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[ 59 1]

1V,

A NEW EXACT SOLUTION IN NON-LINEAR OPTICS
(TWO - WAVE - RYSTEM).

[FroM THE DUBLIN INSTITUTE FOR ADVANCED STUDIES.]

By ERWIN SCHRODINGER.
[Read 12 Apnrin. Published 16 June, 1943.]

§ 1. INTRODUCTION.

IN any non-linear theory of light the first task is to find the mutual influence
of two' plane waves of such further specification (as to wave-form and
polarization) as may render the answer simplest. When I tackled this
problem last year by methods of approximation, at the outset of my
investigations of Born’s theory? it escaped me that an exact solution is
accessible. As usual, it is simpler than the approximate one. I communicate
it here by itself. For all that I know it is only the second non-trivial exact
solution of any problem in any non-linear electrodynamics (the first being the
centrally symmetric static solution, “ Born’s electron ).

§ 2. SIMPLIFYING TRANSFORMATION.

If it is at all possible to satisfy Born’s theory exactly by the superposition
of two plane waves crossing each other under an arbitrary angle, a suitable
Lorentz-transformation will make the two waves antiparallel. Hence we can
simplify our task by investigating the antiparallel case only, being sure that
by this specialisation we lose nothing in generality.

§ 3. CoMPLYING WITH THE FIELD-EQUATIONS.

Using the notations introduced in sect. 3 of N.O., the analytic expiession
of a single plane, circularly polarized wave is

§ = O“ei(yt—fr)

(1)
@

1 4F

! One plane Maxwellian wave is almost of necessity an exact solution. See appendix I.

2 Proc. Roy Irish Acad. (A) 47, 77; 48, 91, 1942. The first of these two papets (“ Noun-linear
Optics”) is referred to here as N O. Only its first few pages are needed here.

PROC. R.LA., VOL. XLIX, SECT. A, [8]
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See (3,1) N.O. But we have here enhanced the setting by the real constant
A, which (see (2, 1) N.O.) allows for a “dielectric constant” = permeability
= 4. We allow it to be negative, when the wave is called “abnormal.”
The necessity of including here abrnormal waves, even though we are not
interested in them per se, will emerge later.

We recall that for the complex polarization-vector a

a? = g% = 0, (a*a) = 2, (o) = (a*f = 0. 2)

From these relations one easily infers® that the cross-product

[fa] = - d¢e|¥f]a 3)
with & = + 1 (undecided). To satisfy the field-equations
curl @ + § =0, divg-=0, (4)
we insert (1) into (4), and find the only further demand.
v = ¢ed|t]. (5
Hence
e = sign. dv (6)
and
[ A | = phase velocity. )

Since », f, 4 can independently be replaced by their negatives, eight
different types of wave are associated with an (ambivalent) direction. The
corresponding three geometrical characteristies of the wave are: direction of
propagation (+) ; polarization (R, L); “normality” (n = normal, a = ab-
normal). The association of geometrical and analytical characteristics is
indicated by the following table :—

Geometrical Analytical Characteristic
+ B n v f a A
+ L n - v -t a A
- Ra v - ¥ o* A
*
- Ln -y f a A (8)
+ Ra - -t o* - A4
1+ La v f o -4
- Ra - v f a -4
- La v -t a - A

3 Relations which contain a within a eross-product are better not taken over from N.O., but
established anew, because the sign of A mterferes with them. The derivation of (3) is given

here in appendix II
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Bxplanation : In this table v and 4 mean positive numbers and f and «
mean certain vectors, the relations (3) and (5) holding between them, with
¢ = + 1. On replacing the quantities v, f, a, 4 in equations (1) by the
quantities indicated in the 2nd-5th columns of the lable, you obtain a wave
with the characteristics indicated in the first column, where the sign + means
propagation ¢n the direction of £. Behold that for abnormal waves v > 0
means [left-hand-polarization.

§ 4. COMPLYING WITH THE ALGEBRAIC CONDITIONS.

Since the field equations (4) are linear, any number of waves like (1) can
be superimposed. But in osder to obtain a solution we must also satiefy the
conditions of conjugateness

@*

[

2
9
&*

]

2
E) (- ® - L3).

See (2, 4) N.O, For a single wave they demand 4 = + 1, and thus
[¥] = |»]. We shall now show that they can be satisfied for a couple of
waves, one of which carries the polarization vector a, the other a*. So we
put

%1 - Olﬂai(vlt—flﬂ), %2 - C’,a"'ai(”t-““),

=531+ 3. @='£(A,8,+A2{§,).
Here f, means just a real numerical multiple of f,, the two being either
parallel or antiparallel. Counsulting the 1si and the 4th column of (8) we
see that the fwo waves run antipavallel if they have the same “ normality,” but
directly parallel if one is normal, one abnormal.
‘We have to insert (10) into (9). Paying attention to (2) we easily find

%2 - ®* = 2(1 + AxAz) (gt%z)

(10)

6 = 1(4d, + 4) (§.:5)
L = 2+ 4.4y (11)
t(4d, + 4,)

(%1%2) = 201 Og 6"{("1"'!’2)‘—(!1-}.}2)1:}

Now the salient point is this. When (10) and (11) are inserted into (9)
and the denominator (3§, F.) appearing on the right is removed to the left,
then the wave-functions turning up there ave precisely the original ones, viz.

F*@18) = 2|C1|*Fe, F*@F82) = 20, |%F,. (12)
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Equating the coefficients of §, and &. separately, you get from the first
equ. (9)

. 1 - 45
1 €]

1 - 4,
(A, + A4)*° y

2 —_ - —
R AV N YR

(13)

The second equ. (9) only repeats this demand.—Subtracting the two
equations (13)
A4, - 47 4, - 4,

2 _ : _ I T A
'C|.| 102] (4, + 4,)° A, + A4,° (14)
or
4, 1 - |Ci|* + ][0, .
b e e N R A (15)
To simplify writing put
i) = Wi, [C.]7 = W, (16)

the W’s being 4= times the energy-density of a single (normal) wave of that
amplitude. Then from (15) and (13)

1 2W,

;{T2=1+(1+W1_"W2)2>1

(17)
1 _ 2W|
a0 - Ytaowawr >

showing vhat both waves move with less than light velocity (see (7))

§ 5. THE SieGyNs oF THE A4’s. Two Casgs.

To find the combination of signs admissible for the A’s we make out
from (17)
(]. + IV] - Wg\z
Wz
(- W+ Wy (18)
e

where W stands for the real * positive quantity

4.*

W = 1+/(1+ W, + Wz)z-‘l‘.Wn W, > 1. (19)
Regard to (14)

Al - -A2 .
W| - Wz = A: ¥ A, (14 b’LS)
4 Observe that W2 = 1+ (W1 - W2)2+ 2W:1 + 2Wa2.
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leaves two ways of extracling the square-10ots in (18), to wit, either

4, = IJ_LVW;iV__’
(20)
4 1 - Wl + Wz
: =
or (distinguished by »)
A l + W] - W’
Al = - — W
A 1 - Wl + W'-‘- (Zl)
A4, = - W ’
giving
9
4.+ 4, = 5 > 0, (22)
4‘21'&22""';_2’,(0; (23)

respectively. Hence in the first case at least one of the 4’s must be
positive (normal wave), in the second case at least one of the A’s must
be negative (abnormal wave).

§ 6. LONGITUDINAL TRANSFORMATIONS.

The two cases remain clearly separated under the aspect of “longi-
tudinal ” Lorentz-transformations. Indeed, such a transformation preserves
the general form (10) and has therefore, from (11), the tnvariants

1+ d,4,)0C,C., (A, + 4,)C, C, . (24)

The second one shows that 4, + A, cannot vanish and thus cannot
change sign.

Moreover, since the phases must be invariants, ¥,, », must be a
4-vector, and so must f,, v,. Their tnvariants, to wit,

B2o- v, 2 - v,? (25)
are positive (under-light-velocity!); hence either of the frequencies can be
annihilated and can be made to change sign, which involves a change of sign
of the corresponding A and of the direction of propagation of that wave,

Theiefore if in a case covered by (20) and (22) one of the 4’s is negative,
a Lorentz transformation with gradually increasing parameter will succeed in
reversing its sign—and, of course, before the other A changes sign, since their
sum must remain positive throughout. So we get both of them positive.

The same, if in a case covered by (21) and (23) one of the A4’s 4s positive,
you will succeed in making it negative, whilst the other one remains so.
And so you get them both negative.
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Summing up we may say that (20) really refers to a couple of antiparallel
normal waves, but possibly viewed from a Lorentz-frame in which one of them
has become so intense as to impose the features of abnormity on the other
one and to reverse its direction.—(21) is the exact counteipart for a couple of
antiparallel abnormal waves.

Even more striking is the reversal of these considerations. Given e.g. a
couple of antiparallel normal waves, however weak, you can always indicate
a frame of reference, in which one of them has its direction reversed, dragged
along, as it were, by the other one and exhibiting the features of abnormity.
In one particular frame it becomes petrified, static, as it were (v = 0).
Moreover you are, in every case, free to choose which of the two you want to
subject to such extremity.

It will now be appreciated that we had to include abnormal waves at the
outset; not because we are particularly interested in the abnormal couple
described by (21, but because the normal couple (20) could otherwise not be
exhaustively described.

The quantity W introduced in (19) has a physical meaning, viz. (speaking
of the normal couple),

2] \
NG VIS (XT':?_AT - 1) = energy density. (26)

A Lorentz-transformation in an arbitrary direction would produce the
more general kind of solution with an arbitrary angle between the two wave-
normals, liquidating the simplification introduced in §2. There is no reason
to follow that up for the moment. But let it be noted that in this case the
general features of (10) are no longer preserved. E g. the single waves do not
remain transversal. (This had already been revealed by the approximate
treatment in N.O.)

APPENDIX 1.

I wish to show that a single plane Maxwellian wave is an exact solution of
any non-linear electrodynamics of that very general type which Gustav Mie
was the first to envisage more than 30 years ago and of which Born’s theory
is a special case. The general features are these.

Maxwell’s equations are formally retained :

ewrl E + B = div B

it
(e

(a1)

.

0
curt H - D = 0 div D

fi
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65
The second six-vector H, D is defined by

_ oz _ 31
Z =355 Y= 5E (82)
where L is an arbitrary function of the fundamental six-vector

B, E.
Lorentz-invariance is demanded. Moreover it is demanded that in the Yimit
for weak fields

i - B , D > F (as)
Now, since Z is to be an invariant, it can only be a function of
J, = }(B* - E? and J, = (BE) . (ad)
From (a;) and (ay)
H = 58%])’ + aa-ily'
(as)
D = ;'jl E - 637L B .

To comply with (as), 9L

oL ) .
37 and 7T must tend to 1 and 0 respectively
when both B and Z tend to zero.

But since those derivatives are functions
of J, and J, only, which tend to zero when B and % do, we must have

oL ) oL\
it = 1 = . 4
(BJI Ji =0 ’ (anjJ:=0 0 (‘“)
J:z = 0 Jz = 0
Now for a plane Maxwellian wave J, = J, = 0. Hence in this
case, from (a;) and (a,)
a = B | D = F

That turns (a,) into Maxwell’s vacuum-equations, which are indeed satisfied
by a plane Maxwellian wave. Q.E.D,

ArprNpix 1T,
(Derivation of equ (3)).

The cross-product [£4], since it is orthogonal to ¥, must be a linear
combination of & and a*:

[fa] = pa + ga* |,

(ax)
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p and ¢ being complex numbers. Scalar multiplication by a, with regard
to (2), gives ¢ = 0. Thus

[ta] = pa . (3)
Scalar multiplication by «* gives
(tlaa*]) = 2p . (as)
Vectorial multiplication of (ag) by a* gives
- 2% = plad*] . (810)
The last two equations give
pr o= - ¥ thus p =+ i|f| , (a)

which inserted in (a;) gives equ. (3) Q.E.D.

Behold that the ambivalent sigu is genuine, as long as we only use (2).
For (2) is symmetric with respect to a and ¢*, whereas from (a,), since
fis real and p imaginary. follows

[ta*] = - pao* . (a12)
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