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foreword

As a lifelong student of the business of technological innovation, I have often wondered:

what sets apart an expert from regular practitioners in any area of technology? An

expert tends to have many micro-insights into the subject that often elude the ordinary

practitioner. This enables them to come up with solutions that are not visible to others.

The primary appeal of this book is to generate that kind of micro-intuitions into the

complex subject of machine learning. For all their ubiquitousness, episodic internet

recipes do not build such intuitions in a systematic, connected way. This book does.

I also agree with the author’s position that such intuitions are impossible to build

without a firm grasp of the mathematical understanding of the core principles of

machine learning. Of course, all this has to be combined with programming knowledge,

without which it becomes idle theory. I like the way this book attends to both theory

and practice of machine learning by presenting the mathematics alongside PyTorch

code snippets.

At present, deep learning is indeed shaping human history. Machine learning and

data science jobs are consistently rated as the best. If you are looking for a rewarding

career in technology, this may be the area for you. And if you are looking for a book

that gives you expert-level understanding but only assumes fairly basic knowledge of

mathematics and programming, this is your book. With its joint, side-by-side treatment

of math and PyTorch programming, it is perfect for professionals who want to become

serious practitioners of the art and science of machine learning. Machine learning lies

at the confluence of linear algebra, multivariate statistics, and Python programming,

and this book combines them into a single coherent narrative—starting from the basics

but rapidly moving into advanced topics.

xiv



FOREWORD xv

A particularly delightful aspect of the book is how it creates geometric intuitions

behind complex mathematical concepts. Symbols may be forgotten, but the picture

remains in the head.

—PRITH BANERJEE, Chief Technology Officer ANSYS, Inc., ex Senior Vice President

of Research and Director, HP Labs, formerly Professor and Director of Computa-

tional Science and Engineering, University of Illinois at Urbana-Champaign



preface

Artificial intelligence (machine learning or deep learning to insiders) is quite the rage at

this point of time. Media is full of eager and/or paranoid predictions about a world

governed by this new technology and quite justifiably so. It’s a knowledge revolution

happening in front of our very eyes.

Working on computer vision and image processing problems for decades for my

PhD, then at Adobe Systems, then at Google, and then at Drishti Technologies (the

Silicon Valley start-up that I co-founded), I have been at the bleeding edge of this

revolution for a long time. I’ve seen not only what works, but also—perhaps more

importantly—what does not work and what almost works. This gives me a unique per-

spective. Often when trying to solve practical problems, none of the textbook the-

ories will work directly. We must mix various ideas to create a winning concoction.

This requires a feel for what works and why and what doesn’t work and why. It

is this feel, this understanding of the inner workings of the machine/deep learning

theory, along with the insights and intuitions that I hope to transmit to my

readers.

This brings me to another point. Because of the popularity of the subject, a large

volume of “deep-learning-made-easy”-type material exists in print and/or online. These

articles don’t do justice to the subject. My reaction to them is “everything should

be made as simple as possible, but not simpler.” Deep learning can’t be learned by

going through a small fragmented set of simplified recipes from which all math has

been scrubbed out. This is a mathematical topic and mastery requires understanding

the math along with the programming. What is needed is a resource which presents this

xvi



PREFACE xvii

topic with the requisite amount of math—no more and no less—with the connection

between the deep learning and math explicitly spelled out. This is exactly what this book

strives to provide with its dual presentation of the math and corresponding PyTorch

code snippets.
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about this book

Are you the type of person who wants to know why and how things work? Instead of

feeling satisfied, even grateful, that a tool solves the problem at hand, do you try to

understand what the tool is really doing, why it behaves a certain way, and whether it

will work under different circumstances? If yes, you have our sympathy—life won’t be

peaceful for you. You also have our best wishes—these pages are dedicated to you.

The internet abounds with prebuilt deep learning models and training systems that

hardly require you to understand the underlying principles. But practical problems

often do not fit any of the publicly available models. These situations call for the

development of a custom model architecture. Developing such an architecture requires

understanding the mathematical underpinnings of optimization and machine learning.

Deep learning and computer vision are very practical subjects, so these questions

are relevant: “Is the math necessary? Shouldn’t we spend the time learning, say, the

Python nuances of deep learning?” Well, yes and no. Programming skills (in particular,

Python) are mandatory. But without an intuitive understanding of the mathematics,

the how and why and the answer to “Can I repurpose this model?” will not be visible to

you. Mathematics allows you to see the abstractions behind the implementation.

In many ways, the ability to form abstractions is the essence of higher intelligence.

Abstraction enabled early humans to divine a digging and defending tool from what

was merely a sharply pointed stone to other animals. The abstraction of the description

of where something is with respect to another thing fixed in the environment (aka

coordinate systems and vectors) has done wonders for human civilization. Mathematics

is the language for abstractions: the most precise, succinct, and unambiguous known to

humankind. Hence, mathematics is absolutely necessary as a tool to study deep learning.

But we must remember that it is a tool—no more and no less. The ultimate purpose of

xx
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all the math in the book is to bring out the intuitions and insights that are necessary to

gain expertise in the complex world of machine learning.

Another equally important tool is the programming language—we have chosen

PyTorch—without which all the wisdom cannot be put to practical use. This book

connects the two pillars of machine learning—mathematics and programming—via

numerous code snippets typically presented together with the math. The book is accom-

panied by fully functional code in the GitHub repository. We expect readers to work out

the math with paper and pencil and then run the code on a computer to understand

the results. This book is not bedtime reading.

Having (hopefully) made a case for studying the underlying mathematical principles

of deep learning and computer vision, we hasten to add that mathematical rigor is

not the goal of this book. Rather, the goal is to provide mathematical (in particular,

geometrical) insights that make the subject more intuitive and less like black magic. At

the same time, we provide Python coding exercises and visualization aids throughout.

Thus, reading this book can be regarded as learning the mathematical foundations of

deep learning via geometrical examples and Python exercises.

Mastery over the material presented in this book will enable you to

Understand state-of-the-art deep learning research papers. The book provides

in-depth, intuitive explanations of some of today’s seminal papers.

Study and understand a deep learning code base.

Use code snippets from the book in your tasks.

Prepare for an interview for a role as a machine learning engineer/scientist.

Determine whether a real-life problem is amenable to machine/deep learning.

Troubleshoot neural network quality issues.

Identify the right neural network architecture to solve a real-life problem.

Quickly implement a prototype architecture and train a deep learning model for

a real-life problem.

A word of caution: we often start with the basics but quickly go deeper. It’s important to

read individual chapters from beginning to end, even if you’re familiar with the material

presented at the start.

Finally, the ultimate justification for an intellectual endeavor is to have fun pursuing

it. So, the authors will consider themselves successful if you enjoy reading this book.

Who should read this book?
This book is aimed toward the reader with a basic understanding of engineering math-

ematics and Python programming, with a serious intent to learn deep learning. For

maximum benefit, the math should be worked out with paper and pencil and the

PyTorch programs executed on a computer. Here are some possible reader profiles:

A person with a degree in engineering, science, or math, possibly acquired a while

ago, who is considering a career switch to deep learning. No prior knowledge of

machine learning or deep learning is required.



xxii ABOUT THIS BOOK

An entry- or mid-level machine learning practitioner who wants to gain deeper

insights into the workings of various techniques and graduate from downloading

models from the internet and trying them out to developing custom deep learning

solutions for real problems, and/or develop the ability to read and understand

research publications on the topic.

A college student embarking on a career of deep learning.

How this book is organized: A road map
This book consists of 14 chapters and an appendix. In general, all mathematical concepts

are examined from a machine learning point of view. Geometric insights are brought

out and PyTorch code is provided wherever appropriate.

Chapter 1 is an overview of machine learning and deep learning. Its purpose

is to establish the big picture context in the reader’s mind and familiarize the

reader with somemachine learning concepts like input space, feature space, model

training, architecture, loss, and so on.

Chapter 2 covers the core concepts of vectors andmatrices which form the building

blocks formachine learning. It introduces the notions of dot product, vector length,

orthogonality, linear systems, eigenvalues and eigenvectors, Moore-Penrose pseudo

inverse, matrix diagonalization, spectral decomposition, and so on.

Chapter 3 provides an overview of vector calculus concepts needed for under-

standing deep learning. We introduce gradients, local approximation of multi-

dimensional functions via Taylor expansion in arbitrary dimensional spaces, Hes-

sian matrices, gradient descent, convexity, and the connection of all these with

the idea of loss minimization in machine learning. This chapter provides the first

taste of PyTorch model building.

Chapter 4 introduces principal component analysis (PCA) and singular value

decomposition (SVD)—key linear algebraic tools formachine learning.We provide

end-to-end PyTorch implementation of a SVD-based document retrieval system.

Chapter 5 explains the basic concepts of probability distributions from a deep

learning point of view. We look at the important properties of distributions like

expected value, variance and covariance, and we also cover some of the most

popular probability distributions like Gaussian, Bernoulli, binomial, multinomial,

categorical, and so on. We also introduce the PyTorch distributions package.

Chapter 6 explores Bayesian tools for machine learning. We study the Bayes theo-

rem, understandmodel parameter estimation techniques like maximum likelihood

estimation (MLE) and maximum a posteriori (MAP) estimation. We also look at

latent variables, regularization, MLE for Gaussian distributions, entropy, cross en-

tropy, conditional entropy, and KL divergence. We finally look at Gaussian mixture

models (GMMs) and how to model and estimate the parameters of a GMM.

Chapter 7 deep dives into neural networks. We study perceptrons, the basic

building block of neural networks and how multilayered perceptrons can model
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arbitrary polygonal decision boundaries as well as common logic gate operations.

This enables them to perform classification. We discuss Cybenko’s universal

approximation theorem.

Chapter 8 covers activation functions for neural networks, the importance and

intuition behind layers. We look at forward propagation and backpropagation

(with mathematical proofs) and implement a simple neural network with PyTorch.

We study how to train a neural network end to end.

Chapter 9 provides an in-depth look into various loss functions which are crucial

for effective learning of neural networks. We study the math and the intuitions

behind popular loss functions like cross entropy loss, regression loss, focal loss, and

so on, implementing them via PyTorch. We look at geometrical insights underlying

various optimization techniques like SGD, Nesterov, Adagrad, Adam, and others.

Additionally, we understand why regularization is important and its relationship

with MLE and MAP.

Chapter 10 introduces convolutions, a core operator for computer vision models.

We study 1D, 2D, and 3D convolution, as well as transposed convolutions and

their intuitive interpretations. We also implement a simple convolutional neural

network via PyTorch.

Chapter 11 introduces various neural network architectures for image classification

and object detection in images. We look at several image classification architectures

in detail like LeNet, VGG, Inception, and Resnet. We also provide an in-depth

study of Faster R-CNN for object detection.

Chapter 12 explores the manifolds, the properties of manifolds like homeomor-

phism, Haussdorf property, and second countable property, and also how man-

ifolds tie in with neural networks.

Chapter 13 provides an introduction to Bayesian parameter estimation. We look

at injection of prior belief into parameter estimation and how it can be used in

unsupervised/semi-supervised settings. Additionally, we understand conjugate

priors and the estimation of Gaussian likelihood parameters under conditions of

known/unknown mean and variances.

Chapter 14 explores latent spaces and generative modeling. We understand the

geometric view of latent spaces and the benefits of latent space modeling. We take

another look at PCA with this new lens, along with studying autoencoders and

variational autoencoders. We study how variational autoencoders regularize the

latent space and hence exhibit superior properties to autoencoders.

The appendix covers mathematical proofs and derivations for some of the math-

ematical properties introduced in the chapters.

About the code
This book contains many examples of source code both in numbered listings and in

line with normal text. In both cases, source code is formatted in a fixed-width font
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like this to separate it from ordinary text. Sometimes code is also in bold to highlight

code that has changed from previous steps in the chapter, such as when a new feature

adds to an existing line of code.

In many cases, the original source code has been reformatted; we’ve added line

breaks and reworked indentation to accommodate the available page space in the book.

In rare cases, even this was not enough, and listings include line-continuation markers

(å). Additionally, comments in the source code have often been removed from the

listings when the code is described in the text. Code annotations accompany many of

the listings, highlighting important concepts.

You can get executable snippets of code from the liveBook (online) version of this

book at https://livebook.manning.com/book/math-and-architectures-of-deep-learning.

Fully functional code backing the theory discussed in the book can be found on GitHub

at https://github.com/krishnonwork/mathematical-methods-in-deep-learning-ipython

and from the Manning website at www.manning.com. The code is presented in the form

of Jupyter notebooks (organized by chapter) that can be executed independently. The

code is written in Python and uses the popular PyTorch library. Important code snippets

are presented as code listings throughout the book, and key concepts are highlighted

using code annotations. To get started with the code, clone the repository and follow

the steps described in the README.

liveBook discussion forum
Purchase of Math and Architectures of Deep Learning includes free access to liveBook,

Manning’s online reading platform. Using liveBook’s exclusive discussion features, you

can attach comments to the book globally or to specific sections or paragraphs. It’s a

snap to make notes for yourself, ask and answer technical questions, and receive help

from the author and other users. To access the forum, go to https://livebook.manning

.com/book/math-and-architectures-of-deep-learning/discussion. You can also learn

more about Manning’s forums and the rules of conduct at https://livebook

.manning.com/discussion.

Manning’s commitment to our readers is to provide a venue where a meaningful

dialogue between individual readers and between readers and the author can take place.

It is not a commitment to any specific amount of participation on the part of the author,

whose contribution to the forum remains voluntary (and unpaid). We suggest you try

asking the authors some challenging questions lest their interest stray! The forum and

the archives of previous discussions will be accessible from the publisher’s website for as

long as the book is in print.

https://livebook.manning.com/book/math-and-architectures-of-deep-learning
https://github.com/krishnonwork/mathematical-methods-in-deep-learning-ipython
https://livebook.manning.com/book/math-and-architectures-of-deep-learning/discussion
https://livebook.manning.com/book/math-and-architectures-of-deep-learning/discussion
https://livebook.manning.com/discussion
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1An overview of machine
learning and deep learning

This chapter covers
A first look at machine learning and deep
learning

A simple machine learning model: The cat brain

Understanding deep neural networks

Deep learning has transformed computer vision, natural language and speech process-

ing in particular, and artificial intelligence in general. From a bag of semi-discordant

tricks, none of which worked satisfactorily on real-life problems, artificial intelligence

has become a formidable tool to solve real problems faced by industry, at scale. This is

nothing short of a revolution going on under our very noses. To lead the curve of this

revolution, it is imperative to understand the underlying principles and abstractions

rather than simply memorizing the “how-to” steps of some hands-on guide. This is

where mathematics comes in.

In this first chapter, we present an overview of deep learning. This will require

us to use some concepts explained in subsequent chapters. Don’t worry if there are

some open questions at the end of this chapter: it is aimed at orienting your mind

toward this difficult subject. As individual concepts become clearer in subsequent

chapters, you should consider coming back and re-reading this chapter.

1



2 CHAPTER 1 An overview of machine learning and deep learning

1.1 A first look at machine/deep learning:
A paradigm shift in computation
Making decisions and/or predictions is a central requirement of life. Doing so essentially

involves taking in a set of sensory or knowledge inputs and processing them to generate

decisions or estimates.

For instance, a cat’s brain is often trying to choose between the following options:

run away from the object in front of it vs. ignore the object in front of it vs. approach the

object in front of it and purr. The cat’s brain makes that decision by processing sensory

inputs like the perceived hardness of the object in front of it, the perceived sharpness of

the object in front of it, and so on. This is an instance of a classification problem, where

the output is one of a set of possible classes.

Some other examples of classification problems in life are as follows:

Buy vs. hold vs. sell a certain stock, from inputs like the price history of this stock and

the change in price of the stock in recent times

Object recognition (from an image):

– Is this a car or a giraffe?

– Is this a human or a non-human?

– Is this an inanimate object or a living object?

– Face recognition—is this Tom or Dick or Mary or Einstein or Messi?

Action recognition from a video:

– Is this person running or not running?

– Is this person picking something up or not?

– Is this person doing something violent or not?

Natural language processing (NLP) from digital documents:

– Does this news article belong to the realm of politics or sports?

– Does this query phrase match a particular article in the archive?

Sometimes life requires a quantitative estimation instead of a classification. A lion’s

brain needs to estimate how far to jump so as to land on top of its prey, by processing

inputs like speed of the prey and distance to the prey. Another instance of quantitative

estimation is estimating a house’s price based on inputs like current income of the

house’s owner, crime statistics for the neighborhood, and so on. Machines that make

such quantitative estimators are called regressors.

Here are some other examples of quantitative estimations required in daily life:

Object localization from an image: identifying the rectangle bounding the location

of an object

Stock price prediction from historical stock prices and other world events

Similarity score between a pair of documents

Sometimes a classification output can be generated from a quantitative estimate. For

instance, the cat brain described earlier can combine the inputs (hardness, sharpness,
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and so on) to generate a quantitative threat score. If that threat score is high, the cat

runs away. If the threat score is near zero, the cat ignores the object in front of it. If the

threat score is negative, the cat approaches the object and purrs.

Many of these examples are shown in figure 1.1. In each instance, a machine—that is,

a brain—transforms sensory or knowledge inputs into decisions or quantitative estimates.

The goal of machine learning is to emulate that machine.

Note that machine learning has a long way to go before it can catch up with the

human brain. The human brain can single-handedly deal with thousands, if not millions,

of such problems. On the other hand, at its present state of development, machine

learning can hardly create a single general-purpose machine that makes a wide variety

of decisions and estimates. We are mostly trying to make separate machines to solve

individual tasks (such as a stock picker or a car recognizer). At this point, you may ask,

“Wait: converting inputs to outputs—isn’t that exactly what computers have been doing

for the last 30 or more years? What is this paradigm shift I am hearing about?” The

answer is that it is a paradigm shift because we do not provide a step-by-step instruction

Jump
 length

estimate

Lion brain

Jump length estimator
model

Speed 
of prey

Distance 
to prey

Image Object recognition model Object 
class

Image Object recognition and
localization model

Object class
+ object
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in front
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Figure 1.1 Examples of decision making and quantitative estimations in life
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set—that is, a program—to the machine to convert the input to output. Instead, we

develop a mathematical model for the problem.

Let’s illustrate the idea with an example. For the sake of simplicity and concreteness,

we will consider a hypothetical cat brain that needs to make only one decision in life:

whether to run away from the object in front of it or ignore the object or approach and purr. This

decision, then, is the output of the model we will discuss. And in this toy example, the

decision is made based on only two quantitative inputs (aka features): the perceived hard-

ness and sharpness of the object (as depicted in figure 1.1). We do not provide any step-

by-step instructions such as “if sharpness greater than some threshold, then run away.”

Instead, we try to identify a parameterized function that takes the input and converts it to

the desired decision or estimate. The simplest such function is a weighted sum of inputs:

y
(
hardness, sharpness

)
=w0 × hardness+w1 × sharpness+ b

The weights w0 , w1 and the bias b are the parameters of the function. The output y can
be interpreted as a threat score. If the threat score exceeds a threshold, the cat runs

away. If it is close to 0, the cat ignores the object. If the threat score is negative, the cat

approaches and purrs. For more complex tasks, we will use more sophisticated functions.

Note that the weights are not known at first; we need to estimate them. This is done

through a process called model training.

Overall, solving a problem via machine learning has the following stages:

We design a parameterized model function (e.g., weighted sum) with unknown

parameters (weights). This constitutes the model architecture. Choosing the right

model architecture is where the expertise of the machine learning engineer comes

into play.

Then we estimate the weights via model training.

Once the weights are estimated, we have a complete model. This model can take

arbitrary inputs not necessarily seen before and generate outputs. The process in

which a trained model processes an arbitrary real-life input and emits an output is

called inferencing.

In the most popular variety of machine learning, called supervised learning, we prepare

the training data before we commence training. Training data comprises example input

items, each with its corresponding desired output.1 Training data is often created manually: a

human goes over every single input item and produces the desired output (aka target

output). This is usually the most arduous part of doing machine learning.

For instance, in our hypothetical cat brain example, some possible training data

items are as follows

1 If you have some experience with machine learning, you will realize that we are talking about “supervised”
learning here. There are also machines that do not need known outputs to learn—so-called “unsupervised”
machines—and we will talk about them later.
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input:
(
hardness = 0.01, sharpness = 0.02

)
→ threat= −0.90→ decision: “approach and purr”

input:
(
hardness = 0.50, sharpness = 0.60

)
→ threat= 0.01 → decision: “ignore”

input:
(
hardness = 0.99, sharpness = 0.97

)
→ threat= 0.90 → decision: “run away”

where the input values of hardness and sharpness are assumed to lie between 0 and 1.

What exactly happens during training? Answer: we iteratively process the input train-

ing data items. For each input item, we know the desired (aka target) output. On each

iteration, we adjust the model weight values in a way that the output of the model func-

tion on that specific input item gets at least a little closer to the corresponding target

output. For instance, suppose at a given iteration, the weight values are w0 = 20 and

w1 = 10, and b = 50. On the input (hardness = 0.01, sharpness = 0.02), we get an output

threat score y = 50.3, which is quite different from the desired y =−0.9. We will adjust

the weights: for instance, reducing the bias so w0 = 20, w1 = 10, and b = 40. The corre-
sponding threat score y = 40.3 is still nowhere near the desired value, but it has moved

closer. After we do this on many training data items, the weights will start approaching

their ideal values. Note that how to identify the adjustments to the weight values is not

discussed here; it requires somewhat deeper math and will be discussed later.

As stated earlier, this process of iteratively tuning weights is called training or learning.

At the beginning of learning, the weights have random values, so the machine outputs

often do not match desired outputs. But with time, more training iterations happen,

and the machine “learns” to generate the correct output. That is when the model is

ready for deployment in the real world. Given arbitrary input, the model will (hopefully)

emit something close to the desired output during inferencing.

Come to think of it, that is probably how living brains work. They contain equivalents

of mathematical models for various tasks. Here, the weights are the strengths of the

connections (aka synapses) between the different neurons in the brain. In the beginning,

the parameters are untuned; the brain repeatedly makes mistakes. For example, a baby’s

brain often makes mistakes in identifying edible objects—anybody who has had a child

will know what we are talking about. But each example tunes the parameters (eating

green and white rectangular things with a $ sign on them invites much scolding—should

not eat them in the future, etc.). Eventually, this machine tunes its parameters to yield

better results.

One subtle point should be noted here. During training, the machine is tuning its

parameters so that it produces the desired outcome—on the training data input only.

Of course, it sees only a small fraction of all possible inputs during training—we are

not building a lookup table from known inputs to known outputs. Hence, when this

machine is released in the world, it mostly runs on input data it has never seen before.

What guarantee do we have that it will generate the right outcome on never-before-seen

data? Frankly, there is no guarantee. Only, in most real-life problems, the inputs are

not really random. They have a pattern. Hopefully, the machine will see enough during

training to capture that pattern. Then its output on unseen input will be close to the

desired value. The closer the distribution of the training data is to real life, the more

likely that becomes.
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1.2 A function approximation view of machine learning:
Models and their training
As stated in section 1.1, to create a brain-like machine that makes classifications or

estimations, we have to find a mathematical function (model) that transforms inputs

into corresponding desired outputs. Sadly, however, in typical real-life situations, we

do not know that transformation function. For instance, we do not know the function

that takes in past prices, world events, and so on and estimates the future price of a

stock—something that stops us from building a stock price estimator and getting rich.

All we have is the training data—a set of inputs on which the output is known. How do

we proceed, then? Answer: we will try to model the unknown function. This means we

will create a function that will be a proxy or surrogate to the unknown function. Viewed

this way, machine learning is nothing but function approximation—we are simply trying

to approximate the unknown classification or estimation function.

Let’s briefly recap the main ideas from the previous section. In machine learning,

we try to solve problems that can be abstractly viewed as transforming a set of inputs

to an output. The output is either a class or an estimated value. Since we do not know

the true transformation function, we try to come up with a model function. We start by

designing—using our physical understanding of the problem—a model function with

tunable parameter values that can serve as a proxy for the true function. This is the model

architecture, and the tunable parameters are also known as weights. The simplest model

architecture is one where the output is a weighted sum of the input values. Determining

the model architecture does not fully determine the model—we still need to determine

the actual parameter values (weights). That is where training comes in. During training,

we find an optimal set of weights that transform the training inputs to outputs that

match the corresponding training outputs as closely as possible. Then we deploy this

machine in the world: its weights are estimated and the function is fully determined,

so on any input, it simply applies the function and generates an output. This is called

inferencing. Of course, training inputs are only a fraction of all possible inputs, so there

is no guarantee that inferencing will yield a desired result on all real inputs. The success

of the model depends on the appropriateness of the chosen model architecture and

the quality and quantity of training data.

Obtaining training data

After mastering machine learning, the biggest struggle turns out to be the procurement
of training data. When practitioners can afford it, it is common practice to use humans
to hand-generate the outputs corresponding to the training data inputs (these target
outputs are sometimes referred to as ground truth). This process, known as human
labeling or human curation, involves an army of human beings looking at a substantial
number of training data inputs and producing the corresponding ground truth outputs.
For some well-researched problems, we may be lucky enough to get training data on
the internet; otherwise it becomes a daunting challenge. More on this later.
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Now, let’s study the process of model building with a concrete example: the cat brain

machine shown in figure 1.1.

1.3 A simple machine learning model: The cat brain
For the sake of simplicity and concreteness, we will deal with a hypothetical cat that

needs to make only one decision in life: whether to run away from the object in front

of it, ignore it, or approach and purr. And it makes this decision based on only two

quantitative inputs pertaining to the object in front of it (shown in figure 1.1).

NOTE This chapter is a lightweight overview of machine/deep learning. As such,

it relies some on mathematical concepts that we will introduce later. You are

encouraged to read this chapter now, nonetheless, and perhaps re-read it after

digesting the chapters on vectors and matrices.

1.3.1 Input features

The input features are x0, signifying hardness, and x1, signifying sharpness. Without loss

of generality, we can normalize the inputs. This is a pretty popular trick whereby the

input values ranging between a minimum possible value vmin and a maximum possible

value vmax are transformed to values between 0 and 1. To transform an arbitrary input

value v to a normalized value vnorm, we use the formula

vnorm =
(v − vmin)
(vmax − vmin)

(1.1)

In mathematical parlance, transformation via equation 1.1, v ∈ [vmin , vmax] → vnorm ∈
[0, 1] maps the values v from the input domain [vmin , vmax] to the output values vnorm
in the range [0, 1].

A two-element vector ®x =

x0

x1

 ∈ [0, 1]2 represents a single input instance succinctly.
1.3.2 Output decisions

The final output is multiclass and can take one of three possible values: 0, implying

running away from the object in front of the cat; 1, implying ignoring the object; and

2, implying approaching the object and purring. It is possible in machine learning to

compute the class directly. However, in this example, we will have our model estimate a

threat score. It is interpreted as follows: threat high positive = run away, threat near zero =

ignore, and threat high negative = approach and purr (negative threat is attractive).

We can make a final multiclass run/ignore/approach decision based on threat score

by comparing the threat score y against a threshold X, as follows:

y


> X→ high threat, run away

>=−X and <= X→ threat close to zero, ignore

< −X→ negative threat, approach and purr

(1.2)
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1.3.3 Model estimation

Now for the all-important step: we need to estimate the function that transforms the

input vector to the output. With slight abuse of terms, we will denote this function as

well as the output by y. In mathematical notation, we want to estimate y
(
®x
)
.

Of course, we do not know the ideal function. We will try to estimate this unknown

function from the training data. This is accomplished in two steps:

1 Model architecture selection—Designing a parameterized function that we expect is a

good proxy or surrogate for the unknown ideal function

2 Training—Estimating the parameters of that chosen function such that the outputs

on training inputs match corresponding outputs as closely as possible

1.3.4 Model architecture selection

This is the step where various machine learning approaches differ from one another.

In this toy cat brain example, we will use the simplest possible model. Our model

has three parameters, w0, w1 , b. They can be represented compactly with a single two-

element vector ®w =


w0

w1

 ∈ℝ2 and a constant bias b ∈ℝ (here, ℝ denotes the set of all

real numbers, ℝ2 denotes the set of 2D vectors with both elements real, and so on). It

emits the threat score, y, which is computed as

y (x0 , x1) =w0x0 +w1x1 + b =
[
w0 w1

] 
x0

x1

 + b = ®wT ®x + b (1.3)

Note that b is a slightly special parameter. It is a constant that does not get multiplied

by any of the inputs. It is common practice in machine learning to refer to it as bias; the

other parameters are multiplied by inputs as weights.

1.3.5 Model training

Once the model architecture is chosen, we know the exact parametric function we are

going to use to model the unknown function y
(
®x
)
that transforms inputs to outputs.

We still need to estimate the function’s parameters. Thus, we have a function with

unknown parameters, and the parameters are to be estimated from a set of inputs with

known outputs (training data). We will choose the parameters so that the outputs on

the training data inputs match the corresponding outputs as closely as possible.

Iterative training

This problem has been studied by mathematicians and is known as a function-fitting
problem in mathematics. What changed with the advent of machine learning, however,
is the sheer scale. In machine learning, we deal with training data comprising millions
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and millions of items. This altered the philosophy of the solution. Mathematicians
use a closed-form solution, where the parameters are estimated by directly solving
equations involving all the training data items together. In machine learning, we go
for iterative solutions, dealing with a few training data items (or perhaps only one) at
a time. In the iterative solution, there is no need to hold all the training data in the
computer’s memory. We simply load small portions of it at a time and deal with only
that portion. We will exemplify this with our cat brain example.

Concretely, the goal of the training process is to estimate the parameters w0, w1, b or,
equivalently, the vector ®w along with constant b from equation 1.3 in such a way that the

output y (x0 , x1) on the training data input (x0 , x1) matches the corresponding known

training data outputs (aka ground truth [GT]) as much as possible.

Let the training data consist of N + 1 inputs ®x (0) , ®x (1) , · · · ®x (N ) . Here, each ®x (i ) is a
2× 1 vector denoting a single training data input instance. The corresponding desired
threat values (outputs) are y (0)gt , y

(1)
gt , · · · y

(N )
gt , say (here, the subscript gt denotes ground

truth). Equivalently, we can say that the training data consists of N + 1
(
input, output

)
pairs: (

®x (0) , y (0)gt
)
,
(
®x (1) , y (1)gt

)
· · ·

(
®x (N ) , y (N )gt

)
Suppose ®w denotes the (as-yet-unknown) optimal parameters for the model. Then,

given an arbitrary input ®x, the machine will estimate a threat value of ypredicted = ®wT ®x + b.
On the ith training data pair,

(
®x (i ) , y (i )gt

)
the machine will estimate

y (i )predicted = ®w
T ®x (i ) + b

while the desired output is y (i )gt . Thus the squared error (aka loss) made by the machine

on the ith training data instance is2

e2i =
(
y (i )predicted − y

(i )
gt

)2
The overall loss on the entire training data set is obtained by adding the loss from each

individual training data instance:

E2 =

i=N∑
i=0

e2i =
i=N∑
i=0

(
y (i )predicted − y

(i )
gt

)2
=

i=N∑
i=0

(
®wT ®xi + b − y (i )gt

)2
The goal of training is to find the set of model parameters (aka weights), ®w, that
minimizes the total error E. Exactly how we do this will be described later.

In most cases, it is not possible to come up with a closed-form solution for the optimal

®w , b. Instead, we take an iterative approach depicted in algorithm 1.1.

2 In this context, note that it is a common practice to square the error/loss to make it sign independent. If
we desire an output of, say, 10, we are equally happy/unhappy if the output is 9.5 or 10.5. Thus, an error of
+5 or −5 is effectively the same; hence we make the error sign independent.
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Algorithm 1.1 Training a supervised model

Initialize parameters ®w , b with random values

⊲ iterate while error not small enough

while (E2 =
∑i=N
i=0

(
®wT ®xi + b − y (i )gt

)2
> threshold) do

⊲ iterate over all training data instances

for ∀i ∈ [0, N ] do
⊲ details provided in section 3.3 after gradients are introduced

Adjust ®w , b so that E2 is reduced

end for

end while

⊲ remember the final parameter values as optimal

®w∗ ← ®w, b∗ ← b

In this algorithm, we start with randomparameter values and keep tuning the parameters

so the total error goes down at least a little. We keep doing this until the error becomes

sufficiently small.

In a purely mathematical sense, we continue the iterations until the error is minimal.

But in practice, we often stop when the results are accurate enough for the problem

being solved. It is worth re-emphasizing that error here refers only to error on training

data.

1.3.6 Inferencing

Finally, a trained machine (with optimal parameters ®w∗ , b∗ is deployed in the world. It

will receive new inputs ®x and will infer ypredicted
(
®x
)
= ®wT∗ ®x + b∗. Classification will happen

by thresholding ypredicted , as shown in equation 1.2.

1.4 Geometrical view of machine learning
Each input to the cat brain model is an array of two numbers: x0 (signifying hardness of
the object), x1 (signifying sharpness of the object) or, equivalently, a 2× 1 vector ®x. A
good mental picture is to think of the input as a point in a high-dimensional space. The

input space is often called the feature space—a space where all the characteristic features

to be examined by the model are represented. The feature space dimension is two in

this case, but in real-life problems it will be in the hundreds or thousands or more. The

exact dimensionality of the input changes from problem to problem, but the intuition

that it is a point remains.

The output y should also be viewed as a point in another high-dimensional space. In

this toy problem, the dimensionality of the output space is one, but in real problems, it

will be higher. Typically, however, the number of output dimensions is much smaller

than the number of input dimensions.

Geometrically speaking, a machine learning model essentially maps a point in the

feature space to a point in the output space. It is expected that the classification or
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estimation job to be performed by the model is easier in the output space than in the

feature space. In particular, for a classification job, input points belonging to separate classes

are expected to map to separate clusters in output space.

Let’s continue with our example cat brain model to illustrate the idea. As stated

earlier, our feature space is 2D, with two coordinate axes X0 signifying hardness and

X1 signifying sharpness.
3 Individual points in this 2D space are denoted by coordinate

values (x0 , x1) in lowercase (see figure 1.2). As shown in the diagram, a good way to

model the threat score is to measure the distance from line x0 + x1 = 1.
From coordinate geometry, in a 2D space with coordinate axes X0 and X1, the signed

distance of a point (a, b) from the line x0 + x1 = 1 is y = a+b−1√
2

. Examining the sign of y,
we can determine which side of the separator line the input point belongs to. In the

simple situation depicted in figure 1.2, observation tells us that the threat score can be

proxied by the signed distance, y, from the diagonal line x0 + x1 − 1= 0. We can make

the run/ignore/approach decision by thresholding y. Values close to zero imply ignore,

positive values imply run away, and negative values imply approach and purr. From

X0
(hardness)

(1,0)

(0,1)

X1 (sharpness)

L: x
0  + x

1  = 1

Hard and sharp objects

$

$

$$

$

$
$

$
$ $

$
$

$

$

$

$

P

Q

y(p)

y(q)

+
+

+
+

+

+
+

+
+

+

+

+

Soft and roundish objects

Figure 1.2 2D input point space for the cat brain model. The bottom-left corner shows objects with low
hardness and low sharpness objects (–), while the top-right corner shows objects with high hardness
and high sharpness (+). Intermediate values are near the diagonal ($).

3 We use X0, X1 as coordinate symbols instead of the more familiar X ,Y so as not to run out of symbols
when going to higher-dimensional spaces.
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high school geometry, the distance of an arbitrary input point (x0 = a, x1 = b) from line

x0 + x1 − 1= 0 is a+b−1√
2

. Thus, the function y (x0 , x1) = x0+x1−1√
2

is a possible model for the

cat brain threat estimator function. Training should converge to w0 =
1√
2
, w1 =

1√
2
and

b =− 1√
2
.

Thus, our simplified cat brain threat score model is

y (x0 , x1) =
1
√
2
x0 +

1
√
2
x1 −

1
√
2

(1.4)

It maps the 2D input points, signifying the hardness and sharpness of the object in front

of the cat, to a 1D value corresponding to the signed distance from a separator line.

This distance, physically interpretable as a threat score, makes it possible to separate

the classes (negative threat, neutral, positive threat) via thresholding, as shown in

equation 1.2. The separate classes form distinct clusters in the output space, depicted by

+, –, and $ signs in the output space. Low values of inputs produce negative threats (the

cat will approach and purr): for example, y (0, 0) =− 1√
2
. High values of inputs produce

high threats (the cat will run away): for example, y (1, 1) = 1√
2
. Medium values of inputs

produce near-zero threats (the cat will ignore the object): for example, y (0.5, 0.5) =
0. Of course, because the problem is so simple, we could come up with the model

parameters via simple observation. In real-life situations, this will need training.

The geometric view holds in higher dimensions, too. In general, an n-dimensional

input vector ®x is mapped to an m-dimensional output vector (usually m < n) in such a

way that the problem becomes much simpler in the output space. An example with 3D

feature space is shown in figure 1.3.

1.5 Regression vs. classification in machine learning
As briefly outlined in section 1.1, there are two types of machine learning models:

regressors and classifiers.

In a regressor, the model tries to emit a desired value given a specific input. For

instance, the first stage (threat-score estimator) of the cat brain model in section 1.3 is

a regressor model.

Classifiers, on the other hand, have a set of prespecified classes. Given a specific

input, they try to emit the class to which the input belongs. For instance, the full cat

brain model has three classes: (1) run away, (2) ignore, and (3) approach and purr.

Thus, it takes an input (hardness and sharpness values) and emits an output decision

(aka class).

In this example, we convert a regressor into a classifier by thresholding the output of

the regressor (see equation 1.2). It is also possible to create models that directly output

the class without having an intervening regressor.

1.6 Linear vs. nonlinear models
In figure 1.2 we faced a rather simple situation where the classes could be separated by a

line (a hyperplane in higher-dimensional surfaces). This does not happen often in real
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Feature space Output spaceX

Y

Z

X

Y

Model

Transform

Figure 1.3 A model maps the points from input (feature) space to an output space where it is easier to
separate the classes. For instance, in this figure, input feature points belonging to two classes, red (+)
and green (–) are distributed over the volume of a cylinder in a 3D feature space. The model unfurls the
cylinder into a rectangle. The feature points are mapped onto a 2D planar output space where the two
classes can be discriminated with a simple linear separator.

life. What if the points belonging to different classes are as shown in figure 1.4? In such

cases, our model architecture should no longer be a simple weighted combination. It is

a nonlinear function. For instance, check the curved separator in figure 1.4. Nonlinear

models make sense from the function approximation point of view as well. Ultimately,

our goal is to approximate very complex and highly nonlinear functions that model the

classification or estimation processes demanded by life. Intuitively, it seems better to

use nonlinear functions to model them.

Figure 1.4 The two classes (indicated by light
and dark shades) cannot be separated by a line.
A curved separator is needed. In 3D, this is equiva-
lent to saying that no plane can separate the
surfaces; a curved surface is necessary. In still
higher-dimensional spaces, this is equivalent to
saying that no hyperplane can separate the classes;
a curved hypersurface is needed.
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A very popular nonlinear function in machine learning is the sigmoid function, so

named because it looks like the letter S. The sigmoid function is typically symbolized by

the Greek letter f. It is defined as

f (x) = 1

1+ e−x (1.5)

The graph of the sigmoid function is shown in figure 1.5. Thus we can use the follow-

ing popular model architecture (still kind of simple) that takes the sigmoid (without

parameters) of the weighted sum of the inputs:

y =f

(
®wT ®x + b

)
(1.6)

Figure 1.5 The sigmoid graph

The sigmoid imparts the nonlinearity. This architecture can handle relatively more

complex classification tasks than the weighted sum alone. In fact, equation 1.6 depicts

the basic building block of a neural network.

1.7 Higher expressive power through multiple nonlinear layers:
Deep neural networks
In section 1.6 we stated that adding nonlinearity to the basic weighted sum yielded a

model architecture that is able to handle more complex tasks. In machine learning

parlance, the nonlinear model has more expressive power.

Now consider a real-life problem: say, building a dog recognizer. The input space

comprises pixel locations and pixel colors (x , y , r , g , b, where r , g , b denote the red,
green, and blue components of a pixel color). The input dimensionality is large (pro-

portional to the number of pixels in the image). Figure 1.6 gives a small glimpse

of the possible variations in background and foreground that a typical deep learn-

ing system (such as a dog image recognizer) has to deal with. We need a machine

with really high expressive power here. How do we create such a machine in a princi-

pled way?

Instead of generating the output from input in a single step, how about taking a

cascaded approach? We will generate a set of intermediate or hidden outputs from the



1.7 Higher expressive power through multiple nonlinear layers: Deep neural networks 15

Figure 1.6 A glimpse into background and foreground
variations that a typical deep learning system (here, a dog
image recognizer) has to deal with

inputs, where each hidden output is essentially a single logistic regression unit. Then

we add another layer that takes the output of the previous layer as input, and so on.

Finally, we combine the outermost hidden layer outputs into the grand output.

We describe the system in the following equations. Note that we have added a

superscript to the weights to identify the layer (layer 0 is closest to the input; layer

L is the last layer, furthest from the input). We have also made the subscripts two-

dimensional (so the weights for a given layer become a matrix). The first subscript

identifies the destination node, and the second subscript identifies the source node

(see figure 1.7).

......

...

Input layer Layer 0 Layer 1 Final layer

h0
(L)

h1
(L)

h1L
(L)

σ

h1
(L-1)

h2
(L-1)

h0
(L-1)

h lL-1
(L-1)

h3
(L-1)

...

L – 1 layer

...
h1

(0)

h2
(0)

h0
(0)

h10
(0)

h3
(0)

σ

σ

σ

σ

...

h1
(1)

h2
(1)

h0
(1)

h11
(1)

h3
(1)

...

σ

σ

σ

σ

σ

...

σ

σ

σ

σ

σ

...

σ

σ

σ

...

w 00
(0)

w10
(0)

w
10 n (0)

w00
(1)

w11l0
(10)

w
10

(1) w
00

(L)

w 1Ll L-1
(L)

 

w01
(L)

...

x0

x1

xn

Figure 1.7 Multilayered neural network

The astute reader may notice that the following equations do not have an explicit bias

term. That is because, for simplicity of notation, we have rolled it into the set of weights

and assumed that one of the inputs (say, x0 = 1) and the corresponding weight (such as

w0) is the bias.
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Layer 0: generates n0 hidden outputs from n + 1 inputs

h (0)
0

=f

(
w (0)
00
x0 +w (0)01

x1 + · · ·w (0)0n xn
)

h (0)
1

=f

(
w (0)
10
x0 +w (0)11

x1 + · · ·w (0)1n xn
)

...

h (0)n0 =f

(
w (0)n00x0 +w

(0)
n01
x1 + · · ·w (0)n0nxn

)
(1.7)

Layer 1: generates n1 hidden outputs from n0 hidden outputs from layer 0

h (1)
0

=f

(
w (1)
00
h (0)
0
+w (1)

01
h (0)
1
+ · · ·w (1)

0n0
h (0)n0

)
h (1)
1

=f

(
w (1)
10
h (0)
0
+w (1)

11
h (0)
1
+ · · ·w (1)

1n0
h (0)n0

)
...

h (1)n1 =f

(
w (1)n10h

(0)
0
+w (1)n11h

(0)
1
+ · · ·w (1)n1n0h

(0)
n0

)
(1.8)

· · ·
Final layer (L): generates m + 1 visible outputs from nL−1 previous layer hidden outputs

h (L)
0

=f

(
w (L)
00
h (L−1)
0

+w (L)
01
h (L−1)
1

+ · · ·w (L)
0nL−1

h (L−1)nL−1

)
h (L)
1

=f

(
w (L)
10
h (L−1)
0

+w (L)
11
h (L−1)
1

+ · · ·w (L)
1nL−1

h (L−1)nL−1

)
...

h (L)m =f

(
w (L)m0 h

(L−1)
0

+w (L)m1 h
(L−1)
1

+ · · ·w (L)mnL−1h
(L−1)
nL−1

)
(1.9)

These equations are shown in figure 1.7. The machine depicted in figure 1.7 can be

incredibly powerful, with huge expressive power. We can adjust its expressive power

systematically to fit the problem at hand. It then is a neural network. We will devote the

rest of the book to studying this.

Summary
In this chapter, we gave an overview of machine learning, leading all the way up to deep

learning. The ideas were illustrated with a toy cat brain example. Some mathematical

notions (e.g., vectors) were used in this chapter without proper introduction, and you

are encouraged to revisit this chapter after vectors and matrices have been introduced.

We would like to leave you with the following mental pictures from this chapter:

Machine learning is a fundamentally different paradigm of computing. In tradi-

tional computing, we provide a step-by-step instruction sequence to the computer,

telling it what to do. In machine learning, we build a mathematical model that tries
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to approximate the unknown function that generates a classification or estimation

from inputs.

The mathematical nature of the model function is stipulated from the physical

nature and complexity of the classification or estimation task. Models have pa-

rameters. Parameter values are estimated from training data—inputs with known

outputs. The parameter values are optimized so that the model output is as close

as possible to training outputs on training inputs.

An alternative geometric view of a machine is a transformation that maps points in

the multidimensional input space to a point in the output space.

The more complex the classification/estimation task, the more complex the ap-

proximating function. Inmachine learning parlance, complex tasks needmachines

with greater expressive power. Higher expressive power comes from nonlinearity

(e.g., the sigmoid function; see equation 1.5) and a layered combination of simpler

machines. This takes us to deep learning, which is nothing but a multilayered

nonlinear machine.

Complex model functions are often built by combining simpler basis functions.

Tighten your seat belts: the fun is about to get more intense.



2Vectors, matrices, and
tensors in machine learning

This chapter covers
Vectors andmatrices and their role in data
science

Working with eigenvalues and eigenvectors

Finding the axes of a hyper-ellipse

At its core, machine learning, and indeed all computer software, is about number

crunching. We input a set of numbers into the machine and get back a different

set of numbers as output. However, this cannot be done randomly. It is important

to organize these numbers appropriately and group them into meaningful objects

that go into and come out of the machine. This is where vectors and matrices come

in. These are concepts that mathematicians have been using for centuries—we are

simply reusing them in machine learning.

In this chapter, we will study vectors and matrices, primarily from a machine

learning point of view. Starting from the basics, we will quickly graduate to advanced

concepts, restricting ourselves to topics relevant to machine learning.

We provide Jupyter Notebook-based Python implementations for most of the

concepts discussed in this and other chapters. Complete, fully functional code that

can be downloaded and executed (after installing Python and Jupyter Notebook)

18



2.1 Vectors and their role in machine learning 19

can be found at http://mng.bz/KMQ4. The code relevant to this chapter can be found

at http://mng.bz/d4nz.

2.1 Vectors and their role in machine learning
Let’s revisit the machine learning model for a cat brain introduced in section 1.3. It

takes two numbers as input, representing the hardness and sharpness of the object

in front of the cat. The cat brain processes the input and generates an output threat

score that leads to a decision to run away or ignore or approach and purr. The two input

numbers usually appear together, and it will be handy to group them into a single object.

This object will be an ordered sequence of two numbers, the first representing hardness

and the second representing sharpness. Such an object is a perfect example of a vector.

Thus, a vector can be thought of as an ordered sequence of two or more numbers,

also known as an array of numbers.1 Vectors constitute a compact way of denoting a set

of numbers that together represent some entity. In this book, vectors are represented by

lowercase letters with an overhead arrow and arrays by square brackets. For instance, the

input to the cat brain model in section 1.3 was a vector ®x =

x0

x1

 , where x0 represented
hardness and x1 represented sharpness.

Outputs to machine learning models are also often represented as vectors. For

instance, consider an object recognition model that takes an image as input and emits

a set of numbers indicating the probabilities that the image contains a dog, human,

or cat, respectively. The output of such a model is a three element vector ®y =


y0

y1

y2


,

where the number y0 denotes the probability that the image contains a dog, y1 denotes
the probability that the image contains a human, and y2 denotes the probability that the
image contains a cat. Figure 2.1 shows some possible input images and corresponding

output vectors.

In multilayered machines like neural networks, the input and output to a layer can be

vectors. We also typically represent the parameters of the model function (see section

1.3) as vectors. This is illustrated in section 2.3.

One particularly significant notion in machine learning and data science is the idea

of a feature vector. This is essentially a vector that describes various properties of the

object being dealt with in a particular machine learning problem. We will illustrate the

idea with an example from the world of natural language processing (NLP). Suppose

we have a set of documents. We want to create a document retrieval system where, given

a new document, we have to retrieve similar documents in the system. This essentially

boils down to estimating the similarity between documents in a quantitative fashion. We

1 In mathematics, vectors can have an infinite number of elements. Such vectors cannot be expressed as
arrays—but we will mostly ignore them in this book.
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(a)   Output   vector
[0.9    0.01     0.1]

(b)    Output   vector
[0.9    0.01      0.9]

(c)     Output  vector
[0.01   0.99     0.01]

(d)     Output   vector
[0.88   0.9.     0.001]

Figure 2.1 Input images and corresponding
output vectors denoting probabilities that the
image contains a dog and/or human and/or
cat, respectively. Example output vectors are
shown.

will study this problem in detail later, but for now, we want to note that the most natural

way to approach this is to create feature vectors for each document that quantitatively

describe the document. In section 2.5.6, we will see how to measure the similarity

between these vectors; here, let’s focus on simply creating descriptor vectors for the

documents. A popular way to do this is to choose a set of interesting words (we typically

exclude words like “and,” “if,” and “to” that are present in all documents from this

list), count the number of occurrences of those interesting words in each document,

and make a vector of those values. Table 2.1 shows a toy example with six documents

Table 2.1 Toy documents and corresponding feature vectors describing them. Words eligible for the
feature vector are bold. The first element of the feature vector indicates the number of occurrences of
the word gun and the second violence.

docid Document Feature vector

d0 Roses are lovely. Nobody hates roses.
[
0 0

]
d1 Gun violence has reached an epidemic proportion in America.

[
1 1

]
d2 The issue of gun violence is really over-hyped. One can find many instances of

violence, where no guns were involved.

[
2 2

]
d3 Guns are for violence prone people. Violence begets guns. Guns beget violence.

[
3 3

]
d4 I like guns but I hate violence. I have never been involved in violence. But I own

many guns. Gun violence is incomprehensible to me. I do believe gun owners
are the most anti violence people on the planet. He who never uses a gun will
be prone to senseless violence.

[
5 5

]
d5 Guns were used in a armed robbery in San Francisco last night.

[
1 0

]
d6 Acts of violence usually involves a weapon.

[
0 1

]
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and corresponding feature vectors. For simplicity, we have considered only two of the

possible set of words: gun and violence, plural or singular, uppercase or lowercase.

As a different example, the sequence of pixels in an image can also be viewed as

a feature vector. Neural networks in computer vision tasks usually expect this feature

vector.

2.1.1 The geometric view of vectors and its significance in machine learning

Vectors can also be viewed geometrically. The simplest example is a two-element vector

®x =

x0

x1

 . Its two elements can be taken to be x and y, Cartesian coordinates in a two-

dimensional space, in which case the vector corresponds to a point in that space. Vectors

with n elements represent points in an n-dimensional space. The ability to see inputs and

outputs of a machine learning model as points allows us to view the model itself as

a geometric transformation that maps input points to output points in some high-

dimensional space. We have already seen this in section 1.4. It is an enormously powerful

concept we will use throughout the book.

A vector represents a point in space. Also, an array of coordinate values like


x

y

 descri-
bes the position of one point in a given coordinate system. Hence, an array (of coordinate

values) can be viewed as the quantitative representation of a vector. See figure 2.2 to

get an intuitive understanding of this.

P

y

xO
90°

Figure 2.2 A vector describing the position of
point P with respect to point O. The basic mental
picture is an arrowed line. This agrees with the
definition of a vector that you may have learned
in high school: a vector has a magnitude (length
of the arrowed line) and direction (indicated by
the arrow). On a plane, this is equivalent to the
ordered pair of numbers x, y, where the geometric
interpretations of x and y are as shown in the
figure. In this context, it is worthwhile to note that
only the relative positions of the points O and P
matter. If both the points are moved, keeping their
relationship intact, the vector does not change.

For a real life example, consider the plane of a page of this book. Suppose we want to

reach the top-right corner point of the page from the bottom-left corner. Let’s call the

bottom-left corner O and the top-right corner P . We can travel the width (8.5 inches)

to the right to reach the bottom-left corner and then travel the height (11 inches)

upward to reach the top-right corner. Thus, if we choose a coordinate system with the

bottom-left corner as the origin and the X -axis along the width, and theY -axis along

the height, point P corresponds to the array representation


8.5

11

 . But we could also
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travel along the diagonal from the bottom-left to the top-right corner to reach P fromO.
Either way, we end up at the same point P .

This leads to a conundrum. The vector ®OP represents the abstract geometric notion

“position of P with respect to O” independent of our choice of coordinate axes. On the

other hand, the array representation depends on the choice of a coordinate system.

For example, the array

[
8.5
11

]
represents the top-right corner point P only under a speci-

fic choice of coordinate axes (parallel to the sides of the page) and a reference point

(bottom-left corner). Ideally, to be unambiguous, we should specify the coordinate

system along with the array representation. Why don’t we ever do this in machine

learning? Because in machine learning, it doesn’t exactly matter what the coordinate

system is as long as we stick to any fixed coordinate system. Machine learning is about

minimizing loss functions (which we will study later). As such, absolute positions of

point are immaterial, only relative positions matter.

There are explicit rules (which we will study later) that state how the vector transforms

when the coordinate system changes. We will invoke them when necessary. All vectors

used in a machine learning computation must consistently use the same coordinate

system or be transformed appropriately.

One other point: planar spaces, such as the plane of the paper on which this book is

written, are two-dimensional (2D). The mechanical world we live in is three-dimensional

(3D). Human imagination usually fails to see higher dimensions. In machine learning

and data science, we often talk of spaces with thousands of dimensions. You may not be

able to see those spaces in your mind, but that is not a crippling limitation. You can use

3D analogues in your head. They work in a surprisingly large variety of cases. However,

it is important to bear in mind that this is not always true. Some examples where the

lower-dimensional intuitions fail at higher dimensions will be shown later.

2.2 PyTorch code for vector manipulations
PyTorch is an open source machine learning library developed by Facebook’s artificial

intelligence group. It is one of the most elegant practical tools for developing deep

learning applications at present. In this book, we aim to familiarize you with PyTorch

and similar programming paradigms alongside the relevant mathematics. Knowledge

of Python basics will be assumed. You are strongly encouraged to try out all the code

snippets in this book (after installing the appropriate packages like PyTorch, that is).

All the Python code in this book is produced via Jupyter Notebook. A summary of

the theoretical material presented in the code is provided before the code snippet.

2.2.1 PyTorch code for the introduction to vectors

Listing 2.1 shows how to create and access vectors and subvectors and slice and dice

vectors using PyTorch.

NOTE Fully functional code demonstrating how to create a vector and access its

elements, executable via Jupyter Notebook, can be found at http://mng.bz/xm8q.
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Listing 2.1 Introduction to vectors via PyTorch

torch.tensor represents a multidimensional array.
The vector is a 1D tensor that can be initialized
by directly specifying values.

v = torch.tensor([0.11, 0.01, 0.98, 0.12, 0.98,
,0.85, 0.03, 0.55, 0.49, 0.99,
0.02, 0.31, 0.55, 0.87, 0.63],
dtype=torch.float64)

Tensor elements are floats by
default. We can force tensors
to be other types such as
float64 (double).

first_element = v[0]
third_element = v[2]

The square bracket operator lets us access
individual vector elements.

last_element = v[-1]
second_last_element = v[-2]

Negative indices count from the end of the array.
-1 denotes the last element.
-2 denotes the second-to-last element.

second_to_fifth_elements = v[1:4]
The colon operator slices off a range of
elements from the vector.

first_to_third_elements = v[:2]
last_two_elements = v[-2:] Nothing before a colon denotes the beginning

of the array. Nothing after a colon denotes the
end of the array.num_elements_in_v = len(v)

u = np.array([0.11, 0.01, 0.98, 0.12, 0.98, 0.85, 0.03,
0.55, 0.49, 0.99, 0.02, 0.31, 0.55, 0.87,
0.63])

u = torch.from_numpy(u) Torch tensors can be initialized from NumPy arrays.

diff = v.sub(u) The difference between the Torch tensor and its NumPy version is zero.

u1 = u.numpy() Torch tensors can be converted to NumPy arrays.

2.3 Matrices and their role in machine learning
Sometimes it is not sufficient to group a set of numbers into a vector. We have to

collect several vectors into another group. For instance, consider the input to training

a machine learning model. Here we have several input instances, each consisting of a

sequence of numbers. As seen in section 2.1, the sequence of numbers belonging to

a single input instance can be grouped into a vector. How do we represent the entire

collection of input instances? This is where the concept of matrices comes in handy

from the world of mathematics. A matrix can be viewed as a rectangular array of numbers

arranged in a fixed count of rows and columns. Each row of a matrix is a vector, and

so is each column. Thus a matrix can be thought of as a collection of row vectors. It

can also be viewed as a collection of column vectors. We can represent the entire set of

numbers that constitute the training input to a machine learning model as a matrix,

with each row vector corresponding to a single training instance.
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Consider our familiar cat-brain problem again. As stated earlier, a single input

instance to the machine is a vector ®x =
x0x1

 , where x0 describes the hardness of the

object in front of the cat. Now consider a training dataset with many such input instances,

each with a known output threat score. You might recall from section 1.1 that the goal

in machine learning is to create a function that maps these inputs to their respective

outputs with as little overall error as possible. Our training data may look as shown in

table 2.2 (note that in real-life problems, the training dataset is usually large—often

millions of input-output pairs—but in this toy problem, we will have 8 training data

instances).

Table 2.2 Example training dataset for our toy machine learning–based cat brain

Input value: Hardness Input value: Sharpness Output: Threat score

0 0.11 0.09 −0.8
1 0.01 0.02 −0.97
2 0.98 0.91 0.89

3 0.12 0.21 −0.68
4 0.98 0.99 0.95

5 0.85 0.87 0.74

6 0.03 0.14 −0.88
7 0.55 0.45 0.00

From table 2.2, we can collect the columns corresponding to hardness and sharpness

into a matrix, as shown in equation 2.1—this is a compact representation of the training

dataset for this problem.2

Example cat-brain dataset matrix X =



0.11 0.09

0.01 0.02

0.98 0.91

0.12 0.21

0.98 0.99

0.85 0.87

0.03 0.14

0.55 0.45



(2.1)

Each row of matrix X is a particular input instance. Different rows represent different

input instances. On the other hand, different columns represent different feature

elements. For example, the 0th row of matrix X is the vector
[
x00 x01

]
representing

2 We usually use uppercase letters to symbolize matrices.
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the 0th input instance. Its elements, x00 and x01 represent different feature elements,

hardness and sharpness respectively of the 0th training input instance.

2.3.1 Matrix representation of digital images

Digital images are also often represented as matrices. Here, each element represents

the brightness at a specific pixel position (x , y coordinate) of the image. Typically, the

brightness value is normalized to an integer in the range 0 to 255. 0 is black, 255 is

white, and 128 is gray.3 Following is an example of a tiny image, 9 pixels wide and 4

pixels high:

I4,9 =


0 8 16 24 32 40 48 56 64

64 72 80 88 96 104 112 120 128

128 136 144 152 160 168 176 184 192

192 200 208 216 224 232 240 248 255


(2.2)

The brightness increases gradually from left to right and also from top to bottom. I00
represents the top-left pixel, which is black. I3,8 represents the bottom-right pixel, which

is white. The intermediate pixels are various shades of gray between black and white.

The actual image is shown in figure 2.3.

Figure 2.3 Image corresponding to matrix I4,9
in equation 2.2

2.4 Python code: Introducing matrices, tensors,
and images via PyTorch
For programming purposes, you can think of tensors as multidimensional arrays. Scalars

are zero-dimensional tensors. Vectors are one-dimensional tensors. Matrices are

two-dimensional tensors. RGB images are three-dimensional tensors (colorchannels ×
hei ght ×width). A batch of 64 images is a four-dimensional tensor (64× colorchannels ×
hei ght ×width).

Listing 2.2 Introducing matrices via PyTorch

A matrix is a 2D array of numbers: i.e., a 2D tensor.
The entire training data input set for a machine-learning model can be viewed as a matrix.
Each input instance is one row.
Row count ≡ number of training examples, column count ≡ training instance size

X = torch.tensor(

3 In digital computers, numbers in the range 0..255 can be represented with a single byte of storage; hence
this choice.
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[
[0.11, 0.09], [0.01, 0.02], [0.98, 0.91],
[0.12, 0.21], [0.98, 0.99], [0.85, 0.87],
[0.03, 0.14], [0.55, 0.45]

Cat-brain training data input:
8 examples, each with two
values (hardness, sharpness).
An 8 × 2 tensor is created by
directly specifying values.

]
)

print(''Shape of the matrix is: ''.format(X.shape))

The shape of a tensor is a list.
For a matrix, the first list
element is num rows; the
second list element is num
columns.

first_element = X[0, 0]
Square brackets extract
individual matrix elements.

row_0 = X[0, :] A standalone colon operator denotes all possible indices.
row_1 = X[1, 0:2] The colon operator denotes the range of indices.

column_0 = X[:, 0] 0th column
column_1 = X[:, 1] 1st column

Listing 2.3 Slicing and dicing matrices

Ranges of rows and columns can be specified via the colon operator to slice off (extract) submatrices.

first_3_training_examples = X[:3, ] Extracts the first three training examples (rows)

print(''Sharpness of 5-7 training examples is: ''

.format(X[5:8, 1]))
Extracts the sharpness feature for the
5th to 7th training examples

Listing 2.4 Tensors and images in PyTorch

PyTorch tensors can be used to represent tensors.
A vector is a 1-tensor, a matrix is a 2-tensor, and a scalar is a 0-tensor.

tensor = torch.rand((5, 5, 3)) Creates a random tensor of specified dimensions

All images are tensors. An RGB image of height H, width W is a 3-tensor of shape [3, H, W].

I49 = torch.tensor([[0, 8, 16, 24, 32, 40, 48, 56, 64],
[64, 72, 80, 88, 96, 104, 112, 120, 128],
[128, 136, 144, 152, 160, 168, 176, 184, 192],
[192, 200, 208, 216, 224, 232, 240, 248, 255]],
) 4 × 9 single-channel image shown in figure 2.3

img = torch.tensor(cv2.imread('../../Figures/dog3.jpg'))
Reads a 199 × 256 × 3

image from disk

img_b = img[:, :, 0]
img_g = img[:, :, 1]

Usual slicing dicing operators work. Extracts the red, green,
and blue channels of the image as shown in figure 2.4.

img_r = img[:, :, 2]
img_cropped = img[0:100, 0:100, :]

Crops out a 100 × 100 subimage
as shown in figure 2.5

2.5 Basic vector and matrix operations in machine learning
In this section, we introduce several basic vector and matrix operations along with

examples to demonstrate their significance in image processing, computer vision, and
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Figure 2.4 Tensors and images in PyTorch
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machine learning. It is meant to be an application-centric introduction to linear algebra.

But it is not meant to be a comprehensive review of matrix and vector operations, for

which you are referred to a textbook on linear algebra.

2.5.1 Matrix and vector transpose

In equation 2.2, we encountered the matrix I4,9 depicting a tiny image. Suppose we

want to rotate the image by 90◦ so it looks like figure 2.6. The original matrix I4,9 and
its transpose IT

4,9 = I9,4 are shown here:

I4,9 =


0 8 16 24 32 40 48 56 64

64 72 80 88 96 104 112 120 128

128 136 144 152 160 168 176 184 192

192 200 208 216 224 232 240 248 255



IT4,9 = I9,4 =



0 64 128 192

8 72 136 200

16 80 144 208

24 88 152 216

32 96 160 224

40 104 168 232

48 112 176 240

56 120 184 248

64 128 192 255



(2.3)

Figure 2.6 Image corresponding to the transpose of matrix I4,9 shown in
equation 2.3. This is equivalent to rotating the image by 90◦.
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By comparing equation 2.2 and equation 2.3, you can easily see that one can be obtained

from the other by interchanging the row and column indices. This operation is generally

known as matrix transposition.

Formally, the transpose of a matrix Am,n with m rows and n columns is another

matrix with n rows and m columns. This transposed matrix, denoted ATn ,m, is such that

AT [i , j] = A [ j , i]. For instance, the value at row 0 column 6 in matrix I4,9 is 48; in the

transposed matrix, the same value appears in row 6 and column 0. In matrix parlance,

I4,9 [0, 6] = IT9,4 [6, 0] = 48.
Vector transposition is a special case of matrix transposition (since all vectors are

matrices—a column vector with n elements is an n × 1 matrix). For instance, an arbitrary

vector and its transpose are shown next:

®v =


1

2

3


(2.4)

®vT =

[
1 2 3

]
(2.5)

2.5.2 Dot product of two vectors and its role in machine learning

In section 1.3, we saw the simplest of machine learning models where the output is

generated by taking a weighted sum of the inputs (and then adding a constant bias

value). This model/machine is characterized by the weights w0, w1, and bias b. Take
the rows of table 2.2. For example, for row 0, the input values are the hardness of the

approaching object = 0.11 and softness = 0.09. The corresponding model output will be

y =w0 × 0.11+w1 × 0.09+ b. In fact, the goal of training is to choose w0, w1, and b such
that model outputs are as close as possible to the known outputs; that is, y =w0 × 0.11+
w1 × 0.09+ b should be as close to −0.8 as possible, y =w0 × 0.01+w1 × 0.02+ b should

be as close to −0.97 as possible, that is In general, given an input instance ®x =

x0

x1

 , the
model output is y = x0w0 + x1w1 + b.

We will keep returning to this model throughout the chapter. But first, let’s consider

a different question. In this toy example, we have only three model parameters: two

weights, w0, w1, and one bias b. Hence it is not very messy to write the model output flat

out as y = x0w0 + x1w1 + b. But, with longer feature vectors (that is, more weights) it will

become unwieldy. Is there a compact way to represent the model output for a specific

input instance, irrespective of the size of the input?

Turns out the answer is yes—we can use an operation called dot product from the

world of mathematics. We have already seen in section 2.1 that an individual instance of

model input can be compactly represented by a vector, say ®x (it can have any number

of input values). We can also represent the set of weights as vector ®w—it will have the
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same number of items as the input vector. The dot product is simply the element-wise

multiplication of the two vectors ®x and ®w. Formally, given two vectors ®x =



x0

x1
...

xn


and

®w =



w0

w1

...

wn


, the dot product of the two vectors is defined as

®x · ®w = x0w0 + x1w1 + · · · xnwn (2.6)

In other words, the sum of the products of corresponding elements of the two vectors is

the dot product of the two vectors, denoted ®a · ®b.

NOTE The dot product notation can compactly represent the model output as

y = ®w · ®x + b. The representation does not increase in size even when the number

of inputs and weights is large.

Consider our (by now familiar) cat-brain example again. Suppose the weight vector is

®w =


3

2

 and the bias value b = 5. Then the model output for the 0th input instance from

table 2.2 will be


0.11

0.09

 ·

3

2

 = 0.11× 3+ 0.09× 2+ 5= 5.51. It is another matter that these

are bad choices for weight and bias parameters, since the model output 5.51 is a far cry
from the desired output −0.89. We will soon see how to obtain better parameter values.

For now, we just need to note that the dot product offers a neat way to represent the

simple weighted sum model output.

NOTE The dot product is defined only if the vectors have the same dimensions.

Sometimes the dot product is also referred to as inner product, denoted
〈
®a, ®b

〉
. Strictly

speaking, the phrase inner product is a bit more general; it applies to infinite-dimensional

vectors as well. In this book, we will often use the terms interchangeably, sacrificing

mathematical rigor for enhanced understanding.

2.5.3 Matrix multiplication and machine learning

Vectors are special cases of matrices. Hence, matrix-vector multiplication is a special

case of matrix-matrix multiplication. We will start with that.
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MATRIX-VECTOR MULTIPLICATION

In section 2.5.2, we saw that given a weight vector, say ®w =

32
 , and the bias value b = 5, the

weighted summodel output upon a single input instance, say

0.110.09

 , can be represented

using a vector-vector dot product ®w · ®x + b =
0.110.09

 ·
32
 + 5. As depicted in equation 2.1,

during training, we are dealing with many training data instances at the same time. In

real life, we typically deal with hundreds of thousands of input instances, each having

hundreds of values. Is there a way to represent the model output for the entire training

dataset compactly, such that it is independent of the count of input instances and their

sizes?

The answer turns out to be yes. We can use the idea of matrix-vector multiplication

from the world of mathematics. The product of a matrix X and column vector ®w is

another vector, denoted X ®w. Its elements are the dot products between the row vectors

of X and the column vector ®w. For example, given the model weight vector ®w =


3

2

 and
the bias value b = 5, the outputs on the toy training dataset of our familiar cat-brain

model (equation 2.1) can be obtained via the following steps:

0.11 0.09

0.01 0.02

0.98 0.91

0.12 0.21

0.98 0.99

0.85 0.87

0.03 0.14

0.55 0.45




3

2

 =



0.11× 3+ 0.09× 2= 0.51

0.01× 3+ 0.02× 2= 0.07

0.98× 3+ 0.91× 2= 4.76

0.12× 3+ 0.21× 2= 0.78

0.98× 3+ 0.99× 2= 4.92

0.85× 3+ 0.87× 2= 4.29

0.03× 3+ 0.14× 2= 0.37

0.55× 3+ 0.45× 2= 2.55



(2.7)

Adding the bias value of 5, the model output on the toy training dataset is

5+ 0.51= 5.51
5+ 0.07= 5.07
5+ 4.76= 9.76
5+ 0.78= 5.78
5+ 4.92= 9.92
5+ 4.29= 9.29
5+ 0.37= 5.37
5+ 2.55= 7.55



(2.8)



32 CHAPTER 2 Vectors, matrices, and tensors in machine learning

In general, the output of our simple model (biased weighted sum of input elements)

can be expressed compactly as ®y =X ®w + ®b.

MATRIX-MATRIX MULTIPLICATION
Generalizing the notion of matrix times vector, we can define matrix times matrix. A

matrix with m rows and p columns, say Am,p, can be multiplied with another matrix with

p rows and n columns, say Bp,n, to generate a matrix with m rows and n columns, say

Cm,n : for example, Cm,n = Am,p Bp,n . Note that the number of columns in the left matrix

must match the number of rows in the right matrix. Element i , j of the result matrix,

Ci , j , is obtained by point-wise multiplication of the elements of the ith row vector of A
and the jth column vector of B. The following example illustrates the idea:

A3,2 =


a11 a12

a21 a22

a31 a32


B2,2 =


b11 b12

b21 b22


C3,2 =


a11 a12

a21 a22

a31 a32



b11 b12

b21 b22


=


c11 = a11b11 + a12b21 c12 = a11b12 + a12b22
c21 = a21b11 + a22b21 c22 = a21b12 + a22b22
c31 = a31b11 + a32b21 c32 = a31b12 + a32b22


The computation for C2,1 is shown via bolding by way of example.

NOTE Matrix multiplication is not commutative. In general, AB≠BA.

At this point, the astute reader may already have noted that the dot product is a spe-

cial case of matrix multiplication. For instance, the dot product between two vectors

®w =


w0

w1

 and ®x =

x0

x1

 is equivalent to transposing either of the two vectors and then

doing a matrix multiplication with the other. In other words,

®w · ®x = ®wT ®x =

w0

w1


T 
x0

x1

 =
[
w0 w1

] 
x0

x1

 = ®xT ®w =w0x0 +w1x1
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The idea works in higher dimensions, too. In general, given two vectors ®x =



x0

x1
...

xn


and

®w =



w0

w1

...

wn


, the dot product of the two vectors is defined as

®x · ®w = ®wT ®x =
[
w0 w1 · · · wn

] 

x0

x1
...

xn


= ®xT ®w =

[
x0 x1 · · · xn

] 

w0

w1

...

wn


= x0w0 + x1w1 + · · · xnwn (2.9)

Another special case of matrix multiplication is row-vector matrix multiplication.

For example, ®bTA= ®c or

[
b1 b2 b3

] 
a11 a12

a21 a22

a31 a32


=

[
c1 = a11b1 + a21b2 + a31b3 c2 = a12b1 + a22b2 + a32b3

]

TRANSPOSE OF MATRIX PRODUCTS
Given two matrices A and B, where the number of columns in Amatches the number

of rows in B (that is, it is possible to multiply them), the transpose of the product is

the product of the individual transposes, in reversed order. The rule also applies to

matrix-vector multiplication. The following equations capture this rule:

(AB)T =BTAT(
A®x

)T
= ®xTAT(

®xTA
)T

= AT ®x (2.10)
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2.5.4 Length of a vector (L2 norm): Model error

Imagine that a machine learning model is supposed to output a target value ȳ, but it
outputs y instead. We are interested in the error made by the model. The error is the

difference between the target and the actual outputs.

Squared error

When a computing error occurs, we are only interested in how far the computed value
is from ideal. We do not care whether the computed value is bigger or smaller than
ideal. For instance, if the target (ideal) value is 2, the computed values 1.5 and 2.5
are equally in error—we are equally happy or unhappy with either of them. Hence, it
is common practice to square error values. Thus for instance, if the target value is 2
and the computed value is 1.5, the error is (1.5 − 2)2 = 0.25. If the target value is
2.5, the error is (2.5 − 2)2 = 0.25. The squaring operation essentially eliminates the
sign of the error value. We can then follow it up with a square root, but it is OK not to.

You might ask, “But wait: squaring alters the value of the quantity. Don’t we care
about the exact value of the error?” The answer is, we usually don’t; we only care
about relative values of errors. If the target is 2, we want the error for an output value
of, say, 2.1 to be less than the error for an output value of 2.5; the exact values of
the errors do not matter.

Let’s apply this idea of squaring to machine learning model error. As seen earlier in

section 2.5.3, given a model weight vector, say ®w =


3

2

 , and the bias value b = 5, the

weighted sum model output upon a single input instance, say


0.11

0.09

 , is

0.11

0.09

 ·

3

2

 + 5=
5.51. The corresponding target (ideal) output, from table 2.2, is −0.8. The squared error
e2 = (−0.8− 5.51)2 = 39.82 gives us an idea of how good or bad the model parameters

3, 2, 5 are. For instance, if we instead use a weight vector ®w =


1

1

 and bias value −1,

we get model output ®w · ®x + b =

0.11

0.09

 ·

1

1

 − 1=−0.8. The output is exactly the same as

the target. The corresponding squared error e2 = (−0.8− (−0.8))2 = 0. This (zero error)

immediately tells us that 1, 1, −1 are much better choices of model parameters than

3, 2, 5.

In general, the error made by a biased weighted sum model can be expressed as

follows. If ®w denotes the weight vector and ®b denotes the bias, the output corresponding
to an input instance ®x can be expressed as y = ®w · ®x + b. Let ȳ denote the corresponding
target (ground truth). Then the error is defined as e = (y − ȳ)2.
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Thus we see that we can compute the error on a single training instance by taking the

difference between the model output and the ground truth and squaring it. How do we

extend this concept over the entire training dataset? The set of outputs corresponding

to the entire set of training inputs can be expressed as the output vector ®y =X ®w + ®b. The
corresponding target output vector, consisting of the entire set of ground truths can be

expressed as ®̄y. The differences between the target and model output over the entire

training set can be expressed as another vector ®̄y − ®y. In our particular example:

®y =



5.51

5.07

9.76

5.78

9.92

9.29

5.37

7.55



®̄y =



−0.8
−0.97
0.89

−0.67
0.97

0.72

−0.83
0.00



and ®̄y − ®y =



5.51

5.07

9.76

5.78

9.92

9.29

5.37

7.55



−



−0.8
−0.97
0.89

−0.67
0.97

0.72

−0.83
0.00



=



6.31

6.04

8.87

6.45

8.95

8.57

6.2

7.55


Thus the total error over the entire training dataset is obtained by taking the difference

between the output and the ground truth vector, squaring its elements and adding them

up. Recalling equation 2.9, this is exactly what will happen if we take the dot product of

the difference vector with itself. That happens to be the definition of the squared magnitude

or length or L2 norm of a vector: the dot product of the vector with itself. In the previous

example, the overall training (squared) error is:

E2 =

(
®̄y − ®y

)
·
(
®̄y − ®y

)
=

(
®̄y − ®y

)T (
®̄y − ®y

)
=



6.31

6.04

8.87

6.45

8.95

8.57

6.2

7.55



·



6.31

6.04

8.87

6.45

8.95

8.57

6.2

7.55


= (6.31)2 + (6.04)2 + (8.87)2 + (6.45)2 + (8.95)2 + (8.57)2 + (6.2)2 + (7.55)2

Formally, the length of a vector ®v =


v1
v2
...

vn


, denoted ‖®v‖, is defined as ‖®v‖ =

√
®vT ®v

=

√
v2
1
+ v2

2
+ · · · v2n . This quantity is sometimes called the L2 norm of the vector.



36 CHAPTER 2 Vectors, matrices, and tensors in machine learning

In particular, given a machine learning model with output vector ®y and a target

vector ®̄y, the error is the same as the magnitude or L2 norm of the difference vector

e = ‖®̄y − ®y‖ =
√(

®̄y − ®y
)
·
(
®̄y − ®y

)
=

√(
®̄y − ®y

)T (
®̄y − ®y

)
2.5.5 Geometric intuitions for vector length

For a 2D vector ®v =

x

y

 , as seen in figure 2.2, the L2 norm ‖®v‖ =
√
x2 + y2 is nothing but

the hypotenuse of the right-angled triangle whose sides are elements of the vector. The

same intuition holds in higher dimensions.

A unit vector is a vector whose length is 1. Given any vector ®v, the corresponding

unit vector can be obtained by dividing every element by the length of that vector. For

example, given ®v =

1

1

 , length ‖®v‖ =
√
12 + 12 =

√
2 and the corresponding unit vector

v̂ =

1√
2

1√
2

 . Unit vectors typically represent a direction.
NOTE Unit vectors are conventionally depicted with the hat symbol as opposed

to the little overhead arrow, as in ûT û = 1.

In machine learning, the goal of training is often to minimize the length of the error

vector (the difference between the model output vector and the target ground truth

vector).

2.5.6 Geometric intuitions for the dot product: Feature similarity

Consider the document retrieval problem depicted in table 2.1 one more time. We

have a set of documents, each described by its own feature vector. Given a pair of such

documents, we must find their similarity. This essentially boils down to estimating the

similarity between two feature vectors. In this section, we will see that the dot product

between a pair of vectors can be used as a measure of similarity between them.

For instance, consider the feature vectors corresponding to d5 and d6 in table 2.1.

They are


1

0

 and

0

1

 . The dot product between them is 1× 0+ 0× 1= 0. This is low

and agrees with our intuition that there is no common word of interest between them,

so the documents are very dissimilar. On the other hand, the dot product between

feature vectors of d3 and d4 is

3

3

 ·

5

5

 = 3× 5+ 3× 5= 30. This is high and agrees with

our intuition that they have many commonalities in words of interest and are similar

documents. Thus, we get the first glimpse of an important concept. Loosely speaking,

similar vectors have larger dot products, and dissimilar vectors have near-zero dot products.
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We will keep revisiting this problem of estimating similarity between feature vectors

and solve it with more and more finesse. As a first attempt, we will now study in greater

detail how dot products measure similarities between vectors. First we will show that

the component of a vector along another is yielded by the dot product. Using this, we

will show that the “similarity/agreement” between a pair of vectors can be estimated

using the dot product between them. In particular, we will see that if the vectors point

in more or less the same direction, their dot products are higher than when the vectors

are perpendicular to each other. If the vectors point in opposite directions, their dot

product is negative.

DOT PRODUCT MEASURES THE COMPONENT OF ONE VECTOR ALONG ANOTHER
Let’s examine a special case first: the component of a vector along a coordinate axis.

This can be obtained by multiplying the length of the vector with the cosine of the angle

between the vector and the relevant coordinate axis. As shown for 2D in figure 2.7a, a

vector ®v can be broken into two components along the X andY axes as

®v =


‖v‖ cos \
‖v‖ cos (90◦ − \)

 =

‖v‖ cos \
‖v‖ sin \


Note how the length of the vector is preserved:������


‖v‖ cos \
‖v‖ sin \


������= ‖v‖

(
cos2 \ + sin2 \

)
= ‖v‖

Y

X
(a) Components of a 2D vector along coordinate axes.
Note that ‖ ®a‖ is the length of hypotenuse.

Y

X
(b) Dot product as a component of one vector along another

®a · ®b = ®aT ®b = axbx + ayby = ‖ ®a‖ ‖ ®b ‖cos (\ ) .
Figure 2.7 Vector components and dot product

Now let’s study the more general case of the component of one vector in the direction

of another arbitrary vector (figure 2.7b). The component of a vector ®a along another
vector ®b is ®a · ®b = ®aT ®b. This is equivalent to ‖®a‖‖ ®b‖cos (\), where \ is the angle between
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the vectors ®a and ®b. (This has been proven for the two-dimension case discussed in

section A.1 of the appendix. You can read it if you would like deeper intuition.)

DOT PRODUCT MEASURES THE AGREEMENT BETWEEN TWO VECTORS
The dot product can be expressed using the cosine of the angle between the vectors.

Given two vectors ®a and ®b, if \ is the angle between them, we have (see figure 2.7b)

®a · ®b = axbx + ayby for two dimensions

®a · ®b = ®aT ®b = ‖®a‖‖ ®b‖cos (\) for all dimensions (2.11)

Expressing the dot product using cosines makes it easier to see that it measures the

agreement (aka correlation) between two vectors. If the vectors have the same direction,

the angle between them is 0 and the cosine is 1, implying maximum agreement. The

cosine becomes progressively smaller as the angle between the vectors increases, until

the two vectors become perpendicular to each other and the cosine is zero, implying

no correlation—the vectors are independent of each other. If the angle between them

is 180◦, the cosine is −1, implying that the vectors are anti-correlated. Thus, the dot

product of two vectors is proportional to their directional agreement.

What role do the vector lengths play in all this? The dot product between two vectors

is also proportional to the lengths of the vectors. This means agreement scores between

bigger vectors are higher (an agreement between the US president and the German

chancellor counts more than an agreement between you and me).

If you want the agreement score to be neutral to the vector length, you can use a

normalized dot product between unit-length vectors along the same directions:

cosine_similarity
(
®a, ®b

)
=

®aT ®b
‖®a‖‖ ®b‖

= cos (\)

The normalized dot product (aka cosine similarity measure) indicates pure directional

agreement. It is often used in document processing. Suppose we have some query text

that we want tomatch against various archive documents and retrieve them rank-ordered

by their similarity to the query text. A descriptor vector corresponds to the query text

as well as to each archived document. We can use the dot product between descriptor

vectors as a measure of similarity, but we do not want longer documents to automatically

score higher in similarity. Hence, we use cosine similarity to make the similarity score

independent of the length of the document. Document retrieval and cosine similarity are

discussed in detail in section 4.6.1.

DOT PRODUCT AND THE DIFFERENCE BETWEEN TWO UNIT VECTORS
To obtain further insight into how the dot product indicates agreement or correla-

tion between two directions, consider the two unit vectors û =


ux
uy
uz

 and v̂ =

vx
vy
vz

 . The
difference between them is û − v̂ =


ux − vx
uy − vy
uz − vz

 .
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Note that since they are unit vectors, ‖û‖ =
√
u2x + u2y + u2z = ‖v̂‖ =

√
v2x + v2y + v2z = 1. The

length of the difference vector

‖û − v̂‖ =
√
(ux − vx)2 +

(
uy − vy

)2 + (uz − vz)2

=

√
u2x + u2y + u2z + v2x + v2y + v2z − 2

(
uxvx + uyvy + uzvz

)
=
√
2− 2ûT v̂ =

√
2 (1− û · v̂)

From the last equality, it is evident that a larger dot product implies a smaller difference:

that is, more agreement between the vectors.

2.6 Orthogonality of vectors and its physical significance
Try moving an object at right angles to the direction in which you are pushing it. You

will find it impossible. The larger the angle, the less effective your force vector becomes

(finally becoming totally ineffective at a 90◦ angle). This is why it is easy to walk on a

horizontal surface (you are moving at right angles to the direction of gravitational pull,

so the gravity vector is ineffective) but harder on an upward incline (the gravity vector

is having some effect against you).

These physical notions are captured mathematically in the notion of a dot product.

The dot product between two vectors ®a (say, the push vector) and ®b (say, the displacement

of the pushed object vector) is ‖®a‖‖ ®b‖cos\ , where \ is the angle between the two vectors.

When \ is 0 (the two vectors are aligned), cos\ = 1, the maximum possible value of cos\ ,
so push is maximally effective. As \ increases, cos\ decreases, and push becomes less

and less effective. Finally, at \ = 90◦, cos\ = 0, and push becomes completely ineffective.

Two vectors are orthogonal if their dot product is zero. Geometrically, this means

the vectors are perpendicular to each other. Physically, this means the two vectors are

independent: one cannot influence the other. You can say there is nothing in common

between orthogonal vectors. For instance, the feature vector for d5 is

1

0

 and that for d6

is


0

1

 in table 2.1. These are orthogonal (dot product is zero), and you can easily see

that none of the feature words (gun, violence) are common to both documents.

2.7 Python code: Basic vector and matrix operations via PyTorch
In this section, we use Python PyTorch code to illustrate many of the concepts discussed

earlier.

NOTE Fully functional code for this section, executable via Jupyter Notebook,

can be found at http://mng.bz/ryzE.

2.7.1 PyTorch code for a matrix transpose

The following listing shows the PyTorch code for a matrix transpose.
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Listing 2.5 Transpose

The torch.arange function creates a vector whose elements go from start to stop in increments of step.
Here we create a 4 × 9 image corresponding to I4,9 in equation 2.2, shown in figure 2.3.

I49 = torch.stack([torch.arange(0, 72, 8), torch.arange(64, 136, 8),
torch.arange(128, 200, 8), torch.arange(192, 264, 8)])

The transpose operator interchanges rows and columns.

The 4 × 9 image becomes a 9 × 4 image (see figure 2.6).

The element at position (i , j) is interchanged with the element at position ( j , i ) .

I49_t = torch.transpose(I49, 0, 1)

for i in range(0, I49.shape[0]):
for j in range(0, I49.shape[1]):

assert I49[i][j] == I49_t[j][i]

Interchanged elements of the original
and transposed matrix are equal.

assert torch.allclose(I49_t, I49.T, 1e-5)
The .T operator retrieves
the transpose of an array.

2.7.2 PyTorch code for a dot product

The dot product of two vectors ®a and ®b represents the components of one vector along

the other. Consider two vectors ®a = [a1 a2 a3] and ®b = [b1 b2 b3]. Then ®a.®b = a1b1 + a2b2 +
a3b3.

Listing 2.6 Dot product

a = torch.tensor([1, 2, 3])
b = torch.tensor([4, 5, 6])
a_dot_b = torch.dot(a, b)
print(''Dot product of these two vectors is: ''

''''.format(a_dot_b)) Outputs 32: 1 ∗ 4+ 2 ∗ 5+ 3 ∗ 6

# Dot product of perpendicular vectors is zero
vx = torch.tensor([1, 0]) # a vector along X-axis
vy = torch.tensor([0, 1]) # a vector along Y-axis
print(''Example dot product of orthogonal vectors:''

'' ''.format(torch.dot(vx, vy))) Outputs 0: 1 ∗ 0+ 0 ∗ 1

2.7.3 PyTorch code for matrix vector multiplication

Consider a matrix Am,n with m rows and n columns that is multiplied with a vector ®bn
with n elements. The result is a m element column vector ®cm . In the following example,

m = 3 and n = 2. 
a11 a12

a21 a22

a31 a32



b1

b2

 =

c1 = a11b1 + a12b2
c2 = a21b2 + a22b2
c3 = a31b2 + a32b2


In general,

ci = ai1b1 + ai2b2 + · · · + ainbn
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Listing 2.7 Matrix vector multiplication

A linear model comprises a weight vector ®w and bias b.
For each training data instance ®xi , the model outputs yi = ®xTi ®w + b.
For the training data matrix X (whose rows are training data instances), the model outputs X ®w + ®b = ®y.

X = torch.tensor([[0.11, 0.09], [0.01, 0.02], [0.98, 0.91], [0.12, 0.21],
[0.98, 0.99], [0.85, 0.87], [0.03, 0.14], [0.55, 0.45],
[0.49, 0.51], [0.99, 0.01], [0.02, 0.89], [0.31, 0.47],
[0.55, 0.29], [0.87, 0.76], [0.63, 0.24]]) Cat-brain 15 × 2

training data matrix
(equation 2.7)

w = torch.rand((2, 1))
Random initialization
of weight vector

b = 5.0

Model training output: ®y =X ®w + b.
The scalar b is automatically replicated to create a vector.

y = torch.matmul(X, w) + b

2.7.4 PyTorch code for matrix-matrix multiplication

Consider a matrix Am,p with m rows and p columns. Let’s multiply it with another

matrix Bp,n with p rows and n columns. The resultant matrix Cm,n contains m rows and

n columns. Note that the number of columns in the left matrix A should match the

number of rows in the right matrix B:
c11 c12
c21 c22
c31 c32

 =

a11 a12
a21 a22
a31 a32


[
b11 b12
b21 b22

]
c11 = a11b11 + a12b21
c12 = a11b12 + a12b22
c21 = a21b11 + a22b21
c22 = a21b12 + a22b22
c31 = a31b11 + a32b21
c32 = a31b12 + a32b22

In general,

ci j =
p∑
i=1

aipbp j

Listing 2.8 Matrix-matrix multiplication

A = torch.tensor([[1, 2], [3, 4], [5, 6]])
B = torch.tensor([[7, 8], [9, 10]])

C = AB =⇒ C [i , j ] is the dot
product of the ith row of A and
jth column of B.

C = torch.matmul(A, B)


1 2

3 4

5 6


[
7 8

9 10

]
=


25 28

57 64

89 100


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w = torch.tensor([1, 2, 3])
x = torch.tensor([4, 5, 6])
assert torch.dot(w, x) == torch.matmul(w.T, x)

The dot product can be viewed
as a row matrix multiplied by a
column matrix.

2.7.5 PyTorch code for the transpose of a matrix product

Given two matrices A and B, where the number of columns in Amatches the number

of rows in B, the transpose of their product is the product of the individual transposes
in reversed order: (AB)T =BTAT .

Listing 2.9 Transpose of a matrix product

Asserts equality between (AB)T and BT AT

assert torch.all(torch.matmul(A, B).T == torch.matmul(B.T, A.T))

Applies to matrix-vector multiplication, too:
(

AT ®x
)T

= ®xT A
assert torch.all(torch.matmul(A.T, x).T == torch.matmul(x.T, A))

2.8 Multidimensional line and plane equations and machine learning
Geometrically speaking, what does a machine learning classifier really do? We provided

the outline of an answer in section 1.4. You are invited to review that and especially

figures 1.2 and 1.3. We will briefly summarize here.

Inputs to a classifier are feature vectors. These vectors can be viewed as points in some

multidimensional feature space. The task of classification then boils down to separating

the points belonging to different classes. The points may be all jumbled up in the input

space. It is the model’s job to transform them into a different (output) space where it is

easier to separate the classes. A visual example of this was provided in figure 1.3.

What is the geometrical nature of the separator? In a very simple situation, such as

the one depicted in figure 1.2, the separator is a line in 2D space. In real-life situations,

the separator is often a line or a plane in a high-dimensional space. In more complicated

situations, the separator is a curved surface, as depicted in figure 1.4.

In this section, we will study the mathematics and geometry behind two types of

separators, lines, and planes in high-dimensional spaces, aka hyperlines and hyperplanes.

2.8.1 Multidimensional line equation

In high school geometry, we learned y =mx + c as the equation of a line. But this does

not lend itself readily to higher dimensions. Here we will study a better representation

of a straight line that works equally well for any finite-dimensional space.

As shown in figure 2.8, a line joining vectors ®a and ®b can be viewed as the set of points

we will encounter if we

Start at point ®a
Travel along the direction ®b − ®a

Different points on the line are obtained by traveling different distances. Denoting

this arbitrary distance by U, the equation of the line joining vectors ®a and ®b can be
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X

Y

0

Figure 2.8 Any point ®x on the line joining two vectors ®a, ®b is given by ®x = ®a + "
(

®b − ®a
)

.

expressed as

®x = ®a + U
(
®b − ®a

)
= (1− U) ®a + U ®b

or (1− U) ®a + U ®b − ®x = 0 (2.12)

Equation 2.12 says that any point on the line joining ®a and ®b can be obtained as a

weighted combination of ®a and ®b, the weights being U and 1− U. By varying U, we obtain

different points on the line. Also, different ranges of U values yield different segments

on the line. As shown in figure 2.8, values of U between 0 and 1 yield points between ®a
and ®b. Negative values of U yield points to the left of ®a. Values of U greater than 1 yield

points to the right of ®b. This equation for a line works for any dimensions, not just two.

2.8.2 Multidimensional planes and their role in machine learning

In section 1.5, we encountered classifiers. Let’s take another look at them. Suppose we

want to create a classifier that helps us make buy or no-buy decisions on stocks based

on only three input variables: (1) momentum, or the rate at which the stock price is

changing (positive momentum means the stock price is increasing and vice versa);
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(2) the dividend paid last quarter; and (3) volatility, or how much the price has fluctuated

in the last quarter. Let’s plot all training points in the feature space with coordinate

axes corresponding to the variables momentum, dividend, volatility. Figure 2.9 shows that

the classes can be separated by a plane in the three-dimensional feature space.

Volatility

M
om

en
tu

m

Divi
de

nd

Figure 2.9 A toy machine learning classifier for stock buy vs. no-buy decision-making. A plus (+) indicates
no-buy, and a dash (-) indicates buy. The decision is made based on three input variables: momentum,
dividend, and volatility.

Geometrically speaking, our model simply corresponds to this plane. Input points above

the plane indicate buy decisions (dashes [-]), and input points indicate no-buy decisions

(pluses [+]). In general, you want to buy high-positive-momentum stocks, so points at

the higher end of the momentum axis are likelier to be buy. However, this is not the only

indicator. For more volatile stocks, we demand higher momentum to switch from no-buy

to buy. This is why the plane slopes upward (higher momentum) as we move rightward

(higher volatility). Also, we demand less momentum for stocks with higher dividends.

This is why the plane slopes downward (lower momentum) as we go toward higher

dividends.

Real problems havemore dimensions, of course (sincemanymore inputs are involved

in the decision), and the separator becomes a hyperplane. Also, in real-life problems,

the points are often too intertwined in the input space for any separator to work. We

first have to apply a transformation that maps the point to an output space where it is

easier to separate. Given their significance as class separators in machine learning, we

will study hyperplanes in this section.

In high school 3D geometry, we learned ax + by + cz + d = 0 as the equation of a plane.

Now we will study a version of it that works in higher dimensions.



2.12 Linear systems and matrix inverse 45

Geometrically speaking, given a plane (in any dimension), we can find a direction

called the normal direction, denoted n̂, such that

If we take any pair of points on the plane, say ®x0 and ®x, …
The line joining ®x and ®x0—i.e., the vector ®x − ®x0—is orthogonal to n̂.

Thus, if we know a fixed point on the plane, say ®x0, then all points on the plane will

satisfy

n̂ ·
(
®x − ®x0

)
= 0 or

n̂T
(
®x − ®x0

)
= 0

Thus we can express the equation of a plane as

n̂T ®x − n̂T ®x0 = 0 (2.13)

Equation 2.13 is depicted pictorially in figure 2.10.

Plane: Figure 2.10 The normal to the plane is the same at all
points on the plane. This is the fundamental property of a
plane. n̂ depicts that normal direction. Let ®x0 be a point
on the plane. All other points on the plane, depicted as ®x,
will satisfy the equation

(

®x − ®x0
)

· n̂= 0. This physically says
that the line joining a known point ®x0 on the plane and any
other arbitrary point ®x on the plane is at right angles to the
normal n̂. This formulation works for any dimension.

In section 1.3, equation 1.3, we encountered the simplest machine learning model: a

weighted sum of inputs along with a bias. Denoting the inputs as ®x, the weights as ®w,
and the bias as b, this model was depicted as

®wT ®x + b = 0 (2.14)

Comparing equations 2.13 and 2.14 , we get the geometric significance: the simple

model of equation 1.3 is nothing but a planar separator. Its weight vector ®w corresponds

to the plane’s orientation (normal). The bias b corresponds to the plane’s location (a

fixed point on the plane). During training, we are learning the weights and biases—this

is essentially learning the orientation and position of the optimal plane that will separate

the training inputs. To be consistent with the machine learning paradigm, henceforth

we will write the equation of a hyperplane as equation 2.14 for some constant ®w and b.
Note that ®w need not be a unit-length vector. Since the right-hand side is zero, if

necessary, we can divide both sides by ‖ ®w‖ to convert to a form like equation 2.13.

The sign of the expression ®wT ®x + b has special significance. All points ®x for which
®wT ®x + b < 0 lie on the same side of the hyperplane. All points ®x for which ®wT ®x + b > 0 lie

on the other side of the hyperplane. And of course, all points ®x for which ®wT ®x + b = 0 lie
on the hyperplane.
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It should be noted that the 3D equation ax + by + cz + d = 0 is a special case of equa-
tion 2.14 because ax + by + cz + d = 0 can be rewritten as

[
a b c

] 
x

y

z


+ d = 0

which is same as ®wT ®x + b = 0 with ®w =


a

b

c


and ®x =


x

y

z


. Incidentally, this tells us that in

3D, the normal to the plane ax + by + cz + d = 0 is n̂ = 1√
a2+b2+c2


a

b

c


.

2.9 Linear combinations, vector spans, basis vectors,
and collinearity preservation
By now, it should be clear that machine learning and data science are all about points in

high-dimensional spaces. Consequently, it behooves us to have a decent understanding

of these spaces. For instance, given a space, we may need to ask, “Would it be possible

to express all points in the space in terms of a set of a few vectors? What is the smallest

set of vectors we really need for that purpose?” This section is devoted to the study of

these questions.

2.9.1 Linear dependence

Consider the vectors (points) shown in figure 2.11. The corresponding vectors in 2D are

®v0 =

1

1

 ®v1 =

2

2


®v2 =


3

3

 ®v3 =

4

4


We can find four scalars U0 = 2, U1 = 2, U2 = 2, and U3 =−3 such that

U0®v0 + U1®v1 + U2®v2 + U3®v3 =

0

0


If we can find such scalars, not all zero, we say the vectors ®v0, ®v1, ®v2, and ®v3 are linearly

dependent. The geometric picture to keep in mind is that points corresponding to linearly

dependent vectors lie on a single straight line in the space containing them.
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(1, 1)

(2, 2)

(3, 3)

(0, 0)

Lin
e L

:
(4, 4)

Figure 2.11 Linearly dependent points in a 2D plane

COLLINEARITY IMPLIES LINEAR DEPENDENCE
Proof: Let ®a, ®b and ®c be three collinear vectors. From equation 2.12, there exists some

U ∈ℝ such that

®c = (1− U) ®a + U ®b
This equation can be rewritten as

U1®a + U2 ®b + U3®c = 0

where U1 = (1− U), U2 = U and U3 =−1. Thus we have proven that three collinear vectors

®a, ®b, and ®c must also be linearly dependent.

LINEAR COMBINATION
Given a set of vectors ®v1, ®v2, …. ®vn and a set of scalar weights U1,U2, …Un , the weighted

sum U1 ®v1 + U2 ®v2 ++ · · · Un ®vn is called a linear combination.

GENERIC MULTIDIMENSIONAL DEFINITION OF LINEAR DEPENDENCE
A set of vectors ®v1, ®v2, …. ®vn are linearly dependent if there exists a set of weights U1,U2,

…Un, not all zeros, such that U1 ®v1 + U2 ®v2 ++ · · · Un ®vn = 0. For example, the row vectors[
1 1

]
and

[
2 2

]
are linearly dependent, since −2

[
1 1

]
+
[
2 2

]
= 0.

2.9.2 Span of a set of vectors

Given a set of vectors ®v1, ®v2, …. ®vn , their span is defined as the set of all vectors that are

linear combinations of the original set . This includes the original vectors.
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For example, consider the two vectors ®vx⊥ =


1

0

 and ®vy⊥ =


0

1

 . The span of these two

vectors is the entire plane containing the two vectors. Any vector, for instance, the vector
18

97

 can be expressed as a weighted sum 18®vx⊥ + 97®vy⊥. You can probably recognize that


1

0

 and

0

1

 are the familiar Cartesian coordinate axes (X -axis andY -axis, respectively)

in the 2D plane.

2.9.3 Vector spaces, basis vectors, and closure

We have been talking informally about vector spaces. It is time to define them more

precisely.

VECTOR SPACES
A set of vectors (points) in n dimensions form a vector space if and only if the operations

of addition and scalar multiplication are defined on the set. In particular, this implies that

it is possible to take linear combinations of members of a vector space.

BASIS VECTORS
Given a vector space, a set of vectors that span the space is called a basis for the space. For

instance, for the space ℝ2, the two vectors

10
 and

01
 are basis vectors. This essentially

means any vector in ℝ2 can be expressed as a linear combination of these two. The

notion can be extended to higher dimensions. For ℝn, the vectors


1

0
...

0


,


0

1
...

0


, · · · ,


0

0
...

1


form a basis.

The alert reader has probably guessed by now that the basis vectors are related

to coordinate axes. In fact, the basis vectors just described constitute the Cartesian

coordinate axes.

So far, we have only seen examples of basis vectors that are mutually orthogonal, such

as the dot product of the two basis vectors in ℝ2 shown earlier:

01
 ·

10
 =

[
0 1

] 
1

0

 = 0.
However, basis vectors do not have to be orthogonal. Any pair of linearly independent

vectors forms a basis in ℝ2. Basis vectors, then, are by no means unique. That said,

orthogonal vectors are most convenient, as we shall see later.

MINIMAL AND COMPLETE BASIS
Exactly n vectors are needed to span a space with dimensionality n. This means the basis

set for a space will have at least as many elements as the dimensionality of the space.
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That many basis vectors are also sufficient to form a basis. For instance, exactly n vectors
are needed to form a basis in (that is, span) ℝn .

A related fact is that inℝn , any set ofm vectors withm > n will be linearly dependent. In
other words, the largest size of a set of linearly independent vectors in an n-dimensional

space is n.

CLOSURE
A set of vectors is said to be closed under linear combination if and only if the linear

combination of any pair of vectors in the set also belongs to the same set. Consider the

set of points ℝ2. Recall that this is the set of vectors with two real elements. Take any

pair of vectors ®a and ®b in ℝ2: for instance, ®a =

11.2

31.766

 and ®b =

177.01

1031.99

 . Any linear
combination of these two vectors will also comprise two real numbers—that is, will

belong to ℝ2. We say ℝ2 is a vector space since it is closed under linear combination.

Consider the space ℝ2. Geometrically speaking, this represents a two dimensional

plane. Let’s take two points on this plane, ®a and ®b. Linear combinations of ®a, ®b geomet-

rically correspond to points on the line joining them. We know that if two points lie on

a plane, the entire line will also lie on the plane. Thus, in two dimensions, a plane is

closed under linear combinations. This is the geometrical intuition behind the notion

of closure on vector spaces. It can be extended to arbitrary dimensions.

On the other hand, the set of points on the surface of a sphere is not closed under

linear combination because the line joining an arbitrary pair of points on this set will

not wholly lie on the surface of that sphere.

2.10 Linear transforms: Geometric and algebraic interpretations
Inputs to a machine learning or data science system are typically feature vectors (in-

troduced in section 2.1) in high-dimensional spaces. Each individual dimension of

the feature vector corresponds to a particular property of the input. Thus, the feature

vector is a descriptor for the particular input instance. It can be viewed as a point in the

feature space. We usually transform the points to a friendlier space where it is easier to

perform the analysis we are trying to do. For instance, if we are building a classifier, we

try to transform the input into a space where the points belonging to different classes

are more segregated (see section 1.3 in general and figure 1.3 in particular for simple

examples). Sometimes we transform to simplify the data, eliminating axes along which

there is scant variation in the data. Given their significance in machine learning, in this

section we will study the basics of transforms.

Informally, a transform is an operation that maps a set of points (vectors) to another.

Given a set S of n × 1 vectors, any m × n matrix T can be viewed as a transform. If ®v
belongs to the set S, multiplication with the matrixT will map (transform) ®v to a vector

T ®v. We will later see that matrix multiplication is a subclass of transforms that preserve

collinearity—points that lie on a straight line before the transformation will continue to

lie on a (possibly different) straight line post the transformation. For instance, consider
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the matrix

R =


1√
2

1√
2

− 1√
2

1√
2


In section 2.14, we will see that this is a special kind of matrix called a rotation matrix;

for now, simply consider it an example of a matrix. R is a transformation operator

that maps a point in a 2D plane to another point in the same plane. In mathematical

notation, R :ℝ2→ℝ2. In fact, as depicted in figure 2.14, this transformation (multipli-

cation by matrix R) rotates the position vector of a point in the 2D plane by an angle

of 45◦.

The output and input points may belong to different spaces in such transforms. For

instance, consider the matrix

P =


1 0 0

0 1 0


It is not hard to see that this matrix projects 3D points to the 2D X-Y plane:

P


x

y

z


=


x

y


Hence, this transformation (multiplication by matrix P) projects points from three to

two dimensions. In mathematical parlance, P :ℝ3→ℝ2.

The transforms R and P share a common property: they preserve collinearity. This

means a set of vectors (points) ®a, ®b, ®c, · · · that originally lay on a straight line remain so

after the transformation.

Let’s check this out for the rotation transformation in the example from section 2.9.

There we saw four vectors:

®o =

0

0

 ®a =

1

1


®b =


2

2

 ®c =

3

3


These vectors all lie on a straight L : x = y. The rotation transformed versions of these

vectors are

®o ′
=R®o =


0

0

 ®a ′
=R®a =


√
2

0


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®b ′
=R®b =


2
√
2

0

 ®c ′
=R®c =


3
√
2

0


It is trivial to see that the transformed vectors also lie on a (different) straight line. In

fact, ®o ′
, ®a ′

, ®b ′
, ®c ′

lie on theY -axis, which is the 45◦ rotated version of the original line

y = x.
The projection transform represented by matrix P also preserves collinearity. Con-

sider four collinear vectors in 3D:

®o =


0

0

0


®a =


1

1

1


®b =


2

2

2


®c =


3

3

3


The corresponding transformed vectors

®o ′
=P®o =


0

0

 ®a ′
=P ®a =


1

1


®b ′
=P ®b =


2

2

 ®c ′
=P®c =


3

3


also lie on a straight line in 2D.

The class of transforms that preserves collinearity are known as linear transforms.

They can always be represented as a matrix multiplication. Conversely, all matrix mul-

tiplications represent a linear transformation. A more formal definition is provided

later.

2.10.1 Generic multidimensional definition of linear transforms

A function q is a linear transform if and only if it satisfies

q

(
U ®a + V ®b

)
= Uq

(
®a
)
+ V q

(
®b
)
∀U , V ∈ℝ (2.15)

In other words, a transform is linear if and only if the transform of the linear combination of

two vectors is the same as the linear combination (with the same weights) of the transforms of

individual vectors. (This can be remembered as: Linear transform means transforms of linear

combinations are same as linear combinations of transforms.) Multiplication with a rotation

or projection matrix (shown earlier) is a linear transform.
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2.10.2 All matrix-vector multiplications are linear transforms

Let’s verify that matrix multiplication satisfies the definition of linear mapping (equa-

tion 2.15). Let ®a, ®b ∈ℝn be two arbitrary n-dimensional vectors and Am,n be an arbitrary

matrix with n columns. Then following the standard rules ofmatrix-vectormultiplication,

A
(
U ®a + V ®b

)
= U

(
A®a

)
+ V

(
A®b

)
which mimics equation 2.15 with q replaced with matrix A. Thus we have proven that

all matrix multiplications are linear transforms. The reverse is not true. In particular,

linear transforms that operate on infinite-dimensional vectors are not matrices. But

all linear transforms that operate on finite-dimensional vectors can be expressed as

matrices. (The proof is a bit more complicated and will be skipped.)

Thus, in finite dimensions, multiplication with a matrix and linear transformation

are one and the same thing. In section 2.3, we saw the array view of matrices. The

corresponding geometric view, that all matrices represent linear transformation, was

presented in this section.

Let’s finish this section by studying an example of a transform that is not linear.

Consider the function

q
(
®x
)
= ‖ ®x‖

for ®x ∈ℝn . This function q maps n-dimensional vectors to a scalar that is the length of

the vector, q :ℝn→ℝ. We will examine if it satisfies equation 2.15 with U1 = U2 = 1. For

two specific vectors ®a, ®b ∈ℝn ,

q
(
®a
)
= q

©­­­­­­«


a1
a2
· · ·
an


ª®®®®®®¬
=

√
a2
1
+ a2

2
+ · · · a2n

q

(
®b
)
= q

©­­­­­­«


b1
b2
· · ·
bn


ª®®®®®®¬
=

√
b2
1
+ b2

2
+ · · · b2n

Now

q
(
®a
)
+ q

(
®b
)
=

√
a2
1
+ a2

2
+ · · · a2n +

√
b2
1
+ b2

2
+ · · · b2n

and

q

(
®a + ®b

)
= q

©­­­­­­«


a1 + b1
a2 + b2
...

an + bn


ª®®®®®®¬
=

√
(a1 + b1)2 + (a2 + b2)2 + · · · (an + bn)2
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Clearly, these two are not equal; hence, we have violated equation 2.15: q is a nonlinear

mapping.

2.11 Multidimensional arrays, multilinear transforms, and tensors
We often hear the term tensor in connection with machine learning. Google’s famous

machine learning platform is named TensorFlow. In this section, we will introduce you

to the concept of a tensor.

2.11.1 Array view: Multidimensional arrays of numbers

A tensormay be viewed as a generalized n-dimensional array—although, strictly speaking,

not all multidimensional arrays are tensors. We will learn more about the distinction

between multidimensional arrays and tensors when we study multilinear transforms.

For now, we will not worry too much about the distinction. A vector can be viewed as a

1 tensor, a matrix is a 2 tensor, and a scalar is a 0 tensor.

In section 2.3, we saw that digital images are represented as 2D arrays (matrices). A

color image—where each pixel is represented by three colors, R, G, and B (red, green,

and blue)—is an example of a multidimensional array or tensor. This is because it can

be viewed as a combination of three images: the R, G, and B images, respectively.

The inputs and outputs to each layer in a neural network are also tensors.

2.12 Linear systems and matrix inverse
Machine learning today is usually an iterative process. Given a set of training data,

you want to estimate a set of machine parameters that will yield target values (or close

approximations to them) on training inputs. The number of training inputs and the size

of the parameter set are often very large. This makes it impossible to have a closed-form

solution where we solve for the unknown parameters in a single step. Solutions are

usually iterative. We start with a guessed set of values for the parameters and iteratively

improve the guess by processing training data.

Having said that, we often encounter smaller problems in real life. We are better

off using more traditional closed-form techniques here since they are much faster and

more accurate. This section is devoted to gaining some insights into these techniques.

Let’s go back to our familiar cat-brain problem and refer to its training data in ta-

ble 2.2. As before, we are still talking about a weighted summodel with three parameters:

weights w0, w1 and bias b. Let’s focus on the top three rows from the table, repeated

here in table 2.3 for convenience.

Table 2.3 Example training dataset for our toy machine learning–based cat brain

Input value: Hardness Input value: Sharpness Output: Threat score

0 0.11 0.09 −0.8
1 0.01 0.02 −0.97
2 0.98 0.91 0.89
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The training data says that with a hardness value 0.11 and a sharpness value 0.09, we
expect the system’s output to match (or closely approximate) the target value −0.8,
and so on. In other words, our estimated values for parameters w0, w1, b should ideally

satisfy

0.11w0 + 0.09w1 + b =−0.8
0.01w0 + 0.02w1 + b =−0.97
0.98w0 + 0.91w1 + b = 0.89

We can express this via matrix multiplication as the following equation:
0.11 0.09 1

0.01 0.02 1

0.98 0.91 1



w0

w1

b


=


−0.08

−0.97

0.89


How do we obtain the values of w0, w1, b that make this equation true? That is, how

do we solve this equation? There are formal methods (discussed later) to directly solve

such equations for w0, w1, and b (in this very simple example, you might just “see” that

w0 = 1, w1 = 1, b =−1 solves the equation, but we need a general method).

This equation is an example of a class of equations called a linear system. A linear

system in n unknowns x1, x2, x3, · · · , xn ,

a11x1 + a12x2 + a13x3 + · · · + a1nxn = b1
a21x1 + a22x2 + a23x3 + · · · + a2nxn = b2

...

an1x1 + an2x2 + an3x3 + · · · + annxn = bn

can be expressed via matrix and vectors as

A®x = ®b

where

A=



a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n
...

...
...

...
...

an1 an2 an3 · · · ann


and ®x =


x1

x2

· · · xn


and ®b =



b1

b2

· · ·

bn


Although equivalent, thematrix depiction is more compact and dimension-independent.

In machine learning, we usually have many variables (thousands), so this compactness

makes a significant difference. Also, A®x = ®b looks similar to the one-variable equation

we know so well: ax = b. In fact, many intuitions can be transferred from 1D to higher

dimensions.
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What is the solution to the 1D equation? You may have learned it in fifth grade: The

solution of ax = b is x = a−1b where a−1 = 1
a , a ≠ 0.

We can use the same notation in all dimensions. The solution of A®x = ®b is ®x = A−1 ®b,
where A−1 is the matrix inverse. The inverse matrix A−1 has the determinant of the ma-

trix, 1
det (A) , as a factor. We will not discuss determinant and inverse matrix computation

here—you can obtain that in any standard linear algebra textbook—but will state some

facts that lend insights into determinants and inverse matrices:

The inverse matrix A−1 is related to matrix A in the same way the scalar a−1 is
related to the scalar a. a−1 exists if and only if a ≠ 0. Analogously, A−1 exists if

det (A) ≠ 0, where det (A) refers to the determinant of a matrix.

The product of a scalar a and its inverse a−1 is 1. Analogously, AA−1 = A−1A= I,
where I denotes the identity matrix that is the higher-dimension analog for 1 in

scalar arithmetic. It is a matrix in which the diagonal terms are 1 and all other

terms are 0. The n-dimensional identity matrix is as follows:

In ,n =



1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0

...

0 0 0 · · · 1


When there is no subscript, the dimensionality can be inferred from the context.

For any matrix A, IA= AI= A. For any vector ®a, I®a = ®aT I= ®a. These can be easily

verified using the rules of matrix multiplication.

There are completely precise but tedious rules for computing determinants and matrix

inverses. Despite the importance of the concept, we rarely need to compute them in

life as all linear algebra software packages provide routines to do this. Furthermore,

computing matrix inverses is not good programming practice because it is numerically

unstable. We will not discuss the direct computation of determinant or matrix inverse

here (except that in section A.2 of the appendix, we show how to compute the determi-

nant of a 2× 2 matrix). We will discuss pseudo-inverses, which have more significance

in machine learning.

2.12.1 Linear systems with zero or near-zero determinants,
and ill-conditioned systems

We saw earlier that a linear system A®x = ®b has the solution ®x = A−1 ®b. But A−1 has 1
det (A)

as a factor. What if the determinant is zero?

The short answer: when the determinant is zero, the linear system cannot be exactly

solved. We may still attempt to come up with an approximate answer (see section 2.12.3),

but an exact solution is not possible.
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Let’s examine the situation a bit more closely with the aid of an example. Consider

the following system of equations:

x1 + x2 = 2

2x1 + 2x2 = 4

It can be rewritten as a linear system with a square matrix:
1 1

2 2



x1

x2

 =

2

4


But you can quickly see that the system of equations cannot be solved. The second

equation is really the same as the first. In fact, we can obtain the second by multiplying

the first by a scalar, 2. Hence, we don’t really have two equations: we have only one, so

the system cannot be solved. Now examine the row vectors of matrix A. They are
[
1 1

]
and

[
2 2

]
. They are linearly dependent because −2

[
1 1

]
+
[
2 2

]
= 0. Now examine

the determinant of matrix A (section A.2 of the appendix shows how to compute the

determinant of a 2× 2 matrix). It is 2× 1− 1× 2= 0. These results are not coincidences.

Any one of them implies the other. In fact, the following statements about the linear

system A®x = ®b (with a square matrix) are equivalent:

Matrix A has a row/column that can be expressed as a weighted sum of the others.

Matrix A has linearly dependent rows or columns.

Matrix A has zero determinant (such matrices are called singular matrices).

The inverse of matrix A (i.e., A−1) does not exist. A is called singular.

The linear system cannot be solved.

The system is trying to tell you that you have fewer equations than you think you have,

and you cannot solve the system of equations.

Sometimes the determinant is not exactly zero but close to zero. Although solvable

in theory, such systems are numerically unstable. Small changes in input cause the result

to change drastically. For instance, consider this nearly singular matrix:

A=

2 1

4 2.001

 (2.16)

Its determinant is 0.002, close to zero. Let ®b =

3

6

 be a vector.
A−1 =

1000.5 −500.0
−2000. 1000.0

 (2.17)

(Note how large the elements of A−1 are. This is due to division by an extremely small

determinant and, in turn, causes the instability illustrated next.) The solution to the
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equation A®x = ®b is ®x = A−1 ®b =
1.50

 . But if we change ®b just a little andmake ®b =
 3

6.01

 , the
solution changes to a drastically different ®x = A−1 ®b =

−3.510.0

 . This is inherently unstable
and arises from the near singularity of the matrix A. Such linear systems are called

ill-conditioned.

2.12.2 PyTorch code for inverse, determinant, and singularity testing of matrices

Inverting a matrix and computing its determinant can be done with a single function

call from the linear algebra package linalg.

Listing 2.10 Matrix inverse for an invertible matrix (nonzero determinant)

def determinant(A):
return torch.linalg.det(A)

def inverse(A):
return torch.linalg.inv(A)

A = torch.tensor([[2, 3], [2, 2]], dtype=torch.float) A=

[

2 3

3 2

]

A_inv = inverse(A) A=

[

−1 1.5
1 −1

]

I = torch.eye(2) The PyTorch function torch.eye(n)
generates an identity matrix I of size n.

assert torch.all(torch.matmul(A, A_inv) == I) Verify

[

2 3

3 2

] [

−1 1.5
1 −1

]

=

[

1 0

0 1

]

assert torch.all(torch.matmul(A_inv, A) == I)

assert torch.all(torch.matmul(I, A) == A)
assert torch.all(A == torch.matmul(A,I)) I is like 1. Verify AI= IA= A.

A singular matrix is a matrix whose determinant is zero. Suchmatrices are non-invertible.

Linear systems of equations with singular matrices cannot be solved.

Listing 2.11 Singular matrix

B = torch.tensor([[1, 1], [2, 2]], dtype=torch.float) B=

[

1 1

2 2

]

try:

B_inv = inverse(B)
Determinant = 1 × 2 − 2 × 1= 0.
Singular matrix; attempting to compute the
inverse causes a runtime error.

except RuntimeError as e:
print(''B cannot be inverted: ''.format(B, e))

2.12.3 Over- and under-determined linear systems in machine learning

What if the matrix A is not square? This implies that the number of equations does not

match the number of unknowns. Does such a system even make sense? Surprisingly, it

does. As a rule, machine learning systems fall in this category: the number of equations
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corresponds to the number of training data instances collected, while the number of

unknowns is a function of the number of weights in the model which is a function

of the particular model family chosen to represent the system. These are independent

of each other. As stated earlier, we often solve these systems iteratively. Nonetheless, it

is important to understand linear systems with nonsquare matrices A, to gain insight.

There are two possible cases, assuming that the matrix A is m × n (m rows and n
columns):

Case 1: m > n (more equations than unknowns; overdetermined system)

Case 2: m < n (fewer equations than unknown; underdetermined system)

For instance, table 2.2 leads to an overdetermined linear system. Let’s write the system

of equations:

0.11w0 + 0.09w1 + b =−0.8
0.01w0 + 0.02w1 + b =−0.97
0.98w0 + 0.91w1 + b = 0.89
0.12w0 + 0.21w1 + b =−0.68
0.98w0 + 0.99w1 + b = 0.95
0.85w0 + 0.87w1 + b = 0.74
0.03w0 + 0.14w1 + b =−0.88
0.55w0 + 0.45w1 + b = 0.00

These yield the following overdetermined linear system:

0.11 0.09 1

0.01 0.02 1

0.98 0.91 1

0.12 0.21 1

0.98 0.99 1

0.85 0.87 1

0.03 0.14 1

0.55 0.45 1




w0

w1

b


=



−0.8

−0.97

0.89

−0.68

0.95

0.74

−0.88

0.00



(2.18)

This is a nonsquare 15× 3 linear system. There are only 3 unknowns to solve for

(w0 , w1 , b), and there are 15 equations. This is highly redundant: we needed only three

equations and could have solved it via linear system solution techniques (section 2.12).

But the important thing to note is this: the equations are not fully consistent. There is no

single set of values for the unknown that will satisfy all of them. In other words, the

training data is noisy—an almost universal occurrence in real-life machine learning

systems. Consequently, we have to find a solution that is optimal (causes as little error

as possible) over all the equations.
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We want to solve it such that the overall error ‖A®x − ®b‖ is minimized. In other words,

we are looking for ®x such that A®x is as close to ®b as possible. This closed-form (that is,

non-iterative) method is an extremely important precursor to machine learning and

data science. We will revisit this multiple times, most notably in sections 2.12.4 and 4.5.

2.12.4 Moore Penrose pseudo-inverse of a matrix

The pseudo-inverse is a handy technique to solve over- or under-determined linear

systems. Suppose we have an overdetermined system with the not-necessarily square

m × n matrix A:
A®x = ®b

Since A is not guaranteed to be square, we can take neither the determinant nor the

inverse in general. So the usual A−1 ®b does not work. At this point, we observe that

although the inverse cannot be taken, transposing the matrix is always possible. Let’s

multiply both sides of the equation with AT :

A®x = ®b⇔ ATA®x = AT ®b

Notice that ATA is a square matrix: its dimensions are (m × n) × (n ×m) =m ×m. Let’s
assume, without proof for the moment, that it is invertible. Then

A®x = ®b⇔ ATA®x = AT ®b⇔ ®x =
(
ATA

)−1
AT ®b

Hmmm, not bad; we seem to be onto something. In fact, we just derived the pseudo-inverse

of matrix A, denoted A+ =
(
ATA

)−1
AT . Unlike the inverse, the pseudo-inverse does not

need the matrix to be square with linearly independent rows. Much like the regular

linear system, we get the solution of the (possibly nonsquare) system of equations as

A®x = ®b⇔ ®x = A+ ®b.
The pseudo-inverse-based solution actually minimizes the error ‖A®x − ®b‖. We will

provide an intuitive proof of that in section 2.12.5. Meanwhile, you are encouraged to

write the Python code to evaluate
(
ATA

)−1
AT ®b and verify that it approximately yields

the expected answer


1

1

−1

 for equation 2.18.

2.12.5 Pseudo-inverse of a matrix: A beautiful geometric intuition

A matrix Am×n can be rewritten in terms of its column vectors as
[
®a1 , ®a2 , . . . ®an

]
, where

®a1 . . . ®an are all m-dimensional vectors. Then if ®x =


x1
x2
. . .

xn


, we get A®x = x1®a1 + x2®a2 + · · ·

xn ®an. In other words, A®x is just a linear combination of the column vectors of A with

the elements of ®x as the weights (you are encouraged to write out a small 3× 3 system
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and verify this). The space of all vectors of the form A®x (that is, the linear span of the

column vectors of A) is known as the column space of A.
The solution to the linear system of equations A®x = ®b can be viewed as finding the ®x

that minimizes the difference of A®x and ®b: that is, minimizes ‖A®x − ®b‖. This means we

are trying to find a point in the column space of A that is closest to the point ®b. Note that
this interpretation does not assume a square matrix A. Nor does it assume a nonzero

determinant. In the friendly case where the matrix A is square and invertible, we can

find a vector ®x such that A®x becomes exactly equal to ®b, which makes ‖A®x − ®b‖ = 0. If A
is not square, we will try to find ®x such that A®x is closer to ®b than any other vector in the

column space of A. Mathematically speaking,4

‖A®x − ®b‖ ≤ ‖A®y − ®b‖ ∀®y ∈<n (2.19)

From geometry, we intuitively know that the closest point to ®b in the column space

of A is obtained by dropping a perpendicular from ®b to the column space of A (see

figure 2.12). The point where this perpendicular meets the column space is called the

projection of ®b on the column space of A. The solution vector ®x to equation 2.19 that

we are looking for should correspond to the projection of ®b on the column space of A.
This in turn means ®b − A®x is orthogonal (perpendicular) to all vectors in the column

space of A (see figure 2.12). We represent arbitrary vectors in the column space of A as

A®y for arbitrary ®y. Hence, for all such ®y,(
A®y

)
⊥
(
®b − A®x

)
⇔

(
A®y

)T (
®b − A®x

)
= 0

⇔ yT AT
(
®b − A®x

)
= 0

Column space of A

Figure 2.12 Solving a linear system A®x = ®b
is equivalent to finding the point on the
column space of A that is closest to ®b. This
means we have to drop a perpendicular from
®b to column space of A. If A®x represents the
point where that perpendicular meets the
column space (aka projection), the difference
vector ®b − A®x corresponds to the line joining
®b and its projection A®x. This line will be
perpendicular to all vectors in the column
space of A. Equivalently, it is perpendicular
to A®y for any arbitrary ®y.

4 The mathematical symbol ∀ stands for “for all.” Thus, ∀®y ∈ <n means “all vectors y in the n-dimensional
space.”
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For the previous equation to be true for all vectors ®y, we must have AT
(
®b − A®x

)
= 0.

Thus, we have

AT
(
®b − A®x

)
= 0

⇔ATA®x = AT ®b

⇔®x =
(
ATA

)−1
AT ®b

which is exactly the Moore-Penrose pseudo-inverse.

For a machine learning-centric example, consider the overdetermined system corre-

sponding to the cat brain earlier in the chapter. There are 15 training examples, each

with input and desired outputs specified.

Our goal is to determine three unknowns w0 , w1, and b such that for each training

input ®xi =

xi ,0

xi ,1

 , the model output

yi = xi ,0w0 + xi ,1w1 + b =
[
xi ,0 xi ,1

] 
w0

w1

 + b =
[
xi ,0 xi ,1 1

] 
w0

w1

b


(2.20)

matches the desired output (aka ground truth) ȳi as closely as possible.

NOTE We employed a neat trick here: we added a 1 to the right of the input,

which allows us to depict the entire system (including the bias) in a single compact

matrix-vector multiplication. We call this augmentation—we augment the input

row vector with an extra 1 on the right.

Collating all the training examples together, we get

x0,0 x0,1 1

x1,0 x1,1 1

...
...

...

xN ,0 xN ,1 1




w0

w1

b


=



y0

y1

· · ·

yN


(2.21)

which can be expressed compactly as

X ®w = ®y

where X is the augmented input matrix with a rightmost column of all 1s. The goal is

to minimize ‖®y − ®̄y‖. To this end, we formulate the over-determined linear system

X ®w = ®̄y
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Note that this is not a classic system of equations—it has more equations than unknowns.

We cannot solve this via matrix inversion. We can, however, use the pseudo-inverse

mechanism to solve it. The resulting solution yields the “best fit” or “best effort” solution,

which minimizes the total error over all the training examples.

The exact numerical system (repeated here for ease of reference) is

X =



0.11 0.09 1.00

0.01 0.02 1.00

0.98 0.91 1.00

0.12 0.21 1.00

0.98 0.99 1.00

0.85 0.87 1.00

0.03 0.14 1.00

0.55 0.45 1.00



®̄y =



−0.8
−0.97
0.89

−0.67
0.97

0.72

−0.83
0.00



®w =


w0

w1

b

 (2.22)

We solve for ®w using the pseudo-inverse formula ®w = (XTX)−1XT ®̄y

2.12.6 PyTorch code to solve overdetermined systems

NOTE Fully functional code for this section, executable via Jupyter Notebook,

can be found at http://mng.bz/PPJ2.

Listing 2.12 Solving an overdetermined system using the pseudo-inverse

def pseudo_inverse(A):
return torch.matmul(torch.linalg.inv(torch.matmul(A.T, A)), A.T)

X is the augmented data matrix from equation 2.22.

X = torch.column_stack((X, torch.ones(15)))
The Pytorch column stack operator
adds a column to a matrix. Here, the
added column is all 1s.

It is easy to verify that the solution to equation 2.22 is roughlyw0 = 1,w1 = 1, b = −1.
But the equations are not consistent: no one solution perfectly fits all of them.
The pseudo-inverse finds the “best fit” solution: it minimizes total error for all the equations.

w = torch.matmul(pseudo_inverse(X), y) Expect the solution to be close to [1, 1, -1]

print(''The solution is ''.format(w)) The solution is [1.08, 0.90, -0.96]

2.13 Eigenvalues and eigenvectors: Swiss Army knives
of machine learning
Machine learning and data science are all about finding patterns in large volumes of

high-dimensional data. The inputs are feature vectors (introduced in section 2.1) in high-

dimensional spaces. Each feature vector can be viewed as a point in the feature space

descriptor for an input instance. Sometimes we transform these feature vectors—map the

feature points to a friendlier space—to simplify the data by reducing dimensionality. This

is done by eliminating axes along which there is scant variation in the data. Eigenvalues
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and eigenvectors are invaluable tools in the arsenal of a machine learning engineer or

a data scientist for this purpose. In chapter 4, we will study how to use these tools to

simplify and find broad patterns in a large volume of multidimensional data.

Let’s take an informal look at eigenvectors first. They are properties of squarematrices.

As seen earlier, matrices can be viewed as linear transforms which map vectors (points)

in one space to different vectors (points) in the same or a different space. But a typical

linear transform leaves a few points in the space (almost) unaffected. These points are

called eigenvectors. They are important physical aspects of the transform. Let’s look at a

simple example. Suppose we are rotating points in 3D space about the Z-axis (see figure
2.13). The points on the Z-axis will stay where they were despite the rotation. In general,

points on the axis of rotation (Z in this case) do not go anywhere after rotation. The

axis of rotation is an eigenvector of the rotation transformation.

Z

X

Y

Figure 2.13 During rotation, points on the axis
of rotation do not change position.

Extending this idea, when transforming vectors ®x with a matrix A, are there vectors that
do not change, at least in direction? Turns out the answer is yes. These are the so-called

eigenvectors—they do not change direction when undergoing linear transformation by a

matrix A. To be precise, if ®e is an eigenvector of the square matrix A,5 then

A®e = _ ®e

Thus the linear transformation (that is, multiplication by matrix A) has changed the

length but not the direction of ®e because _ ®e is parallel to ®e.
How do we obtain _ and ®e? Well,

A®e = _ ®e
⇔A®e − _ ®e = ®0
⇔ (A− _ I) ®e = ®0

where I denotes the identity matrix.

5 You can compute eigenvectors and eigenvalues only of square matrices.
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Of course, we are only interested in nontrivial solutions, where ®e ≠ ®0. In that case,

A− _ I cannot be invertible, because if it were, we could obtain the contradictory solution
®e = (A− _ I)−1 ®0= ®0. Thus, (A− _ I) is non-invertible, implying the determinant

det (A− _ I) = 0

For an n × n matrix A, this yields an nth-degree polynomial equation with n solutions
for the unknown _ . Thus, an n × n matrix has n eigenvalues, not necessarily all distinct.

Let’s compute eigenvalues and eigenvectors of a 3× 3 matrix, just for kicks. The

matrix we use is carefully chosen, as will be evident soon. But for now, think of it as an

arbitrary matrix:

A=


1√
2

1√
2

0

− 1√
2

1√
2

0

0 0 1


(2.23)

We will compute the eigenvalues and eigenvectors of A:

(A− _ I) =


1√
2

1√
2

0

− 1√
2

1√
2

0

0 0 1


−


_ 0 0

0 _ 0

0 0 _


=


1√
2
− _ 1√

2
0

− 1√
2

1√
2
− _ 0

0 0 1− _


Thus,

det (A− _ I) = 0

⇔ (1− _ )
((

1
√
2
− _

) (
1
√
2
− _

)
+ 1
√
2

1
√
2

)
= 0

⇔ (1− _ )
(
_ 2 − 2

1
√
2
_ + 1

2
+ 1

2

)
= 0

⇔ (1− _ )
(
_ 2 −

√
2_ + 1

)
= 0

⇔_ = 1 or _ =

(
1
√
2
+ i 1√

2

)
or _ =

(
1
√
2
− i 1√

2

)
⇔_ = 1 or _ = ei

c
4 or _ = e−i

c
4 using De Moivre’s rule

Here, i =
√
−1. If necessary, you are encouraged to refresh your memory of imaginary

and complex numbers from high school algebra.

Thus, we have found (as expected) three eigenvalues: 1, ei
c
4 , and e−i

c
4 . Each of

them will yield one eigenvector. Let’s compute the eigenvector corresponding to the
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eigenvalue of 1 by way of example:

A ®e1 = 1 · ®e1

⇔


1√
2

1√
2

0

− 1√
2

1√
2

0

0 0 1


®e1 = ®e1

⇔


1√
2

1√
2

− 1√
2

1√
2



e11

e12

 =

e11

e12


⇔e11 = e12 = 0⇔ ®e1 =


0

0

1


Thus,


0

0

1

 is an eigenvector for the eigenvalue 1 for matrix A. So is


0

0

k

 for any real k. In
fact, if _ , ®e is an eigenvalue, eigenvector pair for matrix A, then

A®e = _ ®e⇔ A
(
k®e
)
= _

(
k®e
)

That is, _ ,
(
k®e
)
is also an eigenvalue, eigenvector pair of A. In other words, we can only

determine the eigenvector up to a fixed scale factor. We take the eigenvector to be of

unit length (®eT ®e = 1) without loss of generality.
The eigenvector for our example matrix turns out to be the Z-axis. This is not an

accident. Our matrix A was, in fact, a rotation about the Z-axis. A rotation matrix will

always have 1 as an eigenvalue. The corresponding eigenvector will be the axis of rotation. In 3D,

the other two eigenvalues will be complex numbers yielding the angle of rotation. This is detailed

in section 2.14.

2.13.1 Eigenvectors and linear independence

Two eigenvectors of a matrix corresponding to unequal eigenvalues are linearly in-

dependent. Let’s prove this to get some insights. Let _1 , ®e1 and _2 , ®e2 be eigenvalue,
eigenvector pairs for a matrix A with _1 ≠ _2. Then

A ®e1 = _1 ®e1
A ®e2 = _2 ®e2

If possible, let there be two constants U1 and U2 such that

U1 ®e1 + U2 ®e2 = 0 (2.24)

In other words, suppose the two eigenvectors are linearly dependent. We will show that

this assumption leads to an impossibility.
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Multiplying equation 2.24 by A, we get

U1A ®e1 + U2A ®e2 = 0

⇔U1_1 ®e1 + U2_2 ®e2 = 0

Also, we can multiply equation 2.24 by _2. Thus we get

U1_1 ®e1 + U2_2 ®e2 = 0

U1_2 ®e1 + U2_2 ®e2 = 0

Subtracting, we get

U1 (_1 − _2) ®e1 = 0
By assumption, U1 ≠ 0, _1 ≠ _2 and ®e1 is not all zeros. Thus it is impossible for their prod-

uct to be zero. Our original assumption (the two eigenvectors are linearly dependent)

must have been wrong.

2.13.2 Symmetric matrices and orthogonal eigenvectors

Two eigenvectors of a symmetric matrix that correspond to different eigenvalues are

mutually orthogonal. Let’s prove this to get additional insight. A matrix A is symmetric

if AT = A. If _1 , ®e1 and _2 , ®e2 are eigenvalue, eigenvector pairs for a symmetric matrix

A, then
A ®e1 = _1 ®e1 (2.25)

A ®e2 = _2 ®e2 (2.26)

Transposing equation 2.25,

®e1TAT = _1 ®e1T

Right-multiplying by ®e2, we get

®e1TAT ®e2 = _1 ®e1T ®e2
⇔®e1TA ®e2 = _1 ®e1T ®e2

where the last equation follows from the matrix symmetry. Also, left-multiplying equa-

tion 2.26 by ®e1T , we get
®e1TA ®e2 = _2 ®e1T ®e2

Thus

®e1TA ®e2 = _1 ®e1T ®e2
®e1TA ®e2 = _2 ®e1T ®e2

Subtracting the equations, we get

0= (_1 − _2) ®e1T ®e2

Since _1 ≠ _2, we must have ®e1T ®e2 = 0, which means the two eigenvectors are orthogonal.

Thus, if A is an n × n symmetric matrix with eigenvectors ®e1 , ®e2 , · · · ®en , then ®eiT ®ej = 0 for
all i , j satisfying _ i ≠ _ j .
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2.13.3 PyTorch code to compute eigenvectors and eigenvalues

NOTE Fully functional code for this section, executable via Jupyter Notebook,

can be found at http://mng.bz/1rEZ.

Listing 2.13 Eigenvalues and vectors

from torch import linalg as LA

A = torch.tensor([[0.707, 0.707, 0],
[-0.707, 0.707, 0], [0, 0, 1]])

A=

















cos (45◦) sin (45◦) 0

−sin (45◦) cos (45◦) 0

0 0 1

















Rotates points in 3D space around the Z-axis.
The axis of rotation is the Z-axis:

[

0 0 1
]T

l, e = LA.eig(A)
Function eig() in the torch linalg package
computes eigenvalues and vectors.

print(''Eigen values are ''.format(l))
print(''Eigen vectors are ''.format(e.T))

Eigenvalues or vectors can contain
complex numbers involving j =

√
−1.

2.14 Orthogonal (rotation) matrices and their eigenvalues
and eigenvectors
Of all the transforms, rotation transforms have a special intuitive appeal because of

their highly observable behavior in the mechanical world. Furthermore, they play a

significant role in developing and analyzing several machine learning tools. In this

section, we overview rotation (aka orthogonal) matrices. (Fully functional code for the

Jupyter notebook for this section can be found at http://mng.bz/2eNN.)

2.14.1 Rotation matrices

Figure 2.14 shows a point (x , y) rotated about the origin by an angle \ . The original

point’s position vector made an angle U with the X -axis. Post-rotation, the point’s new
coordinates are

(
x
′
, y

′ )
. Note that by definition, rotation does not change the distance

from the center of rotation; that is what the circle indicates.

Some well-known rotation matrices are as follows:

Planar rotation by angle \ about the origin (see figure 2.14):

R2d =


cos \ − sin \

sin \ cos \

 (2.27)

Rotation by angle \ in 3D space about the Z-axis:

R3dz =


cos \ − sin \ 0

sin \ cos \ 0

0 0 1


(2.28)
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(using trigonometric identities)

or

or

or (easily verifiable)

Figure 2.14 Rotation in a plane about the origin. By definition, rotation does not change the distance from
the center of rotation (indicated by the circle).

Note that the z coordinate remains unaffected by this rotation:


cos \ − sin \ 0

sin \ cos \ 0

0 0 1



x

y

z


=


·

·

z


This rotation matrix has an eigenvalue of 1, and the corresponding eigenvector is

the Z-axis—you should verify this. This implies that a point on the Z-axis maps to

itself when transformed (rotated) by the previous matrix, which is in keeping with

the property that the z coordinate remains unchanged by this rotation.

Rotation by angle \ in 3D space about the X-axis:

R3dx =


1 0 0

0 cos \ − sin \

0 sin \ cos \


(2.29)
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Note that the X coordinate remains unaffected by this rotation and the X -axis is
an eigenvector of this matrix:

1 0 0

0 cos \ − sin \

0 sin \ cos \



x

y

z


=


x

·

·


Rotation by angle \ in 3D space about the Y-axis:

R3dy =


cos \ 0 − sin \

0 1 0

sin \ 0 cos \


(2.30)

Note that theY coordinate remains unaffected by this rotation and theY -axis is an
eigenvector of this matrix:

cos \ 0 − sin \

0 1 0

sin \ 0 cos \



x

y

z


=


·

y

·


Listing 2.14 Rotation matrices

Returns the matrix that performs in-plane 2D rotation by angle theta about the origin.
Thus, multiplication with this matrix moves a point to a new location.
The angle between the position vectors of the original and new points is theta (figure 2.14).

def rotation_matrix_2d(theta):
return torch.tensor([[cos(radians(theta)), -sin(radians(theta))],

[sin(radians(theta)), cos(radians(theta))]])

Returns the matrix that rotates a point in 3D space about the chosen axis by angle theta degrees.
The axis of rotation can be 0, 1, or 2, corresponding to the X-, Y-, or Z-axis, respectively.

def rotation_matrix_3d(theta, axis):

if axis == 0: R3dx from equation 2.29

return torch.tensor([[1, 0, 0],
[0, cos(radians(theta)),-sin(radians(theta))],
[0, sin(radians(theta)),cos(radians(theta))]])

elif axis == 1: R3dy from equation 2.30

return torch.tensor([[cos(radians(theta)),0,-sin(radians(theta))],
[0, 1, 0],
[sin(radians(theta)),0,cos(radians(theta))]])

elif axis == 2: R3dz from equation 2.28

return torch.tensor([[cos(radians(theta)),-sin(radians(theta)),0],
[sin(radians(theta)),cos(radians(theta)),0],
[0, 0, 1]])
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Listing 2.15 Applying rotation matrices

u = torch.tensor.array([1, 1, 1], dtype=torch.float)
Creates vector ®u
(see figure 2.15)

R3dz = rotation_matrix_3d(45, 2) R3dz from equation 2.28, 45◦ about Z-axis

v = torch.matmul(R3dz, u_row) ®v (see figure 2.15) is ®u rotated by R3dz .

R3dx = rotation_matrix_3d(45, 0) R3dx from equation 2.28, 45◦ about X -axis

w = torch.matmul(R3dx, u_row) ®w (see figure 2.15) is ®v rotated by R3dx .

Figure 2.15 Rotation visualized. Here the original vector u is first rotated by 45 degrees around the Z-axis
to get vector v, which is subsequently rotated again by 45 degrees around the X-axis to get vector w.

2.14.2 Orthogonality of rotation matrices

A matrix R is orthogonal if and only if it its transpose is also its inverse: that is, RTR =

RRT = I. All rotations matrices are orthogonal matrices. All orthogonal matrices represent some

rotation. For instance:cos \ − sin \

sin \ cos \


T cos \ − sin \

sin \ cos \

 =
 cos \ sin \

− sin \ cos \


cos \ − sin \

sin \ cos \


=

cos2 \ + sin2 \ 0

0 cos2 \ + sin2 \

 =
1 0

0 1

 = I

You are encouraged to verify, likewise, that all the rotation matrices shown here are

orthogonal.

ORTHOGONALITY AND LENGTH-PRESERVATION
Orthogonality implies that rotation is length-preserving. Given any vector ®x and rotation
matrix R, let ®y =R ®x be the rotated vector. The lengths (magnitudes) of the two vectors

®x, ®y are equal since it is easy to see that

‖®y‖ = ®yT ®y =
(
R ®x

)T (
R ®x

)
= ®xTRTR ®x = ®xT I®x = ®xT ®x = ‖ ®x‖
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From elementary matrix theory, we know that

(AB)T =BTAT

NEGATING THE ANGLE OF ROTATION
Negating the angle of rotation is equivalent to inverting the rotation matrix, which is

equivalent to transposing the rotation matrix. For instance, consider in-plane rotation.

Say a point ®x is rotated about the origin to vector ®y via matrix R. Thus

R =


cos \ − sin \

sin \ cos \


®y =R ®x

Now we can go back from ®y to ®x by rotating by −\ . The corresponding rotation matrix is
cos (−\) − sin (−\)

sin (−\) cos (−\)

 =


cos \ sin \

− sin \ cos \

 =RT
In other words, RT inverts the rotation: that is, rotates by the negative angle.

2.14.3 PyTorch code for orthogonality of rotation matrices

Let’s verify the orthogonality of the rotation matrix by creating one in PyTorch, im-

parting a transpose to it, and verifying that the product of the original matrix and the

transpose is the identity matrix.

Listing 2.16 Orthogonality of rotation matrices

R_30 = rotation_matrix_2d(30) Creates a rotation matrix, R30

assert torch.allclose(
torch.linalg.inv(R_30),
R_30.T

)
The inverse of a rotation matrix is
the same as its transpose.

assert torch.allclose(
torch.matmul(R_30, R_30.T),
torch.eye(2)

Multiplying a rotation matrix and its
inverse yields the identity matrix.

)

u = torch.tensor([[4],[0]], dtype=torch.float)

v = torch.matmul(R_30, u)
A vector ®u rotated by matrix R30

to yield vector ®v, R30 ®u = ®v.

assert torch.linalg.norm(u)==torch.linalg.norm(v)

The norm of a vector is the same
as its length. Rotation preserves
the length of a vector ‖R ®u‖ = ‖ ®u‖ .
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R_neg30 = rotation_matrix_2d(-30)
w = torch.matmul(R_neg30, v)

Rotation by an angle followed by rotation by the
negative of that angle takes the vector back to its
original position. Rotation by a negative angle is
equivalent to inverse rotation.assert torch.all(w == u)

assert torch.allclose(R_30, R_neg30.T)
assert torch.allclose(

torch.matmul(R_30, R_neg30),
torch.eye(2))

A matrix that rotates by an angle is the inverse of the
matrix that rotates by the negative of the same angle.

2.14.4 Eigenvalues and eigenvectors of a rotation matrix:
Finding the axis of rotation

Let _ , ®e be an eigenvalue, eigenvector pair of a rotation matrix R. Then

R®e = _ ®e
Transposing both sides,

®eTRT = _ ®eT

Multiplying the left and right sides, respectively, with the equivalent entities R®e and _ ®e,
we get

®eTRT
(
R®e

)
= _ ®eT

(
_ ®e

)
⇔®eT

(
RTR

)
®e = _ 2®eT ®e⇔®eT (I) ®e = _ 2®eT ®e

⇔®eT ®e = _ 2®eT ®e⇔ _ 2 = 1⇔ _ = 1

(The negative solution _ =−1 corresponds to reflection.) Thus, all rotation matrices

have 1 as one of their eigenvalues. The corresponding eigenvector ®e satisfies R®e = ®e. This
is the axis of rotation: the set of points that stay where they were post-rotation.

2.14.5 PyTorch code for eigenvalues and vectors of rotation matrices

The following listing shows the code for the axis of rotation.

Listing 2.17 Axis of rotation

R = torch.tensor([[0.7071, 0.7071, 0],
[-0.7071, 0.7071, 0],

Matrix R =















cos (45◦) sin (45◦) 0

−sin (45◦) cos (45◦) 0

0 0 1















rotates 45◦

about the Z-axis. All rotation matrices will have
an eigenvalue 1. The corresponding eigenvector
is the axis of rotation (here, the Z-axis).

[0, 0, 1]])

l, e = LA.eig(R) The PyTorch function eig() computes eigenvalues and eigenvectors.

The PyTorch function where() returns the indices at which the specified condition is true.

axis_of_rotation = e[:, torch.where(l == 1.0)] Obtains the eigenvector for
eigenvalue 1axis_of_rotation = torch.squeeze(axis_of_rotation)

assert torch.allclose(
axis_of_rotation.real,
torch.tensor([0, 0, 1], dtype=torch.float) The axis of rotation is the Z-axis.
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)

p = torch.randint(0, 10, (1,)) * axis_of_rotation
assert torch.allclose(torch.matmul(R, p.real), p.real)

Takes a random point
on this axis and applies
the rotation to this
point; its position does
not change.

2.15 Matrix diagonalization
In section 2.12, we studied linear systems and their importance in machine learning.

We also remarked that the standard mathematical process of solving linear systems via

matrix inversion is not very desirable from a machine learning point of view. In this

section, we will see one method of solving linear systems without matrix inversion. In

addition, this section will help us develop the insights necessary to understand quadratic

forms and, eventually, principal component analysis (PCA), one of the most important

tools in data science.

Consider an n × n matrix A with n linearly independent eigenvectors. Let S be a

matrix with these eigenvectors as its columns. That is,

A ®e1 = _1 ®e1
A ®e2 = _2 ®e2
...
...

A ®en = _n ®en

and

S =
[
®e1 ®e2 · · · ®en

]
Then

AS = A
[
®e1 ®e2 · · · ®en

]
=

[
A ®e1 A ®e2 · · · A ®en

]
=

[
_1 ®e1 _2 ®e2 · · · _n ®en

]

=

[
®e1 ®e2 · · · ®en

] 
_1 0 · · · 0

0 _2 · · · 0
...

...
...

...

0 0 · · · _n


=SΛ

where

Λ=


_1 0 · · · 0

0 _2 · · · 0
...

...
...

...

0 0 · · · _n


is a diagonal matrix with the eigenvalues of A on the diagonal and 0 everywhere else.

Thus, we have

AS =SΛ
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which leads to

A=SΛS−1

and

Λ= S−1AS

If A is symmetric, then its eigenvectors are orthogonal. Then STS =SST = I⇔S−1 =ST ,
and we get the diagonalization of A:

A=SΛST

Note that diagonalization is not unique: a given matrix may be diagonalized in multiple

ways.

2.15.1 PyTorch code for matrix diagonalization

Now we will study the PyTorch implementation of the math we learned in section 2.15.

As usual, we will only show the directly relevant bit of code here.

NOTE Fully functional code for this section, executable via Jupyter Notebook,

can be found at http://mng.bz/RXJn.

Listing 2.18 Diagonalization of a matrix

def diagonalize(matrix):
Diagonalization is factorizing a matrix A=S�S−1.
S is a matrix with eigenvectors of A as columns.
� is a diagonal matrix with eigenvalues of A in the diagonal.

try:
l, e = torch.linalg.eig(matrix)

The PyTorch function eig() returns
eigenvalues and vectors.

sigma = torch.diag(l)
The PyTorch function diag() creates a diagonal
matrix of given values.

return e, torch.diag(l), torch.linalg.inv(e) Returns the three factors

except np.linalg.LinAlgError:
print(''Cannot diagonalize matrix!'')

A = torch.tensor([[0.7071, 0.7071, 0],
[-0.7071, 0.7071, 0], Creates a matrix A
[0, 0, 1]])

S, sigma, S_inv = diagonalize(A)

A1 = torch.matmul(S, torch.matmul(sigma, S_inv)) Reconstructs A from its factors

assert torch.allclose(A, A1.real)
Verifies that the reconstructed
matrix is the same as the original

2.15.2 Solving linear systems without inversion via diagonalization

Diagonalization has many practical applications. Let’s study one now. In general, matrix

inversion (that is, computing A−1) is a very complex process that is numerically unstable.

Hence, solving A®x = ®b via ®x = A−1 ®b is to be avoided when possible. In the case of a square
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symmetric matrix with n distinct eigenvalues, diagonalization can come to the rescue.

We can solve this in multiple steps. We first diagonalize A:

A=SΛST

Then
A®x = ®b

can be written as: SΛST ®x = ®b

where S is the matrix with eigenvectors of A as its columns:

S =
[
®e1 ®e2 · · · ®en

]
(Since A is symmetric, these eigenvectors are orthogonal. Hence STS =SST = I.) The
solution can be obtained in a series of very simple steps:

S Λ ST ®x︸︷︷︸
y2︸   ︷︷   ︸
y1

= ®b

First solve

S ®y1 = ®b
as

®y1 =ST ®b
Notice that both the transpose and matrix-vector multiplications are simple and numer-

ically stable operations, unlike matrix inversion. Then we get

Λ

(
ST ®x

)
= ®y1

Now solve

Λ ®y2 = ®y1
as

®y2 =Λ−1 ®y1
Note that since Λ is a diagonal matrix, inverting it is trivial:

_1 0 · · · 0

0 _2 · · · 0
...

...
...

...

0 0 · · · _n



−1

=



1
_1

0 · · · 0

0 1
_2

· · · 0
...

...
...

...

0 0 · · · 1
_n


(2.31)

As a final step, solve

ST ®x = ®y2
as

®x =S ®y2
Thus we have obtained ®x without a single complex or unstable step.
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2.15.3 PyTorch code for solving linear systems via diagonalization

Let’s try solving the following set of equations:

x + y + z = 8
2x + 2y + 3z = 15
x + 3y + 3z = 16

This can be written using matrices and vectors as

A®x = ®b

where A=


1 2 1

2 2 3

1 3 3

 ®x =

x
y
z

 ®b =

8

15

16


Note that A is a symmetric matrix. It has orthogonal eigenvectors. The matrix with

eigenvectors of A in columns is orthogonal. Its transpose and inverse are the same.

Listing 2.19 Solving linear systems using diagonalization

A = torch.tensor([[1, 2, 1], [2, 2, 3], [1, 3, 3]],
dtype=torch.float) Creates a symmetric matrix A

assert torch.all(A == A.T) Asserts that Amay be symmetric

b = torch.tensor([8, 15, 16], dtype=torch.cfloat) Creates a vector ®b

x_0 = torch.matmul(torch.linalg.inv(A),
b.real)

Solves A®x = ®b using matrix inversion, ®x = A−1 ®b.
Note: matrix inversion is numerically unstable.

w, S = torch.linalg.eig(A)

Solves A®x = ®b via diagonalization. A=S�ST .
S � ST ®x

︸︷︷︸

y2
︸   ︷︷   ︸

y1

= ®b.

y1 = torch.matmul(S.T, b) 1. Solve: S ®y1 = ®b as ®y1 =ST ®b (no matrix inversion)

y2 = torch.matmul(torch.diag(1/ w), y1)
2. Solve: � ®y2 = ®y1 as ®y2 =�−1 ®y1
(inverting a diagonal matrix is easy; see
equation 2.31.)

x_1 = torch.matmul(S, y2) 3. Solve: ST ®x = ®y2 as ®x =S ®y2 (no matrix inversion)

assert torch.allclose(x_0, x_1.real) Verifies that the two solutions are the same

2.15.4 Matrix powers using diagonalization

If matrix A can be diagonalized, then

A=SΛS−1

A2 =SΛS−1SΛS−1 =SΛIΛS−1 =SΛ2S−1

...

An = · · ·= · · ·=SΛnS−1
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For a diagonal matrix

Λ=



_1 0 · · · 0

0 _2 · · · 0

...
...

...
...

0 0 · · · _n


the nth power is simply

Λn =



_ n
1

0 · · · 0

0 _ n
2

· · · 0

...
...

...
...

0 0 · · · _ nn


If we need to compute various powers of an m ×m matrix A at different times, we

should precompute the matrix S and compute any power with only O (m) operations—
compared to the

(
nm3

)
operations necessary for naive computations.

2.16 Spectral decomposition of a symmetric matrix
We have seen in section 2.15 that a square symmetric matrix with distinct eigenvalues

can be decomposed as

A=SΛST

where

S =
[
®e1 ®e2 · · · ®en

]
Thus,

A=

[
®e1 ®e2 · · · ®en

] 

_1 0 · · · 0

0 _2 · · · 0

...
...

...
...

0 0 · · · _n





®e1T

®e2T
...

®enT


This equation can be rewritten as

A= _1 ®e1 ®e1T + _2 ®e2 ®e2T + · · · + _n ®en ®enT (2.32)

Thus a square symmetric matrix can be written in terms of its eigenvalues and eigenvec-

tors. This is the spectral resolution theorem.

2.16.1 PyTorch code for the spectral decomposition of a matrix

The following listing shows the relevant code for this section.

Listing 2.20 Spectral decomposition of a matrix

def spectral_decomposition(A):
assert len(A.shape) == 2 Asserts that A is a 2D tensor (i.e., matrix)
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and A.shape[0] == A.shape[1]
A is square: i.e.,
A.shape[0] (num rows) , A.shape[1] (num columns)

and torch.all(A == A.T) Asserts that A is symmetric: i.e., A== AT

l, e = torch.linalg.eig(A) The PyTorch function eig() returns eigenvectors and values.

assert len(torch.unique(l.real)) == A.shape[0],
“Eigen values are not distinct!''

C = torch.zeros((A.shape[0],
A.shape[0],

Defines a 3D tensor C of shape n × n × n
to hold the n components from equation 2.32.
Each term , i ®ei ®eT is an n × n matrix. There are n
such terms, all compactly held in tensor C.A.shape[0]))

for i, lambda_i in enumerate(l):
e_i = e[:, i]
e_i = e_i.reshape((3, 1))
C[i, :, :] = (lambda_i * torch.matmul(e_i, e_i.T)).real

Computes
C [i ] = , i ®ei ®eT

return C

A = torch.tensor([[1, 2, 1], [2, 2, 3], [1, 3, 3]]).float()
C = spectral_decomposition(A)

A1 = C.sum(axis=0) Reconstructs A by adding its components stored in C

assert torch.allclose(A, A1)
Verifies that the matrix reconstructed from
spectral components matches the original

2.17 An application relevant to machine learning:
Finding the axes of a hyperellipse
The notion of an ellipse in high-dimensional space (aka hyperellipse) keeps coming

back in various forms in machine learning. Here we will make a preliminary review of

them. We will revisit these concepts later.

Recall the equation of an ellipse from high school math:

x2

a2
+ y

2

b2
= 1

This is a rather simple ellipse: it is two-dimensional and centered at the origin, and its

major and minor axes are aligned with the coordinate axes. Denoting ®x =

x

y

 as the
position vector, the same equation can be written as

®xTΛ®x = 1

where Λ=


1
a2 0

0 1
b2

 is a diagonal matrix. Written in this form, the equation can be

extended beyond 2D to an n-dimensional axis-aligned ellipse centered at the origin.

Now let’s apply a rotation R to the axis. Then every vector ®x transforms to R ®x. The
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equation of the ellipse in the new (rotated) coordinate system is(
R ®x

)T
Λ
(
R ®x

)
= 1

⇔ ®xT
(
RTΛR

)
®x = 1

where A=
(
RTΛR

)
.

The generalized equation of the ellipse is

®xTA®x = 1

Note the following:

The ellipse is no longer axis aligned.

The matrix A is no longer diagonal.

A is symmetric. We can easily verify that AT =
(
RTΛR

)T
=RTΛTR =RTΛR (remem-

ber, the transpose of a diagonal matrix is itself).

If, in addition, we want to get rid of the “centered at the origin” assumption, we get(
®x − `

)T A (
®x − `

)
= 1 (2.33)

Now let’s flip the problem around. Suppose we have a generic n-dimensional ellipse.

How do we compute its axes’ directions?

Clearly, if we can rotate the coordinate system so that the matrix in the middle is

diagonal, we are done. Diagonalization (see section 2.15) is the answer. Specifically,

we find the matrix S with eigenvectors of A in its columns. This is a rotation matrix

(being orthogonal, since A is symmetric). We transform (rotate) the coordinate system

by applying this matrix. In this new coordinate system, the ellipse is axis aligned. Stated

another way, the new coordinate axes—these are the eigenvectors of A—yield the axes

of the ellipse.

2.17.1 PyTorch code for hyperellipses

Let’s try finding the axes of the hyperellipse described by the equation 5x2 + 6xy + 5y2 =
20. Note that the actual ellipse we use as an example is 2D (to facilitate visualization),

but the code we develop will be general and extensible to multiple dimensions.

The ellipse equation can be written using matrices and vectors as ®xTA®x = 1, where

A=


5 3

3 5

 ®x =

x

y


To find the axes of the hyperellipse, we need to transform the coordinate system so

that the matrix in the middle becomes diagonal. Here is how this can be done: if we

diagonalize A into SΣS−1, then the ellipse equation becomes ®xTSΣS−1 ®x = 1, where Σ

is a diagonal matrix. Since A is symmetric, its eigenvectors are orthogonal. Hence,

the matrix containing these eigenvectors as columns is orthogonal: i.e., S−1 =ST . In
other words, S is a rotation matrix. So the ellipse equation becomes ®xTSΣST ®x = 1 or
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®xTS

)
Σ
(
ST ®x

)
= 1 or ®yTΣ®y = 1 where ®y =ST ®x. This is of the desired form since Σ is a

diagonal matrix. Remember, S is a rotation matrix. Thus, rotating the coordinate system

by S aligns the coordinate axes with the ellipse axes.

Listing 2.21 Axes of a hyperellipse

ellipse_eq = sy.Eq(5*x**2 + 5*y**2 +
6*x*y, 20)

Equation of the ellipse: 5x2 + 6xy + 5y2 = 20

or ®xT A®x = 20, where

A=

[

5 3

3 5

]

, ®x =

[

x
y

]

A = torch.tensor([[5, 3], [3, 5]]).float()

l, S = torch.linalg.eig(A)

x_axis_vec = torch.zeros((A.shape[0])) X-axis vector

first_eigen_vec = S[:, 0] Major axis of the ellipse

dot_prod = torch.dot(x_axis_vec, first_eigen_vec)

The dot product between two
vectors is the cosine of the
angle between them.

theta = math.acos(dot_prod)
theta = math.degrees(theta)

The angle between the ellipse’s major axis
and the X-axis: 45◦ (see figure 2.16)

Figure 2.16 Note that the ellipse’s major axis
forms an angle of 45 degrees with the X-axis.
Rotating the coordinate system by this angle will
align the ellipse axes with the coordinate axes.
Subsequently, the first principal vector will also
lie along this direction.

Summary
In machine learning, a vector is a one-dimensional array of numbers and a matrix

is a two-dimensional array of numbers. Inputs and outputs of machine learning

models are typically represented as vectors or matrices. In multilayered models,

inputs and outputs of each individual layer are also represented as vectors or

matrices. Images are two-dimensional arrays of numbers corresponding to pixel

color values. As such, they are represented as matrices.
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An n-dimensional vector can be viewed as point in ℝn space. All models can be

viewed as functions that map points from input to output space. The model is

designed so that it is easier to solve the problem of interest in the output space.

A dot product between a pair of vectors ®x =
[
x1 x2 · · · xn

]
and

®y =
[
y1 y2 · · · yn

]
is the scalar quantity ®x · ®y = x1y1 + x2y2 + · · · + xnyn . It is a mea-

sure of how similar the vectors are. Dot products are widely used in machine

learning. For instance, in supervised machine learning, we train the model so

that its output is as similar as possible to the known output for a sample set

of input points known as training data. Here, some variant of the dot prod-

uct is often used to measure the similarity of the model output and the known

output.

Two vectors are orthogonal if their dot product is zero. This means the vectors

have no similarity and are independent of each other.

A vector’s dot product with itself is the square of the magnitude or length of

the vector ®x · ®x = ‖ ®x‖2 = x1x1 + x2x2 + · · · + xnxn .
Given a set of vectors ®x1, ®x2, · · · , ®xn , the weighted sum a1 ®x1 + a2 ®x2 + · · · + an ®xn (where
a1, a2, · · · , an are arbitrary scalars) is known as a linear combination. In particular,

if the coefficients a1, a2, · · · , an are non-negative and they sum to 1, the linear

combination is called a convex combination.

If it is possible to find a set of coefficients a1, a2, · · · , an , not all zero, such that

the linear combination is a null vector (meaning all its elements are zeros), then

the vectors ®x1, ®x2, · · · , ®xn are said to linearly dependent. On the other hand, if the only

way to obtain a linear combination that is a null vector is to make every coefficient

zero, the vectors are said to be linearly independent.

One important application of matrices and vectors is to solve a system of linear

equations. Such a system can be expressed in matrix vector terms as A®x = ®b, where
we solve for an unknown vector ®x satisfying the equation. This system has an exact

solution if and only if A is invertible. Thismeans A is a squarematrix (the number of

rows equals the number of columns) and the row vectors are linearly independent.

If the row vectors are linearly independent, so are the column vectors, and vice

versa. If the rows and columns are linearly independent, the determinant of A
is guaranteed to be nonzero. Hence, linear independence of rows/columns and

nonzero determinant are equivalent conditions. If any one of them is satisfied, the

linear system has an exact and unique solution.

In practice, this requirement is often not met, and we have an over- or under-

determined system. In such situations, the Moore-Penrose inverse leads to a form

of best approximation. Geometrically, the Moore-Penrose method yields the point

that is closest to ®b in the space of vectors spanned by columns of A. Equivalently,
the Moore-Penrose solution ®x∗ yields the point closest to ®b on the space of vectors

spanned by the columns of A.
For a square matrix A, if and only if Aê = _ ê, we say _ is an eigenvalue (a scalar) and

ê is an eigenvector (a unit vector) of A. Physically, the eigenvector ê is a unit vector
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whose direction does not change when transformed by thematrix A. The transform
can magnify its length by the scalar scale factor _ , which is the eigenvalue.

An n × n matrix A has n eigenvalue/eigenvector pairs. The eigenvalues need not
all be unique. The eigenvectors corresponding to different eigenvalues are linearly

independent. If the matrix A is symmetric, satisfying AT = A, the eigenvectors

corresponding to different eigenvalues are orthogonal.

A rotation matrix is a matrix in which the rows are orthogonal to each other

and so are the columns. Such a matrix is also known as an orthogonal matrix. An

orthogonal matrix R satisfies the equation RTR = I, where I is the identity matrix.

In the special case when the matrix A is a rotation matrix R, one of the eigenvalues
is always 1. The corresponding eigenvector is the axis of rotation.

A matrix A with n linearly independent eigenvectors can be decomposed as

A=SΛS−1, where S =
[
®e1 ®e2 · · · ®en

]
is the matrix with eigenvectors of A as its

columns and Λ is a diagonal matrix with the eigenvalues of A as its diagonal. This

decomposition is called matrix diagonalization and leads to a numerically stable

way to solve linear systems.

A square symmetric matrix A can be expressed in terms of its eigenvectors and

eigenvalues as A= _1 ®e1 ®e1T + _2 ®e2 ®e2T + · · · + _n ®en ®enT . This is known as the spectral

decomposition of the matrix A.



3Classifiers and
vector calculus

We took a first look at the core concept of machine learning in section 1.3. Then, in

section 2.8.2, we examined classifiers as a special case. But so far, we have skipped

the topic of error minimization: given one or more training examples, how do we

adjust the weights and biases to make the machine closer to the desired ideal? We

will study this topic in this chapter by discussing the concept of gradients.

NOTE The complete PyTorch code for this chapter is available at http://mng.bz

/4Zya in the form of fully functional and executable Jupyter notebooks.

3.1 Geometrical view of image classification
To fix our ideas, consider a machine that classifies whether an image contains a car

or a giraffe. Such classifiers, with only two classes, are known as binary classifiers. The

first question is how to represent the input.

3.1.1 Input representation

The car-versus-giraffe scenario belongs to a special class of problems where we are

analyzing a visual scene. Here, the inputs are the brightness levels of various points in

the 3D scene projected onto a 2D image plane. Each element of the image represents

a point in the actual scene and is referred to as a pixel. The image is a two-dimensional

array representing the collection of pixel values at a given instant in time. It is usually

scaled to a fixed size, say 224× 224. As such, the image can be viewed as a matrix:

83
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X =


X0,0 X0,1 · · · X0,223

X1,0 X1,1 · · · X1,223
...

...
...

...

X223,0 X223,1 · · · X223,223


Each element of the matrix, Xi , j , is a pixel color value in the range [0, 255].

IMAGE RASTERIZATION
In the previous chapters, we have always seen a vector as the input to a machine learning

system. The vector representation of the input allowed us to view it as a point in a

high-dimensional space. This led to many geometric insights about classification. But

here, our input is an image, which is akin to a matrix rather than a vector. Can we

represent an image (matrix) as a vector?

The answer is yes. A matrix can always be converted into a vector by a process called

rasterization. During rasterization, we iterate over the elements of the matrix from left to

right and top to bottom, storing successive encountered elements into a vector. The

result is the rasterized vector. It has the same elements as the original matrix, but they

are organized differently. The length of the rasterized vector is equal to the product of

the row count and column count of the matrix. The rasterized vector for the earlier

matrix X has 224× 224= 50176 elements ®x =



x0 =X0,0

x1 =X0,1
...

x223 =X0,223

x224 =X1,0

x225 =X1,1
...

x50175 =X223,223



where xi ∈ [0, 255] are

values of the image pixels. Thus, a 224× 224 input image can be viewed as a vector

(equivalently, a point) in a 50,176-dimensional space.

3.1.2 Classifiers as decision boundaries

We see that input images can be converted to vectors via rasterization. Each vector can

be viewed as a point in a high-dimensional space. But the points corresponding to any

given object or class, say giraffe or car, are not distributed randomly all over the space.

Rather, they occupy a small portion (subspace) in the vast high-dimensional space of

inputs. This is because there is always inherent commonality in members of a class.

For instance, all giraffes are predominantly yellow with a bit of black, and cars have

a somewhat fixed shape. This causes the pixel values in images containing the same

object to have somewhat similar values. Overall, this means points belonging to a class

loosely form a cluster.
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NOTE Geometrically speaking, a classifier is a hypersurface that separates the

point clusters for the classes we want to recognize. This surface forms a decision

boundary—the decision about which class a specific input point belongs to is made

by looking at which side of the surface the point belongs to.

Figure 3.1a shows an example of a rasterized space for the giraffe and car classification

problem. The points corresponding to a giraffe are marked g, and those corresponding

to a car are marked c. This is a simple case. Here, the classifier surface (aka decision

boundary) that separates the cluster of points corresponding to car from those corre-

sponding to giraffe is a hyperplane, depicted in figure 3.1a.

NOTE We often call surfaces hypersurfaces and planes hyperplanes in greater than

three dimensions.
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Figure 3.1 Geometric depiction of a classification problem. In the multidimensional input space, each
data instance corresponds to a point. In figure 3.1a, the points marked c denote cars, and points marked
g denote giraffes. This is a simple case: the points form reasonably distinct clusters, so the classifica-
tion can be done with a relatively simple surface, a hyperplane. The exact parameters of the hyperplane—
orientation and position—are determined via training. In figure 3.1b, the points marked h denote horses,
and those marked z denote zebras. This case is a bit more difficult: the classification has to be done with
a curved (nonplanar) surface, a hypersphere. The parameters of the hypersphere—radius and center—are
determined via training.
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Figure 3.1b shows a more difficult example: horse and zebra classification in images.

Here the points corresponding to horses are marked h and those corresponding to

zebras are marked z. In this example, we need a nonlinear (curved) surface (such as a

hypersphere) to separate the two classes.

3.1.3 Modeling in a nutshell

Unfortunately, in the typical scenario, we do not know the separating surface. In fact, we

do not even know all the points belonging to a class of interest. All we know is a sampled

set of inputs ®xi (training inputs) and corresponding classes ®̄yi (the ground truth). The

complete set of training inputs plus ground truth—
{
®xi , ®̄yi

}
for a large set of i values—is

called the training data. When we want to teach a baby to recognize a car, we show the

baby several example cars and say “This is a car.” The training data plays the same role

for a neural network.

From only this training dataset
{
®xi , ®̄yi

}
∀i ∈ [1, n], we have to identify a good enough

approximation of the general classifying surface that when presented with a random

scene, we can map it to an input point ®x, check which side of the surface that point lies

on, and identify the class (car or giraffe). This process of developing a best guess for

a surface that forms a decision boundary between various classes of interest is called

modeling the classifier.

NOTE The ground truth labels (®̄yi) for the training images ®xi are often created

manually. This process of manually generating labels for the training images is

one of the most painful aspects of machine learning, and significant research

effort is going on at the moment to mitigate it.

As indicated in section 1.3, modeling has two steps:

1 Model architecture selection: Choose the parametric model function q
(
®x; ®w , b

)
. This

function takes an input vector ®x and emits the class y. It has a set of parameters

®w, b, which are unknown at first. This function is typically chosen from a bank

of well-known functions that are tried and tested; for simple problems, we may

choose a linear model, and for more complex problems, we choose nonlinear

models. The model designer makes the choice based on their understanding of

the problem. Remember, at this point the parameters are still unknown—we have

only decided on the function family for the model.

2 Model training: Estimate the parameters ®w , b such that q emits the known correct

output (as closely as possible) on the training data inputs. This is typically done via

an iterative process. For each training data instance ®xi , we evaluate yi = q
(
®xi ; ®w , b

)
.

This emitted output is compared with the corresponding known outputs ȳi . Their
difference, ei = ‖yi − ȳi ‖, is called the training error. The sum of training errors over

all training data is the aggregate training error. We iteratively adjust the parameters

®w, b such that the aggregate training error keeps going down. This means at each

iteration, we adjust the parameters so the model output yi moves a little closer to

the target output ȳi for all i. Exactly how to adjust the parameters to reduce the

error forms the bulk of this chapter and will be introduced in section 3.3.
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The function q
(
®x; ®w , b

)
represents the decision boundary hypersurface. For example,

in the binary classification problem depicted in figure 3.1, q
(
®x; ®w , b

)
may represent a

plane (shown by the dashed line). Points on one side of the plane are classified as cars,

while points on the other side are classified as giraffes. Here,

q
(
®x; ®w , b

)
= ®wT ®x + b

From equation 2.14 we know this equation represents a plane.

In figure 3.1b, a good planar separation does not exist—we need a nonlinear separa-

tor, such as the spherical separator shown with dashed lines. Here,

q
(
®x; ®w , b

)
= ®xT



w0 0 · · · 0

0 w1 · · · 0

...
...

...
...

0 0 · · · wn


®x + b = 0

This equation represents a sphere.

It should be noted that in typical real-life cases, the separating surface does not

correspond to any known geometric surface (see figure 3.2). But in this chapter, we will

continue to use simple examples to bring out the underlying concepts.
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Figure 3.2 In real-life problems, the
separating surface is often not a well-known
surface like a plane or sphere. And often,
the classification is not perfect—some points
fall on the wrong side of the separator.
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3.1.4 Sign of the surface function in binary classification

In the special case of binary classifiers, the sign of the expression q
(
®x; ®w , b

)
representing

the decision boundary has a special significance. To see this, consider a line in a 2D

plane corresponding to the equation

y + 2x + 1= 0

All points on the line have x , y coordinate values satisfying this equation. The line divides
the 2D plane into two half planes. All points on one half plane have x , y values such
that y + 2x + 1 is negative. All points in the other half plane have x , y values such that

y + 2x + 1 is positive. This is shown in figure 3.3. This idea can be extended to other

surfaces and higher dimensions. Thus, in binary classification, once we have estimated

an optimal decision surface q
(
®x; ®w , b

)
, given any input vector ®x, we can compute the

sign of q
(
®x; ®w , b

)
to predict the class.

Figure 3.3 Given a point (x0 , y0) and a separator y + 2x + 1= 0, we can tell which side of the separator
the point lies on from the sign of y0 + 2x0 + 1.

3.2 Error, aka loss function
As stated earlier, during training, we adjust the parameters ®w , b so that the error keeps

going down. Let’s derive a quantitative expression for this error (aka loss function).

Later, we will see how to minimize it.
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Overall, training data consists of a set of labeled inputs (training data instances paired

with known ground truths):

( ®x (0) , ȳ (0) )
( ®x (1) , ȳ (1) )
... ,

...
( ®x (N ) , ȳ (N ) )

Now we define a loss function. On a specific training data instance, the loss function

effectively measures the error made by the machine on that particular training data—

input-target pair
(
®x (i ) , y (i )

)
. Although there are many sophisticated error functions

more suitable for this problem, for now, let’s use a squared error function for the sake

of simplicity (introduced in section 2.5.4). The squared error on the ith training data

element is the squared difference between the output yielded by the model and the

expected or target output: (
e (i )

)2
=

(
q

(
®x (i ) ; ®w , b

)
− y (i )

)2
(3.1)

The total loss (aka squared error) during training is

L
(
®w , b

)
=E2

(
®w , b

)
=

i=N∑
i=0

(
e (i )

)2
(3.2)

Note that this total error is not a function of any specific training data instance. Rather,

it is the overall error over the entire training data set. This is what we minimize by adjusting

®w and b. To be precise, we estimate the ®w and b that will minimize L
(
®w , b

)
.

3.3 Minimizing loss functions: Gradient vectors
The goal of training is to estimate the weights and bias parameter ®w , b that will minimize

L. This is usually done by an iterative process. We start with random values of ®w , b and
adjust these values so that the loss L

(
®w , b

)
=E2

(
®w , b

)
declines rapidly. Doing this many

times is likely to take us close to the optimal values for ®w , b. This is the essential idea
behind the process of training a model. It is important to note that we are minimizing

the total error: this prevents us from over-indexing on any particular training instance.

If the training data is a well-sampled set, the parameters ®w , b that minimize loss over

the training dataset will also work well during inferencing.

How do we “adjust” ®w , b so that the value of loss L=E2 declines? This is where

gradients come in. For any function L
(
®w , b

)
, the gradient with respect to ®w , b—that is,

∇®w ,bL
(
®w , b

)
—indicates the direction along which the maximum change in L occurs.

The gradient is the analog of a derivative in 1D calculus. Intuitively, going down along

the direction of the gradient of a function seems like the best strategy for minimizing

the function value.

Geometrically speaking, if we start at an arbitrary point on the surface corresponding

to L
(
®w , b

)
and move along the direction of the gradient ∇®w ,bL

(
®w , b

)
, we will go toward

the minimum at the fastest rate (this is discussed in detail throughout the rest of this
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section). Hence, during training, we iteratively move toward the minimum by taking

steps along ∇®w ,bL
(
®w , b

)
. Note that the gradient is with respect to weights, not the input. The

overall algorithm is shown in algorithm 3.1.

Algorithm 3.1 Training a supervised model (overall idea)

Initialize ®w , b with random values

while L
(
®w , b

)
> threshold do

®w

b

 =

®w

b

 − `∇®w ,bL
(
®w , b

)
Recompute L on new ®w , b.

end while

®w∗ ← ®w, b∗ ← b

Note the following points:

In each iteration, we are adjusting ®w , b along the gradient of the error function.
We will see in section 3.3 that this is the direction of maximum change for L. Thus,
L is reduced at a maximal rate.

` is the learning rate: larger values imply longer steps, and smaller values imply

shorter steps. The simplest approach, outlined in algorithm 3.1, takes equal-sized

steps everywhere. In later chapters, we will study more sophisticated approaches

where we try to sense how close to the minimum we are and vary the step size

accordingly:

– We take longer steps when far from the minimum, to progress quickly.

– We take shorter steps when near the minimum, to avoid overshooting it.

Mathematically, we should keep iterating until the loss becomes minimal (that is,

the gradient of the loss is zero). But in practice, we simply iterate until the accuracy

is good enough for the purpose at hand.

3.3.1 Gradients: A machine learning-centric introduction

In machine learning, we model the output as a parametric function of the inputs. We

define a loss function that quantifies the difference between the model output and the

known ideal output on the set of training inputs. Then we try to obtain the parameter

values that will minimize this loss. This effectively identifies the parameters that will

result in the model function emitting outputs as close as possible to the ideal on the set

of training inputs.

The loss function depends on ®x (the model inputs), ȳ (the known ideal outputs on

the training data—aka ground truth), and ®w (the parameters). Here only the behavior

of the loss function with respect to the parameters is of interest to us, so we are ignoring

everything else and denoting the loss function as a function of the parameters as L
(
®w
)
.

NOTE For the sake of brevity, here we use the symbolw to denote all parameters—

weight as well as bias.
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The core question we are trying to answer is this: given a loss L
(
®w
)
and current para-

meter values ®w, what is the optimal change in the parameters ®Xw that maximally reduces

the loss? Equivalently, we want to determine ®Xw that will make XL=L
(
®w + ®Xw

)
−L

(
®w
)

as negative as possible. Toward that goal, we will study the relationship between the loss

function L (w) and change in parameter values ®Xw in several scenarios of increasing

complexity.1

ONE-DIMENSIONAL LOSS FUNCTIONS
For simplicity, we begin by examining this topic in one dimension—meaning there

is a single parameter w. The first example we will study is the simplest possible case:

a linear one-dimensional loss function, shown in figure 3.4a. A linear loss function

in one dimension can be written as L (w) =mw + c. If we change the parameter w
by a small amount Xw, what is the corresponding change in loss XL? We have XL=

L (w + Xw) −L (w) = (m (w + Xw) + c) − (m (w) + c) =m Xw which gives us XL
Xw =m, a con-

stant. By definition, the derivative dL
dw = limXw→0

XL
Xw , which leads to dL

dw =m. Thus, for
the straight line L (w) =mw + c, the rate of change of L with respect to w is constant

everywhere and equals the slope m. Putting all this together, we get XL=mXw = dL
dw Xw.

Let’s now study a slightly more complex, non-linear but still one dimensional case—a

parabolic loss function illustrated in figure 3.4b. This parabola can be written as L (w) =
w2. If we change the parameter w by a small amount Xw, what is the corresponding
change in in loss XL? We have XL=L (w + Xw) −L (w) = (w + Xw)2 −w2 =

(
2wXw + Xw2

)
.

For infinitesimally small Xw, Xw2 becomes negligibly small and we get limXw→0 XL=

limXw→0

(
2wXw + Xw2

)
= 2wXw and dL

dw = limXw→0
XL
Xw = 2w. Combining all these we get

the same equation as the linear case XL= dL
dw Xw. Of course, in case of the straight line

this expression holds for all Xw while in the non-linear curves the expression holds only

for small Xw.

%L and %w
In general, for all one-dimensional loss functions L (w), the change XL caused by a
change Xw in parameters can be expressed as follows:

XL=
dL
dw

Xw (3.3)

To decrease L, XL must be negative. From equation 3.3, we can see that this requires
Xw (change in w) and dL

dw (derivative) to have opposite signs.

Geometrically speaking, the loss function represents a curve with the loss L (w) plotted
along theY axis against the parameter w plotted along the X axis (see figure 3.4 for

examples). The tangent at any point can be viewed as the local approximation to the

curve itself for an infinitesimally small neighborhood around the point. The derivative

at any point represents the slope of the tangent to the curve at that point.

1 If the change in a quantity such as w is infinitesimally small, we use the symbol dw to denote the change. If
the change is small but not infinitesimally so, we use the symbol Xw.
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(a) Line: L (w) = 2w + 1, dLdw =m

(b) Parabola: L (w) =w2, dLdw = 2w

Figure 3.4 %L in terms of %w in one dimension, illustrated with two example curves: a straight line and a
parabola. In general, %L= dL

dw %w. To decrease loss, %w must have the opposite sign of the derivative dL
dw .

In (a), this implies we always have to move left (decreasew) to decrease L. In (b), if we are in the left half
(e.g., point Q), the derivative is negative, and we have to move to the right to decrease L. But if we are in
the right half, the derivative is positive, and we have to move to the left to decrease L. Geometrically, this
is equivalent to following the tangent “downward.”
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NOTE Equation 3.3 basically tells us that to reduce the loss value, we have to follow

the tangent, moving to the right (i.e., positive Xw) if the derivative is negative and
moving to the left (i.e., negative Xw) if the derivative is positive.

MULTIDIMENSIONAL LOSS FUNCTIONS
If there are many tunable parameters, our loss function will be a function of many vari-

ables, which implies that we have a high-dimensional vector ®w and a loss function L
(
®w
)
.

Our goal is to compute the change XL in L
(
®w
)
caused by a small vector displacement ®Xw.

We immediately note a fundamental difference from the one-dimensional case: the

parameter change is a vector, ®Xw, which has not only a magnitude denoted ‖ ®Xw‖ but
also a direction denoted by the unit vector X̂w. We can take a step of the same size in the

w space, and the change in L
(
®w
)
will be different for different directions. The situation

is illustrated in figure 3.5, which shows an example loss function L
(
®w
)
≡L (w0 , w1) =

2w2
0
+ 3w2

1
for two independent variablesw0 andw1. Let’s examine how this loss function

changes with a few concrete examples.

Figure 3.5 Plot for sur-
face L

(

®w
)

≡L (w0 ,w1)

= 2w2
0
+ 3w2

1
against ®w ≡ (w0 ,w1) . Froman

example point P ≡ (w0 = 3,w1 = 4, L= 66)

on the surface, we can travel
in many directions to reduce L.
Some of these are shown by
arrows. The maximum reduction
occurs when we travel along the
dark arrow: this happens when ®w
is changed along ®%w = [−12, −24]T,
which is the negative of the gradient of
L
(

®w
)

at P .

Suppose we are at ®w =


w0 = 3

w1 = 4

 . The corresponding value of L
(
®w
)
is 2 ∗ 32 + 3 ∗ 42 = 66.

Now, suppose we undergo a small displacement from this point: ®Xw =


0.0003

0.0004

 . The new
value is L

(
®w + ®Xw

)
=L (3.0003, 4.0004) = 2 ∗ 3.00032 + 3 ∗ 4.00042 ≈ 66.0132066. Thus

this displacement vector ®Xw =

0.00030.0004

 causes a change XL= 66.01320066− 66=

0.01320066 in L.
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On the other hand, if the displacement vector is ®Xw =

0.00040.0003

 , we get L
(
®w + ®Xw

)
=

L (3.0004, 4.0003) = 2 ∗ 3.00042 + 3 ∗ 4.00032 ≈ 66.0120006. Thus, this displacement

vector causes a change XL= 66.0120006− 66= 0.0120006 in L. The displacement

vectors ®Xw =

0.00030.0004

 and ®Xw =

0.00040.0003

 have the same length
√
0.00032 + 0.00042 =

√
0.00042 + 0.00032 = 0.0005 but different directions. The change they cause to the func-

tion value is different. This exemplifies our thesis that in multivariable loss function,

the change in the loss function depends not only on the magnitude but also on the

direction of the displacement in the parameter space.

What is the general relationship between the displacement vector ®Xw in the parameter

space and the overall change in loss L
(
®w
)
? To examine this question, we need to know

what a partial derivative is.

PARTIAL DERIVATIVES
The derivative dL

dw of a function L (w) indicates the rate of change of the function

with respect to w. But if L is a function of many variables, how does it change if

only one of those variables is changed? This question leads to the notion of partial

derivatives.

The partial derivative of a function of many variables is a derivative taken with respect

to exactly one variable, treating all other variables as constants. For instance, given

L
(
®w
)
≡L (w0 , w1) = 2w2

0
+ 3w2

1
, the partial derivatives with respect to w0 , w1 are

mL
mw0

= 4w0

mL
mw1

= 6w1

TOTAL CHANGE IN A MULTIDIMENSIONAL FUNCTION
Partial derivatives estimate the change in a function if a single variable changes and

the others stay constant. How do we estimate the change in a function’s value if all the

variables change together?

The total change can be estimated by taking a weighted combination of the partial

derivatives. Let ®w and ®Xw denote the point and the displacement vector, respectively:

®w =



w0

w1

...

wn


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®Xw =



Xw0

Xw1

...

Xwn


Then

XL
(
®w
)
=L

(
®w + ®Xw

)
−L

(
®w
)

=
mL
mw0

Xw0 +
mL
mw1

Xw1 + · · · +
mL
mwn

Xwn (3.4)

Equation 3.4 essentially says that the total change in L is obtained by adding up the

changes caused by displacements in individual variables. The rate of change of L with

respect to the change in wi only is mL
mwi

. The displacement along the variable wi is Xwi .
Hence, the change caused by the ith element of the displacement is mL

mwi
Xwi— this

follows from equation 3.3. The total change is obtained by adding the changes caused

by individual elements of the displacement vector: that is, summing over all i from 0 to

n. This leads to equation 3.4. Thus equation 3.4 is simply the multidimensional version

of equation 3.3.

GRADIENTS
It would be nice to be able to represent equation 3.4 compactly. To do this, we define a

quantity called a gradient: the vector of all the partial derivatives.

Given an n-dimensional function L
(
®w
)
, its gradient is defined as

∇L
(
®w
)
=



mL
mw0

mL
mw1

...
mL
mwn


(3.5)

Using gradients, we can rewrite equation 3.4 as

XL
(
®w
)
=L

(
®w + ®Xw

)
−L

(
®w
)

=
mL
mw0

Xw0 +
mL
mw1

Xw1 + · · · +
mL
mwn

Xwn

=
(
∇L

(
®w
) )T ®Xw =∇L

(
®w
)
· ®Xw (3.6)

Equation 3.6 tells us that the total change, XL in L
(
®w
)
, caused by displacement ®Xw

from ®w in parameter space is the dot product between the gradient vector ∇L
(
®w
)
and

the displacement vector ®Xw. This is the exact multidimensional analog of equation 3.3.
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Recall from section 2.5.6 that the dot product of two vectors (of fixed magnitude)

attains a maximum value when the vectors are aligned in direction. This yields a physical

interpretation of the gradient vector: its direction is the direction in parameter space

along which the multidimensional function is changing fastest. It is the multidimensional

counterpart of the derivative. This is why, inmachine learning, whenwe want tominimize

the loss function, we change the parameter values along the direction of the gradient

vector of the loss function.

THE GRADIENT IS ZERO AT THE MINIMUM
Any optimum (that is, maximum or minimum) of a function is a point of inflection. This

means the function turns around at the optimum point. In other words, the gradient

direction on one side of the optimum is the opposite of that on the other side. If we try

to travel smoothly from positive values to negative values, we must cross zero somewhere

in between. Thus, the gradient is zero at the exact point of inflection (maximum or

minimum). This is easiest to see in 2D and is depicted in figure 3.6. However, the idea

is general: it works in higher dimensions, too. The fact that the gradient becomes zero

at the optimum is often used to algebraically compute the optimum. The following

example illustrates this.

P– gradient
(slope of tangent) 
is negative

P+ gradient
(slope of tangent) 
is positive

P0 gradient
(slope of tangent) 
is zero

Gradient

Minimum

Figure 3.6 The minimum is always a
point of inflection, meaning the func-
tion turns around at that point. If we
consider any two points P− and P+
on both sides of the minimum, the
gradient is positive on one side and
negative on the other. Assuming the
gradient changes smoothly, it must
be zero in between, at the minimum.

Consider the simple example function L(w0 , w1) =
√
w2
0
+w2

1
. Its optimum occurs when

its gradient is zero:

∇®wL=


mL
mw0

mL
mw1

 =
1

2
√
w2
0
+w2

1


2w0

2w1

 =

0

0


The solution is

w0 = 0, w1 = 0

The function attains its minimum value at the origin, which agrees with our intuition.
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3.3.2 Level surface representation and loss minimization

In figure 3.5, we plotted the loss function L
(
®w
)
against the parameter values ®w. In this

section, we study a different way of visualizing loss surfaces. This will lend further insight

into gradients and minimization.

We will continue with our simple example function from the last subsection. Consider

a field L(w0 , w1) =
√
w2
0
+w2

1
. Its domain is the infinite 2D plane defined by the axesW0

andW1. Note that the function has constant values along concentric circles centered

on the origin. For instance, at all points on the circumference of the circle w2
0
+w2

1
= 1,

the function has a constant function value of 1. At all points on the circumference of

the circle w2
0
+w2

1
= 25, the function has a constant function value of 5. Such constant

function value curves on the domain are called level contours in 2D. This is shown as a heat

map in figure 3.7. The idea of level contours can be generalized to higher dimensions

where we have level surfaces or level hypersurfaces. Note that while the ®w , L
(
®w
)
in figure

3.5 was on an (n + 1)-dimensional space (where n is the dimensionality of ®w), the level
surface/contour representation is in n-dimensional space. At any point on the domain,

what is the direction along which the biggest change in the function value occurs? The

answer is along the direction of the gradient. The magnitude of the change corresponds

to the magnitude of the gradient. In the current example, say we are at a point (w0 , w1).
There exists a level contour through this point: the circle with origin at the center

passing through (w0 , w1). If we move along the circumference of this circle—that is,

along the tangent to this circle—the function value does not change. In other words, at

any point, the tangent to the level contour through that point is the direction of minimal

change. On the other hand, if we move perpendicular to the tangent, maximum change in

the function value occurs. The perpendicular to the tangent is known as a normal. This

is the direction of the gradient. The gradient at any point on the domain is always normal to

the level contour through that point, indicating the direction of maximum change in the function

value. In figure 3.7, the gradients are all parallel to the radii of the concentric circles.

Recall that while training a machine learning model, we essentially define a loss

function in terms of a tunable set of parameters and try to minimize the loss by adjusting

(tuning) the parameters. We start at a random point and iteratively progress toward

the minimum. Geometrically, this can be viewed as starting at an arbitrary point on

the domain and continuing to move in a direction that minimizes the function value.

Of course, we would like to progress to the minimum of the function value in as few

iterations as possible. In figure 3.7, the minimum is at the origin, which is also the center

of all the concentric circles. Wherever we start, we will have to always travel radially

inward to reach the minimum (0, 0) of the function
√
w2
0
+w2

1
.

In higher dimensions, level contours become level surfaces. Given any function

L
(
®w
)
with ®w] ∈ℝn, we define level surfaces as L

(
®w
)
= constant. If we move along the

level surface, the change in L
(
®w
)
is minimal (0). The gradient of a function at any

point is normal to the level surface through that point. This is the direction along

which the function value is changing fastest. Moving along the gradient, we pass

from one level surface to another, as shown in figure 3.8. Here the function is
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Figure 3.7 The domain of L(w0 ,w1) =
√

w2
0
+w2

1
shown as a heat map of func-

tion values. Gradients point radially
outward, as shown by the arrowed line.
The intensity of the heat map changes
fastest along the gradient (that is, radii).
This is the direction to follow to rapidly
reach lower values of the function
represented by the heat map.

Figure 3.8 Gradient example in 3D: the function L (w0 ,w1 ,w2) =L
(

®w
)

=w2
0
+w2

1
+w2

2
. The level

surfaces L
(

®w
)

= constant are concentric spheres with the origin as their center. One such surface is
partially shown in the diagram. ∇L

(

®w
)

= k [w0 w1 w2 ]
T—the gradient points radially outward. Moving

along the gradient, we go from one level surface to another, corresponding to maximum change in
L
(

®w
)

. Moving along any direction orthogonal to the gradient, we stay on the same level surface (sphere),
which corresponds to zero change in the function value.D)

(

®w
)

denotes the directional derivative along

the displacement direction making angle ) with the gradient. If l̂ denotes this displacement direction,
D)

(

®w
)

=∇L
(

®w
)

· l̂.
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3D: L
(
®w
)
=L (w0 , w1 , w2) =w2

0
+w2

1
+w2

2
. The level surfaces w2

0
+w2

1
+w2

2
= constant for

various values of the constant are concentric spheres, with the origin as their center.

The gradient vector at any point is along the outward-pointing radius of the sphere

through that point.

Another example is shown in figure 3.9. Here the function is 3D: L
(
®w
)
= f (w0 , w1 ,

w2) =w2
0
+w2

1
. The level surfaces w2

0
+w2

1
= constant for various values of the constant

are coaxial cylinders, withw2 as the axis. The gradient vector at any point is along the

outward-pointing radius of the planar circle belonging to the cylinder through that point.

Figure 3.9 Gradient example in 3D: the function L (w0 ,w1 ,w2) =L
(

®w
)

=w2
0
+w2

1
. The level surfaces

f
(

®w
)

= constant are coaxial cylinders. One such surface is partially shown in the diagram: ∇L
(

®w
)

=

k [w0 w1 0]T . The gradient is normal to the curved surface of the cylinder along the outward radius
of the circle. Moving along the gradient, we go from one level surface to another, corresponding to the
maximum change in L

(

®w
)

. Moving along any direction orthogonal to the gradient, we stay on the
same level surface (cylinder), which corresponds to zero change in the function value.

So far, we have studied the change in loss value resulting from infinitesimally small

displacements in the parameter space. In practice, the programmatic displacements

undergone during parameter updates while training are small, but not infinitesimally

so. Is there any way to improve the approximation in these cases? This is discussed in

the following section.

3.4 Local approximation for the loss function
Equation 3.6 expresses the change XL in the loss value corresponding to displacement
®Xw in the parameter space. The equation is exactly true if and only if the loss function
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is linear or the magnitude of the displacement is infinitesimally small. In practice, we

adjust parameter values by small—but not infinitesimally small—amounts. Under these

circumstances, equation 3.6 is only approximately true: the larger the magnitude of

‖ ®Xw‖, the worse the approximation.

A Taylor series offers a way to approximate a multidimensional function in the

local neighborhood of any point by expressing it in terms of the displacements in the

parameter space. It is an infinite series, meaning the equation is exactly true (zero

approximation) only when we have summed an infinite number of terms. Of course, we

cannot add an infinite number of terms with a computer program. But we can improve

the accuracy of the approximation as much as we like by including more and more

terms. In practice, we include at most up to the second term. Anything beyond that is

redundant because the improvement is too small to be realized by the floating point

system of current computers. First we will study a Taylor series in one dimension.

3.4.1 1D Taylor series recap

Suppose we are trying to describe the curve L (w) in the neighborhood of a particular

point w. If we stay infinitesimally close to w, then, as described in section 3.3, we can

approximate the curve with a straight line:

L (w + Xw) =L (w) + dL
dw

Xw

But in the general case, if we are describing a continuous (smooth) function in the

neighborhood of a specific point, we use a Taylor series. A Taylor series allows us to

describe a function in the neighborhood of a specific point in terms of the value of the

function and its derivatives at that point. Doing so is relatively simple in 1D:

L (w + Xw) =L (w) + (Xw)
1!

dL
dw
+ (Xw)

2

2!
d2L
dw2
+ · · · (3.7)

Note that the terms become progressively smaller (since they involve higher and higher

powers of a small number Xw). Hence, although the series goes on to infinity, in practice

we entail a negligible loss in accuracy by dropping higher-order terms. We often use the

first-order approximation (or, at most, second-order). Equation 3.7 can be rewritten as

XL=L (w + Xw) −L (w) = (Xw)
1!

dL
dw
+ (Xw)

2

2!
d2L
dw2
+ · · ·

Note that the second term has (Xw)2 as a factor, which is nearly zero at small values of

the displacement Xw. So, for really small Xw, we include only the first term. Then we get

XL=
(Xw)
1!

dL
dw , which is the same as equation 3.3. If Xw is a bit larger and we want greater

accuracy, we can include the second-order term. In practice, as mentioned earlier, that

is hardly ever done.

A handy example of a Taylor series is the expansion of the exponential function ex

near x = 0
et = e0+t = 1+ t + t

2

2! +
t3

3! · · ·

where we use the fact that dn
dxn (e

x) |x=0 = ex |x=0 = 1 for all n.
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3.4.2 Multidimensional Taylor series and the Hessian matrix

In equation 3.7, we express a function of one variable in a small neighborhood around

a point in terms of the derivatives. Can we do a similar thing in higher dimensions? Yes.

We simply need to replace the first derivative with the gradient. We replace the second

derivative with its multidimensional counterpart: the Hessian matrix. The multidimen-

sional Taylor series is as follows

L
(
®w + ®Xw

)
=L

(
®w
)
+ 1

1!

(
®Xw

)T
∇L

(
®w
)
+ 1

2!

(
®Xw

)T
H

(
L

(
®w
) ) (
®Xw

)
+ · · · (3.8)

where H
(
L

(
®w
) )
, called the Hessian matrix, is defined as

H
(
L

(
®w
) )
=



m2L
mw2

1

m2L
mw1mw2

· · · m2L
mw1mwn

m2L
mw2mw1

m2L
mw2

2

· · · m2L
mw1mwn

...
...

...
m2L

mwnmw1

m2L
mwnmw2

· · · m2L
mw2

n


(3.9)

The Hessian matrix is symmetric since m2L
mwimwj

= m2L
mwjmwi

. Also, note that the Taylor expan-

sion assumes that the function is continuous in the neighborhood.

Equation 3.8 allows us to compute the value of L in a small neighborhood around

point ®w in the parameter space. If we displace from ®w by the vector ®Xw, we arrive at
®w + ®Xw. The loss there is L

(
®w + ®Xw

)
, which is expressed by equation 3.8 in terms of the

loss L
(
®w
)
at the original point and the displacement ®Xw. This leads to

XL=L
(
®w + ®Xw

)
−L

(
®w
)
=
1

1!

(
®Xw

)T
∇L

(
®w
)
+ 1

2!

(
®Xw

)T
H

(
L

(
®w
) ) (
®Xw

)
+ · · · (3.10)

Note that the first term is same as equation 3.6 and the second term has squares of

the displacement. Since the square of a small quantity is even smaller, for very small

displacements, the second term disappears, and we essentially get back equation 3.6.

This is called first-order approximation. For slightly larger displacements, we can include

the second term, involving Hessians to improve the approximation. As stated earlier,

this is hardly ever done in practice.

3.5 PyTorch code for gradient descent, error minimization,
and model training
In this section, we study PyTorch examples in which models are trained by minimizing

errors via gradient descent. Before we present the code, we briefly recap the main

ideas from a practical point of view. (Complete code for this section can be found at

http://mng.bz/4Zya.)

3.5.1 PyTorch code for linear models

If the true underlying function we are trying to predict is very simple, linear models

suffice. Otherwise, we require nonlinear models. Here we will look at the linear model.
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In machine learning, we identify the input and output variables pertaining to the

problem at hand and cast the problem as generating outputs from input variables. All

the inputs are represented together by the vector ®x. Sometimes there are multiple

outputs, and sometimes there is a single output. Accordingly, we have an output vector

®y or an output scalar y. Let’s denote the function that generates the output from the

input vector as f : that is, y = f
(
®x
)
.

In real-life problems, we do not know f . The crux of machine learning is to estimate f
from a set of observed inputs ®xi and their corresponding outputs yi . Each observation can
be depicted as a pair 〈®xi , yi〉. We model the unknown function f with a known function

q. q is a parameterized function. Although the nature of q is known, its parameter values

are unknown. These parameter values are “learned” via training. This means we estimate

the parameter values such that the overall error on the observations is minimized.

If ®w , b denotes the current set of parameters (weights, bias), then the model will

output q
(
®xi , ®w , b

)
on the observed input ®xi . Thus the error on this ith observation is

e2i =
(
q

(
®xi , ®w , b

)
− yi

)2
. We can batch several observations and add up the errors into a

batch error L=
∑i=N
i=0

(
e (i )

)2
.

The error is a function of the parameter set ®w. The question is, how do we adjust ®w
so that the error e2i decreases? We know a function’s value changes most when we move

along the direction of the gradient of the parameters. Hence, we adjust the parameters

®w , b as follows:  ®wb
 =

 ®wb
 − `∇®w ,bL

(
®w , b

)
Each adjustment reduces the error. Starting from a random set of parameter values and

doing this a sufficiently large number of times yields the desired model.

A simple and popular model q is the linear function (the predicted value is the dot

product between the input vector and parameters vector plus bias): ỹi = q
(
®xi , ®w , b

)
=

®wT ®x + b =∑
j wjxj + b. Our initial implementation (listing 3.1) simply mimics this formula.

For more complicated models q (with millions of parameters and nonlinearities), we

cannot obtain closed-form gradients like this. In such cases, we use a technique called

autograd (automatic gradient computation), which does not required closed form

gradients. This is discussed in the next section.

NOTE In real-world problems, we will not know the true underlying function

mapping inputs to outputs. But here, for the sake of gaining insight, we will assume

known output functions and perturb them with noise to make them slightly more

realistic.

Listing 3.1 PyTorch linear model (closed-form gradient formula needed)

x = 10 * torch.randn(N)
Generates random
input values
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y = 1.5 * x + 2.73
y_obs = y + (0.5 * torch.randn(N))

Generates output values by applying a simple
known function to the input and then adds
noise. Let’s see if our learned function
matches the known underlying function.

for step in range(num_steps):

y_pred = w*x + b Our model, initialized with arbitrary parameter values

mean_squared_error = torch.mean(
(y_pred - y_obs) ** 2) Model error is the (squared) difference

between the observed and predicted values.

w_grad = torch.mean(2 * ((y_pred - y_obs)* x))
b_grad = torch.mean(2 * (y_pred - y_obs))

Calculates the gradient of the
error using calculus. Possible
only with such simple models.

w = w - learning_rate * w_grad
b = b - learning_rate * b_grad

Adjusts the weight, bias
along the gradient of error

print(''True function: y = 1.5*x + 2.73'')
print(''Learned function: y_pred = *x + ''.format(w[0], b[0]))

The output is as follows:

True function: y = 1.5*x + 2.73
Learned function: y_pred = 1.50059*x + 2.746823

3.5.2 Autograd: PyTorch automatic gradient computation

In the PyTorch code in listing 3.1, for this specific model architecture, we computed

the gradient using calculus. This approach does not scale to more complex models with

millions of weights and perhaps nonlinear complex functions. For scalability, we use an

automatic differentiation software library like PyTorch Autograd. Users of the library need

not worry about how to compute the gradients—they just construct the model function.

Once the function is specified, PyTorch figures out how to compute its gradient through

the Autograd technology.

To use Autograd, we explicitly tell PyTorch to track gradients for a variable by setting

requires_grad = True when creating the variable. PyTorch remembers a computa-

tion graph that is updated every time we create an expression using tracked variables.

Figure 3.10 shows an example of a computation graph.

The following listing, which implements a linear model in PyTorch, relies on Py-

Torch’s Autograd for gradient computation. Note that this method does not require

the closed-form gradient.

Listing 3.2 Linear modeling with PyTorch

def update_parameters(params, learning_rate):

Updates parameters: adjusts
the weight, bias along the
gradient of error

with torch.no_grad():

Doesn’t track gradients
during parameter updates
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^2

Figure 3.10 Autograd analysis

for i, p in enumerate(params):
params[i] = p - learning_rate * p.grad

for i in range(len(params)):
params[i].requires_grad = True Restores gradient tracking

x = 10 * torch.randn(N)
Generates random
training input

y = 1.5 * x + 2.73

y_obs = y + (0.5 * torch.randn(N))

Generates training output: applies
a simple known function to the input
and then adds noise. Let’s see
if our learned function matches
the known underlying function.w = torch.randn(1, requires_grad=True)

b = torch.randn(1, requires_grad=True)
params = [b, w] Our model, initialized with

arbitrary parameter values
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for step in range(num_steps):
y_pred = params[0] + params[1] * x

mean_squared_error = torch.mean((y_pred - y_obs) ** 2)

The model error is the
(squared) difference
between the observed
and predicted values.

mean_squared_error.backward()

Backpropagates: computes the partial
derivatives of the error with respect to
each variable and stores them in the
“grad” field within the variable

update_parameters(params, learning_rate) Updates parameters using
those partial derivativesprint(''True function: y = 1.5*x + 2.73'')

print(''Learned function: y_pred = *x + ''\
.format(params[1].data[0], params[0].data.[0]))

The output is as follows:

True function: y = 1.5*x + 2.73
Learned function: y_pred = 1.50059*x + 2.74783

3.5.3 Nonlinear Models in PyTorch

In listings 3.1 and 3.2, we fit a linear model to a data distribution that we know to

be linear. From the output, we can see that those models converged to a pretty good

approximation of the underlying output function. This is also shown graphically in

figure 3.11. But what happens if the underlying output function is nonlinear?

Figure 3.11 Linear approximation of linear data. By step 1,000, the model has more or less converged to
the true underlying function.
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First, listing 3.3 tries to use a linear model on a nonlinear data distribution. As expected

(and demonstrated via the output as well as figure 3.12), this model does not do

well, because we are using an inadequate model architecture. Further training will

not help.

Listing 3.3 Linear approximation of nonlinear data

x = 10 * torch.rand(N, 1) Generates random input training data

y = x**2 - x + 2.0
y_obs = y + (0.5 * torch.rand(N, 1) - 0.25)

Generates training output: applies a
known nonlinear function to the input
and then perturbs it with noise

w = torch.rand(1, requires_grad=True)
b = torch.rand(1, requires_grad=True)
params = [b, w]
for step in range(num_steps):

y_pred = params[0] + params[1] * x
Trains a linear model as in listing 3.2

mean_squared_error = torch.mean((y_pred - y_obs) ** 2)
mean_squared_error.backward()
update_parameters(params, learning_rate)

print(''True function: y = 1.5*x + 2.73'')
print(''Learned function: y_pred = *x + ''\

.format(params[1].data[0], params[0].data[0]))

Figure 3.12 Linear approximation of nonlinear data. Clearly the model is not converging to anything close
to the desired/true function. Our model architecture is inadequate.
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Here is the output:

True function: y=x^2 -x + 2
Learned function: y_pred = 8.79633331299*x + -13.4027605057

Next, listing 3.4 tries a nonlinear model. As expected (and demonstrated via the output

as well as figure 3.13), the nonlinear model does well. In real-life problems, we usually

assume nonlinearity and choose a model architecture accordingly.

Listing 3.4 Nonlinear modeling with PyTorch

params = [w0, w1, w2]
for step in range(num_steps):

y_pred = params[0] + params[1] * x + params[2] * (x**2)
mean_squared_error = torch.mean((y_pred -y_obs) ** 2)
mean_squared_error.backward()
update_parameters(params, learning_rate)

print(''True function: y= 2 - x + x^2'')
print(''Learned function: y_pred = + *x + *x^2''\

.format(params[0].data[0],
params[1].data[0],
params[2].data[0]))

Here is the output:

True function: y= 2 - x + x^2
Learned function: y_pred = 1.87116754055+-0.953767299652*x+0.996278882027*x^2

Figure 3.13 If we use a nonlinear model, it more or less converges to the true underlying function.
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3.5.4 A linear model for the cat brain in PyTorch

In section 2.12.6, we solved the cat-brain problem directly via pseudo-inverse. Now, let’s

train a PyTorch model over the same dataset. As expected, the model parameters will

converge to a solution close to that obtained by the pseudo-inverse technique (this

being a simple training dataset); but in the following listing, we demonstrate our first

somewhat sophisticated PyTorch model.

Listing 3.5 Our first realistic PyTorch model (solves the cat-brain problem)

X = torch.tensor([[0.11, 0.09], ... [0.63, 0.24]])

X = torch.column_stack((X, torch.ones(15)))

Adds a column of all
1s to augment
the data matrix X

y = torch.tensor([-0.8, ... 0.37])

X , ®y created (see section 2.12.3)
as per equation 2.22

It is easy to verify that the solution
to equation 2.22 is roughlyw0 = 1,
w1 = 1, b = −1. But the equations
are not consistent: no one
solution perfectly fits all of them.
We expect the learned model to
be close to y = x0 + x1 − 1.

class LinearModel(torch.nn.Module):
def __init__(self, num_features):

super(LinearModel, self).__init__()

self.w = torch.nn.Parameter(

Parameter is a type (subclass) of
Torch Tensor suitable for model
parameters (weights+bias).

torch.randn(num_features, 1))

def forward(self, X):
y_pred = torch.mm(X, self.w)

Linear model: ®y =X ®w
(X is augmented, and ®w includes bias)

return y_pred

model = LinearModel(num_features=num_unknowns)

loss_fn = torch.nn.MSELoss(reduction='sum')
Ready-made class for computing
squared error loss

optimizer = torch.optim.SGD(model.parameters(), lr=1e-2) Ready-made class for
updating weights using
the gradient of errorfor step in range(num_steps):

y_pred = model(X)
loss = loss_fn(y_pred, y)
optimizer.zero_grad()

Zeros out all partial derivatives

loss.backward() Computes partial derivatives via autograd

optimizer.step()
Updates the parameters using gradients
computed in the backward() step

solution_gd = torch.squeeze(model.w.data)
print(''The solution via gradient descent is ''.format(solution_gd))

The output is as follows:

The solution via gradient descent is [ 1.0766 0.8976 -0.9581]
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3.6 Convex and nonconvex functions, and global and local minima
A convex surface (see figure 3.14) has a single optimum (maximum/minimum): the

global one.2 Wherever we are on such a surface, if we keep moving along the gradient in

parameter space, we will eventually reach the global minimum. On the other hand, on a

nonconvex surface, we might get stuck in a local minimum. For instance, in figure 3.14b,

if we start at the point marked with the arrowed line indicating a gradient and move

downward following the gradient, we will arrive at a local minimum. At the minimum,

the gradient is zero, and we will never move out of that point.

Gradient

Global minimum

(a) A convex function

Gradient

Global minimum

Local minimum

(b) A nonconvex function

Figure 3.14 Convex vs. nonconvex func-
tions. Convex functions have only a global
optimum (minimum or maximum), no
local optimum. Following the gradient
downward is guaranteed to reach the
global minimum. Friendly error functions
are convex. A nonconvex function has one
or more local optima. Following the gradi-
ent may reach a local minimum and never
discover the global minimum. Unfriendly
error functions are nonconvex.

There was a time when researchers put a lot of effort into trying to avoid local minima.

Special techniques (such as simulated annealing) were developed to avoid them. How-

ever, neural networks typically do not do anything special to deal with local minima and

nonconvex functions. Often, the local minimum is good enough. Or we can retrain by

starting from a different random point, which may help us escape the local minimum.

3.7 Convex sets and functions
In section 3.6, we briefly encountered convex functions and how convexity tells us

whether a function has local minima. In this section, we look at convex functions in

2 Although the theory applies to either optimum, maximum or minimum, for brevity’s sake, here we will
only talk in terms of the minimum
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more detail. In particular, we learn how to tell whether a given function is convex. We

also discuss some important properties of convex functions that will come in handy

later—for instance, when we study Jensen’s inequality in probability and statistics, in

the appendix. We will mostly illustrate the ideas in 2D space, but they can be easily

extended to higher dimensions.

3.7.1 Convex sets

Informally speaking, a set of points is said to be convex if and only if the straight line

joining any pair of points in the set lies entirely within the set. For example, if we

join any pair of points in the shaded region on the left-hand side of figure 3.15 with a

straight line, all points on that line will also be in the shaded region. This is illustrated by

points A and B in the figure. The complete set of points in any such region constitutes

a convex set.
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Figure 3.15 Convex and nonconvex sets. The points in the left-hand shaded region form a convex set.
The line joining any pair of points in that shaded region lies entirely in the shaded region: for example, AB.
The points in the right-hand shaded region form a nonconvex set. For instance, the line joining points
C and D passes through a nonshaded region even though both end points belong to a shaded region.

Conversely, a set of points is nonconvex if it contains at least one pair of points whose

joining line contains a point not belonging to the set. For instance, the shaded region

on the right-hand side of figure 3.15 contains a pair of points C and D whose joining

line passes through points not belonging to the shaded region.

The boundary of a convex set is always a convex curve.

3.7.2 Convex curves and surfaces

Consider a function g (x). Let’s pick any two points on the curve y = g (x): A≡ (x1 , y1
= g (x1)) and B≡ (x2 , y2 = g (x2)). Now consider the line segment L joining A and B.
From section 2.8.1 (equation 2.12 and figure 2.8), we know that all points C on L
can be expressed as a weighted average of the coordinates of A and B, with the sum

of weights being 1. Thus, C ≡ (U1x1 + U2x2 , U1y1 + U2y2), where U1 + U2 = 1. Compare
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C with its corresponding point D on the curve, which has the same X coordinate:

D≡ (U1x1 + U2x2 , g (U1x1 + U2x2)).
If and only if g (x) is a convex function, C will always be above D, or

U1y1 + U2y2 = U1g (x1) + U2g (x2) ≥ g (U1x1 + U2x2)

Viewed another way, if we drop a perpendicular to the X -axis from any point on the

secant line joining a pair of points on the curve, that perpendicular will cut the curve at

a lower point (that is, smaller in itsY -coordinate).
This is illustrated on the left-hand side of figure 3.16 with the function g (x) = x2

(known to be convex) and A≡ (−3, 9) and B≡ (5, 25), U1 = 0.3, U2 = 0.7. It can be seen

that the weighted average point C on the line lies above the corresponding point on

the curve D. The right-hand side illustrates the nonconvex function g (x) = x3, with A≡
(−8, −512) and B≡ (5, 125), U1 = 0.3, U2 = 0.7. The figure shows one weighted average

point (C) on the line joining points A and B on the curve: C lies below point D on the

curve, which has the same X -coordinate.

Point C = 0.3A + 0.7B = (2.6, 20.2) lies above 
the point on the curve with the same X coordinate, 

D = (2.6, 2.6˄2) = (2.6, 6.76)

Point C = 0.3A + 0.7B = (1.1, -66.1) lies above 
the point on the curve with the same X coordinate, 

D = (1.1, 1.1˄3) = (1.1, 1.331)
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Figure 3.16 Convex and nonconvex curves. A and B are a pair of points on the curve. C = 0.3A+ 0.7B is
a weighted average of the coordinates of A and B, with weights summing to 1. C lies on the line joining
A and B. The left-hand curve is convex: C lies above the corresponding curve pointD. The right-hand
curve is nonconvex: C lies below the corresponding curve pointD.

We need not restrict ourselves to two points. We can take the weighted average of an

arbitrary number of points on the curve, with the weights summing to one. The point

corresponding to the weighted average will lie above the curve (that is, above the point

on the curve with the same X -coordinate). The idea also extends to higher dimensions,

as discussed next.

DEFINITION 1
In general, a multidimensional function g

(
®x
)
is convex if and only if
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Given an arbitrary set of points on the function surface (curve, if the function is

1D),
(
®x1 , g

(
®x1
) )
,
(
®x2 , g

(
®x2
) )
, · · · ,

(
®xn , g

(
®xn
) )
,

And given an arbitrary set of n weights U1, U2, · · · , Un that sum to 1 (that is,∑n
i=1 Ui = 1),

The weighted sum of the function outputs exceeds or equals the function output on the

weighted sums:
n∑
i=1

Ui g
(
®xi
)
≥ g

(
n∑
i=1

Ui ®xi

)
(3.11)

A little thought will reveal that definition 1 implies that convex curves always curl upward

and/or rightward everywhere. This leads to another equivalent definition of convexity.

DEFINITION 2
In general, a multidimensional function g

(
®x
)
is convex if and only if

A 1D function g (x) is convex if and only if its curvature is positive everywhere:

d2g
dx2
≥ 0 ∀x (3.12)

Amultidimensional function g
(
®x
)
is convex if and only if its Hessianmatrix (see sec-

tion 3.4.2, equation 3.9) is positive semi-definite (that is, all the eigenvalues of the

Hessian matrix are greater than or equal to zero). This is just the multidimensional

analog of equation 3.12.

One subtle point to note is that if the second derivative is negative everywhere or the

Hessian is negative semi-definite, the curve or surface is said to be concave. This is

different from nonconvex curves, where the second derivative is positive in some places

and negative in others. The negative of a concave function is a convex function. But

the negative of a nonconvex function is again nonconvex.

A function that curves upward everywhere always lies above its tangent. This leads to

another equivalent definition of a convex function.

DEFINITION 3
In general, a multidimensional function g

(
®x
)
is convex if and only if

A function g (x) is convex if and only if all the points on the curve S ≡ (x , g (x)) lie
above the tangent lineT at any point A on S, with S touchingT only at A.
A function g

(
®x
)
is convex if and only if all the points on the surface S ≡

(
®x , g

(
®x
) )

lie above the tangent planeT at any point A on S, with S touchingT only at A.

This is illustrated in figure 3.17.

3.7.3 Convexity and the Taylor series

In section 3.4.1, equation 3.7, we saw the one-dimensional Taylor expansion for a

function in the neighborhood of a point x. If we retain the terms in the Taylor expansion

only up to the first derivative and ignore all subsequent terms, that is equivalent to

approximating the function at x with its tangent at x (see figure 3.17). This is the linear
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Figure 3.17 The left-hand curve is convex. If we draw a tangent line at any point A on the curve, the
entire curve is above the tangent line, touching it only at A. The right-hand cuve is nonconvex: part of
the curve lies above the tangent and part of it below.

approximation to the curve. If we retain one more term (that is, up to the second

derivative), we get the quadratic approximation to the curve. If the second derivative of

the function is always positive (as in convex functions), the quadratic approximation to

the function will always be greater than or equal to the linear approximation. In other

words, locally, the curve will curve so that it lies above the tangent. This connects the

second derivative definition (definition 2) with the tangent definition (definition 3) of

convexity.

3.7.4 Examples of convex functions

The function g (x) = x2 is convex. The easiest way to verify this is to compute
d2g
dx2 =

d (2x)
dx =

2, which is always positive. In fact, any even power of x, g (x) = x2n for an integer n, such
as x4 or x6, is convex. g (x) = ex is also convex. This can be easily verified by taking its

second derivative. g (x) = logx is concave. Hence, g (x) =−logx is convex.
Multiplication by a positive scalar preserves convexity. The sum of convex functions

is also a convex function.

Summary
We would like to leave you with the following mental pictures from this chapter:

Inputs for a machine learning problem can be viewed as vectors or, equivalently,

points in a high-dimensional feature space. Classification is nothing but separating

clusters of points belonging to individual classes in this space.

A classifier is can be viewed geometrically as the hypersurface (aka decision bound-

ary) in the high-dimensional feature space, separating the point clusters corre-

sponding to individual classes. During training, we collect sample inputs with

known classes and identify the surface that best separates the corresponding points.

During inferencing, given an unknown input, we determine which side of the

decision boundary this point lies in—this tells us the class.
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For two-class classifiers (aka binary classifiers), if we plug in the point in the function

for the classifier hypersurface, the sign of the corresponding output yields the

class.

To compute the hypersurface decision boundary that best separates the training

data, we first choose a parametric function family to model this surface (for exam-

ple, a hyperplane for simple problems). Then we estimate the optimal parameter

values that best separate the training data, usually in an iterative fashion.

To estimate the parameter values that optimally separates the training data, we

define a loss function that measures the difference between the model output and

the known desired output over the entire training dataset. Then, starting from

random initial values, we iteratively adjust the parameter values so that the loss

value decreases progressively.

At every iteration, the adjustment to the parameter values that optimally reduces

the loss is estimated by computing the gradient of the loss function.

The gradient of a multidimensional function identifies the direction in the pa-

rameter space corresponding to the maximum change in the function. Thus, the

gradient of the loss function identifies the direction in which we can adjust the

parameters to maximally decrease the loss.

The gradient is zero at the maximum or minimum point of a function, which is

always a point of inflection. This can be used to recognize when we have reached

the minimum. However, in practice, in machine learning we often do an early

stop: terminate training iterations when the loss is sufficiently low.

A multidimensional Taylor series can be used to create local approximations to a

smooth function in the neighborhood of a point. The function is expressed in terms

of the displacement from the point, the first-order derivatives (gradient), second-

order derivatives (Hessian matrix), and so on. This can be used to make higher-

accuracy approximations to the change in loss value resulting from a displacement

in the parameter space.

Loss functions can beconvex or nonconvex. In a convex function, there is no local

minimum, only a single global minimum. Hence, gradient descent is guaranteed to

converge to the global minimum. A nonconvex function can have both a local and

a global minimum. So, gradient-based descent may get stuck in a local minimum.



4Linear algebraic tools
in machine learning

This chapter covers
Quadratic forms

Applying principal component analysis (PCA)
in data science

Retrieving documents with a machine learning
application

Finding patterns in large volumes of high-dimensional data is the name of the game in

machine learning and data science. Data often appears in the form of large matrices

(a toy example of this is shown in section 2.3 and also in equation 2.1). The rows of

the data matrix represent feature vectors for individual input instances. Hence, the

number of rows matches the count of observed input instances, and the number of

columns matches the size of the feature vector—that is, the number of dimensions

in the feature space. Geometrically speaking, each feature vector (that is, row of the

data matrix) represents a point in feature space. These points are not distributed

uniformly over the space. Rather, the set of points belonging to a specific class

occupies a small subregion of that space. This leads to certain structures in the data

matrices. Linear algebra provides us the tools needed to study matrix structures.

115
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In this chapter, we study linear algebraic tools to analyze matrix structures. The

chapter presents some intricate mathematics, and we encourage you to persevere

through it, including the theorem proofs. An intuitive understanding the proofs will

give you significantly better insights into the rest of the chapter.

NOTE The complete PyTorch code for this chapter is available at http://mng.bz/aoYz

in the form of fully functional and executable Jupyter notebooks.

4.1 Distribution of feature data points and true dimensionality
For instance, consider the problem of determining the similarity between documents.

This is an important problem for document search companies like Google. Given a query

document, the system needs to retrieve from an archive—in ranked order of similarity—

documents that match the query document. To do this, we typically create a vector

representation of each document. Then the dot product of the vectors representing a

pair of documents can be used as a quantitative estimate of the similarity between the

documents. Thus, each document is represented by a document descriptor vector in

which every word in the vocabulary is associated with a fixed index in the vector. The

value stored in that index position is the frequency (number of occurrences) of that

word in the document.

NOTE Prepositions and conjunctions are typically excluded and singular; plural

and other variants of words originating from the same stem are usually collapsed

into one word.

Every word in the vocabulary gets its own dimension in the document space. If a word

does not occur in a document, we put a zero at that word’s index location in the

descriptor vector for that document. We store one descriptor vector for every document

in the archive. In theory, the document descriptor is an extremely long vector: its length

matches the size of the vocabulary of the documents in the system. But this vector only

exists notionally. In practice, we do not explicitly store descriptor vectors in their entirety.

We store a <word, frequency> pair for every unique word that occurs in a document—but

we do not explicitly store words that do not occur. This is a sparse representation of a document

vector. The corresponding full representation can be constructed from the sparse one

whenever necessary. In documents, certain words often occur together (for example,

Michael and Jackson, or gun and violence). For example, in a given set of documents, the

number of occurrences of gun will more or less match the number of occurrences of

violence: if one appears, the other also appears most of the time. For a descriptor vector

or, equivalently, a point in a feature space representing a document, the value at the

index position corresponding to the word gun will be more or less equal to that for the

word violence. If we project those points on the hyperplane formed by the axes for these

correlated words, all the points fall around a 45-degree straight line (whose equation

is x = y), as shown in figure 4.1. In figure 4.1, all the points representing documents

are concentrated near the 45-degree line, and the rest of the plane is unpopulated.

Can we collapse the two axes defining that plane and replace them with the single line
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Figure 4.1 Document descriptor space. Each word in the vocabulary corresponds to a separate
dimension. Dots show projections of document feature vectors on the plane formed by the axes
corresponding to the terms gun and violence.

around which most data is concentrated? It turns out that yes, we can do this. Doing so

reduces the number of dimensions in the data representation—we are replacing a pair

of correlated dimensions with a single one—thereby simplifying the representation.

This leads to lower storage costs and, more importantly, provides additional insights.

We have effectively discovered a new topic called gun-violence from the documents.

As another example, consider a set of points in 3D, represented by coordinates

X ,Y , Z. If the Z coordinate is near zero for all the points, the data is concentrated

around the X ,Y plane. We can (and should) represent these points in two dimensions

by projecting them onto the Z = 0 plane. Doing so approximates the positions of the

points only slightly (they are projected onto a plane that they were close to in the

first place). In a more realistic example, the data points may be clustered around an

arbitrary plane in the 3D space (as opposed to the Z = 0 plane). We can still reduce the

dimensionality of these data points to 2D by projecting on the plane they are close to.

In general, if a set of data points is distributed in a space so that the points are

clustered around a lower-dimensional subspace within that space (such as a plane

or line), we can project the points onto the subspace and perform a dimensionality

reduction on the data. We effectively approximate the distances from the subspace with
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zero: since these distances are small by definition, the approximation is not too bad.

Viewed another way, we eliminate smaller from-subspace variations and retain the larger

in-subspace variations. The resulting representation is more compressed and also lends

itself more easily to better analysis and insights as we have eliminated unimportant

perturbations and are focusing on the main pattern.

These ideas form the basis of the technique called principal component analysis (PCA).

It is one of the most important tools in the repertoire of a data scientist and machine

learning practitioner. These ideas also underlie the latent semantic analysis (LSA) tech-

nique for document retrieval—a fundamental approach for solving natural language

processing (NLP) problems in machine learning. This chapter is dedicated to studying a

set of methods leading to PCA and LSA. We examine a basic document retrieval system

along with Python code.

4.2 Quadratic forms and their minimization
Given a square symmetric matrix A, the scalar quantityQ = ®xTA®x is called a quadratic

form. These are seen in various situations in machine learning.

For instance, recall the equation for a circle that we learned in high school

(x0 − U0)2 + (x1 − U1)2 = r2

where the center of the circle is (U0 , U1) and the radius is r. This equation can be

rewritten as [
(x0 − U0) (x1 − U1)

] 
1 0

0 1



(x0 − U0)

(x1 − U1)

 = r2
If we denote the position vector


x0

x1

 as ®x and the center of the circle as


U0

U1

 as ®U, the
previous equation can be written compactly as(

®x − ®U
)T I

(
®x − ®U

)
= r2

Note that left hand side of this equation is a quadratic form. The original x0 , x1-based
equation only works for two dimensions. The matrix based equation is dimension

agnostic: it represents a hypersphere in an arbitrary-dimensional space. For a two-

dimensional space, the two equations become identical.

Now, consider the equation for an ellipse:

(x0 − U0)2

V 2
0

+ (x1 − U1)2

V 2
1

= 1

You can verify that this can be written compactly in matrix form as

[
(x0 − U0) (x1 − U1)

] 
1

V 2
0

0

0 1

V 2
1



(x0 − U0)

(x1 − U1)

 = 1
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or, equivalently, (
®x − ®U

)T A (
®x − ®U

)
= 1 (4.1)

where A=


1

V 2
0

0

0 1

V 2
1

 . Once again, the matrix representation is dimension independent.

In other words, equation 4.1 represents a hyperellipsoid. Note that if the ellipse axes

are aligned with the coordinate axes, matrix A is diagonal. If we rotate the coordinate

system, each position vector is rotated by an orthogonal matrix R. Equation 4.1 is

transformed as follows (we have used the rules for transposing the products of matrices

from equation 2.10): (
R

(
®x − ®U

) )T A (
R

(
®x − ®U

) )
= 1(

®x − ®U
)T (

RTAR
) (

®x − ®U
)
= 1

Replacing RTAR with A, we get the same equation as equation 4.1, but A is no longer a

diagonal matrix.

For a generic ellipsoid with arbitrary axes, A has nonzero off-diagonal terms but is

still symmetric. Thus, the multidimensional hyperellipsoid is represented by a quadratic

form. The hypersphere is a special case of this.

Quadratic forms are also found in the second term of the multidimensional Taylor

expansion shown in equation 3.8: 1
2!

(
®Xx

)T
H

(
®x
) (

®Xx
)
is a quadratic form in the Hessian

matrix. Another huge application of quadratic forms is PCA, which is so important that

we devote a whole section to it (section 4.4).

4.2.1 Minimizing quadratic forms

An important question is, what choice of ®x maximizes or minimizes the quadratic form?

For instance, because the quadratic form is part of the multidimensional Taylor series,

we need to minimize quadratic forms when we want to determine the best direction to

move in to minimize the loss L
(
®x
)
. Later, we will see that this question also lies at the

heart of PCA computation.

If ®x is a vector with arbitrary length, we can makeQ arbitrarily big or small by simply

changing the length of ®x. Consequently, optimizingQ with arbitrary length ®x is not a
very interesting problem: rather, we want to know which direction of ®x optimizesQ. For
the rest of this section, we discuss quadratic forms with unit vectorsQ = x̂T Ax̂ (recall that
x̂ denotes a unit-length vector satisfying x̂T x̂ = ‖ x̂‖2 = 1). Equivalently, we could use a

different flavor,Q = ®xT A®x
®xT ®x , but we will use the former expression here. We are essentially

searching over all possible directions x̂, examining which direction minimizesQ = x̂T Ax̂.
Using matrix diagonalization (section 2.15),

Q = x̂T Ax̂ = x̂TSΛST x̂

where S =
[
®e1 ®e2 · · · ®en

]
is the matrix with eigenvectors of A as its columns and Λ

is a diagonal matrix with the eigenvalues of A on the diagonal and 0 everywhere else.
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Substituting

ŷ =ST x̂

we get

Q = x̂T Ax̂ = x̂TSΛST x̂

= ŷTΛŷ (4.2)

Note that since A is symmetric, its eigenvectors are orthogonal. This implies that

S is an orthogonal matrix: that is, STS =SST = I. Recall from section 2.14.2 that for

an orthogonal matrix S, the transformation ST x̂ is length preserving. Consequently,

ŷ =ST x̂ is a unit-length vector. To be precise,

‖ ŷ‖2 = ‖ST x̂‖2 =
(
ST x̂

)T (
ST x̂

)
= x̂TSST x̂ = x̂T x̂ = 1 since SST = I

So, expanding the right-hand side of equation 4.2, we get

Q =

[
y1 y2 · · · yn

] 

_1 0 · · · 0

0 _2 · · · 0

...
...

...
...

0 0 · · · _n





y1

y2
...

yn


=

n∑
i=1

_ i y2i (4.3)

We can assume that the eigenvalues are sorted in decreasing order of magnitude (if

not, we can always renumber them).

Consider this lemma (small proof): The quantity
∑n
i=1 _ i y

2
i , where

∑n
i=1 y

2
i = 1 and

_1 ≥ _2 ≥ · · · _n , attains its maximum value when y1 = 1, y2 = · · · yn = 0.
An intuitive proof follows. If possible, let that the maximum value occur at some other

value of ŷ. We are constrained by the fact that ŷ is an unit vector, so we must maintain∑n
i=1 y

2
i = 1.

In particular, none of the elements of ŷ can exceed 1. If we reduce the first term from

1 to a smaller value, say
√
1− n , some other element(s) must go up by an equivalent

amount to compensate (i.e., maintain the unit length property). Accordingly, suppose

the hypothesized ŷ maximizingQ is given by

ŷ =



√
1− n

...
√
X

...


where X > 0.
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What happens if we transfer the entire mass from the later term to the first term so

that

ŷ =



√
1− n + X

...

0

...


Doing this does not alter the length of ŷ as the sum of the squares of the first and the

other term remains 1− n + X. But the value ofQ =
∑n
i=1 _ i y

2
i is higher in the second case

(where y1 has been beefed up at the expense of another term), since _1 (1− n + X) >
_1 (1− n ) + _ jX for any j > 1 (since, _1 > _2 · · · by assumption). Thus, whenever we have

less than 1 in the first term and greater than zero in some other term, we can increase

Q without losing the unit length property of ŷ by transferring the entire mass to the

first term.

This means to maximize the right hand side of equation 4.3, we must have 1 as the

first element (corresponding to the largest eigenvalue) of the unit vector ŷ and zeros

everywhere else. Anything else violates the condition that the corresponding quadratic

formQ =
∑n
i=1 _ i y

2
i is a maximum.

Thus we have established that themaximumofQ occurs at ŷ =



1

0

...

0


. The corresponding

x̂ =Sŷ = ®e1 - the eigenvector corresponding to the largest eigenvalue of A.
Thus, the quadratic formQ = x̂T Ax̂ attains its maximum when x̂ is along the eigen-

vector corresponding to the largest eigenvalue of A. The corresponding maximumQ
is equal to the largest eigenvalue of A. Similarly, the minimum of the quadratic form

occurs when x̂ is along the eigenvector corresponding to the smallest eigenvalue.

As stated above,manymachine learning problems boil down tominimizing a quadratic

form. We will study a few of them in later sections.

4.2.2 Symmetric positive (semi)definite matrices

A square symmetric n × n matrix A is positive semidefinite if and only if

®xTA®x ≥ 0 ∀®x ∈ℝn

In other words, a positive semidefinite matrix yields a non-negative quadratic form with

all n × 1 vectors ®x. If we disallow the equality, we get symmetric positive definite matrices.

Thus a square symmetric n × n matrix A is positive definite if and only if

®xTA®x > 0 ∀®x ∈ℝn
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From equations 4.2 and 4.3,Q is positive or zero if all _ is are positive or zero (since the

y2i s are non-negative). Hence, symmetric positive (semi)definiteness is equivalent to the

condition that all eigenvalues of the matrix are greater than (or equal to) zero.

4.3 Spectral and Frobenius norms of a matrix
A vector is an entity with a magnitude and direction. The norm ‖ ®x‖ of a vector ®x
represents its magnitude. Is there an equivalent notion for matrices? The answer is yes,

and we will study two such ideas.

4.3.1 Spectral norms

In section 2.5.4, we saw that the length (aka magnitude) of a vector ®x is ‖ ®x‖ = ®xT ®x. Is
there an equivalent notion of magnitude for a matrix A?

Well, a matrix can be viewed as an amplifier of a vector. The matrix A amplifies

the vector ®x to ®b = A®x. So we can take the maximum possible value of ‖A®x‖ over all
possible ®x; that is a measure for the magnitude of A. Of course, if we consider arbitrary-

length vectors, we can make ®b arbitrarily large by simply scaling ®x for any A. That is
uninteresting. Rather, we want to examine which direction of ®x is amplified most and

by how much.

We examine this question with unit vectors x̂: what is the maximum (or minimum)

value of ‖Ax̂‖, and what direction x̂ materializes it? The quantity

‖A‖2 =max
x̂

‖Ax̂‖2

is known as the spectral norm of the matrix A. Note that A®x is a vector and ‖A®x‖2 is its
length. (We will sometimes drop the subscript 2 and denote the spectral norm as ‖A‖.)

Now consider the vector Ax̂. Its magnitude is

‖Ax̂‖ = (Ax̂)T (Ax̂) = x̂T ATAx̂

This is a quadratic form. From section 4.2, we know it will be maximized (minimized)

when x̂ s aligned with the largest (smallest) eigenvalue of ATA. Thus the spectral norm
is given by the largest eigenvalue of ATA

‖A‖2 =max
x̂

‖Ax̂‖ =f1 (4.4)

where f1 is the largest eigenvalue of ATA. It is also (the square of) the largest sin-

gular value of A. We will see f1 again in section 4.5, when we study singular value

decomposition (SVD).

4.3.2 Frobenius norms

An alternative measure for the magnitude of a matrix is the Frobenius norm, defined as

‖A‖F =

√√√ m∑
i=1

n∑
j=1

‖ai j ‖2 (4.5)

In other words, it is the root mean square of all the matrix elements.
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It can be proved that the Frobenius norm is equal to the root mean square of the

sum of all the singular values (eigenvalues of ATA) of the matrix

‖A‖F =

√√√min (m,n)∑
i=1

f2
i (4.6)

4.4 Principal component analysis
Suppose we have a set of numbers, X =

{
x (0) , x (1) , · · · , x (n)

}
. We want to get a sense of

how tightly packed these points are. In other words, we want to measure the spread of

these numbers. Figure 4.2 shows such a distribution.

Figure 4.2 A 1D distribution of points. The distance between extreme points is not a fair representation
of the spread of points: the distribution is not uniform, and the extreme points are far from the others.
Most points are within a more tightly packed region.

Note that the points need not be uniformly distributed. In particular, the extreme

points (xmax , xmin) may be far from most other points (as in figure 4.2). Thus, xmax−xminn+1
is not a fair representation of the average spread of points here. Most points are within

a more tightly packed region. The statistically sensible way to obtain the spread is to

first obtain the mean:

` =
1

n

n∑
i=0

x (i )

Then obtain the average distance of the numbers from the mean:

f2 =
1

n

n∑
i=0

(
x (i ) − `

)2
(If we want to, we can take the square root and use f, but it is often not necessary to

incur that extra computational burden). This scalar quantity, f, is a good measure of

the mean packing density or spread of the points in 1D. You may recognize that the
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previous equation is nothing but the famous variance formula from statistics. Can we

extend the notion to higher-dimensional data?

Let’s first examine the idea in two dimensions. As usual, we name our coordinate axes

X0, X1, and so on, instead of X ,Y , to facilitate the extension to multiple dimensions. An

individual 2D data point is denoted ®x (i ) =

x (i )
0

x (i )
1

 . The dataset is
{
®x (0) , ®x (1) , · · · , ®x (n)

}
.

The mean is straightforward. Instead of one means, we have two:

`0 =
1

n

n∑
i=0

x (i )
0

`1 =
1

n

n∑
i=0

x (i )
1

Thus we now have a mean vector:

®̀ =

`0

`1

 =
1

n

n∑
i=0

®x (i )

Now let’s do the variance. The immediate problem we face is that there are infinite

possible directions in the 2D plane. We can measure variance along any of them, and it

will be different for each choice. We can, of course, find the variance along the X0 and

X1 axes:

f2
00 =

1

n

n∑
i=0

(
x (i )
0

− `0

)2
f2
11
=
1

n

n∑
i=0

(
x (i )
1

− `1

)2
f00 and f11 tells us the variance along only one of the axes X0 and X1, respectively. But

in general, there will be joint variation along both axes. To deal with joint variation,

let’s introduce a cross term:

f2
01
=f2

10
=
1

n

n∑
i=0

(
x (i )
0

− `0

) (
x (i )
1

− `1

)
These equations can be written compactly in matrix vector notation:

®̀ = 1

n

n∑
i=0

®x (i )

C =


f00 f01

f10 f11

 =
1

n

n∑
i=0

(
®x (i ) − ®̀

) (
®x (i ) − ®̀

)T
NOTE In the expression for C, we are not taking the dot product of the vectors(
®x (i ) − ®̀

)
and

(
®x (i ) − ®̀

)
. The dot product would be

(
®x (i ) − ®̀

)T (
®x (i ) − ®̀

)
. Here,
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the second element of the product is transposed, not the first. Consequently, the

result is a matrix. The dot product would yield a scalar.)

The previous equations are general, meaning they can be extended to any dimension.

To be precise, given a set of n multidimensional data points X =
{
®x (0) , ®x (1) , · · · , ®x (n)

}
,

we can define

®̀ = 1

n

n∑
i=0

®x (i ) (4.7)

C =
1

n

n∑
i=0

(
®x (i ) − ®̀

) (
®x (i ) − ®̀

)T
(4.8)

Note how the mean has become a vector (it was a scalar for 1D data) and the scalar

variance of 1D, f, has become a matrix C. This matrix is called the covariance matrix.

The (n + 1)-dimensional mean and covariance matrix can also be defined as

®̀ =



`0

`1

· · ·

`n


C =



f00 f01 · · · f0n

f10 f11 · · · f1n

...
...

...
...

fn0 fn1 · · · fnn


(4.9)

where

fi j =

n∑
k=0

(
x (k)i − `i

) (
x (k)j − ` j

)
(4.10)

For i = j, fii is essentially the variance of the data along the ith dimension. Thus the

diagonal elements of matrix C contain the variance along the coordinate axes. Off-

diagonal elements correspond to cross-covariances.

NOTE Equations 4.8 and 4.9 are equivalent.

4.4.1 Direction of maximum spread

What is the direction of maximum spread/variance? Let’s first consider an arbitrary

direction specified by the unit vector l̂. Recalling that the component of any vector

along a direction is yielded by the dot product of the vector with the unit direction

vector, the components of the data points along l̂ are given by

X
′
=

{
l̂ T ®x (0) , l̂ T ®x (1) , · · · , l̂ T ®x (n)

}
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NOTE Remember figure 2.8b, which showed that the component of one vector

along another is given by the dot product between them? l̂ T ®x (i ) are dot products
and hence scalar values.

The spread along direction l̂ is given by the variance of the scalar values in X
′
. The

mean of the values in X
′
is given by

`
′
=
1

n

n∑
i=0

l̂ T ®x (i )

= l̂ T
(
1

n

n∑
i=0

®x (i )
)

= l̂ T ®̀

and the variance is

C
′
=
1

n

n∑
i=0

(
l̂ T ®x (i ) − l̂ T ®̀

) (
l̂ T ®x (i ) − l̂ T ®̀

)T
=
1

n

n∑
i=0

l̂ T
(
®x (i ) − ®̀

) (
l̂ T

(
®x (i ) − ®̀

))T
=
1

n

n∑
i=0

l̂ T
(
®x (i ) − ®̀

) (
®x (i ) − ®̀

)T
l̂

= l̂ T
(
1

n

n∑
i=0

(
®x (i ) − ®̀

) (
®x (i ) − ®̀

)T )
l̂

= l̂ TCl̂

Note that C
′
= l̂ TCl̂ is the variance of the data components along the direction l̂. As

such, it represents the spread of the data along that direction. What is the direction l̂
along which this spread l̂ TCl̂ is maximal? It is the direction l̂ that maximizes C

′
= l̂ TCl̂.

This maximizing direction can be identified using the quadratic form optimization

technique we discussed in 4.2. Applying that, we have the following results:

Variance is maximal when l̂ is along the eigenvector corresponding to the largest

eigenvalue of the covariance matrix C. This direction is called the first principal

axis of the multidimensional data.

The components of the data vectors along the principal axis are known as first

principal components.

The value of the variance along the first principal axis, given by the corresponding

eigenvalue of the covariance matrix, is called the first principal value.

The second principal axis is the eigenvector of the covariance matrix correspond-

ing to the second largest eigenvalue of the covariance matrix. Second principal

components and values are defined likewise.

The principal axes are orthogonal to each other because they are eigenvectors of

the symmetric covariance matrix.
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What is the practical significance of PCA? Why would we like to know the direction

along which the spread is maximum for a point distribution? Sections 4.4.2 through

4.4.5 are devoted to answering this question.

4.4.2 PCA and dimensionality reduction

In section 4.1, we saw that when data points are clustered around a lower-dimensional

subspace, it is beneficial to project them onto the subspace and reduce the dimension-

ality of the data representation. The dimensionally reduced data is more compactly

representable and more amenable to deriving insights and analysis. In the particular

case where the data points are clustered around a straight line or hyperplane, PCA

can be used to generate a lower-dimensional data representation by getting rid of the

principal components corresponding to relatively small principal values. The technique

is agnostic to the dimensionality of the data. The line or hyperplane can be anywhere

in the space, with arbitrary orientation.

For instance, consider the 2D distribution shown in figure 4.3a. Here, the data is

2D and plotted on a plane, but the main spread of the data is along a 1D line (shown

by the thick two-arrowed line in the figure). There is very little spread in the direction

orthogonal to that line (indicated by the little perpendiculars from the data points to

the line in the figure). PCA reveals this internal structure. There are two principal values

(because the data is 2D), but one of them is much smaller than the other: this reveals

that dimensionality reduction is possible. The principal axis corresponding to the larger

principal value is along the line of maximum spread. The small perturbations along the

other principal axis can be eliminated with little loss of information. Replacing each

data point with its projection on the first principal axis converts the 2D dataset into a

1D dataset, brings out the true underlying pattern in the data (straight line), eliminates

noise (little perpendiculars), and reduces storage costs.

Firs
t p

rin
cipal a

xis

(re
fle

cts th
e underly

ing

stru
cture of th

e data)

Original data point

Projection of data point
on principal axis (only
a few shown for clarity)

Legend

Second principal 

axis (variation along 

this direction is caused 

by measurement 

errors)

(a) Dimensionality reduction from 2D to 1D (b) Dimensionality reduction from 3D to 2D

Figure 4.3 Dimensionality reduction via PCA. Original data points are shown with filled little circles, and
hollow circles represent lower-dimensional representations.
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In figure 4.3b, the data is 3D, but the data points are clustered around a plane in 3D

space (shown as the rectangle in the figure). The main spread of the data is along

the plane, while the spread in the direction normal to that plane (shown with little

perpendiculars from data points to the plane) is small. PCA reveals this: there are

three principal values (because the data is 3D), but one of them is much smaller than

the other two, revealing that dimensionality reduction is possible. The principal axis

corresponding to the small principal value is normal to the plane. We can ignore these

perturbations (perpendiculars in figure 4.3b) with little loss of information. This is

equivalent to projecting the data onto the plane formed by the first two principal

axes. Doing so brings out the underlying data pattern (plane), eliminates noise (little

perpendiculars), and reduces storage costs.

4.4.3 PyTorch code: PCA and dimensionality reduction

In this section, we provide a PyTorch code sample for PCA computation in listing 4.1.

Then we provide PyTorch code for applying PCA on a correlated dataset and an

uncorrelated dataset in listings 4.2 and 4.3, respectively. The results are plotted in

figure 4.4.

(a) PCA on correlated data (b) PCA on uncorrelated data

Figure 4.4 PCA results. In (a), the data points are around the straight line y = 2x. Consequently, one
principal value is much larger than the other, indicating that dimensionality reduction will work.
In (b), both principal values are large. Dimensionality reduction will not work.

NOTE The complete PyTorch code for this section is available at http://mng.bz/aoYz

in the form of fully functional and executable Jupyter notebooks.

Listing 4.1 PCA computation

def pca(X): Returns principal values and vectors

covariance_matrix = torch.cov(X.T)
l, e = torch.linalg.eig(covariance_matrix)
return l, e
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NOTE Fully functional code for the PCA computation in listing 4.1 is available at

http://mng.bz/DRYR.

Listing 4.2 PCA on synthetic correlated data

x_0 = torch.normal(0, 100, (N,)) Random feature vector

x_1 = 2 * x_0 + torch.normal(0, 20, (N,))
Correlated feature
vector + minor noiseX = torch.column_stack((x_0, x_1))

Data matrix spread mostly along y = 2x

principal_values, principal_vectors = pca(X)

One large principal value
and one small

First principal vector
along y = 2x

X_proj = torch.matmul(X, first_princpal_vec)

Dimensionality reduction
by projecting on the
first principal vector

The output is as follows:

Principal values are: [62.6133, 48991.0469]
First Principal Vector is: [-0.44, -0.89]

NOTE Fully functional code for the PCA computation in listing 4.2 is available at

http://mng.bz/gojl.

Listing 4.3 PCA on synthetic uncorrelated data

x_0 = torch.normal(0, 100, (N,))
x_1 = torch.normal(0, 100, (N,))

Random uncorrelated
feature-vector pair

X = torch.column_stack((x_0, x_1))

principal_values, principal_vectors = pca(X)

Principal values close to each other. The spread of
the data points is comparable in both directions.

Here is the output:

Principal values are [ 9736.4033, 7876.6592]

NOTE Fully functional code for the PCA computation in listing 4.3 is available at

http://mng.bz/e5Kz.

4.4.4 Limitations of PCA

PCA assumes that the underlying pattern is linear in nature. Where this is not true,

PCA will not capture the correct underlying pattern. This is illustrated schematically in

figure 4.5a and via experimental results from listing 4.3. Figure 4.5b shows the results

of running listing 4.4, where we synthetically generate non-linearly correlated data and

perform PCA. The straight line at the base shows the first principal axis. Projecting data

http://mng.bz/DRYR
http://mng.bz/gojl
http://mng.bz/e5Kz
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(a) Schematic 2D data distribution with a curved
underlying pattern

(b) PCA results on synthetic (computer generated) non-linearly
correlated data. The line at the base shows the first principal axis.

Figure 4.5 Non-linearly correlated data. The points are distributed around a curve as opposed to a
straight line. It is impossible to find a straight line such that all points are near it.

on this axis results in a large error in the data positions (loss of information). Linear

PCA will not do well.

Listing 4.4 PCA on synthetic nonlinearly correlated data

x_0 = torch.normal(0, 100, (N,))
x_1 = 2 * (x_0 ** 2) + torch.normal(0, 5, (N,))
X = torch.column_stack((x_0, x_1))

principal_values, principal_vectors = pca(X) Principal vectors fail to capture
the underlying distribution.

The output is as follows:

Principal values are [9.3440e+03, 5.3373e+08]
Mean loss in information: 68.0108526887 - high

4.4.5 PCA and data compression

If we want to represent a large multidimensional dataset within a fixed byte budget, what

information can we can get rid of with the least loss of accuracy? Clearly, the answer

is the principal components along the smaller principal values—getting rid of them

actually helps, as described in section 4.4.2. To compress data, we often perform PCA

and then replace the data points with their projections on first few principal axes; doing

so reduces the number of data components to store. This is the underlying principle in

JPEG 98 image compression techniques.

4.5 Singular value decomposition
Singular value decomposition (SVD) may be the most important linear algebraic tool in

machine learning. Among other things, PCA and LSA implementations are built based

on SVD. We illustrate the basic idea in this section.
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NOTE There are several slightly different forms of SVD. We have chosen the one

that seems intuitively simplest.

The SVD theorem states that any matrix A, singular or nonsingular, rectangular or
square, can be decomposed as the product of three matrices

A=UΣVT (4.11)

where (assuming that the matrix A is m × n)
Σ is an m × n diagonal matrix. Its diagonal elements contain the square roots of

the eigenvalues of ATA. These are also known as the singular values of A. The
singular values appear in decreasing order in the diagonal of Σ.

V is an n × n orthogonal matrix containing eigenvectors of ATA in its columns.

U is an m ×m orthogonal matrix containing eigenvectors of AAT in its columns.

4.5.1 Informal proof of the SVD theorem

We will provide an informal proof of the SVD theorem through a series of lemmas.

Going through these will provide additional insights.

LEMMA 1
ATA is symmetric positive semidefinite. Its eigenvalues—aka singular values—are non-

negative. Its eigenvectors—aka singular vectors—are orthogonal.

PROOF OF LEMMA 1
Let’s say A has m rows and n columns. Then ATA is an n × n square matrix(

ATA
)T

= AT
(
AT

)T
= ATA

which proves that ATA is symmetric. Also, for any ®x,

®xTATA®x =
(
A®x

)T (
A®x

)
= ‖A®x‖2 > 0

which, as per section 4.2.2, proves that the matrix ATA is symmetric and positive semi-

definite. Hence, its eigenvalues are all positive or zero.

We proved in section 2.13 that symmetric matrices have orthogonal eigenvectors.

That proves that singular vectors are orthogonal.

Let (_ i , v̂i ), for i ∈ [1, n] be the set of eigenvalue, eigenvector pairs of ATA—aka the

singular value, singular vector pair of A. Note that without loss of generality, we can
assume _1 ≥ _2 ≥ · · · _n (because if not, we can always renumber the eigenvalues and

eigenvectors).

Now, by definition,

ATAv̂i = _ i v̂i ∀i ∈ [1, n]
From lemma 1, singular vectors are orthogonal, and hence

v̂Ti v̂ j =

{
0 i ≠ j

1 i = j
(4.12)
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Note that v̂is are unit vectors (that is why we are using the hat sign as opposed to the

overhead arrow). As described in section 2.13, eigenvectors remain eigenvectors if we

change their length. We are free to choose any length for eigenvectors as long as we

choose it consistently. We are choosing unit-length eigenvectors here.

LEMMA 2
AAT is symmetric positive semidefinite. Its eigenvalues are non-negative and eigen-

vectors are orthogonal.

PROOF OF LEMMA 2 (
AAT

)T
=

(
AT

)T
AT = AAT

Also,

®xTAAT ®x =
(
AT ®x

)T (
AT ®x

)
= ‖

(
AT ®x

)
‖ ≥ 0

and so on.

LEMMA 3
1√
_ i
Av̂i , ∀i ∈ [1, n] is a set of orthogonal unit vectors.

PROOF OF LEMMA 3
Let’s take the dot product of a pair of these vectors:(

1
√
_ i
Av̂i

)T (
1√
_ j
Av̂j

)
=

1√
_ i_ j

v̂Ti A
TAv̂j

=
1√
_ i_ j

v̂Ti
(
ATAv̂j

)
Since _ j , v̂ j are eigenvalue, eigenvector pairs of ATA, the previous equation can be

rewritten as
1√
_ i_ j

v̂Ti _ j v̂ j

which, using equation 4.12, can be rewritten as√
_ j

_ i
v̂Ti v̂ j =

{
0 i ≠ j

1 i = j

LEMMA 4
If (_ i , v̂i ) is an eigenvalue, eigenvector pair of ATA, then

(
_ i , ûi = 1√

_ i
Av̂i

)
is an eigen-

value, eigenvector pair of AAT .

PROOF OF LEMMA 4
Given

ATAv̂i = _ i v̂i

left-multiplying both sides of the equation by A, we get

AATAv̂i = _ i Av̂i
AAT (Av̂i ) = _ i (Av̂i )
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Substituting ®fi = Av̂i in the last equation, we get

AAT ®fi = _ i ®fi

which proves that ®fi = Av̂i is an eigenvector of AAT with _ i as a corresponding eigenvalue.

Multiplying by 1√
_ i

converts it into a unit vector as per lemma 3. This completes the

proof of the lemma.

4.5.2 Proof of the SVD theorem

Now we are ready to examine the proof of the SVD theorem.

CASE 1: MORE ROWS THAN COLUMNS IN A
If m, the number of rows in A, is greater than or equal to n, the number of columns in

A, we define

U =

[
û1 û2 · · · ûn ûn+1 · · · ûm

]

Σ =



√
_1 0 · · · 0

0
√
_2 · · · 0

...

0 0 · · ·
√
_n

0 0 · · · 0

...

0 0 · · · 0


V =

[
v̂1 v̂2 · · · v̂n

]
Note the following:

From lemma 1, we know that the eigenvalues of ATA are positive. This makes the

square roots,
√
_ is, real.

U is an m ×m orthogonal matrix whose columns are the eigenvectors of AAT .
Since, AAT is m ×m, it has m eigenvalues and eigenvectors. The first n of them
are û1 = 1√

_1
Av̂1 , û2 = 1√

_2
Av̂2 , · · · , ûn = 1√

_ i
Av̂n (from lemma 4, we know these are

eigenvectors of AAT ). In this case, by our initial assumption, n < m. Thus AAT has

(m − n) more eigenvectors, ûn+1 , · · · ûm.
V is an n × n orthogonal matrix with the eigenvectors of ATA (that is, v̂1, v̂2, · · · ,
v̂n) as its columns.

Consider the matrix productUΣ. From basic matrix multiplication rules (section 2.5,

we can see that
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UΣ =

[
û1 û2 · · · ûn ûn+1 · · · ûm

]


√
_1 0 · · · 0

0
√
_2 · · · 0
...

0 0 · · ·
√
_n

0 0 · · · 0
...

0 0 · · · 0


=

[√
_1û1

√
_2û2 · · ·

√
_nûn

]
Note that the last columns of U , ûn+1 , · · · , ûm, are multiplied by all zeros in Σ and

vanishing. Thus,

UΣ =

[√
_1û1

√
_2û2 · · ·

√
_nûn

]
=

[
Av̂1 Av̂2 · · · Av̂n

]
= A

[
v̂1 v̂2 · · · v̂n

]
= AV

The later columns ofU—those named with us—fail to survive because they aremultiplied

by the zeros at the bottom of Σ.

Thus we have proved that

AV =UΣ

Then

AVVT =UΣVT

SinceV is orthogonal,VVT = I. Hence

A=UΣVT

which completes the proof of the singular value theorem.

CASE 2: FEWER ROWS THAN COLUMNS IN A
If m, the number of rows in A, is less than or equal to n, the number of columns in A,
we have

U =

[
û1 û2 · · · · · · ûm

]

Σ =



√
_1 0 · · · 0 · · · 0

0
√
_2 · · · 0 · · · 0
...

0 0 · · ·
√
_n · · · 0


V =

[
v̂1 v̂2 · · · v̂n

]
The proof follows along similar lines.
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4.5.3 Applying SVD: PCA computation

We will illustrate the idea first with a toy dataset. Consider a 3D dataset with five points.

We use a superscript to denote the index of the data instance and a subscript to denote

the component. Thus the ith data instance vector is denoted as
[
x (i )
0

x (i )
1

x (i )
2

]
. We

denote the entire data set with a matrix in which each feature instance appears as a row

vector. The data matrix is

X =



x (0)
0

x (0)
1

x (0)
2

x (1)
0

x (1)
1

x (1)
2

x (2)
0

x (2)
1

x (2)
2

x (3)
0

x (3)
1

x (3)
2

x (4)
0

x (4)
1

x (4)
2


We will assume that the data is already mean-subtracted. Now examine the matrix

product XTX , using ordinary rules of matrix multiplication:

XTX =



∑4
i=0

(
x (i )
0

)2 ∑4
i=0 x

(i )
0
x (i )
1

∑4
i=0 x

(i )
0
x (i )
2∑4

i=0 x
(i )
1
x (i )
0

∑4
i=0

(
x (i )
1

)2 ∑4
i=0 x

(i )
1
x (i )
2∑4

i=0 x
(i )
2
x (i )
0

∑4
i=0 x

(i )
2
x (i )
1

∑4
i=0

(
x (i )
2

)2


From equations 4.10 and 4.9,

XTX =


f00 f01 f02

f10 f11 f12

f20 f21 f22


=C

Thus XTX is the covariance matrix of the dataset X . This holds for arbitrary dimensions

and arbitrary feature instance counts.

If we create a data matrix X with each data instance forming a row, XTX yields the

covariance matrix of the dataset. The eigenvalues and eigenvectors of this matrix are the

principal components. Hence, performing SVD on X yields PCA of the data (assuming

prior mean subtraction).

4.5.4 Applying SVD: Solving arbitrary linear systems

A linear system is a system of simultaneous linear equations

A®x = ®b

We first encountered a linear system in section 2.12. It is possible to use matrix inversion

to solve such a system:

®x = A−1 ®b
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However, solving a linear system with matrix inversion is undesirable for many reasons.

To begin with, it is numerically unstable. The matrix inverse contains the determi-

nant of the matrix in its denominator. If the determinant is near zero, the inverse

will contain very large numbers. Minor noise in ®b will be multiplied by these large

numbers and cause large errors in the computed solution ®x. In this case, the inverse-

based solution can be very inaccurate. Furthermore, the determinant can be zero:

this can happen when one row of the matrix is a linear combination of others, in-

dicating that we have fewer equations than we think. And what if the matrix is not

square to begin with? This can happen when we have more equations than unknowns

(overdetermined system) or fewer equations than unknowns (underdetermined sys-

tem). In these cases, the inverse is not computable, and the system cannot be solved

fully.

Even in these cases, we would like to obtain a solution that is the best approximation

in some sense; and in the case of a square matrix, we would like to get the exact solution.

How do we do this? Answer: we use SVD. The steps are as follows:

1 A®x = ®b can be rewritten asU
(
ΣVT ®x

)
= ®b. We then solveU ®y1 = ®b. This can be easily

done using orthogonality ofU , as ®y1 =UT ®b.
2 Nowwe have Σ

(
VT ®x

)
= ®y1 Solve Σ®y2 = ®y1. This can be easily done because for any dia-

gonalmatrixΣ =


d1 0 · · · 0

0 d2 · · · 0
...

...
...

...

0 · · · · · · dn


we can easily computeΣ−1 =



1
d1

0 · · · 0

0 1
d2

· · · 0

...
...

...
...

0 · · · · · · 1
dn


Hence, ®y2 =Σ−1®y1.

3 Now we haveVT ®x = ®y2. This too can be solved easily using the orthogonality ofV :

®x =V ®y2
Thus we have solved for ®x without inverting the matrix A:

For invertible square matrices A, this method yields the same solution as the

matrix-inverse-based method.

For nonsquare matrices, this boils down to the Moore-Penrose inverse and yields

the best-effort solution.

4.5.5 Rank of a matrix

In section 2.12, we studied linear systems of equations. Such a system can be represented

in matrix-vector form:

A®x = ®b
Each row of A and ®b contributes one equation. If we have asmany independent equations

as unknowns, the system is solvable. This is the simplest case; matrix A is square and

invertible. det(A) is nonzero, and A−1 exists.



4.5 Singular value decomposition 137

Sometimes the situation is misleading. Consider the following system:
1 0 0

0 1 0

1 1 0



x0
x1
x2

 =

5

7

12


Although there are three rows and apparently three equations, the equations are not

independent. For instance, the third equation can be obtained by adding the first two.

We really have only two equations, not three. We say this linear system is degenerate. All

of the following statements are true for such a system A®x = ®b:
The linear system is degenerate.

det(A) = 0.
A−1 cannot be computed, and A is not invertible.

Rows of A are linearly dependent. There exists a linear combination of the rows

that sum to zero. For example, in the previous example, ®r0 + ®r1 − ®r2 = 0.
At least one of the singular values of A (eigenvalues of ATA) is zero. The number

of linearly independent rows is equal to the number of nonzero eigenvalues.

The number of linearly independent rows in a matrix is called its rank. It can be proved

that a matrix has as many nonzero singular values as its rank. It can also be proved

that the number of linearly independent columns in a matrix matches the number of

linearly independent rows. Hence, rank can also be defined as the number of linearly

independent columns in a matrix.

A nonsquare rectangular matrix with m rows and n columns has a rank r =min(m, n).
Such matrices are never invertible. We usually resort to SVD to solve them.

A square matrix with n rows and n columns is invertible (nonzero determinant) if

and only if it has rank n. Such a matrix is said to have full rank. Full-rank matrices are

invertible. They can be solved via matrix inverse computation, but inverse computation

is not always numerically stable. SVD can be applied here as well, with good numerical

properties.

Non-full-rank matrices are degenerate. So, rank is a measure of the non-degeneracy

of the matrix.

4.5.6 PyTorch code for solving linear systems with SVD

The listings in this section show a PyTorch-based implementation of SVD and demon-

strate an application that solves a linear system via SVD.

Listing 4.5 Solving an invertible linear system with matrix inversion and SVD

A = torch.tensor([[1, 2, 1], [2, 2, 3], [1, 3, 3]]).float()
b = torch.tensor([8, 15, 16]).float()

Simple test linear
system of equations

x_0 = torch.matmul(torch.linalg.inv(A), b)

Matrix inversion is numerically unstable;
SVD is better.
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U, S, V_t = torch.linalg.svd(A)

A=USVT =⇒ A®x = ®b ,USVT ®x = ®b

y1 = torch.matmul(U.T, b)

SolvesU ®y1 = ®b. Remember
U −1 =UT as U is orthogonal.

S_inv = torch.diag(1 / S)

y2 = torch.matmul(S_inv, y1)

Solves S®y2 = ®y1. Remember
S−1 is easy as S is diagonal.

x_1 = torch.matmul(V_t.T, y2)
SolvesVT ®x = ®y2. Remember
V −T =V as V is orthogonal.

assert torch.allclose(x_0, x_1)
The two solutions
are the same.

Here is the output:

Solution via inverse: [1.0, 2.0, 3.0]
Solution via SVD: [1.0, 2.0, 3.0]

Listing 4.6 Solving an overdetermined linear system by pseudo-inverse and SVD

A = torch.tensor([[0.11, 0.09], [0.01, 0.02],
[0.98, 0.91], [0.12, 0.21],
[0.98, 0.99], [0.85, 0.87],
[0.03, 0.14], [0.55, 0.45],
[0.49, 0.51], [0.99, 0.01],
[0.02, 0.89], [0.31, 0.47],
[0.55, 0.29], [0.87, 0.76],
[0.63, 0.24]])

Cat-brain dataset:
nonsquare matrix

A = torch.column_stack((A, torch.ones(15)))
b = torch.tensor([-0.8, -0.97, 0.89, -0.67,

0.97, 0.72, -0.83, 0.00,
0.00, 0.00, -0.09, -0.22,
-0.16, 0.63, 0.37])

x_0 = torch.matmul(torch.linalg.pinv(A), b)

Solution via pseudo-inverse

U, S, V_t = torch.linalg.svd(A, full_matrices=False)

Solution via SVD

y1 = torch.matmul(U.T, b)
S_inv = torch.diag(1 / S)
y2 = torch.matmul(S_inv, y1)
x_1 = torch.matmul(V_t.T, y2)

assert torch.allclose(x_0, x_1)
The two solutions
are the same.

The output is as follows:

Solution via pseudo-inverse: [ 1.0766, 0.8976, -0.9582]
Solution via SVD: [ 1.0766, 0.8976, -0.9582]
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Fully functional code for solving the SVD-based linear system can be found at http://mng

.bz/OERn.

4.5.7 PyTorch code for PCA computation via SVD

The following listing demonstrates PCA computations using SVD.

Listing 4.7 Computing PCA directly and using SVD

principal_values, principal_vectors = pca(X)

Eigenvalues of
the covariance
matrix yield
principal values.

Eigenvectors of the covariance
matrix yield principal vectors.

Direct PCA computation
from a covariance matrix

Data matrix

X_mean = X - torch.mean(X, axis=0)
U, S, V_t = torch.linalg.svd(X_mean)

Diagonal elements
of matrix S
yield principal values.

PCA from SVD

V = V_t.T Columns of matrixV
yield principal vectors.

The output is as follows:

Principal components obtained via PCA:
[[-0.44588404 -0.89509073]
[-0.89509073 0.44588404]]

Principal components obtained via SVD:
[[-0.44588404 0.89509073]
[-0.89509073 -0.44588404]]

4.5.8 Applying SVD: Best low-rank approximation of a matrix

Given a matrix A of some rank p, we sometimes want to approximate it with a ma-

trix of lower rank r, where r < p. How do we obtain the best rank r approximation

of A?

MOTIVATION
Why would we want to do this? Well, consider a data matrix X as shown in section 4.5.3.

As explained in section 4.4.2, we often want to eliminate small variances in the data

(likely due to noise) and get the pattern underlying large variations. Replacing the

data matrix with a lower-rank matrix often achieves this. However, we must bear in

mind that this does not work when the underlying pattern is nonlinear (such as in

figure 4.5a).

http://mng.bz/OERn
http://mng.bz/OERn
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APPROXIMATION ERROR
What do we mean by best approximation? The Frobenius norm can be taken as the

magnitude of the matrix. Accordingly, given a matrix A and its rank r approximation

Ar , the approximation error is e = ‖A− Ar ‖F .

METHOD
To solidify our ideas, let’s consider an m × n matrix A. From section 4.5, we know it will

have min(m, n) singular values. Let its rank be p ≤min(m, n). We want to approximate

this matrix with a rank r (< p) matrix.

Let’s rewrite the SVD expression. We will assume m > n. Also, as usual, we have the
singular values sorted in decreasing order: _1 ≥ _2 ≥ _n . We will partitionU , Σ,V :

A=UΣVT

=

[
U1 U2

] 
Σ1 0

0 Σ2



VT
1

VT
2


=U1Σ1VT

1 +U2Σ2VT
2

It can be proved that U1Σ1VT
1

is a rank r matrix. Furthermore, it is the best rank r
approximation of A.

4.6 Machine learning application: Document retrieval
We will now bring together several of the concepts we have discussed in this chapter

with an illustrative toy example: the document retrieval problem we first encountered

in section 2.1. Briefly recapping, we have a set of documents {d0 , · · · , d6}. Given an

incoming query phrase, we have to retrieve documents that match the query phrase. We

will use the bag of wordsmodel: that is, our matching approach does not pay attention to

where a word appears in a document; it simply pays attention to how many times the word

appears in the document. Although this technique is not the most sophisticated, it is

popular because of its conceptual simplicity.

Our documents are as follows:

d0: Roses are lovely. Nobody hates roses.
d1: Gun violence has reached epidemic proportions in America.
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d2: The issue of gun violence is really over-hyped. One can find many instances of

violence where no guns were involved.

d3: Guns are for violence prone people. Violence begets guns. Guns beget violence.
d4: I like guns but I hate violence. I have never been involved in violence. But I own

many guns. Gun violence is incomprehensible to me. I do believe gun owners are

the most anti violence people on the planet. He who never uses a gun will be prone

to senseless violence.

d5: Guns were used in an armed robbery in San Francisco last night.

d6: Acts of violence usually involve a weapon.

4.6.1 Using TF-IDF and cosine similarity

Before discussing PCA, let’s look at some more elementary techniques for document

retrieval. These are based on term frequency-inverse document frequency (TF-IDF)

and cosine similarity.

TERM FREQUENCY
Term frequency (TF) is defined as the number of occurrences of a particular term in a

document. (In this context, note that in this book, we use term and word somewhat in-

terchangeably.) In a slightly looser definition, any quantity proportional to the number

of occurrences of the term is also known as term frequency. For example, the TF of the

word gun in d0 , d6 is 0, in d1 is 1, in d3 is 3, and so on. Note that we are being case indepen-
dent. Also, singular/plural (gun and guns) and various flavors of the words originating

from the same stem (such as violence and violent) are typically mapped to the same term.

INVERSE DOCUMENT FREQUENCY
Certain terms, such as the, appear in pretty much all documents. These should be

ignored during document retrieval. How do we down-weight them?

The IDF is obtained by inverting and then taking the absolute value of the logarithm

of the fraction of all documents in which the term occurs. For terms that occur in most

documents, the IDF weight is very low. It is high for relatively esoteric terms.

DOCUMENT FEATURE VECTORS
Each document is represented by a document feature vector. It has as many elements as

the size of the vocabulary (that is, the number of distinct words over all the documents).

Every word has a fixed index position in the vector. Given a specific document, the

value at the index position corresponding to a specific word contains the TF of the

corresponding word multiplied by that word’s IDF. Thus, every document is a point in

a space that has as many dimensions as the vocabulary size. The coordinate value along

a specific dimension is proportional to the number of times the word is repeated in the

document, with a weigh-down factor for common words.

For real-life document retrieval systems like Google, this vector is extremely long.

But not to worry: this vector is notional—it is never explicitly stored in the computer’s

memory. We store a sparse version of the document feature vector: a list of unique

words along with their TF×IDF scores.
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COSINE SIMILARITY
In section 2.5.6, we saw that the dot product between two vectorsmeasures the agreement

between them. Given two vectors ®a and ®b, we know ®a · ®b = ‖®a‖‖ ®b‖cos (\), where the

operator ‖ · ‖ implies the length of a vector and \ is the angle between the two vectors

(see figure 2.7b). The cosine is at its maximum possible value, 1, when the vectors

are pointing in the same direction and the angle between them is zero. It becomes

progressively smaller as the angle between the vectors increases until the two vectors

are perpendicular to each other and the cosine is zero, implying no correlation: the

vectors are independent of each other.

The magnitude of the dot product is also proportional to the length of the two

vectors. We do not want to use the full dot product as a measure of similarity between

the vectors because two long vectors would have a high similarity score even if they were

not aligned in direction. Rather, we want to use the cosine, defined as

cosine_similarity
(
®a, ®b

)
=

®aT ®b
‖®a‖‖ ®b‖

(4.13)

The cosine similarity between document vectors is a principled way of measuring the

degree of term sharing between the documents. It is higher if many repeated words are

shared between the two documents.

4.6.2 Latent semantic analysis

Cosine similarity and similar techniques suffer from a significant drawback. To see this,

examine the cosine similarity between d5 and d6. It is zero. But it is obvious to a human

that the documents are similar.

What went wrong? Answer: we are measuring only the direct overlap between terms in

documents. The words gun and violence occur together in many of the other documents,

indicating some degree of similarity between them. Hence, documents containing only

gun have some similarity with documents containing only violence—but cosine similarity

between document vectors does not look at such secondary evidence. This is the blind

spot that LSA tries to overcome.

Words are known by the company they keep. That is, if terms appear together in many

documents (like gun and violence in the previous examples), they are likely to share some

semantic similarity. Such terms should be grouped together into a common pool of se-

mantically similar terms. Such a pool is called a topic. Document similarity should be mea-

sured in terms of common topics rather than explicit common terms. We are particularly

interested in topics that discriminate the documents in our corpus: that is, there should

be a high variation in the degree to which different documents subscribe to the topic.

Geometrically, a topic is a subspace in the document feature space. In classical latent

semantic analysis, we only look at linear subspaces, and a topic can be visualized as a

direction or linear combination of directions (hyperplane) in the document feature

space. In particular, any direction line in the space is a topic: it is a subspace representing

a weighted combination of the coordinate axis directions, which means it is a weighted

combination of vocabulary terms. We are, of course, interested in topics with high
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variance. These correspond to a direction along which the document vectors are well

spread, which means the document vectors are well discriminated over this topic. We

typically prune the set of topics, eliminating those with insufficient variance.

From this discussion, a mathematical definition of topic begins to emerge. Topics

are principal components of the matrix of document vectors with individual document

descriptor vectors along its rows. Measuring document similarity in terms of topic has

the advantage that two documents may not have many exact words in common but may

still have a common topic. This happens when they share words belonging to the same

topic. Essentially, they share a lot of words that occur together in other documents. So

even if the number of common words is low, we can have high document similarity.

For instance, in our toy document corpus, gun and violence are very correlated (both

or neither is likely to occur in a document). Gun-violence emerges as a topic. If we

express the document vector in terms of this topic instead of the individual words, we

see similarities that otherwise would have escaped us. That is, we see latent semantic

similarities. For instance, the cosine similarity between d5 and d6 is nonzero. This is the
core idea of latent semantic analysis and is illustrated in figure 4.6.
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Figure 4.6 Document vectors from our toy dataset d0 , · · · d6. Each word in the vocabulary corresponds to
a separate dimension. Dots show projections of document feature vectors on the plane formed by the axes
corresponding to the terms gun(s) and violence.
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Table 4.1 Document matrix for the toy example dataset

Violence Gun America · · · Roses

d0 0 0 0 · · · 2

d1 1 1 1 · · · 0

d2 2 2 0 · · · 0

d3 3 3 0 · · · 0

d4 5 5 0 · · · 0

d5 0 1 0 · · · 0

d6 1 0 0 · · · 0

Let’s revisit our example document-retrieval problem in light of topic extraction. The

document matrix (with document vectors as rows) looks like table 4.1. Rows correspond

to documents, and columns correspond to terms. Each cell contains the term frequency.

The terms gun and violence occur an equal number of times in most documents, in-

dicating clear correlation. Hence gun-violence is a topic. The principal components

(right eigenvectors) identify topics. As usual, we have omitted prepositions, conjunc-

tions, commas, and so on. The overall steps are as follows (see listing 4.8 for the Python

code):

1 Create a document term matrix X of dimension m × n. Its rows correspond to

documents (m documents), and its columns correspond to terms (n terms).

2 Perform SVD on the matrix. This yieldsU , S, andV matrices.V is an n × n orthog-
onal matrix, and S is a diagonal matrix.

3 The columns of matrixV yield topics. These are principal vectors for the rows of

X : that is, eigenvectors of XTX or, equivalently, the covariance matrix of X .
4 The successive elements of each topic vector (column in matrix V ) tell us the

contribution of corresponding terms to that topic. Each column is n × 1, depicting

the contributions of the n terms in the system.

5 The diagonal elements of S tell us the weights (importance) of corresponding

topics. These are the eigenvalues of XTX : that is, principal values of the row vectors

of X .
6 Inspect the weights, and choose a cutoff. All topics below that weight are discarded—

the corresponding columns of V are thrown away. This yields a matrix V with fewer

columns (but the same number of rows); these are the topic vectors of interest to

us. We have reduced the dimensionality of the problem. If the number of retained

topics is t, the reduced V is m × t.
7 By projecting (multiplying) the original matrix X of document terms to this new

matrix V, we get an m × t matrix of document topics (it has same number of rows

as X but fewer columns). This is the projection of X to the topic space: that is, a

topic-based representation of the document vectors.

8 Rows of the document topic matrix will henceforth be taken as document repre-

sentations. Document similarities will be computed by taking the cosine similarity

of these rows rather than the rows of the original document term matrix. This
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cosine similarity, in the topic space, will capture many indirect connections that

were not visible in the original input space.

4.6.3 PyTorch code to perform LSA

The following listing demonstrates how to compute the LSA for our toy dataset from

table 4.1. Fully functional code for this section can be found at http://mng.bz/E2Gd.

Listing 4.8 Computing LSA

terms = [''violence'', ''gun'', ''america'', ''roses''] Considers only four
terms for simplicityX = torch.tensor([[0, 0, 0, 2],

[1, 1, 1, 0],
[2, 2, 0, 0],
[3, 3, 0, 0],
[5, 5, 0, 0],
[0, 1, 0, 0],
[1, 0, 0, 0]]).float()

Document term matrix. Each row describes
a document. Each column contains TF scores
for one term. IDF is ignored for simplicity.

U, S, V_t = torch.linalg.svd(X)
Performs SVD on the doc-term matrix. Columns of
the resulting matrixV correspond to topics. These
are eigenvectors of XTX : principal vectors of
the doc-term matrix. A topic corresponds to the
direction of maximum variance in the doc feature
space.

V = V_t.T

rank = 1
U = U[:, :rank]
V = V[:, :rank]

S indicates the diagonal matrix of principal values. These signify topic
weights (importance). We choose a cut-off and discard all topics below
that weight (dimensionality reduction). Only the first few columns ofV
are retained. Principal values (topic weights) for this dataset are shown
in the output. Only one topic is retained in this example.

topic0_term_weights = list(zip(terms, V[:, 0])) Elements of the topic vector
show the contributions of
corresponding terms to the topic.

def cosine_similarity(vec_1, vec_2):
vec_1_norm = torch.linalg.norm(vec_1)
vec_2_norm = torch.linalg.norm(vec_2)
return torch.dot(vec_1, vec_2) / (vec_1_norm * vec_2_norm)

d5_d6_cosine_similarity = cosine_similarity(X[5], X[6])

Cosine similarity in the feature space fails to
capture d, d6 similarity. LSA succeeds.

doc_topic_projection = torch.dot(X, V)
d5_d6_lsa_similarity = cosine_similarity(doc_topic_projection[5],

doc_topic_projection[6])

The output is as follows:

Principal Values from S matrix: 8.89, 2.00, 1.00, 0.99
(Topic 0 has disproportionately high weight. We discard others)
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topic0_term_weights (Topic zero is about ''gun'' and ''violence''):
[
('violence', -0.706990662151775)
('gun', -0.7069906621517749)
('america', -0.018122010384881156)
('roses', 2.9413274625621952e-18)
]
Document 5, document 6 Cosine similarity in original space: 0.0
Document 5, document 6 Cosine similarity in topic space: 1.0

4.6.4 PyTorch code to compute LSA and SVD on a large dataset

Suppose we have a set of 500 documents over a vocabulary of 3 terms. This is an

unrealistically short vocabulary, but it allows us to easily visualize the space of document

vectors. Each document vector is a 3× 1 vector, and there are 500 such vectors. Together

they form a 500× 3 data matrix X . In this dataset, the terms x0 and x1 are correlated:
x0 occurs randomly between 0 and 100 times in a document, and x1 occurs twice as
many times as x0 except for small random fluctuations. The third term’s frequency

varies between 0 and 5. From section 4.6, we know that x0, x1 together form a single

topic, while x2 by itself forms another topic. We expect a principal component along

each topic.

Listing 4.9 creates the dataset, computes the SVD, plots the dataset, and shows the

first two principal components. The third singular value is small compared to the first.

We can ignore that dimension—it corresponds to the small random variation within

the x0− x1 topic. The singular values are printed out and also shown graphically along

with the data points in figure 4.7.

Figure 4.7 Latent se-
mantic analysis. Note that
the vertical axis line is
actually much smaller
than it appears
to be in the diagram.

Listing 4.9 LSA using SVD

num_examples = 500
x0 = torch.normal(0, 100, (num_examples,)).round()
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random_noise = torch.normal(0, 2, (num_examples,)).round()
x1 = 2*x0 + random_noise
x2 = torch.normal(0, 5, (num_examples,)).round()
X = torch.column_stack((x0, x1, x2))

3D dataset: the first two axes are linearly
correlated; the third axis has small near-zero
random values.U, S, V_t = torch.linalg.svd(X)

V = V_t.T

The third singular value is
relatively small; we ignore it.

The first two principal vectors represent topics.
Projecting data points on them yields document
descriptors in terms of the two topics.

Here is the output:

Singular values are: 4867.56982, 118.05858, 19.68604

Summary
In this chapter, we studied several linear algebraic tools used in machine learning and

data science:

The direction (unit vector) that maximizes (minimizes) the quadratic form x̂T Ax̂
is the eigenvector corresponding to the largest (smallest) eigenvalue of matrix

A. The magnitude of the quadratic form when x̂ is along those directions is the
largest (smallest) eigenvalue of A.
Given a set of points X =

{
®x (0) , ®x (1) , ®x (2) , · · · , ®x (n)

}
in an n + 1-dimensional space,

we can define the mean vector and covariance matrix as

®̀ = 1

n

n∑
i=0

®x (i )

C =
1

n

n∑
i=0

(
®x (i ) − ®̀

) (
®x (i ) − ®̀

)T
The variance along an arbitrary direction (unit vector) l̂ is l̂ TCl̂. This is a quadratic
form. Consequently, the maximum (minimum) variance of a set of data points

in multidimensional space occurs along the eigenvector corresponding to the

largest (smallest) eigenvalue of the covariance matrix. This direction is called the

first principal axis of the data. The subsequent eigenvectors, sorted in order of

decreasing eigenvalues, are mutually orthogonal (perpendicular) and yield the

subsequent direction of maximum variance. This technique is known as principal

component analysis (PCA).

Inmany real-life cases, larger variances correspond to the true underlying pattern of

the data, while smaller variances correspond to noise (such as measurement error).

Projecting the data on the principal axes corresponding to the larger eigenvalues

yields lower-dimensional data that is relatively noise-free. The projected data points

also match the true underlying pattern more closely, yielding better insights. This

is known as dimensionality reduction.

Singular value decomposition (SVD) allows us to decompose an arbitrary m × n
matrix A as a product of three matrices: A=UΣVT , whereU ,V are orthogonal
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and Σ is diagonal. Matrix V has the eigenvectors of ATA as its columns. U has

eigenvectors of AAT as columns.Σ has the eigenvalues of ATA (sorted in decreasing

order) in its diagonal.

SVD provides a numerically stable way to solve the linear system of equations A®x = ®b.
In particular, for nonsquare matrices, it provides the closest approximations: that

is, ®x that minimizes ‖A®x − ®b‖.
Given a dataset X whose rows are data vectors corresponding to individual instances

and columns correspond to feature values, XTX yields the covariance matrix. Thus

eigenvectors of XTX yield the data’s principal components. Since the SVD of X
has eigenvectors of XTX as columns of the matrixV, SVD is an effective way to

compute PCA.

When using machine learning data science for document retrieval, the bag-of-

words model represents documents with document vectors that contain the term

frequency (number of occurrences) of each term in the document.

TF-IDF is a cosine similarity technique for document matching and retrieval.

Latent semantic analysis (LSA) does topic modeling: we perform PCA on the

document vectors to identify topics. Projecting document vectors onto topic axes

allows LSA to see latent (indirect) similarities beyond the direct overlapping of

terms.



5Probability distributions
in machine learning

This chapter covers
The role of probability distributions in machine
learning

Working with binomial, multinomial, categorical,
Bernoulli, beta, and Dirichlet distributions

The significance of entropy and cross-entropy
in machine learning

Life often requires us to estimate the chances of an event occurring ormake a decision

in the face of uncertainty. Probability and statistics form the common toolbox to use

in such circumstances. In machine learning, we take large feature vectors as inputs. As

stated earlier, we can view these feature vectors as points in a high-dimensional space.

For instance, gray-level images of size 224× 224 can be viewed as points in a 50,176-
dimensional space, with each pixel corresponding to a specific dimension. Inputs

with common characteristics, such as images of animals, will correspond to a cluster

of points in that space. Probability distributions provide an effective tool for analyzing

such loosely structured point distributions in arbitrarily high-dimensional spaces.

Instead of simply developing a machine that emits a class given an input, we can

149
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fit a probability distribution to the clusters of input points (or a transformed version

of them) satisfying some property of interest. This often lends more insight into the

problem we are trying to solve.

For instance, suppose we are trying to design a recommendation system. We could

design one or more classifiers that emit yes/no decisions about whether to recommend

product X to person Y. On the other hand, we can fit probability distributions to specific

groups of people. Doing so can lead to the discovery of significant overlap between the

point clusters representing various groups—for instance, people who drink black coffee

and start-up founders. We may not know the explanation or even the direction in which

causality (if any) flows in the relationship. But we see the correlation and may design a

better recommendation system using it.

Another situation in which probabilistic models are used in machine learning is

when the problem involves a very large number of (perhaps infinitely many) classes.

For instance, suppose we are creating a machine that not only recognizes cats in an

image but also labels each pixel as belonging or not belonging to a cat. Effectively,

the machine segments the image pixels into foreground versus background. This is

called semantic segmentation. It is hard to cast this problem as a classification problem:

we typically design a system that emits a probability of being foreground for each

pixel.

Probabilistic models are also used in unsupervised and minimally supervised learning:

for instance, in variational autoencoders (VAEs), which we discuss in chapter 14.

This chapter introduces the fundamental notion of probability and discusses probabil-

ity distributions (including multivariates), with specific examples, in a machine learning-

centric way. As usual, we emphasize the geometrical view of multivariate statistics. An

equally important goal of this chapter is to familiarize you with PyTorch distributions,

the PyTorch statistical package, which we use throughout the book. All the distributions

discussed are accompanied by code snippets from PyTorch distributions.

NOTE The complete PyTorch code for this chapter is available at http://mng

.bz/8NVg in the form of fully functional and executable Jupyter notebooks.

5.1 Probability: The classical frequentist view
Consider a mythical city called Statsville. Suppose we choose a random adult inhab-

itant of Statsville. What are the chances of this person’s height being greater than

6 ft? Less than 3 ft? Between 5 ft 5 in. and 6 ft? What are the chances of this person’s

weight being between 50 and 70 kg (physicists would rather use the term mass here,

but we have chosen to stick to the more common word weight)? Greater than 100 kg?

What is the probability of the person’s home being exactly 6 km from the city cen-

ter? What are the chances of the person’s weight being in the 50–70 kg range and

their height being in the 5 ft 5 in. to 6 ft range? What are the chances of the per-

son’s weight being greater than 90 kg and their home being within 5 km of the city

center?

http://mng.bz/8NVg
http://mng.bz/8NVg
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All these questions can be answered in the frequentist paradigm by adopting the

following approach:

Count the size of the population belonging to the desired event (satisfying the

criterion or criteria of interest): for instance, the number of Statsville adults taller

than 6 ft. Divide that by the total size of the population (here, the number of

adults in Statsville). This is the probability (chance) of that criterion/criteria being

satisfied.

Formally,

Probability of an event=
Size of population belonging to that event

Total size of population

=
Number of favorable outcomes

Number of possible outcomes
(5.1)

For instance, suppose there are 100,000 adults in the city. Of them, 25,000 are 6 ft or

taller. Then the size of the population satisfying the event of interest (aka the number

of favorable outcomes) is 25,000. The total population size (aka the number of possible

outcomes) is 100,000. So,

Probability of a random adult Statsville resident being taller than 6 ft

=
Number of adult Statsville residents taller than 6 ft

Total number of adult Statsville residents
=

25000

100000
= 0.25

Since the total population is always a superset of the population belonging to any

event, the denominator is always greater than or equal to the numerator. Consequently,

probabilities are always lesser than or equal to 1.

5.1.1 Random variables

When we talk about probability, a relevant question is, “The probability of what?” The

simplest answer is, “The probability of the occurrence of an event.” For example, in the

previous subsection, we discussed the probability of the event that the height of an adult

Statsville resident is less than 6 ft. A little thought reveals that an event always corresponds

to a numerical entity of interest taking a particular value or lying in a particular range of

values. This entity is called a random variable. For instance, the height of adult Statsville

residents can be a random variable, and we can talk about the probability of it being less

than 6 ft, or the weight of adult Statsville residents can be a random variable, and we can

talk about the probability of it being less than 60 kg. When predicting the performance

of stock markets, the Dow Jones index maybe a random variable: we can talk about the

probability of this random variable crossing 19,000. And when discussing the spread

of a virus, the total number of infected people may be a random variable, and we can

talk about the probability of it being less than 2,000, and so on.

The defining characteristic of a random variable is that every allowed value (or range

of values) is associated with a probability (of the random variable taking that value or

value range). For instance, we may allow a set of only three weight ranges for adults of
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Statsville: S1, less than 60 kg; S2, between 60 and 90 kg; and S3, greater than 90 kg. Then

we can have a corresponding random variable X representing the quantized weight.

It can take one of only three values: X = 1 (corresponding to the weight in S1), X = 2

(corresponding to the weight in S2), or X = 3 (corresponding to the weight in S3). Each
value comes with a fixed probability: for example, p(X = 1) = 0.25, p(X = 2) == 0.5, and
p(X = 3) = 0.25, respectively, in the example from section 5.1. Such random variables

that take values from a countable set are known as discrete random variables.

Random variables can also be continuous. For a continuous random variableX , we asso-
ciate a probability with its value being in an infinitesimally small range, p (x ≤ X < x + Xx),
with Xx→ 0. This is called probability density and is explained in more detail in section 5.6.

NOTE In this book, we always use uppercase letters to denote random variables.

Usually, the same letter in lowercase refers to a specific value of the random vari-

able: for example, p (X = x) denotes the probability of random variable X taking

the value x and p (X ∈ {x , x + Xx}) denotes the probability of random variable X
taking a value between x and x + Xx. Also note that sometimes we use the letter

X to denote a data set. This popular but confusing convention is rampant in the

literature—generally, the usage is obvious from the context.

5.1.2 Population histograms

Histograms help us to visualize discrete random variables. Let’s continue with our

Statsville example. We are only interested in three weight ranges for Statsville adults:

S1: less than 60 kg; S2: between 60 and 90 kg; and S3: greater than 90 kg. Suppose the

counts of Statsville adults in these weight ranges are as shown in table 5.1.

Table 5.1 Frequency table for the weights of adults in the city of Statsville

S1: Less than 60 kg S2: Between 60 and 90 kg S3: More than 90 kg

25,000 50,000 25,000

The same information can be visualized by the histogram shown in figure 5.1. The X -axis
of the histogram corresponds to possible values of the discrete random variable from

section 5.1.1. TheY -axis shows the size of the population in the corresponding weight

range. There are 25,000 people in range S1, 50,000 people in range S2, and 25,000

people in range S3. Together, these categories account for the entire adult population
of Statsville—every adult belongs to one category or another. This can be verified by

adding theY -axis values for all the categories: 25,000+ 50,000+ 25,000= 100,000, the
adult population of Statsville.

5.2 Probability distributions
Figure 5.1 and its equivalent, table 5.1, can easily be converted to probabilities, as shown

in table 5.2. The table shows the probabilities corresponding to allowed values of the

discrete random variable X representing the quantized weight of a randomly chosen

adult resident of Statsville. Table 5.2 represents what is formally known as a probability
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Figure 5.1 Histogram depicting the weights of adults in Statsville, corresponding to table 5.1

Table 5.2 Probability distribution for quantized weights of Statsville adults

S1: Less than 60 kg S2: Between 60 and 90 kg S3: More than 90 kg

p (X = 1) = 25,000
100,000 = 0.25 p (X = 2) = 50,000

100,000 = 0.5 p (X = 3) = 25,000
100,000 = 0.25

distribution: a mathematical function that takes a random variable as input and outputs

the probability of it taking any allowed value. It must be defined over all possible values

of the random variable.

Note that the set of ranges {S1 , S2 , S3} is exhaustive in the sense that all possible

values of X belong to one range or other—we cannot have a weight that does not belong

to any of them. In set-theoretical terms, the union of these ranges, S1 ∪S2 ∪ S3, covers a
space that contains the entire population (all possible values of X).

NOTE The set-theoretic operator ∪ denotes set union.

The ranges are also mutually exclusive in that any given observation of X can belong to

only a single range, never more. In set-theoretic terms, the intersection of any pair of

ranges is null: S1 ∩S2 =S1 ∩S3 =S2 ∩S3 = q.

NOTE The set-theoretic operator ∩ denotes set intersection.

For a set of exhaustive and mutually exclusive events, the function yielding the probabili-

ties of these events is a probability distribution. For instance, the probability distribution

in our tiny example comprises three probabilities: P (X = 1) = 0.25, P (X = 2) = 0.5, and
P (X = 3) = 0.25. This is shown in figure 5.2, which is a three-point graph.
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Figure 5.2 Probability distribution graph for the weights of adults in Statsville, corresponding to
table 5.2. Event E1 ≡X = 1 =⇒ a weight in the range S1, Event E2 ≡X = 2 =⇒ a weight in the range
S2, and Event E3 ≡ x = 3 =⇒ a weight in the range S3.

5.3 Basic concepts of probability theory
In this section, we briefly touch on impossible and certain events; the sum of probabilities

of exhaustive, mutually exclusive events; and independent events.

5.3.1 Probabilities of impossible and certain events

The probability of an impossible event is zero (for example, the probability that the sun

will rise in the west). The probability of an event that occurs with certitude is 1 (the

probability that the sun will rise in the east). Improbable events (such as this author

beating Roger Federer in competitive tennis) have low but nonzero probabilities, like

0.001. Highly probable events (such as Roger Federer beating this author in competitive

tennis) have probabilities close to but not exactly equal to 1, like 0.999.

5.3.2 Exhaustive and mutually exclusive events

Consider the events E1, E2, E3 corresponding to the quantized weight of a Statsville

adults from section 5.2 belonging to the range S1, S2, or S3, respectively (equivalently,
E1 is the event corresponding to X = 1, E2 is the event corresponding to X = 2, and E3

is the event corresponding to X = 3). The events are exhaustive: their union covers the

entire population space. This means all quantized weights of Statsville adults belong

to one of the ranges S1, S2, S3. The events are also mutually exclusive: their mutual

intersections are null, meaning no member of the population can belong to more than
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one range. For example, if a weight belongs to S1, it cannot belong to S2 or S3. For such
events, the following holds true:

The sum of the probabilities of mutually exclusive events yields the probability of

one or the other of them occurring.

For instance, for events E1, E2, E3,

p (E1 or E2) = p (E1) + p (E2) (5.2)

the sum rule says that

The sum of the probabilities of an exhaustive, mutually exclusive set of events is

always 1.

For example,

p (E1) + p (E2) + p (E3) = p (E1 or E2 or E3) = 1
This is intuitively obvious. We are merely saying that we can say with certainty that either

E1 or E2 or E3 will occur.

In general, given a set of exhaustive, mutually exclusive events E1, E2, · · · , En ,
i=n∑
i=1

p (Ei ) = 1 (5.3)

5.3.3 Independent events

Consider the two events E1 ≡ “weight of an adult inhabitant of Statsville is less than

60 kg” and G1 ≡ “home of an adult inhabitant of Statsville is within 5 km of the city

center.” These events do not influence each other at all. The knowledge that a member

of the population weighs less than 60 kg does not reveal anything about the distance of

their home from the city center and vice versa. We say E1 andG1 are independent events.

Formally,

A set of events are independent if the occurrence of one does not affect the

probability of the occurrence of another.

5.4 Joint probabilities and their distributions
Given an adult Statsville resident, let E1 be, as before, the event that their weight is

less than 60 kg. The corresponding probability is p (E1). Also, letG1 be the event that

the distance of their home from the city center is less than 5 km. The corresponding

probability is p (G1). Now consider the probability that a resident weights less than 60

kg and their home is less than 5 km from the city center. This probability, denoted

p (E1 ,G1), is called a joint probability. Formally,

The joint probability of a set of events is the probability of all those events occurring

together.

The product rule says that the joint probability of independent events can be obtained by

multiplying their individual probabilities. Thus, for the current example, p (E1 ,G1) =
p (E1) p (G1).
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Let’s continue our discussion of joint probabilities with a slightly more elaborate

example. We have consolidated the weight categories, corresponding populations, and

probability distributions in table 5.3 for quick reference. Similarly, we quantize the

distance of residents’ homes from the city center into three ranges: D1 ≡ less than 5 km,

D2 ≡between 5 and 15 km, and D3 ≡ greater than 15 km. Table 5.4 shows the corre-

sponding population and probability distributions. The joint probability distribution of

the events {E1 , E2 , E3} and {G1 ,G2 ,G3} is shown in table 5.5.

Table 5.3 Population probability distribution table for the weights of adult residents of Statsville. E1, E2,
E3 are exhaustive, mutually exclusive events, p (E1) + p (E2) + p (E3) = 1.

Less than 60 kg (range S1) Between 60 and 90 kg (range S2) More than 90 kg (range S3)

Event E1 ≡weight ∈ S1 Event E2 ≡weight ∈ S2 Event E3 ≡weight ∈ S3
Population size = 25,000 Population size = 50,000 Population size = 25,000

p (E1 ) = 25,000
100,000 = 0.25 p (E2 ) = 50,000

100,000 = 0.5 p (E3 ) = 25,000
100,000 = 0.25

Table 5.4 Population probability distribution table for the distance of adult Statsville residents’ homes
from the city center.G1,G2,G3 are exhaustive, mutually exclusive events, p (G1) + p (G2) + p (G3) = 1.

Less than 5 km (rangeD1) Between 5 and 15 km (rangeD2) Greater than 15 km (rangeD3)

EventG1 ≡ distance ∈ D1 EventG2 ≡ distance ∈ D2 EventG3 ≡ distance ∈ D3

Population size = 20,000 Population size = 60,000 Population size = 20,000

p (G1 ) = 20,000
100,000 = 0.20 p (G2 ) = 60,000

100,000 = 0.6 p (G3 ) = 20,000
100,000 = 0.20

Table 5.5 Joint probability distribution of independent events. The sum of all elements in the table is 1.

Less than Between 60 More than

60 kg (E1) and 90 kg (E2) 90 kg (E3)

Less than p (E1 ,G1 ) p (E2 ,G1 ) p (E3 ,G1 )
5 km (G1) = 0.25 × 0.2 = 0.5 × 0.2 = 0.25 × 0.2

= 0.05 = 0.1 = 0.05

Between 5 and p (E1 ,G2 ) p (E2 ,G2 ) p (E3 ,G2 )
15 km (G2) = 0.25 × 0.6 = 0.5 × 0.6 = 0.25 × 0.6

= 0.15 = 0.3 = 0.15

More than p (E1 ,G3 ) p (E2 ,G3 ) p (E3 ,G3 )
15 km (G3) = 0.25 × 0.2 = 0.5 × 0.2 = 0.25 × 0.2

= 0.05 = 0.1 = 0.05

We can make the following statements about table 5.5:

The sum total of all elements in table 5.5 is 1. In other words, p
(
Ei ,Gj

)
is a

proper probability distribution indicating the probabilities of event Ei and event

Gj occurring together: here, (i , j) ∈ {1, 2, 3} × {1, 2, 3}.
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p
(
Ei ,Gj

)
= p (Ei ) p

(
Gj

)
∀ (i , j) ∈ {1, 2, 3} × {1, 2, 3}. This is because the events

are independent.

NOTE The symbol × denotes the Cartesian product. The Cartesian product of two

sets {1, 2, 3} × {1, 2, 3} is the set {(1, 1) , (1, 2) , (1, 3) , (2, 1) , (2, 2) , (2, 3) , (3, 1) ,
(3, 2) , (3, 3)}. And the symbol∀ indicates “for all.” Read∀ (i , j) ∈ {1, 2, 3} × {1, 2, 3}
as follows: for all pairs (i , j) in the Cartesian product, {1, 2, 3} × {1, 2, 3}.

In general, given a set of independent events E1, E2, · · · , En, the joint probability

p (E1 , E2 , · · · , En) of all the events occurring together is the product of their individual
probabilities of occurring:

p (E1 , E2 , · · · , En) = p (E1) p (En) · · · p (E1) =
i=n∏
i=1

p (Ei ) (5.4)

NOTE The symbol
∏

stands for “product.”

5.4.1 Marginal probabilities

Suppose we do not have the individual probabilities p (Ei ) and p
(
Gj

)
. All we have is the

joint probability distribution: that is, table 5.5. Can we find the individual probabilities

from them? If so, how?

To answer this question, consider a particular row or column in table 5.5—say, the

top row. In this row, the E values iterate over all possibilities (the entire space of Es), but
G is fixed atG1. IfG1 is to occur, there are only three possibilities: it occurs with E1,E2,

or E3. The corresponding joint probabilities are p (E1 ,G1), p (E2 ,G1), and p (E3 ,G1). If
we add them, we get the probability ofG1 occurring with E1 or E2, or E3: that is, event

(E1 ,G1) or (E2 ,G1) or (E3 ,G1). Thus we have considered all situations under whichG1

can occur. The sum represents the probability of eventG1 occurring. Thus, p (G1) can
be obtained by adding all the probabilities in the row corresponding toG1 and writing

it in the margin (this is why it is called the marginal probability). Similarly, by adding all

the probabilities in the middle column, we obtain the probability p (E2), and so forth.

Table 5.6 shows table 5.5 updated with marginal probabilities.

In general, given a set of exhaustive, mutually exclusive events E1, E2, · · · , En , another
eventG, and joint probabilities p (E1 ,G), p (E2 ,G), · · · , p (En ,G),

p (G) =
i=n∑
i=1

p (Ei ,G) (5.5)

By summing over all possible values of Eis, we factor out the Es. This is because the Es
are mutually exclusive and exhaustive; summing over them results in a certain event

that is factored out (remember, the probability of a certain event is 1).

5.4.2 Dependent events and their joint probability distribution

So far, the events we have considered jointly are “weights” and “distance of a resi-

dent’s home from the city center.” These are independent of each other—their joint

probability is the product of their individual probabilities. Now, let’s discuss a different
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Table 5.6 Joint probability distribution with marginal probabilities shown

Less than Between 60 More than Marginals

60 kg (E1) and 90 kg (E2) 90 kg (E3) forG’s

Less than p (E1 ,G1 ) p (E2 ,G1 ) p (E3 ,G1 ) p (G1 )
5 km (G1) = 0.25 × 0.2 = 0.5 × 0.2 = 0.25 × 0.2 = 0.05+ 0.1+ 0.05

= 0.05 = 0.1 = 0.05 = 0.2

Between p (E1 ,G2 ) p (E2 ,G2 ) p (E3 ,G2 ) p (G2 )
5 and 15 km = 0.25 × 0.6 = 0.5 × 0.6 = 0.25 × 0.6 0.15+ 0.3+ 0.15
(G2) = 0.15 = 0.3 = 0.15 = 0.6

More than p (E1 ,G3 ) p (E2 ,G3 ) p (E3 ,G3 ) p (G3 )
15 km (G3) = 0.25 × 0.2 = 0.5 × 0.2 = 0.25 × 0.2 = 0.05+ 0.1+ 0.05

= 0.05 = 0.1 = 0.05 = 0.2

Marginals p (E1 ) p (E2 ) p (E3 )
for Es = 0.05+ 0.15+ 0.05 = 0.1+ 0.3+ 0.1 = 0.05+ 0.15+

0.05= 0.25 = 0.5 = 0.25

situation where the variables are connected and knowing the value of one does help us

predict the other. For instance, the weights and heights of adult residents of Statsville

are not independent: typically, taller people weigh more, and vice versa.

As usual, we use a toy example to understand the idea. We quantize heights into three

ranges, H1 ≡ less than 5 ft 5 in., H2 ≡between 5 ft 5 in. and 6 ft, and H3 ≡ greater than
6 ft. Let z be the random variable corresponding to height. We have three possible events

with respect to height: F1 ≡ z ∈H1, F2 ≡ z ∈H2, and F3 ≡ z ∈H3. The joint probability

distribution of height and weight is shown in table 5.7.

Table 5.7 Joint probability distribution of dependent events

Less than Between 60 More than

60 kg (E1) and 90 kg (E2) 90 kg (E3)

Less than 5 ft p (E1 , F1 ) p (E2 , F1 ) p (E3 , F1 )
5 in. (F1) = 0.25 = 0 = 0

Between 5 ft p (E1 , F2 ) p (E2 , F2 ) p (E3 , F2 )
5 in. and 6 ft (F2) = 0. = 0.5 = 0

More than 6 ft (F3) p (E1 , F3 ) p (E2 , F3 ) p (E3 , F3 )
= 0 = 0 = 0.25

Note the following about table 5.7:

The sum total of all elements in table 5.7 is 1. In other words, p
(
Ei , Fj

)
is a proper

probability distribution indicating the probabilities of event Ei and event Fj occur-
ring together. Here (i , j) ∈ {1, 2, 3} × {1, 2, 3}.
p
(
Ei , Fj

)
= 0 i f i ≠ j ∀ (i , j) ∈ {1, 2, 3} × {1, 2, 3}. This essentially means the events

are perfectly correlated: the occurrence of E1 implies the occurrence of F1 and
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vice versa, the occurrence of E2 implies the occurrence of F2 and vice versa, and

the occurrence of E3 implies the occurrence of F3 and vice versa. In other words,

every adult resident of Statsville who weighs less than 60 kg is also shorter than 5 ft

5 in., and so on. (In life, such perfect correlations rarely exist; but Statsville is a

mythical town.)

5.5 Geometrical view: Sample point distributions for dependent
and independent variables
Let’s look at a graphical view of the point distributions corresponding to tables 5.5

and 5.7. There is a fundamental difference in how the point distributions look for

independent and dependent variables; it is connected to principal component analysis

(PCA) and dimensionality reduction, which we discussed in section 4.4.

We use a rectangular bucket-based technique to visualize joint 2D discrete events.

For instance, we have three weight-related events, E1, E2, E3, and three distance-related

events, G1, G2, G3. Hence the joint distribution has 3× 3= 9 possible events
(
Ei ,Gj

)
,

∀ (i , j) ∈ {1, 2, 3} × {1, 2, 3}, as shown in table 5.5. Each of these nine events is repre-

sented by a small rectangle (bucket for the joint event); altogether, we have a 3× 3 grid

of rectangular buckets. To visualize the sample point distribution, we have drawn 1,000

samples from the joint distribution. A joint event sample is placed at a random location

within its bucket (that is, all points within the bucket have an equal probability of being

selected). Notice that the concentration of points is greater inside high-probability

buckets and vice versa.

Graphical views of the point distribution for the independent (table 5.5) and non-

independent (table 5.7) joint variable pairs are shown in figures 5.3a and 5.3b, respec-

tively. We see that the sample point distribution for the independent events is spread somewhat

symmetrically over the domain, while that for the dependent events is spread narrowly around

a particular line (in this case, the diagonal). This holds true in general and for higher

dimensions, too. You should have this mental picture with respect to independent

versus non-independent point distributions. If we sample independent events (uncor-

related), all possible combinations of events {E1 ,G1}, {E1 ,G2}, {E1 ,G3}, · · · , {E3 ,G3}
have a non-negligible probability of occurrence (see table 5.5), which is equivalent to

saying that none of the events have a very high probability of occurring (remember

that probabilities sum to 1, so if some events have very low probabilities [close to zero],

other events must have high probabilities [near one] to compensate). This precludes

the concentration of points in a small region of the space. All buckets will have many

points. In other words, the joint probability samples of independent events are diffused

throughout the population space (see figure 5.3a, for instance).

On the other hand, if the events are correlated, the joint probability samples are

concentrated in certain high-probability regions of the joint space. For instance, in

table 5.7, events (E1 , F1), (E2 , F2), (E3 , F3) are far more likely than the other combina-

tions. Hence, the sample points are concentrated along the corresponding diagonal

(see figure 5.3b).
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(a) (b)

Figure 5.3 Graphical visualization of joint probability distributions. Rectangles represent buckets of
different discrete events. (a) From table 5.5 (independent events). The probabilities of all nine events are
non-negligible, and all nine rectangles have a relatively high concentration of sample points. Not suitable
for PCA. (b) From table 5.7 (non-independent events). Events (E1 , F1) , (E2 , F2) , and (E3 , F3) have very
high probabilities, and other events have negligible probabilities. Sample points are concentrated along
the rectangles on the diagonal. Suitable for PCA.

If this does not remind you of PCA (section 4.4), you should re-read that section. De-

pendent events such as that shown in figure 5.3a are good candidates for dimensionality

reduction: the two dimensions essentially carry the same information, and if we know

one, we can derive the other. We can drop one of the highly correlated dimensions

without losing significant information.

5.6 Continuous random variables and probability density
So far, we have quantized our random variables and made them discrete. For instance,

weight has been quantized into three buckets—less than 60 kg, between 60 and 90 kg,

and greater than 90 kg—and probabilities have been assigned to each bucket. What

if we want to know probabilities at a more granular level like 0 to 10 kg, 10 to 20 kg,

20 to 30 kg, and so on? Well, we have to create more buckets. Each bucket covers a

narrower range of values (a smaller portion of the population space), but there are

more of them. In all cases, following the frequentist approach, we count the number of

adult Statsvilleans in each bucket, divide that by the total population size, and call that

the probability of belonging to that bucket.

What if we want even further granularity? We create evenmore buckets, each covering

an even smaller portion of the population space. In the limit, we have an infinite number

of buckets, each covering an infinitesimally small portion of the population space.

Together they still cover the population space—a very large number of very small pieces
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can cover arbitrary regions. At this limit, the probability distribution function is called a

probability density function. Formally,

The probability density function p (x) for a continuous random variableX is defined

as the probability that X lies between x and x + Xx with Xx→ 0

p (x) = lim
Xx→0

probability (x ≤ X < x + Xx)

NOTE It is slightly unfortunate that the typical symbol for a random variable, X ,
collides with that for a dataset (collection of data vectors), also X . But the context
is usually enough to tell them apart.

There is a bit of theoretical nuance here. We are saying that p (x) is the probability of
the random variable X lying between x and x + Xx. This is not exactly the same as saying

that p (x) is the probability that X is equal to x. But because Xx is infinitesimally small,

they amount to the same thing.

Consider the set of events E = limXx→0 {x ≤ X < x + Xx} for all possible values of x.
All possible values of x range from negative infinity to infinity: x ∈ [−∞,∞]. There are
infinite such events, each of which is infinitesimally narrow, but together they cover the

entire domain x ∈ [−∞,∞]. In other words, they are exhaustive. They are also mutually

exclusive because x cannot belong to more than one of them at the same time. They

are continuous counterparts of the discrete events E1, E2, E3 that we have seen before.

The fact that the set of events E = limXx→0 {x ≤ X < x + Xx} in continuous space is

exhaustive and mutually exclusive means we can apply equation 5.3 but the sum will be

replaced by an integral as the variable is continuous.

The sum rule in a continuous domain is expressed as

∞∫
x=−∞

p (x) dx = 1 (5.6)

Equation 5.6 is the continuous analog of equation 5.3. It physically means we can say

with certainty that x lies somewhere in the interval −∞ to ∞.

The random variable can also be multidimensional (that is, a vector). Then the

probability density function is denoted as p
(
®x
)
.

The sum rule for a continuous multidimensional probability density function is∫
®x∈D

p
(
®x
)
d ®x = 1 (5.7)

where D is the domain of ®x—that is, the space containing all possible values of the

vector ®x.

For instance, the 2D vector


x

y

 has the XY plane as its domain. Note that the integral

in equation 5.7 is a multidimensional integral (for example, for 2D ®x, it is
∬

®x∈D p
(
®x
)

d ®x = 1).
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NOTE For simplicity of notation, we usually use a single integral sign to denote

multidimensional integrals. The vector sign in the domain (for example, ®x ∈D),
as well the vector sign in d ®x, indicates multiple dimensions.

You may remember from elementary integral calculus that equation 5.6 corresponds

to the area under the curve for p (x) (or p
(
®x
)
). In higher dimensions, equation 5.7

corresponds to the volume under the hypersurface for p
(
®x
)
. Thus, the total area under a

univariate probability density curve is always 1. And in higher dimensions, the volume under

the hypersurface for a multivariate probability density function is always 1.

5.7 Properties of distributions: Expected value, variance, and covariance
Toward the beginning of this chapter, we stated that generative machine learning

models are often developed by fitting a distribution from a known family to the available

training data. Thus, we postulate a parameterized distribution from a known family

and estimate the exact parameters that best fit the training data. Most distribution

families are parameterized in terms of intuitive properties like the mean, variance, and

so on. Understanding these concepts and their geometric significance is essential for

understanding the models based on them.

In this section, we explain a few properties/parameters common to all distributions.

Later, when we discuss individual distributions, we connect them to the parameters of

those distributions. We also show how to programmatically obtain the values of these

for each individual distribution via the PyTorch distributions package.

5.7.1 Expected value (aka mean)

If we sample a random variable with a given distributionmany times and take the average

of the sampled values, what value do we expect to end up with? The average will be closer

to the values with higher probabilities (as these appear more often during sampling). If

we sample enough times, for a given probability distribution, this average always settles

down to a fixed value for that distribution: the expected value of the distribution.

Formally,

given a discrete distribution D where a discrete random variable X can take any

value from the sets {x1 , x2 , · · · , xn} with respective probabilities {p (x1) , p (x2) · · · ,
p (xn)}, the expected value is given by the formula

E (X) = lim
N→∞

1

N

N∑
k=1

xk→D =

n∑
i=1

p (xi ) xi (5.8)

where xk→D denotes the kth sample drawn from the distribution D. Overall,

equation 5.8 says that the average or expected value of a very large number of samples

drawn from the distribution approaches the probability-weighted sum of all possible sample

values. When we sample, the higher-probability values appear more frequently

than the lower-probability values, so the average over a large number of samples is

pulled closer to the higher-probability values.

For multivariate random variables:
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Given a discrete distribution where a discrete multidimensional random variable

X can take any value from the sets
{
®x1 , ®x2 , · · · , ®xn

}
with respective probabilities{

p
(
®x1
)
, p

(
®x2
)
, · · · , p

(
®xn
)}
, the expected value is given by the formula

E (X) =
n∑
i=1

p
(
®xi
)
®xi (5.9)

For continuous random variables (note how the sum is replaced by an integral):

The expected value of a continuous random variable X that takes values from −∞
to ∞ (that is, x ∈ {−∞,∞}) is

E (X) =

∫ ∞
x=−∞ x p (x) dx⇒ for continuous univariate distributions∫
®x∈D ®x p

(
®x
)
d ®x⇒ for continuous multivariate distributions

(5.10)

EXPECTED VALUE AND CENTER OF MASS IN PHYSICS
In physics, we have the concept of the center of mass or centroid. If we have a set of

points, each with a mass, the entire point set can be replaced by a single point. This

point is called the centroid. The position of the centroid is the weighted average of the

positions of the individual points, weighted by their individual masses. If we mentally

think of the probabilities of individual points as masses, the notion of expected value in

statistics corresponds to the notion of centroid in physics.

EXPECTED VALUE OF AN ARBITRARY FUNCTION OF A RANDOM VARIABLE
So far, we have seen the expected value of the random variable itself. The notion can

be extended to functions of the random variable.

The expected value of a function of a random variable is the probability-weighted

sum of the values of that function at all possible values of the random variable. Formally,

E ( f (X)) =
n∑
i=1

f (xi ) p (xi ) ⇒ for discrete univariate distributions

E ( f (X)) =
n∑
i=1

f
(
®xi
)
p
(
®xi
)
⇒ for discrete multivariate distributions

E ( f (X)) =
∞∫

x=−∞

f (x) p (x) dx⇒ for continuous univariate distributions

E ( f (X)) =
∫
®x∈D

f
(
®x
)
p
(
®x
)
d ®x⇒ for continuous multivariate distributions (5.11)

EXPECTED VALUE AND DOT PRODUCT
In equation 2.6, we looked at the dot product between two vectors. Further, in sec-

tion 2.5.6, we saw that the dot product between two vectors measures the agreement

between the two vectors. If both point in the same direction, the dot product is larger.

In this section, we show that the expected value of a function of a random variable can

be viewed as a dot product between a vector representing the probability and another

vector representing the function itself.
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First let’s consider the discrete case. Our random variable can take values xi , i ∈ {1, n}.

Now, imagine a vector ®f =


f (x1)
f (x2)
· · ·
f (xn)


and a vector ®p =


p (x1)
p (x2)
· · ·
p (xn)


. From equation 5.11, we

see that the expected value of the function E ( f (X)) of random variable X is the same

as ®f T ®p = ®f · ®p. This is high when ®f and ®p are aligned; thus, the expected value of the

function of the random variable is high when the high function values coincide with

high probabilities of the random variable and vice versa. In the continuous case, these

vectors have an infinite number of components and the summation is replaced by an

integral, but the idea stays the same.

EXPECTED VALUE OF LINEAR COMBINATIONS OF RANDOM VARIABLES
The expected value is a linear operator. This means the expected value of a linear

combination of random variables is a linear combination (with the same weights) of

the expected values of the random variables. Formally,

E (U1X1 + U2X2 · · · UnXn) = U1E (X1) + U2E (X2) + · · · UnE (Xn) (5.12)

5.7.2 Variance, covariance, and standard deviation

When we draw a very large number of samples from a given point distribution, we often

like to know the spread of the point set. The spread is not merely a matter of measuring

the largest distance between two points in the distribution. Rather, we want to know

how densely packed the points are. If most of the points fit within a very small ball, then

even if one or two points are far from the ball, we call that a small spread or high packing

density.

Why is this important in machine learning? Let’s start with a few informal examples.

If we discover that the points are tightly packed in a small region around a single point,

we may want to replace the entire distribution with that point without causing much

error. Or if the points are packed tightly around a single straight line, we can replace

the entire distribution with that line. Doing so gives us a simpler (lower-dimensional)

representation and often leads to a view of the data that is more amenable to under-

standing the big picture. This is because small variations about a particular point or

direction are usually caused by noise, while large variations are caused by meaningful

things. By eliminating small variations and focusing on the large ones, we capture the

main information content. (This could be why older people tend to be better at form-

ing big-picture views: perhaps there are too few neurons in their heads to retain the

huge amount of memory data they have accumulated over the years. Their brain per-

forms dimensionality reduction.) This is the basic idea behind PCA and dimensionality

reduction, which we saw in section 4.4.

Variance—or its square root, standard deviation—measures how densely packed

around the expected value the points in the distribution are: that is, the spread of the

point distribution. Formally, the variance of a probability distribution is defined as

follows:
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var (X) =

∑n
i=1 (xi − `)2 p (xi ) ⇒ for a discrete n point distribution∫ ∞
x=−∞ (x − `)2 p (x) dx⇒ for a continuous distribution

(5.13)

By comparing equation 5.13 to equations 5.10 and 5.11, we see that the variance is the

expected value of the distance (x − `)2 of sample points x from the mean `. So if the

more probable (more frequently occurring) sample points lie within a short distance

of the mean, the variance is small, and vice versa. That is to say, the variance measures

how tightly packed the points are around the mean.

COVARIANCE: VARIANCE IN HIGHER DIMENSIONS
Extending the notion of the expected value from the univariate case to the multivariate

case was straightforward. In the univariate case, we take a probability-weighted average

of a scalar quantity, x. The resulting expected value is a scalar, ` =
∫ ∞
x=−∞ x p (x) dx. In

the multivariate case, we take the probability-weighted average of a vector quantity, ®x.
The resulting expected value is a vector, ®̀ =

∫
®x∈D ®x p

(
®x
)
d ®x.

Extending the notion of variance to the multivariate case is not as straightforward.

This is because we can traverse themultidimensional random vector’s domain (the space

over which the vector is defined) in an infinite number of possible directions—think

how many possible directions we can walk on a 2D plane—and the spread or packing

density can be different for each direction. For instance, in figure 5.3b, the spread along

the main diagonal is much larger than the spread in a perpendicular direction.

The covariance of a multidimensional point distribution is a matrix that allows us

to easily measure the spread or packing density in any desired direction. It also

allows us to easily figure out the direction in which the maximum spread occurs

and what that spread is.

Consider a multivariate random variable X that takes vector values ®x. Let l̂ be an arbitrary

direction (as always, we use overhead hats to denote unit-length vectors signifying

directions) in which we want to measure the packing density of X . We discussed in

sections 2.5.2 and 2.5.6 that the dot product of ®x in the direction l̂ (that is, ®xT l̂) is the
projection or component (effective value) of x along l̂. Thus the spread or packing

density of the random vector ®x in direction l̂ is the same as the spread of the dot product

(aka component or projection) l̂ T ®x. This projection l̂ T ®x is a scalar quantity: we can use

the univariate formula to measure its variance.

NOTE In this context, we can use ®xT l̂ and l̂ T ®x interchangeably. The dot product
is symmetric.

The expected value of the projection is

®̀l =
∫
®x∈D

(
l̂ T ®x

)
p
(
®x
)
d ®x = l̂ T

∫
®x∈D

®x p
(
®x
)
d ®x = l̂ T ®̀
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The variance is given by

var
(
l̂ T ®x

)
=

∫
®x∈D

(
l̂ T ®x − l̂ T ®̀

)2
d ®x

Now, since the transpose of a scalar is the same scalar, we can write the square term

within the integral as the product of the scalar l̂ T
(
®x − ®̀

)
and its transpose:

var
(
l̂ T ®x

)
=

∫
®x∈D

(
l̂ T ®x − l̂ T ®̀

) (
l̂ T ®x − l̂ T ®̀

)T
d ®x =

∫
®x∈D

l̂T
(
®x − ®̀

) (
l̂ T

(
®x − ®̀

) )T
d ®x

Using equation 2.10,

var
(
l̂ T ®x

)
=

∫
®x∈D

l̂T
(
®x − ®̀

) (
®x − ®̀

)T (
l̂ T

)T
d ®x =

∫
®x∈D

l̂T
(
®x − ®̀

) (
®x − ®̀

)T l̂ d ®x
Since l̂ is independent of ®x, we can take it out of the integral. Hence,

var
(
l̂ T ®x

)
= l̂ T ©­«

∫
®x∈D

(
®x − ®̀

) (
®x − ®̀

)T d ®xª®¬ l̂ = l̂ Tℂ (X) l̂

where

ℂ (X) =
{ ∑n

i=1
(
®x − ®̀

) (
®x − ®̀

)T ⇒ for discrete n point distributions∫
®x∈D

(
®x − ®̀

) (
®x − ®̀

)T d ®x⇒ for continuous distributions
(5.14)

For simplicity, we drop the X in parentheses and simply write ℂ (X) as ℂ. An equivalent

way of looking at the covariance matrix of a d-dimensional random variable X taking

vector values ®x is as follows:

ℂ=



f11 f12 f13 · · · f1d

f21 f22 f23 · · · f2d

...

fd1 fd2 fd3 · · · fdd


(5.15)

where

fi , j =

{∫
xi ∈Di

∫
xj ∈Dj

(xi − `i )
(
xj − ` j

)
dxidxj ⇒ for continuous distributions∑n

i=1
∑n
j=1 (xi − `i )

(
xj − ` j

)
⇒ for discrete n point distributions

is the co-variance of the ith and jth dimensions of the random vector ®x.
ℂ (X) or ℂ is the covariance matrix of the random variable X . A little thought reveals

that equations 5.14 and 5.15 are equivalent.

The following things are noteworthy:

From equation 5.14, ℂ is the sum of the products of d × 1 vectors
(
®x − ®̀

)
and their

transpose
(
®x − ®̀

)T
, 1× d vectors. Hence, ℂ is a d × d matrix.
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This matrix is independent of the direction, l̂, in which we are measuring the

variance or spread. We can precompute ℂ; then, when we need to measure

the variance in any direction l̂, we can evaluate the quadratic form l̂ Tℂl̂ to obtain

the variance in that direction. Thus ℂ is a generic property of the distribution,

much like ®̀. ℂ is called the covariance of the distribution.

Covariance is the multivariate peer of the univariate entity variance.

That covariance is the multivariate analog of variance is evident by comparing the

expressions in equations 5.13 and 5.14.

VARIANCE AND EXPECTED VALUE
As outlined previously, the variance is the expected value of the distance (x − `)2 of
sample points x from the mean `. This can be easily seen by comparing equations 5.13,

5.10, and 5.11 and leads to the following formula (where we use the principle of the

expected value of linear combinations):

var (X) =E
(
(X − `)2

)
=E

(
X2

)
−E (2`X) +E

(
`2

)
Since ` is a constant, we can take it out of the expected value (a special case of the

principal of the expected value of linear combinations). Thus we get

var (X) =E
(
X2

)
− 2`E (X) + `2E (1)

But ` =E (X). Also, the expected value of a constant is that constant. So, E (1) = 1.
Hence,

var (X) =E
(
X2

)
− 2`2 + `2E (1) =E

(
X2

)
− `2

or

var (X) =E
(
X2

)
−E (X)2 (5.16)

5.8 Sampling from a distribution
Drawing a sample from the probability distribution of a random variable yields an

arbitrary value from the set of possible values. If we draw many samples, the higher-

probability values show upmore often than lower-probability values. The sampled points

form a cloud in the domain of possible values, and the region where the probabilities

are higher is more densely populated than lower-probability regions. In other words, in

a sample point cloud, higher-probability values are overrepresented. Thus a collection

of sample points is often referred to as a sample point cloud. The hope, of course, is

that the sample point cloud is a good representation of the entire population so that

analyzing the points in the cloud will yield insights about the entire population. In

univariate cases, the sample value is a scalar and represented by a point on the number

line. In multivariate cases, the sample value is a vector and represented as a point in a

higher-dimensional space.

It is often useful to compute aggregate statistics (such as the mean and variance) to

describe the population. If we know a distribution, we can use closed-form expressions

to obtain these properties. Many standard distributions and closed-form equations for
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obtaining their means and variance are discussed in section 5.9. But often, we don’t know

the underlying distribution. Under those circumstances, the sample mean and sample

variance can be used. Given a set of n samples X = ®x1 , ®x2 · · · ®xn from any distribution,

the sample mean and variance are computed as

®̀n =
1

n

n∑
i=1

®xi

f2
n =

1

n

n∑
i=1

(
®xi − ®̀n

)2
In some situations, like Gaussian distributions (which we discuss shortly), it can be

theoretically proved that the sample mean and variance are optimal (the best possible

guesses of the true mean and variance, given the sampled data). Also, the sample mean

approaches the truemean as the number of samples increases, and with enough samples,

we get a pretty good approximation of the true mean. In the next subsection, we learn

more about how much is “enough.”

LAW OF LARGE NUMBERS: HOW MANY SAMPLES ARE ENOUGH?
Informally speaking, the law of large numbers says that if we draw a large number

of sample values from a probability distribution, their average should be close to the

expected value of the distribution. In the limit, the average over an infinite number of

samples will match the mean.

In practice, we cannot draw an infinite number of samples, so there is no guarantee

that the sample mean will coincide with the expected value (true mean) in real-life

sampling. But if the number of samples is large, they will not be too different. This is

not a matter of mere theory. Casinos design games where the probability of the house

winning a bet against the guest is slightly higher than the probability of the guest winning.

The expected value of the outcome is that the casino wins rather than the guest. Over

the very large number of bets placed in a casino, this is exactly what happens—and that

is why casinos make money on the whole, even though they may lose individual bets.

How many samples is “a large number of samples?” Well, it is not defined precisely.

But one thing is known: if the variance is larger, more samples need to be drawn to

make the law of large numbers apply.

Let’s illustrate this with an example. Consider a betting game. Suppose that the

famous soccer club FC Barcelona, for unknown reasons, has agreed to play a very large

number of matches against the Machine Learning Experts’ Soccer Club of Silicon Valley.

We can place a bet of $100 on a team. If that team wins, we get back $200: that is, we

make $100. If that team loses, we lose the bet: that is, we make –$100. The betting game

is happening in a country where nobody knows anything about the reputations of these

clubs. A bettor bets on FC Barcelona in the first game and wins $100. Based on this one

observation, can the bettor say that by betting on Barcelona, they expect to win $100

every time? Obviously not.

But suppose the bettor places 100 bets and wins $100 99 times and loses $100 once.

Now the bettor can expect with some confidence that they will win $100 (or close to it) by
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betting on Barcelona. Based on these observations, the samplemean winnings from a bet

on FC Barcelona are 0.99× (100) + 0.01× (−100) = 98. The sample standard deviation

is

√(
.99× (98− 100)2 + 0.01× (98− (−100))2

)
= 19.8997. Relative to the sample mean,

the sample standard deviation is 19.8997
98 = 0.203.

Next, consider the same game, except now FC Barcelona is playing the Real Madrid

football club. Since the two teams are evenly matched (the theoretical win proba-

bility of Barcelona is 0.5), the results are no longer one-sided. Suppose that after

100 games, FC Barcelona has won 60 times and Real Madrid has won 40 times. The

sample mean winnings on a Barcelona bet are 0.6× (100) + 0.4× (−100) = 20. The

sample standard deviation is

√(
.6× (20− 100)2 + 0.4× (20− (−100))2

)
= 97.9795. Rel-

ative to the sample mean, the sample standard deviation is 97.9795
20 = 4.89897. This is

a much larger number than the previous 0.203. In this case, even after 100 trials, a

bettor cannot be very confident in predicting that the expected win is the sample

mean, $20.

The overall intuition is as follows:

If we take a sufficiently large number of samples, their average is close to the

expected value. The exact definition of what constitutes a “sufficiently large”

number of samples is not known. However, the larger the variance (relative to the

mean), the more samples are needed.

5.9 Some famous probability distributions
In this section, we introduce some probability distributions and density functions often

used in deep learning. We will use PyTorch code snippets to demonstrate how to set up,

sample, and compute properties like expected values, variance/covariance, and so on

for each distribution. Note the following:

In the code snippets, for every distribution, we evaluate the probability using

– A PyTorch distributions function call

– A raw evaluation from the formula (to understand the math)

Both should yield the same result. In practice, you should use the PyTorch

distributions function call instead of the raw formula.

In the code snippets, for every distribution,

– We evaluate the theoretical mean and variance using a PyTorch distributions

function call.

– We evaluate the sample mean and variance.

When the sample set is large enough, the sample mean and theoretical mean

should be close. Ditto for variance.

NOTE Fully functional code for these distributions, executable via Jupyter Note-

book, can be found at http://mng.bz/8NVg.
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Another point to remember: In machine learning, we often work with the logarithm of

the probability. Since the popular distributions are exponential, this leads to simpler

computations. With that, let’s dive into the probability distributions.

5.9.1 Uniform random distributions

Consider a continuous random variable x that can take any value from a fixed compact

range, say [a, b], with equal probability, while the probability of x taking a value outside the

range is zero. The corresponding p (x) is a uniform probability distribution. Formally

stated,

p (x) =


1

b − a if x ∈ [a, b]

0 otherwise

(5.17)

Equation 5.17 means p (x) is constant, 1
b−a , for x between a and b and zero for other

values of x. Note how the value of the constant is cleverly chosen to make the total

area under the curve 1. This equation is depicted graphically in figure 5.4, and listing

5.1 shows the PyTorch code for the log probability of a univariate uniform random

distribution.

Uniform probability density function

Figure 5.4 Univariate (single-variable) uniform random probability density function. Probability p (x) is
constant, 0.05, in the interval [−10, 10] and zero everywhere outside the interval. Thus it depicts equa-
tion 5.17 with b = 10, a= −10. The area under the curve is the area of the shaded rectangle of width 20

and height 0.05, 20 × 0.05= 1. The thin rectangle depicts an infinitesimally small interval corresponding
to event E = {x ≤X < x + %x}. If we draw a random sample x from this distribution, the probability that
the value of the sample is between, say, 4 and 4+ %x, with %x −→ 0, is p (4) = 0.05. The probability that the
value of the sample is between, say, 15 and 15+ %x, with %x −→ 0, is p (15) = 0.
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Listing 5.1 Log probability of a univariate uniform random distribution

from torch.distributions import Uniform
Imports a PyTorch
uniform distribution

a = torch.tensor([1.0], dtype=torch.float)
Sets the distribution parameters

b = torch.tensor([5.0], dtype=torch.float)

ufm_dist = Uniform(a, b)
Instantiates a uniform
distribution object

X = torch.tensor([2.0], dtype=torch.float)
Instantiates a single-point
test datasetdef raw_eval(X, a, b):

return torch.log(1 / (b - a))

log_prob = ufm_dist.log_prob(X)

Evaluates the probability
using PyTorch

raw_eval_log_prob = raw_eval(X, a, b)
Evaluates the probability
using the formula

assert torch.isclose(log_prob, raw_eval_log_prob, atol=1e-4)
Asserts that the
probabilities
match

NOTE Fully functional code for the uniform distribution, executable via Jupyter

Notebook, can be found at http://mng.bz/E2Jr.

EXPECTED VALUE OF A UNIFORM DISTRIBUTION
We do this for the univariate case, although the computations can be easily extended to

the multivariate case. Substituting the probability density function from equation 5.17

into the expression for the expected value for a continuous variable, equation 5.10,

Euni f orm (X) =
∞∫

−∞

x p (x) dx =
b∫

a

x
(

1

b − a

)
dx

=
1

(b − a)

b∫
a

x dx =
1

(b − a) d
x2

2
eba =

(
b2 − a2

)
2 (b − a)

=
(a + b)
2

(5.18)

NOTE The limits of integration changed because p (x) is zero outside the interval

[a, b].

Overall, equation 5.18 agrees with our intuition. The expected value is right in the

middle of the uniform interval, as shown in figure 5.5.

VARIANCE OF A UNIFORM DISTRIBUTION
If we look at figure 5.5, it is intuitively obvious that the packing density of the samples is

related to the width of the rectangle. The smaller the width, the tighter the packing and

the smaller the variance, and vice versa. Let’s see if the math supports that intuition:

varuni f orm (x) =
∞∫

x=−∞

(x − `)2 p (x) dx =
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=

∞∫
x=−∞

(
x − a + b

2

)2
1

(b − a) dx =

=
(b − a)2

12
(5.19)

Uniform probability density function

Figure 5.5 Univariate (single-variable) uniform random probability density function. The solid line in the
middle indicates the expected value. Interactive visualizations (where you can change the parameters and
observe how the graph changes as a result) can be found at http://mng.bz/E2Jr.

Figure 5.5 shows that the variance in equation 5.19 is proportional to the square of the

width of the rectangle: that is, (b − a)2.
Here is the PyTorch code for themean and variance of a uniform randomdistribution.

Listing 5.2 Mean and variance of a uniform random distribution

num_samples = 100000 Number of sample points

samples
100000 × 1 tensor
= ufm_dist.sample([num_samples]) Obtains samples from ufm_dist

instantiated in listing 5.1

sample_mean = samples.mean() Sample mean

dist_mean = ufm_dist.mean Mean via PyTorch function

assert torch.isclose(sample_mean, dist_mean, atol=0.2)

sample_var = ufm_dist.sample([num_samples]).var() Sample variance

dist_var = ufm_dist.variance Variance via PyTorch function

assert torch.isclose(sample_var, dist_var, atol=0.2)



5.9 Some famous probability distributions 173

MULTIVARIATE UNIFORM DISTRIBUTION
Uniform distributions also can be multivariate. In that case, the random variable is a

vector, ®x (not a single value, but a sequence of values). Its domain is a multidimensional

volume instead of the X -axis, and the graph has more than two dimensions. For example,

this is a two-variable uniform random distribution:

p (x , y) =
{

1
(b1−a1 ) (b2−a2 ) if (x , y) ∈ [a1 , b1] × [a2 , b2]
0 otherwise

(5.20)

Here, (x , y) ∈ [a1 , b1] × [a2 , b2] indicates a rectangular domain on the two-dimensional

XY plane where x lies between a1 and b1 and y lies between a2 and b2. Equation 5.20 is

shown graphically in figure 5.6. In the general multidimensional case,

p
(
®x
)
=

{
1
V if ®x ∈D
0 otherwise

(5.21)

Figure 5.6 Bivariate uniform
random probability density function.
The probability p (x , y) is constant,
0.0025, in the domain (x , y) ∈
[−10, 10] × [−10, 10] and zero ev-
erywhere outside the interval. The
volume of the box of width 20 × 20 and
height 0.0025, 20 ∗ 20 ∗ 0.0025= 1.

Here,V is the volume of the hyperdimensional box with base D. Equation 5.21 means

p
(
®x
)
is constant for ®x in the domain D and zero for other values of x. When nonzero, it

has a constant value, the inverse of the volumeV : this makes the total volume under

the density function 1.

5.9.2 Gaussian (normal) distribution

This is probably the most famous distribution in the world. Let’s consider, one more

time, the weights of adult residents of Statsville. If Statsville is anything like a real city,

the likeliest weight is around 75 kg: the largest percentage of the population will weigh

this much. Weights near this value (say 70 or 80 kg) will also be quite likely, although

slightly less likely than 75 kg. Weights further away from 75 kg are still less likely, and so

on. The further we go from 75 kg, the lower the percentage of the population with that
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weight. Outlier values like 40 and 110 kg are unlikely. Informally speaking, a Gaussian

probability density function looks like a bell-shaped curve. The central value has the

highest probability. The probability falls gradually as we move away from the center.

In theory, however, it never disappears completely (the function p (x) never becomes

equal to 0), although it becomes almost zero for all practical purposes. This behavior is

described in mathematics as asymptotically approaching zero. Figure 5.7 shows a Gaussian

probability density function. Formally,

p (x) = 1
√
2cf

e
−(x−`)2

2f2 (5.22)

Gaussian distribution

Figure 5.7 Univariate Gaussian random probability density function, -= 0 and 2 = 4. The bell-shaped
curve is highest at the center and decreases more and more as we move away from the center, approach-
ing zero asymptotically. The value x = 0 has the highest probability, corresponding to the center of the
probability density function. Note that the curve is symmetric. Thus, for instance, the probability of a
random sample being in the vicinity of −5 is the same as that of 5 (0.04): that is, p (−5) = p (5) = 0.04.
An interactive visualization (where you can change the parameters and observe how the graph changes
as a result) can be found at http://mng.bz/NYJX.

Here, ` and f are parameters; ` corresponds to the center (for example, in figure 5.7,

` = 0). The parameter f controls the width of the bell. A larger f implies that p (x)
falls more slowly as we move away from the center.

The Gaussian (normal) probability density function is so popular that we have a

special symbol for it:N(x , `, f2). It can be proved (but doing so is exceedingly tedious,

so we will skip the proof here) that

∞∫
x=−∞

N(x; `, f2)dx =
∞∫

x=−∞

1
√
2cf

e
−(x−`)2

2f2 dx = 1
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This establishes that N(x; `, f2) is a true probability (satisfying the sum rule in equa-

tion 5.7).

Listing 5.3 Log probability of a univariate normal distribution

from torch.distributions import Normal
Imports a PyTorch univariate
normal distribution

mu = torch.tensor([0.0], dtype=torch.float)
Sets the distribution params

sigma = torch.tensor([5.0], dtype=torch.float)

uvn_dist = Normal(mu, sigma)
Instantiates a univariate
normal distribution object

X = torch.tensor([0.0], dtype=torch.float)
Instantiates a single-point
test datasetdef raw_eval(X, mu, sigma):

K = 1 / (math.sqrt(2 * math.pi) * sigma)
E = math.exp( -1 * (X - mu) ** 2 * (1 / (2 * sigma ** 2)))
return math.log(K * E)

log_prob = uvn_dist.log_prob(X)

Evaluates the probability
using PyTorch

raw_eval_log_prob = raw_eval(X, mu, sigma)
Evaluates the probability
using the formula

assert log_prob == raw_eval_log_prob Asserts that the
probabilities match

NOTE Fully functional code for this normal distribution, executable via Jupyter

Notebook, can be found at http://mng.bz/NYJX.

MULTIVARIATE GAUSSIAN
A Gaussian distribution can also be multivariate. Then the random variable x is a vector
®x, as usual. The parameter ` also becomes a vector ®̀, and the parameter f becomes a

matrix �. As in the univariate case, these parameters are related to the expected value

and variance. The Gaussian multivariate probability distribution function is

p
(
®x
)
=N

(
®x; ®̀, �

)
=

1

(2c det�)
1
2

e−
1
2 ( ®x− ®̀)T�−1 ( ®x− ®̀) (5.23)

Equation 5.23 describes the probability density function for the random vector ®x to lie

within the infinitesimally small volume with dimensions X ®x around the point ®x. (Imagine

a tiny box (cuboid) whose sides are successive elements of X ®x, with the top-left corner

of the box at ®x.) The vector ®̀ and the matrix � are parameters. As in the univariate

case, ®̀ corresponds to the most likely value of the random vector. Figure 5.8 shows the

Gaussian (normal) distribution with two variables in three dimensions. The shape of

the base of the bell is controlled by the parameter �.

Listing 5.4 Log probability of a multivariate normal distribution

from torch.distributions import MultivariateNormal
Imports a PyTorch multivariate
normal distribution

mu = torch.tensor([0.0, 0.0], dtype=torch.float) Sets the distribution params
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C = torch.tensor([[5.0, 0.0], [0.0, 5.0]], dtype=torch.float)

mvn_dist = MultivariateNormal(mu, C)
Instantiates a multivariate
normal distribution object

X = torch.tensor([0.0, 0.0], dtype=torch.float) Instantiates a single
point test datasetdef raw_eval(X, mu, C):

K = (1 / (2 * math.pi * math.sqrt(C.det())))
X_minus_mu = (X - mu).reshape(-1, 1)
E1 = torch.matmul(X_minus_mu.T, C.inverse())
E = math.exp(-1 / 2. * torch.matmul(E1, X_minus_mu))
return math.log(K * E)

log_prob = mvn_dist.log_prob(X)

Evaluates the probability
using PyTorch

raw_eval_log_prob = raw_eval(X, mu, C)
Evaluates the probability
using the formula

assert log_prob == raw_eval_log_prob Asserts that the probabilities match

Figure 5.8 Bivariate Gaussian random
probability density function. It is a bell-
shaped surface: highest at the center
and decreasing as we move away from
the center, approaching zero asymptot-
ically. x = 0, y = 0 has the highest prob-
ability, corresponding to the center of
the probability density function. The bell
has a circular base, and the � matrix is
a scalar multiple of the identity matrix I.
An interactive visualization (where you
can change the parameters and observe
how the graph changes as a result) can
be found at http://mng.bz/NYJX.

EXPECTED VALUE OF A GAUSSIAN DISTRIBUTION
Substituting the probability density function from equation 5.22 into the expression for

the expected value of a continuous variable, equation 5.10, we get

Egaussian (X) =
∞∫

−∞

x
1

√
2cf

e
−(x−`)2

2f2 dx

=
1
√
c

∞∫
−∞

(x − `)
√
2f

e
−(x−`)2

2f2 dx + `

∞∫
−∞

1
√
2cf

e
−(x−`)2

2f2 dx

Substituting y = −(x−`)√
2f

Egaussian (X) =
√
2f
√
c

∞∫
−∞

ye−y
2

dy + `

∞∫
−∞

p (x) dx
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Substituting u = y2 and using equation 5.6

Egaussian (X) =
√
2f

2
√
c

∞∫
∞

e−udu + `

Note that the limits of the integral in the first term are identical. This is because

u = y2→∞ whether y→∞ or y→−∞. But an integral with the same lower and upper

limits is zero. Thus the first term is zero. Hence,

Egaussian (X) = ` (5.24)

Intuitively, this makes perfect sense. The probability density p (x) = 1√
2cf

e
−(x−`)2

2f2 peaks

(maximizes) at x = `. At this x, the exponent becomes zero, which makes the term

e
−(x−`)2

2f2 attain its maximum possible value of 1. This is right in the middle of the bell, as

shown in figure 5.9. And, of course, the expected value coincides with the middle value

if the density is symmetric and peaks in the middle. Analogously, in the multivariate

case, the Gaussian multidimensional random variable X that takes vector values ®x in
the d-dimensional domain ℝd (that is, ®x ∈ℝd) has an expected value

Egaussian (X) = ®̀ (5.25)

Gaussian distribution

Figure 5.9 Univariate (single-variable) normal (Gaussian) random probability density function, -= 0 and
2 = 4. The solid line in the middle indicates the expected value.

VARIANCE OF A GAUSSIAN DISTRIBUTION
The variance of the Gaussian distribution is obtained by substituting equation 5.22 in

the integral form of equation 5.13. The mathematical derivation is shown in the book’s

appendix; here we only state the result.
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The variance of a Gaussian distribution with probability density function p (x) =
1√
2cf

e
−(x−`)2

2f2 is f2, and the standard deviation is the square root of that (f). This makes

intuitive sense. f appears in the denominator of a negative exponent in the expression

for the probability density function p (x) = 1√
2cf

e
−(x−`)2

2f2 . As such, p (x) is an increasing

function of f: that is, for a given x and `, a larger f implies a larger p (x). In other

words, a larger f implies that the probability decays more slowly as we move away from

the center: a fatter bell curve, a bigger spread, and hence a larger variance. Figure 5.10

depicts this.

(a) Different `s but the same fs. (b) The same `s but different fs.

Figure 5.10 Gaussian densities with varying -s and 2s. Changing - shifts the center of the curve.
A larger 2 (variance) implies a fatter bell⇒ more spread. Note that fatter curves are smaller in height
as the total area under the curve must be 1.

Listing 5.5 Mean and variance of a univariate Gaussian

num_samples = 100000 Number of sample points

samples
100000 × 1 tensor
= uvn_dist.sample([num_samples])

Obtains samples from uvn_dist
instantiated in listing 5.3

sample_mean = samples.mean()
Sample mean

dist_mean = uvn_dist.mean Mean via PyTorch function

assert torch.isclose(sample_mean, dist_mean, atol=0.1)

sample_var = uvn_dist.sample([num_samples]).var()
Sample variance

dist_var = uvn_dist.variance Variance via PyTorch function

assert torch.isclose(sample_var, dist_var, atol=0.1)

COVARIANCE OF A MULTIVARIATE GAUSSIAN DISTRIBUTION
AND GEOMETRY OF THE BELL SURFACE
Comparing equation 5.22 for a univariate Gaussian probability density with equation

5.23 for a multivariate Gaussian probability density, we intuitively feel that the matrix �
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is the multivariate peer of the univariate variance f2. Indeed it is. Formally, for a multi-

variate Gaussian random variable with a probability distribution given in equation 5.23,

the covariance matrix is given by the equation

ℂgaussian (X) =� (5.26)

As shown in table 5.11, Σ regulates the shape of the base of the bell-shaped probability

density function.

It is easy to see that the exponent in equation 5.23 is a quadratic form (introduced in

section 4.2). As such, it defines a hyper-ellipse, as shown in figure 5.11 and section 2.17.

All the properties of quadratic forms and hyper-ellipses apply here.

Listing 5.6 Mean and variance of a multivariate normal distribution

num_samples = 100000 Number of sample points

samples
100000 × 1 tensor
= mvn_dist.sample([num_samples])

Obtains samples from mvn_dist
instantiated in listing 5.4

sample_mean = samples.mean()
Sample mean

dist_mean = mvn_dist.mean Mean via PyTorch function

assert torch.allclose(sample_mean, dist_mean, atol=1e-1)

sample_var = mvn_dist.sample([num_samples]).var() Sample variance

dist_var = mvn_dist.variance Variance via PyTorch function

assert torch.allclose(sample_var, dist_var, atol=1e-1)

Let’s look at the geometric properties of the Gaussian covariance matrix Σ. Consider a

2D version of equation 5.23. We rewrite ®x =

x

y

 and ®̀ =

`x

`y

—2D vectors both. Also

Σ−1 =


f11 f12

f21 f22

—a 2× 2 matrix. The probability density function from equation 5.23

becomes

p (x , y) =N
(
x , y; ®̀, �

)
=

1

(2c det�)
1
2

e−
1
2

(
f11x2+(f11+f12 )xy+f22y2

)
(5.27)

(Use what you learned in chapter 3 to satisfy yourself that equation 5.27 is a 2D analog

of equation 5.23.)

If we plot the surface p (x , y) against (x , y), it looks like a bell in 3D space. The shape

of the bell’s base, on the (x , y) plane, is governed by the 2× 2 matrix �. In particular,

If � is a diagonal matrix with equal diagonal elements, the bell is symmetric in all

directions, and its base is circular.

If � is a diagonal matrix with unequal diagonal elements, the base of the bell is

elliptical. The axes of the ellipse are aligned with the coordinate axes.
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For a general � matrix, the base of the bell is elliptical. The axes of the ellipse are

not necessarily aligned with the coordinate axes.

The eigenvectors of � yield the axes of the elliptical base of the bell surface.

Now, if we sample the distribution from equation 5.27, we get a set of points (x , y) on
the base plane of the surface shown in figure 5.8. The taller the z coordinate (depicting
p (x , y)) of the surface at a point (x , y), the greater its probability of being selected in

the sampling. If we draw a large number of samples, the corresponding point cloud will

look more or less like the base of the bell surface.

Figure 5.11 shows various point clouds formed by sampling Gaussian distributions

with different covariance matrices �. Compare it to figure 5.10.

GEOMETRY OF SAMPLED POINT CLOUDS: COVARIANCE AND DIRECTION OF MAXIMUM
OR MINIMUM SPREAD
We have seen that if a multivariate distribution has a covariance matrix ℂ, its variance

(spread) in any specific direction l̂ is l̂ Tℂl̂. What is the direction of maximum spread?

Asking this is the same as asking “What direction l̂ maximizes the quadratic form

l̂ Tℂl̂?” In section 4.2, we saw that a quadratic form like this is maximized or minimized

when the direction l̂ is aligned with the eigenvector corresponding to the maximum or

minimum eigenvalue of the matrix ℂ. Thus, the maximum spread of a distribution occurs

along the eigenvector of the covariance matrix corresponding to its maximum eigenvalue. This

led to the PCA technique in section 4.4.

Next, we discuss the covariance of the Gaussian distribution and geometry of the

point cloud formed by sampling a multivariate Gaussian a large number of times. You

may want to take a look at figure 5.11, which shows various point clouds formed by

sampling Gaussian distributions with different covariance matrices �.

MULTIVARIATE GAUSSIAN POINT CLOUDS AND HYPER-ELLIPSES
The numerator of the exponential term in equation 5.23,

(
®x − ®̀

)T �−1 (®x − ®̀
)
, is a

quadratic form as we discussed in section 4.2. It should also remind you of the hyper-

ellipse we looked at in section 2.17, equation 2.33, and equation 4.1.

Now consider the plot of p
(
®x
)
against ®x. This is a hypersurface in n + 1-dimensional

space, where the random variable ®x is n-dimensional. For instance, if the random

Gaussian variable ®x is 2D, the
(
®x , p

(
®x
) )
plot in 3D is as shown in figure 5.8. It is a bell-

shaped surface. The hyper-ellipse corresponding to the quadratic form in the numerator

of the probability density function in equation 5.23 governs the shape and size of the

base of this bell.

If the matrix � is diagonal (with equal diagonal elements), the base is circular—this

is the special case shown in figure 5.8. Otherwise, the base of the bell is elliptic. The

eigenvectors of the covariance matrix � correspond to the directions of the axes of the

elliptical base. The eigenvalues correspond to the lengths of the axes.

5.9.3 Binomial distribution

Suppose we have a database containing photos of people. Also, suppose we know that

20% of the photos contain a celebrity and the remaining 80% do not. If we randomly
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(a) Σ =

[
5 0

0 5

]
(b) Σ =

[
2.75 2.25

2.25 2.75

]

(c) Σ =

[
5 0

0 0.5

]
(d) Σ =

[
2.75 −2.25
−2.25 2.75

]
Figure 5.11 Point clouds formed by sampling multivariate Gaussians with the same ®-= [0, 0]T but
different �s. These point clouds correspond to the bases of the bell curves for multivariate Gaussian prob-
ability densities. All the point clouds except (a) may be replaced by a univariate Gaussian after rotation to
align the coordinate axes with the eigenvectors of � (dimensionality reduction). See sections 4.4, 4.5, and
4.6 for details. Interactive contour plots for the base of the bell curve can be found at http://mng.bz/NYJX.



182 CHAPTER 5 Probability distributions in machine learning

select three photos from this database, what is the probability that two of them contain

a celebrity? This is the kind of problem the binomial distribution deals with.

In a computer vision-centric machine learning setting, we would probably inspect the

selected photos and try to predict whether they contained a celebrity. But for now, let’s

restrict ourselves to the simpler task of blindly predicting the chances from aggregate

statistics.

If we select a single photo, the probability of it containing a celebrity is c = 0.2.

NOTE This has nothing to do with the natural number c denoting the ratio of

the circumference to the diameter of a circle. We are just reusing the symbol c

following popular convention.

The probability of the photo not containing a celebrity is 1− c = 0.8. From that, we can

compute the probability of, say, the first two sampled photos containing a celebrity

but the last one containing a non-celebrity: that is, the event {S , S , F } (where S de-

notes success in finding a celebrity and F denotes failure in finding a celebrity). Using

equation 5.4, the probability of the event {S , S , F } is c × c × (1− c) = 0.2× 0.2× 0.8.
However, many other combinations are also possible.

All the possible combinations that can occur in three trials are shown in table 5.8.

In the table, event ids 3, 5, and 6 correspond to two successes and one failure. They

occur with probabilities 0.8× 0.2× 0.2, 0.2× 0.8× 0.2, and 0.2× 0.2× 0.8, respectively.
If any one of them occurs, we have two celebrity photos in three trials. Thus, using

equation 5.3, the overall probability of selecting two celebrity photos in three trials is the

sum of these event probabilities: 0.8× 0.2× 0.2+ 0.2× 0.8× 0.2+ 0.2× 0.2× 0.8= 0.096.

Table 5.8 All possible combinations of three trials

Event Id Event Probability

0 {F , F , F } (1 − c ) × (1 − c ) × (1 − c ) = 0.8 × 0.8 × 0.8

1 {F , F , S} (1 − c ) × (1 − c ) × c = 0.8 × 0.8 × 0.2

2 {F , S , F } (1 − c ) × c × (1 − c ) = 0.8 × 0.2 × 0.8

3 {F , S , S} (1 − c ) × c × c = 0.8 × 0.2 × 0.2

4 {S , F , F } c × (1 − c ) × (1 − c ) = 0.2 × 0.8 × 0.8

5 {S , F , S} c × (1 − c ) × c = 0.2 × 0.8 × 0.2

6 {S , S , F } c × c × (1 − c ) = 0.2 × 0.2 × 0.8

7 {S , S , S} c × c × c = 0.2 × 0.2 × 0.2

In the general case, with more than three trials, it would be impossibly tedious to

enumerate all the possible combinations of success and failure that can occur in a set of

n trials. Fortunately, we can derive a formula. But before doing that, let’s state the task

of a binomial distribution in more general terms:

Given a process that has a binary outcome (success or failure) in any given trial,

and given that the probability of success in a trial is a known constant (say, c), a
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binomial distribution deals with the probability of observing k successes in n trials
of the process.

Imagine events with n successive items, where each individual item can be either S or F .
Table 5.8 shows such events with n = 3. Each item has two possible values (S or F), and
there are n items. Hence, altogether there can be 2× 2× · · · 2= 2n possible events.

We are only interested in events with k occurrences of S (and therefore (n − k)
occurrences of F). How many of the n events are like that? Well, asking this is the same

as asking how many ways we can choose k slots from a total of n possible slots. Another
way to pose the same question is, “How many different orderings of n items exist, where

each item is either S or F and the total count of S is k?” The answer, from combination

theory, is (
n
k

)
=

n!
k! (n − k)!

Each of these events has a probability of ck × (1− c)n−k . Hence, the overall probability

of k successes in n trials is
(n
k

)
ck × (1− c)n−k .

Formally, if X is a random variable denoting the number of successes in n trials, with
the probability of success in any single trial being some constant value c,

p (X = k) =
(
n
k

)
ck × (1− c)n−k (5.28)

What values can k take? Of course, we cannot have more than n successes in n trials;
therefore, the maximum possible value of k is n. All integer values between 0 and n are
possible: k=n∑

k=0

p (X = k) =
k=n∑
k=0

(
n
k

)
ck × (1− c)n−k

The right-hand side is an expression for the generic term in the famous binomial

expansion of (a + b)n with a = c and b = 1− c. Hence, we get

k=n∑
k=0

p (X = k) =
k=n∑
k=0

(
n
k

)
ck × (1− c)n−k = (c + 1− c)n = 1n = 1 (5.29)

This agrees with intuition, since given n, k can only take values 0, 1, · · · , n; the sum of

the probabilities on the left-hand side of equation 5.29 corresponds to a certain event

with probability 1.

Also, plugging n = 3, k = 2, and c = 0.2 into equation 5.28 yields 3!
2! 1! (0.2)

2 (0.8)3−2 =
0.096: exactly what we get from explicit enumeration.

Listing 5.7 Log probability of a binomial distribution

from torch.distributions import Binomial Imports a PyTorch binomial distribution

num_trials = 3 Sets the distribution params

p = torch.tensor([0.2], dtype=torch.float)

binom_dist = Binomial(num_trials, probs=p)

Instantiates a binomial
distribution object
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X = torch.tensor([1], dtype=torch.float) Instantiates a single
point test datasetdef nCk(n, k):

f = math.factorial
return f(n) * 1. / (f(k) * f(n-k))

def raw_eval(X, n, p):
result = nCk(n, X) * (p ** X) * (1 - p) ** (n - X)
return torch.log(result)

log_prob = binom_dist.log_prob(X)

Evaluates the probability
using PyTorch

raw_eval_log_prob = raw_eval(X, num_trials, p)

Evaluates the probability
using formula

assert torch.isclose(log_prob, raw_eval_log_prob, atol=1e-4)

Asserts that the
probabilities match

NOTE Fully functional code for the binomial distribution, executable via Jupyter

Notebook, can be found at http://mng.bz/DRJ0.

EXPECTED VALUE OF A BINOMIAL DISTRIBUTION
We have seen that the binomial distribution deals with a random variable X that depicts

the number of successes in n trials, where the probability of success in a given trial

is a constant c (again, this has nothing to do with the c denoting the ratio of the

circumference to the diameter of a circle). This X can take any integer value 0 to n.
Hence,

E (X) =
k=n∑
k=0

k p (X = k) =
k=n∑
k=0

k
(
n
k

)
ck (1− c)n−k =

k=n∑
k=0

k
n!

k! (n − k)! c
k × (1− c)n−k

We can drop the first term, which has the multiplier k = 0. Thus we get

E (X) =
k=n∑
k=1

n!
(k − 1)! (n − k)! c

k × (1− c)n−k

We can factor n!= n (n − 1)! and ck = c ck−1. Also, n − k = (n − 1) − (k − 1). This gives us

E (X) =
k=n∑
k=1

n (n − 1)!
(k − 1)! ((n − 1) − (k − 1))! c ck−1 × (1− c)n−k

Substituting j for k − 1 and m for n − 1, we get

E (X) = nc
j=m∑
j=0

m!
j! (m − j)! c

j × (1− c)m− j (5.30)

The quantity within the summation is similar to that in equation 5.29 (should sum to 1).

This leaves us with
Ebinomial (X) = nc (5.31)

Equation 5.31 says that if c is the probability of success in a single trial, then the expected

number of successes in n trials is n c. For instance, if the probability of success in a
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single trial is 0.2, then the expected number of successes in 100 trials is 20—which is

almost intuitively obvious.

VARIANCE OF A BINOMIAL DISTRIBUTION
The variance of a binomial random variable depicting the number of successes in n
trials where the probability of success in a given trial is a constant c is

varbinomial = nc (1− c) (5.32)

The proof follows the same lines as that of the expected value.

Listing 5.8 Mean and variance of a binomial distribution

num_samples = 100000 Number of sample points

samples
100000 × 1 tensor
= binom_dist.sample([num_samples])

Obtains samples from the binom_dist
instantiated in listing 5.7

sample_mean = samples.mean()
Sample mean

dist_mean = binom_dist.mean Mean via PyTorch function

assert torch.isclose(sample_mean, dist_mean, atol=0.2)

sample_var = binom_dist.sample([num_samples]).var()
Sample variance

dist_var = binom_dist.variance Variance via PyTorch function

assert torch.isclose(sample_var, dist_var, atol=0.2)

5.9.4 Multinomial distribution

Consider again the example problem we discussed in section 5.9.3. We have a database

of photos of people. But instead of two classes, celebrity and non-celebrity, we have four

classes:

Photos of Albert Einstein (class 1): 10% of the photos

Photos of Marie Curie (class 2): 42% of the photos

Photos of Carl Friedrich Gauss (class 3): 4% of the photos

Other photos (class 4): 44% of the photos

If we randomly select a photo from the database (that is, perform a random trial),

The probability of selecting class 1 (picking an Einstein photo) is c1 = 0.1.
The probability of selecting class 2 (picking a Marie Curie photo) is c2 = 0.42.
The probability of selecting class 3 (picking a Gauss photo) is c3 = 0.04.
The probability of selecting class 4 (picking a photo of none of the above) is

c4 = 0.44.

Notice that c1 + c2 + c3 + c4 = 1. This is because the classes are mutually exclusive and

exhaustive, so exactly one of these classes must occur in every trial.

Given all this, let’s ask the question: “What is the probability that in a set of 10 random

trials, class 1 occurs 1 time, class 2 occurs 2 times, class 3 occurs 1 time, and class 4

occurs the remaining 6 times?” This is the kind of problem multinomial distributions

deal with.
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Formally,

Let C1 , C2 , · · · , Cm be a set of m classes such that in any random trial, exactly one

of these classes will be selected with the respective probabilities c1 , c2 , · · · , cm.
Let X1 , X2 , · · · , Xm be a set of random variables. Xi corresponds to the number of

occurrences of class Ci in a set of n trials.
Then the multinomial probability function depicting the probability that class C1
is selected k1 times, class C2 is selected k2 times, and class C3 is selected km times is

p (X1 = k1 , X2 = k2 , · · · , Xm = km) =
n!

k1! k2! · · · , km! c
k1
1
c
k2
2

· · · ckmm (5.33)

where
m∑
i=1

ki = n

m∑
i=1

ci = 1

We can verify that for m = 2, this becomes the binomial distribution (equation 5.28).

A noteworthy point is that if we look at any one of the m variables X1, X2, · · · , Xm
individually, its distribution is binomial.

Let’s work out the final probability for the example we started with: the probability

that in a set of 10 random trials, class 1 occurs 1 time, class 2 occurs 2 times, class 3

occurs 1 time, and class 4 occurs the remaining 6 times. This is

p (X1 = 1, X2 = 2, X3 = 1, X4 = 6) =
10!

1! 2! 1! 6! (0.1)
1 (0.42)2 (0.04)1 (0.44)6 = 0.0129

Listing 5.9 Log probability of a multinomial distribution

from torch.distributions import Multinomial
Imports a PyTorch
multinomial distribution

num_trials = 10 Sets the distribution params

P = torch.tensor([0.1, 0.42, 0.04, 0.44], dtype=torch.float)

multinom_dist = Multinomial(num_trials, probs=P)
Instantiates a multinomial
dist object

X = torch.tensor([1, 2, 1, 6], dtype=torch.float)
Instantiates a single-point
test datasetdef raw_eval(X, n, P):

f = math.factorial
result = f(n)
for p, x in zip(P, X):

result *= (p ** x) / f(x)
return math.log(result)

log_prob = multinom_dist.log_prob(X)

Evaluates the probability
using PyTorch

raw_eval_log_prob = raw_eval(X, num_trials, P)
Evaluates the probability
using formula

assert torch.isclose(log_prob, raw_eval_log_prob, atol=1e-4) Asserts that the
probabilities match
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NOTE Fully functional code for the multinomial distribution, executable via

Jupyter Notebook, can be found at http://mng.bz/l1gz.

EXPECTED VALUE OF A MULTINOMIAL DISTRIBUTION
Each of the random variables X1, X2, · · · , Xm individually subscribes to a binomial

distribution. Accordingly, following the binomial distribution expected value formula

from equation 5.31,
Emultinomial (Xi ) = nci (5.34)

VARIANCE OF A MULTINOMIAL DISTRIBUTION
The variation of the random variablesX1,X2, · · · ,Xm, following the binomial distribution

variance formula from equation 5.32, is

varmultinomial (Xi ) = nci (1− ci ) (5.35)

If each of the X1, X2, · · · , Xm is a scalar, then we can think of a random vector X =



X1

X2

...

Xm


.

The expected value of such a random variable is

Emultinomial (X) =



nc1

nc1
...

ncm


and the covariance is

ℂmultinomial (X) =


f11 f12 · · ·f1m

f21 f22 · · ·f2m

· · ·
fm1 fm2 · · ·fmm


(5.36)

where the diagonal terms are like the binomial variance fii = nci (1− ci ) ∀i ∈ [1, m] and
the off-diagonal terms are fi j =−ncic j ∀ (i , j) ∈ [1, m] × [1, m]. The cross-covariance

terms in the diagonal are negative because an increase in one element implies a decrease

in the others.

Listing 5.10 Mean and variance of a multinomial distribution

num_samples = 100000 Number of sample points

samples
100000 × 1 tensor
= multinom_dist.sample([num_samples]) Obtains samples from the

multinom_dist instantiated
in listing 5.9sample_mean = samples.mean(axis=0) Sample mean
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dist_mean = multinom_dist.mean Mean via PyTorch function

assert torch.allclose(sample_mean, dist_mean, atol=0.2)

sample_var = multinom_dist.sample([num_samples]).var(axis=0) Sample variance

dist_var = multinom_dist.variance Variance via PyTorch function

assert torch.allclose(sample_var, dist_var, atol=0.2)

5.9.5 Bernoulli distribution

A Bernoulli distribution is a special case of a binomial distribution where n = 1: that is,
a single success-or-failure trial is performed. The probability of success is c, and the

probability of failure is 1− c.

In other words, let X be a discrete random variable that takes the value 1 (success)

with probability c and the value 0 (failure) with probability 1− c. The distribution of X
is the Bernoulli distribution:

p (X = 1) = c

p (X = 0) = 1− c

Listing 5.11 Log probability of a Bernoulli distribution

from torch.distributions import Bernoulli Imports a PyTorch Bernoulli distribution

p = torch.tensor([0.3], dtype=torch.float) Sets the distribution params

bern_dist = Bernoulli(p)
Instantiates a Bernoulli
distribution object

X = torch.tensor([1], dtype=torch.float)
Instantiates a single-point
test datasetdef raw_eval(X, p):

prob = p if X == 1 else 1-p
return math.log(prob)

log_prob = bern_dist.log_prob(X)

Evaluates the probability
using PyTorch

raw_eval_log_prob = raw_eval(X, p) Evaluates the probability using the formula

assert torch.isclose(log_prob, raw_eval_log_prob, atol=1e-4) Asserts that the
probabilities match

NOTE Fully functional code for the Bernoulli distribution, executable via Jupyter

Notebook, can be found at http://mng.bz/BRwq.

EXPECTED VALUE OF A BERNOULLI DISTRIBUTION
If there are only two classes, success and failure, we cannot speak directly of an expected

value. If we run, say, 100 trials and get 30 successes and 70 failures, the average is 0.3
success, which is not a valid outcome. We cannot have fractional success or failure in this

binary system.

We can, however, talk about the expected value of a Bernoulli distribution if we

introduce an artificial construct. We assign numerical values to these binary entities:
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success = 1 and failure = 0. Then the expected value of X is

E (X) =
∑

x∈{0,1}
xp (x) = 1 · c + (1− c) · 0= c (5.37)

VARIANCE OF A BERNOULLI DISTRIBUTION
Similarly, if we assign numerical values to these binary entities—success = 1 and

failure = 0—the variance of the Bernoulli distribution is

var (X) =
∑

x∈{0,1}
(x −E (X))2 p (x) = (1− c)2 c + (0− c)2 (1− c) = c (1− c) (5.38)

Listing 5.12 Mean and variance of a Bernoulli distribution

num_samples = 100000 Number of sample points

samples
100000 × 1 tensor
= bern_dist.sample([num_samples])

Obtains samples from the bern_dist
instantiated in listing 5.11

sample_mean = samples.mean()
Sample mean

dist_mean = bern_dist.mean Mean via PyTorch function

assert torch.isclose(sample_mean, dist_mean, atol=0.2)

sample_var = bern_dist.sample([num_samples]).var()
Sample variance

dist_var = bern_dist.variance Variance via PyTorch function

assert torch.isclose(sample_var, dist_var, atol=0.2)

5.9.6 Categorical distribution and one-hot vectors

Consider again the example problem introduced in section 5.9.4. We have a database

with four classes of photos:

Photos of Albert Einstein (class 1): 10%
Photos of Marie Curie (class 2): 42%
Photos of Carl Friedrich Gauss (class 3): 4%
Other photos (class 4): 44%

If we randomly select a photo from the database,

The probability of selecting class 1 is c1 = 0.1.
The probability of selecting class 2 is c2 = 0.42.
The probability of selecting class 3 is c3 = 0.04.
The probability of selecting class 4 is c4 = 0.44.

As before, c1 + c2 + c3 + c4 = 1 because the classes are mutually exclusive and exhaustive

so exactly one class must occur in each trial.

In multinomial distribution, we performed n trials and asked how many times each

specific class would occur. What if we perform only one trial? Then we get categorical

distribution.

Categorical distribution is a special case of multinomial distribution (with the number

of trials n = 1). It is also an extension of the Bernoulli distribution where instead of just

two classes, success and failure, we can have an arbitrary number of classes.
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Formally,

Let C1 , C2 , · · · , Cm be a set of m classes such that in any random trial, exactly one

of these classes will be selected, with the respective probabilities c1 , c2 , · · · , cm. We

sometimes refer to the probabilities of all the classes together as a vector ®c =



c1

c2

...

cm


Let X1 , X2 , · · · , Xm be a set of random variables. Xi corresponds to the number of

occurrences of class Ci in a set of n trials.
Then the categorical probability function depicts the probability of each of the

classes C1, C2, and so on, in a single trial.

ONE-HOT VECTOR
We can use a one-hot vector to compactly express the outcome of a single trial of

categorical distribution. This is a vector with m elements. Exactly a single element is 1;

all other elements are 0. The 1 indicates which of the m possible classes occurred in

that specific trial. For instance, in the example with the database of photos, if a Marie

Curie photo comes up in a given trial, the corresponding one-hot vector is ®x =



0

1

0

0


.

PROBABILITY OF A CATEGORICAL DISTRIBUTION
We can think of a one-hot vector X as a random variable with a categorical distribution.

Note that each individual class follows a Bernoulli distribution. The probability of class

Ci occurring in any given trial is

p (Ci ) = ci

We can express the probability distribution of all the classes together compactly

p
(
X = ®x

)
= c

x1
1
c
x2
2
· · · cxmm =

i=m∏
i=1

c
xi
i (5.39)

where ®x is a one-hot vector. Note that all but one of the powers in equation 5.39 is 0;

hence the corresponding factor evaluates to 1. The remaining power is 1. Hence the

overall probability always evaluates to ci , where i is the index of the class that occurred
in the trial.

EXPECTED VALUE OF A CATEGORICAL DISTRIBUTION
Since we are talking about classes, expected value and variance do not make sense in this

context. We encountered a similar situation with the Bernoulli distribution. We assigned

numerical values to each class and somewhat artificially defined the expected value and
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variance. A similar idea can also be applied here: we can talk about the expected value

and variance of the one-hot vector (which consists of numerical values 0 and 1). But it

remains an artificial construct.

Given a random variable X whose instances are one-hot vectors ®x following a cate-
gorical distribution with m classes with respective probabilities c1 , c2 , · · · , cm,

E (X) = ®c =



c1

c2

...

cm


(5.40)

We skip the variance of a categorical distribution.

Summary
In this chapter, we first looked at probability and statistics from a machine learning

point of view. We also introduced the PyTorch distributions package and illustrated

each concept with PyTorch distributions code samples immediately following the

math.

The probability of a specific event type is defined as the fraction of the total

population of all possible events occupied by events of that specific type.

A random variable is a variable that can assume any value from a predefined range

of possible values. Random variables can be discrete or continuous. A probability

is associated with a discrete random variable taking a specific value. A probability

is also associated with a continuous random variable taking a value in an infinites-

imally small range around a specific value, called its probability density at that

value.

The sum rule of probabilities states that the sum of the probabilities of a set of

mutually exclusive events is the probability of one or another of them occurring. If

the set of events is exhaustive (that is, among them, they cover the entire space of

possible events), then their sum is 1 because one or another of them must occur.

For continuous random variables, integrating the probability density function over

the domain of possible values yields 1.

The joint probability of a set of events is the probability of all those events occurr-

ing together. If the events are independent, the joint probability is the product of

their individual probabilities.

Drawing a sample from the probability distribution of a random variable returns

an arbitrary value from the set of possible values. If we draw many samples, the

higher-probability values show up more often than the lower-probability values.

The sampled points occupy a region (called the sample point cloud) in the domain

of possible values. In a sample point cloud, the region where the probabilities are

higher is more densely populated than lower-probability regions.
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The expected value of a random variable is the average of the values of points

in a very large (approaching infinity) sample cloud. It is equal to the weighted

sum of all possible values of the random variable, where the weight for each

value is its probability of occurrence. For continuous random variables, this boils

down to integration—over the domain of possible values—of the product of the

random variable’s value and the probability density. The physical significance of the

expected value is that it is a single-point representation of the entire distribution.

The variance of a random variable is the square root of the average squared

distances of the sample point values from the mean in a very large (approaching

infinity) sample cloud. It is equal to the weighted sum of the squared distances

of all possible values of the random variable from the mean. The weight for each

value is its probability of occurrence. For continuous random variables, this boils

down to integration—over the domain of possible values—of the product of the

squared distance of the random variable’s value from the mean and the probability

density. Physically, the variance is a measure of the spread of the points in the

distribution around its mean. In the multivariate case, this spread depends on

the direction. Since there are infinite possible directions in a space with two or

more dimensions, we cannot speak of a single variance value. Instead, we compute

a covariancematrix with which to compute the spread along any specified direction.

The eigenvector corresponding to the largest eigenvalue of this covariance matrix

yields the direction of maximum spread. That eigenvalue yields the maximum

spread. The eigenvector corresponding to the next-largest eigenvalue yields the

orthogonal direction with the next-highest spread, and so forth.

Principal component analysis (PCA) is a technique in multivariate statistics to

identify the directions of the maximum spread of data. It uses the eigenvectors

and eigenvalues of the covariance matrix.

The Gaussian distribution is the most important probability distribution. The

Gaussian random variable has one value with the highest probability of occurrence.

The probability decreases smoothly with increasing distance from that highest

probability value. The probability density function is continuous and looks like a

bell-shaped surface. The center of the bell is the highest probability value, which

also happens to be the expected value of the Gaussian random variable. The

covariance matrix determines the shape of the base of the bell surface. It is circular

when the covariance matrix is diagonal, with equal values on the diagonal; it is

elliptical in general, with the axes of the ellipse along the eigenvectors of the

covariance matrix.

The sample point cloud of a Gaussian distribution is elliptical. It corresponds

to the base of the bell-shaped probability density function. The longest spread

corresponds to the ellipse’s major axis, which corresponds to the eigenvector

corresponding to the largest eigenvalue of the covariance matrix. In the GitHub

repository, we have provided an interactive visualizer for observing the shapes of

Gaussian distributions in one and two dimensions as you change the parameter

values. Take a look at the interactive visualization section at http://mng.bz/NYJX.

http://mng.bz/NYJX


6Bayesian tools for
machine learning

This chapter covers
Unsupervised machine learning models

Bayes’ theorem, conditional probability, entropy,
cross-entropy, and conditional entropy

Maximum likelihood estimation (MLE) and
maximum a posteriori (MAP) estimation of
model parameters

Evidence maximization

KLD

Gaussian mixture models (GMM) andMLE
estimation of GMM parameters

The Bayesian approach to statistics tries to model the world by modeling the overall

uncertainties and prevailing beliefs and knowledge about the system. This is in con-

trast to the frequentist paradigm, where probability is strictly measured by observing

a phenomenon repeatedly and measuring the fraction of time an event occurs. Ma-

chine learning, in particular unsupervised machine learning, is a lot closer to the

Bayesian paradigm of statistics—the subject of this chapter.

193
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In chapter 1, we primarily discussed supervised machine learning, where the training

data is labeled: each input value is accompanied by a manually created desired output

value. Labeling training inputs is a manual, labor-intensive process and often the worst

pain point in building a machine learning–based system. This has led to considerable

recent interest in unsupervisedmachine learning, where we build a model from unlabeled

training data. How is this done?

The general approach is best visualized geometrically. Each input data instance is a

point in a high-dimensional space. These points form an overall pattern in the space

of all possible inputs. If the inputs all have a common property, the points are not

distributed randomly over the input space. Rather, they occupy a region in the input

space with a definite shape. If the inputs have multiple classes, each class occupies a

separate cluster in the space. Sometimes we apply a transformation to the input first—

the transform is chosen or learned so that the transformed points exhibit a pattern

more clearly than raw input points. We then identify a probability distribution whose

sample point cloud matches the shape of the (potentially transformed) training data

point cloud. We can generate faux input by sampling from this distribution. We can

also classify an arbitrary input by observing which cluster it falls into.

NOTE The complete PyTorch code for this chapter is available at http://mng.bz

/WdZa in the form of fully functional and executable Jupyter notebooks.

6.1 Conditional probability and Bayes’ theorem
As usual, the discussion is accompanied by examples. In this context, we first offer a

refresher on the concepts of joint and marginal probability from section 5.4 (you may

want to revisit the topic of joint probability in sections 5.4, 5.4.1, and 5.4.2).

Consider two random variables: the height and weight of adult Statsville residents.

Weight (denotedW ) can take three quantized values: E1, E2, E3. Height (H) can also

take three quantized values: F1, F2, F3. Table 6.1 shows their joint probability.

6.1.1 Joint and marginal probability revisited

One glance at table 6.1 tells us that the probabilities are concentrated along the main

diagonal, which indicates dependent events. This can be validated by inspecting one

joint probability—say, p (E1 , F1)—and the corresponding marginal probabilities p (F1)
and p (E1). We can see that p (E1 , F1) = 0.2≠ p (F1) × p (E1) = 0.26× 0.26, establishing
that the random variables weightW and height H are not independent. For contrast,

look at table 5.6. In that case, for any valid i , j pair, p
(
Ei ,Gj

)
= p (Gi ) × p

(
Ej

)
: the two

events (weight and distance of a resident’s home from the city center) are independent.

Note the following:

Joint probability—This is the probability of a specific combination of values occur-

ring together. Each cell in table 6.1 depicts one joint probability: for example, the

probability that a resident’s weight is between 60 and 90 kg and that their height is

greater than 183 cm is p (E2 , F3) = 0.04.

http://mng.bz/WdZa
http://mng.bz/WdZa
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Table 6.1 Example population sizes and joint probability distribution for variablesW = {E1 , E2 , E3 } and
H = {F1 , F2 , F3 } (weights and heights of adult Statsville residents), showing marginal probabilities

Less than Between More than Marginals

60 kg (E1) 60 and 90 kg (E2) 90 kg (E3) for Fs

Less than pop. = 20,000 pop. = 4,000 pop. = 2,000 pop. = 26,000;

160 cm (F1 ) p (E1 , F1 ) p (E2 , F1 ) p (E3 , F1 ) p (F1 ) = 0.2
= 0.2 = 0.04 = 0.02 + 0.04+ 0.02

= 0.26

Between pop. = 4,000 pop. = 40,000 pop. = 4,000 pop. = 48,000;

160 cm and p (E1 , F2 ) p (E2 , F2 ) p (E3 , F2 ) p (F2 ) = 0.04
183 cm = 0.04 = 0.4 = 0.04 + 0.4+ 0.04
(F2) = 0.48

More than pop. = 2,000 pop. = 4,000 pop. = 20,000 pop. = 26,000;

183 cm (F3) p (E1 , F3 ) p (E2 , F3 ) p (E3 , F3 ) p (F3 ) = 0.02
= 0.02 = 0.04 = 0.2 + 0.04+ 0.2

= 0.26

Marginals p (E1 ) p (E2 ) p (E3 ) Total pop.

for Es = 0.2+ 0.04+ 0.02 = 0.04+ 0.4+ 0.04 = 0.02+ 0.04+ 0.2 = 100,000;

= 0.26 = 0.48 = 0.26 Total prob = 1

Sum rule—The joint probabilities of all possible variable combinations sum to 1

(bottom right cell in table 6.1):

3∑
i=1

3∑
j=1

p
(
Fi , Ej

)
= 1

The sum of probabilities is the probability of one or another of the corresponding

events occurring. Here we are adding all possible event combinations—one or

another of these combinations will certainly occur. Hence the sum is 1, which

matches our intuition.

Marginal probability for a variable—This is obtained by “summing away” the other

variables (right-most column and bottom-most row in table 6.1):

p
(
Ej

)
=

3∑
i=1

p
(
Fi , Ej

)
p (Fi ) =

3∑
j=1

p
(
Fi , Ej

)
We have added all possible combinations of other variables, so the sum represents

the probability of this one variable.
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Marginal probabilities—These sum to 1:

3∑
j=1

p
(
Ej

)
=

3∑
i=1

p (Fi ) = 1

The sum of the marginal probabilities is the sum of all possible joint probabilities.

Dependent vs. independent variables—If and only if the variables are independent,

the product of the marginal probabilities is the same as the joint probability:

p
(
Fi , Ej

)
≠ p (Fi ) × p

(
Ej

)
⇐⇒ for dependent variables in table 5.6

p
(
Gi , Ej

)
= p (Gi ) × p

(
Ej

)
⇐⇒ for independent variables in table 6.1

You should verify that this condition is not satisfied in table 6.1 for the weight and

height variables. It is satisfied in table 5.6 for the weight and distance-of-home-from-

city-center variables.

6.1.2 Conditional probability

Suppose we know that the height of a subject is between 160 and 183 cm (H =F2). What

is the probability of the subject’s weight being more than 90 kg (W =E3)? In statistical

parlance, this probability is denoted p (W =E3 |H =F2). It is read “probability ofW =E3

given H =F2,” aka “probability ofW =E3 subject to the condition H =F2.”
This is an example of conditional probability. Note that if we are given that the height is

between 160 and 183 cm (H =F2), our universe is restricted to the second row of table

6.1. In particular, our population size is not 100,000 (that is, the entire population of

Statsville). Rather, it is 48,000: the size of the population satisfying the given condition

H =F2. Using the frequentist definition,

p (W =E3 |H =F2) =
population satisfyingW =E3 and H =F2

population satisfying H =F2
=

4K
48K

= 0.083

or

p (W =E3 |H =F2) =
p (W =E3 , H =F2)

p (H =F2)
Table 6.2 shows table 6.1 with conditional probabilities added.

6.1.3 Bayes’ theorem

As demonstrated in table 6.2, in general,

p
(
W =Ej

��H =Fi
)
=
p
(
W =Ej , H =Fi

)
p (H =Fi )

p
(
H =Fi

��W =Ej
)
=
p
(
W =Ej , H =Fi

)
p
(
W =Ej

)
This is the essence of Bayes’ theorem. We can generalize and say the following: given

two random variables X andY , the conditional probability of X taking the value x given
the condition thatY has value y is given by the ratio of the joint probability of the two
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Table 6.2 Example population sizes and joint, marginal, and conditional probabilities for variables
W = {E1 , E2 , E3 } and H = {F1 , F2 , F3 } (weights and heights of adult Statsville residents). (This is table
6.1 with conditional probabilities added.)

Less than Between 60 More than Marginals

60 kg (E1) and 90 kg (E2) 90 kg (E3) for Fs

Less than pop. = 20,000 pop. = 4,000 pop. = 2,000 pop. = 26,000;

160 cm (F1 ) p (E1 , F1 ) = 0.2 p (E2 , F1 ) = 0.04 p (E3 , F1 ) = 0.02 p (F1 ) = 0.2
p (E1 |F1 ) =

p
(
E1 ,F1

)
p
(
F1

) p (E2 |F1 ) =
p
(
E2 ,F1

)
p
(
F1

) p (E3 |F1 ) =
p
(
E3 ,F1

)
p
(
F1

) + 0.04+ 0.02

= 0.77 = 0.154 = 0.077 = 0.26

p (F1 |E1 ) =
p
(
E1 ,F1

)
p
(
E1

) p (F1 |E2 ) =
p
(
E2 ,F1

)
p
(
E2

) p (F1 |E3 ) =
p
(
E3 ,F1

)
p
(
E3

)
= 0.77 = 0.083 = 0.077

Between pop. = 4,000 pop. = 40,000 pop. = 4,000 pop. = 48,000;

160 cm and p (E1 , F2 ) = 0.04 p (E2 , F2 ) = 0.4 p (E3 , F2 ) = 0.04 p (F2 ) = 0.04
183 cm (F2) p (E1 |F2 ) =

p
(
E1 ,F2

)
p
(
F2

) p (E2 |F2 ) =
p
(
E2 ,F2

)
p
(
F2

) p (E3 |F2 ) =
p
(
E3 ,F2

)
p
(
F2

) + 0.4+ 0.04

= 0.083 = 0.83 = 0.083 = 0.48

p (F2 |E1 ) =
p
(
E1 ,F2

)
p
(
E1

) p (F2 |E2 ) =
p
(
E2 ,F2

)
p
(
E2

) p (F2 |E3 ) =
p
(
E3 ,F2

)
p
(
E3

)
= 0.154 = 0.83 = 0.154

More than pop. = 2,000 pop. = 4,000 pop. = 20,000 pop. = 26,000;

183 cm (F3) p (E1 , F3 ) = 0.02 p (E2 , F3 ) = 0.04 p (E3 , F3 ) = 0.2 p (F3 ) = 0.02
p (E1 |F3 ) =

p
(
E1 ,F3

)
p
(
F3

) p (E2 |F3 ) =
p
(
E2 ,F3

)
p
(
F3

) p (E3 |F3 ) =
p
(
E3 ,F3

)
p
(
F3

) + 0.04+ 0.2

= 0.077 = 0.154 = 0.77 = 0.26

p (F3 |E1 ) =
p
(
E1 ,F3

)
p
(
E1

) p (F3 |E2 ) =
p
(
E2 ,F3

)
p
(
E2

) p (F3 |E3 ) =
p
(
E3 ,F3

)
p
(
E3

)
= 0.077 = 0.083 = 0.77

Marginals p (E1 ) p (E2 ) p (E3 ) Total pop.

for Es = 0.2+ 0.04+ 0.02 = 0.04+ 0.4+ 0.04 = 0.02+ 0.04+ 0.2 = 100,000;

= 0.26 = 0.48 = 0.26 Total prob = 1

and the marginal probability of the condition

p (X = x |Y = y) = p (X = x ,Y = y)
p (Y = y) (6.1)

Sometimes we drop the names of the random variable and just use the values. Using

such notation, Bayes’ theorem can be stated as

p (x |y) = p (x , y)
p (y)

Note that the denominator is the marginal probability, which can be obtained by

summing over the joint probabilities. For instance, for continuous variables, Bayes’

theorem can be written as

p (x |y) = p (x , y)∫ ∞
−∞ p (x , y) dx
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Bayes’ theorem can be generalized further to more than two variables and multiple

dimensions:
p
(
X1 = ®x1

��X2 = ®x2 , X3 = ®x3 , · · · , Xn = ®xn
)

=
p
(
X1 = ®x1 , X2 = ®x2 , X3 = ®x3 · · · , Xn = ®xn

)
p
(
X2 = ®x2 , · · · , Xn = ®xn

) (6.2)

p
(
X1 = ®x1 , X2 = ®x2

��X3 = ®x3 · · · , Xn = ®xn
)

=
p
(
X1 = ®x1 , X2 = ®x2 , X3 = ®x3 · · · , Xn = ®xn

)
p
(
X3 = ®x3 , · · · , Xn = ®xn

) (6.3)

It is common practice to drop the name of the random variable (uppercase), retain

only the value (lowercase), and state these equations informally as

p
(
®x1

��®x2 , ®x3 , · · · , ®xn ) = p (
®x1 , ®x2 , ®x3 · · · , ®xn

)
p
(
®x2 , · · · , ®xn

)
p
(
®x1 , ®x2

��®x3 · · · , ®xn ) = p (
®x1 , ®x2 , ®x3 · · · , ®xn

)
p
(
®x3 , · · · , ®xn

)
What happens if the random variables are independent? Well, let’s check out equa-

tion 6.1. If X andY are independent,

p (x , y) = p (x) p (y)
and hence

p (x |y) = p (x , y)
p (y) = p (x)

This makes intuitive sense: if X andY are independent, knowingY does not make any

difference to p (X = x), so the probability of X given Y is the same as the probability

of X .

6.2 Entropy
Suppose a daily meteorological bulletin informs the folks in the United States whether

it rained in the Sahara desert yesterday. Is there much overall information in that

bulletin? Not really—it almost always reports the obvious. The probability of “no rain” is

overwhelmingly high (it is almost certain that there will be no rain), and the uncertainty

associated with the outcome is very low. Even without the bulletin, if we guess the

outcome “no rain,” we will be right almost every time. Similarly, a daily news bulletin

telling us whether it rained yesterday in Cherapunji, India—a place where it pretty much

rains all the time—has little informational content because we can guess the results with

high certainty even without the bulletin. Stated another way, the uncertainty associated

with the probability distributions of “rain vs. no rain in the Sahara” and or “rain vs. no

rain in Cherapunji” is low. This is a direct consequence of the fact that the probability

of one of the events is close to 1 and the probabilities of the other events are near 0:

the probability density function (PDF) has a very tall peak at one location and very low

heights elsewhere.
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On the other hand, a daily bulletin reporting whether it rained in San Francisco is of

considerable interest because the probability of “rain” and “no rain” are comparable.

Without the bulletin, we cannot guess the result with much certainty.

The concept of entropy attempts to quantify the uncertainty associated with a chancy

event. If the probability for any one event is overwhelmingly high (meaning the proba-

bilities of other events are very low since the sum is 1), the uncertainty is low—we pretty

much know that the high-probability event will occur. On the other hand, if there are

multiple events with comparable high probabilities, uncertainty is high—we cannot

predict which event will occur. Entropy captures this notion of uncertainty in a system.

Let’s look at another example.

Suppose we have tiny images, four pixels wide by four pixels high, and each pixel is

one of four possible colors: G(reen), R(ed), B(lue), or Y(ellow). Two such images are

shown in figure 6.1. We want to encode such images. The simplest thing to do is to use

a two-bit representation for each color:

G (reen) = 00
R(ed) = 01
B(lue) = 10

Y (ellow) = 11

R

G G G G

R R R

B B B B

Y Y Y Y

G

G G G G

G G G

G G G G

R R B Y

Figure 6.1 Two 4 × 4 images with different pixel color distributions. In the left image, the four colors R,
G, B, and Y are equally probable. In the right image, one color (green) is much likelier than the others. The
left image has higher entropy (uncertainty): we cannot predict any color with much certainty. In the right
image, we can predict green with relative certainty.

The entire 16-pixel image on the left can be represented by the string 00 00 00 00 01 01

01 01 10 10 10 10 11 11 11 11. Here, we have iterated over the pixels in raster scan order,

left to right and top to bottom. The total number of bits needed to store the 16-pixel

image is 16× 2= 32 bits. The right image can be represented as 00 00 00 00 00 00 00

00 00 00 00 00 01 01 10 11. The total number of bits needed is 16× 2= 32 bits. Both

images need the same amount of storage. But is this optimal?

Consider the right-hand image. The color G appears much more frequently than

the others. We can use this fact to reduce the total number of bits required to store
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the image. It is not mandatory to use the same number of bits to represent each color.

How about using shorter representations for the more frequently occurring (higher-

probability) colors and longer representations for the infrequent (lower-probability)

colors? This is the core principle behind the technique of variable bit-rate coding. For

instance, we can use the following representation:

G (reen) = 0
R(ed) = 10
B(lue) = 110

Y (ellow) = 111

The right-hand image can thus be represented as 0 0 0 0 0 0 0 0 0 0 0 0 10 10 110 111.

NOTE This is an example of what is known as prefix coding: no two colors share

the same prefix. It enables us to identify the color as soon as we see its code. For

instance, if we see a 0 bit at the beginning, we immediately know the color is green

since no other color code starts with 0. If we see 10, we immediately know the

color is red since no other color code starts with 10, and so on.

With this new color code, we need 12× 1= 12 bits to store the 12 green pixels, 2× 2= 4

bits to store the 2 red pixels, 1× 3= 3 bits to store the single blue pixel, and 1× 3= 3 bits

to store the single yellow pixel—a total of 22 pixels. Equivalently, we need 22
16 = 1.375

bits per pixel. This is less than the 32 pixels at 2 bits per pixel we needed with the simple

fixed bit-rate coding.

NOTE You have just learned about Huffman encoding, an important technique

in image compression.

Does the new representation result in smaller storage for the left-hand image? There,

we need 4× 1= 4 bits to store the four green pixels, 4× 2= 8 pixels to store the four red

pixels, 4× 3= 12 bits to store the four blue pixels, and 4× 3= 12 bits to store the single

yellow pixel: a total of 36 pixels at 36
16 = 2.25 bits per pixel. Here, variable bit-rate coding

does worse than fixed bit-rate coding.

So, the probability distribution of the various pixel colors in the image affects how

much compression can be achieved. If the distribution of pixel colors is such that a few

colors are much more probable than others, we can assign shorter codes to them to

reduce storage for the whole image. Viewed another way, if low uncertainty is associated

with the system—certain colors are more or less certain to occur—we can achieve high

compression. We assign shorter codes to nearly certain colors, resulting in compression.

On the other hand, if high uncertainty is associated with the system—all colors are

more or less equally probable, and no color occurs with high certainty—variable bit-rate

coding will not be very effective. How do we quantify this notion? In other words, can we

examine the pixel color distribution in an image and estimate whether variable bit-rate

coding will be effective? The answer again is entropy. Formally,

Entropy measures the overall uncertainty associated with a probability distribution.
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Entropy is a measure that is high if everything is more or less equally probable and low if

a few items have a much higher probability than the others. It measures the uncertainty

in the system. If everything is equally probable, we cannot predict any one item with

any extra certainty. Such a system has high entropy. On the other hand, if some items

are much more probable than others, we can predict them with relative certainty. Such

a system has low entropy.

In the discrete univariate case, for a random variable X that can take any one of

the discrete values x1, x2, x3, · · · , xn with probabilities p (x1), p (x2), p (x3), · · · , p (xn),
entropy is defined as

ℍ (X) =−
n∑
i=1

p (xi ) log p (xi ) (6.4)

The logarithm is taken with respect to the natural base e.
Let’s apply equation 6.4 to the images in figure 6.1 to see if the results agree with

our intuition. The computations are shown in table 6.3. The notion of entropy applies

to continuous and multidimensional random variables equally well.

Table 6.3 Entropy computation for the pair of images in figure 6.1. The right-hand image
has lower entropy and can be compressed more.

Left image Right image

x1 =G, p (x1 ) = 4
16 = 0.25 x1 =G, p (x1 ) = 12

16 = 0.75

x2 =R , p (x2 ) = 4
16 = 0.25 x2 =R , p (x2 ) = 2

16 = 0.125

x3 =B, p (x3 ) = 4
16 = 0.25 x3 =B, p (x3 ) = 1

16 = 0.0625

x4 =Y , p (x4 ) = 4
16 = 0.25 x4 =Y , p (x4 ) = 1

16 = 0.0625

ℍ= − (0.25 log (0.25) + 0.25 log (0.25) ℍ= − (0.75 log (0.75) + 0.125 log (0.125)
+ 0.25 log (0.25) + 0.25 log (0.25) ) + 0.0625 log (0.0625) + 0.0625 log (0.0625) )

= 1.386294 = 0.822265

For a univariate continuous random variable X that takes values x ∈ {−∞,∞} with

probabilities p (x),

ℍ (X) =−
∞∫

x=−∞

p (x) log p (x) dx (6.5)

For a continuous multidimensional random variable X that takes values ®x in the domain

D, (®x ∈D) with probabilities p
(
®x
)
,

ℍ (X) =−
∫
®x∈D

p
(
®x
)
log p

(
®x
)
d ®x (6.6)

6.2.1 Geometrical intuition for entropy

Geometrically speaking, entropy is a function of how lopsided the PDF is (see figure

6.2). If all inputs are more or less equally probable, the density function is more or less

flat and uniform in height everywhere (see figure 6.2a). The corresponding sample
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(a) Flatter, wider PDFs correspond to
higher entropy. Entropy = 12.04.
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(b) Diffused sample point clouds correspond to
higher entropy.

(c) Taller, narrower peaks in probability density
functions correspond to lower entropy.
Entropy = 7.44.
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(d) Concentrated sample point clouds correspond
to lower entropy.

Figure 6.2 Entropies of peaked and flat distributions

point cloud has a diffused mass: there are no regions with a high concentration of

points. Such a system has high uncertainty or high entropy (see figure 6.2b). On the

other hand, if a few of all the possible inputs have disproportionately high probabilities,

the PDF has tall peaks in some regions and low heights elsewhere (see figure 6.2c). The

corresponding sample point cloud has regions of high concentration matching the

peaks in the density function and low concentration elsewhere (see figure 6.2d). Such a

system has low uncertainty and low entropy.
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NOTE Since the sum of all the probabilities is 1, if a few are high, the others have

to be low. We cannot have all high or all low probabilities.

6.2.2 Entropy of Gaussians

The wider a Gaussian is, the less peaked it is, and the closer it is to being a uniform

distribution. A univariate Gaussian’s variance, f, determines its fatness (see figure 5.10b).

Consequently, we expect a Gaussian’s entropy to be an increasing function of f. Indeed,

that is the case. In this section, we derive the entropy of a Gaussian in the univariate

case and simply state the result for the multivariate case.

For a random variable x whose PDF is given by equation 5.22 (repeated here for

convenience),

p (x) = 1
√
2cf

e
−(x−`)2

2f2

From that, we get

log p (x) =−1
2
log (2c) − log f − (x − `)2

2f2

Using equation 6.6, the entropy is

ℍ (X) =−
∞∫

x=−∞

p (x)
(
−1
2
log (2c) − log f − (x − `)2

2f2

)
dx

=
1

2
log (2c)

∞∫
x=−∞

p (x) dx + log f
∞∫

x=−∞

p (x) dx + 1

2f2

∞∫
x=−∞

p (x) (x − `)2 dx

Remembering the probability sum rule from equation 5.6,
∫ ∞
x=−∞ p (x) dx = 1, we get

ℍ (X) = 1

2
log (2c) + log f + 1

2f2

∞∫
x=−∞

p (x) (x − `)2 dx

Now, by definition (see section 5.7.2),

∞∫
x=−∞

p (x) (x − `)2 dx =E
(
(x − `)2

)
=f2

Hence,

ℍ (X) = 1

2
log (2c) + log f + f2

2f2
=
1

2
log (2c) + log f + 1

2
=
1

2
log

(
2cef2

)
(6.7)

Entropy for multivariate Gaussians is as follows:

ℍ (X) = 1

2
log (2c) + log (det (�)) + 1

2
=
1

2
log (2c e det (�)) (6.8)

Listing 6.1 shows the Python PyTorch code to compute the entropy of a Gaussian.

NOTE Fully functional code to compute the entropy of a Gaussian distribution,

executable via Jupyter Notebook, can be found at http://mng.bz/zx7B.
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Listing 6.1 Computing the entropy of a Gaussian distribution

def entropy_gaussian_formula(sigma):
return 0.5 * torch.log(2 * math.pi * math.e * sigma * sigma)

Equation 6.7
p = Normal(0, 10) Instantiates a Gaussian distribution

H_formula = entropy_gaussian_formula(p.stddev)
Computes the entropy using
the direct formula

H = p.entropy() Computes the entropy using the PyTorch interface

assert torch.isclose(H_formula, H) Asserts that the entropies computed
two different ways match

6.3 Cross-entropy
Consider a supervised classification problem where we have to analyze an image and

identify which of the following objects is present: cat, dog, airplane, or automobile. We

assume that one of these will always be present in our universe of images. Given an

input image, our machine emits four probabilities: p (cat), p
(
dog

)
, p

(
airplane

)
, and

p (automobile). During training, for each training data instance, we have a ground truth

(GT): a known class to which that training data instance belongs. We have to estimate

how different the network output is from the GT—this is the loss for that data instance.

We adjust the machine parameters to minimize the loss and continue doing so until the

loss stops decreasing.

How do we quantitatively estimate the loss—the difference between the known GT

and the probabilities of various classes emitted by the network? One principled approach

is to use the cross-entropy loss. Here is how it works.

Consider a random variable X that can take four possible values: X = 1 signifying cat,

X = 2 signifying dog, X = 3 signifying airplane, and X = 4 signifying automobile. The ran-

dom variable has the PDF p (X = 1) ≡ p (cat), p (X = 2) ≡ p
(
dog

)
, p (X = 3) ≡ p

(
airplane

)
,

p (X = 4) ≡ p (automobile). The PDF for a GT, which selects one from the set of four

possible classes, is a one-hot vector (one of the elements is 1, and the others are

0). Such random variables and corresponding PDFs can be associated with every GT

and machine output. Here are some examples, which are also shown graphically in

figure 6.3. A PDF for GT cat (one-hot vector) is shown figure 6.3a:

pgt_cat =


p (cat)︷︸︸︷
1 ,

p (dog )︷︸︸︷
0 ,

p (airplane)︷︸︸︷
0 ,

(automobile)︷︸︸︷
0


A PDF for a good prediction is shown figure 6.3b:

pgood_pred =


p (cat)︷︸︸︷
0.8 ,

p (dog )︷︸︸︷
0.15 ,

p (airplane)︷︸︸︷
0.04 ,

(automobile)︷︸︸︷
0.01


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(a) Ground truth probability
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(b) Good prediction: probabilities similar to ground truth.
Cross-entropy loss = 0.22.
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(c) Bad prediction: probabilities dissimilar to ground truth.
Cross-entropy loss = 1.38.

Figure 6.3 Cross-entropy loss

A PDF for a bad prediction is shown figure 6.3c:

pbad_pred =


p (cat)︷︸︸︷
0.25 ,

p (dog )︷︸︸︷
0.25 ,

p (airplane)︷︸︸︷
0.25 ,

(automobile)︷︸︸︷
0.25


Let Xgt denote such a random variable for a specific GT and pgt denote the correspond-
ing PDF. Similarly, let Xpred and ppred denote the random variable and PDF for the

machine prediction. Consider the following expression:

ℍc
(
Xgt , Xpred

)
=−

4∑
i=1

pgt (i) log
(
ppred (i)

)
(6.9)

This is the expression for cross-entropy. It is a quantitative measure for how dissimilar the

two PDFs pgt and ppred are: that is, how much error will be caused by approximating the

PDF pgt with ppred . Equivalently, cross-entropy measures how well the machine is doing

that output the prediction ppred when the correct PDF is pgt .
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To gain insight into how ℍc
(
Xgt , Xpred

)
measures dissimilarity between PDFs, exam-

ine the expression carefully. Remember that
∑4
i=1 pgt (i) =

∑4
i=1 ppred (i) = 1 (using the

probability sum rule from equation 5.3):

Case 1: The i values where pgt (i) is high (close to 1).

Case 1a: If ppred (i) is also close to 1, then log
(
ppred (i)

)
will be close to zero (since

log 1= 0). Hence the term pgt (i) log
(
ppred (i)

)
will be close to zero since

the product of anything with a near-zero number is near zero. These

terms will contribute little to ℍc
(
Xgt , Xpred

)
.

Case 1b: On the other hand, at the i values where pgt (i) is high, if ppred (i) is low
(close to zero), then − log

(
ppred (i)

)
will be very high (since log 0→−∞).

Case 2: The i values where pgt (i) is low (close to 0). These will have low values and will

contribute little to ℍc
(
Xgt , Xpred

)
since the product of anything with a near zero

number is near zero.

Thus, overall, large contributions can happen only in case 1b, where pgt (i) is high and

ppred (i) is low—that is, pgt and ppred are very dissimilar. What if pgt (i) is low and ppred (i)
is high? They are also dissimilar, so those terms will not contribute much! True, but

if such terms exist, there must be other terms where pgt (i) is high and ppred (i) is low.
This is because the sums of all pgt (i) and ppred (i) must be both 1. Either way, if there is

dissimilarity, the cross-entropy is high.

For instance, consider the case where Xgt =Xgt_cat and Xpred =Xgood_pred or Xpred =
Xbad_pred . We know pgt_cat is a one-hot selector vector, meaning it has 1 as one element

and 0s elsewhere. Only a single term survives, corresponding to i = 0, and

ℍc
(
Xgt_cat , Xpred

)
=


−∑4

i=1 pgt_cat (i) log
(
pgood_pred (i)

)
=− log (0.8) = 0.22

−∑4
i=1 pgt_cat (i) log

(
pbad_pred (i)

)
=− log (0.25) = 1.38

We see that cross-entropy is higher where similarity is lower (the prediction is bad).

Finally, we are ready to formally define the cross-entropy of two arbitrary random

variables. Let X1, X2 be a pair of random variables that take values x from the same

input domain D (that is, x ∈D), with probabilities p1 (x), p2 (x), respectively:

ℍc (X1 , X2) =


−∑

x∈D p1 (x) log (p2 (x)) discrete

−
∫
x∈D p1 (x) log (p2 (x)) dx continuous univariate

−
∫
®x∈D p1

(
®x
)
log

(
p2

(
®x
) )
d ®x continuous multivariate

(6.10)

Note that cross-entropy in equation 6.10 reduces to entropy (equations 6.5, 6.6) ifY =X .
Listing 6.2 shows the Python PyTorch code to compute the entropy of a Gaussian.

NOTE Fully functional code to compute cross-entropy, executable via Jupyter

Notebook, can be found at http://mng.bz/0mjN.



6.4 KL divergence 207

Listing 6.2 Computing cross-entropy

def cross_entropy(X_gt, X_pred):
H_c = 0
for x_gt, x_pred in zip(X_gt, X_pred):

H_c += -1 * (x_gt * torch.log (x_pred))

Direct computation
of cross-entropy
from equation 6.9

return H_c

X_gt = torch.Tensor([1., 0., 0., 0.])
Probability density function for
the ground truth (one-hot vector)

X_good_pred = torch.Tensor([0.8, 0.15, 0.04, 0.01])
Probability density function
for a good prediction

X_bad_pred = torch.Tensor([0.25, 0.25, 0.25, 0.25])
Probability density function
for a bad prediction

H_c_good = cross_entropy(X_gt, X_good_pred)
Cross-entropy between Xgt
and Xgood_pred (a low value)

H_c_bad = cross_entropy(X_gt, X_bad_pred) Cross-entropy between Xgt
and Xbad_pred (a high value)

6.4 KL divergence
In section 6.3, we saw that cross-entropy, ℍc (X1 , X2), measures the dissimilarity between

the distributions of two random variables X1 and X2 with probabilities p1 (x) and p2 (x).
But cross-entropy has a curious property for a dissimilarity measure. If X1 =X2, the cross-

entropy ℍc (X1 , X2) reduces to the entropy ℍ (X1). This is somewhat counterintuitive:

we expect the dissimilarity between two copies of the same thing to be zero.

We should look at cross-entropy as a dissimilarity with an offset. Let’s denote the

pure dissimilarity measure as D (X1 , X2). Then

ℍc (X1 , X2) =

o f f set︷ ︸︸ ︷
ℍ (X1) +

pure dissimilarity︷       ︸︸       ︷
D (X1 , X2)

This means the pure dissimilarity measure

D (X1 , X2) =ℍc (X1 , X2) −ℍ (X1) =−
∑
x∈D

p1 (x) log (p2 (x)) +
∑
x∈D

p1 (x) log (p1 (x))

=
∑
x∈D

p1 (x) log (p1 (x) − p2 (x)) =
∑
x∈D

p1 (x) log
(
p1 (x)
p2 (x)

)
This pure dissimilarity measure, D (X1 , X2), is called Kullback–Leibler divergence (KL

divergence or KLD). As expected, it is 0 when the two random variables are identical.

Formally, KLD is as follows:

D (X1 , X2) =
∑
x∈D

p1 (x) log
(
p1 (x)
p2 (x)

)
(6.11)
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For continuous univariate randoms,

D (X1 , X2) =
∫
x∈D

p1 (x) log
(
p1 (x)
p2 (x)

)
dx (6.12)

For continuous multivariate randoms,

D (X1 , X2) =
∫
®x∈D

p1
(
®x
)

log
(
p1

(
®x
)

p2
(
®x
) ) d ®x (6.13)

Let’s examine some properties of KLD:

The KLD between identical random variables is zero. If X1 =X2, p1 (x) = p2 (x) ∀x ∈
D. Then the log term vanishes at every x, and KLD is zero.

The KLD between non-identical probability distributions is always positive. We can

see this by examining equation 6.11. At all values of x where p1 (x) > p2 (x), the
log term is positive (since the logarithm of a number greater than 1 is positive).

On the other hand, at all values of x where p1 (x) < p2 (x), the log term is negative

(since the logarithm of a number less than 1 is negative). But the positive terms

get higher weights because p1 (x) are higher at these points. In this context, it is

worth noting that given any pair of PDFs, one cannot be uniformly higher than the

other at all points. This is because both of them must sum to 1. If one PDF is higher

somewhere, it must be lower somewhere else to compensate.

Given a GT PDF pgt for a classification problem and a machine prediction ppred ,
minimizing the cross-entropy ℍ (gt , pred) is logically equivalent to minimizing the

KLD D (gt , pred). This is because the entropy ℍ (gt) is a constant, independent of
the machine parameters.

The KLD is not symmetric: D (X1 , X2) ≠D (X2 , X1).

6.4.1 KLD between Gaussians

Since the Gaussian probability distribution is so important, in this subsection we look

at the KLD between two Gaussian random variables X1 and X2 having PDFs p1 (x) =
N (x; `1 , f1) and p2 (x) =N (x; `2 , f2). We derive the expression for the univariate

case and simply state the expression for the multivariate case:

D (X1 , X2) =
∞∫

−∞

N(x; `1 ,f1 )︷              ︸︸              ︷
1

√
2cf1

e
−
(
x−`1

)2
2f2

1 log

©­­­­­«
1√
2cf1

e
−
(
x−`1

)2
2f2

1

1√
2cf2

e

−
(
x−`2

)2
2f2

2

ª®®®®®¬
dx

=

∞∫
−∞

N (x; `1 , f1)
(
log f2

f1
+ (x − `2)2

2f2
2

− (x − `1)2

2f2
1

)
dx
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Opening the parentheses, we get

log f2

f1

=1, by equation 5.6︷                     ︸︸                     ︷
∞∫

−∞

N (x; `1 , f1) dx +
1

2f2
2

∞∫
−∞

(x − `2)2N (x; `1 , f1) dx

− 1

2f2
1

=f2
1
, by equation 5.13︷                                  ︸︸                                  ︷

∞∫
−∞

(x − `1)2N (x; `1 , f1) dx

= log f2

f1
+ 1

2f2
2

∞∫
−∞

(x − `1 + `1 − `2)2N (x; `1 , f1) dx −
1

2

Expanding the square term, we get

D (X1 , X2) = log f2

f1

+ 1

2f2
2

∞∫
−∞

(
(x − `1)2 + (`1 − `2)2 + 2 (x − `1) (`1 − `2)

)
N (x; `1 , f1) dx −

1

2

Since ∞∫
−∞

(x − `1) N (x; `1 , f1) dx = `1 − `1 = 0

the final equation for the KLD between two univariate Gaussian random variables X1,

X2 with PDFs N (x; `1 , f1) and N (x; `2 , f2) becomes

D (X1 , X2) = log f2

f1
+
f2
1
+ (`1 − `2)2

2f2
2

− 1

2
(6.14)

The KLD between two d-dimensional Gaussian random variables X1, X2 with PDFs

N
(
®x; `1 , �1

)
and N

(
®x; `2 , �2

)
is

D (X1 , X2) =
1

2

(
tr

(
�−1
2 �1

)
+

(
®̀2 − ®̀1

)T �−1
2

(
®̀2 − ®̀1

)
− d + log

(
det�2

det�1

))
(6.15)

where the operator tr denotes the trace of a matrix (sum of diagonal elements) and the

operator det denotes the determinant.

Listing 6.3 shows the Python PyTorch code to compute the KLD.
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NOTE Fully functional code to compute the KLD, executable via Jupyter Notebook,

can be found at http://mng.bz/KMyj.

Listing 6.3 Computing the KLD

from torch.distributions import kl_divergence

p = Normal(0, 5)
q = Normal(0, 10)

Instantiates three Gaussian distributions
with the same means but different
standard deviationsr = Normal(0, 20)

kld_p_p = kl_divergence(p, p)
kld_p_q = kl_divergence(p, q)
kld_q_p = kl_divergence(q, p)

Computes the KLD
between various
pairs of
distributionskld_p_r = kl_divergence(p, r)

assert kld_p_p == 0 The KLD between a distribution and itself is 0.

assert kld_p_q != kld_q_p The KLD is not symmetric.

assert kld_p_q < kld_p_r KLD(p, q) < KLD(p, r). See figure 6.4a.

In figure 6.4a, we compare three Gaussian distributions p, q, and r with the same `s but

different fs. KLD(p, q) <KLD(p, r) because fp is closer to fq than fr .

In figure 6.4b, we compare a uniform distribution p with two Gaussian distributions

q and r that have different `s but the same fs. KLD(p, q) <KLD(p, r) because `p is

closer to `q than `r .

6.5 Conditional entropy
In section 6.2, we learned that entropy measures the uncertainty in a system. Earlier,

in section 6.1.2, we studied conditional probability, which measures the probability of

occurrence of one set of random variables under the condition that another set has

known fixed values. In this section, we combine the two concepts into a new concept

called conditional entropy.

Consider the following question from table 6.2. What is the entropy of the weight

variableW under the condition that the value of the height variableH is F1? As observed
in section 6.1.1, the condition effectively restricts our universe to a single row (in this

case, the top row) of the table. We can compute the entropy of the elements of that row

mathematically, using equation 6.5, as

conditional entropy of W given H=F1︷            ︸︸            ︷
ℍ (W |H =F1) =−

3∑
j=1

p
(
Ej

��F1) log (
p
(
Ej

��F1) )
=−(0.77× log (0.77) + 0.154× log (0.154) + 0.077× log (0.077)) = 0.6868
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(a) p ≡ N( ` = 0, f = 5) , q ≡ N( ` = 0, f = 10) , r ≡ N( ` = 0, f = 20)

(b) p ≡U (a = −20, b = 20) , q ≡ N( ` = 0, f = 20) , r ≡ N( ` = −50, f = 20)

Figure 6.4 KLD between example distributions

Similarly,

ℍ (W |H =F2) =−
3∑
j=1

p
(
Ej

��F2) log (
p
(
Ej

��F2) )
=−(0.083× log (0.083) + 0.83× log (0.83) + 0.083× log (0.083))
= 0.5678

ℍ (W |H =F3) =−
3∑
j=1

p
(
Ej

��F3) log (
p
(
Ej

��F3) )
=−(0.077× log (0.077) + 0.154× log (0.154) + 0.77× log (0.77))
= 0.6868
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ℍ (W |H =Fi ) is the entropy ofW given H =Fi for i = 1 or 2 or 3. What is the overall

conditional entropy ofW given H : that is, ℍ (W |H )? To compute this, we take the

expected value (that is, the probability-weighted average; see equation 5.8) of the

conditional entropy ℍ (W |H =Fi ) over all possible values of i:
conditional entropy of W given H︷     ︸︸     ︷

ℍ (W |H ) =

3∑
i=1

p (Fi ) ©­«−
3∑
j=1

p
(
Ej

��Fi ) log (
p
(
Ej

��Fi ) )ª®¬
= (0.6868 ∗ 0.26+ 0.5678 ∗ 0.48+ 0.6868 ∗ 0.26) = 0.6297

This idea can be generalized. Formally, given two random variables X andY that can

take values x ∈Dx , y ∈Dy , respectively,

ℍ (X |Y ) =

Eyℍ(X |Y=y)︷                                              ︸︸                                              ︷
∑
y∈Dy

p (y)

ℍ(X |Y=y)︷                                ︸︸                                ︷(
−

∑
x∈Dx

p (x |y) log (p (x |y))
)
⇔discrete (6.16)

ℍ (X |Y ) =
∫

y∈Dy

p (y)
©­­«−

∫
x∈Dx

p (x |y) log (p (x |y)) dx
ª®®¬ dy⇔ continuous (6.17)

6.5.1 Chain rule of conditional entropy

This rule states:

ℍ (X |Y ) =ℍ (X ,Y ) −ℍ (Y ) (6.18)

This can be derived from equation 6.17.

ℍ (X |Y ) =
∫

y∈Dy

p (y)
©­­«−

∫
x∈Dx

p (x |y) log (p (x |y)) dx
ª®®¬ dy

Applying Bayes’ theorem (equation 6.1),

ℍ (X |Y ) =−
∫

y∈Dy

∫
x∈Dx

p (x ,y)︷         ︸︸         ︷
p (y) p (x |y) log

log
(
p (x ,y)
p (y)

)︷    ︸︸    ︷
(p (x |y)) dx dy

=

ℍ(X ,Y )︷                                              ︸︸                                              ︷
−

∫
y∈Dy

∫
x∈Dx

p (x , y) log (p (x , y)) dx dy +
∫

y∈Dy

log (p (y))

marginal probability p (y)︷             ︸︸             ︷∫
x∈Dx

p (x , y) dx dy

=ℍ (X ,Y ) −ℍ (Y ) (6.19)
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6.6 Model parameter estimation
Suppose we have a set of sampled input data points X =

{
®x (1) , ®x (2) , · · · , ®x (n)

}
from a

distribution. We refer to the set collectively as training data. Note that we are not assum-

ing it is labeled training data—we do not know the outputs corresponding to the inputs

®x (i ) . Also, suppose that based on our knowledge of the problem, we have decided which

model family to use. Of course, simply knowing the family is not enough; we need to

know (or estimate) the model parameters before we can use the model. For instance,

our model family might be Gaussian, N
(
x; ®̀, �

)
. Until we know the actual value of the

parameters ®̀ and �, we do not fully know the model and cannot use it.

How do we estimate the model parameters from the unlabeled training data? This is

what we cover in this section. At the moment, we are discussing it without referring to

any specific model architecture, so let’s denote model parameters with a generic symbol

\ . For instance, when dealing with Gaussian models, \ =
{
®̀, �

}
.

6.6.1 Likelihood, evidence, and posterior and prior probabilities

Before tackling the problem of parameter estimation, it is important to have a clear

understanding of the terms likelihood, evidence, posterior probability, and prior probability in

the current context. Equation 6.20 illustrates them. Using Bayes’ theorem,

posterior probability︷  ︸︸  ︷
p (\ |X) =

p (X , \)
p (X) =

likelihood︷  ︸︸  ︷
p (X |\)

prior probability︷︸︸︷
p (\)

p (X)︸︷︷︸
evidence

(6.20)

Let’s first examine the likelihood term. Using the fact that data instances are indepen-

dent of each other,

p (X |\) = p
(
®x (1) , ®x (2) , · · · , ®x (n)

���\ ) = n∏
i=1

p
(
®x (i )

���\ )
Now, p( ®x (i ) |\) is essentially the probability density of the distribution family we have

chosen. For instance, if the model in question in Gaussian, then given \ =
{
®̀, �

}
, this

will be
p
(
®x (i )

���\ ) =N
(
®x (i ) ; ®̀, �

)
=

1

(2c det�)
1
2

e−
1
2

(
®x (i) − ®̀

)T
�−1

(
®x (i) − ®̀

)

which is basically an expression for the Gaussian PDF: a restatement of equation 5.23

(but in equation 5.23, we dropped the “given \ ,” part in the notation and expressed

p
(
®x
��\ ) simply as p

(
®x
)
). Thus, we can always express the likelihood from the PDF of the

chosen model family using the independence of individual training data instances.

Now let’s examine the prior probability, p (\). It typically comes from some physical

constraint—without referring to the input. A very popular approach is to say that, all

other things being equal, we prefer parameters with smaller magnitudes. By this token,

the larger the total magnitude ‖\ ‖2, the lower the prior probability. For instance, we
may use

p (\) ∝ e−‖\ ‖2 (6.21)
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An indirect justification for favoring parameter vectors with the smallest length (mag-

nitude) can be found in the principle of Occam’s razor. It states, Entia non sunt mul-

tiplicanda praeter necessitatem, which roughly translates to “One should not multiply

unnecessarily.” This is often interpreted in machine learning and other disciplines as

“favor the briefest representation.”

As shown previously, we can always express the likelihood and prior terms. Using

them, we can formulate different paradigms, each with a different quantity, to optimize

in order to estimate the unknown probability distribution parameters from training

data. These techniques can be broadly classified into the following categories:

Maximum likelihood parameter estimation (MLE)

Maximum a posteriori (MAP) parameter estimation

We provide an overview of them next. You will notice that, in all the methods, we typically

preselect a distribution family as a model and then estimate the parameter values by

maximizing one probability or another.

Later in the chapter, we look at MLE in the special case of the Gaussian family of

distributions. Further down the line, we look at MLE with respect to Gaussian mixture

models. Another technique outlined later is evidence maximization: we will visit it in

the context of variational autoencoders.

The log-likelihood trick

If we choose a distribution family whose PDF is exponential (the most obvious example
is Gaussian), instead of maximizing the likelihood, we usually maximize its logarithm,
aka the log-likelihood. We can do this because whatever maximizes a quantity also
maximizes its logarithm and vice versa. But the logarithm simplifies expressions in
the case of exponential probability functions. This becomes obvious if we note that

log (ex) = x

log
(∏

ex
(i)

)
=
∑

x (i )

6.6.2 Maximum likelihood parameter estimation (MLE)
In MLE of parameters, we ask, “What parameter values will maximize the joint likeli-
hood of the training data instances?” In this context, remember that likelihood is
the probability of a data instance occurring given specific parameter values (equation
6.20). Expressed mathematically,

MLE estimates what value of \ maximizes p (X |\). The geometric mental picture is

as follows: we want to estimate the unknown parameters for our model probability

distribution such that if we draw many samples from that distribution, the sample

point cloud will largely overlap the training data.

Often we employ the log-likelihood trick and maximize the log-likelihood instead of

the actual likelihood.

For some models, such as Gaussians, this maximization problem can be solved

analytically, and a closed-form solution can be obtained (as shown in section 6.8).
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For others, such as Gaussian mixture models (GMMs), the maximization problem

yields no closed-form solution, and we go for an iterative solution (as shown in sec-

tion 6.9.4).

6.6.3 Maximum a posteriori (MAP) parameter estimation and regularization

Instead of asking what parameter value maximizes the probability of occurrence of the

training data instances, we can ask, “What are the most probable parameter values,

given the training data?” Expressed mathematically, in MAP, we directly estimate the \

that maximizes p (\ |X). Using equation 6.20,

p (\ |X) = p (X |\) p (\)
p (X) (6.22)

Since the denominator is independent of \ , maximizing the numerator with respect to
\ maximizes the fraction. Thus

InMAP parameter estimation, we look for parameters \ that maximize p (X |\) p (\).
The first factor, p (X |\), is what we optimized in MLE and comes from the

model definition (such as equation 5.23 for multivariate Gaussian models).

The second factor, p (\), is the prior term, which usually incentivizes the opti-

mization system to choose a solution with predefined properties like smaller

parameter magnitudes (equation 6.21).

Viewed this way, MAP estimation is equivalent to MLE parameter estimation with reg-

ularization. Regularization is a technique often used in optimization. In regularized

optimization, we add a term to the expression being maximized or minimized. This term

effectively incentivizes the system to choose the solution with the smallest magnitudes

of the unknown from the set of possible solutions. It is easy to see that MAP estimation

essentially imposes the prior probability term on top of MLE. This extra term acts as a

regularizer, incentivizing the system to choose the lowest magnitude parameters while

still trying to maximize the likelihood of the training data.

Equation 6.22 can be interpreted another way. When we have no training data,

all we can do is estimate the parameters from our prior beliefs about the system: the

prior term p (\). When the training data set X arrives, it influences the system through

the likelihood term p (X |\). As more and more training data arrives, the prior term

(whose magnitude does not change with training data) dominates less and less, and the

posterior probability p (\ |X) is dominated more by the likelihood.

6.7 Latent variables and evidence maximization
Suppose we have the height and weight data for a population (say, for the adult residents

of our favorite town, Statsville). A single data instance looks like this:

®x =
heightweight


Although the data is not explicitly labeled or classified, we know the data points can be

clustered into two distinct classes, male and female. It is reasonable to expect that the
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distribution of each class is much simpler than the overall distribution. For instance,

here, the distributions for males and females may be Gaussians individually (presumably,

the means for females will occur at smaller height and weight values). The combined

distribution does not fit any of the distributions we have discussed so far (later, we see it

is a Gaussian mixture).

We look at such situations inmore detail in connection to Gaussianmixture modeling

and variational autoencoders. Here we only note that in these cases, it is often beneficial

to introduce a variable for the class, say Z. In this example, Z is discrete: it can take one of

two values, male or female. Then we can model the overall distribution as a combination

of simple distributions, each corresponding to a specific value of Z.
Such variables Z that are not part of the observed data X but are introduced to

facilitate modeling are called latent or hidden variables/parameters. Latent variables are

connected to observed variables through the usual Bayesian expression:

p( ®x , ®z) = p
(
®x
��®z) p (

®z
)

p
(
®z
��®x) = p (

®x
��®z) p (

®z
)

p
(
®x
)

How do we estimate the distribution of Z? One way is to ask, “What distribution of the

hidden variables would maximize the probability of exactly these training data points

being returned if we drew random samples from the distribution?” The philosophy

behind this is as follows: we assume that the training data points are fairly typical and

have a high probability of occurrence in the unknown data distribution. Hence, we

try to find a distribution under which the training data points will have the highest

probabilities.

Geometrically speaking, each data point (vector) can be viewed as a point in some

d-dimensional space, where d is the number of elements in the vector ®xi . The training
data points typically occupy a region within that space. We are looking for a distribution

whosemass is largely aligned with the training data region. In other words, the probability

associated with the training data points is as high as possible—the sample distribution

cloud largely overlaps the training data cloud.

Expressed mathematically, we want to identify p
(
®x
��®z) and p (

®z
)
that maximize the

quantity

p (X) =
∫

p (X , z) dz =
∫ N∏

i=1

p
(
®x (i ) , ®z

)
d®z =

∫ N∏
i=1

p
(
®x (i )

���®z) p (
®z
)
d®z (6.23)

As usual, we get p
(
®x (i )

��®z) from the PDF of our chosen model family and p
(
®z
)
through

some physical constraint.

6.8 Maximum likelihood parameter estimation for Gaussians
We look at this with a one-dimensional example, but the results derived apply to higher

dimensions. Suppose we are trying to predict whether an adult Statsville resident is
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female, given that the resident’s height lies in a specified range [a, b]. For this purpose,
we have collected a set of height samples of adult female Statsville residents. These height

samples constitute our training data. Let’s denote them as x (1) , x (2) , · · · , x (n) . Based on

physical considerations, we expect the distribution of heights of adult Statsville females

to be a Gaussian distribution with unknownmean and variance. Our goal is to determine

them from the training data via MLE, which effectively estimates a distribution whose

sample cloud maximally matches the distribution of the training data points.

Let’s denote the (as yet unknown) mean and variance of the distribution as ` and f.

Then, from equation 5.22, we get

p
(
x (i )

���`, f)
=

1
√
2cf

e
−
(
x (i ) −`

)2
2f2

n∏
i=1

p
(
x (1) , x (2) , · · · , x (n)

���`, f)
=

1(√
2cf

)n e −∑n
i=1

(
x (i) −`

)2
2f2

Employing the log-likelihood trick,

log
n∏
i=1

p
(
x (1) , x (2) , · · · , x (n)

���`, f)
= log

©­­«
1(√

2cf
)n e −∑n

i=1

(
x (i ) −`

)2
2f2

ª®®¬
=−nlog

(√
2c

)
− nlogf −

∑n
i=1

(
x (i ) − `

)2
2f2

To maximize with respect to `, we solve

m

m`
log

n∏
i=1

p
(
x (1) , x (2) , · · · , x (n)

���`, f)
= 0

or
2
∑n
i=1

(
x (i ) − `

)
2f2

= 0

or
n∑
i=1

(
x (i ) − `

)
= 0

Finally, we get a closed-form expression for the unknown ` in terms of the training

data:

` =
1

n

n∑
i=1

x (i )

Similarly, to maximize with respect to f, we solve

m

mf
log

n∏
i=1

p
(
x (1) , x (2) , · · · , x (n)

���`, f)
= 0

or

n
f

−
2
∑n
i=1

(
x (i ) − `

)2
2f3

= 0



218 CHAPTER 6 Bayesian tools for machine learning

or

nf2 =

n∑
i=1

(
x (i ) − `

)2
Finally, we get a closed-form expression for the unknown f in terms of the training

data:

f2 =
1

n

n∑
i=1

(
x (i ) − `

)2
Thus we see that for a Gaussian, the maximum-likelihood solutions coincide with the

sample mean and variance of the training data. Once we have the mean and standard

deviation, we can calculate the probability that a female resident’s height belongs to a

specified range [a, b] by using the following equation:

prob(a < X <= b) =
∫ b

a
p(X)dX (6.24)

In the multidimensional case:

Given a training dataset,
{
®x (1) , ®x (2) , · · · , ®x (n)

}
, the best fit Gaussian has the mean

®̀ = 1

n

n∑
i=1

®x (i ) =⇒ mean of the training data samples. (6.25)

and the covariance matrix

� =
1

n

n∑
i=1

(
®x (i ) − ®̀

) (
®x (i ) − ®̀

)T
=⇒ covariance of the training data samples. (6.26)

We began this section by stating the problem of estimating the probability of an adult

Statsville resident being female, given that their height lies in a specified range [a, b],
when we are provided a training dataset of n height values of adult Statsville female

residents. Let’s now revisit that problem. Using (scalar versions of) equations 6.25 and

6.26, we can estimate ` and f and thereby define a Gaussian probability distribution

p (x) =N (x; `, f)
Using this, given any height x, we can compute the probability p (x) that the resident is
female. Let’s see this using PyTorch.

6.8.1 Python PyTorch code for maximum likelihood estimation

Suppose we assume that the height values of adult female residents of Statsville follow a

Gaussian distribution. If we know the parameters of this Gaussian (` and f), we know

the Gaussian distribution fully. That allows us to estimate many interesting things: for

instance, the expected height of an adult female resident of Statsville, or the probability

that the height of an adult female Statsville resident lies in a certain range such as

between 160 and 170 cm. The problem is, in a typical real-life situation, we do not

know the parameters ` cm and f. All we have is a large dataset X of height values of

adult Statsville female residents—training data. We have to use this data to estimate the
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unknown parameters ` cm and f. Once we have these, we have an estimated distribution

(aka model) from which we can predict the probabilities of events of interest.

As we saw in section 6.6.2, MLE is a technique to estimate the parameters from given

training data when the family to which the distribution belongs is known but the exact

values of the parameters are not known. Listing 6.4 shows the PyTorch implementation

of MLE for the Gaussian family.

NOTE Fully functional code for model parameter estimation using MLE and MAP,

executable via Jupyter Notebook, can be found at http://mng.bz/9Mv7.

Listing 6.4 Maximum likelihood estimate for a Gaussian

sample_mean = X.mean() Estimates Gaussian MLE parameters ®̀ and �.
They equal the sample mean and sample covariance
of the training data. See equations 6.25 and 6.26.sample_std = X.std()

gaussian_mle = Normal(sample_mean, sample_std)
Defines a Gaussian with
the estimated parameters

a, b = torch.Tensor([160]), torch.Tensor([170])
Once the Gaussian
is estimated, we can
use it to predict
probabilities.prob = gaussian_mle.cdf(b) - gaussian_mle.cdf(a)

6.8.2 Python PyTorch code for maximum likelihood estimation
using gradient descent

In listing 6.4, we computed the MLE using the closed-form solution. Now, let’s try to

compute the MLE using a different method: gradient descent. In real-life scenarios, we

do not use gradient descent to compute the MLE because the closed-form solution is

available. However, we discuss this method here to highlight some of the challenges of

using gradient descent and how MAP estimation addresses these challenges.

Our goal is to maximize the likelihood function using gradient descent. This can

alternatively be viewed as minimizing the negative log-likelihood function. We choose

to use the logarithm of the likelihood function since that leads to simpler computation

without any loss of generalization. (If you want a quick refresher on gradient descent,

see section 3.5.) Following is the equation for negative log-likelihood:

− log p(X |\) = n
2

log 2cf2 +
∑n
i=1 (x (i ) − `)2

2f2
(6.27)

Listings 6.5 and 6.6 show the PyTorch code for the minimization process.

Listing 6.5 Gaussian negative log-likelihood for training data

def neg_log_likelihood(X, mu, sigma): Equation 6.27
N = X.shape[0]
X_minus_mu = torch.sub(X, mu)
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t1 = torch.mul(0.5 * N,
torch.log(2 * np.pi * torch.pow(sigma, 2)))

n
2 log 2022

t2 = torch.div(torch.matmul(X_minus_mu.T, X_minus_mu),
2 * torch.pow(sigma, 2))

∑n
i=1 (xi−-)2

222

return t1 + t2 Note how all the training data X
is crunched in a single operation.
Such vector operations are parallel
and very efficient in PyTorch.

Listing 6.6 Minimizing MLE loss via gradient descent

def minimize(X, mu, sigma, loss_fn, num_iters=100, lr = 0.001):

Negative log-likelihood (listing 6.5)Iterates to train

for i in range(num_iters):

loss = loss_fn(X, mu, sigma) Computes the loss

loss.backward()
Computes the gradients of the loss with regard to - and 2 .
PyTorch stores the gradients in -.grad and 2 .grad.

mu.data -= lr * mu.grad
sigma.data -= lr * sigma.grad

Scales the gradients by
learning the rate and
update parameters

mu.grad.data.zero_()
sigma.grad.data.zero_() Resets the gradients to zero post-update

mu = Variable(torch.Tensor([5]).type(dtype), requires_grad=True)
sigma = Variable(torch.Tensor([5]).type(dtype), requires_grad=True)

minimize(X, mu, sigma, neg_log_likelihood)

Figure 6.5 shows how ` and f change with each iteration of gradient descent. We

expect ` and f to end up close to `expected and fexpected , respectively. However, when `

and f start off far from `expected and fexpected (as in figure 6.5a), they do not converge

to the expected values and instead become very large numbers. On the other hand,

when they are instantiated with values closer to `expected and fexpected (as in figure 6.5b),

they converge to the expected values. MLE is very sensitive to the initial values and has

no mechanism to prevent the parameters from exploding. This is why MAP estimation

is preferred. The prior p(\) acts as a regularizer and prevents the parameters from

becoming too large. Figure 6.5c shows how ` and f converge to the expected values

using MAP even though they started far away.

The MAP loss function is as follows. Note that it is the same equation as the negative

log-likelihood, but with two additional terms—`2 and f2—that act as regularizers:

− log p(\ |X) = N
2

log 2cf2 + 1

2f2

n∑
i=1

(x (i ) − `)2 + `2 +f2︸   ︷︷   ︸
Regularizer

(6.28)
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(a) MLE explodes: `init = 1, finit = 1.

(b) MLE converges: `init = 100, finit = 10. (c) MAP converges: `init = 1, finit = 1.

Figure 6.5 Gaussian parameter estimation using maximum likelihood estimate and maximum a post-
eriori estimation. In figure 6.5a, the MLE explodes because - and 2 are initialized far from -expected
and 2expected . However, the MLE converges in figure 6.5b because - and 2 are initialized closed to
-expected and 2expected . Figure 6.5c shows how, for MAP, - and 2 are able to converge to -.expected and
2expected even though they are initialized far away.

Listing 6.7 Gaussian negative log-likelihood with regularization

def neg_log_likelihood_reg(X, mu, sigma, k=0.2): Equation 6.28
N = X.shape[0]
X_minus_mu = torch.sub(X, mu)
t1 = torch.mul(0.5 * N,

torch.log(2 * np.pi * torch.pow(sigma, 2)))
n
2 log 2022
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t2 = torch.div(torch.matmul(X_minus_mu.T, X_minus_mu),

2 * torch.pow(sigma, 2))
∑n
i=1 (xi−-)2

222

loss_likelihood = t1 + t2 Negative log-likelihood

loss_reg = k * (torch.pow(mu, 2) + torch.pow(sigma, 2)) Regularization

return loss_likelihood + loss_reg Note how all the training data X
is crunched in a single operation.
Such vector operations are
parallel and very efficient in PyTorch.

6.9 Gaussian mixture models
In many real-life problems, the simple unimodal (single-peak) probability distributions

we learned about in chapter 5 fail to model the true underlying distribution of the

data. For instance, consider a situation where we are given the heights of many adult

Statsville residents. Say there are two classes of adults in Statsville: male and female. The

height data we have is unlabeled, meaning we do not know whether a given instance

of height data is associated with a male or a female. Thus the data is one-dimensional,

and there are two classes. Figure 6.6 depicts the situation. None of the simple probability

distributions we discussed in chapter 5 can be fitted to figure 6.6. But the two partial

bells in figure 6.6a suggest that we should be able to mix a pair of Gaussians (each

of which looks like a bell) to mimic this distribution. This is also consistent with our

knowledge that the distribution represents not one but two classes, each of which can

be reasonably represented individually by Gaussians. The point cloud also indicates

two separate clusters of points. While a single Gaussian will not work, a mixture of two

separate 1D Gaussians can (and, as we shall shortly see, will) work.
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(a) PDF
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(b) Sample point distribution

Figure 6.6 Probability density functions (PDFs) and sample point distributions for 1D height data of
adult male and female residents of Statsville
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Let’s now discuss a slightly more complex problem in which the data is two-dimensional

and has three classes. Here we are given the weights and heights of three classes of

Statsville residents: adult females, adult males, and children. Again, the data is unlabeled,

meaning we do not know whether a given instance of (height, weight) data is associated

with a man, woman, or child. This is depicted in figure 6.7. Once again, none of the

simple probability distributions we studied in chapter 5 can be fitted to this situation.

But the PDF shows three bell-shaped peaks, the point cloud shows three clusters, and

the physical nature of the problem indicates three separate classes, each of which can

be reasonably represented by Gaussian. While a single Gaussian will not work, a mixture

of three separate 2D Gaussians can (and, as we shall shortly see, will) work.

A Gaussian mixture model (GMM) is a weighted combination of a specific number of

Gaussian components.

(a) PDF
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(b) Sample point distributions

Figure 6.7 Probability density functions (PDFs) and sample point distributions for 2D (height, weight)
data of children, adult males, and adult females of Statsville

For instance, in our first problem with one dimension and two classes, we choose a

mixture of two 1D Gaussians. For the second problem, we take a mixture of three 2D

Gaussians. Each individual Gaussian component corresponds to a specific class.

6.9.1 Probability density function of the GMM
Formally,

The PDF for a GMM is

p
(
®x
)
=

K∑
k=1

ck N
(
®x; ®̀k , �k

)
(6.29)
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where ck is the weight of the kth Gaussian component, satisfying

k=K∑
k=1

ck = 1

K is the number of classes or Gaussian components, and N
(
®x; ®̀k , �k

)
(defined in

equation 5.23) is the PDF for the kth Gaussian component. Such a GMM models a

K-peaked PDF or, equivalently, a K-clustered sample point cloud.

For instance, the PDF and sample point clouds shown in figure 6.6 correspond to the

following Gaussian mixture:

p (x) =
0.7︷︸︸︷
c1 N

©­­­«x; `1︸︷︷︸
152.0

,

4.0︷︸︸︷
f1

ª®®®¬+
0.3︷︸︸︷
c2 N

©­­­«x; `2︸︷︷︸
175.0

,

7.0︷︸︸︷
f2

ª®®®¬
The 2D three-class problem, PDF, and sample point clouds shown in figure 6.7 corre-

spond to the following Gaussian mixture:

p (x) =
0.33︷︸︸︷
c1 N

©­­­­­«

152

55



20 0

0 28


®x;

︷︸︸︷
®̀1

︷︸︸︷
�1

ª®®®®®¬
+

0.33︷︸︸︷
c2 N

©­­­­­«

175

70



35 39

39 51


®x;

︷︸︸︷
®̀2 ,

︷︸︸︷
�2

ª®®®®®¬
+

0.33︷︸︸︷
c3 N

©­­­­­«

135

40



10 0

0 10


®x;

︷︸︸︷
®̀3 ,

︷︸︸︷
�3

ª®®®®®¬
The PDF and sample point distribution of the GMM depend on the values of cks, `ks,

�ks, and K. In particular, K influences the number of peaks in the PDF (although

if two peaks are very close, sometimes they merge). It also influences the number

of clusters in the sample point cloud (again, if two clusters are too close, they may

not be visually distinct). The cks regulate the relative heights of the hills. The `ks

and �ks influence the individual hills in the PDF as well as the individual clusters in

the sample point cloud. Specifically, `k regulates the locations of the kth peak in the

PDF and the centroid of the kth cluster in the sample point cloud. The �ks regulate
the shape of the kth individual hill and the kth cluster in the sample point cloud.

Figures 6.8, 6.9, 6.10, and 6.11 show some example GMMs with various values of these

parameters.
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Figure 6.8 shows a pair of Gaussian distributions and various GMMs with those as

components, with different values for the parameters. Figure 6.9 depicts 2D GMMs with

various cks. Figure 6.10 shows GMMs with non-circular bases (non-symmetric Σs) and

various `s).
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(c) GMM with c1 = 0.7, c2 = 0.3
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Figure 6.8 Various GMMs (solid curves) with the same Gaussian components (dotted and dashed
curves, respectively) but different 01 and 02 values

Another way to visualize GMMs is via sample point distributions. Figure 6.11 shows the

sample points from a pair of 2D Gaussians and the points sampled from a GMM having

those Gaussians as components and various mixture-selections probabilities.
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Figure 6.10 Two-dimensional GMMs with elliptical bases, 01 = 0.3, 02 = 0.7. Note how the shape of the
hill base depends on � and how the hill positions depend on the ®-s.
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with the same three component Gaussians as in (a) and 01 = 02 = 0.4, 03 = 0.2. Note how the GMM
sample distribution shape mimics the combined sample distribution shape of the component Gaussians.

It can be proved that equation 6.29 is a proper probability: that is, it sums to 1 over the

space of all possible inputs (all possible values of ®x in the d-dimensional space). Here is

the proof outline: ∫
®x∈<d

p
(
®x
)
d ®x =

∫
®x∈<d

(
K∑
k=1

ckN
(
®x; ®̀k , �k

))
d ®x

=

K∑
k=1

ck

©­­­­­«
equals 1, N being a PDF︷                       ︸︸                       ︷∫

®x∈<d

N
(
®x; ®̀k , �k

)
d ®x

ª®®®®®¬
=

K∑
i=1

ck = 1

6.9.2 Latent variables for class selection

Let’s discuss GMMs in more detail. In particular, we look at the physical meaning of the

various terms in equation 6.29.

Before diving in, let’s introduce an auxiliary random variable Z, which effectively is

a class selector. In the context of equation 6.29, Z can take discrete values in the range

[1 · · ·K]. It thus follows a categorical distribution (see section 5.9.6). Physically, Z = k
means the kth class—that is, the kth component of the Gaussian mixture—has been

selected.
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NOTE As usual, we are denoting the random variable with uppercase and the

specific value it takes in a given instance with lowercase.

For instance, in the two-class problem shown in figure 6.6, Z can take one of two values:

1 (implying adult female) or 2 (implying adult male). For the three-class problem shown

in figure 6.7, Z can take one of three values: 1 (adult female), 2 (adult male), or 3

(child). Z is called a latent (hidden) random variable because its values are not directly

observed. Contrast this with the input random variable ®x whose values are explicitly
observed. You may recognize Z as a latent variable in the GMM (latent variables were

introduced in section 6.7).

Consider the joint probability p
(
X = ®x , Z = k

)
, which we sometimes informally denote

as p
(
®x , k

)
. This is the probability of the input variable ®x occurring together with the

class k. Using Bayes’ theorem,

p
(
®x , k

)
= p

(
®x
��k) p (k)

The conditional probability term p
(
®x
��k) is the probability of ®x when the kth class has

been selected. This means it is the PDF for the kth Gaussian component, which is a

Gaussian distribution by assumption. As such, using equation 5.23,

p
(
®x
��k) =N

(
®x; ®̀k , �k

)
k ∈ [1, K]

On the other hand, p (Z = k), which we sometimes informally refer to as p (k), is the
prior probability (that is, without reference to the input) of the input belonging to one of the classes.

Let’s denote it as follows:

p (k) = ck , ∀k ∈ {1, K}
This is often modeled as the fraction of training data points belonging to class k:

ck ≈
Nk
N

k ∈ {1, K}

where Nk is the number of training data instances belonging to class k, and N is the

total number of training data instances.

From this, we get

p
(
®x , k

)
= p (k) p

(
®x
��k) = ck N

(
®x; ®̀k , �k

)
k ∈ [1, K]

From equation 5.5, we get the marginal probability p (x)

p (x) =
∑

k∈{1,K}
p (x , k) =

K∑
k=1

ckN
(
®x; ®̀k , �k

)
which is the same as equation 6.29.
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This leads to the following physical interpretations:

A GMM can be viewed as a weighted sum ofK Gaussian components. Equation 6.29

depicts the PDF of the overall GMM.

The weights ck are component selection probabilities. Specifically, ck can be interpreted

as the prior probability p (Z = k), aka p (k), of selecting the kth subclass—modeled as

the fraction of the population belonging to the kth subclass. The ck are probabilities
in a categorical distribution with K classes. The cks sum up to 1. Sampling from

the GMM can be viewed as a two-step process:

1 Randomly select a component. The probability of the kth component being

selected is ck . The sum of all cks is 1, which signifies that one or another com-

ponent must be selected.

2 Random sample from the selected Gaussian component. The probability of

generating vector ®x is N
(
®x; ®̀k , �k

)
.

Each of the K Gaussian components models an individual class. Geometrically

speaking, the components correspond to the clusters in the sample point cloud or

the peaks in the PDF of the GMM.

The kth Gaussian component, N
(
®x; ®̀k , �k

)
, can be interpreted as the conditional

probability, p
(
®x
��k) . This is the likelihood—the probability of data value ®x occurring,

given that the kth subclass has been selected.

The product ckN
(
®x; ®̀k , �k

)
then represents the joint probability p

(
®x , k

)
= p

(
®x
��k)

p (k).
The sum of all the joint subclass probabilities is the marginal probability p

(
®x
)
of

the data value ®x.

Listing 6.8 Gaussian mixture model distribution

Pytorch
supports

distributions
that are

mixtures of
the same

family (here,
Gaussian)

from torch.distributions.mixture_same_family import MixtureSameFamily

pi = Categorical(torch.tensor([0.4, 0.4, 0.2])) Prior probabilities over the three
classes (male, female, child):
categorical distribution

mu = torch.tensor([[175.0, 70.0], [152.0, 55.0], [135.0, 40.0]])

Mean height, weight for the three
classes (male, female, child)

sigma = torch.tensor([[[30.0, 20.0], [20.0, 30.0]],

Covariance matrices
for the three classes
(male, female, child)

[[50.0, 0.0], [0.0, 10.0]],
[[20.0, 0.0], [0.0, 20.0]]])

gaussian_components = MultivariateNormal(mu, sigma) Creates the component
Gaussians

gmm = MixtureSameFamily(pi, gaussian_components) Creates the GMM
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6.9.3 Classification via GMM

A typical practical problem involving GMMs goes as follows. A set of unlabeled input

data X (training data) is provided. It is important to note that this is unsupervised

machine learning—the training data does not come with known output classes. The

physical nature of the problem indicates the subclasses in the data (denoted by indices

[1 · · ·K]). The goal is to classify any arbitrary input ®x: that is, map it to one of the K
classes. To do this, we have to fit a GMM (that is, derive the values of ck , ®̀k , �k for all
k ∈ [1 · · ·K]). Given an arbitrary ®x, we compute p

(
k
��®x) for all the classes (all values of k).

The value of k yielding the max value for p
(
k
��®x) is the class corresponding to ®x. How do

we compute p
(
k
��®x)?

Using Bayes’ theorem,

p
(
k
��®x) = p (

®x , k
)

p
(
®x
) =

p
(
®x
��k) p (k)∑K

i=1 p
(
®x , k

) = ckN
(
®x; ®̀k , �k

)∑K
i=1 ci N

(
®x; ®̀i , �i

) (6.30)

If we know all the GMM parameters, evaluating equation 6.30 is straightforward. We

classify the input ®x by assigning it to the cluster k that yields the highest value of

p (Z = k |X = x). Geometrically, this assigns the input to the cluster with the “closest”

mean—with distance normalized by the variance of the respective distribution. Basically,

we are measuring the distance from the mean, but in clusters of high variance, we are

more tolerant of distance from the mean. This makes intuitive sense: if the cluster is

widely spread (has high variance), a point relatively far from the cluster mean can be

said to belong to the cluster. On the other hand, a point the same distance from the

mean of a tightly packed cluster may be deemed to be outside the cluster.

6.9.4 Maximum likelihood estimation of GMM parameters (GMM fit)

A GMM is fully described in terms of its parameter set \ =
{
ck , ®̀k , �k ∀k ∈ [1 · · ·K]

}
. But

how do we estimate these parameter values? In typical real-life situations, they are not

given to us. We only have a set of observed unlabeled training data points X =
{
®x (i )

}
,

such as (weight, height) values for Statsville residents.

Geometrically speaking, each data instance in the training dataset corresponds to

a single point in the multidimensional feature space. The training dataset is a point

cloud that naturally clusters into Gaussian subclouds (otherwise, we should not be trying

GMMs). Our GMM mimicking this dataset should have as many components as there

are natural clusters in the data. The parameter values ck , ®̀k , �k for k ∈ [1 · · ·K] should
be estimated such that the GMM’s sample point cloud overlaps the training data point

cloud as much as possible. That is the basic problem we try to solve in this section.

NOTE We do not estimate K, the number of classes; rather, we use a fixed value

of K, usually estimated from the physical conditions of the problem. For example,

in the problem with men, women, and children, it is pretty obvious that K = 3.

In section 6.8, we did MLE for a simple Gaussian. We computed an expression for the

joint log-likelihood of all the training data given a Gaussian probability distribution.

Then we took the gradient of that expression with respect to the parameters and equated
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it to zero. We were able to solve that equation to derive a closed-form solution for the

parameters, ®̀ and � (equations 6.25 and 6.26 ). This means we simplified the equation

into a form where the unknown (to be solved) appeared alone on the left-hand side

and there were only known entities on the right-hand side.

Unfortunately, with GMMs, equating the gradient of the log-likelihood to zero leads

to an equation that has no closed-form solution. So, we cannot reduce the equation to

a form where the unknowns cks, `ks, and �k appear alone on the left-hand sides and

only known entities (®xis) appear on the right-hand side. Consequently, we have to go

for an iterative approximation. We rewrite the equation we get by equating the gradient

of the log-likelihood to zero such that the unknowns `s and fs appear alone on the

right-hand side. It looks something like

ck = f1 (X , \)

®̀k = f2 (X , \)

�k = f3 (X , \)

where f1, f2, f3 are some functions whose exact nature is unimportant at the moment.

Note that the right-hand side also contains the unknowns: \ contains cks, `ks, and �k .
We cannot directly solve such equations, but we can use iterative relaxation, which works

roughly as follows:

1 Start with random values of cks, ®̀ks, and �ks.

2 Evaluate the right-hand side by plugging current values of cks, ®̀ks, and �ks into
functions f1, f2, and f3.

3 Use the values estimated in step 2 to set new values of cks, ®̀ks, and �ks.

4 Repeat steps 1–3 until the parameter values stop changing appreciably.

The actual functions f1, f2, f3 are worked out in (equations 6.36, 6.37, and 6.38). As

iteration progresses, the values of cks, ®̀ks, and �ks start to converge to their true values.

This is not a lucky coincidence. If we follow algorithm 6.1, it can be proved that every

iteration improves the approximation, even if by a minuscule amount. Eventually, we

reach a point when the approximation is no longer improving appreciably. This is called

the fixed point, and we should stop iterating and declare the current values final.

Figure 6.12 shows the progression of an iterative GMM fit algorithm. Figure 6.12a

shows the sampled training data distribution. Figure 6.12b shows the fitted GMM at the

beginning: the parameters are essentially random, and the GMM looks nothing like

the target training data distribution. It improves slowly until at iteration 15, it matches

the target distribution snugly (figure 6.12d). Now let’s discuss the details. We already

know the dataset X that has been observed. What parameter set \ will maximize the

conditional probability, p (X |\), of exactly these data points, given the parameter set? In

other words, what model parameters will maximize the overall likelihood of the training

data? Those will be our best guesses for the unknown model parameters. This is MLE,

which we encountered in section 6.6.2.
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Figure 6.12 Progression of maximum likelihood estimation for GMM parameters

Let
{
®x (1) , ®x (n) , · · · ®x (n)

}
be the set of observed data points, aka training data. From

equation 6.29,
likelihood︷     ︸︸     ︷
p
(
®x (i )

���\ ) = K∑
k=1

ckN
(
®x (i ) ; ®̀k , �k

)
∀i ∈ [1, n]

Henceforth, for simplicity, we drop the “given \” part and refer to p
(
®x (i )

��\ ) simply

as p
(
®x (i )

)
. As usual, instead of maximizing the likelihood directly, we maximize its

logarithm, the log-likelihood. This will yield the same parameters as maximizing the

likelihood directly.
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Since the x (i ) s are independent, their joint probability, as per equation 5.4, is

p
(
®x (1)

)
p
(
®x (2)

)
· · · p

(
®x (n)

)
The corresponding log joint probability is

joint log-likelihood︷                                       ︸︸                                       ︷
log

(
p
(
®x (1)

)
p
(
®x (2)

)
· · · p

(
®x (n)

))
=

n∑
i=1

log
(
p
(
®x (i )

))
=

n∑
i=1

log

(
K∑
k=1

ckN
(
®x (i ) ; ®̀k , �k

))
(6.31)

At this point, we begin to see a difficulty peculiar to GMMs. We have a logarithm of

a sum, which is not a very friendly expression to handle; the logarithm of products is

much nicer to deal with. But let’s soldier on.

To identify the parameters ®̀1, Σ1, ®̀2, Σ2, · · · that will maximize the log joint proba-

bility, we take the gradient of the log joint probability with respect to these parameters,

equate them to zero, and solve for the parameter value (as discussed in section 3.3.1).

Here we demonstrate the process with respect to ®̀1:

∇ ®̀1 log
(
p
(
®x (1)

)
p
(
®x (2)

)
· · · p

(
®x (n)

))
= 0

Since the log of products is the sum of logs, we get

∇ ®̀1

n∑
i=1

log
(
p
(
®x (i )

))
= 0

Applying equation 6.29, we get

∇ ®̀1

n∑
i=1

log

(
K∑
k=1

ckN
(
®x (i ) ; ®̀k , �k

))
= 0

Since the gradient is a linear operator, we can move it inside the summation:

n∑
i=1

∇ ®̀1 log

(
K∑
k=1

ckN
(
®x (i ) ; ®̀k , �k

))
= 0

Since d
dx log ( f (x)) =

1
f (x)

d f
dx , we get

n∑
i=1

∇ ®̀1
∑K
k=1 ckN

(
®x (i ) ; ®̀k , �k

)(∑K
k=1 ckN

(
®x (i ) ; ®̀k , �k

) ) = 0

Now, if x1 and x2 are independent variables,
dx2
dx1

= 0. Consequently,

∇ ®̀1N
(
®x (i ) ; ®̀k , �k

)
= 0 for k ≠ 1
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Only a single term corresponding to k = 1 survives the differentiation (gradient) in the

numerator. So,

n∑
i=1

c1∇ ®̀1N
(
®x (i ) ; ®̀1 , �1

)(∑K
k=1 ckN

(
®x (i ) ; ®̀k , �k

) ) = 0

Now d
dx e

−(x−`)2 =−2 (x − `) e−(x−`)2 , and in multiple dimensions,

∇ ®̀e
− 1

2 ( ®x− ®̀)TΣ−1 ( ®x− ®̀) =−∇ ®̀

( (
®x − ®̀

)T
Σ−1 (

®x − ®̀
) )
e−

1
2 ( ®x−`)TΣ−1 ( ®x−`)

Plugging equation 5.23 into our maximization problem, we get

n∑
i=1

∇ ®̀1

((
®x (i ) − ®̀1

)T
�−1
1

(
®x (i ) − ®̀1

))
c1N

(
®x (i ) ; ®̀1 , �1

)
(∑K

k=1 ckN
(
®x (i ) ; ®̀k , �k

) ) = 0

Furthermore, with a little effort, you can prove the following about the gradient of a

quadratic form:

∇®x

(
®xTA®x

)
= A®x (6.32)

Applying equation 6.32 to our problem, we get

n∑
i=1

�−1
1

(
®x (i ) − ®̀1

)
c1N

(
®x (i ) ; ®̀1 , �1

)(∑K
k=1 ckN

(
®x (i ) ; ®̀k , �k

) ) = 0

Multiplying both sides by the constant �1, we get

n∑
i=1

(
®x (i ) − ®̀1

)
c1N

(
®x (i ) ; ®̀1 , �1

)(∑K
k=1 ckN

(
®x (i ) ; ®̀k , �k

) ) = 0

Substituting

Wi1 =

c1N
(
®x (i ) ; ®̀1 , �1

)(∑K
k=1 ckN

(
®x (i ) ; ®̀k , �k

) ) (6.33)

we get
n∑
i=1

(
®x (i ) − ®̀1

)
Wi1 = 0

This expression has `1 inside Wi1 as well. It is impossible to extract `1 alone on the

left side of the equation. In other words, we cannot create a closed-form solution for `1.

Hence, we have to solve it iteratively.

We can rewrite the previous equation as

®̀1 =
1

N1

n∑
i=1

Wi1 ®x (i )
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where

N1 =

n∑
i=1

Wi1 (6.34)

Proceeding similarly, we can derive the corresponding expressions for c1 and �1. Let’s

collect all the equations for updating the GMM parameters:

N1 =

n∑
i=1

Wi1 (6.35)

c1 =
N1

n
(6.36)

®̀1 =
1

N1

n∑
i=1

Wi1 ®x (i ) (6.37)

�1 =
1

N1

n∑
i=1

Wi1

(
®x (i ) − ®̀1

) (
®x (i ) − ®̀1

)T
(6.38)

Equations 6.36, 6.37, and 6.38 provide the definitions for functions f1, f2, and f3 that we
saw at the beginning of this section in the context of iterative relaxation. We can deal

similarly with k = 2 · · ·K.

Physical significance of $ik
We encountered the entity Wik while computing the gradient of the log-likelihood. It
appeared as a multiplicative weight in the final iterative expression for computing
`k and Σk in equations 6.37 and 6.38. It is not an arbitrary entity. By comparing
equations 6.33 and 6.30, we can see that

Wik = p
(
k
���®x (i ) )

In other words, the quantity Wik is really the posterior probability: the conditional prob-
ability of the class k given the ith data point.

This gives us a new way to look at equations 6.35, 6.36, 6.37, and 6.38:

Equation 6.35 essentially assigns to N1 the probability mass concentrated in class 1

as per the current parameter values.

Equation 6.36 assigns to c1 the fractional mass in class 1 as per the current param-

eter values.

Equation 6.37 assigns to `1 the centroid of all the training data points. Each data

point’s contribution is weighted by the posterior probability, as per the current

parameter values, of that data point belonging to class 1.

Equation 6.38 assigns to �1 the covariance of the training data points. Each data

point’s contribution is weighted by the posterior probability, as per the current

parameter values, of that data point belonging to class 1.
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Algorithm 6.1 ties together equations 6.33, 6.36, 6.37, and 6.38 into a complete approach

for iterative MLE of GMM parameters. It is an example of a general class of algorithms

called expectation maximization.

Algorithm6.1 GMMfit (MLE of GMMparameters fromunlabeled training data)

Input: X = ®x (i ) , ®x (2) , · · · , ®x (n)
Initialize parameters \ = {ck , `k , �k k ∈ [1, K]} with random values

⊲ repeat E-step and M-step until likelihood stops increasing

while (likelihood is increasing ) do

⊲ E-step

Wik =

ckN
(
®x (i ) ; ®̀k , �k

)
∑K
k=1 ckN

(
®x (i ) ; ®̀k , �k

) ∀i , k ∈ [1, n] × [1, K]

⊲ M-step

Nk =
∑n
i=1 Wik

ck =
Nk
n

®̀k = 1
Nk

∑n
i=1 Wik ®x (i )

�k =
1
Nk

∑n
i=1 Wik

(
®x (i ) − ®̀k

) (
®x (i ) − ®̀k

)T

∀k ∈ [1, K]

end while

return {c1 , `1 , �1 , c2 , `2 , �2 , · · · , cK , `K , �K}

NOTE Fully functional code for Gaussianmixturemodeling, executable via Jupyter

Notebook, can be found at http://mng.bz/j4er.

Listing 6.9 GMM fit

while (curr_likelihood - prev_likelihood) < 1e-4:

Repeats until the likelihood
increase is negligible

# E Step

Computes the posterior probabilities
$i ,k = p (Z = k |X = xi ) using
current ®-ks and �ks, equation 6.33

pi = gmm.mixture_distribution.probs Tensor of shape [K] holding 0ks for all k

components = gmm.component_distribution Gaussian objects N
(

®x; ®-k , �k
)

for all k
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Vector computation of log of $i ,k
numerators for all i, k, equation 6.33

log_gamma_numerators = components.log_prob(
X.unsqueeze(1)) + torch.log(pi).repeat(n, 1)

In practice, the probability
involving an exponential
goes to 0. So we use
the log probability.

Vector computation of the log of $i ,k denominators for all i, k, equation 6.33

log_gamma_denominators = torch.logsumexp(
log_gamma_numerators, dim=1, keepdim=True).

Vector computation of the [n ×K] tensor $i ,k , equation 6.33 for all i, k

log_gamma = log_gamma_numerators - log_gamma_denominators
self.gamma = torch.exp(log_gamma)

# M Step

Updates ®-k and �k for all k using $i ,k = p(Z = k |X )

from the E-step via equations 6.36, 6.37, and 6.38

n = X.shape[0] Number of data points

N = torch.sum(gamma, 0)

pi = N / n Vector update of 0k for all k, equation 6.36

mu = ((X.T @ gamma)/N).T

Vector update of [K × d ] tensor,
®-k for all k, equation 6.37

x_minus_mu = (X.repeat(K, 1, 1) - gmm.component_distribution.unsqueeze(1).
repeat(1, n, 1))

Vector computation of
(

®xi − ®-k
) (

®xi − ®-k
)T

for all i, k

x_minus_mu_squared = x_minus_mu.unsqueeze(3) @ x_minus_mu.unsqueeze(2)

Vector update of K × d × d] tensor
�k for all k, equation 6.38

sigma = torch.sum(gamma.T.unsqueeze(2).unsqueeze(3) * x_minus_mu_squared,
axis=1) / N.unsqueeze(1).unsqueeze(1).repeat(1, d, d)

prev_likelihood = curr_likelihood

curr_likelihood = torch.sum(gmm.log_prob(X)) log likelihood, equation 6.31

Summary
In this chapter, we looked at the Bayesian tools for decision-making in uncertain systems.

We discussed conditional probability and Bayes’ theorem, which connects conditional

probabilities to joint and marginal probabilities.

Conditional probability is the probability of an event occurring subject to the

condition that another event has already occurred. In machine learning, we are

often interested in the conditional probability p
(
®x
��\ ) of an input ®x given that the

parameters of the model predicting the input are \ . This conditional probability

is known as the likelihood of the input. We are also interested in the conditional

probability p
(
\
��®x) , known as the posterior probability.
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Joint probability is the probability of a set of events occurring together. If the events

are independent, the joint probability is the product of their individual probabili-

ties. Whether events are independent or not, Bayes’ theorem connects joint and

conditional probabilities. Of particular interest in machine learning is the Bayes’

theorem expression connecting the likelihood and joint and posterior probabili-

ties of inputs and parameters: p
(
®x , \

)
= p

(
®x
��\ ) p (\) and p (

\
��®x) = p ( ®x |\ )p (\ )

p ( ®x) . p
(
®x
��\ )

is the probability distribution function of the chosen distribution family. p (\) is
the prior probability that codifies our belief, sans data, about the system. A pop-

ular choice is p (\) ∝ e−‖\ ‖2 , implying smaller probabilities for higher-magnitude

parameters and vice versa.

Entropy models the uncertainty in a system. Systems where all events have more

or less similar probabilities tend to be high-entropy. Systems where a particular

subset of possible events have significantly high probabilities and others have

significantly low probabilities tend to be low-entropy. Equivalently, the probability

density functions of low-entropy systems tend to have tall peaks, and their sample

point clouds have a high concentration of points in some regions. High-entropy

systems tend to have flat probability density functions and diffused sample point

clouds.

Cross-entropy allows us to quantify how good our modeling is against a known

ground truth.

Kullback–Leibler divergence gives us a measure of the dissimilarity between two

probability distributions.

Maximum likelihood estimation (MLE) and maximum a posteriori (MAP) estima-

tion are two paradigms for estimating model parameters. MLE maximizes p (X |\),
and MAP maximizes p (X |\) p (\). MLE essentially tries to estimate probability

distribution parameters that maximize the overlap between the sample point cloud

of the probability distribution and the training data point cloud.

MAP is MLE with a regularization condition. The regularization condition is

injected via the prior probability term p (\), which favors solutions with a certain

property (such as small parameter magnitudes) that we believe to be true from

empirical knowledge without data.

MLE for Gaussian distributions has a closed-form solution. The mean and

variance (covariance in the multidimensional case) of the optimal probability dis-

tribution that best fits the training data are the sample mean and sample variance

or covariance on the training dataset.

Latent variables in a machine learning system are auxiliary variables that are not

directly observed but can be derived from the input. They facilitate the expression

of the goal of optimization or the loss to be minimized.

Gaussian mixture models (GMM) are unsupervised probability models that fit

multiclass data distributions having multiple clusters in the training dataset, each

corresponding to a different class. Here, MLE does not yield a closed-form solution

but instead yields an iterative solution to estimate the mixture weights, means, and

variances of the individual Gaussians in the mixture.



7Function approximation:
How neural networks

model the world

This chapter covers
Expressing real-world problems as
mathematical functions

Understanding thebuildingblocksof aneural
network

Approximating functions via neural networks

Computing to date has been dominated by the von Neumann architecture in which

the processor and the program are separate. The program sits in memory and is

fetched and executed by the processor. The advantage of this approach is that

different programs solving unrelated problems can be loaded into memory, and

the same processor can execute them. But neural networks have a fundamentally

different architecture. There are no separate processors and programs; instead,

there is a single entity called, well, the neural network, which can run on dedicated

hardware or a Von Neumann computer. In this chapter, we discuss this paradigm in

detail.

239
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NOTE The complete PyTorch code for this chapter is available at http://mng.bz/K4zj

in the form of fully functional and executable Jupyter notebooks.

7.1 Neural networks: A 10,000-foot view
In section 1.7, we provided an overview of neural networks. (You may want to do a quick

refresher on chapter 1 at this point.) There we indicated that most intelligent tasks

performed by humans can be expressed in terms of mathematical functions that we

will refer to as target functions. So, to develop machines that perform intelligent tasks,

we need to have machines that model target functions. While that gives us hope of

developing automated solutions, we are hobbled by two serious difficulties:

In addition to being arbitrarily complicated, the target functions underlying various

real-life problems are completely different from one another. There is hardly any

common pattern.

For most problems, we donot know the underlying target function.

Despite all this, we want to come up with a mechanized repeatable solution for perform-
ing real-life intelligent tasks. And we do not want to start from scratch and design the
underlying function for each such problem. This is where neural networks help:

Neural networks provide a unified framework to model an extremely wide variety

of arbitrarily complicated functions.

While the overall neural network models a complicated function, its building block is a

fairly basic unit called a neuron. The neuron represents a relatively simple function. The

full neural network is made up of many neurons with weighted connections between

them. It can bemade to approximate any arbitrary target function underlying a particular

problem of interest by manipulating the number of neurons, the connectivity between

them, and the connection weights.

The variety and complexity of the functions a neural network can represent are

known as its expressive power. Expressive power increases with the number of neurons in

the neural network and the number of connections between them. The more complex

the target function, the more expressive power will be needed in the neural network

modeling it. How can we make a neural network model/approximate/express a specific

target function corresponding to a particular problem of interest? Answer: we can adjust

the following two aspects of the neural network:

Architecture—The number of neurons and the connections between them

Parameter values—The weights of the connection between neurons

The architecture is typically chosen based on the nature of the problem. Some popular

architectures are reused frequently, and a neural network engineer typically chooses

an architecture that is historically known to be effective for a problem similar to the

problem at hand. We look at several popular architectures later in this book—for

instance, in chapter 11. Once the architecture is set, we determine the parameter values

through a process called training.

http://mng.bz/K4zj
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Neural networks can be classified into two major classes: supervised and unsupervised.

In supervised neural networks, we identify the desired output values corresponding

to a set of sampled input values for the problem we are trying to solve. The desired

output for these sampled inputs is typically chosen manually using a process called

labeling (aka manual annotation or manual curation). The overall set of <sampled input,

desired output> pairs constitutes the supervised training data. The set of desired outputs

for training data inputs is sometimes collectively referred to as the ground truth or target

output.

During training, the parameter values (aka weights) are adjusted such that the

network’s outputs on training inputs match the corresponding ground truth as closely

as possible. If all goes well, at the end of training, we are left with a neural network

whose outputs on training inputs are close to the ground truth. This trained neural

network is then deployed to the real world, where it performs inferencing—it generates

output on inputs it has never seen before. If we have chosen the architecture with

enough expressive power and properly trained the network with adequate training

data, it should emit accurate results during inferencing. Note that we cannot guarantee

correct results during inferencing; we can only make a probabilistic statement that our

output has a p probability of being correct.
Unsupervised neural networks do not need the manually labeled ground truth—they

just work on the training inputs. The manual labor involved in labeling the training data

is expensive and bothersome. Consequently, considerable research effort is going into

neural networks that are unsupervised, semi-supervised (a fraction of the training data is

labeled manually), or self-supervised (labeled training data is created programmatically

rather than manually). However, unsupervised and semi-supervised neural network

technology is less mature at the time of this writing, and it is harder to achieve desired

accuracy levels with them. Later in this book, we examine unsupervised approaches, in-

cluding variational autoencoders (chapter 14). But for now, wemostly talk about supervised

approaches.

It is important to note that nowhere in the architecture selection or training process

do we need a closed-form representation of either the function being approximated

(the target function) or the approximator function (the modeling function). This is

important. In most cases, it is impossible to know the target function—all we know are

sample input and ground-truth pairs (training data). As for the modeling function, even

when we know the architecture of the modeling neural network, the overall function

it represents is so complicated that it is virtually intractable. Thus, the fact that we do

not need to know the target or modeling function in closed form is what makes the

technology practical.

7.2 Expressing real-world problems: Target functions
Consider the classic investor’s problem: to sell or not sell a stock. The problem inputs

could be the purchase price, current price, whether the investor’s favorite expert is

advising to sell or not, and so on. The problem can be solved by a function that takes
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these inputs and outputs as 0 (do not sell) or 1 (sell). If we could model this function,

we would have a mechanical solution to this real-world problem.

Like this example, most real-world problems can be expressed as target functions.

We collect all quantifiable variables that can have a bearing on the outcome: these

constitute the input variables. The input variables are expressed as numeric entities:

scalars, vectors, matrices, and so on. The outputs are also expressed as numeric variables

called the output variables. Given a specific input (say, specific values for purchase price

and current price), our model function emits an output (0 or 1 indicating do not sell

or sell) that is a solution to the problem for that specific input.

We usually denote input variables with the symbol x; a sequence of input variables
is often expressed as a vector ®x. Output variables are denoted with the symbol y. The
overall target function is usually expressed as y = f

(
®x
)
. We will often use subscripts to

denote various elements of a vector (x0, x1, · · · , xi) and superscripts to denote input

instances, as in y (0) = f
(
®x (0)

)
, y (1) = f

(
®x (1)

)
, · · · , y (i ) = f

(
®x (i )

)
. But in some cases, we

will use subscripts to denote different items of the training data. The usage should be

obvious from the context.

Numeric quantities can occur in two distinct forms: continuous and categorical.

Continuous variables can take any of the infinitely many real number values in a given

range. For instance, the stock price in our “to sell or not sell a stock” problem can

take any value greater than zero. Categorical variables can take one of a finite set of

allowed values, where the value represents a category. A special categorical case is a

binary variable, where there are only two categories. For instance, expert advice in

our stock-selling problem can take only two values: 0 or 1, corresponding to the two

categories of advice, “do not sell” and “sell,” respectively.

In this section, we discuss three distinct families of target functions: logical functions,

general functions, and classifiers.

7.2.1 Logical functions in real-world problems

These are functions whose inputs and outputs are binary variables: variables that can

take only two values, 0 (aka “no” or “don’t fire”) and 1 (aka “yes” or “fire”). Machines

emulating logical functions are often added on top of separate machines performing

other tasks, as will be evident from the following examples:

Logical OR—To look at logical OR functions, let’s bring back the mythical cat

whose brain we discussed in chapter 1. Say we are trying to build a machine that

helps the poor creature make the binary decision whether to run away from the

object in front of it or approach the object and purr. Being very timid, this cat runs

away from anything that looks hard or sharp. The only time it will approach and

purr is when the object in front of it looks neither hard nor sharp. Let’s assume

a separate machine outputs a binary decision 0 (not hard) or 1 (hard). Another

machine outputs a binary decision 0 (not sharp) or 1 (sharp). The logical OR

machine combines the binary decisions from the two separate machines, as shown

in figure 7.1a.



7.2 Expressing real-world problems: Target functions 243

Threat classifier
model

Hardness
estimator model

Sharpness
estimator model

0 0 0

0 1 1
1 0 1
1 1 1

Truth table

0 = not hard 
1 = hard

0 = not sharp 
1 = sharp

0 = approach and purr 
1 = run away

Input
image

hardness

sharpness

(a) Logical OR: a timid cat that runs away from things whose hardness exceeds threshold t0 OR whose
sharpness exceeds threshold t1

Threat classifier
model

Hardness
estimator model

Sharpness
estimator model

0 0 0

0 1 0
1 0 0
1 1 1

Truth table

0 = not hard 
1 = hard

0 = not sharp 
1 = sharp

0 = approach and purr 
1 = run away

Input
image

hardness

sharpness

(b) Logical AND: a less timid cat that runs away from things whose hardness exceeds threshold t0 AND whose
sharpness exceeds threshold t1

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

Truth table

To-Brake or Not-To-Brake

Person detector
model 0 = person not detected  

1 = person detected

0 = do not apply brakes  
1 = apply brakes

Vehicle detector
model

Road bend
detector model

0 = vehicle not detected  
1 = vehicle detected

0 = road bend not detected  
1 = road bend detected

Input
image

(c) Multi-input logical OR: A self-driving car that applies the brake if it sees a person, vehicle, or bend in the
road in front of it

Figure 7.1 Examples of logical operators (OR, AND) in real-life problems
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Logical AND—We also exemplify this in terms of the cat brain. Imagine a slightly

less timid cat that runs away from things that are both hard and sharp. But it is not

scared by hardness and sharpness alone. Its brain can be modeled by the system of

machines shown in figure 7.1b.

Logical NOT—Consider a machine that sounds an alarm if it sees any unauthorized

person in a restricted access area. Let’s assume that we also have a separatemachine:

a face detector that can recognize the faces of all authorized personnel. It emits a

binary decision 1 (recognized face) or 0 (unrecognized face). The overall system

takes the output of the face detector and performs a logical NOT operation

on it.

Multi-input logical OR—Imagine a machine that decides whether a self-driving car

needs to brake. Assume that three separate detectors emit 1 if a person, vehicle, or

bend in the road, respectively, is seen in front of the car. A brake must be applied

if any of these separate detectors emits a 1. This is shown in figure 7.1c.

Multi-input logical AND—Consider a machine that helps a venture capitalist decide

whether to invest in a startup. Assume that three separate machines emit 1 when

the following conditions are met: (1) the CEO has a track record of success, (2) the

product elicits interest from targeted customers, and (3) the product is sufficiently

novel, respectively. The machine will decide to invest if all three separate machines

emit 1. Thus, the machine outputs 1 when condition (1) is met AND condition

(2) is met AND condition (3) is met. This is an example of a three-input AND.

Logical XOR—Suppose we are building a social media site. Assume we have a

separate detector that, for any person, emits 1 if they like rockmusic and 0 otherwise.

Using this information about two people, the problem is to decide whether they

should be recommended as friends to each other. Friendship potential is high

if they both like rock music or both dislike it. But if one person likes rock and

the other dislikes it, they will probably not be good friends. Thus condition 1 is

high rock-music affinity for person 1, and condition 2 is high rock-music affinity

for person 2. The exclusive OR of the two conditions is 1 when one is true but

the other is not. This machine outputs 1 if the NOT of the exclusive OR is true,

meaning neither person likes rock music or both people like rock music. Figure 7.2

depicts this.

m-out-of-n trigger—Imagine we are trying to create a face detector. We have already

created separate part detectors for noses, eyes, lips, and ears. If we detect, say, any

two of these together, we feel confident enough to declare a face. In computer

vision, we often have a problem called occlusion, where an important object becomes

invisible to the camera because another object blocks the camera’s line of sight.

Computer vision algorithms always try to be robust against occlusion, meaning

they want to emit the right output even when occlusion occurs. This is why we do

not want to mandate a positive signal from all the part detectors; we want to detect

the face even when a few of the parts are occluded. Hence, our machine emits 1

when, say, two of the n parts (such as eyes and lips) are detected.
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0 0 1

0 1 0

1 0 0

1 1 1

Truth table

Recommendation 
engine

Rock music affinity
estimator model

Rock music affinity
estimator model

1 = likes rock music 
0 = dislikes rock music

1 = recommend 
0 = do not recommend

1 = likes rock music 
0 = dislikes rock music

Person A’s music
playing history

Person B’s music
playing history

(person A’s rock music affinity)

(person B’s rock music affinity)

Figure 7.2 Example of logical NOT and XOR in a real-life problem. A social media system makes a
friendship recommendation between persons A and B if and only if they both like or both dislike rock
music. friendship =¬ (rock-music-affinity-of-A ⊕ rock-music-affinity-of-B) where ¬ =⇒ logical NOT and
⊕ =⇒ logical XOR.

7.2.2 Classifier functions in real-world problems

A classifier is a function whose output is categorical. Inputs can be either continuous

or categorical. Thus, given an input, the function chooses one category (aka class) or

another. For instance, a face detector can be a classifier. Its input is an image, and its

output is a categorical (binary) variable that takes one of two possible values: 1 (face)

or 0 (not face). This is shown in figure 7.3a. As we saw in section 2.3, any image can

be represented by a vector ®x. Accordingly, the classifier function for the face detector

Discriminative
face detector 

Discriminative
face detector 

Discriminative
face detector 

(a) Discriminative face detector (classifier). The output is categorical (face or not face).

Generative
face detector 

Generative
face detector 

Generative
face detector 

(b) Generative face detector. The output is continuous (the probability of an image containing a face).

Figure 7.3 The face detector takes an image as input and outputs a categorical or continuous variable.
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can be written as the function

q
(
®x
)
=

{
0 not a face

1 face

How to design the function q
(
®x
)
is one of the primary topics of this chapter.

Geometrically, each scalar input variable forms a separate dimension in the input

space. All possible combinations of these scalar input variables together form a multi-

dimensional space called the input space (or feature space). Each specific combination

of input values is a point (represented by the input vector ®x) in this space.

For instance, in an image, each pixel can be taken as a separate input scalar variable

that can take any 3-byte pixel color value between RGB = 00 00 00 (hex) (black) and

RGB =FF FF FF (hex) (white), with successive bytes (demarcated by an overline)

representing red, green, and blue components of the pixel, respectively. The input has

as many dimensions as the number of pixels in the image. For instance, a 224× 224
image forms a 50,176-dimensional input space. Each specific image is a single point in

this space. The face-classifier function q
(
®x
)
maps that point to either 0 (not face) or 1

(face).

For a simpler instance, consider our familiar cat brain example from section 1.4.

There are two input variables: x0, indicating hardness; and x1, indicating sharpness. The

overall input space is two-dimensional, in which a specific input combination is denoted

by the 2D vector ®x =

x0

x1

 . Our goal is to construct a machine that, given any input

combination of hardness and sharpness, classifies it as either threatening or nonthreatening.

This is equivalent to designing a function that maps arbitrary input vectors ®x ∈ℝ2 to 0

or 1:

q
(
®x
)
=

{
0 not a threat

1 threat

GEOMETRICAL VIEW OF CLASSIFIERS: DECISION BOUNDARIES
Geometrically speaking, a classifier partitions the feature space into separate regions,

each corresponding to a class. For instance, consider the simple cat-brain model from

section 1.4. There are two input variables, hardness (x0) and sharpness (x1). Hence

we have a two-dimensional input feature space that geometrically corresponds to a

plane. Each combination of hardness and sharpness is represented by a specific vector

®x = [x0 , x1] corresponding to a point on the plane. Note that unlike the machines shown

in figures 7.1a and 7.1b, here we are talking about a machine that takes as input a pair

of continuous values (hardness and sharpness)—that is, a point on the two-dimensional

feature plane—and maps it to a discrete space corresponding to the threat versus not a

threat categorical decision. This is illustrated in figure 7.4a.

The solid curve separates the threat and not-threat regions. Such curves that separate

regions in input space belonging to different classes are known as decision boundaries.

Estimating the decision boundary is effectively the same as building the classifier.
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The dashed line represents an approximate linear decision boundary that does the job

crudely butmisclassifies the points between the solid and dashed curves. (Linear decision

boundaries are easier to represent with neural networks, but they are inadequate for

complex problems.)

Let’s look briefly at the solid curve in figure 7.4a. At low hardness values, the sharpness

threshold is high (if the object in front of the cat is not very hard, it must be very sharp

to qualify as a threat). As hardness increases from x0 = 0 to x0 = 20, this threshold (the

sharpness required to qualify as a threat) drops more or less linearly. Beyond x0 = 20,
the threshold drops at a much faster pace—if the object in front of the cat is sufficiently

Non-threat region misclassified 
by linear decision boundary

Threat
region

Non-threat
region

True nonlinear decision boundary
Approximate linear decision boundary

Cat brain threat/non-threat decision boundaries

x0 (hardness)

x1
 (s

ha
rp

ne
ss

)

(a) Cat brain threat model decision boundary. The solid curve corresponds to the true decision boundary
separating the threat and non-threat regions. The dashed line represents an approximate linear decision
boundary: it classifies most points correctly but misclassifies points in the region between itself and the true
decision boundary.

In practice, we get some sample points from each region through manual labeling.

Figure 7.4 Classifiers, decision boundaries, and training data. Data points from different classes are
marked with different symbols (plus and dot). (Figure continued on next page)
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Cat brain threat/non-threat decision boundaries

x0 (hardness)

x1
 (s
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True nonlinear decision boundary
Approximate linear decision boundary

(b) Good training data. Sample points from each class roughly span the region of
input space belonging to the class.

This yields a good decision boundary (solid line).

Cat brain threat/non-threat decision boundaries

x0 (hardness)

x1
 (s

ha
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ss
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True nonlinear decision boundary
Bad decision boundary

(c) Bad training data. Sample points from individual classes do not span the region of
input space belonging to the class.

This yields a bad decision boundary (dashed line).

Figure
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hard, it need not be very sharp to pose a threat. Beyond x0 = 52 or so, sharpness ceases to
matter: sufficiently hard objects are threats even if they are not sharp. This is inherently

a nonlinear situation.

To simplify neural network implementation, we might want to approximate the solid

curve with a straight line—the dashed line is not too bad an approximation—but doing

so entails errors. As shown in figure 7.4a, the region between the true and approximate

curves will be wrongly classified.

Figure 7.4a is only a schematic. In reality, we do not know the exact regions in

the input space that correspond to the classes of interest. We identify—via human

labeling—some sample points on the input space, along with their correct class (the

ground truth). Such a sampled set of <input point, correct output aka ground truth>

pairs is called training data. An example training data set for the cat brain problem

is shown in figure 7.4b (ground-truth training data points from different classes are

marked with separate symbols: plus and dot, respectively). The decision boundary we

create by training a neural network is optimized to classify the training data points

(and nothing more) as nicely as possible. If the training data points’ distribution is a

reasonable reflection of the true distribution—that is, the sample points from each

class more or less span the entire region in the input space corresponding to that

class—the decision boundary obtained by training on that data set will be good. But if,

as illustrated in figure 7.4c, the training data does not reflect the true distribution of the

classes in the input space, the decision boundary learned by training on that data may

be bad.

Unlike the cat brain example, most real-life input spaces have hundreds or even

thousands of dimensions. The idea of a decision boundary as a hypersurface continues

to hold in higher dimensions. For higher-dimensional input spaces, hyperplanes func-

tion as linear separators. In simpler problems with higher-dimensional input spaces,

such linear separators suffice. In more complicated cases, we can have other curved

hypersurfaces as nonlinear separators. We may not be able to visualize hyperspaces in

our head, but we can form mental pictures with 3D analogs. Figure 7.5 shows some

planar decision boundaries in 3D input space. Figure 7.5a shows a 3D space of input

vectors along with a set of training data points. The task is to classify them into two

classes. In this simple situation, the training points can be partitioned with a hyper-

planar decision boundary. Figures 7.5b and 7.5c show some planes that partition the

training data poorly, and figure 7.5d shows an optimal planar separator. The only

differences between these planes are the values of ®w and b. This indicates that there
are values of ®w and b that optimally partition the training data. These optimal values

are determined by a process called training, which we discuss in detail in the next

chapter.

SIGNIFICANCE OF SIGN: MATHEMATICAL EXPRESSIONS FOR DECISION BOUNDARIES
In a space with input vectors ®x, the equation q

(
®x
)
= 0 represents a surface. If the space is

2D, the surface becomes a curve. For instance, the straight dashed line in figure 7.4b can

be viewed as a special case of q
(
®x
)
≡ ®wT ®x + b = 0, which in this case becomes
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0.62x0 + x1 − 26.14=
0.621


T x0x1

 − 26.14= 0

That is,

®w =


0.62

1


b =−26.14

(a) Training data. Sample points from
regions on the input space for each class

(b) Bad decision boundary. The plane has
the wrong orientation. ®w needs to be fixed.

(c) Bad decision boundary. The plane
has the correct orientation but the
wrong position. b needs to be fixed.

(d) Optimal decision boundary. The plane
has correct ®w, b. Properly trained.

Figure 7.5 Classifiers with a linear decision boundary (hyperplane). Such decision boundaries are created
by perceptrons (introduced in section 7.3.3). Data points from different classes are marked with different
symbols (plus and dot).
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In 3D, we have surfaces like planes and spheres. In more than three dimensions, we

have hyperplanes, hyperspheres, and so on. For instance, the plane in figure 7.6 corres-

ponds to

q
(
®x
)
≡ x0 + x1 + x2 =


1

1

1


T 
x0

x1

x1


+ 0= 0 (7.1)

That is,

®w =


1

1

1


b = 0

In section 3.1.4, we saw that given any point ®x in the space, the sign of q
(
®x
)
tells us

which side of the surface q
(
®x
)
= 0 the point ®x belongs to. Thus, if we estimate the surface

corresponding to the decision boundary, given any point, we can determine the partition

to which that point belongs. In other words, we can classify the point. Estimating the

decision boundary is equivalent to building the classifier. For instance, the line in figure

7.4b corresponds to 0.62x0 + x1 − 26.14= 0. The points with 0.62x0 + x1 − 26.14 < 0 are

on one side and are indicated with dots. The points with 0.62x0 + x1 − 26.14 > 0 are on

the other side and indicated with plus signs (+).

The idea extends to higher dimensions. Figure 7.6 shows the same idea in a 3D

input space. The plane corresponds to the equation x0 + x1 + x2 = 0. The points with
x0 + x1 + x2 < 0 are on one side (indicated by – in figure 7.6), and points with x0 + x1 + x2 >
0 are on the other side (indicated by + in figure 7.6).

Figure 7.6 Significance of sign for 5
(

®x
)

≡ ®wT ®x + b.
Note that 5

(

®x
)

= 0 implies that ®x lies on the plane,
5
(

®x
)

negative implies one side of the plane, and
5
(

®x
)

positive implies the other side of the plane.
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7.2.3 General functions in real-world problems

There are problems where a categorical output variable will not do and a continuous

output variable is called for: for instance, estimating the speed at which a self-driving

vehicle should run. Using inputs like the speed limit for the road being traversed, speeds

of neighboring vehicles, and so on, we need to estimate how fast the self-driving vehicle

should go.

Another noteworthy situation where the output needs to be a continuous rather than

a categorical variable is when we are modeling the probability of some event occurring.

For instance, let’s again consider the face detector. Given an image as input, the face

classification function emits 0 to indicate not a face and 1 to indicate face. Such functions

are called discriminative. We could also have a function that outputs the probability of

the image containing a face. Such functions are called generative, and an example is

shown in figure 7.3b.

7.3 The basic building block or neuron: The perceptron
In section 7.2, we saw that most real-world problems can be expressed as functions. This

is good news, but the bad news is that these functions are usually unknown, and the

functions underlying various problems are wildly different from each other. It may be

possible to estimate them, but if we attack them individually without adopting a generic

framework, there is little hope of developing a repeatable solution.

Neural networks provide an effective framework that can mechanically model an

extremely wide variety of complicated functions. Furthermore, the target function

need not be known in a closed form—sample input-output pairs are enough. They can

represent (model) very complicated functions by connecting instances of a fairly simple

building block, unsurprisingly called a neuron. In other words, the complete neural

network can have huge expressive power even though a single neuron is very simple. Later,

in sections 7.3.4, 7.4, 7.5, and so on, we discuss how neural networks model functions

of increasing complexity. But first, in this section, we examine the building block: the

neuron.

7.3.1 The Heaviside step function

The Heaviside step function, often referred to as simply the step function, is a function that

takes the value 0 for negative arguments and the value 1 for positive arguments:

q (x) =
{

0 if x < 0

1 if x >= 0
(7.2)

Equation 7.2 is equivalent to the following algorithm. Figure 7.7 shows the graph of this

equation.
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Algorithm 7.1 Heaviside step function as an algorithm

if x < 0 then

return 0

else

return 1

end if

Heaviside step function

Figure 7.7 Heaviside step function graph

7.3.2 Hyperplanes

In section 2.8, we discussed hyperplanes. They are represented by equation 2.14. In

figure 2.9, we saw the role that hyperplanes play in classifiers; we briefly revisit the idea

here.

In section 2.1.1, we saw that d-element vectors are geometrical analogs of points in a

d-dimensional space. Let ®x denote the vectors (or, equivalently, points) in the space of

input vectors. For a fixed vector ®w and fixed scalar b, the equation for a hyperplane in

that space is
®wT ®x + b = 0

(meaning all points ®x satisfying this equation lie on the plane). The vector ®w is the

normal to the plane. This becomes intuitively obvious when we observe that if we take

any two points on the plane, say ®x0 and ®x1, then

®wT ®x0 + b = 0

®wT ®x1 + b = 0
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Subtracting, we get

®wT
(
®x1 − ®x0

)
= 0

But
(
®x1 − ®x0

)
is the vector joining two arbitrary points on the plane. This means the line

joining any pair of points on the plane is perpendicular to ®w (in section 2.5.2, we discussed

dot products, and in section 2.6, we saw that if the dot product between two vectors is

zero, the vectors are orthogonal—perpendicular to each other). Hence, ®w is orthogonal

to all lines lying on the plane. In other words, ®w is normal to the plane.

The hyperplane ®wT ®x + b = 0 partitions the space into two regions with distinct signs for

the expression ®wT ®x + b. That is to say, the hyperplane can serve as a decision boundary,

as shown in figure 7.6. Not just a hyperplane but any hypersurface can partition space

in this fashion. This is true for any dimensionality of ®x:
If the expression ®wT ®x + b evaluates to zero, the point ®x lies on the hyperplane

®wT ®x + b = 0.
If the sign of the expression ®wT ®x + b is negative, the point ®x lies on one side of the

hyperplane.

If the sign of the expression ®wT ®x + b is positive, the point ®x lies on the other side of

the hyperplane.

7.3.3 Perceptrons and classification

The perceptron combines the step function and a hyperplane into a single function. It

represents the function
P

(
®x
)
≡ q

(
®wT ®x + b

)
(7.3)

where q is the Heaviside step function from equation 7.2. Combining our insights from

sections 7.3.1 and 7.3.2, we can see that the perceptron function maps all points on one

side of the
(
®w , b

)
plane to zero and all points on the other side of the same plane to 1.

In other words, it performs as a linear classifier, with the ( ®w, b) plane as the decision
boundary. Figure 7.8 graphs the perceptron function for a 2D input space (the graph

itself is in 3D space: it maps points on one side of the decision boundary to the plane

Z = 0 and points on the other side to the plane Z = 1).

Of course, in real life, we do not know the exact regions corresponding to classes.

Rather, we have sampled input points with their manually labeled classes as training

data. The decision surface must be constructed based on this training data only. In

figure 7.4, we saw an example decision boundary in 2D along with some good and

bad training data sets. To get a mental picture of sampled training data sets in higher

dimensions, look at figure 7.5a again. In this simple situation, a single hyperplanar

decision boundary is sufficient to partition the training points. This means a single

perceptron-based neural network will suffice as a classifier. Figures 7.5b and 7.5c depict

some planes (perceptrons with specific
(
®w , b

)
values) that poorly partition the training

data. Figure 7.5d shows an optimal perceptron (planar separator). This tells us that

there are good values of ®w and b that optimally partition the training data, as well as
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X

Y

Z

plane

plane

Figure 7.8 Graph of the perceptron function (equation 7.3) for a two-variable input space. Note that
although the input space is 2D, the perceptron graph is 3D. The decision boundary is indicated by the
long diagonal straight line. It maps points on one side of the decision boundary to the Z = 0 plane and
the points on the other side to the Z = 1 plane.

bad values. As mentioned earlier, good values are determined through training, which

we cover in chapter 8.

The perceptron effectively partitions with a planar decision surface. This works only

in simple problems. For an instance of a situation where a planar decision surface will

not work, see figure 7.9. It depicts a problem where one class maps to the set of points

sandwiched between two planes and the other class to the rest of the points in the input

space. It is impossible to achieve the required partitioning with a single plane, so such a

decision boundary cannot be modeled with a single perceptron. Later we will see how

to model such complex decision boundaries with multiple perceptrons.

Figure 7.9 Multiplane decision boundary. One
class corresponds to the points in the region
sandwiched between the planes (marked +). The
remaining points correspond to the other class
(marked –). This decision boundary cannot be
represented with a single plane.
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NOTE Fully functional code for perceptrons, executable via Jupyter Notebook,

can be found at http://mng.bz/9Ne7.

The following listing shows the PyTorch code for a perceptron.

Listing 7.1 Perceptron

def fully_connected_layer(X, w, b):
X : n × d tensor; each row is an input
vector of size d.w :m × d tensor.

X = torch.cat((X, torch.ones(
[X.shape[0], 1], dtype=torch.float32)), dim=1)

Adds a column of 1s.
X→ n × (d + 1) tensor.

W = torch.cat((W, b.unsqueeze(dim=1)), dim=1) Combines weights and biases

y = torch.matmul(W, X.transpose(0, 1)) Matrix multiplication of X and W

y = torch.heaviside(y, torch.tensor(1.0)) Applies the Heaviside step function

return y.transpose(0, 1)

def Perceptron(X, W, b): A single perceptron

return fully_connected_layer(X, W, b)

7.3.4 Modeling common logic gates with perceptrons

Neural networks provide a structured way of modeling complex functions by connect-

ing—via weighted edges—repeated instances of a simple building block called the

perceptron. In this section, we explore the idea of function modeling via perceptrons.

We start with modeling extremely simple logical functions (AND, OR, NOT, voting) that

can be represented with single perceptrons. Then we look at the XOR function, one of

the simplest functions that cannot be represented with a single perceptron; we see that

it can be modeled with multiple perceptrons. Next we discuss Cybenko’s theorem, which

states that most functions of interest can be modeled with as much accuracy as we want

via perceptrons, with a single hidden layer between inputs and outputs. Unfortunately,

this is less practical than it sounds: the catch is that although any function can be

modeled to any accuracy, there is no limit on how many perceptrons are required to do

the modeling. The more complicated the target function is, the more perceptrons are

required. In practice, we often use many layers instead of one.

A PERCEPTRON FOR LOGICAL AND
Figure 7.10a depicts this perceptron. It takes two inputs, x0 and x1, which are weighted

with w0 = 1 and w1 = 1, respectively; the bias is −1.5 (actually, a wide range of bias

values will do). Overall, the perceptron implements the function q (x0 + x1 − 1.5). This
function emits 1 when x0 + x1 − 1.5 ≥ 0: that is, x0 + x1 ≥ 1.5. Since the variables are binary
(meaning they can only take the value 0 or 1), this can happen only when both inputs

are 1. If either is zero, their sum is less than 1.5, and y is 0.
The situation is depicted geometrically in figure 7.11a. The thick diagonal line corre-

sponds to x0 + x1 ≥ 1.5. It partitions the plane into unshaded and shaded half-planes.

http://mng.bz/9Ne7
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(a) Perceptron for a logical AND function:
y = x0 ∨ x1

(b) Perceptron for a logical OR function:
y = x0 ∧ x1

(c) Perceptron for a logical NOT function:
y =¬x0

Figure 7.10 Perceptrons for simple logical functions. A perceptron is depicted by a circle with
summation followed by a step function to remind us of equation 7.3. Inputs and outputs for logical
functions are binary, meaning they can be either 0 or 1.

(a) Logical AND
decision boundary:
x0 + x1 = 1.5

(b) Logical OR
decision boundary:
x0 + x1 = 0.5

(c) Logical NOT
decision boundary:
x0 = 0.5

Figure 7.11 Geometrical views for the perceptrons in figure 7.10. Each dot represents an input point
(a [x0 x1 ] vector). The shaded dots map to an output value of 1, and the unshaded dots map to an output
value of 0. The thick line indicates the decision boundary.

All points on the unshaded half-plane have an output value y = 0, and all points on the

shaded half-plane have the output value y = 1. There are only four possible input points:
(x0 = 1, x1 = 1), (x0 = 1, x1 = 1), (x0 = 1, x1 = 1), (x0 = 1, x1 = 1). The point (x0 = 1, x1 = 1)
falls on the shaded side and the others on the unshaded side—which is exactly the

logical AND function.
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A PERCEPTRON FOR LOGICAL OR
Figure 7.10b depicts this perceptron. It takes two inputs, x0 and x1, which are weighted

with w0 = 1 and w1 = 1, respectively; the bias is −0.5. Overall, the perceptron implements

the function q (x0 + x1 − 0.5). This function emits 1 when x0 + x1 − 0.5 ≥ 0: that is, x0 +
x1 ≥ 0.5. Since the variables are binary (0 or 1), this can happen when either or both

inputs are 1. If and only if both of them are zero, their sum is zero (less than 0.5), and
y is 0.

The situation is shown geometrically in figure 7.11b. The thick line corresponds to

x0 + x1 ≥ 0.5, partitioning the input plane into an unshaded half-plane (all points on

this half-plane have output y = 0) and a shaded half-plane (output y = 1). Of the four

possible input points, (0, 0) falls on the unshaded side (y = 1) and the remaining three

on the shaded side (y = 1)—which is exactly the logical OR function.

A PERCEPTRON FOR LOGICAL NOT
This perceptron is shown in figures 7.10c and 7.11c, which should be self-explanatory

by now.

NOTE Fully functional code for modeling various logical gates using perceptrons,

executable via Jupyter Notebook, can be found at http://mng.bz/jBRr.

Listing 7.2 Modeling logical gates using perceptrons

# Logical AND
X = torch.tensor([[0., 0.], Input data points

[0., 1.],
[1., 0.],
[1., 1.]], dtype=torch.float32)

W = torch.tensor([[1.0, 1.0]], dtype=torch.float32) Instantiates the weights

b = torch.tensor([-1.5]) Instantiates the bias

Y = Perceptron(X=X, W=W, b=b, activation=torch.heaviside) Output

# Logical OR
X = torch.tensor([[0., 0.],

[0., 1.],
[1., 0.],
[1., 1.]], dtype=torch.float32)

W = torch.tensor([[1.0, 1.0]], dtype=torch.float32)
b = torch.tensor([-1.5])
Y = Perceptron(X=X, W=W, b=b, activation=torch.heaviside)

# Logical NOT
X = torch.tensor([[0],

[1.]
], dtype=torch.float32)

W = torch.tensor([[-1.0]], dtype=torch.float32)
b = torch.tensor([0.5])
Y = Perceptron(X=X, W=W, b=b, activation=torch.heaviside)

http://mng.bz/jBRr
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7.4 Toward more expressive power: Multilayer perceptrons (MLPs)
There is a remarkably simple logical function that, somewhat surprisingly, cannot be

modeled with a single perceptron: XOR. We discuss it now.

7.4.1 MLP for logical XOR

Figure 7.12a shows the four possible input points on the plane and how the plane needs

to be partitioned to model the XOR function. The points (0, 0), (1, 1) (unshaded) both
map to output 0 and should be on the same side of the decision boundary, while the

(a) Geometric view of the logical XOR perceptron. The
decision boundary has two lines, so using a single perceptron
is impossible.

(b) MLP for the logical XOR function. Note that weights and biases have superscripts in parentheses indicating
the layer index. This is a two-layered network. Layer 0 is hidden.

Figure 7.12 Logical XOR: Geometric and perceptron view
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points (0, 1), (1, 0) (shaded) map to output value 1 and should be on the other side of

the decision boundary.

It is easy to see that it is impossible to draw a single straight line in this plane such that

the shaded points are on one side and the unshaded points are on the other. Remember,

a perceptron essentially introduces a linear decision boundary. Hence it is impossible

to have a single perceptron modeling this function.

However, it is possible to model the logical XOR function via multiple perceptrons.

One such model is shown in figure 7.12b.

7.5 Layered networks of perceptrons: MLPs or neural networks
The XOR example tells us that we cannot do much with single perceptrons. We must

connect more than one perceptron into a network to solve practical problems. This is a

neural network. How do we organize such a network of connected perceptrons?

7.5.1 Layering

Layering is the most popular way to organize perceptrons into a neural network. Fig-

ure 7.12b is our first example of an MLP—most of the remainder of the book talks

about MLPs.

Note how the perceptrons in the XOR network (figure 7.12b) are organized:

The layers are numbered with increasing integers from input to output.

The output of a perceptron in layer i is only fed as input to perceptrons in layer

i + 1. No other connections are allowed. This keeps the network manageable and

facilitates updating the weights during training via a technique called backpropaga-

tion, which we discuss in the next chapter.

Outputs of all layers but the last are invisible (do not directly contribute to

the output). Such layers are called hidden layers. In figure 7.12b, layer 0 is

hidden.

Each weight and bias element belongs to one and only one layer. Throughout

this book, we indicate the layer index for a weight or bias element as a superscript

within parentheses.

MLPs with two or more hidden layers can be called deep neural networks. This is the

origin of the word deep in deep learning.

7.5.2 Modeling logical functions with MLPs

Any logical function can be expressed as a truth table. Hence, if we can prove that all

truth tables can be implemented via MLPs, we are done. This is the approach we take

here.

NOTE In the following discussion, no symbol (à la multiplication) between two

variables indicates logical AND, and a + symbol indicates logical OR.
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Table 7.1 Truth table for the
logical function y = x̄0x1 + x0 x̄1

x0 x1 y

0 0 0

0 1 1

1 0 1

1 1 0

Let’s start with a simple two-variable logical functions

y = x̄0x1 + x0 x̄1. Table 7.1 shows the corresponding truth
table. To create the equivalent MLP, we must pick the

rows corresponding to y = 1. Each row can be expressed

as an AND of the input variables or their complements.

For instance, the row x0 = 0 and x1 = 1, y = 1 corresponds
to x̄0x1—the first term of the function we are trying to

implement—and can be implemented by the perceptron

shown in figure 7.13a. The row x0 = 1 and x1 = 0, y = 1 corresponds to x0 x̄1—the second

term of the function we are trying to implement—and can be implemented by the

perceptron shown in figure 7.13b. We have implemented the individual terms of the

function; all that remains is to OR them together into a final MLP, as shown in fig-

ure 7.13c. This logical function is our old friend, logical XOR, and the overall function

in figure 7.13 is the same as figure 7.12. In this fashion, arbitrary logical expressions in

any number of variables can be modeled using MLPs.

(a) Perceptron for x̄0x1 (b) Perceptron for x0 x̄1 (c) MLP for x̄0x1 + x0 x̄1
Figure 7.13 MLP for the logical function corresponding to table 7.1

Listing 7.3 Multilayered perceptron (MLP)

def MLP(X, W0, W1, b0, b1): MLP

y0 = fully_connected_layer(X=X, W=W0, b=b0)
return fully_connected_layer(X=y0, W=W1, b=b1)

7.5.3 Cybenko’s universal approximation theorem

Any function y = f (x) that is continuous in an interval x ∈ (a, b) can be approximated

with a set of towers (vertical rectangles) in that interval. This is a direct consequence

of the mean value for integrals theorem in calculus. The idea is depicted in figure 7.14,

where a complicated function (depicted by the curve) is approximated by a sequence

of towers of various heights. The thinner the towers, the greater the number of towers,

and the more accurate the approximation.
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Figure 7.14 Approximating a complicated function with towers

In section 7.5.3, we show that any tower (with arbitrary height and location) can be con-

structed with MLPs. By summing these MLPs for individual towers, we can approximate

the entire function. This is Cybenko’s theorem in a nutshell.

NOTE Although Cybenko’s theorem guarantees that any continuous function can

be modeled using an MLP with a single hidden layer, the number of perceptrons

in that MLP can become arbitrarily impracticably large. This is why, in real life, we

rarely try to approximate complicated functions with a single hidden layer. We see

later that additional layers help us cut down the number of perceptrons required.

In particular, any decision boundary can be modeled in this fashion. Of course, the

number of perceptrons needed may become impossibly large for many problems,

making such a model practically unattainable.

GENERATING TOWERS WITH MLPS
The basic idea is depicted in figure 7.15. We can obviously generate a regular step with a

perceptron implementing y = q (x). The corresponding graph is shown in figure 7.15a.

By imparting a bias of 5, we can shift this step leftwards. The corresponding function is y =
q(x + 5). Furthermore, using negative weight laterally flips the step. The corresponding

function is y = q (−x), whose graph is shown in figure 7.15c. By imparting a bias of 5, we

can shift the flipped step rightwards. Figure 7.15e shows a flipped and right-shifted step

corresponding to the function y = q (−x + 5), whose perceptron is shown in figure 7.15f.

Logically ANDing a left-shifted step with a flipped and right-shifted step yields a tower
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w = 1 b = 0
Positive weight yields S curve

(a) q (x) : positive w yields a regular step

1D step

(b) Perceptron for a regular step
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-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0

w = -1 b = 0

Negative weight yields laterally flipped S curve

(c) q (−x) : negative w yields a laterally flipped step

1D flipped step

(d) Perceptron for a laterally flipped step

1.0

0.8

0.6

0.4

0.2

0.0
-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0

Change bias to shift curve

w = -1 b = 5

(e) q (−x + 5) : changing the bias shifts the step left
or right

1D  flipped +
shifted step

(f) Perceptron for a laterally shifted step

Figure 7.15 Generating a 1D tower with perceptrons. (Figure continued on next page)
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MLP-generated rectangle
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0.6

0.4
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w0 = [1, -1] 
b0 = [5, 5]
w1 = [1,1] 
b1 = -1.5

(g) (q (x + 5) + q (−x + 5) − 1.5) : ANDing a left-
shifted step with a flipped, right-shifted step yields a
tower

1D tower

(h) MLP for a 1D tower

Figure 7.15 (Continued from previous page)

in 1D. This corresponds to the function y = q(q(x + 5) + q(−x + 5) − 1.5), whose graph
is shown in figure 7.15g.

The same idea also works for higher-dimensional inputs. We can generate a step in

two variables (a 2D step) aligned to the x0 direction using equation 7.4. This equation’s

graph is shown in figure 7.16a, and the perceptron implementing the equation is shown

in figure 7.16b. The flipped version of the same step can be generated via equation 7.5.

This equation’s graph is shown in figure 7.16d, and the perceptron implementation is

shown in figure 7.16e.

In the 1D case, we combine a regular step with its flipped and shifted version to

generate a tower. The process is slightly more complicated in 2D. Here, combining a

step along a specific coordinate axis with its flipped and shifted version generates a

wave function along that axis. Thus, we have separate waves in each dimension. The

Step function along X0 direction

(a) 2D step function along the x0 (x)
direction

2D step

(b) Perceptron for a 2D step function along
the x0 (x) direction

y = q
©­«
[
1 0

] 
x0

x1

ª®¬
(c) Equation for a 2D step
function along the x0 (x)
direction

Figure 7.16 Generating 2D steps and waves with perceptrons. (Figure continued on next page)
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Flipped step function along X0 direction

(d) Flipped 2D step along the x0 (x)
direction

flipped 2D 
step

(e) Perceptron for a flipped 2D step along the
x0 (x) direction
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[
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ª®¬
(f) Equation for a flipped
2D step along the x0 (x)
direction

2D wave along X0 direction

(g) 2D wave along the x0 (x)
direction

2D wave

(h) MLP for a 2D wave along the x0 (x)
direction
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(i) Equation for a 2D wave
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2D wave along X1 direction

(j) 2D wave along the x1 (y)
direction

2D wave

(k) MLP for a 2D wave along the x1 (y)
direction
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q
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(l) MLP for a 2D wave along the
x1 (y) direction

Figure 7.16 (Continued from previous page)
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wave along the x0 axis corresponds to equation 7.6; its graph is shown in figure 7.16g. It

is implemented by the MLP in figure 7.16h. Similarly, a 2D wave along the x1 axis can
be generated via equation 7.7 and is graphed in figure 7.16j. The corresponding MLP

is shown in figure 7.16k.

To create a tower, we have to AND a pair of waves along the two separate dimensions.

The final tower function is shown in equation 7.8; the corresponding tower graph is

shown in figure 7.17a; the MLP is shown in figure 7.17b. Any continuous 2D surface

can be approximated to arbitrary levels of accuracy by combining such 2D towers:

y = q
©­«
[
1 0

] 
x0

x1

ª®¬⇒ 2D step along x0 (7.4)

y = q
©­«
[
−1 0

] 
x0

x1

ª®¬⇒ Flipped 2D step along x0 (7.5)

y = q
©­«
[
1 1

]
q
©­«

1 0

−1 0



x0

x1

 +

0.5

0.5

ª®¬− 1.5ª®¬⇒ 2D wave along x0 (7.6)

2D tower

(a) 2D tower

2D tower

(b) MLP for a 2D tower (equation 7.8)

Figure 7.17 Generating a 2D tower with perceptrons
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y = q
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ª®¬− 1.5ª®¬⇒ 2D wave along x1 (7.7)

y = q
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⇒ 2D tower (7.8)

NOTE Fully functional code for approximating surfaces using perceptrons, exe-

cutable via Jupyter Notebook, can be found at http://mng.bz/WrKa.

Listing 7.4 Perceptrons and MLPs in 1D

x = torch.linspace(start=-10, end=10, steps=100) 100D array

# 1D S curves - positive weight See figures 7.15a and 7.15b.

w = torch.tensor([1.0], dtype=torch.float32)
b = torch.tensor([0.0])
y = Perceptron(X=x.unsqueeze(dim=1), W=w.unsqueeze(dim=1), b=b)

# 1D S curves - negative weight + shift See figures 7.15e and 7.15f.
w = torch.tensor([-1.0], dtype=torch.float32)
b = torch.tensor([5.0])
y = Perceptron(X=x.unsqueeze(dim=1), W=w.unsqueeze(dim=1), b=b)

# 1D towers (Cybenko) - various W0 See figures 7.15g and 7.15h.

W0 = torch.tensor([[1.0], [-1.0]], dtype=torch.float32)
b0 = torch.tensor([5.0, 5.0])
W1 = torch.tensor([[1.0, 1.0]], dtype=torch.float32)
b1 = torch.tensor([0.0])
y = MLP(X=x.unsqueeze(dim=1), W0=W0, W1=W1, b0=b0, b1=b1)

Listing 7.5 Perceptrons and MLPs in 2D

X = torch.linspace(start=-1, end=1, steps=100) 100D array

Y = torch.linspace(start=-1, end=1, steps=100) 100D array

gridX, gridY = torch.meshgrid(X, Y) 100 ×100 matrix
X = torch.tensor([(y, x) for y, x in

zip(gridY.reshape(-1), gridX.reshape(-1))) 10,000 ×1 matrix

# 2D Step function in X-direction See equation 7.4 and figures 7.16a and 7.16b

W = torch.tensor([[1.0, 0.0]], dtype=torch.float32)

http://mng.bz/WrKa
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b = torch.tensor([0.0], dtype=torch.float32)
Z = Perceptron(X=X, W=W, b=b)

# 2D Flipped Step function along X-direction See equation 7.5 and figures 7.16d
and 7.16e

W = torch.tensor([[-1.0, 0.0]], dtype=torch.float32)
b = torch.tensor([0.0], dtype=torch.float32)
Z = Perceptron(X=X, W=W, b=b)

# 2D wave along X-direction See equation 7.6 and figures 7.16g and 7.16h

W0 = torch.tensor([[1.0, 0.0],
[-1.0, 0.0]], dtype=torch.float32)

b0 = torch.tensor([0.5, 0.5], dtype=torch.float32)
W1 = torch.tensor([[1.0, 1.0]], dtype=torch.float32)
b1 = torch.tensor([-1.0])
Z = MLP(X=X, W0=W0, W1=W1, b0=b0, b1=b1)

# 2D wave along Y-direction See equation 7.7 and figures 7.16j and 7.16k

W0 = torch.tensor([[0.0, 1.0],
[0.0, -1.0]], dtype=torch.float32)

b0 = torch.tensor([0.5, 0.5], dtype=torch.float32)
W1 = torch.tensor([[1.0, 1.0]], dtype=torch.float32)
b1 = torch.tensor([-1.0])
Z = MLP(X=X, W0=W0, W1=W1, b0=b0, b1=b1)

# 2D Tower See equation 7.8 and figures 7.17a and 7.17b

W0 = torch.tensor([[1.0, 0.0],
[-1.0, 0.0],
[0.0, 1.0],
[0.0, -1.0]], dtype=torch.float32)

b0 = torch.tensor([0.5, 0.5, 0.5, 0.5], dtype=torch.float32)
W1 = torch.tensor([[1.0, 1.0, 1.0, 1.0]], dtype=torch.float32)
b1 = torch.tensor([-3.5])
Z = MLP(X=X, W0=W0, W1=W1, b0=b0, b1=b1)

7.5.4 MLPs for polygonal decision boundaries

We have seen that classifiers form an important use case for neural networks. In sec-

tion 7.2.2, we also saw that classifiers essentially model decision boundaries in high-

dimensional feature spaces. In this section, we model a simple class bounded with a

fixed polygon to understand the process.

Figure 7.18a shows a feature space with the class to be identified corresponding to a

rectangular region (shaded) bounded by the four straight lines:

x0 =−5 x0 = 5

x1 =−2 x1 = 2
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(a) Example feature space with decision
boundaries enclosing the class of inter-
est (shaded)

Rectangle
 

(b) MLP that fires only on points in the shaded region

Figure 7.18 Modeling a rectangular decision region with MLPs

Each of these lines partitions the feature space into two half-planes, indicated by minus

and plus signs in figure 7.18a. The region containing the feature points for the class of

interest is indicated by all + signs.

The shaded region corresponding to the class of interest is the region where x0 ≥ −5
AND x0 ≤ 5 AND x1 ≥ −2 AND x1 ≤ 2. Now consider the perceptron q (x0 + 5). It fires
(outputs 1) on the region x0 ≥ −5. Similarly, the perceptrons q (−x0 + 5), q (x1 + 2), and
q (−x1 + 2) fire on the regions x0 ≤ 5, x1 ≥ −2, and x1 ≤ 2, respectively. Hence, by logically

ANDing the outputs of these perceptrons, we get an MLP that fires only on the shaded

region of interest. Figure 7.18b shows this MLP. It implements the following function:

y = q

©­­­­­«
[
1 1 1 1

]
q

©­­­­­«


1 0

−1 0

0 1

0 −1


x0x1

 +

5

5

2

2


ª®®®®®¬
− 3.5

ª®®®®®¬
All shapes on a plane can be approximated by polygons. Hence, given sufficient percep-

trons, any shape on a plane can be depicted to an arbitrary level of accuracy.
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Summary
In this chapter, we outlined how a large variety of real-world problems can be modeled

as function evaluation:

Any intelligent task can be modeled by a function. Of particular interest are

classification tasks where, given an input, we estimate from a predetermined list of

possible classes the class to which the input belongs. For instance, a binary classifier

can group input images into two classes: those that contain a human face and those

that do not. Classification tasks can be approximated by functions with categorical

outputs.

Neural networks provide a structured way to approximate arbitrary functions

(including classifier functions). This is how they mimic intelligence.

Neural networks are created by combining a basic building block called a percep-

tron. A perceptron is a simple function that returns a step function applied to the

weighted sum of its inputs (plus a bias). A perceptron is effectively a linear classifier

that divides space into two half-spaces with a hyperplane. The weights and bias of

the perceptron correspond to the orientation and position of the hyperplane—

they can be adjusted to separate the regions corresponding to individual classes as

much as possible.

A single perceptron can approximate only relatively simple functions, such as a

classifier whose feature points are separable by a hyperplane. Perceptrons cannot

approximate more complex functions, like classifiers whose input regions are to be

separated with curved surfaces. Multilayer perceptrons (MLPs) are combinations

of perceptrons where the outputs of one set (layer) of perceptrons are fed as input

to the next set (layer). A neural network is essentially an MLP and can approximate

such arbitrarily complex functions.

Simple logical functions like AND, OR, and NOT can be emulated with a single

perceptron. A logical XOR cannot be. For XORs and other complicated logical

functions, we need MLPs. There is a mechanical way to construct an MLP for any

logical function. A logical function can always be represented by a truth table.

Each row of the truth table can be viewed as a logical AND function of the inputs,

and the final output is a logical OR of the inputs. Since ANDs and ORs can be

emulated with perceptrons, any truth table can be emulated as a combination of

perceptrons (an MLP).

The ability of an MLP to represent arbitrary functions is known as its expressive

power. The larger the number of perceptrons and/or connections, the greater

the expressive power of a neural network.

Cybenko’s theorem proves that a neural network is a universal approximator

(meaning it can approximate any function). The basic idea is that any function can

be approximated to an arbitrary degree of accuracy as a sum of rectangles (towers).

The theorem demonstrates that a tower can be constructed in any dimensional

space using MLPs.
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Neural networks can approximate any shape on a plane to arbitrary accuracy. This

is because all shapes can be approximated by rectangles, and we can demonstrably

approximate a rectangle on a plane with MLPs.

In real-life problems, the regions corresponding to classes are unknown, but we

manually label sample input points with desired outputs (ground truth) to create

supervised training data. We tune the weights and biases to approximate the

training data as closely as possible. This process of tuning is known as training. If

the training data set is not a good representative of the real dataset, the neural

network will be inaccurate even after training.



8Training neural networks:
Forward propagation and

backpropagation

This chapter covers
Sigmoid functions as differential surrogates
for Heaviside step functions

Layering in neural networks: expressing
linear layers as matrix-vector multiplication

Regression loss, forward and backward
propagation, and their math

So far, we have seen that neural networks make complicated real-life decisions by

modeling the decision-making process with mathematical functions. These functions

can become arbitrarily involved, but fortunately, we have a simple building block

called a perceptron that can be repeated systematically to model any arbitrary function.

We need not even explicitly know the function being modeled in closed form. All we

need is a reasonably sized set of sample inputs and corresponding correct outputs.

This collection of input and output pairs is known as training data. Armed with this

training data, we can train a multilayer perceptron (MLP, aka neural network) to

emit reasonably correct outputs on inputs it has never seen before.

272



8.1 Differentiable step-like functions 273

Such neural networks, where we need to know the output for each input in the

training data set, are known as supervised neural networks. The correct output for the

training inputs is typically generated via a manual process called labeling. Labeling is

expensive and time-consuming. Much research is going on toward unsupervised, semi-

supervised, and self-supervised networks, eliminating or minimizing the labeling process.

But as of now, the accuracy of unsupervised and self-supervised networks in general

does not match that of supervised networks. In this chapter, we focus on supervised

neural networks. In chapter 14, we will study unsupervised networks.

What is this process of “training” a neural network? It essentially estimates the

parameter values that would make the network emit output values as close as possible

to the known correct outputs on the training inputs. In this chapter, we discuss how

this is done. But before that, we have to learn a few other things.

NOTE The complete PyTorch code for this chapter is available at http://mng.bz/YAXa

in the form of fully functional and executable Jupyter notebooks.

8.1 Differentiable step-like functions
In equation 7.3, we expressed the perceptron as a combination of a Heaviside step func-

tion q and an affine transformation ®wT ®x + b. This is the perceptron we used throughout

chapter 7 and with which we were able to express (model) pretty much all functions of

interest.

Despite its expressive power, the Heaviside step function has a drawback: it has a

discontinuity at x = 0 and is not differentiable. Why is differentiability important? As we

shall see in chapter 8 (and got a glimpse of in section 3.3), optimal training of a neural

network requires evaluation of the gradient vector of a loss function with respect to

weights. Since the gradient is nothing but a vector of partial derivatives, differentiability

is needed for training.

In this section, we discuss a few functions that are differentiable and yet can mimic

the Heaviside step function. The most significant among them is the sigmoid function.

8.1.1 Sigmoid function

The sigmoid function is named after its characteristic S-shaped curve (figure 8.1). The

corresponding equation is

f (x) = 1

1+ e−x (8.1)

PARAMETERIZED SIGMOID FUNCTION
We can parametrize equation 8.1 as

f (x) = 1

1+ e−(wx+b)
(8.2)

This allows us to

Adjust the steepness of the linear portion of the S curve by changing w
Adjust the position of the curve by changing b

http://mng.bz/YAXa
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Figure 8.1 Graph of a 1D sigmoid function

Figure 8.2 shows how the parametrized sigmoid curve changes with different values for

the parameters w and b. In particular, note that for large values of w, the parameterized

sigmoid is virtually indistinguishable from the Heaviside step function (compare the

dotted curve in figure 8.2a with figure 7.7), even though it remains differentiable. This

is exactly what we desire in neural networks.

1D perceptron outputs - various weights
1.0

0.8

0.6

0.4

0.2

0.0

-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0

w = [1.] b = [0.]
w = [1.5] b = [0.]
w = [3.] b = [0.]

w = [1.] b = [0.]
w = [1.] b = [1.]
w = [1.] b = [2.]

1.0

0.8

0.6

0.4

0.2

0.0

-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0

1D perceptron outputs - various biases

(a) (b)

Figure 8.2 Sigmoid curves corresponding to various parameter values in equation 8.2

SOME PROPERTIES OF THE SIGMOID FUNCTION
The sigmoid function has several interesting properties, some of which are listed here

with proof outlines.

Expression with positive x:

f (x) = ex

1+ ex (8.3)

This expression can be easily proved by multiplying both the numerator and

denominator of equation 8.1 by ex .
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Sigmoid of negative x:

f (−x) = 1

1+ ex =
e−x

1+ e−x = 1−
1

1+ e−x = 1−f (x) (8.4)

Derivative of sigmoid:

df (x)
dx

=
d
dx

(
(1+ e−x)−1

)
=

(
−1

(1+ e−x)2

)
d
dx
((1+ e−x))

=

(
−1

(1+ e−x)2

)
(−e−x) =

(
1

1+ e−x

) (
e−x

1+ e−x

)
=f (x) (1−f (x))

(8.5)

Figure 8.3 shows the graph of the derivative of the sigmoid superimposed on the

sigmoid graph itself. As expected, the derivative has its maximum value at the

middle of the sigmoid curve (where the sigmoid is climbing more or less linearly)

and is near zero at both ends (where the sigmoid is saturated and flat, hardly

changing).

1D sigmoid curve and its derivative

Sigmoid
Derivative of sigmoid

Figure 8.3 Graph of a 1D sigmoid function (solid curve) and its derivative (dashed curve)

8.1.2 Tanh function

An alternative to the sigmoid function is the hyperbolic tangent tanh function, shown in

figure 8.4. It is very similar to the sigmoid function, but the range of output values is

from [−1, 1] as opposed to [0, 1]. In essence, it is the sigmoid function stretched and
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Figure 8.4 Graph of a 1D tanh function.

shifted so it is centered around 0. The equation of the tanh function is given by

tanh (x) = e
x − e−x
ex + e−x (8.6)

Why is tanh preferred over sigmoid? To understand this, consider figure 8.5. It compares

the derivatives of the sigmoid and tanh functions. As the plot shows, the derivative

(gradient) of the function near x = 0 is much higher for tanh than for sigmoid. Stronger

gradients mean faster convergence, as the weight updates happen in larger steps. Note

that this holds mainly when the data is centered around 0: in most preprocessing steps,

we standardize the data (make it 0 mean) before feeding it into the neural network.

Derivative of sigmoid
Derivative of TanH

Figure 8.5 Graph of the derivatives of 1D sigmoid and tanh functions

8.2 Why layering?
In section 7.5, we encountered the idea of layering as the preferred way to organize

multiple perceptrons. Themain property of a layered network is that neurons in any layer
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take their input only from the outputs of the preceding layer. This means connections

exist only between successive layers. No other connection exists in the MLP, which

greatly simplifies the evaluation and training of the network, which will become apparent

as we discuss forward propagation and backpropagation.

Why have layers at all? We have seen that multiple perceptrons allow us to model

problems that cannot be solved by a single perceptron (such as the XOR problem

discussed in section 7.4.1). In theory, it is possible to model all mathematical functions

(and hence solve all quantifiable problems) with neurons organized in a single hidden

layer (see Cybenko’s theorem and proof in section 7.5.3). However, that does not mean

a single hidden layer is the most efficient way of doing all modelings. We can often model

complicated problems with fewer perceptrons if we organize them in more than one

layer.

Why do extra layers help? The primary reason is the extra nonlinearity. Each layer

brings in its own nonlinear (such as sigmoid) function. Nonlinear functions, with

proper parametrization, can model more complicated functions. Hence, a larger count

of nonlinear functions in the model typically implies greater expressive power.

8.3 Linear layers
Various types of layers are used in popular neural network architectures. In subsequent

chapters, we shall look at different kinds of layers, such as convolution layers. But in

this section, we examine the simplest and most basic type of layer: the linear layer. Here

every perceptron from the previous layer is connected to every perceptron in the next

layer. Such a layer is also known as fully connected layer. Thus if the previous layer has m
neurons and the next layer has n neurons, there are mn connections, each with its own

weight.

NOTE We use the words neuron and perceptron interchangeably.

Figure 8.6 shows a linear layer that is a slice of a bigger MLP. Figure 8.7 shows a bigger

MLP with a linear layer. Consistent with previous chapters, we have used superscripts

for layer IDs and subscripts for source and destination IDs.

The weight of the connection from the kth neuron in layer (l − 1) to the jth neuron

in layer l is denoted w (l )jk . Here the subscript ordering is the destination ( j) followed
by the source (k). This is slightly counterintuitive but universally followed because it

simplifies the matrix notation (described shortly). Note the following:

We have split a single perceptron (weighted sum followed by sigmoid) into two

separate layers, weighted sum and sigmoid.

We have used sigmoid instead of Heaviside as the nonlinear function.

8.3.1 Linear layers expressed as matrix-vector multiplication

Let’s revisit the perceptron in the context of the MLP. As we saw in equation 7.3, a

single perceptron takes a weighted sum of its inputs and then performs a step function

on the result. In an MLP, the inputs to any perceptron in the lth layer come from the

previous layer: the (l − 1)th layer.
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Figure 8.6 Linear layer outputting layer l from layer (l − 1) . The weights belonging to row 1 of the weight
matrix (coming from all the input neurons, layer (l − 1) , which sum together to form output neuron 1)
are shown in bold.
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Figure 8.7 Multilayered neural networks: This is a complete deep neural network, a slice of which is
shown in figure 8.6.
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Let a (l−1)
0

, a (l−1)
1

, · · · , a (l−1)m denote the outputs of the m neurons in layer (l − 1) (the
left-most input column of nodes in figure 8.6). And let a (l )

0
, a (l )

1
, · · · , a (l )n denote the

outputs of the n neurons in layer l. Note that we typically use the symbol a, standing for
activation, to denote the output of individual neurons. Now consider the jth neuron

in layer l. For instance, check z (l )
1

in figure 8.6: note the weights going into it and the

activations at their source. Its output is a (l )j , where

z (l )j =

m∑
k=0

w (l )jk a
(l−1)
k + b (l )j

a (l )j =f

(
z (l )j

)

for j = 0 · · · n

We can rewrite the summation in these equations as a dot product between the weight

and activation vectors:

z (l )j =

[
w (l )j0 w (l )j1 · · · w (l )jm

]


a (l−1)
0

a (l−1)
1

· · ·

a (l−1)m


+ b (l )j

a (l )j =f

(
z (l )j

)


for j = 0 · · · n

The complete set of equations for all js together can be written in a super-compact way

using matrix-vector multiplication,

®z (l ) =W (l ) ®a (l−1) + ®b (l )

®a (l ) =f

(
®z (l )

)
(8.7)

where

W (l ) is an n ×m matrix representing the weights of all connections from layer l − 1 to

layer l:

W (l ) =



w (l )
00

w (l )
01
· · · w (l )

0m

w (l )
10

w (l )
11
· · · w (l )

1m

...

w (l )j0 w (l )j1 · · · w (l )jm
...

w (l )n0 w (l )n1 · · · w (l )nm



(8.8)
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®a (l ) represents the activations for the entire layer l. Applying the sigmoid function

to a vector is equivalent to applying it individually to each element of the vector:

®a (l ) =



a (l )
0

a (l )
1

· · ·

a (l )n


®a (l−1) =



a (l−1)
0

a (l−1)
1

· · ·

· · ·

a (l−1)m


®z (l ) =



z (l )
0

z (l )
1

· · ·

z (l )n


f

(
®z (l )

)
=



f

(
z (l )
0

)
f

(
z (l )
1

)
· · ·

f

(
z (l )n

)


The matrix-vector notation saves us from dealing with subscripts by working with all the

weights, biases, activations, and so on in a global fashion.

8.3.2 Forward propagation and grand output functions for an MLP of linear layers

Equation 8.7 describes the forward propagation of a single linear layer. The final output

of an MLP with fully connected (aka linear) layers 0 · · ·L on input ®x can be obtained by

repeated application of this equation:

MLP
(
®x
)
= ®a (L) = ®y =f

(
W (L) . . . f

(
W (1)f

(
W (0) ®x + ®b (0)

)
+ ®b (1)

)
· · · + ®b (L)

)
(8.9)

In a computer implementation, this expression is evaluated step by step by repeated

application of the linear layer:

®a0 =f

(
W (0) ®x + ®b (0)

)
®a1 =f

(
W (1) ®a0 + ®b (1)

)
· · ·

®aL =f

(
W (L) ®aL−1 + ®b (L)

)
(8.10)

It’s easy to see that equation 8.10 is a restatement of equation 8.7.

Close examination of these equations reveals a beautiful property. The complicated

equation 8.9 is never explicitly evaluated. Instead, we evaluate the outputs of successive

layers, one layer at a time, as per equation 8.10. Every layer can be evaluated by taking

the previous layer’s output as input. No other input is necessary. That is to say, we can

evaluate ®a (0) directly from the input ®x, then ®a (1) from ®a (0) , ®a (2) from ®a (1) , and so forth,

all the way to ®a (L) (which is the grand output of the MLP). During the evaluation, we

need to keep only the previous and current layers in memory at any given time. This
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process greatly simplifies the implementation as well as the conceptualization and is

known as forward propagation.

Listing 8.1 PyTorch code for forward propagation

def Z(x, W_l, b_l):

x: activation of layer l-1 (1-d vector)
Wl : Weight matrix of layer l
bl : Bias vector of layer l

return torch.matmul(W_l, x) + b_l

def A(z_l): Sigmoid activation function (nonlinear layer)

return torch.sigmoid(z_l)

def forward(x, W, b):

x: 1-d input vector
W: list of matrices for layers 0 to L.
b: list of vectors for layers 0 to L

L = len(W) - 1
a_l = x
for l in range(0, L + 1): Loops through layers 0 to L

z_l = Z(a_l, W[l], b[l]) Computes Z

a_l = A(z_l) Computes activation
return a_l

8.4 Training and backpropagation
Throughout the book, we have been discussing bits and pieces of this process. In

sections 1.1 and 3.3 (specifically, algorithm 3.1), we saw an overview of the process for

training a supervised model (you are encouraged to reread those if necessary). Training

is an iterative process by which the parameters of the neural network are estimated. The

goal is to estimate the parameters (weights and biases) such that on the training inputs,

the neural network outputs are close as possible to the known ground-truth outputs.

In general, iterative processes improve (get closer to the goal) gradually. In each

iteration, we make small adjustments to the parameters. Here, parameter refers to the

weights and biases of the MLP, the w (l )jk s and b
(l )
j s from section 8.2. We keep adjusting

the parameters so that in every iteration, the outputs on training data inputs come a

little closer to the ground truth (GT). Eventually, after many iterations, we hopefully

converge to optimal values. Note that there is no guarantee that the iterative process

will converge to the best possible parameter values. The training might go completely

astray or get stuck in a local minimum. (Local minima are explained in section 3.6; you

are encouraged to reread it if necessary.) There is no good way to know whether we

have reached optimal values (global minima) for the weights and biases. We typically

run the neural network on test data, and if the results are satisfactory, we stop training.

Test data should be held back during training, meaning we should never use test data

to train. In the unfortunate event that the network has not reached the desired level

of accuracy, we typically throw in more training data and/or try a modified loss func-

tion and/or a different architecture. Simply retraining the network from a different
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random start may also work. This is an experimental science with a lot of trial and

error.

How do we know how to adjust the parameter values in each iteration? We define

a loss (aka error) function. There are many popular formulations of loss functions,

and we review many of them later, but their common property is that when the neural

network output agrees more with the known output (GT), the loss becomes lower,

and vice versa. Thus if y denotes the output of the neural network and ȳ is the GT, a
reasonable expression for the loss is the mean squared error (MSE) function (y − ȳ)2. For
now, we use the MSE loss as our representative loss function. Later we discuss others.

Once the loss function is defined, we have a crisp, quantitative definition of the goal

of neural network training. The goal is to minimize the total loss over the entire training

data set. Note the clause entire training data set : we do not want to do well on one or two

input instances at the cost of doing badly over the rest. If we have to choose between a

solution that gives 10% error on all of, say, 100 training input instances versus one that

yields 0% error on 50 training input instances but 40% on the remaining 50, we prefer

the former.

Each weight in the MLP, w (l )jk , is adjusted by an amount proportional to Xw (l )jk . Simi-

larly, each bias b (l )j is adjusted by an amount proportional to Xb (l )j . We can denote all this

compactly by saying we have a weight vector ®w and bias vector ®b. In each iteration, we

change ®w by amount X ®w and ®b by X ®b so that their new values are ®w − rX ®w and ®b − rX ®b (r
is a constant known as the learning rate that needs to be set at the beginning of training).

In this context, it is worthwhile to note that in section 8.3.1, we expressed the collection

of weights in an MLP with a matrix, while here we are referring to the same thing as a

vector. These are not incompatible because we can always rasterize the elements of a

matrix (that is, walk over the elements of the matrix from top to bottom and from left

to right) into a vector.

How do we estimate the adjustment amounts X ®w and X ®b? This is where the notion
of gradients comes in. These were discussed in detail in sections 3.3.1, 3.3.2, and 3.5

(again, you are encouraged to reread if necessary). In general, if a loss, denoted L, is

expressed as a function of the parameters, such as L
(
®w , ®b

)
, then the change in the

parameters that optimally takes us toward lower loss is yielded by the gradient of the loss

with respect to the parameters ∇®w ,bL
(
®w , b

)
. The high-level process is described later in

the chapter in algorithm 8.1. Here we look at the guts of it.

8.4.1 Loss and its minimization: Goal of training

Given a training data set T that is a set of <input, GT output> pairs T = {
〈
®x , ȳ

〉
}, the loss

can be expressed as

L =
1

2

∑
x∈T

(
®y − ȳ

)2
(8.11)

where

®y =MLP
(
®x
)

as per equation 8.9.
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Now consider equation 8.7 again. We can rasterize each layer’s weight matrixW (l )

into a vector and then concatenate all these vectors from successive layers to form a

giant weight vector ®w, the vector of all weights in the MLP:

®w =

[
w (0)
00

w (0)
01

· · · w (1)
00

w (1)
01

· · · w (L)
00

w (L)
01

· · ·
]

Similarly, we can form a giant vector of all biases in the MLP:

®b =
[
b (0)
0

b (0)
1

· · · b (1)
0

b (1)
1

· · · b (L)
0

b (L)
1

· · ·
]

The ultimate goal of training is to find ®w and ®b that will minimize the loss L. In chapter 3,

we saw that we can solve for the minimum by setting the gradients ∇®wL = 0 and ∇®bL = 0.

Computing the loss gradient from a combination of equations 8.9 and 8.11 is intractable.

Instead, we go for an iterative solution: gradient descent on the loss surface, as described

in the next section.

Listing 8.2 PyTorch code for MSE loss

def mse_loss(a_L, y): a: Activation of layer L (1D vector)
y: Ground truth (1D vector)

return 1./ 2 * torch.pow((a_L - y), 2) See equation 8.11.

8.4.2 Loss surface and gradient descent

Geometrically, the loss function L
(
®w , ®b

)
can be viewed as a surface in a high-dimensional

space. The domain of this space corresponds to all the dimensions in ®w plus all the

dimensions in ®b. This is shown in figure 8.8 with a 2D domain. In chapter 3, we also

saw that given a function L
(
®w , ®b

)
, the best way to progress toward the minimum is to

walk on the parameter space along the negative gradient. We adopt this approach to

minimize the loss. We compute the gradients of the loss function with respect to weights

and biases and update the weights and bias vectors by an amount proportional to the

(negative) of these gradients. Doing this repeatedly takes us close to the minimum.

In figure 8.8, the gradient descent path is shown with solid arrows, while an arbitrary

non-optimal path to the minimum is shown with dashed arrows.

Thus the equations for updating weights and biases in gradient descent are

®w = ®w − r∇®wL
®b = ®b − r∇®bL (8.12)

where r is a constant. Here

∇®wL =


mL

mw (l )jk
for all l , j , k


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Gradient descent

Non-optimal progress 

Figure 8.8 A representative loss
surface L (w , b) . Note that ®w
and ®b have each been reduced
to 1D for this figure.

∇®bL =


mL

mb (l )j
for all l , j

 (8.13)

The vector update equation 8.12 can be expressed in terms of the scalar components as

w (l )jk =w (l )jk − r
mL

mw (l )jk
for all l , j , k

b (l )j = b (l )j − r
mL

mb (l )j
for all l , j (8.14)

Note that we have to reevaluate these partial derivatives in each iteration since their

values will change in every iteration.

8.4.3 Why a gradient provides the best direction for descent

Why does updating along the gradient reduce the function optimally? This is discussed

in detail in chapter 3. Here we briefly recap the idea. Using multidimensional Taylor

expansion, we can evaluate a function in the neighborhood of a known point. For

instance, we can evaluate L
(
®w + X ®w

)
for small offset X ®w from ®w as follows

L
(
®w − ®Xw

)
=L

(
®w
)
− 1

1!

(
®Xw
)T
∇®wL +

1

2!

(
®Xw
)T
H

(
®Xw
)
+ · · · (8.15)

where H , called the Hessian matrix, is defined as in equation 3.9. Since we are not going

too far from ®w, ‖X ®w‖ is small. This means the quadratic and higher-order terms are
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negligibly small, and we can drop them (the approximation is perfect in the limit when

‖X ®w‖ → 0):

L
(
®w − ®Xw

)
≈L

(
®w
)
− 1

1!

(
®Xw
)T
∇®wL

But we know the dot product
(
®Xw
)T
∇®wL will attain its maximum value when both the

vectors point in the same direction: that is,

®Xw = r∇®wL

for some constant of proportionality r .
In implementation, r is called the learning rate. A higher learning rate causes the

optimization to progress more rapidly but also runs the risk of overshooting the mini-

mum. We learn about these in more detail later. For now, simply note that r is a tunable

hyperparameter of the system.

Thus, the largest decrease in value from L
(
®w
)
to L

(
®w − ®Xw

)
happens when X ®w is

along the negative gradient. This is why we move toward the negative gradient in

gradient descent: it is the fastest way to reach the minimum. The straight arrows in

figure 8.8 illustrate the direction of the gradient. The dashed arrows show an arbitrary

nongradient path for comparison.

We can deal with the bias vector ®b similarly.

8.4.4 Gradient descent and local minima

We should note that gradient descent can get stuck in a local minimum. Figure 8.9 shows

this.

Local minimum
Global minimum

Figure 8.9 A nonconvex func-
tion with local and global min-
ima.Dependingon the starting
point, gradient descent will
take us to one or the other.
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In earlier eras, optimization techniques tried hard to avoid local minima and converge to

the global minimum. Techniques like simulated annealing and tunneling were carefully

designed to avoid local minima. Modern-day neural networks have adopted a different

attitude: they do not try very hard to avoid local minima. Sometimes a local minimum is

an acceptable (accurate enough) solution. Otherwise, we can retrain the neural network:

it will start from a random position, so this time it may go to a better minimum.

8.4.5 The backpropagation algorithm

We have seen that gradient descent progresses by repeatedly updating the weights and

biases via equation 8.12. This is equivalent to repeatedly updating individual weights

and biases using individual partial derivatives via equation 8.14.

Obtaining a closed-form solution for the gradients ∇®wL
(
®w , ®b

)
, ∇®bL

(
®w , ®b

)
from equa-

tions 8.9 and 8.11—or, equivalently, obtaining a closed-form solution for the partial

derivatives mL

mw (l )jk
, mL

mb (l )j
—is very difficult. Backpropagation is an algorithm that allows us

to evaluate the gradients and update the weights and biases one layer at a time, like

forward propagation (equation 8.10).

BACKPROPAGATION ALGORITHM ON A SIMPLE NETWORK
We first discuss backpropagation on a simple MLP with only a single neuron per layer.

The main simplification resulting from this is that individual weights and biases no

longer need subscripts, with only one weight and one bias between two successive layers.

They still need superscripts to indicate layer IDs, however. Figure 8.10 shows this MLP.

We use MSE loss (equation 8.11), but we work on a single input-output pair xi , yi . The

Figure 8.10 MLP with layers 0, . . ., L, one neuron per layer. Again, we have split every layer into a
weighted sum and a sigmoid.



8.4 Training and backpropagation 287

total loss (summation over all the training data instances) can easily be derived by

repeating the same steps.

We first define an auxiliary variable:

X (l ) =
mL

mz (l )
for l ∈ {0, L}

The physical significance of X (l ) is that it is the rate of change of the loss with the (pre-

activation) output of layer l (remember, in this network, layer l has a single neuron).
Let’s establish a few important equations for the MLP in figure 8.10:

Forward propagation for an arbitrary layer l ∈ {0, L}

z (l ) =w (l ) a (l−1) + b (l ) (8.16)

a (l ) =f

(
z (l )

)
(8.17)

Loss—Here we are working with a single training data instance, xi , whose GT output

is ȳi :
L =

1

2

(
a (L) − ȳi

)2
Partial derivative of loss with respect to the weight and bias in terms of an auxiliary variable

for the last layer, L—Using the chain rule for partial derivatives,

mL

mw (L)
=

mL

mz (L)
mz (L)

mw (L)

Examining the terms on the right, we see

mL

mz (L)
= X (L)

(auxiliary variable for layer L). And using the forward propagation equations,

mz (L)

mw (L)
= a (L−1)

Together, they lead to
mL

mw (L)
= X (L) · a (L−1)

Similarly,
mL

mb (L)
=

mL

mz (L)
mz (L)

mb (L)
= X (L) · 1

Consequently, we have the following pair of equations expressing the partial

derivative of loss with respect to weight and bias, respectively, in terms of the

auxiliary variable for the last layer:

mL

mw (L)
= X (L) · a (L−1) (8.18)
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mL

mb (L)
= X (L) (8.19)

Auxiliary variable for the last layer, L—Using the chain rule for partial derivatives,

X (L) =
mL

mz (L)
=

mL

ma (L)
ma (L)

mz (L)
=

(
a (L) − ȳi

) df
(
z (L)

)
dz (L)

Using equation 8.5 for the derivative of a sigmoid, we get

X (L) =
(
a (L) − ȳi

)
f

(
z (L)

) (
1−f

(
z (L)

))
which, using equation 8.17, leads to

X (L) =
(
a (L) − ȳi

)
a (L)

(
1− a (L)

)
(8.20)

Partial derivative of the loss with respect to the weight and bias in terms of an auxiliary

variable for an arbitrary layer l—Using the chain rule for partial derivatives,

mL

mw (l )
=

mL

mz (l )
mz (l )

mw (l )

Using the definition of the auxiliary variable and the forward propagation equa-

tion 8.16, this leads to
mL

mw (l )
= X (l ) a (l−1) (8.21)

Similarly,
mL

mb (l )
=

mL

mz (l )
mz (l )

mb (l )
Using the definition of the auxiliary variable and the forward propagation equa-

tion 8.16, this leads to
mL

mb (l )
= X (l ) (8.22)

Auxiliary variable for an arbitrary layer, l—Using the chain rule for partial derivatives,

X (l ) =
mL

mz (l )
=

mL

mz (l+1)
mz (l+1)

ma (l )
ma (l )

mz (l )

Using the definition of the auxiliary variable and the forward propagation equa-

tion 8.16, this leads to

X (l ) = X (l+1) w (l+1)
df

(
z (l )

)
dz (l )

= X (l+1) w (l+1) f
(
z (l )

) (
1−f

(
z (l )

))
which yields

X (l ) = X (l+1) w (l+1) a (l )
(
1− a (l )

)
(8.23)

We first encountered the one-layer-at-a-time property in section 8.3.2 in connection

with the forward propagation equations. Let’s recap that in the context of training our

simple network. Consider equations 8.16 and 8.17. We initialize the system with some
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values of weights w (l ) and biases b (l ) . Using those, we can evaluate the layer 0 outputs.

For starters, we can evaluate z (0) and a (0) easily (since all the inputs are known):

z (0) =w (0)x + b (0)

a (0) =f

(
z (0)

)
Once we have z (0) and a (0) , we can use them to evaluate z (1) and a (1) via equations 8.16
and 8.17. But if we have z (1) and a (1) , we can use them to evaluate z (2) and a (2) via
equations 8.16 and 8.17 again. And we can proceed in this fashion up to layer L
to obtain a (L) , which is the grand output of the MLP. In other words, we can itera-

tively evaluate the outputs of successive layers using only the outputs from the previ-

ous layer. No other layers need to be known. At any given iteration, we only have to

keep the previous layer in memory: we can build the current layer from that. A single

sequence of applications of equations 8.16 and 8.17 for layers 0 to L is known as a

forward pass.

A similar trick can be applied to evaluate the auxiliary variables, except we go backward.

We can evaluate the auxiliary variable for the last layer, X (L) , via equation 8.20. But

once we have X (L) , we can evaluate X (L−1) via equation 8.23. From that, we can evaluate

X (L−2) . We can proceed in this fashion all the way to layer 0, evaluating successively X (L) ,

X (L−1) , · · · , X (0) . Every time we evaluate a X (l ) , we can also evaluate the mL

mw (l )
and mL

mb (l )
for

the same layer via equations 8.21 and 8.22, respectively. We can also update the weight

and bias of that layer right there using the just estimated partial derivatives, since the

current values will never be needed again during training. Thus, starting from the last

layer, we can update the weights and biases of all layers until layer 0 in this fashion. This

is backpropagation.

Of course, we have to proceed in tandem: one forward propagation (which sets the

values of zs and as) for layers 0 to L, followed by a backpropagation layer for L to 0.

Repeat these steps until convergence.

NOTE Fully functional code for forward propagation, MSE loss, and backpropa-

gation, executable via Jupyter Notebook, can be found at http://mng.bz/pJrw.

Listing 8.3 PyTorch code for forward and backward propagation

def forward_backward(x, y, W, b):
L = len(W) - 1
a = []
for l in range(0, L+1):

a_prev = x if l == 0 else a[l-1] Forward propagation
z_l = Z(a_prev, W[l], b[l])
a_l = A(z_l)
a.append(a_l)

loss = mse_loss(a[L], y) Computes MSE loss

http://mng.bz/pJrw
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deltas = [None for _ in range(L + 1)]
W_grads = [None for _ in range(L + 1)]

Arrays to store % (l) , @L
@w (l) ,

@L
@b (l)

for
layers 0 to L

b_grads = [None for _ in range(L + 1)]

a_L = a[L] Activation of the last layer - a (L)

deltas[L] = (a_L - y) * a_L * (1 - a_L)
W_grads[L] = torch.matmul(deltas[L], a[L - 1].T)

Computes the % and
gradients for layer L

b_grads[L] = deltas[L]

for l in range(L-1, -1, -1): Computes the % and gradients for layers 0 to L − 1

a_l = a[l]
deltas[l] = torch.matmul(W[l+1].T, deltas[l + 1]) * a_l * (1 - a_l)
W_grads[l] = torch.matmul(deltas[l], a[l - 1].T)
b_grads[l] = deltas[l]

return loss, W_grads, b_grads

BACKPROPAGATION ALGORITHM ON AN ARBITRARY NETWORK OF LINEAR LAYERS
In section 8.4.5, we saw a simple network with only one neuron per layer. There was

only one connection and hence one weight, one activation, and one auxiliary variable

per layer. Consequently, we could drop the subscripts (although we had to keep the

superscript indicating the layer) of all these variables. Now we examine a more generic

network consisting of linear layers 0, · · · , L. An arbitrary slice of this network is shown

in figure 8.6.

The ultimate goal is to evaluate the partial derivatives of the loss with respect to

the weights and biases. Using them, we can update the current weights and biases to

optimally reduce the loss.

Our overall strategy is as follows. We use the auxiliary variables again. We first derive

expressions that allow us to compute the auxiliary variable for the last layer. Then we

derive an expression that allows us to compute auxiliary variables for an arbitrary layer,

l, given the auxiliary variables for layer l + 1. Since we can directly compute auxiliary

variables for the last layer, L, we can use this expression to compute auxiliary variables

for the second-to-last layer L− 1. But once we have them, we can compute auxiliary

variables for layer L− 2. We proceed like this until we reach layer 0. Thus we can

compute all the auxiliary variables. We also derive expressions that allow us to compute,

from the auxiliary variables, the partial derivatives of loss with respect to weights and

biases. This gives us everything we need. Since we start by computing things pertaining

to the last layer and proceed iteratively toward the initial layer, the process is called

backpropagation.

You will notice the similarity between the expressions derived next and those derived

for the one-neuron-per-layer network. The differences are explained:

Forward propagation (arbitrary layer l)—Forward propagation through this network

has already been described in section 8.3.1 and can be succinctly represented

by equation 8.7 (repeated here for handy reference). On the left are the scalar
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equations, for one neuron at a time; and on the right are the vector equations, for

the entire layer. They are equivalent:

z (l )j =

m∑
k=0

w (l )jk a
(l−1)
k + b (l )j ®z (l ) =W (l ) ®a (l−1) + ®b (l )

a (l )j =f

(
z (l )j

)
®a (l ) =f

(
®z (l )

)
(8.24)

Indices j and k iterate over all the neurons in the relevant layer. By convention,

we always use these variables for arbitrary neurons in a layer. The variable l is
used to index the layers. When indexing weights, we typically use j to indicate

the destination and k to indicate the source—remember that weights are indexed

(destination, source) somewhat unexpectedly to simplify the math. Typically, vec-

tors correspond to entire layers. Individual vector elements correspond to specific

neurons and are indexed by j or k.
Loss—Unlike the simple network, here, the final Lth layer can have multiple

neurons. Hence the loss function becomes

L =
1

2
‖®a (L) − ȳ‖2 = 1

2

∑
j

(
a (L)j − ȳ j

)2
(8.25)

where the summation happens over all neurons in the last layer. Note that ®a (L)
is the output of the MLP: that is, ®a (L) = ®y =MLP

(
®x
)
for the training input ®x (see

equation 8.10). The GT output corresponding to ®x is the constant vector ȳ. The
closer ®y is to ȳ, the smaller the loss.

Note that we need to average the loss over the entire training data set. Here

we are showing the loss computation for a single training data instance. The

computation simply needs to be replicated for each training data instance, and

the results averaged.

Auxiliary variables—Now that a layer has multiple neurons, we have one auxiliary

variable per neuron. Thus the auxiliary variable has a subscript identifying the

specific neuron in that layer. It continues to have a superscript indicating its layer.

We define

X
(l )
j =

mL

mz (l )j
∀ j ∈ {0 · · · number of neurons in layer l}, ∀l ∈ {0 · · ·L}

– Auxiliary variable for the last layer

X
(L)
j =

mL

mz (L)j
=

mL

ma (L)j

ma (L)j

mz (L)j

Using equation 8.25 and observing that only one of the terms in the summation—

the jth term—will survive the differentiation with respect to a (L)j (since the ajs
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are independent of each other), we get

mL

ma (L)j
=

(
a (L)j − ȳ j

)
Also, using the lower-left equation from 8.24 and equation 8.5, we get

ma (L)j

mz (L)j
=

df
(
z (L)j

)
dz (L)j

= a (L)j
(
1− a (L)j

)
Combining these, we get

X
(L)
j =

(
a (L)j − ȳ j

)
a (L)j

(
1− a (L)j

)
(8.26)

®X (L) =
(
®a (L) − ȳ

)
◦ ®a (L) ◦

(
®1− ®a (L)

)
(8.27)

Here, ◦ denotes the Hadamard product between two vectors. It is basically a

vector of elementwise products of corresponding vector elements. Thus,

®a =



a0

a1
...

an


®b =



b0

b1
...

bn


(8.28)

®a ◦ ®b =



a0b0

a1b1
...

anbn


(8.29)

Equations 8.26 and 8.27 are identical. The former is a scalar equation expressing

individual auxiliary variables of the last layer. The latter is a vector equation

expressing all the auxiliary variables of the last layer together. We can compute

these directly if we have performed a forward pass and have its results, the a (L)j s

available along with the training data GT.

– Auxiliary variable for an arbitrary layer, l—This is significantly different and harder

to understand than the one-neuron-per-layer case. We are trying to evaluate

X
(l )
j = mL

mz (l )j
in the general case: that is, for an arbitrary layer l. The loss does not

directly depend on the inner layer variable z (l )j . The loss directly depends only on

the last layer activations, which depend on the previous layer, and so forth. The

zs in any one layer form a complete dependency set for the loss L, meaning the

loss can be expressed in terms of only these and no other variables. In particular,

we can express the loss as L
(
z (l+1)
0

, z (l+1)
1

, z (l+1)
2

, · · ·
)
. You can form a mental



8.4 Training and backpropagation 293

picture that z (l )j fans out to L through all the zs in the next layer, z (l+1)
0

, z (l+1)
1

,

z (l+1)
2

, and so on. Then, using the chain rule of partial differentiation,

X
(l )
j =

mL
(
z (l+1)
0

, z (l+1)
1

, z (l+1)
2

, · · ·
)

mz (l )j
=
∑
k

mL

mz (l+1)k

mz (l+1)k

mz (l )j

=
∑
k

mL

mz (l+1)k

mz (l+1)k

ma (l )j

ma (l )j

mz (l )j

Now, by definition,
mL

mz (l+1)k

= X
(l+1)
k

And using equation 8.24,

mz (l+1)k

ma (l )j
=w (l+1)k j

while

ma (l )j

mz (l )j
=

df
(
z (l )j

)
dz (l )j

= a (l )j
(
1− a (l )j

)
Combining all these, we get the scalar expression for a single auxiliary

variable. It is presented here along with its equivalent vector equation for the

entire layer:

X
(l )
j =

∑
k

X
(l+1)
k w (l+1)k j a (l )j

(
1− a (l )j

)
(8.30)

®X (l ) =
((
W (l+1)

)T ®X (l+1) ) ◦ ®a (l ) ◦ (®1− ®a (l ) ) (8.31)

Here, ◦ denotes the Hadamard multiplication explained earlier andW (+1l ) is

the matrix representing the weights of all connections from layer l to layer (l + 1)
(see equation 8.8).

Equations 8.30 and 8.31 allow us to evaluate X (l ) s from the X (l+1) s if the results

of forward propagation (as) are available. We have already shown that the

auxiliary variables for the last layer are directly computable from the activations

of that layer. Hence, we can evaluate all the layers’ auxiliary variables.

Derivatives of loss with respect to weights and biases in terms of auxiliary variables—We

have already seen how to compute auxiliary variables. Now we will express the

partial derivatives of loss with respect to weights and biases in terms of those. This

will provide us with the gradients we need to update the weights and biases along

the negative gradient, which is the optimal move to minimize loss:

mL

mw (l )jk
=

mL

mz (l )j

mz (l )j

mw (l )jk
= X
(l )
j a

(l−1)
k (8.32)
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∇w (l )L = ®X (l )
(
®a (l−1)

)T
(8.33)

Equations 8.32 and 8.33 are equivalent. The first is scalar and pertains to individual

weights in layer l, and the second describes the entire layer. Similarly, equations 8.34

and 8.35 are equivalent:

mL

mb (l )j
=

mL

mz (l )j

mz (l )j

mb (l )j
= X
(l )
j (8.34)

∇b (l )L = ®X (l ) (8.35)

The first is scalar and pertains to individual biases in layer l, and the second

describes the entire layer.

8.4.6 Putting it all together: Overall training algorithm

Previously, we discussed forward propagation: passing an input vector ®x through a

sequence of linear layers and generating an output prediction. We learned about MSE

loss, L, which calculates the deviation of the output prediction from the GT, y. We

also learned to compute the gradients of L with respect to parametersW and b using
backpropagation. In the following algorithm, we describe how these components come

together in the training process:

Algorithm 8.1 Training a neural network

Initialize ®w , b with random values

while L > threshold do
⊲ Forward pass

for l← 0 to L do

®z (l ) =W (l ) ®a (l−1) + ®b (l )
®a (l ) =f

(
®z (l )

)
end for

⊲ Loss

L = 1
2 ‖®a

(L) − ȳ‖2
⊲ Gradients for the last layer

®X (L) =
(
®a (L) − ȳ

)
◦ ®a (L) ◦

(
®1− ®a (L)

)
∇W (L)L = ®X (L)

(
®a (L−1)

)T
∇b (L)L = ®X (L)

⊲ Gradients for the remaining layers

for l←L− 1 to 0 do

®X (l ) =
((
W (l+1)

)T ®X (l+1) ) ◦ ®a (l ) ◦ (®1− ®a (l ) )
∇W (l )L = ®X (l )

(
®a (l−1)

)T
∇b (l )L = ®X (l )

end for
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⊲ Parameter update

W =W − r∇WL

b = b − r∇bL
end while

8.5 Training a neural network in PyTorch
Now that we’ve seen how the training process works, let’s look at how this can be

implemented in PyTorch. For this purpose, let’s take the following example. Consider

an e-commerce company that’s trying to solve the problem of demand prediction: the

company would like to estimate the number of mobile phones that will be sold in the

upcoming week so that it can manage its inventory accordingly. Our goal is to develop a

model that can make such a prediction. Let’s assume that the demand for a given week

is a function of three variables: (a) the number of mobile phones sold in the previous

week, (b) discounts offered, and (c) the number of weeks to the next holiday. Let’s call

these variables prev_week_sales, discount_fraction, and weeks_to_next_holidays,

respectively. This example can be modeled as a regression problem wherein we predict

the number of mobile phones sold in the upcoming week from an input vector of the

form [prev_week_sales, discount_fraction, weeks_to_next_holidays].

NOTE Fully functional code for this section, executable via Jupyter Notebook,

can be found at http://mng.bz/O1Ra.

From historical data, we generate a large data set, X, that contains the values of the

three variables for the last N weeks. X is represented as an N x 3 matrix, with each row

representing an individual training data instance and N being the total number of data

points available. We also have a GT vector ȳ of length N , containing the actual sales of

mobile phones for each of the weeks in the training data set. Table 8.1 shows sample

data points from our training set.

Table 8.1 Sample training data for demand prediction

Previous week sales Discount fraction (%) Weeks to next holidays Number of units sold

76,440 63 2 94,182

41,512 50 3 51,531

77,395 77 9 95,938

. . . . . . . . . . . .

21,532 70 4 28,559

NOTE In this section, X and ȳ refer to the entire batch of training data instances.

This may be infeasible in practical settings because of large data sets. To address

this, we typically use mini-batches of X and ȳ. We introduce the concept of mini-

batches formally in the next chapter.

http://mng.bz/O1Ra
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One important point about the data set is that the range of values for each feature is

completely different. For example, the previous week’s sales are expressed as a number

on the order of tens of thousands of units, whereas the discount fraction is a percentage

number between 0 and 100. In machine learning, it is a good practice to bring all the

values to a common scale, because doing so can help improve the speed of training

and reduce the chance of getting stuck at a local minimum. For our example, let’s

use min-max normalization to scale all the features to 0–1. The following code snippet

shows how to perform min-max normalization in PyTorch. For the rest of the discussion,

we assume that we are operating on the normalized data:

def min_max_norm(X, y):
X, y = X.clone(), y.clone()

Clones the data so as not to mutilate
the original data

X_min, X_max = torch.min(X, dim=0)[0],

torch.max(X, dim=0)[0]
Calculates the min and max values
of each column of X

X = (X - X_min) / (X_max - X_min) Normalizes X

y_min, y_max = torch.min(y, dim=0)[0],

torch.max(y, dim=0)[0] Calculates the min and max values of y

y = (y - y_min) / (y_max - y_min) Normalizes y
return X, y

To solve the regression problem, let’s first define a two-layer neural network model

that can take in 3D input vectors of the form [prev_week_sales, discount_fraction,

is_holidays_ongoing] and generate output predictions. The following code snippet

gives the PyTorch implementation:

class TwoLayeredNN(torch.nn.Module):
def __init__(self, input_size, hidden1_size, hidden2_size, output_size):

super(TwoLayeredNN, self).__init__()

self.model = torch.nn.Sequential(
Defines the network as a sequence of
linear and sigmoid layers

torch.nn.Linear(input_size, hidden1_size),

First hidden layer with
a weight matrix of size
(input_size × hidden1_size)torch.nn.Sigmoid(),

torch.nn.Linear(hidden1_size, hidden2_size),

Second hidden layer with
a weight matrix of size
(hidden1_size × hidden2_size)torch.nn.Sigmoid(),

torch.nn.Linear(hidden2_size, output_size)

Output layer with
a weight matrix of size
(hidden2_size × output_size))

def forward(self, X):
X is anN × 3 matrix. Each row is
a (3D vector) representing a single data point.

return self.model(X)

nn = TwoLayeredNN(input_size=X.shape[-1], hidden1_size=10,
hidden2_size=5, output_size=1)
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Neural network models in PyTorch should subclass torch.nn.Module and implement

the forward method. Our two-layer neural network contains two linear layers, each

followed by a sigmoid (nonlinear) activation layer. Finally, we have a linear layer that

converts the final activation into the output prediction. These layers are chained together

using the torch.nn.Sequential class to form the two-layer neural network. Whenever

our model is called using nn(X), the forward method is invoked, and the input X is

passed through the individual layers to obtain the final output.

Now that we have defined the neural network and its forward pass, we need to define

the loss function. We can use the MSE loss defined in equation 8.11. The loss function

essentially compares the demand predicted by the neural network model with the actual

demand from the GT and returns larger values when the difference is higher and smaller

values when the difference is lower. MSE loss is readily available in PyTorch through

the torch.nn.MSELoss class. The following code snippet shows a sample invocation:

loss = torch.nn.MSELoss() Instantiates the loss function

loss(y_pred, y_gt)

compute loss
y_pred: Output of the neural network
y_gt: ground truth

Finally, we need a way to compute the gradients of the loss with respect to the parameters

of our model so we can start the training process. Luckily, we don’t have to explicitly

compute the gradients ourselves because PyTorch automatically does this for us using

automatic differentiation, aka autograd. (Refer to section 3.1 for more details about

autograd.) For our current example, we can instruct PyTorch to run backpropagation

and compute gradients by calling loss.backward(). With this, we’re ready to start

training. PyTorch code for training the neural network is shown next.

Listing 8.4 Training a neural network

nn = TwoLayeredNN(input_size=X.shape[-1], Instantiates the neural network

hidden1_size=10,
hidden2_size=5,
output_size=1)

loss = torch.nn.MSELoss() Instantiates the loss function

optimizer = torch.optim.SGD(nn.parameters(), lr=0.2, Instantiates the optimizer
momentum=0.9)

num_iters = 1000

for i in range(num_iters): Training loop

y_out = nn(X) Forward pass

mse_loss = loss(y_out, y) Computes the loss

optimizer.zero_grad()
Clears the gradients and prevents accumulation of
gradients from the previous step

mse_loss.backward() Runs backpropagation (computes gradients)

optimizer.step() Updates the weights



298 CHAPTER 8 Training neural networks: Forward propagation and backpropagation

In the training loop, we iteratively run the forward pass, compute the loss, calculate the

gradients, and update the weights. The neural network is initialized with random weights

and hence makes arbitrary predictions for the demand in the early iterations of the

training loop. This translates to a high initial loss value. However, as training proceeds,

the weights are updated to minimize the loss value, and the predicted demand comes

closer to the actual GT. To update the weights, we use what is known as an optimizer.

During training, the gradients are computed by calling the backward() function on the

loss object. Following that, the optimizer.step call updates the weights and biases.

In this example, we used the stochastic gradient descent–based optimizer, which can

be invoked using torch.optim.SGD. PyTorch offers various optimizers, such as Adam,

AdaGrad, and so on, which will be discussed in detail in the next chapter. We typically

run the training loop until the loss reaches a value low enough to be acceptable. Once

the training loop completes, we have a model that can readily take in new data points

and generate output predictions.

Summary
The sigmoid function f (x) = 1

1+e−x has an S-shaped graph, is a differential version

of the Heaviside step function, and, as such, is used in perceptrons. Thus the

overall perceptron function becomes P
(
®x
)
≡f

(
®wT ®x + b

)
. It is parametrized by ®w

and b, which control the slope and position, respectively, of the S-shaped curve.

Neural networks solve real-life problems that require intelligence by approximat-

ing the function that solves the problem in question. They are built of multiple

perceptrons interconnected by weighted edges. Instead of connecting perceptrons

haphazardly, we connect them as layers. In a layered network, a perceptron is only

connected to perceptrons from the immediately preceding layer. Intra-layer and

other connections are not allowed.

Supervised neural networks have manually generated outputs for a sample set of

input values (ground truth). This entire data set consisting of inputs and known

outputs is known as the training data set.

Loss is defined as the mismatch between the ground truth and actual output gen-

erated by the neural network on training data inputs. The simplest way to compute

loss is to take the Euclidean distance between the neural network-generated out-

put and ground-truth vectors. This is called the MSE (mean squared error) loss.

Mathematically, given a training data set T that is a set of <input, GT output> pairs

T = {
〈
®x , ȳ

〉
}, the loss can be expressed as

L =
1

2

∑
xi ∈T

(
®y − ȳ

)2
where the output is ®yi =MLP

(
®xi
)
.

Training is the process of optimizing the connection weights and biases of a specific

neural network so that the loss is minimal. Note that during inferencing, the neural

network typically sees data it has never seen during training. Inferencing outputs
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are good only if the distribution of training inputs roughly matches the overall

input distribution.

We minimize the loss by iteratively adjusting the weights and biases. The quickest

way to reach the closest minimumof amultivariate function is to follow the gradient.

Hence, we adjust the weights and biases following the gradient of the loss function.

Mathematically,

W =W − r∇WL

b = b − r∇bL

A forward pass is the process of generating outputs from inputs with a neural

network: more specifically, a multilayer perceptron (MLP). Thus an MLP does

inferencing via a forward pass. A beautiful property of a layered network is that we

can do a forward pass dealing with one layer at a time, proceeding iteratively from

layer 0 (closest to the input) to the output layer. Mathematically,

®z (l ) =W (l ) ®a (l−1) + ®b (l )

®a (l ) =f

(
®z (l )

)
whereW (l ) , ®b (l ) represent the weights and biases for layer l, and ®a (l ) represent the
output for layer l (activation), which is also the input for layer l + 1.
A backward pass is the process by which the gradients of the loss with respect to

all the weights and biases are generated. It relies on the result of the preceding

forward pass and proceeds from the output layer toward the input layer. It uses

auxiliary variables ®X (l ) , which can be computed by iterating backward from the

last (closest to output) layer to the first (closest to input) layer—hence the name

backward propagation—and all the required gradients can be computed from those

auxiliary variables. Mathematically,

®X (l ) =
((
W (l+1)

)T ®X (l+1) ) ◦ ®a (l ) ◦ (®1− ®a (l ) )
∇W (l )L = ®X (l )

(
®a (l−1)

)T
∇b (l )L = ®X (l )

Training progresses by alternating forward and backward passes on the training

data set.



9Loss, optimization, and
regularization

This chapter covers
Geometrical and algebraic introductions to loss
functions

Geometrical intuitions for softmax

Optimization techniques includingmomentum,
Nesterov, AdaGrad, Adam, and SGD

Regularization and its relationship to Bayesian
approaches

Overfitting while training, and dropout

By now, it should be etched in your mind that neural networks are essentially function

approximators. In particular, neural network classifiers model the decision bound-

aries between the classes in the feature space (a space where every input feature

combination is a specific point). Supervised classifiers mark sample training data

inputs in this space with a—perhaps manually generated—class label (ground truth).

The training process iteratively learns a function that essentially creates decision

boundaries separating the sampled training data points into individual classes. If the

training data set is a reasonable representative of the true distribution of possible

inputs, the network (the learned function that models the class boundaries) will

classify never-before-seen inputs with good accuracy.

300
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When we select a specific neural network architecture (with a fixed set of layers, each

with a fixed set of perceptrons with specific connections), we have essentially frozen

the family of functions we use as a function approximator. We still have to “learn” the

exact weights of the connectors between various perceptrons (aka neurons). The training

process iteratively sets these weights so as to best classify the training data points. To

do this, we design a loss function that measures the departure of the network output

from the desired result. The network continually tries to minimize this loss. There are a

variety of loss functions to choose from.

The iterative process through which loss is minimized is called optimization. We also

have amultitude of optimization algorithms to choose from. In this chapter, we study loss

functions, optimization algorithms, and associated topics like L1 and L2 regularization

and dropout. We also learn about overfitting, a potential pitfall to avoid while training

a neural network.

NOTE The complete PyTorch code for this chapter is available at http://mng.bz/aZv9

in the form of fully functional and executable Jupyter notebooks.

9.1 Loss functions
A loss function essentially measures the badness of the neural network output. In the case

of a supervised network, the loss for an individual training data instance is the distance

of the actual output of the neural network (aka prediction) from the desired ideal

outputs (known or manually labeled ground truth [GT]) on that particular training

input instance. Total training loss is obtained by summing the losses from all training

data instances. Training is essentially an iterative optimization process that minimizes

the total training loss.

9.1.1 Quantification and geometrical view of loss

Loss surfaces and their minimization are described in detail in section 8.4.2. Here we

only do a quick review.

A full neural network can be described by the equation

®y = f
(
®x
��� ®w , ®b) (9.1)

Equation 9.1 says that given an input ®x, the neural network with weights ®w and biases ®b
emits the output vector or prediction vector ®y. The weights and biases may be organized into

layers; this equation does not care. The vectors ®w, ®b, respectively, denote the sets of all
weights and biases from all layers aggregated. Evaluating the function f (·) is equivalent
to performing one forward pass on the network. In particular, given a training input

instance ®x (i ) , the neural network emits ®y (i ) = f
(
®x (i )

��� ®w , ®b) . We refer to ®y (i ) as the output
of the ith training data instance.

During supervised training, for each training input instance ®x (i ) , we have the GT
(the known output), ȳ (i ) . We refer to ȳ (i ) as the GT vector (as usual, we use superscript

indices for training data instances).

http://mng.bz/aZv9
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Ideally, the output vector ®y (i ) shouldmatch the GT vector ȳ (i ) . Themismatch between

them is the loss for that training data instance L (i )
(
®y (i ) , ȳ (i )

��� ®w , ®b) , which we sometimes

denote as L (i )
(
®y (i ) , ȳ (i )

)
. The overall training loss (to be minimized by the optimization

process) is the sum of losses over all training data instances:

L
(
®w , ®b

)
=

n−1∑
i=0

L (i )
(
f
(
®x (i )

��� ®w , ®b) , ȳ (i ) ) = n−1∑
i=0

L (i )
(
®y (i ) , ȳ (i )

��� ®w , ®b) (9.2)

where the summation is over all training data instances, and n is the size of the training
data set. Note that this summation over all training data points is needed to compute

the loss for each training data instance. Thus an epoch, a single training loop over all

training data instances, costs O
(
n2
)
, where n is the number of training data points.

Training usually requires many epochs. This makes the training process very expensive.

In section 9.2.2, we study ways of mitigating this.

NOTE In this chapter, we use n to indicate the number of training data points

and N to indicate the dimensionality of the output vector. For classifiers, the

dimensionality of the output vector, N, matches the number of classes. We also

use superscript (i) to index training data points and subscript j to index output

vector dimensions. For classifiers, j indicates the class.

We can visualize L
(
®w , ®b

)
as a hypersurface in high-dimensional space. Figures 8.8 and

8.9 show some low-dimensional examples of loss surfaces. These are illustrative examples.

In reality, the loss surface is typically high dimensional and very complex. One good

mental picture is that of a canyon (see figure 9.1). Traveling “downhill” at any point

effectively follows the negative direction of the local gradient (the gradient of a loss

surface was introduced in section 8.4.2). Traveling downhill along the gradient does not

always lead to the global minimum. For instance, going downhill following the dashed

to local minima

to global minima

Figure 9.1 The loss surface can be viewed as a canyon.
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arrow will take us to a local minimum, whereas the global minimum is where the water

is going, indicated by the solid arrow. (See also section 8.4.4 and figure 8.9.)

Many loss formulations are possible, quantifying the mismatch L (i )
(
®y (i ) , ȳ (i )

)
; some

of them are described in the following subsections.

9.1.2 Regression loss

Regression loss is the simplest loss formulation. It is the L2 norm of the difference

between the output and GT vectors. This loss was introduced in equation 8.11. We

restate it here: the loss on the ith training data instance is

L (i )
(
®y (i ) , ȳ (i )

)
= ‖®y (i ) − ȳ (i ) ‖2 =

N−1∑
j=0

(
y (i )j − ȳ (i )j

)2
where the summation is over the components of the output vector. N is the number of

classes. The GT vector and output vector are both N -dimensional.

NOTE Fully functional code for regression loss, executable via Jupyter Notebook,

can be found at http://mng.bz/g1a8.

Listing 9.1 PyTorch code for regression loss

from torch.nn.functional import mse_loss
Imports the regression loss (mean
squared error loss)

y_pred = torch.tensor([-0.10, -0.24, 1.43, -0.14, -0.59]) N-d prediction vector

y_gt = torch.tensor([ 0.59, -1.92, -1.27, -0.40, 0.50]) N-d ground truth vector

loss = mse_loss(y_pred, y_gt, reduction='sum') Computes the regression loss

9.1.3 Cross-entropy loss

Cross-entropy loss was discussed in the context of entropy in section 6.3. If necessary,

this would be a great time to reread that. Here we review the idea quickly.

Cross-entropy loss is typically used to measure the mismatch between a classifier

neural network output and the corresponding GT in a classification problem. Here,

the GT is a one-hot vector whose length equals the number of classes. All but one of its

elements are 0. The single nonzero element is 1, and it occurs at the index corresponding

to the correct class for that training data instance.

Thus the GT vector looks like ȳ (i ) = [0, . . . , 0, 1, 0, . . . , 0]. The prediction vector

should have elements with values between 0 and 1. Each element of the prediction vector

®y (i ) indicates the probability of a specific class. In other words, ®y (i ) = [p0 , p1 , . . . , pN−1],
where pj is the probability of the input i belonging to the jth class. In section 6.3, we

illustrated with an example image classifier that predicts whether an image contains

a cat (class 0), a dog (class 1), an airplane (class 2), or an automobile (class 3). One

of the four is always assumed to be present in the image. If, for the ith training data

instance, the GT vector is an image of cat, we have ȳ (i ) = [1, 0, 0, 0]. A prediction vector

®y (i ) = [0.8, 0.15, 0.04, 0.01] is good, while ®y (i ) = [0.25, 0.25, 0.25, 0.25] is bad. Note that

http://mng.bz/g1a8


304 CHAPTER 9 Loss, optimization, and regularization

sum of the elements of the GT as well as the prediction vector is always 1 since they are

probabilities. Mathematically, given a training dataset X ,

N−1∑
j=0

ȳ (i )j = 1

N−1∑
j=0

y (i )j = 1∀i ∈X

Given such GT and prediction vectors, the cross-entropy loss (CE loss) is

L (i )
(
®y (i ) , ȳ (i )

)
=−

N−1∑
j=0

ȳ (i )j log
(
y (i )j

)
(9.3)

where the summation is over the elements of the prediction vector and N is the number

of classes.

INTUITIONS BEHIND CROSS-ENTROPY LOSS
Note that only one element—the one corresponding to the GT class—survives in the

summation of equation 9.3. The other elements vanish because they are multiplied by

the 0 GT value. The (logarithm of) the predicted probability of the correct GT class

is multiplied by 1. Hence, the CE loss always boils down to −log
(
y (i )j∗

)
, where j∗ is the

GT class. If this probability is 1, the CE loss becomes 0, rightly so, as the correct class is

being predicted with a probability of 1. If the predicted probability of the correct class is

0, the CE loss is −log (0) =∞, again rightly so, since this is the worst possible prediction.

The closer the prediction for the correct class is to 1, the smaller the loss.

NOTE Fully functional code for cross-entropy loss, executable via Jupyter Note-

book, can be found at http://mng.bz/g1a8.

Listing 9.2 PyTorch code for cross-entropy loss

import torch

y_pred = torch.tensor([0.8, 0.15, 0.04, 0.01]) N-d prediction vector

y_gt = torch.tensor([1., 0., 0., 0.]) N-d one-hot ground truth vector

loss = -1 * torch.dot(y_gt, torch.log(y_pred)) Computes the cross-entropy loss

SPECIAL CASE OF TWO CLASSES
What happens if N = 2 (that is, we have only two classes)? Let’s denote the predicted

probability of class 0, for the ith training input, as y (i ) : that is, ®y (i )
0

= y (i ) . Then, since these

are probabilities, the prediction on the other class ®y (i )
1

= 1− y (i ) . Also, let ȳ (i ) denote the
GT probability for class 0 on this ith training input. Then 1− ȳ (i ) is the GT probability

for class 1. (We have slightly abused notations—up to this point, ȳ has denoted a vector,

but here it denotes a scalar.)

Then, following equation 9.3, the CE loss on the ith training data instance becomes

L (i )
(
y (i ) , ȳ (i )

)
=−ȳ (i ) log

(
y (i )

)
−
(
1− ȳ (i )

)
log

(
1− y (i )

)
(9.4)

http://mng.bz/g1a8
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NOTE Fully functional code for binary cross-entropy loss, executable via Jupyter

Notebook, can be found at http://mng.bz/g1a8.

Listing 9.3 PyTorch code for binary cross-entropy loss

from torch.nn.functional import binary_cross_entropy
Imports the binary
cross-entropy loss

y_pred = torch.tensor([0.8])
Outputs the probability of class 0 - y0.
A single value is sufficient because y1 = 1 − y0.

y_gt = torch.tensor([1.]) The ground truth is either 0 or 1.

loss = binary_cross_entropy(y_pred, y_gt) Computes the cross-entropy loss

9.1.4 Binary cross-entropy loss for image and vector mismatches

Given a pair of normalized tensors (such as images or vectors) whose elements all have

values between 0 and 1, a variant of the two-class CE loss can be used to estimate the

mismatch between the tensors. Note that an image with pixel-intensity values between 0

and 255 can always be normalized by dividing each pixel-intensity value by 255, thereby

converting it to the 0 to 1 range. Such a comparison of two images is used in image

autoencoders, for example. We study autoencoders later; here, we provide a brief

overview in the following sidebar.

Autoencoders

Autoencoders take an image as input, create a low-dimensional descriptor from the
image—this descriptor is often referred to as an embedding of the image—and try
to reconstruct the input image from the embedding. The image embedding is a com-
pressed representation of the image. Reconstruction is a lossy process: the small,
subtle variations in the signal are lost, and only the essential part is retained. The
loss is the mismatch between the input image and the reconstructed image. By mini-
mizing this loss, we incentivize the system to retain the essence of the input as much
as possible within the embedding-size budget.

Let ȳ denote the input image. Let ®y (i ) denote the reconstructed image outputted by

the autoencoder. The binary cross-entropy loss is defined as

L (i )
(
ȳ (i ) , ®y (i )

)
=−

N−1∑
j=0

(
ȳ (i )j log

(
y (i )j

)
+
(
1− ȳ (i )j

)
log

(
1− y (i )j

))
(9.5)

Note that here N is the number of pixels in the image, not the number of classes, as

before. The summation is over the pixels in the image. Also, the GT vector ȳ (i ) is not a
one-hot vector; rather, it is the input image. These differences aside, equation 9.5 is

based on the same idea as equation 9.4.

http://mng.bz/g1a8
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WHY DOES IT WORK?
Binary cross-entropy loss attains its minimumwhen the inputmatches theGT.We outline

the proof next. (Note that we drop the superscripts and subscripts for simplicity.) We

have −L = ȳlog (y) + (1− ȳ) log (1− y)

At the minimum, mL
my = 0. This implies

−mL

my
= ȳ

1

y
− (1− ȳ) 1

1− y =
ȳ
y
− 1− ȳ
1− y = 0 =⇒ y = ȳ

Thus, the minimum of the binary cross-entropy loss occurs when the network output

matches the GT. However, this does not mean this loss becomes zero when the output

matches the GT.

NOTE Binary cross-entropy loss is not necessarily zero even in the ideal case of

the output matching the input (although the loss is indeed minimal in the ideal

case, meaning the loss is higher for non-ideal cases with mismatched input and

output).

Examining equation 9.5, when the two inputsmatch, we have− L
(
ȳ , ®y

) ��
®y=ȳ . We intuitively

expect this loss to be zero since the output is ideal. But it isn’t. For example, if, for

ȳ (i )j = y (i )j = 0.25

L (i )
(
ȳ (i )j , ®y (i )j

)���
ȳ j=®y (i)j =0.25

=−ȳ (i )j log
(
y (i )j

)
−
(
1− ȳ (i )j

)
log

(
1− y (i )j

)
=−0.25log (0.25) − 0.75log (0.75) = 0.56≠ 0

In fact, the binary cross-entropy loss is zero only in special cases, like y (i )j = ȳ (i )j = 1.

9.1.5 Softmax

Suppose we are building a classifier: for instance, the image classifier we illustrated in

section 6.3, which predicts whether an image contains a cat (class 0), a dog (class 1),

and airplane (class 2), or an automobile (class 3). Our classifier can emit a score vector

®s corresponding to an input image. Element j of the score vector corresponds to the jth

class. We take the max of the score vector and call that the neural network-predicted

label for the image. For instance, in the example image classifier, a score vector may

be
[
9.99 10 0.01 −10

]
. Since the highest score occurs at index 1, we conclude that

the image contains a dog (class 1).

The scores are unbounded; they can be any real number in the range [−∞,∞]. In
general, however, neural networks behave better when the loss function involves a

bounded set of numbers in the same range. The training converges faster and to better

minima, and the inferencing is more accurate. Consequently, it is desirable to convert

the example scores to probabilities. These will be numbers in the range [0, 1] (and the

elements of the vector will sum to 1).
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The softmax function converts unbounded scores to probabilities. Given a score

vector ®s =
[
s0 s1 s2 . . . sN−1

]
, the corresponding softmax vector is

softmax
(
®s
)
=



es0
S

es1
S

es2
S

· · ·
esN−1
S


where S =

N−1∑
k=0

esk (9.6)

A few noteworthy points:

The vector has as many elements as possible classes.

The sum of the elements in the previous vector is 1.

The jth element of the vector represents the predicted probability of class j.
The formulation can handle arbitrary scores, including negative ones.

So in our example classification problem with the four classes (cat, dog, airplane,

automobile), the score vector

®s =
[
9.99 10 0.01 −10

]
will yield the softmax vector

softmax
(
®s
)
=

[
0.497 0.502 2.30e − 5 1.04e − 9

]
.

The probability of cat is 0.497, and the probability of dog is slightly higher, 0.502. The
probabilities of airplane and automobile are much lower: the neural network predicts

that the image is that of a dog, but it is not very confident; it could also be a cat.

WHY THE NAME SOFTMAX?
The softmax function is a smooth (differentiable) approximation to the argmaxonehot

function, which emits a one-hot vector corresponding to the index of the max score.

The argmaxonehot function is discontinuous. To see this, consider a pair of two class

score vectors:

®p =
[
9.99 10

]
®q =

[
10 9.99

]
Performing an argmaxonehot operation on them will yield the following one-hot vectors,

respectively:

ar gmaxonehot
(®p) = [

0 1

]
ar gmaxonehot

(
®q
)
=

[
1 0

]
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Thus we see that the vectors ar gmaxonehot
(®p) and ar gmaxonehot (®q) are significantly

far from each other, even though the points ®p and ®q are very close to each other. On

the other hand, the corresponding softmax vectors are

softmax
(®p) = [

0.4975 0.5025
]

softmax
(
®q
)
=

[
0.5025 0.4975

]
Although the predicted classes still match those from the argmaxonehot vector, the

softmax vectors are very close to each other. The closer the scores, the closer the softmax

probabilities. In other words, the softmax is continuous.

Figure 9.2 depicts this geometrically. The argmaxonehot functions as a function

of the score vector [s0, s1] (for selecting classes 0 and 1, respectively) are shown in

figures 9.2a and 9.2c. These are step functions on the (s0, s1) plane, with s0= s1 be-

ing the decision boundary. Their softmax approximations are shown in figures 9.2b

and 9.2d. In section 8.1, we introduced the 1D sigmoid function (see figure 8.1),

which approximates the 1D step function. Here we see the higher-dimensional analog

of that.

Listing 9.4 PyTorch code for softmax

from torch.nn.functional import softmax Imports the softmax function

scores = torch.tensor([9.99, 10, 0.01, -10])
Scores are typically raw,
un-normalized outputs of
a neural network.

output = softmax(scores, dim=0) Computes the softmax

9.1.6 Softmax cross-entropy loss

From the preceding discussion, it should be clear that it is desirable to make the last

layer of a classifier neural network a softmax layer. Then, given an input, the network

will emit probabilities for each class. During training, we can evaluate the loss on these

probabilities with regard to the known GT probabilities. This can be done via the

CE loss (see section 9.1.3). Thus the softmax is often followed by the CE loss during

classifier training. Consequently, the combination (softmax CE loss) is available as a

single operation in many deep learning packages, such as PyTorch. This is convenient

because we do not need to call softmax and then CE loss. But the deeper reason for

combining them is that the combination tends to be numerically better.

Let’s look at an example to see how the softmax CE loss changes as the output predic-

tion changes. Consider the image classification problem again, where we’d like to classify

whether an image contains one of four categories: cat (class 0), dog (class 1), airplane

(class 2), or automobile (class 3). Figure 9.3 represents this visually. Suppose the image

we’re classifying actually contains a dog (class 1). The GT is represented as a one-hot

vector
[
0 1 0 0

]
. If our classifier predicts the vector

[
0.498 0.502 0 0

]
, it’s pre-

dicting both cat and dog with almost equal probability. This is a bad prediction because
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(a) Step function: z = 1 if s0 >= s1,
else z = 0

(b) Softmax: differential approximation of the
step function

(c) Step function: z = 1 if s1 >= s0,
else z = 0

(d) Softmax: differential approximation of the
step function

Figure 9.2 Two-class argmaxonehot and softmax (function of score vector [s0, s1]) on the (s0, s1) plane.
The decision boundary is the 45o line s0= s1.
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Cat Dog Airplane Automobile

0 1 0 0

9.99  10 0.01 -10

Bad
prediction

Scores

Softmax
output 0.498 0.502 0 0

4.27 10 0.01 -10

Good
prediction

Scores

Softmax
output 0.003 0.997 0 0

GT One-hot

Figure 9.3 Softmax output and cross-entropy loss for good and bad output predictions

we would ideally expect it to confidently predict a dog (class 1). Consequently, the CE

loss is high (0.688). On the other hand, if our classifier predicts
[
0.003 0.997 0 0

]
,

it is highly certain (with a probability of 0.997) that the image contains a dog. This is a

good prediction, and hence the CE loss is low (0.0032). Softmax CE loss is probably the

most popular loss method used for training in classifiers at the moment.

NOTE Fully functional code for softmax CE loss, executable via Jupyter Notebook,

can be found at http://mng.bz/g1a8.

Listing 9.5 PyTorch code for softmax cross-entropy loss

from torch.nn.functional import cross_entropy

scores = torch.tensor([[9.99, 10, 0.01, -10]])

y_gt = torch.tensor([1])
Ground truth class index
Ranges from 0 to num_classes 1

loss = cross_entropy(scores, y_gt) Computes the softmax cross-entropy loss

9.1.7 Focal loss

As training progresses, where should we focus our attention? This question becomes

especially significant when there is data imbalance, meaning the number of training data

http://mng.bz/g1a8
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instances available for some classes is significantly smaller than others. In such cases,

not all training data is equally important. We have to use our training data instances

wisely.

Intuitively, the greater bang for the buck is trying to improve the training data

instances that are not doing well. In other words, instead of trying to squeeze out every

bit of juice from the examples in which the network is doing well (the so-called “easy”

examples), it is better to focus on the examples where the network is not doing as well

(“hard” examples).

To stop focusing on easy examples and focus instead on hard examples, we can put

more weight on the loss from training data instances that are far from the GT, and vice

versa: that is, put less weight on the loss from training data instances that are close to

GT. Consider the binary CE loss of equation 9.4 one more time. The loss for the ith
training instance can be rewritten as follows:

L (i )
(
y (i ) , ȳ (i )

)
=


−log

(
y (i )

)
if GT is class 1: that is, ȳ (i ) = 1

−log
(
1− y (i )

)
if GT is class 0: that is, ȳ (i ) = 0

NOTE Going forward in this subsection, we drop the superscript (i) for the sake
of notational simplification, although it remains implied.

Now, when the GT is class 1 (that is, ȳ = 1), the entity (1− y) measures the departure of

the prediction from GT. We can multiply the loss by this to weigh down the losses from

good predictions and weigh up the losses from bad predictions. In practice, we multiply

by (1− y)W for some value of W (such as W = 2). Similarly, when the GT is class 0 (that is,

ȳ = 0), the entity y measures the departure of the prediction from the GT. In this case,

we multiply the loss by yW . The overall loss then becomes

L
(
®y , ȳ

)
=

{
− (1− y)W log (y) if the GT is class 1: ȳ = 1

−yW log (1− y) if the GT is class 0: ȳ = 0

We can have a somewhat simplified expression

L
(
®y , ȳ

)
=− (1− yt)W log (yt) (9.7)

where

yt =

{
y if the GT is class 1: ȳ = 1

1− y if the GT is class 0: ȳ = 0

Equation 9.7 is the popular expression of focal loss. Its graph at various values of W

is shown in figure 9.4. Note how the loss becomes more and more subdued as the

probability of the GT increases toward the right until it flattens out at the bottom.

NOTE Fully functional code for focal loss, executable via Jupyter Notebook, can

be found at http://mng.bz/g1a8.

http://mng.bz/g1a8
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Figure 9.4 Focal loss graph (various $ values)

Listing 9.6 PyTorch code for focal loss

def focal_loss(y, y_gt, gamma):

y_t = (y_gt * y) + ((1 - y_gt) * (1 - y))
yt = y if ygt is 1
yt = 1 − y if ygt is 0

loss = -1 * torch.pow((1 - y_t), gamma) * torch.log(y_t)
return loss

9.1.8 Hinge loss

The softmax CE loss becomes zero only under the ideal condition: the correct class has

a finite score, and other classes have a score of negative infinity. Hence, that loss will

continue to push the network toward improvement until the ideal is achieved (which

never happens in practice). Sometimes we prefer to stop changing the network when

the correct class has the maximum score, and we do not care about increasing the

distance between correct and incorrect scores any further. This is where hinge loss

comes in.

A hinged door opens in one direction but not in the other direction. Similarly, a

hinge loss function increases if a certain goodness criterion is not satisfied but becomes

zero (and does not reduce any further) if the criterion is satisfied. This is akin to

saying, “If you are not my friend, the distance between us can vary from small to large
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(unboundedly), but I don’t distinguish between friends. All my friends are at a distance

of zero from me.”

MULTICLASS SUPPORT VECTOR MACHINE LOSS: HINGE LOSS FOR CLASSIFICATION
Consider again our old friend, the classifier that predicts whether an image contains

a cat (class 0), dog (class 1), airplane (class 2), or automobile (class 3). Our classifier

emits an output vector ®y corresponding to an input image. Here, the outputs are scores:

yj is the score corresponding to the jth class. (In this subsection, we have dropped the

superscripts indicating the training data index to simplify notations.)

Given a (training data instance, GT label) pair
(
®x , c

)
(that is, the GT class correspond-

ing to the input ®x is c), the multiclass support vector machine (SVM) loss is

N−1∑
j=0, j≠c

max
(
0, yj − yc +m

)
(9.8)

where m is a margin (usually m = 1).

To understand this, consider the equation without the margin first:

N−1∑
j=0, j≠c

max
(
0, yj − yc

)
In equation 9.8, we are summing over all the classes except the one that matches the

GT. In other words, we are summing over only the incorrect classes. For these, we

want the score yj to be smaller than the score yc for the correct class. There are two
possibilities:

Good output—Incorrect class score less than correct class score:

yj − yc < 0 =⇒ max
(
0, yj − yc

)
= 0

The contribution to the loss is zero (we do not distinguish between correct scores:

all friends are at zero distance).

Bad output—Incorrect class score more than correct class score:

yj > yc =⇒ max
(
0, yj − yc

)
= yj − yc

The contribution to the loss is positive (non-friends are at a positive distance that

varies with the degree of non-friendness).

In practical settings, the margin is set to a positive number (usually 1) to penalize

predictions where the score of the correct class is marginally greater than that of the

incorrect classes. This forces the classifier to learn to predict the correct class with

high confidence. Figure 9.5 shows how hinge loss differs for good and bad output

predictions. One mental model to have about the multiclass SVM loss is that it is lazy. It

stops changing as soon as the correct class score exceeds the incorrect scores by the

margin m. The loss does not change if the correct class score goes still higher, which
means it does not push the machine to improve beyond that point. This behavior is
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Cat Dog Airplane Automobile

0 1 0 0GT One-hot

9.99 10 0.01 -10

Bad
prediction

Scores

12.7 10 0.01 -10

Good
prediction

Scores

Figure 9.5 Hinge loss for good and bad output predictions

different from the softmax CE loss, which tries to push the machine to achieve an

infinite score for the correct class.

9.2 Optimization
Neural network models define a loss function that estimates the badness of the network’s

output. During supervised training, the output on a particular training instance input is

compared to a known output (GT) for that particular training instance. The difference

between the GT and the network-generated output is called loss. We can sum up the

losses from individual training data instances and compute the total loss over all the

training data.

These losses are, of course, functions of the network parameters, ®w, ®b. We can imagine

a space whose dimensionality is dim
(
®w
)
+ dim

(
®b
)
. At each point in this space, we have a

value for the total training loss. Thus, we can imagine a loss surface—a surface whose

height represents the loss value—defined over the high-dimensional domain of network

parameters (weights and biases).

Optimization is nothing but finding the lowest point on this surface. During training,

we start with random values of network parameters: this is akin to starting at a random

point on the surface. Then we constantly move locally downhill on the loss surface in

the direction of the negative gradient. We hope this eventually takes us to the minimum

or a sufficiently low point. Continuing our analogy of the loss surface as a ravine, the

minimum is at sea level. This minimum provides us with the network parameter values

(weights and biases) that will yield the least loss on the training data. If the training data

set adequately represents the problem, the trained model will perform well on unseen

data.
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This process of traveling toward the minimum, the iterative updating of weights and

biases to have minimal loss over the training dataset, is called optimization. The basic

math was introduced in section 8.4.2 (equation 8.12). Here we study many practical

nuances and variants.

At every iteration, we update the weights and biases, so if t denotes the iteration

number, ®wt denotes the weight values at iteration t, X ®wt denotes the weight updates at
iteration t, and so on:

®wt+1 = ®wt − X ®wt
®bt+1 = ®bt − X ®bt (9.9)

The basic update is along the direction of the negative gradient (see equation 8.12):

X ®wt = [∇®wL
(
®wt , ®bt

)
X ®bt = [∇®bL

(
®wt , ®bt

)
(9.10)

Here, L
(
®wt , ®bt

)
denotes the loss at iteration t. Ideally, we should evaluate the loss on

every training data instance and average them. But that would imply that we must

process every training data instance for every iteration, which is prohibitively expensive.

Instead, we use sampling (see section 9.2.2):

The constant [ is called the learning rate (LR). A larger LR results in bigger steps

(bigger adjustments to weights and biases per update) and vice versa. We use larger

values of LR in the beginning: when the network is completely untrained, we want

to take large steps toward the minimum. When we are close to the minimum,

on the other hand, we want to take smaller steps, lest we overshoot it. The LR is

typically a small number, like [ = 0.01.
In stochastic gradient descent (SGD; a popular approach), the LR [ is typically

held constant during an epoch (an epoch is a single pass over all the training data).

Then the LR is decreased after one or more epochs. This process is called learning

rate decay. So, the LR is not exactly a constant. We could have written it [t to indicate

the temporal nature, but we chose to keep it simple because (in SGD, at least) it

changes infrequently.

We have to reevaluate the loss and its gradients in each iteration since their values

will change in every iteration, because the weights and biases of the underlying neural

network are changing.

How many iterations are necessary? Typically, this is a large number. We iterate

multiple times over the entire training dataset. A typical training session has multiple epochs.

In this context, note that for proper convergence, it is extremely important to randomly

shuffle the order of occurrence of the training data after every epoch. In the following

sections, we look at some practical nuances of the process.
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9.2.1 Geometrical view of optimization

This topic is described in detail in section 8.4.2. You are encouraged to revisit that

discussion if necessary.

Overall, neural network optimization is an iterative process. Ideally, in each iteration,

we compute the gradient of the loss with respect to the current parameters (weights and

biases) and obtain improved values for them by moving in the direction of the negative

gradient.

9.2.2 Stochastic gradient descent and minibatches

How do we compute the gradient of the loss function? The loss is different for every

training data instance. The sensible thing to do is to average them out. But as we

mentioned earlier, that leads to a practical problem: we would have to process the entire

training dataset on every iteration. If the size of the training dataset is n, an epoch is an

O
(
n2
)
operation (every iteration, we have to process all of the n training data instances

to compute the gradient, and an epoch has n iterations). Since n is a large number,

often in the millions, O
(
n2
)
is prohibitively expensive.

In SGD, we do not average over the entire training data set to produce the gradient.

Instead, we average over a random sampled subset of the training data. This randomly

sampled subset of training data is called a minibatch. The gradient is computed by

averaging the loss over the minibatch (as opposed to the entire training dataset). This

gradient is used to update the weight and bias parameters.

9.2.3 PyTorch code for SGD

Now, let’s implement SGD in PyTorch.

NOTE Fully functional code for SGD, executable via Jupyter Notebook, can be

found at http://mng.bz/ePyG.

Let’s consider the example discussed in section 6.9. Our goal is to build a model that can

predict whether a Statsville resident is a man, woman, or child using height and weight

as input data. For this purpose, let’s assume we have a large dataset X containing the

heights and weights of various Statsville residents. X is of shape (num_samples, 2), where
each row represents the (hei ght , weight) pair of a single resident. The corresponding
labels are stored in ygt , which contains num_samples elements. Each row of ygt can be 0,

1, or 2, depending on whether the resident is a man, woman, or child. Figure 9.6 shows

an example distribution of X .
Before training a model, we must first convert the data into a training-friendly for-

mat. We subclass torch.utils.data.Dataset to do so and implement the __len__

and __getitem__ methods. The ith training data instance can be accessed by calling

data_set[i]. Remember that in SGD, we feed in minibatches that contain batch_size

elements in every iteration. This can be achieved by calling the __getitem__method

batch_size times.However, instead of doing this ourselves, we use PyTorch’s DataLoader,

which gives us a convenient wrapper. Using DataLoader is recommended in production

settings because it provides a simple API through which we can (1) create minibatches,

http://mng.bz/ePyG
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Figure 9.6 Height and weight of various Statsville residents. Class 0 (man) is represented by the
right-most cluster, class 1 (woman) by the middle cluster, and class 2 (child) by the left-most cluster.

(2) speed up data-loading times via multiprocessing, and (3) randomly shuffle data

in every epoch to prevent overfitting. The following code creates a custom PyTorch

data set.

Listing 9.7 PyTorch code to create a custom dataset

from torch.utils.data import Dataset, DataLoader

class StatsvilleDataset(Dataset): Subclasses torch.utils.data.Dataset
def __init__(self, X, y_gt):

self.X = X
self.y_gt = y_gt

def __len__(self): Returns the size of the data set
return len(self.X)

def __getitem__(self, i): Returns the ith training data element
return self.X[i], self.y_gt[i]

dataset = StatsvilleDataset(X, y_gt) Instantiates the data set

data_loader = DataLoader(dataset, batch_size=10,
Instantiates the data loader
with a batch size of 10
and shuffle on

shuffle=True)

Our next step is to create a classifier model that can take the height and weight data (X)
as input and predict the output class. Here, we create a simple neural network model

that consists of two linear layers followed by a softmax layer. The output of the softmax

layer has three values representing the probability of each of the three classes (man,

woman, and child), respectively. Note that in the forward pass, we don’t call the softmax
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layer because our loss function, PyTorch’s CE loss, expects raw, un-normalized scores as

input. Hence we pass the output of the second linear layer to the loss function. However,

during prediction, we pass the scores to the softmax layer to get a probability vector

and then take an argmax to get the predicted class. Notice that we have a function to

initialize the weights of the linear layers: this is important because the starting value of

the weights can often affect convergence. If the model starts too far from the minimum,

it may never converge.

Listing 9.8 PyTorch code to create a custom neural network model

class Model(torch.nn.Module): Subclasses torch.nn.Module

def __init__(self, input_size, hidden_size, output_size):
super(Model, self).__init__()
self.linear1 = torch.nn.Linear(input_size, hidden_size) Instantiates the

linear layers and
the softmax layer

self.linear2 = torch.nn.Linear(hidden_size, output_size)
self.softmax = torch.nn.Softmax(dim=1)

def forward(self, X): Feeds forward the input through the two linear layers
scores = self.linear2(self.linear1(X))
return scores

def predict(self, X): Predicts the output class index
scores = self.forward(X)
y_pred = torch.argmax(self.softmax(scores), dim=1)
return y_pred

def initialize_weights(m):
if isinstance(m, torch.nn.Linear):

torch.nn.init.xavier_uniform_(m.weight.data)
Initializes the weights to help
the model converge better

torch.nn.init.constant_(m.bias.data, 0)

model = Model(input_size=2, hidden_size=100, output_size=3)
model.apply(initialize_weights)

Now that we have our data set and model, let’s define our loss function and instantiate

our SGD optimizer.

Listing 9.9 PyTorch code for a loss function and SGD optimizer

loss_fn = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.02)

Instantiates the SGD
optimizer with learning
rate = 0.02

Now we define the training loop, which is essentially one pass over the entire dataset.

We iterate over the dataset in batches of size batch_size, run the forward pass, compute

the gradients, and update the weights in the direction of the negative gradient. Note

that we call optimizer.zero_grad() in every iteration to prevent the accumulation of

gradients from the previous steps.
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Listing 9.10 PyTorch code for one training loop

def train_loop(epoch, data_loader, model, loss_fn, optimizer):

for X_batch, y_gt_batch in data_loader: Iterates through the data set in batches

scores = model(X_batch) Feeds forward the model to compute scores

loss = loss_fn(scores, y_gt_batch) Computes the cross-entropy loss

optimizer.zero_grad() Clears the gradients accumulated from the previous step

loss.backward() Runs backpropagation and computes the gradients

optimizer.step() Updates the weights

With this, we are ready to train our model. The following code shows how to do so.

Figure 9.7 shows the output predictions and loss at the end of every epoch.
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Figure 9.7 Model predictions at the end of every epoch. Notice how the loss is reduced with every epoch.
In the beginning, all training data points are wrongly classified as class 1. After the end of epoch 1, most
of the training data is classified correctly, and the distribution of the classifier’s output has become
close to the ground truth. The loss continues to decrease until epoch 4 (although the improvements are
harder to see visually).

Listing 9.11 PyTorch code to run the training loop num_epochs times

num_epochs = 2
for epoch in range(num_epochs):

train_loop(epoch, data_loader, model, loss_fn, optimizer)
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9.2.4 Momentum

For real-life loss surfaces in high dimensions, the ravine analogy is quite appropriate. A

loss surface is hardly like a porcelain cup with smooth walls; it is much more like the

walls of the Grand Canyon (see figure 9.8). Furthermore, the gradient estimate (usually

done over a minibatch) is noisy. Consequently, gradient estimates are never aligned in

one direction—they tend to go hither and thither. Nonetheless, most of them tend to

have a good downhill component. The other (non-downhill component) is somewhat

random (see figure 9.8). So if we average them, the downhill components reinforce

each other and are strengthened, while the non-downhill components cancel each

other and are weakened.

Figure 9.8 Momentum. Noisy stochastic gradient estimates at different points on the loss surface (thick
solid arrows) are not aligned in direction, but they all have a significant downhill component (thin solid
arrows). The non-downhill components (thin dashed arrows) point in random directions. Hence, averaging
tends to strengthen the downhill component and cancel out the non-downhill components.

Furthermore, if there is a small flat region with downhill areas preceding and following

it, the vanilla gradient-based approach will get stuck in the small flat region (since the

gradient there is zero). But averaging with the past allows us to have nonzero updates

that take the optimization out of the local small flat region so that it can continue

downhill.

A good mental picture in this context is that of a ball rolling downhill. The surface

of the hill is rough, and the ball is not going directly downward. Rather, it takes a

zigzag path. But as it travels, it gathers downward momentum, and its downward velocity

becomes greater.

Following this theory, we take the weighted average of the gradient computed at this

iteration with the update used in the previous iteration:
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current update︷︸︸︷
X ®wt = W

last update︷︸︸︷
X ®wt−1 +[

current gradient︷         ︸︸         ︷
∇®wL

(
®wt , ®bt

)
current update︷︸︸︷

X ®bt = W

last update︷︸︸︷
X ®bt−1 +[

current gradient︷         ︸︸         ︷
∇®bL

(
®wt , ®bt

)
(9.11)

where W, [ are positive constants with values less than 1. The weights and bias parameters

are updated in the usual fashion using equation 9.9.

UNROLLING THE RECURSION OF THE MOMENTUM EQUATION
Unraveling the recursive equation 9.11, we see

X ®wt = [∇®wL
(
®wt , ®bt

)
+ WX ®wt−1

= [∇®wL
(
®wt , ®bt

)
+ [W∇®wL

(
®wt−1 , ®bt−1

)
+ W2X ®wt−2

= [∇®wL
(
®wt , ®bt

)
+ [W∇®wL

(
®wt−1 , ®bt−1

)
+ [W2∇®wL

(
®wt−2 , ®bt−2

)
+ W3X ®wt−3

...

= [∇®wL
(
®wt , ®bt

)
+ [W∇®wL

(
®wt−1 , ®bt−1

)
+ · · · + [W t∇®wL

(
®w0 , ®b0

)
+ W t+1X ®w−1

Assuming X ®w−1 = 0, we get

X ®wt = [∇®wL
(
®wt , ®bt

)
+ [W∇®wL

(
®wt−1 , ®bt−1

)
+ [W2∇®wL

(
®wt−2 , ®bt−2

)
+ · · ·

+ [W t∇®wL
(
®w0 , ®b0

)
(9.12)

Thus,

We are taking a weighted sum of the gradients from past iterations. This is not

quite a weighted average, though, as explained later.

Older gradients are weighted by higher powers of W. Since W < 1, weights decrease

with age (long-past iterations have less influence).

The sum of the weights of the gradients, going backward from now to the beginning

of time (the 0th iteration), is

St = [

(
1+ W + W2 + W3 · · · W t

)
Now, using Taylor expansion,

lim
t→∞

(
1+ W + W2 + W3 · · · W t−1

)
=

1

1− W

Thus the sum of the weights of the past gradients in momentum-based gradient

descent is
[

1−W ≠ 1. In other words, this is not quite a weighted average (where

the weights should sum up to 1). This is a somewhat undesirable property and is

rectified in the Adam algorithm discussed later.

A similar analysis can be done for the biases.
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9.2.5 Geometric view: Constant loss contours, gradient descent, and momentum

Consider a network with a tiny two-element weight vector ®w =


w0

w1

 and no bias. Further,

suppose that the loss function is L = ‖ ®w‖2 =w2
0
+w2

1
. The constant loss contours are

concentric circles with the origin as the center. The radius of the circle indicates the

loss magnitude.

If we move along the circle’s circumference, the loss does not change. The loss

changes maximally along the orthogonal direction to that: the radius of the circle. This

intuitive observation is confirmed by evaluating the gradient

∇®wL = 2


w0

w1


Thus the gradient is along the radius, and the negative gradient direction is radially

inward. So the loss decreases most rapidly if we move radially inward. If we move

orthogonal to the radius (that is, along the circumference), the loss remains unchanged;

of course, we are moving along the constant loss contour.

Optimization then takes us from outer, larger-radius circles to inner, smaller-radius

circles. The minimum is at the origin; ideally, optimization should stop once we reach

the origin.

Figure 9.9 shows optimization for a simple loss function L = ‖ ®w‖2 =w2
0
+w2

1
. We start

at an arbitrary pair of weight values and repeatedly update them via equation 9.9. For

figure 9.9a, we use update without momentum (equation 9.10). For figure 9.9b, we use

update with momentum (equation 9.11).

When the constant loss contours are concentric circles with the origin as the center,

the loss surface is a cone with its apex on the origin. The cross sections are circles on

planes parallel to the w0 , w1 plane. Optimization takes us down the inner walls of the

cone through smaller and smaller circular cross-sections as we approach the minimum.

The global minimum is at the origin and corresponds to zero loss. The zero-loss contour

is a circle with a zero radius, which is effectively a single point: the origin.

In both cases, progress slows down (step sizes become smaller) as we approach the

minimum. This is because the magnitude of the gradient becomes smaller and smaller

as we get closer to the minimum (imagine a bowl: it becomes flatter as we get closer to

the bottom). However, this effect is countered to a certain extent if we have momentum.

So, we can see that we need fewer steps to reach a circle with a smaller radius when we

have momentum.

9.2.6 Nesterov accelerated gradients

One problem with momentum-based gradient descent is that it may overshoot the

minimum. This can be seen in figure 9.10a where the loss decreases through a series of

updates and then, when we are close to the minimum, an update (shown with a dotted

arrow) overshoots the minimum and increases the loss (shown with a dotted circle).
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Start loss: 50000.0
End loss: 39.2
Num iters: 7

(a) A trajectory through constant
loss contours for gradient descent
without momentum

Start loss: 50000.0
End loss: 30.4
Num iters: 5

(b) A trajectory through constant
loss contours for gradient descent
with momentum

Figure 9.9 Constant loss contours and optimization trajectory for the loss function L= ‖ ®w‖2 =w2
0
+w2

1
.

The loss surface is a cone with its apex on the origin and its base a circle in a plane parallel to thew0 ,w1

plane. Optimization takes us down the cone toward smaller and smaller cross-sections as we approach
the minimum at the origin. Updates are shown with arrows. Note how the momentum version arrives
at a smaller circle in fewer steps.



324 CHAPTER 9 Loss, optimization, and regularization

Start loss: 50000.0
End loss: 2784.8
Num iters: 3

Gradient descent overshoots minimum because of momentum.

(a) Momentum gradient
descent overshooting the
minimum. Loss decreases for
a while and then increases
(dotted circle and arrow).

Start loss: 50000.0
End loss: 16.7
Num iters: 6

Nesterov gradient descent does not overshoot minimum.

(b) Nesterov reduces the
step size when we are about
to overshoot the minimum.

Figure 9.10 Figure (a) shows momentum-based gradient descent overshooting the minimum. Over-
shooting the update is shown with a dotted arrow. A circle with a radius larger than the last step is
shown with a dotted outline. Nesterov does better by taking smaller steps when overshooting is imminent.
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This is the phenomenon that Nesterov’s accelerated gradient-based optimization tries

to tackle.

In Nesterov’s technique, we do the following:

1 Estimate where this update will take us (that is, the destination point) by adding

the previous step’s update to the current point.

2 Compute the gradient at the estimated destination point. This is where the ap-

proach differs from the vanilla momentum-based approach, which takes the gradi-

ent at the current point.

3 Take a weighted average of the gradient (at the estimated destination point) with

the previous step’s update. That is the update for the current step.

Mathematically speaking,

current update︷︸︸︷
X ®wt = W

last update︷︸︸︷
X ®wt−1 +[

gradient at estimated destination︷                                                   ︸︸                                                   ︷
∇®wL

©­­­«
estimated destination︷         ︸︸         ︷

®wt − WX ®wt−1 ,

estimated destination︷       ︸︸       ︷
®bt − WX ®bt−1

ª®®®¬
current update︷︸︸︷

X ®bt = W

last update︷︸︸︷
X ®bt−1 +[

gradient at estimated destination︷                                                  ︸︸                                                  ︷
∇®bL

©­­­«
estimated destination︷         ︸︸         ︷

®wt − WX ®wt−1 ,

estimated destination︷       ︸︸       ︷
®bt − WX ®bt−1

ª®®®¬ (9.13)

where W, [ are constants with values less than 1. The weights and biases are updated in

the usual fashion using equation 9.9.

Why does this help? Well, consider the following:

When we are somewhat far away from theminimum (no possibility of overshooting),

the gradient at the estimated destination is more or less the same as the gradient

at the current point, so we progress toward the minimum in a fashion similar to

momentum-based gradient descent.

But when we are close to the minimum and the current update may potentially

take us past it (see the dotted arrow in figure 9.10a), the gradient at the estimated

destination will lie on the other side of the minimum. As before, imagine this loss

surface as a cone with its apex at the origin and base above the apex. We have

traveled down one of the cone’s side walls and just started climbing back up. Thus

the gradient at the estimated destination is in the opposite direction from the

previous step. When we take their weighted average, they will cancel each other in

some dimensions, resulting in a smaller magnitude. The resulting smaller step will

mitigate the overshooting phenomenon.

NOTE Fully functional code for momentum and Nesterov accelerated gradients,

executable via Jupyter notebook, can be found at http://mng.bz/p9KR.

http://mng.bz/p9KR
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9.2.7 AdaGrad

The momentum-based optimization approach (equation 9.11) and the Nesterov ap-

proach (equation 9.13) both suffer from a serious drawback: they treat all dimensions

of the parameter vectors ®w, ®b equally. But the loss surface is not symmetrical in all

dimensions. The slope can be high along some dimensions and low along others. We

cannot control everything with a single LR for all the dimensions. If we set the LR high,

the high-slope dimensions will exhibit too much variance. If we set it low, the low-slope

dimensions will barely progress toward the minimum.

What we need is per-parameter LR. Then each LR will adapt to the slope of its particular

dimension. This is what AdaGrad tries to achieve. Dimensions with historically larger

gradients have smaller LRs, while dimensions with historically smaller gradients have

larger LRs.

How do we keep track of the historic magnitudes of gradients? To do this, AdaGrad

maintains a state vector in which it accumulates the sum of the squared partial derivatives

for each dimension of the gradient vector seen so far during training:

®st =

per-dimension gradient squared︷                              ︸︸                              ︷
∇®wL

(
®wt , ®bt

)
◦ ∇®wL

(
®wt , ®bt

)
+®st−1 =



| mL
mw0

|2

| mL
mw1

|2
...

| mL
mb0

|2
...


+®st−1

where ◦ denotes the Hadamard operator (elementwise multiplication of the two vectors).

We can express the previous equation a bit more succinctly as

®st = |∇®wL
(
®wt , ®bt

)
|2 +®st−1

Unrolling the recursion, we get

®st = |∇®wL
(
®wt , ®bt

)
|2 +®st−1

= |∇®wL
(
®wt , ®bt

)
|2 + |∇®wL

(
®wt−1 , ®bt−1

)
|2 +®st−2

...

= |∇®wL
(
®wt , ®bt

)
|2 + |∇®wL

(
®wt−1 , ®bt−1

)
|2 · · · + |∇®wL

(
®w0 , ®b0

)
|2 +®s−1

assuming ®s−1 = 0, ®st is a vector that holds the cumulative sum over all training iterations

of the squared slope for each dimension. For the dimensions with historically high

slopes, the corresponding element of ®st is large, and vice versa. The overall update
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vector looks like this:

®st = |∇®wL
(
®wt , ®bt

)
|2 +®st−1

X ®wt =
[√
®st + n

◦ ∇®wL
(
®wt , ®bt

)
(9.14)

Here n is a very small constant added to prevent division by zero. Then we use equa-

tion 9.9 to update the weights as usual. A parallel set of equations exist for the bias.

Using AdaGrad, in the loss gradient, the dimensions that have seen big slopes in

earlier iterations are given less importance during the update. We emphasize the

dimensions that have not seen much progress in the past. This is a bit like saying, “I will

pay less attention to a person who speaks all the time, and I will pay more attention to

someone who speaks infrequently.”

9.2.8 Root-mean-squared propagation

A significant drawback of the AdaGrad algorithm is that the magnitude of the vector

®st keeps increasing as iteration progresses. This causes the LR for all dimensions to

become smaller and smaller. Eventually, when the number of iterations is high, the

LR becomes close to zero, and the updates do hardly anything; progress toward the

minimum slows to a virtual halt. Thus AdaGrad is an impractical algorithm to use in

real life, although the idea of per-component LR is good.

Root mean squared propagation (RMSProp) addresses this drawback without sacri-

ficing the dimension-adaptive nature of AdaGrad. Here again there is a state vector, but

its equation is

®st = (1− W) |∇®wL
(
®wt , ®bt

)
|2 + W ®st−1

Compare this with the state vector equation in AdaGrad:

®st = |∇®wL
(
®wt , ®bt

)
|2 +®st−1

They are almost the same, but the terms are weighted by (1− W) and W, where 0 < W < 1

is a constant. This particular pair of weights in a recursive equation has a very interesting

effect. To see it, we have to unroll the recursion:

®st = (1− W) |∇®wL
(
®wt , ®bt

)
|2 + W ®st−1

= (1− W) |∇®wL
(
®wt , ®bt

)
|2 + (1− W) W |∇®wL

(
®wt−1 , ®bt−1

)
|2 + W2 ®st−2

= (1− W) |∇®wL
(
®wt , ®bt

)
|2 + (1− W) W |∇®wL

(
®wt−1 , ®bt−1

)
|2

+ (1− W) W2 |∇®wL
(
®wt−2 , ®bt−2

)
|2 + W3 ®st−3

...

= (1− W) |∇®wL
(
®wt , ®bt

)
|2 + (1− W) W |∇®wL

(
®wt−1 , ®bt−1

)
|2

· · · + (1− W) W t |∇®wL
(
®w0 , ®b0

)
|2
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Thus ®st is a weighted sum of the past term-wise squared gradient magnitude vectors.

Going back from now to the beginning of time (the 0th iteration), the weights are

(1− W), (1− W) W, (1− W) W2, · · · , (1− W) W t . If we add these weights, we get

(1− W)
(
1+ W + W2 + W3 · · · W t

)
As the number of iterations becomes high (t→∞), this becomes

(1− W) lim
t→∞

(
1+ W + W2 + W3 · · · W t−1

)
=

1

1− W
(1− W) = 1

where Taylor expansion has been used to evaluate the term in parentheses.

For a large number of iterations, the sum of the weights approaches 1. This implies

that after many iterations, the RMSProp state vector effectively takes the weighted average

of the past term-wise squared gradient magnitude vectors. With more iterations, the weights

are redistributed and older terms become de-emphasized, but the overall magnitude

does not increase. This eliminates the vanishing LR problem from AdaGrad. RMSProp

continues de-emphasizing the dimensions with high cumulative partial derivatives with

lower LRs, but it does so without making the LR vanishingly small.

The overall RMSProp update equations are

®st = (1− W) |∇®wL
(
®wt , ®bt

)
|2 + W ®st−1

X ®wt =
[√
®st + n

◦ ∇®wL
(
®wt , ®bt

)
(9.15)

There is a parallel set of equations for the bias. The weights and bias parameters are

updated in the usual fashion using equation 9.9.

9.2.9 Adam optimizer

Momentum-based gradient descent amplifies the downhill component more and more

as iterations progress. On the other hand, RMSProp reduces the LR for dimensions

that are seeing large gradients and vice versa to balance the progress rate along all

dimensions.

Both of these are desirable properties. We want an optimization algorithm that

combines them, and that algorithm is Adam. It is increasingly becoming the optimizer

of choice for most deep learning researchers.

The Adam optimization algorithm maintains two state vectors:

®vt = (1− V1) ∇®wL
(
®wt , ®bt

)
+ V1 X ®wt−1 (9.16)

®st = (1− V2) |∇®wL
(
®wt , ®bt

)
|2 + V2 ®st−1 (9.17)

where 0 < V1 < 1 and 0 < V2 < 1 are constants. Note the following:

Equation 9.16 is essentially the momentum equation of equation 9.11 with one

significant difference. We have changed the term weights to V1 and (1− V1).
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As we’ve seen, with t→∞, this results in the state vector being a weighted average

of all the past gradients. This is an improvement over the original momentum

scheme.

The second state vector is basically the one from the RMSProp equation 9.15.

Using these two state vectors, Adam creates the update vector as follows:

X ®wt =
[ ®vt√
®st + n

◦ ∇®wL
(
®wt , ®bt

)
(9.18)

The ®vt in the numerator pulls in the benefits of the momentum approach (with the

enhancement of averaging). Otherwise, the equation is almost identical to the RMSProp;

those benefits are also pulled in.

Finally, the weights and bias parameters are updated in the usual fashion using

equation 9.9.

BIAS CORRECTION
The sum of weights of past values in the state vectors ®vt , ®st will approach ∞ only at large

values of t. To improve the approximation at smaller values of t, Adam introduces a bias

correction:

v̂t =
®vt(

1− V t
1

) (9.19)

ŝt =
®st(

1− V t
2

) (9.20)

Instead of ®vt and ®st , we use the bias-corrected entities v̂t and ŝt in equation 9.18.

Listing 9.12 PyTorch code for various optimizers

from torch import optim

sgd_optimizer = optim.SGD([params], lr=0.01) Sets the learning rate to 0.01

sgd_momentum_optimizer = optim.SGD([params], lr=0.01,
momentum=0.9) Sets the momentum to 0.9

sgd_nesterov_momentum_optimizer = optim.SGD([params], lr=0.01, Sets the Nesterov
flag to Truemomentum=0.9, nesterov=True)

adagrad_optimizer = optim.Adagrad([params], lr=0.001)

rms_prop_optimizer = RMSprop([params], lr=1e-2, Sets the smoothing constant
to 0.99 ($ in 9.15)alpha=0.99)

adam_optimizer = optim.Adam([params], lr=0.001,
betas=(0.9, 0.999))
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9.3 Regularization
Suppose we are teaching a baby to recognize cars. We show them red cars, blue cars, black

cars, large cars, small cars, medium cars, cars with round tops, cars with rectangular tops,

and so on. Soon the baby’s brain realizes that there are too many varieties to remember

them all by rote. So the brain starts forming abstractions: mysterious common features

that occur together are stored in the baby’s brain with the label car. The brain has

learned to classify an abstract entity called a car. Even though it fails to remember every

car it has seen, it can recognize cars. We can say it has developed experience. And so it is

with neural networks. We do not want our network to remember every training instance.

Rather, we want the network to form abstractions that will enable it to recognize an object

during inferencing even though the exact likeness of the object instance encountered

during inferencing was never seen during training.

Overfitting and underfitting

If the network has too much expressive power (too many perceptrons or, equivalently,
too many weights) relative to the number of training instances, the network can and
often will rote-remember the training instances. This phenomenon is called overfitting.
Overfitting causes the network to perform very well over the training data but badly
during testing or real-life inferencing. Stated another way, the network has adjusted
itself to every nook, bend, and kink of the training data and thereby performs great
on the training data—to the detriment of test data performance. This is illustrated
in figure 9.11. Regularization refers to a bag of tricks that, in general, try to prevent
overfitting. This is the topic of this section.

There is another phenomenon called underfitting, where the network simply does not
have enough expressive power to model the training data. The symptom of underfitting
is that the network performs badly on both training and testing data. If we see this,
we should try a more complex network with more perceptrons.

9.3.1 Minimum descriptor length: An Occam’s razor view of optimization

Is the set of weights and biases that minimizes a particular loss function unique? Let’s

examine a single perceptron (equation 7.3) with the output q
(
®wT ®x + b

)
. Let’s say q

is the Heaviside step function (see section 7.3.1). Let ®w∗ , b∗ be the weights and biases

minimizing the loss function. It is easy to see that the perceptron output remains the

same if we scale the weights, like U ®w∗ for all positive real values of U. Thus the weight

vector 7 ®w∗ will also minimize the loss function.

This is true in general for arbitrary neural networks (composed of many perceptrons):

the set of weights and biases minimizing a loss function is non-unique. How does the

neural network choose one? Which of them is correct? We can use the principle of

Occam’s razor to answer that.

Occam’s razor is a philosophical principle. Its literal translation from Latin

states, “Entities should not be multiplied beyond necessity.” This is roughly taken
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Figure 9.11 Overfitting: data points for a binary classifier. Points belonging to different classes are
visually demarcated as squares and circles. Filled squares/circles indicate training data, and unfilled
squares/circles indicate test data. There are some anomalous training data instances (filled circles in
the square zone). The estimated decision boundary (solid line) has become wriggly to accommodate them,
which is causing many test points (unfilled squares/circles) to be misclassified. The wiggly solid curve is
an example of an overfitted decision boundary. If we had chosen a “simpler” decision boundary (dashed
straight line), the two anomalous training points would have been misclassified, but the machine would
have performed much better in tests.

to mean among adequate explanations, the simplest one is the best. In machine learning, this

principle is typically interpreted as follows:

Among the set of candidate neural network parameter values (weights and biases)

that minimize the loss, the “simplest” one should be chosen.

The general idea is as follows. Suppose we are trying to minimize L (\) (here we

have used \ to denote ®w and ®b together). We also want the solution to be as simple
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as possible. To achieve that, we add a penalty for departing from “simplicity” to the

original loss term. Thus we minimize

L (\) + _R (\)

Here,

The expression R (\) indicates a measure for un-simplicity. It is sometimes called

the regularization penalty. Adding a regularization penalty to the loss incentivizes

the network to try to minimize un-simplicity R (\) (or, equivalently, maximize

simplicity) while trying to minimize the original loss term L (\).
_ is a hyperparameter. Its value should be carefully chosen via trial and error. If

_ is too low, this is akin to no regularization, and the network becomes prone

to overfitting. If _ is too high, the regularization penalty will dominate, and the

network will not adequately minimize the actual loss term.

There are two popular ways of estimating R (\), outlined in sections 9.3.2 and 9.3.3,

respectively. Both try to minimize some norm (length) of the parameter vector (which is

basically a network descriptor). This is why regularization can be viewed as minimizing

the descriptor length.

9.3.2 L2 regularization

In L2 regularization, we posit that shorter-length vectors are simpler. In other words,

simplicity is inversely proportional to the square of the L2 norm (aka Euclidean norm).

Thus,

R (\) =
(
‖ ®w‖2 + ‖®b‖2

)
Overall, we minimize

L
(
®w , ®b

)
=

n−1∑
i=0

L (i )
(
®y (i ) , ȳ (i )

)
+ _

(
‖ ®w‖2 + ‖®b‖2

)
(9.21)

Compare this with equation 9.2.

L2 regularization is by far the most popular form of regularization. From this point

on, we often use L
(
®w , ®b

)
to mean the L2-regularized version (that is, equation 9.21).

The hyperparameter _ is often called weight decay in PyTorch. Weight decay is usually

set to a small number so that the second term of equation 9.21 (the norm of the weight

vector) does not drown the actual loss term. The following code shows how to instantiate

an optimizer with regularization enabled.

Listing 9.13 PyTorch code to enable L2 regularization

from torch import optim

optimizer = optim.SGD([params], lr=0.2, weight_decay=0.01)
Sets the weight
decay to 0.01
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9.3.3 L1 regularization

L1 regularization is similar in principle to L2 regularization, but it defines simplicity as

the sum of the absolute values of the weights and biases:

R (\) =
(
| ®w | + | ®b |

)
Thus, here we minimize

L
(
®w , ®b

)
=

n−1∑
i=0

L (i )
(
®y (i ) , ȳ (i )

)
+ _

(
| ®w | + | ®b |

)
(9.22)

9.3.4 Sparsity: L1 vs. L2 regularization

L1 regularization tends to create sparse models where many of the weights are 0. In

comparison, L2 regularization tends to create models with low (but nonzero) weights.

To understand this, consider figure 9.12, which plots the loss function and its deriva-

tive for both L1 and L2 regularization. Let w be a single element of the weight vector ®w.

(a) L1 regularization

(b) L2 regularization

Figure 9.12 L1 and L2 regularization
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In L1 regularization,

L (w) = |w |

mL (w)
mw

=


−1 if w < 0

0 if w = 0

1 if w > 0

Since the gradient is constant for all values of w, L1 regularization pushes the weight

toward 0 with the same step size at all values of w. In particular, the step toward 0 does

not reduce in magnitude when close to 0. In L2 regularization,

L (w) =w2

mL (w)
mw

= 2w

Here, the gradient keeps decreasing in magnitude as w approaches 0. Hence, w comes

closer to 0 but may never reach 0 since the updates take smaller and smaller steps as w
approaches 0. Therefore, L2 regularization produces more dense weight vectors than

L1 regularization, which produces sparse weight vectors with many 0s.

9.3.5 Bayes’ theorem and the stochastic view of optimization

In sections 6.6.2 and 6.6.3, we discussed maximum likelihood estimation (MLE) and

maximum a posteriori (MAP) in the context of unsupervised learning (you are en-

couraged to revisit those sections if necessary). Here, we study them in the context of

supervised learning.

In the supervised optimization process, we have samples of the input and known

output pairs (in the form of training data)
〈
®x (i ) , ȳ (i )

〉
. Of course, we can do the forward

pass and generate the network output at each training data point

®y (i ) = f
(
®x (i ) , \

)
where \ is the network’s parameter set (representing weights and biases together).

Suppose we view the sample training data generation as a stochastic process. We can

model the probability of a training instanceT (i ) =
〈
ȳ (i ) , ®x (i )

〉
given the current network

parameters \ as

p
(
T (i )

���\ ) ∝ e−‖ ȳ (i ) − f
(
®x (i ) ,\

)
‖2
= e−‖ ȳ (i ) −®y (i ) ‖2

This makes intuitive sense. At an optimal value of \ , the network output f
(
®x (i ) , \

)
would

match the GT ȳ (i ) . We want our model distribution to have the highest probability

density at the location where the network output matches the GT. The probability

density should fall off with distance from that location.

A little thought reveals that this Gaussian-like formulation, which leads to a regression-

loss-like numerator, is not the only one possible. We can use any loss function in the

numerator since all of them have the property of being minimum when the network
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output matches the GT and gradually increase as the mismatch grows. In general,

p
(
T (i )

��� \ ) ∝ e−L (i)
(
ȳ (i ) , f

(
®x (i ) ,\

))
= e−L

(i )
(
ȳ (i) ,®y (i )

)
Assuming the training instances are mutually independent, the probability of the entire

training dataset occurring jointly is the product of individual instance probabilities. If

we denote the entire training dataset asT ,

T =

{〈
ȳ (i ) , ®x (i )

〉}
Then

p (T |\) =
N∏
i=0

p
(
T (i )

��� \ ) ∝ N∏
i=0

e−L
(i )

(
ȳ (i ) ,®y (i )

)
= e−

∑N
i=0 L

(i )
(
ȳ (i ) ,®y (i )

)
= e−L (\ )

At this point, we can take one of two possible approaches described in the next two

subsections.

MLE-BASED OPTIMIZATION
In this approach, we choose the optimal value for the parameter set \ by maximizing

the likelihood

p (T |\) ∝ e−L (\ )

This is equivalent to saying we will choose the optimal parameters \ such that the

probability of occurrence of the training data is maximized. Thus the optimal parameter

set \∗ is yielded by

\∗ = ar gmax
\

p (T |\) = ar gmax
\

e−L (\ )

Obviously, the optimal \ that maximizes the likelihood is the one that minimizes L (\).
So, the maximum likelihood formulation is nothing but minimizing the total mismatch

between predicted and GT output over the entire training dataset.

MAP OPTIMIZATION
By Bayes’ theorem (equation 6.1),

p (\ |T ) = p (T |\) p (\)
p (T )

To estimate the optimal \ , we can also maximize the posterior probability on the left

side of this equation. This is equivalent to saying we will choose the optimal parameters

\ such that \ has the maximal conditional probability given the training dataset. Thus

the optimal value for the parameter set \ is yielded by

\∗ = ar gmax
\

p (\ |T ) = ar gmax
\

p (T |\) p (\)
p (T )

where the last equality is derived via Bayes’ theorem.
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Observing the previous equation, we see that the denominator p (T ) in the rightmost

term does not involve \ and hence can be dropped from the optimization. So,

\∗ = ar gmax
\

p (\ |T ) = ar gmax
\

p (T |\) p (\)

How do we model the a priori probability p (\)? We can use Occam’s razor and say that

we assign a higher a priori probability to smaller parameter values. Thus, we can say

p (\) ∝ e−_R (\ )

Then the overall posterior probability maximization becomes

\∗ = ar gmax
\

p (\ |T ) = ar gmax
\

p (T |\) p (\) = e−(L (\ )+_R (\ ) )

NOTE Maximizing this posterior probability is equivalent to minimizing the

regularized loss. Maximizing the likelihood is equivalent to minimizing the un-

regularized loss.

9.3.6 Dropout

In the introduction for section 9.3, we saw that too much expressive power (too many

perceptron nodes) sometimes prevents themachine fromdeveloping general abstractions

(aka experience). Instead, the machine may remember the training data instances (see

figure 9.11). This phenomenon is called overfitting. We have already seen that one way

to mitigate this problem is to add a regularization penalty—such as adding the L2 norm

of the weights—to the loss to discourage the network from learning large weight values.

Dropout is another method of regularization. Here, somewhat crazily, we turn off

random perceptrons in the network (set their value to 0) during training. To be precise,

we attach a probability pli with the ith node (perceptron) in layer l. In any training

iteration, the node (perceptron) is off with a probability of (1− p). Typically, dropout is
only enabled during training and is turned off during inferencing.

What good does it do? Well,

Dropout prevents the network from relying too much on a small number of nodes.

Instead, the network is forced to use all the nodes.

Equivalently, dropout encourages the training process to spread the weights to

multiple nodes instead of putting much weight on a few nodes. This makes the

effect somewhat similar to L2 regularization.

Dropoutmitigates co-adaptation: a behavior whereby a group of nodes in the network

behave in a highly correlated fashion, emitting similar outputs most of the time.

This means the network could retain only one of them with no significant loss of

accuracy.

DROPOUT SIMULATES AN ENSEMBLE OF SUBNETWORKS
Consider a small three-node intermediate layer of some neural network with dropout.

The kth input to this layer can turn on with probability pk . This means the probability

of that input node turning off is (1− pk). We can express this with a binary stochastic

variable Xk for k = 0 or k = 1 or k = 2. This variable Xk takes one of two possible values:
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0 or 1. The probability of it taking the value 1 is pk. In other words, p (Xk = 1) = pk,
and p (Xk = 0) = 1− pk. The output of this small three-node layer with dropout can be

expressed as

al =
2∑
k=0

Xkwka
l−1
k

We have three variables X0, X1, and X2, each of which can take two values. Altogether

we have 23 = 8 possible combinations. Each combination leads to a subnode shown in

figure 9.13. Each of these combinations has a probability of occurrence Pi , also shown

in the figure. These observations lead to a very important insight:

The expected value of the output—that is, E (al )—is the same as the expected

value of the output if we deployed the subnetworks in figure 9.13 randomly, with

probabilities Pi .

Why does this matter? Well, given a problem, none of us know the right number of

perceptrons for the network to deploy. One thing to do under these circumstances is to

deploy networks of various strengths randomly and take an average of their outputs.

We have just established that dropout (turning inputs off randomly) achieves the same

thing. But deploying a network where inputs get turned on or off randomly is much

simpler than deploying a large number of subnetworks. All we have to do is deploy a

dropout layer.

PYTORCH CODE FOR DROPOUT
In section 9.2.3, we created a simple two-layer neural network classifier to predict

whether a Statsville resident is a man, woman, or child based on height and weight data.

In this section, we show the same model with dropout layers added. Note that dropout

should be enabled only during training, not during inferencing. To do this in PyTorch,

you can call model.eval() before running inferencing. This way, your training and

inferencing code remains the same, but PyTorch knows under the hood when to include

the dropout layers and when not to.

Listing 9.14 Dropout

class ModelWithDropout(torch.nn.Module):
def __init__(self, input_size, hidden_size, output_size):

super(Model, self).__init__()
self.net = torch.nn.Sequential(

torch.nn.Linear(input_size, hidden_size),
torch.nn.Dropout(p=0.2), Instantiates a dropout layer with

a probability of dropout = 0.2

torch.nn.Linear(hidden_size, output_size),
torch.nn.Dropout(p=0.2)

)

def forward(self, X):
return self.net(X)
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(a) Subnetwork 0: probability
P0 = (1 − p0 ) (1 − p1 ) (1 − p2 )

(b) Subnetwork 1: probability
P1 = (1 − p0 ) (1 − p1 ) p2

(c) Subnetwork 2: probability
P2 = (1 − p0 ) p1 (1 − p2 )

(d) Subnetwork 3: probability
P3 = (1 − p0 ) p1 p2

Figure 9.13 Dropout simulates subnetworks: illustrated with a three-node intermediate layer of a neural
network. The probability of input node a (l−1)k being on is p (%k = 1) = pk .
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(e) Subnetwork 4: probability
P4 = p0 (1 − p1 ) (1 − p2 )

(f) Subnetwork 5: probability
P5 = p0 (1 − p1 ) p2

(g) Subnetwork 6: probability
P6 = p0 p1 (1 − p2 )

(h) Subnetwork 7: probability
P7 = p0 p1 p2
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Summary
Training is the process by which a neural network identifies the optimal values

for its parameters (weights and biases of the individual perceptrons). Training

progresses iteratively: in each iteration, we estimate the loss and run an optimization

step that updates the parameter values so as to decrease the loss. After doing this

many times, we hope to arrive at optimal parameter values.

In a supervised neural network, loss quantifies the mismatch between the desired

output and the network output over sampled training data instances. The desired

output (ground truth) is often estimated via manual effort. Training the neural

network essentially identifies the weights and biases of the neural network that

minimize the loss.

The discrepancy between the ground truth and network output can be expressed

in many different ways. Each corresponds to a different loss function. Denoting the

ground truth probabilities of all the possible classes given the ith training input

®x (i ) as a vector ȳ (i ) and the network output on the same as y (i ) ,

– Regression loss takes the L2 norm of the vector difference between the network

output and ground-truth vectors and is mathematically expressed as ‖®y (i ) −
ȳ (i ) ‖2 =∑N−1

j=0

(
y (i )j − ȳ (i )j

)2
.

– If the neural network is a classifier, it typically outputs a vector of class probabil-

ities. This means ®y (i ) =
[
p0

(
®x (i )

)
p1

(
®x (i )

)
pj

(
®x (i )

)
· · · pN−1

(
®x (i )

)]
where

pj
(
®x (i )

)
is the network estimated probability of the input belonging to class j,

and N is the number of possible classes. In general, given an input, a neural

network computes per-class scores: the class with the highest score is the pre-

dicted class. The scores are unbounded numbers and can be arbitrarily large or

small (even negative). The softmax operation converts them into probabilities.

If ®s =
[
s0 s1 s2 · · · sN−1

]
denotes the score vector, the corresponding soft-

max vector is ®y (i ) =
[
es0
S

es1
S

es2
S · · · esN−1

S

]
where S =

∑N−1
k=0 esk . The softmax

output vector consists of probabilities, meaning they are numbers between 0

and 1 and they sum to 1.

– Given the probability of each class, classifiers can employ the cross-entropy loss,

which can be expressed as −∑N−1
j=0 ȳ (i )j log

(
y (i )j

)
. Note that since the ground-

truth vector is one-hot, only a single term in this expression survives: the one

corresponding to the desired class, denoted j∗. The loss becomes the logarithm

of the corresponding network output, −log
(
y (i )j∗

)
, and is zero if y (i )j∗ = 1. This

agrees with our expectation: if the network is predicting the GT class with

probability 1, there is no loss.

– Since during training, softmax is almost always followed by cross-entropy loss,

PyTorch has a combined operator called softmax cross-entropy loss. It is

preferred over doing these operations individually because it has better

numerical properties.
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– Focal loss tries to tackle the data-imbalance problem by putting more weight on

the “hard” examples with higher loss.

– Hinge loss is another popular loss that becomes zero when the correct class is

predicted with the maximum score. Once that criterion is achieved, it no longer

tries to improve the relative values of scores.

Total loss can be obtained by adding the losses from all the individual training data

instances. However, this requires us to process all the training data points in every

iteration, which is prohibitively expensive. Hence, we sample a subset of training

data points to create a minibatch, estimate losses for each input data instance in

the minibatch, and add them to obtain an estimate for the total loss. This process

is known as stochastic gradient descent (SGD).

Optimization is the process of updating the neural network parameters (weights

and biases of perceptrons) so as to reduce the loss. We can plot the loss against

weights and bias values and obtain a hypersurface defined over the domain of

weights and bias values. Our ultimate goal is to reach the bottom (minimum point)

of this loss hypersurface. Optimization is geometrically equivalent to moving down

the hypersurface to reduce the loss. The steepest descent (toward the nearest

minimum) happens along a negative gradient.

We can combine several other criteria with the gradient to improve the conver-

gence to the minimum loss value. Each of them results in a different optimization

technique:

– Due to noisy estimations, the local gradient may not always point toward the

minimum, but it will have a strong component toward that minimum along

with other noisy components. Instead of blindly following the current gradient,

we can follow the direction corresponding to a weighted average of the current

gradient estimate and the gradient estimate from the previous iteration. This

is a recursive process, which effectively means the direction followed at any

iteration is a weighted average of the current and all gradient estimates from

the beginning of training. Recent gradients are weighted higher, and older

gradients are weighed lower. All these gradients have strong components toward

the minimum that reinforce each other, while the noisy components point in

random directions and tend to cancel each other. Thus the overall weighted sum

is a more reliable move toward the minimum. This is called momentum-based

gradient descent.

– A drawback of momentum is that it can result in overshooting the minimum.

Nesterov accelerated gradients correct this drawback by calculating gradients

via one-step lookahead. If the current update takes us to the other side of the

minimum, the gradient will have an opposite direction there. We take a weighted

average of the update suggested by momentum-based gradient descent and the

gradient at the estimated destination point. If we are far from the minimum, it

will be roughly equivalent to momentum-based gradient descent. But if we are

about to overshoot the minimum, there will be cancelation, and the update will
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be smaller than that of the pure momentum case. Thus we reduce the chances

of overshooting the minimum.

– AdaGrad is an optimization technique that imparts additional weight to infre-

quently changing axes of the loss hypersurface. The Adam optimizer combines

many advantages of other optimizers and is often the modern optimizer of

choice.

The principle of Occam’s razor essentially says that among adequate explanations,

the simplest one should be preferred. In machine learning, this leads to regular-

ization. There are typically many solutions to the loss-minimization problem. We

want to choose the simplest one. Accordingly, we add a penalty for departing from

simplicity (regularization loss) to whatever other losses we have. This incentivizes

the system to go for the simplest solution. Regularization loss is often the total

length of the parameter vector; thus, regularization pushes us toward solutions

with smaller absolute values for parameters.

Minimizing the loss function without the regularization term is equivalent to the

Bayesian maximum likelihood estimation (MLE) technique. On the other hand,

minimizing loss with the regularized term is equivalent to maximum a posteriori

(MAP) estimation.

Overfitting is a phenomenon where the neural network has learned all the nuances

of the training data. Since anomalous nuances in training data points are often

caused by noise, this leads to worse performance during inferencing. Overfitting is

symptomized by great accuracy (low loss) on training data but bad accuracy on test

data. It often happens because the network has more expressive power than neces-

sary for the problem and is trying to memorize all nooks and bends of the training

data. Regularization mitigates the problem. Another trick is dropout, where we

deliberately turn off a random subset of neurons during training iterations. This

forces all the neurons to learn to do the job with a reduced set of neurons.



10Convolutions in
neural networks

This chapter covers
The graphical and algebraic view of neural
networks

Two-dimensional and three-dimensional
convolution with custom weights

Adding convolution layers to a neural network

Image analysis typically involves identifying local patterns. For instance, to do face

recognition, we need to analyze local patterns of neighboring pixels corresponding

to eyes, noses, and ears. The subject of the photograph may be standing on a beach

in front of the ocean, but the big picture involving sand and water is irrelevant.

Convolution is a specialized operation that examines local patterns in an input

signal. These operators are typically used to analyze images: that is, the input is a

2D array of pixels. To illustrate this, we examine a few examples of special-purpose

convolution operations that detect the edges, corners, and average illumination

in a small neighborhood of pixels from an image. Once we have detected such

local properties, we can combine them and recognize higher-level patterns like

ears, noses, and eyes. We can combine those in turn to detect still higher-level struc-

tures like faces. The system naturally lends itself to multilayer convolutional neural

343
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networks—the lowest layers(closest to the input) detect edges and corners, and the

next layers detect ears, eyes, noses, and so forth.

In section 8.3, we discussed the linear neural network layer (aka fully connected layer).

There, every output is connected to all inputs. This means an output is derived by

taking a weighted linear combination of all input values. In other words, the output

is derived from a global view of the input. Convolution layers are different. These are

characterized by:

Local connections—Only a small subset of neighboring input values are connected

to one output value. Thus, each output is a weighted linear combination of only

a small set of adjacent input values. As a consequence, only local patterns in the

input are captured.

Shared weights—The same weights are slid over the entire input. Consequently,

– The number of weights is drastically reduced. Since convolution is typically

used on images where the input size is large (number of pixels), fully con-

nected layers are prohibitively expensive. Convolution repeats a (usually small)

number of weights across the input, thereby keeping the number of weights

manageable.

– The nature of the local pattern extracted is fixed all over the input. If the

convolution is an edge detector, it extracts edges all over the input. We cannot

have an edge detector at one region of the input and a corner detector at

another region, for instance. Of course, in a multilayered network, we can use

different convolution layers to capture different local patterns. In particular,

successive layers can capture local patterns in local patterns of the input, and so

on, thereby capturing increasingly complex and increasingly global patterns at

higher layers of the network.

The exact local pattern captured depends on the weights of the convolution operator.

We don’t know exactly what local patterns of the input to capture to recognize a specific

higher-level structure of interest (such as a face). This means we do not want to specify the

weights of the convolutions. The whole point of neural networks is to avoid such tailored

feature engineering. Rather, we want to learn—through the process of training described

in chapter 8—the weights of the convolution layers. Losses can be backpropagated

through convolution just as they are through fully connected (FC) layers.

Just like FC layers, convolution layers can be expressed as matrix-vector multiplica-

tions. The structure of the weight matrix is a special case of equation 8.8, but it is a matrix

all the same. Consequently, the forward propagation equation 8.7 and backpropagation

equations 8.31 and 8.33 are still applicable. Forward propagation and backpropagation

(training) through convolution proceed exactly as they do with FC layers.

Since the convolution is learned—as opposed to specified—in a neural network,

there is no telling what local patterns such layers will learn to extract (although, in

practice, the initial layers often learn to recognize edges and corners). All we know is

that each output in a given layer is derived from only a small subset of spatially adjoint
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input values from previous layers. The final output is derived from a hierarchical local

examination of the input.

NOTE Fully functional code for chapter 10, runnable via Jupyter Notebook, is

available at our public GitHub repository at http://mng.bz/M2lW.

10.1 One-dimensional convolution: Graphical and algebraical view
As always, we examine the process of convolution with a set of examples. We examine

convolutions in one, two, and three dimensions, but we start with one dimension for

ease of understanding.

The best way to visualize 1D convolution is to imagine a stretched, straightened rope

(the input array) over which a measuring ruler (the kernel) is sliding.

In figures 10.1, 10.2, and 10.3, the ruler (kernel) is shown as shaded boxes, while

the rope (input array) is shown as a sequence of white boxes. Successive steps

in the figure represent successive positions (aka slide stops) of the sliding ruler.

Notice that the shaded portion occupies a different position in each step.

Rulers in successive positions during sliding can overlap. They overlap by varying

amounts in figures 10.1, 10.2, and 10.3.

The rope and the ruler are discrete 1D arrays in reality. At each slide stop, the

ruler array elements rest on a subset of rope array elements.

We multiply each input array element by the kernel element resting on it and sum

the products. This is equivalent to taking a weighted sum of the input (rope)

elements that fall under the current position of the kernel (ruler), with the

kernel elements serving as weights. This weighted sum is emitted as a single out-

put element. One output element results from each slide stop of the tile. As the

ruler slides over the entire rope, left to right, a 1D output array is generated.

The following entities are defined for 1D convolution:

Input—A one-dimensional array. We typically use the symbol n to represent input

array length in 1D convolution. In figure 10.1, n = 7.
Output—A one-dimensional array. We typically use the symbol o to represent the

output array length in 1D convolution. In figure 10.1, o = 5. Section 10.2 shows

how to calculate the output size from the independent parameters.

Kernel—A small array of weights whose size is a parameter of the convolution.

We typically use the symbol k to represent the kernel size in 1D convolution. In

figure 10.1, k = 3; in figure 10.3, k = 2.
Stride—Thenumber of input elements over which the kernel slides after completing

a single step. We typically use the symbol s to represent the stride in 1D convolution.

This is a parameter of the convolution. In figure 10.1, s = 1; in figure 10.2, stride is

2. A stride of 1 means there is a slide stop at each successive element of the input.

So, the output has roughly the same number of elements as the input (they may

not be exactly equal because of padding, explained next). A stride of 2 means

http://mng.bz/M2lW
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30 25.08Step 4

Figure 10.1 1D convolution with a local averaging kernel of size 3, stride 1, and valid padding on the
input array of size 7

there is a slide stop at every other input element. So, the output size is roughly

half of the input size. A stride of 3 means the output size is roughly one-third the

input size.

Padding—As the kernel slides toward the extremity of the input array, parts of it

may fall outside the input array. In other words, part of the kernel falls over ghost
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11 21-1 4 25 4.62 15.18

0.33 0.33 0.33

30 25.08

Step 2

Figure 10.2 1D convolution with a local averaging kernel of size 3, stride 2, and valid padding

input elements. Figure 10.4 shows such a situation: the ghost input array elements

are shown with dashed boxes. There are multiple strategies to deal with this:

– Valid padding—We stop sliding whenever any element of the kernel falls outside

the input array. No ghost input elements are involved; the entire kernel always

falls on valid input elements (hence the name valid). Note that this implies we

will have fewer outputs than inputs. If we try to generate an output corresponding

to, say, the last input element, all but the first kernel element will fall outside

the input on ghost elements. So, we have to stop when the right-most kernel

element falls on the right-most input element (see figures 10.1, 10.2, and 10.3).

At this point, the left-most kernel element falls on the (N − k)th input element.

We do not generate output for the last k inputs. Hence, even with a stride of 1

for valid padding, the output is slightly smaller than the input.

– Same (zero) padding—Here, we do not want to stop early. If the stride is 1, the

output size matches the input size (hence the name same). We continue to slide

the kernel until its left end falls on the right-most input. At this point, all but

the left-most kernel element is falling on ghost input elements. We pretend

these ghost input elements have a value of 0 (zero padding).
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Step 10

Figure 10.3 1D convolution with an edge-detection kernel of size 2, stride 1, valid padding. Not all slide
stops (that is, steps) are shown.

Let’s denote the input array’s domain by S. It’s a 1D grid:

S = [0,W − 1]

Every point in S is associated with a value Xx. Together, these values form the input

X . On this grid of input points, we define a subgrid So of output points. So is obtained
from S by applying stride-based stepping on the input. Assuming s = [sW ] denotes
the stride, the first slide stop has the top-left corner of the rope at (x = 0). The next
slide stop is at (x = sW ), and the next is (x = 2sW ), and so on. When we reach the right

end, we stop. Overall, the output grid consists of the slide-stop points at which the

top-left corner of the kernel (ruler) rests as it sweeps over the input volume: that is,

So = {(x = 0) , (x = sW ) · · · , }. There is an output for each point in So.
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Figure 10.4 1D convolution with a local averaging kernel of size 3, stride 2, and zero padding

Equation 10.1 shows how a single output value is generated in 1D convolution. X
denotes input,Y denotes output, andW denote kernel weights:

Yx =
kW∑
j=0

Xx+ jWj ∀ (x) ∈ So (10.1)

Note that when the kernel of dimension kW (ruler) has its origin on x, it covers all
input pixels in the domain [x.. (x + kW )]. These are the pixels participating in equa-

tion 10.1. Each of these input pixels is multiplied by the kernel element covering it.

Match equation 10.1 with figures 10.1, 10.2, and 10.3.
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10.1.1 Curve smoothing via 1D convolution

In this section, we look at how to perform local averaging via convolution, from a

physical and algebraic viewpoint, to get a comprehensive understanding. The 1D kernel

with weight vector ®w =

[
1
3

1
3

1
3

]
(shown in figure 10.1) essentially takes the moving

average of successive sets of three input values. As such, it is a local averaging (aka

smoothing) operator. This becomes apparent if we examine the plots of the raw input

vector with regard to the input vector convolved with the kernel (figure 10.5). The

input (solid line) weaves up and down, while the output is a smooth curve (dashed line)

through the mean position of the input. In general, the output produced by convolving

by a kernel with all equal weights (the weights must be normalized, meaning the sum

of the weights is 1) is a smoothed (locally averaged) version of the input. Why do we

want to smooth an input vector? Because it captures the broad trend in the input data

while eliminating short-term fluctuations (often caused by noise). If you are familiar

with Fourier transforms and frequency domains, you can see that this is essentially a low-

pass filter, eliminating short-term, high-frequency noise and capturing the longer-term,

low-frequency variation in the input data array.

Input
Smoothed output

Figure 10.5 Graph of the input array (solid) and output array (dashed) from figure 10.1. Note that the
output produced by convolving by the kernel with all equal normalized weights is a smoothed (locally
averaged) version of the input. Such local soothing captures the low-frequency (long-term) broad trend
of the function by eliminating high-frequency (short-term) noise.

10.1.2 Curve edge detection via 1D convolution

As mentioned earlier, a convolution’s physical effect on an input array radically changes

with the weights of the convolution kernel. Now let’s examine a very different kernel

that detects edges in the input data.
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An edge is defined as a sharp change in the values in an input array. For instance, if

two successive elements in the input array have a large absolute difference in values,

that is an edge. If we graph the input array (that is, plot the input array values in the y
axis against the array indices), an edge will appear in the graph. For instance, consider

the input array in figure 10.3 (graphed in figure 10.6). At indices 0 to 3, we have values

in the neighborhood of 10. At index 4, the value jumps to 51. We say there is an edge

between indices 3 and 4. The values then remain in the neighborhood of 50 at indices

4 to 7. Then they jump back to the neighborhood of 10 in the remaining indices. We

say there is another edge between indices 7 and 8. The convolution we examine here

will emit a high response (output value) exactly at the indices of the jump—3 and

7—while emitting a low response at other indices. This is an edge-detection convolution

(filter). Why do we want to detect edges? Because edges are important for understanding

images. Locations at which the signal changes rapidly provide more semantic clues than

flat uniform regions. Experiments on the human visual cortex have established that

humans pay more attention to locations where color or shade changes rapidly than to

flat regions.

Input
Edge-detection output

Figure 10.6 Graph of the input array (solid) and output array (dashed) from figure 10.3. The output
produced by convolving the kernel with anti-symmetric normalized weights spikes at the edges of
the input. Edges provide vital clues for understanding the signal.

10.1.3 One-dimensional convolution as matrix multiplication

Algebraically, the convolution with a kernel of size 3, stride 1, and valid padding can be

shown as follows. Let the input array be
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®x =
[
x0 x1 x2 x3 x4 · · · xn−3 xn−2 xn−1

]
The convolving kernel is a matrix of weights of size 3; let’s denote it as

®w =

[
w0 w1 w2

]
As shown in figure 10.1, in step 0 of the convolution, we place this kernel on the

0th element of the input x0. Thus, w0 falls on x0,w1 falls on x1, and w2 falls on x2:[
x0 x1 x2 x3 x4 · · · xn−3 xn−2 xn−1

]
, where the bold typeface identifies the

input elements aligned with kernel weights. We multiply elements on corresponding

positions and sum them, yielding the 0th element of the output y0 =w0x0 +w1x1 +w2x2.
Then we shift the kernel by one position (assuming the stride is 1; if the stride were 2,

we would move the kernel two positions, and so on). So w0 falls on x1, w1 falls on x2,
and w2 falls on x3: [

x0 x1 x2 x3 x4 · · · xn−3 xn−2 xn−1
]

Again, we multiply elements at corresponding positions and sum them, yielding the first

element of the output y1 =w0x1 +w1x2 +w2x2. Similarly, in the next step, we right-shift

the kernel one more time: [
x0 x1 x2 x3 x4 · · · xn

]
The corresponding output is y2 =w0x2 +w1x3 +w2x4. Overall, a stride 1, valid padding

convolution of a vector ®x with a weight kernel ®w yields the output

®y = ®w ~ ®x =


w0x0 +w1x1 +w2x2

w0x1 +w1x2 +w2x2
...


Can you see what is happening? We are effectively taking linear combinations (see

section 2.9) of successive sets of kernel_size (here, 3) input elements. In other words,

the output is a moving weighted local sum of the input array elements. Depending on the

actual weights, we are extracting local properties of the input.

For valid padding, the last output is yielded by[
x0 x1 x2 x3 x4 · · · xn−3 xn−2 xn−1

]
which generates the output

yn−3 =w0xn−3 +w1xn−2 +w2xn−1

For the same zero padding, the last output is yielded by[
x0 x1 x2 x3 x4 · · · xn−1 0 0

]
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which generates the output

yn−1 =w0 · xn−1 +w1 · 0+w2 · 0

In section 8.3.1, we saw that the FC (aka linear) layer can be expressed as a multiplication

of the input vector by a weight matrix. Now, we will express convolution as matrix-

vector multiplication. The weight matrix has a block-diagonal structure, as shown in

equation 10.2. It is a special case of equation 8.8. As such, the forward propagation

equation 8.7 and backpropagation equations 8.31 and 8.33 are still applicable. Thus,

forward propagation and backpropagation (training) through convolution proceeds

exactly as with FC layers.

Equation 10.2 expresses kernel_size 3, stride 1, valid padding convolution as a multi-

plication of a weight matrixW with input vector ®x:

®w ~ ®x =W ®x =


w0x0 +w1x1 +w2x2

w0x1 +w1x2 +w2x2
...


=

W
(
conv weight matrix: kernel size 2, stride 1, valid pad. dim: (n−2)×n

)︷                                                                ︸︸                                                                ︷

w0 w1 w2 0 0 0 · · · 0 0 0

0 w0 w1 w2 0 0 · · · 0 0 0

0 0 w0 w1 w2 0 · · · 0 0 0

0 0 0 w0 w1 w2 · · · 0 0 0

0 0 0 0 w0 w1 · · · 0 0 0

...

0 0 0 0 0 0 · · · w0 w1 w2



®x
(
input vector, size n × 1

)︷ ︸︸ ︷

x0

x1

x2

x3

x4
...

xn−1



(10.2)

Notice the sparse, block-diagonal nature of the weight matrix in equation 10.2. This is

characteristic of convolution weight matrices. Each row contains all the kernel weights

at contiguous positions. The size of the kernel is typically much less than the input

vector size. Of course, for matrix multiplication to be possible, the number of columns

in the weight matrix must match the size of the input vector. Thus, there are many

vacant positions in the row besides those occupied by kernel weights. We fill these

vacant elements with zeros. Each row of the weight matrix thus has all the kernel weights

appearing somewhere contiguously, and the rest of the row is filled with zeros. The

position of kernel weights shifts rightward with each successive row. This is what gives the

block-diagonal appearance to the weight matrix. It also simulates the sliding of the

kernel required for convolution. Each row represents a specific slide stop and generates

one element of the output vector. Since the kernel is at a fixed position of the row and

all other row elements are zero, only the input elements corresponding to the kernel
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positions are picked up. Other input elements are multiplied by zero: that is, they are

ignored.

Equation 10.2 depicts a stride of 1. For instance, if the stride is 2, the kernel weights

will shift by two positions in successive rows. This is shown in equation 10.3:

®w ~ ®x =W ®x =

W
(
conv weight matrix: kernel size 2, stride 2, valid pad. dim: b (n−2)

2 +1c×n
)︷                                                                ︸︸                                                                ︷

w0 w1 w2 0 0 0 · · · 0 0 0

0 0 w0 w1 w2 0 · · · 0 0 0

0 0 0 0 w0 w1 · · · 0 0 0

...

0 0 0 0 0 0 · · · w0 w1 w2



®x
(
input vector, size n × 1

)︷ ︸︸ ︷

x0

x1

x2

x3

x4
...

xn−1



(10.3)

Note that while equation 10.3 provides a conceptual matrix-multiplication view of

convolution, it is not the most efficient way of implementing convolution. PyTorch and

other deep learning software have extremely efficient ways of implementing convolution.

10.1.4 PyTorch: One-dimensional convolution with custom weights

We have discussed the convolution of a 1D input vector with two specific 1D kernels.

We have seen that a kernel with uniform weights, such as
[
1
3

1
3

1
3

]
, results in local

smoothing of the input vector, whereas a kernel with antisymmetric weights, such as[
1
2

−1
2

]
, results in an output vector that spikes at the edge locations in the input vector.

Now we will see how to set the weights of a 1D kernel and perform 1D convolution with

that kernel in PyTorch.

NOTE This is not a typical PyTorch operation. The more typical operation is

to create a neural network with a convolution layer (where we specify the size,

stride, and padding but not the weights) and then train the network so that the

weights are learned. We usually don’t care about the exact values of the learned

weight. Then why are we discussing how to set the weights of a kernel in PyTorch?

Mainly to show how convolution works in PyTorch, the various parameters of the

convolution object, and so forth.

Listing 10.1 PyTorch code for 1D local averaging convolution

import torch

x = torch.tensor( Instantiates a noisy input vector. Follows equation y = 5x

[-1., 4., 11., 14., 21., 25., 30.])
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w = torch.tensor([0.33, 0.33, 0.33])
Instantiates the weights of the
convolutional kernel

x = x.unsqueeze(0).unsqueeze(0)
w = w.unsqueeze(0).unsqueeze(0)

PyTorch expects inputs and weights to be of the form
N ×C × L, whereN is the batch size, C is the
number of channels, and L is the sequence length.
Here,N and C are 1. torch.unsqueeze converts
our L-length vector into a 1 × 1 × L tensor.

conv1d = torch.nn.Conv1d(1, 1, kernel_size=3, Instantiates the smoothing kernel
stride=1, padding=[0], bias=False)

conv1d.weight = torch.nn.Parameter(w, requires_grad=False) Sets the kernel weights

with torch.no_grad():
Instructs PyTorch to not compute gradients
since we currently don’t require them

y = conv1d(x) Runs the convolution

Listing 10.2 PyTorch code for 1D edge detection

import torch

x = torch.tensor( Instantiates the input vector with edges
[10., 11., 9., 10., 101., 99.,
100., 101., 9., 10., 11., 10.])

w = torch.tensor([0.5, -0.5]) Instantiates the weights of the edge-detection kernel

x = x.unsqueeze(0).unsqueeze(0) Converts the inputs and weights to 1 × 1 × L
w = w.unsqueeze(0).unsqueeze(0)

conv1d = torch.nn.Conv1d(1, 1, kernel_size=3, Instantiates the edge-detection kernel
stride=1, padding=[0], bias=False)

conv1d.weight = torch.nn.Parameter(w, requires_grad=False) Sets the kernel weights

with torch.no_grad():
Instructs PyTorch to not compute gradients
since we currently don’t require them

y = conv1d(x) Runs the convolution

These listings show how to perform 1D convolution in PyTorch using the torch.nn.

Conv1d class. This is typically used in larger neural networks like those in subsequent

chapters. We can alternatively use torch.nn.functional.conv1d to directly invoke the

mathematical convolution operation. This takes input and weight tensors and returns

the convolved output tensor, as shown in listing 10.3.
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Listing 10.3 PyTorch code directly invoking the convolution function

import torch

x = torch.tensor( Instantiates the input tensor
[10., 11., 9., 10., 101., 99.,
100., 101., 9., 10., 11., 10.])

w = torch.tensor([0.5, -0.5]) Instantiates the weight tensor

x = x.unsqueeze(0).unsqueeze(0) Converts the inputs and weights to 1 × 1 × L
w = w.unsqueeze(0).unsqueeze(0)

y = torch.nn.functional.conv1d(x, w, stride=1) Runs the convolution

10.2 Convolution output size
Consider a kernel of size k sliding over an input of size n with stride s. Given a kernel of

size k, if the left end is at index l, the right end is at index l + (k − 1). Each shift advances

the left (as well as the right) end of the kernel by s. If the initial position of the kernel

was at index 0, then after m shifts, the left end is at ms. Correspondingly, the right end
is at ms + (k − 1). Assuming valid padding, this right-end position must be less than or

equal to (n − 1) (the last valid position of the input array).

How many times can we shift before the kernel spills out of the input? In other words,

what is the maximum possible value of m, such that

ms + (k − 1) ≤ (n − 1)

The answer is

m = b (n − 1) − (k − 1)
s

c = b (n − k)
s

c
But each shift produces one output value. The output size of the convolution, o, with
valid padding, is m + 1 (the plus one is to account for the initial position). Hence,

o = b (n − k)
s

c + 1

If we are zero-padding with p zeroes on each side of the input, the input size becomes

n + 2p. The corresponding output size is

o = b (n + 2p − k)
s

c + 1 (10.4)

This can be extended to an arbitrary number of dimensions by repeating it for each

dimension.

10.3 Two-dimensional convolution: Graphical and algebraic view
It is often said that an image is worth a thousand words. What is an image? As far

as deep learning is concerned, it is a discrete two-dimensional entity—a 2D array of

pixel values describing a scene at a fixed time. Each pixel represents a color intensity
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value. The color value can be a single element representing a gray level, or it can be

three-dimensional, corresponding to R(ed), G(reen), B(lue) intensity values. (You may

want to revisit section 2.3 before proceeding.)

At the time of this writing, image analysis is the most popular application of con-

volution. These applications use convolution to extract local patterns. How do we do

this? In particular, can we rasterize the image (thus converting it into a vector) and use

one-dimensional convolution?

The answer is no. To see why, examine figure 10.7. What is the spatial neighborhood

of the pixel at location (x = 0, y = 0)? If we define the neighborhood of a pixel as the set
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Figure 10.7 2D convolution with a local averaging kernel of size [3, 3], stride [1, 1], and valid padding.
Each pixel is shown as a small rectangle, with the pixel’s gray level written in the rectangle. The shaded
rectangle identifies the current location of the kernel. The kernel is sliding over the input in raster
order. Successive steps indicate slide stops. For each pixel that is overlapped by the kernel, the weight
of the kernel element falling on it is written in small font.
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of pixels within a Manhattan distance of [2, 2] with that pixel at the top-left corner,

the neighborhood of (x = 0, y = 0) consists of the set of pixels covered by the shaded

rectangle in figure 10.7, step 0. But these pixelswill not be neighboring elements in a rasterized

array representation of the image. For instance, the pixel (x = 0, y = 1), with value 6, is the

fifth element in the rasterized array and, as such, will not be considered a neighbor

of (x = 0, y = 0), which is the 0th element in the rasterized array. Two-dimensional

neighborhoods are not preserved by rasterization. So, two-dimensional convolution has

to be a specialized operation beyond merely rasterizing 2D arrays into 1D and applying

1D convolution.

Euclidean distance and Manhattan distance

Euclidean distance measures the straight line distance between two points, whereas
Manhattan distance measures the distance between two points with a constraint that
you can only walk parallel to the axes (just like on the streets of Manhattan). Let’s
look at an example.

Consider two points A (3, 3) and B (6, 7). The Euclidean distance between A and B is
the length of the line segment AB, which can be computed as

√
(6− 3)2 + (7− 3)2 = 5.

The Manhattan distance between A and B is (6− 3) + (7− 3) = 3+ 4= 7. In this chapter,
we represent the Manhattan distance as [3, 4] to capture the distance along each
axis separately.

The best way to visualize 2D convolution is to imagine a wall (the input image) over

which a tile (the kernel) is sliding:

In figures 10.7, 10.8 and 10.9, the shaded rectangle depicts the tile (kernel), while

the larger white rectangle containing it depicts the wall (input image). Successive

steps in the figure represent successive positions (aka slide stops) of the sliding

tile. Notice that the shaded rectangle occupies a different position in each step.

Tiles in successive positions during sliding can overlap. They overlap by varying

amounts in figures 10.7, 10.8, and 10.9.

The wall and the tile are discrete 2D arrays in reality. At each slide stop, the tile

array elements rest on a subset of wall array elements.

We multiply each input array element by the kernel element resting on it and

sum the products. This is equivalent to taking a weighted sum of the input (wall)

elements that fall under the current position of the kernel (tile), with the kernel

elements serving as weights. This weighted sum is emitted as a single output

element. One output element results from each slide stop of the tile. As the tile

slides over the entire wall, left to right and top to bottom, a 2D output array is

generated.

In 2D convolution, the input array, kernel size, and stride are all 2D vectors. Just as in

1D convolution, the following entities are defined for 2D convolution:
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Figure 10.8 2D convolution with a local averaging kernel of size [3, 3], stride [2, 2], and valid padding

Input—A two-dimensional array. We typically use the symbol [H ,W ] (indicating
the height and width of the array, respectively) to represent the input array size in

2D convolution. In figure 10.7, H = 5,W = 5.

Output—A two-dimensional array. We typically use the symbol ®o = [oH , oW ] to rep-

resent output array dimensions in 2D convolution. For instance, in figure 10.7,

®o = [3, 3]. In section 10.2, we saw how to compute the output size for a single

dimension. We have to repeat that computation once per dimension to obtain the

output size in higher dimensions.

Kernel—A small two-dimensional array of weights whose size is a parameter of the

convolution. We typically use the symbol ®k = [kH , kW ] to represent the kernel size

(height, width) in 2D convolution. If (x , y) denotes the current position of the top-

left corner of the 2D kernel, the bottom-right corner is at (x + kW − 1, y + kH − 1).
In figure 10.7, ®k = [3, 3]; in figure 10.9, ®k = [2, 2].
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Figure 10.9 2D convolution with an edge-detection kernel of size 2, stride 1, and valid padding. Not all
slide stops (that is, steps) are shown. Notice how the output is zero at a uniform location but spikes when
one-half of the kernel falls on low values while the other half falls on high values.

Stride—The number of input elements over which the kernel slides on completing

a single step. We typically use the symbol ®s = [sH , sW ] to represent the stride size

(height, width) in 2D convolution. If (x , y) denotes the current position of the

top-left corner of the 2D kernel, the next shift will put the top-left corner of the

kernel at (x + sW , y) (see, for instance, the transition from step 0 to step 1 or step 1

to step 2 in figure 10.7). If this transition causes portions of the tile to fall outside

the wall—that is, x + sW ≥W—we set the next slide position such that the top-left

corner of the kernel falls on (0, y + 1) (see, for instance, the transition from step 2

to step 3 or step 5 to step 6 in figure 10.7). If y + sH ≥H , we stop sliding. Stride size

is a parameter of the convolution. In figure 10.7, ®s = [1, 1]; in figure 10.8, stride is

®s = [2, 2]. As in the 1D case, a stride of ®s = [1, 1] means there is a slide stop at each

successive element of the input. So, the output has roughly the same number of

elements as the input (they may not be exactly equal because of padding). A stride

of ®s = [2, 2] means each row of the input will yield half the row size worth of output

elements, and each column will generate half the column size worth of output

elements. Hence, the output size is roughly a quarter of the input size. Overall,
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the reduction factor of the input-to-output size roughly matches the product of

the elements in the stride vector.

Padding—As the kernel slides toward the extremity of the input array along the

width and/or height, parts of it may fall outside the input array. In other words, part

of the kernel falls over ghost input elements. As in the 1D case, we deal with this

via padding. Padding strategies in 2D convolution are straightforward extensions

from 1D:

– Valid padding—We stop sliding whenever any element of the kernel falls outside

the input array, either in width and/or in height. No ghost input elements are

involved; the entire kernel always falls on valid input elements (hence the name

valid).

– Same (zero) padding—Here, we do not want to stop early. We keep sliding as long

as the top-left corner of the kernel falls on a valid input position. So, if the stride

is 1, 1, the output size will match the input size (hence the name same). When we

slide near the end of an input row (right extremity of the input), the right-most

columns of the kernel will fall outside the input. Similarly, when we slide toward

the bottom of the input, the bottom rows of the kernel will fall outside. If we

slide near the bottom-right corner of the input, both the right-most columns

and bottommost rows will fall outside the input. The rule is that all ghost input

values outside the true boundaries of the input array are replaced by zeros.

Let’s denote the input image domain by S. It is a 2D grid whose domain is

S = [0, H − 1] × [0,W − 1]

Every point in S is a pixel with a color value (which can be a scalar—a gray-level value—

or a vector of three values, R, G, B. On this grid of input points, we define a subgrid So
of output points. So is obtained from S by applying stride-based stepping on the input.

Assuming ®s = [sH , sW ] denotes the 2D stride vector, the first slide stop has the top-left

corner of the brick at ®p0 ≡ (y = 0, x = 0). The next slide stop is at ®p1 ≡ (y = 0, x = sW ), and
the next is at ®p2 ≡ (y = 0, x = 2sW ). When we reach the right end, we increment y. Overall,

the output grid consists of the slide-stop points where the top-left corner of the kernel

(brick) rests as it sweeps over the input volume: So =
{ ®p0 , ®p1 , · · · , }. There is an output

for each point in So.
The kernel also has two dimensions (in practice, it has two more dimensions corre-

sponding to the input channels and batch—we are ignoring them now for simplicity—as

discussed in section 10.3.3). Equation 10.5 shows how a single output value is generated

in 2D convolution. X denotes input,Y denotes output, andW denote kernel weights:

Yy ,x =
kH∑
i=0

kW∑
j=0

Xy+i ,x+ jWi , j ∀ (y , x) ∈ So (10.5)

Note that the kernel (tile) has its origin on Xy ,x. Its dimensions are (kH , kW ). So, it
covers all input pixels in the domain [y.. (y + kH )] × [x.. (x + kW )]. These are the pixels
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participating in equation 10.5. Each of these input pixels is multiplied by the kernel

element covering it. Match equation 10.5 with figures 10.7, 10.8, and 10.9.

10.3.1 Image smoothing via 2D convolution

In section 10.1.1, we discussed one-dimensional local smoothing. We observed how it

gets rid of local fluctuations so that longer-term patterns are discernible more cleanly.

The same thing happens in two dimensions. Figure 10.10a shows an image with some

text written on a background with salt-and-pepper noise. The noise has no semantic

significance; it is the text that needs to be analyzed (perhaps via optical character

recognition). We can eliminate the noise via 2D convolution using a kernel with uniform

weights, such as

W =


W0,0 =

1
9 W0,1 =

1
9 W0,2 =

1
9

W1,0 =
1
9 W1,1 =

1
9 W1,2 =

1
9

W2,0 =
1
9 W2,1 =

1
9 W2,2 =

1
9


The resulting denoised/smooth image is shown in figure 10.10b. What does the uniform

kernel do? To see that, look at figure 10.8. It should be obvious that the kernel causes

each output pixel to be a weighted local average of the neighboring 3× 3 input pixels.

(a) Input image (b) Smoothed/denoised output image

Figure 10.10 Denoising/smoothing a noisy image by applying 2D convolution
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1
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9
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1
9

1
9

1
9

















to figure 10.11a

NOTE Fully functional code for image smoothing, executable via Jupyter Note-

book, can be found at http://mng.bz/aDM7.

10.3.2 Image edge detection via 2D convolution

Not all pixels in an image have equal semantic importance. Imagine a photograph of a

person standing in front of a white wall. The pixels belonging to the wall are uniform

in color and uninteresting. The pixels that yield the most semantic clues are those

belonging to the silhouette: the edge pixels. This agrees with the science of human

vision, where, as we mentioned earlier, experiments indicate that the human brain pays

http://mng.bz/aDM7
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more attention to regions with sharp changes in color. Humans treat sound in a very

similar fashion, ignoring uniform buzz (such sounds often induce sleep) but becoming

alert when the volume or frequency of the sound changes. Thus, identifying edges in

an image is vital for image understanding.

Edges are local phenomena. As such, they can be identified by 2D convolution with

specially chosen kernels. For instance, the vertical edges in figure 10.11b were produced

by performing 2D convolution on the image in figure 10.11a using the kernel

W =


W0,0 =−0.25 W0,1 = 0.25

W1,0 =−0.25 W1,1 = 0.25

︸                                 ︷︷                                 ︸
2D kernel for vertical edge detection

Likewise, the vertical edges in figure 10.11c were produced by performing 2D convolu-

tion on the image in figure 10.11a using the kernel

W =


W0,0 =−0.25 W0,1 =−0.25

W1,0 = 0.25 W1,1 = 0.25

︸                                   ︷︷                                   ︸
2D kernel for horizontal edge detection

How do these kernels identify edges? To see this, look at figure 10.9. In a neighborhood

with equal pixel values (for example, a flat wall), the kernel in figure 10.11b will yield

zero (the positive and negative kernel elements fall on equal values, and their weighted

sum is zero). Thus this kernel suppresses uniform regions. On the other hand, it has a

high response if there is a sharp jump in color (the negative and positive halves of the

kernel fall on very different values, and the weighted sum is a large negative or large

positive).

NOTE Fully functional code for edge detection, executable via Jupyter Notebook,

can be found at http://mng.bz/g4JV.

10.3.3 PyTorch: 2D convolution with custom weights

We have discussed the convolution of 2D input arrays with two specific 2D kernels.

We have seen that a kernel with uniform weights, such as


1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9


, results in local

smoothing of the input array, whereas a kernel with antisymmetric weights, such as
1
4

−1
4

1
4

−1
4

 , results in an output array that spikes at the edge locations in the input array.

Now we will see how to set the weights of a 2D kernel and perform 2D convolution with

that kernel in PyTorch.

http://mng.bz/g4JV
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(a) Input image

(b) Vertical edges detected by applying 2D

convolution

[
−0.25 0.25

−0.25 0.25

]
to figure 10.11a

(c) Horizontal edges detected by applying 2D

convolution

[
−0.25 −0.25
0.25 0.25

]
to figure 10.11a

Figure 10.11 Edge detection via 2D convolution. Identifying the vertical and horizontal edges in an
image often helps us analyze the image.
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NOTE This is not a typical PyTorch operation. The more typical operation is to

create a neural network with a convolution layer (where we specify the size, stride,

and padding but not the weights) and then train the network so that the weights

are learned. We usually don’t care about the exact values of the learned weight. A

sample neural network with a 2D convolution layer can be seen in section 10.6.

Listing 10.4 shows local averaging convolution in two dimensions. While we saw in

section that input arrays are 2D tensors of shape H ×W, the PyTorch interface to

convolution expects 4D tensors of shape N × C × H ×W as input:

The first dimension, N , stands for the batch size. In a real neural network, inputs

are fed in minibatches instead of one input instance at a time (this is for efficiency

reasons, as discussed in section 9.2.2). N stands for the number of input images

contained in the minibatch.

The second dimension, C, stands for the number of channels. For the input to the

entire neural network, in the case of RGB images, we have three channels R (red),

G (green), and B (blue); in the case of grayscale images, we only have a single

channel. For other layers, the number of channels can be anything, depending

on the neural network’s architecture. Typically, layers further from the input and

closer to the output have more channels. Only channels at the grand input have

fixed, clearly discernible physical significance (like R, G, B). Channels at the input

to successive layers do not.

The third dimension, H, stands for the height.
The fourth dimension,W, stands for the width.

The weight tensor of a PyTorch Conv2D object has to be a 4D tensor. The listing shows

a single grayscale image of size 5 × 5 as input. Hence N = 1, C = 1, H = 5, andW = 5.

x is instantiated as a 2D tensor of size 5× 5. To convert it to a 4D tensor, we use the

torch.unsqueeze() function, which adds an extra dimension to the input.

Listing 10.4 PyTorch code for 2D local averaging convolution

import torch

x = load_img() Loads a noisy grayscale input image

w = torch.tensor( Instantiates the weights of the convolutional kernel
[

[0.11, 0.11, 0.11],
[0.11, 0.11, 0.11],
[0.11, 0.11, 0.11]

]
)

x = x.unsqueeze(0).unsqueeze(0)

PyTorch expects inputs and weights to be
of the formN × C × H ×W , whereN
is the batch size, C is the number of
channels, H is the height, andW is the
width. Here,N = 1 because we have a
single image. C = 1 because we are
considering a grayscale image. H andW
are both 5 because the input is a 5 × 5

array. unsqueeze converts our 5 × 5

tensor into a 1 × 1 × 5 × 5 tensor.

w = w.unsqueeze(0).unsqueeze(0)
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conv2d = torch.nn.Conv2d(1, 1, kernel_size=2,
stride=1, bias=False) Instantiates the 2D smoothing kernel

conv2d.weight = torch.nn.Parameter(w, requires_grad=False) Sets the kernel weights

with torch.no_grad():
Instructs PyTorch to not compute gradients
since we currently don’t require them

y = conv2d(x) Runs the convolution

Listing 10.5 PyTorch code for 2D edge detection

import torch

x = load_img() Loads a grayscale input image with edges

w = torch.tensor( Instantiates the weights of the convolutional kernel
[[-0.25, 0.25],
[-0.25, 0.25]]

)

x = x.unsqueeze(0).unsqueeze(0) Converts the inputs to 1 × 1 × 4 × 4

w = w.unsqueeze(0).unsqueeze(0)

conv2d = torch.nn.Conv2d(1, 1, kernel_size=2, Instantiates a 2D edge-detection kernel
stride=1, bias=False)

conv2d.weight = torch.nn.Parameter(w, requires_grad=False) Sets the kernel weights

with torch.no_grad():
Instructs PyTorch to not compute gradients
since we currently don’t require them

y = conv2d(x) Runs the convolution

10.3.4 Two-dimensional convolution as matrix multiplication

In section 10.1.3, we saw how 1D convolution can be viewed as multiplying the input

vector by a block-diagonal matrix (shown in equation 10.3). The idea can be extended

to higher dimensions, although the matrix of weights becomes significantly more

complex. Nonetheless, it is important to have a mental picture of this matrix. Among

other things, it will help us better understand transposed convolution. In this matrix

multiplication-oriented view of 2D convolution, the input image is represented as a

rasterized 1D vector. Thus, an input matrix of sizem × n becomes anmn-sized vector. The
corresponding weight matrix has rows of length mn. Each row corresponds to a specific

slide stop.

For ease of understanding, let’s consider an input image with [H ,W ] = [4, 4] (never
mind that this image is unrealistically small). On this image, we are performing 2D

convolution with a [kH , kW ] = [2, 2] kernel with stride [sH , sW ] = [1, 1]. The situation is
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exactly as shown in figure 10.9. The input image X with size H = 4,W = 4

X =



X0,0 X0,1 X0,2 X0,3

X1,0 X1,1 X1,2 X1,3

X2,0 X2,1 X2,2 X2,3

X3,0 X3,1 X3,2 X3,3


Δ
= ®x =



X0,0

X0,1

X0,2

X0,3

X2,0

X2,1

X2,2

X2,3

X3,0

X3,1

X3,2

X3,3


rasterizes to the input vector ®x of length 4 ∗ 4= 16. Let the kernel weights be denoted

as


w0,0 w0,1

w1,0 w1,1

 Consider the successive slide stops (steps in figure 10.9). The exact

elements of the rasterized input vector that are multiplied by kernel weights for a

specific step are shown below—these correspond to the shaded items for the same

steps in figure 10.9: 2D convolution between an image X and a kernel W, denoted

Y =W ~ X , in the special case of an input image with [H ,W ] = [4, 4]. For this image,

2D convolution with a [kH , kW ] = [2, 2] kernel with stride [sH , sW ] = [1, 1] and valid

padding can be expressed as the following matrix multiplication:

Y =W ~ X =



Y0,0

Y0,1

Y0,2

Y1,0

Y1,1

Y1,2

y2,0

Y2,1

y2,2



=



w0,0X0,0 +w0,1X0,1 +w1,0X1,0 +w1,1X1,1

w0,0X0,1 +w0,1X0,2 +w1,0X1,1 +w1,1X1,2

w0,0X0,2 +w0,1X0,3 +w1,0X1,2 +w1,1X1,3

w0,0X1,0 +w0,1X1,1 +w1,0X2,0 +w1,1X2,1

w0,0X1,1 +w0,1X1,2 +w1,0X2,1 +w1,1X2,2

w0,0X1,2 +w0,1X1,3 +w1,0X2,2 +w1,1X2,3

w0,0X2,0 +w0,1X2,1 +w1,0X3,0 +w1,1X3,1

w0,0X2,1 +w0,1X2,2 +w1,0X3,1 +w1,1X3,2

w0,0X2,2 +w0,1X2,3 +w1,0X3,2 +w1,1X3,3


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This can be expressed as

W ~ X =

w0,0 w0,1 0 0 w1,0 w1,1 0 0 0 0 0 0 0 0 0 0

0 w0,0 w0,1 0 0 w1,0 w1,1 0 0 0 0 0 0 0 0 0

0 0 w0,0 w0,1 0 0 w1,0 w1,1 0 0 0 0 0 0 0 0

0 0 0 0 w0,0 w0,1 0 0 w1,0 w1,1 0 0 0 0 0 0

0 0 0 0 0 w0,0 w0,1 0 0 w1,0 w1,1 0 0 0 0 0

0 0 0 0 0 0 w0,0 w0,1 0 0 w1,0 w1,1 0 0 0 0

0 0 0 0 0 0 0 0 w0,0 w0,1 0 0 w1,0 w1,1 0 0

0 0 0 0 0 0 0 0 0 w0,0 w0,1 0 0 w1,0 w1,1 0

0 0 0 0 0 0 0 0 0 0 w0,0 w0,1 0 0 w1,0 w1,1





X0,0
X0,1
X0,2
X0,3
X2,0
X2,1
X2,2
X2,3
X3,0
X3,1
X3,2
X3,3


(10.6)

Note the following:

The 2D convolution weight matrix shown in equation 10.6 is for the special case,

but it illustrates the general principle.

The 2D convolution weight matrix is block diagonal, just like the 1D version. The

kernel weights are placed precisely to emulate figure 10.9.

The convolution weightmatrix has 9 rows and 16 columns. Thus it takes a 16-element

input vector (rasterized from a 4× 4 input image) and generates a 9-element output

matrix (which can be folded into a 3× 3 convolution output image.

10.4 Three-dimensional convolution
If a picture is worth a thousand words, a video is worth 10,000 words. Videos are a rich

source of information about dynamic real-life scenes. As deep learning-based image

analysis (2D convolution) is becoming more and more successful, at the time of this

writing, video analysis is becoming the next research frontier to conquer.

Videos are essentially three-dimensional entities. The representation is discrete in all

three dimensions. The three dimensions correspond to space, which is two-dimensional,

having height and width, and time. A video consists of a sequence of frames. Each frame

is an image: a discrete 2D array of pixels. A frame represents the entire video scene

at a specific (sampled) point. A pixel in a frame represents the color of a sampled

location in space belonging to the scene at the time corresponding to the frame. Thus

a video is a sequence of frames representing the dynamic scene at a sampled set of

discrete points (pixels) in space and time. The video extends over a spatio-temporal

volume (aka ST volume), which can be imagined as a cuboid. Each cross-section is a

rectangle representing a frame. This is shown in figure 10.12. To analyze the video,

we need to extract local patterns from this 3D volume. Can we do it via repeated 2D

convolutions?

The answer is no. There is extra information when we view the successive frames

together, which is absent when we view the frames one at a time. For instance, imagine

you are presented with an image of a half-open door. From that single image, can
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Figure 10.12 A spatio-temporal volume (light-shaded
cuboid) representing a video. Individual frames of the video
are cross-sectional rectangles in this ST volume. A single
frame is also shown in darker shading.

you determine whether the door is opening or closing? No, you cannot. To make that

determination, we need to see several successive frames. In other words, analyzing a

video one frame at a time robs us of a vital modality of information: motion, which can

be understood only if we analyze multiple successive frames together. This is why we

need 3D convolution.

The best way to visualize a 3D convolution is to imagine a brick sliding over the

entire volume of a room. The room corresponds to the ST volume of the video input

to the convolution. The brick corresponds to the kernel. While sliding, the brick stops

at successive positions; we call these slide stops. Figure 10.13 shows four slide stops

at different positions. Each slide stop emits one output point. As the brick sweeps

over the entire input ST volume, an output ST volume is generated. At each slide

stop, we multiply each input pixel value by the kernel element covering it and take

a sum of the products. This is effectively a weighted sum of all the input (room) ele-

ments covered by the kernel (brick), with the covering kernel elements serving as the

weights.

Let’s denote the input ST volume by S. It is a 3D grid whose domain is

S = [0,T − 1] × [0, H − 1] × [0,W − 1]

Every point in S is a pixel with a color value (which can be a scalar—a gray-level

value—or a vector of three values, R, G, B. On this grid of input points, we define

a subgrid So of output points. So is obtained from S by applying stride-based stepping

on the input. Assuming ®s = [sT , sK , sW ] denotes the 3D stride vector, the first slide stop

has the top-left corner of the brick at ®p0 ≡ (t = 0, y = 0, x = 0). The next slide stop is at

®p1 ≡ (t = 0, y = 0, x = sW ), and the next is at ®p2 ≡ (t = 0, y = 0, x = 2sW ). When we reach the

right end, we increment y. When we reach the bottom, we increment t. When we reach

the end of the room, we stop. So =
{ ®p0 , ®p1 , · · · , } are the points at which the top-left

corner of the kernel (brick) rests as it sweeps over the input volume. There is an output

for each point in So. The kernel also has three dimensions (in practice, it has two more

dimensions corresponding to the input channels and batch—we are ignoring them

now for simplicity—as discussed in section 10.6).



370 CHAPTER 10 Convolutions in neural networks

x = 0, y = 0, t = 0

Input ST volume
(H × W × T)

Output ST volume
(oH × oW × oT)

Kernel
(kH × kW × kT)

(a) slide stop x = 0, y = 0, t = 0.

x = 0, y = 0, t = 3

Input ST volume
(H × W × T)

Output ST volume
(oH × oW × oT)

Kernel
(kH × kW × kT)

(b) slide stop x = 0, y = 0, t = 0.

x = 0, y = 0, t = T – 1

Input ST volume
(H × W × T)

Output ST volume
(oH × oW × oT)

Kernel
(kH × kW × kT)

(c) slide stop x = 0, y = 0, t = 0.

x = 2, y = 1, t = 3

Input ST volume
(H × W × T)

Output ST volume
(oH × oW × oT)

Kernel
(kH × kW × kT)

(d) slide stop x = 0, y = 0, t = 0.

Figure 10.13 Spatio-temporal view of 3D convolution. The larger, light-shaded cuboid on the left of each
figure represents the input ST volume (room). The small, dark-shaded cuboid inside the room represents
the kernel (brick). The brick slides all over the room’s internal volume. Neighboring positions of the brick
may overlap in volume. Each position of the brick represents a slide stop; a weighted sum is taken of all
points in the room (input points) covered by the brick. The brick point (kernel value) covering each input
point serves as the weight. Four different slide stops are shown. Each slide stop generates a single output
point. As the brick sweeps the input volume, an output ST volume (the smaller light-shaded cuboid) is
generated.

Equation 10.7 shows how a single output value is generated in 3D convolution.

X denotes the input,Y denotes the output, andW denote the kernel weights:

Yt ,y ,x =
kT∑
k=0

kH∑
i=0

kW∑
j=0

Xt+k ,y+i ,x+ jWk ,i , j ∀ (t , y , x) ∈ So (10.7)

Note that the kernel (brick) has its origin on Xt ,y ,x . Its dimensions are (kT , kH , kW ). So,
it covers all input pixels in the domain [t.. (t + kT )] × [y.. (y + kH )] × [x.. (x + kW )]. These
are the pixels participating in equation 10.7. Each of these input pixels is multiplied by

the kernel element covering it. Match equation 10.7 with figure 10.13.

10.4.1 Video motion detection via 3D convolution

A moving object in a dynamic scene changes position from one video frame to another.

Consequently, pixels are covered or uncovered at the boundary of motion. Pixels

belonging to the background in one frame may be covered by the object in a subsequent
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frame and vice versa. If the background is a different color than the object, this will

cause a color difference between pixels at identical spatial locations at different times,

as illustrated in figure 10.14. The output of applying convolution to an ST volume is

another ST volume. Figure 10.15 shows a few frames from the output resulting from

applying our video motion detector to the input shown in figure 10.14.

Figure 10.14 Successive frames of a synthetic video of a
moving ball, shown in a superimposed fashion with gradually
increasing opacity for illustration purposes

How does a kernel extract motion information from a set of successive frames? As

mentioned earlier, motion causes pixels at the same position in successive frames

to have different colors. However, a single isolated pair of pixels may have different

colors due to noise—we cannot draw any conclusions from that. If we average the pixel

values in a small neighborhood in one frame and average the pixel values in the same

neighborhood in the subsequent frames, and these two averages are different, that is a

more reliable way to estimate motion. Following is a 2× 3× 3 3D kernel to do exactly

that—average pixel values in a 3× 3 spatial neighborhood in two successive frames and

subtract one from the other:

kernel weights, t=0︷                                                ︸︸                                                ︷
w0,0,0 =−1 w0,0,1 =−1 w0,0,2 =−1

w0,1,0 =−1 w0,1,1 =−1 w0,1,2 =−1

w0,2,0 =−1 w0,2,1 =−1 w0,2,2 =−1

︸                                                ︷︷                                                ︸
negative spatial average

kernel weights, t=1︷                                         ︸︸                                         ︷
w1,0,0 = 1 w1,0,1 = 1 w1,0,2 = 1

w1,1,0 = 1 w1,1,1 = 1 w1,1,2 = 1

w1,2,0 = 1 w1,2,1 = 1 w1,2,2 = 1

︸                                         ︷︷                                         ︸
positive spatial average︸                                                                                                  ︷︷                                                                                                  ︸

temporal difference of spatial averages; motion detector kernel

The result of the subtraction is high in regions of motion and low in regions of no

motion. In this context, it is worthwhile to note that since the object is of uniform color,

pixels within the object are indistinguishable. Consequently, no motion is observed

at the center of the object; motion is observed only at the boundary. A few individual

frames of the result of this 3D convolution are shown in figure 10.15.
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(a) Output frame 0 (b) Output frame 1

(c) Output frame 2 (d) Output frame 3

Figure 10.15 Result of applying a 3D convolution motion detector to the synthetic video of a moving ball.
Gray signifies “no motion”; most of the output frames are gray. White and black signify motion.

NOTE Fully functional code for video motion detection, executable via Jupyter

Notebook, can be found at http://mng.bz/enJQ.

10.4.2 PyTorch: Three-dimensional convolution with custom weights

In section 10.4.1, we saw how to detect motion in a sequence of input images using 3D

convolutions. In this section, we see how to implement this in PyTorch. The PyTorch

interface to 3D convolutions expects 5-dimensional input tensors of the form N × C ×D
×H ×W . In addition to the dimensions discussed in section 10.4, there is an additional

http://mng.bz/enJQ
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dimension for the input channels. Thus, there is a separate brick for each input channel.

We are combining (taking the weighted sum of) them all:

As discussed in the case of 2D convolutions (section 10.3.3), the first dimension N
stands for the batch size (minibatches are fed to a real neural network instead of

individual input instances for efficiency reasons), and C stands for the number of

input channels.

D stands for the sequence length. In our motion detector example, D represents

the number of successive image frames fed to the 3D convolution layer.

The third dimension, H , stands for height, and the fourth dimension,W, stands

for width.

In our motion detector example, we have a sequence of five grayscale images as input,

each with height = 320 and width = 320. Since we are considering only a single image

sequence,N = 1. All images are grayscale, which implies that C = 1. The sequence length,

D, is equal to 5. H andW are both 320.

PyTorch expects the 3D kernels to be of the form Cout × Cin × kT × kH × kW :

The first dimension, Cout , represents the number of output channels. You can think

of the convolutional kernel as a bank of 3D filters, where each filter produces one

output channel. Cout is the number of 3D filters in the bank.

The second dimension,Cin , represents the number of input channels. This depends

on the number of channels in the input tensor. When we are dealing with grayscale

images, Cin is 1 at the grand input. For RGB images, Cin is 3 at the grand input.

For layers further from the input, Cin equals the number of channels in the tensor

fed to that layer.

The third, fourth, and fifth dimensions, kT , kH , and kW , represent the kernel sizes

along theT , H , andW dimensions, respectively

In our motion detector example, we have a single kernel with kT=2, kH=3, and kW =

3. Since we only have a single kernel, Cout = 1. And since we are dealing with grayscale

images, Cin is also 1.

Listing 10.6 PyTorch code for 3D convolution

import torch

images = load_images() Loads a sequence of five grayscale images with shape 320 × 320

x = torch.tensor(images) Converts to a tensor of shapeT ×H ×W = 5 × 320 × 320

w_2d_smoothing = torch.tensor( Instantiates a 2D smoothing kernel of
shape 3 × 3. Pads an extra dimension
so that two 2D kernels can be stacked
together to form a 3D kernel.

[[0.11, 0.11, 0.11],
[0.11, 0.11, 0.11],
[0.11, 0.11, 0.11]]).unsqueeze(0)
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w = torch.cat(
[-w_2d_smoothing, w_2d_smoothing])

Concatenates the 2D smoothing kernel
and its inverted version along the first
dimension to form a 3D kernel of shape
2 × 3 × 3

x = x.unsqueeze(0).unsqueeze(0)

Converts the input tensor to
N ×C ×T ×H ×W = 1 × 1 × 5 × 320 × 320

w = w.unsqueeze(0).unsqueeze(0)
Converts the 3D kernel to
Cout ×Cin × kT × kH × kW = 1 × 1 × 2 × 3 × 3

conv3d = nn.Conv3d(1, 1, kernel_size=[2, 3, 3],
Instantiates and sets the weights
of the Conv3d layer

stride=1, padding=0, bias=False)
conv3d.weight = torch.nn.Parameter(w, requires_grad=False)

with torch.no_grad():
Instructs PyTorch to not compute gradients
since we currently don’t require them

y = conv3d(x) Runs the convolution

10.5 Transposed convolution or fractionally strided convolution
As usual, we examine this topic with an example. Consider a 1D convolution with kernel

®w =

[
w0 w1 w2

]
of size 3, with valid padding. Let’s consider a special case where

the input size n is 5. Following equation 10.2, this convolution can be expressed as a

multiplication of a block-diagonal matrixW constructed from the weights vector ®w,
with input vector ®x as follows:

®y = ®w ~ ®x =W ®x

=


w0x0 +w1x1 +w2x2

w0x1 +w1x2 +w2x2

w0x2 +w1x32 +w2x4


=


w0 w1 w2 0 0

0 w0 w1 w2 0

0 0 w0 w1 w2





x0

x1

x2

x3

x4


What happens if we multiply the output vector ®y by the transposed matrixWT ?

x̃ =WT ®y

=



w0 0 0

w1 w0 0

w2 w1 w0

0 w2 w1

0 0 w2




y0

y1

y2


=



w0y0

w1y0+ w0y1

w2y0+ w1y1+ w0y2

w2y1+ w1y2

w2y2


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Following are some observations:

We haven’t quite recovered ®x from ®y, but we have generated a vector, x̃, the same

size as ®x. Multiplying by the transpose of the weight matrix of the convolution

performs a kind of upsampling, undoing the downsampling resulting from the

forward convolution.

It is impossible to recover ®x from ®y. This is because when constructing ®y from ®x,
we multiplied byW and converted a vector with five independent elements to a

vector with three independent elements—some information was irretrievably lost.

This intuition is consistent with the fact that a 5× 3 matrixW is non-invertible: there

is noW −1, so there is no way to get ®x =W −1®y.
During transpose convolution, we are distributing elements of ®y back to the ele-

ments of x̃ in the same proportion as when we were doing the forward convolution

(see figure 10.16). This should remind you of backpropagation from chapter 8.

There, in equation 8.24 (right-hand side), we saw that for linear layers, forward

propagation amounts to multiplying by an arbitrary weight matrixW (shown in

equation 8.8). Backpropagation involves multiplying by the transpose of the same

weight matrix (equation 8.31). The backpropagation does a proportional blame

distribution—the loss is distributed back to the inputs in the same proportion as

their contribution in creating the output. The same thing is happening here. Thus,

multiplying by the transposed weight matrix in general distributes the output back

in the same ratio in which it contributes to the output.

The idea extends to higher dimensions. Figure 10.17 illustrates a 2D transpose convolu-

tion operation.

10.5.1 Application of transposed convolution: Autoencoders and embeddings

Transposed convolution is typically required in autoencoders. We provide a very brief

outline of autoencoders at this point to explain why they need transposed convolution.

Most of the neural networks we have looked at so far are examples of supervised classifiers

in that they take an input and directly output the class to which the input belongs. This

is not the only paradigm possible. As hinted in section 6.9, we can also map an input

to a vector (often called the embedding, aka descriptor vector) that captures the essential

aspects of the class of interest and throws away the variable aspects. For instance, if the

class of interest is a human, then given an image, the embedding will only capture the

features that recognize the humans in the image and ignore the background (sky, sea,

forest, building, and so on).

The mapping from input to embedding is done by a neural network called an encoder.

If the input is an image, the encoder typically contains a sequence of convolution layers.

How do we train this neural network? How do we define its loss? Well, one possibility

is that the embedding must maintain fidelity to the original input: that is, we should be

able to reconstruct (at least approximately) the input from the embedding. Remember,

the embedding is smaller in size (with fewer degrees of freedom) than the input, so

perfect reconstruction is impossible. Still, we can define loss as the difference (for
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Figure 10.16 1D convolution and its transpose

example, Euclidean distance or binarized cross-entropy loss) between the original input

and the reconstructed input.

How do we reconstruct the input from the embedding? This is where transposed

convolution comes in. Remember, we did convolution (perhaps many times) in our

encoder to generate the embedding. We can do a set of transposed convolutions on the

embedding to generate a tensor of the same size as the input. The network to do this

reconstruction is called the decoder. The decoder generates our reconstructed input.
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Figure 10.17 2D convolution and its transpose

We define a loss as the difference between the original and reconstructed input. We

can train to minimize the loss and learn the weights of both the encoder and decoder.

This is called end-to-end learning, and the encoder-decoder pair is called an autoencoder.

We train the autoencoder with many data instances, all belonging to the class of

interest. Since it does not have the luxury of remembering the entire image (the

embedding being smaller in size than the input), it is forced to learn how to retain the

features common to all the training images: that is, the features that describe the class

of interest. In our example, the autoencoder will learn to retain features that identify

a human and drop the background. Note that this could also lead to a very effective

compression technique—the embedding is a compact representation of the image in which

only the objects of interest have been retained.

10.5.2 Transposed convolution output size

The output size of transposed convolution can be obtained by inverting equation 10.4:

o
′
=

(
n
′ − 1

)
s + k − 2p (10.8)

For instance, transposed convolution with stride s = 1 on a ®y of size n′
= 3 with valid

padding (p = 0) and a kernel of size k = 3 creates an output x̃ of size o
′
= 5.
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10.5.3 Upsampling via transpose convolution

In the previous section, we briefly discussed autoencoders, where an encoder network

maps an input image into an embedding and a decoder network tries to reconstruct the

input image from the embedding. The encoder network converts a higher-resolution

input into a lower-resolution embedding by passing the input through a series of

convolution and pooling layers (we discuss pooling layers in detail in the next chap-

ter). The decoder network, which tries to reconstruct the original image from the

embedding, has to upscale/upsample a lower-resolution input into a higher-resolution

output.

Many interpolation techniques, such as nearest neighbor, bilinear, and bicubic

interpolation, can be used to perform this upsampling operation. These techniques

typically use predefined mathematical functions to map lower-resolution inputs to

higher-resolution outputs. However, a more optimal way to perform upsampling is

through transpose convolutions, where the mapping function is learned during the

training process instead of being predefined. The neural network will learn the best way

to distribute the input elements across a higher-resolution output map so that the final

reconstruction error is minimized (that is, the final output is as close to the original

input image as possible). We do not get into the details of training an autoencoder in

this chapter; however, we show how input images can be upsampled using transpose

convolutions:

The input array is converted to a 4D tensor of shape N × Cin × H ×W, where N is

the batch size, Cin is the number of input channels, H is the height, andW is the

width.

The kernel is a 4D tensor of shape Cin × Cout × kH × kW , where Cin is the number of

input channels, Cout is the number of output channels, kH is the kernel height, and

kW is the kernel width. Note how this differs from the regular 2D convolutional

kernel, which is expected to be of shape Cout × Cin × kH × kW . Essentially, the input

and output channel dimensions are interchanged.

Figure 10.18 shows an example with input of shape 1× 1× 2× 2. The kernel is of

shape 1× 1× 2× 2. Transpose convolution with stride 2 results in an output of shape

1× 1× 4× 4.

NOTE Fully functional code for transpose convolution, executable via Jupyter

Notebook, can be found at http://mng.bz/radD.

Listing 10.7 PyTorch code for upsampling using transpose convolutions

import torch

x = torch.tensor([ Instantiates the input tensor
[5., 6.],
[7., 8.]

])

http://mng.bz/radD
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w = torch.tensor([ Instantiates the weights of the kernel
[1., 2.],
[3., 4.]

])

x = x.unsqueeze(0).unsqueeze(0) Converts the input tensor toN × Cin × H ×W
= 1 × 1 × 2 × 2

w = w.unsqueeze(0).unsqueeze(0) Converts the kernel to Cin × Cout × kH × kW = 1 × 1 × 2 × 2

transpose_conv2d = torch.nn.ConvTranspose2d( Instantiates the transpose convolution layer
1, 1, kernel_size=2, stride=2, bias=False)

transpose_conv2d.weight = torch.nn.Parameter(w, Sets the kernel weights
requires_grad=False)

with torch.no_grad():
Instructs PyTorch to not compute gradients
since we currently don’t require them

y = transpose_conv2d(x) Runs the transpose convolution. y is of shape 4 × 4.
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Figure 10.18 Upscaling using 2D transpose convolution with stride 2
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10.6 Adding convolution layers to a neural network
Until now, we have been discussing convolution layers with custom weights that we

set. While this gives us a conceptual understanding of how convolution works, in real

neural networks, we do not set the convolution weights ourselves. Rather, we expect

the weights to be learned from loss minimization via backpropagation, as described in

chapters 8 and 9. We look at popular neural network architectures in the next chapter.

But from a programming point of view, the most important thing to learn is how to

add a convolution layer to a neural network. This is what we learn in the following

section.

As part of setting up the neural network, we specify its dimensions but not the

weights. We also initialize the weight values. The weight values are updated during the

backpropagation (the loss.backward() call) somewhat behind the scene (although

PyTorch allows us to view their values if we choose to).

10.6.1 PyTorch: Adding convolution layers to a neural network

Let’s see how a convolutional layer is implemented as part of a larger neural network

in PyTorch (the full neural network architecture is discussed in detail in the next

chapter):

A neural network typically subclasses the torch.nn.Module base class and imple-

ments the forward()method. The layers of the neural network are instantiated in

the __init__() function.

torch.nn.Sequential is used to chain multiple layers one after another. The

output of the first layer is fed into the second layer, and so on.

Each torch.nn.Conv2d() represents a single convolutional layer. Our code snippet

instantiates three such convolutional layers with other layers in between (details

are covered in the next chapter).

Listing 10.8 PyTorch code for a sample convolutional neural network

import torch

class SampleCNN(torch.nn.Module):
def __init__(self, num_classes):

super(LeNet, self).__init__()
self.nn = torch.nn.Sequential(

torch.nn.Sequential is used to chain a
sequence of layers together.

torch.nn.Conv2d(
in_channels=1, out_channels=6,
kernel_size=5, stride=1),

Instantiates the convolutional
layer

...

torch.nn.Conv2d(
in_channels=6, out_channels=16,
kernel_size=5, stride=1),

...
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torch.nn.Conv2d(
in_channels=16, out_channels=120,
kernel_size=5, stride=1),

Implements the forward
pass

...
)

def forward(self, x): Runs the convolution
out = self.nn(x)
return out

10.7 Pooling
Until now, we have seen how a convolution layer slides over an input image and generates

an output feature map that contains important features that describe the image. We

looked at this in 1D, 2D, and 3D settings. In a typical deep neural network, multiple

such convolution layers are stacked one after another to recognize more and more

complex structures in the image. (We talk more about this in the next chapter.) A

major drawback of the convolution layer is that it is very sensitive to the location of

the features in the input. Minor variations in the position of input features can result

in a different output feature map. Such variations can occur in the real world due to

camera angle changes, rotations, crops, objects being present at varying distances from

the camera, and so on. How do we handle such variations and make the neural network

more robust?

One way to do so is via downsampling. A lower-resolution version of the feature map

still contains the important features but at a lower precision/granularity. So even if

important features are present at slightly varying locations in higher-resolution feature

maps, they will be more or less at the same location in the lower-resolution feature maps.

This is also known as local translation invariance.

In convolution neural networks, the downsampling operation is performed by pooling

layers. Pooling layers essentially slide a small filter across the entire image. At each filter

location, they capture a summary of the local patch using a pooling operation. The two

most popular types of pooling operations are as follows:

Max pooling—Calculates the maximum value for each patch

Average pooling—Calculates the average value for each patch

Figure 10.19 illustrates this in detail. The size of the output feature map depends on

the kernel size and the stride of the pooling layer. For example, if we use a 2× 2 kernel

with a stride of 2, as in figures 10.19 and 10.20, the output feature map becomes half

the size of the input feature map. Similarly, using a 3× 3 kernel with stride = 3 makes

the output feature map one-third the size.
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Figure 10.19 Max pooling using a 2 × 2 kernel with stride 2. The resulting output feature map is half the
size of the input feature map. Each value of the output feature map is a max of the corresponding local
patch in the input feature map.

Listing 10.9 PyTorch code for max and average pooling

import torch

X = torch.tensor([ Instantiates a 4 × 4 input tensor
[0, 12, 26, 39],
[6, 19, 31, 44],
[12, 25, 38, 50],
[18, 31, 43, 57]

], dtype=torch.float32).unsqueeze(0).unsqueeze(0)

max_pool_2d = torch.nn.MaxPool2d( Instantiates a 2 × 2 max pooling layer with stride 2
kernel_size=2, stride=2)

out_max_pool = max_pool_2d(X) Output feature map is of size 2 × 2

avg_pool_2d = torch.nn.AvgPool2d( Instantiates a 2 × 2 average pooling layer with stride 2
kernel_size=2, stride=2)

out_avg_pool = avg_pool_2d(X) Output feature map is of size 2 × 2
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Figure 10.20 Average pooling using a 2 × 2 kernel with stride 2. The resulting output feature map is
half the size of the input feature map. Each value of the output feature map is an average of the
corresponding local patch in the input feature map.

Summary
In this chapter, we took an in-depth look at 1D, 2D, and 3D convolutions and their

application to image and video analysis:

Convolutional layers help capture local patterns in input data because they connect

only a small set of adjacent input values to an output value. This is different from

the fully connected layers (aka linear layers) discussed in the previous chapters,

where all inputs are connected to every output value.

A convolution operation involves sliding a kernel over an input array. It can con-

ceptually be viewed as a matrix multiplication (though it is not implemented this

way for efficiency reasons). The kernel size, stride, and padding affect the size of

the output.

The number of input elements over which the kernel slides upon completing a

single step is known as stride.

As the kernel reaches the extremities of the input array, parts of it may fall outside

the array. To deal with such cases, multiple padding strategies can be applied. In
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valid padding, the convolution operation stops when even a single kernel element

falls outside the input array. In same (zero) padding, an input value of zero is assumed

for all kernel elements that are outside the input array.

1D convolutions can conceptually be viewed as sliding a measuring ruler (1D ker-

nel) across a stretched, straightened rope (1D input array). Real-world applications

of 1D convolutions include smoothing and edge detection in curves.

2D convolutions can conceptually be viewed as sliding a tile (2D kernel) over

the entire surface area of a wall (2D input array). Real-world applications of 2D

convolutions include smoothing and edge detection in images.

3D convolutions can conceptually be viewed as sliding a brick (3D kernel) over

the entire volume of a room (3D input array). Real-world applications of 3D

convolutions include motion detection in an image sequence.

In transpose convolutions, the input array elements are multiplied by the kernel

weights and then distributed across the output array. Real-world applications of

transpose convolutions include upsampling, where lower-resolution inputs are con-

verted into higher-resolution outputs. Autoencoders use transpose convolutions

to reconstruct images from embeddings.

Pooling layers essentially slide a kernel across the input, capturing a summary

of the local patch at each kernel location. They help improve the robustness of

convolutional neural networks to minor variations in input features. The two most

popular pooling operations are max pooling (calculates the maximum value of the

local patch) and average pooling (calculates the average value of the local patch).

Pooling layers result in downsampling of the input array. The output size depends

on the size and stride of the pooling kernel.



11Neural networks for
image classification and

object detection

This chapter covers
Using deeper neural networks for image
classification and object detection

Understanding convolutional neural networks
and other deep neural network architectures

Correcting imbalances in neural networks

If a human is shown the image in figure 11.1, they can instantly recognize the objects in

it, categorizing them as a bird, a plane, and Superman. In image classification, we want

to impart this capability to computers—the ability to recognize objects in an image

and classify them into one or more known and predetermined categories. Apart from

identifying the object categories, we can also identify the location of the objects in the

image. An object’s location can be described by a bounding box: a rectangle whose sides

are parallel to coordinate axes. A bounding box is typically specified by four parame-

ters: [(xtl , ytl) , (xbr , ybr)], where (xtl , ytl) are the xy coordinates of the top-left cor-
ner and (xbr , ybr) are the xy coordinates of the bottom-right corner of the bounding

385
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Figure 11.1 Is it a bird? Is it a plane? Is it
Superman?

box. The problem of identifying and categorizing the objects present in the image

is called image classification. If we also want to identify their location in the image, it

is referred to as object detection. Image classification and object detection are some of

the most fundamental problems in computer vision. While the human brain can both

classify and localize objects in images almost intuitively, how do we train a machine

to do this? Before deep learning, computer vision techniques involved hand-crafting

image features (to encode color, edges, and shapes) and designing rules on top of these

features to classify/localize objects. However, this is not a scalable approach because

images are extremely complex and varied. Think of a simple object like an automobile.

It can come in various sizes, shapes, and colors. It can be seen from afar or close (scales),

from various viewpoints (perspectives), and on a cloudy day or a sunny day (lighting

conditions). The car can be on a busy street or a mountain road (backgrounds). It is

nearly impossible to engineer features and rules that can handle all such variations.

Over the last 10 years, a new class of algorithms has emerged: convolutional neural

networks (CNNs). They do not rely on hand-engineered features but instead learn

the relevant features from data. These models have shown tremendous success in

several computer vision tasks, achieving (and sometimes even surpassing) human-level

accuracy. They are increasingly used in the industry for applications ranging from

medical diagnostics to e-commerce to manufacturing. In this chapter, we detail some of

the most popular deep neural network architectures used for image classification and

object detection. We look at some of their salient features, take a deep dive into the

architectural details to understand how and why they work, and apply them to real-world

problems.

NOTE Fully functional code for this chapter, executable via Jupyter Notebook,

can be found at http://mng.bz/vojq

11.1 CNNs for image classification: LeNet
In chapter 10, we discussed the convolution operation in 1D, 2D, and 3D scenarios. We

also saw how to implement a single convolutional layer as part of a larger neural network.

This section shows how a neural network with multiple convolutional layers can be used

http://mng.bz/vojq
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for image classification. (If needed, you are encouraged to revisit chapter 10.) For this

purpose, let’s consider the MNIST data set, a large collection of handwritten digits

(0 through 9). It contains a training set of 60,000 images and a test set of 10,000 images.

Each image is 28 × 28 in size and contains a center crop of a single digit. Figure 11.2

shows sample images from the MNIST data set.

Figure 11.2 Sample images from the
MNIST data set. (Source: “Gradient-based
learning applied to document recognition”;
http://mng.bz/Wz0a.)

We’d like to build a classifier that takes in a 28 × 28 image as input and emits a label

from 0 to 9 based on the digit contained in the image. One of the most popular

neural network architectures for this task is the LeNet, which was proposed by LeCun

et al. in their 1998 paper, “Gradient-based learning applied to document recognition”

(http://mng.bz/Wz0a). The LeNet architecture is illustrated in figure 11.3 (LeNet

expects input images of size 32 × 32, so the 28 × 28 MNIST images are resized to 32 ×
32 before being fed into the network):

It consists of three convolutional layers with 5× 5 kernels convolved with a stride

of 1. The first convolution layer produces 6 feature maps of size 28 × 28, the

Input
32×32

C1: f. maps 16@10×10
C1: feature maps
6@28×28 S2: f. maps

6@14×14

S4: f. maps 16@5×5
C5: layer
120

Output
10

F6: layer
84

Figure 11.3 LeNet. (Source: “Gradient-based learning applied to document recognition”;
http://mng.bz/Wz0a.)

http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf
http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf
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second convolution layer produces 16 feature maps of size 10 × 10, and the third

convolution layer produces 120 feature maps of size 1× 1 (which are flattened into

a 120-dimensional vector)

The first two convolutional layers are followed by subsampling (aka pooling) layers,

which perform a local averaging and subsampling of the featuremap, thus reducing

the resolution of the feature map and the sensitivity of the output to shifts and

distortions in the input. A pooling kernel of size 2× 2 is applied, reducing the

feature map size to half its original size. Refer to section 10.7 for more about

pooling.

Every featuremap is followed by a tanh activation layer. This introduces nonlinearity

into the network, increasing its expressive power because it can now model the

output as a nonlinear combination of the inputs. If we did not have a nonlinear

activation function, no matter how many layers we had, the neural network would

still behave as a single-linear-layer network because the combination of multiple

linear layers is just another linear layer. While the original LeNet paper used tanh

as the activation function, several activation functions such as ReLU and sigmoid

can also be used. ReLU is discussed in detail in section 11.2.1. Detailed discussions

of sigmoid and tanh can be found in sections 8.1 and 8.1.2.

The output feature map is passed through two fully connected (FC, aka linear)

layers, which finally produce a 10-dimensional logits vector that represents the

score for every class. The logits scores are converted into probabilities using the

softmax layer.

CrossEntropyLoss, discussed in section 6.3, is used to compute the difference

between the predicted probabilities and the ground truth.

NOTE A feature map is a 2D array of points (that is, a grid) with a fixed-size vector

associated with every point. An image is an example of a feature map, with each

point being a pixel and the associated vector representing the pixel’s color. A

convolution layer transforms an input feature map into an output feature map.

The output featuremap usually has smaller width and height but a longer per-point

vector.

The LeNet performs very well on the MNIST data set, achieving test accuracies greater

than 99%. A PyTorch implementation of LeNet is presented next.

11.1.1 PyTorch: Implementing LeNet for image classification on MNIST

NOTE Fully functional code for training the LeNet, executable via Jupyter Note-

book, can be found at http://mng.bz/q2gz.

http://mng.bz/q2gz
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Listing 11.1 PyTorch code for the LeNet

import torch

class LeNet(torch.nn.Module):
def __init__(self, num_classes):

super(LeNet, self).__init__()
self.conv1 = torch.nn.Sequential(

torch.nn.Conv2d(
in_channels=1, out_channels=6, 5 × 5 conv

kernel_size=5, stride=1),

torch.nn.Tanh(), Tanh activation

torch.nn.AvgPool2d(kernel_size=2)) 2 × 2 average pooling

self.conv2 = torch.nn.Sequential(
torch.nn.Conv2d(

in_channels=6, out_channels=16,
kernel_size=5, stride=1),

torch.nn.Tanh(),
torch.nn.AvgPool2d(kernel_size=2))

self.conv3 = torch.nn.Sequential(
torch.nn.Conv2d(

in_channels=16, out_channels=120,
kernel_size=5, stride=1),

torch.nn.Tanh())
self.fc1 = torch.nn.Sequential(

torch.nn.Linear(
in_features=120, out_features=84), First FC layer

torch.nn.Tanh())
self.fc2 = torch.nn.Linear(

in_features=84, out_features=num_classes) Second FC layer

def forward(self, X): X.shape: N × 3 × 32 × 32. N is the batch size.

conv_out = self.conv3(self.conv2(self.conv1(X)))
batch_size = conv_out.shape[0]
conv_out = conv_out.reshape(batch_size, -1) conv_out.shape: N × 120 × 1 × 1

logits = self.fc2(self.fc1(conv_out)) logits.shape: N × 10
return logits

def predict(self, X):
logits = self.forward(X)
probs = torch.softmax(logits, dim=1)

Computes the probabilities
using softmax

return torch.argmax(probs, 1)

11.2 Toward deeper neural networks
The LeNet model is not a very deep network since it has only three convolutional layers.

While this is sufficient to achieve accurate results on a simple data set like MNIST, it

doesn’t work well on real-world image classification problems since it does not have
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enough expressive power to model complex images. So, we typically go for much

deeper neural networks with multiple convolutional layers. Adding more layers does

the following:

Brings extra expressive power due to extra nonlinearity—Since every layer brings with it

a new set of learnable parameters and extra nonlinearity, a deeper network can

model more complex relationships between input data elements. Lower layers

typically learn simpler features of the object, like lines and edges, whereas higher

layers learn more abstract features of the object, like shapes or sets of lines.

Achieves the same reach with fewer parameters—Let’s examine this via an example.

Consider two output feature maps, one produced by a single 5× 5 convolution

on the input and another produced by two 3× 3 convolutions applied one after

another in sequence on the input. Assume a stride of 1 and the same (zero)

padding. Figure 11.4 illustrates this scenario. Consider a single grid point in the

output feature map. In both cases, the output value of the grid point is derived from

a 5× 5 patch in the input. We say the indicated 5× 5 input patch is the receptive field

of the output grid points. Thus, in both cases, the output grid point is a digest of

the same input: that is, it expresses the same information. However, in the deeper

network, there are fewer parameters. The number of parameters in a single 5× 5

filter is 25, whereas that in two 3× 3 filters is 2 × 9 = 18 (assuming a single channel

input image). This is a 38% difference. Similarly, if we compare one 7× 7 filter
with three 3× 3 filters, they have the same receptive field, but the 7× 7 filter has

81% more parameters than the 3× 3 filter.

1 conv layer with 5×5 filter 2 conv layers with 3×3 filters

5×5 conv 3×3 conv

3×3 conv

# parameters: 25 # parameters: 18

Output feature map

Input feature map

Input feature map

Output feature map

Intermediate 
feature map

Figure 11.4 A single 5 × 5 convolution layer vs. two 3 × 3 convolution layers
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Now, let’s look at some of the most popular deep convolutional networks used for image

classification. The first deep network that reignited the deep learning revolution was

AlexNet, which was published by Krizhevsky et al. in 2012. It significantly outperformed

all previous state-of-the-art algorithms on the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC), a complex data set with 1.3 million images across 1,000 classes.

Since AlexNet, several deep networks have improved on the previous state of the art,

such as GoogleNet, VGG, and ResNet. In this chapter, we discuss the key concepts that

make each of these networks work. For a detailed review of their architectures, training

methodologies, and final results, you are encouraged to read the original papers linked

in each section.

11.2.1 VGG (Visual Geometry Group) Net

The VGG family of networks was created by the Visual Geometry Group from the

University of Oxford (https://arxiv.org/pdf/1409.1556.pdf). Their main contribution

was a thorough evaluation of networks of increasing depth using an architecture with

very small (3× 3) convolution filters. They demonstrated that by using 3× 3 convolutions

and networks with 16–19 weight layers, they could outperform previous state-of-the-art

results on the ILSVRC-2014 challenge. The VGG network had two main differences

compared to prior works:

Use of smaller (3× 3) convolution filters—Prior networks often relied on larger kernels

of size 7× 7 or 11× 11 in the first convolution layers. VGG instead only used 3× 3

kernels throughout the network. As discussed in section 11.2, three 3× 3 filters
have the same receptive field as a single 7× 7 filter. So what does replacing the

7× 7 filter with three smaller filters buy?

– More nonlinearity and hence more expressive power because we have a ReLU

activation function applied at the end of every convolution layer

– Fewer parameters (49C2 vs. 27C2), which means faster learning and more

robustness to overfitting

Removal of the local response normalization (LRN) layers—LRN was first introduced in

the AlexNet architecture. Its purpose was twofold: to bound the output of the ReLU

layer, which is an unbounded function and can produce outputs as large as the

training permits; and to encourage lateral inhibition wherein a neuron can suppress

the activity of its neighbors (this in effect acts as a regularization). The VGG paper

demonstrated that adding LRN layers did not improve accuracy, so VGG chose to

remove them from its architecture.

The VGG family of networks comes in five different configurations, which mainly differ

in the number of layers (VGG-11, VGG-13, VGG-16, and VGG-19). Regardless of the

exact configuration, the VGG family of networks follows a common structure. Here, we

discuss these commonalities (a detailed description of the differences can be found in

the original paper):

All architectures work on 224× 224 input images.

https://arxiv.org/pdf/1409.1556.pdf
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All architectures have five convolutional blocks (conv blocks):

– Each block can have multiple convolution layers followed by a max pool layer

at the end.

– All individual convolution layers use 3× 3 kernels with a stride of 1 and same

padding. Therefore, they don’t change the spatial resolution of the output

feature map.

– All convolution layers within a single conv block have the same-sized output

feature maps.

– Each convolution layer is followed by a ReLU layer that adds nonlinearity.

– The max pool layer at the end of every conv block reduces the spatial resolution

to half.

Since each conv block downsamples by 2, the input feature map is reduced 25 (32)

times, resulting in an output feature map of size 7× 7. Additionally, at each conv

block, the number of feature maps is doubled.

All architectures end with three FC layers:

– The first takes a 51,277-sized input and converts it into a 4,096-dimensional

output.

– The second takes the resulting 4,096-dimensional output and converts it into

another 4,096-dimensional output.

– The final takes the resulting 4,096-dimensional output and converts it into a

C -dimensional output, where C stands for the number of classes. In the case of

ImageNet classification, C is 1,000.

The architecture diagram for VGG-11 is shown in figure 11.5. The column on the

left represents the shape of the input tensor to each layer. The column on the right

represents the shape of the output tensor from each layer.

RELU NONLINEARITY
As we’ve discussed previously, nonlinear layers give the deep neural network more

expressive power to model complex mathematical functions. In chapter 8, we looked at

two nonlinear functions: sigmoid and tanh. However, the VGG network (like AlexNet)

consists of a different nonlinear layer called rectified linear unit (ReLU). To understand

the rationale for this choice, let’s revisit the sigmoid function and look at some of its

drawbacks.

Figure 11.6 plots the sigmoid function along with its derivative. As the plot shows, the

gradient (derivative) is maximum when the input is 0, and it quickly tapers down to 0

as the input increases/decreases. This is true for the tanh activation function as well. It

means when the output of a neuron (before the sigmoid layer) is either high or low, the

gradient becomes small. While this may not be an issue in shallow networks, it becomes

a problem in larger networks because the gradients can become too small for training

to work effectively. Gradients of neural networks are calculated using backpropagation.

By the chain rule, the derivatives of each layer are multiplied down the network, starting

from the final layer and moving toward the initial layers. If the gradients at each layer are
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Figure 11.5 VGG-11 architecture diagram. All shapes are of the form N × C × H × W, where N is the
batch size, C is the number of channels, H is the height, and W is the width.
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Sigmoid
Derivative of sigmoid

Figure 11.6 Graph of a 1D sigmoid function (dotted curve) and its derivative (solid curve)

small, a small number multiplied by another small number is an even smaller number.

Thus the gradients at the initial layers are very close to 0, making the training ineffective.

This is known as the vanishing gradient problem. The ReLU function addresses this

problem. Figure 11.7 shows a graph of the ReLU function. Its equation is given by

ReLU (x) =max(0, x) (11.1)

The derivative of ReLU is 1 (constant) when x is greater than 0, and 0 everywhere else.

Therefore, it doesn’t suffer from the vanishing gradient problem. Most deep networks

today use ReLU as their activation function. The AlexNet paper demonstrated that

using ReLU nonlinearity significantly speeds up training because it helps with faster

convergence.

PYTORCH: VGG
Now let’s see how to implement the VGG network in PyTorch. First, let’s implement a

single conv block, which is the core component of the VGG net. This conv block will

later be repeated multiple times to form the entire VGG network.

NOTE Fully functional code for the VGG network, executable via Jupyter Note-

book, can be found at http://mng.bz/7WE4.

http://mng.bz/7WE4
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Figure 11.7 Graph of the ReLU function

Listing 11.2 PyTorch code for a convolutional block

class ConvBlock(nn.Module):
def __init__(self, in_channels, num_conv_layers, num_features):

super(ConvBlock, self).__init__()

modules = []

for i in range(num_conv_layers):
modules.extend([

nn.Conv2d(
in_channels, num_features, 3 × 3 conv

kernel_size=3, padding=1), ReLU nonlinearity
nn.ReLU(inplace=True)

])

in_channels = num_features
modules.append(nn.MaxPool2d(kernel_size=2)) 2 × 2 max pooling
self.conv_block = nn.Sequential(*modules)

def forward(self, x):
return self.conv_block(x)

Next, let’s implement the convolutional backbone (conv backbone) builder, which

allows us to create different VGG architectures via simple configuration changes.

Listing 11.3 PyTorch code for the conv backbone

class ConvBackbone(nn.Module):
def __init__(self, cfg):

Cfg: [(in_channels, num_conv_layers, num_features),]
The different VGG networks can be created without
duplicating code by passing in the right cfg.

super(ConvBackbone, self).__init__()

self.cfg = cfg
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self.validate_config(cfg)

modules = []
for block_cfg in cfg: Iterates over conv block configurations

in_channels, num_conv_layers, num_features = block_cfg

modules.append(ConvBlock( Instantiates the conv block defined in listing 11.2

in_channels, num_conv_layers, num_features))
self.features = nn.Sequential(*modules)

def validate_config(self, cfg):
assert len(cfg) == 5 # 5 conv blocks
for i, block_cfg in enumerate(cfg):

assert type(block_cfg) == tuple and len(block_cfg) == 3
if i == 0:

assert block_cfg[0] == 3 There must be three input channels.

else:
assert block_cfg[0] == cfg[i-1][-1]

out_Features of the previous
block should be equal to
in_features of the current
block.def forward(self, x):

return self.features(x)

The conv backbone is instantiated with a config that contains the list of configurations

for each of the conv blocks. The config for VGG-11 contains fewer layers, whereas

that for VGG-19 contains more layers. The output of the conv backbone is fed into

the classifier, which consists of three FC layers. Together, the conv backbone and the

classifier form the VGG module.

Listing 11.4 PyTorch code for the VGG network

class VGG(nn.Module):
def __init__(self, conv_backbone, num_classes):

super(VGG, self).__init__()
self.conv_backbone = conv_backbone Backbone network defined in listing 11.3
self.classifier = nn.Sequential(

nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, 4096),

The classifier is made up of three
linear Layers. The first two are
followed by ReLU nonlinearity.nn.ReLU(True),

nn.Dropout(),
nn.Linear(4096, num_classes)

)

def forward(self, x):
conv_features = self.conv_backbone(x)

logits = self.classifier(
conv_features.view(

conv_features.shape[0], -1))
Flattens the conv features
before passing it to
the classifierreturn logits
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A VGG-11 network can be instantiated as follows.

Listing 11.5 PyTorch code instantiating a VGG network from a specific config

vgg11_cfg = [ Creates the cfg for VGG-11
(3, 1, 64),
(64, 1, 128),
(128, 2, 256),
(256, 2, 512),
(512, 2, 512)

]

vgg11_backbone = ConvBackbone(vgg11_cfg) Instantiates the conv backbone
num_classes = 1000
vgg11 = VGG(vgg11_backbone, num_classes) Instantiates the VGG network

While we have discussed how to implement VGG in PyTorch, we don’t do this in practice

because the torchvision package already implements the VGG network, along with

several other popular deep networks. It is recommended that you use the torchvision

implementation, as shown here:

import torchvision
vgg11 = torchvision.models.vgg11()

11.2.2 Inception: Network-in-network paradigm

Previously, we saw how increasing the depth of a neural network—that is, the number of

layers—can improve accuracy because it increases the expressive power of the network.

Alternatively, we could increase the width of the network—the number of units at each

level—to improve accuracy. However, both these methods suffer from two main draw-

backs. First, blindly increasing the size of the network can lead to overfitting, wherein the

network memorizes certain patterns in the training data that don’t extend well to test

data. And second, increased computation resources are required during both training

and inference times. The Inception architecture, introduced by Szegedy et al. in their

paper ”Going deeper with convolutions” (https://arxiv.org/pdf/1409.4842v1.pdf), aims

to address both these drawbacks. The Inception architecture increases the network’s

depth and width while keeping the computational budget constant. In this section,

we examine the main idea behind the Inception architecture. While there have been

several improvements to it (Inception_v2, Inception_v3, Inception_ResNet, and so on),

we discuss the original: Inception_v1.

Prior deep learning architectures typically stacked convolutional filters sequentially:

each layer applied a set of convolutional filters of the same size and passed it to the

subsequent layer. The kernel size of the filter at each layer depended on the architecture.

But with such an architecture, how do we know we have chosen the right kernel size

for each layer? If we are detecting a car, say, the fraction of the image area (that is, the

number of pixels) occupied by the car is different in an image taken close up than in

one taken from far away. We say the scale of the car object is different in the two images.

https://arxiv.org/pdf/1409.4842v1.pdf
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Consequently, the number of pixels that must be digested to recognize the car will differ

at different scales. A larger kernel is preferred for information at a larger scale, and vice

versa. An architecture that is forced to choose one kernel size may not be optimal. The

Inception module tackles this problem by having multiple kernels of different sizes at

each level and taking weighted combinations of the outputs. The network can learn

to weigh the appropriate kernel more than others. The naive implementation of the

Inception module performs convolutions on the input using three kernel sizes: 1× 1,

3× 3, and 5× 5. Max pooling is also performed, using a 3× 3 kernel with stride 1 and

padding 1 (for output and input to be the same size). The outputs are concatenated

and sent into the next Inception module. See figure 11.8 for details.

Previous layer

Concat

Naive inception block

1×1 conv 3×3 conv 5×5 conv 3×3 max pool

Previous layer

Concat

Dimensionality reduced inception block

1×1 conv1×1 conv 3×3 max pool

1×1 conv

3×3 conv 1×1 conv5×5 conv

Figure 11.8 Inception_v1 architecture

This naive Inception block has a major flaw. Using even a small number of 5× 5 filters

can prohibitively increase the number of parameters. This becomes evenmore expensive

when we add the pooling layer, where the number of output filters equals the number

of filters in the previous stage. Thus, concatenating the output of the pooling layer

with the outputs of convolutional layers would lead to an inevitable increase in the

number of output features. To fix this, the Inception module uses 1× 1 convolution
layers before the 3× 3 and 5× 5 filters to reduce the number of input channels. This

drastically reduces the number of parameters of the 3× 3 and 5× 5 convs. While it

may seem counterintuitive, 1× 1 convs are much cheaper than 3× 3 and 5× 5 convs.
Additionally, 1× 1 convolution is applied after pooling (see figure 11.8).

A neural network architecture was built using the dimension-reduced Inception

module and was popularly known as GoogLeNet. GoogLeNet has nine such Inception

modules stacked linearly. It is 22 layers deep (27, including the pooling layers). It uses

global average pooling at the end of the last Inception module. With such a deep

network, there is always the vanishing gradient problem; to prevent the middle part of

the network from “dying out,” the paper introduced two auxiliary classifiers. This is

done by applying softmax to the output of two of the intermediate Inception modules

and computing an auxiliary loss over the ground truth. The total loss function is a
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weighted sum of the auxiliary loss and the real loss. You are encouraged to read the

original paper to understand the details.

PYTORCH: INCEPTION BLOCK
Let’s see how to implement an Inception block in PyTorch. We typically don’t do this

in practice because end-to-end deep network architectures containing Inception blocks

are already implemented in the torchvision package. However, we implement the

Inception block from scratch to understand the details.

NOTE Fully functional code for the Inception block, executable via Jupyter Note-

book, can be found at http://mng.bz/mxn0.

Listing 11.6 PyTorch code for a naive Inception block

class NaiveInceptionModule(nn.Module):
def __init__(self, in_channels, num_features=64):

super(NaiveInceptionModule, self).__init__()

self.branch1x1 = torch.nn.Sequential( 1 × 1 branch
nn.Conv2d(

in_channels, num_features,
kernel_size=1, bias=False),

nn.BatchNorm2d(num_features, eps=0.001),
nn.ReLU(inplace=True))

self.branch3x3 = torch.nn.Sequential(

nn.Conv2d( 3 × 3 branch

in_channels, num_features,
kernel_size=3, padding=1, bias=False),

nn.BatchNorm2d(num_features, eps=0.001),
nn.ReLU(inplace=True))

self.branch5x5 = torch.nn.Sequential( 5 × 5 branch
nn.Conv2d(

in_channels, num_features,
kernel_size=5, padding=2, bias=False),

nn.BatchNorm2d(num_features, eps=0.001),
nn.ReLU(inplace=True))

self.pool = torch.nn.MaxPool2d( 3 × 3 pooling

kernel_size=3, stride=1, padding=1)

def forward(self, x):
conv1x1 = self.branch1x1(x)
conv3x3 = self.branch3x3(x)
conv5x5 = self.branch5x5(x)
pool_out = self.pool(x)
out = torch.cat( Concatenates the outputs of the parallel branches

[conv1x1, conv3x3, conv5x5, pool_out], 1)
return out

http://mng.bz/mxn0
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Listing 11.7 PyTorch code for a dimensionality reduced Inception block

class Inceptionv1Module(nn.Module):
def __init__(self, in_channels, num_1x1=64,

reduce_3x3=96, num_3x3=128,
reduce_5x5=16, num_5x5=32,
pool_proj=32):

super(Inceptionv1Module, self).__init__()

self.branch1x1 = torch.nn.Sequential(
nn.Conv2d( 1 × 1 branch

in_channels, num_1x1,
kernel_size=1, bias=False),

nn.BatchNorm2d(num_1x1, eps=0.001),
nn.ReLU(inplace=True))

self.branch3x3_1 = torch.nn.Sequential( 1 × 1 conv in the 3 × 3 branch
nn.Conv2d(

in_channels, reduce_3x3,
kernel_size=1, bias=False),

nn.BatchNorm2d(reduce_3x3, eps=0.001),
nn.ReLU(inplace=True))

self.branch3x3_2 = torch.nn.Sequential( 3 × 3 conv in the 3 × 3 branch
nn.Conv2d(

reduce_3x3, num_3x3,
kernel_size=3, padding=1, bias=False),

nn.BatchNorm2d(num_3x3, eps=0.001),
nn.ReLU(inplace=True))

self.branch5x5_1 = torch.nn.Sequential( 1 × 1 conv in the 5 × 5 branch
nn.Conv2d(

in_channels, reduce_5x5,
kernel_size=5, padding=2, bias=False),

nn.BatchNorm2d(reduce_5x5, eps=0.001),
nn.ReLU(inplace=True))

self.branch5x5_2 = torch.nn.Sequential( 5 × 5 conv in the 5 × 5 branch
nn.Conv2d(

reduce_5x5, num_5x5,
kernel_size=5, padding=2, bias=False),

nn.BatchNorm2d(num_5x5, eps=0.001),
nn.ReLU(inplace=True))

self.pool = torch.nn.Sequential( Max pooling followed by a 1 × 1 conv
torch.nn.MaxPool2d(

kernel_size=3, stride=1, padding=1),
nn.Conv2d(

in_channels, pool_proj,
kernel_size=1, bias=False),

nn.BatchNorm2d(pool_proj, eps=0.001),
nn.ReLU(inplace=True))

def forward(self, x):
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conv1x1 = self.branch1x1(x)
conv3x3 = self.branch3x3_2(self.branch3x3_1((x)))
conv5x5 = self.branch5x5_2(self.branch5x5_1((x)))
pool_out = self.pool(x)
out = torch.cat( Concatenates the outputs of the parallel branches

[conv1x1, conv3x3, conv5x5, pool_out], 1)
return out

11.2.3 ResNet: Why stacking layers to add depth does not scale

We start with a fundamental question: is learning better networks as easy as stacking

multiple layers? Consider the graphs in figure 11.9.

Figure 11.9 Training error (left) and test error (right) on the CIFAR-10 data set with 20-layer and
56-layer networks. (Source: “Deep residual learning for image recognition”; https://arxiv.org/pdf
/1512.03385.pdf.)

This image from the ResNet paper “Deep residual learning for image recognition”

(https://arxiv.org/pdf/1512.03385.pdf) shows the training and test error rates for two

networks: a shallower network with 20 layers and a deeper network with 56 layers,

on the CIFAR-10 data set. Surprisingly, the training and test errors are higher for the

deeper (56-layer) network. This result is extremely counterintuitive because we expect

deeper networks to have more expressive power and hence higher accuracies/lower

error rates than their shallower counterparts. This phenomenon is referred to as the

degradation problem: with the network depth increasing, the accuracy becomes saturated

and degrades rapidly. We might attribute this to overfitting, but that is not the case

because even the training errors are higher for the deeper network. Another cause

could be vanishing/exploding gradients. However, the authors of the ResNet paper

investigated the gradients at each layer and established that they are healthy (not

vanishing/exploding). So, what causes the degradation problem, and how do we solve it?

Let’s consider a shallower architecture with n layers and a deeper counterpart that

addsmore layers to it (n +m layers). The deeper architecture should be able to achieve no

higher loss than the shallow architecture. Intuitively, a trivial solution is to learn the exact

https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1512.03385.pdf
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n layers of the shallow architecture and the identity function for the additional m layers.

The fact that this doesn’t happen in practice indicates that the neural network layers

have a hard time learning the identity function. Thus the paper proposes ”shortcut/skip

connections” that enable the layers to potentially learn the identity function easily. This

“identity shortcut connection” is the core idea of ResNet. Let’s look at a mathematical

analogy. Let h (x) be the function we are trying to model (learn) via a stack of layers

(not necessarily the entire network). It is reasonable to expect that the function g (x) =
h (x) − x is simpler than h (x) and hence easier to learn. But we already have x at the
input. So if we learn g (x) and add x to it to obtain h (x), we have effectively modeled h (x)
by learning the simpler g (x) function. The name residual comes from g (x) = h(x) − x.
Figure 11.10 shows this in detail.

Plain net: no skip
connection

Weight layer

Weight layer

Residual block: skip
connection

Weight layer

Weight layer
Skip

connection

ReLU ReLU

ReLUReLU

Figure 11.10 The left column shows a plain network block without skip connections, and the right
column shows a residual block with skip connections.

Now let’s revisit the earlier problem of degradation. We posited that normal neural

network layers generally have difficulty learning the identity function. In the case of

residual learning, to learn the identity function, h(x) = x, the layers need to learn g (x)=0.
This can easily be done by driving all the layers’ weights to 0. Here is another way to

think about it: if we initialize a regular neural network’s weights and biases to be 0 at

the start, then every layer starts with the “zero” function: g (x) = 0. Thus, the output of
every stack of layers with a shortcut connection, h(x) = g (x) + x, is already the identity
function: h(x) = x when g (x) = 0.

In real cases, it is important to note that identity mappings are unlikely to be optimal:

the network layers will want to learn actual features. In such cases, this reformulation isn’t

preventing the network lawyers from doing so; the layers can still learn other functions

like a regular stack of layers. We can think of this reformulation as preconditioning,
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which makes learning the identity function easier if needed. Additionally, by adding

skip connections, we allow a direct path for the gradient to flow from layer to layer: the

deeper layer has a direct path to x. This allows for better learning as information from

the lower layers passes directly into the higher layers.

RESNET ARCHITECTURE
Now that we have seen the basic building block—a stack of convolutional (conv) layers

with a skip connection—let’s delve deeper into the architecture of ResNet. ResNet

architectures are constructed by stacking multiple building blocks on top of each other.

They follow the same idea as VGG:

The convolutional layers mostly have 3× 3 filters.

The layers have the same number of filters for a given output feature-map size.

If the feature-map size is halved, the number of filters is doubled to preserve the

time complexity per layer.

ResNet uses conv layers with a stride of 2 to downsample, unlike VGG, which hadmultiple

max pooling layers. The core architecture consists of the following components:

Five convolutional layer blocks—The first convolutional block consists of a 7× 7 kernel

with stride=2, padding=3, and num_features=64, followed by a max pooling layer

with a 3× 3 kernel, stride=2, and padding=1. The featuremap size is reduced from

(224, 224) to (56, 56). The remaining convolutional blocks (ResidualConvBlock)

are built by stacking multiple basic shortcut blocks together. Each basic block uses

3× 3 filters, as described.

Classifier—An average pooling block that runs on top of the conv block output,

followed by a FC layer, which is used for classification.

You are encouraged to examine the diagrams in the original paper to understand the

details. Now, let’s see how to implement a ResNet in PyTorch.

PYTORCH: RESNET
In this section, we discuss how to implement a ResNet-34 from scratch. Note that this is

seldom done in practice. The torchvision package provides ready-made implemen-

tations for all ResNet architectures. However, by building the network from scratch,

we gain a deeper understanding of the architecture. First, let’s implement a basic skip

connection block (BasicBlock) to see how the shortcut connection works.

NOTE Fully functional code for ResNet, executable via Jupyter Notebook, can be

found at http://mng.bz/5K9q.

Listing 11.8 PyTorch code for BasicBlock

class BasicBlock(nn.Module):
def __init__(self, in_channels, num_features, stride=1, downsample=None):

super(BasicBlock, self).__init__()
self.conv1 = nn.Sequential( Instantiates two conv layers of filter size 3 × 3

http://mng.bz/5K9q
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nn.Conv2d(
in_channels, num_features,
kernel_size=3, stride=stride, padding=1, bias=False),

nn.BatchNorm2d(num_features, eps=0.001),
nn.ReLU(inplace=True))

self.conv2 = nn.Sequential(
nn.Conv2d(

num_features, num_features,
kernel_size=3, stride=1, padding=1, bias=False),

nn.BatchNorm2d(num_features, eps=0.001))

self.downsample = downsample

When input and output feature maps
are not the same size, the input
feature map is downsampled
using a 1 × 1 convolution layer.

self.relu = nn.ReLU(inplace=True)

def forward(self, x):
conv_out = self.conv2(self.conv1(x))
identity = x
if self.downsample is not None:

identity = self.downsample(x)
assert identity.shape == conv_out.shape,

f''Identity identity.shape and conv out conv_out.shape have different
shapes''

out = self.relu(conv_out + identity) Creates a skip connection
return out

Notice how the output of the residual block is a function of both the input and the

output of the convolutional layer: ReLU(conv_out+x). This assumes that x and conv_out
have the same shape. (Shortly, we discuss what to do when this isn’t the case.) Also

note that adding the skip connections does not increase the number of parameters.

The shortcut connections are parameter-free. This makes the solution cheap from a

computational point of view and is one of the charms of shortcut connections.

Next, let’s implement a residual conv block consisting of a number of basic blocks

stacked on top of each other. We have to handle two cases when it comes to basic blocks:

Case 1—Output feature map spatial resolution = Input feature map spatial resolu-

tion AND Number of output features = Number of input features. This is the most

common case. Since there is no change in the number of features or the spatial

resolution of the feature map, we can easily add the input and output via shortcut

connections.

Case 2—Output feature map spatial resolution = 1/2 * Input feature map spatial

resolution AND Number of output features = 2 * Number of input features. Re-

member that ResNet uses conv layers with a stride of 2 to downsample. The number

of features is also doubled. This is done by the first basic block of every conv block

(except the second conv block). In this case, the input and output are not the

same size. So how do we add them together as part of the skip connection? 1× 1
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convs are the answer. The spatial resolution of the input feature map is halved,

and the number of input features is doubled by using a 1× 1 conv with stride=2

and num_features=2 * num_input_features.

Listing 11.9 PyTorch code for ResidualConvBlock

class ResidualConvBlock(nn.Module):
def __init__(self, in_channels, num_blocks, reduce_fm_size=True):

super(ResidualConvBlock, self).__init__()

num_features = in_channels * 2 if reduce_fm_size else in_channels
modules = []

for i in range(num_blocks): The residual block is a stack of basic blocks.
if i == 0 and reduce_fm_size:

stride = 2
downsample = nn.Sequential(

nn.Conv2d( 1 × 1 convs to downsample the input feature map

in_channels, num_features,
kernel_size=1, stride=stride, bias=False),

nn.BatchNorm2d(num_features, eps=0.001),
)
basic_block = BasicBlock(

in_channels=in_channels, num_features=num_features,
stride=stride, downsample=downsample)

else:
basic_block = BasicBlock(

in_channels=num_features, num_features=num_features, stride=1)
modules.append(basic_block)

self.conv_block = nn.Sequential(*modules)

def forward(self, x):
return self.conv_block(x)

With this, we are ready to implement ResNet-34.

Listing 11.10 PyTorch code for ResNet-34

class ResNet34(nn.Module):
def __init__(self, num_basic_blocks, num_classes):

super(ResNet, self).__init__()

conv1 = nn.Sequential( Instantiates the first conv layer

nn.Conv2d(3, 64, kernel_size=7,
stride=2, padding=3, bias=False),

nn.BatchNorm2d(64, eps=0.001),
nn.ReLU(inplace=True),
nn.MaxPool2d(

kernel_size=3, stride=2, padding=1)
)
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assert len(num_basic_blocks) == 4
List of size 4, specifying the
number of basic blocks per
ResidualConvBlock

conv2 = ResidualConvBlock( Instantiates four residual blocks

in_channels=64, num_blocks=num_basic_blocks[0], reduce_fm_size=False)
conv3 = ResidualConvBlock(

in_channels=64, num_blocks=num_basic_blocks[1], reduce_fm_size=True)
conv4 = ResidualConvBlock(

in_channels=128, num_blocks=num_basic_blocks[2], reduce_fm_size=True)
conv5 = ResidualConvBlock(

in_channels=256, num_blocks=num_basic_blocks[3], reduce_fm_size=True)

self.conv_backbone = nn.Sequential(*[conv1, conv2, conv3, conv4, conv5])

self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
self.classifier = nn.Linear(512, num_classes)

def forward(self, x):
conv_out = self.conv_backbone(x)
conv_out = self.avg_pool(conv_out)
logits = self.classifier(

Flattens the conv feature before
passing it to the classifier

conv_out.view(conv_out.shape[0], -1))
return logits

As discussed earlier, we typically don’t implement our own ResNet. Instead, we use the

ready-made implementation from the torchvision package like this:

import torchvision

resnet34 = torchvision.models.resnet34()
Instantiates resnet34 from
the torchvision package

While we looked at the ResNet-34, there are deeper ResNet architectures like ResNet-

50, ResNet-101, and ResNet-151 that use a different version of BasicBlock called

BottleneckLayer. Similarly, there are several other variants inspired by ResNet, like

ResNext, Wide ResNet, and so on. We don’t discuss these individual variants in this

book because the core idea behind them remains the same. You are encouraged to

read the original papers for a deeper understanding of the subject.

11.2.4 PyTorch Lightning

Let’s revisit the problem of digit classification that we looked at earlier. We primarily

discussed the LeNet architecture and implemented it in PyTorch. Now, let’s implement

the end-to-end code for training the LeNet model. Instead of doing it in vanilla Py-

Torch, we use the Lightning framework because it significantly simplifies the model

development and training process.

Although PyTorch has all we need to train models, there’s much more to deep

learning than attaching layers. When it comes to the actual training, we need to write a

lot of boilerplate code, as we have seen in previous examples. This includes transferring

data from CPU to GPU, implementing the training driver, and so on. Additionally, if
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we need to scale training/inferencing on multiple devices/machines, another set of

integrations often needs to be done.

PyTorch Lightning is a solution that provides the APIs required to build models,

data sets, and so on. It provides clean interfaces with hooks to be implemented. The

underlying Lightning framework calls these hooks at appropriate points in the training

process. The idea is that Lightning leaves the research logic to us while automating the

rest of the boilerplate code. Additionally, Lightning brings in features like multi-GPU

training, floating-point 16, and training on TPU inherently without requiring any code

changes. More details about PyTorch Lightning can be found at https://www.pytorch-

lightning.ai/tutorials.

Training a model using PyTorch Lightning involves three main components:

DataModule, LightningModule, and Trainer. Let’s see what each of these does.

DATAMODULE
DataModule is a shareable, reusable class that encapsulates all the steps needed to

process data. All data modules must inherit from LightningDataModule, which provides

methods to be overridden. In this specific case, we will implement MNIST as a data

module. This data module can now be used across multiple experiments spanning

various models and architectures.

Listing 11.11 PyTorch code for an MNIST data module

class MNISTDataModule(LightningDataModule):
DATASET_DIR = ''datasets''

def __init__(self, transform=None, batch_size=100):
super(MNISTDataModule, self).__init__()
if transform is None:

transform = transforms.Compose(
[transforms.Resize((32, 32)),
transforms.ToTensor()])

self.transform = transform
self.batch_size = batch_size

def prepare_data(self): Download, tokenizes, and prepares the raw data

datasets.MNIST(root = MNISTDataModule.DATASET_DIR,
train=True, download=True)

datasets.MNIST(root=MNISTDataModule.DATASET_DIR,
train=False, download=True)

def setup(self, stage=None):
train_dataset = datasets.MNIST(

root = MNISTDataModule.DATASET_DIR, train=True,
download=False, transform=self.transform)

self.train_dataset, self.val_dataset = random_split(

Splits the training
data set into
training and
validation sets

train_dataset, [55000, 5000])

self.test_dataset = datasets.MNIST(
root = MNISTDataModule.DATASET_DIR, train = False,
download = False, transform=self.transform)

https://www.pytorchlightning.ai/tutorials
https://www.pytorchlightning.ai/tutorials
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def train_dataloader(self):

Creates the train data loader, which
provides a clean interface for iterating
over the data set. It handles batching,
shuffling, and fetching data via
multiprocessing, all under the hood.

return DataLoader(
self.train_dataset, batch_size=self.batch_size,
shuffle=True, num_workers=0)

def val_dataloader(self): Creates the val data loader
return DataLoader(

self.val_dataset, batch_size=self.batch_size,
shuffle=False, num_workers=0)

def test_dataloader(self): Creates the test data loader
return DataLoader(

self.test_dataset, batch_size=self.batch_size,
shuffle=False, num_workers=0)

@property
def num_classes(self): Number of object categories in the data set

return 10

LIGHTNINGMODULE
LightningModule essentially groups all the research code into a singlemodule, making it

self-contained. Notice the clean separation between DataModule and LightningModule—

this makes it easy to train/evaluate the same model on different data sets. Similarly,

different models can be easily trained/evaluated on the same data set.

A Lightning module consists of the following:

A model or system of models defined in the init method

A training loop defined in training_step

A validation loop defined in validation_step

A testing loop defined in testing_step

Optimizers and schedulers defined in configure_optimizers

Let’s see how we can define the LeNet classifier as a Lightning module.

Listing 11.12 PyTorch code for LeNet as a Lightning module

class LeNetClassifier(LightningModule):

def __init__(self, num_classes):

In the init method, we typically define
the model, the criterion, and any other
setup steps required for training the
model.

super(LeNetClassifier, self).__init__()
self.save_hyperparameters()

self.conv1 = torch.nn.Sequential(
torch.nn.Conv2d(

in_channels=1, out_channels=6,
kernel_size=5, stride=1),

torch.nn.Tanh(),
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torch.nn.AvgPool2d(kernel_size=2))
self.conv2 = torch.nn.Sequential(

torch.nn.Conv2d(
in_channels=6, out_channels=16,
kernel_size=5, stride=1),

torch.nn.Tanh(),
torch.nn.AvgPool2d(kernel_size=2))

self.conv3 = torch.nn.Sequential(
torch.nn.Conv2d(

in_channels=16, out_channels=120,
kernel_size=5, stride=1),

torch.nn.Tanh())
self.fc1 = torch.nn.Sequential(

torch.nn.Linear(in_features=120, out_features=84),
torch.nn.Tanh())

self.fc2 = torch.nn.Linear(in_features=84,
out_features=num_classes)

self.criterion = torch.nn.CrossEntropyLoss() Instantiates cross-entropy loss

self.accuracy = torchmetrics.Accuracy()

def forward(self, X):
Implements the model’s forward pass. In this
case, the input is a batch of images, and the
output is the logits. X.shape:
[batch_size, C, H, W].

conv_out = self.conv3(
self.conv2(self.conv1(X)))

batch_size = conv_out.shape[0]
conv_out = conv_out.reshape(

batch_size, -1)
logits = self.fc2(self.fc1(conv_out))

return logits Logits.shape: [batch_size, num_classes]

def predict(self, X):

Runs the forward pass, performs
softmax to convert the resulting logits
into probabilities, and returns the
class with the highest probabilitylogits = self.forward(X)

probs = torch.softmax(logits, dim=1)
return torch.argmax(probs, 1)

def core_step(self, batch):

Abstracts out common functionality
between the training and test loops,
including the running forward pass,
computing loss, and accuracyX, y_true = batch

y_pred_logits = self.forward(X)
loss = self.criterion(y_pred_logits, y_true)
accuracy = self.accuracy(y_pred_logits, y_true)
return loss, accuracy

def training_step(self, batch, batch_idx):

Implements the basic training step:
run forward pass, compute loss,
accuracy. Logs any necessary values
and returns the total loss.loss, accuracy = self.core_step(batch)

if self.global_step % 100 == 0:
self.log(''train_loss'', loss, on_step=True, on_epoch=True)
self.log(''train_accuracy'', accuracy, on_step=True, on_epoch=True)

return loss
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def validation_step(self, batch,
batch_idx, dataset_idx=None):

Implements the basic validation step:
run forward pass, compute loss and
accuracy, return them.return self.core_step(batch)

def validation_epoch_end(self, outputs):

Called at the end of all test steps
for each epoch. The output of every
test step is available via outputs.
Here we compute the average test
loss and accuracy by averaging
across all test batches.

avg_loss = torch.tensor([x[0] for x in outputs]).mean()
avg_accuracy = torch.tensor([x[1] for x in outputs]).mean()
self.log(''val_loss'', avg_loss)
self.log(''val_accuracy'', avg_accuracy)
print(f''Epoch self.current_epoch,

Val loss: avg_loss:0.2f, Accuracy: avg_accuracy:0.2f'')
return avg_loss

def configure_optimizers(self): Configures the SGD optimizer

return torch.optim.SGD(model.parameters(), lr=0.01,
momentum=0.9)

def checkpoint_callback(self):

Implements logic to save the model.
We save the model with the best
val accuracy.

return ModelCheckpoint(monitor=''val_accuracy'', mode=''max'', save_top_k=1)

The model is independent of the data. This allows us to potentially run the LeNet

Classifier model on other data modules without any code changes. Note that we are

not doing the following steps:

1 Moving the data to a device

2 Calling loss.backward

3 Calling optimizer.backward

4 Setting model.train() or eval()

5 Resetting the gradients

6 Implementing the trainer loop

All of these are taken care of by PyTorch Lightning, thus eliminating a lot of boilerplate

code.

TRAINER
We are ready to train our model, which can be done using the Trainer class. This

abstraction achieves the following:

We maintain control over all aspects via PyTorch code without an added

abstraction.

The trainer uses best practices embedded by contributors and users from top

AI labs.

The trainer allows us to override any key part that we don’t want automated.
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Listing 11.13 PyTorch code for Trainer

dm = MNISTDataModule() Instantiates the data set

model = LeNetClassifier(num_classes=dm.num_classes) Instantiates the model
exp_dir = ''/tmp/mnist''
trainer = Trainer( Instantiates the trainer

default_root_dir=exp_dir,
callbacks=[model.checkpoint_callback()],
gpus=torch.cuda.device_count(), # Number of GPUs to run on
max_epochs=10,
num_sanity_val_steps=0

)
trainer.fit(model, dm) Trains the model

Note that we do not write the trainer loop: we just call trainer.fit to train the model.

Additionally, the logging automatically enables us to look at the loss and accuracy curves

via TensorBoard.

Listing 11.14 PyTorch code for inferencing a model

X, y_true = (iter(dm.test_dataloader())).next()
with torch.no_grad():

y_pred = model.predict(X) Runs model.predict()

To run inferencing using the trained model, we run model.predict on the input.

11.3 Object detection: A brief history
Until now, we have discussed the classification problem wherein we categorize an image

as 1 of N object categories. But in many cases, this is not sufficient to truly describe an

image. Consider figure 11.11—a very realistic image with four animals standing one on

top of another, posing for the camera. It would be useful to know the object categories

of each of the animals and their location (bounding-box coordinates) in the image.

This is referred to as the object detection/localization problem. So, how do we localize

objects in images?

Let’s say we could extract regions in the image so that each region contained only one

object. We could then run an image classifier deep neural network (which we looked at

earlier) to classify each region and select the regions with the highest confidence. This

was the approach adopted by one of the first deep learning-based object detectors, a

region-based CNN (R-CNN; https://arxiv.org/pdf/1311.2524.pdf). Let’s look at this in

more detail.

11.3.1 R-CNN

The R-CNN approach to object detection consists of three main stages:

Selective search to identify regions of interest—This step uses a computer vision-based

algorithm capable of extracting candidate regions. We do not go into the details

https://arxiv.org/pdf/1311.2524.pdf
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Example training image

Figure 11.11 An image with multiple objects of
different shapes and sizes

of the selective search; you are encouraged to go through the original paper to

understand the details. Selective search generates around 2,000 region proposals

per image.

Feature extraction—A deep convolution neural network extracts features from each

region of interest. Since deep neural networks typically take in fixed-sized inputs,

the regions (which could be arbitrarily sized) are warped into a fixed size before

being fed into the deep neural network.

Classification/Localization—A class-specific support vector machine (SVM) is trained

on the extracted features to classify the region. Additionally, bounding-box regres-

sors are added to fine-tune the object’s location within the region. During training,

each region is assigned a ground-truth (GT) class based on its overlap with GT

boxes. It is assigned a positive label if there is a high overlap and a negative label

otherwise.

11.3.2 Fast R-CNN

One of the biggest disadvantages of the R-CNN-based approach is that we have to extract

features for every region proposal independently. So, if we generate 2,000 proposals

for a single image, we have to run 2,000 forward passes to extract the region features.

This is prohibitively expensive and extremely slow (during both training and inference).

Additionally, training is a multistage pipeline—selective search, the deep network, the

SVMs on top of the features, and the bounding-box regressors—that is cumbersome to

train and inference. To solve these problems, the authors of the R-CNN introduced a new

technique called a Fast R-CNN (https://arxiv.org/pdf/1504.08083.pdf). It significantly

improved speeds: it is 9× faster than the R-CNN during training and 213× faster at test

time. Additionally, it improves the quality of object detection.

https://arxiv.org/pdf/1504.08083.pdf
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Fast R-CNN makes two major contributions:

Region of interest (RoI) pooling—As mentioned, one of the fundamental issues with

R-CNN is the need for multiple forward passes to extract the features for the region

proposals of a single image. Instead, can we extract the features in one go? This

problem is solved using RoI pooling. The Fast R-CNN uses the entire image as

the input to the CNN instead of a single region proposal. Then, the RoIs (region

proposal bounding boxes) are used on top of the CNN output to extract the region

features in one pass. We will go into the details of RoI pooling as part of our Faster

R-CNN discussion.

Multitask loss—The Fast R-CNN eliminates the need to use SVMs. Instead, the

deep neural network does both classification and bounding-box regression. Unlike

R-CNN, which only uses deep networks for feature extraction, the Fast R-CNN is

more end-to-end. It is a single architecture for region proposal feature extraction,

classification, and regression.

The high-level algorithm is as follows:

1 Use selective search to generate 2,000 region proposals/RoIs per image.

2 In a single pass of the Fast R-CNN, extract all the RoI features in a single pass

using RoI pooling and then classify and localize objects using the classification and

regression heads.

Since the feature extraction for all the region proposals happens in one pass, this

approach is significantly faster than the R-CNN, where every proposal needs a separate

forward pass. Additionally, since the neural network is trained end to end—that is, asked

to do classification and regression—the accuracy of object detection is also improved.

11.3.3 Faster R-CNN

Why settle for fast when we can be faster? The Fast R-CNN was significantly faster than

the R-CNN. However, it still needed selective search to be run to obtain region proposals.

The selective-search algorithm can only be run on CPUs. Additionally, the algorithm

is slow and time-consuming. Thus it became a bottleneck. Is there a way to get rid of

selective search?

The obvious idea to consider is using deep networks to generate region proposals.

This is the core idea of Faster R-CNN (FRCNN; https://arxiv.org/pdf/1506.01497.pdf):

it eliminates the need for selective search and lets a deep network learn the region

proposals. It was one of the first near-real-time object detectors. Since we are using a

deep network to learn the region proposals, the region proposals are also better. Thus

the resulting accuracy of the overall architecture is also much better.

We can view the FRCNN as consisting of two core modules:

Region proposal network (RPN)—This is the module responsible for generating the

region proposals. RPNs are designed to efficiently predict region proposals with a

wide range of scales and aspect ratios.

R-CNN module—This is the same as the Fast R-CNN. It receives a bunch of region

proposals and performs RoI pooling followed by classification and regression.

https://arxiv.org/pdf/1506.01497.pdf
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Another important thing to note is that the RPN and the R-CNN module share the

same convolutional layers: the weights are shared rather than learning two separate

networks. In the next section, we discuss the Faster R-CNN in detail.

11.4 Faster R-CNN: A deep dive
Figure 11.12 shows the high-level architecture of the FRCNN. The convolutional layers

(which we also call the convolutional backbone) extract feature maps from the input

image. The RPN operates on these feature maps and emits candidate RoIs. The RoI

pooling layer generates a fixed-sized feature vector for each region of interest and passes

it on to a set of FC layers that emit softmax probability estimates over K object classes

(plus a catch-all “background” class) and four numbers representing the bounding-box

coordinates for each of the K classes. Let’s look at each of the components in more

detail.

Classifier

RoI pooling

Feature maps

Proposals

Region proposal network

Conv layers

Image

Figure 11.12 Faster R-CNN
architecture. (Source: “Faster
R-CNN: Toward real-time
object detection with region
proposal networks”; https://
arxiv.org/abs/1506.01497.)

11.4.1 Convolutional backbone

In the original implementation, the FRCNN used the convolution layers of VGG-16 as

the convolutional backbone for both the RPN and the R-CNN modules. There has been

one minor modification: the last pooling layer after the fifth convolution layer (conv5)

https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.01497
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is removed. As we’ve discussed regarding VGG architectures earlier, VGG reduces the

spatial size of the feature map by 2 in every conv block via max pooling. Since the last

pooling layer is removed, the spatial size is reduced by a factor of 24 = 16. So a 224× 224

image is reduced to a 14× 14 feature map at the output. Similarly, an 800× 800 image

would be reduced to a 50× 50 feature map.

11.4.2 Region proposal network

The RPN takes in an image (of any arbitrary size) as input and emits a set of rectangular

proposals that could potentially contain objects as output. The RPN operates on top of

the convolutional feature map output by the last shared convolution layer. With the VGG

backbone, an input image of size (h, w) is scaled down to (h/16, w/16). So each 16× 16

spatial region in the input image is reduced to a single point on the convolutional

feature map. Thus each point in the output convolutional feature map represents a

16× 16 patch in the input image. The RPN operates on top of this feature map. Another

subtle point to remember is that while each point in the convolutional feature map

is chosen to correspond to a 16× 16 patch, it has a significantly larger receptive field
(the region in the input feature map that a particular output feature is affected by).

The embedding at each point in the feature map is thus, in effect, the digest of a large

receptive field.

ANCHORS
A key aspect of the object-detection problem is the variety of object sizes and shapes.

Objects can range from very small (cats) to very large (elephants). Additionally, objects

can have different aspect ratios. Some objects may be wide, some may be tall, and so on.

A naive solution is to have a single neural network detector head capable of identifying

and recognizing all these objects of varying sizes and shapes. As you can imagine, this

would make the job of the neural network detector extremely complex. A simpler

solution is to have a wide variety of neural network detector heads, each responsible

for solving a much simpler problem. For example, one head will only focus on large,

tall objects and will only fire when such objects are present in the image. The other

heads will focus on other sizes and aspect ratios. We can think of each head as being

responsible for doing a single simple job. This type of setup greatly aids and benefits

learning.

This was the intuition behind the introduction of anchors. Anchors are like reference

boxes of varying shapes and sizes. All proposals are made relative to anchors. Each

anchor is uniquely characterized by its size and aspect ratio and is tasked with detecting

similarly shaped objects in the image. At each sliding-window location, we have multiple

anchors spanning different sizes and aspect ratios. The original FRCNN architecture

supported nine anchor configurations spanning three sizes and three aspect ratios, thus

supporting a wide variety of shapes. These correspond to anchor boxes of scales (8, 16,

32) and aspect ratios (0.5, 1.0, and 2.0), respectively (see figure 11.13). Anchors are

now ubiquitous across object detectors.
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Anchors at grid point (25, 25)Anchor locations

Figure 11.13 The left column shows the various grid-point locations on the output convolution feature
map over which the small network is convolved. At each grid point location, we sample k (=9 in the
original implementation) anchors across multiple sizes and aspect ratios. The right column shows the
various anchors at a particular grid point.

NOTE Fully functional code for generating anchors, executable via Jupyter Note-

book, can be found at http://mng.bz/nY48.

Listing 11.15 PyTorch code to generate anchors at a particular grid point

def generate_anchors_at_grid_point(
ctr_x, ctr_y, subsample, scales, aspect_ratios):
anchors = torch.zeros(

(len(aspect_ratios) * len(scales), 4), dtype=torch.float)

for i, scale in enumerate(scales):
for j, aspect_ratio in enumerate(aspect_ratios):

Generates the height and
width for different scales
and aspect ratios

w = subsample * scale * torch.sqrt(aspect_ratio)
h = subsample * scale * torch.sqrt(1 / aspect_ratio)

xtl = ctr_x - w / 2
Generates a bounding box centered around
(ctr_x, ctr_y) with width w, and height h

ytl = ctr_y - h / 2
xbr = ctr_x + w / 2
ybr = ctr_y + h / 2

index = i * len(aspect_ratios) + j
anchors[index] = torch.tensor([xtl, ytl, xbr, ybr])

return anchors

http://mng.bz/nY48
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Listing 11.16 PyTorch code to generate all anchors for a given image

def generate_all_anchors(

This isn’t the most efficient way to
generate anchors. We’ve written simple
code to ease understanding.

input_img_size, subsample, scales, aspect_ratios):

_, h, w = input_img_size

conv_feature_map_size = (h//subsample, w//subsample)

all_anchors = []

Generates anchor boxes centered at
every point in the conv feature map,
which corresponds to a 16 × 16 (subsample,
subsample) region in the input

ctr_x = torch.arange(
subsample/2, conv_feature_map_size[1]*subsample+1, subsample)

ctr_y = torch.arange(
subsample/2, conv_feature_map_size[0]*subsample+1, subsample)

for y in ctr_y:
for x in ctr_x:

all_anchors.append(
generate_anchors_at_grid_point(

Uses a function defined
in listing 11.15

x, y, subsample, scales, aspect_ratios))

all_anchors = torch.cat(all_anchors)
return all_anchors

input_img_size = (3, 800, 800) Defines config parameters and generates anchors
c, height, width = input_img_size
scales = torch.tensor([8, 16, 32], dtype=torch.float)
aspect_ratios = torch.tensor([0.5, 1, 2])
subsample = 16
anchors = generate_all_anchors(input_img_size, subsample, scales, aspect_ratios)

The RPN slides a small network over the output convolution feature map. The small

network operates on an n × n spatial window of the convolution feature map. At each

sliding-window location, it generates a lower-dimensional feature vector (512 dimensions

for VGG) that is fed into a box-regression layer (reg) and a box-classification layer (cls).

For each of the anchor boxes centered at that sliding window location, the classifier

predicts objectness: a value from 0 to 1, where 1 indicates the presence of the object and

the regressor predicts the region proposal relative to the anchor box. This architecture

is naturally implemented with an n × n convolutional layer followed by two sibling 1× 1

convolutional layers (for reg and cls), respectively. The original implementation in

the FRCNN paper uses n = 3, which results in an effective receptive field of 228 pixels

when using the VGG backbone. Figure 11.14 illustrates this in detail. Note that this

network consists of only convolutional layers. Such an architecture is called a fully

convolutional network (FCN). FCNs do not have an input size restriction. Because they
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Convolution feature map

3×3 conv

Sliding window

512D feature map

2,000 scores 4,000 coordinates

1×1 conv 1×1 conv

Figure 11.14 RPN architecture. From each sliding window, a
512-dimensional feature vector is generated using 3 × 3 convs.
A 1 × 1 conv layer (classifier) takes the 512-dimensional feature
vector as input and generates 2k scores (denoting the presence/
absence of an object), where k is the number of anchors.
Similarly, another 1 × 1 conv layer (regressor) generates 4k
bounding-box coordinates from the 512-dimensional feature
vector.

consist of only convolution layers, they can work with arbitrary-sized inputs. In the FCN,

the combination of the n × n and 1× 1 layers is equivalent to applying an FC layer over

every embedding at each point in the convolutional feature map. Also, because we are

convolving a convolutional network on top of the feature map to generate the regression

and classification scores, the convolutional weights are common/shared across different

positions on the feature map. This makes the approach translation invariant. A cat at

the top of the image and a cat at the bottom of the image are picked up by the same

anchor configuration (scale, aspect ratio) if they are similarly sized.

NOTE Fully functional code for the fully convolutional network of the RPN,

executable via Jupyter Notebook, can be found at http://mng.bz/nY48.

Listing 11.17 PyTorch code for the FCN of the RPN

class RPN_FCN(nn.Module):

def __init__(self, k, in_channels=512): Instantiates the small network that is
convolved over the output conv feature
map. It consists of a 3 × 3 conv layer
followed by a 1 × 1 conv layer for
classification and another 1 × 1 conv
layer for regression.

super(RPN_FCN, self).__init__()
self.conv = nn.Sequential(

nn.Conv2d(
in_channels, 512, kernel_size=3,
stride=1, padding=1),

nn.ReLU(True))
self.cls = nn.Conv2d(512, 2*k, kernel_size=1)
self.reg = nn.Conv2d(512, 4*k, kernel_size=1)

def forward(self, x):
out = self.conv(x)

Output of the backbone: a convolutional
feature map of size (batch_size,
in_channels, h, w)

http://mng.bz/nY48
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rpn_cls_scores = self.cls(out).view(
Converts (batch_size, h, w, 2k) to
(batch_size, h*w*k, 2)

x.shape[0], -1, 2)
rpn_loc = self.reg(out).view(

Converts (batch_size, h, w, 4k) to
(batch_size, h*w*k, 4)

x.shape[0], -1, 4)

(batch_size, num_anchors, 2) tensor representing
the classification score for each anchor box

return rpn_cls_scores ,rpn_loc

(batch_size, num_anchors, 4) tensor
representing the box coordinates
relative to the anchor box

GENERATING GT FOR AN RPN
So far, we have generated many anchor bounding boxes and a neural network capable

of generating the classification and regression offsets for every anchor. While training

the RPN, we need to provide a target (GT) that both the classifier and regressor should

predict for each anchor box. To do so, we need to look at the objects in the image

and assign them to relevant anchors that contain the object. The idea is as follows: out

of the thousands of anchors,the anchors that contain most of the object should try predicting

and localizing the object. We saw earlier that the intuition behind creating anchors was to

ensure that each anchor is responsible for one particular type of object (shape, aspect

ratio). Thus it makes sense that only anchors that contain the object are responsible for

classifying it.

To measure whether the object lies within the anchor, we rely on intersection over

union (IoU) scores. The IoU between two bounding boxes is defined as
area o f overlap
area o f union .

So, if the two bounding boxes are very similar, their overlap is high, and their union is

close to the overlap, resulting in a high IoU. If the two bounding boxes are varied, then

their area of overlap is minimal, resulting in a low IoU (see figure 11.15).

Figure 11.15 Intersection over the union between two bounding boxes. It is equivalent to the inter-
section of the two areas divided by the union of the two areas.
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FRCNN provides some guidelines for assigning labels to the anchor boxes:

We assign a positive label 1 (which represents an object being present in the anchor

box) to two kinds of anchors:

– The anchor(s) with the greatest IoU overlap with a GT box

– An anchor that has an IoU overlap greater than 0.7 with the GT box

We assign a negative label 0 (which represents no object being present in the

anchor box, implying that it contains only background) to a non-positive anchor

if its IoU ratio is less than 0.3 for all GT boxes.

Anchors that are neither positive nor negative do not contribute to the training

objective.

Note that a single GT object may assign positive labels to multiple anchors. These

outputs must be suppressed later to prevent duplicate detections (we discuss this in

the subsequent sections). Also, any anchor box that lies partially outside the image is

ignored.

NOTE Fully functional code for assigning GT labels to anchor boxes, executable

via Jupyter Notebook, can be found at http://mng.bz/nY48.

Listing 11.18 PyTorch code to assign GT labels for each anchor box

valid_indices = torch.where(
(anchors[:, 0] >=0) &
(anchors[:, 1] >=0) &
(anchors[:, 2] <=width) &

Finds valid anchors that lie completely
inside the image

(anchors[:, 3] <=height))[0]

rpn_valid_labels = -1 * torch.ones_like(

Assigns s label of -1 (not any class)
for each valid anchor

valid_indices, dtype=torch.int)

valid_anchor_bboxes = anchors[valid_indices] Obtains the valid anchor boxes

ious = torchvision.ops.box_iou(
Tensor of shape (num_gt_bboxes,
num_valid_anchor_bboxes), representing
the IoU between the GT and anchorsgt_bboxes, valid_anchor_bboxes)

assert ious.shape == torch.Size(
[gt_bboxes.shape[0], valid_anchor_bboxes.shape[0]])

gt_ious_max = torch.max(ious, dim=1)[0]
Finds the highest IoU for
every GT bounding box

# Find all the indices where the IOU = highest GT IOU

gt_ious_argmax = torch.where( Finds all the indices where the IOU = highest GT IOU

gt_ious_max.unsqueeze(1).repeat(1, gt_ious_max.shape[1]) == ious)[1]

http://mng.bz/nY48
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anchor_ious_argmax = torch.argmax(ious, dim=0)
Finds the highest IoU for
every anchor box

anchor_ious = ious[anchor_ious_argmax, torch.arange(len(anchor_ious_argmax))]

pos_iou_threshold = 0.7
neg_iou_threshold = 0.3

rpn_valid_labels[anchor_ious < neg_iou_threshold] = 0

Assigns 0 (background) for
negative anchors where
IoU < 0.3

rpn_valid_labels[anchor_ious > pos_iou_threshold] = 1

Assigns 1 (objectness) for
positive anchor where
IoU > 0.7

rpn_valid_labels[gt_ious_argmax] = 1

For every GT bounding box, assigns the
anchor with the highest IoU as a positive
anchor

DEALING WITH IMBALANCE
Given our strategy of assigning labels to anchors, notice that the number of negative

anchors is significantly greater than the number of positive anchors. For example, for

the example image, we obtained only 24 positive anchors as opposed to 7,439 negative

anchors. If we train directly on such an imbalanced data set, neural networks can

typically learn a local minimum by classifying every anchor as a negative anchor. In our

example, if we predicted every anchor to be a negative anchor, our resulting accuracy

would be 7439/(7439+ 22): 99.7%. However, the resulting neural network is practically

useless because it has not learned anything. In other words, the imbalance will lead to

bias toward the dominant class. To deal with this imbalance, there are typically three

strategies:

Undersampling—Sample less of the dominant class.

Oversampling—Sample more of the less-dominant class.

Weighted loss—Set the cost for misclassifying less-dominant classes much higher

than the dominant class.

FRCNN utilizes the idea of undersampling. For a single image, there are multiple

positive and negative anchors. From these thousands of anchors, we randomly sample

256 anchors in an image to compute the loss function, where the sampled positive and

negative anchors have a ratio of up to 1:1. If there are fewer than 128 positive samples

in an image, we pad the minibatch with negative ones.

ASSIGNING TARGETS TO ANCHOR BOXES
We have seen how to sample and assign labels to anchors. The next question is how to

come up with the regression targets:

Case 1: label =−1—Unsampled/invalid anchor. These do not contribute to the

training objective, so regression targets do not matter.

Case 2: label = 0—Background anchor. These anchors do not contain any objects,

so they also should not contribute to regression.

Case 3: label = 1—Positive anchor. These anchors contain objects. We need to

generate regression targets for these anchors.
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Let’s consider only the case of positive anchors. The key intuition here is that the anchors

already contain a majority of the object. Otherwise, they wouldn’t have become positive

anchors. So there is already significant overlap between the anchor and the object in

question. Therefore it makes sense to learn the offset from the anchor bounding box to

the object bounding box. The regressor is tasked with learning this offset: that is, what

delta we must make to the anchor bounding box for it to become the object bounding

box. the FRCNN adopts the following parameterization:

tx = (x − xa)/wa
ty = (y − ya)/ha
tw = log (w/wa)
th = log (h/ha) (11.2)

where x, y, w, and h denote the GT bounding box’s center coordinates and its width

and height, and xa, ya,wa, and ha denote the anchor bounding box’s center coordinates
and its width and height. tx, ty, tw, and th are the regression targets. The regressor is,

in effect, learning to predict the delta between the anchor bounding box and the GT

bounding box.

NOTE Fully functional code for assigning regression targets to anchor boxes,

executable via Jupyter Notebook, can be found at http://mng.bz/nY48.

Listing 11.19 PyTorch code to assign regression targets for each anchor box

def transform_bboxes(bboxes): (n, 4) tensor in (xtl, ytl, xbr, ybr) format
height = bboxes[:, 3] - bboxes[:, 1]
width = bboxes[:, 2] - bboxes[:, 0]
x_ctr = bboxes[:, 0] + width / 2
y_ctr = bboxes[:, 1] + height /2

return torch.stack( (n, 4 tensor) in (x, y, w, h) format

[x_ctr, y_ctr, width, height], dim=1)

def get_regression_targets(roi_bboxes, gt_bboxes):

(n, 4) tensors representing the
bounding boxes for the region
of interest and GT, respectively

assert roi_bboxes.shape == gt_bboxes.shape
roi_bboxes_t = transform_bboxes(roi_bboxes)
gt_bboxes_t = transform_bboxes(gt_bboxes)
tx = (gt_bboxes_t[:, 0] - roi_bboxes_t[:, 0]) / roi_bboxes_t[:, 2]
ty = (gt_bboxes_t[:, 1] - roi_bboxes_t[:, 1]) / roi_bboxes_t[:, 3]
tw = torch.log(gt_bboxes_t[:, 2] / roi_bboxes_t[:, 2])
th = torch.log(gt_bboxes_t[:, 3] / roi_bboxes_t[:, 3])

return torch.stack([tx, ty, tw, th], dim=1)

(n, 4) tensor containing the
regression targets

http://mng.bz/nY48
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RPN LOSS FUNCTION
We have defined the RPN fully convolutional network and how we can generate labels

and regression targets for the outputs of the RPN FCN. Now we need to discuss the loss

function that enables us to train the RPN. As you would expect, there are two loss terms:

Classification loss—Applies to both the positive and negative anchors. We use the

standard cross-entropy loss used in any standard classifier.

Regression loss—Applies only to the positive anchors. Here we use smooth L1 loss,

which is defined as

L1;smooth =

{
0.5(xn − yn)2/beta, if |xn − yn | < beta
|xn − yn | − 0.5 ∗ beta, otherwise

(11.3)

We can think of smooth L1 loss as a combination of L1 and L2 loss. If the value is < beta,

it behaves like an L2 loss (mean squared error [MSE]). Otherwise, it behaves like an L1

loss. In the case of the FRCNN, beta is set to 1. The intuition behind this is simple. If we

use pure L2 loss (MSE), then higher loss terms contribute to exponential loss because

of the quadratic nature of the loss. This can lead to a bias where loss can be reduced by

focusing on high-value items. Instead, if we use pure L1 loss, the higher loss terms still

contribute more loss, but the effect is linear instead of quadratic. This still has a slightly

worse bias toward higher loss terms. We get the best of both worlds by using L2 loss

when the loss values are small and L1 loss when the loss values are large. When the loss

value is small, because we are using L2 loss, its contribution is exponential/quadratic.

And when the loss value is high, it still contributes linearly via L1 loss. Thus the network

is incentivized to pay attention to low- and high-loss items.

Overall loss for an image can be defined as follows:

Lcls =

∑
i CrossEntropy(pi , p∗i )

Ncls

Lreg =

∑
i p∗i L1;smooth (ti , t∗i )

Npos
LRPN =Lcls + _Lreg (11.4)

where, pi is the predicted objectness probability for the anchor i. p∗i is the true objectness
label for anchor i. It is 1 if the anchor is positive and 0 if the anchor is negative. ti
= (tx , ty , tw , th) are the regression predictions for anchor i, t∗i = (t∗x , t∗y , t∗w , t∗h ) are the

regression targets for anchor i, Ncls is the number of anchors, and Npos is the number

of positive anchors.

NOTE Fully functional code for the RPN loss function, executable via Jupyter

Notebook, can be found at http://mng.bz/nY48.

http://mng.bz/nY48
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Listing 11.20 PyTorch code for the RPN loss function

def rpn_loss(
rpn_cls_scores, rpn_loc, rpn_labels,
rpn_loc_targets, lambda_ = 10):

rpn_cls_scores: (num_anchors, 2) tensor representing RPN classifier scores
for each anchor. rpn_loc: (num_anchors, 4) tensor representing RPN regressor
predictions for each anchor. rpn_labels: (num_anchors) representing the class
for each anchor (-1, 0, 1). rpn_loc_targets: (num_anchors, 4) tensor
representing RPN regressor targets for each anchor.

classification_criterion = nn.CrossEntropyLoss(

ignore_index=-1) Ignores -1 as they are not sampled

reg_criterion = nn.SmoothL1Loss(reduction=''sum'')

cls_loss = classification_criterion(rpn_cls_scores, rpn_labels)

positive_indices = torch.where(rpn_labels==1)[0] Finds the positive anchors
pred_positive_anchor_offsets = rpn_loc[positive_indices]
gt_positive_loc_targets = rpn_loc_targets[positive_indices]
reg_loss = reg_criterion(

pred_positive_anchor_offsets,
gt_positive_loc_targets) / len(positive_indices)

return {
''rpn_cls_loss'': cls_loss,
''rpn_reg_loss'': reg_loss,
''rpn_total_loss'': cls_loss + lambda_* reg_loss

}

GENERATING REGION PROPOSALS
Wehave so far discussed how the RPNworks. The RPN predicts objectness and the regres-

sion offsets for every anchor. The next task is to generate good region proposals/RoIs

and use them for training the R-CNN module. Since we are emitting objectness and

regression offsets for every anchor, we have thousands of predictions. We cannot use

all of them as RoIs. We need to generate the best RoIs from these scores and offsets

to train our R-CNN. An obvious way to do this is to rely on the objectness scores: the

higher the objectness score, the greater the likelihood that it contains an object and

thus is a good RoI. Before we get there, we must do some basic processing steps:

1 Convert the predicted offsets to bounding boxes. This is done by reversing the

sequence of transformations

x∗ = t∗x ∗wa + xa
y∗ = t∗y ∗ ha + ya
w∗ = et

∗
w ∗wa

h∗ = et
∗
h ∗ ha (11.5)
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where x∗, y∗, w∗, and h∗ denote the predicted bounding box’s center coordinates

and its width and height, and t∗x, t
∗
y , t

∗
w, and t

∗
h are the RPN loc predictions. The

bounding boxes are then converted back into xtl, ytl, xbr, ybr format.

2 The predicted bounding boxes can lie partially outside the image. We clip all the

predicted bounding boxes to within the image.

3 Remove any predicted bounding boxes with height or width less than min_roi_

threshold.

Once these processing steps are done, we sort the predicted bounding boxes by ob-

jectness score and select N candidates. N = 12000 during training and N = 6000 while

testing.

NOTE Fully functional generating region proposals from the RPN output, exe-

cutable via Jupyter Notebook, can be found at http://mng.bz/nY48.

Listing 11.21 PyTorch code to generate region proposals from RPN output

rois = generate_bboxes_from_offset(rpn_loc, anchors)

rois = rois.clamp(min=0, max=width) Clips the ROIs

roi_heights = rois[:, 3] - rois[:, 1] Threshold based on min_roi_threshold
roi_widths = rois[:, 2] - rois[:, 0]
min_roi_threshold = 16

valid_idxes = torch.where((roi_heights > min_roi_threshold) &
(roi_widths > min_roi_threshold))[0]

rois = rois[valid_idxes]
valid_cls_scores = rpn_loc[valid_idxes]

objectness_scores = valid_cls_scores[:, 1]

sorted_idx = torch.argsort( Sorts based on objectness
objectness_scores, descending=True)

n_train_pre_nms = 12000
n_val_pre_nms = 300

rois = rois[sorted_idx][:n_train_pre_nms]

Selects the top regions of interest.
Shape: (n_train_pre_nms, 4).

objectness_scores = objectness_scores[

sorted_idx][:n_train_pre_nms]

Selects the top objectness scores.
Shape: (n_train_pre_nms,).

NON-MAXIMAL SUPPRESSION (NMS)
Many of the proposals will overlap. We are effectively selecting anchors at a stride of

16 pixels. Therefore even a reasonably sized object is picked up by multiple anchors,

each of which will try to predict the object independently. We can see this overlapping

nature when we look at the positive anchors in figure 11.16. We want to choose the

most effective set of RoIs. But it is evident that choosing all the similar proposals does

http://mng.bz/nY48
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Positive anchors Random negative anchors

Figure 11.16 For the image under consideration, we have 24 positive anchors and 7,439 negative
anchors. Training directly on such an imbalanced data set can lead to the network learning a local
minimum where every anchor is classified as negative. To prevent this, the FRCNN under-samples the
negative anchors before training.

not make a good set of RoIs because they carry redundant information. To address this

problem, we use a technique called non-maximal suppression (NMS). NMS is an algorithm

that suppresses highly overlapping bounding boxes. The algorithm takes in bounding

boxes and scores and works as follows.

Algorithm 11.1 Non-maximal suppression

Input: A list of bounding boxes B, corresponding scores S, and overlap threshold N

Output: A list of filtered bounding boxes D

while likelihood is increasing do

Select bounding box with highest confidence score

Remove it from B and add it to the final list D

Compare selected bounding box with remaining boxes in B using IoU

Remove all bounding boxes from B with IoU > threshold

end while

return D

We use NMS with a 0.7 threshold to suppress the highly overlapping RoIs and choose

the top N RoIs post-NMS to train the R-CNN. N = 2000 during training, and N = 300

while testing. Figure 11.17 shows bounding boxes on a sample image before and after

NMS.

NOTE Fully functional code for NMS, executable via Jupyter Notebook, can be

found at http://mng.bz/nY48.

http://mng.bz/nY48
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Pre NMS Post NMS

Figure 11.17 The left column shows the bounding boxes (24) before NMS. The right column shows the
bounding boxes (4) that remain after NMS.

Listing 11.22 PyTorch code for NMS of RoIs

n_train_post_nms = 2000
n_val_post_nms = 300
nms_threshold = 0.7

post_nms_indices = torchvision.ops.nms( Calls NMS implemented by torchvision
rois, objectness_scores, nms_threshold)

post_nms_rois = rois[post_nms_indices[:n_train_post_nms]]

11.4.3 Fast R-CNN

In the previous section, we saw how the RPN network takes an input image and emits a

set of regions of interest that are likely to contain objects. Now let’s discuss the second

leg of the FRCNN architecture, which takes in the RoIs and generates class probabilities

and bounding-box coordinates for each object in the image. We briefly discussed this

earlier. Here we revisit it in greater detail.

We are given a set of RoIs (some of which contain the object). Our task is to train

an object detector capable of localizing the objects. To do this, we need to extract the

features corresponding to each RoI and pass them through a neural network (classifier

and regressor) that learns to predict the class and the regression targets. The R-CNN

solved this in a naive way: it extracted each RoI one at a time, warped it to make it a

fixed size, and passed it through a deep CNN to extract the features corresponding to

the RoI. Each RoI required a separate forward pass, making the approach very slow.

The question, as always, is: can we do better?
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ROI POOLING
Let’s consider the convolutional backbone. It processes the whole image with several

conv and max pooling layers to produce a conv feature map. We have also seen a

subsampling factor of 16: that is, 16× 16 pixels in the input image are reduced to a

single point in the feature map. Also remember that the embedding at every grid point

on the feature map is the representation/digest of a region in the input image.

Key idea 1 is that the features corresponding to each RoI are already present in the

conv feature map, and we can extract them via the feature map. For example, say our

RoI is (0, 0, 256, 256). We know that the (0, 0, 256, 256) region in the input image

is represented by (0, 0, 256/16, 256/16): that is, the (0, 0, 16, 16) region in the conv

feature map. Since the embedding for a point in the conv feature map is a digest of the

receptive field, we can use these features directly as the features of the RoI. So to obtain

the features for an RoI of (0, 0, 256, 256), we take all the embeddings corresponding to

the region (0, 0, 16, 16) in the conv feature map. Since we are performing this feature

extraction directly on the convolutional feature map, which is obtained for the entire

image, we can obtain the RoI features for all the RoIs in a single forward pass. This

eliminates the need for multiple forward passes.

Key idea 2 is as follows. We discussed a clever way of extracting the features correspond-

ing to each RoI, and we want to use these features to train our classifier and regressor.

However, there is a problem. As we know, RoIs are different sizes. And different-sized

RoIs will lead to different feature embedding sizes. For example, if our RoI is (0, 0, 256,

256), our RoI feature embeddings are (16, 16, 512): that is, all the embeddings (of

size 512) in the (0, 0, 16, 16) region of the conv feature map. If our RoI is (0, 0, 128,

128), then our RoI feature embeddings are (8, 8, 512): all the embeddings in the (0,

0, 8, 8) region of the conv feature map. And we know that neural networks typically

need same-sized input. So how do we deal with input embeddings of different sizes?

The answer is RoI pooling.

Let’s fix the size of the input ROI feature map that goes into the neural network.

Our task is to reduce variable-sized RoI feature maps to a fixed size. If the fixed feature

map size is set to be H ,W, and our RoI corresponds to (r , c , h, w) in the conv feature

map, we divide h and w into equal-sized blocks of size h/H and w/W, respectively, and

apply max pooling on these blocks to obtain a H ,W feature map. Going back to our

example, let’s fixH =W = 4. Our expected fixed feature map size is (4, 4, 512). So when
our RoI is (0, 0, 256, 256), our RoI feature embeddings are (16, 16, 512): h =w = 16. We

divide the 16× 16 region into four (16/4, 16/4) regions and perform max pooling on

each region to obtain a fixed-size (4, 4, 512) feature. Similarly, when our RoI is (0, 0,

128, 128), h =w = 8. We divide the 8× 8 region into four (8/4, 8/4) regions and perform

max pooling to obtain the fixed-size (4, 4, 512) feature.
Astute readers will notice that we have carefully chosen our RoIs so that they are

multiples of H andW, resulting in integer values for h/H and w/W, respectively. But in

reality, this rarely happens. h/H andw/W are often floating-point numbers. What do we

do in this case? The answer is quantization: that is, we choose the integer closest to h/H
and w/W, respectively (floor operation, in the original implementation). This has been
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improved on by RoIAlign, which uses bilinear interpolation instead of quantization. We

do not get into the details of RoIAlign here.

In effect, if we have a large RoI, we divide the feature map into a fixed number of

large regions and perform max pooling. And when we have a small RoI, we divide the

feature map into a fixed number of small regions and perform max pooling. The size

of the region used for pooling can change, but the output size remains fixed. The

dimension of the RoI pooling output doesn’t depend on the size of the input feature

map or the size of the RoIs: it’s determined solely by the number of sections we divide

the RoI into—H andW (see figure 11.18).

Conv feature map

RoI 1 RoI 2

RoI-pooled feature
maps are the same
size even though RoIs 
are different sizes.

2×2 2×2

2×22×2

3×3 3×3

3×33×3

6

64

4

2

22

2

Figure 11.18 A conv feature
map with two regions of interest
of different sizes. RoI pooling ex-
tracts a fixed-sized output feature
map (2 × 2 in this image) from
each of the RoIs in a single pass
via max pooling. This enables us
to extract fixed-sized representa-
tive feature vectors for each RoI,
which are then fed into further
classifier and regressor layers for
classification and localization.

Thus, the purpose of RoI pooling is to perform max pooling on inputs of non-uniform

sizes to obtain fixed-size feature maps. The Fast R-CNN and Faster R-CNN use 7× 7 as

the fixed feature map size.

FAST R-CNN ARCHITECTURE
Given the conv feature map and a set of RoIs, we have seen how the RoI pooling layer

extracts a fixed-length feature vector from the feature map. Each feature vector is

fed into a sequence of FC layers that finally branch into two sibling output layers: a

classifier that produces softmax probability estimates over K object classes plus a catch-

all “background” class, and a regressor that produces four real-valued numbers for each

of the K object classes.
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GENERATING GT FOR THE FAST R-CNN
For every image, we have a list of RoIs generated by the RPN and a list of GT bounding

boxes. How do we generate the GT and regression targets for each RoI? The idea

remains the same as for our RPN: we use IoU scores. The algorithm is as follows:

1 Compute the IoU between all RoIs and GT boxes.

2 For each RoI, determine the GT bounding box with the highest IoU.

3 If the highest IoU is greater than a threshold (0.5), assign the corresponding GT

label as the label for the RoI.

4 If the IoU is between [0.1, 0.5], assign the background label. Using a lower bound

of 0.1 ensures that certain RoIs with small intersections with the GT are selected

as background. This is helpful as it chooses hard examples for background; it is a

form of hard negative mining.

NOTE Fully functional code for the Fast R-CNN RoI head, executable via Jupyter

Notebook, can be found at http://mng.bz/nY48.

Listing 11.23 PyTorch code for the Fast R-CNN RoI head

class Fast_RCNN_ROI_Head(nn.Module):
def __init__(self, num_classes, H, W, subsample=16, embedding_size=512):

super(Fast_RCNN_ROI_Head, self).__init__()

self.num_classes = num_classes
self.H = H
self.W = W
self.embedding_size = embedding_size
self.subsample = 16

self.roi_head_classifier = nn.Sequential(
nn.Linear(H*W*embedding_size, 4096),
nn.ReLU(True),
nn.Linear(4096, 4096),
nn.ReLU(True),

)
self.cls = torch.nn.Linear(4096, num_classes+1)

num_classes +
background

self.reg = torch.nn.Linear(4096, (num_classes+1)*4)

def forward(self, x, rois):

x : (1, c, h, w) tensor representing the
conv feature map.
rois: (n, 4) tensor representing bounding
boxes of RoIs

assert x.shape[0] == 1 # This code only supports batch size of 1
roi_pooled_features = torchvision.ops.roi_pool(

x, [rois], output_size=(self.H, self.W), spatial_scale=1/subsample)
roi_pooled_features = roi_pooled_features.view(

-1, self.H*self.W*self.embedding_size)

http://mng.bz/nY48
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fc_out = self.roi_head_classifier(roi_pooled_features)
roi_cls_scores = self.cls(fc_out)
roi_loc = self.reg(fc_out)

return roi_cls_scores, roi_loc

roi_cls_scores: (n, num_classes+1)
tensor representing classification
scores for each RoI.
roi_loc: (n, (num_classes + 1) * 4)
tensor representing the regression
scores for each RoI

TRAINING THE FAST R-CNN
The RPN generates about 2,000 RoIs per image. Due to computational constraints, we

cannot use all N RoIs. Instead, we sample a subset of them. The training minibatches

are sampled hierarchically, first by sampling K images and then by sampling R/K RoIs

from each image. R is set to 128 in the FRCNN. For this discussion, we assume thatK = 1:

that is, we have a single image per minibatch. So, given the RoIs for a single image, how

do we sample 128 RoIs from it?

A simple solution is to randomly sample 128 RoIs. However, this runs into the same

data-imbalance issue that we discussed earlier: we end up sampling backgrounds a lot

more frequently than the classes. To solve this problem, we adopt a sampling strategy

similar to before. In particular, for a single image, we sample 128 RoIs such that the

ratio of background to object is 0.75:0.25. If fewer than 32 RoIs contain the objects, we

pad the minibatch with more background RoIs.

ASSIGNING TARGETS TO ROI BOXES
Just as in the case of the RPN, we generate regression targets as offsets of the GT box

from the region of interest for all RoIs that contain objects. For all background RoIs,

the regression targets are not applicable.

FAST R-CNN LOSS FUNCTION
We have defined the Fast R-CNN network and how we can generate labels and regression

targets for its outputs. We need to discuss the loss function that enables us to train the

Fast R-CNN. As you would expect, there are two loss terms:

Classification loss— We use the standard cross-entropy loss used in any standard

classifier.

Regression loss—The regression loss applies only to the object RoIs: background

RoIs do not contribute to regression. Here we use the smooth L1 loss as we did in

the RPN.

Thus the overall loss for a single RoI can be defined as follows:

Lcls =CrossEntropy(p, u)
Lreg =L1;smooth (tu , v)
LRCNN =Lcls + _ [u > 0]Lreg (11.6)

where p is the predicted label for the RoI, u is the true label for the RoI, tu = (tx , ty , tw , th)
are the regression predictions for class u, and v = (vx , vy , vw , vh) are the regression targets.
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The overall loss can therefore be defined as

Lcls =

∑
i CrossEntropy(pi , p∗i )

Nroi

Lreg =

∑
{∀i |p∗i !=0} L1;smooth (ti , t∗i )

Npos
LRCNN =Lcls + _Lreg (11.7)

where pi are the prediction probabilities for the RoI i, p∗i is the true label for RoI i; ti
= (tx , ty , tw , th) are the regression predictions for RoI i corresponding to class p∗i , t

∗
i =

(t∗x , t∗y , t∗w , t∗h ) are the regression targets for RoI i, t∗i = (t∗x , t∗y , t∗w , t∗h ) are the regression
targets for RoI i, and Npos is the number of object RoIs (non-background RoIs).

NOTE Fully functional code for the Fast R-CNN loss function, executable via

Jupyter Notebook, can be found at http://mng.bz/nY48.

Listing 11.24 PyTorch code for the Fast R-CNN loss function

def rcnn_loss(
roi_cls_scores, (128, num_classes) tensor: RCNN classifier scores for each RoI

roi_loc, (128, num_classes*4) tensor: RCNN regressor predictions for each class, RoI

roi_labels, (128,) tensor: true class for each RoI

rcnn_loc_targets, (128, 4) tensor: RoI regressor targets for each RoI
lambda_ = 1):

classification_criterion = nn.CrossEntropyLoss()
reg_criterion = nn.SmoothL1Loss(reduction=''sum'')

cls_loss = classification_criterion(roi_cls_scores, roi_labels)

pos_roi_idxes = torch.where(roi_labels>0)[0] Finds the positive RoIs
pred_all_offsets = roi_loc[pos_roi_idxes]

num_pos_rois = len(pos_roi_idxes)
pred_all_offsets = pred_all_offsets.view(

(n, num_classes*4) to
(n, num_classes, 4)

num_pos_rois, -1, 4)

pred_cls_offsets = pred_all_offsets[
torch.arange(num_pos_rois) , roi_labels[pos_roi_idxes]]

gt_offsets = rcnn_loc_targets[pos_roi_idxes]

reg_loss = reg_criterion(pred_cls_offsets, gt_offsets) / num_pos_rois
return {

''rcnn_cls_loss'': cls_loss,
''rcnn_reg_loss'': reg_loss,
''rcnn_total_loss'': cls_loss + lambda_* reg_loss

}

http://mng.bz/nY48
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FAST R-CNN INFERENCE
We have looked at how to train the Fast R-CNN module. Once the model is trained, the

next question is how to use the model to generate output classes and bounding boxes.

The Fast R-CNN model outputs a classification score and regression offsets for every

RoI. We can safely ignore the background RoIs. For the rest of the RoIs, the class with

the highest probability is chosen as the output label, and the offsets corresponding to

that class are chosen. We apply post-processing steps similar to that of the RPN:

1 We translate the offsets back to (xtl, ytl, xbr, ybr) format using the RoI.

2 We clip the output bounding box to within the image boundaries

We face a problem similar to before: the output probably has multiple bounding boxes

corresponding to the same object. We deal with it in the same way as earlier: using NMS.

There is one difference, however. In the case of the RPN, we applied a global NMS

across all bounding boxes predicted by the RPN. Here, NMS is applied only across the

bounding boxes belonging to the same class. This is done for all classes, which should

intuitively make sense: there is no point in suppressing highly overlapping bounding

boxes if the bounding boxes represent different classes.

NOTE Fully functional code for the Fast R-CNN inference, executable via Jupyter

Notebook, can be found at http://mng.bz/nY48.

Listing 11.25 PyTorch code for the Fast R-CNN inference

def fast_rcnn_inference(
frcnn_roi_head, Trained instance of Fast_RCNN_ROI_Head

rois, RoIs to inference

conv_feature_map, (n, c, h, w) convolutional feature map
nms_threshold=0.7):

frcnn_roi_head.eval() Sets eval mode

roi_cls_scores, roi_loc = frcnn_roi_head(conv_feature_map, rois)

output_labels = torch.argmax( The predicted class is the class with the highest score.
roi_cls_scores, dim=1)

output_probs = nn.functional.softmax(
roi_cls_scores, dim=1)[torch.arange(

The predicted probabilities are
obtained via softmax. The highest
probability is chosen as the
probability score for this prediction.

rois.shape[0]), output_labels]

output_offsets = roi_loc.view(

Converts locs from (n, num_classes*4)
to (n, num_classes, 4)

rois.shape[0], -1, 4)

output_offsets = output_offsets[

Selects offsets corresponding to
the predicted label

torch.arange(rois.shape[0]), output_labels]

assert output_offsets.shape == torch.Size(
Asserts that we have
outputs for each RoI

[rois.shape[0], 4])

http://mng.bz/nY48
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output_bboxes = generate_bboxes_from_offset( Converts offsets to (xtl, ytl, xbr, ybr)
output_offsets, rois)

rois = output_bboxes.clamp(min=0, max=width)
Clips bounding boxes to within
images

post_nms_labels, post_nms_probs, post_nms_boxes = [], [], []

for cls in range(1, frcnn_roi_head.num_classes+1): 0 is background, thus ignored

cls_idxes = torch.where(output_labels == cls)[0] Performs NMS for each class
cls_labels = output_labels[cls_idxes]
cls_bboxes = output_bboxes[cls_idxes]
cls_probs = output_probs[cls_idxes]
keep_indices = torchvision.ops.nms(

cls_bboxes, cls_probs, nms_threshold)

post_nms_labels.append(cls_labels[keep_indices])
post_nms_probs.append(cls_probs[keep_indices])
post_nms_boxes.append(cls_bboxes[keep_indices])

return {
''labels'': torch.cat(post_nms_labels),
''probs'': torch.cat(post_nms_probs),
''bboxes'': torch.cat(post_nms_boxes)

}

11.4.4 Training the Faster R-CNN

As we have seen, the FRCNN consists of two subnetworks:

An RPN responsible for generating good region proposals that contain objects

A Fast R-CNN responsible for object classification and detection from a list of RoIs

Thus the FRCNN is a two-stage object detector. We have one stage that generates good

region proposals and another that takes the region proposals and detects objects in the

image. So how do we train the FRCNN?

A simple idea would be to train two independent networks (RPN and Fast R-CNN).

However, we do not want to do this because it is expensive. Additionally, if we do so,

each network will modify the convolutional layers in its own way. As discussed earlier,

we want to share the convolutional layers across the RPN and the Fast R-CNN mod-

ules. This ensures efficiency (only one conv backbone as opposed to two independent

backbones). Additionally, both the RPN and FRCNN are performing similar tasks, so it

intuitively makes sense to share the same set of convolutional features. Therefore, we

need to develop a technique that allows for sharing convolutional layers between the

two networks rather than learning two separate networks. The original FRCNN paper

proposed two techniques to train the model:

Alternate optimization (AltOpt)—We first train RPN and use the proposals to train

the Fast R-CNN. The network tuned by the Fast R-CNN is then used to initialize
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the RPN, and this process is iterated. This involves multiple rounds of training

alternating between training the RPN and Fast R-CNN.

Approximate joint training—The RPN and Fast R-CNN networks are merged into one

network during training. In each SGD iteration, the forward pass generates region

proposals that are treated just like fixed, precomputed proposals when training a

Fast R-CNN detector. We combine the RPN and Fast R-CNN losses and perform

backpropagation as usual. This training is significantly faster as we are training

both networks together end to end. However, the optimization is approximate

because we treat the RPN-generated proposals as fixed, whereas in reality, they are

a function of the RPN. So, we’re ignoring one derivative.

Both techniques give similar accuracy. So joint training, which is significantly faster, is

preferred.

11.4.5 Other object-detection paradigms

So far, we have looked at the FRCNN in detail and discussed several key ideas that

contribute to its success. Several other object-detection paradigms have also been de-

veloped. Some are inspired by the FRCNN, borrowing and/or improving on the ideas

established by the FRCNN. In this section, we briefly look at a few of them.

YOU ONLY LOOK ONCE (YOLO)
The FRCNN is a two-stage detector: an RPN followed by the Fast R-CNN, which runs on

the region proposals generated by the RPN. YOLO (https://arxiv.org/pdf/1506.02640

.pdf), as the name implies, is a single-stage object detector. A single convolutional

network simultaneously predicts multiple bounding boxes and class probabilities for

those boxes directly from full images in one go. Some of the salient features of YOLO

are as follows:

YOLO is significantly faster ( 10× faster than the FRCNN) due to its much simpler

architecture. YOLO can even be used for real-time object detection.

Unlike the FRCNN, where the R-CNN module looks only at the region proposals,

YOLO looks directly at the full image during training and testing.

The speed of YOLO comes at the cost of accuracy. While YOLO is significantly

faster, it is less accurate than the FRCNN.

Several other improvements have been made on top of YOLO to improve accuracy

while trying to maintain the simple, fast architecture. These include YOLO v2, YOLO

v3, and so on.

MULTIBOX SINGLE-SHOT DETECTOR (SSD)
SSD (https://arxiv.org/pdf/1512.02325.pdf) tries to achieve a good balance between

speed and accuracy. It is a single-stage network like YOLO: that is, it eliminates the

proposal-generation (RPN) and subsequent feature-resampling stages. It also borrows

the ideas of anchors from the FRCNN: applying a conv net on top of feature maps to

make predictions relative to a fixed set of bounding boxes.

Thus, a single deep network predicts class scores and box offsets for a fixed set of

default bounding boxes using small convolutional filters applied to feature maps. To

https://arxiv.org/pdf/1506.02640.pdf
https://arxiv.org/pdf/1506.02640.pdf
https://arxiv.org/pdf/1512.02325.pdf
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achieve high detection accuracy, feature maps at different scales are used to make

predictions at different scales.

SSD is much more accurate than YOLO; however, it is still not as accurate as the

FRCNN (especially for small objects).

FEATURE PYRAMID NETWORK (FPN)
The feature maps generated by conv nets are pyramidal: as we go deeper, the spatial

resolution of the feature map keeps decreasing, and we expect the semantic information

represented by the feature map to be more meaningful. High-resolution maps have

low-level features, whereas low-resolution maps have more semantic features.

In the case of the FRCNN, we applied object detection on only the last convolution

map. SSD shows that there is useful information by using other feature maps for predic-

tion. But SSD builds this pyramid high up the network (past the fourth convolution layer

[conv4] of VGG). It specifically avoids the use of lower-layer features. Thus it misses the

opportunity to reuse the higher-resolution maps of the feature hierarchy. FPN shows

that these features are important, especially for detecting small objects.

The FPN (https://arxiv.org/pdf/1612.03144.pdf) relies on an architecture that

combines low-resolution, semantically strong features with high-resolution, semantically

weak features via a top-down pathway and lateral connections. The bottom-up pathway

is the forward pass of the convolutional layers. In the top-down path, there is a back

connection from lower resolution to higher resolution via simple upsampling (it is

merged with the bottom-up feature map using 1× 1 convolutions). This merged feature

map is used at every level to learn and make predictions.

The FPN was originally implemented on top of the FRCNN. It is much more accurate,

but it is much slower than YOLO/SSD-style approaches.

We have only briefly mentioned the other prominent detection paradigms. The

fundamental principles behind them remain the same. You are encouraged to read the

papers to get a deeper and better understanding.

Summary
In this chapter, we took an in-depth look at various deep-learning techniques for object

classification and localization:

LeNet is a simple neural network that can classify handwritten digits from the

MNIST data set.

Simple networks like LeNet don’t extend well to more real-world image classifica-

tion problems. Hence deeper neural networks that have more expressive power

are needed.

The VGG network is one of the most popular deep convolutional neural networks.

It improves on prior state-of-the-art deep neural networks by using more convo-

lution layers with smaller (3× 3) filters. Such an architecture has two advantages:

(1) more expressive power because of the added nonlinearity that comes from

stacking more layers, and (2) a reduced number of parameters. Three 3× 3 filters

https://arxiv.org/pdf/1612.03144.pdf
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have 27C2 parameters, whereas a single 7× 7 filter (which cover the same receptive

field) has 49C2 parameters (81% more).

VGG (and AlexNet) use ReLU nonlinear layers instead of sigmoid layers because

they do not suffer from the vanishing gradient problem. Using ReLUs speeds up

training, resulting in faster convergence.

Inception blocks provide an efficient way to increase the depth and width of a

neural network while keeping the computational budget constant. Multiscale filters

are used at each convolution layer to learn patterns of different sizes, and 1× 1
convolutions are used for dimensionality reduction (which reduces the number of

parameters needed, thereby improving computational efficiency).

ResNet is another popular convolutional neural network. The ResNet architecture

was motivated by the fact that simply stacking layers beyond a certain point does not

help and causes degradation even in training accuracies. This is a counterintuitive

result because we expect that deeper networks can, at the very least, learn as much

as their shallower counterparts. The authors of the ResNet papers showed that this

may happen because the identity function is hard for neural networks to learn.

To tackle this, they proposed shortcut/skip connections to simplify the neural

network’s learning objective. This is the key idea behind ResNet and enables

training of much deeper neural networks.

Faster R-CNN is one of the most popular object detectors. It is a two-stage net-

work consisting of (1) a region proposal network (RPN), which is responsible for

predicting regions of interest that could potentially contain objects; and (2) an

R-CNN module, which takes the region proposals as input and emits class scores

and bounding boxes efficiently.

The RPN module uses multiple anchor boxes (at each point on the conv feature

map) to handle objects of different sizes and aspect ratios. It convolves a small

network over the conv feature map to make predictions about objectness and

bounding boxes at each sliding window location. Remember that the small network

is a fully convolutional network (FCN) comprising 3× 3 convs followed by 1× 1
convs, enabling this approach to work with arbitrary-sized inputs and making it

translation invariant.

RoI pooling provides an efficient way to extract a fixed-sized feature vector from

region proposals of varying sizes, all in one pass. These feature vectors are fed to a

classifier and regressor for classification and localization, respectively.

Non-maxima suppression (NMS) is a technique to de-duplicate overlapping bound-

ing boxes.

FRCNN can be trained using two methods: alternative optimization (AltOpt) and

approximate joint training. Both approaches lead to similar accuracy numbers,

but approximate joint training is significantly faster.

You Only Look Once (YOLO), MultiBox Single-Shot Detector (SSD), and feature

pyramid networks (FPN) are some other popular object detectors.
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homeomorphism, and

neural networks

This chapter covers
Introduction to manifolds

Introduction to homeomorphism

Role of manifolds and homeomorphism in
neural networks

This is a short chapter that briefly introduces (barely scratching the surface of) a

topic that could fill an entire mathematics textbook. A rigorous or even comprehen-

sive treatment of manifolds is beyond the scope of this book. Instead, this chapter

primarily focuses on geometric intuitions required for deep learning.

12.1 Manifolds
A manifold is a generalization of the notions of curve, surface, and volume into a uni-

fied concept that works in arbitrary dimensions. In machine learning, the input space

can be viewed as a manifold. Usually, the input manifold is not very conducive to

classification. We need to transform (map) that manifold to a different manifold that

is friendlier to the classification problem at hand. This is what a neural network does.

438
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In a multilayered neural network, each layer transforms (maps) from one manifold to

another. For the classification problem, the end manifold is expected to be one where

the classes can be separated by a linear surface (hyperplane). The last layer provides

this linear separator. Figure 12.1 provides an example of a transformation to a space

where classification is easier.

Feature space Output spaceX

Y

Z

X

Y

Model

Transform

Figure 12.1 The input points lie on a cylindrical manifold (surface). Here, the two input classes (indicated
by + and -, respectively) cannot be separated linearly. If we unroll (map) the cylinder surface into a plane,
the two classes can be separated linearly.

Unlike physical surfaces we see and touch in everyday life, manifolds are not limited

to three dimensions. Human imagination may fail in visualizing higher-dimension

manifolds, but we can typically use three-dimensional analogies as surrogates—they

often work, although not always. A neural network layer or sequence of layers can be

viewed as mapping points from one manifold to another.

Manifolds are locally Euclidean. To get an intuitive understanding of this, imagine a

circle with a very thin string wrapped around it. Now, take any point on the circle and

take a small arc of the circle containing that point. If we cut off the portion of the string

corresponding to that segment, we can straighten that little piece of string into a straight

line without twisting or tearing it. In other words, the small neighborhood on the circle

around the chosen point has 1:1 mapping with a line segment. All points on the circle

satisfy this property. Such a curve is said to be locally Euclidean. The concept can be

extended to higher dimensions. Consider the surface of a sphere (this is an example of

a 2-manifold). Imagine a rubber sheet tightly fitted around the sphere. Take an arbitrary
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point and a small patch of the spherical surface containing the point (see figure 12.2c).

If we cut off the rubber sheet corresponding to the patch, it can be flattened into a plane

without twisting or tearing. So, the sphere surface is locally Euclidean. The torus surface

(donut-shaped object) is another example of a 2-manifold. In general, d-manifold is a

space (set of points) on which every point has a small neighborhood of points in the

space that contains the point and can be mapped 1:1 to ℝd without twisting or tearing.

For instance, a circle is a 1D manifold, and every point on it has a container arc that can

be mapped to a line (ℝ1). A sphere surface is 2D manifold, and every point of it has a

containing patch that maps 1:1 to a plane (ℝ2). We say manifolds are locally Euclidean.

Figure 12.2 illustrates the concept.

Circle Smooth curve

(a) Any arbitrary continuous curve (for example,
a circle) is a 1D manifold.

The local neighborhood 
of this point cannot be 
mapped to a line.

(b) The 8-curve is a non-manifold. The j -shaped
neighborhood of the marked point cannot
be mapped 1 : 1 to a straight-line segment.

(c) A sphere is an example of a 2-manifold. (d) An hourglass is an example of 2D non-
manifold surface.

Figure 12.2 Manifolds and non-manifolds in 1D and 2D

A little thought will reveal that the locally Euclidean property makes calculus possi-

ble. For instance, how do we compute the area under a curve, f (x) in the interval
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x = a and x = b? The formula is
∫ x=b
x=a f (x) dx. We take infinitesimally small segments

of the curve and pretend they are straight lines, which can be projected onto a tiny

line segment on the X axis. The resulting narrow quadrilateral can be approximated

by a rectangle whose sides are parallel to the X and Y axes. We sum (integrate) the

areas of all the tiny rectangles that cover the same area as the one we are computing

(see figure 12.3). This scheme depends on the ability to represent tiny segments of

the curve as straight lines. A similar case can be made about computing the length

of the curve segment. In higher dimensions, the same idea applies: calculus is depen-

dent on the ability to pretend that a curve or surface can be locally approximated by

something flat. The graph of any continuous vector function ®y = f
(
®x
)
, where ®x is any

open subset of ℝn—that is, ®x ∈U ⊂ℝn and f
(
®y
)
∈ℝm—yields a manifold in

(
®x , ®y

)
in

ℝm ×ℝn .

Figure 12.3 Area under a curve is computed by
locally approximating curve segment with tiny
straight lines—needs locally Euclidean property

In this context, note that the entire sphere cannot be mapped to a plane (try opening

the sphere onto a plane). This is why it is impossible to draw a perfect map of the globe

on a piece of paper with all regions drawn to scale. Typically, the polar regions occupy

areas disproportionately large on the paper map. But small patches on the spherical

surface can be mapped onto planes, which is enough to call this surface a manifold.

Hence the word local in locally Euclidean.

12.1.1 Hausdorff property

Manifolds usually have another property, known as the Hausdorff property. If we take

any pair of points on a manifold—no matter how close they are—we can find a pair of

disjoint neighborhoods around the respective points consisting entirely of points on the

manifold. Loosely speaking, this means if we take any pair of points on the manifold,

we can find an infinite number of points between them, all belonging to the manifold.

This is illustrated in figure 12.4. It’s easy to see that this is true for the real line (ℝ1):

take any pair of points, and there are enough points between them to create a disjoint

pair of neighborhoods centered on each.
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Figure 12.4 Hausdorff property: on a manifold,
for any pair of points, we can find a disjoint
neighborhood pair containing the respective points
and consisting of points from the manifold.

12.1.2 Second countable property

Manifolds are second-countable. To explain this, we will first briefly outline a few

concepts. (Disclaimer: the following explanations err toward ease of understanding as

opposed to mathematical rigor.)

OPEN SETS, CLOSED SETS, AND BOUNDARIES
Consider the set of points belonging to the interval A≡ 0 < x < 1 (you can imagine it

to be a segment of the real line). Take any point in this set A, say x = 0.93. You can

find a point on its left (say, 0.92) and on its right (say, 0.94), both of which are in the

same set A. In some sense, the point is surrounded by points belonging to the same

set. Hence it is an internal point. The funny thing is, in this set, all points are internal. In

comparison, consider the set Ac ≡ 0 ≤ x ≤ 1. This includes the previous set A as well as the

boundary points x = 0 and x = 1. Note that the boundary points can be approached from

both inside and outside the set A. If we take a small neighborhood of any point in the

boundary, consisting of all points within a small distance n , there are points inside and

outside A. A is an open set. If we add its boundary to itself, it becomes a closed set Ac .
The concept extends to higher dimensions. For instance, the set of 2D points belong-

ing to the unit disc S ≡ x2 + y2 < 1 is an open set. If we add the boundary—the circle

Sc ≡ x2 + y2 = 1—we get a closed set. All this is illustrated in figure 12.5.

Figure 12.5 The open set, disk without a bound-
ary is shown in gray. The boundary is shown in
black. Gray+black is the closed set.
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BOUNDED, COMPACT, AND PRECOMPACT SETS
A set is said to be bounded if all its points lie within a fixed distance of each other. The

sets A, Ac, and S, Sc discussed previously are bounded. A compact set is bounded as well

as closed. The sets Ac and Sc are compact. And a set is precompact if it can be converted

into a compact set by just adding its boundary (for example, A and S). Note that not all
open sets are precompact: for example, −∞ < x <∞ is open but not precompact. All

precompact sets are open, however.

Manifolds may or may not include a boundary. A disc is a 2-manifold with a boundary.

Its boundary is the circle’s circumference, which is a 1-manifold. A three-dimensional

ball is a 3-manifold with a boundary. The boundary is the surface of the sphere, which is

a 2-manifold. The open set of points on the disc sans the boundary is also a 2-manifold.

A square area is a 2-manifold with a boundary whose boundary is the square, which is a

1-manifold. A three-dimensional cube is a 3-manifold with a boundary whose boundary

is a 2-manifold corresponding to the surface of the cube. In general, the boundary of a

d-manifold with boundary is a d − 1-manifold.

Now, let’s go back to the second countable property of manifolds. The second

countable property of a manifold implies that every manifold has a basis of open sets.

This means for every manifoldM , there exists a countable collectionU ≡ {Ui }, where
Ui are precompact subsets ofM and any open subsets ofM can be expressed as a union

of elements ofU . This is illustrated in figure 12.6.

Figure 12.6 Second countable property
for manifolds. The solid curve indicates the
(missing) boundary of an arbitrary open subset
of the manifold. The dashed balls indicate
the (missing) boundaries of elements of the
basis setUi . The area within the solid curve
is shown to be covered by a union of dashed
ball-bounded areas.

12.2 Homeomorphism
We have been speaking about 1:1 mappings between an arc of a circle and a line segment.

If we have a piece of string tightly fitted on the arc, all we have to do is to grab the

string’s two ends and pull it out to get the corresponding straight line—we do not have

to do any twisting or tearing (see the black arc in figure 12.2a). Similarly, the mapping

between a patch on the surface of a sphere can be mapped 1:1 to a plane by simply

pulling an imaginary rubber sheet fitted on the patch (see the patch in figure 12.2c).
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These are examples of a general class of mappings called homeomorphism. Formally, a

homeomorphic mapping comprises a pair of functions f and f −1 between two sets of

points X andY such that

®y ∈Y = f
(
®x ∈X

)
f :X ↦→Y

®x ∈X = f −1
(
®y ∈Y

)
f −1 :Y ↦→X

where

f is 1:1: it maps each ®x to a unique ®y, and distinct ®xs are mapped to distinct ®ys.
f −1 is 1:1: it maps each ®y to an unique ®x, and distinct ®ys are mapped to distinct ®xs.
f is a continuous function: it maps nearby values of ®x to nearby values of ®y.
f −1 is continuous function: it maps nearby values of ®y to nearby values of ®x.

An intuitive way to visualize homeomorphism is that it transforms one manifold to

another by stretching or squishing but never by cutting, breaking, or folding. Homeo-

morphism preserves path-connectedness. A set of points is said to be path-connected if

a path between any pair of them exists, comprising points belonging to the set.

12.3 Neural networks and homeomorphism between manifolds
Consider two classes A and B defined on the real line:

A≡ {−1 ≤ x ≤ 1}
B≡ {−3 ≤ x ≤ −2 or 2 ≤ x ≤ 3}

The 1-manifolds corresponding to these classes are not clearly separable in their original

space (see figure 12.7a) because class A is “surrounded” by class B. But if we pinch

the origin and pull it up—in other words, perform a specific homeomorphism—to

transform it, as shown in figure 12.7c, it is possible to separate the transformedmanifolds

with a straight line. Similarly, figure 12.7b shows two classes A and B:

A≡
{
‖ ®x‖2 ≤ 1

}
B≡

{
‖ ®x‖2 ≥ 4 and ‖ ®x‖2 ≤ 9

}
These are 2-manifolds that are hard to separate in their original space because, again,

class B surrounds class A. But if we pinch and pull the origin to create the manifolds

shown in figure 12.7d, they become separable by a plane (see figure 12.7d).

A linear layer of a neural network does the following transformation (discussed in

detail in equation 8.7):

®z =f

(
W ®x + ®b

)
Note that all of these operations, multiplication with the weight matrixW, translation

by ®b, and the sigmoid nonlinearity are continuous invertible functions. Hence, they are

homeomorphisms. The composite operation where these are applied in sequence is

another homeomorphism. (Strictly speaking, multiplication by a weight matrix is invertible
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Class AClass B

Pinch and pull
up here.

-3 -2 -1 0 1 2 3

Class B

(a) A linear classifier cannot separate points on the line.

Pinch and pull
up here.

(b) A linear classifier cannot separate points on the disk.

Linear classifier

Class B

Class A

Class B

(c) Lines transformed to a curved shape allow classification
with a linear classifier (line).

Linear
classifier

(d) Disks transformed to a 3D bell-like shape allow classi-
fication with a linear classifier (plane).

Figure 12.7 Homeomorphism to a friendlier manifold can help the classification.

only when the weight matrix W is square with a nonzero determinant. And if the weight matrix

has a zero determinant, the layer effectively does a dimensionality reduction.)

One way to view a multilayered neural network is that the successive layers homeo-

morphically transform the inputmanifold so that it becomes easier and easier to separate

the classes. The final layer may be a simple linear separator (as in figure 12.7).

Summary
A manifold is a hyperdimensional collection of points (space) that satisfies three

properties: locally Euclidean, Hausdorff, and second countable.

A d-manifold is a space in which every point has a small neighborhood that contains

the point and can be mapped 1:1 to a subregion of ℝd without folding, twisting, or

tearing. In other words, the local neighborhood around any point on a manifold

can be approximated by something flat. For instance, a continuous curve in 3D

space is a 1-manifold: if we imagine the curve as a string, any local neighborhood is

a substring that can be pulled and straightened into a straight line. Any continuous

surface in 3D is a 2-manifold: if we imagine the surface as a rubber membrane,

any local neighborhood can be pulled and stretched into a flat planar patch. This

property (the ability to pretend that a curve or a surface can be locally replaced by

a linear piece) is what enables us to perform calculus.
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Homeomorphism is a special class of transformation (mapping) that transforms

one manifold to another via stretching/squishing without tearing, breaking, or

folding.

Homeomorphism preserves path-connectedness.

Roughly speaking, a neural network layer can be viewed as a homeomorphic

transform that maps points from its input manifold to an output manifold that is

(hopefully) more suitable for the end goal. The entire multilayered perceptron

(neural network) can be viewed as a sequence of homeomorphisms that, in a series

of steps, transform the input manifold to a manifold that makes the end goal easier.

In particular, a classifier neural network maps the input manifold to an output

manifold where the points belonging to different classes are well-separated.



13Fully Bayes model
parameter estimation

This chapter covers
Fully Bayes parameter estimation for
unsupervised modeling

Injecting prior belief into parameter estimation

Estimating Gaussian likelihood parameters with
known or unknown mean and precision

Normal-gamma and Wishart distributions

Suppose we have a data set of interest: say, all images containing a cat. If we represent

images as points in a high-dimensional feature space, our data set of interest forms

a subspace of that feature space. Now we want to create an unsupervised model for

our data set of interest. This means we want to identify a probability density function

p
(
®x
)
whose sample cloud (the set of points obtained by repeatedly sampling the

probability distribution many times) largely overlaps our subspace of interest. Of

course, we do not know the exact subspace of interest, but we have collected a set

of samples X from the data set of interest: that is, the training data. We can use the

point cloud for X as a surrogate for the unknown subspace of interest. Thus, we are

essentially trying to identify a probability density function p
(
®x
)
whose sample cloud,

by and large, overlaps X .

447
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Once we have the model p
(
®x
)
, we can use it to generate more data samples; these

will be computer-generated cat images. This is generative modeling. Also, given a new

image ®a, we can estimate the probability of it being an image of a cat by evaluating p
(
®a
)
.

13.1 Fully Bayes estimation: An informal introduction
Let’s recap Bayes’ theorem:

posterior probability︷  ︸︸  ︷
p (\ |X) =

p (X , \)
p (X) =

likelihood︷  ︸︸  ︷
p (X |\)

prior probability︷︸︸︷
p (\)

p (X)︸︷︷︸
evidence

(13.1)

Here, X =
{
®x1 , ®x2 , · · ·

}
denotes the training data set. Our ultimate goal is to identify the

likelihood function p
(
®x
��\ ) . Estimating the likelihood function has two aspects: selecting

the function family and estimating the parameters. We usually preselect the family from

our knowledge of the problem and then estimate the model parameters. For instance,

the family for our model likelihood function might be Gaussian: p
(
®x
��\ ) =N

(
®x; ®̀, �

)
(as before, the semicolon separates the model variables from model parameters). Then

\ =
{
®̀, �

}
are the model parameters to estimate. We estimate \ such that the overall

likelihood p (X |\) =∏
i p

(
®xi
��\ ) best fits the training data X .

We want to re-emphasize the mental picture that best fit implies that the sample

cloud of the likelihood function (repeated samples from p
(
®x
��\ )) largely overlaps the

training data set X . For the Gaussian case, this implies that the mean ®̀ should fall

at a place where there is a very high concentration of training data points, and the

covariance matrix � should be such that the elliptical base of the likelihood function

tightly contains as many training data points as possible.

13.1.1 Parameter estimation and belief injection

There are various possible approaches to parameter estimation. The simplest approach

is maximum likelihood parameter estimation (MLE), introduced in section 6.6.2. In MLE,

we choose the parameter values that maximize p (X |\), the likelihood of observing

the training data set. This makes some sense. After all, the only thing we know to be

true is that the input data set X has been observed—this being unsupervised data, we

do not know anything else. It is reasonable to choose the parameters that maximize

the probability of that known truth. If the training data set is large, MLE estimation

works well.

However, in the absence of a sufficiently large amount of training data, it often helps

to inject our prior knowledge about the system into the estimation—prior knowledge

can cover for the lack of data. This injection of guess/belief into the system is done via

the prior probability density. To do this, we can no longer maximize the likelihood, as

likelihood ignores the prior. We have to do maximum a posteriori (MAP) estimation,

which maximizes the posterior probability. The posterior probability is the product of
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likelihood (which depends on the data) and the prior (which does not depend on data;

we will make it reflect our prior belief).

There are two possible MAP paradigms. We saw one of them in section 6.6.3, where

we injected our belief that the unknown parameters must be small in magnitude and

set p (\) ∝ e−‖\ ‖2 as a regularizer. The system was incentivized to select parameter values

that are relatively smaller in magnitude. In this chapter, we study a different paradigm;

let’s illustrate it with an example.

Suppose we model the likelihood as a Gaussian: p
(
®x
��\ ) =N

(
®x; ®̀, �

)
. We have to

estimate the parameters \ =
{
®̀, �

}
from the training data X , for which we must max-

imize the posterior probability. To compute the posterior probability, we need the

prior probability. In addition, we must somehow inject constant values as our belief

(lacking observed data) about the parameter values. How about modeling the prior

probability as a Gaussian probability density function in the parameter space? Ignoring

the covariance matrix parameter for the sake of simplicity, we can model the probability

density of the mean parameter as p
(
®̀
)
=N

(
®̀; ®̀0 , �0

)
. We are essentially saying that we

believe the parameter ®̀ is likely to have a value near ®̀0 with a confidence �0. In other

words, we are injecting a constant value as our belief in the parameter ®̀. We can treat

the covariance similarly. Later, we prove that in this paradigm, with a low volume of

training data, the prior dominates. Once sufficient training data is digested, the effect

of the prior fades, and the solution gets closer and closer to the MLE. This is the fully

Bayes parameter estimation technique in a nutshell.

In this chapter, we discuss Bayes estimation of parameters for a Gaussian likelihood

function for a series of increasingly complex scenarios. In section 13.3, we deal with the

case where the variance of the parameters to be estimated is known (constant) but the

mean is unknown, so the mean is expressed as a (Gaussian) random variable. Then, in

section 13.6, we examine the case where the mean is known (constant) but the variance

is unknown. Finally, in section 13.7, we examine the case where both are unknown.

Both the univariate and multivariate cases are dealt with for each scenario.

NOTE Fully functional code for this chapter, executable via Jupyter Notebook,

can be found at http://mng.bz/woYW.

13.2 MLE for Gaussian parameter values (recap)
We have discussed the details of this in section 6.8. Here we recap the main results.

Suppose we have a data set X =
{
x (1) , x (2) , · · · , x (n)

}
. We have decided tomodel the data

distribution as a Gaussian N (x; `, f)—we want to estimate the parameters `, f that

best “explain” or “fit” the observed data set X . MLE is one of the simplest approaches

to solving this problem. Here we estimate the parameters such that the likelihood of the

data observed during training is maximized. This can be loosely visualized as estimating a

probability density function whose peak coincides with the region in the input space

with the densest population of training data. We looked at MLE in section 6.8. Here we

simply restate the expressions.

http://mng.bz/woYW
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Let’s denote the (as yet unknown) mean and variance of the data distribution as `

and f. Then from equation 5.22, we get

p
(
x (i )

���`, f)
=

1
√
2cf

e
−
(
x (i ) −`

)2
2f2

p (X |`, f) = p
(
x (1) , · · · , x (n)

���`, f)
=

n∏
i=1

p
(
x (i )

���`, f)
=

1(√
2cf

)n e −∑n
i=1

(
x (i ) −`

)2
2f2

Maximizing the log-likelihood p (X |`, f) has a closed-form solution:

` = x̄ =
1

n

n∑
i=1

x (i )

f2 = s =
1

n

n∑
i=1

(
x (i ) − x̄

)2
(13.2)

Thus the MLE mean and variance are essentially the mean and variance of the training

data samples (see section 6.6 for the derivation of these expressions).

The corresponding expressions for multivariate Gaussian MLE are

®̀ = ®̄x = 1

n

n∑
i=1

®x (i )

� =S =
1

n

n∑
i=1

(
®x (i ) − ®̄x

) (
®x (i ) − ®̄x

)T
(13.3)

These MLE parameter values are to be used to evaluate p (x) =N (x; `, f)—the prob-

ability of an unknown data point x coming from the distribution represented by the

training data set X .

13.3 Fully Bayes parameter estimation: Gaussian, unknown mean,
known precision
MLE may not be that accurate when the available data set is small (that is, n, size of the
data set X , is small). In many problems, we have a prior idea of the mean and sigma of

the data set. Unfortunately, MLE provides no way to bake such a prior belief into the

estimation. Fully Bayes parameter estimation techniques try to fix this drawback: here we

are not simply maximizing the likelihood of the observed data. Instead, we maximize the

posterior probability of the estimated parameter(s). This posterior probability involves

the product of the likelihood and a prior probability (see equation 13.1). The likelihood

term captures the effect of the training data—maximizing it alone is MLE—but does

not capture the effect of a prior belief. On the other hand, the prior term does not

depend on the data. This is where we bake in our belief or guess or prior knowledge

about the data distribution. Thus, our estimate for the data distribution parameters

will consider the data and the prior guess. We will soon see that the estimation is such

that as the size of the data set (n, length of X) increases, the effect of the prior term



13.3 Fully Bayes parameter estimation: Gaussian, unknown mean, known precision 451

decreases, and the effect of the likelihood term increases. In the limit, at infinite data

availability, the Bayesian inference yields the MLE. At the other extreme, when no data

is available (n = 0), the Fully Bayes estimates for the parameters are the same as the

prior estimates.

Let’s we examine Bayesian parameter estimation. For starters, we deal with a relatively

simple case where we have a Gaussian data distribution with a known (constant) variance

but unknown and modeled mean. The data distribution is Gaussian (as usual, the

semicolon in N (x; `n , f) separates the variables from parameters):

p (x |`, f) = p (x |`) =N (x; `, f) ∝ e
−(x−`)2

2f2

The training data set is denoted X =
{
x (1) , x (2) , · · · , x (n)

}
, and its overall likelihood is

p (X |`) = p
(
x (1) , · · · , x (n)

���`) = n∏
i=1

p
(
x (i )

���`) ∝ e −∑n
i=1

(
x (i) −`

)2
2f2

The variance is known by assumption—hence it is treated as a constant instead of a

random variable. The mean ` is unknown and is treated as a Gaussian random variable,

with mean `0 and variance f0 (not to be confused with ` and f, the mean and variance

of the data itself ). So, the prior is

p (`) =N (`; `0 , f0) ∝ e
−
(
`−`0

)2
2f2

0

The posterior probability of the unknown ` parameter is a product of two Gaussians,

which is a Gaussian itself. Let’s denote the (as-yet-unknown) mean and variance of this

product Gaussian as `n and fn . Here the subscript n is to remind us that the posterior

has been obtained by digesting n data instances from X =
{
x (1) , x (2) , · · · , x (n)

}
. Thus,

the Gaussian posterior can be denoted as

p (`|X) =N (`; `n , fn) ∝ e
−( `−`n )2

2f2n

Using Bayes’ theorem,

p (`|X) ∝ p (X |`) p (`)

or

posterior︷    ︸︸    ︷
e
−( `−`n )2

2f2n ∝

likelihood︷          ︸︸          ︷
e−

∑n
i=1

(
x (i ) −`

)2
2f2

prior︷    ︸︸    ︷
e
−

(
`−`0

)2
2f2

0

By comparing the coefficients of `2 and ` on the exponents of the left and right sides,

we determine the unknown parameters of the posterior distribution:
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1

f2
n
=

1

f2
0

+ n
f2

or f2
n =

f2
0
f2

nf2
0
+f2

`n =f2
n

(∑n
i=1 x

(i )

f2
+ `0

f2
0

)
=

f2
0
f2

nf2
0
+f2

(
nx̄
f2

+ `0

f2
0

)
=

x̄

1+ f2

nf2
0

+ `0

1+ nf2
0

f2

(13.4)

The significance of various closely named variables should be clearly understood:

`, f are the mean and variance of the data distribution p (x)—assumed to be

Gaussian. The final goal is to estimate `, f that best fits the data set X . On the

other hand, `0, f0 are the mean and variance of the parameter distribution p (`),
which captures our prior belief about the value of the data mean ` (remember,

by assumption, the data mean is also a Gaussian random variable). `n , fn are the

mean and variance of the posterior distribution p (`|X) for the data mean ` as

computed from n data point samples. This is a Gaussian random variable because

it is a product of two Gaussians.

The posterior distribution of the unknown mean parameter, p (`|X), is a Gaussian
with mean `n . So, it will attain a maximum when ` = `n . In other words, the MAP

estimate for the unknown mean ` is `MAP = `n .

Even though `n is the best estimate of `, fn is not approximating the f of the data,

f is known in this case by assumption. Here, fn is the variance of the posterior

distribution, reflecting our uncertainty about the estimate of `. That is why, as the

number of data instances becomes very large, fn approaches 0 (indicating we have

zero uncertainty or full confidence in the estimate of the mean.)

The estimate for our data distribution is p (x) =N (x; `n , f), where `n is given by equa-

tion 13.4. Note that it is a combination of the MLE x̄ and prior guess `0. Using this,

given any arbitrary data instance x, we can infer the probability of x belonging to the

class of the training data set X .

NOTE Fully functional code for Bayesian estimation with unknown mean and

known variance, executable via Jupyter Notebook, can be found at http://mng.bz

/ZA75.

Listing 13.1 PyTorch: Bayesian estimation with unknown mean, known variance

import torch

def inference_unknown_mean(X, prior_dist, sigma_known):
mu_mle = X.mean()
n = X.shape[0]

mu_0 = prior_dist.mean
sigma_0 = prior_dist.scale

Parameters of the prior

http://mng.bz/ZA75
http://mng.bz/ZA75
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mu_n = mu_mle / (1 + sigma_known**2 / (n * sigma_0**2)) +
mu_0 / (1 + n * sigma_0**2 / sigma_known**2)

Mean of the
posterior, following
equation 13.4

sigma_n = math.sqrt(
(sigma_0**2 * sigma_known**2) /
(n*sigma_0**2+sigma_known**2))

Standard deviation
of the posterior,
following equation 13.4

posterior_dist = torch.Normal(mu_n, sigma_n)
return posterior_dist

13.4 Small and large volumes of training data, and strong
and weak priors
Let’s examine the behavior of equation 13.4 when n = 0 (no data) and when n −→∞
(lots of data):

lim
n−→0

{
`n = `0

fn =f0

lim
n−→∞

{
`n = x̄ = `MLE

fn = 0

This agrees with our notion that with little data, the posterior is dominated by the prior,

while with lots of data, the posterior is dominated by the likelihood. With lots of data,

the variance of the parameter is zero (we are saying with full certainty that the best value

for the mean is the sample mean for the data, aka the MLE estimate for the mean). In

general, with more training data (that is, larger values of n), the posterior shifts closer to
the likelihood. This can be seen by analyzing equation 13.4. It agrees with our intuition

that with little data, we try to compensate with our pre-existing (prior) belief as to the

value of the parameters. As the number of training data instances increases, the effect

of the prior is reduced, and the likelihood (which is a function of the data) begins to

dominate.

A low variance for the prior (that is, small f0) essentially means we have low un-

certainty in our prior belief (remember, the entropy/uncertainty of a Gaussian is

proportional to its variance). Such high-confidence priors resist being overwhelmed

by the data and are called strong priors. On the other hand, a large f0 implies low

certainty/confidence in the prior mean value. This is a weak prior that is easily over-

whelmed by the data. We can see this in the final expression for mean in equation 13.4:

we have
nf2

0

f2 in the denominator of the second term. In general, the second term

vanishes with larger n, thereby removing the effect of the prior `0 and making the

posterior mean coincide with the MLE mean. But the smaller the f0, the larger the n
required to achieve this, and vice versa.
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13.5 Conjugate priors
In section 13.3, given a Gaussian likelihood, choosing the Gaussian family for the

prior made the posterior also belong to the Gaussian family. This simplified things

considerably. If the prior was chosen from another family, the posterior—which is

the product of the likelihood and prior—may not belong to a simple or even known

distribution family.

Thus, a Gaussian likelihood with a Gaussian prior results in a Gaussian posterior

for the mean. Such priors are said to be conjugate. Formally, for a specific family of

likelihood, the choice of the prior that results in the posterior belonging to the same

family as the prior is called a conjugate prior. For instance, Gaussians for the mean

(with known variance) are conjugate to a Gaussian likelihood. Soon we will see that for

a Gaussian likelihood, a gamma distribution for the precision (inverse of the variance)

results in a gamma posterior. In other words, a gamma prior to the precision is conjugate

to a Gaussian likelihood. In the multivariate case, instead of gamma, we have the Wishart

distribution as a conjugate prior.

13.6 Fully Bayes parameter estimation: Gaussian,
unknown precision, known mean
In section 13.3, we discussed fully Bayes parameter estimation with the assumption

that we somehow know the variance f and only want to estimate the mean `. Now we

examine the case where the mean is known but the variance is unknown and expressed

as a random variable. The computations become simpler if we use precision _ instead

of variance f. They are related by the expression _ = 1
f2 . Thus we have a data set X ,

which is assumed to be sampled from a Gaussian distribution with a constant mean `,

while the precision _ is a random variable with a gamma distribution. The probability

density function for the data is thus p (x |`, _ ) =N
(
x; `, 1√

_

)
.

We model the prior random variable for precision with a gamma distribution. The

likelihood is Gaussian, and since the product of a Gaussian and gamma is another

gamma (due to the conjugate prior property of gamma), the resulting posterior is

a gamma. The gamma function parameters for the posterior can be derived via coeffi-

cient comparison. The maximum of the posterior is our estimate for the parameter.

Gamma distribution

The gamma distribution is introduced in the appendix; if necessary, please read that
first. Here we state the relevant properties. The probability density function for a ran-
dom variable _ having a gamma distribution is a function with two parameters U, V :

p (_ |U , V ) = W (_ ; U , V ) = VU

Γ (U) _
(U−1) e− V_ where U , V > 0, _ ≥ 0 (13.5)
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Maximum of a gamma distribution

To maximize the gamma probability density function p (_ |X) = _ (Un−1) e− Vn_ for a ran-
dom variable _ , we take the derivative and equate to zero:

d
d_

(
_U−1e− V_

)
= 0 =⇒ (U − 1) _U−2e− V_ + _U−1 (−V ) e− V_ = 0

_ =
U − 1

V

13.6.1 Estimating the precision parameter

Let’s return to the fully Bayes estimation of the precision parameter when the mean

is known. We model the data distribution with a Gaussian: p (x |`, _ ) =N
(
x; `, 1√

_

)
(we have expressed this Gaussian in terms of the precision, _ , which is related to the

variance f as _ = 1
f2 ). The training data set is X =

{
x (1) , x (2) , · · · , x (n)

}
, and its overall

likelihood is

p (X |`, _ ) = p (X |_ ) =
n∏
i=1

(
N

(
x (i ) ; `, 1

√
_

))
∝ _

n
2 e−

_
2

∑n
i=1

(
x (i ) −`

)2
We model the prior for the precision with a gamma distribution with parameters U0, V0:

p (_ ) = W (_ ; U0 , V0) ∝ _ (U0−1) e− V0_

We know the corresponding posterior—a product of a Gaussian and a gamma—is

another gamma distribution (due to the conjugate prior property of gamma distribu-

tion). Let’s denote the posterior as

p (_ |X) = W (_ ; Un , Vn)
From Bayes’ theorem,

p (_ |X) ∝ p (X |_ ) p (_ )

or

posterior︷          ︸︸          ︷
_ (Un−1) e− Vn_ ∝

likelihood︷                     ︸︸                     ︷
_

n
2

√
2c
e−

_
2

∑n
i=1

(
x (i ) −`

)2 prior︷          ︸︸          ︷
_ (U0−1) e− V0_

Substituting

s =
1

n

n∑
i=0

(
x (i ) − `

)2
and comparing the powers of _ and e, we get

Un =
n
2
+ U0

Vn =
1

2

n∑
i=1

(
x (i ) − `

)2
+ V0 =

n
2
s + V0 (13.6)
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Notice that as before, at low values of n, the posterior is dominated by the prior but

gets closer and closer to the likelihood estimate as n increases. In other words, in the

absence of sufficient data, we let our belief take over the estimation; but if and when

data is available, the estimation is dominated by the data-based entity likelihood.

The MAP point estimate for the parameter _ given data set X is obtained by maximiz-

ing this posterior distribution p (_ |X) = W (_ ; Un , Vn), which yields _MAP =
1

f2
MAP

=

(
Un−1
Vn

)
.

(Section A.5 in the appendix shows how to obtain the maximum of a gamma distri-

bution.) Thus our estimate for the training data distribution is p (x) =N (x; `, fMAP),
where 1

f2
MAP

=

(
Un−1
Vn

)
.

Given a large volume of data, the MAP estimate for the unknown precision/variance

becomes identical to the MLE estimate (proof outline shown):

lim
n→∞

1

f2
MAP

= lim
n→∞

(
Un − 1

Vn

)
= lim
n→∞

n
2 + U0 − 1
n
2 s + V0

= lim
n→∞

1+ U0−1
n
2

s + V0
n
2

=
1

s

or lim
n→∞

f2
MAP = s =

1

n

n∑
i=0

(
x (i ) − `

)2
=f2

MLE

On the other hand, given no data, theMAP estimate for the unknown precision/variance

is completely determined by the prior (proof outline shown):

lim
n→0

1

f2
MAP

= lim
n→0

(
Un − 1

Vn

)
= lim
n→0

n
2 + U0 − 1
n
2 s + V0

=
U0 − 1

V0

or lim
n→0

f2
MAP =

V0

U0 − 1

NOTE Fully functional code for Bayesian estimation with a known mean and

unknown variance, executable via JupyterNotebook, can be found at http://mng.bz

/2nZ9.

Listing 13.2 PyTorch: Bayesian estimation with unknown variance, known mean

import torch

def inference_unknown_variance(X, prior_dist):
sigma_mle = torch.std(X)
n = X.shape[0]

alpha_0 = prior_dist.concentration
beta_0 = prior_dist.rate

Parameters of the prior

alpha_n = n / 2 + alpha_0
beta_n = n / 2 * sigma_mle ** 2 + beta_0

Parameters of the posterior

posterior_dist = torch.Gamma(alpha_n, beta_n)
return posterior_dist

http://mng.bz/2nZ9
http://mng.bz/2nZ9
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13.7 Fully Bayes parameter estimation: Gaussian, unknown mean,
unknown precision
In section 13.3, we saw that if the variance is known, the conjugate prior to the mean is

a Gaussian (aka normal) distribution. Likewise, when the mean is known, the conjugate

prior to the precision is a gamma distribution. If both are unknown, we end up with a

normal-gamma distribution.

13.7.1 Normal-gamma distribution

Normal-gamma is a probability distribution of two random variables, say, ` and _ , whose

density is defined in terms of four parameters `
′
, _

′
, U

′
, and V

′
, as follows:

p
(
`, _ ; `

′
, _

′
, U

′
, V

′
)
=NW

(
`, _ ; `

′
, _

′
, U

′
, V

′
)

=
V

′U
′ √

_
′

Γ (U ′ )
√
2c
e−

_
2 _

′ (
`−`

′ )2
_U

′ − 1
2 e− V

′
_

Although it looks complicated, a simple way to remember it is a product of a normal

and a gamma distribution.

The normal-gamma distribution attains a maximum at

` = `
′

_ =
U

′ − 1
2

V
′

13.7.2 Estimating the mean and precision parameters

As before, we model the data distribution with a Gaussian: p (x |`, _ ) =N
(
x; `, 1√

_

)
(we have expressed this Gaussian in terms of the precision, _ , which is related to the

variance f as _ = 1
f2 ). The training data set is X =

{
x (1) , x (2) , · · · , x (n)

}
, and its overall

likelihood is

p (X |`, _ ) =
n∏
i=1

(
N

(
x (i ) ; `, 1

√
_

))
∝ _

n
2 e−

_
2

∑n
i=1

(
x (i) −`

)2
We model the prior for the mean as a Gaussian with mean `0 and precision _0_ :

p (`|_ ) =N (`; `0 , _0_ ) ∝ _
1
2 e−

_0_

2 ( `−`0 )2

We model the prior for the precision as a gamma distribution with parameters U0, V0:

p (_ ) = W (_ ; U0 , V0) ∝ _ (U0−1) e− V0_

The overall prior probability for the mean and precision parameters is the product of

the two, a normal-gamma distribution with parameters `0 , _ 0 , U0 , V 0:

p (`, _ ) =NW

(
`, _

��`0 , _ 0 , U0 , V 0
)
∝ _

1
2 e−

_0_

2 ( `−`0 )2 _ (U0−1) e− V0_

The posterior probability for the mean and precision parameters is the joint (that is,

product) of the likelihood and the prior. As such, we know it is another normal-gamma

distribution (due to the conjugate prior property of normal-gamma):
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p (`, _ |X) =NW (`, _ |`n , _ n , Un , V n) ∝ e− _
2 _n ( `−`n )2_Un− 1

2 e− Vn_

Using Bayes’ theorem,

p (`, _ |X) ∝ p (X |`, _ ) p (`, _ )
or

posterior︷                           ︸︸                           ︷
e−

_
2 _n ( `−`n )2_Un− 1

2 e− Vn_ ∝

likelihood︷                  ︸︸                  ︷
_

n
2 e−

_
2

∑n
i=1

(
x (i) −`

)2 prior mean︷              ︸︸              ︷
_

1
2 e−

_0_

2 ( `−`0 )2

prior precision︷          ︸︸          ︷
_ (U0−1) e− V0_

Substituting

s =
1

n

n∑
i=0

(
x (i ) − `

)2
and comparing coefficients, the unknown parameters of the posterior distribution can

be determined:

`n =
(nx̄ + `0_0)
n + _0

_n = n + _0

Un =
n
2
+ U0 Vn =

ns
2

+ V0 +
n_0

2 (n + _0)
(x̄ − `0)2 (13.7)

To obtain the fully Bayes parameter estimate, we take the maximum of the normal-

gamma posterior probability density function:

` = `n

_ =
Un − 1

2

Vn

Thus the final probability density function for the data is p (x) =N
(
x; `n ,

√
Vn

Un− 1
2

)
.

NOTE Fully functional code for Bayesian estimation with an unknown mean and

unknown variance, executable via JupyterNotebook, can be found at http://mng.bz

/1oQy.

Listing 13.3 PyTorch code for a normal-gamma distribution

import torch

class NormalGamma():

Since PyTorch doesn’t implement
normal-gamma distribution, we
implement a bare-bones version.

def __init__(self, mu_, lambda_, alpha_, beta_):
self.mu_ = mu_
self.lambda_ = lambda_
self.alpha_ = alpha_
self.beta_ = beta_

http://mng.bz/1oQy
http://mng.bz/1oQy
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@property
def mean(self):

return self.mu_, self.alpha_/ self.beta_

@property
def mode(self):

return self.mu_, (self.alpha_-0.5)/ self.beta_

Listing 13.4 PyTorch: Bayesian estimationwith unknownmean, unknown variance

import torch

def inference_unknown_mean_variance(X, prior_dist):
mu_mle = X.mean()
sigma_mle = X.std()
n = X.shape[0]

mu_0 = prior_dist.mu_
lambda_0 = prior_dist.lambda_
alpha_0 = prior_dist.alpha_
beta_0 = prior_dist.beta_

Parameters of the prior

mu_n = (n * mu_mle + mu_0 * lambda_0) / (lambda_0 + n)
lambda_n = n + lambda_0
alpha_n = n / 2 + alpha_0
beta_n = n / 2 * sigma_mle ** 2 + beta_0 +

0.5* n * lambda_0/ (n + lambda_0) *
(mu_mle - mu_0) ** 2

Parameters of the posterior

posterior_dist = NormalGamma(mu_n, lambda_n, alpha_n, beta_n)

return posterior_dist

13.8 Example: Fully Bayesian inferencing
Let’s revisit the problem discussed in section 6.8 of predicting whether a resident

of Statsville is female based on height. For this purpose, we have collected height

samples from adult female residents of Statsville. Unfortunately, due to unforeseen

circumstances, we collected a very small sample. Armed with our knowledge of Bayesian

inference, we do not want to let this deter us from trying to build a model. Based on

physical considerations, we can assume that the distribution of heights is Gaussian. Our

goal is to estimate the parameters (`, f) of this Gaussian.

NOTE Fully functional code for this example, executable via Jupyter Notebook,

can be found at http://mng.bz/Pn4g.

Let’s first create the data set by sampling five points from a Gaussian distribution with

` = 152 and f = 8. In real-life scenarios, we do not know themean and standard deviation

of the true distribution. But for the sake of this example, let’s assume that the mean

height is 152 cm and the standard deviation is 8 cm. Our data matrix, X , is as follows:

http://mng.bz/Pn4g
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X =



164.32

149.65

134.56

156.54

143.32


13.8.1 Maximum likelihood estimation

If we relied on MLE, our approach would be to compute the mean and standard devia-

tion of the data set and use this normal distribution as our model. We use the following

equations to compute the mean and standard deviation of our normal distribution:

`MLE =
1

N

n∑
i=1

xi

fMLE =
1

N

n∑
i=1

(xi − `)2

The mean, `, comes out to be 149.68, and the standard deviation, f, is 11.52. This

differs significantly from the true mean (152) and standard deviation (8) because the

number of data points is low. In such low-data scenarios, the maximum likelihood

estimates are not very reliable.

13.8.2 Bayesian inference

Can we do better than MLE? One potential method is to use Bayesian inference with a

good prior. How do we select a good prior? Well, let’s say that we know from an old

survey that the average and standard deviation of the height of adult female residents of

Neighborville, the neighboring town, are 150 cm and 9 cm, respectively. Additionally,

we have no reason to believe that the distribution of heights at Statsville is significantly

different. So we can use this information to “initialize” our prior. The prior distribution

encodes our beliefs about the parameter values.

Given that we are dealing with an unknown mean and unknown variance, we model

the prior as a normal-gamma distribution:

p(\) =NW (`0 , _0 , U0 , V0)

We choose p(\) such that `0 = 150, _0 = 100, U0 = 10.5, and V0 = 810. This implies that

p(\) =NW (150, 100, 10.5, 810)

p(\ |X) is a normal-gamma distribution whose parameters can be computed using

equations described in section 13.7. The PyTorch code for computing the posterior is

shown next.
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Listing 13.5 PyTorch: Computing posterior probability using Bayesian inference

prior_dist = NormalGamma(150, 100, 10.5, 810)

Initializes the normal-gamma
distribution

posterior_dist = inference_unknown_mean_variance(X, prior_dist)

Computes the
posterior

map_mu, map_precision = posterior_dist.mode

The mode of the distribution refers to
parameter values with the highest
probability density.

map_std = math.sqrt(1 / map_precision)

Computes the standard deviation
using precision

map_dist = Normal(map_mu, map_std)

map_mu and map_std refer to the
parameter values that maximize the
posterior distribution.

The MAP estimates for ` and f obtained using Bayesian inference are 149.98 and 9.56,

respectively, which are better than the MLE estimates of 149.68 and 11.52 (the true `

and f are 152 and 9, respectively).

Now that we’ve estimated the parameters, we can find out the probability that a

sample lies in the range using the formula

p(a < X <= b) =
∫ b

a
p(X)dX

The details of this can be found in section 6.8.

13.9 Fully Bayes parameter estimation: Multivariate Gaussian,
unknown mean, known precision
This is the multivariate case; the univariate version is discussed in section 13.3. The

computations follow along the same lines as the univariate ones.

We model the data distribution as a Gaussian p
(
®x
�� ®̀, �)

=N
(
®x; ®̀, �−1

)
, where we

have expressed the Gaussian in terms of the precision matrix � instead of the covariance

matrix �, where �=�−1. The training data set is X ≡
{
®x (1) , ®x (2) , · · · , ®x (i ) , · · · , ®x (n)

}
,

and its overall likelihood is

p
(
X

�� ®̀) =∝ e− 1
2

∑n
i=1

(
®x (i ) − ®̀

)T
�

(
®x (i) − ®̀

)
We model the prior for the mean as a Gaussian:

p
(
®̀
)
=N

(
®̀; ®̀0 , �−1

0

)
∝ e− 1

2 ( ®̀− ®̀0 )T�0 ( ®̀− ®̀0 )

The posterior probability density is a Gaussian (because it is the product of two Gaus-

sians). Let’s denote it as

p
(
®̀
��X )

=N
(
®̀; ®̀n , �−1

n

)
∝ e− 1

2 ( ®̀− ®̀n )T�n ( ®̀− ®̀n )
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Using Bayes’ theorem,

p
(
®̀
��X )

∝ p
(
X

�� ®̀) p (
®̀
)

or

posterior︷                   ︸︸                   ︷
e−

1
2 ( ®̀− ®̀n )T�n ( ®̀− ®̀n ) ∝

likelihood︷                         ︸︸                         ︷
e−

1
2

∑n
i=1

(
®x (i ) − ®̀

)T
�

(
®x (i ) − ®̀

) prior︷                   ︸︸                   ︷
e−

1
2 ( ®̀− ®̀0 )T�0 ( ®̀− ®̀0 )

∝ e
− 1

2

(∑n
i=1

(
®x (i) − ®̀

)T
�

(
®x (i ) − ®̀

)
+( ®̀− ®̀0 )T�0 ( ®̀− ®̀0 )

)
Let’s examine the exponent of the rightmost expression.

n∑
i=1

(
®x (i ) − ®̀

)T
�

(
®x (i ) − ®̀

)
+

(
®̀ − ®̀0

)T �0

(
®̀ − ®̀0

)

=

n∑
i=1

®x (i )
T
�®x (i ) +

n∑
i=1

®̀T� ®̀ − 2 ®̀T�

n ®̄x︷  ︸︸  ︷
n∑
i=1

®x (i ) + ®̀T�0 ®̀ − 2 ®̀T�0 ®̀0 + ®̀T0�0 ®̀0

=

n∑
i=1

®x (i )
T
�®x (i ) + n ®̀T� ®̀ − 2n ®̀T� ®̄x + ®̀T�0 ®̀ − 2 ®̀T�0 ®̀0 + ®̀T0�0 ®̀0

= ®̀T (n�+�0) ®̀ − 2 ®̀T
(
n� ®̄x +�0 ®̀0

)
+ constant terms without ®̀

We ignored the last constant terms (because they will be rolled into the overall constant

of proportionality). Thus

p
(
®̀
��X )

∝ e− 1
2 ( ®̀− ®̀n )T�n ( ®̀− ®̀n )

∝ e−
1
2

(
®̀T (n�+�0 ) ®̀−2 ®̀T

(
n� ®̄x+�0 ®̀0

)
+ constant terms without ®̀

)
Comparing coefficients:

�n = n�+�0 ®̀n =�−1
n

(
n� ®̄x +�0 ®̀0

)
(remember � is known)

The posterior probability maximizes at ®̀n . Thus ®̀MAP = ®̀n is the MAP estimate for the

mean parameter of the multivariate Gaussian data distribution: p
(
®x
)
=N

(
®x; ®̀n , �−1

)
.

Note the following:

limn→∞ n�−1
n = limn→∞ n (n�+�0)−1

= limn→∞
(
n−1

)−1 (n�+�0)−1 = limn→∞
(
n−1n�+ n−1�0

)−1
=�−1

limn→∞ �−1
n = lim→∞ n−1n�−1

n = limn→∞ n−1�−1 = 0

 lim
n→∞

®̀n = ®̄x

lim
n→0

®̀n = ®̀0

With a large volume of data, the estimated mean parameter ®̀MAP = ®̀n approaches the
MLE ®̀MLE = ®̄x. With a low volume of data, the estimated posterior mean parameter

®̀MAP = ®̀n approaches the prior ®̀0.
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NOTE Fully functional code for multivariate Bayesian inferencing of the mean of

a Gaussian likelihood with known precision, executable via Jupyter Notebook, can

be found at http://mng.bz/J2AP.

Listing 13.6 PyTorch: Multivariate Bayesian inferencing, unknown mean

def inference_known_precision(X, prior_dist, precision_known):
mu_mle = X.mean(dim=0)
n = X.shape[0]

mu_0 = prior_dist.mean
precision_0 = prior_dist.precision_matrix Parameters of the prior

precision_n = n * precision_known + precision_0 Parameters of the posterior
mu_n = torch.matmul(

n * torch.matmul(
mu_mle.unsqueeze(0), precision_known) + torch.matmul(

mu_0.unsqueeze(0), precision_0),
torch.inverse(precision_n)

)

posterior_dist = MultivariateNormal(
mu_n, precision_matrix=precision_n)

return posterior_dist

13.10 Fully Bayes parameter estimation: Multivariate,
unknown precision, known mean
In section 13.6, we discussed the univariate case, and now we examine the multivari-

ate case. For the univariate case, we had to look at the gamma distribution. For the

multivariate case, we have to look at the Wishart distribution.

13.10.1 Wishart distribution

Suppose we have a Gaussian random data vector ®x with probability density function

N
(
®x; ®̀, �

)
. Once again, we use precision matrix � instead of the covariance matrix �,

where �=�−1. Consider the case where we know the mean ®̀ but want to estimate the

precision �. How do we express the prior? Note that p (�) is the probability density
function of a matrix. So far, we have encountered probability distributions of scalars

and vectors, not a matrix. Also, this is not an arbitrary matrix. We are talking about a

symmetric, non-negative definitematrix (all covariance and precisionmatrices belong to this

category). Consequently, the distribution we are looking for is not a joint distribution of

all the d2 matrix elements (d denotes the dimensionality of the data: that is, all ®x and ®̀
vectors are d × 1). Rather, it is a joint distribution of

d (d+1)
2 elements in the matrix—the

diagonal and those above or below (diagonal elements above and below are identical

because the matrix is symmetric).

http://mng.bz/J2AP
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The space of such matrices is called a Wishart ensemble. The probability of a random-

precision matrix � of size d × d can be expressed as a Wishart distribution. This distribu-

tion has two parameters:

a , a scalar, satisfying a > d − 1

W , a d × d symmetric non-negative definite matrix

The probability density function is

p (�; a ,W ) =W (�; a ,W ) = |�| a−d−12 e−
1
2Tr

(
W −1�

)
2

ad
2 |W | a2 Γd

(
a
2

)
where

W denotes Wishart.

|W |, |�| denote the determinants of the matricesW and �, respectively.

Tr (A) denotes the trace of a matrix A (sum of the diagonal elements).

Γ denotes the multivariate gamma function

Γd

(n
2

)
= c

d (d−1)
4

d∏
j=1

Γ

(
n − j + 1

2

)
The Wishart is the multivariate version of the gamma distribution. Its expected value is

E (�) = aW

Its maxima occur at

�= (a − d − 1)W for a ≥ d + 1

13.10.2 Estimating precision

As before, we model the data distribution as a Gaussian p
(
®x
�� ®̀, �)

=N
(
®x; ®̀, �−1

)
,

where we have expressed the Gaussian in terms of the precision matrix � instead of the

covariance matrix �, where �=�−1.

The training data set is X ≡
{
®x (1) , ®x (2) , · · · , ®x (i ) , · · · , ®x (n)

}
, and its overall likelihood

is

p (X |�) =∝ |�| n2 e−
1
2

∑n
i=1

(
®x (i ) − ®̀

)T
�

(
®x (i) − ®̀

)
We model the prior probability of the precision matrix as a Wishart distribution. Hence,

p (�) =W (�; a0 ,W0) ∝ |�|
a0−d−1

2 e−
1
2Tr

(
W0

−1�
)

The posterior is another Wishart (owing to the Wishart conjugate prior property):

p (�|X) =W (�; an ,Wn) ∝ |�|
an−d−1

2 e−
1
2Tr

(
Wn

−1�
)
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Using Bayes’ theorem for the training data set X ,

p (�|X) ∝ p (X |�) p (�)
posterior︷                       ︸︸                       ︷

|�|
an−d−1

2 e−
1
2Tr

(
Wn

−1�
)
∝

likelihood︷                                ︸︸                                ︷
|�| n2 e−

1
2

∑n
i=1

(
®x (i ) − ®̀

)T
�

(
®x (i ) − ®̀

) prior︷                      ︸︸                      ︷
|�|

a0−d−1
2 e−

1
2Tr

(
W0

−1�
)

Let’s study a pair of simple lemmas that will come in handy.

®xTA®x =Tr
(
®xTA®x

)
®xTA®x =Tr

(
A®x ®xT

)
whereTr refers to Trace of a matrix (sum of diagonal elements).

The first lemma is almost trivial—the quadratic form ®xTA®x is a scalar, so of course

it is the same as its trace.

The second lemma follows directly from the matrix property of a trace:Tr (BC) =
Tr (CB).

Using the lemmas, the exponent of the likelihood term is

n∑
i=1

(
®x (i ) − ®̀

)T
�

(
®x (i ) − ®̀

)
=

n∑
i=1

Tr
((
®x (i ) − ®̀

) (
®x (i ) − ®̀

)T
�

)

=Tr

©­­­­­­«

nS︷                            ︸︸                            ︷
n∑
i=1

(
®x (i ) − ®̀

) (
®x (i ) − ®̀

)T
�

ª®®®®®®¬
=Tr (nS�)

where

S =
1

n

n∑
i=1

(
®x (i ) − ®̀

) (
®x (i ) − ®̀

)T
(remember, ®̀ is known).

Thus, the posterior density is

p (�|X) p (�) ∝ |�| n2 e− 1
2Tr (nS�) |�|

a0−d−1
2 e−

1
2Tr

(
W0

−1�
)

∝ |�|
n+a0−d−1

2 e−
1
2

(
Tr (nS�)+Tr

(
W0

−1�
))

SinceTr (A) +Tr (B) =Tr (A+B),

p (X |�) p (�) ∝ |�|

an︷︸︸︷
n + a0 −d−1

2 e

− 1
2Tr

©­­­«
©­­­«
︷       ︸︸       ︷
nS +W0

−1ª®®®¬�
ª®®®¬ ∝ |�|

an−d−1
2 e−

1
2Tr

(
Wn

−1�
)
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Comparing coefficients, we determine the unknown parameters of the posterior

distribution:

Wn
−1 =

(
nS +W0

−1
)

an = n + a0

where

S =
1

n

n∑
i=1

(
®x (i ) − ®̀

) (
®x (i ) − ®̀

)T
The maximum of the posterior density function, W (�; an ,Wn), yields an estimate for

the precision parameter of the data distribution:

�= (an − d − 1)Wn for an ≥ d + 1

i.e., p
(
®x
)
=N

(
®x; ®̀,

(
nS+W0

−1
)

(an−d−1)

)
.

Summary
A generative model that models the underlying data distribution can be more

powerful than a black box discriminative model. Once we choose a model family,

we need to estimate the model parameters, \ . We can estimate the best values of \

from the training data X using Bayes’ theorem.

The posterior distribution p (\ |X) is a function of the product of likelihood p (X |\)
and the prior p (\). The prior expresses our belief in the value of the parameters.

The posterior is dominated by the prior for small data sets and the likelihood

for large data sets. Injecting belief via a good prior distribution can be helpful in

settings with very little training data.

Maximum likelihood estimation only relies on the data, in contrast to maxi-

mum a posteriori (MAP) estimation, which relies on the data as well as the prior

information.

We can use Bayesian estimation for the mean of a Gaussian likelihood when the

variance is known. When the likelihood is Gaussian p(X) ∼N (`, f), we model

the prior as a normal distribution p (`) ∼N (`0 , f0). The posterior distribution
is also a normal distribution p (`|X) ∼N (`n , fn), where f2

n =
f2
0
f2

nf2
0
+f2

and `n =

x̄
1+ f2

nf2
0

+ `0

1+
nf2

0

f2

. We can also use the estimated parameter to make predictions about

new instances of data.

Weak priors imply a high degree of uncertainty/lower confidence in our prior

belief and can easily be overwhelmed by the data. In contrast, strong priors imply

a lower degree of uncertainty/higher confidence in our prior belief and will resist

data overload.

For a specific family of likelihood, the choice of the prior that results in the

posterior belonging to the same family as the prior is called a conjugate prior.
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The gamma function is (Γ (U) =
∫ ∞
x=0 x

(U−1) e−xdx), and the gamma distribution

is p (_ |U , V ) = W (_ ; U , V ) = VU

Γ (U ) _
(U−1) e− V_ . The gamma distribution varies with

different values of U and V .

In the case of Bayesian estimation of the precision of the Gaussian likelihood for

a known mean, the precision _ is the inverse of the variance. We can model the

prior as a gamma distribution p (_ ) = V
U0
0

Γ (U0 ) _
(U0−1) e− V0_ . The posterior distribution

is also a gamma distribution, p (_ |X) = V
Un
n

Γ (Un ) _
(Un−1) e− Vn_ , where Un =

n
2 + U0 and

Vn =
1
2

∑n
i=1

(
x (i ) − `

)2
+ V0 =

n
2 s + V0.

In Bayesian estimation of both the mean and precision of a Gaussian likelihood,

we model the prior as a normal-gamma distribution. The posterior is another

normal-gamma distribution. The posterior distribution can be used to predict new

data instances.

The multivariate setting of Bayesian inferencing of the mean of a Gaussian like-

lihood is known as precision. We can model the prior as a multivariate normal

distribution; the posterior is also a multivariate normal distribution.

TheWishart distribution is themultivariate version of the gamma distribution. With

multivariate Bayesian inferencing of the precision of a Gaussian likelihood with a

known mean, we can model the prior as a Wishart distribution. The corresponding

posterior is also a Wishart distribution.
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Latent space and

generative modeling,
autoencoders, and

variational autoencoders

This chapter covers
Representing inputs with latent vectors

Geometrical view, smoothness, continuity, and
regularization for latent spaces

PCA and linear latent spaces

Autoencoders and reconstruction loss

Variational autoencoders (VAEs) and regularizing
latent spaces

Mapping input vectors to a transformed space is often beneficial in machine

learning. The transformed vector is called a latent vector—latent because it is not

directly observable—while the input is the underlying observed vector. The latent vector

(aka embedding) is a simpler representation of the input vector where only features

that help accomplish the ultimate goal (such as estimating the probability of an input

belonging to a specific class) are retained, and other features are forgotten. Typically,

468
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the latent representation has fewer dimensions than the input: that is, encoding an

input into a latent vector results in dimensionality reduction.

The mapping from input to latent space (and vice versa) is usually learned—we

train a machine, such as a neural network, to do it. The latent vector needs to be

as faithful a representation as possible of the input within the dimensionality allo-

cated to it. So, the neural network is incentivized to minimize the loss of information

caused by the transformation. Later, we see that in autoencoders, this is achieved by

reconstructing the input from the latent vector and trying to minimize the difference

between the actual and reconstructed input. However, given the reduced number of

dimensions, the network does not have the luxury of retaining everything in the in-

put. It has to learn what is essential to the end goal and retain only that. Thus the

embedding is a compact representation of the input that is streamlined to achieve the

ultimate goal.

14.1 Geometric view of latent spaces
Consider the space of all digital images of heightH , widthW , with each pixel represent-

ing a 24-bit RGB color value. This is a gigantic space with
(
224

)HW
points. Every possible

RGB×H ×W image is a point in this space. But if an image is a natural image, neigh-

boring points tend to have similar colors. This means points corresponding to natural

images are correlated: they are not distributed uniformly over the space of possible im-

ages. Furthermore, if the images have a common property (say, they all contain giraffes),

the corresponding points form clusters in the
(
224

)HW
-sized input space. In stochas-

tic parlance, the probability distribution of natural images with a common property

over the space of possible images is highly non-uniform (low entropy).

Figure 14.1a illustrates points with some common property clustered around a planar

manifold. Similarly, figure 14.1b illustrates points with some common property clustered

around a curved manifold. These points have a common property. At the moment, we

are not interested in what that property is or whether the manifold is planar or curved.

All we care about is that these points of interest are distributed around a manifold. The

manifold captures the essence of that common property, whatever it is. If the common

property is, say, the presence of a giraffe in the image, then the manifold captures

giraffeness: the points on or near the manifold all correspond to images with giraffes. If

we travel along the manifold, we encounter various flavors of giraffe photos. If we go

far from the manifold—that is, travel a long distance in a direction orthogonal to the

manifold—the probability of the point representing a photo with a giraffe is low.

Given training data consisting of sampled points of interest (such as many giraffe

photos), we can train a neural network to learn this manifold—it is the optimal manifold

that minimizes the average distance of all the training data points from the manifold.

Then, at inference time, given an arbitrary input point, we can estimate its distance from

the manifold, giving us the probability of that input satisfying the property represented

by the manifold.
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Orthogonal
component

Latent vector for 
(in-subspace)

(a) Planar latent subspaces

Orthogonal
component

Latent vector for 
(in-subspace)

(b) Curved latent subspace

Figure 14.1 Two examples of latent subspaces, with planar and curved manifolds, respectively. The solid
line shows the latent vector, and the dashed line represents the information lost by projecting onto the
latent subspace.

Thus, the input vector can be decomposed into an in-manifold component (solid line

in figure 14.1) and an orthogonal-to-manifold component (dashed line in figure 14.1).

Latent space modeling effectively eliminates the orthogonal component and retains

the in-manifold component as the latent vector (aka embedding). Equivalently, we are

projecting the input vector onto the manifold. This is the core idea of latent space

modeling—we learn a manifold that represents a property of interest and represents all

inputs by a latent vector, which is the input point’s projection onto this manifold. The

latent vector is a more compact representation of the input where only information

related to the property of interest is retained.

Latent space modeling in a nutshell

In latent space modeling, we train a neural network to represent a manifold around
which the input points satisfying a property of interest are distributed. The property of
interest could be membership in a specific class, such as images containing a giraffe.
Thus, the learned manifold is a collection of points that satisfy the property. The input
point is projected onto this manifold to obtain a latent vector representation of the
input (aka embedding). This is equivalent to throwing away the input vector component
that is orthogonal to the manifold. The eliminated component is orthogonal to the
manifold and hence unrelated to the property of interest (may represent background
pixels of the image), so the information loss caused by the projection does not hurt.
We have created a less noisy, more compact representation of the input that focuses
on the things we care about.

Training data consists of a set of sampled data inputs, all satisfying the property of
interest. The system essentially learns the manifold, which is optimally located to
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minimize its average distance from all the training data points. During inferencing,
given an arbitrary input point, its distance from the manifold is an indicator of the
probability of that input satisfying the property of interest.

A subtle point is that the latent vector is the in-manifold component of the original

point’s position vector. By switching to the latent vector representation, we lose the

location of the point in the original higher-dimensional input space. We can go back

to the higher-dimensional space by providing the location of the manifold for the lost

orthogonal component, but doing so does not recover the original point: it recovers

only the projection of the original point onto the subspace. We are replacing the

individual orthogonal components with an aggregate entity (the location of a manifold)

but do not recover the exact original point. Some information is irretrievably lost during

projection.

A special case of latent space representation is principal component analysis (PCA),

introduced in section 4.4 (section 14.4 provides a contextual recap of PCAs). It projects

input points to an optimal planar latent subspace (as in figure 14.1a). But except for

some lucky special cases, the best latent subspace is not a hyperplane. It is a complex

curved surface (see figure 14.1b). Neural networks, such as autoencoders, can learn

such nonlinear projections.

14.2 Generative classifiers
During inferencing, the supervised classifiers we have encountered in previous chapters

typically emit the class to which an input belongs, perhaps along with a bounding box.

This is somewhat black-box-like behavior. We do not know how well the classifier has

mastered the space except through the quantized end results. Such classifiers are called

discriminative classifiers. On the other hand, latent space models map arbitrary input

points to probabilities of belonging to the class of interest. Such models are called

generative models, and they have some desirable properties:

Smoother, denser manifolds—Discriminative models learn decision boundaries sepa-

rating data points of interest from those not of interest in the input space. On the

other hand, generative models try to model the distribution of the data points of

interest in the input space using smooth probability density functions. As such, the

generative model can’t learn a very irregularly shaped function that overfits the

training data. This is illustrated in figure 14.2, whereas the discriminative model

may converge to a manifold that follows the nooks and bends of the training data

too closely (overfits) as in figure 14.2b. This difference between discriminative

and generative classifiers becomes especially significant when we have less training

data. We can always create a discriminative classifier from a generative classifier by

putting a threshold on the probability.

NOTE We can always create a discriminative classifier from a generative classifier

by putting a threshold on the probability.
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Region
of interest

(a) A good discriminative classifier—
smooth decision boundary

Wrongly
classified point

Region
of interest

(b) A bad discriminative classifier—
irregular decision boundary

(c) Generative model—no decision
boundary (heat map indicates the
probability density)

Figure 14.2 Solid circles indicate training data points (all belonging to the class of interest). The dashed
curve indicates the decision boundary separating the class of interest from the class of non-interest. In a
generative model, there is no decision boundary. Every point in the space is associated with a probability
of belonging to the class of interest (indicated as a heat map in figure 14.2c).

Extra insight—Generative models offer more insight into the inner workings of

the model. Consider a model that recognizes horses. Suppose we feed some horse

images to themodel, and it calls them horses (good). Then we feed themodel some

zebra images, and it calls them horses, too (bad). Do we have a useless model that

calls everything a horse? If it is a discriminative model, we must test it with totally

different images (say, bird images) to get the answer. But if we have a generative

model, it says the probabilities of the true horse images are, say, 0.9 and above,

while the probabilities for the zebra images are around 0.7. We begin to see that

the model is behaving reasonably and does realize that zebras are less “horsy” than

real horses.

New class instances— A generative model learns the distribution of input points

belonging to the class. An advantage related to learning the distribution is that we

can sample the distribution to generate new members of the class (for example, to

generate artificial horse images). This leads to the name generativemodes. If we

train a generative model with writings of Shakespeare, it will emit Shakespeare-like

text pieces. Believe it or not, this has been tried with some success.

14.3 Benefits and applications of latent-space modeling
Let’s recap at a high level why we want to do latent-space modeling:

Generative models are often based on latent space models—all the benefits of generative

modeling as outlined in section 14.2 apply to latent space modeling too.

Attention to what matters—Redundant information that does not contribute to the

end goal is eliminated, and the system focuses on truly discriminative information.

To visualize this, imagine an input data set of police mugshots consisting of people

standing in front of the same background. Latent-space modeling trained to recog-

nize people typically eliminates the common background from the representation

and focuses on the photograph’s subject matter (people).

Streamlined representation of data—The latent vector is a more compact representa-

tion of the input vector (reduced dimensions and hence smaller) with no meaning-

ful information lost.
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Noise elimination—Latent-space modeling eliminates the low-variance orthogonal-

to-latent-subspace component of the data. This is mostly data that does not help in

the problem of interest and hence is noise.

Transformation to a manifold that is friendlier toward the end goal—We have seen this

notion previously, but here let’s look at an interesting simple example. Consider

a set of 2D points in Cartesian coordinates (x , y). Suppose we want to classify

the points into two sets: those that lie inside the circle x2 + y2 = a2 and those that

lie outside the circle. In the original Cartesian space, the decision boundary is

not linear (it is circular). But if we transform the Cartesian input points to a

latent space in polar coordinates—that is, each (x , y) is mapped to (r , \) such
that x = rcos (\) , y = rsin (\)—the circle transforms into a line r = a in the latent

space . A simple linear classifier r = a in the latent space can achieve the desired

classification.

Some applications of latent-space modeling are as follows:

Generating artificial images or text (as explained in the context of generative

modeling).

Similarity estimation between inputs—If we map inputs to latent vectors, we can assess

the similarity between inputs by computing the Euclidean distance between the

latent vectors. Why is this better than taking the Euclidean distance between the

input vectors?

Suppose we are building a recommendation engine that suggests other clothing

items “similar” to the one a potential buyer is currently browsing. We want to

retrieve other clothing items that look similar but not identical to the one viewed.

But similarity is a subjective concept, not quite measurable via the similarity of the

inputs’ pixel colors. Consider a shirt with black vertical stripes on a white base. If we

switch the stripe color with the base color, we get a shirt with white vertical stripes

on a black base. If we do pixel-to-pixel color matching, these are very different,

yet they are considered similar by humans. For this problem, we have to train the

latent space model, creating neural networks so that images perceived to be similar

by humans map to points in latent space that are close to each other. For example,

both white-on-black and black-on-white shirts should map to latent vectors that are

close to each other in the latent space even though they are far apart in the input

space.

Image or other data compression—The latent vector approximates the data with a

smaller-dimensional vector that mimics the original vector as faithfully as possible.

Thus the latent vector is a lossy compressed representation of the input.

Denoising—The latent vector eliminates the non-meaningful part of the input

information, which is noise.

NOTE Fully functional code for this chapter, executable via Jupyter Notebook,

can be found at http://mng.bz/6XG6.

http://mng.bz/6XG6
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14.4 Linear latent space manifolds and PCA
PCAs (which we discussed in section 4.4) project input data onto linear hyperplanar

manifolds. Revisiting this topic will set up the correct context for the rest of this chapter.

Consider a set of 3D input data points clustered closely around the X0 =X2 plane, as

shown in figure 14.3.
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(a) Original 3D data
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(b) Lower-dimensional 2D representation obtained by
setting the third principal value to zero
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(c) The principal vectors of the original data. The third
principal vector is normal to X0 =X2 plane; the other
two are in-plane.

Figure 14.3 The original 3D data in figure
14.3a shows high correlation: points are clus-
tered around the X0 =X2 plane. The first prin-
cipal component corresponds to the direction
of maximum variance. The last (third) principal
component corresponds to the direction of
lowest variance. Eliminating components
of the input vector along the third principal
vector effectively projects all points into the
X0 =X2 plane (latent subspace). This is
latent vector modeling with the 3D input
reduced to a 2D latent vector.

NOTE We denote the successive axes (dimensions) as X0, X1, X2 instead of the

more traditional X ,Y , Z for easy extension to higher dimensions.
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Using PCA, we can recognize that the data has low variation along some dimensions.

When we do PCA, we get the principal value and principal vector pairs. The largest

principal value corresponds to the direction of maximum variance in the data. The

corresponding principal vector yields that direction, and that principal value indicates

the magnitude of the variance along that direction. The next principal value, the

principal vector pair, is the orthogonal direction with the next-highest variance, and

so on. For instance, in figure 14.3, the principal vectors corresponding to the larger two

principal values lie in the X0 =X2 plane, while the smallest principal value corresponds

to the normal-to-plane vector. The third principal value is significantly smaller than the

others. This tells us that variance along that axis is low, and components along that axis

can be dropped with relatively little loss of information: that is, low reconstruction loss.

The variations along the small principal value axes are likely noise, so eliminating them

cleans up the data. In figure 14.3, this effectively projects the data onto theX0 =X2 plane.

Dimensionality reduction

PCA essentially projects inputs to the best-fit plane for the training data. Assuming all
the training data points are sampled with a common property, this plane represents
that common property. By projecting, we eliminate that common property and retain
only the discriminating aspects of the data. The eliminated information is remembered
approximately in the parameters of the plane and supplied during reconstruction (aka
decoding) to map us back to the same dimensionality as the input (but not exactly the
same point). This is the essence of dimensionality reduction via PCA.

Following are the steps involved in PCA-based dimensionality reduction. This was

described in detail with proofs in section 4.5; here we recap the main steps without

proof.

NOTE This treatment is similar but not identical to that in section 4.5. Here we

have switched the variables m and n to be consistent with our use of n to denote

the data instance count. We have also switched to a slightly different flavor of the

SVD.

1 Represent the data as a matrix X , where each row is an individual data instance.

The number of rows n is the size of the data set. The number of columns d is the
original (input) dimensionality of the data. Thus X is a n × d matrix.

2 Compute the mean data vector

®̀ = 1

n

n∑
i=1

®x (i )

where ®x (i ) for i = 1 to i = n denote the training data vector instances (which form

rows of the matrix X).
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3 Shift the origin of the coordinate system to the mean by subtracting the mean

vector from each data vector:

®x (i ) = ®x (i ) − ®̀ for all i

The data matrix X now has the mean-subtracted data instances as rows.

4 The matrix XTX (where X is the mean-subtracted data matrix) is the covariance

matrix (as discussed in detail in section 5.7.2). The eigenvalue, eigenvector pairs

of the matrix XTX are known as principal values and principal vectors (together

referred to as principal components). Since XTX is a d × d matrix, there are

d scalar eigenvalues and d eigenvectors, each of dimension d × 1. Let’s denote
the principal components as

(
_1 , ®v1

)
,
(
_2 , ®v2

)
, · · · ,

(
_dm , ®vd

)
.

5 We can assume _1 ≥ _2 ≥ · · · ≥ _d (if necessary, we can make this true by renumber-

ing the principal components). Then the first principal component corresponds

to the direction of maximum variance in the data (proof with geometrical intuition

can be found in section 5.7.2). The corresponding principal value yields the actual

variance. The next principal value corresponds to the second-highest variance

(among directions orthogonal to the first principal direction), and so forth. For

every component, the principal value yields the actual variance, and the principal

vector yields the direction.

6 Consider the matrix of principal vectors:

V =

[
®v1 ®v2 · · · ®vd

]
If we want the data to be a space with m dimensions with minimal loss of informa-

tion, we should drop the last m vectors ofV . This eliminates the m least-variance

dimensions. Dropping the last m vectors fromV yields a matrix

Vd−m =

[
®v1 ®v2 · · · ®vd−m

]
Note that the best way to obtain the V matrix is to perform SVD on the mean-

subtracted X (see section 4.5).

7 PremultiplyingVd−m, the truncated principal vectors matrix, with the original data

matrix X projects the data onto a space corresponding to the first d −m principal

components. Thus, to create d −m-dimensional linearly encoded latent vectors

from d-dimensional data,

Xd−m =XVd−m

Xd−m is the reduced dimension data set. Its dimensionality is n × (d −m).

It can be shown that

XVd−m =UΣd−m
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where U is from SVD (see section 4.5) and Σd−m is a truncated version of the

diagonal matrix Σ from SVD with its smallest m elements chopped off. This offers

an alternative way to do PCA-based dimensionality reduction.

8 How do we reconstruct? In other words, what is the decoder? Well, to reconstruct,

we need to save the original principal vectors: that is, the V matrix. If we have

that, we can introduce m zeros at the right of every row in Xd−m to make it a n × d
matrix again. Then we post-multiply byVT , which rotates the coordinate system

back from one with principal vectors as axes to one with the original input axes.

Finally, we add the mean ®̀ to each row to shift the origin back to its original

position, which yields the reconstructed data matrix X̃ . The reconstruction loss is

‖X − X̃ ‖2. Note that, in effect, X̃ is UΣVT with the last m diagonal elements of

Σ set to zero.

9 The reconstructed data X̃ is not identical to the original data. The information

we lost during dimensionality reduction (the normal-to-plane components) is lost

permanently. Nonetheless, this principled way of dropping information ensures

that the reconstruction loss is minimal in some sense, at least among all X̃ linearly

related to X .

14.4.1 PyTorch code for dimensionality reduction using PCA

Now, let’s implement dimensionality reduction in PyTorch. Let X be a data matrix

representing points clustered around the X0 =X2 plane. X is of shape [1000, 3], with
each row of X representing a three-dimensional data point. The following listing shows

how to project X into a lower-dimensional space with minimal loss of information. It

also shows how to reconstruct the original data points from the lower-dimensional

representations. Note that the reconstructions are approximate because we have lost

information (albeit minimal) in the dimensionality-reduction process.

NOTE Fully functional code for dimensionality reduction using PCA, executable

via Jupyter Notebook, can be found at http://mng.bz/7yJg.

Listing 14.1 PyTorch: PCA revisited

import torch

X = get_data() Data matrix of shape (1000, 3)

X_mean = X.mean(axis=0)

Stores the mean so we can reconstruct
the original data points later

X = X - X_mean Subtracts the mean before performing SVD

U, S, Vh = torch.linalg.svd(X, full_matrices=False) Runs SVD

V = Vh.T Columns of V are the principal vectors.

http://mng.bz/7yJg
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V_trimmed = V[:, 0: 2]

Removes the last principal vector. This is
along the direction of least variance
(perpendicular to X0 =X2 plane).

X_proj = torch.matmul(X, V_trimmed)

Projects the input data points into the
lower-dimensional space

X_proj = torch.cat([X_proj, Pads with zeros to make an n × d matrix

torch.zeros((X_proj.shape[0], 1))], axis=1)

X_recon = torch.matmul(X_proj, Vh)

Post-multiplies withVT to project back
to the original space

X_recon = X_recon + X_mean Adds the mean

14.5 Autoencoders
Autoencoders are neural network systems trained to generate latent-space representa-

tions corresponding to specified inputs. They can do nonlinear projections and hence

are more powerful than PCA systems (see figure 14.4). The neural network mapping

the input vector to a latent vector is called an encoder. We also train a neural network

called a decoder that maps the latent vector back to the input space. The decoder output

is the reconstructed input from the latent vector. The reconstructed input (that is, the

output of the decoder) will never match the original input exactly—information was

lost during encoding and cannot be brought back—but we can try to ensure that they

match as closely as possible within the constraints of the system. The reconstruction

loss is a measure of the difference between the original input and the reconstructed

input. The encoder-decoder pair is trained end to end to minimize reconstruction loss

(along with, potentially, some other losses). This is an example of representation learning,

whereby we learn to represent input vectors with smaller latent vectors representing the

input as closely as possible in the stipulated size budget. The budgeted size of the latent

space is a hyperparameter.

Figure 14.4 A 2D data distribution with a curved
underlying pattern. It is impossible to find a
straight line or vector such that all points are near
it. PCA will not do well.

NOTE A hyperparameter is a neural network parameter that is not learned. Its

value is set based on our knowledge of the system and held constant during

training.
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The desired output is implicitly known in autoencoders: it is the input. Consequently, no

human labeling is needed to train autoencoders; they are unsupervised. An autoencoder

is shown schematically in figure 14.5.

Latent space
representation

Reconstructed
imageInput image

DecoderEncoder Bottleneck

Figure 14.5 Schematic representation of an autoencoder. The encoder transforms input into a latent
vector. The decoder transforms the latent vector into reconstructed input. We minimize the reconstruction
loss—the distance between the reconstructed input and the original input.

The encoder takes an input ®x and maps it to a lower-dimensional latent vector ®z.
An example of an encoding neural network for image inputs is shown in listing

14.2. Note how the image height and width keep decreasing with each successive

sequence of convolution, ReLU, and max pool layers.

The decoder is a neural network that generates reconstructed image ®̃x from the

latent vector ®z. Listing 14.3 shows an example of a decoder neural network. Note

the transposed convolutions and how the height and width of the image keep

increasing with each successive sequence of transposed convolution, batch nor-

malization, and ReLU. (Transposed convolutions are discussed in section 10.5.)

The decoder essentially remembers—not exactly, but in an average sense—the

information discarded during encoding. Equivalently, it remembers the position

of the latent space manifold in the overall input space. Adding that back to the

latent space representation takes us back to the same dimensionality as the input

vector but not to the same input point.

The system minimizes the information loss from the encoding (the reconstruc-

tion loss). We are ensuring that for each input, the corresponding latent vector

produced by the encoder can be mapped back to a reconstructed value by the

decoder that is as close as possible to the input. Equivalently, each latent vector is

a faithful representation of the input, and there is a 1 : 1 mapping between inputs

and latent vectors.

The encoder and decoder need not be symmetric.
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Mathematically,

Encoder:

latent vector︷︸︸︷
®z =E

(
®x
)

Decoder:

reconstructed image︷︸︸︷
®̃x =D

(
®z
)

Loss:L =

distance between input and reconstructed image︷    ︸︸    ︷
‖ ®x − ®̃x‖2

The end-to-end system is trained to minimize the loss L.

NOTE Fully functional code for autoencoders, executable via Jupyter Notebook,

can be found at http://mng.bz/mOzM.

Listing 14.2 PyTorch: Autoencoder encoder

from torch import nn
nz = 10
input_image_size = (1, 32, 32) Input image size in (c, h, w) format
conv_encoder = nn.Sequential(

nn.Conv2d(in_channels, 32, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2), Reduces to a (32, 16, 16)-sized tensor

nn.Conv2d(32, 128, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2), Reduces to a (128, 8, 8)-sized tensor

nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2), Reduces to a (256, 4, 4)-sized tensor

nn.Flatten() Flattens to a 4096-sized tensor
)

fc = nn.Linear(4096, nz) Reduces the 4096-sized tensor to an nz-sized tensor

Listing 14.3 PyTorch: Autoencoder decoder

from torch import nn
decoder = nn.Sequential(

nn.ConvTranspose2d(self.nz, out_channels=256,
kernel_size=4, stride=1,
padding=0, bias=False), Converts (nz, 1, 1) to a

(256, 4, 4)-sized tensor

http://mng.bz/mOzM
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nn.BatchNorm2d(256),
nn.ReLU(True),
nn.ConvTranspose2d(256, 128, kernel_size=2,
stride=2, padding=0, bias=False), Increases to a

(128, 8, 8)-sized tensornn.BatchNorm2d(128),
nn.ReLU(True),
nn.ConvTranspose2d(128, 32, kernel_size=2,
stride=2, padding=0, bias=False), Increases to a

(32, 16, 16)-sized tensornn.BatchNorm2d(32),
nn.ReLU(True),
nn.ConvTranspose2d(32, in_channels, kernel_size=2,
stride=2, padding=0, bias=False), Increases to a

(1, 32, 32)-sized tensornn.Sigmoid()
)

Listing 14.4 PyTorch: Autoencoder training

from torch import nn
from torch.nn import functional as F

conv_out = conv_encoder(X)
Passes the input image through the
convolutional encoder

z = fc(conv_out) Reduces to nz dimensions

Xr = decoder(z) Reconstructs the image using z via the decoder

recon_loss = F.mse_loss(Xr, X) Computes the reconstruction loss

14.5.1 Autoencoders and PCA

It is important to realize that autoencoders perform a much more powerful dimen-

sionality reduction than PCA. PCA is a linear process; it can only project data points to

best-fit hyperplanes. Autoencoders can fit arbitrary complex nonlinear hypersurfaces

to the data, limited only by the expressive powers of the encoder-decoder pair. If the

encoder and decoder have only a single linear layer (no ReLU or other nonlinearity),

then the autoencoder projects the data points to a hyperplane like PCA (not necessarily

the same hyperplane).

14.6 Smoothness, continuity, and regularization of latent spaces
Minimizing the reconstruction loss does not yield a unique solution. For instance,

figure 14.6 shows two examples of transforming 2D inputs into 1D latent-space rep-

resentations, linear and curved, respectively. Both the regularized (solid line) and

the non-regularized zigzag manifold (dashed line) fit the training data well with low

reconstruction error. But the former is smoother and more desirable.

Note the pair of points marked p1 , p2 and p3 , p4(square markers). The distance

between them is more or less the same in the input space. But when projected on the

dashed curve (unregularized latent space), their distances (measured along the curve)



482 CHAPTER 14 Latent space and generative modeling, autoencoders, and variational autoencoders

P3 P4P1 P2

(a) Linear latent space

P1
P2

P3 P4

(b) Curved latent space

Figure 14.6 Two examples of mapping from a 2D input space to a 1D latent space. Both show regularized
(solid) vs. unregularized (dashed) latent space manifolds. Solid little circles depict training data points.
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become quite different. This is undesirable and does not happen in the regularized

latent space (here, the distance is measured along a solid line). It becomes much more

pronounced in high dimensions.

The zigzag curve segment containing the training data set is longer than the smooth

one. A good latent manifold typically has fewer twists and turns (is smooth) and hence

has a “length” that is minimal in a sense. This is reminiscent of the minimum descriptor

length (MDL) principle, which we discussed in section 9.3.1.

How do we ensure that this smoothest latent space is chosen over others that also

minimize the reconstruction loss? By putting additional constraints (losses) over and

above the ubiquitous reconstruction loss. Recall the notion of regularization, which we

looked at in sections 6.6.3 and 9.3. There we introduced an explicit loss that penalizes

longer solutions (which was equivalent to maximizing the a posteriori probability of

parameter values as opposed to the likelihood). A related approach that we explore

in this chapter is to model the latent space as a probability distribution belonging to a

known family (for example, Gaussian) and minimize the difference (KL divergence)

of this estimated distribution from a zero-mean univariance Gaussian. The encoder-

decoder neural network pair is trained end to end to minimize a loss that is a weighted

sum of the reconstruction loss and this KL divergence. Trying to remain close to the zero-

mean unit-variance Gaussian penalizes departure from compactness and smoothness.

This is the basic idea of variational autoencoders (VAEs).

The overall effect of regularization is to create a latent space that is more compact.

If we only minimize the reconstruction loss, the system can achieve that by mapping

points very far from each other (space being infinite). Regularization combats that

and incentivizes the system to not map the training points too far from one another. It

tries to limit the total latent-space volume occupied by the points corresponding to the

training inputs.

14.7 Variational autoencoders
VAEs are a special case of autoencoders. They have the same architecture: a pair of

neural networks that encode and decode the input vector, respectively. They also have

the reconstruction loss term. But they have an additional loss term called KL divergence

loss that we explain shortly.

NOTE Throughout this chapter, we denote latent variables with ®z and input

variables with ®x.

14.7.1 Geometric overview of VAEs

Figure 14.7 attempts to provide a geometrical view of VAE latent-space modeling. During

training, given an input ®x, the encoder does not directly emit the corresponding latent-

space representation ®z. Instead, the encoder emits the parameters of a distribution from

a prechosen family. For instance, if the prechosen family is Gaussian, the encoder emits

a pair of parameter values ®̀
(
®x
)
, �

(
®x
)
. These are the mean and covariance matrix of a

specific Gaussian distribution N
(
®z; ®̀

(
®x
)
, �

(
®x
) )
in the latent space. The latent-space
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Latent space

Input space

Space separator

Figure 14.7 Geometric depiction of VAE latent-space modeling distributions

representation ®z corresponding to the input ®x is obtained by sampling this distribution

emitted by the encoder. Thus in the Gaussian case, we have ®z ∼N
(
®z; ®̀

(
®x
)
, �

(
®x
) )
.

NOTE The symbol ∼ indicates sampling from a distribution.

This distribution, which we call the latent-space map of the input ®x, is shown by hollow

circles with dark borders in figure 14.7. Such mapping is called stochastic mapping.

The latent-space map distribution should have a narrow, single-peaked probability

density function (for example, a Gaussian with small variance: that is, small ‖�‖). The
narrow-peakedness of the probability density function implies that the cloud of sample

points forms a tight, small cluster—any random sample from the distribution will likely

be close to the mean. So, sampling ®z from such a distribution is not very different from

a deterministic mapping from ®x to ®z = ®̀
(
®x
)
. This sampling to obtain the latent vector is

done only during training. During inferencing, we use the mean emitted by the encoder

directly as the latent-space representation of the input: that is, ®z = ®̀
(
®x
)
.

The decodermaps the latent vector representation ®z back to a point, say x̃, in the input
space. This is the reconstructed version of the input vector (shown by a little white square

with a black border in figure 14.7). The decoder is thus estimating (reconstructing) the

input given the latent vector.
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14.7.2 VAE training, losses, and inferencing

Training comprises the following steps:

1 Choose a simple distribution family for q(®z | ®x). Gaussian is a popular choice.

2 Each input ®x maps to a separate distribution. The encoder neural network emits

the parameters of this distribution. For the Gaussian case, the encoder emits

`( ®x) , Σ( ®x). The latent vector ®z is sampled from this emitted distribution.

3 The decoder neural network takes ®z as input and emits the reconstructed input x̃.

Given the input, reconstructed input, and latent vector we can compute the reconstruc-

tion loss and KL Divergence loss described below. The goal of the training process is to

iteratively minimize these losses. Thus, the VAE is trained to minimize a weighted sum

of the following two loss terms on each input batch:

Reconstruction Loss—Just as in an autoencoder, in a properly trained VAE, the

reconstruction x̃ should be close to the original input ®x. So, reconstruction loss is

Lrecon = ‖ ®x − x̃‖2

KL divergence loss— In VAE, we also have a loss term proportional to the KL di-

vergence between the distribution emitted by the encoder and the zero mean

unit variance Gaussian. KL divergence measured the dissimilarity between two

probability distributions and was discussed in detail in section 6.4. Here we state

(following equation 6.13) that the KL divergence loss for VAE is

Lkld =KLD
(
q
(
®z
��®x) , p (

®z
) )
=

∫
®z∈D

q
(
®z
��®x) ; log

(
q
(
®z
��®x)

p
(
®z
) )

d®z

where q
(
®z
��®x) denotes the latent-space map probability distribution and p

(
®z
)
is a

fixed target distribution. We want our global distribution of latent vectors to mimic

the target distribution. The target is typically chosen to be a compact distribution

so that the global latent vector distribution is also compact.

The popular choice for the prechosen distribution family is Gaussian and for

the fixed distribution is the zero-mean unit covariance matrix Gaussian:

q
(
®z
��®x) =N

(
®z; ®̀

(
®x
)
, �

(
®x
) )

and p
(
®z
)
=N

(
®z; ®0, I

)
It should be noted that for the above choice of prior, we can evaluate the KLD loss

via a closed form formula as described in section 14.7.7.

Minimizing Lkld essentially demands that q
(
®z
��®x) is high—that is, close to one—

at the ®z values where p
(
®z
)
is high (see figure 14.8), because then their ratio is

close to one and the logarithm is close to zero. The values of p
(
®z
)
at the places

where q
(
®z
��®x) is low (close to zero) do not matter because q

(
®z
��®x) appears as a

factor in Lkld—the contributions to the loss by these terms are close to zero

anyway.
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(a) Low KL divergence loss (high q (®z | ®x) coincides with
high p (®z)

(b) High KL divergence loss (high q (®z | ®x) coincides with
low p (®z)

Figure 14.8 KL divergence loss in VAEs is high when there is a large amount of overlap in mass
between the encoder-generated distribution (N

(

®z; ®-
(

®x
)

, �
(

®x
))

) and the target distribution p
(

®z
)

(here p
(

®z
)

≡N

(

®z; ®0, I
)

) or, equivalently, low KL divergence between them.

Thus, KLD loss essentially tries to ensure that most of the sample point cloud

of q
(
®z
��®x) falls on a densely populated region of the sample point cloud of p

(
®z
)
.

Geometrically, this means the cloud of little hollow circles with black borders has

a lot of overlapping mass with the target distribution. If every training data point is

like that, the overall global cloud of latent vectors will also have significant overlap

with the target distribution. Since the target distribution is typically chosen to

be compact, this in turn ensures that the overall latent vector distribution (dark

filled circles in figure 14.7) is compact. For instance, in the case when the target

distribution is the zero-mean unit covariance matrix Gaussian N
(
®z; ®0, I

)
, most of

the mass of the latent vectors is contained within the unit radius ball. Without the

KL divergence term, the latent vectors will spread throughout the latent space. In

short, the KLD loss regularizes the latent space.

The encoder-decoder pair of neural networks is trained end to end to minimize the

weighted sum of reconstruction loss and KLD loss. In particular, the encoder learns to

emit the parameters of the q
(
®z
��®x) distribution.

During inferencing, only the encoder is used. The encoder takes an input ®x and
outputs ®̀

(
®x
)
and �

(
®x
)
. We do not sample here. Instead, we use the mean directly as

the latent-space representation of the input.

Notice that each input point ®x maps to a separate Gaussian distribution q(®z | ®x =
N (®z; ®̀( ®x) , ∑( ®x)). The overall distribution p( ®x) modeled by all of these together can be

very complex. Yet that complexity does not affect our computation which involves only

q(z |x) and p(z). This is what makes the approach powerful.
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14.7.3 VAEs and Bayes’ theorem

During training, the encoder neural network stochastically maps a specific input data

instance, a point ®x in the input space, to a latent-space point ®z ∼N
(
®z; ®̀

(
®x
)
, �

(
®x
) )
.

Thus the latent-space map effectively models the posterior probability p
(
®z
��®x) . Note that

we are using the symbol q
(
®z
��®x) to denote the actual distribution emitted by the encoder,

while we are using the symbol p
(
®z
��®x) to denote the true (unknown) posterior probability

distribution. Of course, we want these two to be as close as possible to each other: that

is, we want the KL divergence between them to be minimal. Later in this section, we see

how minimizing the KL divergence between q
(
®z
��®x) and p (

®z
��®x) leads to the entire VAE

algorithm.

The decoder maps this point (®z) in latent space back to the input space point x̃. As
such, it models the probability distribution p

(
®x
��®z) .

The global distributions of the latent vectors ®z effectively model p
(
®z
)
(shown by

dark-shaded filled little circles in figure 14.7). These probabilities are connected by our

old friend, Bayes’ theorem:

encoder / posterior︷ ︸︸ ︷
p
(
®z
��®x) =

decoder / likelihood︷ ︸︸ ︷
p
(
®x
��®z) prior︷︸︸︷

p
(
®z
)

p
(
®x
)︸︷︷︸

evidence, constant wrt ®z

14.7.4 Stochastic mapping leads to latent-space smoothness

Sampling the encoder’s output from a narrow distribution is similar, but not identical,

to deterministic mapping. It has a rather unexpected advantage over direct encoding. A

specific input point is mapped to a slightly different point in the latent space every time

it is encountered during training—all these points have to decode back to the same

region in the input space. This enforces an overall smoothness over the latent space:

nearby ®z values all correspond to nearby ®x values.

14.7.5 Direct minimization of the posterior requires prohibitively expensive normalization

The Bayes’ theorem expression of a VAE in section 14.7.3 gives us an idea. Why not

train the neural network to directly maximize the posterior probability p
(
®z
��� ®X)

, where

X denotes the training data set? It certainly makes theoretical sense; we are choos-

ing the latent space whose posterior probability is maximum given the training data.

Of course, we must optimize one batch at a time, as we always do with neural

networks.

How do we evaluate the posterior probability? The formula is as follows:

p
(
®z
��®x) = p (

®x
��®z) p

(
®z
)

p
(
®x
) =

p
(
®x
��®z) p

(
®z
)∫

®z p
(
®x
��®z) p (

®z
)
d®z

The denominator contains a sum over all values of ®z. Remember, with every iteration,

the neural network weights change, and all previously computed latent vectors become
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invalid. This means we have to recompute all latent vectors every iteration, which is

intractable. Each iteration is O (n), and each epoch then is O
(
n2

)
, where n is the number

of training data instances (could be on the order of millions). We have to look for other

methods. That takes us to evidence lower bound (ELBO) types of approaches.

14.7.6 ELBO and VAEs

Wedo not know the true probability distribution p
(
®z
��®x) . Let’s try to learn an approximate

probability distribution q
(
®z
��®x) that is as close as possible to p (

®z
��®x) . In other words, we

want to minimize the KL divergence between the two (KL divergence was introduced in

section 6.4). This KL divergence is

KLD(q , p) =
∫

®z∈D

q
(
®z
��®x) ln (

q
(
®z
��®x)

p
(
®z
��®x)

)
d®z

We can expand this as

KLD(q , p) =
∫

®z∈D

q
(
®z
��®x) ln (

q
(
®z
��®x)

p
(
®z
��®x)

)
d®z

=

∫
®z∈D

q
(
®z
��®x) ln (

q
(
®z
��®x) ) d®z − ∫

®z∈D

q
(
®z
��®x) ln (

p
(
®z
��®x) ) d®z

=

∫
®z∈D

q
(
®z
��®x) ln (

q
(
®z
��®x) ) d®z − ∫

®z∈D

q
(
®z
��®x) ln (

p
(
®z, ®x

) )
d®z +

∫
®z∈D

q
(
®z
��®x) ln (

p
(
®x
) )
d®z

=

−Hq (negative of entropy)︷                           ︸︸                           ︷∫
®z∈D

q
(
®z
��®x) ln (

q
(
®z
��®x) ) d®z −

Eq (ln (p ( ®x ,®z) ) )︷                            ︸︸                            ︷∫
®z∈D

q
(
®z
��®x) ln (

p
(
®z, ®x

) )
d®z + ln

(
p
(
®x
) ) =1︷           ︸︸           ︷∫
®z∈D

q
(
®z
��®x) d®z

=−Hq −Eq
(
ln

(
p
(
®x , ®z

) ) )
+ ln

(
p
(
®x
) )

where D is the domain of ®z: that is, the latent space, Hq is the entropy of the proba-

bility distribution (entropy was introduced in section 6.2), and Eq
(
ln

(
p
(
®x , ®z

) ) )
is the

expected value of ln
(
p
(
®x , ®z

) )
under the probability density q

(
®z
��®x) . Rearranging terms,

we get

KLD(q , p) +Hq +Eq
(
ln

(
p
(
®x , ®z

) ) )
=

constant︷     ︸︸     ︷
ln

(
p
(
®x
) )

where the right-hand side is constant because it is a property of the data and cannot be

adjusted during optimization. Defining the evidence lower bound (ELBO) as

ELBO =Hq +Eq
(
ln

(
p
(
®x , ®z

) ) )
we get

KLD(q , p) +ELBO = constant
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So, minimizing the KL divergence between p
(
®z
��®x) and its approximation q

(
®z
��®x) is equiv-

alent to maximizing the ELBO. We soon see that this leads to a technique for optimizing

variational autoencoders.

SIGNIFICANCE OF THE NAME ELBO
Why do we call it evidence lower bound? Well, the answer is hidden in the relation

KLD(q , p) +ELBO = ln
(
p
(
®x
) )
. The right-hand side is the evidence log-likelihood. Re-

member, KL divergence is always non-negative. So, the lowest value of ln
(
p
(
®x
) )
hap-

pens when KL divergence is zero when ln
(
p
(
®x
) )
=ELBO. This means the evidence

log-likelihood cannot be lower than the ELBO value. Thus the ELBO is the lower bound

of the evidence log-likelihood; in short, it is the evidence lower bound.

PHYSICAL SIGNIFICANCE OF THE ELBO
Let’s look at the physical significance of ELBO maximization:

ELBO =Hq +Eq
(
ln

(
p
(
®x , ®z

) ) )
The first term is entropy. As we saw in section 6.2, this is a measure of the diffuseness of

the distribution. If the points are evenly spread out in the distribution—the probability

density is flat with no high peak—the entropy is high. When the distribution has few

tall peaks and low values elsewhere, entropy is low (remember, for a probability density,

having tall peaks implies low values elsewhere since the total volume under the function

is constant: one). Thus, maximizing the ELBO means we are looking for a diffuse

distribution q
(
®z
��®x) . This, in turn, encourages smoothness in the latent space since we

are effectively saying an input point ®x can map to any point around the mean ®̀
(
®x
)
(as

emitted by the encoder) with almost equal high probability. Note that this fights a bit

with the notion that each input should map to a unique point in the latent space. The

solution tries to optimize between these conflicting requirements.

The other term—expectation of the log of joint density p
(
®x , ®z

)
under the probability

density q
(
®z
��®x)—effectively measures the overlap between the two. Maximizing it is

equivalent to saying q
(
®z
��®x) must be high where p

(
®x , ®z

)
is high. This seems intuitively

true. The joint density p
(
®x , ®z

)
= p

(
®z
��®x) p (

®z
)
. It is high where both the posterior p

(
®z
��®x)

and prior p
(
®z
)
are high. If q

(
®z
��®x) approximates the posterior, it should be high where

the joint is high.

Let’s continue to explore the ELBO. More physical significances will emerge along

with an algorithm for VAE optimization:

ELBO =Hq +Eq
(
ln

(
p
(
®x , ®z

) ) )
=−

∫
®z∈D

q
(
®z
��®x) ln (

q
(
®z
��®x) ) d®z + ∫

®z∈D

q
(
®z
��®x) ln (

p
(
®z, ®x

) )
d®z

=−
∫

®z∈D

q
(
®z
��®x) ln (

q
(
®z
��®x) ) d®z + ∫

®z∈D

q
(
®z
��®x) ln (

p
(
®x
��®z) p (

®z
) )
d®z

=−
∫

®z∈D

q
(
®z
��®x) ln (

q
(
®z
��®x) ) d®z + ∫

®z∈D

q
(
®z
��®x) ln (

p
(
®x
��®z) ) d®z + ∫

®z∈D

q
(
®z
��®x) ln (

p
(
®z
) )
d®z
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Rearranging terms and simplifying

ELBO =

Eq (ln (p ( ®x |®z) ) )︷                           ︸︸                           ︷∫
®z∈D

q
(
®z
��®x) ln (

p
(
®x
��®z) ) d®z −

KLD (q (®z | ®x) ,p (®z) )︷                            ︸︸                            ︷∫
®z∈D

q
(
®z
��®x) ln (

q
(
®z
��®x)

p
(
®z
) )

d®z

ELBO =Eq
(
ln

(
p
(
®x
��®z) ) ) −KLD (

q
(
®z
��®x) , p (

®z
) )

This last expression yields more physical interpretation and leads to the VAE algorithm.

Let’s examine the two terms in the final ELBO expression in detail. The first term is

Eq
(
ln

(
p
(
®x
��®z) ) ) . This is high when q

(
®z
��®x) and p (

®x
��®z) are both high at the same ®z values.

For a given ®x, q
(
®z
��®x) is high at those ®z values that are likely encoder outputs (that is,

latent representations) of input ®x. High p
(
®x
��®z) at these same ®z locations implies a high

probability of decoding back to the same ®x value from those ®z locations. Thus, this term
basically says if ®x encodes to ®z with a high probability, then ®z should decode back to ®x
with a high probability, too. Stated differently, a round trip from input to latent space

back to input space should not take us far from the original input. In figure 14.7, this

means the input point marked ®x lies close to the output point marked ®̃x. In other words,

minimizing reconstruction loss leads to ELBO maximization.

Now consider the second term. It comes with a minus sign. Maximizing this is equiva-

lent to minimizing the KL divergence between q
(
®z
��®x) and p (

®z
)
. This is the regularizing

term. Viewed in another way, this is the term through which we inject our belief about

the basic organization of the latent space into the system. Remember that the KL diver-

gence KLD
(
q
(
®z
��®x) , p (

®z
) )
sees very little contribution from the small values of q

(
®z
��®x) .

It is dominated by the large values of q
(
®z
��®x) . In terms of figure 14.7, minimizing this

KL divergence essentially ensures that most of the hollow circles fall on an area highly

populated with filled circles.

Thus, overall, maximization of ELBO is equivalent to minimizing reconstruction

loss with regularization in the form of minimizing KL divergence from a specific prior

distribution. This is what we do in VAEs. In every iteration, we minimize the reconstruc-

tion loss (as in ordinary AEs) and also minimize divergence from a known (or guessed)

prior. Note that this does not require us to encode all training inputs per iteration.

The approach is incremental—one input or input batch at a time—like any other neural

network optimization. Also, although we started from finding an approximation to

p
(
®z
��®x) , the final expression does not have that anywhere. There is only the prior p

(
®z
)

for which we can use some suitable fixed distribution.

14.7.7 Choice of prior: Zero-mean, unit-covariance Gaussian

The popular choice for the known prior is a zero-mean, unit-covariance matrix Gaussian,

N
(
®0, I

)
, where I is the d × d identity matrix (d is the dimensionality of the latent space),

®0 is d × 1 vector of all zeros. Note that minimizing the KL divergence from N
(
®0, I

)
is

equivalent to restricting most of the mass within the unit ball (a hypersphere with its
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center at the origin and radius 1). In other words, this KL divergence term restrains

the latent vectors from spreading over the <d and remains mostly within the unit

ball. Remember that a compact set of latent vectors translates in a sense to the simplest

(minimum descriptor length) representations for the input vectors: that is, a regularized

latent space (section 14.6).

KL divergence from a Gaussian has a closed-form expression that we derive in sec-

tion 6.4.1. We first repeat equation 6.14 for KL divergence between two Gaussians

and then obtain the expression for the special case where one of the Gaussians is a

zero-mean, unit-covariance Gaussian:

D (q , p) = 1

2

(
tr

(
�−1
p �q

)
+

(
®̀p − ®̀q

)T �−1
p

(
®̀p − ®̀q

)
− d + log

(det�p
det�q

))
(14.1)

where the operator tr denotes the trace of a matrix (sum of diagonal elements) and

operator det denotes the determinant. By assumption, p
(
®z
)
=N

(
®0, I

)
: that is, ®̀p = ®0

and �p = I. Thus,

D (q , p) = 1

2

(
tr

(
�q

)
+ ®̀Tq I ®̀q − d − log

(
det�q

) )
At this point, we introduce another simplifying assumption: that the covariance matrix �q
is a diagonal matrix. This means the matrix can be expressed compactly as

�q = ®fq

where ®fq contains the elements of the main diagonal and we are not redundantly

expressing the zeros in the off-diagonal elements. Note that this is not an outlandish

assumption to make. We are approximating p
(
®z
��®x) with a Gaussian q

(
®z
��®x) whose axes

are uncorrelated.

Because of this assumption,

Tr
(
�q

)
=

d∑
i=1

®f2
q [i]

log
(
det�q

)
=

d∑
i=1

log
(
®f2
q [i]

)
D (q , p) = 1

2

(
d∑
i=1

®f2
q [i] + ‖ ®̀q ‖2 −

d∑
i=1

log
(
®f2
q [i]

)
a − d

)
=
1

2

(
‖ ®̀q ‖2 +

d∑
i=1

(
®f2
q [i] − 2log

(
®fq [i]

) )
− d

)
=
1

2

(
d∑
i=1

(
®̀2q [i] + ®f2

q [i] − 2log
(
®fq [i]

)
− 1

))
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It is easy to see the expression
(
®f2
q [i] − 2log

(
®fq [i]

) )
reaches aminimumwhen ®fq [i] = 1.

Thus, overall, KL divergence with the zero-mean, unit-covariance Gaussian is minimized

when the mean is at the origin and the variances are all ones. This is equivalent to

minimizing the spread of the latent vectors outside the ball of unit radius centered on

the origin.

An alternative choice for the prior is a Gaussian mixture with as many components

as the known number of classes. We do not discuss that here.

14.7.8 Reparameterization trick

We have avoided talking about one nasty problem so far. We said that in VAEs, the

encoder emits the mean and variance of the probability density function p
(
®z
��®x) from

which we sample the encoder output. There is a problem, however. The encoder-decoder

pair are neural networks that learn via backpropagation. That is based on differentiation.

Sampling is not differentiable. How do we deal with this?

We can use a neat trick: the so-called reparameterization trick. Let’s first explain it in

the univariate case. Sampling from a GaussianN (`, f) can be viewed as a combination

of the following two steps:

1 Take a random sample from x from N (0, 1). Note that there is no learnable

parameter here; it’s a sample from a constant density function.

2 Translate the sample (add `), and scale it (multiply by f).

This essentially takes the sampling part out of the path for backpropagation. The

encoder emits ` and f, which are differentiable entities that we learn. Sampling is done

separately from a constant density function.

The idea can be extended to a multivariate Gaussian. Sampling from N
(
®̀, �

)
can

be broken down into sampling from N
(
®0, I

)
and scaling the vector by multiplying by

the matrix � and translating by ®̀. Thus, we have a multivariate encoder that can learn

via backpropagation.

NOTE Fully functional code for VAEs, executable via Jupyter Notebook, can be

found at http://mng.bz/5QYD.

Listing 14.5 PyTorch: Reparameterization trick

def reparameterize(mu, log_var):
std = torch.exp(0.5 * log_var)

Converts the log variance
to the standard deviation

eps = torch.randn_like(std) Samples from N

(

®0, I
)

return mu + eps * std Scales by multiplying by � and translates by ®-

http://mng.bz/5QYD
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Listing 14.6 PyTorch: VAE

from torch import nn
nz = 10
input_image_size = (1, 32, 32) Input image size in (c, h, w) format
conv_encoder = nn.Sequential(

nn.Conv2d(in_channels, 32, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2), Reduces to a (32, 16, 16)-sized tensor
nn.Conv2d(32, 128, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2), Reduces to a (128, 8, 8)-sized tensor
nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2), Reduces to a (256, 4, 4)-sized tensor

nn.Flatten() Flattens to a 4096-sized tensor
)

mu_fc = nn.Linear(4096, nz) Reduces a 4096-sized tensor to an nz-sized ` tensor
logvar_fc = nn.Linear(4096, nz) Reduces a 4096-sized tensor

to an nz-sized log (22) tensor

Listing 14.7 PyTorch: VAE decoder

from torch import nn
decoder = nn.Sequential(

nn.ConvTranspose2d(self.nz, out_channels=256,
kernel_size=4, stride=1,
padding=0, bias=False), Converts (nz, 1, 1) to

a (256, 4, 4)-sized tensornn.BatchNorm2d(256),
nn.ReLU(True),
nn.ConvTranspose2d(256, 128, kernel_size=2,
stride=2, padding=0, bias=False), Increases to a

(128, 8, 8)-sized tensornn.BatchNorm2d(128),
nn.ReLU(True),
nn.ConvTranspose2d(128, 32, kernel_size=2,
stride=2, padding=0, bias=False), Increases to a

(32, 16, 16)-sized tensornn.BatchNorm2d(32),
nn.ReLU(True),
nn.ConvTranspose2d(32, in_channels, kernel_size=2,
stride=2, padding=0, bias=False), Increases to a

(1, 32, 32)-sized tensornn.Sigmoid()
)
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Listing 14.8 PyTorch: VAE loss

recon_loss = F.binary_cross_entropy(Xr, X,
reduction=''sum'')

Binary cross-entropy loss

kld_loss = -0.5 * torch.sum(1 + log_var
- mu.pow(2) - log_var.exp())

KLD
(

q
(

®z
�

� ®x
)

, p
(

®z
))

where ®z∼N

(

®0, I
)

total_loss = recon_loss + beta * kld_loss Computes the total loss

Listing 14.9 PyTorch: VAE training

conv_out = conv_encoder(X)
Passes the input image through
the convolutional encoder

mu = mu_fc(conv_out) Computes -, an nz-dimensional tensor

log_var = logvar_fc(conv_out) Computes log (22) , an nz-dimensional tensor

z = reparameterize(mu, log_var) Samples z via the reparameterization trick

Xr = self.decoder(z) Reconstructs the image using z via the decoder

total_loss = recon_loss + beta * kld_loss Computes the total loss

AUTOENCODERS VS. VAES
Let’s revisit the familiar MNIST digits data set. It contains a training set of 60,000 images

and a test set of 10,000 images. Each image is 28 × 28 in size and contains a center crop

of a single digit.

Earlier, we used this data set for classification. Here, we use it an unsupervisedmanner:

we ignore the labels during training/testing. We train both the autoencoder and the

VAE end to end on this data set and look at the results (see figures 14.9 and 14.10).

Reconstructed images

(a) Autoencoder-
reconstructed images

Reconstructed images

(b) VAE-reconstructed
images

Figure 14.9 Comparing the reconstructed
images on the test set for the autoen-
coder and VAE trained end to end. On a
simple data set like MNIST, both the
autoencoder and VAE do a pretty good job
of reconstructing images from the test set.
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(a) Autoencoder latent space (nz=2)
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(b) VAE latent space (nz=2)

Figure 14.10 The difference between the learned latent spaces of the autoencoder and VAE. We train
an autoencoder and a VAE with nz= 2 on MNIST and plot the latent space for the test set. Autoencoders
only minimize the reconstruction loss, so any latent space is equally acceptable as long as the recon-
struction loss is low. As expected, the learned latent space is sparse and has a very high spread. VAEs, in
contrast, minimize reconstruction loss with regularization. This is done by minimizing the KL divergence

between the learned latent space and a known prior distribution N

(

®0, I
)

. Adding this regularization term

ensures that the latent space is constrained within a unit ball. This can be seen in figure 14.10b, where
the learned latent space is much more compact.

The autoencoder is trained to minimize the MSE between the input image and the

reconstructed image. There is no other restriction on the latent space.

The VAE is trained to maximize the ELBO. As we saw in the previous section, we can

maximize the ELBO by minimizing the reconstruction loss with regularization in the

form of minimizing KL divergence from a specific prior distribution: N
(
®0, I

)
in the

case of VAE. So the network is incentivized to ensure that the latent space learned is

constrained within the unit ball.

One minor implementation detail to note is that we use binary cross-entropy instead

of MSE when training VAEs. In practice, this leads to better convergence.

Summary
In latent-space modeling, we map input data points onto a lower-dimensional

latent space. The latent space is typically a manifold consisting of points that have a

property of interest in common. The property of interest can be membership to a

specific class, such as all paragraphs written by Shakespeare. The latent vectors are

simpler, more compact representations of the input data in which only information

related to the property of interest is retained and other information is eliminated.

In latent spacemodeling, all training data input satisfies the property of interest. For

instance, we can train a latent space model on paragraphs written by Shakespeare.

Then the learned manifold contains points corresponding to various Shakespeare
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like paragraphs. Points far away from the manifold are less Shakespeare-like. By

inspecting this distance, we can estimate the probability of a paragraph being

written by Shakespeare. By sampling the probability distribution, we may even be

able to emit pseudo-Shakespeare paragraphs.

Geometrically speaking, we project the input point onto the manifold. PCA per-

forms a special form of latent space modeling where the manifold is a best-fit

hyperplane for the training data.

Autoencoders can perform a much more powerful dimensionality reduction than

PCA. An autoencoder consists of an encoder (E), which maps the input data

point into the lower-dimensional space, and a decoder (D), which maps the lower-

dimensional representation back into the input space. It is trained to minimize

the reconstruction loss: that is, the distance between the input and reconstructed

(encoded, then decoded) vectors.

Variational autoencoders (VAEs) model latent spaces as probability distributions

to impose additional constraints (over and above reconstruction loss) so that we

can generate more regularized latent spaces.

– In VAEs, the encoder maps the input to a latent representation via a stochastic

process (rather than a deterministic one). It emits p
(
®z
��®x) as opposed to directly

emitting ®z. ®z is obtained by sampling p
(
®z
��®x) . The decoder maps a point in latent

space ®z back to the input space. It is also modeled as a probability distribution

p
(
®x
��®z) .

– The latent space learned by a VAE is much more compact and smoother (and

hence more desirable) than that learned by an autoencoder.



appendix

A.1 Dot product and cosine of the angle between two vectors
In section 2.5.6, we stated that the component of a vector ®a along another vector
®b is ®a · ®b = ®aT ®b. This is equivalent to ‖ ®a‖‖ ®b‖cos (\), where \ is the angle between the

vectors ®a and ®b.
In this section, we offer a proof of this for the two-dimensional case to deepen

your intuition about the geometry of dot products. From figure A.1b, we can see that

ax =‖®a‖cos (\ + q) ay =‖®a‖sin (\ + q)

bx =‖ ®b‖cos (q) by =‖ ®b‖sin (q)

which can be rewritten as

cos (\ + q) = ax
‖®a‖ sin (\ + q) =

ay
‖ ®a‖ (A.1)

cos (q) = bx

‖ ®b‖
sin (q) =

by

‖ ®b‖
(A.2)

Using well-known trigonometric identities in equation A.1, we get

cos (\ + q) = cosqcos\ − sinqsin\ =
ax
‖®a‖

sin (\ + q) = sinqcos\ + cosqsin\ =
ay
‖®a‖

497
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Y

X
(a) Components of a 2D vector along coordinate axes.
Note that ‖ ®a‖ is the length of hypotenuse.

Y

X
(b) Dot product as a component of one vector along

another ®a · ®b = ®aT ®b = axbx + ayby = ‖ ®a‖ ‖ ®b ‖cos (\ ) .
Figure A.1 Vector components and dot product

Substituting for cosq and sinq from equation A.2, we have a system of simultaneous

linear equations with cos\ and sin\ as unknowns:

bx

‖ ®b‖
cos\ −

by

‖ ®b‖
sin\ =

ax
‖®a‖

by

‖ ®b‖
cos\ + bx

‖ ®b‖
sin\ =

ay
‖®a‖

This system of simultaneous linear equations can be compactly written in matrix-vector

form 
bx
‖ ®b‖

− by
‖ ®b‖

by
‖ ®b‖

bx
‖ ®b‖



cos\

sin\

 =

ax
‖ ®a‖
ay
‖ ®a‖


which can be simplified to

1

‖ ®b‖


bx −by
by bx



cos\

sin\

 =
1

‖®a‖


ax

ay


This equation can be solved to yield

cos\ =
axbx + ayby
‖ ®a‖‖ ®b‖

sin\ =
aybx − axby
‖®a‖‖ ®b‖

So, ‖®a‖‖ ®b‖cos\ = axbx + ayby , which was to be proved.
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A.2 Determinants
Determinant computation is tedious and numerically unstable if done naively. You

should never compute one by hand—all linear algebra software packages provide

routines to do this. Hence we only describe the algorithm to compute the determinant

of a 2× 2 matrix. This determinant can be computed as

det(A) = a11a22 − a12a21

The inverse is

A−1 =
1

det(A)


a22 −a12
−a21 a11


A.3 Computing the variance of a Gaussian distribution

From the integral form of equation 5.13, we have

vargaussian (x) =
∞∫

x=−∞

(x − `)2 p (x) dx

Substituting equation 5.22, p (x) = 1√
2cf

e
−(x−`)2

2f2 in that, we get

vargaussian (x) =
∞∫

x=−∞

(x − `)2 1
√
2cf

e
−(x−`)2

2f2 dx

Substituting y = (x−`)√
2f

, which implies dy = dx√
2f

and 2f2y2 = (x − `)2, we get

vargaussian (x) =
2f2

√
c

∞∫
−∞

y2e−y
2

dy =
2f2

√
c

∞∫
−∞

y
(
ye−y

2
)
dy

Using integration by parts,

∞∫
−∞

y
(
ye−y

2
)
dy =

⌈
y
(∫

ye−y
2

dy
)⌉∞

−∞
−

∞∫
−∞

dy
dy

(∫
ye−y

2

)
dy

Now, substituting v = y2, which implies dv2 = ydy,∫
ye−y

2

dy =
∫
e−y

2 (ydy) = 1

2

∫
e−vdv =− e

−v

2
=− e

−y2

2

Hence, ⌈
y
(∫

ye−y
2

dy
)⌉∞

−∞
=

⌈
y

(
e−y

2

2

)⌉∞
−∞

=
1

2

(
lim
y→∞

y

ey2
− lim
y→−∞

y

ey2

)
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Such limits can be evaluated using L’Hospital’s rule:

lim
y→∞

y

ey2
= lim
y→∞

dy
dy

d
(
ey2

)
dy

= lim
y→∞

1

2yey2
= 0

lim
y→−∞

y

ey2
= lim
y→−∞

dy
dy

d
(
ey2

)
dy

= lim
y→−∞

1

2yey2
= 0

In both cases, the limit is zero because ey
2
goes to positive infinity regardless of whether

y goes to positive or negative infinity. Hence the denominator goes to infinity in both

cases, causing the fraction to go to zero.

Thus the first term in the computation of vargaussian (x) becomes

⌈
y
(∫
ye−y

2
dy

)⌉∞
−∞

=

0− 0= 0. The second term

∞∫
−∞

dy
dy

(∫
ye−y

2

)
dy =

1

2

∞∫
−∞

e−y
2

dy

This last integral is a special one. To evaluate it, we need to go from one to two

dimensions—this may be one of the very few cases where making a problem more

complex helps. It is worth examining, so let’s look at it. Let

I =

∞∫
−∞

e−x
2

dx

Since the variable of integration does not matter, we can also write

I =

∞∫
−∞

e−y
2

dy

Let’s multiply them together:

I2 =

∞∫
−∞

e−x
2

dx

∞∫
−∞

e−y
2

dy =

∞∫
−∞

∞∫
−∞

e−x
2

e−y
2

dxdy =

∞∫
−∞

∞∫
−∞

e−
(
x2+y2

)
dxdy

This double integral’s domain (aka region of integration) is the infinite XY plane, where

x and y both range from −∞ to ∞. This same plane can also be viewed as an infinite-

radius circle (an infinite-radius circle is the same as a rectangle with infinite-length

sides!). Consequently, we can switch to polar coordinates, using the transformation

x = rcos (\)
y = rcos (\)
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which implies

x2 + y2 = r2

dxdy = rdrd\

I2 =

r=∞∫
r=0

\=2c∫
\=0

e−r
2

r dr d\ =

r=∞∫
r=0

e−r
2

r dr

\=2c∫
\=0

d\ = 2c

r=∞∫
r=0

e−r
2

r dr

Substituting v = r2, which implies dv = 2rdr , we get

I2 = c

∞∫
0

e−vdv = c

⌈
−e−v

⌉v=∞
v=0

= c⇒ I =
√
c

Thus, the second term of vargaussian (x) evaluates to f2
√
c

√
c

2 . We have already shown that

the first term evaluates to zero. So, we get

vargaussian (x) =f2

Thus the f in the probability density function p (x) = 1√
2cf

e
−(x−`)2

2f2 is the standard devia-

tion (square root of the variance), and the ` is the expected value.

A.4 Two theorems in statistics
In this section, we study two important inequalities in multivariate statistics: Jensen’s

inequality and the log-sum inequality.

A.4.1 Jensen’s Inequality

Consider a random variable X . For now, let’s think of these as discrete variables,

although the results we will come up with apply equally well to continuous variables.

Thus, let the random variable take the discrete values ®x1, ®x2, · · · , ®xn , with probabilities

p
(
®x1

)
, p

(
®x2

)
, · · · , p

(
®xn

)
.

Now suppose g
(
®x
)
is a convex function whose domain includes these random vari-

ables. From equation 3.11, section 3.7, we know that given any convex function g
(
®x
)
, for

an arbitrary set of its input values ®xi , i = 1 · · · n and a set of weights Ui i = 1 · · · n satisfying∑n
i=1 Ui = 1, the weighted sum of the function outputs is greater than or equal to the

function’s output on the weighted sum of inputs: that is,
∑n
i=1 Ui g

(
®xi
)
≥ g

(∑n
i=1 Ui ®xi

)
.

In particular, let’s choose the set of all random variables as input values and their

probabilities as weights (Ui = p
(
®xi
)
). We can do this because probabilities sum to 1,

exactly as weights are supposed to do. This leads to

n∑
i=1

p (xi ) g
(
®xi
)
≥ g

(
n∑
i=1

p (xi ) ®xi

)
=⇒ E (g (X)) ≥ g (E (X)) (A.3)
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Equation A.3 is Jensen’s inequality. A good mnemonic for it is: for a convex function, the

expected value of the function is greater than or equal to the function of expected value. It holds

for continuous random variables, too.

A.4.2 Log sum inequality

Suppose we have two sets of positive numbers a1, a2, · · · , an and b1, b2, · · · , bn. Let
a =

∑n
i=1 ai and b =

∑n
i=1 bi . Given these, the log sum inequality theorem says,

n∑
i=1

ai log
(
ai
bi

)
≥ alog

( a
b

)
(A.4)

To see why this is true, let’s carve out an informal proof. First let’s define g (x) = xlogx.
This is a convex function because

dg
dx

=
dx
dx
logx + x d (logx)

dx
= logx + x 1

x
= logx + 1 =⇒ d2g

dx2
=
1

x
> 0 (for positive x)

Now, with that definition of g,
n∑
i=1

ai log
ai
bi

=

n∑
i=1

bi g
(
ai
bi

)
= b

n∑
i=1

bi
b
g

(
ai
bi

)
This last expression is a weighted sum of convex function outputs with the weights

summing to 1 (since
∑n
i=1

bi
b = 1). So, we can use equation 3.11, section 3.7. Then we get

b
n∑
i=1

bi
b
g

(
ai
bi

)
≥ b g

(
n∑
i=1

bi
b
ai
bi

)
= b g

(
n∑
i=1

ai
b

)
= b g

(∑n
i=1 ai
b

)
= b g

( a
b

)
= a log

( a
b

)
A.5 Gamma functions and distribution

To understand the gamma distribution, we need to understand the basic gamma func-

tion. First let’s do an overview of the gamma function.

A.5.1 Gamma function

The gamma function is in some sense a generalization of the factorial. The factorial

function is only defined for integers and is characterized by the basic equation

n!= n (n − 1)!

The gamma function is defined by

Γ (U) =
∫ ∞

x=0
x (U−1) e−xdx (A.5)

Applying integration by parts to equation A.5, we get

Γ (U) =
[
x (U−1) (−e−x)

]∞
0
−

∫ ∞

x=0
(U − 1) x (U−2) (−e−x) dx

=

[
x (U−1) (−e−x)

]∞
0
+
∫ ∞

x=0
(U − 1) x (U−2) (e−x) dx
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The first term is zero. This is because

lim
x−→0

x (U−1)

ex
= 0

lim
x−→∞

x (U−1)

ex
= 0 by repeated application of L’Hospital’s rule

Hence,

Γ (U) =
∫ ∞

x=0
(U − 1) x (U−2) (e−x) dx = (U − 1) Γ (U − 1)

Thus, for integer values U = n, Γ (n) = n!. There are other equivalent definitions of the
gamma function, but we will not discuss them here. Instead, let’s talk about the gamma

distribution.

A.5.2 Gamma distribution

The probability density function for a random variable having a gamma distribution is a

function with two parameters U and V :

p (x |U , V ) = W (x; U , V ) = V U

Γ (U) x
(U−1) e− V x where U , V > 0, x ≥ 0 (A.6)

It is not hard to see that this is a proper probability density function:∫ ∞

x=0
p (x |U , V ) dx = 1

By substituting y = V x, we get

p (x |U , V ) = V U

Γ (U)

∫ y=∞

y=0

(
y
V

) (U−1)
e−y

dy
V

=

∫ ∞
y=0 y

(U−1) e−ydy

Γ (U) =
Γ (U)
Γ (U) = 1

If U = 1, the gamma distribution reduces to

p (x) = V

Γ (1) e
− V x = V e− V x ( it can be shown that Γ (1) = 1 )

which is graphed in figure A.2a at several values of V . The gamma distribution has two

terms xU−1 and e− V x that have somewhat opposite effects: the former increases with x,
while the latter deceases with x. At smaller values of x, the former wins, and the product

increases with x. But eventually, the exponential starts winning and pulls the product

downward asymptotically toward zero. Thus the gamma distribution has a peak. Larger

V results in taller peaks and a sharper decline toward zero. Larger U moves the peak

further to the right. The expected value is E (x) = U
V
, as illustrated in figure A.2.

The expected value of the gamma distribution E (x) = U
V
. This can be proved using a

little trick so cool that it is worth discussing for that reason alone:

E (x) =
∫ ∞

x=0
xp (x |U , V ) dx = V U

Γ (U)

∫ ∞

x=0
xx (U−1) e− V xdx =

V U

Γ (U)

∫ ∞

x=0
xUe− V xdx
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Gamma distribution

(a) Gamma distribution: U = 1, various V s

Gamma distribution

(b) Gamma distribution: V = 1, various Us

Gamma distribution

(c) Gamma distribution: U = 2, various V s

Gamma distribution

(d) Gamma distribution: V = 2, various Us

Figure A.2 Graph of a gamma distribution for various values of " and #. Larger # results in taller peaks
and a sharper decline toward zero. Larger " moves the peak to the right. The expected value is E (x) = "

# .

But the gamma distribution

p (x |U + 1, V ) = V U+1

Γ (U + 1) x
(U ) e− V x

or

x (U ) e− V x =
Γ (U + 1)
V U+1 p (x |U + 1, V )

Using this,

E (x) = V U

Γ (U)
Γ (U + 1)
VU+1

=1︷                       ︸︸                       ︷∫ ∞

x=0
p (x |U + 1, V ) dx = VU

Γ (U)
UΓ (U)
V VU

=
U

V
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MAXIMUM OF A GAMMA DISTRIBUTION
To maximize the gamma probability density function p (_ |X) = _ (Un−1) e− Vn_ for a ran-

dom variable _ , we take the derivative and equate to zero:

d
d_

(
_U−1e− V_

)
= 0 =⇒ (U − 1) _U−1e− V_ + _U−1 (−V ) e− V_ = 0

_ =
U − 1

V





notations

The symbol ℝ stands for the field (set) of real numbers.

The symbol ∈ should be read as “belongs to the set.”

Vectors are denoted via overhead arrows: for example, ®x.
®x ∈ℝn indicates that ®x is a vector with n elements, each of which is a real

number.

Matrices are denoted via uppercase symbols: for example, A. Sometimes Am,n
is used to indicate a matrix with m rows and n columns.

A ∈ℝm×n indicates that A is a matrix with m rows and n columns, each of

whose elements is a real number.

Vector and matrix transformations are indicated via superscriptT : for exam-

ple, ®xT or AT .
Individual elements of a vector or matrix are denoted via subscript: for exam-

ple, Ai j or ®xi .〈
®x , ®y

〉
denotes the inner product of the two vectors ®x and ®y. For finite-

dimensional vectors, this is equivalent to ®xT ®y.
l̂ denotes a unit vector: ‖ l̂ ‖ = 1.

The symbol ∃ should be read as “there exists.”

The symbol ∀ should be read as “for all.”

507





index

A

AdaGrad algorithm 326–327

Adam optimizer algorithm 328–329

AlexNet 391

argmaxonehot function 307–308

arrays 53

asymptotically approaching zero 174

autoencoders 469, 478–481

autoencoder decoder, code listing

480–481

autoencoder encoder, code listing 480

autoencoder training, code listing 481

decoder, definition of 478

definition of 305, 377, 478

embedding an image 305

encoder and decoder neural networks,

discussion of 479–480

encoder, definition of 478

hyperparameter, definition of 478

PCA and 481

reconstruction loss, definition of 478

representation learning, definition of 478

schematic representation of an autoencoder

479

as unsupervised 479

See also variational autoencoders (VAEs)

average pooling, definition of 381

B

backpropagation algorithm 286–294

algorithm for training a neural network

294–295

backpropagation algorithm on an arbitrary

network of linear layers 290–294

definition of 286

evaluating on a simple MLP with a single

neuron per layer 286

forward and backward propagation, code

listing 289–290

forward pass, definition of 289

Hadamard product, definition of 292

performing min-max normalization in

PyTorch, code listing 296

training a neural network in PyTorch 295–298

using an optimizer to update weights 298

Bayes’ theorem 194, 196–198, 448

Bernoulli distribution 188–189

binary classifiers 83, 88

binomial distribution 180–184

bounding box, definition of 385

C

categorical variables, definition of 242

centroid, definition of 163

509
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classification loss, definition of 423

classifiers

binary classifiers 88

charted examples of good and bad decision

boundaries 250

charts of cat-brain threat-model decision

boundaries 247–249

as decision boundaries 84–85, 246–247

decision boundary as a hypersurface 249

definition of 12, 245

estimating a decision boundary 251

feature space 246

forming mental pictures of hyperspaces with

3D analogs 249

geometric depiction of a classification problem

85

as a hypersurface 85

input space 246

modeling the classifier, definition of 86

continuous random variable 152

continuous variables, definition of 242

convex and nonconvex functions

convex curves and surfaces, three definitions

of 110–112

convexity and the Taylor series 112–113

examples of convex functions 113

introduction to 109–110

convolution

convolution layers 344, 380–381

convolution output size 356

description of 343–345

expressing convolution layers as matrix-vector

multiplications 344

one-dimensional 345–356

three-dimensional 368–374

transposed 374–379

two-dimensional 356–368

convolution, one-dimensional 345–356

1D edge detection, code listing 355

1D local averaging convolution, code listing

354–355

convolution output size 356

curve edge detection via 1D convolution

350–351

curve smoothing via 1D convolution 350

detecting edges as a way to understand images

351

directly invoking the convolution function,

code listing 356

edge, definition of 351

formula for generating a single output value in

1D convolution 349

graphical and algebraical view 345

how to visualize a 1D convolution 345

input, definition of 345

kernel, definition of 345

as matrix multiplication 351–354

output, definition of 345

padding, definition of 346–347

same (zero) padding 347, 352

setting the weights of a 1D kernel 354

stride, definition of 345–346

valid padding 347, 352

convolution, three-dimensional 368–374

3D convolution with custom weights, code

listing 373–374

diagrams illustrating the spatio-temporal view

of 3D convolution 370

generating a single output value in 3D

convolution 370

how a kernel extracts motion information

from video frames 371

how to visualize a 3D convolution 369

illustration of a 3D convolution motion

detector 372

video as a 3D entity extending over a

spatio-temporal volume 368

video motion detection via 3D convolution

370–371

convolution, transposed 374–379

2D convolution and its transpose 377

autoencoder, definition of 377

decoder, definition of 376

descriptor vector, definition of 375

embedding as an effective compression

technique 377

embedding, definition of 375

encoder, definition of 375

end-to-end learning, definition of 377

fractionally strided convolution

374–375

illustration of a 1D convolution and its

transpose 376

illustration of a 2D convolution and its

transpose 377

output size 377

upsampling using transpose convolutions,

code listing 378–379

why autoencoders need transposed

convolution 375
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convolution, two-dimensional 356–368

2D convolution as matrix multiplication

366–368

2D convolution with custom weights 363–365

2D edge detection, code listing 366

2D local averaging convolution, code listing

365–366

comparing Euclidean distance to Manhattan

distance 358

generating a single output value in 2D

convolution 361–362

graphical and algebraic view 356–358

how to visualize a 2D convolution 358

image edge detection via 2D convolution

362–363

image smoothing via 2D convolution 362

image, definition of 356–357

input, definition of 359

kernel, definition of 359

output, definition of 359

padding, definition of 361

same (zero) padding 361

stride, definition of 360–361

two-dimensional neighborhoods not preserved

by rasterization 358

valid padding 361

convolutional neural networks (CNNs)

AlexNet 391

benefits of neural networks with multiple

convolutional layers 388–391

bounding box, definition of 385

feature map, definition of 388

GoogLeNet 398

image classification, definition of 386

Inception_v1 architecture 397–401

LeNet architecture, components of 387–389

MNIST data set, sample images from 387

object detection, definition of 386

ResNet architecture 401–406

VGG (Visual Geometry Group) Net 391–397

covariance

covariance as the multivariate analog of

variance 165–167

covariance of a multivariate Gaussian

distribution 178–180

variance, covariance, and standard deviation

164–165

zero-mean, unit-covariance Gaussian for the

known prior 490–492

See also variance

cross-entropy loss

binary cross-entropy loss, code listing 305

definition of 303

Cybenko’s universal approximation theorem

261–262

D

data imbalance, definition of 310–311

decision making 2–4

decoder, definition of 376, 478

deep learning, overview of 1–17

deep neural networks, definition of 260

dependent events 157–159

descriptor vector, definition of 375

determinants 499

differentiable step-like functions 273–276

graph of the derivatives of 1D sigmoid and

tanh functions 276

Heaviside step function as not differentiable

273

sigmoid function and its properties 273–275

tanh function 275–276

dimensionality reduction, definition of 469

discriminative functions 252

document descriptor space 116–118

document retrieval problem 141–147

dot product and cosine of the angle between two

vectors 497–498

downsampling, definition of 381

dropout 336–339

E

eigenvalues and eigenvectors 62–65, 67–69,

72–73

encoder, definition of 375, 478

entropy 198–212

applying to continuous and multidimensional

random variables 201

chain rule of conditional entropy 212

charts of entropies of peaked and flat

distributions 202

charts of KLD between example distributions

211

computing the cross-entropy of a Gaussian,

code listing 202

computing the entropy of a Gaussian

distribution, code listing 204

computing the KLD, code listing 210

conditional entropy 210–212
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entropy (continued)

cross-entropy 204–207

definition of 200–201

entropy of Gaussians 203–204

examples of 199

geometrical intuition for entropy 201–203

Huffman encoding 200

Kullback–Leibler divergence (KLD) 207–210

prefix coding 200

quantifying the uncertainty associated with a

chancy event 199

variable bit-rate coding 200

epoch, definition of 302

error. See loss function (error)

evidence lower bound (ELBO) 488–490

expected value (mean) 162–163

expressive power 14, 16, 240

F

Fast R-CNN architecture 429

Faster R-CNN, high level architecture 414

feature space, definition of 10

first-order approximation 101

fixed point, definition of 231

focal loss 310–312

frequentist paradigm 151

Frobenius norms, definition of 122–123

Fully Bayes estimation 448–453

Bayes’ theorem 448–449

Bayesian estimation with unknown mean,

known variance, code listing 452–453

Bayesian estimation with unknown mean,

unknown variance, code listing 459

Bayesian estimation with unknown variance,

known mean, code listing 456

Bayesian inference 460–461

computing posterior probability using

Bayesian inference, code listing 461

conjugate priors 454

estimating precision 464–466

estimating the mean and precision parameters

457–458

estimating the precision parameter when the

mean is known 455– 456

Fully Bayesian inferencing 459–461

Gaussian, unknown mean, known precision

450–453

Gaussian, unknown precision, known mean

454

maximum a posteriori (MAP) estimation 448

maximum likelihood estimation 460

maximum likelihood parameter estimation

(MLE) 448

MLE for Gaussian parameter values, recap of

449–450

multivariate Bayesian inferencing, unknown

mean 463

multivariate Gaussian, unknown mean, known

precision 461–463

multivariate, unknown precision, known mean

463–466

normal-gamma distribution 457–459

parameter estimation and belief injection

448–449

prior probability density 448

Wishart distribution 454, 463–464

fully connected layer 277

function family 86

function-fitting problem 8–9

G

Gamma distribution 454–455, 503–505

Gamma function, overview of 502–503

Gaussian (normal) distribution 173–180

asymptotically approaching zero 174

bell-shaped curve 174

Bernoulli distribution 188–189

binomial distribution 180–184

categorical distribution and one-hot vectors

189–190

chart of a univariate Gaussian random

probability density function 177

computing the variance of 499–501

covariance of a multivariate Gaussian

distribution 178–180

expected value of a Bernoulli distribution

188–189

expected value of a binomial distribution

184–185

expected value of a categorical distribution

190–191

expected value of a Gaussian distribution

176–177

Gaussian probability density function

174

geometry of sampled point clouds 180

log probability of a Bernoulli distribution,

code listing 188
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log probability of a binomial distribution, code

listing 183–184

log probability of a multinomial distribution,

code listing 186

log probability of a univariate normal

distribution, code listing 175

mean and variance of a Bernoulli distribution,

code listing 189

mean and variance of a multinomial

distribution, code listing 187–188

mean and variance of a multivariate normal

distribution, code listing 179

mean and variance of a univariate Gaussian,

code listing 178

multinomial distribution 185–187

multivariate Gaussian 175–176

multivariate Gaussian point clouds and

hyper-ellipses 180

outlier values 174

probability of a categorical distribution 190

variance of a Bernoulli distribution 189

variance of a binomial distribution 185

Gaussian mixture models (GMM) 215,

223–237

algorithm of GMM fit (MLE of GMM

parameters) 236

charts of two-dimensional GMMs with circular

and elliptical bases 226

classification via GMM 230

fixed point, definition of 231

Gaussian mixture model distribution 229

GMM fit, code listing 236–237

latent variables for class selection 227–229

maximum likelihood estimation of GMM

parameters (GMM fit) 230–237

probability density function of the GMM

223–227

progression of maximum likelihood estimation

for GMM parameters 232

generative functions 252

generative modeling, definition of 447–448

global minimum 303

GoogLeNet 398

gradients 95–99

becoming zero at the optimum 96

gradient example in 3D 98–99

gradient vectors and minimizing loss functions

89–90

introduction to 90–91

as the vector of all the partial derivatives 95

ground truth 6, 241

GT vector 301, 303

H

Hadamard product, definition of 292

Hausdorff property, definition of 441–442

Heaviside step function 252–253, 273

Hessian matrix 101, 284

hidden layers 260

hinge loss function 312–314

histograms 152–153

homeomorphism 443–445

Huffman encoding 200

human labeling (human curation), definition

of 6

hyperparameter, definition of 478

hyperplanes 85, 253–254

I

image 83–84, 386

Inception_v1 architecture 397–401

description of its network-in-network paradigm

397–399

diagram of 398

GoogLeNet 398

implementing a dimensionality reduced

Inception block 400–401

implementing a naive Inception block, code

listing 399

inferencing 4, 6, 10, 241

input variables 242

inputs, normalizing 7

iterative training 8–9

J

Jensen’s inequality theorem 501–502

joint probability, definition of 155

Jupyter Notebook 18–19, 22

K

Kullback–Leibler divergence (KLD) 207–210

L

L’Hospital’s rule 500

L1 regularization 333–334

L2 regularization 332–334
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labeling 241, 273

latent or hidden variables/parameters 216, 228

latent semantic analysis (LSA) 118, 142–147

latent spaces 468–496

comparing discriminative and generative

models 471– 472

considering the space of natural and digital

images 469

dimensionality reduction 469, 475

dimensionality reduction using PCA, code

listing 477–478

discriminative classifiers, definition

of 471

generative classifiers 471–472

generative models, properties of 471–472

geometric view of 469–471

illustration of good and bad discriminative

classifiers 472

latent space modeling briefly explained

470–471

latent vector, definition of 468

latent-space modeling, benefits and

applications 472–473

linear latent space manifolds and PCA 474–478

manifold as capturing the essence of a

common property 469

mapping from a 2D input space to a 1D latent

space 482

observed vector, definition of 468

PCA as a special case of latent space

representation 471

regularization as creating a more compact

latent space 483

smoothness, continuity, and regularization of

481–483

steps involved in a PCA-based dimensionality

reduction 475–477

two examples of latent subspaces, with planar

and curved manifolds 470

learning rate (LR) 285, 315

LeNet architecture 387–389

implementing LeNet for image classification

on MNIST, code listing 388–389

output feature map passed through two fully

connected (FC) layers 388

PyTorch Lightning 406–411

subsampling (pooling) layers 388

tanh activation layer 388

three convolutional layers of 5× 5 kernels

387–388

level contours 97

linear layers 277–281

algorithm for training a neural network

294–295

backpropagation algorithm 286–294

diagram of a complete multilayered neural

network 278

forward and backward propagation, code

listing 289–290

forward propagation of a single linear layer

280–281

forward propagation, code listing 281

fully connected layer 277

gradient descent and local minima 285–286

Hadamard product, definition of 292

Hessian matrix 284

learning rate 285

loss and its minimization 282–283

loss surface and gradient descent 283–286

as matrix-vector multiplication 277–280

mean squared error (MSE) function 282

MSE loss, code listing 283

never using test data for training 281

performing min-max normalization in

PyTorch, code listing 296

training a neural network in PyTorch

295–298

training and backpropagation 281–282

tunable hyperparameter 285

using an optimizer to update weights 298

linear vs. nonlinear models 12–14

local minimum 303

local response normalization (LRN) layers 391

local translation invariance, definition

of 381

logical functions 242–245

definition of 242

logical AND 243–244

logical NOT 244–245

logical OR 242–243

logical XOR 244–245

m-out-of-n trigger 244

multi-input logical AND 244

multi-input logical OR 244

log-sum inequality theorem 502

loss function (error)

autoencoders, definition of 305

binary cross-entropy loss for image and vector

mismatches 305–306

binary cross-entropy loss, code listing 305
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computing the gradient of the loss function

316

creating a custom neural network model, code

listing 318

creating a custom PyTorch data set, code

listing 317

cross-entropy loss, code listing 304

cross-entropy loss, definition of 303

data imbalance, definition of 310–311

definition of 89–91, 301

epoch, definition of 302

equation for describing a full neural network

301

focal loss 310–312

generating one training loop, code listing 319

global minimum 303

gradient vectors and minimizing loss functions

89–90

GT vector, definition of 301–302

local approximation for the loss function

99–100

local minimum 303

loss function and SGD optimizer, code listing

318

loss surfaces and their minimization

301–303

loss surfaces, description of 302–303

minimizing 83, 88–89

multi-dimensional loss functions 93–94

one-dimensional loss functions 91–93

output vector 303

prediction vector 303

regression loss, code listing 303

running the training loop num_epochs times,

code listing 319

softmax function 306–310

total error, definition of 89

total training loss, definition of 301

using a squared error function 89

visualizing loss surfaces 97

M

machine learning

analogy to the human brain 5

cat brain model 7

chart of the 2D input point space for the cat

brain model 11

classifier, definition of 12

collinearity as implying linear dependence 47

computing eigenvectors and eigenvalues 67

computing the simplified cat brain threat score

model 11

defining the span of a set of vectors 47–48

dot product and the difference between two

unit vectors 38–39

dot product of two vectors 29–30

eigenvalues and eigenvectors 62–65

eigenvectors and linear independence 65–66

entropy 198–212

equations for describing a multilayered neural

network 16

estimating a threat score 7

example cat-brain dataset matrix 24

example training dataset 24

expressive power 14, 16

feature space, definition of 10

finding the axes of a hyperellipse 78–79

formula for transforming an arbitrary input

value to a normalized value 7

from arbitrary input to the desired output

during inferencing 5

generating the right outcome on

never-before-seen data 5

generic multidimensional definition of linear

transforms 51

geometric intuitions for dot product and

vector length 36–37

geometrical view of 10–11

introduction to vectors via PyTorch 23

Kullback–Leibler divergence (KLD) 207–210

latent semantic analysis (LSA) 118

learning, definition of 5

linear dependence 46–47

linear systems with zero or near-zero

determinants 55–57

linear vs. nonlinear models 12–14

list of problem solving stages 4

machine learning model error 34–36

matrix diagonalization 73–74

matrix powers using diagonalization 76–77

matrix-matrix multiplication 32–33

matrix-vector multiplication 31–32

matrix-vector multiplications as linear

transforms 52–53

measuring the component of a vector along a

coordinate axis 37–38

minimizing a quadratic form in machine

learning problems 121

model estimation 8
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machine learning (continued)

multidimensional line and plane equations

42–46

multidimensional line equation 42–43

multidimensional planes 43–46

multilayered neural network, diagram of 15

natural language processing (NLP) 118

over-determined and under-determined linear

systems 57–59

as a paradigm shift in computing 3

performing basic vector and matrix operations

26–28

principal component analysis (PCA) 118

producing Python code using Jupyter

Notebook 22

quadratic form, definition of 118

regressor, definition of 12

retrieving documents that match a query

phrase 140–147

role of matrices in 23

role of vectors in 19–21

sigmoid function, definition of 14

singular value decomposition (SVD) 130–140

solving linear systems without inversion via

diagonalization 74–75

spectral decomposition of a symmetric matrix

77

squared error 34

sticking to any fixed coordinate system 22

supervised machine learning 194

supervised vs. unsupervised learning 4

symmetric matrices and orthogonal

eigenvectors 66

target output 4

training data, definition of 4

training, definition of 5

transpose of matrix products 33

trying to model the unknown transformation

function 6

unsupervised machine learning 193–194

using 3D analogues for higher dimensional

spaces 22

using PyTorch code for vector manipulations

22

See also neural networks

manifolds 438–443

applying calculus to a locally Euclidean

property 440–441

bounded, compact, and precompact sets 443

definition of 438

d-manifold, definition of 440

example manifolds and non-manifolds in 1D

and 2D 440

Hausdorff property, definition of 441–442

manifolds as locally Euclidean 440

mapping points from one manifold to another

439

neural networks and 438

open sets, closed sets, and boundaries 442

second countable property of manifolds

442–443

mathematical notations used throughout the text

506

matrices

applying rotation matrices 69

basic vector and matrix operations in machine

learning 26–28

converting a matrix into a vector via

rasterization 84

data matrix columns as dimensions in the

feature space 115

data matrix rows as representing feature

vectors 115

example cat-brain dataset matrix 24

Frobenius norms, definition of 122–123

full-rank matrices, definition of 137

introducing matrices via PyTorch 25–26

inverting a matrix and computing its

determinant 57

linear systems and matrix inverse 53–55

matrix and vector transpose 28–29

matrix diagonalization 73–74

matrix powers using diagonalization 76–77

matrix, definition of 23

matrix-matrix multiplication 32–33

matrix-vector multiplication 31–32

Moore Penrose pseudo-inverse of a matrix

59–62

orthogonal (rotation) matrices and their

eigenvalues and eigenvectors 67–69

orthogonality and length-preservation

70–71

orthogonality of rotation matrices 71–72

rank of a matrix, definition of 137

representing digital images as matrices 25

role in machine learning 23

slicing and dicing matrices 26

solving an overdetermined system using the

pseudo-inverse 62

spectral norms, definition of 122
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symmetric positive semidefinite matrices

121–122

transpose of matrix products 33

using linear algebraic tools to analyze matrix

structures 115–116

max pooling, definition of 381

maximum a posteriori (MAP) estimation 448

maximum likelihood parameter estimation

(MLE) 448

mean squared error (MSE) function 282

model architecture 4, 6, 8

model parameter estimation 213–222

estimating the model parameters from the

unlabeled training data 213

examining the likelihood term 213

examining the prior probability term 213

Gaussian mixture models (GMMs) 215

Gaussian negative log-likelihood for training

data, code listing 219–220

Gaussian negative log-likelihood with

regularization, code listing 221–222

latent variables and evidence maximization

215–216

likelihood, evidence, and posterior and prior

probabilities 213– 214

maximum a posteriori (MAP) parameter

estimation and regularization 215

maximum likelihood estimate for a Gaussian,

code listing 219

maximum likelihood parameter estimation

(MLE) 214–215

maximum likelihood parameter estimation for

Gaussians 216–218

minimizing MLE loss via gradient descent,

code listing 220

using the log-likelihood trick 214

modeling

inferencing 4

linear vs. nonlinear models 12–14

model architecture selection 86

model training 4, 8–10, 86

overall algorithm for training a supervised

model 90

training error, definition of 86

trying to model the unknown transformation

function 6

momentum 320–325

AdaGrad algorithm 326–327

Adam optimizer algorithm with bias correction

328–329

chart showing an overfitting of data points in a

binary classifier 331

explanation of 320–321

L1 regularization 333–334

L2 regularization 332–334

momentum-based gradient descent 322

Nesterov accelerated gradients 322–325

overfitting and underfitting 330

regularization 330

root mean squared propagation (RMSProp)

327–328

viewing regularization as minimizing

descriptor length 332

Multibox Single-Shot Detector (SSD)

435–436

multidimensional functions 93–95

multidimensional integral 161–162

N

natural language processing (NLP) 118

Nesterov accelerated gradients 322–325

neural networks

adjusting its architecture and parameter values

240

algorithm for training a neural network

294–295

backpropagation algorithm 286–294

categorical variables, definition of 242

charts of cat-brain threat-model decision

boundaries 247–249

charts of good and bad decision boundaries

250

choosing an architecture 240

classifier functions 245–246

classifying into supervised and unsupervised

neural networks 241

continuous variables, definition of 242

decision boundaries, definition of 246–247

decision boundary as a hypersurface 249

determining parameter values through

training 240

diagram of a complete multilayered neural

network 278

diagram of a multilayered neural network 15

differentiable step-like functions 273–276

discriminative functions 252

equations for describing a multilayered neural

network 16

estimating a decision boundary 251
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neural networks (continued)

expressing real-world problems in target

functions 240–242

expressive power, definition of 240

feature space 246

forming mental pictures of hyperspaces with

3D analogs 249

forward and backward propagation, code

listing 289–290

fully connected layer 277

generative functions 252

gradient descent and local minima 285–286

ground truth 241

Hadamard product, definition of 292

Heaviside step function 252–253, 273

Hessian matrix 284

hyperplanes 253–254

inferencing 241

input space 246

input variables 242

labeling 241, 273

learning rate 285

linear layers 276–281

logical AND function 243–244

logical functions, definition of 242–245

logical NOT function 244–245

logical OR function 242–243

logical XOR function 244–245

making a probabilistic statement of output

correctness 241

manual annotation 241

mean squared error (MSE) function 282

m-out-of-n trigger function 244

multi-input logical AND function 244

multi-input logical OR function 244

multilayer perceptrons (MLPs) 259–269

neuron, basic description of 240, 252

output variables 242

overview of 240–241

perceptrons 254–269

performing min-max normalization in

PyTorch, code listing 296

sigmoid function and its properties

273–275

supervised neural networks 273

supervised training data 241

tanh function 275–276

target output 241

training a neural network in PyTorch 295–298

training data, definition of 272

tunable hyperparameter 285

using an optimizer to update weights 298

weights 241

See also machine learning

neuron, description of 240, 252

non-maxima suppression (NMS) algorithm

425–426

O

object detectors 411–436

anchors and their configurations, description

of 415

assigning GT labels for each anchor box, code

listing 420

assigning targets to anchor boxes 421–422

classification loss, definition of 423

classifier predicting an objectness value 417

contributions and improvements of Fast

R-CNN 412–413

dealing with the imbalance between negative

and positive anchors 421

Fast R-CNN and Rols 427–435

Fast R-CNN architecture 429

Fast R-CNN inference 433–434

Fast R-CNN loss function 431–432

Fast R-CNN RoI head, code listing 430–431

Faster R-CNN and its two core modules

412–413

Faster R-CNN, high level architecture 414

FCN of the RPN, code listing 418–419

Feature Pyramid Network (FPN) 436

FRCNN guidelines for assigning labels to

anchor boxes 420

fully convolutional network (FCN)

architecture 417–418

generating a target (GT) for an RPN

419–421

generating all anchors for a given image 417

generating anchors at a particular grid point,

code listing 416

generating region proposals 424–425

Multibox Single-Shot Detector (SSD) 435–436

NMS of RoIs, code listing 427

non-maxima suppression (NMS) algorithm

425–426

other object-detection paradigms 435–436

R-CNN module 413–414

Region proposal network (RPN) 413–415

regression loss, definition of 423
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Rol pooling 428–429

RPN loss function 423–424

three stages in the R-CNN approach to object

detection 411–412

training the Fast R-CNN 431

training the Faster R-CNN 434–435

You Only Look Once (YOLO) 435

observed vector, definition of 468

one-dimensional loss functions 91–93

optimization 314–316

AdaGrad algorithm 326–327

Adam optimizer algorithm with bias correction

328–329

Bayes’ theorem and the stochastic view of

optimization 334–335

creating a custom neural network model, code

listing 318

creating a custom PyTorch data set, code

listing 317

definition of 301–302, 315

dropout 336–339

generating one training loop, code

listing 319

L1 regularization 333–334

L2 regularization 332–334

learning rate (LR) 315

loss function and SGD optimizer, code listing

318

map optimization 335–336

MLE-based optimization 335

overfitting and underfitting 330

overfitting of data points in a binary classifier

331

random shuffling of training data after every

epoch 315

regularization 330

root mean squared propagation (RMSProp)

327–328

running the training loop num_epochs times,

code listing 319

stochastic gradient descent (SGD) 315–316

viewing regularization as minimizing

descriptor length 332

output variables 242

output vector 303

P

parameterized function, threat score 4

partial derivatives, definition of 94

perceptrons 254–269

classification and 254

code listing for 256

Cybenko’s universal approximation theorem

261–262

deep neural networks, definition of 260

definition of 254

generating 2D steps and waves with

perceptrons 264–267

generating a 1D tower with perceptrons

262–264

hidden layers 260

introduction to modeling common logic gates

with perceptrons 256

layering for organizing perceptrons into a

neural network 260

MLP for a logical XOR function 259–260

MLPs for polygonal decision boundaries

268–269

modeling logical gates, code listing 258

multilayer perceptrons (MLPs) 259–269

multiple perceptrons 256

partitioning with a planar decision surface

255

perceptron for a logical AND function

256–257

perceptron for a logical NOT function

257–258

perceptron for a logical OR function

257–258

perceptrons and MLPs in 1D, code listing 267

perceptrons and MLPs in 2D, code listing

267–268

truth table for two-variable logical functions

261

pixel, definition of 83

pooling 381–383

prediction vector 303

prefix coding 200

principal component analysis (PCA) 118,

123–130

applying PCA on correlated and uncorrelated

datasets 128

calculating the direction of maximum spread

125–127

dimensionality reduction via PCA 127–128

introduction to 123–125

limitations of PCA 129–130

linear latent space manifolds and PCA

474–478
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principal component analysis (PCA)

(continued)

PCA and data compression 130

PCA computation, code listing 128–129

PCA on synthetic correlated data, code listing

129

PCA on synthetic nonlinearly correlated data,

code listing 130

PCA on synthetic uncorrelated data 129

as a special case of latent space representation

471

use in JPEG 98 image compression techniques

130

probability density function (PDF) 152,

161, 198

probability distributions

continuous random variable 152

definition of 153

discrete random variable 151

emphasizing the geometrical view of

multivariate statistics 150

example graph for the weights of adults in

Statsville 154

fitting probability distributions to specific

groups of people 150

frequentist paradigm 151

loosely structured point distributions in

high-dimensional spaces 149

probabilities as always less than or equal to 1

151

probability density 152

PyTorch distributions package 150, 162

random variable, definition of 151

semantic segmentation 150

using histograms to visualize discrete random

variables 152–153

using probabilistic models in unsupervised and

minimally supervised learning 150

using uppercase letters to denote random

variables 152

variational auto encoders (VAEs) 150

See also probability theory

probability theory

asymptotically approaching zero 174

basic concepts of 154–155

bell-shaped curve 174

Bernoulli distribution 188–189

binomial distribution 180–184

Cartesian product 157

categorical distribution and one-hot vectors

189–190

centroid, definition of 163

chart of a univariate Gaussian random

probability density function 177

chart of bivariate uniform random probability

density function 173

conditional probability 196

continuous random variables and probability

density 160–162

covariance as the multivariate analog of

variance 165–167

covariance of a multivariate Gaussian

distribution 178–180

dependent events and their joint probability

distribution 157–159

dependent vs. independent variables 196

entropy 198–212

entropy, definition of 200–201

exhaustive and mutually exclusive events

154–155

expected value (mean) 162–164

expected value of a Bernoulli distribution

188–189

expected value of a binomial distribution

184–185

expected value of a categorical distribution

190–191

expected value of a function of a random

variable 163

expected value of a Gaussian distribution

176–177

expected value of a linear combination of

random variables 164

expected value of a uniform distribution 171

Gaussian (normal) distribution 173–180

Gaussian probability density function 174

geometry of sampled point clouds 180

graphical visualization of joint probability

distributions 160

independent events 155

joint and marginal probability 194–196

joint probabilities and their distributions

155–157

Kullback–Leibler divergence (KLD) 207–210

log probability of a Bernoulli distribution,

code listing 188

log probability of a binomial distribution, code

listing 183–184

log probability of a multinomial distribution,

code listing 186

log probability of a univariate normal

distribution, code listing 175
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log probability of a univariate uniform random

distribution, code listing 171

marginal probabilities 157

marginal probability for a variable 195

mean and variance of a Bernoulli distribution,

code listing 189

mean and variance of a multinomial

distribution, code listing 187–188

mean and variance of a multivariate normal

distribution, code listing 179

mean and variance of a uniform random

distribution, code listing 172

mean and variance of a univariate Gaussian,

code listing 178

multidimensional integral 161–162

multinomial distribution 185–187

multivariate Gaussian 175–176

multivariate Gaussian point clouds and

hyper-ellipses 180

outlier values 174

probabilities of impossible and certain events

154

probability density function (PDF) 16, 198

probability of a categorical distribution 190

product rule, definition of 155

properties of distributions 162–167

sample point distributions for dependent and

independent variables159–160

sampling from a distribution 167–169

sum rule 195

uniform distributions as multivariate 173

uniform random distributions 170–171

variance and expected value 167

variance of a Bernoulli distribution 189

variance of a binomial distribution 185

variance of a uniform distribution

171–172

variance, covariance, and standard deviation

164–165

See also probability distributions

product rule, definition of 155

Python code 18–19

applying PCA on correlated and uncorrelated

datasets 128

computing LSA 145–146

computing LSA and SVD on a large dataset

146–147

computing PCA directly using SVD 139

dot product of two vectors 40

eigenvalues and eigenvectors of a rotation

matrix 72

examining linear models 101–105

examining nonlinear models 105–107

finding the axes of a hyperellipse 79–80

introducing matrices via PyTorch 25–26

matrix diagonalization 74

matrix vector multiplication 40–41

orthogonality of rotation matrices 71–72

PCA computation, code listing 128–129

PCA on synthetic correlated data, code listing

129

PCA on synthetic nonlinearly correlated data,

code listing 130

PCA on synthetic uncorrelated data 129

performing a matrix transpose 39–40

slicing and dicing matrices 26

solving linear systems via diagonalization 76

solving linear systems with SVD 137–139

spectral decomposition of a symmetric matrix

77–78

tensors and images in PyTorch 26

training a linear model for the cat brain 108

transpose of a matrix product 42

using for vector manipulations 22

PyTorch

creating a custom PyTorch data set, code

listing 317

inferencing a model, PyTorch Trainer code

listing 411

introducing matrices via PyTorch 25–26

introducing vectors via PyTorch 23

MNIST data module, PyTorch DataModule

code listing 407–408

performing min-max normalization in

PyTorch, code listing 296

PyTorch code for solving linear systems with

SVD 137–139

PyTorch distributions package 150, 162

tensors and images in PyTorch 26

training a neural network in PyTorch 295–298

using PyTorch code for vector manipu-

lations 22

PyTorch Autograd 103

PyTorch DataLoader 316

PyTorch Lightning 406–411

DataModule component 407–408

implementing LeNet as a PyTorch Lightning

module, code listing 408–410

inferencing a model, PyTorch Trainer code

listing 411

LightningModule component

408–410
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PyTorch Lightning (continued)

MNIST data module, PyTorch DataModule

code listing 407–408

Trainer component 410–411

Q

quadratic forms, minimizing 118–121

quantitative estimation 2–3

quantitative inputs 4

R

random variable 151–153, 160–162

rasterized vector, creating 84

reconstruction loss, definition of 478

rectified linear unit (ReLU) 392–394

regression loss, definition of 303, 423

regressors, definition of 2, 12

regularization 330

representation learning, definition of 478

ResNet architecture 401–406

components of the core architecture 403

examining how to solve the degradation

problem 401–403

identity shortcut connection 402

implementing a basic skip connection block

(BasicBlock) 403–404

PyTorch Lightning 406–411

ResidualConvBlock, code listing 405

ResNet-34, code listing 405–406

root mean squared propagation (RMSProp)

327–328

S

semantic segmentation 150

sigmoid function 14, 273–276

singular value decomposition (SVD) 130–140

applying SVD by solving arbitrary linear

systems 135–136

applying SVD to find the best low-rank

approximation of a matrix 139–140

applying SVD via PCA computation 135

computing PCA directly using SVD 139

full-rank matrices, definition of 137

linear system as degenerate 137

PyTorch code for solving linear systems with

SVD 137–139

rank of a matrix, definition of 137

SVD theorem 131–134

softmax function 306–314

spectral norms, definition of 122

standard deviation 164–165

stochastic gradient descent (SGD) 315, 317

stochastic mapping, definition of 484

supervised learning 4, 194

supervised neural networks 273

supervised training data 241

T

tanh function 275–276

target functions 240–242

target output 4, 241

Taylor series 100–101, 112–113

tensors 25–26

term frequency (TF) 141

threat score 4, 7

thresholding 10, 12

torchvision package 397

total training loss, definition of 301

training data 4–6, 86, 272, 315

transposed convolution. See convolution,

transposed

tunable hyperparameter 285

U

unit vector 36

unsupervised machine learning 193–194

V

vanishing gradient problem 394

variable bit-rate coding 200

variance

Bayesian estimation with unknown mean,

known variance, code listing 452–453

Bayesian estimation with unknown mean,

unknown variance, code listing 459

Bayesian estimation with unknown

variance, known mean, code listing

456

computing the variance of a Gaussian

distribution 499–501

covariance as the multivariate analog of

variance 165–167

mean and variance of a Bernoulli distribution,

code listing 189

mean and variance of a multinomial

distribution, code listing 187–188
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mean and variance of a multivariate normal

distribution, code listing 179

mean and variance of a univariate Gaussian,

code listing 178

variance and expected value 167

variance of a Bernoulli distribution 189

variance of a binomial distribution 185

variance of a uniform distribution 171–172

variance, covariance, and standard deviation

164–165

See also covariance

variational autoencoders (VAEs) 150, 241,

483–495

autoencoders vs. VAEs 494

comparing autoencoder-and

VAE-reconstructed images on the MNIST

data set 494

computing the reconstruction loss and KL

divergence loss 485

differences between the learned latent spaces

of the autoencoder and VAE 495

evidence lower bound (ELBO) 488–490

examples of high and low KL divergence loss

486

geometric overview of 483–484

KLD loss as regularizing the latent space 486

minimizing reconstruction loss as leading to

ELBO maximization 490

physical significance of ELBO maximization

489

reparameterization trick, code listing 492

stochastic mapping as leading to latent-space

smoothness 487

stochastic mapping, definition of 484

VAE decoder, code listing 493

VAE loss, code listing 494

VAE training, code listing 494

VAE training, losses, and inferencing 485–486

VAE, code listing 493

VAEs and Bayes’ theorem 487

zero-mean, unit-covariance Gaussian for the

known prior 490–492

See also autoencoders

vectors

basic vector and matrix operations in machine

learning 26–28

basis vectors 48

creating feature vectors that describe a

document 20

defining the span of a set of vectors 47–48

definition of 19

describing a point’s position in a coordinate

system 21

document feature vectors 141

dot product of two vectors 29–30

feature vector, definition of 19

geometric intuitions for vector length 36

geometric view of 21

as inputs to a machine learning system 84

introduction to vectors via PyTorch 23

linear transforms 49–51

mapping input points to output points in a

high-dimensional space 21

matrix and vector transpose 28–29

minimal and complete basis 48–49

orthogonality of vectors 39

representing both inputs and outputs 19

representing the parameters of the model

function 19

role of in machine learning 19–21

unit vector 36

vector spaces 48–49

VGG (Visual Geometry Group) Net 391–397

common structural elements of the VGG

family of networks 391–392

convolutional backbone, code listing 395–396

graph of a 1D sigmoid function and its

derivative 394

instantiating a VGG network from a specific

config 397

rectified linear unit (ReLU) 392–394

removal of the local response normalization

(LRN) layers 391

single convolutional block, code listing 395

torchvision package 397

use of smaller (3x3) convolution filters 391

vanishing gradient problem 394

VGG network, code listing 396

VGG-11 architecture diagram 393

W

weights 4, 6, 241

Wishart distribution 454, 463–464
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