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79 1 

5 

ON THE DIFFERENTIAL IDENTITIES OF AN AFFINITY 

By ERWIN SCHRODINGER 

(From the Dublin Institute for Advanced Studies.) 

[Read 27 FEBRUARY, 1950. Published 20 PsBRuARY, 1951.] 

1. Some time ago I communicated a set of d'f/erential identities' engendered 
by the mere existence of any scalar density that depends only on the Einstein 
tensor of an affine connection. The derivation followed closely the well-known 
pattern of the metrical case. Indeed the Euler equations of the scalar density 
were admitted from the outset; the components of the affinity were regarded 
as those funietions of the (secondary) gik which they become by the Euler 
equations, and the variation that produices the identities referred only to the 
gik. In the following I shall indicate a much simpler and more direct way 

of establishing identities from a scalar density that depends only on the 
components of an affinity and its first2 derivatives. One does not leani on 
the structural details of the metrical case, but olnly transfers the general idea 

from the components gik to the rSkl. I believe four of these identities to 

embody the relevant aspect of the conservation laws in an affine theory. We 

shall call our density S (reminding of Lagrange), but we do not subject the 

rikl to any restrictions. 

2. The variation of the integral (taken between invariantly fixed limits; 

dr = txc, dc2 dx5 dx,): 

I= f&rta)k & -O dr (1) 

for any variation of the Ut4 reads: 

aI =J? .rsrnk dr +J 8na) (2) 
axm t74~~r 

i Proc. Boy. Ir. Ac. 52 (A), p. 1, 1948. 

2 Even this restriction could be dropped ; but we do not wish to enlarge upon gratuitous 

generality. 
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where the components 

-zk a a a?(3) 
ar b ax. anr?k, m' 

form a tensor density. Now envisage a coordinate tranlsformation that 

depends on a parameter X in such a way that for A= 0 it becomes 

identical. We write it, or rather its inverse, 

XI 
= X (r'r) X'I + X4n (X'r) + A2 24 (X'r) + (4) 

It is exectuted in (1) by replaclng F%k by 

rln 
(I" -x" Ernst 

- ' 

+aZX,5 a2X,,(5 
rkX7s()arXm ax; ar'k aStr(a) krm 

X 

and r'x, m by the derivative of the aforestanding quantity with respect to 

%m. This suibstitution, together with the substitution of 

dr' = dx1` dx2' d4" d<," 

for dr, and with the appropriate change of the limits of integration, m-ust, of 

course, leave the invariant I unchanged anyhow. But now we restrict the 

transformation (4) by prescribing that at the boundary it shall, for any A, not 

only become identical (x' x') but also reduce the transformation (5) of the r's 

to identity. (This simply means some obvious demands on the boundary 

values of the derivatives intervening in (5)). One consequence of this ruling 
is that the limits of ilntegration are not changed; hence-since the names of 

the integration variables are irrelevanit-the only formal change in (1) is the 

appearance of P"k' (x') instead of Pnt,(a). For finite X this is a finite 

change, still it leaves the integral invariant. 

Now we develop (5) with respect to N, not forgetting the arguments of rm8z 

oni the right. We obtain 

r'?km ()- "jk() = 

r - 4?kf r'km + Or, i Ir7c + 'As k r M + on, i, k) + 0(A2), (6) 

all functions to be written with x". According to our assumption about the 

transformation, the linear term in A must itself vanish at the bounidary. For 

small A it amounts to a sinall variation like the one contemplated in (2). If 

we use it there, we get 8I= 0, and the second integral on the right 

vanishes from Gauss' theorem. So we have 

0 = f n ( 'rn'k, ?m 
- 

#,, , r t + -, , r, s.tk + 4fs,kr",+" t+7k) dr (7) 
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SaomDINGER-On the Differentiat Identities of an Affinity. 81 

(Everything is now written with the x, without a dash; this is not a 

farther licence, it oinly means omnitting the dashes for simplicity.) 
We performn the suiggested partial integrations, remnembering that the p 

and their derivatives varnish at the boundary. By a change of dunmmies in 

the single terms we give the integrand the form: 4m} multiplied by a certain 
expression; the latter must vanish. With a further siinplifyiing chanige of 
dummies this gives: 

4m ?rltk, m + (Vlkm k + Ikn r',k - i!k "ink - ?'1, r'x.) , = 0. (8) 

These are ourfour prinicipal identities. We lhave given a name to their first 
members, and we also put 

PM3 4_(L) + 4m(2) (9) 

with 
_an rnik, ? (10) 

3. We delay the proof that p. has thie formal build of a vector deinsity. 

We first wish to give n,, the form of a " plain divergence," which 4m (2) 

already has. In some respect pm (2) is less interestiig. For it is the plain 

divergence of something that vanishes if the r's are suibjected to the field 

equations which result from taking S as the Lagrangian, viz. to 2%k_ - 0. 

We hope that )m (l) will evenl in this case be non-trivial. (But we do not 

posit the aforesaid field equations nor any others ini what follows!) 

If in (2) we choose 

8rn,k Ernik I (Il 

where E is a small constant, this obviously amounts to replacing every r by 

the value it has in a neighbouring point with the coordinate xi + t, the 

other three x remainiing the same. Hence, from (1), 

ai= 4Xadr. (12) 

If you equate this to what you get from (2), youi obtain, dropping E, 

f 
r V7 

J %rN*z dr + {rtn(at in rt1?) Idr13) 
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Since this must hold for any domiain of integration, the comibined integrand 
must vanish. rTherefore 

(p1) _ Ilkn rik, m ik( n - DP"ik,P m) (14) 

- 1i I 

where we have put 

tm - 3a - @ t nk (15) 

(but this is not a tensor). So , anid thus the first mnembers of the 

identities (8) are reduced to " plain divergences."-The relation (14) can also 

be obtained directly from (3). 

4. It is interesting to comlpute more explicit expressions for the i-componients 
in the case when ? contains its arguments only in the form of the Einstein 

tensor 

B,A V aI'v + + J vr - rpPr (16) 
ax, aosft aft 

li 

Now 

R= 
- at Ak gmn + E mv VIN a (17) 

a k , m 

Let us use, for the moment just as a convenienit abbreviation, 

= 9,V(18) 

(which is a tensor, if S depends only on the J?1,). Then 

______ 
Z = altyv aB,,; g ' - gil 

8{t + el S ,. (19) 
? E3?MUV aJI"ikI~ 

Hence 
in - m2 + ]tk [jik, m -9 

[ik, m (20) 

I wish to defer to a separate paper the discussion of special cases, in 

particular of the case when 2 is the square root of the determfnant of the R,UV. 
If one thinks of the U's as approaching to the Christoffel symbols in a certain 
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limiting case, it seems at first sight unfamiliar, that (20) should contain 
second derivatives of the metrical tensor in virtue of its containing first 

derivatives of the r's. Btut, of course, nothing less can be expected under 

the purely affine aspect. To see that this aspect is not altogether outlandish, 

let us form the trace of the t-matrix: 

-l 4S + g'kp1Ik -I k 

- 42 + Sy (i R4k + ra.rv- re rFk) (21) 

22 + tk 
(r'lkr'a, 

- rFFr?). 

In the second line we have used (16), in the third (18) and the homogeneity 

any (B,,) exhibits. The second term on the right is of familiar form. 

5. We wigh to supply the forxal proof that the Vpn explained in (8) is a 

vector density merely on account of ?tk, being a teinsor density and rnik 

an affinity. The proof is simplified by introducing two special kinds of 

invarianit derivative, only for the present purpose, viz. first 

t kts I 
= 

~n 8 + 2rk Fpr + ?w,, rkr. - ?tkr rmr, - ?ik 1 . (22) 

The pair of subscripts whose order is abnormal has beeni indicated by *->. 

Contracting we get 

2%k k 
= ?tk , k + ?r1c, 

r[rk 
- 2ktk r 

Ulk * (23) 

This is a density of the type Pi. For it we define 

tan 11m = fntn + ?r, rimr - (r prMn - e nPr rm 

(with the same meaning of the arrows). Contracting, 

i= tin, - fir rin * (24) 

All these quaint derivatives aree tensors since the antisymnmetric constituent 

of an affinity is one. It can niow be proved by straiglhtforward computation, 

-that 
p_k= I k 11 - ikBm ikta 

where B is the curvature tenisor of the r-affinity. 

6. As stated above (in the lines following eqni. (2)) the invariant integral 

(1) retains its value under the transformation (4) even if the latter is not 

chosen so as to vanish at the bounidery. But, of course, the limnits of inte 

gration in the variables xi are in this case no longer the same as they were in 
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the x. The vanishing difference I - I is then, even for thie infinitesimal 
transformation, A -> 0, no longer obtained by inserting the linear terms 
of (6) for r%k into the second member of (2) (where, of course, the 
second term must now be retained), btut a third term must be added, 
representing the contribution from the infinitesimal change of the limits of 
integration. This additional ternm is easily made out by a separate, 

independent, auxiliary consideration, viz. by a change of integration variables 
back from x' --> x (lot to be confused with a change of frame). The 

said term results from the functional determinant of the primed with respect 
to the unprimed variables and is found to be the integ,ral of the plain 

divergelnce of (-. X01) . One thus obtains 

0 = f ttk r?,k dr + J ) (ar aF nu) dr | J (2)dT (25) 

where ary, now stands as an abbreviation for the expression nmuiltiplying 

A in (6), written, as everything else here, in the unprimed variables. The 

identity (25) is the generalizationi of (7) for arbitrary C t. (It may be 

noticed that this whole procedure is strictly analogotus to the one W. Pauli 

in his famous article of 1920, Enzyklopddie der Math. Wissensch. Vol. V. 19. 

sect. 23, adopted in the metrical case. Our present aftine case, while, 

niaturally richer in details, is simpler in principle, because we need not employ 

a non-invariant " substitute " iitegrand, as has to be done in General 

Relativity.) 

In performing the partial integratiolns in the first integral of (25) (cp. the 

meaning of a r'41k according to (6), as indicated) we inust now retain the 

cc integrated parts," which we threw away before because they can be turned 

into boundary integral1R In fact they are now the only thbig that interests 

us, and we may leave out the other parts, because they vanish according to 

our previous consideration, from the idenitity (8). We write the result with 

a slight re-adjustment of dummies, so as to miiake it not too difficult foi the 

reader, if he so wishes, to ascertain wher-e the single terms come from, and 

on the other hand, to compare with (8): 

0= J [(S1 miprn.i) + % V'tn,ik - 2 mrYak + ?3'nr'mk + ?t1 rnm) m] dr 

+ J [ V +1 + a R;,,I7 (r sk, mr in- , Ir ,lk + 4rL'rnrrk + #s,P kris + n, t k) drT. 

(26) 
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This must hold for any in and for any boundary (the sanme, of course, for the 

two integrals which might be written as one). Therefore the inxtegrand mlust 

vanish for any 41. Hence the expressions multiplying the four O's, as well 

as those multiplying their first, second and third derivatives, must all vanish 

identically. 

From the undifierentiated O's we get nothing inew, only, in view of (8), the 

relation (14) over againi. The identities that spring from the second 

derivatives of q yield alternative expressions for the even parts of the 

Hamiltonian derivatives (3). In virtue of (3) these identities ainount to 

simple algebraic relations between the derivatives of 2, and are entirely 

trivial, if 2 depends only on Bk, . The same holds for the identities that 

spring from the third derivatives of q. 

Only from thefirst derivatives of b colmles valuable new informuation. If 

you abbreviate the bracket-expression in (8)-though by itself it is niot a 

tensor-by Zim, so that (8), in view of (14), reads 

(ttmJ + T'r), I 0, (8 ) 

then the 16 identities flowing from the coefficients of m, read 

ttm + Z1 (2"8' r'.k + -r2 r n). (27) tl + zZ = (tat - ar8g rk + 
a r lk, s rmk + itz, 

VA , 

If 2 depends only on B4g, this becomes, froin (19),' 

tl x + Ztm - (2" 8? g3k r%* I gIk rsm* - 
gl rS%m + g8S rPmk), I . (28) 

We recall that Z'm vanishes if the r's are subjected to the field 

equations 28'm = 0. One is inclined to regard t',, (or perhaps - ttm) as 

the pseudo-energy-tensor of such a r-field. 
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