

SQL Tutorial
Www.w3schools.com, 2024. — 299 p.

Contents:

SQL Tutorial

Contents:

Introduction to SQL

SQL Syntax

SQL SELECT Statement

SQL SELECT DISTINCT Statement

SQL WHERE Clause

SQL ORDER BY Keyword

SQL AND Operator

SQL OR Operator

SQL NOT Operator

SQL INSERT INTO Statement

SQL NULL Values

SQL UPDATE Statement

SQL DELETE Statement

SQL TOP, LIMIT, FETCH FIRST or ROWNUM Clause

SQL Aggregate Functions

SQL MIN() and MAX() Functions

SQL COUNT() Function

SQL SUM() Function

SQL AVG() Function

SQL LIKE Operator

SQL Wildcards

SQL IN Operator

SQL BETWEEN Operator

SQL Aliases

SQL Joins

SQL INNER JOIN

SQL LEFT JOIN Keyword

SQL RIGHT JOIN Keyword

SQL FULL OUTER JOIN Keyword

SQL Self Join

SQL UNION Operator

SQL GROUP BY Statement

SQL HAVING Clause

SQL EXISTS Operator

SQL ANY and ALL Operators

SQL SELECT INTO Statement

SQL INSERT INTO SELECT Statement

SQL CASE Expression

SQL NULL Functions

SQL Stored Procedures for SQL Server

SQL Comments

SQL Operators

SQL DATABASE

SQL CREATE DATABASE Statement

SQL DROP DATABASE Statement

SQL BACKUP DATABASE for SQL Server

SQL CREATE TABLE Statement

SQL DROP TABLE Statement

SQL ALTER TABLE Statement

SQL Constraints

SQL NOT NULL Constraint

SQL UNIQUE Constraint

SQL PRIMARY KEY Constraint

SQL FOREIGN KEY Constraint

SQL CHECK Constraint

SQL DEFAULT Constraint

SQL CREATE INDEX Statement

SQL AUTO INCREMENT Field

SQL Working With Dates

SQL Views

SQL Injection

SQL Hosting

SQL Data Types for MySQL, SQL Server, and MS Access

SQL Keywords Reference

SQL ADD Keyword

SQL ADD CONSTRAINT Keyword

SQL ALL Keyword

SQL ALTER Keyword

SQL ALTER COLUMN Keyword

SQL ALTER TABLE Keyword

SQL AND Keyword

SQL ANY Keyword

SQL AS Keyword

SQL ASC Keyword

SQL BACKUP DATABASE Keyword

SQL BETWEEN Keyword

SQL CASE Keyword

SQL CHECK Keyword

SQL COLUMN Keyword

SQL CONSTRAINT Keyword

SQL CREATE Keyword

SQL CREATE DATABASE Keyword

SQL CREATE INDEX Keyword

SQL CREATE OR REPLACE VIEW Keyword

SQL CREATE TABLE Keyword

SQL CREATE PROCEDURE Keyword

SQL CREATE UNIQUE INDEX Keyword

SQL CREATE VIEW Keyword

SQL DATABASE Keyword

SQL DEFAULT Keyword

SQL DELETE Keyword

SQL DESC Keyword

SQL SELECT DISTINCT Keyword

SQL DROP Keyword

SQL DROP COLUMN Keyword

SQL DROP CONSTRAINT Keyword

SQL DROP DATABASE Keyword

SQL DROP DEFAULT Keyword

SQL DROP INDEX Keyword

SQL DROP TABLE and TRUNCATE TABLE Keywords

SQL DROP VIEW Keyword

SQL EXEC Keyword

SQL EXISTS Keyword

SQL FOREIGN KEY Keyword

SQL FROM Keyword

SQL FULL OUTER JOIN Keyword

SQL GROUP BY Keyword

SQL HAVING Keyword

SQL IN Keyword

SQL INDEX Keyword

SQL INNER JOIN Keyword

SQL INSERT INTO Keyword

SQL INSERT INTO SELECT Keyword

SQL IS NULL Keyword

SQL IS NOT NULL Keyword

SQL JOIN Keyword

SQL LEFT JOIN Keyword

SQL LIKE Keyword

SQL SELECT TOP, LIMIT and ROWNUM Keywords

SQL SELECT TOP, LIMIT and ROWNUM Keywords

SQL NOT NULL Keyword

SQL OR Keyword

SQL ORDER BY Keyword

SQL FULL OUTER JOIN Keyword

SQL PRIMARY KEY Keyword

SQL CREATE PROCEDURE Keyword

SQL RIGHT JOIN Keyword

SQL SELECT TOP, LIMIT and ROWNUM Keywords

SQL SELECT Keyword

SQL SELECT DISTINCT Keyword

SQL SELECT INTO Keyword

SQL SELECT TOP, LIMIT and ROWNUM Keywords

SQL SET Keyword

SQL TABLE Keyword

SQL SELECT TOP, LIMIT and ROWNUM Keywords

SQL DROP TABLE and TRUNCATE TABLE Keywords

SQL UNION Keyword

SQL UNION ALL Keyword

SQL UNIQUE Keyword

SQL UPDATE Keyword

SQL VALUES Keyword

SQL VIEW Keyword

SQL WHERE Keyword

MySQL Functions

SQL Server Functions

MS Access Functions

SQL Quick Reference from W3Schools

SQL is a standard language for storing, manipulating and retrieving data in
databases.

Our SQL tutorial will teach you how to use SQL in: MySQL, SQL Server, MS
Access, Oracle, Sybase, Informix, Postgres, and other database systems.

Introduction to SQL

SQL is a standard language for accessing and manipulating databases.

What is SQL?

 SQL stands for Structured Query Language

 SQL lets you access and manipulate databases
 SQL became a standard of the American National Standards Institute

(ANSI) in 1986, and of the International Organization for Standardization
(ISO) in 1987

What Can SQL do?

 SQL can execute queries against a database

 SQL can retrieve data from a database
 SQL can insert records in a database

 SQL can update records in a database
 SQL can delete records from a database

 SQL can create new databases
 SQL can create new tables in a database
 SQL can create stored procedures in a database

 SQL can create views in a database
 SQL can set permissions on tables, procedures, and views

SQL is a Standard - BUT....

Although SQL is an ANSI/ISO standard, there are different versions of the SQL

language.

However, to be compliant with the ANSI standard, they all support at least the
major commands (such as SELECT, UPDATE, DELETE, INSERT, WHERE) in a similar

manner.

Note: Most of the SQL database programs also have their own proprietary

extensions in addition to the SQL standard!

Using SQL in Your Web Site

To build a web site that shows data from a database, you will need:

 An RDBMS database program (i.e. MS Access, SQL Server, MySQL)
 To use a server-side scripting language, like PHP or ASP

 To use SQL to get the data you want

 To use HTML / CSS to style the page

RDBMS

RDBMS stands for Relational Database Management System.

RDBMS is the basis for SQL, and for all modern database systems such as MS

SQL Server, IBM DB2, Oracle, MySQL, and Microsoft Access.

The data in RDBMS is stored in database objects called tables. A table is a

collection of related data entries and it consists of columns and rows.

Look at the "Customers" table:

Example
SELECT * FROM Customers;

Every table is broken up into smaller entities called fields. The fields in the
Customers table consist of CustomerID, CustomerName, ContactName,

Address, City, PostalCode and Country. A field is a column in a table that is
designed to maintain specific information about every record in the table.

A record, also called a row, is each individual entry that exists in a table. For
example, there are 91 records in the above Customers table. A record is a

horizontal entity in a table.

A column is a vertical entity in a table that contains all information associated

with a specific field in a table.

SQL Syntax

SQL Statements

Most of the actions you need to perform on a database are done with SQL

statements.

SQL statements consists of keywords that are easy to understand.

The following SQL statement returns all records from a table named

"Customers":

Example

Select all records from the Customers table:

SELECT * FROM Customers;

In this tutorial we will teach you all about the different SQL statements.

Database Tables

A database most often contains one or more tables. Each table is identified by a

name (e.g. "Customers" or "Orders"), and contain records (rows) with data.

In this tutorial we will use the well-known Northwind sample database (included
in MS Access and MS SQL Server).

Below is a selection from the Customers table used in the examples:

CustomerI

D

CustomerNa

me

ContactNa

me

Address City PostalCo

de

Countr

y

1

Alfreds

Futterkiste

Maria

Anders

Obere Str.

57

Berlin 12209 German

y

2 Ana Trujillo

Emparedados

y helados

Ana Trujillo Avda. de la

Constitució

n 2222

Méxic

o D.F.

05021 Mexico

3 Antonio

Moreno

Taquería

Antonio

Moreno

Mataderos

2312

Méxic

o D.F.

05023 Mexico

https://www.w3schools.com/sql/trysql.asp?filename=trysql_customers

4

Around the

Horn

Thomas

Hardy

120

Hanover Sq.

Londo

n

WA1 1DP UK

5 Berglunds

snabbköp

Christina

Berglund

Berguvsväg

en 8

Luleå S-958 22 Sweden

The table above contains five records (one for each customer) and seven
columns (CustomerID, CustomerName, ContactName, Address, City,

PostalCode, and Country).

Keep in Mind That...

 SQL keywords are NOT case sensitive: select is the same as SELECT

In this tutorial we will write all SQL keywords in upper-case.

Semicolon after SQL Statements?

Some database systems require a semicolon at the end of each SQL statement.

Semicolon is the standard way to separate each SQL statement in database

systems that allow more than one SQL statement to be executed in the same
call to the server.

In this tutorial, we will use semicolon at the end of each SQL statement.

Some of The Most Important SQL

Commands

 SELECT - extracts data from a database

 UPDATE - updates data in a database

 DELETE - deletes data from a database

 INSERT INTO - inserts new data into a database

 CREATE DATABASE - creates a new database

 ALTER DATABASE - modifies a database

 CREATE TABLE - creates a new table

 ALTER TABLE - modifies a table

 DROP TABLE - deletes a table

 CREATE INDEX - creates an index (search key)

 DROP INDEX - deletes an index

SQL SELECT Statement

The SQL SELECT Statement

The SELECT statement is used to select data from a database.

Example

Return data from the Customers table:

SELECT CustomerName, City FROM Customers;

Syntax

SELECT column1, column2, ...

FROM table_name;

Here, column1, column2, ... are the field names of the table you want to select

data from.

The table_name represents the name of the table you want to select data from.

Demo Database

Below is a selection from the Customers table used in the examples:

https://www.w3schools.com/sql/trysql.asp?filename=trysql_customers

CustomerI

D

CustomerNa

me

ContactNa

me

Address City PostalCo

de

Countr

y

1

Alfreds

Futterkiste

Maria

Anders

Obere Str.

57

Berlin 12209 German

y

2 Ana Trujillo

Emparedados

y helados

Ana Trujillo Avda. de la

Constitució

n 2222

Méxic

o D.F.

05021 Mexico

3 Antonio

Moreno

Taquería

Antonio

Moreno

Mataderos

2312

Méxic

o D.F.

05023 Mexico

4

Around the

Horn

Thomas

Hardy

120

Hanover Sq.

Londo

n

WA1 1DP UK

5 Berglunds

snabbköp

Christina

Berglund

Berguvsväg

en 8

Luleå S-958 22 Sweden

Select ALL columns

If you want to return all columns, without specifying every column name, you
can use the SELECT * syntax:

Example

Return all the columns from the Customers table:

SELECT * FROM Customers;

Test Yourself With Exercises

Exercise:

Insert the missing statement to get all the columns from the Customers table.

_____________ * FROM Customers;

Submit Answer »

SQL SELECT DISTINCT Statement

The SQL SELECT DISTINCT Statement

The SELECT DISTINCT statement is used to return only distinct (different) values.

Example

Select all the different countries from the "Customers" table:

SELECT DISTINCT Country FROM Customers;

Inside a table, a column often contains many duplicate values; and sometimes

you only want to list the different (distinct) values.

Syntax

SELECT DISTINCT column1, column2, ...

FROM table_name;

Demo Database

Below is a selection from the Customers table used in the examples:

CustomerI

D

CustomerNa

me

ContactNa

me

Address City PostalCo

de

Countr

y

1

Alfreds

Futterkiste

Maria

Anders

Obere Str.

57

Berlin 12209 German

y

2 Ana Trujillo

Emparedados

y helados

Ana Trujillo Avda. de la

Constitució

n 2222

Méxic

o D.F.

05021 Mexico

3 Antonio

Moreno

Taquería

Antonio

Moreno

Mataderos

2312

Méxic

o D.F.

05023 Mexico

4

Around the

Horn

Thomas

Hardy

120

Hanover Sq.

Londo

n

WA1 1DP UK

5 Berglunds

snabbköp

Christina

Berglund

Berguvsväg

en 8

Luleå S-958 22 Sweden

SELECT Example Without DISTINCT

If you omit the DISTINCT keyword, the SQL statement returns the "Country"

value from all the records of the "Customers" table:

Example

SELECT Country FROM Customers;

https://www.w3schools.com/sql/trysql.asp?filename=trysql_customers

Count Distinct

By using the DISTINCT keyword in a function called COUNT, we can return the

number of different countries.

Example

SELECT COUNT(DISTINCT Country) FROM Customers;

Note: The COUNT(DISTINCT column_name) is not supported in Microsoft

Access databases.

Here is a workaround for MS Access:

Example

SELECT Count(*) AS DistinctCountries
FROM (SELECT DISTINCT Country FROM Customers);

You will learn about the COUNT function later in this tutorial.

Test Yourself With Exercises

Exercise:

Select all the different values from the Country column in the Customers table.

_____________._____________ Country FROM Customers;

Submit Answer »

SQL WHERE Clause

The SQL WHERE Clause

The WHERE clause is used to filter records.

It is used to extract only those records that fulfill a specified condition.

Example

Select all customers from Mexico:

SELECT * FROM Customers
WHERE Country='Mexico';

Syntax

SELECT column1, column2, ...

FROM table_name

WHERE condition;

Note: The WHERE clause is not only used in SELECT statements, it is also used

in UPDATE, DELETE, etc.!

Demo Database

Below is a selection from the Customers table used in the examples:

CustomerI

D

CustomerNa

me

ContactNa

me

Address City PostalCo

de

Countr

y

1

Alfreds

Futterkiste

Maria

Anders

Obere Str.

57

Berlin 12209 German

y

2 Ana Trujillo

Emparedados

y helados

Ana Trujillo Avda. de la

Constitució

n 2222

Méxic

o D.F.

05021 Mexico

https://www.w3schools.com/sql/trysql.asp?filename=trysql_customers

3 Antonio

Moreno

Taquería

Antonio

Moreno

Mataderos

2312

Méxic

o D.F.

05023 Mexico

4

Around the

Horn

Thomas

Hardy

120

Hanover Sq.

Londo

n

WA1 1DP UK

5 Berglunds

snabbköp

Christina

Berglund

Berguvsväg

en 8

Luleå S-958 22 Sweden

Text Fields vs. Numeric Fields

SQL requires single quotes around text values (most database systems will also

allow double quotes).

However, numeric fields should not be enclosed in quotes:

Example

SELECT * FROM Customers
WHERE CustomerID=1;

Operators in The WHERE Clause

You can use other operators than the = operator to filter the search.

Example

Select all customers with a CustomerID greater than 80:

SELECT * FROM Customers
WHERE CustomerID > 80;

The following operators can be used in the WHERE clause:

Operator Description

= Equal

> Greater than

< Less than

>= Greater than or equal

<= Less than or equal

<> Not equal. Note: In some versions of SQL this
operator may be written as !=

BETWEEN Between a certain range

LIKE Search for a pattern

IN To specify multiple possible values for a column

Test Yourself With Exercises

Exercise:

Select all records where the City column has the value "Berlin".

SELECT * FROM Customers

_____________._____________ = _____________;

Submit Answer »

SQL ORDER BY Keyword

The SQL ORDER BY

The ORDER BY keyword is used to sort the result-set in ascending or descending

order.

Example

Sort the products by price:

SELECT * FROM Products
ORDER BY Price;

Syntax

SELECT column1, column2, ...

FROM table_name

ORDER BY column1, column2, ... ASC|DESC;

Demo Database

Below is a selection from the Products table used in the examples:

ProductID ProductName SupplierID CategoryID Unit Price

1 Chais 1 1 10 boxes x 20

bags

18

2 Chang 1 1 24 - 12 oz

bottles

19

3 Aniseed Syrup 1 2 12 - 550 ml

bottles

10

4 Chef Anton's Cajun

Seasoning

2 2 48 - 6 oz jars 22

5 Chef Anton's Gumbo

Mix

2 2 36 boxes 21.35

https://www.w3schools.com/sql/trysql.asp?filename=trysql_products

DESC

The ORDER BY keyword sorts the records in ascending order by default. To sort

the records in descending order, use the DESC keyword.

Example

Sort the products from highest to lowest price:

SELECT * FROM Products
ORDER BY Price DESC;

Order Alphabetically

For string values the ORDER BY keyword will order alphabetically:

Example

Sort the products alphabetically by ProductName:

SELECT * FROM Products
ORDER BY ProductName;

Alphabetically DESC

To sort the table reverse alphabetically, use the DESC keyword:

Example

Sort the products by ProductName in reverse order:

SELECT * FROM Products
ORDER BY ProductName DESC;

ORDER BY Several Columns

The following SQL statement selects all customers from the "Customers" table,

sorted by the "Country" and the "CustomerName" column. This means that it
orders by Country, but if some rows have the same Country, it orders them by

CustomerName:

Example

SELECT * FROM Customers
ORDER BY Country, CustomerName;

Using Both ASC and DESC

The following SQL statement selects all customers from the "Customers" table,

sorted ascending by the "Country" and descending by the "CustomerName"
column:

Example

SELECT * FROM Customers
ORDER BY Country ASC, CustomerName DESC;

Test Yourself With Exercises

Exercise:

Select all records from the Customers table, sort the result alphabetically by the

column City.

SELECT * FROM Customers

_____________ _____________;

Submit Answer »

SQL AND Operator

The SQL AND Operator

The WHERE clause can contain one or many AND operators.

The AND operator is used to filter records based on more than one condition, like

if you want to return all customers from Spain that starts with the letter 'G':

Example
Select all customers from Spain that starts with the letter 'G':
SELECT *
FROM Customers
WHERE Country = 'Spain' AND CustomerName LIKE 'G%';

Syntax
SELECT column1, column2, ...
FROM table_name
WHERE condition1 AND condition2 AND condition3 ...;

AND vs OR

The AND operator displays a record if all the conditions are TRUE.

The OR operator displays a record if any of the conditions are TRUE.

Demo Database

Below is a selection from the Customers table used in the examples:

https://www.w3schools.com/sql/trysql.asp?filename=trysql_customers

CustomerI

D

CustomerNa

me

ContactNa

me

Address City PostalCo

de

Countr

y

1

Alfreds

Futterkiste

Maria

Anders

Obere Str.

57

Berlin 12209 German

y

2 Ana Trujillo

Emparedados

y helados

Ana Trujillo Avda. de la

Constitució

n 2222

Méxic

o D.F.

05021 Mexico

3 Antonio

Moreno

Taquería

Antonio

Moreno

Mataderos

2312

Méxic

o D.F.

05023 Mexico

4

Around the

Horn

Thomas

Hardy

120

Hanover Sq.

Londo

n

WA1 1DP UK

5 Berglunds

snabbköp

Christina

Berglund

Berguvsväg

en 8

Luleå S-958 22 Sweden

All Conditions Must Be True

The following SQL statement selects all fields from Customers where Country is

"Germany" AND City is "Berlin" AND PostalCode is higher than 12000:

Example

SELECT * FROM Customers
WHERE Country = 'Germany'
AND City = 'Berlin'
AND PostalCode > 12000;

Combining AND and OR

You can combine the AND and OR operators.

The following SQL statement selects all customers from Spain that starts with a

"G" or an "R".

Make sure you use parenthesis to get the correct result.

Example

Select all Spanish customers that starts with either "G" or "R":

SELECT * FROM Customers
WHERE Country
= 'Spain' AND (CustomerName LIKE 'G%' OR CustomerName LIKE 'R%');

Without parenthesis, the select statement will return all customers from Spain
that starts with a "G", plus all customers that starts with an "R", regardless of

the country value:

Example

Select all customers that either:

are from Spain and starts with either "G", or

starts with the letter "R":

SELECT * FROM Customers
WHERE Country
= 'Spain' AND CustomerName LIKE 'G%' OR CustomerName LIKE 'R%';

Test Yourself With Exercises

Exercise:

Select all records where the City column has the value 'Berlin' and

the PostalCode column has the value 12209.

_____________ * FROM Customers

_____________ City = 'Berlin'

_____________._____________ = '12209';

Submit Answer »

SQL OR Operator

The SQL OR Operator

The WHERE clause can contain one or more OR operators.

The OR operator is used to filter records based on more than one condition, like

if you want to return all customers from Germany but also those from Spain:

Example

Select all customers from Germany or Spain:

SELECT *
FROM Customers
WHERE Country = 'Germany' OR Country = 'Spain';

Syntax
SELECT column1, column2, ...

FROM table_name

WHERE condition1 OR condition2 OR condition3 ...;

OR vs AND

The OR operator displays a record if any of the conditions are TRUE.

The AND operator displays a record if all the conditions are TRUE.

Demo Database

Below is a selection from the Customers table used in the examples:

CustomerI

D

CustomerNa

me

ContactNa

me

Address City PostalCo

de

Countr

y

1

Alfreds

Futterkiste

Maria

Anders

Obere Str.

57

Berlin 12209 German

y

2 Ana Trujillo

Emparedados

y helados

Ana Trujillo Avda. de la

Constitució

n 2222

Méxic

o D.F.

05021 Mexico

3 Antonio

Moreno

Taquería

Antonio

Moreno

Mataderos

2312

Méxic

o D.F.

05023 Mexico

4

Around the

Horn

Thomas

Hardy

120

Hanover Sq.

Londo

n

WA1 1DP UK

5 Berglunds

snabbköp

Christina

Berglund

Berguvsväg

en 8

Luleå S-958 22 Sweden

https://www.w3schools.com/sql/trysql.asp?filename=trysql_customers

At Least One Condition Must Be True

The following SQL statement selects all fields from Customers where

either City is "Berlin", CustomerName starts with the letter "G" or Country is

"Norway":

Example

SELECT * FROM Customers
WHERE City = 'Berlin' OR CustomerName LIKE 'G%' OR Country = 'Norway';

Combining AND and OR

You can combine the AND and OR operators.

The following SQL statement selects all customers from Spain that starts with a
"G" or an "R".

Make sure you use parenthesis to get the correct result.

Example

Select all Spanish customers that starts with either "G" or "R":

SELECT * FROM Customers
WHERE Country
= 'Spain' AND (CustomerName LIKE 'G%' OR CustomerName LIKE 'R%');

Without parenthesis, the select statement will return all customers from Spain

that starts with a "G", plus all customers that starts with an "R", regardless of
the country value:

Example

Select all customers that either:

are from Spain and starts with either "G", or
starts with the letter "R":

SELECT * FROM Customers
WHERE Country
= 'Spain' AND CustomerName LIKE 'G%' OR CustomerName LIKE 'R%';

Test Yourself With Exercises

Exercise:

Select all records where the City column has the value 'Berlin' or 'London'.

_____________ * FROM Customers

_____________ City = 'Berlin'

_____________._____________ = '_____________';

Submit Answer »

SQL NOT Operator

The NOT Operator

The NOT operator is used in combination with other operators to give the

opposite result, also called the negative result.

In the select statement below we want to return all customers that are NOT

from Spain:

Example

Select only the customers that are NOT from Spain:

SELECT * FROM Customers
WHERE NOT Country = 'Spain';

In the example above, the NOT operator is used in combination with

the = operator, but it can be used in combination with other comparison and/or

logical operators. See examples below.

Syntax

SELECT column1, column2, ...

FROM table_name

WHERE NOT condition;

Demo Database

Below is a selection from the Customers table used in the examples:

CustomerI

D

CustomerNa

me

ContactNa

me

Address City PostalCo

de

Countr

y

1

Alfreds

Futterkiste

Maria

Anders

Obere Str.

57

Berlin 12209 German

y

2 Ana Trujillo

Emparedados

y helados

Ana Trujillo Avda. de la

Constitució

n 2222

Méxic

o D.F.

05021 Mexico

3 Antonio

Moreno

Taquería

Antonio

Moreno

Mataderos

2312

Méxic

o D.F.

05023 Mexico

4

Around the

Horn

Thomas

Hardy

120

Hanover Sq.

Londo

n

WA1 1DP UK

https://www.w3schools.com/sql/trysql.asp?filename=trysql_customers

5 Berglunds

snabbköp

Christina

Berglund

Berguvsväg

en 8

Luleå S-958 22 Sweden

NOT LIKE

Example

Select customers that does not start with the letter 'A':

SELECT * FROM Customers
WHERE CustomerName NOT LIKE 'A%';

NOT BETWEEN

Example

Select customers with a customerID not between 10 and 60:

SELECT * FROM Customers
WHERE CustomerID NOT BETWEEN 10 AND 60;

NOT IN

Example

Select customers that are not from Paris or London:

SELECT * FROM Customers
WHERE City NOT IN ('Paris', 'London');

NOT Greater Than

Example

Select customers with a CustomerId not greater than 50:

SELECT * FROM Customers
WHERE NOT CustomerID > 50;

Note: There is a not-greater-than operator: !> that would give you the same

result.

NOT Less Than

Example

Select customers with a CustomerID not less than 50:

SELECT * FROM Customers
WHERE NOT CustomerId < 50;

Note: There is a not-less-than operator: !< that would give you the same

result.

Test Yourself With Exercises

Exercise:

Use the NOT keyword to select all records where City is NOT "Berlin".

SELECT * FROM Customers

_____________ = '_____________';

Submit Answer »

SQL INSERT INTO Statement

The SQL INSERT INTO Statement

The INSERT INTO statement is used to insert new records in a table.

INSERT INTO Syntax

It is possible to write the INSERT INTO statement in two ways:

1. Specify both the column names and the values to be inserted:

INSERT INTO table_name (column1, column2, column3, ...)

VALUES (value1, value2, value3, ...);

2. If you are adding values for all the columns of the table, you do not need to

specify the column names in the SQL query. However, make sure the order of
the values is in the same order as the columns in the table. Here, the INSERT

INTO syntax would be as follows:

INSERT INTO table_name

VALUES (value1, value2, value3, ...);

Demo Database

Below is a selection from the Customers table used in the examples:

CustomerI

D

CustomerNa

me

ContactNa

me

Address City PostalCod

e

Countr

y

https://www.w3schools.com/sql/trysql.asp?filename=trysql_customers

89 White Clover

Markets

Karl

Jablonski

305 - 14th

Ave. S.

Suite 3B

Seattle 98128 USA

90

Wilman Kala Matti

Karttunen

Keskuskat

u 45

Helsin

ki

21240 Finland

91

Wolski Zbyszek ul.

Filtrowa

68

Walla 01-012 Poland

INSERT INTO Example

The following SQL statement inserts a new record in the "Customers" table:

Example
INSERT INTO Customers (CustomerName, ContactName, Address, City,
PostalCode, Country)
VALUES ('Cardinal', 'Tom B. Erichsen', 'Skagen
21', 'Stavanger', '4006', 'Norway');

The selection from the "Customers" table will now look like this:

CustomerI

D

CustomerNa

me

ContactNa

me

Address City PostalCo

de

Countr

y

89 White Clover

Markets

Karl

Jablonski

305 - 14th

Ave. S.

Suite 3B

Seattle 98128 USA

90

Wilman Kala Matti

Karttunen

Keskuskat

u 45

Helsinki 21240 Finland

91

Wolski Zbyszek ul.

Filtrowa

68

Walla 01-012 Poland

92 Cardinal Tom B.

Erichsen

Skagen

21

Stavang

er

4006 Norway

Did you notice that we did not insert any number into the CustomerID
field?

The CustomerID column is an auto-increment field and will be generated
automatically when a new record is inserted into the table.

Insert Data Only in Specified Columns

It is also possible to only insert data in specific columns.

The following SQL statement will insert a new record, but only insert data in the

"CustomerName", "City", and "Country" columns (CustomerID will be updated
automatically):

Example

INSERT INTO Customers (CustomerName, City, Country)
VALUES ('Cardinal', 'Stavanger', 'Norway');

The selection from the "Customers" table will now look like this:

CustomerI

D

CustomerNa

me

ContactNa

me

Address City PostalCo

de

Countr

y

89 White Clover

Markets

Karl

Jablonski

305 - 14th

Ave. S.

Suite 3B

Seattle 98128 USA

https://www.w3schools.com/sql/sql_autoincrement.asp

90

Wilman Kala Matti

Karttunen

Keskuskat

u 45

Helsinki 21240 Finland

91

Wolski Zbyszek ul.

Filtrowa

68

Walla 01-012 Poland

92 Cardinal null null Stavang

er

null Norway

Insert Multiple Rows

It is also possible to insert multiple rows in one statement.

To insert multiple rows of data, we use the same INSERT INTO statement, but with

multiple values:

Example

INSERT INTO Customers (CustomerName, ContactName, Address, City,
PostalCode, Country)
VALUES
('Cardinal', 'Tom B. Erichsen', 'Skagen
21', 'Stavanger', '4006', 'Norway'),
('Greasy Burger', 'Per Olsen', 'Gateveien
15', 'Sandnes', '4306', 'Norway'),
('Tasty Tee', 'Finn Egan', 'Streetroad 19B', 'Liverpool', 'L1
0AA', 'UK');

Make sure you separate each set of values with a comma ,.

The selection from the "Customers" table will now look like this:

CustomerI

D

CustomerNa

me

ContactNa

me

Address City PostalCo

de

Countr

y

89 White Clover

Markets

Karl

Jablonski

305 - 14th

Ave. S.

Suite 3B

Seattle 98128 USA

90

Wilman Kala Matti

Karttunen

Keskuskat

u 45

Helsinki 21240 Finland

91

Wolski Zbyszek ul.

Filtrowa

68

Walla 01-012 Poland

92 Cardinal Tom B.

Erichsen

Skagen

21

Stavang

er

4006 Norway

93 Greasy Burger Per Olsen Gateveien

15

Sandnes 4306 Norway

94 Tasty Tee Finn Egan Streetroad

19B

Liverpo

ol

L1 0AA UK

Test Yourself With Exercises

Exercise:

Insert a new record in the Customers table.

_____________ Customers _____________

CustomerName,

Address,

City,

PostalCode,

Country _____________

_____________._____________
'Hekkan Burger',

'Gateveien 15',

'Sandnes',

'4306',

'Norway' _____________;

Submit Answer »

SQL NULL Values

What is a NULL Value?

A field with a NULL value is a field with no value.

If a field in a table is optional, it is possible to insert a new record or update a

record without adding a value to this field. Then, the field will be saved with a
NULL value.

Note: A NULL value is different from a zero value or a field that contains

spaces. A field with a NULL value is one that has been left blank during record
creation!

How to Test for NULL Values?

It is not possible to test for NULL values with comparison operators, such as =,

<, or <>.

We will have to use the IS NULL and IS NOT NULL operators instead.

IS NULL Syntax

SELECT column_names

FROM table_name

WHERE column_name IS NULL;

IS NOT NULL Syntax

SELECT column_names

FROM table_name

WHERE column_name IS NOT NULL;

Demo Database

Below is a selection from the Customers table used in the examples:

CustomerI

D

CustomerNa

me

ContactNa

me

Address City PostalCo

de

Countr

y

1

Alfreds

Futterkiste

Maria

Anders

Obere Str.

57

Berlin 12209 German

y

2 Ana Trujillo

Emparedados

y helados

Ana Trujillo Avda. de la

Constitució

n 2222

Méxic

o D.F.

05021 Mexico

https://www.w3schools.com/sql/trysql.asp?filename=trysql_customers

3 Antonio

Moreno

Taquería

Antonio

Moreno

Mataderos

2312

Méxic

o D.F.

05023 Mexico

4

Around the

Horn

Thomas

Hardy

120

Hanover Sq.

Londo

n

WA1 1DP UK

5 Berglunds

snabbköp

Christina

Berglund

Berguvsväg

en 8

Luleå S-958 22 Sweden

The IS NULL Operator

The IS NULL operator is used to test for empty values (NULL values).

The following SQL lists all customers with a NULL value in the "Address" field:

Example
SELECT CustomerName, ContactName, Address
FROM Customers
WHERE Address IS NULL;

Tip: Always use IS NULL to look for NULL values.

The IS NOT NULL Operator

The IS NOT NULL operator is used to test for non-empty values (NOT NULL

values).

The following SQL lists all customers with a value in the "Address" field:

Example

SELECT CustomerName, ContactName, Address
FROM Customers
WHERE Address IS NOT NULL;

Test Yourself With Exercises

Exercise:

Select all records from the Customers where the PostalCode column is empty.

SELECT * FROM Customers

WHERE _____________._____________._____________;

Submit Answer »

SQL UPDATE Statement

The SQL UPDATE Statement

The UPDATE statement is used to modify the existing records in a table.

UPDATE Syntax

UPDATE table_name

SET column1 = value1, column2 = value2, ...

WHERE condition;

Note: Be careful when updating records in a table! Notice the WHERE clause in

the UPDATE statement. The WHERE clause specifies which record(s) that should be

updated. If you omit the WHERE clause, all records in the table will be updated!

Demo Database

Below is a selection from the Customers table used in the examples:

CustomerI

D

CustomerNa

me

ContactNa

me

Address City PostalCo

de

Countr

y

1

Alfreds

Futterkiste

Maria

Anders

Obere Str.

57

Berlin 12209 German

y

2 Ana Trujillo

Emparedados

y helados

Ana Trujillo Avda. de la

Constitució

n 2222

Méxic

o D.F.

05021 Mexico

3 Antonio

Moreno

Taquería

Antonio

Moreno

Mataderos

2312

Méxic

o D.F.

05023 Mexico

4

Around the

Horn

Thomas

Hardy

120

Hanover Sq.

Londo

n

WA1 1DP UK

5 Berglunds

snabbköp

Christina

Berglund

Berguvsväg

en 8

Luleå S-958 22 Sweden

UPDATE Table

The following SQL statement updates the first customer (CustomerID = 1) with

a new contact person and a new city.

https://www.w3schools.com/sql/trysql.asp?filename=trysql_customers

Example
UPDATE Customers
SET ContactName = 'Alfred Schmidt', City= 'Frankfurt'
WHERE CustomerID = 1;

The selection from the "Customers" table will now look like this:

CustomerI

D

CustomerNa

me

ContactNa

me

Address City PostalCo

de

Countr

y

1

Alfreds

Futterkiste

Alfred

Schmidt

Obere Str.

57

Frankfu

rt

12209 German

y

2 Ana Trujillo

Emparedados

y helados

Ana Trujillo Avda. de la

Constitució

n 2222

México

D.F.

05021 Mexico

3 Antonio

Moreno

Taquería

Antonio

Moreno

Mataderos

2312

México

D.F.

05023 Mexico

4

Around the

Horn

Thomas

Hardy

120

Hanover

Sq.

London WA1 1DP UK

5 Berglunds

snabbköp

Christina

Berglund

Berguvsväg

en 8

Luleå S-958 22 Sweden

UPDATE Multiple Records

It is the WHERE clause that determines how many records will be updated.

The following SQL statement will update the ContactName to "Juan" for all

records where country is "Mexico":

Example

UPDATE Customers
SET ContactName='Juan'
WHERE Country='Mexico';

The selection from the "Customers" table will now look like this:

CustomerI

D

CustomerNa

me

ContactNa

me

Address City PostalCo

de

Countr

y

1

Alfreds

Futterkiste

Alfred

Schmidt

Obere Str.

57

Frankfu

rt

12209 German

y

2 Ana Trujillo

Emparedados

y helados

Juan Avda. de la

Constitució

n 2222

México

D.F.

05021 Mexico

3 Antonio

Moreno

Taquería

Juan Mataderos

2312

México

D.F.

05023 Mexico

4

Around the

Horn

Thomas

Hardy

120

Hanover

Sq.

London WA1 1DP UK

5 Berglunds

snabbköp

Christina

Berglund

Berguvsväg

en 8

Luleå S-958 22 Sweden

Update Warning!

Be careful when updating records. If you omit the WHERE clause, ALL records will

be updated!

Example

UPDATE Customers
SET ContactName='Juan';

The selection from the "Customers" table will now look like this:

CustomerI

D

CustomerNa

me

ContactNa

me

Address City PostalCo

de

Countr

y

1

Alfreds

Futterkiste

Juan Obere Str.

57

Frankfu

rt

12209 German

y

2 Ana Trujillo

Emparedados

y helados

Juan Avda. de la

Constitució

n 2222

México

D.F.

05021 Mexico

3 Antonio

Moreno

Taquería

Juan Mataderos

2312

México

D.F.

05023 Mexico

4

Around the

Horn

Juan 120

Hanover

Sq.

London WA1 1DP UK

5 Berglunds

snabbköp

Juan Berguvsväg

en 8

Luleå S-958 22 Sweden

Test Yourself With Exercises

Exercise:

Update the City column of all records in the Customers table.

_____________ Customers

_____________ City = 'Oslo';

Submit Answer »

SQL DELETE Statement

The SQL DELETE Statement

The DELETE statement is used to delete existing records in a table.

DELETE Syntax

DELETE FROM table_name WHERE condition;

Note: Be careful when deleting records in a table! Notice the WHERE clause in

the DELETE statement. The WHERE clause specifies which record(s) should be

deleted. If you omit the WHERE clause, all records in the table will be deleted!

Demo Database

Below is a selection from the Customers table used in the examples:

https://www.w3schools.com/sql/trysql.asp?filename=trysql_customers

CustomerI

D

CustomerNa

me

ContactNa

me

Address City PostalCo

de

Countr

y

1

Alfreds

Futterkiste

Maria

Anders

Obere Str.

57

Berlin 12209 German

y

2 Ana Trujillo

Emparedados

y helados

Ana Trujillo Avda. de la

Constitució

n 2222

Méxic

o D.F.

05021 Mexico

3 Antonio

Moreno

Taquería

Antonio

Moreno

Mataderos

2312

Méxic

o D.F.

05023 Mexico

4

Around the

Horn

Thomas

Hardy

120

Hanover Sq.

Londo

n

WA1 1DP UK

5 Berglunds

snabbköp

Christina

Berglund

Berguvsväg

en 8

Luleå S-958 22 Sweden

SQL DELETE Example

The following SQL statement deletes the customer "Alfreds Futterkiste" from the
"Customers" table:

Example
DELETE FROM Customers WHERE CustomerName='Alfreds Futterkiste';

The "Customers" table will now look like this:

CustomerI

D

CustomerNa

me

ContactNa

me

Address City PostalCo

de

Countr

y

2 Ana Trujillo

Emparedados

y helados

Ana Trujillo Avda. de la

Constitució

n 2222

Méxic

o D.F.

05021 Mexico

3 Antonio

Moreno

Taquería

Antonio

Moreno

Mataderos

2312

Méxic

o D.F.

05023 Mexico

4

Around the

Horn

Thomas

Hardy

120

Hanover Sq.

Londo

n

WA1 1DP UK

5 Berglunds

snabbköp

Christina

Berglund

Berguvsväg

en 8

Luleå S-958 22 Sweden

Delete All Records

It is possible to delete all rows in a table without deleting the table. This means

that the table structure, attributes, and indexes will be intact:

DELETE FROM table_name;

The following SQL statement deletes all rows in the "Customers" table, without

deleting the table:

Example

DELETE FROM Customers;

Delete a Table

To delete the table completely, use the DROP TABLE statement:

Example

Remove the Customers table:

DROP TABLE Customers;

Test Yourself With Exercises

Exercise:

Delete all the records from the Customers table where the Country value is 'Norway'.

_____________ Customers

_____________ Country = 'Norway';

Submit Answer »

SQL TOP, LIMIT, FETCH FIRST or

ROWNUM Clause

The SQL SELECT TOP Clause

The SELECT TOP clause is used to specify the number of records to return.

The SELECT TOP clause is useful on large tables with thousands of records.

Returning a large number of records can impact performance.

Example

Select only the first 3 records of the Customers table:

SELECT TOP 3 * FROM Customers;

Note: Not all database systems support the SELECT TOP clause. MySQL supports

the LIMIT clause to select a limited number of records, while Oracle uses FETCH

FIRST n ROWS ONLY and ROWNUM.

SQL Server / MS Access Syntax:

SELECT TOP number|percent column_name(s)

FROM table_name

WHERE condition;

MySQL Syntax:

SELECT column_name(s)

FROM table_name

WHERE condition

LIMIT number;

Oracle 12 Syntax:

SELECT column_name(s)

FROM table_name

ORDER BY column_name(s)

FETCH FIRST number ROWS ONLY;

Older Oracle Syntax:

SELECT column_name(s)

FROM table_name

WHERE ROWNUM <= number;

Older Oracle Syntax (with ORDER BY):

SELECT *

FROM (SELECT column_name(s) FROM table_name ORDER BY column_name(s)

)

WHERE ROWNUM <= number;

Demo Database

Below is a selection from the Customers table used in the examples:

https://www.w3schools.com/sql/trysql.asp?filename=trysql_customers

CustomerI

D

CustomerNa

me

ContactNa

me

Address City PostalCo

de

Countr

y

1

Alfreds

Futterkiste

Maria

Anders

Obere Str.

57

Berlin 12209 German

y

2 Ana Trujillo

Emparedados

y helados

Ana Trujillo Avda. de la

Constitució

n 2222

Méxic

o D.F.

05021 Mexico

3 Antonio

Moreno

Taquería

Antonio

Moreno

Mataderos

2312

Méxic

o D.F.

05023 Mexico

4

Around the

Horn

Thomas

Hardy

120

Hanover Sq.

Londo

n

WA1 1DP UK

5 Berglunds

snabbköp

Christina

Berglund

Berguvsväg

en 8

Luleå S-958 22 Sweden

LIMIT

The following SQL statement shows the equivalent example for MySQL:

Example

Select the first 3 records of the Customers table:

SELECT * FROM Customers
LIMIT 3;

FETCH FIRST

The following SQL statement shows the equivalent example for Oracle:

Example

Select the first 3 records of the Customers table:

SELECT * FROM Customers
FETCH FIRST 3 ROWS ONLY;

SQL TOP PERCENT Example

The following SQL statement selects the first 50% of the records from the

"Customers" table (for SQL Server/MS Access):

Example

SELECT TOP 50 PERCENT * FROM Customers;

The following SQL statement shows the equivalent example for Oracle:

Example

SELECT * FROM Customers
FETCH FIRST 50 PERCENT ROWS ONLY;

ADD a WHERE CLAUSE

The following SQL statement selects the first three records from the

"Customers" table, where the country is "Germany" (for SQL Server/MS

Access):

Example

SELECT TOP 3 * FROM Customers
WHERE Country='Germany';

The following SQL statement shows the equivalent example for MySQL:

Example

SELECT * FROM Customers
WHERE Country='Germany'
LIMIT 3;

The following SQL statement shows the equivalent example for Oracle:

Example

SELECT * FROM Customers
WHERE Country='Germany'
FETCH FIRST 3 ROWS ONLY;

ADD the ORDER BY Keyword

Add the ORDER BY keyword when you want to sort the result, and return the first

3 records of the sorted result.

For SQL Server and MS Access:

Example

Sort the result reverse alphabetically by CustomerName, and return the first 3

records:

SELECT TOP 3 * FROM Customers
ORDER BY CustomerName DESC;

The following SQL statement shows the equivalent example for MySQL:

Example

SELECT * FROM Customers
ORDER BY CustomerName DESC
LIMIT 3;

The following SQL statement shows the equivalent example for Oracle:

Example

SELECT * FROM Customers
ORDER BY CustomerName DESC
FETCH FIRST 3 ROWS ONLY;

SQL Aggregate Functions

SQL Aggregate Functions

An aggregate function is a function that performs a calculation on a set of

values, and returns a single value.

Aggregate functions are often used with the GROUP BY clause of

the SELECT statement. The GROUP BY clause splits the result-set into groups of

values and the aggregate function can be used to return a single value for each

group.

The most commonly used SQL aggregate functions are:

 MIN() - returns the smallest value within the selected column

 MAX() - returns the largest value within the selected column

 COUNT() - returns the number of rows in a set

 SUM() - returns the total sum of a numerical column

 AVG() - returns the average value of a numerical column

Aggregate functions ignore null values (except for COUNT()).

We will go through the aggregate functions above in the next chapters.

SQL MIN() and MAX() Functions

The SQL MIN() and MAX() Functions

The MIN() function returns the smallest value of the selected column.

The MAX() function returns the largest value of the selected column.

MIN Example

Find the lowest price in the Price column:

SELECT MIN(Price)
FROM Products;

MAX Example

Find the highest price in the Price column:

SELECT MAX(Price)
FROM Products;

Syntax

SELECT MIN(column_name)

FROM table_name

WHERE condition;

SELECT MAX(column_name)

FROM table_name

WHERE condition;

Demo Database

Below is a selection from the Products table used in the examples:

ProductID ProductName SupplierID CategoryID Unit Price

1 Chais 1 1 10 boxes

x 20 bags

18

https://www.w3schools.com/sql/trysql.asp?filename=trysql_products

2 Chang 1 1 24 - 12

oz bottles

19

3 Aniseed Syrup 1 2 12 - 550

ml

bottles

10

4 Chef Anton's

Cajun

Seasoning

2 2 48 - 6 oz

jars

22

5 Chef Anton's

Gumbo Mix

2 2 36 boxes 21.35

Set Column Name (Alias)

When you use MIN() or MAX(), the returned column will not have a descriptive

name. To give the column a descriptive name, use the AS keyword:

Example

SELECT MIN(Price) AS SmallestPrice
FROM Products;

Use MIN() with GROUP BY

Here we use the MIN() function and the GROUP BY clause, to return the smallest

price for each category in the Products table:

Example

SELECT MIN(Price) AS SmallestPrice, CategoryID
FROM Products
GROUP BY CategoryID;

You will learn more about the GROUP BY clause later in this tutorial.

Test Yourself With Exercises

Exercise:

Use the MIN function to select the record with the smallest value of the Price column.

SELECT _____________

FROM Products;

Submit Answer »

SQL COUNT() Function

The SQL COUNT() Function

The COUNT() function returns the number of rows that matches a specified

criterion.

Example

Find the total number of rows in the Products table:

https://www.w3schools.com/sql/sql_groupby.asp

SELECT COUNT(*)
FROM Products;

Syntax

SELECT COUNT(column_name)

FROM table_name

WHERE condition;

Demo Database

Below is a selection from the Products table used in the examples:

ProductID ProductName SupplierID CategoryID Unit Price

1 Chais 1 1 10 boxes x 20

bags

18

2 Chang 1 1 24 - 12 oz

bottles

19

3 Aniseed Syrup 1 2 12 - 550 ml

bottles

10

4 Chef Anton's Cajun

Seasoning

2 2 48 - 6 oz jars 22

5 Chef Anton's Gumbo

Mix

2 2 36 boxes 21.35

https://www.w3schools.com/sql/trysql.asp?filename=trysql_products

Specify Column

You can specify a column name instead of the asterix symbol (*).

If you specify a column name instead of (*), NULL values will not be counted.

Example

Find the number of products where the ProductName is not null:

SELECT COUNT(ProductName)
FROM Products;

Add a WHERE Clause

You can add a WHERE clause to specify conditions:

Example

Find the number of products where Price is higher than 20:

SELECT COUNT(ProductID)
FROM Products
WHERE Price > 20;

Ignore Duplicates

You can ignore duplicates by using the DISTINCT keyword in the COUNT() function.

If DISTINCT is specified, rows with the same value for the specified column will be

counted as one.

Example

How many different prices are there in the Products table:

SELECT COUNT(DISTINCT Price)
FROM Products;

Use an Alias

Give the counted column a name by using the AS keyword.

Example

Name the column "Number of records":

SELECT COUNT(*) AS [Number of records]
FROM Products;

Use COUNT() with GROUP BY

Here we use the COUNT() function and the GROUP BY clause, to return the number

of records for each category in the Products table:

Example

SELECT COUNT(*) AS [Number of records], CategoryID
FROM Products
GROUP BY CategoryID;

You will learn more about the GROUP BY clause later in this tutorial.

Test Yourself With Exercises

Exercise:

Use the correct function to return the number of records that have the Price value set

to 18.

SELECT _____________ (*)

FROM Products

_____________ Price = 18;

https://www.w3schools.com/sql/sql_groupby.asp

Submit Answer »

SQL SUM() Function

The SQL SUM() Function

The SUM() function returns the total sum of a numeric column.

Example

Return the sum of all Quantity fields in the OrderDetails table:

SELECT SUM(Quantity)
FROM OrderDetails;

Syntax

SELECT SUM(column_name)

FROM table_name

WHERE condition;

Demo Database

Below is a selection from the OrderDetails table used in the examples:

https://www.w3schools.com/sql/trysql.asp?filename=trysql_orderdetails

OrderDetailID OrderID ProductID Quantity

1 10248 11 12

2 10248 42 10

3 10248 72 5

4 10249 14 9

5 10249 51 40

Add a WHERE Clause

You can add a WHERE clause to specify conditions:

Example

Return the sum of the Quantity field for the product with ProductID 11:

SELECT SUM(Quantity)
FROM OrderDetails
WHERE ProductId = 11;

Use an Alias

Give the summarized column a name by using the AS keyword.

Example

Name the column "total":

SELECT SUM(Quantity) AS total
FROM OrderDetails;

Use SUM() with GROUP BY

Here we use the SUM() function and the GROUP BY clause, to return the Quantity for

each OrderID in the OrderDetails table:

Example

SELECT OrderID, SUM(Quantity) AS [Total Quantity]
FROM OrderDetails
GROUP BY OrderID;

You will learn more about the GROUP BY clause later in this tutorial.

SUM() With an Expression

The parameter inside the SUM() function can also be an expression.

If we assume that each product in the OrderDetails column costs 10 dollars, we

can find the total earnings in dollars by multiply each quantity with 10:

Example

Use an expression inside the SUM() function:

SELECT SUM(Quantity * 10)
FROM OrderDetails;

https://www.w3schools.com/sql/sql_groupby.asp

We can also join the OrderDetails table to the Products table to find the actual

amount, instead of assuming it is 10 dollars:

Example

Join OrderDetails with Products, and use SUM() to find the total amount:

SELECT SUM(Price * Quantity)
FROM OrderDetails
LEFT JOIN Products ON OrderDetails.ProductID = Products.ProductID;

You will learn more about Joins later in this tutorial.

Test Yourself With Exercises

Exercise:

Use an SQL function to calculate the sum of all the Price column values in

the Products table.

SELECT _____________

FROM Products;

Submit Answer »

SQL AVG() Function

The SQL AVG() Function

The AVG() function returns the average value of a numeric column.

https://www.w3schools.com/sql/sql_join.asp

Example

Find the average price of all products:

SELECT AVG(Price)
FROM Products;

Note: NULL values are ignored.

Syntax
SELECT AVG(column_name)

FROM table_name

WHERE condition;

Demo Database

Below is a selection from the Products table used in the examples:

ProductID ProductName SupplierID CategoryID Unit Price

1 Chais 1 1 10 boxes x 20

bags

18

2 Chang 1 1 24 - 12 oz

bottles

19

3 Aniseed Syrup 1 2 12 - 550 ml

bottles

10

4 Chef Anton's Cajun

Seasoning

2 2 48 - 6 oz jars 22

https://www.w3schools.com/sql/trysql.asp?filename=trysql_products

5 Chef Anton's Gumbo

Mix

2 2 36 boxes 21.35

Add a WHERE Clause

You can add a WHERE clause to specify conditions:

Example

Return the average price of products in category 1:

SELECT AVG(Price)
FROM Products
WHERE CategoryID = 1;

Use an Alias

Give the AVG column a name by using the AS keyword.

Example

Name the column "average price":

SELECT AVG(Price) AS [average price]
FROM Products;

Higher Than Average

To list all records with a higher price than average, we can use

the AVG() function in a sub query:

Example

Return all products with a higher price than the average price:

SELECT * FROM Products
WHERE price > (SELECT AVG(price) FROM Products);

Use AVG() with GROUP BY

Here we use the AVG() function and the GROUP BY clause, to return the average

price for each category in the Products table:

Example

SELECT AVG(Price) AS AveragePrice, CategoryID
FROM Products
GROUP BY CategoryID;

You will learn more about the GROUP BY clause later in this tutorial.

Test Yourself With Exercises

Exercise:

Use an SQL function to calculate the average price of all products.

SELECT _____________

FROM Products;

Submit Answer »

SQL LIKE Operator

https://www.w3schools.com/sql/sql_groupby.asp

The SQL LIKE Operator

The LIKE operator is used in a WHERE clause to search for a specified pattern in a

column.

There are two wildcards often used in conjunction with the LIKE operator:

 The percent sign % represents zero, one, or multiple characters

 The underscore sign _ represents one, single character

You will learn more about wildcards in the next chapter.

Example

Select all customers that starts with the letter "a":

SELECT * FROM Customers
WHERE CustomerName LIKE 'a%';

Syntax

SELECT column1, column2, ...

FROM table_name

WHERE columnN LIKE pattern;

Demo Database

Below is a selection from the Customers table used in the examples:

CustomerI

D

CustomerNa

me

ContactNa

me

Address City PostalCo

de

Countr

y

1

Alfreds

Futterkiste

Maria

Anders

Obere Str.

57

Berlin 12209 German

y

https://www.w3schools.com/sql/sql_wildcards.asp
https://www.w3schools.com/sql/trysql.asp?filename=trysql_customers

2 Ana Trujillo

Emparedados

y helados

Ana Trujillo Avda. de la

Constitució

n 2222

Méxic

o D.F.

05021 Mexico

3 Antonio

Moreno

Taquería

Antonio

Moreno

Mataderos

2312

Méxic

o D.F.

05023 Mexico

4

Around the

Horn

Thomas

Hardy

120

Hanover Sq.

Londo

n

WA1 1DP UK

5 Berglunds

snabbköp

Christina

Berglund

Berguvsväg

en 8

Luleå S-958 22 Sweden

The _ Wildcard

The _ wildcard represents a single character.

It can be any character or number, but each _ represents one, and only one,

character.

Example

Return all customers from a city that starts with 'L' followed by one wildcard

character, then 'nd' and then two wildcard characters:

SELECT * FROM Customers
WHERE city LIKE 'L_nd__';

The % Wildcard

The % wildcard represents any number of characters, even zero characters.

Example

Return all customers from a city that contains the letter 'L':

SELECT * FROM Customers
WHERE city LIKE '%L%';

Starts With

To return records that starts with a specific letter or phrase, add the % at the

end of the letter or phrase.

Example

Return all customers that starts with 'La':

SELECT * FROM Customers
WHERE CustomerName LIKE 'La%';

Tip: You can also combine any number of conditions using AND or OR operators.

Example

Return all customers that starts with 'a' or starts with 'b':

SELECT * FROM Customers
WHERE CustomerName LIKE 'a%' OR CustomerName LIKE 'b%';

Ends With

To return records that ends with a specific letter or phrase, add the % at the

beginning of the letter or phrase.

Example

Return all customers that ends with 'a':

SELECT * FROM Customers
WHERE CustomerName LIKE '%a';

Tip: You can also combine "starts with" and "ends with":

Example

Return all customers that starts with "b" and ends with "s":

SELECT * FROM Customers
WHERE CustomerName LIKE 'b%s';

Contains

To return records that contains a specific letter or phrase, add the % both before

and after the letter or phrase.

Example

Return all customers that contains the phrase 'or'

SELECT * FROM Customers
WHERE CustomerName LIKE '%or%';

Combine Wildcards

Any wildcard, like % and _ , can be used in combination with other wildcards.

Example

Return all customers that starts with "a" and are at least 3 characters in length:

SELECT * FROM Customers
WHERE CustomerName LIKE 'a__%';

Example

Return all customers that have "r" in the second position:

SELECT * FROM Customers
WHERE CustomerName LIKE '_r%';

Without Wildcard

If no wildcard is specified, the phrase has to have an exact match to return a

result.

Example

Return all customers from Spain:

SELECT * FROM Customers
WHERE Country LIKE 'Spain';

Test Yourself With Exercises

Exercise:

Select all records where the value of the City column starts with the letter "a".

SELECT * FROM Customers

_____________;

Submit Answer »

SQL Wildcards

SQL Wildcard Characters

A wildcard character is used to substitute one or more characters in a string.

Wildcard characters are used with the LIKE operator. The LIKE operator is used

in a WHERE clause to search for a specified pattern in a column.

Example

Return all customers that starts with the letter 'a':

SELECT * FROM Customers
WHERE CustomerName LIKE 'a%';

Wildcard Characters

Symbol Description

% Represents zero or more characters

_ Represents a single character

[] Represents any single character within the brackets *

^ Represents any character not in the brackets *

- Represents any single character within the specified range *

https://www.w3schools.com/sql/sql_like.asp

{} Represents any escaped character **

* Not supported in PostgreSQL and MySQL databases.

** Supported only in Oracle databases.

Demo Database

Below is a selection from the Customers table used in the examples:

CustomerI

D

CustomerNa

me

ContactNa

me

Address City PostalCo

de

Countr

y

1

Alfreds

Futterkiste

Maria

Anders

Obere Str.

57

Berlin 12209 German

y

2 Ana Trujillo

Emparedados

y helados

Ana Trujillo Avda. de la

Constitució

n 2222

Méxic

o D.F.

05021 Mexico

3 Antonio

Moreno

Taquería

Antonio

Moreno

Mataderos

2312

Méxic

o D.F.

05023 Mexico

4

Around the

Horn

Thomas

Hardy

120

Hanover Sq.

Londo

n

WA1 1DP UK

5 Berglunds

snabbköp

Christina

Berglund

Berguvsväg

en 8

Luleå S-958 22 Sweden

https://www.w3schools.com/sql/trysql.asp?filename=trysql_customers

Using the % Wildcard

The % wildcard represents any number of characters, even zero characters.

Example

Return all customers that ends with the pattern 'es':

SELECT * FROM Customers
WHERE CustomerName LIKE '%es';

Example

Return all customers that contains the pattern 'mer':

SELECT * FROM Customers
WHERE CustomerName LIKE '%mer%';

Using the _ Wildcard

The _ wildcard represents a single character.

It can be any character or number, but each _ represents one, and only one,

character.

Example

Return all customers with a City starting with any character, followed by

"ondon":

SELECT * FROM Customers
WHERE City LIKE '_ondon';

Example

Return all customers with a City starting with "L", followed by any 3 characters,

ending with "on":

SELECT * FROM Customers
WHERE City LIKE 'L___on';

Using the [] Wildcard

The [] wildcard returns a result if any of the characters inside gets a match.

Example

Return all customers starting with either "b", "s", or "p":

SELECT * FROM Customers
WHERE CustomerName LIKE '[bsp]%';

Using the - Wildcard

The - wildcard allows you to specify a range of characters inside the [] wildcard.

Example

Return all customers starting with "a", "b", "c", "d", "e" or "f":

SELECT * FROM Customers
WHERE CustomerName LIKE '[a-f]%';

Combine Wildcards

Any wildcard, like % and _ , can be used in combination with other wildcards.

Example

Return all customers that starts with "a" and are at least 3 characters in length:

SELECT * FROM Customers
WHERE CustomerName LIKE 'a__%';

Example

Return all customers that have "r" in the second position:

SELECT * FROM Customers
WHERE CustomerName LIKE '_r%';

Without Wildcard

If no wildcard is specified, the phrase has to have an exact match to return a

result.

Example

Return all customers from Spain:

SELECT * FROM Customers
WHERE Country LIKE 'Spain';

Microsoft Access Wildcards

The Microsoft Access Database has some other wildcards:

Symbol Description Example

* Represents zero or more

characters

bl* finds bl, black, blue, and blob

? Represents a single character h?t finds hot, hat, and hit

[] Represents any single
character within the brackets

h[oa]t finds hot and hat, but not
hit

! Represents any character not
in the brackets

h[!oa]t finds hit, but not hot and
hat

- Represents any single
character within the specified

range

c[a-b]t finds cat and cbt

Represents any single numeric

character

2#5 finds 205, 215, 225, 235,

245, 255, 265, 275, 285, and
295

Test Yourself With Exercises

Exercise:

Select all records where the second letter of the City is an "a".

SELECT * FROM Customers

WHERE City LIKE '_____________%';

Submit Answer »

SQL IN Operator

The SQL IN Operator

The IN operator allows you to specify multiple values in a WHERE clause.

The IN operator is a shorthand for multiple OR conditions.

Example

Return all customers from 'Germany', 'France', or 'UK'

SELECT * FROM Customers
WHERE Country IN ('Germany', 'France', 'UK');

Syntax
SELECT column_name(s)

FROM table_name

WHERE column_name IN (value1, value2, ...);

Demo Database

Below is a selection from the Customers table used in the examples:

CustomerI

D

CustomerNa

me

ContactNa

me

Address City PostalCo

de

Countr

y

1

Alfreds

Futterkiste

Maria

Anders

Obere Str.

57

Berlin 12209 German

y

2 Ana Trujillo

Emparedados

y helados

Ana Trujillo Avda. de la

Constitució

n 2222

Méxic

o D.F.

05021 Mexico

https://www.w3schools.com/sql/trysql.asp?filename=trysql_customers

3 Antonio

Moreno

Taquería

Antonio

Moreno

Mataderos

2312

Méxic

o D.F.

05023 Mexico

4

Around the

Horn

Thomas

Hardy

120

Hanover Sq.

Londo

n

WA1 1DP UK

5 Berglunds

snabbköp

Christina

Berglund

Berguvsväg

en 8

Luleå S-958 22 Sweden

NOT IN

By using the NOT keyword in front of the IN operator, you return all records that

are NOT any of the values in the list.

Example

Return all customers that are NOT from 'Germany', 'France', or 'UK':

SELECT * FROM Customers
WHERE Country NOT IN ('Germany', 'France', 'UK');

IN (SELECT)

You can also use IN with a subquery in the WHERE clause.

With a subquery you can return all records from the main query that are
present in the result of the subquery.

Example

Return all customers that have an order in the Orders table:

https://www.w3schools.com/sql/trysql.asp?filename=trysql_orders

SELECT * FROM Customers
WHERE CustomerID IN (SELECT CustomerID FROM Orders);

NOT IN (SELECT)

The result in the example above returned 74 records, that means that there are

17 customers that haven't placed any orders.

Let us check if that is correct, by using the NOT IN operator.

Example

Return all customers that have NOT placed any orders in the Orders table:

SELECT * FROM Customers
WHERE CustomerID NOT IN (SELECT CustomerID FROM Orders);

Test Yourself With Exercises

Exercise:

Use the IN operator to select all the records where Country is either "Norway" or

"France".

SELECT * FROM Customers

_____________ _____________ 'France'_____________;

Submit Answer »

SQL BETWEEN Operator

https://www.w3schools.com/sql/trysql.asp?filename=trysql_orders

The SQL BETWEEN Operator

The BETWEEN operator selects values within a given range. The values can be

numbers, text, or dates.

The BETWEEN operator is inclusive: begin and end values are included.

Example

Selects all products with a price between 10 and 20:

SELECT * FROM Products
WHERE Price BETWEEN 10 AND 20;

Syntax

SELECT column_name(s)

FROM table_name

WHERE column_name BETWEEN value1 AND value2;

Demo Database

Below is a selection from the Products table used in the examples:

ProductID ProductName SupplierID CategoryID Unit Price

1 Chais 1 1 10 boxes x 20

bags

18

2 Chang 1 1 24 - 12 oz

bottles

19

https://www.w3schools.com/sql/trysql.asp?filename=trysql_products

3 Aniseed Syrup 1 2 12 - 550 ml

bottles

10

4 Chef Anton's Cajun

Seasoning

2 2 48 - 6 oz jars 22

5 Chef Anton's Gumbo

Mix

2 2 36 boxes 21.35

NOT BETWEEN

To display the products outside the range of the previous example, use NOT

BETWEEN:

Example

SELECT * FROM Products
WHERE Price NOT BETWEEN 10 AND 20;

BETWEEN with IN

The following SQL statement selects all products with a price between 10 and

20. In addition, the CategoryID must be either 1,2, or 3:

Example

SELECT * FROM Products
WHERE Price BETWEEN 10 AND 20
AND CategoryID IN (1,2,3);

BETWEEN Text Values

The following SQL statement selects all products with a ProductName

alphabetically between Carnarvon Tigers and Mozzarella di Giovanni:

Example

SELECT * FROM Products
WHERE ProductName BETWEEN 'Carnarvon Tigers' AND 'Mozzarella di Giovanni'
ORDER BY ProductName;

The following SQL statement selects all products with a ProductName between
Carnarvon Tigers and Chef Anton's Cajun Seasoning:

Example

SELECT * FROM Products
WHERE ProductName BETWEEN "Carnarvon Tigers" AND "Chef Anton's Cajun
Seasoning"
ORDER BY ProductName;

NOT BETWEEN Text Values

The following SQL statement selects all products with a ProductName not

between Carnarvon Tigers and Mozzarella di Giovanni:

Example

SELECT * FROM Products
WHERE ProductName NOT BETWEEN 'Carnarvon Tigers' AND 'Mozzarella di
Giovanni'
ORDER BY ProductName;

BETWEEN Dates

The following SQL statement selects all orders with an OrderDate between '01-

July-1996' and '31-July-1996':

Example

SELECT * FROM Orders
WHERE OrderDate BETWEEN #07/01/1996# AND #07/31/1996#;

OR:

Example

SELECT * FROM Orders
WHERE OrderDate BETWEEN '1996-07-01' AND '1996-07-31';

Sample Table

Below is a selection from the Orders table used in the examples:

OrderID CustomerID EmployeeID OrderDate ShipperID

10248 90 5 7/4/1996 3

10249 81 6 7/5/1996 1

10250 34 4 7/8/1996 2

10251 84 3 7/9/1996 1

10252 76 4 7/10/1996 2

https://www.w3schools.com/sql/trysql.asp?filename=trysql_orders

Test Yourself With Exercises

Exercise:

Use the BETWEEN operator to select all the records where the value of the Price column

is between 10 and 20.

SELECT * FROM Products

WHERE Price _____________;

Submit Answer »

SQL Aliases

SQL Aliases

SQL aliases are used to give a table, or a column in a table, a temporary name.

Aliases are often used to make column names more readable.

An alias only exists for the duration of that query.

An alias is created with the AS keyword.

Example
SELECT CustomerID AS ID
FROM Customers;

AS is Optional

Actually, in most database languages, you can skip the AS keyword and get the

same result:

Example

SELECT CustomerID ID
FROM Customers;

Syntax

When alias is used on column:

SELECT column_name AS alias_name

FROM table_name;

When alias is used on table:

SELECT column_name(s)

FROM table_name AS alias_name;

Demo Database

Below is a selection from the Customers and Orders tables used in the

examples:

Customers

CustomerI

D

CustomerNa

me

ContactNa

me

Address City PostalCo

de

Countr

y

1

Alfreds

Futterkiste

Maria

Anders

Obere Str.

57

Berlin 12209 German

y

https://www.w3schools.com/sql/trysql.asp?filename=trysql_customers
https://www.w3schools.com/sql/trysql.asp?filename=trysql_orders

2 Ana Trujillo

Emparedados

y helados

Ana Trujillo Avda. de la

Constitució

n 2222

Méxic

o D.F.

05021 Mexico

3 Antonio

Moreno

Taquería

Antonio

Moreno

Mataderos

2312

Méxic

o D.F.

05023 Mexico

Orders

OrderID CustomerID EmployeeID OrderDate ShipperID

10248 90 5 7/4/1996 3

10249 81 6 7/5/1996 1

10250 34 4 7/8/1996 2

Alias for Columns

The following SQL statement creates two aliases, one for the CustomerID

column and one for the CustomerName column:

Example

SELECT CustomerID AS ID, CustomerName AS Customer
FROM Customers;

Using Aliases With a Space Character

If you want your alias to contain one or more spaces, like "My Great Products",

surround your alias with square brackets or double quotes.

Example

Using [square brackets] for aliases with space characters:

SELECT ProductName AS [My Great Products]
FROM Products;

Example

Using "double quotes" for aliases with space characters:

SELECT ProductName AS "My Great Products"
FROM Products;

Note: Some database systems allows both [] and "", and some only allows one

of them.

Concatenate Columns

The following SQL statement creates an alias named "Address" that combine

four columns (Address, PostalCode, City and Country):

Example

SELECT CustomerName, Address + ', ' + PostalCode + ' ' + City + ', ' +
Country AS Address
FROM Customers;

Note: To get the SQL statement above to work in MySQL use the following:

MySQL Example

SELECT CustomerName, CONCAT(Address,', ',PostalCode,', ',City,',
',Country) AS Address
FROM Customers;

Note: To get the SQL statement above to work in Oracle use the following:

Oracle Example

SELECT CustomerName, (Address || ', ' || PostalCode || ' ' || City || ',
' || Country) AS Address
FROM Customers;

Alias for Tables

The same rules applies when you want to use an alias for a table.

Example

Refer to the Customers table as Persons instead:

SELECT * FROM Customers AS Persons;

It might seem useless to use aliases on tables, but when you are using more

than one table in your queries, it can make the SQL statements shorter.

The following SQL statement selects all the orders from the customer with

CustomerID=4 (Around the Horn). We use the "Customers" and "Orders"
tables, and give them the table aliases of "c" and "o" respectively (Here we use

aliases to make the SQL shorter):

Example

SELECT o.OrderID, o.OrderDate, c.CustomerName
FROM Customers AS c, Orders AS o
WHERE c.CustomerName='Around the Horn' AND c.CustomerID=o.CustomerID;

The following SQL statement is the same as above, but without aliases:

Example

SELECT Orders.OrderID, Orders.OrderDate, Customers.CustomerName
FROM Customers, Orders
WHERE Customers.CustomerName='Around the
Horn' AND Customers.CustomerID=Orders.CustomerID;

Aliases can be useful when:

 There are more than one table involved in a query

 Functions are used in the query
 Column names are big or not very readable

 Two or more columns are combined together

Test Yourself With Exercises

Exercise:

When displaying the Customers table, make an ALIAS of the PostalCode column, the

column should be called Pno instead.

SELECT CustomerName,

Address,

PostalCode _____________

FROM Customers;

Submit Answer »

SQL Joins

SQL JOIN

A JOIN clause is used to combine rows from two or more tables, based on a

related column between them.

Let's look at a selection from the "Orders" table:

OrderID CustomerID OrderDate

10308 2 1996-09-18

10309 37 1996-09-19

10310 77 1996-09-20

Then, look at a selection from the "Customers" table:

CustomerID CustomerName ContactName Country

1 Alfreds Futterkiste Maria Anders Germany

2 Ana Trujillo Emparedados y helados Ana Trujillo Mexico

3 Antonio Moreno Taquería Antonio Moreno Mexico

Notice that the "CustomerID" column in the "Orders" table refers to the
"CustomerID" in the "Customers" table. The relationship between the two tables

above is the "CustomerID" column.

Then, we can create the following SQL statement (that contains an INNER JOIN),

that selects records that have matching values in both tables:

Example
SELECT Orders.OrderID, Customers.CustomerName, Orders.OrderDate
FROM Orders
INNER JOIN Customers ON Orders.CustomerID=Customers.CustomerID;

and it will produce something like this:

OrderID CustomerName OrderDate

10308 Ana Trujillo Emparedados y helados 9/18/1996

10365 Antonio Moreno Taquería 11/27/1996

10383 Around the Horn 12/16/1996

10355 Around the Horn 11/15/1996

10278 Berglunds snabbköp 8/12/1996

Different Types of SQL JOINs

Here are the different types of the JOINs in SQL:

 (INNER) JOIN: Returns records that have matching values in both tables

 LEFT (OUTER) JOIN: Returns all records from the left table, and the matched

records from the right table

 RIGHT (OUTER) JOIN: Returns all records from the right table, and the

matched records from the left table
 FULL (OUTER) JOIN: Returns all records when there is a match in either left

or right table

Test Yourself With Exercises

Exercise:

Insert the missing parts in the JOIN clause to join the two tables Orders and Customers,

using the CustomerID field in both tables as the relationship between the two tables.

SELECT *

FROM Orders

LEFT JOIN Customers

_____________=_____________;

Submit Answer »

SQL INNER JOIN

INNER JOIN

The INNER JOIN keyword selects records that have matching values in both

tables.

Let's look at a selection of the Products table:

ProductID ProductName CategoryID Price

https://www.w3schools.com/sql/trysql.asp?filename=trysql_products

1 Chais 1 18

2 Chang 1 19

3 Aniseed Syrup 2 10

And a selection of the Categories table:

CategoryID CategoryName Description

1 Beverages Soft drinks, coffees, teas, beers, and ales

2 Condiments Sweet and savory sauces, relishes, spreads, and seasonings

3 Confections Desserts, candies, and sweet breads

We will join the Products table with the Categories table, by using
the CategoryID field from both tables:

Example

Join Products and Categories with the INNER JOIN keyword:

SELECT ProductID, ProductName, CategoryName
FROM Products
INNER JOIN Categories ON Products.CategoryID = Categories.CategoryID;

Note: The INNER JOIN keyword returns only rows with a match in both tables.

Which means that if you have a product with no CategoryID, or with a
CategoryID that is not present in the Categories table, that record would not be

returned in the result.

https://www.w3schools.com/sql/trysql.asp?filename=trysql_categories

Syntax

SELECT column_name(s)

FROM table1

INNER JOIN table2

ON table1.column_name = table2.column_name;

Naming the Columns

It is a good practice to include the table name when specifying columns in the

SQL statement.

Example

Specify the table names:

SELECT Products.ProductID, Products.ProductName, Categories.CategoryName
FROM Products
INNER JOIN Categories ON Products.CategoryID = Categories.CategoryID;

The example above works without specifying table names, because none of the
specified column names are present in both tables. If you try to

include CategoryID in the SELECT statement, you will get an error if you do not

specify the table name (because CategoryID is present in both tables).

JOIN or INNER JOIN

JOIN and INNER JOIN will return the same result.

INNER is the default join type for JOIN, so when you write JOIN the parser actually

writes INNER JOIN.

Example

JOIN is the same as INNER JOIN:

SELECT Products.ProductID, Products.ProductName, Categories.CategoryName
FROM Products
JOIN Categories ON Products.CategoryID = Categories.CategoryID;

JOIN Three Tables

The following SQL statement selects all orders with customer and shipper

information:

Example

SELECT Orders.OrderID, Customers.CustomerName, Shippers.ShipperName
FROM ((Orders
INNER JOIN Customers ON Orders.CustomerID = Customers.CustomerID)
INNER JOIN Shippers ON Orders.ShipperID = Shippers.ShipperID);

Test Yourself With Exercises

Exercise:

Choose the correct JOIN clause to select all records from the two tables where there is

a match in both tables.

SELECT *

FROM Orders

ON Orders.CustomerID=Customers.CustomerID;

Submit Answer »

SQL LEFT JOIN Keyword

SQL LEFT JOIN Keyword

The LEFT JOIN keyword returns all records from the left table (table1), and the

matching records from the right table (table2). The result is 0 records from the

right side, if there is no match.

LEFT JOIN Syntax

SELECT column_name(s)
FROM table1
LEFT JOIN table2
ON table1.column_name = table2.column_name;

Note: In some databases LEFT JOIN is called LEFT OUTER JOIN.

Demo Database

In this tutorial we will use the well-known Northwind sample database.

Below is a selection from the "Customers" table:

CustomerI

D

CustomerNa

me

ContactNa

me

Address City PostalCo

de

Countr

y

1

Alfreds

Futterkiste

Maria

Anders

Obere Str.

57

Berlin 12209 German

y

2 Ana Trujillo

Emparedados

y helados

Ana Trujillo Avda. de la

Constitució

n 2222

Méxic

o D.F.

05021 Mexico

3 Antonio

Moreno

Taquería

Antonio

Moreno

Mataderos

2312

Méxic

o D.F.

05023 Mexico

And a selection from the "Orders" table:

OrderID CustomerID EmployeeID OrderDate ShipperID

10308 2 7 1996-09-18 3

10309 37 3 1996-09-19 1

10310 77 8 1996-09-20 2

SQL LEFT JOIN Example

The following SQL statement will select all customers, and any orders they

might have:

Example
SELECT Customers.CustomerName, Orders.OrderID
FROM Customers
LEFT JOIN Orders ON Customers.CustomerID = Orders.CustomerID
ORDER BY Customers.CustomerName;

Note: The LEFT JOIN keyword returns all records from the left table (Customers),

even if there are no matches in the right table (Orders).

SQL RIGHT JOIN Keyword

SQL RIGHT JOIN Keyword

The RIGHT JOIN keyword returns all records from the right table (table2), and the

matching records from the left table (table1). The result is 0 records from the

left side, if there is no match.

RIGHT JOIN Syntax

SELECT column_name(s)
FROM table1
RIGHT JOIN table2
ON table1.column_name = table2.column_name;

Note: In some databases RIGHT JOIN is called RIGHT OUTER JOIN.

Demo Database

In this tutorial we will use the well-known Northwind sample database.

Below is a selection from the "Orders" table:

OrderID CustomerID EmployeeID OrderDate ShipperID

10308 2 7 1996-09-18 3

10309 37 3 1996-09-19 1

10310 77 8 1996-09-20 2

And a selection from the "Employees" table:

EmployeeID LastName FirstName BirthDate Photo

1 Davolio Nancy 12/8/1968 EmpID1.pic

2 Fuller Andrew 2/19/1952 EmpID2.pic

3 Leverling Janet 8/30/1963 EmpID3.pic

SQL RIGHT JOIN Example

The following SQL statement will return all employees, and any orders they

might have placed:

Example
SELECT Orders.OrderID, Employees.LastName, Employees.FirstName
FROM Orders
RIGHT JOIN Employees ON Orders.EmployeeID = Employees.EmployeeID
ORDER BY Orders.OrderID;

Note: The RIGHT JOIN keyword returns all records from the right table

(Employees), even if there are no matches in the left table (Orders).

Test Yourself With Exercises

Exercise:

Choose the correct JOIN clause to select all the records from the Customers table plus

all the matches in the Orders table.

SELECT *

FROM Orders

ON Orders.CustomerID=Customers.CustomerID;

Submit Answer »

SQL FULL OUTER JOIN Keyword

SQL FULL OUTER JOIN Keyword

The FULL OUTER JOIN keyword returns all records when there is a match in left

(table1) or right (table2) table records.

Tip: FULL OUTER JOIN and FULL JOIN are the same.

FULL OUTER JOIN Syntax

SELECT column_name(s)
FROM table1
FULL OUTER JOIN table2
ON table1.column_name = table2.column_name
WHERE condition;

Note: FULL OUTER JOIN can potentially return very large result-sets!

Demo Database

In this tutorial we will use the well-known Northwind sample database.

Below is a selection from the "Customers" table:

CustomerI

D

CustomerNa

me

ContactNa

me

Address City PostalCo

de

Countr

y

1

Alfreds

Futterkiste

Maria

Anders

Obere Str.

57

Berlin 12209 German

y

2 Ana Trujillo

Emparedados

y helados

Ana Trujillo Avda. de la

Constitució

n 2222

Méxic

o D.F.

05021 Mexico

3 Antonio

Moreno

Taquería

Antonio

Moreno

Mataderos

2312

Méxic

o D.F.

05023 Mexico

And a selection from the "Orders" table:

OrderID CustomerID EmployeeID OrderDate ShipperID

10308 2 7 1996-09-18 3

10309 37 3 1996-09-19 1

10310 77 8 1996-09-20 2

SQL FULL OUTER JOIN Example

The following SQL statement selects all customers, and all orders:

SELECT Customers.CustomerName, Orders.OrderID
FROM Customers
FULL OUTER JOIN Orders ON Customers.CustomerID=Orders.CustomerID
ORDER BY Customers.CustomerName;

A selection from the result set may look like this:

CustomerName OrderID

Null 10309

Null 10310

Alfreds Futterkiste Null

Ana Trujillo Emparedados y helados 10308

Antonio Moreno Taquería Null

Note: The FULL OUTER JOIN keyword returns all matching records from both tables

whether the other table matches or not. So, if there are rows in "Customers"

that do not have matches in "Orders", or if there are rows in "Orders" that do
not have matches in "Customers", those rows will be listed as well.

SQL Self Join

SQL Self Join

A self join is a regular join, but the table is joined with itself.

Self Join Syntax

SELECT column_name(s)
FROM table1 T1, table1 T2
WHERE condition;

T1 and T2 are different table aliases for the same table.

Demo Database

In this tutorial we will use the well-known Northwind sample database.

Below is a selection from the "Customers" table:

CustomerI

D

CustomerNa

me

ContactNa

me

Address City PostalCo

de

Countr

y

1

Alfreds

Futterkiste

Maria

Anders

Obere Str.

57

Berlin 12209 German

y

2 Ana Trujillo

Emparedados

y helados

Ana Trujillo Avda. de la

Constitució

n 2222

Méxic

o D.F.

05021 Mexico

3 Antonio

Moreno

Taquería

Antonio

Moreno

Mataderos

2312

Méxic

o D.F.

05023 Mexico

SQL Self Join Example

The following SQL statement matches customers that are from the same city:

Example
SELECT A.CustomerName AS CustomerName1,
B.CustomerName AS CustomerName2, A.City
FROM Customers A, Customers B
WHERE A.CustomerID <> B.CustomerID
AND A.City = B.City
ORDER BY A.City;

SQL UNION Operator

The SQL UNION Operator

The UNION operator is used to combine the result-set of two or

more SELECT statements.

 Every SELECT statement within UNION must have the same number of

columns
 The columns must also have similar data types
 The columns in every SELECT statement must also be in the same order

UNION Syntax

SELECT column_name(s) FROM table1
UNION
SELECT column_name(s) FROM table2;

UNION ALL Syntax

The UNION operator selects only distinct values by default. To allow duplicate

values, use UNION ALL:

SELECT column_name(s) FROM table1
UNION ALL
SELECT column_name(s) FROM table2;

Note: The column names in the result-set are usually equal to the column

names in the first SELECT statement.

Demo Database

In this tutorial we will use the well-known Northwind sample database.

Below is a selection from the "Customers" table:

CustomerI

D

CustomerNa

me

ContactNa

me

Address City PostalCo

de

Countr

y

1

Alfreds

Futterkiste

Maria

Anders

Obere Str.

57

Berlin 12209 German

y

2 Ana Trujillo

Emparedados

y helados

Ana Trujillo Avda. de la

Constitució

n 2222

Méxic

o D.F.

05021 Mexico

3 Antonio

Moreno

Taquería

Antonio

Moreno

Mataderos

2312

Méxic

o D.F.

05023 Mexico

And a selection from the "Suppliers" table:

SupplierI

D

SupplierNam

e

ContactNam

e

Addres

s

City PostalCod

e

Countr

y

1 Exotic Liquid Charlotte

Cooper

49

Gilbert

St.

Londo

n

EC1 4SD UK

2 New Orleans

Cajun Delights

Shelley Burke P.O.

Box

78934

New

Orlean

s

70117 USA

3 Grandma

Kelly's

Homestead

Regina

Murphy

707

Oxford

Rd.

Ann

Arbor

48104 USA

SQL UNION Example

The following SQL statement returns the cities (only distinct values) from both

the "Customers" and the "Suppliers" table:

Example
SELECT City FROM Customers
UNION
SELECT City FROM Suppliers
ORDER BY City;

Note: If some customers or suppliers have the same city, each city will only be
listed once, because UNION selects only distinct values. Use UNION ALL to also

select duplicate values!

SQL UNION ALL Example

The following SQL statement returns the cities (duplicate values also) from both

the "Customers" and the "Suppliers" table:

Example

SELECT City FROM Customers
UNION ALL
SELECT City FROM Suppliers
ORDER BY City;

SQL UNION With WHERE

The following SQL statement returns the German cities (only distinct values)

from both the "Customers" and the "Suppliers" table:

Example

SELECT City, Country FROM Customers
WHERE Country='Germany'
UNION
SELECT City, Country FROM Suppliers
WHERE Country='Germany'
ORDER BY City;

SQL UNION ALL With WHERE

The following SQL statement returns the German cities (duplicate values also)

from both the "Customers" and the "Suppliers" table:

Example

SELECT City, Country FROM Customers
WHERE Country='Germany'
UNION ALL
SELECT City, Country FROM Suppliers
WHERE Country='Germany'
ORDER BY City;

Another UNION Example

The following SQL statement lists all customers and suppliers:

Example

SELECT 'Customer' AS Type, ContactName, City, Country
FROM Customers
UNION
SELECT 'Supplier', ContactName, City, Country
FROM Suppliers;

Notice the "AS Type" above - it is an alias. SQL Aliases are used to give a table
or a column a temporary name. An alias only exists for the duration of the
query. So, here we have created a temporary column named "Type", that list

whether the contact person is a "Customer" or a "Supplier".

SQL GROUP BY Statement

The SQL GROUP BY Statement

The GROUP BY statement groups rows that have the same values into summary

rows, like "find the number of customers in each country".

The GROUP BY statement is often used with aggregate functions

(COUNT(), MAX(), MIN(), SUM(), AVG()) to group the result-set by one or more

columns.

GROUP BY Syntax

SELECT column_name(s)
FROM table_name
WHERE condition
GROUP BY column_name(s)
ORDER BY column_name(s);

https://www.w3schools.com/sql/sql_alias.asp

Demo Database

Below is a selection from the "Customers" table in the Northwind sample

database:

CustomerI

D

CustomerNa

me

ContactNa

me

Address City PostalCo

de

Countr

y

1

Alfreds

Futterkiste

Maria

Anders

Obere Str.

57

Berlin 12209 German

y

2 Ana Trujillo

Emparedados

y helados

Ana Trujillo Avda. de la

Constitució

n 2222

Méxic

o D.F.

05021 Mexico

3 Antonio

Moreno

Taquería

Antonio

Moreno

Mataderos

2312

Méxic

o D.F.

05023 Mexico

4

Around the

Horn

Thomas

Hardy

120

Hanover Sq.

Londo

n

WA1 1DP UK

5 Berglunds

snabbköp

Christina

Berglund

Berguvsväg

en 8

Luleå S-958 22 Sweden

SQL GROUP BY Examples

The following SQL statement lists the number of customers in each country:

Example
SELECT COUNT(CustomerID), Country
FROM Customers
GROUP BY Country;

The following SQL statement lists the number of customers in each country,

sorted high to low:

Example

SELECT COUNT(CustomerID), Country
FROM Customers
GROUP BY Country
ORDER BY COUNT(CustomerID) DESC;

Demo Database

Below is a selection from the "Orders" table in the Northwind sample database:

OrderID CustomerID EmployeeID OrderDate ShipperID

10248 90 5 1996-07-04 3

10249 81 6 1996-07-05 1

10250 34 4 1996-07-08 2

And a selection from the "Shippers" table:

ShipperID ShipperName

1 Speedy Express

2 United Package

3 Federal Shipping

GROUP BY With JOIN Example

The following SQL statement lists the number of orders sent by each shipper:

Example

SELECT Shippers.ShipperName, COUNT(Orders.OrderID) AS NumberOfOrders FROM
 Orders
LEFT JOIN Shippers ON Orders.ShipperID = Shippers.ShipperID
GROUP BY ShipperName;

Test Yourself With Exercises

Exercise:

List the number of customers in each country.

SELECT _____________ (CustomerID),

Country

FROM Customers

_____________;

Submit Answer »

SQL HAVING Clause

The SQL HAVING Clause

The HAVING clause was added to SQL because the WHERE keyword cannot be used

with aggregate functions.

HAVING Syntax

SELECT column_name(s)
FROM table_name
WHERE condition
GROUP BY column_name(s)
HAVING condition
ORDER BY column_name(s);

Demo Database

Below is a selection from the "Customers" table in the Northwind sample

database:

CustomerI

D

CustomerNa

me

ContactNa

me

Address City PostalCo

de

Countr

y

1

Alfreds

Futterkiste

Maria

Anders

Obere Str.

57

Berlin 12209 German

y

2 Ana Trujillo

Emparedados

y helados

Ana Trujillo Avda. de la

Constitució

n 2222

Méxic

o D.F.

05021 Mexico

3 Antonio

Moreno

Taquería

Antonio

Moreno

Mataderos

2312

Méxic

o D.F.

05023 Mexico

4

Around the

Horn

Thomas

Hardy

120

Hanover Sq.

Londo

n

WA1 1DP UK

5 Berglunds

snabbköp

Christina

Berglund

Berguvsväg

en 8

Luleå S-958 22 Sweden

SQL HAVING Examples

The following SQL statement lists the number of customers in each country.

Only include countries with more than 5 customers:

Example
SELECT COUNT(CustomerID), Country
FROM Customers
GROUP BY Country
HAVING COUNT(CustomerID) > 5;

The following SQL statement lists the number of customers in each country,
sorted high to low (Only include countries with more than 5 customers):

Example

SELECT COUNT(CustomerID), Country
FROM Customers

GROUP BY Country
HAVING COUNT(CustomerID) > 5
ORDER BY COUNT(CustomerID) DESC;

Demo Database

Below is a selection from the "Orders" table in the Northwind sample database:

OrderID CustomerID EmployeeID OrderDate ShipperID

10248 90 5 1996-07-04 3

10249 81 6 1996-07-05 1

10250 34 4 1996-07-08 2

And a selection from the "Employees" table:

EmployeeID LastName FirstName BirthDate Photo Notes

1 Davolio Nancy 1968-12-

08

EmpID1.pic Education includes a

BA....

2 Fuller Andrew 1952-02-

19

EmpID2.pic Andrew received his

BTS....

3 Leverling Janet 1963-08-

30

EmpID3.pic Janet has a BS

degree....

More HAVING Examples

The following SQL statement lists the employees that have registered more than

10 orders:

Example

SELECT Employees.LastName, COUNT(Orders.OrderID) AS NumberOfOrders
FROM (Orders
INNER JOIN Employees ON Orders.EmployeeID = Employees.EmployeeID)
GROUP BY LastName
HAVING COUNT(Orders.OrderID) > 10;

The following SQL statement lists if the employees "Davolio" or "Fuller" have

registered more than 25 orders:

Example

SELECT Employees.LastName, COUNT(Orders.OrderID) AS NumberOfOrders
FROM Orders
INNER JOIN Employees ON Orders.EmployeeID = Employees.EmployeeID
WHERE LastName = 'Davolio' OR LastName = 'Fuller'
GROUP BY LastName
HAVING COUNT(Orders.OrderID) > 25;

SQL EXISTS Operator

The SQL EXISTS Operator

The EXISTS operator is used to test for the existence of any record in a subquery.

The EXISTS operator returns TRUE if the subquery returns one or more records.

EXISTS Syntax

SELECT column_name(s)
FROM table_name
WHERE EXISTS
(SELECT column_name FROM table_name WHERE condition);

Demo Database

Below is a selection from the "Products" table in the Northwind sample

database:

ProductID ProductName SupplierID CategoryID Unit Price

1 Chais 1 1 10 boxes x 20

bags

18

2 Chang 1 1 24 - 12 oz

bottles

19

3 Aniseed Syrup 1 2 12 - 550 ml

bottles

10

4 Chef Anton's Cajun

Seasoning

2 2 48 - 6 oz jars 22

5 Chef Anton's Gumbo

Mix

2 2 36 boxes 21.35

And a selection from the "Suppliers" table:

SupplierI

D

SupplierNam

e

ContactNam

e

Address City PostalCod

e

Countr

y

1 Exotic Liquid Charlotte

Cooper

49 Gilbert

St.

Londo

n

EC1 4SD UK

2 New Orleans

Cajun

Delights

Shelley

Burke

P.O. Box

78934

New

Orlean

s

70117 USA

3 Grandma

Kelly's

Homestead

Regina

Murphy

707

Oxford

Rd.

Ann

Arbor

48104 USA

4 Tokyo

Traders

Yoshi Nagase 9-8

Sekimai

Musashino

-shi

Tokyo 100 Japan

SQL EXISTS Examples

The following SQL statement returns TRUE and lists the suppliers with a product
price less than 20:

Example
SELECT SupplierName
FROM Suppliers
WHERE EXISTS (SELECT ProductName FROM Products WHERE Products.SupplierID
= Suppliers.supplierID AND Price < 20);

The following SQL statement returns TRUE and lists the suppliers with a product
price equal to 22:

Example

SELECT SupplierName
FROM Suppliers
WHERE EXISTS (SELECT ProductName FROM Products WHERE Products.SupplierID
= Suppliers.supplierID AND Price = 22);

SQL ANY and ALL Operators

The SQL ANY and ALL Operators

The ANY and ALL operators allow you to perform a comparison between a single

column value and a range of other values.

The SQL ANY Operator

The ANY operator:

 returns a boolean value as a result
 returns TRUE if ANY of the subquery values meet the condition

ANY means that the condition will be true if the operation is true for any of the

values in the range.

ANY Syntax

SELECT column_name(s)
FROM table_name
WHERE column_name operator ANY
 (SELECT column_name
 FROM table_name
 WHERE condition);

Note: The operator must be a standard comparison operator (=, <>, !=, >,
>=, <, or <=).

The SQL ALL Operator

The ALL operator:

 returns a boolean value as a result
 returns TRUE if ALL of the subquery values meet the condition
 is used with SELECT, WHERE and HAVING statements

ALL means that the condition will be true only if the operation is true for all

values in the range.

ALL Syntax With SELECT

SELECT ALL column_name(s)
FROM table_name
WHERE condition;

ALL Syntax With WHERE or HAVING

SELECT column_name(s)
FROM table_name
WHERE column_name operator ALL
 (SELECT column_name
 FROM table_name
 WHERE condition);

Note: The operator must be a standard comparison operator (=, <>, !=, >,

>=, <, or <=).

Demo Database

Below is a selection from the "Products" table in the Northwind sample

database:

ProductID ProductName SupplierID CategoryID Unit Price

1 Chais 1 1 10 boxes x

20 bags

18

2 Chang 1 1 24 - 12 oz

bottles

19

3 Aniseed Syrup 1 2 12 - 550 ml

bottles

10

4 Chef Anton's Cajun

Seasoning

2 2 48 - 6 oz jars 22

5 Chef Anton's Gumbo

Mix

2 2 36 boxes 21.35

6 Grandma's Boysenberry

Spread

3 2 12 - 8 oz jars 25

7 Uncle Bob's Organic

Dried Pears

3 7 12 - 1 lb

pkgs.

30

8 Northwoods Cranberry

Sauce

3 2 12 - 12 oz

jars

40

9 Mishi Kobe Niku 4 6 18 - 500 g

pkgs.

97

And a selection from the "OrderDetails" table:

OrderDetailID OrderID ProductID Quantity

1 10248 11 12

2 10248 42 10

3 10248 72 5

4 10249 14 9

5 10249 51 40

6 10250 41 10

7 10250 51 35

8 10250 65 15

9 10251 22 6

10 10251 57 15

SQL ANY Examples

The following SQL statement lists the ProductName if it finds ANY records in the

OrderDetails table has Quantity equal to 10 (this will return TRUE because the
Quantity column has some values of 10):

Example
SELECT ProductName
FROM Products
WHERE ProductID = ANY
 (SELECT ProductID
 FROM OrderDetails
 WHERE Quantity = 10);

The following SQL statement lists the ProductName if it finds ANY records in the
OrderDetails table has Quantity larger than 99 (this will return TRUE because

the Quantity column has some values larger than 99):

Example

SELECT ProductName
FROM Products
WHERE ProductID = ANY
 (SELECT ProductID
 FROM OrderDetails
 WHERE Quantity > 99);

The following SQL statement lists the ProductName if it finds ANY records in the
OrderDetails table has Quantity larger than 1000 (this will return FALSE

because the Quantity column has no values larger than 1000):

Example

SELECT ProductName
FROM Products
WHERE ProductID = ANY
 (SELECT ProductID
 FROM OrderDetails
 WHERE Quantity > 1000);

SQL ALL Examples

The following SQL statement lists ALL the product names:

Example

SELECT ALL ProductName
FROM Products
WHERE TRUE;

The following SQL statement lists the ProductName if ALL the records in the
OrderDetails table has Quantity equal to 10. This will of course return FALSE
because the Quantity column has many different values (not only the value of

10):

Example

SELECT ProductName
FROM Products
WHERE ProductID = ALL
 (SELECT ProductID
 FROM OrderDetails
 WHERE Quantity = 10);

SQL SELECT INTO Statement

The SQL SELECT INTO Statement

The SELECT INTO statement copies data from one table into a new table.

SELECT INTO Syntax

Copy all columns into a new table:

SELECT *
INTO newtable [IN externaldb]
FROM oldtable
WHERE condition;

Copy only some columns into a new table:

SELECT column1, column2, column3, ...
INTO newtable [IN externaldb]
FROM oldtable
WHERE condition;

The new table will be created with the column-names and types as defined in
the old table. You can create new column names using the AS clause.

SQL SELECT INTO Examples

The following SQL statement creates a backup copy of Customers:

SELECT * INTO CustomersBackup2017
FROM Customers;

The following SQL statement uses the IN clause to copy the table into a new

table in another database:

SELECT * INTO CustomersBackup2017 IN 'Backup.mdb'
FROM Customers;

The following SQL statement copies only a few columns into a new table:

SELECT CustomerName, ContactName INTO CustomersBackup2017
FROM Customers;

The following SQL statement copies only the German customers into a new

table:

SELECT * INTO CustomersGermany
FROM Customers
WHERE Country = 'Germany';

The following SQL statement copies data from more than one table into a new
table:

SELECT Customers.CustomerName, Orders.OrderID
INTO CustomersOrderBackup2017
FROM Customers
LEFT JOIN Orders ON Customers.CustomerID = Orders.CustomerID;

Tip: SELECT INTO can also be used to create a new, empty table using the schema

of another. Just add a WHERE clause that causes the query to return no data:

SELECT * INTO newtable
FROM oldtable
WHERE 1 = 0;

SQL INSERT INTO

SELECT Statement

The SQL INSERT INTO SELECT Statement

The INSERT INTO SELECT statement copies data from one table and inserts it into

another table.

The INSERT INTO SELECT statement requires that the data types in source and

target tables match.

Note: The existing records in the target table are unaffected.

INSERT INTO SELECT Syntax

Copy all columns from one table to another table:

INSERT INTO table2
SELECT * FROM table1
WHERE condition;

Copy only some columns from one table into another table:

INSERT INTO table2 (column1, column2, column3, ...)
SELECT column1, column2, column3, ...
FROM table1
WHERE condition;

Demo Database

In this tutorial we will use the well-known Northwind sample database.

Below is a selection from the "Customers" table:

CustomerI

D

CustomerNa

me

ContactNa

me

Address City PostalCo

de

Countr

y

1

Alfreds

Futterkiste

Maria

Anders

Obere Str.

57

Berlin 12209 German

y

2 Ana Trujillo

Emparedados

y helados

Ana Trujillo Avda. de la

Constitució

n 2222

Méxic

o D.F.

05021 Mexico

3 Antonio

Moreno

Taquería

Antonio

Moreno

Mataderos

2312

Méxic

o D.F.

05023 Mexico

And a selection from the "Suppliers" table:

SupplierID SupplierName ContactName Address City Postal

Code

Country

1 Exotic Liquid Charlotte

Cooper

49

Gilbert

St.

Londona EC1

4SD

UK

2 New Orleans

Cajun Delights

Shelley Burke P.O.

Box

78934

New

Orleans

70117 USA

3 Grandma Kelly's

Homestead

Regina

Murphy

707

Oxford

Rd.

Ann

Arbor

48104 USA

SQL INSERT INTO SELECT Examples

Example

Copy "Suppliers" into "Customers" (the columns that are not filled with data,
will contain NULL):

INSERT INTO Customers (CustomerName, City, Country)
SELECT SupplierName, City, Country FROM Suppliers;

Example

Copy "Suppliers" into "Customers" (fill all columns):

INSERT INTO Customers (CustomerName, ContactName, Address, City,
PostalCode, Country)
SELECT SupplierName, ContactName, Address, City,
PostalCode, Country FROM Suppliers;

Example

Copy only the German suppliers into "Customers":

INSERT INTO Customers (CustomerName, City, Country)
SELECT SupplierName, City, Country FROM Suppliers
WHERE Country='Germany';

SQL CASE Expression

The SQL CASE Expression

The CASE expression goes through conditions and returns a value when the first

condition is met (like an if-then-else statement). So, once a condition is true, it

will stop reading and return the result. If no conditions are true, it returns the
value in the ELSE clause.

If there is no ELSE part and no conditions are true, it returns NULL.

CASE Syntax
CASE
 WHEN condition1 THEN result1
 WHEN condition2 THEN result2

 WHEN conditionN THEN resultN
 ELSE result
END;

Demo Database

Below is a selection from the "OrderDetails" table in the Northwind sample

database:

OrderDetailID OrderID ProductID Quantity

1 10248 11 12

2 10248 42 10

3 10248 72 5

4 10249 14 9

5 10249 51 40

SQL CASE Examples

The following SQL goes through conditions and returns a value when the first

condition is met:

Example
SELECT OrderID, Quantity,
CASE
 WHEN Quantity > 30 THEN 'The quantity is greater than 30'
 WHEN Quantity = 30 THEN 'The quantity is 30'
 ELSE 'The quantity is under 30'
END AS QuantityText
FROM OrderDetails;

The following SQL will order the customers by City. However, if City is NULL,
then order by Country:

Example

SELECT CustomerName, City, Country
FROM Customers
ORDER BY
(CASE
 WHEN City IS NULL THEN Country
 ELSE City
END);

SQL NULL Functions

SQL IFNULL(), ISNULL(), COALESCE(), and

NVL() Functions

Look at the following "Products" table:

P_Id ProductName UnitPrice UnitsInStock UnitsOnOrder

1 Jarlsberg 10.45 16 15

2 Mascarpone 32.56 23

3 Gorgonzola 15.67 9 20

Suppose that the "UnitsOnOrder" column is optional, and may contain NULL
values.

Look at the following SELECT statement:

SELECT ProductName, UnitPrice * (UnitsInStock + UnitsOnOrder)
FROM Products;

In the example above, if any of the "UnitsOnOrder" values are NULL, the result
will be NULL.

Solutions

MySQL

The MySQL IFNULL() function lets you return an alternative value if an

expression is NULL:

SELECT ProductName, UnitPrice * (UnitsInStock + IFNULL(UnitsOnOrder, 0))
FROM Products;

or we can use the COALESCE() function, like this:

SELECT ProductName, UnitPrice * (UnitsInStock
+ COALESCE(UnitsOnOrder, 0))
FROM Products;

SQL Server

The SQL Server ISNULL() function lets you return an alternative value when an

expression is NULL:

SELECT ProductName, UnitPrice * (UnitsInStock + ISNULL(UnitsOnOrder, 0))
FROM Products;

or we can use the COALESCE() function, like this:

SELECT ProductName, UnitPrice * (UnitsInStock
+ COALESCE(UnitsOnOrder, 0))
FROM Products;

MS Access

https://www.w3schools.com/sql/func_mysql_ifnull.asp
https://www.w3schools.com/sql/func_mysql_coalesce.asp
https://www.w3schools.com/sql/func_sqlserver_isnull.asp
https://www.w3schools.com/sql/func_sqlserver_coalesce.asp

The MS Access IsNull() function returns TRUE (-1) if the expression is a null

value, otherwise FALSE (0):

SELECT ProductName, UnitPrice * (UnitsInStock +
IIF(IsNull(UnitsOnOrder), 0, UnitsOnOrder))
FROM Products;

Oracle

The Oracle NVL() function achieves the same result:

SELECT ProductName, UnitPrice * (UnitsInStock + NVL(UnitsOnOrder, 0))
FROM Products;

or we can use the COALESCE() function, like this:

SELECT ProductName, UnitPrice * (UnitsInStock
+ COALESCE(UnitsOnOrder, 0))
FROM Products;

SQL Stored Procedures for SQL

Server

What is a Stored Procedure?

A stored procedure is a prepared SQL code that you can save, so the code can

be reused over and over again.

So if you have an SQL query that you write over and over again, save it as a
stored procedure, and then just call it to execute it.

You can also pass parameters to a stored procedure, so that the stored
procedure can act based on the parameter value(s) that is passed.

Stored Procedure Syntax

CREATE PROCEDURE procedure_name
AS
sql_statement
GO;

https://www.w3schools.com/sql/func_msaccess_isnull.asp

Execute a Stored Procedure

EXEC procedure_name;

Demo Database

Below is a selection from the "Customers" table in the Northwind sample

database:

CustomerI

D

CustomerNa

me

ContactNa

me

Address City PostalCo

de

Countr

y

1

Alfreds

Futterkiste

Maria

Anders

Obere Str.

57

Berlin 12209 German

y

2 Ana Trujillo

Emparedados

y helados

Ana Trujillo Avda. de la

Constitució

n 2222

Méxic

o D.F.

05021 Mexico

3 Antonio

Moreno

Taquería

Antonio

Moreno

Mataderos

2312

Méxic

o D.F.

05023 Mexico

4

Around the

Horn

Thomas

Hardy

120

Hanover Sq.

Londo

n

WA1 1DP UK

5 Berglunds

snabbköp

Christina

Berglund

Berguvsväg

en 8

Luleå S-958 22 Sweden

Stored Procedure Example

The following SQL statement creates a stored procedure named

"SelectAllCustomers" that selects all records from the "Customers" table:

Example
CREATE PROCEDURE SelectAllCustomers
AS
SELECT * FROM Customers
GO;

Execute the stored procedure above as follows:

Example

EXEC SelectAllCustomers;

Stored Procedure With One Parameter

The following SQL statement creates a stored procedure that selects Customers

from a particular City from the "Customers" table:

Example

CREATE PROCEDURE SelectAllCustomers @City nvarchar(30)
AS
SELECT * FROM Customers WHERE City = @City
GO;

Execute the stored procedure above as follows:

Example

EXEC SelectAllCustomers @City = 'London';

Stored Procedure With Multiple

Parameters

Setting up multiple parameters is very easy. Just list each parameter and the

data type separated by a comma as shown below.

The following SQL statement creates a stored procedure that selects Customers

from a particular City with a particular PostalCode from the "Customers" table:

Example

CREATE PROCEDURE SelectAllCustomers @City nvarchar(30), @PostalCode
nvarchar(10)
AS
SELECT * FROM Customers WHERE City = @City AND PostalCode = @PostalCode
GO;

Execute the stored procedure above as follows:

Example

EXEC SelectAllCustomers @City = 'London', @PostalCode = 'WA1 1DP';

SQL Comments

SQL Comments

Comments are used to explain sections of SQL statements, or to prevent
execution of SQL statements.

Note: Comments are not supported in Microsoft Access databases!

Single Line Comments

Single line comments start with --.

Any text between -- and the end of the line will be ignored (will not be
executed).

The following example uses a single-line comment as an explanation:

Example
-- Select all:
SELECT * FROM Customers;

The following example uses a single-line comment to ignore the end of a line:

Example

SELECT * FROM Customers -- WHERE City='Berlin';

The following example uses a single-line comment to ignore a statement:

Example

-- SELECT * FROM Customers;
SELECT * FROM Products;

Multi-line Comments

Multi-line comments start with /* and end with */.

Any text between /* and */ will be ignored.

The following example uses a multi-line comment as an explanation:

Example

/*Select all the columns
of all the records
in the Customers table:*/
SELECT * FROM Customers;

The following example uses a multi-line comment to ignore many statements:

Example

/*SELECT * FROM Customers;
SELECT * FROM Products;
SELECT * FROM Orders;

SELECT * FROM Categories;*/
SELECT * FROM Suppliers;

To ignore just a part of a statement, also use the /* */ comment.

The following example uses a comment to ignore part of a line:

Example

SELECT CustomerName, /*City,*/ Country FROM Customers;

The following example uses a comment to ignore part of a statement:

Example

SELECT * FROM Customers WHERE (CustomerName LIKE 'L%'
OR CustomerName LIKE 'R%' /*OR CustomerName LIKE 'S%'
OR CustomerName LIKE 'T%'*/ OR CustomerName LIKE 'W%')
AND Country='USA'
ORDER BY CustomerName;

SQL Operators

SQL Arithmetic Operators

Operator Description

+ Add

- Subtract

* Multiply

/ Divide

% Modulo

SQL Bitwise Operators

Operator Description

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

SQL Comparison Operators

Operator Description

= Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

<> Not equal to

SQL Compound Operators

Operator Description

+= Add equals

-= Subtract equals

*= Multiply equals

/= Divide equals

%= Modulo equals

&= Bitwise AND equals

^-= Bitwise exclusive equals

|*= Bitwise OR equals

SQL Logical Operators

Operator Description

ALL TRUE if all of the subquery values meet the
condition

AND TRUE if all the conditions separated by AND is TRUE

ANY TRUE if any of the subquery values meet the

condition

BETWEEN TRUE if the operand is within the range of
comparisons

EXISTS TRUE if the subquery returns one or more records

IN TRUE if the operand is equal to one of a list of

expressions

LIKE TRUE if the operand matches a pattern

NOT Displays a record if the condition(s) is NOT TRUE

OR TRUE if any of the conditions separated by OR is
TRUE

SOME TRUE if any of the subquery values meet the
condition

SQL DATABASE

SQL CREATE

DATABASE Statement

The SQL CREATE DATABASE Statement

The CREATE DATABASE statement is used to create a new SQL database.

Syntax

CREATE DATABASE databasename;

CREATE DATABASE Example

The following SQL statement creates a database called "testDB":

Example
CREATE DATABASE testDB;

Tip: Make sure you have admin privilege before creating any database. Once a

database is created, you can check it in the list of databases with the following
SQL command: SHOW DATABASES;

Test Yourself With Exercises

Exercise:

Write the correct SQL statement to create a new database called testDB.

_____________;

Submit Answer »

SQL DROP DATABASE Statement

The SQL DROP DATABASE Statement

The DROP DATABASE statement is used to drop an existing SQL database.

Syntax

DROP DATABASE databasename;

Note: Be careful before dropping a database. Deleting a database will result in
loss of complete information stored in the database!

DROP DATABASE Example

The following SQL statement drops the existing database "testDB":

Example
DROP DATABASE testDB;

Tip: Make sure you have admin privilege before dropping any database. Once a
database is dropped, you can check it in the list of databases with the following

SQL command: SHOW DATABASES;

Exercise:

Write the correct SQL statement to delete a database named testDB.

;

Submit Answer »

DROP DATABASE testDB

SQL BACKUP DATABASE for SQL

Server

The SQL BACKUP DATABASE Statement

The BACKUP DATABASE statement is used in SQL Server to create a full back up of

an existing SQL database.

Syntax

BACKUP DATABASE databasename
TO DISK = 'filepath';

The SQL BACKUP WITH DIFFERENTIAL

Statement

A differential back up only backs up the parts of the database that have

changed since the last full database backup.

Syntax

BACKUP DATABASE databasename
TO DISK = 'filepath'
WITH DIFFERENTIAL;

BACKUP DATABASE Example

The following SQL statement creates a full back up of the existing database

"testDB" to the D disk:

Example
BACKUP DATABASE testDB
TO DISK = 'D:\backups\testDB.bak';

Tip: Always back up the database to a different drive than the actual database.
Then, if you get a disk crash, you will not lose your backup file along with the

database.

BACKUP WITH DIFFERENTIAL Example

The following SQL statement creates a differential back up of the database

"testDB":

Example

BACKUP DATABASE testDB
TO DISK = 'D:\backups\testDB.bak'
WITH DIFFERENTIAL;

Tip: A differential back up reduces the back up time (since only the changes are
backed up).

SQL CREATE TABLE Statement

The SQL CREATE TABLE Statement

The CREATE TABLE statement is used to create a new table in a database.

Syntax

CREATE TABLE table_name (
 column1 datatype,
 column2 datatype,
 column3 datatype,

);

The column parameters specify the names of the columns of the table.

The datatype parameter specifies the type of data the column can hold (e.g.

varchar, integer, date, etc.).

Tip: For an overview of the available data types, go to our complete Data Types

Reference.

SQL CREATE TABLE Example

The following example creates a table called "Persons" that contains five
columns: PersonID, LastName, FirstName, Address, and City:

Example
CREATE TABLE Persons (
 PersonID int,
 LastName varchar(255),
 FirstName varchar(255),
 Address varchar(255),
 City varchar(255)
);

The PersonID column is of type int and will hold an integer.

https://www.w3schools.com/sql/sql_datatypes.asp
https://www.w3schools.com/sql/sql_datatypes.asp

The LastName, FirstName, Address, and City columns are of type varchar and

will hold characters, and the maximum length for these fields is 255 characters.

The empty "Persons" table will now look like this:

PersonID LastName FirstName Address City

Tip: The empty "Persons" table can now be filled with data with the

SQL INSERT INTO statement.

Create Table Using Another Table

A copy of an existing table can also be created using CREATE TABLE.

The new table gets the same column definitions. All columns or specific columns
can be selected.

If you create a new table using an existing table, the new table will be filled
with the existing values from the old table.

Syntax

CREATE TABLE new_table_name AS
 SELECT column1, column2,...
 FROM existing_table_name
 WHERE;

The following SQL creates a new table called "TestTables" (which is a copy of

the "Customers" table):

Example

CREATE TABLE TestTable AS
SELECT customername, contactname
FROM customers;

https://www.w3schools.com/sql/sql_insert.asp

Test Yourself With Exercises

Exercise:

Write the correct SQL statement to create a new table called Persons.

_____________ (

 PersonID int,

 LastName varchar(255),

 FirstName varchar(255),

 Address varchar(255),

 City varchar(255)

);

Submit Answer »

SQL DROP TABLE Statement

The SQL DROP TABLE Statement

The DROP TABLE statement is used to drop an existing table in a database.

Syntax

DROP TABLE table_name;

Note: Be careful before dropping a table. Deleting a table will result in loss of
complete information stored in the table!

SQL DROP TABLE Example

The following SQL statement drops the existing table "Shippers":

Example
DROP TABLE Shippers;

SQL TRUNCATE TABLE

The TRUNCATE TABLE statement is used to delete the data inside a table, but not

the table itself.

Syntax

TRUNCATE TABLE table_name;

Test Yourself With Exercises

Exercise:

Write the correct SQL statement to delete a table called Persons.

_____________ Persons;

Submit Answer »

SQL ALTER TABLE Statement

SQL ALTER TABLE Statement

The ALTER TABLE statement is used to add, delete, or modify columns in an

existing table.

The ALTER TABLE statement is also used to add and drop various constraints on an

existing table.

ALTER TABLE - ADD Column

To add a column in a table, use the following syntax:

ALTER TABLE table_name
ADD column_name datatype;

The following SQL adds an "Email" column to the "Customers" table:

Example
ALTER TABLE Customers
ADD Email varchar(255);

ALTER TABLE - DROP COLUMN

To delete a column in a table, use the following syntax (notice that some

database systems don't allow deleting a column):

ALTER TABLE table_name
DROP COLUMN column_name;

The following SQL deletes the "Email" column from the "Customers" table:

Example

ALTER TABLE Customers
DROP COLUMN Email;

ALTER TABLE - RENAME COLUMN

To rename a column in a table, use the following syntax:

ALTER TABLE table_name
RENAME COLUMN old_name to new_name;

To rename a column in a table in SQL Server, use the following syntax:

SQL Server:

EXEC sp_rename 'table_name.old_name', 'new_name', 'COLUMN';

ALTER TABLE - ALTER/MODIFY

DATATYPE

To change the data type of a column in a table, use the following syntax:

SQL Server / MS Access:

ALTER TABLE table_name
ALTER COLUMN column_name datatype;

My SQL / Oracle (prior version 10G):

ALTER TABLE table_name
MODIFY COLUMN column_name datatype;

Oracle 10G and later:

ALTER TABLE table_name
MODIFY column_name datatype;

SQL ALTER TABLE Example

Look at the "Persons" table:

ID LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

Now we want to add a column named "DateOfBirth" in the "Persons" table.

We use the following SQL statement:

ALTER TABLE Persons
ADD DateOfBirth date;

Notice that the new column, "DateOfBirth", is of type date and is going to hold a
date. The data type specifies what type of data the column can hold. For a

complete reference of all the data types available in MS Access, MySQL, and
SQL Server, go to our complete Data Types reference.

The "Persons" table will now look like this:

ID LastName FirstName Address City DateOfBirth

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

https://www.w3schools.com/sql/sql_datatypes.asp

3 Pettersen Kari Storgt 20 Stavanger

Change Data Type Example

Now we want to change the data type of the column named "DateOfBirth" in the

"Persons" table.

We use the following SQL statement:

ALTER TABLE Persons
ALTER COLUMN DateOfBirth year;

Notice that the "DateOfBirth" column is now of type year and is going to hold a
year in a two- or four-digit format.

DROP COLUMN Example

Next, we want to delete the column named "DateOfBirth" in the "Persons" table.

We use the following SQL statement:

ALTER TABLE Persons
DROP COLUMN DateOfBirth;

The "Persons" table will now look like this:

ID LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

Test Yourself With Exercises

Exercise:

Add a column of type DATE called Birthday.

_____________ Persons

_____________;

Submit Answer »

SQL Constraints

SQL constraints are used to specify rules for data in a table.

SQL Create Constraints

Constraints can be specified when the table is created with the CREATE
TABLE statement, or after the table is created with the ALTER TABLE statement.

Syntax

CREATE TABLE table_name (
 column1 datatype constraint,
 column2 datatype constraint,
 column3 datatype constraint,

);

SQL Constraints

SQL constraints are used to specify rules for the data in a table.

Constraints are used to limit the type of data that can go into a table. This

ensures the accuracy and reliability of the data in the table. If there is any
violation between the constraint and the data action, the action is aborted.

Constraints can be column level or table level. Column level constraints apply to
a column, and table level constraints apply to the whole table.

The following constraints are commonly used in SQL:

 NOT NULL - Ensures that a column cannot have a NULL value

 UNIQUE - Ensures that all values in a column are different

 PRIMARY KEY - A combination of a NOT NULL and UNIQUE. Uniquely

identifies each row in a table

 FOREIGN KEY - Prevents actions that would destroy links between tables

 CHECK - Ensures that the values in a column satisfies a specific condition

 DEFAULT - Sets a default value for a column if no value is specified

 CREATE INDEX - Used to create and retrieve data from the database very

quickly

SQL NOT NULL Constraint

SQL NOT NULL Constraint

By default, a column can hold NULL values.

The NOT NULL constraint enforces a column to NOT accept NULL values.

https://www.w3schools.com/sql/sql_notnull.asp
https://www.w3schools.com/sql/sql_unique.asp
https://www.w3schools.com/sql/sql_primarykey.asp
https://www.w3schools.com/sql/sql_foreignkey.asp
https://www.w3schools.com/sql/sql_check.asp
https://www.w3schools.com/sql/sql_default.asp
https://www.w3schools.com/sql/sql_create_index.asp

This enforces a field to always contain a value, which means that you cannot

insert a new record, or update a record without adding a value to this field.

SQL NOT NULL on CREATE TABLE

The following SQL ensures that the "ID", "LastName", and "FirstName" columns

will NOT accept NULL values when the "Persons" table is created:

Example
CREATE TABLE Persons (
 ID int NOT NULL,
 LastName varchar(255) NOT NULL,
 FirstName varchar(255) NOT NULL,
 Age int
);

SQL NOT NULL on ALTER TABLE

To create a NOT NULL constraint on the "Age" column when the "Persons" table is

already created, use the following SQL:

SQL Server / MS Access:

ALTER TABLE Persons
ALTER COLUMN Age int NOT NULL;

My SQL / Oracle (prior version 10G):

ALTER TABLE Persons
MODIFY COLUMN Age int NOT NULL;

Oracle 10G and later:

ALTER TABLE Persons
MODIFY Age int NOT NULL;

SQL UNIQUE Constraint

SQL UNIQUE Constraint

The UNIQUE constraint ensures that all values in a column are different.

Both the UNIQUE and PRIMARY KEY constraints provide a guarantee for uniqueness

for a column or set of columns.

A PRIMARY KEY constraint automatically has a UNIQUE constraint.

However, you can have many UNIQUE constraints per table, but only one PRIMARY

KEY constraint per table.

SQL UNIQUE Constraint on CREATE

TABLE

The following SQL creates a UNIQUE constraint on the "ID" column when the

"Persons" table is created:

SQL Server / Oracle / MS Access:

CREATE TABLE Persons (
 ID int NOT NULL UNIQUE,
 LastName varchar(255) NOT NULL,
 FirstName varchar(255),
 Age int
);

MySQL:

CREATE TABLE Persons (
 ID int NOT NULL,
 LastName varchar(255) NOT NULL,
 FirstName varchar(255),
 Age int,
 UNIQUE (ID)
);

To name a UNIQUE constraint, and to define a UNIQUE constraint on multiple

columns, use the following SQL syntax:

MySQL / SQL Server / Oracle / MS Access:

CREATE TABLE Persons (
 ID int NOT NULL,
 LastName varchar(255) NOT NULL,
 FirstName varchar(255),

 Age int,
 CONSTRAINT UC_Person UNIQUE (ID,LastName)
);

SQL UNIQUE Constraint on ALTER TABLE

To create a UNIQUE constraint on the "ID" column when the table is already

created, use the following SQL:

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Persons
ADD UNIQUE (ID);

To name a UNIQUE constraint, and to define a UNIQUE constraint on multiple

columns, use the following SQL syntax:

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Persons
ADD CONSTRAINT UC_Person UNIQUE (ID,LastName);

DROP a UNIQUE Constraint

To drop a UNIQUE constraint, use the following SQL:

MySQL:

ALTER TABLE Persons
DROP INDEX UC_Person;

SQL Server / Oracle / MS Access:

ALTER TABLE Persons
DROP CONSTRAINT UC_Person;

SQL PRIMARY KEY Constraint

SQL PRIMARY KEY Constraint

The PRIMARY KEY constraint uniquely identifies each record in a table.

Primary keys must contain UNIQUE values, and cannot contain NULL values.

A table can have only ONE primary key; and in the table, this primary key can

consist of single or multiple columns (fields).

SQL PRIMARY KEY on CREATE TABLE

The following SQL creates a PRIMARY KEY on the "ID" column when the "Persons"

table is created:

MySQL:

CREATE TABLE Persons (
 ID int NOT NULL,
 LastName varchar(255) NOT NULL,
 FirstName varchar(255),
 Age int,
 PRIMARY KEY (ID)
);

SQL Server / Oracle / MS Access:

CREATE TABLE Persons (
 ID int NOT NULL PRIMARY KEY,
 LastName varchar(255) NOT NULL,
 FirstName varchar(255),
 Age int
);

To allow naming of a PRIMARY KEY constraint, and for defining a PRIMARY

KEY constraint on multiple columns, use the following SQL syntax:

MySQL / SQL Server / Oracle / MS Access:

CREATE TABLE Persons (
 ID int NOT NULL,
 LastName varchar(255) NOT NULL,
 FirstName varchar(255),
 Age int,
 CONSTRAINT PK_Person PRIMARY KEY (ID,LastName)
);

Note: In the example above there is only ONE PRIMARY KEY (PK_Person).

However, the VALUE of the primary key is made up of TWO COLUMNS (ID +
LastName).

SQL PRIMARY KEY on ALTER TABLE

To create a PRIMARY KEY constraint on the "ID" column when the table is already

created, use the following SQL:

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Persons
ADD PRIMARY KEY (ID);

To allow naming of a PRIMARY KEY constraint, and for defining a PRIMARY

KEY constraint on multiple columns, use the following SQL syntax:

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Persons
ADD CONSTRAINT PK_Person PRIMARY KEY (ID,LastName);

Note: If you use ALTER TABLE to add a primary key, the primary key column(s)

must have been declared to not contain NULL values (when the table was first
created).

DROP a PRIMARY KEY Constraint

To drop a PRIMARY KEY constraint, use the following SQL:

MySQL:

ALTER TABLE Persons
DROP PRIMARY KEY;

SQL Server / Oracle / MS Access:

ALTER TABLE Persons
DROP CONSTRAINT PK_Person;

SQL FOREIGN KEY Constraint

SQL FOREIGN KEY Constraint

The FOREIGN KEY constraint is used to prevent actions that would destroy links

between tables.

A FOREIGN KEY is a field (or collection of fields) in one table, that refers to

the PRIMARY KEY in another table.

The table with the foreign key is called the child table, and the table with the

primary key is called the referenced or parent table.

Look at the following two tables:

Persons Table

PersonID LastName FirstName Age

1 Hansen Ola 30

2 Svendson Tove 23

3 Pettersen Kari 20

Orders Table

OrderID OrderNumber PersonID

1 77895 3

https://www.w3schools.com/sql/sql_primarykey.asp

2 44678 3

3 22456 2

4 24562 1

Notice that the "PersonID" column in the "Orders" table points to the "PersonID"

column in the "Persons" table.

The "PersonID" column in the "Persons" table is the PRIMARY KEY in the "Persons"

table.

The "PersonID" column in the "Orders" table is a FOREIGN KEY in the "Orders"

table.

The FOREIGN KEY constraint prevents invalid data from being inserted into the

foreign key column, because it has to be one of the values contained in the

parent table.

SQL FOREIGN KEY on CREATE TABLE

The following SQL creates a FOREIGN KEY on the "PersonID" column when the

"Orders" table is created:

MySQL:

CREATE TABLE Orders (
 OrderID int NOT NULL,
 OrderNumber int NOT NULL,
 PersonID int,
 PRIMARY KEY (OrderID),
 FOREIGN KEY (PersonID) REFERENCES Persons(PersonID)
);

SQL Server / Oracle / MS Access:

CREATE TABLE Orders (
 OrderID int NOT NULL PRIMARY KEY,
 OrderNumber int NOT NULL,

 PersonID int FOREIGN KEY REFERENCES Persons(PersonID)
);

To allow naming of a FOREIGN KEY constraint, and for defining a FOREIGN

KEY constraint on multiple columns, use the following SQL syntax:

MySQL / SQL Server / Oracle / MS Access:

CREATE TABLE Orders (
 OrderID int NOT NULL,
 OrderNumber int NOT NULL,
 PersonID int,
 PRIMARY KEY (OrderID),
 CONSTRAINT FK_PersonOrder FOREIGN KEY (PersonID)
 REFERENCES Persons(PersonID)
);

SQL FOREIGN KEY on ALTER TABLE

To create a FOREIGN KEY constraint on the "PersonID" column when the "Orders"

table is already created, use the following SQL:

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Orders
ADD FOREIGN KEY (PersonID) REFERENCES Persons(PersonID);

To allow naming of a FOREIGN KEY constraint, and for defining a FOREIGN

KEY constraint on multiple columns, use the following SQL syntax:

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Orders
ADD CONSTRAINT FK_PersonOrder
FOREIGN KEY (PersonID) REFERENCES Persons(PersonID);

DROP a FOREIGN KEY Constraint

To drop a FOREIGN KEY constraint, use the following SQL:

MySQL:

ALTER TABLE Orders
DROP FOREIGN KEY FK_PersonOrder;

SQL Server / Oracle / MS Access:

ALTER TABLE Orders
DROP CONSTRAINT FK_PersonOrder;

SQL CHECK Constraint

SQL CHECK Constraint

The CHECK constraint is used to limit the value range that can be placed in a

column.

If you define a CHECK constraint on a column it will allow only certain values for

this column.

If you define a CHECK constraint on a table it can limit the values in certain

columns based on values in other columns in the row.

SQL CHECK on CREATE TABLE

The following SQL creates a CHECK constraint on the "Age" column when the

"Persons" table is created. The CHECK constraint ensures that the age of a person

must be 18, or older:

MySQL:

CREATE TABLE Persons (
 ID int NOT NULL,
 LastName varchar(255) NOT NULL,
 FirstName varchar(255),
 Age int,
 CHECK (Age>=18)
);

SQL Server / Oracle / MS Access:

CREATE TABLE Persons (
 ID int NOT NULL,
 LastName varchar(255) NOT NULL,
 FirstName varchar(255),
 Age int CHECK (Age>=18)
);

To allow naming of a CHECK constraint, and for defining a CHECK constraint on

multiple columns, use the following SQL syntax:

MySQL / SQL Server / Oracle / MS Access:

CREATE TABLE Persons (
 ID int NOT NULL,
 LastName varchar(255) NOT NULL,
 FirstName varchar(255),
 Age int,
 City varchar(255),
 CONSTRAINT CHK_Person CHECK (Age>=18 AND City='Sandnes')
);

SQL CHECK on ALTER TABLE

To create a CHECK constraint on the "Age" column when the table is already

created, use the following SQL:

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Persons
ADD CHECK (Age>=18);

To allow naming of a CHECK constraint, and for defining a CHECK constraint on

multiple columns, use the following SQL syntax:

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Persons
ADD CONSTRAINT CHK_PersonAge CHECK (Age>=18 AND City='Sandnes');

DROP a CHECK Constraint

To drop a CHECK constraint, use the following SQL:

SQL Server / Oracle / MS Access:

ALTER TABLE Persons
DROP CONSTRAINT CHK_PersonAge;

MySQL:

ALTER TABLE Persons
DROP CHECK CHK_PersonAge;

SQL DEFAULT Constraint

SQL DEFAULT Constraint

The DEFAULT constraint is used to set a default value for a column.

The default value will be added to all new records, if no other value is specified.

SQL DEFAULT on CREATE TABLE

The following SQL sets a DEFAULT value for the "City" column when the "Persons"

table is created:

My SQL / SQL Server / Oracle / MS Access:

CREATE TABLE Persons (
 ID int NOT NULL,
 LastName varchar(255) NOT NULL,
 FirstName varchar(255),
 Age int,
 City varchar(255) DEFAULT 'Sandnes'
);

The DEFAULT constraint can also be used to insert system values, by using

functions like GETDATE():

CREATE TABLE Orders (
 ID int NOT NULL,
 OrderNumber int NOT NULL,
 OrderDate date DEFAULT GETDATE()
);

https://www.w3schools.com/sql/func_sqlserver_getdate.asp

SQL DEFAULT on ALTER TABLE

To create a DEFAULT constraint on the "City" column when the table is already

created, use the following SQL:

MySQL:

ALTER TABLE Persons
ALTER City SET DEFAULT 'Sandnes';

SQL Server:

ALTER TABLE Persons
ADD CONSTRAINT df_City
DEFAULT 'Sandnes' FOR City;

MS Access:

ALTER TABLE Persons
ALTER COLUMN City SET DEFAULT 'Sandnes';

Oracle:

ALTER TABLE Persons
MODIFY City DEFAULT 'Sandnes';

DROP a DEFAULT Constraint

To drop a DEFAULT constraint, use the following SQL:

MySQL:

ALTER TABLE Persons
ALTER City DROP DEFAULT;

SQL Server / Oracle / MS Access:

ALTER TABLE Persons
ALTER COLUMN City DROP DEFAULT;

SQL Server:

ALTER TABLE Persons
ALTER COLUMN City DROP DEFAULT;

SQL CREATE INDEX Statement

SQL CREATE INDEX Statement

The CREATE INDEX statement is used to create indexes in tables.

Indexes are used to retrieve data from the database more quickly than
otherwise. The users cannot see the indexes, they are just used to speed up

searches/queries.

Note: Updating a table with indexes takes more time than updating a table

without (because the indexes also need an update). So, only create indexes on
columns that will be frequently searched against.

CREATE INDEX Syntax

Creates an index on a table. Duplicate values are allowed:

CREATE INDEX index_name
ON table_name (column1, column2, ...);

CREATE UNIQUE INDEX Syntax

Creates a unique index on a table. Duplicate values are not allowed:

CREATE UNIQUE INDEX index_name
ON table_name (column1, column2, ...);

Note: The syntax for creating indexes varies among different databases.
Therefore: Check the syntax for creating indexes in your database.

CREATE INDEX Example

The SQL statement below creates an index named "idx_lastname" on the

"LastName" column in the "Persons" table:

CREATE INDEX idx_lastname
ON Persons (LastName);

If you want to create an index on a combination of columns, you can list the

column names within the parentheses, separated by commas:

CREATE INDEX idx_pname
ON Persons (LastName, FirstName);

DROP INDEX Statement

The DROP INDEX statement is used to delete an index in a table.

MS Access:

DROP INDEX index_name ON table_name;

SQL Server:

DROP INDEX table_name.index_name;

DB2/Oracle:

DROP INDEX index_name;

MySQL:

ALTER TABLE table_name
DROP INDEX index_name;

SQL AUTO INCREMENT Field

AUTO INCREMENT Field

Auto-increment allows a unique number to be generated automatically when a

new record is inserted into a table.

Often this is the primary key field that we would like to be created automatically
every time a new record is inserted.

Syntax for MySQL

The following SQL statement defines the "Personid" column to be an auto-

increment primary key field in the "Persons" table:

CREATE TABLE Persons (
 Personid int NOT NULL AUTO_INCREMENT,
 LastName varchar(255) NOT NULL,
 FirstName varchar(255),
 Age int,
 PRIMARY KEY (Personid)
);

MySQL uses the AUTO_INCREMENT keyword to perform an auto-increment feature.

By default, the starting value for AUTO_INCREMENT is 1, and it will increment by 1

for each new record.

To let the AUTO_INCREMENT sequence start with another value, use the following

SQL statement:

ALTER TABLE Persons AUTO_INCREMENT=100;

To insert a new record into the "Persons" table, we will NOT have to specify a
value for the "Personid" column (a unique value will be added automatically):

INSERT INTO Persons (FirstName,LastName)
VALUES ('Lars','Monsen');

The SQL statement above would insert a new record into the "Persons" table.

The "Personid" column would be assigned a unique value. The "FirstName"
column would be set to "Lars" and the "LastName" column would be set to

"Monsen".

Syntax for SQL Server

The following SQL statement defines the "Personid" column to be an auto-

increment primary key field in the "Persons" table:

CREATE TABLE Persons (
 Personid int IDENTITY(1,1) PRIMARY KEY,
 LastName varchar(255) NOT NULL,
 FirstName varchar(255),
 Age int
);

The MS SQL Server uses the IDENTITY keyword to perform an auto-increment

feature.

In the example above, the starting value for IDENTITY is 1, and it will increment

by 1 for each new record.

Tip: To specify that the "Personid" column should start at value 10 and
increment by 5, change it to IDENTITY(10,5).

To insert a new record into the "Persons" table, we will NOT have to specify a
value for the "Personid" column (a unique value will be added automatically):

INSERT INTO Persons (FirstName,LastName)
VALUES ('Lars','Monsen');

The SQL statement above would insert a new record into the "Persons" table.

The "Personid" column would be assigned a unique value. The "FirstName"
column would be set to "Lars" and the "LastName" column would be set to
"Monsen".

Syntax for Access

The following SQL statement defines the "Personid" column to be an auto-

increment primary key field in the "Persons" table:

CREATE TABLE Persons (
 Personid AUTOINCREMENT PRIMARY KEY,
 LastName varchar(255) NOT NULL,
 FirstName varchar(255),
 Age int
);

The MS Access uses the AUTOINCREMENT keyword to perform an auto-increment

feature.

By default, the starting value for AUTOINCREMENT is 1, and it will increment by 1 for

each new record.

Tip: To specify that the "Personid" column should start at value 10 and
increment by 5, change the autoincrement to AUTOINCREMENT(10,5).

To insert a new record into the "Persons" table, we will NOT have to specify a

value for the "Personid" column (a unique value will be added automatically):

INSERT INTO Persons (FirstName,LastName)
VALUES ('Lars','Monsen');

The SQL statement above would insert a new record into the "Persons" table.
The "Personid" column would be assigned a unique value. The "FirstName"

column would be set to "Lars" and the "LastName" column would be set to
"Monsen".

Syntax for Oracle

In Oracle the code is a little bit more tricky.

You will have to create an auto-increment field with the sequence object (this

object generates a number sequence).

Use the following CREATE SEQUENCE syntax:

CREATE SEQUENCE seq_person
MINVALUE 1
START WITH 1
INCREMENT BY 1
CACHE 10;

The code above creates a sequence object called seq_person, that starts with 1
and will increment by 1. It will also cache up to 10 values for performance. The
cache option specifies how many sequence values will be stored in memory for

faster access.

To insert a new record into the "Persons" table, we will have to use the nextval

function (this function retrieves the next value from seq_person sequence):

INSERT INTO Persons (Personid,FirstName,LastName)
VALUES (seq_person.nextval,'Lars','Monsen');

The SQL statement above would insert a new record into the "Persons" table.
The "Personid" column would be assigned the next number from the seq_person

sequence. The "FirstName" column would be set to "Lars" and the "LastName"
column would be set to "Monsen".

SQL Working With Dates

SQL Dates

The most difficult part when working with dates is to be sure that the format of

the date you are trying to insert, matches the format of the date column in the
database.

As long as your data contains only the date portion, your queries will work as
expected. However, if a time portion is involved, it gets more complicated.

SQL Date Data Types

MySQL comes with the following data types for storing a date or a date/time

value in the database:

 DATE - format YYYY-MM-DD

 DATETIME - format: YYYY-MM-DD HH:MI:SS

 TIMESTAMP - format: YYYY-MM-DD HH:MI:SS

 YEAR - format YYYY or YY

SQL Server comes with the following data types for storing a date or a
date/time value in the database:

 DATE - format YYYY-MM-DD

 DATETIME - format: YYYY-MM-DD HH:MI:SS

 SMALLDATETIME - format: YYYY-MM-DD HH:MI:SS

 TIMESTAMP - format: a unique number

Note: The date types are chosen for a column when you create a new table in
your database!

SQL Working with Dates

Look at the following table:

Orders Table

OrderId ProductName OrderDate

1 Geitost 2008-11-11

2 Camembert Pierrot 2008-11-09

3 Mozzarella di Giovanni 2008-11-11

4 Mascarpone Fabioli 2008-10-29

Now we want to select the records with an OrderDate of "2008-11-11" from the
table above.

We use the following SELECT statement:

SELECT * FROM Orders WHERE OrderDate='2008-11-11'

The result-set will look like this:

OrderId ProductName OrderDate

1 Geitost 2008-11-11

3 Mozzarella di Giovanni 2008-11-11

Note: Two dates can easily be compared if there is no time component

involved!

Now, assume that the "Orders" table looks like this (notice the added time-

component in the "OrderDate" column):

OrderId ProductName OrderDate

1 Geitost 2008-11-11 13:23:44

2 Camembert Pierrot 2008-11-09 15:45:21

3 Mozzarella di Giovanni 2008-11-11 11:12:01

4 Mascarpone Fabioli 2008-10-29 14:56:59

If we use the same SELECT statement as above:

SELECT * FROM Orders WHERE OrderDate='2008-11-11'

we will get no result! This is because the query is looking only for dates with no

time portion.

Tip: To keep your queries simple and easy to maintain, do not use time-

components in your dates, unless you have to!

SQL Views

SQL CREATE VIEW Statement

In SQL, a view is a virtual table based on the result-set of an SQL statement.

A view contains rows and columns, just like a real table. The fields in a view are

fields from one or more real tables in the database.

You can add SQL statements and functions to a view and present the data as if

the data were coming from one single table.

A view is created with the CREATE VIEW statement.

CREATE VIEW Syntax

CREATE VIEW view_name AS
SELECT column1, column2, ...
FROM table_name
WHERE condition;

Note: A view always shows up-to-date data! The database engine recreates the

view, every time a user queries it.

SQL CREATE VIEW Examples

The following SQL creates a view that shows all customers from Brazil:

Example
CREATE VIEW [Brazil Customers] AS
SELECT CustomerName, ContactName
FROM Customers
WHERE Country = 'Brazil';

We can query the view above as follows:

Example

SELECT * FROM [Brazil Customers];

The following SQL creates a view that selects every product in the "Products"
table with a price higher than the average price:

Example

CREATE VIEW [Products Above Average Price] AS
SELECT ProductName, Price
FROM Products
WHERE Price > (SELECT AVG(Price) FROM Products);

We can query the view above as follows:

Example

SELECT * FROM [Products Above Average Price];

SQL Updating a View

A view can be updated with the CREATE OR REPLACE VIEW statement.

SQL CREATE OR REPLACE VIEW Syntax

CREATE OR REPLACE VIEW view_name AS
SELECT column1, column2, ...
FROM table_name
WHERE condition;

The following SQL adds the "City" column to the "Brazil Customers" view:

Example

CREATE OR REPLACE VIEW [Brazil Customers] AS
SELECT CustomerName, ContactName, City
FROM Customers
WHERE Country = 'Brazil';

SQL Dropping a View

A view is deleted with the DROP VIEW statement.

SQL DROP VIEW Syntax

DROP VIEW view_name;

The following SQL drops the "Brazil Customers" view:

Example

DROP VIEW [Brazil Customers];

SQL Injection

SQL Injection

SQL injection is a code injection technique that might destroy your database.

SQL injection is one of the most common web hacking techniques.

SQL injection is the placement of malicious code in SQL statements, via web
page input.

SQL in Web Pages

SQL injection usually occurs when you ask a user for input, like their

username/userid, and instead of a name/id, the user gives you an SQL

statement that you will unknowingly run on your database.

Look at the following example which creates a SELECT statement by adding a

variable (txtUserId) to a select string. The variable is fetched from user input
(getRequestString):

Example
txtUserId = getRequestString("UserId");
txtSQL = "SELECT * FROM Users WHERE UserId = " + txtUserId;

The rest of this chapter describes the potential dangers of using user input in
SQL statements.

SQL Injection Based on 1=1 is Always

True

Look at the example above again. The original purpose of the code was to

create an SQL statement to select a user, with a given user id.

If there is nothing to prevent a user from entering "wrong" input, the user can
enter some "smart" input like this:

UserId:
105 OR 1=1

Then, the SQL statement will look like this:

SELECT * FROM Users WHERE UserId = 105 OR 1=1;

The SQL above is valid and will return ALL rows from the "Users" table,

since OR 1=1 is always TRUE.

Does the example above look dangerous? What if the "Users" table contains

names and passwords?

The SQL statement above is much the same as this:

SELECT UserId, Name, Password FROM Users WHERE UserId = 105 or 1=1;

A hacker might get access to all the user names and passwords in a database,

by simply inserting 105 OR 1=1 into the input field.

SQL Injection Based on ""="" is Always

True

Here is an example of a user login on a web site:

Username:
John Doe

Password:
myPass

Example

uName = getRequestString("username");
uPass = getRequestString("userpassword");

sql = 'SELECT * FROM Users WHERE Name ="' + uName + '" AND Pass ="' +
uPass + '"'

Result

SELECT * FROM Users WHERE Name ="John Doe" AND Pass ="myPass"

A hacker might get access to user names and passwords in a database by

simply inserting " OR ""=" into the user name or password text box:

User Name:

Password:

The code at the server will create a valid SQL statement like this:

Result

SELECT * FROM Users WHERE Name ="" or ""="" AND Pass ="" or ""=""

The SQL above is valid and will return all rows from the "Users" table, since OR
""="" is always TRUE.

SQL Injection Based on Batched SQL

Statements

Most databases support batched SQL statement.

A batch of SQL statements is a group of two or more SQL statements,

separated by semicolons.

The SQL statement below will return all rows from the "Users" table, then delete

the "Suppliers" table.

Example

SELECT * FROM Users; DROP TABLE Suppliers

Look at the following example:

Example

txtUserId = getRequestString("UserId");
txtSQL = "SELECT * FROM Users WHERE UserId = " + txtUserId;

And the following input:

User id:
105; DROP

The valid SQL statement would look like this:

Result

SELECT * FROM Users WHERE UserId = 105; DROP TABLE Suppliers;

Use SQL Parameters for Protection

To protect a web site from SQL injection, you can use SQL parameters.

SQL parameters are values that are added to an SQL query at execution time,

in a controlled manner.

ASP.NET Razor Example

txtUserId = getRequestString("UserId");
txtSQL = "SELECT * FROM Users WHERE UserId = @0";
db.Execute(txtSQL,txtUserId);

Note that parameters are represented in the SQL statement by a @ marker.

The SQL engine checks each parameter to ensure that it is correct for its
column and are treated literally, and not as part of the SQL to be executed.

Another Example

txtNam = getRequestString("CustomerName");
txtAdd = getRequestString("Address");
txtCit = getRequestString("City");
txtSQL = "INSERT INTO Customers (CustomerName,Address,City)
Values(@0,@1,@2)";
db.Execute(txtSQL,txtNam,txtAdd,txtCit);

Examples

The following examples shows how to build parameterized queries in some

common web languages.

SELECT STATEMENT IN ASP.NET:

txtUserId = getRequestString("UserId");
sql = "SELECT * FROM Customers WHERE CustomerId = @0";
command = new SqlCommand(sql);
command.Parameters.AddWithValue("@0",txtUserId);
command.ExecuteReader();

INSERT INTO STATEMENT IN ASP.NET:

txtNam = getRequestString("CustomerName");
txtAdd = getRequestString("Address");
txtCit = getRequestString("City");
txtSQL = "INSERT INTO Customers (CustomerName,Address,City)
Values(@0,@1,@2)";
command = new SqlCommand(txtSQL);
command.Parameters.AddWithValue("@0",txtNam);
command.Parameters.AddWithValue("@1",txtAdd);
command.Parameters.AddWithValue("@2",txtCit);
command.ExecuteNonQuery();

INSERT INTO STATEMENT IN PHP:

$stmt = $dbh->prepare("INSERT INTO Customers (CustomerName,Address,City)
VALUES (:nam, :add, :cit)");
$stmt->bindParam(':nam', $txtNam);
$stmt->bindParam(':add', $txtAdd);
$stmt->bindParam(':cit', $txtCit);
$stmt->execute();

SQL Hosting

SQL Hosting

If you want your web site to be able to store and retrieve data from a database,

your web server should have access to a database-system that uses the SQL

language.

If your web server is hosted by an Internet Service Provider (ISP), you will have

to look for SQL hosting plans.

The most common SQL hosting databases are MS SQL Server, Oracle, MySQL,

and MS Access.

MS SQL Server

Microsoft's SQL Server is a popular database software for database-driven web

sites with high traffic.

SQL Server is a very powerful, robust and full featured SQL database system.

Oracle

Oracle is also a popular database software for database-driven web sites with

high traffic.

Oracle is a very powerful, robust and full featured SQL database system.

MySQL

MySQL is also a popular database software for web sites.

MySQL is a very powerful, robust and full featured SQL database system.

MySQL is an inexpensive alternative to the expensive Microsoft and Oracle

solutions.

MS Access

When a web site requires only a simple database, Microsoft Access can be a

solution.

MS Access is not well suited for very high-traffic, and not as powerful as MySQL,

SQL Server, or Oracle.

SQL Data Types for MySQL, SQL

Server, and MS Access

The data type of a column defines what value the column can hold: integer,

character, money, date and time, binary, and so on.

SQL Data Types

Each column in a database table is required to have a name and a data type.

An SQL developer must decide what type of data that will be stored inside each
column when creating a table. The data type is a guideline for SQL to

understand what type of data is expected inside of each column, and it also
identifies how SQL will interact with the stored data.

Note: Data types might have different names in different database. And even if

the name is the same, the size and other details may be different! Always
check the documentation!

MySQL Data Types (Version 8.0)

In MySQL there are three main data types: string, numeric, and date and time.

String Data Types

Data type Description

CHAR(size) A FIXED length string (can contain letters, numbers, and special

characters). The size parameter specifies the column length in

characters - can be from 0 to 255. Default is 1

VARCHAR(size) A VARIABLE length string (can contain letters, numbers, and

special characters). The size parameter specifies the maximum

string length in characters - can be from 0 to 65535

BINARY(size) Equal to CHAR(), but stores binary byte strings.

The size parameter specifies the column length in bytes. Default

is 1

VARBINARY(size) Equal to VARCHAR(), but stores binary byte strings.

The size parameter specifies the maximum column length in

bytes.

TINYBLOB For BLOBs (Binary Large Objects). Max length: 255 bytes

TINYTEXT Holds a string with a maximum length of 255 characters

TEXT(size) Holds a string with a maximum length of 65,535 bytes

BLOB(size) For BLOBs (Binary Large Objects). Holds up to 65,535 bytes of

data

MEDIUMTEXT Holds a string with a maximum length of 16,777,215 characters

MEDIUMBLOB For BLOBs (Binary Large Objects). Holds up to 16,777,215

bytes of data

LONGTEXT Holds a string with a maximum length of 4,294,967,295

characters

LONGBLOB For BLOBs (Binary Large Objects). Holds up to 4,294,967,295

bytes of data

ENUM(val1, val2,

val3, ...)

A string object that can have only one value, chosen from a list

of possible values. You can list up to 65535 values in an ENUM

list. If a value is inserted that is not in the list, a blank value will

be inserted. The values are sorted in the order you enter them

SET(val1, val2, val3, ...) A string object that can have 0 or more values, chosen from a list

of possible values. You can list up to 64 values in a SET list

Numeric Data Types

Data type Description

BIT(size) A bit-value type. The number of bits per value is specified

in size. The size parameter can hold a value from 1 to 64. The

default value for size is 1.

TINYINT(size) A very small integer. Signed range is from -128 to 127. Unsigned

range is from 0 to 255. The size parameter specifies the

maximum display width (which is 255)

BOOL Zero is considered as false, nonzero values are considered as

true.

BOOLEAN Equal to BOOL

SMALLINT(size) A small integer. Signed range is from -32768 to 32767. Unsigned

range is from 0 to 65535. The size parameter specifies the

maximum display width (which is 255)

MEDIUMINT(size) A medium integer. Signed range is from -8388608 to 8388607.

Unsigned range is from 0 to 16777215. The size parameter

specifies the maximum display width (which is 255)

INT(size) A medium integer. Signed range is from -2147483648 to

2147483647. Unsigned range is from 0 to 4294967295.

The size parameter specifies the maximum display width (which

is 255)

INTEGER(size) Equal to INT(size)

BIGINT(size) A large integer. Signed range is from -9223372036854775808 to

9223372036854775807. Unsigned range is from 0 to

18446744073709551615. The size parameter specifies the

maximum display width (which is 255)

FLOAT(size, d) A floating point number. The total number of digits is specified

in size. The number of digits after the decimal point is specified

in the d parameter. This syntax is deprecated in MySQL 8.0.17,

and it will be removed in future MySQL versions

FLOAT(p) A floating point number. MySQL uses the p value to determine

whether to use FLOAT or DOUBLE for the resulting data type.

If p is from 0 to 24, the data type becomes FLOAT(). If p is from

25 to 53, the data type becomes DOUBLE()

DOUBLE(size, d) A normal-size floating point number. The total number of digits

is specified in size. The number of digits after the decimal point

is specified in the d parameter

DOUBLE

PRECISION(size, d)

DECIMAL(size, d) An exact fixed-point number. The total number of digits is

specified in size. The number of digits after the decimal point is

specified in the d parameter. The maximum number for size is

65. The maximum number for d is 30. The default value

for size is 10. The default value for d is 0.

DEC(size, d) Equal to DECIMAL(size,d)

Note: All the numeric data types may have an extra option: UNSIGNED or
ZEROFILL. If you add the UNSIGNED option, MySQL disallows negative values

for the column. If you add the ZEROFILL option, MySQL automatically also adds
the UNSIGNED attribute to the column.

Date and Time Data Types

Data type Description

DATE A date. Format: YYYY-MM-DD. The supported range is

from '1000-01-01' to '9999-12-31'

DATETIME(fsp) A date and time combination. Format: YYYY-MM-DD

hh:mm:ss. The supported range is from '1000-01-01

00:00:00' to '9999-12-31 23:59:59'. Adding
DEFAULT and ON UPDATE in the column definition to

get automatic initialization and updating to the
current date and time

TIMESTAMP(fsp) A timestamp. TIMESTAMP values are stored as the
number of seconds since the Unix epoch ('1970-01-

01 00:00:00' UTC). Format: YYYY-MM-DD hh:mm:ss.
The supported range is from '1970-01-01 00:00:01'

UTC to '2038-01-09 03:14:07' UTC. Automatic
initialization and updating to the current date and
time can be specified using DEFAULT

CURRENT_TIMESTAMP and ON UPDATE
CURRENT_TIMESTAMP in the column definition

TIME(fsp) A time. Format: hh:mm:ss. The supported range is
from '-838:59:59' to '838:59:59'

YEAR A year in four-digit format. Values allowed in four-
digit format: 1901 to 2155, and 0000.

MySQL 8.0 does not support year in two-digit format.

SQL Server Data Types

String Data Types

Data type Description Max size Storage

char(n) Fixed width character

string

8,000 characters Defined width

varchar(n) Variable width

character string

8,000 characters 2 bytes + number

of chars

varchar(max) Variable width

character string

1,073,741,824

characters

2 bytes + number

of chars

text Variable width

character string

2GB of text data 4 bytes + number

of chars

nchar Fixed width Unicode

string

4,000 characters Defined width x 2

nvarchar Variable width

Unicode string

4,000 characters

nvarchar(max) Variable width

Unicode string

536,870,912

characters

ntext Variable width

Unicode string

2GB of text data

binary(n) Fixed width binary

string

8,000 bytes

varbinary Variable width binary

string

8,000 bytes

varbinary(max) Variable width binary

string

2GB

image Variable width binary

string

2GB

Numeric Data Types

Data type Description Storage

bit Integer that can be 0, 1, or NULL

tinyint Allows whole numbers from 0 to 255 1 byte

smallint Allows whole numbers between -32,768 and 32,767 2 bytes

int Allows whole numbers between -2,147,483,648 and

2,147,483,647

4 bytes

bigint Allows whole numbers between -9,223,372,036,854,775,808

and 9,223,372,036,854,775,807

8 bytes

decimal(p,s) Fixed precision and scale numbers.

Allows numbers from -10^38 +1 to 10^38 –1.

The p parameter indicates the maximum total number of digits that

can be stored (both to the left and to the right of the decimal point).

p must be a value from 1 to 38. Default is 18.

The s parameter indicates the maximum number of digits stored to

the right of the decimal point. s must be a value from 0 to p.

Default value is 0

5-17

bytes

numeric(p,s) Fixed precision and scale numbers. 5-17

bytes

Allows numbers from -10^38 +1 to 10^38 –1.

The p parameter indicates the maximum total number of digits that

can be stored (both to the left and to the right of the decimal point).

p must be a value from 1 to 38. Default is 18.

The s parameter indicates the maximum number of digits stored to

the right of the decimal point. s must be a value from 0 to p.

Default value is 0

smallmoney Monetary data from -214,748.3648 to 214,748.3647 4 bytes

money Monetary data from -922,337,203,685,477.5808 to

922,337,203,685,477.5807

8 bytes

float(n) Floating precision number data from -1.79E + 308 to 1.79E +

308.

The n parameter indicates whether the field should hold 4 or 8

bytes. float(24) holds a 4-byte field and float(53) holds an 8-byte

field. Default value of n is 53.

4 or 8

bytes

real Floating precision number data from -3.40E + 38 to 3.40E + 38 4 bytes

Date and Time Data Types

Data type Description Storage

datetime From January 1, 1753 to December 31, 9999 with an accuracy of

3.33 milliseconds

8 bytes

datetime2 From January 1, 0001 to December 31, 9999 with an accuracy of

100 nanoseconds

6-8

bytes

smalldatetime From January 1, 1900 to June 6, 2079 with an accuracy of 1

minute

4 bytes

date Store a date only. From January 1, 0001 to December 31, 9999 3 bytes

time Store a time only to an accuracy of 100 nanoseconds 3-5

bytes

datetimeoffset The same as datetime2 with the addition of a time zone offset 8-10

bytes

timestamp Stores a unique number that gets updated every time a row gets

created or modified. The timestamp value is based upon an

internal clock and does not correspond to real time. Each table

may have only one timestamp variable

Other Data Types

Data type Description

sql_variant Stores up to 8,000 bytes of data of various data types,

except text, ntext, and timestamp

uniqueidentifier Stores a globally unique identifier (GUID)

xml Stores XML formatted data. Maximum 2GB

cursor Stores a reference to a cursor used for database operations

table Stores a result-set for later processing

MS Access Data Types

Data type Description Storage

Text Use for text or combinations of text and numbers. 255 characters

maximum

Memo Memo is used for larger amounts of text. Stores up to 65,536

characters. Note: You cannot sort a memo field. However, they

are searchable

Byte Allows whole numbers from 0 to 255 1 byte

Integer Allows whole numbers between -32,768 and 32,767 2 bytes

Long Allows whole numbers between -2,147,483,648 and

2,147,483,647

4 bytes

Single Single precision floating-point. Will handle most decimals 4 bytes

Double Double precision floating-point. Will handle most decimals 8 bytes

Currency Use for currency. Holds up to 15 digits of whole dollars, plus 4

decimal places. Tip: You can choose which country's currency

to use

8 bytes

AutoNumber AutoNumber fields automatically give each record its own

number, usually starting at 1

4 bytes

Date/Time Use for dates and times 8 bytes

Yes/No A logical field can be displayed as Yes/No, True/False, or

On/Off. In code, use the constants True and False (equivalent to

-1 and 0). Note: Null values are not allowed in Yes/No fields

1 bit

Ole Object Can store pictures, audio, video, or other BLOBs (Binary Large

Objects)

up to

1GB

Hyperlink Contain links to other files, including web pages

Lookup

Wizard

Let you type a list of options, which can then be chosen from a

drop-down list

4 bytes

SQL Keywords Reference

This SQL keywords reference contains the reserved words in SQL.

SQL Keywords

Keyword Description

ADD Adds a column in an existing table

ADD CONSTRAINT Adds a constraint after a table is already created

https://www.w3schools.com/sql/sql_ref_add.asp
https://www.w3schools.com/sql/sql_ref_add_constraint.asp

ALL Returns true if all of the subquery values meet the
condition

ALTER Adds, deletes, or modifies columns in a table, or
changes the data type of a column in a table

ALTER COLUMN Changes the data type of a column in a table

ALTER TABLE Adds, deletes, or modifies columns in a table

AND Only includes rows where both conditions is true

ANY Returns true if any of the subquery values meet the

condition

AS Renames a column or table with an alias

ASC Sorts the result set in ascending order

BACKUP DATABASE Creates a back up of an existing database

BETWEEN Selects values within a given range

CASE Creates different outputs based on conditions

https://www.w3schools.com/sql/sql_ref_all.asp
https://www.w3schools.com/sql/sql_ref_alter.asp
https://www.w3schools.com/sql/sql_ref_alter_column.asp
https://www.w3schools.com/sql/sql_ref_alter_table.asp
https://www.w3schools.com/sql/sql_ref_and.asp
https://www.w3schools.com/sql/sql_ref_any.asp
https://www.w3schools.com/sql/sql_ref_as.asp
https://www.w3schools.com/sql/sql_ref_asc.asp
https://www.w3schools.com/sql/sql_ref_backup_database.asp
https://www.w3schools.com/sql/sql_ref_between.asp
https://www.w3schools.com/sql/sql_ref_case.asp

CHECK A constraint that limits the value that can be placed
in a column

COLUMN Changes the data type of a column or deletes a
column in a table

CONSTRAINT Adds or deletes a constraint

CREATE Creates a database, index, view, table, or procedure

CREATE DATABASE Creates a new SQL database

CREATE INDEX Creates an index on a table (allows duplicate values)

CREATE OR
REPLACE VIEW

Updates a view

CREATE TABLE Creates a new table in the database

CREATE PROCEDURE Creates a stored procedure

CREATE UNIQUE

INDEX

Creates a unique index on a table (no duplicate

values)

CREATE VIEW Creates a view based on the result set of a SELECT

statement

https://www.w3schools.com/sql/sql_ref_check.asp
https://www.w3schools.com/sql/sql_ref_column.asp
https://www.w3schools.com/sql/sql_ref_constraint.asp
https://www.w3schools.com/sql/sql_ref_create.asp
https://www.w3schools.com/sql/sql_ref_create_database.asp
https://www.w3schools.com/sql/sql_ref_create_index.asp
https://www.w3schools.com/sql/sql_ref_create_or_replace_view.asp
https://www.w3schools.com/sql/sql_ref_create_or_replace_view.asp
https://www.w3schools.com/sql/sql_ref_create_table.asp
https://www.w3schools.com/sql/sql_ref_create_procedure.asp
https://www.w3schools.com/sql/sql_ref_create_unique_index.asp
https://www.w3schools.com/sql/sql_ref_create_unique_index.asp
https://www.w3schools.com/sql/sql_ref_create_view.asp

DATABASE Creates or deletes an SQL database

DEFAULT A constraint that provides a default value for a

column

DELETE Deletes rows from a table

DESC Sorts the result set in descending order

DISTINCT Selects only distinct (different) values

DROP Deletes a column, constraint, database, index, table,
or view

DROP COLUMN Deletes a column in a table

DROP CONSTRAINT Deletes a UNIQUE, PRIMARY KEY, FOREIGN KEY, or
CHECK constraint

DROP DATABASE Deletes an existing SQL database

DROP DEFAULT Deletes a DEFAULT constraint

DROP INDEX Deletes an index in a table

DROP TABLE Deletes an existing table in the database

https://www.w3schools.com/sql/sql_ref_database.asp
https://www.w3schools.com/sql/sql_ref_default.asp
https://www.w3schools.com/sql/sql_ref_delete.asp
https://www.w3schools.com/sql/sql_ref_desc.asp
https://www.w3schools.com/sql/sql_ref_distinct.asp
https://www.w3schools.com/sql/sql_ref_drop.asp
https://www.w3schools.com/sql/sql_ref_drop_column.asp
https://www.w3schools.com/sql/sql_ref_drop_constraint.asp
https://www.w3schools.com/sql/sql_ref_drop_database.asp
https://www.w3schools.com/sql/sql_ref_drop_default.asp
https://www.w3schools.com/sql/sql_ref_drop_index.asp
https://www.w3schools.com/sql/sql_ref_drop_table.asp

DROP VIEW Deletes a view

EXEC Executes a stored procedure

EXISTS Tests for the existence of any record in a subquery

FOREIGN KEY A constraint that is a key used to link two tables

together

FROM Specifies which table to select or delete data from

FULL OUTER JOIN Returns all rows when there is a match in either left
table or right table

GROUP BY Groups the result set (used with aggregate functions:
COUNT, MAX, MIN, SUM, AVG)

HAVING Used instead of WHERE with aggregate functions

IN Allows you to specify multiple values in a WHERE
clause

INDEX Creates or deletes an index in a table

INNER JOIN Returns rows that have matching values in both

tables

https://www.w3schools.com/sql/sql_ref_drop_view.asp
https://www.w3schools.com/sql/sql_ref_exec.asp
https://www.w3schools.com/sql/sql_ref_exists.asp
https://www.w3schools.com/sql/sql_ref_foreign_key.asp
https://www.w3schools.com/sql/sql_ref_from.asp
https://www.w3schools.com/sql/sql_ref_full_outer_join.asp
https://www.w3schools.com/sql/sql_ref_group_by.asp
https://www.w3schools.com/sql/sql_ref_having.asp
https://www.w3schools.com/sql/sql_ref_in.asp
https://www.w3schools.com/sql/sql_ref_index.asp
https://www.w3schools.com/sql/sql_ref_inner_join.asp

INSERT INTO Inserts new rows in a table

INSERT INTO

SELECT

Copies data from one table into another table

IS NULL Tests for empty values

IS NOT NULL Tests for non-empty values

JOIN Joins tables

LEFT JOIN Returns all rows from the left table, and the matching
rows from the right table

LIKE Searches for a specified pattern in a column

LIMIT Specifies the number of records to return in the result
set

NOT Only includes rows where a condition is not true

NOT NULL A constraint that enforces a column to not accept

NULL values

OR Includes rows where either condition is true

https://www.w3schools.com/sql/sql_ref_insert_into.asp
https://www.w3schools.com/sql/sql_ref_insert_into_select.asp
https://www.w3schools.com/sql/sql_ref_insert_into_select.asp
https://www.w3schools.com/sql/sql_ref_is_null.asp
https://www.w3schools.com/sql/sql_ref_is_not_null.asp
https://www.w3schools.com/sql/sql_ref_join.asp
https://www.w3schools.com/sql/sql_ref_left_join.asp
https://www.w3schools.com/sql/sql_ref_like.asp
https://www.w3schools.com/sql/sql_ref_limit.asp
https://www.w3schools.com/sql/sql_ref_not.asp
https://www.w3schools.com/sql/sql_ref_not_null.asp
https://www.w3schools.com/sql/sql_ref_or.asp

ORDER BY Sorts the result set in ascending or descending order

OUTER JOIN Returns all rows when there is a match in either left

table or right table

PRIMARY KEY A constraint that uniquely identifies each record in a

database table

PROCEDURE A stored procedure

RIGHT JOIN Returns all rows from the right table, and the
matching rows from the left table

ROWNUM Specifies the number of records to return in the result
set

SELECT Selects data from a database

SELECT DISTINCT Selects only distinct (different) values

SELECT INTO Copies data from one table into a new table

SELECT TOP Specifies the number of records to return in the result
set

SET Specifies which columns and values that should be
updated in a table

https://www.w3schools.com/sql/sql_ref_order_by.asp
https://www.w3schools.com/sql/sql_ref_outer_join.asp
https://www.w3schools.com/sql/sql_ref_primary_key.asp
https://www.w3schools.com/sql/sql_ref_procedure.asp
https://www.w3schools.com/sql/sql_ref_right_join.asp
https://www.w3schools.com/sql/sql_ref_rownum.asp
https://www.w3schools.com/sql/sql_ref_select.asp
https://www.w3schools.com/sql/sql_ref_select_distinct.asp
https://www.w3schools.com/sql/sql_ref_select_into.asp
https://www.w3schools.com/sql/sql_ref_select_top.asp
https://www.w3schools.com/sql/sql_ref_set.asp

TABLE Creates a table, or adds, deletes, or modifies columns
in a table, or deletes a table or data inside a table

TOP Specifies the number of records to return in the result
set

TRUNCATE TABLE Deletes the data inside a table, but not the table itself

UNION Combines the result set of two or more SELECT

statements (only distinct values)

UNION ALL Combines the result set of two or more SELECT

statements (allows duplicate values)

UNIQUE A constraint that ensures that all values in a column
are unique

UPDATE Updates existing rows in a table

VALUES Specifies the values of an INSERT INTO statement

VIEW Creates, updates, or deletes a view

WHERE Filters a result set to include only records that fulfill a

specified condition

SQL ADD Keyword

https://www.w3schools.com/sql/sql_ref_table.asp
https://www.w3schools.com/sql/sql_ref_top.asp
https://www.w3schools.com/sql/sql_ref_truncate_table.asp
https://www.w3schools.com/sql/sql_ref_union.asp
https://www.w3schools.com/sql/sql_ref_union_all.asp
https://www.w3schools.com/sql/sql_ref_unique.asp
https://www.w3schools.com/sql/sql_ref_update.asp
https://www.w3schools.com/sql/sql_ref_values.asp
https://www.w3schools.com/sql/sql_ref_view.asp
https://www.w3schools.com/sql/sql_ref_where.asp

❮ SQL Keywords ReferenceNext ❯

ADD

The ADD command is used to add a column in an existing table.

Example

Add an "Email" column to the "Customers" table:

ALTER TABLE Customers
ADD Email varchar(255);

SQL ADD CONSTRAINT Keyword

ADD CONSTRAINT

The ADD CONSTRAINT command is used to create a constraint after a table is

already created.

The following SQL adds a constraint named "PK_Person" that is a PRIMARY KEY

constraint on multiple columns (ID and LastName):

Example
ALTER TABLE Persons
ADD CONSTRAINT PK_Person PRIMARY KEY (ID,LastName);

SQL ALL Keyword

ALL

The ALL command returns true if all of the subquery values meet the condition.

https://www.w3schools.com/sql/sql_ref_keywords.asp
https://www.w3schools.com/sql/sql_ref_add_constraint.asp

The following SQL statement returns TRUE and lists the productnames if ALL the

records in the OrderDetails table has quantity = 10:

Example
SELECT ProductName
FROM Products
WHERE ProductID = ALL (SELECT ProductID FROM OrderDetails WHERE Quantity
= 10);

SQL ALTER Keyword

ALTER TABLE

The ALTER TABLE command adds, deletes, or modifies columns in a table.

The ALTER TABLE command also adds and deletes various constraints in a table.

The following SQL adds an "Email" column to the "Customers" table:

Example
ALTER TABLE Customers
ADD Email varchar(255);

The following SQL deletes the "Email" column from the "Customers" table:

Example

ALTER TABLE Customers
DROP COLUMN Email;

ALTER COLUMN

The ALTER COLUMN command is used to change the data type of a column in a

table.

The following SQL changes the data type of the column named "BirthDate" in
the "Employees" table to type year:

Example

ALTER TABLE Employees
ALTER COLUMN BirthDate year;

SQL ALTER COLUMN Keyword

ALTER COLUMN

The ALTER COLUMN command is used to change the data type of a column in a

table.

The following SQL changes the data type of the column named "BirthDate" in

the "Employees" table to type year:

Example
ALTER TABLE Employees
ALTER COLUMN BirthDate year;

SQL ALTER TABLE Keyword

ALTER TABLE

The ALTER TABLE command adds, deletes, or modifies columns in a table.

The ALTER TABLE command also adds and deletes various constraints in a table.

The following SQL adds an "Email" column to the "Customers" table:

Example
ALTER TABLE Customers
ADD Email varchar(255);

The following SQL deletes the "Email" column from the "Customers" table:

Example

ALTER TABLE Customers
DROP COLUMN Email;

SQL AND Keyword

AND

The AND command is used with WHERE to only include rows where both

conditions is true.

The following SQL statement selects all fields from "Customers" where country

is "Germany" AND city is "Berlin":

Example
SELECT * FROM Customers
WHERE Country='Germany' AND City='Berlin';

SQL ANY Keyword

ANY

The ANY command returns true if any of the subquery values meet the

condition.

The following SQL statement returns TRUE and lists the productnames if it finds
ANY records in the OrderDetails table where quantity = 10:

Example
SELECT ProductName
FROM Products
WHERE ProductID = ANY (SELECT ProductID FROM OrderDetails WHERE Quantity
= 10);

The following SQL statement returns TRUE and lists the productnames if it finds
ANY records in the OrderDetails table where quantity > 99:

Example

SELECT ProductName
FROM Products
WHERE ProductID = ANY (SELECT ProductID FROM OrderDetails WHERE Quantity
> 99);

SQL AS Keyword

AS

The AS command is used to rename a column or table with an alias.

An alias only exists for the duration of the query.

Alias for Columns

The following SQL statement creates two aliases, one for the CustomerID

column and one for the CustomerName column:

Example
SELECT CustomerID AS ID, CustomerName AS Customer
FROM Customers;

The following SQL statement creates two aliases. Notice that it requires double

quotation marks or square brackets if the alias name contains spaces:

Example

SELECT CustomerName AS Customer, ContactName AS [Contact Person]
FROM Customers;

The following SQL statement creates an alias named "Address" that combine
four columns (Address, PostalCode, City and Country):

Example

SELECT CustomerName, Address + ', ' + PostalCode + ' ' + City + ', ' +
Country AS Address
FROM Customers;

Note: To get the SQL statement above to work in MySQL use the following:

SELECT CustomerName, CONCAT(Address,', ',PostalCode,', ',City,',
',Country) AS Address
FROM Customers;

Alias for Tables

The following SQL statement selects all the orders from the customer with

CustomerID=4 (Around the Horn). We use the "Customers" and "Orders"

tables, and give them the table aliases of "c" and "o" respectively (Here we use
aliases to make the SQL shorter):

Example

SELECT o.OrderID, o.OrderDate, c.CustomerName
FROM Customers AS c, Orders AS o
WHERE c.CustomerName="Around the Horn" AND c.CustomerID=o.CustomerID;

SQL ASC Keyword

ASC

The ASC command is used to sort the data returned in ascending order.

The following SQL statement selects all the columns from the "Customers"

table, sorted by the "CustomerName" column:

Example
SELECT * FROM Customers
ORDER BY CustomerName ASC;

SQL BACKUP DATABASE Keyword

BACKUP DATABASE

The BACKUP DATABASE command is used in SQL Server to create a full back up of

an existing SQL database.

The following SQL statement creates a full back up of the existing database
"testDB" to the D disk:

Example
BACKUP DATABASE testDB
TO DISK = 'D:\backups\testDB.bak';

Tip: Always back up the database to a different drive than the actual database.

If you get a disk crash, you will not lose your backup file along with the
database.

A differential back up only backs up the parts of the database that have
changed since the last full database backup.

The following SQL statement creates a differential back up of the database
"testDB":

Example

BACKUP DATABASE testDB
TO DISK = 'D:\backups\testDB.bak'
WITH DIFFERENTIAL;

Tip: A differential back up reduces the back up time (since only the changes are

backed up).

SQL BETWEEN Keyword

BETWEEN

The BETWEEN command is used to select values within a given range. The values

can be numbers, text, or dates.

The BETWEEN command is inclusive: begin and end values are included.

The following SQL statement selects all products with a price BETWEEN 10 and
20:

Example
SELECT * FROM Products
WHERE Price BETWEEN 10 AND 20;

To display the products outside the range of the previous example, use NOT

BETWEEN:

Example

SELECT * FROM Products
WHERE Price NOT BETWEEN 10 AND 20;

The following SQL statement selects all products with a ProductName BETWEEN

'Carnarvon Tigers' and 'Mozzarella di Giovanni':

Example

SELECT * FROM Products
WHERE ProductName BETWEEN 'Carnarvon Tigers' AND 'Mozzarella di Giovanni'
ORDER BY ProductName;

SQL CASE Keyword

CASE

The CASE command is used is to create different output based on conditions.

The following SQL goes through several conditions and returns a value when the
specified condition is met:

Example
SELECT OrderID, Quantity,
CASE
 WHEN Quantity > 30 THEN 'The quantity is greater than 30'
 WHEN Quantity = 30 THEN 'The quantity is 30'
 ELSE 'The quantity is under 30'
END
FROM OrderDetails;

The following SQL will order the customers by City. However, if City is NULL,
then order by Country:

Example

SELECT CustomerName, City, Country
FROM Customers
ORDER BY
(CASE
 WHEN City IS NULL THEN Country
 ELSE City
END);

SQL CHECK Keyword

CHECK

The CHECK constraint limits the value that can be placed in a column.

SQL CHECK on CREATE TABLE

The following SQL creates a CHECK constraint on the "Age" column when the

"Persons" table is created. The CHECK constraint ensures that you can not have
any person below 18 years:

MySQL:

CREATE TABLE Persons (
 Age int,
 CHECK (Age>=18)
);

SQL Server / Oracle / MS Access:

CREATE TABLE Persons (
 Age int CHECK (Age>=18)
);

To allow naming of a CHECK constraint, and for defining a CHECK constraint on
multiple columns, use the following SQL syntax:

MySQL / SQL Server / Oracle / MS Access:

CREATE TABLE Persons (
 Age int,
 City varchar(255),
 CONSTRAINT CHK_Person CHECK (Age>=18 AND City='Sandnes')
);

SQL CHECK on ALTER TABLE

To create a CHECK constraint on the "Age" column when the table is already

created, use the following SQL:

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Persons
ADD CHECK (Age>=18);

To allow naming of a CHECK constraint, and for defining a CHECK constraint on
multiple columns, use the following SQL syntax:

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Persons
ADD CONSTRAINT CHK_PersonAge CHECK (Age>=18 AND City='Sandnes');

DROP a CHECK Constraint

To drop a CHECK constraint, use the following SQL:

SQL Server / Oracle / MS Access:

ALTER TABLE Persons
DROP CONSTRAINT CHK_PersonAge;

MySQL:

ALTER TABLE Persons
DROP CHECK CHK_PersonAge;

SQL COLUMN Keyword

ALTER COLUMN

The ALTER COLUMN command is used to change the data type of a column in a

table.

The following SQL changes the data type of the column named "BirthDate" in

the "Employees" table to type year:

Example
ALTER TABLE Employees
ALTER COLUMN BirthDate year;

DROP COLUMN

The DROP COLUMN command is used to delete a column in an existing table.

The following SQL deletes the "ContactName" column from the "Customers"
table:

Example

ALTER TABLE Customers
DROP COLUMN ContactName;

SQL CONSTRAINT Keyword

ADD CONSTRAINT

The ADD CONSTRAINT command is used to create a constraint after a table is

already created.

The following SQL adds a constraint named "PK_Person" that is a PRIMARY KEY

constraint on multiple columns (ID and LastName):

Example
ALTER TABLE Persons
ADD CONSTRAINT PK_Person PRIMARY KEY (ID,LastName);

DROP CONSTRAINT

The DROP CONSTRAINT command is used to delete a UNIQUE, PRIMARY KEY,

FOREIGN KEY, or CHECK constraint.

DROP a UNIQUE Constraint

To drop a UNIQUE constraint, use the following SQL:

SQL Server / Oracle / MS Access:

ALTER TABLE Persons
DROP CONSTRAINT UC_Person;

MySQL:

ALTER TABLE Persons
DROP INDEX UC_Person;

DROP a PRIMARY KEY Constraint

To drop a PRIMARY KEY constraint, use the following SQL:

SQL Server / Oracle / MS Access:

ALTER TABLE Persons
DROP CONSTRAINT PK_Person;

MySQL:

ALTER TABLE Persons
DROP PRIMARY KEY;

DROP a FOREIGN KEY Constraint

To drop a FOREIGN KEY constraint, use the following SQL:

SQL Server / Oracle / MS Access:

ALTER TABLE Orders
DROP CONSTRAINT FK_PersonOrder;

MySQL:

ALTER TABLE Orders
DROP FOREIGN KEY FK_PersonOrder;

DROP a CHECK Constraint

To drop a CHECK constraint, use the following SQL:

SQL Server / Oracle / MS Access:

ALTER TABLE Persons
DROP CONSTRAINT CHK_PersonAge;

MySQL:

ALTER TABLE Persons
DROP CHECK CHK_PersonAge;

SQL CREATE Keyword

CREATE DATABASE

The CREATE DATABASE command is used is to create a new SQL database.

The following SQL creates a database called "testDB":

Example
CREATE DATABASE testDB;

Tip: Make sure you have admin privilege before creating any database. Once a
database is created, you can check it in the list of databases with the following

SQL command: SHOW DATABASES;

CREATE TABLE

The CREATE TABLE command creates a new table in the database.

The following SQL creates a table called "Persons" that contains five columns:
PersonID, LastName, FirstName, Address, and City:

Example

CREATE TABLE Persons (
 PersonID int,
 LastName varchar(255),
 FirstName varchar(255),
 Address varchar(255),
 City varchar(255)
);

CREATE TABLE Using Another Table

The following SQL creates a new table called "TestTables" (which is a copy of

two columns of the "Customers" table):

Example

CREATE TABLE TestTable AS
SELECT customername, contactname
FROM customers;

CREATE INDEX

The CREATE INDEX command is used to create indexes in tables (allows duplicate

values).

Indexes are used to retrieve data from the database very fast. The users cannot

see the indexes, they are just used to speed up searches/queries.

The following SQL creates an index named "idx_lastname" on the "LastName"

column in the "Persons" table:

CREATE INDEX idx_lastname
ON Persons (LastName);

If you want to create an index on a combination of columns, you can list the
column names within the parentheses, separated by commas:

CREATE INDEX idx_pname
ON Persons (LastName, FirstName);

Note: The syntax for creating indexes varies among different databases.

Therefore: Check the syntax for creating indexes in your database.

Note: Updating a table with indexes takes more time than updating a table
without (because the indexes also need an update). So, only create indexes on

columns that will be frequently searched against.

CREATE UNIQUE INDEX

The CREATE UNIQUE INDEX command creates a unique index on a table (no

duplicate values allowed)

The following SQL creates an index named "uidx_pid" on the "PersonID" column

in the "Persons" table:

CREATE UNIQUE INDEX uidx_pid
ON Persons (PersonID);

CREATE VIEW

The CREATE VIEW command creates a view.

A view is a virtual table based on the result set of an SQL statement.

The following SQL creates a view that selects all customers from Brazil:

Example

CREATE VIEW [Brazil Customers] AS
SELECT CustomerName, ContactName
FROM Customers
WHERE Country = "Brazil";

CREATE OR REPLACE VIEW

The CREATE OR REPLACE VIEW command updates a view.

The following SQL adds the "City" column to the "Brazil Customers" view:

Example

CREATE OR REPLACE VIEW [Brazil Customers] AS
SELECT CustomerName, ContactName, City
FROM Customers
WHERE Country = "Brazil";

Query The View

We can query the view above as follows:

Example

SELECT * FROM [Brazil Customers];

CREATE PROCEDURE

The CREATE PROCEDURE command is used to create a stored procedure.

A stored procedure is a prepared SQL code that you can save, so the code can
be reused over and over again.

The following SQL creates a stored procedure named "SelectAllCustomers" that
selects all records from the "Customers" table:

Example

CREATE PROCEDURE SelectAllCustomers
AS
SELECT * FROM Customers
GO;

Execute the stored procedure above as follows:

Example

EXEC SelectAllCustomers;

SQL CREATE DATABASE Keyword

CREATE DATABASE

The CREATE DATABASE command is used is to create a new SQL database.

The following SQL creates a database called "testDB":

Example
CREATE DATABASE testDB;

Tip: Make sure you have admin privilege before creating any database. Once a

database is created, you can check it in the list of databases with the following
SQL command: SHOW DATABASES;

SQL CREATE INDEX Keyword

CREATE INDEX

The CREATE INDEX command is used to create indexes in tables (allows duplicate

values).

Indexes are used to retrieve data from the database very fast. The users cannot

see the indexes, they are just used to speed up searches/queries.

The following SQL creates an index named "idx_lastname" on the "LastName"

column in the "Persons" table:

CREATE INDEX idx_lastname
ON Persons (LastName);

If you want to create an index on a combination of columns, you can list the
column names within the parentheses, separated by commas:

CREATE INDEX idx_pname
ON Persons (LastName, FirstName);

Note: The syntax for creating indexes varies among different databases.

Therefore: Check the syntax for creating indexes in your database.

Note: Updating a table with indexes takes more time than updating a table

without (because the indexes also need an update). So, only create indexes on
columns that will be frequently searched against.

SQL CREATE OR REPLACE VIEW

Keyword

CREATE OR REPLACE VIEW

The CREATE OR REPLACE VIEW command updates a view.

The following SQL adds the "City" column to the "Brazil Customers" view:

Example
CREATE OR REPLACE VIEW [Brazil Customers] AS
SELECT CustomerName, ContactName, City
FROM Customers
WHERE Country = "Brazil";

Query The View

We can query the view above as follows:

Example

SELECT * FROM [Brazil Customers];

SQL CREATE TABLE Keyword

CREATE TABLE

The CREATE TABLE command creates a new table in the database.

The following SQL creates a table called "Persons" that contains five columns:

PersonID, LastName, FirstName, Address, and City:

Example
CREATE TABLE Persons (
 PersonID int,
 LastName varchar(255),
 FirstName varchar(255),
 Address varchar(255),
 City varchar(255)
);

CREATE TABLE Using Another Table

The following SQL creates a new table called "TestTables" (which is a copy of

two columns of the "Customers" table):

Example

CREATE TABLE TestTable AS
SELECT customername, contactname
FROM customers;

SQL CREATE PROCEDURE

Keyword

CREATE PROCEDURE

The CREATE PROCEDURE command is used to create a stored procedure.

A stored procedure is a prepared SQL code that you can save, so the code can

be reused over and over again.

The following SQL creates a stored procedure named "SelectAllCustomers" that

selects all records from the "Customers" table:

Example
CREATE PROCEDURE SelectAllCustomers
AS
SELECT * FROM Customers
GO;

Execute the stored procedure above as follows:

Example

EXEC SelectAllCustomers;

SQL CREATE UNIQUE INDEX

Keyword

CREATE UNIQUE INDEX

The CREATE UNIQUE INDEX command creates a unique index on a table (no

duplicate values allowed)

Indexes are used to retrieve data from the database very fast. The users cannot

see the indexes, they are just used to speed up searches/queries.

The following SQL creates an index named "uidx_pid" on the "PersonID" column

in the "Persons" table:

CREATE UNIQUE INDEX uidx_pid
ON Persons (PersonID);

Note: The syntax for creating indexes varies among different databases.
Therefore: Check the syntax for creating indexes in your database.

Note: Updating a table with indexes takes more time than updating a table
without (because the indexes also need an update). So, only create indexes on

columns that will be frequently searched against.

SQL CREATE VIEW Keyword

CREATE VIEW

The CREATE VIEW command creates a view.

A view is a virtual table based on the result set of an SQL statement.

The following SQL creates a view that selects all customers from Brazil:

Example
CREATE VIEW [Brazil Customers] AS
SELECT CustomerName, ContactName
FROM Customers
WHERE Country = "Brazil";

Query The View

We can query the view above as follows:

Example

SELECT * FROM [Brazil Customers];

SQL DATABASE Keyword

CREATE DATABASE

The CREATE DATABASE command is used is to create a new SQL database.

The following SQL creates a database called "testDB":

Example
CREATE DATABASE testDB;

Tip: Make sure you have admin privilege before creating any database. Once a
database is created, you can check it in the list of databases with the following

SQL command: SHOW DATABASES;

DROP DATABASE

The DROP DATABASE command is used is to delete an existing SQL database.

The following SQL drops a database named "testDB":

Example

DROP DATABASE testDB;

Note: Be careful before dropping a database. Deleting a database will result in

loss of complete information stored in the database!

SQL DEFAULT Keyword

DEFAULT

The DEFAULT constraint provides a default value for a column.

The default value will be added to all new records if no other value is specified.

SQL DEFAULT on CREATE TABLE

The following SQL sets a DEFAULT value for the "City" column when the

"Persons" table is created:

My SQL / SQL Server / Oracle / MS Access:

CREATE TABLE Persons (
 City varchar(255) DEFAULT 'Sandnes'
);

The DEFAULT constraint can also be used to insert system values, by using

functions like GETDATE():

CREATE TABLE Orders (
 OrderDate date DEFAULT GETDATE()
);

SQL DEFAULT on ALTER TABLE

To create a DEFAULT constraint on the "City" column when the table is already

created, use the following SQL:

MySQL:

ALTER TABLE Persons
ALTER City SET DEFAULT 'Sandnes';

SQL Server:

ALTER TABLE Persons
ADD CONSTRAINT df_City
DEFAULT 'Sandnes' FOR City;

MS Access:

ALTER TABLE Persons
ALTER COLUMN City SET DEFAULT 'Sandnes';

Oracle:

ALTER TABLE Persons
MODIFY City DEFAULT 'Sandnes';

DROP a DEFAULT Constraint

To drop a DEFAULT constraint, use the following SQL:

MySQL:

ALTER TABLE Persons
ALTER City DROP DEFAULT;

SQL Server / Oracle / MS Access:

ALTER TABLE Persons
ALTER COLUMN City DROP DEFAULT;

SQL DELETE Keyword

DELETE

The DELETE command is used to delete existing records in a table.

The following SQL statement deletes the customer "Alfreds Futterkiste" from the
"Customers" table:

Example
DELETE FROM Customers WHERE CustomerName='Alfreds Futterkiste';

Note: Be careful when deleting records in a table! Notice the WHERE clause in

the DELETE statement. The WHERE clause specifies which record(s) should be
deleted. If you omit the WHERE clause, all records in the table will be deleted!

It is possible to delete all rows in a table without deleting the table. This means
that the table structure, attributes, and indexes will be intact:

The following SQL statement deletes all rows in the "Customers" table, without
deleting the table. This means that the table structure, attributes, and indexes

will be intact:

Example

DELETE FROM Customers;

SQL DESC Keyword

DESC

The DESC command is used to sort the data returned in descending order.

The following SQL statement selects all the columns from the "Customers"
table, sorted descending by the "CustomerName" column:

Example
SELECT * FROM Customers
ORDER BY CustomerName DESC;

SQL SELECT DISTINCT Keyword

SELECT DISTINCT

The SELECT DISTINCT command returns only distinct (different) values in the

result set.

The following SQL statement selects only the DISTINCT values from the

"Country" column in the "Customers" table:

Example
SELECT DISTINCT Country FROM Customers;

SQL DROP Keyword

DROP COLUMN

The DROP COLUMN command is used to delete a column in an existing table.

The following SQL deletes the "ContactName" column from the "Customers"
table:

Example
ALTER TABLE Customers
DROP COLUMN ContactName;

DROP a UNIQUE Constraint

To drop a UNIQUE constraint, use the following SQL:

SQL Server / Oracle / MS Access:

ALTER TABLE Persons
DROP CONSTRAINT UC_Person;

MySQL:

ALTER TABLE Persons
DROP INDEX UC_Person;

DROP a PRIMARY KEY Constraint

To drop a PRIMARY KEY constraint, use the following SQL:

SQL Server / Oracle / MS Access:

ALTER TABLE Persons
DROP CONSTRAINT PK_Person;

MySQL:

ALTER TABLE Persons
DROP PRIMARY KEY;

DROP a FOREIGN KEY Constraint

To drop a FOREIGN KEY constraint, use the following SQL:

SQL Server / Oracle / MS Access:

ALTER TABLE Orders
DROP CONSTRAINT FK_PersonOrder;

MySQL:

ALTER TABLE Orders
DROP FOREIGN KEY FK_PersonOrder;

DROP a CHECK Constraint

To drop a CHECK constraint, use the following SQL:

SQL Server / Oracle / MS Access:

ALTER TABLE Persons
DROP CONSTRAINT CHK_PersonAge;

MySQL:

ALTER TABLE Persons
DROP CHECK CHK_PersonAge;

DROP DEFAULT

The DROP DEFAULT command is used to delete a DEFAULT constraint.

To drop a DEFAULT constraint, use the following SQL:

SQL Server / Oracle / MS Access:

ALTER TABLE Persons
ALTER COLUMN City DROP DEFAULT;

MySQL:

ALTER TABLE Persons
ALTER City DROP DEFAULT;

DROP INDEX

The DROP INDEX command is used to delete an index in a table.

MS Access:

DROP INDEX index_name ON table_name;

SQL Server:

DROP INDEX table_name.index_name;

DB2/Oracle:

DROP INDEX index_name;

MySQL:

ALTER TABLE table_name
DROP INDEX index_name;

DROP DATABASE

The DROP DATABASE command is used is to delete an existing SQL database.

The following SQL drops a database named "testDB":

Example

DROP DATABASE testDB;

Note: Be careful before dropping a database. Deleting a database will result in
loss of complete information stored in the database!

DROP TABLE

The DROP TABLE command deletes a table in the database.

The following SQL deletes the table "Shippers":

Example

DROP TABLE Shippers;

Note: Be careful before deleting a table. Deleting a table results in loss of all
information stored in the table!

DROP VIEW

The DROP VIEW command deletes a view.

The following SQL drops the "Brazil Customers" view:

Example

DROP VIEW [Brazil Customers];

SQL DROP COLUMN Keyword

DROP COLUMN

The DROP COLUMN command is used to delete a column in an existing table.

The following SQL deletes the "ContactName" column from the "Customers"
table:

Example
ALTER TABLE Customers
DROP COLUMN ContactName;

SQL DROP CONSTRAINT

Keyword

DROP CONSTRAINT

The DROP CONSTRAINT command is used to delete a UNIQUE, PRIMARY KEY,

FOREIGN KEY, or CHECK constraint.

DROP a UNIQUE Constraint

To drop a UNIQUE constraint, use the following SQL:

SQL Server / Oracle / MS Access:

ALTER TABLE Persons
DROP CONSTRAINT UC_Person;

MySQL:

ALTER TABLE Persons
DROP INDEX UC_Person;

DROP a PRIMARY KEY Constraint

To drop a PRIMARY KEY constraint, use the following SQL:

SQL Server / Oracle / MS Access:

ALTER TABLE Persons
DROP CONSTRAINT PK_Person;

MySQL:

ALTER TABLE Persons
DROP PRIMARY KEY;

DROP a FOREIGN KEY Constraint

To drop a FOREIGN KEY constraint, use the following SQL:

SQL Server / Oracle / MS Access:

ALTER TABLE Orders
DROP CONSTRAINT FK_PersonOrder;

MySQL:

ALTER TABLE Orders
DROP FOREIGN KEY FK_PersonOrder;

DROP a CHECK Constraint

To drop a CHECK constraint, use the following SQL:

SQL Server / Oracle / MS Access:

ALTER TABLE Persons
DROP CONSTRAINT CHK_PersonAge;

MySQL:

ALTER TABLE Persons
DROP CHECK CHK_PersonAge;

SQL DROP DATABASE Keyword

DROP DATABASE

The DROP DATABASE command is used to delete an existing SQL database.

The following SQL drops a database named "testDB":

Example
DROP DATABASE testDB;

Note: Be careful before dropping a database. Deleting a database will result in

loss of complete information stored in the database!

SQL DROP DEFAULT Keyword

DROP DEFAULT

The DROP DEFAULT command is used to delete a DEFAULT constraint.

To drop a DEFAULT constraint, use the following SQL:

SQL Server / Oracle / MS Access:

ALTER TABLE Persons
ALTER COLUMN City DROP DEFAULT;

MySQL:

ALTER TABLE Persons
ALTER City DROP DEFAULT;

SQL DROP INDEX Keyword

DROP INDEX

The DROP INDEX command is used to delete an index in a table.

MS Access:

DROP INDEX index_name ON table_name;

SQL Server:

DROP INDEX table_name.index_name;

DB2/Oracle:

DROP INDEX index_name;

MySQL:

ALTER TABLE table_name
DROP INDEX index_name;

SQL DROP TABLE and TRUNCATE

TABLE Keywords

DROP TABLE

The DROP TABLE command deletes a table in the database.

The following SQL deletes the table "Shippers":

Example
DROP TABLE Shippers;

Note: Be careful before deleting a table. Deleting a table results in loss of all

information stored in the table!

TRUNCATE TABLE

The TRUNCATE TABLE command deletes the data inside a table, but not the table

itself.

The following SQL truncates the table "Categories":

Example

TRUNCATE TABLE Categories;

SQL DROP VIEW Keyword

DROP VIEW

The DROP VIEW command deletes a view.

The following SQL drops the "Brazil Customers" view:

Example
DROP VIEW [Brazil Customers];

SQL EXEC Keyword

EXEC

The EXEC command is used to execute a stored procedure.

The following SQL executes a stored procedure named "SelectAllCustomers":

Example
EXEC SelectAllCustomers;

SQL EXISTS Keyword

EXISTS

The EXISTS command tests for the existence of any record in a subquery, and

returns true if the subquery returns one or more records.

The following SQL lists the suppliers with a product price less than 20:

Example
SELECT SupplierName
FROM Suppliers
WHERE EXISTS (SELECT ProductName FROM Products WHERE SupplierId =
Suppliers.supplierId AND Price < 20);

The following SQL lists the suppliers with a product price equal to 22:

Example

SELECT SupplierName
FROM Suppliers
WHERE EXISTS (SELECT ProductName FROM Products WHERE SupplierId =
Suppliers.supplierId AND Price = 22);

SQL FOREIGN KEY Keyword

FOREIGN KEY

The FOREIGN KEY constraint is a key used to link two tables together.

A FOREIGN KEY is a field (or collection of fields) in one table that refers to the

PRIMARY KEY in another table.

SQL FOREIGN KEY on CREATE TABLE

The following SQL creates a FOREIGN KEY on the "PersonID" column when the

"Orders" table is created:

MySQL:

CREATE TABLE Orders (
 OrderID int NOT NULL,
 OrderNumber int NOT NULL,
 PersonID int,
 PRIMARY KEY (OrderID),
 FOREIGN KEY (PersonID) REFERENCES Persons(PersonID)
);

SQL Server / Oracle / MS Access:

CREATE TABLE Orders (
 OrderID int NOT NULL PRIMARY KEY,
 OrderNumber int NOT NULL,

 PersonID int FOREIGN KEY REFERENCES Persons(PersonID)
);

To allow naming of a FOREIGN KEY constraint, and for defining a FOREIGN KEY
constraint on multiple columns, use the following SQL syntax:

MySQL / SQL Server / Oracle / MS Access:

CREATE TABLE Orders (
 OrderID int NOT NULL,
 OrderNumber int NOT NULL,
 PersonID int,
 PRIMARY KEY (OrderID),
 CONSTRAINT FK_PersonOrder FOREIGN KEY (PersonID)
 REFERENCES Persons(PersonID)
);

SQL FOREIGN KEY on ALTER TABLE

To create a FOREIGN KEY constraint on the "PersonID" column when the
"Orders" table is already created, use the following SQL:

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Orders
ADD FOREIGN KEY (PersonID) REFERENCES Persons(PersonID);

To allow naming of a FOREIGN KEY constraint, and for defining a FOREIGN KEY
constraint on multiple columns, use the following SQL syntax:

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Orders
ADD CONSTRAINT FK_PersonOrder
FOREIGN KEY (PersonID) REFERENCES Persons(PersonID);

DROP a FOREIGN KEY Constraint

To drop a FOREIGN KEY constraint, use the following SQL:

MySQL:

ALTER TABLE Orders
DROP FOREIGN KEY FK_PersonOrder;

SQL Server / Oracle / MS Access:

ALTER TABLE Orders
DROP CONSTRAINT FK_PersonOrder;

SQL FROM Keyword

FROM

The FROM command is used to specify which table to select or delete data from.

The following SQL statement selects the "CustomerName" and "City" columns

from the "Customers" table:

Example
SELECT CustomerName, City FROM Customers;

The following SQL statement selects all the columns from the "Customers"
table:

Example

SELECT * FROM Customers;

The following SQL statement deletes the customer "Alfreds Futterkiste" from the

"Customers" table:

Example

DELETE FROM Customers
WHERE CustomerName='Alfreds Futterkiste';

SQL FULL OUTER JOIN Keyword

FULL OUTER JOIN

The FULL OUTER JOIN command returns all rows when there is a match in either

left table or right table.

The following SQL statement selects all customers, and all orders:

SELECT Customers.CustomerName, Orders.OrderID
FROM Customers
FULL OUTER JOIN Orders ON Customers.CustomerID=Orders.CustomerID
ORDER BY Customers.CustomerName;

Note: The FULL OUTER JOIN keyword returns all the rows from the left table

(Customers), and all the rows from the right table (Orders). If there are rows in

"Customers" that do not have matches in "Orders", or if there are rows in
"Orders" that do not have matches in "Customers", those rows will be listed as

well.

SQL GROUP BY Keyword

GROUP BY

The GROUP BY command is used to group the result set (used with aggregate

functions: COUNT, MAX, MIN, SUM, AVG).

The following SQL lists the number of customers in each country:

Example
SELECT COUNT(CustomerID), Country
FROM Customers
GROUP BY Country;

The following SQL lists the number of customers in each country, sorted high to
low:

Example

SELECT COUNT(CustomerID), Country
FROM Customers

GROUP BY Country
ORDER BY COUNT(CustomerID) DESC;

SQL HAVING Keyword

HAVING

The HAVING command is used instead of WHERE with aggregate functions.

The following SQL lists the number of customers in each country. Only include
countries with more than 5 customers:

Example
SELECT COUNT(CustomerID), Country
FROM Customers
GROUP BY Country
HAVING COUNT(CustomerID) > 5;

The following SQL lists the number of customers in each country, sorted high to
low (Only include countries with more than 5 customers):

Example

SELECT COUNT(CustomerID), Country
FROM Customers
GROUP BY Country
HAVING COUNT(CustomerID) > 5
ORDER BY COUNT(CustomerID) DESC;

SQL IN Keyword

IN

The IN command allows you to specify multiple values in a WHERE clause.

The IN operator is a shorthand for multiple OR conditions.

The following SQL selects all customers that are located in "Germany", "France"

and "UK":

Example
SELECT * FROM Customers
WHERE Country IN ('Germany', 'France', 'UK');

The following SQL selects all customers that are NOT located in "Germany",
"France" or "UK":

Example

SELECT * FROM Customers
WHERE Country NOT IN ('Germany', 'France', 'UK');

The following SQL selects all customers that are from the same countries as the
suppliers:

Example

SELECT * FROM Customers
WHERE Country IN (SELECT Country FROM Suppliers);

SQL INDEX Keyword

CREATE INDEX

The CREATE INDEX command is used to create indexes in tables (allows duplicate

values).

Indexes are used to retrieve data from the database very fast. The users cannot
see the indexes, they are just used to speed up searches/queries.

The following SQL creates an index named "idx_lastname" on the "LastName"
column in the "Persons" table:

CREATE INDEX idx_lastname
ON Persons (LastName);

If you want to create an index on a combination of columns, you can list the
column names within the parentheses, separated by commas:

CREATE INDEX idx_pname
ON Persons (LastName, FirstName);

Note: The syntax for creating indexes varies among different databases.
Therefore: Check the syntax for creating indexes in your database.

Note: Updating a table with indexes takes more time than updating a table
without (because the indexes also need an update). So, only create indexes on

columns that will be frequently searched against.

DROP INDEX

The DROP INDEX command is used to delete an index in a table.

MS Access:

DROP INDEX index_name ON table_name;

SQL Server:

DROP INDEX table_name.index_name;

DB2/Oracle:

DROP INDEX index_name;

MySQL:

ALTER TABLE table_name
DROP INDEX index_name;

SQL INNER JOIN Keyword

INNER JOIN

The INNER JOIN command returns rows that have matching values in both

tables.

The following SQL selects all orders with customer information:

Example
SELECT Orders.OrderID, Customers.CustomerName
FROM Orders
INNER JOIN Customers ON Orders.CustomerID = Customers.CustomerID;

Note: The INNER JOIN keyword selects all rows from both tables as long as

there is a match between the columns. If there are records in the "Orders" table
that do not have matches in "Customers", these orders will not be shown!

The following SQL statement selects all orders with customer and shipper
information:

Example

SELECT Orders.OrderID, Customers.CustomerName, Shippers.ShipperName
FROM ((Orders
INNER JOIN Customers ON Orders.CustomerID = Customers.CustomerID)
INNER JOIN Shippers ON Orders.ShipperID = Shippers.ShipperID);

SQL INSERT INTO Keyword

INSERT INTO

The INSERT INTO command is used to insert new rows in a table.

The following SQL inserts a new record in the "Customers" table:

Example
INSERT INTO Customers (CustomerName, ContactName, Address, City,
PostalCode, Country)
VALUES ('Cardinal', 'Tom B. Erichsen', 'Skagen
21', 'Stavanger', '4006', 'Norway');

The following SQL will insert a new record, but only insert data in the

"CustomerName", "City", and "Country" columns (CustomerID will be updated
automatically):

Example

INSERT INTO Customers (CustomerName, City, Country)
VALUES ('Cardinal', 'Stavanger', 'Norway');

SQL INSERT INTO SELECT

Keyword

INSERT INTO SELECT

The INSERT INTO SELECT command copies data from one table and inserts it

into another table.

The following SQL copies "Suppliers" into "Customers" (the columns that are not

filled with data, will contain NULL):

Example
INSERT INTO Customers (CustomerName, City, Country)
SELECT SupplierName, City, Country FROM Suppliers;

The following SQL copies "Suppliers" into "Customers" (fill all columns):

Example

INSERT INTO Customers (CustomerName, ContactName, Address, City,
PostalCode, Country)
SELECT SupplierName, ContactName, Address, City,
PostalCode, Country FROM Suppliers;

The following SQL copies only the German suppliers into "Customers":

Example

INSERT INTO Customers (CustomerName, City, Country)
SELECT SupplierName, City, Country FROM Suppliers
WHERE Country='Germany';

SQL IS NULL Keyword

IS NULL

The IS NULL command is used to test for empty values (NULL values).

The following SQL lists all customers with a NULL value in the "Address" field:

Example
SELECT CustomerName, ContactName, Address
FROM Customers
WHERE Address IS NULL;

Note: A NULL value is different from a zero value or a field that contains

spaces. A field with a NULL value is one that has been left blank during record
creation!

Tip: Always use IS NULL to look for NULL values.

SQL IS NOT NULL Keyword

IS NOT NULL

The IS NOT NULL command is used to test for non-empty values (NOT NULL

values).

The following SQL lists all customers with a value in the "Address" field:

Example
SELECT CustomerName, ContactName, Address
FROM Customers
WHERE Address IS NOT NULL;

SQL JOIN Keyword

INNER JOIN

The INNER JOIN command returns rows that have matching values in both

tables.

The following SQL selects all orders with customer information:

Example
SELECT Orders.OrderID, Customers.CustomerName
FROM Orders
INNER JOIN Customers ON Orders.CustomerID = Customers.CustomerID;

Note: The INNER JOIN keyword selects all rows from both tables as long as
there is a match between the columns. If there are records in the "Orders" table
that do not have matches in "Customers", these orders will not be shown!

The following SQL statement selects all orders with customer and shipper
information:

Example

SELECT Orders.OrderID, Customers.CustomerName, Shippers.ShipperName
FROM ((Orders
INNER JOIN Customers ON Orders.CustomerID = Customers.CustomerID)
INNER JOIN Shippers ON Orders.ShipperID = Shippers.ShipperID);

LEFT JOIN

The LEFT JOIN command returns all rows from the left table, and the matching

rows from the right table. The result is NULL from the right side, if there is no
match.

The following SQL will select all customers, and any orders they might have:

Example

SELECT Customers.CustomerName, Orders.OrderID
FROM Customers
LEFT JOIN Orders ON Customers.CustomerID = Orders.CustomerID
ORDER BY Customers.CustomerName;

Note: The LEFT JOIN keyword returns all records from the left table

(Customers), even if there are no matches in the right table (Orders).

RIGHT JOIN

The RIGHT JOIN command returns all rows from the right table, and the

matching records from the left table. The result is NULL from the left side, when
there is no match.

The following SQL will return all employees, and any orders they might have
placed:

Example

SELECT Orders.OrderID, Employees.LastName, Employees.FirstName
FROM Orders
RIGHT JOIN Employees ON Orders.EmployeeID = Employees.EmployeeID
ORDER BY Orders.OrderID;

Note: The RIGHT JOIN keyword returns all records from the right table

(Employees), even if there are no matches in the left table (Orders).

FULL OUTER JOIN

The FULL OUTER JOIN command returns all rows when there is a match in either

left table or right table.

The following SQL statement selects all customers, and all orders:

SELECT Customers.CustomerName, Orders.OrderID
FROM Customers
FULL OUTER JOIN Orders ON Customers.CustomerID=Orders.CustomerID
ORDER BY Customers.CustomerName;

Note: The FULL OUTER JOIN keyword returns all the rows from the left table

(Customers), and all the rows from the right table (Orders). If there are rows in
"Customers" that do not have matches in "Orders", or if there are rows in

"Orders" that do not have matches in "Customers", those rows will be listed as
well.

SQL LEFT JOIN Keyword

LEFT JOIN

The LEFT JOIN command returns all rows from the left table, and the matching

rows from the right table. The result is NULL from the right side, if there is no
match.

The following SQL will select all customers, and any orders they might have:

Example
SELECT Customers.CustomerName, Orders.OrderID
FROM Customers
LEFT JOIN Orders ON Customers.CustomerID = Orders.CustomerID
ORDER BY Customers.CustomerName;

Note: The LEFT JOIN keyword returns all records from the left table

(Customers), even if there are no matches in the right table (Orders).

SQL LIKE Keyword

LIKE

The LIKE command is used in a WHERE clause to search for a specified pattern

in a column.

You can use two wildcards with LIKE:

 % - Represents zero, one, or multiple characters

 _ - Represents a single character (MS Access uses a question mark (?)
instead)

The following SQL selects all customers with a CustomerName starting with "a":

Example
SELECT * FROM Customers
WHERE CustomerName LIKE 'a%';

The following SQL selects all customers with a CustomerName ending with "a":

Example

SELECT * FROM Customers
WHERE CustomerName LIKE '%a';

The following SQL selects all customers with a CustomerName that have "or" in

any position:

Example

SELECT * FROM Customers
WHERE CustomerName LIKE '%or%';

The following SQL statement selects all customers with a CustomerName that

starts with "a" and are at least 3 characters in length:

Example

SELECT * FROM Customers
WHERE CustomerName LIKE 'a__%';

SQL SELECT TOP, LIMIT and

ROWNUM Keywords

SELECT TOP, LIMIT and ROWNUM

The LIMIT, SELECT TOP or ROWNUM command is used to specify the number of

records to return.

Note: SQL Server uses SELECT TOP. MySQL uses LIMIT, and Oracle

uses ROWNUM.

The following SQL statement selects the first three records from the

"Customers" table (SQL SERVER):

Example
SELECT TOP 3 * FROM Customers;

The following SQL statement shows the equivalent example using the LIMIT
clause (MySQL):

Example

SELECT * FROM Customers
LIMIT 3;

The following SQL statement shows the equivalent example using ROWNUM

(Oracle):

Example

SELECT * FROM Customers
WHERE ROWNUM <= 3;

SQL SELECT TOP, LIMIT and

ROWNUM Keywords

SELECT TOP, LIMIT and ROWNUM

The LIMIT, SELECT TOP or ROWNUM command is used to specify the number of

records to return.

Note: SQL Server uses SELECT TOP. MySQL uses LIMIT, and Oracle

uses ROWNUM.

The following SQL statement selects the first three records from the

"Customers" table (SQL SERVER):

Example
SELECT TOP 3 * FROM Customers;

The following SQL statement shows the equivalent example using the LIMIT

clause (MySQL):

Example

SELECT * FROM Customers
LIMIT 3;

The following SQL statement shows the equivalent example using ROWNUM

(Oracle):

Example

SELECT * FROM Customers
WHERE ROWNUM <= 3;

SQL NOT NULL Keyword

NOT NULL

The NOT NULL constraint enforces a column to not accept NULL values, which

means that you cannot insert or update a record without adding a value to this
field.

The following SQL ensures that the "ID", "LastName", and "FirstName" columns
will NOT accept NULL values:

Example
CREATE TABLE Persons (
 ID int NOT NULL,
 LastName varchar(255) NOT NULL,
 FirstName varchar(255) NOT NULL,
 Age int
);

The following SQL creates a NOT NULL constraint on the "Age" column when the
"Persons" table is already created:

ALTER TABLE Persons
MODIFY Age int NOT NULL;

SQL OR Keyword

OR

The OR command is used with WHERE to include rows where either condition is

true.

The following SQL statement selects all fields from "Customers" where city is

"Berlin" OR city is "München":

Example
SELECT * FROM Customers
WHERE City='Berlin' OR City='München';

SQL ORDER BY Keyword

ORDER BY

The ORDER BY command is used to sort the result set in ascending or descending

order.

The ORDER BY command sorts the result set in ascending order by default. To

sort the records in descending order, use the DESC keyword.

The following SQL statement selects all the columns from the "Customers"
table, sorted by the "CustomerName" column:

Example
SELECT * FROM Customers
ORDER BY CustomerName;

ASC

The ASC command is used to sort the data returned in ascending order.

The following SQL statement selects all the columns from the "Customers"
table, sorted by the "CustomerName" column:

Example

SELECT * FROM Customers
ORDER BY CustomerName ASC;

DESC

The DESC command is used to sort the data returned in descending order.

The following SQL statement selects all the columns from the "Customers"
table, sorted descending by the "CustomerName" column:

Example

SELECT * FROM Customers
ORDER BY CustomerName DESC;

SQL FULL OUTER JOIN Keyword

FULL OUTER JOIN

The FULL OUTER JOIN command returns all rows when there is a match in either

left table or right table.

The following SQL statement selects all customers, and all orders:

SELECT Customers.CustomerName, Orders.OrderID
FROM Customers
FULL OUTER JOIN Orders ON Customers.CustomerID=Orders.CustomerID
ORDER BY Customers.CustomerName;

Note: The FULL OUTER JOIN keyword returns all the rows from the left table

(Customers), and all the rows from the right table (Orders). If there are rows in
"Customers" that do not have matches in "Orders", or if there are rows in
"Orders" that do not have matches in "Customers", those rows will be listed as

well.

SQL PRIMARY KEY Keyword

PRIMARY KEY

The PRIMARY KEY constraint uniquely identifies each record in a table.

A table can have only one primary key, which may consist of one single or of

multiple fields.

SQL PRIMARY KEY on CREATE TABLE

The following SQL creates a PRIMARY KEY on the "ID" column when the

"Persons" table is created:

MySQL:

CREATE TABLE Persons (
 ID int NOT NULL,
 LastName varchar(255) NOT NULL,
 FirstName varchar(255),
 Age int,
 PRIMARY KEY (ID)
);

SQL Server / Oracle / MS Access:

CREATE TABLE Persons (
 ID int NOT NULL PRIMARY KEY,
 LastName varchar(255) NOT NULL,
 FirstName varchar(255),
 Age int
);

To allow naming of a PRIMARY KEY constraint, and for defining a PRIMARY KEY
constraint on multiple columns, use the following SQL syntax:

MySQL / SQL Server / Oracle / MS Access:

CREATE TABLE Persons (
 ID int NOT NULL,
 LastName varchar(255) NOT NULL,
 FirstName varchar(255),
 Age int,

 CONSTRAINT PK_Person PRIMARY KEY (ID,LastName)
);

Note: In the example above there is only ONE PRIMARY KEY (PK_Person).
However, the VALUE of the primary key is made up of TWO COLUMNS (ID +

LastName).

SQL PRIMARY KEY on ALTER TABLE

To create a PRIMARY KEY constraint on the "ID" column when the table is

already created, use the following SQL:

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Persons
ADD PRIMARY KEY (ID);

To allow naming of a PRIMARY KEY constraint, and for defining a PRIMARY KEY

constraint on multiple columns, use the following SQL syntax:

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Persons
ADD CONSTRAINT PK_Person PRIMARY KEY (ID,LastName);

Note: If you use the ALTER TABLE statement to add a primary key, the primary
key column(s) must already have been declared to not contain NULL values

(when the table was first created).

DROP a PRIMARY KEY Constraint

To drop a PRIMARY KEY constraint, use the following SQL:

MySQL:

ALTER TABLE Persons
DROP PRIMARY KEY;

SQL Server / Oracle / MS Access:

ALTER TABLE Persons
DROP CONSTRAINT PK_Person;

SQL CREATE PROCEDURE

Keyword

CREATE PROCEDURE

The CREATE PROCEDURE command is used to create a stored procedure.

A stored procedure is a prepared SQL code that you can save, so the code can

be reused over and over again.

The following SQL creates a stored procedure named "SelectAllCustomers" that

selects all records from the "Customers" table:

Example
CREATE PROCEDURE SelectAllCustomers
AS
SELECT * FROM Customers
GO;

Execute the stored procedure above as follows:

Example

EXEC SelectAllCustomers;

SQL RIGHT JOIN Keyword

RIGHT JOIN

The RIGHT JOIN command returns all rows from the right table, and the

matching records from the left table. The result is NULL from the left side, when

there is no match.

The following SQL will return all employees, and any orders they might have

placed:

Example
SELECT Orders.OrderID, Employees.LastName, Employees.FirstName
FROM Orders
RIGHT JOIN Employees ON Orders.EmployeeID = Employees.EmployeeID
ORDER BY Orders.OrderID;

Note: The RIGHT JOIN keyword returns all records from the right table

(Employees), even if there are no matches in the left table (Orders).

SQL SELECT TOP, LIMIT and

ROWNUM Keywords

SELECT TOP, LIMIT and ROWNUM

The LIMIT, SELECT TOP or ROWNUM command is used to specify the number of

records to return.

Note: SQL Server uses SELECT TOP. MySQL uses LIMIT, and Oracle

uses ROWNUM.

The following SQL statement selects the first three records from the
"Customers" table (SQL SERVER):

Example
SELECT TOP 3 * FROM Customers;

The following SQL statement shows the equivalent example using the LIMIT
clause (MySQL):

Example

SELECT * FROM Customers
LIMIT 3;

The following SQL statement shows the equivalent example using ROWNUM
(Oracle):

Example

SELECT * FROM Customers
WHERE ROWNUM <= 3;

SQL SELECT Keyword

SELECT

The SELECT command is used to select data from a database. The data returned

is stored in a result table, called the result set.

The following SQL statement selects the "CustomerName" and "City" columns

from the "Customers" table:

Example
SELECT CustomerName, City FROM Customers;

The following SQL statement selects all the columns from the "Customers"
table:

Example

SELECT * FROM Customers;

SQL SELECT DISTINCT Keyword

SELECT DISTINCT

The SELECT DISTINCT command returns only distinct (different) values in the

result set.

The following SQL statement selects only the DISTINCT values from the

"Country" column in the "Customers" table:

Example
SELECT DISTINCT Country FROM Customers;

SQL SELECT INTO Keyword

SELECT INTO

The SELECT INTO command copies data from one table and inserts it into a new

table.

The following SQL statement creates a backup copy of Customers:

SELECT * INTO CustomersBackup2017
FROM Customers;

The following SQL statement uses the IN clause to copy the table into a new
table in another database:

SELECT * INTO CustomersBackup2017 IN 'Backup.mdb'
FROM Customers;

The following SQL statement copies only a few columns into a new table:

SELECT CustomerName, ContactName INTO CustomersBackup2017
FROM Customers;

The following SQL statement copies only the German customers into a new
table:

SELECT * INTO CustomersGermany
FROM Customers
WHERE Country = 'Germany';

The following SQL statement copies data from more than one table into a new

table:

SELECT Customers.CustomerName, Orders.OrderID
INTO CustomersOrderBackup2017
FROM Customers
LEFT JOIN Orders ON Customers.CustomerID = Orders.CustomerID;

SQL SELECT TOP, LIMIT and

ROWNUM Keywords

SELECT TOP, LIMIT and ROWNUM

The LIMIT, SELECT TOP or ROWNUM command is used to specify the number of

records to return.

Note: SQL Server uses SELECT TOP. MySQL uses LIMIT, and Oracle

uses ROWNUM.

The following SQL statement selects the first three records from the
"Customers" table (SQL SERVER):

Example
SELECT TOP 3 * FROM Customers;

The following SQL statement shows the equivalent example using the LIMIT
clause (MySQL):

Example

SELECT * FROM Customers
LIMIT 3;

The following SQL statement shows the equivalent example using ROWNUM
(Oracle):

Example

SELECT * FROM Customers
WHERE ROWNUM <= 3;

SQL SET Keyword

SET

The SET command is used with UPDATE to specify which columns and values

that should be updated in a table.

The following SQL updates the first customer (CustomerID = 1) with a new

ContactName and a new City:

Example
UPDATE Customers
SET ContactName = 'Alfred Schmidt', City= 'Frankfurt'
WHERE CustomerID = 1;

The following SQL will update the "ContactName" field to "Juan" for all records
where Country is "Mexico":

Example

UPDATE Customers
SET ContactName='Juan'
WHERE Country='Mexico';

Note: Be careful when updating records in a table! Notice the WHERE clause in

the UPDATE statement. The WHERE clause specifies which record(s) that should
be updated. If you omit the WHERE clause, all records in the table will be

updated!

SQL TABLE Keyword

CREATE TABLE

The CREATE TABLE command creates a new table in the database.

The following SQL creates a table called "Persons" that contains five columns:

PersonID, LastName, FirstName, Address, and City:

Example
CREATE TABLE Persons (
 PersonID int,
 LastName varchar(255),
 FirstName varchar(255),

 Address varchar(255),
 City varchar(255)
);

CREATE TABLE Using Another Table

A copy of an existing table can also be created using CREATE TABLE.

The following SQL creates a new table called "TestTables" (which is a copy of
the "Customers" table):

Example

CREATE TABLE TestTable AS
SELECT customername, contactname
FROM customers;

ALTER TABLE

The ALTER TABLE command adds, deletes, or modifies columns in a table.

The ALTER TABLE command also adds and deletes various constraints in a table.

The following SQL adds an "Email" column to the "Customers" table:

Example

ALTER TABLE Customers
ADD Email varchar(255);

The following SQL deletes the "Email" column from the "Customers" table:

Example

ALTER TABLE Customers
DROP COLUMN Email;

DROP TABLE

The DROP TABLE command deletes a table in the database.

The following SQL deletes the table "Shippers":

Example

DROP TABLE Shippers;

Note: Be careful before deleting a table. Deleting a table results in loss of all

information stored in the table!

TRUNCATE TABLE

The TRUNCATE TABLE command deletes the data inside a table, but not the table

itself.

The following SQL truncates the table "Categories":

Example

TRUNCATE TABLE Categories;

SQL SELECT TOP, LIMIT and

ROWNUM Keywords

SELECT TOP, LIMIT and ROWNUM

The LIMIT, SELECT TOP or ROWNUM command is used to specify the number of

records to return.

Note: SQL Server uses SELECT TOP. MySQL uses LIMIT, and Oracle

uses ROWNUM.

The following SQL statement selects the first three records from the

"Customers" table (SQL SERVER):

Example
SELECT TOP 3 * FROM Customers;

The following SQL statement shows the equivalent example using the LIMIT
clause (MySQL):

Example

SELECT * FROM Customers
LIMIT 3;

The following SQL statement shows the equivalent example using ROWNUM

(Oracle):

Example

SELECT * FROM Customers
WHERE ROWNUM <= 3;

SQL DROP TABLE and TRUNCATE

TABLE Keywords

DROP TABLE

The DROP TABLE command deletes a table in the database.

The following SQL deletes the table "Shippers":

Example
DROP TABLE Shippers;

Note: Be careful before deleting a table. Deleting a table results in loss of all

information stored in the table!

TRUNCATE TABLE

The TRUNCATE TABLE command deletes the data inside a table, but not the table

itself.

The following SQL truncates the table "Categories":

Example

TRUNCATE TABLE Categories;

SQL UNION Keyword

UNION

The UNION command combines the result set of two or more SELECT statements

(only distinct values)

The following SQL statement returns the cities (only distinct values) from both

the "Customers" and the "Suppliers" table:

Example
SELECT City FROM Customers
UNION
SELECT City FROM Suppliers
ORDER BY City;

SQL UNION ALL Keyword

UNION ALL

The UNION ALL command combines the result set of two or more SELECT

statements (allows duplicate values).

The following SQL statement returns the cities (duplicate values also) from both

the "Customers" and the "Suppliers" table:

Example
SELECT City FROM Customers
UNION ALL
SELECT City FROM Suppliers
ORDER BY City;

SQL UNIQUE Keyword

UNIQUE

The UNIQUE constraint ensures that all values in a column are unique.

SQL UNIQUE Constraint on CREATE

TABLE

The following SQL creates a UNIQUE constraint on the "ID" column when the

"Persons" table is created:

SQL Server / Oracle / MS Access:

CREATE TABLE Persons (
 ID int NOT NULL UNIQUE,
 LastName varchar(255) NOT NULL,
 FirstName varchar(255),
 Age int
);

MySQL:

CREATE TABLE Persons (
 ID int NOT NULL,
 LastName varchar(255) NOT NULL,
 FirstName varchar(255),
 Age int,
 UNIQUE (ID)
);

To name a UNIQUE constraint, and to define a UNIQUE constraint on multiple

columns, use the following SQL syntax:

MySQL / SQL Server / Oracle / MS Access:

CREATE TABLE Persons (
 ID int NOT NULL,
 LastName varchar(255) NOT NULL,
 FirstName varchar(255),

 Age int,
 CONSTRAINT UC_Person UNIQUE (ID,LastName)
);

SQL UNIQUE Constraint on ALTER TABLE

To create a UNIQUE constraint on the "ID" column when the table is already

created, use the following SQL:

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Persons
ADD UNIQUE (ID);

To name a UNIQUE constraint, and to define a UNIQUE constraint on multiple
columns, use the following SQL syntax:

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Persons
ADD CONSTRAINT UC_Person UNIQUE (ID,LastName);

DROP a UNIQUE Constraint

To drop a UNIQUE constraint, use the following SQL:

MySQL:

ALTER TABLE Persons
DROP INDEX UC_Person;

SQL Server / Oracle / MS Access:

ALTER TABLE Persons
DROP CONSTRAINT UC_Person;

SQL UPDATE Keyword

UPDATE

The UPDATE command is used to update existing rows in a table.

The following SQL statement updates the first customer (CustomerID = 1) with
a new contact person and a new city.

Example
UPDATE Customers
SET ContactName = 'Alfred Schmidt', City= 'Frankfurt'
WHERE CustomerID = 1;

The following SQL statement will update the contactname to "Juan" for all

records where country is "Mexico":

Example

UPDATE Customers
SET ContactName='Juan'
WHERE Country='Mexico';

Note: Be careful when updating records in a table! Notice the WHERE clause in
the UPDATE statement. The WHERE clause specifies which record(s) that should

be updated. If you omit the WHERE clause, all records in the table will be
updated!

SQL VALUES Keyword

VALUES

The VALUES command specifies the values of an INSERT INTO statement.

The following SQL inserts a new record in the "Customers" table:

Example
INSERT INTO Customers (CustomerName, ContactName, Address, City,
PostalCode, Country)
VALUES ('Cardinal', 'Tom B. Erichsen', 'Skagen
21', 'Stavanger', '4006', 'Norway');

The following SQL will insert a new record, but only insert data in the
"CustomerName", "City", and "Country" columns (CustomerID will be updated
automatically):

Example

INSERT INTO Customers (CustomerName, City, Country)
VALUES ('Cardinal', 'Stavanger', 'Norway');

SQL VIEW Keyword

CREATE VIEW

In SQL, a view is a virtual table based on the result set of an SQL statement.

The CREATE VIEW command creates a view.

The following SQL creates a view that selects all customers from Brazil:

Example
CREATE VIEW [Brazil Customers] AS
SELECT CustomerName, ContactName
FROM Customers
WHERE Country = "Brazil";

Query The View

We can query the view above as follows:

Example

SELECT * FROM [Brazil Customers];

CREATE OR REPLACE VIEW

The CREATE OR REPLACE VIEW command updates a view.

The following SQL adds the "City" column to the "Brazil Customers" view:

Example

CREATE OR REPLACE VIEW [Brazil Customers] AS
SELECT CustomerName, ContactName, City
FROM Customers
WHERE Country = "Brazil";

DROP VIEW

The DROP VIEW command deletes a view.

The following SQL drops the "Brazil Customers" view:

Example

DROP VIEW [Brazil Customers];

SQL WHERE Keyword

SELECT

The WHERE command filters a result set to include only records that fulfill a

specified condition.

The following SQL statement selects all the customers from "Mexico" in the
"Customers" table:

Example
SELECT * FROM Customers
WHERE Country='Mexico';

SQL requires single quotes around text values (most database systems will also
allow double quotes).

However, numeric fields should not be enclosed in quotes:

Example

SELECT * FROM Customers
WHERE CustomerID=1;

Note: The WHERE clause is not only used in SELECT statement, it is also used

in UPDATE, DELETE statement, etc.!

The following operators can be used in the WHERE clause:

Operator Description

= Equal

<> Not equal. Note: In some versions of SQL this operator may
be written as !=

> Greater than

< Less than

>= Greater than or equal

<= Less than or equal

BETWEEN Between a certain range

LIKE Search for a pattern

IN To specify multiple possible values for a column

MySQL Functions

MySQL has many built-in functions.

This reference contains string, numeric, date, and some advanced functions
in MySQL.

MySQL String Functions

Function Description

ASCII Returns the ASCII value for the specific character

CHAR_LENGTH Returns the length of a string (in characters)

CHARACTER_LENGTH Returns the length of a string (in characters)

CONCAT Adds two or more expressions together

CONCAT_WS Adds two or more expressions together with a
separator

https://www.w3schools.com/sql/func_mysql_ascii.asp
https://www.w3schools.com/sql/func_mysql_char_length.asp
https://www.w3schools.com/sql/func_mysql_character_length.asp
https://www.w3schools.com/sql/func_mysql_concat.asp
https://www.w3schools.com/sql/func_mysql_concat_ws.asp

FIELD Returns the index position of a value in a list of
values

FIND_IN_SET Returns the position of a string within a list of strings

FORMAT Formats a number to a format like

"#,###,###.##", rounded to a specified number of
decimal places

INSERT Inserts a string within a string at the specified
position and for a certain number of characters

INSTR Returns the position of the first occurrence of a string
in another string

LCASE Converts a string to lower-case

LEFT Extracts a number of characters from a string
(starting from left)

LENGTH Returns the length of a string (in bytes)

LOCATE Returns the position of the first occurrence of a

substring in a string

LOWER Converts a string to lower-case

https://www.w3schools.com/sql/func_mysql_field.asp
https://www.w3schools.com/sql/func_mysql_find_in_set.asp
https://www.w3schools.com/sql/func_mysql_format.asp
https://www.w3schools.com/sql/func_mysql_insert.asp
https://www.w3schools.com/sql/func_mysql_instr.asp
https://www.w3schools.com/sql/func_mysql_lcase.asp
https://www.w3schools.com/sql/func_mysql_left.asp
https://www.w3schools.com/sql/func_mysql_length.asp
https://www.w3schools.com/sql/func_mysql_locate.asp
https://www.w3schools.com/sql/func_mysql_lower.asp

LPAD Left-pads a string with another string, to a certain
length

LTRIM Removes leading spaces from a string

MID Extracts a substring from a string (starting at any

position)

POSITION Returns the position of the first occurrence of a

substring in a string

REPEAT Repeats a string as many times as specified

REPLACE Replaces all occurrences of a substring within a
string, with a new substring

REVERSE Reverses a string and returns the result

RIGHT Extracts a number of characters from a string
(starting from right)

RPAD Right-pads a string with another string, to a certain
length

RTRIM Removes trailing spaces from a string

SPACE Returns a string of the specified number of space

characters

https://www.w3schools.com/sql/func_mysql_lpad.asp
https://www.w3schools.com/sql/func_mysql_ltrim.asp
https://www.w3schools.com/sql/func_mysql_mid.asp
https://www.w3schools.com/sql/func_mysql_position.asp
https://www.w3schools.com/sql/func_mysql_repeat.asp
https://www.w3schools.com/sql/func_mysql_replace.asp
https://www.w3schools.com/sql/func_mysql_reverse.asp
https://www.w3schools.com/sql/func_mysql_right.asp
https://www.w3schools.com/sql/func_mysql_rpad.asp
https://www.w3schools.com/sql/func_mysql_rtrim.asp
https://www.w3schools.com/sql/func_mysql_space.asp

STRCMP Compares two strings

SUBSTR Extracts a substring from a string (starting at any

position)

SUBSTRING Extracts a substring from a string (starting at any

position)

SUBSTRING_INDEX Returns a substring of a string before a specified

number of delimiter occurs

TRIM Removes leading and trailing spaces from a string

UCASE Converts a string to upper-case

UPPER Converts a string to upper-case

MySQL Numeric Functions

Function Description

ABS Returns the absolute value of a number

https://www.w3schools.com/sql/func_mysql_strcmp.asp
https://www.w3schools.com/sql/func_mysql_substr.asp
https://www.w3schools.com/sql/func_mysql_substring.asp
https://www.w3schools.com/sql/func_mysql_substring_index.asp
https://www.w3schools.com/sql/func_mysql_trim.asp
https://www.w3schools.com/sql/func_mysql_ucase.asp
https://www.w3schools.com/sql/func_mysql_upper.asp
https://www.w3schools.com/sql/func_mysql_abs.asp

ACOS Returns the arc cosine of a number

ASIN Returns the arc sine of a number

ATAN Returns the arc tangent of one or two numbers

ATAN2 Returns the arc tangent of two numbers

AVG Returns the average value of an expression

CEIL Returns the smallest integer value that is >= to a number

CEILING Returns the smallest integer value that is >= to a number

COS Returns the cosine of a number

COT Returns the cotangent of a number

COUNT Returns the number of records returned by a select query

DEGREES Converts a value in radians to degrees

DIV Used for integer division

https://www.w3schools.com/sql/func_mysql_acos.asp
https://www.w3schools.com/sql/func_mysql_asin.asp
https://www.w3schools.com/sql/func_mysql_atan.asp
https://www.w3schools.com/sql/func_mysql_atan2.asp
https://www.w3schools.com/sql/func_mysql_avg.asp
https://www.w3schools.com/sql/func_mysql_ceil.asp
https://www.w3schools.com/sql/func_mysql_ceiling.asp
https://www.w3schools.com/sql/func_mysql_cos.asp
https://www.w3schools.com/sql/func_mysql_cot.asp
https://www.w3schools.com/sql/func_mysql_count.asp
https://www.w3schools.com/sql/func_mysql_degrees.asp
https://www.w3schools.com/sql/func_mysql_div.asp

EXP Returns e raised to the power of a specified number

FLOOR Returns the largest integer value that is <= to a number

GREATEST Returns the greatest value of the list of arguments

LEAST Returns the smallest value of the list of arguments

LN Returns the natural logarithm of a number

LOG Returns the natural logarithm of a number, or the

logarithm of a number to a specified base

LOG10 Returns the natural logarithm of a number to base 10

LOG2 Returns the natural logarithm of a number to base 2

MAX Returns the maximum value in a set of values

MIN Returns the minimum value in a set of values

MOD Returns the remainder of a number divided by another
number

PI Returns the value of PI

https://www.w3schools.com/sql/func_mysql_exp.asp
https://www.w3schools.com/sql/func_mysql_floor.asp
https://www.w3schools.com/sql/func_mysql_greatest.asp
https://www.w3schools.com/sql/func_mysql_least.asp
https://www.w3schools.com/sql/func_mysql_ln.asp
https://www.w3schools.com/sql/func_mysql_log.asp
https://www.w3schools.com/sql/func_mysql_log10.asp
https://www.w3schools.com/sql/func_mysql_log2.asp
https://www.w3schools.com/sql/func_mysql_max.asp
https://www.w3schools.com/sql/func_mysql_min.asp
https://www.w3schools.com/sql/func_mysql_mod.asp
https://www.w3schools.com/sql/func_mysql_pi.asp

POW Returns the value of a number raised to the power of
another number

POWER Returns the value of a number raised to the power of
another number

RADIANS Converts a degree value into radians

RAND Returns a random number

ROUND Rounds a number to a specified number of decimal places

SIGN Returns the sign of a number

SIN Returns the sine of a number

SQRT Returns the square root of a number

SUM Calculates the sum of a set of values

TAN Returns the tangent of a number

TRUNCATE Truncates a number to the specified number of decimal

places

https://www.w3schools.com/sql/func_mysql_pow.asp
https://www.w3schools.com/sql/func_mysql_power.asp
https://www.w3schools.com/sql/func_mysql_radians.asp
https://www.w3schools.com/sql/func_mysql_rand.asp
https://www.w3schools.com/sql/func_mysql_round.asp
https://www.w3schools.com/sql/func_mysql_sign.asp
https://www.w3schools.com/sql/func_mysql_sin.asp
https://www.w3schools.com/sql/func_mysql_sqrt.asp
https://www.w3schools.com/sql/func_mysql_sum.asp
https://www.w3schools.com/sql/func_mysql_tan.asp
https://www.w3schools.com/sql/func_mysql_truncate.asp

MySQL Date Functions

Function Description

ADDDATE Adds a time/date interval to a date and then returns
the date

ADDTIME Adds a time interval to a time/datetime and then
returns the time/datetime

CURDATE Returns the current date

CURRENT_DATE Returns the current date

CURRENT_TIME Returns the current time

CURRENT_TIMESTAMP Returns the current date and time

CURTIME Returns the current time

DATE Extracts the date part from a datetime expression

DATEDIFF Returns the number of days between two date

values

DATE_ADD Adds a time/date interval to a date and then returns

the date

https://www.w3schools.com/sql/func_mysql_adddate.asp
https://www.w3schools.com/sql/func_mysql_addtime.asp
https://www.w3schools.com/sql/func_mysql_curdate.asp
https://www.w3schools.com/sql/func_mysql_current_date.asp
https://www.w3schools.com/sql/func_mysql_current_time.asp
https://www.w3schools.com/sql/func_mysql_current_timestamp.asp
https://www.w3schools.com/sql/func_mysql_curtime.asp
https://www.w3schools.com/sql/func_mysql_date.asp
https://www.w3schools.com/sql/func_mysql_datediff.asp
https://www.w3schools.com/sql/func_mysql_date_add.asp

DATE_FORMAT Formats a date

DATE_SUB Subtracts a time/date interval from a date and then

returns the date

DAY Returns the day of the month for a given date

DAYNAME Returns the weekday name for a given date

DAYOFMONTH Returns the day of the month for a given date

DAYOFWEEK Returns the weekday index for a given date

DAYOFYEAR Returns the day of the year for a given date

EXTRACT Extracts a part from a given date

FROM_DAYS Returns a date from a numeric datevalue

HOUR Returns the hour part for a given date

LAST_DAY Extracts the last day of the month for a given date

LOCALTIME Returns the current date and time

https://www.w3schools.com/sql/func_mysql_date_format.asp
https://www.w3schools.com/sql/func_mysql_date_sub.asp
https://www.w3schools.com/sql/func_mysql_day.asp
https://www.w3schools.com/sql/func_mysql_dayname.asp
https://www.w3schools.com/sql/func_mysql_dayofmonth.asp
https://www.w3schools.com/sql/func_mysql_dayofweek.asp
https://www.w3schools.com/sql/func_mysql_dayofyear.asp
https://www.w3schools.com/sql/func_mysql_extract.asp
https://www.w3schools.com/sql/func_mysql_from_days.asp
https://www.w3schools.com/sql/func_mysql_hour.asp
https://www.w3schools.com/sql/func_mysql_last_day.asp
https://www.w3schools.com/sql/func_mysql_localtime.asp

LOCALTIMESTAMP Returns the current date and time

MAKEDATE Creates and returns a date based on a year and a

number of days value

MAKETIME Creates and returns a time based on an hour,

minute, and second value

MICROSECOND Returns the microsecond part of a time/datetime

MINUTE Returns the minute part of a time/datetime

MONTH Returns the month part for a given date

MONTHNAME Returns the name of the month for a given date

NOW Returns the current date and time

PERIOD_ADD Adds a specified number of months to a period

PERIOD_DIFF Returns the difference between two periods

QUARTER Returns the quarter of the year for a given date

value

SECOND Returns the seconds part of a time/datetime

https://www.w3schools.com/sql/func_mysql_localtimestamp.asp
https://www.w3schools.com/sql/func_mysql_makedate.asp
https://www.w3schools.com/sql/func_mysql_maketime.asp
https://www.w3schools.com/sql/func_mysql_microsecond.asp
https://www.w3schools.com/sql/func_mysql_minute.asp
https://www.w3schools.com/sql/func_mysql_month.asp
https://www.w3schools.com/sql/func_mysql_monthname.asp
https://www.w3schools.com/sql/func_mysql_now.asp
https://www.w3schools.com/sql/func_mysql_period_add.asp
https://www.w3schools.com/sql/func_mysql_period_diff.asp
https://www.w3schools.com/sql/func_mysql_quarter.asp
https://www.w3schools.com/sql/func_mysql_second.asp

SEC_TO_TIME Returns a time value based on the specified seconds

STR_TO_DATE Returns a date based on a string and a format

SUBDATE Subtracts a time/date interval from a date and then
returns the date

SUBTIME Subtracts a time interval from a datetime and then
returns the time/datetime

SYSDATE Returns the current date and time

TIME Extracts the time part from a given time/datetime

TIME_FORMAT Formats a time by a specified format

TIME_TO_SEC Converts a time value into seconds

TIMEDIFF Returns the difference between two time/datetime

expressions

TIMESTAMP Returns a datetime value based on a date or

datetime value

TO_DAYS Returns the number of days between a date and

date "0000-00-00"

https://www.w3schools.com/sql/func_mysql_sec_to_time.asp
https://www.w3schools.com/sql/func_mysql_str_to_date.asp
https://www.w3schools.com/sql/func_mysql_subdate.asp
https://www.w3schools.com/sql/func_mysql_subtime.asp
https://www.w3schools.com/sql/func_mysql_sysdate.asp
https://www.w3schools.com/sql/func_mysql_time.asp
https://www.w3schools.com/sql/func_mysql_time_format.asp
https://www.w3schools.com/sql/func_mysql_time_to_sec.asp
https://www.w3schools.com/sql/func_mysql_timediff.asp
https://www.w3schools.com/sql/func_mysql_timestamp.asp
https://www.w3schools.com/sql/func_mysql_to_days.asp

WEEK Returns the week number for a given date

WEEKDAY Returns the weekday number for a given date

WEEKOFYEAR Returns the week number for a given date

YEAR Returns the year part for a given date

YEARWEEK Returns the year and week number for a given date

MySQL Advanced Functions

Function Description

BIN Returns a binary representation of a number

BINARY Converts a value to a binary string

CASE Goes through conditions and return a value when the
first condition is met

CAST Converts a value (of any type) into a specified datatype

COALESCE Returns the first non-null value in a list

https://www.w3schools.com/sql/func_mysql_week.asp
https://www.w3schools.com/sql/func_mysql_weekday.asp
https://www.w3schools.com/sql/func_mysql_weekofyear.asp
https://www.w3schools.com/sql/func_mysql_year.asp
https://www.w3schools.com/sql/func_mysql_yearweek.asp
https://www.w3schools.com/sql/func_mysql_bin.asp
https://www.w3schools.com/sql/func_mysql_binary.asp
https://www.w3schools.com/sql/func_mysql_case.asp
https://www.w3schools.com/sql/func_mysql_cast.asp
https://www.w3schools.com/sql/func_mysql_coalesce.asp

CONNECTION_ID Returns the unique connection ID for the current
connection

CONV Converts a number from one numeric base system to
another

CONVERT Converts a value into the specified datatype or character
set

CURRENT_USER Returns the user name and host name for the MySQL
account that the server used to authenticate the current

client

DATABASE Returns the name of the current database

IF Returns a value if a condition is TRUE, or another value if

a condition is FALSE

IFNULL Return a specified value if the expression is NULL,

otherwise return the expression

ISNULL Returns 1 or 0 depending on whether an expression is

NULL

LAST_INSERT_ID Returns the AUTO_INCREMENT id of the last row that has

been inserted in a table

NULLIF Compares two expressions and returns NULL if they are

equal. Otherwise, the first expression is returned

https://www.w3schools.com/sql/func_mysql_connection_id.asp
https://www.w3schools.com/sql/func_mysql_conv.asp
https://www.w3schools.com/sql/func_mysql_convert.asp
https://www.w3schools.com/sql/func_mysql_current_user.asp
https://www.w3schools.com/sql/func_mysql_database.asp
https://www.w3schools.com/sql/func_mysql_if.asp
https://www.w3schools.com/sql/func_mysql_ifnull.asp
https://www.w3schools.com/sql/func_mysql_isnull.asp
https://www.w3schools.com/sql/func_mysql_last_insert_id.asp
https://www.w3schools.com/sql/func_mysql_nullif.asp

SESSION_USER Returns the current MySQL user name and host name

SYSTEM_USER Returns the current MySQL user name and host name

USER Returns the current MySQL user name and host name

VERSION Returns the current version of the MySQL database

SQL Server Functions

SQL Server has many built-in functions.

This reference contains string, numeric, date, conversion, and some

advanced functions in SQL Server.

SQL Server String Functions

Function Description

ASCII Returns the ASCII value for the specific character

CHAR Returns the character based on the ASCII code

CHARINDEX Returns the position of a substring in a string

https://www.w3schools.com/sql/func_mysql_session_user.asp
https://www.w3schools.com/sql/func_mysql_system_user.asp
https://www.w3schools.com/sql/func_mysql_user.asp
https://www.w3schools.com/sql/func_mysql_version.asp
https://www.w3schools.com/sql/func_sqlserver_ascii.asp
https://www.w3schools.com/sql/func_sqlserver_char.asp
https://www.w3schools.com/sql/func_sqlserver_charindex.asp

CONCAT Adds two or more strings together

Concat with + Adds two or more strings together

CONCAT_WS Adds two or more strings together with a separator

DATALENGTH Returns the number of bytes used to represent an

expression

DIFFERENCE Compares two SOUNDEX values, and returns an integer

value

FORMAT Formats a value with the specified format

LEFT Extracts a number of characters from a string (starting
from left)

LEN Returns the length of a string

LOWER Converts a string to lower-case

LTRIM Removes leading spaces from a string

NCHAR Returns the Unicode character based on the number code

PATINDEX Returns the position of a pattern in a string

https://www.w3schools.com/sql/func_sqlserver_concat.asp
https://www.w3schools.com/sql/func_sqlserver_concat_with_plus.asp
https://www.w3schools.com/sql/func_sqlserver_concat_ws.asp
https://www.w3schools.com/sql/func_sqlserver_datalength.asp
https://www.w3schools.com/sql/func_sqlserver_difference.asp
https://www.w3schools.com/sql/func_sqlserver_format.asp
https://www.w3schools.com/sql/func_sqlserver_left.asp
https://www.w3schools.com/sql/func_sqlserver_len.asp
https://www.w3schools.com/sql/func_sqlserver_lower.asp
https://www.w3schools.com/sql/func_sqlserver_ltrim.asp
https://www.w3schools.com/sql/func_sqlserver_nchar.asp
https://www.w3schools.com/sql/func_sqlserver_patindex.asp

QUOTENAME Returns a Unicode string with delimiters added to make
the string a valid SQL Server delimited identifier

REPLACE Replaces all occurrences of a substring within a string,
with a new substring

REPLICATE Repeats a string a specified number of times

REVERSE Reverses a string and returns the result

RIGHT Extracts a number of characters from a string (starting
from right)

RTRIM Removes trailing spaces from a string

SOUNDEX Returns a four-character code to evaluate the similarity of
two strings

SPACE Returns a string of the specified number of space
characters

STR Returns a number as string

STUFF Deletes a part of a string and then inserts another part

into the string, starting at a specified position

SUBSTRING Extracts some characters from a string

https://www.w3schools.com/sql/func_sqlserver_quotename.asp
https://www.w3schools.com/sql/func_sqlserver_replace.asp
https://www.w3schools.com/sql/func_sqlserver_replicate.asp
https://www.w3schools.com/sql/func_sqlserver_reverse.asp
https://www.w3schools.com/sql/func_sqlserver_right.asp
https://www.w3schools.com/sql/func_sqlserver_rtrim.asp
https://www.w3schools.com/sql/func_sqlserver_soundex.asp
https://www.w3schools.com/sql/func_sqlserver_space.asp
https://www.w3schools.com/sql/func_sqlserver_str.asp
https://www.w3schools.com/sql/func_sqlserver_stuff.asp
https://www.w3schools.com/sql/func_sqlserver_substring.asp

TRANSLATE Returns the string from the first argument after the
characters specified in the second argument are

translated into the characters specified in the third
argument.

TRIM Removes leading and trailing spaces (or other specified
characters) from a string

UNICODE Returns the Unicode value for the first character of the
input expression

UPPER Converts a string to upper-case

SQL Server Math/Numeric Functions

Function Description

ABS Returns the absolute value of a number

ACOS Returns the arc cosine of a number

ASIN Returns the arc sine of a number

ATAN Returns the arc tangent of a number

https://www.w3schools.com/sql/func_sqlserver_translate.asp
https://www.w3schools.com/sql/func_sqlserver_trim.asp
https://www.w3schools.com/sql/func_sqlserver_unicode.asp
https://www.w3schools.com/sql/func_sqlserver_upper.asp
https://www.w3schools.com/sql/func_sqlserver_abs.asp
https://www.w3schools.com/sql/func_sqlserver_acos.asp
https://www.w3schools.com/sql/func_sqlserver_asin.asp
https://www.w3schools.com/sql/func_sqlserver_atan.asp

ATN2 Returns the arc tangent of two numbers

AVG Returns the average value of an expression

CEILING Returns the smallest integer value that is >= a number

COUNT Returns the number of records returned by a select query

COS Returns the cosine of a number

COT Returns the cotangent of a number

DEGREES Converts a value in radians to degrees

EXP Returns e raised to the power of a specified number

FLOOR Returns the largest integer value that is <= to a number

LOG Returns the natural logarithm of a number, or the
logarithm of a number to a specified base

LOG10 Returns the natural logarithm of a number to base 10

MAX Returns the maximum value in a set of values

https://www.w3schools.com/sql/func_sqlserver_atn2.asp
https://www.w3schools.com/sql/func_sqlserver_avg.asp
https://www.w3schools.com/sql/func_sqlserver_ceiling.asp
https://www.w3schools.com/sql/func_sqlserver_count.asp
https://www.w3schools.com/sql/func_sqlserver_cos.asp
https://www.w3schools.com/sql/func_sqlserver_cot.asp
https://www.w3schools.com/sql/func_sqlserver_degrees.asp
https://www.w3schools.com/sql/func_sqlserver_exp.asp
https://www.w3schools.com/sql/func_sqlserver_floor.asp
https://www.w3schools.com/sql/func_sqlserver_log.asp
https://www.w3schools.com/sql/func_sqlserver_log10.asp
https://www.w3schools.com/sql/func_sqlserver_max.asp

MIN Returns the minimum value in a set of values

PI Returns the value of PI

POWER Returns the value of a number raised to the power of
another number

RADIANS Converts a degree value into radians

RAND Returns a random number

ROUND Rounds a number to a specified number of decimal places

SIGN Returns the sign of a number

SIN Returns the sine of a number

SQRT Returns the square root of a number

SQUARE Returns the square of a number

SUM Calculates the sum of a set of values

TAN Returns the tangent of a number

https://www.w3schools.com/sql/func_sqlserver_min.asp
https://www.w3schools.com/sql/func_sqlserver_pi.asp
https://www.w3schools.com/sql/func_sqlserver_power.asp
https://www.w3schools.com/sql/func_sqlserver_radians.asp
https://www.w3schools.com/sql/func_sqlserver_rand.asp
https://www.w3schools.com/sql/func_sqlserver_round.asp
https://www.w3schools.com/sql/func_sqlserver_sign.asp
https://www.w3schools.com/sql/func_sqlserver_sin.asp
https://www.w3schools.com/sql/func_sqlserver_sqrt.asp
https://www.w3schools.com/sql/func_sqlserver_square.asp
https://www.w3schools.com/sql/func_sqlserver_sum.asp
https://www.w3schools.com/sql/func_sqlserver_tan.asp

SQL Server Date Functions

Function Description

CURRENT_TIMESTAMP Returns the current date and time

DATEADD Adds a time/date interval to a date and then returns

the date

DATEDIFF Returns the difference between two dates

DATEFROMPARTS Returns a date from the specified parts (year,
month, and day values)

DATENAME Returns a specified part of a date (as string)

DATEPART Returns a specified part of a date (as integer)

DAY Returns the day of the month for a specified date

GETDATE Returns the current database system date and time

GETUTCDATE Returns the current database system UTC date and

time

ISDATE Checks an expression and returns 1 if it is a valid

date, otherwise 0

https://www.w3schools.com/sql/func_sqlserver_current_timestamp.asp
https://www.w3schools.com/sql/func_sqlserver_dateadd.asp
https://www.w3schools.com/sql/func_sqlserver_datediff.asp
https://www.w3schools.com/sql/func_sqlserver_datefromparts.asp
https://www.w3schools.com/sql/func_sqlserver_datename.asp
https://www.w3schools.com/sql/func_sqlserver_datepart.asp
https://www.w3schools.com/sql/func_sqlserver_day.asp
https://www.w3schools.com/sql/func_sqlserver_getdate.asp
https://www.w3schools.com/sql/func_sqlserver_getutcdate.asp
https://www.w3schools.com/sql/func_sqlserver_isdate.asp

MONTH Returns the month part for a specified date (a
number from 1 to 12)

SYSDATETIME Returns the date and time of the SQL Server

YEAR Returns the year part for a specified date

SQL Server Advanced Functions

Function Description

CAST Converts a value (of any type) into a specified

datatype

COALESCE Returns the first non-null value in a list

CONVERT Converts a value (of any type) into a specified
datatype

CURRENT_USER Returns the name of the current user in the SQL Server

database

IIF Returns a value if a condition is TRUE, or another value

if a condition is FALSE

https://www.w3schools.com/sql/func_sqlserver_month.asp
https://www.w3schools.com/sql/func_sqlserver_sysdatetime.asp
https://www.w3schools.com/sql/func_sqlserver_year.asp
https://www.w3schools.com/sql/func_sqlserver_cast.asp
https://www.w3schools.com/sql/func_sqlserver_coalesce.asp
https://www.w3schools.com/sql/func_sqlserver_convert.asp
https://www.w3schools.com/sql/func_sqlserver_current_user.asp
https://www.w3schools.com/sql/func_sqlserver_iif.asp

ISNULL Return a specified value if the expression is NULL,
otherwise return the expression

ISNUMERIC Tests whether an expression is numeric

NULLIF Returns NULL if two expressions are equal

SESSION_USER Returns the name of the current user in the SQL Server
database

SESSIONPROPERTY Returns the session settings for a specified option

SYSTEM_USER Returns the login name for the current user

USER_NAME Returns the database user name based on the specified
id

MS Access Functions

MS Access has many built-in functions.

This reference contains the string, numeric, and date functions in MS Access.

https://www.w3schools.com/sql/func_sqlserver_isnull.asp
https://www.w3schools.com/sql/func_sqlserver_isnumeric.asp
https://www.w3schools.com/sql/func_sqlserver_nullif.asp
https://www.w3schools.com/sql/func_sqlserver_session_user.asp
https://www.w3schools.com/sql/func_sqlserver_sessionproperty.asp
https://www.w3schools.com/sql/func_sqlserver_system_user.asp
https://www.w3schools.com/sql/func_sqlserver_user_name.asp

MS Access String Functions

Function Description

Asc Returns the ASCII value for the specific character

Chr Returns the character for the specified ASCII number

code

Concat with & Adds two or more strings together

CurDir Returns the full path for a specified drive

Format Formats a value with the specified format

InStr Gets the position of the first occurrence of a string in
another

InstrRev Gets the position of the first occurrence of a string in

another, from the end of string

LCase Converts a string to lower-case

Left Extracts a number of characters from a string (starting
from left)

Len Returns the length of a string

https://www.w3schools.com/sql/func_msaccess_asc.asp
https://www.w3schools.com/sql/func_msaccess_chr.asp
https://www.w3schools.com/sql/func_msaccess_concat.asp
https://www.w3schools.com/sql/func_msaccess_curdir.asp
https://www.w3schools.com/sql/func_msaccess_format.asp
https://www.w3schools.com/sql/func_msaccess_instr.asp
https://www.w3schools.com/sql/func_msaccess_instrrev.asp
https://www.w3schools.com/sql/func_msaccess_lcase.asp
https://www.w3schools.com/sql/func_msaccess_left.asp
https://www.w3schools.com/sql/func_msaccess_len.asp

LTrim Removes leading spaces from a string

Mid Extracts some characters from a string (starting at any

position)

Replace Replaces a substring within a string, with another

substring, a specified number of times

Right Extracts a number of characters from a string (starting

from right)

RTrim Removes trailing spaces from a string

Space Returns a string of the specified number of space
characters

Split Splits a string into an array of substrings

Str Returns a number as string

StrComp Compares two strings

StrConv Returns a converted string

StrReverse Reverses a string and returns the result

https://www.w3schools.com/sql/func_msaccess_ltrim.asp
https://www.w3schools.com/sql/func_msaccess_mid.asp
https://www.w3schools.com/sql/func_msaccess_replace.asp
https://www.w3schools.com/sql/func_msaccess_right.asp
https://www.w3schools.com/sql/func_msaccess_rtrim.asp
https://www.w3schools.com/sql/func_msaccess_space.asp
https://www.w3schools.com/sql/func_msaccess_split.asp
https://www.w3schools.com/sql/func_msaccess_str.asp
https://www.w3schools.com/sql/func_msaccess_strcomp.asp
https://www.w3schools.com/sql/func_msaccess_strconv.asp
https://www.w3schools.com/sql/func_msaccess_strreverse.asp

Trim Removes both leading and trailing spaces from a string

UCase Converts a string to upper-case

MS Access Numeric Functions

Function Description

Abs Returns the absolute value of a number

Atn Returns the arc tangent of a number

Avg Returns the average value of an expression

Cos Returns the cosine of an angle

Count Returns the number of records returned by a select query

Exp Returns e raised to the power of a specified number

Fix Returns the integer part of a number

https://www.w3schools.com/sql/func_msaccess_trim.asp
https://www.w3schools.com/sql/func_msaccess_ucase.asp
https://www.w3schools.com/sql/func_msaccess_abs.asp
https://www.w3schools.com/sql/func_msaccess_atn.asp
https://www.w3schools.com/sql/func_msaccess_avg.asp
https://www.w3schools.com/sql/func_msaccess_cos.asp
https://www.w3schools.com/sql/func_msaccess_count.asp
https://www.w3schools.com/sql/func_msaccess_exp.asp
https://www.w3schools.com/sql/func_msaccess_fix.asp

Format Formats a numeric value with the specified format

Int Returns the integer part of a number

Max Returns the maximum value in a set of values

Min Returns the minimum value in a set of values

Randomize Initializes the random number generator (used by Rnd())
with a seed

Rnd Returns a random number

Round Rounds a number to a specified number of decimal places

Sgn Returns the sign of a number

Sqr Returns the square root of a number

Sum Calculates the sum of a set of values

Val Reads a string and returns the numbers found in the
string

https://www.w3schools.com/sql/func_msaccess_format_number.asp
https://www.w3schools.com/sql/func_msaccess_int.asp
https://www.w3schools.com/sql/func_msaccess_max.asp
https://www.w3schools.com/sql/func_msaccess_min.asp
https://www.w3schools.com/sql/func_msaccess_randomize.asp
https://www.w3schools.com/sql/func_msaccess_rnd.asp
https://www.w3schools.com/sql/func_msaccess_round.asp
https://www.w3schools.com/sql/func_msaccess_sgn.asp
https://www.w3schools.com/sql/func_msaccess_sqr.asp
https://www.w3schools.com/sql/func_msaccess_sum.asp
https://www.w3schools.com/sql/func_msaccess_val.asp

MS Access Date Functions

Function Description

Date Returns the current system date

DateAdd Adds a time/date interval to a date and then returns the

date

DateDiff Returns the difference between two dates

DatePart Returns a specified part of a date (as an integer)

DateSerial Returns a date from the specified parts (year, month, and

day values)

DateValue Returns a date based on a string

Day Returns the day of the month for a given date

Format Formats a date value with the specified format

Hour Returns the hour part of a time/datetime

Minute Returns the minute part of a time/datetime

https://www.w3schools.com/sql/func_msaccess_date.asp
https://www.w3schools.com/sql/func_msaccess_dateadd.asp
https://www.w3schools.com/sql/func_msaccess_datediff.asp
https://www.w3schools.com/sql/func_msaccess_datepart.asp
https://www.w3schools.com/sql/func_msaccess_dateserial.asp
https://www.w3schools.com/sql/func_msaccess_datevalue.asp
https://www.w3schools.com/sql/func_msaccess_day.asp
https://www.w3schools.com/sql/func_msaccess_format_date.asp
https://www.w3schools.com/sql/func_msaccess_hour.asp
https://www.w3schools.com/sql/func_msaccess_minute.asp

Month Returns the month part of a given date

MonthName Returns the name of the month based on a number

Now Returns the current date and time based on the
computer's system date and time

Second Returns the seconds part of a time/datetime

Time Returns the current system time

TimeSerial Returns a time from the specified parts (hour, minute,
and second value)

TimeValue Returns a time based on a string

Weekday Returns the weekday number for a given date

WeekdayName Returns the weekday name based on a number

Year Returns the year part of a given date

https://www.w3schools.com/sql/func_msaccess_month.asp
https://www.w3schools.com/sql/func_msaccess_monthname.asp
https://www.w3schools.com/sql/func_msaccess_now.asp
https://www.w3schools.com/sql/func_msaccess_second.asp
https://www.w3schools.com/sql/func_msaccess_time.asp
https://www.w3schools.com/sql/func_msaccess_timeserial.asp
https://www.w3schools.com/sql/func_msaccess_timevalue.asp
https://www.w3schools.com/sql/func_msaccess_weekday.asp
https://www.w3schools.com/sql/func_msaccess_weekdayname.asp
https://www.w3schools.com/sql/func_msaccess_year.asp

MS Access Some Other Functions

Function Description

CurrentUser Returns the name of the current database
user

Environ Returns a string that contains the value of an
operating system environment variable

IsDate Checks whether an expression can be
converted to a date

IsNull Checks whether an expression contains Null
(no data)

IsNumeric Checks whether an expression is a valid

number

SQL Quick Reference from

W3Schools

SQL Statement Syntax

AND / OR SELECT column_name(s)

FROM table_name

https://www.w3schools.com/sql/func_msaccess_currentuser.asp
https://www.w3schools.com/sql/func_msaccess_environ.asp
https://www.w3schools.com/sql/func_msaccess_isdate.asp
https://www.w3schools.com/sql/func_msaccess_isnull.asp
https://www.w3schools.com/sql/func_msaccess_isnumeric.asp

WHERE condition

AND|OR condition

ALTER TABLE ALTER TABLE table_name

ADD column_name datatype

or

ALTER TABLE table_name

DROP COLUMN column_name

AS (alias) SELECT column_name AS column_alias

FROM table_name

or

SELECT column_name

FROM table_name AS table_alias

BETWEEN SELECT column_name(s)

FROM table_name

WHERE column_name

BETWEEN value1 AND value2

CREATE DATABASE CREATE DATABASE database_name

CREATE TABLE CREATE TABLE table_name

(

column_name1 data_type,

column_name2 data_type,

column_name3 data_type,

...

)

CREATE INDEX CREATE INDEX index_name

ON table_name (column_name)

or

CREATE UNIQUE INDEX index_name

ON table_name (column_name)

CREATE VIEW CREATE VIEW view_name AS

SELECT column_name(s)

FROM table_name

WHERE condition

DELETE DELETE FROM table_name

WHERE some_column=some_value

or

DELETE FROM table_name

(Note: Deletes the entire table!!)

DELETE * FROM table_name

(Note: Deletes the entire table!!)

DROP DATABASE DROP DATABASE database_name

DROP INDEX DROP INDEX table_name.index_name (SQL Server)

DROP INDEX index_name ON table_name (MS

Access)

DROP INDEX index_name (DB2/Oracle)

ALTER TABLE table_name

DROP INDEX index_name (MySQL)

DROP TABLE DROP TABLE table_name

EXISTS IF EXISTS (SELECT * FROM table_name WHERE id

= ?)

BEGIN

--do what needs to be done if exists

END

ELSE

BEGIN

--do what needs to be done if not

END

GROUP BY SELECT column_name,

aggregate_function(column_name)

FROM table_name

WHERE column_name operator value

GROUP BY column_name

HAVING SELECT column_name,

aggregate_function(column_name)

FROM table_name

WHERE column_name operator value

GROUP BY column_name

HAVING aggregate_function(column_name) operator

value

IN SELECT column_name(s)

FROM table_name

WHERE column_name

IN (value1,value2,..)

INSERT INTO INSERT INTO table_name

VALUES (value1, value2, value3,....)

or

INSERT INTO table_name

(column1, column2, column3,...)

VALUES (value1, value2, value3,....)

INNER JOIN SELECT column_name(s)

FROM table_name1

INNER JOIN table_name2

ON

table_name1.column_name=table_name2.column_name

LEFT JOIN SELECT column_name(s)

FROM table_name1

LEFT JOIN table_name2

ON

table_name1.column_name=table_name2.column_name

RIGHT JOIN SELECT column_name(s)

FROM table_name1

RIGHT JOIN table_name2

ON

table_name1.column_name=table_name2.column_name

FULL JOIN SELECT column_name(s)

FROM table_name1

FULL JOIN table_name2

ON

table_name1.column_name=table_name2.column_name

LIKE SELECT column_name(s)

FROM table_name

WHERE column_name LIKE pattern

ORDER BY SELECT column_name(s)

FROM table_name

ORDER BY column_name [ASC|DESC]

SELECT SELECT column_name(s)

FROM table_name

SELECT * SELECT *

FROM table_name

SELECT DISTINCT SELECT DISTINCT column_name(s)

FROM table_name

SELECT INTO SELECT *

INTO new_table_name [IN externaldatabase]

FROM old_table_name

or

SELECT column_name(s)

INTO new_table_name [IN externaldatabase]

FROM old_table_name

SELECT TOP SELECT TOP number|percent column_name(s)

FROM table_name

TRUNCATE TABLE TRUNCATE TABLE table_name

UNION SELECT column_name(s) FROM table_name1

UNION

SELECT column_name(s) FROM table_name2

UNION ALL SELECT column_name(s) FROM table_name1

UNION ALL

SELECT column_name(s) FROM table_name2

UPDATE UPDATE table_name

SET column1=value, column2=value,...

WHERE some_column=some_value

WHERE SELECT column_name(s)

FROM table_name

WHERE column_name operator value

	SQL Tutorial
	Contents:
	Introduction to SQL
	What is SQL?
	What Can SQL do?
	SQL is a Standard - BUT....
	Using SQL in Your Web Site
	RDBMS
	Example

	SQL Syntax
	SQL Statements
	Example

	Database Tables
	Keep in Mind That...
	Semicolon after SQL Statements?
	Some of The Most Important SQL Commands

	SQL SELECT Statement
	The SQL SELECT Statement
	Example

	Syntax
	Demo Database
	Select ALL columns
	Example

	Test Yourself With Exercises
	Exercise:

	SQL SELECT DISTINCT Statement
	The SQL SELECT DISTINCT Statement
	Example

	Syntax
	Demo Database
	SELECT Example Without DISTINCT
	Example

	Count Distinct
	Example
	Example

	Test Yourself With Exercises
	Exercise:

	SQL WHERE Clause
	The SQL WHERE Clause
	Example

	Syntax
	Demo Database
	Text Fields vs. Numeric Fields
	Example

	Operators in The WHERE Clause
	Example

	Test Yourself With Exercises
	Exercise:

	SQL ORDER BY Keyword
	The SQL ORDER BY
	Example

	Syntax
	Demo Database
	DESC
	Example

	Order Alphabetically
	Example

	Alphabetically DESC
	Example

	ORDER BY Several Columns
	Example

	Using Both ASC and DESC
	Example

	Test Yourself With Exercises
	Exercise:

	SQL AND Operator
	The SQL AND Operator
	Example

	Syntax
	AND vs OR
	Demo Database
	All Conditions Must Be True
	Example

	Combining AND and OR
	Example
	Example

	Test Yourself With Exercises
	Exercise:

	SQL OR Operator
	The SQL OR Operator
	Example

	Syntax
	OR vs AND
	Demo Database
	At Least One Condition Must Be True
	Example

	Combining AND and OR
	Example
	Example

	Test Yourself With Exercises
	Exercise:

	SQL NOT Operator
	The NOT Operator
	Example

	Syntax
	Demo Database
	NOT LIKE
	Example

	NOT BETWEEN
	Example

	NOT IN
	Example

	NOT Greater Than
	Example

	NOT Less Than
	Example

	Test Yourself With Exercises
	Exercise:

	SQL INSERT INTO Statement
	The SQL INSERT INTO Statement
	INSERT INTO Syntax

	Demo Database
	INSERT INTO Example
	Example

	Insert Data Only in Specified Columns
	Example

	Insert Multiple Rows
	Example

	Test Yourself With Exercises
	Exercise:

	SQL NULL Values
	What is a NULL Value?
	How to Test for NULL Values?
	IS NULL Syntax
	IS NOT NULL Syntax

	Demo Database
	The IS NULL Operator
	Example

	The IS NOT NULL Operator
	Example

	Test Yourself With Exercises
	Exercise:

	SQL UPDATE Statement
	The SQL UPDATE Statement
	UPDATE Syntax

	Demo Database
	UPDATE Table
	Example

	UPDATE Multiple Records
	Example

	Update Warning!
	Example

	Test Yourself With Exercises
	Exercise:

	SQL DELETE Statement
	The SQL DELETE Statement
	DELETE Syntax

	Demo Database
	SQL DELETE Example
	Example

	Delete All Records
	Example

	Delete a Table
	Example

	Test Yourself With Exercises
	Exercise:

	SQL TOP, LIMIT, FETCH FIRST or ROWNUM Clause
	The SQL SELECT TOP Clause
	Example

	Demo Database
	LIMIT
	Example

	FETCH FIRST
	Example

	SQL TOP PERCENT Example
	Example
	Example

	ADD a WHERE CLAUSE
	Example
	Example
	Example

	ADD the ORDER BY Keyword
	Example
	Example
	Example

	SQL Aggregate Functions
	SQL Aggregate Functions

	SQL MIN() and MAX() Functions
	The SQL MIN() and MAX() Functions
	MIN Example
	MAX Example

	Syntax
	Demo Database
	Set Column Name (Alias)
	Example

	Use MIN() with GROUP BY
	Example

	Test Yourself With Exercises
	Exercise:

	SQL COUNT() Function
	The SQL COUNT() Function
	Example

	Syntax
	Demo Database
	Specify Column
	Example

	Add a WHERE Clause
	Example

	Ignore Duplicates
	Example

	Use an Alias
	Example

	Use COUNT() with GROUP BY
	Example

	Test Yourself With Exercises
	Exercise:

	SQL SUM() Function
	The SQL SUM() Function
	Example

	Syntax
	Demo Database
	Add a WHERE Clause
	Example

	Use an Alias
	Example

	Use SUM() with GROUP BY
	Example

	SUM() With an Expression
	Example
	Example

	Test Yourself With Exercises
	Exercise:

	SQL AVG() Function
	The SQL AVG() Function
	Example

	Syntax
	Demo Database
	Add a WHERE Clause
	Example

	Use an Alias
	Example

	Higher Than Average
	Example

	Use AVG() with GROUP BY
	Example

	Test Yourself With Exercises
	Exercise:

	SQL LIKE Operator
	The SQL LIKE Operator
	Example

	Syntax
	Demo Database
	The _ Wildcard
	Example

	The % Wildcard
	Example

	Starts With
	Example
	Example

	Ends With
	Example
	Example

	Contains
	Example

	Combine Wildcards
	Example
	Example

	Without Wildcard
	Example

	Test Yourself With Exercises
	Exercise:

	SQL Wildcards
	SQL Wildcard Characters
	Example

	Wildcard Characters
	Demo Database
	Using the % Wildcard
	Example
	Example

	Using the _ Wildcard
	Example
	Example

	Using the [] Wildcard
	Example

	Using the - Wildcard
	Example

	Combine Wildcards
	Example
	Example

	Without Wildcard
	Example

	Microsoft Access Wildcards
	Test Yourself With Exercises
	Exercise:

	SQL IN Operator
	The SQL IN Operator
	Example

	Syntax
	Demo Database
	NOT IN
	Example

	IN (SELECT)
	Example

	NOT IN (SELECT)
	Example

	Test Yourself With Exercises
	Exercise:

	SQL BETWEEN Operator
	The SQL BETWEEN Operator
	Example

	Syntax
	Demo Database
	NOT BETWEEN
	Example

	BETWEEN with IN
	Example

	BETWEEN Text Values
	Example
	Example

	NOT BETWEEN Text Values
	Example

	BETWEEN Dates
	Example
	Example

	Sample Table
	Test Yourself With Exercises
	Exercise:

	SQL Aliases
	SQL Aliases
	Example

	AS is Optional
	Example

	Syntax
	Demo Database
	Customers
	Orders

	Alias for Columns
	Example

	Using Aliases With a Space Character
	Example
	Example

	Concatenate Columns
	Example
	MySQL Example
	Oracle Example

	Alias for Tables
	Example
	Example
	Example

	Test Yourself With Exercises
	Exercise:

	SQL Joins
	SQL JOIN
	Example

	Different Types of SQL JOINs
	Test Yourself With Exercises
	Exercise:

	SQL INNER JOIN
	INNER JOIN
	Example

	Syntax
	Naming the Columns
	Example

	JOIN or INNER JOIN
	Example

	JOIN Three Tables
	Example

	Test Yourself With Exercises
	Exercise:

	SQL LEFT JOIN Keyword
	SQL LEFT JOIN Keyword
	LEFT JOIN Syntax

	Demo Database
	SQL LEFT JOIN Example
	Example

	SQL RIGHT JOIN Keyword
	SQL RIGHT JOIN Keyword
	RIGHT JOIN Syntax

	Demo Database
	SQL RIGHT JOIN Example
	Example

	Test Yourself With Exercises
	Exercise:

	SQL FULL OUTER JOIN Keyword
	SQL FULL OUTER JOIN Keyword
	FULL OUTER JOIN Syntax

	Demo Database
	SQL FULL OUTER JOIN Example

	SQL Self Join
	SQL Self Join
	Self Join Syntax

	Demo Database
	SQL Self Join Example
	Example

	SQL UNION Operator
	The SQL UNION Operator
	UNION Syntax
	UNION ALL Syntax

	Demo Database
	SQL UNION Example
	Example

	SQL UNION ALL Example
	Example

	SQL UNION With WHERE
	Example

	SQL UNION ALL With WHERE
	Example

	Another UNION Example
	Example

	SQL GROUP BY Statement
	The SQL GROUP BY Statement
	GROUP BY Syntax

	Demo Database
	SQL GROUP BY Examples
	Example
	Example

	Demo Database
	GROUP BY With JOIN Example
	Example

	Test Yourself With Exercises
	Exercise:

	SQL HAVING Clause
	The SQL HAVING Clause
	HAVING Syntax

	Demo Database
	SQL HAVING Examples
	Example
	Example

	Demo Database
	More HAVING Examples
	Example
	Example

	SQL EXISTS Operator
	The SQL EXISTS Operator
	EXISTS Syntax

	Demo Database
	SQL EXISTS Examples
	Example
	Example

	SQL ANY and ALL Operators
	The SQL ANY and ALL Operators
	The SQL ANY Operator
	ANY Syntax

	The SQL ALL Operator
	ALL Syntax With SELECT
	ALL Syntax With WHERE or HAVING

	Demo Database
	SQL ANY Examples
	Example
	Example
	Example

	SQL ALL Examples
	Example
	Example

	SQL SELECT INTO Statement
	The SQL SELECT INTO Statement
	SELECT INTO Syntax

	SQL SELECT INTO Examples

	SQL INSERT INTO SELECT Statement
	The SQL INSERT INTO SELECT Statement
	INSERT INTO SELECT Syntax

	Demo Database
	SQL INSERT INTO SELECT Examples
	Example
	Example
	Example

	SQL CASE Expression
	The SQL CASE Expression
	CASE Syntax
	Demo Database
	SQL CASE Examples
	Example
	Example

	SQL NULL Functions
	SQL IFNULL(), ISNULL(), COALESCE(), and NVL() Functions
	Solutions

	SQL Stored Procedures for SQL Server
	What is a Stored Procedure?
	Stored Procedure Syntax
	Execute a Stored Procedure

	Demo Database
	Stored Procedure Example
	Example
	Example

	Stored Procedure With One Parameter
	Example
	Example

	Stored Procedure With Multiple Parameters
	Example
	Example

	SQL Comments
	SQL Comments
	Single Line Comments
	Example
	Example
	Example

	Multi-line Comments
	Example
	Example
	Example
	Example

	SQL Operators
	SQL Arithmetic Operators
	SQL Bitwise Operators
	SQL Comparison Operators
	SQL Compound Operators
	SQL Logical Operators

	SQL DATABASE
	SQL CREATE DATABASE Statement
	The SQL CREATE DATABASE Statement
	Syntax

	CREATE DATABASE Example
	Example

	Test Yourself With Exercises
	Exercise:

	SQL DROP DATABASE Statement
	The SQL DROP DATABASE Statement
	Syntax

	DROP DATABASE Example
	Example

	Exercise:

	SQL BACKUP DATABASE for SQL Server
	The SQL BACKUP DATABASE Statement
	Syntax

	The SQL BACKUP WITH DIFFERENTIAL Statement
	Syntax

	BACKUP DATABASE Example
	Example

	BACKUP WITH DIFFERENTIAL Example
	Example

	SQL CREATE TABLE Statement
	The SQL CREATE TABLE Statement
	Syntax

	SQL CREATE TABLE Example
	Example

	Create Table Using Another Table
	Syntax
	Example

	Test Yourself With Exercises
	Exercise:

	SQL DROP TABLE Statement
	The SQL DROP TABLE Statement
	Syntax

	SQL DROP TABLE Example
	Example

	SQL TRUNCATE TABLE
	Syntax

	Test Yourself With Exercises
	Exercise:

	SQL ALTER TABLE Statement
	SQL ALTER TABLE Statement
	ALTER TABLE - ADD Column
	Example

	ALTER TABLE - DROP COLUMN
	Example

	ALTER TABLE - RENAME COLUMN
	ALTER TABLE - ALTER/MODIFY DATATYPE
	SQL ALTER TABLE Example
	Change Data Type Example
	DROP COLUMN Example
	Test Yourself With Exercises
	Exercise:

	SQL Constraints
	SQL Create Constraints
	Syntax

	SQL Constraints

	SQL NOT NULL Constraint
	SQL NOT NULL Constraint
	SQL NOT NULL on CREATE TABLE
	Example

	SQL NOT NULL on ALTER TABLE

	SQL UNIQUE Constraint
	SQL UNIQUE Constraint
	SQL UNIQUE Constraint on CREATE TABLE
	SQL UNIQUE Constraint on ALTER TABLE
	DROP a UNIQUE Constraint

	SQL PRIMARY KEY Constraint
	SQL PRIMARY KEY Constraint
	SQL PRIMARY KEY on CREATE TABLE
	SQL PRIMARY KEY on ALTER TABLE
	DROP a PRIMARY KEY Constraint

	SQL FOREIGN KEY Constraint
	SQL FOREIGN KEY Constraint
	Persons Table
	Orders Table

	SQL FOREIGN KEY on CREATE TABLE
	SQL FOREIGN KEY on ALTER TABLE
	DROP a FOREIGN KEY Constraint

	SQL CHECK Constraint
	SQL CHECK Constraint
	SQL CHECK on CREATE TABLE
	SQL CHECK on ALTER TABLE
	DROP a CHECK Constraint

	SQL DEFAULT Constraint
	SQL DEFAULT Constraint
	SQL DEFAULT on CREATE TABLE
	SQL DEFAULT on ALTER TABLE
	DROP a DEFAULT Constraint

	SQL CREATE INDEX Statement
	SQL CREATE INDEX Statement
	CREATE INDEX Syntax
	CREATE UNIQUE INDEX Syntax

	CREATE INDEX Example
	DROP INDEX Statement

	SQL AUTO INCREMENT Field
	AUTO INCREMENT Field
	Syntax for MySQL
	Syntax for SQL Server
	Syntax for Access
	Syntax for Oracle

	SQL Working With Dates
	SQL Dates
	SQL Date Data Types
	SQL Working with Dates
	Orders Table

	SQL Views
	SQL CREATE VIEW Statement
	CREATE VIEW Syntax

	SQL CREATE VIEW Examples
	Example
	Example
	Example
	Example

	SQL Updating a View
	SQL CREATE OR REPLACE VIEW Syntax
	Example

	SQL Dropping a View
	SQL DROP VIEW Syntax
	Example

	SQL Injection
	SQL Injection
	SQL in Web Pages
	Example

	SQL Injection Based on 1=1 is Always True
	SQL Injection Based on ""="" is Always True
	Example
	Result
	Result

	SQL Injection Based on Batched SQL Statements
	Example
	Example
	Result

	Use SQL Parameters for Protection
	ASP.NET Razor Example
	Another Example

	Examples

	SQL Hosting
	SQL Hosting
	MS SQL Server
	Oracle
	MySQL
	MS Access

	SQL Data Types for MySQL, SQL Server, and MS Access
	SQL Data Types
	MySQL Data Types (Version 8.0)
	String Data Types
	Numeric Data Types
	Date and Time Data Types

	SQL Server Data Types
	String Data Types
	Numeric Data Types
	Date and Time Data Types
	Other Data Types

	MS Access Data Types

	SQL Keywords Reference
	SQL Keywords

	SQL ADD Keyword
	ADD
	Example

	SQL ADD CONSTRAINT Keyword
	ADD CONSTRAINT
	Example

	SQL ALL Keyword
	ALL
	Example

	SQL ALTER Keyword
	ALTER TABLE
	Example
	Example

	ALTER COLUMN
	Example

	SQL ALTER COLUMN Keyword
	ALTER COLUMN
	Example

	SQL ALTER TABLE Keyword
	ALTER TABLE
	Example
	Example

	SQL AND Keyword
	AND
	Example

	SQL ANY Keyword
	ANY
	Example
	Example

	SQL AS Keyword
	AS
	Alias for Columns
	Example
	Example
	Example

	Alias for Tables
	Example

	SQL ASC Keyword
	ASC
	Example

	SQL BACKUP DATABASE Keyword
	BACKUP DATABASE
	Example
	Example

	SQL BETWEEN Keyword
	BETWEEN
	Example
	Example
	Example

	SQL CASE Keyword
	CASE
	Example
	Example

	SQL CHECK Keyword
	CHECK
	SQL CHECK on CREATE TABLE
	SQL CHECK on ALTER TABLE
	DROP a CHECK Constraint

	SQL COLUMN Keyword
	ALTER COLUMN
	Example

	DROP COLUMN
	Example

	SQL CONSTRAINT Keyword
	ADD CONSTRAINT
	Example

	DROP CONSTRAINT
	DROP a UNIQUE Constraint
	DROP a PRIMARY KEY Constraint
	DROP a FOREIGN KEY Constraint
	DROP a CHECK Constraint

	SQL CREATE Keyword
	CREATE DATABASE
	Example

	CREATE TABLE
	Example

	CREATE TABLE Using Another Table
	Example

	CREATE INDEX
	CREATE UNIQUE INDEX
	CREATE VIEW
	Example

	CREATE OR REPLACE VIEW
	Example

	Query The View
	Example

	CREATE PROCEDURE
	Example
	Example

	SQL CREATE DATABASE Keyword
	CREATE DATABASE
	Example

	SQL CREATE INDEX Keyword
	CREATE INDEX

	SQL CREATE OR REPLACE VIEW Keyword
	CREATE OR REPLACE VIEW
	Example

	Query The View
	Example

	SQL CREATE TABLE Keyword
	CREATE TABLE
	Example

	CREATE TABLE Using Another Table
	Example

	SQL CREATE PROCEDURE Keyword
	CREATE PROCEDURE
	Example
	Example

	SQL CREATE UNIQUE INDEX Keyword
	CREATE UNIQUE INDEX

	SQL CREATE VIEW Keyword
	CREATE VIEW
	Example

	Query The View
	Example

	SQL DATABASE Keyword
	CREATE DATABASE
	Example

	DROP DATABASE
	Example

	SQL DEFAULT Keyword
	DEFAULT
	SQL DEFAULT on CREATE TABLE
	SQL DEFAULT on ALTER TABLE
	DROP a DEFAULT Constraint

	SQL DELETE Keyword
	DELETE
	Example
	Example

	SQL DESC Keyword
	DESC
	Example

	SQL SELECT DISTINCT Keyword
	SELECT DISTINCT
	Example

	SQL DROP Keyword
	DROP COLUMN
	Example

	DROP a UNIQUE Constraint
	DROP a PRIMARY KEY Constraint
	DROP a FOREIGN KEY Constraint
	DROP a CHECK Constraint
	DROP DEFAULT
	DROP INDEX
	DROP DATABASE
	Example

	DROP TABLE
	Example

	DROP VIEW
	Example

	SQL DROP COLUMN Keyword
	DROP COLUMN
	Example

	SQL DROP CONSTRAINT Keyword
	DROP CONSTRAINT
	DROP a UNIQUE Constraint
	DROP a PRIMARY KEY Constraint
	DROP a FOREIGN KEY Constraint
	DROP a CHECK Constraint

	SQL DROP DATABASE Keyword
	DROP DATABASE
	Example

	SQL DROP DEFAULT Keyword
	DROP DEFAULT

	SQL DROP INDEX Keyword
	DROP INDEX

	SQL DROP TABLE and TRUNCATE TABLE Keywords
	DROP TABLE
	Example

	TRUNCATE TABLE
	Example

	SQL DROP VIEW Keyword
	DROP VIEW
	Example

	SQL EXEC Keyword
	EXEC
	Example

	SQL EXISTS Keyword
	EXISTS
	Example
	Example

	SQL FOREIGN KEY Keyword
	FOREIGN KEY
	SQL FOREIGN KEY on CREATE TABLE
	SQL FOREIGN KEY on ALTER TABLE
	DROP a FOREIGN KEY Constraint

	SQL FROM Keyword
	FROM
	Example
	Example
	Example

	SQL FULL OUTER JOIN Keyword
	FULL OUTER JOIN

	SQL GROUP BY Keyword
	GROUP BY
	Example
	Example

	SQL HAVING Keyword
	HAVING
	Example
	Example

	SQL IN Keyword
	IN
	Example
	Example
	Example

	SQL INDEX Keyword
	CREATE INDEX
	DROP INDEX

	SQL INNER JOIN Keyword
	INNER JOIN
	Example
	Example

	SQL INSERT INTO Keyword
	INSERT INTO
	Example
	Example

	SQL INSERT INTO SELECT Keyword
	INSERT INTO SELECT
	Example
	Example
	Example

	SQL IS NULL Keyword
	IS NULL
	Example

	SQL IS NOT NULL Keyword
	IS NOT NULL
	Example

	SQL JOIN Keyword
	INNER JOIN
	Example
	Example

	LEFT JOIN
	Example

	RIGHT JOIN
	Example

	FULL OUTER JOIN

	SQL LEFT JOIN Keyword
	LEFT JOIN
	Example

	SQL LIKE Keyword
	LIKE
	Example
	Example
	Example
	Example

	SQL SELECT TOP, LIMIT and ROWNUM Keywords
	SELECT TOP, LIMIT and ROWNUM
	Example
	Example
	Example

	SQL SELECT TOP, LIMIT and ROWNUM Keywords
	SELECT TOP, LIMIT and ROWNUM
	Example
	Example
	Example

	SQL NOT NULL Keyword
	NOT NULL
	Example

	SQL OR Keyword
	OR
	Example

	SQL ORDER BY Keyword
	ORDER BY
	Example

	ASC
	Example

	DESC
	Example

	SQL FULL OUTER JOIN Keyword
	FULL OUTER JOIN

	SQL PRIMARY KEY Keyword
	PRIMARY KEY
	SQL PRIMARY KEY on CREATE TABLE
	SQL PRIMARY KEY on ALTER TABLE
	DROP a PRIMARY KEY Constraint

	SQL CREATE PROCEDURE Keyword
	CREATE PROCEDURE
	Example
	Example

	SQL RIGHT JOIN Keyword
	RIGHT JOIN
	Example

	SQL SELECT TOP, LIMIT and ROWNUM Keywords
	SELECT TOP, LIMIT and ROWNUM
	Example
	Example
	Example

	SQL SELECT Keyword
	SELECT
	Example
	Example

	SQL SELECT DISTINCT Keyword
	SELECT DISTINCT
	Example

	SQL SELECT INTO Keyword
	SELECT INTO

	SQL SELECT TOP, LIMIT and ROWNUM Keywords
	SELECT TOP, LIMIT and ROWNUM
	Example
	Example
	Example

	SQL SET Keyword
	SET
	Example
	Example

	SQL TABLE Keyword
	CREATE TABLE
	Example

	CREATE TABLE Using Another Table
	Example

	ALTER TABLE
	Example
	Example

	DROP TABLE
	Example

	TRUNCATE TABLE
	Example

	SQL SELECT TOP, LIMIT and ROWNUM Keywords
	SELECT TOP, LIMIT and ROWNUM
	Example
	Example
	Example

	SQL DROP TABLE and TRUNCATE TABLE Keywords
	DROP TABLE
	Example

	TRUNCATE TABLE
	Example

	SQL UNION Keyword
	UNION
	Example

	SQL UNION ALL Keyword
	UNION ALL
	Example

	SQL UNIQUE Keyword
	UNIQUE
	SQL UNIQUE Constraint on CREATE TABLE
	SQL UNIQUE Constraint on ALTER TABLE
	DROP a UNIQUE Constraint

	SQL UPDATE Keyword
	UPDATE
	Example
	Example

	SQL VALUES Keyword
	VALUES
	Example
	Example

	SQL VIEW Keyword
	CREATE VIEW
	Example

	Query The View
	Example

	CREATE OR REPLACE VIEW
	Example

	DROP VIEW
	Example

	SQL WHERE Keyword
	SELECT
	Example
	Example

	MySQL Functions
	MySQL String Functions
	MySQL Numeric Functions
	MySQL Date Functions
	MySQL Advanced Functions

	SQL Server Functions
	SQL Server String Functions
	SQL Server Math/Numeric Functions
	SQL Server Date Functions
	SQL Server Advanced Functions

	MS Access Functions
	MS Access String Functions
	MS Access Numeric Functions
	MS Access Date Functions
	MS Access Some Other Functions

	SQL Quick Reference from W3Schools

