Krishnendu Chaudhury
with Ananya H. Ashok

Sujay Narumanchi
Devashish Shankar

Foreword by Prith Banerjee

/l. MANNING

Math and
Architectures of
Deep Learning

KRrRISHNENDU CHAUDHURY
WITH

ANANYA H. ASHOK

SujAY NARUMANCHI
DEVASHISH SHANKAR

FOREWORD BY PRITH BANERJEE

m
MANNING

SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road

PO Box 761

Shelter Island, NY 11964

Email: orders@manning.com
© 2024 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

The author and publisher have made every effort to ensure that the information in this book
was correct at press time. The author and publisher do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether
such errors or omissions result from negligence, accident, or any other cause, or from any usage
of the information herein.

/I/I Manning Publications Co. Development editor: Christina Taylor
20 Baldwin Road Technical development editor: Mike Shepard
PO Box 761 Review editor: Aleksandar Dragosavljevié
Shelter Island, NY 11964 Production editor: Andy Marinkovich

Copy editor: Tiffany Taylor
Proofreader: Keri Hales
Technical proofreader: Lucian Mircea Sasu
Typesetter: Westchester Publishing Services
Cover designer: Marija Tudor

ISBN: 9781617296482
Printed in the United States of America

www.manning.com
orders@manning.com

brief contents

N O OO0 AN W N R

10
11

12
13
14

An overview of machine learning and deep learning 1
Vectors, matrices, and tensors in machine learning 18
Classifiers and vector calculus 83

Linear algebraic tools in machine learning 115
Probability distributions in machine learning 149
Bayesian tools for machine learning 193

Function approximation: How neural networks model
the world 239

Training neural networks: Forward propagation and
backpropagation 272

Loss, optimization, and regularization 300
Convolutions in neural networks 343

Neural networks for image classification and object
detection 385

Manifolds, homeomorphism, and neural networks 438
Fully Bayes model parameter estimation 447

Latent space and generative modeling, autoencoders,
and variational autoencoders 468

iii

contents

Sforeword xiv

preface xvi

acknowledgments xviii

about this book xx

about the authors xxuv

about the cover illustration xxvi

An overview of machine learning
and deep learning 1
1.1 A first look at machine/deep learning: A paradigm shift
in computation 2

1.2 A function approximation view of machine learning:
Models and their training 6

1.3 A simple machine learning model: The cat brain 7

Input features 7 Output decisions 7 = Model
estimation 8 Model architecture selection 8 Model
training 8 = Inferencing 10

1.4 Geometrical view of machine learning 10

1.5 Regression vs. classification in machine
learning 12

1.6 Linear vs. nonlinear models 12

iv

1.7

CONTENTS

Higher expressive power through multiple nonlinear
layers: Deep neural networks 14

Vectors, matrices, and tensors in machine learning 18

2.1

2.2

2.3

24

2.5

2.6
2.7

2.8

29

Vectors and their role in machine learning 19

The geometric view of vectors and its significance
in machine learning 21

PyTorch code for vector manipulations 22
PyTorch code for the introduction to vectors 22

Matrices and their role in machine learning 23
Matrix representation of digital images 25

Python code: Introducing matrices, tensors, and images via
PyTorch 25

Basic vector and matrix operations in machine
learning 26
Matrix and vector transpose 28 = Dot product of two vectors and
its role in machine learning 29 = Matrix multiplication and
machine learning 30 = Length of a vector (L2 norm): Model
error 34 = Geomelric intuitions for vector length 36 = Geometric
intuitions for the dot product: Feature similarity 36

Orthogonality of vectors and its physical significance 39

Python code: Basic vector and matrix operations
via PyTorch 39
PyTorch code for a matrix transpose 39 = PyTorch code for
a dot product 40 = PyTorch code for matrix vector
multiplication 40 = PyTorch code for matrix-matrix
multiplication 41 = PyTorch code for the transpose of a matrix
product 42

Multidimensional line and plane equations and machine
learning 42
Multidimensional line equation 42 = Multidimensional planes
and their role in machine learning 43

Linear combinations, vector spans, basis vectors, and
collinearity preservation 46

Linear dependence 46 = Span of a set of vectors 47 = Vector
spaces, basis vectors, and closure 48

CONTENTS

2.10 Linear transforms: Geometric and algebraic
interpretations 49

Generic multidimensional definition of linear transforms 51
All matrix-vector multiplications are linear transforms 52

2.11 Multidimensional arrays, multilinear transforms,
and tensors 53

Array view: Multidimensional arrays of numbers 53

2.12 Linear systems and matrix inverse 53
Linear systems with zero or near-zero determinants, and
Wll-conditioned systems 55 = PyTorch code for inverse, determinant,
and singularity testing of matrices 57 = Over- and under-
determined linear systems in machine learning 57 = Moore
Penrose pseudo-inverse of a matrix 59 = Pseudo-inverse of a
matrix: A beautiful geometric intuition 59 = PyTorch code to solve
overdetermined systems 62

2.13 Eigenvalues and eigenvectors: Swiss Army knives of
machine learning 62
Eigenvectors and linear independence 65 = Symmetric matrices
and orthogonal eigenvectors 66 = PyTorch code to compute
eigenvectors and eigenvalues 67

2.14 Orthogonal (rotation) matrices and their eigenvalues
and eigenvectors 67
Rotation matrices 67 = Orthogonality of rotation
matrices 70 = PyTorch code for orthogonality of rotation
matrices 71 Eigenvalues and eigenvectors of a rotation matrix:
Finding the axis of rotation 72 = PyTorch code for eigenvalues and
vectors of rotation matrices 72

2.15 Matrix diagonalization 73
PyTorch code for matrix diagonalization 74 Solving linear
systems without inversion via diagonalization 74 PyTorch code
Sfor solving linear systems via diagonalization 76 = Matrix powers
using diagonalization 76

2.16 Spectral decomposition of a symmetric matrix 77
PyTorch code for the spectral decomposition of a matrix 77

2.17 An application relevant to machine learning: Finding
the axes of a hyperellipse 78
PyTorch code for hyperellipses 79

CONTENTS vii

Classifiers and vector calculus 83

3.1 Geometrical view of image classification 83
Input representation 83 = Classifiers as decision
boundaries 84 Modeling in a nutshell 86 Sign
of the surface function in binary classification 88

3.2 Error, aka loss function 88

3.3 Minimizing loss functions: Gradient vectors 89
Gradients: A machine learning-centric introduction 90 Level
surface representation and loss minimization 97

3.4 Local approximation for the loss function 99

1D Taylor series recap 100 = Multidimensional Taylor series and
the Hessian matrix 101

3.5 PyTorch code for gradient descent, error minimization,
and model training 101

PyTorch code for linear models 101 = Autograd: PyTorch
automatic gradient computation 103 = Nonlinear Models in
PyTorch 105 = A linear model for the cat brain in PyTorch 108

3.6 Convex and nonconvex functions, and global and local
minima 109

3.7 Convex sets and functions 109

Convex sets 110 Convex curves and surfaces 110 Convexity
and the Taylor series 112 Examples of convex functions 113

Linear algebraic tools in machine learning 115

4.1 Distribution of feature data points and true
dimensionality 116

4.2 Quadratic forms and their minimization 118
Minimizing quadratic forms 119 = Symmetric positive
(semi)definite matrices 121

4.3 Spectral and Frobenius norms of a matrix 122
Spectral norms 122 = Frobenius norms 122

4.4 Principal component analysis 123

Direction of maximum spread 125 = PCA and dimensionality
reduction 127 = PyTorch code: PCA and dimensionality
reduction 128 Limitations of PCA 129 = PCA and data
compression 130

CONTENTS

4.5 Singular value decomposition 130

Informal proof of the SVD theorem 131 Proof of the SVD
theorem 133 = Applying SVD: PCA computation 135 Applying
SVD: Solving arbitrary linear systems 135 = Rank of a
malrix 136 = PyTorch code for solving linear systems with
SVD 137 PyTorch code for PCA computation via
SVD 139 = Applying SVD: Best low-rank approximation
of a matrix 139
4.6 Machine learning application: Document retrieval 140

Using TF-IDF and cosine similarity 141 = Latent semantic
analysis 142 = PyTorch code to perform LSA 145 = PyTorch
code to compute LSA and SVD on a large dataset 146

Probability distributions in machine learning 149

5.1 Probability: The classical frequentist view 150
Random variables 151 = Population histograms 152

5.2 Probability distributions 152

5.3 Basic concepts of probability theory 154
Probabilities of impossible and certain events 154 = Exhaustive
and mutually exclusive events 154 = Independent events 155

5.4 Joint probabilities and their distributions 155
Marginal probabilities 157 = Dependent events and their joint
probability distribution 157

5.5 Geometrical view: Sample point distributions for
dependent and independent variables 159

5.6 Continuous random variables and probability density 160

5.7 Properties of distributions: Expected value, variance, and
covariance 162
Expected value (aka mean) 162 Variance, covariance, and
standard deviation 164

5.8 Sampling from a distribution 167

5.9 Some famous probability distributions 169

Uniform random distributions 170 Gaussian (normal)
distribution 173 = Binomial distribution 180 = Multinomial
distribution 185 = Bernoulli distribution 188 = Categorical
distribution and one-hot vectors 189

CONTENTS

Bayesian tools for machine learning 193

6.1 Conditional probability and Bayes’ theorem 194
Joint and marginal probability revisited 194 = Conditional
probability 196 = Bayes’ theorem 196

6.2 Entropy 198
Geometrical intuition for entropy 201 = Entropy
of Gaussians 203

6.3 Cross-entropy 204

6.4 KL divergence 207
KLD between Gaussians 208

6.5 Conditional entropy 210
Chain rule of conditional entropy 212

6.6 Model parameter estimation 213

Likelihood, evidence, and posterior and prior

probabilities 213 Maximum likelthood parameter estimation
(MLE) 214 = Maximum a posteriori (MAP) parameler estimation
and regularization 215

6.7 Latent variables and evidence maximization 215

6.8 Maximum likelihood parameter estimation for
Gaussians 216
Python PyTorch code for maximum likelihood estimation 218
Python PyTorch code for maximum likelihood estimation using
gradient descent 219

6.9 Gaussian mixture models 222

Probability density function of the GMM 223 Latent

variables for class selection 227 Classification via

GMM 230 Maximum likelihood estimation of GMM parameters
(GMM fit) 230

Function approximation: How neural networks model
the world 239

7.1 Neural networks: A 10,000-foot view 240
7.2 Expressing real-world problems: Target functions 241

Logical functions in real-world problems 242 = Classifier functions
in real-world problems 245 = General functions in real-world
problems 252

CONTENTS

7.3 The basic building block or neuron: The perceptron 252

The Heaviside step function 252 = Hyperplanes 253 = Perceptrons
and classification 254 = Modeling common logic gates with
perceptrons 256

7.4 Toward more expressive power: Multilayer perceptrons
(MLPs) 259
MLP for logical XOR 259

7.5 Layered networks of perceptrons: MLPs or neural
networks 260

Layering 260 = Modeling logical functions with
MLPs 260 Cybenko’s universal approximation
theorem 261 MLPs for polygonal decision boundaries 268

Training neural networks: Forward propagation
and backpropagation 272

8.1 Differentiable step-like functions 273
Sigmoid function 273 = Tanh function 275

8.2 Why layering? 276

8.3 Linear layers 277

Linear layers expressed as matrix-vector multiplication 277
Forward propagation and grand output functions for an MLP of
linear layers 280

8.4 Training and backpropagation 281

Loss and its minimization: Goal of training 282 = Loss surface
and gradient descent 283 = Why a gradient provides the best
direction for descent 284 = Gradient descent and local

minima 285 = The backpropagation algorithm 286 = Putting
it all together: Overall training algorithm 294

8.5 Training a neural network in PyTorch 295

Loss, optimization, and regularization 300

9.1 Loss functions 301

Quantification and geometrical view of loss 301 = Regression

loss 303 = Cross-entropy loss 303 = Binary cross-entropy loss for
image and vector mismatches 305 = Softmax 306 = Softmax
cross-entropy loss 308 = Focal loss 310 = Hinge loss 312

CONTENTS

9.2 Optimization 314

Geometrical view of optimization 316 Stochastic gradient

descent and minibatches 316 PyTorch code for SGD 316
Momentum 320 Geometric view: Constant loss

contours, gradient descent, and momentum 322 = Nesterov accelerated
gradients 322 = AdaGrad 326 = Root-mean-squared
propagation 327 = Adam optimizer 328

9.3 Regularization 330

Minimum descriptor length: An Occam’s razor view of
optimization 330 = L2 regularization 332

L1 regularization 333 = Sparsity: L1 vs. L2
regularization 333 = Bayes’ theorem and the stochastic
view of optimization 334 = Dropout 336

Convolutions in neural networks 343

10.1 One-dimensional convolution: Graphical and algebraical
view 345

Curve smoothing via 1D convolution 350 = Curve edge detection
via 1D convolution 350 = One-dimensional convolution as matrix
multiplication 351 = PyTorch: One-dimensional convolution with
custom weights 354

10.2 Convolution output size 356

10.3 Two-dimensional convolution: Graphical and algebraic
view 356
Image smoothing via 2D convolution 362 = Image edge detection
via 2D convolution 362 = PyTorch: 2D convolution with custom
weights 363 = Two-dimensional convolution as matrix
multiplication 366

10.4 Three-dimensional convolution 368
Video motion detection via 3D convolution 370 = PyTorch:
Three-dimensional convolution with custom weights 372

10.5 Transposed convolution or fractionally strided
convolution 374

Application of transposed convolution: Autoencoders and
embeddings 375 = Transposed convolution output
size 377 = Upsampling via transpose convolution 378

10.6 Adding convolution layers to a neural network 380

PyTorch: Adding convolution layers to a neural network 380

10.7 Pooling 381

xii CONTENTS

Neural networks for image classification
and object detection 385

11.1 CNNs for image classification: LeNet 386

PyTorch: Implementing LeNet for image classification on
MNIST 388

11.2 Toward deeper neural networks 389

VGG (Visual Geometry Group) Net 391 = Inception:
Network-in-network paradigm 397 ResNet: Why stacking layers
to add depth does not scale 401 PyTorch Lightning 406

11.3 Object detection: A brief history 411
R-CNN 411 Fast R-CNN 412 Faster RRCNN 413

11.4 Faster R-CNN: A deep dive 414

Convolutional backbone 414 Region proposal
network 415 Fast R-CNN 427 Training the Faster
R-CNN 434 = Other object-detection paradigms 435

Manifolds, homeomorphism, and neural networks 438
12.1 Manifolds 438
Hausdorff property 441 Second countable property 442

12.2 Homeomorphism 443

12.3 Neural networks and homeomorphism between
manifolds 444

Fully Bayes model parameter estimation 447

13.1 Fully Bayes estimation: An informal introduction 448
Parameter estimation and belief injection 448
13.2 MLE for Gaussian parameter values (recap) 449

13.3 Fully Bayes parameter estimation: Gaussian, unknown
mean, known precision 450

13.4 Small and large volumes of training data, and strong and
weak priors 453

13.5 Conjugate priors 454

13.6 Fully Bayes parameter estimation: Gaussian, unknown
precision, known mean 454

Estimating the precision parameter 455

CONTENTS

13.7 Fully Bayes parameter estimation: Gaussian, unknown
mean, unknown precision 457

Normal-gamma distribution 457 = Estimating the mean and
precision parameters 457
13.8 Example: Fully Bayesian inferencing 459
Maximum likelihood estimation 460 = Bayesian inference 460
13.9 Fully Bayes parameter estimation: Multivariate Gaussian,
unknown mean, known precision 461

13.10 Fully Bayes parameter estimation: Multivariate, unknown
precision, known mean 463

Wishart distribution 463 Estimating precision 464

Latent space and generative modeling, autoencoders,
and variational autoencoders 468

14.1 Geometric view of latent spaces 469
14.2 Generative classifiers 471
14.3 Benefits and applications of latent-space modeling 472
14.4 Linear latent space manifolds and PCA 474
PyTorch code for dimensionality reduction using PCA 477

14.5 Autoencoders 478
Autoencoders and PCA 481

14.6 Smoothness, continuity, and regularization of latent
spaces 481

14.7 Variational autoencoders 483

Geometric overview of VAEs 483 VAE training, losses, and
inferencing 485 = VAEs and Bayes’ theorem 487 = Stochastic
mapping leads to latent-space smoothness 487 = Direct
minimization of the posterior requires prohibitively expensive
normalization 487 = ELBO and VAEs 488 = Choice of prior:
Zero-mean, unit-covariance Gaussian 490 = Reparameterization
trick 492

appendix 497
notations 507
index 509

Joreword

As a lifelong student of the business of technological innovation, I have often wondered:
what sets apart an expert from regular practitioners in any area of technology? An
expert tends to have many micro-insights into the subject that often elude the ordinary
practitioner. This enables them to come up with solutions that are not visible to others.
The primary appeal of this book is to generate that kind of micro-intuitions into the
complex subject of machine learning. For all their ubiquitousness, episodic internet
recipes do not build such intuitions in a systematic, connected way. This book does.

I also agree with the author’s position that such intuitions are impossible to build
without a firm grasp of the mathematical understanding of the core principles of
machine learning. Of course, all this has to be combined with programming knowledge,
without which it becomes idle theory. I like the way this book attends to both theory
and practice of machine learning by presenting the mathematics alongside PyTorch
code snippets.

At present, deep learning is indeed shaping human history. Machine learning and
data science jobs are consistently rated as the best. If you are looking for a rewarding
career in technology, this may be the area for you. And if you are looking for a book
that gives you expert-level understanding but only assumes fairly basic knowledge of
mathematics and programming, this is your book. With its joint, side-by-side treatment
of math and PyTorch programming, it is perfect for professionals who want to become
serious practitioners of the art and science of machine learning. Machine learning lies
at the confluence of linear algebra, multivariate statistics, and Python programming,
and this book combines them into a single coherent narrative—starting from the basics
but rapidly moving into advanced topics.

FOREWORD XV

A particularly delightful aspect of the book is how it creates geometric intuitions
behind complex mathematical concepts. Symbols may be forgotten, but the picture
remains in the head.

—PRITH BANERJEE, Chief Technology Officer ANSYS, Inc., ex Senior Vice President
of Research and Director, HP Labs, formerly Professor and Director of Computa-
tional Science and Engineering, University of Illinois at Urbana-Champaign

preface

Artificial intelligence (machine learning or deep learning to insiders) is quite the rage at
this point of time. Media is full of eager and/or paranoid predictions about a world
governed by this new technology and quite justifiably so. It’s a knowledge revolution
happening in front of our very eyes.

Working on computer vision and image processing problems for decades for my
PhD, then at Adobe Systems, then at Google, and then at Drishti Technologies (the
Silicon Valley start-up that I co-founded), I have been at the bleeding edge of this
revolution for a long time. I've seen not only what works, but also—perhaps more
importantly—what does not work and what almost works. This gives me a unique per-
spective. Often when trying to solve practical problems, none of the textbook the-
ories will work directly. We must mix various ideas to create a winning concoction.
This requires a feel for what works and why and what doesn’t work and why. It
is this feel, this understanding of the inner workings of the machine/deep learning
theory, along with the insights and intuitions that I hope to transmit to my
readers.

This brings me to another point. Because of the popularity of the subject, a large
volume of “deep-learning-made-easy”-type material exists in print and/or online. These
articles don’t do justice to the subject. My reaction to them is “everything should
be made as simple as possible, but not simpler.” Deep learning can’t be learned by
going through a small fragmented set of simplified recipes from which all math has
been scrubbed out. This is a mathematical topic and mastery requires understanding
the math along with the programming. What is needed is a resource which presents this

xvi

PREFACE xvii

topic with the requisite amount of math—no more and no less—with the connection
between the deep learning and math explicitly spelled out. This is exactly what this book
strives to provide with its dual presentation of the math and corresponding PyTorch

code snippets.

acknowledgments

The authors would collectively like to thank all their colleagues at Drishti Technologies,
especially Etienne Dejoie and Soumya Dipta Biswas, who actively engaged in many lively
discussions of the topics covered in the book; Pinakpani Mukherjee, who created some
of the early diagrams; and all the MEAP reviewers whose anonymous contributions
made the book possible. They would also like to thank the Manning team for their
professionalism and competence, in particular Tiffany Taylor for her sharp and deep
reviews.

To all the reviewers: Al Krinker, Atul Saurav, Bobby Filar, Chris Giblin, Ekkehard
Schnoor, Erik Hansson, Gaurav Bhardwaj, Grigory Sapunov, Ian Graves, James J. Byleckie,
Jeff Neumann, Jehad Nasser, Juan Jose Rubio Guillamon, Julien Pohie, Kevin Cheung,
Krzysztof Kamyczek, Lucian Mircea Sasu, Matthias Busch, Mike Wall, Mortaza Doulaty,
Morteza Kiadi, Nelson Gonzdlez, Nicole Konigstein, Ninoslav éerkez, Obiamaka Ag-
baneje, Pejvak Moghimi, Peter Morgan, Rauhsan Jha, Sean T. Booker, Sebastidn Palma
Mardones, Stefano Ongarello, Tony Holdroyd, Vishwesh Ravi Shrimali, and Wiebe de
Jong, your suggestions helped make this a better book.

From Krish Chaudhury: First and foremost, I would like to thank my family:

Devyani (my wife), for covering my back for all these years despite an abundance of
reasons not to, and for teaching me the value of pursuing excellence in whatever
I do.

Anwesa (my daughter), who fills my life with indescribable joy with her love, positive
attitude, and empathy.

Gouri (my mother), for her unquestioning faith in me.

xviii

ACKNOWLEDGMENTS xix

(Late) Dr. Sujit Chaudhury (my father), for teaching me the value of insights,
sincerity, and a life of letters as a goal in itself.

I'would also like to thank Dr. Vineet Gupta (my former colleague from Google) and
Dr. Srayanta Mukherjee (my former colleague from Flipkart), for their valuable
comments and encouragement.

From Ananya Honnedevasthana Ashok: Writing this book has been much harder than I
initially expected. It has been a massive learning experience that wouldn’t have been
possible without the unwavering support of my family. In particular, I'd like to thank:

Dr. Ashok (my father), for being a perennial role model and always being there
for me.

Jayanthi (my mother), for her unequivocal belief in me.

Susheela (my grandmother), for her unconditional love despite chiding me for
spending long hours on the book during weekends.

I would also like to thank all my teachers, especially Dr. Viraj Kumar and Prof. N.S.
Kumar, for inspiring and indoctrinating a love of learning within me.

From Sujay Narumanchi: This book has been a labor of love, requiring more effort
than I anticipated but giving me a truly fulfilling learning experience that I will forever
cherish. My family and friends have been my pillars of strength throughout this journey.
I’d like to thank:

Sivakumar (my father), for always believing in me and encouraging me to pursue
my dreams.

Vinitha (my mother), for being my rock and providing unwavering support through-
out my life.

Prabhu (my brother), for being a constant source of fun and wisdom.

(Late) Ramachandran (my grandfather), for instilling in me a love of mathematics
and teaching me the value of learning from first principles.

My friends Ambika, Anoop, Bharat, Neel, Pranav, and Sanjana, for providing a
listening ear and a shoulder to lean on.

From Devashish Shankar: I would like to begin by thanking my parents, Dr. Shiv Shanker
and Dr. Sadhana Shanker, for their unwavering support, love, and guidance. Addition-
ally, I would like to honor the memory of my late grandfather, Dr. Ajai Shanker, who
instilled in me a deep sense of curiosity and a passion for scientific thinking that has
guided me throughout my life. I am also deeply grateful to my mentors and colleagues
for their guidance and support.

about this book

Are you the type of person who wants to know why and how things work? Instead of
feeling satisfied, even grateful, that a tool solves the problem at hand, do you try to
understand what the tool is really doing, why it behaves a certain way, and whether it
will work under different circumstances? If yes, you have our sympathy—Ilife won’t be
peaceful for you. You also have our best wishes—these pages are dedicated to you.

The internet abounds with prebuilt deep learning models and training systems that
hardly require you to understand the underlying principles. But practical problems
often do not fit any of the publicly available models. These situations call for the
development of a custom model architecture. Developing such an architecture requires
understanding the mathematical underpinnings of optimization and machine learning.

Deep learning and computer vision are very practical subjects, so these questions
are relevant: “Is the math necessary? Shouldn’t we spend the time learning, say, the
Python nuances of deep learning?” Well, yes and no. Programming skills (in particular,
Python) are mandatory. But without an intuitive understanding of the mathematics,
the how and why and the answer to “Can I repurpose this model?” will not be visible to
you. Mathematics allows you to see the abstractions behind the implementation.

In many ways, the ability to form abstractions is the essence of higher intelligence.
Abstraction enabled early humans to divine a digging and defending tool from what
was merely a sharply pointed stone to other animals. The abstraction of the description
of where something is with respect to another thing fixed in the environment (aka
coordinate systems and vectors) has done wonders for human civilization. Mathematics
is the language for abstractions: the most precise, succinct, and unambiguous known to
humankind. Hence, mathematics is absolutely necessary as a tool to study deep learning.
But we must remember that it is a tool—no more and no less. The ultimate purpose of

XX

ABOUT THIS BOOK xxi

all the math in the book is to bring out the intuitions and insights that are necessary to
gain expertise in the complex world of machine learning.

Another equally important tool is the programming language—we have chosen
PyTorch—without which all the wisdom cannot be put to practical use. This book
connects the two pillars of machine learning—mathematics and programming—via
numerous code snippets typically presented together with the math. The book is accom-
panied by fully functional code in the GitHub repository. We expect readers to work out
the math with paper and pencil and then run the code on a computer to understand
the results. This book is not bedtime reading.

Having (hopefully) made a case for studying the underlying mathematical principles
of deep learning and computer vision, we hasten to add that mathematical rigor is
not the goal of this book. Rather, the goal is to provide mathematical (in particular,
geometrical) insights that make the subject more intuitive and less like black magic. At
the same time, we provide Python coding exercises and visualization aids throughout.
Thus, reading this book can be regarded as learning the mathematical foundations of
deep learning via geometrical examples and Python exercises.

Mastery over the material presented in this book will enable you to

Understand state-of-the-art deep learning research papers. The book provides
in-depth, intuitive explanations of some of today’s seminal papers.
Study and understand a deep learning code base.
Use code snippets from the book in your tasks.
Prepare for an interview for a role as a machine learning engineer/scientist.
Determine whether a real-life problem is amenable to machine/deep learning.
Troubleshoot neural network quality issues.
Identify the right neural network architecture to solve a real-life problem.
Quickly implement a prototype architecture and train a deep learning model for
a real-life problem.
A word of caution: we often start with the basics but quickly go deeper. It’s important to
read individual chapters from beginning to end, even if you’re familiar with the material
presented at the start.

Finally, the ultimate justification for an intellectual endeavor is to have fun pursuing

it. So, the authors will consider themselves successful if you enjoy reading this book.

Who should read this book?

This book is aimed toward the reader with a basic understanding of engineering math-
ematics and Python programming, with a serious intent to learn deep learning. For
maximum benefit, the math should be worked out with paper and pencil and the
PyTorch programs executed on a computer. Here are some possible reader profiles:
A person with a degree in engineering, science, or math, possibly acquired a while

ago, who is considering a career switch to deep learning. No prior knowledge of
machine learning or deep learning is required.

xxii

ABOUT THIS BOOK

An entry- or mid-level machine learning practitioner who wants to gain deeper
insights into the workings of various techniques and graduate from downloading
models from the internet and trying them out to developing custom deep learning
solutions for real problems, and/or develop the ability to read and understand
research publications on the topic.

A college student embarking on a career of deep learning.

How this book is organized: A road map

This book consists of 14 chapters and an appendix. In general, all mathematical concepts
are examined from a machine learning point of view. Geometric insights are brought
out and PyTorch code is provided wherever appropriate.

Chapter 1 is an overview of machine learning and deep learning. Its purpose
is to establish the big picture context in the reader’s mind and familiarize the
reader with some machine learning concepts like input space, feature space, model
training, architecture, loss, and so on.

Chapter 2 covers the core concepts of vectors and matrices which form the building
blocks for machine learning. Itintroduces the notions of dot product, vector length,
orthogonality, linear systems, eigenvalues and eigenvectors, Moore-Penrose pseudo
inverse, matrix diagonalization, spectral decomposition, and so on.

Chapter 3 provides an overview of vector calculus concepts needed for under-
standing deep learning. We introduce gradients, local approximation of multi-
dimensional functions via Taylor expansion in arbitrary dimensional spaces, Hes-
sian matrices, gradient descent, convexity, and the connection of all these with
the idea of loss minimization in machine learning. This chapter provides the first
taste of PyT'orch model building.

Chapter 4 introduces principal component analysis (PCA) and singular value
decomposition (SVD)—Xkey linear algebraic tools for machine learning. We provide
end-to-end PyTorch implementation of a SVD-based document retrieval system.
Chapter 5 explains the basic concepts of probability distributions from a deep
learning point of view. We look at the important properties of distributions like
expected value, variance and covariance, and we also cover some of the most
popular probability distributions like Gaussian, Bernoulli, binomial, multinomial,
categorical, and so on. We also introduce the PyTorch distributions package.
Chapter 6 explores Bayesian tools for machine learning. We study the Bayes theo-
rem, understand model parameter estimation techniques like maximum likelihood
estimation (MLE) and maximum a posteriori (MAP) estimation. We also look at
latent variables, regularization, MLE for Gaussian distributions, entropy, cross en-
tropy, conditional entropy, and KL divergence. We finally look at Gaussian mixture
models (GMMs) and how to model and estimate the parameters of a GMM.
Chapter 7 deep dives into neural networks. We study perceptrons, the basic
building block of neural networks and how multilayered perceptrons can model

ABOUT THIS BOOK xxiii

arbitrary polygonal decision boundaries as well as common logic gate operations.
This enables them to perform classification. We discuss Cybenko’s universal
approximation theorem.

Chapter 8 covers activation functions for neural networks, the importance and
intuition behind layers. We look at forward propagation and backpropagation
(with mathematical proofs) and implement a simple neural network with PyTorch.
We study how to train a neural network end to end.

Chapter 9 provides an in-depth look into various loss functions which are crucial
for effective learning of neural networks. We study the math and the intuitions
behind popular loss functions like cross entropy loss, regression loss, focal loss, and
so on, implementing them via PyTorch. We look at geometrical insights underlying
various optimization techniques like SGD, Nesterov, Adagrad, Adam, and others.
Additionally, we understand why regularization is important and its relationship
with MLE and MAP.

Chapter 10 introduces convolutions, a core operator for computer vision models.
We study 1D, 2D, and 3D convolution, as well as transposed convolutions and
their intuitive interpretations. We also implement a simple convolutional neural
network via PyTorch.

Chapter 11 introduces various neural network architectures for image classification
and object detection in images. We look at several image classification architectures
in detail like LeNet, VGG, Inception, and Resnet. We also provide an in-depth
study of Faster R-CNN for object detection.

Chapter 12 explores the manifolds, the properties of manifolds like homeomor-
phism, Haussdorf property, and second countable property, and also how man-
ifolds tie in with neural networks.

Chapter 13 provides an introduction to Bayesian parameter estimation. We look
at injection of prior belief into parameter estimation and how it can be used in
unsupervised/semi-supervised settings. Additionally, we understand conjugate
priors and the estimation of Gaussian likelihood parameters under conditions of
known,/unknown mean and variances.

Chapter 14 explores latent spaces and generative modeling. We understand the
geometric view of latent spaces and the benefits of latent space modeling. We take
another look at PCA with this new lens, along with studying autoencoders and
variational autoencoders. We study how variational autoencoders regularize the
latent space and hence exhibit superior properties to autoencoders.

The appendix covers mathematical proofs and derivations for some of the math-
ematical properties introduced in the chapters.

About the code

This book contains many examples of source code both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font

xXXiv

ABOUT THIS BOOK

like this to separate it from ordinary text. Sometimes code is also in bold to highlight
code that has changed from previous steps in the chapter, such as when a new feature
adds to an existing line of code.

In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the book.
In rare cases, even this was not enough, and listings include line-continuation markers
(=). Additionally, comments in the source code have often been removed from the
listings when the code is described in the text. Code annotations accompany many of
the listings, highlighting important concepts.

You can get executable snippets of code from the liveBook (online) version of this
book at https://livebook.manning.com/book/math-and-architectures-of-deep-learning.
Fully functional code backing the theory discussed in the book can be found on GitHub
at https://github.com/krishnonwork/mathematical-methods-in-deep-learning-ipython
and from the Manning website at www.manning.com. The code is presented in the form
of Jupyter notebooks (organized by chapter) that can be executed independently. The
code is written in Python and uses the popular PyTorch library. Important code snippets
are presented as code listings throughout the book, and key concepts are highlighted
using code annotations. To get started with the code, clone the repository and follow
the steps described in the README.

liveBook discussion forum

Purchase of Math and Architectures of Deep Learning includes free access to liveBook,
Manning’s online reading platform. Using liveBook’s exclusive discussion features, you
can attach comments to the book globally or to specific sections or paragraphs. It’s a
snap to make notes for yourself, ask and answer technical questions, and receive help
from the author and other users. To access the forum, go to https://livebook.manning
.com/book/math-and-architectures-of-deep-learning/discussion. You can also learn
more about Manning’s forums and the rules of conduct at https://livebook
.manning.com/discussion.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take place.
Itis not a commitment to any specific amount of participation on the part of the author,
whose contribution to the forum remains voluntary (and unpaid). We suggest you try
asking the authors some challenging questions lest their interest stray! The forum and
the archives of previous discussions will be accessible from the publisher’s website for as
long as the book is in print.

https://livebook.manning.com/book/math-and-architectures-of-deep-learning
https://github.com/krishnonwork/mathematical-methods-in-deep-learning-ipython
https://livebook.manning.com/book/math-and-architectures-of-deep-learning/discussion
https://livebook.manning.com/book/math-and-architectures-of-deep-learning/discussion
https://livebook.manning.com/discussion
https://livebook.manning.com/discussion

about the authors

KRISHNENDU CHAUDHURY is the CTO and a co-founder of Drishti Technologies in Palo
Alto, California, which applies Al to manufacturing. He has been a technology leader
and inventor in the field of deep learning and computer vision for decades. Before
starting Drishti, Krishnendu spent over 20 years at premier organizations, including
Google (2004-2015) and Adobe Systems (1996-2004). He was with Flipkart as head of
image sciences from 2015 to 2017. In 2017, he left Flipkart to start Drishti. Krishnendu
earned his PhD in computer science from the University of Kentucky in Lexington. He
has several dozen patents and publications in leading journals and global conferences
to his credit.

ANANYA HONNEDEVASTHANA ASHOK, SUJAY NARUMANCHI, and DEVASHISH SHANKAR
are practicing machine learning engineers with multiple patents in the deep learning
and computer vision area. They are all members of the founding engineering team at
Drishti.

XXV

about the cover tllustration

The figure on the cover of Math and Architectures of Deep Learning is “Femme Wotyak,”
or “Wotyak Woman,” taken from a collection by Jacques Grasset de Saint-Sauveur,
published in 1797. Each illustration is finely drawn and colored by hand.

In those days, it was easy to identify where people lived and what their trade or station
in life was just by their dress. Manning celebrates the inventiveness and initiative of
the computer business with book covers based on the rich diversity of regional culture
centuries ago, brought back to life by pictures from collections such as this one.

An overview of machine
learning and deep learning

This chapter covers

A first look at machine learning and deep
learning

A simple machine learning model: The cat brain
Understanding deep neural networks

Deep learning has transformed computer vision, natural language and speech process-
ing in particular, and artificial intelligence in general. From a bag of semi-discordant
tricks, none of which worked satisfactorily on real-life problems, artificial intelligence
has become a formidable tool to solve real problems faced by industry, at scale. This is
nothing short of a revolution going on under our very noses. To lead the curve of this
revolution, it is imperative to understand the underlying principles and abstractions
rather than simply memorizing the “how-to” steps of some hands-on guide. This is
where mathematics comes in.

In this first chapter, we present an overview of deep learning. This will require
us to use some concepts explained in subsequent chapters. Don’t worry if there are
some open questions at the end of this chapter: it is aimed at orienting your mind
toward this difficult subject. As individual concepts become clearer in subsequent
chapters, you should consider coming back and re-reading this chapter.

1.1

CHAPTER 1 An overview of machine learning and deep learning

A first look at machine/deep learning:
A paradigm shift in computation

Making decisions and/or predictions is a central requirement of life. Doing so essentially
involves taking in a set of sensory or knowledge inputs and processing them to generate
decisions or estimates.

For instance, a cat’s brain is often trying to choose between the following options:
run away from the object in front of it vs. ignore the object in front of it vs. approach the
object in front of it and purr. The cat’s brain makes that decision by processing sensory
inputs like the perceived hardness of the object in front of it, the perceived sharpness of
the object in front of it, and so on. This is an instance of a classification problem, where
the output is one of a set of possible classes.

Some other examples of classification problems in life are as follows:

Buyvs. hold vs. sell a certain stock, from inputs like the price history of this stock and
the change in price of the stock in recent times

Object recognition (from an image):

— Is this a car or a giraffe?

— Is this a human or a non-human?

— Is this an inanimate object or a living object?

— Face recognition—is this Tom or Dick or Mary or Einstein or Messi?

Action recognition from a video:

— Is this person running or not running?

— Is this person picking something up or not?

— Is this person doing something violent or not?

Natural language processing (NLP) from digital documents:

— Does this news article belong to the realm of politics or sports?
— Does this query phrase match a particular article in the archive?

Sometimes life requires a quantitative estimation instead of a classification. A lion’s
brain needs to estimate how far to jump so as to land on top of its prey, by processing
inputs like speed of the prey and distance to the prey. Another instance of quantitative
estimation is estimating a house’s price based on inputs like current income of the
house’s owner, crime statistics for the neighborhood, and so on. Machines that make
such quantitative estimators are called regressors.

Here are some other examples of quantitative estimations required in daily life:

Object localization from an image: identifying the rectangle bounding the location
of an object

Stock price prediction from historical stock prices and other world events
Similarity score between a pair of documents

Sometimes a classification output can be generated from a quantitative estimate. For
instance, the cat brain described earlier can combine the inputs (hardness, sharpness,

1.1 A first look at machine/deep learning: A paradigm shift in computation 3

and so on) to generate a quantitative threat score. If that threat score is high, the cat
runs away. If the threat score is near zero, the cat ignores the object in front of it. If the
threat score is negative, the cat approaches the object and purrs.

Many of these examples are shown in figure 1.1. In each instance, a machine—that is,
a brain—transforms sensory or knowledge inputs into decisions or quantitative estimates.
The goal of machine learning is to emulate that machine.

Note that machine learning has a long way to go before it can catch up with the
human brain. The human brain can single-handedly deal with thousands, if not millions,
of such problems. On the other hand, at its present state of development, machine
learning can hardly create a single general-purpose machine that makes a wide variety
of decisions and estimates. We are mostly trying to make separate machines to solve
individual tasks (such as a stock picker or a car recognizer). At this point, you may ask,
“Wait: converting inputs to outputs—isn’t that exactly what computers have been doing
for the last 30 or more years? What is this paradigm shift I am hearing about?” The
answer is that it is a paradigm shift because we do not provide a step-by-step instruction

Hardness F-——-—-—-—=-=-= —————— == Ry_n away
of object | Cat brain | (positive threat)
in front |_>l !
I e-srtri]rLeai:)r o Threat__ Thresholder I — Ignore
T (near zero threat)
Sharpness_,—»‘ model score \
of object ! —
in front T _ _ _ _______ o Approach and purr
(negative threat)
Speed o Lionbrain 1
of prey 1 1
Jump length estimator ! Jump
! model I— length
| .
Distance 'I \ estimate
to prey | |
) - Object
Image — Object recognition model class
Object class
Image Objept rgcognition and + objgct
localization model bounding
rectangle
Past
prices __>
Stock price model ?)tr(]’;:
World

events

Figure 1.1 Examples of decision making and quantitative estimations in life

CHAPTER 1 An overview of machine learning and deep learning

set—that is, a program—to the machine to convert the input to output. Instead, we
develop a mathematical model for the problem.

Let’s illustrate the idea with an example. For the sake of simplicity and concreteness,
we will consider a hypothetical cat brain that needs to make only one decision in life:
whether to run away from the object in front of it or ignore the object or approach and purr. This
decision, then, is the output of the model we will discuss. And in this toy example, the
decision is made based on only two quantitative inputs (aka features): the perceived hard-
ness and sharpness of the object (as depicted in figure 1.1). We do not provide any step-
by-step instructions such as “if sharpness greater than some threshold, then run away.”
Instead, we try to identify a parameterized function that takes the input and converts it to
the desired decision or estimate. The simplest such function is a weighted sum of inputs:

y (hardness, shar[mess) =wo X hardness+wy X sharpness+b

The weights wy, w; and the bias b are the parameters of the function. The output y can
be interpreted as a threat score. If the threat score exceeds a threshold, the cat runs
away. If it is close to 0, the cat ignores the object. If the threat score is negative, the cat
approaches and purrs. For more complex tasks, we will use more sophisticated functions.
Note that the weights are not known at first; we need to estimate them. This is done
through a process called model training.
Overall, solving a problem via machine learning has the following stages:

We design a parameterized model function (e.g., weighted sum) with unknown
parameters (weights). This constitutes the model architecture. Choosing the right
model architecture is where the expertise of the machine learning engineer comes
into play.

Then we estimate the weights via model training.

Once the weights are estimated, we have a complete model. This model can take
arbitrary inputs not necessarily seen before and generate outputs. The process in
which a trained model processes an arbitrary real-life input and emits an output is
called inferencing.

In the most popular variety of machine learning, called supervised learning, we prepare
the training data before we commence training. Training data comprises example input
items, each with its corresponding desired output.’ Training data is often created manually: a
human goes over every single input item and produces the desired output (aka target
output). This is usually the most arduous part of doing machine learning.

For instance, in our hypothetical cat brain example, some possible training data
items are as follows

I If you have some experience with machine learning, you will realize that we are talking about “supervised”

learning here. There are also machines that do not need known outputs to learn—so-called “unsupervised”
machines—and we will talk about them later.

1.1 A first look at machine/deep learning: A paradigm shift in computation 5

input: (hardness=0.01, sharpness=0.02) — threat=—0.90 — decision: “approach and purr”
input: (hardness=0.50, sharpness=0.60) — threat=0.01 — decision: “ignore”

input: (hardness=0.99, sharpness=0.97) — threat=0.90 — decision: “run away”

where the input values of hardness and sharpness are assumed to lie between 0 and 1.
What exactly happens during training? Answer: we iteratively process the input train-
ing data items. For each input item, we know the desired (aka target) output. On each
iteration, we adjust the model weight values in a way that the output of the model func-
tion on that specific input item gets at least a little closer to the corresponding target
output. For instance, suppose at a given iteration, the weight values are wy =20 and
w; =10, and b =50. On the input (hardness =0.01, sharpness =0.02), we get an output
threat score y =50.3, which is quite different from the desired y =-0.9. We will adjust
the weights: for instance, reducing the bias so wy =20, w1 =10, and b =40. The corre-
sponding threat score y =40.3 is still nowhere near the desired value, but it has moved
closer. After we do this on many training data items, the weights will start approaching
their ideal values. Note that how to identify the adjustments to the weight values is not
discussed here; it requires somewhat deeper math and will be discussed later.

As stated earlier, this process of iteratively tuning weights is called (raining or learning.
At the beginning of learning, the weights have random values, so the machine outputs
often do not match desired outputs. But with time, more training iterations happen,
and the machine “learns” to generate the correct output. That is when the model is
ready for deployment in the real world. Given arbitrary input, the model will (hopefully)
emit something close to the desired output during inferencing.

Come to think of it, that is probably how living brains work. They contain equivalents
of mathematical models for various tasks. Here, the weights are the strengths of the
connections (aka synapses) between the different neurons in the brain. In the beginning,
the parameters are untuned; the brain repeatedly makes mistakes. For example, a baby’s
brain often makes mistakes in identifying edible objects—anybody who has had a child
will know what we are talking about. But each example tunes the parameters (eating
green and white rectangular things with a $ sign on them invites much scolding—should
not eat them in the future, etc.). Eventually, this machine tunes its parameters to yield
better results.

One subtle point should be noted here. During training, the machine is tuning its
parameters so that it produces the desired outcome—on the training data input only.
Of course, it sees only a small fraction of all possible inputs during training—we are
not building a lookup table from known inputs to known outputs. Hence, when this
machine is released in the world, it mostly runs on input data it has never seen before.
What guarantee do we have that it will generate the right outcome on never-before-seen
data? Frankly, there is no guarantee. Only, in most real-life problems, the inputs are
not really random. They have a pattern. Hopefully, the machine will see enough during
training to capture that pattern. Then its output on unseen input will be close to the
desired value. The closer the distribution of the training data is to real life, the more
likely that becomes.

1.2

CHAPTER 1 An overview of machine learning and deep learning

A function approximation view of machine learning:
Models and their training

As stated in section 1.1, to create a brain-like machine that makes classifications or
estimations, we have to find a mathematical function (model) that transforms inputs
into corresponding desired outputs. Sadly, however, in typical real-life situations, we
do not know that transformation function. For instance, we do not know the function
that takes in past prices, world events, and so on and estimates the future price of a
stock—something that stops us from building a stock price estimator and getting rich.
All we have is the training data—a set of inputs on which the output is known. How do
we proceed, then? Answer: we will try to model the unknown function. This means we
will create a function that will be a proxy or surrogate to the unknown function. Viewed
this way, machine learning is nothing but function approximation—we are simply trying
to approximate the unknown classification or estimation function.

Let’s briefly recap the main ideas from the previous section. In machine learning,
we try to solve problems that can be abstractly viewed as transforming a set of inputs
to an output. The output is either a class or an estimated value. Since we do not know
the true transformation function, we try to come up with a model function. We start by
designing—using our physical understanding of the problem—a model function with
tunable parameter values that can serve as a proxy for the true function. This is the model
architecture, and the tunable parameters are also known as weights. The simplest model
architecture is one where the output is a weighted sum of the input values. Determining
the model architecture does not fully determine the model—we still need to determine
the actual parameter values (weights). That is where training comes in. During training,
we find an optimal set of weights that transform the training inputs to outputs that
match the corresponding training outputs as closely as possible. Then we deploy this
machine in the world: its weights are estimated and the function is fully determined,
so on any input, it simply applies the function and generates an output. This is called
inferencing. Of course, training inputs are only a fraction of all possible inputs, so there
is no guarantee that inferencing will yield a desired result on all real inputs. The success
of the model depends on the appropriateness of the chosen model architecture and
the quality and quantity of training data.

Obtaining training data

After mastering machine learning, the biggest struggle turns out to be the procurement
of training data. When practitioners can afford it, it is common practice to use humans
to hand-generate the outputs corresponding to the training data inputs (these target
outputs are sometimes referred to as ground truth). This process, known as human
labeling or human curation, involves an army of human beings looking at a substantial
number of training data inputs and producing the corresponding ground truth outputs.
For some well-researched problems, we may be lucky enough to get training data on
the internet; otherwise it becomes a daunting challenge. More on this later.

1.3

1.3.1

1.3.2

1.3 A simple machine learning model: The cat brain 7

Now, let’s study the process of model building with a concrete example: the cat brain
machine shown in figure 1.1.

A simple machine learning model: The cat brain

For the sake of simplicity and concreteness, we will deal with a hypothetical cat that
needs to make only one decision in life: whether to run away from the object in front
of it, ignore it, or approach and purr. And it makes this decision based on only two
quantitative inputs pertaining to the object in front of it (shown in figure 1.1).

NOTE This chapter is a lightweight overview of machine/deep learning. As such,
it relies some on mathematical concepts that we will introduce later. You are
encouraged to read this chapter now, nonetheless, and perhaps re-read it after
digesting the chapters on vectors and matrices.

Input features

The input features are xy, signifying hardness, and x1, signifying sharpness. Without loss
of generality, we can normalize the inputs. This is a pretty popular trick whereby the
input values ranging between a minimum possible value v,,;, and a maximum possible
value vy, are transformed to values between 0 and 1. To transform an arbitrary input
value v to a normalized value v,,,,,, we use the formula

(U - vmin)
(vmux - vmin)
In mathematical parlance, transformation via equation 1.1, v € [Upin, Unaz] = Vnorm €

[0, 1] maps the values v from the input domain [vyiy, Une] to the output values v;,o.,
in the range [0, 1].

(1.1)

Unorm =

N Zo 9
A two-element vector X = € [0, 1]° represents a single input instance succinctly.
X1

Output decisions

The final output is multiclass and can take one of three possible values: 0, implying
running away from the object in front of the cat; I, implying ignoring the object; and
2, implying approaching the object and purring. It is possible in machine learning to
compute the class directly. However, in this example, we will have our model estimate a
threat score. It is interpreted as follows: threat high positive = run away, threat near zero =
ignore, and threat high negative = approach and purr (negative threat is attractive).

We can make a final multiclass run/ignore/approach decision based on threat score
by comparing the threat score y against a threshold ¢, as follows:

>0 — high threat, run away
y >=-0 and <=6 — threat close to zero, ignore (1.2)

< -0 — negative threat, approach and purr

1.3.3

1.3.4

1.3.5

CHAPTER 1 An overview of machine learning and deep learning

Model estimation

Now for the all-important step: we need to estimate the function that transforms the
input vector to the output. With slight abuse of terms, we will denote this function as
well as the output by y. In mathematical notation, we want to estimate y (7).

Of course, we do not know the ideal function. We will try to estimate this unknown
function from the training data. This is accomplished in two steps:

Model architecture selection—Designing a parameterized function that we expect is a
good proxy or surrogate for the unknown ideal function

Training—Estimating the parameters of that chosen function such that the outputs
on training inputs match corresponding outputs as closely as possible

Model architecture selection

This is the step where various machine learning approaches differ from one another.
In this toy cat brain example, we will use the simplest possible model. Our model
has three parameters, wy, w1, b. They can be represented compactly with a single two-

. |wo .
element vector w = € R? and a constant bias b € R (here, R denotes the set of all

w1
real numbers, R? denotes the set of 2D vectors with both elements real, and so on). It
emits the threat score, y, which is computed as

X0 N
+bh=wm"

Xy

¥ (20, x1) =woxo + w11 +b = [wo wl] T+b (1.3)

Note that 4 is a slightly special parameter. It is a constant that does not get multiplied
by any of the inputs. It is common practice in machine learning to refer to it as bias; the
other parameters are multiplied by inputs as weights.

Model training

Once the model architecture is chosen, we know the exact parametric function we are
going to use to model the unknown function y (#) that transforms inputs to outputs.
We still need to estimate the function’s parameters. Thus, we have a function with
unknown parameters, and the parameters are to be estimated from a set of inputs with
known outputs (training data). We will choose the parameters so that the outputs on
the training data inputs match the corresponding outputs as closely as possible.

Iterative training

This problem has been studied by mathematicians and is known as a function-fitting
problem in mathematics. What changed with the advent of machine learning, however,
is the sheer scale. In machine learning, we deal with training data comprising millions

1.3 A simple machine learning model: The cat brain 9

and millions of items. This altered the philosophy of the solution. Mathematicians
use a closed-form solution, where the parameters are estimated by directly solving
equations involving all the training data items together. In machine learning, we go
for iterative solutions, dealing with a few training data items (or perhaps only one) at
a time. In the iterative solution, there is no need to hold all the training data in the
computer’s memory. We simply load small portions of it at a time and deal with only
that portion. We will exemplify this with our cat brain example.

Concretely, the goal of the training process is to estimate the parameters wy, w, b or,
equivalently, the vector @ along with constant b from equation 1.3 in such a way that the
output y (g, x1) on the training data input (g, 1) matches the corresponding known
training data outputs (aka ground truth [GT]) as much as possible.

Let the training data consist of N +1 inputs 7Oz 2N Here, each) is a
2 x 1 vector denoting a single training data input instance. The corresponding desired
threat values (outputs) are yé?) , yg), e yéi\y), say (here, the subscript gt denotes ground
truth). Equivalently, we can say that the training data consists of N +1 (input, output)

pairs:
- 0 - 1 >(N N
(x(o),yg(rt)) s (x(]),yé(,l)) s (x(\),yg(,t))

Suppose @ denotes the (as-yetunknown) optimal parameters for the model. Then,
given an arbitrary input Z, the machine will estimate a threat value of ¥y edicred = W Z+b.

On the i training data pair, (56(” , yg(i)) the machine will estimate

(@) _ =T =(i)
ypredicled =w & +b

while the desired output is yg) . Thus the squared error (aka loss) made by the machine

on the i training data instance is>

. 1\ 2
2 _ (@) (@)
¢ = (ypredi(rted Ve)

The overall loss on the entire training data set is obtained by adding the loss from each
individual training data instance:

i=N i=N i=N
. 1\ 2 1\ 2
2 _ 2 _ (@) @\~ _ ST = _ @)
E _Zei_Z(ypredicted_yg[) _Z(w xl+b yg[)
i=0 i=0 i=0

The goal of training is to find the set of model parameters (aka weights), @, that
minimizes the total error E. Exactly how we do this will be described later.

In most cases, it is not possible to come up with a closed-form solution for the optimal
@, b. Instead, we take an iterative approach depicted in algorithm 1.1.

2 In this context, note that it is a common practice to square the error/loss to make it sign independent. If
we desire an output of, say, 10, we are equally happy/unhappy if the output is 9.5 or 10.5. Thus, an error of
+5 or -5 is effectively the same; hence we make the error sign independent.

10

1.3.6

14

CHAPTER 1 An overview of machine learning and deep learning

Initialize parameters ®w,b with random values
> iterate while error not §mall enough
while (E%= Zi(} (@T;?,- +b —yg))2 > threshold) do
> iterate over all training data instances
for Vie[0,N] do
> details provided in section 3.3 after gradients are introduced
Adjust @,b so that E? is reduced
end for
end while
> remember the final parameter values as optimal

77}*(_171, b*(_b

In this algorithm, we start with random parameter values and keep tuning the parameters
so the total error goes down at least a little. We keep doing this until the error becomes
sufficiently small.

In a purely mathematical sense, we continue the iterations until the error is minimal.
But in practice, we often stop when the results are accurate enough for the problem
being solved. It is worth re-emphasizing that error here refers only to error on training
data.

Inferencing

Finally, a trained machine (with optimal parameters @., b, is deployed in the world. It
will receive new inputs Z and will infer ¥, edicied (Z) = ! % +b.. Classification will happen
by thresholding ¥, cdicied> @s shown in equation 1.2.

Geometrical view of machine learning

Each input to the cat brain model is an array of two numbers: xy (signifying hardness of
the object), x; (signifying sharpness of the object) or, equivalently, a 2 x 1 vector Z. A
good mental picture is to think of the input as a point in a high-dimensional space. The
input space is often called the feature space—a space where all the characteristic features
to be examined by the model are represented. The feature space dimension is two in
this case, but in real-life problems it will be in the hundreds or thousands or more. The
exact dimensionality of the input changes from problem to problem, but the intuition
that it is a point remains.

The output y should also be viewed as a point in another high-dimensional space. In
this toy problem, the dimensionality of the output space is one, but in real problems, it
will be higher. Typically, however, the number of output dimensions is much smaller
than the number of input dimensions.

Geometrically speaking, a machine learning model essentially maps a point in the
feature space to a point in the output space. It is expected that the classification or

1.4 Geometrical view of machine learning 11

estimation job to be performed by the model is easier in the output space than in the
feature space. In particular, for a classification job, input points belonging to separate classes
are expected to map to separate clusters in output space.

Let’s continue with our example cat brain model to illustrate the idea. As stated
earlier, our feature space is 2D, with two coordinate axes X signifying hardness and
X signifying sharpness.3 Individual points in this 2D space are denoted by coordinate
values (zp, x1) in lowercase (see figure 1.2). As shown in the diagram, a good way to
model the threat score is to measure the distance from line xg +x; =1.

From coordinate geometry, in a 2D space with coordinate axes Xy and X7, the signed
atb—1

distance of a point (a, b) from the line xp+x1=11isy = . Examining the sign of y,
we can determine which side of the separator line the input point belongs to. In the
simple situation depicted in figure 1.2, observation tells us that the threat score can be
proxied by the signed distance, y, from the diagonal line xy +x; — 1 =0. We can make
the run/ignore/approach decision by thresholding y. Values close to zero imply ignore,

positive values imply run away, and negative values imply approach and purr. From

Hard and sharp objects
X4 (sharpness)

0.1

+ J + 4+
+ : +
<.+ + + o,
0x+ 3
+
N y(p)//
7 7/
7/
7/
18‘&,3'/
, s 8
S o\ S
ya) 7 F N
7 Ky 8
7/ 2 & 5
7/
/ 'X‘;g* s
_ 7
- ¥
- Q
—F (1,0)
Xo
(hardness)

Soft and roundish objects

Figure 1.2 2D input point space for the cat brain model. The bottom-left corner shows objects with low
hardness and low sharpness objects (-), while the top-right corner shows objects with high hardness
and high sharpness (+). Intermediate values are near the diagonal ($).

3 We use X, X1 as coordinate symbols instead of the more familiar X, Y so as not to run out of symbols
when going to higher-dimensional spaces.

12

1.5

1.6

CHAPTER 1 An overview of machine learning and deep learning

high school geometry, the distance of an arbitrary input point (xg = a, x1 =b) from line

zo+x1—1=01is ‘”}’TQ_l Thus, the function y (xg, x1) = 21 js a possible model for the

cat brain threat estimator function. Training should converge to wy = %, wy = % and
=_L1
e | .
Thus, our simplified cat brain threat score model is
1 1 1
¥ (20, ¥1) = —=xo + —=a1 — (1.4)

V2N VR

It maps the 2D input points, signifying the hardness and sharpness of the object in front
of the cat, to a 1D value corresponding to the signed distance from a separator line.
This distance, physically interpretable as a threat score, makes it possible to separate
the classes (negative threat, neutral, positive threat) via thresholding, as shown in
equation 1.2. The separate classes form distinct clusters in the output space, depicted by
+, —, and $ signs in the output space. Low values of inputs produce negative threats (the
cat will approach and purr): for example, y (0, 0) = —%. High values of inputs produce
high threats (the cat will run away): for example, y (1, 1) = % Medium values of inputs
produce near-zero threats (the cat will ignore the object): for example, y (0.5, 0.5) =
0. Of course, because the problem is so simple, we could come up with the model
parameters via simple observation. In real-life situations, this will need training.

The geometric view holds in higher dimensions, too. In general, an n-dimensional
input vector Z is mapped to an m-dimensional output vector (usually m <n) in such a
way that the problem becomes much simpler in the output space. An example with 3D
feature space is shown in figure 1.3.

Regression vs. classification in machine learning

As briefly outlined in section 1.1, there are two types of machine learning models:
regressors and classifiers.

In a regressor, the model tries to emit a desired value given a specific input. For
instance, the first stage (threat-score estimator) of the cat brain model in section 1.3 is
a regressor model.

Classifiers, on the other hand, have a set of prespecified classes. Given a specific
input, they try to emit the class to which the input belongs. For instance, the full cat
brain model has three classes: (1) run away, (2) ignore, and (8) approach and purr.
Thus, it takes an input (hardness and sharpness values) and emits an output decision
(aka class).

In this example, we convert a regressor into a classifier by thresholding the output of
the regressor (see equation 1.2). It is also possible to create models that directly output
the class without having an intervening regressor.

Linear vs. nonlinear models

In figure 1.2 we faced a rather simple situation where the classes could be separated by a
line (a hyperplane in higher-dimensional surfaces). This does not happen often in real

1.6 Linear vs. nonlinear models 13

z Y P R
ve T
i t I
i
et =
i -
Model P ==
v — : L
Transform U
: 4t * 5 - =
HE I .
[,:
Feature space X Output space X

Figure 1.3 A model maps the points from input (feature) space to an output space where it is easier to
separate the classes. For instance, in this figure, input feature points belonging to two classes, red (+)
and green (-) are distributed over the volume of a cylinder in a 3D feature space. The model unfurls the
cylinder into a rectangle. The feature points are mapped onto a 2D planar output space where the two
classes can be discriminated with a simple linear separator.

life. What if the points belonging to different classes are as shown in figure 1.4? In such
cases, our model architecture should no longer be a simple weighted combination. It is
a nonlinear function. For instance, check the curved separator in figure 1.4. Nonlinear
models make sense from the function approximation point of view as well. Ultimately,
our goal is to approximate very complex and highly nonlinear functions that model the

classification or estimation processes demanded by life. Intuitively, it seems better to
use nonlinear functions to model them.

Figure 1.4 The two classes (indicated by light

and dark shades) cannot be separated by a line.

A curved separator is needed. In 3D, this is equiva-
lent to saying that no plane can separate the
surfaces; a curved surface is necessary. In still
higher-dimensional spaces, this is equivalent to
saying that no hyperplane can separate the classes;
a curved hypersurface is needed.

14

1.7

CHAPTER 1 An overview of machine learning and deep learning

A very popular nonlinear function in machine learning is the sigmoid function, so
named because it looks like the letter S. The sigmoid function is typically symbolized by
the Greek letter o . It is defined as

1
1+e®

o(x)= (1.5)

The graph of the sigmoid function is shown in figure 1.5. Thus we can use the follow-
ing popular model architecture (still kind of simple) that takes the sigmoid (without

parameters) of the weighted sum of the inputs:

y=c (@Tﬂb) (1.6)

0.5

L I o I 1)
-6 -4 =2 0 2 4 6 Figure 1.5 The sigmoid graph

The sigmoid imparts the nonlinearity. This architecture can handle relatively more
complex classification tasks than the weighted sum alone. In fact, equation 1.6 depicts
the basic building block of a neural network.

Higher expressive power through multiple nonlinear layers:
Deep neural networks

In section 1.6 we stated that adding nonlinearity to the basic weighted sum yielded a
model architecture that is able to handle more complex tasks. In machine learning
parlance, the nonlinear model has more expressive power.

Now consider a real-life problem: say, building a dog recognizer. The input space
comprises pixel locations and pixel colors (x,y,r, g, b, where r, g, b denote the red,
green, and blue components of a pixel color). The input dimensionality is large (pro-
portional to the number of pixels in the image). Figure 1.6 gives a small glimpse
of the possible variations in background and foreground that a typical deep learn-
ing system (such as a dog image recognizer) has to deal with. We need a machine
with really high expressive power here. How do we create such a machine in a princi-
pled way?

Instead of generating the output from input in a single step, how about taking a
cascaded approach? We will generate a set of intermediate or hidden outputs from the

1.7 Higher expressive power through multiple nonlinear layers: Deep neural networks 15

Figure 1.6 A glimpse into background and foreground
variations that a typical deep learning system (here, a dog
image recognizer) has to deal with

inputs, where each hidden output is essentially a single logistic regression unit. Then
we add another layer that takes the output of the previous layer as input, and so on.
Finally, we combine the outermost hidden layer outputs into the grand output.

We describe the system in the following equations. Note that we have added a
superscript to the weights to identify the layer (layer O is closest to the input; layer
L is the last layer, furthest from the input). We have also made the subscripts two-
dimensional (so the weights for a given layer become a matrix). The first subscript
identifies the destination node, and the second subscript identifies the source node
(see figure 1.7).

Input layer Layer O Layer 1 L -1 layer Final layer

Figure 1.7 Multilayered neural network

The astute reader may notice that the following equations do not have an explicit bias
term. That is because, for simplicity of notation, we have rolled it into the set of weights
and assumed that one of the inputs (say, xo = 1) and the corresponding weight (such as
wy) is the bias.

16 CHAPTER 1 An overview of machine learning and deep learning

Layer 0: generates ny hidden outputs from n + 1 inputs

0 0 0 0
h(()) = loa (wéo)xo +wél>x1 +-- -w(()n)xn)

h;o) =0 (wig)xo +w1((1))xl +-- -wfg)xn)
0 0 0 0
h,(to) =0 (w,(loéxo +wftoix1 +-- -w,(m,)lxn) (1.7)
Layer 1: generates 71 hidden outputs from 7y hidden outputs from layer 0

h(()l) =0 (w(()(l))h(()o) +wéi)h;0) +-- -w(l)h(o))

Ong "0

h}l) =0 (w}(l))h(()o) +wﬁ)hi0) +-- -w(l)h,(o))

1ng "0

1 1); (0 1); (0 1) 1(0
h,(ll) =0 (wfll())h(())+w7(llib§ 4. -w,EIZ,Oh,SO)) (1.8)

Final layer (L): generates m + 1 visible outputs from n;_; previous layer hidden outputs

WP o (wfh oD el 1)

01 Ong_1 "ML-1
Ly _ (L) (L-1) (L) (L-1) (L) ;3(L-1)
hy” =0 (wlo hy 7 Hwthy T g Ry)
L L), (L-1 L), (L-1 L) (L-1
h,(,, — (w,(no)h(()) +w,(”l)h}) 4. ~w,(m,)L_1k,(lL_l)) (1.9)

These equations are shown in figure 1.7. The machine depicted in figure 1.7 can be
incredibly powerful, with huge expressive power. We can adjust its expressive power
systematically to fit the problem at hand. It then is a neural network. We will devote the
rest of the book to studying this.

Summary

In this chapter, we gave an overview of machine learning, leading all the way up to deep
learning. The ideas were illustrated with a toy cat brain example. Some mathematical
notions (e.g., vectors) were used in this chapter without proper introduction, and you
are encouraged to revisit this chapter after vectors and matrices have been introduced.
We would like to leave you with the following mental pictures from this chapter:

Machine learning is a fundamentally different paradigm of computing. In tradi-

tional computing, we provide a step-by-step instruction sequence to the computer,
telling it what to do. In machine learning, we build a mathematical model that tries

Summary 17

to approximate the unknown function that generates a classification or estimation
from inputs.

The mathematical nature of the model function is stipulated from the physical
nature and complexity of the classification or estimation task. Models have pa-
rameters. Parameter values are estimated from training data—inputs with known
outputs. The parameter values are optimized so that the model output is as close
as possible to training outputs on training inputs.

An alternative geometric view of a machine is a transformation that maps points in
the multidimensional input space to a point in the output space.

The more complex the classification/estimation task, the more complex the ap-
proximating function. In machine learning parlance, complex tasks need machines
with greater expressive power. Higher expressive power comes from nonlinearity
(e.g., the sigmoid function; see equation 1.5) and a layered combination of simpler
machines. This takes us to deep learning, which is nothing but a multilayered
nonlinear machine.

Complex model functions are often built by combining simpler basis functions.

Tighten your seat belts: the fun is about to get more intense.

Vectors, matrices, and
tensors in machine learning

This chapter covers

Vectors and matrices and their role in data
science

Working with eigenvalues and eigenvectors
Finding the axes of a hyper-ellipse

At its core, machine learning, and indeed all computer software, is about number
crunching. We input a set of numbers into the machine and get back a different
set of numbers as output. However, this cannot be done randomly. It is important
to organize these numbers appropriately and group them into meaningful objects
that go into and come out of the machine. This is where vectors and matrices come
in. These are concepts that mathematicians have been using for centuries—we are
simply reusing them in machine learning.

In this chapter, we will study vectors and matrices, primarily from a machine
learning point of view. Starting from the basics, we will quickly graduate to advanced
concepts, restricting ourselves to topics relevant to machine learning.

We provide Jupyter Notebook-based Python implementations for most of the
concepts discussed in this and other chapters. Complete, fully functional code that
can be downloaded and executed (after installing Python and Jupyter Notebook)

18

2.1

2.1 Vectors and their role in machine learning 19

can be found at http://mng.bz/KMQ4. The code relevant to this chapter can be found
at http://mng.bz/d4nz.

Vectors and their role in machine learning

Let’s revisit the machine learning model for a cat brain introduced in section 1.3. It
takes two numbers as input, representing the hardness and sharpness of the object
in front of the cat. The cat brain processes the input and generates an output threat
score that leads to a decision to run away or ignore or approach and purr. The two input
numbers usually appear together, and it will be handy to group them into a single object.
This object will be an ordered sequence of two numbers, the first representing hardness
and the second representing sharpness. Such an object is a perfect example of a vector.

Thus, a vector can be thought of as an ordered sequence of two or more numbers,
also known as an array of numbers.' Vectors constitute a compact way of denoting a set
of numbers that together represent some entity. In this book, vectors are represented by
lowercase letters with an overhead arrow and arrays by square brackets. For instance, the

input to the cat brain model in section 1.3 was a vector ¥ = 0 , where x(represented
X1
hardness and x; represented sharpness.
Outputs to machine learning models are also often represented as vectors. For
instance, consider an object recognition model that takes an image as input and emits

a set of numbers indicating the probabilities that the image contains a dog, human,
Yo

or cat, respectively. The output of such a model is a three element vector y = |y, |,

Y2
where the number yy denotes the probability that the image contains a dog, y; denotes
the probability that the image contains a human, and y9 denotes the probability that the
image contains a cat. Figure 2.1 shows some possible input images and corresponding
output vectors.

In multilayered machines like neural networks, the input and output to a layer can be
vectors. We also typically represent the parameters of the model function (see section
1.3) as vectors. This is illustrated in section 2.3.

One particularly significant notion in machine learning and data science is the idea
of a feature vector. This is essentially a vector that describes various properties of the
object being dealt with in a particular machine learning problem. We will illustrate the
idea with an example from the world of natural language processing (NLP). Suppose
we have a set of documents. We want to create a document retrieval system where, given
anew document, we have to retrieve similar documents in the system. This essentially
boils down to estimating the similarity between documents in a quantitative fashion. We

' In mathematics, vectors can have an infinite number of elements. Such vectors cannot be expressed as
arrays—but we will mostly ignore them in this book.

20

CHAPTER 2 Vectors, matrices, and tensors in machine learning

(a) Output vector (b) Output vector
[0.9 0.01 0.1] [09 0.01 0.9

Figure 2.1 Input images and corresponding
output vectors denoting probabilities that the

e image contains a dog and/or human and/or
(c) Output vector (d) Output vector cat, respectively. Example output vectors are
[0.01 0.99 0.01] [0.88 0.9. 0.001 shown.

will study this problem in detail later, but for now, we want to note that the most natural
way to approach this is to create feature vectors for each document that quantitatively
describe the document. In section 2.5.6, we will see how to measure the similarity
between these vectors; here, let’s focus on simply creating descriptor vectors for the
documents. A popular way to do this is to choose a set of interesting words (we typically
exclude words like “and,” “if,” and “to” that are present in all documents from this
list), count the number of occurrences of those interesting words in each document,
and make a vector of those values. Table 2.1 shows a toy example with six documents

Table 2.1 Toy documents and corresponding feature vectors describing them. Words eligible for the
feature vector are bold. The first element of the feature vector indicates the number of occurrences of
the word gun and the second violence.

dy Roses are lovely. Nobody hates roses. [0 0]
dq Gun violence has reached an epidemic proportion in America. [1 1]
do The issue of gun violence is really over-hyped. One can find many instances of [2 2]

violence, where no guns were involved.
ds Guns are for violence prone people. Violence begets guns. Guns beget violence. [3 3]
dy | like guns but | hate violence. | have never been involved in violence. But | own

many guns. Gun violence is incomprehensible to me. | do believe gun owners

i s s

are the most anti violence people on the planet. He who never uses a gun will

be prone to senseless violence.
dy, Guns were used in a armed robbery in San Francisco last night. [1 0]
dg Acts of violence usually involves a weapon. [0 1]

2.1.1

2.1 Vectors and their role in machine learning 21

and corresponding feature vectors. For simplicity, we have considered only two of the
possible set of words: gun and wviolence, plural or singular, uppercase or lowercase.

As a different example, the sequence of pixels in an image can also be viewed as
a feature vector. Neural networks in computer vision tasks usually expect this feature
vector.

The geometric view of vectors and its significance in machine learning

Vectors can also be viewed geometrically. The simplest example is a two-element vector

r= o . Its two elements can be taken to be x and y, Cartesian coordinates in a two-
1

dimensional space, in which case the vector corresponds to a point in that space. Vectors
with n elements represent points in an n-dimensional space. The ability to see inputs and
outputs of a machine learning model as points allows us to view the model itself as
a geometric transformation that maps input points to output points in some high-
dimensional space. We have already seen this in section 1.4. Itis an enormously powerful
concept we will use throughout the book.

x
Avector represents a point in space. Also, an array of coordinate values like [descri-
Y

bes the position of one point in a given coordinate system. Hence, an array (of coordinate
values) can be viewed as the quantitative representation of a vector. See figure 2.2 to
get an intuitive understanding of this.

Figure 2.2 A vector describing the position of
point P with respect to point 0. The basic mental
picture is an arrowed line. This agrees with the
definition of a vector that you may have learned
in high school: a vector has a magnitude (length
of the arrowed line) and direction (indicated by
the arrow). On a plane, this is equivalent to the
ordered pair of numbers x, y, where the geometric
interpretations of x and y are as shown in the
figure. In this context, it is worthwhile to note that
only the relative positions of the points O and P
matter. If both the points are moved, keeping their
relationship intact, the vector does not change.

For a real life example, consider the plane of a page of this book. Suppose we want to
reach the top-right corner point of the page from the bottom-left corner. Let’s call the
bottom-left corner O and the top-right corner P. We can travel the width (8.5 inches)
to the right to reach the bottom-left corner and then travel the height (11 inches)
upward to reach the top-right corner. Thus, if we choose a coordinate system with the
bottom-left corner as the origin and the X-axis along the width, and the Y-axis along

8.5
the height, point P corresponds to the array representation . But we could also

11

22

2.2

221

CHAPTER 2 Vectors, matrices, and tensors in machine learning

travel along the diagonal from the bottom-left to the top-right corner to reach P from O.
Either way, we end up at the same point P.

This leads to a conundrum. The vector OP represents the abstract geometric notion
“position of P with respect to O” independent of our choice of coordinate axes. On the
other hand, the array representation depends on the choice of a coordinate system.

For example, the array 6115 represents the top-right corner point P only under a speci-

fic choice of coordinate axes (parallel to the sides of the page) and a reference point
(bottom-left corner). Ideally, to be unambiguous, we should specify the coordinate
system along with the array representation. Why don’t we ever do this in machine
learning? Because in machine learning, it doesn’t exactly matter what the coordinate
system is as long as we stick to any fixed coordinate system. Machine learning is about
minimizing loss functions (which we will study later). As such, absolute positions of
point are immaterial, only relative positions matter.

There are explicit rules (which we will study later) that state how the vector transforms
when the coordinate system changes. We will invoke them when necessary. All vectors
used in a machine learning computation must consistently use the same coordinate
system or be transformed appropriately.

One other point: planar spaces, such as the plane of the paper on which this book is
written, are two-dimensional (2D). The mechanical world we live in is three-dimensional
(3D). Human imagination usually fails to see higher dimensions. In machine learning
and data science, we often talk of spaces with thousands of dimensions. You may not be
able to see those spaces in your mind, but that is not a crippling limitation. You can use
3D analogues in your head. They work in a surprisingly large variety of cases. However,
it is important to bear in mind that this is not always true. Some examples where the
lower-dimensional intuitions fail at higher dimensions will be shown later.

PyTorch code for vector manipulations

PyTorch is an open source machine learning library developed by Facebook’s artificial
intelligence group. It is one of the most elegant practical tools for developing deep
learning applications at present. In this book, we aim to familiarize you with PyTorch
and similar programming paradigms alongside the relevant mathematics. Knowledge
of Python basics will be assumed. You are strongly encouraged to try out all the code
snippets in this book (after installing the appropriate packages like PyTorch, that is).
All the Python code in this book is produced via Jupyter Notebook. A summary of
the theoretical material presented in the code is provided before the code snippet.

PyTorch code for the introduction to vectors

Listing 2.1 shows how to create and access vectors and subvectors and slice and dice
vectors using PyTorch.

NOTE Fully functional code demonstrating how to create a vector and access its
elements, executable via Jupyter Notebook, can be found at http://mng.bz/xm8q.

2.3

2.3 Matrices and their role in machine learning 23

torch.tensor represents a multidimensional array.
The vector is a 1D tensor that can be initialized
by directly specifying values.

v = torch.tensor([0.11, 0.01, 0.98, 0.12, 0.98, Tensor elements are floats by
,0.85, 0.03, 0.55, 0.49, 0.99, default. We can force tensors
0.02, 0.31, 0.55, 0.87, 0.631, to be other types such as
dtype=torch.floaté64) float64 (double).

fi 1 =

I?Stfe ement v 101 The square bracket operator lets us access

third element = v[2] individual vector elements.

last _element = v[-1] Negative indices count from the end of the array.

second_last_element = v[-2] -1 denotes the last element.

-2 denotes the second-to-last element.

The colon operator slices off a range of

second_to_fifth elements = v[1:4]
T elements from the vector.

first to_third elements = v[:2]

last_two_elements = v([-2:] Nothing before a colon denotes the beginning
of the array. Nothing after a colon denotes the

num_elements_in v = len(v) end of the array.

u = np.array([0.11, 0.01, 0.98, 0.12, 0.98, 0.85, 0.03,
0.55, 0.49, 0.99, 0.02, 0.31, 0.55, 0.87,

0.63])
u = torch.from numpy (u) <—— Torch tensors can be initialized from NumPy arrays.
diff = v.sub(u) <—— The difference between the Torch tensor and its NumPy version is zero.
ul = u.numpy () <—— Torch tensors can be converted to NumPy arrays.

Matrices and their role in machine learning

Sometimes it is not sufficient to group a set of numbers into a vector. We have to
collect several vectors into another group. For instance, consider the input to training
a machine learning model. Here we have several input instances, each consisting of a
sequence of numbers. As seen in section 2.1, the sequence of numbers belonging to
a single input instance can be grouped into a vector. How do we represent the entire
collection of input instances? This is where the concept of matrices comes in handy
from the world of mathematics. A matrix can be viewed as a rectangular array of numbers
arranged in a fixed count of rows and columns. Each row of a matrix is a vector, and
so is each column. Thus a matrix can be thought of as a collection of row vectors. It
can also be viewed as a collection of column vectors. We can represent the entire set of
numbers that constitute the training input to a machine learning model as a matrix,
with each row vector corresponding to a single training instance.

24

CHAPTER 2 Vectors, matrices, and tensors in machine learning

Consider our familiar cat-brain problem again. As stated earlier, a single input

. . . - X0 .
instance to the machine is a vector x = , where x(y describes the hardness of the
I

objectin front of the cat. Now consider a training dataset with many such input instances,
each with a known output threat score. You might recall from section 1.1 that the goal
in machine learning is to create a function that maps these inputs to their respective
outputs with as little overall error as possible. Our training data may look as shown in
table 2.2 (note that in real-life problems, the training dataset is usually large—often
millions of input-output pairs—but in this toy problem, we will have 8 training data
instances).

Table 2.2 Example training dataset for our toy machine learning-based cat brain

Input value: Hardness | Input value: Sharpness | Output: Threat score

0 0.11 0.09 -0.8

1 0.01 0.02 -0.97
2 0.98 0.91 0.89
3 0.12 0.21 -0.68
4 0.98 0.99 0.95
5 0.85 0.87 0.74
6 0.03 0.14 -0.88
7 0.55 0.45 0.00

From table 2.2, we can collect the columns corresponding to hardness and sharpness
into a matrix, as shown in equation 2.1—this is a compact representation of the training
dataset for this problem.?

0.11 0.09
0.01 0.02
0.98 0.91
Example cat-brain dataset matrix X = 0.1z 0.21 (2.1)
0.98 0.99
0.85 0.87
0.03 0.14
0.55 0.45

Each row of matrix X is a particular input instance. Different rows represent different
input instances. On the other hand, different columns represent different feature

elements. For example, the Oth row of matrix X is the vector [xoo Zo1 | representing

2 We usually use uppercase letters to symbolize matrices.

2.4 Python code: Introducing matrices, tensors, and images via PyTorch 25

the Oth input instance. Its elements, xy9 and xo; represent different feature elements,
hardness and sharpness respectively of the Oth training input instance.

2.3.1 Matrix representation of digital images
Digital images are also often represented as matrices. Here, each element represents
the brightness at a specific pixel position (z,y coordinate) of the image. Typically, the
brightness value is normalized to an integer in the range 0 to 255. 0 is black, 255 is
white, and 128 is gray.® Following is an example of a tiny image, 9 pixels wide and 4
pixels high:

0 8 16 24 32 40 48 56 64
64 72 80 88 96 104 112 120 128
128 136 144 152 160 168 176 184 192
192 200 208 216 224 232 240 248 255

(2.2)

Iyo=

The brightness increases gradually from left to right and also from top to bottom. Iy
represents the top-left pixel, which is black. I3 g represents the bottom-right pixel, which
is white. The intermediate pixels are various shades of gray between black and white.
The actual image is shown in figure 2.3.

Figure 2.3 Image corresponding to matrix I4 9
in equation 2.2

2.4 Python code: Introducing matrices, tensors,
and images via PyTorch

For programming purposes, you can think of tensors as multidimensional arrays. Scalars
are zero-dimensional tensors. Vectors are one-dimensional tensors. Matrices are
two-dimensional tensors. RGB images are three-dimensional tensors (colorchannels x
height X width). A batch of 64 images is a four-dimensional tensor (64 X colorchannels x
height X width).

Listing 2.2 Introducing matrices via PyTorch

A matrix is a 2D array of numbers: i.e., a 2D tensor.

The entire training data input set for a machine-learning model can be viewed as a matrix.
Each input instance is one row.

Row count = number of training examples, column count = training instance size

X = torch.tensor(

3 In digital computers, numbers in the range 0..255 can be represented with a single byte of storage; hence
this choice.

26 CHAPTER 2 Vectors, matrices, and tensors in machine learning

Cat-brain training data input:

8 examples, each with two
(0.11, 0.09], [0.01, 0.02], [0.98, 0.91], values (hardness, sharpness).
[0.12, 0.21], [0.98, 0.99], [0.85, 0.87], An 8 x 2 tensor is created by
[0.03, 0.14], [0.55, 0.45] directly specifying values.

) The shape of a tensor is a list.
For a matrix, the first list

print ("Shape of the matrix is: ".format (X.shape)) element is num rows; the
second list element is num
columns.

) Square brackets extract

first_element = X[0, 0] individual matrix elements.

row 0 = X[0, :] <—— A standalone colon operator denotes all possible indices.

row 1 = X[1, 0:2] <—— The colon operator denotes the range of indices.

column 0 = X[:, 0] <— Oth column

column 1 = X[:, 1] <— 1st column

Listing 2.3 Slicing and dicing matrices

Ranges of rows and columns can be specified via the colon operator to slice off (extract) submatrices.
first 3 training examples = X[:3,] <—— Extracts the first three training examples (rows)
print ("Sharpness of 5-7 training examples is: "

Extracts the sharpness feature for the

-format (X[5:8, 11)) 5th to 7th training examples

Listing 2.4 Tensors and images in PyTorch

PyTorch tensors can be used to represent tensors.
A vector is a 1-tensor, a matrix is a 2-tensor, and a scalar is a O-tensor.

tensor = torch.rand((5, 5, 3)) <«—— Creates arandom tensor of specified dimensions

All images are tensors. An RGB image of height H, width W is a 3-tensor of shape [3, H, W].

I49 = torch.tensor([[0, 8, 16, 24, 32, 40, 48, 56, 641,
[64, 72, 80, 88, 96, 104, 112, 120, 1287,
[128, 136, 144, 152, 160, 168, 176, 184, 1921,
[192, 200, 208, 216, 224, 232, 240, 248, 255]1],
) <— 4 x9 single-channel image shown in figure 2.3

Reads a 199 x 256 x 3
img = torch.tensor (cv2.imread('../../Figures/dog3.jpg')) image from disk
%mg—b = %mg e =, 0] Usual slicing dicing operators work. Extracts the red, green,
img_g = imgl:, :, 1] and blue channels of the image as shown in figure 2.4.
mg_r = img L= BN 21 Crops out a 100 x 100 subimage
img_cropped = img[0:100, 0:100, :] as shown in figure 2.5

2.5 Basic vector and matrix operations in machine learning

In this section, we introduce several basic vector and matrix operations along with
examples to demonstrate their significance in image processing, computer vision, and

2.5 Basic vector and matrix operations in machine learning

100
125
150
175

100 150 100 150

(a) Original image (b) Red channel

25 25

50 50
75 75
100 100
125 125
150 150

175 175

100 150

100 150

(c) Green channel (d) Blue channel

Figure 2.4 Tensors and images in PyTorch

Figure 2.5 Cropped image of dog

200

200

27

28

2.5.1

CHAPTER 2 Vectors, matrices, and tensors in machine learning

machine learning. It is meant to be an application-centric introduction to linear algebra.
But it is not meant to be a comprehensive review of matrix and vector operations, for

which you are referred to a textbook on linear algebra.

Matrix and vector transpose

In equation 2.2, we encountered the matrix /4 9 depicting a tiny image. Suppose we
want to rotate the image by 90° so it looks like figure 2.6. The original matrix /4 9 and

its transpose I4T9 =1y 4 are shown here:

0 8
64 72
Iy9=
64
72
16 80
24 88
Ifg=Io4={32 96
40 104
48 112
56 120
64 198
Figure 2.6

16
80

128
136
144
152
160
168
176
184
192

24

88

192]

200
208
216
224
232
240
248

255 |

104 112 120 128
128 136 144 152 160 168 176 184 192
192 200 208 216 224 232 240 248 255

(2.3)

Image corresponding to the transpose of matrix I g shown in

equation 2.3. This is equivalent to rotating the image by 90°.

2.5.2

2.5 Basic vector and matrix operations in machine learning 29

By comparing equation 2.2 and equation 2.3, you can easily see that one can be obtained
from the other by interchanging the row and column indices. This operation is generally
known as matrix transposition.

Formally, the transpose of a matrix A,,, with m rows and n columns is another
matrix with # rows and m columns. This transposed matrix, denoted /I,T)m, is such that
AT [i, j1=A [}, i]. For instance, the value at row 0 column 6 in matrix /4 g is 48; in the
transposed matrix, the same value appears in row 6 and column 0. In matrix parlance,
L19[0,6] =17 ,[6,0] =48.

Vector transposition is a special case of matrix transposition (since all vectors are
matrices—a column vector with n elements is an 7 X 1 matrix). For instance, an arbitrary
vector and its transpose are shown next:

1

i=|o (2.4)
3

=1 2 3 (2.5)

Dot product of two vectors and its role in machine learning

In section 1.3, we saw the simplest of machine learning models where the output is
generated by taking a weighted sum of the inputs (and then adding a constant bias
value). This model/machine is characterized by the weights wp, w1, and bias b. Take
the rows of table 2.2. For example, for row 0, the input values are the hardness of the
approaching object = 0.11 and softness = 0.09. The corresponding model output will be
y=wp X 0.11 +w; X 0.09+b. In fact, the goal of training is to choose wy, w;, and b such
that model outputs are as close as possible to the known outputs; that is, y =wg X 0.11 +
wy X 0.09 +b should be as close to —0.8 as possible, y =wp x 0.01 +w; X 0.02 + b should
be as close to —0.97 as possible, that is In general, given an input instance ¥ = 0 , the
x

model output is y = xowo +x1w; +b.

We will keep returning to this model throughout the chapter. But first, let’s consider
a different question. In this toy example, we have only three model parameters: two
weights, wg, w1, and one bias b. Hence it is not very messy to write the model output flat
out as y =xowo + 21w +b. But, with longer feature vectors (that is, more weights) it will
become unwieldy. Is there a compact way to represent the model output for a specific
input instance, irrespective of the size of the input?

Turns out the answer is yes—we can use an operation called dot product from the
world of mathematics. We have already seen in section 2.1 that an individual instance of
model input can be compactly represented by a vector, say Z (it can have any number
of input values). We can also represent the set of weights as vector @—it will have the

30

2.5.3

CHAPTER 2 Vectors, matrices, and tensors in machine learning

same number of items as the input vector. The dot product is simply the element-wise

o
X1
multiplication of the two vectors X and @. Formally, given two vectors & = and
Tn
wo
w1
W= , the dot product of the two vectors is defined as
Wy
T-W=Towy+21W] + - - T, W, (2.6)

In other words, the sum of the products of corresponding elements of the two vectors is
the dot product of the two vectors, denoted a - b.

NOTE The dot product notation can compactly represent the model output as
y=w-T+b. The representation does not increase in size even when the number
of inputs and weights is large.

Consider our (by now familiar) cat-brain example again. Suppose the weight vector is

3
W= and the bias value 4 =5. Then the model output for the Oth input instance from

2

table 2.2 will be 0-11 . 5 =0.11x3+0.09x2+5=5.51. Itis another matter that these
0.09] |2

are bad choices for weight and bias parameters, since the model output 5.51 is a far cry

from the desired output —0.89. We will soon see how to obtain better parameter values.

For now, we just need to note that the dot product offers a neat way to represent the

simple weighted sum model output.

NOTE The dot product is defined only if the vectors have the same dimensions.

Sometimes the dot product is also referred to as inner product, denoted <5, 1;> Strictly
speaking, the phrase inner product is a bit more general; it applies to infinite-dimensional
vectors as well. In this book, we will often use the terms interchangeably, sacrificing
mathematical rigor for enhanced understanding.

Matrix multiplication and machine learning

Vectors are special cases of matrices. Hence, matrix-vector multiplication is a special
case of matrix-matrix multiplication. We will start with that.

2.5 Basic vector and matrix operations in machine learning 31

MATRIX-VECTOR MULTIPLICATION

- 13 .
In section 2.5.2, we saw that given a weight vector, say w = ol and the bias value b =5, the

A1
weighted sum model output upon a single input instance, say g 0ol can be represented

5 0.11] (3 . . .
using a vector-vector dot product @ - ¥ +b = . +5. As depicted in equation 2.1,

0.09| |2

during training, we are dealing with many training data instances at the same time. In
real life, we typically deal with hundreds of thousands of input instances, each having
hundreds of values. Is there a way to represent the model output for the entire training
dataset compactly, such that it is independent of the count of input instances and their
sizes?

The answer turns out to be yes. We can use the idea of matrix-vector multiplication
from the world of mathematics. The product of a matrix X and column vector @ is
another vector, denoted X . Its elements are the dot products between the row vectors

3
of X and the column vector @. For example, given the model weight vector w=| | and

2
the bias value b =5, the outputs on the toy training dataset of our familiar cat-brain
model (equation 2.1) can be obtained via the following steps:

[0.11 0.09] [0.11x3+0.09%2=0.51]

0.01 0.02 0.01x3+0.02x2=0.07
0.98 0.91 0.98x3+0.91x2=4.76
0.12 0.21||3 _ 0.12x3+0.21x2=0.78 @.7)
0.98 0.99((2 [0.98x3+0.99%x2=4.92
0.85 0.87 0.85x3+0.87x2=4.29
0.03 0.14 0.03x3+0.14x2=0.37
0.55 0.45] 10.55x3+0.45x2=2.55|
Adding the bias value of 5, the model output on the toy training dataset is
540.51=5.51]
5+0.07=5.07
5+4.76=9.76
5+0.78=5.78 2.8)
5+4.92=9.92
5+4.29=9.29
5+0.37=5.37
|5+2.55="7.55]

32

CHAPTER 2 Vectors, matrices, and tensors in machine learning

In general, the output of our simple model (biased weighted sum of input elements)
can be expressed compactly as ¥ = X@ +b.

MATRIX-MATRIX MULTIPLICATION
Generalizing the notion of matrix times vector, we can define matrix times matrix. A

matrix with m rows and p columns, say A,, ,, can be multiplied with another matrix with
p rows and n columns, say B, ,, to generate a matrix with m rows and n columns, say
Cy,n: for example, Cy,,, = A, p Bp,n. Note that the number of columns in the left matrix
must match the number of rows in the right matrix. Element 7, j of the result matrix,
C;,j, is obtained by point-wise multiplication of the elements of the ith row vector of 4
and the jth column vector of B. The following example illustrates the idea:

an ap
Az = lan ag
as ase
b1 bie
Boo =
ba1 boy
an ape
bt bie
Cs2 = lag ax
bo1 bao
as ase

cii=anbn +aigbar cro=aiibio +aiobos

= |ca1 =agbi1 +agbar o9 =as1bio + asabeo

c31=as1b11 +asebor c30=as1bio + ageboo

The computation for Cy 1 is shown via bolding by way of example.
NOTE Matrix multiplication is not commutative. In general, 4B # BA.

At this point, the astute reader may already have noted that the dot product is a spe-
cial case of matrix multiplication. For instance, the dot product between two vectors

L |Wo - |*o]
w= and x = is equivalent to transposing either of the two vectors and then
w1 X1

doing a matrix multiplication with the other. In other words,

T
wo X0 X0 ST
=lwy wi =T wW=wyxy+wir]
w X o

A= i=

=

2.5 Basic vector and matrix operations in machine learning 33

Z0
The idea works in higher dimensions, too. In general, given two vectors I = and
Tn
wo
- wl
W= , the dot product of the two vectors is defined as
Wy
Zo
- >T 1
T-0=w0IT=|wy w - w,
xﬂ
wo
w
_ =T~ _ 1
Srw=|ry 21 Tn
Wy
=20Wo +T1W1 + -+ - T Wy (2.9)

Another special case of matrix multiplication is row-vector matrix multiplication.
For example, bTA=¢or

ailr aie
[bl by bz] as1 ase| = |c1=anbi+agibe+agibs co=ai9b1 +asebs + asebs
asr ase

TRANSPOSE OF MATRIX PRODUCTS

Given two matrices A and B, where the number of columns in 4 matches the number
of rows in B (that is, it is possible to multiply them), the transpose of the product is
the product of the individual transposes, in reversed order. The rule also applies to
matrix-vector multiplication. The following equations capture this rule:

AB)T =BT AT
AZ) =77 AT
(A7)

(zTA)T —ATF (2.10)

34

2.54

CHAPTER 2 Vectors, matrices, and tensors in machine learning

Length of a vector (L2 norm): Model error

Imagine that a machine learning model is supposed to output a target value y, but it
outputs y instead. We are interested in the error made by the model. The error is the
difference between the target and the actual outputs.

Squared error

When a computing error occurs, we are only interested in how far the computed value
is from ideal. We do not care whether the computed value is bigger or smaller than
ideal. For instance, if the target (ideal) value is 2, the computed values 1.5 and 2.5
are equally in error—we are equally happy or unhappy with either of them. Hence, it
is common practice to square error values. Thus for instance, if the target value is 2
and the computed value is 1.5, the error is (1.5 — 2)? = 0.25. If the target value is
2.5, the error is (2.5 — 2)2=0.25. The squaring operation essentially eliminates the
sign of the error value. We can then follow it up with a square root, but it is OK not to.

You might ask, “But wait: squaring alters the value of the quantity. Don’'t we care
about the exact value of the error?” The answer is, we usually don’t; we only care
about relative values of errors. If the target is 2, we want the error for an output value
of, say, 2.1 to be less than the error for an output value of 2.5; the exact values of
the errors do not matter.

Let’s apply this idea of squaring to machine learning model error. As seen earlier in

3
section 2.5.3, given a model weight vector, say @ = , and the bias value b =5, the

2

0.11 0.11] |3
weighted sum model output upon a single input instance, say ,is -l [+5=

0.09 0.09] |2

5.51. The corresponding target (ideal) output, from table 2.2, is —0.8. The squared error
¢?=(-0.8 -5.51)? = 89.82 gives us an idea of how good or bad the model parameters

3, 2, 5 are. For instance, if we instead use a weight vector @ = and bias value -1,
1
Lo 0.11] (1)
we get model output -z +b = | | =1=-0.8. The output is exactly the same as
0.09] |1

the target. The corresponding squared error ¢ = (0.8 — (~0.8))2=0. This (zero error)
immediately tells us that 1, 1, —1 are much better choices of model parameters than
3,2,5.

In general, the error made by a biased weighted sum model can be expressed as
follows. If % denotes the weight vector and b denotes the bias, the output corresponding
to an input instance I can be expressed as y =w - Z +b. Let § denote the corresponding
target (ground truth). Then the error is defined as e = (y -2

2.5 Basic vector and matrix operations in machine learning 35

Thus we see that we can compute the error on a single training instance by taking the
difference between the model output and the ground truth and squaring it. How do we
extend this concept over the entire training dataset? The set of outputs corresponding
to the entire set of training inputs can be expressed as the output vector y = X + b. The
corresponding target output vector, consisting of the entire set of ground truths can be
expressed as 3. The differences between the target and model output over the entire
training set can be expressed as another vector y — . In our particular example:

5.51 -0.8 5.51 -0.8| [6.31
5.07 -0.97 5.07| [-0.97| [6.04
9.76 0.89 9.76 0.89 | |8.87
_ |5.78 - |-0.67 - _ |5.78] |-0.67| [6.45
y= y= and y-y= - =
9.92 0.97 9.92 0.97 | [8.95
9.29 0.72 9.29 0.72 | |8.57
5.37 -0.83 5.37| |-0.83| |6.2
7.55 0.00 7.55 0.00 | |7.55

Thus the total error over the entire training dataset is obtained by taking the difference
between the output and the ground truth vector, squaring its elements and adding them
up. Recalling equation 2.9, this is exactly what will happen if we take the dot product of
the difference vector with itself. That happens to be the definition of the squared magnitude
or length or L2 norm of a vector: the dot product of the vector with itself. In the previous
example, the overall training (squared) error is:

[6.31] [6.31]
6.04| [6.04
8.87| |8.87
o (= 2\ (= o\ (= T /s .\ |6.45] |6.45
E2=(y—y)‘(y—y)=(y—y) (;v—;v)= g05| |s o
8.57| |8.57
6.2 | 6.2
7.55| |7.55]

=(6.31)% + (6.04) + (8.87)? + (6.45)% + (8.95)% + (8.57)2 + (6.2)% + (7.55)*

v
O S - - ST
Formally, the length of a vector 9=| |, denoted |||, is defined as ||3||=Vd!o
Uy

= ”(1% +v§ +---v2. This quantity is sometimes called the L2 norm of the vector.

36

2.5.5

2.5.6

CHAPTER 2 Vectors, matrices, and tensors in machine learning

In particular, given a machine learning model with output vector j and a target
vector ¥, the error is the same as the magnitude or L2 norm of the difference vector

_ _ _ _ T ,_
e=|y-yll= (y—y)-(y—y)= (y—y) (y—y)
Geometric intuitions for vector length

x

For a 2D vectoru=| |, as seen in figure 2.2, the L2 norm ||7]| = vz + 2 is nothing but
Y

the hypotenuse of the right-angled triangle whose sides are elements of the vector. The

same intuition holds in higher dimensions.
A unit vector is a vector whose length is 1. Given any vector 9, the corresponding
unit vector can be obtained by dividing every element by the length of that vector. For

1
example, given 5=| |, length [|7]|=V12+12=+2 and the corresponding unit vector
1

D
1l

. Unit vectors typically represent a direction.

- o

NOTE Unit vectors are conventionally depicted with the hat symbol as opposed

to the little overhead arrow, as in #7 @ =1.

In machine learning, the goal of training is often to minimize the length of the error
vector (the difference between the model output vector and the target ground truth
vector).

Geometric intuitions for the dot product: Feature similarity

Consider the document retrieval problem depicted in table 2.1 one more time. We
have a set of documents, each described by its own feature vector. Given a pair of such
documents, we must find their similarity. This essentially boils down to estimating the
similarity between two feature vectors. In this section, we will see that the dot product
between a pair of vectors can be used as a measure of similarity between them.

For instance, consider the feature vectors corresponding to ds and d in table 2.1.

1 0
They are and | |. The dot product between them is 1 x0+0x 1=0. This is low
0 1

and agrees with our intuition that there is no common word of interest between them,
so the documents are very dissimilar. On the other hand, the dot product between

3
feature vectors of ds and dy is | [=3%x5+3x5=30. This is high and agrees with
3] |5

our intuition that they have many commonalities in words of interest and are similar
documents. Thus, we get the first glimpse of an important concept. Loosely speaking,
similar vectors have larger dot products, and dissimilar vectors have near-zero dot products.

2.5 Basic vector and matrix operations in machine learning 37

We will keep revisiting this problem of estimating similarity between feature vectors
and solve it with more and more finesse. As a first attempt, we will now study in greater
detail how dot products measure similarities between vectors. First we will show that
the component of a vector along another is yielded by the dot product. Using this, we
will show that the “similarity/agreement” between a pair of vectors can be estimated
using the dot product between them. In particular, we will see that if the vectors point
in more or less the same direction, their dot products are higher than when the vectors
are perpendicular to each other. If the vectors point in opposite directions, their dot
product is negative.

DOT PRODUCT MEASURES THE COMPONENT OF ONE VECTOR ALONG ANOTHER
Let’s examine a special case first: the component of a vector along a coordinate axis.

This can be obtained by multiplying the length of the vector with the cosine of the angle
between the vector and the relevant coordinate axis. As shown for 2D in figure 2.7a, a
vector 9 can be broken into two components along the X and Y axes as

[|lo]| cos @ _|llvll cos 6

v= =
[|lv]| cos (90° — 6) [|v]| sin 6

Note how the length of the vector is preserved:

vl| cos @
ol = loll ((30820+Sin2 0)=||v||
||v]| sin 6
Y
a= |ax ay]T
Y (0,0, = [fan (8 +9))
(0., = IBlisin (4)) b= [by b,]7
U2 — T Ny A S r Yy
Oay=[alsind) @ = [a, a,)”
0
b ¢ . -
(az = |d|cosh,0) X (a0 = [[@lcos (94 9),0) (be=1Hlcos().0) X
(a) Components of a 2D vector along coordinate axes. (b) Dot product as a component of one vector along another
Note that ||@|| is the length of hypotenuse. i-b=dTh=ayh, +ayby = ||| lbllcos ().

Figure 2.7 Vector components and dot product

Now let’s study the more general case of the component of one vector in the direction
of another arbitrary vector (figure 2.7b). The component of a vector @ along another
vector b is @ -b=a’ b. This is equivalent to ||@|||[b]|cos (8), where @ is the angle between

38

CHAPTER 2 Vectors, matrices, and tensors in machine learning

the vectors @ and b. (This has been proven for the two-dimension case discussed in
section A.l of the appendix. You can read it if you would like deeper intuition.)

DOT PRODUCT MEASURES THE AGREEMENT BETWEEN TWO VECTORS
The dot product can be expressed using the cosine of the angle between the vectors.

Given two vectors @ and b, if 8 is the angle between them, we have (see figure 2.7b)

-

-b=a,b, +ayb, for two dimensions

Ql

-

b=a"b=\@||||b|lcos (8) for all dimensions (2.11)

Ql

Expressing the dot product using cosines makes it easier to see that it measures the
agreement (aka correlation) between two vectors. If the vectors have the same direction,
the angle between them is 0 and the cosine is 1, implying maximum agreement. The
cosine becomes progressively smaller as the angle between the vectors increases, until
the two vectors become perpendicular to each other and the cosine is zero, implying
no correlation—the vectors are independent of each other. If the angle between them
is 180°, the cosine is —1, implying that the vectors are anti-correlated. Thus, the dot
product of two vectors is proportional to their directional agreement.

What role do the vector lengths play in all this? The dot product between two vectors
is also proportional to the lengths of the vectors. This means agreement scores between
bigger vectors are higher (an agreement between the US president and the German
chancellor counts more than an agreement between you and me).

If you want the agreement score to be neutral to the vector length, you can use a
normalized dot product between unit-length vectors along the same directions:

a’b

-

cosine_similarity (Zi, b) cos (0)

lallol
The normalized dot product (aka cosine similarity measure) indicates pure directional
agreement. Itis often used in document processing. Suppose we have some query text
that we want to match against various archive documents and retrieve them rank-ordered
by their similarity to the query text. A descriptor vector corresponds to the query text
as well as to each archived document. We can use the dot product between descriptor
vectors as a measure of similarity, but we do not want longer documents to automatically
score higher in similarity. Hence, we use cosine similarity to make the similarity score
independent of the length of the document. Document retrieval and cosine similarity are
discussed in detail in section 4.6.1.

DOT PRODUCT AND THE DIFFERENCE BETWEEN TWO UNIT VECTORS
To obtain further insight into how the dot product indicates agreement or correla-

Uy Ux
tion between two directions, consider the two unit vectors # = Uy and 9= vy |- The

Uz Uz

Uy — Uy

difference between them is 4 — 0 = Uy =0y |-

Uy — Uy

2.6

2.7

2.7.1

2.7 Python code: Basic vector and matrix operations via PyTorch 39

Note that since they are unit vectors, ||%|| = [u? + qu +ul =|9] = \fv? +vy2 +v2=1. The

length of the difference vector

PN 2
”u_v”=\/(ux_vx)2+(uy_vy) +(uz_vz)2
= \/uf +up +uf +0F +07 +02 — 2 (4,0, +uy0y +1:0;)

=V2-2iTo=+2(1—a-9)

From the last equality, it is evident that a larger dot product implies a smaller difference:

that is, more agreement between the vectors.

Orthogonality of vectors and its physical significance

Try moving an object at right angles to the direction in which you are pushing it. You
will find it impossible. The larger the angle, the less effective your force vector becomes
(finally becoming totally ineffective at a 90° angle). This is why it is easy to walk on a
horizontal surface (you are moving at right angles to the direction of gravitational pull,
so the gravity vector is ineffective) but harder on an upward incline (the gravity vector
is having some effect against you).

These physical notions are captured mathematically in the notion of a dot product.
The dot product between two vectors d@ (say, the push vector) and b (say, the displacement
of the pushed object vector) is ||@|| ||/;||cos9, where 6 is the angle between the two vectors.
When 6 is 0 (the two vectors are aligned), cos6 =1, the maximum possible value of cos8,
so push is maximally effective. As 6 increases, cos€ decreases, and push becomes less
and less effective. Finally, at 8 =90°, cosf =0, and push becomes completely ineffective.

Two vectors are orthogonal if their dot product is zero. Geometrically, this means
the vectors are perpendicular to each other. Physically, this means the two vectors are
independent: one cannot influence the other. You can say there is nothing in common

1
between orthogonal vectors. For instance, the feature vector for ds is and that for dg
0

is in table 2.1. These are orthogonal (dot product is zero), and you can easily see
1

that none of the feature words (gun, violence) are common to both documents.

Python code: Basic vector and matrix operations via PyTorch

In this section, we use Python PyTorch code to illustrate many of the concepts discussed
earlier.

NOTE Fully functional code for this section, executable via Jupyter Notebook,
can be found at http://mng.bz/ryzE.

PyTorch code for a matrix transpose

The following listing shows the PyTorch code for a matrix transpose.

40 CHAPTER 2 Vectors, matrices, and tensors in machine learning

Listing 2.5 Transpose

The torch.arange function creates a vector whose elements go from start to stop in increments of step.
Here we create a 4 x 9 image corresponding to I ¢ in equation 2.2, shown in figure 2.3.

—> TI49 = torch.stack([torch.arange(0, 72, 8), torch.arange(64, 136, 8),
torch.arange (128, 200, 8), torch.arange (192, 264, 8)1])

The transpose operator interchanges rows and columns.
The 4 x 9 image becomes a 9 x 4 image (see figure 2.6).
The element at position (i, j) is interchanged with the element at position (j, 7).

—> 149 _t = torch.transpose(I49, 0, 1)

for i in range (0, I49.shape(0]):

for j in range (0, I49.shapell]): Interchanged elemen.ts of the original
assert T49[i] [§] == 149 t[j][i] and transposed matrix are equal.

The .T operator retrieves
assert torch.allclose(I49 t, I49.T, le-5) the transpose of an array.

2.7.2 PyTorch code for a dot product

The dot product of two vectors @ and b represents the components of one vector along
the other. Consider two vectors @ = [a; ag as] and b= [by by b3]. Then a.b =a1by + asbs +
agbg.

Listing 2.6 Dot product

a = torch.tensor([1, 2, 31])
b = torch.tensor([4, 5, 6])
a_dot_b = torch.dot(a, b)
print ("Dot product of these two vectors is: "
" format (a_dot_b)) <— Outputs 32: 1 x4+2%5+3 %6

Dot product of perpendicular vectors is zero
vx = torch.tensor([1, 0]) # a vector along X-axis

vy = torch.tensor ([0, 1]) # a vector along Y-axis
print ("Example dot product of orthogonal vectors:"
" format (torch.dot (vx, vy))) <— Outputs 0: 1%0+0=%1

2.7.3 PyTorch code for matrix vector multiplication

Consider a matrix A4, , with m rows and n columns that is multiplied with a vector b,
with n elements. The result is a m element column vector ¢,, . In the following example,

m=3and n=2.
ayi; a c1=ai1br +arobe
by
ag age ; = |cg = ag1bg + ageby
9
asy asg c3 =as1bg + agebe
In general,

¢i = anby +aigbs +- - -+ ainby

2.7 Python code: Basic vector and matrix operations via PyTorch 41

Listing 2.7 Matrix vector multiplication

A linear model comprises a weight vector w and bias b.
For each training data instance &;, the model outputs y; =55sz +b.

For the training data matrix X (whose rows are training data instances), the model outputs Xw +b = 3.

X = torch.tensor([[0.11, 0.09], [0.01, 0.02], [0.98, 0.91], [0.12, 0.21],
[0.98, 0.99], [0.85, 0.87], [0.03, 0.14], [0.55, 0.45],
[0.49, 0.51], [0.99, 0.01], [0.02, 0.89], [0.31, 0.47],
[0.55, 0.29], [0.87, 0.76], [0.63, 0.24]11) Cat-brain 15 x 2

‘—‘ training data matrix
Random initialization (equation 2.7)
w = torch.rand((2, 1)) ‘_i of weight vector
b =5.0

Model training output: y = X +b.
The scalar b is automatically replicated to create a vector.

y = torch.matmul (X, w) + b

2.7.4 PyTorch code for matrix-matrix multiplication

Consider a matrix A4, , with m rows and p columns. Let’s multiply it with another
matrix B, , with p rows and n columns. The resultant matrix C,, , contains m rows and
n columns. Note that the number of columns in the left matrix 4 should match the
number of rows in the right matrix B:

il ci2| e aie
b1 big

Co1 C22| = (a1 a9
ba1 boy

cs1 cs2| |asi ase
c11 = ay1b11 +arebar
cr2=aibig +aiobes
co1 = ag1b11 + agebe;
co9 = ag1big + agabo
c31 =as1bi1 +asebor
c30 = ag1big + ageboo

»
Gij = Z aipbp,j
i=1

In general,

Listing 2.8 Matrix-matrix multiplication

A = torch.tensor([[1, 2], [3, 41, [5, 611])
B = torch.tensor([[7, 8], [9, 1011)
C=AB = (i, j] is the dot

product of the ith row of A and
Jjth column of B.

=157 64

1 2
C = torch.matmul (A, B) <— 3 4
5 6 89 100

42 CHAPTER 2 Vectors, matrices, and tensors in machine learning

w = torch.tensor([1l, 2, 3])

x = torch.tensor([4, 5, 6]) The dot product can be viewed
assert torch.dot(w, x) == torch.matmul (w.T, x) *-% as a row matrix multiplied by a
column matrix.

2.7.5 PyTorch code for the transpose of a matrix product

Given two matrices 4 and B, where the number of columns in 4 matches the number
of rows in B, the transpose of their product is the product of the individual transposes
in reversed order. (AB)T =BT AT .

Listing 2.9 Transpose of a matrix product

Asserts equality between (AB)” and BT AT

assert torch.all (torch.matmul (A, B).T == torch.matmul(B.T, A.T))

Applies to matrix-vector multiplication, too: (ATE)T =iTA

assert torch.all (torch.matmul (A.T, x).T == torch.matmul (x.T, A))

2.8 Multidimensional line and plane equations and machine learning

Geometrically speaking, what does a machine learning classifier really do? We provided
the outline of an answer in section 1.4. You are invited to review that and especially
figures 1.2 and 1.3. We will briefly summarize here.

Inputs to a classifier are feature vectors. These vectors can be viewed as points in some
multidimensional feature space. The task of classification then boils down to separating
the points belonging to different classes. The points may be all jumbled up in the input
space. It is the model’s job to transform them into a different (output) space where it is
easier to separate the classes. A visual example of this was provided in figure 1.3.

What is the geometrical nature of the separator? In a very simple situation, such as
the one depicted in figure 1.2, the separator is a line in 2D space. In real-life situations,
the separator is often a line or a plane in a high-dimensional space. In more complicated
situations, the separator is a curved surface, as depicted in figure 1.4.

In this section, we will study the mathematics and geometry behind two types of
separators, lines, and planes in high-dimensional spaces, aka hyperlines and hyperplanes.

2.8.1 Multidimensional line equation
In high school geometry, we learned y =mx + ¢ as the equation of a line. But this does
not lend itself readily to higher dimensions. Here we will study a better representation
of a straight line that works equally well for any finite-dimensional space.
As shown in figure 2.8, a line joining vectors @ and b can be viewed as the set of points
we will encounter if we

Start at point @
Travel along the direction b — @

Different points on the line are obtained by traveling different distances. Denoting
this arbitrary distance by @, the equation of the line joining vectors @ and b can be

2.8.2

2.12 Linear systems and matrix inverse 43

0 X

Figure 2.8 Any point £ on the line joining two vectors a, bis givenbyr=a+a (17 - H).

expressed as
P=i+a (5—5):(1 —a)i+ab
or (1-a)d+ab-7=0 (2.12)

Equation 2.12 says that any point on the line joining @ and b can be obtained as a
weighted combination of @ and b, the weights being @ and 1 — «. By varying a, we obtain
different points on the line. Also, different ranges of « values yield different segments
on the line. As shown in figure 2.8, values of @ between 0 and 1 yield points between a
and b. Negative values of @ yield points to the left of @. Values of @ greater than 1 yield
points to the right of b. This equation for a line works for any dimensions, not just two.

Multidimensional planes and their role in machine learning

In section 1.5, we encountered classifiers. Let’s take another look at them. Suppose we
want to create a classifier that helps us make buy or no-buy decisions on stocks based
on only three input variables: (1) momentum, or the rate at which the stock price is
changing (positive momentum means the stock price is increasing and vice versa);

44

CHAPTER 2 Vectors, matrices, and tensors in machine learning

(2) the dividend paid last quarter; and (8) volatility, or how much the price has fluctuated
in the last quarter. Let’s plot all training points in the feature space with coordinate
axes corresponding to the variables momentum, dividend, volatility. Figure 2.9 shows that
the classes can be separated by a plane in the three-dimensional feature space.

Momentum

Volatility

Figure 2.9 A toy machine learning classifier for stock buy vs. no-buy decision-making. A plus (+) indicates
no-buy, and a dash (-) indicates buy. The decision is made based on three input variables: momentum,
dividend, and volatility.

Geometrically speaking, our model simply corresponds to this plane. Input points above
the plane indicate buy decisions (dashes [-]), and input points indicate no-buy decisions
(pluses [+]). In general, you want to buy high-positive-momentum stocks, so points at
the higher end of the momentum axis are likelier to be buy. However, this is not the only
indicator. For more volatile stocks, we demand higher momentum to switch from no-buy
to buy. This is why the plane slopes upward (higher momentum) as we move rightward
(higher volatility). Also, we demand less momentum for stocks with higher dividends.
This is why the plane slopes downward (lower momentum) as we go toward higher
dividends.

Real problems have more dimensions, of course (since many more inputs are involved
in the decision), and the separator becomes a hyperplane. Also, in real-life problems,
the points are often too intertwined in the input space for any separator to work. We
first have to apply a transformation that maps the point to an output space where it is
easier to separate. Given their significance as class separators in machine learning, we
will study hyperplanes in this section.

In high school 3D geometry, we learned ax + by +cz +d =0 as the equation of a plane.
Now we will study a version of it that works in higher dimensions.

2.12 Linear systems and matrix inverse 45

Geometrically speaking, given a plane (in any dimension), we can find a direction
called the normal direction, denoted 7, such that
If we take any pair of points on the plane, say Toand Z, ...
The line joining ¥ and Zy—i.e., the vector Z — Zy—is orthogonal to 7.
Thus, if we know a fixed point on the plane, say Iy, then all points on the plane will
satisfy

il (F-%))=0 or

Al (T—-Zp)=0
Thus we can express the equation of a plane as
Al Z-hTZ)=0 (2.13)

Equation 2.13 is depicted pictorially in figure 2.10.

Figure 2.10 The normal to the plane is the same at all
points on the plane. This is the fundamental property of a
plane. 72 depicts that normal direction. Let Xy be a point
on the plane. All other points on the plane, depicted as 7,
will satisfy the equation (& — &) - /2 = 0. This physically says
that the line joining a known point Xy on the plane and any
other arbitrary point X on the plane is at right angles to the
normal 7. This formulation works for any dimension.

In section 1.3, equation 1.3, we encountered the simplest machine learning model: a
weighted sum of inputs along with a bias. Denoting the inputs as 7, the weights as @,
and the bias as b, this model was depicted as

W E+b=0 (2.14)

Comparing equations 2.13 and 2.14 , we get the geometric significance: the simple
model of equation 1.3 is nothing but a planar separator. Its weight vector @ corresponds
to the plane’s orientation (normal). The bias b corresponds to the plane’s location (a
fixed point on the plane). During training, we are learning the weights and biases—this
is essentially learning the orientation and position of the optimal plane that will separate
the training inputs. To be consistent with the machine learning paradigm, henceforth
we will write the equation of a hyperplane as equation 2.14 for some constant @ and b.

Note that @ need not be a unitlength vector. Since the right-hand side is zero, if
necessary, we can divide both sides by [|@]| to convert to a form like equation 2.13.

The sign of the expression @ % +b has special significance. All points ¥ for which
! % +b <0 lie on the same side of the hyperplane. All points 7 for which @ % +b > 0 lie
on the other side of the hyperplane. And of course, all points Z for which wlZ+b=0lie
on the hyperplane.

46

2.9

2.9.1

CHAPTER 2 Vectors, matrices, and tensors in machine learning

It should be noted that the 3D equation ax + by +cz +d =0 is a special case of equa-
tion 2.14 because ax + by +cz +d =0 can be rewritten as

x
[a b c] y|+d=0

z

a X

which is same as @/ ¥ +b=0 with @ = | | and & = | y|. Incidentally, this tells us that in

Cc z

3D, the normal to the plane ax+by+cz+d=0is i = \/%

a?+b%+c?

Linear combinations, vector spans, basis vectors,
and collinearity preservation

By now, it should be clear that machine learning and data science are all about points in
high-dimensional spaces. Consequently, it behooves us to have a decent understanding
of these spaces. For instance, given a space, we may need to ask, “Would it be possible
to express all points in the space in terms of a set of a few vectors? What is the smallest
set of vectors we really need for that purpose?” This section is devoted to the study of
these questions.

Linear dependence

Consider the vectors (points) shown in figure 2.11. The corresponding vectors in 2D are

- |1 Nk
Vo = U1 =

1 2
. 3 . 4
V9 = U3 =

3 4

We can find four scalars g =2, a1 =2, @9 =2, and as =-3 such that

0
apvy + @101 + @oV9 + X3V3 =

0

If we can find such scalars, not all zero, we say the vectors 9y, U1, U2, and T3 are linearly
dependent. The geometric picture to keep in mind is that points corresponding to linearly
dependent vectors lie on a single straight line in the space containing them.

2.9.2

2.12 Linear systems and matrix inverse 47

X1

(S,\
89

™ 4, 4)

<
/OQ

3.3)

2.2

(1.1

(0,0) Xo

Figure 2.11 Linearly dependent points in a 2D plane

COLLINEARITY IMPLIES LINEAR DEPENDENCE
Proof: Let a, I; and ¢ be three collinear vectors. From equation 2.12, there exists some
a € R such that

c=(1-a)d+ ab

This equation can be rewritten as
a/15i+a/2b+ag?=0

where @) = (1 — @), e =@ and a3 = —1. Thus we have proven that three collinear vectors
d, b, and ¢ must also be linearly dependent.

LINEAR COMBINATION
Given a set of vectors 97, 99, v, and a set of scalar weights 1,9, ...@,, the weighted

sum @19 + @9vs ++ - - - @, U, is called a linear combination.

GENERIC MULTIDIMENSIONAL DEFINITION OF LINEAR DEPENDENCE
A set of vectors 97, 09, U, are linearly dependent if there exists a set of weights a,a9,

...a, not all zeros, such that a19] + @903 ++- - - @, 9, = 0. For example, the row vectors
[1 1] and [2 2] are linearly dependent, since —2 [1 1] + [2 2] =0.

Span of a set of vectors

Given a set of vectors 9, 99, Uy, their span is defined as the set of all vectors that are
linear combinations of the original set . This includes the original vectors.

48

2.9.3

CHAPTER 2 Vectors, matrices, and tensors in machine learning

. R 1 - 0
For example, consider the two vectors v, = and v,, = . The span of these two
0 1

vectors is the entire plane containing the two vectors. Any vector, for instance, the vector

18 - - .
can be expressed as a weighted sum 184, , +979,, . You can probably recognize that

1
0
in the 2D plane.

and are the familiar Cartesian coordinate axes (X-axis and Y-axis, respectively)
1

Vector spaces, basis vectors, and closure
We have been talking informally about vector spaces. It is time to define them more

precisely.

VECTOR SPACES
A set of vectors (points) in n dimensions form a vector space if and only if the operations

of addition and scalar multiplication are defined on the set. In particular, this implies that
it is possible to take linear combinations of members of a vector space.

BASIS VECTORS
Given a vector space, a set of vectors that span the space is called a basis for the space. For

. g 1 0 . . .
instance, for the space R?, the two vectors and) are basis vectors. This essentially

means any vector in R? can be expressed as a linear combination of these two. The

1| |0 0

. . . . , 1 0
notion can be extended to higher dimensions. For R", the vectors | |, | .|, -,

0l |0 1

form a basis.

The alert reader has probably guessed by now that the basis vectors are related
to coordinate axes. In fact, the basis vectors just described constitute the Cartesian
coordinate axes.

So far, we have only seen examples of basis vectors that are mutually orthogonal, such

g of |1 1
as the dot product of the two basis vectors in R? shown earlier:) : 0 = [0 1] =0.
0

However, basis vectors do not have to be orthogonal. Any pair of linearly independent
vectors forms a basis in R2. Basis vectors, then, are by no means unique. That said,
orthogonal vectors are most convenient, as we shall see later.

MINIMAL AND COMPLETE BASIS
Exactly n vectors are needed to span a space with dimensionality n. This means the basis

set for a space will have at least as many elements as the dimensionality of the space.

2.10

2.12 Linear systems and matrix inverse 49

That many basis vectors are also sufficient to form a basis. For instance, exactly n vectors
are needed to form a basis in (that is, span) R".

Arelated factis thatin R", any set of m vectors with m > n will be linearly dependent. In
other words, the largest size of a set of linearly independent vectors in an n-dimensional
space is 7.

CLOSURE
A set of vectors is said to be closed under linear combination if and only if the linear

combination of any pair of vectors in the set also belongs to the same set. Consider the
set of points R?. Recall that this is the set of vectors with two real elements. Take any

) . .) . 11.2 - | 177.01 .
pair of vectors @ and b in R?: for instance, @ = and b= . Any linear

31.766 1031.99
combination of these two vectors will also comprise two real numbers—that is, will
belong to R%. We say R? is a vector space since it is closed under linear combination.

Consider the space R%. Geometrically speakmg, this represents a two dimensional
plane. Let’s take two points on this plane, @ and b. Linear combinations of @, b geomet-
rically correspond to points on the line joining them. We know that if two points lie on
a plane, the entire line will also lie on the plane. Thus, in two dimensions, a plane is
closed under linear combinations. This is the geometrical intuition behind the notion
of closure on vector spaces. It can be extended to arbitrary dimensions.

On the other hand, the set of points on the surface of a sphere is not closed under
linear combination because the line joining an arbitrary pair of points on this set will
not wholly lie on the surface of that sphere.

Linear transforms: Geometric and algebraic interpretations

Inputs to a machine learning or data science system are typically feature vectors (in-
troduced in section 2.1) in high-dimensional spaces. Each individual dimension of
the feature vector corresponds to a particular property of the input. Thus, the feature
vector is a descriptor for the particular input instance. It can be viewed as a point in the
feature space. We usually transform the points to a friendlier space where it is easier to
perform the analysis we are trying to do. For instance, if we are building a classifier, we
try to transform the input into a space where the points belonging to different classes
are more segregated (see section 1.3 in general and figure 1.3 in particular for simple
examples). Sometimes we transform to simplify the data, eliminating axes along which
there is scant variation in the data. Given their significance in machine learning, in this
section we will study the basics of transforms.

Informally, a transform is an operation that maps a set of points (vectors) to another.
Given a set S of nx 1 vectors, any m X n matrix 7' can be viewed as a transform. If §
belongs to the set S, multiplication with the matrix 7" will map (transform) 7 to a vector
T75. We will later see that matrix multiplication is a subclass of transforms that preserve
collinearity—points that lie on a straight line before the transformation will continue to
lie on a (possibly different) straight line post the transformation. For instance, consider

50

CHAPTER 2 Vectors, matrices, and tensors in machine learning

the matrix

=
1
28

L
V2
L
V2

-

In section 2.14, we will see that this is a special kind of matrix called a rotation matrix;
for now, simply consider it an example of a matrix. R is a transformation operator
that maps a point in a 2D plane to another point in the same plane. In mathematical
notation, R : R? — R2. In fact, as depicted in figure 2.14, this transformation (multipli-
cation by matrix R) rotates the position vector of a point in the 2D plane by an angle
of 45°.

The output and input points may belong to different spaces in such transforms. For
instance, consider the matrix

P=
01 0

It is not hard to see that this matrix projects 3D points to the 2D X-Y plane:

z
z
Ply|=
Yy
b4

Hence, this transformation (multiplication by matrix P) projects points from three to
two dimensions. In mathematical parlance, P : R3 - R2,

The transforms R and P share a common property: they preserve collinearity. This
means a set of vectors (points) @, l;, ¢, - -+ that originally lay on a straight line remain so
after the transformation.

Let’s check this out for the rotation transformation in the example from section 2.9.
There we saw four vectors:

L |0 L |1

0= a=
0 1

b= =
2 3

These vectors all lie on a straight L : x =y. The rotation transformed versions of these
vectors are

N 0 , V2

S
I
=
Sl
Il
Q
Il
=
Q1
11

2.10.1

2.12 Linear systems and matrix inverse 51

L. |2V , 32
bszz\/_ Z=RZ=\/_

0 0

It is trivial to see that the transformed vectors also lie on a (different) straight line. In

fact, 0 ', a, 1; ,, ¢’ lie on the Y-axis, which is the 45° rotated version of the original line
y=x.

The projection transform represented by matrix P also preserves collinearity. Con-
sider four collinear vectors in 3D:

" a
6=10 a=\1
0 1
B 3
b=|9 ‘=13
2 3

The corresponding transformed vectors

Lo LI
0 =P0= a :Pa:
0 1
=, nd 2 ’ g
b =Pi= ¢ =pi=
2 3

also lie on a straight line in 2D.

The class of transforms that preserves collinearity are known as linear transforms.
They can always be represented as a matrix multiplication. Conversely, all matrix mul-
tiplications represent a linear transformation. A more formal definition is provided
later.

Generic multidimensional definition of linear transforms

A function ¢ is a linear transform if and only if it satisfies

¢(aa+ﬁ5)=a¢(a’)+ﬁ¢(l§) Va, BeR (2.15)

In other words, a transform is linear if and only if the transform of the linear combination of
two vectors is the same as the linear combination (with the same weights) of the transforms of
individual vectors. (This can be remembered as: Linear transform means transforms of linear
combinations are same as linear combinations of transforms.) Multiplication with a rotation
or projection matrix (shown earlier) is a linear transform.

52

CHAPTER 2 Vectors, matrices, and tensors in machine learning

2.10.2 All matrix-vector multiplications are linear transforms

Let’s verify that matrix multiplication satisfies the definition of linear mapping (equa-
tion 2.15). Let @, b € R” be two arbitrary n-dimensional vectors and A,, , be an arbitrary
matrix with #n columns. Then following the standard rules of matrix-vector multiplication,

A (aa+ﬁ1§) —a (43) + B (Ai?)

which mimics equation 2.15 with ¢ replaced with matrix 4. Thus we have proven that
all matrix multiplications are linear transforms. The reverse is not true. In particular,
linear transforms that operate on infinite-dimensional vectors are not matrices. But
all linear transforms that operate on finite-dimensional vectors can be expressed as
matrices. (The proof is a bit more complicated and will be skipped.)

Thus, in finite dimensions, multiplication with a matrix and linear transformation
are one and the same thing. In section 2.3, we saw the array view of matrices. The
corresponding geometric view, that all matrices represent linear transformation, was
presented in this section.

Let’s finish this section by studying an example of a transform that is not linear.
Consider the function

¢ (%) =12l
for ¥ € R”. This function ¢ maps n-dimensional vectors to a scalar that is the length of
the vector, ¢ : R" — R. We will examine if it satisfies equation 2.15 with a1 =a9=1. For
two specific vectors @, be R™,

ai
2 @2 2 2 2
¢(@)=¢ =\Jaj +az+---a;
an
.bl.
D) =o| || |= Jo2este 52
¢<)_¢ - 1+ 2+"' n
bn
Now
¢(5)+¢(b)=\/af+a§+~--a,2l+\/bf+b§+~--b,2[
and
a1+b1
a2+b2

V(@ +b)2 + (a9 4b)? -+ (a, +b,)?

2.11

2.11.1

2.12

2.12 Linear systems and matrix inverse 53

Clearly, these two are not equal; hence, we have violated equation 2.15: ¢ is a nonlinear
mapping.

Multidimensional arrays, multilinear transforms, and tensors

We often hear the term tensor in connection with machine learning. Google’s famous
machine learning platform is named TensorFlow. In this section, we will introduce you
to the concept of a tensor.

Array view: Multidimensional arrays of numbers

A tensor may be viewed as a generalized n-dimensional array—although, strictly speaking,
not all multidimensional arrays are tensors. We will learn more about the distinction
between multidimensional arrays and tensors when we study multilinear transforms.
For now, we will not worry too much about the distinction. A vector can be viewed as a
1 tensor, a matrix is a 2 tensor, and a scalar is a 0 tensor.

In section 2.3, we saw that digital images are represented as 2D arrays (matrices). A
color image—where each pixel is represented by three colors, R, G, and B (red, green,
and blue)—is an example of a multidimensional array or tensor. This is because it can
be viewed as a combination of three images: the R, G, and B images, respectively.

The inputs and outputs to each layer in a neural network are also tensors.

Linear systems and matrix inverse

Machine learning today is usually an iterative process. Given a set of training data,
you want to estimate a set of machine parameters that will yield target values (or close
approximations to them) on training inputs. The number of training inputs and the size
of the parameter set are often very large. This makes it impossible to have a closed-form
solution where we solve for the unknown parameters in a single step. Solutions are
usually iterative. We start with a guessed set of values for the parameters and iteratively
improve the guess by processing training data.

Having said that, we often encounter smaller problems in real life. We are better
off using more traditional closed-form techniques here since they are much faster and
more accurate. This section is devoted to gaining some insights into these techniques.

Let’s go back to our familiar cat-brain problem and refer to its training data in ta-
ble 2.2. As before, we are still talking about a weighted sum model with three parameters:
weights wg, w; and bias b. Let’s focus on the top three rows from the table, repeated
here in table 2.3 for convenience.

Table 2.3 Example training dataset for our toy machine learning-based cat brain

Input value: Hardness

Input value: Sharpness

Output: Threat score

0 0.11
0.01
2 0.98

0.09
0.02
0.91

-0.8
-0.97
0.89

54

CHAPTER 2 Vectors, matrices, and tensors in machine learning

The training data says that with a hardness value 0.11 and a sharpness value 0.09, we
expect the system’s output to match (or closely approximate) the target value —0.8,
and so on. In other words, our estimated values for parameters wy, wy, b should ideally
satisfy

0.11wo +0.09w; +b=-0.8

0.01w +0.02w; +b=-0.97

0.98w) +0.91w; +5=0.89

We can express this via matrix multiplication as the following equation:

0.11 0.09 1f]|wo -0.08
0.01 0.02 1f|w|=[-0.97
0.98 091 1]]|b 0.89

How do we obtain the values of wy, w;, b that make this equation true? That is, how
do we solve this equation? There are formal methods (discussed later) to directly solve
such equations for wy, w1, and b (in this very simple example, you might just “see” that
wo =1, w; =1, b=—1 solves the equation, but we need a general method).

This equation is an example of a class of equations called a linear system. A linear
system in 7 unknowns x1, e, x3, - - -, Ty,

A&y + a9k + aigxs + - -+ a1y =b1

a91x1 + agaXa + A93x3 + - - - + A2, Ty = by

ap1x1 +apgx9 + ay3x3 +- - -+ apyly = bn

can be expressed via matrix and vectors as

AX=b
where

ay; ajp as aiy by
x1

a ag2 ass agy . - | be

A= and I=| a9 | and b=

.. x?’l

apl1 aAp2 A3 - App b"

Although equivalent, the matrix depiction is more compact and dimension-independent.
In machine learning, we usually have many variables (thousands), so this compactness
makes a significant difference. Also, Ar = 1; looks similar to the one-variable equation
we know so well: ax =b. In fact, many intuitions can be transferred from 1D to higher
dimensions.

2.12.1

2.12 Linear systems and matrix inverse 55

What is the solution to the 1D equation? You may have learned it in fifth grade: The
solution of ax=b isx=a~'b where a1 = %, a#0.

We can use the same notation in all dimensions. The solution of/ls?:l;is 56:/1’11;,
where 47! is the matrix inverse. The inverse matrix /! has the determinant of the ma-
trix, m, as a factor. We will not discuss determinant and inverse matrix computation
here—you can obtain that in any standard linear algebra textbook—but will state some
facts that lend insights into determinants and inverse matrices:

The inverse matrix 4~! is related to matrix A4 in the same way the scalar ¢! is
related to the scalar a. a~! exists if and only if a #0. Analogously, 47! exists if
det (A) #0, where det (A) refers to the determinant of a matrix.

The product of a scalar « and its inverse ¢! is 1. Analogously, 441 =4714 =1,
where I denotes the identity matrix that is the higher-dimension analog for 1 in
scalar arithmetic. It is a matrix in which the diagonal terms are 1 and all other
terms are 0. The n-dimensional identity matrix is as follows:

10 0 --- 0

010 -0
L,=[0 0 1 - 0
000 - 1

When there is no subscript, the dimensionality can be inferred from the context.
For any matrix 4, I4 = AT= A. For any vector @, Id=a' I=a. These can be easily
verified using the rules of matrix multiplication.

There are completely precise but tedious rules for computing determinants and matrix
inverses. Despite the importance of the concept, we rarely need to compute them in
life as all linear algebra software packages provide routines to do this. Furthermore,
computing matrix inverses is not good programming practice because it is numerically
unstable. We will not discuss the direct computation of determinant or matrix inverse
here (except that in section A.2 of the appendix, we show how to compute the determi-
nant of a 2 X 2 matrix). We will discuss pseudo-inverses, which have more significance
in machine learning.

Linear systems with zero or near-zero determinants,
and ill-conditioned systems
We saw earlier that a linear system A% = b has the solution =4""5. But A~! has m
as a factor. What if the determinant is zero?

The short answer: when the determinant is zero, the linear system cannot be exactly
solved. We may still attempt to come up with an approximate answer (see section 2.12.3),
but an exact solution is not possible.

56

CHAPTER 2 Vectors, matrices, and tensors in machine learning

Let’s examine the situation a bit more closely with the aid of an example. Consider
the following system of equations:

X1 +x9 =2

211 + 229 =4

It can be rewritten as a linear system with a square matrix:

1 1 X1 2

2 2 X9 4
But you can quickly see that the system of equations cannot be solved. The second
equation is really the same as the first. In fact, we can obtain the second by multiplying

the first by a scalar, 2. Hence, we don’t really have two equations: we have only one, so

the system cannot be solved. Now examine the row vectors of matrix 4. They are [1 1

and [2 2]. They are linearly dependent because —2 [1 1] + [2 2] =0. Now examine
the determinant of matrix A4 (section A.2 of the appendix shows how to compute the
determinant of a 2 X 2 matrix). Itis 2x 1 —1x2=0. These results are not coincidences.
Any one of them implies the other. In fact, the following statements about the linear
system AZ = b (with a square matrix) are equivalent:

Matrix A has a row/column that can be expressed as a weighted sum of the others.

Matrix A4 has linearly dependent rows or columns.

Matrix A4 has zero determinant (such matrices are called singular matrices).

The inverse of matrix 4 (i.e., 4~!) does not exist. A is called singular.

The linear system cannot be solved.
The system is trying to tell you that you have fewer equations than you think you have,
and you cannot solve the system of equations.

Sometimes the determinant is not exactly zero but close to zero. Although solvable
in theory, such systems are numerically unstable. Small changes in input cause the result
to change drastically. For instance, consider this nearly singular matrix:

2 1

A= (2.16)
4 2.001

. . > |3
Its determinant is 0.002, close to zero. Let b = be a vector.
6

1000.5 -500.0
1= (2.17)
—-2000. 1000.0

(Note how large the elements of 4~! are. This is due to division by an extremely small
determinant and, in turn, causes the instability illustrated next.) The solution to the

2.12.2

2.12.3

2.12 Linear systems and matrix inverse 57

S T »> |1 . > i -
equation AZ=bisi=A"1b= 5 .Butif we change b just alittle and make b = ?;1 , the
. . . - 17 -3.5 PP
solution changes to a drastically different 2=4""b= ol This is inherently unstable

and arises from the near singularity of the matrix 4. Such linear systems are called
ill-conditioned.

PyTorch code for inverse, determinant, and singularity testing of matrices

Inverting a matrix and computing its determinant can be done with a single function
call from the linear algebra package linalg.

Listing 2.10 Matrix inverse for an invertible matrix (nonzero determinant)

def determinant (A):
return torch.linalg.det (A)

def inverse(A):
return torch.linalg.inv(A)

A = torch.temnsor([[2, 3], [2, 2]], dtype=torch.float) <— A=[?2’ Z]
A inv = inverse (A7) -« A=l_ll l'f

The PyTorch function torch.eye(n)
generates an identity matrix I of size n.

I) <~— Verify2 31(-1 L5310
I) 3 2 1 -1 0 1

I = torch.eye(2) <—

assert torch.all(torch.matmul (A, A inv)
assert torch.all(torch.matmul (A _inv, A)

assert torch.all (torch.matmul (I, A) == A)

assert torch.all(A == torch.matmul (A, I)) ‘—| Lis like 1. Verify AT=1A = A.
Assingular matrix is a matrix whose determinant is zero. Such matrices are non-invertible.
Linear systems of equations with singular matrices cannot be solved.

Listing 2.11 Singular matrix

B = torch.tensor([[1, 1], [2, 2]], dtype=torch.float) B=|; ;]

try:
Determinant=1x2-2x1=0.

B inv = inverse (B) Singular matrix; attempting to compute the
inverse causes a runtime error.
except RuntimeError as e:

print ("B cannot be inverted: ".format(B, e))

Over- and under-determined linear systems in machine learning

What if the matrix A is not square? This implies that the number of equations does not
match the number of unknowns. Does such a system even make sense? Surprisingly, it
does. As a rule, machine learning systems fall in this category: the number of equations

|

58

CHAPTER 2 Vectors, matrices, and tensors in machine learning

corresponds to the number of training data instances collected, while the number of
unknowns is a function of the number of weights in the model which is a function
of the particular model family chosen to represent the system. These are independent
of each other. As stated earlier, we often solve these systems iteratively. Nonetheless, it
is important to understand linear systems with nonsquare matrices A4, to gain insight.

There are two possible cases, assuming that the matrix 4 is m Xn (m rows and n
columns):

Case 1: m > n (more equations than unknowns; overdetermined system)
Case 2: m <n (fewer equations than unknown; underdetermined system)

For instance, table 2.2 leads to an overdetermined linear system. Let’s write the system
of equations:
0.11wp + 0.09w; +b=-0.8

0.01w +0.02w; +b=—0.97
0.98wp +0.91w; +b=0.89
0.12w0 +0.21w; +b=—0.68
0.98w +0.99w; +b=0.95
0.85wp +0.87w; +b=0.74
0.08wy +0.14w; +b=—0.88
0.55wp +0.45w; +b=0.00

These yield the following overdetermined linear system:

[0.11 0.09 1] [_0.8]
0.01 0.02 1 ~0.97
098 091 1 0.89
wo
012 021 1 ~0.68
w | = (2.18)
0.98 099 1| | | 0.95
0.85 0.87 1 0.74
0.03 0.14 1 ~0.88
055 045 1 0.00

This is a nonsquare 15x 3 linear system. There are only 3 unknowns to solve for
(wo, w1, b), and there are 15 equations. This is highly redundant: we needed only three
equations and could have solved it via linear system solution techniques (section 2.12).
But the important thing to note is this: the equations are not fully consistent. There is no
single set of values for the unknown that will satisfy all of them. In other words, the
training data is noisy—an almost universal occurrence in real-life machine learning
systems. Consequently, we have to find a solution that is optimal (causes as little error
as possible) over all the equations.

2.12.4

2.12.5

2.12 Linear systems and matrix inverse 59

We want to solve it such that the overall error ||AZ — b || is minimized. In other words,
we are looking for # such that A% is as close to b as possible. This closed-form (that is,
non-iterative) method is an extremely important precursor to machine learning and
data science. We will revisit this multiple times, most notably in sections 2.12.4 and 4.5.

Moore Penrose pseudo-inverse of a matrix
The pseudo-inverse is a handy technique to solve over- or under-determined linear
systems. Suppose we have an overdetermined system with the not-necessarily square
m X n matrix A:

Ai=b
Since A is not guaranteed to be square, we can take neither the determinant nor the
inverse in general. So the usual A _15 does not work. At this point, we observe that
although the inverse cannot be taken, transposing the matrix is always possible. Let’s
multiply both sides of the equation with AT:

Ai=b e AT AT =AT)

Notice that A7 A4 is a square matrix: its dimensions are (m x n) X (n xm)=m xm. Let’s
assume, without proof for the moment, that it is invertible. Then

N - PN - -1 .5
AizbcﬁAlAizA’bc:£=(4ﬂ4) ATh

Hmmm, not bad; we seem to be onto something. In fact, we just derived the pseudo-inverse
of matrix A, denoted A* = (ATA) -1 AT . Unlike the inverse, the pseudo-inverse does not
need the matrix to be square with linearly independent rows. Much like the regular
linear system, we get the solution of the (possibly nonsquare) system of equations as
Ai=bei=A%.

The pseudo-inverse-based solution actually minimizes the error || A% — b |. We will
provide an intuitive proof of that in section 2.12.5. Meanwhile, you are encouraged to
write the Python code to evaluate (47 4) ~' 4Th and verify that it approximately yields

1

the expected answer | 1 | for equation 2.18.
-1

Pseudo-inverse of a matrix: A beautiful geometric intuition

A matrix A,,x, can be rewritten in terms of its column vectors as [Eil ,do, ... Ein] , where
x

aj ...a, are all m-dimensional vectors. Then if ¥ = 2 , we get AT =x1d) +x9da +- - -
Tn

Zydy. In other words, A7 is just a linear combination of the column vectors of 4 with
the elements of 7 as the weights (you are encouraged to write out a small 3 X 3 system

60

CHAPTER 2 Vectors, matrices, and tensors in machine learning

and verify this). The space of all vectors of the form AZ (that is, the linear span of the
column vectors of A) is known as the column space of A.

The solution to the linear system of equations AZ=b can be viewed as finding the ¥
that minimizes the difference of A7 and b: that i is, minimizes ||4Z — b|| This means we
are trying to find a point in the column space of A that is closest to the point b. Note that
this interpretation does not assume a square matrix 4. Nor does it assume a nonzero
determinant. In the friendly case where the matrix A is square and invertible, we can
find a vector Z such that AZ becomes exactly equal to 1;, which makes ||AZ - 1;|| =0.If4
is not square, we will try to find & such that AZ is closer to b than any other vector in the
column space of 4. Mathematically speaking,*

AT = b|| < |45 - b|| V5 e R" (2.19)

From geometry, we intuitively know that the closest point to b in the column space
of A is obtained by dropping a perpendicular from b to the column space of 4 (see
figure 2.12). The point where this perpendicular meets the column space is called the
projection of b on the column space of A. The solution vector to equation 2.19 that
we are looking for should correspond to the projection of b on the column space of A.
This in turn means b — A7 is orthogonal (perpendicular) to all vectors in the column
space of A (see figure 2.12). We represent arbitrary vectors in the column space of 4 as
Ay for arbitrary y. Hence, for all such ¥,

- 7 > T (7 >
(45) L (5~ A7) & (45)" (- 47) =0
oyl AT (b —Az) =0
b
(b — AZ)
Ay ~ Figure 2.12 Solving a linear system Ax = b
90° is equivalent to finding the point on the
F column space of A that is closest to 4. This
. means we have to drop a perpendicular from
v AT b to column space of A. If Ax represents the
point where that perpendicular meets the
(Agj) 1 (5_ Af) column space (aka projection), the difference

vector b — Ax corresponds to the line joining

b and its projection Ax. This line will be

perpendicular to all vectors in the column
Column space of A space of A. Equivalently, it is perpendicular
to Ay for any arbitrary y.

4 The mathematical symbol V¥ stands for “for all.” Thus, ¥y € R” means “all vectors y in the n-dimensional
space.”

2.12 Linear systems and matrix inverse 61

For the previous equation to be true for all vectors ¥, we must have AT (b —A;E) =0.
Thus, we have

AT (5~ A7) =0
A" A7=A4"b
S I
oi=(4T4) AT
which is exactly the Moore-Penrose pseudo-inverse.
For a machine learning-centric example, consider the overdetermined system corre-
sponding to the cat brain earlier in the chapter. There are 15 training examples, each

with input and desired outputs specified.
Our goal is to determine three unknowns wy, w;, and b such that for each training

. N A
input ¥; = , the model output
Zi,1

wo
wo
Vi =X 0w + i 1W1 +b= [Ii,o xm] +b= [Ii,o xi1 1| |wn (2.20)
wq
b

matches the desired output (aka ground truth) y; as closely as possible.

NOTE We employed a neat trick here: we added a 1 to the right of the input,
which allows us to depict the entire system (including the bias) in a single compact
matrix-vector multiplication. We call this augmentation—we augment the input
row vector with an extra 1 on the right.

Collating all the training examples together, we get

xo0 xo,1 1 Yo
wo

x0 x11 1 Y1
w| = (2.21)
b

xN,o0 N1 1 YN

which can be expressed compactly as
Xw=y

where X is the augmented input matrix with a rightmost column of all 1s. The goal is
to minimize ||y —¥||. To this end, we formulate the over-determined linear system

Xd =5

62 CHAPTER 2 Vectors, matrices, and tensors in machine learning

Note that this is not a classic system of equations—it has more equations than unknowns.
We cannot solve this via matrix inversion. We can, however, use the pseudo-inverse
mechanism to solve it. The resulting solution yields the “best fit” or “best effort” solution,
which minimizes the total error over all the training examples.

The exact numerical system (repeated here for ease of reference) is

0.11 0.09 1.00 -0.8

0.01 0.02 1.00 -0.97
0.98 0.91 1.00 0.89 "
0
X2 0.12 0.21 1.00 5= -0.67 @= |, (2.29)
0.98 0.99 1.00 0.97
0.85 0.87 1.00 0.72 ’
0.03 0.14 1.00 -0.83
0.55 0.45 1.00 0.00

We solve for @ using the pseudo-inverse formula @ = (X7 X)~1X Ty
2.12.6 PyTorch code to solve overdetermined systems

NOTE Fully functional code for this section, executable via Jupyter Notebook,
can be found at http://mng.bz/PP]2.

def pseudo inverse(A) :

return torch.matmul (torch.linalg.inv(torch.matmul (A.T, A)), A.T)
X is the augmented data matrix from equation 2.22. The Pytorch column stack operator
X = torch.column stack((X, torch.ones(15))) adds a column to a matrix. Here, the
added column is all 1s.

It is easy to verify that the solution to equation 2.22 is roughly wy =1, w; =1,b=-1.
But the equations are not consistent: no one solution perfectly fits all of them.
The pseudo-inverse finds the “best fit” solution: it minimizes total error for all the equations.

w = torch.matmul (pseudo_inverse(X), y) <—— Expect the solution to be close to [1, 1, -1]

print ("The solution is ".format(w)) <—— The solution is[1.08, 0.90, -0.96]

2.13 Eigenvalues and eigenvectors: Swiss Army knives
of machine learning

Machine learning and data science are all about finding patterns in large volumes of
high-dimensional data. The inputs are feature vectors (introduced in section 2.1) in high-
dimensional spaces. Each feature vector can be viewed as a point in the feature space
descriptor for an input instance. Sometimes we transform these feature vectors—map the
feature points to a friendlier space—to simplify the data by reducing dimensionality. This
is done by eliminating axes along which there is scant variation in the data. Eigenvalues

2.13 Eigenvalues and eigenvectors: Swiss Army knives of machine learning 63

and eigenvectors are invaluable tools in the arsenal of a machine learning engineer or
a data scientist for this purpose. In chapter 4, we will study how to use these tools to
simplify and find broad patterns in a large volume of multidimensional data.

Let’s take an informal look at eigenvectors first. They are properties of square matrices.
As seen earlier, matrices can be viewed as linear transforms which map vectors (points)
in one space to different vectors (points) in the same or a different space. But a typical
linear transform leaves a few points in the space (almost) unaffected. These points are
called eigenvectors. They are important physical aspects of the transform. Let’s look at a
simple example. Suppose we are rotating points in 3D space about the Z-axis (see figure
2.13). The points on the Z-axis will stay where they were despite the rotation. In general,
points on the axis of rotation (Z in this case) do not go anywhere after rotation. The
axis of rotation is an eigenvector of the rotation transformation.

z

Figure 2.13 During rotation, points on the axis
X of rotation do not change position.

Extending this idea, when transforming vectors ¥ with a matrix A, are there vectors that
do not change, at least in direction? Turns out the answer is yes. These are the so-called
eigenvectors—they do not change direction when undergoing linear transformation by a
matrix 4. To be precise, if ¢ is an eigenvector of the square matrix 4 > then

Aé=A¢é
Thus the linear transformation (that is, multiplication by matrix /) has changed the

length but not the direction of € because A¢ is parallel to ¢.
How do we obtain A and ¢? Well,

Aé=2¢
oAé-18=0
& (A-11)E=0

where I denotes the identity matrix.

° You can compute eigenvectors and eigenvalues only of square matrices.

64

CHAPTER 2 Vectors, matrices, and tensors in machine learning

Of course, we are only interested in nontrivial solutions, where ¢ # 0. In that case,
A — AT cannot be invertible, because if it were, we could obtain the contradictory solution
¢=(A—-21)"1 0=0. Thus, (A4 — AT) is non-invertible, implying the determinant

det (A-21)=0

For an n X n matrix A, this yields an nth-degree polynomial equation with n solutions
for the unknown A. Thus, an n X n matrix has n eigenvalues, not necessarily all distinct.

Let’s compute eigenvalues and eigenvectors of a 3 X 3 matrix, just for kicks. The
matrix we use is carefully chosen, as will be evident soon. But for now, think of it as an
arbitrary matrix:

L L1
V2 V2
(-1 21
A= -5 v 0 (2.23)
0 0 1

[3 1
5 w 0 |4 00
_aD=|-1 L _
(4-21) 5 5 00 a0
o o0 1| |0 0 2a
[1 1
— 1 1
-l w0
0 0 1-2
Thus,
det (A - A1) =0
1 1 11
@(1—4)((——1)(——1)+——) =0
V2 V2 V242
1 1 1
1-2) (A2 =2—A+ -+ =0
s ()(N +2+2)
@(1—4)(42—\/5“1) -0

@A:lom:(%n%) orﬂ:(%—i%)

;T I . .
©Ad=1ord=¢* or A =¢"'* using De Moivre’s rule

Here, i = V=1.1f necessary, you are encouraged to refresh your memory of imaginary
and complex numbers from high school algebra.

Thus, we have found (as expected) three eigenvalues: 1, ¢'T, and e7'%. Each of
them will yield one eigenvector. Let’s compute the eigenvector corresponding to the

2.13 Eigenvalues and eigenvectors: Swiss Army knives of machine learning 65

eigenvalue of 1 by way of example:

Aei=1-¢

[1 1

v v !

_1 1 T
=1 vl Oler=e1

0
e =ep=06a=|0
1
0 0
Thus, |0] is an eigenvector for the eigenvalue 1 for matrix A. So is [0| for any real k. In
1 k

fact, if A, € is an eigenvalue, eigenvector pair for matrix 4, then
Ae¢=2¢ o A (ke) = (k)

Thatis, 4, (kE) is also an eigenvalue, eigenvector pair of 4. In other words, we can only
determine the eigenvector up to a fixed scale factor. We take the eigenvector to be of
unit length (¢7¢=1) without loss of generality.

The eigenvector for our example matrix turns out to be the Z-axis. This is not an
accident. Our matrix A was, in fact, a rotation about the Z-axis. A rotation matrix will
always have 1 as an eigenvalue. The corresponding eigenvector will be the axis of rotation. In 3D,
the other two eigenvalues will be complex numbers yielding the angle of rotation. This is detailed
in section 2.14.

2.13.1 Eigenvectors and linear independence

Two eigenvectors of a matrix corresponding to unequal eigenvalues are linearly in-
dependent. Let’s prove this to get some insights. Let 41, ¢] and A9, é3 be eigenvalue,
eigenvector pairs for a matrix 4 with A1 # 19. Then

Aéy =261
Aea =965
If possible, let there be two constants @; and ag such that
ale_i +(126;§=0 (2.24)

In other words, suppose the two eigenvectors are linearly dependent. We will show that
this assumption leads to an impossibility.

66

2.13.2

CHAPTER 2 Vectors, matrices, and tensors in machine learning

Multiplying equation 2.24 by 4, we get
alAe_] + (IQAEE =0
Sajdie) +agdoey =0
Also, we can multiply equation 2.24 by A9. Thus we get
(Il/lle-i +(ZQ/12€_§ =0
Cll/lge_i +a/2/12e§ =0
Subtracting, we get
a1 (A1 —A2)e1=0

By assumption, 1 #0, A1 # A9 and ¢] is not all zeros. Thus it is impossible for their prod-
uct to be zero. Our original assumption (the two eigenvectors are linearly dependent)
must have been wrong.

Symmetric matrices and orthogonal eigenvectors

Two eigenvectors of a symmetric matrix that correspond to different eigenvalues are
mutually orthogonal. Let’s prove this to get additional insight. A matrix 4 is symmetric
it AT =A.1f A1, & and Ag, 9 are eigenvalue, eigenvector pairs for a symmetric matrix
A, then

Aéy =216 (2.25)

Aéy =965 (2.26)
Transposing equation 2.25,
e—iTAT =1 le_iT
Right-multiplying by é5, we get
a'A'a=1d"é
il An=1d"é
where the last equation follows from the matrix symmetry. Also, left-multiplying equa-
tion 2.26 by ¢, we get
Al Ad =501 &
Thus
a' Ad=110"
e Ad =90 é
Subtracting the equations, we get
ST o
0=(11-A2)e1 éa

Since 17 # A9, we must have e_iTeE =0, which means the two eigenvectors are orthogonal.
Thus, if A is an n X n symmetric matrix with eigenvectors ¢j, ¢3, - - - ¢, then E}Te_} =0 for
all Z, j satisfying 4; # 4.

2.13.3

2.14

2.14.1

2.14 Orthogonal (rotation) matrices and their eigenvalues and eigenvectors 67

PyTorch code to compute eigenvectors and eigenvalues

NOTE Fully functional code for this section, executable via Jupyter Notebook,
can be found at http://mng.bz/1rEZ.

Listing 2.13 Eigenvalues and vectors

from torch import linalg as LA cos (45°) sin(45°) 0

A= —_7 o o
A = torch.tensor([[0.707, 0.707, 0], sin (45°) cos (45%) 0

[-0.707, 0.707, 01, [0, 0, 111) 0 0 1
Rotates points in 3D space around the Z-axis.
The axis of rotation is the Z-axis: [0 0 1]

i Function eig() in the torch linalg package
1, e = LA.eig(a) computes eigenvalues and vectors.
print ("Eigen values are ".format (1)) Eigenvalues or vectors can contain
print ("Eigen vectors are ".format (e.T)) ‘—{ complex numbers involving j = v=1.

Orthogonal (rotation) matrices and their eigenvalues
and eigenvectors

Of all the transforms, rotation transforms have a special intuitive appeal because of
their highly observable behavior in the mechanical world. Furthermore, they play a
significant role in developing and analyzing several machine learning tools. In this
section, we overview rotation (aka orthogonal) matrices. (Fully functional code for the
Jupyter notebook for this section can be found at http://mng.bz/2eNN.)

Rotation matrices

Figure 2.14 shows a point (z, y) rotated about the origin by an angle 6. The original
point’s position vector made an angle @ with the X-axis. Post-rotation, the point’s new
coordinates are (x', y’). Note that by definition, rotation does not change the distance
from the center of rotation; that is what the circle indicates.

Some well-known rotation matrices are as follows:

Planar rotation by angle 6 about the origin (see figure 2.14):

cosf —siné
Ry;= (2.27)

sinf cosé@

Rotation by angle 6 in 3D space about the Z-axis:

cosf —sinfd 0
R3i;=|sin@ cosf 0O (2.28)
0 0 1

CHAPTER 2 Vectors, matrices, and tensors in machine learning

[z' = rcos(a + 9)]

y =rsin(a+6)

[w — reos (a)]

2’ =rcosacosf —rsinasinf

Yy =rsinacosf + rcosasinf
(using trigonometric identities)

2’| _ [cos@® —sinf] [rcosa
or |y'| = [sin@ cosf | |rsina

_ |cos® —sinf| [z

" |sinf cosf | |y

!)
o [==l
Yy Y

oo RTR=RRT =1 (easily verifiable)

Figure 2.14 Rotation in a plane about the origin. By definition, rotation does not change the distance from
the center of rotation (indicated by the circle).

Note that the z coordinate remains unaffected by this rotation:

cosd —sinf O] |x
sinf@ cos@ Of|y|=
0 0 1] |z 4

This rotation matrix has an eigenvalue of 1, and the corresponding eigenvector is
the Z-axis—you should verify this. This implies that a point on the Z-axis maps to
itself when transformed (rotated) by the previous matrix, which is in keeping with
the property that the z coordinate remains unchanged by this rotation.

Rotation by angle 6 in 3D space about the X-axis:

1 0 0
R34z =10 cosf —siné (2.29)

0 sinf cosél

2.14 Orthogonal (rotation) matrices and their eigenvalues and eigenvectors

Note that the X coordinate remains unaffected by this rotation and the X-axis is

an eigenvector of this matrix:
1 0 0 x| |z
0 cosf —sinf||y]|=
0 sinf cosf ||z
Rotation by angle 6 in 3D space about the Y-axis:
cos§ 0 —sind
Rsgy=| 0 1 0

sin@ 0 cos@

(2.30)

Note that the Y coordinate remains unaffected by this rotation and the Y-axis is an

eigenvector of this matrix:

cos@ 0 -—-sinb| |x
0 1 0 y|=ly

sinf 0 cos@ ||z

Returns the matrix that performs in-plane 2D rotation by angle theta about the origin.
Thus, multiplication with this matrix moves a point to a new location.
The angle between the position vectors of the original and new points is theta (figure 2.14).

def rotation matrix 2d(theta):
return torch.tensor ([[cos(radians(theta)), -sin(radians(theta))],
[sin(radians (theta)), cos(radians(theta))l])

Returns the matrix that rotates a point in 3D space about the chosen axis by angle theta degrees.
The axis of rotation can be 0, 1, or 2, corresponding to the X-, Y-, or Z-axis, respectively.
def rotation matrix_ 3d(theta, axis):
if axis == 0: <— Rj,, from equation 2.29

return torch.tensor([[1, 0, 0],
[0, cos(radians(theta)),-sin(radians (theta))],
[0, sin(radians(theta)),cos(radians(theta))]])

elif axis == 1: <— Ry, from equation 2.30
return torch.tensor ([[cos(radians(theta)),0,-sin(radians (theta))],
[o, 1, oJ,
[sin(radians (theta)),0,cos (radians (theta))]l])
elif axis == 2: <— Rj,, from equation 2.28
return torch.tensor ([[cos(radians (theta)),-sin(radians (theta)), 0],
[sin(radians (theta)) ,h cos (radians (theta)), 0],

[o, o, 111)

70

2.14.2

CHAPTER 2 Vectors, matrices, and tensors in machine learning

Listing 2.15 Applying rotation matrices

Creates vector

u = torch.tensor.array([1l, 1, 1], dtype=torch.float) (see figure 2.15)
R3dz = rotation matrix 3d(45, 2) <— Rjg,, from equation 2.28, 45° about Z-axis

v = torch.matmul (R3dz, u_row) <— 3 (see figure 2.15)is u rotated by Rs..

R3dx = rotation matrix 3d(45, 0) <— Rgy, from equation 2.28, 45° about X -axis

w = torch.matmul (R3dx, u_row) =<—— @ (see figure 2.15)is ¥ rotated by R3,, .

Figure 2.15 Rotation visualized. Here the original vector u is first rotated by 45 degrees around the Z-axis
to get vector v, which is subsequently rotated again by 45 degrees around the X-axis to get vector w.

Orthogonality of rotation matrices

A matrix R is orthogonal if and only if it its transpose is also its inverse: that is, RT R =
RRT =1. All rotations matrices are orthogonal matrices. All orthogonal matrices represent some
rotation. For instance:

T -
cosf —siné cosf —sinf| |cosf sinfffcos —sind
sinf cosé@ sinf cosé —sinf cosf||sinf cosd
_ cos? 0 +sin? 0 0 _{r o 1
0 cos®@+sin’0| [0 1

You are encouraged to verify, likewise, that all the rotation matrices shown here are
orthogonal.

ORTHOGONALITY AND LENGTH-PRESERVATION
Orthogonality implies that rotation is length-preserving. Given any vector Z and rotation

matrix R, let y = R¥ be the rotated vector. The lengths (magnitudes) of the two vectors
Z,y are equal since it is easy to see that

I511=575 = (RZ)" (RT) =ZTRTRT =317 =27 =| 7|

2.14.3

2.14 Orthogonal (rotation) matrices and their eigenvalues and eigenvectors 71

From elementary matrix theory, we know that
AB)T =BT AT

NEGATING THE ANGLE OF ROTATION
Negating the angle of rotation is equivalent to inverting the rotation matrix, which is

equivalent to transposing the rotation matrix. For instance, consider in-plane rotation.
Say a point Z is rotated about the origin to vector ¥ via matrix R. Thus

cosf) —sinf
sinf cosf
y=RZ
Now we can go back from y to Z by rotating by —6. The corresponding rotation matrix is
cos (-0) —sin(-6) _ | cos 6 sinf %
sin (—=0) cos (-80) —sinf cos6

In other words, R” inverts the rotation: that is, rotates by the negative angle.

PyTorch code for orthogonality of rotation matrices

Let’s verify the orthogonality of the rotation matrix by creating one in PyTorch, im-
parting a transpose to it, and verifying that the product of the original matrix and the
transpose is the identity matrix.

Listing 2.16 Orthogonality of rotation matrices

R 30 = rotation matrix 2d(30) <«—— Creates a rotation matrix, R3

assert torch.allclose(
torch.linalg.inv(R_30),
R_30.T

The inverse of a rotation matrix is

) the same as its transpose.

assert torch.allclose(

torch.matmul (R_30, R_30.T), Multiplying a rotation matrix and its
torch.eye(2) inverse yields the identity matrix.
)

u = torch.tensor([[4],[0]], dtype=torch.float)
A vector 7 rotated by matrix R3
v = torch.matmul (R_30, u) to yield vector 5, R3oii = .
The norm of a vector is the same
assert torch.linalg.norm(u)==torch.linalg.norm(v) as its length. Rotation preserves

the length of a vector || Ruz|| = ||u]|-

72 CHAPTER 2 Vectors, matrices, and tensors in machine learning

Rotation by an angle followed by rotation by the
negative of that angle takes the vector back to its
w = torch.matmul (R_neg30, v) original position. Rotation by a negative angle is
assert torch.all(w == u) equivalent to inverse rotation.

R_neg30 = rotation matrix 2d(-30)

assert torch.allclose(R_30, R_neg30.T)
assert torch.allclose (

torch.matmul (R_30, R _neg3o), A matrix that rotates by an angle is the inverse of the
torch.eye(2)) matrix that rotates by the negative of the same angle.

2.14.4 Eigenvalues and eigenvectors of a rotation matrix:
Finding the axis of rotation

Let A, ¢ be an eigenvalue, eigenvector pair of a rotation matrix R. Then
Ré=1¢
Transposing both sides,
eI RT = 28"
Multiplying the left and right sides, respectively, with the equivalent entities R¢ and ¢,
we get

&R (R?) =A" (17) @7 (RTR)2=2%"7 8" (7=2%"¢
eili=1%te’=11=1
(The negative solution A =-1 corresponds to reflection.) Thus, all rotation matrices

have 1 as one of their eigenvalues. The corresponding eigenvector ¢ satisfies R¢ =¢. This
is the axis of rotation: the set of points that stay where they were post-rotation.

2.14.5 PyTorch code for eigenvalues and vectors of rotation matrices

The following listing shows the code for the axis of rotation.

Listing 2.17 Axis of rotation

cos (45°) sin (45°) 0
1 —_ . o o o
R = torch.tensor([[0.7071, 0.7071, 0], Matrix R = | —sin (45°) cos (45°) 0| rotates 45

[-0.7071, 0.7071, O], 0 0 1
[0, 0, 111) about the Z-axis. All rotation matrices will have

an eigenvalue 1. The corresponding eigenvector
is the axis of rotation (here, the Z-axis).

1, e = LA.eig(R) <«— The PyTorch function eig() computes eigenvalues and eigenvectors.

The PyTorch function where() returns the indices at which the specified condition is true.

Obtains the eigenvector for

axis of rotation = e[:, torch.where(l == 1.0)]
) eigenvalue 1

axis_of rotation = torch.squeeze(axis_of rotation

assert torch.allclose(
axis_of rotation.real,
torch.tensor ([0, 0, 1], dtype=torch.float) <— The axis of rotation is the Z-axis.

2.15 Matrix diagonalization 73

)
Takes a random point

p = torch.randint (0, 10, (1,)) * axis_of rotation on this axis and applies

assert torch.allclose(torch.matmul (R, p.real), p.real) the rotation to this
point; its position does
not change.

2.15 Matrix diagonalization

In section 2.12, we studied linear systems and their importance in machine learning.
We also remarked that the standard mathematical process of solving linear systems via
matrix inversion is not very desirable from a machine learning point of view. In this
section, we will see one method of solving linear systems without matrix inversion. In
addition, this section will help us develop the insights necessary to understand quadratic
forms and, eventually, principal component analysis (PCA), one of the most important
tools in data science.

Consider an n Xn matrix 4 with n linearly independent eigenvectors. Let S be a
matrix with these eigenvectors as its columns. That is,

Aéy =216
Aéy=29¢5
Ae_;’l:/lne_;l
and
sz[;l & gn]
Then
AS=A|a & --a|=|4d 4z -ag]=|nd a6
A 0 - 0
0 Ay - 0
=la & al||. T . |=sa
0 0 --- A,
where
A1 0
A
A= :
0 0 - 1,

is a diagonal matrix with the eigenvalues of 4 on the diagonal and 0 everywhere else.
Thus, we have

AS=SA

74 CHAPTER 2 Vectors, matrices, and tensors in machine learning

which leads to
A=SAS™!
and
A=57'4S
If A is symmetric, then its eigenvectors are orthogonal. Then $7S=88" =1 S~1 =57,

and we get the diagonalization of A:
A=SAS"

Note that diagonalization is not unique: a given matrix may be diagonalized in multiple
ways.

2.15.1 PyTorch code for matrix diagonalization

Now we will study the PyTorch implementation of the math we learned in section 2.15.
As usual, we will only show the directly relevant bit of code here.

NOTE Fully functional code for this section, executable via Jupyter Notebook,
can be found at http://mng.bz/RX]n.

Listing 2.18 Diagonalization of a matrix

Diagonalization is factorizing a matrix A = Sz.S~1.
def diagonalize (matrix) : S is a matrix with eigenvectors of A as columns.
X is a diagonal matrix with eigenvalues of A in the diagonal.

try:) .) The PyTorch function eig() returns
1, e = torch.linalg.eig(matrix) eigenvalues and vectors.

The PyTorch function diag() creates a diagonal
sigma = torch.diag(1l)

matrix of given values.

return e, torch.diag(l), torch.linalg.inv(e) <—— Returns the three factors

except np.linalg.LinAlgError:
print ("Cannot diagonalize matrix!")

A = torch.tensor([[0.7071, 0.7071, 0],

[-0.7071, 0.7071, 0], <—— Creates a matrix A
[o, o, 111)

S, sigma, S_inv = diagonalize (A7)

Al = torch.matmul (S, torch.matmul (sigma, S_inv)) <—— Reconstructs A from its factors

assert torch.allclose (A, Al.real)

Verifies that the reconstructed
matrix is the same as the original

2.15.2 Solving linear systems without inversion via diagonalization

Diagonalization has many practical applications. Let’s study one now. In general, matrix
inversion (that is, computing 4~!) is a very complex process that is numerically unstable.
Hence, solving A% =b via ¥=A7'b is to be avoided when possible. In the case of a square

2.15 Matrix diagonalization 75

symmetric matrix with n distinct eigenvalues, diagonalization can come to the rescue.
We can solve this in multiple steps. We first diagonalize A:

A=SAS"
Th -
“ Az=b
can be written as: SAST =5
where S is the matrix with eigenvectors of A4 as its columns:

s=la & --a

(Since A is symmetric, these eigenvectors are orthogonal. Hence 7S =SS7 =1.) The
solution can be obtained in a series of very simple steps:

SA ST# =b
N——
¥2
|
Y1
First solve
Sy1=b
as
Nal —STb

Notice that both the transpose and matrix-vector multiplications are simple and numer-
ically stable operations, unlike matrix inversion. Then we get

A (st) -7
Now solve
Aya =1
as
F=A"
Note that since A is a diagonal matrix, inverting it is trivial:

-1

A 0 -~ 0 + 0 0
0 Ao --- 0 o L ... 0
R Y I (2.31)
1
0O 0 --- A, 0O o T
As a final step, solve
ST7=y5
as
=Sy

Thus we have obtained Z without a single complex or unstable step.

76

CHAPTER 2 Vectors, matrices, and tensors in machine learning

2.15.3 PyTorch code for solving linear systems via diagonalization

2.15.4

Let’s try solving the following set of equations:

r+y+z=38
2x+2y+32=15
r+3y+32=16
This can be written using matrices and vectors as
Ai=b

1 21 x 8
where A=|2 2 3| Z=|y| b=]15
1 3 3 z 16

Note that A is a symmetric matrix. It has orthogonal eigenvectors. The matrix with
eigenvectors of 4 in columns is orthogonal. Its transpose and inverse are the same.

Listing 2.19 Solving linear systems using diagonalization

A = torch.tensor([[1, 2, 11, [2, 2, 31, [1, 3, 311,
dtype=torch.float) <— Creates a symmetric matrix A
assert torch.all(A == A.T) <—— Asserts that A may be symmetric

b = torch.tensor([8, 15, 16], dtype=torch.cfloat) -~ CreatesavectorI;

X 0 = torch.matmul (torch.linalg.inv (A), Lo, . . N -
- J Solves AX = b using matrix inversion, ¥ = A~1b.
b.real) e P .
Note: matrix inversion is numerically unstable.
Solves AX =_g via diagonalization. A = SxST.
SA STZ =b.
w, S = torch.linalg.eig(A) y‘2
N e’

’1

yl = torch.matmul(S.T, b) <— 1.Solve: Sy; =b as 51 = ST (no matrix inversion)

2. Solve: Ayy =y; as yo = A1y}

y2 = torch.matmul (torch.diag(1/ w), y1) (inverting a diagonal matrix is easy; see
equation 2.31.)

x_1 = torch.matmul (8, y2) <— 3.Solve: ST %=y, as % =Sy, (no matrix inversion)

assert torch.allclose(x 0, x_1l.real) <—— Verifies that the two solutions are the same

Matrix powers using diagonalization

If matrix A4 can be diagonalized, then

A=SAS™!
A% =SASTISAS I =SAIAS 1 =SA2S~!

At =...=...=SA"S"!

2.16 Spectral decomposition of a symmetric matrix 77

For a diagonal matrix

A1 0 0
0 A9 0
A=
0 0 Ay
the nth power is simply
A0 0
e 0 A3 -+ 0
0 0 - A"

n
If we need to compute various powers of an m X m matrix A4 at different times, we
should precompute the matrix S and compute any power with only O (m) operations—
compared to the (nm®) operations necessary for naive computations.

2.16 Spectral decomposition of a symmetric matrix

We have seen in section 2.15 that a square symmetric matrix with distinct eigenvalues
can be decomposed as

A=SAST
where
s=la & - al

Thus,

a0 ofla’

0 Ao 0lle’

a=la & oal|. .

0 0 Aafla”

This equation can be rewritten as
A=NAa" + 058+ + 2,80, (2.32)

Thus a square symmetric matrix can be written in terms of its eigenvalues and eigenvec-
tors. This is the spectral resolution theorem.

2.16.1 PyTorch code for the spectral decomposition of a matrix

The following listing shows the relevant code for this section.

Listing 2.20 Spectral decomposition of a matrix

def spectral decomposition (A):
assert len(A.shape) == 2 <—— Asserts that A is a 2D tensor (i.e., matrix)

78

2.17

CHAPTER 2 Vectors, matrices, and tensors in machine learning

A is square: i.e.,
and A.shape[0] == A.shape[1] A.shape[0] (num rows) = A.shape[1] (num columns)

and torch.all(A == A.T) <— Asserts that A is symmetric: i.e., A == AT
1, e = torch.linalg.eig(a) <—— The PyTorch function eig() returns eigenvectors and values.
assert len(torch.unique(l.real)) == A.shapel0],

“Eigen values are not distinct!"

Defines a 3D tensor C of shape n xn xn
to hold the » components from equation 2.32.

' Each term 1;2;¢! is an n X n matrix. There are n
A.shape[0])) such terms, all compactly held in tensor C.

C = torch.zeros((A.shapel[0],
A.shape [0]

for i, lambda i in enumerate(l):

e i=-el:, il
e i = e i.reshape((3, 1)) Computes
cfi, :, :] = (lambda i * torch.matmul(e i, e i.T)).real *‘4{ Clil=1;&éT
return C
A = torch.tensor([[1, 2, 1], [2, 2, 3], [1, 3, 3]1]).float()

C = spectral decomposition (A)
Al = C.sum(axis=0) <—{ Reconstructs A by adding its components stored in C

Verifies that the matrix reconstructed from
assert torch.allclose(A, Al)

spectral components matches the original
An application relevant to machine learning:
Finding the axes of a hyperellipse

The notion of an ellipse in high-dimensional space (aka hyperellipse) keeps coming
back in various forms in machine learning. Here we will make a preliminary review of
them. We will revisit these concepts later.
Recall the equation of an ellipse from high school math:
2 2
s + jb)—z =1

This is a rather simple ellipse: it is two-dimensional and centered at the origin, and its

x
major and minor axes are aligned with the coordinate axes. Denoting ¥ = as the

Y
position vector, the same equation can be written as
CES|
1
where A=|* is a diagonal matrix. Written in this form, the equation can be
0

2
extended beyond 2D to an n-dimensional axis-aligned ellipse centered at the origin.
Now let’s apply a rotation R to the axis. Then every vector Z transforms to RZ. The

2.17.1

2.17 An application relevant to machine learning: Finding the axes of a hyperellipse 79

equation of the ellipse in the new (rotated) coordinate system is
(RZ)" A (RZ) =1
ol (RTAR) 7 =1

where 4 = (RTAR).
The generalized equation of the ellipse is

azi=1

Note the following:

The ellipse is no longer axis aligned.

The matrix 4 is no longer diagonal.

A is symmetric. We can easily verify that A7 = (RTAR)T =RTATR=RT AR (remem-
ber, the transpose of a diagonal matrix is itself).

If, in addition, we want to get rid of the “centered at the origin” assumption, we get
(F-p)" 4 (F-p)=1 (2.33)

Now let’s flip the problem around. Suppose we have a generic n-dimensional ellipse.
How do we compute its axes’ directions?

Clearly, if we can rotate the coordinate system so that the matrix in the middle is
diagonal, we are done. Diagonalization (see section 2.15) is the answer. Specifically,
we find the matrix S with eigenvectors of A4 in its columns. This is a rotation matrix
(being orthogonal, since A is symmetric). We transform (rotate) the coordinate system
by applying this matrix. In this new coordinate system, the ellipse is axis aligned. Stated
another way, the new coordinate axes—these are the eigenvectors of /—yield the axes
of the ellipse.

PyTorch code for hyperellipses

Let’s try finding the axes of the hyperellipse described by the equation 5x? + 6xy + 5y? =
20. Note that the actual ellipse we use as an example is 2D (to facilitate visualization),
but the code we develop will be general and extensible to multiple dimensions.

The ellipse equation can be written using matrices and vectors as ! A7 =1, where

5 3|, |
A: xr=
3 5 y

To find the axes of the hyperellipse, we need to transform the coordinate system so
that the matrix in the middle becomes diagonal. Here is how this can be done: if we
diagonalize 4 into SES™!, then the ellipse equation becomes ¥/ SES™17 =1, where =
is a diagonal matrix. Since A is symmetric, its eigenvectors are orthogonal. Hence,
the matrix containing these eigenvectors as columns is orthogonal: i.e., S1=8T In
other words, S is a rotation matrix. So the ellipse equation becomes ZTSEST#=1 or

CHAPTER 2 Vectors, matrices, and tensors in machine learning

(@TS) = (STZ) =1 or y7 £y =1 where 3 =ST 7. This is of the desired form since X is a
diagonal matrix. Remember, S is a rotation matrix. Thus, rotating the coordinate system
by S aligns the coordinate axes with the ellipse axes.

Listing 2.21 Axes of a hyperellipse

Equation of the ellipse: 52 + 6xy + 5y2 = 20
ellipse eq = sy.EQ(5*x**2 + S*xy**2 4 oril Az = 20, where

6*x*y, 20)
A= 5 3 i=|F
3 5 y
A = torch.tensor ([[5, 31, [3, 5]11).float()
1, S = torch.linalg.eig(A)
X _axis_vec = torch.zeros((A.shape[0])) <«— X-axis vector
first_eigen vec = S[:, 0] <— Major axis of the ellipse

The dot product between two

dot_prod = torch.dot (x_axis vec, first eigen vec) vectors is the cosine of the
angle between them.

theta = math.acos (dot_prod) The angle between the ellipse’s major axis
theta = math.degrees (theta) and the X-axis: 45° (see figure 2.16)
2.0
1.5 1
1.0
0.5 A
0.0 A
_05 -
—-1.0 1 Figure 2.16 Note that the ellipse’s major axis
forms an angle of 45 degrees with the X-axis.
—1.5- Rotating the coordinate system by this angle will
align the ellipse axes with the coordinate axes.
-2.0 . . . Subsequently, the first principal vector will also
-2 -1 0 1 2 lie along this direction.
Summary

= In machine learning, a vector is a one-dimensional array of numbers and a matrix
is a two-dimensional array of numbers. Inputs and outputs of machine learning
models are typically represented as vectors or matrices. In multilayered models,
inputs and outputs of each individual layer are also represented as vectors or
matrices. Images are two-dimensional arrays of numbers corresponding to pixel
color values. As such, they are represented as matrices.

Summary 81

An n-dimensional vector can be viewed as point in R" space. All models can be
viewed as functions that map points from input to output space. The model is
designed so that it is easier to solve the problem of interest in the output space.

A dot product between a pair of vectors T=|zr; a9 --- x,| and

-

=y yo - yn] is the scalar quantity ¥ -y =x1y1 + Xayo + - - - + Ty It is a mea-
sure of how similar the vectors are. Dot products are widely used in machine
learning. For instance, in supervised machine learning, we train the model so
that its output is as similar as possible to the known output for a sample set
of input points known as training data. Here, some variant of the dot prod-
uct is often used to measure the similarity of the model output and the known
output.

Two vectors are orthogonal if their dot product is zero. This means the vectors
have no similarity and are independent of each other.

A vector’s dot product with itself is the square of the magnitude or length of
the vector 7 - 7 = ||Z||2 = 2121 +XToXo + - - - + Ty
Given a set of vectors ¥1, &g, - - - , &y, the weighted sum a1 71 + ag@o + - - - + a, &, (where
ai, ag, - - -, a, are arbitrary scalars) is known as a linear combination. In particular,
if the coefficients a1, ag, - - -, a, are non-negative and they sum to 1, the linear
combination is called a convex combination.

If it is possible to find a set of coefficients ay, ag, - - -, a,, not all zero, such that

the linear combination is a null vector (meaning all its elements are zeros), then
the vectors 71, Xo, - - -, &, are said to linearly dependent. On the other hand, if the only
way to obtain a linear combination that is a null vector is to make every coefficient
zero, the vectors are said to be linearly independent.
One important application of matrices and vectors is to solve a system of linear
equations. Such a system can be expressed in matrix vector terms as A% = b, where
we solve for an unknown vector 7 satisfying the equation. This system has an exact
solution ifand onlyif 4 is invertible. This means A is a square matrix (the number of
rows equals the number of columns) and the row vectors are linearly independent.
If the row vectors are linearly independent, so are the column vectors, and vice
versa. If the rows and columns are linearly independent, the determinant of 4
is guaranteed to be nonzero. Hence, linear independence of rows/columns and
nonzero determinant are equivalent conditions. If any one of them is satisfied, the
linear system has an exact and unique solution.

In practice, this requirement is often not met, and we have an over- or under-
determined system. In such situations, the Moore-Penrose inverse leads to a form
of best approximation. Geometrically, the Moore-Penrose method yields the point
that is closest to b in the space of vectors spanned by columns of 4. Equivalently,
the Moore-Penrose solution Z, yields the point closest to b on the space of vectors
spanned by the columns of A.

For a square matrix A, if and only if /¢ = 1¢, we say A is an eigenvalue (a scalar) and
¢ is an eigenvector (a unit vector) of 4. Physically, the eigenvector ¢ is a unit vector

82

CHAPTER 2 Vectors, matrices, and tensors in machine learning

whose direction does not change when transformed by the matrix 4. The transform
can magnify its length by the scalar scale factor 4, which is the eigenvalue.

An n X n matrix A has n eigenvalue/eigenvector pairs. The eigenvalues need not
all be unique. The eigenvectors corresponding to different eigenvalues are linearly
independent. If the matrix A4 is symmetric, satisfying AT = 4, the eigenvectors
corresponding to different eigenvalues are orthogonal.

A rotation matrix is a matrix in which the rows are orthogonal to each other
and so are the columns. Such a matrix is also known as an orthogonal matrix. An
orthogonal matrix R satisfies the equation RT R =T, where I is the identity matrix.
In the special case when the matrix 4 is a rotation matrix R, one of the eigenvalues
is always 1. The corresponding eigenvector is the axis of rotation.

A matrix A with n linearly independent eigenvectors can be decomposed as
A=SAS™!, where S = [Zl Go --- En] is the matrix with eigenvectors of A as its
columns and A is a diagonal matrix with the eigenvalues of A as its diagonal. This
decomposition is called matrix diagonalization and leads to a numerically stable
way to solve linear systems.

A square symmetric matrix 4 can be expressed in terms of its eigenvectors and
eigenvalues as A4 =naa7 +/lge_§e_§T +---+4,6,6," . This is known as the spectral
decomposition of the matrix A.

3.1

3.1.1

Classifiers and
vector calculus

We took a first look at the core concept of machine learning in section 1.3. Then, in
section 2.8.2, we examined classifiers as a special case. But so far, we have skipped
the topic of error minimization: given one or more training examples, how do we
adjust the weights and biases to make the machine closer to the desired ideal? We
will study this topic in this chapter by discussing the concept of gradients.

NOTE The complete PyTorch code for this chapter is available at http: //mng.bz
/4Zya in the form of fully functional and executable Jupyter notebooks.

Geometrical view of image classification

To fix our ideas, consider a machine that classifies whether an image contains a car
or a giraffe. Such classifiers, with only two classes, are known as binary classifiers. The
first question is how to represent the input.

Input representation

The car-versus-giraffe scenario belongs to a special class of problems where we are
analyzing a visual scene. Here, the inputs are the brightness levels of various points in
the 3D scene projected onto a 2D image plane. Each element of the image represents
a point in the actual scene and is referred to as a pixel. The image is a two-dimensional
array representing the collection of pixel values at a given instant in time. It is usually
scaled to a fixed size, say 224 x 224. As such, the image can be viewed as a matrix:

83

http://mng.bz/4Zya
http://mng.bz/4Zya

84

3.1.2

CHapTer 3 Classifiers and vector calculus

Xo0 Xoa - Xo,993

X100 X1 o0 Xiee3
X=| N) .

Xooso Xoog1 -+ Xoo3993

Each element of the matrix, X; ;, is a pixel color value in the range [0, 255].

IMAGE RASTERIZATION
In the previous chapters, we have always seen a vector as the input to a machine learning

system. The vector representation of the input allowed us to view it as a point in a
high-dimensional space. This led to many geometric insights about classification. But
here, our input is an image, which is akin to a matrix rather than a vector. Can we
represent an image (matrix) as a vector?

The answer is yes. A matrix can always be converted into a vector by a process called
rasterization. During rasterization, we iterate over the elements of the matrix from left to
right and top to bottom, storing successive encountered elements into a vector. The
result is the rasterized vector. It has the same elements as the original matrix, but they
are organized differently. The length of the rasterized vector is equal to the product of
the row count and column count of the matrix. The rasterized vector for the earlier

x0 =Xo,0
x1=Xp,1
. - x93 = X0,293
matrix X has 224 x 224 =50176 elements I = where z; € [0, 255] are
x294 =X1,0
2995 = X1,1
| 50175 = X 293,293 |

values of the image pixels. Thus, a 224 x 224 input image can be viewed as a vector
(equivalently, a point) in a 50,176-dimensional space.

Classifiers as decision boundaries

We see that input images can be converted to vectors via rasterization. Each vector can
be viewed as a point in a high-dimensional space. But the points corresponding to any
given object or class, say giraffe or car, are not distributed randomly all over the space.
Rather, they occupy a small portion (subspace) in the vast high-dimensional space of
inputs. This is because there is always inherent commonality in members of a class.
For instance, all giraffes are predominantly yellow with a bit of black, and cars have
a somewhat fixed shape. This causes the pixel values in images containing the same
object to have somewhat similar values. Overall, this means points belonging to a class
loosely form a cluster.

3.1 Geometrical view of image classification

85

NOTE Geometrically speaking, a classifier is a hypersurface that separates the
point clusters for the classes we want to recognize. This surface forms a decision
boundary—the decision about which class a specific input point belongs to is made
by looking at which side of the surface the point belongs to.

Figure 3.1a shows an example of a rasterized space for the giraffe and car classification
problem. The points corresponding to a giraffe are marked g, and those corresponding
to a car are marked c¢. This is a simple case. Here, the classifier surface (aka decision
boundary) that separates the cluster of points corresponding to car from those corre-
sponding to giraffeis a hyperplane, depicted in figure 3.1a.

NOTE We often call surfaces hypersurfaces and planes hyperplanes in greater than

three dimensions.

g = giraffe

c=car

(a) Car vs. giraffe classifier

Xo

h
h n h
h h n
h h h Classifier surface
h
h -, _hz -) h (hypersphere)
h 7 z > h
h /m z z \ h
h /] z Z, \
z z z h
h N | , 2 z 2 zZ z \ h
h |, zzZ Z_ "z 7] h
h zzz Zz ‘z z
h |\ , 22 / h
h h \z zZ z z / h h
/
h ~ z 7 n
h h - = h h
h h
h h h
h hoh
z = zebra
X h = horse
1
Xo

(b) Horse vs. zebra classifier

Figure 3.1 Geometric depiction of a classification problem. In the multidimensional input space, each
data instance corresponds to a point. In figure 3.1a, the points marked c denote cars, and points marked
g denote giraffes. This is a simple case: the points form reasonably distinct clusters, so the classifica-
tion can be done with a relatively simple surface, a hyperplane. The exact parameters of the hyperplane—
orientation and position—are determined via training. In figure 3.1b, the points marked h denote horses,
and those marked z denote zebras. This case is a bit more difficult: the classification has to be done with
a curved (nonplanar) surface, a hypersphere. The parameters of the hypersphere—radius and center—are

determined via training.

86

3.1.3

CHapTer 3 Classifiers and vector calculus

Figure 3.1b shows a more difficult example: horse and zebra classification in images.
Here the points corresponding to horses are marked % and those corresponding to
zebras are marked z. In this example, we need a nonlinear (curved) surface (such as a
hypersphere) to separate the two classes.

Modeling in a nutshell

Unfortunately, in the typical scenario, we do not know the separating surface. In fact, we
do not even know all the points belonging to a class of interest. All we know is a sampled
set of inputs &; (training inputs) and corresponding classes i (the ground truth). The
complete set of training inputs plus ground truth—{fi, it fora large set of ¢ values—is
called the training data. When we want to teach a baby to recognize a car, we show the
baby several example cars and say “This is a car.” The training data plays the same role
for a neural network.

From only this training dataset {a}}, ;,} Vi € [1, n], we have to identify a good enough
approximation of the general classifying surface that when presented with a random
scene, we can map it to an input point Z, check which side of the surface that point lies
on, and identify the class (car or giraffe). This process of developing a best guess for
a surface that forms a decision boundary between various classes of interest is called
modeling the classifier.

NOTE The ground truth labels ;) for the training images &; are often created
manually. This process of manually generating labels for the training images is
one of the most painful aspects of machine learning, and significant research
effort is going on at the moment to mitigate it.

As indicated in section 1.3, modeling has two steps:

Model architecture selection: Choose the parametric model function ¢ (Z;@, b). This
function takes an input vector Z and emits the class y. It has a set of parameters
@, b, which are unknown at first. This function is typically chosen from a bank
of well-known functions that are tried and tested; for simple problems, we may
choose a linear model, and for more complex problems, we choose nonlinear
models. The model designer makes the choice based on their understanding of
the problem. Remember, at this point the parameters are still unknown—we have
only decided on the function family for the model.

Model training: Estimate the parameters @, b such that ¢ emits the known correct
output (as closely as possible) on the training data inputs. This is typically done via
an iterative process. For each training data instance Z;, we evaluate y; = ¢ (fi; 0, b).
This emitted output is compared with the corresponding known outputs y;. Their
difference, ¢; = ||y; — y;|, is called the training error. The sum of training errors over
all training data is the aggregate training error. We iteratively adjust the parameters
W, b such that the aggregate training error keeps going down. This means at each
iteration, we adjust the parameters so the model output y; moves a little closer to
the target output y; for all ;. Exactly how to adjust the parameters to reduce the
error forms the bulk of this chapter and will be introduced in section 3.3.

3.1 Geometrical view of image classification 87

The function ¢ (¥;%, b) represents the decision boundary hypersurface. For example,
in the binary classification problem depicted in figure 3.1, ¢ (Z;@, b) may represent a
plane (shown by the dashed line). Points on one side of the plane are classified as cars,
while points on the other side are classified as giraffes. Here,

¢ (T, b) =@ T +b

From equation 2.14 we know this equation represents a plane.
In figure 3.1b, a good planar separation does not exist—we need a nonlinear separa-
tor, such as the spherical separator shown with dashed lines. Here,

wo 0 0
0 w1l 0

¢ (%w,b) =" Z+b=0
0 0 - w,

This equation represents a sphere.

It should be noted that in typical reallife cases, the separating surface does not
correspond to any known geometric surface (see figure 3.2). But in this chapter, we will
continue to use simple examples to bring out the underlying concepts.

+ =class 1

0 =class 2
Figure 3.2 In real-life problems, the

Xl 2 separating surface is often not a well-known
surface like a plane or sphere. And often,
> the classification is not perfect—some points
X() fall on the wrong side of the separator.

88

3.1.4

3.2

CHapTer 3 Classifiers and vector calculus

Sign of the surface function in binary classification

In the special case of binary classifiers, the sign of the expression ¢ (¥;®, b) representing
the decision boundary has a special significance. To see this, consider a line in a 2D
plane corresponding to the equation

y+2r+1=0

All points on the line have x, y coordinate values satisfying this equation. The line divides
the 2D plane into two half planes. All points on one half plane have z, y values such
that y + 2x + 1 is negative. All points in the other half plane have z, y values such that
y+2x+1 is positive. This is shown in figure 3.3. This idea can be extended to other
surfaces and higher dimensions. Thus, in binary classification, once we have estimated
an optimal decision surface ¢ (¥;@, b), given any input vector Z, we can compute the
sign of ¢ (Z;@, b) to predict the class.

203 —— liney+2x+1=0

15 A ° Y
(x=0,y = 15) (x =10,y =15)

10 A y+2x+1=16>0 y+2x+1=26>0

(x=0,y=-1)
y+2x+1=0

—5 - PY
(x=-5,y="-5)

y+2x+1=-14<0
10

15 .

(x=5,y =-15)
—20 - y+2x+1=-4<0

-10.0 -75 =50 =25 0.0 2.5 5.0 7.5 10.0

Figure 3.3 Given a point (x¢, y9) and a separator y + 2x + 1 = 0, we can tell which side of the separator
the point lies on from the sign of yy + 2x¢ + 1.

Error, aka loss function

As stated earlier, during training, we adjust the parameters @, b so that the error keeps
going down. Let’s derive a quantitative expression for this error (aka loss function).
Later, we will see how to minimize it.

3.3

3.3 Minimizing loss functions: Gradient vectors 89

Overall, training data consists of a set of labeled inputs (training data instances paired
with known ground truths):
&, 3Oy
@, 3)

oy .

@M, 5

Now we define a loss function. On a specific training data instance, the loss function
effectively measures the error made by the machine on that particular training data—
input-target pair (:Z("), y<i)). Although there are many sophisticated error functions
more suitable for this problem, for now, let’s use a squared error function for the sake
of simplicity (introduced in section 2.5.4). The squared error on the ith training data
element is the squared difference between the output yielded by the model and the

(ol

The total loss (aka squared error) during training is

expected or target output:

i=N
L(@,b)=E*(@,6)=) (e <l>) (3.2)
=0
Note that this total error is not a function of any specific training data instance. Rather,
it is the overall error over the entire training data set. This is what we minimize by adjusting
@ and b. To be precise, we estimate the @ and b that will minimize L (@, b).

Minimizing loss functions: Gradient vectors

The goal of training is to estimate the weights and bias parameter @, b that will minimize
L. This is usually done by an iterative process. We start with random values of @, b and
adjust these values so that the loss L (@, b) = E? (@, b) declines rapidly. Doing this many
times is likely to take us close to the optimal values for @, b. This is the essential idea
behind the process of training a model. It is important to note that we are minimizing
the total error: this prevents us from over-indexing on any particular training instance.
If the training data is a wellsampled set, the parameters @, b that minimize loss over
the training dataset will also work well during inferencing.

How do we “adjust” @, b so that the value of loss L=E? declines? This is where
gradients come in. For any function L (@, b), the gradient with respect to @, b—that is,
VL (@, b)—indicates the direction along which the maximum change in L occurs.
The gradient is the analog of a derivative in 1D calculus. Intuitively, going down along
the direction of the gradient of a function seems like the best strategy for minimizing
the function value.

Geometrically speaking, if we start at an arbitrary point on the surface corresponding
to L (@, b) and move along the direction of the gradient V ;L (@, b), we will go toward
the minimum at the fastest rate (this is discussed in detail throughout the rest of this

90

3.3.1

CHapTer 3 Classifiers and vector calculus

section). Hence, during training, we iteratively move toward the minimum by taking
steps along Vz ;L (@, b). Note that the gradient is with respect to weights, not the input. The
overall algorithm is shown in algorithm 3.1.

Initialize w, b with random values
while L (@, b) > threshold do

w| |@©
= - ,quU’;,L ("L?), b)
b b

Recompute L on new w, b.

end while

Wy —W, by —b

Note the following points:

In each iteration, we are adjusting @, b along the gradient of the error function.
We will see in section 3.3 that this is the direction of maximum change for L. Thus,
L is reduced at a maximal rate.

p is the learning rate: larger values imply longer steps, and smaller values imply
shorter steps. The simplest approach, outlined in algorithm 3.1, takes equal-sized
steps everywhere. In later chapters, we will study more sophisticated approaches
where we try to sense how close to the minimum we are and vary the step size
accordingly:

— We take longer steps when far from the minimum, to progress quickly.

— We take shorter steps when near the minimum, to avoid overshooting it.
Mathematically, we should keep iterating until the loss becomes minimal (that is,

the gradient of the loss is zero). But in practice, we simply iterate until the accuracy
is good enough for the purpose at hand.

Gradients: A machine learning-centric introduction

In machine learning, we model the output as a parametric function of the inputs. We
define a loss function that quantifies the difference between the model output and the
known ideal output on the set of training inputs. Then we try to obtain the parameter
values that will minimize this loss. This effectively identifies the parameters that will
result in the model function emitting outputs as close as possible to the ideal on the set
of training inputs.

The loss function depends on & (the model inputs), y (the known ideal outputs on
the training data—aka ground truth), and @ (the parameters). Here only the behavior
of the loss function with respect to the parameters is of interest to us, so we are ignoring
everything else and denoting the loss function as a function of the parameters as L (@).

NOTE For the sake of brevity, here we use the symbol w to denote all parameters—
weight as well as bias.

3.3 Minimizing loss functions: Gradient vectors 91

The core question we are trying to answer is this: given a loss L (%) and current para-
meter values @, what is the optimal change in the parameters Sw that maximally reduces
the loss? Equivalently, we want to determine 6w that will make 6L =L (17; + 6_&)) - L (®)
as negative as possible. Toward that goal, we will study the relationship between the loss
function L (w) and change in parameter values Sw in several scenarios of increasing
complexity.!

ONE-DIMENSIONAL LOSS FUNCTIONS

For simplicity, we begin by examining this topic in one dimension—meaning there
is a single parameter w. The first example we will study is the simplest possible case:
a linear one-dimensional loss function, shown in figure 3.4a. A linear loss function
in one dimension can be written as L (w)=mw +c¢. If we change the parameter w
by a small amount dw, what is the corresponding change in loss 6L? We have 6L =
L (w+0w)—L (w)=(m(w+dw)+c) — (m (w)+c) =mdw which gives us OL — 4y a con-

ow

stant. By definition, the derivative (‘f—ll; =limg,y—0 %, which leads to % =m. Thus, for

the straight line L (w) =mw +¢, the rate of change of L with respect to w is constant
everywhere and equals the slope m. Putting all this together, we get 6L =mdw = %(M}.

Let’s now study a slightly more complex, non-linear but still one dimensional case—a
parabolic loss function illustrated in figure 3.4b. This parabola can be written as L (w) =
w?. If we change the parameter w by a small amount §w, what is the corresponding
change in in loss 6L? We have 6L =L (w+déw) - L (w) =(w+ sw)? —w? = (2w6w + 6w2).
For infinitesimally small 6w, §w? becomes negligibly small and we get limgs,—o 6L =
lim 0 (2w6w + 6w2) =2wéw and j—lljv =limg,_0 g—é‘} =2w. Combining all these we get
the same equation as the linear case 6L = j—ffvéw. Of course, in case of the straight line
this expression holds for all 6w while in the non-linear curves the expression holds only
for small ow.

oL and Sw

In general, for all one-dimensional loss functions L (w), the change 6L caused by a
change 6w in parameters can be expressed as follows:

dL
6L =—6w (3.3)
dw
To decrease L, 6L must be negative. From equation 3.3, we can see that this requires
éw (change in w) and ZTLU (derivative) to have opposite signs.

Geometrically speaking, the loss function represents a curve with the loss L (w) plotted
along the Y axis against the parameter w plotted along the X axis (see figure 3.4 for
examples). The tangent at any point can be viewed as the local approximation to the
curve itself for an infinitesimally small neighborhood around the point. The derivative
at any point represents the slope of the tangent to the curve at that point.

1 If the change in a quantity such as w is infinitesimally small, we use the symbol dw to denote the change. If
the change is small but not infinitesimally so, we use the symbol dw.

92

cuapter 3 Classifiers and vector calculus

20 A

15+

10 - (w+ dw, L(w + dw)

0L = L(w + dw) — L(w)

L(w)

-10.0 -75 =50 =25 0.0 2.5 5.0 7.5 10.0
w

(a) Line: L (w) =2w+1, LE% =m

16

14

124

104

L(w)
©

(b) Parabola: L (w) =w?, j—i =%w

Figure 3.4 6L in terms of 6w in one dimension, illustrated with two example curves: a straight line and a
parabola. In general, § L. = %61/0. To decrease loss, 6w must have the opposite sign of the derivative
In (a), this implies we always have to move left (decrease w) to decrease L. In (b), if we are in the left half
(e.g., point Q), the derivative is negative, and we have to move to the right to decrease L. But if we are in

the right half, the derivative is positive, and we have to move to the left to decrease L. Geometrically, this

is equivalent to following the tangent “downward.”

3.3 Minimizing loss functions: Gradient vectors 93

NOTE Equation 3.3 basically tells us that to reduce the loss value, we have to follow
the tangent, moving to the right (i.e., positive dw) if the derivative is negative and
moving to the left (i.e., negative dw) if the derivative is positive.

MULTIDIMENSIONAL LOSS FUNCTIONS
If there are many tunable parameters, our loss function will be a function of many vari-

ables, which implies that we have a high-dimensional vector @ and a loss function L (@).
Our goal is to compute the change §L in L (@) caused by a small vector displacement Sw.

We immediately note a fundamental difference from the one-dimensional case: the
parameter change is a vector, 5w, which has not only a magnitude denoted ||5_£v|| but
also a direction denoted by the unit vector 6w. We can take a step of the same size in the
w space, and the change in L (@) will be different for different directions. The situation
is illustrated in figure 3.5, which shows an example loss function L (17)) =L (wy, w) =
2w§ + Swf for two independent variables wp and w;. Let’s examine how this loss function
changes with a few concrete examples.

120

100 Figure 3.5 Plot for sur-
face L (117)) =L (wy, wy)
= 2w§ + Sw% againstw = (wy, w;). Froman
60 example point P = (w¢ =3, w; =4, L =66)
on the surface, we can travel
40 in many directions to reduce 1.
20 Some of these are shown by
arrows. The maximum reduction
occurs when we travel along the
dark arrow: this happens when w
is changed along Sw = [-12, —24]7,
which is the negative of the gradient of

80

L (17{)) at P.
. |wo=3 . R
Suppose we are at w = . The corresponding value of L (@) is 2 x 3% + 3 4 = 66.
w1 = 4
])] > 0.0003
Now, suppose we undergo a small displacement from this point: dw = . The new
0.0004

value is L (713 + (fw) =L (8.0003, 4.0004) = 2 % 3.00032 + 3 x 4.00042 ~ 66.0132066. Thus

this displacement vector Sw= 0.0003 causes a change 0L =66.01320066 — 66 =

0.0004
0.01320066 in L.

94

CHapTer 3 Classifiers and vector calculus

- 0.0004 L o
On the other hand, if the displacement vector is dw = ,we get L (w + (5w) =

0.0003
L (3.0004, 4.0003) =2 % 3.0004? + 3+ 4.0003? ~ 66.0120006. Thus, this displacement
vector causes a change 6L =66.0120006 - 66=0.0120006 in L. The displacement
vectors 6w = 0-0003 and 6w = 0.0004
0.0004 0.0003

have the same length V0.00032 +0.00042 =

v0.00042 +0.00032 = 0.0005 but different directions. The change they cause to the func-
tion value is different. This exemplifies our thesis that in multivariable loss function,
the change in the loss function depends not only on the magnitude but also on the
direction of the displacement in the parameter space.

Whatis the general relationship between the displacement vector Swin the parameter
space and the overall change in loss L (17))? To examine this question, we need to know
what a partial derivative is.

PARTIAL DERIVATIVES
The derivative % of a function L (w) indicates the rate of change of the function

with respect to w. But if L is a function of many variables, how does it change if
only one of those variables is changed? This question leads to the notion of partial
derivatives.

The partial derivative of a function of many variables is a derivative taken with respect
to exactly one variable, treating all other variables as constants. For instance, given
L ({()) =L (wy, w1) = ng + Sw%, the partial derivatives with respect to wg , wy are

— =4
6wo @o
oL

— =6
awl w1

TOTAL CHANGE IN A MULTIDIMENSIONAL FUNCTION
Partial derivatives estimate the change in a function if a single variable changes and

the others stay constant. How do we estimate the change in a function’s value if all the
variables change together?

The total change can be estimated by taking a weighted combination of the partial
derivatives. Let @ and 6w denote the point and the displacement vector, respectively:

3.3 Minimizing loss functions: Gradient vectors 95

6w0

L |ow
dw=|

ow,

OL (@) =L (@ +6w) - L (&)
oL

0 oL
- 5 5 ok —0 3.4
p- wo + p wy+--+ s wy, (3.4)

Then

Equation 3.4 essentially says that the total change in L is obtained by adding up the
changes caused by displacements in individual variables. The rate of change of L with
respect to the change in w; only is gY—Q_. The displacement along the variable w; is dw;.
Hence, the change caused by the i/th element of the displacement is g—lf}’iéwi— this
follows from equation 3.3. The total change is obtained by adding the changes caused
by individual elements of the displacement vector: that is, summing over all 7 from 0 to
n. This leads to equation 3.4. Thus equation 3.4 is simply the multidimensional version

of equation 3.3.

GRADIENTS
It would be nice to be able to represent equation 3.4 compactly. To do this, we define a
quantity called a gradient: the vector of all the partial derivatives.

Given an n-dimensional function L (1?)), its gradient is defined as

oL
dw

oL
6w1

VL (@) =™ (3.5)

oL
dwy,

Using gradients, we can rewrite equation 3.4 as

5L (@)=L (@ +60) - L (&)

oL oL
=—O0wy+ —O0w; + -+ owy
ow Oow Wy
= (VL (®))" 6w=VL (@) - 6 (3.6)

Equation 3.6 tells us that the total change, 6L in L (@), caused by displacement sw
from @ in parameter space is the dot product between the gradient vector VL (@) and
the displacement vector dw. This is the exact multidimensional analog of equation 3.3.

96

P_gradient
(slope of tangent)
is negative

CHapTer 3 Classifiers and vector calculus

Recall from section 2.5.6 that the dot product of two vectors (of fixed magnitude)
attains a maximum value when the vectors are aligned in direction. This yields a physical
interpretation of the gradient vector: its direction is the direction in parameter space
along which the multidimensional function is changing fastest. It is the multidimensional
counterpart of the derivative. This is why, in machine learning, when we want to minimize
the loss function, we change the parameter values along the direction of the gradient
vector of the loss function.

THE GRADIENT IS ZERO AT THE MINIMUM

Any optimum (that is, maximum or minimum) of a function is a point of inflection. This
means the function turns around at the optimum point. In other words, the gradient
direction on one side of the optimum is the opposite of that on the other side. If we try
to travel smoothly from positive values to negative values, we must cross zero somewhere
in between. Thus, the gradient is zero at the exact point of inflection (maximum or
minimum). This is easiest to see in 2D and is depicted in figure 3.6. However, the idea
is general: it works in higher dimensions, too. The fact that the gradient becomes zero
at the optimum is often used to algebraically compute the optimum. The following
example illustrates this.

Gradient

P, gradient

(slope of tangent)

is positive . . .
Figure 3.6 The minimum is always a
point of inflection, meaning the func-
tion turns around at that point. If we
consider any two points P_ and P,
on both sides of the minimum, the
gradient is positive on one side and

P, gradient negative on the other. Assuming the

(slope of tangent) gradient changes smoothly, it must

is zero be zero in between, at the minimum.

Minimum

2

0 +wf. Its optimum occurs when

Consider the simple example function L(wg, w1) = /w

its gradient is zero:
oL

VoL—|ow|o 1 =
w L 2 2 |0 0
dw; 2wy +wy |21

w0=0, w1=0

2’(1)0 0

The solution is

The function attains its minimum value at the origin, which agrees with our intuition.

3.3.2

3.3 Minimizing loss functions: Gradient vectors 97

Level surface representation and loss minimization

In figure 3.5, we plotted the loss function L (@) against the parameter values @. In this
section, we study a different way of visualizing loss surfaces. This will lend further insight
into gradients and minimization.

We will continue with our simple example function from the last subsection. Consider

a field L(wg, wy) = 4 /wg +w]2. Its domain is the infinite 2D plane defined by the axes /)
and /1. Note that the function has constant values along concentric circles centered
on the origin. For instance, at all points on the circumference of the circle wg +w12 =1,
the function has a constant function value of 1. At all points on the circumference of
the circle wg + w12 =25, the function has a constant function value of 5. Such constant
function value curves on the domain are called level contoursin 2D. This is shown as a heat
map in figure 3.7. The idea of level contours can be generalized to higher dimensions
where we have level surfaces or level hypersurfaces. Note that while the @, L (@) in figure
3.5 was on an (n + 1)-dimensional space (where 7 is the dimensionality of @), the level
surface/contour representation is in n-dimensional space. At any point on the domain,
what is the direction along which the biggest change in the function value occurs? The
answer is along the direction of the gradient. The magnitude of the change corresponds
to the magnitude of the gradient. In the current example, say we are at a point (wg, wy).
There exists a level contour through this point: the circle with origin at the center
passing through (wg, w1). If we move along the circumference of this circle—that is,
along the tangent to this circle—the function value does not change. In other words, at
any point, the tangent to the level contour through that point is the direction of minimal
change. On the other hand, if we move perpendicular to the tangent, maximum change in
the function value occurs. The perpendicular to the tangent is known as a normal. This
is the direction of the gradient. The gradient at any point on the domain is always normal to
the level contour through that point, indicating the direction of maximum change in the function
value. In figure 3.7, the gradients are all parallel to the radii of the concentric circles.
Recall that while training a machine learning model, we essentially define a loss
function in terms of a tunable set of parameters and try to minimize the loss by adjusting
(tuning) the parameters. We start at a random point and iteratively progress toward
the minimum. Geometrically, this can be viewed as starting at an arbitrary point on
the domain and continuing to move in a direction that minimizes the function value.
Of course, we would like to progress to the minimum of the function value in as few
iterations as possible. In figure 3.7, the minimum is at the origin, which is also the center
of all the concentric circles. Wherever we start, we will have to always travel radially
inward to reach the minimum (0, 0) of the function ,/wg +w;2.
In higher dimensions, level contours become level surfaces. Given any function
L (@) with @] € R", we define level surfaces as L (@) =constant. If we move along the
level surface, the change in L (@) is minimal (0). The gradient of a function at any
point is normal to the level surface through that point. This is the direction along
which the function value is changing fastest. Moving along the gradient, we pass
from one level surface to another, as shown in figure 3.8. Here the function is

98 cuapter 3 Classifiers and vector calculus

0
200 A
400
600
Figure 3.7 The domain of L (wy, wy) =
wg +w12 shown as a heat map of func-
800 1 tion values. Gradients point radially
outward, as shown by the arrowed line.
The intensity of the heat map changes
1000 fastest along the gradient (that is, radii).
T T T T This is the direction to follow to rapidl
0 200 400 600 800 1000 piey

reach lower values of the function
represented by the heat map.

L(wo, w1, ws) = L(®) = wi + w?} + w}

v S

0.8

0.6

0.2

_1'0-%,?505 - Sy
Thag,
0%.25
0.5

0
0'751.00 0.0

Figure 3.8 Gradient example in 3D: the function L (wy, wy, ws) = L () =w§ +wl2 +w§. The level

surfaces L (1?1) =constant are concentric spheres with the origin as their center. One such surface is
partially shown in the diagram. VL (@) =k [wy w; ws | T —the gradient points radially outward. Moving
along the gradient, we go from one level surface to another, corresponding to maximum change in

L (u7;) Moving along any direction orthogonal to the gradient, we stay on the same level surface (sphere),
which corresponds to zero change in the function value. Dy ({e}) denotes the directional derivative along
the displacement direction making angle 6 with the gradient. If [denotes this displacement direction,
Dy (®)=VL (@) -1.

3.4

3.4 Local approximation for the loss function 99

3D: L (1?)) =L (wgy, wy, w9) =w§ +w12 +w§. The level surfaces wg +wf +w§ =constant for
various values of the constant are concentric spheres, with the origin as their center.
The gradient vector at any point is along the outward-pointing radius of the sphere

through that point.
Another example is shown in figure 3.9. Here the function is 3D: L (z?)) = f(wy, w1,

wo) =w§ +wf. The level surfaces wg +w12 =constant for various values of the constant

are coaxial cylinders, with w9 as the axis. The gradient vector at any point is along the
outward-pointing radius of the planar circle belonging to the cylinder through that point.

L(wp, wy,ws) = L(w) = w% + w%

5.00
4.44

3.89

333

2.78

2.22 3
1.67

111 2
0.56

0.00

1.0

0.25
0.50
D.?SLDD 0.0

Figure 3.9 Gradient example in 3D: the function L (wy, w;, w9) =L (17;) =w§ +w12. The level surfaces
f ("o?)) =constant are coaxial cylinders. One such surface is partially shown in the diagram: VL ({e')) =
k [wy wy O]T. The gradient is normal to the curved surface of the cylinder along the outward radius

of the circle. Moving along the gradient, we go from one level surface to another, corresponding to the
maximum change in L (TE)). Moving along any direction orthogonal to the gradient, we stay on the

same level surface (cylinder), which corresponds to zero change in the function value.

So far, we have studied the change in loss value resulting from infinitesimally small
displacements in the parameter space. In practice, the programmatic displacements
undergone during parameter updates while training are small, but not infinitesimally
so. Is there any way to improve the approximation in these cases? This is discussed in

the following section.

Local approximation for the loss function

Equation 3.6 expresses the change L in the loss value corresponding to displacement

ow in the parameter space. The equation is exactly true if and only if the loss function

100

3.4.1

CHapTer 3 Classifiers and vector calculus

is linear or the magnitude of the displacement is infinitesimally small. In practice, we
adjust parameter values by small—but not infinitesimally small—amounts. Under these
circumstances, equation 3.6 is only approximately true: the larger the magnitude of
||6;v||, the worse the approximation.

A Taylor series offers a way to approximate a multidimensional function in the
local neighborhood of any point by expressing it in terms of the displacements in the
parameter space. It is an infinite series, meaning the equation is exactly true (zero
approximation) only when we have summed an infinite number of terms. Of course, we
cannot add an infinite number of terms with a computer program. But we can improve
the accuracy of the approximation as much as we like by including more and more
terms. In practice, we include at most up to the second term. Anything beyond that is
redundant because the improvement is too small to be realized by the floating point
system of current computers. First we will study a Taylor series in one dimension.

1D Taylor series recap

Suppose we are trying to describe the curve L (w) in the neighborhood of a particular
point w. If we stay infinitesimally close to w, then, as described in section 3.3, we can
approximate the curve with a straight line:

L (w+d6w)=L(w)+ d—L(Sw
dw

But in the general case, if we are describing a continuous (smooth) function in the
neighborhood of a specific point, we use a Taylor series. A Taylor series allows us to
describe a function in the neighborhood of a specific point in terms of the value of the
function and its derivatives at that point. Doing so is relatively simple in 1D:

(pwydl (@wpdL
1! dw 2! dw?

Note that the terms become progressively smaller (since they involve higher and higher

powers of a small number éw). Hence, although the series goes on to infinity, in practice

L (w+déw)=L(w)+

(3.7)

we entail a negligible loss in accuracy by dropping higher-order terms. We often use the
first-order approximation (or, at most, second-order). Equation 3.7 can be rewritten as

(6w) dL (6w)?® d%L

5L=L(w+6w)—L(w):T%+ 51 m.,.

Note that the second term has (6w)2 as a factor, which is nearly zero at small values of
the displacement éw. So, for really small 0w, we include only the first term. Then we get
oL = % 3—5, which is the same as equation 3.3. If 6w is a bit larger and we want greater
accuracy, we can include the second-order term. In practice, as mentioned earlier, that
is hardly ever done.

A handy example of a Taylor series is the expansion of the exponential function e*
near x =0 2 3

e‘=e°+‘=1+t+§+g~--

where we use the fact that {% (€%) |z=0 =€"|2=0 =1 for all n.

3.4.2

3.5

3.5.1

3.5 PyTorch code for gradient descent, error minimization, and model training 101

Multidimensional Taylor series and the Hessian matrix

In equation 3.7, we express a function of one variable in a small neighborhood around
a point in terms of the derivatives. Can we do a similar thing in higher dimensions? Yes.
We simply need to replace the first derivative with the gradient. We replace the second
derivative with its multidimensional counterpart: the Hessian matrix. The multidimen-
sional Taylor series is as follows

L2 Lo LT Lo LT S (<
L (w +6w) =L (@) + T ((5w) VL (@) + 3 (6w) H (L (®)) (6w) NI (3.8)
where H (L (@)), called the Hessian matrix, is defined as
[oL L .. _0°L]
ow? Ow, dws Ow, 0w,
oL L L
U2 0W w2 Un
H(L(@)=|""" o o (3.9)
L L 2L
L 0w, 0wy Ow, 0w dw}
The Hessian matrix is symmetric since 61?);[;0 ;= af};g;ﬂ -. Also, note that the Taylor expan-

sion assumes that the function is continuous in the neighborhood.

Equation 3.8 allows us to compute the value of L in a small neighborhood around
point @ in the parameter space. If we displace from @ by the vector 5w, we arrive at
@ + 6w. The loss there is L (z‘é + 6_1)10), which is expressed by equation 3.8 in terms of the

loss L (@) at the original point and the displacement Sw. This leads to
L - o1 T o1 =0T (o
SL=L (@ +8w) - L (@)= 5 (6) VL (@)+ i (6%) # (L @) (5w)+- 310

Note that the first term is same as equation 3.6 and the second term has squares of
the displacement. Since the square of a small quantity is even smaller, for very small
displacements, the second term disappears, and we essentially get back equation 3.6.
This is called first-order approximation. For slightly larger displacements, we can include
the second term, involving Hessians to improve the approximation. As stated earlier,
this is hardly ever done in practice.

PyTorch code for gradient descent, error minimization,
and model training

In this section, we study PyTorch examples in which models are trained by minimizing
errors via gradient descent. Before we present the code, we briefly recap the main
ideas from a practical point of view. (Complete code for this section can be found at
http://mng.bz/4Zya.)

PyTorch code for linear models

If the true underlying function we are trying to predict is very simple, linear models
suffice. Otherwise, we require nonlinear models. Here we will look at the linear model.

102

CHapTer 3 Classifiers and vector calculus

In machine learning, we identify the input and output variables pertaining to the
problem at hand and cast the problem as generating outputs from input variables. All
the inputs are represented together by the vector #. Sometimes there are multiple
outputs, and sometimes there is a single output. Accordingly, we have an output vector
¥ or an output scalar y. Let’s denote the function that generates the output from the
input vector as f: thatis, y = f (Z).

In real-life problems, we do not know f. The crux of machine learning is to estimate f
from a set of observed inputs Z; and their corresponding outputs y;. Each observation can
be depicted as a pair (#;, y;). We model the unknown function f with a known function
¢. ¢ is a parameterized function. Although the nature of ¢ is known, its parameter values
are unknown. These parameter values are “learned” via training. This means we estimate
the parameter values such that the overall error on the observations is minimized.

If @, b denotes the current set of parameters (weights, bias), then the model will
output ¢ (¥;, @, b) on the observed input Z;. Thus the error on this ith observation is
e? =(¢ (%, @, b) —yi)2. We can batch several observations and add up the errors into a
batch error L = Zi(} (e(i))z.

The error is a function of the parameter set @. The question is, how do we adjust @
so that the error e? decreases? We know a function’s value changes most when we move
along the direction of the gradient of the parameters. Hence, we adjust the parameters
W, b as follows:

w W
NP 2 v L (@, b
L7 1, 1VgL (@, b)

Each adjustment reduces the error. Starting from a random set of parameter values and
doing this a sufficiently large number of times yields the desired model.

A simple and popular model ¢ is the linear function (the predicted value is the dot
product between the input vector and parameters vector plus bias): y; = ¢ (¥;, @, b) =
W' Z+b= 2j wjx; +b. Our initial implementation (listing 3.1) simply mimics this formula.
For more complicated models ¢ (with millions of parameters and nonlinearities), we
cannot obtain closed-form gradients like this. In such cases, we use a technique called
autograd (automatic gradient computation), which does not required closed form
gradients. This is discussed in the next section.

NOTE In real-world problems, we will not know the true underlying function
mapping inputs to outputs. But here, for the sake of gaining insight, we will assume
known output functions and perturb them with noise to make them slightly more
realistic.

Generates random
x = 10 * torch.randn (N) input values

3.5.2

3.5 PyTorch code for gradient descent, error minimization, and model training 103

Generates output values by applying a simple
known function to the input and then adds
noise. Let’s see if our learned function
matches the known underlying function.

y =1.5* x + 2.73
y obs =y + (0.5 * torch.randn(N))

for step in range (num_ steps) :
y_pred = w*x + b <—— Our model, initialized with arbitrary parameter values

mean_squared_error = torch.mean (

(y_pred - y obs) *x 2) Model error is the (squared) difference
between the observed and predicted values.

error using calculus. Possible
only with such simple models.

w_grad = torch.mean(2 * ((y_pred - y obs)* x)) Calculates the gradient of the
b _grad = torch.mean(2 * (y_pred - y obs))

w = w - learning rate * w_grad ‘ Adjusts the weight, bias
b = b - learning rate * b_grad along the gradient of error

print ("True function: y = 1.5*x + 2.73")
print ("Learned function: y pred = *x + ".format(w[0], b[0]))

The output is as follows:

True function: y = 1.5*%*x + 2.73
Learned function: y pred = 1.50059*x + 2.746823

Autograd: PyTorch automatic gradient computation

In the PyTorch code in listing 3.1, for this specific model architecture, we computed
the gradient using calculus. This approach does not scale to more complex models with
millions of weights and perhaps nonlinear complex functions. For scalability, we use an
automatic differentiation software library like PyTorch Autograd. Users of the library need
not worry about how to compute the gradients—they just construct the model function.
Once the function is specified, PyTorch figures out how to compute its gradient through
the Autograd technology.

To use Autograd, we explicitly tell PyTorch to track gradients for a variable by setting
requires_grad = True when creating the variable. PyTorch remembers a computa-
tion graph that is updated every time we create an expression using tracked variables.
Figure 3.10 shows an example of a computation graph.

The following listing, which implements a linear model in PyTorch, relies on Py-
Torch’s Autograd for gradient computation. Note that this method does not require
the closed-form gradient.

Updates parameters: adjusts
def update parameters (params, learning rate) : the weight, bias along the

gradient of error
Doesn’t track gradients
with torch.no_grad() : during parameter updates

104

CHapTer 3 Classifiers and vector calculus

raquires_grad : true
oL

d: —
g L

vake : (ypred - yobs)2

)

requires_grad : true requires_grad : false

OL
grad : 3 grad : none
Ypred

value : wxx +b

requires_grad : true requires_grad : false

grad : none

Figure 3.10 Autograd analysis

for i, p in enumerate (params) :
params[i] = p - learning rate * p.grad

for i in range(len(params)) :
params [i] .requires_grad = True <—— Restores gradient tracking

Generates random
x = 10 * torch.randn (N) training input

y=1.5*x+2.73 Generates training output: applies

a simple known function to the input

y obs = y + (0.5 * torch.randn(N)) and then adds noise. Let’s see
if our learned function matches
w = torch.randn(l, requires_grad=True) the known underlying function.

b = torch.randn(1l, requires_grad=True)

params = [b, w] Our model, initialized with
arbitrary parameter values

3.5.3

3.5 PyTorch code for gradient descent, error minimization, and model training 105

for step in range (num_steps) :

red = params[0] + params[l] * x
vP P P The model error is the

(squared) difference
mean_squared_error = torch.mean((y_pred - y obs) ** 2) between the observed

and predicted values.

Backpropagates: computes the partial
derivatives of the error with respect to
each variable and stores them in the
“grad” field within the variable

mean squared error.backward ()

Updates parameters using

update parameters (params, learning rate)
those partial derivatives

print ("True function: y = 1.5*x + 2.73")
print ("Learned function: y pred = *x + "\
.format (params[1] .data[0], params[0] .data.[0]))

The output is as follows:

True function: y = 1.5%*x + 2.73
Learned function: y pred = 1.50059*x + 2.74783

Nonlinear Models in PyTorch

In listings 3.1 and 3.2, we fit a linear model to a data distribution that we know to
be linear. From the output, we can see that those models converged to a pretty good
approximation of the underlying output function. This is also shown graphically in
figure 3.11. But what happens if the underlying output function is nonlinear?

Step 0 Step 50
154 —— y=1.50x+2.73 o 151 — y=1.50x+2.73 ==
-—- y_pred=0.52x+0.82 -—- y pred=1.70x+1.39

7.5 10.0
X X
Step 100 Step 999
15| — y=1s50x+273 s | — y=1s0x+273 7
——- y pred=1.66x+1.68 ——- y pred=1.51x+2.66
> 10
5_
00 25 50 7.5 10.0 00 25 50 7.5 10.0
X X

Figure 3.11 Linear approximation of linear data. By step 1,000, the model has more or less converged to
the true underlying function.

106

cuapter 3 Classifiers and vector calculus

First, listing 3.3 tries to use a linear model on a nonlinear data distribution. As expected
(and demonstrated via the output as well as figure 3.12), this model does not do
well, because we are using an inadequate model architecture. Further training will
not help.

Listing 3.3 Linear approximation of nonlinear data

x = 10 * torch.rand(N, 1) <—— Generates random input training data

Generates training output: applies a
y = x**2 - x + 2.0 known nonlinear function to the input
y obs =y + (0.5 * torch.rand(N, 1) - 0.25) and then perturbs it with noise

w = torch.rand(l, requires_grad=True)

b = torch.rand (1, requires_grad=True)

params = [b, w]

for step in range (num steps) : ;) .
- Trains a linear model as in listing 3.2

y_pred = params[0] + params[1l] * x
mean_squared_error = torch.mean((y_pred - y_obs) ** 2)
mean_squared_error.backward ()

update_parameters (params, learning rate)

print ("True function: y = 1.5*x + 2.73")
print ("Learned function: y pred = *x + "\
.format (params[1] .data[0], params[0].datal[0]))

Step 0 Step 50
P P
—— y=2.00+ -1.00x + 1.00x"2 —— y=2.00+ -1.00x + 1.00x"2
—-—- y pred=0.52x+0.82 —-—- y pred=7.03x+-1.75
> 50 7
0 | T T T
0 5 10
X X
Step 100 Step 999
P P
—— y=2.00+ -1.00x + 1.00x"2 —— y=2.00+ -1.00x + 1.00x"2
——- y_pred=7.43x+-4.43 504 ~ 7" y_pred=8.80x+-13.40
7 > -
04—~
0 5 10 0 5 10
X X

Figure 3.12 Linear approximation of nonlinear data. Clearly the model is not converging to anything close
to the desired/true function. Our model architecture is inadequate.

3.5 PyTorch code for gradient descent, error minimization, and model training 107

Here is the output:

True function: y=x"2 -x + 2
Learned function: y pred = 8.79633331299*x + -13.4027605057

Next, listing 3.4 tries a nonlinear model. As expected (and demonstrated via the output
as well as figure 3.13), the nonlinear model does well. In real-life problems, we usually
assume nonlinearity and choose a model architecture accordingly.

Listing 3.4 Nonlinear modeling with PyTorch

params = [w0, wl, w2]

for step in range (num_steps) :
y_pred = params[0] + params[l] * x + params[2] * (x**2)
mean_squared_error = torch.mean((y_pred -y obs) ** 2)
mean_squared_error.backward ()
update parameters (params, learning rate)

print ("True function: y= 2 - x + x™2")
print ("Learned function: y pred = + *x + *x"2"\
.format (params[0] .data[0],
params [1] .data[0],
params [2] .data[0]))

Here is the output:

True function: y= 2 - x + x™2
Learned function: y pred = 1.87116754055+-0.953767299652*x+0.996278882027*x"2

Step O Step 50
o1 .1
—— y=2.00+ -1.00x + 1.00x"2 —— y=2.00+ -1.00x + 1.00x"2
—-—- y pred=0.124+0.16x+0.21x"2 ——-y pred=0.13+0.23x+0.88x"2
> 50 -
0 L T T T
0 5 10
Step 100 Step 199999
P 21
— y=2.00+-1.00x + 1.00x"2 55 | —— y=2.00+-1.00x + 1.00x"2
——- y_pred=0.13+0.22x+0.88x"2 ——- y_pred=1.87+-0.95x+1.00x"2
> 50 - > 50 -
25 A
0 L T T T 0 a T T T
0 5 10 0 5 10
X X

Figure 3.13 If we use a nonlinear model, it more or less converges to the true underlying function.

108 CHapTer 3 Classifiers and vector calculus

3.5.4 A linear model for the cat brain in PyTorch

In section 2.12.6, we solved the cat-brain problem directly via pseudo-inverse. Now, let’s
train a PyTorch model over the same dataset. As expected, the model parameters will
converge to a solution close to that obtained by the pseudo-inverse technique (this
being a simple training dataset); but in the following listing, we demonstrate our first
somewhat sophisticated PyTorch model.

X, y created (see section 2.12.3)
as per equation 2.22
X = torch.tensor([[0.11, 0.09], ... [0.63, 0.24]])
X = torch.column stack((X, torch.ones(15))) It is easy to verify that the solution
- to equation 2.22 is roughly w =1,
Adds a column of all wi =1, b = —1. But the equations
1s to augment are not consistent: no one
the data matrix X solution perfectly fits all of them.
We expect the learned model to
y = torch.tensor([-0.8, ... 0.37]) be close to y =xo +x; — 1.
class LinearModel (torch.nn.Module) :
def _ init_ (self, num_ features):
super (LinearModel, self). init () Parameter is a type (subclass) of
Torch Tensor suitable for model
self.w = torch.nn.Parameter (parameters (weights+bias).

torch.randn (num_features, 1))

def forward(self, X): Linear model: y = X @)
y pred = torch.mm(X, self.w) (X is augmented, and w includes bias)

return y pred

model = LinearModel (num features=num_ unknowns)

Ready-made class for computing
loss_fn = torch.nn.MSELoss (reduction="'sum')

squared error loss

optimizer = torch.optim.SGD (model.parameters(), lr=le-2) Ready-made class for

updating weights using
for step in range (num steps) : the gradient of error
y_pred = model (X)
loss = loss_fn(y_pred, y)

Zeros out all partial derivatives
optimizer.zero grad() <—1 P

loss.backward () <—— Computes partial derivatives via autograd

Updates the parameters using gradients

optimizer.step () computed in the backward() step

solution_gd = torch.squeeze (model.w.data)
print ("The solution via gradient descent is ".format (solution gd))

The output is as follows:

The solution via gradient descent is [1.0766 0.8976 -0.9581]

3.6

Gradient

3.7

3.7 Convex sets and functions 109

Convex and nonconvex functions, and global and local minima

A convex surface (see figure 3.14) has a single optimum (maximum/minimum): the
global one.? Wherever we are on such a surface, if we keep moving along the gradient in
parameter space, we will eventually reach the global minimum. On the other hand, on a
nonconvex surface, we might get stuck in a local minimum. For instance, in figure 3.14b,
if we start at the point marked with the arrowed line indicating a gradient and move
downward following the gradient, we will arrive at a local minimum. At the minimum,
the gradient is zero, and we will never move out of that point.

Gradient

Global minimum

(a) A convex function

Figure 3.14 Convex vs. nonconvex func-
tions. Convex functions have only a global
optimum (minimum or maximum), no
local optimum. Following the gradient
downward is guaranteed to reach the
global minimum. Friendly error functions
are convex. A nonconvex function has one
or more local optima. Following the gradi-
ent may reach a local minimum and never

Global minimum discover the global minimum. Unfriendly
(b) A nonconvex function error functions are nonconvex.

Local minimum

There was a time when researchers put a lot of effort into trying to avoid local minima.
Special techniques (such as simulated annealing) were developed to avoid them. How-
ever, neural networks typically do not do anything special to deal with local minima and
nonconvex functions. Often, the local minimum is good enough. Or we can retrain by
starting from a different random point, which may help us escape the local minimum.

Convex sets and functions

In section 3.6, we briefly encountered convex functions and how convexity tells us
whether a function has local minima. In this section, we look at convex functions in

2 Although the theory applies to either optimum, maximum or minimum, for brevity’s sake, here we will
only talk in terms of the minimum

110

3.7.1

3.7.2

CHapTer 3 Classifiers and vector calculus

more detail. In particular, we learn how to tell whether a given function is convex. We
also discuss some important properties of convex functions that will come in handy
later—for instance, when we study Jensen’s inequality in probability and statistics, in
the appendix. We will mostly illustrate the ideas in 2D space, but they can be easily
extended to higher dimensions.

Convex sets

Informally speaking, a set of points is said to be convex if and only if the straight line
joining any pair of points in the set lies entirely within the set. For example, if we
join any pair of points in the shaded region on the left-hand side of figure 3.15 with a
straight line, all points on that line will also be in the shaded region. This is illustrated by
points A and B in the figure. The complete set of points in any such region constitutes
a convex set.

Convex function: y = x? Non-Convex function: y = x°
100 1000
750
80
500
D
60 250
0
B
40 -250
C
A -500
20
-750
0 -1000
-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15

Figure 3.15 Convex and nonconvex sets. The points in the left-hand shaded region form a convex set.
The line joining any pair of points in that shaded region lies entirely in the shaded region: for example, AB.
The points in the right-hand shaded region form a nonconvex set. For instance, the line joining points

C and D passes through a nonshaded region even though both end points belong to a shaded region.

Conversely, a set of points is nonconvex if it contains at least one pair of points whose
joining line contains a point not belonging to the set. For instance, the shaded region
on the right-hand side of figure 3.15 contains a pair of points C and D whose joining
line passes through points not belonging to the shaded region.

The boundary of a convex set is always a convex curve.

Convex curves and surfaces

Consider a function g (). Let’s pick any two points on the curve y=g(x): A = (x1, »1
=g(z1)) and B = (29, y2 =g(x2)). Now consider the line segment L joining 4 and B.
From section 2.8.1 (equation 2.12 and figure 2.8), we know that all points C on L
can be expressed as a weighted average of the coordinates of 4 and B, with the sum
of weights being 1. Thus, C = (@121 + @oxe, a1y1 + @2y2), where a1 +a2=1. Compare

3.7 Convex sets and functions 111

C with its corresponding point D on the curve, which has the same X coordinate:
D= (a1x1 + agws, g (@121 + @ox2)).
If and only if g (x) is a convex function, C will always be above D, or

a1y +agys = a1g (x1) +agg (x2) 2 g (a121 + agxe)

Viewed another way, if we drop a perpendicular to the X-axis from any point on the
secant line joining a pair of points on the curve, that perpendicular will cut the curve at
a lower point (that is, smaller in its Y-coordinate).

This is illustrated on the left-hand side of figure 3.16 with the function g (z) =a?
(known to be convex) and A = (-3, 9) and B = (5, 25), a1 =0.3, a9 =0.7. It can be seen
that the weighted average point C on the line lies above the corresponding point on
the curve D. The right-hand side illustrates the nonconvex function g (x) =%, with A =
(-8, -512) and B = (5, 125), @1 =0.3, @9 =0.7. The figure shows one weighted average
point (C) on the line joining points 4 and B on the curve: C lies below point D on the
curve, which has the same X-coordinate.

Point C = 0.3A + 0.7B = (2.6, 20.2) lies above Point C =0.3A+ 0.7B = (1.1, -66.1) lies above
the point on the curve with the same X coordinate, the point on the curve with the same X coordinate,
D =(2.6,2.6A2) = (2.6, 6.76) D=(1.1,1.1A3) = (1.1, 1.331)
100 1000
80
500
60
0 D(1.1, 1.331) B(5, 125)
P
40 C(1.1,-66.1)
C(2.6,20.2 -
20 (LAB(5, 25) 500 a8, 512)
A(-3,9)
D(2.6, 6.76)
0 — -1000
-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15

Figure 3.16 Convex and nonconvex curves. A and B are a pair of points on the curve. C =0.34+0.7B is
a weighted average of the coordinates of A and B, with weights summing to 1. C lies on the line joining

A and B. The left-hand curve is convex: C lies above the corresponding curve point D. The right-hand
curve is nonconvex: C lies below the corresponding curve point D.

We need not restrict ourselves to two points. We can take the weighted average of an
arbitrary number of points on the curve, with the weights summing to one. The point
corresponding to the weighted average will lie above the curve (that is, above the point
on the curve with the same X-coordinate). The idea also extends to higher dimensions,
as discussed next.

DEFINITION 1
In general, a multidimensional function g (5:’) is convex if and only if

112

3.7.3

CHapTer 3 Classifiers and vector calculus

Given an arbitrary set of points on the function surface (curve, if the function is
ID), (@1, & (1)), (T2, & (@), -, (Fn, & (),

And given an arbitrary set of n weights a1, @9, ---, @, that sum to 1 (that is,
Z:‘l:] a;=1),

The weighted sum of the function outputs exceeds or equals the function output on the
weighted sums:
Zaig (ii)Zg(Zaiii) (3.11)

Alittle thought will reveal that definition 1 implies that convex curves always curl upward
and/or rightward everywhere. This leads to another equivalent definition of convexity.

DEFINITION 2
In general, a multidimensional function g (%) is convex if and only if

A 1D function g () is convex if and only if its curvature is positive everywhere:

d*g

— =20 Vx 3.12

722 (3.12)
A multidimensional function g (Z) is convex if and only if its Hessian matrix (see sec-
tion 3.4.2, equation 3.9) is positive semi-definite (that is, all the eigenvalues of the
Hessian matrix are greater than or equal to zero). This is just the multidimensional
analog of equation 3.12.

One subtle point to note is that if the second derivative is negative everywhere or the
Hessian is negative semi-definite, the curve or surface is said to be concave. This is
different from nonconvex curves, where the second derivative is positive in some places
and negative in others. The negative of a concave function is a convex function. But
the negative of a nonconvex function is again nonconvex.

A function that curves upward everywhere always lies above its tangent. This leads to
another equivalent definition of a convex function.

DEFINITION 3

In general, a multidimensional function g (¥) is convex if and only if
A function g () is convex if and only if all the points on the curve S = (z, g (2)) lie
above the tangent line 7" at any point A4 on S, with § touching 7" only at A.
A function g (Z) is convex if and only if all the points on the surface S = (7, g (7))
lie above the tangent plane 7" at any point 4 on S, with S touching 7" only at A.

This is illustrated in figure 3.17.

Convexity and the Taylor series

In section 3.4.1, equation 3.7, we saw the one-dimensional Taylor expansion for a
function in the neighborhood of a point x. If we retain the terms in the Taylor expansion
only up to the first derivative and ignore all subsequent terms, that is equivalent to
approximating the function at x with its tangent at z (see figure 3.17). This is the linear

3.7.4

Summary 113

Convex function: y = x? Non-Convex function: y = x3
100 1000
75 750
50 500
25 A 250
0 0
A

25 -250
-50 -500
-75 -750
-100 -1000

-15 -10 -5 0 5 10 15 -15 -10 =5 0 5 10 15

Figure 3.17 The left-hand curve is convex. If we draw a tangent line at any point A on the curve, the
entire curve is above the tangent line, touching it only at A. The right-hand cuve is nonconvex: part of
the curve lies above the tangent and part of it below.

approximation to the curve. If we retain one more term (that is, up to the second
derivative), we get the quadratic approximation to the curve. If the second derivative of
the function is always positive (as in convex functions), the quadratic approximation to
the function will always be greater than or equal to the linear approximation. In other
words, locally, the curve will curve so that it lies above the tangent. This connects the
second derivative definition (definition 2) with the tangent definition (definition 3) of
convexity.

Examples of convex functions

The function g (z) =22 is convex. The easiest way to verify this is to compute Z% = d(dit) =
2, which is always positive. In fact, any even power of z, g () =" for an integer n, such
as 2% or 2%, is convex. g (x) =¢” is also convex. This can be easily verified by taking its
second derivative. g (x) =logx is concave. Hence, g (x) = —logx is convex.

Multiplication by a positive scalar preserves convexity. The sum of convex functions

is also a convex function.

Summary
We would like to leave you with the following mental pictures from this chapter:

Inputs for a machine learning problem can be viewed as vectors or, equivalently,
points in a high-dimensional feature space. Classification is nothing but separating
clusters of points belonging to individual classes in this space.

A classifier is can be viewed geometrically as the hypersurface (aka decision bound-
ary) in the high-dimensional feature space, separating the point clusters corre-
sponding to individual classes. During training, we collect sample inputs with
known classes and identify the surface that best separates the corresponding points.
During inferencing, given an unknown input, we determine which side of the
decision boundary this point lies in—this tells us the class.

114

CHapTer 3 Classifiers and vector calculus

For two-class classifiers (aka binary classifiers), if we plug in the pointin the function
for the classifier hypersurface, the sign of the corresponding output yields the
class.

To compute the hypersurface decision boundary that best separates the training
data, we first choose a parametric function family to model this surface (for exam-
ple, a hyperplane for simple problems). Then we estimate the optimal parameter
values that best separate the training data, usually in an iterative fashion.

To estimate the parameter values that optimally separates the training data, we
define a loss function that measures the difference between the model output and
the known desired output over the entire training dataset. Then, starting from
random initial values, we iteratively adjust the parameter values so that the loss
value decreases progressively.

At every iteration, the adjustment to the parameter values that optimally reduces
the loss is estimated by computing the gradient of the loss function.

The gradient of a multidimensional function identifies the direction in the pa-
rameter space corresponding to the maximum change in the function. Thus, the
gradient of the loss function identifies the direction in which we can adjust the
parameters to maximally decrease the loss.

The gradient is zero at the maximum or minimum point of a function, which is
always a point of inflection. This can be used to recognize when we have reached
the minimum. However, in practice, in machine learning we often do an early
stop: terminate training iterations when the loss is sufficiently low.

A multidimensional Taylor series can be used to create local approximations to a
smooth function in the neighborhood of a point. The function is expressed in terms
of the displacement from the point, the first-order derivatives (gradient), second-
order derivatives (Hessian matrix), and so on. This can be used to make higher-
accuracy approximations to the change in loss value resulting from a displacement
in the parameter space.

Loss functions can beconvex or nonconvex. In a convex function, there is no local
minimum, only a single global minimum. Hence, gradient descent is guaranteed to
converge to the global minimum. A nonconvex function can have both a local and
a global minimum. So, gradient-based descent may get stuck in a local minimum.

Linear algebraic tools
i machine learning

This chapter covers

= Quadratic forms

= Applying principal component analysis (PCA)
in data science

= Retrieving documents with a machine learning
application

Finding patterns in large volumes of high-dimensional data is the name of the game in
machine learning and data science. Data often appears in the form of large matrices
(a toy example of this is shown in section 2.3 and also in equation 2.1). The rows of
the data matrix represent feature vectors for individual input instances. Hence, the
number of rows matches the count of observed input instances, and the number of
columns matches the size of the feature vector—that is, the number of dimensions
in the feature space. Geometrically speaking, each feature vector (that is, row of the
data matrix) represents a point in feature space. These points are not distributed
uniformly over the space. Rather, the set of points belonging to a specific class
occupies a small subregion of that space. This leads to certain structures in the data
matrices. Linear algebra provides us the tools needed to study matrix structures.

115

116

4.1

CHAPTER 4 Linear algebraic tools in machine learning

In this chapter, we study linear algebraic tools to analyze matrix structures. The
chapter presents some intricate mathematics, and we encourage you to persevere
through it, including the theorem proofs. An intuitive understanding the proofs will
give you significantly better insights into the rest of the chapter.

NOTE The complete PyTorch code for this chapter is available at http://mng.bz/aoYz
in the form of fully functional and executable Jupyter notebooks.

Distribution of feature data points and true dimensionality

For instance, consider the problem of determining the similarity between documents.
This is an important problem for document search companies like Google. Given a query
document, the system needs to retrieve from an archive—in ranked order of similarity—
documents that match the query document. To do this, we typically create a vector
representation of each document. Then the dot product of the vectors representing a
pair of documents can be used as a quantitative estimate of the similarity between the
documents. Thus, each document is represented by a document descriptor vector in
which every word in the vocabulary is associated with a fixed index in the vector. The
value stored in that index position is the frequency (number of occurrences) of that
word in the document.

NOTE Prepositions and conjunctions are typically excluded and singular; plural
and other variants of words originating from the same stem are usually collapsed
into one word.

Every word in the vocabulary gets its own dimension in the document space. If a word
does not occur in a document, we put a zero at that word’s index location in the
descriptor vector for that document. We store one descriptor vector for every document
in the archive. In theory, the document descriptor is an extremely long vector: its length
matches the size of the vocabulary of the documents in the system. But this vector only
exists notionally. In practice, we do not explicitly store descriptor vectors in their entirety.
We store a <word, frequency> pair for every unique word that occurs in a document—>but
we do not explicitly store words that do not occur. This is a sparse representation of a document
vector. The corresponding full representation can be constructed from the sparse one
whenever necessary. In documents, certain words often occur together (for example,
Michael and Jackson, or gun and violence). For example, in a given set of documents, the
number of occurrences of gun will more or less match the number of occurrences of
violence: if one appears, the other also appears most of the time. For a descriptor vector
or, equivalently, a point in a feature space representing a document, the value at the
index position corresponding to the word gun will be more or less equal to that for the
word wviolence. If we project those points on the hyperplane formed by the axes for these
correlated words, all the points fall around a 45-degree straight line (whose equation
is x=y), as shown in figure 4.1. In figure 4.1, all the points representing documents
are concentrated near the 45-degree line, and the rest of the plane is unpopulated.
Can we collapse the two axes defining that plane and replace them with the single line

4.1 Distribution of feature data points and true dimensionality 117

Roses

America

Violence

Figure 4.1 Document descriptor space. Each word in the vocabulary corresponds to a separate
dimension. Dots show projections of document feature vectors on the plane formed by the axes
corresponding to the terms gun and violence.

around which most data is concentrated? It turns out that yes, we can do this. Doing so
reduces the number of dimensions in the data representation—we are replacing a pair
of correlated dimensions with a single one—thereby simplifying the representation.
This leads to lower storage costs and, more importantly, provides additional insights.
We have effectively discovered a new topic called gun-violence from the documents.

As another example, consider a set of points in 3D, represented by coordinates
X,Y,Z. If the Z coordinate is near zero for all the points, the data is concentrated
around the X, Y plane. We can (and should) represent these points in two dimensions
by projecting them onto the Z =0 plane. Doing so approximates the positions of the
points only slightly (they are projected onto a plane that they were close to in the
first place). In a more realistic example, the data points may be clustered around an
arbitrary plane in the 3D space (as opposed to the Z =0 plane). We can still reduce the
dimensionality of these data points to 2D by projecting on the plane they are close to.

In general, if a set of data points is distributed in a space so that the points are
clustered around a lower-dimensional subspace within that space (such as a plane
or line), we can project the points onto the subspace and perform a dimensionality
reduction on the data. We effectively approximate the distances from the subspace with

118

4.2

CHAPTER 4 Linear algebraic tools in machine learning

zero: since these distances are small by definition, the approximation is not too bad.
Viewed another way, we eliminate smaller from-subspace variations and retain the larger
in-subspace variations. The resulting representation is more compressed and also lends
itself more easily to better analysis and insights as we have eliminated unimportant
perturbations and are focusing on the main pattern.

These ideas form the basis of the technique called principal component analysis (PCA).
It is one of the most important tools in the repertoire of a data scientist and machine
learning practitioner. These ideas also underlie the latent semantic analysis (LSA) tech-
nique for document retrieval—a fundamental approach for solving natural language
processing (NLP) problems in machine learning. This chapter is dedicated to studying a
set of methods leading to PCA and LSA. We examine a basic document retrieval system
along with Python code.

Quadratic forms and their minimization

Given a square symmetric matrix 4, the scalar quantity Q =11 A% is called a quadratic
form. These are seen in various situations in machine learning.
For instance, recall the equation for a circle that we learned in high school

(20 — @) + (21 —ay)? =12

where the center of the circle is (a¢, @1) and the radius is r. This equation can be
rewritten as
L 0] |(xo—a0)|

(zo— @) (21-a1) =r
0 1 (xl - aq)
.. o > . @o -
If we denote the position vector as ¥ and the center of the circle as as @, the
X1 @1

previous equation can be written compactly as
5 T y/> o
(Z-a) I(Jc—a)zr2

Note that left hand side of this equation is a quadratic form. The original x¢, x1-based
equation only works for two dimensions. The matrix based equation is dimension
agnostic: it represents a hypersphere in an arbitrary-dimensional space. For a two-
dimensional space, the two equations become identical.

Now, consider the equation for an ellipse:

(xo—@)? (1 —ay)? _
B3 B3

You can verify that this can be written compactly in matrix form as

1

1
- 0 _
B2 (z0 — o)
(w0 —ao) (x1—ay) (;) =1

(21 — 1)
1

4.2.1

4.2 Quadratic forms and their minimization 119

or, equivalently,

@-a) 4@F-a)=1 (4.1)
50
B2
where A =|"° . Once again, the matrix representation is dimension independent.
0 -5
B

In other words, equation 4.1 represents a hyperellipsoid. Note that if the ellipse axes
are aligned with the coordinate axes, matrix 4 is diagonal. If we rotate the coordinate
system, each position vector is rotated by an orthogonal matrix R. Equation 4.1 is
transformed as follows (we have used the rules for transposing the products of matrices
from equation 2.10):

(R(z-a))" 4(R(F-a))=1

Replacing R7 AR with A, we get the same equation as equation 4.1, but 4 is no longer a
diagonal matrix.

For a generic ellipsoid with arbitrary axes, 4 has nonzero off-diagonal terms but is
still symmetric. Thus, the multidimensional hyperellipsoid is represented by a quadratic
form. The hypersphere is a special case of this.

Quadratic forms are also found in the second term of the multidimensional Taylor
expansion shown in equation 3.8: % (6})T H (%) (6}) is a quadratic form in the Hessian
matrix. Another huge application of quadratic forms is PCA, which is so important that
we devote a whole section to it (section 4.4).

Minimizing quadratic forms

An important question is, what choice of ¥ maximizes or minimizes the quadratic form?
For instance, because the quadratic form is part of the multidimensional Taylor series,
we need to minimize quadratic forms when we want to determine the best direction to
move in to minimize the loss L (:_C') Later, we will see that this question also lies at the
heart of PCA computation.

If 7 is a vector with arbitrary length, we can make Q arbitrarily big or small by simply
changing the length of Z. Consequently, optimizing Q with arbitrary length Z is not a
very interesting problem: rather, we want to know which direction of Z optimizes Q. For
the rest of this section, we discuss quadratic forms with unit vectors Q =47 A% (recall that
Z denotes a unit-length vector satisfying Te=|z)2=1). Equivalently, we could use a

. =T g2 . . .
different flavor, Q = “’;,45" , but we will use the former expression here. We are essentially
searching over all possible directions &, examining which direction minimizes Q =%7 Az.

Using matrix diagonalization (section 2.15),

Q=2"Az=7TSAST#

where S=|¢; e5 --- ¢, is the matrix with eigenvectors of A4 as its columns and A

is a diagonal matrix with the eigenvalues of 4 on the diagonal and 0 everywhere else.

120

CHAPTER 4 Linear algebraic tools in machine learning

Substituting
§=5"%
we get
Q=i"A2=5"SAS" &
=57 Ay (4.2)
Note that since A4 is symmetric, its eigenvectors are orthogonal. This implies that
§ is an orthogonal matrix: that is, STS=8ST =1. Recall from section 2.14.2 that for

an orthogonal matrix S, the transformation S7# is length preserving. Consequently,
3 =574 is a unit-length vector. To be precise,

||y||?=||sfyz||2=(sfyz) (sff) =iT88T3=4T4=1since ST =1

So, expanding the right-hand side of equation 4.2, we get

A 0 - 0 yi
0 A9 --- 0 Yo
Q=[y1 Yoot O
0 0 - A In
:Z/liy? (4.3)
i=1

We can assume that the eigenvalues are sorted in decreasing order of magnitude (if
not, we can always renumber them).

Consider this lemma (small proof): The quantity Y7, /liy?, where }7 yf =1 and
A1 = A9 >+ A,, attains its maximum value when y; =1, yo=---y, =0.

An intuitive proof follows. If possible, let that the maximum value occur at some other
value of . We are constrained by the fact that § is an unit vector, so we must maintain
Yii=1

In particular, none of the elements of § can exceed 1. If we reduce the first term from
1 to a smaller value, say V1 — €, some other element(s) must go up by an equivalent
amount to compensate (i.e., maintain the unit length property). Accordingly, suppose
the hypothesized y maximizing Q is given by

1-¢

<>
Il

Vo

where 6 > 0.

4.2.2

4.2 Quadratic forms and their minimization 121

What happens if we transfer the entire mass from the later term to the first term so
that

l-€+0

<>
Il

Doing this does not alter the length of y as the sum of the squares of the first and the
other term remains 1 — € + . But the value of Q = 3" | /liyf is higher in the second case
(where y; has been beefed up at the expense of another term), since 1; (1 -€+46) >
A1 (1-€)+A4;6 foranyj>1 (since, A1 > A9 --- by assumption). Thus, whenever we have
less than 1 in the first term and greater than zero in some other term, we can increase
Q without losing the unit length property of y by transferring the entire mass to the
first term.

This means to maximize the right hand side of equation 4.3, we must have 1 as the
first element (corresponding to the largest eigenvalue) of the unit vector y and zeros
everywhere else. Anything else violates the condition that the corresponding quadratic
form Q=3", /l,-yl.2 is a maximum.

1

0
Thus we have established that the maximum of Q occursaty = | |. The corresponding

0
Z =Sy =e¢; - the eigenvector corresponding to the largest eigenvalue of A.

Thus, the quadratic form Q =#7 47 attains its maximum when is along the eigen-
vector corresponding to the largest eigenvalue of 4. The corresponding maximum Q
is equal to the largest eigenvalue of 4. Similarly, the minimum of the quadratic form
occurs when £ is along the eigenvector corresponding to the smallest eigenvalue.

As stated above, many machine learning problems boil down to minimizing a quadratic
form. We will study a few of them in later sections.

Symmetric positive (semi)definite matrices

A square symmetric n X n matrix A4 is positive semidefinite if and only if
AT >0 VieR"

In other words, a positive semidefinite matrix yields a non-negative quadratic form with
all n x 1 vectors Z. If we disallow the equality, we get symmetric positive definite matrices.
Thus a square symmetric 7 X n matrix A is positive definite if and only if

AT >0 VEeR"

122

4.3

4.3.1

4.3.2

CHAPTER 4 Linear algebraic tools in machine learning

From equations 4.2 and 4.3, Q is positive or zero if all A;s are positive or zero (since the
yl.Qs are non-negative). Hence, symmetric positive (semi)definiteness is equivalent to the
condition that all eigenvalues of the matrix are greater than (or equal to) zero.

Spectral and Frobenius norms of a matrix

A vector is an entity with a magnitude and direction. The norm ||Z|| of a vector &
represents its magnitude. Is there an equivalent notion for matrices? The answer is yes,
and we will study two such ideas.

Spectral norms

-

In section 2.5.4, we saw that the length (aka magnitude) of a vector 7 is ||Z|| =% Z. Is
there an equivalent notion of magnitude for a matrix A4?

Well, a matrix can be viewed as an amplifier of a vector. The matrix 4 amplifies
the vector ¥ to b=AZ. So we can take the maximum possible value of ||4Z|| over all
possible Z; that is a measure for the magnitude of 4. Of course, if we consider arbitrary-
length vectors, we can make b arbitrarily large by simply scaling # for any 4. That is
uninteresting. Rather, we want to examine which direction of I is amplified most and
by how much.

We examine this question with unit vectors £: what is the maximum (or minimum)
value of ||4z||, and what direction £ materializes it? The quantity

41l =max [|42]l2
is known as the spectral norm of the matrix 4. Note that A7 is a vector and ||AZ||o is its

length. (We will sometimes drop the subscript 2 and denote the spectral norm as ||4]|.)
Now consider the vector Az. Its magnitude is

1Az = (Az)T (42) =2T AT A%

This is a quadratic form. From section 4.2, we know it will be maximized (minimized)
when 2 s aligned with the largest (smallest) eigenvalue of A" A. Thus the spectral norm
is given by the largest eigenvalue of A7 A4

41l =max [l 4z][=0y (4.4)
where o is the largest eigenvalue of A7 A. It is also (the square of) the largest sin-

gular value of 4. We will see o again in section 4.5, when we study singular value
decomposition (SVD).

Frobenius norms

An alternative measure for the magnitude of a matrix is the Frobenius norm, defined as

41| F = (4.5)

In other words, it is the root mean square of all the matrix elements.

4.4

4.4 Principal component analysis 123

It can be proved that the Frobenius norm is equal to the root mean square of the
sum of all the singular values (eigenvalues of A7 4) of the matrix

min(m,n)

I4llF = o} (4.6)
i=1
Principal component analysis
Suppose we have a set of numbers, X = {x(o) ,z x(")}. We want to get a sense of

how tightly packed these points are. In other words, we want to measure the spread of
these numbers. Figure 4.2 shows such a distribution.

S -
—00 oo 0o o000 oo o
Tmin gt Li Tmaz
7]

Figure 4.2 A 1D distribution of points. The distance between extreme points is not a fair representation
of the spread of points: the distribution is not uniform, and the extreme points are far from the others.
Most points are within a more tightly packed region.

Note that the points need not be uniformly distributed. In particular, the extreme
points (Laz, Tmin) may be far from most other points (as in figure 4.2). Thus, i
is not a fair representation of the average spread of points here. Most points are within
a more tightly packed region. The statistically sensible way to obtain the spread is to
first obtain the mean: ;
u=l 320
"0

Then obtain the average distance of the numbers from the mean:

Lo\
9 1 i

i=0

(If we want to, we can take the square root and use o, but it is often not necessary to
incur that extra computational burden). This scalar quantity, o, is a good measure of
the mean packing density or spread of the points in 1D. You may recognize that the

124

CHAPTER 4 Linear algebraic tools in machine learning

previous equation is nothing but the famous variance formula from statistics. Can we
extend the notion to higher-dimensional data?

Let’s first examine the idea in two dimensions. As usual, we name our coordinate axes
Xo, X1, and so on, instead of X, Y, to facilitate the extension to multiple dimensions. An

2
individual 2D data point is denoted 70 = (()i) . The dataset is {5(0)’ AL N f(”)}.
1
The mean is straightforward. Instead of one means, we have two:

] n ()
§ 1

i=0
H1= l ix(i)
n =0 '

Thus we now have a mean vector:

=

- |Mo
ﬂ = =
M1 i=0

z®

S|~

Now let’s do the variance. The immediate problem we face is that there are infinite
possible directions in the 2D plane. We can measure variance along any of them, and it
will be different for each choice. We can, of course, find the variance along the X, and

X7 axes:
1 n (l) 2
2 _
To0=, Z (xo - ”0)
i=0

n

1) 2
2 _ (i)
ohi=y 2 (" - m)

=0

oo and o7 tells us the variance along only one of the axes Xy and Xj, respectively. But
in general, there will be joint variation along both axes. To deal with joint variation,
let’s introduce a cross term:

1 n . .
oh=ath=m 3 (o = o) (o -)
=0

These equations can be written compactly in matrix vector notation:

1 n
n=_ 7@
%

=0
000 001 1 L N7 RWNT R T
C= :; (I(l)—ﬂ) (x(l)—,u)
g1 011 =0

NOTE In the expression for C, we are not taking the dot product of the vectors

. . . T .
(i(’) - ﬁ) and (55(’) - ﬁ) The dot product would be (55(’) - ﬁ) (55(1) - ﬁ) Here,

4.4.1

4.4 Principal component analysis 125

the second element of the product is transposed, not the first. Consequently, the
result is a matrix. The dot product would yield a scalar.)

The previous equations are general, meaning they can be extended to any dimension.

To be precise, given a set of n multidimensional data points X = {5;(0) A f(”)},
we can define)
1 .
i== Y 7 4.7
fi=- ZO Z (4.7)
1< ') T
C== 3" (20 -) (z9 - &) 48
o Z =)t - p (4.8)

=0

Note how the mean has become a vector (it was a scalar for 1D data) and the scalar
variance of 1D, o, has become a matrix C. This matrix is called the covariance mairix.
The (n + 1)-dimensional mean and covariance matrix can also be defined as

Ho
- M1
ji=
| Un
-0'00 001 Ton
C o o1 O1in 49)
(700 w1 Tun
where ;
o= =) -
k=0

For i =j, oy is essentially the variance of the data along the /th dimension. Thus the
diagonal elements of matrix C contain the variance along the coordinate axes. Off-
diagonal elements correspond to cross-covariances.

NOTE [Equations 4.8 and 4.9 are equivalent.

Direction of maximum spread

What is the direction of maximum spread/variance? Let’s first consider an arbitrary
direction specified by the unit vector L. Recalling that the component of any vector
along a direction is yielded by the dot product of the vector with the unit direction
vector, the components of the data points along [are given by

X' = {iTi(O), [Tz L ,fTi(”>}

126 CHAPTER 4 Linear algebraic tools in machine learning

NOTE Remember figure 2.8b, which showed that the component of one vector
along another is given by the dot product between them? /77 are dot products
and hence scalar values.

The spread along direction [is given by the variance of the scalar values in X . The
mean of the values in X is given by

D P
N0
! nz(; E

g

and the variance is

Note that C" =[TCl is the variance of the data components along the direction [. As
such, it represents the spread of the data along that direction. What is the direction [
along which this spread [Tl is maximal? It is the direction / that maximizes C' =[7CI.
This maximizing direction can be identified using the quadratic form optimization
technique we discussed in 4.2. Applying that, we have the following results:

Variance is maximal when [is along the eigenvector corresponding to the largest
eigenvalue of the covariance matrix C. This direction is called the first principal
axis of the multidimensional data.

The components of the data vectors along the principal axis are known as first
principal components.

The value of the variance along the first principal axis, given by the corresponding
eigenvalue of the covariance matrix, is called the first principal value.

The second principal axis is the eigenvector of the covariance matrix correspond-
ing to the second largest eigenvalue of the covariance matrix. Second principal
components and values are defined likewise.

The principal axes are orthogonal to each other because they are eigenvectors of
the symmetric covariance matrix.

4.4.2

X1

4.4 Principal component analysis 127

What is the practical significance of PCA? Why would we like to know the direction
along which the spread is maximum for a point distribution? Sections 4.4.2 through
4.4.5 are devoted to answering this question.

PCA and dimensionality reduction

In section 4.1, we saw that when data points are clustered around a lower-dimensional
subspace, it is beneficial to project them onto the subspace and reduce the dimension-
ality of the data representation. The dimensionally reduced data is more compactly
representable and more amenable to deriving insights and analysis. In the particular
case where the data points are clustered around a straight line or hyperplane, PCA
can be used to generate a lower-dimensional data representation by getting rid of the
principal components corresponding to relatively small principal values. The technique
is agnostic to the dimensionality of the data. The line or hyperplane can be anywhere
in the space, with arbitrary orientation.

For instance, consider the 2D distribution shown in figure 4.3a. Here, the data is
2D and plotted on a plane, but the main spread of the data is along a 1D line (shown
by the thick two-arrowed line in the figure). There is very little spread in the direction
orthogonal to that line (indicated by the little perpendiculars from the data points to
the line in the figure). PCA reveals this internal structure. There are two principal values
(because the data is 2D), but one of them is much smaller than the other: this reveals
that dimensionality reduction is possible. The principal axis corresponding to the larger
principal value is along the line of maximum spread. The small perturbations along the
other principal axis can be eliminated with little loss of information. Replacing each
data point with its projection on the first principal axis converts the 2D dataset into a
1D dataset, brings out the true underlying pattern in the data (straight line), eliminates
noise (little perpendiculars), and reduces storage costs.

\04,\90‘\{:\)
«;\o"'f‘;‘:i ®
S
ARG

&

0,,/.) Legend
. % e Original data point
)9,

%

o,

' e/o/ ° Projection of data point ‘X1

00 /{9 on principal axis (only

% Q(/@ a few shown for clarity)
S,
o
X
0 X()
(a) Dimensionality reduction from 2D to 1D (b) Dimensionality reduction from 3D to 2D

Figure 4.3 Dimensionality reduction via PCA. Original data points are shown with filled little circles, and
hollow circles represent lower-dimensional representations.

128

CHAPTER 4 Linear algebraic tools in machine learning

In figure 4.3b, the data is 3D, but the data points are clustered around a plane in 3D
space (shown as the rectangle in the figure). The main spread of the data is along
the plane, while the spread in the direction normal to that plane (shown with little
perpendiculars from data points to the plane) is small. PCA reveals this: there are
three principal values (because the data is 3D), but one of them is much smaller than
the other two, revealing that dimensionality reduction is possible. The principal axis
corresponding to the small principal value is normal to the plane. We can ignore these
perturbations (perpendiculars in figure 4.3b) with little loss of information. This is
equivalent to projecting the data onto the plane formed by the first two principal
axes. Doing so brings out the underlying data pattern (plane), eliminates noise (little
perpendiculars), and reduces storage costs.

4.4.3 PyTorch code: PCA and dimensionality reduction
In this section, we provide a PyTorch code sample for PCA computation in listing 4.1.
Then we provide PyTorch code for applying PCA on a correlated dataset and an
uncorrelated dataset in listings 4.2 and 4.3, respectively. The results are plotted in
figure 4.4.
Highly correlated dataset Uncorrelated dataset
800 ° 200 4
600 o
[
400 4) 100 1
200 4 04
% %
04 o
—100 A
=200
@
—400 & a —200 1
00.
—600 +— T T T T T T T T T T T T
—-300 -200 -100 0 100 200 300 400 ~300 —200 —-100 0 100 200
x0 wn
(a) PCA on correlated data (b) PCA on uncorrelated data

Figure 4.4 PCA results. In (a), the data points are around the straight line y = 2. Consequently, one
principal value is much larger than the other, indicating that dimensionality reduction will work.
In (b), both principal values are large. Dimensionality reduction will not work.

NOTE The complete PyTorch code for this section is available at http://mng.bz/aoYz
in the form of fully functional and executable Jupyter notebooks.

Listing 4.1 PCA computation

def pca(X): <—— Returns principal values and vectors

covariance matrix = torch.cov(X.T)
1, e = torch.linalg.eig(covariance matrix)
return 1, e

4.4.4

4.4 Principal component analysis 129

NOTE Fully functional code for the PCA computation in listing 4.1 is available at
http://mng.bz/DRYR.

Listing 4.2 PCA on synthetic correlated data

x_0 = torch.normal (0, 100, (N,)) =<—— Random feature vector
x 1 =2%*x 0 + torch.normal (0, 20, (N,))
— - Correlated feature
vector + minor noise

X = torch.column_stack((x_0, x_1))

T Data matrix spread mostly along y = 2x

principal_values, principal vectors = pca (X)

and one small alongy = 2x by projecting on the

T One large principal value T First principal vector Dimensionality reduction
first principal vector

X_proj = torch.matmul (X, first_princpal_vec)

The output is as follows:

Principal values are: [62.6133, 48991.0469]
First Principal Vector is: [-0.44, -0.89]

NOTE Fully functional code for the PCA computation in listing 4.2 is available at
http://mng.bz/gojl.

Listing 4.3 PCA on synthetic uncorrelated data

x 0 = torch.normal(0, 100, (N,)) Random uncorrelated
x 1 = torch.normal(0, 100, (N,)) feature-vector pair
X = torch.column_stack((x_0, x_1))

principal_ values, principal vectors = pca (X)

I Principal values close to each other. The spread of
the data points is comparable in both directions.

Here is the output:

Principal values are [9736.4033, 7876.6592]

NOTE Fully functional code for the PCA computation in listing 4.3 is available at
http://mng.bz/ebKz.

Limitations of PCA

PCA assumes that the underlying pattern is linear in nature. Where this is not true,
PCA will not capture the correct underlying pattern. This is illustrated schematically in
figure 4.5a and via experimental results from listing 4.3. Figure 4.5b shows the results
of running listing 4.4, where we synthetically generate non-linearly correlated data and
perform PCA. The straight line at the base shows the first principal axis. Projecting data

http://mng.bz/DRYR
http://mng.bz/gojl
http://mng.bz/e5Kz

130

. .‘:{, . 20000 1 o
o & * .\.‘.
* % * 04
*

CHAPTER 4 Linear algebraic tools in machine learning

Nonlinear dataset

120000 -

100000 -

80000 -

x1

60000 - é
‘.

o 20y *le 40000 °

d . —200 —-100 0 100 200
' x0

(a) Schematic 2D data distribution with a curved (b) PCA results on synthetic (computer generated) non-linearly
underlying pattern correlated data. The line at the base shows the first principal axis.

4.4.5

4.5

Figure 4.5 Non-linearly correlated data. The points are distributed around a curve as opposed to a
straight line. It is impossible to find a straight line such that all points are near it.

on this axis results in a large error in the data positions (loss of information). Linear
PCA will not do well.

Listing 4.4 PCA on synthetic nonlinearly correlated data

x_0 = torch.normal (0, 100, (N,))
x 1 =2 * (x 0 ** 2) + torch.normal(0, 5, (N,))
X = torch.column_stack((x_0, x_1))

Principal vectors fail to capture

principal_ values, principal vectors = pca (X)
the underlying distribution.

The output is as follows:

Principal values are [9.3440e+03, 5.3373e+08]
Mean loss in information: 68.0108526887 - high

PCA and data compression

If we want to represent a large multidimensional dataset within a fixed byte budget, what
information can we can get rid of with the least loss of accuracy? Clearly, the answer
is the principal components along the smaller principal values—getting rid of them
actually helps, as described in section 4.4.2. To compress data, we often perform PCA
and then replace the data points with their projections on first few principal axes; doing
so reduces the number of data components to store. This is the underlying principle in
JPEG 98 image compression techniques.

Singular value decomposition

Singular value decomposition (SVD) may be the most important linear algebraic tool in
machine learning. Among other things, PCA and LSA implementations are built based
on SVD. We illustrate the basic idea in this section.

4.5.1

4.5 Singular value decomposition 131

NOTE There are several slightly different forms of SVD. We have chosen the one
that seems intuitively simplest.

The SVD theorem states that any matrix A4, singular or nonsingular, rectangular or
square, can be decomposed as the product of three matrices

A=UsyT (4.11)

where (assuming that the matrix 4 is m X n)

2 is an m X n diagonal matrix. Its diagonal elements contain the square roots of
the eigenvalues of A7 A. These are also known as the singular values of A. The
singular values appear in decreasing order in the diagonal of X.

V is an n x n orthogonal matrix containing eigenvectors of 47 A4 in its columns.
U is an m x m orthogonal matrix containing eigenvectors of 447 in its columns.

Informal proof of the SVD theorem

We will provide an informal proof of the SVD theorem through a series of lemmas.
Going through these will provide additional insights.

LEMMA 1
AT A is symmetric positive semidefinite. Its eigenvalues—aka singular values—are non-

negative. Its eigenvectors—aka singular vectors—are orthogonal.

PROOF OF LEMMA 1
Let’s say A4 has m rows and n columns. Then ATAisannxn square matrix

T T
(ATA) AT (AT) =AT4
which proves that AT A is symmetric. Also, for any 7,
AT A7 = (4Z)" (A7) = | 4Z)12 > 0

which, as per section 4.2.2, proves that the matrix 47 4 is symmetric and positive semi-
definite. Hence, its eigenvalues are all positive or zero.

We proved in section 2.13 that symmetric matrices have orthogonal eigenvectors.
That proves that singular vectors are orthogonal.

Let (1;, 7;), for i € [1, n] be the set of eigenvalue, eigenvector pairs of AT A—aka the
singular value, singular vector pair of 4. Note that without loss of generality, we can
assume A1 > A9 >--- 4, (because if not, we can always renumber the eigenvalues and
eigenvectors).

Now, by definition,

AT Av; = 2;6; Vie[l,n]

From lemma 1, singular vectors are orthogonal, and hence

0 i#j
afﬁjz{ ! (4.12)

132

CHAPTER 4 Linear algebraic tools in machine learning

Note that 9;s are unit vectors (that is why we are using the hat sign as opposed to the
overhead arrow). As described in section 2.13, eigenvectors remain eigenvectors if we
change their length. We are free to choose any length for eigenvectors as long as we
choose it consistently. We are choosing unit-length eigenvectors here.

LEMMA 2

AAT is symmetric positive semidefinite. Its eigenvalues are non-negative and eigen-

vectors are orthogonal.

PROOF OF LEMMA 2 T T
(AAT) - (AT) AT =447
Also,

#TAA 7= (ATE)T (A7) =11 (4"7) I =0
and so on.

LEMMA 3

1 ~ . . .
\/77,1471:', Vi € [1, n] is a set of orthogonal unit vectors.

PROOF OF LEMMA 3
Let’s take the dot product of a pair of these vectors:

1 T 1
— A% | —=A0:|= ol AT A9,
(V/li) (v@]) TR

S (4")

Since 4, 9; are eigenvalue, eigenvector pairs of 47 4, the previous equation can be

rewritten as

1

VA

which, using equation 4.12, can be rewritten as

/leTA 0 i#j
TV U= .
Ai 1 i=j

AT 4 A
0; A0

LEMMA 4

If (1;, 9;) is an eigenvalue, eigenvector pair of AT 4, then (/lz-, ;=

value, eigenvector pair of AAT .

PROOF OF LEMMA 4
Given
A" Ad; = 2:4;
left-multiplying both sides of the equation by A4, we get
AAT Ad; = 1; 4%,
AAT (A9) = A; (AD;)

1
VI

Aﬁi) is an eigen-

4.5.2

4.5 Singular value decomposition 133

Substituting f; =A%; in the last equation, we get
AA" fi=Aif;

which proves that f; = A9; is an eigenvector of 44T with A; as a corresponding eigenvalue.
. . 1 .- . .

Multiplying by YL converts it into a unit vector as per lemma 3. This completes the

proof of the lemma.

Proof of the SVD theorem

Now we are ready to examine the proof of the SVD theorem.

CASE 1: MORE ROWS THAN COLUMNS IN A
If m, the number of rows in A4, is greater than or equal to n, the number of columns in
A, we define

U= upy ug o Up Upyl Uy

\/,1_1 0 0
0 Vs .- 0

0 0 0
0 0 0
V= 751 ZjQ '(jn

Note the following:
From lemma 1, we know that the eigenvalues of AT A are positive. This makes the
square roots, yA4;s, real.
U is an m xm orthogonal matrix whose columns are the eigenvectors of 447
Since, AAT is m xm, it has m eigenvalues and eigenvectors. The first n of them

= AD o= ADo ... fi =L 45
are] = ‘m/lvl, ity = m/lvg,)y, \m/lvn (from lemma 4, we know these are
eigenvectors of AA47). In this case, by our initial assumption, n < m. Thus 447 has
(m —n) more eigenvectors, @1, - - .

V is an n X n orthogonal matrix with the eigenvectors of AT A4 (that is, vy, v, - - -,
¥y,) as its columns.

Consider the matrix product UZ. From basic matrix multiplication rules (section 2.5,
we can see that

134 CHAPTER 4 Linear algebraic tools in machine learning

VA 0 0
0 Vi

Ux= [721 Zz2 e ﬁn ﬁn+1 e ﬁm] 0 : V/ln
0 0 . 0
0 0 0
= [V/llﬁl V/l2ﬂ2 V/lnﬁn]
Note that the last columns of U, @41, -+ , &y, are multiplied by all zeros in X and

vanishing. Thus,

Uz:[v/llﬁl V/12722 V/lnﬁn]

=[Az71 Ay --- Aﬁn]
=AV

The later columns of U—those named with us—fail to survive because they are multiplied
by the zeros at the bottom of X.
Thus we have proved that

AV =UX
Then
Aarvt=usy”
Since V' is orthogonal, VVT =1. Hence
A=Uzy"

which completes the proof of the singular value theorem.

CASE 2: FEWER ROWS THAN COLUMNS IN A
If m, the number of rows in A, is less than or equal to 7, the number of columns in A,

we have
U: 121 122 "'sz
Vi 0 0 e 0
0 Vg - 0 o0

> =
0 0 Ay - 0

The proof follows along similar lines.

4.5 Singular value decomposition 135

4.5.3 Applying SVD: PCA computation

4.5.4

We will illustrate the idea first with a toy dataset. Consider a 3D dataset with five points.
We use a superscript to denote the index of the data instance and a subscript to denote
the component. Thus the ith data instance vector is denoted as [x(()i) xfi) xéi)]. We
denote the entire data set with a matrix in which each feature instance appears as a row

vector. The data matrix is

@ 0 (0]
Ty T Xy

xél) x}l) xél)

X= x(()2) xl(Q) xéQ)

1(53) xiS) xéf‘})

xé4) x1(4) x§4)

We will assume that the data is already mean-subtracted. Now examine the matrix
product X TY, using ordinary rules of matrix multiplication:

2 o o
4 (@) 4 (@) (i) 4 (i) (i)
i=0 (xo) i=0%o ¥y i=0 %o Lo

- . . 1\ 2 . .
Ty _|v4 G @) 4 (@) 4 (1) (1)
XOX = 50w i=0 (951) i=0 %1 Lo

L o 2
4 @) (@) 4 @) (@) 4 (i)
i=0 xgl xol i=0 xgl x1l i=0 (%l)

From equations 4.10 and 4.9,

goo 001 002

T
X' X=|oy on 012 =C
09 091 092

Thus X7 X is the covariance matrix of the dataset X. This holds for arbitrary dimensions
and arbitrary feature instance counts.

If we create a data matrix X with each data instance forming a row, X7 X yields the
covariance matrix of the dataset. The eigenvalues and eigenvectors of this matrix are the
principal components. Hence, performing SVD on X yields PCA of the data (assuming
prior mean subtraction).

Applying SVD: Solving arbitrary linear systems
A linear system is a system of simultaneous linear equations
AZ=b

We first encountered a linear system in section 2.12. It is possible to use matrix inversion
to solve such a system:
T=A""b

136

4.5.5

CHAPTER 4 Linear algebraic tools in machine learning

However, solving a linear system with matrix inversion is undesirable for many reasons.
To begin with, it is numerically unstable. The matrix inverse contains the determi-
nant of the matrix in its denominator. If the determinant is near zero, the inverse
will contain very large numbers. Minor noise in b will be multiplied by these large
numbers and cause large errors in the computed solution Z. In this case, the inverse-
based solution can be very inaccurate. Furthermore, the determinant can be zero:
this can happen when one row of the matrix is a linear combination of others, in-
dicating that we have fewer equations than we think. And what if the matrix is not
square to begin with? This can happen when we have more equations than unknowns
(overdetermined system) or fewer equations than unknowns (underdetermined sys-
tem). In these cases, the inverse is not computable, and the system cannot be solved
fully.

Even in these cases, we would like to obtain a solution that is the best approximation
in some sense; and in the case of a square matrix, we would like to get the exact solution.
How do we do this? Answer: we use SVD. The steps are as follows:

AZ=b can be rewritten as U (£/'TF) =b. We then solve U3, =b. This can be easily
done using orthogonality of U, as y; = U7 b.
Now we have X (/7Z) =¥, Solve Zjs =, . This can be easily done because for any dia-

1
d 0 -+ 0 T o --- 0
_ 0 do - 0 . z 0
gonal matrix X = . . we can easily compute 27! =)
0 - v dy 0 - - dL

Hence, yo =X~ 1.
Now we have /7% =3j. This too can be solved easily using the orthogonality of /:
Z=Vyo

Thus we have solved for Z without inverting the matrix A:
For invertible square matrices /4, this method yields the same solution as the
matrix-inverse-based method.
For nonsquare matrices, this boils down to the Moore-Penrose inverse and yields
the best-effort solution.

Rank of a matrix
In section 2.12, we studied linear systems of equations. Such a system can be represented
in matrix-vector form:

Az=b
Each row of A and b contributes one equation. If we have as many independent equations
as unknowns, the system is solvable. This is the simplest case; matrix A4 is square and
invertible. det(A) is nonzero, and A4~ exists.

4.5.6

4.5 Singular value decomposition 137

Sometimes the situation is misleading. Consider the following system:

1 0 Of]xo 5
0 1 Of|x|=|7
1 1 0f]x 12

Although there are three rows and apparently three equations, the equations are not
independent. For instance, the third equation can be obtained by adding the first two.
We really have only two equations, not three. We say this linear system is degenerate. All
of the following statements are true for such a system A% = b:

The linear system is degenerate.

det(A)=0.

A~ cannot be computed, and A is not invertible.

Rows of A are linearly dependent. There exists a linear combination of the rows
that sum to zero. For example, in the previous example, 7y +7] — 72 =0.

At least one of the singular values of A (eigenvalues of A7 A) is zero. The number
of linearly independent rows is equal to the number of nonzero eigenvalues.

The number of linearly independent rows in a matrix is called its rank. It can be proved
that a matrix has as many nonzero singular values as its rank. It can also be proved
that the number of linearly independent columns in a matrix matches the number of
linearly independent rows. Hence, rank can also be defined as the number of linearly
independent columns in a matrix.

A nonsquare rectangular matrix with m rows and n columns has a rank r =min(m, n).
Such matrices are never invertible. We usually resort to SVD to solve them.

A square matrix with n rows and n columns is invertible (nonzero determinant) if
and only if it has rank n. Such a matrix is said to have full rank. Full-rank matrices are
invertible. They can be solved via matrix inverse computation, but inverse computation
is not always numerically stable. SVD can be applied here as well, with good numerical
properties.

Non-full-rank matrices are degenerate. So, rank is a measure of the non-degeneracy
of the matrix.

PyTorch code for solving linear systems with SVD

The listings in this section show a PyTorch-based implementation of SVD and demon-
strate an application that solves a linear system via SVD.

A = torch.temsor([[1, 2, 1], [2, 2, 3], [1, 3, 3]]).float() Simple test linear
b = torch.tensor([8, 15, 16]) .float () system of equations
x 0 = torch.matmul (torch.linalg.inv(a), b)

T Matrix inversion is numerically unstable;
SVD is better.

138 CHAPTER 4 Linear algebraic tools in machine learning

U, S, V_t = torch.linalg.svd(A)

-

tA=USVT = Az=b2USVT7=0 -
Solves Uy =b. Remember
yl = torch.matmul (U.T, b) U-1=UT as U is orthogonal.

S_inv = torch.diag(l / 8) Solves Sjs = j1. Remember
-1 . .
y2 = torch.matmul (S_inv, y1) S~ is easy as S is diagonal.

Solves V7' 7 = ;. Remember
x_1 = torch.matmul (V_t.T, y2) v-T =V asVis orthogonal.

The two solutions

assert torch.allclose(x 0, x_1) ‘__W
are the same.

Here is the output:

Solution via inverse: [1.0, 2.0, 3.0]
Solution via SVD: [1.0, 2.0, 3.0]

Listing 4.6 Solving an overdetermined linear system by pseudo-inverse and SVD

A = torch.tensor([[0.11, 0.09], [0.01, 0.02],
[0.98, 0.91], [0.12, 0.21],
[0.98, 0.99], [0.85, 0.87],
[0.03, 0.14], [0.55, 0.45],
[0.49, 0.51], [0.99, 0.01],
[0.02, 0.89], [0.31, 0.47],
(0.55, 0.29], [0.87, 0.76], Cat-brain dataset:
[0.63, 0.24]11) nonsquare matrix

A = torch.column_stack((A, torch.ones(15)))

b = torch.tensor([-0.8, -0.97, 0.89, -0.67,
0.97, 0.72, -0.83, 0.00,
0.00, 0.00, -0.09, -0.22,
-0.16, 0.63, 0.371)

x_0 = torch.matmul (torch.linalg.pinv(A), b)

T Solution via pseudo-inverse

U, S, V_t = torch.linalg.svd (A, full matrices=False)

T Solution via SVD
yl = torch.matmul (U.T, b)
S_inv = torch.diag(l / S)
y2 = torch.matmul (S_inv, y1)
x 1 = torch.matmul (V_t.T, y2)

The two solutions
assert torch.allclose(x 0, x_1) are the same

The output is as follows:

Solution via pseudo-inverse: [1.0766, 0.8976, -0.9582]
Solution via SVD: [1.0766, 0.8976, -0.9582]

4.5.7

4.5.8

4.5 Singular value decomposition 139

Fully functional code for solving the SVD-based linear system can be found at http://mng
.bz/OERn.

PyTorch code for PCA computation via SVD
The following listing demonstrates PCA computations using SVD.

Listing 4.7 Computing PCA directly and using SVD

principal_values, principal vectors = pca (X)

T Data matrix

Direct PCA computation

Eigenvalues of from a covariance matrix

the covariance
matrix yield Eigenvectors of the covariance
principal values. matrix yield principal vectors.

X _mean = X - torch.mean(X, axis=0)
U, S, V_t = torch.linalg.svd(X_mean)

i T PCA from SVD
Diagonal elements

of matrix S
yield principal values.

V=Vv_EeT Columns of matrix V'
yield principal vectors.

The output is as follows:

Principal components obtained via PCA:
[[-0.44588404 -0.89509073]
[-0.89509073 0.44588404]]

Principal components obtained via SVD:
[[-0.44588404 0.89509073]
[-0.89509073 -0.44588404]]

Applying SVD: Best low-rank approximation of a matrix

Given a matrix 4 of some rank p, we sometimes want to approximate it with a ma-
trix of lower rank r, where r <p. How do we obtain the best rank r approximation
of A?

MOTIVATION
Why would we want to do this? Well, consider a data matrix X as shown in section 4.5.3.

As explained in section 4.4.2, we often want to eliminate small variances in the data
(likely due to noise) and get the pattern underlying large variations. Replacing the
data matrix with a lower-rank matrix often achieves this. However, we must bear in
mind that this does not work when the underlying pattern is nonlinear (such as in
figure 4.5a).

http://mng.bz/OERn
http://mng.bz/OERn

140

4.6

CHAPTER 4 Linear algebraic tools in machine learning

APPROXIMATION ERROR
What do we mean by best approximation? The Frobenius norm can be taken as the

magnitude of the matrix. Accordingly, given a matrix 4 and its rank r approximation
A,, the approximation error is e = ||4 — A4, ||r.

METHOD
To solidify our ideas, let’s consider an m X n matrix 4. From section 4.5, we know it will

have min(m, n) singular values. Let its rank be p <min(m, n). We want to approximate
this matrix with a rank r(< p) matrix.

Let’s rewrite the SVD expression. We will assume m > n. Also, as usual, we have the
singular values sorted in decreasing order: 41 > A9 > 4,,. We will partition U, X, /'

A=Uzy"
VL 0 0_
0 Vg eee e 0 0
5 . Z p & H TA}?
0 0 - VA 0 e 0
0 0 - 0 A1 - 0 o
= iy U A1 U . . . ; : "
8 1
0 0 0 0 Vn .
0 0 0 0 0 o
0 0 0 0 0
= o||rf
:[Ul UQ] T
0 o |V
=U121V1T+U222V2T

It can be proved that UlZlVlT is a rank r matrix. Furthermore, it is the best rank r
approximation of 4.

Machine learning application: Document retrieval

We will now bring together several of the concepts we have discussed in this chapter
with an illustrative toy example: the document retrieval problem we first encountered
in section 2.1. Briefly recapping, we have a set of documents {dy, - - - , dg}. Given an
incoming query phrase, we have to retrieve documents that match the query phrase. We
will use the bag of words model: that is, our matching approach does not pay attention to
wherea word appears in a document; it simply pays attention to how many times the word
appears in the document. Although this technique is not the most sophisticated, it is
popular because of its conceptual simplicity.
Our documents are as follows:

do: Roses are lovely. Nobody hates roses.
d1: Gun violence has reached epidemic proportions in America.

4.6.1

4.6 Machine learning application: Document retrieval 141

do: The issue of gun violence is really over-hyped. One can find many instances of
violence where no guns were involved.

ds: Guns are for violence prone people. Violence begets guns. Guns beget violence.
dy: I'like gunsbut I hate violence. I have never been involved in violence. But I own
many guns. Gun violence is incomprehensible to me. I do believe gun owners are
the most anti violence people on the planet. He who never uses a gun will be prone
to senseless violence.

ds: Guns were used in an armed robbery in San Francisco last night.

de: Acts of violence usually involve a weapon.

Using TF-IDF and cosine similarity

Before discussing PCA, let’s look at some more elementary techniques for document
retrieval. These are based on term frequency-inverse document frequency (TF-IDF)
and cosine similarity.

TERM FREQUENCY
Term frequency (TF) is defined as the number of occurrences of a particular term in a

document. (In this context, note that in this book, we use term and word somewhat in-
terchangeably.) In a slightly looser definition, any quantity proportional to the number
of occurrences of the term is also known as term frequency. For example, the TF of the
word gunin dy, de is 0,in dj is 1, in ds is 3, and so on. Note that we are being case indepen-
dent. Also, singular/plural (gun and guns) and various flavors of the words originating
from the same stem (such as violence and violent) are typically mapped to the same term.

INVERSE DOCUMENT FREQUENCY
Certain terms, such as the, appear in pretty much all documents. These should be

ignored during document retrieval. How do we down-weight them?

The IDF is obtained by inverting and then taking the absolute value of the logarithm
of the fraction of all documents in which the term occurs. For terms that occur in most
documents, the IDF weight is very low. It is high for relatively esoteric terms.

DOCUMENT FEATURE VECTORS
Each document is represented by a document feature vector. It has as many elements as

the size of the vocabulary (that is, the number of distinct words over all the documents).
Every word has a fixed index position in the vector. Given a specific document, the
value at the index position corresponding to a specific word contains the TF of the
corresponding word multiplied by that word’s IDF. Thus, every document is a point in
a space that has as many dimensions as the vocabulary size. The coordinate value along
a specific dimension is proportional to the number of times the word is repeated in the
document, with a weigh-down factor for common words.

For real-life document retrieval systems like Google, this vector is extremely long.
But not to worry: this vector is notional—it is never explicitly stored in the computer’s
memory. We store a sparse version of the document feature vector: a list of unique
words along with their TFXIDF scores.

142

4.6.2

CHAPTER 4 Linear algebraic tools in machine learning

COSINE SIMILARITY
In section 2.5.6, we saw that the dot product between two vectors measures the agreement

between them. Given two vectors @ and b, we know d-b = ||E||||1;||cos (8), where the
operator || - || implies the length of a vector and @ is the angle between the two vectors
(see figure 2.7b). The cosine is at its maximum possible value, 1, when the vectors
are pointing in the same direction and the angle between them is zero. It becomes
progressively smaller as the angle between the vectors increases until the two vectors
are perpendicular to each other and the cosine is zero, implying no correlation: the
vectors are independent of each other.

The magnitude of the dot product is also proportional to the length of the two
vectors. We do not want to use the full dot product as a measure of similarity between
the vectors because two long vectors would have a high similarity score even if they were
not aligned in direction. Rather, we want to use the cosine, defined as

al'b
il

The cosine similarity between document vectors is a principled way of measuring the
degree of term sharing between the documents. It is higher if many repeated words are

cosine_similarity ((_i, [;) = (4.13)

shared between the two documents.

Latent semantic analysis

Cosine similarity and similar techniques suffer from a significant drawback. To see this,
examine the cosine similarity between ds and de. It is zero. But it is obvious to a human
that the documents are similar.

What went wrong? Answer: we are measuring only the direct overlap between terms in
documents. The words gun and violence occur together in many of the other documents,
indicating some degree of similarity between them. Hence, documents containing only
gun have some similarity with documents containing only violence—but cosine similarity
between document vectors does not look at such secondary evidence. This is the blind
spot that LSA tries to overcome.

Words are known by the company they keep. That is, if terms appear together in many
documents (like gun and violencein the previous examples), they are likely to share some
semantic similarity. Such terms should be grouped together into a common pool of se-
mantically similar terms. Such a pool is called a {opic. Document similarity should be mea-
sured in terms of common topics rather than explicit common terms. We are particularly
interested in topics that discriminate the documents in our corpus: that is, there should
be a high variation in the degree to which different documents subscribe to the topic.

Geometrically, a topic is a subspace in the document feature space. In classical latent
semantic analysis, we only look at linear subspaces, and a topic can be visualized as a
direction or linear combination of directions (hyperplane) in the document feature
space. In particular, any direction line in the space is a topic: it is a subspace representing
a weighted combination of the coordinate axis directions, which means it is a weighted
combination of vocabulary terms. We are, of course, interested in topics with high

4.6 Machine learning application: Document retrieval 143

variance. These correspond to a direction along which the document vectors are well
spread, which means the document vectors are well discriminated over this topic. We
typically prune the set of topics, eliminating those with insufficient variance.

From this discussion, a mathematical definition of topic begins to emerge. Topics
are principal components of the matrix of document vectors with individual document
descriptor vectors along its rows. Measuring document similarity in terms of topic has
the advantage that two documents may not have many exact words in common but may
still have a common topic. This happens when they share words belonging to the same
topic. Essentially, they share a lot of words that occur together in other documents. So
even if the number of common words is low, we can have high document similarity.

For instance, in our toy document corpus, gun and violence are very correlated (both
or neither is likely to occur in a document). Gun-violence emerges as a topic. If we
express the document vector in terms of this topic instead of the individual words, we
see similarities that otherwise would have escaped us. That is, we see latent semantic
similarities. For instance, the cosine similarity between d5 and dg is nonzero. This is the
core idea of latent semantic analysis and is illustrated in figure 4.6.

Roses

America

Violence

Figure 4.6 Document vectors from our toy dataset d, - - - dg. Each word in the vocabulary corresponds to
a separate dimension. Dots show projections of document feature vectors on the plane formed by the axes
corresponding to the terms gun(s) and violence.

144

CHAPTER 4 Linear algebraic tools in machine learning

Table 4.1 Document matrix for the toy example dataset

Violence Gun America e Roses
do 0 0 0 s 2
d; 1 1 1 0
dz 2 2 0 0
ds 3 3 0 0
dy 5 5 0 0
ds 0 1 0 0
dg 1 0 0 0

Let’s revisit our example document-retrieval problem in light of topic extraction. The

document matrix (with document vectors as rows) looks like table 4.1. Rows correspond

to documents, and columns correspond to terms. Each cell contains the term frequency.

The terms gun and violence occur an equal number of times in most documents, in-

dicating clear correlation. Hence gun-violence is a topic. The principal components
(right eigenvectors) identify topics. As usual, we have omitted prepositions, conjunc-
tions, commas, and so on. The overall steps are as follows (see listing 4.8 for the Python
code):

Create a document term matrix X of dimension m X n. Its rows correspond to
documents (m documents), and its columns correspond to terms (n terms).
Perform SVD on the matrix. This yields U, S, and J” matrices. /" is an n X n orthog-
onal matrix, and S is a diagonal matrix.

The columns of matrix /" yield topics. These are principal vectors for the rows of
X: that is, eigenvectors of X TX or, equivalently, the covariance matrix of X.

The successive elements of each topic vector (column in matrix /) tell us the
contribution of corresponding terms to that topic. Each column is n X 1, depicting
the contributions of the n terms in the system.

The diagonal elements of S tell us the weights (importance) of corresponding
topics. These are the eigenvalues of X TX: that is, principal values of the row vectors
of X.

Inspect the weights, and choose a cutoff. All topics below that weight are discarded—
the corresponding columns of /" are thrown away. This yields a matrix /" with fewer
columns (but the same number of rows); these are the topic vectors of interest to
us. We have reduced the dimensionality of the problem. If the number of retained
topics is ¢, the reduced V'is m X t.

By projecting (multiplying) the original matrix X of document terms to this new
matrix 7, we get an m Xt matrix of document topics (it has same number of rows
as X but fewer columns). This is the projection of X to the topic space: that is, a
topic-based representation of the document vectors.

Rows of the document topic matrix will henceforth be taken as document repre-
sentations. Document similarities will be computed by taking the cosine similarity
of these rows rather than the rows of the original document term matrix. This

4.6.3

4.6 Machine learning application: Document retrieval 145

cosine similarity, in the topic space, will capture many indirect connections that
were not visible in the original input space.

PyTorch code to perform LSA

The following listing demonstrates how to compute the LSA for our toy dataset from
table 4.1. Fully functional code for this section can be found at http://mng.bz/E2Gd.

terms = ["violence",

X = torch.tensor ([[

[1, 1,
[2, 2,
[3, 3,
[5, 5
[0, 1
[1, O

’

’

'

0,

"gun", "america', "roses'] Considers only four
o, 0, 21, terms for simplicity

1, 0],

0, 01,

0, 0] Document term matrix. Each row describes

0 ! 0l ! a document. Each column contains TF scores
! : ! for one term. IDF is ignored for simplicity.

0, 0],

0, 011).float ()

U, S, V_t = torch.linalg.svd(X)

V=Vt.T
rank = 1

U = Ul:, :rank]
V = V[:, :rank]

topicO0_term weights

def cosine_ similarity(vec_1, vec_2):
vec_1 norm = torch.linalg.norm(vec 1)

Performs SVD on the doc-term matrix. Columns of
the resulting matrix V' correspond to topics. These
are eigenvectors of X X: principal vectors of

the doc-term matrix. A topic corresponds to the
direction of maximum variance in the doc feature
space.

S indicates the diagonal matrix of principal values. These signify topic
weights (importance). We choose a cut-off and discard all topics below
that weight (dimensionality reduction). Only the first few columns of /”
are retained. Principal values (topic weights) for this dataset are shown
in the output. Only one topic is retained in this example.

show the contributions of

list (zip(terms, V[:, 0])) T Elements of the topic vector

corresponding terms to the topic.

vec_2 norm = torch.linalg.norm(vec_2)

return torch.dot(vec_1, vec_2) / (vec_1 norm * vec_ 2 norm)

d5_dé_cosine similarity

doc_topic_projection
d5_dé6_lsa similarity

The output is as follows:

= cosine_ similarity(X[5], X[6])

I Cosine similarity in the feature space fails to

capture d, d6 similarity. LSA succeeds.

torch.dot (X, V)

cosine similarity(doc_topic_projection[5],
doc_topic_projection[6])

Principal Values from S matrix: 8.89, 2.00, 1.00, 0.99

(Topic 0 has disproportionately high weight. We discard others)

146

4.6.4

CHAPTER 4 Linear algebraic tools in machine learning

topicO_term weights (Topic zero is about "gun" and "violence"):

[

('violence', -0.706990662151775)
('gun', -0.7069906621517749)
('america', -0.018122010384881156)
(

'roses', 2.9413274625621952e-18)
]

Document 5, document 6 Cosine similarity in original space: 0.0
Document 5, document 6 Cosine similarity in topic space: 1.0

PyTorch code to compute LSA and SVD on a large dataset

Suppose we have a set of 500 documents over a vocabulary of 3 terms. This is an
unrealistically short vocabulary, but it allows us to easily visualize the space of document
vectors. Each document vector is a 3 X 1 vector, and there are 500 such vectors. Together
they form a 500 x 3 data matrix X. In this dataset, the terms x0 and x1 are correlated:
20 occurs randomly between 0 and 100 times in a document, and x1 occurs twice as
many times as x0 except for small random fluctuations. The third term’s frequency
varies between 0 and 5. From section 4.6, we know that 20, x1 together form a single
topic, while x2 by itself forms another topic. We expect a principal component along
each topic.

Listing 4.9 creates the dataset, computes the SVD, plots the dataset, and shows the
first two principal components. The third singular value is small compared to the first.
We can ignore that dimension—it corresponds to the small random variation within
the 0 —x1 topic. The singular values are printed out and also shown graphically along
with the data points in figure 4.7.

Figure 4.7 Latent se-
mantic analysis. Note that
the vertical axis line is
actually much smaller
than it appears

to be in the diagram.

Listing 4.9 LSA using SVD

num_examples = 500
x0 = torch.normal (0, 100, (num_examples,)) .round()

Summary 147

random _noise = torch.normal (0, 2, (num _examples,)).round()
x1 = 2*x0 + random noise
x2 = torch.normal (0, 5, (num examples,)) .round/()

correlated; the third axis has small near-zero

X = torch.column stack((x0, x1, x2)) T 3D dataset: the first two axes are linearly
random values.

U, S, V_t = torch.linalg.svd(X)

V=VeT T The first two principal vectors represent topics.

Projecting data points on them yields document
descriptors in terms of the two topics.

The third singular value is
relatively small; we ignore it.

Here is the output:

Singular values are: 4867.56982, 118.05858, 19.68604

Summary

In this chapter, we studied several linear algebraic tools used in machine learning and
data science:

The direction (unit vector) that maximizes (minimizes) the quadratic form 2T Az
is the eigenvector corresponding to the largest (smallest) eigenvalue of matrix
A. The magnitude of the quadratic form when £ is along those directions is the
largest (smallest) eigenvalue of A.

Given a set of points X = {55(0) L2 7@ 55(”)} in an n + 1-dimensional space,
we can define the mean vector and covariance matrix as

1 n
o= 7@
%

1=0

=136 -5) -3
nz:O

The variance along an arbitrary direction (unit vector) [isITCl. Thisisa quadratic
form. Consequently, the maximum (minimum) variance of a set of data points
in multidimensional space occurs along the eigenvector corresponding to the
largest (smallest) eigenvalue of the covariance matrix. This direction is called the
first principal axis of the data. The subsequent eigenvectors, sorted in order of
decreasing eigenvalues, are mutually orthogonal (perpendicular) and yield the
subsequent direction of maximum variance. This technique is known as principal
component analysis (PCA).

In many real-life cases, larger variances correspond to the true underlying pattern of
the data, while smaller variances correspond to noise (such as measurement error).
Projecting the data on the principal axes corresponding to the larger eigenvalues
yields lower-dimensional data that is relatively noise-free. The projected data points
also match the true underlying pattern more closely, yielding better insights. This
is known as dimensionality reduction.

Singular value decomposition (SVD) allows us to decompose an arbitrary m X n
matrix 4 as a product of three matrices: 4 =UX VT, where U,V are orthogonal

148

CHAPTER 4 Linear algebraic tools in machine learning

and ¥ is diagonal. Matrix /" has the eigenvectors of A7 A4 as its columns. U has
eigenvectors of A4 as columns. X has the eigenvalues of 47 4 (sorted in decreasing
order) in its diagonal.

SVD provides a numerically stable way to solve the linear system of equations A7 = b.
In particular, for nonsquare matrices, it provides the closest approximations: that
is, ¥ that minimizes || A% — 1;||

Given a dataset X whose rows are data vectors corresponding to individual instances
and columns correspond to feature values, X T'x yields the covariance matrix. Thus
eigenvectors of X7 X yield the data’s principal components. Since the SVD of X
has eigenvectors of X7 X as columns of the matrix /, SVD is an effective way to
compute PCA.

When using machine learning data science for document retrieval, the bag-of-
words model represents documents with document vectors that contain the term
frequency (number of occurrences) of each term in the document.

TF-IDF is a cosine similarity technique for document matching and retrieval.
Latent semantic analysis (LSA) does topic modeling: we perform PCA on the
document vectors to identify topics. Projecting document vectors onto topic axes
allows LSA to see latent (indirect) similarities beyond the direct overlapping of
terms.

Probability distributions
in machine learning

This chapter covers

= The role of probability distributions in machine
learning

= Working with binomial, multinomial, categorical,
Bernoulli, beta, and Dirichlet distributions

= The significance of entropy and cross-entropy
in machine learning

Life often requires us to estimate the chances of an event occurring or make a decision
in the face of uncertainty. Probability and statistics form the common toolbox to use
in such circumstances. In machine learning, we take large feature vectors as inputs. As
stated earlier, we can view these feature vectors as points in a high-dimensional space.
For instance, gray-level images of size 224 X 224 can be viewed as points in a 50,176-
dimensional space, with each pixel corresponding to a specific dimension. Inputs
with common characteristics, such as images of animals, will correspond to a cluster
of points in that space. Probability distributions provide an effective tool for analyzing
such loosely structured point distributions in arbitrarily high-dimensional spaces.
Instead of simply developing a machine that emits a class given an input, we can

149

150

5.1

CHAPTER 5 Probability distributions in machine learning

fit a probability distribution to the clusters of input points (or a transformed version
of them) satisfying some property of interest. This often lends more insight into the
problem we are trying to solve.

For instance, suppose we are trying to design a recommendation system. We could
design one or more classifiers that emit yes/no decisions about whether to recommend
product X to person Y. On the other hand, we can fit probability distributions to specific
groups of people. Doing so can lead to the discovery of significant overlap between the
point clusters representing various groups—for instance, people who drink black coffee
and start-up founders. We may not know the explanation or even the direction in which
causality (if any) flows in the relationship. But we see the correlation and may design a
better recommendation system using it.

Another situation in which probabilistic models are used in machine learning is
when the problem involves a very large number of (perhaps infinitely many) classes.
For instance, suppose we are creating a machine that not only recognizes cats in an
image but also labels each pixel as belonging or not belonging to a cat. Effectively,
the machine segments the image pixels into foreground versus background. This is
called semantic segmentation. It is hard to cast this problem as a classification problem:
we typically design a system that emits a probability of being foreground for each
pixel.

Probabilistic models are also used in unsupervised and minimally supervised learning:
for instance, in variational autoencoders (VAEs), which we discuss in chapter 14.

This chapter introduces the fundamental notion of probability and discusses probabil-
ity distributions (including multivariates), with specific examples, in a machine learning-
centric way. As usual, we emphasize the geometrical view of multivariate statistics. An
equally important goal of this chapter is to familiarize you with PyTorch distributions,
the PyTorch statistical package, which we use throughout the book. All the distributions
discussed are accompanied by code snippets from PyTorch distributions.

NOTE The complete PyTorch code for this chapter is available at http://mng
.bz/8NVg in the form of fully functional and executable Jupyter notebooks.

Probability: The classical frequentist view

Consider a mythical city called Statsville. Suppose we choose a random adult inhab-
itant of Statsville. What are the chances of this person’s height being greater than
6 ft? Less than 3 ft? Between 5 ft 5 in. and 6 ft? What are the chances of this person’s
weight being between 50 and 70 kg (physicists would rather use the term mass here,
but we have chosen to stick to the more common word weight)? Greater than 100 kg?
What is the probability of the person’s home being exactly 6 km from the city cen-
ter? What are the chances of the person’s weight being in the 50-70 kg range and
their height being in the 5 ft 5 in. to 6 ft range? What are the chances of the per-
son’s weight being greater than 90 kg and their home being within 5 km of the city
center?

http://mng.bz/8NVg
http://mng.bz/8NVg

5.1.1

5.1 Probability: The classical frequentist view 151

All these questions can be answered in the frequentist paradigm by adopting the
following approach:
Count the size of the population belonging to the desired event (satisfying the
criterion or criteria of interest): for instance, the number of Statsville adults taller
than 6 ft. Divide that by the total size of the population (here, the number of
adults in Statsville). This is the probability (chance) of that criterion/criteria being
satisfied.

Formally,

. Size of population belonging to that event
Probability of an event=

Total size of population

_ Number of favorable outcomes

— : (5.1)

Number of possible outcomes
For instance, suppose there are 100,000 adults in the city. Of them, 25,000 are 6 ft or
taller. Then the size of the population satisfying the event of interest (aka the number
of favorable outcomes) is 25,000. The total population size (aka the number of possible
outcomes) is 100,000. So,

Probability of a random adult Statsville resident being taller than 6 ft
_ Number of adult Statsville residents taller than 6 ft 25000

= =0.25
Total number of adult Statsville residents 100000 2

Since the total population is always a superset of the population belonging to any
event, the denominator is always greater than or equal to the numerator. Consequently,
probabilities are always lesser than or equal to 1.

Random variables

When we talk about probability, a relevant question is, “The probability of what?” The
simplest answer is, “The probability of the occurrence of an event.” For example, in the
previous subsection, we discussed the probability of the event that the height of an adult
Statsville resident is less than 6 ft. A little thought reveals that an event always corresponds
to a numerical entity of interest taking a particular value or lying in a particular range of
values. This entity is called a random variable. For instance, the height of adult Statsville
residents can be a random variable, and we can talk about the probability of it being less
than 6 ft, or the weight of adult Statsville residents can be a random variable, and we can
talk about the probability of it being less than 60 kg. When predicting the performance
of stock markets, the Dow Jones index maybe a random variable: we can talk about the
probability of this random variable crossing 19,000. And when discussing the spread
of a virus, the total number of infected people may be a random variable, and we can
talk about the probability of it being less than 2,000, and so on.

The defining characteristic of a random variable is that every allowed value (or range
of values) is associated with a probability (of the random variable taking that value or
value range). For instance, we may allow a set of only three weight ranges for adults of

152

5.1.2

5.2

CHAPTER 5 Probability distributions in machine learning

Statsville: Sy, less than 60 kg; So, between 60 and 90 kg; and Ss, greater than 90 kg. Then
we can have a corresponding random variable X representing the quantized weight.
It can take one of only three values: X =1 (corresponding to the weightin S;), X =2
(corresponding to the weightin S9), or X =3 (corresponding to the weight in S3). Each
value comes with a fixed probability: for example, p(X =1) =0.25, p(X =2) ==0.5, and
p(X =3)=0.25, respectively, in the example from section 5.1. Such random variables
that take values from a countable set are known as discrete random variables.

Random variables can also be continuous. For a continuous random variable X, we asso-
ciate a probability with its value being in an infinitesimally small range, p (x < X <x +dx),
with 62 — 0. This is called probability density and is explained in more detail in section 5.6.

NOTE In this book, we always use uppercase letters to denote random variables.
Usually, the same letter in lowercase refers to a specific value of the random vari-
able: for example, p (X =x) denotes the probability of random variable X taking
the value x and p (X € {x, x + dx}) denotes the probability of random variable X
taking a value between x and x + dx. Also note that sometimes we use the letter
X to denote a data set. This popular but confusing convention is rampant in the
literature—generally, the usage is obvious from the context.

Population histograms

Histograms help us to visualize discrete random variables. Let’s continue with our
Statsville example. We are only interested in three weight ranges for Statsville adults:
S1: less than 60 kg; So: between 60 and 90 kg; and Ss: greater than 90 kg. Suppose the
counts of Statsville adults in these weight ranges are as shown in table 5.1.

Table 5.1 Frequency table for the weights of adults in the city of Statsville

S1: Less than 60 kg | Ss: Between 60 and 90 kg | Ss: More than 90 kg
25,000 50,000 25,000

The same information can be visualized by the histogram shown in figure 5.1. The X-axis
of the histogram corresponds to possible values of the discrete random variable from
section 5.1.1. The Y-axis shows the size of the population in the corresponding weight
range. There are 25,000 people in range S1, 50,000 people in range Se, and 25,000
people in range Ss. Together, these categories account for the entire adult population
of Statsville—every adult belongs to one category or another. This can be verified by
adding the Y-axis values for all the categories: 25,000 + 50,000 + 25,000 =100,000, the
adult population of Statsville.

Probability distributions

Figure 5.1 and its equivalent, table 5.1, can easily be converted to probabilities, as shown
in table 5.2. The table shows the probabilities corresponding to allowed values of the
discrete random variable X representing the quantized weight of a randomly chosen
adult resident of Statsville. Table 5.2 represents what is formally known as a probability

5.2 Probability distributions 153

50000 A I E1: Less than 60 Kg
I E2: 60-90 Kg
[0 E3: Greater than 90 Kg
40000 -
9]
N
0
c 30000 A
o
S
o
2
© 20000 -
a
10000 A
0 p

El E2 E3
Weight Category

Figure 5.1 Histogram depicting the weights of adults in Statsville, corresponding to table 5.1

Table 5.2 Probability distribution for quantized weights of Statsville adults

P(X=1)=1500=0.25 | p(X=2)={pHE=05 P (X =3)= {5505 =0.25

100,000 —

distribution: a mathematical function that takes a random variable as input and outputs
the probability of it taking any allowed value. It must be defined over all possible values
of the random variable.

Note that the set of ranges {51, S2, S3} is exhaustive in the sense that all possible
values of X belong to one range or other—we cannot have a weight that does not belong
to any of them. In set-theoretical terms, the union of these ranges, S; U Se U Ss, covers a
space that contains the entire population (all possible values of X).

NOTE The set-theoretic operator U denotes set union.

The ranges are also mutually exclusive in that any given observation of X can belong to
only a single range, never more. In set-theoretic terms, the intersection of any pair of
ranges is null: S; N.So =81 NS5 =59 N S3 = ¢.

NOTE The set-theoretic operator N denotes set intersection.

For a set of exhaustive and mutually exclusive events, the function yielding the probabili-
ties of these events is a probability distribution. For instance, the probability distribution
in our tiny example comprises three probabilities: P (X =1)=0.25, P (X =2)=0.5, and
P (X =3)=0.25. This is shown in figure 5.2, which is a three-point graph.

154

5.3

5.3.1

5.3.2

CHAPTER 5 Probability distributions in machine learning

1.0

0.8 A

0.6

0.2

[]
1
1
1

0.4 1 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|

! i

0.0 T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

X

Figure 5.2 Probability distribution graph for the weights of adults in Statsville, corresponding to
table 5.2. Event £'1 = X =1 = a weight in the range S}, Event E9 = X =2 — a weight in the range
So, and Event E3 =x =3 — a weight in the range Ss.

Basic concepts of probability theory

In this section, we briefly touch on impossible and certain events; the sum of probabilities
of exhaustive, mutually exclusive events; and independent events.

Probabilities of impossible and certain events

The probability of an impossible event is zero (for example, the probability that the sun
will rise in the west). The probability of an event that occurs with certitude is 1 (the
probability that the sun will rise in the east). Improbable events (such as this author
beating Roger Federer in competitive tennis) have low but nonzero probabilities, like
0.001. Highly probable events (such as Roger Federer beating this author in competitive
tennis) have probabilities close to but not exactly equal to 1, like 0.999.

Exhaustive and mutually exclusive events

Consider the events Eq, E9, E3 corresponding to the quantized weight of a Statsville
adults from section 5.2 belonging to the range Sy, Sg, or S3, respectively (equivalently,
E; is the event corresponding to X =1, Es is the event corresponding to X =2, and E3
is the event corresponding to X =3). The events are exhaustive: their union covers the
entire population space. This means all quantized weights of Statsville adults belong
to one of the ranges S1, So, S3. The events are also mutually exclusive: their mutual
intersections are null, meaning no member of the population can belong to more than

5.3.3

5.4

5.4 Joint probabilities and their distributions 155

one range. For example, if a weight belongs to Sy, it cannot belong to Se or S3. For such
events, the following holds true:

The sum of the probabilities of mutually exclusive events yields the probability of
one or the other of them occurring.

For instance, for events E1, FEo, Es,

p (Ey or Eg) =p (E1) +p (Eo) (5.2)
the sum rule says that

The sum of the probabilities of an exhaustive, mutually exclusive set of events is
always 1.

For example,

p (E1)+p (Eo)+p (E3)=p (Ey or Ey or E3) =1

This is intuitively obvious. We are merely saying that we can say with certainty that either
Ey or Eo or Es will occur.
In general, given a set of exhaustive, mutually exclusive events Eq, Eo, - - -, E,,

i=n

Dop(E)=1 (5.3)
i=1

Independent events

Consider the two events E7 = “weight of an adult inhabitant of Statsville is less than
60 kg” and G1 = “home of an adult inhabitant of Statsville is within 5 km of the city
center.” These events do not influence each other at all. The knowledge that a member
of the population weighs less than 60 kg does not reveal anything about the distance of
their home from the city center and vice versa. We say E1 and Gy are independent events.
Formally,

A set of events are independent if the occurrence of one does not affect the
probability of the occurrence of another.

Joint probabilities and their distributions

Given an adult Statsville resident, let £ be, as before, the event that their weight is
less than 60 kg. The corresponding probability is p (E£7). Also, let Gy be the event that
the distance of their home from the city center is less than 5 km. The corresponding
probability is p (G1). Now consider the probability that a resident weights less than 60
kg and their home is less than 5 km from the city center. This probability, denoted
p (E1, G1), is called a joint probability. Formally,
The joint probability of a set of events is the probability of all those events occurring
together.
The product rule says that the joint probability of independent events can be obtained by
multiplying their individual probabilities. Thus, for the current example, p (Ey, G1) =
P (E1)p (Gy).

156

CHAPTER 5 Probability distributions in machine learning

Let’s continue our discussion of joint probabilities with a slightly more elaborate
example. We have consolidated the weight categories, corresponding populations, and
probability distributions in table 5.3 for quick reference. Similarly, we quantize the
distance of residents’ homes from the city center into three ranges: Dy =less than 5 km,
Do =between 5 and 15 km, and D3 = greater than 15 km. Table 5.4 shows the corre-
sponding population and probability distributions. The joint probability distribution of
the events {E1, E9, Es} and {G7, Go, G3} is shown in table 5.5.

Table 5.3 Population probability distribution table for the weights of adult residents of Statsville. £, Eo,
E5 are exhaustive, mutually exclusive events, p (E1) +p (E3) +p (E3)=1.

Event E| =weight € S

Event E9 =weight € So

Event Eg =weight € Ss

Population size = 25,000

Population size = 50,000

Population size = 25,000

p(E1)= _12056,0(?0% =0.25 p(Eg)= _150%,00%00 =05 p(E3)= _12(?6,00%00 =0.25

Table 5.4 Population probability distribution table for the distance of adult Statsville residents’ homes
from the city center. G, Go, G3 are exhaustive, mutually exclusive events, p (G;) +p (G2) +p (G3) =1.

Event G| =distance € Dy Event Gy =distance € Do Event Gs =distance € Ds

Population size = 20,000 Population size = 60,000 Population size = 20,000

5 (Gy) = 0000 _

20,000 _
? (G1) = 155,000 = 0-20 100,000

7 (Gs) = Ty =0-20

Table 5.5 Joint probability distribution of independent events. The sum of all elements in the table is 1.

Less than p (E1,Gy) p (Eg,Gy) p (Es3,Gr)
5 km (Gy) =0.25x0.2 =0.5x0.2 =0.25x0.2
=0.05 =0.1 =0.05
Between 5 and p(E1,Go) p (Eo, Go) p (Es, Go)
15 km (G9) =0.25%x0.6 =0.5x0.6 =0.25%x0.6
=0.15 =0.3 =0.15
More than p (E1,Gs) p (Eg, G3) p (Es, Gs)
15 km (G3) =0.25x0.2 =0.5x0.2 =0.25x0.2
=0.05 =0.1 =0.05

We can make the following statements about table 5.5:

= The sum total of all elements in table 5.5 is 1. In other words, p (Ei, Gj) is a
proper probability distribution indicating the probabilities of event E; and event
G, occurring together: here, (i, j) € {1, 2, 3} x {1, 2, 3}.

5.4.1

5.4.2

5.4 Joint probabilities and their distributions 157

?(Ei,Gj)=p (E)p(Gj) VY(i,j)e{l,2,3}x{1,2,3}. This is because the events
are independent.

NOTE The symbol X denotes the Cartesian product. The Cartesian product of two
sets {1, 2, 3} x{1, 2, 3}istheset {(1, 1), (1,2),(1,3),(2,1),(2,2),(2,3),(3,1),
(3,2), (3, 3)}. And the symbol V indicates “forall.” Read V (¢, j) € {1, 2, 3} x {1, 2, 3}
as follows: for all pairs (¢, j) in the Cartesian product, {1, 2, 3} x {1, 2, 3}.

In general, given a set of independent events Ej, Eo, ---, E,, the joint probability
p (£, Eg, -+ -, E,) of all the events occurring together is the product of their individual
probabilities of occurring:
p(ELEs, - E)=p (ED)p(Ey)-p(E) =] |p(E) (5.4)
i=1

NOTE The symbol [] stands for “product.”

Marginal probabilities
Suppose we do not have the individual probabilities p (E;) and p (G;). All we have is the
joint probability distribution: that is, table 5.5. Can we find the individual probabilities
from them? If so, how?

To answer this question, consider a particular row or column in table 5.5—say, the
top row. In this row, the E values iterate over all possibilities (the entire space of Es), but
G is fixed at Gy. If Gy is to occur, there are only three possibilities: it occurs with Ej,Es,
or E3. The corresponding joint probabilities are p (E1, G1), p (E2, G1), and p (£3, G1). If
we add them, we get the probability of G occurring with Ej or Eo, or E3: that is, event
(E1, Gy) or (E9, Gy) or (E3, G1). Thus we have considered all situations under which G,
can occur. The sum represents the probability of event G; occurring. Thus, p (G1) can
be obtained by adding all the probabilities in the row corresponding to G and writing
it in the margin (this is why it is called the marginal probability). Similarly, by adding all
the probabilities in the middle column, we obtain the probability p (£9), and so forth.
Table 5.6 shows table 5.5 updated with marginal probabilities.

In general, given a set of exhaustive, mutually exclusive events Ey, Eg, - - -, E,, another
event G, and joint probabilities p (£, G), p (E9,G), - -+, p (E,, G),

p(G)=) p(E:;,G) (5.5)
i=1

By summing over all possible values of E;s, we factor out the Es. This is because the Es
are mutually exclusive and exhaustive; summing over them results in a certain event
that is factored out (remember, the probability of a certain eventis 1).

Dependent events and their joint probability distribution

So far, the events we have considered jointly are “weights” and “distance of a resi-
dent’s home from the city center.” These are independent of each other—their joint
probability is the product of their individual probabilities. Now, let’s discuss a different

158

CHAPTER 5 Probability distributions in machine learning

Table 5.6 Joint probability distribution with marginal probabilities shown

Less than p (E1,Gr) P (E2,Gy) P (Es, G1) p(G1)

5 km (Gy) =0.25%x0.2 =0.5x0.2 =0.25%x0.2 =0.05+0.1+0.05
=0.05 =0.1 =0.05 =0.2

Between p (E1, Go) p (Eg, Go) p (Es3, Go) ? (Go)

5and 15 km =0.25x0.6 =0.5x0.6 =0.25x0.6 0.15+0.3+0.15

(Go) =0.15 =0.3 =0.15 =0.6

More than p (E1,Gs) P (E2,Gs) P (Es,Gs) ?(Gs)

15 km (G3) =0.25%x0.2 =0.5x0.2 =0.25%x0.2 =0.05+0.1+0.05
=0.05 =0.1 =0.05 =0.2

Marginals p(Er) P (E2) P (E3)

for Es =0.05+0.15+0.05 =0.1+0.3+0.1 =0.05+0.15+
0.05=0.25 =0.5 =0.25

situation where the variables are connected and knowing the value of one does help us
predict the other. For instance, the weights and heights of adult residents of Statsville
are not independent: typically, taller people weigh more, and vice versa.

As usual, we use a toy example to understand the idea. We quantize heights into three
ranges, I11 =less than 5 ft 5 in., Hs =between 5 ft 5 in. and 6 ft, and H3 = greater than
6 ft. Let z be the random variable corresponding to height. We have three possible events
with respect to height: Iy =z € Hy, I's =z € Hy, and I's =z € H3. The joint probability
distribution of height and weight is shown in table 5.7.

Table 5.7 Joint probability distribution of dependent events

Less than 5 ft p(E, Fy) | p(Eg, Fy) p(Es, Fy)

5in. (I7) =0.25 =0 =0

Between 5 ft p(Er, Fo) | p(E9, Fo) p (Es, Fo)

5in.and 6 ft (Fo) | =0. =0.5 =0

More than 6 ft (F3) | p (E1, F5) | p(Eg, F3) P (Es, F3)
=0 =0 =0.25

Note the following about table 5.7:

* The sum total of all elements in table 5.7 is 1. In other words, p (E;, Fj) is a proper
probability distribution indicating the probabilities of event E; and event F; occur-
ring together. Here (7, j) € {1, 2, 3} x {1, 2, 3}.

= p(E, Fj)=0if i#j V(i,j)e{l,2,3}x{1, 2, 3}. This essentially means the events
are perfectly correlated: the occurrence of £ implies the occurrence of I and

5.5

5.5 Geometrical view: Sample point distributions for dependent and independent variables 159

vice versa, the occurrence of E9 implies the occurrence of Fy and vice versa, and
the occurrence of E3 implies the occurrence of F3 and vice versa. In other words,
every adult resident of Statsville who weighs less than 60 kg is also shorter than 5 ft
5 in., and so on. (In life, such perfect correlations rarely exist; but Statsville is a
mythical town.)

Geometrical view: Sample point distributions for dependent
and independent variables

Let’s look at a graphical view of the point distributions corresponding to tables 5.5
and 5.7. There is a fundamental difference in how the point distributions look for
independent and dependent variables; it is connected to principal component analysis
(PCA) and dimensionality reduction, which we discussed in section 4.4.

We use a rectangular bucket-based technique to visualize joint 2D discrete events.
For instance, we have three weight-related events, E;, E9, E3, and three distance-related
events, G, Go, Gs. Hence the joint distribution has 3 X 3=9 possible events (Ei, Gj),
V(i,j)e{l,2, 3} x{1, 2, 3}, as shown in table 5.5. Each of these nine events is repre-
sented by a small rectangle (bucket for the joint event); altogether, we have a 3 x 3 grid
of rectangular buckets. To visualize the sample point distribution, we have drawn 1,000
samples from the joint distribution. A joint event sample is placed at a random location
within its bucket (that is, all points within the bucket have an equal probability of being
selected). Notice that the concentration of points is greater inside high-probability
buckets and vice versa.

Graphical views of the point distribution for the independent (table 5.5) and non-
independent (table 5.7) joint variable pairs are shown in figures 5.3a and 5.3b, respec-
tively. We see that the sample point distribution for the independent events is spread somewhat
symmetrically over the domain, while that for the dependent events is spread narrowly around
a particular line (in this case, the diagonal). This holds true in general and for higher
dimensions, too. You should have this mental picture with respect to independent
versus non-independent point distributions. If we sample independent events (uncor-
related), all possible combinations of events {£7, G1}, {E1, Go}, {E1, G3}, - -+, {E3, G3}
have a non-negligible probability of occurrence (see table 5.5), which is equivalent to
saying that none of the events have a very high probability of occurring (remember
that probabilities sum to 1, so if some events have very low probabilities [close to zero],
other events must have high probabilities [near one] to compensate). This precludes
the concentration of points in a small region of the space. All buckets will have many
points. In other words, the joint probability samples of independent events are diffused
throughout the population space (see figure 5.3a, for instance).

On the other hand, if the events are correlated, the joint probability samples are
concentrated in certain high-probability regions of the joint space. For instance, in
table 5.7, events (Ey, I1), (Eq,), (Es, F3) are far more likely than the other combina-
tions. Hence, the sample points are concentrated along the corresponding diagonal
(see figure 5.3b).

160 CHAPTER 5 Probability distributions in machine learning

oo LoPL 8T L L2 . °
° .. o. :.t ° @ o8 & ,° o ° o
o o ° ‘.oo-" ‘o;‘:':. Pk o ° .
o o L
G3 g °a ° % f o .\.!‘0. °°, o ° :. ° F3 - -
° e, ..08’. DRR o o 4
. R ..| -Pl..' 02 § ¢ o o o oo
b Y o'..o.{. Lo, O | ° o o
2 Lo e : Y Gl P .-" d .
0 00 0f o o o P 9 e
A R BRI LT, Sr e o LS Lzl
> ." o %o o @ Y ool & Wo, 0 o° MES o o ©
‘©c M P ;.. ° (XL of:,."".-' oh o o ..‘ o |2 (X ° F)
EGZ 0% om © ‘o' " 4@ °® o0 .l'. o |gF2 » ° }s) .:“l .
= ..f.. o oef P”.' 3 4 o &£06° ° " @ % o &
& SR I) ‘.""}u’ oo %% & P L !
A LK ..J..’:.%.?l-.:.. S g ° : *.‘E\- .'2
% s .:.-. i _;'-..g:,_._.\ 2, oS e |2 M, R
k7] A ° ° ... ° L g o \' ‘.-
o ° ° o Ry A oo .o.. e 0o & ° o “8%0p0°8 % g
PR L IR S I A % B
G1 ° . .. ° Py .'o o :. ::’C.: 0'.'0 . o® ° F1 ;{:. i.......:. ::
o ® . 0% o Q ° L] oo L] -
L ° "...$.. o.. o‘.'.; be 8,0°¢ 8 :"; "'lx.o’. ‘.‘
o o ° o & oo poo oo © age 0 8% L)
. ..:. . o Fge s ﬂa‘., %o , o fo ..‘&'.:.:& ‘?..
® e %0 o °3 ° P8 D% o
E1) E2 E3 E1 E2 E3
Weight category Weight category

(a) (b)
Figure 5.3 Graphical visualization of joint probability distributions. Rectangles represent buckets of
different discrete events. (a) From table 5.5 (independent events). The probabilities of all nine events are
non-negligible, and all nine rectangles have a relatively high concentration of sample points. Not suitable
for PCA. (b) From table 5.7 (non-independent events). Events (£, F), (Es, Fy), and (E3, F3) have very
high probabilities, and other events have negligible probabilities. Sample points are concentrated along
the rectangles on the diagonal. Suitable for PCA.

If this does not remind you of PCA (section 4.4), you should re-read that section. De-
pendent events such as that shown in figure 5.3a are good candidates for dimensionality
reduction: the two dimensions essentially carry the same information, and if we know
one, we can derive the other. We can drop one of the highly correlated dimensions
without losing significant information.

5.6 Continuous random variables and probability density

So far, we have quantized our random variables and made them discrete. For instance,
weight has been quantized into three buckets—less than 60 kg, between 60 and 90 kg,
and greater than 90 kg—and probabilities have been assigned to each bucket. What
if we want to know probabilities at a more granular level like 0 to 10 kg, 10 to 20 kg,
20 to 30 kg, and so on? Well, we have to create more buckets. Each bucket covers a
narrower range of values (a smaller portion of the population space), but there are
more of them. In all cases, following the frequentist approach, we count the number of
adult Statsvilleans in each bucket, divide that by the total population size, and call that
the probability of belonging to that bucket.

What if we want even further granularity? We create even more buckets, each covering
an even smaller portion of the population space. In the limit, we have an infinite number
of buckets, each covering an infinitesimally small portion of the population space.
Together they still cover the population space—a very large number of very small pieces

5.6 Continuous random variables and probability density 161

can cover arbitrary regions. At this limit, the probability distribution function is called a
probability density function. Formally,

The probability density function p (x) for a continuous random variable X is defined
as the probability that X lies between x and x + dx with éx — 0

p (@)= lim probability (v <X <z +6z)

NOTE It is slightly unfortunate that the typical symbol for a random variable, X,
collides with that for a dataset (collection of data vectors), also X. But the context
is usually enough to tell them apart.

There is a bit of theoretical nuance here. We are saying that p (z) is the probability of
the random variable X lying between x and x + ¢x. This is not exactly the same as saying
that p (x) is the probability that X is equal to x. But because dx is infinitesimally small,
they amount to the same thing.

Consider the set of events E =lims, 0 {x <X <x+dx} for all possible values of .
All possible values of x range from negative infinity to infinity: x € [-co, oo]. There are
infinite such events, each of which is infinitesimally narrow, but together they cover the
entire domain x € [—oo, co]. In other words, they are exhaustive. They are also mutually
exclusive because x cannot belong to more than one of them at the same time. They
are continuous counterparts of the discrete events £, Eo, E3 that we have seen before.

The fact that the set of events E =lims, 0 {x <X <x+dz} in continuous space is
exhaustive and mutually exclusive means we can apply equation 5.3 but the sum will be
replaced by an integral as the variable is continuous.

The sum rule in a continuous domain is expressed as

/ p(x)de=1 (5.6)

Equation 5.6 is the continuous analog of equation 5.3. It physically means we can say
with certainty that x lies somewhere in the interval —co to oo.

The random variable can also be multidimensional (that is, a vector). Then the
probability density function is denoted as p (7).

The sum rule for a continuous multidimensional probability density function is

/ p (&) di=1 (5.7)
reD
where D is the domain of ¥—that is, the space containing all possible values of the
vector Z.

x
For instance, the 2D vector | | has the XY plane as its domain. Note that the integral
Y
in equation 5.7 is a multidimensional integral (for example, for 2D 7, itis [[._ p (%)
di=1).

162

5.7

5.7.1

CHAPTER 5 Probability distributions in machine learning

NOTE For simplicity of notation, we usually use a single integral sign to denote
multidimensional integrals. The vector sign in the domain (for example, ¥ € D),
as well the vector sign in dZ, indicates multiple dimensions.

You may remember from elementary integral calculus that equation 5.6 corresponds
to the area under the curve for p (z) (or p (Z)). In higher dimensions, equation 5.7
corresponds to the volume under the hypersurface for p (Z). Thus, the total area under a
univariate probability density curve is always 1. And in higher dimensions, the volume under
the hypersurface for a multivariate probability density function is always 1.

Properties of distributions: Expected value, variance, and covariance

Toward the beginning of this chapter, we stated that generative machine learning
models are often developed by fitting a distribution from a known family to the available
training data. Thus, we postulate a parameterized distribution from a known family
and estimate the exact parameters that best fit the training data. Most distribution
families are parameterized in terms of intuitive properties like the mean, variance, and
so on. Understanding these concepts and their geometric significance is essential for
understanding the models based on them.

In this section, we explain a few properties/parameters common to all distributions.
Later, when we discuss individual distributions, we connect them to the parameters of
those distributions. We also show how to programmatically obtain the values of these
for each individual distribution via the PyTorch distributions package.

Expected value (aka mean)

If we sample a random variable with a given distribution many times and take the average

of the sampled values, what value do we expect to end up with? The average will be closer

to the values with higher probabilities (as these appear more often during sampling). If

we sample enough times, for a given probability distribution, this average always settles

down to a fixed value for that distribution: the expected value of the distribution.
Formally,

given a discrete distribution D where a discrete random variable X can take any
value from the sets {x1, z9, - - - , x, } with respective probabilities {p (x1) , p (x9) - - - ,
P (x)}, the expected value is given by the formula

1

N n
1 1 o . .
E(X)= Jim < };n —D=)¢ (i) 2; (5.8)

where x; — D denotes the kth sample drawn from the distribution D. Overall,
equation 5.8 says that the average or expected value of a very large number of samples
drawn from the distribution approaches the probability-weighted sum of all possible sample
values. When we sample, the higher-probability values appear more frequently
than the lower-probability values, so the average over a large number of samples is
pulled closer to the higher-probability values.

For multivariate random variables:

5.7 Properties of distributions: Expected value, variance, and covariance 163

Given a discrete distribution where a discrete multidimensional random variable

X can take any value from the sets {il, Toy -+, i,,} with respective probabilities
{r(@),p (&), ,p(Zx)} the expected value is given by the formula
n
E(X)=) p (&) (5.9)
i=1

For continuous random variables (note how the sum is replaced by an integral):
The expected value of a continuous random variable X that takes values from —oco
to oo (thatis, x € {—oo, 00}) is

/1 o:_w x p (x) dx = for continuous univariate distributions
E(X)=4"" (5.10)

/i <p 21 (¥) dZ = for continuous multivariate distributions

EXPECTED VALUE AND CENTER OF MASS IN PHYSICS
In physics, we have the concept of the center of mass or centroid. If we have a set of

points, each with a mass, the entire point set can be replaced by a single point. This
point is called the centroid. The position of the centroid is the weighted average of the
positions of the individual points, weighted by their individual masses. If we mentally
think of the probabilities of individual points as masses, the notion of expected value in
statistics corresponds to the notion of centroid in physics.

EXPECTED VALUE OF AN ARBITRARY FUNCTION OF A RANDOM VARIABLE
So far, we have seen the expected value of the random variable itself. The notion can

be extended to functions of the random variable.
The expected value of a function of a random variable is the probability-weighted
sum of the values of that function at all possible values of the random variable. Formally,

n
E(f(X))= Z f (x;) p (x;) = for discrete univariate distributions
i=1

n
E(f(X)= Z /(%) p (Z;) = for discrete multivariate distributions
=1

E(f(X))= / f (x) p () dx = for continuous univariate distributions

XT=—00

E(f(X))= / / (%) p (¥) dZ = for continuous multivariate distributions (5.11)
zeD

EXPECTED VALUE AND DOT PRODUCT
In equation 2.6, we looked at the dot product between two vectors. Further, in sec-
tion 2.5.6, we saw that the dot product between two vectors measures the agreement
between the two vectors. If both point in the same direction, the dot product is larger.
In this section, we show that the expected value of a function of a random variable can
be viewed as a dot product between a vector representing the probability and another
vector representing the function itself.

164

5.7.2

CHAPTER 5 Probability distributions in machine learning

First let’s consider the discrete case. Our random variable can take values x;,7 € {1, n}.

f (x1) P (x1)
Now, imagine a vector fz S (x2) and a vector ;3= p(x2) . From equation 5.11, we
f (xn) p (xn)

see that the expected value of the function E (f (X)) of random variable X is the same
as [Tp f -p. This is high when f and p are aligned; thus, the expected value of the
function of the random variable is high when the high function values coincide with
high probabilities of the random variable and vice versa. In the continuous case, these
vectors have an infinite number of components and the summation is replaced by an
integral, but the idea stays the same.

EXPECTED VALUE OF LINEAR COMBINATIONS OF RANDOM VARIABLES
The expected value is a linear operator. This means the expected value of a linear

combination of random variables is a linear combination (with the same weights) of
the expected values of the random variables. Formally,

E (a1 X1 +a9Xo--- aan) =k (Xl) +aE (Xo) +- - a,E (Xn) (5.12)

Variance, covariance, and standard deviation

When we draw a very large number of samples from a given point distribution, we often
like to know the spread of the point set. The spread is not merely a matter of measuring
the largest distance between two points in the distribution. Rather, we want to know
how densely packed the points are. If most of the points fit within a very small ball, then
even if one or two points are far from the ball, we call that a small spread or high packing
density.

Why is this important in machine learning? Let’s start with a few informal examples.
If we discover that the points are tightly packed in a small region around a single point,
we may want to replace the entire distribution with that point without causing much
error. Or if the points are packed tightly around a single straight line, we can replace
the entire distribution with that line. Doing so gives us a simpler (lower-dimensional)
representation and often leads to a view of the data that is more amenable to under-
standing the big picture. This is because small variations about a particular point or
direction are usually caused by noise, while large variations are caused by meaningful
things. By eliminating small variations and focusing on the large ones, we capture the
main information content. (This could be why older people tend to be better at form-
ing big-picture views: perhaps there are too few neurons in their heads to retain the
huge amount of memory data they have accumulated over the years. Their brain per-
forms dimensionality reduction.) This is the basic idea behind PCA and dimensionality
reduction, which we saw in section 4.4.

Variance—or its square root, standard deviation—measures how densely packed
around the expected value the points in the distribution are: that is, the spread of the
point distribution. Formally, the variance of a probability distribution is defined as
follows:

5.7 Properties of distributions: Expected value, variance, and covariance 165

2 (@i — ,u)2 P (x;) = for a discrete n point distribution
var (X) = . (5.13)
ff (x—)2 p (x) dx = for a continuous distribution

=—00

By comparing equation 5.13 to equations 5.10 and 5.11, we see that the variance is the
expected value of the distance (z — /1)2 of sample points x from the mean u. So if the
more probable (more frequently occurring) sample points lie within a short distance
of the mean, the variance is small, and vice versa. That is to say, the variance measures
how tightly packed the points are around the mean.

COVARIANCE: VARIANCE IN HIGHER DIMENSIONS
Extending the notion of the expected value from the univariate case to the multivariate

case was straightforward. In the univariate case, we take a probability-weighted average
of a scalar quantity, x. The resulting expected value is a scalar, u = fl:_oo zp(x)dzx. In
the multivariate case, we take the probability-weighted average of a vector quantity, Z.
The resulting expected value is a vector, ji= [._, T p () dZ.

Extending the notion of variance to the multivariate case is not as straightforward.
This is because we can traverse the multidimensional random vector’s domain (the space
over which the vector is defined) in an infinite number of possible directions—think
how many possible directions we can walk on a 2D plane—and the spread or packing
density can be different for each direction. For instance, in figure 5.3b, the spread along
the main diagonal is much larger than the spread in a perpendicular direction.

The covariance of a multidimensional point distribution is a matrix that allows us
to easily measure the spread or packing density in any desired direction. It also
allows us to easily figure out the direction in which the maximum spread occurs
and what that spread is.

Consider a multivariate random variable X that takes vector values Z. Let [be an arbitrary
direction (as always, we use overhead hats to denote unit-length vectors signifying
directions) in which we want to measure the packing density of X. We discussed in
sections 2.5.2 and 2.5.6 that the dot product of 7 in the direction [(that is, iTi) is the
projection or component (effective value) of x along [. Thus the spread or packing
density of the random vector & in direction [is the same as the spread of the dot product
(aka component or projection) [TZ. This projection [TZis a scalar quantity: we can use
the univariate formula to measure its variance.

NOTE In this context, we can use 27 and [T interchangeably. The dot product
is symmetric.

The expected value of the projection is

,;,zf (ﬂz)p(z)dz:ﬂ/51)(55)(15:?,7

166 CHAPTER 5 Probability distributions in machine learning

The variance is given by
N ~ ~ 2
var (1") = / (i73-1"5) az
ZeD
Now, since the transpose of a scalar is the same scalar, we can write the square term
within the integral as the product of the scalar T (¥ - fi) and its transpose:

var(ﬁf)=/ (i"&-1") (in—iTﬁ)TdfzfiT @) (i (i—ﬁ))T di
reD reD

Using equation 2.10,
R R T R .
var (i"3 =/ZT(£—ﬁ) @) (") di:/lT(i—ﬁ) (#-) 1di
reD xeD

Since [is independent of 7, we can take it out of the integral. Hence

var (I73) =17 /(z—ﬁ) (#-)" di|I=1"c)i
\feD

where
) = for discrete n point distributions
(5.14)

N (o o (o o
i (@ f) (@ -7
ﬁ) dZ = for continuous distributions

“X):{ foop (70 (7

For simplicity, we drop the X in parentheses and simply write C (X)) as C. An equivalent
way of looking at the covariance matrix of a d-dimensional random variable X taking

vector values Z is as follows:

o o1 o1t Oud
091 092 093 09
C= (5.15)
Od1 042 043" 0Odd
where
L D, fx en; (x; —) ;) dx;dxj = for continuous distributions
0i,j = N
ion 2oy (T = i) (-u j) = for discrete n point distributions

is the co-variance of the ith and jth dimensions of the random vector x
C (X) or C is the covariance matrix of the random variable X. A little thought reveals

that equations 5.14 and 5.15 are equivalent.

The following things are noteworthy:
From equation 5.14, C is the sum of the products of d x 1 vectors (¥ — fi) and their

o T . .
transpose (x - ,u) , 1 xd vectors. Hence, C is a d X d matrix.

5.8

5.8 Sampling from a distribution 167

This matrix is independent of the direction, [, in which we are measuring the
variance or spread. We can precompute C; then, when we need to measure
the variance in any direction [, we can evaluate the quadratic form [[TCl to obtain
the variance in that direction. Thus C is a generic property of the distribution,
much like f. C is called the covariance of the distribution.

Covariance is the multivariate peer of the univariate entity variance.

That covariance is the multivariate analog of variance is evident by comparing the
expressions in equations 5.13 and 5.14.

VARIANCE AND EXPECTED VALUE .
As outlined previously, the variance is the expected value of the distance (x — u)? of

sample points x from the mean p. This can be easily seen by comparing equations 5.13,
5.10, and 5.11 and leads to the following formula (where we use the principle of the
expected value of linear combinations):

var (X)=F ((X - M)Q) —F (XQ) “E(2uX)+E (ﬁ)

Since p is a constant, we can take it out of the expected value (a special case of the
principal of the expected value of linear combinations). Thus we get

var (X)=E (XQ) —9uE (X) + u2E (1)

But p=E (X). Also, the expected value of a constant is that constant. So, E (1) =1.
Hence,

var (X)=E (XQ) —2u®+ ’E (1) =E (XQ) -
or

var (X)=F (XQ) _E(X)? (5.16)

Sampling from a distribution

Drawing a sample from the probability distribution of a random variable yields an
arbitrary value from the set of possible values. If we draw many samples, the higher-
probability values show up more often than lower-probability values. The sampled points
form a cloud in the domain of possible values, and the region where the probabilities
are higher is more densely populated than lower-probability regions. In other words, in
a sample point cloud, higher-probability values are overrepresented. Thus a collection
of sample points is often referred to as a sample point cloud. The hope, of course, is
that the sample point cloud is a good representation of the entire population so that
analyzing the points in the cloud will yield insights about the entire population. In
univariate cases, the sample value is a scalar and represented by a point on the number
line. In multivariate cases, the sample value is a vector and represented as a point in a
higher-dimensional space.

Itis often useful to compute aggregate statistics (such as the mean and variance) to
describe the population. If we know a distribution, we can use closed-form expressions
to obtain these properties. Many standard distributions and closed-form equations for

168

CHAPTER 5 Probability distributions in machine learning

obtaining their means and variance are discussed in section 5.9. But often, we don’t know
the underlying distribution. Under those circumstances, the sample mean and sample
variance can be used. Given a set of n samples X =7}, & - - - I, from any distribution,
the sample mean and variance are computed as

1
Hn=— Z X
n <

i=1

In some situations, like Gaussian distributions (which we discuss shortly), it can be
theoretically proved that the sample mean and variance are optimal (the best possible
guesses of the true mean and variance, given the sampled data). Also, the sample mean
approaches the true mean as the number of samples increases, and with enough samples,
we get a pretty good approximation of the true mean. In the next subsection, we learn
more about how much is “enough.”

LAW OF LARGE NUMBERS: HOW MANY SAMPLES ARE ENOUGH?
Informally speaking, the law of large numbers says that if we draw a large number

of sample values from a probability distribution, their average should be close to the
expected value of the distribution. In the limit, the average over an infinite number of
samples will match the mean.

In practice, we cannot draw an infinite number of samples, so there is no guarantee
that the sample mean will coincide with the expected value (true mean) in real-life
sampling. But if the number of samples is large, they will not be too different. This is
not a matter of mere theory. Casinos design games where the probability of the house
winning a bet against the guest is slightly higher than the probability of the guest winning.
The expected value of the outcome is that the casino wins rather than the guest. Over
the very large number of bets placed in a casino, this is exactly what happens—and that
is why casinos make money on the whole, even though they may lose individual bets.

How many samples is “a large number of samples?” Well, it is not defined precisely.
But one thing is known: if the variance is larger, more samples need to be drawn to
make the law of large numbers apply.

Let’s illustrate this with an example. Consider a betting game. Suppose that the
famous soccer club FC Barcelona, for unknown reasons, has agreed to play a very large
number of matches against the Machine Learning Experts’ Soccer Club of Silicon Valley.
We can place a bet of $100 on a team. If that team wins, we get back $200: that is, we
make $100. If that team loses, we lose the bet: that is, we make —$100. The betting game
is happening in a country where nobody knows anything about the reputations of these
clubs. A bettor bets on FC Barcelona in the first game and wins $100. Based on this one
observation, can the bettor say that by betting on Barcelona, they expect to win $100
every time? Obviously not.

But suppose the bettor places 100 bets and wins $100 99 times and loses $100 once.
Now the bettor can expect with some confidence that they will win $100 (or close to it) by

5.9

5.9 Some famous probability distributions 169

betting on Barcelona. Based on these observations, the sample mean winnings from a bet
on FC Barcelona are 0.99 x (100) + 0.01 x (-=100) =98. The sample standard deviation

is \/(.99 X (98 = 100)% +0.01 x (98 — (—100))2) =19.8997. Relative to the sample mean,

the sample standard deviation is % =0.203.

Next, consider the same game, except now FC Barcelona is playing the Real Madrid
football club. Since the two teams are evenly matched (the theoretical win proba-
bility of Barcelona is 0.5), the results are no longer one-sided. Suppose that after
100 games, FC Barcelona has won 60 times and Real Madrid has won 40 times. The
sample mean winnings on a Barcelona bet are 0.6 x (100) +0.4 x (-100) =20. The

sample standard deviation is \/ (.6 % (20— 100)% + 0.4 x (20 — (—100))2) ~97.9795. Rel-

ative to the sample mean, the sample standard deviation is 97'3# =4.89897. This is
a much larger number than the previous 0.203. In this case, even after 100 trials, a
bettor cannot be very confident in predicting that the expected win is the sample
mean, $20.

The overall intuition is as follows:

If we take a sufficiently large number of samples, their average is close to the
expected value. The exact definition of what constitutes a “sufficiently large”
number of samples is not known. However, the larger the variance (relative to the
mean), the more samples are needed.

Some famous probability distributions

In this section, we introduce some probability distributions and density functions often
used in deep learning. We will use PyTorch code snippets to demonstrate how to set up,
sample, and compute properties like expected values, variance/covariance, and so on
for each distribution. Note the following:

In the code snippets, for every distribution, we evaluate the probability using

— APyTorch distributions function call

— A raw evaluation from the formula (to understand the math)

Both should yield the same result. In practice, you should use the PyTorch

distributions function call instead of the raw formula.

In the code snippets, for every distribution,

— We evaluate the theoretical mean and variance using a PyT'orch distributions
function call.

— We evaluate the sample mean and variance.

When the sample set is large enough, the sample mean and theoretical mean
should be close. Ditto for variance.

NOTE Fully functional code for these distributions, executable via Jupyter Note-
book, can be found at http://mng.bz/8NVg.

170

5.9.1

CHAPTER 5 Probability distributions in machine learning

Another point to remember: In machine learning, we often work with the logarithm of
the probability. Since the popular distributions are exponential, this leads to simpler
computations. With that, let’s dive into the probability distributions.

Uniform random distributions

Consider a continuous random variable x that can take any value from a fixed compact
range, say [a, b], with equal probability, while the probability of x taking a value outside the
range is zero. The corresponding p (x) is a uniform probability distribution. Formally
stated,
—— ifzxela,b
pa)=1b-a L. (5.17)

0 otherwise

Equation 5.17 means p () is constant, ﬁ, for x between a and b and zero for other
values of x. Note how the value of the constant is cleverly chosen to make the total
area under the curve 1. This equation is depicted graphically in figure 5.4, and listing
5.1 shows the PyTorch code for the log probability of a univariate uniform random
distribution.

Uniform probability density function

0.05 A

0.04

0.03 1

p(x)

0.02 1

0.01 A

0004 ——m— x L1 x+6x

=15 -10 =5 0 5 10 15

Figure 5.4 Univariate (single-variable) uniform random probability density function. Probability p (x) is
constant, 0.05, in the interval [-10, 10] and zero everywhere outside the interval. Thus it depicts equa-
tion 5.17 with 4 =10, a = —10. The area under the curve is the area of the shaded rectangle of width 20
and height 0.05, 20 x 0.05 = 1. The thin rectangle depicts an infinitesimally small interval corresponding
to event £ = {x < X <x+dx}. If we draw a random sample x from this distribution, the probability that
the value of the sample is between, say, 4 and 4 + §x, with x — 0, is p (4) =0.05. The probability that the
value of the sample is between, say, 15 and 15 + 6x, with 62 — 0, is p (15) =0.

5.9 Some famous probability distributions 171

Listing 5.1 Log probability of a univariate uniform random distribution

) .))) Imports a PyTorch
from torch.distributions import Uniform uniform distribution

a = torch.tensor([1.0], dtype=torch.float) ﬂ Sets the distribution parameters
b = torch.tensor([5.0], dtype=torch.float)

)) Instantiates a uniform
ufm_dist = Uniform(a, D) distribution object

Instantiates a single-point

X = torch.tensor([2.0], dtype=torch.float)
test dataset

def raw eval(X, a, b):
return torch.log(l / (b - a)) Evaluates the probability
log _prob = ufm dist.log prob (X) using PyTorch

Evaluates the probability
raw_eval_log prob = raw_eval(X, a, b) using the formula

Asserts that the
assert torch.isclose(log prob, raw _eval log prob, atol=le-4) probabilities

match
NOTE Fully functional code for the uniform distribution, executable via Jupyter
Notebook, can be found at http://mng.bz/E2]r.

EXPECTED VALUE OF A UNIFORM DISTRIBUTION
We do this for the univariate case, although the computations can be easily extended to

the multivariate case. Substituting the probability density function from equation 5.17
into the expression for the expected value for a continuous variable, equation 5.10,

co b
1
[Emziform (X)=/1P(~’C) dx=‘/x(m) dx

ml L 1 22, (0¥-d?)
z(b—a)a/xdxz(b—a)r§]“:2(b-a)
_(a+b)

(5.18)

NOTE The limits of integration changed because p () is zero outside the interval

[a, b].

Overall, equation 5.18 agrees with our intuition. The expected value is right in the
middle of the uniform interval, as shown in figure 5.5.

VARIANCE OF A UNIFORM DISTRIBUTION
If we look at figure 5.5, it is intuitively obvious that the packing density of the samples is

related to the width of the rectangle. The smaller the width, the tighter the packing and
the smaller the variance, and vice versa. Let’s see if the math supports that intuition:

VaTyniform (CC) = / ($ - /-‘)2P ($) dx=

XT=—00

172

CHAPTER 5 Probability distributions in machine learning

(e8]

/ a+b* 1 y
= xr— —— —dadxr =
2 (b—a)
X=—00
2
(b—a)
=— 5.19
12 ()
Uniform probability density function
0.05
0.04 1
0.03 1
X
o
0.02 A
0.01 A
0.001 expected value
-15 10 s 0 5 10 15
X

Figure 5.5 Univariate (single-variable) uniform random probability density function. The solid line in the
middle indicates the expected value. Interactive visualizations (where you can change the parameters and
observe how the graph changes as a result) can be found at http://mng.bz/E2Jr.

Figure 5.5 shows that the variance in equation 5.19 is proportional to the square of the
width of the rectangle: thatis, (b — a)Q.
Here is the PyTorch code for the mean and variance of a uniform random distribution.

Listing 5.2 Mean and variance of a uniform random distribution

num_samples = 100000 <—— Number of sample points

Obtains samples from ufm_dist

samples = ufm_dist.sample ([num_samples])
instantiated in listing 5.1

100000 x 1 tensor
sample_mean = samples.mean() <—— Sample mean
dist_mean = ufm _dist.mean <—— Mean via PyTorch function
assert torch.isclose(sample mean, dist mean, atol=0.2)
sample_var = ufm dist.sample([num samples]).var() <—— Sample variance
dist_var = ufm dist.variance <——— Variance via PyTorch function

assert torch.isclose(sample var, dist var, atol=0.2)

5.9 Some famous probability distributions 173

MULTIVARIATE UNIFORM DISTRIBUTION
Uniform distributions also can be multivariate. In that case, the random variable is a

vector, & (not a single value, but a sequence of values). Its domain is a multidimensional
volume instead of the X-axis, and the graph has more than two dimensions. For example,
this is a two-variable uniform random distribution:

1 .
b (y)= {(W if (x,y) € [a1, b1] x [ag, be] (5.20)

otherwise

Here, (x,y) € [a1, b1] X [ag, be] indicates a rectangular domain on the two-dimensional
XY plane where x lies between a1 and b; and y lies between as and by. Equation 5.20 is
shown graphically in figure 5.6. In the general multidimensional case,

1 PR
R 7 ifxeD
7)) = 5.21
p() {O otherwise ()

0.0025
0.0020
0.0015
0.0010

0.0005 Figure 5.6 Bivariate uniform
random probability density function.
0.0000 The probability p (x, y) is constant,
0.0025, in the domain (x, y) €
[-10, 10] x [-10, 10] and zero ev-
erywhere outside the interval. The
volume of the box of width 20 x 20 and
height 0.0025, 20 20 % 0.0025 = 1.

Here, V' is the volume of the hyperdimensional box with base D. Equation 5.21 means
p (56) is constant for Z in the domain D and zero for other values of x. When nonzero, it
has a constant value, the inverse of the volume /: this makes the total volume under
the density function 1.

5.9.2 Gaussian (normal) distribution

This is probably the most famous distribution in the world. Let’s consider, one more
time, the weights of adult residents of Statsville. If Statsville is anything like a real city,
the likeliest weight is around 75 kg: the largest percentage of the population will weigh
this much. Weights near this value (say 70 or 80 kg) will also be quite likely, although
slightly less likely than 75 kg. Weights further away from 75 kg are still less likely, and so
on. The further we go from 75 kg, the lower the percentage of the population with that

174

CHAPTER 5 Probability distributions in machine learning

weight. Outlier values like 40 and 110 kg are unlikely. Informally speaking, a Gaussian
probability density function looks like a bell-shaped curve. The central value has the
highest probability. The probability falls gradually as we move away from the center.
In theory, however, it never disappears completely (the function p (x) never becomes
equal to 0), although it becomes almost zero for all practical purposes. This behavior is
described in mathematics as asymptotically approaching zero. Figure 5.7 shows a Gaussian
probability density function. Formally,

1 —a=p)?
Nors e 272 (5.22)

p(x)=

Gaussian distribution
0.10

0.08 1

0.06

0.04 A

p(x)

0.02 A

0.00 4 X LIx+6x
expected value

—0.02

=15 -10 =5 0
X

v 4

10 15

Figure 5.7 Univariate Gaussian random probability density function, ;=0 and o = 4. The bell-shaped
curve is highest at the center and decreases more and more as we move away from the center, approach-
ing zero asymptotically. The value x = 0 has the highest probability, corresponding to the center of the
probability density function. Note that the curve is symmetric. Thus, for instance, the probability of a
random sample being in the vicinity of —5 is the same as that of 5 (0.04): that is, p (=5) =p (5) =0.04.
An interactive visualization (where you can change the parameters and observe how the graph changes
as a result) can be found at http://mng.bz/NYJX.

Here, p and o are parameters; u corresponds to the center (for example, in figure 5.7,
1 =0). The parameter o controls the width of the bell. A larger o implies that p (x)
falls more slowly as we move away from the center.

The Gaussian (normal) probability density function is so popular that we have a
special symbol for it: N'(x, u, o2). It can be proved (but doing so is exceedingly tedious,
so we will skip the proof here) that

1 ~a-w?
/ N(x; u, o¥dx= e 27 dr=1
2no

5.9 Some famous probability distributions 175

This establishes that N'(x; u, 0?) is a true probability (satisfying the sum rule in equa-
tion 5.7).

Listing 5.3 Log probability of a univariate normal distribution

Imports a PyTorch univariate

from torch.distributions import Normal ‘—{ normal distribution

mu = torch.tensor([0.0], dtype=torch.float) <—‘ Sets the distribution params
sigma = torch.tensor([5.0], dtype=torch.float)

. i Instantiates a univariate
uvn_dist = Normal (mu, sigma) normal distribution object

X = torch.tensor([0.0], dtype=torch.float) ., . .
Instantiates a single-point

def raw _eval (X, mu, sigma): test dataset

K =1 / (math.sgrt(2 * math.pi) * sigma)
E = math.exp(-1 * (X - mu) ** 2 * (1 / (2 * sigma ** 2)))
return math.log (K * E)

Evaluates the probability
log_prob = uvn_dist.log prob (X) using PyTorch

Evaluates the probability
raw_eval log prob = raw eval(X, mu, sigma) using the formula

assert log prob == raw_eval_ log_ prob Asserts that the
probabilities match

NOTE Fully functional code for this normal distribution, executable via Jupyter
Notebook, can be found at http://mng.bz/NY]X.

MULTIVARIATE GAUSSIAN
A Gaussian distribution can also be multivariate. Then the random variable x is a vector

Z, as usual. The parameter u also becomes a vector 4, and the parameter o becomes a
matrix X. As in the univariate case, these parameters are related to the expected value
and variance. The Gaussian multivariate probability distribution function is

C DS E——— (5.23)
(2r det X)?

Equation 5.23 describes the probability density function for the random vector Z to lie
within the infinitesimally small volume with dimensions 6% around the point Z. (Imagine
a tiny box (cuboid) whose sides are successive elements of 6%, with the top-left corner
of the box at Z.) The vector ji and the matrix X are parameters. As in the univariate
case, fi corresponds to the most likely value of the random vector. Figure 5.8 shows the
Gaussian (normal) distribution with two variables in three dimensions. The shape of
the base of the bell is controlled by the parameter X.

Listing 5.4 Log probability of a multivariate normal distribution

Imports a PyTorch multivariate

from torch.distributions import MultivariateNormal ‘—{ normal distribution

mu = torch.tensor ([0.0, 0.0], dtype=torch.float) <—— Sets the distribution params

176

CHAPTER 5 Probability distributions in machine learning

C = torch.tensor([[5.0, 0.0], [0.0, 5.0]], dtype=torch.float)
Instantiates a multivariate
mvn_dist = MultivariateNormal (mu, C) normal distribution object

Instantiates a single

X = torch.tensor([0.0, 0.0], dtype=torch.float)
point test dataset

def raw_eval (X, mu, C):
K= (1 / (2 * math.pi * math.sgrt(C.det())))
X minus mu = (X - mu).reshape(-1, 1)
El = torch.matmul (X minus mu.T, C.inverse())
E = math.exp(-1 / 2. * torch.matmul (El, X _minus_mu))
return math.log(K * E)

Evaluates the probability
log prob = mvn _dist.log prob (X) using PyTorch
Evaluates the probability
raw_eval_log prob = raw_eval (X, mu, C) using the formula

assert log prob == raw_eval log prob -<——— Asserts that the probabilities match

0.03
0.030

0.025 Figure 5.8 Bivariate Gaussian random
0.020 probability density function. It is a bell-
shaped surface: highest at the center
0.015 and decreasing as we move away from
the center, approaching zero asymptot-
0.010 ically. x =0, y = 0 has the highest prob-
0.005 ability, corresponding to the center of
the probability density function. The bell
0.000 has a circular base, and the X matrix is
a scalar multiple of the identity matrix [.

pP(x, y)

0.00

0 . An interactive visualization (where you
0 -5 y can change the parameters and observe
X 5 10 _1_510 how the graph changes as a result) can
15 be found at http://mng.bz/NYJX.

EXPECTED VALUE OF A GAUSSIAN DISTRIBUTION
Substituting the probability density function from equation 5.22 into the expression for

the expected value of a continuous variable, equation 5.10, we get

|Egaussian (X) :/x

1 —(a-p)?

e 2?7 dx
V2o

1 [(a—p) e /°° 1 ep?

=— [—ZLe 2w dax+p e 27 dx
\/ﬁ_oo Voo J N2no

Substituting y = %

(e8]

V2o _ r
[Egaussian (X) = 7 /ye ygdy"':u/lb (.’IJ) dx

5.9 Some famous probability distributions 177

Substituting « =y* and using equation 5.6

(&8
Voo [_
[Egaussian (X) =T = e "du+ M
2n
[oe)

Note that the limits of the integral in the first term are identical. This is because
u =y? — co whether y — o0 or y — —co. But an integral with the same lower and upper
limits is zero. Thus the first term is zero. Hence,

[Egau.m'an (X)=p (5.24)
~=m?
Intuitively, this makes perfect sense. The probability density p (x) = ‘/%Me at peaks

(maximizes) at x = u. At this x, the exponent becomes zero, which makes the term
—(a-p)?
e 272 attain its maximum possible value of 1. This is right in the middle of the bell, as

shown in figure 5.9. And, of course, the expected value coincides with the middle value
if the density is symmetric and peaks in the middle. Analogously, in the multivariate
case, the Gaussian multidimensional random variable X that takes vector values Z in
the d-dimensional domain R? (that is, 7 € R?) has an expected value

Egaussian (X)=p (5.25)
Gaussian distribution
0.10
0.08 A
0.06 A
X 0.04
o
0.02 A
0.00 A
expected value
-0.02 - -
-15 -10 -5 0 5 10 15
X

Figure 5.9 Univariate (single-variable) normal (Gaussian) random probability density function, =0 and
o =4. The solid line in the middle indicates the expected value.

VARIANCE OF A GAUSSIAN DISTRIBUTION

The variance of the Gaussian distribution is obtained by substituting equation 5.22 in
the integral form of equation 5.13. The mathematical derivation is shown in the book’s
appendix; here we only state the result.

178

p(x)

0.08

0.06

0.04

0.02

CHAPTER 5 Probability distributions in machine learning

The variance of a Gaussian distribution with probability density function p (x) =
—=m?
;M_e 272 is 02, and the standard deviation is the square root of that (o). This makes

intuitive sense. o~ appears in the denominator of a negative exponent in the expression
(@=p?

1. . . _ 1 —_ . . .
for th.e probability d.ens1ty fur.lctlon p(x)= o 252 : As s.uch, 2 () is an increasing
function of o : that is, for a given x and y, a larger o implies a larger p (x). In other
words, a larger o implies that the probability decays more slowly as we move away from

the center: a fatter bell curve, a bigger spread, and hence a larger variance. Figure 5.10

depicts this.

Gaussian distribution Gaussian distribution

—— variance=16
~-- variance=36
----- variance=64

Je — mu=-5sigma=4 0.10
/ N === mu=5sigma=4

0.08

0.06

2

o
0.04
0.02
0-00 expected value

-15 -10 -5 o 5 10 15 _1s _1o -5 0 5 10 15
X (height in cms) x
(a) Different us but the same os. (b) The same us but different os.

Figure 5.10 Gaussian densities with varying us and os. Changing u shifts the center of the curve.
A larger o (variance) implies a fatter bell = more spread. Note that fatter curves are smaller in height
as the total area under the curve must be 1.

Listing 5.5 Mean and variance of a univariate Gaussian

num_samples = 100000 <—— Number of sample points

. Obtains samples from uvn_dist
samples = uvn_dist.sample ([num_samples]) instantiated in listing 5.3

100000 x 1 tensor s |
sample mean = samples.mean() < ample mean

dist_mean = uvn_dist.mean <«—— Mean via PyTorch function

assert torch.isclose(sample_mean, dist mean, atol=0.1)

sample_var = uvn_dist.sample ([num_samples]) .var () 4—‘ Sample variance
dist_var = uvn_dist.variance <——— Variance via PyTorch function

assert torch.isclose (sample_var, dist_var, atol=0.1)

COVARIANCE OF A MULTIVARIATE GAUSSIAN DISTRIBUTION
AND GEOMETRY OF THE BELL SURFACE
Comparing equation 5.22 for a univariate Gaussian probability density with equation

5.23 for a multivariate Gaussian probability density, we intuitively feel that the matrix X

5.9 Some famous probability distributions 179

is the multivariate peer of the univariate variance o-2. Indeed it is. Formally, for a multi-
variate Gaussian random variable with a probability distribution given in equation 5.23,
the covariance matrix is given by the equation

Cgauxxian (X) =X (526)

As shown in table 5.11, X regulates the shape of the base of the bell-shaped probability
density function.

It is easy to see that the exponent in equation 5.23 is a quadratic form (introduced in
section 4.2). As such, it defines a hyper-ellipse, as shown in figure 5.11 and section 2.17.
All the properties of quadratic forms and hyper-ellipses apply here.

num_samples = 100000 <—— Number of sample points

} Obtains samples from mvn_dist
samples = mvn_dist.sample ([num samples]) instantiated in listing 5.4
100000 x 1 tensor
Sample mean
sample_mean = samples.mean () <—1 P
dist_mean = mvn_dist.mean <—— Mean via PyTorch function
assert torch.allclose(sample mean, dist mean, atol=le-1)
sample_var = mvn_dist.sample ([num_samples]).var() <—— Sample variance

dist_var = mvn_dist.variance <—— Variance via PyTorch function

assert torch.allclose(sample var, dist var, atol=le-1)

Let’s look at the geometric properties of the Gaussian covariance matrix 2. Consider a

x x
2D version of equation 5.23. We rewrite ¥ = and = H —2D vectors both. Also
y Hy
o _|on o
X = —a 2 X 2 matrix. The probability density function from equation 5.23
021 022
becomes
p(x,y)=N(x,y; i,)= _r 1 o 2 (ona(on+ain)ay+onny?) (5.27)
(2r det X)2

(Use what you learned in chapter 3 to satisfy yourself that equation 5.27 is a 2D analog
of equation 5.23.)
If we plot the surface p (x, ¥) against (x, y), it looks like a bell in 3D space. The shape
of the bell’s base, on the (z, y) plane, is governed by the 2 X 2 matrix X. In particular,
If ¥ is a diagonal matrix with equal diagonal elements, the bell is symmetric in all
directions, and its base is circular.
If ¥ is a diagonal matrix with unequal diagonal elements, the base of the bell is
elliptical. The axes of the ellipse are aligned with the coordinate axes.

180

5.9.3

CHAPTER 5 Probability distributions in machine learning

For a general X matrix, the base of the bell is elliptical. The axes of the ellipse are
not necessarily aligned with the coordinate axes.
The eigenvectors of X yield the axes of the elliptical base of the bell surface.

Now, if we sample the distribution from equation 5.27, we get a set of points (x, y) on
the base plane of the surface shown in figure 5.8. The taller the z coordinate (depicting
p (z,y)) of the surface at a point (z, y), the greater its probability of being selected in
the sampling. If we draw a large number of samples, the corresponding point cloud will
look more or less like the base of the bell surface.

Figure 5.11 shows various point clouds formed by sampling Gaussian distributions
with different covariance matrices X. Compare it to figure 5.10.

GEOMETRY OF SAMPLED POINT CLOUDS: COVARIANCE AND DIRECTION OF MAXIMUM
OR MINIMUM SPREAD
We have seen that if a multivariate distribution has a covariance matrix C, its variance

(spread) in any specific direction [is [TCl. What is the direction of maximum spread?

Asking this is the same as asking “What direction [maximizes the quadratic form
[TCI?” n section 4.2, we saw that a quadratic form like this is maximized or minimized
when the direction [is aligned with the eigenvector corresponding to the maximum or
minimum eigenvalue of the matrix C. Thus, the maximum spread of a distribution occurs
along the eigenvector of the covariance matrix corresponding to its maximum eigenvalue. This
led to the PCA technique in section 4.4.

Next, we discuss the covariance of the Gaussian distribution and geometry of the
point cloud formed by sampling a multivariate Gaussian a large number of times. You
may want to take a look at figure 5.11, which shows various point clouds formed by
sampling Gaussian distributions with different covariance matrices X.

MULTIVARIATE GAUSSIAN POINT CLOUDS AND HYPER-ELLIPSES T
The numerator of the exponential term in equation 5.23, (¥ -)’ L' (F-f), is a

quadratic form as we discussed in section 4.2. It should also remind you of the hyper-
ellipse we looked at in section 2.17, equation 2.33, and equation 4.1.

Now consider the plot of p (¥) against Z. This is a hypersurface in n + 1-dimensional
space, where the random variable Z is n-dimensional. For instance, if the random
Gaussian variable 7 is 2D, the (Z, p (¥)) plot in 3D is as shown in figure 5.8. It is a bell-
shaped surface. The hyper-ellipse corresponding to the quadratic form in the numerator
of the probability density function in equation 5.23 governs the shape and size of the
base of this bell.

If the matrix X is diagonal (with equal diagonal elements), the base is circular—this
is the special case shown in figure 5.8. Otherwise, the base of the bell is elliptic. The
eigenvectors of the covariance matrix X correspond to the directions of the axes of the
elliptical base. The eigenvalues correspond to the lengths of the axes.

Binomial distribution

Suppose we have a database containing photos of people. Also, suppose we know that
20% of the photos contain a celebrity and the remaining 80% do not. If we randomly

15

101

-104

-15

15

101

o

5.9 Some famous probability distributions

[2.75 2.25}
(b) ==

2.25 2.75

181

15

101

-104

~10 s 0 5 10

-15+

-10
X X
15
104
54
: - 3 c . 01
L i adi
_s5 o
-10
T T T T T -15-4+ T T
-10 -5 0 5 10 -10 -5] 5 10
X X
5 0 2.75 -2.25
(c) Z= (d) =
0 05 -2.25 2.75

Figure 5.11 Point clouds formed by sampling multivariate Gaussians with the same i = [0, O]T but

different Xs. These point clouds correspond to the bases of the bell curves for multivariate Gaussian prob-
ability densities. All the point clouds except (a) may be replaced by a univariate Gaussian after rotation to
align the coordinate axes with the eigenvectors of X (dimensionality reduction). See sections 4.4, 4.5, and
4.6 for details. Interactive contour plots for the base of the bell curve can be found at http://mng.bz/NYJX.

182

CHAPTER 5 Probability distributions in machine learning

select three photos from this database, what is the probability that two of them contain
a celebrity? This is the kind of problem the binomial distribution deals with.

In a computer vision-centric machine learning setting, we would probably inspect the
selected photos and try to predict whether they contained a celebrity. But for now, let’s
restrict ourselves to the simpler task of blindly predicting the chances from aggregate
statistics.

If we select a single photo, the probability of it containing a celebrity is 7 =0.2.

NOTE This has nothing to do with the natural number 7 denoting the ratio of
the circumference to the diameter of a circle. We are just reusing the symbol n
following popular convention.

The probability of the photo not containing a celebrity is 1 — 7 =0.8. From that, we can
compute the probability of, say, the first two sampled photos containing a celebrity
but the last one containing a non-celebrity: that is, the event {S, S, I'} (where S de-
notes success in finding a celebrity and F denotes failure in finding a celebrity). Using
equation 5.4, the probability of the event {S,S, F}is axnXx(1-7)=0.2x0.2x0.8.
However, many other combinations are also possible.

All the possible combinations that can occur in three trials are shown in table 5.8.
In the table, event ids 3, 5, and 6 correspond to two successes and one failure. They
occur with probabilities 0.8 X 0.2x 0.2, 0.2x0.8x 0.2, and 0.2x0.2 x 0.8, respectively.
If any one of them occurs, we have two celebrity photos in three trials. Thus, using
equation 5.3, the overall probability of selecting two celebrity photos in three trials is the
sum of these event probabilities: 0.8 X0.2x0.2+0.2x0.8x0.2+0.2x0.2x0.8=0.096.

Table 5.8 All possible combinations of three trials

Event Id Event Probability

{F,F,F} | I1-m)x(1-7n)x(1-7)=0.8x0.8%0.8
{F,F,8} | I-m)x(1-7)xn=0.8%0.8x0.2
{F,$,F} | I1-n)xax(1-n)=0.8x0.2x0.8
{F,S,S} (I1-m)xaxn=0.8%0.2%x0.2

{S,F,F} ax(l-m)x(1-7)=0.2x0.8%0.8
{S,F,S} ax(1-nm)xn=0.2x0.8x0.2

{S,8,F} | axax(1-7)=0.2x0.2x0.8

{S,S,S} axaxn=0.2x0.2x0.2

~N O o~ W N BB O

In the general case, with more than three trials, it would be impossibly tedious to
enumerate all the possible combinations of success and failure that can occur in a set of
n trials. Fortunately, we can derive a formula. But before doing that, let’s state the task
of a binomial distribution in more general terms:

Given a process that has a binary outcome (success or failure) in any given trial,
and given that the probability of success in a trial is a known constant (say,), a

5.9 Some famous probability distributions 183

binomial distribution deals with the probability of observing k& successes in n trials
of the process.

Imagine events with n successive items, where each individual item can be either S or F.
Table 5.8 shows such events with n =3. Each item has two possible values (S or F'), and
there are n items. Hence, altogether there can be 2x2x---2=2" possible events.

We are only interested in events with £ occurrences of S (and therefore (n —k)
occurrences of I'). How many of the n events are like that? Well, asking this is the same
as asking how many ways we can choose £ slots from a total of n possible slots. Another
way to pose the same question is, “How many different orderings of n items exist, where
each item is either S or F and the total count of S is £?” The answer, from combination

theory, is W ol
k| k! (n—k)!

Each of these events has a probability of 7 x (1 — 7)"*. Hence, the overall probability
of k successes in n trials is (Z)ﬂ'k x (1—m)"*,

Formally, if X is a random variable denoting the number of successes in n trials, with
the probability of success in any single trial being some constant value 7,

»(X=k)= (Z)nk x (1—m)n* (5.28)

What values can £ take? Of course, we cannot have more than n successes in n trials;
therefore, the maximum possible value of £ is n. All integer values between 0 and n are

possible: b=n k=n

Zp (X =k) :Z (Z)nk x (1—-m)"*
k=0 k=0

The right-hand side is an expression for the generic term in the famous binomial
expansion of (¢ +b)" with =7 and b=1- 7. Hence, we get

k=n k=n
Zp (X =k) =Z (Z)nk x(1-m)"*=(x+1-n)"=1"=1 (5.29)
k=0 k=0

This agrees with intuition, since given n, k can only take values 0, 1, - - -, n; the sum of

the probabilities on the left-hand side of equation 5.29 corresponds to a certain event
with probability 1.

Also, plugging n=3, k=2, and 7 =0.2 into equation 5.28 yields 2?—'1, (0.2)% (0.8)%2=
0.096: exactly what we get from explicit enumeration.

from torch.distributions import Binomial <—— Imports a PyTorch binomial distribution
num_trials = 3 <— Sets the distribution params

Instantiates a binomial

p = torch.tensor([0.2], dtype=torch.float)
distribution object

binom_dist = Binomial (num_trials, probs=p)

184

CHAPTER 5 Probability distributions in machine learning

Instantiates a single

X = torch.tensor([1], dtype=torch.float)
point test dataset

def nCk(n, k):
f = math.factorial
return £(n) * 1. / (£(k) * f(n-k))

def raw eval(X, n, p):
result = nCk(n, X) * (p ** X) * (1 - p) ** (n - X)
return torch.log(result)

Evaluates the probability
. . using PyTorch
log prob = binom dist.log prob (X) &Py Evaluates the probability
raw_eval log prob = raw eval (X, num trials, p) using formula

assert torch.isclose(log prob, raw_eval_ log prob, atol=le-4)
Asserts that the
probabilities match

NOTE Fully functional code for the binomial distribution, executable via Jupyter
Notebook, can be found at http://mng.bz/DR]O0.

EXPECTED VALUE OF A BINOMIAL DISTRIBUTION
We have seen that the binomial distribution deals with a random variable X that depicts

the number of successes in # trials, where the probability of success in a given trial
is a constant 7 (again, this has nothing to do with the 7 denoting the ratio of the
circumference to the diameter of a circle). This X can take any integer value 0 to n.
Hence,

E(X)= ka(X k)= Z ()’fu m) k= Z k|(7r><(1 mynk

k=0 k=0 k=0

We can drop the first term, which has the multiplier £ = 0. Thus we get
k=n

IE(X) Zmﬂ X(l 7T)n_k

We can factor n!=n (n —1)! and ¥ =7 7¥~1. Also, n —k = (n — 1) — (k= 1). This gives us

S n (n-1)! - "
EX= 2 i@ <0

Substituting j for £ — 1 and m for n — 1, we get

E(X)=nx Z ! X (1=)" (5.30)

The quantity within the summation is similar to that in equation 5.29 (should sum to 1).
This leaves us with

Ebinomial (X) =nn (5.31)
Equation 5.31 says that if 7 is the probability of success in a single trial, then the expected
number of successes in n trials is n 7. For instance, if the probability of success in a

5.9.4

5.9 Some famous probability distributions 185

single trial is 0.2, then the expected number of successes in 100 trials is 20—which is
almost intuitively obvious.

VARIANCE OF A BINOMIAL DISTRIBUTION
The variance of a binomial random variable depicting the number of successes in n

trials where the probability of success in a given trial is a constant 7 is
VaTpinomial =7 (1 — 1) (5.32)

The proof follows the same lines as that of the expected value.

num_samples = 100000 <—— Number of sample points

.) Obtains samples from the binom_dist
samples = binom dist.sample ([num samples]) instantiated in listing 5.7
100000 x 1 tensor

Sample mean
sample _mean = samples.mean/() <—J P

dist_mean = binom_dist.mean <—— Mean via PyTorch function
assert torch.isclose(sample mean, dist mean, atol=0.2)

Sample variance
sample_var = binom dist.sample ([num samples]) .var() <—J P

dist_var = binom dist.variance <«——— Variance via PyTorch function

assert torch.isclose (sample_var, dist_var, atol=0.2)

Multinomial distribution
Consider again the example problem we discussed in section 5.9.3. We have a database
of photos of people. But instead of two classes, celebrity and non-celebrity, we have four
classes:

Photos of Albert Einstein (class 1): 10% of the photos

Photos of Marie Curie (class 2): 42% of the photos

Photos of Carl Friedrich Gauss (class 3): 4% of the photos

Other photos (class 4): 44% of the photos

If we randomly select a photo from the database (that is, perform a random trial),

The probability of selecting class 1 (picking an Einstein photo) is 71 =0.1.
The probability of selecting class 2 (picking a Marie Curie photo) is 79 = 0.42.
The probability of selecting class 3 (picking a Gauss photo) is 73 =0.04.

The probability of selecting class 4 (picking a photo of none of the above) is
m4=0.44.

Notice that 71 + 79 + 713 + m4 = 1. This is because the classes are mutually exclusive and
exhaustive, so exactly one of these classes must occur in every trial.

Given all this, let’s ask the question: “What is the probability that in a set of 10 random
trials, class 1 occurs 1 time, class 2 occurs 2 times, class 3 occurs 1 time, and class 4
occurs the remaining 6 times?” This is the kind of problem multinomial distributions
deal with.

186 CHAPTER 5 Probability distributions in machine learning

Formally,
Let Cq, Cy, - -+, C,, be a set of m classes such that in any random trial, exactly one
of these classes will be selected with the respective probabilities 71, o, - -+ , 7p.
Let Xj, Xy, - -+, Xj, be a set of random variables. X; corresponds to the number of

occurrences of class C; in a set of n trials.
Then the multinomial probability function depicting the probability that class C;
is selected k; times, class Co is selected ko times, and class Cj is selected k,, times is

n! L
P (Xl :kl’ XQ :kQ, e, X =km) = mﬂ'iﬂ 71'22 s 7T,knm (533)

m
Z k,’ =n
i=1

m
:g:7n==1
i=1

We can verify that for m =2, this becomes the binomial distribution (equation 5.28).
A noteworthy point is that if we look at any one of the m variables X7, Xo, -+, X,
individually, its distribution is binomial.

Let’s work out the final probability for the example we started with: the probability
that in a set of 10 random trials, class 1 occurs 1 time, class 2 occurs 2 times, class 3

where

occurs 1 time, and class 4 occurs the remaining 6 times. This is

10!

P(X1=1,X2=2,X3=1,X4=6)=m

0.1)! (0.42)% (0.04)* (0.44)°=0.0129

Imports a PyTorch

from torch.distributions import Multinomial
multinomial distribution

num_trials = 10 <— Sets the distribution params

P = torch.tensor([0.1, 0.42, 0.04, 0.44], dtype=torch.float)

Instantiates a multinomial

multinom dist = Multinomial (num trials, probs=P) *“{ dist object

Instantiates a single-point

X = torch.tensor([1, 2, 1, 6], dtype=torch.float)
test dataset

def raw eval(X, n, P):
f = math.factorial
result = f(n)
for p, x in zip(P, X):
result *= (p ** x) / £(x)
return math.log(result) (AAJ Evaluates the probability

log prob = multinom dist.log prob (X) using PyTorch

Evaluates the probability
raw_eval_log prob = raw_eval (X, num trials, P) using formula

assert torch.isclose(log prob, raw_eval log prob, atol=le-4) Asserts that the
probabilities match

5.9 Some famous probability distributions 187

NOTE Fully functional code for the multinomial distribution, executable via
Jupyter Notebook, can be found at http://mng.bz/11gz.

EXPECTED VALUE OF A MULTINOMIAL DISTRIBUTION

Each of the random variables X1, Xo, ---, X, individually subscribes to a binomial
distribution. Accordingly, following the binomial distribution expected value formula
from equation 5.31,
4 Emultinomial (Xl) =nrw; (534)

VARIANCE OF A MULTINOMIAL DISTRIBUTION
The variation of the random variables X7, Xo, - - -, X, following the binomial distribution
variance formula from equation 5.32, is

VaTmyltinomial (Xl) =nm; (1 - 71'{) (535)
-Xl)
Xo
If each of the X, Xo, - - -, X}, is a scalar, then we can think of a random vector X =
an

The expected value of such a random variable is

nmy
nmy
Euitinomial (X) =
NIy,
and the covariance is
o1l 012 Ol
91 092 O
Coultinomial (X) = (5.36)
Oml Om2 " Omm

where the diagonal terms are like the binomial variance o, =nn; (1 —7;) Vi€ [1,m] and
the off-diagonal terms are oy;=—nm;n;V (i, j) € [1, m] X [1, m]. The cross-covariance
terms in the diagonal are negative because an increase in one element implies a decrease
in the others.

Listing 5.10 Mean and variance of a multinomial distribution

num_samples = 100000 <—— Number of sample points

samples = multinom dist.sample ([num_samples]) Obtains samples from the
100000 x 1 tensor multinom_dist instantiated
mean

sample_mean = samples.mean(axis=0) <—— Sample in listing 5.9

188 CHAPTER 5 Probability distributions in machine learning

dist_mean = multinom dist.mean <—— Mean via PyTorch function

assert torch.allclose(sample mean, dist _mean, atol=0.2)
sample_var = multinom_dist.sample([num samples]) .var (axis=0) <—— Sample variance

dist_var = multinom dist.variance -<—— Variance via PyTorch function

assert torch.allclose(sample_var, dist_var, atol=0.2)

5.9.5 Bernoulli distribution

A Bernoulli distribution is a special case of a binomial distribution where n =1: that is,
a single success-or-failure trial is performed. The probability of success is 7, and the
probability of failure is 1 — .

In other words, let X be a discrete random variable that takes the value 1 (success)
with probability 7 and the value 0 (failure) with probability 1 — . The distribution of X
is the Bernoulli distribution:

p(X=D=n
p(X=0)=1-nx

from torch.distributions import Bernoulli <—— Imports a PyTorch Bernoulli distribution

p = torch.tensor([0.3], dtype=torch.float) <—— Sets the distribution params
)) Instantiates a Bernoulli
bern_dist = Bernoulli(p) distribution object

Instantiates a single-point

X = torch.tensor([1], dtype=torch.float)
test dataset

def raw_eval (X, p):

prob = p if X == 1 else 1-p
return math.log (prob) Evaluates the probability
log prob = bern dist.log prob (X) using PyTorch

raw_eval_log_prob = raw_eval(X, p) <—— Evaluates the probability using the formula

assert torch.isclose(log prob, raw _eval log prob, atol=le-4) Asserts that the
probabilities match

NOTE Fully functional code for the Bernoulli distribution, executable via Jupyter
Notebook, can be found at http://mng.bz/BRwq.

EXPECTED VALUE OF A BERNOULLI DISTRIBUTION
If there are only two classes, success and failure, we cannot speak directly of an expected

value. If we run, say, 100 trials and get 30 successes and 70 failures, the average is 0.3
success, which is not a valid outcome. We cannot have fractional success or failurein this
binary system.

We can, however, talk about the expected value of a Bernoulli distribution if we
introduce an artificial construct. We assign numerical values to these binary entities:

5.9.6

5.9 Some famous probability distributions 189

success =1 and failure=0. Then the expected value of X is
E(X)= Z wp@)=1-7+(1-n)-0=n (5.87)
x€{0,1}

VARIANCE OF A BERNOULLI DISTRIBUTION
Similarly, if we assign numerical values to these binary entities—success =1 and
Jfailure = 0—the variance of the Bernoulli distribution is

var (X) = Z (@-EX)N)?p(@x)=1-7)2°7+0-m)2A-m)=n(1-7) (5.38)

xe{0,1}

Listing 5.12 Mean and variance of a Bernoulli distribution

num_samples = 100000 <—— Number of sample points

) Obtains samples from the bern_dist
samples = bern _dist.sample ([num_samples]) instantiated in listing 5.11

100000 x 1 tensor
Sample mean
sample_mean = samples.mean () <—‘ P

dist_mean = bern_dist.mean <—— Mean via PyTorch function

assert torch.isclose(sample mean, dist mean, atol=0.2)

Sample variance
sample_var = bern dist.sample ([num _samples]) .var() 4—1 P

dist_var = bern_dist.variance <——— Variance via PyTorch function

assert torch.isclose(sample var, dist var, atol=0.2)

Categorical distribution and one-hot vectors
Consider again the example problem introduced in section 5.9.4. We have a database
with four classes of photos:

Photos of Albert Einstein (class 1): 10%

Photos of Marie Curie (class 2): 42%

Photos of Carl Friedrich Gauss (class 3): 4%

Other photos (class 4): 44%

If we randomly select a photo from the database,

The probability of selecting class 1 is 71 =0.1.

The probability of selecting class 2 is 7o = 0.42.
The probability of selecting class 3 is 73 = 0.04.
The probability of selecting class 4 is 74 = 0.44.

As before, 71 + 9 + 3 + m4 = 1 because the classes are mutually exclusive and exhaustive
so exactly one class must occur in each trial.

In multinomial distribution, we performed 7 trials and asked how many times each
specific class would occur. What if we perform only one trial? Then we get categorical
distribution.

Categorical distribution is a special case of multinomial distribution (with the number
of trials n =1). It is also an extension of the Bernoulli distribution where instead of just
two classes, success and failure, we can have an arbitrary number of classes.

190

CHAPTER 5 Probability distributions in machine learning

Formally,
Let Cq, Cy, - -+, C,, be a set of m classes such that in any random trial, exactly one
of these classes will be selected, with the respective probabilities 1, 7o, - - - , m,,. We
sl
sometimes refer to the probabilities of all the classes together as a vector 7 =
Tl
Let X1, X9, - -+, X), be a set of random variables. X; corresponds to the number of

occurrences of class C; in a set of n trials.
Then the categorical probability function depicts the probability of each of the
classes C1, Co, and so on, in a single trial.

ONE-HOT VECTOR
We can use a one-hot vector to compactly express the outcome of a single trial of

categorical distribution. This is a vector with m elements. Exactly a single element is 1;
all other elements are 0. The 1 indicates which of the m possible classes occurred in
that specific trial. For instance, in the example with the database of photos, if a Marie

0
1
ol
0

Curie photo comes up in a given trial, the corresponding one-hot vector is r=

PROBABILITY OF A CATEGORICAL DISTRIBUTION
We can think of a one-hot vector X as a random variable with a categorical distribution.

Note that each individual class follows a Bernoulli distribution. The probability of class
C; occurring in any given trial is

p(C)=m;
We can express the probability distribution of all the classes together compactly

p(X=2)=n]"ng* -y =| | 7 (5.39)
=1

m

where 7 is a one-hot vector. Note that all but one of the powers in equation 5.39 is 0;
hence the corresponding factor evaluates to 1. The remaining power is 1. Hence the
overall probability always evaluates to m;, where i is the index of the class that occurred
in the trial.

EXPECTED VALUE OF A CATEGORICAL DISTRIBUTION
Since we are talking about classes, expected value and variance do not make sense in this

context. We encountered a similar situation with the Bernoulli distribution. We assigned
numerical values to each class and somewhat artificially defined the expected value and

Summary 191

variance. A similar idea can also be applied here: we can talk about the expected value
and variance of the one-hot vector (which consists of numerical values 0 and 1). But it
remains an artificial construct.

Given a random variable X whose instances are one-hot vectors Z following a cate-

gorical distribution with m classes with respective probabilities 71, 79, - - - , 7y,
it
L |2
E(X)=rn=| (5.40)
ﬂ”l

We skip the variance of a categorical distribution.

Summary

In this chapter, we first looked at probability and statistics from a machine learning
point of view. We also introduced the PyTorch distributions package and illustrated
each concept with PyTorch distributions code samples immediately following the
math.

The probability of a specific event type is defined as the fraction of the total
population of all possible events occupied by events of that specific type.

A random variable is a variable that can assume any value from a predefined range
of possible values. Random variables can be discrete or continuous. A probability
is associated with a discrete random variable taking a specific value. A probability
is also associated with a continuous random variable taking a value in an infinites-
imally small range around a specific value, called its probability density at that
value.

The sum rule of probabilities states that the sum of the probabilities of a set of
mutually exclusive events is the probability of one or another of them occurring. If
the set of events is exhaustive (that is, among them, they cover the entire space of
possible events), then their sum is 1 because one or another of them must occur.
For continuous random variables, integrating the probability density function over
the domain of possible values yields 1.

The joint probability of a set of events is the probability of all those events occurr-
ing together. If the events are independent, the joint probability is the product of
their individual probabilities.

Drawing a sample from the probability distribution of a random variable returns
an arbitrary value from the set of possible values. If we draw many samples, the
higher-probability values show up more often than the lower-probability values.
The sampled points occupy a region (called the sample point cloud) in the domain
of possible values. In a sample point cloud, the region where the probabilities are
higher is more densely populated than lower-probability regions.

192

CHAPTER 5 Probability distributions in machine learning

The expected value of a random variable is the average of the values of points
in a very large (approaching infinity) sample cloud. It is equal to the weighted
sum of all possible values of the random variable, where the weight for each
value is its probability of occurrence. For continuous random variables, this boils
down to integration—over the domain of possible values—of the product of the
random variable’s value and the probability density. The physical significance of the
expected value is that it is a single-point representation of the entire distribution.
The variance of a random variable is the square root of the average squared
distances of the sample point values from the mean in a very large (approaching
infinity) sample cloud. It is equal to the weighted sum of the squared distances
of all possible values of the random variable from the mean. The weight for each
value is its probability of occurrence. For continuous random variables, this boils
down to integration—over the domain of possible values—of the product of the
squared distance of the random variable’s value from the mean and the probability
density. Physically, the variance is a measure of the spread of the points in the
distribution around its mean. In the multivariate case, this spread depends on
the direction. Since there are infinite possible directions in a space with two or
more dimensions, we cannot speak of a single variance value. Instead, we compute
a covariance matrix with which to compute the spread along any specified direction.
The eigenvector corresponding to the largest eigenvalue of this covariance matrix
yields the direction of maximum spread. That eigenvalue yields the maximum
spread. The eigenvector corresponding to the next-largest eigenvalue yields the
orthogonal direction with the next-highest spread, and so forth.

Principal component analysis (PCA) is a technique in multivariate statistics to
identify the directions of the maximum spread of data. It uses the eigenvectors
and eigenvalues of the covariance matrix.

The Gaussian distribution is the most important probability distribution. The
Gaussian random variable has one value with the highest probability of occurrence.
The probability decreases smoothly with increasing distance from that highest
probability value. The probability density function is continuous and looks like a
bell-shaped surface. The center of the bell is the highest probability value, which
also happens to be the expected value of the Gaussian random variable. The
covariance matrix determines the shape of the base of the bell surface. It is circular
when the covariance matrix is diagonal, with equal values on the diagonal; it is
elliptical in general, with the axes of the ellipse along the eigenvectors of the
covariance matrix.

The sample point cloud of a Gaussian distribution is elliptical. It corresponds
to the base of the bell-shaped probability density function. The longest spread
corresponds to the ellipse’s major axis, which corresponds to the eigenvector
corresponding to the largest eigenvalue of the covariance matrix. In the GitHub
repository, we have provided an interactive visualizer for observing the shapes of
Gaussian distributions in one and two dimensions as you change the parameter
values. Take a look at the interactive visualization section at http://mng.bz/NYJX.

http://mng.bz/NYJX

Bayesian tools for
machine learning

This chapter covers

Unsupervised machine learning models

Bayes’ theorem, conditional probability, entropy,
cross-entropy, and conditional entropy
Maximum likelihood estimation (MLE) and
maximum a posteriori (MAP) estimation of
model parameters

Evidence maximization

KLD

Gaussian mixture models (GMM) and MLE
estimation of GMM parameters

The Bayesian approach to statistics tries to model the world by modeling the overall
uncertainties and prevailing beliefs and knowledge about the system. This is in con-
trast to the frequentist paradigm, where probability is strictly measured by observing
a phenomenon repeatedly and measuring the fraction of time an event occurs. Ma-
chine learning, in particular unsupervised machine learning, is a lot closer to the
Bayesian paradigm of statistics—the subject of this chapter.

193

194

6.1

6.1.1

CHAPTER 6 Bayesian tools for machine learning

In chapter 1, we primarily discussed supervised machine learning, where the training
data is labeled: each input value is accompanied by a manually created desired output
value. Labeling training inputs is a manual, labor-intensive process and often the worst
pain point in building a machine learning—based system. This has led to considerable
recent interest in unsupervised machine learning, where we build a model from unlabeled
training data. How is this done?

The general approach is best visualized geometrically. Each input data instance is a
point in a high-dimensional space. These points form an overall pattern in the space
of all possible inputs. If the inputs all have a common property, the points are not
distributed randomly over the input space. Rather, they occupy a region in the input
space with a definite shape. If the inputs have multiple classes, each class occupies a
separate cluster in the space. Sometimes we apply a transformation to the input first—
the transform is chosen or learned so that the transformed points exhibit a pattern
more clearly than raw input points. We then identify a probability distribution whose
sample point cloud matches the shape of the (potentially transformed) training data
point cloud. We can generate faux input by sampling from this distribution. We can
also classify an arbitrary input by observing which cluster it falls into.

NOTE The complete PyTorch code for this chapter is available at http://mng.bz
/WdZa in the form of fully functional and executable Jupyter notebooks.

Conditional probability and Bayes’ theorem

As usual, the discussion is accompanied by examples. In this context, we first offer a
refresher on the concepts of joint and marginal probability from section 5.4 (you may
want to revisit the topic of joint probability in sections 5.4, 5.4.1, and 5.4.2).

Consider two random variables: the height and weight of adult Statsville residents.
Weight (denoted /#7) can take three quantized values: E1, Eo, E3. Height () can also
take three quantized values: Iy, Fo, F3. Table 6.1 shows their joint probability.

Joint and marginal probability revisited

One glance at table 6.1 tells us that the probabilities are concentrated along the main
diagonal, which indicates dependent events. This can be validated by inspecting one
joint probability—say, p (£1, F1)—and the corresponding marginal probabilities p (F7)
and p (E7). We can see that p (E1, F7)=0.2#p (I1) Xp (£1) =0.26 X 0.26, establishing
that the random variables weight //” and height H are not independent. For contrast,
look at table 5.6. In that case, for any valid 7, j pair, p (Ei, Gj) =p (G;) Xp (E,) the two
events (weight and distance of a resident’s home from the city center) are independent.
Note the following:

Joint probability—This is the probability of a specific combination of values occur-
ring together. Each cell in table 6.1 depicts one joint probability: for example, the
probability that a resident’s weight is between 60 and 90 kg and that their height is
greater than 183 cm is p (Eg, F3) =0.04.

http://mng.bz/WdZa
http://mng.bz/WdZa

6.1 Conditional probability and Bayes’ theorem

195

Table 6.1 Example population sizes and joint probability distribution for variables W = {E, E9, E3} and
H ={Fy, Fy, F3} (weights and heights of adult Statsville residents), showing marginal probabilities

Less than pop. = 20,000 pop. = 4,000 pop. = 2,000 pop. = 26,000;
160 cm (F7) p (£, F1) p (Eg, Fy) p (Es, Fr) p (F1)=0.2
=0.2 =0.04 =0.02 +0.04+0.02
=0.26
Between pop. = 4,000 pop. = 40,000 pop. = 4,000 pop. = 48,000;
160 cm and P (Eq, Fo) P (Eo, Fo) ? (Es, Fo) P (F9)=0.04
183 cm =0.04 =04 =0.04 +0.4+0.04
(Fo) =0.48
More than pop. = 2,000 pop. = 4,000 pop. = 20,000 pop. = 26,000;
183 cm (F3) p (E1, F3) p (Eg, F3) p (Es, Fs) p (F3)=0.02
=0.02 =0.04 =0.2 +0.04+0.2
=0.26
Marginals p(Ep) p (E9) p(E3) Total pop.
for Es =0.2+0.04+0.02 =0.04+0.4+0.04 =0.02+0.04+0.2 = 100,000;
=0.26 =0.48 =0.26 Total prob =1

= Sum rule—The joint probabilities of all possible variable combinations sum to 1
(bottom right cell in table 6.1):

3 3
2.2, By
i=1 j=1

The sum of probabilities is the probability of one or another of the corresponding
events occurring. Here we are adding all possible event combinations—one or
another of these combinations will certainly occur. Hence the sum is 1, which
matches our intuition.

Marginal probability for a variable—This is obtained by “summing away” the other
variables (right-most column and bottom-most row in table 6.1):

3
P(Ej)=ZP (F:, E))
3
p(F)= Z (F:, Ej)
=1

We have added all possible combinations of other variables, so the sum represents
the probability of this one variable.

196

6.1.2

6.1.3

CHAPTER 6 Bayesian tools for machine learning

Marginal probabilities—These sum to 1:

3 3
Dip(E)=) p(F)=1
i=1

j=1
The sum of the marginal probabilities is the sum of all possible joint probabilities.

Dependent vs. independent variables—If and only if the variables are independent,
the product of the marginal probabilities is the same as the joint probability:

p (Fi, E;) #p (F;) xp (E;) < for dependent variables in table 5.6
7 (Gi, E;) =p (G;) xp (Ej) & for independent variables in table 6.1

You should verify that this condition is not satisfied in table 6.1 for the weight and
height variables. It is satisfied in table 5.6 for the weight and distance-of-home-from-
city-center variables.

Conditional probability

Suppose we know that the height of a subject is between 160 and 183 cm (H =Fs). What
is the probability of the subject’s weight being more than 90 kg (W = E3)? In statistical
parlance, this probability is denoted p (W = E3|H =Fy). It is read “probability of W = E3
given H =Fs,” aka “probability of W = Eg subject to the condition H = Fs.”

This is an example of conditional probability. Note that if we are given that the height is
between 160 and 183 cm (H =F3), our universe is restricted to the second row of table
6.1. In particular, our population size is not 100,000 (that is, the entire population of
Statsville). Rather, it is 48,000: the size of the population satisfying the given condition
H =TF5. Using the frequentist definition,

population satisfying W =Es and H=F; 4K

W :E HZF = -
p(3| 2) population satisfying [= Fo 48K

=0.083

or
p (W =Es, H=F5)
p (H =Fy)

Table 6.2 shows table 6.1 with conditional probabilities added.

p (W =Es|H =Fy) =

Bayes’ theorem
As demonstrated in table 6.2, in general,

p W =E; H=F)
p(H=F)
PO =E, H=F)
p (W =E))

p (W =Ej|H=F)=

p(H=FW =Ej)=

This is the essence of Bayes’ theorem. We can generalize and say the following: given
two random variables X and Y, the conditional probability of X taking the value x given
the condition thatY has value y is given by the ratio of the joint probability of the two

6.1 Conditional probability and Bayes’ theorem

197

Table 6.2 Example population sizes and joint, marginal, and conditional probabilities for variables
W ={E,, Ey, Es} and H = {F}, Fy, F3} (weights and heights of adult Statsville residents). (This is table

6.1 with conditional probabilities added.)

Less than pop. = 20,000 pop. = 4,000 pop. = 2,000 pop. = 26,000;
160cem (Fr) | p(Er,F1)=0.2 p (Eg, Fy)=0.04 p (Es, F1)=0.02 p(F1)=0.2
p(ExF) =P (g 1) = PR (g 1) = D 40.0440.02
=0.77 =0.154 =0.077 =0.26
PO IE) =B (0 1By = PO (1) = 2
=0.77 =0.083 =0.077
Between pop. = 4,000 pop. = 40,000 pop. = 4,000 pop. = 48,000;
160cmand | p(E;, Fo)=0.04 P (Eo, Fo)=0.4 p(Eg, Fo) =0.04 P (F2)=0.04
183 cm (Fo) | p (E1|Fy)= PElsﬂ »(Eo|Fo) = PE?Sﬂ »(Es|Fo) = PE3Sﬂ +0.440.04
=0.083 =0.83 =0.083 =0.48
P (BalEy) =P p () = PR p (1) = 2
=0.154 =0.83 =0.154
More than pop. = 2,000 pop. = 4,000 pop. = 20,000 pop. = 26,000;
183 cm (Fg) p(El,Fg) 0.02 P(EQ,Fg) 0.04 P(Eg,Fg) 0.2 P(F3)=0.02
p(EVF) = Rl | (g i) = AR (gl =)| v0.0440.2
=0.077 =0.154 =0.77 =0.26
(Ey,F: (Eo, F: (B3, F:
p(BalED) =Rl By = AL | () = 2t
=0.077 =0.083 =0.77
Marginals p(Ey) p (E9) p(E3) Total pop.
for Es =0.2+0.04+0.02 =0.04+0.4+0.04 =0.02+0.04+0.2 =100,000;
=0.26 =0.48 =0.26 Total prob =1
and the marginal probability of the condition
p(X=zY=y)
pX=zxlY=y)=——"—"—= (6.1)
P (Y =y)

Sometimes we drop the names of the random variable and just use the values. Using

such notation, Bayes’ theorem can be stated as

p(zly) = 20)

p(x,y)

Note that the denominator is the marginal probability, which can be obtained by
summing over the joint probabilities. For instance, for continuous variables, Bayes’

theorem can be written as

p(zly) =

p(x,y)
[T p(x,y)dx

198

6.2

CHAPTER 6 Bayesian tools for machine learning

Bayes’ theorem can be generalized further to more than two variables and multiple
dimensions:
p (X1 =31[Xo=Fo, Xs=T3,+ , X, =3y)

p(X1=21, Xo=2o, Xs=23--+ , Xy =y)

_ ! _ (6.2)
p(XQZny ’Xil:‘r")

p(Xl:\%l) X2252|XS:‘5‘3 ’Xn:i:”)

=p(X1=:?1,X2=552,X3=53"' » Xy =7, (6.3)

P (X?):ig: e ,Xn =‘zn)

It is common practice to drop the name of the random variable (uppercase), retain
only the value (lowercase), and state these equations informally as

. - Ty, X9, T3, 7,

P(xl|x2’x3)"' ’xn):p(: -;2 ° - n)
P(xQ;”’ ,xn)

P(El,iglfzg ’@l):l)(xl,f%xs-.;,xn)
P(Ig, ’xn)

What happens if the random variables are independent? Well, let’s check out equa-
tion 6.1. If X and Y are independent,

px,y)=p@)p ()

p(x,y)
p)

This makes intuitive sense: if X and Y are independent, knowing ¥ does not make any
difference to p (X =), so the probability of X given Y is the same as the probability
of X.

and hence

p(zly) = =p (2)

Entropy

Suppose a daily meteorological bulletin informs the folks in the United States whether
it rained in the Sahara desert yesterday. Is there much overall information in that
bulletin? Not really—it almost always reports the obvious. The probability of “no rain” is
overwhelmingly high (it is almost certain that there will be no rain), and the uncertainty
associated with the outcome is very low. Even without the bulletin, if we guess the
outcome “no rain,” we will be right almost every time. Similarly, a daily news bulletin
telling us whether it rained yesterday in Cherapunji, India—a place where it pretty much
rains all the time—has little informational content because we can guess the results with
high certainty even without the bulletin. Stated another way, the uncertainty associated
with the probability distributions of “rain vs. no rain in the Sahara” and or “rain vs. no
rain in Cherapunji” is low. This is a direct consequence of the fact that the probability
of one of the events is close to 1 and the probabilities of the other events are near 0:
the probability density function (PDF) has a very tall peak at one location and very low
heights elsewhere.

6.2 Entropy 199

On the other hand, a daily bulletin reporting whether it rained in San Francisco is of
considerable interest because the probability of “rain” and “no rain” are comparable.
Without the bulletin, we cannot guess the result with much certainty.

The concept of entropy attempts to quantify the uncertainty associated with a chancy
event. If the probability for any one event is overwhelmingly high (meaning the proba-
bilities of other events are very low since the sum is 1), the uncertainty is low—we pretty
much know that the high-probability event will occur. On the other hand, if there are
multiple events with comparable high probabilities, uncertainty is high—we cannot
predict which event will occur. Entropy captures this notion of uncertainty in a system.
Let’s look at another example.

Suppose we have tiny images, four pixels wide by four pixels high, and each pixel is
one of four possible colors: G(reen), R(ed), B(lue), or Y(ellow). Two such images are
shown in figure 6.1. We want to encode such images. The simplest thing to do is to use
a two-bit representation for each color:

G (reen) =00
R(ed)=01
B(lue) =10

Y (ellow)=11

© ©
® 1® © ©®
® ® ® ® |© O ©®
®© © © 0 ® ® ® O

Figure 6.1 Two 4 x 4 images with different pixel color distributions. In the left image, the four colors R,
G, B, and Y are equally probable. In the right image, one color (green) is much likelier than the others. The
left image has higher entropy (uncertainty): we cannot predict any color with much certainty. In the right
image, we can predict green with relative certainty.

®

© ® 6
® ® ®

® ® ©®

The entire 16-pixel image on the left can be represented by the string 00 00 00 00 01 01
0101101010101111 11 11. Here, we have iterated over the pixels in raster scan order,
left to right and top to bottom. The total number of bits needed to store the 16-pixel
image is 16 X 2 =32 bits. The right image can be represented as 00 00 00 00 00 00 00
00 00 00 00 00 01 01 10 11. The total number of bits needed is 16 X 2 =32 bits. Both
images need the same amount of storage. But is this optimal?

Consider the right-hand image. The color G appears much more frequently than
the others. We can use this fact to reduce the total number of bits required to store

200

CHAPTER 6 Bayesian tools for machine learning

the image. It is not mandatory to use the same number of bits to represent each color.
How about using shorter representations for the more frequently occurring (higher-
probability) colors and longer representations for the infrequent (lower-probability)
colors? This is the core principle behind the technique of variable bit-rate coding. For
instance, we can use the following representation:

G (reen)=0
R(ed)=10
B(lue)=110

Y (ellow) =111
The right-hand image can thus be represented as0000000000001010110111.

NOTE This is an example of what is known as prefix coding: no two colors share
the same prefix. It enables us to identify the color as soon as we see its code. For
instance, if we see a 0 bit at the beginning, we immediately know the color is green
since no other color code starts with 0. If we see 10, we immediately know the
color is red since no other color code starts with 10, and so on.

With this new color code, we need 12 X 1 =12 bits to store the 12 green pixels, 2x2=4
bits to store the 2 red pixels, 1 X 3 =3 bits to store the single blue pixel, and 1 X 3 =3 bits
to store the single yellow pixel—a total of 22 pixels. Equivalently, we need % =1.375
bits per pixel. This is less than the 32 pixels at 2 bits per pixel we needed with the simple
fixed bit-rate coding.

NOTE You have just learned about Huffman encoding, an important technique
in image compression.

Does the new representation result in smaller storage for the left-hand image? There,
we need 4 x 1 =4 bits to store the four green pixels, 4 X 2 =8 pixels to store the four red
pixels, 4 x 3 =12 bits to store the four blue pixels, and 4 x 3 =12 bits to store the single
yellow pixel: a total of 36 pixels at % =2.25 bits per pixel. Here, variable bit-rate coding
does worse than fixed bitrate coding.

So, the probability distribution of the various pixel colors in the image affects how
much compression can be achieved. If the distribution of pixel colors is such that a few
colors are much more probable than others, we can assign shorter codes to them to
reduce storage for the whole image. Viewed another way, if low uncertainty is associated
with the system—certain colors are more or less certain to occur—we can achieve high
compression. We assign shorter codes to nearly certain colors, resulting in compression.
On the other hand, if high uncertainty is associated with the system—all colors are
more or less equally probable, and no color occurs with high certainty—variable bit-rate
coding will not be very effective. How do we quantify this notion? In other words, can we
examine the pixel color distribution in an image and estimate whether variable bit-rate
coding will be effective? The answer again is entropy. Formally,

Entropy measures the overall uncertainty associated with a probability distribution.

6.2.1

6.2 Entropy 201

Entropy is a measure that is Zigh if everything is more or less equally probable and low if
a few items have a much higher probability than the others. It measures the uncertainty
in the system. If everything is equally probable, we cannot predict any one item with
any extra certainty. Such a system has high entropy. On the other hand, if some items
are much more probable than others, we can predict them with relative certainty. Such
a system has low entropy.

In the discrete univariate case, for a random variable X that can take any one of
the discrete values z1, 22, x3, - - -, ¥, with probabilities p (x1), p (x2), p (x3), -, p (20),
entropy is defined as

H(X)==) p (@) logp (x:) (6.4)
i=1

The logarithm is taken with respect to the natural base e.

Let’s apply equation 6.4 to the images in figure 6.1 to see if the results agree with
our intuition. The computations are shown in table 6.3. The notion of entropy applies
to continuous and multidimensional random variables equally well.

Table 6.3 Entropy computation for the pair of images in figure 6.1. The right-hand image
has lower entropy and can be compressed more.

Left image Right image
a1=G, p(21)=15=0.25 a1=G,p(x1)=1=0.75
29=R, p (22) = 1 =0.25 29=R,p(22) = & =0.125
a3=B, p (x3) = 1% =0.25 23=B, p (x3) = 15 =0.0625
24=Y, p (24) = 1£=0.25 24=Y, p (x4) = 15 =0.0625

H=— (0.25log (0.25) +0.25log (0.25) H=— (0.75log (0.75) +0.125 log (0.125)
+0.2510g (0.25) +0.25log (0.25)) +0.0625 log (0.0625) +0.0625 log (0.0625))
=1.886294 =0.822265

For a univariate continuous random variable X that takes values x € {—c0, co} with
probabilities p (x),

H (X) = / p (@) logp (@) da (6.5)

For a continuous multidimensional random variable X that takes values Z in the domain
D, (Z € D) with probabilities p (%),

H (X) = / » (7)logp (7) dF (6.6)
reD

Geometrical intuition for entropy

Geometrically speaking, entropy is a function of how lopsided the PDF is (see figure
6.2). If all inputs are more or less equally probable, the density function is more or less
flat and uniform in height everywhere (see figure 6.2a). The corresponding sample

202

CHAPTER 6 Bayesian tools for machine learning

(a) Flatter, wider PDFs correspond to
higher entropy. Entropy = 12.04.

100

75 . . % .

50 . °

25

-100

-100 -75 -50 -25 0 25 50 75
X

(b) Diffused sample point clouds correspond to
higher entropy.

100

100

75

50

25

0.00125
0.00100 -25
0.00075
0.00050
0.00025
0.00000

(c) Taller, narrower peaks in probability density
functions correspond to lower entropy.
Entropy =7.44.

-100

100 -75 -50 -25 0 25 50 75
X

(d) Concentrated sample point clouds correspond
to lower entropy.

Figure 6.2 Entropies of peaked and flat distributions

100

point cloud has a diffused mass: there are no regions with a high concentration of
points. Such a system has high uncertainty or high entropy (see figure 6.2b). On the
other hand, if a few of all the possible inputs have disproportionately high probabilities,
the PDF has tall peaks in some regions and low heights elsewhere (see figure 6.2c). The
corresponding sample point cloud has regions of high concentration matching the
peaks in the density function and low concentration elsewhere (see figure 6.2d). Such a
system has low uncertainty and low entropy.

6.2 Entropy 203

NOTE Since the sum of all the probabilities is 1, if a few are high, the others have
to be low. We cannot have all high or all low probabilities.

6.2.2 Entropy of Gaussians
The wider a Gaussian is, the less peaked it is, and the closer it is to being a uniform
distribution. A univariate Gaussian’s variance, o, determines its fatness (see figure 5.10b).
Consequently, we expect a Gaussian’s entropy to be an increasing function of . Indeed,
that is the case. In this section, we derive the entropy of a Gaussian in the univariate
case and simply state the result for the multivariate case.

For a random variable x whose PDF is given by equation 5.22 (repeated here for
convenience),

—a-p)?
e 202

p(x)=

1
Vero
From that, we get 0
(x—p)

202

logp (x) = —élog (27) —log o —
Using equation 6.6, the entropy is

(o]

2
H((X)=- / p(x)(—%log(27r)—loga'—(x_/:[))dx

202

Tr=—00

:%log (27) / p(x)dx+logo / p(x)dx+% / p(x) (x—p)?dzx

IT=—00 T=—00 Ir=—00

Remembering the probability sum rule from equation 5.6, f P (x)dx=1, we get

.,C_—OO

I]-I](X)——log (27r)+log0'+ / P () (x— p)?dx

Ir=—00

Now, by definition (see section 5.7.2),

/ p (x) (x—,u)2dx:[E((x_u)2):0.2

xr=—00

Hence,
2

1 1 9
H(X)= —log 2n)+log o+ — 5 log (27) +log o + 3= Elog (27(60'2) (6.7)

T2

Entropy for multivariate Gaussians is as follows:
1 1 1
H(X)= §log (27) +log (det (X)) + 5= élog (27 edet (X)) (6.8)
Listing 6.1 shows the Python PyTorch code to compute the entropy of a Gaussian.

NOTE Fully functional code to compute the entropy of a Gaussian distribution,
executable via Jupyter Notebook, can be found at http://mng.bz/zx7B.

204

6.3

CHAPTER 6 Bayesian tools for machine learning

def entropy gaussian formula(sigma) :
return 0.5 * torch.log(2 * math.pi * math.e * sigma * sigma)
Equation 6.7

p = Normal (0, 10) <—— Instantiates a Gaussian distribution

) Computes the entropy using
H _formula = entropy gaussian_ formula (p.stddev) the direct formula
H = p.entropy() <—— Computes the entropy using the PyTorch interface

Asserts that the entropies computed

assert torch.isclose(H_formula, H)
two different ways match

Cross-entropy

Consider a supervised classification problem where we have to analyze an image and
identify which of the following objects is present: cat, dog, airplane, or automobile. We
assume that one of these will always be present in our universe of images. Given an
input image, our machine emits four probabilities: p (cat), p (dog), p (airplane), and
? (automobile). During training, for each training data instance, we have a ground truth
(GT): a known class to which that training data instance belongs. We have to estimate
how different the network output is from the GT—this is the loss for that data instance.
We adjust the machine parameters to minimize the loss and continue doing so until the
loss stops decreasing.

How do we quantitatively estimate the loss—the difference between the known GT
and the probabilities of various classes emitted by the network? One principled approach
is to use the cross-entropy loss. Here is how it works.

Consider a random variable X that can take four possible values: X =1 signifying cat,
X =2 signifying dog, X = 3 signifying airplane, and X =4 signifying automobile. The ran-
dom variable has the PDF p (X =1) =p (cat), p (X =2) =p (dog), p (X =3) =p (airplane),
p (X =4) =p (automobile). The PDF for a GT, which selects one from the set of four
possible classes, is a one-hot vector (one of the elements is 1, and the others are
0). Such random variables and corresponding PDFs can be associated with every GT
and machine output. Here are some examples, which are also shown graphically in
figure 6.3. A PDF for GT cat (one-hot vector) is shown figure 6.3a:

plcat) p(dog) p(airplane) (automobile)
—_ = —_ —_—

Pgt_cal = 1 ’ O > 0) O

A PDF for a good prediction is shown figure 6.3b:

p(cat) p(dog) p(airplane) (automobile)
—_— — —

Peood pred=| 0.8, 0.15, 0.04 , 0.01

0.0

6.3 Cross-entropy 205

1.0{ o
0.8
g 0.6
[e N
0.4
0.2
0.0 - - .
Cat Dog Airplane Automobile
Class
(a) Ground truth probability
1.0
. 0.8
< 0.6
=
0.4
L] L] L] L]
0.2
°
? . 0.0 . .
Cat Dog Airplane Automobile Cat Dog Airplane Automobile
Class Class

(b) Good prediction: probabilities similar to ground truth. (c) Bad prediction: probabilities dissimilar to ground truth.
Jross-entropy loss = 0.22. Jross-entropy loss = 1.38.

Figure 6.3 Cross-entropy loss

A PDF for a bad prediction is shown figure 6.3c:

p(cat) p(dog) p(airplane) (automobile)
— — —

Pbad_pred = 0.25, 0.25, 0.25 , 0.25

Let X, denote such a random variable for a specific GT and pg; denote the correspond-
ing PDF. Similarly, let X,,,s and p,,.« denote the random variable and PDF for the
machine prediction. Consider the following expression:

4
He (Xet, Xprea) ==) Pt (i) 108 (pprea (1)) (6.9)
i=1

This is the expression for cross-entropy. It is a quantitative measure for how dissimilar the
two PDFs pg, and p,,q are: that is, how much error will be caused by approximating the
PDF pg; with py,.4. Equivalently, cross-entropy measures how well the machine is doing
that output the prediction p,,.,;s when the correct PDF is pg,.

206

CHAPTER 6 Bayesian tools for machine learning

To gain insight into how H, (Xg,, Xpml) measures dissimilarity between PDFs, exam-
ine the expression carefully. Remember that Z?:l Par (i) = 2?21 Ppred (1) =1 (using the
probability sum rule from equation 5.3):
case1: The i values where pg, (¢) is high (close to 1).

case1a: If p,0q (i) is also close to 1, then log (ppeq (¢)) will be close to zero (since
log 1=0). Hence the term pg; () 10g (ppra (1)) will be close to zero since
the product of anything with a near-zero number is near zero. These
terms will contribute little to He (X1, Xpreq)-

case1b: On the other hand, at the i values where p, (¢) is high, if p,..q (¢) is low
(close to zero), then —10g (ppreq (i)) will be very high (since log 0 — —co).

case2: The i values where g, (¢) is low (close to 0). These will have low values and will
contribute little to H, (Xg;, X,4) since the product of anything with a near zero
number is near zero.

Thus, overall, large contributions can happen only in case 1b, where pg; (i) is high and
Ppred (i) is low—that is, pg, and py,.q are very dissimilar. What if pg, () is low and py,q (7)
is high? They are also dissimilar, so those terms will not contribute much! True, but
if such terms exist, there must be other terms where pg; (7) is high and p,,.q (¢) is low.
This is because the sums of all pg; (i) and p,.q (i) must be both 1. Either way, if there is
dissimilarity, the cross-entropy is high.

For instance, consider the case where Xg = Xg_co; and Xp,00 = Xgood_pred OF Xpred =
Xpad_pred- We KNow pg; ¢4 is a one-hot selector vector, meaning it has 1 as one element
and 0s elsewhere. Only a single term survives, corresponding to ¢ =0, and

- Z?:l Pgt_cat (l) IOg (Pgood?pred (l)) == IOg (08) =0.22
H. (Xgl_caty Xpred) = 4
- Zizl Pgt_cat (Z) IOg (led_pred (l)) =- IOg (025) =1.38

We see that cross-entropy is higher where similarity is lower (the prediction is bad).
Finally, we are ready to formally define the cross-entropy of two arbitrary random
variables. Let X1, X be a pair of random variables that take values x from the same
input domain D (thatis, x € D), with probabilities p; (x), p2 (x), respectively:
~ Srepp1 (@) log (pg (2)) discrete
He (X1, Xo)=9- fxeD 21 (2) log (p2 (x)) dx continuous univariate (6.10)

- /;E pP1 (%) log (p2 (%)) dZ continuous multivariate

Note that cross-entropy in equation 6.10 reduces to entropy (equations 6.5, 6.6) if Y = X.
Listing 6.2 shows the Python PyTorch code to compute the entropy of a Gaussian.

NOTE Fully functional code to compute cross-entropy, executable via Jupyter
Notebook, can be found at http://mng.bz/0mjN.

6.4

6.4 KL divergence 207

def cross_entropy (X gt, X pred):

Hc =20

for x gt, x pred in zip(X gt, X pred): Direct computation
of cross-entropy

Hc += -1 * (x gt * torch.log (x_pred)) from equation 6.9

return H_c

X gt = torch.Tensor([1., 0., 0., 0.])

Probability density function for
the ground truth (one-hot vector)

Probability density function
X good pred = torch.Tensor ([0.8, 0.15, 0.04, 0.01]) for a good prediction

Probability density function
X_bad _pred = torch.Tensor ([0.25, 0.25, 0.25, 0.25]) for a bad prediction

Cross-entropy between X,
H ¢ _good = cross_entropy (X gt, X good pred) and X g,04_pred (@ low value)

H ¢ bad = cross_entropy (X gt, X bad pred) Cross-entropy between Xg[
and X;,4_preq (a high value)

KL divergence

In section 6.3, we saw that cross-entropy, H, (X, X9), measures the dissimilarity between
the distributions of two random variables X; and Xo with probabilities py (x) and po (z).
But cross-entropy has a curious property for a dissimilarity measure. If X7 = Xo, the cross-
entropy H. (X1, Xo) reduces to the entropy H (X1). This is somewhat counterintuitive:
we expect the dissimilarity between two copies of the same thing to be zero.

We should look at cross-entropy as a dissimilarity with an offset. Let’s denote the
pure dissimilarity measure as D (X1, Xg). Then

of fset pure dissimilarity

H. (X1, Xo) =H (X1)+ D (X1, X2)
This means the pure dissimilarity measure

D (X1, Xo) =H. (X1, Xo) —H (X1)=- Z p1 () log (p2 (x)) + Z p1 () log (p1 ()

zeD xeD
_ L _ p1 ()
= 3@ g (@)= (e)= 3) (A

This pure dissimilarity measure, D (Xi, Xs), is called Kullback—Leibler divergence (KL
divergence or KLD). As expected, it is 0 when the two random variables are identical.
Formally, KLD is as follows:

D (X1, X0 = Y 1 (o) 1o [25 (6.11)

xeD b2 (I)

208

6.4.1

CHAPTER 6 Bayesian tools for machine learning

For continuous univariate randoms,

D (X, Xo) = / p1 () log (ﬁl Ex;) x (6.12)
xeD
For continuous multivariate randoms,
D (X, Xz) = / p1 () log (P 1 (f))di (6.13)
P2 (%)

ZeD
Let’s examine some properties of KLD:

The KLD between identical random variables is zero. If X1 = Xy, p1 (x) =p9 (x) Vx €
D. Then the log term vanishes at every x, and KLD is zero.

The KLD between non-identical probability distributions is always positive. We can
see this by examining equation 6.11. At all values of x where p; (z) > ps (), the
log term is positive (since the logarithm of a number greater than 1 is positive).
On the other hand, at all values of x where py (x) < p9 (2), the log term is negative
(since the logarithm of a number less than 1 is negative). But the positive terms
get higher weights because p; (x) are higher at these points. In this context, it is
worth noting that given any pair of PDFs, one cannot be uniformly higher than the
other at all points. This is because both of them must sum to 1. If one PDF is higher
somewhere, it must be lower somewhere else to compensate.

Given a GT PDF pg, for a classification problem and a machine prediction py,.q,
minimizing the cross-entropy H (gt, pred) is logically equivalent to minimizing the
KLD D (gt, pred). This is because the entropy H (gt) is a constant, independent of
the machine parameters.

The KLD is not symmetric: D (X, Xo) #D (Xo, X1).

KLD between Gaussians

Since the Gaussian probability distribution is so important, in this subsection we look
at the KLD between two Gaussian random variables X and Xs having PDFs p; (x) =
N (x; u1, 01) and po (x) =N (z; ue, 02). We derive the expression for the univariate
case and simply state the expression for the multivariate case:

N(x; p1,01))
/_/— 7(‘17141)
<r—;;1>2 o 20
D (X1, Xo) = / T 21 log ’”’1—()2 dx
710'1 ~(e-ng

1 e
Varor

RY
/N(I o [1og 224 G2 @=i)))
1 20' 207

6.4 KL divergence 209

Opening the parentheses, we get

=1, by equation 5.6

o r 1 r
log 2 [N @ oo [e N G o) da
71 . 20'27

20'12, by equation 5.13

1 (o)
——2/ (= m)* N (; p1, o) d
2077 .

o 1 r 1
=10g—2+—2/ (x = p1+p1 — p2)* N (x; p1, o) de —
o1 20y . 2

Expanding the square term, we get

D (X1, X) =log 22
ol

1 1
+—L/((x—m)2+(ﬂ1—u2)2+2(x—#1)(ﬂ1—#2))N(I; u1, o) de — =
20’22_ 2

Since .
/ (x—) N (x; gy, o) de=py — 1 =0

the final equation for the KLD between two univariate Gaussian random variables Xj,
Xo with PDFs N (x; u1, o1) and N (x; pe, 09) becomes

2 2
o2+ (uy - 1
D (X, Xo) = log Z—T+ *12“2) -3 (6.14)
2

The KLD between two d-dimensional Gaussian random variables X, Xo with PDFs
N (%5 p1, Z1) and N (T; po, To) is

1 _ W IR TP det X
D(Xl,X2)=§(17(22121)+(ﬂ2_#1)T221(#2_p1)—d+log(detzf)) (6.15)

where the operator tr denotes the #race of a matrix (sum of diagonal elements) and the
operator det denotes the determinant.
Listing 6.3 shows the Python PyTorch code to compute the KLD.

210

6.5

CHAPTER 6 Bayesian tools for machine learning

NOTE Fully functional code to compute the KLD, executable via Jupyter Notebook,
can be found at http://mng.bz/KMyj.

from torch.distributions import kl divergence

p = Normal (0, 5) Instantiates three Gaussian distributions
g = Normal (0, 10) with the same means but different
r = Normal (0, 20) standard deviations
kld = kl divergence (p, p)
lcld_p_p = kl_divergence (p p) Computes the KLD
P_q = x i g b d between various
kld g p = kl divergence(q, p) pairs of
kld_p r = kl_divergence(p, r) distributions
assert kld p p == 0 <—— The KLD between a distribution and itself is 0.

assert kld p g != kld g p <— The KLD is not symmetric.

assert kld p g < kld p r <— KLD(p, q) < KLD(p, r). See figure 6.4a.

In figure 6.4a, we compare three Gaussian distributions p, ¢, and r with the same us but
different os. KLD(p, ¢) < KLD(p, r) because o, is closer to oy, than o.

In figure 6.4b, we compare a uniform distribution p with two Gaussian distributions
¢q and r that have different us but the same os. KLD(p, q) < KLD(p, r) because u, is
closer to u, than p,.

Conditional entropy

In section 6.2, we learned that entropy measures the uncertainty in a system. Earlier,
in section 6.1.2, we studied conditional probability, which measures the probability of
occurrence of one set of random variables under the condition that another set has
known fixed values. In this section, we combine the two concepts into a new concept
called conditional entropy.

Consider the following question from table 6.2. What is the entropy of the weight
variable #/ under the condition that the value of the height variable H is I;? As observed
in section 6.1.1, the condition effectively restricts our universe to a single row (in this
case, the top row) of the table. We can compute the entropy of the elements of that row
mathematically, using equation 6.5, as

conditional entropy of W given H=IF}
——

WOV |H =) =—ZS‘/> (E5|F1) log (v (1))

=—(0.77xlog (0.77) +0.154 x log (0.154) +0.077 x log (0.077)) = 0.6868

6.5 Conditional entropy

KLD(p, q) = 0.32. KLD(p, r) = 0.92

0.08 —— p distribution

=== q distribution
r distribution

0.07 A

0.06 -

0.05 4

0.04 A

P(X)

0.03 4

0.02 4

0.01 4

0.00 4

100 -75 -50 -25 0 25 50 75 100
(@) p=N(u=0,0=5), ¢=N(u=0,0=10),r=N(u=0,0=20)

KLD(p, q) = 0.39. KLD(p, r) = 3.52

0.025 A —— p distribution

—=—= ¢ distribution

r distribution
0.020 4 Aty
/ \
Y \
Vi \
1 \
0.015 4 I \
1% \!
[1]
0.010 A i \
1 \
1 \
7 \
0.005 1 / \
/ \
/7 \
/,, \\\

0.000 - = =

—1‘00 —I75 —I50 —I25 6 2‘5 5‘0 7‘5 160
X
(b) p=U(a=-20,b=20),g=N(u=0,0=20), r=N(u=-50,0=20)

Figure 6.4 KLD between example distributions

Similarly,

HW|H=F)=- ZP (Ej|F2) log (p (E;|F2))

=—(0.083 x log (0.083) +0.83 x log (0.83) +0.083 x log (0.083))

=0.5678

W (W |H = F3) = - ip (E;|Fs) log (p (Ej[F5))

Jj=1

=—(0.077 x log (0.077) +0.154 x log (0.154) +0.77 x log (0.77))

=0.6868

211

212 CHAPTER 6 Bayesian tools for machine learning

H (W|H =F,) is the entropy of W given H =F; for i=1 or 2 or 3. What is the overall
conditional entropy of " given H: that is, H (#'|H)? To compute this, we take the
expected value (that is, the probability-weighted average; see equation 5.8) of the
conditional entropy H (W |H =F;) over all possible values of i:

conditional entropy of W given H
—_—
W (W |H) —Zp(F) Zp (Ej|F3) log (p (E;|F))
=(0.6868*0.26+0.5678*O.48+O.6868*0.26)=0.6297

This idea can be generalized. Formally, given two random variables X and Y that can
take values x € D,, y € D), respectively,

E,H(X[Y=y)
HXY=y)
HXI) =) »() (— D P (ely)log (p (x|y>)) & discrete (6.16)
yeD, xeD,

H(X|Y)= / p(y)| - / p (x|y) log (p (x]y)) dx | dy & continuous (6.17)
yeD, xeD,

6.5.1 Chain rule of conditional entropy
This rule states:
HX[Y)=H(X,Y)-H) (6.18)

This can be derived from equation 6.17.

H (X]Y) = / |- / » (aly) log (¢ (2ly)) de | dy

yeD, z€D,

Applying Bayes’ theorem (equation 6.1),

p(ay) l"g(p(v>))
e N ——— ——
H(XIY)=—/ p) p (xly)log (p (xly)) dxdy
yeD, xeD,
H(X,Y) marginal probability p (y)
——
- [[reniga dedys [g0 [p@nds dy
yeD, xeD, yeD, xeD,

=H(X,Y)-H () (6.19)

6.6

6.6.1

6.6 Model parameter estimation 213

Model parameter estimation

Suppose we have a set of sampled input data points X = {#(1), 7® ... 7"} from a
distribution. We refer to the set collectively as {raining data. Note that we are not assum-
ing it is labeled training data—we do not know the outputs corresponding to the inputs
@ . Also, suppose that based on our knowledge of the problem, we have decided which
model family to use. Of course, simply knowing the family is not enough; we need to
know (or estimate) the model parameters before we can use the model. For instance,
our model family might be Gaussian, N (x; i, Z). Until we know the actual value of the
parameters f and X, we do not fully know the model and cannot use it.

How do we estimate the model parameters from the unlabeled training data? This is
what we cover in this section. At the moment, we are discussing it without referring to
any specific model architecture, so let’s denote model parameters with a generic symbol
0. For instance, when dealing with Gaussian models, 6§ = {ﬁ, E}.

Likelihood, evidence, and posterior and prior probabilities

Before tackling the problem of parameter estimation, it is important to have a clear
understanding of the terms lkelihood, evidence, posterior probability, and prior probability in
the current context. Equation 6.20 illustrates them. Using Bayes’ theorem,

likelihood prior probability

posterior probability e — ——
e
p(X,0) p(X|6) p(6)
01X = = 6.20
PO =5 %) ©20
——

evidence

Let’s first examine the likelihood term. Using the fact that data instances are indepen-
dent of each other,

NXW=M?W?%~nﬂﬂﬂzﬁf@WQ
i=1

Now, p(2@16) is essentially the probability density of the distribution family we have
chosen. For instance, if the model in question in Gaussian, then given 6 = { i, Z}, this
T #fe) o (7)= Lt)
(2n detX)?
which is basically an expression for the Gaussian PDF: a restatement of equation 5.23
(butin equation 5.23, we dropped the “given #,” part in the notation and expressed
P (56|6) simply as p (¥)). Thus, we can always express the likelihood from the PDF of the
chosen model family using the independence of individual training data instances.
Now let’s examine the prior probability, p (#). It typically comes from some physical
constraint—without referring to the input. A very popular approach is to say that, all
other things being equal, we prefer parameters with smaller magnitudes. By this token,
the larger the total magnitude ||#]|?, the lower the prior probability. For instance, we
may use

»(0) eI’ (6.21)

214

6.6.2

CHAPTER 6 Bayesian tools for machine learning

An indirect justification for favoring parameter vectors with the smallest length (mag-
nitude) can be found in the principle of Occam’s razor. It states, Entia non sunt mul-
tiplicanda praeter necessitatem, which roughly translates to “One should not multiply
unnecessarily.” This is often interpreted in machine learning and other disciplines as
“favor the briefest representation.”

As shown previously, we can always express the likelihood and prior terms. Using
them, we can formulate different paradigms, each with a different quantity, to optimize
in order to estimate the unknown probability distribution parameters from training
data. These techniques can be broadly classified into the following categories:

Maximum likelihood parameter estimation (MLE)
Maximum a posteriori (MAP) parameter estimation

We provide an overview of them next. You will notice that, in all the methods, we typically
preselect a distribution family as a model and then estimate the parameter values by
maximizing one probability or another.

Later in the chapter, we look at MLE in the special case of the Gaussian family of
distributions. Further down the line, we look at MLE with respect to Gaussian mixture
models. Another technique outlined later is evidence maximization: we will visit it in
the context of variational autoencoders.

The log-likelihood trick

If we choose a distribution family whose PDF is exponential (the most obvious example
is Gaussian), instead of maximizing the likelihood, we usually maximize its logarithm,
aka the log-likelihood. We can do this because whatever maximizes a quantity also
maximizes its logarithm and vice versa. But the logarithm simplifies expressions in
the case of exponential probability functions. This becomes obvious if we note that

log (¢")=x

log (1_[P) = Z 2@

Maximum likelihood parameter estimation (MLE)
In MLE of parameters, we ask, “What parameter values will maximize the joint likeli-
hood of the training data instances?” In this context, remember that likelihood is
the probability of a data instance occurring given specific parameter values (equation
6.20). Expressed mathematically,

MLE estimates what value of § maximizes p (X|6). The geometric mental picture is

as follows: we want to estimate the unknown parameters for our model probability

distribution such that if we draw many samples from that distribution, the sample

point cloud will largely overlap the training data.

Often we employ the log-likelihood trick and maximize the log-likelihood instead of
the actual likelihood.

For some models, such as Gaussians, this maximization problem can be solved
analytically, and a closed-form solution can be obtained (as shown in section 6.8).

6.6.3

6.7

6.7 Latent variables and evidence maximization 215

For others, such as Gaussian mixture models (GMMs), the maximization problem
yields no closed-form solution, and we go for an iterative solution (as shown in sec-
tion 6.9.4).

Maximum a posteriori (MAP) parameter estimation and regularization

Instead of asking what parameter value maximizes the probability of occurrence of the
training data instances, we can ask, “What are the most probable parameter values,
given the training data?” Expressed mathematically, in MAP, we directly estimate the
that maximizes p (6|X). Using equation 6.20,

P (X16) p (6)
P (X)

Since the denominator is independent of 8, maximizing the numerator with respect to
0 maximizes the fraction. Thus

p(61X) = (6.22)

In MAP parameter estimation, we look for parameters 6 that maximize p (X|6) p (6).

The first factor, p (X|0), is what we optimized in MLE and comes from the

model definition (such as equation 5.23 for multivariate Gaussian models).

The second factor, p (6), is the prior term, which usually incentivizes the opti-

mization system to choose a solution with predefined properties like smaller

parameter magnitudes (equation 6.21).
Viewed this way, MAP estimation is equivalent to MLE parameter estimation with reg-
ularization. Regularization is a technique often used in optimization. In regularized
optimization, we add a term to the expression being maximized or minimized. This term
effectively incentivizes the system to choose the solution with the smallest magnitudes
of the unknown from the set of possible solutions. It is easy to see that MAP estimation
essentially imposes the prior probability term on top of MLE. This extra term acts as a
regularizer, incentivizing the system to choose the lowest magnitude parameters while
still trying to maximize the likelihood of the training data.

Equation 6.22 can be interpreted another way. When we have no training data,
all we can do is estimate the parameters from our prior beliefs about the system: the
prior term p (6). When the training data set X arrives, it influences the system through
the likelihood term p (X6). As more and more training data arrives, the prior term
(whose magnitude does not change with training data) dominates less and less, and the
posterior probability p (]X) is dominated more by the likelihood.

Latent variables and evidence maximization

Suppose we have the height and weight data for a population (say, for the adult residents
of our favorite town, Statsville). A single data instance looks like this:

- _|height

xr=
weight

Although the data is not explicitly labeled or classified, we know the data points can be

clustered into two distinct classes, male and female. It is reasonable to expect that the

216

6.8

CHAPTER 6 Bayesian tools for machine learning

distribution of each class is much simpler than the overall distribution. For instance,
here, the distributions for males and females may be Gaussians individually (presumably,
the means for females will occur at smaller height and weight values). The combined
distribution does not fit any of the distributions we have discussed so far (later, we see it
is a Gaussian mixture).

We look at such situations in more detail in connection to Gaussian mixture modeling
and variational autoencoders. Here we only note that in these cases, it is often beneficial
to introduce a variable for the class, say Z. In this example, Z is discrete: it can take one of
two values, male or female. Then we can model the overall distribution as a combination
of simple distributions, each corresponding to a specific value of Z.

Such variables Z that are not part of the observed data X but are introduced to
facilitate modeling are called latent or hidden variables/parameters. Latent variables are
connected to observed variables through the usual Bayesian expression:

P&, 2)=p (7F) p ()
Lo PER) P (F)
P)= ? ()

How do we estimate the distribution of Z? One way is to ask, “What distribution of the
hidden variables would maximize the probability of exactly these training data points
being returned if we drew random samples from the distribution?” The philosophy
behind this is as follows: we assume that the training data points are fairly typical and
have a high probability of occurrence in the unknown data distribution. Hence, we
try to find a distribution under which the training data points will have the highest
probabilities.

Geometrically speaking, each data point (vector) can be viewed as a point in some
d-dimensional space, where d is the number of elements in the vector Z;. The training
data points typically occupy a region within that space. We are looking for a distribution
whose mass is largely aligned with the training data region. In other words, the probability
associated with the training data points is as high as possible—the sample distribution
cloud largely overlaps the training data cloud.

Expressed mathematically, we want to identify p (Z]7) and p (%) that maximize the
quantity

p(X):/p(X,z)dz:/ﬁp(f(“,i’)dfé:/ﬁp(f(i)
i=1 i=1

As usual, we get p (55(” |§) from the PDF of our chosen model family and p (Z) through

z) p(3)dz (6.23)

some physical constraint.

Maximum likelihood parameter estimation for Gaussians

We look at this with a one-dimensional example, but the results derived apply to higher
dimensions. Suppose we are trying to predict whether an adult Statsville resident is

6.8 Maximum likelihood parameter estimation for Gaussians 217

female, given that the resident’s height lies in a specified range [«, b]. For this purpose,
we have collected a set of height samples of adult female Statsville residents. These height
samples constitute our training data. Let’s denote them as 2 2@ oo 2™ Based on
physical considerations, we expect the distribution of heights of adult Statsville females
to be a Gaussian distribution with unknown mean and variance. Our goal is to determine
them from the training data via MLE, which effectively estimates a distribution whose
sample cloud maximally matches the distribution of the training data points.

Let’s denote the (as yet unknown) mean and variance of the distribution as u and o.
Then, from equation 5.22, we get

P (x(i))/l, O') _ 1 —(J,-(i)w)Q

202

2no

1 0
e T

=

P(x(l)7x(2),:x(n) /J’O-) —n
i=1 (2710')

Employing the log-likelihood trick,

log HP(JC(”JC(?)’“' 2™, 0')=log et
i=1 (V?JTO')
. 2
1 (x(l) - ,U)
=-nlog (\/Q_H) —nlogec — —————
202

To maximize with respect to u, we solve

0 d]
—log p(x(l),x(z), ,x(")|,u, 0')=0
ou 1;[
or '
22?:1 (x(l) - ,U)

202 =0

or
n

5 (o040

i=1

Finally, we get a closed-form expression for the unknown p in terms of the training
data: 13
- (@
== >z
= Z;

Similarly, to maximize with respect to o, we solve

or
2% (x(i) - ,u)2
R =0

o 203

218

6.8.1

CHAPTER 6 Bayesian tools for machine learning

or
n

. 2
no? =Z (x(z) - /J)
i=1

Finally, we get a closed-form expression for the unknown o in terms of the training

data:
1 v 2

PN

i=1

Thus we see that for a Gaussian, the maximum-likelihood solutions coincide with the
sample mean and variance of the training data. Once we have the mean and standard
deviation, we can calculate the probability that a female resident’s height belongs to a
specified range [a, b] by using the following equation:

b
prob(a <X <=b) =/ p(X)dX (6.24)
a
In the multidimensional case:
Given a training dataset, {E(l), 7@ . E(")}, the best fit Gaussian has the mean
1 n .
i=- Z 7)) = mean of the training data samples. (6.25)
n
i=1

and the covariance matrix

1< . . T
T=- Z (f(l) - ﬁ) (:_c'(l) - ﬁ) = covariance of the training data samples. (6.26)
n 4

We began this section by stating the problem of estimating the probability of an adult
Statsville resident being female, given that their height lies in a specified range [a, b],
when we are provided a training dataset of n height values of adult Statsville female
residents. Let’s now revisit that problem. Using (scalar versions of) equations 6.25 and
6.26, we can estimate y and o and thereby define a Gaussian probability distribution

p(x)=N(z; p, o)
Using this, given any height x, we can compute the probability p (x) that the resident is
female. Let’s see this using PyTorch.

Python PyTorch code for maximum likelihood estimation

Suppose we assume that the height values of adult female residents of Statsville follow a
Gaussian distribution. If we know the parameters of this Gaussian (u and o), we know
the Gaussian distribution fully. That allows us to estimate many interesting things: for
instance, the expected height of an adult female resident of Statsville, or the probability
that the height of an adult female Statsville resident lies in a certain range such as
between 160 and 170 cm. The problem is, in a typical real-life situation, we do not
know the parameters u cm and o . All we have is a large dataset X of height values of
adult Statsville female residents—training data. We have to use this data to estimate the

6.8.2

6.8 Maximum likelihood parameter estimation for Gaussians 219

unknown parameters u cm and 0. Once we have these, we have an estimated distribution
(aka model) from which we can predict the probabilities of events of interest.

As we saw in section 6.6.2, MLE is a technique to estimate the parameters from given
training data when the family to which the distribution belongs is known but the exact
values of the parameters are not known. Listing 6.4 shows the PyTorch implementation
of MLE for the Gaussian family.

NOTE Fully functional code for model parameter estimation using MLE and MAP,
executable via Jupyter Notebook, can be found at http://mng.bz/9Mv7.

Listing 6.4 Maximum likelihood estimate for a Gaussian

sample mean = X.mean() Estimates Gaussian MLE parameters /i and X.
They equal the sample mean and sample covariance

sample std = X.std() of the training data. See equations 6.25 and 6.26.

Defines a Gaussian with
gaussian mle = Normal (sample mean, sample_std) the estimated parameters

Once the Gaussian

a, b = torch.Tensor([160]), torch.Tensor ([170]) is estimated, we can
use it to predict
prob = gaussian_mle.cdf (b) - gaussian _mle.cdf (a) probabilities.

Python PyTorch code for maximum likelihood estimation

using gradient descent

In listing 6.4, we computed the MLE using the closed-form solution. Now, let’s try to
compute the MLE using a different method: gradient descent. In real-life scenarios, we
do not use gradient descent to compute the MLE because the closed-form solution is
available. However, we discuss this method here to highlight some of the challenges of
using gradient descent and how MAP estimation addresses these challenges.

Our goal is to maximize the likelihood function using gradient descent. This can
alternatively be viewed as minimizing the negative log-likelihood function. We choose
to use the logarithm of the likelihood function since that leads to simpler computation
without any loss of generalization. (If you want a quick refresher on gradient descent,
see section 3.5.) Following is the equation for negative log-likelihood:

1'1:1 (x(i) - /1)2
202

Listings 6.5 and 6.6 show the PyTorch code for the minimization process.

“log p(X|6) = g log 2702 + (6.27)

Listing 6.5 Gaussian negative log-likelihood for training data

def neg log_likelihood (X, mu, sigma): <—— Equation 6.27
N = X.shape[0]
X minus_mu = torch.sub (X, mu)

220 CHAPTER 6 Bayesian tools for machine learning

tl = torch.mul (0.5 * N,
torch.log(2 * np.pi * torch.pow(sigma, 2))) 4—{ %10g27f0'2
t2 = torch.div(torch.matmul (X_minus_mu.T, X_minus_mu), s)2
. Y (-
2 * torch.pow(sigma, 2)) 4—{ %

return tl + t2 Note how all the training data X
is crunched in a single operation.
Such vector operations are parallel
and very efficient in PyTorch.

def minimize (X, mu, sigma, loss_fn, num_iters=100, 1lr = 0.001):
Iterates to train Negative log-likelihood (listing 6.5)
for i in range (num_iters) :

loss = loss_fn (X, mu, sigma) <—— Computes the loss

loss.backward ()

Computes the gradients of the loss with regard to p and o-.
PyTorch stores the gradients in u.grad and o .grad.

mu.data -= lr * mu.grad Scales the gradients by

sigma.data -= lr * sigma.grad learning the rate and
update parameters

mu.grad.data.zero_ ()
sigma.grad.data.zero () <—— Resets the gradients to zero post-update

mu = Variable (torch.Tensor ([5]) .type(dtype), requires grad=True)
sigma = Variable(torch.Tensor ([5]) .type(dtype), requires grad=True)

minimize (X, mu, sigma, neg_log_likelihood)

Figure 6.5 shows how u and o change with each iteration of gradient descent. We
expect g and o to end up close to feppecied AN Tpppecied, Tespectively. However, when p
and o start off far from pt,,pecieq aNd Torpecieqd (as in figure 6.5a), they do not converge
to the expected values and instead become very large numbers. On the other hand,
when they are instantiated with values closer to teypecied a0 Tpppecied (as in figure 6.5b),
they converge to the expected values. MLE is very sensitive to the initial values and has
no mechanism to prevent the parameters from exploding. This is why MAP estimation
is preferred. The prior p(6) acts as a regularizer and prevents the parameters from
becoming too large. Figure 6.5¢ shows how ¢ and o converge to the expected values
using MAP even though they started far away.

The MAP loss function is as follows. Note that it is the same equation as the negative
log-likelihood, but with two additional terms—u? and o->—that act as regularizers:

N o 1 < o 9
~logp(01X) = 3 log 20 + 55 3@V~)P+ il 40 (6.28)

g i=1 —

Regularizer

6.8 Maximum likelihood parameter estimation for Gaussians 221

1500 1
1
— !
5 1000 /
c ll
o]
g 5001
! Expected u =152
0
0 200 400 600 800
F=F—————F=—==F=———1 ey
200000 ;
€]
S 1
1
£ 1000001/
R 1
n 1
o ! Expected 0 =8
0 200 400 600 800
Iteration
(a) MLE explodes: pipi; =1, 0ipis = 1.
7 L
7 Expected u =152 400 l’ \
T 140 — z A
3 /, 2 ll \
S 120 '/’ S 200 ll "\ Expected u=152
] / o 1 S v
= / = I \\ 7
/ ! Soo -7
100 0 E——
20 100 200 300 400 0 5000 10000 15000 20000 25000
I LY
_ 1o~ 60000 A
E 30 F E i\
= ! AN = 400001
g 1 \ 2 ! \
€204 Y € 1 \
> / \ 2200004+ ~
n l \ n ! AN
10 \ Expected 0 =/8 0 ! N~-___ Expected 0=8
0 100 200 300 400 0 5000 10000 15000 20000 25000
Iteration Iteration

(b) MLE converges: p;;; =100, 07y, = 10.

(c) MAP converges: ;ni; =1, oypir =1.

Figure 6.5 Gaussian parameter estimation using maximum likelihood estimate and maximum a post-
eriori estimation. In figure 6.5a, the MLE explodes because p and o are initialized far from 11,.0c;04
and o, pecr04- However, the MLE converges in figure 6.5b because p and o are initialized closed to
Hexpected and O expectedr Figure 6.5c shows how, for MAP, 1 and o are able to converge to H-expected and

O expected €VEN though they are initialized far away.

def neg_log likelihood reg (X, mu, sigma, k=0.2):

Listing 6.7 Gaussian negative log-likelihood with regularization

<— Equation 6.28

N = X.shape[0]
X minus mu = torch.sub (X, mu)

tl = torch.mul(0.5 * N,
torch.log(2 * np.pi * torch.pow(sigma, 2))) ‘—| %10327“72

222

6.9

CHAPTER 6 Bayesian tools for machine learning

t2 = torch.div(torch.matmul (X _minus mu.T, X minus_mu),

n —2
2 * torch.pow(sigma, 2)) Zizg Cimi)”

202
loss_likelihood = t1 + t2 <— Negative log-likelihood
loss _reg = k * (torch.pow(mu, 2) + torch.pow(sigma, 2)) =<—— Regularization
return loss_likelihood + loss_reg Note how all the training data X

is crunched in a single operation.

Such vector operations are

parallel and very efficient in PyTorch.
Gaussian mixture models

In many real-life problems, the simple unimodal (single-peak) probability distributions
we learned about in chapter 5 fail to model the true underlying distribution of the
data. For instance, consider a situation where we are given the heights of many adult
Statsville residents. Say there are two classes of adults in Statsville: male and female. The
height data we have is unlabeled, meaning we do not know whether a given instance
of height data is associated with a male or a female. Thus the data is one-dimensional,
and there are two classes. Figure 6.6 depicts the situation. None of the simple probability
distributions we discussed in chapter 5 can be fitted to figure 6.6. But the two partial
bells in figure 6.6a suggest that we should be able to mix a pair of Gaussians (each
of which looks like a bell) to mimic this distribution. This is also consistent with our
knowledge that the distribution represents not one but two classes, each of which can
be reasonably represented individually by Gaussians. The point cloud also indicates
two separate clusters of points. While a single Gaussian will not work, a mixture of two
separate 1D Gaussians can (and, as we shall shortly see, will) work.

Gaussian distribution 0.04+
— GMM
0.02 1
0.00 -
-0.02 |
-0.04
50 100 150 200 250 300
X (height in cms) 145 150 155 160 165 170 175 180
(a) PDF (b) Sample point distribution

Figure 6.6 Probability density functions (PDFs) and sample point distributions for 1D height data of
adult male and female residents of Statsville

6.9.1

6.9 Gaussian mixture models 223

Let’s now discuss a slightly more complex problem in which the data is two-dimensional
and has three classes. Here we are given the weights and heights of three classes of
Statsville residents: adult females, adult males, and children. Again, the data is unlabeled,
meaning we do not know whether a given instance of (height, weight) data is associated
with a man, woman, or child. This is depicted in figure 6.7. Once again, none of the
simple probability distributions we studied in chapter 5 can be fitted to this situation.
But the PDF shows three bell-shaped peaks, the point cloud shows three clusters, and
the physical nature of the problem indicates three separate classes, each of which can
be reasonably represented by Gaussian. While a single Gaussian will not work, a mixture
of three separate 2D Gaussians can (and, as we shall shortly see, will) work.

A Gaussian mixture model (GMM) is a weighted combination of a specific number of
Gaussian components.

90 .o
85 %00
80 oo
75 .

70
65

0.004 55
0.003 50
0.002 45
0.001 40

0.000 35

30 N

160
X 18050 0 X

(a) PDF (b) Sample point distributions

Figure 6.7 Probability density functions (PDFs) and sample point distributions for 2D (height, weight)
data of children, adult males, and adult females of Statsville

For instance, in our first problem with one dimension and two classes, we choose a
mixture of two 1D Gaussians. For the second problem, we take a mixture of three 2D
Gaussians. Each individual Gaussian component corresponds to a specific class.

Probability density function of the GMM
Formally,

The PDF for a GMM is

K
p(E) =D M N (& i 2 (6.29)
k=1

224 CHAPTER 6 Bayesian tools for machine learning

where 7, is the weight of the kth Gaussian component, satisfying

k=K
m=1
k=1

K is the number of classes or Gaussian components, and N (Z; fig, X;) (defined in
equation 5.23) is the PDF for the kth Gaussian component. Such a GMM models a
K-peaked PDF or, equivalently, a K-clustered sample point cloud.

For instance, the PDF and sample point clouds shown in figure 6.6 correspond to the
following Gaussian mixture:

0.7 4.0 0.3 7.0
— — — —
p@)=m Nlx; w, o |+ m2 Nl pe , o3
—— ~——
152.0 175.0

The 2D three-class problem, PDF, and sample point clouds shown in figure 6.7 corre-
spond to the following Gaussian mixture:

0.33 152 {20 0} s 175 [35 39
p@)="m N 55| |0 28|+ T N 70| |39 51
— —— —— A
G X o fa Lo

0.3 135 |10 0

+ 15 N 40| |0 10

— —

ia ﬁ?)) X3

The PDF and sample point distribution of the GMM depend on the values of m;s, s,
X;s, and K. In particular, K influences the number of peaks in the PDF (although
if two peaks are very close, sometimes they merge). It also influences the number
of clusters in the sample point cloud (again, if two clusters are too close, they may
not be visually distinct). The m;s regulate the relative heights of the hills. The ;s
and X;s influence the individual hills in the PDF as well as the individual clusters in
the sample point cloud. Specifically, u; regulates the locations of the kth peak in the
PDF and the centroid of the kth cluster in the sample point cloud. The X;s regulate
the shape of the kth individual hill and the kth cluster in the sample point cloud.
Figures 6.8, 6.9, 6.10, and 6.11 show some example GMMs with various values of these
parameters.

6.9 Gaussian mixture models

225

Figure 6.8 shows a pair of Gaussian distributions and various GMMs with those as
components, with different values for the parameters. Figure 6.9 depicts 2D GMMs with
various ;8. Figure 6.10 shows GMMs with non-circular bases (non-symmetric Xs) and

various us).

Gaussian distribution

Gaussian distribution
----- female: N(152.4, 7.6) oo female: N(152.4, 7.6)
0.05 --- male: N(175.3,7.6) 0.05 i ""c';‘;:a“(175-3- 7.6)
{4 (mu1=1524 sigmat = 7.6),
Y (mu2 =175.3 sigma2 = 7.6)
0.04 0.04 ot pi1=0.5pi2=0.5
003 003 H
X >] '
= = 4\
0.02 0.02 g\
0.01 0.01 :
0.004 o P e 0.00
50 100 150 200 250 50 100 150 200 250
x (height in cms) x (height in cms)
(a) Gaussian components uj =152, uo =175, oy =09 =9 (b) GMM with 71 =0.5, 19 =0.5
Gaussian distribution Gaussian distribution
N female: N(1524,76) | [L e female: N(152.4, 7.6)
0.05 £4 —-.male: N(175.3, 7.6) 0.05 - --male: N(175.3, 7.6)
P GMM: GMM:
\ — (mu1=152.4sigmal =7.6), _ (mu1=152.4 sigma1 =7.6),
2= 1753 sigma2 = 7.6 2=1753sigma2 =7.6
0.04 ([31“ =07 pi2 S) 0.04 (;;:J =03 pi2 it)
__0.03 . 0.03
X x
= =
0.02 0.02
0.01 0.01
0.00 0.00
50 100 150 200 250 50 100 150

X (height in cms)
(c) GMM with 7 =0.7, 719 =0.3

200
x (height in cms)

(d) GMM with 71 =0.3, 19 =0.7

250

Figure 6.8 Various GMMs (solid curves) with the same Gaussian components (dotted and dashed
curves, respectively) but different 7; and 7y values

Another way to visualize GMMs is via sample point distributions. Figure 6.11 shows the
sample points from a pair of 2D Gaussians and the points sampled from a GMM having
those Gaussians as components and various mixture-selections probabilities.

0.0175
0.0150
0.0125
0.0100
0.0075
0.0050
0.0025

0.0200
0.0175
0.0150
0.0125
0.0100
0.0075
0.0050
0.0025

Figure 6.9 Two-dimensional GMMs with circular bases, (X} = X9 = y o =

)

/\ i | itoor
|
| ‘ 0.06

0.06 \
0.05

0.04 | |
0.03

0.02 ‘ Uk
0.01 ¢ ' y 7 0.00

é.O

Note how the relative heights of the hills depend on rs.

0.05
0.04
0.03
0.02
0.01
0.00

0.00

"opd

109554 —~ 2.5
‘2-%.02.550 30 Yy
X 7500 ~100
I 9.75 2.95 L |- 975 2.95
(a) gy = ,21= , (b) g1 = , 1= ,
-3 2.25 2.75 -4 2.25 2.75
L 3 S0 2.75 -2.25 L 4 S 2.75 -2.25
Y e e T e 27

Figure 6.10 Two-dimensional GMMs with elliptical bases, 71 = 0.3, 79 =0.7. Note how the shape of the
hill base depends on X and how the hill positions depend on the jis.

227

6.9 Gaussian mixture models

Weight in kg

6.9.2

Step 15
80+
3’70-
£
560
[}
=
507
401
130 140 150 160 170 180 150 160 170 180
Height in cm Height in cm
(a) (b)
i . o 152 7 0
Figure 6.11 (a) 1, 000 random samples from three Gaussians with f1,y0man =) Zewoman = ,
55 0 15
. 175 9 10| . 135 5 0
Hman = y Zman = y Hehild = y Zchild = .(b) 1, 000 random samples from a GMM
70 10 25 0 5

with the same three component Gaussians as in (a) and 7; = 79 = 0.4, 73 = 0.2. Note how the GMM
sample distribution shape mimics the combined sample distribution shape of the component Gaussians.

It can be proved that equation 6.29 is a proper probability: that is, it sums to 1 over the
space of all possible inputs (all possible values of Z in the d-dimensional space). Here is

the proof outline:

K
/p(i)d:‘c’z/ mN (& i Z) | d7
k=1

TeRd ZeRd

equals 1, N being a PDF

K K
Yom| [NG)=) mmt
k=1 i=1

TeRd

Latent variables for class selection
Let’s discuss GMMs in more detail. In particular, we look at the physical meaning of the

various terms in equation 6.29.

Before diving in, let’s introduce an auxiliary random variable Z, which effectively is
a class selector. In the context of equation 6.29, Z can take discrete values in the range
[1.--K]. It thus follows a categorical distribution (see section 5.9.6). Physically, Z =%
means the kth class—that is, the kth component of the Gaussian mixture—has been

selected.

228

CHAPTER 6 Bayesian tools for machine learning

NOTE As usual, we are denoting the random variable with uppercase and the
specific value it takes in a given instance with lowercase.

For instance, in the two-class problem shown in figure 6.6, Z can take one of two values:
1 (implying adult female) or 2 (implying adult male). For the three-class problem shown
in figure 6.7, Z can take one of three values: 1 (adult female), 2 (adult male), or 3
(child). Z is called a latent (hidden) random variable because its values are not directly
observed. Contrast this with the input random variable ¥ whose values are explicitly
observed. You may recognize Z as a latent variable in the GMM (latent variables were
introduced in section 6.7).

Consider the joint probability p (X =%, 7= k) , which we sometimes informally denote
as p (%, k). This is the probability of the input variable Z occurring together with the
class k. Using Bayes’ theorem,

(k) =p (k) p (k)

The conditional probability term p (§|k) is the probability of ¥ when the kth class has
been selected. This means it is the PDF for the kth Gaussian component, which is a
Gaussian distribution by assumption. As such, using equation 5.23,

p (Z|k) =N (5 fr, Zi) kell,K]

On the other hand, p (£ =k), which we sometimes informally refer to as p (k), is the
prior probability (that is, without reference to the input) of the input belonging to one of the classes.
Let’s denote it as follows:

p(k)=m, Vke{l,K}

This is often modeled as the fraction of training data points belonging to class k:

N
ﬂ'kz% ke{l,K)

4

where N, is the number of training data instances belonging to class k£, and N is the
total number of training data instances.
From this, we get

p(i, k) =p (k)p(fik)Zﬂk N(f, ﬁk,):k) ke [1, K]

From equation 5.5, we get the marginal probability p (x)

K
p@=), k)= mN(F [)

ke{1,K} k=1

which is the same as equation 6.29.

6.9 Gaussian mixture models 229

This leads to the following physical interpretations:

A GMM can be viewed as a weighted sum of K Gaussian components. Equation 6.29
depicts the PDF of the overall GMM.

The weights mr, are component selection probabilities. Specifically, m, can be interpreted
as the prior probability p (Z =k), aka p (k), of selecting the kth subclass—modeled as
the fraction of the population belonging to the kth subclass. The m; are probabilities
in a categorical distribution with K classes. The m;s sum up to 1. Sampling from
the GMM can be viewed as a two-step process:

Randomly select a component. The probability of the kth component being
selected is m;. The sum of all 7s is 1, which signifies that one or another com-
ponent must be selected.
Random sample from the selected Gaussian component. The probability of
generating vector T is N (Z; [, X).
Each of the K Gaussian components models an individual class. Geometrically
speaking, the components correspond to the clusters in the sample point cloud or
the peaks in the PDF of the GMM.
The kth Gaussian component, N (55; Ly, Ek), can be interpreted as the conditional
probability, p (55|k) This is the likelihood—the probability of data value ¥ occurring,
given that the kth subclass has been selected.
The product m; N (Z; fiy, £;) then represents the joint probability p (Z, k) =p (k)
p (k).
The sum of all the joint subclass probabilities is the marginal probability p (:?) of
the data value 7.

Pytorch from torch.distributions.mixture_same_family import MixtureSameFamily
supports
distributions pi = Categorical (torch.tensor([0.4, 0.4, 0.2])) Prior probabilities over the three
. that are classes (male, female, child):
mixtures of categorical distribution
the same
family (here,| ny - torch.tensor ([[175.0, 70.0], [152.0, 55.0], [135.0, 40.0]])
Gaussian
) Mean height, weight for the three
classes (male, female, child)

sigma = torch.tensor ([[[30.0, 20.0], [20.0, 30.01],

[[50.0, 0.0], [0.0, 10.0]1, Covariance matrices

[[20.0, 0.0], [0.0, 20.0]11) for the three classes

(male, female, child)

gaussian_ components = MultivariateNormal (mu, sigma) Creates the component
Gaussians

gmm = MixtureSameFamily (pi, gaussian components) <—— Createsthe GMM

230

6.9.3

6.9.4

CHAPTER 6 Bayesian tools for machine learning

Classification via GMM

A typical practical problem involving GMMs goes as follows. A set of unlabeled input
data X (training data) is provided. It is important to note that this is unsupervised
machine learning—the training data does not come with known output classes. The
physical nature of the problem indicates the subclasses in the data (denoted by indices
[1---K]). The goal is to classify any arbitrary input Z: that is, map it to one of the K
classes. To do this, we have to fita GMM (that is, derive the values of m, i, X for all
ke[l---K]). Given an arbitrary Z, we compute p (k|55) for all the classes (all values of k).
The value of £ yielding the max value for p (klf) is the class corresponding to #. How do
we compute p (k|7)?
Using Bayes’ theorem,
)<L ER @B N)

p@) I p(@ k) IR N (@ AL E)
If we know all the GMM parameters, evaluating equation 6.30 is straightforward. We
classify the input Z by assigning it to the cluster £ that yields the highest value of
p (Z =k|X =x). Geometrically, this assigns the input to the cluster with the “closest”
mean—with distance normalized by the variance of the respective distribution. Basically,
we are measuring the distance from the mean, but in clusters of high variance, we are
more tolerant of distance from the mean. This makes intuitive sense: if the cluster is
widely spread (has high variance), a point relatively far from the cluster mean can be
said to belong to the cluster. On the other hand, a point the same distance from the
mean of a tightly packed cluster may be deemed to be outside the cluster.

(6.30)

Maximum likelihood estimation of GMM parameters (GMM fit)

A GMM is fully described in terms of its parameter set 6 = {nk, i, ZpVke[1---K] } But
how do we estimate these parameter values? In typical real-life situations, they are not
given to us. We only have a set of observed unlabeled training data points X = {f(i) },
such as (weight, height) values for Statsville residents.

Geometrically speaking, each data instance in the training dataset corresponds to
a single point in the multidimensional feature space. The training dataset is a point
cloud that naturally clusters into Gaussian subclouds (otherwise, we should not be trying
GMMs). Our GMM mimicking this dataset should have as many components as there
are natural clusters in the data. The parameter values m;, iy, X; fork € [1--- K] should
be estimated such that the GMM’s sample point cloud overlaps the training data point
cloud as much as possible. That is the basic problem we try to solve in this section.

NOTE We do not estimate K, the number of classes; rather, we use a fixed value
of K, usually estimated from the physical conditions of the problem. For example,
in the problem with men, women, and children, it is pretty obvious that K = 3.

In section 6.8, we did MLE for a simple Gaussian. We computed an expression for the
joint log-likelihood of all the training data given a Gaussian probability distribution.
Then we took the gradient of that expression with respect to the parameters and equated

6.9 Gaussian mixture models 231

it to zero. We were able to solve that equation to derive a closed-form solution for the
parameters, i and X (equations 6.25 and 6.26). This means we simplified the equation
into a form where the unknown (to be solved) appeared alone on the left-hand side
and there were only known entities on the right-hand side.

Unfortunately, with GMMs, equating the gradient of the log-likelihood to zero leads
to an equation that has no closed-form solution. So, we cannot reduce the equation to
a form where the unknowns m;s, u;s, and X; appear alone on the left-hand sides and
only known entities (Z;s) appear on the right-hand side. Consequently, we have to go
for an iterative approximation. We rewrite the equation we get by equating the gradient
of the log-likelihood to zero such that the unknowns us and s appear alone on the
right-hand side. It looks something like

me=h (X, 0)
=/ (X, 0)
Zk :f3 (X’ 9)

where f1, fo, 3 are some functions whose exact nature is unimportant at the moment.
Note that the right-hand side also contains the unknowns: 6 contains m;s, ys, and Xy.
We cannot directly solve such equations, but we can use iterative relaxation, which works
roughly as follows:

Start with random values of 7is, fizs, and Xgs.

Evaluate the right-hand side by plugging current values of ms, fizs, and X;s into
functions fi, fo, and f5.

Use the values estimated in step 2 to set new values of ms, fizs, and Xgs.

Repeat steps 1-3 until the parameter values stop changing appreciably.

The actual functions fi, fo, f5 are worked out in (equations 6.36, 6.37, and 6.38). As
iteration progresses, the values of m;s, fizs, and X;s start to converge to their true values.
This is not a lucky coincidence. If we follow algorithm 6.1, it can be proved that every
iteration improves the approximation, even if by a minuscule amount. Eventually, we
reach a point when the approximation is no longer improving appreciably. This is called
the fixed point, and we should stop iterating and declare the current values final.

Figure 6.12 shows the progression of an iterative GMM fit algorithm. Figure 6.12a
shows the sampled training data distribution. Figure 6.12b shows the fitted GMM at the
beginning: the parameters are essentially random, and the GMM looks nothing like
the target training data distribution. It improves slowly until at iteration 15, it matches
the target distribution snugly (figure 6.12d). Now let’s discuss the details. We already
know the dataset X that has been observed. What parameter set 6 will maximize the
conditional probability, p (X|6), of exactly these data points, given the parameter set? In
other words, what model parameters will maximize the overall likelihood of the training
data? Those will be our best guesses for the unknown model parameters. This is MLE,
which we encountered in section 6.6.2.

232 CHAPTER 6 Bayesian tools for machine learning
901 oo ©
° °
857 Step 0
801 1201 %
751 °
7071 100+
651
2 80+
> 601 p
551 % 60
o
501 =
451 401
°
401
20+
351
301 . 100 120 140 160 180 200 220
X Height in cm
(a) Training data point cloud (target for fitting) (b) Fitted GMM’s sample point cloud at step 0
Step 5 Step 15
°
801
801
o 707
4
2601 <
é S 60
(3]
3 401 =
=
501
20 ° 401
°
10'0 1é0 140 1é0 1é0 2(')0 130 140 150 160 170 180
Height in cm Height in cm
(c) Fitted GMM’s sample point cloud at step 5 (d) Fitted GMM’s sample point cloud at step 15.

It almost matches the target.

Figure 6.12 Progression of maximum likelihood estimation for GMM parameters

Let {i(l), 7 ---i(")} be the set of observed data points, aka training data. From

equation 6.29,
likelihood
,—/H K
p(7900) =D m N (795 i 2i) Vielt,n)
k=1

Henceforth, for simplicity, we drop the “given 6” part and refer to p (f(i)|9) simply

as p 2@, As usual, instead of maximizing the likelihood directly, we maximize its
logarithm, the log-likelihood. This will yield the same parameters as maximizing the
likelihood directly.

6.9 Gaussian mixture models 233

Since the 2(!)s are independent, their joint probability, as per equation 5.4, is

» (50))? (;(2)) o (;(n))

The corresponding log joint probability is

joint log-likelihood

e))) S o)
i=1
=Zn:10g (i m N (2905 i, Ek)) (6.31)
i= =

1

At this point, we begin to see a difficulty peculiar to GMMs. We have a logarithm of
a sum, which is not a very friendly expression to handle; the logarithm of products is
much nicer to deal with. But let’s soldier on.

To identify the parameters (1, X1, (o, X9, - - - that will maximize the log joint proba-
bility, we take the gradient of the log joint probability with respect to these parameters,
equate them to zero, and solve for the parameter value (as discussed in section 3.3.1).
Here we demonstrate the process with respect to fiy:

v log (P (5(1))1, (;(2)) o (;(n))) -0

Since the log of products is the sum of logs, we get

55 S (7)) 0
i=1

Applying equation 6.29, we get

n K
Vi Zlog (Z o N (f(l); e, Zk)) =0
i=1 k=1

Since the gradient is a linear operator, we can move it inside the summation:

n K '
Zvﬁllog(ﬂkN(f(’); ﬁk,zk) =0
i=1 k=1
. d
Since %log (f (x) = ﬁd_c’ we get
0 Vi, Yoy N (f(i); ﬁk,Ek) .

i=1 (Zi‘;l o N (XD @, Zk))
Now, if 1 and x9 are independent variables, Z—ff =0. Consequently,

VﬁlN(aE(”; i, zk) =0 fork#1

234

CHAPTER 6 Bayesian tools for machine learning

Only a single term corresponding to k =1 survives the differentiation (gradient) in the
numerator. So,
n mVyN (55(“; 1, Z11)

=0
i=1 (Zﬁl me N (D5 [y, Zk))

Now d%e_(x_“)2 ==2(x—p) e~ @M andin multiple dimensions,
Ve HEDENED) g (7) 2 (7) b0
Plugging equation 5.23 into our maximization problem, we get
>(i - T =(1 - —(7 -
n Vi ((x(l> _,Ul) 21_1 (x(l) —,Ul)) m N (x“); H1, 21)

=0
i=1 (Zg‘:l m N (D5 Gy, Ek))

Furthermore, with a little effort, you can prove the following about the gradient of a
quadratic form:
v; (zTAz) = A7 (6.32)
Applying equation 6.32 to our problem, we get
n X! (i(i) - ,171) mN (3(i); A1, 21)

=0
P (Zle m N (ZD; i, Zle))

Multiplying both sides by the constant X1, we get

n (f(i) —ﬁl) ﬂlN(f(i); ﬁl,zl)

=0
i1 (Zle m N (2D iy, Ek))
Substituting
ﬂlN(f(i); /71,21)
i = — (6.33)
(Zkzl m N (2D iy, Ek))
we get

n
Z (f(i) - ﬁl) yin=0
i=1
This expression has u; inside ;1 as well. It is impossible to extract u; alone on the
left side of the equation. In other words, we cannot create a closed-form solution for uj.
Hence, we have to solve it iteratively.
We can rewrite the previous equation as

1 n
ﬁl =% %’19Z
M &

(@)

6.9 Gaussian mixture models 235

where ;
Ni=) v (6.34)
i=1

Proceeding similarly, we can derive the corresponding expressions for 71 and Xj. Let’s
collect all the equations for updating the GMM parameters:

M =Z Yi1 (6.35)

i=1

N
m=" (6.36)
TILER o P
H1=5 2 v (6.37)

i
1 n .) T
- N =1 R W - () B

21 N, 2470 (x m) (x m) (6.38)

Equations 6.36, 6.37, and 6.38 provide the definitions for functions f;, fo, and f5 that we
saw at the beginning of this section in the context of iterative relaxation. We can deal
similarly with k=2 - - - K.

Physical significance of y;,

We encountered the entity v;;, while computing the gradient of the log-likelihood. It
appeared as a multiplicative weight in the final iterative expression for computing
up and X, in equations 6.37 and 6.38. It is not an arbitrary entity. By comparing
equations 6.33 and 6.30, we can see that

Yik =P (k‘f(i))

In other words, the quantity y;; is really the posterior probability: the conditional prob-
ability of the class £ given the ith data point.

This gives us a new way to look at equations 6.35, 6.36, 6.37, and 6.38:

Equation 6.35 essentially assigns to N7 the probability mass concentrated in class 1
as per the current parameter values.

Equation 6.36 assigns to &1 the fractional mass in class 1 as per the current param-
eter values.

Equation 6.37 assigns to u; the centroid of all the training data points. Each data
point’s contribution is weighted by the posterior probability, as per the current
parameter values, of that data point belonging to class 1.

Equation 6.38 assigns to X; the covariance of the training data points. Each data
point’s contribution is weighted by the posterior probability, as per the current
parameter values, of that data point belonging to class 1.

236

CHAPTER 6 Bayesian tools for machine learning

Algorithm 6.1 ties together equations 6.33, 6.36, 6.37, and 6.38 into a complete approach

for iterative MLE of GMM parameters. It is an example of a general class of algorithms
called expectation maximization.

Algorithm 6.1 GMM fit (MLE of GMM parameters from unlabeled training data)

Input: X =70, 7@ ... 70
Initialize parameters 6 ={m;, ;, X k€ [1, K]} with random values

> repeat E-step and M-step until likelihood stops increasing
while (likelihood is increasing) do

> E-step
ﬂkN(fC("); s Zk) .
Yik = N N VZ’ E[l:n]X[I:K]
S m N (@95 G, Xy
> M-step
Ny =20 Yir
N
m ==k
- >(i Vk e 1,K
fir = 57 Zisg vad® [1. K]
; - (7 - T
Ty = 3 Xy Yik (f(” - /Jk) («’C(” - #k)
end while
return {7T17 M1, 2‘17 o, Mo, 2‘2, o, K, /JK; EK}

NOTE Fully functional code for Gaussian mixture modeling, executable via Jupyter
Notebook, can be found at http://mng.bz/j4er.

Listing 6.9 GMM fit

Repeats until the likelihood

while (curr likelihood - prev likelihood) < le-4: J increase is negligible

Computes the posterior probabilities
Yi,k =p (Z =k| X =x;) using
E Step

current 1, s and Lgs, equation 6.33
pli = gmm.mixture distribution.probs <—— Tensor of shape [K] holding wys for all k

components = gmm.component distribution <—, Gaussian objects N(x; Hies Zk) for all &

Summary 237

Vector computation of log of y; , In practice, the probability
numerators for all i, k, equation 6.33 involving an exponential
log_gamma_numerators = components.log prob (goes to 0. So we use

X.unsqueeze (1)) + torch.log(pi) .repeat(n, 1) the log probability.

Vector computation of the log of y; ; denominators for all i, k, equation 6.33
log_gamma_denominators = torch.logsumexp (
log_gamma_numerators, dim=1, keepdim=True).
Vector computation of the [z x K] tensor y; ,, equation 6.33 for all i, k

log _gamma = log gamma numerators - log gamma_ denominators
self.gamma = torch.exp (log_gamma)

Updates ji;, and Xy for all k using y; ; =p(Z =k|X)
M Step from the E-step via equations 6.36, 6.37, and 6.38

n = X.shape[0] <— Number of data points

=
1

torch.sum(gamma, 0)

pi = N / n <— Vector update of n for all k, equation 6.36

Vector update of [K x d] tensor,
m = ((X.T @ gamma)/N).T i, for all k, equation 6.37

Vector computation of (2; — ji;) (%; — ﬁk)T

for all i, k
x minus mu = (X.repeat(K, 1, 1) - gmm.component distribution.unsqueeze(1).
repeat (1, n, 1))

—> x minus_mu_squared = X minus_mu.unsqueeze(3) @ X minus_mu.unsqueeze (2)

Vector update of K x d x d] tensor
X, for all k, equation 6.38

“—> sigma = torch.sum(gamma.T.unsqueeze (2) .unsqueeze(3) * x minus mu_ squared,
axis=1) / N.unsqueeze (1) .unsqueeze (1) .repeat (1, d, 4d)

prev_likelihood = curr_likelihood

curr_likelihood = torch.sum(gmm.log prob (X)) <—— log likelihood, equation 6.31

Summary

In this chapter, we looked at the Bayesian tools for decision-making in uncertain systems.
We discussed conditional probability and Bayes’ theorem, which connects conditional
probabilities to joint and marginal probabilities.

Conditional probability is the probability of an event occurring subject to the
condition that another event has already occurred. In machine learning, we are
often interested in the conditional probability p (55|«9) of an input ¥ given that the
parameters of the model predicting the input are 6. This conditional probability
is known as the likelihood of the input. We are also interested in the conditional
probability p (6|7), known as the posterior probability.

238

CHAPTER 6 Bayesian tools for machine learning

Joint probability is the probability of a set of events occurring together. If the events
are independent, the joint probability is the product of their individual probabili-
ties. Whether events are independent or not, Bayes’ theorem connects joint and
conditional probabilities. Of particular interest in machine learning is the Bayes’
theorem expression connecting the lik