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Preface

“Modern Control Theory” is a fundamental and compulsory course for students who
major in automation. The course takes place in the sixth semester. Together with the
“automatic control theory” set up in the fifth term, it is the core theoretical basis of
automation. During this period, the juniors already have an elementary knowledge
of linear algebra, the Laplace transform and differential equations. The students also
lay the solid foundation on feedback control theory. At this very opportune moment,
students begin to learn modern control theory, which is more widely used in many
aspects of modern control engineering.

This book is the result of teaching an undergraduate course over the years. The
overall contents of the book can be described as follows. Chapter 1 introduces the sys-
tem modeling with state space representation. Chapter 2 gives an overview of linear
transformation of state vector. Chapter 3 presents solution of state space equations.
Chapter 4 covers two types of stability for linear systems; namely, the I/O stability and
the state related stability. Chapter 5 focuses on controllability and observability, with
systemdecompositionandminimal realizations. Chapter 6 presents the state feedback
and observer. The reader’s understanding is developed further by experimenting with
MATLAB command to develop simulations of their own control applications. Several
benchmark problems on power generation modeling and control have also been in-
corporated into this book.

It is with gratitude that we acknowledge the continued support of the National
Nature Science Foundation of China (61673171,61273144,60974051), Beijing Higher Ed-
ucation and TeachingReformation projects (GJJG201409). We owe thanks tomany col-
leagues and students. They frequently asked questions, pointed out problems, and,
therefore, forced us to improve our work.

https://doi.org/10.1515/9783110574951-201





Contents

Preface| V

1 System Model| 1
1.1 Introduction| 1
1.2 Models of Systems| 1
1.2.1 Differential Equation| 1
1.2.2 Transfer Function| 4
1.2.3 The State Space Model| 6
1.3 Transition From One Mathematical Model to Another| 16
1.3.1 From Differential Equation to Transfer Function for SISO Systems| 16
1.3.2 From Transfer Function to Differential Equation for SISO Systems| 17
1.3.3 From G(s) to g(t) and Vice Versa| 17
1.3.4 From State Equations to Transfer Function Matrix| 17
1.3.5 From Transfer Function Matrix to State Equations for

SISO Systems| 19
1.4 Summary| 22
Appendix Three Power Generation Models| 22
Exercise | 28

2 Linear Transformation of State Vector| 31
2.1 Linear Algebra| 31
2.2 Transform to Diagonal Form and Jordan Form| 36
Exercise | 45

3 Solution of State Space Model| 47
3.1 Introduction| 47
3.2 Solution of LTI State Equations| 47
3.3 State Transfer Matrix| 50
3.3.1 Properties| 50
3.3.2 Calculating the State Transition Matrix| 54
3.4 Discretization| 61
3.5 Solution of Discrete Time Equation| 64
3.6 Summary| 70
Exercise | 70



VIII | Contents

4 Stability Analysis| 72
4.1 Introduction| 72
4.2 Definition| 72
4.3 Stability Criteria| 82
4.3.1 Lyapunov’s Second Method| 82
4.3.2 State Dynamics Stability Criteria for Continuous Linear Systems| 90
4.3.3 State Dynamics Stability Criteria for Discrete Systems| 98
4.4 Summary| 100
Exercise | 100

5 Controllability and Observability| 103
5.1 Introduction| 103
5.2 Definition| 104
5.2.1 Controllability| 104
5.2.2 Observability| 105
5.3 Criteria| 106
5.3.1 Controllable Criteria| 106
5.3.2 Controllable Examples| 112
5.3.3 Observable Criteria| 115
5.3.4 Observable Examples| 117
5.4 Duality System| 120
5.4.1 Definition| 120
5.4.2 Properties of Duality Systems| 121
5.5 Canonical Form| 122
5.5.1 Controllability Canonical Form of Single Input Systems| 122
5.5.2 Observability Canonical Form of Single Output Systems| 128
5.5.3 Examples| 130
5.5.4 Observability and Controllability Canonical Form of Multiple Input

Multiple Output Systems| 132
5.6 System Decomposition| 134
5.6.1 Controllability Decomposition| 134
5.6.2 Observability Decomposition| 137
5.6.3 Controllability and Observability Decomposition| 140
5.6.4 Minimum Realization| 145
5.7 Summary| 152
Exercise | 152



Contents | IX

6 State Feedback and Observer| 156
6.1 Introduction| 156
6.2 Linear Feedback| 156
6.2.1 State Feedback| 156
6.2.2 Output Feedback| 157
6.2.3 Feedback From Output to ẋ| 158
6.3 Pole Assignment| 159
6.3.1 Sufficient and Necessary Condition for Arbitrary Pole

Assignment| 159
6.3.2 Methods to Assign the Poles of a System| 162
6.3.3 Examples| 166
6.4 State Estimator| 171
6.4.1 Introduction| 171
6.4.2 State Estimator| 172
6.5 State Feedback Based on State Estimator| 185
6.6 Summary| 188
Appendix State Feedback and Observer for Main Steam Temperature Control

in Power Plant Steam Boiler Generation System| 188
Exercise | 192

Bibliography| 195

Index| 197





1 System Model

1.1 Introduction

In control theory research, the systemmodel should be set up first. In this chapter, dif-
ferent kinds of models are discussed and some examples are given to show the reader
how to set up a model of a system. The relationships between these model types are
also described.

1.2 Models of Systems

A mathematical expression that appropriately relates the physical system quantities
to the system components is called the mathematical model of a system.

There are, basically, two types of system descriptions; one is the external descrip-
tion, called the input-output description. The other is the internal one, called the state
space description. In the former one, a system in operation involves the following
three elements: the system’s input (or excitation), the system itself, and the system’s
output (or response). This description just reveals the casual relationship between the
external variables (the input and the output)without characterizing the internal struc-
ture. In the latter one, the description is a class of mathematic models based on the
analysis of the internal structure of the system. It is a classical modern approach of
describing a system. Correspondingly, there are two types of mathematical models of
the system, which can facilitate the system analysis (it is well known that, in order to
analyze a system, the mathematical model must be available).

The input-output description of the system will be introduced in Section 1.2.1 and
1.2.2, in the differential equation and the transfer function form. The state spacemodel
will be presented in Section 1.2.3.

1.2.1 Differential Equation

The differential equation is the fundamental mathematical model of a system. This
description includes all the linearly independent equations of a system, as well as the
appropriate initial conditions. The differential equation method is demonstrated by
the following examples.

Example 1.1. Consider the network shown in Figure 1.1, where R, C, and L stand for
the resistance, the capacitance and the inductance of the circuit respectively. Derive
the network’s differential equation mathematical model.

https://doi.org/10.1515/9783110574951-001
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

+

R

C(voltage

source)

L



u (t)
uC (t)i (t)

iL (t)

Fig. 1.1: RLC network.

Solution. Applying Kirchhoff’s voltage law,

L didt + 1
C

t∫
0

idt + Ri = v(t) (1.1)

The above integro-differential equation constitutes amathematical description of
the network. This model is a second order differential equation. Two appropriate ini-
tial conditions should be given to complete the description. The inductor’s current
iL(t) and the capacitor’s voltage vC(t) at the instant that the switch closes (at t = 0)
are adopted as initial conditions:

iL(0) = I0
vC(0) = V0 ,

where I0 and V0 are given constants.
The integro-differential equation and the two initial conditions thus constitute a

complete description of the network shown in Figure 1.1.

Example 1.2. Consider the network shown in Figure 1.2, whereR, C and L stand for the
resistance, the capacitance and the inductance of the circuit respectively. We assign
the current of the inductance Lx (x = 1, 2) as ix (x = 1, 2), and the voltage of the
capacitance Cx (x = 1, 2) as vx (x = 1, 2). Derive the network’s differential equation
mathematical model.

Solution. The differential equationmethod for describing this network is based on the
three differential equations, which arise by applying Kirchhoff’s current law. These
three-loop equations are: −L1 di1dt + uC1 + R1 i3 = 0 ,−uC1 + L2 di2dt + R2 i4 = 0 ,

L2
di2
dt

− L1 di1dt − uC2 = 0 .
(1.2a)
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
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(current

L1 L2

i1

l1 l2

C1

uC1

l3
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Fig. 1.2: A three-loop network.

By applying Kirchhoff’s voltage law, we have:

i + i3 + i1 − C2 duC2dt = 0 ,
C1

duC1
dt + i1 + i2 = 0 ,

C2
di2
dt + i2 − i4 = 0 .

(1.2b)

The initial conditions are vC1(0) = vC10, vC2(0) = vC20 and iL1 (0) = iL10, iL1(0) = iL10.

Example 1.3. Consider the mechanical system shown in Figure 1.3, where y, K, m
and B are the position of the mass, the spring’s constant, the mass, and the friction
coefficient respectively. Derive the system’s differential equationmathematicalmodel.

Solution. By using d’Alembert’s law of forces, the following differential equation is
obtained:

md2y
dt2

+ B dydt + Ky = f(t) . (1.3)

The initial conditions of the above equation are the distance y(t) and the velocity
v(t) = dy/dt at the instant t = 0, i.e., at the instant when the external force f(t) is
applied. Therefore, the initial conditions are:

y(0) = Y0 and v(0) = [dydt ]t=0 = V0 ,

where Y0 and V0 are given constants.
The differential equations and the two initial conditions constitute the complete

description of the mechanical system shown in Figure 1.3.

Remark 1.2.1. A differential equation is a description in the time domain, which can
be applied to many categories of systems, such as linear and nonlinear systems, time
invariant and time variant systems with lumped and distributed parameters, and zero
and nonzero initial conditions, among many others.
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y (t)

m

K

B

f (t) Fig. 1.3: A spring and a mass.

1.2.2 Transfer Function

In contrast to the differential equation, which is a description in the time domain,
the transfer function model is a description in the Laplace domain and holds only
for a restricted category of systems, i.e., for linear time invariant (LTI) systems with
zero initial conditions. The transfer function is designated by G(s) and is defined as
follows.

Definition. The transfer function G(s) of a linear, time invariant system with zero ini-
tial conditions is the ratio of the Laplace transform of the output y(t) to the Laplace
transform of the input u(t), i.e.,

G(s) = L{y(t)}
L{u(t)} = Y(s)

U(s) . (1.4)

The introductory examples used in Section 1.2.1 will also be used for the derivation of
their transfer functions.

Example 1.4. Consider the network shown in Figure 1.1. Derive the transfer function
G(s) = I(s)/V(s).
Solution. Figure 1.1, in the Laplace domain and with zero initial conditions I0 and V0,
can be shown in Figure 1.4. From Kirchhoff’s voltage law,

LsI(s) + RI(s) + I(s)
Cs = V(s) . (1.5)

The transfer function is:

G(s) = I(s)
V(s) = I(s)[Ls + R + 1

Cs ] I(s) = Cs
LCs2 + RCs + 1 . (1.6)
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R

1

Cs

Ls

�
�

V (s) I (s)
�

�

Fig. 1.4: RLC circuit.

When the voltage VR(s) across the resistor is chosen as the output, the transfer
function becomes:

G(s) = VR(s)
V(s) = RI(s)

V(s) = RCs
LCs2 + RCs + 1 . (1.7)

Example 1.5. Consider the electrical network shown in Figure 1.2. Determine the
transfer function G(s) = I2(s)/V(s).
Solution. This network in the Laplace domain, with zero initial conditions, is shown
in Figure 1.5. The equations for the two loops can be expressed as:[R1 + 1

Cs ] I1(s) − 1
Cs I2(s) = V(s) (1.8a)− 1

Cs I1(s) + [R2 + Ls + 1
Cs ] I2(s) = 0 . (1.8b)

1

Cs

R1

�

�
V (s) I1 (s) I2 (s)

�

�

R2

Ls

Fig. 1.5: A two-loop network.

Equation (1.8b) yields:

I1(s) = [LCs2 + R2Cs + 1] I2(s) . (1.9)

Substituting equation (1.9) into equation (1.8a), we get:(R1Cs + 1)(LCs2 + R2Cs + 1)I2(s) − I2(s) = CsV(s) . (1.10)

Hence,

G(s) = I2(s)
V(s) = Cs(R1Cs + 1)(LCs2 + R2Cs + 1) − 1= 1
R1LCs + (R1R2C + L)s + R1 + R2 . (1.11)
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Example 1.6. Consider the mechanical system shown in Figure 1.3. Determine the
transfer function G(s) = Y(s)/F(s).
Solution. This system, in the Laplace domain and with zero initial conditions, is
shown in Figure 1.6.

K

ms2

Bs Y (s)

F (s) Fig. 1.6: A spring and a mass.

Using d’Alembert’s law of forces, we get:

ms2Y(s) + BsY(s) + KY(s) = F(s) . (1.12)

The transfer function is:

G(s) = Y(s)
F(s) = 1

ms2 + Bs + K . (1.13)

Remark 1.2.2. In the above examples, it can be seen that the transfer function G(s) is
the ratio of two polynomials in the Laplace domain. In general, G(s) has the following
form:

G(s) = βmsm + βm−1sm−1 + ⋅ ⋅ ⋅ + β1s + β0
sn + αn−1sn−1 + ⋅ ⋅ ⋅ + α1s + α0 = K

∏m
i=1(s + zi)∏n
i=1(s + pi) , (1.14)

where−pi (i = 1, 2, . . . , n) are the roots of the denominator, which are called the poles
ofG(s), and−zi are the roots of the numerator, which are called the zeros of G(s). Poles
and zeros (particularly the poles) play a significant role in the behavior of a system.

1.2.3 The State Space Model

The state space model is a description in the time domain, which may be applied to
a very wide category of systems, such as linear and nonlinear systems, time invari-
ant and time variant systems, systems with nonzero initial conditions, etc. The state
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of a system refers to the past, present, and future of the system. From a mathemat-
ical point of view, the state of a system is expressed by its state variables. Usually,
a system is described by a finite number of state variables, which are designated by
x1(t), x2(t), . . . , xn(t) and are defined as follows.
1.2.3.1 Definition
The state variables x1(t), x2(t), . . . , xn(t)of a systemare defined as a (minimum)num-
ber of variables, such that, if we know the following, the determination of the system’s
states for t > t0 is guaranteed:
(1) their values at a certain instant t0
(2) the input of the system for t ≥ t0
(3) the mathematical model, which relates the inputs, the state variables, and the

system itself

Consider a system with multiple inputs and multiple outputs (MIMO), as shown in
Figure 1.7.

System

y1 (t)

x1 (t) x2 (t) xn (t)

u1 (t)
u2 (t)

um (t)

y2 (t)

yp (t)

Fig. 1.7: System with multiple inputs and multiple outputs (MIMO).

The input vector is designated by u(t) and has the form:

u(t) = [[[[[[
u1(t)
u2(t)
...

um(t)
]]]]]] , (1.15)

where m is the number of inputs. The output vector is designated by y(t) and has the
form:

y(t) = [[[[[[
y1(t)
y2(t)
...

yp(t)
]]]]]] , (1.16)
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where p is the number of outputs. The state vector x(t) has the form:

x(t) = [[[[[[
x1(t)
x2(t)
...

xn(t)
]]]]]] , (1.17)

where n is the number of state variables.
The state equations are a number of n first order differential equations, which re-

late the input vector u(t) to the state vector x(t) and have the form:

ẋ(t) = f[x(t), u(t)] , (1.18)

where f(⋅) is a columnwith n elements. The function f(⋅), in general, is a complex non-
linear function of x(t) and u(t). Note that equation (1.18) is a set of dynamic equations.

The output vector y(t) of the system is related to the input vector u(t) and the state
vector x(t) as follows:

y(t) = g[x(t), u(t)] , (1.19)

where g(⋅) is a column with p elements. Relation (1.19) is called the output equation.
The function g(⋅) is generally a complex nonlinear function of x(t) and u(t). Note that
equation (1.19) is a set of algebraic (nondynamic) equations.

The initial conditions of the state space equation (1.18) are the values of the ele-
ments of the state vector x(t) for t = t0, and is denoted as:

x(t0) = x0 = [[[[[[
x1(t0)
x2(t0)

...
xn(t0)

]]]]]] . (1.20)

The state space equation (1.18), the output equation (1.19), and the initial condi-
tions (1.20), i.e., the following equations, constitute the description of a dynamic
system in the state space.

ẋ(t) = f[x(t), u(t)] , (1.21a)
y(t) = g[x(t), u(t)] , (1.21b)
x(t0) = x0 . (1.21c)

Since the dynamic state equation (1.21a) plays a dominant role in equations (1.21),
all the three equations in (1.21), will be called, for simplicity, state equations.
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When the system is a linear stationary one, the state space model is:

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t) , (1.22)

where A is the systematic matrix; B is the input/control matrix; C is the outputmatrix,
and D is the direct transfer matrix.

The state equations (1.21) are, in thefield of automatic control, themodernmethod
of systemdescription. Thus, the state spacemodel relates the following four elements:
the input, the system, the state variables, and the output. In contrast, the differential
equations and the transfer function relate three elements: the input, the system and
the output – wherein the input is related to the output via the system directly (i.e.,
without giving information about the state of the system). It is exactly for this reason
that these two models are called input-output models.

2. The Construction of the State Space Model
There are three ways to set up the state space model, which can be based on:
(1) the transform of the block diagram
(2) first principal modeling
(3) the input-output model

Each way will be described in detail and examples will be given.

The Transform of the Block Diagram
Example 1.7. The system block diagram is shown in Figure 1.8 (a). u is the input and
y is the output. Try to deduce the state space equations.

(a)

(b)

Fig. 1.8: System block diagram.



10 | 1 System Model

Solution. The structure of each link part is shown in Figure 1.8 (b), thus the relative
equations can be derived as follows.

The state equations: {{{{{{{{{
ẋ1 = K3

T3 x2

ẋ2 = − 1
T2 x2 + K2

T2 x3

ẋ3 = − 1
T1 x3 − K1K4

T1 x1 + K1
T1 u .

(1.23)

The output equation:
y = x1 .

The above equations can be rewritten in the vector matrix form:

ẋ = [[[[
0 K3

T3 0
0 − 1

T2
K2
T2− K1K4

T1 0 − 1
T1

]]]] x + [[[
0
0
K1
T1

]]] u

y = [1 0 0] x . (1.24)

The First Principal Modeling
When a physical system is given, the mechanism analysis can be carried out with
proper assumption and simplification. Themechanismmodel can be set upwith cho-
sen inputs and outputs. If the middle variables are eliminated, then the differential
equation mentioned above can be obtained. If the middle variables are chosen as the
state variables, then the state space model can be achieved.

Example 1.8. Consider the system shown in Figure 1.9. The current of C1,2 is C1,2 u̇C1,2
respectively, and the voltage of L1,2 is L1,2 ̇i1,2. The input is the current source, and the
outputs are the voltages of capacitances, C1 and C2. Derive the system’s state space
representation.



+

+

+

a
L2

i2

l3

cb

i3

i4

C1

uC2

uC1

i(current 
source) R1 R2

l2

L1

i1

l1

Fig. 1.9: A three-loop network.
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Solution. The differential equations method for describing this network is based on
the threedifferential equations,whichariseby applyingKirchhoff ’s voltage law. These
three-loop equations are: −L1 di1dt + uC1 + R1 i3 = 0 ,−uC1 + L2 di2dt + R2 i4 = 0 ,

L2
di2
dt

− L1 di1dt − uC2 = 0 .

By applying Kirchhoff ’s current law, we get:

i + i3 + i1 − C2 duC2dt
= 0 ,

C1
duC1
dt + i1 + i2 = 0 ,

C2
duC2
dt + i2 − i4 = 0 .

Define:
uC1 = x1 , uC2 = x2 ,
i1 = x3 , i2 = x4 .

The system’s state space equation can be expressed as:

(ẋ1
ẋ2
ẋ3
ẋ4

)=(
(

0 0 − 1
C1 − 1

C1

0 − 1
C2(R1+R2)

R1
C2(R1+R2)

− R2
C2(R1+R2)

1
L1 − R1

L1(R1+R2)
− R1R2
L1(R1+R2)

− R1R2
L1(R1+R2)

1
L2 − R2

L2(R1+R2)
− R1R2
L2(R1+R2)

− R1R2
L2(R1+R2)

)
)

(x1
x2
x3
x4

)+( 0
R1

C2(R1+R2)− R1R2
L1(R1+R2)− R1R2
L2(R1+R2)

) i ,

(1.25)

(y1
y2
) = (uC1

uC2
) = (1 0 0 0

0 1 0 0
)(x1

x2
x3
x4

) .

Example 1.9. Consider the mechanical system shown in Figure 1.10, where y, K,m
and B are the position of the mass, the spring’s constant, the mass, and the friction
coefficient respectively. In the role of external forces f , derive the system’s state space
representation where y1, y2 are the outputs.

Solution. Choose the position y1, y2 and the velocity v1, v2 of the massM1,M2 as the
state variables:

x1 = y1 , x2 = y2 ,

x3 = v1 = dy1
dt

, x4 = v2 = dy2
dt

.
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M1 M2

v1

y1

v2

y2

f

K1 K2

B1 B2

Fig. 1.10: The mass-spring-damper system.

By using Newton’s laws of motion, for M1 we get:

M1
dv1
dt = K2(y2 − y1) + B2 (dy2dt − dy1

dt ) − K1y1 − B1 dy1dt .

ForM2:
M2

dv2
dt = f − K2(y2 − y1) − B2 (dy2dt − dy1

dt ) .

With u = f , we can get:

ẋ1 = x3
ẋ2 = x4

ẋ3 = − 1
M1

(K1 + K2)x1 + K2
M1

x2 − 1
M1

(B1 + B2)x3 + B2
M1

x4

ẋ4 = K2
M2

x1 − K2
M2

x2 + B2
M2

x3 − B2
M2

x4 .

The above equations can be expressed in a compact form:

(ẋ1
ẋ2
ẋ3
ẋ4

) =( 0 0 1 0
0 0 0 1− 1

M1
(K1 + K2) K2

M1
− 1
M1
(B1 + B2) B2

M1

K2
M2

− K2
M2

B2
M2

− B2
M2

)(x1
x2
x3
x4

)+( 0
0
0
1
M2

) f .

(1.26)
The output equation is:

(y1
y2
) = (1 0 0 0

0 1 0 0
)(x1

x2
x3
x4

) .



1.2 Models of Systems | 13

Example 1.10. Consider a cart with an inverted pendulum hinged on top of it, as
shown in Figure 1.11. For simplicity, the cart and the pendulum are assumed to move
in only one plane, while the friction, the mass of the stick, and the gust of wind are
disregarded. The problem is to maintain the pendulum at the vertical position.

y

M V

H

u

mg

l



Fig. 1.11: The inverted pendulum system.

Suppose H and V are, respectively, the horizontal and vertical forces exerted by the
cart on the pendulum as shown. The application of Newton’s law to the linear move-
ments yields:

Md2y
dt2

= u − H ,

H = m d2

dt2
(y + l sin θ) = mÿ + mlθ̈ cos θ − ml(θ̇)2 sin θ ,

mg − V = m d2

dt2
(l cos θ) = ml[−θ̈ sin θ − (θ̇)2 cos θ] .

The application of Newton’s law to the rotational movement of the pendulum around
the hinge yields:

mgl sin θ = mlθ̈ ⋅ l + mÿl cos θ ,
sin θ = θ , cos θ = 1 ,
mg = V ,
Mÿ = u − mÿ − mlθ̈ , gθ = lθ̈ + ÿ ,

which imply:
Mÿ = u − mgθ ,
Mlθ̈ = (M + m)gθ − u .
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Define:
x1 = y , x2 = ẏ , x3 = θ , x4 = θ̇ .

Then the state space model can be derived as:

[[[[[
ẋ1
ẋ2
ẋ3
ẋ4

]]]]] =
[[[[[
0 1 0 0
0 0 −mg

M 0
0 0 0 1
0 0 (M+m)g

Ml 0

]]]]]
[[[[[
x1
x2
x3
x4

]]]]] +
[[[[[
0
1
M
0
−1
Ml

]]]]] u , (1.27)

y = [1 0 0 0] x .
Example 1.11. Consider a separately excited DCmotor system, as shown in Figure 1.12.
In the diagram, R and L stand for the resistance and inductance of the armature loop
respectively. J is the inertia of the rotating part, and B is the viscous friction coefficient.
Develop the state space equationswhen thearmature voltage u is chosenas the control
variable.

i

M
J

B

R L

u


Fig. 1.12: The system of a separately excited DC motor.

Since the inductance L and the rotating inertia J are energy storage elements, their
corresponding physical variables, e.g., the current i and the rotating angular speed ω,
are independent of each other. They could be chosen as state variables:

x1 = i ,
x2 = ω ,

then as:
dx1
dt = di

dt ,
dx2
dt = dω

dt .

Using the circuit equations of the armature circuit,

L di
dt
+ Ri + e = u .

According to the dynamics equations, we have:

J dωdt + Bω = Ka i .
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According to the electromagnetic induction relationship, we get:

e = Kbω ,

where e is the back electromotive force and Ka, Kb are the torque constant and back
electromotive force respectively.

According to the three equations above, the model of the systemmay be rewritten
as:

di
dt

= −R
L
i + −Kb

L
ω + 1

L
u ,

dω
dt = Ka

J i − B
J ω .

By putting x1 = i, x2 = ω into the above equations, we get:(ẋ1
ẋ2
) = (− R

L − Kb
L

Ka
J − B

J
) (x1

x2
) + ( 1

L
0
) u .

If the angle speed ω is chosen as the output, it leaves:

y = x2 = (0 1)(x1x2)
If the angle θ is chosenas theoutput, then theabove two state variables arenot enough
to represent the dynamics of the system, and another state variable, x3, should be
introduced:

x3 = θ .

So
ẋ3 = θ̇ = x2 .

The state equation is:

(ẋ1
ẋ2
ẋ3
) =(− R

L − Kb
L 0

Ka
J − B

J 0
0 1 0

)(x1
x2
x3
)+(1

L
0
0
) u . (1.28)

The output equation is:

y = x3 = (0 0 1)(x1
x2
x3
) .

The Input-Output Model
When a system is created by the input-outputmodel, i.e., transfer function or differen-
tial equation, the state space model can be derived with the input-output model. This
process is called realization. Based on different types of the input-output model, dif-
ferent algorithms can be adopted for realization. The detailed procedure can be found
in Section 1.3.5.
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1.3 Transition From One Mathematical Model to Another

As we know, every mathematical model has advantages and disadvantages. To use
the advantages of all mathematical models, one must have the flexibility of transition
from onemodel to another. This issue of transition is, obviously, of great practical and
theoretical importance. In the following, we present some transition methods.

1.3.1 From Differential Equation to Transfer Function for Single-input-single-output
Systems

Case 1. The Righthand Side of the Differential Equation Does Not Involve Derivatives
Consider a single-input-single-output (SISO) system described by the following differ-
ential equation:

y(n) + αn−1y(n−1) + ⋅ ⋅ ⋅ + α1y(1) + α0y = β0u , (1.29)

where all the system’s initial conditions are assumed to be zero, i.e., y(k)(0) = 0, for
k = 1, 2, . . . , n − 1. Applying the Laplace transform to equation (1.29) can result in:

snY(s) + αn−1sn−1Y(s) + ⋅ ⋅ ⋅ + α1sY(s) + α0Y(s) = β0U(s) .
Hence, the transfer function is given by:

G(s) = Y(s)
U(s) = β0

sn + αn−1sn−1 + ⋅ ⋅ ⋅ + α1s + α0 . (1.30)

Case 2. The Righthand Side of the Differential Equation Involves Derivatives
Consider a SISO system described by the differential equation:

y(n) + αn−1y(n−1) + ⋅ ⋅ ⋅ + α1y(1) + α0y = βmu(m) + ⋅ ⋅ ⋅ + β1u(1) + β0u , (1.31)

where m < n and all initial conditions are assumed to be zero, i.e., y(k)(0) = 0, for
k = 0, 1, . . . , n − 1. We can determine the transfer equation (1.31) as follows: suppose
z(t) is the solution of equation (1.29), with β0 = 1. When the superposition principle
is used, the solution y(t) of equation (1.31) will be obtained:

y(t) = βmz(m) + βm−1z(m−1) + ⋅ ⋅ ⋅ + β1z(1) + β0z . (1.32)

By applying the Laplace transformation to equation (1.32), we obtain:

Y(s) = βmsmZ(s) + βm−1sm−1Z(s) + ⋅ ⋅ ⋅ + β1sZ(s) + β0Z(s) . (1.33)

Here, we have set z(k)(0) = 0, for k = 0, 1, . . . , n − 1. When β0 = 1, the solution
of equation (1.29) is z(t) = y(t). Here, it is assumed that all initial conditions of y(t),
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hence, of z(t), are zero. In equation (1.30), when β0 = 1, we have:

Z(s) = [ 1
sn + αn−1sn−1 + ⋅ ⋅ ⋅ + α1s + α0 ]U(s) . (1.34)

By substituting equation (1.34) into (1.33), the transfer function G(s) of the differential
equation (1.31) is obtained as:

G(s) = Y(s)
U(s) = βmsm + βm−1sm−1 + ⋅ ⋅ ⋅ + β1s + β0

sn + αn−1sn−1 + ⋅ ⋅ ⋅ + α1s + α0 . (1.35)

Remark 1.3.1. The transfer function G(s), given by equation (1.35), can be easily de-
rived from equation (1.31) if we set sk in place of the kth derivative and replace y(t) and
u(t)with Y(s) andU(s), respectively. That is, we canderive equation (1.35) by replacing
y(k)(t) with skY(s), and u(k)(t) with skU(s) in equation (1.31).
1.3.2 From Transfer Function to Differential Equation for SISO Systems

Suppose a SISO system is described by equation (1.35). Then, working backwards
using the method given in Remark 1.3.1, the differential equation (1.31) can be con-
structed by substituting sk with the kth derivative and Y(s) and U(s) with y(t) and
u(t), respectively.
1.3.3 From G(s) to g(t) and Vice Versa

The matrices G(s) and g(t) are related through the Laplace transform:

L{g(t)} = G(s) or g(t) = L−1{G(s)} . (1.36)

1.3.4 From State Equations to Transfer Function Matrix

Consider a system described by the following state equations:

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)
x(t0) = x(0) = x0 .

(1.37)

Take the Laplace transformation to both sides of equation (1.37):

sx(s) − x(0) = Ax(s) + Bu(s)
y(s) = Cx(s) + Du(s)
x(s) = (sI − A)−1x(0) + (sI − A)−1Bu(s)
y(s) = C(sI − A)−1x(0) + C(sI − A)−1Bu(s) + Du(s) .



18 | 1 System Model

For zero initial condition, we have:

y(s) = [C(sI − A)−1B + D] u(s) .
Then the system’s transfer function matrix G(s) is given by the relation:

G(s) = C(sI − A)−1B + D . (1.38)

Example 1.12. Derive the transfer function of the following state space equation.

ẋ = (0 0 1 0
0 0 0 1
0 0 −1 0
0 0 0 −1) x +(0 1

1 1
1 0
0 −2) u ,

y = (1 0 0 0
0 1 0 0

) x .
Solution.

A = (0 0 1 0
0 0 0 1
0 0 −1 0
0 0 0 −1) , B = (0 1

1 1
1 0
0 −2) , C = (1 0 0 0

0 1 0 0
) , D = 0 ,

(sI − A)−1 = ( 1
s 0 1

s(s+1) 0
0 1

s 0 1
s(s+1)

0 0 1
s+1 0

0 0 0 1
s+1

) .

The result can be obtained, according to (1.38):

G(s) = [ 1
s(s+1)

1
s

1
s

s−1
s(s+1)

] .

MATLAB can be adopted to compute this equation. Type:

a=[0 0 1 0;0 0 0 1;0 0 -1 0;0 0 0 -1];

b=[0 1;1 1;1 0;0 -2];

c=[1 0 0 0;0 1 0 0];

d=[0 0;0 0];

[N1,d1]=ss2tf(a,b,c,d,1)

[N2,d2]=ss2tf(a,b,c,d,2)

which yields
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N1 =

0 0 1.0000 1.0000 0.0000

0 1.0000 2.0000 1.0000 0

d1 =

1 2 1 0 0

N2 =

0 1.0000 2.0000 1.0000 0

0 1.0000 0.0000 -1.0000 0.0000

d2 =

1 2 1 0 0

Thus, the transfer matrix is:

G(s) = [[ s2+s
s4+2s3+s2

s3+2s2+s
s4+2s3+s2

s3+2s2+s
s4+2s3+s2

s3−s
s4+2s3+s2

]] .

Simplifying yields:

G(s) = [ 1
s(s+1)

1
s

1
s

s−1
s(s+1)

] .

Here, [N1,d1]=ss2tf(a,b,c,d,1)computes the transfer matrix from the first input to
all outputs, e.g., the first column of G(s). N1 is the numerator coefficient of the first col-
umn of G(s), d1 is the denominator coefficient of the first column of G(s). In a similar
way, [N2,d2]=ss2tf(a,b,c,d,2)computes the transfer matrix from the second input
to all outputs.

1.3.5 From Transfer Function Matrix to State Equations for SISO Systems

The transition from G(s) to state equations is the well known problem of the state
space realization. This is, in general, a difficult problem and has been (and still re-
mains) a topic to study. In the following, we will present some introductory results
regarding this problem.

Imagine a system is described by a scalar transfer function with the form:

G(s) = Y(s)
U(s) = βn−1sn−1 + βn−1sn−1 + ⋅ ⋅ ⋅ + β1s + β0

sn + αn−1sn−1 + ⋅ ⋅ ⋅ + α1s + α0 , (1.39)

or, equivalently, by the differential equation:

y(n) + αn−1y(n−1) + ⋅ ⋅ ⋅ + α1y(1) + α0y = βnu(n) + βn−1u(n−1) ⋅ ⋅ ⋅ + β1u(1) + β0u . (1.40)

Equation (1.40) can be expressed in the form of two equations as follows:

z(n) + αn−1z(n−1) + ⋅ ⋅ ⋅ + α1z(1) + α0z = u , (1.41)
y(t) = βn−1z(n−1) + ⋅ ⋅ ⋅ + β1z(1) + β0z . (1.42)
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Suppose z(t) is the solution of equation (1.41). Then, the solutionof equation (1.40)
will be given by equation (1.42).

The state variables x1, x2, . . . , xn are defined as follows:

x1(t) = z(t) ,
x2(t) = z(1)(t) = x(1)1 (t) ,
x3(t) = z(2)(t) = x(1)2 (t) ,

...

xn(t) = z(n−1)(t) = x(1)n−1(t) .
(1.43)

Substituting equation (1.42) into equation (1.41) can result in:

ẋn(t) = −αn−1xn(t) − ⋅ ⋅ ⋅ − α1x2(t) − α0x1(t) + u(t) . (1.44)

Also, substituting equations (1.43) into equation (1.42) can result in:

y(t) = βn−1xn(t) + βn−2xn−1(t) + ⋅ ⋅ ⋅ + β1x2(t) + β0x1(t) . (1.45)

Equations (1.43) to (1.45) can be expressed in a matrix form:

ẋ(t) = Ax(t) + bu(t)
y(t) = cTx(t) , (1.46)

where xT = (x1, x2, . . . , xn) and:
A = [[[[[[[[[

0 1 0 0 . . . 0
0 0 1 0 . . . 0
...

...
...

...
...

0 0 0 0 . . . 1−α0 −α1 −α2 −α3 . . . −αn−1
]]]]]]]]]
,

b = [[[[[[[[[
0
0
...
0
1

]]]]]]]]]
,

c = [[[[[[[[[
β0
β1
...

βn−2
βn−1

]]]]]]]]]
.

(1.47)
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Hence, equations (1.46) constitute the state equations’ description of the transfer func-
tion (1.39).

Due to the special form of matrix A and vector b, we say that the state equa-
tions (1.46) are in phase canonical form, while the state variables are called phase vari-
ables. Phase variables are, in general, state variables, which are defined according to
equations (1.43); i.e., every state variable is the derivative of the previous one. In par-
ticular, the special form of matrix A and vector b is characterized as follows:

If the first column and the last row in matrix A are deleted, then a (n − 1) × (n −1)
unit matrix is revealed. Also, the elements of the last row of A are the coefficients of
the differential equation (1.40), placed in reverse order and all with negative signs.
The vector b has all its elements equal to zero, except for the nth element, which is
equal to one.

Example 1.13. The differential equation mathematical model of a system is given as:

y⃛ + 6ÿ + 41ẏ + 7y = 6u .

Try to derive the state equation and the output equation.

Solution. We choose y/6, ẏ/6, ÿ/6 as the state variables:
x1 = y

6 , x2 = ẏ
6 , x3 = ÿ

6 .

Then,
ẋ1 = ẏ

6
= x2 ,

ẋ2 = ÿ
6 = x3 ,

x3 = y⃛
6 = −7x1 − 41x2 − 6x3 + u .

The state equation is:

(ẋ1
ẋ2
ẋ3
) = ( 0 1 0

0 0 1−7 −41 −6)(x1
x2
x3
)+(0

0
1
) u . (1.48)

The output equation is:

y = 6x1 = (6 0 0)(x1
x2
x3
) .
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1.4 Summary

Three kinds of models and their relationship were introduced in this chapter. Each
type of model has its merits and shortages. The transfer function is widely used in
classical control theory, which mainly studies the SISO linear system in Laplace do-
main. The differential equation is used in time domain, and the state space equation is
commonly used inmodern control theory, inwhich theMIMOsystem is studied in time
domain. The following contents of modern control theory, which studies the proper-
ties of a system and system synthesis, aremainly based on the state space description.

Appendix: Three Power Generation Models

Case 1) Thermal Power Generation
The fundamental dynamics of a 160MW drum type boiler, turbine, generator (BTG)
plant can be represented by a third order MIMO coupling nonlinear model over a wide
operating range. Typically, the coordinated control governs the dominant behavior
of the power unit through the power and steam pressure control loops, as shown in
Figure 1.13.

coordinated unit controller

Pressure
mapping

Pressure
controller

load
controller

Combustion
controller

Fuel

Air

load demand

steam

Generator

Condenser

Deaerator

Fig. 1.13: Coordinated control scheme.

The inputs are positions of valve actuators that control the mass flow rates of fuel
(u1 in pu), steam to the turbine (u2 in pu), and feedwater to the drum (u3 in pu). The
outputs are electric power (E in MW), drum steam pressure (P in kg/cm2), and drum



Appendix: Three Power Generation Models | 23

water level deviation (L inmm). The state variables are electric power (E), drum steam
pressure (P), and fluid (steam water) density (ρf ). The state equations are:

dP
dt = 0.9u1 − 0.0018u2P9/8 − 0.15u3 ,
dE
dt = ((0.73u2 − 0.16)P9/8 − E)/10 ,
dρf
dt = (141u3 − (1.1u2 − 0.19)P)/85 .

(1.49)

The drum water level output is calculated using the following algebraic equations:

qe = (0.85u2 − 0.14)P − 45.59u1 − 2.51u3 − 2.09 ,
αs = (1/ρf − 0.0015)/(1/(0.8P − 25.6) − 0.0015) ,
L = 50(0.13ρf + 60αs + 0.11qe − 65.5) , (1.50)

where αs is the steam quality and qe is the evaporation rate (kg/s).
Define x1, x2 and x3 as the drum steam pressure (kg/cm2), the electric power

(MW), and the steamwater fluid density in the drum, respectively. The output y3 is the
drum water level (cm) calculated using two algebraic calculations, αcs and qe, which
are the steam quality and the evaporation rates (kg/s).The input u1, u2, and u3 are
normalized positions of valve actuators that control the mass flow rates of fuel, steam
to the turbine, and feedwater to the drum, respectively. Then the state space equation
becomes:

ẋ1 = −0.0018u2x9/81 + 0.9u1 − 0.15u3
ẋ2 = (0.073u2 − 0.016) x9/81 − 0.1x2
ẋ3 = [141u3 − (1.1u2 − 0.19) x1] /85
y1 = x1
y2 = x2
y3 = 0.05 (0.13073x3 + 100αcs + qe/9 − 67.975)
αcs = (1 − 0.001538x3) (0.8x1 − 25.6)x3 (1.0394 − 0.0012304x1)
qe = (0.845u2 − 0.147) x1 + 45.59u1 − 2.514u3 − 2.096 .

(1.51)

Case 2) Nuclear Power Generation
The water level model developed by E. Irving is a fourth-order transfer function rep-
resentation, with its power level dependent parameters listed in Table 1:

Y(s) = G1
s (Qw(s)−Qv(s))− G2

1 + τ2s (Qw(s)−Qv(s))+ G3s
τ−21 + 4π2T−2 + 2τ−21 s + s2 Qw(s) ,

(1.52)
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Tab. 1: Parameters of the Steam Generator Model With Respect to Operating Power.

P (%power) 5 15 30 50 100

qv (kg/s) 57.4 180.8 381.7 660 1435
G1 0.058 0.058 0.058 0.058 0.058
G2 9.63 4.46 1.83 1.05 0.47
G3 0.181 0.226 0.310 0.215 0.105
τ1 41.9 26.3 43.4 34.8 28.6
τ2 48.4 21.5 4.5 3.6 3.4
T 119.6 60.5 17.7 14.2 11.7

where Y(s), Qw(s) and Qv(s) represent the water level, the feed water flow rate and
the steam flow rate respectively. τ1, τ2 and T are the damping time constants and the
oscillation period.
Suppose that:

Y1(s) = G1
s (Qw(s) − Qv(s)) ,

Y2(s) = − G2
1 + τ2s (Qw(s) − Qv(s)) ,

Y3(s) = G3s
τ−21 + 4π2T−2 + 2τ−11 s + s2 Qw(s) . (1.53)

Define the state variables as shown in the Figure 1.14.

(a)

(b)

(c)

Fig. 1.14: (a) Y1(s); (b) Y2(s); (c) Y3(s).
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Then,
ẋ1(t) = G1(Qw(t) − Qv(t))
ẋ2(t) = −τ−12 x2(t) − G2

τ2
(Qw(t) − Qv(t))

ẋ3(t) = −2τ−11 x3(t) + x4(t) + G3Qw(t)
ẋ4(t) = −(τ−21 + 4π2T−2)x3(t) .

(1.54)

The control variable u = Qw, the disturbance d = Qv, and the water level output
y = x1 + x2 + x3, and equations (1.54) can be rearranged in the following state space
equations: {{{ẋc(t) = A(θ)xc(t) + B(θ)uc(t) +W(θ)dc(t)

yc(t) = Cxc(t) , (1.55)

where

xc = [[[[[
x1
x2
x3
x4

]]]]] ,

A(θ) = [[[[[
0 0 0 0
0 a22 0 0
0 0 a33 a34
0 0 a43 0

]]]]] , B(θ) = [[[[[
b1
b2
b3
0

]]]]] , W(θ) = [[[[[
d1
d2
0
0

]]]]] ,

C = [1 1 1 0]
a22 = −τ−12 , a33 = −2τ−11 , a34 = 1 , a43 = −(τ−11 + 4π2T−2)
b1 = G1 , b2 = −G2τ−12 , b3 = G3

d1 = −G1 , d2 = G2
τ2

.

Case 3) Wind Power Generation
The doubly fed induction generators (DFIGs) have been widely used in the modern
wind energy systems, due to the advantages of variable speed operation and four
quadrant active and reactive power capabilities. In DFIG, the stator is directly con-
nected to the power grid, while the rotor is connected to the grid by a bidirectional
converter, as shown inFigure 1.15. This converter controls active and the reactivepower
between the stator and ac supply, or a standalone grid. The equivalent circuit of a DFIG
in an arbitrary reference frame rotating at synchronous angular speed ω1 is shown in
Figure 1.16.
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DFIGGearbox Converter

Transformer

Network Supply

Wind Turbine

Fig. 1.15: The doubly fed induction generator (DFIG) system.

Fig. 1.16: The equivalent circuit of a DFIG.

The DFIG model in the synchronous reference frame is given by:

us = Rs is + dφs/dt + jω1φs , (1.56)
ur = Rr ir + dφr/dt + j (ω1 − ωr)φr , (1.57)

where the relationship between fluxes and currents is:

φs = Ls is + Lm ir , (1.58)
φr = Lm is + Lr ir , (1.59)
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and generator active and reactive power are:

P = 3
2 (usdisd + usqisq) , (1.60)

Q = 3
2 (usqisd + usdisq) . (1.61)

The subscripts s and r represent the stator and rotor parameters respectively
ω1 represents the synchronous speed and ωr represents rotor angular speed. Rs and
Rr represent stator and the rotor windings per phase electrical resistance and Ls,
Lr and Lm represent the proper and the mutual inductances of the stator and rotor
windings. u represents voltage vector.

The DFIG power control aims independent stator active P and reactive power Q
control by means of a rotor current regulation. For this purpose, P and Q are repre-
sented as functions of each individual rotor current. We use stator flux oriented con-
trol, that decouples thedqaxis,whichmeans:φsd = φs,φsq = 0. Thus, (1.58) becomes:

isd = φs
Ls

− Lm
Ls

ird , (1.62)

isq = −LmLs irq . (1.63)

Similarly, using stator flux orientation, the stator voltage becomes usd = 0 and
usq = us. Hence, the active (1.60) and reactive (1.61) power can be calculated by us-
ing (1.62) and (1.63):

P = −3
2
us
Lm
Ls

irq , (1.64)

Q = 3
2 (φs

Ls
− Lm

Ls
ird) us . (1.65)

Thus, rotor currents will reflect on stator current and on stator active and reac-
tive power, respectively. Consequently, this principle can be used on stator active and
reactive power control of the DFIG.

The DFIG power control is realized by the rotor currents control using (1.64)
and (1.65). Using (1.62) and (1.63), the rotor voltage (1.57), in the synchronous referen-
tial frame, becomes:

ur = (Rr + jσLrωsl) ir + σLr dirdt + j LmLs ωslφs , (1.66)

then:
dir
dt = −RrσLr

ir − jωsl ir + 1
σLr

ur − j Lm
σLrLs

ωslφs , (1.67)

dir
dt

= − Rr
σLr

ird + ωsl irq + 1
σLr

urd

dir
dt = −ωsl ird − Rr

σLr
irq + 1

σLr
urq − ωslLm

σLrLs
φs .

(1.68)



28 | 1 System Model

(1.68) can be expressed as:[[ dird
dt
dirq
dt

]] = [− Rr
σLr ωsl−ωsl − Rr

σLr
] [ird

irq
] + [ 1

σLr 0
0 1

σLr
][urd

urq
] + [1 0

0 1
] [ 0−ωslLm

σLrLs φs
]

[ird
irq
] = [1 0

0 1
] [ird

irq
] ,

(1.69)

where
ωsl = ω1 − ωr and σ = 1 − L2m

LsLr
.

Assuming that:

x = [x1, x2]T = [ird , irq]T , ẋ = [ẋ1, ẋ2]T = [ ̇ird, ̇irq]T ,
u = [u1, u2]T = [urd, urq]T , y = [y1, y2]T = [ird , irq]T ,

(1.69) can be expressed in the standard space state form:

ẋ = Ax + Bu + Gω
y = Cx ,

(1.70)

where:

A = [− Rr
σLr ωsl−ωsl − Rr

σLr
] , B = [ 1

σLr 0
0 1

σLr
] ,

C = [1 0
0 1

] , Gω = [ 0−ωslLm
σLrLs φs

] .

Exercise

1.1. Consider the network shown in Figure 1.17. Derive the network’s differential equa-
tion mathematical model.

R1

R2

uC1

uC2

u1 u2

Fig. 1.17: Circuit diagram.
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1.2. Consider the mechanical system shown in Figure 1.18, where x1 = uC1, x2 = uC2,
K, B, M are the spring’s constant, the friction coefficient and the mass, respectively.
Derive the state space equations.

B2

B1

M1

M2

f (t)

K

Fig. 1.18:Mechanical system.

1.3. Consider the network shown in Figure 1.17. Derive the network’s state space equa-
tions.

1.4. Consider the network shown in Figure 1.19. Derive the network’s transfer function

UC(s)
U(s) .

R L

C
u (t) uC (t)

i (t)

Fig. 1.19: Network.

1.5. Consider the network shown in Figure 1.19. Derive the state space equations.
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1.6. Consider the network shown in Figure 1.20. Derive the network’s transfer function

UL(s)
U1(s) , UL(s)

U2(s) .
+



u1

R1

R2

C2

i1 i2
i3

LC1
uL

u2

+



Fig. 1.20: Network.

1.7. Consider the network shown in Figure 1.20. Derive the network’s state space equa-
tions.

1.8. Transition from state equations to transfer function.

(1) [[[ẋ1ẋ2ẋ3]]] = [[[0 0 0
1 −2 0
0 1 −3]]][[[x1x2x3]]] + [[[600]]] u , (2) [ẋ1

ẋ2
] = [−5 0

1 −1][x1x2] + [20] u ,
y = [0 1 −2] [[[x1x2x3]]] . y = [1 − 1

2] [x1x2] .

1.9. Transition from transfer function to state equations.(1) g(s) = s3 + s + 1
s3 + 6s2 + 11s + 6 .(2) g(s) = s2 + 2s + 3
s3 + 2s2 + 3s + 1 .

1.10. Transition from differential equation to transfer function.(1) 2y⃛ + 3ẏ = ü − u .(2) y⃛ + 2ÿ + 3ẏ + 5y = 5u⃛ + 7u .
1.11. Transition from transfer function to differential equation.

g(s) = Y(s)
U(s) = 160s + 720

s3 + 16s2 + 194s + 640 .



2 Linear Transformation of State Vector

2.1 Linear Algebra

This chapter reviews a number of concepts and results in linear algebra that are es-
sential in the linear transformation of state vector.

As we saw in the preceding chapter, all parameters that arise in the real world
are real numbers. Therefore, we deal only with real numbers throughout this chapter,
except when specifically stated otherwise. Suppose A, B, C, and D are, respectively,
n ×m,m × r, l × n, and r × p are dimensional real matrices. Let ai be the ith column of
A, and bj the jth row of B. Then we have:

AB = [a1 a2 . . . am] [[[[[[
b1
b2
...
bm

]]]]]] = a1b1 + a2b2 + ⋅ ⋅ ⋅ + ambm , (2.1)

CA = C [a1 a2 . . . am] = [Ca1 Ca2 . . . Cam] , (2.2)

BD = [[[[[[
b1
b2
...
bm

]]]]]] , D = [[[[[[
b1D
b2D
...

bmD

]]]]]] . (2.3)

These identities can easily be verified. Note that aibi is a n × r matrix; it is the
product of a n×1 column vector and a 1× r row vector. The product biai is not defined
unless n = r; it becomes a scalar if n = r.

Consider a n-dimensional real linear space, denoted by Rn. Every vector in Rn has
n real numbers such as:

x = [[[[[[
x1
x2
...
xn

]]]]]] .

To save space, we write it as x = [x1 x2 . . . xn]T, where the superscript denotes the
transpose.

The set of vectors {x1, x2, . . . , xm} in Rn is said to be linearly dependent if there
exists set of real numbers α1, α2, . . . , αm , which are not all zero, such that:

α1x1 + α2x2 + ⋅ ⋅ ⋅ + αmxm = 0 . (2.4)

If the only set of αi that makes (2.4) hold is α1 = 0, α2 = 0, . . . , αm = 0, then the set of
vectors {x1, x2, . . . , xm} is said to be linearly independent.
https://doi.org/10.1515/9783110574951-002
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If the set of vectors in (2.4) is linearly dependent, then there exists at least one ai,
such as a1, that is nonzero. Then (2.4) implies:

x1 = − 1
α1
[α2x2 + α3x3 + ⋅ ⋅ ⋅ + αmxm] = β2x2 + β3x3 + ⋅ ⋅ ⋅ + βmxm ,

where βi = −αi/α1. Such an expression is called a linear combination.
The dimension of a linear space can be defined as the maximum number of lin-

early independent vectors in the space. Thus, in Rn, we can find n linearly indepen-
dent vectors.

Basis and Representation
A set of linearly independent vectors in Rn is called a basis if every vector in Rn can
be expressed as a unique linear combination of the set. In Rn, any set of n linearly
independent vectors can be used as a basis. Let {q1, q2, . . . , qn} be such a set. Then
every vector x can be expressed uniquely as:

x = α1q1 + α2q2 + ⋅ ⋅ ⋅ + αnqn . (2.5)

Define the n × n square matrix:

Q = [q1 q2 . . . qn] . (2.6)

Then (2.5) can be written as:

x = Q
[[[[[[
α1
α2
...
αn

]]]]]] = Qx . (2.7)

We call x = [α1 α2 . . . αn]T the representation of the vector x, with respect to the
basis {q1, q2, . . . , qn}.

We will associate every Rn with the following orthonormal basis:

i1 = [[[[[[[[[[[
1
0
0
...
0
0

]]]]]]]]]]]
, i2 = [[[[[[[[[[[

0
1
0
...
0
0

]]]]]]]]]]]
, . . . , in−1 = [[[[[[[[[[[

0
0
0
...
1
0

]]]]]]]]]]]
, in = [[[[[[[[[[[

0
0
0
...
0
1

]]]]]]]]]]]
. (2.8)
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With respect to this basis, we have:

x = [[[[[[
x1
x2
...
xn

]]]]]] = x1 i1 + x2 i2 + ⋅ ⋅ ⋅ + xnin = In
[[[[[[
x1
x2
...
xn

]]]]]] ,

where In is the n × n unit matrix. In other words, the representation of any vector x
with respect to the orthonormal basis in (2.8) equals itself.

Norms of Vectors
The concept of norm is a generalization of length or magnitude. Any real valued func-
tion of x, denoted by ‖x‖, can be defined as a norm if it has the following properties:
(i) ‖x‖ ≥ 0 for every x and ‖x‖ = 0 if, and only if, x = 0
(ii) ‖αx‖ = |α|‖x‖, for any real α
(iii) ‖x1 + x2‖ ≤ ‖x1‖ + ‖x2‖ for every x1 and x2
Orthonormalization
A vector x is said to be normalized if its Eucildeam norm is 1 or xTx = 1. Note that
xTx is scalar and xxT is n × n. Two vectors, x1 and x2, are said to be orthogonal if
xT1x2 = xT2x1 = 0. A set of vectors xi, i = 1, 2, . . . ,m, are said to be orthonormal if:

xTi xj = {{{0 if i ̸= j
1 if i = j .

Given a set of linearly independent vectors e1, e2, . . . , em, we can obtain an or-
thonormal set using the procedure that follows:

u1 = e1 q1 = u1/‖u1‖
u2 = e2 − (qT1e2)q1 q2 = u2/‖u2‖
...

...

um = em − m−1∑
k=1

(qTkem)qk qm = um/‖um‖ .
The first equation normalizes the vector e1 to have norm 1. The vector (qT1e2)q1 is the
projection of the vector e2 along q1. Its subtraction from e2 yields the vertical part u2.
It is then normalized to 1. Using this procedure, we can obtain an orthonormal set.
This is called the Schmidt orthonormalization procedure.
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Let A = [a1 a2 . . . am] be an n × m matrix with m ≤ n. If all columns of A or{ai , i = 1, 2, . . . ,m} are orthonormal, then:

ATA = [[[[[[
aT1
aT2
...
aTm

]]]]]][a1 a2 . . . am] = [[[[[[
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

]]]]]] = Im ,

where Im is the unit matrix of order m. Note that, in general, AAT ̸= In.

Similarity Transformation
Consider a n × n matrix A. It maps Rn into itself. If we associate Rn with the or-
thonormal basis {i1, i2, . . . , in} in (2.8), then the ith column of A is the representation
of Aii, with respect to the orthonormal basis. Now, if we select a different set of
basis {q1, q2, . . . , qn}, then the matrix A has a different representation A. It turns
out that the ith column of A is the representation of Aqi , with respect to the basis{q1, q2, . . . , qn}. This is illustrated by the following example.

Example 2.1. Consider the matrix:

A = [[[ 3 2 −1−2 1 0
4 3 1

]]] . (2.9)

If b = [0 0 1]T, we have:
Ab = [[[−101 ]]] , A2b = A(Ab) = [[[−42−3]]] , A3b = A(A2b) = [[[ −510−13]]] .

It can be verified that the following relation holds:

A3b = 17b − 15Ab + 5A2b . (2.10)

Because the three vectors b, Ab, and A2b are linearly independent, they can be used
as a basis.We nowcompute the representation ofAwith respect to this basis. It is clear
that:

A(b) = [b Ab A2b] [[[010]]]
A(Ab) = [b Ab A2b] [[[001]]]
A(A2b) = [b Ab A2b] [[[ 17−15

5

]]] ,
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where the last equation is obtained from (2.10). Thus, the representation of A, with
respect to the basis {b, Ab, A2b}, is:

A = [[[0 0 17
1 0 −15
0 1 5

]]] . (2.11)

The precedingdiscussion canbe extended to general cases. For example, suppose that
A is a n × n matrix. If there exists a n × 1 vector b such that the n vectors b, Ab, . . . ,
An−1b are linearly independent, and if

An = β1b + β2Ab + ⋅ ⋅ ⋅ + βnAn−1b ,

the representation of A with respect to the basis {b, Ab, . . . , An−1b} is:
A = [[[[[[[[[[[

0 0 . . . 0 β1
1 0 . . . 0 β2
0 1 . . . 0 β3
...

...
...

...
0 0 . . . 0 βn−1
0 0 . . . 1 βn

]]]]]]]]]]]
. (2.12)

This matrix is said to be in a companion form.
Consider the equation:

Ax = y . (2.13)

The square matrix A maps x in Rn into y in Rn . With respect to the basis {q1, q2, . . . ,
qn}, the equation becomes:

Ax = y , (2.14)

where x and y are the representations of x and y, with respect to the basis {q1, q2, . . . ,
qn}. As discussed in (2.7), they are related by:

x = Qx , y = Qy

with
Q = [q1 q2 . . . qn] (2.15)

to be a n × n nonsingular matrix. Substituting these into (2.13) yields:

AQ x = Qy or Q−1AQ x = y . (2.16)

Comparing this with (2.14) yields:

A = Q−1AQ or A = QAQ−1 . (2.17)
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This is called the similarity transformation and A and A are said to be similar. We
write (2.17) as:

AQ = QA ,

or as:

A [q1 q2 . . . qn] = [Aq1 Aq2 . . . Aqn] = [q1 q2 . . . qn]A .

This shows that the ith column of A is indeed the representation of Aqi, with respect
to the basis {q1, q2, . . . , qn}.
2.2 Transform to Diagonal Form and Jordan Form

A square matrix A has different representations with respect to different sets of basis.
In this section, we introduce a set of basis so that the representation will be diagonal
or block diagonal.

A real or complex number λ is called an eigenvalue of the n × n real matrix A if
there exists a nonzero vector x, such that Ax = λx is called a (right) eigenvector of A
associated with eigenvalue λ. In order to find the eigenvalue of A, we write Ax = λx =
λIx as: (A − λI) x = 0 , (2.18)

where I is the unit matrix of order n. This is a homogeneous equation. If the matrix(A − λI) is nonsingular, then the only solution of (2.18) is x = 0. Thus, in order for (2.18)
to have a nonzero solution x, the matrix (A − λI) must be singular or have a determi-
nant. We define:

∆(λ) = det (λI − A) .
It is a monic polynomial of degree n with real coefficients and is called the charac-
teristic polynomical of A. A polynomical is called monic if its leading coefficient is 1.
If λ is a root of the characteristic polynomical, then the determinant of (A − λI) is 0
and (2.18) has at least one nonzero solution. Thus, every root of ∆(λ) is an eigenvalue
of A. Because ∆(λ) has degree n, the n × nmatrix A has n eigenvalues (not necessarily
all distinct).

We mention that the matrices[[[[[
0 0 0 −α4
1 0 0 −α3
0 1 0 −α2
0 0 1 −α1

]]]]]
[[[[[
−α1 −α2 −α3 −α4
1 0 0 0
0 1 0 0
0 0 1 0

]]]]]
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and their transposes[[[[[
0 1 0 0
0 0 1 0
0 0 0 1−α4 −α3 −α2 −α1

]]]]]
[[[[[
−α1 1 0 0−α2 0 1 0−α3 0 0 1−α4 0 0 0

]]]]]
have the following characteristic polynomial:

∆(λ) = λ4 + α1λ3 + α2λ2 + α3λ + α4 .
These matrices can easily be formed from the coefficients of ∆(λ) and are called com-
panion form matrices. The companion form matrices will arise repeatedly later. The
matrix in (2.12) is such a form.

Eigenvalues of A Are All Distinct
Suppose λi, i = 1, 2, . . . , n, are the eigenvalues of A and that all are distinct. Let qi
be an eigenvector of A associated with λi; that is, Aqi = λiqi. The set of eigenvec-
tors {q1, q2, . . . , qn} would then be linearly independent and can be used as a basis.
Let Â be the representation of A with respect to this basis. Then the first column of Â
is the representation of Aq1 = λ1q1 with respect to {q1, q2, . . . , qn}. From

Aq1 = λ1q1 = [q1 q2 . . . qn] [[[[[[[[[
λ1
0
0
...
0

]]]]]]]]]
,

we conclude that the first column of Â is [λ1 0 . . . 0]T. The second column of
Â is the representation of Aq2 = λ2q2 with respect to {q1, q2, . . . , qn}. That is,[0 λ2 0 . . . 0]T. Proceeding forward, we can establish:

Â = [[[[[[[[[
λ1 0 0 . . . 0
0 λ2 0 . . . 0
0 0 λ3 . . . 0
...

...
...

...
0 0 0 . . . λN

]]]]]]]]]
. (2.19)

This is a diagonal matrix. Thus, we conclude that every matrix with distinct eigenval-
ues has a diagonalmatrix representation by using its eigenvectors as a basis. Different
orderings of eigenvectors will yield different diagonal matrices for the same A.
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If we define:
Q = [q1 q2 . . . qn] , (2.20)

then the matrix Â equals:
Â = Q−1AQ , (2.21)

as derived in (2.17). Computing (2.21) by hand is not simple because of the need to
compute the inverse ofQ. However, ifweknow Â , thenwecanverify (2.20) by checking
QÂ = AQ.

Example 2.2. Consider the matrix:

A = [[[0 0 0
1 0 2
0 1 1

]]] .

Its characteristic polynomial is:

∆(λ) = det (λI − A) = det[[[ λ 0 0−1 λ −2
0 −1 λ − 1]]]= λ [λ (λ − 1) − 2] = (λ − 2) (λ + 1) λ .

Thus, the eigenvalues of A are 2, −1, and 0. The eigenvector associated with λ = 2 is
any nonzero solution of

(A − 2I)q1 = [[[−2 0 0
1 −2 2
0 1 −1]]] q1 = 0 .

As such, q1 = [0 1 1]T is an eigenvector associatedwith λ = 2. Note that the eigenvec-
tor is not unique; [0 α α]T for anynonzero real α can also be chosen as an eigenvector.
The eigenvector associated with λ = −1 is any nonzero solution of

(A − (−1)I)q2 = [[[1 0 0
1 1 2
0 1 2

]]] q2 = 0 ,

which yields q2 = [0 − 2 1]T. Similarly, the eigenvector associated with λ = 0 can
be computed as q3 = [2 1 − 1]T. Therefore, the representation of A, with respect to{q1, q2, q3}, is:

Â = [[[2 0 0
0 −1 0
0 0 0

]]] . (2.22)
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It is a diagonal matrix with eigenvalues on the diagonal. This matrix can also be ob-
tained by computing

Â = Q−1AQ

with

Q = [q1 q2 q3] = [[[0 0 2
1 −2 1
1 1 −1]]] .

However, it is simpler to verify QÂ = AQ or:[[[0 0 2
1 −2 1
1 1 −1]]][[[2 0 0

0 −1 0
0 0 0

]]] = [[[0 0 0
1 0 2
0 1 1

]]][[[0 0 2
1 −2 1
1 1 −1]]] .

Eigenvalues of A Are Not All Distinct
An eigenvalue with multiplicity 2 or higher is called a repeated eigenvalue. In con-
trast, an eigenvalue with multiplicity 1 is called a simple eigenvalue. If A has only
simple eigenvalues, it always has a diagonal form representation. If A has repeated
eigenvalues, then it may not have a diagonal form representation. However, it has a
block diagonal and triangular form representation, as we will discuss next.

Consider a n × n matrix A with eigenvalue λ and multiplicity n. In other words,
A has only one distinct eigenvalue. To simplify the discussion, we assume n = 4. Sup-
pose the matrix (A − λI) has rank n − 1 = 3 or, equivalently, nullity 1, then the equa-
tion (A − λI) q = 0
has only one independent solution. Thus, A has only one eigenvector associated
with λ. We need n − 1 = 3 more linearly independent vectors to form a basis for R4.
The three vectors q2, q3, q4 will be chosen to have the properties (A − λI)2q2 = 0,(A − λI)3q3 = 0, and (A − λI)4q4 = 0.

A vector v is called a generalized eigenvector of grade n if(A − λI)n v = 0
and (A − λI)n−1 v ̸= 0 .

If n = 1, they reduce to (A − λI)v = 0 and v ̸= 0 (v is an ordinary eigenvector). For
n = 4, we define:

v4 = v
v3 = (A − λI) v4 = (A − λI) v
v2 = (A − λI) v3 = (A − λI)2 v
v1 = (A − λI) v2 = (A − λI)3 v .
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They are called a chain of generalized eigenvectors of length n = 4 and have the prop-
erties (A − λI)v1 = 0, (A − λI)2v2 = 0, (A − λI)3v3 = 0, and (A − λI)4v4 = 0. These
vectors, as generated, are automatically linearly independent and can be used as a
basis. From these equations, we can readily obtain:

Av1 = λv1
Av2 = v1 + λv2
Av3 = v2 + λv3
Av4 = v3 + λv4 .

Then the representation of A with respect to the basis {v1, v2, v3, v4} is:
J = [[[[[

λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ

]]]]] . (2.23)

We verify this for the first and last columns. The first column of J is the representation
of Av1 = λv1, with respect to {v1, v2, v3, v4}, which is [λ 0 0 0]T. The last column
of J is the representation of Av4 = v3 + λv4 with respect to {v1, v2, v3, v4}, which is[0 0 1 λ]T. This verifies the representation in (2.23). Thematrix J has eigenvalues on
the diagonal and 1 on the superdiagonal. If we reverse the order of the basis, then the 1
in (2.23) will appear on the subdiagonal. The matrix is called a Jordan block of order
n = 4.

If (A − λI) has rank n − 2 or, equivalently, nullity 2, then the equation(A − λI) q = 0

has two linearly independent solutions. Thus, A has two linearly independent eigen-
vectors and we need (n − 2) generalized eigenvectors. In this case, two chains of
generalized eigenvectors exist; {v1, v2, . . . , vk} and {u1, u2, . . . , ul} with k + l = n.
If v1 and u2 are linearly independent, then the set of n vectors {v1, . . . , vk , u1, . . . , ul}
is linearly independent and can be used as a basis. With respect to this basis, the rep-
resentation of A is a block diagonal matrix of form:

Â = diag {J1 , J2} ,
where J1 and J2 are, respectively, Jordan blocks of order k and l.

Nowwe discuss a specific example. Consider a 5×5matrix Awith repeated eigen-
value λ1 with multiplicity 4 and simple eigenvalue λ2. Suppose that a nonsingular
matrix Q exists, such that

Â = Q−1AQ
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assumes one of the following forms:

Â1 = [[[[[[[
λ1 1 0 0 0
0 λ1 1 0 0
0 0 λ1 1 0
0 0 0 λ1 0
0 0 0 0 λ2

]]]]]]] , Â2 = [[[[[[[
λ1 1 0 0 0
0 λ1 1 0 0
0 0 λ1 0 0
0 0 0 λ1 0
0 0 0 0 λ2

]]]]]]] ,

Â3 = [[[[[[[
λ1 1 0 0 0
0 λ1 0 0 0
0 0 λ1 1 0
0 0 0 λ1 0
0 0 0 0 λ2

]]]]]]] , Â4 = [[[[[[[
λ1 1 0 0 0
0 λ1 0 0 0
0 0 λ1 0 0
0 0 0 λ1 0
0 0 0 0 λ2

]]]]]]] ,

Â5 = [[[[[[[
λ1 0 0 0 0
0 λ1 0 0 0
0 0 λ1 0 0
0 0 0 λ1 0
0 0 0 0 λ2

]]]]]]] .

(2.24)

Thefirstmatrix occurswhen thenullity of (A−λ1I) is 1. If the nullity is 2, then Âhas two
Jordan blocks associated with λ1; it may assume the form in Â2 or Â3. If (A − λ1I) has
nullity 3, then Â has three Jordan blocks associatedwith λ1, as shown in Â4. Certainly,
the positions of the Jordan blocks can be changed by changing the order of the basis.
If the nullity is 4, then Â is a diagonal matrix as shown in Â5. All these matrices are
triangular and block diagonal with Jordan blocks on the diagonal; they are said to be
in Jordan form. A diagonal matrix is a degenerated Jordan form; its Jordan blocks all
have order 1.

Jordan formmatrices are triangular and block diagonal and can be used to estab-
lish many general properties of matrices. For example, because det(CD) = det C detD
and detQ det Q−1 = det I = 1, from A = QÂQ−1, we have:

det A = detQ det Â detQ−1 = det Â .

The determinant of Â is the product of all diagonal entries or, equivalently, all eigen-
values of A. Thus, we have:

detA = product of all eigenvalues of A ,

which implies that A is nonsingular if, and only if, it has nonzero eigenvalue.
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We discuss a useful property of Jordan blocks to conclude this section. Consider
the Jordan block in (2.23) with order 4. Then we have:

(J − λI) = [[[[[
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

]]]]] (J − λI)2 = [[[[[
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

]]]]]
(J − λI)3 = [[[[[

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

]]]]] ,

(2.25)

and (J − λI)k = 0 – for k ≥ 4. This is called nilpotent.
Example 2.3. Consider the matrix:

A = [[[ 0 1 −1−6 −11 6−6 −11 5

]]] .

Its characteristic polynomial is:

∆(λ) = det (λI − A) = det[[[λ −1 1
6 λ + 11 −6
6 11 λ − 5]]] = (λ + 1) (λ + 2) (λ + 3) .

Thus, the eigenvalues of A are −1, −2, and −3.
q1 = [1 0 1]T ,

q2 = [1 2 4]T ,

q3 = [1 6 9]T .

We can obtain the diagonal matrix by computing:

Â = Q−1AQ ,

with:

Q = [q1 q2 q3] = [[[1 1 1
0 2 6
1 4 9

]]] .

Then we can get:

Q−1 = 1
9
[[[2 −5 2
6 3 −3
1 2 1

]]] .
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We have the diagonal form:

Â = [[[−1 0 0
0 −2 0
0 0 −3]]] ,

B̂ = Q−1B = [[[−23−1]]] ,

Ĉ = CQ = [1 1 1] .
The result in this example can easily be obtained using MATLAB. Typing:

a=[0 1 -1;-6 -11 6;-6 -11 5];

[q,d]=eig(a)

yields

q =

0.7071 -0.2182 -0.0921

0.0000 -0.4364 -0.5523

0.7071 -0.8729 -0.8285

d =

-1.0000 0 0

0 -2.0000 0

0 0 -3.0000,

whered is thediagonalmatrix. Thematrix is different from theQ, but their correspond-
ing columnsdiffer only by a constant. This is due to the nonuniqueness of eigenvectors
and how every column of q is normalized to have norm 1 in MATLAB.

Example 2.4. Try to transform the state space representation to the Jordan block:

ẋ = (0 1 0
0 0 1
2 3 0

) x +(0
0
1
) u .

y = (1 0 0) x
Solution. First, we get the eigenvalues of A:|λI − A| = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 λ −1 0

0 λ −1−2 −3 λ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = 0 .

That is,
λ3 − 3λ − 2 = 0 .

We get:
λ1,2 = −1 , λ3 = 2 .
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Eigenvector Q1 corresponding to λ1 = −1:(0 1 0
0 0 1
2 3 0

)(q11
q21
q31

) = −(q11
q21
q31

) .

Then:

Q1 = (q11
q21
q31

) = ( 1−1
1
) .

Eigenvector Q2 corresponding to λ2 = −1:
λ1Q2 − AQ2 = −Q1 ,

−(q21
q22
q23

)−(0 1 0
0 0 1
2 3 0

)(q21
q22
q23

) = −( 1−1
1
) ,

Q2 = ( 1
0−1) .

Last, eigenvector Q3 corresponding to λ3 = 2:

λ3Q3 = AQ3 ,

Q3 = (1
2
4
) ,

T = (Q1 Q2 Q3) = ( 1 1 1−1 0 2
1 −1 4

) .

It can be calculated as:

T−1 = 1
9 (2 −5 2

6 3 −3
1 2 1

) .

Then, we can calculate the matrix we want:

J = (−1 1 0
0 −1 0
0 0 2

) ,

T−1B = ( 2
9− 1
3
1
9

) ,

CT = (1 1 1) .
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Using MATLAB, typing:

A=[0 1 0;0 0 1;2 3 0];

[v,J] = jordan(A);

yields

v =

0.1111 0.6667 0.8889

0.2222 -0.6667 -0.2222

0.4444 0.6667 -0.4444

J =

2 0 0

0 -1 1

0 0 -1

jordan(A)computes the JordanCanonical/NormalFormof thematrixA. The columns
of V are the generalized eigenvectors. J is the Jordan canonical form.

Exercise

2.1. Judge whether the following vectors are linearly dependent or not.

(1) (−13
1
) ,(2

1
0
) ,(1

4
1
) . (2) (2

3
0
) ,(−14

0
) ,(0

0
2
) .

2.2. Find the characteristic polynomials of the following matrices.

(1) (λ1 1 0 0
0 λ1 1 0
0 0 λ1 0
0 0 0 λ2

) . (2) (λ1 1 0 0
0 λ1 1 0
0 0 λ1 0
0 0 0 λ1

) .

(3) (λ1 1 0 0
0 λ1 0 0
0 0 λ1 0
0 0 0 λ1

) . (4) (λ1 0 0 0
0 λ1 0 0
0 0 λ1 0
0 0 0 λ1

) .

2.3. Find eigenvectors of the following matrices.(1) A = (−2 1−1 −2) . (2) A = ( 0 1−6 −5) .

(3) A = ( 0 1 0
3 0 2−12 −7 −6) . (4) A = ( 1 2 −1−1 0 −1

4 4 5
) .
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2.4. find jordan form representations of the following matrices:

A1 = [[[1 4 10
0 2 0
0 0 3

]]] , A2 = [[[ 0 1 0
0 0 1−2 −4 −3]]] ,

A3 = [[[1 0 −1
0 1 0
0 0 2

]]] , A4 = [[[0 4 3
0 20 16
0 −25 −20]]] .

2.5. Find Jordan form representations of the following state space equations:(1) (ẋ1
ẋ2
) = (−2 1

1 −2)(x1x2) + (01) u
y = (1 0)(x1x2) .

(2) (ẋ1
ẋ2
ẋ3
) = (4 1 −2

1 0 2
1 −1 3

)(x1
x2
x3
)+(3 1

2 7
5 3

) u

y = (1 2 0
0 1 1

)(x1
x2
x3
) .



3 Solution of State Space Model

3.1 Introduction

In Chapter 2, it was shown that linear systems can be described by state space equa-
tions. This chapterwill discuss the solution of the state space equation for LTI systems.
Differentmethods to solve the state transitionmatrix for both continuous systems and
discrete systems are discussed in detail.

3.2 Solution of LTI State Equations

Consider the LTI state space equation:

ẋ(t) = Ax(t) + Bu(t) , (3.1)
y(t) = Cx(t) + Du(t) , (3.2)

where A, B are, respectively, n × n, n × p dimensional constant matrices.
The problem is to find the solution excited by the initial state x(t)|t=0 = x(0) and

the input u(t). The solution hinges on the exponential function of A. In particular, the
following property

d
dt

eAt = AeAt = eAtA (3.3)

is necessary to develop the solution.
Rewrite the equation as:

ẋ(t) − Ax(t) = Bu(t) . (3.4)

Premultiplying e−At to both sides of (3.3) yields:

e−At[ẋ(t) − Ax(t)] = e−AtBu(t) , (3.5)

which implies that
d
dt (e−Atx(t)) = e−AtBu(t) .

Its integration from 0 to t yields:

e−Aτx(τ)󵄨󵄨󵄨󵄨󵄨tτ=0 = t∫
0

e−AτBu(τ)dτ .
Thus, we have:

e−Atx(t) − e0x(0) = t∫
0

e−AτBu(τ)dτ . (3.6)

https://doi.org/10.1515/9783110574951-003
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Because the inverse of e−At is eAt and e0 = I, equation (3.6) implies:

x(t) = eAtx(0) + t∫
0

eA(t−τ)Bu(τ)dτ , (3.7)

or, equivalently:

x(t) = Φ(t)x(0) + t∫
0

Φ(t − τ)Bu(τ)dτ , (3.8)

where Φ(t) = eAt is called the state transition matrix. Equation (3.7), or (3.8), is the
solution of (3.1).

To verify that (3.7) is the solution of (3.1), it is necessary to show that (3.7) satis-
fies (3.1) and the initial condition x(t) = x(0) at t = 0. Indeed, at t = 0, (3.7) reduces
to

x(0) = eA⋅0x(0) = e0x(0) = Ix(0) = x(0) .
Thus, (3.6) satisfies the initial condition. The equation

∂
∂t

t∫
t0

f(t, τ)dτ = t∫
t0

( ∂
∂t
f(t, τ)) dτ + f(t, τ)󵄨󵄨󵄨󵄨τ=t (3.9)

is needed to show that (3.7) satisfies (3.1). Differentiating (3.7) and using (3.9) obtains:

ẋ(t) = d
dt
[[eAtx(0) + t∫

0

eA(t−τ)Bu(τ)dτ]]= AeAtx(0) + t∫
0

AeA(t−τ)Bu(τ)dτ + eA(t−τ)Bu(τ)󵄨󵄨󵄨󵄨τ=t
= A(eAtx(0) + t∫

0

eA(t−τ)Bu(τ)dτ) + eA⋅0Bu(t) .
Substituting (3.7) into the above equation results in:

ẋ(t) = Ax(t) + Bu(t) .
Thus, (3.7) meets (3.1) and the initial condition x(0), and is the solution of (3.1).

Substituting (3.7) into (3.2) yields the solution of (3.2) as:

y(t) = CeAtx(0) + C t∫
0

eA(t−τ)Bu(τ)dτ + Du(t) . (3.10)
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This solution and (3.7) are computed directly in the time domain. It is also convenient
to compute the solutions by using the Laplace transform. Applying the Laplace trans-
form to (3.1) yields:

sX(s) − x(0) = AX(s) + BU(s)(sI − A)X(s) = x(0) + BU(s) .
Premultiplying (sI − A)−1 to both sides of the above equation yields:

x(s) = (sI − A)−1x(0) + (sI − A)−1BU(s) . (3.11)

Notice that (sI − A)−1 = ℓ[Φ(t)]
U(s) = ℓ[u(t)] .

From the property of Laplace transform function, the second term of the right side
of (3.11) can be expressed as:

(sI − A)−1BU(s) = ℓ[[ t∫
0

Φ(t − τ)Bu(τ)]] dτ . (3.12)

Substituting (3.12) into (3.11) and applying the inverse Laplace transform yields:

x(t) = Φ(t)x(0) + t∫
0

Φ(t − τ)Bu(τ)dτ (3.13)

Equation (3.13) is just the time domain solution of (3.1).

Example 3.1. Find the solution of the following system excited by the unit step func-
tion:

ẋ = [ 0 1−2 −3] x + [01] u .
Solution.

Φ(t) = eAt = (sI − A)−1 = [ 2e−t − e−2t e−t − e−2t−2e−t + 2e−2t −e−t + 2e−2t] .

Substituting B = [0 1]T and u(t) = 1(t) into equation (3.8) yields:
x(t) = [ 2e−t − e−2t e−t − e−2t−2e−t + 2e−2t −e−t + 2e−2t][x1(0)x2(0)] + t∫

0

[ e−(t−τ) − e−2(t−τ)−e−(t−τ) + 2e−2(t−τ)] dτ= [ (2e−t − e−2t)x1(0) + (e−t − e−2t)x2(0)(−2e−t + 2e−2t)x1(0) + (−e−t + 2e−2t)x2(0)] + [1
2 − e−t + 1

2 e
−2t

e−t − e−2t ]
= [1

2 + [2x1(0) + x2(0) − 1] e−t − [x1(0) + x2(0) − 1
2] e−2t− [2x1(0) + x2(0) − 1] e−t − [2x1(0) + 2x2(0) − 1] e−2t] .
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If the initial condition is zero, i.e., x(0) = 0, then the response of the system depends
only on the excitation of the control action:[x1(t)

x2(t)] = [1
2 − e−t + 1

2 e
−2t

e−t − e−2t ] .

In the following, the solution of the state space equation (3.8) is presented under three
special control signals.
(1) The impulse response: When u(t) = Kδ(t), x(0−) = x0,

x(t) = eAtx0 + eAtBK ,

where K is a constant vector having the same dimension with u(t).
(2) The step response: When u(t) = K × 1(t), x(0−) = x0,

x(t) = eAtx0 + A−1(eAt − 1)BK .

(3) The scope response: When u(t) = Kt × 1(t), x(0−) = x0,

x(t) = eAtx0 + [A−2(eAt − 1) − A−1t] BK .

3.3 State Transfer Matrix

3.3.1 Properties

Consider the LTI state space equation:

ẋ(t) = Ax(t) + Bu(t) , (3.14)

where x(t) ∈ Rn, u(t) ∈ Rr, A ∈ Rn×n, B ∈ Rn×r.
The solution of the system is:

x(t) = eAtx0 or x(t) = eA(t−t0)x0 ,

which reflects a vector transition relation from the initial state vector x0 to the state
x(t) of any t > 0, or t > t0, where eAt is called a transfer matrix. It is not a constant
matrix – it is a n × n time varying function matrix because the elements of the matrix
are general functions of t. Thismeans that it makes the state vector change constantly
in the state space, so Φ(t) = eAt is also called state transition matrix. Φ(t) = eAt

is the transition matrix from x(0) to x(t), while Φ(t − t0) = eA(t−t0) is the transition
matrix from x(t0) to x(t). Therefore, the solution of ẋ(t) = Ax(t) + Bu(t) can also be
expressed as:

x(t) = Φ(t)x(0) ,
or as:

x(t) = Φ(t − t0)x(t0) .
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x2

x1

t0=0

O x10x11

x22

x21
t1

t2

x12

x20

Fig. 3.1: State transition trajectory.

Its geometric meaning, taking two-dimensional state vector for example, can be rep-
resented as in Figure 3.1.

From Figure 3.1, we know x(0) = [x10 x20]T when t = 0. If we consider this as an
initial condition and Φ(t1) is known, when t = t1, the state will be:

x(t1) = [x11x21
] = Φ(t1)x(0) . (3.15)

If Φ(t2) is known, when t = t2, the state will be:

x(t2) = [x12x22
] = Φ(t2)x(0) . (3.16)

That is to say, the state x(0) will transfer to the state x(t1) or x(t2) according to Φ(t1)
or Φ(t2).

If we take t = t1 as initial time, the state x(t1) is the initial state and the state
transited from t1 to t2 will be:

x(t2) = Φ(t2 − t1)x(t1) . (3.17)

Substituting x(t1) of equation (3.15) into the above equation can result in:
x(t2) = Φ(t2 − t1)Φ(t1)x(0) . (3.18)

Equation (3.18) shows the transformation of the state x from x(0) to x(t1), and then
to x(t2).

Comparing equation (3.16) and (3.18), it is clear that:

Φ(t2 − t1)Φ(t1) = Φ(t2) ,
or that:

eA(t2−t1)eAt1 = eAt2 . (3.19)

Such a relation is called the combination property.
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From the above, for any given initial state vector, x(t0) can be transited to x(t)
at any t using state transition matrix. In other words, matrix differential equations
can be solved in an arbitrary time period. This is another advantage of state space
representation on a dynamic system.

Property 1 { Φ(t)Φ(τ) = Φ(t + τ)
or eAteAτ = eA(t+t)

(3.20)

This is a combination property, whichmeans a combination of transition from −τ to 0
and transition from 0 to t. That is to say,

Φ(t − 0)Φ [0 − (−τ)] = Φ [t − (−τ)] = Φ(t + τ) .
Property 2 {Φ(t − t) = I

eA(t−t) = I
(3.21)

This propertymeans thatwhen the state vector transit from time instant t to t, the state
vector is invariable.

Property 3 { [Φ(t)]−1 = Φ(−t)
or [eAt]−1 = e−At

(3.22)

This property shows that the inverse of the transition matrix means the reversion of
time. If x(t) is known, we can have x(t0) at time t while t0 < t.

Property 4
For the transition matrix: {{{ Φ̇(t) = AΦ(t) = Φ(t)A

or d
dt e

At = AeAt = eAt ⋅ A (3.23)

This property shows Φ(t) or eAt can change with matrix A.

Property 5
For the n × n square matrices A and B, if and only if AB = BA, there exists eAteBt =
e(A+B)t; if AB ̸= BA, then eAteBt ̸= e(A+B)t.

This property shows that, unless A and B arematrix exchangeable, the product of
their respective matrix exponential functions is not equivalent to matrix exponential
function of the sum of A and B.
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Below are some special matrix exponential functions.

(1) If A is diagonal matrix,

A = Λ = [[[[[[
λ1 0

λ2
. . .

0 λn

]]]]]] ,

then

eAt = Φ(t) = [[[[[[
eλ1t 0

eλ2t
. . .

0 eλnt

]]]]]] . (3.24)

(2) If A can be diagonalized through nonsingular transformation,

T−1AT = Λ ,

then

eAt = Φ(t) = T
[[[[[[
eλ1t 0

eλ2t
. . .

0 eλnt

]]]]]] T−1. (3.25)

(3) If A is Jordan matrix,

A = J = [[[[[[[[[[
λ 1 0

λ 1
λ 1

λ 1
λ 1

0 λ

]]]]]]]]]]
, (3.26)

then

eJt = Φ(t) = eλt

[[[[[[[[[
1 t 1

2! t
2 . . . 1

(n−1)! t
n−1

0 1 t . . . 1
(n−2)! t

n−2

. . .
0 0 0 . . . t
0 0 0 . . . 1

]]]]]]]]]
. (3.27)

(4) If

A = [ σ ω−ω σ
] ,

then

eAt = Φ(t) = [ cosωt sinωt− sinωt cosωt
] . (3.28)
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3.3.2 Calculating the State Transition Matrix

For calculating the matrix eAt, many methods have been proposed. Here are the four
most popular ones.

Method 1: Expansion of eAt
This method takes place entirely in the time domain and is based on the expansion
of eAt in a power series. Namely, it is based on the definition of eAt or Φ(t):

eAt = I + At + A2t2

2!
+ A3t3

3!
+ ⋅ ⋅ ⋅ = ∞∑

k=0

1
k!
Aktk . (3.29)

Example 3.2. Compute the matrix eAt, where A = [ 0 1−2 −3].
Solution.

eAt = [1 0
0 1

] + [ 0 1−2 −3] t + [ 0 1−2 −3]2 t2
2! + [ 0 1−2 −3]3 t3

3! + . . .= [[ 1 − t2 + t3 + . . . t − 3
2 t

2 − 7
6 t

3 + . . .−2t + 3t2 − 7
3 t

3 + . . . 1 − 3t + 7
2 t

2 − 5
2 t

3 + . . .]]
Method 2: Diagonal Form
This method takes place entirely in the time domain and is based on the diagonaliza-
tion of the matrix A. Indeed, if the eigenvalues of matrix A are distinct, then A can
be transformed to a diagonal matrix Λ via the transformation matrix T as follows:
Λ = T−1AT. Matrix Φ(t), under the transformation T, becomes:

Φ(t) = eAt = TeΛtT−1 .

Since:

eΛt = [[[[[[
eλ1t 0

eλ2t
. . .

0 eλnt

]]]]]] , Λ = [[[[[[
λ1 0

λ2
. . .

0 λn

]]]]]] ,

it follows that

Φ(t) = eAt = T
[[[[[[
eλ1t 0

eλ2t
. . .

0 eλnt

]]]]]] T−1 .
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Example 3.3. A = [ 0 1−2 −3] is known. Now compute the matrix eAt.

Solution. |λI − A| = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨λ −1
2 λ + 3󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = λ2 + 3λ + 2 = (λ + 1) (λ + 2) = 0 ,

so, λ1 = −1, λ2 = −2.
We can, therefore, have the corresponding transfer matrix according to equa-

tion (3.25).

T = [ 2 1−2 −2] and T−1 = [ 1 1
2−1 −1] .

Therefore,

eAt = [ 2 1−2 −2] [e−t 0
0 e−2t

] [ 1 1
2−1 −1]= [ 2e−t − e−2t e−t − e−2t−2e−t + 2e−2t −e−t + 2e−2t] .

If the matrix A has repeated eigenvalues, then A can be transformed to a Jordan ma-
trix Λ via the transformation matrix T:

J = T−1AT ,
eAt = TeJtT−1 .

Example 3.4. Compute the matrix eAt, where A = [[[0 1 0
0 0 1
2 −5 4

]]].
Solution. |λI − A| = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 λ −1 0

0 λ −1−2 5 λ − 4
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = (λ − 1)2 (λ − 2) = 0 ,

so,
λ1 = λ2 = 1 , λ3 = 2 .

According to (3.26),

J = [[[1 1 0
0 1 0
0 0 2

]]] ,

eJt = [[[e
t tet 0
0 et 0
0 0 e2t

]]] .



56 | 3 Solution of State Space Model

Since

T = [[[1 −1 1
1 0 2
1 1 4

]]] ; T−1 = [[[−2 5 −2−2 3 −1
1 −2 1

]]] .

Then,

eAt = [[[1 −1 1
1 0 2
1 1 4

]]][[[e
t tet 0
0 et 0
0 0 e2t

]]][[[−2 5 −2−2 3 −1
1 −2 1

]]]= [[[e
t tet − et e2t

et tet 2e2t

et tet + et 4e2t
]]][[[−2 5 −2−2 3 −1

1 −2 1

]]]= [[[ −2tet + e2t 3tet + 2et − e2t −tet − et + e2t
2(e2t − tet − et) 3tet + 5et − 4e2t −tet − 2et + 2e2t−2tet − 4et + 4e2t 3tet + 8et − 8e2t −tet − 3et + 4e2t]]]

Method 3: The Inverse Laplace Transformation
The inverse Laplace transformation method can be expressed as:

eAt = Φ(t) = ℓ−1 {(sI − A)−1} . (3.30)

Proof. Consider the differential equation:

ẋ(t) = Ax(t) ,
with the initial state x(0) = x0.

Apply the Laplace transform on both sides of the equation:

sX(s) − x(0) = AX(s) .
In other words: (sI − A)X(s) = x(0) = x0 ,

and, therefore:
X(s) = (sI − A)−1x0 .

Apply the inverse Laplace transformonboth sides to get the solution of the differential
equation:

x(t) = ℓ−1 {(sI − A)−1} x0 .
Comparing the above equation with equation (3.15) can result in:

eAt = Φ(t) = ℓ−1 {(sI − A)−1} .
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Example 3.5. Compute the matrix eAt, where A = [ 0 1−2 −3].
Solution.

sI − A = [s −1
2 s + 3](sI − A)−1 = 1|sI − A| adj(sI − A) = 1(s + 1)(s + 2) [s + 3 1−2 s

]
= [[ s+3
(s+1)(s+2)

1
(s+1)(s+2)

−2
(s+1)(s+2)

s
(s+1)(s+2)

]]= [ 2
s+1 − 1

s+2
1
s+1 − 1

s+2
−2
s+1 + 2

s+2
−1
s+1 + 2

s+2
]

Therefore,

eAt = ℓ−1 {(sI − A)−1} = [ 2e−t − e−2t e−t − e−2t−2e−t + 2e−2t −e−t + 2e−2t] .

Method 4: Cayley–Hamilton Theorem
(1) A square matrix A satisfies the characteristic equation of itself according to the
Cayley–Hamilton theorem:

f(A) = An + an−1An−1 + ⋅ ⋅ ⋅ + a1A + a0I = 0 ,
thus,

An = −an−1An−1 − an−2An−2 − ⋅ ⋅ ⋅ − a1A − a0I ,
which is the linear combination of An−1, An−2, . . . , A, I.

In the same way,

An+1 = A ⋅ An = −an−1An − (an−2An−1 + an−3An−2 + ⋅ ⋅ ⋅ + a1A2 + a0A)= −an−1 (−an−1An−1 − an−2An−2 − ⋅ ⋅ ⋅ − a1A − a0I)− (an−2An−1 + an−3An−2 + ⋅ ⋅ ⋅ + a1A2 + a0A)= (a2n−1 − an−2) An−1 + (an−1an−2 − an−3)An−2 + . . .+ (an−1a1 − a0) A + an−1a0I .
That is to say, An , An+1 . . . can all be expressed with An−1, An−2, . . . , A, I.

(2) In the definition equation (3.29) of eAt, we can eliminate the terms of Awith power
equal to and above n, applying the method in (1). In other words:

eAt = I + At + 1
2!A

2t2 + ⋅ ⋅ ⋅ + 1(n − 1)!An−1tn−1 + 1
n!A

ntn + 1(n + 1)!An+1tn+1 + . . .= an−1(t)An−1 + an−2(t)An−2 + ⋅ ⋅ ⋅ + a1(t)A + a0(t)I . (3.31)
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Example 3.6. Compute ai(t) in the expression of eAt, where A = [ 0 1−2 −3].
Solution. The characteristic equation of A:|λI − A| = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨λ −1

2 λ + 3󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = λ2 + 3λ + 2 = 0 .
According to the Cayley–Hamilton theorem,

A2 + 3A + 2I = 0 .

Thus:
A2 = −3A − 2I .

While
A3 = A ⋅ A2 = A(−3A − 2I) = −3A2 − 2A= −3(−3A − 2I) − 2A = 7A − 6I ,
A4 = A ⋅ A2 = 7A2 + 6A= 7(−3A − 2I) + 6A = −15A − 14I .
. . .

Substituting the equations above into the following equation, we can eliminate the
terms of A with power equal to and above two:

eAt = I + At + 1
2!A

2t2 + 1
3!A

3t3 + 1
4!A

4t4 + . . .= (t − 3
2! t

2 + 7
3! t

3 − 15
4! t

4 + . . . )A + (1 − t2 + t3 − 14
4! t

4 + . . . ) I= a1(t)A + a0(t)I .
Therefore,

a1(t) = t − 3
2! t

2 + 7
3! t

3 − 15
4! t

4 + . . .
a0(t) = 1 − t2 + t3 − 14

4! t
4 + . . . .

(3) When the eigenvalues of A are all distinct, we have:

[[[[[[
a0(t)
a1(t)
...

an−1(t)
]]]]]] =

[[[[[
1 λ1 λ21 . . . λn−11
1 λ2 λ22 . . . λn−12

. . . . . .
1 λn λ2n . . . λn−1n

]]]]]
−1 [[[[[[

eλ1t

eλ2t
...

eλnt

]]]]]] . (3.32)
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Proof. Matrix A satisfies the characteristic equation of itself and, therefore, eigenval-
ues λ and A are exchangeable. Thus, λ satisfies equation (3.31):

a0(t) + a1(t)λ1 + ⋅ ⋅ ⋅ + an−1(t)λn−11 = eλ1t

a0(t) + a1(t)λ2 + ⋅ ⋅ ⋅ + an−1(t)λn−12 = eλ2t

...
a0(t) + a1(t)λn + ⋅ ⋅ ⋅ + an−1(t)λn−1n = eλnt

}}}}}}}}}}}}}}}
Solve the above equation for [a0(t) a1(t) . . . an−1(t)]T, andwe can obtain (3.32).
When eigenvalues of A are all λ1, we have:

[[[[[[[[[
a0(t)
a1(t)
...

an−2(t)
an−1(t)

]]]]]]]]]
= [[[[[[[[[[[[

0 0 0 . . . 0 1
0 0 0 . . . 1 (n − 1)λ1
...

...
...

...
0 0 1 . . . (n−1)(n−2)

2! λn−31

0 1 2λ . . . (n − 1)λn−21 (n − 1)λn−21

1 λ1 λ21 . . . λn−11 λn−11

]]]]]]]]]]]]

−1 [[[[[[[[[[[

1
(n−1)! t

n−1eλ1t
1
(n−2)! t

n−2eλ1t
...

1
2! t

2eλ1t

teλ1 t

eλ1t

]]]]]]]]]]]
.

(3.33)

Proof.
a0(t) + a1(t)λ1 + a2(t)λ21 ⋅ ⋅ ⋅ + an−1(t)λn−11 = eλ1t .

Differentiating both sides of the equation, we have:

a1(t) + 2a2(t)λ1 ⋅ ⋅ ⋅ + (n − 1)an−1(t)λn−21 = teλ1t .

Differentiating both sides of the equation again, we obtain:

2a2(t) + 6a3(t) + ⋅ ⋅ ⋅ + (n − 1)(n − 2)an−1(t)λn−31 = t2eλ1t .

Repeat the former step and, finally, we have:(n − 1)!an−1(t) = tn−1eλ1t .

The equation (3.33) can be reached from the above n equations, by solving ai(t).
Example 3.7. Compute eAt, where A = [ 0 1−2 −3].
Solution. We know the eigenvalues of the matrix A is λ1 = −1, λ2 = −2. According to
equation (3.33), we have:[a0

a1
] = [1 λ1

1 λ2
]−1 [eλ1t

eλ2t
] = [1 −1

1 −2]−1 [ e−te−2t
]= [2 −1

1 −1][ e−te−2t
] = [2e−t − e−2t

e−t − e−2t ] .
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Therefore,

eAt = a0(t)I + a1(t)A= (2e−t − e−2t) [1 0
0 1

] + (e−t − e−2t) [ 0 1−2 −3]= [ 2e−t − e−2t e−t − e−2t−2e−t + 2e−2t −e−t + 2e−2t] .

Example 3.8. Compute the matrix eAt, where A = [[[0 1 0
0 0 1
2 −5 4

]]].
Solution. The eigenvalues of the matrix A are λ1 = λ2 = 1, λ3 = 2. The part of λ1 =
λ2 = 1 can be calculated based on equation (3.33), while the part of λ3 = 2 can be
calculated based on equation (3.32):[[[a0a1a2]]] = [[[0 1 2λ1

1 λ1 λ21
1 λ3 λ23

]]]
−1 [[[te

λ1 t

eλ1t

eλ3t
]]]= [[[0 1 2

1 1 1
1 2 4

]]]
−1 [[[te

t

et

e2t
]]] = [[[−2 0 1

3 2 −2−1 −1 1

]]][[[te
t

et

e2t
]]] .

Therefore,

eAt = (−2tet + e2t) [[[1 0 0
0 1 0
0 0 1

]]] + (3tet + 2et − 2e2t) [[[0 1 0
0 0 1
2 −5 4

]]]+ (−tet − et + e2t) [[[0 0 1
2 −5 4
8 −18 11

]]]= [[[ −2tet + e2t 3tet + 2et − 2e2t −tet − et + e2t
2(e2t − tet − et) 3tet + 5et − 4e2t −tet − 2et + 2e2t−2tet − 4et + 4e2t 3tet + 8et − 8e2t −tet − 3et + 4e2t]]] .

Example 3.9. Consider the state equation:

ẋ = [[[−2 0 0
1 0 1
0 −2 −2]]] x + [[[101]]] u

y = [1 −1 0] x .
Suppose the input is a step function of various magnitudes. First we use MATLAB to
find its unit step response. We type:
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a=[-2 0 0;1 0 1;0 -2 -2];

b=[1;0;1];

c=[0 -2 -2];

d=0;

[y,x,t]=step(a,b,c,d);

plot(t,y,t,x)

The system response is shown in Figure 3.2.
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Fig. 3.2: State variables of system step response.

3.4 Discretization

Consider the continuous time state space equation:

ẋ(t) = Ax(t) + Bu(t) . (3.34)

If this continuous time equation is to be computed on a digital computer, it must be
discretized, because:

ẋ = lim
T→0

x(t + T) − x(t)
T .

When the sample period T is quite small, about 1/10 of the minimum time constant
of the system, (3.34) can be approximated as:

x[(k + 1)T] = (TA + 1)x(kT) + TBu(kT) . (3.35)
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Proof. According to the definition of derivative, we have:

ẋ(t0) = lim
∆t→0

x(t0 + ∆t) − x(t0)
∆t

. (3.36)

If we compute x(t) and y(t) from t0 = kT to t = (k + 1)T for k = 0, 1, . . . , then (3.36)
becomes:

ẋ(kT) = lim
T→0

x[(k + 1)T] − x(kT)
T ≈ x[(k + 1)T] − x(kT)

T . (3.37)

Substituting (3.37) into (3.34) yields:

x[(k + 1)T] − x(kT)
T = Ax(kT) + Bu(kT) ,

which can be rearranged as (3.35), thus providing proof.

This is a discrete time state space equation and can easily be computed on a digital
computer. This discretization is the easiest to carry out but yields the least accurate
results. The following is an alternative discretization method.

If an input u(t) is generated by a digital computer followed by a digital to analog
converter, then u(t)will be piecewise constant. This situation often arises in computer
control of control systems. Let

u(t) = u(kT) = constant for kT ≤ t < (k + 1)T
for k = 0, 1, 2, . . . . This input changes value only at discrete time instants. For this
input, the solution of the state equation in (3.34) still equals (3.7). Computing (3.7) at
t = kT and t = (k + 1)T yields:

x[(k + 1)T] = eATx(kT) + (k+1)T∫
kT

eA[(k+1)T−τ]Bdτu(kT) . (3.38)

Let t = (k+1)T−τ, then dτ = −dt. So the lower integral τ = kT becomes t = T; and the
higher integral τ = (k+)T becomes t = 0. Thus, equation (3.38) can be simplified as:

x[(k + 1)T] = eATx(kT) + T∫
0

eAtdtBu(kT) ,
which equals

x(k + 1) = eATx(k) + T∫
0

eAtdtBu(k) . (3.39)

This is a discrete time state space equation. Note that there is no approximation in-
volved in this derivation. It is the exact solution of (3.34) at t = kT, if the input is
piecewise constant.
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Rewrite (3.39) as:
x(k + 1) = G(T)x(k) + H(T)u(k) , (3.40)

where

G(T) = eAT , H(T) = T∫
0

eAtdt ⋅ B . (3.41)

TheMATLAB function [ad,bd]=c2d(a,b,T) transforms the continuous state equation
in (3.34) into the discrete time state equation in (3.41).

Example 3.10. Try to discretize the following state equation:

ẋ = [0 1
0 −2] x(t) + [01] u(t) .

Solution. Step 1. Equation (3.41) yields the exact result:

eAt = ℓ−1 [(sI − A)−1] = ℓ−1 {[s −1
0 s + 2]−1} = [1 1

2 (1 − e−2T)
0 e−2T

] .

Thus, we have:

G(T) = [1 1
2 (1 − e−2T)

0 e−2T
]

H = T∫
0

eAtdt ⋅ B = T∫
0

[1 1
2 (1 − e−2t)

0 e−2t
] dt ⋅ [0

1
]

= [T 1
2 (T + 1

2 e
−2T − 1

2)
0 − 1

2 e
−2T + 1

2
] [0

1
] = [ 1

2 (T + e−2T−1
2 )

1
2 (1 − e−2T) ] .

According to equation (3.40), the discretized state equation is:

x(k + 1) = [1 1
2 (1 − e−2T)

0 e−2T
] x(k) + [ 1

2 (T + e−2T−1
2 )

1
2 (1 − e−2T) ] u(k) .

Step 2. Equation (3.35) yields the approximate result:

TA + I = [0 T
0 −2T] + [1 0

0 1
] = [1 T

0 1 − 2T]
H = TB = [0

T
] .

According to equation (3.45), the discretized state equation is:

x[(k + 1)T] = [1 T
0 1 − 2T] x(kT) + [0T] u(kT) ,
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which can be rewritten as:

x(k) = [1 T
0 1 − 2T] x(k) + [0T] u(k) .

Then we use MATLAB to finish this task. We type:

a=[0 1;0 -2];

b=[0;1];

T=0.1;

[ad,bd]=c2d(a,b,T)

Yield

ad =

1.0000 0.0906

0 0.8187

bd =

0.0047

0.0906

We can get:

x(k) = [1 0.09
0 0.8

] x(k) + [0.0047
0.09

] u(k) .
3.5 Solution of Discrete Time Equation

Method 1: Recursive Method
Consider the discrete time state space equation:

x(k + 1) = G(T)x(k) + H(T)u(k)
x(k)󵄨󵄨󵄨󵄨k=0 = x(0) . (3.42)

The solution of the first order matrix differential equation is:

x(k) = Gkx(0) + k−1∑
j=0

Gk−j−1Hu(j) . (3.43a)

Or:

x(k) = Gkx(0) + k−1∑
j=0

GjHu(k − j − 1) , (3.43b)

which equals:

x(k) = Gkx(0) + Gk−1Hu(0) + Gk−2Hu(1) + ⋅ ⋅ ⋅ + GHu(k − 2) + Hu(k − 1) . (3.43c)
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Proof. Solve the matrix differential equation (3.42) by iterative method:

For i = 0 , x(1) = Gx(0) + Hu(0) .
For i = 1 , x(2) = Gx(1) + Hu(1) = G2x(0) + GHu(1) + Hu(1) .
For i = 2 , x(3) = Gx(2) + Hu(2) = G3x(0) + G2Hu(0) + GHu(1) + Hu(2) .

...
For i = k − 1 , x(k) = Gx(k − 1) + Hu(k − 1) = Gkx(0) + Gk−1Hu(0) + . . .+ GHu(k − 2) + Hu(k − 1) .

The last general formula is just equation (3.43c).
Equation (3.43c) can be expressed in matrix form as:[[[[[[[[[

x(1)
x(2)
x(3)
...

x(k)
]]]]]]]]]
= [[[[[[[[[

G
G2

G3

...
Gk

]]]]]]]]]
x(0) [[[[[[[[[

H 0 0 . . . 0
GH H 0 . . . 0
G2H GH H . . . 0
...

...
...

...
Gk−1H Gk−2H Gk−3H . . . H

]]]]]]]]]
. (3.43d)

Solution (3.43) is derived from the initial time instant k = 0. If we start from the
time k = h, the corresponding initial state is x(h). Then the solution becomes:

x(k) = Gk−hx(0) + k−1∑
j=h

Gk−j−1Hu(j) , (3.44a)

or:

x(k) = Gk−hx(0) + k−1∑
j=h

GjHu(k − j − 1). (3.44b)

Obviously, the solution of the discrete time state space equation is similar to that
of the continuous time state space equation. It consists of two parts of responses; the
response excited by the initial state and the response excited by the input signal. Fur-
thermore, the solution of the discrete time state space equation is a discrete track in
state space. Besides, in the response excited by the input, the state x(k) is only related
with the sample values of input before time instant k.

Similarly, we define

Φ(k) = Gk or Φ(k − h) = Gk−h (3.45)

as the state transition matrix of the discrete time system. Obviously,

Φ(k + 1) = GΦ(k) ; Φ(0) = I (3.46)
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and the following properties hold:

Φ(k − h) = Φ(k − h1)Φ(h1 − h) for k > h1 ≥ h (3.47)
Φ−1(k) = Φ(−k) . (3.48)

Using the state transition matrix Φ(k), the solution (3.43) can be expressed as:
x(k) = Φ(k)x(0) + k−1∑

j=0
Φ(k − j − 1)Hu(j) , (3.49a)

or as:

x(k) = Φ(k)x(0) + k−1∑
j=0

Φ(k − j − 1)Hu(j). (3.49b)

Thus, equation (3.44) can be written as:

x(k) = Φ(k − h)x(h) + k−1∑
j=h

Φ(k − j − 1)Hu(j) (3.50a)

x(k) = Φ(k − h)x(0) + k−1∑
j=h

Φ(j)Hu(k − j − 1) . (3.50b)

Example 3.11. The state equation of a discrete time system is:

x(k + 1) = Gx(k) + Hu(k)
G = [ 0 1−0.16 −1] , H = [1

1
] ,

with initial state x(0) = [1 − 1]T and control action u(k) = 1. Try to solve Φ(k), x(k).
Solution. As defined.

Φ(k) = Gk = [ 0 1−0.16 −1]k .

For simplicity, we transform the original equation into Jordan canonical form, i.e.,
transform G into diagonal form.

Let x(k) = Tx̃(k). Thus, the original equation becomes:
x̃(k + 1) = T−1GTx̃(k) + T−1Hu(k) .

Again, let
T−1GT = Λ ; Φ̃(k) = (T−1GT)k = Λk ,

so

x̃(k) = Φ̃(k)x̃(0) + k−1∑
j=0

Φ̃(j)T−1Hu(k − j − 1) (3.51)

|λI − G| = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 λ −1
0.16 λ + 1󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = (λ + 0.2)(λ + 0.8) = 0

λ1 = −0.2 ; λ2 = −0.8 .
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Therefore,

Λ = [−0.2 0
0 −0.8] ; Φ̃(k) = [−0.2 0

0 −0.8]k = [(−0.2)k 0
0 (−0.8)k] ,

thus

T = [ 1 1−0.2 −0.8] , T−1 = [[ 4
3

5
3− 1

3 − 5
3

]] .

Now, it is easy to derive

Φ(k) = TΦ̃(k)T−1 = [ 1 1−0.2 −0.8] [(−0.2)k 0
0 (−0.8)k][[ 4

3
5
3− 1

3 − 5
3

]]= 1
3 [ 4(−0.2)k − (−0.8)k 5 [(−0.2)k − (−0.8)k]−0.8 [(−0.2)k − (−0.8)k] −(−0.2)k + 4(−0.8)k ] .

Now compute x̃(k) according to equation (3.51). The first term on the right side is:

Φ̃(k)x̃(0) = Φ̃(k)T−1x(0) = [(−0.2)k 0
0 (−0.8)k][[ 4

3
5
3− 1

3 − 5
3

]][ 1−1] = 1
3 [−(−0.2)k4(−0.8)k] .

The second term on the right side is:

k−1∑
j=0

Φ̃(j)T−1Hu(k − j − 1) = k−1∑
j=0

Φ̃(j) [[ 4
3

5
3− 1

3 − 5
3

]][11] [1]= k−1∑
j=0
[(−0.2)j 0

0 (−0.8)j] [ 3−2] = k−1∑
j=0
[ 3(−0.2)j−2(−0.8)j]= [ 3 [1 + (−0.2) + (−0.2)2 + ⋅ ⋅ ⋅ + (−0.2)k−1]−2 [1 + (−0.8) + (−0.8)2 + ⋅ ⋅ ⋅ + (−0.8)k−1]]= [[ 3[1−(−0.2)k]

1.2
−2[1−(−0.8)k]

1.8

]] .

Thus:

x̃(k) = 1
3 [−(−0.2)k4(−0.8)k] + [[ 1

0.4 [1 − (−0.2)k]− 1
0.9 [1 − (−0.8)k]]]= [[− 17

6 (−0.2)k + 5
2

22
9 (−0.8)k − 10

9

]] .
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Therefore:

x(k) = Tx̃(k) = [ 1 1−0.2 −0.8][[− 17
6 (−0.2)k + 5

2
22
9 (−0.8)k − 10

9

]]= [[− 17
6 (−0.2)k + 22

9 (−0.8)k + 25
18

3.4
6 (−0.2)k − 17.6

9 (−0.8)k + 7
18

]] .

Method 2: z Transform Method
For the LTI discrete system state equation,we canfind its solution byusing the z trans-
form method.

Consider the discrete time state space equation:

x(k + 1) = G(T)x(k) + H(T)u(k) .
Applying z transform to the above equation yields:

zx(z) − zx(0) = Gx(z) + Hu(z) ,
or: (zI − G)x(z) = zx(0) + Hu(z) .
Thus,

x(z) = (zI − G)−1zx(0) + (zI − G)−1Hu(z) .
Take inverse z transform:

x(k) = ℓ−1 [(zI − G)−1zx(0)] + ℓ−1 [(zI − G)−1Hu(z)] . (3.52)

Comparing (3.43) with (3.52) yields:

Gkx(0) = ℓ−1 [(zI − G)−1zx(0)] (3.53)
k−1∑
j=0

Gk−j−1Hu(j) = ℓ−1 [(zI − G)−1Hu(z)] . (3.54)

Using the solution of the continuous state equation, we get:

x(t) = Φ(t − kT)x(kT) + t∫
kT

Φ(t − τ)Bu(kT)dτ .
Suppose that t = (k + ∆)T (0 ≤ ∆ ≤ 1) – the above equation becomes:

x [(k + ∆)T] = Φ(∆T)x(kT) + ∆T∫
0

Φ(∆T − τ)dτBu(kT) . (3.55)
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Comparing (3.43) with (3.52) yields:

Gk = Φ(k) = ℓ−1 [(zI − G)−1z] (3.56)
k−1∑
j=0

Gk−j−1Hu(j) = ℓ−1 [(zI − G)−1Hu(z)] . (3.57)

Proof. First we compute the z transform of Gk:ℓ[Gk] = ∞∑
k=0

Gkz−k = I + Gz−1 + G2z−2 + . . . . (3.58)

Then we premultiply Gz−1 to both sides of (3.58):

Gz−1ℓ[Gk] = Gz−1 + G2z−12 + G3z−3 + . . . . (3.59)

Subtract (3.58) from (3.59): (I − Gz−1)ℓ[Gk] = I ,
because ℓ[Gk] = (I − Gz−1)−1 = (zI − G)−1z . (3.60)
Take z inverse transform of equation (3.60), and we can get equation (3.56).

Next we use convolution formula to prove equation (3.57):ℓ[[k−1∑
j=0

Gk−j−1Hu(j)]] = ℓ[Gk−1]Hℓ[u(k)]= ℓ[Gk]z−1Hℓ[u(k)] = (zI − G)−1Hu(z) .
Take z inverse transform of the above equation, then equation (3.57) is derived.

k−1∑
j=0

Gk−j−1Hu(j) = ℓ−1 [(zI − G)−1Hu(z)] .
Example 3.12. Consider the state equation in Example 3.11; try to find Φ(k) and x(k)
using the z transformmethod.

Solution. As u(k) = 1, we have:

u(z) = z
z − 1 .

According to equation (3.56),

Φ(k) = ℓ−1 [(zI − G)−1z]= ℓ−1 {[ z −1
0.16 z + 1]−1 z} = ℓ−1 { z(z + 0.2)(z + 0.8) [ z + 1 1−0.16 z

]}
= ℓ−1{{{ z

3
[[ 4

z+0.2 + −1z+0.8
5

z+0.2 + −5z+0.8
−0.8
z+0.2 + 0.8

z+0.8
−1

z+0.2 + 4
z+0.8

]]}}}= 1
3 [ 4(−0.2)k − (−0.8)k 5(−0.2)k − 5(−0.8)k−0.8(−0.2)k + (−0.8)k −(−0.2)k + 4(−0.8)k] .
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Now compute:

zx(0) + Hu(z) = [ z−z] + [[ z
z−1
z

z−1

]] = [[ z2
z−1
−z2+2z
z−1

]] .

Thus,

x(z) = (zI − G)−1 [zx(0) + Hu(z)]= [[ (z2+2)z
(z+2)(z+0.8)(z−1)
(−z2+1.84z)z
(z+2)(z+0.8)(z−1)

]] = [[ −(17/6)zz+2 + (22/9)zz+0.8 + (25/18)zz−1
(3.4/6)z
z+2 + (−17.6/9)zz+0.8 + (7/18)zz−1

]] .

hence,

x(k) = ℓ−1[x(z)] = [[− 17
6 (−0.2)k + 22

9 (−0.8)k + 25
18

3.4
6 (−0.2)k − 17.6

9 (−0.8)k + 7
18

]] .

3.6 Summary

The solution to both the continuous time and discrete time state space equation has
been studied in this chapter. The state transfer matrix is a very important parameter
matrix, which plays a big role in the solution of a state space equation. Different algo-
rithms are discussed to obtain the state transfer matrix.

Exercise

3.1. Consider the matrix A:

A = (0 1 0
0 0 1
2 −5 4

) .

Use the Laplace transform to find e−At.

3.2. Use three different methods to find e−At.(1) A = (0 −1
4 0

) . (2) A = (1 1
4 1

) .

3.3. Examine the following matrix to see whether they meet the conditions of state
transition matrix. If they do, try to find out the corresponding matrix A.

(1) Φ(t) = (1 0 0
0 sin t cos t
0 − cos t sin t

) .

(2) Φ(t) = (1 1
2 (1 − e−2t)

0 e−2t
) .
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(3) Φ(t) = (2e−t − e−2t 2e−t − 2e−2t
e−t − e−2t 2e−t − e−2t ) .

(4) Φ(t) = (1
2 (e−t − e−3t) − 1

4 (e−t + 2e3t)(−e−t + e3t) 1
2 (e−t + e3t) ) .

3.4. Solve the state space model:

ẋ = (1 1
0 0

) x + (0
1
) u

y = (1 0) x .
The initial state is x(0) = (1 1)T. The input u(t) is a unit step response.
3.5. Calculate Φ(t, 0) and Φ−1(t, 0).(1) A = (2t 0

0 1
) . (2) A = ( 0 e−t−e−t 0

) .

3.6. The discrete time system is listed below. Try to calculate x(k).[x1(k + 1)
x2(k + 1)] = ( 1

3
1
9

1
9

1
3

)[x1(k)
x2(k)] + (1 0

0 1
)[u1(k)

u2(k)]
x1(0) = −1 , x2(0) = 4 .

u1(k) is sampled from a ramp function t and u2(k) is sampled from e−t.



4 Stability Analysis

4.1 Introduction

Stability is an important property for a system because, only when a system is stable
can it finish the target task. In this chapter, a group of conceptions of stability in the
sense of Lyapunov are given at the beginning, which are somewhat different from the
definitions of stability given in classical control theory. Following that, the theorems
to decide whether a system is stable or not are introduced.

4.2 Definition

The response of linear systems can always be decomposed as the zero state response
and the zero input response. The stabilities of these two responses are commonly stud-
ied separately. The bounded input bounded output (BIBO) stability is for the zero state
response, while marginal and asymptotic stabilities are for the zero input response.

Definition 4.1 (External Stability). An input u(t) is said to be bounded if u(t) does not
grow to positive infinity or negative infinity. Equivalently, constants β1 and β2 exist,
and

u(t) ≤ β1 < ∞ holds for all t ≥ 0 . (4.1)

A system is said to be BIBO stable if every bounded input excites a bounded output.
For example:

y(t) ≤ β2 < ∞ holds for all t ≥ 0 . (4.2)

This stability is defined for the zero state response.

Conclusion 4.1 (BIBO Stability of Linear Time Variant System). Consider a continuous
linear time variant (LTV) system with p inputs, m outputs and zero initial condition. If
we define [t0,∞] as the time domain, the system is BIBO stable at time t0 if, and only if,
there exists a limited positive number β, which satisfies the following relationship:

t∫
t0

󵄨󵄨󵄨󵄨hij(t, τ)󵄨󵄨󵄨󵄨 dτ ≤ β < ∞ , (4.3)

where
hij(t, τ) , i = 1, 2, . . . ,m , j = 1, 2, . . . , p (4.4)

are elements of the impulse response matrix H(t, τ) at any t (t ∈ [t0,∞]).
https://doi.org/10.1515/9783110574951-004
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Proof. The proof is divided into two parts.

Step 1: The system is a SISO system. That is, it is p = m = 1.
First, if hij(t, τ) is absolutely integrable, then every bounded input excites a

bounded output.
Suppose u(t) is an arbitrary input with u(t) ≤ β1 < ∞ for all t ≥ 0. This will lead

to the output being bounded as follows:|y(t)| = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 t∫t0 h(t, τ)u(τ)dτ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ t∫

t0

|h(t, τ)| |u(τ)| dτ
≤ β1

t∫
t0

|h(t, τ)| dτ ≤ β1β = β2 < ∞ (4.5)

Second, it can be seen that if hij(t, τ) is not absolutely integrable, the system is not
BIBO stable.

If hij(t, τ) is not absolutely integrable, for any absolutely large N, there exists a
t1 ∈ [t0,∞] such that:

t1∫
t0

|h(t1, τ)| dτ ≥ N .

Let us use the following example to demonstrate:

u(t) = sgn h(t1, t) = {{{{{{{
+1 , h(t1, t) > 0
0 , h(t1, t) = 0−1 , h(t1, t) < 0 .

It is very clear that u is bounded. The output excited by the input is:

y(t1) = t1∫
t0

h(t, τ)u(τ)dτ = t1∫
t0

|h(t1, τ)| dτ = ∞ .

Because y(t1) can be absolutely large, we conclude that a similar bounded input can
excite an unbounded output, which is contrary to the definition external stability.
Therefore, the assumption does not hold, and we have:

t∫
t0

󵄨󵄨󵄨󵄨hij(t, τ)󵄨󵄨󵄨󵄨 dτ ≤ β < ∞ , ∀t ∈ [t0,∞] .
Step 2: The system is a MIMO system. Note that any element yi(t) of output y(t) is|yi(t)| = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 t∫t0 [hi1(t, τ)u1(τ) + ⋅ ⋅ ⋅ + hip(t, τ)up(τ)] dτ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,≤ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 t∫t0 hi1(t, τ)u1(τ)dτ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 + ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 t∫t0 hip(t, τ)up(τ)dτ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 , i = 1, 2, . . . ,m .
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The sumof a finite number of bounded functions remains bounded. Therefore, we can
have the conclusion based on the condition of SISO. Proof has been provided.

Conclusion 4.2 (BIBO Stability of LTI System). If we define the initial time as t0 = 0 in a
continuous LTI system with p inputs, m outputs and zero initial condition, the system is
BIBO stable. However, this would only apply if, and only if, there exists a limited positive
number of β, which satisfies the following relationship:

∞∫
0

󵄨󵄨󵄨󵄨hij(t)󵄨󵄨󵄨󵄨 dt ≤ β < ∞ ,

where hij(t), i = 1, 2, . . . ,m, j = 1, 2, . . . p are elements of the impulse response matrix
H(t).
Conclusion 4.3 (BIBO Stability of LTI System). If we define the initial time as t0 = 0 in
a continuous time LTI system with p inputs, m outputs and zero initial condition, the
system with proper rational transfer function matrix G(s) is BIBO stable. However, this
would only apply if, and only if, every pole of G(s) has a negative real part or every pole
of G(s) lies in the left half s-plane.
Proof. The characteristic polynomial of G(s) is αG(s). The pole of G(s) is sl (l =
1, 2, . . . ,m), which are the roots of αG(s) = 0. Therefore, any rational fraction of
G(s) is gij(s) (i = 1, 2, . . . , q, j = 1, 2, . . . p). Its expansion contains the partial
fractions:

βl(s − sl)αlr , l = 1, 2, . . . ,m , αlr = 1, 2, . . . , σl ,
where βl is zero or a nonzero constant, and the pole sl with multiplicity σl.

Thus, the inverse Laplace transform of gij(s) is:
ρlrtαlr−1eslt , l = 1, 2, . . . ,m .

If βl/(s − sl)α1lr = βl, the corresponding inverse Laplace transform is the impulse
function δ. Therefore, the element hij(t) of the impulse response matrix H(t), derived
from the inverse Laplace transform of element transfer function gij(s), is the sum of
the finite terms as ρlr tαlr−1eslt. It may contain the function δ. It is straightforward to
verify that every ρlr tαlr−1eslt (∀i = 1, 2, . . . , q, ∀j = 1, 2, . . . , p) is absolutely inte-
grable if and only if the pole sl (l = 1, 2, . . . ,m) has a negative real part, i.e., hij(t)
(∀i = 1, 2, . . . , q, ∀j = 1, 2, . . . , p) is absolutely integrable.

Therefore, according to Conclusion 4.2, the system is BIBO stable. The BIBO sta-
bility is defined for the zero state response.

Now we study the stability of the zero input response, or the response of:

ẋ(t) = Ax(t) ,
which is excited by nonzero initial state x0. Clearly, the solution is:

x(t) = eAtx0 .
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Definition 4.2 (Internal Stability). The zero input response of equation ẋ(t) = Ax(t)
is marginally stable, or stable in the sense of Lyapunov, if every finite internal state
x0 excites a bounded response. It is asymptotically stable if every finite initial state
excites a bounded response, which also approaches 0 as t →∞.

Conclusion 4.4 (Internal Stability of LTV System). The zero input response of equation
ẋ(t) = Ax(t) is internal stable or marginally stable if every finite internal state x0 excites
a bounded state transition matrix ϕ(t, t0), which also approaches 0 as t →∞.

Proof. If x(t0) = x0 at time t0, the zero input response is:

x0u = ϕ(t, t0)x0, ∀t ∈ [t0,∞] .
It is straightforward to verify that x0u is bounded, only in instances where ϕ(t, t0) is
bounded and limt→∞ x0u(t) = 0, and when limt→∞ ϕ(t, t0) = 0.

Conclusion 4.5 (Internal Stability of LTI System). The zero input response of equation
ẋ(t) = Ax(t) + Bu with the initial state x(0) = x0 is internal stable or marginal stable
only in instances where limt→∞ eAt = 0.
Proof. For a LTI system, the state transfer matrix ϕ(t) = eAt and eAt is bounded for
any t > 0. Following this, we can obtain Conclusion 4.5 from Conclusion 4.4.

Conclusion 4.6 (Internal Stability of LTI System). The zero input response of equation
ẋ(t) = Ax(t) + Bu(t) with the initial state x(0) = x0 is internal stable or marginal stable
in instances where every eigenvalue λi(A) (i = 1, 2, . . . , n) has a negative real part. In
other words:

Re {λi(A)} < 0 , i = 1, 2, . . . , n .
Conclusion 4.7 (The Relationship Between Internal Stability and External Stability).
Consider the continuous LTI system:

ẋ = Ax + Bu , x(0) = x0 , t ≥ 0 ,
y = Cx + Du ,

where x is an n-dimensional state vector, u is a p-dimensional input vector, and y is a
m-dimensional output vector. If the above system is internal stable or marginal stable,
it must be BIBO stable or external stable.

Proof. For the above LTI system, from the analysis of the system dynamics we know
that the impulse response matrix H(t) is:

H(t) = CeAtB + Dδ(t) .
From Conclusion 4.5 we know that if the system is internal stable, eAt is bounded and
limx→∞ eAt = 0. With the above contents, we can get all elements of the impulse re-
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sponse matrix H(t), where hij(t) (i = 1, 2, . . . ,m, j = 1, 2, . . . , p) satisfies the follow-
ing relationship:

∞∫
0

󵄨󵄨󵄨󵄨hij(t)󵄨󵄨󵄨󵄨 dt ≤ β < ∞ .

The system is BIBO stable according to Conclusion 4.2.

Conclusion 4.8 (The Relationship Between External Stability and Internal Stability).
Consider the continuous LTI system:

ẋ = Ax + Bu , x(0) = x0 , t ≥ 0 ,
y = Cx + Du .

BIBO stability or external stability cannot guarantee internal stability or marginal sta-
bility.

Proof. When some poles and zeros are the same, the order of transfer function for a
system is lower than that of state space description, i.e., the number of poles is less
than the number of eigenvalues. The system is BIBO stable. In other words, every pole
of G(s) has a negative real part and cannot guarantee that the eigenvalues of the sys-
tem have negative real parts. Therefore, BIBO stability cannot guarantee the internal
stability of the system.

Conclusion 4.9 (The Equivalence Between External Stability and Internal Stability).
Consider the continuous LTI system:

ẋ = Ax + Bu , x(0) = x0 , t ≥ 0 ,
y = Cx + Du .

Without the zero pole cancelation, the system is internal stable if, and only if, the system
is external stable.

Proof. From Conclusion 4.7, we know that internal stability means external stability
of the system. If the system has no zero pole cancelation, external stability means
internal stability of the system according to the proof of Conclusion 4.8. Therefore,
external stability is equivalent to internal stability of a system if the system has no
zero pole cancelation.

Definition 4.3 (Autonomous System). A dynamic systemwithout external or input ex-
citation is defined as an autonomous system.

Generally, the state equation of a continuous nonlinear time variant (NTV) au-
tonomous system can be described as follows:

ẋ = f(x, t) , x(t0) = x0 , t ∈ [t0,∞] (4.6)

where x is n-dimensional state vector, f(x, t) is n-dimensional vector function. For a
continuous nonlinear time invariant (NTI) system, state equation can be written as
ẋ = f(x).
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For a continuous LTV system, the vector function f(x, t) of equation (4.6) can
be further described as a linear vector function of state x. The state equation of au-
tonomous system can be rewritten as

ẋ = A(t)x , x(t0) = x0 , t ∈ [t0,∞] (4.7)

And the state equation of a continuous LTI autonomous can be written as ẋ = Ax.

Definition 4.4 (Equilibrium State). For a continuous NTV system, the equilibrium
state of the autonomous system (4.7) is xe, which satisfies the following equation:

ẋe = f(x, t) = 0 , ∀t ∈ [t0,∞] . (4.8)

Below are some notes about the equilibrium state.
(a) Intuitive meaning of the equilibrium state: Equilibrium state xe is a class of state

which always satisfies ẋe = 0.
(b) The form of the equilibrium state: The equilibrium state xe can be solved from

equation (4.8). For a two-dimensional autonomous system, the form of xe can be
points or a line in the state space.

(c) Nonuniqueness: The equilibrium state xe of an autonomous system is not always
unique. For a continuous LTI system, the equilibrium state xe is the solution of
Axe = 0. If the matrix A is nonsingular, we have a unique solution of xe = 0. If the
matrix A is singular, the solution is not unique.

(d) Zero equilibrium state: For the autonomous systems (4.6) or (4.7), xe = 0 must be
an equilibrium state for the system.

(e) Isolated equilibrium states: The isolated equilibrium states are in the form of iso-
lated equilibrium point in the state space. An important feature of the isolated
equilibrium states is that they can be transferred to state space origin by moving
coordinates.

(f) Agreement on the equilibriumstates: In the directmethod of Lyapunov, the stabil-
ity analysis ismainly aimed at the equilibrium states. Therefore, we always set the
state space origin as the equilibrium states, i.e., xe = 0 in the following sections
of the stability analysis.

Definition 4.5 (Disturbed Dynamics). The disturbed dynamics of a dynamic system is
a class of state dynamics caused by the initial state x0.

In nature, the disturbed dynamics is the state response of zero input. We call it dis-
turbed dynamics because a nonzero initial state x0 will be regarded as a state distur-
bance relative to the zero equilibrium state xe = 0 in stability analysis.

Usually, for amore clear descriptionof the relationshipof timeandcausality in the
disturbed dynamics, we further represent the disturbance dynamics in the following
form:

x0u(t) = ϕ(t; x0, t0) , t ∈ [t0,∞] ,
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where ϕ is a vector function. When t = t0, the vector function of the disturbed dynam-
ics satisfies ϕ(t0; x0, t0) = x0.

In the sense of geometry, the disturbed dynamics ϕ(t; x0, t0) presents a trajectory
from the initial state x0 in the state space. We can constitute a trajectory cluster of
disturbed dynamics ϕ(t; x0 , t0) according to different initial states.
Definition 4.6 (the Stability in the Sense of Lyapunov). The isolated equilibriumstate
xe = 0 of the autonomous system is considered to be stable in the sense of Lyapunov
at the time instant t if, for any real number ε > 0, there exists a corresponding real
number δ(ε, t0) > 0. When: ‖x0 − xe‖ ≤ δ (ε, t0) , (4.9)

the disturbed dynamics ϕ(t; x0, t0) from the initial x0 satisfies the following inequal-
ity: 󵄩󵄩󵄩󵄩ϕ(t; x0 , t0) − xe󵄩󵄩󵄩󵄩 ≤ ε , ∀t ≥ t0 . (4.10)

Listed below are notes regarding the stability in the sense of Lyapunov.

(a) Geometric significance of stability
There is direct geometric significance about the stability in the sense of Lyapunov.
Hence, inequality (4.10) can be considered as a supersphere in the state space, whose
core is xe and the radius is ε. Its field can be represented with S(ε). Inequality (4.9)
can be considered as a supersphere, whose core is xe and the radius is δ(ε, t0) in the
state space. Its field can be represented with S(δ), which is a function of ε and t0.
The geometric explanation of stability in the sense of Lyapunov is that the dynamics
trajectories ϕ(t; x0 , t0) starting from any initial state within the field S(δ) will never
exceed the boundary H(ε) of the filed S(ε), as shown in Figure 4.1.

Fig. 4.1: The stability in the sense of Lyapunov.



4.2 Definition | 79

(b) Uniform stability in the sense of Lyapunov
According to the definition of stability in the sense of Lyapunov, if a real number
δ(ε) > 0 exists, which is not related to the initial time t0, i.e., when ‖x0 − xe‖ ≤ δ(ε)
holds, ‖ϕ(t; x0 , t0)−xe‖ ≤ ε∀t ≥ t0 always holds. At this stage, we can call the equilib-
rium state xe uniformly stable in the sense of Lyapunov. In general, for the time variant
systems, uniform stability is of more practical significance than stability. Uniform sta-
bility means that, if the system is stable in the sense of Lyapunov at an initial time
instant t0, the system is stable in the sense of Lyapunov at all initial time t0 within the
definition interval of time.

(c) The stability properties of the time invariant system
For the time invariant system, whether it is a linear or nonlinear system or a continu-
ous or time discrete system, stability in the sense of Lyapunov must be equivalent to
uniform stability. In other words, if the equilibrium state xe for a time invariant sys-
tem is stable in the sense of Lyapunov, xe must be uniformly stable in the sense of
Lyapunov.

(d) The nature of stability in the sense of Lyapunov
The definition shows that the stability in the sense of Lyapunov can only guarantee
the boundedness of the system’s disturbed dynamics instead of the asymptotic char-
acteristic relative to the equilibrium state. Therefore, stability in the sense of Lyapunov
does not necessarily mean stability within industrial processes.

Definition 4.7 (the Asymptotic Stability). The isolated equilibrium state xe = 0 of the
autonomous system is considered to be asymptotic stable if the following conditions
hold:
(i) If xe = 0 is stable in the sense of Lyapunov at time t0.
(ii) If, for a real number δ(ε, t0) > 0 and any real number μ > 0, there exists a corre-

sponding real number T(μ, δ, t0) > 0. This would make the disturbed dynamics
ϕ(t; x0, t0), starting from any initial state x0 that satisfies the inequality (4.9), sat-
isfy the following inequality:󵄩󵄩󵄩󵄩ϕ(t; x0 , t0) − xe󵄩󵄩󵄩󵄩 ≤ μ , ∀t ≥ t0 + T (μ, δ, t0) . (4.11)

We have provided the following points based on the definition of asymptotic stability.

(a) Geometric significance of asymptotic stability
Take a two-dimensional system for example. The geometric meaning of asymptotic
stability is shown in Figures 4.2 and 4.3. The response from an initial state x0 in the
sphere S(δ) will not exceed the sphere S(ε) (as shown in Figure 4.2) and converges to
the sphere μ as time goes on (as shown in Figure 4.3).
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Fig. 4.2: The asymptotic stability.

Fig. 4.3: The asymptotic stability.

(b) The equivalent definition of asymptotic stability
According to the definition of asymptotic stability, if we select μ → 0, then
T(μ, δ, t0) → ∞. Therefore, the equivalent definition of the asymptotic stability
can be introduced, which reflects the asymptotic characteristics of the stable process
in a more intuitive form. The isolated equilibrium state xe = 0 of an autonomous
system (4.7) is asymptotic stable at time t0 when two conditions hold. That is, when
the disturbed dynamicsϕ(t; x0 , t0) starting from any initial state x0 ∈ S(δ) is bounded
to any t ∈ [t0,∞) relative to equilibrium state xe = 0. And also when the disturbed
dynamics relative to equilibrium state xe = 0meets the asymptotic characteristic, that
is, limt→∞ ϕ(t; x0 , t0) = 0, ∀x0 ∈ S(δ).
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(c) Uniform asymptotic stability
In the definition of asymptotic stability, if δ(ε) has nothing to dowith t0, and the other
conditions hold, the equilibrium state xe is uniform asymptotic stable. Similarly, for
time variant systems, the uniform asymptotic stability is more meaningful than the
asymptotic stability.

(d) The properties of asymptotic stability for time invariant systems
For time invariant systems, whether the system is linear or nonlinear or time continu-
ous or time discrete, the asymptotic stability is equivalent to the uniform asymptotic
stability of the equilibrium state xe. In other words, the asymptotic stability of the
equilibrium state xe ⇔ is the uniform asymptotic stability of the equilibrium state xe.

(e) Large scale and small scale asymptotic stability
Small scale asymptotic stability is also known as local asymptotic stability. The defi-
nition of local asymptotic stability is that:

There exists a supersphere S(δ) around xe = 0, ∀0 ̸= x0 ∈ S(δ),
xe is asymptotically stable. (4.12)

Where S(δ) is the attraction domain, representing the property that all the states
within S(δ) can be attracted to, the equilibrium state is xe.

Large scale asymptotic stability is also known as global asymptotic stability. The
definition of global asymptotic stability is:∀0 ̸= x0 ∈ Rn , xe = 0 . This is asymptotic stable. (4.13)

(f) The necessary condition of large scale asymptotic stability
From the definition of large scale asymptotic stability (4.13), the necessary condition
for the equilibrium state xe = 0 to be large scale asymptotic stable is that there are no
other asymptotic stable equilibrium states in the state space Rn.

(g) The properties of asymptotic stability for linear systems
For linear systems, whether the system is time invariant or time variant, or if it is time
continuous or time discrete, if the equilibrium state xe = 0 is asymptotic stable, it is
largescale asymptotic stable.

(h) The asymptotic stability in the sense of Lyapunov is⇔
The stability in the sense of engineering.

Definition 4.8 (the Instability). The isolated equilibrium state xe = 0 of the au-
tonomous system is considered to be unstable if, for ε > 0 (and if ε is big enough),
a corresponding real number δ(ε, t0) > 0 does not exist. This makes the disturbed
dynamics ϕ(t; x0 , t0), starting from any initial state x0 that satisfies the inequality‖x0 − xe‖ ≤ δ(ε, t0), satisfy the following inequality:󵄩󵄩󵄩󵄩ϕ(t; x0 , t0) − xe󵄩󵄩󵄩󵄩 ≤ ε , ∀t ≥ t0 .
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Take a two-dimensional system for example. The geometric meaning of instability is
shown in Figure 4.4. If the equilibrium state xe = 0 is unstable, no matter how large
or small S(δ) is, nonzero point x∗0 ∈ S(δ) exists. This makes the disturbed dynamics
trajectory starting from this point exceed the field S(δ). In essence, instability in the
sense of Lyapunov is equivalent to divergent instability in the meaning of industrial
process.

Fig. 4.4: Instability.

4.3 Stability Criteria

4.3.1 Lyapunov’s Second Method

Lyapunov’s second method proposes such a visual revelation in physics, similar to
how the dynamic process of a system is accompanied by changes of energy. If the
change rate of the system energy always remains negative, i.e., the energy decreases
monotonously, the disturbed dynamics of the system will eventually return to the
equilibrium state. Based on this fact, we present the following stability criteria.

Large Scale Asymptotic Stability Theorem
Consider a NTV autonomous system described by:

ẋ = f(x, t) , t ∈ [t0,∞) , (4.14)

where x ∈ Rn×1 and f(0, t) = 0 for all t ∈ [t0,∞), which means the origin of the state
space is an isolated equilibrium state.
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Theorem 4.1. The origin of (4.14) is large scale uniformly and asymptotically stable if
a scalar function V(x, t) exists that satisfies V(0, t) = 0 and has continuous first order
partial derivatives for x and t, and qualifies the following terms for all the nonzero sates
in state space Rn listed below:
(i) V(x, t) is positive definite and bounded, i.e., two continuous nondecreasing scalar

function α(‖x‖) and β(‖x‖) (α(0) = 0, β(0) = 0) exist, so that
β (‖x‖) ≥ V(x, t) ≥ α (‖x‖) > 0 , for all x ̸= 0 and t ∈ [t0,∞) . (4.15)

(ii) The derivative of V(x, t) on t: V̇(x, t) is negative definite and bounded, i.e., a con-
tinuous nondecreasing scalar function γ(‖x‖) (γ(0) = 0) exists, so that:

V̇(x, t) ≤ −γ (‖x‖) < 0 , for all x ̸= 0 and t ∈ [t0,∞) . (4.16)

(iii) α(‖x‖) → ∞ when ‖x‖ → ∞; equivalently, V(x, t) → ∞.

Proof. Step 1: Prove that the origin equilibrium xe = 0 is uniformly stable.
From the above term (i), we know that β(‖x‖) is continuous nondecreasing and

β(0) = 0. Thus, for any real number ε > 0, a real number δ(ε) > 0 must exist so that
β(δ) ≤ α(ε). Besides, as V̇(x, t) is negative definite, we have:

V(ϕ(t; x0 , t0), t) − V(x0, t0) = t∫
t0

V̇(ϕ(τ; x0 , t0), τ)dτ ≤ 0 . (4.17)

Then for any initial time t0 and any nonzero initial state x0 with ‖x0‖ ≤ δ(ε), we have
α(ε) ≥ β(δ) ≥ V(x0, t0) ≥ V(ϕ(t; x0 , t0), t) ≥ α (󵄩󵄩󵄩󵄩ϕ(t; x0, t0)󵄩󵄩󵄩󵄩) , for any t ∈ [t0,∞) .

(4.18)
As α(‖x‖) is continuous nondecreasing and α(0) = 0, we can use the above equation
to deduce that, for any initial time t0 and any nonzero initial state x0 which has ‖x0‖ ≤
δ(ε), we have: 󵄩󵄩󵄩󵄩ϕ(t; x0, t0)󵄩󵄩󵄩󵄩 ≤ ε , ∀t ≥ t0 . (4.19)

Therefore, for any real number ε > 0, we can find a δ(ε) > 0 (δ(ε), which is inde-
pendent from the initial time t0. This makes the response ϕ(t; x0, t0) excited by any
initial time t0 and any nonzero initial state x0 with ‖x0‖ ≤ δ(ε) qualify equation (4.19).
According to the definition, the origin equilibrium xe = 0 is uniformly stable. Proof
provided.

Step 2: Prove that for any initial time t0, the dynamics ϕ(t; x0, t0) excited by any
nonzero state x0, whichmeets ‖x0‖ ≤ δ(ε), converges to the original equilibrium state
xe = 0.

First, for any real number μ > 0 and the deduced real number δ(ε) > 0, we can
construct a real number T(μ, δ) > 0. Suppose the initial time t0 is random and the
nonzero x0 satisfies ‖x0‖ ≤ δ(ε). Without loss of generality, we assume 0 < μ ≤ ‖x0‖.
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Then, as V(x, t) is bounded, for the given μ > 0, we can find a corresponding real
number v(μ) > 0, which makes β(v) ≤ α(μ). Besides, γ(‖x‖) is continuous and nonde-
creasing. Suppose ρ(μ, δ) is theminimumvalue of γ(‖x‖) in the interval v(μ) ≤ ‖x‖ ≤ ε.
We can assume:

T(μ, δ) = β(δ)
ρ(μ, δ) . (4.20)

In accordance with this principle, for any given real number μ > 0, we can construct
a corresponding T(μ, δ), which is independent of the initial time t0.

Furthermore, for some time t2 (t0 ≤ t2 ≤ t0+T(μ, δ)), we prove that ϕ(t2; x0, t0) =
v(μ). Suppose that t1 = t0 + T(μ, δ), and suppose that ϕ(t2; x0, t0) > v(μ) for any t in
the interval t0 ≤ t ≤ t1. Then, using equation (4.20) and the negative definite property
of V̇(x, t), we can deduce that:

0 < α(v) ≤ V(ϕ(t1; x0, t0), t1) ≤ V(x0, t1)≤ V(x0, t0) − (t1 − t0)ρ(μ, δ)≤ β(δ) − T(μ, δ)ρ(μ, δ)= β(δ) − β(δ) = 0 . (4.21)

Obviously, the above equation is a contradictory result. So the hypothesis does not
hold, which means that a time t2 in the time interval t0 ≤ t ≤ t1 must exist, which
makes ϕ(t2; x0, t0) = v(μ).

Finally, we deduce that, for all t ≥ t0 + T(μ, δ), we have ‖ϕ(t; x0 , t0)‖ ≤ μ. In
this respect, considering ϕ(t2; x0, t0) = v(μ) and using the bound of V(x, t) and the
negative definite property of V̇(x, t), for all the t ≥ t2, we have:

α (󵄩󵄩󵄩󵄩ϕ(t; x0 , t0)󵄩󵄩󵄩󵄩) ≤ V(ϕ(t; x0 , t0), t) ≤ V(ϕ(t2; x0, t0), t2) ≤ β(v) ≤ α(μ) . (4.22)

Thus, based on the fact that α(‖x‖) is a continuous nondecreasing function, we can
deduce from equation (4.22) that for all t ≥ t2, we have:󵄩󵄩󵄩󵄩ϕ(t; x0, t0)󵄩󵄩󵄩󵄩 ≤ μ . (4.23)

Besides, from t0 + T(μ, δ) ≥ t2 we can know that (4.23) holds for all t when t ≥ t0 +
T(μ, δ), and T →∞ when μ → 0.

As proven above, for any initial time instant t0, the dynamics excited by any
nonzero initial state x0 with ‖x0‖ ≤ δ(ε) converges to the original equilibrium state
xe = 0 when t →∞.

Step 3: Prove that for any nonzero initial state x0 in the state space Rn, its forced dy-
namics ϕ(t; x0 , t0) is uniformly bounded.

As α(‖x‖) → ∞ when ‖x‖ → ∞, there must exist a finite real number ε(δ) > 0,
which makes β(δ) < α(ε) for any arbitrarily large real number δ > 0. Using the bound
of V(x, t) and the negative definite property of V̇(x, t), we can know that for all t ∈[t0,∞) and any nonzero x0 ∈ Rn, we have

α(ε) > β(δ) ≥ V(x0, t0) ≥ V(ϕ(t; x0 , t0), t) ≥ α(‖ϕ(t; x0 , t0)‖) . (4.24)
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Therefore, considering that α(‖x‖) is a continuous nondecreasing function, we have:󵄩󵄩󵄩󵄩ϕ(t; x0, t0)󵄩󵄩󵄩󵄩 ≤ ε(δ) , ∀t ≥ t0 , ∀x0 ∈ Rn . (4.25)

ε(δ) is independent of the initial time t0. This indicates that for any nonzero initial
state x0 ∈ Rn, ϕ(t; x0 , t0) is uniformly bounded. As such, all proof has been provided.

Notes on Theorem 4.1:

(a) Physical implication
For Theorem 4.1, in a physical sense, the positive definite bounded scalar function
V(x, t) is regarded as some kind of “generalized energy” and V̇(x, t) is regarded as the
change rate of the generalized energy. This idea reflects an institutive fact that, if the
energy of the system is limited and the change rate of the energy is negative definite,
the system energy is bounded and eventually decreases to zero. Correspondingly, the
dynamics of the system isboundedandeventually converges to the origin equilibrium.

(b) Lyapunov function
In Theorem 4.1, V(x, t) is not equivalent to the energy. Furthermore, the meaning and
form of V(x, t) varies with the physical property. Thus, in the theory of system stabil-
ity, V(x, t) which qualifies the theorem is called the Lyapunov function. To judge the
asymptotical stability of the system, we construct a Lyapunov function V(x, t) for the
system.

(c) The selection of Lyapunov function
For a comparatively simple system, we usually select a quadratic function of state x
as the Lyapunov function. If the function does not satisfy the theorem, we can try to
select a more complicated one. For a complex system, the construction of Lyapunov
function is difficult. Therefore, frequently we select the Lyapunov function bymethod
of trial and error.

(d) The sufficiency of the criterion
Theorem 4.1 is sufficient, but not a necessary condition, to judge the large scale uni-
form and asymptotic stability of the system (4.14). The limitation is that, if we cannot
find the Lyapunov function V(x, t) which meets the theorem, we cannot determine
whether the system is stable or not.

(e) The principles in using the criterion
Considering the sufficient property of Theorem 4.1 in determining the stability, we first
judge whether the system is large scale asymptotically stable or not. If the answer is
no, then we judge the small scale asymptotical stability of the system. If the result is
no again, we will judge whether the system is Lyapunov stable until the stability is
determined. The above principle is helpful but does not always works.

Now, we discuss the continuous NTI system, for which the state equation is:

ẋ = f(x) , t ≥ 0 , (4.26)
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where x ∈ Rn×n and f(0) = 0 for all t ∈ [0,∞), i.e., the state space origin x = 0 is an
isolated equilibrium state of the system.

We obtain the corresponding conclusion for the time invariant case directly from
Theorem 4.1, since a time invariant system is a special case. Besides, we can see that
the requirement is largely simplified in its form for time invariant cases.

Theorem 4.2. For a continuous NTI autonomous system (4.26), if a scalar function V(x)
exists which has continuous first order partial derivatives for x, and qualifies the follow-
ing terms for all the nonzero sates in state space Rn and V(0) = 0:
(i) V(x) is positive definite
(ii) V̇(x) = dV(x)/dt is negative definite
(iii) V(x) → ∞ when ‖x‖ → ∞
The original equilibrium state of (4.26) is large scale asymptotically stable.

Example 4.1. Consider a continuous NTI autonomous system:

ẋ1 = x2 − x1(x21 + x22)
ẋ2 = −x1 − x2(x21 + x22) .

Discuss the stability of the system.

Solution. Obviously, [x1, x2]T = [0, 0]T is the equilibrium state.
First, we select a quadratic function of state x as the Lyapunov function V(x):

V(x) = x21 + x22 .
It is obviously that V(x) is positive definite.

Following that, by calculating V̇(x), we get:
V̇(x) = ∂V(x)

∂x1
dx1
dt + ∂V(x)

∂x2
dx2
dt = [∂V(x)

∂x1
∂V(x)
∂x2

] [ẋ1
ẋ2
]

= [2x1 2x2] [ x2 − x1(x21 + x22)−x1 − x2(x21 + x22)] = −2(x21 + x22)2 .
It is easy to see that V̇(x) is negative definite.

Lastly, when ‖x‖ = √x21 + x22 →∞, we get:

V(x) = ‖x‖2 = (x21 + x22) → ∞ .

According to Theorem 4.2, the system original equilibrium state x = 0 is large scale
asymptotically stable.

The major difficulty in constructing Lyapunov function is that the item V̇(x)
should be negative definite. This is a quite conservative condition. Next, we will give
a relaxed stable criterion for a continuous NTI system.
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Theorem 4.3. For a continuous NTI autonomous system (4.26), suppose a scalar func-
tion V(x) exists. If V(x) has continuous first order partial derivatives for x and qualifies
the following terms for all the nonzero states in state space Rn and V(0) = 0:
(i) V(x) is positive definite
(ii) V̇(x) = dV(x)/dt is seminegative definite
(iii) V̇(φ(t, x0, 0)) is not identically equal to zero for any nonzero x0 ∈ Rn

(iv) V(x) → ∞ when ‖x‖ → ∞
the original equilibrium state of (4.26) is large scale asymptotically stable.

Example 4.2. Consider a continuous NTI autonomous system:

ẋ1 = x2
ẋ2 = −x1 − (1 + x2)2x2 .

Discuss the stability of the system.

Solution. Obviously, [x1, x2]T = [0, 0]T is the only equilibrium state.
First, we select a quadratic function of state x as the Lyapunov function V(x):

V(x) = x21 + x22 .
V(x) is positive definite.

Second, by computation, we get:

V̇(x) = [∂V(x)
∂x1

∂V(x)
∂x2

] [ẋ1
ẋ2
]= [2x1 2x2] [ x2−x1 − (1 + x2)2x2] = −2x22(1 + x2)2 .

We can see that there are two cases which make V̇(x) = 0:
case 1: x1 is arbitrary and x2 = 0
case 2: x1 is arbitrary and x2 = −1
Except for these two cases, we have V̇(x) < 0 when x ̸= 0. Thus, V̇(x) is seminegative
definite.

Nowwe checkwhether V̇(φ(t, x0 , 0)) is identically equal to zero or not. The prob-
lem comes down to judging whether the above two cases are the disturbed response
of the system.

For case 1,
ϕ(t; x0, 0) = [x1(t), 0]T .

From x2(t) ≡ 0, we can deduce ẋ2(t) = 0. Substituting this into the system equation
yields:

ẋ1(t) = x2(t) = 0
0 = ẋ2(t) = −(1 + x2(t))2x2(t) − x1(t) = −x1(t) .
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Therefore,ϕ(t; x0, 0) = [x1(t), 0]T is not the solutionof the systemdisturbeddynamics
except for the origin (x1 = 0, x2 = 0).

For case 2,
ϕ(t; x0, 0) = [x1(t), −1]T .

From x2(t) = −1, we can deduce that ẋ2(t) = 0. Substituting this into the system
equation yields:

ẋ1(t) = x2(t) = −1
0 = ẋ2(t) = −(1 + x2(t))2x2(t) − x1(t) = −x1(t) .

Obviously, this is a contradictory result. Hence, ϕ(t; x0, 0) = [x1(t), −1]T is not the
solution of the system. Therefore, item (iii) in Theorem 4.3 is satisfied.

Lastly, when ‖x‖ = √(x21 + x22) → ∞, we get:

V(x) = ‖x‖2 = (x21 + x22) → ∞ .

According to Theorem 4.3, the original equilibrium state of the system x = 0 is large
scale asymptotically stable. Besides, we can see that the Lyapunov function we chose
for the system does not qualify for Theorem 4.2 but meets Theorem 4.3.

Small Scale Asymptotically Stable Theorem
In the application of the second Lyapunov method, when a system is not large scale
asymptotically stable, we turn to judge the small scale asymptotically stable. This sec-
tion presents some basic theorems about small scale asymptotically stable theorems
in the application of the second Lyapunov method.

For continuous NTV systems, we have the following conclusion.

Theorem 4.4. For a continuous NTV autonomous system (4.14), suppose a scalar func-
tion V(x, t) (V(0, t) = 0) exists. If V(x, t) has continuous first order partial derivatives
for x and t and an attractive region called Ω around the state space origin, and meets
the following requirements for all nonzero states x ∈ Ω and all t ∈ [t0,∞):
(i) V(x, t) is positive definite and bounded
(ii) V̇(x, t) = dV(x, t)/dt is negative definite and bounded
then the original equilibrium state of the system x = 0 is uniformly and asymptotically
stable in the Ω region.

For continuous NTI systems, we have the following two conclusions.

Theorem 4.5. For a continuous NTI autonomous system (4.26), if a scalar function V(x)
(V(0) = 0) exists, which has continuous first order partial derivatives for x and t and an
attractive region called Ω around the state space origin, and meets the following terms
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for all nonzero states x ∈ Ω and all t ∈ [t0,∞):
(i) V(x) is positive definite
(ii) V̇(x, t) = dV(x)/dt is negative definite
then the original equilibrium state of the system x = 0 is asymptotically stable in the
Ω region.

Theorem 4.6. For a continuous NTI autonomous system (4.26), if a scalar function V(x)
(V(0) = 0) exists, which has continuous first order partial derivatives for x and t and an
attractive region called Ω around the state space origin, andmeets the following criteria
for all nonzero states x ∈ Ω and all t ∈ [t0,∞):
(i) V(x) is positive definite
(ii) V̇(x, t) = dV(x)/dt is seminegative definite
(iii) V̇(φ(t, x0, 0)) is not identically equal to zero for any nonzero state x ∈ Ω
then the original equilibrium state x = 0 is asymptotically stable in the region called Ω.
Theorem for Stability in the Sense of Lyapunov
Similar to when a system is not large scale asymptotically stable, when a system is
not small scale asymptotically stable, we turn to judging the stability in the sense of
Lyapunov. In this section, we will provide some rules to determine the stability in the
sense of Lyapunov.

Theorem 4.7. For a continuous NTV autonomous system (4.14), if a scalar function
V(x, t) (V(0, t) = 0) exists, which has continuous first order partial derivatives for x
and t and an attractive region called Ω around the state space origin, and meets the
following terms for all the nonzero states x ∈ Ω and all t ∈ [t0,∞):
(i) V(x, t) is positive definite and bounded
(ii) V̇(x, t) = dV(x, t)/dt is seminegative definite and bounded
then the original equilibrium state of the system x = 0 is stable in the sense of Lyapunov
in the Ω region.

For continuous NTV systems, we have the following conclusion.

Theorem 4.8. For a continuous NTI autonomous system (4.26), if a scalar function V(x)
exists, V(0) = 0, V(x) has continuous first order partial derivatives for x and t and an
attractive region called Ω around the state space origin which qualifies the following
terms for all nonzero states x ∈ Ω and all t ∈ [t0,∞):
(i) V(x) is positive definite
(ii) V̇(x) = dV(x)/dt is seminegative definite
then the original equilibrium state of the system x = 0 is stable in the sense of Lyapunov
in the region called Ω.



90 | 4 Stability Analysis

Theorem for Instability
For a continuous NTV system, the criterion for instability is presented as follows.

Theorem 4.9. For a continuous NTV autonomous system (4.14), if a scalar function
V(x, t) (V(0, t) = 0) exists, which has continuous first order partial derivatives for x
and t and an attractive region called Ω around the state space origin, and meets the
following terms for all the nonzero sates x ∈ Ω and all t ∈ [t0,∞):
(i) V(x, t) is positive definite and bounded
(ii) V̇(x, t) = dV(x, t)/dt is positive definite and bounded
then the original equilibrium state of the system x = 0 is unstable.
For continuous NTV systems, we have the following criteria.

Theorem 4.10. For a continuous NTI autonomous system (4.26), if a scalar function
V(x) (V(0) = 0) exists, which has continuous first order partial derivatives for x and
t and an attractive region called Ω around the state space origin, and meets the follow-
ing terms for all nonzero states x ∈ Ω and all t ∈ [t0,∞):
(i) V(x) is positive definite
(ii) V̇(x) = dV(x)/dt is positive definite
then the original equilibrium state of the system x = 0 is unstable.
Note: From the above two conclusions, we can see that the system is unstable when
V(x, t) or V(x) have the same sign with V̇(x, t) or V̇(x). Theoretically, the disturbed
dynamics trajectories of the system will diverge to infinity.

4.3.2 State Dynamics Stability Criteria for Continuous Linear Systems

This section discusses the stability for continuous linear systems. Based on the con-
cepts and results of the second Lyapunov method, similar to the LTI and LTV system,
we will discuss the stability of the disturbed dynamics first. Then some stable criteria
will be presented.

Stability Criteria for LTI Systems
Consider a continuous LTI system. The autonomous state equation is:

ẋ = Ax , x(0) = x0 , t ≥ 0 , (4.27)

where x ∈ Rn, and the origin of the state space x = 0 is an equilibrium state of the
system.

Next, we present the stability criteria for LTI systems based on eigenvalues.
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Theorem 4.11. For a continuous LTI system (4.27), the original equilibrium state x = 0
is stable in the sense of Lyapunov if, and only if, all the eigenvalues of matrix A have
nonpositive real parts, i.e., zero or negative real parts, and the eigenvalue, whose real
part is zero, is distinct.

Proof. The proof is divided into two steps.

Step 1: Prove that the system is stable if ‖eAt‖ ≤ β < ∞. From the autonomous dynam-
ics equation of the LTI system, we can obtain the disturbed dynamics of states:

ϕ(t; x0 , 0) = x0u(t) = eAtx0 . (4.28)

The equilibrium state is xe = 0.We notice that xe = eAtxe, thus we further deduce that
the disturbed dynamics relative to equilibrium state xe = 0 is:

ϕ(t; x0 , 0) − xe = eAt(xe − x0) , ∀t ≥ 0 . (4.29)

This indicates that, specifically if ‖eAt‖ ≤ β < ∞, for any real number ε a real number
δ(ε) = ε/β exists, which is independent of the initial time and makes the disturbed
dynamics from any nonzero initial state ‖x0 − xe‖ ≤ δ(ε) (x0 ∈ Rn) qualify for the
following inequality:󵄩󵄩󵄩󵄩ϕ(t; x0, 0) − xe󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩󵄩eAt󵄩󵄩󵄩󵄩󵄩 ⋅ ‖x0 − xe‖ ≤ β ⋅ εβ = ε , ∀t ≥ 0 . (4.30)

As defined, the system is stable in the sense of Lyapunov. Proof has been successfully
provided.

Step 2: Prove the conclusion of Theorem 4.11. Introduce the linear nonsingular trans-
formation x̂ = Q−1x to ensure Â = Q−1AQ as the Jordan Canonical:󵄩󵄩󵄩󵄩󵄩󵄩eÂt󵄩󵄩󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩󵄩Q−1󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩󵄩eAt󵄩󵄩󵄩󵄩󵄩 ‖Q‖ , 󵄩󵄩󵄩󵄩󵄩eAt󵄩󵄩󵄩󵄩󵄩 ≤ ‖Q‖ 󵄩󵄩󵄩󵄩󵄩󵄩eÂt󵄩󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩󵄩Q−1󵄩󵄩󵄩󵄩󵄩 . (4.31)

This indicates that, the bound of ‖eAt‖ is equivalent to the bound of ‖eÂt‖. From the
Jordan Canonical, we know that the element of eÂt is the combination of the following
items:

tβi−1eαi t+jωit , λi(Â) = λi(A) = αi+jωi , i = 1, 2, . . . , μ, βi = 1, 2, . . . , σi , (4.32)

where λ(⋅) is the eigenvalue of the corresponding matrix, and σi means that λi is a
σi duplicate eigenvalue. When αi < 0, the corresponding items are bounded in the
interval [0,∞) for any limited positive integral βi. When αi = 0, the corresponding
items are bounded in the interval [0,∞) only for βi = 1. Furthermore, the bound of
the elements of eÂt means the bound of ‖eÂt‖. This indicates that, ‖eÂt‖, i.e., ‖eAt‖ is
bounded only if all the eigenvalues ofmatrix A have zero or negative real parts and the
eigenvalues whose parts are zero are distinct. Using the proposition given in the first
part, we can prove that the above condition is the necessary, and sufficient, condition
for the stability in the sense of Lyapunov. Proof has been successfully provided.
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Theorem 4.12. For a continuous LTI system (4.27), the original equilibrium state x = 0
is asymptotically stable, only if all the eigenvalues of matrix A have negative real parts.

Proof. From Theorem 4.11, the equilibrium state x = 0 is stable in the sense of
Lyapunov only if all the eigenvalues of matrix A have zero or negative real parts,
and the eigenvalues whose real parts are zero are distinct. Furthermore, from equa-
tions (4.28), (4.31) and (4.32), we know that:

lim
t→∞

ϕ(t; x0, 0) = lim
t→∞

eAtx0 = 0 ,⇔ lim
t→∞

󵄩󵄩󵄩󵄩󵄩eAt󵄩󵄩󵄩󵄩󵄩 = 0⇔ lim
t→∞

tβi−1eαi t+jωi t = 0, i = 1, 2, . . . , μ , βi = 1, 2, . . . , σi .⇔ The eigenvalues of A all have negative real parts.

As defined, the system is asymptotically stable. Proof has been successfully provided.

Note:Wecan see that theasymptotic stability equals to the internal stability illustrated
beforehand. Furthermore, based on the second Lyapunovmethod, we can provide the
Lyapunov stability criteria for LTI systems.

Theorem 4.13. For an n-dimensional continuous LTI system (4.27), the original equilib-
rium state xe = 0 is asymptotically stable only if, for any given n×n dimensional positive
definite symmetry matrix Q, the Lyapunov equation

ATP + PA = −Q
has a unique n × n dimensional positive definite symmetry matrix solution P.
Proof. First we prove the sufficiency. Given n × n positive definite matrix P, we want
to prove the asymptotic stability of xe = 0. For this, we select the Lyapunov function
V(x) = xTPx. As P = PT > 0. V(x) is positive definite. Furthermore, we have:

V(x) = ẋTPx + xTPẋ = (Ax)TPx + xTP(Ax)= xT(ATP + PA)x = −xTQx . (4.33)

Moreover, from Q = QT > 0 we know that V̇(x) is negative. According to large scale
asymptotically stable theorems, xe = 0 is asymptotically stable. Sufficiency has been
proven.

Then we prove the necessity. Given the asymptotic stability of xe = 0, we want to
prove that matrix P is positive definite. For this, we use the matrix equation:

Ẋ = ATX + XA , X(0) = Q , t ≥ 0 . (4.34)

The matrix X is:
X(t) = eATtQeAt , t ≥ 0 . (4.35)
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The integration of (4.34) from t = 0 to t →∞ is:

X(∞) − X(0) = AT(∞∫
0

X(t)dt) +(∞∫
0

X(t)dt) A . (4.36)

As the system is asymptotically stable, e.g., eAt → 0when t →∞, from (4.35) we have
X(∞) = 0. Considering X(0) = Q, let P = ∫∞0 X(t)dt, so (4.36) can be further expressed
as:

ATP + PA = −Q . (4.37)

Hence, P = ∫∞0 X(t)dt is the solution of the Lyapunov equation. The fact is, X(t) is
unique and X(∞) = 0, P = ∫∞0 X(t)dt is unique. While:

PT = ∞∫
0

[eATtQeAt]T dt = ∞∫
0

eATtQeAtdt = P . (4.38)

So P = ∫∞0 X(t)dt is symmetry. Again, for any nonzero x0 ∈ Rn, we have:

xT0Px0 = ∞∫
0

(eAtx0)TQ(eAtx0)dt , (4.39)

where the positive definite matrix Q = NTN is nonsingular. From equation (4.39), we
can further deduce:

xT0Px0 = ∞∫
0

(eAtx0)TNTN(eAtx0)dt
= ∞∫

0

󵄩󵄩󵄩󵄩󵄩NeAtx0󵄩󵄩󵄩󵄩󵄩2 dt > 0 . (4.40)

Therefore, P is unique and positive definite. Necessity has been proven and proof,
overall, has been provided.

Example 4.3. Consider the stability of the following continuous LTI system:

ẋ = [−1 1
2 −3] x .

Solution. For simplicity, we select Q = I2. Furthermore, from the Lyapunov equation:

ATP + PA = [−1 2
1 −3] [p1 p3

p3 p2
] + [p1 p3

p3 p2
] [−1 1

2 −3] = [−1 0
0 −1] = −Q ,

we can deduce: −2p1 + 0p2 + 4p3 = −1
0p1 − 6p2 + 2p3 = −1
p1 + 2p2 − 4p3 = 0 .
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Using algebraic equation solving methods, we get:

[[[p1p2p3]]] = [[[−2 0 4
0 −6 2
1 2 −4]]]

−1 [[[−1−10 ]]] = [[[[
− 5
4 − 1

2 − 3
2− 1

8 − 1
4 − 1

4− 3
8 − 1

4 − 3
4

]]]][[[
−1−1
0

]]] = [[[[
7
4
3
8
5
8

]]]] .

Therefore, solution of the Lyapunov equation is:

P = [[ 7
4

5
8

5
8

3
8

]] > 0 .
P is positive definite, so the system is asymptotically stable.

MATLAB can be adopted for the solution of the above question.

>> A={[-1 1;2 -3]};

>> Q={[1 0;0 1]};

>> P=lyap(A',Q)

P =

1.7500 0.6250

0.6250 0.3750

The function “posdef” can be used to judge whether a matrix is positive definite or
not.

The format of the MATLAB function is:

[key,sdet]=posdef(P)

The codes are shown as follows:

function [key,sdet]=posdef(P)

[nr,nc]=size(P);

sdet=[];

for i=1:nr

sdet=[sdet,det(P(1:i,1:i))];

end

key=1;

if any(sdet<=0)

key=0;

end

The running result of posdef(P) is:

key =

1

sdet =

1.7500 0.2656
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If key=1, the result represents that P is positive definite. Otherwise P is negative defi-
nite. Sdet is the determinant of every matrix in the upper left corner.

Theorem 4.14. For an n-dimensional continuous LTI system (4.27) and any given real
number σ ≥ 0, suppose the eigenvalues of matrix A are λi(A), i = 1, 2, . . . , n. Then all
the eigenvalues located in the left half plane of the straight line −σ + jω on s plane, i.e.,

Re λi(A) < −σ , i = 1, 2, . . . , n
if and only if for any given n × n dimensional positive definite symmetry matrix Q, the
expanded Lyapunov function

2σP + ATP + PA = −Q (4.41)

has unique positive definite solution matrix P.

Proof. Suppose Ã = A + σI, then:
det(s̃I − Ã) = det(s̃I − A − σI) = det [(s̃ − σ)I − A]= det(sI − A) , S̃ = s + σ . (4.42)

From this, we know that:

λi(Ã) = λi(A) + σ , i = 1, 2, . . . , n . (4.43)

From Theorem 4.13, we know that all the eigenvalues of matrix Ã have negative real
parts only if, for any positive definite symmetry matrix Q, the following Lyapunov
function has unique positive definite solution matrix P:

ÃTP + PÃ = −Q (4.44)

Hence, substituting Ã = A + σI into (4.44), we can deduce (4.41). While, from (4.43),
we have the following equivalent relationship:

Re λi(Ã) < 0⇔ Re λi(A) < −σ , i = 1, 2, . . . , n .

Therefore, if (4.41) has unique positive definite solution matrix P, Re λi(A) < −σ,
i = 1, 2, . . . , n. Proof has been provided.
Stability Criteria for LTV Systems
Now we turn to discuss the continuous LTV systems. The autonomous state equation
is:

ẋ = A(t)x , x(t0) = x0 , t ∈ [t0,∞] , t0 ∈ [t0,∞) , (4.45)

where x ∈ Rn×n. A(t) qualifies the condition, which guarantees the existence and
uniqueness of the solution and xe = 0 is an equilibrium state of the system. Usually,
there is a nonzero equilibrium state xe besides xe = 0.

For LTV systems, we can adopt two ways to judge the stability of equilibrium
states; the method based on state transfer matrix and the method based on Lyapunov
criteria. Next, we will introduce these two methods.
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Theorem 4.15. For a continuous LTV system (4.45), ϕ(t, t0) is the state transfer matrix
of the system. The original equilibrium state xe = 0 is stable in the sense of Lyapunov at
time t0, only if a real number β(t0) > 0 exists, whichmakes the following equation valid:󵄩󵄩󵄩󵄩ϕ(t, t0)󵄩󵄩󵄩󵄩 ≤ β(t0) < ∞ , ∀t ≥ t0 . (4.46)

Furthermore, if there exists independent real numbers β > 0 for all t0, the original equi-
librium state xe = 0 is stable in the sense of Lyapunov.

Theorem 4.16. For a continuous LTV system (4.45), ϕ(t, t0) is the state transfer matrix
of the system. Then the original equilibrium state xe = 0 is asymptotically stable at
time t0, only if a real number β(t0) > 0 exists, which qualifies the following two items:󵄩󵄩󵄩󵄩ϕ(t, t0)󵄩󵄩󵄩󵄩 ≤ β(t0) < ∞, ∀t ≥ t0

lim
t→∞

󵄩󵄩󵄩󵄩ϕ(t, t0)󵄩󵄩󵄩󵄩 = 0 .
(4.47)

Furthermore, the original equilibrium state xe = 0 is uniformly and asymptotically
stable, only if independent real numbers β1 > 0 and β2 > 0 exist for all t0 ∈ [0,∞]
that qualify the following equation:󵄩󵄩󵄩󵄩ϕ(t, t0)󵄩󵄩󵄩󵄩 ≤ β1e−β2(t−t0) . (4.48)

Proof. First we prove the sufficiency. Given equation (4.47), we need to prove that
xe = 0 is uniformly and asymptotically stable. From (4.48), and using the disturbed
dynamics equation, we have:󵄩󵄩󵄩󵄩ϕ(t; x0 , t0)󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩ϕ(t, t0)x0󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩ϕ(t, t0)󵄩󵄩󵄩󵄩 ‖x0‖ ≤ β1 ‖x0‖ e−β2(t−t0) . (4.49)

This indicates that the disturbed dynamics ϕ(t; x0, t0) is bounded for all t ≥ t0. For
all t0 ∈ [0,∞)we have ‖ϕ(t; x0 , t0)‖ → 0 when t →∞. Thus, xe = 0 is uniformly and
asymptotically stable. Sufficiency has been proven.

Nowwewill prove the necessity. Given that xe = 0 is uniformly and asymptotically
stable, we need to prove equation (4.47). As xe = 0 is uniformly and asymptotically
stable, xe = 0 is stable in the sense of Lyapunov, i.e., there exists a real number β3 > 0
which satisfies: 󵄩󵄩󵄩󵄩ϕ(t, t0)󵄩󵄩󵄩󵄩 ≤ β3 , ∀t0 ∈ [0,∞] , ∀t ≥ t0 . (4.50)

Furthermore, for a fixed real number δ > 0 and any given real μ > 0, there exists a
real number T > 0 that satisfies the following equation for all initial states x0 and all
t0 ∈ [0,∞): 󵄩󵄩󵄩󵄩ϕ(t0 + T; x0, t0)󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩ϕ(t0 + T; t0, x0)󵄩󵄩󵄩󵄩 ≤ μ . (4.51)

Randomly select a x0 to satisfy:‖x0‖ = δ and 󵄩󵄩󵄩󵄩ϕ(t0 + T, t0)x0󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩ϕ(t0 + T, t0)󵄩󵄩󵄩󵄩 ⋅ ‖x0‖ . (4.52)
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Then, by selecting μ = δ/2 from equations (4.51) and (4.52), we can further deduce
that: 󵄩󵄩󵄩󵄩ϕ(t0 + T, t0)󵄩󵄩󵄩󵄩 ≤ 1

2 , ∀t0 ∈ [0,∞) . (4.53)

Hence, using equations (4.50) and (4.53) we can get:󵄩󵄩󵄩󵄩ϕ(t, t0)󵄩󵄩󵄩󵄩 ≤ β3 , ∀t ∈ [t0, t0 + T) ,󵄩󵄩󵄩󵄩ϕ(t, t0)󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩ϕ(t, t0 + T)ϕ(t0 + T, t0)󵄩󵄩󵄩󵄩 ,≤ 󵄩󵄩󵄩󵄩ϕ(t, t0 + T)󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩ϕ(t0 + T, t0)󵄩󵄩󵄩󵄩 ≤ β3
2 , ∀t ∈ [t0 + T, t0 + 2T) ,󵄩󵄩󵄩󵄩ϕ(t, t0)󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩ϕ(t, t0 + 2T)󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩ϕ(t0 + 2T, t0 + T)󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩ϕ(t0 + T), t0󵄩󵄩󵄩󵄩 ≤ β3

22
,∀t ∈ [t0 + 2T, t0 + 3T) ,

...󵄩󵄩󵄩󵄩ϕ(t, t0)󵄩󵄩󵄩󵄩 ≤ β3
2m , ∀t ∈ [t0 + mT, t0 + (m + 1)T) .

Again we construct an exponential function β1e−β2(t−t0), which makes the following
equation valid: [β1e−β2(t−t0)]t=t0+mT = β3

2m−1
, m = 1, 2 , . . . . (4.54)

Furthermore, we can get:

β1(e−β2T)m = 2β3 (12)m . (4.55)

We can see that, by selecting β1 = 2β3 and an adequate β2, we can make e−β2T =
1/2 hold. Thus, we proved that real numbers β1 > 0 and β2 > 0 exist to validate
equation (4.48). Necessity has been proven and proof, overall, has been provided.

Theorem 4.17. For a continuous LTV system (4.45), suppose xe = 0 is the unique equi-
librium state of the system. The elements of n×n dimensional matrix A(t) are segmented
continuous uniform and bounded real function, and the original equilibrium state xe = 0
is uniformly andasymptotically stable if two real numbers, β1 > 0and β2 > 0, existwhen
0 < β1I ≤ Q(t) ≤ β2I holds. The n × n solution matrix P(t) of the Lyapunov equation:− Ṗ(t) = P(t)A(t) + AT(t)P(t) + Q(t) , ∀t ≥ t0 , (4.56)

is real symmetry, uniformly bounded and uniformly positive definite. Equivalently, two
real numbers exist, α1 > 0 and α2 > 0, making 0 < α1I ≤ P(t) ≤ α2I, ∀t ≥ t0.
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4.3.3 State Dynamics Stability Criteria for Discrete Systems

Lyapunov Stability Theorem for Discrete NTI Systems
Consider a discrete NTI system. The autonomous equation is:

x(k + 1) = f(x(k)) , x(0) = x0 , k = 0, 1, 2, . . . , (4.57)

where x ∈ Rn×n, f(0) = 0, i.e., the origin of the state space x = 0 is an equilibrium
state.

Next, we will present some Lyapunov stability theorems for discrete NTI systems.

Theorem 4.18. For a discrete NTI system (4.57), if a scalar function V(x(k)) exists for
discrete state x(k) which meets the following items for any x(k) ∈ Rn:
(i) V(x(k)) is positive definite
(ii) if ∆V(x(k)) = V(x(k + 1)) − V(x(k)), ∆V(x(k)) is negative
(iii) V(x(k)) → ∞ when x(k) → ∞
then the original equilibrium state x = 0 is large scale asymptotically stable.

Note: The conservative property of (ii) may result in the failure of judgment for many
systems. Thus, we can release this condition as follows.

Theorem 4.19. For a discrete NTI system (4.57), if a scalar function V(x(k)) exists for
discrete state x(k), which meets the following items for any x(k) ∈ Rn:
(i) V(x(k)) is positive definite
(ii) if ∆V(x(k)) = V(x(k + 1)) − V(x(k)), ∆V(x(k)) is seminegative
(iii) ∆V(x(k)) is not identically zero for any free dynamics started from any nonzero ini-

tial state x(0) ∈ Rn, i.e., equation (4.57)
(iv) V(x(k)) → ∞ when x(k) → ∞
then the original equilibrium state x = 0 is large scale asymptotically stable.

Based on the above stability theorems, we can easily deduce amore intuitive and con-
venient stability criterion for discrete systems.

Theorem 4.20. ForadiscreteNTI system (4.57), suppose f (0)=0, x = 0 is an equilibrium
state of the system. If f(x(k)) is convergent, i.e., for x(k) ̸= 0, we have:‖f(x(k))‖ < ‖x(k)‖ . (4.58)

Then the original equilibrium state x = 0 is large scale asymptotically stable.

Proof. For a given discrete system, we select the Lyapunov function:

V(x(k)) = ‖x(k)‖ .
Obviously, V(x(k)) is positive definite. Furthermore, we can deduce that:

∆V(x(k)) = V(x(k + 1)) − V(x(k)) = ‖x(k + 1)‖ − ‖x(k)‖= ‖f(x(k))‖ − ‖x(k)‖ .



4.3 Stability Criteria | 99

From equation (4.58), we can see that ∆V(x(k)) is negative, and V(x(k)) → ∞ when
x(k) → ∞. According to Theorem 4.18, the original equilibrium state x = 0 is large
scale asymptotically stable. Proof has been provided.

Stability Criteria for Discrete LTI Systems
Consider a discrete NTI system. The autonomous equation is:

x(k + 1) = Gx(k) , x(0) = x0 , k = 0, 1, 2, . . . , (4.59)

where x ∈ Rn×n, and the solution state xe of Gxe = 0 is an equilibrium state. If the
matrix G is singular, there are nonzero equilibrium states besides xe = 0. While, if the
matrix G is nonsingular, there is only one equilibrium state xe = 0.

Next, wewill give the corresponding equilibrium state stability criteria for LTI sys-
tems.

Theorem 4.21. For a discrete LTI autonomous system (4.59), the original equilibrium
state xe = 0 is stable in the sense of Lyapunov, only if all the amplitudes of the eigenval-
ues of G: λi(G) (i = 1, 2, . . . , n) are equal to or less than 1, and the eigenvalue whose
amplitude is 1 is the single root of the polynomial of G.

Theorem 4.22. For a discrete LTI autonomous system (4.59), the origin equilibriums
state xe = 0 is asymptotically stable, only if all the amplitudes of the eigenvalues of
G: λi(G) (i = 1, 2, . . . , n) are less than 1.

Theorem 4.23. For an n-dimensional discrete LTI autonomous system (4.59), the origin
equilibriums state xe = 0 is asymptotically stable. That is, all the amplitudes of the
eigenvalues of G: λi(G) (i = 1, 2, . . . , n) are less than 1, but only if any given n × n
dimensional positive definite symmetry matrix Q the discrete Lyapunov function

GTPG − P = −Q (4.60)

has unique n × n dimensional positive definite symmetry solution matrix P.
Theorem 4.24. For an n-dimensional discrete LTI autonomous system (4.59), the origi-
nal equilibrium state xe = 0 is exponentially stable with the index of σ > 0. That is, the
eigenvalues of G satisfy|λi(G)| < σ , 0 ≤ σ ≤ 1 , i = 1, 2, . . . , n , (4.61)

but only if, for any given n × n dimensional positive definite symmetry matrix Q, the
expanded discrete Lyapunov function(1/σ)2GTPG − P = −Q (4.62)

has unique n × n dimensional positive definite symmetry solution matrix P.
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Example 4.4. The state equation of a discrete linear system is:

x(k + 1) = [λ1 0
0 λ2

] x(k)
Try to determine the condition for the asymptotic stability of the equilibrium state.

Solution. According to GTPG − P = −I, we have:[λ1 0
0 λ2

] [p11 p12
p12 p22

][λ1 0
0 λ2

] − [p11 p12
p12 p22

] = [−1 0
0 −1] .

Then:
p11(1 − λ21) = 1 ; p12(1 − λ1λ2) = 0 ; p22(1 − λ22) = 1 .

So

P = [[ 1
1−λ21

0
0 1

1−λ22

]] .

The condition for asymptotic stability of the equilibrium state is:|λ1| < 1 and |λ2| < 1 .
MATLAB can be adopted for the solution of the above question.

P=dlyap(G',Q);

If P is positive definite, the system is asymptotically stable.

4.4 Summary

Stability is very important for a system. In this chapter, the definitions of stability in
the sense of Lyapunov were given for equilibrium state. Different stable criteria were
listed and proven for different kinds of systems and examples were selected to show
how to use the criteria.

Exercise

4.1. Determine whether the following functions are positive definite or not.(1) V(x) = 2x21 + 3x22 + x23 − 2x1x2 + 2x1x3(2) V(x) = 1
2 [(x1 + x2)2 + 2x21 + x22](3) V(x) = x21 + x23 − 2x1x2 + x2x3(4) V(x) = x21 + 3x22 + 11x23 − 2x1x2 + 4x2x3 + 2x1x3
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4.2. Given a continuous time NTI system, try to analyze the stability of its equilibrium
state:

ẋ1 = x2
ẋ2 = −x21x2 − x1 .

4.3. Consider a continuous time NTI system:

ẋ1 = x2
ẋ2 = −x1 − x2(1 + x2)2 .

Try to determine the stability of the original equilibrium state xe = 0.
4.4. Consider a continuous time LTI system:

ẋ = [ 0 1−1 −1] x .
Try to determine the stability of its equilibrium state.

4.5. Consider a continuous time NTI system:

ẋ1 = x2
ẋ2 = −(1 − |x1|)x2 − x1 .

Try to analyze the stability of its equilibrium state.

4.6. Given the state space equation:

ẋ = [ 1 1−1 1
] x ,

try to determine the stability of the original equilibrium state xe = 0.
4.7. Given the state space equation:

ẋ = [ 0 1−2 −3] x ,
try to determine the stability of the equilibrium point.

4.8. Consider a continuous time linear time varying system:

ẋ = [ 0 1− 1
t+1 −10] x , t ≥ 0 .

Try to determine whether the original equilibrium state xe = 0 is large scale asymptot-
ically stable. (Hint: Suppose V(x, t) = 1

2 [x21 + (1 + t)x22]).
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4.9. Try to analyze theBIBOstability and theasymptotical stability of the systemequi-
librium state xe = 0 of the following two systems:

(1) ẋ = [0 6
1 −1] x + [−21 ] u , (2) ẋ = [[[ 0 1 0

0 0 1
250 0 −5]]] x + [[[ 0

0
10

]]] u

y = [0 1] x , y = [−25 5 0] x ,
4.10. Consider a linear discrete time system:

x(k + 1) = [λ1 0
0 λ2

] x(k) .
Try to determine the asymptotically stable condition for the equilibrium state.

4.11. Given a discrete time LTI system:

x(k + 1) = [[[ 1 4 0−3 −2 −3
2 0 0

]]] x(k) .
Use two methods to determine whether the system is asymptotically stable.



5 Controllability and Observability

5.1 Introduction

This chapter introduces the concepts of controllability and observability. Controlla-
bility deals with whether or not the state of a state space equation can be controlled
from the input, and observability deals with whether or not the initial state can be ob-
served from the output. These concepts can be illustrated using the network shown in
Figure 5.1. In Figure 5.1 (a), the network has two state variables. Suppose that xi is the
voltage across the capacitor with capacitance Ci, for i = 1, 2. The input u is a voltage
source. From the network, it can be seen that, when C1 = C2, R1 = R2, we always
have x1 = x2. The input u cannot change x1 and x2 to any value, i.e., the system is
uncontrollable. In Figure 5.1 (b), when the initial value of x1 and x2 have x1(t) = x2(t),
the output cannot reflect the value of x1(t) and x2(t), so the system is unobservable.

These concepts are essential in describing the internal structure of linear systems.
They are also needed in studying control and filtering problems. In this chapter, we
will discuss continuous time LTI state equations.
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Fig. 5.1: (a) Network; (b) Network.
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5.2 Definition

5.2.1 Controllability

Consider the n-dimensional p-input state equation:

ẋ = Ax + Bu , (5.1)

where A and B are, respectively, n×n and n×p are real constantmatrices. Because the
output does not play any role in controllability, we will disregard the output equation
in this study.

Definition 5.1. The state equation (5.1) or the pair (A, B) is said to be controllable if,
for any initial state x(0) = x0 and any final state x1, there exists an input that transfers
x0 to x1 in a finite time. Otherwise (5.1) or (A, B) is said to be uncontrollable.
This definition requires only that the input be capable of moving any state in the state
space to any other state in finite time (what trajectory the state should take is not spec-
ified). Furthermore, there is no constraint imposed on the input; its magnitude can be
as large as desired.

Consider the n-dimensional p-input q-output state equation:

ẋ = Ax + Bu
y = Cx + Du , (5.2)

where A, B, C and D are, respectively, n × n, n × p, q × n and q × p constant matrices.
Example 5.1. Consider the network shown in Figure 5.2 (a). Its state variable x is the
voltage across the capacitor. If x(0) = 0, then x(t) = 0 for all t ≥ 0, no matter what


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(b) Fig. 5.2: Uncontrollable networks.
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input is applied. This is due to the symmetry of the network. Furthermore, the input
has no effect on the voltage across the capacitor. Thus the system or, more precisely,
the state equation that describes the system., is not controllable.

Next, we consider the network shown in Figure 5.2 (b). It has two state variables:
x1 and x2. The input can transfer x1 or x2 to any values, but it cannot transfer both x1
and x2 to any values. For example, if x1(0) = x2(0) = 0, then no matter what input is
applied, x1(t) always equals x2(t) for all t ≥ 0. Thus, the equation that describes the
network is not controllable.

5.2.2 Observability

Definition 5.2. The state equation (5.2) is said to be observable if, for any unknown
initial state x(0), there exists a finite t1 > 0 such that the knowledge of the input u and
theoutput y over [0, t1 ] suffices touniquelydetermine the initial state x(0). Otherwise,
the equation is said to be unobservable.

Example 5.2. Consider the network shown in Figure 5.3. If the input is zero, nomatter
what the initial voltage across the capacitor is, the output is identically zero because of
the symmetry of the four resistors. We know the input and output (both are identically
zero), but we cannot uniquely determine the initial state. Thus the network or, more
precisely, the state equation that describes the network is not observable.



+

y

1

x
+

1 1

1

1F


+

(voltage 

source)

u (t)

Fig. 5.3: Unobservable network.

The response of (5.2) excited by the initial state x(0) and the input u(t) is:
y(t) = CeAtx(0) + C t∫

0

eA(t−τ)Bu(τ)dτ + Du(t) . (5.3)

In the study of observability, the output y and the input u are assumed to be known;
the initial state x(0) is the only unknown one. Thus, we can write (5.3) as:

CeAtx(0) = y(t) , (5.4)
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where

y(t) = y(t) − C t∫
0

eA(t−τ)Bu(τ)dτ − Du(t)
is a known function. Thus, theobservability problem reduces to solving x(0) from (5.4).
If u ≡ 0, then y(t) reduces to the zero input response CeAtx(0). Therefore, Defini-
tion 5.2 can be modified as follows: Equation (5.2) is observable if, and only if, the
initial state x(0) can be determined uniquely from its zero input response over a finite
time interval.

5.3 Criteria

5.3.1 Controllable Criteria

Consider the continuous LTI system – the state equation is expressed as:

ẋ = Ax + Bu , x(0) = x0 , t ≥ 0 , (5.5)

where x ∈ Rn; u ∈ Rr; An×n, Bn×r.

Theorem 5.1 (Controllability Gram Matrix Criteria). System (5.5) is controllable only if
the n × n matrix

Wc[0, t1] ≜ t1∫
0

e−AtBBTe−ATtdt (5.6)

is nonsingular for any t1 > 0.

Proof. First we show that, if Wc[0, t1] is nonsingular, then (5.5) is controllable. For
any nonzero state x0, the response of (5.5) at time t1 is derived as:

x(t1) = eAt1x0 + t1∫
0

eA(t1−t)Bu(t)dt
= eAt1x0 − [[eAt1 t1∫

0

e−AtBBTeATtdt]]W−1c [0, t1]x0= eAt1x0 − eAt1Wc[0, t1]W−1c [0, t1]x0= eAt1x0 − eAt1x0 = 0 , ∀x0 ∈ Rn . (5.7)

This shows that all nonzero states in Rn are controllable. As defined, the system is
completely controllable. We show the converse by contradiction. SupposeWc[0, t1] is
singular, and that there exists a nonzero state x0, such that xT0Wc[0, t1]x0 = 0. This
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would leave us with:

0 = xT0Wc[0, t1]x0 = t1∫
0

xT0e−AtBBTe−A
Ttx0dt

= t1∫
0

[BTe−ATtx0]T [BTe−ATtx0] dt
= t1∫

0

󵄩󵄩󵄩󵄩󵄩󵄩BTe−ATtx0
󵄩󵄩󵄩󵄩󵄩󵄩2 dt , (5.8)

which implies that:
BTe−ATtx0 = 0 , ∀t ∈ [0, t1] . (5.9)

If (5.5) is controllable, an input exists that ensures:

0 = x(t1) = eAt1x0 + t1∫
0

eAt1e−AtBu(t)dt , (5.10)

thus

x0 = − t1∫
0

e−AtBu(t)dt
󵄩󵄩󵄩󵄩x0󵄩󵄩󵄩󵄩2 = xT0x0 = [[− t1∫

0

e−AtBu(t)dt]]
T

x0 = − t1∫
0

uT(t)[BTe−Atx0]dt . (5.11)

From equation (5.9), (5.11) can be derived as:󵄩󵄩󵄩󵄩x0󵄩󵄩󵄩󵄩2 = 0 ⇒ x0 = 0 , (5.12)

which contradicts x0 ̸= 0. ThusWc[0, t1] is nonsingular. Proof has been provided.
Theorem 5.2 (Controllability Rank Criteria). The system (5.5) is controllable only if the
n × np controllability matrix

Qc = [B AB A2B . . . An−1B] (5.13)

has rank n (full row rank).

Proof. First we show that, if rankQc = n, then (5.5) is controllable.
Suppose the system isnot completely controllable. Using theGramMatrixCriteria,

we can get that the Grammatrix:

Wc[0, t1] ≜ t1∫
0

e−AtBBTe−ATtdt , ∀t1 > 0 (5.14)
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is singular, which means that a nonzero state α exists, such that:

0 = αTWc[0, t1]α = t1∫
0

αTe−AtBBTe−ATtdt

= t1∫
0

[αTe−AtB] [αTe−AtB]T dt . (5.15)

Therefore, we have:
αTe−AtB = 0 , ∀t ∈ [0, t1] . (5.16)

Compute the n − 1 order derivative of the above equation and let t = 0, and we have:

αTB = 0 , αTAB = 0 , αTA2B = 0 , . . . , αTAn−1B = 0 ,

which equals:
αT [B AB A2B . . . An−1B] = αTQc = 0 . (5.17)

Because α ̸= 0, we know that all the rows of Qc are linearly independent and equiv-
alently, rankQc < n, which contradicts the hypothesis that rankQc = n. So the sys-
tem is controllable. We can also prove the converse by contradiction.

Suppose that rankQc < n, and that there exists a nonzero state α, such that:

αTQc = αT [B AB A2B . . . An−1B] = 0 ,

which implies:
αTAiB = 0 , i = 0, 1, . . . , n − 1 . (5.18)

Thus, for any t1 > 0, we have:±Aiti
i! B = 0 , ∀t ∈ [0, t1] , i = 0, 1, 2, . . . ,

or:

0 = αT [I − At + 1
2!A

2t2 − 1
3!A

3t3 + . . . ] B = αTe−AtB , ∀t ∈ [0, t1] . (5.19)

Hence, we can get:

0 = αT
t1∫
0

e−AtBBTe−ATtαdt = αTWc[0, t1]α , (5.20)

which indicates that the GrammatrixWc[0, t1] is singular, and that the system is not
totally controllable. This contradicts the hypothesis that the system is controllable.
Proof has been provided.
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Theorem 5.3 (Controllability PBH Criteria). The system (5.5) is controllable only if:

rank[sI − A, B] = n , ∀s ∈ ℓ , (5.21)

or if:
rank[λi I − A, B] = n , i = 1, 2, . . . , n , (5.22)

where ℓ is plural field and λi (i = 1, 2, . . . , n) is the eigenvalue.

Proof. First we prove that, if (5.5) is controllable, then equation (5.21) and (5.22) are
correct.

Suppose for a certain eigenvalue λi, rank[λi I − A, B] < n exists, which implies
that all the rows of Qc are linearly independent. Hence, there must exist a nonzero
n-dimensional constant vector α, such that:

αT [λiI − A, B] = 0 . (5.23)

That is, αTA = λiαT, αTB = 0.
Furthermore, αTB = 0, αTAB = λiαTB = 0, . . . , αTAn−1B = 0, which equals:

αT [B AB . . . An−1B] = aTQc = 0 . (5.24)

Because α ̸= 0, we have rankQc < n.
From the rank criteria, we know that the system is completely controllable and,

therefore, the hypothesis is not supported. Besides, for all s in plural field ℓ except the
eigenvalues λi, we have rank[sI − A, B] = n, so (5.22) equals (5.21).

Conversely, we suppose the system is not completely controllable, and that there
must exist a linear nonsingular transformation which transforms (A, B) into the fol-
lowing form:

A = PAP−1 = [Ac A12
0 Ac

]
B = PB = [Bc

0
] ,

(5.25)

where (Ac ∈ Rn×n , Bc ∈ Rn×p) and (Ac ∈ R(n−h)×(n−h), Bc ∈ R(n−h)×p), respectively,
denote the controllable part and uncontrollable part after being decomposed. And the
eigenvalue of A and Ac have the following relationship:

λi = an eigenvalue of Ac = an eigenvalue of A
Define qc ∈ ℓ1×(n−h) is one characteristic vector of λi

We can construct a nonzero n-dimensional row vector:

qT = [0, qTc] P ⋅ P−1 [Bc0 ] = 0

qTA = [0, qTc] P ⋅ P−1 [Ac A12
0 Ac

] P= [0, qTcAc] P = [0, λiqTc] P = λi [0, qTc ] P = λiqT .
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This shows that an n-dimensional row vector qT = 0 exists, such that:
qT [λi I − A, B] = 0 . (5.26)

Equivalently, a λi ∈ ℓ exists, such that:
rank [λi I − A, B] < n . (5.27)

Obviously, this contradicts “rank[sI − A, B] = n, ∀s ∈ ℓ ”, thus the hypothesis is not
established and (5.5) is controllable. Proof has been provided.

Theorem 5.4 (Controllability and the Jordan Canonical Form Criteria I). Consider sys-
tem (5.5). Suppose that the n eigenvalues λ1, λ2, . . . , λn are pairwise differently, and
that the system is controllable, but only if the Jordan canonical of (5.5) is:

ẋ = [[[[[[
λ1

λ2
. . .

λn

]]]]]] x + Bu , (5.28)

where B does not contain zero row vector. This means each row vector of B satisfies:

bi ̸= 0 , i = 1, 2, . . . , n . (5.29)

Proof. For the Jordan canonical (5.28), we construct the PBH Criteria matrix:

[sI − A, B] = [[[[[[
s − λi b1

s − λ2 b2
. . .

...
s − λn bn

]]]]]] . (5.30)

From the unit structure which makes up the matrix, we have s = λi, i ∈ [1, 2, . . . , n],
rank[sI − A, B] = n, but only if “bi ̸= 0, ∀i ∈ [1, 2, . . . , n]”. Proof has been provided.
Theorem 5.5 (Controllability and the Jordan Canonical Form Criteria II). Consider sys-
tem (5.5). Suppose the n eigenvaluesare λ1(σ1 layers, α1 layers), λ2(σ2 layers, α2 layers),
. . . , λl(σl layers, αl layers), and σ1 + σ2 + ⋅ ⋅ ⋅ + σl = n, λi ̸= λj, ∀i ̸= j, i, j = 1, 2, . . . , l.
Assume that the following Jordan canonical form is derived from linear nonsingular
transformation of state equation (5.5):̇̂x = Âx̂ + B̂u , (5.31)

where:

Â
n×n

= [[[[[[
J1

J2
. . .

Jl

]]]]]] , B̂
n×p

= [[[[[[
B̂1
B̂2
...
B̂l

]]]]]] , (5.32)
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Ji
σi×σi

= i
[[[[[[
Ji1

Ji2
. . .

Jiαi

]]]]]] , B̂i
σi×p

= [[[[[[
B̂i1
B̂i2
...

B̂iαi

]]]]]] , (5.33)

Jik
rik×rik

= i

[[[[[[[[[[
λi 1

λi 1
. . . . . .

. . . 1
λi

]]]]]]]]]]
, B̂ik

rik×p
= [[[[[[

b̂1ik
b̂2ik
...

b̂rik

]]]]]] , (5.34)

If for i = 1, 2, . . . , l, the last row vector of B̂i1, B̂i2, . . . , B̂iαi are all pairwise linear in-
dependent, which means that:

rank
[[[[[[
b̂ri1
b̂ri2
...

b̂riαi

]]]]]] = αi , ∀i = 1, 2, . . . , l . (5.35)

then the system (5.35) is controllable.

Proof. For simplicity, suppose that:

Â = [[[[[[[[[[[[

λ1 1
λ1 1

λ1
λ1 1

λ1
λ2 1

λ2

]]]]]]]]]]]]
, B̂ = [[[[[[[[[[[[

b̂111
b̂211
b̂r11
b̂112
b̂r12
b̂121
b̂r21

]]]]]]]]]]]]
, (5.36)

where λ1 ̸= λ2. For the above Jordan canonical form, we construct the PBH criteria
matrix:

[sI − Â, B̂] = [[[[[[[[[[[[

s − λ1 −1 b̂111
s − λ1 −1 b̂211

s − λ1 b̂r11
s − λ1 −1 b̂112

s − λ1 b̂r12
s − λ2 −1 b̂121

s − λ2 b̂r21

]]]]]]]]]]]]
.

(5.37)
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We imply the rank criteria when s = λ1, which yields:

[λ1I − Â, B̂] =
[[[[[[[[[[[[

0 −1 b̂111
0 −1 b̂211

0 b̂r11
0 −1 b̂112

0 b̂r12
λ1 − λ2 −1 b̂121

λ1 − λ2 b̂r21

]]]]]]]]]]]]
, (5.38)

where λ1 − λ2 ̸= 0. Obviously, [λ1I − Â, B̂] has full rank for the rows; namely,
rank[λ1I − Â, B̂] = n = 7, but only if:

rank[b̂r11
b̂r12

] = α1 = 2 . (5.39)

Similarly, for s = λ2, [λ1I − Â, B̂] has full rank for rows: rank[λ1I − Â, B̂] = n = 7, but
only if:

rank b̂r21 = α2 = 1 . (5.40)

Therefore, equation (5.35) is proven.

5.3.2 Controllable Examples

Example 5.3. Consider the controllability of the following continuous time LTI sys-
tem: [ẋ1

ẋ2
] = [4 0

0 −5] [x1x2] + [12] u , n = 2 .
Solution. The controllability matrix is:

Qc = [B AB] = [1 4
2 −10] .

Obviously, rankQc = 2 = n. According to the rank criteria, the system is controllable.

Example 5.4. Consider the controllability of the following continuous time LTI sys-
tem:

ẋ = [[[−1 −4 −2
0 6 −1
1 7 −1]]] x + [[[2 0

0 1
1 1

]]] u , n = 3 .
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Solution. The controllability matrix is:

Qc = [B AB A2B] = [[[2 0 −4 ∗ ∗ ∗
0 1 −1 ∗ ∗ ∗
1 1 1 ∗ ∗ ∗]]] .

From the first three columns of Qc, we can see that:

det[[[2 0 −4
0 1 −1
1 1 1

]]] ̸= 0

rankQc = 3 = n .

Thus, there is no need to compute the last three columns of Qc. According to the rank
criteria, the system is controllable.

Example 5.5. Consider the controllability of the following continuous time LTI sys-
tem:

ẋ = [[[[[
0 1 0 0
0 0 −1 0
0 0 0 1
0 0 5 0

]]]]] x + [[[[[
0 1
1 0
0 1−2 0

]]]]] u , n = 4 .

Solution. First, compute the matrix:

[sI − A, B] = [[[[[
s −1 0 0 0 1
0 s 1 0 1 0
0 0 s −1 0 1
0 0 −5 s −2 0

]]]]] .

The eigenvalues of A are calculated as:

λ1 = λ2 = 0 , λ3 = √5 , λ4 = −√5 .
Next, we check the rank of [sI −A, B] for each eigenvalue. For s = λ1 = λ2 = 0, we

have:

rank[sI − A, B] = rank[[[[[
0 −1 0 0 0 1
0 0 1 0 1 0
0 0 0 −1 0 1
0 0 −5 0 −2 0

]]]]] ,

= rank[[[[[
−1 0 0 0
0 1 0 −1
0 0 −1 0
0 −5 0 −2]]]]] = 4 = n .
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For s = λ3 = √5, we have:
rank[sI − A, B] = rank[[[[[

√5 −1 0 0 0 1
0 √5 1 0 1 0
0 0 √5 −1 0 1
0 0 −5 √5 −2 0

]]]]] .

= rank[[[[[
√5 −1 0 1
0 √5 1 0
0 0 0 1
0 0 −2 0

]]]]] = 4 = n .

For s = λ4 = −√5, we have:
rank[sI − A, B] = rank

[[[[[
−√5 −1 0 0 0 1
0 −√5 1 0 1 0
0 0 −√5 −1 0 1
0 0 −5 −√5 −2 0

]]]]] ,

= rank
[[[[[
−√5 −1 0 1
0 −√5 1 0
0 0 0 1
0 0 −2 0

]]]]] = 4 = n .

This shows that the given system qualifies the PBH Criteria, and it is controllable.

Example 5.6. Considering a continuous time LTI systemwith pairwisedifferent eigen-
values. Suppose that the Jordan canonical sate equation is:[[[ẋ1ẋ2ẋ3]]] = [[[−7 0 0

0 −2 0
0 0 1

]]][[[x1x2x3]]] + [[[0 2
4 0
0 1

]]][u1u2] .

Solution. We can see directly that the matrix B does not contain zero row vectors. Ac-
cording to Jordan canonical form criteria I, the system is controllable.

Example 5.7. Considering a continuous time LTI system with duplicate eigenvalues.
Suppose that the Jordan canonical state equation is:

̇̂x = [[[[[[[[[[[[

−2 1
0 −2 −2 −2

3 1
0 3

3

]]]]]]]]]]]]
x̂ + [[[[[[[[[[[[

0 0 0
1 0 0
0 4 0
0 0 7
0 0 0
1 1 0
0 4 1

]]]]]]]]]]]]
u .
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Considering the last rows of Jordan blocks for λ1 = −2 and λ2 = 3, we find the corre-
sponding rows in B̂ and construct the following two matrices:[[[b̂r11b̂r12

b̂r13

]]] = [[[1 0 0
0 4 0
0 0 7

]]] , [b̂r21
b̂r22

] = [1 1 0
0 4 1

] .

Hence, we can see that both of them have full ranks. According to criteria II of the
Jordan canonical form, the system is controllable.

5.3.3 Observable Criteria

Consider the continuous time LTI system:

ẋ = Ax + Bu
y = Cx + Du , (5.41)

where A, B, C, and D are respectively n × n, n × p, q × n, and q × p constant matrices.
Theorem 5.6 (Gram Matrix Criteria). The state equation (5.41) is observable only if the
n × n matrix

Wo[0, t1] ≜ t1∫
0

eATtCTCeAtdt (5.42)

is nonsingular for any t1 > 0.
Proof. We premultiply (5.4) by eATtCT, and then integrate it over [0, t1] to yield:

( t1∫
0

eATtCTCeAtdt) x(0) = t1∫
0

eATtCTy(t)dt . (5.43)

IfWo[0, t1] is nonsingular, then:
x(0) = W−1o [0, t1] t1∫

0

eATtCTy(t)dt . (5.44)

This yields a unique x(0). It also shows that ifWo[0, t1] (for any t1 > 0) and is nonsin-
gular, then (5.41) is observable. Next, we show that, if Wo[0, t1] is singular or, equiv-
alently, positive semidefinite for all t1, then (5.41) is not observable. If Wo[0, t1] is
positive semidefinite, there exists an n × 1 nonzero constant vector v such that:

vTWo[0, t1]v = t1∫
0

vTeATtCTCeAtvdt = t1∫
0

‖CeAtv‖2dt = 0 ,
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which implies that:
CeAtv ≡ 0 , (5.45)

for all t in [0, t1]. If u ≡ 0, then x1(0) = v ̸= 0 and x2(0) = 0 both yield the same

y(t) = CeAtxi(0) ≡ 0 .

Two different initial states yield the same zeroinput response. Therefore, we cannot
uniquely determine x(0). Thus (5.41) is not observable. This completes the proof for
Theorem 5.1.

Theorem 5.7 (Theorem of Duality). The pair (A, B) is controllable only if the pair (AT,
BT) is observable.
Proof. The pair (A, B) is controllable only if

Wc[0, t1] = t1∫
0

eAtBBTeATtdt

is nonsingular for any t1. The pair (AT, BT) is observable only if, by replacing A with
AT and C with BT in (5.42),Wo[0, t1] = ∫t10 eAtBBTeATtdt is nonsingular for any t.

Theorem 5.8 (Rank Criteria). The state equation (5.41) is observable only if the nq × n
observability matrix

Qo = [[[[[[
C
CA
...

CAn−1

]]]]]] , or QT
o = [CT ATCT . . . (AT)n−1CT] ,

has rank n.

Theorem 5.9 (Observable PBH Rank Criteria). The state equation (5.41) is observable
only if:

rank[λi I − A
C

] = n , and i = 1, 2, . . . , n ,
at the eigenvalue, λ, of A.

Theorem 5.10 (Observable PBH Characteristic Vector Criteria). The state equation
(5.41) is observable only if an orthogonal nonzero right characteristic vector for all rows
of matrix C in matrix A does not exist. Equivalently, the only right characteristic vector
at every eigenvalue λ, of A, that can satisfy the following equations:

Aα = λiα , Cα = 0 ,
is α = 0.
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Theorem 5.11 (Observable Jordan Canonical Form Criteria). Assuming λi ̸= λj, ∀i ̸= j,
the eigenvalues of system (5.41) are λi (σi layers, αi layers) with i varying from 1 to l, and(σ1 + σ2 + . . . σl) = n. The Jordan canonical form of the system is obtained by linearly
nonsingular transformation: ̇̂x = Âx̂

y = Ĉx̂ ,

where:

Â
(n×n)

= [[[[[[
J1

J2
. . .

Jl

]]]]]] , Ĉ
(q×n)

= [Ĉ1 Ĉ2 . . . Ĉl] ,
Ji
(σi×σi)

= [[[[[[
Ji1

Ji2
. . .

Jiαi

]]]]]] , Ĉi
(q×σi)

= [Ĉi1 Ĉi2 . . . Ĉiαi] ,
Jik
(rik×rik)

= [[[[[[[[[[
λi 1

λi 1
. . . . . .

. . . 1
λi

]]]]]]]]]]
, Ĉik

(q×rik)
= [ĉ1ik ĉ2ik . . . ĉrik] .

For i = 1, 2, . . . , l, the first columns of Ĉi1, Ĉi2, . . . , Ĉiαi are linearly independent. That
is:

rank [ĉ1i1 ĉ1i2 . . . ĉ1iαi] = αi , ∀i = 1, 2, . . . , l .

5.3.4 Observable Examples

Example 5.8. Is the state equation:

ẋ = [[[−1 −4 −2
0 6 −1
1 7 −1]]] x , n = 3 ,

y = [0 2 1
1 1 0

] x
observable?
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Solution.

rankQo = rank[[[ C
CA
CA2

]]] = rank
[[[[[[[[[[
0 2 1
1 1 0
1 19 −3∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗

]]]]]]]]]]
= 3 = n .

Obviously, we know that the matrix Qo has full rank from the first three rows. There-
fore, the system is completely observable from rank criteria.

Example 5.9. Is the state equation:

ẋ = [[[[[
0 1 0 0
0 0 −1 0
0 0 0 1
0 0 5 0

]]]]] x , n = 4 ,
y = [0 1 0 −2

1 0 1 0
] x

observable?

Solution. First we compute the eigenvalues of A:

|λI − A| = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
λ −1 0 0
0 λ 1 0
0 0 λ −1
0 0 −5 λ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = 0 ,
λ1 = λ2 = 0 , λ3 = √5 , λ3 = −√5 .

According to observable PBH rank criteria, we compute:

rank[λI − A
C

]
λ=0

= rank[[[[[[[[[[
0 −1 0 0
0 0 1 0
0 0 0 −1
0 0 −5 0
0 1 0 −2
1 0 1 0

]]]]]]]]]]
= 4 = n ,

rank[λI − A
C

]
λ=√5

= rank[[[[[[[[[[
√5 −1 0 0
0 √5 1 0
0 0 √5 −1
0 0 −5 √5
0 1 0 −2
1 0 1 0

]]]]]]]]]]
= 4 = n ,
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rank[λI − A
C

]
λ=−√5

= rank

[[[[[[[[[[
−√5 −1 0 0
0 −√5 1 0
0 0 −√5 −1
0 0 −5 −√5
0 1 0 −2
1 0 1 0

]]]]]]]]]]
= 4 = n ,

which satisfy the observable PBH rank criteria. Therefore, the system is completely
observable.

Example 5.10. Consider a systemwith pairwise different eigenvalues, and suppose its
Jordan canonical form is: [[[ẋ1ẋ2ẋ3]]] = [[[−7 0 0

0 −2 0
0 0 1

]]][[[x1x2x3]]] ,

y = [0 4 0
2 0 1

] x .
Examine the observability of the system.

Solution. We know the matrix C does not consist of a column whose elements are all
zero. According to the observable Jordan canonical form criteria, we know that the sys-
tem is observable.

Example 5.11. Consider an LTI system with duplicate eigenvalues. Suppose that the
Jordan canonical form is as follows:

̇̂x = [[[[[[[[[[[[

−2 1
0 −2 −2 −2

3 1
0 3

3

]]]]]]]]]]]]
x̂ ,

y = [[[1 0 0 0 1 0 0
0 0 4 0 1 0 4
0 0 0 7 0 0 1

]]] x̂ .
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Solution. Consider the first column of two Jordan blocks for λ = −2 and λ = 3. Find the
corresponding columns from the matrix Ĉ and construct the following two matrices:

[ĉ111 ĉ112 ĉ113] = [[[1 0 0
0 4 0
0 0 7

]]] ,

[ĉ121 ĉ122] = [[[1 0
1 4
0 1

]]] .

We know that the two matrices are both linearly independent columns. According to
the observable Jordan canonical form criteria, we know that the system is observable.

5.4 Duality System

5.4.1 Definition

There are two systems. The system Σ1 is shown as follows:

ẋ1 = A1x1 + B1u1
y1 = C1x1 .

The other system, Σ2, is:
ẋ2 = A2x2 + B2u2
y2 = C2x2 .

If the following conditions are satisfied, the system Σ1 and Σ2 are duality systems.

A2 = AT
1 , B2 = CT1 , C2 = BT1 , (5.46)

where x1, x2 are n-dimensional state vectors, u1, u2 are r-dimensional and m-di-
mensional control vectors respectively; y1, y2 are m-dimensional and r-dimensional
output vectors respectively; A1, A2 are n × n system matrices; A1, A2 are n × r and
n × m control matrices respectively, and C1, C2 are m × n and r × n output matrices
respectively.

Obviously, the system Σ1 is an n-order system with r inputs andm outputs, while
its duality systems Σ2 is an n-order system with m inputs and r outputs. The configu-
rations of the duality systems Σ1 and Σ2 are shown in Figure 5.4.
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(a)

(b)

Fig. 5.4: Configuration diagrams of duality systems.

5.4.2 Properties of Duality Systems

Conclusion 5.1. No matter whether a system is a continuous time system or a discrete
time system, if the system Σ1 is linear, its duality system Σ2 is also linear. Similarly, if the
system Σ1 is time variable or time invariable, its duality system Σ2 is also time variable
or time invariable.

Conclusion 5.2. The transfer function matrices of the duality systems are mutually in-
verted.

Proof. As shown in Figure 5.4 (a), the transfer function matrixW1(s) of the system Σ1
is a m × r matrix as follows:

W1(s) = C1(sI − A1)−1B1 .
As shown in Figure 5.4 (b), the transfer function matrix W2(s) of the system Σ2 is a
r × m matrix as follows:

W2(s) = C2(sI − A2)−1B2= BT1(sI − AT
1)−1CT1= BT1 [(sI − A1)−1]T CT1 .

Obviously, [W2(s)]T = C1(sI − A1)−1B1 = W1(s) .
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In the same way we can know that the input state transfer function matrix (sI −
A1)−1B1 of the system Σ1 and state input transfer functionmatrix C2(sI −A2)−1 of the
system Σ2 aremutually inverted. The state input transfer functionmatrix C1(sI−A1)−1
of the system Σ1 and input state transfer function matrix (sI − A2)−1B2 of the system
Σ2 are mutually inverted.

In addition, the characteristic equations of duality systems are the same. That is
to say: |sI − A2| = 󵄨󵄨󵄨󵄨󵄨sI − AT

1
󵄨󵄨󵄨󵄨󵄨 = |sI − A1| .

Conclusion 5.3. The system Σ1 = (A1, B1, C1) and the system Σ2 = (A2, B2, C2) are
duality systems. The controllability of system Σ1 is equivalent to the observability of sys-
tem Σ2. Similarly, the observability of system Σ1 is equivalent to the controllability of
system Σ2. In other words, if the system Σ1 is controllable or observable, the system Σ2
is observable or controllable.

Proof. The controllability matrix of system Σ2 is:

Q2c = [B2 A2B2 . . . An−1
2 B2] ,

and its rank equals n. Therefore, the system Σ2 is controllable.
The integration of the equation (5.46) in the above equation results in the follow-

ing equation:
Q2c = [CT1 AT

1C
T
1 . . . (AT

1)(n−1)CT1] = QT
1o ,

where Q1o is the observability matrix of system Σ1.
This indicates the rank of the observability matrix of system Σ1 is n. Therefore,

system Σ1 is observable.
In the same way, we know:

QT
2o = [CT2 AT

2C
T
2 . . . (AT

2)n−1CT2]= [B1 A1B1 . . . An−1
1 B1] = Q1c .

If Q2o has full rank, the system Σ2 is observable, andQ1c also has full rank. Therefore,
the system Σ1 is controllable.

5.5 Canonical Form

This section discusses the controllability canonical forms and observability canonical
forms of state equations.

5.5.1 Controllability Canonical Form of Single Input Systems

Consider the n-dimensional time invariant system:

ẋ = Ax + Bu
y = Cx .
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If the system is controllable, we have:

rank [B AB . . . An−1B] = n .

Hence, there are at least n linearly independent n-dimensional column vectors in the
controllability matrix. We select n linearly independent vectors from the nr column
vectors and make some linear transformations. Then we can get a certain controlla-
bility canonical form, whose columns are still linear independent. For single input
single output systems, there is only one group of linearly independent vectors, so the
controllability canonical form is unique. However, for multiple input multiple output
systems, there are various choices of n linearly independent vectors, so the controlla-
bility canonical form is not unique. Obviously, the canonical forms exist if, and only if,
the system is controllable.

Controllability Canonical Form I
If the LTI single input system:

ẋ = Ax + bu
y = Cx

(5.47)

is controllable, then there exists a linear nonsingular transformation:

x = Tc1x ,

Tc1 = [An−1b An−2b . . . b] [[[[[[[[[[
1 0

αn−1 1
...

. . .

α2 α3
. . .

α1 α2 . . . αn−1 1

]]]]]]]]]]
, (5.48)

which can transfer the state space equation into:

ẋ = Ax + bu
y = Cx ,

(5.49)

where:

A = T−1c1 ATc1 = [[[[[[
0 1
...

. . .
0 1−α0 −α1 . . . −αn−1

]]]]]] , b = T−1c1 b = [[[[[[
0
0
...
1

]]]]]] , (5.50)

C = CTc1 = [β0 β1 . . . βn−1] . (5.51)

Equation (5.49) is called the controllability canonical form I, where αi (i = 0, 1, . . . ,
n − 1) are the coefficients of the following polynomial:|λI − A| = λn + αn−1λn−1 + ⋅ ⋅ ⋅ + α1λ + α0 .
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βi (i = 0, 1, . . . , n − 1) are the results of CTc1:
β0 = C(An−1b + αn−1An−2b + ⋅ ⋅ ⋅ + α1b)

...
βn−2 = C(Ab + αn−1b)
βn−1 = Cb

}}}}}}}}}}}}}}}
(5.52)

Proof. Suppose the system is controllable; the n × 1 vectors b, Ab, . . . , An−1b are lin-
early independent, and the new vectors e1, e2, . . . , en in the following combination
are also linearly independent:

e1 = An−1b + αn−1An−2b + αn−2An−3b + ⋅ ⋅ ⋅ + α1b
e2 = An−2b + αn−1An−3b + ⋅ ⋅ ⋅ + α2b

...
en−1 = Ab + αn−1b
en = b ,

}}}}}}}}}}}}}}}}}}}}}
(5.53)

where αi (i = 0, 1, . . . , n − 1) are the coefficients of the polynomial.
Thus, the transformation matrix Tc1 are composed of e1, e2, . . . , en:

Tc1 = [e1 e2 . . . en] . (5.54)

As A = T−1c1 ATc1, we have:

Tc1A = ATc1 = A [e1 e2 . . . en] = [Ae1 Ae2 . . . Aen] . (5.55)

Substituting equation (5.53) into the above equation yields:

Ae1 = A(An−1b + αn−1An−2b + ⋅ ⋅ ⋅ + α1b)= (Anb + αn−1An−1b + ⋅ ⋅ ⋅ + α1Ab + α0b) − α0b= −α0b = −α0en
Ae2 = A(An−2b + αn−1An−3b + ⋅ ⋅ ⋅ + α2b)= (An−1b + αn−1An−2b + ⋅ ⋅ ⋅ + α2Ab + α1b) − α1b= e1 − α1en

...
Aen−1 = A(Ab + αn−1b)= (A2b + αn−1Ab + αn−2b) − αn−2b= en−2 − αn−2en
Aen = Ab = (Ab + αn−1b) − αn−1b = en−1 − αn−1en .
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Then we substitute Ae1, Ae2, . . . , Aen into (5.55):

Tc1A = [Ae1 Ae2 . . . Aen] = [−α0en (e1 − α1en) . . . (en−1 − αn−1en)]
= [e1 e2 . . . en] [[[[[[

0 1
...

. . .
0 1−α0 −α1 . . . −αn−1

]]]]]] .

Furthermore, we deduce b. From b = T−1c1 b, we have Tc1b = b. Substituting b = en
yields:

Tc1b = en = [e1 e2 . . . en] [[[[[[
0
0
...
1

]]]]]] .

Therefore,

b = [[[[[[
0
0
...
1

]]]]]] .

Finally, we deduce C. From C = CTc1, we get:

C = CTc1 = C [e1 e2 . . . en] .
Substituting (5.53) into the above equation yields:

C = C [An−1b + αn−1An−2b + αn−2An−3b + ⋅ ⋅ ⋅ + α1b . . . Ab + αn−1b b]= [β0 β1 . . . βn−1] ,
where:

β0 = C(An−1b + αn−1An−2b + αn−2An−3b + ⋅ ⋅ ⋅ + α1b)
...

βn−2 = C(Ab + αn−1b)
βn−1 = Cb .

We can derive the transfer function easily from the controllability canonical form I:

W(s) = C(sI − A)−1b = βn−1sn−1 + βn−2sn−2 + ⋅ ⋅ ⋅ + β1s + β0
sn + αn−1sn−1 + ⋅ ⋅ ⋅ + α1s + α0 . (5.56)

From (5.56), we can see that the coefficients of the denominator polynomial are the
negative value of the elements of the last row of A, and that the coefficients of the
numerator polynomial are the elements of C. Hence, we can write out A, b, C, directly
from the coefficients of the denominator polynomial andnumerator polynomial of the
system transfer function.
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Controllability Canonical Form II
If the LTI single input system,

ẋ = Ax + bu
y = Cx ,

(5.57)

is controllable, then there exists a linear nonsingular transformation:

x = Tc2x = [b Ab . . . An−1b] x , (5.58)

which will transfer the state space equation into:

ẋ = Ax + bu
y = Cx .

(5.59)

Here:

A = T−1c2 ATc2 = [[[[[[[[[
0 0 . . . 0 −α0
1 0 . . . 0 −α1
0 1 . . . 0 −α2
...

... 0
...

0 0 . . . 1 −αn−1
]]]]]]]]]

, b = T−1c2 b = [[[[[[
1
0
...
0

]]]]]] . (5.60)

C = CTc2 = [β0 β1 . . . βn−1] (5.61)

Equation (5.59) is called the controllability canonical form II, where α0, α1, . . . , αn−1
are the coefficients of the following polynomial:|λI − A| = λn + αn−1λn−1 + ⋅ ⋅ ⋅ + α1λ + α0 .
β0, β1, . . . , βn−1 are the results of CTc2:

β0 = Cb
β1 = CAb

...
βn−1 = CAn−1b

}}}}}}}}}}}}}}}
(5.62)

Proof. As the system is controllable, the controllability matrix

Qc = [b Ab . . . An−1b]
is nonsingular. Let:

x = Tc2x

where Tc2 = [b Ab . . . An−1b]. Thus the state equation and output equation
after transformation is:

ẋ = Ax + bu = T−1c2 ATc2x + T−1c2 bu
y = Cx = CTc2x .
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First, we deduce A:

ATc2 = A [b Ab . . . An−1b] = [Ab A2b . . . Anb] . (5.63)

According to the Cayley–Hamilton theorem, we have:

An = −αn−1An−1 − αn−2An−2 − ⋅ ⋅ ⋅ − α1A − α0 .
Substituting the above equation into (5.63) yields:

ATc2 = [Ab A2b . . . (−αn−1An−1 − αn−2An−2 − ⋅ ⋅ ⋅ − α0)b] . (5.64)

Now, rewrite (5.64) into matrix form:

ATc2 = [b Ab . . . An−1b] [[[[[[[[[
0 0 . . . 0 −α0
1 0 . . . 0 −α1
0 1 . . . 0 −α2
...

... 0
...

0 0 . . . 1 −αn−1
]]]]]]]]]

,

thus arriving at:

ATc2 = Tc2

[[[[[[[[[
0 0 . . . 0 −α0
1 0 . . . 0 −α1
0 1 . . . 0 −α2
...

... 0
...

0 0 . . . 1 −αn−1
]]]]]]]]]

.

Then multiply the above equation by T−1c2 :

A = T−1c2 ATc2 = [[[[[[[[[
0 0 . . . 0 −α0
1 0 . . . 0 −α1
0 1 . . . 0 −α2
...

... 0
...

0 0 . . . 1 −αn−1
]]]]]]]]]

. (5.65)

As b = T−1c2 b, equally b = Tc2b = [b Ab . . . An−1b]. Obviously, in order to guar-
antee (5.65), b should satisfy:

b = [[[[[[
1
0
...
0

]]]]]] ,

C = CTc2 = [Cb CAb . . . CAn−1b] .
That is:

C = CTc2 = [β0 β1 . . . βn−1] .
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5.5.2 Observability Canonical Form of Single Output Systems

Similar to the condition for controllability canonical forms, the systemhas observabil-
ity canonical form only when it is observable. That is:

rank
[[[[[[

C
CA
...

CAn−1

]]]]]] = n .

The state space equation has two types of observability canonical forms: observability
canonical form I and observability canonical form II.

Observability Canonical Form I
If the LTI single output system

ẋ = Ax + bu
y = Cx

(5.66)

is controllable, then there exists a linear nonsingular transformation:

x = To1 x̃ , (5.67)

which will transfer the state space equation (5.65) into:̇̃x = Ãx̃ + b̃u
y = C̃x̃ .

(5.68)

Define the inverse of the transformation matrix To1:

T−1o1 = N = [[[[[[
C
CA
...

CAn−1

]]]]]] . (5.69)

Here:

Ã = T−1o1ATo1 = [[[[[[[[[
0 1 0 . . . 0
0 0 1 . . . 0
0 0 0 . . . 0
...

...
...

...−α0 −α1 −α2 . . . −αn−1
]]]]]]]]]

, b̃ = T−1o1 b = [[[[[[
β0
β1
...

βn−1

]]]]]] , (5.70)

C̃ = CTo1 = [1 0 . . . 0] . (5.71)

Equation (5.71) is called the observability canonical form I, where αi (i = 0, 1, . . . ,
n − 1) are the coefficients of the polynomial A.
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Observability Canonical Form II
If the LTI single output system:

ẋ = Ax + bu
y = Cx

(5.72)

is controllable, then there exists a linear nonsingular transformation:

x = To2 x̃ , (5.73)

where:

To2 = [[[[[[[[[
1 αn−1 . . . α2 α1
0 1 . . . α3 α2
...

...
...

...
0 0 . . . 1 αn−1
0 0 . . . 0 1

]]]]]]]]]
[[[[[[[[[
CAn−1

CAn−2

...
CA
C

]]]]]]]]]
. (5.74)

The state space equation after transformation is:̇̃x = Ãx̃ + b̃u
y = C̃x̃ ,

(5.75)

where:

Ã = T−1o2AT02 = [[[[[[[[[[
0 0 . . . 0 −α0
1 0 . . . 0 −α1
0 1 0

... −α2
...

... 0
...

0 0 . . . 1 −αn−1
]]]]]]]]]]
, b̃ = T−1o2 b = [[[[[[

β0
β1
...

βn−1

]]]]]] , (5.76)

C̃ = CTo1 = [0 0 . . . 1] . (5.77)

Equation (5.75) is called the observability canonical form II, where αi (i = 0, 1, . . . ,
n − 1) are the coefficients of the polynomial A, and βi (i = 0, 1, . . . , n − 1) are the
results of T−1o2 b and is shown in (5.51).

The observability canonical form I is dual to the controllability canonical form II.
And the observability canonical form II is dual to the controllability canonical form I.

Proof. We prove it by the theory of duality.
First we construct the duality system of Σ = (A, b, C):

A∗ = AT

b∗ = CT

C∗ = bT .
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This gives us the controllability canonical form II of Σ∗ = (A∗, b∗, C∗). The observabil-
ity canonical form I of Σ is just the controllability canonical form II of Σ∗. For example:

Ã = A∗ = AT

b̃ = b∗ = CT

C̃ = C∗ = b
T
,

where:

A, b, C the coefficient matrices of the controllability canonical form II of Σ ;

Ã, b̃, C̃ the coefficient matrices of the observability canonical form I of Σ ;
A∗, b∗, C∗ the coefficient matrices of the controllability canonical form II of Σ∗.

Therefore the transformation above can be deduced directly by the theory of duality.
The same is true for observability canonical form I. Besides, we can also derive the
transfer function directly from the controllability canonical form II:

W(s) = βn−1sn−1 + βn−2sn−2 + ⋅ ⋅ ⋅ + β0
sn + αn−1sn−1 + αn−2sn−2 ⋅ ⋅ ⋅ + α0 , (5.78)

Where the coefficients of the denominator polynomial are the negative value of the
elements of the last column of Ã, and the coefficients of the numerator polynomial
are the elements of b̃.

5.5.3 Examples

Example 5.12. Try to transform the following state space equation into controllability
canonical form I:

ẋ = [[[1 2 0
3 −1 1
0 2 0

]]] x + [[[211]]] u ,

y = [0 0 1] x .
Solution. First we judge the controllability of the system:

Qc = [b Ab A2b] = [[[2 4 16
1 6 8
1 2 12

]]] .

rankQc = 3 so the system is controllable.
Then we compute the characteristic polynomial:|λI − A| = λ3 − 9λ + 2 .
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Thus, α2 = 0, α1 = −9, α0 = 2. From equations (5.49) and (5.50), we have:

A = [[[ 0 1 0
0 0 1−α0 −α1 −α2]]] = [[[ 0 1 0

0 0 1−2 9 0

]]] ,

C = C [A2b Ab b] [[[ 1 0 0
α2 1 0
α1 α2 1

]]] ,

= [0 0 1] [[[16 4 2
8 6 1
12 2 1

]]][[[ 1 0 0
0 1 0−9 0 1

]]] = [3 2 1] .
So the controllability canonical form I of the system is:

ẋ = [[[ 0 1 0
0 0 1−2 9 0

]]] x + [[[001]]] u ,

y = [3 2 1] x .
From equation (5.56) we can write out the transfer function of the system as:

W(s) = β2s2 + β1s + β0
s3 + α2s2 + α1s + α0 = s2 + 2s + 3

s3 − 9s + 2 .

Example 5.13. Try to transform the state space equation of Example 5.11 into control-
lability canonical form II.

Solution. As shown in Example 5.11, we know α2 = 0, α1 = −9, α0 = 2. From (5.60)
to (5.61), we have:

A = [[[0 0 −α0
1 0 −α1
0 1 −α2]]] = [[[0 0 −2

1 0 9
0 1 0

]]] ,

b = [[[100]]] ,

C = [Cb CAb CA2b] = [1 2 12] .
Thus, the controllability canonical form II of the system is:

ẋ = [[[0 0 −2
1 0 9
0 1 0

]]] x + [[[100]]] u ,

y = [1 2 12] x .
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Example 5.14. Try to transform the state space equation of Example 5.11 into observ-
ability canonical forms.

Solution. Step 1: Find the observability canonical form I of the system.
First we compute the observability matrix Qo:

Qo = [[[ C
CA
CA2

]]] = [[[0 0 1
0 2 0
6 −2 2

]]] .

rankQo = 3, so the system can be transformed into observability canonical forms.
From equations (5.70) and (5.71), we have:

Ã = [[[ 0 1 0
0 0 1−2 9 0

]]] , b̃ = [[[ 1
2
12

]]] , C̃ = [1 0 0] .
Thus, the observability canonical form I of the system is:

̇̃x = [[[ 0 1 0
0 0 1−2 9 0

]]] x̃ + [[[ 1
2
12

]]] u ,

y = [1 0 0] x̃ .
Step 2: Find the observability canonical form II of the system.

From equations (5.76) and (5.77), we have:

Ã = [[[0 0 −2
1 0 9
0 1 0

]]] , b̃ = [[[321]]] , C̃ = [0 0 1] .
Thus, the observability canonical form II of the system is:

̇̃x = [[[0 0 −2
1 0 9
0 1 0

]]] x̃ + [[[321]]] u ,

y = [0 0 1] x̃ .
5.5.4 Observability and Controllability Canonical Form of Multiple Input

Multiple Output Systems

Consider the following transfer function:

G(s) = Bn−1sn−1 + ⋅ ⋅ ⋅ + B1s + B0
sn + an−1sn−1 + ⋅ ⋅ ⋅ + a0 + Bn , (5.79)
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where Bi is m × r dimensional matrix.
The controllable canonical form is:

ẋ = [[[[[[[[[[
Or Ir

Or
. . .

...
. . .

Or Ir−a0Ir −an−1Ir
]]]]]]]]]]
x + [[[[[[[[[

Or
Or
...
Or
Ir

]]]]]]]]]
u

y = [B0 B1 . . . Bn−1] x + Bnu ,

(5.80)

where Or and Ir are r × r dimensional zero matrix and unit matrix, while r stands for
dimension of input vector and n is the order of the denominator polynomial.

Example 5.15. The system transfer function matrix is given below. Try to give a con-
trollable canonical form of the system:

W(s) = [ s+2
s+1

1
s+3

s
s+1

s+1
s+2
] = [ 1

s+1
1
s+3− 1

s+1 − 1
s+2
] + [1 0

1 1
]

= [ s2 + 5s + 6 s2 + 3s + 2−(s2 + 5s + 6) −(s2 + 4s + 3)](s + 1)(s + 2)(s + 3) + [1 0
1 1

]
= [ 1 1−1 −1] s2 + [ 5 3−5 −4] s + [ 6 2−6 −3]

s3 + 6s2 + 11s + 6 + [1 0
1 1

] .

Solution. For the system shown with the above model, we have n = 3, m = r = 2 and:
a0 = 6 , a1 = 11 , a2 = 6 ,

D = [1 0
1 1

] , B0 = [ 6 2−6 −3] , B1 = [ 5 3−5 −4] , B2 = [ 1 1−1 −1] .

So we get the matrix of the controllable canonical form as follows:

A = [[[[[[[[[[
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1−6 0 −11 0 −6 0
0 −6 0 −11 0 −6

]]]]]]]]]]
, B = [[[[[[[[[[

0 0
0 0
0 0
0 0
1 0
0 1

]]]]]]]]]]
C = [ 6 2 5 3 1 1−6 −3 −5 −4 −1 −1] .
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The observable canonical form is:

ẋ = [[[[[[[[[
0m 0m . . . 0m 0m −α0Im
Im 0m . . . 0m 0m −α1Im
0m Im . . . 0m 0m −α2Im
...

... . . .
...

...
...

0m 0m . . . 0m Im −αn−1Im
]]]]]]]]]
x + [[[[[[

B0
B1
...

Bn−1

]]]]]] u

y = [0m 0m . . . Im] x + Bnu ,

(5.81)

where 0m and Im arem ×m dimensional zero matrix and unit matrix, while m stands
for dimension of output vector, and n is the order of the denominator polynomial.

5.6 System Decomposition

5.6.1 Controllability Decomposition

Suppose the LTI system
ẋ = Ax + Bu
y = Cx

(5.82)

is partly controllable. The controllability matrix is:

Qc = [B AB . . . An−1B] ,
and:

rankQc = n1 < n .

Therefore, there exists a nonsingular transformation of:

x = Rc x̂ , (5.83)

Which can transfer the state equation into the following form:̇̂x = Âx̂ + B̂u
y = Ĉx̂ ,

(5.84)

where:

x̂ = [ x̂1 ] n1
x̂2 n − n1 ,

Â = R−1c ARc = [ Â11 Â12 ] n1
0 Â22 n − n1
n1 n − n1 , (5.85)
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B̂ = R−1c B = [ B̂1 ] n1
0 n − n1 , (5.86)

Ĉ = CRc = [ Ĉ1 Ĉ2 ]
n1 n − n1 . (5.87)

From the above equations, we know that after the system is transformed into equa-
tion (5.84), the state space description of the system is decomposed into controllable
and uncontrollable parts. The n1-dimensional subspace ̇̂x1 = Â11 x̂1 + B̂1u + Â12 x̂2 is
controllable, while the (n − n1)-dimensional subspace ̇̂x2 = Â22 x̂2 is uncontrollable.
The state decomposition is shown in Figure 5.5. Because x̂2 cannot be detected from u,
x̂2 only has uncontrollable free response. Obviously, if we neglect the (n − n1)-dimen-
sional subsystem, we can obtain a controllable system with less dimension.

Fig. 5.5: Controllability decomposition of system.

We form the nonsingular transfer matrix:

Rc = [R1 R2 . . . Rn1 . . . Rn] , (5.88)

where the first n1 columns are any linearly independent columns of controllability
matrix Qc, and the remaining columns can be chosen as long as Rc is nonsingular.



136 | 5 Controllability and Observability

Example 5.16. Are the state equations

ẋ = [[[0 0 −1
1 0 −3
0 1 −3]]] x + [[[110]]] u

y = [0 1 −2] x
controllable? If not, please write the controllability decomposition of the system.

Solution. The controllability matrix is:

Qc = [b Ab A2b] = [[[1 0 −1
1 1 −3
0 1 −2]]] ,

and rankQc = 2 < n. Therefore, the system is partly controllable.
We form the nonsingular transfer matrix as equation (5.88).

R1 = b = [[[110]]] , R2 = Ab = [[[011]]] , R3 = [[[001]]] ,

Thus:

Rc = [[[1 0 0
1 1 0
0 1 1

]]] ,

where R3 is chosen arbitrarily as long as Rc is nonsingular.
After the transformation, the new state equation is:̇̂x = R−1c ARc x̂ + R−1c bu

= [[[1 0 0
1 1 0
0 1 1

]]]
−1 [[[0 0 −1

1 0 −3
0 1 −3]]][[[1 0 0

1 1 0
0 1 1

]]] x̂ + [[[1 0 0
1 1 0
0 1 1

]]]
−1 [[[110]]] u

= [[[0 −1 −1
1 −2 −2
0 0 −1]]] x̂ + [[[100]]] u ,

y = CRc x̂ = [1 −1 −2] x̂ .
We choose:

R3 = [[[101]]] , Rc = [[[1 0 1
1 1 0
0 1 1

]]] .
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Thus: ̇̂x = [[[0 −1 0
1 −2 −2
0 0 −1]]] x̂ + [[[100]]] u ,

y = CRc x̂ = [1 −1 −2] x̂ .
5.6.2 Observability Decomposition

Suppose the LTI system
ẋ = Ax + Bu
y = Cx

(5.89)

is partly observable. The observability matrix is:

Qo = [[[[[[
C
CA
...

CAn−1

]]]]]] ,

and:
rankQo = n1 < n .

Therefore, there exists a nonsingular transformation:

x = Ro x̃ , (5.90)

which can transfer the state equation into the following form:̇̃x = Ãx̃ + B̃u
y = C̃x̃ ,

(5.91)

where:

x̃ = [ x̃1 ] n1
x̃2 n − n1 ,

Ã = R−1o ARo = [ Ã11 0 ] n1
Ã21 Ã22 n − n1
n1 n − n1 , (5.92)

B̃ = R−1o B = [ B̃1 ] n1
B̃2 n − n1 , (5.93)

C̃ = CRo = [ C̃1 0 ]
n1 n − n1 . (5.94)
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From the above equations, we know that when the system is transferred into equa-
tion (5.91), the state space description of the system is decomposed into observable
and unobservable parts. The n1-dimensional subspacė̃x1 = Ã11 x̃1 + B̃1u

y = C̃1 x̃1

is observable, while the (n − n1)-dimensional subspacė̃x2 = Ã21 x̃1 + Ã22 x̃2 + B̃2u
is unobservable. The state decomposition is shown in Figure 5.6. Obviously, if we do
not consider the (n−n1)-dimensional unobservable subsystem, we can obtain a n1-di-
mensional observable system.

Fig. 5.6: Observability decomposition of a system.

We form the nonsingular transfer matrix:

R−1o = [[[[[[[[[[[[

R󸀠1
R󸀠2
...

R󸀠n1
...
R󸀠n

]]]]]]]]]]]]
, (5.95)

where the first n1 rows are any linearly independent rows of observability matrix Qo,
and the remaining rows can be chosen as long as R−1o is nonsingular.
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Example 5.17. Are the state equations

ẋ = [[[0 0 −1
1 0 −3
0 1 −3]]] x + [[[110]]] u

y = [0 1 −2] x
observable? If not, please write the observability decomposition of the system.

Solution. The observability matrix is:

Qo = [[[ C
CA
CA2

]]] = [[[ 0 1 −2
1 −2 3−2 3 −4]]] ,

and rankQo = 2 < n. Therefore, the system is partly observable.
We form the nonsingular transfer matrix as equation (5.95).

R󸀠1 = C = [0 1 −2] , R󸀠2 = CA = [1 −2 3] , R󸀠3 = [0 0 1] ,
thus,

R−1o = [[[0 1 −2
1 −2 3
0 0 1

]]]
and

Ro = [[[2 1 1
1 0 2
0 0 1

]]]
where R3 is chosen arbitrarily as long as R−1o is nonsingular.

After the transformation, the new state equation is:̇̃x = R−1o ARo x̃ + R−1o bu= [[[ 0 −1 0−1 −2 0
1 0 −1]]] x̃ + [[[ 1−1

0

]]] u ,

y = CRo x̃ = [1 0 0 ] x̃ .
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5.6.3 Controllability and Observability Decomposition

Suppose the LTI system
ẋ = Ax + Bu
y = Cx

(5.96)

is partly controllable and observable. Therefore, there exists a nonsingular transfor-
mation:

x = Rx , (5.97)

which can transfer the state equation into the following form:

ẋ = Ax + Bv
y = Cx .

(5.98)

Here:

A = R−1AR = [[[[[
A11 0 A13 0
A21 A22 A23 A24
0 0 A33 0
0 0 A43 A44

]]]]] , (5.99)

B = R−1B = [[[[[
B1
B2
0
0

]]]]] , (5.100)

C = CR = [C1 0 C3 0] . (5.101)

From the configuration of A, B, C, we know that the n-dimensional state space is di-
vided into four subspaces according to the controllability and observability of the sys-
tem. Equation (5.98) can be rewritten as follows:[[[[[

ẋco
ẋco
ẋco
ẋco

]]]]] =
[[[[[
A11 0 A13 0
A21 A22 A23 A24
0 0 A33 0
0 0 A43 A44

]]]]]
[[[[[
xco
xco
xco
xco

]]]]] +
[[[[[
B1
B2
0
0

]]]]] u

y = [C1 0 C3 0] [[[[[
xco
xco
xco
xco

]]]]] ,

(5.102)

and the subsystem (A11, B1, C1) is controllable and observable.
The block diagram of equation (5.98) is shown in Figure 5.7.
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B1 1

B2 2 A23 3

A21 A13

A24 A43

4

u

C1

C3

+

+

Fig. 5.7: The block diagram of equation (5.98).

From Figure 5.7, we know the condition for transfer of the information between the
four subsystems.

1. The steps of transposition
Step 1. The transfer matrix

x = Rc [xcxc] (5.103)

will transform system Σ = (A, B, C) into:[ẋc
ẋc
] = R−1c ARc [xcxc] + R−1c Bu= [A1 A2

0 A4
] [xc

xc
] + [B

0
] u , (5.104)

y = CRc [xcxc] = [C1 C2] [xcxc] ,

where xc is the controllable state, xc is the uncontrollable state, and Rc is formed ac-
cording to equation (5.88).

Step 2. The transfer matrix xc = Ro2[xco xco]T will transform the uncontrollable sub-
system Σc = (A4, 0, C2) into:[ẋco

ẋco
] = R−1o2A4Ro2 [xcoxco

] = [A33 0
A43 A44

] [xco
xco
] ,

y2 = C2Ro2 [xcoxco
] = [C3 0] [xcoxco

] ,
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where xco is an uncontrollable but observable state, xco is an uncontrollable and
unobservable state, and Ro2 is formed according to equation (5.95) for system Σc =(A4, 0, C2).
Step 3. The transformation xc = Ro1[xco xco]T will transform the controllable subsys-
tem Σc = (A1, B, C1) according to observability.

According to equation (5.104), we can obtain:

ẋc = A1xc + A2xc + Bu .
Substitute the state transfer equations into the above equation:

Ro1 [ẋcoẋco
] = A1Ro1 [xcoxco

] + A2Ro2 [xcoxco
] + Bu .

Multiply the above equation by R−1o1 , and we will have:[ẋco
ẋco
] = R−1o1A1Ro1 [xcoxco

] + R−1o1A2Ro2 [xcoxco
] + R−1o1Bu= [A11 0

A21 A22
][xco

xco
] + [A13 0

A23 A24
][xco

xco
] + [B1

B2
] u ,

y = CRo1 [xcoxco
] = [C1 0] [xcoxco

] ,

where xco is controllable and observable state, xco is controllable but observable state,
and Ro1 is formed according to equation (5.95) for system Σc = (A1, B, C1).

After the above three transformations, we canhave the decomposition description
as follows, according to controllability and observability:[[[[[

ẋco
ẋco
ẋco
ẋco

]]]]] =
[[[[[
A11 0 A13 0
A21 A22 A23 A24
0 0 A33 0
0 0 A43 A44

]]]]]
[[[[[
xco
xco
xco
xco

]]]]] +
[[[[[
B1
B2
0
0

]]]]] u

y = [C1 0 C3 0] [[[[[
xco
xco
xco
xco

]]]]] .

Example 5.18. The LTI system

ẋ = [[[0 0 −1
1 0 −3
0 1 −3]]] x + [[[110]]] u

y = [0 1 −3] x
is partly controllable and observable. Give the controllability and observability de-
composition.
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Solution.

Rc = [[[1 0 0
1 1 0
0 1 1

]]] .

After transformation, we have:

[ẋc
ẋc
] = [[[0 −1 −1

1 −2 −2
1 0 −1]]][xcxc] + [[[100]]] u ,

y = [1 −1 2 ] [ xc
xc
] .

From the above, we know that the uncontrollable subspace xc is one-dimensional.
Obviously, the subspace is observable. Therefore, there is no need to decompose the
subspace.

The controllable subsystem Σc is:

ẋc = [0 −1
1 −2] xc + [−1−2] xc + [10] u ,

y1 = [1 −1] xc .
Then, we decompose the subsystem Σc according to observability.

We form the nonsingular matrix according to equation (5.95):

R−1o = [1 −1
0 1

] ,

which transfers the system Σc into:[ẋco
ẋco
] = [1 −1

0 1
] [0 −1

1 −2] [1 −1
0 1

]−1 [xco
xco
]

+ [1 −1
0 1

][−1−2] xc + [1 −1
0 1

]−1 [1
0
] u .

Equivalently: [ẋco
ẋco
] = [−1 0

1 −1] [xcoxco
] + [ 1−2] xc + [10] u ,

y1 = [1 −1] [1 −1
0 1

]−1 [xco
xco
] = [1 0] [xcoxco

] .
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With the above two transformations, we have the decomposition description:

[[[ẋcoẋco
ẋco

]]] = [[[−1 0 1
1 −1 −2
0 0 −1]]][[[xcoxco

xco

]]] + [[[100]]] u ,

y = [1 0 −2] [[[xcoxco
xco

]]] .

2. Alternative method of decomposition
First, we can transfer the system into Jordan canonical form, then examine the con-
trollability and observability of all state variables according to controllability and ob-
servability criteria. Finally, we form the corresponding subsystems with those state
variables.

For example, the given Jordan canonical form of system Σ = (A, B, C) is:
[[[[[[[[[[
ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6

]]]]]]]]]]
= [[[[[[[[[[

−4 1
0 −4

3 1
0 3 −1 1

0 −1
]]]]]]]]]]
[[[[[[[[[[
x1
x2
x3
x4
x5
x6

]]]]]]]]]]
+ [[[[[[[[[[

1 3
5 7
4 3
0 0
1 6
0 0

]]]]]]]]]]
[u1
u2
] ,

[y1
y2
] = [3 1 0 5 0 0

1 4 0 2 0 0
][[[[[[[[[[

x1
x2
x3
x4
x5
x6

]]]]]]]]]]
.

According to the controllability and observability criteria of Jordan canonical forms,
we know that x1, x2 are controllable and observable variables, x3, x5 are controllable
but unobservable variables, x4 are uncontrollable and observable variables and x6 are
uncontrollable and unobservable variables.

Thus:

xco = [x1x2] , xco = [x3x5] , xco = x4 , xco = x6 .
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Rearrange according to this order, and you can get:[[[[[[[[[[
ẋco

ẋco

ẋco
ẋco

]]]]]]]]]]
= [[[[[[[[[[

−4 1 0 0 0 0
0 −4 0 0 0 0
0 0 3 0 1 0
0 0 0 −1 0 1
0 0 0 0 3 0
0 0 0 0 0 −1

]]]]]]]]]]
[[[[[[[[[[
xco

xco

xco
xco

]]]]]]]]]]
+ [[[[[[[[[[

1 3
5 7
4 3
1 6
0 0
0 0

]]]]]]]]]]
[u1
u2
] ,

Ãm = P−1AmP .

5.6.4 Minimum Realization

Definition of Realization
Given a transfer matrixW(s), if a state space equation Σ exists, such as:

ẋ = Ax + Bu
y = Cx + Du ,

which hasW(s) as its transfer matrix, such as:

C(sI − A)−1B + D = W(s) ,
thenW(s) is realizable and Σ is one of the realizations ofW(s).

It is noticeable that not every transfer matrixW(s) is realizable.W(s) is physically
realizable if it meets the following criteria:
(i) If all the coefficients of the numerator and denominator polynomials of each ele-

mentWik(s) (i = 1, 2, . . . ,m; k = 1, 2, . . . , r) are real constants.
(ii) If Wik(s) is a real rational fraction of s, i.e., the order of the numerator polyno-

mial is no more than that of the denominator polynomial. When all the elements
of W(s) are strictly real rational fractions, the realization of W(s) has the form
of (A, B, C). Apart from this, the realization has the form of (A, B, C, D) and D =
lims→0W(s).

Minimum Realization
If a transfer function is realizable, then it has an infinite number of realizations, al-
though not necessarily of the same dimension. From the engineering point of view, it
is significant to find the class of minimal dimensional realizations of the system.

1. Definition of minimum realization
Consider one realization of the transfer functionW(s), Σ:

ẋ = Ax + Bu
y = Cx .
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If any other realization ̇̃x = Ãx̃ + B̃u
y = C̃x̃

has more dimensions than Σ, then Σ is the minimum realization of the system.
Because the transfer matrix can only reflect the dynamic behaviors of the control-

lable and observable subsystem, removing the uncontrollable or unobservable states
will not change the transfermatrix of the system. Thus, the state space expressionwith
uncontrollable or unobservable states cannot be the minimum realization. As stated
above, we have the following methods to verify the minimum realization.

2. Steps to find minimum realization
Theorem 5.12. The realization of transfer matrix W(s), Σ:

ẋ = Ax + Bu
y = Cx ,

is the minimum realization if, and only if, Σ(A, B, C) is controllable and observable.
According to this theorem, we canfind theminimum realization of any transfermatrix
W(s)whose elements are all strictly real rational fractions. Usually, we can obtain the
minimum realization as follows:
(1) For a given transfer matrix W(s), first we select one realization Σ(A, B, C). More

often, we choose the controllability canonical or observability canonical for the
sake of convenience.

(2) For the Σ(A, B, C) chosen above, we find its controllable and observable part(Ã1, B̃1, C̃1). So this part is just the minimum realization of the system.

Example 5.19. Try to find the minimum realization of the transfer matrix:

W(s) = [ 1
(s+1)(s+2)

1
(s+2)(s+3)] .

Solution. W(s) is a strictly real rational fractionof s. Rewrite it in the descending order
of s in the following form:

W(s) = [ s+3
(s+1)(s+2)(s+3)

s+1
(s+1)(s+2)(s+3)]= 1(s + 1)(s + 2)(s + 3) [(s + 3) (s + 1)]= 1

s3 + 6s2 + 11s + 6 {[1 1] s + [3 1]} .
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From equation (5.56), we know that:

α0 = 6 , α1 = 11 , α2 = 6
β0 = [3 1] , β1 = [1 1] , β2 = [0 0] .

The dimension of the output vector is m = 1, and the dimension of the input vector is
r = 2. First we adopt the controllability canonical form realization:

A0 = [[[0m 0m −α0Im
Im 0m −α1Im
0m 0m −α2Im]]] = [[[0 0 −6

1 0 −11
0 1 −6 ]]]

B0 = [[[β0β1β2]]] = [[[3 1
1 1
0 0

]]]
C0 = [0m 0m Im] = [0 0 1]

.

Then we check whether the realization Σ = (A0, B0, C0) is controllable or not:
Qc = [B0 A0B0 A2

0B0] = [[[3 1 0 0 −6 −6
1 1 3 1 −11 −11
0 0 1 1 −3 −5 ]]] ,

rankQc = 3 = n .

Therefore, Σ = (A0, B0, C0) is controllable and observable, so it is the minimum real-
ization.

Example 5.20. Try to find the minimum realization of the transfer matrix:

W(s) = [[ s+2
s+1

1
s+3

s
s+1

s+1
s+2

]]
Solution. First, we simplify W(s) into the form of strictly real rational function and
write its controllability canonical form (or observability canonical form). After com-
puting this, the controllability canonical form of the system is:

A = [[[[[[[[[[
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1−6 0 −11 0 −6 0
0 −6 0 −4 0 −6

]]]]]]]]]]
, B = [[[[[[[[[[

0 0
0 0
0 0
0 0
1 0
0 1

]]]]]]]]]]
,

C = [ 6 2 5 3 1 1−6 −3 −5 −4 −1 −1] , D = [1 0
1 1

] .
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We then examine whether the states realized by the controllability canonical form are
observable or not:

Qo = [[[ C
CA
CA2

]]] =
[[[[[[[[[[
6 2 5 3 1 1−6 −3 −5 −4 −1 −1−6 −6 −5 −9 −1 −3
6 6 5 8 1 2
6 18 5 27 1 9−6 −12 −5 −16 −1 −4

]]]]]]]]]]
.

As rankQo = 3 < n = 6, the controllability canonical form is not the minimum real-
ization. Thus, we decompose the structure according to the observability.

Now we construct the transfer matrix R−1o and decompose the system according
to the observability:

R−1o = [[[[[[[[[[
6 2 5 3 1 1−6 −3 −5 −4 −1 −1−6 −6 −5 −9 −1 −3
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

]]]]]]]]]]
.

Thus:

Ro = [[[[[[[[[[
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1−1 −1 0 0 −1 0
3
2 0 1

2 −6 0 −5
5
2 3 − 1

2 0 1 0

]]]]]]]]]]
.

So:

Â = R−1o ARo = [[[[[[[[[[[
0 0 1 0 0 0− 3
2 −2 − 1

2 0 0 0−3 0 −4 0 0 0
0 0 0 0 0 1−1 −1 0 0 −1 0
3
2 0 −2 −6 0 −5

]]]]]]]]]]]
= [Â11 0

Â21 Â22
] ,

B̂ = R−1o B = [[[[[[[[[[
1 1−1 −1−1 −3
0 0
0 0
0 0

]]]]]]]]]]
= [B̂1

0
] ,
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Ĉ = CRo = [1 0 0 0 0 0
0 1 0 0 0 0

] = [Ĉ1 0] ,
After examination, Σ = (Â11, B̂1, Ĉ1) is a controllable and observable subsystem.
Thus, the minimum realization ofW(s) is:

Am = Â11 = [[[[
0 0 1− 3
2 −2 − 1

2−3 0 −4]]]] , Bm = B̂1 = [[[ 1 1−1 −1−1 −3]]] ,

Cm = Ĉ1 = [1 0 0
0 1 0

] , D = [1 0
1 1

] .

After computing the transfer function according to the above Am, Bm, Cm, D, we can
check the result:

Cm(sI − Am)−1Bm + D = [1 0 0
0 1 0

][[[[
s 0 −1
3
2 s + 2 1

2
3 0 s + 4]]]]

−1 [[[ 1 1−1 −1−1 −3]]] + [1 0
1 1

]
= [[ s+2

s+1
1
s+3

s
s+1

s+1
s+2

]] .

Wecanalsowrite out the realizationof controllability canonical form Σ = (A0, B0, C0):
A0 = [[[[[[[[[[

0 0 0 0 −6 0
0 0 0 0 0 −6
1 0 0 0 −11 0
0 1 0 0 0 −11
0 0 1 0 −6 0
0 0 0 1 0 −6

]]]]]]]]]]
, B0 = [[[[[[[[[[

6 2−6 −3
5 3−5 −4
1 1−1 −1

]]]]]]]]]]
,

C0 = [0 0 0 0 1 0
0 0 0 0 0 1

] .

Then we decompose Σ = (A0, B0, C0) by controllability, then choose the transform
matrix Rc according to equation (5.88):

Rc = [[[[[[[[[[
6 2 −6 1 0 0−6 −3 6 0 1 0
5 3 −9 0 0 1−5 −4 8 0 0 0
1 1 −3 0 0 0−1 −1 2 0 0 0

]]]]]]]]]]
.
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Now we have:

R−1c = [[[[[[[[[[
0 0 0 −1 0 4
0 0 0 1 −2 −7
0 0 0 0 −1 −1
1 0 0 4 −2 −16
0 1 0 −3 0 9
0 0 1 2 −3 8

]]]]]]]]]]
.

Thus:

Ã = R−1c A0Rc = [Ã11 Ã12
0 Ã22

] = [[[[[[[[[[
1 0 0 0 −1 0
0 0 −6 0 1 −2
0 1 −5 0 0 −1
0 0 0 0 4 −2
0 0 0 0 −3 0
0 0 0 1 2 −3

]]]]]]]]]]
,

B̃ = R−1c B0 = [B̃10 ] =
[[[[[[[[[[
1 0
0 1
0 0
0 0
0 0
0 0

]]]]]]]]]]
,

C̃ = C0Rc = [C̃1 0] = [ 1 1 −3 0 0 0−1 −1 2 0 0 0
] .

Σ = (Ã11, B̃1, C̃1) is a controllable and observable subsystem, so the minimum real-
ization ofW(s) is:

Ãm = Ã11 = [[[1 0 0
0 0 −6
0 1 −5]]] , B̃m = B̃1 = [[[1 0

0 1
0 0

]]] ,

C̃m = C̃1 = [ 1 1 −3−1 −1 2
] , D = [1 0

1 1
] .

From the above calculation, we can see that if a transfer function is realizable, then
it has an infinite number of realizations, although not necessarily of the same dimen-
sion. However, we can prove that if Σ(Am, Bm, Cm) and Σ(Ãm, B̃m, C̃m) are the mini-
mum realizations of the same transfermatrixW(s), then a state transformation x = Px̃
must exist, such that:

Ãm = P−1AmP , B̃m = P−1Bm , C̃m = CmP .

We can see that the minimum realizations of the same transfer matrix are equivalent
in algebra.
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Example 5.21. Try to find the minimum realization of the transfer matrix using MAT-
LAB:

W(s) = [[ 4s−10
2s+1

3
s+2

1
(2s+1)(s+2)

s+1
(s+2)2

]] .

Solution. The controllability canonical form of the system is:

A = [[[[[[[[[[
−4.5 0 −6 0 −2 0
0 −4.5 0 −6 0 −2
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

]]]]]]]]]]
, B = [[[[[[[[[[

1 0
0 1
0 0
0 0
0 0
0 0

]]]]]]]]]]
,

C = [−6 3 −24 7.5 −24 3
0 1 0.5 1.5 1 0.5

] , D = [2 0
0 0

] .

This six-dimensional realization is clearly not minimal realizations. It can be reduced
to minimal realizations by calling the MATLAB function minreal. We type:

a=[-4.5 0 -6 0 -2 0;0 -4.5 0 -6 0 -2;1 0 0 0 0 0;0 1 0 0 0 0;

0 0 1 0 0 0;0 0 0 1 0 0];

b=[1 0;0 1;0 0;0 0;0 0;0 0];

c=[-6 3 -24 7.5 -24 3;0 1 0.5 1.5 1 0.5];

d=[2 0;0 0];;

[am,bm,cm,dm]=minreal(a,b,c,d)

Yield

am =

-1.3387 0.2185 -1.6003

2.5335 -1.1599 4.8338

-0.0007 -0.0002 -2.0014

bm =

-0.2666 0.2026

0.2513 -0.6119

-0.0001 0.3483

cm =

32.7210 10.8346 8.6137

0.8143 -0.8632 1.8281

dm =

2 0

5 0
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Thus, the minimum realization is expressed as:

ẋ(t) = [[[−1.3387 0.2185 −1.6003
2.5335 −1.1599 4.8338−0.0007 −0.0002 −2.0014]]] x + [[[−0.2666 0.2026

0.2513 −0.6119−0.0001 0.3483

]]] u

y(t) = [32.7210 10.8346 8.6137−0.8143 −0.8632 1.8281
] x + [2 0

0 0
] u .

5.7 Summary

The controllability and observability are both important properties of a system, and
the definitions and criteria are described separately. The duality system is an impor-
tant conception; duality systems have a series of interesting properties. The decom-
position of a system is analyzed based on controllability and observability, and the
minimum realization can be obtained accordingly.

Exercise

5.1. Check the controllability of the following systems:(1) [ẋ1
ẋ2
] = [1 1

1 0
][x1

x2
] + [0

1
] u

(2) [[[ẋ1ẋ2ẋ3]]] = [[[ 0 1 0
0 0 1−2 −4 −3]]][[[x1x2x3]]] + [[[ 1 0

0 1−1 1

]]][u1u2](3) [[[ẋ1ẋ2ẋ3]]] = [[[−3 1 0
0 −3 0
0 0 −1]]][[[x1x2x3]]] + [[[1 −1

0 0
2 0

]]][u1u2]
(4) [[[[[

ẋ1
ẋ2
ẋ3
ẋ4

]]]]] =
[[[[[
λ1 1 0 0
0 λ1 0 0
0 0 λ1 0
0 0 0 λ1

]]]]]
[[[[[
x1
x2
x3
x4

]]]]] +
[[[[[
0
1
1
1

]]]]] u

(5) [[[ẋ1ẋ2ẋ3]]] = [[[0 4 3
0 20 16
0 −25 −20]]][[[x1x2x3]]] + [[[−130 ]]] u
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5.2. Check the observability of the following systems:(1) [ẋ1
ẋ2
] = [1 1

1 0
][x1

x2
] , y = [1 1] [x1x2](2) [[[ẋ1ẋ2ẋ3]]] = [[[ 0 1 0

0 0 1−2 −4 −3]]][[[x1x2x3]]] , [y1
y2
] = [0 1 −1

1 2 1
][[[x1x2x3]]](3) [[[ẋ1ẋ2ẋ3]]] = [[[0 4 3

0 20 16
0 −25 −20]]][[[x1x2x3]]] , y = [−1 3 0][[[x1x2x3]]](4) [[[ẋ1ẋ2ẋ3]]] = [[[2 1 0
0 2 0
0 0 −3]]][[[x1x2x3]]] , y = [0 1 1] [[[x1x2x3]]](5) [[[ẋ1ẋ2ẋ3]]] = [[[−4 0 0
0 −4 0
0 0 1

]]][[[x1x2x3]]] , y = [1 1 4] [[[x1x2x3]]]
5.3. Is it possible to find a set of p and q, such that the state equation[ẋ1

ẋ2
] = [1 12

1 0
][x1

x2
] + [ p−1] u

y = [q 1] [x1x2]
is not controllable/observable?

5.4. Try to prove that the system,[[[ẋ1ẋ2ẋ3]]] = [[[20 −1 0
4 16 0
12 0 18

]]][[[x1x2x3]]] + [[[abc]]] u ,

is not controllable, no matter what a, b and c are.

5.5. Try to transform the following state space equation into controllability canonical
form I.

ẋ = [1 −2
3 4

] x + [1
1
] u

5.6. Try to transform the following state space equation into controllability canonical
form I.

ẋ = [[[−1 −2 −2
0 −1 1
1 0 1

]]] x + [[[201]]] u
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5.7. Try to transform the following state space equation into observability canonical
form II.

ẋ = [[[−1 −2 −2
0 −1 1
1 0 1

]]] x + [[[201]]] u ,

y = [1 1 0] x
5.8. Try to transform the following state space equation into observability canonical
form II.

ẋ = [1 −1
1 1

] x + [2
1
] u ,

y = [−1 1] x
5.9. Is the state equation

ẋ = [−1 1
0 0

] x + [1
1
] u

controllable? If not, please give the controllability decomposition of the system.

5.10. Is the state equation

ẋ(t) = [[[1 2 −1
0 1 0
1 −4 3

]]] x(t) + [[[001]]] u(t)
y(t) = [1 −1 1] x(t)

controllable? If not, please give the controllability decomposition of the system.

5.11. Is the state equation

ẋ(t) = [[[1 2 −1
0 1 0
1 −4 3

]]] x(t) + [[[001]]] u(t)
y(t) = [1 −1 1] x(t)

observable? If not, please give the observability decomposition of the system.

5.12. Try to find the minimum realization of the transfer matrix:

W(s) = [[ s+1
s+2
s+3
(s+2)(s+4)

]] .
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5.13. The state equation of the inverted pendulum was developed in Example 1.10.
Suppose, for a given pendulum, the equation becomes:

ẋ = [[[[[
0 1 0 0
0 0 −1 0
0 0 0 1
0 0 5 0

]]]]] x + [[[[[
0
1
0−2]]]]] u

y = [1 0 0 0] x .

If x3 = θ deviates from zero slightly, can we find a control u to push it back to zero?
Why?



6 State Feedback and Observer

6.1 Introduction

Generally, the control theory can be divided into two parts; system analysis and
system synthesis. In previous chapters, the solution of state space equations, the
stability analysis and the controllability and observability of a control system were
introduced. In this chapter, the system synthesis will be discussed. The controller is
designed through feedback and the performance of a system is improved by pole as-
signment. The state estimator or state observer is designed to generate an estimation
of the state.

6.2 Linear Feedback

Feedback is themostpopularway to improve theperformanceof a system. Threekinds
of linear feedback will be discussed in this chapter; the state feedback, the output
feedback, and feedback from output y to ẋ. The algorithms are also described in detail.

6.2.1 State Feedback

Consider an n-dimensional LTI system:

ẋ = Ax + Bu
y = Cx + Du , (6.1)

where x ∈ Rn×1; u ∈ Rp×1; y ∈ Rm×1, A ∈ Rn×n, B ∈ Rn×p, C ∈ Rm×n, D ∈ Rm×p.
Assume D = 0 to simplify the discussion. In state feedback, the input u is given

by:

u = Kx + v = v + [k1 k2 . . . kn] x = v + n∑
i=1

kixi , (6.2)

where v ∈ Rp×1 is the reference input and K ∈ Rp×n is the feedback gain matrix.
As shown in Figure 6.1, each feedback gain ki is a real constant. This is called the

constant gain negative state feedback, or state feedback for simplicity.
Substituting (6.2) into (6.1) yields the closed loop state space equation:

ẋ = (A + BK)x + Bv
y = Cx .

(6.3)

The closed loop transfer function is:

Wk(s) = C[sI − (A + BK)]−1B . (6.4)

https://doi.org/10.1515/9783110574951-006
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Fig. 6.1: State feedback.

6.2.2 Output Feedback

Output feedback is another linear feedback law using the output vector y, as shown
in Figure 6.2.

Fig. 6.2: Output feedback.

The control system is:
ẋ = Ax + Bu
y = Cx + Du . (6.5)

The input u is given by:
u = Hy + v , (6.6)

where H ∈ Rp×m is the output feedback gain matrix.
If D = 0, the closed loop state space equation is:

ẋ = (A + BHC)x + Bv
y = Cx .

(6.7)
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The closed loop transfer function is:

WH(s) = C[sI − (A + BHC)]−1B . (6.8)

From equation (6.4), HC in output feedback is comparative to K in state feedback.
As m < n, the optional degree of H is much smaller than that of K. Only when C = I
and HC = K, output feedback is absolutely equivalent to state feedback. Therefore,
the effect of output feedback is obviously not as good as that of state feedbackwithout
compensator. However, output feedback shows its unique advantage in the facility in
technique implementation.

6.2.3 Feedback From Output to ẋ

This linear feedback from system output y to state vector ẋ is widely used in state
estimator. This kind of feedback configuration is shown in Figure 6.3.

Fig. 6.3: Feedback from output y to ̇x.

The control system is:
ẋ = Ax + Bu
y = Cx + Du . (6.9)

Considering the feedback gain matrix G, G ∈ Rn×m from the output y to the derivative
of the state vector ẋ, the closed loop system is:

ẋ = Ax + Gy + Bu
y = Cx + Du . (6.10)

Substituting y into ẋ yields:

ẋ = (A + GC)x + (B + GD)u
y = Cx + Du . (6.11)
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If D = 0, then:
ẋ = (A + GC)x + Bu
y = Cx .

(6.12)

The closed loop transfer function is:

WG(s) = C[sI − (A + GC)]−1B . (6.13)

As equation (6.13) shows, the change of matrix G will affect the eigenvalue of the
closed loop system, and thus affect the characteristic of the system.

6.3 Pole Assignment

6.3.1 Sufficient and Necessary Condition for Arbitrary Pole Assignment

Theorem 6.1. There exists a state feedback matrix K which can assign eigenvalues of
the matrix A + BK of the closed loop system to arbitrary place of the state space, but
only if the state vector of the open loop system is controllable. That is, if:

rankQc = n ,

where
Qc = [B AB A2B . . . An−1B] . (6.14)

Proof (Only for Sufficiency). If the state vector of the open loop system is absolutely
controllable, the following equation can be obtained with state feedback:

det [λI − (A + BK)] = f∗(λ) , (6.15)

where f∗(λ) is the desired characteristic polynomial.

Wo(s) = C(sI − A)−1B ,

f∗(λ) = n∏
i=1
(λ − λ∗i ) = λn + a∗n−1λn−1 + ⋅ ⋅ ⋅ + a∗1λ + a∗0 , (6.16)

where λ∗i (i = 1, 2, . . . , n) are desired closed loop poles.
Step 1. If Σo = (A, B, C) is absolutely controllable, the following nonsingular trans-
form exists:

x = TcIx ,

where TcI is transfer matrix of controllable canonical form I.
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Transform Σo into the controllable canonical form I.

ẋ = Ax + Bu , (6.17)
y = Cx ,

where

A = T−1cI ATcI = [[[[[[[[[
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
0 0 0 . . . 1−a0 −a1 −a2 . . . −an−1

]]]]]]]]]
,

B = T−1cI B = [[[[[[
0
...
0
1

]]]]]] ,

C = CTcI = [b0 b1 . . . bn−1] .
The transfer function of the controllable system Σo is:

Wo(s) = C(sI − A)−1B = bn−1sn−1 + bn−2sn−2 + ⋅ ⋅ ⋅ + b1s + b0
sn + an−1sn−1 + ⋅ ⋅ ⋅ + a1s + a0 . (6.18)

Step 2. Consider the following state feedback gain matrix:

K = [k0 k1 . . . kn−1] . (6.19)

Then we can obtain the closed loop state space description to x:

ẋ = (A + BK)x + Bu , (6.20)
y = Cx .

Here,

A + BK = [[[[[[[[[
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
0 0 0 . . . 1−(a0 − k0) −(a1 − k1) . . . . . . −(an−1 − kn−1)

]]]]]]]]]
.

Closed loop characteristic polynomial:

f(λ) = 󵄨󵄨󵄨󵄨󵄨λI − (A + BK)󵄨󵄨󵄨󵄨󵄨= λn + (an−1 − kn−1)λn−1 + ⋅ ⋅ ⋅ + (a1 − k1)λ + (a0 − k0) . (6.21)
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Closed loop transfer function:

Wk(s) = C [sI − (A + BK)]−1 B= bn−1sn−1 + bn−2sn−2 + ⋅ ⋅ ⋅ + b1s + b0
sn + (an−1 − kn−1)sn−1 + ⋅ ⋅ ⋅ + (a1 − k1)s + (a0 − k0) . (6.22)

Step 3. To accord with the desired poles, the following equation has to be satisfied:

f(λ) = f∗(λ) .
The coefficients of the feedback matrix can be obtained by equaling the coeffi-

cients of λ with the same order in both sides of the above equation:

ki = ai − a∗i . (6.23)

Thus,
K = [a0 − a∗0 a1 − a∗1 . . . an−1 − a∗n−1] .

Step 4. Transform K corresponding with x into K corresponding with x by using the
following equation:

K = KT−1cI . (6.24)

This is due to u = v + Kx = v + KT−1cI x.
Theorem 6.2. For the case of pole assignment via output feedback, wherein u = Hy+ v,
a theorem similar to Theorem 6.1 has not yet been proven. The determination of the out-
put feedback matrix H is, in general, a very difficult task. A method for determining the
matrix H, which is closely related to the method of determining the matrix K presented
earlier, is based on the equation:

K = HC . (6.25)

This method starts with the determination of the matrix K and, in the sequel, the ma-
trix H is determined by using equation (6.25). It is fairly easy to determine the matrix H
from equation (6.25) since this equation is linear in H. Note that equation (6.25) is only
a sufficient condition. That is, if equation (6.25) does not have a solution for H, it does
not follow that pole assignment by output feedback is impossible.

Theorem 6.3. Even for the absolutely controllable SISO system Σo = (A, b, c), arbitrary
pole assignment via output feedback cannot be guaranteed.

Proof. Theclosed loop transfer functionof theSISO feedback system, Σh = [(A + bhc),
b, c], is:

Wh(s) = c [sI − (A + bhc)]−1 b = Wo(s)
1 + hWo(s) , (6.26)

where Wo(s) = c(sI − A)−1b is the transfer function of the controllable system.
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From the closed loop characteristic polynomial, we can obtain the closed loop
root locus equation:

hWo(s) = −1 . (6.27)

WhenWo(s) is fixed beforehand,we can obtain a series of root locuswith the reference
variable h varying from 0 to∞. Obviously, no matter what h is, the desired pole which
is not contained in the root locus cannot be assigned.

Output linear feedback has an important drawback: arbitrary pole assignment is not
realizable.

To overcome the drawback,we always introduce additional regulatory network to
affect the root locus by increasing open loop poles and zeros. Therefore, the regulated
root locus consists of the desired pole.

Theorem 6.4. For an absolutely controllable SISO system Σo = (A, b, c), the following is
a sufficient and necessary condition of arbitrary pole assignment by the output feedback
with dynamic compensator.
(i) Σo is absolutely observable
(ii) the order of dynamic compensator is n = 1
6.3.2 Methods to Assign the Poles of a System

1. Pole assignment via state feedback
Consider an LTI system

ẋ(t) = Ax(t) + Bu(t) (6.28)

where we assume that all states are accessible and known. To this system, we apply a
linear state feedback control law of the following form:

u(t) = −Kx(t) . (6.29)

Then the closed loop system is given by the homogeneous equation:

ẋ(t) = (A − BK)x(t) . (6.30)

It is remarked that the feedback law u(t) = −Kx(t) is used rather than the feedback
law u(t) = Kx(t). This different chosen sign is utilized to facilitate the observer design
problem.

Here, the design problem is to find the appropriate controller matrix K so as to
improve the performance of the closed loop system (6.30). One method to improve
the performance of (6.30) is pole assignment. The pole assignment method consists
of finding a particular matrix K, such that the poles of the closed loop system (6.30)
are set to desirable preassigned values. Using this method, the behavior of the open
loop system may be improved significantly. For example, the method can stabilize an
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unstable system, increase or decrease the speed of response, widen or narrow the sys-
tem’s bandwidth, and increase or decrease the steady state error, etc. For these rea-
sons, improving the system performance via the pole assignment method is widely
used in practice.

The pole assignment, or eigenvalue assignment, problem can be defined as fol-
lows: suppose λ1, λ2, . . . , λn are the eigenvalues of the matrix A of the open loop
system (6.30) and λ∗1, λ

∗
2, . . . , λ∗n are the desired eigenvalues of matrix A − BK of the

closed loop system (6.30),where all complex eigenvalues appear in complex conjugate
pairs. Denote f(λ) and f∗(λ) as the characteristic polynomial and the desired charac-
teristic polynomial to find a matrix K so that equation (6.32) is satisfied.

f(λ) = n∏
i=1
(λ − λi) = |λI − A| = λn + an−1λn−1 + ⋅ ⋅ ⋅ + a1λ + a0 . (6.31)

f∗(λ) = n∏
i=1
(λ − λ∗i ) = |λI − A + BK| = λn + a∗n−1λn−1 + ⋅ ⋅ ⋅ + a∗1λ + a∗0 . (6.32)

Thepole assignmentproblemhasattracted considerable attention formanyyears. The
first significant results were established byWonham in the late 1960s and are given by
Theorem 6.1 in Section 6.3.1.

According to Theorem 6.1, in cases that the open loop system (6.30) is not control-
lable, at least one eigenvalue of the matrix A remains invariant under the state feed-
back law (6.31). In such cases, in order to assign all eigenvalues, one must search for
an appropriate dynamic controller wherein the feedback law (6.31) may involve, not
only proportion, but also derivative, integral, and other terms. Dynamic controllers
have the disadvantage in that they increase the order of the system.

Now, consider the case that the system (A, B) is controllable; a fact which guaran-
tees that there exists a K which satisfies the pole assignment problem. Next, we will
deal with the problem of determining a feedbackmatrix K. For simplicity, we will first
study the case of single input systems, in which the matrix B reduces to a vector b and
the matrix K reduces to a row vector k. Equation (6.32) then becomes:

f∗(λ) = n∏
i=1
(λ − λ∗i ) = |λI − A + bk| = λn + a∗n−1λn−1 + ⋅ ⋅ ⋅ + a∗1λ + a∗0 . (6.33)

It has been remarked that the solution of equation (6.33) for k is unique.
Several methods have been proposed for determining k. We present three well

known methods.

Method 1: The Base–Gura Formula
Oneof themostpopular pole assignmentmethodsgives the following simple solution:

k = −KT−1cI . (6.34)
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Where K is defined in equation (6.23) and

TcI = [An−1b, . . . Ab, b][[[[[[[
1

an−1
. . .

...
. . . . . .

a1 . . . an−1 1

]]]]]]] . (6.35)

Method 2: The Phase Canonical Formula
Consider the special case that the system under control is described in its phase vari-
able canonical form, i.e., A and b have the special forms A∗ and b∗, where:

A∗ = [[[[[[[[[[[
0 1 0 . . . 0
0 0 1 . . . 0
0 0 0 . . . 0
...

...
...

...
0 0 0 . . . 1−â0 −â1 −â2 . . . −ân−1

]]]]]]]]]]]
, b∗ = [[[[[[[[[[[

0
0
0
...
0
1

]]]]]]]]]]]
. (6.36)

Oneof themostpopular pole assignmentmethods gives the following simple solution:

kT = [WTQT
c ]−1(a∗ − a) . (6.37)

Where Qc is defined in equation (6.14) and

W = [[[[[[
1 an−1 . . . a1
0 1 . . . a2
...

...
...

0 0 . . . 1

]]]]]] , a∗ = [[[[[[
a∗n−1
a∗n−2
...
a∗0

]]]]]] , a = [[[[[[
an−1
an−2
...
a0

]]]]]] . (6.38)

Then, it can be easily shown that:

Q∗c = [b∗ A∗b∗ A∗2b∗ . . . A∗n−1b∗] .
The productWTQ∗Tc reduces to the simple form:

WTQ∗Tc = Ĩ = [[[[[[
0 0 . . . 0 1
0 0 . . . 1 0
...

...
...

...
1 0 . . . 0 0

]]]]]] . (6.39)

In this case, the vector k∗T in expression (6.37) reduces to k∗T = Ĩ(a∗ − a), i.e., it
reduces to the following form:

k∗T = Ĩ(a∗ − a) = [[[[[[
a∗0 − a0
a∗1 − a1

...
a∗n−1 − an−1

]]]]]] . (6.40)
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It is evident that expression (6.40) is extremely simple to apply, provided that the ma-
trix A and the vector b of the system under control are in the phase variable canonical
form (6.38).

Method 3: The Ackermann’s Formula
Another approach for computing k has been proposed by Ackermann, which leads to
the following expression:

k = eTQ−1c f∗(A) . (6.41)

The matrix Qc is given in equation (6.14), wherein the variable s is replaced by the
matrix A, i.e.,

f∗(A) = An + a∗n−1An−1 + ⋅ ⋅ ⋅ + a∗1A + a∗0 I . (6.42)

In general cases ofmulti-input systems, thedeterminationof thematrixK is some-
what complicated. A simple approach to the problem is to assume that K has the fol-
lowing form:

K = qpT , (6.43)

where q and p are n-dimensional vectors. Then, the matrix A − BK becomes:

A − BK = A − BqpT = A − βpT , where β = Bq . (6.44)

Therefore, assuming thatK has the formof equation (6.43), themulti-input system
is reduced to a single input system, whichhas been studied previously. In other words,
the solution for the vector p is equation (6.37) or equation (6.41), and differs only in
that the matrix Qc is now the matrix Q̃c, which takes the following form:

Q̃c = [β Aβ A2β . . . An−1β] , K = HC . (6.45)

The vector β = Bq involves arbitrary parameters, which are the elements of the
arbitrary vector q. These arbitrary parameters can have any value, provided that
rank Q̃c = n.

2. Pole assignment via output feedback
Consider a LTI system:

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) , (6.46)

where we assume that all states are accessible and known. We apply the following
linear state feedback control law to the above system:

u(t) = −Hy(t) + v . (6.47)

Then the closed loop system is given by the homogeneous equation:

ẋ(t) = (A − BHC)x(t) . (6.48)
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The pole assignment, or eigenvalue assignment, problem can be defined as fol-
lows: denote λ1, λ2, . . . , λn as the eigenvalues of the matrix A of the open loop sys-
tem (6.46) and λ∗1, λ

∗
2, . . . , λ∗n as the desired eigenvalues ofmatrixA−BHC of the closed

loop system (5.3)–(5.35), where all complex eigenvalues appear in complex conjugate
pairs.

In the case of pole assignment via output feedback, wherein u = −Hy + v, The-
orem 6.2 has been proven. According to Theorem 6.2, we can obtain the matrix H by
K = HC.

This method starts with the determination of the matrix K, and in the following
content, the matrix H is determined by using equation (6.25). It is fairly easy to deter-
mine the matrix H from equation (6.25) since this equation is linear in H. Note that
equation (6.25) is only a sufficient condition, i.e., if equation (6.25) does not have a so-
lution for H, it does not follow that pole assignment by output feedback is impossible.

6.3.3 Examples

Example 6.1. Consider a system in the form (6.28), where:

A = [ 0 1−1 0
] and b = [0

1
] .

Find a vector k to make the closed loop system eigenvalues become λ∗1 = −1 and
λ∗2 = −1.5.
Solution. We have:

f(λ) = |λI − A| = λ2 + 1 and f∗(λ) = (λ − λ∗1)(λ − λ∗2) = λ2 + 2.5λ + 1.5 .
Method 1
Here, we use equation (6.35) and (6.23):

TcI = [Ab b] [1 0
0 1

] = [1 0
0 1

] [1 0
0 1

] = [1 0
0 1

] ,

And:
K = [a0 − a∗0 a1 − a∗1] = [1 − 1.5 0 − 2.5] = [−0.5 −2.5] .

Therefore:

T−1cI = [1 0
0 1

]−1 = [1 0
0 1

] .

Hence:

k = −KT−1cI = − [−0.5 −2.5] [1 0
0 1

] = [0.5 2.5] .
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Method 2
Since the system is in phase variable canonical form, the vector k can readily be de-
termined by equation (6.40), as follows:

kT = k∗T = [a∗0 − a0
a∗1 − a1] = [1.5 − 12.5 − 0] = [0.52.5

] .

Method 3
Here, we apply equation (6.41). We have:

f∗(A) = A2 + a∗1A + a∗0 I = A2 + 2.5A + 1.5I= [ 0 1−1 0
]2 + 2.5[ 0 1−1 0

] + 1.5[1 0
0 1

]= [−1 0
0 −1] + [ 0 2.5−2.5 0

] + [1.5 0
0 1.5

] = [ 0.5 2.5−2.5 0.5
]

Q−1c = [b Ab]−1 = [0 1
1 0

]−1 = [0 1
1 0

] .

Therefore:

k = eTS−1f∗(A) = [0 1] [0 1
1 0

] [ 0.5 2.5−2.5 0.5
] = [0.5 2.5] .

Clearly, the resulting three controller vectors derived by the three methods are
identical. This is due to the fact that, for a single input system, k is unique.

Example 6.2. Consider a system in the form (6.28), where:

A = [[[0 1 0
0 0 1
1 0 0

]]] and b = [[[001]]] .

Find a vector k to make the eigenvalues of the closed loop system into λ∗1 = −1,
λ∗2 = −2, and λ∗3 = −2.
Solution. We have:

f(λ) = |λI − A| = λ3 − 1 ,
And:

f∗(λ) = (λ − λ∗1)(λ − λ∗2)(λ − λ∗3) = λ3 + 5λ2 + 8λ + 4 .
Method 1
Here we use equations (6.37) and (6.23):

TcI = [A2b Ab b] [[[1 0 0
0 1 0
0 0 1

]]] = [[[1 0 0
0 1 0
0 0 1

]]][[[1 0 0
0 1 0
0 0 1

]]] = [[[1 0 0
0 1 0
0 0 1

]]] ,
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And:
K = [a0 − a∗0 a1 − a∗1 a2 − a∗2] = [−1 − 4 0 − 8 0 − 5] = [−5 −8 −5] .

Therefore:

T−1cI = [[[1 0 0
0 1 0
0 0 1

]]]
−1 = [[[1 0 0

0 1 0
0 0 1

]]] .

Hence:

k = −KT−1cI = − [−5 −8 −5] [[[1 0 0
0 1 0
0 0 1

]]] = [5 8 5] .
Method 2
Since the system is in phase variable canonical form, the vector k can readily be de-
termined by equation (6.40), as follows:

kT = k∗T = [[[a
∗
0 − a0

a∗1 − a1
a∗2 − a2]]] = [[[4 − (−1)8 − 0

5 − 0 ]]] = [[[585]]] .

Method 3
Here, we apply equation (6.41). We have:

f∗(A) = A3 + a∗2A2 + a∗1A + a∗0 I = A3 + 5A2 + 8A + 4I
= [[[0 1 0

0 0 1
1 0 0

]]]
3 + 5[[[0 1 0

0 0 1
1 0 0

]]]
2 + 8[[[0 1 0

0 0 1
1 0 0

]]] + 4[[[1 0 0
0 1 0
0 0 1

]]]= [[[1 0 0
0 1 0
0 0 1

]]] + [[[0 0 5
5 0 0
0 5 0

]]] + [[[0 8 0
0 0 8
8 0 0

]]] + [[[4 0 0
0 4 0
0 0 4

]]]= [[[5 8 5
5 5 8
8 5 5

]]] .

Therefore:

k = eTS−1f∗(A) = [0 0 1] [[[0 0 1
0 1 0
1 0 0

]]][[[5 8 5
5 5 8
8 5 5

]]] = [5 8 5] .
Example 6.3. Consider the following system with transfer function as:

W(s) = 10
s(s + 1)(s + 2) .

Try to find a state feedback controller to make the closed loop poles become −2 and−1 ± j1.
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Solution. Since the system is controllable and observable, the poles can be assigned
arbitrarily. Choose the following controllable canonical form:

ẋ = [[[0 1 0
0 0 1
0 −2 −3]]] x + [[[001]]] u ,

y = [10 0 0] x .
With state feedback, the closed loop characteristic polynomial is:

f(λ) = det[λI − (A + bK)] = λ3 + (3 − k2)λ2 + (2 − k1)λ − k0 .
The desired closed loop characteristic polynomial is:

f∗(λ) = (λ + 2)(λ + 1 − j)(λ + 1 + j) = λ3 + 4λ2 + 6λ + 4 .
Compare relative parameters in the above two functions, and we have:

k0 = −4 , k1 = −4 , k2 = −1 .
Thus:

K = [−4 −4 −1] .
The closed loop transfer function is:

G(s) = 10
s3 + 4s2 + 6s + 4 .

The block diagram of the closed loop system is shown in Figure 6.4.

Fig. 6.4: Block diagram of the closed loop system.
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Example 6.4. The state space model of a system is:

ẋ = [[[0 1 0
0 −1 1
0 0 −2]]] x + [[[001]]] u

y = [1 0 0] x .
Try to find a state feedback controller to make the closed loop poles become −2 and−1 ± j1.
Solution. To determine the controllability of the system:

M = [b Ab A2b] = [[[0 0 1
0 1 −3
1 −2 −4]]] .

|M| ̸= 0, so the system is controllable, and the closed loop poles of the system can be
arbitrary assigned.

Transform the above state space model into the controllable canonical form. The
characteristic function is: |sI − A| = s3 + 3s2 + 2s .
So we choose:

I = [[[2 3 1
3 1 0
1 0 0

]]] .

Then:

Tc1 = MI = [[[1 0 0
0 1 0
0 1 1

]]] , T−1c1 = [[[1 0 0
0 1 0
0 −1 1

]]] .

Suppose k̂ = [k̂0 k̂1 k̂2] and that the closed loop characteristic polynomials can
be expressed as:

f(λ) = 󵄨󵄨󵄨󵄨󵄨λI − (Â + b̂k̂)󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨λI − (T−1AT + T−1bk̂)󵄨󵄨󵄨󵄨󵄨 .
They can also be expressed as:

f∗(λ) = (λ + 2)(λ + 1 − j)(λ + 1 + j) = λ3 + 4λ2 + 6λ + 4 .
To achieve the desired closed loop poles, we have f∗(λ) = f(λ).

They can also be expressed as:

k = k̂T−1c1 , so k = [−4 −4 1] [[[1 0 0
0 1 0
0 −1 1

]]] = [−4 −3 −1] .
The block diagram of the closed loop system is shown in Figure 6.5.
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Fig. 6.5: Block diagram of the closed loop system.

Example 6.5. Consider a plant described by:

ẋ = [[[0 1 0
0 0 1
0 −2 −3]]] x + [[[001]]] u .

Let us introduce state feedback u = r − [k1 k2 k3]x to place the three eigenvalues at−2, −1 ± j. Figure out how to solve it using MATLAB.
The MATLAB function place computes state feedback gains for eigenvalue place-

ment or assignment. For example, we can type:

a=[0 1 0;0 0 1;0 -2 -3];b=[0;0;1];

p=[-2,-1+j,-1-j];

k=place(a,b,p)

yield

k =

4.0000 4.0000 1.0000

This is the matrix [k1 k2 k3] = [4 4 1].
6.4 State Estimator

6.4.1 Introduction

In the preceding sections, we introduce state feedback under the implicit assumption
that all state variables are available for feedback. This assumption may not hold in
practice, either because the state variables are not accessible for direct connection or
because sensors or transducers are not available. In this case, in order to apply state
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feedback, we must design a device, called a state estimator or state observer, so that
the output of the device will generate an estimation of the state.

6.4.2 State Estimator

1. Full Dimensional State Estimator
Consider the LTI system Σ0 = (A, B, C):

ẋ = Ax + Bu
y = Cx ,

(6.49)

where A, B, and C are given and the input u(t) and the output y(t) are available to us.
The problem is to estimate x from u and y with the knowledge of A, B, and C. If we
know A and B, we can duplicate the original system as:̇̂x = Ax̂ + Bu , (6.50)

which is shown in Figure 6.6. The duplication will be called an open loop estimator.
Now, if (6.49) and (6.50) have the same initial state, then for any input, we have x̂(t) =
x(t) for all t ≥ 0. Therefore, the remaining question is how to find the initial state
of (6.49) and then set the initial state of (6.50) to that state. If (6.49) is observable, its
initial state x(0) can be computed from u and y over any time interval, say, [0, t1]. We
can then compute the state at t2 and set x̂(t2) = x(t2). Then we have x̂(t) = x(t) for all
t ≥ t2. Thus, if (6.49) is observable, an open loop estimator can be used to generate
the state vector.

Fig. 6.6: Block diagram of open loop state estimator.
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There are, however, two disadvantages, in using an open loop estimator. First,
the initial state must be computed and set each time we use the estimator, which is
very inconvenient. Secondly, andmore seriously, if the matrix A has eigenvalues with
positive real part, then even for a very small difference between x(t0) and x̂(t0) for
some t0, which may be caused by disturbance or imperfect estimation of the initial
state, the difference between x(t) and x̂(t) will grow with time. Therefore, the open
loop estimator is, in general, not satisfactory.

We see from Figure 6.6 that, even though the input and output of (6.49) are avail-
able, we use only the input to drive the estimator. Now we shall modify the estimator
in Figure 6.6 to the one in Figure 6.7, in which the output y(t) = Cx(t) of (6.49) is com-
pared with Cx̂(t). Their difference, passing through an n × 1 constant gain vector G,
is used as a correcting term. If the difference is zero, no correction is needed. If the
difference is nonzero and if the gain G is properly designed, the difference will drive
the estimated state to the actual state. Such an estimator is called a closed loop or an
asymptotic estimator or, simply, an estimator.

The open loop estimator is now modified as:̇̂x = Ax̂ + Bu + G(y − ŷ) = Ax̂ + Bu + Gy − GCx̂ , (6.51)

which is shown in Figure 6.7. Now, (6.51) can be written as:̇̂x = (A − GC)x̂ + Bu + Gy , (6.52)

and is shown in Figure 6.8. It has two inputs, u and y, and its output yields an esti-
mated state x̂.

Fig. 6.7: Block diagram of closed loop state estimator I.
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Fig. 6.8: Block diagram of closed loop state estimator Π.

Let us define:
e = x − x̂ .

It is the error between the actual state and estimated state. Differentiating e and then
substituting (6.49) and (6.51) into it, we obtain:

ė = ẋ − ̇̂x = Ax + Bu − (A − GC)x̂ − G(Cx) − Bu= Ax − (A − GC)x̂ − GCx = (A − GC)(x − x̂) ,
or

ė = (A − GC)e . (6.53)

This equation governs the estimation error. If all eigenvalues of (A − GC) can be as-
signed arbitrarily, then we can control the rate for e to approach zero or, equivalently,
for the estimated state to approach the actual state. For example, if all eigenvalues of
A−GC have negative real parts smaller than −σ, then the entire of ewill approach zero
at rates faster than e−σt. Therefore, even if there is a large error between x̂(t0) and x(t0)
at the initial time t0, the estimated state will approach the actual state rapidly. Thus,
there is no need to compute the initial state of the original state equation. In conclu-
sion, if all eigenvalues of (A − GC) are properly assigned, a closed loop estimator is
much more desirable than an open loop estimator.

Theorem 6.5. Consider the pair (A, C). All eigenvalues of (A − GC) can be assigned ar-
bitrarily by selecting a real constant vector G if, and only if, (A, C) is observable.
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Example 6.6. Consider the state equation:

ẋ = [1 0
0 0

] x + [1
1
] u ,

y = [2 −1] x .
Try to find the state estimator, so that the desired closed loop eigenvalues can be−10, −10.
Solution. Step 1: Examine the system’s observability. We have:

N = [ C
CA
] = [2 −1

2 0
] .

Since rankN = 2, there exists a full dimensional state estimator.

Step 2: Transfer the system to observability criterion form Π.
The characteristic polynomial of the system is:

det [λI − A] = det[λ − 1 0
0 λ

] = λ2 − λ .
We have:

a1 = −1 , a0 = 0 , L = [a1 1
1 0

] = [−1 1
1 0

] ,

and:

T−1 = LN = [−1 1
1 0

][2 −1
2 0

] = [0 1
2 −1] , T = [ 1

2
1
2

1 0
] .

Thus:

ẋ = T−1ATx + T−1bu = [0 0
1 1

] x + [1
1
] u ,

y = CTx .

Step 3: Introducing feedback matrix G = [g1 g2]T. The characteristic polynomial of
the estimator yields:

f(λ) = 󵄨󵄨󵄨󵄨󵄨λI − (A − GC)󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 λ g1−1 λ − (1 − g2)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = λ2 − (1 − g2)λ + g1 .
Step 4. The desired characteristic polynomial is:

f∗(λ) = (λ + 10)2 = λ2 + 20λ + 100 .
Step 5. Comparing the corresponding coefficient of f(λ) and f∗(λ), we have:

g1 = 100 , g2 = 21 , and G = [100
21

] .
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Step 6. Transforming to the state of x yields:

G = TG = [ 1
2

1
2

1 0
] [100

21
] = [60.5

100
] .

Step 7. The proposed estimator is:̇̂x = (A − Gc)x̂ + bu + Gy= [−120 60.5−200 100
] x̂ + [1

1
] u + [60.5

100
] y ,

Or: ̇̂x = Ax̂ + bu + G(y − ŷ) = [1 0
0 0

] x̂ + [1
1
] u + [60.5

100
] (y − ŷ) .

Example 6.7. Consider the transfer function of a controlled system:

W0(s) = 1
s(s + 6) .

Find a vector k such that the closed loop system has eigenvalues λ∗1 = −1 and λ∗2 =−1.5 by state feedback, and design a full dimensional state estimator that can realize
the above feedback.

Solution. Step 1. From the transfer function above, we know that the system is con-
trollable and observable. Therefore, the state feedback matrix and estimator can be
designed independently due to the separation principle.

Step 2: Design the state feedback matrix K.
For a convenient estimator design, we use the observable canonical form Π of the

system directly:

ẋ = (0 0
1 −6) x + (1

0
) u

y = (0 1) x .
Step 3. We have:

f(λ) = |λI − A| = λ2 + 6λ ,
and:

f∗(λ) = (λ − λ∗1)(λ − λ∗2) = λ2 + 8λ + 52
Here we use equation (6.37) and (6.23):

TcI = [Ab b] [1 0
6 1

] = [0 1
1 0

] [1 0
6 1

] = [6 1
1 0

] ,

and:
K = [a0 − a∗0 a1 − a∗1] = [0 − 52 6 − 8] = [−52 −2] .
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Therefore:

T−1cI = [6 1
1 0

]−1 = [0 1
1 −6] .

Hence:

k = −KT−1cI = − [−52 −2] [0 1
1 −6] = [2 40] .

Step 4: Design the full dimensional estimator.
Suppose G = [g1 g2]T, then:

A − GC = (0 0
1 −6) − (g1g2) (0 1) = (0 −g1

1 −6 − g2) ,

and:

det[λI − (A − GC)] = det( λ g1−1 λ + 6 + g2) = λ2 + (6 + g2)λ + g1 .
Comparing with:

f∗(λ) = (λ − λ∗1)(λ − λ∗2) = λ2 + 20λ + 100
we can obtain:

G = (100
4
) .

The full dimensional estimator equation is:̇̂x = (A − GC)x̂ + Gy + bu= (0 −100
1 −20 ) x̂ + (1004 ) y + (1

0
) u .

Example 6.8. The state space model of a system is:{{{{{{{{{{{
Ẋ = [[0 1

3 4
]] X + [[24]] u

y = [0 1] X .

Try to construct a two-dimensional state estimator with poles to be −4 and −6. Find
out the model of the stator estimator and plot the diagram of the system with state
estimator.

Solution. The desired characteristic equation is:(s + 4)(s + 6) = s2 + 10s + 24 = 0 , |N| = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 CCA󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨0 1
3 4

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = −3 ̸= 0 , rankN = 2 .

The system is observable and the state estimator can be constructed as:|sI − A + GC| = s2 + (g2 − 4)s + 3g1 − 3 = 0 , g1 = 9 , g2 = 14 .
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The state estimator is:

Ẋg = (A − GC)Xg + Bu + Gy = [0 −8
3 −10] Xg + [24] u + [ 914] y .

The diagram of the system is shown in Figure 6.9.

Fig. 6.9: Block diagram of the system.

Example 6.9. Consider a plant described by the following state equation:

ẋ = [[[ 0 1 0
0 0 1

1.24 0.3965 −3.145]]] x + [[[ 0
0

1.244

]]] u

y = [1 0 0] x .
Try to design a state estimator to place the eigenvalues at −5± j5√3, −10 by MATLAB.
For the example, we type:

a=[0 1 0;0 0 1;1.244 0.3965 -3.145];

b=[0;0;1.244];

c=[1 0 0];

v=[-5+j*5*sqrt(3) -5-j*5*sqrt(3) -10];

l=(acker(a',c',v))'
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yield

l =

16.8550

147.3875

544.3932

Then we can get:

L = [[[ 16.855
147.3875
544.3932

]]] .

So the state estimator is:

ẋ = (Λ − LC)x + Bu + Ly= {{{{{[[[ 0 1 0
0 0 1

1.244 0.3965 −3.145]]] − [[[ 16.855
147.3875
544.3932

]]][1 0 0]}}}}} x + [[[ 0
0

1.244

]]] u

+ [[[ 16.855
147.3875
544.3932

]]] y

= [[[ −16.855 1 0−147.3875 0 1−544.3932 0.3965 −3.145]]] x + [[[ 0
0

1.244

]]] u + [[[ 16.855
147.3875
544.3932

]]] y .

2. Reduced Dimensional State Estimator
The estimator presented above, usually called a full dimensional estimator, has the
same dimension with the controlled system. Actually, the output vector y is always
measurable. We can derive a part of state variables directly from y, thus reducing the
dimension of the estimator.

Consider an observable system, assume the rank of the outputmatrix C ism, then
m dimension state variables can be acquired by the output y. The other n −m dimen-
sion state variables can be acquired by a (n − m) dimensional state estimator. This
estimator with the output equation can then be used to estimate all n state variables.
It also has a lesser dimension than the system (6.49) and is called a reduced dimen-
sional estimator.

The controllable system is:
ẋ = Ax + Bu
y = Cx .

(6.54)
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With rank C = m, the pair (A, C) is observable. The design consists of two steps.
(1) Decompose the state to x1 and x2. m dimension x2 can be derived from y while

n − m dimension x1 are to be observed.
(2) Construct the (n − m) dimensional state estimator.

Suppose x = Tx:

A = T−1AT = [ A11 A12 ] n − m
A21 A22 m

,

B = T−1B = [ B1 ] n − m
B2 m

,

C = CT = [ 0 I ] m

n − m m
,

A = T−1AT = [A11 A12
A21 A22

] , B = [B1
B2
] , C = CT = [0 I] .

The transform matrix T is:

T−1 = [ C0 ] n − m
C m

, T = [C0
C
]−1 ,

where C0 is a (n − m) × nmatrix to guarantee that T is nonsingular.

CT = C [C0
C
]−1 = [0 I] .

The state space equation can be written as:[ẋ1
ẋ2
] = [A11 A12

A21 A22
] [x1

x2
] + [B1

B2
] u

y = [0 I] [x1x2] = x2 .
(6.55)

As the system (6.54) is observable, (6.55) is also observable.
From (6.55), we can see x2 can be directly detected from y, and x1 can be obtained

from the estimator. The decomposed system structure is shown in Figure 6.10.
The subsystem Σ1 = (A11, A12, B1, 0) is to be reconfigured. Following the strategy

of full dimension state estimator, we can duplicate Σ1 from (6.55) as:

ẋ1 = A11x1 + A12x2 + B1u = A11x1 + M , (6.56)

where
M = A12x2 + B1u . (6.57)

Let Z = A21x2, then Z = ẋ2 − A22x2 − B2u.
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Fig. 6.10: Structure of decomposed system.

Consider M and Z as the input and output of Σ1, and A21 as the output matrix.
Because of the observable pair (A, C), the pair (A11, A21) for Σ1 is also observable,
thus the subsystem Σ1 can be estimated. Consulting equation (6.52), the estimator can
be written as: ̇̂x1 = (A11 − GA21)x1 + M + GZ . (6.58)

Similarly, the eigenvalues of (A11 − GA21) can be assigned at desired positions by
choosing a (n − m) × m dimensional matrix G.

Substituting (6.57) into (6.58) yields:̇̂x1 = (A11 − GA21)x̂1 + (A12 − GA22)y + (B1 − GB2)u + Gẏ .
Considering the difficulty of implementation of ẏ, we introduce a new variable of:

ŵ = x̂1 − Gy .
So the estimator equation can be described as:̇̂w = (A11 − GA21)x̂1 + (A12 − GA22)y + (B1 − GB2)u ,

x̂1 = ŵ + Gy . (6.59)

Hence, all n state variables x̂ can be constructed as:

x̂ = [x̂1
x̂2
] = [ŵ + Gy

y
] = [I

0
] ŵ + [G

I
] y .

Then transform x̂ to x̂, and we have x = Tx̂.
The whole structure of the estimator is shown in Figure 6.11.
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Fig. 6.11: Block diagram of reduced dimensional estimator.

From equation (6.57), we can see that x2 = y, so there are no estimated errors of
these m dimension state variables. Subtracting (6.59) from (6.56), we can obtain the
estimated error equation:

ė1 = ẋ1− ̇̂x1 = A11x1+A12y+B1u−(A11−GA21)x1−(A12−GA22)y−(B1−GB2)u−Gẏ .
Considering A21x1 = ẏ − A22y − B2u, the above equation can be simplified as:

ė1 = (A11 − GA21)(x1 − x̂1) = (A11 − GA21)e1 , (6.60)

where e1 is the error between x and x̂1. As the subsystem Σ1 is observable, the eigen-
values of (A11 −GA21) can be assigned at desired positions by choosing G, thus guar-
anteeing that the error e1 can approach zero at the desired rate.

Example 6.10. Consider the system:

ẋ = [[[ 4 4 4−11 −12 −12
13 14 13

]]] x + [[[ 1−1
0

]]] u

y = [1 1 1] x .
Find a reduced dimensional state estimator with the poles −3, −4.
Solution. Examine the system’s observability. There exists a reduced dimensional
state estimator rank c = 1.
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Construct the transformmatrix T:

T−1 = [[[1 0 0
0 1 0
1 1 1

]]] , T = [[[ 1 0 0
0 1 0−1 −1 1

]]] .

Suppose:

A = T−1AT = [[[1 0 0
0 1 0
1 1 1

]]][[[ 4 4 4−11 −12 −12
13 14 13

]]][[[ 1 0 0
0 1 0−1 −1 1

]]] = [[[0 0 4
1 0 −12
1 1 5

]]] ,

we have:

b = T−1b = [[[1 0 0
0 1 0
1 1 1

]]][[[ 1−1
0

]]] = [[[ 1−1
0

]]] ,

c = cT = [1 1 1] [[[ 1 0 0
0 1 0−1 −1 1

]]] = [0 0 1] .
Since x3 can be provided directly by y, a second dimensional state estimator is
needed.

Step 1. Introducing feedback matrix G = [g1 g2]T; the characteristic polynomial of
the estimator yields:

f(λ) = 󵄨󵄨󵄨󵄨󵄨λI − (A11 − GA21)󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨[λ 0
0 λ

] − [0 0
1 0

] − [g1
g2
] [1 1]󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 λ + g1 g1−1 + g2 λ + g2󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = λ2 + (g1 + g2)λ + g1 .

Step 2. The desired characteristic polynomial is:

f∗(λ) = (λ + 3)(λ + 4) = λ2 + 7λ + 12 .
Step 3. Comparing the corresponding coefficient of f(λ) and f∗(λ), we have:

g1 = 12, g2 = −5 , and G = [12−5] .

Step 4. From equation (6.59), we obtain the estimator equation:̇̂w = [−12 −12
6 5

] x̂1 + [−5613
] y + [ 1−1] u

x̂1 = ŵ + [12−5] y .
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The estimation of the state after linear transformation is:

x̂ = [x̂1
x̂3
] = [ŵ + Gy

y
] = [[[1 0

0 1
0 0

]]][w1
w2
] + [[[12−51 ]]] y = [[[w1 + 12y

w2 − 5y
y

]]] .

Step 5. To get the state estimation of the original system, transform x̂ as follows:

x̂ = Tx̂ = [[[ 1 0 0
0 1 0−1 −1 1

]]][[[w1 + 12y
w2 − 5y

y

]]] = [[[ w1 + 12y
w2 − 5y−w1 − w2 − 6y]]] .

Example 6.11. The state space model of a system is{{{{{{{{{
Ẋ = [[0 2

1 3
]] X + [[13]] u

y = [0 1] X .

Try to construct a one dimensional state estimator with pole to be −5, and plot the
diagram of the system.

Solution. The system model is an observable canonical, so the system is observable,
the state estimator can be constructed and the pole can be assigned arbitrary y = x2.
Only x1 needs to be constructed:󵄨󵄨󵄨󵄨󵄨sI − Â11 + gÂ21

󵄨󵄨󵄨󵄨󵄨 = s − 0 + g = s + 5 = 0 , g = 5 ;

Ẇ = ẇ = (A11 − GA21)W + [(A12 − GA22) + (A11 − GA21)G]Y + (B1 − GB2)U= −5w − 38y − 14u ,
x1g = x̂1g = W + GY = w + 5y , x2g = x̂2g = y .

The state estimator is: {{{{{{{
ẇ = −5w − 38y − 14u
x1g = w + 5y
x2g = y .

The diagram of the system with state estimator is shown in Figure 6.12.
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Fig. 6.12: Diagram of the system.

6.5 State Feedback Based on State Estimator

Figure 6.13 is a state feedback system based on full dimensional state estimator.
Consider the controllable and observable controlled system Σ0 = (A, B, C):

ẋ = Ax + Bu
y = Cx

} (6.61)

The state estimator ΣG: ̇̂x = (A − GC)x̂ + Gy + Bu
ŷ = Cx̂

} (6.62)

The state feedback law is:
u = −Kx̂ + v . (6.63)

By substituting equation (6.63) into equation (6.61) and equation (6.62), you can obtain
the state space description of the total closed loop system.

ẋ = Ax − BKx̂ + Bv̇̂x = GCx + (A − GC − BK)x̂ + Bv
y = Cx

}}}}}}} (6.64)



186 | 6 State Feedback and Observer

Fig. 6.13: State feedback system based on full dimensional state estimator.

Equation (6.64) can be written in the following matrix form:(ẋ̇̂x) = ( A −BK
GC A − GC − BK)(xx̂) + (BB) v

y = (C 0)(xx̂)
}}}}}}}}}}} (6.65)

This is a closed loop system with dimension of 2n.
Define the state error as x̃ = x − x̂ and introduce the following equivalent trans-

formation: (x
x̃
) = (I 0

I −I)(xx̂) = ( x
x − x̂) . (6.66)

Suppose the transfer matrix is:

T = (I 0
I −I) . (6.67)

Then:

T−1 = (I 0
I −I)−1 = (I 0

I −I) = T . (6.68)
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With linear transformation, the system turns into (A1, B1, C1):
A1 = T−1A1T = (I 0

I −I)( A −BK
GC A − GC − BK)(I 0

I −I) = (A − BK BK
0 A − GC)

B1 = T−1B1 = (I 0
I −I)(BB) = (B0)

C1 = C1T = (C 0)(I 0
I −I) = (C 0) . (6.69)

Linear transformation does not change the poles of system, therefore:

det [λI − A1] = det(λI − (A − BK) −BK
0 λI − (A − GC))= det [λI − (A − BK)] det [λI − (A − GC)]= det [λI − (A − BK)] det [λI − (A − GC)] . (6.70)

The results are very interesting, because they illustrate the fact that the charac-
teristic polynomial of the closed loop state feedback system based on state estimator
equals the product of the characteristic polynomial of the matrix (A−BK), and that of
the matrix (A − GC). The poles of the closed loop system equals the sum of the poles
of direct state feedback (A − BK) and that of state estimator (A − GC). Indeed, if sys-
tem (A, B) is controllable, then the matrix K of the state feedback law (6.63) can be
chosen so that the poles of the closed loop system Σ0 = (A, B, C) have any desired
arbitrary values. The same applies to equation (6.62) where, if the system (A, C) is ob-
servable, the matrix G of estimator can be chosen so as to force the error to go rapidly
to zero. This property, where the two design problems (the estimator and the matrix K
of the closed loop system) canbehandled independently, is called the separation prin-
ciple. This principle is clearly a very important design feature, since it reduces a very
difficult design task to two separate simpler design problem.

Consider the pole assignment and the estimator design problem. The pole assign-
ment problem is called the control problem and it is rather a simple control design
tool for improving the closed loop system performance. The estimator design problem
is called estimator problem, since it produces a good estimate of x(t) in cases where
x(t) is not measurable. The solution of the estimator design problem reduces to that
of solving a pole assignment problem. In cases where an estimate of x(t) is used in
the control problem, one faces the problem of simultaneously solving the estimation
and the control problem. At first sight this appears to be a formidable task. However,
thanks to the separation theorem, the solution of the combined problem of estimation
and control breaks down to separately solving the estimation and the control problem.
The solution of the combined problem of estimation and control requires twice of the
pole assignment.
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6.6 Summary

Three types of feedback are introduced in this chapter. They can be used to improve
the performance of a system. The precondition and algorithm of every feedback are
discussed in detail. The pole assignment can be realized with some feedback. The de-
sired poles come from the request for the performance of a system. The state estimator
can be designed when a system is observable to realize the state estimation so as to
fulfill the state feedback to optimize the system performance.

Appendix: State Feedback and Observer for Main Steam
Temperature Control in Power Plant Steam Boiler
Generation System

The superheater is an important part of the steam generation process in the boiler tur-
bine system, where steam is superheated before entering the turbine that drives the
generator. The objective is to control the superheated steam temperature by control-
ling the flow of spraywater using the spraywater valves. As can be seen in Figure 6.14,
a two stage water sprayer is used to control the superheated temperature. The steam
generated from the boiler drum passes through the low temperature superheater be-
fore it enters the radiant type platen superheater. Water is sprayed onto the steam
to control the superheated steam temperature in both the low and high temperature
superheaters. Proper control of the superheated steam temperature is extremely im-
portant to ensure the overall efficiency and safety of the power plant. Therefore, the
superheated steam temperature is to be controlled by adjusting the flow of spray wa-
ter.

to turbine
22

1

1

5

3
4

combustion
gas flow

low-temperature platen
superheater superheater

high-temperature
superheater

feedwater

Fig. 6.14: Boiler and superheater steam generation process.
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The typicalmathematicmodel of the superheated steam temperature control pro-
cess is a sixth order transfer function as follows:

G0(s) = θ(s)
W(s) = 1.589 × 2.45(1 + 14s)2(1 + 15.8s)4 ,

where θ andW represent the superheater steam temperature and the water flow rate
of spray superheating, respectively.

Then the transfer function can be transformed to the controllable canonical form:

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t) .

where:

A = [[[[[[[[[[
−0.396 −0.0653 −0.0057 −2.8355e−6 −7.4664e−6 −8.1868e−8

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

]]]]]]]]]]
,

B = [[[[[[[[[[
1
0
0
0
0
0

]]]]]]]]]]
, C = [0 0 0 0 0 0.3187e−6] .

Here, we need to find a state feedback controller u = r − [k1 k2 k3 k4 k5 k6]x to
make the closed loop poles at [−0.1 − 0.1 − 0.1 − 0.1 − 0.1 − 0.1].

The block diagram of the system is shown in Figure 6.15.

Setpoint of 
temperature

Controller Attemperator Superheater

State 
feedback

State 
observer

Steam

temperature 

Fig. 6.15: The steam temperature control system with state feedback and state observer.
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The system is controllable according to the matrix A. With state feedback, the
closed loop characteristic polynomial is:

f(λ) = det[λI − (A − BK)]= λ6 + (0.396 + k1)λ5 + (0.0653 + k2)λ4 + (0.0057 + k3)λ3+ (2.8355e−6 + k4)λ2 + (7.4664e−6 + k5)λ + 8.1868e−8 + k6 .
The desired closed loop characteristic polynomial is:

f∗(λ) = (λ+0.1)6 = λ6 +0.6λ5 +0.15λ4 +0.02λ3 +0.0015λ2 +0.00006λ+0.000001 .
Compare relative parameters in the above two functions, and we have:

k1 = 0.204 , k2 = 0.0847 , k3 = 0.0143 ,
k4 = 1.4972e−3 , k5 = 5.2534e−5 , k6 = 9.1813e−7 .

Thus:

K = [0.204 0.0847 0.0143 1.4972e−3 5.2534e−5 9.1813e−7] .
The observable canonical form of the system is:

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t) ,

where:

A = [[[[[[[[[[
0 0 0 0 0 −8.1868e−8
1 0 0 0 0 −7.4664e−6
0 1 0 0 0 −2.8355e−6
0 0 1 0 0 −0.0057
0 0 0 1 0 −0.0653
0 0 0 0 1 −0.396

]]]]]]]]]]
,

B = [[[[[[[[[[
0.3187e−6

0
0
0
0
0

]]]]]]]]]]
, C = [0 0 0 0 0 1] .

Next, we could design a full dimensional state estimator with poles to be [−0.25−0.25 −0.25 − 0.25 − 0.25 − 0.25].
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Design the full dimensional estimator.
Suppose G = [g1 g2 g3 g4 g5 g6]T, then:
A − GC = [[[[[[[[[[

0 0 0 0 0 −8.1868e−8
1 0 0 0 0 −7.4664e−6
0 1 0 0 0 −2.8355e−6
0 0 1 0 0 −0.0057
0 0 0 1 0 −0.0653
0 0 0 0 1 −0.396

]]]]]]]]]]
− [[[[[[[[[[

g1
g2
g3
g4
g5
g6

]]]]]]]]]]
[0 0 0 0 0 1]

= [[[[[[[[[[
0 0 0 0 0 −8.1868e−8 − g1
1 0 0 0 0 −7.4664e−6 − g2
0 1 0 0 0 −2.8355e−6 − g3
0 0 1 0 0 −0.0057 − g4
0 0 0 1 0 −0.0653 − g5
0 0 0 0 1 −0.396 − g6

]]]]]]]]]]
,

and

det [λI − (A − GC)] = λ6 + (0.396 + g6)λ5 + (0.0653 + g5)λ4 + (0.0057 + g4)λ3+ (2.8355e−6 + g3)λ2 + (7.4664e−6 + g2)λ+ 8.1868e−8 + g1 .
Comparing with:

f∗(λ) = (λ + 0.25)6 = λ6 + 1.5λ5 + 0.9375λ4 + 0.3125λ3 + 0.0586λ2+ 0.00586λ + 0.000244 ,
we can obtain:

G = [[[[[[[[[[
0.0002
0.0059
0.0583
0.3068
0.8722
1.104

]]]]]]]]]]
.

The full dimensional estimator equation is:̇̂x = (A − GC) x̂ + Gy + Bu
= [[[[[[[[[[

0 0 0 0 0 −0.000244
1 0 0 0 0 −0.00586
0 1 0 0 0 −0.0586
0 0 1 0 0 −0.3125
0 0 0 1 0 −0.9375
0 0 0 0 1 −1.5

]]]]]]]]]]
x̂ + [[[[[[[[[[

0.0002
0.0059
0.0583
0.3068
0.8722
1.104

]]]]]]]]]]
y + [[[[[[[[[[

0.3187e−6
0
0
0
0
0

]]]]]]]]]]
u .
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Exercise

6.1. Determine whether the following systems can realize arbitrary pole assignment
with state feedback:(1) ẋ = [1 2

3 1
] x + [1

0
] u(2) ẋ = [4 2

0 −2] x + [10] u(3) ẋ = [[[1 0 0
0 −2 1
0 0 −2]]] x + [[[1 0

0 1
0 0

]]] u

(4) ẋ = [[[[[
0 1 0 0
0 0 1 0
0 0 0 1−2 −4 −3 −5]]]]] x + [[[[[

0 0 0
0 0 1
0 1 0
1 0 0

]]]]] u

6.2. Consider a single input continuous time LTI system:

ẋ = [1 2
3 1

] x + [1
0
] u .

Try to find a state feedback matrix k, which makes the closed loop eigenvalues λ∗1 =−2 + j, λ∗2 = −2 − j.
6.3. Given the transfer function of a SISO continuous time LTI system:

G(s) = 1
s(s + 4)(s + 8) ,

try to find a state feedbackmatrix k, whichmakes the closed loop eigenvalues λ∗1 = −2,
λ∗2 = −4, λ∗3 = −7.
6.4. Given a single input LTI system:

ẋ = [[[0 0 0
1 −6 0
0 1 −12]]] x + [[[100]]] u ,

Try to find a state feedbackmatrix u = −Kx, whichmakes the closed loop eigenvalues
λ∗1 = −2, λ∗2 = −1 + j, λ∗3 = −1 − j.
6.5. Consider a continuous time LTI system:

ẋ = [1 1
0 1

] x + [0
1
] u

y = [2 0
0 1

] x .
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Try to find an output feedback matrix f , which makes the closed loop eigenvalues
become λ∗1 = −2, λ∗2 = −4.
6.6. Consider the following fourth order system:

ẋ = [[[[[
2 1 0 0
0 2 0 0
0 0 −2 0
0 0 0 −2]]]]] x + [[[[[

0
1
1
1

]]]]] u .

Determine state feedback matrix to place the closed loop system poles at:(1) λ∗1 = −2 , λ∗2 = −2 , λ∗3 = −2 , λ∗3 = −2(2) λ∗1 = −3 , λ∗2 = −3 , λ∗3 = −3 , λ∗3 = −2(3) λ∗1 = −3 , λ∗2 = −4 , λ∗3 = −3 , λ∗3 = −3
6.7. Consider a continuous time LTI system:

ẋ = [[[1 1 0
0 1 0
0 0 2

]]] x + [[[0 0
1 0
0 −1]]] u .

Try to find the state feedback matrix to place the closed loop eigenvalues at λ∗1 = −2,
λ∗2 = −1 + j2, λ∗3 = −1 − j2.
6.8. Given the transfer function of a SISO continuous time LTI system:

g0(s) = (s + 2)(s + 3)(s + 1)(s − 2)(s + 4) ,
try to determine if there exists a state feedback matrix k, which can make the closed
loop transfer function as:

g(s) = s + 3(s + 2)(s + 4) .
If it does, find a state feedback matrix k.

6.9. Design a full dimensional state estimator with eigenvalues to at −r, −2r (r > 0)
for the state equation below:

ẋ = [0 1
0 0

] x + [0
1
] u

y = [1 0] x .
6.10. Design a reduced dimensional state estimator with eigenvalues to as −4 and −5
for the state equation below:

ẋ = [[[0 1 0
0 0 1
0 0 0

]]] x + [[[001]]] u

y = [1 0 0] x .
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