

JavaScript® Essentials For

Dummies®

To view this book's Cheat Sheet,

simply go to www.dummies.com and

search for “JavaScript Essentials For

Dummies Cheat Sheet” in the Search

box.

Table of Contents

Cover

Title Page

Copyright

Introduction

About This Book

Foolish Assumptions

Icons Used in This Book

Where to Go From Here

Chapter 1: JavaScript: The Big Picture

Adding JavaScript Code to a Web Page

What You Need to Get Started

Dealing with Two Exceptional Cases

Commenting Your Code

Moving to External JavaScript Files

Chapter 2: Programming with Variables

http://www.dummies.com/
clbr://internal.invalid/book/OPS/cover.xhtml

Getting Your Head around Variables

Naming Variables: Rules and Best Practices

Understanding Literal Data Types

Chapter 3: Building Expressions

Understanding How Expressions Are Structured

Creating Numeric Expressions

Building String Expressions

Building Comparison Expressions

Building Logical Expressions

Understanding Operator Precedence

Chapter 4: Controlling the Flow of JavaScript

Decision-Making with if Statements

Branching with if…else Statements

Understanding the Value of Code Looping

Working with while Loops

Working with for Loops

Working with do…while Loops

Chapter 5: Harnessing the Power of Functions

Getting to Know the Function Structure

Making a Function Call

Passing One or More Values to a Function

Getting a Value from a Function

Working with Anonymous Functions

Working with Arrow Functions

Chapter 6: Coding the Document Object Model

Getting Familiar with Objects

Introducing the Document Object Model

Specifying Elements in Your Code

Touring the DOM with Code

Adding, Modifying, and Removing Elements

Using Code to Mess Around with CSS

Using Code to Tweak HTML Attributes

Listening for Page Events

Chapter 7: Working with Arrays

What Is an Array?

Declaring an Array

Populating an Array

Iterating Arrays

Manipulating Arrays

Chapter 8: Coding Strings and Dates

Manipulating Strings

Dealing with Dates and Times

Chapter 9: Debugging JavaScript

Laying Out Your Debugging Tools

Debugging 101: Using the Console

Putting Your Code into Break Mode

Stepping Through Your Code

Chapter 10: Dealing with Form Data

Coding Text Fields

Programming Checkboxes

Coding Radio Buttons

Programming Selection Lists

Working with Form Events

Handling Form Data

Chapter 11: Ten JavaScript Debugging Strategies

Get Thee to Your Dev Tools

The Console Is Your Best Debugging Friend

Give Your Code a Break(point)

Step Through Your Code

Monitor Variable and Object Property Values

Indent Your Code

Break Down Complex Tasks

Break Up Long Statements

Comment Out Problem Statements

Use Comments To Document Your Scripts

Index

About the Author

Advertisement Page

Connect with Dummies

End User License Agreement

List of Tables

Chapter 2

TABLE 2-1 Common JavaScript Escape Sequences

Chapter 3

TABLE 3-1 The JavaScript Arithmetic Operators

TABLE 3-2 The JavaScript Arithmetic Assignment Operators

TABLE 3-3 The JavaScript Comparison Operators

TABLE 3-4 The JavaScript Logical Operators

TABLE 3-5 The JavaScript Order of Precedence for Operators

Chapter 7

TABLE 7-1 Useful Array Methods

Chapter 8

TABLE 8-1 String Object Methods for Searching for Substrings

TABLE 8-2 String Object Methods for Extracting Substrings

TABLE 8-3 Arguments Associated with the Date Object

TABLE 8-4 Date Object Methods That Extract Date Values

TABLE 8-5 Date Object Methods That Set Date Values

List of Illustrations

Chapter 1

FIGURE 1-1: This “alert” message appears when you open the

HTML file containing...

FIGURE 1-2: When you open the file, the text displays the date

and time the fil...

FIGURE 1-3: This page uses an external JavaScript file to display a

footer mess...

Chapter 2

FIGURE 2-1: The browser substituting the current value of a

variable.

FIGURE 2-2: The script first prompts for the user’s first name.

FIGURE 2-3: The script then uses the name to display a

personalized welcome mes...

FIGURE 2-4: Using the \n escape sequence enables you to format

text so that it ...

Chapter 4

FIGURE 4-1: Set up your while expression so that the prompting

stops when the u...

FIGURE 4-2: This script uses the current value of the counter

variable to custo...

FIGURE 4-3: The decrementing value of the rank variable is used

to create a rev...

Chapter 5

FIGURE 5-1: An example of calling a function when the <script>

tag is p...

FIGURE 5-2: An example of calling a function after the page has

loaded.

FIGURE 5-3: An example of calling a function in response to an

event.

FIGURE 5-4: The output includes the return value of the custom

function calcula...

Chapter 6

FIGURE 6-1: This script displays the document.location property in a

console me...

FIGURE 6-2: The web page code as a hierarchy.

FIGURE 6-3: The output of the script that iterates over the div

elements.

FIGURE 6-4: The value of the bodyChildElements variable displayed

in the consol...

FIGURE 6-5: This code uses the add() method to add the class

named my-class to ...

FIGURE 6-6: The click event callback function adds some HTML

and text to the di...

FIGURE 6-7: The keypress event callback function uses e.which to

write the nume...

Chapter 9

FIGURE 9-1: The HTML viewer, such as Chrome’s Elements tab,

enables you to insp...

FIGURE 9-2: When you invoke break mode, the web browser

displays its debugging ...

FIGURE 9-3: In the browser’s debugging tool, click a line number

to set a break...

Chapter 10

FIGURE 10-1: The script converts the input element’s default text

to all-lowerc...

FIGURE 10-2: A form used to gather user settings for the page.

JavaScript® Essentials For Dummies®

Published by: John Wiley & Sons, Inc., 111 River
Street, Hoboken, NJ 07030-5774, www.wiley.com
Copyright © 2024 by John Wiley & Sons, Inc., Hoboken,
New Jersey
Published simultaneously in Canada
No part of this publication may be reproduced, stored in
a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording,
scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright
Act, without the prior written permission of the
Publisher. Requests to the Publisher for permission
should be addressed to the Permissions Department,
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permissions.
Trademarks: Wiley, For Dummies, the Dummies Man
logo, Dummies.com, Making Everything Easier, and related
trade dress are trademarks or registered trademarks of
John Wiley & Sons, Inc. and may not be used without
written permission. JavaScript is a registered trademark
of Oracle and/or its affiliates. All other trademarks are
the property of their respective owners. John Wiley &
Sons, Inc. is not associated with any product or vendor
mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY:
WHILE THE PUBLISHER AND AUTHORS HAVE USED
THEIR BEST EFFORTS IN PREPARING THIS WORK,
THEY MAKE NO REPRESENTATIONS OR
WARRANTIES WITH RESPECT TO THE ACCURACY OR
COMPLETENESS OF THE CONTENTS OF THIS WORK
AND SPECIFICALLY DISCLAIM ALL WARRANTIES,

http://www.wiley.com/
http://www.wiley.com/go/permissions
http://dummies.com/

INCLUDING WITHOUT LIMITATION ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. NO WARRANTY MAY
BE CREATED OR EXTENDED BY SALES
REPRESENTATIVES, WRITTEN SALES MATERIALS OR
PROMOTIONAL STATEMENTS FOR THIS WORK. THE
FACT THAT AN ORGANIZATION, WEBSITE, OR
PRODUCT IS REFERRED TO IN THIS WORK AS A
CITATION AND/OR POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT
THE PUBLISHER AND AUTHORS ENDORSE THE
INFORMATION OR SERVICES THE ORGANIZATION,
WEBSITE, OR PRODUCT MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE
PUBLISHER IS NOT ENGAGED IN RENDERING
PROFESSIONAL SERVICES. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE
SUITABLE FOR YOUR SITUATION. YOU SHOULD
CONSULT WITH A SPECIALIST WHERE
APPROPRIATE. FURTHER, READERS SHOULD BE
AWARE THAT WEBSITES LISTED IN THIS WORK MAY
HAVE CHANGED OR DISAPPEARED BETWEEN WHEN
THIS WORK WAS WRITTEN AND WHEN IT IS READ.
NEITHER THE PUBLISHER NOR AUTHORS SHALL BE
LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER
COMMERCIAL DAMAGES, INCLUDING BUT NOT
LIMITED TO SPECIAL, INCIDENTAL,
CONSEQUENTIAL, OR OTHER DAMAGES.

For general information on our other products and
services, please contact our Customer Care Department
within the U.S. at 877-762-2974, outside the U.S. at 317-
572-3993, or fax 317-572-4002. For technical support,
please visit https://hub.wiley.com/community/support/dummies.

https://hub.wiley.com/community/support/dummies

Wiley publishes in a variety of print and electronic
formats and by print-on-demand. Some material included
with standard print versions of this book may not be
included in e-books or in print-on-demand. If this book
refers to media such as a CD or DVD that is not included
in the version you purchased, you may download this
material at http://booksupport.wiley.com. For more
information about Wiley products, visit www.wiley.com.
Library of Congress Control Number: 2024933533
ISBN 978-1-394-26321-9 (pbk); ISBN 978-1-394-26323-3
(ebk); ISBN 978-1-394-26322-6 (ebk)

http://booksupport.wiley.com/
http://www.wiley.com/

Introduction

HTML and CSS are awesome technologies, and you can
use them to create pages that look amazing. But after
you funnel your page to your web server and look at it a
few (dozen) times, you may notice a subtle feeling of
disappointment creeping in. Why? It can be hard to pin
down, but that hint of dismay comes from a stark fact:
Your web page just kind of sits there.
Sure, you probably have a link or three to click, but most
likely those links just take you to more of your pages that
also just kind of sit there. Or maybe a link takes you to
another site altogether, one that feels dynamic and alive
and interactive. Ah, engagement! Ooh, excitement!
What’s the difference between a page that does nothing
and a page that seems to be always dancing? One word:
JavaScript. If you want your pages to be dynamic and
interactive, you need a bit of behind-the-scenes
JavaScript to make it so.
“But,” I hear you object, “HTML isn’t that hard to learn.
JavaScript is a programming language, for crying out
loud!” I hear you. It’s true that anyone can learn HTML
as long as they start with the basic tags, examine lots of
examples of how they work, and slowly work their way
up to more complex pages. It’s just a matter of creating a
solid foundation and then building on it.
I’m convinced that JavaScript can be approached in
much the same way. I’m certainly not going to tell you
that JavaScript is as easy to learn as HTML. That would
be a bald-faced lie. However, I will tell you that there is
nothing inherently difficult about JavaScript. I believe
that if you begin with the basic syntax and rules, study
tons of examples to learn how they work, and then slowly

build up to more complex scripts, you can learn
JavaScript programming. I predict here and now that by
the time you finish this book, you’ll even be a little bit
amazed at yourself and at what you can do.

About This Book

Welcome, then, to JavaScript Essentials For Dummies.
This book gives you a solid education on the standard
programming language underlying the World Wide Web.
You learn how to set up the tools you need and, given
any web pages you have (or someone else has) built with
HTML and CSS, you learn how to use JavaScript to
program those pages. My goal is to show you that adding
a sprinkling of JavaScript magic to a page isn’t hard to
learn, and that even the greenest rookie programmer can
learn how to create dynamic and interactive web pages
that will amaze their family and friends (and
themselves).
If you’re looking for lots of programming history,
computer science theory, and long-winded explanations
of concepts, I’m sorry, but you won’t find it here. My
philosophy throughout this book comes from Linus
Torvalds, the creator of the Linux operating system:
“Talk is cheap. Show me the code.” I explain what needs
to be explained and then I move on without further ado
(or, most of the time, without any ado at all) to examples
and scripts that do more to illuminate a concept that any
verbose explanations I could muster (and believe me, I
can muster verbosity with the best of them).

Foolish Assumptions

This book is not a primer on the internet or on using the
World Wide Web. This is a book on coding web pages,

pure and simple. This means I assume the following:

You know how to operate a basic text editor, and how

to get around the operating system and file system on

your computer.

You have an internet connection.

You know how to use your web browser.

You know the basics of HTML and CSS.

Yep, that’s it.

Icons Used in This Book

 This icon points out juicy tidbits that are likely to
be repeatedly useful to you — so please don’t forget
them.

 Think of these icons as the fodder of advice
columns. They offer (hopefully) wise advice or a bit
more information about a topic under discussion.

 Look out! In this book, you see this icon when I’m
trying to help you avoid mistakes that can cost you
time, money, or embarrassment.

Where to Go From Here

How you approach this book depends on your current
level of coding and/or JavaScript expertise (or lack
thereof):

If you’ve never programmed before, begin at the

beginning with Chapter 1 and work at your own pace

sequentially through Chapters 2, 3, 4, and 5. This will

give you all the knowledge you need to pick and

choose what you want to learn throughout the rest of

the book.

If you’ve done some non-JavaScript programming,

start with Chapter 1, skim through Chapters 2 through

5 to see how JavaScript does the standard

programming tasks, and then pick and choose your

topics from there.

If you’ve done some JavaScript coding already, I

suggest working quickly through the material in

Chapters 2 through 5, and then diving into the all-

important material on the Document Object Model in

Chapter 6. From there, you can peruse the rest of the

chapters as you see fit.

Chapter 1

JavaScript: The Big Picture

IN THIS CHAPTER

 Getting a feel for programming in general, and

JavaScript in particular

 Checking out the tools you need to get coding

 Adding comments to your JavaScript code

 Storing your code in a separate JavaScript file

In this chapter, you explore some useful JavaScript
basics. Don’t worry if you’ve never programmed before. I
take you through everything you need to know, step-by-
step, nice and easy. As you’re about to find out, it really
is fun to program.

Adding JavaScript Code to

a Web Page

Okay, it’s time to roll up your sleeves, crack your
knuckles, and start coding. This section describes the
standard procedure for constructing and testing a script
and takes you through a couple of examples.

The <script> tag
The basic container for a script is, naturally enough, the
HTML <script> tag and its associated </script> end tag:

<script>

 JavaScript statements go here

</script>

Where do you put the <script> tag?
With certain exceptions, it doesn’t matter a great deal
where you put your <script> tag. Some people place the
tag between the page’s </head> and <body> tags. The
HTML standard recommends placing the <script> tag
within the page header (that is, between <head> and
</head>), so that’s the style I use in this book:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>Where do you put the script tag?</title>

 <script>

 JavaScript statements go here

 </script>

 </head>

 <body>

 </body>

</html>

Here are the exceptions to the put-your-script-anywhere
technique:

If your script is designed to write data to the page, the

<script> tag must be positioned within the page body

(that is, between the <body> and </body> tags) in the

exact position where you want the text to appear.

If your script refers to an item on the page (such as a

form object), the script must be placed after that item.

With many HTML tags, you can add one or more

JavaScript statements as attributes directly within the

tag.

 It’s perfectly acceptable to insert multiple <script>
tags within a single page, as long as each one has a

corresponding </script> end tag, and as long as you
don’t put one <script> block within another one.

Example #1: Displaying a message

to the user
You’re now ready to construct and try out your first
script. This example shows you the simplest of all
JavaScript actions: displaying a basic message to the
user. The following code shows the script within an
HTML file:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>Displaying a Message to the User</title>

 <script>

 alert("Hello JavaScript World!");

 </script>

 </head>

 <body>

 </body>

</html>

As shown in here, place the script within the header of a
page, save the file, and then open the HTML file within
your browser.
This script consists of just a single line:

alert("Hello JavaScript World!");

This is called a statement, and each statement is
designed to perform a single JavaScript task. Your
scripts will range from simple programs with just a few
statements to huge projects consisting of hundreds of
statements.
You may be wondering about the semicolon (;) that
appears at the end of the statement. Good eye. You use
the semicolon to mark the end of each of your JavaScript
statements.

In the example, the statement runs the JavaScript alert()
method, which displays to the user whatever message is
enclosed within the parentheses (which could be a
welcome message, an announcement of new features on
your site, an advertisement for a promotion, and so on).
Figure 1-1 shows the message that appears when you
open the file.

FIGURE 1-1: This “alert” message appears when you open the HTML file

containing the example script.

How did the browser know to run the JavaScript
statement? When a browser processes (parses, in the
vernacular) a page, it basically starts at the beginning of
the HTML file and works its way down, one line at a
time. If it trips over a <script> tag, it knows one or more
JavaScript statements are coming, and it automatically
executes those statements, in order, as soon as it reads
them. The exception is when JavaScript statements are
enclosed within a function, which I explain in Chapter 5.

 One of the cardinal rules of JavaScript
programming is “one statement, one line.” That is,
each statement must appear on only a single line,
and there should be no more than one statement on
each line. I said “should” in the second part of the

previous sentence because it is possible to put
multiple statements on a single line, as long as you
separate each statement with a semicolon (;). There
are rare times when it’s necessary to have two or
more statements on one line, but you should avoid it
for the bulk of your programming because multiple-
statement lines are difficult to read and to
troubleshoot.

Example #2: Writing text to the

page
One of JavaScript’s most powerful features is the
capability to write text and even HTML tags and CSS
rules to the web page on-the-fly. That is, the text (or
whatever) gets inserted into the page when a web
browser loads the page. What good is that? For one
thing, it’s ideal for time-sensitive data. For example, you
may want to display the date and time that a web page
was last modified so that visitors know how old (or new)
the page is. Here’s some code that shows just such a
script:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>Writing Data to the Page</title>

 </head>

 <body>

 This is a regular line of text.

 <script>

 document.write("Last modified: " + document.lastModified)

 </script>

This is another line of regular text.

 </body>

</html>

Notice how the script appears within the body of the
HTML document, which is necessary whenever you want
to write data to the page. Figure 1-2 shows the result.

FIGURE 1-2: When you open the file, the text displays the date and time the

file was last modified.

This script makes use of the documentobject, which is a
built-in JavaScript construct that refers to whatever
HTML file (document) the script resides in (check out
Chapter 6 for more about the document object). The
document.write() statement tells the browser to insert
whatever is within the parentheses to the web page. The
document.lastModified portion returns the date and time
the file was last changed and saved.

What You Need to Get

Started

One of the nicest things about HTML and CSS is that the
hurdles you have to leap to get started are not only short
but few in number. In fact, you really need only two
things, both of which are free: a text editor to enter the
text, tags, and properties; and a browser to view the
results. (You’ll also need a web server to host the
finished pages, but the server isn’t necessary when
you’re creating the pages.) Yes, there are high-end text
editors and fancy graphics programs, but these fall into
the “Bells and Whistles” category; you can create
perfectly respectable web pages without them.
The basic requirements for JavaScript programming are
exactly the same as for HTML: a text editor and a

browser. Again, programs are available to help you write
and test your scripts, but you don’t need them.

Dealing with Two

Exceptional Cases

In this book, I make a couple of JavaScript assumptions
related to the people who’ll be visiting the pages you
post to the web:

Those people have JavaScript enabled in their web

browser.

Those people are using a relatively up-to-date version

of a modern web browser, such as Chrome, Edge,

Safari, or Firefox.

These are pretty safe assumptions, but it pays to be a bit
paranoid and wonder how you may handle the teensy
percentage of people who don’t pass one or both tests.

Handling browsers with JavaScript

turned off
You don’t have to worry about web browsers not being
able to handle JavaScript, because all modern browsers
have supported JavaScript for a very long time. You may,
however, want to worry about people who don’t support
JavaScript. Although rare, some folks have turned off
their browser’s JavaScript functionality. Why would
someone do such a thing? Many people disable
JavaScript because they’re concerned about security,
they don’t want cookies written to their hard drives, and
so on.
To handle these iconoclasts, place the <noscript> tag
within the body of the page:

<noscript>

 <p>

 Hey, your browser has JavaScript turned off!

 </p>

 <p>

 Okay, cool, perhaps you'll prefer this non-JavaScript version of

 the page.

 </p>

</noscript>

If the browser has JavaScript enabled, the browser
doesn’t display any of the text within the <noscript> tag.
However, if JavaScript is disabled, the browser displays
the text and tags within the <noscript> tag to the user.
To test your site with JavaScript turned off, here are the
techniques to use in some popular browsers:

Chrome (desktop): Open Settings, click Privacy and

Security, click Site Settings, click JavaScript, and then

select the Don’t Allow Sites to Use JavaScript option.

Chrome (Android): Open Settings, tap Site Settings,

tap JavaScript, and then tap the JavaScript switch to

off.

Edge: Open Settings, click the Settings menu, click

Cookies and Site Permissions, click JavaScript, and

then click the Allowed switch to off.

Safari (macOS): Open Settings, click the Advanced

tab, select the Show Develop Menu in Menu Bar, and

then close Settings. Choose Develop ⇒ Disable

JavaScript.

Safari (iOS or iPadOS): Open Settings, tap Safari,

tap Advanced, and then tap the JavaScript switch to

off.

Firefox (desktop): In the Address bar, type

about:config and press Enter or Return. If Firefox

displays a warning page, click Accept the Risk and

Continue to display the Advanced Preferences page. In

the Search Preference Name box, type javascript. In

the search results, look for the javascript.enabled

preference. On the far right of that preference, click

the Toggle button to turn the value of the preference

from true to false.

Handling very old browsers
In this book, you learn the version of JavaScript called
ECMAScript 2015, also known as ECMAScript 6, or just
ES6. Why this version, in particular, and not any of the
later versions? Two reasons:

ES6 has excellent browser support, with more than 98

percent of all current browsers supporting the features

released in ES 6. Later versions of JavaScript have less

support.

ES6 has everything you need to add all kinds of useful

and fun dynamic features to your pages. Unless you’re

a professional programmer, the features released in

subsequent versions of JavaScript are way beyond

what you need.

Okay, so what about that couple of percent of browsers
that don’t support ES6?
First, know that the number of browsers that choke on
ES6 features is getting smaller every day. Sure, it’s 2
percent now (about 1.7 percent, actually), but it will be 1
percent in six months, a 0.5 percent in a year, and so on
until the numbers just get too small to measure.
Second, the percentage of browsers that don’t support
ES6 varies by region (it’s higher in many countries in
Africa, for example) and by environment. Most of the

people running browsers that don’t fully support ES6 are
using Internet Explorer 11, and most of those people are
in situations in which they can’t upgrade (some
corporate environments, for example).
If luck has it that your web pages draw an inordinate
share of these older browsers, you may need to eschew
the awesomeness of ES6 in favor of the tried-and-true
features of ECMAScript 5. To that end, as I introduce
each new JavaScript feature, I point out those that
arrived with ES6 and let you know if there’s a simple
fallback or workaround (known as a polyfill in the
JavaScript trade) if you prefer to use ES5.

Commenting Your Code

A script that consists of just a few lines is usually easy to
read and understand. However, your scripts won’t stay
that simple for long, and these longer and more complex
creations will be correspondingly more difficult to read.
(This difficulty will be particularly acute if you’re looking
at the code a few weeks or months after you first coded
it.) To help you decipher your code, it’s good
programming practice to make liberal use of comments
throughout the script. A comment is text that describes
or explains a statement or group of statements.
Comments are ignored by the browser, so you can add as
many as you deem necessary.
For short, single-line comments, use the double-slash
(//). Put the // at the beginning of the line, and then type
your comment after it. Here’s an example:

// Display the date and time the page was last modified

document.write("This page was last modified on " + document.lastModified);

You can also use // comments for two or three lines of
text, as long as you start each line with //. If you have a

comment that stretches beyond that, however, you’re
better off using multiple-line comments that begin with
the /* characters and end with the */ characters. Here’s
an example:

/*

This script demonstrates JavaScript's ability

to write text to the web page by using the

document.write() method to display the date

 and time the web page file was last modified.

This script is Copyright Paul McFedries.

*/

 Although it’s fine to add quite a few comments
when you’re just starting out, you don’t have to add a
comment to everything. If a statement is trivial or its
purpose is glaringly obvious, forget the comment and
move on.

Moving to External

JavaScript Files

Earlier in this chapter, I talk about adding JavaScript
code to a web page by inserting the <script> and </script>
tags into the page header (that is, between the <head> and
</head> tags), or sometimes into the page body (that is,
between the <body> and </body> tags). You then write your
code between the <script> and </script> tags.
Putting a script inside the page in this way isn’t a
problem if the script is relatively short. However, if your
script (or scripts) take up dozens or hundreds of lines,
your HTML code can look cluttered. Another problem
you may run into is needing to use the same code on

multiple pages. Sure, you can just copy the code into
each page that requires it, but if you make changes down
the road, you need to update every page that uses the
code.
The solution to both problems is to move the code out of
the HTML file and into an external JavaScript file.
Moving the code reduces the JavaScript presence in the
HTML file to a single line (as you’ll learn shortly) and
means that you can update the code by editing only the
external file.
Here are some things to note about using an external
JavaScript file:

The file must use a plain text format.

Use the .js extension when you name the file.

Don’t use the <script> tag within the file. Just enter

your statements exactly as you would within an HTML

file.

The rules for when the browser executes statements

within an external file are identical to those used for

statements within an HTML file. That is, statements

outside of functions are executed automatically when

the browser comes across your file reference, and

statements within a function aren’t executed until the

function is called. (Not sure what a “function” is? You

get the full scoop in Chapter 5.)

To let the browser know that an external JavaScript file
exists, add the src attribute to the <script> tag. For
example, if the external file is named myscripts.js, your
<script> tag is set up as follows:

<script src="myscripts.js">

This example assumes that the myscripts.js file is in the
same directory as the HTML file. If the file resides in a
different directory, adjust the src value accordingly. For
example, if the myscripts.js file is in a subdirectory
named scripts, you use this:

<script src="scripts/myscripts.js">

You can even specify a file from another site (presumably
your own!) by specifying a full URL as the src value:

<script src="http://www.host.com/myscripts.js">

As an example, the following code shows a one-line
external JavaScript file named footer.js:

document.write("This page is Copyright " + new Date().getFullYear());

This statement writes the text “Copyright” followed by
the current year. (I know: This code looks like some real
gobbledygook right now. Don’t sweat it, because you’ll
learn exactly what’s going on here when I discuss the
JavaScript Date object in Chapter 8.)
The following code shows an HTML file that includes a
reference for the external JavaScript file:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>Using an External JS File</title>

 </head>

 <body>

 <p>

 Regular page doodads go here.

 </p>

 <hr>

 <footer>

 <script src="footer.js">

 </script>

 </footer>

 </body>

</html>

When you load the page, the browser runs through the
HTML line by line. When it gets to the <footer> tag, it
notices the external JavaScript file that’s referenced by
the <script> tag. The browser loads that file and then
runs the code within the file, which writes the Copyright
message to the page, as shown in Figure 1-3.

FIGURE 1-3: This page uses an external JavaScript file to display a footer

message.

Chapter 2

Programming with

Variables

IN THIS CHAPTER

 Understanding variables

 Assigning names to variables

 Introducing JavaScript data types

 Figuring out numbers

 Stringing strings together

By default, JavaScript programs live a life without short-
term memory. The web browser executes your code one
statement at a time until there are no more statements
left to process. It all happens in the perpetual present.
Ah, but notice that I refer to this lack of short-term
memory as the “default” state of your scripts. It’s not the
only state, so that means things can be different. You
have the power to give your scripts the gift of short-term
memory, and you do that by using handy little chunks of
code called variables. In this chapter, you delve into
variables, which is a fundamental and crucial
programming topic. You investigate what variables are,
what you can do with them, and how to wield them in
your JavaScript code.

Getting Your Head around

Variables

Why would a script need short-term memory? Because
one of the most common concepts that crops up when
coding is the need to store a temporary value for use
later on. In most cases, you want to use that value a bit
later in the same script. However, you may also need to
use it in some other script, to populate an HTML form, or
as part of a larger or more complex calculation.
For example, your page may have a button that toggles
the page text between a larger font size and the regular
font size, so you need some way to “remember” that
choice. Similarly, if your script performs calculations,
you may need to set aside one or more calculated values
to use later. For example, if you’re constructing a
shopping cart script, you may need to calculate taxes on
the order. To do that, you must first calculate the total
value of the order, store that value, and then later take a
percentage of it to work out the tax.
In programming, the way you save a value for later use is
by storing it in a variable. A variable is a small area of
computer memory that’s set aside for holding a chunk of
program data. The good news is that the specifics of how
the data is stored and retrieved from memory happen
well behind the scenes, so it isn’t something you ever
have to worry about. As a coder, working with variables
involves just three things:

Creating (or declaring) variables

Assigning values to those variables

Including the variables in other statements in your

code

The next three sections fill in the details.

Declaring a variable with let

The process of creating a variable is called declaring in
programming terms. All declaring really means is that
you’re supplying the variable with a name and telling the
browser to set aside a bit of room in memory to hold
whatever value you end up storing in the variable. To
declare a variable in JavaScript, you use the let keyword,
followed by a space, the name of the variable, and the
usual line-ending semicolon. For example, to declare a
variable named interestRate, you use the following
statement:

let interestRate;

 Here are a few things to bear in mind when you’re
declaring variables in your scripts:

Declare a variable only once: Although you’re free

to use a variable as many times as you need to within

a script, you declare the variable only once. Trying to

declare a variable more than once will cause an error.

Use a comment to describe each variable:

Variables tend to proliferate to the point where it often

becomes hard to remember what each variable

represents. You can make the purpose of each variable

clear by adding a comment right after the variable

declaration, like so:

let interestRate; // Annual interest rate for loan calculation

Declare each variable before you use it: If you use
a variable before you declare it, you’ll get an error.

 In the first two items here, when I say that
you’ll “get an error,” I don’t mean that an error

message will pop up on the screen. The only thing
you’ll notice is that your script doesn’t run. To read
the error message, you need to access your browser’s
web development tools, a task I go into in satisfying
detail in Chapter 9.
Declare each variable right before you first use

it: You’ll make your programming and debugging

(refer to Chapter 9) life much easier if you follow this

one simple rule: Declare each variable just before (or

as close as possible to) the first use of the variable.

 The let keyword was introduced in ECMAScript
2015 (ES6). If you need to support really old
browsers — I’m looking at you, Internet Explorer 11
and earlier — then use the var keyword instead.

Storing a value in a variable
After your variable is declared, your next task is to give it
a value. You use the assignment operator — the equals
(=) sign — to store a value in a variable, as in this general
statement:

variableName = value;

Here’s an example that assigns the value 0.06 to a
variable named interestRate:

interestRate = 0.06;

Note, too, that if you know the initial value of the
variable in advance, you can combine the declaration
and initial assignment into a single statement, like this:

let interestRate = 0.06;

It’s important to remember that, given a variable
declared with the let keyword, you’re free to change that

variable’s value any time you want. For example, if the
value you assign to the interestRate variable is an annual
rate, later on your code may need to work with a monthly
rate, which is the annual rate divided by 12. Rather than
calculate that by hand, just put it in your code using the
division operator (/):

interestRate = 0.06 / 12;

As a final note about using a variable assignment, take a
look at a variation that often causes some confusion
among new programmers. Specifically, you can set up a
statement that assigns a new value to a variable by
changing its existing value. Here’s an example:

interestRate = interestRate / 12;

If you’ve never come across this kind of statement
before, it probably looks a bit illogical. How can
something equal itself divided by 12? The secret to
understanding such a statement is to remember that the
browser always evaluates the right side of the statement
— that is, the expression to the right of the equals sign
(=) — first. In other words, it takes the current value of
interestRate, which is 0.06, and divides it by 12. The
resulting value is what’s stored in interestRate when all is
said and done. For a more in-depth discussion of
operators and expressions, head over to Chapter 3.

 Because of this evaluate-the-expression-and-then-
store-the-result behavior, JavaScript assignment
statements shouldn’t be read as “variable equals

expression.” Instead, it makes more sense to think of
them as “variable is set to expression” or “variable
assumes the value given by expression.” Reading
assignment statements this way helps to reinforce

the important concept that the expression result is
being stored in the variable.

Checking out another way to declare

a variable: const

The word variable implies that the value assigned to a
variable is allowed to vary, which is the case for most
variables you declare. Most, but not all. Sometimes your
scripts will need to use a value that remains constant.
For example, suppose you’re building a calculator that
converts miles to kilometers. The conversion factor is
1.60934, and that value will remain constant throughout
your script.
It’s good programming practice to store such values in a
variable for easier reading. However, if you use let for
this declaration, you run the risk of accidentally
changing the value somewhere in your code because
variables declared with let can change.
To avoid accidentally changing a value that you want to
remain constant, you can declare the variable using the
const keyword instead. Here’s the general syntax:

const variableName = value;

Note that, unlike with let, you must assign a value to the
variable when you declare it with const. Here’s an
example that declares a variable named milesToKilometers
and assigns it the value 1.60934:

const milesToKilometers = 1.60934;

 Are there any real advantages to using const over
let in cases where a variable’s value must never
change? Yep, there are two pretty good ones:

Using the const keyword is a reminder that you’re

dealing with a nonchanging value, which helps you to

remember not to assign the variable a new value.

If you do try to change the value of a variable declared

with const, you’ll generate an error, which is another

way to remind you that the variable’s value is not to

be messed with.

 Given these advantages, many JavaScript
programmers declare every variable with const and
use let only for the variables that they know will
change. As your code progresses, if you find that a
const variable needs to change, you can go back and
change const to let.

Using variables in statements
With your variable declared and assigned a value, you
can then use that variable in other statements. When the
browser comes across the variable, it goes to the
computer’s memory, retrieves the current value of the
variable, and then substitutes that value into the
statement. The following code presents an example:

let interestRate = 0.06;

interestRate = interestRate / 12;

document.write(interestRate);

This code declares a variable named interestRate with the
value 0.06; it then divides that value by 12 and stores the
result in the variable. The document.write() statement then
displays the current value of the variable, as shown in
Figure 2-1.

FIGURE 2-1: The browser substituting the current value of a variable.

The following code shows a slightly different example:
let firstName;

firstName = prompt("Please tell me your first name:");

document.write("Welcome to my website, " + firstName);

This script uses the prompt() method (explained shortly)
to ask the user to enter their first name, as shown in
Figure 2-2. When the user clicks OK, their name is stored
in the firstName variable. The script then uses a
document.write() statement to display a personalized
welcome message using the value of the firstName
variable, as shown in Figure 2-3.

FIGURE 2-2: The script first prompts for the user’s first name.

FIGURE 2-3: The script then uses the name to display a personalized welcome

message.

 When you need to get data from the user, run the
prompt() method:

prompt(string, default);

Here’s what the various parts are:

string: A string that instructs the user what to enter

into the prompt box.

default: An optional string that specifies the initial

value that appears in the prompt box.

The prompt() method always returns a value:

If the user clicks OK, prompt() returns the value entered

into the prompt text box.

If the user clicks Cancel, prompt() returns null.

Naming Variables: Rules

and Best Practices

If you want to write clear, easy-to-follow, and easy-to-
debug scripts (and who doesn’t?), you can go a long way
toward that goal by giving careful thought to the names
you use for your variables. This section helps by running
through the rules you need to follow and by giving you
some tips and guidelines for creating good variable
names.

Rules for naming variables
JavaScript has only a few rules for variable names:

The first character must be a letter or an underscore

(_). You can’t use a number as the first character.

The rest of the variable name can include any letter,

any number, or the underscore. You can’t use any

other characters, including spaces, symbols, and

punctuation marks.

As with the rest of JavaScript, variable names are case

sensitive. That is, a variable named InterestRate is

treated as an entirely different variable than one

named interestRate.

There’s no limit to the length of the variable name.

You can’t use one of JavaScript’s reserved words as a

variable name (such as let, const, var, alert, or prompt).

All programming languages have a supply of words

that are used internally by the language and that can’t

be used for variable names, because doing so would

cause confusion (or worse).

Ideas for good variable names
The process of declaring a variable doesn’t take much
thought, but that doesn’t mean you should just type in
any old variable name that comes to mind. Take a few
extra seconds to come up with a good name by following
these guidelines:

Make your names descriptive. Sure, using names

that are just a few characters long makes them easier

to type, but I guarantee you that you won’t remember

what the variables represent when you look at the

script down the road. For example, if you want a

variable to represent an account number, use

accountNumber or accountNum instead of, say, acnm or

accnum.

Mostly avoid single-letter names. Although
it’s best to avoid single-letter variable names, such
short names are accepted in some places, such as
when constructing loops, as described in Chapter 4.
Use multiple words with no spaces. The best way

to create a descriptive variable name is to use multiple

words. However, because JavaScript doesn’t take

kindly to spaces in names, you need some way of

separating the words to keep the name readable. The

two standard conventions for using multi-word variable

names are camelCase, where you cram the words

together and capitalize all but the first word (for

example, lastName), or to separate each word with an

underscore (for example, last_name). I prefer the former

style, so I use it throughout this book.

Use separate naming conventions. Use one

naming convention for JavaScript variables and a

different one for HTML identifiers and CSS classes. For

example, if you use camelCase for multiword

JavaScript variables, use dashes to separate words for

id values and class names.

Differentiate your variable names from

JavaScript keywords. Try to make your variable

names look as different from JavaScript’s keywords

and other built-in terms (such as alert) as possible.

Differentiating variable names helps avoid the

confusion that can arise when you look at a term and

you can’t remember if it’s a variable or a JavaScript

word.

Don’t make your names too long. Although short,

cryptic variable names are to be shunned in favor of

longer, descriptive names, that doesn’t mean you

should be using entire sentences. Extremely long

names are inefficient because they take so long to

type, and they’re dangerous because the longer the

name, the more likely you are to make a typo. Names

of 2 to 4 words and 8 to 20 characters should be all

you need.

Understanding Literal

Data Types

In programming, a variable’s data type specifies what
kind of data is stored within the variable. The data type
is a crucial idea because it determines not only how two
or more variables are combined (for example,
mathematically), but also whether they can be combined
at all. Literals are a special class of data type, and they
cover those values that are fixed (even if only
temporarily). For example, consider the following
variable assignment statement:

let todaysQuestion = "What color is your parachute?";

Here, the text "What color is your parachute?" is a literal
string value. JavaScript supports three kinds of literal
data types: numeric, string, and Boolean. The next three
sections discuss each type.

Working with numeric literals
Unlike many other programming languages, JavaScript
treats all numbers the same, so you don’t have to do
anything special when working with the two basic
numeric literals, which are integers and floating-point
numbers:

Integers: These are numbers that don’t have a

fractional or decimal part. So, you represent an integer

using a sequence of one or more digits, as in these

examples:

0

42

2001

-20

Floating-point numbers: These are numbers that do

have a fractional or decimal part. Therefore, you

represent a floating-point number by first writing the

integer part, followed by a decimal point, followed by

the fractional or decimal part, as in these examples:

0.07

3.14159

-16.6666667

7.6543e+21

1.234567E-89

Exponential notation

The last two floating-point examples require a bit more
explanation. These two use exponential notation, which
is an efficient way to represent really large or really
small floating-point numbers. Exponential notation uses
an e (or E) followed by the exponent, which is a number
preceded by a plus sign (+) or a minus sign (-).
You multiply the first part of the number (that is, the
part before the e or E) by 10 to the power of the
exponent. Here’s an example:

9.87654e+5;

The exponent is 5, and 10 to the power of 5 is 100,000.
So, multiplying 9.87654 by 100,000 results in the value
987,654.
Here’s another example:

3.4567e-4;

The exponent is -4, and 10 to the power of -4 is 0.0001.
So, multiplying 3.4567 by 0.0001 results in the value
.00034567.

Hexadecimal integer values

You’ll likely deal with the usual decimal (base-10)
number system throughout most of your JavaScript
career. However, just in case you have cause to work
with hexadecimal (base-16) numbers, this section shows
you how JavaScript deals with them.
The hexadecimal number system uses the digits 0
through 9 and the letters A through F (or a through f),
where these letters represent the decimal numbers 10
through 15. So, what in the decimal system would be 16
is actually 10 in hexadecimal. To specify a hexadecimal
number in JavaScript, begin the number with a 0x (or
0X), as shown in the following examples:

0x23;

0xff;

0X10ce;

Working with string literals

A string literal is a sequence of one or more letters,
numbers, or punctuation marks, enclosed either in
double quotation marks (") or single quotation marks (').
Here are some examples:

"JavaScript Essentials";

'August 23, 1959';

"";

"What's the good word?";

 The string "" (or '' — two consecutive single
quotation marks) is called the null string. It

represents a string that doesn’t contain any
characters.

Using quotation marks within strings

The final example in the previous section shows that it’s
okay to insert one or more instances of one of the
quotation marks (such as ') inside a string that’s
enclosed by the other quotation mark (such as "). Being
able to nest quotation marks comes in handy when you
need to embed one string inside another, which is very
common (particularly when using bits of JavaScript
within HTML tags). Here’s an example:

onsubmit="processForm('testing')";

However, it’s illegal to insert in a string one or more
instances of the same quotation mark that encloses the
string, as in this example:

"This is "illegal" in JavaScript.";

Understanding escape sequences

What if you must include, say, a double quotation mark
within a string that’s enclosed by double quotation
marks? Having to nest the same type of quotation mark
is rare, but it is possible if you precede the double
quotation mark with a backslash (\), like this:

"The double quotation mark (\") encloses this string.";

The \" combination is called an escape sequence. You
can combine the backslash with a number of other
characters to form other escape sequences, and each one
enables the browser to represent a character that, by
itself, would be illegal or not representable otherwise.
Table 2-1 lists the most commonly used escape
sequences.

TABLE 2-1 Common JavaScript Escape

Sequences

Escape Sequence Character It Represents

\' Single quotation mark

\" Double quotation mark

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Tab

\\ Backslash

The following code shows an example script that uses the
\n escape sequence to display text on multiple lines with
an alert box.

alert("This is line 1.\nSo what. This is line 2.");

Figure 2-4 shows the result.

FIGURE 2-4: Using the \n escape sequence enables you to format text so that it

displays on different lines.

To learn how to combine two or more string literals,
check out Chapter 3. Also, JavaScript has a nice
collection of string manipulation features, which I
discuss in Chapter 8.

Working with Boolean literals
Booleans are the simplest of all the literal data types
because they can assume only one of two values: true or
false. That simplicity may make it seem as though
Booleans aren’t particularly useful, but the capability to
test whether a particular variable or condition is true or
false is invaluable in JavaScript programming.
You can assign Boolean literals directly to a variable, like
this:

taskCompleted = true;

Alternatively, you can work with Boolean values
implicitly using expressions:

currentMonth === "August"

The comparison expression currentMonth === "August" asks
the following: Does the value of the currentMonth variable
equal the string "August"? If it does, the expression
evaluates to the Boolean value true; if it doesn’t, the
expression evaluates to false. I discuss much more about
comparison expressions in Chapter 3.

Chapter 3

Building Expressions

IN THIS CHAPTER

 Understanding what expressions are

 Figuring out numeric expressions

 Tying up string expressions

 Getting the hang of comparison expressions

 Learning about logical expressions

When coding in JavaScript, you use expressions
constantly, so it’s vital to understand what they are and
to get comfortable with the types of expressions that are
available to you. Every JavaScript coder is different, but I
can say without fear of contradiction that every good

JavaScript coder is fluent in expressions.
This chapter takes you through everything you need to
know about expressions. You discover some expression
basics and then explore a number of techniques for
building powerful expressions using numbers, strings,
and Boolean values.

Understanding How

Expressions Are

Structured

A JavaScript expression takes one or more inputs, such
as a bill total and a tip percentage, and combines them in

some way — for example, by using multiplication. In
expression lingo, the inputs are called operands, and
they’re combined by using special symbols called
operators.

operand: An input value for an expression. It is, in

other words, the raw data that the expression

manipulates to produce its result. It could be a

number, a string, a variable, a function result (refer to

Chapter 5), or an object property (refer to Chapter 6).

operator: A symbol that represents a particular action

performed on one or more operands. For example, the

* operator represents multiplication, and the + operator

represents addition. I discuss the various JavaScript

operators throughout this chapter.

For example, here’s an expression that calculates a tip
amount and assigns the result to a variable:

tipAmount = billTotal * tipPercentage;

The expression is everything to the right of the equals
sign (=). Here, billTotal and tipPercentage are the
operands, and the multiplication sign (*) is the operator.

Creating Numeric

Expressions

In JavaScript, a mathematical calculation is called a
numeric expression, and it combines numeric operands
and arithmetic operators to produce a numeric result.
This section discusses all the JavaScript arithmetic
operators and shows you how best to use them to build
useful and handy numeric expressions.

Table 3-1 lists the basic arithmetic operators you can use
in your JavaScript expressions.
JavaScript also comes with a few extra operators that
combine some of the arithmetic operators and the
assignment operator, which is the humble equals sign (=)
that assigns a value to a variable. Table 3-2 lists these so-
called arithmetic assignment operators.

TABLE 3-1 The JavaScript Arithmetic

Operators

Operator Name Example Result

+ Addition 10 + 4 14

++ Increment 10++ 11

- Subtraction 10 - 4 6

- Negation -10 -10

-- Decrement 10-- 9

* Multiplication 10 * 4 40

/ Division 10 / 4 2.5

% Modulus 10 % 4 2

TABLE 3-2 The JavaScript Arithmetic

Assignment Operators

Operator Example Equivalent

+= x += y x = x + y

-= x -= y x = x - y

*= x *= y x = x * y

/= x /= y x = x / y

^= x ^= y x = x ^ y

%= x %= y x = x % y

Building String

Expressions

A string expression is one where at least one of the
operands is a string, and the result of the expression is
another string. String expressions are straightforward in
the sense that there is only one operator to deal with:
concatenation (+). You use this operator to combine (or
concatenate) strings within an expression. For example,
the expression "Java" + "Script" returns the string
"JavaScript". Note, however, that you can also use strings
with the comparison operators discussed in the next
section.

Building Comparison

Expressions

You use comparison expressions to compare the values
of two or more numbers, strings, variables, properties, or
function results. If the expression is true, the expression
result is set to the Boolean value true; if the expression is
false, the expression result is set to the Boolean value
false. You’ll use comparisons with alarming frequency in
your JavaScript code, so it’s important to understand
what they are and how you use them.
Table 3-3 summarizes JavaScript’s comparison operators.

TABLE 3-3 The JavaScript Comparison

Operators

Operator Name Example Result

== Equality 10 == 4 false

Operator Name Example Result

!= Inequality 10 != 4 true

> Greater than 10 > 4 true

< Less than 10 < 4 false

>= Greater than or equal 10 >= 4 true

<= Less than or equal 10 <= 4 false

=== Strict equality "10" === 10 false

!== Strict inequality "10" !== 10 true

Building Logical

Expressions

You use logical expressions to combine or manipulate
Boolean values, particularly comparison expressions. For
example, if your code needs to test whether two different
comparison expressions are both true before proceeding,
you can do that with a logical expression.
Table 3-4 lists JavaScript’s logical operators.

TABLE 3-4 The JavaScript Logical Operators

Operator Name
General

Syntax
Returned Value

&& AND expr1&&expr2
true if both expr1 and expr2 are true; false

otherwise.

|| OR expr1||expr2
true if one or both of expr1 and expr2 are

true; false otherwise.

! NOT !expr true if expr is false; false if expr is true.

Understanding Operator

Precedence

In complex expressions, the order in which the
calculations are performed becomes crucial. For
example, consider the expression 3+5*2. If you calculate
from left to right, the answer you get is 16 (3+5 equals 8,
and 8*2 equals 16). However, if you perform the
multiplication first and then the addition, the result is 13
(5*2 equals 10, and 3+10 equals 13).
To control this ordering problem, JavaScript evaluates an
expression according to a predefined order of

precedence. This order of precedence lets JavaScript
calculate an expression unambiguously by determining
which part of the expression it calculates first, which
part second, and so on.

The order of precedence
The order of precedence that JavaScript uses is
determined by the various expression operators that I’ve
covered so far in this chapter. Table 3-5 summarizes the
complete order of precedence used by JavaScript.
For example, Table 3-5 tells you that JavaScript performs
multiplication before addition. Therefore, the correct
answer for the expression 3+5*2 (just discussed) is 13.

TABLE 3-5 The JavaScript Order of Precedence

for Operators

Operator Operation
Order of

Precedence

Order of

Evaluation

++ Increment First R -> L

-- Decrement First R -> L

Operator Operation
Order of

Precedence

Order of

Evaluation

— Negation First R -> L

! NOT First R -> L

*, /, %
Multiplication, division,

modulus
Second L -> R

+, — Addition, subtraction Third L -> R

+ Concatenation Third L -> R

<, <=
Less than, less than or

equal
Fourth L -> R

>, >=
Greater than, greater than

or equal
Fourth L -> R

== Equality Fifth L -> R

!= Inequality Fifth L -> R

=== Strict equality Fifth L -> R

!== Strict inequality Fifth L -> R

&& AND Sixth L -> R

|| OR Sixth L -> R

?: Ternary Seventh R -> L

= Assignment Eighth R -> L

+=, -=, etc. Arithmetic assignment Eighth R -> L

Controlling the order of precedence
Sometimes you want to take control of the situation and
override the order of precedence. That may seem like a
decidedly odd thing to do, so perhaps an example is in
order. Suppose you know the final price of an item and,
given the tax rate, you want to know the original (that is,
pre-tax) price.
A first pass at the JavaScript calculation may look
something like this:

retailPrice = totalPrice / 1 + taxRate;

This won’t work, though. Why not? Well, according to the
rules of precedence, JavaScript performs division before
addition, so the totalPrice value first is divided by 1 and
then is added to the taxRate value, which isn’t the correct
order.
To get the correct answer, you have to override the order
of precedence so that the addition 1 + taxRate is
performed first. You override precedence by surrounding
that part of the expression with parentheses, as shown in
the following code:

const retailPrice = totalPrice / (1 + taxRate);

In general, you can use parentheses to control the order
that JavaScript uses to calculate expressions. Terms
inside parentheses are always calculated first; terms
outside parentheses are calculated sequentially
(according to the order of precedence).

Chapter 4

Controlling the Flow of

JavaScript

IN THIS CHAPTER

 Setting up your code to make decisions

 Understanding code looping

 Setting up code loops

With the default script flow, the browser processes the
code inside a script element or an external JavaScript file
one statement at a time. The browser reads and then
executes the first statement, reads and then executes the
second statement, and so on until it has no more
JavaScript left to read and execute.
That statement-by-statement flow seems reasonable, but
it’s extremely limited. What if you want your code to test
some condition and then branch to a specific chunk of
code depending on the result of that test? What if you
want your code to repeat some statements multiple
times, with some change occurring in each repetition?
Code that runs tests and code that repeats itself all fall
under the rubric of controlling the flow of JavaScript. In
this chapter, you explore this fascinating and powerful
subject.

Decision-Making with if

Statements

A smart script performs tests on its environment and
then decides what to do next based on the results of each
test. For example, suppose you’ve declared a variable
that you later use as a divisor in an expression. You
should test the variable before using it in the expression
to make sure that the variable’s value isn’t 0.
The most basic test is the simple true/false decision
(which could also be thought of as a yes/no or an on/off
decision). In this case, your program looks at a certain
condition, determines whether it’s currently true or
false, and acts accordingly. Comparison and logical
expressions (covered in Chapter 3) play a big part here
because they always return a true or false result.
In JavaScript, simple true/false decisions are handled by
the if statement. You can use either the single-line

syntax:
if (expression) statement;

or the block syntax:
if (expression) {

statement1;

statement2;

 …

}

In both cases, expression is a comparison or logical
expression that returns true or false, and statement(s)
represent the JavaScript statement or statements to run
if expression returns true. If expression returns false,
JavaScript skips over the statements.

 This is a good place to note that JavaScript defines
the following values as the equivalent of false: 0, ""

(that is, the empty string), null, and undefined.
Everything else is the equivalent of true.

 This is the first time you’ve encountered
JavaScript’s braces ({ and }), so take a second to
understand what they do because they come up a lot.
The braces surround one or more statements that
you want JavaScript to treat as a single entity. This
entity is a kind of statement itself, so the whole
caboodle — the braces and the code they enclose —
is called a block statement. Also, any JavaScript
construction that consists of a statement (such as if)
followed by a block statement is called a compound

statement. And, just to keep you on your toes, note
that the lines that include the braces don’t end with
semicolons.

Whether you use the single-line or block syntax depends
on the statements you want to run if the expression
returns a true result. If you have only one statement, you
can use either syntax. If you have multiple statements,
use the block syntax.
Consider the following example:

if (totalSales != 0) {

 const grossMargin = (totalSales - totalExpenses) / totalSales;

}

This code assumes that earlier, the script has calculated
the total sales and total expenses, which are stored in
the totalSales and totalExpenses variables, respectively.
The code now calculates the gross margin, which is
defined as gross profit (that is, sales minus expenses)
divided by sales. The code uses if to test whether the
value of the totalSales variable is not equal to zero. If the

totalSales != 0 expression returns true, the grossMargin
calculation is executed; otherwise, nothing happens. The
if test in this example is righteous because it ensures
that the divisor in the calculation — totalSales — is never
zero.

Branching with if…else

Statements

Using the if statement to make decisions adds a
powerful new weapon to your JavaScript arsenal.
However, the simple version of if suffers from an
important limitation: A false result only bypasses one or
more statements; it doesn’t execute any of its own. This
is fine in many cases, but there will be times when you
need to run one group of statements if the condition
returns true and a different group if the result is false. To
handle these scenarios, you need to use an if…else
statement:

if (expression) {

 statements-if-true

} else {

 statements-if-false

}

The expression is a comparison or logical expression that
returns true or false. statements-if-true represents the
block of statements you want JavaScript to run if
expression returns true, and statements-if-false represents
the block of statements you want executed if expression
returns false.
As an example, consider the following code:

let discountRate;

if (currMonth === "December") {

 discountRate = 0.2;

} else {

 discountRate = 0.1;

}

const discountedPrice = regularPrice * (1 – discountRate);

This code calculates a discounted price of an item, where
the discount depends on whether the current month is
December. The code assumes that earlier, the script set
the value of the current month (currMonth) and the item’s
regular price (regularPrice). After declaring the
discountRate variable, an if…else statement checks
whether currMonth equals December. If it does,
discountRate is set to 0.2; otherwise, discountRate is set to
0.1. Finally, the code uses the discountRate value to
calculate discountedPrice.

if…else statements are much easier to read when
you indent the statements within each block, as I’ve
done in my examples. This indentation lets you easily
identify which block will run if there is a true result
and which block will run if the result is false. I find
that an indent of four spaces does the job, but many
programmers prefer either two spaces or a tab.

Understanding the Value

of Code Looping

There are some who would say that the only real goal of
the programmer should be to get the job done. As long as
the code produces the correct result or performs the
correct tasks in the correct order, everything else is
superfluous. Perhaps, but real programmers know that
the true goal of programming is not only to get the job
done, but to get it done as efficiently as possible.

Efficient scripts run faster, take less time to code, and
are usually (not always, but usually) easier to read and
troubleshoot.
One of the best ways to introduce efficiency into your
coding is to avoid reinventing too many wheels. For
example, consider the following code fragment:

let sum = 0;

let num = prompt("Type a number:", 1);

sum += Number(num);

num = prompt("Type a number:", 1);

sum += Number(num);

num = prompt("Type a number:", 1);

sum += Number(num);

document.write("The total of your numbers is " + sum);

This code first declares a variable named sum. The code
prompts the user for a number (using the prompt method
with a default value of 1) that gets stored in the num
variable, adds that value to sum, and then repeats this
prompt-and-sum routine two more times. (Note my use of
the Number function, which ensures that the value
returned by prompt is treated as a number rather than a
string.) Finally, the sum of the three numbers is
displayed to the user.
Besides being a tad useless, this code just reeks of
inefficiency because most of the code consists of the
following two lines appearing three times:

num = prompt("Type a number:", 1);

sum += Number(num);

Wouldn’t it be more efficient if you put these two
statements just once in the code and then somehow get
JavaScript to repeat these statements as many times as
necessary?
Why, yes, it would, and the good news is that not only is
it possible to do this, but JavaScript also gives you a
number of different methods to perform this so-called

looping. I spend the rest of this chapter investigating
each of these methods.

Working with while Loops

The most straightforward of the JavaScript loop
constructions is the while loop, which uses the following
syntax:

while (expression) {

 statements

}

Here, expression is a comparison or logical expression
(that is, an expression that returns true or false) that, as
long as it returns true, tells JavaScript to keep executing
the statements within the block.
Essentially, JavaScript interprets a while loop as follows:
“Okay, as long as expression remains true, I’ll keep
running through the loop statements, but as soon as
expression becomes false, I’m out of there.”
Here’s a closer look at how a while loop works:

1. Evaluate the expression in the while statement.

2. If expression is true, continue with Step 3; if expression is

false, skip to Step 5.

3. Execute each of the statements in the block.

4. Return to Step 1.

5. Exit the loop (that is, execute the next statement that

occurs after the while block).

The following code demonstrates how to use while to
rewrite the inefficient code shown in the previous
section:

let sum = 0;

let counter = 1;

let num;

while (counter <= 3) {

 num = prompt("Type a number:", 1);

 sum += Number(num);

 counter += 1;

}

document.write("The total of your numbers is " + sum);

To control the loop, the code declares a variable named
counter and initializes it to 1, which means that the
expression counter <= 3 is true, so the code enters the
block, does the prompt-and-sum thing, and then
increments counter. This is repeated until the third time
through the loop, when counter is incremented to 4, at
which point the expression counter <= 3 becomes false
and the loop is done.

 To make your loop code as readable as possible,
always use a two- or four-space indent for each
statement in the while block. The same applies to the
for and do…while loops that I talk about later in this
chapter.

The while statement isn’t the greatest loop choice when
you know exactly how many times you want to run
through the loop. For that, use the for statement,
described in the next section. The best use of the while
statement is when your script has some naturally
occurring condition that you can turn into a comparison
expression. A good example is when you’re prompting
the user for input values. You’ll often want to keep
prompting the user until they click the Cancel button.
The easiest way to set that up is to include the prompt
inside a while loop, as shown here:

let sum = 0;

let num = prompt("Type a number or click Cancel:", 1);

while (num != null) {

 sum += Number(num);

 num = prompt("Type a number or click Cancel:", 1);

}

document.write("The total of your numbers is " + sum);

The first prompt method displays a dialog box like the one
shown in Figure 4-1 to get the initial value; then it stores
it in the num variable.

FIGURE 4-1: Set up your while expression so that the prompting stops when the

user clicks the Cancel button.

Then the while statement checks the following
expression:

num != null

Two things can happen here:

If the user enters a number, this expression returns

true and the loop continues. In this case, the value of

num is added to the sum variable, and the user is

prompted for the next number.

If the user clicks Cancel, the value returned by prompt is

null, so the expression becomes false and the looping

stops.

Working with for Loops

Although while is the most straightforward of the
JavaScript loops, the most common type by far is the for
loop. This fact is slightly surprising when you consider
(as you will shortly) that the for loop’s syntax is a bit
more complex than that of the while loop. However, the
for loop excels at one thing: looping when you know
exactly how many times you want to repeat a group of
statements. This is extremely common in all types of
programming, so it’s no wonder for is so often used in
scripts.
The structure of a typical for loop looks like this:

for (let counter = start; counterExpression; counterUpdate) {

 statements

}

There’s a lot going on here, so I’ll take it one bit at a
time:

counter: A numeric variable used as a loop counter. The

loop counter is a number that counts how many times

the procedure has gone through the loop. (Note that

you need to include let only if this is the first time

you’ve used the variable in the script.)

start: The initial value of counter. This value is usually

1, but you can use whatever value makes sense for

your script.

counterExpression: A comparison or logical expression

that determines the number of times through the loop.

This expression usually compares the current value of

counter to some maximum value.

counterUpdate: An expression that changes the value of

counter. This expression is evaluated after each turn

through the loop. Most of the time, you’ll increment

the value of counter with the expression counter+= 1.

statements: The statements you want JavaScript to

execute each time through the loop.

When JavaScript stumbles upon the for statement, it
changes into its for-loop outfit and follows this seven-
step process:

1. Set counter equal to start.

2. Evaluate the counterExpression in the for statement.

3. If counterExpression is true, continue with Step 4; if

counterExpression is false, skip to Step 7.

4. Execute each of the statements in the block.

5. Use counterUpdate to increment (or whatever) counter.

6. Return to Step 2.

7. Exit the loop (that is, execute the next statement that

occurs after the for block).

As an example, the following code shows how to use for
to rewrite the inefficient code shown earlier in this
chapter:

let sum = 0;

let num;

for (let counter = 1; counter <= 3; counter += 1) {

 num = prompt("Type a number:", 1);

 sum += Number(num);

}

document.write("The total of your numbers is " + sum);

This is the most efficient version yet because the
declaring, initializing, and incrementing of the counter
variable all take place within the for statement.

 To keep the number of variables declared in a
script to a minimum, always try to use the same
name in all your for loop counters. The letters i
through n traditionally are used for counters in
programming. For greater clarity, you may prefer
full words, such as count or counter.

Here’s a slightly more complex example:
let sum = 0;

for (let counter = 1; counter < 4; counter += 1) {

 let num;

 let ordinal;

 switch (counter) {

 case 1:

 ordinal = "first";

 break;

 case 2:

 ordinal = "second";

 break;

 case 3:

 ordinal = "third";

 }

 num = prompt("Enter the " + ordinal + " number:", 1);

 sum += Number(num);

}

document.write("The average is " + sum / 3);

The purpose of this script is to ask the user for three
numbers and then to display the average of those values.
The for statement is set up to loop three times. (Note
that counter < 4 is the same as counter <= 3.) The first
thing the loop block does is use switch to determine the
value of the ordinal variable: If counter is 1, ordinal is set
to "first"; if counter is 2, ordinal becomes "second"; and so
on. These values enable the script to customize the prompt
message with each pass through the loop (check out
Figure 4-2). With each loop, the user enters a number,

and that value is added to the sum variable. When the loop
exits, the average is displayed.

FIGURE 4-2: This script uses the current value of the counter variable to

customize the prompt message.

It’s also possible to use for to count down. You do this by
using the subtraction assignment operator instead of the
addition assignment operator:

for (let counter = start; counterExpression; counter -= 1) {

 statements

}

In this case, you must initialize the counter variable to the
maximum value you want to use for the loop counter, and
use the counterExpression to compare the value of counter
to the minimum value you want to use to end the loop.
In the following example, I use a decrementing counter
to ask the user to rank, in reverse order, their top three
CSS colors:

for (let rank = 3; rank >= 1; rank -= 1) {

 let ordinal;

 let color;

 switch (rank) {

 case 1:

 ordinal = "first";

 break;

 case 2:

 ordinal = "second";

 break;

 case 3:

 ordinal = "third";

 }

 color = prompt("What is your " + ordinal + "-favorite CSS color?", "");

 document.write(rank + ". " + color + "
");

}

The for loop runs by decrementing the rank variable from
3 down to 1. Each iteration of the loop prompts the user
to type a favorite CSS color, and that color is written to
the page, with the current value of rank being used to
create a reverse-ordered list, as shown in Figure 4-3.

FIGURE 4-3: The decrementing value of the rank variable is used to create a

reverse-ordered list.

 There’s no reason why the for loop counter has to
be only incremented or decremented. You’re actually
free to use any expression to adjust the value of the
loop counter. For example, suppose you want the
loop counter to run through only the odd numbers 1,
3, 5, 7, and 9. Here’s a for statement that will do
that:

for (let counter = 1; counter <= 9; counter += 2)

The expression counter += 2 uses the addition assignment
operator to tell JavaScript to increase the counter variable

by 2 each time through the loop.

Working with do…while

Loops

JavaScript has a third and final type of loop that I’ve left
until the last because it isn’t one that you’ll use all that
often. To understand when you might use it, consider
this code snippet:

let sum = 0;

let num = prompt("Type a number or click Cancel:", 1);

while (num != null) {

 sum += Number(num);

 num = prompt("Type a number or click Cancel:", 1);

}

The code needs the first prompt statement so that the
while loop’s expression can be evaluated. The user may
not feel like entering any numbers, and they can avoid it
by clicking Cancel in the first prompt box so that the loop
will be bypassed.
That seems reasonable enough, but what if your code
requires that the user enter at least one value? The
following presents one way to change the code to ensure
that the loop is executed at least once:

let sum = 0;

let num = 0;

while (num !== null || sum === 0) {

 num = prompt("Type a number; when you're done, click Cancel:", 1);

 sum += Number(num);

}

document.write("The total of your numbers is " + sum);

The changes here are that the code initializes both sum
and num as 0. Initializing both to 0 ensures that the while
expression — num !== null || sum === 0 — returns true the
first time through the loop, so the loop will definitely

execute at least once. If the user clicks Cancel right
away, sum will still be 0, so the while expression — num !==
null || sum === 0 — still returns true and the loop repeats
once again.
This approach works fine, but you can also turn to
JavaScript’s third loop type, which specializes in just this
kind of situation. It’s called a do…while loop, and its
general syntax looks like this:

do {

 statements

}

while (expression);

Here, statements represents a block of statements to
execute each time through the loop, and expression is a
comparison or logical expression that, as long as it
returns true, tells JavaScript to keep executing the
statements within the loop.
This structure ensures that JavaScript executes the
loop’s statement block at least once. How? Take a closer
look at how JavaScript processes a do…while loop:

1. Execute each of the statements in the block.

2. Evaluate the expression in the while statement.

3. If expression is true, return to Step 1; if expression is

false, continue with Step 4.

4. Exit the loop.

For example, the following shows you how to use do…while
to restructure the prompt-and-sum code I showed you
earlier:

let sum = 0;

let num;

do {

 num = prompt("Type a number; when you're done, click Cancel:", 1);

 sum += Number(num);

}

while (num !== null || sum === 0);

document.write("The total of your numbers is " + sum);

This code is very similar to the while code I show earlier
in this section. All that’s really changed is that the while
statement and its expression have been moved after the
statement block so that the loop must be executed once
before the expression is evaluated.

Chapter 5

Harnessing the Power of

Functions

IN THIS CHAPTER

 Getting to know JavaScript functions

 Creating and using custom functions

 Passing and returning function values

 Working with anonymous and arrow functions

Almost every JavaScript project beyond the simplest
scripts will require one or more (usually a lot more)
tasks or calculations that aren’t part of the JavaScript
language or any Web API. What’s a coder to do? You roll
up your sleeves and then roll your own code that
accomplishes the task or runs the calculation.
This chapter shows you how to create such do-it-yourself
code. In the pages that follow, you explore the powerful
and infinitely useful realm of custom functions, where
you craft reusable code that performs tasks that out-of-
the-box JavaScript can’t do.

Getting to Know the

Function Structure

A function is a group of JavaScript statements that are
separate from the rest of the script and that perform a
designated task. When your script needs to perform that

task, you tell it to run — or execute, in the vernacular —
the function.
The basic structure of a function looks like this:

function functionName([arguments]) {

 JavaScript statements

}

Here’s a summary of the various parts of a function:

function: Identifies the block of code that follows it as a

function.

functionName: A unique name for the function. The

naming rules and guidelines that I outline for variables

in Chapter 2 also apply to function names.

arguments: One or more values that are passed to the

function and that act as variables within the function.

Arguments (or parameters, as they’re sometimes

called) are typically one or more values that the

function uses as the raw materials for its tasks or

calculations. You always enter arguments between

parentheses after the function name, and you

separate multiple arguments with commas. If you

don’t use arguments, you must still include the

parentheses after the function name.

JavaScript statements: This is the code that performs the

function’s tasks or calculations.

Note, too, the use of braces ({ and }). These are used to
enclose the function’s statements within a block, which
tells you (and the browser) where the function’s code
begins and ends. There are only two rules for where
these braces appear:

The opening brace must appear after the function’s

parentheses and before the first function statement.

The closing brace must appear after the last function

statement.

Making a Function Call

After your function is defined, you’ll eventually need to
tell the browser to execute — or call — the function.
There are three main ways to do this:

When the browser parses the <script> tag

After the page is loaded

In response to an event, such as the user clicking a

button

The next three sections cover each of these scenarios.

When the browser parses the

<script> tag
The simplest way to call a function is to include in your
script a statement consisting of only the function name,
followed by parentheses (assuming for the moment that
your function uses no arguments). The following code
provides an example. (I’ve listed the entire page to show
you where the function and the statement that calls it
appear in the page code.)

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>Calling a function when the <script> tag is parsed</title>

 <script>

 function displayGreeting() {

 const currentHour = new Date().getHours();

 if (currentHour < 12) {

 console.log("Good morning!");

 } else {

 console.log("Good day!");

 }

 }

 displayGreeting();

 </script>

</head>

<body>

</body>

</html>

The <script> tag includes a function named
displayGreeting, which determines the current hour of the
day and then writes a greeting to the console (check out
Figure 5-1; you learn about the console in Chapter 9)
based on whether it’s currently morning. The function is
called by the displayGreeting statement that appears just
after the function.

FIGURE 5-1: An example of calling a function when the <script> tag is parsed.

When the page load is complete
If your function references a page element, then calling
the function from within the page’s head section won’t
work because when the browser parses the script, the
rest of the page hasn’t loaded yet, so your element
reference will fail.

To work around this problem, place another <script> tag
at the end of the body section, just before the closing
</body> tag, as shown here:

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>Calling a function after the page is loaded</title>

 <script>

 function makeBackgroundRed() {

 document.body.style.backgroundColor = "red";

 console.log("The background is now red.");

 }

 </script>

</head>

<body>

 <!-- Other body elements go here -->

 <script>

 makeBackgroundRed();

 </script>

</body>

</html>

The makeBackgroundRed function does two things: It uses
document.body.style.backgroundColor to change the
background color of the body element to red, and it uses
console.log to write a message to that effect on the
console.
In the function, document.body is a reference to the body
element, which doesn’t “exist” until the page is fully
loaded. That means that if you try to call the function
with the initial script, you’ll get an error. To execute the
function properly, a second <script> tag appears at the
bottom of the body element, and that script calls the
function with the following statement:

makeBackgroundRed();

By the time the browser executes that statement, the
body element exists, so the function runs without an error

(check out Figure 5-2).

FIGURE 5-2: An example of calling a function after the page has loaded.

When an event fires
One of the most common ways that JavaScript functions
are called is in response to some event. Events are such
an important topic that I devote a big chunk of Chapter 6
to them. For now, check out a relatively straightforward
application: executing the function when the user clicks
a button. The following code shows one way to do it:

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>Calling a function in response to an event</title>

 <script>

 function makeBackgroundRed() {

 document.body.style.backgroundColor= "red";

 }

 function makeBackgroundWhite() {

 document.body.style.backgroundColor= "white";

 }

 </script>

</head>

<body>

 <button onclick="makeBackgroundRed()">

 Make Background Red

 </button>

 <button onclick="makeBackgroundWhite()">

 Make Background White

 </button>

</body>

</html>

What I’ve done here is place two functions in the script:
makeBackgroundRed changes the page background to red, as
before, and makeBackgroundWhite changes the background
color back to white.
The buttons are standard HTML button elements (check
out Figure 5-3), each of which includes the onclick
attribute. This attribute defines a handler — that is, the
function to execute — for the event that occurs when the
user clicks the button. For example, consider the first
button:

<button onclick="makeBackgroundRed()">

FIGURE 5-3: An example of calling a function in response to an event.

The onclick attribute here says, in effect, “When
somebody clicks this button, call the function named
makeBackgroundRed.”

Passing One or More

Values to a Function

One of the main reasons to use functions is to gain
control over when some chunk of JavaScript code gets
executed. The previous section, for example, discusses
how easy it is to use functions to set things up so that
code doesn’t run until the user clicks a button.
However, there’s another major reason to use functions:
to avoid repeating code unnecessarily. To understand
what I mean, consider the two functions from the
previous section:

function makeBackgroundRed() {

 document.body.style.backgroundColor= "red";

}

function makeBackgroundWhite() {

 document.body.style.backgroundColor= "white";

}

These functions perform the same task — changing the
background color — and the only difference between
them is that one changes the color to red and the other
changes it to white. Whenever you end up with two or
more functions that do essentially the same thing, you
know that your code is inefficient.
So how do you make the code more efficient? That’s
where the arguments mentioned earlier come into play.
An argument is a value that is “sent” — or passed, in
programming terms — to the function. The argument
acts just like a variable, and it automatically stores
whatever value is sent.

Passing one value to a function
As an example, you can take the previous two functions,
reduce them to a single function, and set up the color
value as an argument. Here’s a new function that does
just that:

function changeBackgroundColor(newColor) {

 document.body.style.backgroundColor = newColor;

}

The argument is named newColor and is added between
the parentheses that occur after the function name.
JavaScript declares newColor as a variable automatically,
so you don’t need a separate let or const statement. The
function then uses the newColor value to change the
background color. So how do you pass a value to the
function? The following code presents a sample file that
does so:

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>Passing a single value to a function</title>

 <script>

 function changeBackgroundColor(newColor) {

 document.body.style.backgroundColor = newColor;

 }

 </script>

</head>

<body>

 <button onclick="changeBackgroundColor('red')">

 Make Background Red

 </button>

 <button onclick="changeBackgroundColor('white')">

 Make Background White

 </button>

</body>

</html>

The key here is the onclick attribute that appears in both
<button> tags. For example:

onclick="changeBackgroundColor('red')"

The string 'red' is inserted into the parentheses after the
function name, so that value is passed to the function
itself. The other button passes the value 'white', and the
function result changes accordingly.

 In the two onclick attributes in the example code,
notice that the values passed to the function are
enclosed in single quotation marks ('). This is
necessary because the onclick value as a whole is
enclosed in double quotation marks (").

Passing two or more values to a

function
For more complex functions, you may need to use
multiple arguments so that you can pass different kinds
of values. If you use multiple arguments, separate each
one with a comma, like this:

function changeColors(newBackColor, newForeColor) {

 document.body.style.backgroundColor = newBackColor;

 document.body.style.color = newForeColor;

}

In this function, the document.body.style.color statement
changes the foreground color (that is, the color of the
page text). The following code shows a revised page
where the buttons pass two values to the function:

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>Passing multiple values to a function</title>

 <script>

 function changeColors(newBackColor, newForeColor) {

 document.body.style.backgroundColor = newBackColor;

 document.body.style.color = newForeColor;

 }

 </script>

</head>

<body>

 <h1>Passing Multiple Values to a Function</h1>

 <button onclick="changeColors('red', 'white')">

 Red Background, White Text

 </button>

 <button onclick="changeColors('white', 'red')">

 White Background, Red Text

 </button>

</body>

</html>

 If you define a function to have multiple
arguments, you must always pass values for each of
those arguments to the function. If you don’t, the
“value” undefined is passed, instead, which can cause
problems.

Getting a Value from a

Function

So far, I’ve outlined two major advantages of using
functions:

You can use them to control when code is executed.

You can use them to consolidate repetitive code into a

single routine.

The third major benefit that functions bring to the
JavaScript table is that you can use them to perform
calculations and then return the result. As an example,
here’s a function that calculates the tip on a restaurant
bill:

function calculateTip(preTip, tipPercent) {

 const tipResult = preTip * tipPercent;

 return tipResult;

}

const preTipTotal = 100.00;

const tipPercentage = 0.15;

const tipCost = calculateTip(preTipTotal, tipPercentage);

const totalBill = preTipTotal + tipCost;

document.write("Your total bill is $" + totalBill);

The function named calculateTip takes two arguments:
preTip is the total of the bill before the tip, and tipPercent
is the percentage used to calculate the tip. The function
then declares a variable named tipResult and uses it to
store the calculation — preTip multiplied by tipPercent.
The key for this example is the second line of the
function:

return tipResult;

The return statement is JavaScript’s way of sending a
value back to the statement that called the function. That
statement comes after the function:

tipCost = calculateTip(preTipTotal, tipPercentage);

This statement first passes the value of preTipTotal
(initialized as 100.00 earlier in the script) and
tipPercentage (initialized as 0.15 earlier) to the calculateTip
function. When that function returns its result, the entire
expression calculateTip(preTipTotal, tipPercentage) is
replaced by that result, meaning that it gets stored in the
tipCost variable. Then preTipTotal and tipCost are added
together, the result is stored in totalBill, and a
document.write statement displays the final calculation
(check out Figure 5-4).

FIGURE 5-4: The output includes the return value of the custom function

calculation.

Working with Anonymous

Functions

Here’s another look at the function syntax from earlier in
this chapter:

function functionName([arguments]) {

 JavaScript statements

}

This version of function syntax creates a so-called named

function because — you guessed it — the function has a
name.
However, creating a function that doesn’t have a name is
also possible:

function ([arguments]) {

 JavaScript statements

}

This variety of function syntax creates a so-called
anonymous function because — that’s right — the
function has no name.
Why use anonymous functions? Well, first, you don’t
have to if you don’t want to. Second, the main reason to
use anonymous functions is to avoid creating a named
object when you don’t need to. Every large web project
has a huge namespace, which refers to the full collection
of identifiers you assign to things like variables and
functions. The larger the namespace, the greater the
chance of a namespace collision, where you use the same
identifier for two different things. Bad news!

 Anonymous functions were introduced in ES6, so
don’t use them if you need to support very old
browsers, such as Internet Explorer 11.

If you have a function that will be used only once in your
project, it’s considered good modern programming
practice to make that an anonymous function so that you
have one less identifier in your namespace.
Okay, I hear you thinking, earlier you said we invoke a
function by using the function name. If an anonymous
function has no name, how are we supposed to run it?
Excellent question! There are two main methods to look
at:

Assigning the function to a variable

Replacing a function call with the function itself

Assigning an anonymous function to

a variable
The example code from the previous section defines the
named function calculateTip() and later uses the tipCost
variable to store the function result. This is a perfect
example of when a named function is not needed
because you only ever use the named function to
calculate the tipCost value. Adding an identity to the
namespace when you don’t have to is called polluting the
namespace, and it’s a big no-no in modern JavaScript
programming.
You can rewrite this code to use an anonymous function
instead:

const preTipTotal = 100.00;

const tipPercentage = 0.15;

// Declare tipCost using an anonymous function

const tipCost = function (preTip, tipPercent) {

 const tipResult = preTip * tipPercent;

 return (tipResult);

}

const totalBill = preTipTotal + tipCost(preTipTotal, tipPercentage);

document.write("Your total bill is $" + totalBill);

The big change here is that now I declare the value of
the tipCost variable to be an anonymous function. That
anonymous function is the same as the calculateTip()
named function from before, just without the name. In
the second-last statement, I invoke the anonymous
function by using tipCost(preTipTotal, tipPercentage).

Replacing a function call with an

anonymous function
One of the most common uses for anonymous functions is
when you need to pass a function as an argument to
another function. The passed function is known as a
callback function.
First, here’s an example that uses named functions:

<body>

 <button id="bgRed">

 Make Background Red

 </button>

 <button id="bgWhite">

 Make Background White

 </button>

 <script>

 function makeBackgroundRed() {

 document.body.style.backgroundColor= 'red';

 }

 function makeBackgroundWhite() {

 document.body.style.backgroundColor= 'white';

 }

 document.getElementById('bgRed').addEventListener(

 'click',

 makeBackgroundRed

);

 document.getElementById('bgWhite').addEventListener(

 'click',

 makeBackgroundWhite

);

 </script>

</body>

The script declares two named functions:
makeBackgroundRed() and makeBackgroundWhite(). The code
then creates two event listeners. One of them listens for
clicks on the button that has the id value bgRed and, when
a click is detected, runs the makeBackgroundRed() callback
function. The other event listener listens for clicks on the
button that has the id value bgWhite and, when a click is
detected, runs the makeBackgroundWhite() callback function.
Refer to Chapter 6 to get the details on the document
object and the getElementById() and addEventListener()
methods.
Again, you have two functions that don’t need to be
named, so you can remove them from the namespace by
replacing the callbacks with anonymous functions.
Here’s the revised code:

<body>

 <button id="bgRed">

 Make Background Red

 </button>

 <button id="bgWhite">

 Make Background White

 </button>

 <script>

 document.getElementById('bgRed').addEventListener(

 'click',

 function() {

 document.body.style.backgroundColor= 'red';

 }

);

 document.getElementById('bgWhite').addEventListener(

 'click',

 function() {

 document.body.style.backgroundColor= 'white';

 }

);

 </script>

</body>

Working with Arrow

Functions

As you progress in JavaScript, you’ll find yourself using
anonymous functions constantly. When you get to that
stage, you’ll be happy to know that ES6 also offers a
simpler anonymous function syntax. That is, instead of
using this:

function ([arguments]) {

 JavaScript statements

}

you can use this:
([arguments]) => {

 JavaScript statements

}

All I’ve done here is remove the function keyword and
replaced it with the characters = and > between the
arguments and the opening brace. The characters => look
like an arrow (JavaScripters call it a fat arrow), so this
version of the syntax is known as an arrow function.

 Arrow functions are an ES6 invention, so don’t use
them if you need to support very old browsers, such
as Internet Explorer 11.

For example, here’s an anonymous function from a bit
earlier (the “Assigning an anonymous function to a
variable” section):

// Declare tipCost using an anonymous function

const tipCost = function (preTip, tipPercent) {

 const tipResult = preTip * tipPercent;

 return (tipResult);

}

You can rewrite this using an arrow function:
// Declare tipCost using an arrow function

const tipCost = (preTip, tipPercent) => {

 const tipResult = preTip * tipPercent;

 return (tipResult);

}

If your anonymous function consists of a single
statement, you can take advantage of an arrow function
feature called implicit return:

([arguments]) => statement

Here, JavaScript assumes that a single-statement
function means that the function returns right after
executing the statement, so you can leave out the braces
and the return keyword. Here’s an example:

// Declare tipCost using an arrow function with implicit return

const tipCost = (preTip, tipPercent) => preTip * tipPercent;

Similarly, here’s one of the anonymous callback
functions from the previous section:

document.getElementById('bgRed').addEventListener(

 'click',

 function() {

 document.body.style.backgroundColor= 'red';

 }

);

You can rewrite this code as follows to use an arrow
function with implicit return:

document.getElementById('bgRed').addEventListener(

 'click',

 () => document.body.style.backgroundColor= 'red'

);

Chapter 6

Coding the Document

Object Model

IN THIS CHAPTER

 Understanding objects

 Messing with object properties and methods

 Taking a deep dive into the Document Object

Model

 Figuring out events

I’ve talked a lot of JavaScript over the past few chapters,
but in a very real sense all that has been just the
programming equivalent of noshing on a few appetizers.
Now it’s time to sit down for the main course:
programming the Document Object Model.
In this chapter, you explore the fascinating world of the
Document Object Model. You learn lots of powerful
coding techniques that enable you to make your web
pages do almost anything you want them to do. You
learn, too, that this is where web coding becomes fun
and maybe just a little addictive (in a good way, I
promise).

Getting Familiar with

Objects

To write truly useful scripts, you have to do what
JavaScript was designed to do from the start: Manipulate
the web page that it’s displaying. That’s what JavaScript
is all about, and that manipulation can come in many
different forms:

Add text and HTML attributes to an element.

Modify a CSS property of a class or other selector.

Store some data in the browser’s internal storage.

Validate a form’s data before submitting it.

The bold items in this list are examples of the “things”
that you can work with, and they’re special for no other
reason than they’re programmable. In JavaScript
parlance, these “programmable things” are called
objects.

You can work with objects in JavaScript in any of the
following three ways:

You can read and make changes to the object’s

properties.

You can make the object perform a task by activating a

method associated with the object.

You can define a procedure that runs whenever a

particular event happens to the object.

Working with object properties
You refer to a property by using the syntax in the
following generic expression:

object.property

object: The object that has the property

property: The name of the property you want to work

with

For example, consider the following expression:
document.location

This expression refers to the document object’s location
property, which holds the address of the document
currently displayed in the browser window. (In
conversation, you’d pronounce this expression as
“document dot location.”) The following code shows a
simple one-line script that displays this property in the
console, as shown in Figure 6-1.

console.log(document.location);

FIGURE 6-1: This script displays the document.location property in a console

message.

Because the property always contains a value, you’re
free to use property expressions in just about any type of
JavaScript statement and as an operand in a JavaScript
expression. For example, the following statement assigns
the current value of the document.location property to a
variable named currentUrl:

const currentUrl = document.location;

Similarly, the following statement includes
document.location as part of a string expression:

const message = "The current address is " + document.location + ".";

Some properties are “read only,” which means your code
can only read the current value and can’t change it.
However, many properties are “read/write,” which
means you can also change their values. To change the
value of a property, use the following generic syntax:

object.property = value

Here’s what the various parts are:

object: The object that has the property

property: The name of the property you want to change

value: A literal value (such as a string or number) or an

expression that returns the value to which you want to

set the property

Here’s an example:
const newAddress = prompt("Enter the address you want to surf to:");

document.location = newAddress;

This script prompts the user for a web page address and
stores the result in the newAddress variable. This value is
then used to change the document.location property, which
in this case tells the browser to open the specified
address.

Working with object methods
To run a method, begin with the simplest case, which is a
method that takes no arguments:

object.method()

Here’s what the various parts are:

object: The object that has the method you want to

work with

method: The name of the method you want to execute

For example, consider the following statement:
history.back();

This runs the history object’s back() method, which tells
the browser to go back to the previously visited page.
If a method requires arguments, you use the following
generic syntax:

object.method (argument1, argument2, …)

For example, consider the confirm() method, used in the
following statement, which takes a single argument — a
string that specifies the text to display to the user:

confirm("Do you want to go back?")

Finally, as with properties, if the method returns a value,
you can assign that value to a variable (as I do with the
confirm() method in the earlier example) or you can
incorporate the method into an expression.

Introducing the Document

Object Model

Here’s some source code for a simple web page:
<html lang="en">

 <head>

 <title>So Many Kale Recipes</title>

 </head>

 <body>

 <header>

 <h1>Above and Beyond the Kale of Duty</h1>

 </header>

 <main>

 <p>

 Do you love to cook with kale?

 </p>

 </main>

 </body>

</html>

One way to examine this code is hierarchically. That is,
the html element is, in a sense, the topmost element
because every other element is contained within it. The
next level down in the hierarchy contains the head and
body elements. The head element contains a title element,
which contains the text So Many Kale Recipes. Similarly, the
body element contains a header element and a main
element.
Hierarchies are almost always more readily grasped in
visual form, so Figure 6-2 graphs the page elements
hierarchically.

FIGURE 6-2: The web page code as a hierarchy.

 When speaking of object hierarchies, if object P
contains object C, object P is said to be the parent of
object C, and object C is said to be the child of object
P. In Figure 6-2, the arrows represent parent-to-child
relationships. Also, elements on the same level —
such as the header and main elements — are known as
siblings.

You have several key points to consider here:

Every box in Figure 6-2 represents an object.

Every object in Figure 6-2 is one of three types:

element, text, or attribute.

Every object in Figure 6-2, regardless of its type, is

called a node.

The page as a whole is represented by the document

object.

Therefore, this hierarchical object representation is
known as the Document Object Model, or the DOM as
it’s usually called. The DOM enables your JavaScript
code to access the complete structure of an HTML
document.

Specifying Elements in

Your Code

Elements represent the tags in a document, so you’ll be
using them constantly in your code. This section shows
you several methods for referencing one or more
elements.

Specifying an element by id
If it’s a specific element you want to work with in your
script, you can reference the element directly by first
assigning it an identifier using the id attribute:

<div id="kale-quotations">

With that done, you can then refer to the element in your
code by using the document object’s getElementById()
method:

document.getElementById(id)

Note:id is a string representing the id attribute of the
element you want to work with.
For example, the following statement returns a reference
to the previous <div> tag (the one that has id="kale-
quotations"):

document.getElementById("kale-quotations")

 When you’re coding the document object, don’t put
your <script> tag in the web page’s head section (that
is, between the <head> and </head> tags). If you place
your code there, the web browser will run the code
before it has had a chance to create the document
object, which means your code will fail, big time.
Instead, place your <script> tag at the bottom of the
web page, just before the </body> tag.

Specifying elements by tag name
Besides working with individual elements, you can also
work with collections of elements. One such collection is
the set of all elements in a page that use the same tag
name. For example, you could reference all the <a> tags
or all the <div> tags.

The mechanism for returning a collection of elements
that have the same tag is the getElementsByTagName()
method:

document.getElementsByTagName(tag)

Note:tag is a string representing the HTML name used
by the tags you want to work with.
This method returns an array-like collection that
contains all the elements in the document that use the
specified tag. (Refer to Chapter 7 to find out how arrays
work. Also check out “Working with collections of
elements,” later in this chapter.) For example, to return
a collection that includes all the div elements in the
current page, you’d use the following statement:

const divs = document.getElementsByTagName("div");

Specifying elements by class name
Another collection you can work with is the set of all
elements in a page that use the same class. The
JavaScript tool for returning all the elements that share a
specific class name is the getElementsByClassName() method:

document.getElementsByClassName(class)

Note:class is a string representing the class name used
by the elements you want to work with.
This method returns an array-like collection that
contains all the elements in the document that use the
specified class name. The collection order is the same as
the order in which the elements appear in the document.
Here’s an example:

const keywords = document.getElementsByClassName("keyword");

Specifying elements by selector

The same selectors and combinators that you use with
CSS are also available in your JavaScript code to
reference page elements by using the document object’s
querySelector() and querySelectorAll() methods:

document.querySelector(selector)

document.querySelectorAll(selector)

Note:selector is a string representing the selector or
combinator for the element or elements you want to
work with.
The difference between these methods is that
querySelectorAll() returns a collection of all the elements
that match your selector, whereas querySelector() returns
only the first element that matches your selector.
For example, the following statement returns the
collection of all section elements that are direct children
of an article element:

const articles = document.querySelectorAll("article > section");

Working with collections of

elements

The getElementsByTagName(), getElementsByClassName(), and
querySelectorAll() methods each return an array-like
collection that contains all the elements in the document
that use the specified tag, class, or selector, respectively.
The collection order is the same as the order in which
the elements appear in the document. For example,
consider the following HTML code:

<div id="div1">

 This, of course, is div 1.

</div>

<div id="div2">

 Yeah, well this is div 2!

</div>

<div id="div3">

 Ignore those dudes. Welcome to div 3!

</div>

Now consider the following statement:
divs = document.getElementsByTagName("div");

In the resulting collection, the first item (divs[0]) will be
the <div> element with id equal to div1; the second item
(divs[1]) will be the <div> element with id equal to div2;
and the third item (divs[2]) will be the <div> element with
id equal to div3.
You can also refer to elements directly using their id
values. For example, the following statements are
equivalent:

const firstDiv = divs[0];

const firstDiv = divs.div1;

To learn how many items are in a collection, use the
length property:

const totalDivs = divs.length;

To perform one or more operations on each item in the
collection, you can use a for…of loop to run through the
collection one item at a time. In the JavaScript trade, this
is known as iterating over the collection. Here’s the
syntax to use:

for (const item of collection) {

 statements

}

Here’s what the various parts are:

item: A variable that holds an item in the collection.

The first time through the loop, item is set to the first

element in the collection; the second time through the

loop, item is set to the second element; and so on.

collection: The collection of elements you want to

iterate over.

statements: The JavaScript code you want to use to

manipulate (or view, or whatever) item.

For example, here’s some code that iterates over the
preceding div elements and displays each item’s id value
in the console (refer to Chapter 9 for details on the
console), as shown in Figure 6-3:

divs = document.getElementsByTagName("div");

for (const d of divs) {

 console.log(d.id);

}

FIGURE 6-3: The output of the script that iterates over the div elements.

 The for…of loop is an ECMAScript 2015 (ES6)
addition. If you need to support ancient browsers
such as Internet Explorer 11, you can use a regular
for loop, instead:

for (var i = 0; i < collection.length; i += 1) {

 statements

 // Use collection[i] to refer to each item

}

Touring the DOM with

Code

One common task in JavaScript code is working with the
children, parent, or siblings of some element in the page.
This is known as traversing the DOM, because you’re
using these techniques to move up, down, and along the
DOM hierarchy.
In the sections that follow, I use the following HTML
code for each example technique:

<html lang="en">

 <head>

 <title>So Many Kale Recipes</title>

 </head>

 <body>

 <header id="page-banner">

 <h1>Above and Beyond the Kale of Duty</h1>

 </header>

 <main id="page-content">

 <p>

 Do you love to cook with kale?

 </p>

 </main>

 </body>

</html>

Getting the children of a parent

element
When you’re working with a particular element, it’s
common to want to perform one or more operations on
that element’s children. Every parent element offers
several properties that enable you to work with all or just
some of its child nodes:

All the child nodes

The first child node

The last child node

Getting all the child nodes

To return a collection of all the child elements of a
parent, you use the children property:

parent.children

Note:parent is the parent element.
For example, the following statement stores the all the
child element nodes of the body element in a variable:

const bodyChildElements = document.body.children;

The result is an HTMLCollection object, which is an
array-like collection of element nodes. If you were to use
the console (refer to Chapter 9) to display the value of
bodyChildElements, you’d get the output shown in Figure 6-
4.

FIGURE 6-4: The value of the bodyChildElements variable displayed in the

console.

Here’s the output:
HTMLCollection { 0: header, 1: main, length: 2 }

The numbers 0 and 1 are the index numbers of each
child. For example, you could use bodyChildElements[0] to
refer to the first element in the collection, which in this
example is the header element.

Getting the first child node

If you use a parent element’s childNodes or children
property to return the parent’s child nodes, as I describe
in the previous section, you can refer to the first item in
the resulting collection by tacking [0] on to the
collection’s variable name. For example:

bodyChildren[0]

bodyChildElements[0]

However, the DOM offers a more direct route to the first
child node:

parent.firstChild

Note:parent is the parent element.
For example, suppose you want to work with the first
child node of the main element from the HTML example at
the beginning of this section. Here’s some code that’ll do
the job:

const content = document.getElementById("page-content");

const firstContentChildNode = content.firstChild;

In this example, the resulting node is a text node (the
white space between the <main> and <p> tags). If you want
the first child element node, use the firstElementChild
property, instead:

parent.firstElementChild

Note:parent is the parent element.
To get the first child element node of the main element
from the code at the beginning of this section, you’d do
something like this:

const content = document.getElementById("page-content");

const firstContentChildElement = content.firstElementChild;

In this example, this code returns the p element.

Getting the last child node

If your code needs to work with the last child node, use
the lastChild property of the parent element:

parent.lastChild

Note:parent is the parent element.
For example, suppose you want to work with the last
child node of the p element from the HTML example at
the beginning of this section. Here’s some code that’ll do
the job:

const para = document.querySelector("main > p");

const lastParaChildNode = para.lastChild;

In this example, the resulting node is a text node
representing the question mark (?) and the white space
to the </p> tag. If you want the last child element node,
use the lastElementChild property, instead:

parent.lastElementChild

Note:parent is the parent element.
To get the last child element node of the p element from
the code at the beginning of this section, you could do
this:

const para = document.querySelector("main > p");

const lastParaChildElement = para.lastElementChild;

In the example, this code returns the a element.

Getting the parent of a child

element
If your code needs to work with the parent of a child
element, use the child element’s parentNode property:

child.parentNode

Note:child is the child element.
For example, suppose you want to work with the parent
element of the h1 element from the HTML example at the
beginning of this section. Here’s some code that’ll do the
job:

const childElement = document.querySelector("h1");

const parentElement = childElement.parentNode;

Getting the siblings of an element
A parent’s child nodes appear in the DOM in the same
order in which they appear in the HTML code, which
means the siblings also appear in the order they appear
in the HTML. Therefore, for a given child element, there
are two sibling possibilities:

Previous sibling: This is the sibling that appears in

the DOM immediately before the child element you’re

working with. If the child element is the first sibling, it

will have no previous sibling.

Next sibling: This is the sibling that appears in the

DOM immediately after the child element you’re

working with. If the child element is the last sibling, it

will have no next sibling.

Getting the previous sibling

To return the previous sibling of a particular element,
use the previousElementSibling property:

element.previousElementSibling

Note:element is the element you’re working with.
For example, the following statement stores the previous
sibling of the main element in a variable:

const currElement = document.querySelector("main");

const prevSib = currElement.previousElementSibling;

Getting the next sibling

To return the next sibling of a particular element, use
the nextElementSibling property:

element.nextElementSibling

Note:element is the element you’re working with.
For example, the following statement stores the next
sibling of the header element in a variable:

const currElement = document.querySelector("header");

const nextSib = currElement.nextElementSibling;

Adding, Modifying, and

Removing Elements

After you’ve got a reference to one or more elements,
you can then use code to manipulate those elements in
various ways, as shown in the next few sections.

Adding an element to the page
One of the most common web development chores is to
add elements to a web page on the fly. When you add an
element, you always specify the parent element to which
it will be added, and then you decide whether you want
the new element added to the end or to the beginning of
the parent’s collection of children.
To add an element to the page, you follow three steps:

1. Create an object for the type of element you

want to add.

2. Add the new object from Step 1 as a child

element of an existing element.

3. Insert some text and tags into the new object

from Step 1.

Step 1: Creating the element

For Step 1, you use the document object’s createElement()
method:

document.createElement(elementName)

Note:elementName is a string containing the HTML
element name for the type of the element you want to
create.
This method creates the element and then returns it,
which means you can store the new element in a
variable. Here’s an example:

const newArticle = createElement("article");

Step 2: Adding the new element as a child

With your element created, Step 2 is to add it to an
existing parent element. You have four choices:

Append the new element to the end of the

parent’s collection of child elements: Use the

append() method:

parent.append(child)

Here are the parts of the append() method:
parent: A reference to the parent element to

which the new element will be appended.

child: A reference to the child element you’re

appending. Note that you can append multiple

elements at the same time by separating each

element with a comma. The child parameter can

also be a text string.

Prepend the new element to the beginning of

the parent’s collection of child elements: Use the

prepend() method:

parent.prepend(child)

Here are the parts of the prepend() method:
parent: A reference to the parent element to

which the new element will be prepended.

child: A reference to the child element you’re

prepending. Note that you can prepend multiple

elements at the same time by separating each

element with a comma. The child parameter can

also be a text string.

Insert the new element just after an existing

child element of the parent: Use the after()

method:

child.after(sibling)

Here are the parts of the after() method:
child: A reference to the child element after

which the new element will be inserted.

sibling: A reference to the new element you’re

inserting. Note that you can insert multiple

elements at the same time by separating each

element with a comma. The sibling parameter

can also be a text string.

Insert the new element just before an existing

child element of the parent: Use the before()

method:

child.before(sibling)

Here are the parts of the before() method:
child: A reference to the child element before

which the new element will be inserted.

sibling: A reference to the new element you’re

inserting. Note that you can insert multiple

elements at the same time by separating each

element with a comma. The sibling parameter

can also be a text string.

Here’s an example that creates a new article element
and then appends it to the main element:

const newArticle = document.createElement("article");

document.querySelector("main").append(newArticle);

Here’s an example that creates a new nav element and
then prepends it to the main element:

const newNav = document.createElement("nav");

document.querySelector("main").prepend(newNav);

Step 3: Adding text and tags to the new

element

With your element created and appended to a parent, the
final step is to add some text and tags using the innerHTML
property:

element.innerHTML = text

Here’s what the various parts are:

element: A reference to the new element within which

you want to add the text and tags

text: A string containing the text and HTML tags you

want to insert

 Whatever value you assign to the innerHTML
property completely overwrites an element’s existing
text and tags, so use caution when wielding innerHTML.
Check out the next section to learn how to insert text
and tags rather than overwrite them.

In this example, the code creates a new nav element,
prepends it to the main element, and then adds a heading:

const newNav = document.createElement("nav");

document.querySelector("main").prepend(newNav);

newNav.innerHTML = "<h2>Navigation</h2>";

Inserting text or HTML into an

element
It’s often the case that you want to keep the element’s
existing tags and text and insert new tags and text. Each
element offers a couple of methods that enable you do to
do this:

To insert just text into an element: Use the

insertAdjacentText() method:

element.insertAdjacentText(location, text)

Here’s what the various parts are:
element: A reference to the element into which the

new text will be inserted.

location: A string specifying where you want the

text inserted. I outline your choices here shortly.

text: A string containing the text you want to

insert.

To insert tags and text into an element: Use the

insertAdjacentHTML() method:

element.insertAdjacentHTML(location, data)

Here’s what the various parts are:
element: A reference to the element into which the

new tags and text will be inserted.

location: A string specifying where you want the

tags and text inserted. I outline your choices here

shortly.

data: A string containing the tags and text you

want to insert.

For both methods, you can use one of the following
strings for the location argument:

"beforebegin": Inserts the data outside of and just

before the element

"afterbegin": Inserts the data inside the element,

before the element’s first child

"beforeend": Inserts the data inside the element, after

the element’s last child

"afterend": Inserts the data outside of and just after the

element

For example, suppose your document has the following
element:

<h2 id="nav-heading">Navigation</h2>

If you want to change the heading to Main Navigation, the
following code will do the job:

const navHeading = document.getElementById("nav-heading");

navHeading.insertAdjacentText("afterbegin", "Main ");

Removing an element
If you no longer require an element on your page, you
can use the element’s remove() method to delete it from
the DOM:

element.remove()

For example, the following statement removes the
element with an id value of temp-div from the page:

document.getElementById("temp-div").remove();

Using Code to Mess

Around with CSS

Although you specify your CSS rules in a static stylesheet
(.css) file, that doesn’t mean that the rules themselves
have to be static. With JavaScript on the job, you can
modify an element’s CSS in a number of ways.

Changing an element’s styles

Most elements have a style property that enables you to
get and modify a tag’s styles. It works like this: The style
property actually returns a style object that has
properties for every CSS property. When referencing
these style properties, you need to keep two things in
mind:

For single-word CSS properties (such as color and

visibility), use all-lowercase letters.

For multiple-word CSS properties, drop the hyphen and

use uppercase for the first letter of the second word

and for each subsequent word if the property has more

than two. For example, the font-size and border-left-

width CSS properties become the fontSize and

borderLeftWidth style object properties.

Here’s an example:
const pageTitle = document.querySelector("h1");

pageTitle.style.fontSize = "64px";

pageTitle.style.color = "maroon";

pageTitle.style.textAlign = "center";

pageTitle.style.border = "1px solid black";

This code gets a reference to the page’s first <h1>

element. With that reference in hand, the code then uses

the style object to style four properties of the heading:
fontSize, color, text-align, and border.

Adding a class to an element
If you have a class rule defined in your CSS, you can
apply that rule to an element by adding the class
attribute to the element’s tag and setting the value of the
class attribute equal to the name of your class rule.
First, you can get a list of an element’s assigned classes
by using the classList property:

element.classList

Note:element is the element you’re working with.
The returned list of classes is an array-like object that
includes an add() method that you can use to add a new
class to the element’s existing classes:

element.classList.add(class)

Here’s what the various parts are:

element: The element you’re working with.

class: A string representing the name of the class you

want to add to element. You can add multiple classes by

separating each class name with a comma.

Here’s an example, and Figure 6-5 shows the result.

FIGURE 6-5: This code uses the add() method to add the class named my-class to

the <div> tag.

CSS:
.my-class {

 display: flex;

 justify-content: center;

align-items: center;

 border: 6px dotted black;

 font-family: Verdana, serif;

 font-size: 2rem;

 background-color: lightgray;

}

HTML:
<div id="my-div">

 Hello World!

</div>

JavaScript:
document.getElementById('my-div').classList.add('my-class');

 If the class attribute doesn’t exist in the element,
the addClass() method inserts it into the tag. So in the

previous example, after the code executes, the <div>
tag now appears like this:

<div id="my-div" class="my-class">

Removing a class

To remove a class from an element’s class attribute, the
classList object offers the remove() method:

element.classList.remove(class)

Here’s what the various parts are:

element: The element you’re working with.

class: A string representing the name of the class you

want to remove from element. You can remove multiple

classes by separating each class name with a comma.

Here’s an example:
document.getElementById('my-div').classList.remove('my-class');

Toggling a class

The classList object offers the toggle() method, which
toggles a class on and off an element. That is, it checks
the element for the specified class; if the class is there,
JavaScript removes it; if the class isn’t there, JavaScript
adds it. Sweet! Here’s the syntax:

element.classList.toggle(class)

Here’s what the various parts are:

element: The element you’re working with

class: A string representing the name of the class you

want to toggle for element

Here’s an example:
document.getElementById('my-div').classList.toggle('my-class');

Using Code to Tweak

HTML Attributes

One of the key features of the DOM is that each tag on
the page becomes an element object. You may be
wondering, do these element objects have any
properties? Yep, they have tons. In particular, if the tag
included one or more attributes, those attributes become
properties of the element object.
For example, consider the following tag:

<img id="header-image"

 src="mangosteen.png"

 alt="Drawing of a mangosteen">

This tag has three attributes: id, src, and alt. In the
DOM’s representation of the tag, these attributes
become properties of the img element object. Here’s
some JavaScript code that references the img element:

const headerImage = document.getElementById("header-image");

The headerImage variable holds the img element object, so
your code could now reference the img element’s
attribute values with any of the following property
references:

headerImage.id

headerImage.src

headerImage.alt

However, the DOM doesn’t create properties either for
custom attributes or for attributes added
programmatically. Fortunately, each element object also
offers methods that enable you to read any attribute, as
well as add, modify, or remove the element’s attributes.
The next few sections tell all.

Reading an attribute value
If you want to read the current value of an attribute for
an element, use the element object’s getAttribute()
method:

element.getAttribute(attribute)

Here’s what the various parts are:

element: The element you want to work with

attribute: The name of the attribute you want to read

Here’s an example that gets the src attribute of the
element with an id value of header-image:

const headerImage = document.getElementById("header-image");

const srcHeaderImage = headerImage.getAttribute("src");

Setting an attribute value
To set an attribute value on an element, use the element
object’s setAttribute() method:

element.setAttribute(attribute, value);

Here’s what the various parts are:

element: The element you want to work with

attribute: The name of the attribute you want to set

value: The string value you want to assign to attribute

If the attribute already exists, setAttribute overwrites the
attribute’s current value; if the attribute doesn’t exist,
setAttribute adds it to the element.
Here’s an example that sets the alt attribute for the
element with an id value of header-image:

const headerImage = document.getElementById("header-image");

headerImage.setAttribute("alt", "Lithograph of a mangosteen");

Removing an attribute
To remove an attribute from an element, use the element
object’s removeAttribute() method:

element.removeAttribute(attribute);

Here’s what the various parts are:

element: The element you want to work with

attribute: A string specifying the name of the attribute

you want to remove from the element

Here’s an example:
const headerImage = document.getElementById("header-image");

headerImage.removeAttribute("id");

Listening for Page Events

In web development, an event is an action that occurs in
response to some external stimulus. A common type of
external stimulus is when a user interacts with a web
page. Here are some examples:

Surfing to or reloading the page

Clicking a button

Pressing a key

Scrolling the page

Why don’t web pages respond to events automatically?
Why do they just sit there? Because web pages are static

by default, meaning that they ignore the events that are
firing all around them. Your job as a web developer is to
change that behavior by making your web pages “listen”
for particular events to occur. You do that by setting up

special chunks of code called event handlers. An event
handler consists of two parts:

Event listener: An instruction to the web browser to

watch out (“listen”) for a particular event occurring on

a particular element.

Callback function: The code that the web browser

executes when it detects that the event has occurred.

You configure your code to listen for and react to an
event by setting up an event handler using the element
object’s addEventListener() method. Here’s the syntax:

element.addEventListener(event, callback);

Here’s what the various parts are:

element: The web page element to be monitored for the

event. The event is said to be bound to the element.

event: A string specifying the name of the event you

want the browser to listen for. For the main events I

mention in the previous section, use one of the

following, enclosed in quotation marks:

DOMContentLoaded, click, dblclick, mouseover, keypress,

focus, blur, change, submit, scroll, or resize.

callback: The callback function that JavaScript executes

when the event occurs. The callback can be an

anonymous function or a reference to a named

function.

Here’s an example:
HTML:

<div id="my-div"></div>

<button id="my-button">Click to add some text, above</button>

JavaScript:

const myButton = document.getElementById('my-button');

myButton.addEventListener('click', function() {

 const myDiv = document.getElementById('my-div');

 myDiv.innerHTML = '<h1>Hello Click World!</h1>';

});

The HTML sets up an empty div element and a button
element. The JavaScript code attaches a click event
listener to the button, and the callback function adds the
HTML string <h1>Hello Click World!</h1> to the div. Figure
6-6 shows the resulting page after the button has been
clicked.

FIGURE 6-6: The click event callback function adds some HTML and text to the

div element.

 If you want to run some code after the web page
document has loaded, add an event handler to the
document object that listens for the DOMContentLoaded
event:

document.addEventListener('DOMContentLoaded', function() {

 console.log('We are loaded!');

});

When an event fires, the DOM creates an Event object,
the properties of which contain info about the event,
including the following:

target: The web page element to which the event

occurred. For example, if you set up a click handler for

a div element, that div is the target of the click.

which: A numeric code that specifies the key that was

pressed during a keypress event.

pageX: The distance (in pixels) that the mouse pointer

was from the left edge of the browser’s content area

when the event fired.

pageY: The distance (in pixels) that the mouse pointer

was from the top edge of the browser’s content area

when the event fired.

metaKey: A Boolean value that equals true if the user

had the Windows key () or the Mac Command key

(⌘  ) held down when the event fired.

shiftKey: A Boolean value that equals true if the user

had the Shift key held down when the event fired.

To access these properties, you insert a name for the
Event object as an argument in your event handler’s
callback function:

element.addEventListener(event, function(e) {

 This code runs when the event fires

});

Note:e is a name for the Event object that the DOM
generates when the event fires. You can use whatever
name you want, but most coders use e (although evt and
event are also common).
For example, when handling the keypress event, you need
access to the which property to find out the code for the
key the user pressed. Here’s an example page that can
help you determine which code value to use:
HTML:

<div>

 Type a key:

</div>

<input id="key-input" type="text">

<div>

 Here's the code of the key you pressed:

</div>

<div id="key-output">

</div>

JavaScript:
const keyInput = document.getElementById('key-input');

keyInput.addEventListener('keypress', function(e) {

 const keyOutput = document.getElementById('key-output');

 keyOutput.innerHTML = e.which;

});

The HTML sets up an <input> tag to accept a keystroke,
and a <div> tag with id="key-output" to use for the output.
The JavaScript code adds a keypress event listener to the
input element, and when the event fires, the callback
function writes e.which to the output div. Figure 6-7
shows the page in action.

FIGURE 6-7: The keypress event callback function uses e.which to write the

numeric code of the pressed key to the div element.

Chapter 7

Working with Arrays

IN THIS CHAPTER

 Declaring an array variable

 Populating an array with data

 Iterating an array

 Working with JavaScript’s Array object

In this chapter, you take your coding efficiency to an
even higher level by exploring one of JavaScript’s most
important concepts: the array. Arrays are important not
only because they’re extremely efficient and very
powerful but also because after you know how to use
them, you’ll think of a thousand and one uses for them.
To make sure you’re ready for your new array-filled life,
this chapter explains what they are and why they’re so
darn useful, and then explores all the fantastic ways that
arrays can make your coding life easier.

What Is an Array?

In JavaScript, whenever you have a collection of
variables with related data, you can group them together
into a single variable called an array. You can enter as
many values as you want into the array, and JavaScript
tracks each value using an index number. For example,
the first value you add is given the index 0. The second
value you put into the array is given the index 1; the
third value gets 2; and so on. You can then access any

value in the array by specifying the index number you
want.

Declaring an Array

Because an array is a type of variable, you need to
declare it before using it. There are four syntaxes you
can use. Here’s the syntax that’s the most informative:

const arrayName = new Array();

Here, arrayName is the name you want to use for the array
variable.
In JavaScript, an array is actually an object, so what the
new keyword is doing here is creating a new Array object.
The Array() part of the statement is called a constructor

because its job is to construct the object in memory. For
example, to create a new array named dogPhotos, you’d
use the following statement:

const dogPhotos = new Array();

The second syntax is useful if you know in advance the
number of values (or elements) you’ll be putting into the
array:

const arrayName = new Array(num);

Here’s what the various parts are:

arrayName: The name you want to use for the array

variable

num: The number of values you’ll be placing into the

array

For example, here’s a statement that declares a new
dogPhotos array with five elements:

const dogPhotos = new Array(5);

Populating an Array

After your array is declared, you can start populating it
with the data values you want to store. Here’s the
general syntax for doing this:

arrayName[index] = value;

Here’s what the various parts are:

arrayName: The name of the array variable

index: The array index number where you want the

value stored

value: The value you’re storing in the array

JavaScript is willing to put just about any type of data
inside an array, including numbers, strings, Boolean
values, and even other arrays! You can even mix multiple
data types within a single array.
As an example, here are a few statements that declare a
new array named dogPhotos and then enter five string
values into the array:

const dogPhotos = new Array(5);

dogPhotos[0] = "dog-1";

dogPhotos[1] = "dog-2";

dogPhotos[2] = "dog-3";

dogPhotos[3] = "dog-4";

dogPhotos[4] = "dog-5";

To reference an array value (say, to use it within an
expression), you specify the appropriate index:

strURL + dogPhotos[3]

Declaring and populating an array

at the same time

Earlier, I mentioned that JavaScript has two other
syntaxes for declaring an array. Both enable you to
declare an array and populate it with values by using just
a single statement.
The first method uses the Array() constructor in the
following general format:

const arrayName = new Array(value1, value2, …);

Here’s what the various parts are:

arrayName: The name you want to use for the array

variable

value1, value2, …: The initial values with which you

want to populate the array

Here’s an example:
const dogPhotos = new Array("dog-1", "dog-2", "dog-3", "dog-4", "dog-5");

JavaScript also supports the creation of array literals.
You create an array literal by enclosing one or more
values in square brackets. Here’s the general format:

const arrayName = [value1, value2, …];

Here’s what the various parts are:

arrayName: The name you want to use for the array

variable

value1, value2, …: The initial values with which you

want to populate the array

An example:
const dogPhotos= ["dog-1", "dog-2", "dog-3", "dog-4", "dog-5"];

Most JavaScript programmers prefer this syntax over
using the Array constructor.

Populating an array using a loop
You can populate an array using a loop and some kind of
counter variable to access an array’s index number
programmatically. Here’s an example:

const dogPhotos = [];

for (let counter = 0; counter < 5; counter += 1) {

 dogPhotos[counter] = "dog-" + (counter + 1);

}

The statement inside the for() loop uses the variable
counter as the array’s index. For example, when counter is
0, the statement looks like this:

dogPhotos[0] = "dog-" + (0 + 1);

In this case, the expression to the right of the equals sign
evaluates to "dog-1", which is the correct value.

Iterating Arrays

Arrays can really help make your code more efficient by
enabling you to reduce these kinds of long-winded
procedures to a much shorter routine that fits inside a
function. These routines are iterative methods of the
Array object, where iterative means that the method runs
through the items in the array, and for each item, a
function (called a callback) performs some operation on
or with the item.
The Array object actually has 14 iterative methods. I don’t
cover them all, but over the next few sections I talk
about the most useful ones.

Iterating an array: forEach()

The Array object’s forEach() method runs a callback
function for each element in the array. That callback
takes up to three arguments:

value: The value of the element

index: (Optional) The array index of the element

array: (Optional) The array being iterated

You can use any of the following syntaxes:
array.forEach(namedFunction);

array.forEach(function (value, index, array) { code });

array.forEach((value, index, array) => { code });

Here’s what the various parts are:

array: The Array object you want to iterate over.

namedFunction: The name of an existing function. This

function should accept the value argument and

perhaps also the optional index and array arguments.

code: The statements to run during each iteration.

Here’s an example:
// Declare the array

const dogPhotos= ["dog-1", "dog-2", "dog-3", "dog-4", "dog-5"];

// Iterate through the array

dogPhotos.forEach((value, index) => {

 console.log("Element " + index + " has the value " + value);

});

Iterating to create a new array:

map()
When you iterate over an array, it’s common to apply
some operation to each element value. In some cases,
however, you want to preserve the original array values
and create a new array that contains the updated values.
The easiest way to create a new array that stores
updated values of an existing array is to use the Array
object’s map() method. There are three syntaxes you can
use:

array.map(namedFunction);

array.map(function (value, index, array) { code });

array.map((value, index, array) => { code });

Here’s what the various parts are:

array: The Array object with the values you want to use.

namedFunction: The name of an existing function that

performs the operation on each array value. This

function should accept the value argument and

perhaps also the optional index and array arguments.

code: The statements to run during each iteration to

perform the operation on each value.

The map() method returns an Array object that contains
the updated values, so be sure to store the result in a
variable.
Here’s an example:

// Declare an array of Fahrenheit temperatures

const tempsFahrenheit = [-40, 0, 32, 100, 212];

// Convert each array value to Celsius

const tempsCelsius = tempsFahrenheit.map(currentTemp => {

 return (currentTemp - 32) * 0.5556;

});

// Output the result

console.log(tempsCelsius);

Iterating an array down to a value:

reduce()
One common iteration pattern is to perform a cumulative
operation on every element in an array to produce a
value. For example, you may want to know the sum of all
the values in the array.
Iterating an array in this way to produce a value is the
job of the Array object’s reduce() method. There are three

syntaxes you can use:
array.reduce(namedFunction, initialValue);

array.reduce(function (accumulator, value, index, array) { code },

initialValue);

array.reduce((accumulator, value, index, array) => { code }, initialValue);

Here’s what the various parts are:

array: The Array object with the values you want to

reduce.

namedFunction: The name of an existing function that

performs the reducing operation on each array value.

This function should accept the accumulator and value

arguments and perhaps also the optional index and

array arguments.

code: The statements to run during each iteration to

perform the reducing operation on each value.

initialValue: The starting value of accumulator. If you

omit initialValue, JavaScript uses the value of the first

element in array.

Here’s an example:
// Declare an array of product inventory

const unitsInStock = [547, 213, 156, 844, 449, 71, 313, 117];

// Get the total units in stock

const initialUnits = 0;

const totalUnits = unitsInStock.reduce((accumulatedUnits,

currentInventoryValue) => {

 return accumulatedUnits + currentInventoryValue;

}, initialUnits);

// Output the result

console.log("Total units in stock: " + totalUnits);

Iterating to locate an element: find()
To search within an array for the first element that
matches some condition, use the Array object’s find()

method. There are three syntaxes you can use:
array.find(namedFunction);

array.find(function (value, index, array) { code });

array.find((value, index, array) => { code });

Here’s what the various parts are:

array: The Array object with the values in which you

want to search.

namedFunction: The name of an existing function that

applies the condition to each array value. This function

should accept the value argument and perhaps also the

optional index and array arguments.

code: The statements to run during each iteration to

apply the condition to each value.

In the namedFunction or code, you set up a logical condition
that tests each element in the array and use a return
statement to send the result of the test back to the find()
method. The final value returned by find() is the first
element for which the test is true, or undefined if the test
is false for all the array elements.
Here’s an example:

// Declare an array of product objects

const products = [

 { name: 'doodad', units: 547 },

 { name: 'gizmo', units: 213 },

 { name: 'gimcrackery', units: 156 },

 { name: 'knickknack', units: 844 },

 { name: 'bric-a-brac', units: 449 },

 { name: 'thingamajig', units: 71 },

 { name: 'watchamacallit', units: 313 },

 { name: 'widget', units: 117 }

];

// Query the array

const strQuery = "gizmo";

const stock = products.find((currentProduct) => {

 return currentProduct.name === strQuery;

});

// Output the result

if (stock) {

 console.log("Product " + stock.name + " has " + stock.units + " units in

stock.");

 } else {

 console.log("Product " + strQuery + " not found.");

}

Manipulating Arrays

Like any good object, Array comes with a large collection
of properties and methods that you can work with and
manipulate. The rest of this chapter takes a look at a few
of the most useful of these properties and methods.

The length property

The Array object has just a couple of properties, but the
only one of these that you’ll use frequently is the length
property:

array.length

The length property returns the number of elements that
are currently in the specified array.

Some useful array methods
Many methods are associated with arrays, but the
proverbial space limitations prevent me from going into
them in any detail. To whet your appetite, Table 7-1 lists
a few of the most useful array methods.

TABLE 7-1 Useful Array Methods

Method Syntax Description

concat()
array.concat(array1,

array2, …)

Takes the elements of one or more existing

arrays and concatenates them to an existing

array to create a new array.

Method Syntax Description

join() array.join(separator)
Takes the existing values in an array and

concatenates them to form a string.

pop() array.pop()
Removes the last element from an array and

returns the value of that element.

push()
array.push(value1,

value2, …)

Adds one or more elements to the end of an

array.

reverse() array.reverse()
Reverses the order of the element in the

specified array.

shift() array.shift()
Removes the first element from an array and

returns the value of that element.

slice()
array.slice(start,

end)

Returns a new array that contains a subset of

the elements in an existing array.

sort() array.sort() Sorts the specified array.

unshift()
array.unshift(value1,

value2, …)

Inserts one or more values at the beginning

of an array and returns the new length of the

array.

Chapter 8

Coding Strings and Dates

IN THIS CHAPTER

 Stringing together strings

 Dealing with dates

 Tinkering with times

Although your JavaScript code will spend much of its
time dealing with web page knickknacks such as HTML
tags and CSS properties, it will also perform lots of
behind-the-scenes chores that require manipulating
strings and dealing with dates and times. To help you
through these tasks, in this chapter you explore two of
JavaScript’s built-in objects: the String object and the Date
object. You investigate the most important properties of
each object and master the most used methods.

Manipulating Strings

I’ve used dozens of examples of strings so far in this
book. These include not only string literals (such as
"JavaScript Essentials For Dummies") but also methods that
return strings (such as the prompt() method). So, it should
be clear by now that strings play a major role in all
JavaScript programming, and it will be a rare script that
doesn’t have to deal with strings in some fashion.
For this reason, it pays to become proficient at
manipulating strings, which includes locating text within
a string and extracting text from a string. You’ll find out
about all that and more in this section.

Any string you work with — whether it’s a string literal
or the result of a method or function that returns a string
— is a String object. So, for example, the following two
statements are equivalent:

const bookName = new String("JavaScript Essentials For Dummies");

const bookName = "JavaScript Essentials For Dummies";

This means that you have quite a bit of flexibility when
applying the properties and methods of String objects.
For example, the String object has a length property that I
describe in the next section. The following are all legal
JavaScript expressions that use this property:

bookName.length;

"JavaScript Essentials For Dummies".length;

prompt("Enter the book name:").length;

myFunction().length;

The last example assumes that myFunction() returns a
string value.

Working with string templates
Before diving in to the properties and methods of the
String object, take a second to examine a special type of
string that’s designed to solve three string-related
problems that will come up again and again in your
coding career:

Handling internal quotation marks: String literals
are surrounded by quotation marks, but what do you
do when you need the same type of quotation mark
inside the string?
One solution is to use a different type of quotation
mark to delimit the string. For example, this is illegal:

'There's got to be some better way to do this.'

But this is fine:
"There's got to be some better way to do this."

A second solution is to escape the internal quotation
mark with a slash, like so:

'There\'s got to be some better way to do this.'

These solutions work fine, but remembering to use
them is harder than you may think!
Incorporating variable values: When you need to

use the value of a variable inside a string, you usually

end up with something ungainly, such as the following:

const adjective = "better";

const lament = "There's got to be some " + adjective + " way to do

this.";

Multiline strings: It’s occasionally useful to define a

string using multiple lines. However, if you try the

following, you’ll get a string literal contains an

unescaped line break error:

const myHeader = '

 <nav class="banner">

 <h3 class="nav-heading">Navigation</h3>

 <ul class="nav-links">

 Home

 Away

 In Between

 </nav>'

You can solve all three problems by using a string

template (also called a template literal), which is a kind
of string literal where the delimiting quotation marks are
replaced by back ticks (`):

`Your string goes here`

 String templates were introduced as part of
ECMAScript 2015 (ES6), so use them only if you
don’t need to support ancient web browsers such as
Internet Explorer 11.

Here’s how you can use a string template to solve each
of the three problems just described:

Handling internal quotation marks: You’re free to

plop any number of single or double quotation marks

inside a string template:

`Ah, here's the better way to do this!`

Incorporating variable values: String templates

support something called variable interpolation, which

is a technique for referencing a variable value directly

within a string. Here’s an example:

const adjective = "better";

const paean = `Ah, here's the ${adjective} way to do this!`;

Within any string template, using ${variable} inserts
the value of variable, no questions asked. Actually, you
don’t have to stick to just variables. String templates
can also interpolate any JavaScript expression,
including function results.
Multiline strings: String templates are happy to work

error free with strings that are spread over multiple

lines:

const myHeader = `

 <nav class="banner">

 <h3 class="nav-heading">Navigation</h3>

 <ul class="nav-links">

 Home

 Away

 In Between

 </nav>`

Determining the length of a string

The most basic property of a String object is its length,
which tells you how many characters are in the string:

string.length

All characters within the string — including spaces and
punctuation marks — are counted toward the length. The
only exceptions are escape sequences (such as \n), which
always count as one character. The following code grabs
the length property value for various String object types.

function myFunction() {

 return "filename.htm";

}

const bookName = "JavaScript Essentials For Dummies";

length1 = myFunction().length; // Returns 12

length2 = bookName.length; // Returns 37

length3 = "123\n5678".length; // Returns 8

What the String object lacks in properties, it more than
makes up for in methods. There are dozens, and they
enable your code to perform many useful tasks, from
converting between uppercase and lowercase letters, to
finding text within a string, to extracting parts of a
string.

Searching for substrings

A substring is a portion of an existing string. For
example, some substrings of the string "JavaScript" would
be "Java", "Script", "vaSc", and "v". When working with
strings in your scripts, you’ll often have to determine
whether a given string contains a given substring. For
example, if you’re validating a user’s email address, you
should check that it contains an @ symbol.

Table 8-1 lists the several String object methods that find
substrings within a larger string.

TABLE 8-1 String Object Methods for

Searching for Substrings

Method What It Does

string.endsWith(substring,

start)

Tests whether substring appears at the end of

string

string.includes(substring,

start)
Tests whether substring appears in string

string.indexOf(substring,

start)

Searches string for the first instance of

substring

string.lastIndexOf(substring,

start)

Searches string for the last instance of

substring

string.startsWith(substring,

start)

Tests whether substring appears at the

beginning of string

Learning the methods that extract

substrings
Finding a substring is one thing, but you’ll often have to
extract a substring, as well. For example, if the user
enters an email address, you may need to extract just the
username (the part to the left of the @ sign) or the
domain name (the part to the right of @). For these kinds
of operations, JavaScript offers six methods, listed in
Table 8-2.

TABLE 8-2 String Object Methods for

Extracting Substrings

Method What It Does

string.charAt(index)
Returns the character in string that’s at the index

position specified by index

Method What It Does

string.charCodeAt(index)
Returns the code of the character in string that’s at

the index position specified by index

string.slice(start, end)

Returns the substring in string that starts at the

index position specified by start and ends

immediately before the index position specified by

end

string.split(separator,

limit)

Returns an array where each item is a substring in

string, where those substrings are separated by the

separator character

string.substr(start,

length)

Returns the substring in string that starts at the

index position specified by start and is length

characters long

string.substring(start,

end)

Returns the substring in string that starts at the

index position specified by start and ends

immediately before the index position specified by

end

Dealing with Dates and

Times

Dates and times seem like the kind of things that ought
to be straightforward programming propositions. After
all, there are only 12 months in a year, 28 to 31 days in a
month, seven days in a week, 24 hours in a day, 60
minutes in an hour, and 60 seconds in a minute. Surely
something so set in stone couldn’t get even the least bit
weird, could it?
You’d be surprised. Dates and times can get strange, but
they get much easier to deal with if you always keep
three crucial points in mind:

JavaScript time is measured in milliseconds, or

thousandths of a second. More specifically, JavaScript

measures time by counting the number of milliseconds

that elapsed between January 1, 1970 and the date

and time in question. So, for example, you might come

across the date January 1, 2001, and think, “Ah, yes,

the start of the new millennium.” JavaScript, however,

comes across that date and thinks “978220800000.”

In the JavaScript world, time began on January 1, 1970,

at midnight Greenwich Mean Time. Dates before that

have negative values in milliseconds.

Because your JavaScript programs run inside a user’s

browser, dates and times are almost always the user’s

local dates and times. That is, the dates and times

your scripts will manipulate will not be those of the

server on which your page resides. This means that

you can never know what time the user is viewing your

page.

Learning the arguments used with

the Date object

Before getting to the nitty-gritty of the Date object and its
associated methods, I’ll take a second to run through the
various arguments that JavaScript requires for many
date-related features. This will save me from repeating
these arguments tediously later on. Table 8-3 has the
details.

TABLE 8-3 Arguments Associated with the

Date Object

Argument What It Represents Possible Values

date A variable name A Date object

yyyy The year Four-digit integers

yy The year Two-digit integers

month The month
The full month name from "January" to

"December"

Argument What It Represents Possible Values

mth The month
Integers from 0 (January) to 11

(December)

dd The day of the month Integers from 1 to 31

hh The hour of the day
Integers from 0 (midnight) to 23

(11:00 PM)

mm The minute of the hour Integers from 0 to 59

ss
The second of the

minute
Integers from 0 to 59

ms
The milliseconds of the

second
Integers from 0 to 999

Getting to know the Date object
Whenever you work with dates and times in JavaScript,
you work with an instance of the Date object. More to the
point, when you deal with a Date object in JavaScript, you
deal with a specific moment in time, down to the
millisecond. A Date object can never be a block of time,
and it’s not a kind of clock that ticks along while your
script runs. Instead, the Date object is a temporal
snapshot that you use to extract the specifics of the time
it was taken: the year, month, date, hour, and so on.

Specifying the current date and time

The most common use of the Date object is to store the
current date and time. You do that by invoking the Date()
function, which is the constructor function for creating a
new Date object. Here’s the general format:

const dateToday = new Date();

Specifying any date and time

If you need to work with a specific date or time, you need
to use the Date() function’s arguments. There are five

versions of the Date() function syntax (refer to the list of
arguments near the beginning of this chapter):

const date = new Date("month dd, yyyy hh:mm:ss");

const date = new Date("month dd, yyyy");

const date = new Date(yyyy, mth, dd, hh, mm, ss);

const date = new Date(yyyy, mth, dd);

const date = new Date(ms);

The following statements give you an example for each
syntax:

const myDate = new Date("August 23, 2024 3:02:01");

const myDate = new Date("August 23, 2024");

const myDate = new Date(2024, 8, 23, 3, 2, 1);

const myDate = new Date(2024, 8, 23);

const myDate = new Date(1692763200000);

Getting info about a date

When your script just coughs up whatever Date object
value you stored in the variable, the results aren’t
particularly appealing. If you want to display dates in a
more attractive format, or if you want to perform
arithmetic operations on a date, you need to dig a little
deeper into the Date object to extract specific information
such as the month, year, hour, and so on. You do that by
using the Date object methods listed in Table 8-4.

TABLE 8-4 Date Object Methods That Extract

Date Values

Method Syntax What It Returns

date.getFullYear()
The year as a four-digit number (1999, 2000, and so

on)

date.getMonth()
The month of the year; from 0 (January) to 11

(December)

date.getDate() The date in the month; from 1 to 31

date.getDay() The day of the week; from 0 (Sunday) to 6 (Saturday)

Method Syntax What It Returns

date.getHours()
The hour of the day; from 0 (midnight) to 23 (11:00

PM)

date.getMinutes() The minute of the hour; from 0 to 59

date.getSeconds() The second of the minute; from 0 to 59

date.getMilliseconds() The milliseconds of the second; from 0 to 999

date.getTime() The milliseconds since January 1, 1970 GMT

Setting the date
When you perform date arithmetic, you often have to
change the value of an existing Date object. For example,
an e-commerce script may have to calculate a date that
is 90 days from the date that a sale occurs. It’s usually
easiest to create a Date object and then use an expression
or literal value to change the year, month, or some other
component of the date. You do that by using the Date
object methods listed in Table 8-5.

TABLE 8-5 Date Object Methods That Set Date

Values

Method Syntax What It Sets

date.setFullYear(yyyy)
The year as a four-digit number (1999, 2000, and so

on)

date.setMonth(mth)
The month of the year; from 0 (January) to 11

(December)

date.setDate(dd) The date in the month; from 1 to 31

date.setHours(hh)
The hour of the day; from 0 (midnight) to 23 (11:00

PM)

date.setMinutes(mm) The minute of the hour; from 0 to 59

date.setSeconds(ss) The second of the minute; from 0 to 59

date.setMilliseconds(ms) The milliseconds of the second; from 0 to 999

date.setTime(ms) The milliseconds since January 1, 1970 GMT

Chapter 9

Debugging JavaScript

IN THIS CHAPTER

 Debugging errors using the Console

 Setting breakpoints

 Stepping through JavaScript code

JavaScript and modern web browsers offer a ton of top-
notch debugging tools that can remove some of the
burden of program problem solving. In this chapter, you
delve into these tools to explore how they can help you
find and fix most programming errors. You also
investigate a number of tips and techniques that can go a
long way in helping you avoid coding errors in the first
place.

Laying Out Your

Debugging Tools

All the major web browsers come with a sophisticated
set of debugging tools that can make your life as a web
developer much easier and much saner. Most web
developers debug their scripts using Google Chrome, so I
focus on that browser in this chapter. But in this section,
I give you an overview of the tools that are available in
all the major browsers and how to get at them.
Here’s how you open the web development tools in
Chrome, Firefox, Microsoft Edge, and Safari:

Chrome for Windows: Click Customize and Control

Google Chrome (the three vertical dots to the right of

the address bar) and then select More Tools ⇒ 

Developer Tools. Shortcut: Ctrl+Shift+I.

Chrome for Mac: Select View ⇒ Developer ⇒ 

Developer Tools. Shortcut: Option+⌘    +I.

Firefox for Windows: Click Open Application Menu

(the three horizontal lines on the far right of the

toolbar) and then select More Tools  ⇒ Web Developer

Tools. Shortcut: Ctrl+Shift+I.

Firefox for Mac: Select Tools ⇒ Browser Tools ⇒ Web

Developer Tools. Shortcut: Option+⌘    +I.

Microsoft Edge: Click Settings and More (the three

vertical dots to the right of the address bar) and then

select More Tools ⇒ Developer Tools. Shortcut:

Ctrl+Shift+I.

Safari: Select Develop ⇒ Show Web Inspector.

Shortcut: Option+⌘    +I. If you don’t have the Develop

menu, select Safari ⇒ Settings, click the Advanced tab,

and then select the Show Develop Menu in Menu Bar

checkbox.

These development tools vary in the features they offer,
but each one provides the same set of basic tools, which
are the tools you’ll use most often. These basic web
development tools include the following:

HTML viewer: This tab (called Inspector in Firefox and

Elements in the other browsers) shows the HTML

source code used in the web page. When you hover

the mouse pointer over a tag, the browser highlights

the element in the displayed page and shows its width

and height, as shown in Figure 9-1. When you click a

tag, the browser shows the CSS styles applied with the

tag, as well as the tag’s box dimensions (again, refer

to Figure 9-1).

Console: This tab enables you to view error

messages, log messages, test expressions, and

execute statements. I cover the Console in more detail

in the next section.

Debugging tool: This tab (called Debugger in Firefox

and Sources in the other browsers) enables you to

pause code execution, step through your code, watch

the values of variables and properties, and much

more. This is the most important JavaScript debugging

tool, so I cover it in detail later in this chapter.

Network: This tab tells you how long it takes to load

each file referenced by your web page. If you find that

your page is slow to load, this tab can help you find

the bottleneck.

Web storage: This tab (called Application in Chrome

and Edge and Storage in Firefox and Safari) enables

you to examine data stored in the browser.

FIGURE 9-1: The HTML viewer, such as Chrome’s Elements tab, enables you to

inspect each element’s styles and box dimensions.

Debugging 101: Using the

Console

If your web page is behaving strangely — for example,
the page is blank or missing elements — you should first
check your HTML code to make sure it’s correct.
(Common HTML errors are not finishing a tag with a
greater than sign (>), not including a closing tag, and
missing a closing quotation mark for an attribute value.)
If your HTML checks out, there’s a good chance that
your JavaScript code is wonky. How do you know? A trip
to the Console window is your first step.
The Console is an interactive browser window that shows
warnings and errors, displays the output of console.log()

statements, and enables you to execute expressions and
statements without having to run your entire script. The
Console is one of the handiest web browser debugging
tools, so you need to know your way around it.

Getting the console onscreen
To display the Console, open your web browser’s
development tools and then click the Console tab. You
can also use the following keyboard shortcuts:

Chrome for Windows: Press Ctrl+Shift+J.

Chrome for Mac: Press Option+⌘    +J.

Firefox for Windows: Press Ctrl+Shift+K.

Firefox for Mac: Press Option+⌘    +K.

Microsoft Edge: Press Ctrl+Shift+J.

Safari: Press Option+⌘    +C.

Printing program data in the

Console

You can use the console.log() method of the special
Console object to print text and expression values in the
Console:

console.log(output)

Note:output is the expression you want to print in the
Console.
The output expression can be a text string, a variable, an
object property, a function result, or any combination of
these.

 You can also use the handy console.table() method
to output the values of arrays or objects in an easy-
to-read tabular format:

console.table(output)

Note:output is the array or object (as a variable or as a
literal) you want to view in the Console.
For debugging purposes, you most often use the Console
to keep an eye on the values of variables, object
properties, and expressions. That is, when your code sets
or changes the value of something, you insert a
console.log() (or console.table()) statement that outputs
the new value. When the script execution is complete,
you can open the Console and then check out the logged
value or values.

Running code in the Console
One of the great features of the Console is that it’s
interactive, which means that you can not only read
messages generated by the browser or by your
console.log() statements but also type code directly into
the Console. That is, you can use the Console to execute
expressions and statements. There are many uses for this
feature:

You can try some experimental expressions or

statements to determine their effect on the script.

When the script is paused, you can output the current

value of a variable or property.

When the script is paused, you can change the value

of a variable or property. For example, if you notice

that a variable with a value of zero is about to be used

as a divisor, you can change that variable to a nonzero

value to avoid crashing the script.

When the script is paused, you can run a function or

method to determine whether it operates as expected

under the current conditions.

Each browser’s Console tab includes a text box (usually
marked by a greater-than > prompt) that you can use to
enter your expressions or statements.

 You can execute multiple statements in the
Console by separating each statement with a
semicolon. For example, you can test a for… loop by
entering a statement similar to the following:

for (let i=1; i < 10; i += 1){console.log(i**2); console.log(i**3);}

 If you want to repeat an earlier code execution in
the Console, or if you want to run some code that’s
very similar to code you ran earlier, you can recall
statements and expressions that you used in the
current browser session. Press the Up Arrow key to
scroll back through your previously executed code;
press the Down Arrow key to scroll forward through
your code.

Putting Your Code into

Break Mode

Pausing your code midstream lets you examine certain
elements such as the current values of variables and

properties. It also lets you execute program code one
statement at a time so that you can monitor the flow of
the script.
When you pause your code, JavaScript enters break
mode, which means that the browser displays its
debugging tool and highlights the current statement (the
one that JavaScript will execute next). Figure 9-2 shows
a script in break mode in Chrome’s debugger (the
Sources tab).

FIGURE 9-2: When you invoke break mode, the web browser displays its

debugging tool and highlights the statement that it will execute next.

Invoking break mode
JavaScript gives you two ways to enter break mode:

By setting breakpoints

By using a debugger statement

Setting a breakpoint

If you know approximately where an error or logic flaw is
occurring, you can enter break mode at a specific
statement in the script by setting up a breakpoint. Here
are the steps to set up a breakpoint:

1. Display your web browser’s developer tools and

switch to the debugging tool (such as the

Sources tab in Chrome).

2. Open the file that contains the JavaScript code

you want to debug.

How you do this depends on the browser: in Chrome
(and most browsers), you have two choices:

In the left pane, click the HTML file (if your

JavaScript code is within a script element in your

HTML file) or the JavaScript (.js) file (if your code

resides in an external JavaScript file).

Press Ctrl+P (Windows) or ⌘    +P (macOS) and

then click the file in the list that appears.

3. Locate the statement where you want to enter

break mode.

JavaScript will run every line of code up to, but not
including, this statement.

4. Click the line number to the left of the

statement to set the breakpoint, as shown in

Figure 9-3.

FIGURE 9-3: In the browser’s debugging tool, click a line number to set a

breakpoint on that statement.

To remove a breakpoint, most browsers give you three
choices:

To disable a breakpoint temporarily, deselect the

breakpoint’s checkbox in the Breakpoints list.

To disable all your breakpoints temporarily, click the

Deactivate Breakpoint button. Chrome’s version of this

button is shown here in the margin. Click this button

again to reactivate all the breakpoints.

To remove a breakpoint completely, click the

statement’s line number.

Adding a debugger statement

When developing your web pages, you’ll often test the
robustness of a script by sending it various test values or
by trying it out under different conditions. In many
cases, you’ll want to enter break mode to make sure
things appear okay. You could set breakpoints at specific
statements, but you lose them if you close the file. For
something a little more permanent, you can include a
debugger statement in a script. JavaScript automatically
enters break mode whenever it encounters a debugger
statement.
Here’s a bit of code that includes a debugger statement:

// Add the sentence to the <div>

document.querySelector('div').innerHTML = sentence;

// Generate random colors (use values < 128 to keep the text dark)

const randomRed = parseInt(Math.random() * 128);

const randomGreen = parseInt(Math.random() * 128);

const randomBlue = parseInt(Math.random() * 128);

debugger;

Getting out of break mode
To exit break mode, you can use either of the following
methods in the browser’s debugging tool:

 Click the Resume button. Chrome’s version of

this button is shown here in the margin.

Press the browser’s Resume keyboard shortcut.

In Chrome (and most browsers), either press F8 or

press Ctrl+\ (Windows) or ⌘    +\ (macOS).

Stepping Through Your

Code

One of the most common (and most useful) debugging
techniques is to step through the code one statement at

a time. Doing so lets you get a feel for the program flow
to make sure that things such as loops and function calls
are executing properly. You can use four techniques:

Stepping one statement at a time

Stepping into some code

Stepping over some code

Stepping out of some code

Stepping one statement at a time
The most common way of stepping through your code is
to step one statement at a time. In break mode, stepping
one statement at a time means two things:

You execute the current statement and then pause on

the next statement.

If the current statement to run is a function call,

stepping takes you into the function and pauses at the

function’s first statement. You can then continue to

step through the function until you execute the last

statement, at which point the browser returns you to

the statement after the function call.

To step through your code one statement at a time, set a
breakpoint and then, after your code is in break mode,
do one of the following to step through a single
statement:

 Click the Step button. Chrome’s version of this

button is shown here in the margin.

Press the browser’s Step keyboard shortcut. In

Chrome (and most browsers, except Firefox, which

doesn’t support Step as of this writing; use the Step

Into button, instead), press F9.

Keep stepping through until the script ends or until
you’re ready to resume normal execution (by clicking
Resume).

Stepping into some code
In all the major browsers (except Firefox), stepping into
some code is exactly the same as stepping through the
code one statement at a time. The difference comes
when a statement executes asynchronously (that is, it
performs its operation after some delay rather than right
away).
To understand the difference, consider the following
code (I’ve added line numbers to the left; they’re not
part of the code):

1 setTimeout(() => {

2 console.log('Inside the setTimeout() block!');

3 }, 5000);

4 console.log('Outside the setTimeout) block!');

This code uses setTimeout() to execute an anonymous
function after five seconds. Suppose you enter break
mode at the setTimeout() statement (line 1). What
happens if you use Step versus Step Into here? Check it
out:

Step: Clicking the Step button doesn’t take you to line

2, as you may expect. Instead, because setTimeout() is

asynchronous, Step essentially ignores the anonymous

function and takes you directly to line 4.

Step Into: Clicking the Step Into button does take you

to line 2, but only after the specified delay (five

seconds, in this case). You can then step through the

anonymous function as needed.

To step into your code, set a breakpoint and then, after
your code is in break mode, do one of the following:

 Click the Step Into button. Chrome’s version of

this button is shown here in the margin.

Press the browser’s Step Into keyboard

shortcut. In Chrome (and most browsers), either

press F11 or press Ctrl+; (Windows) or ⌘    +; (macOS).

 My description of Step Into here doesn’t apply (at
least as I write this) to Firefox. Instead, the Firefox
Step Into feature works like the Step feature I
describe in the previous section.

Stepping over some code
Some statements call other functions. If you’re not
interested in stepping through a called function, you can
step over it. Stepping over a function means that
JavaScript executes the function normally and then
resumes break mode at the next statement after the
function call.
To step over a function, first either step through your
code until you come to the function call you want to step
over, or set a breakpoint on the function call and refresh
the web page. When you’re in break mode, you can step
over the function using any of the following techniques:

 Click the Step Over button. Chrome’s version of

this button is shown here in the margin.

Press the browser’s Step Over keyboard

shortcut. In Chrome (and most browsers), either

press F10 or press Ctrl+' (Windows) or ⌘    +' (macOS).

Stepping out of some code

I’m always accidentally stepping into functions I’d rather
step over. If the function is short, I just step through it
until I’m back in the original code. If the function is long,
however, I don’t want to waste time stepping through
every statement. Instead, I invoke the Step Out feature
using any of these methods:

 Click the Step Out button. Chrome’s version of

this button is shown here in the margin.

Press the browser’s Step Out keyboard shortcut.

In Chrome (and most browsers), either press Shift+F11

or press Ctrl+Shift+; (Windows) or ⌘    +Shift+;

(macOS).

JavaScript executes the rest of the function and then
reenters break mode at the first line after the function
call.

Chapter 10

Dealing with Form Data

IN THIS CHAPTER

 Coding text boxes

 Programming checkboxes, radio buttons, and

selection lists

 Monitoring and triggering form events

 Dealing with the form data

In this chapter, you learn how to “wire up” your HTML
forms by plugging them into some JavaScript code. You
explore various form-related objects and then get right to
work coding text fields, checkboxes, radio buttons, and
selection lists. You also dive into the useful world of form
events and even learn how to enhance your form controls
with keyboard shortcuts. To top it all off, you go hog wild
and learn how to store form data using the Web Storage
API.

Coding Text Fields

Text-based fields are the most commonly used form
elements, and most of them use the <input> tag. The input
element has tons of attributes, but from a coding
perspective, you’re generally interested in only four:

<input id="textId" type="textType" name="textName" value="textValue">

Here’s what the various parts are:

textId: A unique identifier for the text field

textType: The kind of text field you want to use in your

form

textName: The name you assign to the field

textValue: The initial value of the field, if any

Referencing by field type
One common form-scripting technique is to run an
operation on every field of the same type. For example,
you may want to apply a style to all the URL fields.
Here’s the JavaScript selector to use to select all input
elements of a given type:

document.querySelectorAll('input[type=fieldType]')

Note:fieldType is the type attribute value you want to
select, such as text or url.
Here’s an example where the JavaScript returns the set
of all input elements that use the type url:
HTML:

<label for="url1">

 Site 1:

</label>

<input id="url1" type="url" name="url1" value="https://">

<label for="url2">

 Site 2:

</label>

<input id="url2" type="url" name="url2" value="https://">

<label for="url3">

 Site 3:

</label>

<input id="url3" type="url" name="url3" value="https://">

JavaScript:
const urlFields = document.querySelectorAll('input[type=url]');

console.log(urlFields);

Getting a text field value

Your script can get the current value of any text field by
using one of the field object’s value-related properties:

field.value

field.valueAsDate

field.valueAsNumber

Here’s an example:
HTML:

<label for="search-field">

 Search the site:

</label>

<input id="search-field" name="q" type="search">

JavaScript:
const searchString = document.getElementById('search-field').value;

console.log(searchString);

Setting a text field value
To change a text field value, assign the new string to the
field object’s value property:

field.value = value

Here’s what the various parts are:

field: A reference to the form field object you want to

work with

value: The string you want to assign to the text field

Here’s an example:
HTML:

<label for="homepage-field">

 Type your homepage address:

</label>

<input id="homepage-field" name="homepage" type="url"

value="HTTPS://PAULMCFEDRIES.COM/"">

JavaScript:

const homepageField = document.getElementById('homepage-field');

const homepageURL = homepageField.value;

homepageField.value = homepageURL.toLowerCase();

The HTML defines an input element of type url where the
default value is in all-uppercase letters. The JavaScript
code grabs a URL, converts it to all-lowercase
characters, and then returns it to the same url field. As
shown in Figure 10-1, the text box now displays all-
lowercase letters.

FIGURE 10-1: The script converts the input element’s default text to all-

lowercase letters.

Programming Checkboxes

You use a checkbox in a web form to toggle a setting on
(that is, the checkbox is selected) and off (the checkbox
is deselected). You create a checkbox by including in
your form the following version of the <input> tag:

<input id="checkId" type="checkbox" name="checkName" value="checkValue"

[checked]>

Here’s what the various parts are:

checkId: A unique identifier for the checkbox.

checkName: The name you want to assign to the

checkbox.

checkValue: The value you want to assign to the

checkbox. Note that this is a hidden value that your

script can access when the form is submitted; the user

never encounters it.

checked: When this optional attribute is present, the

checkbox is initially selected.

Referencing checkboxes
If your code needs to reference all the checkboxes in a
page, use the following selector:

document.querySelectorAll('input[type=checkbox]')

If you just want the checkboxes from a particular form,
use a descendent or child selector on the form’s id value:

document.querySelectorAll('#formid input[type=checkbox]')

Or:
document.querySelectorAll('#formid > input[type=checkbox]')

Getting the checkbox state
Your code will want to know whether a checkbox is
selected or deselected. This is called the checkbox state.
In that case, you need to examine the checkbox object’s
checked property instead:

checkbox.checked

The checked property returns true if the checkbox is
selected, or false if the checkbox is deselected.
Here’s an example:
HTML:

<label>

 <input id="autosave" type="checkbox" name="autosave">

 Autosave this project

</label>

JavaScript:

const autoSaveCheckBox = document.querySelector('#autosave');

if (autoSaveCheckBox.checked) {

 console.log(`${autoSaveCheckBox.name} is checked`);

} else {

 console.log(`${autoSaveCheckBox.name} is unchecked`);

}

The JavaScript code stores a reference to the checkbox
object in the autoSaveCheckBox variable. Then an if
statement examines the object’s checked property and
displays a different message in the console, depending
on whether checked returns true or false.

Setting the checkbox state
To set a checkbox field to either the selected or
deselected state, assign a Boolean expression to the
checked property:

checkbox.checked = true|false

For example, suppose you have a form with a large
number of checkboxes and you want to set up that form
so that the user can select at most three checkboxes.
Here’s some code that does the job:

document.querySelector('form').addEventListener('click', event => {

 // Make sure a checkbox was clicked

 if (event.target.type === 'checkbox') {

 // Get the total number of selected checkboxes

 const totalSelected =

document.querySelectorAll('input[type=checkbox]:checked').length;

 // Are there more than three selected checkboxes?

 if (totalSelected > 3) {

 // If so, deselect the checkbox that was just clicked

 event.target.checked = false;

 }

 }

});

This event handler runs when anything inside the form
element is clicked, and it passes a reference to the click
event as the parameter event. Then the code uses the
:checked selector to return the set of all checkbox elements
that have the checked attribute, and the length property
tells you how many are in the set. An if test checks
whether more than three are now selected. If that’s true,
the code deselects the checkbox that was just clicked.

Coding Radio Buttons

You create a radio button using the following variation of
the <input> tag:

<input id="radioId" type="radio" name="radioGroup" value="radioValue"

[checked]>

Here’s what the various parts are:

radioId: A unique identifier for the radio button.

radioGroup: The name you want to assign to the group

of radio buttons. All the radio buttons that use the

same name value belong to that group.

radioValue: The value you want to assign to the radio

button. If this radio button is selected when the form is

submitted, this is the value that’s included in the

submission.

checked: When this optional attribute is present, the

radio button is initially selected.

Referencing radio buttons
If your code needs to work with all the radio buttons in a
page, use this JavaScript selector:

document.querySelectorAll('input[type=radio]')

If you want the radio buttons from a particular form, use
a descendent or child selector on the form’s id value:

document.querySelectorAll('#formid input[type=radio]')

Or:
document.querySelectorAll('#formid > input[type=radio]')

If you require just the radio buttons from a particular
group, use the following JavaScript selector, where
radioGroup is the common name of the group:

document.querySelectorAll('input[name=radioGroup]')

Getting a radio button state
If your code needs to know whether a particular radio
button is selected or deselected, you need to determine
the radio button state. You do that by examining the
radio button’s checked attribute, like so:

radio.checked

The checked attribute returns true if the radio button is
selected, or false if the button is deselected.
For example, consider the following HTML:

<form>

 <fieldset>

 <legend>

 Select a delivery method

 </legend>

 <label>

 <input type="radio" id="carrier-pigeon" name="delivery"

value="pigeon" checked>Carrier pigeon

 </label>

 <label>

 <input type="radio" id="pony-express" name="delivery"

value="pony">Pony express

 </label>

 <label>

 <input type="radio" id="snail-mail" name="delivery"

value="postal">Snail mail

 </label>

 <label>

 <input type="radio" id="some-punk" name="delivery"

value="bikecourier">Some punk on a bike

 </label>

 </fieldset>

</form>

If your code needs to know which radio button in a group
is selected, you can do that by applying the :checked
selector to the group and then getting the value property
of the returned object:

const deliveryMethod =

document.querySelector('input[name=delivery]:checked').value;

Setting the radio button state
To set a radio button field to either the selected or
deselected state, assign a Boolean expression to the
checked attribute:

radio.checked = true|false

For example, in the HTML code from the previous
section, the initial state of the form group had the first
radio button selected. You can reset the group by
selecting that button. You could get a reference to the id
of the first radio button, but what if later you change (or
someone else changes) the order of the radio buttons? A
safer way is to get a reference to the first radio button in
the group, whatever it may be, and then select that
element. Here’s some code that does this:

const firstRadioButton = document.querySelectorAll('input[name=delivery]')

[0];

firstRadioButton.checked = true;

This code uses querySelectorAll() to return a NodeList
collection of all the radio buttons in the delivery group;
then it uses [0] to reference just the first element in the
collection. Then that element’s checked property is set to
true.

Programming Selection

Lists

Selection lists are common sights in HTML forms
because they enable the web developer to display a
relatively large number of choices in a compact control
that most users know how to operate.
To create the list container, you use the <select> tag:

<select id="selectId" name="selectName" size="selectSize" [multiple]>

Here’s what the various parts are:

selectId: A unique identifier for the selection list.

selectName: The name you want to assign to the

selection list.

selectSize: The optional number of rows in the

selection list box that are visible. If you omit this value,

the browser displays the list as a drop-down box.

multiple: When this optional attribute is present, the

user is allowed to select multiple options in the list.

For each item in the list, you add an <option> tag between
the <select> and </select> tags:

<option value="optionValue" [selected]>

Here’s what the various parts are:

optionValue: The value you want to assign to the list

option.

selected: When this optional attribute is present, the

list option is initially selected.

Referencing selection list options

If your code needs to work with all the options in a
selection list, use the selection list object’s options
property:

document.querySelector(list).options

To work with a particular option within a list, use
JavaScript’s square brackets operator ([]) to specify the
index of the option’s position in the list:

document.querySelector(list).options[n]

Here’s what the various parts are:

list: A selector that specifies the select element you

want to work with

n: The index of the option in the returned NodeList

collection (where 0 is the first option, 1 is the second

option, and so on)

To get the option’s text (that is, the text that appears in
the list), use the option object’s text property:

document.querySelector(list).options[2].text

Getting the selected list option
If your code needs to know whether a particular option
in a selection list is selected or deselected, examine the
option’s selected property, like so:

option.selected

The selected attribute returns true if the option is
selected, or false if the option is deselected.
For example, consider the following selection list:

<select id="hair-color" name="hair-color">

 <option value="black">Black</option>

 <option value="blonde">Blonde</option>

 <option value="brunette" selected>Brunette</option>

 <option value="red">Red</option>

 <option value="neon">Something neon</option>

 <option value="none">None</option>

</select>

Your code will likely want to know which option in the
selection list is selected. You do that via the list’s
selectedOptions property:

const hairColor = document.querySelector('#hair-color').selectedOptions[0];

This isn’t a multi-select list, so specifying
selectedOptions[0] returns the selected option element. In
this example, your code could use hairColor.text to get
the text of the selected option.
If the list includes the multiple attribute, the
selectedOptions property may return an HTMLCollection
object that contains multiple elements. Your code needs
to allow for that possibility by, say, looping through the
collection:
HTML:

<select id="hair-products" name="hair-products" size="5" multiple>

 <option value="gel" selected>Gel</option>

 <option value="grecian-formula" selected>Grecian Formula</option>

 <option value="mousse">Mousse</option>

 <option value="peroxide">Peroxide</option>

 <option value="shoe-black">Shoe black</option>

</select>

JavaScript:
const selectedHairProducts = document.querySelector('#hair-

products').selectedOptions;

for (const hairProduct of selectedHairProducts) {

 console.log(hairProduct.text);

}

Changing the selected option
To set a selection list option to either the selected or
deselected state, assign a Boolean expression to the
option object’s selected property:

option.selected = Boolean

Here’s what the various parts are:

option: A reference to the option element you want to

modify.

Boolean: The Boolean value or expression you want to

assign to the option. Use true to select the option; use

false to deselect the option.

Using the HTML code from the previous section, the
following statement selects the third option in the list:

document.querySelector('#hair-products').options[2].selected = true;

You can reset the list by deselecting all the options. You
do that by setting the selection list object’s selectedIndex
property to -1:

document.querySelector('#hair-products').selectedIndex = -1

Working with Form Events

With all the clicking, typing, tabbing, and dragging that
goes on, web forms are veritable event factories.
Fortunately, you can let most of these events pass you
by, but a few do come in handy, both in running code
when the event occurs and in triggering the events
yourself.
Most form events are clicks, so you can handle them by
setting click event handlers using JavaScript’s
addEventListener() method (which I cover in Chapter 6).
Here’s an example:
HTML:

<form>

 <label for="user">Username:</label>

 <input id="user" type="text" name="username">

 <label for="pwd">Password:</label>

 <input id="pwd" type="password" name="password">

</form>

JavaScript:
document.querySelector('form').addEventListener('click', () => {

 console.log('Thanks for clicking the form!');

});

This example listens for clicks on the entire form element,
but you can also create click event handlers for buttons,
input elements, checkboxes, radio buttons, and more.

Setting the focus
One simple feature that can improve the user experience
on your form pages is to set the focus on the first form
field when your page loads. Setting the focus saves the
user from having to make that annoying click inside the
first field.
To get this done, run JavaScript’s focus() method on the
element you want to have the focus at startup:

field.focus()

Here’s an example that sets the focus on the text field
with id equal to user at startup:
HTML:

<form>

 <label for="user">Username:</label>

 <input id="user" type="text" name="username">

 <label for="pwd">Password:</label>

 <input id="pwd" type="password" name="password">

</form>

JavaScript:
document.querySelector('#user').focus();

Monitoring the focus event

Rather than set the focus, you may want to monitor when
a particular field gets the focus (for example, by the user
clicking or tabbing into the field). You can monitor that
by setting up a focus event handler on the field:

field.addEventListener('focus', () => {

Focus code goes here

});

Here’s an example:
document.querySelector('#user').addEventListener('focus', () => {

 console.log('The username field has the focus!');

});

Monitoring the blur event
The opposite of setting the focus on an element is
blurring an element, which removes the focus from the
element. You blur an element by running the blur()
method on the element, which causes it to lose focus:

field.blur()

However, rather than blur an element, you’re more likely
to want to run some code when a particular element is
blurred (for example, by the user clicking or tabbing out
of the field). You can monitor for a particular blurred
element by setting up a blur() event handler:

field.addEventListener('blur', () => {

Blur code goes here

});

Here’s an example:
document.querySelector('#user').addEventListener('blur', () => {

 console.log('The username field no longer has the focus!');

});

Listening for element changes

One of the most useful form events is the change event,
which fires when the value or state of a field is modified

in some way. When this event fires depends on the
element type:

For a textarea element and the various text-related

input elements, the change event fires when the

element loses the focus.

For checkboxes, radio buttons, selection lists, and

pickers, the change event fires as soon as the user

clicks the element to modify the selection or value.

You listen for a field’s change events by setting up a
change() event handler:

field.addEventListener('change', () => {

 Change code goes here

});

Here’s an example:
HTML:

<label for="bgcolor">Select a background color</label>

<input id="bgcolor" type="color" name="bg-color" value="#ffffff">

JavaScript:
document.querySelector('#bgcolor').addEventListener('change', (event) => {

 const backgroundColor = event.target.value;

 document.body.bgColor = backgroundColor;

});

The HTML code sets up a color picker. The JavaScript
code applies the change event handler to the color picker.
When the change event fires on the picker, the code stores
the new color value in the backgroundColor variable by
referencing event.target.value, where event.target refers
to the element to which the event listener is bound (the
color picker, in this case). The code then applies that
color to the body element’s bgColor property.

Handling Form Data

There’s one form event that I didn’t cover earlier, and
it’s a biggie: the submit event, which fires when the form
data is to be sent to the server.
However, if your scripts deal with form data only locally
— that is, you never send the data to a server — then you
don’t need to bother with submitting the form. Instead,
it’s more straightforward to add a button to your form
and then use that button’s click event handler to process
the form data in whatever way you need.
Here’s an example:
HTML:

<form>

 <fieldset>

 <legend>

 Settings

 </legend>

 <label for="background-color">Select a background color</label>

 <input id="background-color" type="color" name="bg-color"

value="#ffffff">

 <label for="text-color">Select a text color</label>

 <input id="text-color" type="color" name="text-color"

value="#000000">

 <label for="font-stack">Select a typeface:</label>

 <select id="font-stack" name="font-stack">

 <option value="Georgia, 'Times New Roman', serif"

selected>Serif</option>

 <option value="Verdana, Tahoma, sans-serif">Sans-serif</option>

 <option value="'Bradley Hand', Brush Script MT,

cursive">Cursive</option>

 <option value="Luminari">Fantasy</option>

 <option value="Monaco, Courier, monospace">Monospace</option>

 </select>

 <button>

 Save Your Settings

 </button>

 </fieldset>

</form>

JavaScript:
// Listen for changes on the #background-color color picker

document.querySelector('#background-color').addEventListener('change',

function() {

const backgroundColor = this.value;

document.body.style.backgroundColor = backgroundColor;

});

// Listen for changes on the #text-color color picker

document.querySelector('#text-color').addEventListener('change', function() {

const textColor = this.value;

document.body.style.color = textColor;

});

// Listen for changes on the #font-stack selection list

document.querySelector('#font-stack').addEventListener('change', function() {

const fontStack = this.selectedOptions[0].value;

document.body.style.fontFamily = fontStack;

});

// Listen for the button being clicked

document.querySelector('button').addEventListener('click', () => {

// Store the form data in a JavaScript object

const userSettings = {

backgroundColor: document.querySelector('#background-color').value,

textColor: document.querySelector('#text-color').value,

fontStack: document.querySelector('#font-stack').selectedOptions[0].value

}

// Save the settings in local storage

localStorage.setItem('user-settings', JSON.stringify(userSettings));

});

The HTML sets up a form (check out Figure 10-2) to
gather some user settings — background color, text
color, and typeface style — as well as a button. The
JavaScript sets up change event handlers for the two color
pickers and the selection list. Finally, the code listens for
click events on the button, and the handler stores the
form data in a JavaScript object and then saves the data
to local storage.

FIGURE 10-2: A form used to gather user settings for the page.

Chapter 11

Ten JavaScript Debugging

Strategies

IN THIS CHAPTER

 Debugging with the Console, breakpoints, and

other dev power tools

 Writing code to make it easier to debug

 Craftily debugging with comments

Given any nontrivial JavaScript code, it’s a rare (probably
nonexistent!) script that runs perfectly the first (or even
the tenth!) time. Script bugs happen to even the most
experienced developers, so having errors in your code
does not mean you’re a failure as a coder! All it means is
that you’re a coder.
But when bugs get into your code, you’ll want to
exterminate them as quickly as you can. This chapter
provides you with ten debugging strategies that can
help.

Get Thee to Your Dev Tools

All web page debugging begins with a visit to your web
browser development tools. In every browser, the
quickest way to open the dev tools is to right-click a page
element and then click Inspect. You can also press
Ctrl+Shift+I (Windows) or Option⌘  +I (macOS).

The Console Is Your Best

Debugging Friend

In your code, you can see the current value of a variable
or object property by outputting that value to the dev
tools Console tab:

console.log(output);

Replace output with the expression you want to print in
the Console. The output expression can be a text string,
a variable, an object property, a function result, or any
combination of these.

Give Your Code a

Break(point)

Pausing your code enables you to see what’s going on
and to run some commands in the console. You have two
ways to pause your code mid-execution:

Set a breakpoint. In the dev tools, open the file that

contains the JavaScript code, locate the statement

where you want to pause, then click the line number to

the left of that statement.

Add a debugger statement. In your JavaScript code, on

the line just before the statement where you want to

pause, add a debugger statement.

Step Through Your Code

Once you have some JavaScript code in break mode, use
the dev tools execution controls to step through the

code. You can step one statement at a time, step over
functions, or step into functions.

Monitor Variable and

Object Property Values

Either use console.log() statements to output values to
the console or, when your code is in break mode, hover
the mouse pointer over the variable or object to see its
current value in a tooltip. You can also create watch
expressions to monitor values.

Indent Your Code

JavaScript code is immeasurably more readable when
you indent the code within each statement block.
Readable code is that much easier to trace and decipher,
so your debugging efforts have one less hurdle to
negotiate. Indenting each statement by two or four
spaces is typical.

Break Down Complex

Tasks

Don’t try to solve all your problems at once. If you have a
large script or function that isn’t working right, test it in
small chunks to try to narrow down the problem.

Break Up Long Statements

One of the most complicated aspects of script debugging
is making sense out of long statements (especially
expressions). The Console window can help (you can use

it to print parts of the statement), but it’s usually best to
keep your statements as short as possible. Once you get
things working properly, you can often recombine
statements for more efficient code.

Comment Out Problem

Statements

If a particular statement is giving you problems, you can
temporarily deactivate it by placing two slashes (//) at
the beginning of the line. This tells JavaScript to treat
the line as a comment. If you have a number of
statements you want to skip, place /* at the beginning of
the first statement and */ at the end of the last
statement.

Use Comments To

Document Your Scripts

Speaking of comments, it’s a programming truism that
you can never add enough explanatory comments to your
code. The more comments you add, the easier your
scripts will be to debug.

Index

SYMBOLS

- (minus sign), 27

" (quotation marks)

handling internal, 118–120

string literals, 28

' (single quotation marks)

onclick attribute, 63

string literals, 28

/ (division operator), 20

/* (multiline comment), 13–14

// (double-slash), 13

; (semicolon), 7

\ (backslash), 29

_ (underscore), 24

` (back ticks), 119

|| (OR operator), 35

+ (concatenation sign), 33

+ (plus sign), 27

= (equals sign), 19–20

=> (arrow functions), 70

! (NOT operator), 35

&& (AND operator), 35

* (multiplication sign), 32

[] (brackets operator), 150

{} (braces)

if statements and, 40–41

as part of function, 56

A

add() method, 95

addEvent.Listener() method, 100

after() method, 90

alert() method, 7–8

AND operator (&&), 35

anonymous functions

assigning to variables, 67–68

overview, 66–70

replacing function call with, 68–70

append() method, 90

arguments

defined, 61

for Date object, 124

function, 56

location, 93

arithmetic assignment operators, 32–33

arrays

declaring, 106

elements and, 80

index numbers and, 105

iterating

find() method, 112–114

forEach() method, 109–110

map() method, 110–111

reduce() method, 111–112

length property, 114

manipulating, 114–115

methods, 114–115

overview, 105

populating, 106–109

specifying elements by class and tag name, 80

arrow functions (=>), 70

attributes

HTML, 97–99

id, 79

 tag, 97

onclick, 61, 63

radio button state, 147–148

single quotation marks and, 63

src, 15

B

back ticks (`), 119

backslash (\), 29

before() method, 91

block statements, 40–41

block syntax, 40

blur events, 156

blur() method, 156

<body> tag, 6

Boolean

event values, 102

expressions

assigning to object options, 153

operators, 34

literals, 30

braces ({})

if statements and, 40–41

as part of function, 56

brackets operator ([]), 150

break mode

debugger statement, 136–137

entering into, 135–137

exiting, 137

overview, 134–137

Step Into button, 138–139

Step Out button, 140

Step Over button, 139–140

stepping through, 162

breakpoints

as debugging strategy, 162

overview, 135–136

browsers

break mode

debugger statement, 136–137

entering into, 135–137

exiting, 137

overview, 134–137

Step Into button, 138–139

Step Out button, 140

Step Over button, 139–140

stepping through code, 162

Console

accessing, 132

overview, 130–133

printing program data in, 132–133

running code in, 133

testing code in, 162

ECMAScript 6 and, 12

enabling JavaScript in, 10–12

JavaScript and, 10–13

outdated

anonymous functions, 67

arrow functions, 70

for loop and, 83

overview, 12–13

parsing <script> tag, 57–58

as requirement to test code, 10

web development tools in

as debugging strategy, 161

overview, 129–131

C

callback functions

overview, 100

replacing with anonymous functions, 68–71

Cascading Style Sheets (CSS)

adding classes to element, 94–96

changing element styles, 94–97

removing classes, 96

toggling classes, 97

change() event handler, 157

checkboxes

overview, 144–147

referencing, 145

children (Document Object Model)

adding element, 89–91

getting element, 87

nodes, 84–87

overview, 83–84

Chrome, 129–130

classes

elements and

adding to, 94–96

specifying by name, 80

removing, 96

toggling, 97

classList property, 95–97

code

adding to web pages, 5–10

browsers not supporting, 10–12

commenting

as debugging strategy, 164

overview, 13–14

syntax for, 13–14

using to describe actions, 19

debugging, 137–140

efficiency of

do … while loop, 51–53

if statement, 40–41

if.else statement, 41–42

importance of, 43–44

for loop, 47–51, 83, 109

for … of loop, 82–83

loops, 43–44

loops and arrays, 108–109

overview, 39

while loop, 44–46

indenting

as debugging strategy, 163

syntax, 42

pausing

as debugging strategy, 162

overview, 134–137

running, 133

testing, 162

comparison expressions and operators, 34

compound statements, 41

concat() method, 115

concatenation sign (+), 33

Console

accessing, 132

overview, 130–133

printing program data in, 132–133

running code in, 133

testing code in, 162

console.log() method

as debugging strategy, 163

overview, 132–133

const keyword, 21–22

constructors, 106

controlling flow of JavaScript

loops

for … of, 82–83

for, 83, 109

populating arrays with, 108–109

loops

do … while, 51–53

for, 47–51

importance of, 43–44

structure of, 47

while, 44–46

overview, 39

statements

if, 40–41

if.else, 41–42

counter variable, 47–48

counterExpression, 47

counterUpdate expression, 47

CSS (Cascading Style Sheets)

adding classes to element, 94–96

changing element styles, 94–97

removing classes, 96

toggling classes, 97

D

data types

Boolean literals, 30

floating-point numbers, 27

integers, 26

numeric literals

exponential notation, 27

hexadecimal integer values, 27–28

overview, 26–28

string literals

escape sequences, 29–30

overview, 28–30

quotation marks within strings, 28

Date() function, 125

dates and times

Date object

arguments for, 124

methods, 126

overview, 125–126

setting dates, 126–127

specifying, 125

overview, 123–127

debugger statement, 162

debugging

break mode

breakpoints, 135–136, 162

debugger statement, 136–137

entering into, 135–137

exiting, 137

overview, 134–137

Step Into button, 138–139

Step Out button, 140

Step Over button, 139–140

stepping through code, 162

breaking down complex tasks, 163

code

commenting, 164

overview, 137–140

Console

accessing, 132

overview, 130–133

printing program data in, 132–133

running code in, 133

testing code in, 162

indenting code, 163

monitoring variable and object property values, 163

Network tool, 131

statements

commenting on, 164

overview, 138–140

shortening, 163

strategies, 161–164

web development tools in browsers

as debugging strategy, 161

overview, 129–131

Web storage tool, 131

declaring

arrays, 106

variables

with const, 21–22

with let, 18–19

development tools in browsers, 129–131

division operator (/), 20

do … while loop

overview, 51–53

while loop, 44–46

document object, 9

Document Object Model (DOM)

elements

adding as child, 89–91

adding text and tags to, 91–92

class, adding to, 94–96

class, removing, 96

class, toggling, 97

collections of, 81–83

creating, 89

inserting text HTML into, 92–93

modifying, 92–93

overview, 89–92, 94

removing, 93

specifying by class name, 80

specifying by id attribute, 79

specifying by selector methods, 80–81

specifying by tag name, 79–80

styles, changing, 94–97

hierarchies

child nodes, 84–87

getting children of parent element, 84–87

getting parent of child element, 87

getting siblings of element, 87–88

overview, 83–84

listening for page events, 100–103

objects

methods, 76–77

overview, 73–77

properties of, 74–76

overview, 77–78

tweaking HTML attributes

overview, 97–99

reading values, 98

removing, 99

setting values, 98–99

document.body function, 59

document.lastModified statement, 9–10

document.write() statement

overview, 9–10

variables, 22–23

double-slash (//), 13

E

ECMAScript 5

overview, 13

var keyword, 19

ECMAScript 6

new features, 67, 70

overview, 12

Edge, 130

elements

adding as child, 89–91

adding text and tags to, 91–92

buttons, 61

changing styles, 94–97

children and, 87

classes

adding to, 94–96

removing, 96

toggling, 97

collections of, 81–83

creating, 89

listening for changes in form data events, 156–157

modifying, 92–93

overview, 89–92, 94

parents and, 84–87

removing, 93

siblings and, 87–88

specifying

by class name, 80

by id attribute, 79

by selector methods, 80–81

by tag name, 79–80

equals sign (=), 19–20

ES 5, 13, 19

ES 6, 12, 67, 70

escape sequence (\n), 29–30

events

executing functions and, 60–61

listening for, 100–103

events

form data

listening for element changes, 156–157

monitoring blur, 156

monitoring focus, 155–156

overview, 154–157

setting focus, 155

executing function

browser parsing <script> tag, 57–58

events and, 60–61

loading web page and, 58–59

overview, 56–57

replacing with anonymous functions, 68–70

exponential notation, 27

expressions

Boolean, assigning to object options, 153

comparison, 34

controlling, 37

counterExpression, 47

counterUpdate, 47

defined, 31

in do … while loop, 52

logical, 34–35

NOT operator, 35

numeric, 32–33

operands and operators, 31–32

AND operator, 35

OR operator, 35

operator precedence, 35–37

overview, 35–37

string, 33

structure of, 31–32

in while loop, 44

extracting substrings, 122–123

F

files, external, 14–16

find() method, 112–114

Firefox, 130

floating-point numbers, 27

flow of JavaScript, controlling

loops

for … of, 82–83

do … while, 51–53

for, 47–51, 83, 109

importance of, 43–44

populating arrays with, 108–109

structure of, 47

while, 44–46

overview, 39

statements

if, 40–41

if.else, 41–42

focus events, 155–156

focus() method, 155–156

for … of loop, 82–83

for loop

outdated browsers and, 83

overview, 47–51

populating arrays with, 109

forEach() method, 109–110

form data

checkboxes

getting state of, 145–146

overview, 144–147

referencing, 145

setting state of, 146–147

events

listening for element changes, 156–157

monitoring blur, 156

monitoring focus, 155–156

overview, 154–157

setting focus, 155

handling, 158–160

radio buttons

getting state of, 148–149

overview, 147–150

referencing, 148

setting state of, 150

selection lists

changing options, 153–154

getting options, 152–153

overview, 150–154

referencing options, 151–152

submitting, 158–160

text fields

getting values, 143–144

overview, 141–144

referencing by type, 142

functions

anonymous

assigning to variables, 67–68

overview, 66–70

replacing function call with, 68–70

arguments, 56

arrow, 70–72

callback, 68–71, 100

Date(), 125

defined, 8

document.body, 59

executing

browser parsing <script> tag, 57–58

events, 60–61

loading web page, 58–59

overview, 56–57

find(), 112–114

forEach(), 109–110

map(), 110–111

named, 66

overview, 55

reduce(), 111–112

structure of, 55–56

values and

getting from, 64–66

passing to, 61–64

G

getAttribute() method, 98

H

handlers, 61

<head> tag, 6

headerImage variable, 98

hexadecimal integer values, 27–28

hierarchies

child nodes, 84–87

getting children of parent element, 84–87

getting parent of child element, 87

getting siblings of element, 87–88

overview, 83–84

HTML (HyperText Markup Language)

<body> tag, 6

buttons elements, 61

debugging tool, 130–131

<head> tag, 6

JavaScript vs., 1

<script> tag

displaying message to user with, 7–8

location of, 6

overview, 5

writing text to page, 8–10

tweaking attributes, 97–99

I

id attribute, 79

if statement, 40–41

if.else statement, 41–42

 tag, 97

indenting code

as debugging strategy, 163

syntax, 42

index numbers, 105

innerHTML property, 91–92

<input> tag

radio buttons, 147–148

text fields, 141–145

insert.AdjacentHTML() method, 92

insertAdjacent.Text() method, 92

integers, 26

internet browsers

break mode

breakpoints, 135–136, 162

debugger statement, 136–137

entering into, 135–137

exiting, 137

overview, 134–137

Step Into button, 138–139

Step Out button, 140

Step Over button, 139–140

stepping through code, 162

Console

accessing, 132

overview, 130–133

printing program data in, 132–133

running code in, 133

testing code in, 162

ECMAScript 6 and, 12

enabling JavaScript in, 10–12

JavaScript and, 10–13

outdated

anonymous functions, 67

arrow functions, 70

for loop and, 83

overview, 12–13

parsing <script> tag, 57–58

as requirement to test code, 10

web development tools in

as debugging strategy, 161

overview, 129–131

iterating

arrays

find() method, 112–114

forEach() method, 109–110

map() method, 110–111

reduce() method, 111–112

over collections, 82

J

JavaScript

browsers and

not supporting code, 10–12

outdated, 12–13

overview, 10–13

code to web pages, adding, 5–10

enabling in browsers, 11

HTML versus, 1

moving to external files, 14–16

program requirements for, 10

join() method, 115

K

keyboard shortcuts for debugging tools

break mode, 137, 139–140

Console, 132

overview, 129–130

keywords

const, 18–19

let, 18–19

var, 18–19

L

literals

arrays, 108

Boolean, 30

numeric

exponential notation, 27

hexadecimal integer values, 27–28

overview, 26–28

string

escape sequences, 29–30

overview, 28–30

quotation marks within strings, 28

location argument, 93

logical expressions, 34–35

loops

for … of, 82–83

do … while, 51–53

for, 47–51, 83, 109

importance of, 43–44

populating arrays with, 108–109

structure of, 47

while, 44–46

M

manipulating

arrays, 114–115

Strings objects, 117–118

map() method, 110–111

methods

before(), 91

add(), 95

addEvent.Listener(), 100

after(), 90

append(), 90

arrays

find(), 112–114

forEach(), 109–110

list, 114–115

map(), 110–111

reduce(), 111–112

blur(), 156

concat(), 115

console.log()

as debugging strategy, 163

overview, 132–133

for date and time, 126–127

for extracting substrings, 122–123

focus(), 155–156

getAttribute(), 98

insert.AdjacentHTML(), 92

insertAdjacent.Text(), 92

join(), 115

objects and, 76–77

pop(), 115

prepend(), 90

prompt(), 22–23

push(), 115

remove()

classes, 96

elements, 93

removeAttribute(), 99

reverse(), 115

selector, 80–81

setAttribute(), 98–99

shift(), 115

slice(), 115

sort(), 115

string.charAt(), 122

string.charCodeAt(), 122

string.slice(), 122

string.split(), 123

string.substr(), 123

string.substring(), 123

unshift(), 115

Microsoft Edge, 130

minus sign (-), 27

multiline comment (/*), 13–14

multiplication sign (*), 32

N

\n (escape sequence), 29–30

named functions, 66

namespaces, 67

next sibling, 87

nodes, children, 84–87

<noscript> tag, 11

NOT operator (!), 35

null string, 28

numeric

expressions, 32–33

literals

exponential notation, 27

hexadecimal integer values, 27–28

overview, 26–28

O

objects

Date

arguments for, 124

methods, 126

overview, 125–126

setting dates, 126–127

specifying date and time, 125

document, 9

methods and, 76–77

monitoring values, 163

overview, 73–77

properties of, 74–76

Strings

determining length of, 121

manipulating, 117–118

substrings, 121–123

templates, 118–120

onclick attribute

example code, 63

overview, 61

operands and operators, 31–32

options in selection lists

changing, 153–154

getting, 152–153

referencing, 151–152

OR operator (||), 35

P

parents (Document Object Model), 83–84

parsing, browsers and <script> tag, 57–58

plus sign (+), 27

polluting namespace, 67

pop() method, 115

populating arrays

with loops, 108–109

overview, 106–109

prepend() method, 90

previous sibling, 87–88

program data, printing in Console, 132–133

prompt() method, 22–23

properties

array length, 114

checkbox state, 145–147

classList, 95–97

innerHTML, 91–92

monitoring object values, 163

push() method, 115

Q

quotation marks (")

handling internal, 118–120

string literals, 28

R

reduce() method, 111–112

referencing form data

checkboxes, 145

selection lists, 151–152

text fields, 142

remove() method, 93, 96

removeAttribute() method, 99

reserved words, 24

reverse() method, 115

S

Safari, 130

<script> tag

browsers parsing, 57–58

displaying message to user with, 7–8

executing functions and, 57–58

external files and, 15

location of, 6, 79

overview, 5

writing text to page, 8–10

<select> tag, 150

selection lists

changing options, 153–154

getting options, 152–153

overview, 150–154

referencing options, 151–152

semicolon (;), 7

setAttribute() method, 98–99

shift() method, 115

siblings (Document Object Model), 83–84

single quotation marks (')

onclick attribute, 63

string literals, 28

single-line syntax, 40

slice() method, 115

sort() method, 115

src attribute, 15

start value, 47

state of checkboxes, 145–147

statements

block, 40–41

commenting on, 164

compound, 41

debugging

Console, 162

overview, 137–140

defined, 7

indenting

as debugging strategy, 163

overview, 42

document.lastModified, 9–10

document.write(), 9–10, 22–23

functions in, 8, 56

if, 40–41

if.else, 41–42

loops

for … of, 82–83

do … while, 52

for, 47

while, 44

methods

alert(), 7–8

find(), 112–114

forEach(), 109–110

map(), 110–111

reduce(), 111–112

multiple, managing, 8

shortening, 163

Step Out/Over/Into buttons and, 137–140

using variables in, 22–23

Step Into button (web development tool), 138–139

Step Out button (web development tool), 140

Step Over button (web development tool), 139–140

string.charAt() method, 122

string.charCodeAt() method, 122

strings

incorporating value of variables in, 119–120

expressions, 33

literals

escape sequences, 29–30

overview, 28–30

quotation marks within strings, 28

methods

string.slice(), 122

string.split(), 123

string.substr(), 123

string.substring(), 123

multiline, 119–120

null, 28

object

determining length of, 121

manipulating, 117–118

substrings, 121–123

templates, 118–120

prompt() method, part of, 23

substrings

methods for extracting, 122–123

searching for, 121–122

styles of element, changing, 94–97

subtraction assignment, 50

syntax

addEvent.Listener() method, 100

block, 40

Date() function, 125

declaring arrays, 106

for … of loop, 82–83

objects, 74–77

single-line, 40

T

tags

adding to elements, 91–92

<body>, 6

<head>, 6

, 97

<input>

radio buttons, 147–148

text fields, 141–145

<noscript>, 11

<script>

browsers parsing, 57–58

displaying message to user with, 7–8

executing functions and, 57–58

external files and, 15

location of, 79

location within code, 6

overview, 5

writing text to page, 8–10

<select>, 150

specifying elements by name, 79–80

templates, strings, 118–120

text

adding to elements, 91–92

displaying to user, 7–8

editors, 10

writing to web pages, 8–10

text fields

overview, 141–144

referencing by type, 142

values and, 142–144

times and dates

Date object

arguments for, 124

methods, 126

overview, 125–126

setting dates, 126–127

specifying, 125

overview, 123–127

time-sensitive data, displaying on web pages, 9

tools in browsers for web development, 129–131

Torvalds, Linus, 2

U

underscore (_), 24

unshift() method, 115

users, displaying messages to

overview, 7–8

prompts, 22–23

V

values

Boleean event, 102

functions and

getting from, 64–66

passing to, 61–64

hexadecimal integer, 27–28

index numbers, 105

monitoring, 163

negative time, 123

start, 47

text fields, 142–144

variables

incorporating in strings, 119–120

storing in, 19–20

variables

assigning anonymous functions to, 67–68

counter, 47–48

data types

Boolean literals, 30

numeric literals, 26–28

overview, 26

string literals, 28–30

declaring

with const, 21–22

with let, 18–19

defined, 18

headerImage, 98

naming

examples, 24–25

overview, 24–25

rules, 24

overview, 17–18

reserved words and, 24

statements, using in, 22–23

values and

incorporating in strings, 119–120

monitoring, 163

storing in, 19–20

var keyword, 19

W

web browsers

break mode

breakpoints, 135–136, 162

debugger statement, 136–137

entering into, 135–137

exiting, 137

overview, 134–137

Step Into button, 138–139

Step Out button, 140

Step Over button, 139–140

stepping through code, 162

Console

accessing, 132

overview, 130–133

printing program data in, 132–133

running code in, 133

testing code in, 162

ECMAScript 6 and, 12

enabling JavaScript in, 10–12

JavaScript and, 10–13

outdated

anonymous functions and, 67

arrow functions and, 70

for loop and, 83

overview, 12–13

parsing <script> tag, 57–58

as requirement to test code, 10

web development tools in

as debugging strategy, 161

overview, 129–131

web development tools in browsers

as debugging strategy, 161

overview, 129–131

web pages

code to, adding, 5–10

displaying messages to user

overview, 7–8

prompts, 22–23

executing functions and, 58–59

listening for events, 100–103

loading, 58–59

time-sensitive data, displaying on, 9

writing text to, 8–10

while loop

do … while, 51–53

overview, 44–46

About the Author

Information appears to stew out of me naturally, like the

precious ottar of roses out of the otter.

—MARK TWAIN
Paul McFedries is a technical writer who spends his days
writing books just like the one you’re holding in your
hands. In fact, Paul has written more than 100 such
books that have sold over four million copies worldwide.
Paul invites everyone to drop by his personal website at
https://paulmcfedries.com, or to follow him on X
(www.twitter.com/paulmcf) or Facebook
(www.facebook.com/PaulMcFedries).

https://paulmcfedries.com/
https://www.twitter.com/paulmcf
https://www.facebook.com/PaulMcFedries

Dedication

To Karen, my lobster.

Author’s

Acknowledgments

Each time I complete a book, the publisher sends me a
heavy box filled with a few so-called “author” copies.
Opening that box, lifting out a book, feeling the
satisfying weight of something that has, up to now, been
weightlessly digital, and seeing my name printed on the
cover, well, it’s a pretty fine feeling, let me tell you.
That’s pretty cool, but you know what’s really cool? That
I’ve done that over a hundred times in my writing career,
and seeing my name on the cover has never gotten old.
But just because mine is the only name you see on the
cover, doesn’t mean this book was a one-man show. Far
from it. Sure, I did write this book’s text and take its
screenshots, but those represent only a part of what
constitutes a “book.” The rest of it is brought to you by
the dedication and professionalism of Wiley’s editing,
graphics, and production teams, who toiled long and
hard to turn my text and images into an actual book.
I offer my heartfelt thanks to everyone at Wiley who
made this book possible, but I’d like to extend some
special thank-yous to the folks I worked with directly:
Executive Editor Lindsay Berg and Editor Elizabeth
Kuball.

Publisher’s Acknowledgments

Executive Editor: Lindsay Berg
Editor: Elizabeth Kuball
Production Editor: Saikarthick Kumarasamy
Cover Design and Image: Wiley

Take Dummies with you

everywhere you go!

Go to our Website

Like us on Facebook

Follow us on Twitter

Watch us on YouTube

Join us on LinkedIn

Pin us on Pinterest

http://www.dummies.com/
http://www.dummies.com/
http://www.facebook.com/fordummies
http://www.facebook.com/fordummies
http://www.twitter.com/fordummies
http://www.twitter.com/fordummies
http://www.youtube.com/user/fordummies
http://www.youtube.com/user/fordummies
http://www.linkedin.com/groups?home=&gid=3229946&trk=anet_ug_hm
http://www.linkedin.com/groups?home=&gid=3229946&trk=anet_ug_hm
http://pinterest.com/fordummies/
http://pinterest.com/fordummies/

Subscribe to our newsletter

Create your own Dummies book cover

http://www.dummies.com/go/newsletter
http://www.dummies.com/go/newsletter
http://covers.dummies.com/
http://covers.dummies.com/

WILEY END USER LICENSE

AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook
EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Where to Go From Here

	Chapter 1: JavaScript: The Big Picture
	Adding JavaScript Code to a Web Page
	What You Need to Get Started
	Dealing with Two Exceptional Cases
	Commenting Your Code
	Moving to External JavaScript Files

	Chapter 2: Programming with Variables
	Getting Your Head around Variables
	Naming Variables: Rules and Best Practices
	Understanding Literal Data Types

	Chapter 3: Building Expressions
	Understanding How Expressions Are Structured
	Creating Numeric Expressions
	Building String Expressions
	Building Comparison Expressions
	Building Logical Expressions
	Understanding Operator Precedence

	Chapter 4: Controlling the Flow of JavaScript
	Decision-Making with if Statements
	Branching with if…else Statements
	Understanding the Value of Code Looping
	Working with while Loops
	Working with for Loops
	Working with do…while Loops

	Chapter 5: Harnessing the Power of Functions
	Getting to Know the Function Structure
	Making a Function Call
	Passing One or More Values to a Function
	Getting a Value from a Function
	Working with Anonymous Functions
	Working with Arrow Functions

	Chapter 6: Coding the Document Object Model
	Getting Familiar with Objects
	Introducing the Document Object Model
	Specifying Elements in Your Code
	Touring the DOM with Code
	Adding, Modifying, and Removing Elements
	Using Code to Mess Around with CSS
	Using Code to Tweak HTML Attributes
	Listening for Page Events

	Chapter 7: Working with Arrays
	What Is an Array?
	Declaring an Array
	Populating an Array
	Iterating Arrays
	Manipulating Arrays

	Chapter 8: Coding Strings and Dates
	Manipulating Strings
	Dealing with Dates and Times

	Chapter 9: Debugging JavaScript
	Laying Out Your Debugging Tools
	Debugging 101: Using the Console
	Putting Your Code into Break Mode
	Stepping Through Your Code

	Chapter 10: Dealing with Form Data
	Coding Text Fields
	Programming Checkboxes
	Coding Radio Buttons
	Programming Selection Lists
	Working with Form Events
	Handling Form Data

	Chapter 11: Ten JavaScript Debugging Strategies
	Get Thee to Your Dev Tools
	The Console Is Your Best Debugging Friend
	Give Your Code a Break(point)
	Step Through Your Code
	Monitor Variable and Object Property Values
	Indent Your Code
	Break Down Complex Tasks
	Break Up Long Statements
	Comment Out Problem Statements
	Use Comments To Document Your Scripts

	Index
	About the Author
	Advertisement Page
	Connect with Dummies
	End User License Agreement

