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This book focuses on the artificial neural network-based system for gaze-based 
communication. It covers the feasible and practical collaboration of human–computer 
interaction (HCI) in which a user can intuitively express tasks using gaze-based 
communication. It will target the vast applications of gaze-based communication 
using computer vision, image processing, and artificial intelligence.

Artificial Intelligence-Based System for Gaze-Based Communication introduces 
a novel method to recognize the implicit intention of users by using nonverbal 
communication in combination with computer vision technologies. A  novel HCI 
framework is developed to enable implicit and intuitive gaze-based intention 
communications. This framework allows the users to intuitively express their intention 
using natural gaze cues. The book also focuses on robot caregiving technology, 
which can understand the user’s intentions using minimal interactions with the user. 
The authors examine gaze-based tracking applications for the assisted living of 
elderly people. The book examines detailed applications of eye-gaze communication  
for real-life problems. It also examines the advantages that most people can handle 
gaze-based communications because it requires very little effort, and most of the 
elderly and impaired can retain visual capability.

This book is ideally designed for students, researchers, academicians, and 
professionals interested in exploring and implementing gaze-based communication 
strategies and those working in the field of computer vision and image processing.
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Preface
Welcome to Gaze-Based Communication with Artificial Intelligence. This book 
explores the intersection of artificial intelligence (AI) and gaze-based communica-
tion technologies, which is a fascinating topic. One of the most compelling applica-
tions of AI is its ability to improve communication for people with varying abilities. 
Gaze-based communication has emerged as an essential interaction channel for 
individuals with motor impairments or other conditions that impede conventional 
communication. Integrating AI into gaze-based communication systems has opened 
new frontiers, allowing for more natural and efficient ways for individuals to express 
themselves, interact with technology, and connect with the world.

Step into the world of Gaze-Based Communication with Artificial Intelligence, 
a captivating exploration of the fusion between AI and gaze-based communication 
technologies. Delving into this intriguing subject, the book highlights the remark-
able application of AI in enhancing communication for people with diverse abili-
ties. Gaze-based communication has emerged as a pivotal avenue for individuals 
facing motor impairments or other challenges in conventional communication. By 
integrating AI into these systems, new horizons have unfolded, enabling individuals 
to express themselves, interact with technology, and connect with the world more 
naturally and efficiently.

The theoretical underpinnings and practical applications of AI-powered 
gaze-based communication are examined in this book. This book aims to offer 
insightful information to all readers, whether they are skilled AI practitioners, 
researchers in human–computer interaction, clinicians working with patients with 
communication disorders, or those interested in how AI might improve human 
communication.

Significant features of this book

•	 An examination of the fundamentals of gaze-based communication and its 
relevance in various contexts.

•	 Extensive explanations of AI techniques and algorithms that enable gaze-
based communication systems.

•	 Case studies and real-world examples demonstrating AI’s successful appli-
cations in enhancing communication through the gaze.

•	 Ethical considerations and guidelines for designing user-centric and inclu-
sive AI-powered communication solutions.

•	 Future trends and opportunities involving AI and gaze-based communication.
•	 As we embark on this journey, I would like to thank the experts, researchers, 

and individuals who have contributed to the development of AI and gaze-
based communication. Their efforts have paved the way for a more inclusive 
and interconnected global community.



x Preface

I hope this book is useful for comprehending, designing, and implementing AI-driven 
solutions for gaze-based communication. Collectively, let us harness the power of 
technology to facilitate meaningful and expressive interactions for all.

Dr. (Eng.) B.G.D.A Madhusanka
8 August 2023
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1 Introduction to  
Gaze-Based 
Communication

Gaze-based communication is a type of communication that uses eye movements 
as a means of conveying messages. It is often used by individuals with limited or no 
speech, such as motor neuron disease, cerebral palsy, or other conditions affecting 
verbal communication. Gaze-based communication systems typically use specialized 
hardware, such as eye trackers, to detect and interpret the user’s eye movements [1]. 
The user can then select items on a computer screen, for example, by fixating on them 
or by using other eye movements such as blinks or saccades. Gaze-based communica-
tion can be used in various settings, including home, school, and the workplace [2, 3].  
It can allow individuals with communication disabilities to interact with others, 
express their needs and preferences, and participate in social activities. There are sev-
eral types of gaze-based communication systems, ranging from simple systems that 
use only eye movements to more complex systems that incorporate speech synthesis, 
predictive text, and other features to help users communicate more efficiently and 
effectively [4–6].

Gaze-based communication can assist individuals with activities of daily living 
(ADLs) in various ways [7–10]. ADLs are the basic daily tasks that individuals per-
form to care for themselves, such as bathing, dressing, grooming, and eating [11–14]. 
Here are some examples of how gaze-based communication can be used to assist 
with ADLs:

	 1.	Choosing clothing: A gaze-based communication system can allow an indi-
vidual to select clothing items from a digital wardrobe on a computer screen 
using eye movements. This can help the individual to maintain indepen-
dence and make choices about their appearance.

	 2.	Eating and drinking: A gaze-based communication system is used to select 
food and drink items from a digital menu on a computer screen. The system 
can indicate when the individual is finished eating or drinking.

	 3.	Personal hygiene: A gaze-based communication system can assist with 
brushing teeth or washing hands. The system can display images or videos 
that guide the individual through the steps of the task, and the individual can 
indicate when they have completed each step.

	 4.	Household tasks: A gaze-based communication system can control appli-
ances such as lights, fans, and televisions. The system can also control 
devices such as wheelchairs or scooters, allowing individuals to move 
around their homes independently.

https://doi.org/10.1201/9781003373940-1


2 Artificial Intelligence-Based System for Gaze-Based Communication

Overall, gaze-based communication can be a powerful tool to help individuals with 
communication disabilities maintain independence and participate in ADLs. It 
allows them to express their needs and preferences, make choices, and interact with 
their environment meaningfully.

Gaze-based communication can also assist caregivers in performing their tasks more 
efficiently and effectively. Caregiving tasks include assisting with ADLs, monitoring 
vital signs, administering medications, and providing emotional support [15–17]. Here 
are some examples of how gaze-based communication can be used to assist with care-
giving tasks:

	 1.	Monitoring vital signs: A gaze-based communication system can display 
vital signs such as heart rate, blood pressure, and oxygen saturation. This 
allows caregivers to monitor the individual’s health status and respond 
quickly to changes.

	 2.	Administering medications: A gaze-based communication system can dis-
play medication schedules and reminders. Caregivers can also use the system 
to document when medications have been given and track any side effects.

	 3.	Providing emotional support: A gaze-based communication system can dis-
play images, videos, or messages that provide emotional support to the indi-
vidual. For example, a caregiver can use the system to display a message of 
encouragement or a favorite song to help the individual feel more positive.

	 4.	Providing instruction: A  gaze-based communication system can display 
instructional videos or images that guide the caregiver through wound care 
or physical therapy exercises. This can help ensure that the tasks are per-
formed correctly and consistently.

Gaze-based communication can be a valuable tool for caregivers in providing 
high-quality care to individuals with communication disabilities [18, 19]. It allows 
them to monitor health status, administer medications, provide emotional support, 
and provide instruction efficiently and effectively.

Eye-gaze-based communication is essential because it allows individuals with com-
munication disabilities to express themselves, participate in social interactions, and 
maintain independence in daily activities. Without this type of communication, indi-
viduals with communication disabilities may be unable to engage with their environ-
ment fully and may experience social isolation, frustration, and a decreased quality of 
life. Here are some specific reasons why eye-gaze-based communication is essential:

	 1.	Expression: Eye-gaze-based communication allows individuals with com-
munication disabilities to express their thoughts, feelings, and needs. This 
is essential for maintaining social connections and relationships, as well as 
for advocating for oneself and making decisions about one’s own life.

	 2.	 Independence: Eye-gaze-based communication allows individuals with 
communication disabilities to maintain independence in daily activities. It 
will enable them to make choices, control their environment, and perform 
tasks without constant assistance.
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	 3.	Access: Eye-gaze-based communication provides access to education, 
employment, and other opportunities that may be unavailable to individuals 
with communication disabilities without this type of communication.

	 4.	 Improved quality of life: Eye-gaze-based communication can improve the 
overall quality of life for individuals with communication disabilities by 
reducing frustration, increasing social interactions, and promoting greater 
participation in daily activities.

Eye-gaze-based communication is crucial for individuals with communication dis-
abilities to express themselves, maintain independence, and participate fully in soci-
ety. It can significantly affect their quality of life and well-being [20–22].

Eye tracking is essential for several reasons, including research, usability testing, 
and the development of gaze-based communication technology [23]. Here are some 
specific reasons why eye tracking is necessary:

Research: Eye tracking can provide insights into how humans perceive and inter-
act with their environment. Researchers can study visual attention, decision-making, 
and cognitive processes by analyzing eye movements. This can lead to a better under-
standing of human behavior and inform the development of new technologies and 
products.

Usability testing: Eye tracking can be used to evaluate the usability of websites, 
software applications, and other digital interfaces. By analyzing where users look 
and how long they spend on different interface elements, designers can identify 
usability issues and make improvements to enhance the user experience.

Marketing and advertising: Eye tracking can be used to measure the effectiveness 
of marketing and advertising materials. By analyzing where people look and how 
long they spend looking at different elements of an advertisement, marketers can 
optimize the design to maximize engagement and impact.

Gaze-based communication: Eye tracking is essential for developing gaze-based 
communication technology. By tracking eye movements, individuals with communi-
cation disabilities can use their gaze to control a computer or other device, allowing 
them to communicate and interact with their environment in new ways.

Eye tracking is a valuable tool for understanding human behavior, improving 
usability, and developing new technologies. It has a wide range of applications in 
research, industry, and healthcare and is likely to become even more critical as tech-
nology advances [24].

Human eye movements refer to the involuntary and voluntary movements of the 
eyes. There are several types of eye movements [24], each of which serves a different 
function. Here are some examples of human eye movements:

	 1.	Saccades: These rapid eye movements occur when the eyes shift their focus 
from one object to another. Saccades are necessary for scanning and explor-
ing the environment.

	 2.	Smooth pursuit: This type of eye movement occurs when the eyes follow a 
moving object. Smooth pursuit is essential for tracking moving objects and 
maintaining visual fixation.
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	 3.	Vergence: This is the movement of the eyes in opposite directions to main-
tain binocular vision (the ability to see with both eyes). Vergence is essential 
for depth perception.

	 4.	Nystagmus: This is an involuntary movement of the eyes, characterized by 
repetitive back-and-forth or circular motions. Nystagmus can be a symptom 
of neurological conditions or other underlying health issues.

	 5.	Fixation: This is maintaining a steady gaze on a stationary object. Fixation 
is essential for visual acuity and reading, and other visual tasks.

The study of human eye movements, also known as oculomotor research, has import-
ant implications for various fields, including neuroscience, psychology, and engineer-
ing [25, 26]. Researchers can gain insights into cognition, perception, and human 
behavior by understanding how the eyes move and interact with the environment.

1.1  THE EYES

The human eye is a complex organ responsible for detecting light and transmitting 
visual information to the brain [27]. It is composed of several interconnected struc-
tures, including the following:

	 1.	Cornea: The transparent, outermost eye layer covers the iris and pupil. It 
helps to focus light as it enters the eye.

	 2.	 Iris: This is the colored part of the eye that controls the size of the pupil, 
which regulates the amount of light that enters the eye.

	 3.	Pupil: This is the circular open in the center of the iris that allows light to 
enter the eye.

	 4.	Lens: This is a clear, flexible structure behind the iris and pupil. It helps to 
focus light onto the retina.

	 5.	Retina: This is the innermost layer of the eye, containing photoreceptor cells 
that convert light into electrical signals transmitted to the brain through the 
optic nerve.

	 6.	Optic nerve: This bundle of nerve fibers carries visual information from the 
retina to the brain.

	 7.	Vitreous humor: This gel-like substance fills the space between the lens and 
the retina.

	 8.	Sclera: This is the white outer layer of the eye that provides structural sup-
port and protects the delicate inner structures.

	 9.	Conjunctiva: This thin, transparent membrane covers the front of the eye 
and lines the inside of the eyelids.

	 10.	Eyelids and eyelashes: This helps to protect the eye from dust and other for-
eign objects and helps to spread tears across the surface of the eye to keep it 
moist.

The eyeball has six muscles arranged in three pairs, each pair having an antago-
nistic relationship with the other [28–32]. These muscles work together to move the 
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eyeball in different directions and maintain proper alignment. The six muscles are 
as follows:

	 1.	The medial rectus muscle moves the eyeball inward toward the nose. It 
works in opposition to the lateral rectus muscle.

	 2.	The lateral rectus muscle moves the eyeball outward, away from the nose. It 
works in opposition to the medial rectus muscle.

	 3.	The superior rectus muscle moves the eyeball upward toward the forehead. 
It works in opposition to the inferior rectus muscle.

	 4.	The inferior rectus muscle moves the eyeball downward toward the chin. It 
works in opposition to the superior rectus muscle.

	 5.	Superior oblique muscle moves the eyeball downward and outward, away 
from the nose. It works in opposition to the inferior oblique muscle.

	 6.	The inferior oblique muscle moves the eyeball upward and outward toward 
the ear. It works in opposition to the superior oblique muscle.

These six muscles are controlled by three cranial nerves: the oculomotor nerve, the 
trochlear nerve, and the abducens nerve. The proper coordination of these muscles is 
essential for appropriate eye movement and binocular vision, as shown in three pairs 
of antagonistic muscles, as shown in Figure 1.1.

Figure 1.2 depicts the simplified schematics of the eye. The working process of 
the eye can be broken down into several steps. First, the light enters the eye through 
the cornea, which is the transparent, outermost layer of the eye. The cornea helps 
to focus the light as it enters the eye [33]. Second, the iris, the colored part of the 
eye, controls the size of the pupil, which is the circular opening in the center of the 
iris. The pupil regulates the light that enters the eye [34]. Third, the light passes 
through the lens, a clear, flexible structure behind the iris and pupil. The lens further 
focuses the light onto the retina. Next, the retina is the innermost layer of the eye 
and contains photoreceptor cells called rods and cones. These cells convert the light 
into electrical signals sent to the brain through the optic nerve. Finally, the brain 
then interprets these electrical signals as visual images. It is important to note that 
the vision process is not solely dependent on the eye. The brain plays a crucial role 

FIGURE 1.1  Three pairs of muscles can compensate for all movements of the head.
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in interpreting the electrical signals sent from the eye and constructing the visual 
images we perceive [35]. Additionally, other structures in the eye, such as the mus-
cles that control eye movement and the tear glands that produce tears, also contribute 
to the overall function of the eye.

Compensation eye movement is a term used to describe the eye movements that 
occur to maintain visual stability when the head or body is in motion. These eye 
movements are essential for preventing the visual scene from becoming blurred or 
distorted during head or body movements. There are two main types of compensa-
tion eye movements:

	 1.	The vestibule-ocular reflex (VOR) is a reflexive eye movement that responds 
to head movements. It works by stabilizing the eyes on a visual target during 
head movements. When the head turns to the left, the eyes move in the 
opposite direction to keep the visual target focused.

	 2.	Optokinetic reflex (OKR): The OKR is a reflexive eye movement that 
responds to large-scale visual motion. It works by moving the eyes toward 
the motion to maintain visual stability. For example, if you are looking out 
the window of a moving train, the OKR will move your eyes toward the 
passing scenery to prevent blurring.

These two reflexive eye movements work together to ensure that the visual scene 
remains stable during head and body movements. The VOR maintains visual sta-
bility during quick head movements, while the OKR compensates for slower or 
larger-scale visual motion. Compensation eye movements are a crucial component 
of our visual system and essential for maintaining visual stability during movement. 

FIGURE 1.2  Schematics of the eye.
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Without them, the visual scene would appear blurry and distorted during minor head 
or body movements.

When the eye moves, it rotates around its center rather than changing its position 
in space. This rotation is called a saccade, a quick, jerky eye movement that allows 
us to scan our environment and shift our focus from one object to another. The length 
of a saccade is defined by the angle of the pupil’s normal at the beginning and end 
of the movement. The pupil’s normal is an imaginary line that runs perpendicular 
to the cornea’s surface, which is the transparent front part of the eye. By measuring 
the angle of the pupil’s normal at the beginning and end of the saccade, we can 
determine the length and direction of the eye movement. The length of a saccade 
can vary depending on the task and the individual [36]. For example, saccades are 
typically shorter and more frequent when reading, while saccades may be longer and 
less frequent when scanning a room. Understanding the mechanics of saccadic eye 
movements is essential for studying visual perception and eye movement disorders 
and developing technologies such as eye-tracking systems.

1.2  EYE TRACKERS

Eye trackers are devices that monitor and record eye movements [37]. They use sen-
sors that detect the eye’s position and track its movements in real time [38]. Eye-
gaze trackers are a type of eye tracker used to monitor and record the direction of 
a person’s gaze [39]. They use sensors that detect the eye’s position and track its 
movements in real time, allowing researchers and developers to determine where a 
person is looking on a computer screen or other display [40]. There are several types 
of eye-gaze trackers, including the following:

	 1.	Pupil-based eye trackers: These eye trackers use the position and movement 
of the pupil to determine where a person is looking.

	 2.	Corneal reflection eye trackers: These eye trackers use the reflection of light 
off the cornea to determine where a person is looking.

	 3.	Electrooculography (EOG) eye trackers: These eye trackers use electrodes 
placed around the eye to detect changes in the electrical field generated by 
eye movements.

Eye-gaze trackers are used in a variety of applications, including the following:

•	 Human–computer interaction (HCI): Eye-gaze trackers are used to develop 
technologies that allow people to control computers and other devices using 
only their gaze.

•	 Neuroscience: Neuroscience eye-gaze trackers study visual perception, 
attention, and cognitive processes.

•	 Marketing and advertising: Eye-gaze trackers are used in marketing and 
advertising to study behavior and preferences.

•	 Sports training: Eye-gaze trackers analyze and improve athletes’ visual 
attention and decision-making skills.
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Generally, eye-gaze trackers are powerful tools for studying and understanding 
human behavior and cognition and for developing new technologies and applications 
that can improve our ADL [41]. Also, there are several types of eye trackers [42–47], 
including:

	 1.	Video-based eye trackers: These eye trackers use a camera to capture 
images of the eye and track its movements based on the position of the pupil 
and the reflection of infrared light.

	 2.	 Infrared-based eye trackers: These eye trackers use infrared light to illumi-
nate the eye and track its movements based on the pupil’s position and the 
infrared light’s reflection.

	 3.	Magnetic-based eye trackers: These eye trackers use sensors to detect 
changes in the magnetic field around the eye and track its movements based 
on these changes.

Video-based eye trackers are a type of eye tracker that uses a camera to capture 
images of the eye and track its movements based on the position of the pupil and the 
reflection of infrared light. They are among the most common eye trackers widely 
used in research, medicine, and HCI, as shown in Figure 1.3. Video-based eye track-
ers work by illuminating the eye with infrared light and capturing images of the eye 
using a camera [48]. The position of the pupil is then tracked based on the reflection 
of the infrared light, allowing researchers and developers to determine the direction 
and speed of eye movements in real time. Video-based eye trackers are versatile tools 
in various applications, from basic research to commercial product development. 
They provide valuable insights into the complex mechanisms of eye movements and 
visual perception and new opportunities for improving HCI and other fields.

Mobile eye trackers are designed to be used in natural [49] and real-world envi-
ronments [50], as shown in Figure 1.4. They are portable and lightweight and can be 

FIGURE 1.3  Stationary eye trackers, one stand-alone system and one integrated into a 
display.
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worn like glasses, allowing researchers and developers to monitor and record eye 
movements in various settings. Mobile eye trackers use a combination of video-based, 
infrared-based, or magnetic-based tracking technologies to determine the position 
and movement of the eye. They typically have a small camera mounted on the eye-
glasses frame, which captures images of the eye and tracks its movements in real 
time. Overall, mobile eye trackers provide a powerful tool for studying and under-
standing human behavior and cognition in natural environments and for developing 
new technologies and applications to improve our daily lives. They can revolutionize 
various fields, from sports training to market research to clinical assessment.

Video-based eye trackers can also be used for iris detection, which is the process 
of identifying and recognizing an individual based on the unique pattern of their iris 
[51, 52]. This is often used as a security measure, as the pattern of the iris is unique to 
each individual and can be challenging to replicate. Video-based eye trackers for iris 
detection work by capturing images or video of the eye and analyzing the unique pat-
tern of the iris. The iris is the colored part of the eye that surrounds the pupil, and it 
contains a unique pattern of ridges, furrows, and freckles that can be used to identify 
an individual. To capture images of the iris, video-based eye trackers use a special-
ized camera to capture high-resolution eye images. The camera is typically equipped 
with infrared illumination, which allows it to capture clear images of the iris even 
in low-light conditions [53]. The images are then processed using specialized soft-
ware that analyzes the unique pattern of the iris and compares it with a database of 
known iris patterns. Overall, video-based eye trackers for iris detection provide a 
highly accurate and secure method of identifying and verifying individuals. They 
are becoming increasingly popular in various applications, as they offer a high level 
of security and can be integrated with existing access control and security systems.

FIGURE 1.4  Eye-tracking glasses.
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Video-based eye trackers can also be used for pupil detection, which is the process 
of tracking the movement and dilation of the pupil over time. Pupil detection is often 
used in research settings to study visual perception, cognitive processing, and other 
aspects of human behavior—video-based eye trackers for pupil detection work using 
a camera to capture high-resolution eye images. The camera is typically equipped 
with infrared illumination, which allows it to capture clear images of the pupil even 
in low-light conditions. The images are then processed using specialized software 
that detects the location and size of the pupil in each image. By tracking the move-
ment and dilation of the pupil over time, video-based eye trackers for pupil detection 
can provide valuable insights into a range of cognitive and perceptual processes [54]. 
For example, they can be used to study attention, arousal, and emotional responses to 
visual stimuli. They can also be used to track the reading process, as changes in pupil 
size and movement are associated with changes in cognitive load and processing dif-
ficulty. Overall, video-based eye trackers for pupil detection provide a powerful tool 
for studying and understanding human behavior and cognition. They can revolution-
ize various fields, from gaming and virtual reality (VR) to healthcare and education.

The vector from the glint to the center of the pupil is a crucial factor in calculat-
ing the gaze direction in many eye-tracking systems, as shown in Figure 1.5. This 
vector is used to determine the position of the eye in space, which can then be used 
to calculate the direction of gaze relative to a particular point or object of interest. 
The glint is a small, bright reflection that appears on the eye’s surface due to the 
reflection of an external light source. By tracking the movement of the glint over 
time, eye-tracking systems can determine the position and orientation of the eye in 
space [55]. The center of the pupil is also tracked, and the vector between the glint 

FIGURE 1.5  The vector from the glint to the pupil’s center is the basis for calculating the 
gaze direction.
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and the center of the pupil is used to calculate the direction of the gaze [56]. In some 
eye-tracking systems, additional information, such as the position of the head and 
the distance between the eyes, is also used to calculate the direction of the gaze [57, 
58]. This information is typically captured using sensors such as accelerometers 
and gyroscopes, which can detect the orientation and movement of the head. Once 
the direction of gaze has been calculated, it can be used for various applications, 
including HCI, VR, and medical diagnosis. Eye-tracking systems are becoming 
increasingly sophisticated and accurate, and they have the potential to revolutionize 
a variety of fields in the coming years.

The corneal reflection method of eye tracking typically requires head fixation 
to keep the eye stable. However, alternative approaches allow for free movement of 
the head and eyes, making them more suitable for HCI applications [59–61]. One 
such approach is known as the video-based eye-tracking method. Video-based eye-
tracking systems use cameras to capture high-resolution images of the eye, which 
are then processed to track the pupil’s movement and other eye features. By ana-
lyzing the changes in the position and size of these features over time, video-based 
eye-tracking systems can accurately determine the direction of gaze without the need 
for head fixation. Another approach that allows for free movement is using multiple 
cameras to capture eye images from different angles. This approach, known as the 
multi-camera eye-tracking method, allows for the accurate tracking of eye move-
ments even when the head is in motion. Combining the images from multiple cam-
eras can provide a three-dimensional (3D) reconstruction of the eye and accurately 
determine the direction of gaze. In recent years, there has been significant progress 
in developing eye-tracking systems that can be used in HCI applications without 
needing head fixation. These systems are becoming increasingly sophisticated and 
accurate, and they have the potential to revolutionize the way we interact with com-
puters and other digital devices [62].

1.3  EYE-GAZE TRACKING FOR HCI

Eye-gaze tracking has become an increasingly popular method for HCI in recent 
years. By tracking the direction of gaze, computers and other digital devices can 
interpret a user’s intentions and respond accordingly, creating a more natural and 
intuitive interface. One of the primary applications of eye-gaze tracking in HCI is 
assistive technology for people with disabilities [59]. For example, individuals with 
physical disabilities that limit their ability to use traditional input devices such as a 
mouse or keyboard can use eye-gaze tracking to control a computer or other digital 
device. Eye-gaze tracking can also be used in virtual and augmented reality (AR) 
applications, allowing users to interact with digital environments using their eyes. 
Eye-gaze tracking can also improve the user experience in various other applica-
tions. For example, eye-gaze tracking can be used in web browsing to determine 
which parts of a web page a user looks at, allowing for more effective targeting 
and user interface design [63]. In gaming, eye-gaze tracking can be used to control 
game characters or to create a more immersive gaming experience [64]. Overall, 
eye-gaze tracking has the potential to revolutionize the way we interact with comput-
ers and other digital devices. As eye-tracking technology improves, we can expect 
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widespread adoption in various applications, leading to more natural and intuitive 
interfaces that better meet users’ needs.

Gaze prediction is an essential aspect of eye-gaze tracking for HCI. It uses algo-
rithms and machine learning techniques to predict where users will likely look next 
based on their previous eye movements and other contextual factors. By predicting 
the user’s gaze, computers and other digital devices can anticipate the user’s inten-
tions and respond more quickly and effectively. There are several approaches to gaze 
prediction in eye-gaze tracking for HCI [60]. One common approach is to use sta-
tistical models based on eye movement data from previous users. These models can 
be trained to predict where users are likely to look next based on factors such as the 
layout of the user interface, the position of the user’s head, and the user’s previous eye 
movements. Another approach is to use machine learning techniques to learn pat-
terns in the user’s eye movements and predict their gaze based on these patterns [65]. 
This approach typically involves training a neural network or other machine learning 
algorithm on a large dataset of eye movement data and then using the trained model 
to predict the user’s gaze in real time. Recent advances in deep learning have led 
to significant improvements in gaze prediction accuracy. For example, researchers 
have developed deep learning models that can predict gaze with an accuracy of over 
90%, even in challenging conditions such as low light or when the user is wearing 
glasses. Overall, gaze prediction is an essential aspect of eye-gaze tracking for HCI, 
and it has the potential to significantly improve the user experience in a wide range 
of applications. As eye-tracking technology continues to improve, we can expect to 
see more advanced and accurate gaze prediction algorithms that further enhance the 
capabilities of eye-gaze tracking for HCI.

Eye-gaze tracking for HCI has the potential to significantly improve the quality of 
life for people with disabilities or other challenges that make traditional input devices 
difficult to use. Some of the daily living activities that can be made easier with eye-
gaze tracking include the following [66–68]:

	 1.	Communication: Eye-gaze tracking can control speech-generating devices, 
allowing people with conditions such as cerebral palsy or Amyotrophic 
Lateral Sclerosis (ALS) to communicate more easily with others.

	 2.	Writing and typing: People with difficulty using their hands can use eye-
gaze tracking to write emails, documents, and other text-based content.

	 3.	Web browsing: Eye-gaze tracking can navigate the Internet and browse 
websites more efficiently, allowing people with disabilities or other chal-
lenges to access information and stay connected.

	 4.	Gaming: Eye-gaze tracking can be used to control game characters, allow-
ing people with disabilities or other challenges to enjoy video games and 
participate in online gaming communities.

	 5.	Environmental control: Eye-gaze tracking can control devices such as lights, 
televisions, and other home appliances, allowing people with disabilities to 
live more independently.

Also, eye-gaze tracking has the potential to significantly improve the quality of life 
for people with disabilities or other challenges. As eye-tracking technology continues 
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to improve, we can expect to see more advanced and accessible applications that fur-
ther enhance the capabilities of eye-gaze tracking for daily living activities.

1.4 � APPROACH TO IMPLICIT INTENTION UNDERSTANDING 
WITH EYE-GAZE COMMUNICATION

Implicit intention understanding with eye-gaze communication refers to the ability of 
computers or other devices to interpret a person’s gaze and use it to infer their intentions [69].  
This approach is based on the idea that people often look at the things they are inter-
ested in or want to interact with, and by analyzing their gaze patterns, computers 
can infer their intentions. One application of implicit intention understanding with 
eye-gaze communication is in the field of human–robot interaction (HRI) [70–72].  
In HRI, robots and other autonomous systems must understand human intentions to 
interact with people effectively. By analyzing a person’s gaze, a robot can infer their 
interest and adjust their behavior accordingly.

Another application of implicit intention understanding with eye-gaze commu-
nication is in assistive technology. For example, a computer system with eye-gaze 
tracking technology can interpret a person’s gaze to control devices such as wheel-
chairs, prosthetic limbs, or home automation systems.

There are several challenges associated with an implicit intention understanding 
with eye-gaze communication. One challenge is that people often look at things for 
various reasons, and it can be difficult for computers to infer their intentions accu-
rately. Another challenge is that multiple factors can influence gaze patterns, such as 
cultural norms, personal preferences, and visual distractions, making it challenging 
to interpret a person’s gaze accurately.

Despite these challenges, significant progress has been made in developing algo-
rithms and machine learning techniques for implicit intention understanding with 
eye-gaze communication. As eye-tracking technology continues to improve, we can 
expect to see more advanced and accurate systems capable of interpreting a person’s 
gaze and using it to infer their intentions in various applications.

Developing algorithms and machine learning techniques for implicit intention 
understanding with eye-gaze communication involves several steps, including data 
collection, feature extraction, classification, and validation. Several machine learning 
algorithms can be used for implicit intention understanding with eye-gaze communi-
cation, including decision trees, support vector machines (SVMs), neural networks, 
and so on. The choice of algorithm depends on the specific task or application and the 
characteristics of the eye-tracking data being used. Overall, developing algorithms 
and machine learning techniques for implicit intention understanding with eye-gaze 
communication is an active area of research, with many promising approaches being 
developed and tested in various applications. As eye-tracking technology continues 
to improve, we can expect to see more advanced and accurate systems capable of 
inferring a person’s intentions based on their gaze behavior.

Wearable technology can play a significant role in caring for older people and 
helping them with their ADLs. Wearable devices, such as smartwatches, fitness track-
ers, and other health monitoring devices, can provide important information about 
an older person’s health status, activity levels, and daily routines. This information 
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can be used to develop personalized care plans and to monitor the person’s health 
and well-being over time. For example, wearable devices can track an older per-
son’s physical activity, sleep patterns, and heart rate, providing valuable information 
about their overall health status. This information can be used to develop exercise 
plans, monitor medication adherence, and identify potential health issues before they 
become serious.

Wearable devices can also provide reminders and prompts for essential tasks, such 
as taking medication, attending medical appointments, or completing daily routines. 
These reminders can be delivered through smartwatch notifications or other wear-
able devices, helping older people stay on track and maintain their independence.

In addition to these practical applications, wearable technology can provide 
significant social and emotional benefits for older people. For example, wearable 
devices can facilitate social connections, such as video calls with family members or 
friends, or provide access to entertainment and educational content. Overall, wear-
able technology has the potential to play a significant role in caring for older people 
and supporting their ADLs, improving their quality of life, and helping them main-
tain their independence for longer. As technology advances, we expect to see even 
more innovative and effective wearable devices designed specifically for older people 
and their unique needs.

Implicit purpose communication with older adults doing ADLs in a homecare set-
ting with a caregiver can involve various technologies and communication strategies. 
The goal of implicit purpose communication is to provide support and assistance 
to older adults while minimizing the feeling of intrusion and dependence on the 
caregiver. One technology that can be used for implicit purpose communication is 
a smartwatch or other wearable device that tracks an older person’s activity levels, 
medication schedule, and additional important health information. This information 
can be shared with the caregiver, who can provide support and reminders without 
constantly checking in or disrupting the older person’s routine.

Another communication strategy that can be used is nonverbal cues, such as eye 
gaze or facial expressions, to indicate when the older person needs assistance or 
experiencing discomfort or pain. Caregivers can be trained to recognize these cues 
and respond appropriately, providing the necessary support without the older person 
having to ask for help explicitly. In addition to these technologies and communica-
tion strategies, it is also essential to establish a trusting and respectful relationship 
between the caregiver and the older person. This can involve regular communica-
tion and check-ins, involving the older person in decision-making and allowing them 
to maintain a sense of independence and control over their daily routine. Overall, 
implicit purpose communication with older adults in a homecare setting with a care-
giver involves using various technologies and communication strategies to provide 
support and assistance while minimizing intrusion and maintaining the older per-
son’s independence and autonomy.

Implicit intention recognition refers to the ability of technology or systems to infer 
a user’s intentions without the user explicitly stating them. In the context of HCI, 
implicit intention recognition can facilitate natural and seamless interaction between 
humans and machines, improving the overall user experience. One way to achieve 
implicit intention recognition is through sensors, such as cameras, microphones, or 
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other biometric sensors, which can capture user behavior and physiological responses. 
Machine learning algorithms can then analyze these data and infer the user’s inten-
tions based on patterns and correlations. For example, in eye-gaze communication, 
implicit intention recognition can be used to understand what the user is looking at 
and their intended action. By analyzing patterns in eye movement and gaze behavior, 
machine learning algorithms can predict the user’s intentions, allowing for more 
natural and intuitive interaction with the system. Implicit intention recognition can 
also be used in other HCI contexts, such as speech recognition, gesture recogni-
tion, or brain–computer interfaces (BCIs). Sensors and machine learning algorithms 
can infer the user’s intentions based on their speech, movements, or brain activity. 
Overall, implicit intention recognition has the potential to significantly improve the 
usability and effectiveness of HCI systems by allowing for more natural and seam-
less interaction between humans and machines.

Eye-gaze movements can be analyzed to infer the user’s intention in ADLs. By 
tracking the user’s eye movements, it is possible to understand where the user is look-
ing, how long they are looking at something, and whether they are actively engaging 
with the environment or passively observing. In the context of ADL, eye-gaze track-
ing can infer the user’s intention when performing tasks such as cooking, cleaning, 
or using technology. For example, tracking the user’s gaze as they prepare a meal 
makes it possible to understand their ingredients, how much they are using, and their 
intended outcome. This information can assist or guide, such as recipe suggestions 
or reminding the user to check the oven temperature. Eye-gaze tracking can also 
understand the user’s attention and engagement level during ADL. For example, by 
tracking the user’s gaze while they watch a video or read a book, it is possible to 
understand whether they are actively engaged with the content or if their attention is 
starting to wane. This information can then be used to adjust the content or provide 
recommendations to keep the user engaged and interested. Eye-gaze tracking is a 
powerful tool for inferring the user’s intention in ADL. By analyzing the user’s gaze 
behavior, it is possible to gain insights into their goals, attention, and engagement, 
which can be used to provide personalized assistance and support.

The visual attention system is a network of cognitive processes and brain regions 
that allow us to selectively attend to relevant information in our environment. It lets 
us focus on specific aspects of our surroundings while filtering out irrelevant or dis-
tracting information. The visual attention system can be broadly divided into two 
types: Bottom-up and top-down attention. The saliency of sensory stimuli, such as 
color, contrast, or motion, drives bottom-up attention. When a sensory stimulation 
is particularly salient, it automatically attracts our attention, even if we are unaware. 
Top-down attention, on the other hand, is guided by our goals, expectations, and 
prior knowledge. It allows us to selectively attend to information relevant to our cur-
rent task or goal, even if it is not particularly salient. For example, suppose we are 
looking for a specific object in a cluttered scene. In that case, we can use top-down 
attention to filter out irrelevant information and focus on the relevant aspects of the 
scene. The visual attention system involves a complex interplay of neural networks 
and brain regions, including the parietal cortex, frontal cortex, and superior col-
liculus. These regions work together to process and prioritize sensory information, 
allocate attentional resources, and guide our behavior in response to visual stimuli. 
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The visual attention system is critical in our ability to interact with and navigate our 
environment. It allows us to selectively attend to relevant information, filter out dis-
tractions, and respond quickly and efficiently to changing situations.

1.5  MOTIVATION

The motivation behind using eye-gaze tracking in HCI is to provide a more 
natural and intuitive way for users to interact with digital devices. Traditional 
input devices such as mice, keyboards, and touchscreens can be cumbersome 
and unintuitive for specific tasks, especially for people with physical disabili-
ties or impairments. Eye-gaze tracking provides an alternative input method that 
allows users to control devices simply by looking at different parts of the screen 
or interface. This technology can benefit individuals with motor impairments or 
conditions such as motor neuron disease or cerebral palsy who may have diffi-
culty using traditional input methods. In addition to improving accessibility, eye-
gaze tracking can enhance the user experience in other ways. For example, it can 
enable a more precise and efficient selection of targets on a screen, especially for 
small or complex interfaces. It can also enable more natural and context-sensitive 
interactions, such as using gaze direction to trigger specific actions or adjust set-
tings based on the user’s attentional state. Overall, the motivation behind using 
eye-gaze tracking in HCI is to provide a more natural, intuitive, and accessible 
way for users to interact with digital devices.

1.6  BACKGROUND TO THE STUDY

The use of eye-gaze tracking in HCI has been an active area of research for several 
decades, with numerous studies investigating its potential applications and benefits. 
One of the earliest applications of eye-gaze tracking in HCI was in human factors 
engineering. It was used to study visual attention and task performance in complex 
environments such as aviation and military operations. Researchers used eye track-
ing to measure the time it takes to complete tasks, the frequency of visual fixations, 
and the visual search patterns of users as they interacted with various interfaces. In 
recent years, eye-gaze tracking has gained popularity for improving accessibility in 
digital environments, especially for people with motor impairments or disabilities. 
Studies have shown that eye-gaze tracking can be used as an alternative input method 
for controlling devices, selecting targets on a screen, and navigating complex inter-
faces. Eye-gaze tracking has also been used in cognitive psychology and neurosci-
ence research to investigate visual attention and perception. Researchers have used 
eye tracking to study visual search, attentional bias, and the effects of distractors on 
task performance. In addition to its research applications, eye-gaze tracking has been 
integrated into various commercial products and services, such as assistive technolo-
gies for people with disabilities, video games, and advertising analytics. Overall, the 
background research on eye-gaze tracking in HCI has demonstrated its potential as a 
versatile and powerful tool for improving user experience and accessibility in digital 
environments.
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The eye-gaze-intended inference technique is a powerful tool that can enhance 
human awareness and enable communication for persons with disabilities using 
an HCI interface. This technique is beneficial for individuals who have difficulty 
with traditional forms of communication, such as speech or hand gestures. The 
eye-gaze-intended inference technique involves eye-tracking technology to deter-
mine where a person looks on a screen or interface. By analyzing the patterns of 
eye movements and gaze direction, the system can infer the user’s intended actions 
or communication. For example, if the user looks at a particular button or icon on 
the screen, the system can interpret that as a command to perform a certain action. 
This technique has many benefits for persons with disabilities. It allows them to 
communicate more effectively with human aids, as they can use their eyes to con-
vey their intentions and needs. It also enhances their independence, as they can use 
the system to control various devices and interfaces without relying on others for 
assistance. Overall, the eye-gaze-intended inference technique is an innovative and 
powerful tool that can potentially transform the lives of persons with disabilities. 
With the help of this technique, they can communicate more effectively and par-
ticipate more fully in society.

The eye-gaze technique can offer many benefits for persons with disabilities. Eye-
gaze technology uses sensors to track the movement of a person’s eyes and determine 
where they are looking. This technology can benefit individuals with difficulty with 
traditional forms of communication, such as speech or hand gestures, due to physical 
or neurological impairments. Here are some of the benefits that the eye-gaze tech-
nique can offer for persons with disabilities:

	 1.	 Improved communication: For individuals who cannot speak or use their 
hands to communicate, the eye-gaze technique can provide a way to convey 
their thoughts and intentions. By looking at specific objects or symbols on 
a screen, the person can communicate with others and express their needs 
and desires.

	 2.	 Increased independence: The eye-gaze technique can give individuals with 
disabilities more independence by allowing them to control devices and 
interfaces without needing assistance from others. They can use their eyes 
to navigate menus, select options, and perform other tasks that would other-
wise require assistance.

	 3.	Enhanced mobility: Eye-gaze technology can control wheelchairs and other 
mobility devices, giving individuals with mobility impairments more con-
trol over their movements and greater freedom to explore their environment.

	 4.	 Improved education and learning: The eye-gaze technique can provide edu-
cational materials and interactive learning experiences for individuals with 
disabilities. By tracking their eye movements, the system can determine 
their level of engagement and adjust the content to meet their needs.

	 5.	Better quality of life: By providing new ways to communicate, interact with 
the world, and participate in society, the eye-gaze technique can improve 
the overall quality of life for persons with disabilities. It can help them feel 
more included, empowered, and engaged.



18 Artificial Intelligence-Based System for Gaze-Based Communication

REFERENCES

	 1.	 Majaranta, P., & Bulling, A. (2014). Eye tracking and eye-based human–computer inter-
action. Advances in Physiological Computing, 39–65.

	 2.	 Singh, H., & Singh, J. (2012). Human eye tracking and related issues: A review. Interna-
tional Journal of Scientific and Research Publications, 2(9), 1–9.

	 3.	 Karlsson, P., Allsop, A., Dee-Price, B. J., & Wallen, M. (2018). Eye-gaze control tech-
nology for children, adolescents and adults with cerebral palsy with significant physi-
cal disability: Findings from a systematic review. Developmental Neurorehabilitation, 
21(8), 497–505.

	 4.	 Giannopoulos, I., Kiefer, P., & Raubal, M. (2015, August). GazeNav: Gaze-based 
pedestrian navigation. In Proceedings of the 17th International Conference on Human-
Computer Interaction with Mobile Devices and Services (pp. 337–346). New York: 
Association for Computing Machinery.

	 5.	 Galante, A., & Menezes, P. (2012). A gaze-based interaction system for people with cer-
ebral palsy. Procedia Technology, 5, 895–902.

	 6.	 Wanjari, A. G., & Khode, S. S. (2014). The eye gaze communication system. Interna-
tional Journal of Research Studies in Science, Engineering and Technology [IJRSSET], 
1(1), 4–9.

	 7.	 Madhusanka, B. G. D. A., & Ramadass, S. (2021). Implicit intention communication for 
activities of daily living of elder/disabled people to improve well-being. IoT in Health-
care and Ambient Assisted Living, 325–342.

	 8.	 Madhusanka, B. G. D. A., Ramadass, S., Rajagopal, P., & Herath, H. M. K. K. M. B. 
(2022). Attention-aware recognition of activities of daily living based on eye gaze track-
ing. In Internet of Things for Human-Centered Design: Application to Elderly Health-
care (pp. 155–179). Singapore: Springer Nature.

	 9.	 Sunny, M. S. H., Zarif, M. I. I., Rulik, I., Sanjuan, J., Rahman, M. H., Ahamed, S. I.,. . . 
Brahmi, B. (2021). Eye-gaze control of a wheelchair mounted 6DOF assistive robot for 
activities of daily living. Journal of NeuroEngineering and Rehabilitation, 18(1), 1–12.

	 10.	 Li, S., & Zhang, X. (2017). Implicit intention communication in human–robot interac-
tion through visual behavior studies. IEEE Transactions on Human-Machine Systems, 
47(4), 437–448.

	 11.	 Mlinac, M. E., & Feng, M. C. (2016). Assessment of activities of daily living, self-care, 
and independence. Archives of Clinical Neuropsychology, 31(6), 506–516.

	 12.	 Lawton, M. P., & Brody, E. M. (1969). Assessment of older people: Self-maintaining 
and instrumental activities of daily living. The Gerontologist, 9(3_Part_1), 179–186.

	 13.	 Edemekong, P. F., Bomgaars, D. L., Sukumaran, S., & Levy, S. B. (2020). Activities of 
daily living (ADLs). Treasure Island: StatPearls Publishing.

	 14.	 Hetz, S. P., Latimer, A. E., & Martin Ginis, K. A. (2009). Activities of daily living per-
formed by individuals with SCI: Relationships with physical fitness and leisure time 
physical activity. Spinal Cord, 47(7), 550–554.

	 15.	 Saari, M., Xiao, S., Rowe, A., Patterson, E., Killackey, T., Raffaghello, J., & Tourangeau, 
A. E. (2018). The role of unregulated care providers in home care: A scoping review. 
Journal of Nursing Management, 26(7), 782–794.

	 16.	 Chi, N. C., & Demiris, G. (2017). The roles of telehealth tools in supporting family 
caregivers: Current evidence, opportunities, and limitations. Journal of Gerontological 
Nursing, 43(2), 3–5.

	 17.	 Reinhard, S. C., Given, B., Petlick, N. H., & Bemis, A. (2008). Supporting family caregiv-
ers in providing care. Patient safety and quality: An evidence-based handbook for nurses.

	 18.	 Mahmud, S., Lin, X., & Kim, J. H. (2020, January). Interface for human machine inter-
action for assistant devices: A review. In 2020 10th Annual Computing and Communi-
cation Workshop and Conference (CCWC) (pp. 0768–0773). Las Vegas, NV: IEEE.



19Introduction to Gaze-Based Communication

	 19.	 Linse, K., Aust, E., Joos, M., & Hermann, A. (2018). Communication matters—pitfalls 
and promise of hightech communication devices in palliative care of severely physically 
disabled patients with amyotrophic lateral sclerosis. Frontiers in Neurology, 9, 603.

	 20.	 Borgestig, M., Al Khatib, I., Masayko, S., & Hemmingsson, H. (2021). The impact of 
eye-gaze controlled computer on communication and functional independence in chil-
dren and young people with complex needs–a multicenter intervention study. Develop-
mental Neurorehabilitation, 24(8), 511–524.

	 21.	 Majaranta, P. (Ed.). (2011). Gaze Interaction and Applications of Eye Tracking: 
Advances in Assistive Technologies: Advances in Assistive Technologies. Hershey, PA: 
IGI Global.

	 22.	 Holmqvist, E., Thunberg, G., & Peny Dahlstrand, M. (2018). Gaze-controlled commu-
nication technology for children with severe multiple disabilities: Parents and profes-
sionals’ perception of gains, obstacles, and prerequisites. Assistive Technology, 30(4), 
201–208.

	 23.	 Jacob, R. J., & Karn, K. S. (2003). Eye tracking in human-computer interaction and 
usability research: Ready to deliver the promises. In The mind’s eye (pp. 573–605). 
North-Holland.

	 24.	 Schütz, A. C., Braun, D. I., & Gegenfurtner, K. R. (2011). Eye movements and percep-
tion: A selective review. Journal of Vision, 11(5), 9–9.

	 25.	 Radach, R., Hyona, J., & Deubel, H. (Eds.). (2003). The Mind’s Eye: Cognitive and 
Applied Aspects of Eye Movement Research. North Holland: Elsevier.

	 26.	 Monty, R. A., & Senders, J. W. (Eds.). (2017). Eye movements and psychological pro-
cesses (Vol. 22). Routledge.

	 27.	 Marr, D. (2010). Vision: A computational investigation into the human representation 
and processing of visual information. MIT press.

	 28.	 Carpi, F., & De Rossi, D. (2007). Bioinspired actuation of the eyeballs of an android 
robotic face: Concept and preliminary investigations. Bioinspiration & Biomimetics, 
2(2), S50.

	 29.	 Walls, G. L. (1962). The evolutionary history of eye movements. Vision Research, 2(1–
4), 69–80.

	 30.	 Miller, J. M., & Robinson, D. A. (1984). A model of the mechanics of binocular align-
ment. Computers and Biomedical Research, 17(5), 436–470.

	 31.	 Chin, S. (2018). Visual vertigo: Vertigo of oculomotor origin. Medical Hypotheses, 116, 
84–95.

	 32.	 Shaad, D. J. (1938). Binocular vision and orthoptic procedure. Archives of Ophthalmol-
ogy, 20(3), 477–501.

	 33.	 Sliney, D. H. (1983). Eye protective techniques for bright light. Ophthalmology, 90(8), 
937–944.

	 34.	 Tomy, R. M. (2019). Pupil: Assessment and diagnosis. Kerala Journal of Ophthalmol-
ogy, 31(2), 167–171.

	 35.	 Calder, A. J., Lawrence, A. D., Keane, J., Scott, S. K., Owen, A. M., Christoffels, I., & 
Young, A. W. (2002). Reading the mind from eye gaze. Neuropsychologia, 40(8), 
1129–1138.

	 36.	 Hayhoe, M. M., Bensinger, D. G., & Ballard, D. H. (1998). Task constraints in visual 
working memory. Vision Research, 38(1), 125–137.

	 37.	 Ware, C., & Mikaelian, H. H. (1986, May). An evaluation of an eye tracker as a device 
for computer input2. In Proceedings of the SIGCHI/GI Conference on Human Factors in 
Computing Systems and Graphics Interface (pp. 183–188). New York: Association for 
Computing Machinery.

	 38.	 Wang, D., Mulvey, F. B., Pelz, J. B., & Holmqvist, K. (2017). A study of artificial eyes 
for the measurement of precision in eye-trackers. Behavior Research Methods, 49, 
947–959.



20 Artificial Intelligence-Based System for Gaze-Based Communication

	 39.	 Venugopal, D., Amudha, J., & Jyotsna, C. (2016, May). Developing an application using 
eye tracker. In 2016 IEEE International Conference on Recent Trends in Electronics, Infor-
mation & Communication Technology (RTEICT) (pp. 1518–1522). Bangalore: IEEE.

	 40.	 Kassner, M., Patera, W., & Bulling, A. (2014, September). Pupil: An open source plat-
form for pervasive eye tracking and mobile gaze-based interaction. In Proceedings of 
the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: 
Adjunct Publication (pp. 1151–1160). New York: Association for Computing Machinery.

	 41.	 Duchowski, A. T. (2002). A breadth-first survey of eye-tracking applications. Behavior 
Research Methods Instruments and Computers, 34(4), 455–470.

	 42.	 Holmqvist, K., & Blignaut, P. (2020). Small eye movements cannot be reliably measured 
by video-based P-CR eye-trackers. Behavior Research Methods, 52, 2098–2121.

	 43.	 Wyatt, H. J. (2010). The human pupil and the use of video-based eyetrackers. Vision 
Research, 50(19), 1982–1988.

	 44.	 Blignaut, P. (2014). Mapping the pupil-glint vector to gaze coordinates in a simple 
video-based eye tracker. Journal of Eye Movement Research, 7(1).

	 45.	 Coetzer, R. C., & Hancke, G. P. (2014). Development of a robust active infrared‐based 
eye tracker. IET Computer Vision, 8(6), 523–534.

	 46.	 Price, D., Kaputa, D., Sierra, D. A., & Enderle, J. (2009, April). Infrared-based eye-
tracker system for saccades. In 2009 IEEE 35th Annual Northeast Bioengineering Con-
ference (pp. 1–2). Cambridge, MA: IEEE.

	 47.	 Kim, D., Richards, S. W., & Caudell, T. P. (1997, March). An optical tracker for aug-
mented reality and wearable computers. In Proceedings of IEEE 1997 Annual Interna-
tional Symposium on Virtual Reality (pp. 146–150). Albuquerque, NM: IEEE.

	 48.	 Mantiuk, R., Kowalik, M., Nowosielski, A., & Bazyluk, B. (2012). Do-it-yourself eye 
tracker: Low-cost pupil-based eye tracker for computer graphics applications. In Advances 
in Multimedia Modeling: 18th International Conference, MMM 2012, Klagenfurt, Aus-
tria, January 4–6, 2012. Proceedings 18 (pp. 115–125). Berlin, Heidelberg: Springer.

	 49.	 Mokatren, M., Kuflik, T., & Shimshoni, I. (2018). Exploring the potential of a mobile 
eye tracker as an intuitive indoor pointing device: A case study in cultural heritage. 
Future Generation Computer Systems, 81, 528–541.

	 50.	 Asan, O., & Yang, Y. (2015). Using eye trackers for usability evaluation of health infor-
mation technology: A systematic literature review. JMIR Human Factors, 2(1), e4062.

	 51.	 Holmqvist, K., Örbom, S. L., & Zemblys, R. (2022). Small head movements increase 
and colour noise in data from five video-based P–CR eye trackers. Behavior Research 
Methods, 54(2), 845–863.

	 52.	 Youssef, R. A. B., Mohamed, A. S. E. D., & Ahmed, M. K. (2007, March). Reliable high 
speed iris detection for video based eye tracking systems. In The International Mul-
tiConference of Engineers and Computer Scientists (IMECS) (pp. 1877–1882). Hong 
Kong: IAENG.

	 53.	 Wildes, R. P. (1997). Iris recognition: An emerging biometric technology. Proceedings 
of the IEEE, 85(9), 1348–1363.

	 54.	 Tatler, B. W., Kirtley, C., Macdonald, R. G., Mitchell, K. M. A., & Savage, S. W. (2014). 
The active eye: Perspectives on eye movement research. Current trends in eye tracking 
research, 3–16.

	 55.	 Blignaut, P. (2013, October). A new mapping function to improve the accuracy of a 
video-based eye tracker. In Proceedings of the South African Institute for Computer Sci-
entists and Information Technologists Conference (pp. 56–59). New York: Association 
for Computing Machinery.

	 56.	 Hennessey, C., Noureddin, B., & Lawrence, P. (2006, March). A single camera eye-gaze 
tracking system with free head motion. In Proceedings of the 2006 Symposium on Eye 
Tracking Research & Applications (pp. 87–94). New York: Association for Computing 
Machinery.



21Introduction to Gaze-Based Communication

	 57.	 Valenti, R., Sebe, N., & Gevers, T. (2011). Combining head pose and eye location 
information for gaze estimation. IEEE Transactions on Image Processing, 21(2), 
802–815.

	 58.	 Todorović, D. (2006). Geometrical basis of perception of gaze direction. Vision Research, 
46(21), 3549–3562.

	 59.	 Sharma, A., & Abrol, P. (2013). Eye gaze techniques for human computer interaction: 
A research survey. International Journal of Computer Applications, 71(9).

	 60.	 Chandra, S., Sharma, G., Malhotra, S., Jha, D., & Mittal, A. P. (2015, December). Eye 
tracking based human computer interaction: Applications and their uses. In 2015 Inter-
national Conference on Man and Machine Interfacing (MAMI) (pp. 1–5). Bhubaneswar: 
IEEE.

	 61.	 Morimoto, C. H., Koons, D., Amit, A., Flickner, M., & Zhai, S. (1999, October). Keep-
ing an eye for HCI. In XII Brazilian Symposium on Computer Graphics and Image 
Processing (Cat. No. PR00481) (pp. 171–176). Campinas: IEEE.

	 62.	 Li, D., Babcock, J., & Parkhurst, D. J. (2006, March). openEyes: A low-cost head-
mounted eye-tracking solution. In Proceedings of the 2006 Symposium on Eye Track-
ing Research & Applications (pp. 95–100). New York: Association for Computing 
Machinery.

	 63.	 Móro, R., Daráz, J., & Bieliková, M. (2014, September). Visualization of gaze tracking 
data for UX testing on the web. In HT (Doctoral Consortium/Late-breaking Results/
Workshops).

	 64.	 Munoz, J., Yannakakis, G. N., Mulvey, F., Hansen, D. W., Gutierrez, G., & Sanchis, A. 
(2011, August). Towards gaze-controlled platform games. In 2011 IEEE Conference on 
Computational Intelligence and Games (CIG’11) (pp. 47–54). Seoul: IEEE.

	 65.	 Klaib, A. F., Alsrehin, N. O., Melhem, W. Y., Bashtawi, H. O., & Magableh, A. A. 
(2021). Eye tracking algorithms, techniques, tools, and applications with an emphasis 
on machine learning and Internet of Things technologies. Expert Systems with Applica-
tions, 166, 114037.

	 66.	 Eid, M. A., Giakoumidis, N., & El Saddik, A. (2016). A novel eye-gaze-controlled 
wheelchair system for navigating unknown environments: Case study with a person with 
ALS. IEEE Access, 4, 558–573.

	 67.	 Ishiguro, Y., Mujibiya, A., Miyaki, T., & Rekimoto, J. (2010, April). Aided eyes: Eye 
activity sensing for daily life. In Proceedings of the 1st Augmented Human International 
Conference (pp. 1–7). New York: Association for Computing Machinery.

	 68.	 Fathi, A., Li, Y., & Rehg, J. M. (2012). Learning to recognize daily actions using gaze. 
ECCV (1), 7572, 314–327.

	 69.	 Zander, T. O., Gaertner, M., Kothe, C., & Vilimek, R. (2010). Combining eye gaze input 
with a brain–computer interface for touchless human–computer interaction. Interna-
tional Journal of Human–Computer Interaction, 27(1), 38–51.

	 70.	 Admoni, H., & Scassellati, B. (2017). Social eye gaze in human-robot interaction: 
A review. Journal of Human-Robot Interaction, 6(1), 25–63.

	 71.	 Saran, A., Majumdar, S., Short, E. S., Thomaz, A., & Niekum, S. (2018, October). 
Human gaze following for human-robot interaction. In 2018 IEEE/RSJ International 
Conference on Intelligent Robots and Systems (IROS) (pp. 8615–8621). Madrid: IEEE.

	 72.	 Shishkin, S. L., Zhao, D. G., Velichkovsky, B. M., & Isachenko, A. V. (2017). Gaze-and-
brain-controlled interfaces for human-computer and human-robot interaction. Psychol-
ogy in Russia, 10(3), 120. 



22� DOI: 10.1201/9781003373940-2

2 Assistive Technologies 
to Implicit Intention 
Communication 
Through Visual Behavior 
for Daily Living Activities

Implicit intention communication through visual behavior refers to using nonverbal 
cues, such as body language, facial expressions, and gestures, to convey intentions 
or messages to others. Daily living activities include reaching for a utensil at the 
dinner table to indicate a desire to eat or pointing toward an object to indicate a need 
or preference [1]. Implicit intention communication through visual behavior is an 
essential aspect of human communication, as it allows individuals to communicate 
with others without the need for explicit verbal communication [2]. This can be par-
ticularly useful when verbal communication [3] is difficult or impossible, such as in 
noisy environments or with individuals who speak a different language. Examples 
of visual behaviors [4] that can be used to communicate intentions in daily living 
activities include the following:

	 1.	Pointing: Pointing to an object can indicate a desire or preference for that 
object.

	 2.	Facial expressions: Smiling, frowning, or making other facial expressions 
can communicate emotions and intentions.

	 3.	Eye contact: Making eye contact can indicate interest, attention, or a desire 
for communication.

	 4.	Gestures such as waving, nodding, or shaking the head can convey messages 
needed for verbal communication.

	 5.	Body language: Posture, positioning, and body movement can convey mes-
sages about intentions, emotions, and attitudes.

Overall, implicit intention communication through visual behavior is a powerful tool 
for individuals to communicate their needs, desires, and intentions in daily activi-
ties. By paying attention to nonverbal cues, individuals can better understand and 
communicate with each other, even when verbal communication is not possible or 
practical.

https://doi.org/10.1201/9781003373940-2
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2.1 � BACKGROUND OF IMPLICIT INTENTION 
COMMUNICATION THROUGH VISUAL BEHAVIOR

The concept of implicit intention communication through visual behavior has been 
studied in various fields, including psychology, sociology, and linguistics [5]. It is a 
fundamental aspect of human communication in all cultures and societies. Studies 
have shown that nonverbal communication makes up a significant portion of all human 
communication, with some estimates suggesting that up to 93% of communication 
is nonverbal [6–8]. Nonverbal communication can convey various messages, includ-
ing emotional states, attitudes, intentions, and social status [9, 10]. Researchers have 
identified nonverbal cues that can communicate preferences through visual behavior, 
including facial expressions, eye contact, body language, and gestures [11–13]. These 
cues can convey various intentions, from expressing interest or attraction to indicating 
a need or desire [14]. Implicit intention communication through visual behavior is 
essential when verbal communication may be difficult or impossible, such as in noisy 
environments or with individuals who do not speak the same language. It is also nec-
essary for individuals with communication difficulties, such as those with autism [15] 
spectrum disorders, who may rely heavily on nonverbal cues to communicate their 
intentions and needs.

Overall, the study of implicit intention communication through visual behavior 
highlights the importance of nonverbal communication in human interaction and 
emphasizes the need for individuals to be aware of and skilled in reading and using 
nonverbal cues in daily living activities.

2.1.1  Nonverbal Communication

Nonverbal communication refers to using nonverbal cues, such as body language, 
facial expressions, tone of voice, and gestures, to convey messages to others [16]. It 
is a fundamental aspect of human communication and plays a significant role in how 
we interact and understand each other.

Nonverbal cues can convey a wide range of information, including emotions, atti-
tudes, intentions, and social status. For example, a smile can indicate happiness or 
friendliness, while a frown can indicate sadness or disapproval. The tone of voice can 
convey emotions, such as anger or sarcasm, while gestures can share messages, such 
as pointing to an object to indicate a desire for it [17, 18]. Nonverbal communica-
tion can also complement verbal communication, reinforcing or contradicting verbal 
statements. For example, if someone says they are happy, but their facial expression 
is sad, the nonverbal cues may suggest that their verbal statement is not genuine [19].

Nonverbal communication is essential when verbal communication may be dif-
ficult or impossible [20], such as in noisy environments or with individuals who do 
not speak the same language. It is also necessary for individuals with communication 
difficulties, such as those with autism spectrum disorders [21, 22], who may rely 
heavily on nonverbal cues to communicate their intentions and needs. Nonverbal 
communication is a complex and multifaceted aspect of human interaction that plays 
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a crucial role in understanding and connecting [23]. Understanding and reading, and 
using nonverbal cues, are important to effective communication. This research has 
identified several different types of nonverbal communication.

2.1.1.1  Facial Expression
Facial expressions are a form of nonverbal communication that can convey various 
emotions and social cues. For example, a smile can signal happiness or friendliness, 
while a frown can indicate sadness or disapproval [24–27]. Other facial expressions, 
such as raised eyebrows or a furrowed forehead, can show surprise or concern [28, 29]. 
Facial expressions [30, 31] are essential to human communication and can provide valu-
able information about a person’s emotional state, intentions, and attitudes.

2.1.1.2  Gestures
Gesture recognition uses computer algorithms and technology to interpret and under-
stand human gestures and movements [32, 33]. This can involve analyzing data from 
cameras or other sensors to detect and recognize specific gestures or body move-
ments, such as hand signals, facial expressions, or body posture [34, 35].

Gesture recognition technology has many applications [36], including gaming, 
healthcare, robotics, and security systems. For example, gesture recognition can be 
used to control video games or VR systems [37] using hand movements or body 
posture or to monitor and analyze patient activities in healthcare settings to help with 
rehabilitation or injury prevention [38]. In security systems, gesture recognition can 
identify and track individuals based on their body movements or facial expressions. 
Overall, gesture recognition is an exciting area of research and development with 
many potential applications in various fields.

2.1.1.3  Paralinguistic
Paralinguistics [39] refers to the nonverbal aspects of spoken communication, such 
as tone of voice, pitch, volume, and pace [40]. These paralinguistic cues can convey 
meaning and emotion not given through words. For example, a speaker’s tone of 
voice and intonation can indicate sarcasm or excitement, while their pace and volume 
can indicate urgency or emphasis [41]. Paralinguistic cues are essential to commu-
nication and can significantly influence how a message is perceived and understood. 
They can also convey social cues and establish a rapport with others. For example, 
a friendly tone of voice and a warm greeting can develop a positive relationship 
with someone. In contrast, a stern tone of voice can convey authority or disapproval. 
Understanding and effectively using paralinguistic cues can significantly enhance 
communication and help build stronger relationships.

2.1.1.4  Body Language and Posture
Body language and posture are nonverbal cues that convey information about a per-
son’s thoughts, feelings, and intentions. Body language refers to a person’s various 
physical movements and gestures, such as facial expressions, hand gestures, and 
body posture. Posture refers to how a person holds their body, including their posi-
tion, alignment, and tension [42]. Body language and posture can convey various 
emotions and social cues [43]. For example, slouching and avoiding eye contact may 
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indicate discomfort or insecurity, while standing tall with an open posture may give 
confidence and assertiveness. Other body language cues, such as crossed arms or 
tapping feet, can indicate boredom, impatience, or defensiveness.

Understanding and effectively using body language and posture can be valuable 
communication tools and help build rapport with others [43]. By paying attention to 
these nonverbal cues, we can gain insight into a person’s emotional state and adjust 
our communication style accordingly. Additionally, by being aware of our body lan-
guage and posture, we can communicate our thoughts and feelings more effectively 
and create a positive impression on others.

2.1.1.5  Proxemics
Proxemics studies how people use and perceive space in social situations [44]. It 
involves the analysis of interpersonal distances, as well as the use of physical space 
and territory to communicate social and cultural messages [45]. In many cultures, 
different distances are maintained between people based on the nature of the social 
relationship and the interaction context. For example, in some cultures, close physical 
proximity indicates intimacy or friendship; in others, a greater distance is main-
tained to show respect or deference.

Proxemics can also be influenced by other factors, such as the size and layout of 
physical spaces, the use of objects and furniture, and the degree of personal freedom 
considered appropriate in a given context. The study of proxemics has important 
implications for communication and social interaction [46], as it can help us to under-
stand how people use and respond to space in different contexts. By being aware of 
the role of proxemics in communication, we can better navigate social situations and 
communicate effectively with people from different cultural backgrounds.

2.1.1.6  Eye Gaze
Eye gaze refers to the direction and duration of a person’s eye movements, includ-
ing where they are looking and for how long. Eye gaze can convey a wide range of 
social cues and emotions, an essential aspect of nonverbal communication [47]. For 
example, direct eye contact can signal confidence, trustworthiness, and interest in 
the other person, while avoiding eye contact may indicate shyness, disinterest, or 
deception. Additionally, eye gaze can regulate conversation, indicate turn-taking, 
and express emotions such as surprise, confusion, or anger.

Research has shown that eye gaze can also powerfully affect social interactions 
and behavior. For example, maintaining eye contact can increase trust and rapport 
between individuals, while breaking eye contact or looking away can signal discom-
fort or disapproval [48]. Eye gaze is a complex and vital aspect of nonverbal com-
munication and can significantly influence how social interactions are perceived and 
understood. By paying attention to eye gaze and other nonverbal cues, we can gain 
valuable insights into the thoughts, feelings, and intentions of others and communi-
cate more effectively in a wide range of contexts.

2.1.1.7  Haptics
Haptics refers to the study of touch and its role in communication and perception. It 
involves the analysis of tactile sensations and their effects on human behavior and 
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emotions. Haptics can convey a wide range of social and emotional messages, an 
important aspect of nonverbal communication [49]. For example, a hug or a pat on 
the back can signal support or affection, while a handshake can convey respect or 
professionalism. Using haptic feedback in technology, such as touch screens or gam-
ing controllers, can enhance user experience and improve performance [50].

Research has shown that touch can powerfully affect human behavior and emo-
tions. For example, a friendly touch can increase trust and rapport, while an aggres-
sive touch can elicit fear or anxiety. The study of haptics has important implications 
for communication, psychology, and technology. By understanding the role of touch 
in communication and perception, we can develop more effective strategies for build-
ing relationships, designing technology, and promoting positive social interactions.

2.1.1.8  Appearance
Appearance refers to how a person looks and presents themselves, including cloth-
ing, grooming, and physical features [51]. It is an essential aspect of nonverbal com-
munication, as it can convey social and cultural messages and influence how others 
perceive and interact with us. People often use appearance to express their identity 
and share their social status, values, and personality [52]. For example, clothing can 
signal a person’s occupation, social class, or cultural affiliation, while hairstyle and 
makeup can convey personal style and self-expression.

Research has shown that appearance can have a powerful effect on how others per-
ceive and treat people. For example, people perceived as attractive or well-groomed 
may be seen as more competent, trustworthy, and socially skilled than those who are 
not. Appearance is essential to nonverbal communication and can significantly influ-
ence social interactions and relationships. We can improve our communication skills 
and develop more positive relationships with those around us by paying attention to 
our appearance and how others perceive it.

2.1.2 B ackground of Implicit Intention Communication

Implicit intention communication refers to the process by which people communicate 
their intentions indirectly, often through nonverbal cues such as body language, tone 
of voice, or facial expressions [53]. This form of communication is often used when 
people are reluctant to express their intentions directly, because of social norms, cul-
tural taboos, or personal reasons. The study of implicit intention communication has 
a long history in psychology and communication research [54, 55]. Early research in 
this area focused on the role of nonverbal cues in interpersonal attraction and social 
influence. Later research expanded on this work to explore how implicit intention 
communication is used in various social contexts, including negotiation, conflict res-
olution, and persuasion.

In recent years, the study of implicit intention communication has gained renewed 
interest with the emergence of new technologies and communication platforms. For 
example, researchers have explored how people use emojis and other nonverbal cues 
in digital communication to convey their intentions and emotions [56]. Overall, 
the study of implicit intention communication is an important area of research in 
communication and psychology. By understanding how people communicate their 
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intentions implicitly, we can develop better strategies for effective communication 
and build more positive social relationships.

Implicit interaction refers to using computer systems and technology designed 
to operate without requiring active engagement from users. This type of interaction 
is often used to support people with disabilities or impairments, such as those with 
motor disabilities or visual impairments, who may have difficulty using traditional 
user interfaces.

In the context of HCI [57, 58], implicit interaction can take many forms, such 
as gaze-based interaction, speech recognition, or touchless interfaces. These inter-
faces are designed to respond to the user’s actions and behavior naturally and intu-
itively, without requiring direct input. For example, gaze-based interaction systems 
use eye-tracking technology to detect the user’s gaze and allow them to control the 
computer interface with their eyes-speech recognition systems to control the com-
puter through spoken commands without requiring physical input. Touchless inter-
faces use motion sensors and other technologies to detect the user’s movements and 
gestures, allowing them to control the computer without touching the screen or key-
board. Overall, implicit interaction is an important area of research in HCI, as it can 
provide a more accessible and inclusive user experience for people with disabilities 
or impairments. By developing more advanced and sophisticated implicit interaction 
techniques, we can improve the usability and accessibility of computer systems and 
technology for all users.

The gaze-based interaction can require little physical effort from users, which 
makes it an attractive option for people with motion impairments or disabilities. 
However, it is essential to note that age, illness, or injury can also affect the ability 
to control gaze. In some cases, people with disabilities or impairments may require 
assistance or additional support to use gaze-based interaction systems effectively. 
This may include specialized equipment or training to help users develop the skills 
and techniques to control their gaze and interact with the system. Additionally, it is 
essential to consider the usability and accessibility of gaze-based interaction systems 
for older adults and people with disabilities. Designers and developers need to ensure 
that these systems are designed with the needs and abilities of these users in mind 
and that they are accessible and easy to use for all users, regardless of their age or 
physical abilities.

Comprehending intent is critical to developing artificial cognitive agents like robots 
[59] that can interact with humans and offer different services. To be effective, these 
agents must understand the intentions and needs of humans and respond appropri-
ately to their requests. One way to achieve this is through natural language processing 
(NLP) [60], which involves using machine learning and other techniques to analyze 
and understand human language. NLP can help robots understand the meaning and 
context of human speech, as well as the intentions and emotions behind it.

Another approach is to use computer vision and other sensing technologies to 
interpret human gestures, facial expressions, and body language. These technologies 
can help robots infer the intentions and needs of humans based on their physical cues 
and behaviors. In addition, to understanding intent, artificial cognitive agents must 
also be able to respond appropriately and effectively to human requests. This requires 
advanced planning and decision-making capabilities and adapting and learning from 
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new situations. Overall, developing artificial cognitive agents that can comprehend 
and respond to human intent is an important area of research in robotics and artificial 
intelligence. As these technologies continue to advance, they have the potential to 
revolutionize how we interact with machines and make a wide range of services more 
accessible and effective for humans.

Yu et al. [61] conducted an experiment where participants were asked to interact 
with a social robot to persuade them to change their dietary habits. The study exam-
ined how the language and behavior of the robot affected participants’ willingness to 
adopt healthier eating habits. The study showed that the language robot’s language 
and behavior significantly impacted participants’ willingness to adopt healthier eat-
ing habits. Participants who interacted with a robot with more persuasive language 
and displayed positive behaviors were likelier to change their diet.

The authors concluded that social robots could become effective persuasive 
agents in HRIs. They suggest that social robots could be used in various settings, 
such as healthcare and education, to help people adopt healthier habits and behaviors. 
Overall, the study highlights the potential of social robots as persuasive agents and 
underscores the importance of designing robots that can effectively communicate 
with and influence humans. The method for recognizing human purpose is shown 
in Figure 2.1.

Identifying human intentions can be challenging for robots, especially when 
multiple actions are required to achieve a goal. However, using machine learning 
and other artificial intelligence techniques, robots can learn to recognize behavior 
patterns and identify their intentions. For example, a robot could observe a person 

FIGURE 2.1  Example of human implicit intention understanding.

Source: adopted from Yu et al.[61].
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taking various measures to get a coffee cup, such as walking to the kitchen, opening 
a cabinet, and reaching for a coffee mug. By analyzing this sequence of actions and 
connecting the object information (e.g., the person is going for a coffee mug), the 
robot could infer that the person intends to get a cup of coffee.

To achieve this, the robot must be equipped with sensors and cameras to per-
ceive its environment and sophisticated algorithms to analyze and interpret the data 
it collects. Additionally, the robot must be trained on significant human actions and 
intentions datasets to accurately recognize and respond to different situations. While 
identifying human intentions can be complex, advances in artificial intelligence and 
robotics are making it increasingly possible for robots to understand and interact 
with humans more naturally and intuitively.

Gaze-based interaction paradigms refer to HCI where the user’s gaze is used as the 
primary input for controlling assistive technologies such as wheelchairs, prosthetic 
limbs, and other devices. This approach can benefit people with physical disabilities 
or impairments that make using traditional input devices such as keyboards or joy-
sticks difficult. To develop a gaze-based interaction paradigm, researchers typically 
use eye-tracking technology to detect the direction and duration of a person’s gaze. 
By analyzing these data, they can create algorithms and user interfaces that allow the 
person to control the assistive technology using their eyes.

One example of a gaze-based interaction paradigm for assistive technology is the 
GazeCoin system [62] developed by researchers at the University of Essex. This sys-
tem uses eye-tracking technology and machine-learning algorithms to allow people 
with motor impairments to control a wheelchair using their gaze. Another exam-
ple is the EyeHarp system [63], developed by researchers at the Universitat Pompeu 
Fabra in Spain. This system uses eye-tracking technology to allow people with motor 
impairments to play a musical instrument using their gaze. Overall, gaze-based inter-
action paradigms have the potential to significantly improve the quality of life for 
people with physical disabilities or impairments. By allowing them to control assis-
tive technologies using their gaze, these systems can provide greater independence, 
autonomy, mobility, and new opportunities for self-expression and creativity.

Electroencephalography (EEG) [64–66] is a technique used to measure the brain’s 
electrical activity. It involves placing electrodes on the scalp and recording the elec-
trical signals generated by the brain. One advantage of EEG is that it is non-invasive 
and has a high resolution, meaning that it can capture changes in brain activity in 
milliseconds. This makes it useful for studying brain activity linked to ideas, emo-
tions, and behavior. One method of analyzing EEG data is to use event-related poten-
tials (ERPs), electrical signals that occur in response to specific events or stimuli. 
By analyzing these ERPs, researchers can identify brain activity patterns associated 
with different cognitive processes, such as attention, memory, and language. For 
example, researchers might use EEG and ERP analysis to study how the brain pro-
cesses language. They might present participants with a series of words or sentences 
and record their brain activity using EEG. By analyzing the ERPs associated with 
different aspects of language processing (e.g., semantic processing and syntactic pro-
cessing), they can gain insights into how the brain represents and processes language. 
EEG and ERP analysis are powerful tools for studying brain activity and can provide 
valuable insights into various cognitive functions and behaviors.
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2.1.3 V isual Behavior Studies of Implicit Intention

Visual behavior studies of implicit intention involve analyzing patterns of eye gaze 
and other visual behaviors to infer the intentions of an individual, even when those 
intentions are not explicitly stated. For example, researchers might use eye-tracking 
technology to study how people look at and interact with objects in their environ-
ment. By analyzing eye-gaze patterns and other visual behaviors, they can infer the 
individual’s intentions, preferences, and goals.

One example of visual behavior studies of implicit intention is the study of visual 
attention in driving. Researchers might use eye-tracking technology to study how 
drivers visually scan their environment while driving. By analyzing patterns of eye 
gaze and other visual behaviors, they can gain insights into how drivers anticipate 
and respond to potential hazards on the road.

Another example is the study of visual attention in social interactions [67]. 
Researchers might use eye-tracking technology to study how people look at and 
respond to social cues such as facial expressions and body language. By analyzing 
patterns of eye gaze and other visual behaviors, they can gain insights into how peo-
ple infer the intentions and emotions of others in social interactions. Overall, visual 
behavior studies of implicit intent can provide valuable insights into how people 
interact with their environment and each other. By analyzing eye-gaze patterns and 
other visual behaviors, researchers can better understand how people infer intentions 
and make decisions based on implicit cues.

Gaze-based HRI is still a relatively uncommon method of interaction, particularly 
at the level of inferring the intention of the human user [68]. HRI fundamentally dif-
fers from HCI in involving interactions between autonomous and cognitive robotic 
systems and humans in dynamic real-world settings. This presents new challenges 
for developing HRI-based systems, including accounting for human behavior’s com-
plex and dynamic nature and ensuring that robotic systems can accurately infer 
human intentions.

One of the challenges of developing gaze-based HRI systems is that they must be 
able to accurately interpret patterns of eye gaze and other visual behavior to infer the 
intentions of the human user. This requires the use of computer vision and machine 
learning techniques to analyze and interpret visual data in real time. Another chal-
lenge is ensuring that HRI systems can adapt to the dynamic nature of human behav-
ior and respond appropriately to changes in the environment or the user’s intentions. 
This requires the development of sophisticated algorithms and control systems capa-
ble of processing and responding to large amounts of sensory data in real time.

Despite these challenges, there is growing interest in developing gaze-based 
HRI systems, particularly in healthcare, education, and entertainment. As technol-
ogy advances, we will likely see more sophisticated and effective gaze-based HRI 
systems that can accurately infer the intentions of human users in a wide range of 
settings.

Gaze-operated systems have been developed for various applications, including 
wheelchair control, mobile devices, quadcopters, and laparoscopes. In the case of 
a gaze-operated wheelchair, the user’s eye movements are tracked and translated 
into control signals that control the direction and speed of the wheelchair [69]. This 
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allows individuals with limited mobility to operate the wheelchair using only their 
eyes without manual controls.

Similarly, in the case of remotely controlled mobile devices, quadcopters, and lap-
aroscopes, gaze-operated systems can be used to control the movement and direction 
of the device. This can be particularly useful in situations where manual control is 
difficult or impossible, such as in hazardous environments or during surgical pro-
cedures. Overall, the use of gaze-operated systems has the potential to significantly 
improve accessibility and mobility for individuals with disabilities and enhance the 
efficiency and safety of a wide range of applications in fields such as healthcare, 
transportation, and aerospace. As technology advances, we will likely see more 
sophisticated and effective gaze-operated systems developed for an even more com-
prehensive range of applications.

Understanding the context of task performance and the role of attention, includ-
ing visual attention, is critical in HCI. When designing interfaces and interactions 
between humans and computers, it is important to consider the specific context in 
which the task will be performed. This includes factors such as the user’s physical 
environment, experience with technology, cognitive abilities, and goals and moti-
vations for completing the task. By considering these factors, designers can create 
interfaces tailored to the user’s needs and capabilities, resulting in a more efficient 
and effective interaction. Visual attention is particularly significant as it is critical 
in determining how users interact with digital interfaces [70]. By understanding the 
mechanisms of visual attention and how they can be influenced by factors such as 
task demands, cognitive load, and interface design, designers can create interfaces 
that are more visually salient and easier to use. Overall, the study of context and 
attention is critical in HCI, as it enables designers to create interfaces tailored to the 
user’s needs, resulting in more efficient and effective interactions. Factors that give 
inspiration and motivation for this include the following:

	 1.	 In some situations, users may have their hands occupied with other tasks or 
limited or no use of their limbs due to disabilities. This can make using tra-
ditional input devices, such as keyboards, mice, or touchscreens, difficult or 
impossible. In such situations, alternative input methods may be necessary 
for users to interact with digital interfaces. One example of an alternative 
input method is gaze-based interaction, which uses eye movements to con-
trol the interface. This can be particularly useful for users with limited or 
no use of their limbs, as it allows them to interact with the interface using 
only their eyes. Other alternative input methods include voice recognition, 
which will enable users to control the interface using spoken commands, 
and haptic feedback, which provides tactile feedback to the user to enhance 
their interaction. Overall, the development of alternative input methods is 
critical in enabling users with disabilities to access digital interfaces and to 
participate fully in the digital world. As technology advances, we will likely 
see even more innovative and effective alternative input methods developed 
to meet the needs of users with diverse abilities and needs.

	 2.	Eye movements are generally faster and more precise than movements 
of other body parts, such as the hands or the head. This makes eye-based 
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interaction a potentially efficient and effective way to control digital inter-
faces. When using a cursor to interact with a digital interface, the user must 
visually locate and fixate on the target point and then use a pointing device 
to move the cursor to that point and activate it. This process can be time-
consuming and requires a high degree of precision. In contrast, eye-based 
interaction allows the user to fixate directly on the target point, eliminating 
the need for a cursor or other pointing device. This can be particularly useful 
for users with disabilities or other conditions that make it difficult or impos-
sible to use traditional input methods. However, eye-based interaction also 
presents challenges, such as the need for accurate eye-tracking technology 
and ensuring that the interface responds appropriately to the user’s gaze. 
Eye-based interaction can be a powerful tool for interacting with digital 
interfaces. Still, it is essential to consider the needs and abilities of the user 
carefully and to design interfaces optimized for eye-based interaction.

	 3.	Traditional input methods such as keyboards and pointing devices can cause 
fatigue and even physical injury with prolonged use, particularly for users 
with disabilities or other conditions that affect their mobility. Eye-based 
interaction, on the other hand, can provide a low-fatigue and low-risk alter-
native. By using eye gaze to control digital interfaces, users can avoid the 
physical strain associated with traditional input methods and maintain a 
comfortable and sustainable level of interaction. However, it is essential to 
note that eye-based interaction has unique challenges, such as the need for 
accurate and reliable eye-tracking technology, the potential for eye strain 
or fatigue with prolonged use, and the need for appropriate interface design 
and user training. Eye-based interaction can be a valuable addition to the 
range of input modalities available in HCI. Still, it is important to consider 
the needs and abilities of the user carefully and to design interfaces opti-
mized for eye-based interaction.

Eye-tracking technology is becoming more widely available and is utilized for various 
purposes, including directing the action of physically controlled agents like robots. 
Eye-tracking technology is a precise and dependable method of monitoring a user’s 
gaze point on a computer screen or any other visual stimuli. Like other familiar input 
sources such as a mouse, keyboard, or joystick, eye-gaze direction may be employed 
as an input modality in robot control systems. In settings where utilizing hands or 
speech may not be possible or safe, eye tracking may provide a natural and straight-
forward approach for people to engage with robots. There are several possible uses for 
eye-tracking robot control, including industry, healthcare, and assistive technologies. 
Eye tracking, for instance, may be used to operate a robotic arm to carry out delicate 
surgery, help people with impairments with daily duties, or even enable remote employ-
ees to handle robots in dangerous settings. It is crucial to remember that eye-tracking 
technology still has considerable drawbacks, especially regarding accuracy and resil-
ience under various circumstances. When using eye-tracking technology in delicate 
applications, it is crucial to consider user privacy and data security concerns.

Human beings can fixate their gaze on a specific object or location, allowing the 
brain to process and comprehend the visual information that is being presented. 
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These periods of fixating the eyes on a particular visual component are called fix-
ations. During fixation, the eyes are relatively still, allowing the visual system to 
gather more detailed information about the object being viewed. This process is cru-
cial for visual perception and recognition, as it will enable the brain to analyze and 
interpret the details of the object. In eye-tracking studies, fixations are often used 
to measure attention, as they indicate which objects or regions of interest are being 
attended to by the viewer. By tracking participants’ fixation patterns, researchers can 
gain insights into how humans perceive and process visual information and how this 
information is used in decision-making and other cognitive tasks. Fixation patterns 
can also create more compelling user interfaces and displays, as they can reveal 
which areas of a visual stimulus are most salient or relevant to the viewer. This infor-
mation can be used to optimize the design of displays and interfaces, making them 
more efficient and user-friendly.

The gaze can reveal a person’s visual attention and provide insights into their cog-
nitive processes and intentions [71]. By tracking a person’s gaze, researchers can deter-
mine which visual stimuli or objects a person is attending to and for how long. This 
information can be used to infer the person’s goals, intentions, and motivations. For 
example, if a person is fixating on a particular object, it may suggest that they are inter-
ested in or planning to interact with it. In addition, gaze can also provide clues about a 
person’s emotional state and level of engagement [72]. For example, if a person avoids 
eye contact, it may indicate that they feel anxious or uncomfortable. The gaze is a pow-
erful indicator of a person’s cognitive and emotional processes. It can provide valuable 
information in various fields, including psychology, neuroscience, marketing, and HCI.

2.2  OVERVIEW OF EYE-GAZE TRACKING

Eye-gaze tracking is a technique that involves using specialized hardware and soft-
ware to monitor and record the movements of a person’s eyes. Eye-gaze tracking 
technology can be used to measure a variety of eye movements, including fixations, 
saccades, and smooth pursuits. Eye-gaze-tracking systems typically use cameras or 
sensors to track the position of the eyes relative to the head, allowing the system to 
determine where the person is looking on a screen or in the real world. These systems 
can also measure the duration and frequency of fixations, the speed and direction 
of saccades, and the smoothness of pursuits. Eye-gaze tracking has various appli-
cations in various fields, including psychology, neuroscience, marketing, HCI, and 
robotics [73]. For example, eye-gaze tracking can be used to study visual attention 
and perception, assess cognitive and emotional processes, and develop more com-
pelling user interfaces and displays. In recent years, eye-gaze tracking technology 
has become more accessible, with new products and systems being developed for 
consumer and industrial use. Eye-gaze tracking is now used in various applications, 
including assistive technology, gaming, and VR. However, it is essential to note that 
eye-gaze tracking technology still has some limitations, particularly regarding accu-
racy and reliability under varying conditions. It is also important to consider ethical 
and privacy concerns when using eye-gaze tracking technology, particularly in sen-
sitive applications. The video eye gaze is tracked with the picture domain and the 
gazing area, as shown in Figure 2.2.
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2.2.1 I mage Domain

Video-based eye-gaze tracking typically involves detecting and localizing the posi-
tion of the eyes in each frame of the video. This process can be divided into two main 
steps: Eye detection and eye location. Eye detection refers to identifying the presence 
of eyes in an image or video frame. This can be done using various techniques, 
including template matching, Haar cascades, and machine learning algorithms [74]. 
Eye location, on the other hand, involves determining the precise position of the eyes 
within the image or video frame. This can be done using various techniques, includ-
ing geometric models, pupil tracking, and corneal reflection tracking. The classifica-
tion of eye detection and location techniques is often carried out concurrently, as the 
two processes are closely related and dependent on each other [75]. For example, eye 
location accuracy depends on eye detection accuracy, and vice versa. Various fac-
tors can affect the performance of eye detection and location techniques, including 
lighting conditions, head pose, and occlusions. Therefore, researchers are continually 
developing new strategies and algorithms to improve the accuracy and robustness of 
video-based eye-gaze-tracking systems. The techniques of detecting eyes and locat-
ing them are listed in Figure 2.2 in particular.

2.2.1.1  Shape-Based Method
Shape-based eye detection is a technique used in computer vision and image process-
ing to detect the presence and location of eyes in images or videos. This technique 
analyzes the shape and appearance of the eyes and their surrounding areas [76]. In 
shape-based eye detection, the eyes are typically modeled as elliptical shapes, with 
the pupil located near the ellipse’s center. The algorithm uses template matching, edge 
detection, and feature extraction techniques to search for image regions matching this 
shape and location. Shape-based eye detection can be used in various applications, 
including eye-gaze tracking, facial recognition, and biometric identification [77]. One 

FIGURE 2.2  The field of video-based eye-gaze tracking.
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advantage of this technique is that it can be used in real time, making it suitable 
for applications such as video-based eye-tracking and driver-monitoring systems. 
However, there are some limitations to shape-based eye detection. For example, the 
accuracy of the technique can be affected by variations in lighting, head pose, and 
occlusions, such as glasses or hair. Additionally, some people may have eye shapes or 
facial features unsuitable for this technique. Overall, shape-based eye detection helps 
detect and localize eyes in images and videos. Still, it should be used with other meth-
ods to improve accuracy and robustness.

2.2.1.2  Appearance-Based Method
Appearance-based eye detection is a technique used in computer vision and image 
processing to detect the presence and location of eyes in images or videos based 
on their appearance rather than their shape. This technique uses machine learning 
algorithms to learn the appearance of eyes from training images and then applies this 
knowledge to detect eyes in new images [78]. In appearance-based eye detection, the 
algorithm typically uses a classifier trained on a dataset of eye images, with positive 
examples (i.e., images of eyes) and negative examples (i.e., images without eyes). 
The classifier is trained to distinguish between these two classes based on features 
extracted from the images, such as texture, color, and gradient information. Once the 
classifier is introduced, it can detect eyes in new images or videos by scanning the 
image or video frame for regions that match the appearance of the eyes. This tech-
nique can be used in real-time applications such as eye-gaze tracking, facial recogni-
tion, and biometric identification. One advantage of appearance-based eye detection 
is that it can be more robust to variations in lighting, head pose, and occlusions, such 
as glasses or hair, than shape-based techniques. However, it requires much training 
data and can be computationally expensive. Overall, appearance-based eye detection 
helps detect and localize eyes in images and videos, particularly in applications that 
require real-time performance and robustness to varying conditions.

2.2.1.3  Feature-Based Method
Feature-based eye detection is a technique used in computer vision and image pro-
cessing to detect the presence and location of eyes in images or videos based on 
specific features unique to the eyes, such as the iris, eyelids, and eyelashes. This 
technique relies on identifying these features and using them to locate the position of 
the eyes. In feature-based eye detection, the algorithm typically uses techniques such 
as edge detection, contour analysis, and template matching to find the features of the 
eyes [79]. For example, the iris can be detected using circular Hough transforms or 
pattern recognition techniques, while the eyelids and eyelashes can be detected using 
edge detection and contour analysis. Once the features of the eyes are identified, the 
position and orientation of the eyes can be determined using geometric models or 
machine learning algorithms. This technique can be used in real-time applications 
such as eye-gaze tracking, driver-monitoring systems, and biometric identification. 
One advantage of feature-based eye detection is that it can be more accurate and 
robust to variations in lighting, head pose, and occlusions such as glasses or hair than 
other techniques. However, it can also be computationally expensive and requires 
much training data. Overall, feature-based eye detection helps detect and localize 
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eyes in images and videos, particularly in applications that require high accuracy and 
robustness to varying conditions. Various detection techniques and locations of the 
eyes are presented in Figures 2.2 and 2.3.

2.2.2 G aze Domain

The gaze field is a critical component of a video gaze-tracking system and refers to 
the region of space that is visible to the user’s eyes and can be tracked by the sys-
tem. The gaze field consists of two primary functions: Calibration and gaze tracking. 
Calibration maps the user’s eye movements to a specific region of space. This is 
typically done by asking the user to look at a series of points on a screen while the 
system records the position of their gaze [80]. These data then create a calibration 
function that maps eye movements to positions in the gazing field. Once the cali-
bration function has been established, the system can then track the user’s gaze as 
they look at different objects in the gazing field. This is typically done using one or 
more cameras that capture images of the user’s eyes and track their movements in 
real time. Gaze tracking can be used for various applications, including eye-gaze-
controlled interfaces, HCI, and usability testing. By monitoring the user’s gaze, the 
system can determine where the user is looking on a screen or in the environment, 
which can be used to control the movement of a cursor, select objects on a screen, 
or provide feedback to the user. Overall, the gazing field is a critical element of a 
video gaze-tracking system, providing the foundation for accurate and reliable gaze 
tracking in various applications. Calibration and gaze tracking are critical functions 
of the gazing field, enabling the system to map eye movements to positions in space 
and follow the user’s gaze in real time.

2.2.2.1  Calibration
Gaze calibration establishes a mapping function between the user’s eye movements 
and the corresponding positions in the visual space. Gaze calibration ensures accu-
rate and reliable gaze tracking in a video gaze-tracking system. During gaze calibra-
tion, the user is typically asked to look at a series of targets displayed on a screen or 
in the environment [81, 82]. At the same time, the system records the position of their 

FIGURE 2.3  Methods of detecting eyes and location. (a) Open eye shape and contours by 
fitting a geometric eye region model; (b) eye photometric look using machine learning and 
template matching technology; (c) unique local characteristics, for example, limbus borders, 
for a particular eye area.
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gaze. The targets may be presented at different locations, distances, and angles to 
cover the entire gaze field and capture a range of eye movements. The data collected 
during gaze calibration are then used to create a calibration function that maps eye 
movements to positions in the visual space.

This calibration function is typically stored in the system and used to track the 
user’s gaze during subsequent use. There are various techniques for gaze calibration, 
including point-based calibration, area-based calibration, and hybrid calibration 
[83]. Point-based calibration involves asking the user to look at specific points on 
a screen or in the environment. In contrast, area-based calibration asks the user to 
look at a broader screen area or environment. Hybrid calibration combines elements 
of both point-based and area-based calibration. The accuracy and reliability of gaze 
tracking in a video gaze-tracking system depend on the quality of the calibration [84, 
85]. Therefore, it is important to ensure that the calibration is performed carefully 
and accurately and that the system is recalibrated periodically to maintain accuracy 
over time.

Point-of-regard (PoR) [86] calibration is a type of gaze calibration that aims 
explicitly to map the user’s eye movements to the position on the screen or in the 
environment where they are looking. PoR calibration is critical for accurate and 
reliable gaze tracking in a video gaze-tracking system, especially for applications 
that require precise targeting or selection of visual elements on the screen or in 
the environment. PoR calibration typically involves presenting the user with a 
series of calibration targets on the screen or in the environment and asking them 
to fixate on each target. The targets may be offered at different locations, sizes, 
and distances to cover the entire screen or environment and capture a range of eye 
movements.

The system records the position of the user’s gaze relative to each calibration 
target. It uses these data to establish a mapping function between eye movements 
and the corresponding position on the screen or in the environment. This calibration 
function then tracks the user’s gaze during subsequent system use. It is important to 
perform PoR calibration carefully and accurately to ensure the reliability and accu-
racy of the gaze-tracking system. This may involve using high-quality calibration 
targets, providing proper lighting conditions, and minimizing distractions that could 
affect the user’s eye movements. Overall, PoR calibration is a critical component of 
gaze tracking in a video gaze-tracking system, enabling accurate and reliable target-
ing and selection of visual elements on the screen or in the environment. Table 2.1 
describes the different types of mapping to calibration.

2.2.2.2  Gaze Estimation and Tracking
Gaze estimation and tracking refer to identifying where a person is looking by ana-
lyzing their eye movements and direction. This technology is used in various appli-
cations, such as driver-monitoring systems, gaming, and assistive technologies [87]. 
Gaze estimation involves using cameras to capture images or videos of the user’s face 
and eyes and then analyzing the eye position, movement, and shape to determine the 
gaze direction. This can be done using machine learning algorithms trained on large 
eye image datasets.
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TABLE 2.1
PoR Calibration of Geometric Mapping and Implicit Mapping
Geometric mapping Video gaze-tracking systems calibrate PoR via geometric mapping. 

Geometric mapping uses geometry to match the user’s gaze to the screen 
or surroundings. Geometric mapping PoR calibration usually requires 
the user to stare at several calibration targets at known screen points or 
surroundings. The device records the user’s gaze relative to each calibration 
target. These data map eye movements to screen or environmental 
positions. The mapping function calculates the user’s gaze on the screen 
or surroundings by triangulating the user’s eye location relative to two or 
more calibration targets. This needs exact knowledge of the calibration 
targets’ location and orientation close to each other and the user’s sight.

Spatial analysis careful PoR calibration is dependable. Nevertheless, it 
may be susceptible to variables, including the user’s gaze angle, distance 
from the calibration targets, and target accuracy. Geometric mapping 
PoR calibration helps video gaze-tracking systems accurately target and 
select visual components on the screen or surroundings. It needs extensive 
calibration and validation to maintain accuracy and dependability in varied 
use conditions. Figure 2.4(a) describes a PoR calibration of geometrical 
mapping.

Implicit mapping Video gaze-tracking systems also employ implicit mapping for PoR 
calibration. Implicit mapping trains a machine learning system to associate 
eye movements with screen or environmental positions. The user usually 
looks at a succession of calibration targets at known points on the screen 
or surroundings to conduct implicit mapping PoR calibration. The device 
then captures the user’s gaze relative to each calibration target and trains 
a machine-learning algorithm to associate eye movements with screen or 
environmental positions. The machine learning method may employ neural 
networks, decision trees, or SVMs to learn the mapping function between 
eye motions and screen or environmental positions. The system may 
include lighting conditions, user posture, and head movement to increase 
mapping accuracy.

Implicit mapping PoR calibration is versatile as the machine learning 
system can learn and adapt to user eye movements and ambient conditions. 
It may need more training data and computer resources than geometric 
mapping PoR calibration and be more susceptible to data quality and 
training biases. Implicit mapping PoR calibration is a potential method for 
video gaze-tracking systems that allow adjustable targeting and selection 
of visual items on the screen or in the surroundings. It needs extensive 
training and validation to achieve accuracy and dependability in varied 
use circumstances. Figure 2.4(b) describes a PoR calibration of implicit 
mapping.

Gaze tracking, on the other hand, involves continuously monitoring the user’s 
gaze direction over time. This can be done using specialized eye-tracking hardware, 
such as infrared sensors or EOG electrodes. Gaze estimation and tracking have 
many potential applications, including improving HCI, enhancing virtual and AR 
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FIGURE. 2.4  PoR calibration of (a) geometric mapping and (b) implicit mapping.

experiences, and assisting people with disabilities. However, privacy concerns are 
associated with these technologies, as they can be used to monitor and track individ-
uals without their consent.

2.2.3 H CI-Based Gaze Interaction

HCI-based gaze interaction refers to gaze estimation and tracking technologies 
enabling users to interact with computers and other digital devices through eye 
movements. This technology can provide an alternative to traditional input meth-
ods, such as a mouse or keyboard, and can be particularly useful for people with 
motor disabilities. HCI-based gaze interaction systems typically involve a camera 
or eye-tracking device that captures images of the user’s eyes and determines their 
gaze direction. This information can then control various aspects of the computer 
interface, such as moving the mouse cursor, clicking on buttons, scrolling through 
documents, or typing text.

One common use of HCI-based gaze interaction is in assistive technologies for 
people with disabilities. For example, individuals with motor impairments that make 
it difficult to use a traditional mouse or keyboard may be able to use gaze interaction 
to control their computer or communicate with others. HCI-based gaze interaction 
also has potential applications in gaming, virtual and AR, and automotive technol-
ogy, where it can enhance user experience and improve safety. However, there are 
also challenges associated with HCI-based gaze interaction, such as the need for 
accurate and reliable gaze estimation and the need to develop intuitive and effective 
user interfaces that can be controlled through eye movements.

Video-based eye-gazing techniques can be categorized into two main types: 
two-dimensional (2D) and three-dimensional (3D). 2D eye tracking involves using a 
single camera to capture a 2D image of the user’s face and eyes and then analyzing 
the image to estimate gaze direction. This approach is generally less expensive and 
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more practical than 3D tracking, but it can be less accurate, particularly when the 
user’s head or body is moving. 3D eye tracking, on the other hand, uses multiple 
cameras or depth sensors to capture a 3D model of the user’s face and eyes, which 
can be used to estimate gaze direction more accurately. This approach is generally 
more expensive and requires more specialized hardware than 2D tracking, but it can 
provide higher accuracy and better performance in dynamic environments.

2D and 3D eye-tracking techniques have advantages and limitations, and the 
choice of which approach to use will depend on the application’s specific require-
ments [88]. For example, 2D tracking may be suitable for applications without criti-
cal accuracies, such as gaze-based advertising. In contrast, 3D tracking may be more 
appropriate for applications that require high accuracy and precision, such as eye 
surgery or pilot training.

Gaze estimation of the 2D mapping technique involves using a camera to capture 
images or video of the user’s face and eyes, then mapping the eyes’ position onto a 
2D plane. This approach is based on the assumption that the user’s gaze direction can 
be accurately estimated by analyzing the position and movement of the eyes relative 
to the 2D image. To perform 2D gaze estimation, the camera is typically placed in 
front of the user, and the image of the user’s face and eyes is analyzed using computer 
vision algorithms. These algorithms may involve detecting the position and shape of 
the pupils, measuring the distance between the pupils, or exploring the movement of 
the eyes over time.

Once the position of the eyes has been determined in the 2D image, this informa-
tion can be used to estimate the user’s gaze direction. This may involve mapping the 
position of the eyes onto a virtual screen or grid or using the position of the eyes to 
control a cursor or other interface element. While 2D gaze estimation is generally 
less accurate than 3D tracking, it can still provide a useful and practical method for 
enabling gaze-based interaction with computers and other digital devices. However, 
it is essential to note that 2D gaze estimation may be affected by factors such as head 
movement, lighting conditions, and the user’s glasses or contact lenses, which can all 
impact the accuracy of the estimated gaze direction.

Gaze estimation of the 3D mapping technique involves using multiple cameras or 
depth sensors to capture a 3D model of the user’s face and eyes, which can be used 
to estimate gaze direction accurately. This approach assumes that the user’s gaze 
direction can be accurately estimated by analyzing the 3D position and movement of 
the eyes relative to the user’s head and body. To perform 3D gaze estimation, multiple 
cameras or depth sensors are typically used to capture a 3D model of the user’s face 
and eyes. This information can then be used to calculate the position and movement 
of the eyes in 3D space relative to the user’s head and body.

Once the position and movement of the eyes have been determined in 3D space, 
this information can be used to estimate the user’s gaze direction with high accuracy. 
This may involve mapping the position of the eyes onto a virtual screen or grid or 
using the position of the eyes to control a cursor or other interface element. One 
advantage of 3D gaze estimation over 2D tracking is that it can provide higher accu-
racy and better performance in dynamic environments where the user’s head or body 
may be moving. However, 3D gaze estimation generally requires more specialized 
hardware and software than 2D tracking and may be more expensive and complex. 
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The choice of gaze estimation technique will depend on the application’s require-
ments, including accuracy, reliability, cost, and ease of use.

2.3 � RECOGNIZING ACTIVITIES OF DAILY LIVING TO  
IMPROVE WELL-BEING

ADLs are basic self-care tasks that individuals must perform to care for themselves, 
including bathing, dressing, grooming, toileting, eating, and transferring. ADL func-
tioning is a critical indicator of an individual’s ability to live independently and per-
form basic self-care tasks. As people age, they may experience physical and cognitive 
decline that can affect their ability to perform ADLs independently [89]. This decline 
may be gradual, but it can ultimately lead to the need for long-term care or assistance 
from caregivers. Measuring an individual’s level of ADL performance is an essential 
component of assessing their health status and care needs. It can help healthcare 
professionals develop appropriate care plans, identify areas of weakness, and provide 
interventions to maintain or improve their ADL functioning [90]. Regular assess-
ments of ADL performance can help individuals and their families plan for future 
care needs and make informed decisions about long-term care options.

In government-subsidized assisted living facilities, caregivers may be required by 
law to gather ADL data for patients 24/7, especially for those with cognitive impair-
ments such as Alzheimer’s disease. Regular ADL assessments can help caregivers 
monitor changes in a patient’s physical and cognitive abilities, identify any decline 
in ADL performance, and provide appropriate care and interventions. For patients 
with Alzheimer’s disease [91] or other forms of dementia, ADL assessments can be 
critical. These individuals may have difficulty completing basic self-care tasks and 
may require assistance to prevent accidents and injuries. In addition to providing 
direct care to patients, caregivers in assisted living facilities may also use ADL data 
to communicate with healthcare professionals and coordinate care with other patient 
care team members, such as physicians, nurses, and occupational therapists. Overall, 
gathering ADL data is critical to providing high-quality care to patients in assisted 
living facilities, particularly those with cognitive impairments or other health condi-
tions impacting their ability to perform basic self-care tasks independently.

Computer vision methods, including gaze-based systems, can recognize video 
images in conventional cameras or Kinect sensors [92]. These systems can be used 
in various applications, such as tracking eye movements for research purposes or 
detecting driver drowsiness in automobiles [93]. However, using these systems raises 
concerns about personal data protection and privacy. Data collection on an individu-
al’s eye movements could be considered sensitive personal data, and using such data 
could infringe on an individual’s privacy rights. As a result, gaze-based systems may 
lose user confidence, mainly if individuals are uncomfortable with their eye move-
ments being tracked and recorded. To address these concerns, organizations using 
gaze-based methods may need to implement robust data protection policies and pro-
cedures to ensure that individual privacy rights are respected.

Such policies might include obtaining explicit consent from individuals before 
collecting and processing sensitive data, implementing appropriate security mea-
sures to protect data, and providing individuals with access to their data and the 
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ability to request its deletion. Overall, the use of computer vision methods in gaze-
based systems can be beneficial in various applications. However, organizations must 
balance the potential benefits against the risks to personal data protection and pri-
vacy and take appropriate measures to protect individuals’ privacy rights.

2.3.1 T he ADL Recognition System

An ADL recognition system is a computer-based system that uses sensors, cameras, and 
machine learning algorithms to detect and recognize an individual’s ADL performance. 
These systems are designed to monitor and evaluate an individual’s ability to perform 
basic self-care tasks, such as dressing, grooming, bathing, and eating. ADL recognition 
systems [94] typically consist of several components, including sensors and cameras 
placed in the individual’s living space to monitor their movements and actions. The 
system then uses machine learning algorithms to analyze the data collected from the 
sensors and cameras, recognize patterns, and identify specific ADLs being performed.

These systems can be used in various settings, including assisted living facilities 
and home care environments, to provide real-time feedback on an individual’s ADL 
performance. The data collected by the system can also be used to track changes in 
an individual’s ability to perform ADLs over time, which can help caregivers and 
healthcare professionals identify early signs of decline and develop appropriate care 
plans. ADL recognition systems can improve the quality of care provided to indi-
viduals who require assistance with basic self-care tasks. However, ensuring that 
these systems are designed and implemented with appropriate privacy and security 
measures is important to protect individual data and privacy rights.

Technology advancements have led to the development of smart ambient systems 
designed to improve users’ daily lives. These systems typically use embedded tech-
nology, such as sensors and actuators, to detect and respond to users’ needs [95]. 
Innovative ambient systems are often used in home care environments, where they 
can help individuals with disabilities or other health conditions to perform ADLs and 
live independently. For example, a smart ambient system might include sensors that 
detect when an individual is having difficulty getting out of bed or moving around 
their home. The system could then activate an actuator, such as a lift chair, to assist 
the individual with getting up and moving around.

Smart ambient systems can also monitor an individual’s health status and alert 
caregivers or healthcare professionals if there are concerns [96]. For example, a sys-
tem might include sensors that monitor an individual’s heart rate, blood pressure, or 
medication usage and alert healthcare professionals to significant changes or issues. 
Smart ambient systems can significantly improve the quality of life for individuals 
who require assistance with ADLs or other daily activities. However, ensuring these 
systems are designed and implemented with appropriate privacy and security mea-
sures is important to protect individual data and privacy rights.

The automatic detection of physical activity using sensors is a popular research 
topic in mobile and ubiquitous computing [97]. This technology is used in many 
applications, including life-assisted health monitoring systems, fall detection, and 
older support systems. Sensor-based activity identification is essential for these appli-
cations because it allows continuous monitoring of an individual’s physical activity 
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levels and detecting of significant changes or issues. For example, a fall detection sys-
tem might use sensors to detect when an individual has fallen and alert caregivers or 
emergency services. Mobile and ubiquitous computing technologies, such as smart-
phones and wearable devices, have enabled the development of sensor-based activity 
identification systems that are portable and easy to use [98]. These systems typically 
use a combination of sensors, such as accelerometers, gyroscopes, and magnetom-
eters, to detect and classify physical activities. Using sensor-based activity identifi-
cation systems can improve the quality of life for individuals who require assistance 
with physical activities. However, ensuring these systems are designed and imple-
mented with appropriate privacy and security measures is important to protect indi-
vidual data and privacy rights. It is also important to consider the potential ethical 
implications of using these systems, such as issues related to autonomy and consent.

Using LoRaWAN battery-free wireless sensors [99] in structural health monitor-
ing can positively impact both safety and sustainability in the construction indus-
try. By continuously monitoring the health of structures, engineers and construction 
professionals can detect any potential issues or damage early on, allowing them to 
take proactive measures to prevent further damage or failure. This can help improve 
the safety and longevity of structures, as shown in Figure 2.5, reducing the risk of 
accidents or costly repairs. In addition, battery-free wireless sensors can help reduce 

FIGURE 2.5  Architecture of the ADLs recognition system.

Source: Adopted from [101].
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costs and environmental impact in several ways. First, they eliminate the need for 
frequent battery replacements, reducing maintenance costs and the amount of elec-
tronic waste produced. Second, their low-power communication capabilities min-
imize energy consumption, making them more sustainable and environmentally 
friendly. Overall, using LoRaWAN battery-free wireless sensors in structural health 
monitoring can benefit the construction industry, including improved safety, reduced 
costs, and a more sustainable approach to monitoring structures over time.

Understanding the patterns of movement, places, and sleep patterns of older 
people can provide valuable insights into their overall health and well-being and 
identify potential health risks or issues. Machine learning algorithms can analyze 
large datasets and identify patterns and trends that may not be immediately apparent 
to humans [100]. Using these algorithms to analyze data from elderly populations, 
researchers can identify patterns of activity and behavior associated with certain 
health conditions or risks. For example, machine learning algorithms could be used 
to identify patterns in sleep patterns that may be indicative of sleep disorders or other 
health issues. Similarly, they could be used to identify patterns of movement that may 
be associated with an increased risk of falls or other injuries. Overall, using intelli-
gent features and algorithms for machine learning in analyzing data from the elderly 
can improve our understanding of their health and well-being while enabling us to 
identify and address potential health risks or issues early on.

Using probabilistic methods in analyzing sensor data from participants engaged 
in ADLs is a promising approach to understanding behavior patterns and identifying 
potential health risks or issues. In the case of “preparing and consuming a hot drink,” 
using variations of coffee or tea, the probabilistic method can help identify patterns 
in the sensor data that are associated with normal or abnormal behavior. For exam-
ple, the process may be used to determine the time it takes to prepare a hot drink, 
the sequence of actions involved, and the frequency and duration of pauses during 
the process.

Researchers can identify anomalies or deviations from normal behavior that may 
indicate potential health risks or issues by analyzing these behavior patterns. For 
example, suppose a participant takes an unusually long time to prepare a hot drink or 
needs help completing the task. This may be a sign of cognitive decline or physical 
impairment. Using probabilistic methods in analyzing sensor data from ADL par-
ticipants can provide valuable insights into behavior patterns and identify potential 
health risks or issues early on. This can enable healthcare professionals and care-
givers to proactively address these issues and improve the quality of life for elderly 
individuals.

Using a monitoring system containing various non-intrusive sensors in supple-
mentary care homes can be a valuable tool to enhance care for elderly individuals. 
These sensors can collect data on multiple aspects of daily living, such as activity 
levels, sleep patterns, and medication adherence. By collecting these data, caregivers 
and healthcare professionals can gain insights into the overall health and well-being 
of elderly individuals and identify any potential health risks or issues early on. For 
example, sensors that detect falls or changes in activity levels can help identify indi-
viduals who may be at risk for falls or other injuries.
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Additionally, sensors that monitor medication adherence can help ensure that 
elderly individuals take their medications as prescribed, improving health outcomes 
and reducing the risk of complications. Overall, using non-intrusive sensors in sup-
plementary care homes can improve the quality of care for elderly individuals by 
providing caregivers and healthcare professionals with valuable insights into their 
health and well-being. This can enable them to take proactive measures to address 
potential health risks or issues and ensure that elderly individuals receive the best 
possible care.

The ProSAFE [102] project’s recommendation for a non-intrusive surveillance 
solution for older people is a significant development in the field of eldercare. Non-
intrusive surveillance solutions can help ensure older people’s safety and well-being 
while respecting their privacy and independence. Such solutions may include using 
sensors, cameras, or other monitoring devices to detect potential risks or issues and 
alert caregivers or healthcare professionals to take appropriate action. For example, 
sensors that detect falls or changes in activity levels can help identify individuals 
who may be at risk for falls or other injuries. Using non-intrusive surveillance solu-
tions can also provide peace of mind for family members or caregivers who may 
be concerned about the safety and well-being of their loved ones. These solutions 
can help ensure that older people are safe and well-cared for by providing real-time 
monitoring and alerts, even when caregivers or healthcare professionals are absent. 
Overall, the recommendation of non-intrusive surveillance solutions for older people 
by the ProSAFE project is a positive development in the field of eldercare, as it can 
help ensure the safety and well-being of older individuals while respecting their pri-
vacy and independence.

Activity recognition using sensor systems typically involves two main activities: 
Monitoring and wearability of the sensor. Monitoring consists in collecting data 
from sensors integrated into the environment, such as attaching sensors to items in 
ADLs or static locations in the house (e.g., walls, wardrobes, and doors) to monitor 
user-smart interactions. This type of monitoring can provide valuable insights into 
behavior patterns and identify potential health risks or issues early on. The weara-
bility of the sensor involves attaching sensors to the user’s body, such as wristbands, 
necklaces, or other wearable devices. This type of sensor is typically used to monitor 
physical activity levels, sleep patterns, heart rate, and other vital signs. Wearable 
sensors can provide real-time feedback on the user’s health status and help identify 
potential health risks or issues early on.

Robust sensors integrated into the environment can provide a wealth of data on 
user behavior and interactions with their environment, which can be analyzed using 
machine learning algorithms to identify patterns and anomalies. Wearable sensors 
can also provide valuable data on physical activity levels and other health metrics, 
which can be used to identify potential health risks or issues. Overall, using robust 
and wearable sensors in activity recognition can improve the quality of care for 
elderly individuals by providing valuable insights into their health and well-being. 
These insights can enable healthcare professionals and caregivers to take proactive 
measures to address potential health risks or issues early on and ensure that elderly 
individuals are receiving the best possible care.
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Research in activity recognition has explored various approaches to detect ADLs 
and identify abnormal behavior using machine learning and formal modeling tech-
niques. One such approach is the Markov decision model, which can be used to model 
the probabilistic nature of ADLs and identify abnormal behavior based on deviations 
from expected behavior patterns. These models can provide valuable insights into the 
underlying structure of ADLs and enable caregivers and healthcare professionals to 
detect potential health risks or issues early on.

Another approach is categorizing into abnormal compartment models, which 
involves dividing ADLs into different categories based on their complexity and level 
of risk. This approach can help identify high-risk activities that require closer mon-
itoring and provide insights into the potential consequences of abnormal behavior. 
Formal modeling of the system studied can also provide valuable insights into its 
operation and interaction. This approach involves creating a mathematical model 
of the system and using it to simulate different scenarios and test the effectiveness 
of other interventions. This can help identify potential weaknesses in the system 
and enable healthcare professionals and caregivers to improve the quality of care 
provided. Overall, using machine learning and formal modeling techniques in activ-
ity recognition can provide valuable insights into the underlying structure of ADLs, 
identify potential health risks or issues early on, and improve the quality of care for 
elderly individuals.

The proportion of elderly individuals in society is increasing in many countries 
worldwide, including most of Europe’s nations. According to the World Health 
Organization (WHO), falls and fall-related injuries are major health concerns among 
elderly individuals, with the risk increasing as individuals age. Specifically, the WHO 
reports that the risk of falls and fall-related injuries increases from 28% to 42% as 
individuals age from above 70 years. Falls can result in serious injuries such as frac-
tures, head injuries, and other health complications that can significantly impact the 
quality of life of elderly individuals. Therefore, there is a pressing need to develop 
effective solutions to prevent falls and fall-related injuries among elderly individuals. 
This includes using innovative technologies such as sensor systems and machine 
learning algorithms to monitor the activity of elderly individuals and identify poten-
tial health risks or issues early on. By leveraging these technologies, healthcare pro-
fessionals and caregivers can take proactive measures to prevent falls and improve 
the quality of care provided to elderly individuals.

Fall detection systems are designed to detect when a person has fallen and 
may require assistance. These systems can be classified into two main categories: 
Contextual and wearable strategies. Contextual fall detection systems use environ-
mental sensors, such as cameras, microphones, and pressure sensors, to see falls. 
These sensors are typically placed in a room or area where the person is likely to fall, 
such as a bathroom or bedroom. The sensors can detect the sound or motion of a fall 
and send an alert to a caregiver or monitoring system.

On the other hand, wearable fall detection systems use sensors attached to the 
person’s body, such as a wristband or pendant. These sensors can detect changes in 
motion or orientation indicative of a fall. The wearable device alerts a caregiver or 
monitoring system when a fall is detected. Both types of fall detection systems have 
their advantages and disadvantages. Contextual methods may be more effective at 
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detecting falls in specific environments, but they may not be as precise as wearable 
systems. On the other hand, wearable systems may be more accurate at detecting 
falls, but they may require the person to wear a device at all times, which may be 
inconvenient or uncomfortable.

Smartphones are becoming increasingly popular as a tool for fall detection 
because they come equipped with built-in accelerometers, which can detect changes 
in motion and orientation. Users can turn their devices into wearable fall detection 
systems using a smartphone app without additional hardware. The accelerometer 
can see when the phone is dropped or when the user experiences a sudden change 
in motion, which can indicate a fall. Smartphones have several advantages over tra-
ditional wearable fall detection systems. They are easy to carry around, and many 
people always have smartphones. Additionally, smartphone fall detection systems 
are often less expensive than traditional wearable devices. However, there are also 
some limitations to using a smartphone as a fall detection system. For example, the 
accelerometer may not be as sensitive or accurate as a dedicated wearable device. In 
addition, the phone may need to be within a certain distance of the user for the fall 
detection to work correctly, which could be a problem if the user needs to remember 
or leave the phone behind. Overall, while smartphones may be a promising tool for 
fall detection, there may be better substitutes for dedicated wearable devices in all 
situations.

Several simulators enable ADL analysis using ADL sequences as input for tem-
poral simulation of movement or sensor readings. These simulators can help assess 
ADL analysis software’s performance and develop and test new algorithms for fall 
detection and other applications. Some simulators work by generating synthetic ADL 
sequences based on statistical models of typical human movements and behaviors. 
These sequences can then simulate sensor readings and other data that real-world 
ADLs might generate. Other simulators use recorded data from real-world ADLs to 
create simulations that can be used for testing and analysis.

One advantage of using simulators for ADL analysis is that they provide a con-
trolled testing and evaluation environment. Researchers can test their algorithms 
under various conditions and with different input data, allowing them to identify 
strengths and weaknesses and improve their performance. Another advantage is 
that simulators can help reduce the cost and time involved in collecting and pro-
cessing real-world ADL data. Instead of relying on expensive sensors and other 
equipment to collect data from real people, researchers can use simulations to gen-
erate data for testing and analysis. Overall, simulators are a valuable tool for ADL 
analysis and fall detection research, and their use is likely to continue to grow as 
these fields evolve.

Assistive robots have the potential to help restore ADLs for elderly and disabled 
individuals, allowing them to maintain or regain independence. However, one of the 
main challenges in developing effective assistive robots is the need for a good and 
intuitive HRI system. HRI refers to the methods and interfaces to enable communi-
cation and collaboration between humans and robots. For assistive robots to be effec-
tive, they must be able to understand and respond to human needs and preferences 
in a way that is easy to use and understand. This requires developing intuitive and 
adaptable interfaces to individual users’ needs.
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Several approaches have been proposed for developing effective HRI systems for 
assistive robots. One method is to use NLP and speech recognition technology to 
allow users to communicate with the robot using voice commands. Another approach 
is to use touchscreens or other interactive displays to enable users to interact with the 
robot using gestures or other input methods. In addition to developing intuitive HRI 
systems, it is also important to consider ethical and social issues related to assistive 
robots. For example, they ensure that the robot respects the user’s privacy and auton-
omy and does not cause harm or distress. Developing effective and intuitive HRI sys-
tems is critical for successfully deploying assistive robots for ADL support. Ongoing 
research in this area will likely lead to continued progress in the field.

Gaze-based communication is an approach to HRI that uses eye-tracking technol-
ogy to enable users to communicate with the robot using their eyes. This approach 
has several potential benefits for assistive robotics and ADL support. One of the main 
benefits of gaze-based communication is that it is a low-effort method that does not 
require significant physical or cognitive exertion on the user’s part. This makes it 
particularly useful for elderly or disabled individuals with limited mobility or physi-
cal limitations. Another benefit is that gaze-based communication retains the user’s 
visual capacity, allowing them to maintain visual awareness of their environment 
while still interacting with the robot. This can be particularly important for ADL 
support, as it will enable the user to monitor their surroundings while still receiving 
assistance from the robot. Overall, gaze-based communication in HRI is expected to 
simplify the interaction between users and assistive robots, increasing the acceptance 
of these technologies and promoting users’ independence in ADLs. As eye-tracking 
technology advances, we expect further development and refinement of gaze-based 
communication approaches for assistive robotics and other applications.

While gaze-based communication shows promise for HRI in assistive robotics and 
ADL support, integrating this technology into usable, practical, and intuitive HCI 
remains challenging. One of the main issues with gaze-based communication is that 
it can take time to implement in a way that is accurate and easy to use. Eye-tracking 
technology can be sensitive to lighting conditions, head movements, and other fac-
tors, making it challenging to interpret users’ gaze directions and intentions reliably. 
Another challenge is developing intuitive and intuitive interfaces for users to learn and 
use effectively. While gaze-based communication may be a low-effort method, it still 
requires users to learn and use new skills and techniques for interacting with the robot.

Ongoing research aims to develop more effective and user-friendly HCI for gaze-
based communication in assistive robotics and ADL support. One approach is to use 
machine learning algorithms to improve the accuracy of gaze tracking and enable 
more natural and intuitive communication between users and robots. While integrat-
ing gaze-based communication into usable and intuitive HCI remains unresolved, 
ongoing research and development will likely lead to continued progress and innova-
tion in assistive robotics and ADL support.

One of the potential benefits of gaze-based communication in assistive robotics 
and ADL support is the ability to implicitly comprehend the user’s intentions by mon-
itoring their visual attention. This can allow the robot to anticipate the user’s needs 
and provide assistance more effectively. Another benefit of gaze-based communica-
tion is that it does not interfere with the user’s healthy visual conduct or prevent them 



49Implicit Intention Communication Through Visual Behavior

from monitoring their surroundings. Instead, it provides an additional means of com-
munication that can be used for more complex or nuanced interactions with the robot.

The ultimate goal of gaze-based communication and other HCI approaches in 
assistive robotics is to simplify the interaction between users and robots, making 
it more intuitive, efficient, and effective. By improving the adoption of assistive 
technology and promoting users’ independence in daily life, these technologies 
can potentially improve the quality of life for elderly and disabled individuals. As 
research continues, we expect ongoing progress and innovation in developing more 
effective and user-friendly HCI for assistive robotics and ADL support.

2.4  CONTRIBUTION TO THE RESEARCH

This explains the three problems that the study contributes to in designing and develop-
ing an artificial neural network (ANN)-based system for gaze-based communication:

	 1.	Data collection and annotation: Collecting and annotating a large eye-
tracking dataset is critical in developing an accurate and effective ANN-
based system for gaze-based communication. However, this process can be 
time-consuming and expensive, and the data quality and annotations can 
significantly impact the system’s performance. The study proposes a meth-
odology for collecting and annotating eye-tracking data that is efficient and 
effective while maintaining a high level of accuracy.

	 2.	Feature selection and extraction: To accurately interpret the user’s gaze 
direction and intentions, an ANN-based system for gaze-based communi-
cation must use relevant and informative features. However, selecting and 
extracting these features can be challenging, as the eye-tracking data may 
contain noise, variability, and redundancy. The study proposes a set of fea-
ture selection and extraction techniques that can improve the accuracy and 
efficiency of the system.

	 3.	Neural network architecture and training: The architecture and training of 
the ANN are critical factors in determining the accuracy and performance 
of the system. However, designing an optimal neural network architecture 
and training procedure can take time, as it involves a trade-off between 
model complexity and generalization ability. The study proposes a neural 
network architecture and training methodology that can effectively handle 
the complexity and variability of the eye-tracking data while maintaining 
high accuracy and generalization ability.

Generally, the study addresses these three critical problems in designing and devel-
oping an ANN-based system for gaze-based communication, which can improve the 
accuracy and effectiveness of assistive robotics and ADL support technologies. Also, 
the following results of this research are identified:

	 1.	Development of a novel ANN for estimating gaze points
	 2.	Development of an implicit intention algorithm for gaze-based communication
	 3.	 Improve elder care by using gaze-based communication
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2.4.1 D evelopment of a Novel ANN for Estimating Gaze Points

Developing an ANN for estimating gaze points involves several key steps, including 
data collection, feature extraction, network architecture design, and training. Once 
the ANN has been trained, it can be used as the real-time gaze point of new eye-
tracking data. This can be useful in various applications, including assistive robot-
ics and ADL support, where accurate and efficient gaze-based communication can 
improve the user’s independence and quality of life.

2.4.2 �D evelopment of an Implicit Intention Algorithm 
for Gaze-Based Communication

Developing an implicit intention algorithm for gaze-based communication involves 
several key steps, including data collection, feature extraction, and algorithm design. 
Once the implicit intention algorithm has been developed and validated, it can inter-
pret the user’s intentions in real time based on their eye movements. This can be 
useful in various applications, including assistive robotics and ADL support, where 
accurate and efficient interpretation of the user’s intentions can improve the user’s 
independence and quality of life.

2.4.3 I mprove Elder Caring by Using Gaze-Based Communication

Gaze-based communication can significantly improve elder care by increasing 
seniors’ independence and quality of life. Here are some ways in which gaze-based 
communication can be beneficial:

	 1.	 Improved communication: Many seniors may have difficulty communicat-
ing verbally due to dementia, stroke, or Parkinson’s disease. Gaze-based 
communication provides an alternative means of communication that is 
intuitive and requires minimal effort. This can help seniors express their 
needs, preferences, and emotions more effectively, improving their quality 
of life.

	 2.	Enhanced safety: Seniors are at an increased risk of falls and other 
accidents. Gaze-based fall detection systems can help prevent falls by 
alerting caregivers to activate safety features such as handrails or bed 
alarms. In addition, gaze-based monitoring of seniors’ ADLs can help 
detect changes in behavior that may indicate a health issue or a need for 
assistance.

	 3.	 Increased independence: Seniors often value their freedom and may be 
reluctant to accept assistance from caregivers. Gaze-based technology can 
help seniors maintain their independence by enabling them to perform ADLs 
more quickly and efficiently. For example, the gaze-based interface controls 
appliances, adjusts lighting or temperature, or navigates the internet.



51Implicit Intention Communication Through Visual Behavior

	 4.	Reduced caregiver burden: Caregiving can be physically and emotionally 
demanding, particularly for family members with other responsibilities such 
as work and family. Gaze-based communication can help reduce caregiver 
burden by enabling seniors to communicate their needs more effectively 
and reducing the need for constant monitoring.

Generally, using gaze-based communication can help improve the elder care experi-
ence by enhancing communication, safety, and independence and reducing caregiver 
burden.
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3 An Integrated 
System for Improved 
Implicit Intention 
Communication for 
Older People on Daily 
Living Activities

An integrated system for improved implicit intention communication for older people 
on daily living activities would be a valuable tool to support independent living and 
enhance the quality of life for older adults [1]. Such a system would need to incorpo-
rate several key features to be effective, including the following:

	 1.	User-friendly interface: The system should be easy to use and navigate, with 
simple commands and instructions that are clear and easy to understand.

	 2.	Voice recognition: The system should recognize the user’s voice and respond 
accordingly, enabling older adults to communicate their intentions without 
using complex or unfamiliar technology.

	 3.	Context awareness: The system should be able to understand the context in 
which the user is operating, including their location, time of day, and any 
relevant environmental factors.

	 4.	Personalization: The system should be tailored to the user’s needs and pref-
erences, considering their health status, cognitive abilities, and communica-
tion style.

	 5.	 Integration with other technologies: The system should be able to integrate 
with different assistive technologies [2], such as smart home devices, wear-
able sensors, and mobile apps, to provide a comprehensive solution for inde-
pendent living.

	 6.	Data privacy and security: The system should be designed with robust data 
privacy and security measures to protect users’ personal information and 
ensure their safety.

In summary, an integrated system for improved implicit intention communication 
for older people on daily living activities would be a powerful tool to support inde-
pendent living and improve the quality of life for older adults. By incorporating key 
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features such as a user-friendly interface, voice recognition, context awareness, per-
sonalization, integration with other technologies, and data privacy and security, such 
a system could revolutionize how older adults interact with technology and support 
their daily living activities [3].

Many older adults and people with disabilities may face communication barriers 
when using contemporary technology to support their daily activities. These barri-
ers can arise from various factors, including limited mobility, cognitive impairment, 
visual or hearing impairment, and language barriers. To overcome these obstacles, it 
is essential to design assistive technologies that are accessible, intuitive, and easy to 
use for people with different communication needs. For example, technologies incor-
porating voice recognition, gesture recognition, or other alternative input methods 
can benefit people with limited mobility or dexterity. Similarly, technologies that use 
visual or audio cues can be helpful for people with hearing or visual impairments. 
Furthermore, it is essential to consider each user’s individual needs and preferences 
when designing assistive technologies. This can involve personalizing and custom-
izing the user interface to tailor it to the user’s communication style, language, and 
cultural background. In summary, to overcome communication barriers in assistive 
technology for older adults and people with disabilities, designers need to prioritize 
accessibility, intuitive design, and personalization. By doing so, we can ensure that 
these technologies are effective tools for supporting independent living and enhanc-
ing the quality of life for all users.

HCI has the potential to anticipate and implicitly comprehend a user’s intention, 
making it possible to deliver the necessary services automatically [4–6]. To achieve 
this goal, researchers have explored a range of human behaviors, such as gesture, 
voice/language, and EEG, to develop technologies that can accurately infer a user’s 
intentions. As you mentioned, eye gaze is another natural indication that can reflect 
a person’s intention when performing ADLs. Eye gaze can provide valuable infor-
mation about where the user is looking, what they are paying attention to, and what 
they might be trying to do. For example, a user looking at a kitchen appliance could 
indicate they want to use it. A user looking at a door could indicate they want to go 
through it.

Eye-gaze tracking technology has advanced significantly in recent years, making 
it possible to track eye movements accurately and in real time [7]. This technology 
could be used to develop assistive technologies that can anticipate a user’s intentions 
based on their eye-gaze patterns, making it possible to deliver the necessary services 
automatically. In summary, eye gaze is another natural indication that can reflect a 
person’s intention when performing ADLs. By using eye-gaze tracking technology, 
it may be possible to develop assistive technologies that can anticipate a user’s inten-
tions based on their eye-gaze patterns, making it possible to deliver the necessary 
services automatically [8].

Visual attention and cognitive processes are closely related [9]. How we attend to 
visual stimuli can significantly impact our cognitive functions, such as memory, per-
ception, and decision-making [10]. Visual attention refers to our ability to focus on 
specific visual stimuli in our environment while ignoring others. This process is crit-
ical for our ability to interact with our surroundings effectively. How we allocate our 
visual attention can influence our cognitive processes in several ways. For example, 
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if we focus our attention on a particular object, it can enhance our ability to perceive 
details and remember them later.

Research [9, 11, 12] has shown that visual attention is closely related to cognitive 
processes such as working memory, selective attention, and executive functions. For 
example, individuals with attention deficit hyperactivity disorder often exhibit an 
impaired ability to sustain attention on a task, leading to deficits in working memory 
and executive functions. Therefore, understanding how visual attention and cogni-
tive processes are related is critical for developing effective interventions and assis-
tive technologies for individuals with cognitive impairments [13] or disabilities. By 
developing technologies that can support visual attention and enhance cognitive pro-
cesses, we can improve the quality of life for individuals with cognitive impairments 
or disabilities and support their independent living.

The study in this chapter is mainly concerned with developing a new implicit 
intention communication paradigm that enables users to communicate their inten-
tions naturally and efficiently in HCI through their eye gaze. The proposed frame-
work aims to allow users to express their needs and desires more accurately and 
quickly, leading to more seamless interaction between the user and the technology. 
The study explores the relationship between eye-gaze patterns and user intentions in 
performing ADLs. The researchers aim to identify specific eye-gaze patterns asso-
ciated with different user intentions, such as reaching for an object or moving to a 
specific location. By understanding these patterns, the researchers can develop algo-
rithms that can infer user intentions based on their eye-gaze patterns automatically.

The proposed framework can potentially improve the accessibility and usability 
of HCI for individuals with cognitive or physical impairments. By enabling users to 
communicate their intentions naturally and efficiently through their eye gaze, it could 
help overcome some of the communication barriers currently in HCI. Additionally, 
the framework could have practical applications in various fields, such as robotics, 
healthcare, and education, where the ability to interpret user intentions accurately 
and quickly is essential.

Enabling users to communicate their intentions naturally and efficiently through 
their eye gaze can improve the accessibility and usability of HCI for individuals with 
cognitive or physical impairments. Individuals with disabilities may face challenges 
in using traditional methods of communication or interaction with technology, such 
as using a mouse or keyboard, due to physical limitations or cognitive impairments 
[14]. By using eye gaze to communicate, individuals with disabilities could have 
more natural and intuitive access to technology. For example, individuals with motor 
impairments that affect their ability to use traditional input devices may be able 
to control technology through their eye gaze. Similarly, individuals with cognitive 
impairments that affect their ability to communicate effectively through language 
may find it easier to express their intentions through eye gaze.

Moreover, this approach can potentially improve the quality of life for individuals 
with disabilities by enabling them to perform daily tasks more independently. For 
example, assistive technology that can infer a user’s intentions based on their eye-
gaze patterns could help individuals with mobility impairments to control their envi-
ronment, such as turning on lights or adjusting the temperature, without relying on 
assistance from others. By enabling users to communicate their intentions naturally 
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and efficiently through their eye gaze, this approach can make HCI more inclusive 
and accessible to individuals with cognitive or physical impairments, improving their 
ability to participate in daily life activities and enhancing their overall quality of life.

3.1  OLDER USERS AND ELDER CARING IN DAILY LIFE

Older users and elder caring in daily life are important issues that require atten-
tion and consideration. As people age, they may experience physical and cognitive 
changes affecting their ability to perform daily life activities independently [15, 16]. 
This can have a significant impact on their quality of life, as well as their ability 
to maintain their independence and dignity. Elder caring involves supporting older 
adults in performing ADLs and instrumental activities of daily living (IADLs) [17]. 
ADLs include basic self-care tasks such as bathing, dressing, and toileting, while 
IADLs involve more complex tasks such as managing finances, grocery shopping, 
and transportation. For older adults, receiving assistance with ADLs and IADLs is 
often essential for maintaining their independence and quality of life. Family mem-
bers, friends, or professional caregivers may provide elder care support depending on 
the individual’s needs and circumstances.

The IADLs are tasks that individuals perform to support their daily life and live 
independently in the community. These tasks are more complex than ADLs, which 
include basic self-care tasks such as eating, bathing, and dressing. IADLs require 
a higher level of cognitive functioning and often involve more complex decision-
making skills. Some examples of IADLs include the following [18]:

	 1.	Managing finances includes paying bills, balancing checkbooks, and man-
aging investments.

	 2.	Transportation involves driving or using public transportation to attend 
appointments, social events, or other activities.

	 3.	Meal preparation and cooking: This involves planning and preparing nutri-
tious meals and ensuring that an individual has ended up on hand.

	 4.	Housekeeping: This includes tasks such as cleaning, laundry, and general 
household maintenance.

	 5.	Shopping involves grocery shopping, running errands, and purchasing nec-
essary items.

	 6.	Medication management includes managing prescriptions, remembering to 
take medications on time, and ensuring that an individual has a sufficient 
supply of medications.

For older adults, the ability to perform IADLs is essential for maintaining their inde-
pendence and quality of life. However, physical or cognitive changes associated with 
aging can make these tasks more challenging. In some cases, assistance from family 
members, friends, or professional caregivers may be necessary to help older adults 
perform IADLs. Additionally, technology can play a significant role in supporting 
older adults in performing IADLs independently. Assistive technology devices, such 
as home automation systems and remote monitoring devices, can help older adults 
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manage their daily life tasks and live independently in their homes for as long as 
possible.

Technology can also play a significant role in elder care in daily life [19]. Assistive 
technology devices such as mobility aids, communication aids, and home automation 
systems can help older adults perform ADLs and IADLs independently, enhancing 
their quality of life and reducing their reliance on caregivers. Moreover, there is 
a growing trend toward developing technologies that enable older adults to age in 
place, allowing them to live independently in their homes for as long as possible. 
This involves using technology to monitor and support older adults’ health, safety, 
and well-being through telehealth systems, remote monitoring devices, and smart 
home technologies. Addressing the needs of older users and elder caring in daily 
life requires a multifaceted approach considering the individual’s physical, cognitive, 
social, and emotional needs. Technology can play a vital role in supporting older 
adults and their caregivers in maintaining their independence and quality of life.

Designing for elder care in daily life requires a multifaceted approach that con-
siders the individual’s physical, cognitive, social, and emotional needs. An elderly 
population is a diverse group with varying needs and abilities, and designers need to 
consider these factors when designing products or systems for elder care. For exam-
ple, when designing products for elder care, designers need to consider the physical 
limitations of the elderly population, such as limited mobility, vision, and hearing 
impairments. Products should be designed with accessibility in mind, such as pro-
viding larger buttons, more explicit text, and audible feedback.

Cognitive abilities must also be considered in designing products for elder care [20]. 
Products should be designed to be intuitive, easy to use, and provide clear instructions. 
Designers can use familiar icons and symbols to make products more accessible to the 
elderly [21]. Social and emotional needs are also essential when designing elder care 
products [22]. Social isolation and loneliness are significant issues for the elderly, and 
designers can create products promoting social interaction and connection with family 
and friends [23, 24]. Products can also be designed to provide emotional support, such 
as reminding the elderly of essential dates and events or providing a sense of security. 
Overall, designing for elder care in daily life requires a human-centered approach that 
considers the individual’s physical, cognitive, social, and emotional needs. By taking 
a multifaceted approach, designers can create products and systems that are usable, 
accessible, and meet the needs of the elderly population, leading to better outcomes 
for this vulnerable population.

3.2  HUMAN-CENTERED DESIGN AND USABILITY

Human-centered design (HCD) is an approach to design that puts the needs and 
experiences of people at the forefront of the design process [25, 26]. HCD is an 
iterative process that involves engaging with users throughout the design process to 
ensure that the end product is usable, accessible, and meets their needs. Usability is an 
essential component of HCD. Usability refers to the ease with which people can use a 
product or system to achieve their goals effectively and efficiently. Usability encom-
passes learning, efficiency, memorability, error prevention, and user satisfaction.
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In HCD, usability is a critical consideration throughout the design process. 
Designers must ensure that the product or system is accessible and usable for all 
users, regardless of their physical or cognitive abilities. This requires careful consid-
eration of the user’s needs, preferences, and limitations. Usability testing is a stan-
dard method used in HCD to evaluate the usability of a product or system [27]. This 
involves observing users interacting with the product or system, identifying usability 
issues, and making design improvements based on user feedback. By incorporating 
usability into the design process, designers can create products and systems that are 
intuitive, accessible, and meet the needs of their users. This can result in increased 
user satisfaction, improved user engagement, and better user outcomes.

The HCD is an iterative process that involves engaging with users throughout the 
design process to ensure that the end product is usable, accessible, and meets their 
needs. The HCD process typically involves the following steps:

	 1.	Understand the user and their needs: Designers need to understand the users 
and their needs by conducting research, such as surveys, interviews, and 
observation, to gain insights into how they use products and systems and 
their needs.

	 2.	Define the problem: Based on the insights gained from user research, 
designers define the problem they want to solve and identify the goals and 
objectives of the product or system they want to design.

	 3.	 Ideate and prototype: Designers generate ideas and create prototypes that 
address the problem and meet the goals and objectives of the product or system.

	 4.	Test and evaluate: Designers test the prototypes with users to evaluate their 
usability, identify usability issues, and make design improvements based on 
user feedback.

	 5.	 Implement and launch: Based on the testing and evaluation results, designers 
make final design decisions and implement the product or system launched 
into the market.

	 6.	 Iterate and improve: Once the product or system is launched, designers 
gather user feedback, analyze usage data, and make design improvements 
to improve the user experience.

By engaging with users throughout the design process, designers can ensure that 
the end product or system is usable, accessible, and meets the users’ needs. This 
approach can lead to increased user engagement, increased customer satisfaction, 
and better user outcomes.

Usability testing is a critical method used in HCD to evaluate the usability of a 
product or system. It involves observing users interacting with the product or system, 
identifying usability issues, and making design improvements based on user feed-
back [28]. Usability testing typically involves the following steps:

	 1.	 Identify test participants: Test participants should be representative of the 
target user population for the product or system.

	 2.	Develop test scenarios and tasks: Test scenarios and tasks should reflect 
real-world use and be relevant to the tested product or system.
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	 3.	Conduct the test: The user is observed as they perform the test scenarios and 
tasks. Data are collected through various methods, such as screen record-
ings, observations, and interviews.

	 4.	Analyze the data: The data collected during the analysis identify usability 
issues, such as navigation difficulties, confusing interfaces, or error-prone 
interactions.

	 5.	Make design improvements: Based on the usability issues identified during 
the test, design improvements are made to the product or system.

	 6.	Repeat testing: The usability testing process is repeated to evaluate the 
effectiveness of the design improvements.

By conducting usability testing, designers can gain valuable insights into how users 
interact with their products or systems, identify usability issues, and make design 
improvements to enhance the user experience. This approach can lead to better 
user engagement, increased user satisfaction, and, ultimately, better user outcomes. 
Usability testing provides valuable insights into how users interact with a product 
or system. Designers can use this information to identify usability issues and make 
design improvements to enhance the user experience. By improving a product’s or 
system’s usability, designers can increase user engagement and satisfaction, leading 
to better user outcomes. Generally, usability testing is an essential component of 
HCD, and it plays a crucial role in ensuring that products and systems are usable, 
accessible, and meet the needs of their users. By incorporating usability testing into 
the design process, designers can create products and systems that are intuitive, effi-
cient, and enjoyable to use, ultimately leading to better outcomes for users. Usability 
testing can help designers to do the following:

	 1.	 Identify usability issues: Usability testing helps identify usability issues 
that may not be apparent through other evaluation methods. These issues 
can include confusing navigation, unclear instructions, or frustrating 
interactions.

	 2.	Understand behavior: By observing users interacting with a product or sys-
tem, designers can better understand how users behave and what they need 
from it.

	 3.	Evaluate design solutions: Usability testing can be used to evaluate the 
effectiveness of design solutions and identify areas where further improve-
ments are needed.

	 4.	 Improve user satisfaction: By identifying usability issues and making design 
improvements, designers can improve the user experience and increase user 
satisfaction.

Cognitive abilities are critical in designing elder care products [29]. Cognitive skills 
refer to mental processes such as memory, attention, perception, and problem-solving. 
As people age, cognitive abilities decline, making learning and using new technol-
ogy more challenging [30]. Designers must consider this when designing products for 
elder care, and they need to create products that are easy to use and do not require 
a significant cognitive load. One approach is to use familiar design patterns and 
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interfaces that the elderly are already familiar with, such as using icons and symbols 
that are commonly recognized. Additionally, designers can use clear and straightfor-
ward language in product interfaces, providing clear instructions and minimizing the 
steps required to complete a task.

Another approach is to use feedback mechanisms such as sound or haptic feed-
back to provide immediate feedback to the user, which can help them understand 
whether they have completed a task correctly or not [31]. This can be particularly 
helpful for individuals with cognitive impairments. In summary, cognitive abilities 
are essential when designing elder care products. By creating products that are easy 
to use, require minimal cognitive load, and provide immediate feedback, designers 
can create products that meet the needs of the elderly population and improve their 
quality of life.

3.3  OBJECT IDENTIFICATION BASED ON ATTENTION

When a person’s eyes are focused on a particular object, a cluster of gaze points 
on that object indicates visual attention [32]. Visual attention is the cognitive pro-
cess of selectively concentrating on certain visual stimuli while ignoring others. It 
is an essential process for interpreting and understanding the world around us. Eye-
tracking technology can measure visual attention by tracking the movement of a 
person’s eyes and identifying the objects or areas where the person is looking. By 
analyzing gaze patterns, researchers can gain insights into a person’s visual attention 
and determine what they focus on and for how long [33].

In elder care, eye-tracking technology can be used to design products and systems 
that are more intuitive and accessible for the elderly population. By understanding 
where users look and what they focus on, designers can create more natural inter-
faces requiring fewer cognitive resources. For example, suppose an elderly person 
struggles to find a particular button on a device. In that case, eye-tracking technology 
can identify where they are looking and what they are missing. Based on this infor-
mation, designers can adjust the interface to make the button more prominent and 
easier to find. Visual attention is an important aspect of human cognition that can be 
measured using eye-tracking technology [34–36]. By understanding where users are 
looking and what they are focusing on, designers can create products and systems 
that are more intuitive and accessible for the elderly population.

After detecting each instance of visual attention using eye-tracking technology, 
a model of the ANN [37] can be used to group the gaze points of the object or area 
the person was looking at. This grouping helps to calculate an equal circle to repre-
sent the gaze cluster and better understand where the person’s attention was focused. 
Once the gaze cluster is identified, object recognition techniques can be used to 
recognize  the object or scene the person was looking at. This can be achieved by 
comparing the gaze cluster with the scene or object’s image and identifying overlap 
areas. By analyzing the areas of overlap, the system can determine what the person 
was looking at and use this information to provide relevant assistance or feedback.

In the context of elder care, this technology can be used to create intelligent sys-
tems that can understand and respond to the visual attention of elderly users [38]. 
For example, suppose an elderly person struggles to find a particular item in their 
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home. In that case, an intelligent system equipped with eye-tracking technology can 
identify what they are looking at and provide assistance or feedback to help them 
find the item. Overall, using ANN models and object recognition techniques can 
help improve the accuracy and usefulness of eye-tracking technology in understand-
ing human visual attention. By combining these techniques with intelligent systems, 
designers can create products and systems that are more intuitive and accessible for 
the elderly population.

The classifier for deliberate gaze detection is based on an ANN, a machine-
learning algorithm inspired by the structure and function of the human brain. The 
classification process involves using visual characteristics from natural visual behav-
ior, not requiring users to perform abnormal visual behaviors such as prolonged gaz-
ing or purposeful blinking.

Figure 3.1 illustrates the process of classifying deliberate gaze using an ANN. The 
algorithm uses input data from eye-tracking technology, including gaze duration, 
fixation position, and saccade velocity, to determine whether the gaze is deliberated. 
The ANN model is trained using a dataset of intentional and non-deliberate gaze 
examples, allowing it to classify new instances of gaze behavior accurately. By using 
this approach, designers can create eye-tracking systems that are more natural and 
intuitive for users, improving the overall usability and accessibility of the system. 
This can be particularly beneficial in elder care, where users may have limited cog-
nitive or physical abilities and struggle with more complex or demanding interfaces.

The features used in the classifier for deliberate gaze detection include the duration 
and focus of the gaze, which were chosen based on an analysis of literature and previ-
ous research. The classifier is trained using a dataset of deliberate and non-deliberate 
gaze examples, allowing it to learn the patterns and characteristics that distinguish 
intentional from unintentional gaze. During usage, the eye-tracking system records 
the gaze characteristics of the user and feeds them into the classifier. The classifier 
then analyzes these characteristics and produces an output indicating the degree of 
the intentionality of the gaze. This output can infer the user’s visual attention and 
intent, allowing the system to respond appropriately and provide relevant assistance.

By incorporating this type of deliberate gaze detection into eye-tracking systems, 
designers can create more intuitive and responsive interfaces that better meet the 

FIGURE 3.1  Detection of intentional gaze using an ANN classifier.
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needs of elderly and disabled users. This can help improve their quality of life and 
promote greater independence in daily activities. In the eye-tracking system, visual 
attention is only attracted when the classifier recognizes a deliberate gaze. The clas-
sifier is trained to differentiate intentional gaze from unintentional gaze based on fea-
tures such as gaze duration and focus. Once the system detects an intentional gaze, it 
can infer the user’s visual attention and intent and respond appropriately to provide 
assistance or perform the requested task. This approach enables a more natural and 
intuitive mode of interaction for elderly and disabled users. It can help improve their 
quality of life by allowing greater independence in daily living activities.

3.4  HUMAN INTENTION INFERENCE

Human intention inference refers to the ability of a system to understand and pre-
dict a user’s intentions based on their actions and behavior [39]. This can involve 
analyzing cues such as speech, facial expressions, body language, and eye gaze to 
infer the user’s intent and respond appropriately [40]. Human intention inference is 
an important aspect of HCI, especially in applications where users may have limited 
mobility or communication abilities. By understanding a user’s intentions, a system 
can provide more personalized and efficient assistance, improving usability and user 
satisfaction [41].

Nonverbal communication is any form that does not involve using words, such as 
facial expressions, body language, tone of voice, and gestures [42]. It can convey var-
ious emotions and attitudes and provide cues that help others understand a person’s 
intentions and feelings. Research has shown that nonverbal cues can be even more 
powerful than verbal communication in some cases because they are often more 
difficult to fake or control consciously. For example, if someone tries to hide their 
emotions or intentions through words, their nonverbal cues may give them away.

Nonverbal communication can also provide important social cues that help peo-
ple navigate social interactions and relationships. For example, someone’s body lan-
guage may indicate whether they are open and friendly or closed off and guarded. 
These cues can help others predict how someone will respond in different situations 
and guide their behavior accordingly. Nonverbal communication plays a vital role in 
interpersonal communication and can provide valuable information about a person’s 
intentions, emotions, and attitudes, even when they are not explicitly communicated 
through words [43].

It sounds like an interesting study examining how nonverbal and indirect signals 
can facilitate more natural and effective interactions with older individuals. Implicit 
communication of purpose refers to how a person’s actions, gestures, and expressions 
can convey their intentions and goals without explicit verbal communication. Using 
nonverbal and implicit signals can be particularly important when communicating 
with older individuals who may have difficulty hearing or processing verbal infor-
mation or have cognitive or physical impairments that make it challenging to com-
municate in traditional ways. By using nonverbal cues and implicit communication 
of purpose, it may be possible to make interactions more intuitive and efficient while 
also reducing the risk of miscommunication or confusion.



67Improved Implicit Intention Communication for Older People

For example, a caregiver or healthcare provider working with an older individ-
ual may use nonverbal cues such as gentle touches, facial expressions, and body 
language to convey empathy, understanding, and reassurance. They may also use 
indirect signals such as pointing, nodding, or gesturing to indicate a desired action 
or direction rather than relying solely on verbal instructions. Overall, this type of 
communication can be an effective way to facilitate more natural and effective inter-
actions with older individuals and can help to improve the quality of care and support 
provided to this population.

The study uses an ANN model to identify human intention and assess the 
intended purpose of certain actions or behaviors. The study also uses a question-
naire based on contextual characteristics to help inform the intention recognition 
system. Once the intention recognition system is in place, carers or other profes-
sionals can use it to make choices or diagnoses based on the identified intentions. 
This description needs to clarify the specific scenarios in which the intention rec-
ognition system is being tested. Still, they are likely related to caregiving or support 
for older individuals [44].

The study explores how technology and machine learning can improve commu-
nication and decision-making in contexts where verbal communication may be dif-
ficult or limited. By using nonverbal cues and other contextual information, it may 
be possible to develop more accurate and effective systems for understanding and 
responding to the needs of older individuals or other populations with communica-
tion challenges.

This research uses nonverbal communication and computer vision technologies to 
recognize a human user’s implied purpose. The study is specifically focused on sup-
porting the movement of the eyes in older individuals, and the system is designed to 
determine the actions or requirements necessary to support this goal. The study uses 
an ANN model incorporating contextual information to recognize the user’s intent 
to achieve this. The system uses nonverbal cues and other contextual factors to infer 
the user’s purpose and needs and then responds accordingly to provide the best pos-
sible service. Overall, the study highlights the potential of technology and machine 
learning to support older individuals and others with communication or mobility 
challenges. By using nonverbal communication and contextual information to infer 
the user’s intent, it may be possible to develop more effective and responsive systems 
for supporting the needs of this population. This could lead to improved quality of 
life and better access to care and support.

3.4.1 K nowledge of Human Intention

Human intention refers to the mental state or purpose that underlies a person’s 
actions. It involves the conscious or subconscious desire to achieve a particu-
lar goal or outcome. Understanding human intention is essential in many fields, 
including psychology, neuroscience, artificial intelligence, and HCI. In psychol-
ogy, researchers study human intent to understand the underlying motivations 
behind behavior. This helps develop theories of human behavior and mental pro-
cesses [45].
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In neuroscience, researchers study the neural basis of human intention to under-
stand how the brain processes and generates intentions [46–48]. This has important 
implications for the development of neuroprosthetics and BCIs. In artificial intel-
ligence and HCI, understanding human intention is crucial for developing intelli-
gent systems that interact with humans more naturally and intuitively. This involves 
developing algorithms and models to recognize and interpret human intention from 
various sources, such as speech, gestures, and facial expressions.

ANN models are commonly used for classification tasks, such as spam filtering, 
document classification, and emotion prediction. This is because ANNs are well-
suited for learning patterns in large datasets and can be trained to recognize complex 
relationships between input features and output labels. One of the key assumptions of 
an ANN model is that the input features are independent of each other, which allows 
the model to process each feature separately and combine them later in the prediction 
step. This property is known as “feature independence” and makes ANNs efficient 
and scalable for real-world applications, especially when real-time predictions are 
required.

ANN models can also be easily trained and optimized for different classification 
tasks by adjusting the model architecture, tuning the hyperparameters, and using 
different training algorithms. This makes them highly adaptable to various appli-
cations, from image recognition to NLP. Overall, ANN models are a powerful tool 
for classification tasks, and their flexibility and scalability make them an attractive 
choice for many real-world applications.

In cases where the input features are correlated with each other and the output 
label, capturing the dependencies between the features can significantly improve 
the accuracy of classification models. This can be achieved using more advanced 
ANN architectures that allow non-linear relationships between the input features. 
One example of such an architecture is the ANN, which consists of multiple layers 
of interconnected neurons. ANNs can learn complex feature representations by com-
bining lower-level features into higher-level features, capturing dependencies and 
interactions between the input features.

The architecture of an ANN can be visualized as a graph, where each node 
represents a neuron, and each edge represents a connection between neurons. The 
weights of the connections are adjusted during the training phase to optimize the 
model’s performance. Figure 3.2 shows an example of an ANN architecture designed 
to capture dependencies between input features and improve prediction accuracy 
for classification tasks with correlated features. Using an ANN, the model can learn 
complex relationships between the input features and the output label, leading to 
more accurate predictions.

The experiment involves displaying different eye-gaze properties and measuring 
the features of intentional eye views. The experiment’s duration is longer than five 
seconds, and the study uses an ANN classification algorithm to determine partici-
pants’ visual attention. The user’s intention is displayed at the top of the screen. It 
remains there for more than five seconds, indicating that the user is paying attention 
to that particular aspect of the kitchen display.
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ANN classification is a machine learning technique that trains a neural network 
to recognize patterns and relationships between input features and output labels. In 
this case, the input features are likely the eye-gaze properties, and the output label is 
the user’s visual attention to different aspects of the kitchen display. Using an ANN 
classification algorithm, the study can identify which aspects of the kitchen display 
capture the participants’ attention and how their attention changes over time. This 
information can be used to improve the design of kitchen displays and other interac-
tive systems, making them more intuitive and user-friendly.

The experiment identified four specific items in a kitchen picture that participants 
were focusing their visual attention on. These items were a “cup of tea,” “glass of 
water,” “glass of juice,” and “bowl of soup,” and they were used to form the basis 
of the knowledge or intention that the experiment was trying to capture. All manip-
ulator items were incorporated into a simulated picture to simulate a kitchen envi-
ronment. However, due to the computer-intensive nature of the ANN classification 
training, it was carried out offline on a computer rather than in real time.

The training data and kitchen scenarios were used to accurately segment the items 
without limiting the system architecture. The generated models were then saved on 
the computer, and a classification algorithm was used to recognize the items in real 
time. The study focused on detecting visual attention and deliberate inferences, 
which are essential elements of the home environment. This information can be used 
to improve the design of interactive systems and make them more user-friendly.

Figure 3.3 shows a schematic of the ANN training and recognition phases used 
in the experiment. The training phase used the training data and kitchen scenar-
ios to generate models to segment the items accurately. The recognition phase used 
the classification algorithm to recognize the items in real time based on the models 
developed during the training phase.

FIGURE 3.2  ANN algorithm block diagram.
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3.5  INTENTIONAL COMMUNICATION THROUGH EYE GAZE

Intentional communication through eye gaze refers to using eye movements and gaze 
direction to convey information and communicate with others. This form of com-
munication can be intentional, such as when a person deliberately looks at someone 
to signal their interest or attention, or unintentional, such as when a person’s gaze 
is naturally drawn to something in their environment. Eye gaze can convey various 
information, such as emotions, intentions, and attitudes. For example, a prolonged 
gaze in a conversation can indicate interest or attentiveness, while a glance away may 
signal disinterest or discomfort.

Studies have shown that intentional communication through eye gaze can be par-
ticularly important for people with conditions that affect their ability to speak or 
communicate effectively, such as autism spectrum disorder. In these cases, eye gaze 
can be used as an alternative or augmentative communication method, allowing indi-
viduals to express their thoughts, feelings, and intentions without relying solely on 
spoken language. Researchers have also developed eye-gaze tracking technologies 
to enable communication with computers and other devices. For example, eye-gaze 
tracking can control a cursor on a computer screen, select items from a menu, or 
type out messages using an on-screen keyboard. Overall, intentional communication 
through eye gaze is a complex and multifaceted form of communication that plays a 
vital role in social interactions and can be used to enable communication for individ-
uals who may have difficulty with spoken language.

It is important to check the accuracy of the results deduced from eye-gaze track-
ing, as factors can affect the reliability of the inference findings, such as distracting 
surroundings or poor gaze tracking. To ensure accuracy, the user should be involved 
in the process and asked to confirm or provide feedback on the inferences made from 
their eye-gaze patterns. This can be done by showing the outcome at the top of the 
screen and asking the user to indicate whether or not it aligns with their intention.

FIGURE 3.3  Artificial kitchen image with labeled objects.
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In the experiment you described earlier, the user was asked to demonstrate their 
intention by utilizing the item for more than five seconds. This can also be a way to 
confirm the accuracy of the inferences made from eye-gaze tracking. While eye-gaze 
tracking can provide valuable information about a user’s intentions and interests, it is 
important to remember that it is only sometimes 100% accurate. User feedback and 
confirmation can help ensure that the inferences made are reliable.

Figure 3.4 illustrates the gaze-based deduction of human intention, which involves 
four main components: Attention extraction, object recognition, intention recogni-
tion, and knowledge base. The first component, attention extraction, involves iden-
tifying and tracking the user’s eye-gaze patterns and determining which objects or 
areas in the environment the user is attending to.

The second component, object recognition, involves using computer vision algo-
rithms to identify and classify the objects or items the user is attending to. This may 
include recognizing specific objects, such as a cup or a book, or more general cate-
gories, such as food or household items. The third component, intention recognition, 
involves using the information from the first two components to infer the user’s inten-
tion or goal. For example, if the user looks at a cup and then moves to the teacup, the 
system may imply that the user intends to make a cup of tea. The fourth component, 
the knowledge base, involves using a database or repository of information about the 
user’s preferences, habits, and previous actions to refine the inferred intention further 
and make more accurate predictions about the user’s goals and activities. Overall, 
the gaze-based deduction of human intention involves using computer vision and 
machine learning algorithms to analyze a user’s eye-gaze patterns and infer their 
intentions and goals. This technology has potential applications in various fields, 
including HRI, AR, and assistive technology for people with disabilities.

3.6 � FRAMEWORK FOR IMPLICIT INTENTION 
COMMUNICATION BASED ON GAZE

Figure 3.5 depicts the framework’s overall structure for implicit intention commu-
nication based on gaze. The user views the scene from the kitchen, fed into the HCI 
system. The HCI system maintains a consistent view of the scene for the user through-
out the intended procedure. The gaze tracking and attention extraction components 

FIGURE 3.4  The gaze-based human intention inference.
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FIGURE 3.5  Gaze-based implicit intention communication framework.
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analyze the user’s eye-gaze patterns and extract information about which objects 
or areas in the environment the user is attending to. The object recognition com-
ponent uses computer vision algorithms to recognize the objects or items the user 
is attending to. The intention recognition component infers the user’s intention or 
goal based on the context and other available information. Finally, the feedback and 
confirmation component provides feedback to the user and asks for confirmation or 
clarification to ensure accuracy.

3.7  SETUP AND CONDUCT OF EXPERIMENTS

Figure 3.6 presents a feedback scenario to the user, replicating the situation in a home 
care system. The picture depicts a kitchen with visible items, and a camera tracks 
the user’s eye-gaze patterns on the screen. The study focuses on identifying visual 
attention and intention in this scenario, which are essential components of the overall 
framework for implicit intention communication based on gaze. The goal is to use 
this information to infer the user’s intentions and provide appropriate feedback or 
assistance in real time, as needed.

During the trial, participants sat in front of a monitor that displayed an image 
of a kitchen. They were asked to convey their intention by gazing at specific items 
using their eyes. In addition to tracking their gaze locations, ocular movements were 
also observed. The study used an ANN classification algorithm to identify the par-
ticipants’ visual attention and graphical objects were recognized from the camera’s 
visual data. By analyzing these data, the researchers could infer the user’s intentions 
and provide appropriate feedback or assistance based on the task.

Compared with the mouse model, one of the most common interaction models 
with excellent usability, the gaze modality utilizes natural visual behavior for care 
detection. While the mouse mode may not be accessible to most disabled people, it 
is still highly efficient in demonstrating the usefulness of the gaze modality due to 
its ubiquity and excellent usability. The remaining configuration of the mouse model 

FIGURE 3.6  Experimental setup for gaze-based implicit intention communication.
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used in the study was the same as the gaze model. This allowed for a direct com-
parison of the two interaction modalities and their effectiveness in detecting visual 
attention and inferring user intentions.

3.7.1  CNN-SVM Visual Attention Classification Training

Convolutional neural network (CNN)-SVM visual attention classification training 
involves combining CNNs and SVMs to classify visual attention [49, 50]. CNN is 
used to extract features from the input images, while SVM is used to classify the 
extracted features. The CNN is trained to learn features from the input images, 
which are then passed through a fully connected layer to generate a feature vector. 
This feature vector is then input to the SVM classifier, classifying the image into two 
classes: Attended or unattended.

During the training phase, the CNN is trained using a labeled image dataset, 
where each image is marked as either attended or unattended. The SVM is then 
trained using the feature vectors generated by the CNN and the corresponding class 
labels. The trained CNN-SVM model is then used to classify visual attention in new 
images. The input image is first passed through the trained CNN to generate a feature 
vector. The trained SVM classifies the image as attended or unattended when passed 
through. The CNN-SVM visual attention classification training approach detects 
visual attention and infers user intentions based on gaze data.

CNNs are designed to work with image data, and they reduce the number of 
parameters and connections required during training by exploiting the spatial cor-
relation present in images. The convolutional layers in a CNN consist of filters that 
slide across the input image, extracting local features such as edges and corners. 
These features are combined and passed through fully connected layers to make 
predictions. By using convolutional layers, the number of trainable parameters in a 
CNN can be significantly reduced compared with a fully connected network, mak-
ing it more computationally efficient to train. 300-W IMAVIS (image and vision 
computing) is a facial landmark detection dataset commonly used for face alignment 
tasks. However, it is not directly related to CNN-SVM visual attention classification 
training.

To provide more context, CNN-SVM is a standard method for object detection 
and classification tasks, including visual attention classification. CNN is used for fea-
ture extraction, and SVM is used for sorting. In CNN-SVM visual attention classifi-
cation training, the CNN is typically pre-trained on large datasets such as ImageNet 
and then fine-tuned on the specific task of visual attention classification. The SVM 
is then trained on the extracted features to classify the visual attention. The specific 
architecture and parameters of the CNN-SVM model depend on the task and dataset.

The CNN consists of several convolutional layers followed by fully connected 
layers. The first convolutional block consists of two convolutional layers with 64 
filters each, followed by a max pooling layer. The subsequent two blocks have convo-
lutional layers with 128 and 256 filters, respectively, followed by a max pooling layer. 
The fourth block has three convolutional layers with 512 filters, followed by a max 
pooling layer. Finally, there are three fully connected layers with 4096, 4096, and 
1000 neurons, respectively, followed by a softmax activation function to output the 
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predicted class probabilities. The model is often fine-tuned on a specific dataset by 
replacing the last fully connected layer and training it on the new data. The final layer 
of the CNN model used in this investigation is a fully connected layer that feeds into 
the classification layer. The fully connected layer helps map the features extracted 
from the previous layers of the CNN to the specific classes in the classification layer. 
This is a common approach in CNN architectures used for classification tasks.

The suggested model for detecting visual attention consists of three main compo-
nents: the pre-trained CNN, feature extraction, and SVM classifier. The pre-trained 
CNN is used to extract features from the input images. The feature extraction com-
ponent takes the output from the pre-trained CNN and extracts the relevant fea-
tures for the visual attention detection task. Finally, the SVM classifier classifies the 
extracted features as either attention or non-attention. The SVM classifier was chosen 
because it can handle high-dimensional data and deal with small datasets effectively. 
Figure 3.7 shows the architecture of the suggested model that combines the strengths 
of the pre-trained CNN and SVM classifier for accurate visual attention detection.

SVM is a powerful machine-learning approach for small datasets and high-
dimensional feature spaces. SVM aims to find the best hyperplane that separates 
the different classes in the feature space. When the training data are not linearly 
separable in the original feature space, SVM uses a kernel trick to map the data to a 
higher-dimensional space where linear separation is possible. With sufficient train-
ing data, SVM can deliver accurate and robust classification results.

A multi-class SVM classifier is used to classify the gaze data into different classes 
based on the user’s visual attention. The classifier is trained on the resultant vectors 
obtained from the pre-trained CNN model. The training is done with a training error 
of 0.02038 and a test error of 0.02045. The SVM classifier uses a linear function 
kernel to project the original linear and nonlinear dataset into a higher dimensional 

FIGURE 3.7  The architecture of the proposed visual attention detection model.
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space, enabling it to separate the different classes more accurately. This approach 
allows for detecting visual attention with high accuracy and reliability.

3.8  EYE-GAZE ESTIMATION

Eye-gaze estimation refers to determining the direction in which a person is looking. 
It is a critical component of many computer vision applications, such as HCI, driver 
assistance systems, and VR. Eye-gaze estimation can be achieved through various 
techniques, including pupil tracking, corneal reflection, and head-mounted cameras 
[51–53]. Pupil tracking involves detecting and tracking the position of the pupil in 
real time. This technique is based on the fact that the position of the pupil changes as 
the gaze direction changes. By analyzing the movement of the pupil, the gaze direc-
tion can be estimated accurately. Pupil tracking can be done using infrared light and 
cameras near the eyes.

Corneal reflection is another technique for eye-gaze estimation. It involves illu-
minating the eye with a light source and detecting the reflection of the light from the 
cornea—the position of the reflection changes with changes in the gaze direction. By 
analyzing the movement of the reflection, the gaze direction can be estimated. Head-
mounted cameras are also used for eye-gaze estimation. These cameras are attached 
to the head, capturing video of the user’s face and eyes. The captured video is then 
analyzed to estimate the gaze direction. Head-mounted cameras are commonly used 
in VR applications, where the user’s gaze direction controls the virtual environment. 
Overall, eye-gaze estimation is an essential component of many computer vision 
applications. By accurately estimating the direction of a person’s gaze, computers 
can interact with users more naturally and efficiently.

CNN-SVM [54] models have been increasingly used for eye-gaze estimation 
because of their ability to handle large datasets and map images directly to gaze 
points without the need for hand-engineered features. These models are based on a 
combination of a CNN and an SVM classifier, with the CNN being used to extract 
relevant features from the input image and the SVM being used to map these features 
to gaze points. The CNN-SVM approach has shown promising results in accuracy 
and robustness in various eye-gaze estimation tasks.

Gaze estimation is an important field of research in HCI that aims to interpret 
users’ visual attention and intentions by analyzing the direction of their gaze [55–57].  
The applications of gaze estimation techniques are widespread, ranging from 
eye-tracking for assistive technologies to gaze-based interaction with computers and 
mobile devices to virtual and AR. By analyzing the eye regions in images or video 
streams captured by cameras, deep learning models such as CNN-SVM can accu-
rately predict the position and movement of the user’s gaze.

The eye localization process is a crucial step in gaze estimation, as it allows 
for the precise description of the eye position and subsequent estimation of the 
direction of gaze. This is typically achieved through a deformable eye model, 
which is applied to the image data to locate the eyes and estimate their position 
within the image. Once the eye position has been determined, other factors such 
as head pose, pupil size, and other eye-related features can be used to estimate the 
direction of gaze.
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The facial landmark localization technique is a computer vision method that 
detects and localizes specific points on a face, such as the corners of the eyes, nose, 
and mouth [58, 59]. This technique is often used in gaze estimation to locate the 
position of the eyes in the image accurately. One approach to facial landmark local-
ization is to use a random forest-embedded active shape model, which combines the 
flexibility of active shape models with the robustness of random forests. This method 
uses training images to learn facial landmarks’ statistical shape and appearance and 
can accurately localize them in new images in real time.

3.8.1 E ye Landmark Localization

Eye landmark localization identifies specific points or landmarks on the eye, such as 
the eye’s corners, the pupil’s center, and the iris’s edge [60]. This process is important 
for gaze estimation, as it accurately determines where the user looks.

There are various methods for eye landmark localization, including machine 
learning, geometric, and hybrid approaches [61]. Machine learning approaches 
involve training a model on a large dataset of annotated eye images to predict the 
location of landmarks [62]. Geometric systems use mathematical models and fea-
ture extraction techniques to identify landmarks. Hybrid approaches combine both 
machine learning and geometric methods to achieve better accuracy.

While there have been significant advancements in eye detection and monitoring 
algorithms in recent years, many are designed to work in specific scenarios or with 
certain types of data. For example, some algorithms may be designed to work only 
with high-resolution images or videos, while others may be optimized for low-light 
conditions. Similarly, some algorithms may be better suited for detecting eyes in cer-
tain poses or orientations, while others may struggle with these scenarios.

Furthermore, there are many different types of eye detection and monitoring 
algorithms, each with strengths and weaknesses. Some algorithms may be better 
suited for real-time monitoring applications, while others may be more appropriate 
for post-processing and analysis. Overall, the effectiveness of any eye detection and 
monitoring algorithm will depend on the specific application and the types of data 
being analyzed. It is essential to carefully evaluate different algorithms and select the 
one that best meets the needs of the particular use case.

In the context of eye detection in face regions, an ANN model could be trained on 
a dataset of labeled images, where each image contains a face region and an anno-
tation indicating the location of the eyes within that region. The ANN model could 
then learn to identify the patterns and features that indicate the presence of eyes in 
face regions. Once the ANN model has been trained, it can detect eyes automatically 
in new images or videos. This can be done by applying the model to each face region 
in the image or video and identifying the regions the model predicts contain eyes. 
Overall, using an ANN model for eye detection in face regions can be effective if it is 
carefully trained and tested on diverse data to ensure accuracy and reliability.

The teaching procedure is likely used to train a machine learning model (such 
as an ANN model) on a dataset of labeled images, where each image contains a 
face region and an annotation indicating the location of the eyes within that region. 
This procedure involves feeding the labeled images into the model and adjusting 
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its parameters to minimize the difference between the model’s predictions and the 
accurate annotations. Once the model has been trained, the locating procedure 
shown in Figure 3.8 can automatically detect eyes in new images or videos. This 
procedure involves applying the trained model to each face region in the image 
or video and identifying the areas the model predicts contain eyes. This two-step 
approach can effectively localize eyes in face regions if the training dataset is care-
fully selected and the model is trained and evaluated thoroughly to ensure accuracy 
and reliability.

Facial landmarks are specific points on the face that can be detected and tracked 
using computer vision algorithms [63]. In the case of eye detection, these land-
marks might include points around the eyes, such as the corners of the eyes and the 
center of the iris. The six coordinates mentioned in Figure 3.9 likely correspond to 
specific landmarks around each eye. By analyzing the position and movement of 
these landmarks over time, it may be possible to detect when the eyes are blinking 
or closing.

The eye aspect ratio (EAR) equation [64] mentioned in Figure 3.9 is likely a math-
ematical formula that uses the positions of the landmarks to calculate a ratio that 
reflects the shape of the eye. This ratio can then determine whether the eye is open 
or closed. Overall, this approach to eye blink detection using facial landmarks and 
the EAR equation can be helpful in real-time monitoring applications. It does not 
require specialized hardware and can be implemented using standard cameras or 
video streams. However, like any detection algorithm, it is important to thoroughly 

FIGURE 3.8  Facial and eye region localization.
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FIGURE 3.9  Demonstration of six coordinates of an eye.

evaluate its accuracy and performance in various scenarios to ensure its reliability. 
The following is the equation:
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exact formula for calculating the EAR may vary depending on the application and 
the landmarks used. Still, it typically involves dividing the sum of certain landmark 
distances by the distance between other landmarks. The resulting ratio can then be 
compared with a threshold value to determine whether the eye is open or closed. 
Overall, the EAR is helpful for eye detection and monitoring. It can detect blinks and 
other eye movements in real time using standard cameras or video streams. However, 
it is important to carefully select and evaluate the facial landmarks used in the calcu-
lation to ensure their accuracy and reliability.

3.8.2 E ye Tracking and Gaze Estimation

Eye tracking and gaze estimation are real-time techniques for monitoring and ana-
lyzing eye movements and positions [65]. These techniques have many applications, 
including HCI, VR, gaming, and medical research. Eye tracking involves using special-
ized hardware, such as eye-tracking cameras, to monitor the eye’s movements in real 
time [66]. By tracking the position and movement of the eye, it is possible to analyze 
where a person is looking, how long they are looking at a particular point, and other 
information related to their visual attention. Gaze estimation is a related technique that 
uses computer vision algorithms to estimate where a person is looking based on the 
position and movement of their eyes. This technique can be used with standard cameras 
or video streams, making it more accessible than eye tracking in some contexts.

Eye tracking and gaze estimation rely on detecting and tracking specific eye fea-
tures, such as the pupil or the iris, as they move in response to changes in visual 
stimuli. These features can then be used to calculate the direction and intensity of 
the gaze, which can be used to inform a wide range of applications and analyses. 
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Eye tracking and gaze estimation are powerful real-time techniques for monitoring 
and analyzing visual attention and eye movements. However, they require careful 
calibration and evaluation to ensure accuracy and reliability, particularly in complex 
or dynamic environments.

Gaze estimation estimates the direction of a person’s line of sight or where they 
are looking. This can be done by using computer vision algorithms to analyze images 
or video streams of a person’s face and eyes and then using this information to esti-
mate the direction of their gaze. In 2D gaze estimation, the goal is to estimate the 
direction of the person’s gaze in two dimensions, typically using a plane or screen as 
a reference point. This can be useful in various applications, such as studying visual 
attention in reading or browsing behavior or designing interfaces for HCI.

However, it is important to note that 2D gaze estimation is not the only type 
[67]. 3D gaze estimation involves estimating the direction of a person’s gaze in three 
dimensions, which can be helpful in applications such as VR or robotics. Other types 
of gaze estimation may focus on more specific aspects of gaze behavior, such as fix-
ations, saccades, or smooth pursuit movements. Overall, the gaze estimation model 
described in Figure 3.10 is an important technique for understanding visual attention 
and eye movements and can have a wide range of practical applications in fields such 
as psychology, neuroscience, HCI, and more.

3.8.3 E ye-Gaze Tracking Framework

An eye-gaze tracking framework monitors and analyzes a person’s eye movements 
and gaze direction in real time. This framework typically involves using specialized 
hardware, such as eye-tracking cameras, and software algorithms for detecting and 
tracking specific eye features, such as the pupil or the iris. The eye-gaze tracking 
framework can be used in various applications, including HCI, VR, gaming, medical 
research, and more. For example, eye-gaze tracking can be used to develop more 
natural and intuitive interfaces for computers and mobile devices, to improve the 
accuracy of VR experiences, or to study visual attention and cognitive processes in 

FIGURE 3.10  Eye-tracking and -gaze estimation model.
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research settings. The eye-gaze tracking framework typically involves several key 
components, including the following:

	 1.	Eye-tracking hardware specialized cameras or sensors that can capture 
high-quality images or video of the eye and its movements.

	 2.	Calibration initialization procedures: A process for calibrating the eye-
tracking system to the specific user and environment, typically involving the 
user following a series of prompts or stimuli.

	 3.	Computer vision algorithms: Software algorithms to analyze the images or 
video captured by the eye-tracking hardware and extract specific features, 
such as the pupil’s or iris’s position and movement.

	 4.	Gaze estimation: A process for estimating the direction of the user’s gaze 
based on the position and movement of their eyes, typically using mathe-
matical models and machine learning algorithms.

An eye-gaze tracking framework is powerful for studying and analyzing visual atten-
tion and eye movements in real time. However, it requires careful calibration and 
evaluation to ensure accuracy and reliability, particularly in complex or dynamic 
environments.

To use the CNN-SVM classifier to identify a person’s visual focus during every-
day living tasks, the system must first be trained and qualified to recognize spe-
cific visual cues or features relevant to the task. This typically involves training the 
CNN-SVM classifier using labeled datasets, where the system is shown examples 
of relevant visual cues and taught to recognize them. For example, suppose the task 
involves identifying and remembering specific objects in a scene. The classifier may 
be trained to recognize particular object categories, such as animals, vehicles, or 
household items.

Once the CNN-SVM classifier has been trained and qualified to recognize the 
relevant visual cues, it can be used in real time to identify the person’s visual focus 
during the task, as shown in Figure 3.11. This may involve tracking the person’s eye 

FIGURE 3.11  Implementation process of the CNN-SVM combined model.
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movements, head orientation, or other physical cues to infer where their attention is 
focused. This approach aims to understand better how people allocate their visual 
attention during everyday living tasks and how this affects their ability to remember 
specific visual details or information. Using machine learning algorithms and com-
puter vision techniques to identify and analyze these visual cues, researchers can 
gain insights into human cognition and behavior and develop new tools and technol-
ogies for supporting everyday activities and tasks.

3.9  WEBCAM-BASED EYE-GAZE RECOGNITION

Webcam-based eye-gaze recognition is a technology that uses a webcam to track the 
movements of a person’s eyes and determine where they are looking on a computer 
screen or in the physical world [68]. This technology is commonly used in gaming, 
VR, and user interface design applications. The process of webcam-based eye-gaze 
recognition typically involves using vision algorithms to track the position and move-
ment of the pupils in a real-time video feed from a webcam. This information is then 
used to calculate the direction of gaze and map it to a specific location on the screen 
or in the physical world.

Different approaches to achieving accurate eye-gaze recognition generally involve 
training a machine-learning model on a dataset of labeled eye images and gaze direc-
tions. The model can then predict the gaze direction of new images in real time, as 
shown in Figure 3.12. Webcam-based eye-gaze recognition can potentially improve 
the user experience in a wide range of applications, such as improving accessibility 
for people with disabilities, enabling more intuitive HCI, and enhancing the immer-
sion and realism of VR environments.

3.10  QUESTIONNAIRE FOR USABILITY

The USE (Usefulness, Satisfaction, and Ease of use) questionnaire is a tool used to 
evaluate user experience. It consists of 30 questions and uses a 5-point Likert scale to 
assess three critical aspects of user experience:

•	 Usefulness: It measures the extent to which a system is perceived as helpful 
in supporting users’ tasks or goals.

•	 Satisfaction: It measures the extent to which users are satisfied with the 
system’s performance and how well it meets their needs.

•	 Ease of Use: It measures the ease of learning and using the system, includ-
ing ease of navigation, clarity of instructions, and overall simplicity.

Here are some sample questions from the USE questionnaire:
Usefulness:

•	 To what extent did the system support your task?
•	 How helpful was the system in achieving your goals?
•	 To what extent did the system meet your expectations?
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Satisfaction:

•	 How satisfied were you with the system’s performance?
•	 How well did the system meet your needs?
•	 Overall, how satisfied are you with the system?

Ease of Use:

•	 How easy was it to learn to use the system?
•	 How easy was it to navigate the system?
•	 How easy was it to complete tasks using the system?

The USE questionnaire can be customized to suit the specific needs of the project or 
system being evaluated, and additional questions can be added as needed. The USE 

FIGURE 3.12  Webcam-based eye-gaze recognition architecture.
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questionnaire is a flexible tool that can be adapted to fit the unique requirements of a 
given project or system. By adding or modifying questions, researchers can tailor the 
questionnaire to capture specific aspects of the user experience relevant to the evalu-
ated system. For example, suppose the system is designed for users with a particular 
skill level. In that case, questions about ease of use and learning could be modified 
to reflect the target user’s knowledge and experience. Alternatively, if the system is 
used for a specific task or activity, questions could be added to assess how well the 
system supports that activity.

It is important to note that the USE questionnaire is just one tool for evaluat-
ing user experience. It should be used with user testing, interviews, and analytics. 
By combining multiple methods, researchers can gain a complete understanding of 
users’ needs and preferences and use that information to improve the design and 
functionality of the system.

It is great that we have a structured plan for interacting with the target users, as 
the questionnaire prepared in Appendix 1. This will help to gather consistent and 
meaningful feedback from all participants. It is also a good idea to provide clear 
instructions and explanations for the experiment and questionnaire so that users can 
understand what is expected of them and provide accurate and helpful feedback.

One thing to remember is that the USE questionnaire is just one tool for assess-
ing user experience. It is important to also gather qualitative feedback from users 
through interviews or open-ended survey questions and quantitative data on system 
performance (e.g., the accuracy of visual attention detection). By combining multiple 
methods, you can gain a more comprehensive understanding of users’ experiences 
and identify areas for improvement in the system design.

While the USE questionnaire can help assess user experience, using various methods 
to gather user feedback is important. This can include qualitative methods, such as user 
interviews or open-ended survey questions, which allow users to provide more detailed 
and nuanced feedback on their experiences. Qualitative feedback can help identify spe-
cific pain points or areas where the system could be improved and provide insight into 
how users interact with the system and why they may be experiencing difficulties.

In addition to qualitative feedback, collecting quantitative data on system per-
formance is important. This can include metrics such as accuracy, response time, 
or completion rate, which can help identify areas where the system may fall short 
in functionality or usability. Collecting qualitative and quantitative data allows you 
to understand users’ experiences better and identify areas where the system can be 
improved to meet users’ needs better.
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4 The Artificial Neural 
Network Approached 
Gaze-Based 
Implicit Intention 
Communication

The ANN is a machine-learning model that simulates how the human brain pro-
cesses information. It comprises interconnected nodes or “neurons” that recognize 
patterns and make predictions based on input data. One area where ANNs have been 
applied is gaze-based implicit intention communication [1].

Gaze-based communication refers to using eye movements to convey information, 
such as a person’s attention or intention [2, 3]. For example, looking at an object can 
indicate that they are interested in that object or plan to interact with it. In the context 
of ANNs, researchers have explored how to use eye-tracking technology to train 
neural networks to recognize and interpret these gaze cues [4].

One approach to gaze-based implicit intention communication using ANNs 
involves training the network on a dataset of eye movements and corresponding 
actions [1, 5, 6]. For example, the network could be trained on data collected from 
participants who were asked to look at different objects and perform different activ-
ities, such as reaching for the object or moving their eyes away. The network would 
learn to recognize patterns in the eye movements that correspond to different actions, 
allowing it to predict a person’s intentions based on their gaze patterns.

Another approach involves using ANNs to decode the neural activity [7] associ-
ated with gaze-based communication. Researchers have used functional magnetic 
resonance imaging [8] to identify the brain regions involved in gaze processing and 
trained ANNs to recognize patterns in this neural activity. This approach has the 
potential to provide insights into the neural mechanisms underlying gaze-based com-
munication and could lead to new treatments for communication disorders.

Overall, the use of ANNs in gaze-based implicit intention communication can 
improve our understanding of how people communicate nonverbally and could have 
applications in fields such as HRI, where robots could use gaze cues to understand 
better and respond to human intentions [9].

To use gaze-based communication in an ANN, it is necessary to establish a 
mapping function between the user’s estimated gaze vector and the screen’s points. 
This mapping function is critical because it allows the neural network to understand 
which part of the screen the user is looking at. To create this mapping function, a 
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calibration process is required. During calibration, the user is typically asked to look 
at a series of known points on the screen while their gaze vector is estimated [10, 11]. 
For example, the known points on the screen could be represented by a grid. By mea-
suring the gaze vector at each known point, it is possible to create a mapping function 
that describes the relationship between the user’s gaze vector and the screen’s points.

Once the mapping function has been established, it can interpret the user’s gaze 
in real time. For example, if the user looks at a particular point on the screen, the 
mapping function can determine which screen point corresponds to that gaze vector. 
The ANN can then use this information to infer the user’s intentions or actions. The 
calibration process [12] is important for gaze-based communication in an ANN. It 
is necessary to ensure that the mapping function accurately reflects the relationship 
between the user’s gaze vector and the screen’s points, which is essential for an accu-
rate interpretation of the gaze [13, 14].

To use gaze-based communication in an ANN, it is necessary to establish a map-
ping function between the user’s estimated gaze vector and the screen’s points. This 
mapping function is critical because it allows the neural network to understand which 
part of the screen the user is looking at. To create this mapping function, a calibration 
process is required. During calibration, the user is typically asked to look at a series 
of known points on the screen while their gaze vector is estimated. For example, the 
known points on the screen could be represented by a grid. By measuring the gaze 
vector at each known point, it is possible to create a mapping function that describes 
the relationship between the user’s gaze vector and the screen’s points.

Once the mapping function has been established, it can interpret the user’s gaze 
in real time. For example, if the user looks at a particular point on the screen, the 
mapping function can determine which screen point corresponds to that gaze vector. 
The ANN can then use this information to infer the user’s intentions or actions. The 
calibration process is important for gaze-based communication in an ANN [13, 15]. 
It is necessary to ensure that the mapping function accurately reflects the relation-
ship between the user’s gaze vector and the screen’s points, which is essential for an 
accurate interpretation of the gaze.

The proposed method for eye-gaze direction estimates has several advantages, 
including resistance to noise, blur, and mistakes in localization. Additionally, the 
testing step requires less computing power than other methods, averaging 30 frames 
per second (fps) in a Python-based implementation using graphics processing units. 
In terms of the experimental setup, participants were asked to sit in front of a monitor 
displaying an image of a kitchen scene. At the same time, their eye movements and 
gaze locations were recorded. By examining various items in the scene, participants 
attempted to communicate their purpose to the human–computer interface.

The eye-gaze data were then analyzed using an ANN classifier to identify the 
user’s visual attention and recognize the objects they were looking at. This method 
allows for interpreting the user’s intentions based on their gaze patterns, which has 
potential applications in fields such as HRI or assistive technology. Overall, this 
chapter provides a comprehensive review of state of the art in eye-gaze direction 
estimates and presents a promising method for interpreting gaze patterns using an 
ANN classifier. This method could significantly improve HCI and assistive technol-
ogies for individuals with disabilities.
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4.1  PROPOSED METHOD FOR GAZE ESTIMATION

The new technique for estimating the pupil’s vector involves using linear and non-
linear regression features to create a map function between the pupil vector and the 
point of gaze (PoG) [14]. This map function then determines the user’s gaze direction 
[15]. The use of linear and nonlinear regression features is likely intensive in the 
accuracy and robustness of the mapping function. Linear regression is a statistical 
method for identifying a linear relationship between two variables, while nonlinear 
regression can capture more complex relationships between variables. Combining 
these two methods allows the mapping function to better account for the factors 
affecting the pupil vector and gaze direction.

Additionally, an ANN is used to establish the mapping function. ANNs are par-
ticularly well-suited to this task because they can identify complex patterns in the 
data and make predictions based on those patterns. An ANN also suggests that the 
mapping function can be trained on a large dataset, allowing it to generalize well to 
new users and environments.

Overall, using a robust and efficient mapping function based on linear and nonlin-
ear regression features and an ANN will likely result in more accurate and reliable 
estimates of gaze direction, which could have important applications in fields such as 
HCI and assistive technology. The flow method for the gaze estimate is illustrated in 
Figure 4.1. First, a camera connected to the laptop screen collects the eye images of 
participants while gazing at the calibration marker on the screen.

After calibrating parameters, the image was processed using several techniques to 
enhance the accuracy of pupil tracking. First, bilateral filters were used to smoothen 
the image while preserving the edges of the image content. This will likely reduce 
noise in the image and make it easier to identify the pupil. Next, the histogram of the 
image was equalized to enhance the contrast. This technique is commonly used to 
increase the dynamic range of an image and improve its visual appearance. Finally, 
the average intensity within the pupil was approximated by filling the surrounding 
regions with moderate intensity. This is likely to improve the accuracy of pupil track-
ing by providing a more consistent and uniform intensity profile for the pupil. These 
techniques suggest a careful and methodical approach to image processing for pupil 

FIGURE 4.1  Flow process of gaze direction estimation.
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tracking. Combining smoothing, histogram equalization, and intensity averaging 
techniques, the resulting pupil-tracking algorithm is likely more accurate and robust.

Global thresholding is applied after the image has been processed using bilateral 
filtering, histogram equalization, and intensity averaging. This involves calculating 
the average power within the pupil and inverting the image to highlight the pupil 
blob. However, there may still be other dark blobs in the binary image that need to 
be removed. Morphological operations are performed to distinguish the pupil region 
from these noisy blobs. These operations involve applying mathematical functions 
such as erosion and dilation to the binary image to remove unwanted blobs and refine 
the shape and size of the pupil region. Once the noisy blobs have been removed, the 
final pupil region is determined by considering the blobs’ shape, size, and location. 
The center of gravity of this final pupil region is then calculated and used as the pupil 
center feature.

This thresholding, noise removal, and feature extraction process are expected in 
pupil tracking algorithms. By carefully considering the various features of the pupil 
region and using morphological operations to remove unwanted blobs, the resulting 
pupil-tracking algorithm is likely both accurate and robust.

The next step in the proposed method is to identify the pupillary iris boundary 
using a Canny edge detector and a Hough circular transformation. This involves 
combining profile and mask techniques to define the iris’s borders for pupil detection 
and circular Hough transformation. The gradients on the outer iris border are ver-
tical, and the mismatch between the pupil and iris centers and radii is responsive to 
threshold values. The detection accuracy is assessed once the pupillary iris boundary 
has been identified. The next step is calculating the pupil vector using the suggested 
ANN mapping function input after eliminating the iris and pupil center coordinates. 
This involves using a three-layer ANN to compute the mapping function between 
pupil vectors and related gaze positions. The three layers are the input layer, hidden 
layer, and output layer.

Finally, once the mapping function has been computed, the gaze points on the 
screen can be calculated using the mapping function. This process is common in 
gaze-based implicit intention communication, where the user’s gaze is used to com-
municate their intention to the HCI. Combining techniques such as edge detection, 
Hough circular transformation, and ANN mapping functions, the resulting method 
is likely accurate and robust.

4.1.1 V isual Gaze Estimation

This section discusses the importance of hardware and user calibration in improving 
tracking robustness for gaze estimation under real-world conditions. User calibration 
is necessary to model personal parameters for bias correction of the estimates [16]. 
While increasing the quantity of calibration data can improve calibration quality, it 
can also be tedious and damage user experience. Therefore, the trade-off between the 
quality and convenience of user calibration has been widely studied in the literature. 
The section also mentions advancements in this area, such as developing better geo-
metric eye models, more effective bias correction models, and introducing implicit 
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calibration methods. These advancements have contributed to improving gaze track-
ing accuracy and user convenience. The trade-off between calibration quality and 
comfort for the user is an important consideration in the development of gaze esti-
mation systems. While increasing the quantity of calibration data can improve the 
system’s accuracy, it can also be tedious and negatively impact the user experience. 
Therefore, researchers have been exploring alternative approaches to calibration that 
balance the need for accuracy with user convenience. Some of the advancements in 
this area include the development of more effective bias correction models and the 
use of implicit calibration methods that require minimal user effort.

The proposed webcam-based eye-gaze tracking methodology consists of several 
steps. First, the camera and monitor setup is calibrated to establish the mapping 
between the user’s gaze direction and the monitor’s screen coordinates. This involves 
recording the user’s gaze while they fixate on known calibration points displayed 
on the screen. The resulting gaze data are used to estimate the mapping function. 
Second, image processing techniques extract the user’s eye region from the web-
cam video stream. This involves detecting and tracking the position of the user’s 
pupils and iris. Third, the user’s gaze direction is estimated based on the position 
of the pupils and iris. This involves applying the mapping function from step one to 
determine the user’s gaze position on the screen. Finally, the estimated gaze direc-
tion controls the mouse cursor or other interactive elements on the screen. The pro-
posed methodology may include additional steps to improve tracking accuracy and 
robustness, such as applying filters to reduce noise or using machine learning algo-
rithms to improve pupil and iris detection. Additionally, the user may be required 
to perform calibration or training to improve the system’s accuracy. The proposed 
webcam-based eye-gaze tracking methodology offers a low-cost and non-invasive 
alternative to more complex gaze-tracking systems. An overview of the method is 
illustrated in Figure 4.2.

The deployed webcam system is advanced for estimating gaze and detecting 
blinks. The system provides a comprehensive real-time solution for gaze estima-
tion and blink detection. These systems have numerous applications, including HCI, 
eye-controlled devices, and assistive technologies. Integrating advanced techniques 
such as non-rigid face tracking, supervised face shape estimation, and eye region 
extraction improves the precision and reliability of the system.

4.1.1.1  Iris Detection
The iris center is identified in the ocular area after the extraction utilizing the pre-
ceding procedures [17, 18]. We begin by calculating the radius of the iris. The iris 
center is then located using a mix of high energy and edge strength information. We 
first smooth the eye area to calculate the radius using the L0  gradient minimization 
technique, eliminating noisy pixels while retaining the edges. The color intensity 
may be used to gap approximate the iris center and ocular areas are then detected 
using a Canny edge detector. Eliminate weak edges; certain invalid advantages with 
short length and distance filters are used. That is too near or far from the iris’s rough 
center. The random sample consensus (RANSAC) [19, 20] technique is used to esti-
mate the parameters of the iris circle model. After applying RANSAC on the iris’s 
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FIGURE 4.2  Overview of a camera system, which comprises gaze tracking for both eyes.
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edge points, the radius r  of the iris may be determined. Finally, we integrate the 
intensity energy and edge strength to select the location of the iris’s central region. 
The intensity energy and the edge strength are denoted by E1  and E2 , respectively:

	 E I Sr1 = å ´( ) � (4.1)

	 E g gx y2
2 2= + � (4.2)

where I  is the eye area and the Sr  is a circular window of the same radius as the iris. 
The gx  and gy  are horizontal and vertical pixel gradients that identify the iris center, 
the energy of the circles’ window should be minimized, and the strength of the iris 
edges should be maximized. The parameter tau controls the trade-off. That is,
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where x yBF I BF I
IC IC[ ] [ ]( ),  is the iris center’s estimate coordinate, and the integral inter-

vals are the iris edge ranges that do not overlap the eyelids.
A dark-pupil-based approach rather than a bright-pupil-based one is followed for 

pupil center detection due to its improved robustness to illumination and eye type 
variations [21]. Bilateral filtering [22] is performed on the input eye region with the 
dark pupil to smooth the pupil while keeping the pupil to the iris sharp using equa-
tion (4.3). Bilateral filtering also uses the space of a Gaussian filter to treat a pixel dif-
ference function as another Gaussian filter [23, 24]. The Gaussian function ensures 
that only adjacent pixels are regarded as blurring. On the other hand, the Gaussian 
intensity difference function provides only pixels with comparable intensity with the 
center pixel that is a blur. It conserves the edges because the pixels near the edges 
exhibit a substantial fluctuation in intensity. The essential point of bilateral filter-
ing is that the two pixels are close if they occupy adjacent spatial positions and are 
comparable in the photometric range. The disadvantage of these bilateral filtering 
characteristics is addressed by several methods, such as meaning blur, Gaussian blur, 
and median blur, as they may maintain edges on par [25]:

	 BF I
W

q sG p q G I I I
p

p
s r p q q[ ] = -( ) -( )å1

 s s  � (4.4)

where Wp  is a normalization factor,

	 W G p q G I I Ip q s s r p q q= -( ) -( )å  s s  � (4.5)

Equations (4.4) and (4.5) are used for the bilateral filter, where p  is the target pixel, 
q  is one pixel around the target pixel, I p  is the color of the target pixel, Iq  is the 
color of a pixel around the target pixel, s  is the pixel group around the target pixel, 
G ss  is the weighted pixels according to the distance, and G rs  is the weighted pixels 
according to pixel color difference.
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4.1.1.2  Pupil Detection
After calibrating parameters, we used bilateral filters to smoothen the image and 
preserve the edges of the image content of BF I

x y
[ ]( ) that was suitable for retaining 

the pupil’s features. Then, equalize the histogram to enhance the contrast. Then, 
approximate the average intensity within the pupil by the surrounding regions by 
filling them with moderate intensity [26]. Then, apply global thresholding by con-
sidering the average power within the pupil and inverting the image to highlight the 
pupil blob. Nonetheless, a few other blobs, as dark as the pupil region, such as eye-
lashes, eyelids, and shades, remain in the binary image [27, 28]. To distinguish the 
actual pupil region from the noisy blobs, morphological operations are performed for 
noise removal. The final pupil is determined among the remaining candidate blobs 
by considering the blobs’ shape, size, and location. Its center of gravity is then used 
as the pupil center feature [29].

A Canny edge sensor and circular Hough transform are the determining limits of 
the pupil iris [30, 31]. The profile and mask fusion methods are utilized to identify 
pupil detection, and circular Hough transforms iris boundaries, which means that 
detecting canny borders is employed to create an edge map. The gradients of the exter-
nal iris border are skewed in the vertical direction. Depending on the threshold level, 
the variations between pupils, iris centers, and radii have complied. Then the accurate 
detection is evaluated. For example, when the thresholds are T1 , the points T2  are 
used to represent the pupil difference of the iris center in the X  direction, while the 
threshold value T2  is used to represent the radius differences between pupils and the 
iris center differences in the Y direction followed by T3  and T4  as shown in Figure 4.3.

FIGURE 4.3  Both iris and pupil center determination.

,
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Determine the center of the pupil by Xc  and Yc , respectively:

	 x x xc c iris c pupil= -- - � (4.6)

	 y y yc c iris c pupil= -- - � (4.7)

where x y BF Ic iris c iris x y- - ( )( ) = [ ],
,

 which describes iris center estimation coordinates.

Also, x Tc < 1 , in the x -direction, the pupil and iris center thresholds are dif-
ferent. Then, the system can detect the user’s gaze moving in either the left or 
right direction, respectively. Then, y Tc < 2 , in the y -direction, the pupil and iris 
center thresholds are different. Then, the system can detect the user’s gaze mov-
ing in either up or down trend, respectively. If T R Td4 3< < , the correct center of 
the eye is detected, where Rd  is the radius difference between the iris and the 
pupil center.

Furthermore, the masking technique will be implemented to determine the pupil’s 
radius, as shown in Figure 4.4.

By averaging both R1  and R2 , the radius of the pupil labeled as R  can be com-
puted where the radius R1  is determined by calculating the difference between xmax  
and xmin  followed by division by two using equation (4.8):

	 R
x xmax min

1 2
=

-
� (4.8)

FIGURE 4.4  Pupil detection based on masking.
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The same method is used to compute the value of radius R2  as in the following 
equation:

y y
 R max m- in

2 =  (4.9)
2

Finally, the pupil radius denoted by R  is computed using equation (4.10), while 
pupil center estimation coordinates represented by C x( ,c cy )  are determined based 
on equation (4.11), respectively:

R R+
 R = 1 2  (4.10)

2

 C x= +min mR y, in + R  (4.11)

A 2D gaze estimation technique based on pupil vector is presented in this study using 
the corresponding pupil center estimation coordinates obtained from equation (4.11) 
for the left and right eyes. The mapping function between pupil vector and gaze point 
coordinates is solved using an enhanced ANN, and the gaze direction of g x( ), R  
and g y( ), R .

4.1.2 gaze poiNt estimatioN based oN Neural Networks

The neural network was used to build the mapping relations C xl ( ), y  and C xr ( ), y  
representing the pupil estimation coordinates of both left and right eyes to estimate 
the left and right visual axes and gaze point coordinates [32]. NN with one hidden 
layer was chosen because of its advanced capability of modeling highly nonlinear 
relationships. In this study, the pupil positions (x and y  components) of both eyes are 
selected as the input feature for estimating each eye’s gaze point coordinates.

Before the NNs can perform the estimation, they must be trained with the data 
collected in a calibration process. The hidden layer in the NN model is an essential 
component that can significantly affect the estimation of the gaze vector. To investi-
gate its effect and find a better NN configuration, hidden layers with different hidden 
units were tested. The changes in the hidden units first affect the estimation of the 
gaze vector, which eventually affects the estimation accuracy of the 2D gaze. Thus, 
for the optimal analysis, the number of hidden units can be chosen as 5. Though the 
error of the gaze vector increases, it does not affect the final 2D gaze estimation 
because of the gaze vector method characteristic that when the gaze vector has a 
small error. The enhanced NN scheme structure, including an input layer, a hidden 
layer, and an output layer, is shown in Figure 4.5. The NN input defines elements 
input to both eyes’ pupil vectors. Gaze point coordinates output elements should 
be specified as the NN output. There are 4, 2, and 5 nodes, correspondingly input, 
output, and hidden layers.

Video-based vision tracking systems are included in a camera with a user inter-
face for user eye view tracks [33, 34]. Figure 4.6 shows the typical setup for eye-gaze 
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monitoring. The user calibration, visual, and eye videos are distinct stages of pas-
sive video-based eye tracking, visual recognition, and mapping to the screen’s gaze 
coordinates. The direction of the eye is determined based on both the pupil and 
the iris center. Gaze estimation is the technique through which a person’s 2D view 
line may be estimated or tracked mostly while seeing [35]. It computes the relative 
gaze motion between the pupil center and the iris position. The gaze-tracking user 
interface may be active or passive, individual or multi-modal. The user’s gaze may 
be detected for a dynamic user interface to be activated. Gaze data may be used as 
some input. An interface without a command is passive in which eye-gaze data are 

FIGURE 4.5  Scheme framework of the three-layer NN.

FIGURE 4.6  Schematic diagram of a typical gaze-tracking system.
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collected to understand users’ interests and attention. The gaze is the single variable 
for entries for single-mode eye-tracking interfaces. In contrast, a multi-modal input 
combines mouse, keyboard, touch, or blink input with gaze input [36].

4.2  CALIBRATION

The user is given a series of targets dispersed over the front calibration, as illustrated 
in Figure 4.7, and the user is requested to gaze at them for some time. The webcam 
collects the different eye locations of each destination point, and then the tracker 
learns this mapping function by mapping it to the relevant eye coordinates [37]. 
The number of target points, the user time for each dot, and the mapping method 
employed thus vary in the calibration procedures.

Calculating at least 3, 6, and 10 polynomials is necessary if a first, second, and 
third linear polynomial is used for calibration, meaning a minimum of 3, 6, and 
10 calibration markers are required. If too many calibration markers are necessary, 
unimportant inputs may be deleted according to the primary component analysis to 
decrease the number of coefficients for polynomial resolution. Generally, four and 
five calibration target point models are most often used for calculating the first order 
based on an overall assessment of the real-time quality and precision of the gaze 
monitoring system. By contrast, six- and nine-target point calibration models have 
often been used to calculate second order. This research thus examines the map-
ping function model of nine-target calibration locations. Then, the participants were 
instructed to calibrate the laptop screen by looking at the nine target calibration 
points until each progress percentage bar was filled, as shown in Figure 4.8. Once the 
progress bar gets filled, the blue color dot is displayed.

4.2.1 E stimation of Gaze Tracking Accuracy

Visual stimulation in a set of objectives or scenarios is offered when a user looks 
at a user interface in a typical visual monitoring operation on a computer screen. 

FIGURE 4.7  Calibration screen with nine target points.
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The accuracy of the gaze tracking procedure is evaluated as an average difference 
between the natural stimulus and the gaze location. Concerning the gaze, precision 
tracking is assessed with pixel distance and distance. The computations given in the 
following are these accuracy estimates.

Calibration techniques are designed to aid the systems incorrectly calculating the 
PoG. Therefore, a decision about the number of calibration points is critical. An 
effective calibration algorithm must have as many numbers as possible of calibration 
points, making the user familiar with the system. On the other hand, it should also 
be simple enough to avoid causing trouble to the user. It may be helpful to determine 
the eye area utilized to scan the laptop screen behind the conception of a calibration 
method. In accessible mode, the user may remain at a corner point for an indefinite 
length of time. This concept enables the system to minimize mistakes caused by the 
miscalibration of the gaze. Single computations are given for brevity; the same equa-
tion applies to the left and right eyes. PoGx left- , PoGy left- , PoGx right- , and PoGy right-  
are the measured x y,  coordinates of the left and right eye’s PoG. The mean gaze 
coordinates considering both eyes are PoGx  and PoGy  which are the distance of the 
eye from the screen in equations (4.12) and (4.13):

Gaze point coordinates:

	 PoG
PoG PoG

x
x left x right=

+- -

2
� (4.12)

	 PoG
PoG PoG

y
y left y right=

+- -

2
� (4.13)

FIGURE 4.8  Eye-gaze calibrate the laptop screen by looking at the nine target points.
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4.2.2 eye-gaze estimatioN algorithm

The vector between the iris and pupil centers is mapped using a polynomial trans-
formation function or a geometric eye model utilizing a regression-based technique 
to match the gaze locations on the frontal screen [38]. The 2D regression is used to 
evaluate the direction of the gaze, which is given afterward. The pupil vector is first 
computed utilizing the pupil and the iris center [39]. The second linear gaze mapping 
function is in equation (4.14) and pupil vector (4.15):

N p

 x ac = +0 å å´ a X p-1Y i  (4.14)( )i p, e e
p= =1 0i

N p

 y bc = +å å´ b X p-1Y i
0  (4.15)( )i p, e e

p= =1 0i

where i N= ¼1 2, ,3, , , N  is the number of calibration points, ( ,x yc c )  is the coor-
dinate of gaze calibration markers on-screen coordinate system, and ( ,X Ye e )  is 
the coordinate of pupil vector on the image coordinate system. As conventional 
linear methods, least squares are utilized to solve the gaze mapping function 
shown in equations (4.14) and (4.15). In addition, the polynomial is optimized 
through calibration in which a user is asked to gaze at specific fixed points on the 
frontal screen.

The order and coefficients are then chosen to minimize the mean squared differ-
ence ( )e  between the estimated and actual screen coordinates (4.16):

 e = -( )x M
T

c a x( )c c-Ma + -( )y Mb y
T ( )c -Mb  (4.16)

where a  and b  are the coefficient vectors and M  is the transformation matrix  
given by

 a aT = [ ]0 1a a m  (4.17)

 b bT = [ ]0 1b b m  (4.18)
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where M  is the transformation matrix, m  is the number of coefficients, and N  
represents the calibration points. The coefficients can be obtained by inverting the 
matrix, M , as follows:

 a M= =- -1 1x bc c, M y  (4.20)
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This chapter uses a nine-point calibration [40] N =( )9  routine and second-order 
polynomial transformation. The overall accuracy of the eye appearance is based on 
the calibration target and mapping function configuration. In this case, the compo-
nents in the higher-order mapping function are utilized to rectify inaccuracies in the 
anticipated gaze direction. The higher the rank of the polynomial, the more accurate 
the calculation. However, the number of polynomial coefficients that can be resolved 
may also be increased.

In addition, the number of calibration markers has also risen. Calibration time is 
extended, and the high calibration process also increases the user burden. Users are 
sensitive to tiredness, which reduces calibration accuracy. In addition, you increase 
the mapping accuracy and accurately evaluate the direction of the user’s gaze. 
A mapping function between pupil vectors and display calibration points is resolved 
with the ANN based on direct minimum square regression.

The steepest descending gradients approach is the NN training method for map-
ping functions in equations (4.14) and (4.15). First, creating a link between the hidden 
and output layers is necessary. Next, the minimal direct solution restriction for square 
regression defines the cost of error and the continuous learning rule for NN. According 
to the gaze estimate, the Euclid standard is selected to get a low-cost function as an 
error-fixing criterion for a minimal square regression, as stated in equation (4.16).

4.2.3 E ye-Gaze Direction Classification

To evaluate the performance of the developed algorithms, we have created a dedi-
cated, novel test framework. It works on real-time test sequences and can measure 
the difference between the actual place where the user is looking and the system’s 
estimation. The test sequences are classified as “blinking,” “looking at the center,” 
“looking at the left direction,” and “looking at the right” by looking at the screen. 
The researchers propose to use two stages: one with a motionless head and one with 
head movements. Both settings can be identified using the facial feature detection 
algorithm. The method that uses desktop environments depends on one or multiple 
cameras fixed in position and thus does not need to be attached to the user, allowing 
for a non-intrusive tracking of the user’s gaze. On the other hand, since the cam-
era’s position is fixed and the user’s relation to the camera is innately unknown, the 
method needs somehow to estimate the position of the user’s eyes.

The way of solving this problem is to detect the user’s face region. By doing this, 
the face region can be searched to find and extract the eye region. Since the face 
region needs to be detected, another problem arises head movement. Either method 
must assume that the user does not move the head during calibration and estimation. 
The technique needs to somehow compensate for such action in its gaze estimation. 
From this, higher demands are placed on the user’s interaction with the program, 
or a more complex implementation is needed. This is the trade-off compared with 
the expensive and intrusive equipment that head-mounted environments entail. The 
system’s evaluation includes two hardware pieces, a web camera for producing the 
image stream and a computer to run the system. The camera has a resolution of 
1,280×720 pixels and a 30 frames per second frame rate. The camera is installed on 
the computer’s monitor and at its horizontal center.
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Figure 4.9(a) depicts the “blinking” evaluation series. Blinking an eye is a human 
eye’s rapid closure and reopening. Each person’s blinking behavior is slightly dif-
ferent. The blink size, the intensity of the gaze closes/opens, and the degree of 
gripping the eye vary. EAR monitoring aims to determine whether a blink of an 
eye occurs. The test sequence of “looking at the center” is shown in Figure 4.9(b). 
The optimum field of view of the gaze direct to looking at the center is 5°, at which 
the user’s eyes focus correctly. The test sequence of “looking at left” is shown in 
Figure  4.9(c). The optimum field of view of the gaze direct to the left direction 
is 25° from the center. The test sequence of “looking at the right” is shown in 
Figure 4.9(d). The optimum field of view of the gaze directed to looking in the right 
direction is 25° from the center.
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5 Gaze-Based Tracking 
Applications for the 
Assisted Living of 
Elderly People

This study proposes a new method for estimating the pupil’s vector using linear and 
non-linear regression features. Determine the gaze direction by solving the map 
function between the pupil vector and the PoG. An ANN [1] that is reliable and 
efficient has been created. As a multidisciplinary field [2], eye-gaze estimation has 
attracted academics, industry, and general users over the past few decades due to the 
availability of computer hardware and software resources and increased demand for 
HCI technology. The results assess that the human eye’s focus location on display 
using the head is not fixed. It maps gaze locations and fixation targets from one plane 
to the next. Additionally, a new 2D gazing technique based on the pupil vector allows 
for explicitly calibrating the gaze direction’s mobility in two dimensions.

As described in Chapter 4, the proposed gaze estimation framework starts with 
face tracking on the captured frames. They extract eye regions and perform eye-
gaze estimation—the resolution of the color stream set to 1280 720pixels pixels´ .  
Display camera calibration is achieved with the method proposed in Chapter 4, where 
only a thread is utilized to estimate the nine-screen calibration coordinates in the 
camera coordinates system. Due to low-resolution color images, 2D gaze detection 
is a challenge, and this research expects more advanced techniques to be developed 
to improve the 2D feature detection accuracy [3]. Besides these global operations to 
reduce noise and remove outliers [4, 5], both iris and pupil centers are estimated using 
the bilateral filtering method during calibration [6–8]. As the system knows ground-
truth gaze points during calibration, it finds inliers to estimate subject-dependent eye 
parameters better [9, 10]. The webcam is focused on human eyes to improve feature 
detection. Also, the webcam-based gaze-tracking system can capture the upper body 
of subjects more likely to capture the image of two eyes. The experiments performed 
the exact personal calibration and gaze estimation procedure for the left and right 
eyes. The final PoG is the average of the PoG from the left and right eyes. Also, this 
applies to cases where results from two eyes are outliers.

At the theoretical and methodological levels, there have been many discussions of 
how to improve the ergonomics and interaction design for the elderly; at the cognitive 
level, there have been many reviews of the effects of aging on human factors; and at the 
experimental and research groups, there have been many projects focusing on novel 
interaction paradigms and multiple devices. It is well known that it is advantageous 
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to maintain our mental, social, and physical acuity as we age. With the help of digital 
technology, this is doable. However, everything changes when products and services 
targeted at older people must be better designed, especially now that computer interac-
tion is no longer confined to a desktop. Computers are so commonplace in modern life 
that one author said, “We carry them, wear them, and may even have them implanted 
inside us.” Ironically, older adults may most experience the adverse effects of poorly 
designed digital products and interfaces. Even though older adults may not have grown 
up with technology at their fingertips like today’s children, they frequently have a 
wealth of professional and personal experience with it.

Many studies on the relationship between age and technology use have examined 
usability, user experience, accessibility, and adoption. The goals of these research 
projects are usage frequency, performance, efficiency, and precision. Many types 
of research suggest that many older people need assistance using modern consumer 
devices due to their functionality and interface design complexity.

This chapter examines how an aging population might benefit from the sensory 
benefit of eye-gaze contact with digital technology. The undersigned are specialists 
in interaction design and human factors and are eager to learn more about enhancing 
the elderly user experience through eye-gaze design. In more detail, the authors will 
concentrate on a deliberate and well-thought-out design approach influenced by par-
ticipatory, user-centered, and critical design practices.

5.1  DIVERSITY AND TYPES OF EYE-TRACKING APPLICATIONS

A vast range of eye-tracking applications may be categorized into two major cate-
gories: Diagnostic and interactive. The eye tracker offers objective and quantifiable 
proof of the user’s visual and (overt) attentional processes for diagnostic purposes 
[11–15]. The eye tracker is a potent input device that various visually mediated appli-
cations may use as an interface modality.

In its diagnostic function, eye movements are recorded to determine the user’s 
attentional patterns in response to specific stimuli [16]. The non-intrusive use of 
eye-tracking technology [17] distinguishes diagnostic applications. In some circum-
stances, concealing the eye tracker from prospective subjects may be beneficial [18]. 
In addition, the stimulus may not need to alter or respond to the viewer’s attention. 
In this situation, the eye tracker collects eye movements for offline, post-experiment 
evaluation of the experiment participant’s gaze. Thus, eye movement data may 
objectively confirm the viewer’s point of regard or explicit locus of attention. For 
instance, studies that test the look of some part of a display, such as the placement 
of an advertising banner on a Web page, may be strengthened by objective proof of 
the user’s attention falling on (or missing) the banner in question. Standard statistical 
metrics may include the number of fixations over the banner during a five-minute 
“Web surfing” session. Diagnostic eye-tracking methods apply to (but are not limited 
to) psychology (including psychophysics), marketing/advertising, human factors, and 
ergonomics.

Equipped with an eye tracker as an input device, an interactive system is intended 
to react to the user’s gaze or engage with them [19, 20]. Therefore, it is assumed that 
interactive apps would respond somehow to the user’s sight. Such interactive systems 
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may be classified as either selective or gaze-dependent. The latter may be further dis-
tinguished in display processing, as seen in Figure 2.2. The prototypical interactive 
eye-tracking application employs the user’s gaze as a pointing device [21]. This form 
of ocular contact may be seen as one of a series of multimodal input tactics from 
the system’s perspective; for people with quadriplegia, a system that relies simply 
on gaze as input is an essential communication tool. The eyeballs are used to place 
a pointer over a gigantic projected keyboard. Multiparty computer-supported collab-
orative work systems have also investigated the use of gaze to assist communication 
[22, 23]. In addition to being used as a pointing device, information about the user’s 
gaze may be utilized to modify the display to increase rendering performance, as 
may be necessary when generating complicated virtual worlds. The use of interactive 
eye-tracking systems is not limited to the domains of HCI [24], visual displays [25], 
and computer graphics [26].

5.2  NATURAL TASKS

Psychophysical testing has yielded valuable factual information (e.g., spatial acu-
ity, contrast sensitivity function). Typically, these investigations depend on showing 
simple stimuli, such as sine wave gratings, horizontal and vertical bars, and so on. 
Simplicity critiques these artificial stimuli, despite their centrality to developing ideas 
such as feature integration. As mentioned, visual search experiments are increasing 
to include more complex stimuli, such as natural landscapes [27]. However, observ-
ing images displayed on a laboratory monitor still represents an artificial activity. 
Recent improvements in wearable and virtual displays now provide the gathering of 
eye movements under more natural circumstances, often incorporating unrestricted 
eye, head, and hand motions [28–31].

Land [32] and Land et al. [33] reported on significant work in this area. The first 
research attempted to examine the pattern of fixations during a well-learned job in 
a natural context (making tea) and to categorize the monitoring activities that the 
eyes do. According to this research, even ordinary automated tasks need a surprising 
degree of continual supervision. A head-mounted eye-movement video camera was 
utilized to offer a constant view of the scene ahead, with a dot denoting the foveal 
orientation to within 1°. The foveal orientation was usually near the controlled item, 
and relatively few fixations were unrelated to the activity. Approximately one-third 
of all fixations on objects can be attributed to one of four monitoring functions: 
locating objects used later in the process, directing the hand or object in hand to a 
new location, guiding the approach of one object to another (e.g., kettle and lid), and 
monitoring the state of some variable (e.g., water level). Land et  al. [33] find that 
even though tea-making acts are “automated” and entail no cognitive input, the eyes 
attentively watch every process step. This form of unconscious focus must be a typi-
cal occurrence in daily life.

Examining a comparable natural activity [34], some researchers [35, 36] inves-
tigated the relationship between eye and hand movements during prolonged meal 
preparation activities. The article contrasts brewing tea with making peanut butter 
and jelly sandwiches. In both instances, the position of the foveal gaze was constantly 
measured using a head-mounted eye tracker with an accuracy of around 1, while the 
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head was free to move. In the tea-making research [35], the three individuals had to 
travel about the room to find the necessary items; in the sandwich-making study, the 
seven subjects were seated at a table. Typically, the eyes reach the next item in the 
sequence before any evidence of manipulation, demonstrating that eye movements 
are designed into the motor pattern and lead to each action. Throughout an activity, 
the eyes are often fixed on a single object.

Nonetheless, they often moved on to the next item in the sequence before complet-
ing the previous activity. The functions of individual fixations were comparable with 
those of the tea-making job. Land et al. [33] believe that, at the outset of each activity, 
the oculomotor system receives the identification of the needed objects, information 
about their position, and instructions for the kind of monitoring required throughout 
the action. During this kind of activity, many eye movements are directed toward 
task-relevant objects; as a result, their regulation is predominantly top-down, and 
intrinsic salience has minimal effect. The eyes give information on an “as required” 
basis; although the relevant eye movements often predate the motor actions, they 
mediate by a fraction of a second. Eye movements are thus at the forefront of each 
action plan, not just reactions to circumstances. Land et al. [33] conclude that their 
research does not support that the visual system creates a detailed representation 
of the environment and then works based on this model. Most of the information is 
acquired from the scene as required.

Researchers can study different parts of human behavior in a controlled and 
changeable setting using virtual settings. By changing the virtual environment at 
specific points during the task, researchers can see how people react and respond to 
different situations [37]. This method can help determine what is happening under 
the surface, test other ideas, and learn more about the observed behavior. In a virtual 
environment where subjects replicate toy models, the authors demonstrate that indi-
viduals employ regularities in the spatial structure to govern eye movement targeting 
[38]. Other trials in a virtual world with haptic feedback [39] show that even basic 
visual features, such as size, are not continually accessible or processed automati-
cally by the visual system but are dynamically acquired and discarded based on the 
needs of the present job.

5.3  RESULTS OF THE EYE-GAZE DIRECTION CLASSIFICATION

To evaluate the eye-gaze performance, we recorded a set of videos with 10 partici-
pants. For each frame of those videos, the correct gaze direction was human-labeled. 
A total of 10 videos were recorded, with different lighting conditions, using glasses 
or not, and in other positions concerning a laptop webcam. These people were 
instructed to start capturing the video by looking at the screen’s center, directing 
their gaze to the left and right, and finally blinking their eyes. The captured videos 
have 6,000 frames classified concerning the eye-gaze direction, with 20 seconds for 
each participant, with an average processing rate of 30 fps. The distribution of each 
movement of gaze is described in Table 5.1. Aiming for a quantitative evaluation of 
qualitative aspects of the images, we tested the algorithm’s performance in different 
image conditions, such as Figures 4.9(a) to 4.9(d).
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One detailed inference performance of the observable results that intention to 
the “gaze direction” is illustrated as a confusion matrix shown in Figure 5.1. The 
horizontal axis is the predicted intention, and the vertical axis is the actual intention. 
The precision and accuracy for each type of intention to the objects are summarized 
in Table 5.2. The precision of the intention to “gaze direction to center” was inferred 
in 1.0 cases, and the accuracy of the intention to “gaze direction to the left” was 
implied in 0.9 cases. The precision of the intention to “gaze direction to the right” 
was inferred in 0.9 cases. Finally, the precision of the intention to “gaze to blink” was 
figured in 1.0 cases. The overall accuracy rate was 0.91. Notably, 0.09 of the error 
occurs for the intention to the eye-gaze variation. With fewer dominant eye-gaze 
variations, it is more challenging to characterize the intention from the object aspect. 
The CNN-SVM model has less tolerance for the mistakes of the attention detection 
classifier.

The mean accuracy and precision for each type of intention are men in Figure 5.2. 
Furthermore, the mean accuracy of the intention to “gaze direction to center” was 
inferred in 0.95 cases. The mean accuracy of the intention to “gaze direction to the 
left” was inferred in 0.97 cases. The mean accuracy of the intention to “gaze direc-
tion to the right” was inferred in 0.97 cases. Finally, the mean accuracy of the inten-
tion to “gaze to blink” was inferred in 1.0 cases.

TABLE 5.1
Distribution of Each Direction of Gaze
Gaze direction Approximate no. of frames

Center 1,500

Left 1,350

Right 1,350

Blink 1,500

FIGURE 5.1  Confusion matrix for the gaze direction.
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5.4  PERCEPTION OF HUMAN INTENTIONS

The way to deduce the user’s intention may be to indirectly convey the intended goal, 
for example, via nonverbal instructions [40, 41]. However, if implicated user con-
tact is needed, it may result in successful cooperation. People anticipate the intents 
of others exceptionally well, showing that nonverbal communication may contain 
inference intentions. This chapter investigates how older people’s desire to convey 
nonverbal signs and indirect indications that the user implicitly gives while carrying 
out activities for quicker and natural engagement may be used. This research offers 
instructions to control the eye and analyze the user’s intention to deduce everyday 
tasks. The suggested technique of this study is the SVM classification to inform the 
identification of human intents. An assessment examines inferred intention and is 
generally performed alone in domestic cases. A questionnaire based on contextual 
factors is utilized for intention recognition. The caregivers then decide or diagnose 
based on a technique for identifying intentions.

Four deliberate items have been empirically detected in the kitchen scenario. These 
four items have been deliberately created as teacups, water glasses, juice glasses, and 

FIGURE 5.2  Mean accuracy and precision for each intention.

TABLE 5.2
Accuracy and Precision of Intention to Each Gaze Direction
Gaze direction Accuracy Precision

Center 0.95 1

Left 0.97 0.9

Right 0.97 0.9

Blink 1 1
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soup bowls. The simulated kitchen scene included all handling objects. In this inves-
tigation, visual attention and purpose, essential components of the national situation, 
were detected. The house scenario is modeled on the user feedback scene picture, as 
illustrated in Figure 3.3.

Then, we recorded videos with 30 participants to evaluate the eye-gaze perfor-
mance. For each frame of those videos, the correct gaze direction was considered 
human. Thus, 30 videos were recorded, with different lighting conditions, using 
glasses or not, and in other positions about a laptop webcam. First, the participants 
were instructed to calibrate the laptop screen by looking at the nine target calibration 
points, as shown in Figure 5.3. Then, participants were instructed to start capturing 
the video by looking at the “teacup,” “glass of water,” “glass of juice,” and finally, 
“bowl of soup” in their eyes, respectively.

The visualization of the intentional and intentional gazes shows different eye-gaze 
properties. The intended eye-look characteristics are provided to display items in the 
cooking situation. A person’s gaze lives more extended during the intentional gaze 
than the deliberate gaze depicted in Figure 5.5 and focuses more on gaze distribu-
tion. Consider, in this experiment, that the time to stay is five seconds longer. The 
investigation then utilized the SVM classification to identify the participants’ visual 
attention. The user intention is displayed at the top of the screen, where it dwells rela-
tively longer than five seconds. Figure 5.4(a) describes the user intention to “teacup”; 
the intention to “glass of water” is illustrated in Figure 5.4(b). Next, the user intention 
identified as “glass of juice” is described in Figure 5.4(c). Finally, user intention to the 
“bowl of soup” is illustrated in Figure 5.4(d).

The recorded videos are divided among 30 participants with an average process-
ing rate of 30 frames per second regarding their glance at items in the kitchen sce-
nario, with around 20 seconds for each participant. The system used the camera 

FIGURE 5.3  Calibration screen.
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under indoor illumination settings throughout this trial. At first, the individual’s face 
was not lit by light from the top or upper corners.

The SVM classifier training gathered 95 sets of positive training data and 70 neg-
ative training datasets. These training datasets were utilized for training the classi-
fier, and the total success rate for training was 80.67%. Table 5.3 summarizes more 
specific training performance.

Real attention tends to be less efficient than false detections. The classifier was 
developed. In the experiment, the SVM classifier is then utilized to identify the 
visual attention of each participant. The SVM classifier identifies user intention in 
this experiment, using gazing data pre-labeled based on visual attentiveness and user 
eye gaze closer to the chosen item. Two criteria have been used for performance 
assessment: Accurate detection rate and fake rate. The positive grading rate for the 
positive training dataset is 82.3%, whereas the negative grading rate is 17.7%. The 
positive grade rate in the negative training dataset is 15.2%, and the negative grade 
rate is 84.8% correctly identified. In the kitchen scenario, the performance of the 
SVM attention classifier differed considerably across four distinct subjects. The find-
ings showed that the SVM classifier and the chosen eye-gaze characteristics could 
identify users’ visual attention during normal visual activities.

5.5  VISUAL OBJECT INTENTION

Identify a user intention for a kitchen scenario; four intended items have been chosen 
and input individually into the SVM model for correlation training. Figure 5.5 shows 
an example of the accuracy of each kind of purpose-depicted item. Every purpose 
of the 30 participants in the kitchen scenario is shown in the correlation diagram. 
While some individuals may have seen various things for intention, most participants 
viewed familiar objects broadly. Most participants have, for example, adequately 
chosen the purpose of “water glass.”

Object intention to the “teacup” refers to a linear regression analysis revealing 
a linear relationship. The coefficient of determination, R2 , is about 0.0814, which 
means that this equation explains 8.14% of the changeability in object intention. 
Also, this indicates a negative linear relationship of object intention to the “teacup.” 
Then, object intention to the “glass of water” refers to a linear regression analysis of 
these data, revealing a linear relationship. The coefficient of determination, R2 , is 
about 0.0948, which means that this equation explains 9.48% of the changeability in 
object intention. Furthermore, this indicates a positive linear relationship of object 

TABLE 5.3
SVM Classifier for Object Intention Detection
Training dataset Positive classification (%) Negative classification (%)

Positive training data 82.3 17.7

Negative training data 15.2 84.8
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FIGURE 5.5  Correlation plot between intention and objects.
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intention to the “glass of water.” Next, object intention to the “glass of juice” refers to 
a linear regression analysis revealing a linear relationship. The coefficient of deter-
mination, R2 , is about 0.083, which means that this equation explains 8.3% of the 
changeability in object intention. Then, this indicates a positive linear relationship of 
object intention to the “glass of juice.” Finally, object intention to the “bowl of soup” 
refers to a linear regression analysis revealing a linear relationship. The coefficient of 
determination, R2 , is about 0.0354, which means that this equation explains 3.54% 
of the changeability in object intention. Finally, this indicates a positive linear rela-
tionship of object intention to the “bowl of soup.”

One detailed inference performance of the intention to the objects in the kitchen 
scenario is illustrated as a confusion matrix shown in Figure 5.6. Again, the horizon-
tal axis is the predicted intention, and the vertical axis is the actual intention.

The precision and accuracy for each type of intention to the objects are summa-
rized in Table 5.4. The precision of the intention to “teacup” was inferred in 0.93 of 
the cases. The precision of the intention to “glass of water” was inferred in 0.97 of 
the cases. The precision of the intention to “glass of juice” was inferred in 0.80 of the 
cases. Finally, the precision of the intention to “bowl of soup” was inferred in 0.77 
cases. The overall accuracy rate was 86.7%. Notably, 13.3% of the error occurs due to 
the object variation in the kitchen scenario. With fewer dominant eye-gaze variations, 

FIGURE 5.6  Confusion matrix for the intention of the objects in the kitchen scenario.

TABLE 5.4
Accuracy and Precision of Intention to Each Object
Gaze intention Accuracy (%) Precision

Teacup 97.5 0.93

Glass of water 93.33 0.97

Glass of juice 89.17 0.80

Bowl of soup 93.33 0.77
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it is more challenging to characterize the intention from the object aspect. The SVM 
model has less tolerance for the mistakes of the attention detection classifier.

5.6  USABILITY EVALUATION OF USE QUESTIONNAIRE

For all 30 questions, increasing raw scores were computed and then converted to 
percentages. The overall result of the USE questionnaire is summarized in Appendix 
2, and the items that appeared across tests for the four factors are listed in Table 5.5. 
Also, the raw scores for each of the 30 participants were converted to normative 
Minnesota Satisfaction Questionnaire (MSQ) percentages shown.

Increasing raw scores were computed and converted to MSQ normative percen-
tiles for all eight “Usefulness” questions. Table 5.5 shows the overall results for all 
“Usefulness” questions. The raw scores for every 30 participants were converted to 
MSQ normative percentile, as demonstrated in Figure 5.7. Of the participants, 4.17% 
had dissatisfaction, 2.91% had dissatisfaction, 13.33% had undecided, 37.5% had sat-
isfaction, and 42.09% had high satisfaction.

TABLE 5.5
USE Results

Dimension
Cronbach’s 
alpha (α)

Likert scale

Strongly  
disagree (%)

Disagree  
(%)

Undecided  
(%)

Agree  
(%)

Strongly  
agree (%)

Usefulness 0.93 4.17% 2.91% 13.33% 37.5% 42.09%

Ease of use 0.95 4.84% 8.78% 13.33% 34.27% 38.78%

Ease of learning 0.9 5.83% 5.84% 3.33% 40% 45%

Satisfaction 0.91 6.2% 6.67% 12.38% 32.38% 42.37%

FIGURE 5.7  Statistical results of usefulness.
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FIGURE 5.8  Statistical results of “Ease of Use.”

For all 11 “Ease of Use” questions, increasing raw scores were computed and 
converted to MSQ normative percentiles. Table 5.5 shows the overall results for all 
“Ease of Use” questions. The raw scores for every 30 participants were converted to 
MSQ normative percentile, as demonstrated in Figure 5.8. Of the participants, 4.84% 
had very dissatisfaction, 8.78% had dissatisfaction, 13.33% had undecided, 34.27% 
had satisfaction, and 38.78% had high satisfaction.

Increasing raw scores were computed and converted to MSQ normative percen-
tiles for all 11 “Ease of Learning” questions. Table 5.5 shows the overall results for 
all “Ease of Learning” questions. The raw scores for every 30 participants were 
converted to MSQ normative percentile, as demonstrated in Figure 5.9. Of the par-
ticipants, 5.83% had very dissatisfaction, 5.84% had dissatisfaction, 3.33% has unde-
cided, 40% had satisfaction, and 45% had high satisfaction.

Increasing raw scores were computed and converted to MSQ normative percen-
tiles for all seven “Satisfaction” questions. Table 5.5 shows the overall results for all 
“Satisfaction” questions. The raw scores for every 30 participants were converted to 
the MSQ normative percentile, as shown in Figure 5.10. Of the participants, 6.2% 
had very dissatisfaction, 6.67% had dissatisfaction, 12.38% has undecided, 32.38% 
had satisfaction, and 42.37% had high satisfaction.

A typical camera was used to perform an algorithm assessment with 30 people. 
The accuracy and intention of each object are described in Table 5.4. The USE ques-
tionnaire had a reaction rate of 100%. The results of the respondents are described 
in Table 5.5. This study aims to show possible uses in elderly care in non-wearable 
technology. In the kitchen scenario, four objects were recognized from an elderly 
viewpoint. This technology can improve the quality of life of older people and lower 
the stress on care and operating costs. In addition, the suggested method is best suited 
for people with hearing loss, which may substantially impact all developmental 
domains, including language, knowledge, society, emotion, and behavior. Because 
of these possible developmental delays, people who are deaf or hard to hear are more 
likely than their typically developing counterparts to have mental health issues.
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FIGURE 5.10  Statistical results of “Satisfaction.”

FIGURE 5.9  Statistical results of “Ease of Learning.”
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6 The Challenges of 
Identifying Daily Living 
Activities Through 
Visual Behavior

Identifying daily living activities through visual behavior can be a challenging task 
due to several reasons [1, 2], including the following:

	 1.	Complexity of activities: Daily living activities can involve multiple steps, 
making it difficult to identify them solely through visual behavior. For 
example, meal preparation may involve several steps, including selecting 
ingredients, chopping vegetables, and cooking on a stove. Each step may 
involve different visual cues that must be accurately identified to understand 
the overall activity [1].

	 2.	Variability in activities: Different people may perform the same act differ-
ently, challenging identifying them through visual behavior. For example, a 
meal’s preparation may vary depending on culture, personal preferences, or 
dietary restrictions.

	 3.	Environmental factors: The environment in which an activity takes place 
can also affect its visual cues. For example, preparing a meal in a dimly lit 
kitchen may make it harder to identify visual cues accurately.

	 4.	Limited availability of data: There is limited availability of data that can be 
used to train algorithms to accurately identify daily living activities through 
visual behavior. Collecting and annotating large datasets of activities is 
time-consuming and expensive.

	 5.	Privacy concerns: Identifying daily activities through visual behavior may 
raise privacy concerns, as it involves capturing and analyzing people’s 
movements and actions in their homes.

Despite these challenges, recent advances in computer vision and machine learning 
have made it possible to develop algorithms that can accurately identify daily liv-
ing activities through visual behavior [3–5]. However, further research is needed to 
address these challenges and develop more robust and accurate methods for activity 
recognition.

Variability in the appearance of activities is another challenge to identifying daily 
living activities through visual behavior [6]. People may perform the same activity 
differently, using different objects or tools or following different steps. For example, 
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two people preparing a meal may use different ingredients, cook in different pots or 
pans, or use different techniques for chopping vegetables. This variability can make 
developing computer vision algorithms that accurately recognize activities across 
individuals and contexts complex [7, 8].

To address this challenge, researchers can use techniques such as data augmen-
tation, which involves creating variations of the same activity by changing certain 
features, such as the objects used or the environment in which the activity occurs [9]. 
This can help improve the generalization of algorithms and make them more robust 
to variability in the appearance of activities. Another approach is to develop person-
alized activity recognition models trained on data from a specific individual that can 
adapt to their unique movements. However, this approach requires collecting large 
amounts of data from each individual, which can be time-consuming and expensive.

The complexity of visual information can vary depending on various factors, such 
as the number of objects in the scene, their size and shape, the level of detail required, 
and the complexity of their relationships with other objects. For example, a simple 
image with only a few objects that are easy to distinguish and have clear boundaries 
will be less complex than an image with a cluttered background, overlapping objects, 
and intricate details. Furthermore, the complexity of visual information can be influ-
enced by the observer’s perception and cognitive abilities. For instance, a highly 
trained artist may be able to discern subtle differences and nuances in an image that 
an untrained individual may not even notice. Overall, the complexity of visual infor-
mation is a multi-faceted concept that depends on various factors, including the char-
acteristics of the image and the observer’s cognitive and perceptual abilities [10–13].

Ambiguity in visual cues refers to situations where the visual information pre-
sented to an observer can be interpreted in multiple ways, leading to confusion or 
uncertainty about what is perceived. There are several reasons why ambiguity can 
occur in visual cues. One common reason is when the visual information is incom-
plete or lacks detail, making it difficult to determine what is being seen. Another 
reason is when there are multiple possible interpretations of the visual information, 
such as when viewing an optical illusion [14, 15].

Ambiguity can also arise when the visual information conflicts with other sensory 
information or prior expectations [16]. For example, visual information may suggest 
that an object is close, but other sensory cues (such as touch) may suggest that it is far 
away. Ambiguity in visual cues can be problematic in certain situations, such as tasks 
requiring accurate perception, decision-making, or action. However, it can also be 
helpful for creative thinking and problem-solving, prompting individuals to consider 
multiple interpretations and possibilities.

Limited data availability for daily living activities can refer to situations where 
there needs to be more information or data about an individual’s daily activities and 
routines, such as their movements, behaviors, and interactions with their environ-
ment. This can occur for several reasons, such as the absence of monitoring devices 
or sensors, privacy concerns, or limitations in data collection methods. For exam-
ple, monitoring an individual’s activities in a private setting such as their home may 
be challenging, where they may need to be more comfortable installing cameras or 
sensors.
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Limited data availability for daily living activities can have several implications 
[17]. For example, it may limit our ability to develop accurate models of human behav-
ior or to understand the factors that influence it. It can also determine the effectiveness 
of interventions or treatments that rely on monitoring an individual’s activities, such as 
elderly or disabled individuals who require assistance with daily living activities. To 
address this issue, researchers are developing new technologies and methods for mon-
itoring and collecting data on daily living activities, such as wearable sensors, mobile 
apps, and other forms of assistive technology. However, privacy and ethical consider-
ations must be carefully considered when implementing such technologies.

Privacy concerns for daily living activities refer to the potential risks and impli-
cations of monitoring an individual’s activities, behaviors, and movements in their 
daily life [18]. Technology such as cameras, sensors, and wearable devices can pro-
vide valuable insights into an individual’s daily activities and raise significant pri-
vacy concerns [19–21]. Some of the privacy concerns related to monitoring daily 
living activities include the following:

	 1.	 Invasion of privacy: Individuals may feel that monitoring their daily activi-
ties is intrusive and violates privacy.

	 2.	Stigmatization: Monitoring may lead to stigmatization, particularly if the 
data is to stereotype or discriminate against certain groups of people.

	 3.	Misuse of data: Data collected about an individual’s daily activities may be 
misused, for example, by employers or insurance companies, to discrimi-
nate against individuals based on their life behavior.

	 4.	Security risks: Collecting and storing data on an individual’s daily activities 
may pose security risks, particularly if the data are sensitive or personal.

To address these privacy concerns, it is essential to establish clear guidelines and 
protocols for collecting, using, and storing data related to daily living activities. 
These guidelines should consider the individual’s right to privacy, informed consent, 
and the potential risks and benefits of monitoring [22]. It is also important to ensure 
that the data collected are protected and used only for its intended purpose and that 
individuals have control over their data and how they are used.

Daily living activities’ real-time and dynamic nature can pose significant challenges 
for real-time tracking and recognizing activities [23]. This is because daily living activ-
ities are constantly changing and may occur rapidly and unpredictably, making it dif-
ficult to capture and process the data in real time. Some of the challenges associated 
with tracking and recognizing daily living activities in real time include the following:

	 1.	Variability: Daily living activities can vary significantly from person to 
person and from day to day, making it challenging to develop a universal 
system for tracking and recognition.

	 2.	Contextual factors: Daily living activities are heavily influenced by contex-
tual factors such as the environment, social interactions, and cultural norms, 
which can be challenging to capture and interpret in real time.

	 3.	Sensor limitations: Many current sensors and monitoring devices have lim-
itations in terms of their accuracy, range, and reliability, which can make it 
challenging to capture and process data in real time.
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Researchers [24–30] are developing new real-time technologies and methods for 
tracking and recognizing daily activities to address these challenges. These include 
using machine learning algorithms and artificial intelligence to analyze data from 
sensors and monitoring devices, as well as the development of more advanced and 
versatile sensors and monitoring devices that can capture a broader range of data. 
Additionally, ongoing research is focused on improving the accuracy and reliability 
of these technologies to ensure that they can effectively track and recognize daily 
living activities in real time.

Figure 6.1 is likely a visual representation of the challenges that must be addressed 
for an ADL categorization system to be usable. By addressing these challenges, a cat-
egorization system for ADLs can be developed that is realistic, usable, and effective 
in providing valuable insights into an individual’s daily activities and behaviors.

6.1 � STATE OF THE ART IN SENSOR TECHNOLOGY TO  
ASSESS ADLs

Sensor technology has advanced significantly in recent years and has the potential to 
revolutionize the way we consider ADLs [31–33]. Here are some of the state-of-the-
art sensor technologies used to determine ADLs:

	 1.	Wearable sensors: These can be worn on the body, such as on the wrist or 
ankle, and can track a person’s movements and activity levels. They can 
detect different movements, such as walking, running, and standing up, and 
provide insights into a person’s physical activity and mobility [34, 35].

	 2.	Ambient sensors: These are set in the environment, such as in a person’s home or 
workplace, and can detect activity and movement in that space. They can detect 
different activities, such as cooking, cleaning, and using electronic devices, and 
provide insights into a person’s daily routine and behaviors [36, 37].

	 3.	Smart home technology includes a range of sensor-based systems and 
devices that can be integrated into a person’s home to monitor their activity 
and support their independence. These systems can consist of sensors that 

FIGURE 6.1  The challenges in ADL classification.
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detect when a person has fallen, devices that remind a person to take medica-
tion, and smart home assistants that can respond to voice commands [38, 39].

	 4.	Video-based sensors: These use video cameras to monitor a person’s activ-
ity and movements. They can detect different activities, such as walking, 
sitting, and standing, and provide insights into a person’s physical abilities 
and limitations [40, 41].

	 5.	BCIs: These devices allow people to control computers or other devices 
using their brainwaves. They can be used to help people with physical dis-
abilities to control their environment and perform daily tasks more effi-
ciently [42–45].

Overall, state-of-the-art sensor technology for assessing ADLs is rapidly evolving, 
and innovations are constantly being developed. These technologies can improve the 
quality of life for people with disabilities and other health conditions by providing 
more accurate and detailed information about their daily activities and needs.

State of the art in sensor technology for assessing ADLs includes a variety of 
sensors that can capture visual, depth, motion, and audio information. These sensors 
can recognize and track ADLs in various settings, such as the home, workplace, and 
healthcare facilities. Here are some examples of these sensors:

	 1.	Visual sensors: These sensors use cameras to capture images and videos 
of a person’s surroundings. They can recognize objects and people in the 
environment and detect various movements and actions [40].

	 2.	Depth sensors: These sensors use infrared light to create a 3D map of the 
environment, which can be used to detect the distance between objects and 
people. They can recognize different postures and movements, such as sit-
ting, standing, and walking [40, 41].

	 3.	Motion sensors use accelerometers and gyroscopes to detect movement and 
orientation. They can track a person’s physical activity and monitor changes 
in posture and balance.

	 4.	Audio sensors: These sensors use microphones to capture sound and can 
be used to detect different types of activities and events, such as talking, 
coughing, and opening/closing doors.

Combining these different types of sensors makes it possible to create a compre-
hensive picture of a person’s ADLs and monitor changes over time. This can be 
especially useful in healthcare settings, where tracking a person’s progress and iden-
tifying potential health issues is important.

Accurate and dependable sensor data are crucial for monitoring and classifying 
ADLs. The effectiveness of a sensor for ADL classification depends on several fac-
tors, including the type of sensor used, the placement of the sensor, and the quality 
of the sensor data. Several sensor types have been tested for ADL categorization, 
including accelerometers, gyroscopes, pressure sensors, and cameras. Each type of 
sensor has its strengths and weaknesses, and the choice of the sensor depends on the 
application’s specific needs [46, 47].
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The performance of an ADL monitoring system depends not only on the choice of 
the sensor but also on the system topology and the algorithms used for classification. 
Machine learning techniques, such as neural networks, decision trees, and SVMs, 
are commonly used for ADL classification tasks. Overall, accurate and dependable 
sensor data and effective system topology and classification algorithms are essential 
for successful ADL monitoring and categorization.

There are two basic types of sensors: Wearable and non-wearable [48]. Wearable 
sensors are typically attached directly to a person or their clothing to measure vari-
ous physiological parameters, including motion characteristics, location, pulse rate, 
body temperature, blood pressure, and other important metrics. Some examples of 
wearable sensors include bracelet sensors, heart rate monitors, smartwatches, and fit-
ness trackers. These sensors are often used to monitor physical activity, track fitness 
goals, and assess overall health.

On the other hand, non-wearable sensors are typically stationary and measure 
environmental factors such as temperature, humidity, and air quality. Examples 
of non-wearable sensors include temperature, light, and motion sensors placed in 
the environment to monitor changes [49]. Both wearable and non-wearable sensors 
have advantages and disadvantages, and the choice of the sensor depends on the 
application’s specific needs. However, wearable sensors are often preferred for ADL 
monitoring and classification tasks as they provide more accurate and detailed infor-
mation about a person’s physical activity and physiological status.

Video-based systems are another ADL monitoring system where a camera is 
placed in a designated area inside a residence to detect human movement and other 
activities [50, 51]. These systems use computer vision algorithms to analyze video 
data and classify different ADLs. Video-based systems have several advantages over 
other sensor-based systems. For example, they can provide more detailed informa-
tion about a person’s movements and actions, including their posture, gestures, and 
facial expressions. They can also monitor multiple people simultaneously and detect 
subtle changes in activity patterns that other sensors may miss.

However, video-based systems also have some disadvantages [52]. For example, 
they may raise privacy concerns, as they can capture sensitive information about a 
person’s behavior and activities. They also require more processing power and stor-
age space than other types of sensors, making them more expensive and challenging 
to deploy. Overall, video-based systems can effectively monitor and classify ADL 
systems. Still, they must be used responsibly and ethically to protect the privacy and 
autonomy of the monitored individuals.

Privacy is a significant concern when using video-based ADL monitoring systems, 
and cameras can be intrusive and may compromise the privacy of the individual 
being monitored. A low-resolution heat sensor has been proposed as an alternative to 
a standard video camera for ADL monitoring. Heat or thermal sensors use infrared 
radiation to detect heat emitted by objects in their field of view. This technology can 
detect movement and track the presence of people in a room without capturing visual 
images that could invade privacy [53].

A low-resolution heat sensor instead of a traditional video camera may capture 
the same activity data without invading the user’s privacy [54]. However, the sensor’s 
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effectiveness depends on the sensor’s resolution and the distance between the sen-
sor and the person being monitored. Overall, using low-resolution heat sensors may 
provide a useful compromise between ADL monitoring and preserving privacy. 
However, it is important to ensure that the sensor is used ethically and responsibly to 
protect the privacy and autonomy of the monitored individual.

Several sensors can identify human activity for ADL monitoring and classifica-
tion. The choice of the sensor depends on the application’s specific needs and the 
type of activities being monitored. Some standard sensors used for human activity 
detection include the following:

	 1.	Accelerometers: Accelerometers are sensors that measure acceleration and 
can be used to detect movement and changes in motion [55]. They are often 
used in wearable devices such as fitness trackers and smartwatches to mon-
itor physical activity.

	 2.	Gyroscopes: Gyroscopes are sensors that measure rotational motion and 
can detect changes in orientation and movement [56]. They are often used 
with accelerometers to provide more accurate information about a person’s 
movements.

	 3.	Pressure sensors: Pressure sensors are used to detect changes in pressure 
and can be used to detect when a person is sitting, standing, or lying down 
[57]. They are often used in furniture, such as chairs and beds, to monitor a 
person’s posture and activity.

	 4.	Camera sensors: Camera sensors can detect human activity by analyzing 
visual information [58]. They can detect changes in posture, movement pat-
terns, and facial expressions.

	 5.	Microphone sensors: Microphone sensors can detect human activity by ana-
lyzing sound [59, 60]. They can detect changes in speech patterns, breath-
ing, and other auditory cues.

Overall, the sensor’s choice depends on the application’s specific needs and the 
type of activities being monitored. Combining multiple types of sensors and using 
machine learning algorithms to classify activities makes creating an effective ADL 
monitoring system possible.

The use of ADL monitoring devices raises significant privacy concerns. These 
devices can collect a wealth of sensitive information about a person’s daily activities, 
movements, and biometrics. This information could be used to infer personal infor-
mation about a person’s health, habits, and behavior, which could be used for various 
purposes, including targeted advertising, insurance underwriting, and law enforce-
ment. The relationship between sensor granularity and user perception of privacy is 
important when designing ADL monitoring devices [61]. The more granular the data 
collected by the sensors, the more invasive the monitoring may be perceived by the 
user. For example, collecting data on a person’s heart rate, blood pressure, and other 
biometrics may be perceived as more invasive than simply monitoring their physical 
activity.

It is important to design ADL monitoring devices with privacy in mind to 
address these privacy concerns. This may include implementing privacy-preserving 
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technologies, such as differential privacy, which can help protect individual privacy 
while providing useful data for analysis. It may also involve implementing clear pol-
icies for data collection, storage, and use and allowing users to control their data. 
Overall, it is important to balance the benefits of ADL monitoring devices with the 
privacy concerns they raise. By designing devices with privacy in mind and provid-
ing users with transparency and control over their data, it may be possible to create 
effective ADL monitoring systems that respect individual privacy.

Video cameras that detect almost all human movement within their field of view 
can raise significant privacy concerns [62, 63]. While these cameras may be effec-
tive for ADL monitoring and classification, they can also capture sensitive informa-
tion about a person’s daily life and habits. In many cases, such cameras may be too 
invasive to be used in private spaces such as bedrooms or bathrooms, where people 
expect more privacy. Even in public spaces, such cameras can capture information 
about a person’s physical characteristics, movements, and behavior, which could be 
used to identify or track individuals without their consent.

To address these privacy concerns, it may be necessary to implement more tar-
geted and selective monitoring systems. This could involve using sensors with more 
limited fields of view or incorporating privacy-preserving technologies such as blur-
ring or anonymization. It could also involve limiting data collection to specific times 
of the day or particular types of activities, such as monitoring only when a person 
performs a specific task rather than continuously monitoring all movements. Overall, 
the use of video cameras for ADL monitoring and classification must be balanced 
against the privacy concerns they raise. By implementing privacy-preserving tech-
nologies and limiting data collection to specific contexts, it may be possible to create 
effective monitoring systems while respecting individual privacy.

6.2  STATE OF THE ART IN ADL EXPERIMENTAL SETUPS

ADL experimental setups study and analyze human behavior during everyday activ-
ities. Significant research [64–66] has been conducted in this area, and several state-
of-the-art experimental setups have been developed to assess and quantify human 
activity. One popular setup is a smart home environment with various sensors that 
monitor human activity, such as movement, temperature, and sound [67]. The data 
collected from these sensors can be used to understand how people interact with their 
surroundings and perform different tasks.

Another standard setup is wearable sensors that can be worn on the body to track 
physical activity, sleep patterns, and other parameters related to daily living [68–70]. 
These sensors can be embedded in clothing, jewelry, or other accessories, providing 
real-time data on the wearer’s activity level. VR and AR setups also simulate ADL 
scenarios, allowing researchers to study human behavior in a controlled environ-
ment [71, 72]. These setups can provide a more immersive and interactive experience, 
making observing and analyzing specific behaviors easier. Overall, the state of the 
art in ADL experimental setups is continually evolving, with new technologies and 
methods being developed to understand human activity and behavior better.

A multi-camera system is another standard experimental setup used to study 
ADLs. This setup involves placing multiple cameras throughout a participant’s home 
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to capture visual information from different angles. The data collected from these 
cameras can be used to analyze the participant’s behavior and activity patterns, 
including how they move around the house, interact with objects, and perform dif-
ferent tasks. This setup can provide a more comprehensive and detailed view of the 
participant’s behavior compared with a single-camera setup.

One advantage of a multi-camera system is that it can capture data from differ-
ent perspectives, which can help analyze complex activities. For example, suppose a 
participant is cooking in the kitchen. In that case, a multi-camera system can capture 
their movements from multiple angles, making it easier to analyze how they use 
different utensils and appliances. However, one potential limitation of this setup is 
that it can be challenging to manage and analyze large amounts of data generated 
by multiple cameras. To address this issue, researchers may use automated tracking 
algorithms to extract relevant information from the video data or employ human cod-
ers to annotate and analyze the footage manually. Overall, the multi-camera setup is 
a valuable tool for studying ADLs and can provide valuable insights into how people 
interact with their environment and perform everyday tasks.

Wearable sensors are a popular experimental setup for studying ADLs [30, 34]. 
These sensors can be worn on different body parts, such as the wrist, ankle, or chest. 
They can provide continuous data on physical activity, sleep patterns, and other 
health-related metrics. Wearable sensors, such as smartwatches and fitness trackers, 
often include a variety of sensors, such as accelerometers, heart rate monitors, and 
GPS, that can track movement and other physiological signals [73]. The data col-
lected from these sensors can be used to monitor a participant’s activity level, sleep 
quality, and other health-related metrics.

One advantage of using wearable sensors is that they are non-invasive and provide 
continuous real-time data [74]. Participants can wear the sensors throughout the day, 
and the data collected can provide insights into their activity level and behavior pat-
terns over time. Another advantage is that wearable sensors can be used in various 
settings, including home, work, and outdoor environments, making them versatile 
tools for studying ADLs.

However, wearable sensors also have some limitations. For example, some par-
ticipants may want to avoid wearing the sensors or forget to wear them, which can 
affect the data quality. Additionally, the data collected from wearable sensors may 
only be sometimes accurate, and researchers must be cautious when interpreting the 
results. Overall, wearable sensors are a valuable tool for studying ADLs, and they 
can provide valuable insights into how people move and behave in different settings.

Ambient sensors are another experimental setup used in ADL research [36, 75]. 
These sensors are designed to measure environmental factors such as temperature, 
humidity, light, and sound levels, providing contextual information that can be used 
to understand the conditions in which activities are performed. For example, ambient 
temperature sensors can measure the temperature of different rooms in a partici-
pant’s home, providing information on how environmental factors may affect their 
behavior and activity patterns. Similarly, light sensors can measure the intensity and 
quality of light in a given space, providing insights into how lighting conditions may 
impact the performance of various activities.
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One advantage of ambient sensors is that they provide a more comprehensive 
view of the environment where activities are performed. By collecting data on envi-
ronmental factors, researchers can better understand how these factors may impact 
behavior and activity patterns. However, one potential limitation of using ambient 
sensors is that they only sometimes provide a complete picture of the environment. 
For example, while temperature sensors can measure the ambient temperature of a 
room, they may need help to capture localized temperature variations, such as those 
around heating or cooling vents. Overall, ambient sensors are a useful tool for study-
ing ADLs, and they can provide valuable insights into how environmental factors 
may impact behavior and activity patterns.

VR and AR are emerging experimental setups used in ADL research [71, 72]. 
These technologies allow researchers to simulate ADL scenarios in a controlled 
environment, providing a standardized way to study and compare different methods 
for ADL recognition. VR involves creating a fully immersive, computer-generated 
environment that users can interact with using a VR headset and other input devices. 
Conversely, AR overlaps virtual objects with the real world, typically using a mobile 
device or headset. Both VR/AR can simulate various ADL scenarios, such as cook-
ing, cleaning, and personal grooming, allowing researchers to control the conditions 
under which participants perform these activities. This can be useful for comparing 
different methods for ADL recognition, validating results, and understanding the 
underlying factors that influence ADL performance. One advantage of using VR and 
AR for ADL research is that they can provide a more controlled and standardized 
way to study ADLs. Researchers can control the variables influencing ADL per-
formance by creating a simulated environment, such as lighting conditions, noise 
levels, and other environmental factors. This can help to ensure that the results are 
consistent and reliable.

However, one potential limitation of VR and AR is that they may only sometimes 
accurately represent real-world ADL scenarios. While these technologies can sim-
ulate many aspects of real-world environments, they may only partially capture the 
complexity and variability of real-world ADL scenarios. Overall, virtual and AR are 
promising experimental setups for studying ADLs, and they can provide valuable 
insights into the underlying factors that influence ADL performance.

State of the art in experimental setups for assessing ADLs often involves collect-
ing data from participants in naturalistic settings using a variety of sensors to capture 
real-world ADLs. Researchers are constantly exploring new methods to improve the 
performance and robustness of these systems, and there are several emerging trends 
in this area. One direction is using multiple sensors to capture a more comprehen-
sive view of ADL performance. By combining data from different types of sensors, 
such as accelerometers, gyroscopes, and ambient sensors, researchers can capture a 
complete picture of the activities and the environmental conditions in which they are 
performed [76].

Another trend is using VR/AR technologies to simulate ADL scenarios in a con-
trolled environment. This can help to standardize the conditions under which ADLs 
are performed and make it easier to compare different methods for ADL recogni-
tion. Machine learning techniques are also increasingly being used to improve the 
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performance and robustness of ADL recognition systems. These techniques can help 
to identify patterns in the data collected from sensors and enhance the accuracy 
of ADL recognition algorithms. Overall, state of the art in experimental setups for 
assessing ADLs is focused on improving the performance and robustness of these 
systems and increasing the realism and naturalness of the ADL scenarios being stud-
ied. As new technologies and techniques emerge, researchers will likely continue 
to explore new ways to improve the accuracy and reliability of ADL recognition 
systems.

The main goal of Ambient Assisted Living (AAL) is to use ambient intelligence 
to support and enhance the independence and quality of life of older adults living in 
their homes. One of the critical applications of AAL is in assessing ADLs, focusing 
on identifying any changes or abnormalities in the routines of older adults in their 
daily activities, such as eating, cooking, and bathing [77–79].

To achieve this goal, AAL researchers often use smart home technology to mon-
itor the behavior of older adults in their homes. Smart home technology typically 
involves a range of sensors and devices installed throughout the house to gather data 
on the environment and the occupants’ activities. These data can then be used to 
monitor the health and well-being of the occupants, identify any changes in behavior 
or routines, and alert caregivers or healthcare providers if any issues are detected.

A key advantage of AAL and smart home technology is that it allows older adults 
to continue living in their homes for longer while receiving the support and care they 
need. By using technology to monitor their behavior and provide timely interventions 
if needed, older adults can maintain their independence and quality of life while 
reducing the burden on caregivers and healthcare providers. Overall, AAL and smart 
home technology are important areas of research in the field of ambient intelligence, 
with the potential to improve the lives of older adults and support their continued 
independence and well-being.

The experimental conditions and requirements for smart home environments vary 
depending on the research goals and objectives. Some studies may use a natural home 
fitted with sensors to collect data on human behavior, while others may use a lab-
based smart home environment where participants live temporarily. The kinds of sen-
sors used in these smart home environments can also vary depending on the research 
objectives. For example, some studies may focus on energy efficiency and use sensors 
to monitor energy usage patterns in the home. In contrast, others may prioritize pri-
vacy concerns and use non-intrusive sensors to collect data on human behavior.

Additionally, the scenarios used in these studies can vary depending on the 
research objectives. Some studies may involve using carefully prepared scenarios to 
test activity detection algorithms, while others may focus on analyzing patterns of 
human behavior in a more naturalistic setting. Overall, the requirements for smart 
home environments in ambient intelligence research vary widely depending on the 
research goals and objectives. Researchers must carefully consider the experimental 
conditions and types of sensors used to ensure that the data collected are relevant and 
useful for their research.

Ambient intelligence research often involves lengthy, real-world studies in partic-
ipants’ homes or smart home environments. Smart homes are beneficial for testing 
activity identification algorithms because they provide a controlled environment that 
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makes collecting and annotating accurate and balanced data easier. One of the key 
advantages of using smart home environments in ambient intelligence research is 
that they allow researchers to collect data on participants’ behavior in a more natu-
ralistic setting. This can provide valuable insights into how people interact with their 
environment and daily activities, which can be challenging to capture in a laboratory 
setting.

In addition, smart home environments can be used to test activity identification 
algorithms in a more controlled and standardized way. For example, by using cam-
eras to capture video footage of participants carrying out specific activities, research-
ers can annotate the data and use it to train and test machine learning algorithms 
for activity identification. Overall, smart home environments are an important tool 
for ambient intelligence researchers, providing a valuable platform for collecting 
real-world data on human behavior and testing and refining activity identification 
algorithms.

Data gathered in real-world situations can be more representative of usual behavior 
and are thus more suited for testing algorithms for behavior modeling [80, 81]. Using 
ambient sensors such as door contact, motion, and float sensor in the bathroom can 
help to detect activity patterns and provide valuable insights into how people carry 
out their daily activities. For example, by analyzing data from a door contact sensor, 
researchers can determine when participants enter and exit different rooms in the 
house. By combining these data with information from a motion sensor, they can bet-
ter understand the activities carried out in each room. Similarly, using a float sensor 
in the bathroom can help researchers detect when participants are taking a shower or 
a bath, providing valuable insights into their daily routines and behavior patterns. By 
using ambient sensors to collect data in real-world situations, researchers can develop 
more accurate models of human behavior and activity patterns, which can inform the 
design of smart home systems and other ambient intelligence technologies.

6.3  SUMMARY

Automated ADL classification is an important aspect of assisted living technol-
ogy. ADLs are basic self-care tasks that individuals perform daily, such as bathing, 
dressing, grooming, feeding, and toileting. These tasks are essential for maintaining 
independence, and the ability to achieve them is often used as a measure of an indi-
vidual’s functional ability.

Automated ADL classification uses sensors and machine learning algorithms to 
monitor a senior’s daily activities and determine their ability to perform ADLs inde-
pendently. For example, a sensor in the bathroom can detect when a senior enters 
and leaves the shower. The machine learning algorithm can use this information to 
determine if the senior can bathe independently.

Automated ADL classification can provide valuable insights into a senior’s func-
tional ability and help caregivers and healthcare professionals make informed deci-
sions about the senior’s care. It can also alert caregivers if there is a decline in a senior’s 
ability to perform ADLs, which can help prevent accidents and hospitalizations.

Early identification of dementia and Alzheimer’s disease is crucial for effective 
treatment and management. ADL classification can play an important role in the early 
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identification of these conditions by monitoring changes in a senior’s daily activities 
and routines. ADL classification can be carried out using various sensors, including 
wearable and non-wearable sensors. Wearable sensors, such as smartwatches and 
fitness trackers, can monitor seniors’ physical activity and detect any changes in their 
activity levels. Non-wearable motion and pressure sensors can be installed in elders’ 
homes to monitor their movements and activities. The deployment of ADL classifica-
tion can also vary depending on the senior’s needs and circumstances. For example, 
sensors can be installed in specific home areas, such as the bathroom and kitchen, 
to monitor specific activities. Alternatively, a comprehensive sensor network can be 
established throughout the home to monitor continuously.

Signal processing and machine learning strategies are also important compo-
nents of ADL classification. Signal processing techniques extract helpful informa-
tion from the sensor data, such as identifying patterns in a senior’s movements and 
activities. Machine learning algorithms can then be applied to the processed data to 
automatically classify the senior’s activities and determine their ability to perform 
ADLs independently. Overall, ADL classification using wearable and non-wearable 
sensors, deployment options, signal processing, and machine-learning strategies can 
help identify early signs of dementia and Alzheimer’s disease, enabling timely inter-
vention and better management of the condition.

Eye-gaze methods involve eye-tracking technology to monitor a person’s gaze 
and determine their focus of attention. This technology can assess a senior’s ability 
to perform specific tasks, such as cooking or reading, by tracking their gaze as they 
interact with objects in the environment. Eye-gaze methods can be non-wearable, 
using cameras or other sensors to track the person’s gaze, or wearable, using special-
ized glasses or head-mounted displays. Both eye-gaze techniques have advantages 
and disadvantages, depending on the use case. Signal processing and machine learn-
ing algorithms often analyze the data collected by eye-gaze methods and classify the 
senior’s activities and abilities. These techniques can detect changes in gaze patterns 
over time, which may indicate cognitive decline or other health issues. Overall, the 
use of eye-gaze methods in ADL classification is an active area of research, and the 
effectiveness of non-wearable eye-gaze methods compared with wearable methods 
may depend on the specific use case and the quality of the data collected.

The ability to reuse sensors from smart home apps can help reduce the over-
all infrastructure and installation costs of ADL monitoring systems. Smart home 
devices, such as motion and door sensors, can be repurposed for ADL monitoring, 
eliminating the need for additional sensors to be installed. This can also make it eas-
ier to scale ADL monitoring systems to accommodate more seniors or expand to new 
locations. However, as you mentioned, legal data ownership and security issues must 
be addressed before ADL monitoring devices can be used. Seniors and their families 
may be concerned about who owns the data collected by ADL monitoring systems 
and how it is used. In addition, there may be legal requirements around data privacy 
and security that must be met.

To address these issues, ADL monitoring systems must be designed with data 
privacy and security in mind. This includes implementing robust security measures 
to protect the data collected by the sensors and providing clear and transparent infor-
mation about data ownership and use.
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In addition, it may be necessary to work with legal and regulatory experts to 
ensure that ADL monitoring systems comply with all relevant laws and regulations. 
This can help build trust with seniors and their families and ensure that the ADL 
monitoring systems are legally and ethically sound. Addressing legal issues related 
to data ownership and security is an important step in developing and adopting ADL 
monitoring systems. By prioritizing data privacy and security, ADL monitoring sys-
tems can help seniors maintain their independence and provide their families and 
caregivers peace of mind.

Involving seniors in the design and implementation of ADL monitoring systems 
is crucial for ensuring that the systems are user-friendly and meet the needs and 
preferences of the users. User-centered design principles, prioritizing the needs and 
perspectives of the end-users, can help ensure that ADL monitoring systems are intu-
itive, accessible, and acceptable to seniors.

Involving seniors in the design process can also help address privacy and tech-
nology acceptance concerns. By engaging seniors in data privacy and security dis-
cussions and providing clear and transparent information about how their data will 
be used, ADL monitoring systems can help build trust and improve seniors’ comfort 
with using technology in their homes.

In addition to involving seniors in the design process, it is also important to 
provide ongoing support and training to ensure elders are comfortable and con-
fident using ADL monitoring systems. This can help ensure that the systems are 
used correctly and can help seniors overcome any barriers or challenges they may 
encounter.

As sensor technology advances, it is important to keep seniors at the center of 
ADL monitoring system design and implementation. By prioritizing openness, 
user-centered design, and ongoing support and training, ADL monitoring systems 
can help seniors maintain their independence and improve their quality of life while 
addressing privacy and technology acceptance concerns.

Familiarity with sensor technology in other aspects of life can help increase con-
sumer understanding and acceptance of vision sensor technology for ADL monitor-
ing. As sensor technology becomes more prevalent in our daily lives, such as security 
cameras or smart home devices, consumers may become more comfortable using 
sensors for ADL monitoring in their homes. Familiarity with sensor technology can 
also help address privacy and data security concerns, as consumers may already be 
familiar with the types of data sensors can collect and how that data can be used. 
This can help build trust and improve acceptance of ADL monitoring systems that 
use vision sensors.

In addition, clear and transparent communication about how vision sensor tech-
nology is used for ADL monitoring can help improve consumer understanding and 
acceptance. Information about the data types being collected, how that data is being 
used, and what privacy and security measures are in place can help build trust and 
improve consumer confidence in ADL monitoring systems. As consumers become 
more familiar with sensor technology in other aspects of their lives, they may become 
more comfortable using vision sensors for ADL monitoring. Clear communication 
and transparency around data privacy and security can also help improve under-
standing and acceptance of ADL monitoring systems.
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Investigating the human gaze as an effective and intuitive human–user interaction 
is an important area of research in HCI and related fields. Eye-tracking technology 
to monitor and analyze human gaze patterns can provide valuable insights into how 
people interact with computers and other digital devices and can inform the design 
of more effective and user-friendly interfaces.

This book focuses on the scientific investigation of the human gaze as a form of 
HCI. It may cover topics such as the physiological and cognitive factors that influence 
gaze behavior, the use of eye-tracking technology for interface design and evaluation, 
and the development of gaze-based interaction techniques for specific applications. 
Overall, this book may interest researchers and practitioners in HCI, usability engi-
neering, and user experience design, as well as those interested in the broader impli-
cations of gaze-based interaction for human cognition and behavior.

The study described in this thesis focuses on developing a method for users to 
express intuitively what tasks they naturally concentrate on as the subject of their 
attention in a given situation. This may involve eye-tracking technology or other 
methods for monitoring and analyzing users’ gaze behavior and attentional focus.

This study may improve the usability and effectiveness of digital interfaces and 
other interactive systems by allowing users to provide more natural and intuitive input 
based on their attentional focus. By enabling users to express their natural attentional 
priorities, designers and developers can create more personalized and user-friendly 
interfaces that better meet the needs and preferences of individual users. Overall, 
this study may interest researchers and practitioners in HCI, usability engineering, 
and user experience design, as well as those interested in the broader implications of 
attentional focus for human cognition and behavior.

The investigation described in Chapters 2 and 3 involved a study of a specific 
two-dimensional (2D) eye-gaze estimation method and its practical implementation. 
The purpose of this investigation may have been to evaluate the accuracy and effec-
tiveness of the technique and explore its potential applications in various contexts. 
Eye-gaze estimation methods are commonly used in HCI, VR, and medical research 
to monitor and analyze users’ gaze behavior. 2D eye-gaze estimation refers to using 
cameras and image processing algorithms to track the position of the user’s eyes and 
estimate their PoG on a 2D plane. The practical implementation of the 2D eye-gaze 
estimation method may have involved the development of software or hardware tools 
for capturing and analyzing users’ gaze behavior in real-world settings. This may 
have included designing and constructing custom hardware, developing software 
algorithms for processing gaze data, and testing and validating the system in various 
contexts. Overall, the investigation and practical implementation of a 2D eye-gaze 
estimation method may interest researchers and practitioners in fields such as HCI, 
VR, and medical research, as well as those interested in the broader implications of 
eye-gaze behavior for human cognition and behavior.

Chapters 4 and 5 describe developing a method for analyzing user eye-gaze 
data to infer their visual attention during ADLs. This may involve using ANN 
classifiers to identify patterns in the gaze data and make predictions about the 
user’s attentional focus. Also, analyze ADLs to understand better how users allo-
cate their attention during these activities. This may include using observational 
methods or other monitoring and analyzing user behavior. Also, it describes the 
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development of a webcam-based gaze-tracking system for capturing user eye-gaze 
data. This system may be designed to capture the upper body of subjects to cap-
ture the image of both eyes and improve the accuracy of gaze tracking. Finally, 
Chapters 4 and 5 may interest researchers and practitioners in fields such as HCI, 
artificial intelligence, and assistive technology, as well as those interested in the 
broader implications of eye-gaze behavior and attentional focus for human cogni-
tion and behavior.

The experiments involved in Chapters 4 and 5 were a calibration and gaze esti-
mation procedure for the participant’s left and right eyes. The calibration process 
may have involved asking participants to look at calibration points or targets. In 
contrast, the gaze estimation procedure may have involved tracking the movement 
of the eyes using specialized software or hardware. After the calibration and gaze 
estimation procedures were completed for both eyes, the final PoG was calculated 
by averaging the PoG values obtained for the left and right eyes. This approach may 
help improve the gaze estimation accuracy, as it considers any differences in cali-
bration or tracking performance between the left and right eyes. Overall, the experi-
ments described may interest researchers and practitioners in HCI, VR, and medical 
research, as accurate and reliable gaze estimation is crucial for many applications in 
these fields.

A study was conducted to investigate the use of 2D gaze as a means of command-
ing caregivers to perform various tasks. The study may have involved participants 
who were elderly or had disabilities and used gaze-based interfaces to communicate 
with their caregivers. The study’s results may have shown that participants could 
use 2D gaze to command their caregivers to perform tasks effectively. This may 
suggest that gaze-based interfaces have the potential to be a valuable and practical 
means of communication for individuals who have difficulty with traditional forms 
of communication.

In addition, the study may have included subjective evaluations of the gaze-based 
interfaces, demonstrating that participants found the modality practical and easy to 
learn. This may suggest that gaze-based interfaces have the potential to be widely 
accepted and adopted by users, which could have important implications for the 
development of assistive technologies and other applications of gaze-based interac-
tion. The study may interest researchers and practitioners in HCI, assistive technol-
ogy, and healthcare. It demonstrates the potential of gaze-based interfaces to improve 
communication and enable greater independence for individuals with disabilities or 
other challenges.

6.4  OUTCOME OF THE RESEARCH

An ANN-based eye-gaze communication system can effectively help older people 
who are deaf and disabled to communicate with their caregivers and others around 
them. Developing such a system involves several steps, including collecting and pro-
cessing eye-gaze data, training an ANN to recognize and interpret different patterns 
of eye-gaze movements, and designing a user interface that enables users to commu-
nicate effectively using their eyes. The primary three outcomes of the research are 
described in the following.
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6.4.1 �T o Develop the Neural Network-Based 
Implicit Intention Algorithm

Developing a neural network-based implicit intention algorithm involves several key 
steps. Here is a general outline of the process:

	 1.	Define the problem: Determine the specific task you want the neural net-
work to perform, such as recognizing different patterns of eye-gaze move-
ments or inferring the user’s intention based on their eye movements.

	 2.	Collect data: Gather a large dataset of eye-gaze data from individuals per-
forming the task you want the neural network to function. Ensure that the 
dataset is diverse and representative of the population you are designing the 
system for.

	 3.	Preprocess the data: Clean and preprocess the dataset to remove any noise 
or irrelevant data. This may involve filtering, segmentation, or normalization 
techniques.

	 4.	Train the neural network: Choose a neural network architecture and train 
it on the preprocessed data using a supervised or unsupervised learning 
approach. This involves adjusting the weights and biases of the network 
through multiple iterations until it achieves high accuracy.

	 5.	Evaluate the performance: Test the neural network on a separate dataset 
to evaluate its performance and identify any potential issues or areas for 
improvement.

	 6.	Fine-tune the network: Adjust the network architecture or training parame-
ters as needed to improve its performance.

	 7.	 Implement the algorithm: Once the algorithm has been developed and 
tested, integrate it into the eye-gaze communication system and test it in a 
real-world setting.

	 8.	Monitor and update the system: Continuously monitor the system’s perfor-
mance and update the algorithm as needed to ensure optimal performance 
and accuracy.

These steps are general guidelines, and the specifics of each stage may vary depend-
ing on the particular task and dataset. Developing a neural network-based implicit 
intention algorithm requires expertise in machine learning, data processing, and soft-
ware development, so working with a team of experts in these areas may be helpful. 
The development of the ANN-based gaze vector estimation system involved a few 
important steps:

	 1.	Mapping calibration markers to gaze vector functions: To train the neural 
network to estimate gaze vectors, calibration markers were used to establish 
the relationship between the user’s eye movements and the corresponding 
gaze vectors.

	 2.	Organizing gaze point coordinates: The neural network’s output was orga-
nized to represent the gaze point’s horizontal and vertical coordinates.

	 3.	Estimating gaze vectors before training: An initial estimate of the gaze vec-
tors was made before training the neural network using the calibration data.
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	 4.	Exploring hidden layer configurations: To improve the accuracy of the gaze 
vector estimation, various hidden layer configurations were tested to iden-
tify the optimal architecture for the neural network. This included testing 
different types of hidden units and the number of nodes in each layer.

	 5.	Final architecture: The final architecture of the neural network included an 
input layer with four nodes, an output layer with two nodes (representing 
the horizontal and vertical coordinates of the gaze point), and a hidden layer 
with five nodes.

This approach demonstrates the importance of careful calibration and model selec-
tion when developing a gaze vector estimation system using ANNs. By testing var-
ious hidden layer configurations, the researchers could identify a neural network 
architecture that achieved the desired level of accuracy.

6.4.2 �T o Develop a Person-Independent System 
for Gaze Direction Classification

Developing a person-independent system for gaze direction classification involves 
creating a machine learning algorithm that can accurately classify gaze direction 
without relying on individualized calibration data. Here are some general steps that 
could be followed to develop such a system:

	 1.	Gather training data: Collect a large dataset of gaze direction data from 
multiple individuals, covering a range of gaze directions and head positions. 
Ensure that the dataset is diverse and representative of the population you 
are designing the system for.

	 2.	Preprocess the data: Clean and preprocess the dataset to remove any noise or 
irrelevant data. This may involve filtering and segmentation normalization 
techniques.

	 3.	Feature extraction: Extract relevant features from the preprocessed data. For 
example, you might use a CNN to extract features from images of the user’s 
eyes or use an algorithm to detect changes in the user’s gaze direction over time.

	 4.	Train the model: Train a machine learning algorithm on the preprocessed 
data using a supervised learning approach. This may involve using various 
algorithms, such as decision trees, SVMs, or deep neural networks, to find 
the best-performing model.

	 5.	Evaluate the model: Test the trained model on a separate dataset to evaluate 
its performance and identify any potential issues or areas for improvement.

	 6.	Fine-tune the model: Adjust the model parameters or algorithm to improve 
its performance.

	 7.	Validate the model: Test the final model on a more extensive dataset to val-
idate its performance and ensure it can accurately classify gaze direction 
across various individuals and conditions.

	 8.	 Implement the system: Once the model has been developed and validated, 
integrate it into a gaze direction classification system and test it in a real-
world setting.
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Monitor and update the system: Continuously monitor the system’s performance 
and update the algorithm as needed to ensure optimal performance and accuracy. 
Developing a person-independent system for gaze direction classification requires 
expertise in machine learning, data processing, and software development, so work-
ing with a team of experts in these areas may be helpful.

6.4.3 �T o Develop a Framework for User Intention 
Recognition Using Eye-Gaze Tracking

Recognizing user intention through eye-gaze tracking can create more natural and 
intuitive human–computer interfaces. Here’s a framework that can be used for user 
intention recognition using eye-gaze tracking:

	 1.	Eye-gaze data collection: The first step in the framework is to collect 
eye-gaze data. Eye-gaze data can be collected through eye-tracking devices 
such as Tobii Pro or EyeTribe. The data should be collected on user inten-
tion, such as selecting an item, scrolling through content, or navigating a 
menu.

	 2.	Feature extraction: The next step is to extract features from the eye-gaze 
data. This can include information such as gaze dura, gaze position, and 
saccade velocity. Feature extraction is an important step because it creates 
more accurate machine-learning models.

	 3.	Machine learning model: A machine learning model can recognize user 
intentions based on the extracted features. The model can be trained using 
various algorithms such as decision trees, random forests, or SVMs. The 
model’s accuracy can be improved by tuning hyperparameters and cross-
validation techniques.

	 4.	 Integration with user interface: Once the machine learning model has been 
developed and validated, it can be integrated with the user interface. This can 
be done by mapping eye-gaze data to specific actions within the interface. 
For example, if the user looks at a particular button for a certain amount of 
time, the machine learning models the user’s intention user intends to select 
that button.

	 5.	User testing and refinement: The final step is to test the system with users 
and refine the model based on feedback. User testing can help identify any 
usability issues or areas for improvement. The model can be refined by add-
ing features or adjusting the algorithm to improve accuracy.

Above this framework, it is possible to develop an effective system for recognizing 
user intentions using eye-gaze tracking. This can help create more natural and intui-
tive user interfaces that improve the overall user experience.

6.5  CONTRIBUTIONS

The research described in the statement has contributed to three fundamen-
tal problems in designing and developing an ANN-based system for gaze-based 
communication:
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	 1.	Gaze point estimation: One of the primary challenges in developing an 
ANN-based system for gaze-based communication is accurately estimating 
the user’s gaze point. The research has addressed this problem by developing 
a novel ANN for estimating gaze points. This is a significant contribution, 
as accurate gaze point estimation is critical for effective communication.

	 2.	 Implicit intention detection: Another challenge in gaze-based commu-
nication is detecting the user’s intention. The research has addressed this 
problem by developing an implicit intention algorithm for gaze-based com-
munication. This algorithm detects the user’s intention based on their gaze 
behavior without requiring explicit commands or gestures. This is a sig-
nificant contribution, making gaze-based communication more natural and 
intuitive.

	 3.	Eldercare: The research has also contributed to applying gaze-based com-
munication in elder care. This is an important study area, as elder care is a 
growing concern in many societies. Gaze-based communication can help 
improve the quality of life for elderly individuals by providing them with a 
more natural and intuitive way to communicate with caregivers and family 
members.

Overall, the research described in the statement has important contributions to devel-
oping an ANN-based system for gaze-based communication. These contributions 
have addressed critical challenges in the field and have the potential to improve the 
lives of individuals who rely on such systems.

The thesis aims to examine eye gazing as a natural and effective method of inter-
action with human users to develop a way for users to express their desires to caregiv-
ers naturally and intuitively. Specifically, the study focuses on developing a method 
for users to indicate which chores they want their caregivers to perform by looking at 
an object of interest in a manufactured kitchen environment.

By examining eye gazing as a method of interaction, the study is likely to contrib-
ute to the growing body of research on natural and intuitive HCI. Eye gazing has the 
potential to be a powerful tool for communication, particularly for individuals who 
have difficulty with other forms of communication, such as speech or gesture.

The focus on developing a method for users to indicate which chores they want 
their caregivers to perform is particularly relevant to elder care. As the elderly pop-
ulation grows, the need for effective and efficient caregiving solutions is increasing. 
By providing a natural and intuitive way for elderly individuals to communicate their 
needs and desires to their caregivers, the method developed in this study can poten-
tially improve the quality of life for many elderly individuals.

Overall, the thesis is likely to contribute to our understanding of eye gazing as a 
method of interaction and has the potential to positively impact the lives of individu-
als in need of caregiving support.

In this context, a database of 6,000 photographs taken with a typical camera was 
used to evaluate the approach. The approach, presumably an image recognition or 
classification algorithm, was tested for accuracy using these photographs. The results 
showed an average accuracy of 90.83% for a four-way classification task. To further 
test the algorithm’s robustness, the researchers exposed it to various modifications, 
including noise, adjustments to brightness and contrast, rotation, and blurring. The 
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algorithm’s performance was evaluated for each improvement to assess its qualitative 
robustness.

The results showed that introducing noise was the most critical component affect-
ing the algorithm’s performance. This finding suggests that the algorithm may be 
susceptible to noise in the images it processes. It also highlights the importance of 
considering the impact of image quality and modifications when developing image 
recognition or classification algorithms.

Overall, this research demonstrates the algorithm’s effectiveness in classifying 
images, with a high level of accuracy achieved on a large dataset of typical photo-
graphs. The study also highlights the importance of evaluating an algorithm’s robust-
ness by exposing it to various modifications that may affect image quality, providing 
insights into potential weaknesses and areas for improvement.

In this study, an algorithm was assessed by 30 people using a webcam. The study 
aimed to explore how non-wearable technology can improve elder care. The partici-
pants were asked to rate a 2D eye-gaze system for daily life designed to assist elderly 
individuals in communicating their needs and desires. The survey results showed 
that 78.14% of respondents gave the system a favorable rating. However, more than 
11.26% of respondents gave the system a bad rating. Additionally, 10.6% of those 
who needed clarification about the method provided further details.

The study suggests that using non-wearable technology, such as the 2D eye-
gaze system, can improve the quality of life for older people by easing the strain 
of caregiving and lowering operating costs. The study used a kitchen environment 
with four items, as viewed from the perspective of an older adult, to demonstrate 
how technology can assist with daily tasks. Furthermore, the study suggests that 
the technology can benefit those with hearing loss. Individuals with hearing loss 
are more likely to experience developmental delays in language, knowledge, soci-
ety, emotion, and behavior, which can substantially impact their cognitive health. 
Therefore, technology could be a valuable tool for improving communication and 
enhancing the quality of life for this population. Overall, the study demonstrates 
the potential of non-wearable technology in improving elder care and communi-
cation for individuals with hearing loss. However, the study also highlights the 
importance of considering user feedback to improve the usability and effectiveness 
of such systems.

In this study, a camera method was developed to calibrate and identify a user’s 
gaze on a computer screen. The method was designed to enable older people to inter-
act with machines using HCI and vision-based activity detection. The study aimed 
to fuse senior support programs with vision-based activity detection to provide an 
implicit intention strategy for ADL at home. The researchers found that the 2D 
gazing mode could be changed into an interactive mode to teach caregivers how 
to do common chores, making it easier for older people to use and understand. The 
researchers recorded and analyzed the user’s eye-gaze motions to infer the user’s 
aim. Based on their research on implicit intention communication for older citizens 
engaging in everyday activities, the study suggests that this approach can enhance 
user engagement. Overall, the study demonstrates the potential of using vision-based 
activity detection and HCI to improve elder care by providing a more natural and intu-
itive way for older people to interact with machines. Providing an implicit intention 
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strategy for ADL at home can help ease the strain of caregiving and enhance the 
quality of life for older adults.

6.6  LIMITATIONS

The system will limit the limitations of the proposed eye-gaze tracking framework 
for user intention recognition.

	 1.	The proposed eye-gaze tracking framework for user intention recognition 
may not work as effectively on smaller screens or objects. The experiment 
used a 15-inch laptop screen and a specific masking area to capture more 
efficiently gazes. If the object size is reduced, the masking area is also 
reduced, potentially making it more difficult for elderly users to focus on an 
object for more than five seconds. This may limit the system’s usability for 
older people needing help focusing or requiring larger objects for visibility.

	 2.	The proposed eye-gaze tracking framework may be limited to screen or 
object size. However, it may still be effective for specific applications or 
user groups, particularly for older people with limited resources. Consider-
ing the size and visibility of objects when designing the system, optimizing 
its performance and usability for specific users or contexts may be possible. 
For example, the system could be designed to use larger objects or screens 
to make it easier for elderly users to focus on and interact with the system. 
Overall, it is important to consider the potential limitations of the proposed 
framework and explore ways to address or work around those limitations to 
maximize its benefits for users.

	 3.	Optimize the proposed eye-gaze tracking framework for user intention 
recognition in the kitchen scenario to maximize the utilization of objects 
within humans’ 40-mm2 eye-gaze working area. This could involve design-
ing the system to prioritize objects that are most relevant or important for 
daily activities in the kitchen, such as appliances, utensils, and food items. 
Objects could be positioned within the working area to make them more 
easily accessible and visible to users, and the system could be programmed 
to recognize and respond to gaze movements toward these objects. By max-
imizing the utilization of objects within the eye-gaze working area, the sys-
tem could improve its usability and effectiveness for elderly users who may 
have difficulty focusing on smaller objects or screens. It could also help 
to streamline and simplify everyday activities in the kitchen, reducing the 
strain on caregivers and improving the quality of life for elderly individuals.

This research has focused on elder caring in a home environment with low-cost and 
minimum facilities. The proposed eye-gaze tracking framework for user intention 
recognition was developed to improve the quality of life for elderly individuals and 
reduce the burden on caregivers. The system was designed to be easy to use and 
understand, even for individuals with limited resources and abilities. The goal was 
to provide a non-intrusive and affordable solution for elder care that could be imple-
mented in a wide range of home environments.
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6.7  RECOMMENDATIONS AND FUTURE WORK

The proposed eye-gaze tracking framework for user intention recognition has some 
limitations related to pupil detection and head position modification. A head posture 
adjustment algorithm is recommended to improve the system’s accuracy. While the 
study has shown the potential of using 2D gaze as a natural and effective interaction 
modality, several issues still need to be addressed before the gaze-based interac-
tion modality can be further developed. These issues may include improving pupil 
detection accuracy and reliability, reducing head movement impact on gaze tracking, 
and developing better calibration and calibration-free techniques for gaze estima-
tion. Additionally, the size and visibility of objects may need to be considered when 
designing the system for specific users or contexts.

6.7.1 M ultimodal Interaction

In summary, while the gaze modality has shown potential as a single interaction 
method in the workplace, multimodal interfaces are generally more versatile and 
reliable. Research has shown that combining multiple modalities can improve infor-
mation processing and accuracy. The gaze interaction mode may also benefit from 
using other modes to increase effectiveness. However, it is important to consider the 
user’s experience and avoid burdening them with excessive gaze contact. The opti-
mal combination of interaction modes and how work should be distributed among 
them is an ongoing area of research.

Multimodal interaction with eye-gaze tracking involves integrating gaze tracking 
technology with other input and output modalities to provide a more natural and 
effective way for users to interact with devices. This approach can help overcome 
some limitations and challenges of using gaze tracking as a standalone modality 
and improve user experience and task performance. For instance, combining gaze 
tracking with voice commands or gesture recognition can provide users with addi-
tional ways to interact with devices and improve accessibility for users with different 
abilities and preferences.

Another example of HCI using eye-gaze tracking is gaze-based interaction to trig-
ger actions, such as clicking a button or selecting an option, by fixating on the target 
for a certain amount of time. This technique is called dwell-based interaction and 
can also be helpful for users with mobility impairments or for hands-free operation 
in certain situations, such as in industrial or medical settings. Additionally, eye-gaze 
tracking can be combined with voice input for more efficient and natural interaction, 
such as in virtual assistants or in-car systems.

Gaze-based interaction can also be used with other modalities to create more ver-
satile and efficient HCI systems. For example, a user might use gaze-based interac-
tion to control the cursor while using a keyboard for text input and voice commands 
to control other system aspects. This multimodal approach can improve the overall 
user experience and accessibility of the system.

Eye gaze can also be used to scroll or zoom in and out on a screen by looking at 
specific areas, making it easier for users with limited mobility to navigate digital con-
tent. Additionally, eye gaze can select text or images on a screen, allowing users to 
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copy, paste, or move content without physically manipulating the touchpad. Eye-gaze 
tracking combined with other modalities can enhance the usability and accessibility 
of various technologies. For example, in virtual and AR, eye-gaze tracking can be 
used to improve the realism and interactivity of the experience, allowing users to 
interact with objects in the virtual environment simply by looking at them. Moreover, 
combining eye-gaze tracking with voice commands or hand gestures can further 
enhance the usability and versatility of the system.

Combining eye-gaze tracking technology with other forms of input and output 
can result in more versatile and reliable interaction methods. It enables people with 
different abilities to interact with technology in a more accessible way. Additionally, 
combining multiple modalities can speed up information processing, improve com-
prehension accuracy, and create more immersive experiences. Overall, multimodal 
interaction using eye-gaze tracking technology can revolutionize how we interact 
with technology in various settings.

6.7.2 V alidation of Users With Special Needs

One of the advantages of using eye-gaze tracking in HCI is its potential to improve 
accessibility for individuals with disabilities. Gaze-based interaction can be an effec-
tive and straightforward way for individuals with limited mobility or motor impair-
ments to interact with computers and other devices. It is important to consider the 
specific needs of individuals with disabilities when designing and evaluating gaze-
based interaction systems and to develop strategies for generalizing these systems to 
a wide range of users.

Eye-tracking technology has a lot of potential applications, but it is still a rela-
tively new and evolving technology. As more research is done and the technology 
improves, we can expect to see even more innovative and valuable applications of eye 
tracking in various fields. There have been significant improvements in eye-tracking 
technology in recent years, including the development of more affordable, accu-
rate, and user-friendly devices. Video-based eye-tracking systems are now widely 
available and offer a non-invasive and reliable method for tracking eye movements. 
Additionally, calibration procedures have become more streamlined and straight-
forward, making eye-tracking technology more accessible to researchers and prac-
titioners. While cost can still be a barrier for some, the increasing availability of 
eye-tracking systems and their potential benefits for research and applications make 
them an increasingly valuable tool.

Another way to validate eye-gaze tracking technology for users with special needs 
is to collaborate with healthcare professionals, therapists, and other experts who 
work with the specific population. They can provide valuable feedback on the tech-
nology’s usability and effectiveness for their clients/patients. This can help to iden-
tify any limitations or challenges with the technology and inform improvements or 
modifications to make it more accessible and effective for users with special needs. 
It is also essential to consider the ethical implications of using eye-gaze tracking 
technology with users with special needs. Privacy and informed consent are crucial 
considerations, as well as ensuring that the technology does not cause harm or dis-
comfort to the users. Therefore, it is important to involve the users in the validation 
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process and to consider their feedback and preferences when developing and refining 
the technology.

Controlled experiments can also validate eye-gaze tracking with special needs 
users. These experiments can involve comparing the performance of eye-gaze track-
ing with other input or eye-tracking technology and measuring factors such as accu-
racy, speed, and user satisfaction. By conducting these experiments, researchers can 
better understand the strengths and limitations of eye-gaze tracking for users with 
special needs and identify ways to improve the technology to meet their needs better.

It is important to ensure that technology is designed and developed with acces-
sibility and inclusivity in mind and validated for diverse users, including those with 
special needs. This requires careful consideration of ethical and privacy concerns 
and providing appropriate documentation, training, and technical support to users 
with special needs. By taking these steps, we can ensure that eye-gaze tracking tech-
nology is a valuable tool for enhancing the lives of all users, regardless of their abil-
ities or disabilities.

Interdisciplinary collaboration is crucial in eye-tracking research, as it involves a 
range of technical, methodological, and theoretical expertise. Collaborating across 
different fields can help ensure that the research is rigorous and comprehensive and 
that the findings are meaningful and applicable in real-world contexts. For example, 
in developing eye-tracking systems and software, engineering, computer science, and 
HCI, experts may need to work together to ensure that the technology is accurate, 
reliable, and user-friendly. Similarly, in designing and implementing eye-tracking 
studies, experts in psychology, neuroscience, and education may need to collaborate 
to ensure the research is theoretically grounded and relevant to the target population.
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