: Y —> Z are linear and c e Z. Given a starting point (&o, y^ z0) e 
X x Y x Z, p > 0, and a current iterate (xk, yk, zk) £ X x Z, the next iterate of ADMM 
is obtained by updating

ajfe+i := Argmin f(x) + (Ax + Byk - c,zk} + £\\Ax + Byk - c||2,
xex

yk+i := Argmin p(y) + {Axk+1 + By - c, zk) + £ ||Aa;fc+i + By - c||2, 
yeY

zk+i := zk + p(Axk+i + Byk+1 - c).

Now assume p = 1, Z = Y = X, A = Id, B = —Id, and c = 0. Then the problem (31.11) asks 
to find a minimizer of f + g, and the update simplifies to

Xk+1 = Argmin/(z) + {x - yk,zk) + |||x - yfc||2,
xex

yk+1 = Argminp(y) + (xfe+i - y,zk) + |||xfe+i - y||2, 
yex

Zk+1 %k T" 27fc+l 2/fc+l,

and further to

xk+i = Argmin/(a;) + |||a; - yk + zk||2,
xG_X

yk+i = Argming(y) + |||xfc+i - y + zk\\2, 
yex

Zk~t~i zk + xk+\ yk_\_i.

In terms of proximal mappings, this means

Xk+1 = Pf(yk - zk), 
yk+i = Pg(xk+i + zk), 
Zk~t~i zk + xk+\ yk_\_i.

Now set wk = xk + z/c-i for all k 1. Then yk = Pg(xk + z^-i) = Pg(wk). Next, 
yk - Zk = yk - (^fc-1 + xk - yk) = 2yk - wk = Rs(w) and so a;fc+i = P/R3(wfc). Finally, 
Tdr(<7, f)(wk) = wfc-P3(wfc) + P/R3(wfc) = wk-yk+xk+i = -yk + xk+i = xk+1 + zk = 
^k-\-l H- Zk = Wk-\-\.

It follows that (wfc)fceN is the sequence of iterates of the Douglas-Rachford operator for 
the pair (#,/)! Consequently, the shadow sequence (Pg(wk))ke^ = (yk)k^ converges to a 
minimizer of f + g and so does the sequence (PfRg(wk))ke^ = (xk)ke^. This shows that 
the Douglas-Rachford algorithm is a special case of ADMM. Remarkably and conversely, it is 
possible to study ADMM as a special case of the Douglas-Rachford algorithm; see, e.g., [41, 
Section 3.1].

31.5 > Douglas-Rachford and Fenchel Duality
The Douglas-Rachford operator has attractive properties with respect to duality. Recall that 
the set S defined in (31.1b) consists of the solutions of the primal problem of the ordered pair
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(/, g) or (g, f) which asks to

minimize f(x)+g(x). (31.12)
x£X

We discussed Fenchel duality in Chapter 20. It will be convenient to define the notation

h^y) := /z(-y);

this allows us to write (see (20.3)) the Fenchel dual of (g, /) as

minimize /*(?/)+ P* v(?/), (31.13)yex

with associated set of minimizers

S*  = Argmin (/*  + g* v). (31.14)

Remark 31.12 We chose to work with (g, /) instead of (/, g) because this leads to the beautiful
Proposition 31.14 below.

Let us denote the counterpart of the set Z (see (31.5)) for the dual problem by

Z*  := zer (df*  + d(g* v')) = {k € X | 0 € df(fe) - dg'^-k)}. (31.15)

Next, the Douglas-Rachford operator for the dual problem (31.13) is

Tdr(/*,9* v) = M - P/*  + Prox9*v  (2Py» - Id) (31.16a)
= |(ld + Rff.vRz.), (31.16b)

where we used Lemma 31.6(i) to get (31.16b). We will need the following result to simplify
TdrCT , <7* v) further:

Lemma 31.13 The following hold:

(i) Pyv = -Py O (-Id).

(ii) Ry  = — Ry.*

(iii) R^v  = Rp o (—Id).*

We now obtain the following beautiful duality result:

Proposition 31.14 (self-duality of the Douglas-Rachford operator) We have

R^vRy*  = RgRf and TDR(/*,^ V) = TDR(/, <?). (31.17)

Proof. Using Lemma 31.13(iii)&(ii), we have R5*vRy*  = (Rp o (-Id))(-Ry) = RgRf- In
turn, combining this with Lemma 31.6(i), we obtain TDR(/*,  g* v) = TDR(/, g). □

We end this chapter with the following sharpened primal-dual version of Theorem 31.7.

Theorem 31.15 (Douglas-Rachford Algorithm is primal-dual!) Suppose that Z / 0, or equiv­
alently that Z*  0. Let XqEX and generate the sequence (^fc)fceN v^a

— ^k Pf^k PpC^Py^fc ^k)’ (31.18)

Then there exists x E X such that the following hold:

(i) Xk —> x e FixT.

(ii) Pfxk —> PfX e Z = S.

(iii) Xk — PfXk ~^x — PfX e Z  = S.* *
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Proof. We saw in Proposition 31.14 that T = Tdr(/,p) = Tdr(/*,*̂ v). Hence Lemma 31.6(iv) 
and Theorem 26.1 yield

Z = Py(FixT) and Z*  = Pr(FixT) = (Id - Py)(FixT).

Hence Z 0 O FixT 0 O Z*  0. Now items (i) and (ii) were already proved in 
Theorem 31.7. Recalling that Py*  = Id — Py, it is now clear that (ii) — when applied to the dual 
problem — yields (iii). □

Exercises
Exercise 31.1 Prove (31.2).

Exercise 31.2 Prove (31.3).

Exercise 31.3 Prove Proposition 31.1.

Exercise 31.4 Prove the inclusion “D” in (31.6).

Exercise 31.5 Provide the details for (31.10).

Exercise 31.6 Provide the details for Lemma 31.13.

Exercise 31.7 Let f and g be proper lower semicontinuous convex functions on X. Recall that 
Rf = 2Py — Id and Rp = 2P5 - Id. Let a e ]0,1[ and define T = (1 - a)Id + aR5Ry. Observe 
that when a = | we recover the Douglas-Rachford operator.

(i) Prove that T is a-averaged.

(ii) Prove that Fix T = Fix R^Ry.

(iii) Suppose that Argmin(/ + g) 0 and that ri dom f A ri dom g 0. This ensures that 
FixT 0 (you do not need to prove this). Let x0 e X, and set (VA; e N) xk+1 := 
Tk+1x0. Prove that (xk)ke^ converges to a point in FixT.

(iv) Prove that (Py (xk))ke^ converges to a minimizer of f + g.
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Peaceman-Rachford 
Algorithm

In this chapter,

f and g are convex, lower semicontinuous, and proper on X, (32.1a)
S := Argmin(/ + g), g := inf(/ + <z)(X). (32.1b)

32.1 > Alternating Reflectants
We’ve seen in Section 31.1 that iterating the proximal mappings Pf and P5 does not lead to 
a point in S. In view of (31.6), it is tempting to iterate the reflectants R/ = 2Py — Id and 
R5 = 2P5 - Id.

Let’s look at the following special case: Assume that

f = 0 and g = q0}.

Then S = {0},

Rf = Id and R5 = -Id; (32.2)

hence, R^R/ = —Id. Iterating the reflectants in the form ((RpR/)fc£0)fceN won’t lead to a 
convergent sequence — unless xq = 0, the only element in S. Our hopes are dashed even if we 
consider the associated shadow sequence (Py (R5Ry)fcz0)fceN because this is the same sequence 
aS ((RgRy)

Something very interesting happens when we switch the roles of f and g: assume now that

f = a{0} and g = 0.

Then again S = {0}, but this time

Rf = -Id and R9 = Id;

and again R5R/ = —Id and the sequence ((R5R/)fc£o)fceN won’t be of use unless we started 
at xq = 0. However, this time the associated shadow sequence (Pf(RgRf)kxn)keN is just the 
sequence (0,0,...) which does converge to 0, the unique point in S. It turns out that this is not a 
coincidence — it is guaranteed because f is strongly convex! We shall derive the corresponding 
general convergence result in the next section.

159



160 Chapter 32. Peaceman-Rachford Algorithm

32.2 ■ The Peaceman-Rachford Algorithm
Proposition 32.1 Assume that f is a-strongly convex for some a > 0. Then for every x,y in X, 
we have

& - y, P/00 - p/(y)) > (i + a)IIP/W - p/(y)ll2- (32.3)

Proof. Set p := Pf(x) and q := P/(p). It follows from Theorem 25.3 that x — p e df(p) and 
y — q e df(q). Using Fact 24.4 we have (p — g, (x — p) — (p — g)) a\\p — q\\2; equivalently 
(p — g, x — y) — ||p — g||2 a\\p — g ||2. Rearranging yields the desired result. □

Definition 32.2 The Peaceman-Rachford operator of (/, g) is defined by

T := TPR(/,g) := R5Ry. (32.4)

Theorem 32.3 (Peaceman-Rachford Algorithm) Suppose that Z / 0 and that f is a-strongly 
convex, where a > 0. Then Z = S is a singleton, say S = {<§}. Now let Xq e X and generate 
the sequence (xk)ke^ via

xk+1 := T(xk). (32.5)

Then Pf(xk) —> s.

Proof First, by Theorem 13.13(ii), S = Z. Clearly, f + g is also a-strongly convex; hence, by 
Theorem 24.7(ii), S' is a singleton, say S = {«}. Because Z 0, we have Fix(R5R/) 0 
and also Z = P/(Fix(RpRy)) by (31.6). Let x e Fix(R^Ry), i.e., x = Tx. Using the 
nonexpansiveness of R7 (Proposition 31.4) as well as Proposition 32.1, we have for all k e N,

||xfc+i - z||2 = \\Txk - Ta;||2

= ||R5R/a;fc - R9R/x||2

||R/ajfc - R/a;||2

= l|2P/Xfc — xk — (2Py(ar) — x) ||2

= l|2(P/^fc — P/3-) — (xk — ^)||
= ||xfc - a?||2 -4(P/xfe - Pfx,xk - x} +4||Pza;fc - P/a;||2

||xfc - z||2 - 4a||P/xfc - P/a:||2.

Rearranging and telescoping, we obtain

4a ^2IIPfxk ~ Pfx\\2 ll^o - ^ll2 < +oo. (32.6)
fceN

Hence PfXk —> PfX. On the other hand, PfX e P/(FixT) = Z = S = {«}. Altogether, hence 
PfXk -As. □

Example 32.4 (best approximation via Peaceman-Rachford) Suppose that A, B are closed 
convex subsets of X such that A A B 0. Let z e X. Our problem is to find

Paob(z).

We model this by assuming that

f(x) := a|||a: - 2;||2 + la(x) and g(x) := lb(x).
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Note that f is a-strongly convex and that S = Argmin (/ + #) = {Paqb(z)}- Moreover,

(32.7a)

and
T(y) = RgRf(y) = y + 2PB- y) - 2PA• (32.7b)

Given xQ e X and generated by Xk+i = T(xk), it follows from Theorem 32.3 that
Proxy (xk) -> Paob(z)-

Below is a numerical illustration in Julia.

In [1]: using Plots; using LinearAlgebra;
using Random; import Random:seed!; seed!(1357);

In [2]: m = 100; d = 120; A = rand(m,d).-0.5;
allzeros = zeros(d,l);
z = allzeros; # point we wish to project
xsol = rand(d); b = A*xsol;
Adagger = pinv(A); Pset(x) = x - Adagger*(A*x-b) ;

Pl(x,z) = Pset((x+z)/2); # P_f
Rl(x,z) = 2*Pl(x,z)-x;  # R_f
dl(x) = norm(x-Pset(x)); # distance to set

P2(x) = max.(x,0); # projection on orthant, i.e., P_g
R2(x) = 2*P2(x)-x;  # R_g
d2(x) = norm(x-P2(x)); # distance to orthant

DR(x,z) = x - Pl(x,z) + P2(Rl(x,z)); # Douglas-Rachford operator
PR(x,z) = R2(Rl(x,z)); # Peaceman-Rachford operator

In [3]: kcounter = 750;

F(x) = max(dl(x),d2(x));
xDR = allzeros;
xPR = allzeros;
FDR = ones(kcounter,1);
FPR = ones(kcounter,1);

k=0;
while k < kcounter

xDR = DR(xDR,z); # DR governing sequence 
xPR = PR(xPR,z); # PR governing sequence 
k = k + 1;
FDR[k] = F(P1(xDR,z)); # monitor shadows
FPR[k] = F(P1(xPR,z)); # monitor shadows 

end;

1FDR = log.(FDR);
1FPR = log.(FPR);
xx=1:kcounter;yy=[1FDR,1FPR];

plot(xx,yy,title="DR vs PR: progress for k= $k iterations", 
xlabel="iteration index", 
ylabel="In(objective function)", 
label=["DR" "PR"],color=["blue" "red"], 
linestyle=[:solid :solid], lw=[3 3])
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DR vs PR: progress for k= 750 iterations

Note that Peaceman-Rachford is faster than Douglas-Rachford.

Exercises
Exercise 32.1 Provide the details for (32.2).

Exercise 32.2 Provide examples of (/, g) where (i) Fix(R5R/) = {0} or (ii) Fix(R5R/) = X.

Exercise 32.3 Consider Theorem 32.3. Give an example where (xk)ke® fails to converge to a 
point in Fix(R^Ry). Must the cluster points of (s^gn) lie in FixT?

Exercise 32.4 Provide the details for (32.7).
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The Product Space Trick

In the past chapters, we focused on minimizing the sum of two functions — thus, a natural 
question arises: How do we deal with a sum of more than two functions? In this chapter, we 
focus on a straightforward approach to dealing with this situation as well as with a more recent 
one. We assume that

fi, • • •, fm are convex, lower semicontinuous, and proper on X, (33.1a)
S := Argmin(/1 H------- 1- fm). (33.1b)

33.1 - The Standard Product Space Approach
In this section, we set

X := Xm, (33.2a)
D := {(x,...,x) eX (33.2b)

f(x) = /i(a;i)H------- 1- (33.2c)
S := Argmin(f + to). (33.2d)

Recall that the inner product in X is defined by (x,y) := (x-^yi) + • • • + if
x= (xi,... ,a;m) and y = (yi,...,ym).

Proposition 33.1 We have the following:

(i) If x e S, then the m-fold copy lies in S.

(ii) Ifx e S, then x =(&,..., x)for some x e S.

The last result reduces the problem of finding minimizers of the sum /i + • • • + fm to that 
of finding minimizers of f + L&- The latter problem can certainly be tackled using, for instance, 
the Douglas-Rachford algorithm, provided we can compute the proximal mappings of f and ad- 
Fortunately, these can be found fairly easily, provided we have access to each Py.:

Proposition 33.2 Let x = (a?i,..., xm) e X. Then

Pf(x) = (PZ1(xi),...,P/m(xm)) (33.3)
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and

PtD(x) = PD(x) = (?/,...,?/), where 2/:=^(^i +-----F^m). (33.4)

Proof. The formula (33.3) is a consequence of Proposition 25.11. The projection of x onto D 
is the point z = (z,..., z), where z minimizes the function w 1X1 l|w-^||2. This last 
function is convex and differentiable; finding its critical point leads directly to (33.4). □

Armed with Proposition 33.2, one can apply various algorithms in X to find a point in S. Let 
us record the Douglas-Rachford algorithm applied to the pair (ad, f), but written in a form that 
does not mention X explicitly:

Remark 33.3 (Douglas-Rachford, standard approach) Pick starting points a?o,i,..., xo^m in
X, and set •= 12™ i For every k e N and i e {1,.m}, update via

^fc+1,2 • *̂k,i  “I- F/i(2*£fc  (33.5a)
Xfc+1 := Y^T=-l xk+i,i- (33.5b)

Provided suitable assumptions hold, the sequence (xk)ke^ will converge to a point in S by 
Theorem 31.7(ii).

33.2 - The Campoy-Kruger Approach
In this section, we set

Note that these objects reside in 1, unlike the standard approach, which operates in .

X := Xm~\ (33.6a)
D:={(x,...,x) GX|ieX}, (33.6b)

f(x) :=f(xi,...,o:m_i) = /i(xi)H-------1-/m-i(xm_!), (33.6c)
g(x) :=g(xi,...,X„l_l) = ^i(/m(xi)d-------F/m(xm-l)), (33.6d)

S := Argmin(f + g + tD)- (33.6e)

Proposition 33.4 We have the following:

(i) If x e S, then the (m — f)-fold copy lies in S.

(ii) Ifx e S, then x =(&,..., x)for some x e S.

Proposition 33.5 Let x = (a?i,..., ^m-i) 6 X. Then

Pf (x) = (PA (Xi),..., (xm_0) (33.7)

and

Pg+tD(x) = (y,•••,?/), where y := P_^_/m (^(xi + • • • + arm_i)). (33.8)

Proof. Again, the formula (33.7) is a consequence of Proposition 25.11.
Denote the embedding operator that sends y e X to its (m — l)-fold copy (?/,...,?/) e X 

by E. Because the Argmin does not change when we add a constant to its argument or multiply 
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by a positive number, we deduce that

pg+tD(x) = Argmin (g(y) + tD(y) + |||y - x||2) 
yex

= E Argmin (/m(y) + II?/ “ M2) 
yex

= E Argmin (/m(y) + |S^1(II?/I|2 - 2 (?/,^))) 
yex

= E Argmin (^/m(y) + |||y||2 - 7^4 E™71 (y,Xi)) 
yex

= E Argmin (^^(y) + |||y - ^iP)
yex

= (^T^l "* *"
and this verifies (33.8). □

Armed with Proposition 33.5, one can apply various algorithms in X to find a point in S. Let 
us record the Douglas-Rachford algorithm applied to the pair (g + ^d, f), but written in a form 
that does not mention X explicitly:

Remark 33.6 (Douglas-Rachford, Campoy-Kruger approach) Pick points £0,i, • • •, #o,m-i 
in X, and set xq := P 11 For every k e N and i e {1,..., m — 1}, update

•£fc+i,z := -F P/j (33.9a)

£fc+i '= P—^fm (^T St=i (33.9b)

Provided suitable assumptions hold, the sequence (xk)keN will converge to a point in S by 
Theorem 31.7(ii).

Exercises
Exercise 33.1 Provide the details for Proposition 33.1.

Exercise 33.2 Provide the details as well as some suitable assumptions for Remark 33.3.

Exercise 33.3 Provide the details for Proposition 33.4.

Exercise 33.4 Provide the details as well as some suitable assumptions for Remark 33.6.

Exercise 33.5 Suppose that m = 2. Explain how Remark 33.6 reduces to the Douglas-Rachford 
algorithm applied to the pair (J2, /i).





Bibliographical Pointers

The following nice books aim at a similar audience while emphasizing somewhat different com­
plementary topics: [1], [4], [34], and [37].

Congratulations on completing the book in your hand! If you wish to move on to more 
advanced topics but need an introduction to infinite-dimensional spaces, we recommend [21], 
[25], and [29] for background reading.

Ready to dive into advanced topics? In addition to [3], [5], and [39], which served as guides 
to preparing this book, we recommend [7], [9], [10], [11], [12], [13], [14], [15], [17], [23], [24], 
[30], [31], [32], [33], [36], [38], [40], [41], and [42].

We conclude by providing selected additional references for each chapter.
Chapter 1: This material is standard; see also [5] and [25]. Chapter 2, Chapter 3, and Chap­

ter 4: [39]. Chapter 5: The material is standard; see also [3]. Chapter 6 and Chapter 7: [39]. 
Chapter 8: The material is fairly standard; see also [3] and [5]. Chapter 9: [39]. Chapter 10: [5] 
and [39]. Chapter 11: [39]; see also [3] and [34]. Chapter 12 [39]; see also [3] and [5]. Chap­
ter 13: See [39], [3], and [5]. For Section 13.3, see Chapter 14: [3], [30], and [39]. Chapter 15, 
Chapter 16, and Chapter 17: [5] and [7]. Chapter 18, Chapter 19, Chapter 20, and Chapter 21: 
[39]. Chapter 22: [2], [3], [18], and [20]. Chapter 23, Chapter 24, and Chapter 25: [3] and [5]. 
Chapter 26 and Chapter 27: [3], [5], and [35]. Chapter 28: [5] and [38]. Chapter 29: [3], [5], and 
[19]. Chapter 30: [5] and [6]. Chapter 31 and Chapter 32: [3], [22], [28], and [41]. Chapter 33: 
[16], [26], and [27].
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