

Ultimate Penetration
Testing with Nmap

Master Cybersecurity Assessments
for Network Security, Monitoring,

and Scanning Using Nmap

Travis DeForge

www.orangeava.com

http://www.orangeava.com/

Copyright © 2024 Orange Education Pvt Ltd, AVA™

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author nor Orange Education Pvt Ltd or its dealers and distributors, will be
held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Orange Education Pvt Ltd has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capital. However, Orange
Education Pvt Ltd cannot guarantee the accuracy of this information. The use of general descriptive
names, registered names, trademarks, service marks, etc. in this publication does not imply, even in
the absence of a specific statement, that such names are exempt from the relevant protective laws and
regulations and therefore free for general use.

First published: March 2024
Published by: Orange Education Pvt Ltd, AVA™
Address: 9, Daryaganj, Delhi, 110002, India

275 New North Road Islington Suite 1314 London,
N1 7AA, United Kingdom

ISBN: 978-81-97081-86-6

www.orangeava.com

http://www.orangeava.com/

Dedicated To
My beloved wife, Mercee

and my beautiful daughter, Ava
Without your support, this book would have never
happened. thank you for always being there for me

About the Author

Travis DeForge is the Manager of Cybersecurity Engineering at Gotham
Security, a US-based boutique cybersecurity firm that provides high-quality
penetration testing, malicious adversary simulation, threat intelligence, and
cybersecurity strategy services. In this role, Travis routinely conducts
network and web application penetration tests, social engineering
engagements, and cloud security assessments for multibillion-dollar global
organizations.
Travis holds a Bachelor of Arts from the University of Vermont in
Mandarin Chinese and a Master of Science from Western Governors
University in Information Technology Management as well as numerous
certifications in networking, project management, cyber security, cloud
computing, and information technology including CompTIA Security+,
Network+, Pentest+ and Lean Six Sigma Blackbelt.
Before joining Gotham Security, Travis served as a Military Intelligence
Officer in the United States Army for several years. During this tenure, he
held several positions related to signals intelligence (SIGINT), open-source
intelligence (OSINT), electronic warfare (EW), and information operations
at both the tactical and operational levels. Travis brings his experience
working in the Department of Defense and the intelligence community
together with penetration testing expertise to provide high-quality insight to
clients.
Travis routinely creates open-source content for the cyber security
community through a recurring video series he cohosts called Cyber Judo;
as well as by engaging in numerous speaking engagements for local
chapters of the Open Web Application Security Project (OWASP) as well as
the Federal Reserve Bank. While professionally, Travis is an engineer, he is
a teacher at heart and loves to help mentor and educate those interested in
cybersecurity.

About the Technical Reviewer

Michael Hallmen is an Associate Security Engineer at Gotham Security,
where he conducts day-to-day activities such as penetration testing
applications and APIs. He also performs social engineering engagements
and risk assessments.
Michael is an AWS Cloud Practitioner and a dual-degreed cybersecurity
professional. He has participated in numerous CTF competitions, including
USCC, Hack a Sat, Defcon, and NCL. He is highly experienced in
vulnerability assessment, enumeration, and digital forensics, utilizing
multiple tools in penetration testing for network and application security.
He is proficient in various operating systems, including Windows, Server,
Linux, and MacOS.
He is skilled in using a wide range of tools such as NMAP, Nessus, Nikto,
Burpsuite, Zap, Dirbuster, Gobuster, Feroxbuster, Wireshark, Netcat, John,
Hydra, Hashcat, Exiftool, SQL Map, FTK Imager, Autopsy, Foremost, Zeek
(formerly Bro), Snort, and Kibana.
Michael’s skills include enumeration, social engineering, SQL injection,
cross-site scripting (XSS), network penetration testing, and web application
OWASP 10.

Acknowledgements

Having the opportunity to give back to the amazing cyber security
community by writing Ultimate Penetration Testing with Nmap has been a
true honor. I am eternally grateful to all those individuals who have
supported me throughout this process.
To my family – Thank you for your unwavering support. In particular, I
want to express my deepest appreciation for my wife, Mercee DeForge,
whose encouragement and patience over the last year has been crucial in
making this book a reality. Mercee, there were so many days spent
researching late into the night to make sure this book was on track and even
with a rambunctious toddler, moving across the country, and countless other
challenges, you always supported me. For that, I will be forever grateful.
I would also like to acknowledge and thank Christian Scott, my mentor and
longtime friend who originally brought me into the world of cyber security
and has invested countless hours training, coaching, and empowering me to
be in a position to write such a book. Christian, thank you for being such a
champion of putting good into the world by sacrificing your time to
contribute so much to the open-source community through https://cyber-
judo.com/ and https://enclave-regenerous.com. Your unwavering passion
has always been contagious, and I am eternally grateful for the opportunity
to continue learning from you.
To all those at Orange AVA who helped make this project a reality, I would
like to express my sincere thanks. Every single interaction from the first
introduction through the final project was incredibly smooth, organized, and
professional. It has been truly a collaborative and enriching experience.
Finally, to the readers, I sincerely thank you for choosing this book as a tool
in your toolkit to enhance your skills. I know there is information overload
with endless content available for you to study, and the fact that you have
chosen this book is extremely meaningful to me.

https://cyber-judo.com/
https://enclave-regenerous.com/

Preface

Penetration testing is an extremely fast-paced career field, where it seems
like every time you learn something new, there is immediately something
else to master. For many, Nmap was the first tool that they learned to use
when embarking on the journey of offensive security; yet very few know
how to use it to its fullest capacity. That is the opportunity that this book
provides.
Over the course of 9 meticulously curated chapters, you will refresh (or
learn for the first time!) the basics of Nmap. You’ll learn what it is, how it
works, and, most importantly, why it is used so often. You’ll learn how to
craft nuanced and complex scan profiles; and what techniques make sense
for penetration tests, purple teaming, and even red teaming engagements.
You’ll learn how to bypass intrusion detection systems and how to map the
attack surface of an extremely large network in a short period of time.
This book builds on itself progressively, with each chapter reinforcing what
you learned in the previous and challenging you to elevate your skills to
new heights. With each new tactic and technique that is introduced, your
confidence as a network penetration tester will increase. By the end, you’ll
be among a small percentage of pen testers who can run circles around the
competition by truly comprehending what Nmap is capable of.
Chapter 1. Introduction to Nmap and Security Assessments: The book
starts by exploring what Nmap is, why it is used, and why it is essential for
a cybersecurity professional to understand how to leverage it. The
versatility and power of Nmap are explored through the perspective of
Penetration Testing, Red Teaming, and Purple Teaming, and mapped to both
the MITRE ATT&CK framework as well as the Lockheed Martin Cyber
Kill chain.
Chapter 2. Setting Up a Lab Environment for Nmap: Throughout
chapters 3 through 8 there are a series of step-by-step walkthroughs and
challenges for the reader to complete to solidify their understanding of
Nmap, this chapter will discuss options for building a home lab
environment to complete these challenges. This lab will provide not only
the typical vulnerable virtual machines but also a functional security

incident and event management system to use when testing evasion tactics
in Chapter 7.
Chapter 3. Introduction to Attack Surface Mapping: This chapter begins
to dive into Nmap from a fundamental level by discussing the essential
technology models that are critical to understand. Once a grasp of how ports
and services work is established, the reader will be introduced to basic scan
techniques and the concept of mapping an attack surface. This will also be
the first introduction to both case studies, which are real-world stories of
leveraging Nmap in a variety of situations, as well as challenges designed to
help solidify the readers' expertise.
Chapter 4. Identifying Vulnerabilities Through Reconnaissance and
Enumeration: Building off of Chapter 3, this chapter goes deeper into the
capabilities of Nmap to include fingerprinting systems to determine a
common platform enumeration and use that information to identify
potential vulnerabilities. Through additional case studies and challenges,
the reader will begin to understand the depth and versatility of Nmap during
this chapter.
Chapter 5. Mapping a Large Environment: One significant challenge
that is very rarely covered in instructional books or videos is the unique
difficulty of penetration testing in a very large environment. Scanning a
single /24 subnet is one thing, but mapping a /8 is another thing entirely.
This chapter will explore this complexity and introduce strategies to fully
leverage Nmap in large corporate environments.
Chapter 6. Leveraging Zenmap and Legion: This chapter explores two
main options for adding a graphical user interface (GUI) on top of Nmap to
provide additional context and ease of use. By exploring both Zenmap as
well as Legion, readers will be exposed to options that work well on both
Windows and Linux operating systems and demonstrate how each can be
used to improve productivity and streamline analysis.
Chapter 7. Advanced Obfuscation and Firewall Evasion Techniques:
This chapter covers the advanced techniques that can be employed to avoid
detection and evade network defenses using Nmap. By first understanding
how default Nmap scans operate, the reader will learn how to manipulate
and obfuscate the network traffic to avoid detection.

Chapter 8. Leveraging the Nmap Scripting Engine: This chapter
explores the use of NSE scripts and how to leverage them to significantly
increase the capacity of the tool itself. By exploring the structure and
function of several individual scripts and script categories, the reader will
further broaden their understanding of Nmap’s versatility.
Chapter 9. Best Practices and Considerations: This chapter concludes
the direct content of the book by exploring industry best practices related to
port and vulnerability scanning, verification of findings to reduce the rate of
false positive and false negative results, communicating results to clients, as
well as common mistakes made by inexperienced practitioners.
Appendix A. Nmap Practice Questions: While this book does not aim to
be a certification study guide by any means, questions on Nmap do
frequently appear on many well-known certification exams such as
CompTIA Security+, CompTIA Pentest+, Certified Ethical Hacker, and
many others. This additional resource will provide a key check on learning
for the reader as they may challenge themselves to answer numerous port
scanning, enumeration, and Nmap-based questions stylized in a way very
similar to those certification exams.
Appendix B. Nmap Command Quick Reference Guide: This section will
provide a neat and organized breakdown of the key flags and scripts
mentioned throughout the book in one place to serve as an easy reference
guide for the reader.

Downloading the code
bundles and colored images

Please follow the link or scan the QR code to download the
Code Bundles and Images of the book:

https://github.com/ava-orange-
education/Ultimate-Penetration-Testing-

with-Nmap

The code bundles and images of the book are also hosted on
https://rebrand.ly/cd9c04

In case there’s an update to the code, it will be updated on the existing
GitHub repository.

https://github.com/ava-orange-education/Ultimate-Penetration-Testing-with-Nmap
https://rebrand.ly/cd9c04

Errata

We take immense pride in our work at Orange Education Pvt Ltd and
follow best practices to ensure the accuracy of our content to provide an
indulging reading experience to our subscribers. Our readers are our
mirrors, and we use their inputs to reflect and improve upon human errors,
if any, that may have occurred during the publishing processes involved. To
let us maintain the quality and help us reach out to any readers who might
be having difficulties due to any unforeseen errors, please write to us at :
errata@orangeava.com
Your support, suggestions, and feedback are highly appreciated.

mailto:errata@orangeava.com

DID YOU KNOW
Did you know that Orange Education Pvt Ltd offers eBook versions of
every book published, with PDF and ePub files available? You can
upgrade to the eBook version at www.orangeava.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at: info@orangeava.com for more details.
At www.orangeava.com, you can also read a collection of free technical
articles, sign up for a range of free newsletters, and receive exclusive
discounts and offers on AVA™ Books and eBooks.

PIRACY
If you come across any illegal copies of our works in any form on the
internet, we would be grateful if you would provide us with the location
address or website name. Please contact us at info@orangeava.com
with a link to the material.

ARE YOU INTERESTED IN AUTHORING
WITH US?

If there is a topic that you have expertise in, and you are interested in
either writing or contributing to a book, please write to us at
business@orangeava.com. We are on a journey to help developers and
tech professionals to gain insights on the present technological
advancements and innovations happening across the globe and build a
community that believes Knowledge is best acquired by sharing and
learning with others. Please reach out to us to learn what our audience
demands and how you can be part of this educational reform. We also
welcome ideas from tech experts and help them build learning and
development content for their domains.

REVIEWS
Please leave a review. Once you have read and used this book, why not
leave a review on the site that you purchased it from? Potential readers

http://www.orangeava.com/
mailto:info@orangeava.com
http://www.orangeava.com/
mailto:info@orangeava.com
mailto:business@orangeava.com

can then see and use your unbiased opinion to make purchase decisions.
We at Orange Education would love to know what you think about our
products, and our authors can learn from your feedback. Thank you!
For more information about Orange Education, please visit
www.orangeava.com.

http://www.orangeava.com/

Table of Contents

1. Introduction to Nmap and Security Assessments
Introduction
Structure
Introduction to Nmap
Using Nmap to Boost Your Career
Using Nmap Legally and Ethically
Vulnerability Scans Versus Penetration Tests
Applying Nmap to Red and Purple Teaming
Conclusion
Points to Remember
Multiple Choice Questions

Answers

2. Setting Up a Lab Environment For Nmap
Introduction
Structure
Components of a Good Lab Environment
Installing Nmap, Virtual Box, Kali, and Additional Tools
Setting Up the Target Servers
Securing the Lab Environment
Conclusion
Points to Remember
Challenge 1 – Customize Your Lab
Multiple Choice Questions

Answers

3. Introduction to Attack Surface Mapping
Introduction
Structure
Understanding Attack Surfaces
Stages of Penetration Tests
Fundamental Nmap Flags
Leveraging Nmap to Map the Attack Surface

Case Study – Continuous Attack Surface Monitoring of a Small
Business

Challenge 1 - Getting Hands-on with Basic Scans
Challenge 2 – Map the Attack Surface of Your Home Network
Conclusion
Points to Remember
Multiple Choice Questions

Answers

4. Identifying Vulnerabilities Through Reconnaissance and
Enumeration
Introduction
Structure
Common Platform Enumeration (CPE) and Common Vulnerabilities

and Exposures (CVE)
Introduction to Nmap Scripting Engine
Intermediate Nmap Flags
Exploring the Nmap Scripting Engine
System, Service, and Operating System Enumeration

Misconfigurations
Inherently Flawed Protocols

Technical Debt
Vulnerability Scanning with Nmap
Case Study – Real-World Internal and External Penetration Test
Challenge 1: Fingerprinting Vulnerable Systems
Challenge 2: Home Network Vulnerability Scanning
Conclusion
Points to Remember
Multiple Choice Questions

Answers

5. Mapping a Large Environment
Introduction
Structure
Working with Large Networks
Black Box Subnet Discovery Techniques and Mass Scanning
Optimizing Scans for Speed

Case Study: Real-World Account of Pentesting a Very Large
Environment

Challenge: Optimizing a Custom Scan for Speed
Conclusion
Points to Remember
Multiple Choice Questions

Answers

6. Leveraging Zenmap and Legion
Introduction
Structure
Leveraging Zenmap for Analysis and Scanning
Leveraging Legion for Analysis and Scanning
Modifying the Legion Configuration File
Challenge: Creating a Custom Legion Configuration and Zenmap

Profile
Conclusion
Points to Remember
Multiple Choice Questions

Answers

7. Advanced Obfuscation and Firewall Evasion Techniques
Introduction
Structure
Understanding and Manipulating Default Nmap Scan Parameters
Advanced Flags for Obfuscation
Intrusion Detection System (IDS) and Firewall Evasion
Avoiding Blue Team Detection
Case Study: Purple Teaming with Nmap
Case Study: Red Teaming a Bank
Challenge: Evading Detection in Your Lab Environment
Challenge: Breaking Down Complex Scans
Conclusion
Points to Remember
Multiple Choice Questions

Answers

8. Leveraging the Nmap Scripting Engine
Introduction
Structure
Introduction to Nmap Scripting Engine (NSE)
Script Syntax and Usage
Locating, Modifying, and Adding NSE Scripts
Introduction to NSE Scripting
Challenge: Create a Custom NSE Script and Post it to GitHub
Challenge: Test and Refine a Custom Script in the Lab environment
Challenge: Scanning with Multiple Concurrent Scripts
Conclusion
Points to Remember
Multiple Choice Questions

Answers

9. Best Practices and Considerations
Introduction
Structure
Identifying the Right Scan at the Right Time
Key Considerations to Avoid a Negative Impact on Client Systems
Effective Communication of Results
Conclusion
Points to Remember

APPENDIX A. Additional Questions
Multiple Choice Questions

Answers

APPENDIX B. Nmap Quick Reference Guide
Port States
Flags for Basic Scanning
Mapping the Attack Surface
Timing and Performance
Scanning Large Scopes
Obfuscation
Stealth Scanning
Nmap Scripting Engine

Top 10 Handy NSE Scripts

Index

CHAPTER 1
Introduction to Nmap and Security

Assessments

Introduction
Nearly anyone currently working in cyber security, or any student learning
the fundamentals will inevitably come across Nmap. At its core, it is a port
scanner that can empower the security analyst to gain additional insight into
systems by looking at what ports and services are open. But to say that
Nmap is just a port scanner would be akin to saying that paint is simply for
walls. Sure, you can use Nmap as a simple port scanner just as you can
simply paint the walls of your home eggshell white and call it a day. But in
the right hands, just as a paintbrush can elevate a canvas into a work of art,
Nmap can elevate the insight you provide to clients into something truly
remarkable.
Throughout this book, we will be taking a deep dive into how you can
leverage Nmap to its fullest extent to conduct world-class security
assessments, demonstrate tremendous value to clients and employers, and
provide real insight to help make the world a more secure place. We will be
looking at each function of Nmap, starting from the very basics and
progressing to advanced techniques. These methods are used to maintain
stealth in an engagement, bypass firewalls, and help fine-tune blue-team
detection capabilities.
This book is structured specifically to answer the common questions often
asked when speaking to cyber security students, training junior penetration
testers, and even when presenting security assessments to executives at
multi-billion-dollar corporations. One of the phrases I hear the most in my
professional life is “Wow, I didn’t know Nmap could do that”, and by the
end of this book, you will start hearing that phrase too.
Each section of this book will build upon the last by introducing and
explaining new skills, explaining with real-world stories of security

assessments why those skills are so critical, and helping you solidify your
understanding with hands-on practical exercises. Every penetration tester
can run a Nmap scan; however, by the end of this book, you will be doing
things with Nmap that most people assume requires an extremely expensive
commercial product to do. You will be able to provide tremendous value and
insight to any organization through a well-thought-out and systematic
analysis of systems with a 100% free and open-source tool.

Structure
In this chapter, we will explore and answer the following questions:

Introduction to Nmap
Using Nmap to boost your career
Using Nmap legally and ethically
Vulnerability scans versus penetration tests
Applying Nmap to red and purple teaming

Introduction to Nmap
It is mentioned in the introduction that Nmap is at its core a port scanner,
and that is fundamentally correct. Nmap is probably the most widely used
port scanner ever created and has been used extensively by security
professionals since Gordon Lyon first published it in 1997. That’s right, this
wonder tool, claimed to elevate your penetration testing skillset to new
heights, was released before Google. However, despite its age, just as
technology has advanced over the last couple of decades, Nmap has kept
pace with regular updates, new features, improvements, and community
contributions, which add to its incredible versatility.
To understand what Nmap is, we first need to understand its most basic
function, port scanning. Fundamentally, a port is a virtual anchor point that
is used to associate particular services and enable computer systems to sort
and effectively process the network traffic that is being received. In total,
over 65 thousand ports utilize the Transmission Control Protocol (TCP) or
the User Datagram Protocol (UDP). Both TCP and UDP are standards that
define how a connection between two systems is established and dictate the
method by which data can be transmitted between them. However, the

distinction between these two protocols is critical to understand if you want
to truly become an expert-level user of Nmap.
TCP is used for protocols that require secure transmission of data between
the sender and receiver. This is accomplished by establishing what is known
as a three-way handshake. During this exchange, the originating system will
first send a synchronize (SYN) packet to the receiving system, once received
that system will reply with an acknowledgment (SYN-ACK), and the
originating system will then reply to that reply with an acknowledgment of
the acknowledgment (ACK) before sending any additional data.

Figure 1.1: TCP Three-Way Handshake Diagram

Does this seem slightly redundant? It is, but it is redundant to ensure that a
full connection is made with the system. If at any point the three-way
handshake is interrupted, such as by an Intrusion Prevention System (IPS)
or firewall, a full connection will not be established, and thus the data will
not be sent from the sender to the receiver; in these instances, instead of an
ACK packet, a reset (RST) will typically be sent.
Most of the common services you will be searching for during security
engagements will be served over common TCP ports such as 80 (Hypertext
Transfer Protocol, or HTTP) and 443 (Hypertext Transfer Protocol Secure).
Don’t worry, we will discuss all the common ports to be aware of and how to
fingerprint them later. The key takeaway from TCP is that it is a secure
connection, requiring an acknowledgment from the receiver to be
established, and that process is known as the three-way handshake.
In contrast to the three-way handshake verification between the sender and
receiver that is utilized in TCP, UDP takes a far more haphazard approach.

UDP speeds up the process by neglecting to establish a formal connection in
the first place. So rather than wait for an acknowledgment from the receiver,
a computer utilizing UDP will just send the packet immediately. This
certainly increases the speed of the data transmission, but that increase in
speed comes with a decrease in reliability as packets can become lost in the
process. In introduction to Networking courses, most of the examples
surrounding UDP relate to video transmission where it is paramount to the
consumer to avoid the dreaded buffering lag. While you will occasionally
see UDP being used for video transmissions in penetration tests (security
camera feeds come to mind), several other protocols tend to be far riper for
exploitation such as the Intelligence Platform Management Interface
(IPMI), which is often seen on UDP port 623.
No coverage of networking concepts would be complete without touching on
the Open Systems Interconnection Model (OSI model). This model is a
framework to describe how computer systems can communicate with one
another. From the physical layer, which involves cables and electrical
signals, all the way to the application layer that the user directly interacts
with. It is worth contextually mentioning that transport protocols like TCP
and UDP operate at layer 4 (Transport Layer) of the OSI model. While a
deep dive into networking concepts is beyond the scope of this book,
additional details surrounding Nmap’s interaction with the OSI model will
be covered in Chapter 3: Introduction to Attack Surface Mapping:

Figure 1.2: OSI and TCP/IP Model Comparison

As you begin your journey into penetration testing in general, but especially
Nmap, you will naturally begin to memorize a lot of ports and services,
which are the most interesting from an attacker’s perspective. We will get
into that a lot in later chapters, but for now, just take note of the major
differences between TCP and UDP, and make sure you understand the three-
way handshake.
Now that we have touched on the very basics of prerequisite networking
knowledge, let’s get down to brass tax and take a look at how Nmap actually
functions. Most commonly as a penetration tester, you will be using Nmap
on a Linux machine, typically Kali Linux, but there are several other
distributions such as Ubuntu, Parrot, and Black Arch, which you may see
from time to time. While Kali Linux is likely the most common platform you
will see Nmap used on it is worth noting that Nmap can be easily installed
and works well on, both Windows and MacOS too. We will go into installing
Nmap in the next chapter when we walk through setting up a lab
environment to practice the scans and techniques you will learn throughout
this book. But for now, let’s look at and discuss some real Nmap scans.

NOTE: Understanding the three-way handshake is the minimum
prerequisite knowledge required for the next several sections.
However, understanding additional network fundamentals such as the
OSI Model would be beneficial to anyone studying Nmap.

We will start with a default Nmap scan against http://scanme.nmap.org. This
is a website designed specifically to allow people to practice using Nmap
and can be freely used as a target for scans that are not overly aggressive. A
default scan simply requires the command nmap followed by the target
scanme.nmap.org, like so:
> nmap scanme.nmap.org

Figure 1.3: Default Nmap Scan Enumerating Ports

We can see a lot of interesting things in this result. Starting from the top, we
can tell that this version of Nmap is version 7.92 as well as the date and time
that the scan started. In the next line, we can see that Nmap was able to
resolve the hostname to an IP address (45.33.32.156). Next, we can see the
results of the scan, which says that 994 TCP ports were closed, with Ports
22, 9929, and 31337 listed as open, with 25, 80, and 5431 listed as filtered.
There are a couple of important things to take note of here, the first is that in
total 1000 ports were scanned, the default setting of Nmap, if you do not
otherwise specify, is to scan the top 1000 most common ports.
The next thing to clarify is the state of the ports. Nmap has the capability of
classifying six distinct states of ports which are important to understand:
Open The port is actively accepting connections

http://scanme.nmap.org/

Closed The port is accessible, but there is no application listening on it

Filtered Nmap cannot tell if it is opened or close, often due to a firewall

Unfiltered The port is accessible, but Nmap cannot tell if it is open or closed. This
status is rarely seen unless you are doing a very specific type of scanning
to map firewall rulesets

Open|Filtered Nmap cannot tell if it is Open or Filtered, possibly because of a lack of
response

Closed|Filtered Nmap cannot tell if it is Closed or Filtered

Table 1.1: Overview of Port States

Finally, we can see the services that Nmap believes to be running on each
port. In Figure 1.3, they are secure shell (SSH), simple mail transfer
protocol (SMTP), hypertext transfer protocol (HTTP), park-agent, nping-
echo, and Elite.
While understanding which ports and services are open and potentially open
is helpful, we can elicit much more information by adding what are called
flags. Flags are additional commands which can be added to the Nmap scan
to add, remove, or modify the default functioning. Let’s use a few of these
flags to try to enumerate the operating system of the host, as well as the
version of each service. To do this, we will use the following syntax:
> nmap -A scanme.nmap.org

Figure 1.4: Nmap Scan Enumerating Ports, Services, and Operating System

As you can see, this time we have a lot more information. We can tell that
scanme.nmap.org is utilizing OpenSSH 6.6.1 and Apache version 2.4.7 on
an Ubuntu Linux system. You may also notice that this time, the status of
port 80 changed from filtered to open as additional information was queried,
and Nmap was able to confirm the port was opened. Adding the single “-A”
flag provides substantially more information than the default scan. This flag
is very useful as it tells Nmap to expand the scope of its scan to include
information on the services and the operating system of the endpoint.
Let’s see if we can get even more detailed information about port 80 on this
host. This time we will use three different flags: -sV -v and -p:
>nmap -sV -v -p 22 scanme.nmap.org

Figure 1.5: Adding Verbosity and Demonstrating Single Port Scanning

This scan works a little bit differently; instead of using -A, we have replaced
that flag with -sV, which will only enumerate the service versions. Since we
already established the system is Ubuntu Linux, we can omit redundantly
scanning for the operating system to save time. Next, the -v flag stands for
verbosity, it will provide a more verbose output, which in turn may provide
additional details on the service. Finally, -p indicates which port(s) to scan.
Since the default of Nmap is to scan 1,000 ports, but we are just interested in
port 22, we set -p 22 to only target that port.
In this case, there wasn’t a lot more information on the OpenSSH instance
than we had previously gathered, beyond the additional service info. But we
have another trick up our sleeve; this time we will include a script called
vulners.nse, which will search the vulners.org database and determine if
there are any vulnerabilities associated with that version of OpenSSH:
>nmap -sV -v -p 22 --script vulners.nse scanme.nmap.org

Figure 1.6: Demonstrating vulnerability scanning with Nmap

Now we have really got something to work with, a list of known
vulnerabilities associated with OpenSSH version 6.6.1p1! The major
takeaway here is that by adding different arguments, or flags, to your Nmap
scan you can transform the functionality from a simple port scanner into
much more. In this brief example, we used Nmap to fingerprint a system,
enumerate the open ports and services, and perform vulnerability scanning to
identify several vulnerabilities associated with one of the services, which
may be exploitable very quickly.
If this seemed a bit overwhelming, don’t worry. One of the questions I get
asked all the time is “How do I remember all of those different flags?”; the
good news is that you don’t have to memorize them (although in time you
certainly will remember your favorites). Instead, you have a few options, the
first is to simply remember the -h flag. As in many scripts, this opens the
Nmap help menu right in your command line, which will give you the spark
notes version of the options available to you:
> nmap -h

Figure 1.7: Demonstrating the Nmap help menu

Another option is to use the Linux utility ‘man’ to open the Nmap reference
guide in your terminal. Compared to the Help menu, this is far completer
and more detailed, plus using ‘man’ lets you go page by page through all the
Nmap documentation:
>man nmap

Figure 1.8: Demonstrating the Nmap manual in Linux CLI

Yet another option is to visit https://nmap.org where you can find the
complete documentation on Nmap, detailing what every single flag does.
While each of these options is extremely helpful in remembering individual
flags or understanding one command in particular, the aim of this book is to
expand upon the utility of the official documentation. Where, in my opinion,
the documentation falls short is that the majority of examples and
descriptions focus on using individual features for individual purposes.
Throughout this book, you will see numerous flags, all being used together
to complement and amplify the capabilities of Nmap, leading to an
extremely powerful tool. These combinations are going to be covered
throughout the following chapters as we progressively delve into more and
more advanced techniques. However, all of the flags used during real-world
penetration tests of some of the world’s largest companies will be included
in the Appendix of the book in a handy quick-reference guide.

Using Nmap to Boost Your Career

https://nmap.org/

The field of cyber security is extremely vast, there are seemingly endless
different aspects that one can specialize in. From cryptography to forensics,
cloud to threat hunting, and red team to blue team, there are many potential
career paths. Every week there will be at least one aspiring cyber
professional reaching out on LinkedIn for advice on how to break into the
industry, and the conversation usually starts very predictably. They will say
they are trying to get a cyber security role but are not having any luck
getting interviews. I always reply by asking what area of cyber security they
are specifically targeting and studying for. To which nine out of ten times
there will be a reply like this: “I’m open to anything! I am focusing on SOC
analyst, GRC, threat intelligence, and penetration testing roles.”
Let’s dig into that sentiment, because at first glance it may make a lot of
sense. The person is just trying to get their foot in the door with any cyber
security job they can and then figure out what they want to do from there. It
makes logical sense, but in practice, it is a very inefficient approach. The
skill set you need, both from a technical and soft skills perspective, is very
different between all of those roles. For example, a GRC analyst would
benefit certainly from a degree of technical acumen; but certainly, would not
be expected to poison insecure network traffic, collect hashed credentials of
enterprise users, crack those credentials, and take over an Active Directory
domain. Whereas if you were applying for a junior penetration testing role,
there would almost definitely be a line of questioning surrounding that
concept.
Trying to study everything at once to remain “open to anything”
inadvertently results in your knowledge base being a mile wide but only an
inch deep. What is far more effective in this field is having a good baseline
knowledge of security as a whole, then deep diving into a particular area and
really building up your expertise.
The first certification I did when I got into security was the CompTIA
Security+. Talk about a mile wide and an inch deep, there are questions and
concepts of all kinds of things within the cyber security domain. It is
designed to help people establish that baseline understanding, to be able to
speak in the lexicon of cybersecurity, and to help pinpoint what areas to
focus on further. There are only a couple of specific tools that tend to get
regularly brought up in that exam, and Nmap is one of them.

If Nmap comes up as a topic in one of the industry’s most prevalent baseline
certification exams, where can it help you once you pass? Well, the title of
this book should be a dead giveaway. Nmap and network penetration testing
go together hand in hand. Because of this, you will see questions about
Nmap on exams such as CompTIA Pentest+ and Certified Ethical Hacker
(CEH), and you would be likely to rely on Nmap for critical reconnaissance
during hands-on exams such as the eJPT or OSCP.
It is important to note that Nmap is by far the most applicable to network
penetration tests. There are many different types of pentests, all of which
require a different skill set, different tooling, and different degrees of
technical knowledge. There are web application pentests, API pentests,
mobile applications pentests, cloud pentests, Internet of Things (IoT)
pentests, and so on, Remember that this field is vast, and trying to specialize
in everything doesn’t work well.
This book is going to focus on building your skills in three types of security
engagements: network penetration tests, purple teaming, and red teaming.
By learning how Nmap can apply to and be used expertly for each of these
major types of security tests, you will be able to stand out from the crowd
both in technical performance, but also in technical interviews.
First, consider someone who has been taking the “I’m open to anything”
approach and is being interviewed for a network penetration testing role at a
security company. They are asked the following question:
“What are the first steps of active reconnaissance you would take during an
internal network pentest?”
Most people that I have personally posed this question to say something
along these lines:
“I would scan ports and analyze the services that are on those ports with
Nmap.”
While that answer is not technically wrong, it is unremarkable. By the end of
this book, you will confidently be able to provide an answer with far more
nuance and demonstrate immediately a higher degree of knowledge within
that area. After completing this book and the suggested labs that go along
with it, you will easily be able to answer the same question with something
more along the lines of:

“The first thing I would do in the active reconnaissance phase would be to
begin mapping the attack surface. I would do this by enumerating the ports
and services with a custom Nmap scan designed to minimize the noise on the
network to avoid immediate detection. In addition to utilizing techniques
such as packet fragmentation and reducing the speed of the scan, I would
also be sure to scan only the local subnet first. This will allow me to gather
information within the subnet I am scanning from without risking detection
by going through an intrusion detection system to reach other subnets. I
would also customize the targets to avoid scanning the gateway, again to
reduce the risk of immediate detection. I would output that scan to an xml
file and import it into Legion to get a graphical view of the local subnet, then
determine the next steps based on that attack surface.”
If only bits and pieces of that response really make sense to you at this point,
don’t worry. We will be exploring those concepts, and many more, in great
detail.

Using Nmap Legally and Ethically
It is extremely important to understand the responsibility that comes with
utilizing a tool such as Nmap, both inside and outside of a professional
setting. Nmap makes connections with the target endpoints and gathers
information from those endpoints through a direct connection, which makes
it a tool for active reconnaissance. The distinction between active and
passive reconnaissance is crucial not only from a knowledge base
perspective but also from a legal perspective.
The main difference between the two is in the connection to the endpoint.
Any tool or technique that is ‘actively’ connecting to another system that
you do not own introduces legal risk to you. This is why things like rules of
engagement (RoE) are so important during professional penetration tests.
The RoE is an agreement between the client who owns the systems and the
penetration tester regarding what is allowed and what is not allowed to be
done to their systems. Without a RoE or another form of written permission
to scan the systems, you may (depending on jurisdiction) be breaking the
law by utilizing something like Nmap.
Contrary to gathering information with active means, there are a plethora of
passive methods of gathering information available to penetration testers.
Many of these would be classified as open-source intelligence (OSINT).

Using information that is already publicly available, there are often many
ways to conduct reconnaissance without transitioning into active means:
For example, say we wanted to see what ports are open on a web server, in
this case, at 45.33.32.156. We can gather the same information actively with
Nmap, as we can passively with Shodan.io. The difference is that using
Nmap would establish a direct connection and thus require explicit
permission to do so. Whereas Shodan.io already has that information
archived, and by searching for the server on Shodan, there is no direct
connection made with 45.33.32.156, thus classifying it as passive:

Figure 1.9: Utilizing Shodan.io to passively gather information on open ports

Beyond the legal ramifications, one must also consider the potential impact
on systems that could occur when leveraging Nmap in a production
environment. While quite uncommon for Nmap to cause a major service
disruption or to restart a system on its own, there are hundreds of custom
Nmap scripts (more on these later) that can be used to amplify the base
capabilities of Nmap. Some of these scripts are completely safe to use
without concern, but others do have a very real chance to cause system
impact.
As a penetration tester one of the cardinal rules is to always avoid doing
anything that will impact the CIA triad. The CIA triad is an acronym that
stands for confidentiality, integrity, and availability. This is a very common,
and very important concept in information security as it relates to data. In the
case of Nmap, the part of the triad to be most concerned with is the

availability of systems. By running unsafe arguments, untested scripts, or
scanning legacy systems too aggressively, it is possible to take down
production systems, leading to a bad day for your client (and a very bad day
for you too):

Figure 1.10: CIA Triad

As such, it is your legal responsibility to ensure you have permission to scan
each and every target within your scope of work, and it is your ethical
responsibility to ensure you understand what those scans are doing to avoid
impacting the CIA triad.

Vulnerability Scans Versus Penetration Tests
Within the cyber security community, different companies will classify
different actions differently. To some company standards, a penetration test
is a largely automated process using commercial tools like Nessus and
Sn3per. To others, it is a highly involved and intricate process focusing on
the use of both automated and manual techniques. To ensure that there is a
mutual understanding of the terminology used throughout the book, we will

take a moment to lay out how this book defines vulnerability scans and
penetration tests.
A vulnerability scanner is a tool that is used by security teams to enumerate
a particular system by analyzing the operating system, open ports, services,
and versions of those services to first establish a common platform
enumeration (CPE). Once a CPE is known, then the scanner will automate
the process of sorting through tens of thousands of common vulnerabilities
and exposures (CVEs) to identify if the system is vulnerable to any
particular vulnerabilities. Many vulnerability scanners will go beyond just
CPE information and also attempt proof-of-concept exploitation of things
like default credentials, public SNMP communities, cross-site scripting
(XSS), various forms of injection, and so on.
Vulnerability scanning is a widely used practice that is often done across
particular systems or networks on a reoccurring basis to identify any new
critical vulnerabilities, or determine major changes in the environment. An
inherent flaw in vulnerability scans that must be understood is that they are
all prone to both false positive and false negative findings.
While many vulnerability scanners are commercial products that can be
extremely costly, most are fundamentally very similar to one another in
functioning. To get some hands-on experience with vulnerability scanners,
consider installing the community edition of OpenVas from
https://greenbone.github.io/docs/latest/background.html#architecture:

https://greenbone.github.io/docs/latest/background.html#architecture

Figure 1.11: Greenbone (OpenVas) Community Edition Running in Virtual Box

Penetration testing on the other hand is a significantly more involved
process. Fundamentally, a penetration test seeks to enumerate a real-world
malicious actor using known malicious actor tactics, techniques, and
procedures (TTPs) to actively exploit the target systems or network.
Conducting a high-quality penetration test involves highly detailed
reconnaissance and attack surface mapping, identifying vulnerabilities, and
exploiting those vulnerabilities to cause a cascading compromise within the
environment, ultimately demonstrating the potential impact of a malicious
actor targeting those systems.

NOTE: Many vulnerability scanners, both open source and
commercial, actually leverage Nmap under the hood to establish the
CPE information. In fact, Nmap can actually be used on its own for
vulnerability scanning with some custom NSE scripts.

For the purposes of this book, there are two specific types of penetration
tests we will be discussing, external network pentests and internal network
pentests. Both of which we will discuss from a black box perspective,
meaning that we, as the testers, do not have any knowledge of the client
organization beyond the scope provided in the RoE. We have neither been
whitelisted by any security systems, nor have any accounts been
provisioned. Additionally, we will be actively trying to avoid detection by
the client’s blue team to truly simulate a sophisticated malicious actor.
To accomplish this, a penetration tester will almost always follow an
industry-recognized framework to ensure the test is completed to an
acceptable standard. Several guidelines and frameworks exist such as the
Penetration Testing Execution Standard1 (PTES) or NIST SP 800-1152

(Technical Guide to Information Security Testing and Assessment).
Additionally, it is becoming more and more common within the industry to
also map penetration testing activities and resulting security findings to
additional industry frameworks such as MITRE ATT&CK3 or the Lockheed
Martin Cyber Kill Chain. The ATT&CK framework by MITRE is a fantastic
knowledge base of real-world malicious actors TTPs organized into fourteen
different ‘tactics’ (Reconnaissance, Resource Development, Initial Access,
Execution, Persistence, Privilege Escalation, Defense Evasion, Credential
Access, Discovery, Lateral Movement, Collection, Command and Control,

Exfiltration, and Impact). Lockheed Martin’s Cyber Kill Chain is slightly
different in that it illustrates the logical progression of an advanced
persistent threat (APT) from reconnaissance to actions on objectives.
Throughout this book, we will be leveraging both frameworks as a way to
categorize the Nmap techniques that are employed.

Applying Nmap to Red and Purple Teaming
Red teaming is considered as an advanced form of penetration testing where
the concept of emulating a real malicious actor is taken to a higher level by
reducing restrictions. For example, most penetration tests are focused
entirely on technical vulnerabilities and (unless deliberately included in
scope) do not include social engineering. This is one area where true red
teaming differs, as the options available to the red team are generally more
robust.
Another key difference is that during red teaming engagements, the blue
team (defenders) are actively threat hunting trying to detect, block, and
contain the red team (attackers). While this may sound similar to the way
avoiding detection is described in penetration testing, there is an important
distinction to be made. Typically, during a penetration test, the blue team
would not block the pentester’s IP, evict them from systems upon discovery,
or change firewall rules mid-engagement. That would inherently minimize
the potential insight into what vulnerabilities exist within the environment.
When I conduct penetration tests, I encourage clients to send me evidence of
when their blue team detects my actions so that I can feature that detection
capability in the report. That is very different from the blue team actively
trying to thwart my efforts.
The goal of a red teaming engagement isn’t only to illustrate the most
significant vulnerabilities within the environment as it is with a penetration
test. While that is part of it, the real value of red teaming comes from the
client being able to truly assess the holistic maturity of their security
program from end-user security awareness to their incident response
capability to their ability to contain threats within the network.
We will discuss numerous methods of modifying Nmap scans to enumerate
systems and identify vulnerabilities while using stealth tactics to avoid
detection from the blue team. While this is believed to be an important best
practice within a penetration test, it is essential in a red teaming engagement.

Purple teaming is another advanced form of security assessment that very
often contains elements akin to penetration testing within it. During a purple
team engagement, the red team and the blue team will collaborate closely
together, often in real-time, to identify what actions or activities the blue
team can detect the red team doing. Doing this collaboratively not only
provides the opportunity for both sides to learn from each other but also
allows the blue team to understand their thresholds for detection.
Nmap has proven to be an immensely helpful tool during purple team
engagements because the scans themselves can do so many different things,
in so many different ways. For example, I may begin with an extremely
obvious port scan with all default settings to make sure the blue team can
detect that activity. Then progressively add more and more obfuscation
techniques until a scan that bypasses detection is reached. Once that point is
established, then I can collaborate with the blue team on how to adjust their
IDS, EDR, or firewall settings to set more insight into that particular tactic.
Considering that Nmap can accomplish far more than just port scanning, that
means it can generate more indicators of compromise (IoCs) within the
client’s network. This allows savvy purple teamers to craft numerous
scenarios which align to different TTPs all while using Nmap.

Conclusion
So far, we have discussed the core of what Nmap is and a very high-level
overview of what it is capable of. With a baseline understanding of
networking concepts, we will begin by understanding the fundamentals
before expanding into progressively more nuanced and advanced skills.
We also considered the legal and ethical implications of employing such a
tool, and how, when used properly, it can provide tremendous insight to
clients. The potential for unintended consequences negatively impacting a
client’s environment necessitates an ethical penetration tester to take the time
to understand what the scans are doing and how they are doing it. Without
understanding the fundamentals of networking and how different scan types
may work on different layers of the OSI model, or modify the traditional
three-way handshake, it will be impossible to truly build the expertise. In
other words, without understanding the ‘why’ and the ‘how’ of what the tool
is doing, the potential for unintended consequences will always be present.

By considering different types of security assessments such as vulnerability
scanning, penetration testing, red teaming, and purple teaming, we
established a common lexicon that will allow you to begin to understand
what types of scans would be beneficial in certain engagements and
hazardous in others. This concept will be continuously reinforced through
numerous case studies of real-world security assessments as well as with
hands-on challenges.
All of the information within this chapter can be considered the foundation
on which we will progressively build your Nmap expertise on top of. In the
next chapter, we will build a simple but highly functional home lab
environment that will provide countless opportunities to gain hands-on
experience with penetration testing tools, concepts, and techniques. This lab
is made to be a miniature replica of enterprise environments that are often
seen during real-world penetration tests, and by leveraging and learning in a
realistic lab environment your skills will be reinforced.

Points to Remember
Nmap is an extremely powerful open-source tool that can be used for
port scanning, vulnerability scanning, exploitation, penetration testing,
red teaming, purple teaming, and more.
By utilizing different flags, options, and scripts the way that Nmap
functions can be highly customized to suit the needs of the penetration
tester.
Port scanning is a form of active reconnaissance that requires explicit
permission from the system owner to be performed legally.
Vulnerability scanning, penetration testing, red teaming, and purple
teaming are all very different types of security assessments with
different techniques, purposes, and outcomes. While Nmap can be
utilized in each one of these assessments, how it is used would be
vastly different.
The way to get the most out of this book is to read the chapters,
thoughtfully consider the case studies, and then practice the techniques
by completing the challenges in a lab environment.

Multiple Choice Questions

1. This type of engagement involves a close collaboration between the
offensive and defensive security teams:

a. Penetration Test
b. Purple Teaming
c. Vulnerability Scan
d. Red Teaming

2. The objective of a penetration test is to identify every possible
vulnerability in a system or environment.

a. True
b. False

3. An organization wants to get a holistic view of its entire security
program including detection, incident response, and containment
protocols. Which would be the best security assessment to provide
this insight?

a. Vulnerability Scan
b. Purple Teaming
c. Penetration Test
d. Red Teaming

4. An Nmap scan is an example of:

a. Passive Reconnaissance
b. Active Reconnaissance

5. Which component of the CIA Triad is most likely to be impacted
by Nmap scanning?

a. Confidentiality
b. Integrity
c. Availability

6. Which document defines the scope of an engagement and provides
permission for conducting active testing?

a. RoE

b. IDS
c. EDR
d. IoC

7. Which framework is designed to illustrate the phases of attack by
an APT from reconnaissance to actions on objective?

a. ATT&CK
b. Cyber Kill Chain
c. OSI Model
d. TCP/IP

8. Which port status most commonly indicates possible interference
from an IPS or firewall?

a. Open
b. Closed
c. Filtered
d. Unfiltered
e. Open | Filtered
f. Closed | Filtered

9. Which layer of the OSI model is associated with TCP?

a. Application Layer
b. Data Link Layer
c. Transport Layer
d. Session Layer

10. This type of penetration test takes the perspective of a malicious
actor with no inside knowledge of the client’s infrastructure or
attack surface:

a. White Box
b. Black Box
c. Red Box
d. Purple Box

Answers
1. b

Purple team engagements provide insight through the coordinated and
collaborative actions of both the red team (offense) and the blue team
(defense). While the actions of both sides are inputs to a red teaming
engagement as well, the distinction is that in red teaming both sides are
operating independently rather than collaboratively.

2. b
A penetration test is meant to simulate a real-world malicious actor with
the intent of breaking into an application or network for specific purposes,
likely monetization. This involves identifying and exploiting the highest
severity vulnerabilities to demonstrate the ability of a malicious actor to
impact the organization. No penetration test will identify every possible
vulnerability in an environment, rather the aim is to find and demonstrate
exploitation of the most severe.

3. d
The correct answer is red teaming, as this type of engagement will rapidly
identify gaps in the blue team’s detection and response process and
demonstrate the exploitation of those gaps. While similar components
could be analyzed through tailored purple team scenarios, there would be
an inherent bias in that the blue team would be aware of what indicators of
compromise to be on the lookout for. Assessing a red team helps minimize
confirmation bias.

4. b
Nmap is a form of active reconnaissance, as a complete connection is
made with the target system.

5. c
The most common impact caused by Nmap would be overly aggressive
scanning impacting the performance of a system or network, thus the
availability component of the CIA triad.

6. a
7. b
8. c

9. c
10. b

1 http://www.pentest-standard.org/index.php/Main_Page
2 https://www.nist.gov/privacy-framework/nist-sp-800-115
3 https://attack.mitre.org/

http://www.pentest-standard.org/index.php/Main_Page
https://www.nist.gov/privacy-framework/nist-sp-800-115
https://attack.mitre.org/

CHAPTER 2

Setting Up a Lab Environment For Nmap

Introduction
As discussed in the previous chapter, Nmap is an active scanner, which means
that it is imperative to have permission to scan any systems with it. During each
subsequent chapter of this book, we will be exploring numerous different
scanning techniques and practicing them through several guided challenges. In
order to be able to get hands-on with Nmap (or any other ethical hacking tool),
having a lab environment is essential.
While there isn’t a single correct way to build a home lab environment, this
chapter will guide you through the process of setting up the same lab resources
for practicing Nmap that were used to capture all the screenshots within this book.
To accomplish this, we will first install Nmap on both a native Windows system
and import a Kali Linux virtual machine into Virtual Box. Next, we will set up
some additional tools called Legion and Zenmap, which we will explore in
Chapter 6: Leveraging Zenmap and Legion. With these two systems, we will do
the entirety of the scanning within each challenge.
However, the targets of the scans are also important to set up. Continuing to use
Virtual Box, we will download several different images that can be turned on and
off to provide more diversity in the results of our scans. We will include at least
one Windows server and a couple of pre-built virtual machine images commonly
used for penetration testing practice.
To take things to the next level, we will also install some open-source security
products, such as Wazuh and Snort, which will help us visualize the difference
between levels of obfuscation discussed in Chapter 7: Advanced Obfuscation and
Firewall Evasion Techniques.

NOTE: If you already have a penetration testing lab set up that you are
comfortable utilizing, feel free to skip this section and utilize your
environment for the subsequent challenges.

Structure

In this chapter, we will explore and answer the following questions:

What are the Components of a Good Lab Environment?
How do you Install Nmap, Virtual Box, and Kali Linux?
How do you Configure Windows and Linux Servers in a Lab Environment?
How do you Configure an IDS for the Lab?
How do you Make the Most Out of The Lab?

Components of a Good Lab Environment
Any good lab environment has a couple of things in common. First, it should be
versatile, meaning that you can spin up or spin down different devices to simulate
different environments and test different techniques. To this end, it is important to
have an environment that has both Windows and Linux server infrastructure,
along with one or two workstation examples. By far, the most common enterprise
environments seen in penetration tests are primarily Windows workstations in an
active directory environment, with some Linux servers sprinkled about.

NOTE: You want the lab you set up to be as much as possible a simulacrum
of the environments you will target during penetration tests.

In order to accomplish this, we are going to set up a modular environment of
virtual machines (VM) using Virtual Box. Virtual Box was selected for this
walk-through partially because it is free, but mostly because it seems to be the
easiest virtualization platform, especially for those new to the technology to set
up. That being said, if you are more comfortable using Hyper-V, VMware, or any
other form of virtualization, feel free to replicate in the way you find suitable.
However, all referenced hyperlinks within this chapter will direct you to a VM
download for Virtual Box specifically.
We will also set up two separate hosts for conducting the Nmap scans: the first
being a Windows native environment, and the second being a Kali Linux virtual
machine, also hosted within Virtual Box. During penetration testing, most
engineers utilize Kali Linux as the go-to operating system for all red-team
activities. However, it may come as a surprise for many that a Windows 10 device
is typically used, with Kali available as a virtual machine. It has been found that
for the vast majority of reconnaissance and enumeration, it is easier to use a
Windows device than pivot to Kali for the niche times you need it exclusively.
Recognizing that habit as an exception rather than the rule, the vast majority of
scans demonstrated in this book will be conducted from the Kali Linux VM.

To begin setting up your environment, please take note of the following resources,
which we will download, install, and configure over the next several pages:

Nmap (Windows) https://nmap.org/download.html#windows

Virtual Box https://www.virtualbox.org/wiki/Downloads

Kali Linux https://www.kali.org/get-kali/#kali-virtual-machines

Wazuh https://documentation.wazuh.com/current/deployment-options/virtual-
machine/virtual-machine.html

Windows Server 2022 https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2022

Table 2.1: Summary of Lab Components

Installing Nmap, Virtual Box, Kali, and Additional
Tools
The foundations of this lab environment are Nmap installed on both Windows and
Kali Linux, Virtual Box to facilitate the importing of virtual machines, and the
setup up of Kali itself for additional functionality. We will break this down into a
series of steps to ensure that there is no confusion in establishing the environment.

1. Navigate to the following link and download the current version of Nmap
for Windows under Microsoft Windows Binaries:
https://nmap.org/download.html#windows.

2. Navigate to your downloads folder and run the Nmap setup executable,
follow the installation instructions, and confirm success by opening a
command prompt and printing the installed version with nmap -v:

Figure 2.1: Nmap Versioning

3. Typically, this download on Windows will also come with Zenmap, which
you can confirm by searching “zenmap” in the Windows Explorer search
bar. Zenmap is a very handy Graphical User Interface (GUI) that works in
tandem with Nmap, which we will explore in later chapters. For now,
confirming that it is installed is sufficient:

https://nmap.org/download.html#windows
https://www.virtualbox.org/wiki/Downloads
https://www.kali.org/get-kali/#kali-virtual-machines
https://documentation.wazuh.com/current/deployment-options/virtual-machine/virtual-machine.html
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2022
https://nmap.org/download.html#windows

Figure 2.2: Zenmap Download

Next, we will import the latest version of Kali into Virtual Box. The team at
Offensive Security frequently updates Kali Linux, so if your version is slightly
different from the one provided in these examples, there’s no need to worry. The
steps are as follows:

1. Navigate to https://www.kali.org/get-kali/#kali-virtual-machines and
download the VirtualBox option. It should be around 2.7 GB in size and will
download as a .7z file.

2. Download and install 7zip at the following: https://www.7-
zip.org/download.html.

3. Next, download and install Virtual Box for free at
https://www.virtualbox.org/wiki/Downloads.

4. Extract the Kali Linux download using 7zip and double-click the Virtual
Box Machine Definition file to import it into Virtual Box:

Figure 2.3: Demonstrating Kali Linux VM Configuration (1 of 4)

5. Right-click on the Kali machine in Virtual Box and select Settings. Go to
System and adjust the Base Memory from the default of 2048 to at least
4096MB. If you have additional resources available, it is beneficial to
allocate additional memory, but as a minimum, we recommend 4Gb:

https://www.kali.org/get-kali/#kali-virtual-machines
https://www.7-zip.org/download.html
https://www.virtualbox.org/wiki/Downloads

Figure 2.4: Demonstrating Kali Linux VM Configuration (2 of 4)

6. Now, we need to create the virtual network where we will put all of our lab
machines. To do this, navigate within the Virtual Box console to File >
Tools > Network Manager. From here, select the NAT Networks tab, create a
new network, name it Nmap Lab, and enable DHCP:

Figure 2.5: Demonstrating Kali Linux VM Configuration (3 of 4)

7. Return to the Kali VM’s settings in Virtual Box, select Network, and under
Adapter 1, select NAT Network (Not the option that just says NAT); then
select the drop-down for Advanced options and allow Promiscuous Mode:

Figure 2.6: Demonstrating Kali Linux VM Configuration (4 of 4)

8. Boot the Kali machine by selecting start (the default credentials are kali :
kali) and confirm connectivity with your local network with the ifconfig
command. You are looking to confirm that the Kali VM has gotten an IP
address on the same local subnet as your host computer:

9. Verify that you can access the host machine by running Ipconfig on the
Windows Host and taking note of the IP address. Next, in the command line
on the Kali machine enter:
> ping [host IP]

10. You should receive a response similar to as follows:

Figure 2.7: Confirming Network Connectivity via ICMP

11. You may further confirm connectivity to the host with a very simple Nmap
command:
> nmap -Pn [host IP]

Figure 2.8: Confirming Network Connectivity via Nmap

12. Finally, confirm that Legion is installed on the Kali instance by simply
opening a command prompt and entering sudo legion. This should open a
graphical user interface automatically, as it is a default installation within
Kali. However, if for any reason Legion doesn’t open, it can be manually
installed from GitHub at https://github.com/GoVanguard/legion.

13. Similar to Zenmap, Legion is a GUI that will be used to organize Nmap data
in later chapters. However, it is distinct from Zenmap in the sense that
Legion provides extensive flexibility in adapting it to fit your specific needs
during a penetration testing engagement. It is a highly versatile tool that
when combined with advanced Nmap skills can be a powerful asset to any
pentester.

At this point, we have successfully set up our scanning hosts. One is a Windows
machine with Nmap and Zenmap installed, while the other is a Kali Linux VM
with both Nmap and Legion confirmed as installed. From these two endpoints all
scanning, examples, and challenges will be possible throughout the entirety of the
book.

Setting Up the Target Servers
With the scanners set up, we next have to configure a series of targets for those
scans. In the interest of making the lab environment simple yet practical, we will
be importing several different VMs to replicate server infrastructure that you may
see on real-world penetration tests. Servers of both the Windows and Linux
variety will pose not only a diverse target pool for scans but will also be

https://github.com/GoVanguard/legion

configured with some specific software that will be used in follow-on lab
exercises.

Linux

1. Navigate to https://www.vulnhub.com. This is a great site for finding and
downloading intentionally vulnerable virtual machines to practice your
pentesting or capture-the-flag skills. For now, download the zip file for the
boxes called The Planets: Earth and Mercury at
https://www.vulnhub.com/series/the-planets,362/

2. Once unzipped, you will find an Open Virtualization Format files, which
when double-clicked should import the VM directly into Virtual Box.

3. Open the settings of the new Linux VMs and set the Network Adapter 1 to
NAT Network: Nmap Lab.

4. Since these capture the flag (CTF) challenge boxes, you will not have login
credentials to sign in. Instead, we need to be creative to determine the IP
address. Since we know that they are on the same virtual network as our
Kali VM, we have a couple of options. But considering that this is a book
all about Nmap, we will simply scan the virtual network for hosts with
Nmap:
>nmap T5 10.0.2.0/24

https://www.vulnhub.com/
https://www.vulnhub.com/series/the-planets,362/

Figure 2.9: Nmap Scanning of the Subnet

Here, we can see that there are four identified endpoints on this virtual network.
The default gateway, 10.0.2.1, can be ignored. We can confirm through the
ifconfig command that 10.0.2.4 is the Kali VM we are scanning from (thus, no
ports are being reported). Therefore, 10.0.2.6 and 10.0.2.7 must be the Earth and
Mercury virtual machines.

Windows

1. With a Linux server successfully configured, we will now install a Windows
server. The easiest way to do this is to utilize Microsoft’s official evaluation
center and select a trial of Windows Server 2022 at:
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-
2022. Download the 64-bit ISO file in your language of choice.

2. Create a new VM in Virtual Box and select Windows 10 64-bit as the
operating system, but as of now, leave the ISO file empty.

3. Assign a minimum of 2GB of RAM (although if you can spare the
resources, 4GB is preferred). Specify VHD as the file type with Dynamic

https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2022

Allocation selected and a 50GB capacity.
4. Once completed, boot the VM and you will be asked to provide a bootable

medium, browse to the ISO file and select “Mount and Retry Boot”:

Figure 2.10: Windows ISO configuration (1 of 3)

5. Continue the installation process and when prompted to select an operating
system, choose “Windows Server 2022 Standard Evaluation (Desktop
Experience)”:

Figure 2.11: Windows ISO configuration (2 of 3)

6. Next, we will install an open-source automation server called Jenkins,
which is commonly seen in enterprise penetration tests. Specifically, Jenkins

is used to automate portions of the building, testing, and deploying
processes, which facilitates an important concept called continuous
integration and continuous delivery (CICD) within the software
development lifecycle (SDLC).

7. Jenkins is going to be an important application that we will specifically
search for using Nmap later in the book. The installation instructions and
Windows download file can be found in Jenkin’s official documentation at:
https://www.jenkins.io/doc/book/installing/windows/.

8. You will most likely also need to install Java Development Kit (JDK) or
Java Runtime Environment (JRE) during the Jenkins installation process.

9. Once installed, you can confirm that Jenkins is running by checking the
Services on the Windows Server as well as navigating to “localhost:8080”
in your web browser

Figure 2.12: Windows ISO configuration (3 of 3)

10. Confirm connectivity from the Kali VM by running a default Nmap scan
against the Windows Server. You should now see the typical Windows Ports
(135, 139, 445, 5357) and the newly added Jenkins Automation Server on
port 8080:

https://www.jenkins.io/doc/book/installing/windows/

Figure 2.13: Confirming Network Connectivity with Nmap

Securing the Lab Environment
The final step in setting up our lab at this point will be downloading one more
virtual machine. However, instead of purposefully vulnerable machines such as
Earth or Mercury, this one will be a security product. We will use Wazuh, which
is a completely free and open-source product that has the capabilities of both a
security incident and event management system (SIEM) as well as extended
detection and response (XDR). We will use this as a way to gauge the level of
obfuscation during advanced scanning techniques in later chapters.
Anecdotally, Wazuh also makes an excellent security solution to incorporate into
your home network. The steps are as follows:

1. To begin, download the prebuilt OVA from
https://documentation.wazuh.com/current/deployment-options/virtual-
machine/virtual-machine.html. Once downloaded, open the OVA file in
Virtual Box and select Settings.

2. Under Network Adapter 1, set NAT Network: Nmap Lab.
3. Under Network Adapter 2, set Bridged Adapter.
4. Start the Wazuh virtual machine and log in with the provided credentials.
5. Confirm the Wazuh server Ip with the command ip a.
6. From any VM in your Nmap Lab network (such as the Windows Server),

open a web browser and navigate to the Wazuh Server’s IP using HTTPS,
and log in with admin/admin:

https://documentation.wazuh.com/current/deployment-options/virtual-machine/virtual-machine.html

Figure 2.14: Demonstrating Wazuh Dashboard

7. From the Add Agent view, select the following options:
Windows

Windows Server

i386/x86_64

Add the IP address of the Wazuh Serer (in the preceding

example, it would be 10.0.2.8)

Name your agent “WindowsServer2022”

Default group

8. Next, download the Windows installer package that is provided and then run
the generated commands from an administrator PowerShell prompt:

Figure 2.15: Demonstrating Wazuh Agent Configuration

9. Refresh the page and you should be able to see the agent listed as active:

Figure 2.16: Confirming Agent Connectivity (1 of 2)

Navigating to the agents interface below should also reflect the newly
configured Windows agent:

Figure 2.17: Confirming Agent Connectivity (2 of 2)

Conclusion
It is a very common, albeit unfortunate, habit for cyber security students to simply
read a book, or watch a video, but not practice the techniques themselves. When
you see a demonstration, it can appear simpler than it is in practice. If you were to
ask a handful of penetration testers how often they have to troubleshoot issues
such as installed incorrectly, having dependency issues, or just simply not
working as expected, the vast majority would say “every day”.
By following along, completing the challenges, and replicating what will be
shown over the next several chapters, you will make mistakes, get frustrated, and
troubleshoot why things are not working properly. While that isn’t the most fun
thing at the moment, it is arguably the single most valuable thing you can do to
learn a new tool or technique. By forcing yourself out of necessity to dig a little
bit deeper, to make sure you have values set properly, and to understand why

things are (or are not) coming out as you expect, you will learn in a way that is far
more efficient than those who simply read the content.
When most people first start working in cybersecurity, they constantly made the
mistake of not doing enough hands-on training. I racked up several degrees and
certifications, which helped me learn a lot. However, it was found that whenever
something didn’t work exactly as expected, I had to seek help from more
experienced coworkers. It wasn’t until I slowed down on simply ingesting bulk
content and spent more time replicating, modifying, and expanding on what I was
learning in my lab environment that I truly got comfortable with penetration
testing.
So far in the previous chapter, we have touched upon a lot of concepts, learned a
lot of definitions, and explored some key differences between security
assessments themselves. In this chapter, we built the environment you will need to
be successful in working with Nmap and explored all the techniques outlined
within the rest of this book. Finally, we are ready to get started.
In the next chapter, we will dive into the basic flags and scans of Nmap and learn
about one of the most essential stages of a penetration test – mapping the attack
surface. We will discuss what the attack surface is, why it is critical to understand,
and how to use Nmap to not only get a snapshot of the attack surface but to
maintain an understanding of it over time.

Points to Remember
Home lab environments are a great way to reinforce the fundamentals of
networking by creating and modifying virtual networks.
By leveraging virtualization technologies such as Virtual Box, Hyper-V, or
VMware, you can create modular environments of virtual machines, which
can be turned on or off to simulate different scenarios.
A highly effective lab can be set up for little to no cost. All virtual machines
and products outlined in this chapter are free, and the majority of them are
open source.
Cyber security labs do not only have to be focused on penetration testing
techniques. By incorporating open-source security products such as a SIEM,
IDS, XDR, or Firewall, you can also learn and train on blue and purple team
skills.
Following the techniques and challenges throughout this book in your lab
will greatly enhance and reinforce learning.

Challenge 1 – Customize Your Lab
Now that you have seen a few different examples of virtual machines being
imported into Virtual Box and configured, the first challenge is to find ways to
make the lab even more robust. This is an opportunity for a lot of creativity. Some
ideas to get you started could be as follows:

Download an additional Windows Server and set it up as a Domain
Controller for a small Active Directory environment. Active Directory is a
massively popular service and will come up in nearly all internal penetration
testing engagements. Understanding its intricacies isn’t within the scope of
Nmap or this book specifically, but is certainly worth considering.
Configure a LAMP server. This is a popular server configuration that stands
for Linux Apache MySQL and PHP. These are another type of server that
would be seen fairly often during engagements. In addition, configuring
them from scratch is a great way to brush up on your Linux skills.
Add and configure a firewall. There are many options, but pfSense is
recommended. It is a great, free, and open-source firewall with robust
features to experiment with.

Multiple Choice Questions
1. Which of the following is not a virtualization platform?

a. Jenkins
b. Virtual Box
c. VMware
d. Hyper-V

2. Wazuh is an example of which of the following?

a. IPS
b. Firewall
c. SIEM
d. Scanner

3. Jenkins is a popular open-source tool used for what?

a. Hosting a website over HTTPS
b. Facilitating continuous integration and continuous development in the

SDLC

c. Monitoring network traffic for malicious activity
d. Conducting static application security testing during the SDLC

4. Which of the following would be a good place to look for free virtual
machines designed for penetration testing techniques to be tested on?

a. Exploit-db.com
b. Vulnhub.com
c. Kali.org
d. Nmap.org

5. Which file type is also known as disc images?

a. ps1
b. bat
c. 7z
d. Iso

Answers
1. a
2. c
3. b
4. b
5. d

CHAPTER 3

Introduction to Attack Surface Mapping

Introduction
An intricate understanding of the attack surface is core to any assessment of an
organization’s security posture. The attack surface is something all organizations
have and constantly seek to understand, both from the perspective of the red team
trying to find and exploit points of weakness and the blue team seeking to defend
the perimeter. While this term is thrown around a lot in cyber security training
content, let’s take a moment to dig into what it means. The National Institute of
Standard and Technology (NIST) offers the following definition in Special
Publication 800-53 “Security and Privacy Controls for Information Systems and
Organizations”:
“The set of points on the boundary of a system, a system element, or an
environment where an attacker can try to enter, cause an effect on, or extract data
from, that system, system element, or environment.”
While that does provide a comprehensive and academic explanation, let’s look at
the idea of an attack surface from a slightly different perspective. Consider your
home with all of the possible ways a would-be robber might attempt to break into
it. You likely have a few doors and windows, that’s obvious; but what about all of
the other systems that may lead to a break-in? Do you have a garage with an
automatic garage door? That is a system that could be targeted. Do you have a
remote garage door opener on the sun visor of your car that is parked in the
driveway? Wouldn’t a broken car window then lead to the garage door being
opened and a robber having a way into the house?
Here we took a simplistic view of only a couple of elements of a potential attack
surface, but in reality, the attack surface of your home is far more complex than
the majority of people realize. Not only do you have to consider the physical risks
of a robber kicking down the door (a metaphorical brute forcing attack), but there
are also the less thought technical considerations.
In 2021, I moved into a new home and installed a remote baby monitor in my
daughter’s room; a pretty simple piece of technology that simply allowed me to
monitor for sound and use my phone to get a live feed of her in the crib. After a
few weeks, I was curious about the technical attack surface of my new home, so I

employed a few different tools. I did some basic Wi-Fi pentesting to test the
wireless security, I audited the settings of my router, and I used Nmap to scan my
network both from the inside and the out. The decision to scan my network
proved to be worthwhile, as I discovered that the new baby monitor had Telnet
open.
For those not familiar, Telnet is an ancient and inherently flawed protocol from
the early 1970s which allows for remote connection and configuration of systems.
What makes this protocol problematic, and an easy target for both penetration
testers and malicious actors, is that the vast majority of telnet implementations
lack authentication, and the data is not encrypted in transit. This provides a
perfect target for a man-in-the-middle attack as anybody on the network could
simply use an analyzer, such as Wireshark, and intercept the data. A more secure
protocol for a similar function to Telnet would be Secure Shell or SSH.
Seeing Telnet open on the device made me curious about what other security
issues might be present on my Internet of Things (IoT) devices, and indeed, I
found several other issues I was not aware of with these seemingly simple
products, including known vulnerabilities or other inherently weak protocols in
use.
The exercise of mapping my personal attack surface was eye-opening and led to
me making some very different decisions about what devices I allowed on my
network, how I secured and segmented my home network, as well as specific
firewall rules I put in place as a result.
Organizations do the same thing, just on a larger scale. As NIST explained, the
attack surface is about identifying the boundaries of an environment
(application/network/facility, and so on) and pinpointing where a malicious actor
may attempt to target in an attack. While this seems like a very obvious thing,
akin to making sure you do not have a gaping hole in your fence line, in reality, it
can be very challenging for organizations that are complex or experiencing a
period of rapid growth.
I have dealt with client organizations that have less than 25 employees, and for
them, the attack surface from an external (internet-facing) position is usually quite
minimal. It might include a website or two, perhaps a web or mobile application,
and their Microsoft Office environment, but not much else. For those
organizations, attack surface mapping is easier, though no less important.
Contrary to that, I have also had clients with over 30,000 worldwide locations and
hundreds of thousands of systems, and countless applications. For organizations
like that, the attack surface is so large that it can be overwhelming for the
defenders while giving the attackers an advantage.

The attack surface of an organization is important to understand from the point of
view of a pentester. You need to understand what you are attacking before you can
decide how to attack it. But from the defensive perspective, it is just as important;
because without truly understanding all of the possible attack points of the
organization, how could you properly deploy the necessary security controls?
In this chapter, we are going to dive deep into understanding the attack surface
from the perspective of a penetration tester. Next, we will take the first real steps
into Nmap by discussing common flags and scan types and demonstrating in the
lab environment how they can be used to map the attack surface both as an
attacker and a defender. Finally, we will look at a real-world case study of a
relatively small business blue team, that I have worked with, who make excellent
use of Nmap to keep their finger on the pulse of organizational changes.

Structure
In this chapter, we will discuss the following topics:

Understanding Attack Surfaces
Stages of Penetration Tests
Fundamental Nmap Flags
Leveraging Nmap to Map the Attack Surface
Case Study – Continuous Attack Surface Monitoring of a Small Business
Challenge – Get Hands-on With Basic Scans
Challenge – Map the Attack Surface of Your Home Network

Understanding Attack Surfaces
It is often easier to consider multiple different attack surfaces when assessing an
organization. For example, each web or mobile application has its own set of
unique functions, and from that perspective, would have its specific attack
surface. Similarly, on the network side, you will often hear attack surfaces defined
as either external or internal as a way of providing more context and focus to the
discussion.
External, in this sense, means that it is the attack surface of the organization from
outside of their network. In other words, if a remote attacker was doing
reconnaissance on the organization from the internet, any websites, VPNs, or
other systems would collectively be the external attack surface.

Internal, then, means what an attacker would be able to target from inside the
company’s network. This could have occurred from a malicious actor who
exploited an external vulnerability and gained access to internal systems. But it
could also be a disgruntled employee who has easy and legitimate access to the
network. It could even be from somebody in the waiting room connecting to the
guest Wi-Fi network.
Many organizations have a security posture that resembles the defenses of a turtle.
They have a hard-secure shell from the outside, complete with email security
solutions to prevent phishing, firewalls, and robust monitoring solutions. But once
that shell is cracked, the defenses tend to be far less formidable. While every
organization is different, it is easy to understand in general why the external
threats would elicit the most investment, both in terms of time and resources.
However, given that there are so many different ways to gain a foothold in an
internal network, great care must be given there too.
Many organizations have some degree of understanding of their attack surface.
They likely have a list of resources, IP addresses, and hostnames, and update that
list regularly as systems are routinely spun up or decommissioned. Where
organizations sometimes lack specific insight, and why penetration testing is so
important, is that there isn’t always a real understanding of what ports are open
and what services are running on every device. Even if there is a networking
understanding, there isn’t always an understanding of why some ports and
services could be problematic.
One extremely common high-severity vulnerability observed when conducting
internal pentests in enterprise environments is port 4786 being open on older
Cisco Catalyst switches. Port 4786 is associated with a protocol called Cisco
Smart Install, which is a plug-and-play protocol used for configuring the device.
It also has a very significant vulnerability (CVE-2011-3271), which allows a
malicious actor to very easily obtain the configuration file to the device and make
changes to it, effectively taking over a critical piece of network infrastructure.
This is a vulnerability that will typically get exploited within the first few hours of
a pentest.
You may be thinking, why would a vulnerability from 2011 still be commonly
present more than a dozen years later? Well, because outdated hardware is still in
use in a very widespread way. Technical debt has built up for many organizations
over the years when security wasn’t prioritized as a critical aspect of the business,
and it was challenging for IT and security leaders to get the budget allocation to
replace things that were technically still functional.
The shift to the cloud, more servers being cloud-based virtual machines, and the
expanding presence of infrastructure as code practices are certainly starting to

change this paradigm. But as the saying goes, it takes a long time to turn an
aircraft carrier.

Stages of Penetration Tests
A good penetration test is conducted predictably and aligned to known standards
and frameworks. This helps ensure that the tester is professional and thorough, as
well as provides a way to effectively communicate the process to clients. Two of
the more common standards for pentesting include:

Penetration Testing Execution Standard (http://www.pentest-
standard.org/index.php/Main_Page)
NIST SP 800-115: Technical Guide to Information Security Testing and
Assessment (https://csrc.nist.gov/pubs/sp/800/115/final)

Several frameworks describe the stages of a cyber attack from the perspective of a
malicious actor, which can be extremely useful to ensure that accurate and
realistic tactics techniques and procedures are being followed. Among these
frameworks, we will be focusing on the two most well-known:

Lockheed Martin Cyber Kill Chain (https://www.lockheedmartin.com/en-
us/capabilities/cyber/cyber-kill-chain.html)
MITRE ATT&CK Framework (https://attack.mitre.org/)

Each of these resources may use different language and terms for describing the
process of a penetration test, but they all generally follow the same core steps,
including:

Conducting reconnaissance
Exploiting an identified vulnerability to establish an initial foothold
Establishing persistence on target systems and environment
Escalating privileges, evading defenses, and conducting lateral movement
Establishing command and control
Exfiltrating data and impacting systems

While the terminology used may vary, the idea that you inherently have to start
with reconnaissance to understand the target and map their attack surface before
progressing into any degree of exploitation is consistent.
The framework preferred to align with is MITRE ATT&CK. The most common
component of this framework is an in-depth matrix of advanced persistent
threat (APT) tactics and techniques against enterprises. MITRE ATT&CK is

http://www.pentest-standard.org/index.php/Main_Page
https://csrc.nist.gov/pubs/sp/800/115/final
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://attack.mitre.org/

found out to be far more nuanced and detailed in breaking down very specific
techniques than the others, which tend to be more high-level. Additionally, a lot of
enterprise security products, such as Rapid7 Insight IDR and Microsoft Defender,
also map security alerts to MITRE ATT&CK, making it a very well-known, and
often requested, framework to use.
Looking at the Matrix for Enterprise, we can see that under the very first tactic,
Reconnaissance, there are ten techniques. The first is active scanning, which then
has three sub-techniques: Scanning IP Blocks, Vulnerability Scanning, and
Wordlist Scanning. Nmap can and often be utilized for each one of these sub-
techniques, making it often one of the very first tools utilized by malicious actors
and penetration testers.

Fundamental Nmap Flags
We established in Chapter 1: Introduction to Nmap and Security Assessments that
you can run Nmap without any additional commands (except for the target of
course) and expect to determine which of the top 1,000 most common TCP and
UDP ports are open. But to do anything more intricate than that, we will have to
incorporate additional arguments into the scan called flags. It is important to
understand that the flags and their use cases we will go over here are in no way a
replacement for the official reference guide (https://nmap.org/book/man.html),
which will cover many more in great detail. Instead of reinventing the wheel, we
are going to focus initially on the 10 flags that are used mostly for simple attack
surface analysis during penetration tests.

1. -sV: This flag enabled service version detection on the ports that respond as
open. Meaning, that in addition to seeing that port 80 is open on a web
server, you may also get additional information, such as whether it is an
Apache, Nginx, or IIS web server, as well as what version it is. This
additional information can help you determine not only the technology
being used in an environment but also start to determine if there are
vulnerabilities associated with those services and versions:

https://nmap.org/book/man.html

Figure 3.1: Service versioning scan

2. -A: This flag enabled operating system detection as well as service
versioning on the host. A simple way to remember this one is “A” is for
“All”. You get all the port, service, versioning, and operating system
information that Nmap can identify at once:

Figure 3.2: Service, operating system, and versioning scan

There are a couple of things to note with -A, which are as follows:

It is redundant and provides more information than -sV. It means that
there is no reason to combine these flags. The same goes for -O, which
is operating system versioning; while that flag exists, it is rarely used,
as -A is considered be a far better alternative.
It is a much slower scan than -sV because it enumerates so much more
information. That is why both -sV and -A are listed here. There will be
times when the service versioning information is enough, and you need
to speed over the additional information.

3. -T: T stands for time; it is the speed at which the scan is conducted, and it
comes in six variations, ranging from T0, which is extremely slow, to T5,
which is extremely fast. Appropriately, the default of Nmap (if you do not
specify otherwise) is T3, quite fast. Depending on if you need to worry
about being too noisy and getting detected, or being too aggressive on the

network, you may want to manually adjust the speed. I will typically use T2
during most engagements that are not extremely large.
I recommend experimenting with this, the difference between each of the T-
levels is dramatic. In a quick test of scanme.nmap.org with no other flags,
you will find that T3+ will complete in probably less than three seconds, but
anything below T2 will take several minutes. Depending on your situation,
the size of the attack surface, and the length of time you have to scan, it may
necessitate adjusting the speed.

4. -v: V stands for verbosity; this is a common argument you will find in tools
and simply makes the output that is displayed more verbose. It adds
additional details to the output and is paired very well with either -sV or -A.
There are also three levels of verbosity: -v, -vv, and -vvv. The more Vs that
are added, the more verbose the output will be, but also the longer the scan
will take. I have personally rarely found it helpful to use more than a single
v when leveraging this flag:

Figure 3.3: Demonstrating service versioning with verbosity

5. -iL: This flag is “in list”, and it is essential for anybody conducting a
penetration test of a complex environment. This allows Nmap to read the
target list from a txt file rather than scanning one entry or range in the
command line. Imagine an engagement where you have dozens if not
hundreds of individual external domains and IP addresses; you can put them
all into a simple txt file and Nmap will sequentially scan them all at once for
you:

Figure 3.4: Scanning multiple targets from a source file

6. -oX: This is for Output. There are several options available to save the
output to a file, which can be referenced later: -oG for Greppable output, -oN
for normal output, there is even -oS for a comical Script Kiddie output
riddled with misspellings and crazy capital letters. But I tend to use -oX,
which outputs to an XML format that is easily imported into additional tools
such as Zenmap and Legion.
Whichever output you prefer (or use -oA for all of them), it is strongly
recommended to save the output files of your scans so that they can be
referenced later. The last thing you want is to spend six hours running a scan
overnight just to have the command prompt closed due to the system
restarting and losing all of that data. Always save your work.

7. -p: P stands for Port. You can specify specific ports that you want to scan
that are single, in ranges, or comma-separated like so:

-p 80 (only port 80)
-p 80-443 (every port between 80 and 443)
-p 80,440 (only ports 80 and 443)

This is extremely useful when you are looking for something specific or are
just trying to speed up a scan and want to reduce the number of ports from
the default of 1,000 down to a handful of the most likely. As additional
notes, you can also use -F (fast) to reduce from the top 1,000 to the top 100,
or use –-allports to scan all 65,535 ports. Keep in mind, scanning tens of
thousands of ports does tend to increase the length of the scan fairly
significantly.

8. -sU: This flag specifies scanning UDP ports as opposed to TCP. When you
use the -p command, by default, Nmap will assume you mean TCP port X.
There may be times when you are explicitly looking for UDP, however, and
would need to specify that. One example is if you are looking for the
IPMIv2 protocol, which can be hosted on either TCP or UDP port 623. In
this instance, you would want to make sure that you check both options, or
you could potentially miss a critical vulnerability.

9. –open: This flag filters the response and only shows you ports that respond
as being “open” on the target hosts. This is great for reducing the noise and
lengthy output of scans, as well as looking for something specific. Rather
than scanning 255 hosts looking for port 4786 (nmap -p 4786

10.0.0.0/24) and then having to scroll through all 255 responses to see
which ones say “closed” and which say “open”, this flag can be used to do
that sorting for me. This is a huge time saver and quality-of-life
improvement.

10. --reason: This is a flag that most people have never heard of, but it can be
really helpful in determining what is going on. It shows the reason why each
port is being reported the way that it is. If you are seeing a lot of ports open
and they are all coming back Filtered, this is a great flag to add on and
rescan the target. While it cannot magically change the status to open, it can
display the type of packet that was received from the port when the
connection was made:

Figure 3.5: Including the reasoning behind the port responses

There are many more advanced flags we will cover in the following several
chapters, which will incorporate different syntax and naming conventions. While
you will naturally start to memorize them with experience, A quick reference
guide of all the flags and descriptions we go over in all chapters have been
included as an appendix at the end of this book. By strategically combining just
these flags, you can efficiently enumerate a lot of information about the systems
and, by extension, the attack surface that you are targeting.

Leveraging Nmap to Map the Attack Surface
Internal and external network pentests are the types of security engagements you
will most likely be conducting when using Nmap for widespread attack surface
mapping. While we have discussed several other use cases for red and purple
teaming, we will focus this section on the traditional network pentesting.
Depending on the engagement and the client’s preferences you may be provided a
full list of IP addresses and domain/subdomains that make up the scope of the
test; or, you may be provided only the name of the company and will have to find
the assets that they own yourself. The latter is commonly referred to as a black
box pentest, meaning that you are fully emulating a malicious actor who when
targeting an organization has to do all the reconnaissance themselves. In this
scenario, there are a couple of things that you will want to do before Nmap gets
involved, namely, identifying the systems, domains, and subdomains, which need
to be assessed.
Typically, the process begins with subdomain enumeration of the organization's
main domain utilizing OWASP Amass (https://github.com/owasp-
amass/amass), which is an open-source intelligence (OSINT) tool designed to
aid in external asset discovery:

https://github.com/owasp-amass/amass

Figure 3.6: Demonstrating OWASP amass for subdomain enumeration

A second tool that is worth utilizing as well is https://crt.sh, which looks up
subdomains based on the TLS certificates being used:

Figure 3.7: Demonstrating crt.sh for subdomain enumeration

While the output of both of these tools will often be very much the same; there
can occasionally be some important targets that are picked up by one instead of
the other. In both cases, this is considered passive reconnaissance as no direct
connections are being established.
Once the two outputs are generated, the easiest way to deduplicate them is to
paste both lists into Microsoft Excel (or something similar) and use the
deduplicate function. Now, you have a much more robust set of targets than the
main domain name.
Next, take this consolidated list of targets and create a txt file for Nmap to use. In
this case, we will use the Nano command and name this as “targets.txt”:

https://crt.sh/

Figure 3.8: Creating and reading a target file

Now we can start to utilize Nmap to dive into the hosts both collectively as well
as individually. The strategy tend to be used for this is to first scan the entire
target list, looking for ports typically open during this type of engagement. This
approach is far quicker and less overt to scan a handful of ports individually
rather than the top 1,000 on every host. Then, once the results are analyzed and
interesting endpoints are found, the focus will be for more in-depth scans on those
devices:

 Remember a penetration test is not designed to find every possible
vulnerability that exists. The goal is to compromise the external attack

surface, gain a foothold on the internal environment, and demonstrate the
potential impact of a malicious actor.

Nmap -A -T2 --open -p 21,22,25,80,110,179,443,8080,8443 -iL

targets.txt -oX results1.xml

Figure 3.9: Initial scan demonstration

Let's break down what that scan is doing flag by flag:
Flag Function

-A Fingerprint the operating system and all services and versions

-T2 Slow scanning speed

--open Only show results for ports that are returned in the open state

-p A numerical list of the ports to be scanned (refer to Table 3.2)

-iL Supplying the targets list “targets.txt”

-oX Directing the output to also be piped to the file results1.xml

Table 3.1: Basic Nmap Flags

Additionally, we strategically specified several individual ports with the -p flag:
Port Protocol

21 FTP – File Transfer Protocol

22 SSH – Secure Shell

25 SMTP – Simple Mail Transfer Protocol

80 HTTP – Hypertext Transfer Protocol

110 POP3 – Post Office Protocol version 3

179 BGP – Border Gateway Protocol

443 HTTPS – Hypertext Transfer Protocol Secure

8080 Alternate port for HTTP

8443 Alternate port for HTTPS

Table 3.2: Basic port to protocol mapping

These ports can be logically put into three main categories to identify the most
commonly seen systems that are externally exposed:

Web Servers (80,443,8080,8443)
Mail Servers (25,110)
File Transfer Servers (21,22)
Networking Misconfiguration (179)

While these are where I tend to start, remember that it is a starting point only. To
conduct a professional quality penetration test, you have to be very thorough and
meticulous about details; scanning the entire scope for additional less common
ports and services will come after the initial analysis is complete.
As you comb through these results, there are a few key things that you want to be
looking for that will help you identify the CPE of each endpoint:

Specific operating system and version
What the system is likely used for
Specific services running on the ports and their associated versions

This is the point where your research skills will become critical to your success as
a penetration tester. You will need to systematically determine what
vulnerabilities (CVEs) are known that are associated with both the endpoint itself
(operating system) and any of the services running on that endpoint. To this end,
there are a few great resources that can help you along the way:

Resource Purpose

Cvedetails.com This is a free-to-use repository of information on
known CVEs, which allows you to search by the
CVE ID, product title, vendor, or even vulnerability
type.

Cisa.gov The United States Cybersecurity Infrastructure and
Security Agency has a robust database of known
exploited vulnerabilities. Once you have identified a
vulnerability through cvedetails.com or any other
means, this is a great place to check and see if that
vulnerability has been exploited in the wild.

Exploit-db.com This is a database of known exploits, which can be
searched by title, system, or CVE ID. Once you
have identified an applicable CVE and confirmed
that it is being exploited in the wild, this is one area
to look into the exploit code.

Table 3.3: Key resources

A common question I get asked is, why does it matter if the vulnerability is
exploited in the wild? This is somewhat of a philosophical question, but to keep it
brief, malicious actors are most often looking for targets of opportunity, not
focusing intently on one single organization. During pentests, you are emulating a
hacker of moderate sophistication, not a nation-state that has a strategic interest in
compromising a very specific system or organization. Most malicious actors will
attack the easiest targets rather than investing great sums of time or money into
developing a cutting-edge zero-day exploit for a vulnerability that has never been
seen before. Taking that one step further, you will find that a large number of
known CVEs do not have associated exploits with them; they are essentially
theoretical vulnerabilities. This is an important distinction when mapping the
attack surface because you need to consider what your potential targets for
exploitation are going to be. A high-severity vulnerability that has no known
exploit and CISA has never observed it being used by a malicious actor has less
value to you as a penetration tester than a moderate-severity issue with known
proof of concept exploits that you can leverage.
Don’t get me wrong, there are excellent security researchers and pentesters out
there who will develop their custom exploits for vulnerabilities that they identify,
and that is commendable. But in the scenario of a pentest, you are time bound to
have a 1-3 week window where you will have a large number of systems to
analyze. It may come to a point where you need to build a custom exploit, but
considering the time investment that comes with it, it is best to build out the full
attack surface and first determine if there is an easier way.
With the initial group of systems identified you will want to create a second list of
targets to dig deeper into the ones that seem to be the most interesting in terms of
having outdated services or operating systems. Separating these systems into a
targets2.txt file, we can then take some of the restrictions off of the scan
profile to dig deeper:
Nmap -A --version-intensity 9 --allports --open -iL targets2.txt -oX

results2.xml

Figure 3.10: Secondary scan demonstration

There are two additional flags here not yet discussed: version intensity and all
ports. The latter is quite obvious as the “all ports” flag simply directs Nmap to
query every TCP port that exists. The “version-intensity” flag however is
slightly more nuanced. Version-intensity is an option that can be given a
numerical value from 1 (least intense) to 9 (most intense), which will increase the
likelihood of successfully versioning the service at the expense of taking longer to
scan.
A default Nmap version scan (-sV) will be using a version-intensity rating
equivalent to 7, so opting for a lesser value will increase the speed of the scan at
the potential cost of detail, while increasing the value to 8 or 9 will have the
opposite effect. As an additional note, you can also use the --version-all flag as
a shorthand alias for “version-intensity 9”.
This far more in-depth scan of the identified hosts can then be analyzed further to
identify first the CPE and then any associated CVEs, allowing you to
systematically map the attack surface. This is not unlike how enterprise
vulnerability scanners operate to determine the presence of vulnerabilities;
however, where you have the edge as a penetration tester is the human ability to
consider the context of the whole attack surface when making an assessment.
Vulnerability scanners are very susceptible to both false positive and false
negative findings. Any experienced pentester you ask would have countless
stories of their vulnerability scanner telling them there is a critical vulnerability in

an Apache web server only to find out it was actually Nginx all along. While
these systems are getting better with each iteration, and the increased prevalence
of artificial intelligence integrations is accelerating this process, the necessity for
a discerning professional eye is unlikely to fade anytime soon.

Case Study – Continuous Attack Surface Monitoring
of a Small Business
One of my favorite clients I have ever done a penetration test for was a small
business of about 20 employees in the financial services sector. Over a couple of
years, I did several engagements with them (external pentests, internal pentests,
social engineering, and so on), and their security team (of only two people) was
always extremely engaged in the process and interested in how the testing was
done. At one point, we had the opportunity to train them on some of the red-team
tools that were utilized in the engagements; naturally, Nmap was one of them.
As you might guess, with such a small security team, there wasn’t a huge budget
for enterprise-grade vulnerability management tools, but instead, they got creative
with Nmap and used a very simple set of commands to accomplish a few very
important things.
First, they built a process with documentation, laying out a few very specific
scans that they would run every other Friday. By establishing the process and
meticulously documenting how it is meant to run, they were able to keep it
regimented and effective.

They scanned every subnet they had on their internal network, as opposed to
just the IP addresses that they knew about. This way, if there were any
unexpected “new” devices on the network, they would be able to identify
them. This was also a way for them to identify new vulnerabilities.
They scanned every externally accessible domain and asset the company
owned for ports, services, and vulnerabilities.
They would output the results to XML files, and analyze them for any
week-to-week changes using Zenmap.

What was clever about this is that the scan that they used was the same for both
internal and external scanning, only the target list had to change. This made it
very quick and easy for them to get into the routine of keeping their finger on the
pulse of their organization’s attack surface.
This is the scan that they used:

nmap -A -v -T2 –-open –-vulners.nse -iL [Internal or External Target

List] -oX [month] [Internal or External]_nmap_results.xml

 I am not claiming Nmap is a replacement for an enterprise solution for
continuous vulnerability management solution. But in an instance where
budgetary constraints prevent such a purchase, Nmap can be an effective
stop-gap measure at zero cost.

Before utilizing Nmap, they had very little insight into what resources were even
externally accessible, let alone specific vulnerabilities associated with them. This
additional insight into their attack surface let the security team more aware of
their security posture and allowed them to more strategically allocate the
resources at their disposal to strengthen that posture.

Challenge 1 - Getting Hands-on with Basic Scans
In this chapter, we have explored a dozen different flags and discussed some use
cases for basic scans from an enterprise perspective. Utilize your lab environment
to first recreate each of the scans that were demonstrated in this chapter. Next,
consider ways to modify some of the scans in your lab environment to elicit
different results. While the information necessary can be found in this chapter,
don’t be afraid to refer and dive into the official documentation at
https://nmap.org/book/man.html.
Try to accomplish the following with some basic scans:

1. Add additional verbosity beyond -v
2. Adjust the speed of the scan by reducing the complexity of service

versioning and timing
3. Experiment with outputting different file types
4. Scan specific ports, the top 1000 ports, and all ports on your lab machines

Map the attack surface of the systems in your lab, take note of the CPE of each
system, and research any known CVEs associated with them.

Challenge 2 – Map the Attack Surface of Your Home
Network
Now that you have some familiarity with Nmap and mapping the attack surface of
a lab environment; it is an opportune time to apply this skillset to your life by
mapping your personal home network’s attack surface. This can most simply be

https://nmap.org/book/man.html

done by scanning the subnet of your main computer (assuming you have not
established network segmentation on your home network).
As discussed in the introduction of this chapter, a very similar exercise was eye-
opening for me and helped me identify a very troubling security issue with my
baby monitor. Perhaps, you will find some similarly concerning items, or
(hopefully) confirm the secure state of your network.
As you assess your network’s attack surface, consider the following questions:

Which systems would a malicious actor be most likely to target?
How can you improve the security of the network? (adding an IDS,
Segregating the network, Restricting outbound traffic)
Are there any systems on your network that you cannot identify?

 Add the port TCP 1883 to the scan of your home network. This port is
associated with MQ Telemetry Transport (MQTT), which is a lightweight
communication protocol very common in IoT devices and is not included in
the top 1000 most common ports that a default Nmap scan would pick up.

Conclusion
The ability to accurately and efficiently map an attack surface is essential for a
successful penetration tester. While Nmap is not the only tool that is used in the
process, it can be a powerful asset for adding important context to the bigger
picture. As we have seen, the versatility and power of Nmap truly come alive
when leveraging multiple flags in tandem to fine-tune the individual scans.
Attack surface mapping is not only critical for a penetration test but is also a very
helpful skill for a blue team cyber security professional. Being able to understand
how a malicious actor would analyze an organization or network and try to
identify points of weakness will inherently lead to a better understanding of how
to protect against such techniques.
This chapter concludes what would generally be considered “basic” Nmap
techniques. In the subsequent chapters, we will quickly progress into intermediate
and advanced tactics and techniques to fully leverage the capabilities of Nmap in
a professional penetration test. To that end, it is highly recommended that you
take your time in practicing with the lab environment to build your comfort level
with the tool and the basic flags that were discussed in this chapter before
progressing to ensure a strong foundation is established.

In the next chapter, we will continue to build on this foundation and dive deeper
into using Nmap to identify specific vulnerabilities in systems through in-depth
reconnaissance and enumeration techniques. Through additional case studies,
more intermediate-level flags, and intricate versioning techniques, we will cover
both system fingerprinting and vulnerability analysis in far greater detail.
By the end of the next chapter, you will be going beyond simply mapping the
attack surface of your lab environment and home network, and instead identifying
specific vulnerabilities that could be exploited against those systems. You will
become comfortable researching, confirming, and prioritizing what vulnerabilities
to focus on, and perhaps most importantly, how to communicate that information
to clients.

Points to Remember
Everything has an attack surface: every application, every network, and
every organization. The attack surface simply refers to the systems or
platforms a malicious actor could potentially target for exploitation.
Mapping an attack surface is the first step to understanding how to allocate
resources and properly defend it.
Nmap is extremely versatile and can be magnified in capacity by utilizing
specific commands (flags), in tandem with one other. By strategically
leveraging different flags at different times, you can use Nmap for multiple
purposes during the attack surface mapping process.
Focus first on identifying the most interesting or unique systems on the
perimeter, then utilize more intricate and in-depth scans to further
fingerprint that system.
A high-severity vulnerability that has no known exploit and CISA has never
observed it being used by a malicious actor has less value to you as a
penetration tester than a moderate severity issue with known proof of
concept exploits that you can leverage.

Multiple Choice Questions
1. Which of the following flags would be best used to identify both the

operating system and the services running on open ports?

a. -A
b. -sV

c. -sU
d. -iL

2. Attack surface mapping often begins with organizational
reconnaissance of a root domain. Which of the following tools would be
best utilized for subdomain enumeration?

a. Nmap
b. OWASP Amass
c. Metasploit
d. BurpSuite

3. An Nmap scan specifying only “-sV” will conduct service version
enumeration equivalent to what version-intensity rating?

a. 2
b. 5
c. 7
d. 9

4. A default Nmap scan executes at a speed equivalent to which -T
specification?

a. T-2
b. T-3
c. T-4
d. T-5

5. What flag would you use to output scan results to a .xml file?

a. -oX
b. -oT
c. -oA
d. -oAll

6. The following two scans will return the same results. True or false.
Nmap -sV 10.0.0.1 -p 80,443 --open -v

Nmap –-open -v -sV -p 80,443 10.0.0.1

a. True
b. False

7. This US-based organization maintains a database of known exploited
vulnerabilities.

a. CIA
b. CISA
c. OWASP
d. MITRE

8. Which of the following is NOT a port commonly associated with web
services?

a. 80
b. 443
c. 8080
d. 1883

9. A ______ pentest describes a scenario in which the penetration tester is
emulating a malicious actor who when targeting an organization has to
do all the reconnaissance themselves.

a. White Box
b. Black Box
c. Gray Box

10. Which is a database of known exploits that can be searched by title,
system, or CVE id.

a. Exploit-db.com
b. Cisa.gov
c. Owasp.org
d. Attack.mitre.org

Answers
1. a
2. b
3. c
4. b
5. a

6. a
7. b
8. d
9. b
10. a

CHAPTER 4

Identifying Vulnerabilities Through
Reconnaissance and Enumeration

Introduction
In the previous chapter, we took a deep dive into how to map an attack surface to
understand what systems, ports, and services are exposed within a specified
scope. In this chapter, we will take that concept one step further and identify not
only the specifics of the endpoints themselves but also how to identify legitimate
vulnerabilities that can be exploited.
A penetration test or red teaming engagement has a lot of similarities to a military
operation, in that success or failure is often based on the quality of the intelligence
available before direct action. The US Army leverages an intelligence cycle which
consists of five main (very simplified) phases, including:

1. Planning: Identify the final objective and what assets are available to work
with.

2. Collection: Deploy assets to collect information.
3. Processing: Process that information into meaningful intelligence.
4. Analysis and Production: Aggregate sources of intelligence and analyze

them together to understand the bigger picture, then produce an intelligence
estimate of the situation.

5. Dissemination: Provide the commander with the final intelligence estimate
and recommendations.

Again, this is a very simplified description of a very complex discipline, but the
basic structure of the concept is very applicable. To apply this to offensive
security, we can consider it this way:

1. Plan the engagement and define the scope.
2. Map the attack surface.
3. Analyze the attack surface to identify applicable vulnerabilities.
4. Conduct targeted exploitation of vulnerable systems.

5. Produce and deliver the final report.

To put it another way, this chapter is going to focus on the reconnaissance,
weaponization, delivery, and exploitation phases of the Lockheed Martin Cyber
Killchain. To map this to the MITRE ATT&CK framework that would be
reconnaissance, resource development, and initial access.
Regardless of the framework utilized, this is the crucial part of a penetration test
where you as a cyber security professional have to identify what systems have
vulnerabilities and which systems can be practically exploited within the rules of
engagement. This is both the most important part of a high-quality pentest and the
part that gets the least attention from training materials.
Imagine a situation where a large company pays over $50,000 for a penetration
test, only to suffer a data breach due to a malicious actor exploiting a system that
wasn’t even mentioned in the report, only a month later. Unfortunately, things like
this do happen in the industry and it can seriously impact the reputation of your
organization. While there are times when a breach is caused by a bleeding edge
zero-day exploit like Log4Shell (CVE 2021-44228), which would likely not have
been picked up in a pentest before disclosure; most of the time the breach stems
from well-known and preventable vulnerabilities.
While it isn’t the purview of a penetration test to identify and catalog every single
vulnerability on every single in-scope system, it is the responsibility of the tester
to ensure no stone goes unturned in identifying the most critical potential attack
vectors. This is where the quality of the reconnaissance comes into play.
Through this chapter, we will build on the foundational Nmap knowledge to better
understand CPEs and CVEs and how to identify them with custom Nmap scripts,
intermediate-level flags, and innovative reconnaissance techniques. We will
discuss enumerating systems specifically to identify actionable vulnerabilities,
how to research those vulnerabilities, and identify known exploits. We will also
analyze a case study that walks through the thought process and strategy of
conducting the reconnaissance phase of a network pentest on a medium-sized
business and provide two challenges to get hands-on practicing these skills.

Structure
In this chapter, we will discuss the following topics:

Common Platform Enumeration and Common Vulnerabilities and
Exposures
Introduction to Nmap Scripting Engine

Intermediate Nmap Flags
System, Service, and Operating System Enumeration
Vulnerability Scanning with Nmap
Case Study – Real-World Internal and External Penetration Test
Challenge – Fingerprinting Vulnerable Systems
Challenge – Home Network Vulnerability Scanning

Common Platform Enumeration (CPE) and Common
Vulnerabilities and Exposures (CVE)
Common Platform Enumeration (CPE) is a standardized way of encoding
names of IT products and platforms, which is maintained in a dictionary format
by NIST. This convention may seem somewhat confusing at first as the format is
really designed to be read and understood by automatable software and hardware
inventory management systems rather than rapidly read by engineers. The format
of the newest version of CPE (version 2.3) was outlined in the NIST interagency
report 7695 as follows:
Cpe:[cpe_version]

ype]:[vendor]:[product]:[version]:[update]:[edition]:[language]

With this in mind, let's look at the following CPE from the NIST National
Vulnerability Database (nvd.nist.gov) for version 3.4.1 of Apache Airflow
Providers Microsoft MSSQL:
cpe:2.3:a:apache:apache-airflow-providers-microsoft-mssql:3.4.1

While it is fairly human-readable, the good news is that many programs and tools,
including Nmap, will attempt to identify the CPE through numerous means and
output, the most likely result in a far more readable form. To accomplish this,
Nmap will combine dozens of operating system versioning and service versioning
techniques, which include (among many others):

Analyzing the TTL of ICMP responses
Analyzing TCP ISN sampling
Analyzing IP ID sampling
Analyzing service headers

With this information, Nmap then queries both the nmap-services and nmap-os-db
databases, which have a repository of CPEs that are associated with specific
indicators. If Nmap is not able to determine a service, operating system, or full

CPE, a hyperlink is even provided in the output, so that users may report the
correct information (if they can verify it). Considering these databases are in large
part community-driven and always expanding, it is yet another reason to ensure
you are utilizing the most up-to-date version of Nmap possible.

 Experienced penetration testers would caution you to never trust the
output of one tool as the complete truth. Nmap is very good at a lot of
things, but there have been many instances during penetration tests where
experienced engineers have fallen down a rabbit hole due to a mis-
enumerated system.
One recent example was a system I was analyzing for a client that Nmap
insisted was a Windows 2012R2 server, which reached the end of its life in
October of 2023. In reality, that system turned out to be a Windows 2016
server which was fully patched. In my experience, Nmap may not always be
100% accurate on specific versioning, but it does usually get quite close,
which still provides a lot of context of the environment.

The next step is to identify the relevant common vulnerabilities and exposures
(CVEs) that are associated with the established CPE. The concept of CVEs was
originally proposed in 1999 and by the early 2000s was in widespread use with
adoption by NIST for US government agencies and in 2002 with SP 800-51. Over
time, more and more major corporations worldwide began reporting CVE IDs
upon discovery of new vulnerabilities to ensure cyber-defenders worldwide had
access to the pertinent information as soon as possible. Another critical added
benefit is that having a common identifier for a specific vulnerability allows
security professionals in different organizations to more easily collaborate on,
research, and discuss those unique vulnerabilities.
Vulnerabilities is another word that is used frequently in the information security
industry and can have different meanings based on context. When discussing
CVEs always consider the following definition of a vulnerability taken directly
from cve.org:
“A weakness in the computational logic (e.g., code) found in software and
hardware components that, when exploited, results in a negative impact to
confidentiality, integrity, or availability. Mitigation of the vulnerabilities in this
context typically involves coding changes, but could also include specification
changes or even specification deprecations (e.g., removal of affected protocols or
functionality in their entirety).”

As briefly discussed previously, the presence of a CVE on a specific system or
software does not necessarily mean that it can be meaningfully exploited, it
simply means that a security researcher or organization has identified a weakness.
While some CVEs such as 2019-0708 (also known as BlueKeep) represent an
critical remote code execution vulnerability in some legacy Windows systems that
can very easily be exploited; most CVEs do not have nearly as high of a potential
impact or ease of exploitation.
To gauge the legitimate impact of a CVE and to aid in prioritizing remediation
efforts, many organizations will use what is called the Common Vulnerability
Scoring System (CVSS). The CVSS is a method of qualitatively measuring the
severity of a vulnerability from 0 (no impact) to 10 (critical). CVSS is owned and
maintained by FIRST, which is a US-based non-profit organization focused on
aiding security and incident response teams worldwide. While a 1 to 10 scoring
range may seem simple, the calculation is actually quite complex and takes into
account many aspects such as attack complexity, impact on the CIA, what
privilege level is required for exploitation, and many more.
While the CVSS score certainly is very widely used, one criticism of the system is
that it lacks context into the potential impact of the vulnerability. Take for
example, two different CVEs with the same CVSS rating of 9.8:

1. CVE 2018-0171: A remote code execution in Cisco IOS and IOS XE
software that can be exploited to take over networking devices.

2. CVE 2018-12671: A remote information disclosure that exposes the
password sets within an IP-based camera.

While both of these are individually very severe vulnerabilities that allow a
remote attacker to effectively gain control over a device; the real impact to the
organization is substantially different. A malicious actor taking over networking
equipment such as switches can lead to a devastating cascading compromise of
the network, whereas a malicious actor gaining access to a security camera feed is
comparatively quite insignificant. The disparity of context regarding practical
impact is something to always keep in mind when utilizing CVSS scores.

Introduction to Nmap Scripting Engine
Among the most powerful features Nmap has to assist you in enumerating CPEs,
identifying CVEs, and even in some cases exploiting systems is the Nmap
Scripting Engine (NSE). This feature enables users to create custom scripts
written in Lua. It is no exaggeration to say that there are hundreds of NSE scripts

that have been open-sourced and are readily available, the majority of which are
included in a database that is available by default when you install Nmap.
While some of the scripts are fairly complex and sophisticated in their
functioning, utilizing them is extremely simple, as you just specify the “--
script” flag followed by the name of the NSE script. To get additional insight
into what the script does before running it, using the –script-help command is
extremely helpful.
In the following example, we can see that the script vulners.nse takes the
available CPEs and makes a request to the vulners.com API to retrieve and print
out information on specific vulnerabilities along with the CVSS score:

Figure 4.1: Displaying the functionality of vulners.nse

Also, interesting to point out, the vulners.nse script is classified into the
categories vuln, safe, and external. At a high level, this indicates that the script is
related to identifying vulnerabilities, is safe to run, will not negatively impact the
targets, and queries an external data source. There are 13 categories of NSE
scripts, which will be discussed in far more detail along with instructions on
writing your own custom scripts in Chapter 8: Leveraging the Nmap Scripting
Engine.
For now, it is sufficient to simply understand that there are a large number of
scripts that have added additional features and functionality to Nmap over time;
these scripts can be implemented in very creative ways, and they can be combined
with additional flags to modify them even further.
Experimenting with and researching different NSE scripts provides an eye-
opening experience into seeing how other security researchers have solved
individual challenges. Often times, this will lead to solutions to problems that you
didn’t even realize you had. Throughout the next several chapters, we will be
leveraging dozens of individual NSE scripts to accomplish specific objectives.

Intermediate Nmap Flags
The basic flags that we discussed in Chapter 3: Introduction to Attack Surface
Mapping have provided you with the capability to conduct fundamental scans. We
discussed how to adjust the timing, specify which type of enumeration (that is,
operating system, ports and services, and so on), adjust verbosity, and utilize input
and output files to increase efficiency. However, those represent only a small
fraction of the potential modifications you can use to tailor your Nmap scans. The
following 12 flags are designed to take your basic scans and bring them up to the
next level by adding more capabilities and nuanced control over how they
operate:

1. --script: Among the most powerful features of Nmap is the Nmap
Scripting Engine (NSE). We have seen a brief display of the different
capabilities of NSE scripts already when we analyzed vulnerabilities using
the vulners.nse script; however, there are hundreds of additional scripts
available which dramatically expand the capacity of Nmap. We will be
taking a deep dive into NSE scripts and how to write them in Lua in
Chapter 8: Leveraging the Nmap Scripting Engine:

Figure 4.2: Demonstrating an NSE script

2. --script-help: Due to the sheer number of scripts available, it becomes
untenable through rout memorization to keep track of what each one does.
While you will naturally lean towards a small handful that suits your
particular type of project over time, it is important to explore the expansive
base of scripts. The --script-help command enables you to do just that by
outputting information regarding what the particular scripts do without

having to launch them. This lets you verify that the script you have selected
is the right tool for the job before use:

Figure 4.3: Demonstrating the --script-help function

3. -6: While the vast majority of the time on penetration tests, you are working
with IPv4, there is a chance that you will need to scan a specific IPv6
address. Internet Protocol version 6 is not a new concept; it has been the
Internet Engineering Task Force (IETF)’s solution to IPv4 exhaustion
(the concept that there are simply not enough IPv4 addresses for all
connected devices) since the late 1990s. That being said, even now, some 25
years later, IPv4 is still far more prevalent. Despite the niche nature, there
may be times when you only have access to an IPv6 address, and knowing
that Nmap does have the capability to scan such addresses is important to
realize.

4. -sn: During default scanning one of the initial techniques used by Nmap is
ICMP probes. These probes are extremely common and are used by Nmap
to help ascertain if a host is alive or not. Very simply, if the host replies to
the ICMP probe (also known as a ping), then Nmap will recognize that host
as alive; if not, it will move on. Although there are other host discovery
techniques that Nmap does employ, the ICMP ping tends to occur first. This
is commonly known as a ping sweep and is used for large-scope host
discovery. This technique will be explored in more depth in Chapter 5:
Mapping a Large Environment:

Figure 4.4: Demonstrating a ping sweep with Nmap

5. -Pn: Conversely, to the previous flag, there will also be occasions where you
do not want to conduct a ping scan. This becomes problematic in
environments that specifically block ICMP traffic. During penetration tests,
it is not uncommon to see initial reconnaissance scans come back with no
live hosts due to a failure of Nmap to determine hosts were alive because
there was no ICMP response. In these instances, it is prudent to disable
ICMP and re-scan the targets; more often than not, this will return the
expected results. The -Pn flag is used for exactly this purpose, to disable
ICMP (ping) scans.

6. -F: Think of the -F as “Fast”, this is a flag that reduces the number of ports
scanned from Nmap’s default of 1000 to the top 100. This refers to the top
100 most commonly seen ports and services as outlined in the Nmap Well-
Known Ports List (https://nmap.org/book/nmap-services.html). While this
flag does substantially increase the speed compared to a base scan, it is
important to note that very commonly there will be key ports missed. The
best way to utilize this scan is as a way to determine which subnets or
endpoints of the greater scope should be marked for additional analysis.
This is also a technique we will explore further in Chapter 5: Mapping a
Large Environment.

7. --top-ports #: We have established that the default of Nmap is to scan the
top 1000 ports, and you can use the -F flag to reduce that to the top 100. But
what if you want to scan the top 25? Or 50? Or 1000? That is where the --
top-ports flag comes in; this allows you to specify the exact number to
scan, which can help provide a good balance between speed and depth.
From numerous interviews with accomplished network penetration testers,
the most common specification for this flag seems to be --top-ports 2500.

https://nmap.org/book/nmap-services.html

This ensures that the vast majority of regularly seen ports are covered while
also substantially reducing the time it would take to scan every port.

8. --version-intensity #: The previous chapter established that the service
version could be abled via the -sV command, but additional nuance can be
added by specifying the intensity of that versioning effort between 0 and 9.
This is done by sending a series of probes with assigned values to all
identified open ports in an attempt to determine the service running on
them. The default value of -sV is “7”. So, if your objective is to return
results quicker, select a lower number, and if you are trying to get a more
accurate fingerprint, select the higher value:

Figure 4.5: Demonstrating manually setting version intensity

9. --version-light: This flag is simply an alias for --version-intensity 2.
It is a very fast way to conduct scanning when you are less interested in the
exact fingerprint of specific services.

10. --version-all: This is an alias for –-version-intensity 9, which will
make every effort available to Nmap (outside of NSE scripts) to identify the
exact version of services. This level of specificity of course comes with the
inherent drawback that it will take significantly longer to complete the scan.
It is not recommended to use this flag against a scope larger than a /24
subnet, as it will take an egregious amount of time.

11. --max-os-tries #: When Nmap conducts operating system identification,
it will by default attempt five times to determine the exact OS. By
specifying a lower value, you can increase the speed of the scan by reducing
the attempts to fingerprint the operating system. Alternatively, you can also

increase the tries beyond the default of 5 to attempt to better identify the
endpoint.

 Both in my personal experience and in interviews with dozens of
network penetration testers, the use case of specifying a --max-os-
tries value greater than 5 is very rarely done. Most often this is used
to reduce the time of scanning while obtaining overt operating system
information (that is, Windows or Linux) rather than highly specific
fingerprints.

12. --exclude-ports #,#: This is one of the most helpful flags out there for
red teaming. During a penetration test, you often do not need to worry about
being sneaky or avoiding detection, but in red teaming that is a cornerstone.
Many endpoint detection agents, such as SentielOne, CrowdStirke Falcon,
and Windows Defender, tend to be very attuned to specific ports being
probed such as port 22 (SSH), and 445 (SMB). This flag lets you simply
exclude those ports from being scanned, which in some cases is enough to
remain under the noise floor in an environment. This technique will be
explored in far greater detail in Chapter 7: Advanced Obfuscation
Techniques.

Exploring the Nmap Scripting Engine
The Nmap Scripting Engine is among the most powerful components of Nmap
due to its versatility. Written in the Lua scripting language, these scripts amplify
Nmap to be able to fingerprint more specific systems, perform more nuanced
scans, exploit known vulnerabilities, and even enumerate firewall rules.
The sheer number of Nmap scripts natively available is staggering. To list them
on your Kali machine, simply use the following command:
> ls -l /usr/share/nmap/scripts

Figure 4.6: Listing the /usr/share/nmap/scripts directory in Kali Linux

You can then explore any of them by printing out the file, either via the cat
command or with a text editor (nano, vi, vim, and so on):
>cat /usr/share/nmap/scripts/address-info.nse

Figure 4.7: Printing the Lua code of a NSE script

While there are hundreds of NSE scripts available, as a primer, we will look at 10
that are most often used when conducting enterprise penetration tests of multi-
billion dollar corporations:

1. Vulners.nse: This is one of the handiest scripts available for doing a quick
surface-level vulnerability analysis. This script looks at the services being
run on the system and queries the vulenrs.com database of vulnerabilities to
determine if those services match known vulnerabilities. It will then print
out those CVEs to the command prompt along with hyperlinks to their
database for additional information. What makes this even more convenient
is that Vulners will even define if there is a known exploit available for that
vulnerability.

2. Ms-exchange-version.nse: Outdated versions of on-premises Microsoft
Exchange have been riddled with severe vulnerabilities. This script does a
better job than even most commercial vulnerability scanners at
fingerprinting the exact version of the exchange that is being utilized.

3. Smb-security-mode.nse // smb2-security-mode.nse: SMB signing not
being enabled or required is one of the most common high-severity
vulnerabilities seen on internal environments. With this script, you can very
rapidly determine if a pass-the-hash attack will be a viable option for lateral
movement within the environment.

4. Smb-os-discovery.nse: Fingerprinting server infrastructure can be
challenging, but with Windows 2012R2 recently reaching the end of life
(and still very widely used), the opportunity for exploiting these systems is
as present as ever. Having the capacity to fingerprint Windows systems via
the SMB protocol is essential for any pentester.

5. Smb-enum-*: This shortcut for running dozens of individual SMB
enumeration scripts is a great way to save time on an engagement. When
you do not need to worry about being stealthy, throwing everything at a
target in the most efficient way is a plus.

6. Smb-vuln-*: Similar to preceding point, being able to automatically verify
susceptibility to a list of high-severity SMB vulnerabilities rapidly can be a
great technique, especially in larger scope engagements where efficiency is
everything.

7. Broadcast-jenkins-discover.nse: Jenkins has had countless
vulnerabilities over the years and many instances remain tremendously out
of date. Being able to identify these systems on the network can provide an
early and effective foothold for exploitation.

8. Http-wordpress-enum.nse: WordPress websites are incredibly common
and often make use of many individual plugins, some of which are
commercially supported, and others are community-driven. As a result,
there have been countless WordPress plugin-specific vulnerabilities over the

last decade; many of which do not have patches. This script is a very handy
way to fingerprint these plugins and print out any known vulnerabilities
associated with them.

9. Firewalk.nse: Firewalk is a fairly old, but still quite useful script that
attempts to determine firewall rules on a specified gateway by analyzing IP
time to live (TTL) expirations. Essentially this technique, known as
firewalking, sends varying types of probes to the gateway and based on the
TTL and reply ascertains if a firewall rule is impacting that port.
A couple of items to be aware of for this script: first, you need to run it
either in an administrator or sudo command prompt as it needs raw socket
access. As a result, this is highly unreliable in Windows Subsystem for
Linux (WSL). Second, you also need to include the command “--
traceroute”:

Figure 4.8: Demonstrating the concept of Firewalking with Nmap

10. Mysql-empty-password.nse: This script does exactly what the name would
suggest: it checks MySQL servers for default user credentials by attempting
to authenticate to the service. While this can be handy, it should be
understood that this is both easily detectable and intrusive.

Even more scripts can be found on GitHub where the Infosec community
members love to add additional functionality and versatility through custom
scripts. We will be deep-diving into NSE scripts, how to write them, how to

import new ones, and the best use cases in a later chapter. But for now, the key
thing to understand is that NSE scripts are used to expand the functionality of
Nmap, are open-source, and are called with the –-script flag.

 NOTE: In 2022, I hosted a live webinar on Cyber-Judo.com on
Advanced Nmap Techniques (https://cyber-judo.com/advanced-nmap-
techniques), where a major discussion point was different Nmap flags that
could be leveraged during penetration tests. I was absolutely shocked by
the number of professional penetration testers who reached out to me
following the presentation telling me that they had no idea NSE scripts
existed.

I kept in touch with many of these engineers and as they explored different NSE
scripts they each started incorporating them into their day-to-day pentesting
routine and have seen tremendous improvements.

System, Service, and Operating System Enumeration
As we have discussed in the previous chapter, identifying vulnerabilities across
environments is conceptually simple. First, you establish the CPE of the system,
then through research and additional service enumeration, determine if there are
any applicable CVEs that meet the conditions to be meaningfully (and safely)
exploited. This is how vulnerability scanners like OpenVas fundamentally operate
and quite successfully identify most vulnerabilities. However, during real-world
pentests, those easy-to-identify vulnerabilities, which are factored into most open-
source and commercial vulnerability scanners, are also typically the issues that
the blue team is aware of and have compensating controls to address. More often,
true success leading to a cascading compromise within a network environment
comes from identifying the vulnerabilities that stem from misconfigurations,
inherently flawed protocols, and significant technical debt.
Let’s take a moment to explore each of these general categories and break down
some examples of how Nmap can contribute to the successful exploitation of
them. These examples are meant to serve as both insightful thought exercises and
inspiration leading into the challenge presented in this chapter.

Misconfigurations
Security misconfigurations could refer to any number of huge swaths of
inadvertent errors when setting up devices. This is such a broad category that in
Open Web Application Security Project (OWASP)’s 2021 edition of Top 10

https://cyber-judo.com/advanced-nmap-techniques

Vulnerabilities in Web Apps, over 90% of applications had a vulnerability that fell
into this category.
A simple way to think about this is that there isn’t a problem with the technology,
there is a problem with how it was implemented or set up. Think of having a lock
on your luggage but forgetting to change the code from 12345. Or, simply not
realizing that a default setting is making the whole system less secure, like a baby
monitor with telnet open.

Example 1:
The most glaringly obvious example of a security misconfiguration is also
extremely common in enterprise networks. If you were to survey a group of
network pentesters and ask them “What is the #1 way you compromise systems on
an internal environment”, they will most likely say “default credentials”. It is
unbelievably common to find printers, phone systems, security cameras, and even
significantly more critical devices, such as a Dell iDRAC with their default
administrator credentials still active.

 For those unfamiliar, a Dell iDRAC is an out of band management
platform which provides a central place to manage and configure remote
consoles from one interface. Compromising a device such as this almost
immediately leads to a cascading compromise of all of the additional remote
devices it is configured to manage.
If you ever see one on a pentest, the default credentials are root/calvin.

There are a couple of ways that Nmap can support the auditing of default
credentials. The first is the use of a few NSE scripts, which attempt to brute force
the devices; a few examples are citrix-brute-xml.nse, ftp-bute.nse, and
iax2-brute.nse. While this is one way to go about it, generally it is not
recommended to conduct brute force testing without explicit approval from the
client due to the potential of disrupting the service. So instead, a somewhat more
manual strategy can be employed. Consider using Nmap to scan the subnet for
only web servers on the most common ports (80,443,8080,8443):
Nmap -p 80,443,8080,8443 –open -iL targets.txt

With a list of endpoints that are running web servers, you can then use an open-
source tool in Kali Linux called EyeWitness
(https://github.com/redsiege/EyeWitness), which can provide a file of targets and
will automatically screenshot the websites. The output from EyeWitness is an
HTML file that you can then quickly go through and identify which web

https://github.com/redsiege/EyeWitness

interfaces look to be unique login fields. A quick Google search will then tell you
if there are default credentials that you can try. While this seems extremely
simplistic and “too good to be true”, you will be astounded at how many systems
you will get into by just trying “admin/admin” as a username and password.

Example 2:
Many systems are set up that, by default, do not have all security systems
hardened. The Windows server virtual machine that we put in our lab
environment fits this description perfectly. By using the NSE script smb2-
security-mode.nse, we can see that SMB signing is enabled but not required. This
is a big problem from a security standpoint. SMB signing is a Microsoft feature
that signs all SMB messages with both a session key and an encryption algorithm.
By doing this, an extremely popular (and old) man-in-the-middle attack called
pass-the-hash is largely mitigated. In a pass-the-hash attack, an attacker would
acquire the password hash of a valid user, possibly through network traffic
poisoning or another vector, and then “pass” that hash to a system not requiring
SMB signing to authenticate as that user.

Inherently Flawed Protocols
Some network protocols are designed in such a way that their fundamental
implementation presents a vulnerability that can be exploited by an attacker. Two
commonly seen examples are Intelligence Platform Management Interface
Version 2 (IPMIv2) and MQ Telemetry Transport (MQTT). These are very
different protocols and are used for completely different purposes, but both offer a
very easy path to exploitation once they are identified.

Example 1:
IPMIv2 is a protocol designed to support management and monitoring by system
administrators for out-of-band management systems, like an iDRAC, for example.
The problem with this protocol is the way it handles authentication and provides a
hashed version of the user’s password once a username is submitted. This allows
attackers to systematically dump all user hashes and attempt to crack them using
an offline dictionary or brute force-based means.
Identifying hosts with IPMIv2 with Nmap can be done with one command first
identifying hosts with UDP port 623 open, then versioning the service with the
script ipmi-version:
Nmap -sU -p 623 –-open --script ipmi-version.nse -iL targets.txt

There are several other tools available which will both scan for and dump the
hashes for IPMIv2, such as the Metasploit module
auxiliary/scanner/ipmi/ipmi_dumphashes. However, it is almost always quicker
and safer to first confirm the use of IPMIv2 using Nmap, and then determine if
exploitation is permitted within your rules of engagement.
Example 2:
MQTT is a lightweight messaging protocol most commonly used by IoT devices
due to the inherently resource-constrained nature of such devices. In most
implementations of MQTT, authentication is completely optional to establish a
connection and subscribe to various topics that are published by the MQTT
brokers.
To identify and subscribe to various topics for additional system information and
enumeration, you can simply scan for systems with port 1833 open and call the
mqtt-subscribe.nse script:
Nmap -p 1883 --open --script mqtt-subscribe -iL targets.txt

This is generally a safe script to run and is classified under the Discovery
category, although in most cases it would be considered active exploitation.
If you wish to subscribe to only a limited number of topics as a proof of
concept, a number can be specified with the mqtt-subscribe.listen-msgs
argument. If you don't specify a number, the default is 100.

Technical Debt
In large enterprises, you will often observe outdated infrastructure and devices.
There are a myriad of reasons why this occurs, but most commonly it is because
there had been a “if it’s not broken don’t fix it” mentality to funding infrastructure
changes by leadership. Many organizations are now starting to prioritize security
as not only a business necessity but also as a key market differentiator to make
their offering more appealing to consumers. However, this was not always the
case. In many industries, the focus was on profit and revenue growth rather than
ensuring systems are kept modern and serviceable. This has resulted in many
organizations having extremely out-of-date systems and software in production
environments as the funding has just not been allocated to replace them.

Example 1:
Server infrastructure and industrial control devices are typically outdated more
often than things like employee workstations in enterprise environments. These

devices tend to be far more expensive to replace and have a longer lifetime, which
makes them somewhat easier to forget about in the technology refresh cycle.
Nmap has many scripts that are excellent at fingerprinting server infrastructure to
identify if they are end-of-life or vulnerable to a specific exploit. Some of the
most helpful are:
Ms-sql-info.nse Rdp-vuln-ms12-020.nse

Rdp-ntlm-info.nse Realvnc-auth-bypass.nse

Smb-os-discovery.nse Rmi-dumpregistry.nse

These are just a small example of scripts that are available for fingerprinting
potentially outdated systems (left-hand column), pinpointing specific
vulnerabilities, and even exploiting them (right-hand column).

Example 2:
Common software that is seen out of date is Jenkins, which in older versions is
absolutely riddled with vulnerabilities ripe for exploitation. Jenkins is often used
in the CI/CD process, but without integrations with third-party applications, it
does not have a lot of security controls built in. There are two ways you can easily
identify instances of Jenkins on the network.
First, the fact that by default Jenkins hosts a web interface on port 8080 would
enable you to simply search for open ports 8080 across the scope. Depending on
the number of results, you could either manually check them in a web browser, or
use a screenshotting tool like EyeWitness to speed up the process.
Alternatively, you can use a broadcast script built into Nmap called broadcast-
jenkins-discover. As a broadcast script, this command does not need to be
provided with a specific host or target list to run. However, it does tend to get
hung up on a larger environment, so it is recommended to add an additional
timeout setting with the –script-args timeout= command. This setting will
essentially tell Nmap “if there is no response in X amount of time, move on”:
Nmap --script broadcast-jenkins-discover --script-args timeout=15s

Once you identify the interface for Jenkins, you can version the portal by
triggering an error message when you navigate to a URL that does not exist, such
as /error. If the version is particularly old (prior to v2.150.1), there are particularly
grave exploits and multiple Metasploit modules associated with it that likely
should be reported to the client immediately.

Vulnerability Scanning with Nmap

Nmap is not a replacement for a quality commercial vulnerability scanner. Tools
such as Coda, Nessus, Netsparker and others are specifically designed to detect
and report vulnerabilities. Even open-source options such as the trail version of
OpenVas (https://openvas.org/) are better equipped to provide insight as long-
term capable vulnerability scanning solutions.
However, there may be instances where you do not have the luxury of installing
additional tools in a client environment or are simply trying to remain undetected
as you conduct vulnerability scanning. In these instances, kaliusing Nmap with
some tailored NSE scripts may be the right move.
As we discussed, several NSE scripts relate directly to vulnerability scanning
such as vulners.nse and smb-vuln-*. However, what makes these scripts even
more powerful as a vulnerability scanning option is the ability to combine them
with additional flags. While we have not touched on the obfuscation techniques
that would been commonly leveraged in red teaming (that will be covered in
Chapter 7: Advanced Obfuscation and Firewall Evasion Techniques), there are
still many scan configurations combining vulnerability analysis with fundamental
and intermediate flags for the best results.
To illustrate this point, let’s break down a few Nmap scans that would be expected
of a junior Penetration Tester and analyze how they work for vulnerability
analysis:
Nmap -Pn --top-ports 500 -T2 -sV --version-all --script vulners.nse

-iL targets.txt -oX results.txt

In this scan, the user is attempting to determine an accurate CPE by using the --
version-all flag, but has reduced the total number of ports from the default of
1,000 to 500. This is likely in an effort to increase the speed of the scan, which is
slowed by the -T2 flag. While these two flags may seem contradictory to one
other, there are several instances when a production environment may require
both a light touch in terms of impact (-T2) and also a rapid assessment (--top-
ports 500). This service version information is then fed into the vulners.nse
script, which will look it up against a public vulnerability database. This is a less
intrusive method of scanning than often seen with other methods:

https://openvas.org/

Figure 4.9: Demonstrating a moderately complex versioning scan

Nmap -F -T5 –version-light -sV --script vulners.nse -iL targets.txt

-oX results.txt

This scan is clearly focused on speed. The -F flag reduces the total ports scanned
from 1,000 to 100 and is followed by the maximum speed rating, and the lightest
service versioning across the target list before calling vulners.nse. This type of
scan would be used when the most important thing is identifying both obvious
and critical vulnerabilities across in-scope systems. In these cases, there would be
no concern of overloading the targets, and there would be enough understanding
of the systems to warrant reducing the quality-of-service versioning in favor of
sheer speed:

Figure 4.10: Demonstrating a simple versioning scan

Nmap –p 139,445 --script smb-vun* -iL targets.txt -oX results.txt

This scan is focused on SMB vulnerabilities, specifically on Windows hosts.
Likely, the user would have identified a subnet or VLAN in the target
environment that is used for Windows Servers and is in the stage of the
penetration test, where assessing them for major SMB-based vulnerabilities is a
prudent next step. While this often results in detection, it is more of a concern in a
Red Team engagement than a traditional penetration test:

Figure 4.11: Demonstrating an SMB vulnerability enumeration scan using multiple scripts

Nmap -p 139,445 --open --script smb2-security-mode 10.0.2.5

Far less intensive than smb-vuln-*, this script is useful in determining if SMB
signing is enforced. In this example, we see it being used on a single endpoint, but
this is a quick and relatively subtle scan to identify a potentially critical
vulnerability that may be used on an entire scope:

Figure 4.12: Identifying SMB signing not being required, a high-severity vulnerability

Nmap –p 8080 –script vulners.nse -sV -v -iL targets.txt -oX

results.txt

While many web servers will run on port 8080, one specific way to this script is to
dive deeper into Jenkins hosts that were identified with the broadcast-jenkins-
discover.nse script. By scanning a single port that has previous been identified
and versioned, the risk of detection is fairly minimal while the opportunity for
exploitation is quite high:

Figure 4.13: Using the vulners.nse script to print CVEs specific to an outdated version of Jenkins

Nmap -p 80,443 -sV --script http-csrf scanme.nmap.org

While Nmap is most commonly considered for its applicability in network
pentesting engagement, there are several scripts and options that make it a helpful
resource for application-specific vulnerability identification as well. This script in
particular does several checks to identify possibilities of Cross-Site Request
Forgery (CSRF) on the target domain(s).
CSRF is an attack by which an attacker forces a user to execute an unwanted
action on a web application while authenticated, most typically through social
engineering. This Nmap script can help quickly identify areas of user input that
may provide a potential initial foothold if leveraged in the right social engineering
campaign:

Figure 4.14: Demonstrating CSRF scanning of a web application with Nmap

Case Study – Real-World Internal and External
Penetration Test
During a combined internal and external penetration test for one of my all-time
favorite clients, a multinational financial services organization, I counted the
times that I used Nmap just to see how often it would come in handy. When I did
this, it wasn’t a challenge to see how many times I ‘could’ use it, but simply to
objectively consider how often it was the best tool for the job. The results
surprised me in that I used Nmap a total of 19 times during the engagement.
Starting on the external, we were provided a scope that included all of the client’s
externally facing IP addresses, which essentially allowed me to skip the domain
discovery phase. After an initial set of OSINT tasks, I was ready to transition into
active reconnaissance and used Nmap to do service versioning and port scanning
of the entire scope, outputting the results of course to a .xml for use in Zenmap
later. Once the initial scan results came in, a few endpoints using WordPress were
observed, so an Nmap script was performed to identify any vulnerabilities with
the plugins. Sure enough, there were several. However, there were also some
outdated Windows servers externally exposed, which necessitated another set of
scans aimed at fingerprinting any Windows server-specific vulnerabilities. By the
time the external attack surface had truly been mapped, a total of five scans had
been run with Nmap.
On the internal side, I first scanned my local subnet, then did a discovery scan to
identify open hosts on a /8 subnet that we were provided (more on enumerating
huge scopes like this in the next chapter). With a list of live subnets, I then
narrowed it down even more by quickly scanning a select few ports which are

often the most interesting. The subnets with the majority of the results then got
more intricate scans of all ports and services, SMB-related vulnerabilities, port-
specific vulnerabilities like IPMIv2 and MQMT, and broadcast searches for
Jenkins servers. By the time the internal attack surface was truly understood, and I
moved into the active exploitation phase, I had run a total of 14 Nmap scans.
While at each turn there were technically other tools that I could have used, my
comfortability with Nmap let me leverage its versatility to fill the need
seamlessly. In this particular example, I was not able to compromise the external
perimeter. They were well-secured and the vulnerabilities I found related to
WordPress plugins had compensating controls to prevent exploitation. However,
the internal environment was a very different story.
Internally, I was able to identify numerous endpoints that had default credentials
on them, as well as two different devices with Cisco Smart Install enabled, which
enabled pulling the configuration files for Cisco switches. Within those config
files were hashed credentials for the network administrator who set up the
switches. These hashes were cracked using Hashcat in an offline dictionary attack
and then used to conduct a Kerberoasting attack against Active Directory, which
inevitably led to a complete Active Directory domain compromise.
Nmap wasn’t the only tool that was used to achieve AD domain admin access. I
used Siet.py to pull the Cisco Smart Install config, Hashcat to crack the hash of
the network administrator, and several components of Impacket to conduct the
Kerberoasting attack. However, all of that exploitation was only possible because
of a very thorough and strategic mapping of the attack surface using Nmap.

Challenge 1: Fingerprinting Vulnerable Systems
Use every technique and script at your disposal to fully fingerprint every virtual
machine in your home lab and at https://pentest-ground.com. Pentest-ground.com
is a very well-put-together open target for testing tools and techniques, which is
publicly accessible and completely legal to target. It is maintained by the world-
class team behind Pentest-tools.com and has several interesting web applications
that are ripe for enumeration and exploitation.
Consider writing a report of your findings combining both your home lab
environment as well as pentest-ground. Include the scope of your testing, your
methodology, and descriptions (with screenshots) of your process from start to
finish. This will make a great sample report to demonstrate your skills, which you
can post to your blog, GitHub, or LinkedIn account.

https://pentest-ground.com/

Challenge 2: Home Network Vulnerability Scanning
Take the skills you practiced in the previous challenge and turn them inward by
conducting a true vulnerability analysis of the systems on your home network.
Try to fingerprint each device and determine if there are any vulnerabilities that
you were unaware of.
This is another great exercise to chronicle on a blog or write up into a sample
report for your GitHub. Having spoken with hundreds of people trying to break
into the cyber security industry, I would say less than 5% have ever actually
conducted an analysis of their security posture, but it is a great thing to talk about
in interviews.

Conclusion
Employing Nmap in a professional penetration test or vulnerability assessment is
not a simple checklist. Asking twenty professionals what steps and commands
they take will likely yield twenty different (yet similar) answers. Trying to build
and follow a checklist is one of the most common pitfalls that people new to
cybersecurity will make. This is simply not a career path that can be reduced to
checklists.
Instead, it requires a lot of analytical thinking and the ability to pivot based on the
situation at hand. This is why so many different methods and techniques for
fingerprinting systems, determining the CPEs and eventually the CVEs were
presented within this chapter. There will be real-world engagements where you
will never use 80% of the commands that were discussed here. But there will very
likely also be engagements where you use them all multiple times. No two
penetration tests are the same, and when there is that much versatility in potential
targets, you need an equal level of versatility in your tools.
Nmap is capable of fingerprinting many systems, identifying and checking for
many vulnerabilities, and providing tremendous insight into how systems are
configured, but only if you know how to best leverage it. This chapter explored
how to dig deep into individual systems and subnets to gather the information
necessary to plan the next steps of exploitation.
In the next chapter, we are going to look at one of the most unique and
challenging aspects of professional penetration testing, dealing with a huge scope.
Most training environments and certification exams consist of only a small
handful of systems and allow for a lot of time to dig into the details of every
single port and service on those systems. But what happens when you have three
weeks to conduct an engagement and the scope is 3 separate /8 subnets? That’s

50,331,648 possible IP addresses. If you spent only 1 second on each one, that
would be about a year and a half. What do you do when you have that many
possible IPs but only three weeks to do the penetration test? That is the question
we will answer in Chapter 5: Mapping a Large Environment.

Points to Remember
Most often a cascading compromise within a network environment comes
from identifying the vulnerabilities that stem from misconfigurations,
inherently flawed protocols, and significant technical debt.
Nmap scripts are extremely versatile and can be used for very broad things
such as vulnerability scanning of all services (vulners.nse) as well as very
nuanced purposes like identifying instances of Jenkins (broadcast-
jenkins-discover).
There are limitless ways to conduct vulnerability scanning with Nmap, the
options for adding or subtracting obfuscation, highly detailed probes, and
additional context are limited mostly by the creativity of the user.
Nmap scripts are written in Lua and provide an easy way to add tremendous
functionality to suit your individual use case.
High-quality penetration testing cannot be boiled down to a checklist. Each
pentest is different and requires a lot of careful thought and analysis to
complete.

Multiple Choice Questions
1. NSE scripts are written in which language?

a. Python
b. Java
c. Lua
d. Ruby

2. The -F flag indicates Nmap will scan what number of top ports?

a. 10
b. 100
c. 1,000
d. 10,000

3. The Open Web Application Security Project (OWASP)’s 2021 edition of
Top 10 Vulnerabilities in Web Apps found that over 90% of
applications had a vulnerability in which category?

a. Injection
b. Security Misconfiguration
c. Cryptographic Failures
d. Software and Data Integrity Failures

4. Which technique sends varying types of probes to the gateway and
based on the TTL and reply ascertains if a firewall rule is impacting
that port?

a. ICMP Ping
b. TCP Port Scan
c. Firewalking
d. Firewalling

5. Typically, before identifying CVEs associated with an endpoint, you
should first determine which of the following?

a. CVS
b. CBS
c. NAT
d. CPE

6. True or False: Nmap has invasive and exploitative scripts?

a. True
b. False

7. Which of the following services is inherently flawed from a security
perspective?

a. SMB
b. IPMIv2
c. SFTP
d. SMTP

Answers

1. c
2. b
3. b
4. c
5. d
6. a
7. b

CHAPTER 5
Mapping a Large Environment

Introduction
An area that is infrequently explored in penetration testing training content is
how to operate in a very large enterprise environment. There are several
excellent penetration testing courses and certifications, such as the eLearn
Security Junior Penetration Tester (eJPT) and the Practical Network
Penetration Tester (PNPT) by TCM Security, that teach network pentesting
skills. However, one challenge that both of these, and even the more widely
known Offensive Security Certified Professional (OSCP), lack is
conducting a pentest against a large scope.
It makes perfect sense why most certification exams are conducted in
relatively small environments; they are meant to be completed in only a
couple of days and having an entire /8 subnet for a lab environment would
be exorbitantly expensive and impractical. While the skills needed for
pentesting a /24 and a /8 are fundamentally the same, the way that the testing
has to be conducted and the hosts prioritized for analysis takes meticulous
planning. It is simply impossible to spend the same amount of time on each
host in a /16 as you would in a /28.

Don’t worry if the CIDR notation of /24, /16, and /8 subnets is
confusing, we will cover what that means and why it is important to
understand in this chapter.

While the majority of this book focuses on hands-on practice in the lab
environment, out of necessity, this chapter is inherently more theory-
focused. We will cover the fundamentals of subnets and VLANs as they
relate to enterprise environments, and then explore techniques for
conducting reconnaissance and enumeration on them. While the individual
scans and flags we will discuss will largely be a review (such as a Ping
Scan), the strategies for modifying and amplifying those scans for greater
efficiency will introduce many new concepts.

Structure
In this chapter, we will discuss the following topics:

Working with Large Networks
Black Box Subnet Discovery Techniques and Mass Scanning
Optimizing Scans for Speed
Case Study: Real-World Account of Pentesting a Very Large
Environment
Challenge: Optimizing a Custom Scan for Speed

Working with Large Networks
To understand how to work effectively with a large enterprise network, we
must first understand the fundamentals of subnetting. Subnetting is
essentially the process of subdividing an existing network into smaller
individual subnets. There are several reasons to do this, such as the logical
and secure organization of different types of equipment (for example,
workstations and servers should not be on the same subnet), and the
implementation of additional security controls, such as firewall rules
restricting access to certain subnets. Subnets can also be used to distinguish
networks belonging to different offices within a large organization.
For this book, we will focus less on the intricacies of network architecture
and the plethora of blue-team defensive measures that can be implemented,
and instead, we will focus on how these types of networks relate to you as a
penetration tester. To this end, it is essential to understand the concept of
Classless Inter-Domain Routing (CIDR) notation. CIDR notation is a way
to depict an IP address range with its associated subnet mask, which was
first introduced by the Internet Engineering Task Force in the early 1990s.
This is done by using the “/”, which in this context is simply called a slash,
followed by the subnet mask. For example, the IP range of 10.10.10.0 –
10.10.10.255 would be depicted as 10.10.10.0/24. Since each octet in an
IPv4 IP address can have a range between 0 and 255, the “0/24” indicates
that the final octet can have any value between 0 and 255. As the /#
decreases, the total number of possible IP addresses increases exponentially.
While you can subnet all the way down to a /31 network, which is only 1 IP
address, by far, the most commonly seen are /24, /16, and /8.

Subnet IP Range Total Number of Possible IPs

10.10.10.0/24 10.10.10.0 - 255 256

10.10.0.0/16 10.10.0.0 -
10.10.255.255

65,536

10.0.0.0/8 10.0.0.0 -
10.255.255.255

16,777,216

Table 5.1: Subnet breakdown by IP address

You can immediately see that the difference between these subnet sizes is
enormous. The good news is that just because a client provides you with a
/16 subnet in the scope of your pentest does not mean they have 65 thousand
devices. The vast majority of the possible /24 subnets within that /16 will
likely be empty. The challenge becomes, how do you figure out where the
actual endpoints are in that large range? Certainly, you cannot perform a
stealthy port scan of the top 1,000 ports on 65 thousand individual IP
addresses; if you tried, the whole engagement would likely be over before
the scan finishes! Remember, penetration testers are time-bound in ways that
real hackers are not. This inherent limitation necessitates us to be very
strategic in how we map the environment.
Different clients will provide different levels of information when defining
the scope. In some instances, you will get a very well-defined and labeled
spreadsheet of subnets (and/or VLANs) that are organized. In other cases,
you may be provided with just a single (or small number of) larger subnet.
For example, a client could provide you with the following neat and
organized table, or just “10.10.0.0/16”:

Office Network Purpose

New York 10.10.11.0/24 Workstations

New York 10.10.12.0/24 VOIP

New York 10.10.13.0/24 Servers

Austin 10.10.21.0/24 Workstations

Austin 10.10.22.0/24 VOIP

Austin 10.10.23.0/24 Servers

San Francisco 10.10.31.0/24 Workstations

San Francisco 10.10.32.0/24 VOIP

San Francisco 10.10.33.0/24 Servers

Table 5.2: Ideal scope chart

In this simplistic example, a /16 would be valid as those /24 subnets are
certainly subdivided from the 10.10.0.0/16 subnet; but in reality, only 2295
IP address spaces are being utilized compared to the 65,536 technically
possible.
It is much faster and easier when the client simply provides the breakdown,
as shown in Table 5.2. As a penetration tester, you can then focus on digging
as deep as possible into each one of those subnets, knowing that nothing in
the scope will be missed entirely. However, every client is different, and
occasionally they will want the penetration test to be conducted from a
purely black box perspective, where you do not receive any (or very
minimal) information about their internal network and have to figure it out
on your own. In such cases, one of the very first things you will want to do is
start mapping the subnets out into a table or list (similar to Table 5.2), so that
you can determine which /24 subnets need to be prioritized.

Black Box Subnet Discovery Techniques and Mass
Scanning
We have already established that trying to run a basic Nmap scan, even a
relatively quick one, on an entire /16 or /8 subnet would take so long that it
is highly impractical. First, you need to determine which /24s within those
larger subnets have endpoints within them, and one of the easiest ways to do
this is to perform a ping sweep of only the gateways. While the gateway can
technically be assigned any IP address on a subnet, it is almost always either
the .1 or .254 (as in 10.10.10.1 or 10.10.10.254). Instead of performing a
ping scan of an entire /16 with Nmap, we can strategically scan the entire
range of the third octet while specifying only the .1 or .254 of the fourth
octet:
Nmap -sn 10.10.0-255.1, 10.10.0-255.254

This command will perform a ping scan of all the likely gateways within a
/16. Instead of scanning 65 thousand IPs to get the list, only 510 are
necessary. This reduces the scan time dramatically, essentially reducing the
specified targets from a /16 to the equivalent of 2 × /24s. These will output
to two different text files, showing which gateways responded to the ICMP

ping. You would then take the IP addresses that responded to the ping sweep
and treat them as individual /24s, which need to be analyzed further.

 Many users do not realize that Nmap can scan subnets written in
both CIDR notation (for example, 10.10.10.0/24) or as octet ranges, as
shown earlier. Not to mention that different ranges can be specified in
the same scan simply by comma separating them.

One minor inconvenience is that the output of the -sn scan is not easily
copied and pasted in a way that provides you with one clean list of IP
addresses:

Figure 5.1: Demonstrating the extra characters that return from a ping scan

Conveniently if you are using Linux, you can pipe together a series of
additional commands to turn off name resolution (-n), specify a greppable
output (-oG -), and then filter out the extra information:
Nmap -n -sn 10.10.0-255.1, 10.10.0-255.254 -oG - | awk

'/Up$/{print $2}' | > Ping_Sweep.txt

Figure 5.2: Demonstrating the filtered response

These examples were given for a /16, but keep in mind that the same
technique can be used for a /8 as well by adding a range to the second and
third octets (that is, 10.0-255.0-255.1).
Now that you have a set of IPs corresponding to gateways that responded to
an ICMP ping, you have a couple of options. You could either conduct
another ping scan of all the corresponding alive subnets and print out a file
of live targets, which will then become your base target list, or you can scan

for a few common ports individually to determine the most interesting
subnets. Your choice here may depend on the sheer amount of
individuals/24s you are working with, but generally, the former is optimal.
Using the results of your ping sweep, change the final octet on each line to
“0/24”, and then simply repeat the previous processes by substituting the IP
ranges for the .txt file:
Nmap -n -sn -iL Ping_Sweep.txt -oG - | awk '/Up$/{print $2}' |

> targets.txt

Now you have a list of the endpoints that are alive and reachable. If this is a
reasonably sized list (a few hundred), then you can treat it in the same way
as described in Chapter 4: Identifying Vulnerabilities Through
Reconnaissance and Enumeration. However, in a large enterprise, this is
likely to still be several thousand endpoints. Several thousand is much better
than 16 million (assuming it was a /8 to begin with), but still requires
additional filtering to be feasible during a typical engagement.
The next step often involves scanning for individual ports one or two at a
time to identify systems that may present quick wins with exploitable
protocols. Then, progressively transition into scanning for common ports,
which will help you identify the purpose of the specific /24s.
Start by scanning for easily exploitable systems for some quick wins, such as
Cisco Smart Install, Java RMI, and IPMIv2. Picking up an instance of Cisco
Smart Install early in a penetration test can be an absolute game-changer, as
the context within the network contained in the device's configuration file is
invaluable:
Nmap -pn -T4 -iL targets.txt -p 4786 --open -oX

smart_install.xml

Nmap -pn -T4 -iL targets.txt -p 1099 --open -oX JavaRMI.xml

Nmap -pn -sU -T4 -iL targets.txt -p 623 --open -oX IPMI.xml

There are a couple of things to point out in the preceding commands,
specifically the use of the -pn and -T4 flags. We are disabling host discovery
(-pn) because we have already established that the hosts in targets.txt are
alive; thus, sending them additional probes to determine that is a waste of
time. The -T4 flag specifies a fast speed of the scan itself. Combined, these
two flags will cut down significantly on the time it takes for results to come
back, which is still a very important consideration even after reducing the
scope from where it started.

 NOTE: It’s very important not to forget the --open flag when doing
individual port scans, especially for something very specific as shown
above. Forgetting this option will result in thousands of results
indicating that the port is closed, which will take ages to scroll
through.

While there are several other vulnerable ports you could search for at this
stage, such as MQTT, those are typically better served for later in the
engagement, as the impact and potential for a cascading compromise are less
likely than with things like Cisco Smart Install.
Continuing with the process, the next step would be to identify which
subnets are utilized primarily for workstation and server infrastructure.
Considering the vast majority of organizations utilize Windows devices and
servers to some degree, searching for common SMB ports at this stage tends
to work well:
Nmap -pn -T4 -iL targets.txt -p 139,445 --open -oX

SMB_results.xml

Finally, searching for things like web servers and aggregating a list of these
devices, which can be automatically enumerated with a screenshot tool such
as Eyewitness, is very helpful. This step will take much longer than the
previous ones simply because it is scanning four different ports instead of
only 1 or 2, which is why collecting the other results first is recommended.
You can parse through and analyze the previously collected results while
waiting for this scan to finish:
Nmap -pn -T4 -iL targets.txt -p 80,443,8080,8443 --open -oX

Web_servers.xml

With all this data, you will be able to start piecing together what subnets are
used for what types of systems and create your own system for organizing
those subnets. Once you have the network generally mapped and understood,
then your process of mapping the internal attack surface can begin in
earnest.

Optimizing Scans for Speed
Even with the scope reduced as much as reasonably possible, in large
enterprise networks, there is still the need to optimize scans for speed to get

the results quickly enough to comprehensively analyze the endpoints. In
Chapter 7: Advanced Obfuscation and Firewall Evasion Techniques, we will
look at how to make scans as slow and subtle as possible; here, we need to
do the opposite. For this, six additional flags need to be deeply understood:

1. –-min-hostgroup: Nmap scans numerous hosts simultaneously by
grouping targets together; with few exceptions, a larger grouping leads
to faster overall scans. The drawback here is that no results will be
returned until the entirety of the host group has been completed. In
most cases, this is not a concern unless you are trying to analyze
endpoints that come back in real-time while the scan continues to run.
The most common settings here are either --min-hostgroup 256,
which dictates that networks are scanned in /24 sized groups, or
dramatically increasing the size up to --min-hostgroup 2048.

2. --initial-rtt-timeout and --max-rtt-timeout: Nmap has a
complex and variable algorithm for determining the time in which it
will await a probe response. The variance is based on several factors,
including network latency and in particularly slow networks, this can
naturally increase significantly. Specifying a low initial and maximum
rtt timeout can cut scan times by a substantial margin. However, there
are drawbacks; if you specify settings that are too low, the increase in
probes timing out will increase the scan time.
The time specified is measured in milliseconds, so the full flags would
look like --initial-rtt-timeout 300ms and –-max-rtt-timeout
1000ms. As a general rule of thumb, keep your rtt-timeout range
between 250 and 1000 ms for the best results.

 Specifying a moderately aggressive rtt-timeout value works
phenomenally well for large scale ping sweeps as long as the
timeout isn’t so low that the network latency is causing the
packets to timeout.

3. --max-retries: The default behavior of Nmap is to retry a port scan
10 times if it does not receive a response on that port’s status from the
host. This is because a lack of response could indicate that the port is
being filtered, or simply that the response was lost; so, in an effort of
accuracy, Nmap tries 10 times. In most cases, Nmap will not need 10
tries to get the status of a port. In fact, most responses are returned in

just one or two tries. However, on networks with a lot of latency or
hosts that are configured with rate limiting, it can be beneficial to
reduce the maximum number of retries down to 5 or 3. While there is
an inherent risk of losing some information, it is preferable to allow the
host timeout to expire and lose all information.
This is a really useful flag that can be used for both increasing the
speed of scans and also adding a degree of obfuscation. While, in this
context, we are discussing its capacity to increase the scan speed; in
Chapter 7: Advanced Obfuscation and Firewall Evasion Techniques,
we will explore the same --max-retries flag from a completely
different perspective.

4. --host-timeout: Sometimes individual hosts take an extraordinarily
long time to scan. This can be caused by a number of factors such as
rate limiting or firewalls, and in extreme cases, 1% of the hosts on your
target list can take more than 20% of the time of the entire scan. To
mitigate this issue, you can specify a host timeout value in minutes,
which is the maximum amount of time Nmap will attempt to gather all
information before moving on to another host. If Nmap hits the host
timeout limit and moves on, you will lose all information on that host.
For this reason, do not set an unreasonably low –-host-timeout, as
you will likely miss out on a significant amount of important
information. This command is most effective when you are running a
scan that will take a very long time (perhaps overnight) and you want
to make sure that what should take 8 hours to run doesn’t get delayed
to 12 hours because of a handful of hosts.

5. --defeat-rst-ratelimit: Many hosts will reduce the number of
ICMP error messages (RST packets) that are sent back when
unreachable ports are queried. The implemented rate limits on sending
the packets back to Nmap will impact the adaptive timing nature of
Nmap and can significantly slow down the scan as a result. Specifying
the --defeat-rst-ratelimit will trade accuracy for speed by ignoring
the rate limits entirely, which can result in Nmap not waiting long
enough for the results to be returned.

6. --defeat-icmp-ratelimit: Very similar to --defeat-rst-ratelimit,
the –-defeat-icmp-ratelimit flag is used to increase the speed of

UDP scans specifically. Keep in mind that the same drawbacks to
accuracy apply.

We have previously discussed the use of the timing flag (-T1, T2, T3, T4,
T5) and established that T3 is Nmap’s default and T5 is the maximum speed.
Now that you understand the performance flags and their function, it is
important to dive deeper into the exact difference between T4 and T5.
As per Nmap’s official documentation, T4 leverages the following values:

--max-rtt-timeout 1250ms

--min-rtt-timeout 100ms

--initial-rtt-timeout 500ms

--max-retries 6

Sets the TCP scan delay to 10ms

While the T5 flag has the following equivalency:

--max-rtt-timeout 300ms

--min-rtt-timeout 50ms

--initial-rtt-timeout 250ms

--max-retries 2

--host-timeout 15m

--script-timeout 10m

Sets the TCP scan delay to 5ms

You can see that the difference between T4 and T5 is quite significant. So
much so that the breakneck speed comes with a significant drawback in
accuracy. For this reason, in most cases, using T4 or specifying your
performance parameters with the previous flags is optimal. Going fast and
collecting data is important but ensuring that the data is accurate is
paramount.
Two other flags that are sometimes mentioned when discussing performance
are --min-rate and --max-rate. These are used to manually specify the rate
at which packets are sent by Nmap and can be used to either speed up or
slow down scans. While this does work well for slowing scans down to
avoid detection, it is not the best way to speed them up. Increasing the speed
in this way tends to lead to a tremendous decrease in accuracy due to

dropped packets. Nmap has an adaptive retransmission algorithm that
constantly adjust packet transmission rates based on network latency, and
increasing the transmission rate above what the network can handle is
detrimental to the integrity of the scan. While there are ways to mitigate this,
such as limiting the number of retries per host, it is generally recommended
to avoid these flags and increase performance in other ways.

Case Study: Real-World Account of Pentesting a
Very Large Environment
When starting a new internal pentest, there are a few initial steps that we
almost always do in the same order. We first passively analyze the network
traffic on the local subnet with Wireshark to determine if there are any
protocols that may be susceptible to poisoning (NBNS, LLMNR). This layer
two (of the OSI Model) analysis will often also allow us to determine what
type of network infrastructure is in the environment, for example, the
presence of Cisco Discovery Protocol (CDP). Next, we typically use a
passive ARP scanner such as NetDiscover to determine what type of devices
are on the subnet that the penetration testing appliance is on. We follow this
by switching from passively gathering information to actively scanning on
the local subnet first, then transition into discovery and analysis of the rest of
the provided scope.

 In most cases, it is best for the client to put the penetration testing
device on the same subnet and VLAN as normal user workstations as
opposed to something more specific such as a management or ancillary
subnet. This better emulates a scenario in which a malicious actor had
breached the external perimeter via a compromised user. However,
clients do not always follow this recommendation.

One internal network pentesting engagement was particularly memorable for
two main reasons. The client provided the scope as five separate /16 subnets,
and the subnet that the pentesting appliance was placed on (my starting
point) had only one other device on it, which was a printer. As a result, it
was necessary to begin discovering other subnets that had active clients on
them as quickly as possible.

First, five different target files were created, each one with one of the /16
subnets written in a range that would scan only the gateways (subnet1.txt,
subnet2.txt … and so on). A simple spreadsheet was also created to help
with the organization of which /24s were active within each of the /16s.
Taking the extra time to make sure the data could be organized effectively
would pay off substantially.
It was then time to start scanning the first /16, and the technique chosen was
a ping scan optimized for speed over all else:
Nmap -sn -n --defeat-rst-ratelimit --max-rtt-timeout 250ms --

max-retries 2 --host-timeout 2m --min-hostgroup 2048 -iL

subnet1.txt -oG - | awk '/Up$/{print $2}' | > Ping_Sweep1.txt

This scan proved to be a mistake, taking nearly two days of frustration
before realizing it was far too aggressive. The settings were tuned higher
than even a -T5 scan, especially with only a 2-minute host timeout
specification. As a result, only a small handful of successful responses were
received on each subnet. The network latency caused most of the packets to
be lost, but because some did return successfully, it wasn’t immediately
apparent that there was an error.
The parameters were substantially reduced by simply replacing most of the
custom fields with -T4 and tried again on the same subnets:
Nmap -sn -n --defeat-rst-ratelimit -T4 -iL subnet1.txt -oG - |

awk '/Up$/{print $2}' | > Ping_Sweep1.txt

This time, many more gateways responded; more than 30 subnets were
identified in the first /16, as opposed to only 3 or 4 the first time around. As
a test case to determine the best speed for the other 4 /16s, this scan was run
a third time with the -T5 setting. Again, it returned only a small handful of
results, similar to the first try.
In this case, T4 worked well in the client’s environment, but anything more
aggressive resulted in a dramatic loss of accuracy and would compromise
the integrity and thoroughness of the entire pentest. This taught a valuable
lesson that the same optimized scans cannot be used during every pentest;
each environment is different and needs to be treated differently. This is why
it is so important to understand how the tools work and, whenever possible,
avoid relying on checklist-style operations.

Challenge: Optimizing a Custom Scan for Speed
While there is not a good (and legal) way to practice scanning huge subnets
within your lab environment, you can experiment with different scan profiles
and options and take note of the time that it takes for a scan to return.
First, run a simple service scan on all the targets within your lab
environment without specifying any performance-related flags. Take note of
the accuracy of the information and the time it took to return results. Next,
start adding and experimenting with different combinations of the
performance flags discussed in this chapter to determine how fast you can
scan in your environment before the accuracy of results is impacted.

NOTE: Use the -d (debug) flag to see exactly what the scan is doing.

Once you have a scan profile that is working well, experiment with adding
different options for additional functionality, such as adding an operating
system in addition to service scanning, adding verbosity, including NSE
scripts, and so on. Note down the scan options you use and the time they
take to return.
This exercise will help you understand the impact of adding and removing
options on the overall scan length: Does including verbosity slow the scan
down by 5%? Or is it more like 50%? How much does skipping host
discovery increase the speed?

Conclusion
Very large networks certainly add a degree of complexity to a penetration
test, but it is not an insurmountable challenge. With a well-thought-out
playbook, large scopes can be systematically reduced in size and complexity
and rebuilt with the hosts that are reachable. While this requires some pre-
planning, it can be sequenced and turned into a checklist of sorts that can be
replicated in most environments.
Choosing which flags and what values to assign to optimize performance, on
the other hand, is a skill that takes a lot of practice. Making the wrong
selection can result in scans taking so long to return information that the rest
of the penetration test, beyond mapping the attack surface, is rushed.
Conversely, wrong selections can also result in incomplete datasets that may
provide an inaccurate picture of the attack surface. As a result, performance

optimization efforts with Nmap straddle the line between an intermediate
and advanced level of skill. Additionally, scanning extremely aggressively
can impact the availability of the network, which would undoubtedly violate
the rules of engagement.
As with most penetration testing engagements, the biggest challenge is time.
Malicious actors who have gained access to an enterprise network can spend
many weeks or even months quietly aggregating information before
identifying their path of attack. Pentesters, on the other hand, have only a
few weeks at most, and that includes the time it takes to furnish a detailed
report outlining what was found. Beyond that, it is fairly uncommon for a
pentester to work on only one engagement at a time, further reducing the
amount of time available. With these considerations, a pentester must be able
to operate in a very efficient manner, and being stuck waiting for hours for
scan results to return is certainly not optimally efficient.
In the next chapter, we will explore two additional tools that integrate
extremely well with Nmap, especially in larger-scoped environments. These
tools, Zenmap and Legion, provide a graphical wrapper on top of Nmap,
which can help pentesters visualize and sort the data returned by Nmap. The
ability to ingest scan results and provide a more user-friendly way of
interacting with the data is critical, especially as those datasets get
progressively larger in enterprise environments. Beyond that visualization,
we will also see how Legion can be leveraged to trigger additional tools and
tests based on the results from those Nmap scans in a semi-autonomous
manner.

Points to Remember
One of the biggest challenges with large networks is that there are so
few opportunities to practice specific skills outside of a live enterprise
penetration test. This makes planning of truly understanding what your
tools are doing essential.
Understanding subnetting is a fundamental prerequisite for penetration
testing. CIDR notation is ubiquitous in the industry and understanding
the differences between the level of effort in pentest 5 × /24s versus 2 ×
/16s is essential.

Even with the scope reduced as much as reasonably possible, there is
still a need to optimize scans for speed in large enterprise networks to
get the results quickly enough for comprehensive endpoints analysis.
Optimizing the performance of Nmap scans requires an intermediate to
advanced level of skill, and goes beyond simply setting the timing
value.
Increasing the speed too much can result in a significant loss of
accuracy and potentially impact the availability of the network,
violating the rules of engagement.

Multiple Choice Questions
1. Which of the following subnets contain the most possible IP

addresses?

a. /32
b. /28
c. /26
d. /20

2. Which of the following options would you use to skip host
discovery?

a. -sn
b. -pn
c. -n
d. -nn

3. Specifying -T5 sets a --host-timeout value of what?

a. 15m
b. 10m
c. 5m
d. 2m

4. Which of the following is not a drawback of overly aggressive
scanning?

a. Loss of accuracy
b. Potential network availability disruption
c. Potential host availability disruption
d. Rapid results

5. By default, how many times will Nmap retry a target port without
response before moving on?

a. 2
b. 5
c. 10
d. 15

Answers
1. d
2. b
3. a
4. d
5. c

CHAPTER 6
Leveraging Zenmap and Legion

Introduction
Over the past several chapters we have delved deep into the fundamentals of
Nmap, covering basic scanning and vulnerability analysis techniques, and
explored intermediate-level techniques surrounding timing and performance
optimizations. This chapter explores two main options for adding a
graphical user interface (GUI) on top of Nmap to provide additional
context and ease of use. By exploring both Zenmap as well as Legion, we
will discuss two options that work well for both Windows and Linux
operating systems and demonstrate how each can be used to improve
productivity and streamline analysis.
While not technically exclusive to operating system, Zenmap is most often
utilized on Windows or macOS systems due to its ease of installation and
smooth functionality. On the other hand, Legion is typically associated with
Kali Linux. In fact, Legion comes pre-installed on modern versions of Kali,
which conveniently makes it functional out of the box!
Nmap on its own is a powerful and highly tailorable tool, but as the size and
complexity of the engagements increase, the need to parse the data more
efficiently than scrolling in the command line becomes critical. This chapter
is all about leveraging these open-source tools to enhance your capability to
truly understand the attack surface, strategize, and execute the next steps of
the penetration test in the most efficient way possible. By the end of this
chapter, you can confidently employ Zenmap and Legion to enhance your
penetration testing skills.

Structure
In this chapter, we will discuss the following topics:

Leveraging Zenmap for Analysis and Scanning
Leveraging Legion for Analysis and Scanning

Modifying Legion Configuration Files
Challenge: Creating a Custom Legion Configuration

Leveraging Zenmap for Analysis and Scanning
For quite some time now, Zenmap has been bundled in the installation
executables for Windows and macOS provided on the official Nmap
webpage. Essentially meaning, if you have installed Nmap on a Windows
system, Zenmap has likely already been configured. If not, simply navigate
to https://nmap.org/download#windows and download the latest stable
release:

Figure 6.1: Identifying the Zenmap Installer

After following the installation wizard, Zenmap will be available and
provide a simple, yet sleek interface from which you can either launch scans
directly in the command box or select pre-set profiles to use against a given
target:

Figure 6.2: Demonstrating the Zenmap GUI

By default, there are 10 default scan profiles that can be used, which are:

https://nmap.org/download#windows

Intense Scan
Intense Scan plus UDP
Intense Scan, all TCP ports
Intense Scan, no ping
Ping Scan
Quick Scan
Quick Scan Plus
Quick traceroute
Regular scan
Slow comprehensive Scan

Conveniently, there is no mystery as to what each of these scan profiles
does, as the specific Nmap flags are printed in the command box when they
are selected, as seen in Figure 6.2 for the intense scan.
You can also edit or create entirely new profiles with the Profile tab and save
your own custom commands. This is extremely helpful for saving your
favorite scan stings to use repeatedly on different targets or engagements.
This feature is extremely user-friendly as it provides simple checkboxes to
select different features of the scan related to scan functionality, timing
options, and even NSE scripts:

Figure 6.3: Demonstrating modifying scan profiles in Zenmap

Once you have your scan syntax set, either with a profile or by putting it in
manually, you can launch your scan directly from the GUI by inputting a
target and selecting scan. This will not only output the exact same
information as the command line version of Nmap but also provide
additional sorting options, allowing you to sort the information by Hosts or
Services:

Figure 6.4: Demonstrating the Legion interface

While you can scan directly from Zenmap, another excellent feature is the
ability to import pre-existing Nmap scan files (in .xml format) that you have
saved into it as well. To demonstrate this, we can run a scan of both
scanme.nmap.org and pentest-ground.com, then export those results into a
.xml file:
Nmap -sV scanme.nmap.org, pentest-ground.com txt -oX

results.xml

Under the Scan tab in Zenmap, you can now select Open Scan and browse to
the results.xml file. Once opened, you will see both targets now listed with
their corresponding ports and services. By selecting the Service tab and
choosing HTTP, you will even see a list of all of the HTTP services running
on the various ports across both endpoints:

Figure 6.5: Demonstrating numerous open ports organized by Legion

The value here is clear: you can quickly and easily parse through and
organize different endpoints in your scope by the ports or services that are
open. In a single clean view, you can understand some surface information
about their versioning.
Beyond simply sorting by the listed services, Zenmap also has a few
additional handy options under the Tools tab, which allow you to add
custom filters to the dataset and even compare and contrast multiple scan
files. The scan comparison feature is particularly helpful when trying to
troubleshoot issues that may be impacting the validity of testing. For
example, if you are running a scan with particularly slow options and getting
only a handful of results back, compared to the same targets returning many
results under a different scan profile, it would be indicative of hitting a host
timeout rating and losing the data. Comparing results side by side like this
can be very helpful in such situations.
As we discussed in Chapter 5: Mapping a Large Environment, being able to
quickly understand the attack surface and organize the deluge of data that is
returned in each stage of scanning is critical to successful network
penetration testing. Utilizing Zenmap to speed up this process by organizing
the data is not only wise but in many cases simply indispensable.

Leveraging Legion for Analysis and Scanning
Legion at its core is a highly configurable semi-automated penetration
testing framework, which aids network penetration testers in reconnaissance,
attack surface mapping, and even exploitation of systems. Originally a fork
of SECFORCE’s tool Sparta, Legion is maintained by Gotham Security and
is regularly updated in current releases of Kali Linux.

Legion has many capabilities similar to Zenmap; you can launch scans from
it, import Nmap scans into it, and modify how the scans operate. However,
what sets the two apart is the ability to couple the results of the Nmap scan
with follow-up actions. Consider the convenience of identifying a series of
web servers and then automatically capturing screenshots of what the HTTP
and HTTPS ports resolve to. Then, you can launch additional tools such as
Nikto for web vulnerability scanning on the most interesting of them with
just another click.
Legion incorporates dozens of additional open-source tools and more than
one hundred scripts into a central suite that naturally integrates with and
enhances Nmap. While Nmap is certainly at the core of Legion in terms of
ingesting or collecting the initial dataset, being able to take additional action
on the endpoints seamlessly is what makes Legion a differentiator.
To begin, start Legion in Kali Linux with the following command:
Sudo Legion

This will open the GUI and provide you with a clean interface with which
you can either configure or launch your own scans with some pre-configured
options; or similar to Zenmap, you can import existing Nmap scan results in
.xml format. First, we will look at how to set up and launch a scan within
Legion:

Figure 6.6: Demonstrating initiating a new scan with Legion

From here, you have several options to tune your scan. First, the timing and
performance section is an exact simulacrum of the T0-T5 speed rating
scheme within Nmap. Selecting normal, for example, will result in a T3
setting. Next, under port scan options, several options are available. By
default, fragment is selected, which is the -f flag, along with obfuscated,
which is --data-length 5 –-max-retries 2 –-randomize-hosts. Next
are the host discovery options, which default to disable, corresponding to -
Pn. So, by default, recent versions of Legion are obfuscated by design. You
can also add additional arguments (Nmap flags) to the scan profile before
launching the scan.
Once initiated, you will see each stage of the scan running within the Legion
GUI, and the results will be returned in real-time:

Figure 6.7: Demonstrating a custom scan running with Legion

Alternatively, you can also upload a previously completed Nmap scan into
Legion by selecting “file” and then “import Nmap scan”:

Figure 6.8: Demonstrating a host organized by services in Legion

From here, you can sort the results by either hosts or services or launch a
litany of additional tools that can aid in the penetration testing process. To
initiate additional tools, simply right-click the host or port in question for a
curated list of relevant tools. For example, sorting by services and selecting
HTTP for pentest-ground.com, then right-clicking, provides the following
options:

Figure 6.9: Demonstrating options following an open HTTP port in Legion

Dozens of options are available, ranging from taking a screenshot to specific
CVE-based NSE scripts, or launching tools such as Nikto or WPscan. The
ability of Legion to coordinate this degree of additional analysis within one
consolidated platform is what sets it apart from the crowd of other available
tools.

Modifying the Legion Configuration File
One of the things that makes Legion so uniquely powerful is the extremely
high degree of customization that you can apply to how it operates. By
modifying the configuration of the tool, you can specify exactly what occurs
at each stage of the scanning process, as well as which follow-up tools to
trigger.
First, open an elevated command prompt in Kali and navigate to and
open:/root/.local/share/legion/legion.conf:
sudo -s

nano /root/.local/share/legion/legion.conf

This file defines the actions and parameters that Legion abides by when
conducting the scans, including lists of default passwords to attempt, host
actions, port actions, and much more. However, what we are going to focus
on are the three sections at the bottom of the file: SchedulerSettings,
StagedNmapSe4ttings, and ToolSettings:

Figure 6.10: Viewing the Legion.conf file

The SchedulerSettings define what will happen automatically when
different conditions are met. For example, the top line in the preceding
figure indicates that in a scenario when the File Transfer Protocol (FTP) is
detected, Legion will attempt to authenticate with default credentials. Other
default actions include attempting to enumerate SMTP and SNMP
information and taking screenshots of identified web pages.
During most engagements, but especially something nuanced like red
teaming, blinding attempting default login attempts at scale across tons of
systems will likely alert the client’s blue team of your activity. If remaining
undetected, or at least more subtle, is a concern, removing some of the
default scheduler settings can help define the exact actions that are intended.
In the event that stealth is a concern, removing all options except for taking
screenshots of the web pages would be beneficial:

Figure 6.11: Identifying the SchedulerSettings and StangedNmapSettings of Legion

Next, you can adjust the StagedNmapSettings to define what occurs at each
stage of the Legion scan. This can be defining specific ports or even specific
scripts that you want to occur. As scan results populate in the Nmap GUI in
real-time as stages progress, this can be set up strategically to trickle in
interesting information to analyze while the greater scan is still occurring.
In the preceding image, we can see that stage 1 is focused primarily on web
server ports, which are identified and then automatically captured by a
screenshot, allowing you to quickly parse through and look at what is being
served on each endpoint. The second stage adds a few additional ports,
which can be insightful, such as SMTP (port 25), various ports associated
with SMB, and others. Then, in stage 3, the vulners.nse script is run on the
endpoints, followed by three more stages of progressively more robust
scanning, culminating in stage 6, which includes over thirty thousand ports.
While the default scan profile may provide a lot of information, such
intensive scanning may also be overkill or simply too noisy for your
particular situation. In these instances, modifying the actions at each stage
can be extremely helpful.
By default, there are three different custom configurations packaged with
Legion on GitHub, each tailored differently for use with a small, medium, or
large scope and can be viewed at:
https://github.com/GoVanguard/legion/tree/master/custom_configs.
Comparing the three, we can see insightful examples of different approaches
to the use of Legion scanning based on different situations.

Small Scope:
[StagedNmapSettings]

https://github.com/GoVanguard/legion/tree/master/custom_configs

stage1-ports="T:80,88,443,4443,8080,8081,8082"

stage2-

ports="T:25,135,137,139,445,1433,3306,5432,U:137,161,162,1434"

stage3-ports="T:23,21,22,110,111,2049,3389,8080,U:500,5060"

stage4-ports="T:1-20,24,26-79,81-109,112-134,136,138, 140-

442,444,446-1432,1434-2048,2050-3305,3307-3388,3390-5431,5433-

8079,8081-65535"

stage5-ports="U:1-65535"

stage6-ports="Vulners,CVE"

With a small scope, you, as a penetration tester, have the luxury of being
able to thoroughly analyze each and every system and make sure that no
stone goes unturned. This scan setting will begin, as the default does, with
web server ports, but eventually progress to all ports for both TCP and UDP
and strategically run the vulners.nse script at the end once all port and
service information has been obtained. While this profile is extremely
thorough, it is very noisy and extremely slow to finish on anything more
than a small handful of hosts.

Medium Scope:
[StagedNmapSettings]

stage1-ports="T:23,25,587,80,8080,443,8443,

8081,9443,3389,1099,4786,3306,5432,1521"

stage2-ports="T:135,137,139,445,1433,88"

stage3-ports="U:53,110,161,500, 623"

stage4-ports="T:1-10000"

stage5-ports="Vulners,CVE"

stage6-ports="T:80"

In contrast to the small-scoped scan settings, the medium scope reduces the
total number of scanned ports to just over 10,000 TCP and a few UDP.
Reducing the number of ports to scan by more than 50,000 substantially
reduces the duration of the scan; although scanning that many ports will still
not be quick. This scope is reasonable for analyzing a few /24 subnets at a
time, especially if the rules of engagement allow for scans to run overnight.

Large Scope
[StagedNmapSettings]

stage1-ports="T:23,25,587,80,8080,443,8443,

8081,9443,3389,1099,4786,3306,5432,1521"

stage2-ports="T:135,137,139,445,1433,88"

stage3-ports="U:53,110,161,500"

stage4-ports="Vulners,CVE"

stage5-ports="T:80"

stage6-ports="T:80"

This large-scoped scan is much different; considering how many endpoints
must be checked, this scan focuses only on the most insightful (or most
exploitable) ports. In contrast to the previous two, which focused largely on
quantity, this scan profile is far more pinpointed, looking for specific
services, which would then warrant deeper investigation.
Finally, the ToolSettings option at the very bottom of legion.conf defines the
paths for a few key tools that Legion relies on, such as Nmap, and also
provides the opportunity to input a Shodan API key. For those unfamiliar,
https://Shodan.io is an extremely useful tool for open-source intelligence
gathering. Similar to how search engines like Google and Bing constantly
index web pages across the internet, Shodan indexes internet-connected
devices and catalogs information about publicly exposed ports and services.
While Shodan can be used in the web interface for free, the API key (which
is very inexpensive) allows for programmatic usage on a larger scale and is a
great investment.
Once you have made the changes you wish to legion.conf, save the file, and
restart Legion from the command line. You can then verify that the changes
have been honored by selecting Help and Config, which will show you the
currently implemented configuration. In the following example, we can see
that all except for the screenshot have been removed:

https://shodan.io/

Figure 6.12: Verifying the changed configuration in Legion

Challenge: Creating a Custom Legion
Configuration and Zenmap Profile
By now, you have undoubtedly started to develop your own set of tactics and
techniques when employing Nmap, either with highly specific flags to
control the functionality, a sequence of different scans for different phases of
the penetration test, or just some quality-of-life options. Take the opportunity
to create some custom Legion configurations and Zenmap scan profiles that
match your specific use cases. Not only will you have these custom settings
for your own use in the future, but they are also a great opportunity to
contribute to the cybersecurity community by posting on a blog or GitHub.

Conclusion
Both Zenmap and Legion deserve a place in your penetration testing toolkit.
For network pentesting engagements, especially, the ability to quickly ingest
and understand the attack surface of an individual subnet or a whole scope is
invaluable. While this could certainly be accomplished within the traditional
Nmap command line, the interface provides two key benefits. Firstly, you do
not have to worry about losing data or missing something important when
scrolling through the results in a command prompt. Secondly, and perhaps
even more importantly, the scans can be saved and shared amongst your
penetration testing team, which enhances collaboration and makes technical
review of the findings in your report much more efficient.

While the two tools outlined here are similar, their differences in terms of
operating systems and options to go beyond simple port scanning, such as
Legion triggering actional tools in a semi-automated fashion, make them
distinct. By no means are these the only two tools that natively integrate with
Nmap; in fact, there are dozens more that leverage Nmap in some way and
provide the opportunity to ingest scan results. Some of these include
SpearHead, Defect Dojo, Coda Intelligence, and Attack Forge; however,
each of these are far more complex tools used for more intricate attack
surface monitoring and reporting. Zenmap and Legion have a few key
benefits over others; they are free and open source, can be installed easily,
and are intuitive to use without extensive training.
Many people just starting out in penetration testing fail to see the need for
ingesting Nmap data into a GUI. This is due to the tendency for pentesting
training and certifications to focus on only a small handful of systems
instead of a large, robust, and realistic scope. With only a dozen or fewer
systems to analyze, there is likely no reason to leave the command line.
However, this changes drastically when you have a dozen subnets rather
than a dozen endpoints. In those situations, the time that would be wasted by
not efficiently organizing the results with these additional tools would be a
large impediment to the timeline of the engagement.
In the next chapter, Chapter 7: Advanced Obfuscation and Firewall Evasion
Techniques, we will build on every introductory and intermediate level skill
and technique discussed so far and craft some incredibly intricate and
complex scans designed to remain undetected on the network. These
techniques do inherently have a more niche use than others, as in the
majority of penetration tests, there is not a large emphasis on remaining
undetected. Instead, we will discuss and explore these techniques from the
perspective of purple and red teaming engagements, where your objective is
to bypass security controls and avoid detection.

Points to Remember
Zenmap and Legion are frameworks with which you can launch custom
Nmap scans, open and sort existing Nmap result files, and efficiently
comprehend the attack surface.
Legion also provides the ability to seamlessly trigger additional tools
found in Kali Linux based on the results of the Nmap scanning. This

ability to chain together conditions, tools, and actions provides a highly
flexible semi-autonomous pentesting framework.
The true value of these tools is when dealing with medium or large
scopes where the output in the command line from Nmap would simply
be too verbose and inefficient to fully analyze.
Zenmap is very easy to install on Windows and macOS systems, while
Legion is installed in Kali Linux by default.
Saving organized scan data from Zenmap or Legion allows for
convenient collaboration with the rest of your penetration testing team.

Multiple Choice Questions
1. Which Legion timing option would be most appropriate for a

medium to large size scope?

a. Aggressive
b. Polite
c. Sneaky
d. Insane

2. In Zenmap custom scans that can be preconfigured and saved for
future use are called what?

a. Configs
b. Profiles
c. Presets
d. Quick-Scans

3. True or false: Legion can be configured to launch NSE scripts
automatically?

a. True
b. False

4. For scanning a large environment with Legion, what changes
should you consider making to legion.conf?

a. Adjust the SchedulerSettings to add additional triggered actions

b. Adjust the StagedNmapSettings to reduce the number of ports
scanned

c. Specify reduced Host Timeout within the StagedNmapSettings
d. Remove all SchedulersSettings

5. Which feature exists only in Zenmap and not Legion?

a. Scan results comparison
b. Importing .xml files
c. Sorting results by host or service
d. Adding filters to results

6. Which feature exists only in Legion and not Zenmap?

a. Intuitive interface
b. Ability to save modified files
c. Autonomously triggering additional tools
d. Customized scanning

Answers
1. a
2. b
3. a
4. b
5. a
6. c

CHAPTER 7
Advanced Obfuscation and Firewall

Evasion Techniques

Introduction
Among the most advanced classification of techniques that Nmap excels at
is in the domain of stealth. Nmap can add an impressive degree of
obfuscation to the scanning process, which in turn can make it very
challenging for most endpoint detection and response (EDR), intrusion
detection systems (IDS), and firewalls to identify. However, this is only true
when great care and intricate understanding are taken to manipulate the way
the scan is conducted.
Evading detection and being the hacking version of a ninja is as much a
science of understanding how technology works, as it is an art form in
crafting scans with a precise level of subtlety. This balance is what we will
explore in this chapter, discussing a range of new flags related to evasion,
deception, and obfuscation. We will then take a deeper look at how Nmap
works by default; while this has been lightly discussed in previous chapters,
understanding how to manipulate parameters is essential for IDS and
firewall evasion techniques. Finally, we will explore the common pitfalls
that lead to pentesters being detected and how to avoid those mistakes.

Structure
In this chapter, we will discuss the following topics:

Understanding and Manipulating Default Nmap Scan Parameters
Advanced Flags for Obfuscation
Intrusion Detection System (IDS) and Firewall Evasion
Avoiding Blue Team Detection
Case Study: Purple Teaming with Nmap

Case Study: Red Teaming a Bank
Challenge: Evading Detection in Your Lab Environment
Challenge: Breaking Down Complex Scans

Understanding and Manipulating Default Nmap
Scan Parameters
Letting Nmap scan endpoints in a predictable manner, as expected by
security products, can be detrimental to your hopes of avoiding unwanted
attention. Everything from the speed of the scan (T0 – T5), to the number of
ports scanned, to the order in which hosts are scanned on a subnet, plays a
role in detection.
Nmap supports numerous flags that are seldom used by the majority of
penetration testers. Ironically, when it comes to avoiding detection, the most
often cited flag by cybersecurity training material is -sS, also known as the
Stealth Scan. The stealth scan has been discussed for years, and the concept
behind it is very simple – Nmap does not complete the three-way
handshake. As you will remember from Chapter 1: Introduction to Nmap
and Security Assessments, the three-way handshake begins with an SYN
packet being sent to the target, the target responds with an acknowledgment
(SYN-ACK), and then that acknowledgment is in turn acknowledged back
(ACK). When using a stealth scan, Nmap will still send an SYN packet, but
once an SYN-ACK is received, Nmap then ends the connection with an
RST. By interrupting the three-way handshake, Nmap could still identify if
a port was open, but would not establish a full TCP connection, and, in turn,
this was helpful in avoiding detection in past years.
However, what many pentesters don’t realize is that the -sS flag is obsolete.
It is now (and has been for quite some time) the default behavior of Nmap.
In fact, if you wanted to complete a full three-way handshake, you would
need to supply a different flag altogether. While it may seem convenient
that -sS is one less flag to remember, it’s important to note that because it
has been the default Nmap behavior for so long, security detection products
are now trained to associate this type of behavior with Nmap. This
effectively negates the actual effect a “stealth scan” has on being stealthy.
Another often overlooked default process is the order in which Nmap will
scan subnets. By default, Nmap scans in ascending numerical order. This

means if you were to scan 10.0.0.0/24, the first endpoint that will be
scanned is 10.0.0.0, then 10.0.0.1, then 10.0.0.2, and so on until 10.0.0.255.
Heuristically speaking, seeing a single endpoint systematically scanning
every single IP in a subnet in order is very obviously a malicious port scan
and will likely be identified as such. Detection of this nature is triggered by
the nature of the activity (heuristics). The default behavior of scanning the
top 1000 ports in a known fixed order also contributes to the probability of
heuristic detection.
In contrast to heuristic-based detection, many security products will also
employ signature-based detection to identify the activity of specific known
malicious tools. Nmap packets, by default, have fixed size and time to live
(TTL) values of 40 bytes and 64 seconds, respectively. This means that
unless these values are manipulated, the probability of detection is high
regardless of how obfuscated the activity is.
As a reminder, Nmap also scans at the T3 speed by default, which is quite
fast. Scanning a lot of endpoints very quickly is considered “noisy” on the
network and is counterproductive to remaining under the noise floor. Being
the most flagrant IP address on the network in terms of network traffic will
likely raise eyebrows on the networking team and, in turn, the security
team.
Thankfully for penetration testers, and much to the chagrin of those selling
enterprise security products, every one of these default options can be
modified and calibrated to tailor scans that are much more capable of
avoiding both heuristic and signature-based detection.

Advanced Flags for Obfuscation
-f: This flag modifies the scan by causing Nmap to employ smaller
fragmented packets rather than a complete packet. This helps with the
obfuscation of the scan by making it more difficult for intrusion
detection systems to identify. While this flag by itself often will not
bypassdetection against modern systems, it can be readily combined
with many other options when conducting TCP and UDP scans to do
so.
An important thing to note is that packet fragmentation is meant for
raw packet frames only. This means that port scans and service

versioning will work well, but things like operating system version (-
O) and most NSE scripts will not support fragmentation.
--randomize-hosts: When Nmap operates against a range of
endpoints by default, it scans in numerical order. For example, if you
were to scan 10.10.10.0/24, the first host scanned would be
10.10.10.0, then 10.10.10.1, 10.10.10.2, and so on up to 10.10.10.255.
This creates a distinctly noticeable pattern on the network, which can
be easily detected by the IDS. This flag is great for adding entropy to
the scan operations by simply picking random endpoints from the list.
So, scanning 10.10.10.0/24 with –-randomize-hosts may start with
10.10.10.47, then 10.10.10.2, followed by 10.10.10.217, and so on.
--data-length #: Nmap packets are usually lean, with just simple
headers, a fact known by security products. By default, Nmap packets
are 40 bytes in length, and ICMP echo requests are 28 bytes; this
known length is often used to detect the use of Nmap on the network.
The –data-length flag allows you to append a random set of data to
the end of the packets. This helps make each packet unique and can,
when combined with other techniques such as fragmentation, be
highly effective in obfuscating the activity.
Keep in mind that this feature tends to slow the scan down; for this
reason, appending a large number of bytes is not recommended.
Appending between 5 and 10 bytes will be sufficient for most use
cases and strike a balance between speed and stealth.
--exclude-port: There may be times when you want to scan a large
number of ports but want to exclude one or more specific ones, which
often leads to detection. This scenario is when --exclude-port comes
into play. As we have discussed, the default Nmap scan will utilize the
top 1000 most common ports, but there are some ports, such as 22,
139, and 445, which tend to be more sensitive to detection. To exclude
these ports, but keep the other 997, you could use the following scan:
Nmap --exclude-ports 22,139,445 10.10.10.0/24

--exclude-host: Similarly, to the concept of excluding specific ports,
you can also exclude specific hosts in a range of IP addresses. At first,
many people consider using this as a way of excluding the gateway
when scanning a subnet; however, considering IP address ranges
(10.10.10.2-254) can be used, it is only a minimally helpful use case.

Instead, host exclusion can be used to avoid scanning yourself on the
local subnet or to avoid scanning endpoints that you have identified as
security products themselves. For example, if during passive ARP
scanning, you identified what appeared to be a Dark Trace listener on
10.10.10.14, you could run the following scan to avoid it:
Nmap --exclude-host 10.10.10.14 10.10.10.0/24

--discovery-ignore-rst: While not technically a means of
obfuscation, this flag can be helpful in obtaining better results when
facing a firewall. In some situations, firewalls will spoof TCP reset
responses to all probes being sent to a disallowed address. Considering
the default behavior of Nmap would recognize these RST packets as
an indicator that a host is alive, Nmap would then waste an inordinate
amount of time scanning things that do not exist. This flag can help in
those situations by ignoring the initial RST packet and instead relying
on other specified host discovery options.
In a scenario where you get back a response for a large number of
ports or endpoints, all returned as “filtered”; this is a good trick to
employ.
-Pn: This flag simply disables the ICMP ping as part of the host
discovery process and instead considers every endpoint as up. In some
environments, ICMP will be blocked or detected fairly readily, and
this can be a helpful option.
-D: This flag is used for decoy scanning, which has a fairly niche place
in engagements when detection has occurred, but you are trying to
avoid containment by the blue team. By specifying decoys, Nmap can
spoof the originating IP address of the scan across multiple provided
IPs. The idea here is to hide your true IP that is conducting the
scanning from detection by also triggering activation, seeming to
originate from other IP addresses.

This function gets a good amount of attention from cybersecurity content
creators because it ‘seems’ like a great idea, like being a needle in a
haystack. However, in reality, there are a couple of important considerations
before employing this technique:

If you try to spoof an IP of a host that is down, you may SYN flood
the targets.

If you spoof IPs that don’t actually exist, you will still be detected
easily.
If you do this in a production environment, when the client is not
expecting the activity, it could be seen as multiple compromised
endpoints, which could result in panic and disruption to the
organization.

For these reasons, employing decoys is a risky business and may be best
suited to collaborative and well-planned purple teaming scenarios.

Intrusion Detection System (IDS) and Firewall
Evasion
By now, you have seen dozens of individual Nmap flags, scripts, and
techniques that have been introduced to fill a wide variety of use cases in a
very scientific manner. However, in the case of evading detection, it
becomes more of an art form. No individual flag or script that has been
discussed will prove to be a magic bullet that pieces the defenses of client
organizations. Instead, they are individual cogs in a complex machinery that
you will have to build and tailor to the specific use case by strategically
combining these options.
Some of the earlier flags synergize very naturally together. Consider the
following scan:
Nmap -f --data-length 5 --randomize-hosts 10.0.0.0/24

This scan will fragment each packet from the original (usually) 58 bytes
into 8 separate packets of 8 bytes or fewer, and then append five additional
bytes of random data to the end of each. Now, instead of a single well-
known packet length, there are numerous smaller packets, each with unique
and seemingly random values. This obfuscates the signature of the tool.
Next, the order in which the subnet is scanned becomes randomized, which
adds entropy to the process of how Nmap is expected to operate.
This scan is a good start for obfuscation, but several more elements need to
be considered, such as the speed of the scan, the necessity for host
discovery, the risk of scanning often-detected ports, and the risk of scanning
the gateways, just to name a few. Once these elements are added, you will
note that the scan becomes somewhat more complex:

Nmap -f --data-length 5 --randomize-hosts -T2 -Pn --exclude-

ports 22,139, 445 10.0.0.2-254

This scan is likely to avoid detection. However, when adding so many
options to reduce the speed while still scanning a large number of ports
(997 in this case), there will likely be issues related to host timeout. As
discussed in Chapter 5: Mapping a Large Environment, when scans are
conducted too slowly, they can lose accuracy by hitting the host timeout
limit default in Nmap. To account for this, additional considerations need to
be included, such as specifying the timeout value and defining the number
of retries per endpoint. Adding these components makes the scan even more
complex:
Nmap -f --data-length 5 --randomize-hosts -T2 -Pn --exclude-

ports 22,139, 445 --host-timeout 5m --max-retries 3 10.0.0.2-

254

Here, we have a solution that combines eight individual Nmap flags in a
strategic combination with a defined scan range to strike a balance between
being obfuscated and efficient. However, keep in mind that this scan results
in only a basic port status and prints to the command line. Adding
additional options to include service versioning (-sV), specifying that only
open ports are included (--open), or including the reason for statuses (--
reason), with any degree of verbosity (-v), and outputting the results to a
saved file (-oX), all add additional flags, bringing the total to well over a
dozen for a single scan.

Avoiding Blue Team Detection
Time and time again in retrospective analysis and real-time purple teaming
engagements, a handful of fairly common mistakes lead to detection by the
blue team. Understanding these common pitfalls will allow us to better
tailor scan parameters that have a higher probability of remaining
undetected:

Avoid scanning the gateway: The gateway is the IP address on a
subnet that traffic is directed to when it is in transit outside of the local
subnet. This address most often has a switch or a router present, which
will then do the necessary routing to forward the traffic to the intended
endpoint. These devices also often have the capacity of an intrusion

detection system (IDS). By scanning these endpoints deliberately,
you are figuratively shooting paintballs at the guard tower.
In most instances, the gateway will either be at the .1 or the .255
address on a subnet, which should be avoided in most scanning. This
can be accomplished best by either defining a specific range
10.10.10.2-254 or by listing the possible gateway address specifically
with the --exclude-host flag.
Avoid scanning ports 22, 139, and 445 until absolutely necessary:
Many security products are particularly sensitive to activity on ports
that are often associated with malicious activity, such as SSH (22) and
those related to SMB (139,445).
Starting with SSH, there are many ways in which a penetration tester
(or malicious actor) can manipulate outdated implementations of the
protocol. Most commonly exploitation is requisite on brute forcing,
which is seldom permitted within the rules of engagement, or denial of
service, which is virtually never permitted. For this reason, searching
for open SSH ports can be deprioritized to the ending stages of the
engagement.
The SMB ports, however, are another matter entirely. There are
numerous highly significant and actionable vulnerabilities traditionally
associated with SMB, which can be pivotal in offensive security
engagements. For this reason, the urge to target these systems right
away can seem at times overpowering, especially when there is an
indication that there may be outdated server infrastructure in the
environment. This allure is recognized by many security products, and
as such, there tends to be a more watchful eye on these services in
mature environments.
Avoid scanning the same endpoint multiple times in a row: While it
may seem obvious, it is worth noting that continuing to hit the same
endpoint over and over again is not particularly subtle, and with each
additional scan, the likelihood of detection increases. Take care to split
up scans into different segments to ensure that analysis can continue in
one area while a cool-down period is ongoing in another. This is a
very simple way to help avoid breaking the noise floor.
Avoid any scripts that attempt default logins: There are many NSE
scripts available that will attempt default or anonymous login attempts

on services that are identified. These (usually failed) authentication
attempts often have a higher probability of detection than the scan
itself.
Ensure the speed of the scan is throttled to stay below the noise
floor: You can add all the obfuscation flags you want, but if you forget
to reduce the speed of the scan, you will likely be identified as the
noisiest endpoint on the network and trigger an investigation.
Remember, the default speed of Nmap is (T3), which accomplishes a
scan of a local host in roughly a fifth of a second (as per the official
documentation). The default is fast.
Ensure that there is sufficient entropy in both the packets
themselves (signature) and in the way the scan operates
(heuristic): You must take care to ensure that the packets are
obfuscated (consider fragmentation and appending random data) as
well as the operations (reducing speed, randomizing endpoints,
reducing retries, and more). When both elements are strategically
combined, there is a far greater probability of successful evasion than
only one technique.
Always start on your local subnet before scanning others: When
conducting an internal penetration test, you should begin by fully
analyzing the subnet that you are already on. This allows you to scan
and gather information on the local endpoints without going through a
gateway, which often means sending traffic through an intrusion
detection system. This doesn’t mean that no obfuscation is necessary,
but it does mean that you can lean more toward speed than extreme
stealth on the local subnet.

Case Study: Purple Teaming with Nmap
For an organization with a mature security posture, a purple teaming
engagement can be one of the most insightful and collaborative
opportunities available to fine-tune their security products and defense-in-
depth architecture. The fundamental concept of purple teaming is that the
red team works in close collaboration with the blue team to conduct specific
scenarios and verify the validity of the detection and incident response
process. Rather than in a red teaming engagement, where the goal is often
thought of as “beating” the blue team, purple teaming is an opportunity to

foster teamwork and allow each team to learn from one another to better the
organization's security posture.
Most purple teaming engagements have several distinctly different
scenarios that employ TTPs outlined by major security frameworks, such as
MITRE ATT&CK or the Purple Team Exercise framework (PTEF). One
of the most insightful purple team engagements involved leading an
extremely large organization with hundreds of locations worldwide and
thousands of employees. This engagement was composed of five different
scenarios as follows:

Internal Network Reconnaissance
Active Directory Exploitation
Windows Workstation Privilege Escalation
Windows Server Privilege Escalation and Persistence
Linux Server Privilege Escalation and Persistence

The majority of the first scenario was conducted with Nmap by using a
wide variety of specific scans against different parts of the network scope.
The engagement began by establishing a baseline of detection against a
default Nmap scan on both the local subnet (10.10.41.0/24) and another
subnet hosting server infrastructure (10.10.42.0/24). This activity was
detected immediately.
From here, the fun begins by trying to determine the cause of the detection
and sequentially adding different techniques and parameters until there is no
detection. Considering that even scanning the local workstation subnet was
detected, which would not have been routed through an IDS (and the
gateway was not scanned), indicating that there was a security product
sensor on the local network that detected the activity.
To search for this sensor, an open-source tool called NetDiscover was used,
which can passively listen to Address Resolution Protocol (ARP) traffic
on the network and then match the MAC addresses in those ARP packets to
specific vendors. Sure enough, 10.10.41.117 was identified as a security
product. Rescanning the local subnet while excluding 10.10.41.117 allowed
the scan to proceed undetected:
Nmap -T2 –-exclude-host 10.10.41.117 10.10.42.2-254

The next step was to achieve the same results on different subnets, meaning
Nmap would have to traverse and successfully bypass the client’s IDS.
Since this was a collaborative process, the strategy of progressively
increasing obfuscation while the blue team monitored their detection
resources was ideal. This started by reducing the speed and skipping the
gateway:
Nmap -T2 10.10.42.2-254

No change; this was still easily detected by the SOC. The next step was to
add more entropy to the heuristics of the scan as well as the signature of the
packets. To do this, hosts that were scanned were randomized, host
discovery was disabled, packets were fragmented, and 5 bits of random data
were appended to the end of each packet fragment, as well as the TTL was
reduced from the default of 64 to 58:
Nmap -T2 –-randomize-hosts -Pn -f –-data-length 5 -ttl 58

10.10.42.2-254

Despite this, the scan was still detected. Collaborating with the blue team to
analyze the results, it became evident that what was being detected in this
scenario was not a port scan of the entire subnet, but a port scan of SSH.
Relaunching the same scan on a different subnet and excluding port 22 did
the trick, with meaningful results and no alerts:
Nmap -T2 –-randomize-hosts -Pn -f –-data-length 5 -ttl 58 –-

exclude-port 22 10.10.43.2-254

Identifying how to bypass the IDS was an important step in the process, but
it was not a complete scenario for this engagement. The final step was to
begin stripping the different layers of obfuscation to identify the simplest
scan that avoided detection. By doing this, it becomes far clearer how to
fine-tune the security products to increase the detection capability.
Understanding that excluding SSH was key to the process, this was done in
two stages: removing the entropy of the scan and removing the entropy of
the signature:

Nmap -Pn -f --data-length 5 -ttl 58 –-exclude-port 22

10.10.43.0/24

Nmap -T2 --randomize-hosts –-exclude-port 22 10.10.43.2-254

Interestingly, both versions of this scan were successful and avoided
detection. There was an inherent overreliance on detecting malicious SSH
connections as a highly valued anomalous activity by the IDS. While
monitoring specific ports deemed impactful for malicious activity is a
beneficial practice, other detection settings were reduced to avoid the
deluge of false-positive alerts.
This exercise was valuable in identifying specific gaps in the blue team’s
detection capability and demonstrating the legitimate impact of those gaps.
In this case, it demonstrated the potential for a malicious actor who had
gained access to the corporate network to conduct reconnaissance.

Case Study: Red Teaming a Bank
Red teaming is among the most advanced and challenging types of
engagement within the realm of offensive network security. This type of
engagement pits a blue team and a red team directly against each other, with
each team operating autonomously. In contrast to purple teaming, where
scenarios are carefully curated and coordinated to foster collaboration
between the red and the blue teams, red teaming truly emulates a malicious
actor intent on breaking into the target organization.
In most red team engagements, there will be a mixture of both traditional
penetration testing activities and social engineering components. Most
pentesters versed in social engineering will tell you that the often-cited
annual statistic from Verizon, which states that greater than 70% of security
breaches involved some degree of social engineering, is far from a
coincidence. In actuality, social engineering remains among the most
effective ways of gaining an initial foothold into an organization from the
exterior.
When people hear social engineering, one of the first things that come to
mind are old-school phishing emails riddled with misspellings and unlikely
stories attempting to steal credit card information. However, the reality over
the last several years is that malicious actors are employing progressively
more sophisticated techniques beyond simple phishing emails. Leveraging
enterprise communication platforms such as Slack or Microsoft Teams,
impersonating VIPs or support staff on the telephone, sending malicious
QR codes, and even utilizing artificial intelligence to spoof the voice of key
staff are all techniques being leveraged by malicious actors. In a red team

engagement, if it is something malicious actors do, then it is typically fair
game, as long as it does not impact the confidentiality, integrity, or
availability of systems.
During large-scale red team engagement against a medium-sized bank
based out of the United States, initial access was obtained through social
engineering. The engagement began as external penetration tests often do,
with blind reconnaissance of the organization, its domains and subdomains,
exposed assets, personnel, hierarchy, line of business, clients, customers,
partners, and products. This context plays a critical role in developing
effective social engineering campaigns with believable pretexts.
In this instance, the mail records gave away a key piece of information that
led to the successful social engineering, the name of the organization’s IT
managed service provider (ITMSP). Considering this client had a mature
security posture, it was unlikely that purchasing and utilizing a typo-
squatted domain to impersonate key leaders in their organization would be
successful (many email security products such as Microsoft 365 and
Proofpoint include domain impersonation protections); it was decided to
instead impersonate their ITMSP.
For only a few dollars, we were able to purchase a domain very similar to
that of the IT provider’s domain and created an email account for an IT
Support Specialist associated with that organization. Next, instead of simply
using this account to send phishing emails (as malicious attachments or
hyperlinks would almost certainly be detected and reported), we opted to
employ vishing as an attack mechanism. By dialing the company's
automated phone line, we determined that there was a dial-by-name option,
which meant we could call anybody in the organization without knowing
their phone extension or going through a receptionist.
With this context, we built a target list based on the client company’s public
LinkedIn page, targeting any employee we could find who had been hired
within the last 60 days or had their position listed as an intern. New
employees were targeted for two main reasons. The first is that they may
not have yet built a relationship with specific personnel at their ITMSP and
may be more likely to believe our impersonation attempts. The other reason
is that new personnel are often given a ton of information all at once in their
onboarding and may not be as familiar with how to report suspicious
activity, such as a questionable phone call.

With the target list in place, the technique was very simple. We called each
new employee and pretended to be a pre-selected Support Specialist from
their ITMSP and claimed that their workstation was flagged for not
receiving updates and we would need to remotely access their computer to
troubleshoot the issue. This is a classic pre-texting technique used by
malicious actors and is very similar to the technique that was leveraged in
the cyberattack against MGM in September of 2023.
It took several calls to find someone who answered the phone (speaking
live is always more effective than leaving voicemails), but eventually, one
associate fell for the ploy. We walked this individual through the steps of
navigating to an innocent-sounding hyperlink we provided, downloading a
remote access software, and inputting a connection code that we provided.
In a matter of only a few minutes, we had gained remote access to their
workstation; there was no need to try and figure out how to bypass email
security controls since we never sent anything. We instructed that employee
to get a coffee while we were troubleshooting the issue with their
workstation.
The remote access software had two very handy features that we utilized
almost immediately: the first was the ability to blank the client's screen
(which we warned them would happen so that they were not alarmed) and
the second was file transfer capabilities. After blanking their screen, we
searched for any VPN profile files, which we were able to find stored on
OneDrive. We exfiltrated the VPN information, then un-blanked their
screen, and told them that they were all set. After a mutual thank you for
your time, we ended the call, now in possession of the proverbial keys to
the castle, and they hung up none-the-wiser of what had happened.
We were then able to establish a VPN connection to their corporate network
from our own penetration testing appliance. With initial access achieved,
the next stage of the red teaming followed a very similar pathway to
traditional internal-network penetration testing; the main difference being a
meticulously stealthy approach to discovery.
We began by analyzing the local subnet to avoid routing through an IDS;
but even though it was the local subnet, an abundance of caution was still
used to remain undetected:
Nmap -T2 –-randomize-hosts -Pn -f –-data-length 5 -ttl 58 -p

21,25,80,443,8080,8443,4786 –-open 10.10.10.2-254 -oX

result_local.xml

There is a lot happening in that scan, so let’s break it down. We are running
a slow-speed (-T2) scan of the local subnet, excluding the common
gateways. We disabled host discovery via ICMP (-Pn), fragmented the
packets (-f), and appended 5 bits of random data onto each one (--data-
length 5). We randomized the host selection order (--randomize-hosts) and
set a custom time to live (-ttl). Finally, we manually selected only seven
interesting ports to be scanned for each endpoint (-p) and instructed Nmap
to only print open ports (--open) and save the results as a .xml file (-oX).
Even with scanning only seven ports, this scan took nearly an hour to
complete. However, it returned something spectacular. One endpoint on the
subnet was an outdated Cisco Catalyst switch with port 4786, also known as
Cisco Smart Install in an open state. For a network pentester, this is nearly
as exciting as finding vulnerable NBNS traffic on the network. Within
minutes, we leveraged an open-source tool called Siet.py to pull the
configuration file from that switch. While a malicious actor would likely
modify the config and push it back to the switch and trigger a restart, which
was outside the rules of engagement, as it would cause a network
disruption. However, what we could glean from the configuration file was
the hashed password of the switch admin account, a breakdown of subnets
in use, as well as the SNMP community strings being employed.
This password hash was successfully cracked offline, revealing a relatively
weak administrator password. While we had both the user and password in
plaintext, it was not an active directory account, so the usage possibilities
were limited at this point.
Continuing the discovery, we determined that we needed to expand the
analysis to other subnets that were identified in the Catalyst switch config.
These became the target list for the next stage of scans, which was done
against no more than 2 x /24 subnets at a time:
Nmap -T2 –-randomize-hosts -Pn -f –-data-length 5 -ttl 58 –-

exclude-port 22,139,445 -iL targets1.txt -oX results1.xml

The only real difference between this scan and the first one is that, this time,
rather than specifying a few specific ports, we are instead excluding ones
that often lead to detection (--exclude-port).

We repeated this scan, switching in additional subnets, for the next several
hours before calling it a day. The next morning, when we went to resume
the activity, we found that the VPN connection had been severed. Evidently,
the blue team had detected the scans at some point, quickly investigated,
and contained the threat (us). It was a frankly impressive response time
when we looked at the logs of when the connection was severed, and made
a point of praising that response process in the formal report.
This engagement was insightful to the client for a number of reasons:

It demonstrated a social engineering technique that was not covered in
their end-user security awareness training (vishing).
It demonstrated the speed at which a malicious actor could take over
network infrastructure (the Catalyst switch).
It demonstrated a highly capable blue team with an efficient playbook
for triaging alerts and containing threats.

 NOTE: In retrospect, it would have been wiser to scan only a small
handful of ports at a time when transitioning to other subnets rather
than simply excluding a few.

Challenge: Evading Detection in Your Lab
Environment
Recreate the sequence of scans outlined in the Purple Teaming section (and
copied below for your convenience) from the vantage point of both inside
your lab environment and from your host machine. Compare and contrast
the point at which you notice the detection in Wazuh, and then craft your
own custom scan that strikes a balance between sufficient obfuscation and
efficient speed:
Nmap -iL targets.txt

Nmap -T2 -iL targets.txt

Nmap -T2 –-randomize-hosts -Pn -f –-data-length 5 -ttl 58

Nmap -T2 –-randomize-hosts -Pn -f –-data-length 5 -ttl 58 –-

exclude-port 22

Next, analyze the difference with the complex scan from the section on IDS
and Firewall Evasion:

Nmap -f --data-length 5 --randomize-hosts -T2 -Pn --exclude-

ports 22,139, 445 --host-timeout 5m --max-retries 3

Challenge: Breaking Down Complex Scans
Analyze the following three complex scans and try to break down what
each scan is doing, as well as the scenario in which you would consider
using it.
Assume in each of the following scans your IP address is 10.12.50.16:
Nmap -f --data-length 5 --randomize-hosts -T2 -Pn --exclude-

ports 22,139, 445 --host-timeout 5m --max-retries 3 -iL

targets.txt -oX results.xml

Nmap -T4 --randomize-hosts -Pn --exclude-host 10.12.50.16

10.12.50.2-254 –host-timeout -oX results.xml

Nmap -D 10.12.50.15, 10.12.15.17, 10.12.15.41 --exclude-host

10.12.50.16, 10.12.50.1, 10.12.50.255 --randomize-hosts

10.12.50.0/24

Conclusion
In this chapter, we have explored many individual flags and techniques that
can be chained together to obfuscate your scanning activity from detection.
By manipulating both the signature of the tool as well as the heuristics of its
operation, Nmap offers numerous options for evasion. These flags and
techniques are considered to be at an advanced practitioner level, requiring
not only a high level of fundamental knowledge in how Nmap and port
scanning work to understand their functionality, but also an understanding
of their relatively niche use cases. Finding the sweet spot between a
sufficient amount of obfuscation and a functional level of speed to complete
the engagement within the set timeline is a delicate balancing act that
requires experience, experimentation, and finesse.
In the next chapter, we will wrap up our deep dive into Nmap skills by
exploring the intricacies of the Nmap Scripting Engine (NSE). This chapter
will bring all of the skills we have been working on full circle and provide
you with the tools and opportunity to create entirely new functions for
Nmap that suit your particular workflow and use case.

Points to Remember
Effective obfuscation is a combination of modifying the signature of
Nmap as well as the way that the scan functions. Both elements need
to be considered and employed for optimal success.
Adding advanced obfuscation and timing modification requires a
delicate balance between using just enough stealth to suffice while still
scanning quickly enough to avoid losing data.
Obfuscation is primarily a concern in red teaming and purple teaming
engagements rather than traditional penetration testing.
Nmap can be effectively used to progressively test detection
capabilities during purple teaming scenarios.
Bypassing detection gets progressively more difficult as security
products become more adept at identifying malicious activity. This
moving target is why an intricate understanding of how Nmap
functions is pivotal to success in this regard.

Multiple Choice Questions
1. Which of the following ports has a higher probability of detection?

a. 80
b. 53
c. 21
d. 445

2. Which of the following scans will fragment individual packets,
append random data to the end of them, and throttle speed?

a. -f --randomize-hosts
b. -T4 -f –randomize-hosts --discovery-ignore-rst
c. --data-length 5 --script firewalk.nse
d. -f --data-length 10 -T2

3. Which of the following is not a concern when employing decoy
scanning?

a. Causing an SYN flood
b. Causing panic in a production environment
c. Reducing the speed of results
d. Selecting non-existent hosts

4. Which of the following is not a common mistake that leads to
detection?

a. Scanning the gateway
b. Scanning to slowly
c. Scanning too quickly
d. Obfuscating only the signature

5. Which type of engagements are you most likely to employ
advanced obfuscation techniques? (select all that apply)

a. Network Penetration Test
b. Red Teaming
c. Web Application Penetration Test
d. Purple Teaming

Answers
1. d
2. d
3. c
4. b
5. b, d

CHAPTER 8

Leveraging the Nmap Scripting Engine

Introduction
The Nmap Scripting Engine (NSE) has been alluded to several times in previous
chapters and presented as a means of invoking creative and powerful additional
functionality within Nmap. We have discussed examples of using scripts for both
broad-based vulnerability scanning as well as more targeted verification of specific
vulnerabilities. With hundreds of NSE scripts available and the relative ease of creating
new ones, the options are vast. This chapter is dedicated to enhancing your
understanding of how NSE scripts work, enabling you to utilize them to the fullest
potential in professional penetration tests.
We will first understand what the NSE is and how it fundamentally works. We will
then explore its syntax and best practices of usage. Next, we will discuss how to
identify which scripts are included in your version of Nmap and how to add additional
ones to your arsenal. Finally, we will explore the Lua scripting language and break
down how to create your own NSE script. By the end of this chapter, you will have
accumulated all the skills necessary to employ Nmap at an advanced level for
professional cybersecurity engagements.

Structure
In this chapter, we will discuss the following topics:

Introduction to Nmap Scripting Engine (NSE)
Script Syntax and Usage
Locating, Modifying, and Adding NSE Scripts
Introduction to NSE Scripting
Challenge: Create a custom NSE script and post it to GitHub
Challenge: Test and refine the custom script in a lab environment
Challenge: Scanning with multiple concurrent scripts

Introduction to Nmap Scripting Engine (NSE)
The scripting engine is widely considered to be Nmap’s most powerful and
customizable feature. It enables nuanced functionality that goes far beyond simple port

scanning to provide a significantly increased suite of capabilities. This is possible
through the Lua scripting language, a powerful scripting language designed and
maintained by the PUC-Rio team at the Pontifical Catholic University of Rio de
Janeiro, Brazil. Beyond Nmap, Lua has been utilized in many mainstream applications
and games such as Adobe Photoshop Lightroom, World of Warcraft, and Angry Birds.
Through the development of Nmap, Gordon Lyon (the creator of Nmap) designated 14
distinct categories of NSE scripts as follows [Usage and Examples | Nmap Network
Scanning (https://nmap.org/book/nse-usage.html#nse-categories)]:

1. Auth: This category broadly encompasses any script that deals with the
authentication of the target system. Scripts where you supply credentials, use
default credentials, or entirely bypass authentication would generally fall in this
category.

2. Broadcast: Broadcast scripts are most often used for the discovery of additional
or specific systems by broadcasting on the local network. One very handy
example of this is the script broadcast-jenkins-discover, which identifies
instances of Jenkins servers on the LAN via a broadcast probe. While broadcast
scripts are not as widely used compared to some other categories, such as
discovery, they do have niche use cases.

3. Brute: True to its name, this category encompasses all scripts that use brute-
force style techniques. This could be for specific services like HTTP or SNMP
or for particular software such as Oracle or VmWare. Be very careful with these
types of scripts as brute forcing can unintentionally take down systems or lock
out user accounts.

4. Default: The default category is the list of scripts that are called when using
either the -sC or the -A flags. In order to be included in the default category, by
default, there are six categories that are considered: speed, usefulness, verbosity,
reliability, intrusiveness, and privacy. While these categories for consideration
are helpful to be aware of, they are also inherently subjective, as such it is
recommended to be very deliberate about what scripts you are calling.

5. Discovery: These scripts are used for active reconnaissance and discovering
specific information on the network. This could be a script to discover all
systems with a particular service, such as SNMPv1, or it could be more specific
and discover additional information on a specified target. An example of the
latter would be the script smb-enum-shares, which enumerates Windows shares
on the specified target. Discovery scripts are among the most helpful categories
of NSE scripts, as they tend to be very specific, safe to run, and produce clear
and concise output.

6. DoS: This category includes all scripts that may, intentionally or otherwise, crash
systems and cause denial of service conditions. Unless specifically load testing

https://nmap.org/book/nse-usage.html#nse-categories

or conducting an experiment in a lab environment, there is little reason to use
these scripts in a professional capacity.

7. Exploit: These scripts actively exploit particular vulnerabilities. While there
aren’t a huge number of these compared to more broad categories such as
discovery, the ones that are included tend to be quite effective. Some major
vulnerabilities that can be exploited with these scripts include Shellshock and
MS17-010 (Eternal Blue). These scripts are often adaptations of well-known
exploit code, and in many cases, there are also equivalent modules in tools such
as Metasploit, which depending on the situation may be more beneficial due to
the availability of post-exploitation options.

8. External: External scripts are relatively few and far between and refer to scripts
that send data outside the typical scanner–target relationship. For example, the
vulners.nse script falls into this category, as the software and versions are used
to query the third-party Vulners database to retrieve vulnerability information.
Another example includes the script whois-ip, which does a simple WHOIS
lookup.

9. Fuzzer: Fuzzing scripts send copious packets to the target server typically with
unexpected or randomized values. While there are some situations in which
fuzzing is useful for identifying vulnerabilities, it is also an extremely arduous
process with Nmap.

 NOTE: Nmap does a lot of things really well, but in my opinion,
fuzzing is not one of them. There are plenty of other open-source tools out
there that are more specifically designed for fuzzing, and it is generally
recommended to use those instead.

10. Malware: These scripts can be used to detect targets that are infected by
malware. A well-known example of this would be the smtp-strangeport script,
which looks for SMTP servers running on an obscure port. These scripts can be
interesting to experiment with but are in no way a replacement for a dedicated
endpoint detection and response (EDR) or antivirus solution.

11. Vuln: These scripts simply check for very specific vulnerabilities. Similar to the
exploit category, the automatic exploitation is not executed.

12. Intrusive: Scripts are always categorized into one of three categories of their
function: intrusive, safe, and version. Intrusive scripts are those that have an
elevated probability of crashing target systems and thus cannot be classified as
‘safe’. Generally speaking, these scripts should not be used in a professional
penetration test in most scenarios.

13. Safe: In contrast to intrusive, safe scripts are designed not to exploit anything,
not to crash systems, and not to be associated with using huge amounts of
bandwidth. These are the scripts that you will want to make the most use of.

14. Version: This is a special categorization that is largely indistinguishable from the
regular version detection capabilities that would be seen with the -sV flag. While
there are some very niche scripts in this category that can be helpful, they are
seldom used.

Beyond the categories, there are also four types of scripts to be aware of:

1. Prerule: Scripts that run before Nmap’s scanning phase. These are useful
especially for broadcast scripts, which are designed to identify and pull in
additional targets (use the flag -newtargets to do this) prior to scanning.

2. Host: Scripts that run during Nmap’s scanning phase individually on each host.
3. Service: This is the most common script type and runs when the condition of a

specific service is identified. For example, a web server on port 80 would elicit
more than a dozen additional discovery scripts associated with HTTP. If the
same endpoint had another HTTP service on port 8080, then those same service
scripts would be run a second time on that port.

4. Postrule: Scripts that run after Nmap have scanned all of the targets.

These types of scripts are not something you need to worry about specifying when
using NSE scripts; rather they will come into play when you are writing your own.

Script Syntax and Usage
The usage of scripts within Nmap is quite intuitive; in fact, there are only three main
flags to be aware of for common usage:

1. –-script: This is the primary command to specify a script by file name or
category as has been exemplified numerous times throughout previous chapters.
While --script itself is simple, there are several sub-commands that should be
understood for more advanced operations:

a. --script “keyword-*”: By specifying a specific quoted string after the
script flag followed by an asterisk, you can direct Nmap to run every NSE
script, which begins with “smb”. In this example, such a command would
launch dozens of SMB-specific scripts ranging from simple enumeration to
brute forcing, and even significant exploits such as Eternal Blue (smb-
vuln-ms17-010.nse):

Figure 8.1: Searching NSE Script Library via wildcard

As you can see, specifying too broad of a categorization of scripts could
lead to unintended consequences. To minimize this risk, consider adding
more context to the command, such as specifying --script “smb-enum-
*”, to filter out the more aggressive scripts in favor of enumeration.

b. --script “category”: Any of the script categories described in the
previous section can be specified or excluded with this option. For
example, --script “safe” would run all the scripts in the safe category.
Inversely, --script “not brute” would run all scripts except those in the
brute category.
Both the keywords and categories can be combined together in some niche
circumstances. Consider a scenario where you want to safely analyze a
group of systems but avoid SMB-related scripts to reduce the probability of
detection. In such a situation, you could run --script “safe and not
smb-*”:

Figure 8.2: Scanning by category and exception

c. script + [name of script]: Prefixing the “+” before the name of the
script will force Nmap to run the script even if normally it would not meet
the criteria. For example, if you were searching for SMB signing with the -
-smb-security-mode script, but ports 139 and 445 came back filtered
instead of open, Nmap would stop and avoid running the script. The “+”
prefix would override this behavior and force the execution.

 Technically, you can also run “--script all” to run every script in every
category.

It is highly recommended that you never do this unless experimenting with
detection capabilities in your lab. Running hundreds of random scripts on
targets in a client network is never a good idea.

2. -sC: This flag is a shortcut for --script=default, which would launch a “script
scan” of all the scripts in the default category. Considering many of these are
inherently intrusive, it is generally not recommended outside of a lab
environment. Instead, a more nuanced approach to using more specific scripts or
script categories should be employed.

3. --script-args: This flag allows you to specify arguments to existing scripts
that are configured to support them. A simple example of this could be a script to
enumerate SMB file shares that may support a username and password argument
being provided to do authenticated enumeration. In such case, --script-args
‘user=admin,pass=welcome123’ could be used to support authentication.

Consult the Nmap documentation portal (https://nmap.org/nsedoc/scripts/) for a
searchable repository listing all of the arguments that each of the, at the time of
writing, 604 nse scripts built into Nmap accepts.

 Be very careful using “--script-args=unsafe=#”. Running scans with the
unsafe argument has a chance to crash systems or services.

Locating, Modifying, and Adding NSE Scripts
There is a plethora of NSE scripts that are included by default in Nmap, which can be
explored either on the official website (https://nmap.org/book.nse.html) or locally. If
using Kali Linux, the command to list out all pre-installed Nmap scripts would be:

ls -l /usr/share/nmap/scripts:

Figure 8.3: Locating NSE scripts in Kali Linux

https://nmap.org/nsedoc/scripts/
https://nmap.org/book.nse.html

In addition to the scripts included with Nmap by default, there are hundreds of others
that have been created by the community and shared on GitHub. Adding one of these
scripts can be accomplished by navigating to the script that you want and copying it
into a .nse file using a built-in text editor such as nano, vi, gedit, or vim.
For example, to import a script that would specifically add checks to fingerprint the
version and patch level of Microsoft Exchange servers, follow these steps:

1. Navigate to the relevant GitHub page, which in this case can be found at ms-
exchange-version-nse/ms-exchange-version.nse at main · righel/ms-exchange-
version-nse · GitHub; then copy the entirety of the script to your clipboard.

2. Create a file in the /usr/share/nmap/scripts directory called ms-exchange-
version.nse using a text editor and paste the script:
sudo -s

cd usr/share/nmap/scripts

nano ms-exchange-versions.nse

Paste the script

Ctrl+x

y

Figure 8.4: Demonstrating syntax to save additional NSE scripts

3. The script can now be run from any directory:

Nmap --script=ms-exchange-version.nse [target]

Figure 8.5: Demonstrating imported NSE script usage

In this example, we can see that the script attempted to version Microsoft
Exchange on port 80 and failed, but it succeeded in identifying an impressively
old version on port 443.
You could certainly clone the entire GitHub repo, but the drawback is that to run
the script, you would need to be in that specific file. For example, if we were to
clone the repository for ms-exchange-version.nse and attempt to run the script
directly, it would fail. Instead, we would need to change directories to the newly
created /ms-exchange-version-nse before it would run successfully.

Figure 8.6: Illustrating the pitfall of cloning a script into a new directory

By placing the script directly into /usr/share/nmap/scripts, Nmap inherently
knows where to look for it regardless of where you are in the file system.
In the event that you have already cloned the repository, or forgot to do this
initially, the scripts can be easily moved to /usr/share/nmap/scripts with the
following command:

sudo mv [script file] /usr/share/nmap/scripts:

Figure 8.7: Demonstrating moving a script into the proper directory via command line

Introduction to NSE Scripting
As briefly mentioned, NSE scripts are written in the Lua scripting language, which is a
relatively straightforward and flexible language. In this section, we will take a look at
the components of a script designed to check for an indicator of compromise
associated with exploitation of CVE-2023-20198. This CVE refers to a CVSS 10.0
critical vulnerability with Cisco IOS XE, which allowed an unauthenticated remote
user to bypass authentication and create a local administrator user. This CVE was
released in October of 2023 and was known to have been widely exploited. A popular
method of maintaining persistence after exploitation was to use an available implant;
thus, the script we will create here will be meant to check for the implant, rather than
the vulnerability itself.
CVE-2023-20198 was a particularly dangerous vulnerability because it was so trivial
to exploit, literally a single line curl command was able to create the local user
account. Similarly, the associated implant could also be identified with a curl
command. This simplicity enables this indicator of compromise (IoC) to be an
excellent example of simple things that can be semi-automated with NSE scripts.
First, there is a commonly used format for NSE scripts, which includes a description
and administrative information such as the author, license, NSE categories, and usage.
We will start with these items at the top of the script:
description = [[

This script checks for the presence of an implant that has been

associated with the exploitation of CVE-2023-20198 which allows an

unauthenticated user to create a local user of the highest privilege

level on Cisco IOS XE Web Management User Interface. It should be noted,

this script checks for the commonly used implant to identify an

indicator of compromise (IoC) it does not determine the target's

vulnerability to the exploit itself.

]]

author = "Travis DeForge"

license = "Same as Nmap--See https://nmap.org/book/man-legal.html"

categories = {"malware", "safe"}

-- @usage

-- nmap --script CVE-2023-20198-Implant-Checker.nse <target(s)>

With those administrative details out of the way, the actual script can be provided. In
this instance, we simply need Nmap to run curl -k -x POST

<target>/webui/logoutconfirm.html?logon_hash=1 and print the output for us. To
do this, we will first define the action, and then specify the target IP address within the
URL path:
-- Define the action function

action = function(host, port)

local target_ip = host.ip

-- Define the URL with the target IP addresses

local url = "https://" .. target_ip .. "/webui/logoutconfirm.html?

logon_hash=1"

To finish the NSE script, now we just need to define the command to execute and print
the results for analysis:
-- Execute

local command = 'curl -k -X POST "' .. url .. '"'

local handle = io.popen(command)

local result = handle:read("*a")

handle:close()

-- Print the server response

return result

end

While this is an extremely niche and very simple example of what can be converted
into an NSE script; it is meant to be used as inspiration for you to identify other actions
within your own workflows, which could be better optimized with Nmap.

Challenge: Create a Custom NSE Script and Post it to
GitHub
Throughout this book, you have used Nmap for a wide swath of use cases and been
exposed to the nearly limitless combination of different functions within it. Take the
opportunity to reflect on some of the operations you have experimented with and how

you could expand, simplify, or automate some of those operations into a consolidated
NSE script of your own.
Posting scripts of this nature on your GitHub account will not only provide more
credibility to yourself as a security engineer, but it will also help out the rest of the
security community. It’s a win-win.

Challenge: Test and Refine a Custom Script in the Lab
environment
Once you have your custom script created, regardless of whether it is an adaptation of
CVE-2023-20198 or something different entirely, experiment with ways to iteratively
improve the initial version. Experiment with methods of building obfuscation into the
script, optimizing the timing profiles, or refining the output.
This can also be done by forking new versions of existing scripts and making your own
modifications. This is meant to be an exercise in recognizing that you are not limited in
your capacity with Nmap just because a script doesn’t currently do what you need. You
have the capability to modify, improve, and create additional functionality through
NSE scripts at any time.
As always, don’t forget to add the new version to your GitHub!

Challenge: Scanning with Multiple Concurrent Scripts
For this challenge, determine a combination of scripts that synergize well together,
which you may want to call during the same scan. This could be something as simple
as using a prerule broadcast script with the --newtargets flag to populate a target list
and then using the postrule vulners.nse script to identify vulnerability information on
those systems.
Keep in mind the order in which the scans will be conducted, the types of scans they
are, and whether the output from one will be the input for another (if necessary). By
identifying the combinations of concurrent scripts that fit your preferences and use
cases, you will rapidly assemble a catalog of go-to Nmap commands that you will be
able to use time and time again on different engagements.

Conclusion
Throughout this book, we have seen numerous examples of Nmap being leveraged to
do powerful things, from obfuscation to optimization and everything in between.
Undoubtedly one of the most powerful aspects of Nmap is the scripting engine. By
understanding how the NSE scripts work, where to find them, how to incorporate them
into your workflow, and even how to create custom ones yourself, you will be able to
elevate your penetration testing skills to the next level.

In this chapter, we took a deeper look at the components of NSE scripts, how they
work, what rules govern their function, and even how to construct your first custom
script. With these tools at your disposal, the potential is limited only by your creativity.
In the next chapter, we will wrap up our Nmap deep dive by exploring industry best
practices related to port and vulnerability scanning. We will cover verification of
findings to reduce the rate of false positive and false negative results, communicating
results to clients, as well as common mistakes made by inexperienced practitioners.

Points to Remember
The Nmap scripting engine (NSE) is widely considered to be Nmap’s most
powerful feature, enabling users to customize their own functionality to fit their
workflows and preferences using the Lua scripting language.
The categories of NSE scripts are extremely important to understand and check
before running scripts. This can be the difference between ensuring the script
you run is safe or accidentally causing a denial-of-service condition in a
production environment.
NSE scripts can run at varying times in relation to the standard scanning function
of Nmap, including prerule and postrule. Understanding when specific scripts
run will be important for any troubleshooting or to ensure that you are not
getting a false positive or false negative result.
If you choose to write custom NSE scripts, strongly consider posting them to a
public GitHub repository with a comprehensive description. This is a simple but
impactful way to give back to the information security community.

Multiple Choice Questions
1. NSE scripts are written in which language?

a. Rust
b. Python
c. C#
d. Lua

2. Which category of NSE scripts are most closely associated with active
reconnaissance?

a. Default
b. Safe
c. Discovery

d. External

3. Which category of NSE scripts would be used to identify indicators of
compromise on a system?

a. Exploit
b. Auth
c. Intrusive
d. Malware

4. Which categories of NSE scripts have the greatest probability of causing a
system to go offline (Choose 4)?

a. Auth
b. Broadcast
c. Brute
d. Default
e. Discovery
f. DoS
g. Exploit
h. External
i. Fuzzer
j. Malware
k. Vuln
l. Intrusive

m. Safe
n. Version

5. Scripts that run before Nmap’s scanning phase are referred to as what type
of NSE script?

a. Prerule
b. Host
c. Service
d. Postrule

6. Scripts that run individually on each host are referred to as what type of
NSE script?

a. Prerule
b. Host

c. Service
d. Postrule

7. What is the most common type of NSE script?

a. Prerule
b. Host
c. Service
d. Postrule

8. Which of the following is the proper syntax to run all scripts in the Safe and
Discovery category against the post scanme.nmap.org?

a. Nmap --script safe & discovery scanme.nmap.org
b. Nmap --script “safe & discovery” scanme.nmap.org
c. Nmap --script safe and discovery scanme.nmap.org
d. Nmap --script “safe and discovery” scanme.nmap.org

9. In Kali Linux, where in the file system can you find the NSE scripts by
default?

a. /usr/share/nmap/scripts
b. /home/nmap/scripts
c. /root/nmap/scripts
d. /etc/shadow

10. Which of the following is generally not included in the administrative
section of an NSE script?

a. Description
b. Author
c. License
d. Nmap Version

Answers
1. d
2. c
3. d
4. c, f, h, l
5. a

6. b
7. c
8. d
9. a
10. d

CHAPTER 9
Best Practices and Considerations

Introduction
The previous eight chapters have provided an in-depth look into the
function and optimized usage of Nmap, its role in offensive security, and
how to become a power-user of the tool. In this chapter, we will conclude
our deep dive by discussing some important do’s and don’ts as it relates to
employing Nmap in a professional capacity.
First, we will discuss considerations for determining which type of scan is
appropriate for particular situations. In many instances, understanding both
the scope and the intent of the penetration test will provide the insight
needed to identify the degree to which your Nmap scans must be obfuscated
or optimized. Understanding how to translate those rules of engagement
into the intent of the engagement, and ultimately into how to conduct the
penetration test, is a skill in itself that must be trained.
Next, we will discuss the major considerations that must be considered to
avoid negatively impacting a client’s systems. Even the best penetration test
and the most thorough report will be overshadowed by accidently taking
down client systems. Thus, understanding the potential impact will
empower you to make an informed decision every step of the way.
Finally, we will conclude with a discussion on how to best communicate
results to clients. At the end of the day, in penetration testing, the technical
“hacking” is only one piece of the puzzle, the communication piece plays a
huge role. Clients pay tens of thousands of dollars for penetration tests not
just for the pentester to identify vulnerabilities, but also for the partnership
in understanding how to best remediate those issues. As a result,
understanding how best to communicate your testing results is an essential
skill for any pentester.

Structure

In this chapter, we will discuss the following topics:

Identifying the Right Scan at the Right Time
Key Considerations to Avoid a Negative Impact on Client Systems
Effective Communication of Results

Identifying the Right Scan at the Right Time
Understanding the intent of the engagement is of paramount importance in
any project, be it a penetration test, purple team, or red team engagement.
The rules of engagement and discussions with the client will provide you
with a lot of insight into the particular needs of that customer. In
cybersecurity, and especially in penetration testing, it is not a one-size-fits-
all offering. Organizations that offer one specific package with pre-defined
parameters for a penetration test are likely not taking into consideration the
specific nuances of client environments or the unique needs of each
customer. While there may be large security organizations for which it
makes business sense not to customize their service offerings, for the
majority, this narrow-mindedness introduces a disservice to customers.
A common misconception is that a penetration test exists to ‘beat up’ the
client and showcase all of their shortcomings. In some organizations,
penetration testers are expected to (and shamed if they do not) obtain
domain administrator access in every engagement. However, the idea that
your objective is to “win” is short-sighted and misguided. As a professional
penetration tester, your objective is to accurately provide a snapshot of the
security posture of the environment that you are testing, both the good and
the bad. This may seem like a broad mandate, but, in actuality, it also must
be in accordance with the objective of the test to start with.
Understanding the reasoning behind why a client is seeking a penetration
test is absolutely critical in meeting (and exceeding) the expectations of the
engagement. Some clients will inevitably be engaging in, to quote Christian
Scott (Chief Operating Officer and Chief Information Security Office of
Gotham Security, and my personal mentor), “compliance theater”. This
means that the purpose of the penetration test is simply that their
organization is required to have them; the clients aren’t particularly
concerned with the findings or the insights and simply need the “box
checked for the year”.

In contrast, the best clients will be extremely involved and interested in the
insight that comes from the penetration test. Their objective is not to look
good on paper with a clean report but to holistically understand the true
attack surface of the organization they defend. These are the clients who are
the best to collaborate with and typically have a more robust security
program.
In either case, there are specific outcomes and methodologies that the client
is expecting. While their expectations should never bias you into any form
of misrepresentation, knowing the objectives will help frame the narrative
of the pentesting report. Many pentesting training courses emphasize the
importance of “rooting boxes” and getting “domain admin access”. While
these occurrences are certainly considered wins, your fundamental objective
as a pentester is not simply to hack into everything. Instead, it is to emulate
a malicious actor, demonstrate the overall security posture of the
environment, and safely demonstrate the potential impact of identified
vulnerabilities most accurately. While this mission statement may seem
redundant and analogous to simply “rooting boxes”, the importance is in the
nuance of understanding your responsibility to avoid impacting the
confidentiality, integrity, or availability of systems.
This fundamental requirement to accurately portray a sophisticated hacker
while being cognizant of both unintended impact and the client’s objectives
can, at times, present a challenging line to walk. This challenge exists both
from a high-level strategy of the engagement perspective and at the ground
level of knowing what scans to use at what time. To illustrate the
importance of considering these aspects, we will look at three hypothetical
client situations and determine which types of scans should be used:

1. Client A is conducting an external penetration test against all internet-
facing corporate systems, including their Microsoft 365 environment.
It is December 8th, and Client A is required to have an annual
penetration test completed every year. In the past, they have contracted
pentesting companies which accidentally locked out dozens of user
email accounts and caused a large disruption, which has negatively
impacted the executive leadership’s view of penetration testing.
In this scenario, it seems likely that Client A is engaging in a third-
party penetration test mostly because they are required to prior to the
end of the calendar year. Due to poor experiences in the past with

pentesters not properly considering the impact of their actions, the
client is (understandably) skeptical about the value of the test as a
whole. In this situation, it will be absolutely critical to ensure that
none of the actions you take cause a negative impact on the CIA or
any systems, which means reducing the speed of scans to avoid
accidentally causing a denial-of-service (DoS) on systems, avoiding
intrusive, DoS, and brute NSE scripts, and limiting the number of
systems scanned at one time to reduce the noise.
Additionally, it may be beneficial to customize the report for this
client to illustrate the great care you took in protecting the
confidentiality, availability, and integrity of their systems. A
successful engagement of this nature may help restore Client A’s faith
in the penetration testing process over time.

2. Client B is conducting an internal network penetration test to test the
validity of security controls that have been implemented at the
conclusion of a network segmentation initiative. While there is an
interest in ensuring that the environment is compliant with the
Payment Card Industry Data Security Standard (PCI-DSS), the
greater emphasis is on ensuring that standard users are unable to
access sensitive infrastructure.
Client B has a very different perspective and is contracting an internal
pentest to validate the usefulness of newly implemented security
controls. While they are beholden to PCI-DSS, which includes a
degree of network segmentation, the overall purpose is to verify that
users placed on the standard user VLAN (or the employee wireless
network) cannot access sensitive infrastructure. There are a few things
to consider here. First, can those security controls be bypassed through
obfuscation? Using the stealthy Nmap scans discussed in previous
chapters, are you able to interact with the sensitive systems? Next, can
you compromise other (less sensitive) systems and then pivot to the
sensitive ones?
Both of these high-level strategies must be very thoroughly analyzed
and addressed deliberately in the report and status updates to Client B.
Additionally, since the ultimate targets are sensitive systems, taking
great care to ensure that those systems are not negatively impacted is
essential. In this case, it may be beneficial to keep Client B up to date

in real-time when any degree of access to those systems is achieved.
Based on the Client’s comfort level, simply being able to interact with
the sensitive systems may be impactful enough, and attempting further
exploitation may not be wanted. In these situations, clear
communication is critical

3. Client C is conducting both an internal and external network
penetration test coupled with social engineering. This is the standard
type of engagement that Client C executes twice annually and rotates
third-party testing firms each year.
Client C appears to be an organization that takes security very
seriously by incorporating not only technical penetration testing but
also social engineering on a twice-annual basis. Additionally, the
practice of rotating pentesting vendors is not uncommon as different
teams will use different techniques, different tools, and perhaps
different fundamental methodologies. This suggests that the security
program of Client C is likely fairly mature, or at least the security
team is working hard on increasing its maturity level.
The type of scans you select in this scenario may be more complex in
nature as it is likely you will need a deeper level of analysis to identify
core issues that have not previously been discovered due to the
frequency of testing. Remember, the more intricate and in-depth the
scan (usually), the longer it will take to complete. So be cognizant of
combining flags to achieve a balance of both depth of analysis and
optimized speed of results. Considering Client C receives pentesting
reports frequently, and from a variety of vendors, taking care to
document your process every step of the way to demonstrate
thoroughness of the test will be important.

As you can see, while there are some commonalities across each scenario,
such as avoiding impacting the CIA triad, there are nuances to each client
that should be considered. Good penetration testing is not one-size-fits-all;
taking the time to speak with and understand the client will best set you up
for success in delivering a stellar report.

Key Considerations to Avoid a Negative Impact
on Client Systems

From a high-level and academic vantage point, the concept of not impacting
the CIA triad seems to be common sense and almost a red teaming trope.
However, in practice, when trying to creatively identify and exploit
vulnerable systems, it can happen unintentionally, even to experienced
practitioners. In a similar vein to understanding the goals of the engagement
from the client’s perspective, understanding the nuances of the environment
and the systems themselves is equally important. While it is infeasible to
expect to become an expert on every system that you may find in a real-
world engagement, there are a few general guidelines that can help
minimize the potential impact:

1. Once you fingerprint a system or service, understand how it works
before attempting to exploit it.
Once you have conducted a few penetration tests, most systems that
you run into will be relatively familiar. You will come across a lot of
Windows workstations, Windows and Linux servers, databases such as
SQL and MSSQL, web servers like Apache, Microsoft IIS, and Nginx,
and some ancillary (yet common) systems like Jenkins, IDRACs, and
the like. However, in most engagements, you will encounter at least a
couple of systems or services that you have never heard of before. It
could be a fairly uncommon (in enterprise settings) service related to
IoS devices like MQTT, or it could be an obscure implementation of
SSH that you are unfamiliar with. It could even be a strange Linux
system that turns out to be the audio system in the executive
conference room. The point is, there will always be something that
will require additional research.
The responsible penetration tester embraces the necessity of research
and understands what the systems are for, and generally how they
work, before launching any intrusive tools at them. Failure to do so
can turn even a seemingly benign script into a potential denial-of-
service catalyst.
Consider, for example, old versions of Pure-FTPd (think v1.0.48 and
older); there is a very important nuance in this implementation of FTP
– a maximum number of connections is possible. This means that if a
tool or script makes a connection over port 21 to this service
repeatedly without closing the connection, all the possible connections
to the server can be used up. When all the connections are used up,

there is effectively a denial-of-service condition where the system is
not offline, but legitimate users would be unable to connect to it. This
information can be quickly identified by searching vulnerabilities
related to PureFTPd but would require the pentester to look into a
vulnerability specifically related to DoS.
This illustrates an important concept when conducting vulnerability
research. If there are vulnerabilities related to a destructive activity,
such as DoS, on the system you are targeting, make sure you
understand how that exploit works. In the case of PureFTPd, it can be
fairly easy to accidentally cause that DoS condition with scripts that
on other implementations of FTP would be perfectly fine.

2. Understand the criticality of systems prior to aggressively targeting
them.
In 2021, a penetration test was conducted that identified a Windows
2003 server in a production environment. It was egregious to see a
system so incredibly outdated. To put it into perspective just how old
that is, Windows 2003 servers supported a maximum of 2 GB of
RAM. What’s worse is that this server was running business-critical
operations for the client. Even though there were numerous exploits
available that could have been used to take over this system (and
likely by extension the rest of the environment), the sheer age and
importance made it far too risky to attempt. In fact, for fear of
accidentally overwhelming it and taking it offline, removing this
system from any future scans in the environment was opted. In this
instance, it was an easy decision that the client ended up appreciating.

3. If in doubt, ask for clarification from the project point of contact.
This guideline supplements #2 in seeking additional clarification from
your points of contact when something seems unusual. In the
aforementioned scenario, the only reason the nearly two-decade-old
Windows server was indentified as business critical was because the
point of contact was asked. Inquiring about such a system because it
was so unusual compared to the rest of the environment, the client was
happy to provide some additional context.
If you are in a situation where something seems odd, asking for
clarification before proceeding is often a wise strategy. The great thing
about network penetration testing is that you can easily set a system

aside while asking for more context and work on a different part of the
environment in the meantime.

4. Clarify with the client if there are any systems that should not be
targeted on specific days or at specific times.
It isn’t particularly common, but in some instances, there will be a
certain subset of systems (often a particular VLAN) that is under
additional load or is more important to the client at particular peak
times during the day. It may be a requirement to scan and analyze
these systems during off hours, or in specific periods. While this
would usually be directed within the rules of engagement document, it
is a good practice to proactively ask the client if any systems have
such restrictions. They will likely appreciate your attention to detail
and consideration, and you may avoid an unforeseen disruption.

5. Never test something new for the first time in a client environment.
It doesn’t matter if it is a new commercial tool, a new open-source
tool, an NSE script, or even an NSE script you wrote; always test it in
a lab environment first. There can easily be unexpected and
unintended consequences on target systems, and understanding what
those are prior to choosing to use them in a live environment is
critical. Launching unknown or untested scripts in a client’s
environment is both dangerous and irresponsible.

6. Know when to move on to another target.
This is perhaps the most challenging aspect of penetration testing for
people new to the field; knowing when to move on. Many training
platforms like Tryhackme or HackTheBox have specifically
vulnerable machines that are made to be exploited. Even the ones that
are quite difficult can, somehow, be compromised. This can lead to
junior pentesters thinking that any system can be compromised if they
dig into it long enough. While there may be some philosophical truth
to that, in reality, penetration tests are time-bound and require the
tester to move relatively quickly. Additionally, it is far more likely that
a malicious actor will target simple low-hanging fruit for a quick win
rather than spending a tremendous amount of time and resources
developing a zero-day exploit.

Despite the logic of that premise, it can be very hard to move on from
a system that you feel may be vulnerable. As a result, a common
mistake is to continue to conduct more and more aggressive scans on
the system and even remove safeguards to get results faster out of
frustration. Rather than letting frustration take hold, consider setting
the system aside for additional analysis and moving on to the next part
of the scope. Exactly how long you should dig before considering
moving on is highly dependent on the situation (the size of the
environment, the length of the engagement, and so on).

Effective Communication of Results
For some, communication comes extremely naturally, and providing regular
status updates to clients is a walk in the park. But for others, it can be
challenging to switch context from in-depth technical analysis to
communicating over the high-level overview and back again. Penetration
testing is an activity where most seem to prefer a degree of immersion,
meaning extended periods of time where you are able to remain engaged
and focused on the task at hand. Having to stop mid-thought to reach out to
a client is, fundamentally, disruptive. However, disruptive or not, it is an
extremely important part of the process.
Providing regular status updates has many benefits, to name just a few:

It ensures the client is on the same page with the state of the
environment. Surprises are rarely a good thing in cybersecurity, so if
the client has been kept abreast of the progress and major findings
throughout the engagement, the presentation is often far more cordial.
It provides the opportunity to call out major findings in near-real time.
Imagine you were the client and had just started a four-week
penetration test only to find out on the last day there was a critical
vulnerability that could have been fixed a month ago. That would be
extremely frustrating. Regular status updates allow you to keep the
client updated with major findings throughout the process. Remember,
your goal is to help the client understand and improve their security
posture, not to “win”.
You can ask clarification questions. Sometimes additional context into
what systems are used for, or what VLANs are expected to be

reachable from certain pivot points, can be highly beneficial.

For most engagements, reaching out to clients is beneficial at the very
beginning of the project, when a high-severity vulnerability is identified,
when there are important clarification questions, when you have gained
access to specific systems, and when reaching approximately 25%, 50%,
and 75% of project completion. While some clients will want more or less
touchpoints, these milestones provide an effective baseline to work from.

Conclusion
At this point, we have explored each of the major features and functions of
Nmap, how to employ them efficiently in a professional setting, and how to
use those skills to amplify your capabilities as a penetration tester. This
final chapter has laid out a series of best practices and considerations when
employing these skills and techniques to ensure you have a successful
outcome.
Ultimately, the key to using Nmap in any capacity is to research how it
works and how it can be used to accomplish the specific function that you
need. A deviously simple concept, but truly core to the story, as the
versatility of Nmap is extremely vast, as has been extensively
demonstrated. This concept of understanding the how and the why behind
what you are doing is what truly separates good penetration testers from
great ones. While following a checklist is helpful for learning the basics,
once you progress beyond those basics, the nuances of the environment,
your tooling, and the objectives of the engagement begin to play a major
role.
With the skills you have learned in this book, paired with the lab
environment that you have set up, you have everything you need to become
an expert at employing Nmap in penetration tests, purple, and red teaming
engagements. You have also been exposed to many key ideas related to
ethics, best practices, and common pitfalls in offensive security
engagements.
The final pages of this book encompass two distinct appendices that may be
used and referenced to expand your depth of understanding of Nmap. The
first is an additional collection of Nmap-related questions and answers,
which are entirely distinct from the set found at the end of the preceding

chapters. These can be used as a ‘final exam’, so to speak, to gauge your
degree of understanding of the material presented. The second appendix is a
quick reference guide that has each of the Nmap scans discussed throughout
all chapters collectively organized based on purpose. This is meant to serve
as a quick reference guide so that you may rapidly find the scan syntax you
are looking for without having to endlessly dig for it. Use these resources to
further solidify your comfortability and expertise with Nmap.

Points to Remember
Every client is different, and as a result, every engagement will have
distinct and important nuances that make it different. A great
penetration tester will take these additional considerations in stride
and ensure that their methodology and actions are appropriate to the
client’s goals. Remember, penetration tests are not one-size-fits-all.
Great care must be taken to avoid negatively impacting client systems.
There are a lot of factors that go into this, but at its core, it boils down
to maintaining clear lines of communication with the client and
understanding the systems that you are targeting. In either case, the
additional context will often help avoid disruption.
Surprises in cybersecurity are never a good thing. By providing
regular status updates on both a periodic basis and when significant
findings are identified, you can ensure that the client is not surprised
by the results when they receive the final report.

APPENDIX A
Additional Questions

Multiple Choice Questions
1. This type of engagement involves the offensive and defensive

teams purposefully working against one another and is often
employed by organizations with mature security programs.

a. Penetration Test
b. Purple Teaming
c. Vulnerability Scan
d. Red Teaming

2. This service can be considered a search engine for internet-
connected devices and can be used to obtain information about
externally accessible systems passively.

a. Google
b. Shodan
c. ChatGPT
d. DnsTwist.io

3. This practice typically involves an automated process that seeks to
identify vulnerabilities, often on a recurring basis.

a. Vulnerability Scan
b. Purple Teaming
c. Penetration Test
d. Red Teaming

4. This type of engagement seeks to enumerate a real-world
malicious actor using known malicious actor tactics, techniques,

and procedures (TTPs) to actively exploit the target systems or
network.

a. Penetration Test
b. Purple Teaming
c. Vulnerability Scanning
d. Red Teaming

5. This status means the port is accessible, but Nmap cannot
determine if it is open or closed.

a. Filtered
b. Unfiltered
c. Open | Filtered
d. Closed | Filtered

6. This model is a framework to describe how computer systems can
communicate with one another, from the physical layer that
involves cables and electrical signals, to the application layer
where the user directly interacts

a. MITRE ATT&CK
b. MITRE D3FEND
c. OSI Model
d. Lockheed Martin Kill Chain

7. Who was the original creator and maintainer of Nmap?

a. Gordon Lyon
b. Kevin Mitnick
c. Alan Woodward
d. Brian Krebs

8. Intelligence Platform Management Interface (IPMI) is most
commonly seen on which UDP port?

a. 443
b. 8080

c. 445
d. 623

9. What is the second step of the TCP three-way handshake?

a. ACK
b. RST
c. SYN-ACK
d. SYN

10. This type of penetration test takes the perspective of a malicious
actor with inside knowledge of, and access to, the client’s
infrastructure.

a. White Box
b. Black Box
c. Red Box
d. Purple Box

11. Nmap can be installed on which of the following?

a. Hyper-V
b. VMware
c. Virtual Box
d. All of the Above

12. Wazuh is an open source _____? (Choose two)

a. SIEM
b. Firewall
c. IDS
d. XDR

13. Which of the following firewalls can be incorporated into your
home or lab environment for free?

a. Aruba Networks
b. Cisco Meraki
c. Zscaler

d. pfSense

14. New tools, techniques, and scripts should be tested in a lab
environment before being executed in a client’s network.

a. True
b. False

15. In a lab environment, implementing a security tool such as Wazuh
can be beneficial in which way?

a. To gauge the level of obfuscation during advanced scanning
techniques

b. To understand the level of noise generated during scanning
c. To experiment with detection and response configurations
d. All of the Above

16. Which of the following tools provides an interactive graphical user
interface (GUI) for Nmap? (Choose Two)

a. LAMP
b. Legion
c. Zenmap
d. Bloodhound

17. Which of the following flags are used to specify a target file?

a. -iL
b. -oX
c. --target-file
d. -T

18. Which of the following flags are used to adjust the amount of
information returned by Nmap?

a. -v
b. --script
c. -reason
d. -oX

19. This flag is utilized to specify that UDP should be utilized rather
than TCP.

a. -sU
b. -Pn
c. -UDP
d. -6

20. What is the proper syntax for scanning the following address:
9e1c:2591:09d0:767e:4592:0a60:dee4:07de

a. Nmap -6 9e1c:2591:09d0:767e:4592:0a60:dee4:07de
b. Nmap -p 80,443 9e1c:2591:09d0:767e:4592:0a60:dee4:07de
c. Nmap -A 9e1c:2591:09d0:767e:4592:0a60:dee4:07de
d. Nmap -Pn 9e1c:2591:09d0:767e:4592:0a60:dee4:07de

21. By default, Nmap will scan how many TCP ports on a target
system?

a. 10
b. 100
c. 1000
d. 10000

22. This flag, often used for troubleshooting, shows the reason why
Nmap reported the status of each open port.

a. --Open
b. --Reason
c. --Why
d. -vv

23. To exclude ports that are closed, filtered, or unknown from the
Nmap results, you would include which flag?

a. --alive
b. -oX
c. -X

d. –open

24. Which TCP port is most commonly associated with Border
Gateway Protocol (BGP)?

a. 22
b. 25
c. 179
d. 1433

25. Which TCP port is most commonly associated with Simple Mail
Transfer Protocol (SMTP)?

a. 22
b. 25
c. 179
d. 1433

26. Which of the following pieces of information are beneficial in
determining the CPE of a system?

a. Specific operating system and version
b. What the system is likely used for
c. Specific services running on the ports and their associated

versions
d. All of the above

27. In addition to ports 80 and 443, which of the following TCP ports
is also commonly associated with web servers?

a. 8080
b. 4786
c. 1433
d. 9001

28. This is a free-to-use repository of information on known CVEs
which allows you to search by the CVE ID, product title, vendor,
or even vulnerability type.

a. Cisa.gov
b. Attack.mitre.org
c. Exploit-db.com
d. Cvedetails.com

29. What is the version intensity of a default Nmap scan?

a. 6
b. 7
c. 8
d. 9

30. What is one unique benefit of outputting Nmap results into the
.xml format?

a. The results are easier to read
b. The results can be imported into Legion
c. The results are more accurate
d. The scan will finish faster

31. This Nmap script queries a third-party vulnerability database and
outputs CVEs that are associated with the target system following
enumeration.

a. Cve.nse
b. Vulners.nse
c. Searchsploit
d. Firewalk.nse

32. Increasing verbosity will have what effect on the duration of the
Nmap scan?

a. There will be no change to the duration
b. The scan will finish more quickly
c. The scan will take longer to finish

33. Which of the following is not an output option for Nmap scan
results?

a. Greppable
b. XML
c. Normal
d. Abridged

34. Every organization inherently has some degree of an attack
surface.

a. True
b. False

35. _____ is a standardized way of encoding names of IT products and
platforms and is maintained in a dictionary format by NIST.

a. CVE
b. CPE
c. CWE
d. OSCP

36. Which of the following is not one of the service versioning
techniques utilized by Nmap by default?

a. Analyzing the TTL of ICMP responses
b. Analyzing service headers
c. Querying the NIST API for product and platform information
d. Analyzing TCP ISN sampling

37. This common designation for specific vulnerabilities allows
security professionals in different organizations to more easily
collaborate.

a. CVE
b. CPE
c. CWE
d. OSCP

38. What is the proper syntax to provide a description and example
usage of a specific NSE script?

a. -script -help
b. --script-help
c. --help-script
d. -script-h

39. Which flag would be utilized to conduct a ping sweep with Nmap?

a. -Pn
b. -sn
c. --ping
d. -h

40. Which of the following flags reduces the total number of ports
scanned from 1000 to a base of 100?

a. -F
b. -sV
c. -T5
d. -s

41. Which of the following subnets contains the fewest possible IP
addresses?

a. /32
b. /30
c. /16
d. /8

42. Which of the following is a commonly specified value for grouping
targets for concurrent scanning with the --min-hostgroup flag?

a. 256
b. 3
c. 10,00
d. 257

43. Time values specified in both the --initial-rtt-timeout and --
max-rtt-timeout flags are specified in what measurement?

a. Seconds
b. Minutes
c. Milliseconds
d. Hours

44. What is an important consideration to keep in mind when using
the --defeat-rst-limit command to ignore rate limits on the
host?

a. The scans will take much longer to complete
b. The scans will take less time to complete
c. The scans will take much longer to complete and be more

accurate
d. The scans will take less time to complete and be less accurate

45. What value for --max-retries is set when specifying the -T5 flag?

a. 8
b. 6
c. 4
d. 2

46. Which of the following open-source tools is commonly used before
Nmap on an internal network penetration test to passively scan
ARP traffic for initial host discovery?

a. Legion
b. NetDiscover
c. Zenmap
d. Zmap

47. Which operating system comes with Legion preinstalled?

a. Windows
b. MacOS
c. Red Hat Enterprise Linux
d. Kali Linux

48. Which of the following is not a benefit of using Zenmap?

a. The ability to import scan files
b. A GUI to organize and visualize the data
c. The ability to launch additional scans
d. The ability to trigger additional tools automatically

49. Which of the following is not a default scan profile built into
Zenmap?

a. Intense Scan
b. Ping Scan
c. Quick Scan
d. Stealth Scan

50. In Kali Linux, the Legion configuration file would be found in
which directory by default?

a. /root/.local/home/legion
b. /root/.local/share/legion
c. /root/.local/etc/legion
d. /root/.local/opt/legion

51. In the Legion configuration, what do the SchedulerSettings
specify?

a. The sequence of each stage of scanning
b. The ports that should be scanned in each stage
c. Definitions of available options
d. Additional actions taken when specific results are identified

52. The following Legion Settings would be most appropriate for what
sized scope?
[StagedNmapSettings]

stage1-ports="T:23,25,587,80,8080,443,

8443,8081,9443,3389,1099,4786,3306,5432,1521"

stage2-ports="T:135,137,139,445,1433,88"

stage3-ports="U:53,110,161,500, 623"

stage4-ports="T:1-10000"

stage5-ports="Vulners,CVE"

stage6-ports="T:80"

a. Small
b. Medium
c. Large
d. Very Large

53. Which of the following is not a key benefit of both Zenmap and
Legion?

a. Free and open-source
b. Quick and easy instillation
c. Intuitive to use
d. Fully replaces commercial vulnerability scanners

54. Which of the following commonly referenced flags are considered
obsolete and included in all modern versions of Nmap scans by
default?

a. -A
b. -sV
c. -sS
d. -S

55. Which of the following flags can be used to fragment raw packet
frames?

a. -f
b. -F
c. --data-length
d. -Pn

56. Which option would be most beneficial in a scenario where your
initial scan returned a large number of hosts as “Filtered”?

a. --randomize-hosts
b. --discovery-ignore-rst

c. -D
d. --exclude-host

57. Which of the following does not help avoid blue team detection?

a. Avoiding scanning gateways
b. Avoiding scanning the same endpoint repeatedly
c. Adding obfuscation to scans
d. Scanning as quickly as possible

58. Which of the following is not a standard category of NSE scripts?

a. Spider
b. Auth
c. Broadcast
d. Exploit

59. Which of the following is the proper syntax to run all scripts
except those in the Brute category?

a. --script “not brute”
b. --script “safe”
c. --script * and not brute
d. --script “safe and not brute”

60. Which of the following flags allows you to specify additional
arguments related to the script?

a. –script-args
b. -sC
c. –script “keyword”
d. -D +

Answers
1. d
2. b
3. a

4. a
5. c
6. a
7. d
8. c
9. d
10. a,d
11. d
12. a
13. d
14. b,c
15. a
16. a
17. a
18. a
19. c
20. b
21. d
22. c
23. b
24. d
25. a
26. d
27. a
28. b
29. c
30. b
31. b
32. c

33. d
34. a
35. b
36. c
37. a
38. b
39. b
40. a
41. a
42. a
43. c
44. d
45. d
46. b
47. d
48. d
49. d
50. b
51. d
52. b
53. d
54. c
55. b
56. d
57. d
58. a
59. a
60. a

APPENDIX B
Nmap Quick Reference Guide

Port States
Open The port is actively accepting connections

Closed The port is accessible but there is no application listening on it

Filtered Nmap cannot tell if it is opened or closed, often due to a firewall

Unfiltered The port is accessible, but Nmap cannot tell if it is open or closed.
This status is rarely seen unless you are doing a very specific type of
scanning to map firewall rulesets

Open|Filtered Nmap cannot tell if it is Open or Filtered, possibly because of a lack
of response

Closed|Filtered Nmap cannot tell if it is Closed or Filtered

Flags for Basic Scanning
Flag Function

-sV Enables service version detection on the ports that respond as open

-A Enables operating system detection as well as service versioning on
the target

-v Adds additional details to the output and is paired ery well with
either -sV or -A

-p Specify specific port(s) to scan

-sU Specify UDP scanning rather than TCP

-iL Read the target list from a .txt file

-oX Output scan results to a .xml file

-sn Ping scan

-6 Specify IPv6 scanning

-F Reduces the number of ports scanned from the top 1,000 TCP to the

top 100 TCP

--top-ports Specifies a provided number of ports to scan

--open Filters results to only ports recognized as “open”

--reason Shows the reason why each port is being reported the way that it is

--script Specify the provided NSE script(s)

--script-help Display details and usage of a specified NSE script

--script-args-timeout Specifies the amount of time Nmap can spend attempting to get a
result from a script before moving on to the next target

Mapping the Attack Surface
Purpose:
A slow and comprehensive scan of a few of the most common interesting
ports, which outputs to an XML file.

Syntax:
Nmap -A -T2 --open -p 21,22,25,80,110,179,443,8080,8443 -iL

targets.txt -oX results1.xml

Purpose:
A slow and comprehensive scan of all ports with higher emphasis on
service versioning, which outputs to an XML file.

Syntax:
Nmap -A --version-intensity 9 --allports --open -iL

targets2.txt -oX results2.xml

Purpose:
A slow scan, with ICMP ping disabled, of the top 500 ports with service
versioning that will also return vulnerability information.

Syntax:
Nmap Pn --top-ports 500 -T2 -sV --version-all --script

vulners.nse -iL targets.txt -oX results.xml

Purpose:
A fast scan of the top 100 ports with light emphasis on service versioning,
which will return vulnerability information for fingerprinted services.

Syntax:
Nmap -F -T5 –version-light -sV --script vulners.nse -iL

targets.txt -oX results.txt

Purpose:
A broadcast script to identify instances of Jenkins on an internal network.

Syntax:
Nmap --script broadcast-jenkins-discover --script-args

timeout=15s

Purpose:
Identifying vulnerabilities related to SMB on Windows Systems.

Syntax:
Nmap –p 139,445 --script smb-vun* -iL targets.txt -oX

results.txt

Purpose:
Identifying if SMB signing is enabled and required on specified hosts via
SMBv2.

Syntax:
Nmap -p 139,445 --open --script smb2-securtity-mode

Purpose:
Scanning for cross-site request forgery vulnerabilities on web servers.

Syntax:
Nmap -p 80,443 -sV --script http-csrf

Purpose:

A fast scan to identify and output a list of targets with ports associated with
SMB open.

Syntax:
Nmap -pn -T4 -iL targets.txt -p 139,445 --open -oX

SMB_results.xml

Purpose:
A fast UDP scan to identify and output a list of targets with the port
associated with IPMI open.

Syntax:
Nmap -pn -sU -T4 -iL targets.txt -p 623 --open -oX IPMI.xml

Purpose:
A fast scan to identify and output a list of targets with a port associated with
JavaRMI open.

Syntax:
Nmap pn -T4 -iL targets.txt -p 1099 --open -oX JavaRMI.xml

Purpose:
A fast scan to identify and output a list of targets with a port associated with
Cisco Smart Install open.

Syntax:
Nmap -pn -T4 -iL targets.txt -p 4786 --open -oX

smart_install.xml

Timing and Performance
Flag Function

-T Specifies the speed of scanning from T0 (slowest) to T5 (fastest)

--version-intensity Specifies the intensity of service versioning efforts from 0 (lightest)
to 9 (most intense)

--max-os-tries Specifies the number of times Nmap will attempt to fingerprint the

operating system

--max-retries Specify the number of times Nmap will attempt to scan a host
before moving on to another

--discovery-ignore-rst Prevents Nmap from considering a host down based on an RST
response to a probe

--min-hostgroup Specifies the size of target groups to scan concurrently

--initial-rtt-timeout Specifies a minimum rtt timeout rate in milliseconds

--max-rtt-timeout Specifies a maximum rtt timeout rate in milliseconds

--host-timeout Specify a host timeout value in minutes, which is the maximum
amount of time Nmap will attempt to gather all information before
moving on to another host

--defeat-icmp-ratelimit Used to increase the speed of UDP scans specifically

--defeat-rst-ratelimit Trade accuracy for speed by ignoring the rate limits

entirely, which can result in Nmap not waiting long

enough for the results to be returned

Scanning Large Scopes
Purpose:
A simple ping sweep of subnets listed in a target file, which will output a
sanitized list of live endpoints to a target file.

Syntax:
Nmap -n -sn -iL Ping_Sweep.txt -oG - | awk '/Up$/{print $2}' |

> targets.txt

Purpose:
A ping sweep, optimized for speed, which will output a sanitized list of live
endpoints to a target file.

NOTE: This is designed for extremely large scopes, with an emphasis
on finding the /24 subnets that are in use, rather than accurately
identifying every single live endpoint. This scan trades accuracy for
speed.

Syntax:

Nmap -sn -n --defeat-rst-ratelimit --max-rtt-timeout 250ms --

max-retries 2 --host-timeout 2m --min-hostgroup 2048 -iL

subnet1.txt -oG - | awk '/Up$/{print $2}' | > Ping_Sweep1.txt

Purpose:
A fast scan to identify targets with ports commonly associated

with web servers open.

Syntax:
Nmap -pn -T4 -iL targets.txt -p 80,443,8080,8443 --open -oX

Web_servers.xml

Obfuscation
Flag Function

--exclude-ports Specifies ports that should not be scanned

--exclude-host Specifies hosts that should not be scanned in a given range

-Pn Disable Ping

--randomize-hosts Modifies the default scanning behavior of targets selected from a
sequential range to a random one

--data-length Appends a specified number of bits of random data to the end of
each packet

-D Decoy scanning

-f Fragments packets to add more entropy

-ttl Specifies a given time to live

Stealth Scanning
Purpose:
A somewhat stealthy scan that fragments packets, adds entropy

to the packets, and randomizes the hosts targeted.

Syntax:
Nmap -f --data-length 5 --randomize-hosts

Purpose:
A moderately stealthy scan that fragments packets, adds entropy to the
packets, randomizes hosts, disables ping, throttles the speed, and excludes
commonly detected ports for SSH and SMB.

Syntax:
Nmap -f --data-length 5 --randomize-hosts -T2 -Pn --exclude-

ports 22,139, 445

Purpose:
A moderately stealthy scan that fragments packets, adds entropy to the
packets, randomizes hosts, disables ping, throttles the speed, and modifies
the default ttl of packets.

Syntax:
Nmap -T2 –-randomize-hosts -Pn -f –-data-length 5 -ttl 58

Purpose:
A stealthy scan that fragments packets, adds entropy to the packets,
randomizes hosts, disables ping, throttles the speed, excludes commonly
detected ports for SSH and SMB, and puts reduced limits on the host
timeout and maximum retries of each host.

Syntax:
Nmap -f --data-length 5 --randomize-hosts -T2 -Pn --exclude-

ports 22,139, 445 --host-timeout 5m --max-retries 3

Purpose:
A slow scan that employs numerous complementary obfuscation techniques
while specifically scanning targets for susceptibility to pass-the-hash
attacks by checking SMB signing.

Syntax:
sudo nmap -p 139,445 -Pn --disable-arp-ping --discovery-

ignore-rst --open --randomize-hosts -T2 --data-length 5 --max-

retries 2 --host-timeout 5s --script smb-security-mode,smb2-

security-mode -iL targets.txt

Nmap Scripting Engine
Script Category Description

Auth Script that deals with the authentication of the target system

Broadcast Scripts used for the discovery of additional or specific systems by
broadcasting on the local network

Brute Scripts that use brute-force style techniques

Default The default category is the list of scripts that are called when using
either the -sC or the -A flags

Discovery Scripts that are used for active reconnaissance and discovering
specific information on the network

DoS Scripts that may, intentionally or otherwise, crash systems and cause
denial of service conditions

Exploit Scripts that actively exploit particular vulnerabilities

External Scripts that send data outside of the typical scanner – target
relationship

Fuzzer Scripts used to “Fuzz” servers or services to identify hidden
resources

Malware Scripts can be used to detect targets that are infected by malware

Vuln Scripts that check for very specific vulnerabilities

Intrusive Scripts that have an elevated probability of crashing target systems
and thus cannot be classified as ‘safe’

Safe Scripts are designed not to exploit anything, not to crash systems,
and not to be associated with using huge amounts of bandwidth

Version Scripts that are related to service versioning

Top 10 Handy NSE Scripts
Script Function

Vulners.nse Looks at the services being run on the system and queries the
vulenrs.com database of vulnerabilities to determine if those
services match known vulnerabilities

Ms-exchange-version.nse Fingerprints and identifies vulnerabilities associated specifically
with on-premises Microsoft Exchange servers

Smb-security-mode.nse Identifies if SMB signing is enabled on the target(s) via SMB
version 1

Smb2-security-mode.nse Identifies if SMB signing is enabled on the target(s) via SMB
version 2

Smb-os-discovery.nse Fingerprint Windows systems via the SMB protocol

Smb-enum-* Shortcut for running dozens of individual SMB enumeration scripts

Smb-vuln-* Shortcut for running dozens of individual SMB vulnerability
discovery scripts

Broadcast-jenkins-

discover.nse

Broadcasts a probe to identify instances of Jenkins on the network

Http-wordpress-enum.nse Fingerprints WordPress plugins and prints vulnerabilities associated
with them

Firewalk.nse Sends varying types of probes to the gateway and based on the TTL
and reply ascertains if a firewall rule is impacting that port

Index

A
Attack Surfaces

about 42, 43
Nmap to Map, leveraging 49-55
penetration test, stages 43, 44
small business, monitoring 55, 56

Attack Surfaces, challenge
home network, mapping 57
scan with hand-on, getting 56

Attack Surfaces, Nmap flags
-A 45
-iL 47
-open 48
-oX 47
-p 47, 48
--reason 48
-sU 48
-sV 44
-T 46
-v 46

B
Blue Team Detection, avoiding 125, 126

C
Client System

benefits 160, 161
communcating, results 160
key, considering 158-160
scans, types 155-157

Common Platform Enumeration (CPE)
about 63, 64
common vulnerabilities and exposures (CVEs) 64, 65
versioning techniques 64

CSRF 82

I
Intrusion Detection System (IDS) 124

K
kali-virtual-machines

reference link 26

L
lab environment

about 24, 25
securing 34, 35
Virtual box, Nmap installing 25-30

lab environment servers, setting up
Linux 30, 31
Windows 31-33

Large Enterprise Network
about 90-92
black box subnet discovery 92, 93
mass, scanning 94, 95
speed, optimizing 95-98

Large Enterprise Network, case study
real world, pentesting 98, 99
speed, scan optimizing 100

Large Enterprise Network, flags
--defeat-icmp-ratelimit 97
--defeat-rst-ratelimit 96
--host-timeout 96
--initial-rtt-timeout 95
--max-retries 96
--min-hostgroup 95

Legion
analysis, scanning 107-110
file configure, modifying 110-112
zenmap, configuring 114

Legion Scanning, situations
large scope 114
medium scope 113
small scope 113

N
Nmap

about 2-9
career, boosting 9-11
legally, ethically using 12, 13
penetration, testing 15
purple, red teaming 16
TCP 3
vulnerability scanner 14

Nmap Flags, intermediate
-6 68

--exclude-ports 71
-F 69
--max-os-tries 70
-Pn 69
--script 67
--script-help 67
-sn 68
--top-ports 69
--version-all 70
--version-intensity 70
--version-light 70

Nmap Flags, usage
-sC 142
--script 141
--script-args 142

Nmap Scan obfuscation, flags
-D 123
--data-length 122
--discovery-ignore-rst 123
--exclude-host 122
--exclude-port 122
-f 121
-Pn 123
--randomize-hosts 122

Nmap Scan Parameter 120, 121
Nmap Scan Parameter, case study

purple, teaming 126-128
red, teaming 129-132

Nmap Scan Parameter, challenge
complex scans, breaking 133
lab detect, evading 132

Nmap Scripting Engine
about 66
directory, modifying 143-145
exploring 71
flawed protocols, inherently 77
locating 143
security, misconfiguring 75, 76
system, service determine 75
technical debt 78, 79
vulnerability, scanning 79-82

Nmap Scripting Engine, case study
external penetration, real world testing 83, 84
home network, scanning 84
system, fingerprinting 84

Nmap Scripting Engine, categories
Auth 138
Broadcast 138
brute 138, 139
default 139

discovery 139
DoS 139
Exploit 139
External 139
Fuzzing 139
intrusive 140
Malware 140
safe 140
version 140
Vuln 140

Nmap Scripting Engine, corporations
Broadcast-jenkins-discover.nse 73
Firewalk.nse 73
Http-wordpress-enum.nse 73
Ms-exchange-version.nse 72
Mysql-empty-password.nse 74
Smb-enum 73
Smb-os-discovery.nse 73
Smb-security-mode.nse 72
Smb-vuln 73
Vulners.nse 72

Nmap Scripting Engine, scripts
host 140
Postrule 141
Prerule 140
service 140

Nmap script, operations
script + [name of script] 142
--script "category" 141
-- script "keyword-*" 141

NSE Scripting 146, 147
NSE Scripting, challenges

concurrent scripts, scanning 148
GitHub post, creating 148
lab environment test, refining 148

R
Right Scan, identifying 154, 155

S
SchedulerSettings 111
StagedNmapSettings 112

T
TCP 3

Z
zenmap 26
zenmap, leveraging

analysis, scanning 104-107

	Cover Page
	Title Page
	Copyright Page
	Dedication Page
	About the Author
	About the Technical Reviewer
	Acknowledgements
	Preface
	Errata
	Table of Contents
	1. Introduction to Nmap and Security Assessments
	Introduction
	Structure
	Introduction to Nmap
	Using Nmap to Boost Your Career
	Using Nmap Legally and Ethically
	Vulnerability Scans Versus Penetration Tests
	Applying Nmap to Red and Purple Teaming
	Conclusion
	Points to Remember
	Multiple Choice Questions
	Answers

	2. Setting Up a Lab Environment For Nmap
	Introduction
	Structure
	Components of a Good Lab Environment
	Installing Nmap, Virtual Box, Kali, and Additional Tools
	Setting Up the Target Servers
	Securing the Lab Environment
	Conclusion
	Points to Remember
	Challenge 1 – Customize Your Lab
	Multiple Choice Questions
	Answers

	3. Introduction to Attack Surface Mapping
	Introduction
	Structure
	Understanding Attack Surfaces
	Stages of Penetration Tests
	Fundamental Nmap Flags
	Leveraging Nmap to Map the Attack Surface
	Case Study – Continuous Attack Surface Monitoring of a Small Business
	Challenge 1 - Getting Hands-on with Basic Scans
	Challenge 2 – Map the Attack Surface of Your Home Network
	Conclusion
	Points to Remember
	Multiple Choice Questions
	Answers

	4. Identifying Vulnerabilities Through Reconnaissance and Enumeration
	Introduction
	Structure
	Common Platform Enumeration (CPE) and Common Vulnerabilities and Exposures (CVE)
	Introduction to Nmap Scripting Engine
	Intermediate Nmap Flags
	Exploring the Nmap Scripting Engine
	System, Service, and Operating System Enumeration
	Misconfigurations

	Inherently Flawed Protocols
	Technical Debt

	Vulnerability Scanning with Nmap
	Case Study – Real-World Internal and External Penetration Test
	Challenge 1: Fingerprinting Vulnerable Systems
	Challenge 2: Home Network Vulnerability Scanning
	Conclusion
	Points to Remember
	Multiple Choice Questions
	Answers

	5. Mapping a Large Environment
	Introduction
	Structure
	Working with Large Networks
	Black Box Subnet Discovery Techniques and Mass Scanning
	Optimizing Scans for Speed
	Case Study: Real-World Account of Pentesting a Very Large Environment
	Challenge: Optimizing a Custom Scan for Speed
	Conclusion
	Points to Remember
	Multiple Choice Questions
	Answers

	6. Leveraging Zenmap and Legion
	Introduction
	Structure
	Leveraging Zenmap for Analysis and Scanning
	Leveraging Legion for Analysis and Scanning
	Modifying the Legion Configuration File
	Challenge: Creating a Custom Legion Configuration and Zenmap Profile
	Conclusion
	Points to Remember
	Multiple Choice Questions
	Answers

	7. Advanced Obfuscation and Firewall Evasion Techniques
	Introduction
	Structure
	Understanding and Manipulating Default Nmap Scan Parameters
	Advanced Flags for Obfuscation
	Intrusion Detection System (IDS) and Firewall Evasion
	Avoiding Blue Team Detection
	Case Study: Purple Teaming with Nmap
	Case Study: Red Teaming a Bank
	Challenge: Evading Detection in Your Lab Environment
	Challenge: Breaking Down Complex Scans
	Conclusion
	Points to Remember
	Multiple Choice Questions
	Answers

	8. Leveraging the Nmap Scripting Engine
	Introduction
	Structure
	Introduction to Nmap Scripting Engine (NSE)
	Script Syntax and Usage
	Locating, Modifying, and Adding NSE Scripts
	Introduction to NSE Scripting
	Challenge: Create a Custom NSE Script and Post it to GitHub
	Challenge: Test and Refine a Custom Script in the Lab environment
	Challenge: Scanning with Multiple Concurrent Scripts
	Conclusion
	Points to Remember
	Multiple Choice Questions
	Answers

	9. Best Practices and Considerations
	Introduction
	Structure
	Identifying the Right Scan at the Right Time
	Key Considerations to Avoid a Negative Impact on Client Systems
	Effective Communication of Results
	Conclusion
	Points to Remember

	APPENDIX A. Additional Questions
	Multiple Choice Questions
	Answers

	APPENDIX B. Nmap Quick Reference Guide
	Port States
	Flags for Basic Scanning
	Mapping the Attack Surface
	Timing and Performance
	Scanning Large Scopes
	Obfuscation
	Stealth Scanning
	Nmap Scripting Engine
	Top 10 Handy NSE Scripts

	Index

