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Preface

In the ever‐evolving digital landscape, the fusion of artificial
intelligence (AI) with the realm of cybersecurity has introduced
a formidable ally. AI’s unique capabilities in processing vast
data volumes, recognizing intricate patterns, and swiftly
adapting to emerging threats have marked the dawn of a new
era in cyber defense. As AI continues to seamlessly integrate
into our cybersecurity strategies, it plays a pivotal role in our
ongoing battle against the ever‐shifting landscape of cyber
threats.

The digital landscape is rapidly evolving, and with it, the nature
of cyber threats. This book addresses a pressing need – to
bridge the knowledge gap between the potent capabilities of AI
and its practical applications in fortifying cybersecurity. Our
aim is to provide readers with a comprehensive guide to
understand, implement, and harness the power of AI in
safeguarding digital ecosystems. Collecting insights from
seasoned cybersecurity professionals and AI experts, this book
seeks to demystify the world of AI in cybersecurity. It aims to
serve as a valuable resource for cybersecurity professionals
looking to enhance their defenses, students eager to explore the
exciting intersection of AI and cybersecurity, and individuals



concerned about their online security. Another aim of this book
is to empower our readers with knowledge and tools to shield
against evolving cyber threats and inspire innovation in the
field.

This book offers a comprehensive exploration of the synergy
between AI and cybersecurity. It delves into the realm of AI‐
powered tools, techniques, and practices that empower
organizations and individuals to stay ahead of malicious actors.
The scope of the book encompasses AI applications in intrusion
detection, threat identification, and risk assessment, among
others. It provides practical guidance, real‐world case studies,
and a holistic view of the evolving landscape of cyber threats
and the innovative solutions AI offers to mitigate them. While
we strive to cover a wide spectrum of AI techniques tailored for
cyber defense, it is important to recognize that the field of AI
and cybersecurity is dynamic and ever‐evolving. This book does
not claim to be an exhaustive encyclopedia; rather, it serves as a
snapshot of the state of the field at the time of its writing. As
technology progresses, new challenges and solutions will arise,
and our understanding of the subject will continue to evolve.

This book builds upon the existing body of literature that
explores the integration of AI and cybersecurity, acknowledging
the pioneering work of researchers and professionals in this



field. It provides a comprehensive overview of the current
landscape while offering fresh perspectives and insights.

In closing, this collaborative effort reflects the dedication of
experts passionate about securing our digital world. The fusion
of AI and cybersecurity has the potential to reshape the future
of digital security. We hope this book empowers the readers to
harness this potential and become a guardian of the digital
realm.

     Shilpa Mahajan 
The NorthCap University, India

     Mehak Khurana 
The NorthCap University, India

     Vania Vieira Estrela 
Fluminense Federal University, Brazil
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Note for Readers

Dear Readers,

This book is a collaborative effort aimed at providing you with a
comprehensive understanding of the intricate world of
cybersecurity analytics. The intention of the authors/editors is
to equip you with insights, strategies, and practical knowledge
that will empower you in navigating the complexities of
cyberthreats. Throughout these chapters, you’ll find a blend of
theoretical concepts and hands‐on approaches, all crafted to
enhance your understanding and proficiency in addressing
contemporary cybersecurity challenges. Whether you are a
seasoned cybersecurity professional, a student entering the
field, or simply someone passionate about the evolving digital
landscape, we hope you find this book both informative and
inspiring.



Introduction

In the realm of cybersecurity, where digital landscapes are in
constant flux, the unceasing evolution of cyber threats poses an
ever‐growing challenge. Navigating this intricate web of
potential risks requires a comprehensive understanding of the
various facets of cybersecurity and the implementation of
effective detection and mitigation strategies. This book,
“Applying Artificial Intelligence in Cybersecurity Analytics and
Cyber Threat Detection,” takes a deep dive into the dynamic
world of cybersecurity analytics, emphasizing the pressing
need for innovative approaches to counteract a diverse array of
cyber threats. The chapters within this book are carefully
curated to offer a nuanced exploration of techniques,
methodologies, and practical applications designed to fortify
our defenses against malicious activities in the digital space.

As we embark on this exploration, the aim is to equip readers
with a profound understanding of the multifaceted landscape
of cybersecurity, encompassing not only the traditional forms of
threats but also the more contemporary and sophisticated
challenges that emerge with technological advancements. Each
chapter is crafted to provide insights, analyses, and actionable
strategies, offering a holistic view of cyberthreat detection and



mitigation. The dynamic nature of the cybersecurity landscape
necessitates an adaptive and informed approach. Therefore,
this book serves as a compendium of knowledge, drawing on
the collective expertise of contributors who bring real‐world
experience and practical insights to the forefront. It is intended
for cybersecurity professionals seeking to enhance their skills,
students entering the field, and anyone intrigued by the ever‐
evolving landscape of digital security.

As we traverse through the following pages, the goal is to shed
light on effective strategies, methodologies, and practices that
go beyond mere detection. The emphasis lies in understanding
the intricacies of cyberthreats, enhancing the analytical
capabilities of security practitioners, and fostering a proactive
stance against potential risks. In closing, the collective wisdom
encapsulated in these chapters aims to empower readers with
the knowledge and tools needed to navigate the complexities of
cybersecurity analytics. By fostering a deeper understanding of
cyber threats and effective detection mechanisms, we can
collectively contribute to fortifying the digital realms we
inhabit.
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1.1 Introduction

An instruction set created to harm a system is known as
malware, which is short for malicious software [1]. The
production of malware is increasing, making it more
challenging for security firms to identify it. Traditionally,
security firms and antivirus vendors employed antivirus
software to distinguish between dangerous and clean data.
Most of these tools compare the malicious programs to a
database of well‐known malware signatures using a signature‐
based method to identify them [2, 3]. The signature of an
executable file serves as its distinctive identifier, and signatures
can be generated using static, dynamic, and hybrid
methodologies. However, this technique’s drawback is that it is



ineffective at detecting new malware samples. Due to the
continuous increase in the quantity of new malware samples,
these signatures must be continually updated [3].

Static analysis, the method that extracts features from a
program’s binary code by examining it and building models
that illustrate the features, was developed to counter these
tactics. These techniques are used to distinguish between
hazardous and useful files. However, static analysis is easily
evaded since malware authors utilize numerous code
obfuscation techniques, like metamorphic and polymorphic
approaches. Despite providing valuable insight into the
behavior of programs, functions, and parameters, static
analysis can still be unreliable [1].

Dynamic analysis, on the other hand, implements the software
inside a secure environment to observe its behavior. This
method exposes the code obfuscation strategies used by
malware authors and works well with compressed files.
However, dynamic analysis needs to be carried out within a
secure environment to prevent system damage and can be
time‐consuming. Additionally, malware may behave differently
in a virtual (secure) environment compared to an actual
environment, leading to an incorrect log of behavior [4].



Combining static and dynamic analysis techniques can result in
a more effective and reliable malware detection strategy. The
main categories of executable malicious code (MC) are (i) MC
that has been injected, such as worms that use buffer overflow
exploits to inject their code into active software processes, (ii)
dynamically generated malware (MC), and (iii) obfuscated
malware (MC), which includes, viruses, Trojan horses, and
worms that cloak their code via data manipulations and
obscure computations to avoid detection and analysis.
Polymorphic viruses or Trojans are an example of obfuscated
malware [1]. Static feature‐based analysis seems to be effective
and efficient, as it enables network detection when the
algorithm is loaded into memory [5, 6]. However, when the
malicious file or code is compressed or encrypted, it becomes
more challenging to detect. As a result, dynamic feature
analysis must first unpack or decrypt the CPU instructions
before being executed. Dynamic analysis for detecting network
malware may not be practical due to the rapidity of network
traffic [1].

Malicious executables are classified into three types based on
how malware is transmitted: viruses, Trojan horses, and worms
[7]. They infect already‐running programs, causing them to
become “infected” and spread to other programs when they are
run. Worms, on the other hand, are standalone programs that



propagate throughout a network, usually by taking advantage
of bugs in the software that is operating on networked
machines. Trojan horses disguise themselves as legitimate
applications while carrying out harmful tasks. Malicious
executables aren’t really usually easily categorized and can
behave in a variety of ways. Virus detection tools, including
McAfee Virus Scan are extensively used, and Dell suggests
Norton Antivirus for any and all new computers [7]. Although
the titles of these programs include the term “virus,” some also
detect worms and Trojan horses. This approach of looking for
recognized patterns of MC, called signature‐based detection, is
effective in detecting previously known threats [8]. However, it
is not always effective against new and unknown threats [9]. In
response to these limitations, a new approach to virus detection
called behavior‐based detection has emerged. Based on their
behavior, this strategy employs artificial intelligence (AI) and
deep learning (DL) algorithms to discover and categorize new
and unknown risks [10].

Behavior‐based detection relies on monitoring the actions of a
piece of software, looking for signs of malicious behavior [8]. If
a piece of software is behaving in a way that is deemed
suspicious, it can be classified as a potential threat and further
analyzed. This approach is more proactive and effective against
new and unknown threats than traditional signature‐based



detection [11]. In recent years, AI and machine learning (ML)
algorithms have become more sophisticated, making it possible
to automatically detect malware in real‐time and without
human intervention [12].

1.2 Malicious Code Classification System

A static analysis approach is proposed to automate the
discovery and categorization of the type of file without
executing it, using a MC classification model. The classification
system takes all files, including MC, normal files, and source
files, as input data. During the pre‐processing step, the portable
executable (PE) information extraction module and the picture
production module are used to produce input data that is used
in the classification stage. In the subsequent classification step,
a variety of algorithms, including convolutional neural network
(CNN), random forest, gradient boosting, and decision tree
algorithms, are used to decide if the input is malicious. The final
classification of MC is achieved by integrating the results from
each model. The classification outcomes are stored in a
database that includes information about the data along with a
single value indicating whether or not the data is harmful. The
system uses a learning model that has been developed using
different algorithms as a preparation step. The input file is



processed and converted into input data for the model by
extracting hash values, PE data, and performing image
conversion.

Hash Extraction: The input data is first transformed into an
eigenvalue from its hash value to determine if the input data is
duplicated. In the database update step, the classification
outcome of newly entered data is incorporated into the
database, and duplicate data is updated using the extracted
hash value as a primary key.

Data extraction from PE: The header and sections of the PE
structure contain the necessary data for PE files to function
correctly in Windows. The capability to identify installed
dynamic link libraries (DLLs) as well as the functions they
perform using the import address table (IAT) inside the PE
Header enables the extraction of malignancy‐related data from
PE structures without the need to execute MC. If the file
contains a PE structure, the header and section portions may be
used to extract 55 characteristics, including entropy and
packers. The binary file’s packing information is located using
the Yet Another Reverse Engineering Framework (YARA) rule
configuration, using signatures to recognize and categorize MC
types. The image creation module visualizes and converts the



input file for CNN by transforming the input data into a one‐
dimensional vector [13].

1.3 Literature Review

In the field of malware detection, two major techniques have
been employed: static analysis and dynamic analysis. The
application of ML methods has been proposed to improve the
performance of malware detection. Schultz et al. [1] introduced
a method of using ML to detect new malicious executables by
using three distinct byte sequences, readable texts, and PE as
static features. The method was tested on 4266 different files
and achieved an accuracy of 97.11% using the Bayes algorithm
for classification. Usukhbayar et al. [2] presented a framework
that utilized three static features, including data from the PE
Header, application programming interface (API) function calls
made by DLLs, and DLLs. They chose the subset of
characteristics using data mining techniques like information
gain and tested three different classification methodologies:
Svms, Naive Bayes (NB), and J48 where maximum accuracy was
obtained by J48 at 98%. Tzu‐Yen Wang et al. [3] used data
contained in the PE Headers to detect malware. Their dataset
consisted of 9771 different programs, including backdoors,
email worms, Trojan horses, and viruses. The accuracy rates for



viruses, email worms, Trojan horses, and backdoors were
97.19%, 93.96%, 84.11%, and 89.54%, respectively,
demonstrating high detection rates for email worms and
viruses. With the advancement of dynamic malware analysis,
researchers have shifted from static feature extraction to
dynamic analysis. Tian et al’s use of Weka classifiers to extract
dynamic characterestics (API call sequences) out of an
executable file operating in a virtual environment to separate
malware from trustworthy software and identify the malware
family. The dataset included 1824 executables, and the accuracy
was 97%. Wang et al. [5] also proposed the use of dynamic
analysis for malware detection, using similarity matrices of
dynamic extraction technologies on a dataset of 104 files. They
achieved an accuracy of 93%. Santos et al. [14] proposed a
hybrid strategy that combined the static and dynamic features
of an executable file. By using a semi‐supervised learning
method, in which only 50% of the training data was labeled,
they achieved an accuracy of 88%. PE‐Miner was suggested by
Shafiq et al. [13] as a technique for finding PE malware. They
collected 189 characteristics first from PE file segments and
used feature selection/reduction methods like principal
component analysis (PCA) to choose the most pertinent
features. The technique was evaluated using five supervised
algorithms Ibk, J48, NB, RIPPER, and SMO on seven distinct



types of dangerous executables. The identification of viruses
produced the highest results (99% true positive rate and 0.5%
false positive rate).

Lo, Pablo, and Carlos [8] investigated the bare minimum
requirements for PE malware detection and concluded that by
using an assembly classification schema, they could detect
malware with 99% accuracy using nine features. However, their
base feature pool was created using third‐party software,
VirusTotal, and the system was not evaluated against various
malware detection techniques. PE files are executable files that
typically run on the Windows platform and have the .exe or .dll
extension. The executable code text part, the data sections (.bss,
.rdata, and.data), the resource section (.rsrc), the export section
(.edata), and the import section are all portions that make up a
PE file (.idata), among others. The PE file format is defined by
Microsoft and is documented in the PE and common object file
format (COFF) specifications, which can be found in the
microsoft developer network (MSDN) library. The point of entry
(the starting location of the script to be run), the number of
sections, the size of the additional header, and other crucial
details about the file are all contained in the PE file header.
Information about each portion of the file is provided in the
section table, including the name, virtual size, virtual address,
and raw data size. The text section contains the executable code



of the file, which is machine code that the computer can
execute directly. The data sections contain initialized and
uninitialized data used by the program. The resource section
contains information about the resources used by the program,
such as icons, bitmaps, and dialog boxes. The export section
contains information about the functions and variables that are
exported from the file, allowing other files to call them.
Information on the variables and functions loaded from other
files is provided in the import section, which is needed by the
program. Overall, the PE file format provides a way for
Windows to efficiently load and execute programs, making it an
important component of the Windows operating system.
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Table 1.1 compares four existing malware detection
approaches, namely Kirin, STREAM, SmartDroid, and
AMDetector. It includes information on the methods used,
advantages, drawbacks, and detection results of each approach.
The data shows varying levels of performance and limitations
in the different approaches.



1.4 Malware Behavior Analysis

The categorization of malicious executable files can be based on
a wide range of factors, including execution time, network
activity, registry access frequency, number of accessed files, and
more. However, the most promising approach is to categorize
executable files based on an examination of their behavior.
Such a classification will allow for the identification of classes
linked to the fundamental concepts driving the functionality
and intent of malicious software. To differentiate between these
classes, clustering algorithms should feed data that accurately
describes the behavior of executable files. It is recommended
that this information be obtained by sequencing the calls to
WinAPI functions. To analyze the behavior of each file,
executables are run in a virtual environment, and the API call
logs of each file are saved. These features are then combined
after static and dynamic features have been extracted. ML
classifiers use the integrated feature set as input to identify files
as malicious or benign. The header and sections of the PE
structure contain the data necessary for PE files to operate on
Windows. The DLL that was loaded and the function being
utilized may both be identified using the IAT within PE Header.
Thus, information about malignancy may be obtained from PE
components without the need to execute the MC [5]. If the



information has a PE structure, the header and section parts of
a file have been utilized to extract a total of 55 features,
including entropy and packers. By using YARA rule setting, the
file’s packing information can now be found within the binary
file. The YARA rule comprises tools that categorize different
kinds of malicious programs depending on their signatures and
can identify them. The maliciousness of code can be categorized
using conventional techniques if the patterns are compared and
found to be malicious.

There have been various techniques proposed and
implemented to prevent malicious program executions at the
client side and on cloud hosts. In this section, we will review
some of the most notable techniques and their limitations.
Forest et al. [6] introduced a process‐level anomaly detection
method for buffer overflow and symbolic link attacks. The
authors differentiated typical and unusual features using brief
System Call sequences produced by an active privileged
process. Researchers examined the execution of procedure
System Call sequences and identified typical behavior. Lee et al.
[15] distinguished between typical and abnormal patterns in
UNIX processes. Using a ML approach, they discovered abuses
and intrusions in UNIX processes and demonstrated RIPPER, a
rule‐based training technique, was used by them to analyze
information obtained from UNIX sendmail software.



A technique for identifying intrusions based on invasive System
Calls was put out by Warrender et al. [16] They captured the
kernel’s System Call patterns and gained knowledge of over
four distinct techniques for locating intrusions based on the
System Call sequences, identifying privileged processes, and
studying their normal behavior. An artificial neural system was
utilized by Ghosh et al. [17] to learn the normal System Call
pattern of UNIX program execution. They used the Defense
Advanced Research Projects Agency (DARP) dataset to establish
profiles for over 150 different programs and trained a neural
network for each program to recognize unusual behavior. Liao
et al. [18] developed a novel method for identifying typical
program behavior by using the frequencies of System Calls and
classifying it as ordinary or intrusive behavior using a K‐
nearest neighbor (KNN) classifier. Qing et al. [10] based their
method on rough set theory. They took the System Call
sequences produced during a process’s regular executions and
extracted rules with the smallest possible size to build a model
of the process’s typical behavior. Then, based on the normal
behavioral model of the constructed process, they employed a
crude set concept algorithm to detect intrusions. Sun et al. [18]
recommended Collabra, which provides a filtration layer within
the cloud to protect the cloud and the hosts from illegal access.
A technique for automated intrusion assessment in the cloud



was put out by Arshad et al. [11]. They categorized all attacks
based on three security attributes: availability, confidentiality,
and integrity. They used supervised and unsupervised learning
techniques to create training datasets and mapped System Calls
to these three attributes based on the type of attack. However, a
demonstration of the approach is missing.

Using frequent System Call sequences, Hai et al. [12] presented
an automated method for cloud‐based intrusion detection. They
used a Hidden Markov model (HMM) to detect potential threats
and an automated mining algorithm to extract frequently
occurring System Call sequences. This approach, however,
demands continual learning and detection resources, and the
rule extraction process is computationally challenging.
Sebastian et al. [19] proposed a method of introspection for
detecting kernel rootkits. Based on alterations to the system
state, they were able to locate rootkits. The system state was
examined using a bottom‐up methodology, starting from a
binary representation down to the kernel object level. The
authors were successful in identifying kernel rootkits using
their method. However, the analysis and reporting are complex,
and the method is not architecturally independent because it is
based on the kernel level. Intrusion detection in cloud
environments is a crucial aspect of ensuring the security of
cloud‐based systems. The traditional approach to intrusion



detection involves the use of System Calls and process states to
gauge the similarity of the system to itself. However, this
approach has several limitations and can be ineffective in
detecting slow‐moving threats. In this context, measures for
self‐similarity are used to identify abnormalities in Kwon et al.’s
[20] proposed self‐similarity‐based strategy for intrusion
detection within the cloud.

The self‐similarity measure is computed using cosine similarity,
making it a system‐wide strategy. However, this approach is not
always accurate enough to identify attacks that occur gradually.
Kong et al. [21] proposed an alternative approach, Ad‐joint,
which uses an Ad‐joint to monitor the kernel state of the
protected system. This approach provides two layers of security
but also increases the demand for additional resources. Despite
the efforts made to date, several research gaps still exist in the
field of intrusion detection in the cloud. For instance, previous
techniques have not been effectively applied to newer systems
such as the cloud, which requires a distributed architecture
with synchronization, log collection, alerts, and response
mechanisms. Additionally, the cost–benefit analysis of using the
self‐similarity‐based approach in cloud infrastructure does not
support the solution’s effectiveness in identifying anomalous
programs.



When it comes to identifying malicious System Calls inside the
host operating system, the conventional system call pattern
method is difficult and inefficient. It permits the identification
of suspect system call patterns without having to look at
particular applications or processes. Its efficacy is however
constrained by the fact that system call patterns that were
recognized as unusual once the training could occasionally
occur as part of a typical execution scenario.

By saving processing and data gathering resources, methods
that use the rate in System Calls for unexpected behavior
detection can achieve respectable efficiency. These techniques
might not always catch assaults nevertheless, especially if the
attacker uses the same frequency in system call sequences but
in a different order to trick the detection system. Additionally,
the research on such systems [22] indicated that virtual
machine monitor (VMM) layer detection is hypervisor‐
dependent, rendering distributed solutions susceptible to client‐
side IDS instance failure [14]. Additionally, system‐wide
intrusion detection systems are less effective than program‐
wide intrusion detection systems and cannot detect slow‐
moving threats, where the probability of unusual system call
sequence behavior indicating an intrusion is low. Despite the
advances in intrusion detection in the cloud, there is still a need
for effective and efficient solutions that can address the



limitations of the existing approaches. Further research is
necessary to address the research gaps and improve the
efficacy of intrusion detection in cloud environments.

1.5 Conventional Detection Systems

Malware scanners [23] are tools that attempt to identify
malicious executable files by comparing them to a known set of
patterns. They typically search through each line of code in the
file, looking for a unique signature represented as a hash code
or string. Extracting these signatures is a challenging and time‐
consuming process, and modern malware can evade scanners
by changing their patterns dynamically. To overcome this,
scanners are developing more sophisticated algorithms that use
ML, such as analyzing machine instructions or API calls [7, 22].
For instance, systems that use machine instructions train
classifiers using features derived from op‐codes. These systems
may use op‐code sequences to extract features such as
frequency, histogram, and others. By examining op‐codes, they
typically label any potentially malicious behavior in a cloud
application as benign. This may not accurately reflect reality, as
the behavior could be legitimate malicious access to databases,
root filesystems, or networks in a certain situation. To confirm
whether the file is safe, the suspect file is temporarily



monitored and isolated in a simulated environment, and
marked as safe if its behavior appears reasonable based on
established metrics.

Intrusion detection systems are used to prevent external attacks
on an organization’s computer networks. They categorize
malicious communications by monitoring incoming packets for
irregularities at the entrance to a local area network [24].
However, these systems often presume that the trusted
perimeter is secure and may not detect malicious activity from
insiders [23]. They operate similarly to malware scanners by
detecting known rules or patterns, with sophisticated systems
using ML to detect more advanced network attacks. They rely
on inspecting packet headers and, in some cases, packet
contents.

From a ML perspective, signature‐based mechanisms classify
malicious feature vectors by comparing the current feature
vector with a labeled set that has already been recorded [25]. As
a result, they are ineffective against 0‐day attacks. Also,
behavior‐based mechanisms can be adapted, as they estimate
the most recent feature vectors and learn from a provided
dataset. There have been many studies in the literature that use
ML methods in malicious behavior recognition systems, with
most of them focusing on network communications intrusion



detection systems [22, 26]. Feature vectors are extracted from
various sources, for instance, user command patterns, log
entries, information about lower‐layer systems, and CPU and
memory use [24]. ML‐based detection systems often employ
attributes such as API calls and machine commands [10]. These
systems classify malware into categories such as viruses,
worms, backdoors, and Trojan horses.

In the domain of malware analysis, techniques are divided into
two types: signature‐based and behavior‐based [27]. Signature‐
based techniques search for unique patterns in malicious files,
such as distinct raw byte patterns or regular expressions. In
contrast, during code execution, behavior‐based techniques get
particular feature values through runtime actions and logs.

1.6 Classifying Executables by Payload
Function

In this research, the focus is on the classification of malicious
executables based on their payload functions, rather than on
their detection. The goal is to determine if classification
techniques can determine the type of malicious executable,
such as whether it opens a backdoor, is sent in bulk, or is an
executable virus. This aspect of the research is particularly



beneficial for computer forensics experts. The first step in the
process is the identification and cataloging of the characteristics
of malicious executable payloads. A challenge encountered in
this process is that many executables fit into multiple
categories, making them multi‐class examples, which is a
common problem in document classification and
bioinformatics. For instance, an executable may both log
keystrokes and open a backdoor, making it fall into both the
keylogger and backdoor categories.

One solution to this issue is to combine compound classes with
simple classes, such as backdoor + keylogger. This can be
achieved by using one‐versus‐all classification, where all
executables are categorized into groups based on their
capabilities. For example, all backdoor‐capable executables
regardless of any additional features, including keylogging,
would be put inside the backdoor class, whereas every other
executable would be put inside a non‐backdoor class.

The following stage is to develop a detector for something like
the backdoor category, and thereafter carry out the same
procedure for the other classes. The total prediction of the
program may be determined by applying every detector and
reporting every classifier’s prediction. For instance, if the
backdoor or keylogger detectors both identify hits, the



executable’s overall forecast would’ve been backdoor + 
keylogger.

1.7 Result and Discussion

It has been observed that the detection methods used may have
simply developed the ability to recognize some obfuscation
techniques, such as runtime compression, but as long as these
techniques are linked to malicious executables, this does not
provide a serious problem. Alternative data extraction
techniques were also investigated. One concept was to create an
audit of machine instructions and execute the malicious exe
files in a “sandbox.” However, this strategy was abandoned
owing to a number of drawbacks, including a lack of auditing
tools, challenges managing a large number of interactive
programs, and an inability to identify malicious activity at the
conclusion of lengthy programs. Additionally, some dangerous
programs have the ability to recognize when they are running
inside a virtual machine (VM) and then either stop running or
avoid running destructive code.

Our research has practical implications in two areas of
commercial applications. The first is the development of a
system for detecting malicious executables, similar to the MECS
system. This system would require storage of a large set of both



known malicious executables and benign executables in server
software. The computation‐intensive task of creating classifiers
from such algorithms for measuring information gain and
assessing categorization techniques would need to be used, and
the data would need to be processed sequentially, in parallel, or
both. To create a prediction, the client program would just need
to collect the top n‐grams out of an executable and utilize the
classifier. Through the internet, the classifier might be remotely
updated. It is vital for the server to test several techniques as
well as for the client to handle any viable classifiers since the
best‐performing technique may change with new training data.
These methods, when combined with signature‐based methods,
could provide a more effective way of detecting malicious
executables than what is currently possible.

The second system is focused on serving computer forensic
experts. Although it is uncertain if the statistical properties of
an executable are predictive of its function, there is evidence
that high detection rates can be achieved when predicting its
function.

In today’s digital world, where files and information are
exchanged over networks and the internet, network malware
detection is of utmost importance. Using the network analysis
program BroIDS [16], PE files may be extracted from incoming



packets that are routed through the router and into the internal
network. Then, the pertinent characteristics are extracted using
the feature extraction module. Following the extraction of the
features and representation of the file, the file may be passed
toward the malware analysis engine, which already has the
training learning algorithm stored in memory. If malware is
found, a warning will be created and forwarded to the operator.



Table 1.2 Displaying malware families with the specific malware.

Malware family Spyware Adware Cookies Trap

Pattern ✓ ✓ ✓ ✓

Obfuscated ✓ ✓ ✓ ✓

Polymorphic ✓ ✓ ✓ ✓

Toolkit ✓ ✓ ✓ ✓

Network ✓ ✓ ✓ ✓

Remote
execution
through we

✓ ✓ ✓ ✓

PC ✗ ✗ ✗ ✗

Network ✓ ✓ ✓ ✓

Removable disks ✓ ✓ ✓ ✓



Malware family Spyware Adware Cookies Trap

Internet
downloads

✓ ✓ ✓ ✓

Breaching
confidentiality

✓ ✗ ✓ ✗

Inconveniencing
users

✗ ✓ ✗ ✗

Denying
services

✗ ✗ ✗ ✓

Data corruption ✗ ✗ ✗ ✓

MC detection techniques may be broadly categorized into two
groups: abuse detection and anomaly detection. Misuse
detection strategies concentrate on “maliciousness” and seek to
recognize the traits and/or runtime behaviors of MC. Anomaly
detection strategies, on the other hand, focus on “normalcy”



and attempt to spot code traits and/or runtime behaviors that
depart from what is thought to be normal, i.e., non‐malicious.

Table 1.2 displays a list of malware families and their specific
types. This table provides an overview of different types of
malware and the families they belong to. It helps to categorize
and understand the different types of malware that exist and
the potential threats they pose.

1.8 Conclusion

The rising threat of MC has led to an increasing demand for
efficient and effective ways to detect and respond to it. In this
research, we introduced a system that examines code statically
and automatically to assess its maliciousness. This system,
called the malicious executable classification system (MECS),
extracts various features of code using ML methods, the packer
information, the PE metadata, and the hash value to classify it.
MECS is different from traditional signature‐based classification
tools in that it relies on considerations instead of patterns to
identify MC. The system also visualizes the code using a
visualization method and inputs it into a CNN model, which
allows for the classification of both PE and shell‐like files.



MECS can find undiscovered harmful executables in the wild by
employing retrieval of information and text classification
algorithms. After detection, computer forensics experts can
further analyze the program’s functional characteristics, such
as its ability to send mass emails, modify system files, or grant
access. This may involve removing obfuscation, such as
compression. However, this task can be challenging due to the
fact that most malicious executables perform multiple
functions, requiring multiple class labels for each training
example. Despite its potential, MECS is only one stage of a more
comprehensive system for identifying and categorizing
malware. Integrating it with other techniques that search for
well‐known signs can further enhance the security of
computers. However, some existing anomaly detection
techniques may have limitations, as they only take into account
the behavior that was seen when the program is still learning,
which is probably only a small part of all of its behaviors. This
can lead to false positives and missed detections. Additionally,
some antivirus techniques can be bypassed by malicious actors
who change the PE Header attributes or add inconsequential
strings to the printable strings feature.

In conclusion, the development and implementation of the
MECS system offer a promising solution to the challenge of
detecting and responding to MC. By automating the analysis



process and incorporating various ML techniques, MECS can
enhance the efficiency and accuracy of malware detection and
classification. It provides a useful tool for computer forensics
professionals in their ongoing efforts to protect computer
systems from malicious actors. However, it is just one piece of
the puzzle. While the MECS system can detect malicious
executables, it still requires computer forensic experts to
determine the program’s functional characteristics and remove
any obfuscation such as compression. Additionally, MECS only
considers a small portion of all the software’s possible
behaviors, meaning that false positives can still occur.
Moreover, the traditional antivirus techniques have limitations
as well. For example, some malware writers can avoid
detection by changing the PE Header attributes or adding
inconsequential strings. Thus, a more comprehensive approach
to detecting and classifying malware is needed, one that
combines the strengths of various methods and takes into
account the evolving nature of MC. To that end, a strategic
approach that employs a combination of methods, such as
signature‐based detection, runtime monitoring, and behavior‐
based analysis, would likely be more effective in detecting and
classifying malicious executables. By combining these methods,
computer forensic professionals can have a better



understanding of the program’s behavior and can determine
the true nature of the code, even if it is obfuscated.

In conclusion, while the MECS system is a valuable tool for
computer forensic professionals, it should be seen as just one
component of a larger, comprehensive approach to detecting
and classifying MC. By combining the strengths of various
methods, computer forensic professionals can better protect
computer systems and stay ahead of the ever‐evolving threat of
malicious actors.
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2.1 Introduction

Internet access is now considered to be a basic requirement for
everyone. The age of cloud computing, which allows users to
access and store data over the cloud, is currently upon us. A
public, private, and hybrid shared lake of computing resources,
such as storage, services, servers, networks, and applications, is
what cloud computing represents. It enables convenient, on‐
demand network access from anywhere. These services can be
delivered swiftly and with the least amount of managerial
work. The threat of various attacks carried out by harmful
software is there nowadays for devices that are linked to the
internet. Access to the cloud servers is possible. The more cloud



computing is used, the more cyberattacks there will be thanks
to the internet.

One of the most significant threats to online security is the
botnet. The phrase “botnet,” which combines the terms “Bot”
and “Network,” refers to a collection of hacked, infected,
internet‐connected devices that are under the direction of a
person known as the “Botmaster” or “Botterder.” Through a
command‐and‐control server, the botmaster can remotely
manipulate these infected devices. Because botnets enable a
one‐to‐many interaction between the command‐and‐control
server and the bots, the botmaster uses them for things like
advertising and cyberattacks. As soon as a device is infected
with malicious code, it joins a botnet and begins to work for the
botmaster without the user’s knowledge. Botnet spreads itself
periodically by infecting an increasing number of computers,
laptops, servers, and mobile devices.

Most internet users today are victims of the numerous
cyberattacks that are carried out using botnets. Cybercrimes
such as DDoS, click fraud, phishing fraud, key logging, bitcoin
fraud, spamming, sniffing traffic, propagating new viruses, and
abusing Google AdSense can all be carried out by botmasters.
Today, the botnet is being used as the foundation for all online
cybercrimes. Drive‐by downloads, emails, and pirated software



are the most popular ways for a botmaster to infect a user
device and turn it into a zombie. Numerous detection methods
have been suggested based on prior research.

However, most of them are concentrated on offline botnet
detection; we still need to concentrate on the real‐time
detection. The two primary categories of the currently used
botnet detection methods are intrusion detection systems (IDSs)
and Honeynets Based Detection Techniques. To identify botnet
attacks and shield cloud servers from them, researchers
concentrate on cybersecurity and machine learning (ML). ML
algorithms are now involved in more and more aspects of
everyday life, from what one can read and watch, to how one
can shop, to who one can meet, and how one can travel [1–5].
This study presents the performance comparison of different
ML algorithms for the detection of Internet of Things (IoT)
botnet attacks.

The rest of the work is structured as mentioned. Section 2.2
presents the existing work for detection of Botnet attacks.
Section 2.3 discusses about the botnet architecture, botnet life
cycle, and different botnet detection techniques. Section 2.4
describes the methodology adopted to perform this work.
Section 2.5 discusses the experimental setup followed by results



and discussion in Section 2.6. Section 2.7 finally concludes the
work.

2.2 Literature Review

Recently, many studies have shown that ML and deep learning
are effective in detecting botnet attacks. Some studies also look
for the essential attributes of a botnet that may assist to
differentiate between normal traffic and an attack. Feizollah et
al. [6] evaluated the five classifiers K‐nearest neighbor (KNN),
multi‐layer perceptron (MLP), decision tree (DT), support vector
machine (SVM), and Naïve Bayes (NB) for identifying the
Android‐based malware on the IoT network. They used the
three important features among various network‐based
features. Authors claimed that the KNN classifiers perform
better among all five classifiers. Stevanovic and Pedersen [7]
investigated how botnet recognition can be accomplished with
high exactness by utilizing directed artificial intelligence (AI).
They, first and foremost, proposed a botnet identification
framework that utilizes stream‐based traffic investigation and
directed AI as a device for distinguishing botnets. They then, at
that point, continue to test exhibitions of eight of the main AI
calculations (machine learning algorithms – MLAs) for grouping
botnets traffic.



One of the studies examined the utilization and viability of AI in
recognizing botnets. Authors examined the security features
used in the existing solutions available in the literature and the
associated problems with the existing solutions. They analyzed
the existing security features with the help of different ML
algorithms [8]. In another study, authors utilized these methods
for drawing and creating information through an IoT
organization. They applied new information to investigate
various qualities of an attack, for example, network addresses,
physical layer addresses, package size, and so on [9].

Khraisat et al. [10] introduced a hybrid‐based system for
identifying the IoT attacks. Authors compared the proposed
technique with the other existing techniques, and they claimed
that the proposed technique gives higher accuracy among all,
and it also helped to reduce the false alarm rates.

In contemporary work, authors introduced a new labeled
dataset over the IoT botnet network traffic. They utilized up to
83 IoT devices and deployed real malware for generating this
labeled dataset. Authors validated the dataset by applying both
supervised and unsupervised ML algorithms [11]. They claimed
that the dataset is effective and now available as a MedBIoT
dataset. In another study, authors used the SVM‐based model
for detecting the IoT‐based botnets. Authors applied the Grey



Wolf Optimization (GWO) for optimizing the hyperparameters.
Authors claimed the proposed model took less detection time as
compared to the existing models [12].

Hariri et al. [13] described a new thread for IoT‐based home
security systems. Authors discussed few prevention and
detection techniques for preventing IoT attacks. Tuan et al. [14]
applied the numerous ML techniques for identifying the
distributed denial‐of‐service (DDoS) IoT botnet attacks. They
have considered two datasets for their experimental work.
Authors claimed that among two datasets KDD99 has shown
better performance with all the applied algorithms. Hoang and
Vu [15] proposed an assessment on botnet recognition model
utilizing AI calculations in contrast with peculiarity‐based
botnet location strategies. Authors applied different classifiers
namely KNN, RF, and NB to make classification among genuine
and botnet‐created domain names. Authors used the domain‐
based features to further improve the alarm rates.

2.3 Botnet Architecture

According to their architectural styles, the individual bots that
make up a botnet can be divided into three groups [16]. This
study discusses a few techniques for categorizing botnet
architectures, along with their benefits and drawbacks.



Centralized architecture: The simplest for the botmaster to
control and administer. One central location known as the
command‐and‐control server is where the botmaster controls
and manages all the bots in a botnet under centralized
architecture (C&C server). In this architecture, all the bots
receive commands from a single location known as the C&C
server and report to it as illustrated in Figure 2.1. In this
botnet architecture, two topologies are employed: star
topology and hierarchical topology. The essential internet
relay chat (IRC) and hypertext transfer protocol (HTTP) are
protocols used in centralized architecture. Because there is
only one central location, botnet management and
monitoring are relatively simple. Simple and quick direct
communication between the botmaster and the bots. The
design is simpler and has lower communication latency and
survivability in the centralized architecture. The botmaster
sends commands to the C&C server, from whence they are
distributed to every bot in the botnet. The fundamental
drawback of centralized design is that it has a higher
probability of failure than other architectures. Because of the
central point of control, if the C&C server fails, then all the
botnets will fail. Similarly, the detection of botmaster is very
easy as compared to decentralized and hybrid architectures.



Decentralized architecture: In a botnet’s decentralized or
peer‐to‐peer architecture, no single organization oversees
managing the bots. There are various C&C servers that
interact with bots. Decentralized architecture makes it more
difficult to detect a botnet than centralized architecture.
There is no specific command and control server in a
decentralized architecture; instead, all the bots function as
both clients and command and control servers. Peer‐to‐peer
architecture is more complex to create than centralized
architecture, making it more difficult to identify a botnet
with such architecture than one with another. Like this,
decentralized botnet architecture has higher message delay
and durability. Chances of failure are less in distributed
architecture as compared to centralized, as in case of failure
of one control server, another command and control server
may work on behalf of failed one.



Figure 2.1 Botnet architecture.

Hybrid architecture is a combination of both centralized and
decentralized architecture. Hybrid architecture may have
two different bots: a servant bot and a client bot. Either as a
client or a servant, the bots are linked to the hybrid botnet.
Although the design is not very sophisticated, monitoring and
detection of botnets with hybrid architectures are more
difficult than those with centralized and decentralized
systems.

2.3.1 Botnet Life Cycle



The botmaster should follow the correct steps, including first
infection, secondary injection, connection, transmitting
malicious code, maintenance and updating, while attempting to
infect another victim device. A botnet first infects a new
internet‐connected device, after which it uses various protocols,
including HTTP, FTP, and P2P, to inject malicious malware. The
target device automatically establishes a connection with an
already operational command and control server following the
successful injection of malicious code. The victim device turns
into a zombie once malicious code has been put into it. The
botmaster issues orders to the bot army through the command‐
and‐control server in step four. According to the commands that
the target device receives from the command, it carries out
malicious actions and control servers. The last step is to
maintain and update the zombie active all the time, it sends
updates to the zombie devices from time to time [17].

2.3.2 Botnet Detection Techniques

Botnet detection is the most crucial task to enhance
cybersecurity against the many cyberattacks that happen on the
internet today. According to prior research, there are two sorts
of botnet detection approaches: intrusion detection techniques
and honeynet detection techniques. Sub‐categories of IDSs are
further separated. Detection system based on honeynets and



honeypots: Both honeynets and honeypots stand for end‐user
devices. The greatest approach to gather important data
regarding cyberattacks is through these end‐user PCs. Due to its
high susceptibility to malicious attacks, this end‐user PC is
relatively simple for the botmaster to attack and infiltrate. The
knowledge regarding botnet attacks gathered by these
honeynets will allow the cybersecurity team to develop
effective detection methods. According to an earlier study, the
botnet periodically changes its signature for security reasons,
and honeynets are crucial for comprehending these botnet
characteristics. The honeywall, which is used for monitoring,
gathering, altering, and managing communication over the
honeypots, is crucial to the honeynet detection technique [18].

Intrusion detection system: An IDS is used to keep an eye on
network traffic for nefarious activity. If a malicious attack is
discovered during traffic, the computer system or the system
administrator is immediately notified. IDSs are also equipped to
respond to such malicious activity and prevent traffic coming
from a machine that has a virus on it. There are two different
kinds of IDSs: anomaly‐based and signature‐based.

A. Signature‐based detection: Malware is referred to as packet
sequences or the transportation of bytes series in searching
networks in signature‐based botnet detection technique. The



primary benefit of this detection method is how easy it is to
create new signatures. if you are aware of the network
performance you are looking for. This method is just too
straightforward and simple to comprehend and master. To
make a botnet attack more secure against PCs that have been
infected with bots, the botmaster alters the signatures of each
attack over time.

B. Anomaly‐based detection: This method mainly focuses on
the performance of network. It can consider only those
activities and traffic on network which are pre‐set by the
admin. With this method, each protocol’s rule needs to be
defined in advance and tested for accuracy. It recognizes
events that are unrelated to the feed or the generally
recognized performance model. Compared to signature‐
based detection techniques, anomaly‐based detection is
slightly more expensive in terms of computing, but it is also
more secure. This method also has several drawbacks, with
the biggest drawback being the difficulty in defining the
rules. Different rules are set for various protocols, which is a
more difficult task. Anomaly‐based techniques also have
some time and bot monitoring restrictions.

2.4 Methodology Adopted



2.4.1 Dataset Used

This study considered dataset of UCI’s repository for
experiment work (12). The dataset contains 10 attacks which
are conducted by 2 botnets namely “gafgyt” and “mirai.” These
attacks are performed on nine IoT devices namely “Danmini
Doorbell,” “Ecobee Thermostat,” “Ennio Doorbell,” “Philips
B120N10 Baby Monitor,” “Provision PT 737E Security Camera,”
“Provision PT 838 Security Camera,” “Samsung SNH 1011 N
Webcam,” “SimpleHome XCS7 1002 WHT Security Camera,” and
“SimpleHome XCS7 1003 WHT Security Camera.”

The dataset contains 7062606 instances and 115 attributes. This
study used selected instances during experiments for reducing
the complexity. However, the created model may work with the
entire data as well with more time consumption.

2.4.2 Machine Learning Algorithms Used

ML algorithms are the essential structure for implementing any
ML models. These models can be used for classification as well
as for regression [19, 20]. These algorithms can be classified as
supervised, unsupervised, and reinforcement learning. Five
different classifiers were used in this study namely logistic
regression (LR), random forest (RF), KNN, DT, and NB [22–28].



Logistic regression: LR lies in the category of supervised ML
algorithms and is mainly used for binary classification like
whether an attack lies in the class or not, as shown in
Figure 2.2. This algorithm basically predicts the possibility of
an input to be classified into a specific class.
Decision tree: DT lies in the category of supervised ML
algorithms. It is basically used for making classifications and
performing predictions. Just like a tree, DT also starts with a
root that represents a question and then represents branches
with respect to answer. These internal branches can again
represent another question, and the node can be further
branched with respect to answer. This process may continue
till the leaf node, or the end of data, as shown in Figure 2.3.
This algorithm is commonly used as it can process complex
datasets.
Naïve Bayes: NB also belongs to the category of supervised
learning algorithms. This algorithm is used for making
predictions for both binary as well as multi‐classification.
This algorithm works on the Bayes theorem, which runs
based on conditional probabilities that are unlikely to each
other. However, it represents the prospects of classification as
per their joint factors.



Figure 2.2 Logistic regression classification.



Figure 2.3 Example for decision tree classification.

Figure 2.4 K‐nearest neighbor algorithm.



K‐nearest neighbor: KNN algorithms can solve both
classification and regression problems. However, it is majorly
used for classification problems by data scientists. This
algorithm works on the mass vote of its k‐neighbors, as
shown in Figure 2.4. Such measurements are performed
using distance function. For example, you can get the
information of a person through his friends and colleagues.
However, this algorithm is very expensive to implement.
Random forest: RF belongs to the category of supervised
learning algorithm which is built upon DT algorithms. It is
used for solving both classification and regression real‐life
problems. This algorithm contains a forest of DTs, as shown
in Figure 2.5. The forest which is produced by it is making
use of bagging or bootstrapping techniques to improve the
accuracy of ML algorithms. RF algorithm improves the
problem of overfitting of datasets and helps to improve the
precision value [21].



Figure 2.5 Random forest learning algorithm.

2.5 Experimental Setup

The experiments were performed on HP Laptop with Windows
10 Operating System. Jupyter notebook for python with
libraries like Scikit learn, NumPy, Pandas, Matplotlib, and other
python libraries were used for performing experiments. Five
different classifiers, namely LR, NB, KNN, DT, and RF, were
executed. The data was imbalanced, so before executing these
ML classifiers, the data was prepared to be balanced using z‐
score standardization. Each ML algorithm was trained on using
75% of the dataset; however, to assess the effectiveness of each



algorithm, 25% of the data was used for performing testing of
the model. The function code for each classifier is given below:

def DT_model(): 

     dt_class = DecisionTreeClassifier() 

     return dt_class.fit(x_train, np.ravel(y_trai

def KNN_model(): 

     knn_class = KNeighborsClassifier(n_neighbors

     return knn_class.fit(x_train, np.ravel(y_tra

def LR_model(): 

     lr_class = LogisticRegression(solver='lbfgs

     return lr_class.fit(x_train, np.ravel(y_trai

def RF_model(): 

     rf_class = RandomForestClassifier() 

     return rf_class.fit(x_train, np.ravel(y_trai

def NB_model(): 

     nb_class = GaussianNB() 

     return nb_class.fit(X_train, np.ravel(y_trai

2.5.1 Evaluation Metrics

Each algorithm is evaluated based on four evaluation metrics
namely Accuracy, Precision, Recall, and F1‐score. All these
metrics are computed using confusion matrix (Table 2.1).

The definition of each metrics is given below:



(2.1)

(2.2)

Accuracy: It represents the proportion of correct predictions
to the entire data. Accuracy can be computed as given in
Eq. (2.1).

Recall: It represents the proportion of all positive cases which
are correctly categorized as positive by model to the total
number of positive cases. Recall can be computed as given in
Eq. (2.2).

Precision: It represents the proportion of correctly
categorized as positive to the total number of categorized
positive cases.
F1‐score: This is the relationship between precision and
recall. Higher value of F1‐score shows the model is more
accurate and robust.



Table 2.1 Confusion matrix.

Forecasted results

+ve −ve

True +ve T F

−ve F T

2.6 Results and Discussions

This section discusses the results in detail for one of the IoT
devices (Philips B120N10 Baby Monitor). Figure 2.6 illustrates
the classification matrix generated by each classifier.

From Figure 2.7, it can be observed that RF classifier performed
best among all classifiers. After RF, DT gives performance at
second position for IoT device Philips B120N10 Baby Monitor
followed by KNN. There is a slight difference in the
performance of KNN and LR as compared to the performance of
RF and DT. However, among all five classifiers, NB classifier
performed least accurately. From Figure 2.7, it can also be noted
that the implemented model provides a significantly high attack

P N

P N



detection rate, around 99% in most scenarios. Moreover, in
many cases, it gives 100% detection rate with RF classifier. All
these classifiers except NB provide a very high precision as well
as F1‐score.

Figure 2.6 Confusion matrix (a) logistic regression, (b) KNN, (c) decision tree, (d)
random forest, and (e) Naïve Bayes.



Figure 2.7 Performance comparison among different classifiers.

2.7 Conclusion and Future Work

The IoT has the capacity for universal transformation as it has
made it possible to share and store the information from
anywhere on the network. It makes human lives comfortable
and fast with the usage of intelligent devices. However, these
facilities raise the security concerns as well. This study
discussed the botnet attacks, their architecture, and the
literature review presented on botnet attacks in detail. This
work focused on the use of ML algorithms for analysis and
detection of botnet attacks. Five ML algorithms were
implemented for detection of IoT botnet attacks. Results have



proven that RF performed better among all five classifiers. In
the future, the study will be extended with deep learning
techniques.
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3.1 Introduction

Digital forensics is a vast field; it has to deal with systems and
data that are associated with it. Intelligent digital forensics
serves as a valuable technique for enhancing system security
and analysis capabilities. It aids in the proactive management
of information and computer vulnerabilities, thereby mitigating
potential risks. In digital forensics, the dedicated investigator is
required to collect or gather information and evidence while
making sure no data or evidence is lost, harmed, or modified.
The investigator then would have to make a report of all their
findings. Preserving the digital evidence is a very important
task in digital forensics, analyzing the digital evidence, and then



making an analytic report of the investigation all fall under the
field of digital forensics.

Consider the scenario in which Connie Debate, a woman, was
fatally attacked in her residence in 2015 [1]. Her spouse,
Richard, stated that he had returned home prompted by an
alarm notification and recounted that he was rendered
immobile upon arrival, enduring further assault by an intruder.
He narrated that his wife had been shot and killed by this
intruder upon her return from the gym. Subsequent digital
inquiries were conducted, revealing a contradiction to Richard’s
account. Data from Connie’s Fitbit, a wearable device capable of
tracking GPS location, distance traveled, steps taken, and heart
rate, disclosed that she was indeed at home during the time
Richard alleged she was at the gym. The Fitbit data indicated
that Connie ceased movement one minute before the home
alarm was triggered. This instance underscores the potential of
digital forensic methodologies, as they allow the collection and
synthesis of evidence from diverse sources.

The continuous expansion of digital storage capacity, coupled
with its ubiquitous integration into daily routines, leads to an
increased need for such investigations. This, in turn, results in a
higher volume of data requiring thorough examination [2]. As
observed, conducting forensic inquiries on extensive data and



systems can become both labor‐intensive and ineffective. This is
where artificial intelligence (AI) and machine learning offer
valuable assistance. AI endeavors to replicate human cognitive
abilities, rendering it particularly advantageous due to its
heightened efficiency when contrasted with the manual efforts
of human operatives. It can be applied where it is dangerous for
humans to enter and perform digital investigations. Machine
learning which is a subset of AI can make it more efficient and
reliable by applying mathematical algorithms to avoid manual
programming which can be extremely inefficient. It helps in
increasing the accuracy and reducing the possibility of an error
to a great extent. Different techniques are applied to reduce the
dimensionality and complexity of the data so that applying
machine learning algorithms will be easier and more accurate.

3.2 Literature Survey

Cihan et al. in Intelligence in Digital Forensics Process mention
digital forensics corresponds to the modern counterpart of
traditional criminal investigations, utilizing digital technologies
to expedite the process [3]. In conventional forensics, an
investigator’s expertise and prior experiences significantly
influence the success and efficiency of the investigation.
Likewise, harnessing computational resources and intelligence



within contemporary contexts enhances the outcomes of digital
investigations. This research builds upon existing literature by
proposing the integration of machine learning algorithms,
specifically those related to clustering and classification,
applied to dynamic database files. The goal is to inject a level of
intelligence into the digital investigation process. The study
culminates in the creation of a comprehensive versatile
framework for intelligent forensic investigations.

Forensic examination is commonly an intricate and time‐
intensive procedure, demanding that forensic analysts gather
and scrutinize diverse fragments of evidence to formulate a
robust conclusion, Kelly et al. explained in Explainable AI for
Digital Forensics: Opportunities, Challenges, and a Drug Testing
Case Study [4]. In this chapter, a thorough examination is
conducted into the potential opportunities and challenges
linked to the advancement of interactive and comprehensible
AI systems, recognized as explainable AI (XAI). These systems
are designed to provide support to digital forensics by
automating the decision‐making process. This automation, in
turn, expedites the creation of credible evidence suitable for
presentation in a court of law, ensuring both speed and
reliability.



Jadhav et al. in its paper talked about AI involving endowing
machines or computer programs with the capacity to emulate
human‐like functions. These encompass a wide array of
capabilities including visual comprehension, speech
discernment, cognitive analysis, decision formulation,
experiential assimilation, and the adept resolution of intricate
problems. Notably, AI accomplishes these tasks with greater
swiftness and a notably diminished error rate in contrast to
human performance.

Dr. Mitchell suggests that the application of AI presents a
valuable prospect. This field, deeply entrenched in
contemporary computer science, excels in managing
computationally intricate and expansive issues. Its potential
utility in digital forensics is noteworthy, considering the
escalating significance of this field [5]. Digital forensics
frequently demands astute evaluation of extensive and intricate
datasets. Herein lies the potential for AI to serve as a connecting
link, effectively addressing these challenges.

Philip Turner’s work delves into the amalgamation of digital
evidence derived from varying origins [2], as well as the adept
utilization of digital evidence bags (DEBs) for targeted and
judicious imaging [6]. The application of a forensic
methodology to incident response, network analysis, and



system administration, facilitated by the implementation of
DEBs, is a subject of research [7]. The notion of DEBs is pivotal
in this context, providing an encompassing container for
diverse digital evidence origins. This approach ensures the
preservation of origin information and the consistent thread of
investigation across the entirety of its duration. The author
advocates for the integration of intelligent methodologies in
handling selective information capture scenarios, proposing the
use of a selective image approach in conjunction with the DEB.
The research delves into significant facets mirroring the
effective amalgamation of expert insights from both technical
and legal domains and ensuring the comprehensive capture of
pertinent information and evidence relating to related crimes
within the DEB.

3.3 Phases of Digital Forensics

The digital forensics phases for investigation are discussed as
shown in Figure 3.1.

1. Investigation preparation
This phase involves recognizing the investigation’s objective
and determining the necessary resources for its execution.
The investigator needs to understand the purpose and the
goal of the particular case investigation. They need to



prepare the essential resources that would be required to
facilitate the investigation.

Figure 3.1 Phases of digital forensic investigation.

2. Evidence acquisition
This step requires identifying the sources of the digital
evidence and looking for methods to preserve the digital
evidence. This step is extremely crucial, collecting evidence



from different possible sources. A single wrong step could
lead to the loss of highly important information. The
investigator needs to make sure to search areas that are
easily missed for hidden data or information. Collecting data
or evidence is surely important but thinking and
implementing methods to preserve these collected data is
equally important.

3. Analysis of evidence
In this stage, it is necessary to pinpoint the potential tools
and methods that could be applied for data processing and
the interpretation of analytical outcomes. Analyzing the
evidence collected, its relevance in regards to the case, and
checking how it can be used to get closer to the result.

4. Result determination
This step requires making or compiling your findings into a
report and then presenting those findings. Compiling all the
evidence collected along with your conclusion based on your
findings.

3.4 Demystifying Artificial Intelligence in
the Digital World

AI constitutes a domain within computer science wherein
computer systems are enabled to replicate human intelligence.



This discipline encompasses the investigation and construction
of computer systems capable of emulating certain human‐like
forms of intelligence. It encompasses the realm of systems that
possess the ability to grasp novel concepts, engage in logical
reasoning, formulate deductions, comprehend natural
language, and interpret visual scenes.

AI can be categorized into different types based on its
capabilities and functionalities.

3.4.1 Artificial Narrow Intelligence

This type of AI is focused on a specific task with specific
intelligence [8]. The form of AI referred to as Narrow AI is
readily observable in contemporary computing environments.
These intelligent systems have acquired the capability to
execute specific tasks without direct, explicit programming.
This manifestation of intelligence is exemplified by technologies
such as voice recognition in Apple’s iPhone assistant Siri, the
visual recognition system within self‐driving cars, and even
product recommendation engines. Unlike human cognitive
abilities, these systems are confined to mastering and
performing designated tasks, hence earning the label of
“narrow” AI.



3.4.2 Artificial General Intelligence

This type of AI can perform anything a human is capable of
performing. Diverging significantly, General AI embodies a
form of adaptive cognition akin to the flexibility seen in human
intelligence. It possesses the capacity to learn and proficiently
execute a broad spectrum of tasks, ranging from basic activities
like hair cutting to complex undertakings such as problem‐
solving across diverse domains. This ability to engage with
various subjects stems from accumulated experiential learning
(Figure 3.2).



Figure 3.2 Types of artificial intelligence.

3.4.3 Artificial Super Intelligence

These are the AI systems that can outshine human intelligence
in every aspect. These are self‐learning systems that outshine
human intelligence in problem‐solving, creativity, and
planning. These systems have capabilities to learn itself.

AI is a technique based on algorithms and models and is one of
the biggest reasons for the rise in technology and business



fields. The AI revelations come with a couple of advantages [9].

AI provides great reliability.
Its cost‐effectiveness is a real help for companies and
businesses.
It is capable of solving complicated or complex issues and
problems.



Table 3.1 The benefits of AI in forensics.

Benefits of incorporating AI into Digital Forensics

Decrease in
personnel
hours and
reduction of
involvement
schedules.

AI systems have the capacity to
efficiently handle and analyze
considerably larger volumes of data in
a notably shorter timeframe. As a
consequence, the allocation of
personnel hours for engagements is
decreased, yielding savings for both
accounting firms and audited
organizations. Furthermore, AI can
expedite the process of pinpointing the
root cause of fraud, a particularly
valuable advantage in cases where
fraudulent activities are still ongoing.

Technology
related to
machine
learning and
the processing
of natural
language.

Through the integration of natural
language processing technology, AI
identifies key attributes and
performance indicators in contracts,
administrative records, financial
statements, and similar documents.
Furthermore, AI platforms, operating



as machine‐learning solutions, provide
organizations the flexibility to adapt
the systems to their unique
requirements using sample
documents. These systems continue to
enhance their capabilities through
usage, without the need for explicit
programming [10].

Elimination of
human
mistakes.

Due to its minimal requirement for
human involvement in data processing
and analysis, AI substantially
diminishes the likelihood of human
error stemming from clerical mistakes,
typos in equations or figures, and
similar issues. Additionally, AI plays a
pivotal role in detecting irregularities
or incongruities within data sets,
aiding in the recognition of human‐
made errors.

Enhanced
data
interpretation.

As AI possesses the capability to
handle substantial data volumes, the
platforms can condense information



into user‐friendly visuals for
presenting findings. This facilitates
precise, prompt, and comprehensible
data analysis.

It is capable of providing helpful options and is useful in
decision‐making.
AI also makes sure to restrict data from getting lost.
AI has reinforcement learning which is one of the greatest
tools in trying to increase the reliability of applications. It is
based on testing in real life the success and failure of
applications.
Table 3.1 discusses the benefits of incorporating AI into
Digital Forensics.

3.5 Application of Machine Learning in
Digital Forensics Investigations

Digital forensics analysts can largely make use or take
advantage of machine learning algorithms and models to detect
and uncover easily missed (when conducted manually) and
hidden evidence in digital sources [11]. Machine learning
pattern detection and recognition can be used or applied to
carry these forensic investigations out. Regardless of the many



works or methods proposed to apply machine learning to
digital forensics, there are numerous skepticisms regarding the
opacity of AI in digital forensics (Figure 3.3).

The goal of AIML in computer forensics is to be able to analyze
and then correlate the data or information stored as evidence
in an investigation [12]. It is used to reduce the large amounts
of data collected to only required and interesting evidence
related to the investigation, in this way data or evidence to be
personally analyzed is reduced.

Figure 3.3 Evaluation of Forensics Data (a) using Gaussian Method and (b) Using
Kernel Density Estimation Approach.



The correlation functionality serves the purpose of identifying
connections among evidence that might be disregarded or not
noticed by human professionals, primarily due to the
substantial volume of data under consideration [13]. This
analytical approach has been empirically validated using
authentic datasets, yielding notably favorable, and dependable
outcomes in comparison to instances where solely human
experts undertook analogous manual analysis.

3.6 Implementation of Artificial
Intelligence in Forensics

The implementation of AI in the field of forensic or digital
security can help different systems analyze the predeterminate
approach to handle the errors as well as possible upcoming
errors along with possible security breaches and attacks. It can
also help us by providing us with different possible approaches
that can be taken to predict or analyze the problem, such that
the problem is solved before the security of our systems,
machines, or applications gets compromised.

When working or analyzing using traditional forensics tools, it
is important to get external input from the users to work along
with the procedure of the forensic process which is not a need



or requirement when using AI tools to analyze forensic data,
when using AI tools, it may detect and allocate the threat on the
computer system in prior which lets the security program to
execute and handle the threat before the breach takes place.
However, in case the breach has taken place already, AI can
capture the evidence from the source and then maintain a
record of the attack to prevent future similar breaches [14].

AI possesses the capability to aid forensic experts by effectively
arranging and overseeing data, as well as conducting multi‐
tiered meta‐analysis. This contribution can prove time‐saving
for forensic investigators during their inquiry processes,
thereby safeguarding their dedication to case resolution and
elevating the dependability of outcomes to a considerable
degree.

3.7 Pattern Recognition Using Artificial
Intelligence

AI helps investigators in recognizing patterns which is one of
the most important things to find or realize when it comes to
forensic investigations. It is important to realize subtle or hard
connections to conclude.



Pattern recognition helps in connecting the dots by detecting
patterns in emails and messages as well as in the different
components of single images. AI is capable of automatically
storing previous existing data in databases which makes it
easier to match new information with existing information [15].
It assists investigators by making it easier for them to realize if
the criminal performing the current breach is possibly someone
who has attacked similarly before as well. It would try to fit all
the potential data types to obtain a high degree of performance
(Figure 3.4).

AI is capable of providing fast and quick solutions to legal
communities when it is required in the case of more complex
and extensive databases of information.

Miscommunication between important parties involved in a
particular forensic investigation could be one of the biggest
issues since it would lead to misinterpretation of data,
information, or evidence which further would lead to wrong
conclusions during the decision‐making process and conclude
with injustice. AI helps in bridging the gap between forensic
statisticians, lawyers, criminal investigators, and other parties
involved in a particular forensic investigation.



Forensic investigations require and involve support from
strong statistical evidence to prove your narrative and
arguments regarding the particular forensic case. AI is capable
of building graphical structures and models situations that will
help to prove the reliability of the evidence provided and
therefore help the law in approving or disapproving arguments
to make better judgements and provide justice. AI also makes it
easier to understand the statistics of a study while reducing
errors with the help of its mathematical and computational
tools.

AI can be a good tool to store, analyze, and use the data stored
in its online repositories of all the digital investigations. The
exponential rate of development of the storage capacities of
USBs, optical media, and hard drives has made it hard for
forensic science investigators to store and analyze the data that
is in those storage devices [4]. This is where AI comes into play
and helps in storing and analyzing all of these large amounts of
data.



Figure 3.4 Pattern recognition process.

Data mining is one of the most known fields to use AI. Data
mining can aid or facilitate the process of pattern recognition
since during data mining, the user can ask for a certain file that
contains specific information to be highlighted. It is capable of
ignoring obvious patterns or irrelevant patterns focusing on the
relevant ones only. It is a combination of statistical and
probabilistic AI methods and is used on large or enormously
sized data where the normal manual computational methods
would prove ineffective and inefficient.

Feature selection and dimensionality reduction help in filtering
out relevant, important, quality data from irrelevant, noisy, and
redundant data. Both these methods are used in reducing the
amount of data, but they are still very different from each other.
Feature selection simply selects the most relevant features to



increase prediction accuracy while dimensionality reduction
fully transforms high‐level features to low‐level features. A few
commonly used methods are PCA which is the principal
component analysis, information gain, and random projection.

AI helps by providing fraud detection technologies. It helps in
combining structured and unstructured data that is collected
from various sources to create or form risk models which are
extremely crucial and of great importance for advanced
analytics. These advanced analytics are utilized to rank risks
that are at firm level layer rather than data layer and further
approaches like machine learning and cognitive data analytics
are used to further the investigations.

Artificial neural networks are capable of telling us the activities
of a web surfer. We will be able to distinguish which surfer is
surfing legally and which is surfing illegally – making use of
proxy servers and accumulating online traffic over a server to
crack it down.

Through remote sensing and satellite facilities artificial neural
networks are capable of deciding which phone calls to trace
and which not during investigations to aid the investigators.



3.8 Applications of AI in Criminal
Investigations

3.8.1 Bombing Scenarios

Bombs are extremely hard to deal with and criminals are also
capable of destroying hundreds of lives with just a single bomb.
However, with the help of AI, we may be able to detect these
bombs [16]. Robots, a creation of AI, may be able to detect the
various components used in the making of bombs like
aluminum powder, nitroglycerine, passive infrared sensors,
tetranitrate, etc. This way we may be able to detect explosives
beforehand and avoid loss of lives.

3.8.2 Gun Fires

Sensors linked to a cloud‐based program may be placed in
municipal infrastructures which will help to correctly identify
and pinpoint gunshots. The sensors are capable of recording
the time and sound of the gunshots which is information that
would help the investigators to pinpoint the location of the
shooter or shooters.

Interpretable machine learning classifiers, like decision trees
and models based on rules, have frequently found application



within digital forensics scenarios. In the realm of elucidating
legal cases, the concept of Bayesian Networks (BN) has also
garnered attention from the community. AfzaliSeresht and
colleagues introduced an approach rooted in explainable AI
(XAI), employing event‐based rules to generate narratives for
detecting patterns in security event logs. This model serves to
support forensic investigators. Furthermore, Mahajan and co‐
researchers leveraged Local Interpretable Model‐agnostic
Explanations (LIME) for the classification of toxic comments in
the realm of cyber forensics. This adoption resulted in not only
notable accuracy but also interpretability, surpassing diverse
machine learning models.

3.9 Conclusion

This chapter has mentioned the growing rates of criminal
attacks in the digital world and how handling these digital
attacks manually with limited human labor becomes extensive,
unreliable, and extremely hard. Large amounts of data and
evidence collected cannot be manually analyzed or handled,
and this is the juncture at which the integration of AI becomes
pertinent. The utilization of AI simplifies the process for
investigators to gather, analyze, and categorize data and
evidence. AI technologies like pattern recognition and remote



sensing make it easier for investigators to realize the
significance of the evidence collected and the correlation
between newly collected information and existing information.
The forensic sector benefits from AI and considers it a
supplementary tool but does not fully depend on it.
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4.1 Introduction

The primary goal of developing a traffic rule violation system is
to detect numerous offenses committed by defaulters on the
road so that severe action can be taken against them to lower
the number of fatalities brought on by accidents. Initially,
monitoring a large volume of traffic on the roads was done by a
single individual, which was problematic as it was more prone
to errors due to limited human memory capacity [1]. To solve
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this issue, a system was introduced that operates 24/7 without
the need for human intervention and can accurately detect
multiple traffic violations with a high degree of precision. The
traffic rule violation detecting system works in conjunction
with a surveillance system established along highways and
roads. To obtain vital information, these surveillance cameras
record images of license plates from vehicles involved in
infractions. Computer vision techniques and machine learning
algorithms are used to process and analyze the collected photos
and videos. This entails collecting relevant information from
visual data, such as vehicle position, speed, lane adherence, and
traffic signal status [18]. To detect instances of traffic offenses,
the processed data is compared to pre‐defined rules and laws.
Speeding, running red lights, inappropriate lane switching not
wearing a helmet, and illegal overtaking are examples of such
offenses. The diagram summarizes the operation of the traffic
law violation system when connected with the highway CCTV
system. To maintain the effectiveness of the traffic rule
violation [13]. system, its general operation is constantly
reviewed. Reports and analytics can be provided to analyze the
frequency and types of infractions, find patterns, and
continuously enhance the system’s effectiveness (Figure 4.1).



Figure 4.1 Illustration of violation capture process.

Another significant feature of the system is its ability to detect
traffic violations caused by two‐wheeled vehicles with ease.
Studies have shown that the number of two‐wheelers on the
road is higher compared to other means of transportation, and
so it is more common to the fatal accidents due to violation of
traffic regulations [15, 18]. To decrease the number of
causalities, the system has been designed and trained to detect
violations of traffic rules by motorcyclists, such as driving
without wearing a helmet [19]. Despite the fact that helmets are
mandatory in numerous areas, there are still some riders who
do not wear them, and as a result, they face severe accidents.
Past observations have revealed that fatalities are increasing at
an alarming rate in many developing countries as drivers avoid
using helmets. Hence, the designed architecture is multipurpose
and can even be extended to other traffic laws such as not



wearing helmet, high speed limit, red signal crossing, and many
more [9].

The main approach used by the system involves capturing an
image of the offending vehicle’s number plate in order to
retrieve the necessary details of the owner. This can be
achieved by utilizing the surveillance systems that are already
installed in both urban and rural areas [1]. Once the image is
obtained, the violation is analyzed and information about the
traffic rule contravention along with the fine to be paid is sent
to the registered mobile number of the possessor. To make the
interaction more user‐friendly, various flexible graphical user
interfaces (GUIs) have been designed that enable individuals to
track their status easily and quickly.

Figure 4.2 elaborates on the flow of the proposed traffic rule
violation detection system in accordance with the vigilance
system.

The TRVDS currently in use has resolved numerous issues in
terms of human resources, cost, and time. The task of
monitoring millions of vehicles has been made effortless,
resulting in remarkable outcomes by successfully catching
violators. In this chapter, we have focused on different sections,



including an introduction, adopted techniques, literature
survey, conclusion, and future work.

Figure 4.2 Workflow diagram for violation system.

Source: Kumar et al. [1]\Blue Eyes Intelligence Engineering and Sciences Publication.

4.2 Technologies Involved in Smart Traffic
Monitoring

4.2.1 Device Involving Sensors

IoT‐based sensors are typically configured in such systems,
which gather data from assets or target objects and



communicate the acquired information to the centralized
computer system [4]. The collected statistics play a major role as
they help an individual to make better and quicker decisions.
The goal of these tiny sensors is to gather all the required real‐
time data [14]. Some common technologies adopted by the
sensor to fetch the required details include the following
(Figure 4.3):

Infrared Sensors (IR): The detection of traffic density on the
road is accomplished by IR sensors, which signal the traffic
light to switch from red to green or vice versa. These sensors
work by measuring the infrared radiations present in the
environment and tracking the movement of objects. Infrared
sensors are divided into two categories: active and passive
[16]. Active sensors consist of an LED and a receiver, while
passive sensors include infrared filter and a Fresnel lens.
VANET: Vehicular Ad Hoc Network or VANET is a wireless
network formed in an ad hoc environment where all the
moving vehicles and connected objects establish a
connection among themselves [13]. Through this connection,
they exchange crucial information. Initially, VANET was only
designed to provide comfort and safety to drivers, but
currently it is also being used to accurately detect traffic
violations on the road.



Figure 4.3 Technologies for monitoring traffic congestion.

RFID: The wireless approach is supported by RFID sensors
that consist of two essential elements, namely tags and
readers [2, 15]. The reader device includes antennas that
transmit radio waves and receive signals from the tags. These
tags transmit information about their identity and other
characteristics to nearby objects via radio waves. RFID tags
are classified into two types: active and passive. The only
distinction between the two is that active tags are battery‐
powered while passive ones do not require batteries. The
automatic tracking and uploading of necessary information
onto a centralized system by RFID eliminates the need for
manual efforts, saving both time and money [4]. Additionally,
the possibility of data duplication and missed items is
minimized, as all collected details are electronically
recorded. Figure 4.4 [2] shows tags that will be tracked,
reader which will detect the RFID tags, antennas, radio



waves, and computer wherein all the accumulated data will
be stored.

4.2.2 Wireless Network

The term wireless network refers to a network that establishes
connections between devices through radio frequencies. The
distinguishing feature of wireless networks is that they keep
objects connected to the network while allowing them to move
around freely, without being encumbered by cables [18]. In
contrast, wired networks require a large number of wires to
establish a connection to the network. Wireless frequencies like
Bluetooth, Wi‐Fi, and Zigbee all support the establishment of
wireless networks. These networks come with various protocol
variants that facilitate data communication over a large
coverage area.

Wireless networks also allow for centralized management and
oversight of the system, which aids in the detection of traffic
offenses. It is feasible to wirelessly transmit data from sensors,
cameras, and other equipment positioned throughout the road
network to a central control facility. This control center is the
key hub for data analysis, processing, and initiating relevant
tasks. Because of wireless connectivity, the control unit can
immediately identify and fix traffic violations. This can include



alerting the necessary parties, automatically billing costs, or
dispatching enforcement officials to the offending area [17].
Wireless networks can be compared to a system that aids in the
detection of traffic offenses. They simplify data control and
analysis, let vehicles to interface with infrastructure, and
accelerate data transmission.

Figure 4.4 RFID system.

In TRVDS, these network plays a major role by initiating a
seamless transmission between sensors, cameras, monitoring
stations, and other components, enabling quick detection and
response to traffic rule violations.

4.2.3 Computer Vision



Computer Vision is the prominent field of Artificial Intelligence
that involves training computer systems to comprehend the
real world. Many papers utilizing Computer Vision technology
rely on the implementation of Convolutional Neural Network
(CNN) models [3]. Traffic rule violation systems that adopt this
technique begin by extracting video frames from the
surveillance system. These frames are then loaded into the CNN
model, where four pre‐trained layers analyze the features to
identify illegal driving activities of the driver on the road. After
the video frames are extracted for approximately 0.5 seconds, a
DBN model is employed to make the final decision before
sending the alert to the violator.

Figure 4.5 Computer vision workflow.

Source: Alaydrusl et al. [3]/IOP Publishing/CC BY 3.0.



In this process, the DBN model aids the CNN in deriving all the
essential features and defining the feature map, which is the
intermediate representation of input data. The current system
primarily employs this map, which is extracted from the video
frames. To perform the ultimate prediction of the driver’s
unlawful movement, a set of video frames is utilized for
recognition. Its primary function is to collect, process, and
interpret information from photos or videos, allowing the
system to identify and enforce traffic laws by recognizing
various transgressions. One notable feature of CV is its capacity
to recognize and track things in real time. Vehicles, pedestrians,
and traffic signs are all included. The device may detect possible
offenses such as automobiles running red lights or pedestrians
jaywalking by utilizing computer vision. Approximately
thirteen feature maps are used by CNN for making the
predictions. Afterward, the set of maps is condensed into a
solitary pattern and fed into the DBN model to obtain the
ultimate classification for the traffic law violation system. The
workflow for Computer vision technology is summarized in
Figure 4.5 [3].

4.3 Literature Review



In [5], the prime objective is to provide drivers with feedback
about traffic rule violations committed while driving. The
proposed methodology is capable of detecting specific traffic
law infringements and recording information about the
offender in a local database. They utilized the “Standard Google
Earth” tool to visualize the stored data based on rule breakage
in a geographical map. The system is designed to work both
during the day and at night, with dual high‐resolution cameras
mounted on the vehicle’s roof, with one camera operating
during the day and the other at night.

To make it user‐friendly, a human interface software was
introduced, allowing the driver to visualize the offense
committed. Furthermore, the vehicle owner can also receive
assistance with various other actions that can help them to
avoid violations. The application can be installed on the screen
in the vehicle for easy interaction and quick actions. The system
can accurately detect various signboards placed along the road
to alert individuals about potentially dangerous situations such
as high speeds, stop signs, intersections, no‐parking zones, and
schools ahead. In such cases, the system delivers an audible
message through a loudspeaker to the driver.

Initially, the pre‐installed camera captures a snapshot from
which all the essential statistics are extracted based on the



image region. The images are then segmented to focus on the
traffic signs, which is achieved through flexible thresholding,
ignoring numerous untracked regions that can be disregarded
later. Subsequently, the segmented image’s shape is analyzed to
obtain the area of interest. Shape analysis involves multiple
filtering process followed by geometric restrictions. The final
stage involves pattern matching on the filtered image to arrive
at the ultimate decision.

In [6], a system called “Vehitrack” was developed for Android to
detect traffic law violations using RFID technology and sensors.
The ultimate objective of the system was to manage volume of
the traffic in a specific area. In addition, the creators also
developed a mobile application that included a database for
saving all the relevant information of the driver and a list of
previously violated regulations. The approached aimed to
create an integrated system with Android application that
would automatically send a message to the vehicle’s owner,
including the total amount to be paid for breaching the traffic
law. The flowchart below describes the working of the system
(Figure 4.6).



Figure 4.6 Working of Vehitrack system.

The process was segmented into four distinct stages. In the
initial step, the identification of the vehicle on the road was
carried out through the utilization of RFID, sensors, and tags,
with the aid of a camera for capturing an image of the
transport. In the second phase, various technologies performed
different functions. The sensor detects the RFID number, which
is read by the reader, and all the acquired information is
transferred to the database. The third module involves the
implementation of an Android application that establishes a
link between the police officer and the perpetrator. Finally, the
offender is automatically issued a fine on their registered
mobile number.

The paper discusses the experiment results used to evaluate the
performance of the Vehitrack system. According to the authors’



demonstration, the system achieves excellent accuracy in
identifying traffic law violations. They also emphasize the
constraints and difficulties experienced when putting the
system into action. The study continues by introducing the
Vehitrack system, an Android‐based tool for detecting traffic
offenses. The research contributes to the field of traffic
management and enforcement by providing a mobile platform
that uses image‐processing techniques for precise and
immediate infraction recognition. The Vehitrack system has the
potential to improve road safety by quickly detecting and
documenting traffic violations, allowing law enforcement to
take appropriate action.

Chitra et al. [7] proposed a traffic management approach that
includes detecting rule violations. Their traffic management
architecture utilizes sensors to monitor traffic flow on a lane.
The controller adjusts the duration of the green light based on
signals received from the sensors. The circuit built into the
system operates when the signal turns red, requiring vehicles to
stop. If a vehicle moves during the red signal, the circuit uses an
LDR and laser to detect it. Once the signal is disrupted, a buzzer
alerts on‐site commuters on the lane.

The system is designed with infrared sensors that detect traffic
flow and adjust the duration of the green and red signals



accordingly. A circuit is installed in the proposed architecture to
recognize signal‐crossing violations. The traffic infringement
circuit operates in two stages, where first stage uses a Light
Dependent Resistor (LDR) to switch the buzzer on or off based
on the LDR signal. In the second stage, the buzzer sounds
whenever a traffic regulation violation occurs, sending a
warning to the centralized system. Figure 4.7 elaborates on the
working of the traffic violation circuit.

The paper also mentioned a downside of using LDR, noting that
it does not function as intended when there is ambient light
present. In situations where there is low traffic volume and a
vehicle stops in front of the sensor, the green light is
automatically activated. To address these problems, sensors can
be used instead of LDR. Additionally, instead of relying on a
centralized computer, a Raspberry Pi can be employed to
operate the surveillance system. To address these issues, the
research report suggests using sensors on top of LDR. With
sensors that are less affected by ambient light, the system can
detect traffic violations more reliably and correctly. Another
suggestion for improvement is to use a Raspberry Pi as the
operating system for the surveillance system rather than a
centralized computer. The system’s effectiveness and
performance can be improved through these changes.



Figure 4.7 Architecture for traffic violation circuit.

Source: Chitra et al. [7]\International Journal of Computer Applications.

In [8], an AI‐based traffic sign violation detection system was
created in 2020 using deep learning techniques. The research
employed YOLO version 3 to recognize law breakage such as
signal jumping, seatbelt usage, and speeding on two‐wheelers.
To identify objects from the input given to the system, YOLOv3
was coupled with CNN. The YOLOv3 primarily comprises a
CNN, which consists of layers that enable the visualization of
images and videos captured. It belongs to the class of multi‐
layer perceptron where neurons of one network are linked to
those of another network. CNN is a specific type of model used
for processing information in a grid‐like manner. The model



initially extracts features from the image frame by frame. The
CNN’s layer also has the ability to detect multiple objects
simultaneously from a single input. The study highlights
potential future work by emphasizing on the need for a system
which is capable of monitoring traffic efficiently and can cover
a huge area.

The objective is to detect violations from a single input using a
parallel computation approach. Moreover, the researchers
recommend using larger datasets and training them using GPUs
and high‐end FPGA kits. The block diagram below explains the
working of the traffic rule violation detection system. The CNN
layer can differentiate several objects from a single input at the
same time. The study indicates opportunities for future
research by emphasizing the need for a system that can
successfully monitor traffic across a vast area. The purpose is to
discover violations from a single input using a parallel
processing method. Overall, the research uses AI and deep
learning techniques to improve traffic signal detection. The
findings demonstrate how these technologies could enhance
traffic safety and enforce traffic laws at signalized crossings.



Figure 4.8 Flowchart for proposed traffic monitoring system.

Source: Adapted from Arnob et al. [9].

In [9], a lane‐based rule violation detection system was
introduced in 2020 using a combination of various algorithms.
The prime aim of the authors was to address a problem related
to both Raspberry Pi as well as OpenCV. The flowchart below
demonstrates the traffic monitoring system in detail
(Figure 4.8).

Initially, a pre‐processing step was applied using a Gaussian
blur filter on the collected video, the image was masked and
sent to the canny edge detection algorithm. Subsequently, the
accused individual and their vehicle license plates were
identified, and if any violation was detected, an alert message
was dispatched. The system achieved an accuracy of 78.83%,
which was considered sufficient for identifying offenders based
on license plate information. The implementation of the Hough



line concept involved the use of the OpenCV and NumPy
platforms to monitor traffic. A Raspberry Pi was employed,
which was constructed on the singleton chip of the computer
system. The proposed system was initiated by first booting the
Raspberry Pi and installing both OpenCV and its contour. The
captured images were converted to grayscale, and a threshold
was applied. The surveillance system was used to record videos
of vehicles committing offenses. Lane violations are also
detected by using combination of canny edge, Gaussian blur,
and HLT. Finally, once an offense was recorded, a text message
was sent to the user’s phone number, which was previously
stored in the database.

The camera footage and images captured on highways are often
not clear enough to be directly used for the final prediction in
the model. To enhance the sharpness of the input and to
eliminate noise, a Gaussian blur filter is applied. The filter
utilizes the Gaussian kernel to adjust the height and width of
the image or video. By implementing these techniques, the
system was able to achieve high accuracy and demonstrate
superior performance.



Figure 4.9 System for designing the traffic violation detection system.

The 2021 [10] research work employed a range of machine
learning techniques to construct a system which is capable of
automatically identifying offenses in the absence of traffic
officers. To achieve the best results and to reduce existing noise,
input images underwent gray scaling using the Gaussian blur
approach. Furthermore, dilation was employed to fill in any
emptied holes. After pre‐processing, multiple object detection
ML approaches were utilized, and their outcomes were
assessed. SVM was initially employed, which revealed that
objects could be easily extracted from the given data. However,
RCNN gathered features from each region of the image and



produced a significantly higher recognition rate. Ultimately, the
study found that RCNN was superior to SVM for this purpose
(Figure 4.9).

To create a more user‐friendly interaction with individuals, the
study utilized tkinter as it is a proven to be attractive GUI. This
allows even the traffic inspector to review the footage before
penalizing an offender. Therefore, the investigation process can
be conducted with ease through the use of this technique.
Image processing steps include gray scaling and blurring,
followed by background subtraction to isolate the area of
interest and remove unwanted image elements. To attain high
accuracy, it is essential to eliminate existing noise and
disturbances, which is achieved through binarization. It is a
technique where a gray scaled images are converted into the
binary format, where each value is either 0 or 1. The main
motive behind adopting it was to simplify the data and to
transform it in the way that it can be easily used by the
algorithm in use. The proposition employed a model that
categorizes vehicles into different types such as 4‐wheeler, 2‐
wheeler, and 3‐wheeler. This was accomplished by utilizing a
neural network model on the input obtained after the pre‐
processing stage.



In [11], the author reviewed past research and devised a system
that uses a genetic algorithm to obtain a high degree of
accuracy. The algorithm’s main goal is to optimize the input in
order to provide a desirable output. Background subtraction
was applied to create the image foreground and to transform
the input data into a frame. This procedure is viewed as pre‐
processing stage, and a genetic set of rules were utilized in
order to ascertain whether a violation actually happened.
According to the results, deploying a genetic algorithm
enhanced the inputted initiatives and generated the best
accurate algorithm. The traffic rule contravention detection
system employed the Haar tool for identifying and capturing
those vehicles that were breaking the rules.

The tool comprised numerous files and folders in XML format.
To begin with, positive and negative images were considered,
where the positive images contained the required object while
negative ones did not. In the next stage, a classifier was trained
to identify vector files that had a combination of both types of
images. In the final step, a folder was created and loaded with
files ranging from 0 to N−1. This approach ensured that the
classifier used was fully trained and ready to use. The process
commenced with the visualization of an image from the
footage, followed by the use of a genetic algorithm to determine
if a particular vehicle is breaking the law. Prior to feeding the



image into the model, the frame in which it was captured is
isolated from the main frame, and the image is converted to
black and white. These steps enable the genetic algorithm to
accurately detect traffic rule violations.

In [12], a study introduced a traffic rule violation detection
system based on machine learning. Its purpose was to identify a
vehicle’s license plate in inclement weather such as smog or
rain, as well as to function with low‐quality images captured in
dim lighting conditions that include low contrast and
blurriness. The research involved six stages, starting by
obtaining an image from a camera and resizing it to a smaller
dimension, followed by the identification of the license plate
location, segmentation, and saving the image in a specified
format.

The CNN algorithm was used to detect whether motorcyclists
were wearing helmets or not, to classify them as motor biker or
non‐motor biker, and to identify the vehicle number plate. The
researchers stated that enhancing the training dataset and
improving image quality could further enhance the accuracy
level. To begin with, the proposed methodology involves
capturing an image and saving it to a database for subsequent
pre‐processing. The acquired image is transformed into a
binary format, followed by localization of the number plate and



determination of its width and height. All gaps in the image are
filled with numbers to ensure that the license plate appears
large enough as compared to the rest portion of the image.

The research involved six stages, starting with obtaining an
image from a camera and resizing it to a smaller dimension,
followed by identifying the license plate location, segmentation,
and saving the image in a specified format. The CNN algorithm
was used to detect whether motorcyclists were wearing helmets
or not, to classify them as motor biker or non‐motor biker, and
to identify the vehicle number plate.

The accuracy was 85%, 93%, and 51%, respectively, in each of
the three areas. The researchers stated that enhancing the
training dataset and improving image quality could further
enhance the accuracy level. To begin with, the proposed
methodology involves capturing an image and saving it to a
database for subsequent pre‐processing. The acquired image is
transformed into a binary format, followed by localization of
the number plate and determination of its width and height. All
gaps in the image are filled with numbers to ensure that the
license plate appears large enough as compared to the rest
portion of the picture. Lastly, the results obtained were saved in
the document file with the desired extension. The flowchart
illustrates the working of the system (Figure 4.10, Table 4.1).



Figure 4.10 Block diagram explaining system architecture.



Table 4.1 Summary of literature review.

Year  Author  Objective
 
Methodology

 
s

2014 Nourdine
Aliane and
Javier
Fernandez et
al. [5]

To provide
feedback to
the driver
about the
offense
being
committed

Computer
vision to
detect traffic
signs and
EDR used to
save
information
related to the
particular
violation

T
im
p
s
o
fe



Year  Author  Objective
 
Methodology

 
s

2017 Dr. Agrawal
and Kasliwal
Komal et al.
[6]

To detect
traffic law
violation
using RFID
reader, tag
and to
capture the
image using
camera

The RFID
reader will
collect the tag
number,
while the
surveillance
system will
capture the
image. This
data will be
transmitted
to a server,
where it will
be saved in a
database

—



Year  Author  Objective
 
Methodology

 
s

2020 Chitra and
Vanishree et
al. [7]

Management
of the traffic
along with
detection of
rule
violation

Infrared
sensors to
figure out the
density of
traffic and
battery
circuits to
send
notification
to authority
at time of
infringement

A
n
im
p
te
o
c
fe
n
d



Year  Author  Objective
 
Methodology

 
s

2020 Fraklin and
Mohana et al.
[8]

To
determine
traffic rule
violation
using
artificial
intelligence

YOLOv3 is
implemented
to detect the
traffic law
breakage
such as signal
jumping and
overspeeding

D
s
c
h
a
m
la
th
s



Year  Author  Objective
 
Methodology

 
s

2020 Faed Ahmed
Arnob and
Md. Azmol
Fuad et al. [9]

To develop a
system that
can discover
lane‐based
infraction

KNN algo. is
adopted for
extracting
nearby
character,
gaussian blur
to remove
noise and to
make the
image
smooth

—



Year  Author  Objective
 
Methodology

 
s

2021 Srinivas
Reddy and
Nishwa et al.
[10]

Using
different ML
techniques
to build
traffic rule
violation
detection
system

Tensor Flow
technique is
used to build
the proposed
system and
various
libraries
have been
implemented
to perform
particular
actions

T
w
v
g
n
c
c
p
o
b
im



Year  Author  Objective
 
Methodology

 
s

2021 Akhilalakshmi
T Bhat and
Anupama et
al. [11]

To detect
traffic
regulation
breach using
genetic algo

Used Haar
tool to detect
the blockage
of pedestrian
lanes at the
time of huge
traffic on the
road

—

2022 Dr. Yeresime
Suresh and
Ankitha et al.
[12]

Determine
traffic rule
breach using
OpenCV, OCR
and Tensor
Flow

Implemented
ML
techniques to
figure out
traffic
regulation
infraction
under poor
weather
conditions

T
th
p
s
w
o
v
s
p
a
ju



Table 4.2 Summary of results.

 Techniques
used

 Accuracy obtained

YOLO v3 Vehicle recognition – 98% 
Vehicular speed – 89%

KNN Lane‐based rule violation – 78.78%

CNN Wearing helmet or not – 85% 
Classification as motorbike/non‐motor
biker – 93% 
Identify number plate – 51%

4.4 Comparison of Results

The previous research has yielded varying levels of accuracy,
employing different techniques. Table 4.2 provides a summary



of the methods used and their corresponding precision
percentages.

4.5 Conclusion and Future Scope

Enforcing laws is crucial for creating a law‐abiding community,
and it is essential for the proper functioning of the world. The
traffic management system, along with the violation detection
system, can assist traffic authorities in identifying violations
and in taking strict action against violators. Past studies have
shown that by developing such traffic violation architecture
around 65% road accidents have been reduced in India. By
penalizing a single offender, thousands of people can be alerted,
and the number of casualties caused by traffic rule violations
can be reduced, thereby saving millions of lives.

The scale of aforementioned figure can be further reduced if
systems capable of simultaneously handling multiple violations
with high speed are implemented, encompassing various traffic
laws such as multiple riders on 2‐wheelers and failure to wear
seat belts while driving. Therefore, the implementation of a
traffic contravention detection system is of utmost importance
as it will bring significant societal changes by preventing
injuries and effectively managing heavy traffic on roads and
highways.
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5.1 Introduction

As internet has become an essential part of today’s lifestyle or
generation, all the organizations and businesses have moved to
digital frameworks to expand their business so that it can reach
each corner of the world. At the same time as majority of the
business has moved to digital frameworks, it is has become
vulnerable to cyberattacks, which are increasing day by day
and business suffers huge reputation as well as revenue. As per
reports [1], United States found that nearly a quarter of
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companies that have experienced a cyberattack have lost
between 50,000 and 99,999 US dollars. Among the surveyed
companies, another 22% reported losing between 100,000 and
499,999 US dollars. Overall, four percent have lost more than 1
million US dollars in a cyberattack. The count is much more in
the global market. Over the past couple of years, particularly, IT
companies had developed strategies for assessing their
Infrastructure, Digital Systems be it Web Applications or Mobile
Applications, Network Devices, Source Code (through
DevSecOps implementation) etc., engaging in Red and Blue
Teaming activities, to ensure if all their ecosystem is secure
enough and is safe to bring those systems over the internet.
However, today’s IT business doesn’t rely only on the internal
security assessment or framework that an organization is
following. Let’s consider an example: Suppose Organization “X”
is bidding a project for a banking project from CUSTOMER “Y”
which can significantly add to Organization’s “X” revenue. As
the project is from Banking/Financial sector, it would take
significant efforts to convivence Customer “Y” regarding
security frameworks that the organization is following w.r.t
quality and control measures. Here Cybersecurity Rating
platforms come into picture, which can assess the
Organization’s “X” security in terms of various parameters like
“Application Security, Network Security, End Point Security, IP



Reputation.” The ratings given by these platforms can play a
significant role in the business, as achieving a good score or
grade through these platforms can help convince customers to
engage in project or to sign a deal, particularly in a project
which requires greater level of security into consideration.
Nowadays, many IT organizations to gain business are enrolling
themselves in these Cybersecurity Rating platforms, to gain
business and companies put constant efforts to maintain good
score/grade or ratings from these platforms. As mentioned
above in this section these Cybersecurity Rating platforms [2]
tools assess the Organization’s security in terms of various
parameters like “Application Security, Network Security, End
Point Security, IP Reputation,” the organization enrolls to these
tools, these platforms automatically figure out the scope and
run several test cases on constant basis and they report
vulnerabilities/misconfiguration details w.r.t above mentioned
parameters.

Figure 5.1. illustrates the flow of the same and Figure 5.2
illustrates the scope of work for Cybersecurity Rating Platform.

Once any vulnerabilities are flagged in these platforms, the
Security Score gets affected and decreased, and after that some
efforts are given to get those identified issues remediated.
Generally, IT or Server Operations Team, Application



development, need to do most of these things; however, all
these efforts are being done Manually, just like Security team
monitors these platforms, they report the issue to concerned
Digital team, and after that IT/Server Operations team or
Application Development team gets involved to close the issues
on time; however, the entire process may be time‐consuming
and there may be lack of skill sets when it comes to close these
issues. If these issues are not mitigated or closed on time,
organization may negatively impact the organization in terms
of business or revenue. As all the efforts to close these
vulnerabilities depend on multiple groups within an
organization and entire process for closing identified
vulnerabilities is being done manually. Authors in this
literature have proposed an automated framework to mitigate
the Security Vulnerabilities in real time. Authors have
leveraged AI and DevOps technologies in this literature for the
same.



Figure 5.1 Enrolment to Cybersecurity rating platform.

Figure 5.2 Scope and parameters of Cybersecurity rating platform taken into
consideration.



Before going into the in‐depth details of the proposed
framework, authors have done a literature survey explained in
the next section, where the work done by other authors are
mentioned and how this literature is unique.

Below are few key words that will be used quiet often in this
literature.

Vulnerability − A vulnerability is a weakness which allows a
hacker to compromise the security of a computer or network
system.
Threat − A threat is a possible danger that can exploit an
existing bug or vulnerability to compromise the security of a
computer or network system.
Attack − In terms of hacking attack is defined as an attempt
that is done on the computer system or network to gain
access to the system with an intent to gain critical or
sensitive information.
Exploit − Exploit is a piece of software, a chunk of data, or a
sequence of commands that takes advantage of a bug or
vulnerability to compromise the security of a computer or
network system.
Zero‐Day Exploit − A zero‐day exploit is an unknown
security vulnerability or software flaw that attackers



specifically target with malicious code. This flaw or hole,
called a zero‐day vulnerability, can go unnoticed for years.
Application Security – This is one of the parameters for
assessing the Cybersecurity rating for an organization, here
mostly the surface level of application is assessed which is
hosted over the internet like HTTP Headers.
Network Security – Another parameters for assessing the
Cybersecurity Rating Platform where which mostly flagged
the issue related to Network Layer, like if insecure TLS
protocol is used or configured for communication,
Vulnerable ciphers are configured in TLS protocol for
communication, web/database service is accessible over the
internet, etc.
End Point Security – End point security ensures all the
assets in an organization’s scope are running latest sets of
softwares and Operating systems.
Credentials Leak – This identifies all the leaked credentials
particularly those that are maintained at client‐side code
[JavaScript code], Source Code like GitHub, Bit‐bucket public
repositories, and in other source code management tools.
Developers often mistakenly upload few sensitive
information like Access keys, Database Passwords, Admin
Credentials, SSH and SSL keys, and details of outdated
dependencies over public repositories GitHub, Bit‐



bucket/Client Side JavaScript codes, etc. which can impact the
organization badly. In this literature, authors have proposed
a way to crawl the internet for such sensitive information
over the internet and report to the business group once such
issues are detected. Ideally, most of the Cybersecurity Ratings
that are available only perform the activity over website, not
at source code level (source code repository scan w.r.t
credentials leak doesn’t happen). In this literature, authors
have proposed a crawler to do the same.

5.2 Literature Review

Daniel Kant and Johannsen Andreas [3], talks about AI Based
use cases for enhancing Cybersecurity posture for small‐ and
mid‐size organizations, and have done literature survey to
identify usable AI‐based solution for enhancing cybersecurity
defense for small‐ and mid‐sized organization. Poltavtseva et al.
[4] proposed an effective approach to formalizing information
for Penetration Testing activities from subject domains,
quantitative relevance estimates of object characteristics, and
estimates of object similarity. AlSadhan, Tina et al. [5] talk about
importance and existence of automation in Cybersecurity
Operations, and the difficulties and challenges for achieving
full‐fledged ISCM, Information Security Monitoring capabilities



like real‐time threat detection and incidence response and risk‐
based decision‐making capabilities. This research talks about
redefining ISCM framework to enhance risk‐based decision‐
making embedding security automation. Mohammad, Sikender
Mohsienuddin et al. [6] talk about the need of automation in
Cybersecurity domain, as this particular fields lack automation
compared to other domains, in terms of testing for
vulnerabilities, reporting vulnerabilities in real time, and
mitigating the same. The authors talk in detail about the need of
automation in security and incident management and how
security automation can safeguard organization’s technological
systems. Aguirre, Idoia et al. [7] talk about presenting a
collaborative strategy between Security Information and Event
Manager from different trusted domains that share notification
and the consequently adopted countermeasures. These have
been based on traffic patterns related to offered online services.
The concept of sharing alarms and adopted measures in
domains with similar profiles, intends to enhance a global view
of the security, and by this way, facilitates decision‐making for
security domain administrators. It is clear from this
background study that there is a lot of scope for automation in
Cybersecurity domain, hence authors have specifically chosen
to use AI and DevOps for automation to increase cybersecurity
ratings for an organization to grow business.



5.3 Proposed Methodology

Before proceeding to the system architecture and design,
authors have first provided the GIST of various parameters and
its attributes which are taken into consideration while
processing the remediation of vulnerabilities which are taken
into consideration by Cybersecurity Rating platforms. Tables
5.1–5.3 show descriptions of each parameter taken into
consideration in this literature.

Authors in this literature have provided a unique ID for each of
the vulnerabilities to process the mitigation of the issues.
System Architecture of the proposed solution in this literature
has been shown in Figure 5.3.

There are five main components of the proposed system.
Authors have explained in this section in brief about all the
modules.

Notification Module: Figure 5.4 shows the workflow of the
notification module proposed in this literature, when the case
or issue is flagged by Cybersecurity Rating platform, and
Figure 5.5 shows the workflow of notification module during
closure of the flagged issue or case.



This module will trigger notification to the user/Business owner
regarding the issue flagged in the Cybersecurity Rating
Platforms. It will generate the detailed notification regarding
name of issue like Unique ID for tracking purpose,
IP/DNS/Website the issue is flagged, its severity, and overall
score impact for the organization. Figure 5.6 shows the details
of Notification in JSON Format.



Table 5.1 Description of application security parameter.

Application Security:

Parameters Name/ID Severity Description

Vulnerabilities
in CMS

AppSec‐
V‐01

High Identifying
Vulnerabilities
with known
CMS like
WordPress,
Joomla, Drupal,
etc.

Site/IP does
not support
HTTPS

AppSec‐
V‐02

High Issue arises
when Web
application is
transmitting
data over plain
text or using
HTTP protocol



Application Security:

Parameters Name/ID Severity Description

CSP Missing AppSec‐
V‐03

Medium Issue arises
when Web
Application is
missing Content
Security Policy
in HTTP
response



Application Security:

Parameters Name/ID Severity Description

Strict
Transport
Security
Misconfigured

AppSec‐
V‐04

Medium Issues arises
when
application is
missing strict
transport
security
header/or hsts
header is
misconfigured
(hsts value set
apart from max‐
age = include
Subdomain)



Application Security:

Parameters Name/ID Severity Description

Insecure
HTTPS
redirect chain

AppSec‐
V‐05

Medium Issue arises
when there is
an insecure
redirect in
application
either to
external site



Application Security:

Parameters Name/ID Severity Description

X‐Frame‐
Options‐
Missing

AppSec‐
V‐06

Medium Issue arises
when X‐Frame‐
Options Header
is missing from
the Web
Application
HTTP response,
and it makes
application
potentially
vulnerable to
Clickjacking and
other UI
Rendering
attacks



Application Security:

Parameters Name/ID Severity Description

Redirect Chain
contains HTTP

AppSec‐
V‐07

Medium Issue arises
when there is a
redirect of
request to a
website where
HTTPS is not
implemented

Session Cookie
missing HTTP
Only flag

AppSec‐
V‐08

Low This issue arises
when a cookie
session on Set‐
Cookie attribute
is missing HTTP
Only flag



Application Security:

Parameters Name/ID Severity Description

Session Cookie
missing secure
Attribute

AppSec‐
V‐09

Low This issue arises
when a cookie
session on Set‐
Cookie attribute
is missing
Secure flag

X‐Content‐
Type‐Option‐
Missing

AppSec‐
V‐010

Low Issue arises
when
application is
missing X‐
Content‐Type
Options from
the HTTP
Response



Table 5.2 Description of endpoint security parameter.

End Point Security:

Parameters Name/ID Severity Description

Outdated
Operating
System
Observed

EPSec‐V‐
01

High This issue arises
when the any of
the asset is
running Outdated
Operating System

Outdated
Web
Browser
Observed

EPSec‐V‐
02

High This issue arises
when the any of
the asset is
running Outdated
Web Browsers in
the system



Table 5.3 Description of infrastructure security parameter.

Infrastructure Security:

Parameters Name/ID Severity Description

Certificate is
Revoked

InfSec‐V‐
01

High This issue
arises when the
TLS certificates
used in the
application are
revoked

Elasticsearch
Service and
MongoDB
Service
Observed

InfSec‐V‐
02

High This issue
arises when
Elasticsearch
and MongoDB
services get
detected over
web



Infrastructure Security:

Parameters Name/ID Severity Description

Neo4j
Database and
Oracle
Database
Server
Accessible

InfSec‐V‐
03

High This issue
arises when
Database like
Neo4j and
Oracle DB
server is
accessible over
the web

SSH Software
Supports
Vulnerable
Protocol

InfSec‐V‐
04

High This issue
arises when
SSH Protocol is
supporting
vulnerable
protocol during
communication



Infrastructure Security:

Parameters Name/ID Severity Description

SSL/TLS
Service
Supports Weak
Protocol

InftSec‐
V‐05

High This issue
arises when
Application or
Services is
using TLS
protocol less
than version
1.2

Apache
Cassandra and
CouchDB
Service
Observed

InfSec‐V‐
06

Medium This issue
arises when
Apache
Cassandra and
Couch DB
Service are
observed over
internet



Infrastructure Security:

Parameters Name/ID Severity Description

Certificate is
Expired

InfSec‐V‐
07

Medium This issue
arises when
any of the
service which
is running on
TLS protocol
and the TLS
Certificate is
expired

Certificate
Signed with
Weak
Algorithm

InfSec‐V‐
08

Medium This issue
arises when
TLS certificate
is using weak
Algorithm with
inadequate
strength



Infrastructure Security:

Parameters Name/ID Severity Description

Weak MAC,
Microsoft SQL
Server, PPTP,
PostgreSQL,
RDP, Redis,
Remote Access,
SMB Service,
resync Service,
VNC Service
Observed

InfSec‐V‐
09

Medium This issue
arises when the
mentioned
service is
detected over
the internet
and few of the
protocols or
services uses
weak MAC
algorithm



Infrastructure Security:

Parameters Name/ID Severity Description

SSH Supports
Weak Cipher
and Weak MAC

InfSec‐V‐
10

Medium This issue
arises when the
SSH Service
which is using
weak cipher
keys and mac
algorithms
over the
internet

FTP Service,
Telnet
Observed

InfSec‐V‐
11

Low This issue
arises when
FTP service is
detected over
the internet



Infrastructure Security:

Parameters Name/ID Severity Description

IP Camera
Accessible

InfSec‐V‐
12

Low This issue
arises when
any of the
device having
camera service
is accessible
over the
internet. This is
kept out of this
literature

Figure 5.3 System architecture.



Figure 5.4 Workflow for logging an issue.

Later according to the proposed framework, these reported
issues will be first evaluated internally by the DevOps module
powered by AI to check if the reported issue is true positive or
false positive. If it is false positive, evidence will be generated
and log will be forwarded against the Issue ID, in Cybersecurity
rating platforms, for closing the logged issues. If the issue is true
positive, then again, the proposed DevOps module powered by
AI will be activated, and it will create a Sand Box environment
(Say a docker‐based container), which is explained in detail
later in this section.



Figure 5.5 Workflow for closure of the issue.

Figure 5.6 Sample of Notification Data/Response in JSON Format.

Workflow of the same is shown below in Figure 5.7.

After successfully applying the patch or remediating the
vulnerabilities, the sample response in JSON format for
notification purposes is shown in Figure 5.8.



AI Module: This module is used to train the entire system on
how to respond and to initiate the mitigation of vulnerabilities
on real time, with the help of underlying DevOps platform.
DevOps module will do the execution but what sort of
commands, and configuration files are to be loaded and which
tools are to be used will be defined by this module. It will be in
sync with various libraries like (nginx, apache2, httpd, tomcat,
sshd, etc.). The idea is to create a set of secure configuration
files when it comes to application security where all the
findings are generally related to HTTP Headers, those configs
are easily available over the internet, and AI module proposed
in this system will leverage the NLP‐based module and will
create a configuration bank out of that information available
over the internet. Authors in this section are committed to make
the usage of AI more effectively and work is in progress. Here
for experimentation, authors have created arbitrary set of
configuration files in the inventory, like nginx.conf[Web
Server], apache2.conf[Web Server], sshd.conf [For SSHing to
server], server.xml[Tomcat Web Server], server.js[Node.JS],
config.php[PHP Framework], commands for uninstalling
outdated software’s, command for upgrading package or system
level kernels, and all these are mostly tested on Linux and
Windows Server Environments as most of the Digital



applications in enterprise systems are hosted these platforms
only.

Figure 5.7 Flow for validating the issue and closure of the same.

Figure 5.8 Sample JSON Data for closure.



Inventory: This is the store for all the commands that our
system will going to trigger, all the configuration files that are to
be loaded while mitigating the vulnerabilities, SSL Certificates,
and build or replica of application that is deployed and running
live. Other than that this module will also have an asset
mapping file where the public IP, Intranet IP mapping/DNS
mapping are being done, and what all services or applications
are running on the systems are provided. This file will help in
identifying where the patch or remediation will actually going
to be applied as the system proposed by the authors will be
running over the VLAN of the organization ideally. Further this
system is configured in such a way that it can access all the
servers or assets running in the system through various DevOps
module which authors have taken into consideration.

DevOps Module: This module is about using DevOps [8]
technologies to automate every operation. What to execute is
something that will be decided by AI Module as per the
proposed methodologies by authors; however, here authors
have created pre‐sets of configurations and have used certain
flags for the experimentation purposes. Authors in this
environment have majorly used containerized [9] environment
to test the execution and also run the test cases against
mitigation.



Test Case Runner Module: This is one of the important aspects
and feature of the entire proposed system. As for the business,
it is very important to ensure whatever the changes that are
being made in terms of vulnerability mitigation is not
impacting the overall liveliness of the system, as if the system
or application is not working as expected after applying the fix
it will impact the overall business of an organization and may
impact the revenue. So, this module will ensure to apply the
patch or remediation to the live system only after testing the
same in sandbox or containerized environment and also will
run some test cases to ensure production/live system is working
as expected.

Authors have given an example to understand the overall
workflow of all the modules explained above. Suppose a
vulnerability is reported by CSRP saying X‐Frame‐Options
Header is missing from the Application running URL
https://test.example.com. Actually, X‐Frame‐Options Headers are
used to prevent applications from Click‐jacking and UI
Rendering attacks, it is given as Low to Medium Severity in
OWASP Category, in this literature it is marked as Medium
Severity Vulnerability. Now there will be an internal schema of
the above URL, i.e., domain ‐ test.example.com must have been
hosted over internet and is assigned some Public IPs which
ideally is mapped to some Private IP (Virtual LAN IP of the

https://test.example.com/
http://test.example.com/


organization’s internal network). Table – Sample Table 1.1
below illustrates the same.

Sample Table 1.1

Domain Public IP Internal/Private IP

test.example.com 1.1.1.1 10.X.X.X

All these details will be mentioned in the inventory like which
Domain has been assigned which Public IP and which Public IP
is mapped to which Internal IP, and the inventory will also hold
other details like Web Application details like on which web
server Web Application is running, and on which Operating
system the Web Application is running, location of the build,
etc., so the inventory details will look something like shown in
Sample Table 1.2.

http://test.example.com/


Sample Table 1.2

Domain
Public
IP

Internal
/Private
IP

Web server and
build details

test.example.com 1.1.1.1 10.X.X.X nginx version =
1.22.1 
build =
call_for_papers.zip

First AI module with some preexisting commands will verify if
the reported issue from Cybersecurity Rating Platform is valid
or not, if it is invalid it will submit the snap or evidence to close
the issue using API Integration that is supposed to be done with
Cybersecurity Rating platforms. If the reported issue is true
positive then AI will leverage the NLP feature and will fetch the
secure nginx configuration file from the internet and will
update the inventory with latest set of configurations, only if
the existing nginx configuration in the inventory is not
addressing the X‐Frame‐Options‐Missing issue. However, in this
literature, authors have used a static secure nginx
configuration, shown in below Figure 5.9 to address the issue.

http://test.example.com/


A Docker containerized environment will be created with nginx
Build image and Web Application build will also be placed, after
extracting call_for_papers.zip mentioned in Sample Table 5.1.
And later all the test cases will be executed like web servers
running status, login module, and after providing credentials, if
application is able to navigate to the dashboard page or not,
Session details from database can also be captured to check the
same. If everything works out well, the same changes will be
replicated to the production or live system (10.X.X.X) and later
only liveness of web server will be tested to check if the nginx
web server is up and running, and Business owner will be
notified using notification module and the issue/case flagged by
the CSRP will be submitted for closure using evidence, later
CSRP can validate and close the issue from their end.

Figure 5.9 Secure Nginx configuration file.



If any of the test cases gets failed or liveness of the system is
affected, all the operations will be rolled back business owner
or Application development team will be notified with the
issues, score impact, and some remediation to close the issue.

5.4 Results

5.4.1 First Notification Regarding Issues Flagged by
Cybersecurity Rating Platform

5.4.1.1 Whenever Any Issues Are Flagged to the
Cybersecurity Rating Platform

APIs are triggered automatically from the Cybersecurity ratings
platform – to notify the system proposed, and internally the
proposed system notify the business groups and other
concerned team regarding the issue.

Authors have developed their APIs to integrate their internal
systems with third party Cybersecurity Rating Platforms.

Figures 5.10 and 5.11 show the API request and API Response
for notifications.

These issues will be flagged on constant basis and will notify
the concerned team.



5.4.2 Checking False Positive and True Positive

5.4.2.1 Validate and Close the Reported Findings – A Case of
False Positive Reported Issue

Figures 5.12 and 5.13 show the API request and API Response
for validating issues flagged by Cybersecurity Rating Platform,
and Figure 5.14 shows the background commands for
validating the same.

Figure 5.10 API Request for triggering notification for flagging issues.



Figure 5.11 API Response for notification related to flagging issues.

Once this request is submitted, cybersecurity rating platforms
will automatically close the issue after validating the same from
their end and security rating or grade will again increase.

5.4.2.2 Mitigating Vulnerabilities in Realtime with the
Proposed System

Validating the vulnerabilities will be as is as mentioned above.
Later applying patch/mitigation will be executed by DevOps
module, by referring to the Configuration Bank. Figure 5.15
shows validation of the same, and Figures 5.16 and 5.17 show
API request and API Response for applying the fix or mitigation.



Figure 5.12 API Request for validating the issue.

Figure 5.13 API Response for validating the issue.

Figure 5.14 Sample of Background command for validating the issue.

Figure 5.15 Shows that X‐frame‐Options Header is missing from the application.



Check for test cases after applying the fix on
containerized/sandbox environment, Figure 5.18 shows the
same.

Figure to show that X‐Frame‐Options Headers are added to the
HTTP response.

Nginx Configuration File before applying fix: Figure 5.19
shows the snap of config before applying a fix.

Figure 5.16 API Request for applying the fix.

Figure 5.17 API Response for applying the fix.



Figure 5.18 Validating the issues after applying the fix in containerized environment.

Nginx Config file after applying fix: Figure 5.20 shows the
snap of config after applying fix.

Check status for nginx: [DevOps module will execute # service
nginx status on containerized env] and will show below status.
Figure 5.21 shows the live status of nginx web server.

Since status is up and running then commit the changes and
mount the configuration file in the actual file and server.

Before that, the system will take approval or consent from
Business team/Application development team to take the
consent. As of now, author has created an email‐based
notification and consent‐taking system which will be sent to
concerned Application Owner and its development or IT team.
Figures 5.22–5.24 show the consent or approval flow for the
same.



Figure 5.19 Nginx configuration file before applying fix.

Figure 5.20 Nginx configuration file after applying fix.

Notification at Application Development teams end:

Once the request or consent is approved by the team, then only
the system will apply the patch or fix in the system.



Closure for the mitigated vulnerabilities: Figure 5.25 shows
API Request for closure of the issue against which Patch, or fix
is applied and Figure 5.26 shows API Response of the same.

Figure 5.21 Snap of nginx web server is up and running.



Figure 5.22 Approval or consent workflow generated by the system.



Figure 5.23 Approval or consent workflow pending at concerned team.



Figure 5.24 Consent approved.

Figure 5.25 API Request for closure.



Figure 5.26 API Response for closure.

Table of experimentation with outcome:

Tables 5.3–5.5 show the success rate for all the issues flagged (in
30 iterations on various applications and servers), for
Application Security, Network Security, and End Point Security,
respectively.



Table 5.4 Experimentation on application security issues.

Parameter
Issue
ID

Fixed

Expected
success rate
on 30
iterations in %

Vulnerabilities in
CMS

AppSec‐
V‐01

Yes 93.33

Site/IP does not
support HTTPS

AppSec‐
V‐02

Yes 90.00

CSP Missing AppSec‐
V‐03

Yes 80

Strict Transport
Security 
Misconfigured

AppSec‐
V‐04

Yes 100

Insecure HTTPS
redirect chain

AppSec‐
V‐05

Yes 83.33



Parameter
Issue
ID

Fixed

Expected
success rate
on 30
iterations in %

X‐Frame‐Options‐
Missing

AppSec‐
V‐06

Yes 100

Redirect Chain
contains HTTP

AppSec‐
V‐07

Yes 100

Session Cookie
missing HTTP Only
flag

AppSec‐
V‐08

Yes 100

Session Cookie
missing secure
Attribute

AppSec‐
V‐09

Yes 100

X‐Content‐Type‐
Option‐Missing

AppSec‐
V‐010

Yes 100



Table 5.5 Experimentation on network security issues.

Parameter
Issue
ID

Fixed

Expected
success
rate on 30
iterations
in %

Certificate Is Revoked InfSec‐
V‐01

Yes 80

Elasticsearch Service and
MongoDB Service
Observed

InfSec‐
V‐02

Yes 100

Neo4j Database and
Oracle Database Server
Accessible

InfSec‐
V‐03

Yes 100

SSH Software Supports
Vulnerable Protocol

InfSec‐
V‐04

Yes 100

SSL/TLS Service Supports
Weak Protocol

InfSec‐
V‐05

Yes 93.33



Parameter
Issue
ID

Fixed

Expected
success
rate on 30
iterations
in %

Apache Cassandra and
CouchDB Service
Observed

InfSec‐
V‐06

Yes 100

Certificate Is Expired InfSec‐
V‐07

Yes 100

Certificate Signed with
Weak Algorithm

InfSec‐
V‐08

Yes 100

Weak MAC, Microsoft
SQL Server, PPTP,
PostgreSQL, RDP, Redis,
Remote Access, SMB
Service, resync Service,
VNC Service Observed

InfSec‐
V‐09

Yes 100



Parameter
Issue
ID

Fixed

Expected
success
rate on 30
iterations
in %

SSH Supports Weak
Cipherand Weak MAC

InfSec‐
V‐10

Yes 100

FTP Service, Telnet
Observed

InfSec‐
V‐11

Yes 100

IP Camera Accessible InfSec‐
V‐12

Yes NA



Table 5.6 Experimentation on endpoint security issues.

Parameter
Issue
ID

Fixed

Expected
success rate on
30 iterations in
%

Outdated
Operating System
Observed

EPSec‐
V‐01

Yes 100

Outdated Web
Browser Observed

EPSec‐
V‐02

Yes 100

Figure 5.27 GitHub crawling module for identifying sensitive information over
GitHub.



Figure 5.28 Analytical Representation of Application Security Section or Table 5.4.

Credentials Leak: Figure 5.27 shows the crawling modules
created for GitHub Dorking.

This module will generate the results in CSV or Excel format
and from there some manual checks need to be done for
reassuring whether or not the generated results have identified
some sensitive information or not. Later this information will
be sent out to Development team and business owner for the
closure. This module will eventually ensure that before
application is going live there is no sensitive information or
hard‐coded credentials present in the live website/client side
JavaScript code.

Analytics: Figures 5.28–5.30 show graphical or analytical
representation of Tables 5.4–5.6.



5.5 Conclusion and Future Scope of Work

In this literature, authors have discussed importance of
Vulnerability Management in regard to Cybersecurity Rating
Platforms, which assess the overall security posture at surface
level of an organization and give grade or score. These
scores/grades help the organization to attract business. In this
literature, authors have taken into consideration three
parameters which are commonly used by Cybersecurity rating
(like Application, Network, and End Point Security) platforms
for assessing the overall security score for an organization.
Authors also have discussed the issues related to the mitigation
strategy for the security vulnerabilities reported by
Cybersecurity Rating platforms, like lack of awareness, skill set,
and automation strategy across organizations, etc. Authors in
this literature have proposed a DevOps powered by AI to
mitigate and remediate the vulnerabilities reported by
Cybersecurity Rating Platforms in real time. Experimentation
was also done against each category and subcategory of
vulnerabilities and all the vulnerabilities that were taken into
consideration were executed successfully. However, AI and NLP
which will be the driving force for this work is under progress
and is putted under future scope of work for this literature.
Here all the experimentation was done based on the preexisting



dictionary or configuration sets, which ideally as per the
proposal should be fetched from the various authentic sources
over the internet. Also, holding a good security score from
Cybersecurity rating platforms doesn’t necessarily mean the
organization has great strength in terms of security as most of
the Cybersecurity rating platforms assess the organization
security at a very surface level (minimal level). Future scope of
this literature will also include addressing or mitigating Zero
Day attacks or exploits on real‐time basis.

Figure 5.29 Analytical Representation of Network Security Section or Table 5.5.



Figure 5.30 Analytical Representation of Endpoint Security Section or Table 5.6.
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6.1 Introduction

Due to a decline in price and an expansion of features and
services, mobile devices like smartphones and tablets have
recently gained a lot of popularity. Additionally, the increasing
trend of bringing your own device (BYOD) regulations into
organizations has facilitated the adoption of these technologies.
These policies encourage the use of such technologies for
routine communication and to support commercial
transactions and enterprise systems, all of which pose new
security threats. Operating systems have also been crucial in
this situation for the acceptance and growth of mobile devices



and apps, allowing for the emergence of harmful malware [1].
This is true of the Android OS, as it has grown to be a significant
part of the market for mobile devices as well as an appealing
target for hackers because it is an open‐source OS.

The Android development community, the Open Handset
Alliance manufacturers, and Google have collectively put a lot
of effort to increase the security of Android. Yet new security
threats continue to appear and develop, and this is a significant
concern [2]. This chapter presents some recent results and
trends in the study of Android malware analysis and detection.
This chapter first provides a quick overview of the security
model for Android before moving on to a review of various
static, dynamic, and hybrid malware detection and analysis
methodologies. Following that, a comparative study between
the malware analysis methodologies is provided.

6.1.1 Android Security Architecture

Android is not just an operating system but also a platform
made up of the device hardware, Android OS, and application
runtime. Firstly, the term “Android device hardware block”
refers to the diverse variety of hardware setups on which
Android may be used, including smartphones, smart TVs,
tablets, watches, and cars [3]. Although Android is a processor‐



independent OS, it does utilize some security features specific to
hardware like ARM eXecute‐Never. Secondly, the “Android OS
building block” refers to the operating system itself, which is
based on the Linux kernel and through which all device
resources are accessed. Thirdly, the managed runtime that apps
and some system services on Android employ is called the
“Android application runtime block” [4]. The fact that apps are
created in Java and run on the Android runtime (ART) must be
considered in this situation. However, a large number of
programs, including the essential services and programs for
Android, are native programs or contain native libraries [5].
The same security environment, controlled by the apps
sandbox, is used to execute both ART and native programs.
Applications now have their own area of the file system where
they may store sensitive information like databases and raw
files [6].

A number of important security features are offered by
Android, including strong OS‐level security provided by the
Linux kernel, a requirement that all applications run in
sandboxes, secure process‐to‐process communication,
application signing, and permissions that are both application‐
defined and user‐granted [7].



The security capabilities made available by the Linux kernel are
also utilized by the Android security model. The kernel
separates the user resources from each other on a Linux
system, which is a multi‐user OS, much as it does with processes
[8]. As a result, unless expressly permitted, a user cannot access
a file owned by another user, and each process runs under the
user’s identity that initiated it. Since distinct physical users did
not need to be registered with the system when Android was
first created, the physical user is implicit and UIDs are utilized
to differentiate applications instead. This is the foundation for
Android’s application sandboxing [9].

6.1.2 Android Attack Surface

The qualities of a target that make it susceptible to security
attacks are referred to as its “attack surface.” The method by
which an attacker launches an attack is referred to as an attack
vector [10]. The code that an attacker may run and therefore
attack is referred to as the “attack surface” in other terms. An
attack surface, in contrast to an attack vector, indicates where
in‐code vulnerabilities could be lurking and waiting to be
found, without depending on the attackers’ activities or
requiring a vulnerability to be present. Generally, the amount
of system interfaces a target has closely relates to the size of its
attack surface [11].



It is possible to attack or defend a system more efficiently by
concentrating on specific dangerous attack surfaces. While
determining attack surfaces, several factors are crucial, such as
attack vectors, privileged access, memory security, and
complexity [12]. It is vital to segregate Android attack surfaces
since they are such a broad and complicated array. The attack
surfaces for Android devices, as well as certain attack vectors
and propagation methods [13], are illustrated in Figure 6.1.

The most appealing attack surface is the remote attack surface.
This attack surface is a categorization for attack vectors in
which it is not necessary for the malicious attacker to be close
to the victim [14]. Rather, attacks are carried out through the
network, most often the Internet. Figure 6.1 shows how several
characteristics further categorize this surface into separate
categories. Depending on how each endpoint is protected,
different access controls are needed to access these attack
surfaces [15].



Figure 6.1 The Android attack surface.

Escalating privileges, either under the root or system user or in
the kernel space, is the obvious next step once an attacker has



successfully executed arbitrary code on a device. The physical
attack surfaces are where attacks that necessitate physically
accessing a device are made. As many parties engaged in
manufacturing, Android devices usually make significant
modifications as a part of their integration process, the term
“third‐party modification attack surface” refers to the
potentially vulnerable endpoints linked with the modified
components of an Android application [16].

On top of this complexity, a review of Android’s security must
additionally include a number of security issues specific to
Android, including fragmentation, malware, user behavior, and
compartmentalization [17]. The term “fragmentation problem”
describes the difficulty brought on by the several Android
versions that have been changed and are being used on various
devices. The increasing rise in harmful program creation and
complexity that targets the Android OS is a concern for
malware advocates [18]. The selection of management tools is a
problem since it must optimize IT efficiency while avoiding
features that overlap or clash with one another. The user
behavior issue is the requirement to motivate users to follow
appropriate security rules and procedures. The term
compartmentalization, which divides a single device into many
personal settings, lastly highlights the difficulty of offering dual
personal and mobile virtualization [19].



6.1.3 Android Malware

Repackaging, update attacks, and drive‐by downloads are the
three major social engineering‐based tactics for installing
malware. Repackaging is the most widely utilized technique by
malware developers to insert harmful payloads into software.
Basically, malware writers obtain an application file (APK),
decompile it, include harmful payloads, recompile, and then
publish the modified application to a legitimate or unofficial
market. By being persuaded to download and install these
malicious software packages, users may become exposed. In the
updated attack, the harmful payloads are only included in an
update component that will retrieve or download them during
runtime rather than the entire payload [20]. It is stealthier than
malware installation methods that explicitly contain the
complete harmful payload since the malicious payload is in the
“updated” program and not the original application. The third
method converts the standard drive‐by download attack vector
for use in Android environments. They are simply luring
consumers to download “interesting” or “feature‐rich”
programs, though still not directly exploiting mobile browser
vulnerabilities [21].



Figure 6.2 Static feature extraction and detection.

6.2 Malware Analysis Techniques

This section describes in detail the techniques used to analyze
malware in Android devices. Android Malware Detection
Techniques can be broadly classified into three categories:
static analysis, dynamic analysis, and hybrid analysis.

6.2.1 Static Analysis



The term “static analysis method” describes the process of
studying source code or executable files even without having to
run any applications. There are a number of features, including
API calls and permissions for static analysis [2]. Figure 6.2
depicts the feature extraction techniques.

Static analysis includes a wide variety of techniques that
attempting to ascertain a software’s runtime behavior before
execution. Naturally, the goal in a security environment is to
weed before they are installed and run, programs are screened
for potential malware. Static analysis identifies an application
as malicious based on an inflated estimate of its runtime
actions. Therefore, static analysis techniques increase accurate
detection and reduce the likelihood of false positives [12].

Over the 10‐year study timeframe, many solutions have been
developed to address the problem of malware detection using a
static analysis approach. These tools are separated into three
groups for the sake of this analysis:

1. Methods relying on code analysis, like bytecode analysis after
decompilation,

2. Methods relying on API calls and permissions, and
3. Other methods that are a combination of several factors for

detection.



The majority of malware detection techniques use a variety of
variables and defy simple classification.

6.2.1.1 Code Analysis Based Tools

Static analysis’s first subcategory focuses on analyzing an
application code, at the bytecode or source level. We list and
analyze the most noteworthy tools that use this method.

6.2.1.2 Code Clone Detection Method

A code clone detector used to spot known malicious Android
applications was researched by Chen et al. They examined the
applications’ source code using static analysis.

The Dalvik virtual machine’s bytecode was initially converted
to JVM bytecode by the authors using dex2jar. The Java
decompiler JD‐CORE was then used to decompile the Java
bytecode. This made it possible to detect clones in higher‐level
code.

This technique employs NiCad, an open‐source tool that groups
code files based on their syntactic similarities and finds related
code segments (functions, classes, blocks, etc.) among sets of
code files. This method was able to successfully train NiCad to



carry out malware detection by employing a training set made
up of well‐known benign and malicious apps.

This method makes it possible to discover malicious apps that
are a part of specific malware families quickly and accurately.
In fact, 95% of previously identified malware was found
utilizing a dataset comprising 1170 malware‐infected apps from
19 different malware families [8].

TinyDroid is a malware detection tool that uses static malware
analysis. It first abstracts source code and then uses machine
learning.

Every app on TinyDroid is split into one of two categories:
benign or malicious. Using a program named Apktool, the APK
of the app is decompiled into Smali code (Figure 6.3). Smali can
be thought of as a more sophisticated interpretation of Dalvik
bytecode, that TinyDroid then further abstracts to symbolic
instructions. The classification process used by this method
subsequently computes the number of n‐grams of abstract
instructions present in the code. As a result, a collection of n‐
grams is calculated for every app under evaluation and
contrasted with a collection of n‐grams that were taken from
apps that were either known to be benign or malicious. The
collection of n‐grams which best describe an app’s behavior if it



is determined to be malicious will be uploaded to TinyDroid’s
database of harmful app n‐grams.

Figure 6.3 APK decompilation process.

According to test results, TinyDroid displays a high degree of
accuracy. In fact, whereas many antivirus programs have
detection rates around 50%, TinyDroid’s detection rate (recall)
may reach up to 95.6%, outperforming 7 of the 9‐antivirus
programs it was compared to [9].

NSDroid analyses the call graphs of applications to identify if it
resemble known malware since malware groups have similar
code.

Using androgexf, first, the tool extracts the call graph of the
apps. It then creates a signature for every app to further
abstract this information. To produce this signature, do the
following:



In order to identify which sensitive API calls are made by each
method (i.e., every node that belongs to the function graph),
NSDroid first builds a label from the function graph. This label
logs two attributes, the sensitive API calls and the type of API
calls called by the function. It does so by using a predefined set
of 15 sensitive API call categories. Thus, each node is labeled
with a 15‐bit vector, and this information is registered with a
single bit. To produce the signature for this node, each node’s
label is XORed with those of all of its neighbors (callers and
callees). This label serves as the foundation for the detection of
code similarity. The classification of four distinct malware
datasets totaling 32,190 programs is then carried out using
three different classifiers, decision tree, random forest, and
support vector machine (SVM), of which the latter produced the
best results. The advantage of this scheme is its tremendous
efficiency, which allows it to analyze 32,190 apps in just over 90
seconds. The technique is also very efficient, achieving 100%
precision, recall, and accuracy across a range of malware types
[18].

The objective of Zhou et al.’s systematic detection and analysis
of repackaged apps. They developed the DroidMOSS framework
for measuring application similarity, which uses a fuzzy hash
method to efficiently identify an application’s behavior changes.
It doesn’t require access to source code because it works



directly with the Dalvik bytecode. Three main steps make up
how DroidMOSS works. The first step is to extract the set of
instructions and author information from each application. It is
possible to recognize each program separately thanks to these
two qualities. Creating a fingerprint for every application in the
second phase greatly reduces the length of the sequence. In the
third step, which is based on the application fingerprint, the
source of the applications is determined and the resemblance
between pairs of applications from the same source is
measured to identify recompiled applications. This technique
depends on the original applications being present in the data
collection that relate to them. DroidMOSS may overlook some
repackaged programs if the testing database is insufficient.
Since the prototype used a white‐list strategy, it might not be
able to identify potentially harmful alterations to shared
libraries or advertising SDKs4 [16].

Finally, like with several other processes mentioned in this
section, DroidMoss’ evaluation is based on the entirety of the
code found in every part of the program. Activities, services,
content providers, and broadcast receivers are the four
different categories of Android components. While this may
seem exhaustive, recent research suggests that malware
creators insert dangerous code in the applications’ background‐
running components [18].



6.2.1.3 Methods Based on API Calls and Permissions

This static analysis technique focuses on the examination of the
application’s numerous API calls and the permissions it
requests in the source code.

6.2.1.4 Analysis of API Function Calls and Permissions

This method first looks at the AndroidManifest.xml file to
determine the permissions that the application uses. The
authors point out that since some apps ask for more
permissions than necessary, this may potentially be an
overestimate of the permissions that the app uses. In order to
build a set of API calls which need permissions and really
appear in the app’s code, the writers decompile the.dex
bytecode into Java source code. The API and permissions
utilized in the code are then arranged into feature vectors, and
three different machine learning algorithms – Random Forest,
SVMs, and Artificial Neural Networks – are employed to classify
the data (RNA) [20].

The detection using API method calls performs better than the
detection using only permissions, according to experimental
results on a dataset with 6260 applications. The approach has a
significant processing overhead. Depending on the machine



learning algorithm, it achieves an accuracy between 81.68%
and 94.41%.

6.2.1.5 Risk Signals‐Based Detection

This method seeks to enhance the detection method currently
based on permissions by using an alarm system that considers
the permissions requested by the app and the permissions that
other apps of the same category request. If an app requests a
permission and the majority of other apps with related features
do the same, it infers that the request is likely necessary for the
intended functionality [8].

In order to reduce the cognitive load on users who might not be
familiar with the technical workings of the operating system’s
security architecture, Android consciously tries to restrict the
amount of permissions. The efficiency of the strategy under
discussion would be enhanced by a more detailed set of
permissions, which would also result in more informative
alarm messages. On applying a classification using SVMs to a
dataset with 158,062 applications obtained through Contagio 5
malware dump repository, this method was able to achieve a
detection rate (recall) of 80.99% [1].

6.2.1.6 Other Methods



In a third category, we finally list static analysis tools that do
not really come under API or source code examination.

DREBIN is another tool that uses the outcomes of the
application’s static analysis to detect malware.

The feature set of DREBIN seems to be among the most
comprehensive of all the tools examined. It uses information
from the decompiled .dex file (which includes chosen network
addresses and API call) and the manifest file (which includes
permissions, components, and requested hardware) to
construct a total of 8 feature sets for each app. Without the need
for intricate static analysis like data flow analysis, the full
feature set is built in linear time. SVMs are then used for
detection. Training is not carried out on the device itself to
preserve a minimal footprint on the end device. The classifier is
trained offline, then the user is presented with the sole model
that was produced [6].

DREBIN’s classifier is trained to detect the traits responsible for
an application to be classified as malware. The Android
Malware Genome Project’s 5560 malware samples and 131,611
safe apps from the Google Play Store and two additional
marketplaces were used to test DREBIN. It outperformed



numerous antivirus programs on the same dataset, with a
successful detection of 93% with just 1% false positives [11].

The DroidRanger application can identify the specific
characteristics that malware from different harmful families
share. It gathers Android applications from already‐established
Android markets using a crawler and stores them in a central
log or repository. DroidRanger extracts the essential attributes
of each gathered application (author information, requested
permissions, etc.) and stores them in a centralized database.

This tool uses two different detecting methods. The first is
dependent on a behavioral footprint based on application
permissions. The second method is based on a heuristic
assessment of the application’s behavior inferred through its
manifest file and bytecode. Then, if any suspect applications are
actually acting maliciously while in use, they are executed and
observed. If yes, the first detection process database will be
expanded to include the corresponding behavioral fingerprint
[10].

The top downloaded apps from 2011 were used to test this
study, and the results were promising. With false negative
frequency of 4.2%, DroidRanger only handles free applications
and five Android stores [2].



6.2.2 Dynamic Analysis

An option for malware detection that doesn’t involve executing
the program in order to see how it behaves and how it affects
its surroundings is dynamic analysis. It is later compared to
static analysis since it only picks up vulnerabilities as they are
about to happen. Due to the fact that it only takes into account
one possible program execution and not all possible program
executions, it also has coverage restrictions [19].

Dynamic analysis tools are divided into four major groups
based on the element used for detection:

1. Tools relying on system calls
2. Tools relying on information of system (CPU usage or

network communication)
3. Tools relying on information of user space (e.g., API calls)
4. Other methods.

6.2.2.1 System Call Monitoring

This dynamic analysis method uses the study of system calls to
detect suspicious system calls that pose potential threats.
Following methods are used to detect such system calls
(Figure 6.4):



6.2.2.2 Processing of Natural Language

This detection technique, based on examining the Android
application’s system calls through processing of natural
language, is widely used in dynamic analysis. Using sequences
of system calls from good and bad applications, tools that
employ this technique train two classifiers. The long short‐term
memory (LSTM) model serves as the foundation for both of
these classifiers. In natural language, a system call is viewed as
a “word” in their paradigm, and a series of system calls as a
sentence. In both the legitimate and the malicious models, a
probability is assigned by LSTM to the occurrence of a sentence.
Then, if an execution has a higher likelihood of occurring in the
malicious model, it is classified as malicious.



Figure 6.4 Suspicious API calls.

When the duration of system call sequences was varied from 50
to 50000 during testing of the model, the tool was able to attain
an accuracy rate of 93.7% and 9.3% false positives [14].

6.2.2.3 System Call Logs

In this method, a dataset of malicious and normal android
applications is employed. Prior to recording the system call, the
applications are initially run in a regulated setting for a
predetermined amount of time [5]. Each application is then
given a Boolean vector. This specifies whether each of 18 more



pertinent system calls exists along its execution after the less
statistically significant system calls are discarded. An algorithm
for machine learning is then fed this data. The Random Forest
algorithm, the Naive Bayes algorithm, and the stochastic
descent gradient algorithm are the three learning techniques
used in this method. Finally, the tool classifies an unknown
application as dangerous or benign using this dataset [3].

It should be emphasized that if the dangerous behavior does
not appear during the training period, a malware could
potentially circumvent this detection system. This method
automatically picks the system call sequences most likely to be
predictive of malware detection from the extremely enormous
number of possible system call sequences. It categorizes the
execution traces as malware or not based on the repetition of
the sequences of the chosen system calls. Using this strategy,
this method was able to detect 1000 benign apps and 1000
malicious ones with a rate of accuracy of 97% [11].

6.2.2.4 Crowdroid

Crowdroid is a program created by Iker et al. that uses the
advantages of crowdsourcing to find viruses in repackaged
apps. Crowdroid employs a tracing tool called Strace, which
exists on the majority of Linux distributions. It tracks system



calls that running apps make to the Linux kernel on the end‐
users devices. After that, this data is stored in a server [13].

With the server, for each pair of application and user, a feature
vector is produced which counts how many times the 250
system calls are invoked. The k‐means algorithm is then used to
perform clustering on this data in order to distinguish amongst
apps that, despite sharing the same name and identifier,
demonstrate diverse behaviors. Naturally, as more people use
Crowdroid, more data will be sent to the server, increasing the
accuracy and precision of detection. Crowdroid tested well
against three types of malware, including one created
specifically for this test by the paper’s authors. Its detection
rates ranged from 85% to 100%.

6.2.3 Monitoring of System‐Level Behaviors

In order to identify malware, this group of dynamic techniques
emphasizes on system‐level data except the system calls. System
calls are analyzed by several of these methods as well [15].

EnDroid is a malware detection system that Feng et al.
suggested. It is based on several kinds of dynamic behavior at
the system level. To remove pointless features and retrieve
crucial features from the behavior, EnDroid uses a feature



selection method. The learning phase and the detecting phase
are the two stages of the EnDroid process. By observing
input/output processes, the learning phase entails extracting
the dynamic behavioral traits of a certain application. The
authors tracked ten different application action categories,
including file activities, network operations, and cryptography
operations [7].

Each of these features is handled as a separate functionality,
with a view to producing a feature vector. EnDroid trains many
elementary classifiers using the feature vectors produced by
both malicious and benign applications as input. Using these
fundamental classifiers’ forecast probability, it creates a final
categorization model for each application by utilizing an extra
classifier. Then, this classification model is forwarded to the
phase of detection. EnDroid extracts the dynamic behavioral
features of an unidentified application during the subsequent
detection phase and creates a feature vector for it. The
classification model can determine whether the application is
appropriate based on this vector. According to experimental
findings, this method successfully identified 97.97% of malware
and a false positive rate of 1.85% [2].

6.2.4 Monitoring of User‐Space Level Behaviors



This method looks for malicious apps using data acquired at the
user‐space level. This often includes call data at the API level, as
opposed to the system level.

6.2.4.1 RepassDroid

Semantic and syntactic analysis are used by the tool
RepassDroid to automatically identify malicious Android
applications.

RepassDroid synthesizes the API used in the program as a
semantic function and the necessary permissions as a syntactic
function to examine the Android application. The next step is to
automatically identify whether an application is malicious or
benign using learning.

The architecture of RepassDroid is built on two basic building
blocks:

The module for feature extraction. Each application’s call
graph is created by the feature extraction module from a
particular Android application using Flow-Droid. The
features of the application (APIs and permissions) are then
extracted from this graph to create feature vectors.
The Module for Classifiers. The classification model was
created by the authors using the Weka library and the



feature vectors.

Applications that were previously unknown, after being
categorized as either malicious or benign, are combined into
the model [4].

6.2.4.2 Malware Detection Using Dynamically Generated
Data and Machine Learning

A malware detection method for Android smartphones was
proposed by Wen et al. and is based on the SVM automated
learning classifier. Their technology is designed specifically for
this use and runs straight on the user’s smartphone. There are
two main modules in the tool. Every time a new app is
downloaded, the client module checks an existing database
with known malicious apps (identified using their
corresponding MD5 hash). Users are so forewarned if they try
to install a malicious app. Otherwise, the server will get the app
and process it further [16]. The feature extraction module on
the server module uses both static and dynamic analysis to
extract the features of the application. Permissions, intentions,
and API are among the static features. The software is then run
in an isolated environment to collect dynamic features like CPU
usage, battery usage, and the number of processes that are



active. After that, a feature selection module receives the
features and filters out any duplicate features [19] (Figure 6.5).

Figure 6.5 Dynamic feature extraction and detection.

6.3 Hybrid Analysis

The development of hybrid analysis makes use of both dynamic
and static features and it improves the efficiency of learning
algorithms. To achieve high reliability in the hybrid analysis,
some studies offered multi‐classification strategies. Additionally,
Publisher ID, Java package name, API call, class structure,



crypto operations, intent receivers, and permission are
examples of static aspects. Dynamic features include crypto
operations, file operations, and network activity. The APK file
extracted functionalities from Androidmanifest.xml and static
components from classes.dex files. In hybrid analysis, static and
dynamic features are combined and the purpose of these
features is to identify malicious programs [18] (Figure 6.6).

6.4 Result

While Static Analysis comprises techniques that make code easy
to extract with low computational power required, it is also
susceptible to imitation attacks and code obfuscation. These
techniques have low accuracy and high false positive rates. On
the other hand, dynamic analysis gives high accuracy but at the
cost of higher computational power and resources. It is difficult
to handle multiple features in the case of dynamic analysis
along with a higher time complexity. Comparing hybrid analysis
to static and dynamic analysis, the primary advantages are that
hybrid analysis performs with the highest accuracy. It also
poses some challenges that include high time complexity,
complicated framework, and high resource utilization.



Figure 6.6 Hybrid malware analysis.

6.5 Conclusion

Malware detection techniques are classified largely on their
nature. Due to changing nature of threats robust detection
techniques are highly required. Machine learning methods can
also identify unknown malware in related families. Malware
are classified into their respective family based on their
features. The survey provides insight about risks associated in
malicious code along with tools and techniques suitable to deal
with respective malware. This chapter examined a wide range
of techniques for detecting and analyzing Android malware,
revealing commonalities in how these mechanisms are



emerging. The ability of Android malware to obstruct research
and evade detection, including deep learning and machine
learning techniques, was also covered in this chapter. This
chapter evaluated the efficacy of current strategies for studying
malware and for detection. In contrast to earlier surveys, which
typically focused exclusively on mobile attacks, this chapter
introduces static, dynamic, and hybrid analytic methodologies
as well as suggested algorithms.
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7.1 Introduction

Recent technologies, e.g., “cloud computing” (CC) [1], “cyber‐
physical systems” (CPSs) [2], “artificial intelligence” (AI) [3],
robotics [4, 5], and blockchain [3–6] have been revolutionizing
all realms [7, 8], integrating data treatment, connectivity,
storage, and physical methods/worlds. The universe and its
processes embrace interconnected computational entities that
work together as a CPS [1–8]. Albeit CPSs closely relate to the
“Internet of Things” (IoT), they differ, but complement each
other owing to their unique association with the “real world”
(RW), aka physical or material objects [5], encompassing smart
entities like self‐driving cars, robots, buildings, power grids,
manufacturing, and wearables, to cite a few [6]. Even in CPSs,
cyberattacks (CAs) can lead to physical/real system failure or
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collapse [3]. The automatic fault compensation consequences
and the system’s performance maintenance up to some
appropriate standard are conflicting [4]. Businesses’
infrastructures have morphed owing to these breakthroughs
and with substantial triumph worldwide. CPSs offer sensor‐ and
actuator‐reliant links with some intelligence, new trade models,
opportunities for fostering cutting‐edge “information and
communication technology” (ICT) ways out, and resources for
enhancing computer structures, e.g., intelligent and IoT
environments, which are exciting new AI application areas.
Reworking AI models and instruments to meet the new CPS
prerequisites will be difficult [3–6, 9–19]. “Neural network” (NN)
algorithms learn from data akin to how the human mind
behaves. Using NNs allows devices to make smart judgments
with minimal anthropogenic input since they can learn and
predict complex correlations concerning input and output
information.

CPSs offer comprehensive computer, storage, and networking
capabilities through “ICT” can be tailored to meet the needs of a
wide range of businesses and organizations using intrusion
prevention security systems (IPSSs). Reduced ICT costs give
small and medium‐sized enterprises high performance by
sanctioning the precise purchase of the amount of software
(SW) or hardware (HW) required. “Service‐oriented



architectures” (SOAs) and intelligent systems tied to CC and fog
computing (FC) in manufacturing are grounded on CPSs. So,
affording computational power for manufacturing and services
is accepted in NN. This way, assets are accessible for current
output, and target consumers. Internet suppliers can access
items via CPSs and other ubiquitous networks. AI‐driven
apparatuses experiment exponential growth when interacting
with their contexts, viz., driverless vehicles supervising and
connecting with their contexts and home automation with
optimized power consumption thanks to innovative analytics,
AI, and ICTs. These frameworks can embed ever‐increasing
knowledge to make better and faster decisions in vastly
intricate data environments. Control systems can supplement
CPSs’ information security shields, withstanding attacks.
Moreover, they can belong to more extensive intrusion
recognition and macroeconomic variables. Even in CPSs,
however, CAs can cause physical system breakdowns. AI models
and their placement form the virtual producer’s device
foundation, whether the business employs the edge, FC, or CC
resources, and if its tools and structures for regulating
mechanisms are unified or scattered. Manufacturing aspects
comprise and combine into the overall architecture,
establishing the industrialized item basis in a CPS.



Moreover, they can belong to more extensive intrusion
recognition and macroeconomic variables [20–32]. Even in
CPSs, however, CAs can cause physical system breakdowns. AI
models and their placement form the virtual producer’s device
foundation. The business may employ “edge computing” (EC),
FC, or CC resources if its tools and structures for regulating
mechanisms are unified or scattered. Manufacturing aspects
encompass the overall architecture, establishing the
industrialized item basis in a CPS.

Systemic performance must be satisfactory even if faults are
automatically or deliberately rewarded. Sensors, actuators, and
system processes often target CAs or defects consolidated into a
single system of thought. Various vendors initially link SMEs
utilizing multiple standards and interaction systems. The
overall performance helps detect CPSs’ faults and attacks. The
different CA types concentrated on CPSs call for new methods to
consider environmental diversity and consistently structured
advancements. AI CPSs must prevent defects or CTs from being
automatically satisfied with system performance maintained
satisfactorily. Systemic CTs and flaws often target sensors,
decision‐making, and associated actuators’ procedures. Hence,
a unified and coherent framework is necessary. Third‐party
providers raise trust obstructions to businesses’ adoption of



these models, notably on communication structures. This
chapter’s primary aim involves the ensuing.

1. Intelligent control usage for compensating scalar CAs on
nonlinear CPSs.

2. List of steps to implement tolerable security controls at many
CPS levels through IPSSs and NN.

3. Project description and in‐depth investigation of recent CPS
security processes utilizing AI.

Section 7.2 depicts the CPS models’ contexts. Section 7.3
describes a possible AI‐established CPS (CPS‐AI) framework.
Section 7.4 portrays the SW analysis and assessment. Lastly,
Section 7.5 concludes and mentions the new technological
revolution’s glitches, linking numerous CPSs to autonomous
activities in small environments as a future scope.

7.2 Types of Cyber Threats

The most common types of CTs follow [33–44]:

Computer virus (CV): This malware, once executed,
reproduces itself by altering other programs and inserting its
code. CVs generally necessitate a host program to write its code
in it. After the code runs, the written CV is executed first,



triggering infection and losses, while a “computer worm” (CW)
needs no host program (as it is an autonomous code or program
chunk). Consequently, the host program does not restrict it;
nevertheless, it can run self‐sufficiently and aggressively carry
out CAs. Virus writers utilize SE deceptions and exploit detailed
cybersecurity (CS) knowledge weaknesses to infect systems and
spread the problem initially. CVs employ complex anti‐
detection/stealth stratagems to elude antivirus SW Motivations
for creating CVs include pursuing profit (e.g., ransomware),
aspiring to convey a political message, personal joke,
demonstrating an SW vulnerability, sabotaging and creating a
DoS, or simply exploring CS concerns, evolutionary algorithms
and artificial lives. CVs provoke billions of dollars of economic
damage per year. In response, an antivirus SW industry has
cropped up, marketing or freely dispensing CV protection to
various operating systems’ users. Certain CVs may be enough to
at least flag a suspicious file. A longstanding albeit compact way
will be through arithmetic operations (viz, addition,
subtraction, and Boolean operations like exclusive‐or (XORing)),
where each CV byte is a constant. Thus, the XORing operation
can only reoccur for decryption. It is suspected for a code to
transform itself, so the code for encryption and decryption may
be a signature part in many virus definitions. A more
straightforward older methodology did not exploit a key (i.e.,



encryption only has operations with no parameters, e.g.,
incrementing, decrementing, arithmetic negation, logical NOT,
and bitwise rotation). Some CVs, termed polymorphic viruses,
will perform encryption inside an executable. The virus is
encrypted on certain occasions, e.g., the virus scanner being
turned off for updates or the machine being rebooted.
Polymorphic CVs were the first modus operandi that seriously
threatened virus scanners. A polymorphic virus contaminates
files with its encrypted copy, resembling regular encrypted CVs
decoded through a decryption building block. However,
polymorphic viruses modify this decryption module on each
infection. Thus, a well‐written polymorphic CV has no identical
parts between infections, complicating their direct detection via
“signatures.” Antivirus SW can catch it by decrypting CVs via an
emulator or statistical pattern breakdown of the encrypted CV
body. The virus must have a polymorphic engine (aka
“mutation engine”) in its encrypted body to facilitate
polymorphic code. Some viruses utilize polymorphic code that
significantly constrains the virus’s mutation rate. For
illustration, a CV can mutate only slightly as time progresses or
cease metamorphosing once it infects a file that already holds
the CV’s copies. The slow polymorphic code gain hinders
antivirus professionals and investigators from obtaining
representative virus samples because “bait” files infected in one



run normally hold identical or similar virus samples. This tactic
will make virus scanner detection more unreliable, and some
CV instances can evade detection. Some viruses’ codes are
rewritten completely after new executables’ infection to avoid
detection by emulation. CVs utilizing this practice are deemed
metamorphic codes, requiring a “metamorphic engine,” and are
usually vast and complex.

Computer worm: This standalone malware program replicates
itself to contaminate other computers. It often spreads via a
computer network, relying on CS failures on the target HW to
access, utilizing this host to scan and infect other equipment.
When these new worm‐invaded devices are controlled, they
stay watching and infect other computers, perpetuating this
behavior. CWs use recursive methods to spread copies (without
host programs) and redistribute themselves, hinging on
exponential growth’s advantages, thus quickly controlling and
infecting more computers. CWs almost always trigger at least
some network impairment, even if only bandwidth is
consumed, whereas CVs almost always corrupt or alter files on
a targeted machine. Many CWs only spread without changing
systems. Yet, the Morris and Mydoom CWs revealed that even if
“payload‐free,” they could engender significant disruption by
snowballing network traffic and other unplanned effects.



Social engineering (SE): It is the psychological exploitation of
folks into performing actions or divulging confidential data for
fraud or system access. An SE perpetrator differs from a
customary “con” because SE often involves many phases in a
more multifaceted fraud pattern. It is also described as “any act
that influences somebody to do some action that may not be in
their best interests.” An SE example is an attacker requesting
info from a help desk, impersonating someone else, and asking
for a forgotten password. If the help desk staff member resets
the password, granting the invader full account access. The SE
lifecycle comprises the stages below:

1. Information gathering (IG): It is the first and foremost
lifecycle step. It calls for much patience and keen inspecting
of the victim’s habits. This step gathers facts/records
concerning the victim’s interests and personal information. It
defines the overall CA success rate.

2. Engaging with the victim: After gathering the required facts,
the invader starts talking to the prey smoothly so the victim
believes the interaction is legitimate (without anything
inappropriate).

3. Attacking: This step generally follows a lengthy period of
engaging with the victim and, during SE, retrieves and
exploits the target’s material. In phase, the invader gets
outcomes/answers from the target.



4. Closing interaction: This last step includes, bit by bit, shutting
down the invader’s communication without raising any
suspicion from the victim. Hence, the purpose is fulfilled, and
the victim seldom realizes a CA occurred.

Malware (MW): Malware refers to a malignant SW application
purposefully introduced into a system to impair data reliability,
confidentiality, or availability. Covertly executed, MW has the
potential to impact an individual’s data, apps, or operating
system. The proliferation of malware has emerged as a
prominent external threat to computer systems. The MW
presence can provoke extensive harm and disruption,
necessitating significant resources and efforts inside most
enterprises.

Ransomware (RW): This crypto virology MW threatens
significantly by coercing the victim into paying a ransom or
facing the consequences (e.g., publishing their data or
permanently blocking their access). While rudimentary RW
forms may restrict system access without harming files, more
sophisticated MW employs cryptoviral extortion techniques.
The perpetrator’s encryption methodologies make the targeted
individual’s files inaccessible, compelling the victim to pay a
ransom for the decryption key. In a meticulous cryptoviral
extortion operation, retrieving files without decryption key



access is tricky. Furthermore, utilizing digital currencies,
particularly those that are challenging to hunt down, in the
form of ransoms complicates locating and prosecuting
accountable individuals. RW assaults commonly involve a
Trojan, camouflaged as a genuine file, deceiving the victim into
unwittingly downloading or opening it, often through an email
attachment. Nevertheless, a prominent example, the WannaCry
CW, could propagate autonomously across machines without
user intervention.

Phishing attack (PhA): This method uses deceptive emails or
bogus websites to steal sensitive data like bank account details.
The criminal impersonates an honest company or person. PhAs
are fraudulent emails, texts, phone calls, or fake websites that
con users into MW downloading, sharing sensitive data (e.g., SE
and credit card/bank account numbers, login info), or taking
other cybercrime‐exposing actions. Successful PhAs cause
credit card scams, identity stealing, RW outbreaks, data
breaches, and large personal or corporate monetary losses. The
most typical SE is a PhA, which deceives, pressures, or
manipulates victims into delivering money or information to
incorrect people. SE assaults succeed due to human error and
pressure. The attacker usually impersonates a coworker,
manager, or business the victim trusts, creating an urgency to
make the victim act quickly, which is cheaper and easier than



hacking into a computer or network. Most CAs spread RW to
individuals and organizations via phishing emails. “Spear
phishing” is a PhA campaign that targets individuals and
encompasses their interests, viz current personal events or
finances.

“Distributed Denial‐of‐Service” (DDoS) attack: The attacker
floods a server to prevent Internet handlers from accessing
online services and sites, instigating the site’s average traffic,
known as legitimate packets, to halt. Invaders accomplish this
by directing more traffic than the prey can handle, triggering it
to fail and unable to cater service to its customary users.
Targets might include websites, email, online banking, or other
service dependent on a network or machine. A computer or
network undergoing “denial of service” (DoS) attacks has
problems related to reducing, restricting, or stopping the
system’s resources’ accessibility to authorized consumers. A
DDoS attack may compromise multiple systems simultaneously.
An attacker can select zombies randomly or topologically. Once
impaired, this entity sets up a controller/commands to
manipulate zombies. A bot is a hazardous SW installed on
damaged machines, giving the attacker control over zombies. A
botnet boils down to a network of bots. DoS varieties:



Botnet: This CA infects numerous networked devices with bots
and attacks a server, corporation website, other appliances, or
individuals. Once infected, a bot can gather and steal user data,
read and write system data, monitor user activity, perform
DDoS attacks, send spam, start brute force attacks, crypto mine,
etc.

Volumetric CA: It consumes the entire bandwidth, so certified
users cannot attain resources thanks to flooding network
devices (e.g., hubs and switches) with plentiful of ICMP echo
request/reply packets. Accordingly, the entire bandwidth is
spent. Moreover, other clients cannot join the target network.

SYN flooding: An invader compromises numerous zombies
while flooding the prey with manifold SYN packets. SYN
requests will inundate the victim. Either its performance drops
drastically, or it shuts down.

Fragmentation attacks: This CA compromises the
reassembling target’s ability. Copious fragmented packets go to
the target, hampering its assemblage capacity, thus negating
access to authorized clients.

TCP‐state exhaustion attack: The invader causes a DoS CA,
setting up and extinguishing TCP connections. This overwhelms



stable tables.

Application layer attacks: The invader exploits application
programming errors to cause a DoS. It is realized by directing
multiple target application requests to exhaust resources.
Consequently, it cannot cater to any valid customers. A
programming mistake (e.g., a buffer overflow outbreak) may
engender memory allocation to a variable smaller than the one
requested. Then, memory leakage or the whole application
crashing may occur. Other application layer CAs include
account lockout and request flooding.

Plashing: This CA causes permanent HW damage via
fraudulent system updates, making it unusable. The only way
out is to reinstall HW Countermeasures include:

Utilizing the latest antivirus and “intrusion detection
structure” (IDS) tools.
Performing network analysis seeking a DoS attack.
Shutting down extra target network services.
Finding and neutralizing handlers to protect secondary
victims.
Performing activity profiling and intelligent filtering to
remove unwanted traffic.
Enforcing in‐depth packet analysis.



Employing a defense‐in‐depth tactic.
Adding additional load balancers to attract traffic and control
it.
Correcting program errors.
Employing robust encryption mechanisms.

Trojan horse (TH): This MW disguises itself as regular software
to deceive users. The word stems from the Greek myth of TH’s
deception that brought Troy down. SE can spread Trojans, e.g., a
user is tricked into clicking an email attachment that looks
regular or on a false social media ad. Their payload varies, but
many function as a backdoor, contacting an unauthorized
controller with computer access. RW attacks are common for
THs. Trojans cannot reproduce or inoculate themselves into
other archives like CVs and CWs.

Man‐in‐the‐middle attack (MITMA): Stalkers insert themselves
between two parties that are certain they are communicating
directly and secretly, modifying their communications. Active
eavesdropping is an MITMA in which the invader creates
independent victims’ connections and transmits messages to
con them into thinking they talk directly via a restricted link
when the aggressor controls the conversation. The invader
must seize and inject all applicable messages amongst targets.
Without encryption, an attacker within the Wi‐Fi access point



range could perform an MITMA. The attacker must impersonate
each endpoint well enough to fulfill their expectations to
circumvent mutual authentication in an MITM assault. Most
cryptographic protocols are built on endpoint authentication to
avoid MITM occurrences. An equally trusted certificate
authority can validate one or both sides in a TLS. Corporate
security policy may include adding bespoke certificates to
workstations’ web browsers to scrutinize encrypted traffic.
Thus, a green padlock does not guarantee remote server
security certification but with the business server/proxy in
charge of SSL/TLS inspection. Possible remedies:

1. HTTP public key pinning (HPKP): The server prevents an
MITM outbreak on the certificate authority by listing pinned
public key hashes throughout the first action. Consequent
transactions require server authentication with one or more
listed keys. DNSSEC (a DNS extension) utilizes signatures to
verify DNS records, preventing MITM attacks from sending
clients to malicious IP addresses.

2. Tamper detection: A latency check can spot the CA in
certain situations, like with long calculations in hash
functions. To discover potential CAs, involved parties test
response times’ discrepancies. Suppose two parties normally
take some interval to perform a given operation. If
something takes an abnormal time to go to the other party,



there is the possibility of having a third party’s interference,
which adds additional latency.

3. Quantum cryptography (QC): It delivers tamper
substantiation for transactions employing the no‐cloning
theorem. QC protocols authenticate some or all exchanges
with a secure authentication strategy, e.g., Wegman‐Carter’s
scheme.

4. Forensic analysis (FA): It captures network traffic from a
suspected CA and can be investigated to determine if an
attack occurred. This being indeed a CA, FA selects the CA
source utilizing substantial evidence to analyze network
forensics on a mistrusted outbreak, including:
1. Server’s IP address
2. Servers’ DNS name
3. Servers’ X.509 certificate
4. Self‐signed certificate
5. Trusted authority’s signed certificate
6. Revoked certificate
7. Recently changed certificate
8. Other stakeholders on the Internet with the same

certificate.

Spyware: It violates privacy, turning out to be a chief concern
to establishments. Though privacy‐violating MW has been
around for several years, it has gotten much more common,



invading systems to follow private activities and run monetary
fraud.

SQL injection (SQLi): An SQLi is a widespread web hacking
technique responsible for injecting malicious code in SQL
statements via web pages that might impair a database. This
web security weakness allows an enemy to interfere with users’
queries to a data reservoir. It will enable an invader to observe
data they cannot normally retrieve. It happens once the
application accepts a malevolent operator input as part of an
SQL statement to inquire about a backend databank. Attackers
can insert SQL commands and control characters to modify the
query structure.

IoT attack (IoTA): With IoT gadgets’ network access, invaders
can redirect information toward the cloud while pressurizing to
retain, delete, or expose data lest a ransom is paid. Sometimes,
payment is insufficient for a group to regain all its records, and
the RW automatically deletes files.

Insider threat (InT): This CS risk originates within a business.
It habitually strikes when a present or former worker,
contractor, retailer, or collaborator with genuine user
credentials can detrimentally access the establishment’s
networks, systems, and data.



Cryptojacking: It is a machine hijack to mine cryptocurrencies
against the handler’s will through websites or while the
operator is unsuspecting. Coinhive is/was a SW for
cryptojacking. The cryptocurrencies mined most often are
privacy coins with hidden transaction histories. Even though
this harmful CA aims at profit, unlike other CTs, it remains
wholly concealed from the customer. Cryptojacking MW can
slow down and crash machines by draining computational
assets. Blockchain mining by infected devices can be confronted
by dedicated HW (e.g., FPGAs and ASICs). This expedient is
more effective concerning energy intake and may have inferior
costs than stealing computational resources.

Zero‐day (0‐Day): This severe SW threat demands more vendor
mitigation efforts. Hackers can exploit the exposure to
adversely affect programs, data, additional machines, or
networks until the glitch is alleviated. Initially, the expression
“zero‐day” denoted the days since a new SW patch was released
to the public. Hence, “zero‐day SW” meant invading a
developer’s machine before release. Currently, it means
vulnerabilities permitting this hacking and the number of days
the vendor had to fix them. Vendors who comprehend
vulnerabilities usually create patches or advise how to mitigate
them. The faster the vendor becomes aware of the exposure,
the repair‐patch development need tends to zero. Once a



problem is fixed, the exploitation success chance drops as more
operators apply the repair. Unless an exposure is mistakably
fixed, like by an unrelated update that fixes the weakness, the
probability that a consumer had a vendor‐supplied patch fixing
the trouble tends to zero, so the exploitation is still viable.

Brute‐force attack (BFA): It is hacking by trial and error to
gather login credentials, passwords, and encryption keys. BFA
gains unauthorized access to private accounts and
organizations’ structures and networks via a simple yet
dependable tactic.

Advertising software (Adware): Innumerable pop‐up ads on
one’s computer or mobile device can become malign and harm
an appliance by hijacking someone’s browser, bloating/slowing
it down, and inserting CVs or spyware.

DNS spoofing (DNSS): It is also termed DNS cache poisoning.
DNSS harms the domain name system (DNS) data within the
DNS resolver’s cache, instigating the name server into returning
an incorrect record (e.g., an IP address) and redirecting traffic
to any hacker‐selected computer.

CS hacker: A CA is any intention toward stealing, exposing,
modifying, disabling, or destroying data, applications, or other



assets employing unauthorized entrance to a network,
computer system, or other device. Invaders launch CAs for all
sorts of motives. Two‐factor verification often keeps hackers
from accessing one’s personal information. Nevertheless,
factual contact information is too dangerous for hackers who
prefer ring phones, numerous dummy emails, and correctly
encoded messaging services to preserve privacy.

Rootkit: A malicious SW that delivers privileged, root‐level (i.e.,
managerial) right of entry to a machine while camouflaging its
machine presence. This nasty MW can severely impact a
machine’s performance and place personal data at risk.
Rootkits can enter computers when handlers open spam emails
and inadvertently download malicious SW keyloggers, which
can also capture user login information.

Identity theft (IT): It is a severe CS risk when someone steals
another individual’s information for profit, especially lacking
the person’s consent. IT is a transgression in which a criminal
utilizes fraud or dishonesty to get sensitive information from a
target and misuses it to pretend to be the prey. Usually,
perpetrators want monetary gain. The four IT types involve
medical, criminal, financial, and child/juvenile records.

7.3 Cyber Threat Intelligence (CTI)



Cyber threat intelligence (CTI) amounts to knowledge, skills,
and empirical familiarity about incidences and appraisals of
cyber and RW threats to help lessen potential CAs and harmful
cyberspace events [30–44]. CTI sources embrace open‐source
intelligence, keen social media, human cognition, technical
aptitude, HW log archives, forensically picked‐up pieces of
evidence or understanding from internet traffic, and deep/dark
web information. CTI has become a crucial companies’ CS
strategy since it makes companies more proactive and
determines which dangers pose the largest business risks.
Hence, firms on a more assertive front actively try to discover
their liabilities and prevent CAs before they happen. This
scheme has gained prominence recently since the most
common hacking approach is via threat exploitation.

The COVID‐19 pandemic drove more people to work from
home, making companies’ BD more exposed. Due to augmented
CTs and CTI complexity, many organizations outsource CTI to a
“managed security provider” (MSSP).

7.3.1 CTI Process – Intelligence Cycle

The CTI fivefold developing process or intelligence cycle is
circular and continuous:



1. Planning and directing means the intelligent product
consumer must know a specific topic or objective.

2. Collection begins by accessing the vital raw information to
create the finished intelligence product.

3. Processing (or pre‐analytical) phase filters and prepares raw
information for analysis via procedures like decryption,
translation, dimensionality reduction, and so forth. As data
are not intelligence, transformations, treatment, and analysis
are required.

4. The analysis step transforms prepared information into
knowledge.

5. The dissemination phase sends the found threat intelligence
outcomes to the various users.

Some paramount usage issues are:

Sensitive information requires protection to prevent data
losses.
Since data breaches mean costs, lessening the risk of data
breaches saves money.
Institutions need help to implement CS measures to avoid
future CAs.
The CS community must share knowledge, skills, and
experiences.



Identifying CTs helps to improve delivery tools, indicators of
compromise, and forthcoming, specific actors and instigators.
Detecting CAs during and before the CPS stages.
Providing indicators of actions taken throughout each attack
stage.
Sending information on threat surfaces, attack vectors, and
malicious activities to ICT platforms.
Serves as an evidence repository of successful and
unsuccessful CAs.
Arranges for indicators for HW emergency response and
incident response teams.

7.3.2 CTI Types

The three CTI fundamental levels to appraise threats follow [26–
44]:

1. Tactical: They help identify CT actors employing indicators of
compromise (e.g., Internet domains, IP addresses, or hashes),
albeit the analysis of “tactics, techniques, and procedures”
(TTP) utilized by cybercriminals is in its infancy. Insights
engendered at this level can help security teams immediately
predict and identify upcoming CAs.

2. Operational: This is CTI’s most technical level, sharing
attacks’ intricate and specific minutiae, rationale, CT actor



skills, and individual campaigns. CTI expertise at this level
encompasses emerging CTs’ nature, intent, and timing, being
more challenging, and often comes from deep, obscure,
inaccessible web forums for internal teams. Security and
attack response experts utilize this operational intelligence.

3. Strategic: The goal is to scrutinize the current and projected
business risks and the potential CTs’ consequences to aid
leaders and non‐technical audiences in prioritizing their
responses.

7.3.3 CTI Benefits

CTI affords several gains, which encompass [26–44]:

It allows agencies, organizations, or other individuals to
develop proactive, robust CS postures to bolster whole risk
controlling and CS policies/responses.
It drives momentum toward an assertive, predictive CS
posture instead of simply reacting to a CA.
It delivers contextual info and insights about active CAs and
potential CTs to aid decision‐making.
It prevents data breaches from liberating sensitive
information, thus precluding data loss.
It reduces costs since data breaches are costs, and reducing
their risk helps save money.



It helps and instructs institutions on implementing CS
measures to protect against future CAs.
It enables the CS community to share knowledge, skills, and
experience.
It helps to identify CTs, delivery mechanisms, indicators of
compromise across the infrastructure, and potential specific
actors and motivators more quickly and better.
It helps in CA detection during and before these stages.
It provides indicators of actions taken during each attack
phase.
It communicates threat surfaces, attack vectors, and
malicious activities to information and operational
technology platforms.
It is a fact‐based repository for evidence of successful and
unsuccessful CAs.
It imparts indicators for emergency and contamination
response groups.

7.3.4 Fundamental CTI Elements

Three key elements must be present in CTI [26–44]:

Evidence‐based: Any intelligent validation must first stem
from proper evidence‐gathering approaches. Other
processes, viz MW analysis, can enhance CTI.



Utility: For CTI to positively remediate CS event
consequences, the intelligence must clarify specific behaviors
and methods regarding context and data.
Actionable: Action stems from CTI information to drive CA
contention and elimination.

7.4 Materials and Methods

More CPS research is needed to put together CTI ideas and uses.
This section contemplates the significant efforts from various
viewpoints, comprising application domains, privacy, and
weaknesses, among other orthodox approaches.

CPS and Blockchain are progressively more popular. Yet,
developing robust and precise “smart contracts” (SCs) for
cutting‐edge usages is an ongoing struggle [1–6, 9, 10]. The
existing schemes indicate that intricate SCs cannot alleviate
safety and privacy hindrances. Thus, various “AI tactics for
safeguarding SC privacy” (AIT‐SSCP) are suggested in this
chapter for a better understanding.

“Medical CPSs” (MCPSs) are platforms for acquiring,
preprocessing, and CC‐based treatment of healthcare material
by evolving IoT sensors/actuators [1–6, 9–19, 45]. MCPSs
embrace how vital and other signals incite



functionalities/actions/outputs or are used by “machine
learning (ML) algorithms” types.

There are new prospects thanks to AI. Despite this, AI systems
face hefty challenges attributable to the pertinent information
and the lack of truthfulness needed. As a substitute, the CPS
advent opens up new options for human‐AI collaboration, such
as a “machine intelligence symbiotically human CPS” (MIS‐
HCPS) framework. It has been initiated for workplace AI
systems, which still tackle significant hindrances due to a
shortage of appropriate data and honesty requirements.

Besides crafting a suitable BD analysis, noteworthy data
architecture had to be joined with data modeling,
infrastructures, and technology catalogs. The information
available at the decision time and approaches to assess a large‐
scale data architecture [OLSDA]. The CC’s role, behaviors, and
functional components can now be defined with greater clarity
and neutrality through a case modeling scheme applied to an
abstract BD structure.

Combining IoT and BD resulted in the “cognitive‐based IoT BD”
(COIBD) model, crafting an industrial IoT device‐oriented CPS.
The COIBD could not extract the looked‐for knowledge from
sampling and integrating data to advance management. Experts



recommended a five‐layered Industry 4.0 data architecture
containing sensors, power actuators, networking, clouds, and
IoT technology. Likewise, information supervision helped
safeguard the long‐term data reactions’ viability.

In spite of introducing a framework for an (MIS‐HCPS),
workplace AI systems face substantial impediments due to
relevant data absence and an integrity necessity.

With IoT devices and AI SW proliferation, securing CPSs from
CAs is increasingly problematic. Here, one can investigate in
what manner adversarial CAs affect “deep learning” (DL)
strategies for CPS networks’ anomaly detection and defense
forms against them through reinforcing models utilizing
antagonistic data, which models two CPS networks after the
Bot‐IoT and Modbus IoT benchmark datasets. Experiments
show that contentious inputs in FGSM can impact predictive
performance and that a constrained model can deflect the
attack.

Analytical tactics to current CPS analysis/modeling rely on
principles that change contingent on whether or not one
considers, for instance, safety or celerity criteria. Plenty of
methods, viz stochastic modeling, and contracts, abstract
complexity. Reinforcement learning (RL) can be necessary



owing to the ambiguity stemming from distributed procedures,
AI‐based approaches, and the consumer’s perspective or
unanticipated impacts like accidents or the weather. This study
contrasts the AI viewpoint on researching unknown
multifaceted systems with that of CPS design and prediction
experts.

A CPS encompasses RW electronic elements with general‐use
smart designs for grids, transportation, manufacturing, etc., and
virtual parts. Integral CPSs’ parts will be the “digital twin” (DT),
a tangible object or entity cyber‐clone. This research paradigm
creates a taxonomy to inspect many CAs against DT‐based CPSs
and their effects. DT‐based CPSs provide a CA space established
on four‐layer levels (i.e., subject, complete line, DT, and
application server), three CA objects (i.e., integrity,
confidentiality, and availability), and CA varieties paired with
power and expertise. Conclusively, various enabling
methodologies (viz intrusion recognition, Blockchain, modeling,
simulation, besides emulation) can secure a DT‐centered CPS
with a defensive arrangement named “secured DT development
life cycle” (SDTDLC).

Blockchain’s advantages can be combined with “SW‐defined
networking” (SDN) to address energy and CS concerns. For the
upcoming CPS stage, the “proof‐of‐work” (PoW) utilizing private



and public Blockchains for “Peer‐to‐Peer” (P2P) communication
helps solve CS and energy management difficulties.

Using computational resources (CCs, FC, and ECs) for
centralized or decentralized CPSs is possible. Considering AI
leads to an individual control topic termed CPS‐AI. An AI
control describes how it may be realized to manage
interdependencies among various CPSs and factories operating
under Industry 4.0 outputs.

A model employing the “You Only Look Once” (YOLOv4)
procedure affords high‐performance real‐time fine‐grain object
recognition to overcome issues through plant disease discovery
methods, e.g., irregular shape, density dispersion, multi‐scale
object categories, and textural similarities.

WilDect‐YOLO has introduced an automated high‐performance
recognition model trained using DL to spot species from
extinction in real time. There is a leftover block with the
CSPDarknet53’s backbone to facilitate discriminative robust
extraction of deep high‐dimensional feature space objects and
combine their info with DenseNet blocks to augment the vital,
specific data preservation.



A novel design called a “precise single stage detector” (PSSD) is
a refined variant of the “single shot multi‐box detector” (SSD)
and deals with feature extraction and classification problems.
PSSD can produce impressive real‐time fallouts. Experimental
fallouts show a better speed and accuracy balance.

An intelligent combo of methodologies and perceptions from CA
scenarios helped evaluate their danger on smart metered
structures. Selected papers’ breakdowns lacked progress in
developing analytics applications.

CPS‐AI framework estimates the request time by paralleling it
with the existing options. The present form cannot detect
particular CAs, having low predictive performance. The
prevailing tactics do not warrant long‐term viability. The data
analytics and associated architectures with CPS‐AI modeling
rationales have fewer assessment policies for data acquisition.
Safeguarding records’ confidentiality may fail in the healthcare
industry, which calls for ways to overcome the CPS‐AI
framework gap in critical fields.

A possibility is to use a conceptual framework for future CPS‐AI
research that is more effective and entails less time than
existing methods. AI‐based CS techniques exemplify common
CPS dangers and unresolved research snags in constructing



intelligent CPS security safeguards when employing intrusion
detection and prevention systems.

7.5 Cyber‐Physical Systems Relying on AI
(CPS‐AI)

A cyber‐physical systems relying on AI (CPS‐AI) concisely
overviews various CS threats across varying CPS levels and the
technical hindrances preventing people from developing CS
measures. CPS‐AI thoroughly scrutinizes the static detection
and tracking systems and their methodological caveats. The
IPSSs’ ineffectiveness at detecting, evading, and blocking low‐
level CTs deserves examination. With a VSC‐reliant nonlinear
monitoring system, NNs can predict CAs and prevent the CTs’
danger in tracking applications.

Safeguarding CPS networks is a more problematic task because
of these networks’ unique complexities and troubles. The
limited CPS devices’ computational power illustrates this. CS
must work effectively within austere constraints without
draining all available assets. Hence, it is imperative to properly
inspect CPS design, special applications, and CS challenges
concerning customized security solutions development.



Physical domain behavior poses CPS CS risks, leading to
applications necessitating physical defense and stability. CS
menaces must be organized for effective, preventive
remediation measures. Networked actuators, detectors, control
elements, and communications HW comprise a more extensive
distributed CPS, represented below.

Figure 7.1 shows the CPS’s unique structure. Wi‐Fi tags,
satellites, devices, routers, gateways, and administration
methods in CPSs can connect components in a networked
arrangement. Different sensor nodes protect the Internet’s
cyber domain. Gateways and Wi‐Fi send satellite data to the
user interface. Every sensor node receives data from the router.
User interfaces connect to physical domains. Sensor data is
processed and actuated in the cyber realm via wired and
wireless transmission. Results from the cyber core can be sent
to the physical domain to aid system transformation and
Internet backbone self‐organization. Because of real‐time
operation, CPSs behave predictably and control AI systems. Due
to its capacity to remotely connect RW and virtual systems to a
cyber core, CPSs are used more. CPSs underline the importance
of good CS measurements. A scalable risk assessment and user
interface require a quantification model to quickly detect high‐
priority CPS security problems in a base station, which requires
vulnerability scanning to recognize CPS CS requirements. This



model represents CPS privacy issues as directed vulnerability
dependency graphs. Risk graphics show which CPS locations
are most vulnerable to assault. Acyclic graph problems grow as
potential CTs are found until they are unfeasible. This model
cannot be used for larger designs because it does not allow
methodology changes or excessive expansion. These can be
applied to sensors, communication networks, or the entire CPS.
Learning algorithms, probabilistic reasoning, and CA detection
mechanisms must collaborate to prevent modest attacks in
most AI systems.

Providers receive production services like machine tools and
robotic systems from this layer. The model depicts security
aspects of recognizing and overcoming attacks. Security is
crucial to overcome all network layer CTs and CAs. Operative
information exchange between consumer HW facilities and CC‐
based system SW can enable human‐machine collaboration.
Most AI systems must collaborate to prevent minor attacks,
including AI algorithms and probabilistic reasoning, boosting
CA detection.



Figure 7.1 Generic CPS structure: real and virtual worlds.

CPS attacks that combine cyber, virtual, and RW processes can
exploit many security flaws. The impact of a CPS threat
vulnerability risk is assessed using system characteristics as
part of comprehensive risk management. The anatomical
structures of a cyber‐physical network incursion and the
security concerns outlined earlier can identify these traits.

Arithmetic, control, and communication are integrated with
physical, electrical, and biological engineering sensory
processes in CPSs. The suggested approach bases risk scores on



the total cost of a severe assault on a CPS‐using organization
(Figure 7.2). Operational downtime, data restoration time, and
financial expenses can be calculated. Examples include
employee reimbursements, clean‐up costs, and facility
abandonment costs in cases of permanent damage. Prices for
replacing and renovating broken physical systems are possible.
CPSs face security issues that traditional ICT frameworks may
not. Attempts at map‐based solutions from sensor networks
have had mixed results. However, CPSs sometimes fail to meet
security requirements since their alternatives were not
previously planned.

Current CPS analysis methods rely on safety or liveness:
stochastic modeling and contracts abstract complexity. Due to
ambiguity from scattered algorithms and AI methods, the user’s
perspective, and unexpected events like accidents or weather,
RL is needed. The paper compares AI researchers’ views on
unknown complex systems to those of CPS design and
prediction specialists.



Figure 7.2 Graphic representation of IPSS. First, there is the intrusion detection
structure (IDS). Depending on diagnosis, the intrusion prevention security (IPS) takes
on.

This guideline promotes system creation from the start. Top‐
down creation and construction of additional elements are
typical. Bottom‐up processes involve frameworks and other
structures that need to be incorporated. Existing technologies
are combined to create complex systems.

Physical assets link digital CC assets and follow a paradigm to
deliver cloud data to both. It sends biological process data to
service providers via networked IoT devices. There are
numerous network CS systems. The IPSS, which searches
networks for harmful activity and records it, is the most
frequent. The IPSS may close exposed access points or install
firewalls. To prevent outbreaks, IPSS answers every policy
matter to deter network employees and visitors from violating



corporate security policies. Probability functions aid analytics
models.

Using a comprehensive network of CA scenario approaches and
concepts, researchers can assess the CA hazard on intelligent
metering systems. These models enabled sophisticated analytics
and architectural design. Complex frameworks and concepts
built from various CA scenarios can evaluate CA risk as CPS
ecosystems require more data processing. This shows that BD is
still young. Since no analytics SW handles probability functions
well, architectural concepts that combine advanced analytics
with insights are intriguing.

The network must be relentlessly probed for likely
infringement and CT indicators since many access points
happen, as per Figure 7.2. Even the most all‐inclusive CS
measures do not surmount all of today’s CTs. Defending a
network from illicit access is the major IPSS’s goal to escape an
attack by keeping an eye on logs regarding any unusual activity
and responding suitably as they are not projected to stop
appropriations. IDSs observe the design and notify network
administrators once something suspicious occurs to disrupt the
manipulated connection and obstruct any Internet or person’s
account regarding illegal access to any implementation, wished‐
for hosts, or other resource provisioning.



Observed events’ data on IPSSs notify security administrators of
major perceived events and produce reports. Many IPSSs can
respond to many CTs by impeding them from being
consummated. The IPSS can employ various response praxes,
e.g., CA halting, altering the security situation, or modifying the
attack’s element.

Network monitoring is ever more reliant on artificial NNs.
Intrusion detection and offensive prevention investigation
heavily count on AI to develop, assimilate, and fortify security.
CS breakdowns have exposed that current deployments of
outlier recognition crash while giving few false alarms. Pros
and cons of DL variants for CPS‐AI systems’ intrusion detection
and shielding in commercial, academic, and public settings [1–
8] are related to time, cost, and input dimensionality. NNs can
alleviate the dimensionality curse by preprocessing and
curbing the DL stage input. An adaptive AI system makes IDS
more adaptable to new CTs.

One can appraise the (i) total operational cost from working
downtime, (ii) time consumed restoring missing data, and (iii)
financial downtime expenses. This model impacts employee
paybacks, alleviates costs, and cuts the abandoning facilities’
costs due to irreversible impairment. Repairing or replacing
faulty HW boosts the CT detection cost.



Figure 7.3 depicts how NNs can be used in CPS‐reliant CS. An
NN’s overall structure comprehends the following layers: (a)
input, (b) intermediate, and (c) output. Thus, the amounts of
neurons per layer and of layers can impact the system’s
complexity, requiring the determination of the best network
architecture to handle a given problem. Three‐layer NN
architectures are the most customary design picks using an AI
gateway.

Figure 7.3 Neural network method in a CPS‐AI.



An NN can model human and HW/SW activities in computer
simulation‐based CTs by processing inputs and delivering smart
outputs for a wide information range. A layer’s neurons receive
the data from the input layer and send them along through
weighted neurons’ connections to the topmost layer.
Mathematically speaking, the data is saved and conveyed to the
subsequent neurons’ layer. The last layer’s neurons afford the
network’s output. Changes to weights connecting each node
happen during the training procedure and iteratively modify
weight values. A criterion or set of criteria works out the
weights until training stops, e.g., employing a steepest gradient
descent methodology. The information collected from a given
layer undergoes equations per model to produce outputs. The
hyperbolic tangent function frequently activates a layer.

The NN model is nearly eclipsed in the CBPSAI system [1–15].
Since many hidden learning layers exist, it emphasizes a
mechanism’s output’s critical significance. The unique ICS
characteristics require some “variable structure control” (VSC)
approach. Model‐based methods can introduce bias when a
system changes, requiring a dynamic response. Thus, real‐time
assessment may be ignored. Likewise, CT evaluation methods
must be quantifiable. CPS‐AI analyzes some parameters to
quantify risk conditions. Several strategies, in effect, can
approximate quantitative fallouts, like threshold risk costs.



Precision in risk assessment is paramount for obtaining a
trustworthy defense strategy. This CPS‐AI focuses on VCS by
coupling Bayesian network models banking on incomplete data
to determine risks [1–18]. VCS traits can ameliorate modeling
tools critical for augmenting performance by employing
moment factors.

A Bayesian network can also help benchmark risk assessment.
Developers can gauge risk with online parameterization via the
recommended CPS‐AI scheme. In such situations, real‐time data
can be delivered by ICS in CA scenarios with absent values to
estimate accuracy.

7.6 Experimental Analysis

The CICIDS2019 database has been used in the simulation to
perform a suggested task. Most DoS attack databases contain
significant restrictions on essential data (such as erroneous
duplication). Since these data are unbalanced, a duplication
method is used to bring it into line to assess how well DL is
working.

The performance indicators can be used for simulation
purposes to conduct assessments of the CPS‐AI framework,
including analyses of accuracy and loss, and to compare the



response times of various request types. For example, the
suggested CPS‐AI framework’s accuracy and dependability are
evaluated and compared to industry standards. In the
simulation, the section offers and evaluates a CPS‐AI
architecture. Accuracy, reliability, request time, etc., are only
some simulated assessed metrics with the current and planned
CPS‐AI frameworks and more traditional approaches like AIT‐
SSCP, MIS‐HCPS, OLSDA, and COIBD. Based on the results, the
CPS‐AI architecture benefits more from using IoT devices and
an AI model than before. History’s many assaults have all been
simulated beforehand. A CPS‐AI can be subject to intermittent
and continuous pulse attacks, depending on the transmission
characteristics or disruption from outside the system. The
suggested method employs nonlinear control and an NN.
Dynamic programming theory ensures reliability and
resilience. The NN estimator’s learning capabilities are used to
make attack determinations. CPS is capable of significantly
more than was previously believed; a new conceptual
framework suggests this is happening because of the
availability of additional data from IoT devices.

7.6.1 Request Time Analysis Comparison of the CPS‐
AI



The CPS‐AI framework results can be compared to the results of
the existing model in terms of the time it takes for the request
message to reach the coordinator. Each transaction’s request
time rises as IoT devices become overwhelmed by the
increasing volume of transactions. The CPS‐AI framework
findings may be compared to those of the current model
regarding the time it takes for the request message to reach the
coordinator. As the number of requests augments, the
processing time for each transaction on IoT devices also
increases. The reaction time of the suggested method is faster
than that of the other methods [1–15].

7.6.2 Analyzing the Results of a Simulation

The CPS‐AI framework analyses, such as accuracy and loss, can
be carried out using a simulation tool. AIT‐SSCP, MCPSs, MIS‐
HCPS, OLSDA, and COIBD could be used to compare the new
results. The accuracy of the proposed CPS‐AI framework
depends on the security aspects, reliability, vulnerability to CTs,
and loss. The enhanced transaction level increases the
transaction request time among IoT devices.

7.6.3 Assessment of the Proposed CPS‐AI Framework’s
Performance



The simulation analysis of the CPS‐AI framework is done with a
SW tool. The output parameters, such as the accuracy and
reliability, can be analyzed and compared with the existing
models. The current models fail to utilize IoT devices and ML
procedures, resulting in abysmal performance. The CPS‐AI
framework with six layers with well‐defined functions
simplifies the operation and ensures higher performance. The
CPS‐AI framework’s accuracy and dependability, among other
output metrics, are compared to existing models. The test can
appropriately distinguish between sick and healthy instances,
determining accuracy. An approximate test’s efficacy can be
determined by counting the number of positive and negative
results across all the cases. Reliability in data analysis is
measured total hours of operation to the total failures.

7.6.4 Reliability Breakdown of the CPS‐AI Framework

Accuracy and reliability analyses can result from a simulation
tool using benchmark datasets. The CPS‐AI shows more
reliability than current models like AIT‐SSCP, MCPSs, and CPS‐
AI. IoT devices and an ML/DL model in the CPS‐AI framework
with layered architecture produce better results.

7.6.5 Overall Performance of the CPS‐AI



The CPS‐AI framework may achieve excellent effectiveness
depending on the number of nodes used. Future work can be
implemented with more nodes to achieve more system
effectiveness. Different dynamic functions and disturbances
from external sources can affect the CPS system in two different
ways: a continuous and a non‐continuous pulse attack.
Nonlinear regulation and an NN are employed in the proposed
strategy. Reliability and robustness are ensured by using
nonlinear control theory. Attack determination is based on the
NN estimator’s ability to learn. CPS is skillful at far more than
previously thought; according to a new conceptual framework,
CPS is becoming more computer‐controlled due to the
availability of new data from IoT devices.

The simulation results for the generic CPS‐AI framework can be
compared to other conventional methods (e.g., AIT‐SSCP, MCPSs,
MIS‐HCPS, OLSDA, and COIBD) on the basis of metrics akin to
accuracy, reliability, request time analysis, loss, effectiveness,
etc. Incorporating IoT devices and an AI model can lead to
better outcomes for the CPS‐AI framework.

Manipulation of data channels, equipment details, and
virtualization SW are just a few of the vulnerabilities arising
from the increasing interconnectedness of the IoT and CPSs.
Connecting several CPSs to carry out independent duties in a



confined space is a potential future scope for this new
technology advancement. The CPS‐AI employs AI as a key tool to
boost the integration of CPSs in a smart system that requires
little manual effort.

7.7 Conclusion

This manuscript goes through various layers of “CPSs,”
correlating CPS models briefly to highlight developing secure
CPS research problems. NNs examined here are to overcome
the current limitations of the most cutting‐edge static and
adaptable detection and protection techniques and the
technologies’ current state of development. This chapter
proposes a conceptual framework for further investigations.
Several typical CPS layer threats and outstanding research
issues in developing intelligent CPS security precautions are
demonstrated by AI‐based security approaches [46–55], in the
end, using IPSSs. Aside from that, the proposed work provides a
glimpse into CPS safety research’s future and relevance,
motivating evaluations of research issues. An approach to
estimating and compensating attacks launched by a forward
link of nonlinear CPSs can be developed using intelligent
nonlinear system control. NNs are combined with nonlinear
control in the proposed method. It is evident from this review



that CPSs are on the verge of a complex program because all the
necessary technology is already in place. This new
technological revolution’s challenges include connecting
multiple CPSs to perform autonomous tasks in a compact
environment, which is a future scope. AI is highlighted as a
critical tool to increase the incorporation of CPSs in an
intelligent system that requires little human effort. A CPS‐AI can
evaluate its performance via effectiveness, accuracy, and loss
through security analysis and confidentiality. Future work can
be implemented with more nodes to achieve more system
effectiveness in detecting the threats and attacks related to
security and confidentiality issues.
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8.1 Introduction

In today’s speedily growing technological landscape,
guaranteeing the safety of documents and systems has turned
into a vital task. With the ever‐growing complexity of cyber
threats and the escalating number of attackers, the
development of robust defense mechanisms has become a top
priority. This has led to the growth of Intrusion Detection
Systems (IDS), which play an important role in safeguarding
these digital environments. An IDS functions as a surveillance
mechanism, identifying potentially malicious actions, and
producing notifications upon their discovery. These
notifications enable a Security Operations Center (SOC) analyst



to examine the situation and implement necessary measures to
address the identified risk [1]. There are three major types of
IDS‐ Host‐based Intrusion Detection Systems (HIDS), Network‐
based Intrusion Detection Systems (NIDS), and a hybrid of the
two. HIDS focuses its attention on individual host machines
within a network [2]. It monitors system logs, file activities, and
host‐specific events to identify potential security breaches, such
as unauthorized modifications to critical files or suspicious user
behaviors. On the other hand, NIDS functions at the network
level, analyzing the incoming and outgoing traffic flows. By
analyzing network packets and assessing communication
patterns, NIDS can detect anomalous activities, such as
unauthorized access attempts, denial‐of‐service attacks, and
other suspicious behaviors. The hybrid IDS amalgamates the
capabilities of NIDS and HIDS, offering a comprehensive
approach that leverages network‐wide and host‐specific
insights to enhance threat detection and response. A pivotal
advancement in the field of cybersecurity lies in the infusion of
Machine Learning (ML) techniques into IDS. ML algorithms
bring their distinctive capability to absorb from previous data
and adapt to emerging patterns, presenting a dynamic and
efficient avenue for identifying both familiar and unfamiliar
threats. ML‐empowered IDS can effectively process massive
datasets, uncover subtle irregularities, and analyze previously



unseen attack patterns, thereby involving precision and speed
in detecting security breaches [3]. The adaptability of ML‐
driven IDS equips them to address the complexities introduced
by a wide range of cyberattacks, as they autonomously refine
and evolve their detection strategies in response to ever‐
evolving threat landscapes.

In this context, this research embarks on a comprehensive
exploration of the performance analysis of numerous ML
procedures in IDSs. The study delves into the evaluation of
some popular ML algorithms, including Random Forest, k‐
Nearest Neighbors (kNN), Support Vector Machines (SVM),
Gradient Boosting, and Density‐Based Spatial Clustering of
Applications with Noise (DBSCAN). A meticulous examination of
these algorithms encompasses their accuracy, precision, recall,
and adaptability across different feature subsets. Employing the
Jupyter Notebook software for coding implementations, the
proposed approach combines supervised and unsupervised
techniques, leveraging the strengths of each to gain deeper
insights into the performance analysis of IDSs. By shedding
light on the behavior and efficiency of these advanced
techniques, this research contributes to the advancement of
cybersecurity by informing the development of more effective
and reliable defense mechanisms against a diverse array of
threats.



8.2 Literature Survey

Various studies have been done on the performance analysis of
IDS using ML procedures. Work is being done on enhancing the
efficiency and accuracy of these systems, which play a
significant part in safekeeping computer networks and systems
from evolving cyber threats. In a detailed study by Zhang et al.
[1], an approach for intrusion detection was proposed, using a
hybrid model that combines ML algorithms to improve
detection rates. The study accentuates the effectiveness of
various techniques in enhancing IDS performance. In the work
of Jain et al. [2], a detailed study was conducted on the
application of ML techniques to IDSs. The researchers
investigated the performance of kNN, SVM, and Random Forest
algorithms on large datasets. Their findings depicted the
significance of feature selection and algorithm choice in
achieving optimal IDS outcomes. Further research by Kumar et
al. [3] delved into the study of the NSL‐KDD
(https://www.unb.ca/cic/datasets/nsl.html) dataset using
numerous ML techniques. The study matched the performance
of decision tree‐based classifiers, SVM, and kNN algorithms. The
authors emphasized the role of feature selection and
preprocessing in influencing the accuracy and efficiency of IDS.
An exploration of intrusion detection through ML techniques

https://www.unb.ca/cic/datasets/nsl.html


was presented by Nain et al. [4], where the authors evaluated
the performance of several algorithms, including Naïve Bayes,
Decision Tree, and SVM, on real‐world network datasets. The
study focused on the potential of ML in differentiating between
normal and anomalous network activities. The work of Bhatt
and Trivedi [5] focused on enhancing the performance of IDS
using deep learning (DL) approaches. The researchers used a
convolutional neural network (CNN) model for intrusion
detection, achieving likely results in accurately identifying
network intrusions. Building upon these investigations, Sharma
and Gupta [6] conducted a study on enhancing IDSs using ML
techniques. The authors highlighted the role of feature
engineering and algorithm selection in achieving robust IDS
performance.

These studies collectively emphasize the significance of feature
selection, algorithm choice, and hybrid approaches in
effectively detecting and mitigating cybersecurity threats.

8.3 ML Techniques

One of the main aims of ML is to build systems that can
inevitably learn patterns and insights from data, allowing
computers to make predictions, classifications, decisions, or
perform tasks without being explicitly programmed for each



specific instance [7]. It consists of a wide range of methods,
including supervised learning, unsupervised learning,
reinforcement learning, and more, which are applied across
many domains like natural language processing (NLP), image
recognition, recommendation systems, and many more. Some
of the algorithms used in the paper are explained as follows.

8.3.1 Random Forest

This technique is a popular method that comes under
supervised learning. One of its biggest strengths is its ability to
manage complex datasets thus it is a very important method for
many predictive tasks in Machine Learning. It is based on the
concept of a forest consisting of multiple trees, the more the
number of trees, the more robust the forest. It employs the
principle of ensemble learning by joining multiple classifiers to
address complex problems and improve model performance.
By combining various decision trees, it is able to achieve precise
predictions. Each tree is trained on a subset of the data, and the
final prediction is determined through a majority vote or
averaging [8]. It is used for classification which contains
continuous variables and regression tasks consisting of
categorical variables and handles overfitting as well. It also
captures complex relationships within data and is resilient to



noisy features. The following Figure 8.1 summarizes the
working of this algorithm.

Figure 8.1 Working of random forest algorithm.

8.3.2 Gradient Boosting

Gradient boosting is an additional form of ensemble technique
that builds a predictive model through the combination of
feeble predictive models like decision trees. This approach
diminishes errors inherited from preceding models by
concentrating on rectifying the inaccuracies they generated,
thereby enhancing the precision [9]. It is a versatile technique
widely used for various tasks, offering high accuracy, and
robustness against overfitting as shown in Figure 8.2.

8.3.3 Support Vector Machine (SVM)



It is a strong classification procedure designed to find the best
line or decision boundary that separates an n‐dimensional
space into different classes, precisely assigning new data points
to their respective categories. This boundary is known as a
hyperplane [10]. The procedure detects crucial points or
vectors, referred to as support vectors that aid in defining the
hyperplane. This concept is demonstrated in Figure 8.3.

8.3.4 k‐Nearest Neighbors (kNN)

It categorizes data points by assessing their similarity and
reallocates new instances to the category that most closely
resembles the existing ones [11]. Figure 8.4a,b show the
classification of new data that are assigned to what category
after applying kNN. This helps whenever any new data appears;
it can be easily shifted to a category which suits it more. kNN is
adaptable to different kinds of data, making it suitable for
various classification tasks. However, the disadvantage of this is
its sensitivity to noisy data and careful tuning of the ‘k’
parameter.



Figure 8.2 Working of gradient boosting algorithm.

Figure 8.3 Working of support vector machine algorithm.

8.3.5 Density‐Based Spatial Clustering of Applications
with Noise (DBSCAN)



This is unsupervised clustering that algorithm organizes similar
data points together by considering the density distribution
across the feature space. Its capability includes recognizing
clusters of different sizes and shapes within extensive datasets,
encompassing even noisy data points and outliers [12]. The
number of clusters doesn’t have to be identified in advance in
DBSCAN, making it suitable for various clustering tasks,
especially when the data has irregular structures. Figure 8.5a,b
present results of clusters before and after applying DBSCAN
respectively.



Figure 8.4 (a) Before applying K‐NN. (b) After applying K‐NN.

In the forthcoming sections, the study delves deeper into how
the ML techniques were employed and their respective impacts
on intrusion detection.



8.4 Overview of Dataset

The analysis utilizes the NSL‐KDD dataset to assess the
effectiveness of the IDS. This dataset is constructed to simulate
real‐world situations, encompassing both normal and attack
instances. As compared to its earlier version, the original KDD
Cup 1999 dataset, the NSL‐KDD dataset has undergone
preprocessing to remove duplications and irrelevant attributes,
making it more refined and representative. The NSL‐KDD
dataset features two main classes: “normal” and “attack,”
further categorized into subtypes like “DoS,” “R2L,” “U2R,” and
“Probe” [13]. While challenges from the original dataset persist,
including class imbalance and feature selection complexities,
the NSL‐KDD dataset has gained widespread adoption in
research and industry. By providing a controlled environment
for testing and advancing intrusion detection techniques, the
NSL‐KDD dataset contributes significantly to the ongoing
improvement of network security strategies. The count of
normal and anomaly attacks from the dataset was calculated,
which can be shown visually as follows in Figure 8.6.





Figure 8.5 (a) Before applying DBSCAN algorithm. (b) After applying DBSCAN
algorithm.

Figure 8.6 Count of normal and anomaly attack.

8.5 Proposed Approach

The research methodology involved a detailed examination of
the performance of IDS utilizing the mentioned ML algorithms.
The execution of this methodology was conducted using the
Jupyter Notebook software. The stages encompassed in this
process are outlined as follows:



The preprocessing commenced with the NSL‐KDD dataset,
which involved employing the Min–Max scaling technique.
The normalization technique facilitates the scaling of data
within a predefined range by utilizing the minimum and
maximum values of each feature.
Subsequently, a chi‐square test was conducted on the pre‐
processed data to perform feature selection. This step leads
to the identification of the top 10 features from the original
set of 41 features.
To assess performance, the study selected Random Forest,
SVM, gradient boosting, kNN, and DBSCAN algorithms. The
accuracy of each algorithm was evaluated initially using all
available features and then with the top 10 selected features.



Table 8.1 Selected features from the NSL‐KDD dataset.

S.
No

Feature Description

1 Service Refers to the category
of network service
linked with the
network connection

2 Flag The status of the
network connection
(e.g., SYN, ACK, RST)

3 Logged_in Indicates whether a
user is presently
authenticated and
logged into the system

4 serror_rate Characterizes the
proportion of
connections
experiencing SYN
errors



S.
No

Feature Description

5 srv_serror_rate Signifies the
percentage of
connections to the
same service
encountering SYN
errors

6 same_srv_rate Illustrates the
percentage of
connections directed
toward the identical
service

7 dst_host_srv_count Quantifies the number
of connections to the
same service on the
target host



S.
No

Feature Description

8 dst_host_same_srv_rate Depicts the percentage
of connections to the
same service on the
destination host

9 dst_host_serror_rate Communicates the
percentage of
connections to the
destination host
encountering SYN
errors

10 dst_host_srv_serror_rate Characterizes the
percentage of
connections to the
same service on the
destination host that
experience SYN errors



In addition to accuracy, precision and recall values were also
computed for the aforementioned algorithms. The resulting
precision and recall metrics were then compared.

The analysis of these outcomes gave insights into the efficacy
and appropriateness of various ML methods for bolstering
intrusion detection capabilities.

Description of the selected features is summarized as follows in
Table 8.1.

8.6 Simulation Results

In this paper section, an extensive evaluation of the chosen ML
algorithms is conducted for the IDS task using the NSL‐KDD
dataset. This consists of assessing the efficiency of the
mentioned algorithms, initially utilizing all features within the
dataset, and subsequently employing only the top 10 features
identified through the Chi‐square test. The analysis consists of
finding the accuracy, precision, recall, and silhouette scores.



(8.1)

Figure 8.7 Accuracy analysis using all features.

8.6.1 Accuracy Comparison

Accuracy stands as an important metric for analyzing
classification models. In simpler terms, it represents the
proportion of accurate predictions made by the model [14, 15].
Mathematically, accuracy is expressed by the formula presented
in Eqs. (8.1) and (8.2).

In case of binary classification, it can also be calculated on the
basis of positives and negatives



(8.2)

where TP = True positives, TN = True negatives, FP = False
positives, and FN = False negatives.

In context of this research, the accuracy results are summarized
in Figure 8.7. These depict the separate comparison of
accuracies first considering all the features, using only the
selected features, and then a combination of both. This depicts
for which algorithms using all the features are better or using
some selected features as shown in Figures 8.8 and 8.9.

Figure 8.8 Accuracy analysis using selected features.



From the above graphs, it can be analyzed that Random Forest
and gradient boosting demonstrate remarkable accuracy,
achieving the highest accuracy rates of 99.75% and 99.13%,
respectively when considering all features. This performance is
further evident with the best features, yielding accuracies of
98.24% and 97.43%, respectively. However, its accuracy slightly
declines to 90.88% with the best features, accentuating the
significance of prudent feature selection in practical
implementations. For unsupervised clustering techniques, the
silhouette score of DBSCAN is computed. This metric quantifies
the resemblance of an object to its assigned cluster (cohesion)
relative to other clusters (separation) [15–17]. The silhouette
score of 0.53 for all features and the elevated score of 0.78 for
the best features imply that the latter leads to more well‐
defined clusters, potentially enhancing intrusion detection
capabilities. The kNN Classifier consistently impresses with
accuracy rates of 99.50% and 98.44% for all features and the
best features, respectively, signifying its dependability for
network anomaly detection. To conclude, in terms of accuracy,
Random Forest and Gradient Boosting classifiers emerge as the
top performers, particularly when all the features are
considered.

8.6.2 Precision and Recall Analysis



(8.3)

(8.4)

Precision quantifies how correct were the predictions made by
the model, while recall assesses the percentage of relevant data
points correctly recognized by the model [18–20]. The formulas
for precision and recall are mathematically expressed in
Eqs. (8.3) and (8.4)

Figure 8.9 Accuracy analysis comparison using complete and selected features.



In context of this research, the precision and recall results are
summarized in following Figures 8.10 and 8.11.

As it can be seen from Figures 8.10 and 8.11, in the case of
Random Forest, precision and recall for all features and best
features are consistently high, indicating well‐balanced
performance in detecting both normal and anomalous
instances. For gradient boosting, similar to the Random Forest
Classifier, precision and recall values are consistently high for
both feature sets, demonstrating robust performance. While the
SVM Classifier shows competitive accuracy, its precision and
recall values vary between feature sets. Notably, the precision
and recall values for the “Best Features” scenario are inferior,
suggesting a potential trade‐off between feature selection and
classification performance. The DBSCAN silhouette scores
provide information regarding the quality of cluster
assignments. Higher silhouette scores indicate well‐defined
clusters. The scores obtained for both feature sets (All and Best
Features) are 0.53 and 0.78, respectively. This suggests that the
Best Features lead to more distinct clusters. The kNN Classifier
shows impressive precision and recall values for both feature
sets, emphasizing its effectiveness in detecting network
anomalies. The supervised learning algorithms provide better
precision and recall with feature selection as compared to the
clustering algorithms.



Figure 8.10 Precision analysis for different algorithms and feature types.

Figure 8.11 Recall analysis for different algorithms and feature types.



Table 8.2 Comparative analysis of the various algorithms based on different
parameters.

Algorithm
Feature
set

Accuracy Precision Recall

Random
Forest

All
features

99.75% High High

Random
Forest

Best
features

98.24% High High

Gradient
boosting

All
features

99.13% High High

Gradient
boosting

Best
features

97.43% High High

SVM All
features

96.33% Moderate Moderat

SVM Best
features

90.88% Moderate High



Algorithm
Feature
set

Accuracy Precision Recall
kNN All

features
99.50% High High

kNN Best
features

98.44% High High

8.6.3 Comparative Analysis

The overall analysis of all algorithms based on the accuracy,
precision, and recall applied on the dataset including both the
feature sets, with all features and only with the best features is
presented in Table 8.2.

Random Forest and Gradient Boosting classifiers exhibit
consistently high accuracy levels, exceeding 99%, and
demonstrate robust precision and recall rates across both
feature sets. Furthermore, SVM achieves competitive accuracy,
but its precision and recall values indicate a trade‐off between
feature selection and classification performance, particularly
evident with the best features. kNN stands out with remarkable
accuracy, exceeding 98%, and maintains high precision and
recall values, highlighting its reliability for network anomaly
detection. Lastly, DBSCAN silhouette scores of 0.53 for all



features and an increased 0.78 for the best features suggest that
feature selection significantly impacts the quality of cluster
assignments.

8.7 Conclusion and Future Work

To conclude, this research delved into the performance analysis
of IDS using a range of ML techniques. The study explored the
efficacy of Random Forest, SVM, gradient boosting, kNN, and
DBSCAN algorithms in detecting network anomalies and
intrusions. The results showcased the effectiveness of these
algorithms in accurately discerning both familiar and
unfamiliar security threats. Notably, Random Forest and
Gradient Boosting classifiers exhibited remarkable accuracy
levels, showcasing their potential for accurate intrusion
detection. The precision and recall metrics further accentuated
the reliability and robustness of these techniques in
distinguishing normal and anomalous activities. The
integration of ML into IDS has demonstrated its significance in
developing the accuracy, speed, and flexibility of intrusion
detection mechanisms. This contribution plays an important
role in advancing the realm of cybersecurity. In the future, the
integration of DL models and neural networks could offer
greater insight into complex attack patterns and contribute to



more accurate identification of advanced threats. Continued
research in this area holds the potential to refine and advance
the field of intrusion detection, ultimately contributing to the
overarching goal of safeguarding digital platforms against
evolving cyber threats.
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9.1 Introduction

E‐learning has emerged as one of the most effective training
methods. In particular, collaborative learning is considered a
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great way to support and understand students and their
learning problems. Using the e‐learning platform and its
collaborative tools, students can interact with other students
and share questions on specific topics.

Learning plays an important role. Lifelong learning aims to
enhance people’s sense of achievement throughout life and on a
personal and social level. In a learning community, time
sustaining is an essential need for survival and sustaining
change. By integrating into the process of creating new
technological tools, an impressive tool for lifelong learning is
provided: e‐learning. For nearly 20 years, the phenomenon of
“e‐learning” has pervaded the distance learning landscape. The
Internet and its services allow you to easily integrate user
support and monitoring programs into the educational and
technical aspects of dynamic learning.

Sentiment analysis in particular, also known as sentiment
classification or sentiment mining, helps humans make
decisions by analyzing large amounts of opinion data to
effectively understand and interpret opinions and sentiments.
It is a computational method by design. For example, in
business, sentiment analysis helps companies analyze customer
feedback to improve their products, provide better customer
service, and discover new business opportunities. In the



governmental land, sentiment analysis can predict changes in
public perception of election candidates. In daily life, people
can get more information in choosing electronic products,
watching movies, reading books, etc., thus making better
purchasing decisions. For online learning, sentiment analysis
employs an automated text analysis process with the aim of
extracting opinions and various expressions expressed in
online learning blogs and forums where learners discuss and
explain their personal opinions. The goal is to recognize
emotions and evaluate of services provided. In fact, early
detection of learning student complaints and service
deficiencies can reduce the risk of widespread dissemination of
improving learning capabilities and improve promotional
strategies. In this way, sentiment analysis plays an important
role in improving the quality of services provided by
developers, e‐learning systems, and enhancing their
identification of opportunities for new users (learners and
tutors).

9.2 Related Work

E‐learning has become less attractive, and as the level of online
courses increases, move to more personalized and varied
learning to work with students for better learning outcomes [1].



The school focuses on the placement of examinations,
concentration, and skills to inspire innovation in our vision and
educational programs. E‐Learning questions are standard test
questions for all of us. E‐learning and Open Online Courses are
more popular with today’s generation of learners. E‐learning
systems have proven to be an important pillar of education [2].
This may shed light on what many previous studies have done.
Complete traditional classroom tasks and create a platform to
maximize the effectiveness of your learning outcomes [3]. To
achieve such a platform, the study considers the gambling and
personalization of educational resources to transform the
education system by targeting learners through intensive
learning analysis [4].

Attempts to close the educational gap with the rapid growth of
the growing economy, the scope of e‐learning is stronger than
ever. Due to its low cost, convenience, and availability, e‐
learning is rapidly emerging as the primary driving force in the
educational landscape of the 21st century. “Lack of monitoring”
is a particularly difficult problem in e‐learning or distance
learning environments [5]. Extensive research efforts and
techniques have been sought to mitigate the effects of student
involvement such as mood and learning behavior. However,
current research does not yet have multi‐dimensional



computational tools to analyze learner involvement from
interactions that occur in digital learning environments [6].

It integrates different data sources of learning pathways and
provides an opportunity to gain broad insights into the
learner’s behavior and the complexity of the learning process
[7]. In developing countries with limited resources such as
India, e‐learning tools and sites provide the opportunity to
provide education to low‐ and middle‐income families. In such
an environment, students can be monitored, habits analyzed
and personal data retrieved, as well as new privacy concerns
raised in the virtual learning framework [8]. This is a new
information technology paradigm that is making e‐learning
systems more user‐friendly. As a result, e‐learning application is
expanding rapidly and is far superior to traditional educational
processes [9]. This revolutionary change is due to the
advancement that has taken place in digital technology.

Online learning allows people the freedom to control their own
learning process and to follow their own learning style [10].
However, research shows that most e‐learning sites do not have
human‐like interactions, so e‐learning users may feel isolated or
disconnected. These emotions reduce the motivation to learn.
Some companies choose e‐learning in the workplace because it
offers the benefit of a new way of improving employees [11].



However, implementing e‐learning in the workplace is a
challenge because there are many barriers to controlling its
success [12]. The choice of a particular website directly affects
the performance of the end user, while e‐learning goals and
expected outcomes depend on the quality of the educational
process and the effectiveness of online access.

However, due to the large amount of data, it is difficult to
manually analyze the impression, so we need to enable
automation to make it easier [13]. It explores machine learning
techniques for categorizing the emotions of film critics. In
academic assessment, sentiment analysis helps educators to
identify students’ true feelings about subjects in a timely
manner, to adjust curricula in a timely and accurate manner,
and to improve the quality of education. Addressing the
challenges related to low efficiency and high workload in the
university course evaluation method [14]. Sentiment analysis of
numerous user comments about the e‐commerce platform can
effectively improve user satisfaction. The existing emotion
embedding method embeds the emotion dictionary directly into
traditional word expressions [15]. This emotional expression
method can only distinguish emotional information of different
words, but it cannot distinguish the same word in different
contexts, so it cannot provide accurate emotional information
of words in different contexts.



9.3 Proposed Implementation

Toward the development of E‐learning Environment, the
student learning capabilities are analyzed through feedback
evaluation through microblog short‐term content analysis. This
proposed system works on Spectral Pattern Learning Approach
(SPLA) based student sentiment analysis using Dense‐net Multi
Perception Neural Network (DMPNN) in E‐learning
Environment. This finds the optimal solution in sentiment
analysis‐based student performance analysis by evolution
content from feedback analysis system.



Figure 9.1 Proposed architecture diagram‐SPLA‐DMPNN.

The sentiment evaluation, word vector, and intensive features
are evaluated to select the features. These get iterative spider
layer optimization to form genetic patterns. Figure 9.1 proposed
architecture diagram‐ SPLA‐DMPNN. The attention of
successive feature selection is carried out based on the
sentiment terms of evolution and classified with DMPNN. The
preprocessing was carried out to reduce noise based on filtering
key terms, cleansing, stemming, word count, etc. to formalize
the content evaluation through sentiment package to extract
labeled features.



(9.1)

9.3.1 Word Vector Correlation Extraction

Microblogs are analyzed to extract the sequence of word
correlation to define under the predefined sentiment from
word vector to transformation of contents specifics. Sentiment 5
is used to process the sentiment terms in type of extraction. To
get the optimal word vector ranking of neighboring neighbors,
you need a pre‐trained word vectors and an emotion dictionary
with emotion scores. First, the semantic similarity between
each target word and other words in the emotional vocabulary
is calculated based on the cosine similarity of the pre‐trained
vector and then elevated to the closest word. It rearranges those
who are semantically similar in close proximity, according to
the emotional score provided by the emotional vocabulary.
Neighbors with similar emotional poles are ranked higher, and
neighbors with different emotions are ranked lower.

First, we need to determine the word encoder method and
exercise function. The coding used in this paper is genuine
coding, and the coding process is simple and not subject to local
extremism. Fitness is an important foundation of population
evolution, which is expressed and defined as,



(9.2)

where k means the amount of nearest nationals, dist(v , v )
denotes the detachment among separate v(i), and nearest
neighbor v . To ease the control, dist(v , v ) in above reckonings
is unhurried by the shaped Euclidean distance, clear as:

9.3.2 Spectral Pattern Learning

In this stage, the sentiment word count pattern was generated
to marginalize the word impact rate to extract the sentiment
pointiness of perspective words. Group relevant features by
searching for measurement values based on limit weights. The
mutual relevance sentiments terms are built‐in clustering
system that predicts data at each iteration. Next to form
semantic relationships to create successive mid average means
weight. It measures the closeness of semantic similarity of
interconnected cluster groups.

Algorithm

  Input: feedback short text process dataset ‘PD

   Output: sequence pattern 

   Step 1: input R-Fds  as PDs data initializatio

   Step 2: perfect logs PDs for each Class Cl→Ts 

i j

j i j



p p g

            Identify search term attribute initia

            frequent query F  

                       Attribute For each Cl→A  o

                            Pattern compute data 

                             

                    End 

                    Ds(i) = ∑Dsi + Cl 

            End 

    End 

   Step 3: identify each class Cl of data request

            A →for each case attribute Standard a

                    Compute the Relational featu

                     

            End 

            Measure relative pattern case 

    End 

   Step 4: read end 

 

The average weight measures are categorized into class
variables and domain values as data points. The data points
with high confidence and low support in the weightage will be
ignored. The method selects a single cluster based on the
measure estimated to which the data point has to be indexed.

9.3.3 Spider Genetic Sequence Feature Elevation

vi

i

i



(9.3)

(9.4)
(9.5)

By the chance of extracting sentiment terms of pattern
formation, the word dependencies refer to various scores for
evaluating the features. So, the feature depending under
different categories are evaluated based on the sentiment term
fitness evaluation. This was evaluated through spider
optimization intent with genetic sequence pattern mining
algorithm. These evaluate the best‐case sentence analyzer with
sequence form of content learning formation in best‐case
evaluation.

With excellent universal optimization and strength, through the
generic feature evaluation was carried out to predict the rem
sequence. Among them, GEN is the sequence formation, M is
the generate seize pattern keyword, and e is the expected one to
form sentiment sequence.

The y  and y  is offspring genetic sequence representation of

Based on the genetic formation, the equalized successive factor
be at forming pattern sequence,

mi ni



(9.6)

The maximum representation of sequential terms x  be
presented as maximum support sentiment term with relative
sequence the category of class representation. This max class
sequence tail pattern with x  with interactive genetic class;
G  in ′r number of random variables.′ will be selected based
on your personal fitness value. The fitness values are
individually selected to form fitness values.

Algorithm:

Step 1: Process the intensive word vectors featu

            Compute correlation ‘c’Cif→(Lr<span t

 Step 2: Embrace spider decision Tree → Strengthe

            Maximum successive rate (Mir→Nodes (s

 Step 3: calculate constraint cif(Mir) weight to 

            For each cluster ci→Fas feature weigh

          Analyses decision process Rn→F(i) to ma

                Form genetic sequence Gs→attain M

                         Sum maximum count terms 

                         Relative sentence Cfs→ c

                      Return Cfs 

            End if 

        End for 

 Step 4: Compute he sequence generator for word c

         Check relative margin each ‘C’←Frs class

             Retain the index to feature list cou

max

mn

max i



                        Frc←C-ids

                        Return Frc-Ids 

                End 

               Return Frc 

             End for 

 Stop 

 

To maintain an improved separation and minimize the
arbitrariness of the exam, we continue as obscurities. After
gaining each one’s correlation strength, sort the ones with the
highest semantic level to the relative feature weight, and divide
them into the best, the middle, and the lowest, and select from
the three according to probability. The determination of this
procedure is sects the individual’s patterns as sequent to
optimize the sentiment terms weight.

9.3.4 Dense Net Multi‐perception Neural Network
(DMPNN)

In this stage, the observed sentence features weights are
marginalized into dense net and crates multi perception neural
network to classify the categories to sentiment weight into
different class. This proves the student’s capability and
observation into different classes by marginalizing them into



classes. This system generates neurons from each set of each
group. The generated neurons are initiated with the ensemble
feature. The high‐density net multiplier performs the
convolution at the operational level by selecting the desired
function. Neurons eliminate unwanted functions. This is done
by using a convolution function with the selection function, and
the remaining functions feed to the activation function.
Neurons are fed by two different metrics, the first of which
generates functional activity over a normal chronological order
for sentiment and relative terms analysis. The network consists
of seven layers, including the input layer and the output layer.
The convolution layer uses the convolution function for
features, and the pooling layer evaluates weight measurements
for various features.

Algorithm:

Step 1: Input features class ‘F’ ←(Frc)

Step 2: Training samples; choosing the optimal classifier for
each challenge takes time and effort. As a result, a technique
can simultaneously model features and classify them as
required



(9.7)

(9.8)

(9.9)

Z(θ) is the training samples, and E(v, h) is the number of nodes.

The data Transformation to a regression function may be
smoothed out in the training procedure. The prognostic
prototypical laboring may be linear. Based on that, below
algorithm steps are used in training samples. Multi perception
is to find the limits as to whether it is low or high. If high or low,
the output stops the data analysis process which indicates the
alert to the concerned person. The output of the calculating
prescient method uses significant mathematical modeling to
process data in complicated ways.

where Z(v, h; θ) is the Partitioning value, n is the number of
data, and w  is calculating sampling data.

Step 3: Testing Data: The test set is setting the address of
initializing the sentiment term as word vector features.

Here Z  is the source of the getting, P  is calculating the limit
of data.

i,j

rw s −1



(9.10)

(9.11)

To evaluate performance, the “test” or “validation” dataset is
required for training sentiment. Traditionally, the dataset cast‐
off to measure the concluding representation’s presentation has
been mentioned as the testing and training validation. The
dense net is a better error analyzer that gets the expected
output. The distributions at each node are multiplied and then
renormalized. Use the data for another prototype as the values
of the factor loadings are calculated from the instinctive rate to
fix the margin as dense layers.

Step 4: Offset Vector: Calculate the sentiment word fervency
relative margins on each feedback

Step 5: Hidden Layer; a similar mean value indicates the σ(c  + 
W  V) which is an average classification accuracy with cross‐
validation and classification error.

where P (h  = 1 | v) Creates frequent semantic relation
sentiment of length 1 with k = 1.

Repeat until a new group of W  items with a high frequency of
occurrence are formed.

i

i

i

i



(9.12)

Step 6: Offset Vector; the Z(θ) iteration ends data when the
specified number of iterations or success criterion is achieved.

Step 7: Constant Diversion: The output data is based on or
without error.

Step 8: Error calculating: Each node is calculating the different
dataset, where I  is of inputs.

This classification produces high performance to predict the
phishing strategies. This attains the feature levels by forming
the feature selection and classification to find the sentiment
score from the feedback resolution from students by class by
category.

9.4 Result and Discussion

This section describes the proposed implementation result
analysis parameters are sensitivity, specificity, classification
accuracy performance, false rate analysis, and time complexity.

The proposed algorithm Simulation parameters settings are
present in Table 9.1. The proposed Wisconsin High Order
Neural Network (WHONN) algorithm is compared to Recurrent

s0



Neural Network (RNN) and Perceptual Neural Boltzmann
Machine (PNBM).

The above Table 9.2 and Figure 9.2 define the classification of
accuracy performance. The proposed SPLA‐DMPNN produces
93%, WHONN algorithm provides 92% for 1600 data, similarly,
the existing study RNN algorithm has 64% and PNBM has 64 for
1600 data [16].

Table 9.1 Simulation parameters settings.

Parameters Values

Language Python

Tool Anaconda

Dataset name E‐learning student reactions

Number of data 4000

Training dataset 3500

Testing dataset 500



Table 9.2 Analysis of classification accuracy performance.

No of
data

RNN
in %

PNBM
in %

WHONN
in %

SPLA‐
DMPNN

400 32 44 48 52

800 48 59 64 71

1200 59 69 75 83

1600 64 87 92 93

Figure 9.2 Analysis of classification accuracy performance.

The above Figure 9.3 and Table 9.3 define the sensitivity
performance graph comparison results. The proposed SPLA‐



DMPNN algorithm 91%, WHONN has 89% for 1600 data,
similarly the exiting algorithm PNBM algorithm has 85%, and
RNN algorithm has 66%.

Figure 9.4 and Table 9.4 represent the analysis of specificity
performance graph comparison results. The proposed, SPLA‐
DMPNN produces 91%, WHONN algorithm has 89% for 1600
data, similarly, the existing algorithm PNBM algorithm has 86%,
and RNN algorithm has 74%.

Figure 9.3 Analysis of sensitivity performance.



Table 9.3 Analysis of sensitivity performance.

No of
data

RNN
in %

PNBM
in %

WHONN
in %

SPLA‐
DMPNN

400 52 56 65 69

800 58 62 71 73

1200 61 75 80 85

1600 65 85 89 91



Table 9.4 Analysis of specificity performance.

No of
data

RNN
in %

PNBM
in %

WHONN
in %

SPLA‐
DMPNN

400 54 60 66 70

800 62 66 72 74

1200 70 74 78 85

1600 74 83 88 91

The above Figure 9.5 and Table 9.5 false rate performance
comparison results. The proposed SPLA‐DMPNN algorithm
provides 5% for 1600 data likewise the existing algorithm PNBM
algorithm has 13%, and RNN algorithm has 36% for 1600 data.

Figure 9.6 defines the analysis of time complexity performance
of the proposed and existing algorithm comparison results. The
proposed algorithm WHONN time complexity has 163 ms,
similarly, the exiting algorithm PNBM has 184 ms, and RNN
algorithm has 224 ms.



Figure 9.4 Analysis of specificity performance.

Figure 9.5 Analysis of false rate performance.



Table 9.5 Analysis of false rate performance.

No of
data

RNN
in %

PNBM
in %

WHONN
in %

SPLA‐
DMPNN

400 78 56 52 48

800 52 41 36 31

1200 41 31 25 22

1600 36 13 8 5

Figure 9.6 Analysis of time complexity.

9.5 Conclusion



In this research, we propose a new term SPLA based student
sentiment analysis using DMPNN in E‐learning Environment.
This model can be applied directly to pre‐trained word vectors.
The set of neighbors with similar meanings to the target word is
derived through the emotional vocabulary and gives different
weights based on the emotional score. Adjacent words, along
with the original pre‐trained word vectors, are optimized by an
enhanced genetic algorithm to obtain a word vector with
emotional information. The proposed system produces high
performance compared to the other system as well in
Classification accuracy performance is 94%, sensitivity
performance is 92%, specificity performance is 91%, false rate
performance is 6%, and time complexity is 125 ms.
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10.1 Introduction

Big data has attracted the attention of many researchers due to
its great potential and ability to solve problems associated with
large amounts of data. The tourism industry is one of the
industries that seeks to improve business processes using the
concept of big data. How tourism researchers use this data, and
this new type of data may be part of a new research paradigm
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that requires new methods that improve the theoretical
understanding of tourism. It’s time to find out. So far, online
data sources are mainly used for application research. It
provides (often free) data that provides insights into the
travel/tourism industry and its customer activities. It is not
surprising that previous research has focused on business
strategy development, innovation and product development,
and marketing activities.

The concept of tourism satisfaction is important in the context
of the tourism industry, as it is a service‐oriented industry that
relies on positive emotions and feedback from the customer.
Satisfaction as a theoretical structure has long been explored
and discussed, and there are many tools to manipulate and
measure it.

Online review data is an important part of Tourism Big Data,
which directly reflects the true feelings of tourists, so it has
been widely researched. The role of big data in tourism is
reflected in two key aspects. On the other hand, the big data of
the tourism sector is optimistic for the transformation of the
tourism sector and has a major impact on the healthy and rapid
growth of the tourism sector. On the other hand, the tourism
industry has big data on the potential to contribute to the
innovation of tourism management tools. “Sentiment Analysis”



automatically determines the emotional trajectory of ideas by
targeting textual ideas.

There are two main branches of emotion analysis methods:
machine learning‐based emotion analysis and semantic
method‐based emotion analysis. There are several text
classification methods, such as text classification using neural
network methods. It has been pointed out that online reviews
of tourist sites affect the confidence of tourists and stimulate
their purchase demand. Text emotion polarity classification
based on semantic features and binary models for Weibo
conceptual data analysis. In addition, applications for data
processing and emotion analysis are gradually being developed
in the tourism industry.

Established the shortcomings of machine learning‐based
emotion analysis methods in travel review analysis, and
established a semantic dictionary‐based emotion analysis
model. Effectively improving the management performance of
travel appraisal reports. A sentimental analysis model to help
improve service quality and image marketing in tourist areas.

Deep Learning (DL) methods have the advantage of
automatically extracting features from data. Current tourism
studies based on in‐depth learning techniques have explored



the travel experience of budget hotels, target image
identification, and review classification. Although the DL
method is used for the tourism sector. Therefore, this study
reviews feature‐level perception analysis performed by in‐
depth learning techniques, compares the performance of in‐
depth learning models, and explores the model training
process.

10.2 Related Work

With the advancement of the Internet, innovation and
correspondence frameworks, the making of movement
information at all levels (lodgings, cafés, transportation, legacy,
the travel industry occasions, exercises, and so on) will
increment, particularly with the development of Online Travel
Agencies (OTA) [1]. Notwithstanding, the rundown of potential
outcomes that these web search tools (or concentrated travel
destinations) propose to guests is gigantic, and the related
outcomes are frequently submerged in the “commotion” of the
data, ruining or if nothing else dialing back the choice cycle [2].

Breaking down paper texts through huge information
examination, contrasts in provincial media reactions to the
travel industry all in all give new exploration viewpoints to
researchers in the fields of worldwide data, large information,



and the travel industry. Making an organization of traveler
locales utilizing this retagged information will provide you with
a superior comprehension of the travel industry exercises [3].

With the quick development and fame of web‐based
entertainment destinations, the travel industry specialists and
chiefs have given an enlightening channel that gathers a lot of
text‐based surveys or remarks and photographs connected with
clients’ past movement encounters [4]. In the field of the travel
industry, many examinations utilize connected open
information to coordinate information with other incorporated
open datasets to improve information and the travel industry
content to address the issues of explorers. Tackle an essential
proposal issue [5].

Carried out brilliant the travel industry administrations,
presented the Internet of Things (IoT) in parks and executed
different shrewd data administrations [6]. Contrasted with
conventional travel industry arranging plans, this model
improves the general travel industry experience and working
productivity of the district overall as far as ensuring the
vacationer experience of sightseers and the interests of those
working the arranging focuses [7].



Organized factors, for example, informal communication
information, climate, and occasions are utilized to drive a travel
industry interest conjecture model in view of the slant‐
expanding relapse tree. At long last, taking for instance, we will
utilize truly measurable information from traveler stations and
person‐to‐person communication information to play out an
experiential examination to foresee the travel industry interest
in Huangshan [8]. A top‐to‐bottom learning model in view of the
Dense Feature Pyramid Network (DFPN), which considers the
uniqueness and intricacy of street signs. DFSN coordinates
shallow component channels with shallow element channels to
make shallow element maps accessible for profound elements
with a high goal and phenomenal detail [9].

Taking into account the impact of this virtual entertainment
site, the examination of Twitter content has turned into a piece
of exploration as it gives helpful bits of knowledge on the
subject. Travel surveys are an extraordinary way for
vacationers to find out about movement locations. Sadly, a few
remarks are improper and the information is clear. Highlight‐
based feeling grouping strategies have been demonstrated to be
promising in clamor concealment. Close‐to‐home investigation
is acquiring and more consideration as a significant field of
normal language handling [10]. In scholarly evaluation, opinion
examination assists teachers with distinguishing understudies’



actual sentiments about courses as soon as possible, to change
educational plans in an opportune and exact way, and to work
on the nature of training [11].

Various posts on these virtual entertainments are distributed
every day and seen by general society [12]. Obviously, long‐
range interpersonal communication media can
straightforwardly impact individuals’ perspectives on a specific
subject. This information can be utilized for significant data,
which can assist organizations with understanding what
patterns or opinions [13]. The quantity of these day‐to‐day
produced signs have developed dramatically and thus there is a
colossal measure of data addressing a huge piece of the new
world called Big Data [14]. This huge information is utilized by
an assortment of undertakings to pursue showcasing choices,
track explicit ways of behaving, or remove important data to
recognize [15]. Sentiment Analysis (SA) is perhaps the most
dynamic area of exploration.

10.3 Materials and Method

The availability of large data related to tourism enhances the
ability to improve the accuracy of tourism demand forecasting
but presents significant challenges to forecasting such as the
curse of dimension and the high model complexity. Fixed



results in several schemes show that the proposed Deep
Spectral Recurrent Neural Network (DSRNN) system is superior
to the basic model in terms of horizontal accuracy, directional
accuracy and statistical significance. Effectively analysis the
tourism for Big Data and improve the predictive performance
of the model. The group in‐depth learning model contributes to
the tourism forecasting literature and benefits relevant officials
and tourism sentiment reviews.

Figure 10.1 describes a proposed block diagram for tourism SA
based on hospitalized data. In the first step, initialize the
tourism review data and next preprocessing the data using
Individual value Decomposition Analysis (IVDA) then extracting
the particular data from feature extraction for analysis, and
evaluating the features weights using spider optimization
method, and analyzing the features based on the sentiment
reviews. In the trained features, calculating the Softmax logical
function. Finally, classifications using DSRNN give better
accuracy compared to the previous methods.



(10.1)

Figure 10.1 Proposed block diagram.

10.3.1 Individual Value Decomposition Analysis
(IVDA) for Pre‐processing Stage

This is the initial stage of the system. Data pre‐processing IVDA
to transform source data into an easy‐to‐use and efficient
format for processing practices. In the early stages, use the
min–max method to arrange the data. Normalization of training
time can be improved because all the data used during training
are the same (e.g., in the range 0 to 1).

Steps for Preprocessing



(10.2)

Begin

Input: Each values of the dataset
Maximum values of data
Minimum values of data

Output: removed unwanted data

Step 1: Set maximum and minimum ranges of data (a,b)//a and b
is data variable

Step 2: Identify the values (P  P )

Step 3: For each (data item) do

where P  the effect of normalization and P is the initial
value before normalization. Where P  and P  represent the
maximum and minimum values of each aspect, respectively.
Data preprocessing is defined as the process of converting the
value of a continuous data attribute into an array of finite
intervals by minimizing the loss of information in the data.

10.3.2 Extracting Features Using Spider Optimization
to Select the Effective Features Weight (SO‐EFW)

max min

norm

max min



The purpose of analyzing feature selection and feature
extraction techniques is to understand how these techniques
can be effectively used to implement high‐performance
learning algorithms that ultimately improve the predictive
accuracy of classifiers. The Spider Optimization to select the
Effective Features Weight (SO‐EFW) algorithm based on the
learning and decision‐making activities of minimum and
maximum weights in locating data resources. After launch,
enable the minimum and maximum weights are improving
their data review in the SA phase. Finally, minimum weights
and maximum weights of data determine optimization.

Steps for Feature Extraction

Stage 1: Initialization of parameters: maximum features
weights, minimum features weights

Estimating the weights of each features
Choose features (maximum and Minimum)

Stage 2: While meeting the nearest values do

Update the individual n minimum weights of features
An Effective selection for all features based on the weights
Evaluate the Probability (prob ) of selecting for each valuess



(10.3)

Stage 3: In the best and worst value of weight features S

if  = feature weight
im  = maximum weights
[i  f f ] = Calculating (if , i )
[i , i ] = Interchange worst ( im if ,)
S

where, i  − maximum weights, i  − initialize feature
weights, if  − Feature using Social spider optimization, S  − 
feature weights, S + 1, S‐variables. The SSO‐IFW algorithm has
the best accuracy in achieving the optimal solution, but it also
has the highest integration. Impact features to change
movement and weight parameters Effective spider optimization
for selecting weight (SO‐EFW). Spider ratings are defined and
assigned weights to each spider. Feature selection to exclude
inappropriate features from the original database.

10.3.3 Sentiment Analysis for Review of Positive and
Negative Score

r

w

w

0 sso w mw

mw fw w sso

mw fw

sso r
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SentiwordNet is used to calculate the sum of the positive and
negative points of a sentence or concept. In this study, using the
SentiwordNet, the words in each positive and negative sentence
are counted, and the positive and negative scores of all words
are added to calculate the overall positive and negative scores
of the sentence. The positive and negative marks are calculated
as follows:

Table 10.1 Sentiment analysis score.

Wordcount Pos_score Neg_score

The 0.67 0.60

Bus 0.56 0.52

Hospitalized 0.78 0.78

Food 0.4 0.43

Options 0.56 0.45



(10.5)

In the example, tourism sentiments review is used to generate
the following positive and negative scores:

Table 10.1 shows the overall positive score of the sentence is
0.57 and the negative score is 0.45. Point of Score (POS) number,
POS probability, positive and negative scores, after detecting the
feature vector.

10.3.4 Trained the Features with Softmax Logical
Activation Function

The activation function is very important because it helps to
learn and understand nonlinear and complex mapping
between input and related output. Softmax functionality is a
combination of several sigmoid functions. Know that the values
given by the sigmoid function are in the range 0 to 1, so we can
assume that these are the probabilities of the data points for a
given class. The sigmoid function used for binary classification,
the Softmax function can be applied to a variety of classification
problems. This function returns the probability of each data
point in each class. It can be expressed as below.



(10.6)

When creating a network or model for many classes, there are
as many neurons as there are target classes in the output layer
of the network.

10.3.5 Classification Using Deep Spectral Recurrent
Neural Network (DSRNN)

SA is the process of extracting a sense of tourism about a
destination from an online travel review text. The results of SA
are an important basis for tourism decision‐making. So far,
there has been no focus on how sentimental analysis
techniques can be effectively used to improve the effectiveness
of sentimental analysis. The main reason for the popularity of
tourism is to provide a multi‐layered experience to tourists, and
this information can be obtained through a strategically driven
data big data classification. Classifiers such as the window size
of the DSRNN model and the long‐distance bias problem of the
straight‐forward and DSRNN model mechanism, DSRNN
recommend using Long Short‐Term Memory (LSTM) as a
pooling layer to facilitate emotional classification. Since the
context is similar to the expression of emotional words such as
“good” and “bad” as opposed to the emotional course of the



word, they propose to introduce sentiment information into the
word vector.

Steps for Deep Spectral Recurrent Neural Network (DSRNN)

Step 1: Initialize the dataset features

For (F) = 1 to F//F is the number of base classifiers

Step 2: Evaluating the (F) number of instance features from
Whole training set

Step 3: Select the variable from the dataset for classification

Step 4: DSRNN → training individual Classifier and train the
feature (F)

Step 5: Making a prediction

For the input and predict the output with the weights score
(F)
End

Step 6: Compute the overall prediction for accuracy

The Input of DSRNN is F . Then the output of hidden layer
(H), the current stage H  is calculated as,

i

i



(10.7)
(10.8)

The DSRNN classifiers show a set of basic classifications trained
with Feature (F). For input A, the f‐DSRNN classifier provides a
separate prediction score. Each DSRNN classifier makes
predictions using the fractional values of a subset of related
variables. DSRNN classifiers use different variations to generate
multiple forecast scores. The final prediction is obtained by
averaging all the scores.

10.4 Result and Discussion

The implementation of the tourist review‐based SA is done
using the simulation tool Anaconda with the programming
language Python. Python is a dynamic, interpreted, and
general‐purpose programming language and it provides lots of
high‐level data structures.

Table 10.2 illustrates details of simulation parameters for
tourist review‐based SA using the proposed method. The
proposed method DSRNN comparison techniques are DFPN,
Superior Expectation‐Maximization Vector Neural Network



(SEMVNN), and Probabilistic Adversarial Neural Network
(PANN). Also refer [16] for more details.

Table 10.3 explores a classification performance for tourist
sentiment analysis the proposed method produces better
performance results.

Exploration of classification performance:

The proposed performance provides better result as shown in
Figure 10.2. The proposed DSRNN gives 93% for 400 data
likewise the previous method result is DFPN is 80%, SEMVNN
result is 85%, PANN result is 89%, and DFPN algorithm result is
80%.



Table 10.2 Details of simulation parameters.

Parameter Value

Tool Anaconda

Programming language Python

Data set name Trip advisor

Total number of data 1300

Number of trained data 1000

Number of test data 300



Table 10.3 Exploration of classification performance.

No of
data

DFPN
in %

SEMVNN
in %

PANN
in %

DSRNN
in %

100 50 57 60 70

200 61 65 71 78

300 72 78 80 86

400 80 85 89 93

Figure 10.2 Exploration of classification performance.



Table 10.4 Exploration of precision and recall performance.

Comparison methods Precision in % Recall in %

DFPN 72 74

SEMVNN 74 76

PANN 84 85

DSRNN 89 91

The proposed and existing comparison results of precision and
recall performance are shown in Table 10.4.

Figure 10.3 defines a detailed description of precision and recall
performance in the graph. The proposed method DSRNN
precision has 89% and recall has 91% for 400 tourist data;
similarly, the existing method result is SEMVNN precision has
74% and recall has 76%, PANN algorithm recall has 91% and
precision has 89% and DFPN algorithm precision has 72% and
recall has 74%.

Table 10.5 expresses an F‐measure performance for tourist
review‐based sentiment analysis performance results.



Exploration of F‐measure performance: The proposed and
existing results are shown in Figure 10.4. The proposed method
provides higher F‐measure performance than previous
methods.

Figure 10.3 Exploration of precision and recall performance.



Table 10.5 Exploration of F‐measure performance.

No of
data

DFPN
in %

SEMVNN
in %

PANN
in %

DSRNN
in %

100 52 58 62 75

200 64 66 71 80

300 70 72 80 86

400 76 78 84 92

Figure 10.4 Exploration of F‐measure performance.



Figure 10.5 Exploration of misclassification performance.

Figure 10.6 Exploration of time complexity performance.

Figure 10.5 defines the exploration of misclassification
performance comparison results performance. The proposed



algorithm provides low misclassification result compared with
other methods.

Figure 10.6 defines exploration of time complexity performance
comparison performance results. The proposed algorithm
provides low time complexity result compared with other
methods.

10.5 Conclusion

Tourism sector is a steadily growing economic sector; research
and analysis of the data generated is very important for its
management. The proposed DSRNN method is used to
efficiently identify the sentiment terms. In the proposed first
step, initialize the tourism review data and next preprocessing
the data using IVDA then extracting the particular data from
feature extraction for analysis, and evaluating the features
weights using spider optimization method, and analysis of the
features based on the sentiment reviews. In the trained
features, calculating the Softmax logical function. The proposed
DSRNN algorithm provides results as classification accuracy
performance is 93%, precision has 89%, recall has 91%, F‐
measure performance 91%, misclassification is 7%, and time
complexity is 124 ms. The proposed DSRNN algorithm gives
better accuracy compared to the previous methods.
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11.1 Introduction

Cybersecurity (CS) comprises practices, technologies, and
processes. These entities protect and defend networks, devices,
software (SW), and data from CA, damage, or illicit access. The
exponential augmentation of interconnected gadgets, systems,
and networks urges complex CS. Digital economy and
infrastructure advances worsen this by causing a significant CA
increase, which has serious repercussions. Nation‐state‐
affiliated and criminal antagonists and the mounting CAs’
intricacy prompt new and intrusive ways to target menaces,
thus requiring constant updating via “artificial intelligence”
(AI). This CAs’ snowballing happens in number, scale, impact,
and calls or AI‐driven CS (AICS) for dynamic defenses against
CAs. AICS can also tackle “big data” (BD). Advisory
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organizations, viz. the “National Institute of Standards and
Technologies” (NIST) [1], have and encourage proactive and
adaptive strategies by shifting towards real‐time (RT)
appraisals, continuous scrutiny, and data‐driven analysis to
pick up, protect against, and respond to. Catalog CAs prevent
future “cyber threat” (CT) incidents (CTinc) [1]. AI affords
intelligent analytics to shield against ever‐evolving CAs by
swiftly scrutinizing many events and tracking various CTs to
anticipate and act before the problem. Therefore, AI
increasingly integrates into the CS fabric in multiple “use cases”
(UCs) that automate safekeeping tasks or sustain human
security teams. Before returning to (AI) in CS, alias AICS, cloud
computing (CC) models must be defined (Figure 11.1):

Figure 11.1 Multi‐layer cloud computing framework.



Software‐as‐a‐Service (SaaS): It lets clients connect to and
run cloud apps throughout the Internet, where email,
electronic agendas, spreadsheets, and desktop tools (like
Microsoft Office software (SW)) are some instances. SaaS
delivers a complete SW‐purchased solution from a cloud
service supplier through buying licenses (aka subscriptions),
which allow SW access employing external servers, enabling
each user to reach and execute programs via the Internet
rather than installing the SW on the user’s machine. SaaS
services offer small businesses an opportunity to better
handle existing markets with fair pricing and accessibility
via an Internet browser from any device uninterruptedly.
Platform‐as‐a‐Service (PaaS): PaaS or “platform‐based
service” is a CC service type that permits clients to generate,
instantiate, execute, and manage modules encompassing a
computing platform with at least an application without the
infrastructural complexity necessary to build and maintain
assets typically associated with applications’ development,
launching and patching, while permitting developers to plan,
develop, and release SW bundles.
Infrastructure‐as‐a‐Service (IaaS): This CC service model
supplies computing resources from a cloud vendor, e.g.,
servers, storage space, network, and virtualization to
emulate hardware. IaaS frees users from maintaining data



centers (DCs) and affords them to host these assets in the
public cloud (by sharing the same hardware, memory, and
network structure with other users), private cloud (resources
are not shared), or hybrid cloud (a public/private
combination). It offers high‐level APIs for customers to
dereference several low‐level particulars of network
arrangements like data partitioning, backup, scaling, physical
computing resources, security, etc. A hypervisor organizes
the virtual machines like guests. The cloud operational
system contains hypervisors’ pools that sustain many virtual
machines and can upscale and downscale services
consistently with customers’ fluctuating necessities.

In CC use cases, BD can be organized in clouds whose nature
can be threefold: private, public, or hybrid. Backup‐as‐a‐service
(Baas). IaaS revolves around DCs, all their usages, and data
handling. DCs have specific consulting services. When
redesigning DCs for CC, one must implement services like
storage arrays or incorporate offsite storage into a current
network.

AI’s and CS’s growing research enthusiasm fostered numerous
studies to solve CAs’ identification, protection, detection,
response, and recovery caveats. This chapter mentions how
AICS or CS intelligence (CTI) assists UCs, discussing ways to



foster future developments. Looking at the above picture, one
can conclude that CC can apply AI to any of its layers. AICS
focuses on practical applications, as per NIST [1, 2]. Key issues
are (i) adequate taxonomical AICS representations, (ii) some
specific AICS UCs, (iii) current AICS, and (iv) AICS trending
themes and future directions. These points led to the following:

An AICS taxonomy with CS functions, solution categories, and
specific UCs.
Specific AICS UCs can reveal potential areas to harness AI
capabilities.
An acute analysis to identify CS gaps.

Section 11.2 clarifies some different AICS concepts and lists the
main five AICS taxonomic aspects that will be detailed
subsequently. Section 11.3 discusses the “identification
function” (IF). Section 11.4 is about the “protection function”
(PF). The “detection function” (DF) is considered in Section 11.5.
Section 11.6 vividly analyzes the “response function” (RF) with
some possibilities. The “recovery function” (RcF) appears in
Section 11.7. Section 11.8 presents “supply‐chain” (SC) “risk
management” (RM) (alias SCRM) alternatives. Finally, a terse
description of the main subjects and research implications can
be found in the conclusion.



11.2 Background

11.2.1 Cybersecurity

CS situates policies, procedures, and technical tools to protect,
defend, detect, and correct damage or unauthorized usage,
handling, or adjustment of “information and communication
technology” (ICT) structures. The rapid ICT pace of change and
innovation and the rapidly evolving CT nature further obscure
situations. AICS tools help security teams by alleviating risks
and bettering security response in case unprecedented
drawbacks strike. AICS’s heterogeneity calls for a uniformly
embraced and consolidated taxonomy that aids in utilizing
AICS. Structured taxonomies will help understand and improve
technical procedures and services.

A well‐known NIST CS framework helps realize solutions to
safeguard, detect, act in response, and defend against CAs [1, 2].
The NIST framework’s core is fourfold: (i) functions, (ii)
categories, (iii) subcategories, and (iv) informative references.
The first two levels have 5 CS functions and 23 solutions to
catalog the identified AI UCs. The functions provide a
comprehensive lifecycle view for managing CS over time. The
solution classes itemized under each function offer a good
initial point for AI UC recognition to expand CS. The primary



purpose of levels’ selection is to facilitate intuitive tagging of the
dominant AICS systems. The taxonomy can accommodate a
third level by specifying AI‐founded UCs for each CS framework
level [2].

11.2.2 Artificial Intelligence

AI systems relate to (a) target applications and (b) their lifecycle
states, like research, design, development, deployment, and
usage, exhibiting intelligent behavior by analyzing their
environment and achieving specific goals with some autonomy.
AI denotes different, multiple technologies and applications.
AICS describes the desirable and undesirable environmental
situations and assigns actions to sequences. The AI taxonomy
from defines its (i) core (i.e., learning, planning, reasoning,
communications, and data/result perception) and (ii)
transversal domains and subdomains. Knowledge
representation and different perceptions comprise reasoning.
Planning also covers searching and optimization. Learning
includes “machine learning” (ML). Communication leads to
“natural language processing” (NLP). Perception entails
“computer vision” (CV) and audio processing. AI domains
embrace but are not circumscribed to “artificial neural
network” (ANN), “deep learning” (DL) (alias “deep neural
networks” (DNN)), “fuzzy logic” (FL), NLP, “genetic algorithms”



(GAs), “evolutionary algorithms” (EAs), “Bayesian optimization”
(BO), “support vector machines” (SVMs), metaheuristics,
“planning graphs,” “text mining” (TM), “case‐based reasoning”
(CBR), “sentiment analysis” (SA), planning graph, CC, intelligent
image processing, Internet of Things (IoT), sensor/actuator
networks, object recognition, and speech processing [3–15].

AI is large, and multidisciplinary (translational). So, an ample
literary corpus addresses various perspectives, e.g.,
philosophical, technical, operational, and practical. This chapter
discusses AICS implications and scenarios. It details how AI
methods can identify, safeguard, sense, respond to, and
recuperate CS. AICS describes which ecological situations are
looked for and unwanted to assign actions to sequences. The
core AI domains encompass the main scientific AI areas.
Reasoning apportions knowledge representation and distinctive
ways of “thinking,” while planning also covers searching and
optimization. Communication is related to NLP. Perception is
about CV and audio handling [1, 4].

After primary studies, data mining began to feed the up‐to‐date,
descriptive analysis phase. Data extraction (i) breaks down each
report into its essential parts, (ii) describes the overall
relationships and connections, and (iii) amasses qualitative and
circumstantial data parameters. The collected qualitative data



summarize each preliminary revision to present the
contribution and demographic information. Contextual data
include details about the CS function, solution type, UCs, and
core AI dominion. Both data types are further examined to
identify possible connections between the studies.

A taxonomy classifies existing frameworks to identify and
evaluate the prospective AICS applications, accounting for the
first two CS NIST levels. The core IaaS functions are fivefold:

(1) Identification (IF),
(2) Protection (PF),
(3) Detection (DF),
(4) Response (RF), and
(5) Recovery (RcF).

These functions cover AI tasks, e.g., preventing security attacks,
mechanisms to actively look for new CTs and counterattack
maneuvers. IaaS controls different CAs’ lifecycle traits for
effective defense.

11.3 Identification Function (IF)

The IF stage subsidizes other functions by pinpointing decisive
tasks and CTs for systems, public, assets, and data, helping



comprehend CS, recognizing gaps, and creating proper risk
supervision strategies for the organization’s necessities, CTs,
and costs. The various IF solutions appear below.

11.3.1 CS Asset Management (CAM)

It identifies and keeps track of the organization’s information,
people, equipment, systems, and buildings to accomplish its
goals with minimum risks. It encompasses assets’ discovery,
inventories, supervision, and tracking to protect them. CAM’s
complexity grows as organizations have more platforms than
ever, from IoT operational technology systems to on‐premises
and CC services. Assets’ proliferation and remote work have
created highly distributed resources that are difficult to manage
and inventory. An AI‐centered CAM system can solve many
challenges by feeding new intelligence levels to the human
team across the following UCs.

Asset inventory management (AIM) is critical to warrant total
visibility and control over all extended network assets. AI can
foster continuous and automatic discovery of all devices,
applications, and customers besides their critical operation
classification. With accurate and up‐to‐date inventories,
resources can be tracked and analyzed for an RA against known
CA vectors. Compliance monitors can spot rogue resources and



unauthorized use. Different approaches classify assets through
ML algorithms. K‐means clustering can classify the assets
according to nuclear power plant requirements concerning
safety, functionality, and integrity [3]. A “random forest” (RFor)‐
based ML classifier can categorize operating systems and
identifies vulnerable network devices [2]. Several studies [4–6]
focus on identifying and classifying IoT devices centered on
network traffic features. Correspondingly, multiple and multi‐
stage ML methods can be used for single‐device identification
and classification and are only proper for small IoT networks
[5, 6]. A classification problem solution in rapidly evolving,
mixed, and dynamic environments can exploit a supervised ML
method to allot IoT modules to predefined classes centered on
their traffic flow values. There is work on identifying and
blocking malware‐infected assets, determining asset criticality,
and the RA of individual resources to manage and ensure their
security [8].

Automated configuration management (ACM) is a
governance process that defines and maintains preferred
system states and delivers timely misconfiguration alerts. The
ACM system will consistently define the system settings and
keep the system, thus only tolerating deviations in a controlled
and authorized environment. Tailoring the system’s
configuration guarantees the mandatory performance, and its



security reduces human error owing to manual or sub‐optimal
configuration setups. Dynamic configuration systems exist for
online file‐sharing and distributed CC storage established on
system features and operating environments using multi‐
objective reinforcement learning (RL) and GAs [11]. A fully
automated framework for adapting security controls works by
observing the user’s behavior and refining high‐level security
requirements expressed in human‐friendly language [14]. ACM
allows the compliance team to continuously review and test
configurations to identify momentarily vulnerable structures to
reduce or avoid CT incurrences (CTincs). A SW product line
tactic can analyze systemic vulnerabilities automatically [16].
Alternatively, an RFor model application predicts CTincs based
on the DNS and BGP protocol misconfiguration and externally
discernible malicious activities commencing from the network
[17].

Automated security control validation will monitor security
RT in changing environments and CT landscapes, e.g., AI for a
definitive CS system’s appraisal through a network’s telescope
data, a CS framework, or by correlating the CTs, weaknesses,
and security measures [2, 4].

11.3.2 Business Environment



A “business environment” (BE) identifies precarious processes
and applications that guarantee business continuity amid
adversity. BE is vital to business sustainability, responding
effectively, and engendering recovery strategies. AI can
automate this process via the following UC. Business impact
analysis is crucial to determine critical BE functions and
applications by evaluating CTincs’ impacts on the business. AI
can automate business impact analysis by economic RA based
on a known attack vector or by calculating the CT feasibility
and the probability of high‐impact security events in critical
businesses. Researchers gauge the financial CT risks in different
BEs using other known attack profiles’ modeling, rare‐event
simulation, or linking the corporation’s intent to attackers’
aptitudes to guide a scenario breakdown to find its impact on
assets [18].

11.3.3 Governance

Governance embroils procedures, processes, and policies for
understanding environmental and operational requisites,
perceiving the organization’s regulatory necessities, helping
know an organization’s responsibilities, and affording CT
information to the management. AI can administer policies or
automate the retrieval of strategic “vulnerability risk
indicators” (VRIs). So, a future goal is an early‐warning system



to detect and indicate risk development vs. time attributable to
red flags, policy disruptions, or other symptoms. The automatic
VRI retrieval embraces the mean time between failures,
unpatched systems’ occurrences, risk appetite, or the total
attempted breaches. These caveats can turn into knowledge
that will assist in preventing CT breaches by rapidly
remediating the risk.

Automated policy enforcement (APE) is vital for
organizations to ensure compliance with suitable “risk
management” (RM) and regulations. AI‐driven policy
enforcement in conventional non‐SDN networks that utilize a
controller with policy proxies [19]. The controller is a
centralized management server that manages SW‐defined
middleboxes for regular routers and policy proxies to identify
the traffic subject to rules and assist it in policy enforcement.

11.3.4 Risk Assessment

The “risk assessment” (RA) identifies, estimates, and prioritizes
CS risks associated with operations, operational resources, and
individuals currently or soon. It requires a careful CT analysis,
susceptibility, and attack information to determine the extent to
which CAs’ could adversely impact the organization and the
likelihood of such events. The manual RA process is complex,



expensive, and time‐consuming due to countless risk factors,
and it requires active human involvement at every stage. The
AI‐based RA addresses these challenges by supporting the RM
team in the following UCs.

Automated vulnerability identification and assessment
(AVIA) modules systematically review structures’ security
weaknesses with automated susceptibility identification tools,
classification, probing, and prioritization. These automated
tools rely on frailty repositories, vendor susceptibility
identification announcements, asset management systems, and
CTI feeds to identify, classify, and gauge CAincs’ severity while
advising remediation.

Automated vulnerability detection is a vital bug isolation step
in an organization’s applications, servers, or other structures
and assets. SW susceptibility discovery can occur by probing
the source code using DL and transfer learning [20], employing
text‐mining practices to feed the ML‐based error recognition
models as per a “recommendation (alias recommender) system”
(RS) that aids programmers in writing secure code. Frailty
repositories or social networks aid in detecting emergent SW
and cybernetic infrastructural glitches [21]. An exposure
identification scheme across the system and network levels
models the behavior of cyber‐physical systems (CPS)/IoT under



system and network levels’ outbreaks. Then it exploits ML to
discover potential attack spaces [22]. FL can find SW and
hardware (HW) vulnerabilities in interfaces and applications by
injecting unexpected, incorrect, or arbitrary data into a
program or interface. Then, it monitors crashes, failed code
assertions, undocumented jumps or debug routines, and
potential memory leaks. AICS empowers by (i) spotting
potential CAs, input initiation, and probable test case
generation and (ii) analyzing crashes (Fig. 4). Reasoning and
NLP can spawn seeds to enlarge code coverage with more
exclusive execution paths as a basic smart fuzzing system step
[23]. Test case generation is a studied FL field for web browsers,
compilers, CPSs, SW libraries, and simple programs [4, 24–26].
Computerized penetration tests attempt to intrude attack
surfaces via known or zero‐day flaws to identify what the
attacker can profit from current environments. Devising
autonomous RL penetration testing for large networks and
microgrid control algorithms undergoes studies [27].

Automated vulnerability classification expedites a deeper
data security grasp to accelerate evaluation, automatic
classification, and description labeling in reports. A frailty
summarization that labels them within an industrial taxonomy
model exists [28]. TM to classify weaknesses employs the
“Common Vulnerabilities and Exposures” (CVE) list [29].



Vulnerability exploration pinpoints the potential CAs’ vectors
that can exploit weaknesses to appraise and achieve them
effectively. A model‐driven practice to automatically map
adversarial stratagems and shared knowledge to the given
system emerges in [2, 4]. A probabilistic model can appraise
and manage systemic flaws by rapidly adjusting to the fluid
network and attack features [30–33].

Vulnerability assessment and prioritization aim to prioritize
weaknesses and provide a valuation report of systems’ frailty
exposure and severity. AICS assigns a severity score to each CPS
frailty (e.g., equipment, data, business risk, etc.) along with a
consequential CA’s ease, severity, and prospective damage.
Frailties’ automatic assessment and severity from conflicting
weakness reports through the ML pipeline based on the frailty
severity and threat profile metrics [30–33]. Vulnerabilities and
risk scores help every IoT gadget in the attack graph and are
conceived by the network administrator to organize network
topologies [33–35].

Automated threat‐hunting searches for security across
networks, datasets, and endpoints proactively, seeking
potentially malicious, distrustful, or risky organizational
activities. It identifies and categorizes eventual CTs ahead
through fresh CTI on gathered data. CT hunting is a somewhat



new paramount area for early detection. Yet, existing
methodologies still work on anomaly‐centered CT detection and
oversee abounding external CT knowledge provided by “open‐
source (OS) CTI” (OSCTI) [2, 4, 34–37].

Attack path modeling proactively lessens risks, supporting
security teams by mapping vulnerable network routes to judge
risk, catch vulnerabilities, and take countermeasures to
safeguard critical assets, e.g., intrusion alerts or weakness
descriptions. All cyber data, including attention alerts, frailties,
logs, and network traffic, may matter to simulate
attacker/defender deeds and prevent them in RT [2, 4, 37, 38].

Automated risk analysis and impact assessment strengthen
the RM team by ingeniously using internal and external risk
records to gauge danger and related RT metrics. AI can hurry
the RM progress by automating the risk score calculation [39,
40], the inference of the probability of CTincs [41], paramount
VRIs’ identification [42], and RA and decision analysis [43, 44]
using log data and CTI within and outside the organization.

Predictive intelligence is lawful and relevant and can
anticipate CAs, helping deliver an active defense by predicting
an intrusion’s type, intensity, and target. DL [45, 46] helps
forecast alerts from malicious sources or on a given target using



the sequence of previous warnings, historic spam emails, and
network traffic data. Malware forecast involves predicting and
blocking deleterious files before finishing their payload to
prevent CAs rather than remedy them. Malware prediction
models with “recurrent neural networks” (RNNs) forecast
malicious behavior through machine activity data [47]. CT
prediction can advance “cyber resilience” (CR) proactively.
Attack prediction schemes may utilize different data types
retrieved from news sites and websites, “dark web” (DW)
forums, national frailty databanks, CT event reports, and public
databases’ flaws/exposure [48].

11.3.5 Risk Management Strategy

RM strategies assist operational risk decisions by forming
priorities, risk tolerance, and constraints. It must warrant
acceptable risk levels are established and documented along
with reasonable resolution times and investment. AI can
automate the following activities.

Decision support for risk planning involves implementing a
sought‐after countermeasures portfolio within a fixed budget.
Formal decision support systems [28, 49, 50] and CA graph
modeling [28] can help security designers contrast cost‐
effectively with countermeasures and ongoing risk budgets. The



CS decision‐making in risk planning matters due to the risk
plan’s sensitivity to the decision maker’s attitude towards risk
vs. the funding available. Thus, a decision support system
implementation is vital for estimating uncertain CA risks
affecting an organization, factoring uncertain CT rates,
countermeasure expenditures, and assets’ impacts. The GA in
Ref. [49] combines countermeasures to block or mitigate CAs,
letting users determine the ideal trade‐off between investment
costs and resulting risks. Robust optimization supports optimal
balance studies between the anticipation, detection, and
repression defenses while handling CS uncertainty [50]. An
attack graph model can identify a portfolio of security controls
to diminish risk [28]. Their model chooses the best possible
rules to ascertain that the whole budget does not exceed the
organizational budget.

“Supply chain” (SC) “risk management” (RM), aka SCRM,
supports menace‐related decisions for identifying, weighing,
and managing SC risks. Successful SCRMs necessitate a broad
CTs’ view and weaknesses, cost‐effective SC risk planning
strategies, and a CR assessment to warrant CS. AI can automate
CT analysis and prediction [29], optimal CS risk investment [51],
and the SC CR [52].



SCs require a secure, integrated network between the incoming
and outgoing chain subsystems. Hence, it is indispensable to
understand and predict CTs using internal and CTI resources to
limit business disruption. CTI data has been incorporated and
used ML to predict CA patterns on cyber SC systems [29].
Optimizing CS risk investments is crucial for SCs to speedily
detect, alleviate, and balance security breaches’ impact with the
available budget. There are different models for optimal CS
investment with a limited budget and a security control
portfolio to balance CS [51]. An SC CR appraisal is crucial to
protect the SC from cyber intrusions and secure a competitive
business advantage. An integrated, ample Dempster‐Shafer (D‐
S) approach can build a framework for CR evaluation of an
additive manufacturing SC [52].

11.4 Protection Function (PF)

PF assists in the planning and execution of appropriate controls
to restrict or contain a potential CS event impact, including
technical and procedural guidelines to shield against internal
and external CTs proactively. AI can ameliorate the CPS’s
resilience through authenticating devices, clients, and other
assets, checking customer behavior, automated access control,
adaptive training, data leakage prevention and integrity



monitoring, automated information defense processes, and
protective solutions’ provision to secure the system proactively.

11.4.1 Controlling, Identity, Authentication, and
Access

Identity management, authentication, and access (IMAA)
control limits admission to accompanying facilities and assets
to accredited users, processes, apparatuses, and authorized
activities. AI can manage and protect physical and remote
access by (a) intelligent client and server authentication, (b)
automated access regulation through authorizations, and (c)
permissions to prevent unapproved access and its
consequences.

AI‐supported user authentication (AISUA) can improve user
authentication with physical biometrics, behavioral biometrics,
or multi‐factor authentication instead of usernames, passwords,
and even one‐time text tokens. Biometrics employs inborn
users’ physical traits for identification like iris, blood vessels,
fingerprints, and other bio‐signals [53, 54] “Behavioral
biometrics” (BB) are inimitably discernible and measurable
human activity patterns that can deliver user‐friendly and
continuous CS. There are several BBs, including usage behavior
and gait [52–54]. The user’s comportment patterns related to a



user’s interaction with their own devices is the main basis of
the continuous authentication systems via mobile functions and
usage data, e.g., accelerometer, pacemakers, intelligent watches,
and statistics from different applications’ interactions, to
conclude whether the present user remains the same as the
individual authenticated beforehand [53]. A continuous
authentication scheme can rely on the users’ BBs’ profiles
according to their interaction with different office devices for
smart offices using CC and an RFor algorithm. Still, these
solutions are gradually entering the realm of federated identity
management elucidations, raising interest in them [54]. A
transparent, non‐intrusive, and continuous authentication
scheme that can assist mobile devices’ gait authentication is the
required information to corroborate the user’s authenticity as
the person walks. Multi‐factor authentication entails a layered
methodology to safeguard data and applications requiring two
or more credentials for user identity verification or login.

Intelligent HW authentication endorses devices by their
credentials or behavior in the network to warrant M2M
communication security. Researchers are actively working on
sensor/actuator identification and authentication to warrant
CPSs’ security. Channel [55], sensor [56], and actuator flaws
catch transient and steady‐state parameters as input to the ML
model for sensor identification.



“Automated access control” (ACC) restricts systems’ right of
entry to authorized users per situations or their organizational
roles/regulations. AI techniques help maintain the access
control state [57], role mining [58], and situation‐aware
decision‐making [59] to prevent unauthorized access and its
consequences.

“Role‐based access control” (RBAC) bestows entrance to
different customers consistent with their organizational roles.
AICS can update and maintain the access control state when
exceptions or violations are reported [57] by providing an
optimized action plan to reconfigure the RBAC state to facilitate
maintenance. An optimal role‐mining, scalable tactic to unearth
user‐role and role‐permission associations obtain cues from
existing access control lists [58]. Attribute‐based access control
considers various pre‐configured attributes related to the user,
environment, and access resource. AICS situation‐aware
decision‐making performance for attribute‐reliant access
control has been tested in fisheries and manufacturing systems
[59].

11.4.2 Awareness and Training

This response category covers CS awareness and training for
personnel and partners to accomplish their information



security responsibilities in compliance with procedures and
policies. AI can be used for adaptive and personalized CS
training, awareness, or recommendations by automatically
selecting content via NLP algorithms [60] or providing an ML‐
enabled coach for solution‐guiding hints [61]. Adaptive security
awareness and training help overcome training challenges of
outdated content, material selection, and acceptable
approaches. An adaptive web‐established learning CPS getting
up‐to‐date DBpedia training content and giving automated
content selection based on a learner’s prior knowledge of
information security appears in [60]. On the other hand,
programmers were helped by topic modeling or exploiting
serious games to recommend/raise secure coding practices
awareness [60, 61].

11.4.3 Data Security

Data security administrates information management as per
risk strategy for defending sensitive records by (i) shielding
information at rest and in transit and (ii) managing the assets’
lifecycle, comprising their decommissioning or disposal. AI can
actively prevent data leakage, protect email, block/report
malicious domains, and monitor agent‐based integrity for data
confidentiality, integrity, and availability.



Data leakage prevention (DLP) encompasses detecting and
protecting data breaches, exfiltration, or unwanted data
destruction. AICS can surveil data access, information
movement, users’ activities [62, 63], automated data sensitivity
exposure [64], and APTs’ detection [65] to prevent data leakage.
Identifying authorized individuals and how they use sensitive
information affords accurate comprehension for data leakage
preclusion by observing their behaviors or activities. AI helps
monitor user activity to identify abnormal behavior regarding a
spike in unusual activities by correlating multiple sources’
data [62, 63]. These needs led researchers to employ an insider
CT test dataset from CERT to get data leakage prevention
insights for using different temporal representations of user
activity or daily activity summaries, email contents, and email
networks [62]. A model that only identifies data leakage events
during the sensitive period before a staff member leaves an
organization appears in [63]. Automated data sensitivity
detection identifies and classifies data by analyzing, labeling,
and organizing them into relevant groups (viz, confidential,
individual, and public) employing shared traits [63], hampering
data leakage prevention techniques to monitor users’ actions
towards only particular relevant sensitive data portions rather
than always pursuing all data. An automated classification
practice relying on security similarity to mitigate the sensitive



data leakage threat from insiders is in Ref. [64]. Sensitive facts
inherent to unstructured data make involuntary data leakage
easier [64], which can be mitigated by a content and context‐
based information identification scheme using BiLSTM and an
attention mechanism.

APTs are targeted CA types that last long and overlook the
target network’s defenses. The main purpose of this attack type
is to steal data rather than trigger any damage. Researchers are
working on efficiently capturing telemetry from endpoints,
networks, and clouds to integrate and analyze diverse
telemetry to extract “indicators of compromise” (IoCs),
anomalies, and other relatable behaviors [65].

Intelligent protection means SW solutions to avert
sophisticated email CAs. A spam email tactic traditionally seeks
goods and services via unsolicited emails from/to bulk lists.
Today, however, it is actively spreading malware, stealing
authentication credentials, or committing financial fraud. AI
can automate harmful spam protection. Supervised
classification and DL‐based [66] techniques can identify RT
spam utilizing dynamic inward email data, including general,
subject, visual, imagery, and attachment, among other content
traits [67].



“Malicious domain blocking and reporting” (MDBR) offers a
better security level for email protection by catching up with
any evil network traffic from opening spam emails or
attachments. AI helps identify suspicious websites for each DNS
lookup and block malicious websites that may contain
malware, phishing, ransomware, and other CTs. Detecting
malicious websites works by training ML algorithms with an
opulent collection of harmful and healthy website features.
These features can be fourfold [68–72]: website design, domain,
URL, and hybrid. A new website categorization method can
pinpoint malware or crack websites employing the automated
scraping and treatment of too many visual and non‐visual
design are trendy from detection results from malicious
websites. Supervised ML [68] and DL [69] models can catch evil
domain names employing classical domain‐name structures.
URL strings’ parts containing linguistic, lexical, contextual, and
statistical information can reveal malicious websites. Malicious
websites with URL features have been analyzed as input to the
ensemble ML and DL models [70]. Hybrid attributes for
malevolent website identification help figure out botnets [73] or
phishing website detections [71, 72] by combining features
related to domain name structure and DNS response, viz
resolution source, daily resolution amount, etc.



11.4.4 Information Protection, Processes, and
Procedures

Information sources and assets consistent with security
strategies, processes, and procedures must be safe. It includes
protecting information and establishing, managing, and
implementing response, retrieval, and vulnerability
supervision plans: AI‐powered backup and an AI‐enhanced
frailty management plan sustain processes and procedures for
information protection.

AI‐powered backup (AIPB) aims to back up critical data and
SW components according to priorities and requirements for
efficient backup. AI techniques can perform dynamic backup
scheduling and optimized backup scheduling. A dynamic
backup system with clever scheduling algorithms improves the
stability and predictability of the backup environment that
schedules the backup efficiently by determining which backup
commences first and which storage goes to that backup to
expand efficiency [74]. A 2‐D Markov chain can model data
backups and study their scheduling optimization by examining
a probabilistic backup policy to initiate at each time slot,
regardless of the backup size [75].



AI‐enhanced vulnerability management plans are
frameworks designed to proactively shrink risk exposure,
which can disrupt and impact the whole system. Aligning the
weakness management plan with systemic prerequisites and
critical success factors becomes paramount, given the recently
reported defenselessness rise. AICS techniques can determine
context‐based weakness risk scores and fragility exploitation
trends in RT to protect assets and information systems. Context‐
based vulnerability risk scoring will help analysts (i) prioritize
some particular assets’ or information systems’ risks and (ii)
enable them to undertake protective action. An exciting risk
prioritization scheme for vulnerability RA consists of an
attacker’s model integration to apprehend the invader’s
preference for exploiting weaknesses [76]. The risk score
corresponds to the criticality and likelihood of the exploitation
through a logic‐reasoning engine. A frailty exploitation trend
will help the analyst prioritize patching and remediation by
envisaging the most probable exploited instabilities. Novel AICS
approaches can estimate exploitability and unravel the class
imbalance problem to improve ML algorithms’ performance,
focusing on (a) liability exploitation prediction using transfer
learning to help experts prioritize patch applications [77] or (b)
via sequential batch‐learning, i.e., RT, dynamic adaptive



learning, which tackles abnormalities and dynamic class
imbalance within exploitability prediction [78].

11.4.5 Protective Technologies

Security and resilience for CPSs and assets utilize tamper‐
evident features to identify and deter attempts to breach,
change, infiltrate, and get the organization’s assets’ knowledge.
AI can engender protective ways through “intrusion prevention
systems” (IPSs), anti‐virus/anti‐malware solutions, log analysis
tools, and protection by deception.

Log analysis appraises computer‐generated event logs to
proactively isolate bugs, security concerns, or other risks. AICS
log analysis can automate routine tasks to handle large
amounts of distributed log data well. Performance tests of
assorted supervised ML tactics for detecting malicious “remote
desktop protocol” (RDP) in Windows sessions utilizing RDP
event logs emerge in [77–79]. Other data presentation
arrangements exploited a storytelling scheme to yield a natural
language report for recognizing CT information according to
users’ knowledge levels [79]. Solutions for a variety of
interoperability concerns in log management have emerged.
The AI variety issue has been addressed to extract and treat
textual records from different sources for satisfactory log



feature representation via information retrieval [80]. Likewise,
the work in [81] handled security analytics of the
heterogeneous log data from different network sensors by
employing automated feature extraction and selection
techniques.

IPSs monitor the network traffic for apt action to thwart CAs by
reporting, obstructing, dropping, or resetting connections
through (i) unsupervised isolation forest [82] and (ii) self‐
organizing incremental ANNs and SVM‐based IPSs [82–84] for
embedded automotive systems and IoT networks, respectively.

Anti‐virus/anti‐malware solutions can scrutinize thousands of
files and extract advantageous features to label them as
nonthreatening or malware. Anti‐virus programs can detect
malware using executables’ retrieved features [83] or dynamic
data analysis [84] as an input to ANNs or RNN models.

Protection by deception is a technique to protect critical
documents after attackers penetrate the network. AI can
generate credible fake text documents to mislead CAs. Decoy
files can divert the adversary from the factual target when the
invader has already taken the system [85]. This decoy GA‐
centered text‐creation handles actual documents’ directness to
hard‐to‐comprehend, albeit credible, fake documents.



11.5 Detection Function (DF)

DF enables timely CT event discovery by designing and
implementing applicable activities to identify their occurrence.
DF is crucial for security as prompt detection will minimize the
disruption, comprising (i) actions for the suitable detection of
invasions and glitches, (ii) impact assessment, (iii)
implementation of a continuous monitoring security
framework to verify the defensive measures’ effectiveness, and
(iv) appropriate detection processes’ maintenance to ensure the
cyber events’ awareness. AI can speed detection by monitoring
internal and external sources and expeditiously correlating this
information to detect unusual activities to minimize aftermaths.
AI solution categories appear below.

11.5.1 Anomalies and Events

Solutions discern and classify abnormal activities by
establishing and managing baselines for multiple sources’
operations and data flows. These baselines detect and analyze
events to understand CA targets and approaches. “Intrusion
detection systems” (IDSs) monitor CPS and network traffic to
analyze anomalous and suspicious activities to detect possible
system intrusions. IDS was realized as three classification types:
binary, multi‐category, or both. Binary classification assumes



two labels: normal and attack. Conversely, multi‐category
schemes can classify three or more classes. Multi‐category IDS
classification discerns between different CA types, displaying
users more information for CA remediation. Operational
development and assessment metrics for binary and multi‐
category IDSs involve benchmark datasets. Datasets examples
follow [86–97]:

1. SAA for system call‐based IDS [98].
2. Aegean Wi‐Fi (AWID) for wireless networks [99].
3. BGP RIPE for routing information services [100].
4. Canadian Institute of Cybersecurity’s databanks [86].
5. CIFAR‐10 with imageries.
6. CTU‐13 for several botnet scenarios.
7. Ethereum Classic depicts CAs on an OS, a blockchain‐
reliant distributed computing framework via smart
contracts.
8. ICS CA gas‐pipeline dataset.
9. KDD99 and NSL‐KDD partake in network traffic records.
10. “Coburg intrusion detection datasets” (CIDDS) with
labeled flow from abnormality detection.
11. UNSW‐NB15 comprises raw traffic collections for different
attack types.
12. BOT‐IoT dataset of normal and botnet traffic in an IoT
network [4].



13. Hadoop logs for log‐built anomaly detection
benchmarking.
14. SEA to verify behavioral logs of Unix clients.
15. “Secure water‐treatment dataset” (SWaT) with different
sensors’ and actuators’ network data from a water‐treatment
plant.
16. UGR’16 has well‐labeled traffic evidence from tier‐3
internet service suppliers.
17. DARPA’99 has online and offline real/synthetic samples
from an experimental environment.
18. UCM 2011 contains actual traffic traces.
19. TON_IoT for new Industry 4.0/IoT needs.

Intrusion detection relies heavily on binary (or basic)
classification, exploiting different ML classifiers [86–97]. Still,
some utilize other techniques like grouping through
hyperparameter optimization, dataset class imbalance
conundrum, and databank feature extraction [73, 101–125].

In multi‐category grouping, the databank comprehends
multiple disconnected classes. Data items belonging to a similar
category receive the same label. Besides the normal tag, other
traffic classes exist, e.g., denial‐of‐service (DoS), distributed DoS
(DDoS), and user‐to‐root (aka, remote‐to‐local) attacks. Multi‐
category IDS sorting also applies different classifiers, advanced



feature extraction tools [73, 101–125], hyperparameter
classifiers’ tuning, and tactics to handle class imbalance [73,
101–125]. Classification can be binary and multi‐category for
the intrusion detection problem. Multi‐category ones can
address class imbalance, 3‐D or high‐dimensional data
visualization, and feature extraction [104] problems for the
datasets.

11.5.2 Secure and Continuous Monitoring

RT, secure continuous surveillance of systems and assets, helps
understand their environment and perceive security events. AI
can automate observations by delivering CTI via a dynamic,
heterogeneous information network to manage data logs from
perceiving physical environments, networks, customers, service
suppliers, and sensitive information systems.

Security monitoring encompasses amassing, analyzing, and
presenting data from various sources to develop an almost
universal answer revealing the wrongdoer’s modus operandi
and intents. This scenario actively requires efforts to process
and correlate heterogeneous sources’ records [105] and
situational awareness [73, 105–130] to understand security
information. An essential problem is processing colossal,
dynamic, and assorted security information from evolving and



growing sources and algorithms. Thus, AI can offer meticulous
analyses to chase coupled security events in a reliable, fine‐
grained way. A system for event management with security
information custom‐made for intelligent grids to detect,
normalize, and correlate CAs and anomalies against a range of
smart‐grid application layer protocols can be found in [105].

Similarly, physical and cyber domains’ logs can be combined
and undergo data correlations to detect prospective critical
infrastructure anomalies. RT situational awareness affords a
holistic, particular view of large‐scale networks, enabling
security analysts and investigators to recognize, process, and
comprehend data. For this, a platform can process and visualize
RT, large‐scale network data to monitor and study network flow
data and develop novel analytics [73, 105–130]. An automated
situational awareness platform can use RT awareness features
via the “SW‐defined network” (SDN) to judge network‐enabled
entities’ fragility, allocation to a connectivity‐appropriate slice,
and the underlying infrastructure’s continuous surveillance.
Maintaining an all‐inclusive CPSs situational awareness is
desirable due to the bound cyber and physical systems’
combination in mission‐critical applications [73, 105–130].

11.5.3 Detection Processes



It involves activities to maintain detection readiness procedures
to provide CTI and CS events awareness reliably while
continuously refining and testing the detection processes for
efficient working. AI can offer proactive online vigilance by
automatic CTI extraction from innumerable web and internal
resources. The resources embrace the DW, CTI sharing
platforms, and honeypots. The following UCs detail AI practices
for the maintenance of detection processes.

“DW investigation” (DWI) continuously monitors cybercrime
resources, like criminal forums and the black market, to spot
illicit activities and act to minimize risk. DW investigations
occur by exploiting textual data SA from DW scenes [73, 105–
130]. CTI utilizing DW data, besides identifying key attackers,
their assets, and expertise levels can automate exploration tools
to isolate potential CTs by analyzing hackers’ vocabulary and
intentions without inspecting by hand the bulky DW posts’
volume. SA may automate textual opinions, views, and
emotions mining via NLP. In this, a bilingual lexical resource
(BiSAL) achieves the emotional analysis of English and Arabic
texts linked to CTs, radicalness, and conflicts. An approach for
predicting malign cyber events exploits malign actors’ behavior
via SA of posts on hacker forums from the surface web and DWs
to insert some predictive power usable outside the network to
predict attacks using direction and time‐series models.



Proactive CTI identifies and addresses security risks before CAs
occur by collecting evidence from hacker forums and
marketplaces offering products and services focusing on
malicious attacks. An ML scheme can pursue attacks and the
growth of infected devices via a DW traffic study appears. Their
breakdown explores the underlying correlation between
network services under attack, as designated by the target port
amounts of scanning packets. Expert DW information retrieval
techniques can support CT textual mining with business
intelligence. Exploring DW forums is paramount to extracting
key ideas and uncovering popular topics, emerging CTs, and key
actors in the attacker community, benefiting CS professionals.
Topic modeling may remove topics, track the evolution of
matters, identify dangerous hackers with their fortes, and
uncover their underground market role.

Automated assessment of diverse CTI sources assists in
extracting handy information from plentiful sources like
vulnerability databases, X (former Twitter), news sites, and
incident reports to take timely actions to ensure overall system
security. This involves processing knowledge from multiple
sources about CTs and actors to improve safety and the
decision‐making process and solve the problem of the quantity
and heterogeneity of CTI sources and their formats to provide
actionable intelligence. Security mavens face a fundamental



challenge when exploring CS reports since immeasurable cyber
information amounts emerge daily, imposing automated
information mining technologies to simplify data retrieval and
query. In this direction, there are innovative ways to extract
evidence from CTI reports via named‐entity recognition to aid
security analysts in gaining accurate threat specifics as quickly
as possible. Well‐timed and relevant “OS intelligence” (OSINT)
evidence mining posted daily by consumers, security
organizations, and investigators is critical for maintaining a
high‐security level. Twitter is a crucial OSINT platform and a
CTI hub due to its natural aggregation capability, timeliness,
centers for public and secretive opinions, and chiefest CS feeds
(e.g., NVD, ExploitDB, CVE, Security Focus). So, social media
processing pipelines and mining can extract sources’ CS
relevance scores and concerns for clever verification.

Vulnerability intelligence extracts information about SW and
system vulnerabilities from public vulnerability datasets (e.g.,
CVE and NVD) to help identify vulnerabilities and CA vectors to
prioritize CS efforts and mending schedules. An automated
system can diagnose and detect potential IoT vulnerabilities in
a specific content‐based extraction ontology provoked by
evidence fluctuations fostered by the CVE databank and IoT
system circumstances.



CS data explosive growths on platforms [73, 105–130], the DW,
and social sites require automated tools for CT evolution
identification, structured CTI records’ generation, CT warning,
and CTI appraisals from local CTI sources. A dynamic topic
modeling can show the key topics’ evolution in a time‐stamped
CS document collection to identify the threat evolution. The
growing unstructured data nature shared on “OS threat
intelligence publishing platforms” (OSTIPs) deters automatic
CTI records gatherings. Automatic structured CTI data
generation from OSTIPs combines ML and NLP to accomplish
accurate, structured, and detailed data that can readily
empower security tools and specialists regarding CT alleviation.
The early CT warning systems helped defend against CAs by
sending timely outbreaks and security alerts through
information feeds. Security experts’ Tweets and related
blogs/social media can be mined to issue a CT warning. CTI tools
targeting specific languages can help CTI professionals gain
better CT insights in their local language. An automated Chinese
analyzing structure to increase CTI visibility can operate in
cooperation with preparing an automatic classification
framework containing RS and CT‐labeling tactics.

CS data explosive growths on platforms, the DW, and social sites
require automated tools for CT evolution identification,



structured CTI records generation, CT warning, and CTI
appraisals from local CTI sources.

Multilingual CTI needs stem from Internet demands for
translating CTI sources to draw trustworthy conclusions. Third‐
party translation engines are unsuitable due to their lack of CS
terminology and inadequate privacy and confidentiality
policies, where the importance of developing CTI tools for non‐
English languages must be highlighted [73, 105–130].

AI‐powered honeypots study CAs’ tactics and behaviors to
expand and prepare CS systems for attacks [73, 105–130]. For a
case in point, honeypots can rely on ML to predict the CA
probability, utilizing numerous honeypots’ DW or data sites to
preclude far‐reaching security events at the earliest. Mixing ML
and honeynet‐reliant detection can flag a potential botnet
camouflaged as an IoT device. An early‐warning IDS can apply
a distributed network with honeypots and darknets for data
collection.

11.6 Response Function (RF)

RF creates a roadmap for managing and restraining potential
CS events’ impacts. RF is critical as it epitomizes the first
defense line in incident management and develops mitigation



tactics for the future. This function includes planning to create
effective processes to address the caveat, analyzing incidents to
define their cause, scope, impact, incident containment, and
communication orchestration throughout and, subsequently, to
an attack. AI‐reliant response activities can resolve incidents
faster and with less labor and time from security analysts.
Various AICS and UC solutions follow.

11.6.1 Response Planning

Planning a well‐maintained reaction course of actions to pursue
during and after an incident to limit its scope and impact
includes defining a contingency plan that captures various CA
scenarios with the apt response action and incorporating
experiences gathered from other incidents’ responses to revise
plans. AI can automate response planning by launching a
dynamic case supervision tool to record, perform, and
modernize the contingency plan.

Dynamic case management utilizes technologies that tackle
prior security breaches to record various attack scenarios and
suggest relevant reaction measures before an event occurs [73,
105–130]. This helps with knowledge management for
recording when an event is closed and organizing the response
activities for particular breach types. Most studies have been on



automated response recommendations that employ CBR to
match the most comparable incident from a knowledge
manager and then update the knowledge manager after the
occurrence. Domain experts outline the precedent model in a
case‐based CTincs resolution system for preserving and
retrieving knowledge base precedents. Researchers actively
apply a hierarchical structure, ML, and an ontological approach
to formalize the precedent base. A hierarchical structure with
the qualities of the “recency, frequency, and monetary” (RFM)
method can quickly respond to a security breach. Their scheme
contemplates the security event’s circumstances by observing
its frequency and various attribute values. The target
organization, information on the intruders, disturbed
resources, and potential effects on the target are just attributes
from prospective assault scenarios that can be accumulated in a
hierarchical structure. Maintaining, reusing, and sharing the
problem‐solving knowledge of CTincs resolution is possible by
mingling CBR with the incident‐object description exchange
format. The K‐nearest neighbor procedure can handle case
similarity. An RS can map CTincs into embeddings with ANNs
and find the nearest incident embedding to sanction a similar
resolution measure.

11.6.2 Communications



This activity helps coordinate stakeholders’ communication
during and after a CTinc, including collaboration support
between security analysts throughout an attack and cross‐
sector CTI partaking to enrich the protection team’s responses
in emergencies and warrant contingency tasks and
responsibilities’ allocation when responding [73, 105–130]. AI
can assist with this activity via these two UCs.

“Automated responsibility allocation” (ARA) can serve as
intelligent and adaptive decision sustenance for “security
operation center” (SOC) managers in incident response duties
substantiated by the occurrence traits, staff expertise, and ease
of use. The best resources (like time or extra labor) are directed
toward maintaining a cyber‐SOC optimal operational
effectiveness in the face of multiple factors’ interference, viz
new alert categories, augmenting alert‐generation rate, and
expert absenteeism. Nonetheless, stochastic, dynamic
programming‐based, adaptive, and dynamic decision‐making
model via RL exists.

“Collaboration support systems” (CSSs) facilitate the efficient
data and knowledge allotment amongst various actors
participating in incident response, for example, teams and
employees inside or outside the organization [4, 73, 105–130]. AI
can help with cyber‐defense, analytical CSS support for cross‐



sector CTI partaking, and community data distribution between
security analysts. CSSs are twofold: asynchronous and
synchronous. Asynchronous CSSs do not provide RT
communication; team members can examine information when
convenient, i.e., engage in a conversation or leave according to
a present necessity. A CSS type employing a message board and
utilizing a cross‐sector CTI sharing with a multi‐agent
monitoring mechanism may solve the concurrency problems of
CTI sharing and improve tasks’ execution efficiency.
Synchronous CSSs provide RT communication to support an RT
response by yielding security analysts to quickly exchange
findings and introduce effective task divisions. The last concept
with visualization, RT communication, and the efficient
conversion of BD can be handled by plentiful analysts to
broadly comprehend CTs and corresponding responses.

11.6.3 Analysis

The analysis module evaluates CTincs and response activities to
ensure the correct incident mitigation process, gathering and
evaluating received data to support event categorization and
notify investigators to assess incident severity and impact.
Forensic analysis helps retrieve and preserve evidence for
litigation. AI can analyze these use case procedures.



Automatic incident characterization (AIC) addresses the
incident identification processes per the response plan,
including identifying incident criticality and relationships with
other incidents to automatically prioritize incidents for further
investigation. Different CS events [73, 105–130] dictate the
adequate AI model type or action per occurrence’s severity.

Alert processing and triage (APTr) investigate intrusion alerts
efficiently and accurately to prioritize and analyze their
relationship and decide on incident response. AICS can enable
an effective alert triage established on automated knowledge
inference, alert classification, and alert prioritizing tools [2, 4,
33] to identify and escalate CT alerts for further investigation.
Knowledge inference explores the knowledge base with logical
rules for new information evaluations and interpretations. A
sequential rule mining scheme that extracts knowledge from
shared intrusion detection alerts can create predictive and
customized blocklists. Aggregating or key triaging warns from
enormous CT alert records can reduce CT alert fatigue. Security
warnings related to the same attack scenario could be grouped
using “self‐organizing maps” (SOMs) and unsupervised
clustering techniques. Each evaluated event characteristic had
an anomaly score to determine security event priority and
identify anomalies.



Post‐mortem forensic analysis (FA) starts a CA timeline [2, 4, 73,
105–130]. It illuminates the breach’s scope and cause. Next,
remove and prevent the threat via tools and approaches. The
invader’s data pieces are also examined to establish a footprint
that can be utilized in court or for prosecution. Incident
response teams can use AI for intelligent attribution, anomaly
identification in a forensic chronology, evidence correlation
from different devices, and forensic investigation optimization.
Smart attribution finds entity‐event links to determine security
event causes. Contextual learning can indicate source
attribution and status. A forensic chronology covers pre‐, mid‐,
and post‐CTincs events. Identify anomalies in the forensic
timeline, such as security incidents. A deep autoencoder can
establish a baseline model for log file normal occurrences and
an anomaly threshold for reconstructed values using the
baseline to identify anomalies. Fraud detection and analysis are
forensic investigators’ key goals for court case reports. Various
forensic tools can analyze devices.

Nonetheless, their data formats complicate studies. Thus, a
novel semantic strategy helps forensic investigators analyze
evidence by linking it with other knowledge. New adversarial
tools make it difficult for forensic analysis teams to examine
occurrences quickly and efficiently within scarce resources’
scenarios. A unique decision support system model uses CTI



data from adversarial scheme repositories to aid inspections,
optimizing forensic breakdowns by resolving these issues. The
likelihood relationship and proximity values between potential
attack actions, present investigation findings, and investigation
budget are considered in this model.

11.6.4 Mitigation

Mitigation involves preventing the expansion outbreaks and
remediating their effects to dispel any long‐term security
breach consequences. This critical step contains the incident
facts and remediates or documents new frailties concerning
risks.

“Automated isolation” (AuI) excludes devices after detecting
an indicator of compromise. AuI disconnects devices or gadgets’
groups after infection or identifies high‐risk infected clients for
extra care. NFV and SW‐defined networking lets AuI locate CAs
on the physical network and isolate or replace compromised
devices or clients. CS professionals can reduce CA consequences
in networks by tying CAs to specific physical system attributes
or metrics. A CA classification and localization model for the
smart grid physical layer uses ensemble and representational
learning for CA classification and a Chi‐squared algorithm to
correlate the CA scenario with specific features and localize the



attack to precise measurements or a system location [73, 105–
130]. RT mitigation is essential for fast vulnerability processing
in integrated clinical environments. ML/DL can detect and
categorize ransomware threats and leverages NFV and SDN out
to isolate and replace affected devices.

“Automated remediation” (AuR) is a guided problem‐solving
method that automates corrective measures with simple scripts
or powerful context‐aware RSs [73, 105–130]. AI can choose the
best countermeasures for CT removal in RSs to help security
analysts configure and orchestrate security tools and track the
attacker’s lateral movement. A defensive CS key pillar is
developing speedy and effective responses to disruptive CAs,
and picking the appropriate countermeasures to reply to CTs is
crucial for a fully automatic response. CS reaction based on
artificial immune systems can select and apply the optimal
atomic countermeasures for risky protected structure assets.
Decision support systems and intelligent RSs for security
analysts to swiftly and effectively defend resources and services
from CAs are also important. An RS suggests the most resilient
critical infrastructure setup with network orchestration and
security technologies for fast mitigation and to quickly stop
malware spread or track the attacker’s lateral movement.

11.6.5 Improvements



Improvements ensure lessons are absorbed from incident
detections and response activities, including response update
plans and strategies consistent with the lessons learned by
employing AI for automated knowledge extraction [2, 4, 73,
105–130] centered on incident reports.

“Long‐term improvements” (LTIs) entail knowledge
extraction from incidents, and CTI reports arrange for
dependable corroboration so that security analysts detect or
find CA indicative patterns. A framework can mine knowledge
from after‐action reports, aggregate it by grouping similar
items, and display retrieved facts in CS knowledge graphs. This
arrangement helps security analysts to find matches between
different CAs [73, 105–130].

11.7 Recovery Function (RcF)

RcFs primarily warrant CS resilient designs with well‐timed
restitution of abilities or services, fostering a prompt return to
regular operations to lessen the CS event impact and distill
important information as lessons learned. RcF can assist in
returning to normal with the help of these CS solutions.

Recovery planning involves processes and procedures for
maintenance, testing, and execution to restore systems or assets



compromised by CT incidents, timely recuperating lost data,
and impaired capacities to ensure that everything functions
aptly. AI‐based recovery planning can automate data and
system recovery and delete malware or tainted data during a
CT event.

Security incident reviews improve recovery by understanding
security breaches. It involves updating recovery methods based
on lessons learned and reviewing efforts to meet security goals.
AI may automatically identify advanced breach prospects for
future response planning by reviewing policies, incident
reports, and audit logs. Analyzing and combining security
incident data and reports can furnish insights and suggestions
to improve CS. Unfortunately, incident data management and
analyses are strenuous and slow. AI can simplify data
collection, aggregation, information extraction, visualization,
and prediction of heterogeneous incident material for post‐
mortem vulnerability assessments with NLP [61].

Communication restores inner‐outer synchronization. A
platform for communicating recent security breaches or CTs
promises to ensure critical infrastructure CS.

The “recovery function” (RcF) primary goal is to maintain
resilience planning and the timely restoration of abilities or



services impaired due to a CS incident, encouraging a prompt
return to normal operations to lessen the CS event impact and
distill important information as lessons learned. RcF can serve
as a roadmap for returning to normal with the help of the next
CS solutions.

11.8 Analysis, Discussion and Research
Gaps

AI Smartly stated algorithms, data, structures, and knowledge
formalisms are AI. The key AI fields for analysis encompass
thinking, development, learning, communication, and
perspicacity. Primary reasoning domain studies examine how
machines infer from data. Planning automates strategy design
and execution using cautiously optimized solutions. Automatic
learning, prediction, adaptation, and change response are
addressed in the learning domain. Communication domain
studies focus on machines’ ability to understand, interpret, and
produce spoken or written human dialogues. Perception
domain studies examine visual and auditory environmental
sensing.

AICS research requires developing application areas, adequate
resources (e.g., data sources, records management, computing



infrastructure), and advanced AI approaches for AICS adoption.
Emerging CS applications, data representation, enhanced AICS
methodologies, and new infrastructure research and
development are promising research fields.

11.8.1 Emerging CS Areas

Advancing AICS obliges a solid foundation for multiple
application domains. Likewise, the future necessitates new CS
activities’ automation and existing CS continuing amelioration.
The emergent applications are described below:

Automated retrieval of key VRIs encourages future research
about early‐warning structures to signpost risk happenings
over time due to policy abuses, red flags, or other indicators.
Automatically retrieving key risk indicators, like the
manifestation of unpatched modules, attempted breaches’
totals, average in‐between failure times, etc., and transforming
them into beneficial knowledge to prevent a CS breach by
timely remediation of the risk.

Zero‐day CA defense is one of modern CS’s most intriguing
challenges. CAs targeting fresh SW vulnerabilities are called
zero‐day attacks. Naturally, guarding against something you



don’t know exists is difficult. This requires full ICT visibility
across endpoints, networks, and CC.

Predictive intelligence simplifies common CS decisions like
vulnerability categorization, attack route prediction, malware
forecast, data triage, spam filtering, security estimation, and
mission mapping. Despite being widely used and well‐defined,
many methods are manual or have significant false positive
rates. Advanced, sophisticated predictive analytics can address
some of these challenges. Time‐centered neural graph
networks, deep Bayesian forecasting, burst recognition, deep
generative prototypes with temporal constrictions, and other
predictive methods appear promising. Industrial policies,
information, tasks, and needs can be included in each plan.
Superior operational and tactical business projections can
benefit SOC analysts and CTI experts.

The Internet’s linguistic character requires CS to creatively
mine social media, blogs, and DW markets. CAs mainly target
non‐English‐speaking nations [73, 105–130]. Thus, non‐English
content datasets should gauge TM in other languages. Lots of
pre‐processing tools and libraries solely support English. For
private security, new technologies targeting other idioms or
translators are needed.



AI‐powered cyber protection and resilience use analytics to
automatically deploy security rules. Threat modeling, patching,
remediation, network segmentation, and reorganization are
automated. Intelligent work automation benefits SOC analysts
and operators greatly. Modern AI capabilities include enhanced
AI agents, RL, actor critical networks, chosen defensive,
adversarial learning schemes, and Bayesian networks. Future
research can determine how each strategy protects scientific
cyberinfrastructure, enterprise IT, sensor‐ and actuator‐based
settings, etc.

Data breach prevention and discovery require significant
investigators’ attention because most research focuses on
insider behavior or endpoint telemetry to detect insider CTs
and “advanced persistent threats” (APTs). However, sensitive
data identification studies to prevent unintentional exposure
are inadequate. ML and NLP can find, monitor, and govern
sensitive data flow between endpoints in big‐data
environments to avoid or analyze data leakages. DW’s search
for inadvertent exposures is essential to regaining control and
reputation.

Fake document generation protects critical assets like
intellectual property and national security records,
contributing to the utmost cyber warfare impact. AI synthetic



document generation means safeguarding sensitive material by
information falsification to produce several counterfeit
documents [4].

Security teams necessitate skilled CTI professionals to process
and triage thousands of warnings and events methodically
collected for daily threat analysis. Current research uses high‐
level management to correlate security alerts, analyze their
logical relationship, and prioritize them before sending them to
consumers. They avoid distinct network event settings. Other
language models can learn event context representations and
construct adaptive methods for dynamic network contexts.
Additional data visualization and online updating capacity are
needed for alerts and efficient triage mechanism design.

Due to the shorter time it takes an attacker to take over an
enterprise’s infrastructure, AI‐powered incident response must
be rapid. Also important is automating assault mitigation,
containment, and outsmarting. Incident response automation
requires knowledge documentation from prior CTincs, events
caused by a solution, and new CT patterns and attributes
throughout time. This knowledge can enable automated
incident response playbooks to recommend, allocate resources,
and assign tasks based on expertise, availability, and case
history. These automated security playbooks will reinforce



proactive protection and prevent hardening CTs. Future CTI
platforms will allow enterprises to consume these standardized
security playbooks to respond to incidents in real‐time.

11.8.2 Data Representation

Effective AI needs good data. The major issues are choosing
training datasets and managing data diversity and velocity.
Data representation and quality, mining the latest facts, and
context awareness are crucial for AICS model training and
modeling.

AI needs “refined data representations” to perform. Flattened
feature vectors are most commonly used to describe CS. Despite
its popularity, this technique ignores essential data links like
sequences. Thus, in production, this representation can yield
worse results. Future AICS researchers could carefully assess
how CS data exist in the CPS or parts of it and find proper
replacements best portraying the studied phenomena to
alleviate this problem. Trees or graphs showing data
dependencies can characterize virtual machines’ hierarchical
file schemes and applications. Sequences, grids, and non‐
Euclidean depictions (e.g., tensors, cubes) also require adequate
representations that consider essential data features,



organizational needs, and relevant social and behavioral
economics theories.

CS data possess a variety of low‐level properties due to context
awareness. Data mining and ML can find a meaningful pattern
for datasets. However, temporal and spatial
relationships/dependencies between occurrences or
connections can explain if an action is suspicious. For example,
security professionals may not consider linkages evil, but other
strategies may consider them DoS assaults. The inability to
predict threats or attacks by contextual knowledge weakens CS.
AI research includes context‐aware adaptive CS solutions.

“Incremental Learning and Regency Mining” refer to how
ML‐based security models make data‐driven choices using static
data. However, consumers’ and malignant opponents’ behavior
may change over time. Thus, contemporary behavioral patterns
and ML rules promise more regarding predictive analytics in
typical CS jobs like data triage, spam filtering, vulnerability
categorization, and mission mapping. Effectively exploiting
analysis outcomes to craft solutions is another AICS research
problem.

11.8.3 Advanced AICS



More advanced AI may maximize the data sources, application
regions, and representations. Multiple data source analysis,
“explainable AI” (XAI), and “automated human‐AI” interactions
are nascent tactics affecting practical and usable AICS.
Understanding how and why an algorithm concludes is vital for
XAI applications in CS. Unfortunately, existing AI decision‐
making is opaque. They are known for their “black box”
character despite their superior performance in high‐impact CS
applications like DW investigations, vulnerability assessments,
and others. Future AICS research can decipher interpretable
and explicable AI to improve an algorithm’s performance and
reveal its black‐box nature to reduce these constraints,
enhancing stakeholder trust.

“Multiple Data Source Analysis” can fix AICS’s biggest
problem, i.e., isolated datasets, which means lacking access to
multiple datasets or failing to compare and interpret them.
Future AICS research should use other data sources’ properties
more to address this issue. Entity matching, short‐text matching
algorithms (like deep structured semantic models), multi‐view
approaches (e.g., multi‐source), and multi‐task learning promise
many data source analysis solutions. Fusion of information can
yield additional attributes, improved risk management (e.g.,
vulnerability assessments), and a complete picture of an
organization’s CS posture.



“Human‐AI Interfaces” improve decision‐making by
integrating AI with human action (e.g., having a security expert
run an analysis). AI‐human interfaces can surpass algorithms
and humans. Although needed, human‐AI interaction’s range,
breadth, and depth in critical and fundamental tasks have not
yet been fully explored. Psychology, cognitive science, human‐
computer interaction, and other domains might inform such
transdisciplinary research.

11.8.4 Exploring and Developing Innovative
Infrastructures

AI is becoming a key CS component for enterprises of all sizes
and industries to improve CS productivity. Developing new RT
infrastructures to assist AI requires dealing with internal BD
and external security research feeds to give CS for global and
internal security incidents. Key research gaps for successful
AICS designs follow.

Cyber reality is complicated by the lack of
national/international CTI platforms and their dynamic
character, albeit new CTs and CAs can evade it. Proprietary
platforms must debate and share CT data with peers. CTI
platforms must be flexible, adaptable, and networked to share
CT information, relying mainly on selected national and



international information‐sharing hubs currently lacking. The
government, owners, and operators of critical infrastructure
and others will profit from efficiently distributing accurate,
functional, timely, and relevant CT information shared by CTI
platforms. Sharing improves situational awareness and risk‐
informed decision‐making, boosting critical infrastructure
security and dependability.

Lack of fresh, RT, or larger datasets: AICS datasets are the most
important. Most are old and may not explain CA behavior today.
Many detection investigations used AI approaches on the same
dataset (e.g., DARPA98, KDD99, NSLKDD, and CICIDS2017);
nevertheless, their methods have not been evaluated on newer
datasets. Validating context research across several datasets
allows scenario analysis.

11.9 Conclusion

CS includes methods, tools, and processes that aid companies in
safeguarding networks, devices, SW, and data from CA, damage,
and unauthorized access. Complex CS is needed as devices,
systems, and networks proliferate exponentially.

A taxonomy defines existing frameworks at the first bottom two
CS NIST levels to identify and gauge possible AICS applications.



IaaS has five main functions: identification (IF), protection (PF),
detection (DF), response (RF), and recovery (RcF). Preventing
security threats, actively searching for new CTs, and
counterattack maneuvers are AI functions. To defend CAs, IaaS
regulates their lifecycle particular characteristics.

Numerous activities stemming from different AICS techniques
regarding taxonomy are examined: contribution type and the
AI model targeting the IaaS layer. An in‐depth assessment of
specific user cases and theoretical investigations further
enriches these issues. This chapter inspects the AICS evolution
by analyzing and identifying research gaps about functions,
solution sets, specific UCs, and the elected AI technique. Still,
practical AICS implementations require more attention to
acquiring and representing chronological data related to
different CS functions [131-135].
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12.1 Introduction

Significant usage of “artificial intelligence” (AI) (e.g., “machine
learning” [ML]) cybersecurity (CS) [1, 2] is over “intrusion
detection and prevention systems” (IDPSs) to constantly
examine networks [3–6]. IDPSs [7] can spot likely incidents and
their logging information, impeding incidents and conveying
them to security administrators. The IDPS family hinges on ML
examining network traffic and isolating anomalies to signpost
potential intrusions. A paramount CS issue is that “human‐
centered (HC) computing” (HCC) caters to the design,
development, and setting out of mixed‐initiative HC systems.
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HCC usually deals with hardware (HW) and practices hinging
on technology. Altogether, “human‐computer interaction” (HCI)
relies more on usability and computing ergonomics than issues
on studying and designing how people interrelate with
“information and communication technologies” (ICT) like
“cyber‐physical systems” (CPSs) [6]. ICT focuses on practices
surrounding data collection, manipulation, and usage. The
three computing “layers” are described below [3, 8–10].

Could Computing (CC): It handles business logic, “big data”
(BD), analytical databases, and data “warehousing.” CC does not
need to over‐provide assets up front to control business activity
peak levels soon. Alternatively, one provisions the assets that
one needs. One can scale these assets up or down to grow or
shrink capacity as a business changes. CC delivers services over
the Internet, e.g., storage, processing, and analytics. HCI
positively impacts centralized data controlling with suitable
data protection and BD workloads. This latter reason explains
why it now has augmented popularity among companies. CC
helps avail data centers to multiple customers with accredited
access throughout the Internet.

Fog Computing (FC): It runs local network means, and micro‐
data centers, amid other things. All the storage, computation,
data, and applications stay between CC and the physical host in



FC. All these functionalities work more toward the host with
faster processing since it occurs almost where data are created.
Popular FC usages embrace intelligent cities, smart grids,
innovative constructions, vehicular networks, and “software
(SW)‐defined networks” (SDNs). FC delivers low latency, while
CC has high latency. CC collapses without the Internet. FC
utilizes various protocols and standards to lessen failure risks.
FC is more secure than CC owing to its distributed design. FC’s
eight columns are scalability, security, hierarchy, openness,
“reliability, availability, and serviceability” (RAS), autonomy,
agility, and programmability. FC does not replace CC but
supplements it by becoming more conceivable to the
information source. An additional data processing design
similar to FC, “mobile edge computing,” processes data straight
on the devices without extra nodes or data centers, e.g.,
intermediary processing.

Multi‐access Edge Computing (Mobile Edge Computing or
MEC, also Edge Computing [EC]): MEC engages in real‐time
data processing on computers, mobile devices, wearables, info
from sensors and actuators, process‐specific usages, and
autonomous HW. MEC is near local customers and HW,
extending CC to the network edge. MEC is the near‐real‐time BD
processing produced via applications and edge devices closest
to where evidence is captured – in other words, lengthening the



edge of one’s network infrastructure. The two technologies
differ as in MEC. The data processing occurs locally, while
“Internet of Things” (IoT) devices refer data to the CC for
analysis, being one of the most substantial differences between
IoT Internet‐enabled gadgets for proper operation and edge
devices that can be taken as part of the IoT once the item has
plenty of storage and computing to make low‐latency decisions
and process data fast enough.

“Deep learning” (DL) [11], ordinarily referred to as “deep neural
networks” (DNNs), models a CPS with a structure having
multiple layers that exploit the primary output as input from
the uppermost level. From bottom to top, it remains an
unsupervised learning process that autonomously discovers
beneficial traits and expresses low‐level features as complex
structures. Starting from top to bottom, this supervising
learning process optimizes and adjusts the network as the
whole’s parameters to boost its learning ability via labeled data
to the complete network. DL has advanced swiftly because of
both reasons below.

1. The application of tagged BD alleviates training issues. In DL,
data serves as an “engine,” and Imagenet contains millions of
annotated data; and



2. Rapid HW advancement lets the training of huge‐scale
“neural networks” (NNs) with colossal computing potential,
e.g., a high‐performance “graphical processor unit” (GPU)
that can mingle thousands of cores [12–14].

DL is efficient for the most complex engineering tests. At the
same time, HCC in FCs and MECs is a serious apprehension
nowadays. Thus, developing DL‐based solutions is expected to
be essential in cloud, fog, plus mobile edge networks (MENs)
employing HCC [15–17], summarizing and sharing hi‐tech
research and technological answers worldwide. This chapter
sketches DL topics but is not circumscribed to Refs. [18–22]:

Evidence disclosure and privacy in HCC in FCs and MECs.
Industrial systems in FCs and MECs.
HCC security protocols in FCs and MECs.
FCs’ and MECs’ modeling and security issues.
Security, confidentiality, and multimedia records supervision
in FCs and MECs.
Gain novel insights into HCC FCs and MECs.
HCC and DL conceptions and applications.
Algorithms learn the HCC behavior analysis in FCs and MECs.
HCC dynamic practices in FCs and MECs.
DL for FC multimedia data management.



This chapter’s DL models for HCC processing rely on CC, FC, and
MEC networks and other interrelated areas [23–25], designated
after a laborious review. HCC is described in Section 12.2.
Section 12.3 handles improving cybersecurity via DL models,
while case studies appear in Section 12.4. Section 12.5 brings in
some discussions. Conclusions end this chapter.

12.2 Human‐Centered Computing (HCC)

HCC delves into the design, development, and accomplishment
phases of mixed‐initiative human‐computer systems. It began
with the convergence of multiple disciplines concerned with
comprehending human beings and designing computational
artifacts [26], as in Figure 12.1. HCC is close to HCI and
information science, being commonly involved with systems
and practices utilizing technology, while HCI is more focused on
ICT ergonomics and its usability. Information science aims at
practices enclosing the collection, manipulation, and
information usage.



Figure 12.1 Convergence between human‐centered computing and AI‐HCI within a
process cycle.

HCC investigators and other staff frequently comprise folks
from disciplines, e.g., engineering, computer science,
anthropology, humanities, psychology, cognitive science,
sociology, communication studies, graphic projects, and
industrial design. They may emphasize comprehending
humans as beings and in social cliques by looking at the forms
they embrace and organizing their existences around ICT.
Others concentrate on planning and developing new ICT.

HCC aims to bridge the gaps between the countless disciplines
involved with CPSs’ designs and implementations that maintain
and strengthen human activities [27, 28]. In the interim, it
covers a methodology set for any field employing computers in
which individuals directly interact with devices or CPSs via



ICTs. HCC takes into account particular, social, and cultural
facets and addresses matters like information design, human
knowledge interaction, HCI, human‐human collaboration, and
relationships between ICT, art, social, and cultural subjects [27,
28].

The “National Science Foundation” deems HCC developments
the same as “a 3‐D space incorporating humans, computing
machines, and environments” [29]. Consistent with the NSF,
anthropology embraces research that attends to individual
needs, goal‐oriented teams, and the social order as an
unstructured pool of connected persons. The computer
dimension brings immovable computing equipment pieces,
mobile devices, and computational systems of visual/audio
gadgets into the real world. The environmental dimension
involves discrete computational apparatuses, mixed reality, and
immersive virtual environments [29]. Some HCC themes are
listed.

1. Problem‐solving in distributed environments across Internet‐
established systems, grids, and information networks relying
on sensors, actuators, mobile gadgets, and wearable
information appliances.

2. Multimedia and multimodal interfaces employ combinations
of audio, written text, illustrations, gesture, motion, touch,



etc., by folks and equipment to interconnect. Intelligent
interfaces, consumer modeling, data visualization, and
content adaptation must accommodate different display
traits, modalities, bandwidth, and latency.

3. Multi‐agent systems control and orchestrate actions to solve
complex shortcomings in distributed environments from
multiple domains, like disaster response teams, education, e‐
commerce, and healthy aging.

4. Models for efficient computer‐intermediated human‐human
interaction under multiple constrictions (e.g., cooperation
between high‐ and low‐bandwidth networks, video
conferencing, etc.).

5. Designation of multimedia semantic structures to sustain
cross‐modal input and output.

6. Specialized solutions to tackle the unique prerequisites of
particular communities.

7. Collaborative systems that assist knowledge‐demanding and
dynamic exchanges for innovation and smartness generation
through organizational frontiers, national borders, and
specialized fields.

8. Novel tactics to assist and enhance social interaction,
including innovative ideas like social orthotics, affective
computing, and experience capture.



9. More studies of how social organizations are necessary, as is
in the case of governmental agencies or corporations.
Elaborating better responses to and shaping new information
technologies’ insertion significantly advances scientific
understanding and technical design.

10. Knowledge‐driven HCI exploiting ontologies to address
semantic vagueness and mutual behaviors between humans
and computers. Both sides understand things differently.

11. HC semantic relatedness measures employ human power to
estimate the semantic connection between perceptions.

HC systems, often called HCSs, are specifically developed to
cater to HCC [9]. The HCI arena primarily concerns itself with
the interactive systems’ conceptualization and development in
relation to human activities. The “Committee on Computing,
Information, and Communication” (CCIC) [30] under the
“National Science and Technology Council” [31, 32] has
recognized human‐centered systems (HCS) as a constituent of a
“high‐performance computing program” [33, 34]. Human‐
centered automation can be employed as a word to refer to
HCSs. HCSs are planned grounded on the analysis of human
tasks. These arrangements are envisioned to assist and monitor
human performance, concentrating on maximizing
anthropological benefits [9].



Moreover, HCSs are constructed to consider human talents and
can adjust readily to evolving human demands [31, 32]. Still,
when labeling a system’s parts, reflecting on four human‐
centeredness components becomes paramount: (a) the analysis
of structures necessitates an examination of the tricky nature of
the targeted social clique, as well as (b) the diverse social units
encompassing work and information. Hence, one should
accentuate that human‐centeredness is not an intrinsic
systemic constituent but a paramount process in which
stakeholders associated with a specific system aid in gauging
and supplying feedback on the “quality of experience” (QoE)
and expected vs. obtained benefits [16, 35, 36]. The fundamental
system architecture should accurately reflect the realistic bond
between beings and machines. The motive and intended
viewership of the CPS are carefully planned to explicitly
demonstrate the design, appraisal, and use case components
[37] as in Figure 12.2.

“HC activities in multimedia” (HCM) can be deemed as follows
[33, 38]: (i) media production, (ii) annotation, (iii) organization,
(iv) archival, (v) retrieval, (vi) sharing, analysis, and (vii)
communication, which can be further clustered into three
major groups: production, analysis, and interaction.



Multimedia production entails anthropological creative media
tasks [39] for illustration, photographing, generating audio,
remixing, etc. All media production aspects implicated must
directly encompass humans in HCM. Multimedia creation has
two main dimensions:

1. The first entails cultural and social dynamics. HCM
production should ponder cultural differences and be
planned consistent with the target culture of a given
deployment.

2. The second is to mull over human abilities. HCM production
participants should be able to finalize their activities
throughout production.

Multimedia analysis is an HCM activity type that automatically
scrutinizes general human deeds and social behavior. There is a
wide‐ranging area of potentially relevant usages, from
simplifying and enhancing human communications to refining
data access and recovery in business, entertainment, and
individual domains.

Multimedia interaction is the dialog activity portion of HCM,
whose behavior comprehension is crucial. For this reason,
professionals can employ technologies to assist such
communication so that humans can connect with computers



organically. Cultural differences and social environment are
essential facets for creating natural contact owing to the
probable various cultural origins. Some varieties encompass (a)
face‐to‐face communications wherever the interaction is
physically located and real time, (b) live‐computer‐mediated
communications with physically remote interaction but
remains real time, and (c) non‐real‐time computer‐mediated
communications, for instance, instant SMS, email, etc.

Figure 12.2 Intelligent cyber‐physical system involving sub‐systems that rely on AI.



The “HC Design Process” (HCDP) first involves how the user
learns about the product’s target audience and understand
clients’ needs. Empathizing will lead to research and asking the
target audience precise questions about their growth goals.
Competitor analysis may be used to uncover extra product
market design opportunities during this research stage. After
gathering user and product demand data, the designer will
utilize sketches and wireframes to brainstorm design
alternatives. A user interface’s information architecture, space
allocation, and content functionality are outlined in
wireframing. Consequently, a wireframe usually lacks colors
and visuals and focuses on interface functionality [40]. HCDP
has two final phases:

1. The designer will usually transform paper sketches or low‐
fidelity wireframes into high‐fidelity models upon enriched
wireframing or sketching. Prototyping lets designers’ probe,
try their ideas further, and take notice of the overall design
concept. High‐fidelity implies the prototype is “clickable” or
interactive and simulates an authentic application.

2. The designer can test usability after creating a high‐fidelity
prototype. This test involves collecting participants’
experiences for the sake of benchmarking. These partakers
must represent the product’s target audience and take them
through the prototype’s possible contention points as if using



it. Usability testing aims to identify any design issues needing
improvement and analyze how real users interact with the
resultant product. It is vital to follow up on the users’
comportment and choices besides asking them about their
thoughts while operating the prototype to run a hands‐on
usability test.

HCM can be deemed as follows: (i) media production, (ii)
annotation, (iii) organization, (iv) archival, (v) retrieval, (vi)
sharing, analysis, and (vii) communication, which can be
further bundled into three key groups: production, analysis,
and interaction.

Multimedia production entails anthropological creative media
tasks for illustration, photographing, generating audio,
remixing, etc. All media production aspects implicated must
directly encompass humans in HCM. Multimedia creation has
two main dimensions:

1. The first entails cultural and social dynamics. HCM
production should ponder cultural differences and be
planned consistent with the target culture of a given
deployment.

2. The second is to mull over human abilities. HCM production
participants should be able to finalize their activities



throughout production.

Multimedia analysis is an HCM activity type that automatically
scrutinizes general human deeds and social behavior. There is a
wide‐ranging area of potentially relevant usages, from
simplifying and augmenting anthropological communications
to refining data access and recovery in business, entertainment,
and individual domains.

Multimedia interaction is the dialog activity portion of HCM.
For this reason, professionals can connect with computers
organically. Cultural differences and social environments are
essential facets for creating natural contact. Some
communication varieties encompass (a) face‐to‐face wherever
the interaction happens indoors, physically, and in real time, (b)
live‐computer mediated with remote interaction that remains
real time, and (c) non‐real‐time, for instance, SMS, and email.

The HCDP helps the operator to learn about the product’s target
audience and understand needs to direct research and inquire
the audience about their goals. Competitor analysis may
uncover extra product market design opportunities during this
research stage. After gathering user and product demand data,
the designer will utilize sketches and wireframes to brainstorm
alternatives. A user interface’s information structural design,



space apportionment, and content functionality are outlined in
wireframing. Consequently, a wireframe usually lacks colors
and visuals, focusing on interface functionality. HCDP has two
final phases:

1. The designer usually transforms low‐fidelity wireframes or
sketches into high‐fidelity models. Prototyping lets designers
probe, further their ideas, and take notice of the whole
project concept. High‐fidelity implies the prototype is
“clickable” or interactive, simulating an authentic
application.

2. The designer can test usability after crafting a high‐fidelity
prototype. This test involves collecting participants’
experiences for the sake of benchmarking. These partakers
must represent the product’s target audience and examine
the prototype’s possible contention points as if using it.
Usability testing aims to identify any design issues needing
improvement and to analyze the way real users interact with
the resultant product. It is vital to follow up on the users’
comportment and choices besides asking them about their
thoughts while operating the prototype during a hands‐on
usability test.



12.3 Improving Cybersecurity Through
Deep Learning (DL) Models: AI‐HCC
Systems

This section adds another feature to DL/ML methodologies that
expedites gaining network knowledge from unsupervised facts
and clarifies complex problems. AI and CS can be extensively
used to protect companies from phishing, spear‐phishing, drive‐
by attacks, password attacks, denial of service, etc.

12.3.1 Inserting DL in Cloud, Fog, and Edge
Computing

First, with three key paradigms (CC, FC, and EC), it is imperative
to distinguish the target user from other stakeholders [41]. In
Figure 12.2, the most important participants are part of a
nursing home. Users interact with a product or service (e.g.,
outpatients, common sense smartphone handlers, students,
etc.). In contrast, stakeholders care about something or
participate in a company’s action/service delivery. Design must
take into account user needs and stakeholder aspirations. Some
stakeholders are end users, but not all. The data management
initiative affects executives, managers, sponsors, clients, and
regulators. Since users are the people using the software or
service and stakeholders are business members or someone



helping the user in loco (e.g., caretaker, maintenance person,
etc.) responsible for planning and preparing features, (i)
stakeholders’ focus is on the business, and the features are how
they create value, and (ii) the user’s “quality of experience”
(QoE) and associated “quality of service” (QoS) are gateways to
the product’s features. Overlooking or overemphasizing insights
from the stakeholder’s perspective can harm the user and the
product. Remote resources should preserve strong defenses and
records of activities via a blockchain setting that ensures fair
play from all sides and viewpoints of a transaction to minimize
stakeholder disasters.

Due to a lack of anthropocentric approaches, HCC designs must
prevent faults and disasters in CPS elements, including HW and
software (SW).

IoT devices connect EC resources to users or applications
outside the data center, near the activity it supports. Data center
physical, access, and network security are lost due to
deployment changes, ill‐design, or human error. Edge apps are a
massive step toward M2M without human control, which is
risky for most businesses. “Edge security” (ES) threats are
serious. Understanding these issues and their solutions for
seamless business operations. EC security enhances data center
security and compliance. This requires protecting edge device



access physically and through a user interface as well as data
center technologies but is suitable for outside deployment. ES
can protect consumers and sensitive data at a company’s “edge”
by protecting data that lives or travels through devices outside
centralized data centers. Data leaks are one of the most
prominent ES dangers because hackers can easily access data
stored locally on devices rather than centrally. Hackers can
access sensitive data on individual or networked devices.

CC provides Internet‐based servers, storage, networks,
software, and analytics. Data leakage from poor cloud security
across cloud networks causes IP theft, contract breaches, and
virus assaults. Hackers can control how organizations provide
clients. CC cybersecurity (C3) cannot prevent all threats since
customers do not control CC. However, a good C3 approach
significantly decreases risks. CC is often safer than on‐premise
computing despite these hazards. Virtualization is crucial to
cloud deployment. Multi‐tenant ecosystems’ customers may not
share data [42–49]. Cloud storage is kept, managed, backed up
remotely, and accessible to clients via a network. Virtualization
relies on the hypervisor, which runs several VMs on a single
HW host. Hypervisors manage many operating systems on a
shared physical system. NIST again divides into four
implementation strategies depending on consumer cloud
suitability and intent. Organizations can use public or private



cloud services [42–49] and selecting services is problematic for
stakeholders (including users) and business decision‐makers,
leading to user‐centered evaluation. Due to the abundance of
cloud service providers offering similar cloud services,
choosing the best one is tough. Many articles have been
proposed in recent years. To detect and prevent unwanted
transfer or deletion of valuable data, “data loss prevention”
(DLP) software is essential. Cloud infrastructure developers
must offer safe APIs for clients, but stakeholders should not
worry. Illogical CS exhausts people operating throughout
cyberspace and makes them prone to blunders and incorrect
decisions. Employee education and conscientization, safe data
backup strategies, regulated data access, encryption, strong
password protection, repeated tests, and extensive cloud
governance policies are needed to prevent cloud security
concerns in enterprises. It’s crucial to balance automated and
human decision‐making. Again, combining HCC and blockchain
can provide good cybersecurity and privacy without keeping
data.

FC receives encrypted data, making data retrieval difficult.
Unlike CC, owners must develop a safe index for data search
when uploading data to fog nodes. Data will be searched using
different keywords after fog node processing. FC makes time‐
sensitive data storage and analysis easier locally. FC minimizes



cloud data volume and distance, lowering security, and privacy
risks. FC can be vulnerable to IP address spoofing and MitM
attacks. FC uses edge and cloud resources, requiring HW. FC
inherits EC, CC vulnerabilities, and distributed infrastructure.
New security and privacy issues increase the need to secure
communication channels, ensure data integrity, prevent illegal
access, and address crucial privacy concerns. Some main DL
cybersecurity applications follow [42–49].

Trace of Intrusion Detection: “Artificial NNs” (ANNs),
“convolutional neural networks” (CNNs), and “recurrent neural
networks” (RNNs) are DL variants that can deliver more
competent ID/IP schemes by scrutinizing the Internet traffic
with superior accuracy, lessening the false alerts’ number, and
aiding security teams in differentiating bad from suitable
network activities. Some example solutions comprise “user
entity and behavior analytics” (UEBA), “web application
firewall” (WAF), and “next‐generation firewall” (NGFW).

Malware Detection: Traditional malware solutions, e.g.,
common firewalls, detect malware via a signature‐based
detection system. If a company keeps a database of notorious
threats, it updates the stored data frequently to integrate the
latest threats. While this practice is effective against
vulnerabilities, it struggles to cope with more innovative



threats. DNNs can distinguish more unconventional threats and
are not contingent on recalling known signatures and standard
attack patterns. As an alternative, they “understand” the system
and can identify suspicious doings that might signpost the
existence of corrupt actors or malware.

Spam and Social Engineering (SE) Recognition: “Natural
language processing” (NLP) can aid one in quickly detecting
and dealing with spam and other SE forms. NLP learns
everyday communication and language pattern conditions and
uses statistical models to spot and block spam, employing
TensorFlow to augment email spam detection capabilities.

Network Traffic Analysis (NTA): DL and combinations of
ANNs and ML or metaheuristics have shown promising
outcomes in investigating HTTPS network traffic to hunt for
malicious activities, which is advantageous in dealing with
many weaknesses similar to SQL injections and DoS outbreaks.

Behavior Analytics (BA): Analyzing and tracking front‐end
client activities and comportments is a crucial DL‐established
security practice in any organization. These tasks are much
more defying than recognizing customary malicious doings
against networks because they bypass security protection
mechanisms and habitually do not raise flags and alarms. User



BA (UBA) and User/Entity BA (UEBA) are great tools against such
occurrences. After an educative period, it can grasp standard
employee behavioral forms and identify suspicious activities,
e.g., accessing the system at uncommon hours, possibly
indicating an insider attack, and raising alerts.

Monitoring Emails: Watching employees’ official email
accounts is vital to prevent cyber outbreaks. To exemplify,
phishing attacks are commonly instigated through emails to
personnel and questioning them for sensitive data.
Cybersecurity SW with DNN can evade these kinds of
vulnerabilities. NLP can also scan emails for any distrustful
behavior.

Analyzing Mobile Endpoints: DL is already reaching
mainstream on mobile equipment and driving voice‐based
experiences through mobile assistants. So, DNN can identify
and analyze threats against portable endpoints when the
enterprise has to inhibit the growing number of mobile devices’
malware.

Enhancing Human Analysis: DL in CS can help humans detect
malicious outbreaks, endpoint protection, analyze the network,
and perform vulnerability evaluations. Through this, humans



can decide on things better by discerning ways and means to
solve problems.

Task Automation: The main DL benefit is automating
repetitive tasks that enable staff to emphasize more critical
work. There exist a few CS tasks that can be automated with
ML. Organizations can undertake tasks faster and better by
incorporating DL into their functions.

WebShell: A piece of code that can be malevolently loaded into
a website to offer access to modify the server’s Webroot,
allowing attackers to access the database. DL can help perceive
normal shopping behavior. The AI model can be trained to
discern normal and malign behavior.

Network Risk Scoring (NRS): DL can analyze previous
cyberattack datasets and regulate what network’s areas were
impaired by a particular attack, thus helping prevent the attack
concerning a given network area.

12.3.2 DL and HCI

HCI mainly scrutinizes the information exchange between
humans and computers, encompassing cognitive psychology,
multimedia, ergonomics, “virtual reality” (VR), and “augmented
reality” (AR) [50]. The HCI exchange relies on interactive



human‐handled devices (e.g., keyboard, mouse, joysticks,
wearables, and position trackers) and computer‐human
cooperative devices (viz printers, plotters, monitors, and
helmet‐mounted monitors) [51–53]. The HCI progression
process involves voice interaction, image recognition, AR, VR,
and somatosensory interfaces [54–56]. Voice has maximum
input effectiveness and the most relaxed interaction, where the
products’ adoption scenarios can quickly broaden options.
Image recognition can help automation of driving and security
for traffic situation identification and human features
recognition. AR and VR aid in immersion for interaction,
visualization, and movement [57, 58]. People’s body movements
can ease interacting with nearby devices or real/remote
environments through motion sensing without any complex
controller.

DL has proven relatively hopeful in language processing,
speech/image recognition, and information retrieval [59–61]
(Figure 12.3). Other tactics embrace context‐aware systems,
behavioral information synthesis from modeling user
investigations, embedded dialog agents, or natural speech
treatment, all utilizing DL to support human exchanges with
smart designs. DL adoptions hinge on building models
mimicking the human neural connections, which process and
extract meaning from sound, images, and writings. Data



features are labeled hierarchically through several
transformation phases, leading to data interpretations. This
enables ML and deep NNs designs to improve decision‐making
by imitating the human brain and neurons’ interconnections
[62–65]. DL adoption in HCI can expand speech and image
recognition accuracy while enhancing interaction realism.
Language understanding explores the language caveats of HCIs.
Contrasting to speech recognition, which transforms speech
into text or matching commands, language comprehension
comprises creating machines that grasp human language.
Sensors can gradually ameliorate HCI because of the
environmental digitization tendency brought by the IoT. Media
content, real/virtual environments, objects, and individuals are
all experiencing a digitalized process. Interface design is
essential, and how to craft and deploy a natural HCI will turn
into a critical proposition. Intelligent devices that comprehend
scenes in the environment will become more realistic, stress‐
free, and humanized HCI, which happens once the user has a
suitable help guide and, thus, the user does not need too much
knowledge about memory function or instantaneous operation
understanding.



Figure 12.3 An HCC stage with DL.

Incorporating audio, imagery information, touch screens, and
video is vital to HCI, making its design, data output, and user
interaction more flexible. Media has transformed people’s
intercommunication. HCI requirements related to self‐service
machines, transportation information displays, and shopping
mall displays require similar HW solutions. A text mining
scheme named two‐level conceptual link analysis surpasses the
traditional HCI, where the keyboard is obligatory, causing
certain adoption limitations. Embedded hardware is paramount
for HCI scenes’ rendering and aid in many other possibilities.
Intelligent HCI combined with DL works intensively in gesture,
speech, emotion, and NLP recognition. Various recognition
approaches are projected and verified through testing to attain
high recognition accuracy. Consequently, applying DL in HCI
design can widen the application expectations.



12.4 Case Studies

A rational, shielded two‐party protocol model with a hybrid
architecture provides new adversary verification/validity [65–
67]. This design has also proven safe in the occurrence of new
adversaries under the ideal/real paradigm [68] (Figures 12.2
and 12.3).

12.4.1 HCI Use Cases

HCI refers to the information exchange between people and
HW with a computer informing folks through any output, like
display devices, people entering relevant data through input
devices. The concrete virtual realization of a multimodal
simulation interface shows the real environment and coexisting
agents. The most noticeable content is represented by behavior
and dialog. VoxWorld is a simulation platform for making HCIs
[69, 70] that follows a multimodal dialog structure that
converses through language, gesticulation, facial expressions,
actions, and gaze locating in a task‐oriented interactive setting.
The 3D image acquisition cost is falling with continuous sensor
developments. Gesture recognition under depth and red–green–
blue (RGB) imageries gradually led to pattern recognition
developments.



Nonetheless, most deep gesture image processing
methodologies are reasonably simple, ignoring the relationship
and impact between both modes and failing to fully use
different modes’ interrelated factors. Depth image information
[71] assists in solving the above problems, assuming the
independent and associated multimodal data features and
constructing an adaptive weight procedure to fuse different
features. Simulation outcomes excelled the customary DL
gesture image processing schemes, and the recognition rate was
more elevated, with superior recognition accuracy that
surpasses other advanced methods. Testes gauge the method’s
viability and robustness and often point out that multimodal
image acquisition through DL can augment gesture recognition
accuracy in HCI systems.

The same application consequences are also mirrored in the
context‐aware framework. Data‐driven tools for continuous
human motion scrutiny and human–machine cooperation
necessitate prediction in future intelligent businesses to
ameliorate robots’ planning and control besides ending shared
tasks [72]. Numerical examples can verify the engine’s
feasibility, and fallouts should meet the prerequisites. Likewise,
a context‐aware citation recommender can model an end‐to‐
end memory network [73] utilizing “bidirectional long short‐
term memory” (Bi‐LSTM) to assimilate papers and citation



contexts. Still, tryouts on different datasets confirmed the
model’s superior performance.

Moreover, context‐aware intelligent HCI systems, as client
modeling research advises, DL also widely applies to user
modeling grounded on past interaction matrices and
recommender systems under equivalent function learning
arrangements. Existing DL‐founded recommendation schemes
usually employ the user’s interaction history to accomplish
static user preference modeling. A time‐aware DL framework
modeling dynamic user predilections through an attention
mechanism and estimate matching scores constructed on DL
[74]. It considerably and consistently beats current time‐aware
and DL‐reliant recommendation methodologies.

The literature has abundant multidisciplinary content since HCI
embraces a wide range, with restricted studies exhibiting the
vast picture. Such analyses afford a superior understanding,
revealing current issues, obstacles, and potential exploration
gaps. HCI research trends revealed topics beyond glimpses,
bearing in mind their development stage, number of
applications, and acceleration to offer a panoramic outlook
presenting trends augmenting and deteriorating over time [75].
The HCI investigations’ shift from machine‐oriented structures
to human‐oriented systems signposts its future path toward up‐



context, intuiting adaptive systems. Combining emotion
analysis with humane knowledge absorption research helped
construct a forward‐thinking, simple, safe, and effective HCI for
emotion inspection [76], relating facial expressions and audio
signals to discover macro expressions and produce an emotion
index that explains users’ mental health. Collected users’
records are observed to analyze the person’s mental health and
arrange for counseling solutions for a worthy treatment effect
in humans. AI, HCI, and intelligent robot collaboration (cobots)
technologies are crucial and thought‐provoking content.
Regarding SW and HW, the previous techniques investigate and
try to craft a natural HCI atmosphere, providing collaborations
between HCI and robots [77] through present reading,
technologies for writing, listening, speaking, and catering to
other senses can be improved to solve some of the noteworthy
HCI challenges. Hence, DL performance in other HCI intelligent
systems can be better.

12.4.2 Cybersecurity and HCI Use Cases

Adversarial learning (AL) and ML can help address network
security concerns at the frontier [78, 79]. The adversarial issue
may arise when learning algorithms do not effectively exploit
the input feature set, allowing invaders to center on a narrow
feature collection to deceive the model. Two crucial classifiers



can fix this. A “random forest” (RF) model called “weighted RF”
(WRF) can support input feature recognition evenly. Selecting a
clustering subset of trees throughout runtime augments
performance. NNs can rely on extra soft restrictions that relate
the objective function with weight variances to base
classification decisions on better‐distributed feature groupings.
These methods have amended the learned model’s robustness
compared to baseline systems.

A hybrid “convolution neural network” (CNN) model has
emerged in Ref. [80], in which a dilated‐based CNN furthers the
recognition accuracy. A numerical NN speeds up the
identification process. In dilated‐based DL designs, the
convolution and pooling layers have been substituted by dilated
convolution, which shrinks computation costs. Weight
parameters are quantized by the quantitative NN‐built scheme
to an integer power of two, transforming multiplications into
shift operations, thus significantly dropping the time.

Employing the IoT in CPSs, like autonomous driving, big data
analysis is required with high precision and negligible latency.
DL supports robust analytic skills at the cloud and edge layers
with low latency for effectual big data exploration. However,
existing research failed to address particular obstacles, viz.
security, centralized control, adversarial incidents, and privacy.



The work in Ref. [81] proposes DeepBlockIoTNet, a secure DL
aimed at an IoT network with blockchain. The DL occurs among
edge nodes in a decentralized, safe manner at the edge layer.
The blockchain DL module eradicates centralized authority
control while strengthening security. The experimental
evaluation supported higher accuracy.

Rapid information handling and Internet technology growth
has led to “electronic health records” (EHR). The research in
Ref. [82] has innovated EHR cybersecurity prevention regarding
feature selection and classification through DL methodologies.
At this time, input EHR data are processed to eliminate null
values and noise. This treated data is selected according to their
features, exploiting a kernel‐based, gradient‐boosting NN with
classification via a stochastic CNN. A cryptographic cloud‐
established CPS blockchain model has enhanced the network’s
data security.

As the Internet matures, so do security weaknesses. There are
numerous ways to secure a cyber‐environment, and the best
choice must always be elected. AI has given technology a new
perspective by making life easier for ordinary users with its
unique ideas. In this AI‐type of architecture, the computer
works with hidden layers to emulate the human mind and
produce output. DNA‐centered security hinging on DL that



behaves like cryptography and secures cyber data transit is
being studied [83]. Recent studies confirm that this combination
ameliorates data security. The DNA via DL has strengthened
security systems by inhibiting significant cyberattacks. Suppose
one focuses on the health sector [84, 85], which handles patient
health data records. According to Ref. [83], integrating DNA
sequence and DL methods improves data confidentiality,
integrity, authorization, and authentication for genuine users.
Medical practitioners need this. DNA security mechanisms
improve the health privacy of information through DL
techniques.

Due to wireless mediums’ shortcomings, ad hoc networks are
vulnerable to several threats and attacks [86, 87]. Due to this,
intrusion detection, security, privacy, and validation in ad‐hoc
networks are currently of great interest. This research identifies
wireless ad‐hoc network assaults and offers solutions. The work
in Refs. [88, 89] covers black holes, wormholes, selective
forwarding, Sybil, and denial‐of‐service attacks. This research
presents a trust‐based safe routing strategy for mobile ad‐hoc
networks to reduce black hole node interference. When black
hole nodes are in the routing path, network performance
suffers. Thus, a routing technique is introduced to minimize
black hole node‐related packet loss. This routing system has
been experimentally tested to determine the best secure path



for packet delivery between sources and destinations. A
wireless network is segmented and routed poorly when
wormholes invade. One may locate wormholes by employing
ordinal multi‐dimensional scaling and round‐trip duration in
wireless ad hoc nets with sparse or dense topologies. The
approach described can find wormholes with short routes and
long path links. This stratagem is experimentally investigated to
ensure that this ad hoc network has no hidden wormholes.
Three methods to defend wireless ad‐hoc networks from
selective forwarding attacks are devised. The first solution
exploits a reward‐punishment mechanism to stimulate three
nodes to forward messages in busy ad‐hoc networks [90–93]. A
novel adversarial model (with three node kinds and their
behaviors) employs the incentive‐based technique to prevent
nodes from acting separately, warranting packet‐forwarding
collaboration. The second authenticates intermediary nodes in
resource‐constrained ad‐hoc networks to safely transport
packets using non‐cooperative game theory. This model
leverages game theory. This game finds a desired equilibrium
that makes multihop communication physically viable, which is
discovered. The third procedure accomplishes binary searches
and control packets. It can catch malicious nodes in multihop,
hierarchical ad‐hoc networks. The cluster head can accurately
identify the malign node by analyzing packet sequences



dropped from a source node. A lightweight symmetric
encryption via binary playfair protects data transmission.
Experiments suggested that the encryption approach is energy‐,
time‐, and memory‐efficient. This lightweight encryption
method reduces Sybil attacks in clustered wireless ad‐hoc
networks.

12.5 Discussion

HCC‐AI systems can identify shadow data, monitor data access
irregularities, and inform security personnel about potentially
harmful conduct by data users, reducing time in finding and
fixing issues. Cybersecurity for CPSs relying on DL can make (i)
existing things more usable for people, (ii) something
esthetically pleasing, (iii) a product out of an abstract algorithm
or idea, and (iv) businesses grow by leveraging technology into
a product‐market fit; this diversity is why people will say their
field is different. Hence, these structures allow the convivence
of these entities:

Human: Someone needs to understand people;
Computers: They intercede between humans and CPSs,
albeit they also need to talk to other machines;
Interaction: All CPS parts need to work together well. This
part comprises networking, sensors, actuators, and



controllers.

DL algorithms can detect information‐sensitive patterns and
monitor access and transmission to avoid unauthorized data
leaking. These models can appraise network data flow, reveal
shortcomings, and establish security policies to safeguard
sensitive data.

Security issues are more likely when large amounts of data are
transferred through networks. FC reduces the amount of data
being transferred back and forth to the cloud, reducing latency
due to local computation while minimizing security risks.

12.5.1 HCC‐AI Advantages

HCI is the larger field of understanding how humans and
computers interact. HCC only comes up when HCI developers
are discovered to be making bad designs that work, allowing
companies to make technological products accessible to
individuals with disabilities. It helps “user experience” (UX)
designers and others understand each user’s needs relating to
technology. It shows that not all users interact with technology
in the same way.

HCC is a reaction to the early emphasis in HCI on figuring out
how to make it possible for humans to adapt to computers. HCC



suggested that understanding what humans want and need is
most important, putting the focus of adaptation on the
shoulders of the computer rather than the human. Human
error can be reduced with the same HCI technology, and all
these losses can be avoided.

AI‐HCC design lets one better understand oneself’s and people’s
needs, motivations, and concerns, but it also makes for a more
efficient, more flexible design process.

The reliability and scalability of an HCC‐AI take people’s
abilities as human thinkers and allow these ideas to scale to
serve much larger data needs. AI aims to help humans, but
without human input and understanding, it can only help so
much.

12.5.2 HCC‐AI Caveats

HCC‐AI systems work faster and necessitate fewer hands. This
advanced technology has benefits, albeit it does create some
dangers. The most upsetting risks are the misapplication of
technology and a negative effect on human experiences [94–99].
HCC‐AI can impact several realms: human‐technology synergy,
human‐environment collaborations, cause loss of jobs, ethics,
moral values, privacy, security, criminality, well‐being, health,



happiness, general accessibility, universal access, healthy
learning without emotional disruption, creativity, social
organization, and democracy.

12.6 Conclusion

Human‐centered design relies on fostering empathy through
being alert to and aware to all implicated human stakeholders
and is attentive on identifying resolutions through an open,
non‐judgmental approach. It is rooted in a conviction that a
new participant’s mindset will impel one to better, more
inventive solutions.

Cloud computing has transformed how devices connect over
the Internet, resulting in the IoT, a multitude of linked gadgets
that can perceive and answer back to human needs, and a vast
data volume. The FC and EC layers pose several HCC problems,
too.

In DL, a multi‐layer model employs sequential layers. One
layer’s output turns out to be the subsequent layer’s input.
Unsupervised learning learns valuable features and advanced
structures from low‐level qualities. Supervised learning
optimizes network parameters with improved learning using
labeled data. DL development relies on high‐performance



computers to train wide‐ranging neural networks whose input
can benefit from swiftly applying an enormous amount of
neural network‐labeled data to alleviate training drawbacks. DL
models can unravel the most complex problems. HCC in fog and
MENs is a major issue. Thus, DL‐grounded development
solutions are expected to aid fog, and MEN’s HCC, sharing
means to mitigate the already growing number of cybersecurity
glitches besides their aftermaths in a planet that is
implementing AI indiscriminately, without considering HCC
issues.
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13.1 Introduction

A comprehensive cybersecurity (CS) framework must help
implement “cyber‐physical systems” (CPSs) effectively while
managing potential security risks to accommodate the Internet
of Things (IoT) hardware (HW) diversity [1–3]. Both factors are
becoming increasingly crucial in infrastructure, administration,
and daily existence. Under this context, every system
incorporates advanced networked structures with computing
devices, embedded controllers, sensors, and actuators [4, 5].
These systems’ components enable gathering and interacting
with the physical world’s data while designed for real‐time
operations and warrant reliable performance, particularly in
applications that involve essential safety considerations. The
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IoT experiences ongoing growth and development due to falling
costs and the convergence of sensors, actuators, platforms,
controllers, networks, etc. The latest IoT innovation comprises
significant assets in the ongoing innovation‐driven economy
with substantial and inexpensive advantages and presents
extensive development and growth forecasts. Simultaneously,
integrating CPS and IoT amplifies the vulnerabilities and
potential targets for CAs. The “attack surface” (AS) refers to the
comprehensive set of possible entry points, commonly known
as attack vectors, by which an unauthorized user might enter a
system and retrieve data [5]. The easiness of protecting a
system tends to be inversely proportional to the surface of
attack size.

The unpremeditated faults or malicious CAs could severely
impact humans and the planet’s natural environment. Hands‐
on and coordinated efforts are paramount to designing,
deploying, and strengthening CPS and IoT’s dependability and
security [4, 5]. Progresses in networking, computing, detecting,
and control systems have aided a multitude of new devices,
albeit security is often absent and left for later. Functional
prerequisites and fast‐moving markets drive the industry.
Design paradigms evolve continuously and speedily, whereas
standards undergo debates. Many devices whose design
lifespans are quantified in decades undergo deployment.



Project choices will impact transportation, healthcare, building
automation, emergency response, energy production, and other
sectors. Modern means of transport can automatically stop to
avoid accidents. Healthcare apparatuses can observe conditions
in real‐time adaptations to changes. Several innovative services
can boost the energy grid and intelligent buildings. If CS is
overlooked, one risks unintentional faults or malevolent CAs
altering the ways vehicles stop, health devices self‐adjust, and
buildings/smart grids respond to events. CS becomes more
puzzling as the number of gadgets with security vulnerabilities
escalates. Addressing CS by enforcing models/designs onto
extensively deployed systems is unrealistic. Security concerns
must be analyzed, assimilated, and managed promptly in the
project and deployment phases.

CPSs and IoT interact with cyberspace across numerous sectors.
To ensure realistic CS building blocks for particular systems,
employing a layered scheme, CPSs must be robust to CS
difficulties (e.g., safety, financial side, trustworthiness,
interoperability, “social engineering,” [SE] and privacy).

CA’s success and mission impacts depend on several aspects in
complex dynamic contexts. Besides introducing or eliminating
machines, programs might change network conditions, which
poses a major challenge. The information gap between



cyberspace’s offensive and defensive sides grows. When faced
with a continually updated exposure or attack pattern,
defenders typically fail to understand the latest attacking
strategies, vulnerability information, and appropriate defense
plans to confront the attacker. The endurance and concealment
of new attack features like “advanced persistent threat” (APT)
CAs [6] limit standard security technologies centered around
“machine learning” (ML), metaheuristics, and deep learning
(DL) as in Figure 13.1 [7–9]. Simple tasks like feature extraction
[10], anomaly detection [11, 12], and data classification [12]
cannot reconstruct a full CA behavior depiction. Expert
knowledge buried in CS data is still essential to solve the above
difficulties.

Figure 13.1 Deep learning NER flowchart.

Nevertheless, CS‐related data underwent widespread growth.
These diverse, heterogeneous, and fragmented data make it
difficult for CS managers to quickly discover vital information.
Therefore, the current CS problem is not obtainable data



shortage but how to assemble multiple sources’ heterogeneous
information into one model to better comprehend CS with
supplementary decision assistance. The current CS analysis
focuses on obtaining correlations and potential CAs from CTI
data. Technologies viz. correlation analysis [13], causal
inference [14], and semantic reasoning [15] that rely on
knowledge modeling helped create new strategies under “big
data” (BD) conditions.

The “CS knowledge graph” (CSKG) is a security‐specific
“knowledge graph” (KG) with nodes and edges that form a
large‐scale CS semantic network and provide an intelligible
modeling structure for numerous CAs and defense setups in the
real world. Nodes signify entities or abstract rationales (e.g.,
weakness designation, CA pattern, product name, business,
etc.), and edges denote entities’ attributes or relationships.
Nodes and edges form a KG whose advantages can be threefold:

1. KG creation and refinement, ontology [16], “information
extraction” (IE) [17], and entity disambiguation [18] help
disclose and blend multisource diverse data‐driven
knowledge.

2. CS knowledge can be expressed structurally and relationally,
and graphically visualizing knowledge is intuitive and
efficient.



3. Semantic modeling, query practices, and inferring
technologies can imitate security specialists’ thinking
processes to get new understanding (aka new relations) or
examine data consistency using logic procedures and
existent details (i.e., triples, quadruples, etc.) [19].

While several CSKGs apply different CS views, most have
focused on KG development. It remains unclear in what way
KGs solve real burdens in CA and defense scenarios. Many
organizations’ CS managers speculate if existing CSKGs can be
reused and how they match their “information and
communication technology” (ICT) infrastructure. Furthermore,
it is worth contemplating what fresh facts a team requires for
new relationship inferences. KG design evaluation needs
“cyber‐situational awareness” (CSA), safety analysis, security
assessment, and association studies, restricting the hyperspace
security assessment region and temporal and spatial
dimensions. The chronological aspect entails the prevention,
recognition, or reaction security phases. Spatially, it offers a
probability to incorporate various operational modules (i.e.,
CTs, network infrastructure, security outlook, task
dependencies, and so on) into a cohesive “knowledge base” (KB)
for many CS undertakings. Other CSKG characteristics,
including ontology, construction tools, data sources, and
reasoning procedures [20–22], address their usability effort to



solve hands‐on problems. The main contributions in this
chapter are

Comprehensive CSKG setting analysis, i.e., a CSKG scenario
categorization framework, requires background and creation
technology research.
Relevant datasets are curated datasets’ analyses and open‐
source (OO) libraries facilitate future CSKG construction and
IE tasks.
Future directions summarize each category and highlight
promising trends.

This chapter’s next Section introduces the basics of KGs in CS.
Section 13.3 lists CSKG construction methodologies, with
definitions, the development flow, ontological aspects, named
entity detection schemes, and relation extraction approaches.
The usual datasets, their fortes, and inadequacies are in Section
13.4 to assist in applying CSKG and extracting information.
Section 13.5 overviews CSKG application settings. Section 13.6
tackles existing research benefits, shortcomings, and prospects.
Conclusions surface in Section 13.7.

13.2 KGs in Cybersecurity



While modeling CPSs with knowledge organization
arrangements or communication networks, there are four main
KG scenarios:

1. Type I characterizes a network infrastructure, hinging on the
granularity where nodes may embody either:
1. Simulated or real‐life network infrastructures, device

entities with their properties; arcs indicating physical and
logical relations concerning them,

2. Autonomous systems and their properties, and the arcs
illustrate their relations,

3. Network data stream and arcs typify routing, or
4. A CA graph comprehends arcs that epitomize outbreak

paths.
2. Type II characterizes CTI, enfolding system

information/parameters, CT data, and user/malware
behavioral data.

3. Type III uses nodes to represent a prearranged vocabulary
or an ontology as
1. CS properties and concepts plus the arcs relating them;
2. Network devices and their properties interconnect

through arcs;
3. Vulnerabilities where arcs define properties, viz.

vulnerability scoring, types of faults, and platforms.



4. Type IV encompasses multiple, uniquely identified
connected graphs, each capturing data from a distinctive
source for information fusion and dimensionality cutback.

Utilizing concepts and properties for independently created
knowledge domains like CS, CSA, and CTI, OWL32 ontologies
can partially automate operations that would otherwise be
done manually or with SW instruments under human
supervision. For timeline development and event
reconstruction, digital forensic investigations can be automated
if knowledge and semantics are kept. In a fused CSKG, which
collects every detail and organically integrates seemingly
unrelated CKGs, owl:sameAs  can match and define identical
entities (such as specific malware) from several sources, such as
after‐action attack reports. Structured, semantic KGs symbolize
real‐world concepts and interactions [23–25]. Simple KG entities
represent collections, categories, object kinds, and classes
(production, vendor, vulnerability, and invader). Entity
relationships build a graph; attributes contain traits and
parameters.

Formal, semantical knowledge representation is an AI branch
that aids in (i) defining CS concepts, properties, and
relationships formally, (ii) allowing software (SW) agents to
catalog vulnerabilities, CTs, and CAs, (iii) resolving entities, (iv)



detecting anomalies, and (v) matching CAs’ patterns. KGs might
disclose data correlations even experts would ignore. CSKGs call
for storage when dealing with CSKGs (habitually directed,
labeled graphs). Numerous data security and network
processes’ features exist that perceive CS semantics changes
impressively depending on the graph model [20–22], one of the
following:

A. “Resource Description Framework” (RDF)[b0]: It
engenders a graph Q , amounting to a group of RDF triples or
statements (s, p, o) ∈ (I∪B) × I × (I∪L∪B). I, L, are pairwise
disconnected infinite sets clarified below:
A.  pertains to the “International Resource Identifiers” (IRIs)

set, comprising sets of Unicode characters’ strings below
scheme:[//[user:pwd@]host[:port][/]path[?

query][#fragment]

or a legitimate subset of them (viz URLs).
B. L and L  represent, respectively, RDF and self‐denoting

plain literals like "<string>"(@<lang>.  The notation
obeys the ensuing definitions:
<string>  is a string, and
<lang>  is an elective language tag (or typed literals) L
behaving as , <datatype>  denotes a data
type as per a schema (e.g., the XML), and

R

P

T
<string>""^^



<string>  stands for a lexical space element consistent
with the data type.

C. B is a blank nodes’ set, i.e., unique albeit anonymous assets
that disobey IRIs and RDF literals.

B. Labeled Property Graph: It is a graph Q  = (V, E, α, β, γ),
with a finite set of vertices (aka nodes) V. E is a graph edges’
finite set disjoint from V. The incidence function that maps
each edge in E into a vertices’ pair in V, α: E → (N × N), is an β:
(V∪E) → L  maps every single edge from E and its set of labels
from , and γ: (N∪E) × P → V  is a function that assigns
properties to a collection of values from V, with the second
and third properties being partial functions.

C. Hypergraph: It assumes the form QH = (V, E), where E is a
set of hyper‐edges among the vertices so that or a given a set
of vertices V, E{u, v,...} ∈ 2 .

D. Multigraph: In this case, Q  = (V, E). E denotes a bag of
edges. A growing number of graph databases are assisting
multiple graph data models [22].

Different graph‐based implementations possess distinct
advantages and disadvantages. In fact, not all support n‐ary
relations, despite their usefulness in modeling networked
communication. CS provenance deals with the chronology of
the origin, advance, ownership, locality, and alterations to a
system or sub‐system and associated data. It may also embrace
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employees and processes intermingling with or modifying the
arrangement, element, or related data. CSA, CS decision
support, anomaly detection, network forensics, etc. can benefit
from data provenance [20], which some KGs enable, but hybrid
solutions exist. The RDF data model does not catch provenance.
However, the Semantic Web research community developed
sophisticated formalisms. These numerous approaches have
been introduced over time, highlighting the need to explain a
graph data model.

13.3 CSKG Construction Methodologies

Knowledge depiction benefits a lot from logic and AI “Web
ontology language” (OWL), and RDF is helping modern KGs gain
tremendous popularity [23, 24] to boost the search engines and
the users’ search quality. The CSKG creation process embraces
these aspects: (i) there is a CSKG building framework with the
security ontology design denoting the security domain
knowledge, and (ii) named entity recognition (NER) tasks are
reviewed. Finally, relation extraction and investigations
regarding similar mechanisms in this domain are called.

13.3.1 CSKG Building Flow



Akin to broad‐spectrum KG construction procedures, the CSKG
employs the same methodology and framework. Due to the
relative maturity and completeness of the CS knowledge data,
CSKGs can be crafted utilizing a top‐down approach [25].
Fragmented domain data could be joined under the direction of
a particular framework or a pre‐designed CS ontology from
domain experts. Then, expertise in IE and entity alignment can
split entities and relationships starting from the earliest CS
data. Knowledge reasoning tools can return new CS
comprehension evidence from KGs in effect to aid in prediction
and inference, as in Figure 13.2.

13.3.2 CS Ontology

CS ontologies designate concepts and relationships using a
standard, unambiguous, and unique definition, permitting
humans and machines to communicate (Figure 13.3). Unified
ontologies, similar to STUCCO and “unified CS ontology” (UCO)
[9, 26], combine heterogeneous data and schemas from various
CS systems with the most commonly employed CS standards for
evidence sharing and exchange. For different specific scenarios,
other established ontologies exist, for instance, intrusion
detection, malware classification and behavior modeling, CTI
analysis, CA analysis [27–30], CT and security evaluation,
vulnerability analysis, and CT actor analysis [9]. Creating a



generic network security ontology in today’s multifaceted cyber
environment is demanding, time‐consuming, and heavily
hinges on network security experts’ domain and ICT
knowledge. So, appliance scenarios should steer the proper
security ontology project while simultaneously demanding
dynamic and automatic amelioration of the information
security ontology [30–32].

Figure 13.2 A CSKG construction framework.

13.3.3 CS Entities Extraction

IE has drawn incremental attention with two main tasks:
“relation extraction” (RE) and NER. Traditional NER has three
broadly built forms: by rule, unsupervised, and feature‐
established supervised learning. Rule‐centered approaches, e.g.,
regular expression, bootstrapping methods, etc., work fine



when the exhaustive lexicon cannot reach other domains.
Comparatively, traditional statistical‐based extraction methods,
embracing “hidden Markov models” (HMMs), decision trees,
“maximum entropy model” (MEM), “support vector machines”
(SVMs), and “conditional random fields” (CRFs), achieve good
results albeit relying heavily on “feature engineering” (FE),
which poses some constraints [33]. DL represents learning and
endows semantic composition through vector representation
and “neural network” (NN) processing. Figure 13.3 contains the
three essential components (i.e., distributed models, feature
extractors, and decoders) and some DL NER instances.



Figure 13.3 Intelligent cybersecurity ontologies.

A machine can be fed raw data, automatically finding latent
representations and processing for categorization or detection.
Many methods [34] have been tried, including multi‐task DL,
deep transfer learning, deep active learning, deep
reinforcement learning, attention mechanism, deep adversarial
learning, etc.

13.3.4 Relations Extraction of CS Entities



Fruitful entities’ inter‐relationships are an indispensable KG
part of combining independent entities into a KG Unstructured,
text‐relationship extraction is a core KG construction task. An
end‐to‐end CNN‐based method that could automatically capture
relevant lexical and sentence‐level features to overcome
traditional practices’ limitations enormously count on the
quality of hand‐engineered features [11]. “Recurrent neural
network” (RNN) besides “long short‐term memory” (LSTM)
schemes have arisen [35], but most supervised relation‐
extraction approaches require extensive labeled training
information, which is costly to build. “Distant supervision” (DS)
allows building datasets automatically [36].

Relation extraction used sentence‐level attention and multi‐
instance learning [37] to reduce DS noise. IE tasks are usually
solved via extract‐then‐classify or unified labeling. However,
these methods have duplicate entity pairs or overlook the
essential underlying structure in extracting entities and
relations. A joint extraction of entities and associations method
outperformed the pipelined approach to address these
restrictions [38]. Some ignore label data scarcity and extract CS
entity‐relation triples employing a joint extraction technique
from unpublished datasets [39].



However, collecting information from unstructured CS language
has three key obstacles. First, most IE research has focused on
daily life events, e.g., the TAC KB Population [40] or ACE [41].
Domain‐relevant expertise distinguishes extracting life’s
understanding from CS knowledge. Insufficient labeled training
data plagues the IE task. Another distinction between pulling
natural life and CS knowledge is its intricacy. CA events can be
CA patterns with several attempted or accomplished actions.
These actions can be described as discrete CS events, increasing
the number of event references. Thirdly, unstructured data
contains implicit information that cannot be stated.

KG quality requires knowledge analysis, verification, and
redundancy to resolve contradictions and prevent reasoning
errors. KGs can benefit from entity disambiguation and named
entity linkage [42]. The KG, developed with IE, largely shows
sentence associations. It must leverage implicit knowledge and
reasoning to enrich the CSKG [43]. Knowledge reasoning can
use association queries, rule‐based reasoning, distributed
representation learning‐built reasoning, and NN rationale [44]
to complete tasks.

13.4 Datasets



Security analysts use known and emerging vulnerabilities,
flaws, CTs, and CA patterns. Research institutes, government
agencies, and industry professionals like MITRE and “computer
emergency response teams” (CERTs) collect, publish, and
arrange such knowledge [45]. The “National Vulnerability
Database” (CVE, CWE, CPE, CVSS, etc.) is often utilized [46] in
addition to “Common Attack Pattern Enumeration and
Classification” (CAPEC) [47]. Significant datasets for
constructing CSKGs can use OO, IE in CS, and other datasets to
find novel solutions.

A. Open‐source datasets
Some CSKG datasets are
SEPSES CKB details the CSKG dataset/work in Ref. [48].
CWE‐KG [49, 50] helps discover potential CTs from CWE,
CAPEC, and X (former Twitter) data.
Vulnerability KGs [50, 51] only show visualization outcomes
on a webpage without describing their structure or
experiment performance.
Open‐CyKG [52] presents a CTI‐KG framework constructed on
an attention‐based NN. Open IE model to mine valuable
“cyber threat” (CT) facts from unstructured APT depictions.
MalKG [53] adds information on malware intelligence.
These open‐source CSKGs address different purposes that
need various datasets with apparent drawbacks.



B. Information Extraction (IE) Datasets
IE is essential for CSKGs. Providing quality‐assurance
annotated datasets to train robust IE models is crucial and
cannot be bypassed. Data annotation is the labeling process
of assigning relevant tags to data from queries, imageries,
text, audio, video, etc., to simplify understanding and
interpretation. These records can be labeled by data
annotators as accurately as possible. Thus, datasets should be
divided for NER and RE tasks. However, most datasets are for
NER tasks. NER and RE studies can only rely on the malware
dataset in Ref. [53]. The entities and relationships are
generally specified in an unambiguous security ontology,
which curbs the potential for usage outside the designated
domain. Although collected and annotated from various data
sources, the majority comes from English corpora. Instead,
much security knowledge emerges in multiple languages.
This often intermingled scenario forces multi‐language
dataset creation.

C. Other CSKG Datasets
Mastering the environment, understanding dangerous
actors, mixing external intelligence, and amassing basic
information to apply theory. Environmental (assets and
weaknesses), behavioral (network warnings, terminal alerts,
and logs), in‐house/external CTI, and knowledge‐related



(ATT&CK and CAPEC) data classification [54]. Current
research targets CTI and knowledge data when building a
CSKG and overlooks environmental and behavioral ICT data.
These data possess no developed, consistent specification.

13.5 Application Scenarios

Google’s introduction of KG technology has sparked attention.
KG research in CS can focus on (i) construction techniques
centered on the IE, representation, fusion, and deduction of
knowledge in graphs [55], like correctly connecting entities and
their interactions to KG after removing them from unstructured
writing and inferring new specifics from such KG, and (ii)
applications to solve down‐to‐earth glitches in different
network environments through CSKGs.

Most literature hinges on KGs to assess the network situation,
discover potential CTs, and investigate the ongoing or ending
CA, presenting several specific applications to orientate
operators and managers with operation, vulnerability
management, decision‐making, malware designation, analysis
along the physical environment, and other CSKG application
possibilities, like SE.

13.5.1 CSA and Security Assessment



Administrators must assess and understand an enterprise
network’s security. These issues include multifaceted enterprise
network HW and services. Security corporate network
administrators must fight multi‐stage and multi‐host attacks.
CSA and security assessment can benefit from CSKG. MITRE’s
CyGraph [56, 57] CSA system focused on network combat task
analyses, visual breakdowns, and knowledge management.
CyGraph, a four‐layer KG, analyzes CA paths, predicts critical
vulnerabilities, examines intrusion alarm correlation, and
provides interactive visual queries by integrating isolated data
and events. CyGraph provides query‐driven efficacy cases but
no datasets.

A security assessment novel ontology can be constructed for
individual networks to standardize security knowledge, e.g.,
assets, exposures, and CAs [58]. The ontology presents an
efficient system for creating attack graphs, identifying
vulnerability‐caused attacks, and assessing network security
utilizing ontological model inference. Their method produces
the CA graph and property set descriptions. Flow diagrams
show how hackers hit and dismantle several test network
objectives through multiple hosts and stages, allowing
enterprise administrators to perform security risk assessments
and respond to new CTs. CS ontologies include STUCCO, UCO,
and CTI [9, 26, 59]. An ontology will query whether data assets



may be wide open in the local model, exploiting organization‐
specific asset information with recurrently known, updated
opennesses to assess the aftermath of a newly revealed
vulnerability. KGs with three dimensions – counting terminal
assets, fault‐detection intelligence, and CT alarm – can assess
IoT terminal security based on application scenarios and CT
characteristics [60]. The approach correlates independent
power IoT terminal security monitoring data to build the
terminal threat index, which indicates terminal security.

13.5.2 CTs’ Discovery

In advanced surveillance, sophisticated assailants spend a long
time in a system before detection [61]. Many factors, ranging
from flooding alerts to slow response time, render existing
practices ineffective and incapable of lessening these CAs’
impairments. The CSKG could meet this void with knowledge
representation and reasoning power. CSKG application research
findings can aim at CA prediction, CT hunting, and intrusion
detection so that security analysts predict outbreak signs
prematurely via CT hunting before cyberattacks. During CAs,
security administrators can discover suspicious undertakings
with intrusion detection tools.



CA Prediction: A cognitive detection system perceives CS
events early by mingling sensors’ measurements, dynamic
online sources, and KGs has extended UCO to infer the inputs
from numerous network devices resembling Snort, “intrusion
detection systems” (IDSs), etc., and the cyber‐kill chain
information [62]. “Semantic Web Rule Language” (SWRL)
specified rules that orientate entities. The aggregator segment
combines alerts with a reasoning model to identify newer CAs
by testing and evaluating custom‐built ransomware resembling
WannaCry and showing the performed CA timeline and the
system’s actions. A prediction method that utilizes cyber
defense KG to solve the 0‐day CA vulnerability emerges in Ref.
[40]. CTs, assets, and exposures engender the KG, transforming
the outbreak prediction task into a KG link prediction.
Accordingly, a path ranking algorithm could mine the potential
0‐day attack in the target system and build the 0‐day CA graph.
The experiments showed that the KG could improve the
proposed method’s accuracy of 0‐day CA prediction. Moreover,
the path ranking procedure can also aid in backtracking
reasons for appraising results to strengthen the explaining
estimation ability.

CT Hunting:  This trait [41, 63, 64] expedites log‐founded CT
pursuit by leveraging the vast external OSCTI knowledge [42]. It
employs two sub‐systems: a knowledge annexation pipeline for



fashioning a CT behavioral KG and a query built upon system
auditing to amass logging data crossway hosts. A “threat
behavior query language” (TBQL), along with query synthesis
mechanisms, automatically gets a TBQL query, with sequential
event information, from the CT behavioral part of the CSKG to
encounter the matched auditing records. Still, a system’s
limitation is not considering attacks not caught by auditing.
Likewise, existing methods often exhibit essential restrictions
regarding created alerts’ quantity, interpretability, and
relevance.

Intrusion Detection: The CSKG could also aid in detecting
intrusion [65]. A query‐based case that illustrates how the
SEPSES CSKG can receive warnings starting the “network
intrusion detection system” (NIDS) to better understand
potential CTs and ongoing CAs is in Ref. [48]. A DDoS CA
recognition scheme employing KG, mainly for the DDoS CA on
TCP traffic, is in Ref. [66]. KGs convey the TCP traffic
communication among two CPS hosts. After estimating the one‐
way broadcast metrics, thresholds help select the source host
that commences a DDoS outbreak. A twofold distributed KB
described DDoS outbreaks and malicious behavior detection
[66] comprises (i) a traffic database to detect and classify malign
DDoS traffic CA s and (ii) the core network security KB part to
partakes in a DDoS harmful behavioral KB with graphs for



network topologies, malevolent traceability, dangerous
features, and traffic acquaintance. The network security KB
responds to data structure treating, destructive behavior KG
creation, behavior perception, and feedback. ML can make KGs
detect unexpected activity in automation systems [67]. The
readily available ontology from Ref. [47] builds a KG integrating
three primary knowledge sources: automation system evidence,
network observations (like connections between hosts), and
application‐stage observations (akin to data access events). KG
completion methods inspired this framework, adopting a graph‐
embedding procedure for the likelihood ranking of observed
events’ triple statements. Experimentally, the suggested process
yields well‐calibrated, plausible alarms in various contexts,
potentially benefiting relational ML modules on KGs for
intrusion detection. Though these outcomes occurred on a
small‐scale prototype lacking CTI, it synergistically blended KG
and industrial control systems.

13.5.3 Attack Probing

CSKGs are becoming key instruments for CA analysis very fast.
Recent evolvements in employing KGs to CA investigation will
be treated from the following four aspects: path analysis,
attribution, consequence prediction, and analysis.



Attack Path Analysis: The CyGraph could query potential
outbreak paths by comprehending the network environment. A
CyGraph‐type graph‐centered strategy with a CA graph model
unifies intricate network data with exposures, topology, firewall
stratagems, CA patterns, and invasion alerts via CS data
standardized languages [68]. This work’s model predicts
outbreak paths utilizing network events (as with intrusion
warnings, sensor logs, etc.). Correlating identified CA s with
prospective attack paths is best, principally for critical assets’
defense, and improves CSA, e.g., inferring missed CA steps and
eradicating false positives. The Neo4j database [48, 69] houses
the output attack graph for query and visualization. Despite its
efficiency in query and visualization for potential CA paths, this
KG still faces several shortcomings: (i) it does not demonstrate
how to infer new knowledge using KG, (ii) datasets with input
data alert format with unclear firewall rules, and (iii) its
designs misrepresent OSCTI (METRE knowledge). A KG to treat
CAs has four entity types: SW, HW, vulnerabilities, and CA
entity, to extend the CA path information [49, 70]. With these CA
entities’ attributions (i.e., success rate, conditions, approaches,
and earnings), this design used KG to build an attack path and
augment the vulnerability assessment before trusting on the
CVSS score [71]. The CA path could renovate local information
through multiple sources thanks to KG’s depiction and



information management. A graph strategy to obtain the ideal
penetration path can increase efficiency further for insider and
unknown attacks. A “two‐layer CT penetration graph” (TLTPG)
defines the upper layer as a network environment penetration
graph, and the lower one is any host’s pair penetration graph
linking any host’s pair [29]. The KG describes each host’s CA‐
related resources (e.g., SW, defenselessness, ports in usage, and
privilege corresponding to a successful CA). This rationale
greatly benefits the penetration path relating to hosts and
integrating acquired information of 0‐day threats for unknown
attack prediction. A KG could also represent and generate 0‐day
CA paths with a link prediction and path ranking procedure
[40]. KGs can comprehensively consider the CA existence,
availability, impacts, knowledge deterioration intents, and asset
types.

Attack Attribution: For a cyber warfare advantage, a defense
must answer who attacked, where the occurrence point is, and
to identify the attack vector. This step is assault attribution.
Attack attribution solutions can identify the CA source,
intermediate medium, and attack vector, enabling more
targeted prevention and active defense. Attack attribution is
essential to passive to an active effective defense. An automatic
CA attribution framework was built using a six‐dimensional
CSKG ontology that mixes a space‐ground with network



information having multiple unique qualities and data sources
[72]. Security people can probe the CSKG utilizing the host
resource dimension to find the host asset in danger and
assumed under attack, related vulnerabilities, and attribution
tactic in sequence. After isolating CA evidence and locations, the
attribution methodology can find the affected host resource.
Causation‐based provenance graph creation technology from
NSFOCUS’s blog appears in Ref. [73], introducing terminal,
Syslog’s perspective, application log correlation, and
network/terminal association. The terminal perspective ignored
the second dimension’s application log and focused on files,
filenames, and processes in one insulated host. The third level
scheme prolonged the provenance graph from one host to a
multi‐host network that might ameliorate causal analysis for a
complete CA process. Still, it disregarded OSCTI and CSKG’s
semantic context.

Consequence Prediction: Poor input validations and integer
overflows can cause denial‐of‐service (DoS) and unauthorized
code execution. Understanding weakness’s effects help assess
system risk and respond quickly. A “common weakness
enumeration” (CWE) KG [74, 75] includes textual descriptions,
predicted repercussions, and SW weakness relationships.
Present CWE data do not enable sophisticated reasoning tasks
on SW frailties, such as forecasting missing concerns and CWE



results. This study embedded KG weaknesses and their linkages
in a semantic vector space relying on translation, description,
and knowledge representation learning. Extensive studies
developed vector embeddings to measure KG performance in
CSA acquisition and inference tasks: CWE link prediction, triple
classification, and end‐result prediction. Security tools can help
stakeholders without CS skills understand a CA’s effects.
Researchers can reduce cognitive effort by automatically
forecasting CA repercussions for novel attacks.

Attack Analysis: The CSKG core graph shows vulnerabilities’
knowledge, CAs, assets, and interconnections. It is updated from
different CA analysis websites. Scene KGs use outbreak‐specific
node and network connectivity to extend graphs. All analytical
input data comes from data collection and detection systems.
Exploiting CSKGs, attack rule KBs, and spatiotemporal
restrictions aids in elaborating composite attack chains of
numerous CAs. Cyber professionals typically ignore alerts and
miss actual CAs due to exhaustion from probing several alarms.
Despite exploited vulnerabilities and payloads, CAs may deploy
comparable abstract approaches. A causal graph‐based ATLAS
system creates an end‐to‐end CA story from off‐the‐shelf audit
logs [76]. Besides developing a sequential model, ATLAS utilizes
NLP, causality analysis, and ML to identify critical CA patterns
and non‐attack actions from a causal network. A causal graph



CA symptom node is acknowledged for a CT warning event at
inference time. ATLAS then creates a collection of candidate
sequences for the symptom node, utilizes the sequence‐based
model to find attack‐related nodes, and unifies the CA nodes to
craft an attack history. The intelligence of 6G CPSs must support
inner and exterior network knowledge. CA technique to
generate KGs used CAPEC [47] and CWE in Neo4j [69], a graph
database. This study only presented two query‐based
application scenarios for identifying and responding to DDoS
flood CAs and multi‐stage CAs using Neo4j’s query and display
function rather than the KG reasoning function.

13.5.4 Clever Security Operation

Intelligent Operation: OT‐AI security can support security data
dynamic queries and aggregation analysis, augmenting the
reliability of security data operation studies [54]. KGs have a
unified data view, realizing multi‐level technical experiences
like risk perception, causal awareness, and robust decision‐
making. Intelligent processing challenges emanate from
models, data, and semantic perspectives [77]. KG application
scenarios in security operation can be threefold as per CA [78]:
(i) profiling, (ii) path pursuit and response strategy
recommendation, and (iii) challenges of intelligent operation. It
sorts out directional content viz. stipulated scenarios,



application resolutions, and prospects, albeit not involving
technical details.

Security Alert (SA) or Event Correlation Analysis (ECA): The
“security operation center” (SOC) security researchers are often
overwhelmed by security issues and trying to stay up with the
latest CTs in the wild due to the ever‐changing CT landscape.
Effectively correlating vast volumes of various alert or event
data might prevent CAs by identifying concerns before they
become problems. Traditional techniques store security
evidence aspects in separate KBs, preventing synergy. A
semantic mismatch between a KG using abstract CA knowledge
like STIX 2.0 and system network logs containing behavior
information hinders CSKG’s use [79]. Complex CAs make it
difficult to efficiently incorporate context information for real‐
time, correct analysis. Traditional relationship analysis with
rules requires specialists’ CA scene construction knowledge
without automatic reasoning. By unifying the network setup
KG, vulnerability KG, CT‐KG, and intrusion warnings’ KG with
the CSKG and describing each dimension’s data source, an
integrated security ECA system may overcome the above
problem. After normalization and fusion alarms, vulnerability
alerts from the host were verified [80].



The CA correlation analysis also utilizes warnings in effect to
query associated alerts, CVE objects, and CAPEC items to predict
real attackers’ purposes. Rebuilding a series of KG alert
scenarios employed the DARPA 2000 dataset for framework
performance evaluation by comparing the total of remaining
alerts after using KG for correlation analysis [9]. A theory
associated multiple steps’ CAs with IDS’s warnings [81]. The
consequential association analysis CSKG algorithm handles CS
attack events and graphically displays the air‐ground integrated
network’s attack scenario. The CSKG holds five‐entry tuples:
(attack, event, alarm, relation, and rule). The association study
calculated the coincidence degree among collected events’
sequences and those attacked in the KG.

Simulations can prove the algorithm’s practicality by
comprehending the space‐ground integration network and
experimental limits. Manual log investigation rarely scales,
resulting in a lack of understanding and transparency
regarding issues. A configurable framework for automated KG
building from raw log messages was developed to address this
issue [82]. Enabling semantic analysis of log data fills a major
gap and provides KG builders with several data sources. In Ref.
[67], ML is used for KGs to improve IDS‐generated alarms in
current industrial systems, making them more helpful for
human operators.



13.5.5 Smart Decision‐Making

Current CS assessments aim at personal experience and poor
intelligence. Improving CTI assessment is a critical issue. KG
technology makes studying the CS decision model and
enhancing CTI assessment beneficial. Introducing KG‐reliant
intelligent decision‐making research situations like CA
generation strategy and security policy validation is crucial.

Attack Strategy Generation: An invader’s perspective on CA
techniques can reveal security issues and provide solutions. A
KG recommender CA in Ref. [83] contrasts CyGraph’s query‐
based technique. A six‐tuple KG construction schema based on
four open databases (CVE, CWE, MSF, and CAPEC) is included.
This collaborative filtering characterizes node differences using
meta‐path, a recommendation list generator that calculates
path correlation scores with node vectors. ML feature
extraction and heterogeneous information network meta‐path
construction provide a CA entity recommendation algorithm in
the second phase. This KG can search and recommend new CTI
intelligently. This approach predicts vulnerability weaknesses
better than content‐based search recommendations. It uses
natural language vulnerability descriptions to forecast and
recommend CA patterns. A knowledge‐driven CA strategy
generation system [84] may manage several industrial control



network vulnerabilities from an attacker’s standpoint. The
method includes vulnerability exploitation KG, industrial
control network graphics, and knowledge reasoning principles.
Security experts recommend using the attack procedure to find
device‐level CA routes. Initially, CA techniques can examine
several vulnerabilities on device‐level nodes. A full CA graphical
algorithm exploits the sequence for all device vulnerabilities
and connects device‐level nodes consistent with the firewall
and other protective device access restrictions. This KG
generated CA pathways from numerous small‐scale control
network vulnerabilities. Adding CTIs necessitates additional CA
techniques as KG expands, especially the most cost‐effective
ones.

Security Policy Validation: Its ontological, heuristic, workflow,
and process layers enable logical analysis, CTI analysis, and CPS
security policy validation [85]. The architecture is validated,
and an event‐driven engine for intelligence graph traversal is
prototyped via scenarios describing the most typical CTs in
digital banking. However, this framework only supports digital
banking apps and does not provide datasets.

13.5.6 Vulnerability Prediction and Supervision



Several use cases elucidate various CSKG analytic traits in
vulnerability prediction and supervision. In security
operations, managing, categorizing, quantifying, and
prioritizing a system’s weaknesses is a vital precondition for CT
elimination to successfully protect valuable resources.

KGs allow advanced knowledge about managing massive
vulnerability records by organizing them in a structured
ontological format. Another SEPSES KG scenario [48] is a query
supporting security analysts by relating organizational asset
information to a nonstop updated stream of notorious
susceptibilities. A “CS vulnerability ontology” (CVO) is a
theoretical model that represents formal knowledge
vulnerability within the controlling domain [57], utilizing the
CVO to propose a “cyber intelligence alert” (CIA) structure to
send cyber alarms about forthcoming vulnerabilities and
countermeasures. Its components embrace the vulnerability
repository, exposure mapper, “social media intelligence
extractor‐tagger” (SMIET), CVO, RDF converter, the “cyber
intelligence ontology” (CIO), and cyber warnings rules engine.
An industrial CSKG was stored in Neo4j [57, 86] grounded on
Internet vulnerabilities to investigate, query, and envisage
temporal, spatial, and correlation dimensions.



CyGraph correlated incursion alarms to notorious vulnerability
paths and suggested the best actions for reacting to attacks.
CyGraph forms a query‐centered predictive model of potential
attack paths and dangerous vulnerabilities. As formerly said, a
CSKG employing CWE [74] could estimate absent relations and
typical CWEs’ consequences through a translation‐based,
descriptive CT representation for the knowledge‐learning
scheme. To discover hidden relationships among
vulnerabilities, the intelligent flow of the CWE Chain’s samples
[39] requires an automatic analysis query‐based model and
demonstrated KG vulnerability (VulKG) employing vulnerability
data (NVD, CVE, CPE, and CWE). Yet, the example could partially
replace security experts’ analysis and labeling work under
specific scenarios with the operator previously identifying the
query objective. A malware KG, MalKG [53], is the first OO‐
automated KG with CTI for effectively running sparse or
erroneous threat information manually curating the MT3K
benchmark dataset. It demonstrated the prediction of MalKG’s
capabilities utilizing two use cases. One of the usage scenarios
forecasts and sorts all potential vulnerabilities or CVEs from
impacted SW by comprehensively utilizing facts from the
network environment, malware, and KG. An exposure
exploitation KG can integrate and extract multi‐dimensional
domain knowledge [84]. KG attack strategies enhance



widespread vulnerability abuse and flexible response
performance by occupying each device’s corresponding node,
displaying industrial network feasibility.

Similarly, chain reasoning and confidence appraisal studies [9]
supported vulnerability labeling and latent relations’ discovery
between CWEs. Similarity matching via source code level
graphs judges the resemblances between the target node and
the vulnerability database node. This tactic offers new insights
into susceptibility mining, expanding relations in KGs aiming at
vulnerability to identify alternatives with similar
consequences [9].

13.5.7 Malware Acknowledgment and Analysis

KGs can evaluate and recognize malware. A graph‐centered
malware rank inference MalRank algorithm appears in Ref. [87]
to infer a node malignity score from its correlations to other KG
entities, e.g., conjoint name servers or IP ranges through a KG
modeling global observed entities’ associations in proxy and
IDS logs, boosted by CTI and “OO intelligence” (OSINT). CT
detection is formulated in the “security information and event
management” (SIEM) milieu as a large‐scale graph inferential
problem. Real‐world data experiments from a global
enterprise’s SIEM showed that MalRank conserves a high



detection rate, outshining its predecessor, i.e., belief
propagation, in accuracy and efficiency.

Moreover, this approach effectively identifies previously
unknown malicious entities like IP addresses and domain
names. Along with the past informed application scenarios,
MalKG could also handle the malware attribution scenario [53,
88]. As an illustration, given a newly learned malware, the
expert must build a malware’s origination fingerprint by
assembling good features, viz. campaign, author, and other
things. MalKG automates the malware features’ prediction, e.g.,
the newly revealed malware may partake in similarities with
disclosed malware from a particular APT group. APT hacker
teams’ profiling and automatic attribution can be realized by
mining key CTI elements and dynamic behavioral reasoning
[53, 78]. The key solution establishes a unified language to
designate different APT organizations’ behaviors and traits to
build a KB about APT organizations without disclosing related
research details.

13.5.8 Physical System Connection

The CSKG uses BD analysis and graph mining to intensely
scrutinize the information and the physical layers coupling
relationship in the industrial control systems and grasp



decision‐making, risk prediction, accident analysis, CA
identification, and other assisted traits and automated
processing.

CS analytic capabilities in MITRE’s CSA method CyGraph from
Refs. [56] and [68] comprise a simple network design with
underlying connectivities amid routers, switches, firewalls, and
hosts. The internal network possesses three defense domains
(i.e., mission client terminals, DMZ, and data center). The outer
firewall guards the in‐house network from the exterior and
watches the crucial data center servers. The KG was built with
firewall rules and vulnerability scan results based on the
information on the network topology. A typical internal
network model with six elements verifies the design’s
effectiveness [49, 70], where the firewall insulates the intranet
router from the Internet. The FTP server and hosts are
connected to the router directly. A network example of
generating penetration paths [29] contains an Internet host, a
DMZ with a web server, and three subnets. The hacker is an
Internet host. Constructing a proper experimental network
setting could aid in demonstrating approaches’ effects and
reproducing CA and defensive processes [89].

Exploring the control network systems’ security is also
essential. An HW prototype comes from the industrial systems’



design, integrating ICT and OT elements. The network displays
main traffic flows afterward [67]. A CT assessment for IoT
terminals employing KG sensed and measured the CS risks and
CTs of massive IoT terminals in real time [60, 90] but lacked a
suitable network for evaluation. The domain KG may analyze
multiple vulnerabilities in the control network to generate CA
strategies [84]. The target network topology possesses the
Internet, a router, two firewalls, an enterprise network, plus
Ethernet. One firewall shields all local network assets. The
other goes between the Ethernet and the enterprise network.
The router connects the first firewall with the enterprise
network. The second firewall plus the industrial Ethernet go
after. The enterprise network assets are an admin host, web
server, and printer. Some sensing peripherals (e.g., oximeters,
valves, and flow meters) are connected to the Ethernet.

A “demilitarized zone” (DMZ) is an Internet subnet coupled via
a router. A firewall isolates each subnet, and the hackers usually
start Internet offensive actions so that investigators adapt
firewalls to (i) tackle intricate networks by varying or adding
devices, (ii) outspreading subnets, or (iii) altering connection
mechanisms. The network topology renders the environment,
inserting SW and HW into each node, securing protection
measures and existing exposures.



13.5.9 Supplementary Reasoning Tasks

SE is a CA type wherein the hacker exploits human weaknesses
through SE [91] and poses a severe CT SE threat’s barriers [92],
calling for ontological development and assessment criteria as
per applications. The ontology affords a formal, explicit
knowledge schema to comprehend, analyze, reuse, and assign
SE domain information via KG.

Today’s Internet has a significant amount of fake CS
intelligence. A system can filter out information to get
provenance information and represent it for CTI treatment [90].
This rationale enhances the existing CSKG model to encompass
CTI and fused provenance graphs with CSKG reasoning to
enforce information preservation and credibility, besides
rejecting the rest. Besides, including provenance classes in the
CSKG schema can give more evidence about the data source.

A KG embedding predicts within‐ and across‐type dealings for
SW security entities appears in Ref. [93]. Finding missing
relationships among entities supports analysts in enriching SW
security evidence. Albeit, this CSKG is not OO, so one could not
read its details. In Ref. [78], several other CSKG application
scenarios and two conventional reasoning approaches exist.
Despite some limitations in stating satisfactory particulars, the



application scenarios, for instance, CT modeling, APT‐CT
hunting, intelligent safekeeping, cyberspace valuation/mapping,
supply chain safety, and CPS defense, were outlined [78]. Two
reasoning technologies are established on CSKG: (a) relational
via graph representation learning and (b) multi‐relational
schemes through NNs.

13.6 Discussion and Future Trends on
CSKG

It has been possible to use KGs in many knowledge‐driven CS
tasks:

Additional OO Datasets: This is needed because the current
ones do not solve all problems. Creating a CSKB dataset for
development tasks can include environmental assets,
attributions, existing topologies, and behavioral data (e.g.,
alarms and logs). Annotated CS datasets are essential for
training or testing IE models, including pre‐training or prompt‐
based language models. Present datasets could not handle this
task productively, having various drawbacks: First, most
datasets target only one IE task (entity mining), seldom for two
or more; second, owing to different ontologies and research
targets, the entities’ and relations’ kinds are different. Third,



existing datasets rely on English, which cannot meet the multi‐
language requirement; and last, manually interpreting the
corpus continues as the primary initial data for the vertical
model. New multi‐language CS IE datasets require extensive
and reliable data investigation. A statement paper and standard
annotation should accompany these anticipated datasets. Semi‐
supervised or unsupervised extraction and prompt‐based
generating methods can reduce the need for an annotated
vertical corpus in the annotated process.

Dynamic Construction: Established KG frameworks for top‐
down [94] and bottom‐up [95] approaches can build huge KBs.
The first prevails in CS (creating an ontology schema first, then
extracting corpus knowledge from it), primarily regarding
expert knowledge. Ontology learning, or automated ontology
construction technology, is still needed to capture new
knowledge throughout ontology updates. Traditional KGs focus
on deterministic, static entities, relations, attributions, etc. The
KG investigations and prerequisites for field applications will
incorporate event and dynamic knowledge akin to conditional
relationships, temporal information, causal evidence, and event
subordination linkages. Building a CS event temporal KG will
require further work to represent CS event knowledge and
facilitate relevant logical reasoning.



Application Scenarios [9]: Despite stable CSKG creation
methods, no one supports a unified OO KG. KGs are helpful but
incomplete, redundant, and ambiguous, resulting in
uninformative query responses. Different conditions require
constant KG rebuilding. The KG’s automated reasoning ability is
underutilized, and its use to tackle CS practical problems like
KG completion is unclear. More research and reasoning
investigations are needed to gain knowledge. The semantic
mismatch between CSKG and logs limits its usage in CA path
examination. Filling this semantic gap with necessary
knowledge allows the semantic link between CSKG and log. To
identify dangers and network CSA, the CSKG must engage more
with the network’s internal awareness, notably the CPS, and use
its automated reasoning and association analysis skills.

Evaluation Criteria: CSKG applications across most CS
functions in defensive and offensive circumstances are still
developing. KG evaluation standards are lacking. Researchers
often assess IE model correctness, precision, and F1‐score
values. “Mean rank” (MR), “mean reciprocal rank” (MRR), plus
“Hits@n”, can test the triple prediction model’s logic, disclose
the KG’s query, and deliver visualization capabilities in
instances entailing queries [9]. These are not thorough
examinations of KG’s notions, as no one can deem a KG superior
in certain scenarios.



The IoT has enticed interest lately since it helps consumers
enhance their lifestyles and professionally keep up with CPS
technology breakthroughs. IoT edge devices vary in technology
and storage file formats. These devices must authenticate each
other before delivering data by exploiting highly secure mutual
authentication. Mutual authentication is crucial to peer‐to‐peer
communication. These resource‐constrained devices
authenticate with locked session keys. Successful authentication
authorizes a device to access shared resources. Data privacy
breaches can affect confidentiality and integrity. Thus, devices
seeking data transmission must be validated. Although
blockchain and AI ameliorate security extensively, this work
focuses on AI alone. In future works, blockchain can store
validated session keys for network devices decentralizedly.
Blockchain helps stabilize edge devices during low battery and
guarantees cloud and fog computing access [96–99]. Albeit AI
learns and adapts to threats better with new key management
technologies to improve security, the discussed designs will
benefit from blockchain [97–99]. This manuscript analyzes
contemporary security trends and traditional essential security
procedures, bringing a thorough quality analysis on
authentication and session keys, merging SW and HW entities,
and AI‐based CS authentication.



13.7 Conclusion

This chapter overviewed various works about “artificial
intelligence” (AI) for “cybersecurity knowledge graph” (CSKG)
in assorted application scenarios, presenting a succinct CSKG
background, underlying concepts, and construction
technologies. Then, several openly available datasets for
building CSKGs, their IE tasks, and their downsides are
exemplified. Next, a comparative revision of different AI
designs for CS was carried out, elaborating on recent CSKG
scenarios’ progress. Security managers can count on KG to
naturally comprehend security intelligence, network situations,
and entity relationships. Then, security entities’ attributes were
discovered, which could function as a groundwork for
understanding CS knowledge, analyzing CS data, and finding
attack patterns and abnormal traits related to cyberattacks.
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14.1 Introduction

A “business sector” can be any potential application field, such
as banking, agribusiness, disaster relief, etc. Nowadays, the
“cyber‐physical system” (CPS) rationale [1–4], i.e., a framework
placing together computation (aka virtualized building blocks)
with physical (real) processes whose conduct depends on the
computational and physical parts. Within a CPS, devices can
exchange information and intermingle with the physical realm
through sensors and actuators that observe and control the
hardware (HW) and software (SW) processes in a feedback
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loop. The amalgamation of sensing, actuation, computation, and
communication competencies expands the overall
performance, security, and reliability. This set of circumstances
brings to mind “cybersecurity” (CS) concerns for CPSs, the
“Internet of Things” (IoT) gadgets and the “extended IoT” (XIoT)
that are an integral growing part of significant business sectors
related to infrastructures, governments, and quotidian life [5,
6]. This chapter implies that CS is the practice of safeguarding
against unwanted assaults on HW, servers, mobile devices,
“information and communication technologies” (ICT) systems,
networks, SW, and data [6–8].

Today, a knowledge sector may encompass many issues,
including local face‐to‐face care or amenities, faraway databank
access, laboratory analysis, online public awareness, and
administrative business tasks [9]. In contrast, inspecting and
controlling facilitates service control and aids service suppliers
in helping the public outside the business’ tangible facility,
properly tracking stakeholders’ aftermaths, ongoing superior
services, and identifying at‐risk folks. It also enables
participants to maintain contact with their providers, comply
with schedules, and mend trust and wellness processes. Instead,
persons in remote areas lack access to modern services due to
technology and staff deficiencies. Real‐time observation and
well‐being of all participants (stakeholders), real environments,



and other ignored stakeholders, be it a person, animal, or small
area. IoT‐based “general CPS ontology” (GCPSO) management
may rely on mobile devices, terminals, or other technology that
affords constructive and preventive remote interventions [10],
accomplishing emergent individuals’/businesses’ demands and
high operational costs. It interconnects accessible assets and
delivers smart, safe, and inexpensive services.

The IoT is a mainly physical technology system, e.g., buildings,
in‐body, on‐body, and out‐body gadgets, administration
facilities, research centers, and local face‐to‐face services, in
which full people’s information access is assured through the
Internet. Such up‐and‐coming technologies assist advancement
in modernization due to Internet and computing HW
developments. The “general intelligent blockchain CS CPS”
(GIBCS‐CPS) centers on a structure that employs participants’
resources, including reliable information, multimedia
coordination, and records retrieval blended with possible
remote decision‐making and control [6–8]. The IoT integration
in inspecting and control systems has impediments owing to
“big data” (BD) and the obligation for encryption protocols to
inhibit people’s records from leaking [11]. Any malicious
individual’s or corporation’s intervention contrariwise will
expose and manipulate participant’s data in any fashion with
serious repercussions, even demises [12, 13].



A secure, real‐time monitoring and control system must
confront previous matters, maximizing emergent security
advantages plus ICT. A “wireless sensor and actuator (or actor)
network” (WSAN) designates wireless communication via
devices holding (i) sensors to monitor ecological and physical
conditions pertaining to individuals, areas, or objects and (ii)
multiple actuators, such as servomechanisms, motors, valves,
drug‐delivering units, and drones, to perform actions. WSANs
can gather facts from the region of interest, aka application (i.e.,
ecology‐related settings, trading markets, automated buildings,
agribusinesses, live beings bodies, harvests, etc.) to control the
indispensable entity’s traits undergoing inspection. WSANs
comprehend paramount IoT and Industry 4.0 forming elements
for creating intelligent businesses, environments, agrarian
locales, cities, medical scenarios, etc. [14–19]. An effective
WSAN installation calls for subjugating many hindrances and
delivering reliable services. These comprise the dynamic and
intelligent supervision of sensors and actuators, the asset‐
limited network nodes’ nature, and the continuous, robust, and
secure data exchange between HW sections.

WSAN’s distinctive control/data decoupling tackles remote
observation and efficient application sector devices’ control.
Conversely, blockchain technology preserves the participant’s
history records, and sensors acquire information securely and



confidentially without alteration prospects. For this reason,
WSANs [13] and blockchain sub‐systems [20, 21] within the
target CPS can be a directly positive effect solution. This chapter
investigates an efficient and reliable GCPSO to inhibit any
insider/outsider intruder from inoculating data, falsifying data,
violating participants’ secrecy, or even instigating a “denial of
service” (DoS) “cyberattack” (aka “cyber threat” (CT)) against
the GCPSO [4, 20, 21]. The GIBCS‐CPS also offers a modular trust
management implementation founded on blockchain
technology, CS defenses, and decision‐making benefits from
these technologies from the GCPSO perspective. The
recommended GIBCS‐CPS boosts priorities and manages
concerns concerning trust. Simultaneously, it defends various
monitoring and control system components while protecting
stakeholders’ privacy by fashioning a secure environment
where separate security modules coexist to warrant a
consistent GCPSO.

Conversely, several person‐centered solutions emphasize
“knowledge domain bases” (KDBs) management, which
involves all individual‐related records, comprising the
protection and trust facets of data, HW, and SW [22, 23]. Ideally,
the network, monitoring, and control must require fewer
improvements than the participants’ side. This rationale can
cause undesired situations, principally with remote work,



owing to the minimization of stakeholders’ physical contact,
dislocation time, and stress, among other actors. This chapter
establishes the minimum HW/SW framework for protected,
trusted remote checking and control of CPS and partakers’
processes as follows:

A remote, real‐time, and protected stakeholders’ monitoring
and control architecture via blockchain and WSAN,
A scalable, flexible structure that can start/ turn off any
module while sustaining other modules’ functionalities, and
An efficient, lightweight “trust management scheme” (TMS)
for monitoring and controlling a business sector.

Numerous algorithms’ input data make up valuable features.
However, Internet data are limitless, and exploiting their
authorization can be tricky, occasioning extremely difficult‐to‐
handle data verification scenarios in complex CPSs. So, designs
that assist in robustifying data storage, processing, and sharing
in‐depth operations across Internet environments are essential.
These designs produce a more genuine, secure BD cyberspace
and improve algorithms on various information sources.

The chapter is outlined as follows: Section 14.2 presents
relevant works on CPSs with WSANs, blockchain, and their
hybridization. The planned GIBCS‐CPS architecture and design



goals appear in Section 14.3. The TMS [4] details are depicted in
Section 14.4. Blockchain incorporation in GIBCS‐CPS occurs in
Section 14.5. Performance is pondered in Section 14.6. To close,
Section 14.7 brings in conclusions.

14.2 Methodology

Demand for business sector facilities with remote and local
treatment units necessitates CPS upgrading with pros and cons,
banking on three relevant schemes: WSANs, blockchain, and
hybrid strategies.

14.2.1 WSAN‐Centered Solutions

A WSAN infrastructure embraces many developing paradigms,
mixing sensing, computation, and control, affecting real‐time
physical process control and realization [24–26]. Multiple
quality products with superior freedom at a constant price will
be available to customers worldwide. To address expanding
human, machine, and product interconnectivity concerns, all
manufacturers require autonomous interaction and highly
robust local and global interconnectivity across their systems
and sub‐systems. WSANs’ benefits help streamline operations
management. WSANs can be inexpensive, easily deployable,
and flexible, making them better by decentralizing autonomous



task decision‐making and lessening human interaction.
Independence helps varied sectors supporting intelligent
systems and processes, improving production dependability
and profits. These networks undertake noise, fading, hotness,
dust, multipath consequences, and electromagnetic (EM)
interference at multiple stack protocol layers, disrupting
“quality of service” (QoS)‐aware data delivery [24–30]. Diverse
low‐power standards and remedies have eliminated obstacles.
IEEE 802.15.4 enhancements fulfill utilization expectations [31],
becoming part of most standards and answers, e.g., ZigBee [32],
THREAD [33], WirelessHART [34], Z‐WAVE [4], ISA [35],
6LoWPAN [36], LoRa [37], and WIA‐PA [38]. These advances
have increased a WSAN’s safety, time‐critical operation, and
automation [39]. Ample work addressed designing and building
efficient “medium access control” (MAC) protocols to improve
network speed and QoS [40]. MAC affects dependability,
scalability, low latency, energy efficiency, and security.

14.2.1.1 Benefits

Cost drop: The main operational and capital expenditures
result from rapid installation, effortless repairs, trouble‐free
system reconfigurations, etc., while saving time.



Flexible architecture/design: Wireless solutions can malleably
handle rigid, fixed specific processes, viz robots and gyratory
equipment, in dangerous zones and extreme temperatures.

Safety: Wirelessness translates to remotely reconfiguring and
upholding processes and systems, preventing humans from
being in hazardous locations. Likewise, mechanical failures are
a common problem, which affects reliability and causes
applications’ downtime. Wireless solutions are less prone to
deterioration failures, making them safer and less inclined to
failures.

14.2.1.2 Challenges

WSANs bring nontrivial challenges demanding serious
remediation efforts. The imperfect, error‐prone wireless
medium causes packet losses (PLs) and variable delays.
Although wired networks have losses, WSANs have more
caveats because of fluctuating channel conditions, narrow
spectrum, multipath broadcast, and fading. Besides, an
important issue is efficiently exploiting and accessing shared
wireless mediums, which the MAC sublayer runs as a data link
layer part. An inept MAC strategy can squander rare
communication assets. The most critical challenges appear
below.



Packet losses: Channel impairments cause PLs in wireless
interactions due to collisions, multipath fading, and small
channel achievements. Buffer overflow yields congestion,
which wastes packets in transit. Packet reordering follows a
long transmission time, triggering packet dropouts.

Variable delay: WSANs have random delays and insert time
uncertainties within sampled, encoded, and diffused data
hitting the target for decoding on the receiver, which adds
delay. Retransmissions are frequent, with poor link quality,
boosting delay and energy intake. A decisive performance
indicator is the delay, which should have minimum variability
and adequate upper bound to avoid adverse application QoS
impacts.

Data rate: The limited channel bandwidth constraints the
number of communication network medium devices. Hence, an
efficient protocol may minimize the overhead.

All previous imperfections mentioned above may degrade
performance. Thus, effective protocols can counterbalance
these losses and lessen adverse effects.

Today’s nodes have more memory, processing power, and
extended battery life. In most usages, sensing, actuation, and



control are also imperative. Sensors acquire data, and actuators
send certain data‐centered control decisions as commands to
adjust a CPS part.

14.2.1.3 WSANs’ Structure

Because actuation is vital in controlling processes and systems,
the trend is integrating sensors, actuators, and their respective
controllers to attain sensing and actuating node tasks. Actuators
act in the physical environment and possess networking skills
like reception, broadcasting, processing, and dispatching data.
A robot may perform in the physical environment through
assorted actuators. Yet, from a networking viewpoint, a robot
may be deemed a single networking object (or actuator).
Consequently, an actuator may contain many actuators,
encompassing heterogeneous tools. A WSAN is a distributed
hybrid, heterogeneous sensor/actuator structure whose sensors
directly communicate with actuators. Actuators can also
converse among themselves. Hence, WSANs encompass sensor‐
to‐actuator and actuator‐to‐actuator interactions via single‐hop
or multihop broadcasts. WSAN can perform sensing, data
fusion, acting properly in the physical environment thanks to
decision‐making, and collaborate distributedly. Actuators are
rich in computational, communication, and battery power
resources. They may perform sensing tasks for local



corrections, strictly restricting trustworthiness, predictability,
and availability and requiring a sink or gateway to observe the
overall network.

14.2.1.4 Characteristics of WSAN

Generally, actuation is more complex than sensing. Depending
on the application, an immediate response to a sensor input
may be required, further imposing certain real‐time
constraints. WSANs are characterized by some of the following
unique features.

Real‐time guarantee: This requirement interchangeably deals
with latency and delay bound, i.e., strict timing constraints are
involved between sensing and acting. As soon as data is
detected, it should trigger actuators. If the required data
encounters latency and the actuation command is performed
late, it makes data less effective, meaning sensing data must be
valid when acting.

Reliable coordination: Sensors communicate among
themselves and also with actuators. Thus, sensors‐to‐actuator
and actuator‐to‐actuator coordinations are involved in selecting
the suitable actuator for the action through metrics (viz existing
energy, distance, location, coverage, etc.) These coordinations



are essential to maintain reliability, self‐organization, and
network QoS. Still, at the same time, they impose new
challenges on networking to provide robust and delay‐tolerant
protocols and solutions.

Traffic differentiation: The environment is heterogeneous due
to resource‐constrained sensors and resource‐rich devices like
actuators. Therefore, efficient resource allocation and
utilization techniques need to be developed. Energy efficiency
for sensor nodes is a big concern but less concerning for
actuators. Moreover, actuating messages are more delay‐
sensitive than standard sensor measurements, so message
priority differs. Heterogeneity must be exploited cleverly in
protocol design so that application QoS requirements and
constrained resources of the sensors are not at stack.

14.2.1.5 WSANs Applications

Application necessities vary regarding criticality, reliability,
timeliness, and importance of data in detail.

Safety systems: These are always critical and require
immediate action during emergencies (i.e., in need of real‐
time communication), are highly delay‐sensitive, and entail
low latency and outstanding reliability. Nonetheless, in terms



of bandwidth requirements, they tend to have moderate
bandwidth.
Control systems: They can be closed‐loop (CL), open‐loop
(OL), and process control systems [41]. Generally, CL systems
observe processes and act as per decision, being generally
autonomous and not involving humans in the loop. OL
structures do not possess feedback and call for persons in the
loop, i.e., humans, to make adjustments. Each control
arrangement imposes different delay constraints, e.g., CL is
more fault‐finding than OL control. Process control systems
can tolerate some delays.
Alerting systems: These regular events or alert systems
result from continuous observing that indicates short‐term
operational costs at different stages of SW or HW.
Predictive maintenance and automatic fault detection:
This crucial trait helps anticipate a failure instigated by
surveillance and possible automatic maintenance via
advanced procedures resulting from sudden machine
shutdowns that lead to impromptu downtime and massive
losses. So, a reliable WSAN can estimate machine faults
precisely and jointly to evade worst‐case situations.
Monitoring systems: These include checking process
variables, equipment condition, structural health, etc., to
continuously gather data from an essential sector for long



durations, analyses, and make better decisions. These
systems cover nearly every application’s aspect.

14.2.1.6 WSAN Requirements

Reliability: Link quality varies in the unreliable wireless
medium, and quality in both bidirectional link ways differs.
Poor link quality can wane broadcast and create latency,
worsening on‐time control decisions and leading to system
letdowns and financial losses. The reliability can be handled at
different levels. As an illustration, it can be modeled by an
energy efficiency function that depicts the network lifecycle
satisfactorily and consistently throughout that epoch. Reliability
(packet reception rate) should exceed a threshold to assure a
certain reliability level without degrading processes’ and
systems’ efforts.

Packet priority and heterogeneity: The real world calls for
heterogeneousity. Sensing measurements, controlling
commands, and actuation tasks engender different generated
packets. Each traffic has a different treatment priority. Thus,
assigning packet priority warrants some degree of timely
performance. Selected actions require prompt execution, albeit
others can endure a certain flexibility level for execution, as CL
systems, actuation, and control commands are more



indispensable than sensor data. Accordingly, the system
responds appropriately to faults when a priority difference
level is embedded in the protocol.

Energy effectiveness/power consumption: Energy
replacements for battery‐powered nodes are nearly
unmanageable, especially in inaccessible areas. Nevertheless,
energy efficiency is also a significant concern, e.g., reliability
and latency. Augmenting reliability expands energy efficiency,
leading to low packet reception rate and latency to the energy
consumption detriment. Therefore, careful tradeoffs must be
handled under existing metrics that estimate and analyze
compromises, leading to robust and flexible protocol
development.

Adaptation: Often, control traffic requirements change
dynamically for different process controller states. Altering the
wireless medium and network topologies imposes further
necessities. Communication protocols cope with dynamic traffic
by adapting their parameters per control requirements and the
medium.

Scalability: It denotes a system’s capability to scale well or
deliver high flexibility, supporting modifications adaptively for
adding and removing nodes or functionalities without



degrading performance. A WSAN may require too many nodes.
Then, communication protocols’ scalability must comply with
such a scenario. Yet, scalable MAC protocols’ development is a
nontrivial and challenging task. Existing standards like
WirtelessHART and ISA100.11a chiefly rely on “time division
multiple access” (TDMA) protocols, constraining the
participating nodes’ total while simultaneously satisfying QoS
requirements. Therefore, WSANs require protocols supporting
scalability at different protocol stack layers to achieve better
performance.

Multihop communication: Large‐scale network deployments
usually span over a large area. So, many sensor nodes are
deployed at different locations, with sensor nodes transmitting
their data and relaying data of nodes located multiple hops
from the sink. Therefore, multihop communication remains an
inherent share of such scenarios, allowing further flexibility in
adding new nodes in the current network in case of plant
structural changes. It also adds redundancy. In primary
communication path failure, nodes can utilize alternative paths
to reach sinks. However, this also imposes challenges of
selecting a particular relay node if multiple relay nodes exist to
not overload a specific path and warrant timely data delivery
with better routing and mobility administration.



Scalability and network control in Ref. [42] use a WSAN
controller to track traffic flows and assure network/ device
traffic rule exchange. The quantity of controllers (the main
factor in business sector sub‐CPS‐WSAN amalgamations) must
be carefully planned [43–45]. A mathematical model uses
convex optimization to find the ideal number of controllers for
a WBAN framework, pondering latency, controllers, and WSAN‐
enabled switches [13, 14]. A GCPSO uses a security‐integrated
monitoring and control system to offer stakeholder services
reliably and minimize risks. The heterogeneous structure of
WSANs demands a method to supply QoS‐improved services
[46]. Still, this work will not address this. WSAN deployment
was recommended for bandwidth and real‐time data
communications.

14.2.2 Blockchain‐Based Solutions

Since Bitcoin’s debut, several blockchain variants have
permitted businesses to exploit new technologies to gather,
process, and analyze stakeholder data. Distributed
identification and permission control use blockchain‐enabled
deployment with a comprehensive security policy view [47]. A
hypothetical blockchain use in business has been extensively
examined in Refs. [48, 49] to identify flaws and future research,
mainly in blockchain deployment costs. Performance,



architectures, and standards were supplanted with security and
privacy compliance.

Similarly, Refs. [50, 51] have systematically reviewed trendy
business sector applications, covering security, privacy, and
data analyses/sharing via blockchain, besides critical
conceptions, including identity supervision, data encryption,
storage, access control, and “smart contracts” (SCs). An e‐health
CPS data privacy and network security prevented unauthorized
access by a KDB distribution network utilizing a blockchain,
mobile cloud platform, and the open “Interplanetary File
System” (IPFS) [52]. Their deployment fallouts are promising
and offer a feasible securing data transfer method on mobile
clouds with performance ameliorations in trivial access
organization, network latency, and safety through elevated
privacy and security thresholds.

Blockchain’s back‐end transaction logging could help third
parties, and cryptographically verified platforms maintain
confidence. Business decentralization has emerged in the
business sector. Although limited, well‐defined cryptographical
and mathematical methods like hashing enable blockchain’s
developing ledger to be tamper‐proof, safe, and unchangeable
[53, 54].



Blockchain uses “consensus algorithms” (CAs) to validate and
link blocks. Famous blockchain networks Bitcoin and Ethereum
had insecure proof‐of‐work (PoW) CA [55]. CTs boosted
blockchain security research. Later, blockchain 2.0 focuses on
SCs [56, 57], or the law of code [58] may eliminate trusted third
parties. Ethereum and Hyperledger Fabric, with chain
codes [59, 60], became popular SC blockchains. Ethereum uses
PoW as CA but has no restrictions, unlike Bitcoin. SCs cannot
just work in finance [56]. CS still has room for improvement
[61].

Blockchain‐based CS applications are analyzed, showing the
increase in networking adoption in various domains and
encompassing IoT [62]. According to Ref. [63], blockchain
technologies can protect shared data and provide data trust for
anything “as a service.” The causes and symptoms of
vulnerabilities follow.

Broken access control (AC): It limits stakeholders’ access,
restricting their resources despite assigned permissions. AC
failure commonly means stakeholders performing business
functions requiring different consents than the ones set, among
other activities. Errors also lead to unauthorized records
disclosure, alteration, or destruction. “AC vulnerabilities” (ACV)
include:



1. Allowing all participants access to resources intended for
specific roles, stakeholders, or authorization groups violates
least privilege.

2. Bypassing access control checks with URL, internal
application state, or HTML page modifications. API attack
tools can bypass access regulation checks.

3. No API controls (e.g., “PUT,” “POST,” or “DELETE”).
4. Privilege elevation, where an attacker can log in as a user

without executing administrative tasks from a lower‐
privilege account.

Prevention entails limited resources’ access with AC, working
with a trusted server where the invader cannot alter data.
Protection methodologies follow:

1. Access should be repudiated by default, excluding if the
element is a public resource.

2. Use AC tools again throughout the application.
3. Impose application business bounds.
4. Deactivate web servers’ directory listings.
5. Rate‐restrained API and controller permission.

Cryptographic failures (CFs): They can compromise systems
or expose sensitive data due to cryptography shortcomings.
Credit card numbers and personally identifiable information



need further protection. The data type determines protection
techniques and compliance with information privacy rules like
the EU “General Data Protection Regulation” (GDPR) [64].
Common CFs are:

1. Unenforced browser encryption without HTTP security
headers.

2. Server certificate trust chain invalid.
3. FTP, SMTP, and HTTP browser protocols communicate data

clearly.
4. Using or disregarding weak cryptographic techniques and

protocols in legacy code.

CF prevention depends on application functioning and data
type. There are several facets to data protection. Preventing
includes:

1. Classify application‐processed, transferred, or stored data.
Classify sensitive data by privacy, commercial, or regulatory
requirements.

2. Store only necessary data and trash after the action.
3. Encrypt all data at rest and transmission.
4. Avoid sending sensitive data over obsolete protocols.



Injection: Source‐code examination can detect cross‐site
scripting, SQL injection, XML injection, and others. Automation
can find vulnerabilities by checking all parameters and data
inputs. Applications are injection‐prone when:

1. User data is accepted without validation, sanitization, or
filtering.

2. Sensitive data is extracted from hostile data.
3. Executing prevention.

Prevention of injection attempts requires separating queries
and actions from data:

1. Include interpreter special characters in escape syntax.
2. Query controls prevent unexpected inputs from acting

unofficially.
3. Use safe APIs for prepared statements with parameterized

queries apart from the interpreter.

Insecure design: It is not an insecure implementation, albeit a
design can have imperfections, occasioning vulnerabilities.
Unsafe designs do not ameliorate during performance because
they lack suitable security controls. Failing to accurately assess
SW or HW risks associated with the design leads to insufficient
safekeeping. A security culture employs impenetrable design



policies to appraise CTs and confirm the code follows the rules
and is verified against notorious attack schemes. Prevention
embraces strategies that foster a safe development culture:

1. Application security professionals’ partnerships can estimate
and design controls through a secure development lifecycle.

2. Ready‐to‐use components for secure design patterns.
3. Resourceful CT modeling respects access controls, critical

authentication, essential data flows, and business logic.

Security misconfiguration: Besides other factors, an array of
improperly configured controls may contribute to application
vulnerability. Some common caveats:

1. Wrongly configured cloud services permissions.
2. Enabling unnecessary features leads to redundant opened

ports, services, or erroneously elevated privileges.
3. Default account login credentials may be unchangeable.

A thorough, robust security configuration process starts
repeatable precautionary actions across systems and is
somewhat automated as below:

1. Establishing a repeatable security strengthening strategy,
ideally through automation, to protect new environments
properly with every deployment.



2. Only use what is necessary. Uninstall or eliminate extra
features and components.

3. Install an automated process to appraise security across
environments.

Vulnerable and outdated constituents: Unpatched legacy
tools still in production after discovering and disclosing
vulnerabilities can be a significant risk. Applications are in
danger when not running the latest SW version. The application
may be susceptible if a library or component version is used
despite being unreliable. Non‐scanned components for
vulnerabilities may also face risk. Launching a patch‐
management process can alleviate the outbreak potential by
terminating vulnerabilities before they turn into an issue, such
as:

1. Eradicating unused or superfluous libraries, constituents,
frameworks, documentation, and archives.

2. Continual surveillance and server‐ and client‐flank
components’ inventory.

3. Utilizing only sanctioned libraries and sources over protected
links.

4. Unsupported legacy libraries and components.



Identification and authentication failures: Here,
stakeholders’ identities, authentications, and session data are
not settled before one can get into systems and data. Reasons
that may jeopardize applications due to these failures consist of
weak passwords, inadequately hashed, plain‐text data
password warehousing, and letting bots perform automated
CAs, viz credential stuffing, and brute‐force. Prevention via
secure passwords for storage and retrieval may involve:

1. Multi‐factor authentication implementation.
2. Circumvention of default credentials in deployments

(especially for administrative accounts).
3. Limited account enumeration exposure.

SW and data integrity failures: Trusting data and SW updates
without testing their integrity allows invaders to issue malware
employing the SW supply chain in seemingly legitimate SW
updates. Numerous systems use automated updates without
integrity verification. Prevention begins with confirmation and
includes:

1. Applying digital signatures or other authentication forms to
get SW updates ensures they have come from credible
sources and arrived intact.



2. Verification if third‐party libraries and other reliances are
from authentic sources.

3. Verify that third‐party assets share no vulnerabilities by
automated security tools and attend to the SW supply chain.

Security logging and monitoring failures: Targets are audit
logs and monitoring throughout an outbreak. Security watching
and records are paramount to discovering and mitigating active
breaches. Letdowns happen when:

1. Logging does not record high‐value transactions, login tries,
or failed attempts.

2. Mistakes and warnings engender unclear, scant, or no log
entries.

3. APIs/applications are not examined for suspicious
undertakings.

4. Security logs exist only locally.
5. Applications cannot spot CTs to issue timely “attacks in

progress alerts.”

Prevention aims at permitting security logging and checking
across applications. Designers should guarantee appropriate
security controls, such as



1. Login, entrance control, and server‐side corroboration
failures should relate to a logged stakeholder’s context to
ensure that malign and suspicious activities are preserved
long enough for analysis.

2. Logs should be made in a suitable format for log supervision
tools to read.

3. Permit surveillance and alerts for distrustful activities.
4. Embrace an incident reaction and mitigation plan.

“Server‐side request forgery” (SSRF): It handles weaknesses
within stakeholder‐convenience structures at application and
network levels. SSRF flaws occur once web applications fetch
stakeholder‐requested remote assets without validating the
destination. Specific requests can go to the application via an
unforeseen source. Applications ordinarily get hold of URLs for
easier end‐users task‐switching (often within the application)
while accessing other features over the fetched URL.
Cumulative cloud/fog architectures’ complexity means SSRF
happens at a higher frequency. Protected segmented networks
separate remote resources and block other non‐essential traffic
by employing “deny‐by‐default” policies. SSRF schemes should
take in the following:

1. Data input must be sanitized, validated, and filtered.
2. Deactivation of HTTP server‐level redirection.



3. Warranting server responses arrive as expected, so
unprocessed server reactions should never reach a
stakeholder.

New vulnerability variants: They emphasize application data
tendencies with extra training benefits for companies
concentrating on particular CWEs for programming languages
or frameworks actively utilized.

1. Insecure design: It contains design and infrastructural flaws
and risks. Distinguished from other exposures, insecure
design cannot be amended through correct implementation.

2. SW/data entry failures: They contain risks of accepting SW
updates without corroborating integrity, focusing on the
hypothesis that updates can have permanent trust.

3. “Server‐side request forgery” (SSRF): Risks arise from URL
fetching from an application to a different one at the
stakeholder’s request without confirming the URL’s
truthfulness. This server‐side defenselessness is risky since
fake requests can bypass CS schemes like VPNs, firewalls, or
other access controls.

14.2.3 Hybrid Solutions



Security enhances data privacy and scalability; thus,
stakeholders combine “WSAN with blockchain” (WSANB) in the
business sector [65–68]. This chapter’s focal point is the
breakdown of current blockchain deployments in WSANs that
endorse integrity, confidentiality, and network infrastructure
accessibility. This will help determine the potential of adding
blockchain into WSAN architecture for security and privacy [41,
69–74].

Using a blockchain‐based WSAN data chain, providing a
distributed trustworthy record of WSAN data, and breaking the
isolation of multi‐vendor devices for fault recovery will reduce
network failure recovery expenses via Ethereum and
OpendayLight [75]. In Ref. [76], a general blockchain‐based
WSAN framework addressed the centralized control plane issue
by merging the control plane and application layer into one
major component and adding security features to obtain
blockchain‐improved distributed controller security. A
blockchain‐based collaborative “distributed DoS” (DDoS) CT
prevention solution employing SCs to enable WSAN domain
collaboration and convey DDoS outbreak information reliably,
effectively, and decentralizedly appeared in Ref. [77]
(Figure 14.1).



14.3 GIBCS: An Overview

Figure 14.2 exhibits the GIBCS‐CPS design, which views local
and remote business stakeholders. Participants can use
terminals, cellphones, or other intelligent devices to access
back‐end (data access layer) devices, viz servers, mainframes,
databanks, and others that provide data services. The back end
encompasses SW modules, devices, and computers not visible to
users. Design must decouple client issues from the front‐end
(presentation layer), back‐end SW, physical infrastructure, or
HW. The WSAN regulates these gateways by distributing non‐
selective security policies from WSAN controllers.

Figure 14.1 General WSAN architecture. A sensor and actuator network with a sink
amalgamates the network manager, security supervision, controller, and application.
SC: Sensor controller. AC: Actuator controller.



Figure 14.2 GIBCS‐CPS different layers.

Data routing rules will be saved on the smartphone. Back‐end
components include the GCPSO controller, database, and client
application that monitors the mobile app and sensors. The
proposed design’s architecture is shown in Figure 14.2. This
architecture has four layers:

1. User Layer;
2. SDN Layer;
3. Security Layer;

14.4 Blockchain Layer

User layer: The gateway (edge or fog node) mobile app
coordinates sensor‐target database traffic. The trusted authority



sends rules and policies to the mobile app via the GCPSO
controller. The sensors collect vital data from participants and
send it to the mobile app, which routes them depending on
smartphone app guidelines. Dedicated modules authenticate
and authorize mobile applications and sensors in the security
layer. The mobile app acts as a conduit between sensors and
target datasets. The trusted authority sends rules and policies to
the mobile app via the GCPSO controller. The sensors collect
vital participant data and send information to the mobile app,
which does routing as per smartphone app guidelines. Security
modules handle mobile app and sensor authentication/
authorization.

WSAN layer: The GIBCS‐CPS architecture core layer is the
WSAN. A NBI allows communication between a given level and
higher‐level components in the same network. In contrast, a
southbound interface (SBI) does the reverse, i.e., permits
communication among a particular component and lower‐level
parts. Controllers and northbound/southbound APIs are the
main WSAN network components. Southbound APIs in the
GIBCS‐CPS design will connect the mobile app to the WSAN
controller. The WSAN controller uses northbound APIs to
implement the protective layer. This connection allows the
security platform’s modules to access southbound APIs on all
WSAN controller‐linked nodes (mobile apps and sensors). The



controller controls the security layer module‐mobile app
interactions. Additionally, the controller has its apps and
services. This GIBCS‐CPS architecture features routing, which
identifies and conveys sensor data.

Security layer: The security integration layer connects and
orchestrates security modules. Figure 14.3 depicts the GCPSO
security and privacy components.

Blockchain layer: The design utilizes permissioned blockchain
to securely and quickly connect system actors. It has two
phases:

‐ The first phase documents approved actions, system actors
log in, and use dedicated interfaces (APIs). It may include
sensitive information.
‐ In the second, blockchain‐supported infrastructure domain
miners will add information to the blockchain by unraveling
the PoW procedure. Blockchain nodes that can add data are
the ones containing only miners. The blockchain is not
updated if a miner cannot solve the PoW CA routine.

14.4.1 WSAN‐Based Network Model

14.4.1.1 WSAN Overview



Figure 14.3 illustrates WSAN splitting the network into data,
control, and application planes. Data planes send and receive
network communication. Traffic transfer decisions are made at
the control plane. The device plane stores WSAN programs.



Figure 14.3 WSAN architecture. Application layer: physical HW, virtual machines,
virtual hosts. Network control layer: regulates the network. Infrastructure layers:
programmable switches.

WSAN applications may disseminate their SW and HW statistics
and inbound connections to the northbound controller
interface. Applications can also notify the controller of network



management commands akin to flow rule addition or removal
and are designed to achieve specific purposes, employing
controller data and other sources to decide if the network
should be altered. Applications receive only the control plane
permissions (such as read, write, notification, and target device
ID) from the controller’s access control sub‐system.

14.4.1.2 Problem Statement

Altering and controlling network status with different
applications is a paramount WSAN feature. Supporting third‐
party growth undermines confidence. Third‐party apps
represent a CT since trusted SW modules are hard to determine.
Policies in the WSAN allow network applications to directly
alter WSAN‐reliant networks [78]. Many WSAN controllers
necessitate authentication, sanction, and logging aptitudes.
When third‐party applications contact a northbound interface
(NBI), administrators assume the same as the network
applications’ controller. Applications can misuse policies to leak
data or destroy specialized networks, causing widespread
damage. The confidence management system for the NBI of the
WSAN controller performs business sector monitoring. This
strategy should address trust management characteristics [79].



Dynamicity: The confidence level should vary throughout a
user’s interaction with an application.

Content dependency: The application’s skill to win confidence
may rest on the target task.

Subjectivity: The trust management system should consider
WSAN features (e.g., equipment and information assets).

Likewise, any WSAN TMS must meet the criteria and adhere to
these principles:

Proof of identity: Nodes involved in a communication must
authenticate each other when/where obligatory.

Least privilege: Privileges are granted in line with the request.

Inspect and log: Incidents must be scrutinized and reported
aptly for security motives.

As the range of network approaches for TMS is broad, a
possible solution is to combine multiple frameworks as below
[80].

Certificate‐based: This structure should provide
authentication.



Policy‐based: A framework must discern permissible acts for
applications.

Behavior‐based: This arrangement tracks and analyzes
application activities to assign a confidence rating.

14.5 Trust Management

The suggested TSM for a WSAN‐based domain platform
concentrates on the WSAN architecture, which is the
communication part of the business sector. The recommended
architecture establishes trust between the control layer and
network applications. Figure 14.4 illustrates the framework
linking applications to the WSAN architecture’s control layer.
The structure is made up of five elements depicted next.

14.5.1 Authentication Module

Application requests for control plane network modifications
trigger the framework’s authentication with control plane
challenges credentials following the submission. The controller
allows or refuses network service after confirming application
credentials. This text will not discuss authentication because it
needs further detail, but it emphasizes CS.



14.5.2 Authorization Module

It controls two groups of app permissions. One set includes
necessary rights that, if misused, might have profound effects,
while the other covers non‐critical rights. The “trust database
module” (TDM) tracks all permissions. The functions they
perform divide apps into two types. Security programs come
first and foremost. Applications without security priority are
second. CS applications can limit a static administrator’s
network security policy in reaction to new run‐time CTs,
including malevolent traffic, contaminated internal resources,
blacklist‐worthy external entities, and dangerous aggregate
traffic patterns.

Figure 14.4 Trust management modules and interactions.



14.5.3 Trust Database Module

The TDM is a data storage constituent that keeps track of all
characteristics and values needed for the framework’s
assessments and determinations. Both functions consult the
database for warehoused data. The network administrator
arbitrarily determines the values allotted to several network
applications. The TDM computes a permissions‐requesting
program’s trust value (TV) that depends on four elements [81,
82].

1. Reputation sub‐system: It assesses historical interactions
between nodes.

2. Operational risk sub‐system: The network parts affected by
the application may be missing.

3. Information risk sub‐system: It handles possible knowledge
disclosure losses.

4. Privacy level sub‐system: The network traffic device
perceived by the WSAN controller.

The TDM gauges the TV, employing some constants and the
above variables. The display, i.e., TV, is sent to the “access
control decision” (ACD) module. Users will have interfaces to
count appropriate and significant hazards and set two



“threshold TVs” (TTVs), which are “acceptable” and “crucial”
since risk variables vary by network.

14.5.4 Access Decision Control (ACD)

This segment assigns the calculated TV from the trust section to
one of the zones itemized beneath. The ACD module governs
the application’s trustworthiness by checking this TV.

Critical zone: If an application’s confidence level remains
deficient, it should cease work and cut off;
Surveillance zone: For a medium‐level confidence
application, decisions must address the “monitoring and
evaluation” (ME) module, aka MEM;
Trusted zone: For a high‐level confidence application, it
works with the MEM that habitually observes it.

The application’s confidence level drops as the TV value falls.
The MEM decisions are founded on observations.

14.5.5 Monitoring and Evaluation Module (MEM)

Controller‐network application relationships should be
frequently evaluated. The MEM monitors the ACD module
actions and checks trustworthy regions’ log files for incorrect
activity requests. The module surveils the region corresponding



to the application log files and reports to the WSAN controller
administrator.

Assessing the application’s behavior helps manage and adjust
its “reputation value” (RP). The MEM evaluation process has
positive users’ defined constants A, B, and C. If the program
requests illegal rights, this module lowers RP. If no deviant
occurrences are found, it may boost RP.

14.6 Blockchain for Secure Monitoring
Back‐End

Bitcoin possesses a reward mechanism in PoW, where the
vulnerable proof‐of‐work CA is responsible for most of these
CTs. In many cases, Bitcoin was also found vulnerable to other
CTs, including DoS [83] and bypassing the authentication [84,
85]. Ethereum conquered many of these security concerns,
albeit somewhat weak. The crowdfunded “decentralized
autonomous organization” (DAO) [84] project on the Ethereum
blockchain was a renowned blockchain application. However,
the outbreak on DAO later led the Ethereum to split into the
Ethereum and Ethereum Classic. Several SCs were also
vulnerable, and such incidents have continued.



It brought new thoughts, leading to a rapid blockchain security
enhancement. Lots of advances were advised in the traditional
PoW as a CA by developing new alternative CTs [86] like proof‐
of‐stack (PoS), which does not require mining and reduces
environmental losses as in PoW. Previous research
strengthened these blockchains and focused on security aspects
[87, 88].

Blockchain‐founded surveillance within CPSs is an auspicious
ICT development that can handle data gathering with security
and privacy caveats throughout stakeholders’ scrutiny. All
monitoring procedures relate to the beforehand computed TV.
They are afterward encrypted and held in the blockchain,
warranting the system’s CS.

A miner’s (like a WSAN controller’s) block comes, and the
“blockchain domain server” verifies the nonce’s legitimacy
before adding it to the blockchain. However, one server can
receive many blocks. Therefore, the blockchain may fork. A
distributed CA should fix this problem. Servers can fork or add
blocks. The branch with the most servers grows fastest. The
longest one becomes the network’s distributed CA, while the
others are deleted. The servers will also save their blocks in
erased forks and add them to the blockchain later. This strategy
ensures every server has an identical blockchain.



The fallouts from numerous investigations point to the fact that
previous CTs inspire blockchain research in CS domains.
However, several CT prevention methods have been introduced
[89] to quickly curb uncovered vulnerabilities to stop or reduce
the CT impact. Then, these works have been centered on
analyzing the reasons for different CTs and alleviating them to
mend the affected blockchain network. Besides, CTs’ data from
several business sectors can aid in estimating relationships
among CTs on new blockchain networks.

The CVEs from the preceding years have consistently
augmented the number of vulnerabilities, which calls for
research about estimating more exposures and preparing
solutions before new attacks to increase upcoming blockchains’
safety. FL can also help more effectually with this purpose.
Likewise, efforts may ensue in discovering the best risk
assessment methodology in blockchain tools. Along with the
research on developing technical solutions for possible CT
detection and risk assessment in forthcoming blockchains, fresh
work should look at the finest tactics for application security
and evaluation.

Blockchains’ CS and accompanying risk assessment must be
prioritized for many potential network CTs. The “Common
Vulnerability Scoring System” (CVSS) can prioritize faraway



code execution to uncover vulnerabilities by scoring them. Due
to a temporal mismatch between vulnerability discovery and
score assignment, methods to help with this have been
developed. Sorting risk assessment steps to suitably address
blockchain CTs becomes a notable struggle, and the blockchain
application domain affects vulnerability occurrence. Due to
these reasons, risk assessment methods must be studied, and
best practices must be defined for most blockchain networks’
diversity. The goal should also prioritize vulnerability testing
for good and logical reasons.

ML approaches for estimating highly possible attacks for
dedicated blockchains can be developed due to a noticeable
growth in the subsequent CS domain through more protected
electronic cash dealings or cryptocurrencies to plenty of
application domains. Several ML‐based approaches have been
introduced to detect attacks like DDoS. Federated learning (FL)
[90, 91] and blockchain and FL influence go beyond financial
services to expand the privacy, security, and trust of CPSs.
Metaverse and digital twins can help improve the service
ecosystems. Finally, unraveling future challenges has
demanded insights from businesses and investigators, owning
to progress in scalability and integration. This will intensify the
network complexity and escalate the CA scope even further.
Detecting and mitigating possible attacks in such situations also



requires more advanced steps. Hence, ML possibilities should
be analyzed for dynamic risk assessment and CT hunting early
in blockchain‐centered solutions. Hybrid architectures are also
in trend, aiming to successfully manage transactions’ on‐ and
off‐chain processing. Novel solutions might also be scalable,
utilizing ML to resolve and accomplish off‐chain processing.

14.7 Blockchain‐Enabled Cybersecurity:
Discussion and Future Directions

Furthermore, WSANs support communication with more
adaptability and control over observed and controlled devices.
This integrated platform and in‐built applications can alleviate
the GCPSO’s functionality and security. The GIBCS‐CPS can
provide efficient GCPSO checking operations with negligible
energy intake and overhead, which is paramount to the
business sector [92]. Future work may add more architectural
functionalities, such as crafting a user‐friendly interface to
simplify tasks, perform distant actions in emergencies, and
predict unfavorable situations.

Improving CS measures, building a safe online environment,
and ensuring the quick availability of information
simultaneously seem to be an ever‐lasting challenge.



Unfortunately, despite these technical advancements, many
previous works indicate that the overall blockchain network is
still prone to CTs [93–95]. Vulnerable CAs can create some CTs,
ultimately disturbing every blockchain network part. The
“Common Vulnerabilities and Exposures” (CVE) comprises a
database and system [96–100] for publicly sharing information
on CS defenselessness.

The ranking of vulnerabilities includes various variables,
including online application data analysis by individuals and
organizations. Companies/organizations can receive
contributing data or keep it anonymous. Data sources include
bug bounty programs, safety consultancies, and vendors.
Supporters provide the data period, web application count, and
MITRE “common weakness enumerations” (CWEs).
Contributors must disclose core CWE application numbers.
Totaling all tested apps and comparing them to CWE‐affected
applications yields the incidence rate. The top results are
ranked based on application and security professionals’ surveys
to analyze vulnerabilities’ fundamental causes from symptoms
wherever possible.

Early detection and mitigation of possible CAs is advantageous
to ensure proper security for existing and upcoming
blockchains. Due to preexistent CT vectors’ close relation,



selected blockchains’ sub‐parts could be highly susceptible to
attacks, requiring different designs for blockchain modeling
and its applications. An intelligent modeling approach not only
understands these issues but also unlocks the doors for even
more or similar applications [56].

14.8 Conclusions

Business sector monitoring and remediation systems are handy
for mentoring and assessing stakeholders’ well‐being. In
addition, they expose stakeholders to computer hacking risks.
The “general intelligent blockchain CS CPS” (GIBCS‐CPS) centers
on a structure that employs participants’ resources, including
reliable information, multimedia coordination, and records
retrieval blended with possible remote decision‐making and
control supporting IoT integration, “BD” and protocols to inhibit
people’s records from leaking.

Cloud and fog computing usage equips blockchain with a
flexible and cost‐effective service by on‐demand resource
sharing, bringing together extra security risks. The combination
of improved CPSs relying on blockchain allows for continuously
evaluating attack surface changes consistent with the cloud/fog
environments. Dynamic qualities give defenders a tactical gain
against threats. Still, when gauging the architecture



effectiveness, the character of traditional security evaluation
methods becomes unstable, especially when merging multiple
ICT elements and techniques. Hence, there is a lack of standard
ways to quantitatively appraise such frameworks’ effectiveness.

Additionally, a hierarchical architecture allows utilizing each
network layer separately for the effectiveness appraisal of each
circumstance. The GIBCS‐CPS helps grasp and enlist
relationships between the CS traits of blockchain, many types of
vulnerabilities, and other caveats [101–103]. Prospect research
dimensions concerning cybersecurity and blockchain are also
debated.

The GIBCS‐CPS fortifies all parts of a generic business sector’s
control, surveillance, and drawbacks’ remediation of systemic
components. It also conserves stakeholders’ privacy by erecting
diverse security modules to function together and, conditional
to blockchain technology, to defend the “general CPS ontology”
(GCPSO).
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15.1 Introduction to the IoT Security

The Internet of Things (IoT), which allows common gadgets to
be connected to the internet and communicate with one
another, has completely changed how we engage with
technology. IoT devices generate vast amounts of data,
providing businesses and consumers with unprecedented
opportunities to collect, analyze, and gain insights from this
data. However, this increased connectivity and data generation
also pose significant challenges for organizations, requiring



them to adopt new approaches to manage, store, and analyze
IoT data. The emergence of big data has further amplified the
importance of IoT in modern society. Big data refers to the
collection, processing, and analysis of large and complex
datasets that cannot be processed using traditional data
processing techniques. IoT devices generate massive amounts
of data, including sensor data, telemetry data, and user‐
generated data. This data can be used to gain insights into
consumer behavior, product usage, and operational efficiency,
among other things.

However, the volume, velocity, and variety of data generated by
IoT devices present significant challenges for data storage,
processing, and analysis. Traditional data processing
techniques are often insufficient to handle the massive scale
and complexity of IoT data, requiring organizations to adopt
new approaches, including big data analytics. The combination
of IoT and big data has created a new paradigm that offers
unprecedented opportunities for innovation, growth, and
insights. However, this combination also poses significant
challenges, including data privacy, security, and compliance. As
the number of IoT devices continues to grow, so does the
potential for cyber threats and data breaches, making IoT
security a top priority for organizations.



The importance of IoT security in big data cannot be overstated.
IoT devices generate vast amounts of data that are collected and
analyzed to gain insights and improve operational efficiency.
However, this data also contains sensitive and personal
information that must be protected from cyber threats. IoT
devices are often connected to critical infrastructure, such as
energy grids, transportation systems, and healthcare facilities
[1]. An attack on these devices can result in significant financial,
operational, and reputational damage. Additionally, as the
number of connected devices increases, so does the attack
surface, making it more challenging to protect IoT systems from
cyber threats. Moreover, the data generated by IoT devices is
often unstructured and complex, making it difficult for
traditional security methods to detect and mitigate threats. The
sheer volume, velocity, and variety of data generated by IoT
devices pose significant challenges for security teams, requiring
them to adopt new approaches and technologies to address
these challenges.

Therefore, ensuring the security of IoT devices and the data
they generate is critical to maintaining the integrity and
trustworthiness of IoT systems [2]. Failure to protect IoT devices
and data can result in severe consequences for businesses,
consumers, and society as a whole. As a result, IoT security is a
top priority for organizations, and the use of big data analytics



and deep learning (DL) approaches is essential to address the
unique security challenges posed by IoT in the big data era.

The emergence of the IoT has created new opportunities for
businesses [3] to collect and analyze data, but it has also posted
significant challenges for IoT security. The sheer volume,
velocity, and variety of data generated by IoT devices have
made it more difficult for organizations to protect their IoT
systems from cyber threats. Figure 15.1 shows some of the
significant big data challenges in IoT security.

Data collection and processing: IoT devices generate vast
amounts of data in real time, which must be collected,
processed, and analyzed. The sheer volume of data generated
by IoT devices makes it difficult for organizations to manage
and process this data effectively.
Data privacy and compliance: IoT devices collect sensitive
and personal information, making it critical to ensure that
this data is handled securely and in compliance with relevant
data privacy regulations. However, ensuring data privacy [4]
and compliance is a challenging task due to the massive
amounts of data generated by IoT devices.
Data storage and management: As the volume of data
generated by IoT devices continues to grow, organizations
must find ways to store and manage this data efficiently. This



requires the adoption of new storage and management
approaches, including distributed storage and cloud‐based
solutions.
Real‐time analysis: IoT devices generate data in real‐time,
which requires real‐time analysis and response to prevent
cyber threats. However, traditional security methods are
often insufficient to address real‐time analysis and response
requirements.



Figure 15.1 Big data challenges in IoT security.

Data integration: IoT devices generate data from different
sources and in different formats, making it difficult to
integrate this data with existing IT systems. Integration
challenges can lead to data silos, making it difficult to gain a
complete understanding of IoT systems.



Addressing these big data challenges is critical to ensuring the
security of IoT devices and the data they generate. The use of
big data analytics and DL approaches can help organizations
overcome these challenges and improve the security of IoT
systems [5]. There are various DL approaches that can be used
to enhance IoT security. These approaches are based on
machine learning algorithms that enable the identification of
potential cyber threats and help prevent them from causing
damage. Some of the different DL approaches for IoT security
include:

Deep neural networks (DNNs) are a subset of neural
networks that may be trained to spot patterns in data. These
networks may be utilized to find IoT data abnormalities that
could be signs of a cyber danger.

Table 15.1 below shows the Comparative Analysis of related
work around deep learning, IoT, and big data.



Table 15.1 Comparative analysis of related work around deep learning, IoT, and big
data.

References A B C D Major findings

[8] √ √ √ × The goal of this project
is to employ big data
analysis to make smart
cities’ data processing
more secure and
effective. The study
uses distributed
parallelism and deep
learning methods to
deal with the massive
volumes of multi‐
source data gathered in
the smart city



References A B C D Major findings

[9] √ √ √ × The architecture
proposed in this paper,
called Wearable Deep
Learning
(WearableDL), blends
deep learning, the
Internet of Things, and
wearable technology. It
is inspired by the
human nervous
system. The spinal cord
represents the Internet
of Things (IoT) for
cloud computing and
big data flow/transfer,
while the peripheral
sensory and motor
nerves represent
wearable technology as
edge devices for big
data gathering



References A B C D Major findings

[10] √ √ × √ This paper proposes a
deep learning model
for diagnosing
gallbladder stones
using big data from the
medical IoT. As
gallbladder stones
become more common
worldwide, the stones
can be classified into
four types based on
their chemical
composition

[11] √ √ × × The conceptual
framework for cyber‐
physical
manufacturing systems
is presented in this
study and is based on a
literature review. The
World Economic



References A B C D Major findings

Forum, Capgemini,
Microsoft, Omdia, PwC,
and Software AG are
just a few of the
sources that the
framework uses data
from. This study
examines and
quantifies the
relationship between
deep learning,
industrial big data
analytics, and smart
process planning as
they relate to
sustainability

[12] √ √ × × In order to improve
large data feature
learning and feature
fusion, this study
suggests a deep



References A B C D Major findings

learning model called
tensor deep learning
(TDL). TDL converts
vector space data to
tensor space and
utilizes tensors to
describe the
complexity of
multisource
heterogeneous data.
The average square
sum error component
of the output layer
reconstruction error is
changed to the tensor
distance in order to
better grasp the data
distribution. A high‐
order back‐propagation
approach is also
suggested in the study



References A B C D Major findings

to train the model’s
parameters

[13] √ √ × × In order to obtain high
classification accuracy
for identifying assaults
in distributed systems,
the study introduces a
Distributed Attack
Detection Model
(DADEM) that blends
deep learning with Big
Data analytics. As a
result of its superior
performance over
other algorithms
including logistic
regression, KNN, ID3
decision tree, CART,
and SVM, the
sequential deep
learning model is



References A B C D Major findings

chosen as the
classification engine.
The suggested model
obtains a classification
accuracy of 99.64% and
99.98% for two
separate datasets. A
strategy is also put out
for improving the
model to lessen
overhead in a limited
setting like IoT



References A B C D Major findings

[14] √ √ √ × The paper provides an
overview of how deep
learning is used in the
IoT domain to process
large amounts of data.
It describes the
characteristics and
requirements of IoT
and explains why deep
learning a good choice
for IoT implementation
is



References A B C D Major findings

[15] In order to guarantee
the secrecy and
integrity of
collaborative DL in IoT,
BlockDeepNet is a
secure deep learning
(DL) strategy for the
IoT that integrates DL
with blockchain. To
prevent privacy leaks,
collaborative DL is
used at the device level,
while blockchain is
used to assure security.
Higher accuracy for DL
may be attained by
BlockDeepNet with
tolerable latency and
computational
overhead of blockchain
operation



A: deep learning; B: machine learning; C: Internet of Things; D:
big data.

Convolutional neural networks (CNNs) are a type of neural
network that can be used to analyze visual data, such as
images and videos. In IoT security, CNNs can be used to
analyze security camera footage and detect potential threats.
Recurrent neural networks (RNNs) are a subset of neural
networks that are good at analyzing sequential data, which
makes them ideal for IoT security. They may be used to find
possible cyber dangers by tracking trends in IoT data over
time.
GANs (generative adversarial networks) are a class of
neural network that can create new data by learning from
old data. They may be used to produce fake data that can be
tested to see how well IoT security mechanisms work.
Autoencoders: Autoencoders are a type of neural network
that can be used to detect anomalies in data. In IoT security,
they can be used to detect abnormal patterns in sensor data
that may indicate a cyber threat.

These DL approaches can help organizations detect potential
cyber threats in IoT data and prevent them from causing
damage. By leveraging the power of machine learning



algorithms, organizations can improve the security of IoT
systems and protect sensitive data from cyber threats.

In this chapter, we will explore the use of DL approaches for IoT
security in the big data era. We will discuss the challenges of
IoT security, including the growing number of connected
devices, the complexity of IoT systems, and the need to protect
sensitive data. We will also provide an overview of various DL
techniques and architectures that can be used for IoT security,
including anomaly detection, intrusion detection, malware
detection, and attack attribution. Additionally, we will discuss
the use of big data platforms for IoT security data analysis and
provide examples of real‐world applications of DL for IoT
security.

15.2 Role of Deep Learning in IoT Security

As the number of connected devices continues to rise, DL’s role
in IoT security is becoming more and more crucial. DL
algorithms may be used to evaluate massive volumes of data
generated by IoT devices in real time, spot possible security
problems, and take the necessary precautions to stop them. DL
can evaluate complicated data patterns that could be
challenging to find with conventional security methods, which
is one of its primary advantages in IoT security. As an



illustration, DL algorithms may examine network data and spot
odd patterns that could point to the presence of a botnet or a
cyberattack. Similar to how sensor data may be analyzed, DL
algorithms can be used to spot abnormalities that could be signs
of security concerns. DL’s capacity to instantly react to new
threats is another benefit for IoT security. DL algorithms are
capable of learning to recognize new security dangers as they
appear by being educated on massive volumes of data. By doing
so, businesses may keep ahead of cyber threats and safeguard
IoT devices from constantly emerging security vulnerabilities.

Additionally, DL may be utilized to enhance the precision and
effectiveness of current security systems. For example, DL
algorithms can be used to enhance intrusion detection systems
by identifying patterns that may indicate a cyberattack.
Similarly, DL techniques can be used to improve the accuracy of
malware detection systems by identifying common patterns
that may indicate the presence of malware on an IoT device.

In addition to these benefits, DL can also be used to protect
sensitive data generated by IoT devices. Privacy‐preserving
techniques, such as federated learning, can be used to train DL
algorithms on encrypted data without compromising the
privacy of the underlying data. This can help organizations
protect sensitive data, such as personal information and



medical data, generated by various types of IoT devices. The
role of DL in IoT security is critical for protecting IoT devices
and sensitive data from cyber threats. DL techniques can be
used to analyze large amounts of complex data in real time,
identify potential security threats, and take appropriate
measures to prevent them. The use of DL in IoT security can
help organizations improve the accuracy and efficiency of
existing security solutions and adapt to new and evolving
security risks.

DL techniques have been increasingly popular in recent years
because of their capacity to evaluate vast volumes of
complicated data and spot patterns that conventional security
solutions can find challenging to notice. DL techniques have
grown more crucial around IoT security since IoT devices
produce enormous volumes of data that need real‐time analysis
to stop cyberattacks. Figure 15.2 shows the DL techniques that
are commonly used for IoT security.

Anomaly detection: Anomaly detection is a technique that
can be used to identify data patterns that deviate
significantly from the normal behavior of IoT devices. DL
algorithms can be trained on large amounts of data to
identify unusual data patterns and flag them as potential
security threats. Anomaly detection can be applied to various



IoT devices, such as sensors, cameras, and connected
vehicles.
Intrusion detection: Intrusion detection is a technique that
can be used to identify and respond to cyberattacks on IoT
devices. DL algorithms can analyze network traffic and
identify unusual patterns that may indicate a cyberattack.
Intrusion detection can be used to protect IoT devices from
various types of attacks, such as denial‐of‐service attacks and
man‐in‐the‐middle attacks.
Malware detection: Malware detection is a technique that
can be used to identify malicious software that may be
present on IoT devices. DL algorithms can be trained on
malware samples to identify common patterns that may
indicate the presence of malware on an IoT device. Malware
detection can be applied to various types of IoT devices, such
as routers, cameras, and smart home devices [6].
Botnet detection: Botnet detection is a technique that can be
used to identify and respond to botnets that may be present
on IoT devices. Botnets are networks of compromised devices
that can be used to launch cyberattacks on other devices or
networks. DL algorithms can analyze network traffic to
identify patterns that may indicate the presence of a botnet.
Attack attribution: Attack attribution is a technique that can
be used to identify the source of a cyberattack on an IoT



device. DL algorithms can analyze network traffic and
identify patterns that may be associated with a particular
attacker or group of attackers. Attack attribution can help
organizations identify the source of cyberattacks and take
appropriate measures to prevent future attacks.

Figure 15.2 Deep learning techniques in IoT security.



Vulnerability assessment: Vulnerability assessment is a
technique that can be used to identify vulnerabilities in IoT
devices and networks. DL algorithms can analyze network
traffic and identify patterns that may indicate vulnerabilities
in IoT devices. Vulnerability assessment can help
organizations identify potential security risks and take
appropriate measures to address them.
Privacy‐preserving techniques: Privacy‐preserving
techniques are a set of techniques that can be used to protect
sensitive data generated by IoT devices. DL algorithms can be
trained on encrypted data to analyze patterns without
accessing the underlying data. Privacy‐preserving techniques
can be used to protect sensitive data, such as personal
information and medical data, generated by various types of
IoT devices.

DL techniques are becoming increasingly important for IoT
security due to their ability to analyze large amounts of
complex data in real time. Organizations can use these
techniques to protect IoT devices from various types of cyber
threats, such as malware, botnets, and cyberattacks. The use of
DL techniques can help organizations improve the security of
IoT devices and protect sensitive data from cyber threats.



15.3 Deep Learning Architecture for IoT
Security

DL architectures for IoT security typically involve several layers
of neural networks that are trained on large amounts of data to
identify patterns and anomalies that may indicate potential
security threats. The architecture may differ depending on the
specific use case and data type, but some common components
include:

Input layer: This layer receives data from IoT devices, which
could include sensor data, network traffic, or other types of
data.
Hidden layers: These layers consist of multiple neural
networks that process and analyze the input data to identify
patterns and anomalies. The number of hidden layers can
vary depending on the complexity of the data and the desired
level of accuracy.
Output layer: This layer produces the final output of the DL
model, which could be a prediction, classification, or
anomaly detection.

There are several DL architectures that are commonly used in
IoT security, including:



CNNs are a subset of DL algorithms that are frequently
employed in the analysis of images and videos. However,
they may also be used to analyze other forms of data, such as
sensor data produced by IoT devices.
CNNs are created to find patterns in data by extracting
features from convolutional filters. Small sections of the
input data are subjected to these filters one at a time, and the
resulting feature maps are processed by further layers of
neural networks to find increasingly intricate patterns. The
capacity of CNNs to automatically learn features from data,
without the need for manual feature engineering, is one of its
main advantages. They are therefore suitable for high‐
dimensional and complicated data, such as time‐series data
or photographs.

CNNs typically consist of several layers, including:

Layer that uses convolutional filters to extract features from
the input data is known as the convolutional layer.
Throughout the training process, the filters are picked up.
The pooling layer preserves the most crucial characteristics
while reducing the dimensionality of the feature maps
produced by the convolutional layer.
Convolutional and pooling layer output is processed by the
fully connected layer to get a final prediction or



classification.

CNNs have been effectively used for a variety of IoT security
tasks, including virus detection using audio and video as well as
image‐based intrusion detection. They are especially helpful for
applications involving the analysis of plenty of visual data, such
CCTV video or satellite photos.

RNNs are a type of DL algorithm that are commonly used for
sequential data, such as time‐series or text data. Unlike
traditional feedforward neural networks, RNNs can handle
variable‐length inputs and maintain internal state, making
them well‐suited for tasks that involve analyzing sequences
of data. RNNs process input data one timestep at a time,
where each timestep corresponds to one element in the
sequence. At each timestep, the RNN updates its internal
state based on the current input and the previous state. This
allows the network to capture information about the
sequence history and use it to make predictions about future
elements in the sequence.

One of the key advantages of RNNs is their ability to model
temporal dependencies in data, making them well‐suited for
tasks such as language modeling, speech recognition, and time‐
series prediction. In addition, RNNs can be used in combination



with other types of DL algorithms, such as CNNs, to process
sequential data with complex spatial and temporal patterns.

RNNs come in several different forms, including:

Simple RNNs: The simplest form of RNN, which uses a single
recurrent layer to process input sequences.
Long short‐term memory (LSTM) networks: A more complex
form of RNN that includes additional memory cells and gates,
allowing them to better capture long‐term dependencies in
data.
Gated recurrent units (GRUs): A simplified version of LSTM
networks that are faster to train and require fewer
parameters.

RNNs have been successfully applied to a wide range of IoT
security tasks, including time‐series anomaly detection,
malware detection, and intrusion detection. They are
particularly useful for tasks that involve analyzing sequential
data, such as sensor data generated by IoT devices over time.
RNNs are a powerful DL algorithm that can handle variable‐
length inputs and maintain internal state, making them well‐
suited for tasks that involve analyzing sequences of data. They
can be used in combination with other types of DL algorithms
to process sequential data with complex spatial and temporal



patterns. RNNs have been successfully applied to a wide range
of IoT security tasks, particularly those involving sequential
data.

Autoencoders are a kind of neural network called an
autoencoder that is frequently employed for unsupervised
learning tasks including dimensionality reduction and
feature extraction. The goal of autoencoders is to learn a
compressed representation of the input data with the least
amount of information lost during encoding and decoding.
An encoder network and a decoder network are the two
major components of an autoencoder. The input data is
received by the encoder network, which transforms it into a
compressed representation, or “latent space,” that has less
dimensions than the original data. The decoder network then
uses the compressed representation to map it back to the
original data in an effort to properly recreate the input. The
difference between the input data and the output of the
decoder network is measured and used to train
autoencoders. A compressed representation of the input data
that captures its most crucial aspects is learned by the
autoencoder by minimizing this loss.
Autoencoders have the potential to learn intricate data
representations in an unsupervised fashion without the
requirement for labeled training data, which is one of its



main advantages. As a result, they are highly suited for jobs
that require examining and analyzing huge databases, such
as text or picture data. Numerous IoT security tasks, such as
virus identification, intrusion detection, and anomaly
detection, have been successfully completed using
autoencoders. They are especially beneficial for jobs
involving the analysis of large‐scale data, such as sensor data
produced by IoT devices.
In order to handle complicated and high‐dimensional data
with spatial and temporal patterns, autoencoders can also be
used in conjunction with other DL methods, such as CNNs or
RNNs. A potent DL method called an autoencoder can learn
intricate data representations without the use of labeled
training data. They work effectively for jobs that require
examining and analyzing huge datasets, especially when the
data is high dimensional. In order to analyze complicated
and high‐dimensional data, autoencoders may be combined
with other DL algorithms. They have been effectively
employed for a variety of IoT security applications.
A  generator network and a discriminator network make up
the two neural networks that make up the DL method known
as GANs. GANs are employed in generative modeling, which
entails developing a model that can produce fresh data that
is comparable to an existing dataset. The generator network



creates a fresh sample of data that is meant to be identical to
the training data by receiving a random noise vector as
input. The discriminator network receives a sample of data,
either created by the generator network or taken from the
training set, and attempts to identify whether it is real or
fraudulent.

A technique known as adversarial training is used to train both
the discriminator and generator networks simultaneously.
While the discriminator network works to separate the created
data from the genuine data, the generator network attempts to
create data samples that would deceive it into categorizing
them as real. The generator network gains the ability to
produce increasingly realistic data samples as the training
process goes on, tricking the discriminator network.

GANs have been applied to a variety of tasks, including the
creation of literature, music, and images and videos. GANs may
be used for tasks like producing synthetic data for training
anomaly detection models or producing adversarial instances
to evaluate the resilience of DL models in the context of IoT
security.

Even for complicated datasets like photos or videos, GANs can
produce realistic data samples that are comparable to the



training data. This is one of its key advantages. GANs may be
difficult to train, and they are prone to instability, which can
cause mode collapse or other training issues. A potent DL
approach called GANs may be applied to generative modeling
tasks, such as the creation of images and videos. They have a
variety of uses in IoT security, including producing synthetic
data for training anomaly detection models and adversarial
instances to evaluate the resilience of DL algorithms. While
GANs can be challenging to train and prone to instability, they
are a valuable tool for DL researchers and practitioners.

DL architecture for IoT security involves multiple layers of
neural networks that are trained on large amounts of data to
identify patterns and anomalies. The specific architecture may
vary depending on the use case and data type, but commonly
used architectures include CNNs, RNNs, autoencoders, and
GANs. The use of DL in IoT security can help organizations
identify and prevent potential security threats in real time.

15.4 Future Scope of Deep Learning in IoT
Security

The future scope of DL in IoT security is vast and promising.
With the rapid growth of IoT devices, there is an increasing



need for robust and efficient security mechanisms to protect
against cyberattacks. DL offers a range of techniques and
algorithms that can help to address this challenge, and there
are several areas where DL is expected to play an important
role in the future of IoT security:

Real‐time detection and response: DL algorithms can be used
to detect and respond to cyberattacks in real time, enabling
IoT systems to rapidly adapt and defend against evolving
threats.
Enhanced privacy and data protection: DL can be used to
develop new privacy‐preserving techniques for IoT data,
ensuring that sensitive data is protected even in the event of
a breach.
Improved anomaly detection: In IoT systems, DL algorithms
can assist in increasing the efficacy and accuracy of anomaly
detection while lowering the likelihood of false positives and
false negatives.
Adversarial machine learning: DL techniques can be used to
develop robust machine learning [7] models that are
resistant to adversarial attacks, ensuring that IoT systems
remain secure even in the face of sophisticated attackers.
Federated learning: Through the use of federated learning,
many IoT devices may work together to train a machine
learning model without disclosing private information. This



method may be used to create IoT security models that are
more precise and effective.

Overall, the future of DL in IoT security looks bright, with new
techniques and algorithms being developed and applied to
address the complex and evolving security challenges posed by
IoT systems. As the number of IoT devices continues to grow, DL
will play an increasingly important role in ensuring the security
and integrity of these systems.

15.5 Conclusion

IoT security is an important and challenging field that requires
robust and efficient solutions to protect against cyberattacks.
DL approaches have emerged as a promising tool for
addressing the security challenges in IoT systems. In this
chapter, we have discussed various DL techniques such as
anomaly detection, intrusion detection, malware detection,
botnet detection, attack attribution, vulnerability assessment,
and privacy‐preserving techniques. The role of DL in IoT
security and the DL architectures such as CNNs, RNNs,
autoencoders, and GANs are also discussed in this chapter.
These architectures are capable of processing large amounts of
data, extracting meaningful features, and detecting complex
patterns in IoT systems. Moreover, the author highlighted the



big data challenges in IoT security and how DL can help in
addressing those challenges. DL algorithms can handle large
amounts of data, learn from the data, and generalize the
knowledge for new data, which is critical in IoT security, where
the amount of data is constantly increasing. The future scope of
DL in IoT security is also highlighted in this paper. With the
rapid growth of IoT devices, DL is expected to play an
increasingly important role in ensuring the security and
integrity of these systems. Real‐time detection and response,
enhanced privacy and data protection, improved anomaly
detection, adversarial machine learning, and federated learning
are some of the promising areas where DL can make significant
contributions to IoT security.

Ultimately, DL approaches offer a range of techniques and
algorithms that can help address the complex and evolving
security challenges posed by IoT systems. The future of DL in
IoT security looks bright, with new techniques and algorithms
being developed and applied to ensure the security and
integrity of IoT systems.

References

1 Singh, K., Kaushik, K., and Ahatsham, & Shahare, V. (2020).
Role and impact of wearables in IoT healthcare. Advances in



Intelligent Systems and Computing 1090: 735–742.
https://doi.org/10.1007/978-981-15-1480-7_67.

2 Kaushik, K. and Singh, K. (2020). Security and trust in IoT
communications: role and impact. Advances in Intelligent
Systems and Computing 989: 791–798.
https://doi.org/10.1007/978-981-13-8618-3_81.

3 Kaushik, K. and Dahiya, S. (2018). Security and privacy in IoT
based e‐business and retail. In: Proceedings of the 2018
International Conference on System Modeling and
Advancement in Research Trends, SMART 2018, 78–81.
https://doi.org/10.1109/SYSMART.2018.8746961.

4 Vashisht, S., Gaba, S., Dahiya, S., and Kaushik, K. (2022).
Security and privacy issues in IoT systems using blockchain.
Sustainable and Advanced Applications of Blockchain in Smart
Computational Technologies 113–127.
https://doi.org/10.1201/9781003193425-8.

5 Kaushik, K. (2022). The role of IoT in the design of a security
system. Advancing Computational Intelligence Techniques for
Security Systems Design 39–50.
https://doi.org/10.1201/9781003229704-3.

6 Bhardwaj, A., Kaushik, K., Bharany, S. et al. (2022).
Comparison of IoT communication protocols using anomaly
detection with security assessments of smart devices.
Processes 10 (10): 1952. https://doi.org/10.3390/PR10101952.

https://doi.org/10.1007/978-981-15-1480-7_67
https://doi.org/10.1007/978-981-13-8618-3_81
https://doi.org/10.1109/SYSMART.2018.8746961
https://doi.org/10.1201/9781003193425-8
https://doi.org/10.1201/9781003229704-3
https://doi.org/10.3390/PR10101952


7 Kaushik, K., Bhardwaj, A., Dahiya, S. et al. (2022). Multinomial
naive bayesian classifier framework for systematic analysis
of smart IoT devices. Sensors 22 (19): 7318.
https://doi.org/10.3390/S22197318.

8 Li, X., Liu, H., Wang, W. et al. (2022). Big data analysis of the
Internet of Things in the digital twins of smart city based on
deep learning. Future Generation Computer Systems 128: 167–
177. https://doi.org/10.1016/J.FUTURE.2021.10.006.

9 Dargazany, A.R., Stegagno, P., and Mankodiya, K. (2018).
WearableDL: wearable Internet‐of‐Things and deep learning
for big data analytics – concept, literature, and future. Mobile
Information Systems 2018:
https://doi.org/10.1155/2018/8125126.

10 Yao, C., Wu, S., Liu, Z., and Li, P. (2019). A deep learning
model for predicting chemical composition of gallstones with
big data in medical Internet of Things. Future Generation
Computer Systems 94: 140–147.
https://doi.org/10.1016/J.FUTURE.2018.11.011.

11 Throne, O. and Lazaroiu, G. (2020). Internet of Things‐
enabled sustainability, industrial big data analytics, and deep
learning‐assisted smart process planning in cyber‐physical
manufacturing systems. Economics, Management, and
Financial Markets 15 (4): 49–58.

https://doi.org/10.3390/S22197318
https://doi.org/10.1016/J.FUTURE.2021.10.006
https://doi.org/10.1155/2018/8125126
https://doi.org/10.1016/J.FUTURE.2018.11.011


12 Wang, W. and Zhang, M. (2020). Tensor deep learning model
for heterogeneous data fusion in Internet of Things. IEEE
Transactions on Emerging Topics in Computational
Intelligence 4: 32–41.
https://doi.org/10.1109/TETCI.2018.2876568.

13 Ahmed, H. I., Nasr, A. A., Abdel‐Mageid, S. M., & Aslan, H. K.
2021 DADEM: distributed attack detection model based on
big data analytics for the enhancement of the security of
Internet of Things (IoT). International Journal of Ambient
Computing and Intelligence (IJACI), 12(1), 114–139.
https://doi.org/10.4018/IJACI.2021010105, https://Services.Igi-
Global.Com/Resolvedoi/Resolve.Aspx?
Doi=10.4018/IJACI.2021010105.

14 Tiwari, R., Sharma, N., Kaushik, I. et al. (2019). Evolution of
IoT data analytics using deep learning. In: Proceedings ‐ 2019
International Conference on Computing, Communication, and
Intelligent Systems, ICCCIS 2019, 2019‐January, 418–423.
https://doi.org/10.1109/ICCCIS48478.2019.8974481.

15 Rathore, S., Pan, Y., and Park, J.H. (2019). BlockDeepNet: A
blockchain‐based secure deep learning for IoT network.
Sustainability 11 (14): 3974.
https://doi.org/10.3390/SU11143974.

https://doi.org/10.1109/TETCI.2018.2876568
https://doi.org/10.4018/IJACI.2021010105
https://services.igi-global.com/Resolvedoi/Resolve.Aspx?Doi=10.4018/IJACI.2021010105
https://doi.org/10.1109/ICCCIS48478.2019.8974481
https://doi.org/10.3390/SU11143974


Index

a

access control decision (ACD)  298
AC vulnerability  288
accuracy  6, 16, 21, 24, 26, 28, 34, 42, 43, 52, 54–57, 59, 95, 96,
99, 100, 102, 103, 121, 126–129, 136–138, 142–146, 148, 149,
158–160, 163, 168–170, 172, 177, 231, 234–237, 260, 267, 316,
317, 319, 322
actuators networks  197, 279–302
advanced encryption and decryption  110
advanced persistent threats (APTs)  207, 250
adversarial attacks  322
adversarial machine learning  322, 323
adversarial networks  315
affective computing  225
AI‐enhanced vulnerability management plans  194–195
AI‐powered backup (AIPB)  194
AI‐powered cyber protection and resilience  206–207
AI‐supported user authentication (AISUA)  191–192
algorithm choices  136, 137
Anaconda (programming tool)  173
analysis along the physical environment  259



Analyzing Mobile Endpoints  232
anomaly detection  9, 15, 120, 145, 148, 197, 249–271, 316,
317, 319–323
antivirus software  3
API Security Testing
application scenarios  259–271
application security  64, 66, 68, 71, 82, 84, 289, 299
artificial intelligence (AI)  4, 20, 33–43, 49, 63–86, 107–129,
181–210, 221, 249–271
asset inventory management (AIM)  186
association queries  257
attack attribution  262–263, 316–318, 323
attack path analysis  261–262
attack path modeling  189
attack surface (AS)  90–92, 188, 250, 301, 312
augmented reality (AR)  233
autoencoders  203, 316, 320–323
automated access control (ACC)  191, 192
automated isolation (AuI)  204
automated policy enforcement (APE)  187
automated remediation (AuR)  204
automated risk analysis and impact assessment  189
automated security control validation  187
automated vulnerability classification  188–189



automated vulnerability identification and assessment
(AVIA)  188
automation  34, 66, 67, 85, 108, 153, 206, 207, 226, 232, 233,
250, 261, 282, 289, 290

b

behavior analytics (BA)  231, 232
behavior‐based detection  4
big data  165–177, 181, 207, 222, 236, 251, 280, 311–323
binary classification  25, 144, 171, 196
blockchain  107, 115, 119–121, 197, 230, 231, 237, 270, 271,
279–302
botnet

attacks  19–30
detection  20, 23–24, 317, 323

c

chi‐square test  142, 144
classification  5, 6, 8, 12, 15, 16, 21, 25, 26, 28, 34, 43, 50, 94,
95, 97, 100–102, 121, 137–139, 144, 146, 148, 151, 158–160, 163,
166, 168, 171–174, 177, 186, 188–189, 193, 196, 197, 200, 203,
204, 236, 237, 251, 255, 258, 259, 263, 319
classification accuracy  158–160, 163, 174, 177



closed‐loop (CL)  285
cloud computing  19, 107, 181–210, 240
code analysis  94
collaborative learning  151
collaborative systems  225
common vulnerabilities and exposures (CVE)  189, 300
communications between sensors and actuators  222
consensus algorithms (CAs)  288
construction technology  270, 271
context‐aware systems  233
convolutional neural networks (CNNs)  5, 49, 137, 231, 315
corpus knowledge  270
Could Computing (CC)  222
credentials leak  66, 84
cryptographic failures (CFs)  289
CS entity relation extraction  257
cyberattack detection  19, 23, 136, 260, 316, 317, 322
cyberattack graph  189, 190, 252, 259, 260, 262
cyber‐physical systems (CPSs)  107, 121–126, 188, 222, 227,
249, 279
cyber‐remediation  206
cybersecurity

cybersecurity knowledge graph (CSKG)  271
provenance  254



cyber security rating platform  86
cyber‐situational awareness (CSA)  252
cyber threat intelligence (CTI)  116–119
cyber threats (CTs)  107–129, 135, 136, 149, 182, 258, 281,
311–313, 316–318

d

data analysis  49, 128, 158, 166, 196, 236, 301, 316
data‐driven tools  235
data encryption  287
data integrity  231, 291
data leakage prevention (DLP)  191, 193
data loss prevention (DLP)  231
data preprocessing  169
data privacy  270, 287, 292, 311, 312, 318
data transformation  158
DBSCAN Clustering  136, 139–141, 145, 146, 148
decentralization  288
decision‐making for cybersecurity  231
decision support for risk planning  190
decision tree  5, 20, 25, 26, 29, 43, 95, 136–138, 256
deep belief network (DBN)  49, 50



deep learning (DL)  4, 20, 30, 53, 54, 103, 120, 137, 165–177,
184, 221–240, 251, 311–323
deep neural networks (DNNs)  184, 223, 313
deep spectral recurrent neural network (DSRNN)  165–177
Dense‐net multi‐perception neural network  151–163
Dense‐net  151–163
detection of fake documents  207
device authentication  191, 192, 270
DevOps  63–86
DevSec Ops  63
digital learning  152
digital learning environments  152
digital twin (DT)  120, 300
dimensionality reduction  42, 117, 320
domain‐relevant expertise  257
dynamic analysis  3–6, 93, 98–103
dynamic link libraries (DLLs)  5
dynamic risk assessment  300

e

edge computing (EC)  108, 222, 229–233
edge security (ES) threats  230
E‐learning  151–163



emotion analysis methods  166
End Point Security  64, 66, 82, 85
enhanced privacy  322, 323
ensemble learning  137
entity disambiguation  251, 257
error recognition models  188
evaluation criteria  270–271
event correlation analysis (ECA)  264
evidence‐gathering  119
execution monitoring  191, 202

f

false rate analysis  159
feature analysis  4
feature‐based analysis  4
feature extraction  6, 13, 93, 101, 102, 121, 168–170, 177, 195,
197, 251, 265, 320
feature selection  6, 42, 100, 101, 136, 137, 141, 142, 145–148,
154, 159, 169, 170, 237
federated learning (FL)  300, 316, 322, 323
feedback analysis  153
firewalls  124, 231, 262, 265, 268, 292
F‐measure  174, 175, 177



fog computing (FC)  108, 222, 270, 301

g

generative  206, 315, 321, 322
genetic sequence feature elevation  156–157
governance  186–187, 231
gradient boosting  5, 136, 138, 139, 142, 145, 146, 148, 237
graphical user interface (GUI)  46

h

hashing  288
Hidden Markov model (HMM)  9, 256
Host‐based Intrusion Detection Systems (HIDS)  135
human‐centered computing (HCC)  223–229
human‐computer design process  221, 223
human‐computer interaction  209, 221
hypergraph  254
hyperplane  138
hyperspace security assessment  252
hypervisors  11, 183, 230

i



identification of cyber threats  117, 118, 313, 317
IEEE 802.15.4  282
import address table (IAT)  5
indicator of compromise (IoC)  204
Individual Value Decomposition Analysis (IVDA)  168, 169
information and communication technologies (ICT)  108,
184, 252, 280
information extraction  5, 205, 251, 258
infrared sensors (IS)  42, 47, 52
infrastructural vulnerabilities  188
infrastructure security  69, 209, 252
intelligent cyber‐physical systems 277
intelligent cybersecurity ontologies  256
intelligent data delivery tools
Internet of Things (IoT)  20, 107, 167, 185, 222, 249, 268, 279,
311–323
intrusion detection and prevention systems (IDPSs)  121,
221
intrusion detection system (IDS)  11, 12, 20, 24, 135–149, 196,
261, 316
intrusion prevention security systems  108
IoT botnet attacks  20, 21, 30
IoT security  311–323



j

J48 decision tree  6

k

kernel rootkit  10
k‐nearest neighbors (kNN)  9, 20, 26, 136, 138–139, 155, 201
knowledge extraction  204
knowledge graph  204, 251, 271
knowledge reasoning tools  255

l

learning behavior  152,
learning community  151
learning outcomes  152
lifelong learning  151
logistic regression  25, 29, 39
long short‐term memory (LSTM)  98, 172, 235, 257, 320
LoRa  282
6LoWPAN  282

m



machine learning  4, 19–30, 34, 39–40, 42, 43, 45–59, 94, 96,
99, 101, 103, 119, 135, 137, 153, 166, 184, 221, 250, 313, 316,
322, 323
malicious code  4, 5, 19, 23, 66, 103, 115
malicious domain blocking and reporting (MDBR)  194
malware

designation  259
detection  4–8, 13, 16, 89, 93, 94, 98–101, 103, 231, 316,
317, 320, 323

management of attack vectors  90–92, 117, 118, 187, 250, 262
medium access control (MAC)  283
metaheuristics  184, 232, 250
Min–Max scaling  142
misclassification performance  176
missing data restoration and mitigation  125
mobile application  51, 63, 294
mobile edge computing  222
model performance  137
multi‐access edge computing  222
multi‐classification  25, 102
multigraph  254
multihop communication  238, 287
multi‐host attacks  259
multi‐instance learning  257



multi‐layer cloud computing framework  182
multimedia semantic structures  225
multi‐perception neural network  151–163
multiple data source analysis  208–209
multiple stack protocol layers  282
multi‐stage attacks  259

n

Naïve Bayes (NB)  6, 20, 25, 29, 99, 137
named entity recognition  199, 255
natural language processing (NLP)  137, 184, 231
natural language recognition  137, 231–232
network‐based intrusion detection systems (NIDS)  135
network forensics  144, 254
network risk scoring (NRS)  233
network security  64, 66, 82, 83, 85, 141, 230, 236, 256, 259,
261, 287, 297
network traffic analysis (NTA)  232
neural networks  5, 9, 42, 49, 56, 96, 108, 125, 137, 149, 151–
163, 165–177, 184, 190, 223, 231, 236, 240, 256, 257, 313, 315,
316, 319–322
NSL‐KDD dataset  140–143



o

obfuscated malware  4
online learning  152, 153
online review data  165
online reviews  166
ontological model inference  259

p

packet losses  237, 283
payload function  12
Penetration Testing  66
Perceptual Neural Boltzmann Machine (PNBM)  159
phishing  19, 112, 159, 194, 229, 232
polymorphic viruses  4, 110
portable executable (PE) file  5
precision and recall  28, 143, 145–148, 174, 175
predictive intelligence  189–190, 206
predictive models  138, 266
principal component analysis (PCA)  6, 42
privacy‐preserving techniques  316, 318, 323
proof of identity  296
proof‐of‐stack (PoS)  299



proof‐of‐work (PoW)  121, 288
protected, delivery mechanisms  118
protection by deception  195, 196
python programming language  27, 173

q

quality of service (QoS)  152, 230, 282

r

Random Forest (RF)  5, 25–27, 29, 95, 96, 99, 136–138, 142,
145, 146, 148, 186, 236
ransomware (RW)  109, 111, 194, 204, 260
real‐time detection  20, 322, 323
real‐time vulnerability management  65, 67, 71
real world protection  316
recall metrics  143, 149
recommender systems  188, 235
recurrent neural networks (RNN)  159, 165–177, 190, 231,
257, 315
refined data representations  208
regression  25, 26, 29, 39, 137, 158
reliable coordination  284–285
resource description framework (RDF)  253–254



risk management (RM)  123, 183, 187, 190–191, 209
role‐based access control (RBAC)  192

s

scalability in cyber‐physical systems  287
scalable security solutions  122, 317
securing enterprise system  73, 89
security analytics  195
security and privacy  231, 287, 292, 294, 299
security layer  293, 294
security measures  187
security patches  206
security policy validation  265–266
security risk assessment  260
security updates  205, 260, 266
semantic knowledge representation  253
semantic method  166
sensor networks  123
sentence‐level attention  257
sentiment analysis  151–163, 165–177, 185
SentiwordNet  170
sequence term analysis  157
service‐oriented architectures (SOAs)  108



service‐oriented industry  165
signature‐based detection  4, 16, 24, 231
simulation parameters  159, 173
smart contracts (SCs)  119, 197, 287
smart cybersecurity  279–302
smart devices 131, 324
smart environments  210
smart vulnerability risk indicators  187
social media intelligence extractor‐tagger (SMIET)  266
Softmax logical function  168, 177
Spam and Social Engineering (SE) Recognition  231–232
spectral pattern learning (SPL)  151–163
spectral recurrent neural network  165–177
spider optimization method  168, 177
Spider Optimization to select the Effective Features Weight
(SO‐EFW)  169–170
spyware  115, 116
static analysis  3, 5, 93–94, 96–98, 102
static and dynamic analysis  4, 101, 103
student performance  153
student sentiment  151–163
supervised clustering techniques  9, 136
supply chain (SC) risk management (RM)  183, 190–191



support vector machines (SVMs)  20, 95, 136, 138, 139, 184,
256
surface of attack  250
system calls  9–11, 15, 51, 98–100, 196

t

task automation  232
testing dataset  159
text classification  15, 166
text extraction  257
threat anomaly detection  249–271
threat intelligence  116–119, 200
threat recovery function  183, 205
threat response function  183, 200–204
threat vulnerability risk assessment  123
time complexity  103, 159, 161–163, 176, 177
tourism industry  165–177
tourism management  165
tourism satisfaction  165
trace of intrusion detection  231
traffic rule violation detection system (TRVDS)  46, 53, 56
training dataset  9, 56, 57, 159, 207
trust management  281, 295–298



trustworthy IoT systems  200

u

UNIX  9, 197
unsupervised clustering techniques  145, 203
unsupervised DBSCAN clustering  139
user‐centered evaluation  230
user entity and behavior analytics (UEBA)  231, 232

v

virtualization  92, 128, 183, 230
virtual machine monitor (VMM)  10
virtual reality (VR)  233
virtual world protection  123
vulnerability assessment  205, 208, 209, 262, 318, 323
vulnerability assessment and prioritization  189
vulnerability identification  188
vulnerability life cycle  289
vulnerability management  84, 194, 259
vulnerability management system  65, 76–84
vulnerability mitigation  73, 76–84
vulnerability preventive remediation measures  122
vulnerability risk management  123, 195



w

WIA‐PA  282
WinAPI functions  8
WirelessHART  282
wireless sensor  279–302
wireless sensor and actuator network  185, 293
Wisconsin High Order Neural Network  159
word vector correlation extraction (WVCE)  154–155
worm  4, 6, 12, 109, 110

z

ZigBee  48, 282
Z‐WAVE  282



WILEY END USER LICENSE
AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Table of Contents
	Title Page
	Copyright
	Dedication
	About the Editors
	List of Contributors
	Preface
	Acknowledgment
	Disclaimer
	Note for Readers
	Introduction
	Part I: Artificial Intelligence (AI) in Cybersecurity Analytics: Fundamental and Challenges
	1 Analysis of Malicious Executables and Detection Techniques
	1.1 Introduction
	1.2 Malicious Code Classification System
	1.3 Literature Review
	1.4 Malware Behavior Analysis
	1.5 Conventional Detection Systems
	1.6 Classifying Executables by Payload Function
	1.7 Result and Discussion
	1.8 Conclusion
	References

	2 Detection and Analysis of Botnet Attacks Using Machine Learning Techniques
	2.1 Introduction
	2.2 Literature Review
	2.3 Botnet Architecture
	2.4 Methodology Adopted
	2.5 Experimental Setup
	2.6 Results and Discussions
	2.7 Conclusion and Future Work
	References

	3 Artificial Intelligence Perspective on Digital Forensics
	3.1 Introduction
	3.2 Literature Survey
	3.3 Phases of Digital Forensics
	3.4 Demystifying Artificial Intelligence in the Digital World
	3.5 Application of Machine Learning in Digital Forensics Investigations
	3.6 Implementation of Artificial Intelligence in Forensics
	3.7 Pattern Recognition Using Artificial Intelligence
	3.8 Applications of AI in Criminal Investigations
	3.9 Conclusion
	References

	4 Review on Machine Learning‐based Traffic Rules Contravention Detection System
	4.1 Introduction
	4.2 Technologies Involved in Smart Traffic Monitoring
	4.3 Literature Review
	4.4 Comparison of Results
	4.5 Conclusion and Future Scope
	References

	5 Enhancing Cybersecurity Ratings Using Artificial Intelligence and DevOps Technologies
	5.1 Introduction
	5.2 Literature Review
	5.3 Proposed Methodology
	5.4 Results
	5.5 Conclusion and Future Scope of Work
	References


	Part II: Cyber Threat Detection and Analysis Using Artificial Intelligence and Big Data
	6 Malware Analysis Techniques in Android‐Based Smartphone Applications
	6.1 Introduction
	6.2 Malware Analysis Techniques
	6.3 Hybrid Analysis
	6.4 Result
	6.5 Conclusion
	References

	7 Cyber Threat Detection and Mitigation Using Artificial Intelligence – A Cyber‐physical Perspective
	7.1 Introduction
	7.2 Types of Cyber Threats
	7.3 Cyber Threat Intelligence (CTI)
	7.4 Materials and Methods
	7.5 Cyber‐Physical Systems Relying on AI (CPS‐AI)
	7.6 Experimental Analysis
	7.7 Conclusion
	References

	8 Performance Analysis of Intrusion Detection System Using ML Techniques
	8.1 Introduction
	8.2 Literature Survey
	8.3 ML Techniques
	8.4 Overview of Dataset
	8.5 Proposed Approach
	8.6 Simulation Results
	8.7 Conclusion and Future Work
	References

	9 Spectral Pattern Learning Approach‐based Student Sentiment Analysis Using Dense‐net Multi Perception Neural Network in E‐learning Environment
	9.1 Introduction
	9.2 Related Work
	9.3 Proposed Implementation
	9.4 Result and Discussion
	9.5 Conclusion
	References

	10 Big Data and Deep Learning‐based Tourism Industry Sentiment Analysis Using Deep Spectral Recurrent Neural Network
	10.1 Introduction
	10.2 Related Work
	10.3 Materials and Method
	10.4 Result and Discussion
	10.5 Conclusion
	References


	Part III: Applied Artificial Intelligence Approaches in Emerging Cybersecurity Domains
	11 Enhancing Security in Cloud Computing Using Artificial Intelligence (AI)
	11.1 Introduction
	11.2 Background
	11.3 Identification Function (IF)
	11.4 Protection Function (PF)
	11.5 Detection Function (DF)
	11.6 Response Function (RF)
	11.7 Recovery Function (RcF)
	11.8 Analysis, Discussion and Research Gaps
	11.9 Conclusion
	References

	12 Utilization of Deep Learning Models for Safe Human‐Friendly Computing in Cloud, Fog, and Mobile Edge Networks
	12.1 Introduction
	12.2 Human‐Centered Computing (HCC)
	12.3 Improving Cybersecurity Through Deep Learning (DL) Models: AI‐HCC Systems
	12.4 Case Studies
	12.5 Discussion
	12.6 Conclusion
	References

	13 Artificial Intelligence for Threat Anomaly Detection Using Graph Databases – A Semantic Outlook
	13.1 Introduction
	13.2 KGs in Cybersecurity
	13.3 CSKG Construction Methodologies
	13.4 Datasets
	13.5 Application Scenarios
	13.6 Discussion and Future Trends on CSKG
	13.7 Conclusion
	References

	14 Security in Blockchain‐Based Smart Cyber‐Physical Applications Relying on Wireless Sensor and Actuators Networks
	14.1 Introduction
	14.2 Methodology
	14.3 GIBCS: An Overview
	14.4 Blockchain Layer
	14.5 Trust Management
	14.6 Blockchain for Secure Monitoring Back‐End
	14.7 Blockchain‐Enabled Cybersecurity: Discussion and Future Directions
	14.8 Conclusions
	References

	15 Leveraging Deep Learning Techniques for Securing the Internet of Things in the Age of Big Data
	15.1 Introduction to the IoT Security
	15.2 Role of Deep Learning in IoT Security
	15.3 Deep Learning Architecture for IoT Security
	15.4 Future Scope of Deep Learning in IoT Security
	15.5 Conclusion
	References


	Index
	End User License Agreement

